by
Stephan Martin Rudolfer

A Thesis submitted for the degrees of Doctor of Philosophy in the University of London and Diploma of Membership of the Imperial College.

Department of Mathematics, Imperial College, London, S.W.7.

ABSTRACT

After an introductory chapter, we study characterisations of mixing, weak mixing and ergodicity of a finite measure-preserving transformation T due to N. Oishi [25]. These characterisations are in terms of convergence of suitably defined entropies of finite partitions. We show that the characterisations can be given in terms of (countable) partitions with finite entropy, extend the characterisation to mixing of degree r and give further characterisations in terms of convergence of the suitably defined measures of Jordan measurable sets and, in the case of a compact measure space, in terms of weak convergence of these measures. It is shown that these characterisations cannot be extended to convergence of the corresponding entropies of TxT nor to all measurable subsets, respectively.

Chapter III studies the ergodic properties of two classes of linear fractional transformation mod one, which turn out mostly to have similar properties to previously studied f-transformations [29], [32]. The main tool is a sufficient condition for ergodicity of non-singular, many-one transformations of a probability space, which, applied to f-transformations, generalises a similar theorem of A. Rényi [29]. Rényi's theorem states the existence of a finite invariant measure equivalent to Lebesgue measure. In some cases, using a result of W. Parry [27], we have succeeded in constructing this invariant measure. Throughout, results were only obtained for f-transformations with independent digits (in the sense of Rényi). The dependent digit case is much more delicate, and we were unable to obtain results in this direction.

Of particular interest is the ergodic transformation $\frac{T}{1+x}$ whose σ-finite invariant measure is exhihiter. Its associated f-expansions have a striking distribution of digits. It is an open question whether $T \mathrm{x}$ is exact and what value its entropy $[22]$ takes. $\overline{1+x}$

In chapter IV the isomorphism problem for irreducible, null recurrent and aperiodic Markov shifts is studied using a necessary and sufficient condition for ergodicity due to Kakutani and Parry [13] and the divergence properties of certain renewal sequences. The latter provide metric invariants which are then used to investigate three classes of Markov shift, it being shown that they each consist of a continuum of non-isomorphic transformations. Non-isomorphism between the three classes is also discussed. A generalised Hopf ergodic theorem is proved as a corollary to the methods developed.

ACKNOWLEDGEMENT

My thanks go to my supervisor, Dr. Y.N. Dowker, to Dr. W. Parry for their help, guidance and criticism, and to my wife for her constant encouragement, during the preparation of this thesis.

CONTENTS

I Preliminary Definitions and Results page7
$\xi 1$ Measure Spaces 7
§2 Measurable Functions and Absolute Continuity 14
§3 Integrable Functions 15
$\oint 4$ Topological Measure Spaces 20
§5 Transformations 21
§6 Markov and Bernoulli Shifts 32
§ 7 Renewal Sequences 38
§8 Continued Fractions 41
II Characterisations of Mixing Properties for Measure
Preserving Transformations 44
§1 Introduction 4
$\oint 2$ A Lemma 44
§3 The Characterisations 47
$\oint 4$ The Topological Case 58
III Linear Fractional Transformations Mod One 61
§1 Introduction 61
52 Ergodicity and Invariant Measure 62
§3 f-expansions and f-transformations 72
§4 The transformation $T_{f}(x)=\left(\frac{1}{a x}-\frac{b}{a}\right)$, when $f(x)=\frac{1}{a x+b}$ 85
$\oint 5$ The transformation $T_{f}(x)=\left(\frac{b x}{1-c x}\right)$, when $f(x)=\frac{x}{b+c x}$ 95
$\$ 6$ Unresolved Questions 104
IV Metric Invariants for Markov Shifts page 106
\$1 Introduction 106
§2 The Relation between Markov Shifts and Renewal Sequences 107
§ 3 Some Metric Invariants for Markov Shifts 110
$\$ 4$ Non-Isomorphism of Certain Markov Shifts 12.4
Bibliography 128
Index of Notation and Definitions 131

CHAPTER I

Preliminary Definitions and Results

St Iieasure Spaces

If A is a set and x is an eloment of A then we write $x \in A$. If x is not an element of A then me rite x / A. If A is a subset of B then we write $A \subset B$ or $B \supset A$. The union, intersection, difference and symmetric difference of two sets A and B are denoted by $A \cup B, A \cap B, A-B$ and $A+B$ respectively. If we are studying the subsets A of a set X then we write $C A$ for X - A, the complement of A. The empty set is denoted by ϕ; sets A and B are said to be disjoint if $A \cap B=\phi . \quad\{x\}$ denotes the point set x.

Unless otherwise stated, the same notation as that relating to sets will also be used when dealing with classes or families of sets.
1.1 Definition If X is a non-empty set and R is a nonempty collection of subsets of X then R is a ring if $E \in R$ and $F \in R$ imply $\mathbb{E}-F \in R$ and $\mathbb{E} \cup F \in R$.

An algebra is a ring R such that $X \in \Omega$.
A $\underset{\sigma-\text { ring }}{ }$ \& is a ring such that $E_{n} \in \&(n=1,2, \ldots)$ imply $\bigcup_{n=1}^{\infty} E_{n} \in \quad \& \quad$.

A σ-alpebre B is 2 ovine such that $X \in B$. If a, B are $\sigma-a l$ gebras we write $a \subset \Omega$ if $A \in a$ implies $A \in B \quad$.

Since the intersection of an arbitrary class of o-algobras is again a σ-algebra, tire $\sigma-a l$ gebra generated by a class of subsets of X is uniquely defined as the intersection of all σ-algebras of subsets of X containing this class. It always exists since the σ-algebra of all subsets of X contains every class of subsets of X.
1.2 Definition The pair (X, B), where X is a nonempty set and
\mathcal{B} is a σ-algebra of subsets of X, is a measurable space. elements of B are measurable or Bore 1 subsets of X.

A non-negative, possibly infinite-valued set function μ defined on (X, \mathbb{Z}) is a measure if
(i) $\mu(\phi)=0$
(ii) $\bar{E}_{n} \in \mathbb{Q} \quad(n=1,2, \ldots), \exists_{i} \cap J_{j}=\dot{\varphi} \quad(i \neq j)$ imply $\mu\left(\bigcup_{n=1}^{\infty} T_{n}\right)=\sum_{n=1}^{\infty} \mu\left(E_{n}\right)$.
$E \in B$ is a null set of μ if $\mu(\mathbb{E})=0$. An important principle of measure theory is that of neglecting null sets. This gives far more generality to results and definitions than would be possible ir a purely set-theoretic approach were adopted. Thus, if $P(x)$ is a proposition depending on x, we say $P(x)$ holds almost everywhere if $\{x: P(x)$ does not hold $\}$ is a null set. Similarly, $\Lambda=B(\bmod 0)$ or $A=B$ modulo zero mean that $A+B$ is a null set. In particular
$A \subset B(\bmod 0)$ if $A-B$ is a null set. Applying this to σ-algebras, we say that $a \subset(B \quad$ (mod 0$)$ if for every $A \in Q$ there exists $B \in \mathbb{R}$ with $A=B(\bmod 0)$. Fence $\alpha=\mathbb{B}(\bmod 0)$ means that $a \subset \hat{B} \subset a(\bmod 0)$
μ is finite if $\mu(X)<\infty ; \mu$ is σ finite if $\mu(X)=\infty$,
$X=\bigcup_{n=1}^{\infty} X_{n}, \quad X_{i} \cap X_{j}=\phi(i \neq j)$ and $\mu\left(X_{n}\right)<\infty(n=1,2, \ldots)$.
$\left\{X_{n}\right\}_{0}^{\infty}$ which is not unique, is called a σ-finite partition of X.
(X, \mathscr{G}, μ) is then a finite or σ-finite measure space respectively. It is a probability space (μ is a probability measure) if $\mu(X)=1$. A is an atom of (X, \mathcal{B}, μ) if $A \in \mathbb{B}, \mu(A)>0$ and $B \subset \Lambda, \quad B \in \mathbb{B}$ implies $\mu(B)=0$ or $\mu(B)=\mu(A)$. If (X, B, μ) has no atoms then it is non-atomic.

If $(\mathrm{X}, \mathbb{B}, \mu)$ satisfies this condition:
$A \in B, \quad \mu(A)=0, B \subset A$ implies $B \in \mathcal{B}$,
then ($\mathrm{X}, \boldsymbol{B}, \mu$) is a complete measure space. There is no loss of generality in assuming, as we do from nom on, that (x, Q, μ) is complete; there exists a unique $\sigma-a l g e b r a \overline{\mathcal{B}} \supset \mathbb{B}$ of subsets of X and a unique measure $\bar{\mu}$ on $(X, \overline{3})$ such that $(X, \bar{\beta}, \bar{\mu})$ is complete, $\bar{\mu}(\mathbb{B})=\mu\left(\mathbb{N}^{\prime}\right)$ for all $\mathbb{B} \in \mathcal{B}$ and for each $\bar{A} \in \bar{B}$ there exists $A \in(B, \Lambda \supset \bar{A}$ such that $\bar{\mu}(A-\bar{A})=0[7$, p. 55].

A countable collection $\Lambda \subset B$ is a basis for
($\mathrm{x}, \boldsymbol{B}, \mu$) if the following conditions are satisfied:-
(i) For every $A \in B$ there is a set B belonging to the σ-algebra generated by Λ such that $A \subset B$ and $\mu(B-A)=0$.
(ii) For every pair x, y of distinct points in X there is a set $A \in A$ such tint either $x \in A, y \notin A$ or $x \notin A$, $y \in A$.
(x, B, μ) is separable if it has a basis. Note that the definition of separability applies equally to σ-finite measure spaces, since (i) depends only on null sets of μ, and that countable subsets of a separable measure space are measurable by (ii), si noe $\{x\}=\cap A$. If (x, B, μ) is separable and non-atomie then $A \in \Lambda$
$p(\{x\})=0$ for all $x \in X . \quad(X, \mathbb{B}, \mu)$ is complete with respect to $\Lambda=\left\{A_{i}: i \in I\right\}$ if all intersections

$$
\bigcap_{i \in I} B_{i} \neq \phi,
$$

where $B_{i}=A_{i}$ or $X-A_{i}$. If a probability space (X, \mathbb{Q}, μ) is separable and complete with respect to a basis then it is called a Lebesgue space.

For example, if $Y=[0,1), \mathcal{L}=\sigma$-algebra generated by the ring of finite, disjoint unions of intervals of the form $[a, b)$ and λ is the measure determined by $\left.\lambda_{(}^{\prime}[a, b)\right)=b-a$ then ($\mathrm{Y}, \mathcal{L}, \lambda$) is a Lebesgue space. In fact, all non-atomic Lebesgue spaces are essentially the same as (Y, \mathcal{L}, λ) [31]. That measures on a ring can be extended to measures on the generated σ-algebra follows from the next result.
1.3 Theorem [7, p 54]. If v is a measure on a ring R of subsets of X then there exists a unique measure μ defined on the σ-algebra generated by R such that $\nu(\mathbb{T})=\mu(\mathbb{B}), E \in R$.
1.4 Definition $\xi=\left\{E_{n}\right\}_{1}^{\mathbb{N}}$, where $1<N \leqslant \infty$, is a measurable partition (mod 0) of the Lebesgue space ($\mathrm{x}, \boldsymbol{\beta}, \mu$) if
(i) $Z_{n} \in \mathbb{B}, \mu\left(\sum_{n}\right)>0 \quad(n=1, \ldots, n)$
(ii) $X_{i} \cap X_{j}=\phi(i \neq j)$

N
(iii) $x=U_{n=1}^{U} X_{n}(\bmod 0)$.

The set of integers $\{1, \ldots, N\}$ is the index set of ξ. The (at most) countability of ξ is essential: the existence of an uncountable, disjoint class of sets of positive measure whose union is X would contradict the finiteness of μ. e shall consider measurable partitions only of Lebesgue spaces, and refer to them simply as 'partitions'. Tho frequently used partitions are v and ε, where $\nu=\{X\}$ and $\varepsilon=\{\{x\}: x \in X\}$. The latter is not strictly a partition in the sense oi 1.4 , since all its elements except at most a countable number of atoms are null sets. loivever, we shall refer to ε as a partition, as it consists of a disjoint class of measurable subsets of X rinse union is X . If $A \subset X$, let $\xi_{A}=\{B \cap A: B \in \xi\}$ denote the partition of A induced by the partition ξ of X.

A partial ordering on tie class of all partitions of ($\mathrm{x}, \mathrm{B}, \mu$) is given by \leqslant, where $\xi \leqslant \eta$ if η is a refinement of
ξ, ie. if every element of η is a subset of some element of ξ. He say that $\xi \leqslant \eta(\bmod 0)$ if there exists a set $A \in B$, $A=X(\bmod 0)$ such that $\xi_{A} \leqslant \eta_{A} \cdot \bar{\xi}=\eta(\bmod 0)$ is defined similarly. $\bar{\zeta} \leqslant \eta(\bmod 0)$ and $\eta \leqslant \bar{\xi}(\bmod 0)$ imply $\vec{\xi}=\eta(\bmod 0)$ since $\xi_{A} \leqslant \eta_{A}$ and $\xi_{B} \leqslant \eta_{B}, \mu(B A)=\mu(B B)=0$, imply $\xi_{A \cap B}=\eta_{A \cap B}, \mu(\because(A \cap B))=0$. The smallest partition of X is ν, the largest is ε.

For any collection of partitions $\left\{\xi_{i}: i \in I\right\}$ of X there exists the join $\underset{i \in I}{V} \xi_{i}$ defined as a partition ξ of X having the properties:-
(i) $\xi_{i} \leqslant \xi(\bmod 0)$ for all $i \in I$
(ii) if $\xi_{i} \leqslant \xi^{\prime}(\bmod 0)$ for all i $\in I$ where ξ^{\prime} is a partition then $\xi \leqslant \xi^{\prime}(\bmod 0)$ Similarly there exists tie meet $\quad A \quad \xi_{i}$ defined as a measurable partition ξ having the properties:-
(i) $\xi_{i} \geqslant \xi(\bmod 0)$ for $011 i \in I$
(ii) if $\xi_{i} \geqslant \xi^{\prime}(\bmod 0)$ for all i where ξ^{\prime} is a partition then $\xi \geqslant \xi^{\prime}(\bmod 0)$.

The join and meet of two partitions ξ and η are written $\xi \vee \eta$ and $\breve{\zeta} \wedge \eta$ respectively. It is easy to verify that

$$
{\underset{\mathrm{V}=1}{\mathrm{n}} \vec{E}_{i}=\left\{\bigcap_{i=1}^{n} \Lambda_{i}: \Lambda_{i} \in \xi_{i}\right\}}
$$

Te write $\xi_{n} \nexists \xi(n \rightarrow \infty)$ if $\xi_{n} \leqslant \xi_{n+1}, \xi=\bigvee_{n=1}^{\infty} \xi_{n}$ and $\xi_{n} \searrow \bar{\zeta}(n \longrightarrow \infty)$ if $\bar{\xi}_{n} \geqslant \xi_{n+1}, \xi={ }_{n=1}^{\Lambda} \xi_{n}$.

Lat $\hat{\xi}$ denote tin sub- σ-algebra of (B generated by the partition ξ of (x, β, μ). Then [j2] $\hat{\zeta} \subset \hat{\eta}$ if, and only ir, $\xi \leqslant \eta$. Also $\hat{E}=\mathcal{B}$.

For $r=1,2, \ldots,\left(X^{(r)}, \mathcal{B}^{(r)}, \mu^{(r)}\right)$ denotes the $r-f$ old direct product of the measure space ($\mathrm{X},(\mathbb{Q}, \mu$) with itself, ie. $X^{(r)}=X \times \ldots \times X \quad(r$ times $)$
$\mathcal{B}^{(r)}=\sigma$-algebra generated by the ring of finite, di joint unions of sets of the form $B_{1} \times \ldots \times B_{r}\left(B_{i} \in(B)\right.$ $\mu^{(r)}=$ measure uniquely determined (see 1.3) by $\mu^{(r)}\left(B_{1} \times \ldots \times B_{r}\right)=\mu\left(B_{1}\right) \ldots \mu\left(B_{r}\right) . \quad\left(B_{i} \in \mathcal{B}\right)$.
A measurable rectangle in $B^{(r)}$ is a set of the form $E_{1} \times \ldots \times E_{r}, E_{i} \in \mathbb{B} \quad(i=1, \ldots, r)$.

$$
\begin{aligned}
\delta^{(r)}= & \text { ring of finite, disjoint unions of measurable } \\
& \text { rectangles in } \mathbb{(r)} .
\end{aligned}
$$

$E \in B^{(r)}$ is Jordan measurable if for all $\delta>0$ there exist $R_{\delta}, S_{\delta} \in R^{(r)}, R_{\delta} \subset \mathbb{E} \subset S_{\delta}$, such that

$$
\mu\left(I-R_{\delta}\right)<\delta \text { and } \mu\left(S_{\delta}-\mathbb{E}\right)<\delta \partial
$$

If ξ_{1}, \ldots, ξ_{r} are partitions of X then $\xi_{1} \times \ldots \times \xi_{r}$ stands for the partition $\left\{\mathbb{S}_{1} \times \ldots \times \mathbb{S}_{r}: \Omega_{i} \in \xi_{i}\right\}$ of $X^{(r)}$. In particular $S\left(\xi, \xi^{\prime}\right)$ denotes tine sub- σ-algebra of $B^{(2)}$ generated by
$\xi \times \xi^{\prime}$ and $\mu^{\xi, \xi^{\prime}}$ denotes the restriction of $\mu^{(2)}$ to $3\left(\xi, \xi^{\prime}\right)$, ie. the measure uniquely defined on $\left(\mathrm{K}^{(2)}, S\left(\xi, \xi^{\prime}\right)\right.$) by

$$
\mu^{\xi, \xi^{\prime}}(\mathrm{E})=\mu(\mathrm{E}), \mathrm{E} \in \xi\left(\xi, \xi^{\prime}\right)
$$

Note that $\mu^{\xi, \xi^{\prime}}$ has atoms $\sum \times F, Z \in \xi, F \in \xi^{\prime}$.

$$
\begin{aligned}
& \text { If } \# \in B^{(r)} \text { then } \\
& \pi(\mathbb{B})=\left\{x \in X: \text { for some }\left(x_{2}, \ldots, x_{r}\right) \in X^{(r-1)},\left(x_{1}, x_{2}, \ldots, x_{r}\right) \in \mathbb{B}\right\} \\
& x_{1}=\left\{\left(x_{2}, \ldots, x_{r}\right) \in X^{(r-1)}:\left(x_{1}, x_{2}, \ldots, x_{r}\right) \in E\right\} .
\end{aligned}
$$

§2 Lieasurable Functions and Absolute Conti nutty
Let ($\mathrm{X},(B, \mu$) be a measure space.
2.1 Definition If $\bar{S} \subset X$ tile characteristic function $X_{\mathbb{E}}(x)$
of $\overline{\mathrm{z}}$ is defined as follows:-

$$
X_{T}(x)=\left\{\begin{array}{lll}
1 & , & x \in 巴 \\
0 & , & x \notin \mathbb{E}
\end{array}\right.
$$

f is a simple function if $f(\dot{x})=\sum_{i=1}^{n} a_{i} X_{\mathbb{F}_{i}}(x)$, where a_{i} are real.
f is an elementary function if $f(x)=\sum_{i=1}^{\infty} a_{i} X_{j i}(x)$, where a_{j}
are real.
2.2 Definition A real-valued function f on X is measurable if for all Bored subsets in of $[-\infty, \infty] f^{-1}(i) \in \mathbb{B}$.

$$
X_{\text {I }}(x) \text { is measurable if, and only if, } Z \in S \text {. The sum of }
$$

two measurable functions and multiples of a measurable function are
measurable. For further facts ab out measurable functions, see [7] or [19].
2.3 Definition If ν is another measure on (X, \mathbb{N}) then μ is absolutely continuous with respect to $\nu, \mu \ll \nu$, if $\mu(\Sigma)=0$ Whenever $\nu(E)=0$. μ is equivalent to ν if $\mu \ll \nu \ll \mu$.
2.4 Theorem (Radon-iNikodym) [7] [19]. If the measures μ and ν are defined on (X, অ) and μ is absolutely continuous with respect to v then there exists a finite valued measurable function f such that

$$
\mu(\mathbb{T})=\int_{E} f(x) \text { d } \nu(x), \quad E \in \mathcal{S}
$$

f is called the Radon-Iikodym derivative of μ with respect to v.
Tho points on notation:- $\{f \in \mathbb{T}\}$ will sone times be used instead of $\{x: f(x) \in E\} ; \inf _{X} f(x)$ is to be understood as $\inf f(x)$. $\mathrm{x} \in \mathrm{X}$
§3 Integrable Functions
Let (X, \mathcal{Q}, μ) be a measure space.
3.1 Definition A measurable elementary function $f(x)=\sum_{i=1}^{\infty} a_{i} \chi_{\text {ت }_{i}}(x) \geqslant 0$ is integrable if $\sum_{i=1}^{\infty} a_{i} \mu\left(\vec{H}_{i}\right)<\infty$ and
its integral is then written $\int_{X} f(x)$ a $\mu(x)=\sum_{i=1}^{\infty} a_{i} \mu\left(E_{i}\right)$.
In writing integrals we sometimes adopt the convention that $\int f d \mu$ stands for $\int_{X} f(x) d \mu(x)$.
3.2 Definition An elementary function $f \geqslant 0$ is integrable on E. $_{2}$ Ii $\in \mathbb{B}$ if $X_{E}(x) f(x)$ is integrable; we write $\int X_{E} f d \mu=\{f d \mu$.
3.3 Definition A measurable function $f(x) \geqslant 0$ is integrable on ㅍ, $\mu(E)<\infty$, if there exists a sequence of elementary functions $f_{n}(x) \geqslant 0$ such that $f_{n}(x) \uparrow f(x)(n \longrightarrow \infty)$ uniformly on 3 and $f_{n}(x)$ is integrable on $E(n=1,2, \ldots)$. Its integral over \mathbb{E}

$$
\int_{E} f(x) d \mu=\lim _{n \rightarrow \infty} \int_{E} f_{n}(x) d \mu
$$

3.4 Definition A measurable function $f(x)$ is integrable on ${ }^{\text {P }}$, $\mu(J)<\infty$, if $f^{+}(x)$ and $f^{-}(x)$ are integrable on E, where

$$
\begin{aligned}
& f^{+}(x)= \begin{cases}f(x), & \text { if } f(x) \geqslant 0 \\
0, & \text { if } f(x)<0\end{cases} \\
& f^{-}(x)= \begin{cases}-f(x), & \text { if } f(x) \leqslant 0 \\
0, & \text { if } f(x)>0,\end{cases}
\end{aligned}
$$

and then $\int \mathrm{f} d \mu=\int \mathrm{f}^{+} d \mu-\int \mathrm{f}^{-} d \mu$.
3.5 Definition If (X, B, μ) is σ-finite with $X=\bigcup_{1}^{\infty} X_{n}$, $\mu\left(X_{n}\right)<\infty$, then f is integrable if it is integrable on each X_{n} and $\sum_{1}^{\infty}\left|\int_{X_{n}} f d \mu\right|<\infty$ in which case we write
$\int_{X} P d \mu=\sum_{1}^{\infty} \int_{X_{n}} I d \mu$.
For more details of this Approani to integration theory see [21].

$$
\text { Write } I_{p}(\mu)=\left\{f:|f|^{p} \text { is integrable on }(X, B, \mu)\right\}
$$

$p \geqslant 1$.
$I_{p}(\mu)$ is a Banach algebra with norm

$$
\|f\|_{p}=\left(\int|f|^{p} d \mu\right)^{1 / p}
$$

provided that functions which are equal almost everywhere are identified; \int is a linear functional on $I_{p}(\mu)$, ie. $\mathbf{f}, \mathrm{g} \in \mathrm{L}_{\mathrm{f}}(\mu) \quad$ imply $\int(\alpha \mathrm{f}+\beta \mathrm{g}) \mathrm{d} \mu=\alpha \int \mathrm{f} \mathrm{d} \mu+\beta \int \mathrm{g} \mathrm{d} \mu$ for all real α, β.
3.6 Theorem: "older's Inequality [19]. Let $p>1$, $q>1$ and $\frac{1}{p}+\frac{1}{q}=1, f \in L_{p}(\mu), g \in L_{q}(\mu)$. Then $f g \in L_{1}(\mu)$ and $\|f g\|_{1} \leqslant\|f\|_{p}\|g\|_{q}$.
3.7 Theorem If $f \in L_{1}(\mu), g \in L_{1}(\mu)$ and $\int_{E} f d \mu=\int_{i} g d \mu$ for all $i \in \mathcal{B}$ then $f=g$ almost everywhere.

Proof Since f is a linear functional on $L_{1}(\mu)$, it is sufficient to prove that $\int_{E} f d \mu=0, E \in \mathbb{B}$, implies $f=0$ almost everywhere.

In. $E_{k, n}=\left\{x: \frac{k}{2^{n}}<f(x)<\frac{K+1}{2^{n}}\right\}, k=0, \pm 1, \ldots, n=0,1, \ldots$.
Then $k, n \in \mathbb{B}$ since f is measurable and

$$
0=\int_{E_{k, n}} f d \mu \geqslant \frac{k}{2^{n}} \mu\left(E_{k, n}\right),
$$

ie. $\mu\left(\mathbb{E}_{k, n}\right)=0 \quad k>0, \mathrm{n}=0,1, \ldots$ Similarly,
$\mu\left(\mathbb{E}_{k, n}\right)=0 k<-1$. Since $\{x: f(x) \neq 0\}=\bigcup_{\substack{k=-\infty \\ k \neq 0,-1}}^{\infty} \bigcup_{n=0}^{\infty} \mathbb{F}_{k, n}$
the result follows,
3.8 Definition If $\left\{f_{n}(x)\right\}_{0}^{\infty}$ is a sequence of integrable functions and $f(x) \in I_{1}(\mu)$ then we say that

$$
f_{n} \longrightarrow f(n \rightarrow \infty) \text { (pointrise) if for each } x \in X \text { and }
$$

$\delta>0$ time re exists $n_{0}(\delta, x)$ such that $n>n_{0}$ implies

$$
\left|f_{n}(x)-f(x)\right|<\delta .
$$

$$
f_{n} \rightarrow f(n \rightarrow \infty) \text { almost everywhere if }
$$

$$
\left\{x: f_{n}(x) \nrightarrow f(x)(n \longrightarrow \infty)\right\} \text { is a null set. }
$$

$$
f_{n} \longrightarrow f(n \rightarrow \infty) \text { almost uniformly if }
$$

$\left\{x: f_{n}(x) \rightarrow f(x)(n \rightarrow \infty)\right.$ uniformly $\}$ is a null set.

$$
f_{n} \rightarrow f(n \rightarrow \infty) \text { in measure (in probability if }
$$

$$
\mu(x)=1) \text { if } \mu\left\{x:\left|f_{n}(x)-f(x)\right| \geqslant \delta\right\} \rightarrow 0(n \rightarrow \infty) \text { for each }
$$

$\delta>0$.

$$
f_{n} \longrightarrow f(n \rightarrow \infty) \text { in } I_{1}(\mu) \text { norm if }\left\|f_{n}-f\right\|_{1} \rightarrow 0(n \rightarrow \infty) .
$$

The relationships be tron the various forms of convergence are thoroughly discussed in [19].
3.9 Definition If ξ is a partition of (X, \mathcal{B}, μ) and $\hat{\xi}$ denotes the generated $\sigma-a l$ gebra, a function $f: X \rightarrow[-\infty, \infty]$ is measurable subsets B of $[-\infty, \infty]$.
3.10 Definition $\operatorname{Let}(x, B, \mu)$ be a probability space, \mathcal{B}^{\prime} be a sub- σ-algebra of \mathcal{O}_{3} and $0 \leqslant f \in I_{1}(\mu)$. Then the set function $\mu_{f}(B)$ defined by $\mu_{f}(B)=\int_{B} \mathbf{d} \mu\left(B \in B^{\prime}\right)$ is a finite measure on (B' which is absolutely continuous with respect to the restriction of μ to Q^{\prime}. ITence by 2.4 there exists $\mathcal{B}\left(f \mid \mathcal{B}^{\prime}\right) \in I_{1}(\mu)$ which is measurable with respect to β^{\prime} such that

$$
\int_{B} f d \mu=\int_{B} P\left(f \mid \mathbb{R}^{\prime}\right) d \mu, B \in \mathbb{B}^{\prime}
$$

$\exists\left(f \mid B^{\prime}\right)$, the conditional expectation of f with respect to $B_{B}^{\prime \prime}$, is only determined up to a null-set, since any two versions of $\pi\left(f^{\prime} B^{\prime}\right)$ are equal almost everywhere (replacing B by B^{\prime} in 3.7).
3.11 Martingale Theorem [2] If $\left\{\xi_{n}\right\}_{0}^{\infty}$ is a sequence of partitions of the probability space (x, \bar{B}, μ) such that $\xi_{n} \wedge \xi(n \rightarrow \infty)$ and f is measurable with respect to $\hat{\zeta}$ then $B\left(f \mid \hat{\xi}_{n}\right) \rightarrow B(f \mid \hat{\xi})(n \rightarrow \infty)$. If $\left(X_{i}, \mathcal{R}_{i}, \mu_{i}\right)(i=1,2)$ are finite or o-finite measure sequences then $\left(X_{1} \times X_{2}, B_{1} \times B_{2}, \mu_{1} \times \mu_{2}\right)$ denotes the direct product of the two measure spaces, i.e.

$$
\begin{aligned}
\left(B_{1} \times \mathcal{B}_{2}=\right. & \sigma \text {-algebra generated by the ring of finite, } \\
& \text { disjoint unions of sets of the form } \\
& B_{1} \times B_{2}\left(B_{i} \in\left(\mathbb{E}_{i}\right)\right. \\
\mu_{1} \times \mu_{2}= & \text { measure uniquely determined (see 1.3) by } \\
& \mu_{1} \times \mu_{2}\left(B_{1} \times B_{2}\right)=\mu_{1}\left(B_{1}\right) \mu_{2}\left(B_{2}\right) \\
& \left(B_{i} \in B_{i}\right) .
\end{aligned}
$$

3.12 Fubini's Theorem [7,p.148] If $h \in I_{1}\left(\mu_{1} \times \mu_{2}\right)$ then

$$
\int_{X_{2}} h d \mu_{2} \in L_{1}\left(\mu_{1}\right), \int_{X_{1}} h d \mu_{1} \in L_{2}\left(\mu_{2}\right) \text { and }
$$

$$
\int_{X_{1} \times X_{2}} \mathrm{hd}\left(\mu_{1} \times \mu_{2}\right)=\int_{X_{1}}\left(\int_{X_{2}} \mathrm{hd} \mu_{2}\right) d \mu_{1}=\int_{X_{2}}\left(\int_{X_{1}} \mathrm{hd} \mu_{1}\right) \mathrm{d} \mu_{2} .
$$

\$4 Topological Treasure Spaces

Let X be a compact, Hausdorff topological space. lieasurability
and measure are connected with the topology as follars:-
4.1 Definition $B=\sigma$-algebra generated by the compact subsets of X.
$\mu=$ a regular measure on β, i.e. for all $a \in \mathcal{B}$

$$
\mu(E)=\inf _{U C U}^{U \text { open }} u(U)
$$

$$
=\sup _{C C} \quad \mu(\mathrm{C})
$$

C compact
the refold direct product of (x, β, μ) with itself, ${\left(X^{(r)}, B^{(r)}, \mu^{(r)}\right)}^{(s)}$ also compact and ilausdorff with respect to the product topology [15] , $r=2,3, \ldots$.
4.2 Definition $C^{(r)}=$ the Banach algebra of all continuous, real-valued functions f defined on $X^{(r)}$, provided with the uniform topology, ie. the topology defined by the norm

$$
\|f\|=\sup _{\underline{x} \in X}(r)|f(\underline{x})| .
$$

$C^{(r)}$ is a sub-algebra of the Bane ch algebra $I_{1}\left(\mu^{(r)}\right)$.

$$
\begin{aligned}
a^{(r)}= & \left\{f(\underline{x})=\sum_{i}^{n} a_{i} f_{i}^{1}\left(x_{1}\right) \ldots f_{i}^{r}\left(x_{r}\right): a_{i} \text { real },\right. \\
& \left.f_{i}^{j} \in C^{(r)} \text { and } \underline{x}=\left(x_{1}, \ldots, x_{r}\right)\right\} .
\end{aligned}
$$

$a^{(r)}$ is a subalgebra of $c^{(r)}$.

§5 Transformations

Let $\left(X_{1}, \hat{\mathbb{B}}_{1}, \mu_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathcal{B}_{2}, \mu_{2}\right)$ be measure spaces.
5.1 Definition The transformation $T: X_{1} \rightarrow X_{2}$ (X_{1} is the domain of T) is measurable if $A \in \mathcal{B}_{2}$ implies $T^{-1} A \in \mathcal{B}_{1}$. Tx is the image of $x \in X_{1}$ under I.
T is non-singular if it is measurable and if $\Lambda \in B_{2}$, $\mu_{2}(A)=0$ implies $\mu_{1}\left(T^{-1} A\right)=0$.
T is measure-preserving or a homomorphism if it is measurable and if $A \in B_{2}$ implies $\mu_{2}(A)=\mu_{1}\left(T^{-1} A\right)$.
T is one-one if $T x=$ Ty implies $x=y$. It is many-one if at most a countable number of distinct points can lave the same image under T. If T is $1-1$ onto and both T and T^{-1} are homomorphisms T is called an isomorpinism. $\left(X_{1}, B_{1} ; \mu_{1}\right)$ and $\left(X_{2}, B_{2}, \mu_{2}\right)$ are then said to be isomorphic. If the two spaces coincide, homomor phisms are called endomorphisms and isomorphisms, automorphisms. The end amorphism T_{2} of $\left(\mathrm{X}_{2}, B_{2}, \mu_{2}\right)$ is isomorphic to the endomorphism T_{1} of $\left(X_{1}, \mathbb{B}_{1}, \mu_{1}\right)$ if there is an isomorphism T from X_{1} to X_{2} such that $T T_{1}=T_{2} T$.

If $T:\left(Y_{1}, B_{1}, \mu_{1}\right) \rightarrow\left(X_{2}, B_{2}, \mu_{2}\right)$ then $T(r)$ denotes the transformation from $\left(X_{1}^{(r)}, \aleph_{1}^{(r)}, \mu_{1}^{(r)}\right)$ to $\left(X_{2}^{(r)}, \mathcal{B}_{2}^{(r)}, \mu_{2}^{(r)}\right)$ given by $T^{(r)}\left(x_{1}, \ldots x_{r}\right)=\left(T x_{1}, \ldots, T x_{r}\right)$. Similarly, if T_{i} is an endomorphism of $\left(X_{i}, B_{i}, \mu_{i}\right)(i=1,2)$ then $T_{1} \times T_{2}$ defined by $T_{1} \times T_{2}\left(x_{1}, x_{2}\right)=\left(T_{1} x_{1}, T_{2} x_{2}\right)$ is m endomorphism of $\left(X_{1} \times X_{2}, B_{1} \times B_{2}, \mu_{1} \times \mu_{2}\right)$, with the latter defined analogously to $\left(X^{(r)}, B^{(r)}, \mu^{(r)}\right)$.

If $E \subset X_{1}$ the restriction of T to B , denoted by $T{ }_{\beta}$, is defined by $T_{\mathbb{Z}} \mathrm{x}=\mathbb{T}, \mathrm{x} \in \mathbb{Z}$. If $\mathrm{T}:\left(\mathrm{X}_{1}, \mathcal{B}_{1}, \mu_{1}\right) \rightarrow\left(\mathrm{X}_{2}, \mathcal{B}_{2}, \mu_{2}\right)$ is measurable and non-singular then so is $\left.T\right|_{\mathbb{G}}$:
$\left.T\right|_{3}:\left(E, E \cap B_{1}, \mu_{1 \#}\right) \rightarrow\left(X_{2}, B_{2}, \mu_{2}\right)$, where $\mathrm{E} \cap \beta_{1}=\left\{\mathrm{A} \cap \mathrm{B}: \mathrm{B} \in B_{1}\right\}$
$\mu_{1 E}(F)=\mu_{1}(F), F \in \Sigma M_{1}$.
If $T^{-1} E=E \in \mathcal{B}_{1}$ and T is measure-preserving then so is $\left.T\right|_{E}$.

If $\left(X_{i}, \beta_{i}, \mu_{i}\right)$ are compact Hausdorff measure spaces ($i=1,2$) then T is continuous if $T^{-1} 0_{2}$ is open for all open $\operatorname{sets} \mathrm{O}_{2} \subset \mathrm{X}_{2}$.

A measurable non-singular transformation T of (X, Q, μ) is ergodic if $T^{-1} Z=\mathbb{B} \in \mathbb{B} \quad$ implies $\mu(\mathrm{E})=0$ or $\mu(X-E)=0$. Such sets F are invariant under T.
5.2 Theorem [8] T is ergodic if, and only if, $f(T x)=f(x)$, Where f is a measurable function, implies $f(x)=$ constant almost every there. Such functions f are invariant under T.
5.3 Theorem If T is an ergodic endomorphism of ($\mathrm{X}, \mathcal{\omega}, \mu$) which preserves another measure ν equivalent to μ then $\mu=c \nu$ where c is a positive constant.

Proof Denoting the Radon-iNikodym derivative of μ with respect to ν by $\frac{d \mu}{d \nu}$, we have $\mu(\mathbb{B})=\int_{Z} \frac{d \mu}{d \nu}(x) d \nu$

$$
\begin{aligned}
& =\int_{T^{-1}} \frac{d \mu}{d \nu}(x) d \nu \\
& =\int_{\mathbb{H}} \frac{d \mu}{d \nu}(\mathbb{T} x) d v, \mathbb{B} \in \mathbb{B} .
\end{aligned}
$$

If $\mu(X) \leqslant \infty$, i.e. $\frac{d \mu}{d \nu} \in L_{1}(\nu)$ then 3.7 can be applied, giving that $\frac{d \mu}{d \nu}(\mathrm{Tx})=\frac{\mathrm{d} \mu}{\mathrm{d} \nu}(x)$ almost everywhere.

In the eanoral ouse, mite $f(x)=\frac{d \mu}{d \nu}(x)$ and $C^{+}=\{x: f(X x)>f(x)\}$. Then $C^{+} \in \mathcal{B}$, and for each n, $0 \leqslant \mu\left(C^{+} \cap X_{n}\right)<\infty$ where $\left\{X_{n}\right\}_{i}^{\infty}$ is a $\sigma-$ infinite partition of X with respect to the measure μ. Thus

$$
\text { Putting } \mathbb{I}_{k, m}=\left\{x: \frac{k}{2^{m}} \leqslant f(\mathbb{I} x)-f(x)<\frac{k_{i} 1}{2^{m}}\right\} \text { and using the argument }
$$

$$
\text { of } 3.7 \text { we see that } \nu\left(c^{+} \cap X_{n} \cap{\underset{k}{k, m}}\right)=0, k=1,2, \ldots,
$$

$$
\mathrm{n}=0,1, \ldots \text {. Fence } v\left(C^{+}\right)=0 . \text { Similarly, }
$$

$$
c^{-}=\{x: f(T x)<f(x)\}=\phi(\bmod 0)
$$

$$
\text { Thus } \frac{d \mu}{d \nu}(N x)=\frac{d \mu}{d \nu}(x) \text { almost everywhere. }
$$

5.2 now implies that $\frac{\partial \mu}{d v}(x)=\mathrm{c}$ almost everywhere. $\mathrm{c}>0$ since μ and ν are both nonnegative set functions which take positive values for some sets.
5.4 Definition A subset J of the positive integers has density $\delta(J)=0$ if $\lim _{n \rightarrow \infty} \frac{\nu_{n^{1}}(J)}{n}=0$, there $\nu_{n}(J)=$ number of integers
between 1 and n inclusive vinic belong to J.
If T is an endomorphism of a probability space (X, B, μ)
then T is Weak mixing if any of the following three conditions holds:-

$$
\begin{aligned}
& \int f(\mathfrak{B x}) d v=\int f(x) d v<\infty, \\
& C^{+} \cap X_{n} \quad C^{+} \cap X_{n} \\
& \text { ide. } \int_{C^{+} \cap X_{n}}\{f(T x)-f(x)\} d v=0 \text {. }
\end{aligned}
$$

$$
\left.\begin{array}{l}
\frac{1}{n} \sum_{0}^{n-1}\left|\mu\left(A \cap T^{-k} B\right)-\mu(A) \mu(B)\right| \longrightarrow 0(n \rightarrow \infty) \\
\frac{1}{n} \sum_{0}^{n-1}\left[\mu(A) \cap T^{-k} B\right)-\mu(A) \mu\left(B^{\prime}\right]^{2} \rightarrow(n \rightarrow \infty) \\
\mu\left(A \cap T^{-n} B\right) \rightarrow \mu(A) \mu(B)(n \rightarrow \infty, n \not C J, \delta(J)=0)
\end{array}\right\} \begin{aligned}
& A, b \in \mathbb{E} \\
& \text { for all }
\end{aligned}
$$

The three definitions of weak mixing are equivalent, since the forms of convergence to which they correspond are equivalent for bounded sequences of real numbers.
5.5 Definition T has ergodic index ok $(T)=r$ if

$$
\mathrm{T}^{(\mathrm{s} \cdot)} \text { is }\left\{\begin{array}{l}
\text { ergodic , } 1 \leqslant \mathrm{~s} \leqslant \mathrm{r} \\
\text { not ergodic }, \mathrm{r}<\mathrm{s} .
\end{array}\right.
$$

Clearly, $T^{(s)}$ ergodic implies $T^{\left(s^{\prime}\right)}$ ergodic for all $1 \leqslant s^{\prime}<s$. If $T^{(s)}$ is ergodic for all positive integers s then we put ak $(T)=\infty$, while if T is not ergodic we put eke $(T)=0$
5.6 Theorem [13] If T is an endomorphism of the finite measure space $(\mathrm{x}, \mathbb{B}, \mu$) then ok $(T)=0,1$ or ∞.
Proof It suffices to prove that $T^{(2)}$ ergodic implies $T^{(n)}$ ergodic for $n>2$. Now $T^{(2)}$ is ergodic if, and only if, T is weak mixing [8, p. 39]. S weak mixing and T weak mixing imply $S \times T$ weak mixing, since for bounded sequences of real numbers $\left\{a_{n}\right\},\left\{b_{n}\right\}$, $a_{n} \rightarrow a\left(n \rightarrow \infty, n \neq J_{a}, \delta\left(J_{a}\right)=0\right)$ and $b_{n} \rightarrow b\left(n \rightarrow \infty, n \notin J_{b}, \delta\left(J_{b}\right)=0\right)$ imply $a_{n} b_{n} \longrightarrow a b(r \longrightarrow \infty$,
$n \notin T_{a}\left(1 . J_{\mathrm{b}} \times 8\left(J_{\mathrm{a}} \cup J_{\mathrm{b}}\right)=0\right):$ soe 5.6. Putting $\mathrm{S}=\mathrm{T}^{(\mathrm{n})}$ and using induction gives the required result. //

Let $\mathscr{D}^{(r)}$ denote the class of sequences of positive integer r-tuples $\Delta_{n}^{r}=\left(k_{n}^{1}, \ldots, k_{n}^{r}\right)$ suci that
$\xrightarrow[n \rightarrow \infty]{\lim \inf _{1 \leqslant i<j \leqslant r}\left|k_{n}^{i}-k_{n}^{j}\right|=\infty . T \text { is mixing of degree } r \text { if }, ~}$
$\lim _{n \rightarrow \infty} \mu\left(\mathbb{E}_{0} \cap T^{-k_{n}^{1}} \mathbb{E}_{1} \cap \ldots \cap T^{-k_{n}^{r}} E_{r}\right)=\mu\left(E_{0}\right) \ldots \mu\left(E_{r}\right)$
for all $\left\{\Delta_{n}^{r}\right\}_{0}^{\infty} \in \mathscr{D}^{(r)}$ and $I_{i} \in B \quad(0 \leqslant i \leqslant r)$.
This definition is equivalent to the usual definition of mixing of degree r [32]. Also if T is mixing of degree r it is mixing of all degrees less than r.

When $r=1$ we say that r is mixing, simply.
A partition ξ of (X, \mathbb{B}, μ) is a generator of T if ${ }_{\mathrm{V}=0}^{\infty} \mathrm{T}^{-\mathrm{n}} \xi=\varepsilon(\bmod 0)$. T is said to be exact [32] if it has a generator $\stackrel{n=0}{\xi}$ such that $\Lambda_{n=0}^{\infty} T^{-n} \xi=\nu(\bmod 0)$ when $\nu=\{x\}$. Since the definition of exactness only depends on the null sets of μ tee can, and do, extend the definition to σ-finite endomorphisms (see for example [28]).
5.7 Irgodic Theorem [24]

If T is a finite or σ-finite endomorphism of the measure space (x, B, μ) and $f \in L_{1}(\mu)$ then

$$
\begin{gathered}
\frac{1}{n} \sum_{0}^{n-1} f\left(T^{k} x\right) \rightarrow f^{* *}(x)(n \rightarrow \infty) \quad \text { almost everywhere and } \\
\text { in } L_{1}(\mu) \text { norm }
\end{gathered}
$$

$$
f^{*} \in L_{1}(\mu) \text { and } f^{*}(T x)=f^{*}(x) \text { almost everywhere. }
$$

If $\mu(x)<\infty$ then $\int f^{*} d \mu=\int f^{*} d \mu$.
5.8 Corollary If T is a finite endomorphism then the ergodioity of T is equivalent to the following condition :-

$$
\frac{1}{n} \sum_{0}^{n-1} \mu\left(A \cap T^{-k} B\right) \rightarrow \frac{\mu(A) \mu(B)}{\mu(X)} \quad(n \rightarrow \infty) \text { for all } \quad \begin{aligned}
A, B \in B
\end{aligned}
$$

Proof If the Cesar convergence or measures holds and $E=T^{-1} \dot{E} \in \mathbb{B}$, put $A=B=\Sigma$ to gi we $\mu(E)=\frac{\mu(E)^{2}}{\mu(X)}$.

Conversely, the Ergodic Thea rem implies
$\frac{1}{n} \underset{0}{n-1} f(x) g\left(T^{k} x\right) \rightarrow f(x) g^{*}(x)(n \rightarrow \infty)$ in $L_{1}(\mu)$ norm if $f(x)$ is a bounded function. Put $f=X_{A}, g=X_{B}$ and integrate term by term (norm convergence implies convergence of the sequences of integrals.
5.9 Corollary Mixing implies weak mixing implies ergodioity.

Proof Ordinary convergence implies strong Cesáro convergence implies weak Cesáro convergence. //
5.10 Theorem [12, p.405] Let T be an endomorphism of the σ-finite measure space (x, \mathcal{B}, μ). Then there exists an invariant set C, unique up to null sets, such that $0 \leqslant f \in I_{1}(\mu), x \in C$ and $\sum_{0}^{\infty} f\left(T^{n} x\right)>0$ implies that $\sum_{0}^{\infty} f\left(T^{n} x\right)=\infty . C$ is the conservative
part of T. $D=X-C$ is the dissipative part of T. If $X=C \quad(\bmod 0), T$ is conservative.
5.11 Definition $\quad \because \in \mathbb{B}$ is a wandering set of T if $W \cap T^{-n} V=\phi \quad n=1,2, \ldots$.
5.12 Theorem T as defined in 5.10 is conservative if, and only if, it has no wandering sets of positive measure.

Proof Let $\left\{X_{n}\right\}_{1}^{\infty}$ denote any σ-finite partiti on of X. For $E \in \mathbb{B}, \mu(\mathbb{E})<\infty$, put $f_{E}(x)=\sum_{0}^{\infty} X_{E}\left(T^{n} x\right)$
and $\overline{\lim _{\mathrm{I}}} T^{-\mathrm{n}} \mathrm{E}=\bigcap_{m=0}^{\infty} \bigcup_{\mathrm{n}=\mathrm{m}}^{\infty} \mathrm{T}^{-\mathrm{n}} \mathrm{E}$

$$
=\left\{x: T^{n} x \in \mathbb{E} \quad \text { infinitely of ten }\right\}
$$

Clearly $f_{E}(x)=\infty$ if, and only if, $x \in \overline{\lim }_{n} T^{-n} E$. Thus $C=\overline{\lim }_{\mathrm{n}} \mathrm{T}^{-\mathrm{n}} \mathrm{E} \cup\left\{\mathrm{f}_{\mathrm{E}}=0\right\}$.

Suppose T is conservative and that $E \in \mathbb{B}$ is a wandering set of positive measure. There is no loss of genera ality in assuming that $\mu(E)<\infty$, since $\left.0<\mu E \cap X_{n}\right)<\infty$ for some n and $E \cap X_{n}$ is a wandering set.

$$
f_{E}(x)= \begin{cases}0, & x \notin \bigcup_{0}^{\infty} T^{-n} E \\ 1, & x \in \bigcup_{0}^{\infty} T^{-n} E\end{cases}
$$

Thus $D \neq \dot{\phi}(\bmod 0)$, which contradicts the assumption that T is conservative. Hence T has no wandering sets of positive measure.

Suppose T is not conservative, ie. $\mu(D)>0$. Then there exists $E \in \mathbb{B}, \mu(E)>0, E \subset D ;$ for example, $D \cap X_{n}$ for some
n. Put

$$
F=\bigcup_{0}^{\infty} T^{-n} E-Y^{\infty} T^{-n} E .
$$

F is a wandering set, since T^{-m} commutes with set-theoretic difference and countable union and also $\bigcup_{m+1}^{\infty} T^{-n} E \subset \bigcup_{m}^{\infty} T^{-n} E \subset \bigcup_{0}^{\infty} T^{-n} E$ $(m=1,2, \ldots)$. If $\mu(F)=0$ then $\bigcup_{m}^{\infty} T^{-n} E=\bigcup_{0}^{\infty} T^{-n} E(\bmod 0)$ ($m=1,2, \ldots$) and $\overline{\lim } T^{-n} E=\bigcup_{0}^{\infty} T^{-n} E(\bmod 0)$. It follows that $\mathrm{E} \subset G(\bmod 0)$ which contradicts $\Psi \subset D$. Hence $\mu(F)>0 . / /$
5.13 Hoof Ergodic Theorem [11] Let T be a conservative en domorphism of the σ-finite measure space ($\bar{X}, \mathcal{B}, \mu$).

Then for $f \in L_{1}(\mu), 0 \leqslant g \in L_{1}(\mu)$

$$
\sum^{n} f^{k}\left(T^{k} x\right)
$$

$\lim _{n \rightarrow \infty} \frac{0}{\sum_{0} g\left(T^{k} x\right)}=h_{f, g^{\prime}}(x) \quad$ exists and is finite almost every-
where on $\left\{x: \sum_{0}^{\infty} g\left(T^{n} x\right)>0\right\}$. $h_{f, g}(x)$ is invariant and $\int f d \mu=\int g h_{f, g} d \mu$.

Applying the principle of ignoring null sets, we say that endomorphisms T_{i} of $\left(X_{i}, \mathcal{B}_{i}, \mu_{i}\right)(i=1,2)$ respectively are almost isomorphic if after discarding null sets from either ar both of X_{1}, X_{2} the resulting endomorphisms are isomorphic. It follows easily that if T_{3} is an endomorphism of ($X_{3}, \mathcal{B}_{3}, \mu_{3}$) such that $T_{1} \times T_{3}$ is not isomorphic to $T_{2} \times T_{3}$ then T_{1} cannot be isomorphic to T_{2}. In other words T_{1} is omorphic to T_{2} implies $T_{1} \times T_{3}$
isomorphic to $T_{2} \times T_{3}$. A quantitative or qualitative function 6 of the endomorphism T is said to be a metric invariant if S isomorphic to T implies $\iota(S)=\iota(T)$. Mixing and ergodicity are examples of qualitative invariants, wile one of the most powerful quantitative metric invariants is entropy.
5.14 Definition Let T be an endomorphism of the probability space (X, B, μ) and $\xi=\left\{E_{n}\right\}_{1}^{\infty}$ be a countable partition of X. The entropy [2] of ξ wi th respect to μ is $\underline{E}_{\mu}(\xi)=-\sum_{n=1}^{\infty} \mu\left(E_{n}\right) \log \mu\left(E_{n}\right)$. If ξ is uncountable we define $H_{\mu}(\xi)=\infty$
$Z_{\mu}=\left\{\right.$ partitions $\left.\xi: H_{\mu}(\xi)<\infty\right\}$.
If $\xi, \eta \in Z_{\mu}$ the conditional entropy of ξ relative to η is
$H_{\mu}(\xi \mid \eta)=\sum_{\mathbb{E} \in \xi} \mu(T \cap N) \log \frac{\mu(E \cap \mathbb{F})}{\mu(F)}$. The main properties of partition $F \in \eta$
entropy are as follows: -

1) $0 \leqslant H_{\mu}(\xi \mid \eta) \leqslant \infty ; H_{\mu}(\xi \mid \eta)=0$ if and only if $\xi \leqslant \eta(\bmod 0)$
2) $H_{\mu}(\xi \vee \eta \mid \zeta)=H_{\mu}(\xi \mid \zeta)+H_{\mu}(\eta \mid \xi \vee \zeta)$.
3) $H_{\mu}(\xi \mid \eta) \leqslant H_{\mu}(\zeta \mid \eta)$ if $\xi \leqslant \zeta$
4) $\mathrm{H}_{\mu}(\xi \mid \eta) \geqslant \mathrm{H}_{\mu}(\xi \mid \zeta)$ if $\eta \leqslant \zeta$.
5) $\mathrm{H}_{\mu}(\xi \vee \eta \mid \zeta) \leqslant \mathrm{H}_{\mu}(\xi \mid \zeta)+\mathrm{H}_{\mu}(\eta \mid \zeta)$
6) $H_{\mu}\left(T^{-1} \xi \mid T^{-1} \eta\right)=H_{\mu}(\xi \mid \eta)$,
where $\mathrm{T}^{-1} \xi=\left\{T^{-1} \mathbb{E}: \mathrm{E} \in \xi\right\}$,
7) $\mathrm{H}_{\mu}(\xi)=\mathrm{H}_{\mu}(\xi \mid \nu)$.
5.15 Theorem [2] $H_{\mu}(T, \xi)=\lim _{n \rightarrow \infty} \frac{1}{n} H_{\mu}\left(\underset{i=0}{\mathrm{~V}-1} T^{-i} \xi\right)$ exists for all $\xi \in Z_{\mu}$.
5.16 Definition [2] The entropy or Kolmogorov-Sinai invariant of T with respect to $\mu, h_{\mu}(T)=\sup _{\xi \in \mathbb{Z}}^{\mu} h_{\mu}(T, \xi)$.
5.17 Theorem [2] If T_{i} is an endomorphism of ($X_{i}, \beta_{i}, \mu_{i}$) ($i=1,2$) then T_{1} almost isomorphic to T_{2} implies that

$$
h_{\mu_{1}}\left(T_{1}\right)=h_{\mu_{2}}\left(T_{2}\right) .
$$

5.18 Theorem [2] If $\xi \in Z_{\mu}$ is a generator of the endomorphism T of (X, \mathbb{B}, μ) then $h_{\mu}(T)=h_{\mu}(T, \xi)$.

For futher properties of $h_{\mu}(T)$, see [2].
5.19 Definition An endomorphism T of the measure space (x, \mathbb{B}, μ) is periodic with period n if there exists a positive integer n such that $T^{n} x=x, x \in X$.
5.20 Theorem If the endomorphism T of the non-atomic Lebesgue space (x, \mathbb{B}, μ) is periodic then $h_{\mu}(T)=0$ and T is not ergodic. Proof ${\underset{V}{i=0}}_{\mathrm{kn}-1}^{T^{-i} \xi}=\mathrm{V}_{i=0}^{k-1} T^{-i} \xi(k=1,2, \ldots)$ and so $h_{\mu}(T, \xi)=0$, where n is the period of T.

Since μ is non-atomic there exists a set $\mathbb{E} \in \mathbb{B}$ with $0<\mu(E)<\frac{1}{n} \cdot E_{n}=\bigcup_{0}^{n-1} T^{-i} E$ is invariant as T has peri od n, and $0<\mu\left(\mathbb{E}_{\mathrm{n}}\right) \leqslant \mathrm{n} \mu(\mathrm{E})<1$. Thus T is not ergodic. //

$\$ 6$ Markov and Bernoulli Shifts

A measu re-preserving transformation T on a finite or σ-finite measure space (x, B, μ) is said to be a Markov shift or M-shift if T has a generator $\xi=\left\{X_{n}\right\}$, where $0<\mathbb{N} \leqslant \infty$, such that

$$
\frac{\mu\left(X_{n_{e}} \cap \ldots n T^{-K_{\kappa}} X_{n_{k}}\right)}{\mu\left(X_{n_{0}} \cap \ldots \cap T^{-(K-11} X_{n_{k-1}}\right)}=\frac{\mu\left(X_{n_{k-1}} \cap T^{-1} X_{n_{k}}\right)}{\mu\left(X_{n_{k-1}}\right)}
$$

for all $0 \leqslant n_{r} \leqslant N, r=0,1, \ldots, k$ provided all the measures involved are positive. The set $\{0,1, \ldots, N\}$ is the state space of the M-shift.

$$
\text { Putting } \lambda_{n}=\mu\left(X_{n}\right) \text { and } p_{i j}=\frac{\mu\left(X_{i} \cap T^{-1} X_{j}\right)}{\mu\left(X_{i}\right)}
$$

Fe see that $\lambda_{n} \geqslant 0, \sum_{j} p_{i j}=1, \lambda_{j}=\sum_{i} \lambda_{i} p_{i j}$ and that (x, B, μ, T)
is isomorphic to the shift (Ω, γ, m, s) defined as follows:-

$$
\begin{aligned}
& \Omega_{\mathrm{n}}=\{0, \ldots, N\}, \mathrm{n}=1,2, \ldots \\
& \Omega_{\mathrm{n}}=\prod_{1}^{\infty} \Omega_{\mathrm{n}}
\end{aligned}
$$

クת $=\sigma$-algebra of measurable sets generatod by the cylinders $\left\{\omega: \omega_{n}=i_{0}, \ldots, \omega_{n+k}=i_{k}\right\}$ $0 \leqslant i_{r} \leqslant N \quad(r=0,1, \ldots, k)$ and $n=0,1, \ldots$,
$\mathrm{m}=$ measure uniquely determined by the equations

$$
\begin{aligned}
& m\left(\left\{\omega: \omega_{n}=i_{o}\right\}\right)=\lambda_{i_{0}}, \\
& m\left(\left\{\omega: \omega_{n}=i_{o}, \ldots, \omega_{n+k}=i_{k}\right\}\right)=\lambda_{i_{o}} p_{i_{o}} i_{1} \cdots p_{i_{k-1}} i_{k}
\end{aligned}
$$

(the uniqueness follows by the Kolmogorov Extension Theorem [19, p.159])

$$
(S \omega)_{n}=\omega_{n+1}, \text { where } \omega=\left(\omega_{1}, \omega_{2}, \ldots\right) \in \Omega
$$

We note that s preserves m, since the measure of a cylinder is independent of its initial co-ordinate, and that m is finite if, and only if $\sum_{n=0}^{N} \lambda_{n}<\infty$.

Writing $\underline{\lambda}$ for the $N+1$ dimensional vector $\left(\lambda_{0}, \ldots, \lambda_{N}\right)$ and P for the $(N+1) \times(N+1)$ matrix $\left(p_{i j}\right)$, the pair ($\boldsymbol{\lambda}, P$) determines the Markov shift T up to isomorphism. When talking of M-shifts we shall sometimes refer to ($\boldsymbol{\lambda}, \mathrm{P}$) as the M-shift. In particular, a shift (Ω, μ, m, S) defined as above in terms of ($\underline{\lambda}, \mathrm{P}$) is an M-shift if $\lambda_{n} \geqslant 0, p_{i j} \geqslant 0, \sum_{j}^{\sum} p_{i j}=1$ and $\lambda_{j}=\underset{i}{\sum} \lambda_{i} p_{i j}$, ie. $\underline{\lambda}=\underline{\lambda} P$ in matrix form ($X_{n}=\left\{\omega: \omega_{1}=n\right\}$ form a generator for S).

$$
\begin{aligned}
\text { Let } p_{i j}(0) & = \begin{cases}0, & i \neq j \\
1, & i=j\end{cases} \\
p_{i j}(1) & =p_{i, j} \\
p_{i j}(n) & =\sum_{i_{1}, \ldots, i_{n-1}} p_{i i_{1}} \ldots p_{i_{n-1}}, n>1 .
\end{aligned}
$$

and

Then we see by induction that P^{n}, the $\mathrm{n}^{\text {th }}$ power of P , is the matrix $\left(p_{i j}(n)\right)$. Also, $\mu\left(X_{i} \cap T^{-n} X_{j}\right)=\lambda_{i} p_{i j}(n)$.

$$
\begin{aligned}
& \text { Define } f_{i j}(0)=0 \\
& \qquad \begin{array}{l}
f_{i j}(1) \\
f_{i, j}(n) \\
=p_{i j} \\
\sum_{r} \neq j \\
r=1, \ldots, n-1
\end{array}
\end{aligned}
$$

The relation between $p_{i j}(n)$ and $f_{i j}(n)$ is $p_{i j}(n)=\sum_{r=0}^{n-1} f_{i j}(n-r) p_{j j}(r)$
which can be expressed in terms of generating functions

$$
\begin{gathered}
\mathrm{F}_{i j}(z)=\sum_{n=0}^{\infty} f_{i j}(n) z^{n} \text { and } P_{i j}(z)=\sum_{n=0}^{\infty} p_{i j}(n) z^{n} \text { by } \\
P_{i j}(z)=\left\{\begin{array}{l}
F_{i j}(z) p_{j j}(z) \quad, \quad i \neq j \\
F_{i j}(z) P_{i j}(z)+1, \quad i=j
\end{array}\right.
\end{gathered}
$$

For the following definitions, we follow [30].
The M-shift ($\boldsymbol{\lambda}, \mathrm{P}$) is irreducible if for any states i, j there exists a positive integer n such that $p_{i j}(n)>0$. Unless otherwise stated, all m-shifts in the sequel will be irreducible. The state i is transient if $\sum_{n=0}^{\infty} p_{i i}(n)<\infty$,

$$
\begin{gathered}
\text { positive recurrent if } \sum_{n=0}^{\infty} p_{i i}(n)=\infty \text { and } \\
\sum_{n=1}^{\infty} n f_{i i}(n)<\infty . \\
\text { null-recurrent if } \sum_{n=0}^{\infty} p_{i i}(n)=\infty \text { and } \\
\sum_{n=1}^{\infty} n f_{i i}(n)=\infty .
\end{gathered}
$$

aperiodic if $p_{i i}(n)>0$ for all large enact gh n.

 We consider only aperiodic M-shifts.6. 1 Theorem If ($\boldsymbol{\lambda}, P$) is irreducible and aperiodic, all states are of the same type, ie. transient, positive recurrent or null recurrent [5, p. 355].

For all states $i, \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{0}^{n-1} p_{i i}(k)$ exists. i is positive recurrent if, and only if, $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{0}^{n-1} p_{i i}(k)>0[30]$.

One can therefore talk of a transient, positive recurrent or null recurrent $\mathrm{H}-\mathrm{shif} \mathrm{t}$.
6.2 Theorem Given two M-shifts $(\underline{\lambda}, P)=(\Omega, 0,2, m, S)$ and $\left(\underline{\lambda}^{\prime}, P^{\prime}\right)=\left(\Omega^{i}, J \mu_{i}^{\prime}, m^{\prime}, S^{\prime}\right)$ with $\Omega_{n}=\Omega_{n}^{\prime}=\{0,1, \ldots\}, n=1,2, \ldots$ Let $\Omega^{\prime \prime}=\prod_{1}^{\infty}\left(\Omega_{n} \times \Omega_{n}^{i}\right)$,

O"" = $\sigma-a l$ gebra generated by the cylinders

$$
\left\{\omega^{\prime \prime}: \omega_{n}^{\prime \prime}=\left(i_{0}, j_{0}\right), \ldots, \omega_{n+r}^{\prime \prime}=\left(i_{r}, j_{r}\right)\right\}
$$

$m^{\prime \prime}=$ measure uniquely y determined by the equation

$$
\begin{aligned}
m^{\prime \prime}\left(\left\{\omega^{\prime \prime}: \omega_{n}^{\prime \prime}\right.\right. & \left.\left.=\left(i_{0}, j_{0}\right), \ldots, \omega_{n+r}^{\prime \prime}=\left(i_{r}, j_{r}\right)\right\}\right) \\
& =\lambda_{i_{0}} \lambda_{j_{0}}^{\prime} p_{i_{0}} i_{1} p_{j_{0}}^{\prime} j_{1} \cdots p_{i_{r-1}} i_{r} p_{j_{r-1}} j_{r}
\end{aligned}
$$

Then $\left(\Omega \times \Omega^{\prime}, \pi \Omega \times \Omega^{\prime}, m \times m^{1}, S \times S^{1}\right)$ is isomorphic to ($\left.\Omega^{\prime \prime}, \gamma^{\prime \prime}, m^{\prime \prime}, s^{\prime \prime}\right)$.
Proof Define $\psi: \Omega \times \Omega^{\prime} \rightarrow \Omega^{\prime \prime}$ by $\psi\left(\omega, \omega^{\prime}\right)=\left\{\left(\omega_{n}, \omega_{n}^{\prime}\right)\right\}_{1}^{\infty}$, where
$\omega=\left\{\omega_{n}\right\}_{1}^{\infty}$ and $\omega^{2}=\left\{\omega_{n}^{1}\right\}_{1}^{\infty}$. Clearly ψ is $1-1$ onto. It is measurable since

$$
\begin{aligned}
& \psi^{-1}\left\{\omega^{\prime \prime}: \omega_{n}^{\prime \prime}=\left(i_{0}, j_{o}\right), \ldots, \omega_{n+r}^{\prime \prime}=\left(i_{r}, j_{r}\right)\right\} \\
= & \left\{\omega: \omega_{n}=i_{0}, \ldots, \omega_{n+r}=i_{r}\right\} \times\left\{\omega^{t}: \omega_{n}^{t}=j_{0}, \ldots, \omega_{n+r}^{\prime}=j_{r}\right\}
\end{aligned}
$$

and the ring of finite disjoint unions of cylinders generates the measurable subsets in each respective sequence space. ψ is measurepreserving by the definitions of $\mathrm{m}^{\prime \prime}$. Finally,

$$
\psi S=S^{\prime} \psi
$$

6.3 Theorem [13] If T is an M-shift on the σ-finite measure space ($\mathrm{X}, \mathcal{B}, \mu$) then T is ergodic if, and only if, it is irreducible and recurrent (positive or null).
6.4 Corollary If $(\Omega, 7 \Omega, m, S)$ and ($\Omega^{\prime}, M^{\prime}, m^{\prime}, S^{\prime}$) are M-shifts preserving σ-finite measure such that $S \times S^{\prime}$ is irreducible then $S \times S^{\prime}$ is ergodic if, and only if, it is reaurrent.

Proof By 6.2, $S \times S^{\prime}$ is isomorphic to $S^{\prime \prime}$ as definc in 6.2. Clearly $S^{\prime \prime}$ is an irreducible M-shift preserving σ-finite measure. The result follows from 6.3 noting that ergodicity is a metric invariant. //

The next result shows that the recurrence in 6.3 and 6.4 is null recurrenoe.
6.5 Thecrem Let $T=(\underline{\lambda}, P)$ be an irreducible M-shift.
(i) If T is transient the only measure preserved by T is the trivial one $\mu(E)=0 \quad$ for all $E \in$
(ii) If T is positive recurrent is preserves a finite measure.
(iii) If T is null-recurrent it preserves a σ-finite measure.

In (ii) and (iii) the invariant measure is unique up to constant multiples.

Proof (i) $\sum_{0}^{\infty} p_{i i}(n)<\infty$ implies that $p_{i i}(n) \longrightarrow 0(n \rightarrow \infty)$. Since $p_{i j}(2 n) \geqslant p_{i j}(n) p_{j i}(n)$, it follows that $P^{n} \rightarrow 0$, the zero $(\mathbb{N}+1) \times(N+1)$ matrix, $(n \rightarrow \infty)$. For $\underline{\lambda}$ to satisfy $\underline{\lambda}=\underline{\lambda}$, we must have $\underline{\lambda}^{\mathrm{n}}=\underline{\lambda}$ for all n , ie. $\underline{\lambda}=\underline{0}$.

(iii) [30] There is a unique vector $\underline{\lambda}=\underline{\lambda} P$ with $\sum_{0}^{\infty} \lambda_{n}=\infty$.

The uniqueness of the invariant measure in (ii) and (iii) follows from the ergodicity of T (I. 5.3). //
6.6 Definition ($\boldsymbol{\lambda}, \mathrm{P}$) is a Bernoulli shift or Bernoulli endomorphism if $\lambda_{j}=p_{i j}$ for all i, j. Thus, with the notation at the beginning of $\S 6, \mathbb{m}\left(\left\{\omega: \omega_{n}=i_{0}, \ldots, \omega_{n+k}=i_{k}\right\}\right)=\lambda_{i_{0}} \ldots \lambda_{i_{k}}$. We shall sometime s use $\underline{\lambda}$ to denote the associated Bernoulli shift.
6.7 Theorem (i) The entropy of the Bernoulli shift $\underline{\lambda}$ is $-\sum_{1} \lambda_{n} \log \lambda_{n}$.
(ii) Every Bernoulli shift is mixing of all degrees.

Proof (i) See for example [2]
(ii) Let r be a positive integer, A_{0}, \ldots, A_{r} be cylinders and
$\Delta_{n}^{r}=\left(k_{n}^{1}, \ldots k_{n}^{r}\right) \in g^{(r)}$. Then $A_{0}, \quad T^{-k_{n}^{1}} A_{1}, \ldots, T_{n}^{1} A_{r}$
are cylinders depending on sets of oo-ordinates which are pairwise disjoint if n is large enough. Hence for large enough n,
$\mu\left(A_{0} \cap T^{-k_{n}^{1}} \cap \ldots T^{-k_{n}^{r}} A_{r}\right)=\mu\left(A_{0}\right) \ldots \mu\left(A_{r}\right):$
The result follows, since the cylinders generate the measurable sets. //

§7 Renewal Sequences

7.1 Definition [18] A sequence $\underline{p}=\left\{p_{n}\right\}_{0}^{\infty}$ of real numbers is a renewal sequence if $p_{0}=1, p_{n}=\sum_{k=1}^{n} r_{1}+\ldots+r_{k}=n^{f} r_{1} \ldots f_{r_{k}}(n \geqslant 1)$, Where $0 \leqslant f_{n}$ and $\sum_{n=1}^{\infty} f_{m} \leqslant 1$.

This can be expressed in terms of generating functions:
$P(z)=\sum_{0}^{\infty} p_{n} z^{n}$ and $F(z)=\sum_{1}^{\infty} f_{n} z^{n}$ satisfy $P(z)=\frac{1}{1-F(z)}$. The series $F(z)$ and $P(z)$ were called by T. Kaluza "reciprocal power series" [14], and we shall sometimes write $F_{p}(z)$ for the power series reciprocal to $P(z)$. A very important subclass of renewal sequences was studied by him, although in a different context to the present one. It was rediscovered by J. Lamperti [21] and developed by J.F.C.Kingman [18].
7.2 Definition [18] A sequence $\left\{p_{n}\right\}_{0}^{\infty}$ of real numbers is a Kaluga sequence if $p_{0}=1,0 \leqslant p_{n} \leqslant 1$ and $p_{n}^{2} \leqslant p_{n-1} p_{n+1}$ for all n.
7.3 Theorem [18] If p is a Kaluga sequence then $p_{n} \geqslant p_{n+1}$ for all n.

Proof Jet $u_{n}=\frac{P_{n}}{P_{n-1}}$. Then $u_{n} \leqslant u_{n+1}$. Also by induction $p_{n}=u_{1} \ldots u_{n} \cdot p_{n} \geqslant p_{n+1}$ if, and only if, $u_{n+1} \leqslant 1$. Suppose $u_{n_{0}}>1$ for some n_{0}. Then $u_{n}>1$ for all $n>n_{0}$, in particular $u_{n}>1+\varepsilon$ for some $\varepsilon>0$. Thus $p_{n_{0}+n}>u_{1} \ldots u_{n_{0}}(1+\varepsilon)^{n} \rightarrow \infty$ $(\mathrm{n} \rightarrow \infty)$. This contradicts the boundedness of P . //
7.4 Theorem [24] If p is a Kaluza sequence then it is a renewal sequence.
Proof The proof of 7.3 implies that $\lim _{n \rightarrow \infty} \frac{p_{n+1}}{p_{n}}$ exists end does not exceed 1. Hence $P(z)$ converges for $|z|<1$. So does $F(z)$, since it is the reciprocal power series of $P(z)$. However, the relation between P and P holds irrespective of the value of z since it follows on equating coefficients of z^{n} in the identity $P(z)=F(z) P(z)+1$. Now $1 \leqslant P(z) \leqslant \infty$ if $0 \leqslant z$ and so $\sum_{1}^{\infty} f_{n} \leqslant 1$. An induction shows that $f_{n} \geqslant 0$ for all n :

$$
0=p_{n}-\sum_{\nu=1}^{n} p_{n-\nu} f_{\nu},
$$

$$
f_{n+1}=p_{n+1}-\sum_{\nu=1}^{n} p_{n-\nu+1} f_{\nu}
$$

and hence $f_{n+1} p_{n}=\sum_{\nu=1}^{n}\left(p_{n-\nu} p_{n+1}-p_{n-\nu+1} p_{n}\right) f_{\nu} ;$ since
$\frac{p_{n+1}}{p_{n}} \geqslant \frac{p_{n}}{p_{n-1}} \geqslant \ldots \geqslant \frac{p_{n-\nu+1}}{p_{n-\nu}}, f_{1} \geqslant 0, \ldots, f_{n} \geqslant 0$ imply $f_{n+1} \geqslant 0$.
The first step of the induction is given by $f_{1}=p_{1}$.
7.5 Definition [16] A renewal sequence $\left\{p_{n}\right\}_{0}^{\infty}$ is infinitely divisible if $\left\{p_{n}^{t}\right\}_{0}^{\infty}$, where p_{n}^{t} denotes p_{n} raised to the power t, is a renewal sequence for all $t>0$.

The defining inequality for Kaluga sequences gives the following
7.6 Theorem [16] Every Kaluza sequence is infinitely divisible.

We mention the interesting converse to 7.6 .
7.7 Theorem [16] Every zero-free infinitely divisible renewal sequence is a Kaluga sequence.

Anticipating Chapter IV, we shall use the same notation for renewal sequences as we have done $f \boldsymbol{\alpha}$ M-shifts.
7.8 Definition A renewal sequence $p=\left\{p_{n}\right\}_{0}^{\infty}$ is said to be transient if $\sum_{0}^{\infty} p_{n}<\infty$
positive recurrent if $\sum_{o}^{\infty} p_{n}=\infty$ and $\sum_{1}^{\infty} n f_{n}<\infty$
null recurrent if $\sum_{0}^{\infty} p_{n}=\infty$ and $\sum_{1}^{\infty} n f_{n}=\infty$
aperiodic if $p_{n}>0$ for n large enough.
7.9 Theorem If p is a Kaluza sequence then either it has only a finite number of positive terms or it is aperiodic.

Proof By 7.3 any zero in p is followed by zeros. //
When p is a recurrent Kaluza sequence, f_{n} grows more slowly
than p_{n} :
7.9 Theorem If p is Kojuza and roourrent then $\frac{f_{n}}{p_{n}} \rightarrow 0(n \rightarrow \infty)$.

Proof $\frac{f_{n}}{p_{n}}=1-\sum_{1}^{n} f_{s} \frac{p_{n-s}}{p_{n}} \leqslant 1-\sum_{1}^{n} f_{s}$.
Hence $0 \leqslant \overline{\lim _{n}} \frac{f_{n}}{p_{n}} \leqslant 0 . \quad / /$

Sc. Continued Fractions
8.1 Definition If x is a real number the integer part of x is defined as the ocitu; integer $[x] \leqslant x$. Thus $x-1<[x] \leqslant x$.

The fractional part of x is defined by $(x)=x-[x]$. Thus $0 \leqslant(x)<1$.

If f is a $1-1$ real-valued function of a real variable then f^{-1} denotes the functional inverse of $f: f\left(f^{-1} x\right)=x$.
8.2 Definition An nth order continued fraction is an expression of the form

$$
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\cdots+\frac{1}{a_{n}}}}
$$

where $a_{0}, \ldots a_{n}$ are real numbers. We shall always write such a continued fraction as

$$
a_{0}+\frac{1}{a_{1}+} \frac{1}{a_{2}+} \cdots+\frac{1}{a_{n}} .
$$

 $a_{0}+\frac{1}{a_{1}+} \frac{1}{a_{2}+} \ldots$ and refer to it as an infinite continued fraction.
 rational operations on a_{0}, \ldots, a_{n}, it can be represented as the ratio of two polynomials.

$$
\frac{P\left(a_{0}, \ldots, a_{n}\right)}{Q\left(a_{0}, \ldots, a_{n}\right)}
$$

in a_{0}, \ldots, a_{n} with integral coefficients. This representation is not unique since in evaluating the finite continued fraction a factor common to numerator and denominator may occur. To overcome the ambiguity we define $\frac{P}{Q}$ 'oanonioally' [17]:

$$
\begin{aligned}
& \frac{P\left(a_{0}\right)}{Q\left(a_{0}\right)}=a_{0} \\
& \frac{P\left(a_{0}, \ldots, a_{n}\right)}{Q\left(a_{0}, \ldots, a_{n}\right)}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+} \cdots+\frac{1}{a_{n}}}=a_{0}+\frac{1}{r_{1}}, \text { say }
\end{aligned}
$$

r_{1} is an $(n-1)$ st order continued fraction with canonical representation $r_{1}=\frac{p^{\prime}}{q^{1}}$, say. :Te then define

$$
\frac{P\left(a_{0}, \ldots, a_{n}\right)}{Q\left(a_{0}, \ldots, a_{n}\right)}=a_{0}+\frac{q^{\prime}}{p^{\prime}}=\frac{a_{0} p^{\prime}+q^{\prime}}{p^{\prime}},
$$

ie. $P\left(a_{0}, \ldots, a_{n}\right)=a_{0} p^{\prime}+q^{\prime}, Q\left(a_{0}, \ldots, a_{n}\right)=p^{\prime}$. The definition is now completed by induction.

$$
\begin{aligned}
& \frac{P\left(a_{0}, \ldots, a_{n}\right)}{Q\left(a_{0}, \ldots, a_{n}\right)} \text { is the } n \text {th convergent or partial quotient } \text { of } \\
& a_{0}+\frac{1}{a_{1}}+\cdots+\frac{1}{a_{n}} \text {. }
\end{aligned}
$$

For more details about continued fractions, see [17].

CHAPTER II.
Characterisations of Mixing Properties for measure-
Preserving Transformations.

§1 Introduction

N. Oishi [25] characterised mixing, weak mixing and ergodicity of finite measure-preserving transformations in terms of convergence of suitably defined entropies. We have extended the convergence criterion from all finite partitions to all partitions with finite entropy and also characterised mixing of degree r in the same way. Further characterisations in terms of convergence of suitably defined measures and, in the case of a topological measure space, weak convergence of the same measures are given. It is shown that these results are the 'best possible'.

A lemma
Throughout this chapter, T will denote a measure-preserving transformation of the monatomic Lebesgue space ($x, \mathcal{R}, \mathrm{p}$). If γ is another probability measure on ($\mathrm{X}, \underset{\mathrm{E}}{\mathrm{E}}$), ie define $H_{p}(\gamma)= \begin{cases}\int_{X} \log \frac{d y}{d p} d \gamma, & \text { if } \gamma \text { is absolutely continuous } \\ & \text { with respect to } p \\ +\infty, & \text { otherwise }\end{cases}$

Where $\frac{d \gamma}{d p}$ denotes the Radon-Nikodjm derivative of γ with respect to p.
2.1 Lemma $[2.5]$ Let $\left\{\gamma_{1}, \gamma_{2}, \ldots\right\}$ be a sequence of probability measures on $(X, *)$ such that $\gamma_{n} \leqslant c p$ for all n, where $c \geqslant 1$ is a constant then

$$
\gamma_{n}(E) \longrightarrow p(\mathbb{E}) \quad(n \longrightarrow \infty) \text { uniformly for } E \in \mathbb{B}
$$

if, and only if

$$
\lim _{n \rightarrow \infty} H_{p}\left(\gamma_{n}\right)=0 .
$$

Proof. Since, by assumption, $\int_{\mathbb{E}}\left(\frac{d y_{n}}{d p}-c\right) d p \leqslant 0$
for all $E \in \delta, \frac{d y_{n}}{d p} \leqslant c \quad p-$ almost everywhere for each $n . \quad \gamma_{n}(E) \rightarrow p(E)$ $(n \rightarrow \infty)$ uniformly for $E \in \dot{j}$ if, and only if, $\frac{d y_{n}}{d p} \rightarrow 1(n \rightarrow \infty)$ in $L_{1}(p)$ norm, since, on the one hand,
$\left|\gamma_{n}(E)-p(E)\right| \leqslant \int_{X}\left|\frac{d \gamma_{n}}{d p}-1\right| d p$
while, on the other, if $S=\left\{\frac{d \gamma_{n}}{d p}>1\right\}, S \in \mathcal{S}$ and

$$
\begin{aligned}
\int_{X}\left|\frac{d \gamma_{n}}{d p}-1\right| d p & =\int_{S}\left(\frac{d \gamma_{n}}{d p}-1\right) d p+\int_{\mathscr{S}}\left(1-\frac{d \gamma_{n}}{d p} d p\right. \\
& =\left|\gamma_{n}(S)-p(S)\right|+\left|\gamma_{n}(S S)-p(S S)\right| .
\end{aligned}
$$

Suppose $H_{p}\left(\gamma_{n}\right) \rightarrow 0(n \rightarrow \infty)$. Since
$x \log x \geqslant x-1+\frac{1}{2 c}(x-1)^{2}$ for any x with $0 \leqslant x \leqslant c$,

$$
H_{p}\left(\gamma_{n}\right) \geqslant \frac{1}{2 c} \int_{X}\left(\frac{d \gamma_{n}}{d p}-1\right)^{2} d p \geqslant 0 \text { for each } n \text {. }
$$

Hence $\frac{d \gamma_{n}}{d p} \rightarrow 1(n \rightarrow \infty)$ in $L_{2}(p)$ norm and so also in $L_{1}(p)$ norm (by Holder's inequality, $\left(\int|f| d p\right)^{2} \leqslant \int|f|^{2}$ dp for $\left.f \in L_{2}(p)\right)$

$$
\text { Conversely, let } \frac{d \gamma_{n}}{d p} \rightarrow 1(n \rightarrow \infty) \text { in } L_{1}(p) \text { norm. }
$$

$\frac{d \gamma_{n}}{d p} \rightarrow 1(n \rightarrow \infty)$ in probability, since for all $\varepsilon>0$
$\left.\varepsilon p\left(E_{n, \varepsilon}\right) \leqslant \int_{E_{n, \varepsilon}}\left|\frac{d \gamma_{n}}{d p}-1\right| d p \leqslant \int_{X} 1 \frac{d \gamma_{n}}{d p}-1 \right\rvert\, d p$
where $E_{n, \varepsilon}=\left\{\left|\frac{d \gamma_{n}}{d p}-1\right| \geqslant \varepsilon\right\}$.
Now $|x \log x| \leqslant|x-1|+\frac{1}{2}(x-1)^{2}$ for any $x \geqslant 0$, so that

$$
\begin{aligned}
& \frac{d \gamma_{n}}{d p} \log \frac{d \gamma_{n}}{d p} \rightarrow 0(n \rightarrow \infty) \text { in probability . } \\
&\left|\frac{d \gamma_{n}}{d p} \log \frac{d \gamma_{n}}{d p}\right| \leqslant \operatorname{Max}\left[c \log c, \frac{1}{e} \log \frac{1}{e}\right]=K, \text { say, for all } n . \\
&\left|\int_{X} \frac{d \gamma_{n}}{d p} \log \frac{d \gamma_{n}}{d p} d p\right| \leqslant \int_{X}\left|\frac{d \gamma_{n}}{d p} \log \frac{d \gamma_{n}}{d p}\right| d p \\
&=\int_{E_{n, \varepsilon}}\left|\frac{d \gamma_{n}}{d p} \log \frac{d \gamma_{n}}{d p}\right| d p+\int_{Q E_{n}}^{d p}\left|\frac{d \gamma_{n}}{d p} \log \frac{d \gamma_{n}}{d p}\right| d p \\
& \leqslant K p\left(E_{n, \varepsilon}\right)+\varepsilon .
\end{aligned}
$$

Hence

$$
\lim _{n \rightarrow \infty} H_{p}\left(\gamma_{n}\right)=0
$$

\$3 The Characterisations
Let

$$
G\left(\mathbb{T}^{n}\right)=\left\{\left(x, T_{x}^{n}\right): x \in X\right\},
$$

μ_{n} denote the measure defined on ($\mathrm{X}^{(2)}, \mathcal{E}^{(2)}$) by

$$
\begin{aligned}
& \mu_{\mathrm{n}}(\mathbb{E})=\mathrm{p}\left[\pi\left\{E_{n} G\left(\mathbb{T}^{\mathrm{n}}\right)\right\}\right], E \in \mathbb{E}^{(2)} . \\
& \theta, \theta^{\mathrm{a}} \\
& \mu_{\mathrm{n}} \text { denotes the restriction of } \mu_{\mathrm{n}} \text { to the } \sigma \text {-algebra }
\end{aligned}
$$

$S\left(\theta \theta^{\prime}\right)$ generated by $\theta \times \theta^{\prime}, \theta, \theta^{\prime}$ being finite partitions of X, for which te also define

$$
I_{\mu_{n}}\left(\theta \times \theta^{\prime}\right)=\sum_{E \in \theta, F \in \theta^{\prime}}, \mu_{n}(E \times F) \log \frac{\mu_{n}(E \times F)}{\mu(E \times F)}
$$

3.1 Theorem. The following are equivalent:-
(i) T is mixing
(ii) $H_{\mu_{n}}\left(\theta \times \theta^{\prime}\right) \rightarrow H_{\mu}\left(\theta \times \theta^{\prime}\right)(\mathrm{n} \rightarrow \infty)$ for all $\theta, \theta^{\prime} \in Z_{p}$
$\left(\right.$ iii) $\mu_{n}(\mathrm{Ii}) \rightarrow \mu(\mathrm{II})(\mathrm{n} \rightarrow \infty)$ for all Jordan measurable $: i \in \mathbb{B}^{(2)}$.
Proof. (i) \Leftrightarrow (ii): We first consider the case of finite θ, θ [2.5].

$$
\frac{d \mu_{\mathrm{n}} \theta^{\theta, \theta^{\prime}}}{\theta_{\mu}, \theta^{\prime}}(\mathrm{x}, \mathrm{y})=\sum_{\mathbb{E} \in \theta, \mathbb{F} \in \theta^{\prime}}^{\sum} \quad X_{\mathrm{E} \times \mathbb{F}}(\mathrm{x}, \mathrm{y}) \frac{\mu_{\mathrm{n}}(\mathrm{E} \times \mathbb{F})}{\mu(\mathbb{E} \times \mathbb{F})}
$$

and $\int_{X}(2)\left|\frac{d \mu_{n}^{\theta, \theta^{\prime}}}{\theta, \theta^{\prime}}-1\right| d_{\mu}^{\theta, \theta^{\prime}}=\sum_{E \in \theta, F \epsilon \theta^{\prime}}^{\sum}\left|\mu_{n}(E \times F)-\mu(E \times F)\right|$
Hence T is mixing if, and only if ,

$$
\begin{aligned}
& \theta \theta_{0}{ }^{1} \\
& \frac{\partial_{\eta}}{\alpha_{\mu} \theta^{\theta} \theta^{\prime}} \rightarrow 1(\mathrm{n} \longrightarrow \infty) \text { in } \mathrm{L}_{1}\left({ }^{\theta, \theta^{\prime}}\right) \text { norm for all finite }
\end{aligned}
$$

partitions θ, θ^{\prime}. The proof of 2.1 now implies that T is mixing if, and only if, for all finite $\theta, \theta^{\prime}, \mu_{n}^{\theta, \theta^{\prime}}(\mathrm{Mi}) \rightarrow \mu^{\theta, \theta^{\prime}}(\mathrm{N})(\mathrm{n} \rightarrow \infty)$ uniformly for $H \in S\left(\theta, \theta^{\prime}\right)$.

The result for finite θ, θ^{\prime} follows from 2.1, noting that

$$
\begin{aligned}
& \mathrm{d}_{\mu_{\mathrm{n}}} \theta, \theta^{\prime} \\
& \mathrm{d}_{\mu}^{\theta, \theta^{\prime}}
\end{aligned} \underset{\substack{\mathrm{F} \in \theta^{\prime} \\
\mathrm{p}(\mathrm{~F}) \neq 0}}{\operatorname{Max}(\mathrm{~F})} \frac{1}{\mathrm{p}},
$$

and $H_{\mu_{n}}\left(\theta \times \theta^{\prime}\right)=H_{\mu}\left(\theta \times \theta^{\prime}\right)-I_{\mu_{n}}\left(\theta \times \theta^{\prime}\right)$.

Now let $\theta, \theta^{\prime} \in Z_{\mathrm{p}}$ be infinite. They can be at most countable. Thus $\theta \times \theta^{\prime}=\left\{D_{1}, D_{2}, \ldots\right\}$, where D_{k} are disjoint, measurable rectangles.

$$
\begin{aligned}
H_{\mu_{n}}\left(\theta \times \theta^{\prime}\right) & =H_{p}\left(\theta \vee \mathbb{T}^{-n} \theta^{\prime}\right) \\
& \leqslant H_{p}(\theta)+H_{p}\left(\theta^{\prime}\right) \\
& =H_{\mu}\left(\theta \times \theta^{\prime}\right), \text { for each } n .
\end{aligned}
$$

Thus $\overline{\lim _{\mathrm{n}}} \mathrm{H}_{\mu_{\mathrm{n}}}\left(\theta \times \theta^{\prime}\right) \leqslant \mathrm{H}_{\mu}\left(\theta \times \theta^{\prime}\right)$. Let ξ_{n} be the partition of $\mathrm{X}^{(2)}$ given by $\xi_{n}=\left\{D_{1}, D_{2}, \ldots, D_{n}, \bigcup_{k=n+1}^{\infty} D_{k}\right\}$. Then $\xi_{n} \gamma \theta \times \theta^{\prime}$ $(n \rightarrow \infty)$, since each set of ξ_{n} is a union of (at most tron) sets of ξ_{n+1}, while if $\eta \geqslant \xi_{n}$ for all n, each D_{n} is a union of sets of η and hence $\theta \times \theta^{\prime} \leqslant \eta$.

By the first part of the proof,

$$
\begin{aligned}
& \mathrm{H}_{\mu_{k}}\left(\xi_{n}\right) \rightarrow \mathrm{H}_{\mu}\left(\xi_{n}\right)(k \rightarrow \infty) \text { for each } n \text {. Also } \\
& \mathrm{H}_{\mu_{k}}\left(\xi_{n}\right) \leqslant H_{\mu_{k}}\left(\theta \times \theta^{\prime}\right) \text { which implies that } \\
& H_{\mu}\left(\xi_{n}\right) \leqslant \frac{\lim _{n}}{k} H_{\mu_{k}}\left(\theta \times \theta^{\prime}\right) \text { for each } n \text {. Let } n \rightarrow \infty: \\
& H_{\mu}\left(\theta \times \theta^{\prime}\right) \leqslant \frac{\text { jim }}{k} H_{\mu_{k}}\left(\theta \times \theta^{\prime}\right) ; \text { hence }
\end{aligned}
$$

$$
\text { i.e. } H_{\mu}\left(\theta \times \theta^{\prime}\right)=\lim _{n \rightarrow \infty} H_{\mu_{n}}\left(\theta \times \theta^{\prime}\right)
$$

(ii) \Rightarrow (i) follows trivially from the first pert of the proof, since every finite θ is in z_{p}.
$(i) \Leftrightarrow(i i i): T$ is mixing if, and only if, $\mu_{n}(\mathbb{M}) \rightarrow \mu(n)(n \rightarrow \infty)$
for all $H \in R$, by the finite additivity of measures. (iii) \Rightarrow (i) follows at once, since every set in R is Jordan measurable.

Let T be mixing and M, Jordan measurable. For all positive integers n, there exist R_{n} and S_{n} such that

$$
\begin{array}{ll}
M \supset R_{n} \in R, & \mu\left(N-R_{n}\right)<\frac{1}{n} \\
M \subset S_{n} \in R, & \mu\left(S_{n}-M\right)<\frac{1}{n}
\end{array}
$$

Hence $\mu\left(M-Y^{\infty} R_{n}\right)=0=\mu\left(\bigcap_{1}^{\infty} S_{n}-M\right)$

$$
\text { ie. } \quad \mu\left(\psi_{\psi}^{\infty} R_{n}\right)=\mu(N)=\mu\left(\bigcap_{\eta}^{\infty} S_{n}\right)
$$

Let $I_{N}=\bigcup_{1}^{\mathbb{N}} R_{n}$. Then $I_{N} \in R$ and $I_{N} \wedge \bigcup_{1}^{\infty} R_{n}(N \rightarrow \infty)$.
Hence $\quad \mu_{k}\left(I_{N}\right) \nearrow \mu_{k}\left(\cup_{1}^{\infty} R_{n}\right)(N \longrightarrow \infty)$ for each k

$$
\mu\left(I_{N}\right) \nearrow \mu\left(\bigcup_{1}^{\infty} R_{n}\right) \quad(\mathbb{N} \longrightarrow \infty)
$$

and

$$
\mu_{k}\left(I_{N}\right) \rightarrow \mu\left(I_{N}\right) \quad(k \rightarrow \infty) \text { for each } \mathbb{N} .
$$

Let $J_{N}=\stackrel{N}{n} S_{n}$. Then $J_{N} \in R$ and $J_{N T} \downarrow \bigcap_{1}^{\infty} S_{n}(N \rightarrow \infty)$.
Hence $\quad \mu_{k}\left(J_{N}\right) \searrow \mu_{k}\left(\cap_{1}^{\infty} S_{n}\right) \quad(\mathbb{N} \rightarrow \infty)$ for each k

$$
\mu\left(J_{\mathrm{N}}\right) \searrow \mu\left(\stackrel{1}{1}^{\infty} \mathrm{S}_{\mathrm{n}}\right) \quad(\mathrm{N} \longrightarrow \infty)
$$

and

$$
\mu_{\mathrm{k}}\left(J_{\mathrm{N}}\right) \longrightarrow \mu\left(J_{\mathrm{NN}}\right) \quad(k \longrightarrow \infty) \quad \text { for each } N .
$$

$$
\mu_{k}\left(I_{N}\right) \leqslant \mu_{k}(M) \leqslant \mu_{k}\left(J_{N}\right) \text { for coach } k \text { and } N \text {. Keeping } N \text { fixed, }
$$

let $k \rightarrow \infty$:

$$
\begin{aligned}
& \mu\left(I_{N}\right) \leqslant \frac{\lim }{k} \mu_{k}(M) \leqslant \overline{\lim _{k}} \mu_{k}(M) \leqslant \mu\left(J_{N}\right) \text {. Let } N \rightarrow \infty \cdot \\
& \mu(M) \leqslant \frac{\lim }{k} \mu_{k}(M) \leqslant \overline{\lim _{k}} \mu_{k}(M) \leqslant \mu(M),
\end{aligned}
$$

$$
\text { i.e. } \quad \mu(M)=\lim _{k} \mu_{k}(\mathbb{M}) \cdot / /
$$

3.2 Lemma. $T^{(2)}$ preserves μ_{n} for each n.

Proof

$$
\begin{equation*}
\pi\left\{G\left(\mathbb{T}^{n}\right) \sim\left(\mathbb{T}^{(2)}\right)^{-1} \mathbb{B}\right\}=\mathbb{T}^{-1} \pi\left\{G\left(\mathbb{T}^{n}\right), \mathbb{E}\right\} \text { for all } E \in \mathbb{Q}^{(2)} \tag{2}
\end{equation*}
$$

\%
Since $\mathbb{T}^{(2)}$ also preserves μ, one might conjecture that T is mixing if, and only if, $h_{\mu_{n}}\left(T^{(2)}\right) \rightarrow h_{\mu}\left(T^{(2)}\right)(n \rightarrow \infty)$
Where $h_{\mu_{n}}\left(T^{(2)}\right)$ is the Kolmceorov-Sinai invariant of $T^{(2)}$ with respect to μ_{n}. That the conjecture is false is shown by
3.3 Theorem $\left(\mathrm{X}^{(2)}, \mathrm{e}^{(2)}, \mu_{\mathrm{n}}, \mathrm{T}^{(2)}\right)$ is almost isomorphic to ($\mathrm{X}, \underset{\mathrm{Z}}{\mathrm{Z}}, \mathrm{p}, \mathrm{T}$)

Proof Since μ_{n} is concentrated on $G\left(\mathbb{T}^{n}\right), X^{(2)}-G\left(T^{n}\right)$ is a μ_{n}-null set.

Let $\psi_{n}(x)=\left(x, T^{n} x\right), x \in X, \psi_{n}$ is one-to-ono onto $G\left(T^{n}\right)$. It is measurable and measure-preserving, since

$$
\psi_{n}^{-1}(E)=\psi_{n}^{-1}\left(\mathbb{E} \cap G\left(T^{n}\right)\right)=\pi\left[\mathbb{E}, G\left(\mathbb{T}^{n}\right)\right] .
$$

Finally $T^{(2)} \psi_{n}(x)=\psi_{n}(\mathbb{T})$ for all $x \in X / /$
3.4 Corollary $h_{\mu}\left(T^{(2)}\right)=h_{p}(T)$

Proof Almost isomorphic transformations have the same entropy. $\xrightarrow{3.5 \text { Corollary }} h_{\mu_{n}}\left(T^{(2)}\right) \rightarrow h_{\mu}\left(T^{(2)}\right)(n \rightarrow \infty)$ if, and only if,
$h_{p}(T)=0$ or ∞ 。
Proof $h_{\mu}\left(T^{(2)}\right)=2 h_{p}(T)$.

The conjecture is disproved since, on the one hand, Bernoulli endomorphisms with countable state space are mixing yet have finite, positive entropy, while on the otior hand, periodic endomorphisms of non-atomic Lebesgue spaces are not ergodic yet have zero entropy.

One might also ask whether (iii) of 3.1 could not bo replaced by
$(\text { (iii })^{\prime} \quad \mu_{n}(M) \rightarrow \mu(N) \quad(n \rightarrow \infty)$ for all $H \in \mathcal{B}^{(2)}$.
This is answered in tho negative by
3.6 Theorem $\mu\left(G\left(T^{n}\right)\right)=0$ for all n.

Proof $\mu\left(G\left(T^{n}\right)\right)=\int_{X} p\left[G\left(T^{n}\right)_{X}\right] d p=\int_{X} p\left(\left\{T^{n} x\right\}\right) d p$
where $\left\{T^{n} x\right\}$ denotes the point set $q^{n} x$,
$=0$ since p is non-atomic. //
(iii)' is false for $\bigcup_{1}^{\infty} G\left(T^{n}\right) \in \mathbb{Q}^{(2)}$, since
$\mu_{m}\left(\underset{1}{\cup} G\left(T^{n}\right)\right)=1$ for each, but $\mu\left({\left.\underset{1}{\cup} G\left(T^{n}\right)\right)=0 . . ~}_{\substack{\infty}}\right.$.
3.7 Theorem The following are equivalent:-
(i) T is weak mixing
(ii) $\frac{1}{n} \sum_{0}^{n-1} H_{\mu_{k}}\left(\theta \times \theta^{i}\right) \rightarrow H_{\mu}\left(\theta \times \theta^{i}\right)(n \rightarrow \infty)$ for all $\theta, \theta^{\circ} \in Z_{p}$

$$
\left.\begin{array}{l}
\frac{1}{n}{ }_{\Sigma}^{n-1}\left[\mu_{k}(M)-\mu(M)\right]^{2} \rightarrow 0 \tag{iii}\\
(n \rightarrow \infty) \\
\frac{1}{n} \sum_{\delta}^{n-1}\left|\mu_{k}(M)-\mu(M)\right| \longrightarrow 0 \\
\mu_{n}(M) \longrightarrow \mu(n)(n \rightarrow \infty, n \notin J, \delta(J)=0)
\end{array}\right\}
$$

for all Jordan measurable $\mathrm{M} \in \mathbb{0}$

Proof (i) <<> (ii) : For finite $\theta, \theta^{\prime}[25]$, tho result follows from

$$
\frac{1}{n} \sum_{\delta}^{\mathrm{n}-1} \mathrm{H}_{\mu_{k}}\left(\theta \times \theta^{\prime}\right)=H_{\mu}\left(\theta \times \theta^{\prime}\right)-\frac{1}{\mathrm{n}} \sum_{0}^{\mathrm{n}-1} I_{\mu_{k}}\left(\theta \times \theta^{\prime}\right)
$$

$x=\frac{\mathrm{d} \mu_{\mathrm{k}}{ }^{\theta, \theta^{\prime}}}{\mathrm{a} \mu^{\theta, \theta^{\prime}}}$ in the inequalities $x-1+\frac{1}{20}(x-1)^{2} \leqslant x \log x \leqslant|x-1|+\frac{1}{2}(x-1)^{2}$,
for $0 \leqslant x \leqslant c$, integrating with respect to $\mu^{\theta, \theta^{\prime}}$ and taking Cosaro sums.
(ii) \Rightarrow (i) nor follows for $\theta, \theta^{\prime} \in Z_{p}$, as in 3.1. The rest of the proof is entirely analogous to that of 3.1.

$$
\begin{aligned}
& \leqslant \sum_{E \in \theta^{\prime}, T \in \theta^{\prime}}^{\sum} \frac{1}{n} \sum_{\delta}^{\frac{n-1}{\Sigma}} I_{\mu_{k}}\left(\theta \times \theta^{\prime}\right) \\
& \mu(\mathbb{E} \times \mathbb{F}) \neq 0
\end{aligned}
$$

(i) \Leftrightarrow (iii) : Since the throe forms of convergence corresponding to weak mixing are equivalent for bounded sequences of real numbers, the proof need only consider one of them.

$$
\begin{aligned}
& T \text { is weak mixing if, and only if, } \\
& \frac{1}{n} \sum_{0}^{n-1}\left|\mu_{k}(M)-\mu(H)\right| \rightarrow 0(n \rightarrow \infty) \text { for all } M \in R
\end{aligned}
$$

by the finite additivity of measures and the triangle inequality for moduli. (iii) \Rightarrow (i) follows at once, since every set in R is Jordan measurable

Let IT be weak mixing and M, Jordan measurable. With the notation of 3.1,

$$
\frac{1}{n} \sum_{k=0}^{n-1}\left|\mu_{k}\left(J_{N}\right)-\mu(N)\right| \leqslant \frac{1}{n} \sum_{k=0}^{n-1}\left|\mu_{k}\left(J_{N}\right)-\mu\left(J_{N}\right)\right|+\left|\mu\left(J_{N}\right)-\mu(N)\right|
$$

Therefore

$$
\overline{\lim } \frac{1}{\mathrm{n}} \underset{\mathrm{k}=0}{\mathrm{n}-1}\left|\mu_{\mathrm{k}}\left(J_{\mathrm{N}}\right)-\mu(\mathrm{M})\right| \leqslant\left|\mu\left(J_{\mathbb{N}}\right)-\mu(\mathrm{N})\right| \quad \text { for each } \mathrm{N} .
$$

Similarly,

$$
\overline{\lim } \frac{1}{n} \sum_{k=0}^{\mathrm{n}-1}\left|\mu_{k}\left(I_{N}\right)-\mu(\mathrm{H})\right| \leqslant\left|\mu\left(I_{N}\right)-\mu(\mathrm{Ii})\right| \quad \text { for each } N
$$

$$
\text { Now }\left|\mu_{k}(\mathrm{I})-\mu(\mathrm{N})\right| \leqslant\left|\mu_{k}\left(I_{N}\right)-\mu(\mathrm{IN})\right|+\left|\mu_{k}\left(J_{N}\right)-\mu(\mathrm{II})\right| \text {, since }
$$

$a \leqslant b \leqslant c$ implies $|b| \leqslant|a|+|c|$, whatever the values of a, b, c. Thus $\overline{\lim } \frac{1}{n} \sum_{k=0}^{n-1}\left|\mu_{k}(M)-\mu(M)\right| \leqslant \overline{\lim } \frac{1}{n} \sum_{k=0}^{n-1}\left|\mu_{k}\left(I_{N}\right)-\mu(M)\right|+\overline{\lim } \frac{1}{n} \frac{1}{n-1} \sum_{k=0}^{n}\left|\mu_{k}\left(J_{N}\right)-\mu(M)\right|$

$$
\leqslant\left|\mu\left(I_{N}\right)-\mu(M)\right|+\left|\mu\left(J_{N}\right)-\mu(M)\right| \quad \text { for all N }
$$

Let $N \rightarrow \infty: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1}\left|\mu_{k}(M)-\mu(M)\right|=0 . \quad / /$

The conjecture that T is weak mixing if, and only if,

$$
\frac{1}{\mathrm{n}} \stackrel{\mathrm{n}}{0}_{\stackrel{\mathrm{n}-1}{ }}^{0} \mathrm{~h}_{\mu_{k}}\left(\mathrm{~T}^{(2)}\right) \rightarrow \mathrm{h}_{\mu}\left(\mathrm{T}^{(2)}\right) \quad(\mathrm{n} \rightarrow \infty)
$$

if, and only if ,

$$
\frac{1}{n} \sum_{0}^{n-1}\left|\mu_{k}(M)-\mu(N)\right| \rightarrow 0 \quad(n \rightarrow \infty) \text { for all } M \in 囚^{(2)}
$$

is disproved by 3.5 and 3.6 .
Let $\overline{\mu_{n}}$ be the measure defined on $\mathcal{Z}^{(2)}$ by

$$
\mu_{n}(B)=\frac{1}{n} \sum_{0}^{n-1} \mu_{k}(X), E \in B^{(2)}
$$

3.8 Theorem The following are equivalent
(i) T is ergodic
(ii) $\mathrm{F}_{\mu_{n}}\left(\theta \times \theta^{\prime}\right) \rightarrow H_{\mu}\left(\theta \times \theta^{\prime}\right)(n \rightarrow \infty)$ for ali $\theta, \theta^{\prime} \in Z_{p}$
(iii) $\bar{\mu}_{n}(N) \rightarrow \mu(N)(n \rightarrow \infty)$ for all Jordan measurable $N \in \mathbb{E}$

Proof Since by the ergodic theorem T is ergodic if, and only if,

$$
\bar{\mu}_{n}(E \times F) \rightarrow \mu(\mathbb{E} \times F) \quad(n \rightarrow \infty) \text { for all } E, F \in \mathbb{R},
$$

we can replace μ_{n} by $\vec{\mu}_{n}$ in 3.1 . //

That 3.8 represents the best possible results in those directions follows from 3.5 and 3.6.

For eacil sequence $\Delta_{n}^{r} \in \mathscr{D}^{(r)}(n=1,2, \ldots)$ let $\mu_{\Delta_{n}^{r}}$ be the measure defined on $\left(x^{(r+1)}, \beta^{(r+1)}\right)$ by

$$
\mu_{\Delta_{n}}^{r(E)}=p\left[\pi\left\{T \cap G_{\Delta_{n}} r(T)\right\}\right], \quad \mathbb{E} \in Q^{(r+1)},
$$

Where $G_{\Delta_{n}}(T)=\left\{\left(x, T^{k_{n}^{1}} x, \ldots, T^{l^{r} V_{n}} x\right): x \in X\right\}$.
3.9 Theorem The following are equivalent:-
(i) T is mixing of degree r
(ii) $\mathrm{H}_{\mu_{\Delta_{r}}}\left(\theta_{0} \times \ldots \times \theta_{r}\right) \rightarrow H_{\mu}(r+1)\left(\theta_{0} \times \ldots \times \theta_{r}\right)(n \rightarrow \infty)$ for
all $\Delta_{n}^{r} \in \mathscr{D}^{(r)}$ and $\theta_{i} \in Z_{p} i=0, \ldots, r$.
(iii) $\mu_{\Delta_{n} r(n)} \rightarrow \mu^{(r+1)}(N) \quad(n \rightarrow \infty)$ for $a l l \Delta_{n}^{r} \in g^{(r)}$ and Jordan measurable ii $\in \beta^{(r+1)}$.

Proof. follows that of 3.1. //
3.10 Lemma $T^{(r+1)}$ proserves μ_{Δ}^{r} for each n and $\Delta_{n}^{r} \in g^{(r)}$

Proof $\pi\left\{G_{\Delta_{n}}(T) \cap\left(T^{(r+1)}\right)^{-1} \mathbb{Z}\right\}=T^{-1} \pi\left\{G_{\Delta_{n}}(T) \cap E\right\}$
for all $B \in B^{(r+1)}$. //
3.11 Theorom $\mu^{(r+1)}\left(G_{\Delta_{n}}(\mathbb{T})\right)=0$ for all n and $\Delta_{n}^{r} \in \mathscr{g}^{(r!}$.

Proof $\mu^{(r+1)}\left(G_{\Delta_{n}}(T)\right)=\int_{X} \mu^{(T r}\left\lfloor\left(G_{\Delta_{n}}(T)\right]_{X}\right) d p$

$$
\begin{aligned}
& =\int_{X} \mu^{(r)}\left(\left\{\left(\mathbb{R}_{n n}^{1} x, \ldots \mathbb{T}_{n}^{x_{n}^{r}} x\right)\right\}\right) d p \\
& =0, \text { since } p \text { is non-atomic. } / /
\end{aligned}
$$

3.12 Theorem $\left(X^{(r+1)}, B^{(r+1)}, \mu_{\Delta_{n}^{x}}, T^{(r+1)}\right)$ is almost isomorphic to ($\mathrm{X}, \mathcal{B}, \mathrm{p}, \mathrm{T}$).

Proof $\psi_{\Delta_{n}}(x)=\left(x, T_{n}^{k_{n}^{1}} x, \ldots, T^{k_{n}^{r}} x\right): X \rightarrow G_{\Delta_{n}^{r}}^{r}(\mathbb{T})$ gives the required isomorphism. //

As before, 3.9 gives tiro best possible results in these directions: Bernoulli endomorphisms with countable state space are nixing if all degrees, yet have positive, finite entropy, while periodic endomorphisms of non-atonic Lebesgue spaces are not mixing of any degree $r \geqslant 1$, yet have zero entropy; for any given sequence $\Delta_{n}^{r} \in \mathscr{D}^{(r)}, \bigcup_{n=1}^{\infty} G_{\Delta} \Delta_{n}(T) \in \mathbb{B}^{(r+1)}$,

$$
\mu_{\Delta_{n}}^{r}\left(\bigcup_{m=1}^{\infty} G_{\Delta_{m}}^{r}(T)\right)=1 \text { for each } n \text {, but } \mu^{(r+1)}\left(\bigcup_{m=1}^{\infty} G_{\mathbb{m}}^{r}(T)\right)=0
$$

St The Topological Case

Let ($\mathrm{X}, \mathcal{A}_{\mathrm{i}}, \mathrm{p}$) now be a comprot, Hausdorff probability space, and T bo a continuous measure-proserving transformation of (X, B, p). ($\mathrm{X}^{(r+1)}, \mathcal{B}^{(r+1)}, \mu^{(r+1)}$ is also compact (by Tychonoff's theorem) and Hausdorff, with respect to the product topology, $\mathrm{r} \geqslant 0$.
4.1 Theorem $a^{(r+1)}$ is dense in $c^{(r+1)}$ with respect to the uniform topology on $c^{(r+1)}, r \geqslant 0$.

Proof $a^{(r+1)}$ contains the constant functions, since $c^{(r+1)}$ does. $a^{(r+1)}$ separates points of $x^{(r+1)}$:
Let $\left(x_{0}, \ldots, x_{r}\right) \neq\left(y_{0}, \ldots, y_{r}\right)$. Then at least one $x_{i} \neq y_{i}$. Since $X^{(r+1)}$ is Hausdorff, there exist disjoint open sets U_{i}, v_{i} such that

$$
x_{i} \in U_{i}, y_{i} \in V_{i}
$$

$\mathrm{X}^{(\mathrm{r}+1)}$, being also cornpact, is completely regular. Hence there exist $f_{i}, E_{i} \in C^{(1)}$ such that

$$
\begin{gathered}
f_{i}\left(x_{i}\right)=0 \quad f_{i}\left(0 V_{i}\right)=1 \\
g_{i}\left(y_{i}\right)=0 \quad g_{i}\left(B V_{i}\right)=1, \\
f\left(z_{0}, \ldots, z_{r}\right)=\underset{i}{\Pi} f_{i}\left(z_{i}\right)+\underset{i}{2} g_{i}\left(z_{i}\right),
\end{gathered}
$$

whore tho products arc taken over indices i for which $x_{i} \neq y_{i}$, is in $c^{(r+1)}$ and separates $\left(x_{0}, \ldots, x_{r}\right)$ from $\left(y_{0}, \ldots, y_{r}\right)$. Hence by the Stone Weierstrass Theorem [15, p 244] , $a^{(r+1)}$ is dense in $c^{(r+1)}$.//
4.2 Theorem T is mixing of degree r if, and only if,

$$
\int_{X^{(r+1)}} F d \mu_{\Delta_{n}}^{r} \rightarrow \int_{X^{(r+1)}} F d \mu^{(r+1)} \quad(n \rightarrow \infty)
$$

for all $\Delta_{n}^{r} \in \mathscr{D}^{(r)}$ and $F \in C^{(r+1)}$.
Proof T is mixing of degree r if, and only if,

$$
\begin{aligned}
& \int_{X}(r+1) f_{0}\left(x_{0}\right) \ldots f_{r}\left(x_{r}\right) d \mu_{\Delta_{n}}\left(x_{0}, \ldots, x_{r}\right)=\int_{X} f_{0}(x) \ldots f_{r}\left(T^{k_{n}^{r}} x\right) d p \\
& \rightarrow \int_{X}(r+1) f_{0}\left(x_{0}\right) \ldots f_{r}\left(x_{r}\right) d \mu(r+1)\left(x_{0}, \ldots, x_{r}\right)=\int_{X} f_{0}(x) d p \ldots \int_{X} f_{r}(x) d p
\end{aligned}
$$

$(n \rightarrow \infty)$ for all $\Delta_{n}^{r} \in g^{(r)}$ and $f_{i} \in L_{1}(p)$, and in particular for all $f_{i} \in C^{(1)}$. To see tins, consider claaracteristio functions and use $L_{1}(p)$ approximation. By linearity of integrals, it follows that T is mixing of degree r if, and only if,

$$
\int_{X^{(r+1)}} \stackrel{F d \mu_{\Delta}^{r} \rightarrow \int_{X}(r+1)^{F d \mu^{(r+1)}}(n \rightarrow \infty)}{ }
$$

for all $\Delta_{n}^{r} \in \mathscr{S}^{(r)}$ and $F \in Q^{(r+1)}$. The proof is completed by 4.1. //
This theorem includes the case wien T is mixing, ie. mixing of degree one. Putting $r=1$ and replacing μ_{n} by $\bar{\mu}_{n}$ in 4.2 , we get
4.3 Theorem T is ergodic if, and only if,

$$
\int_{X^{(2)}} \operatorname{Fd} \bar{\mu} n \rightarrow \int_{X^{(2)}} F d \mu(n \rightarrow \infty)
$$

for all $F \in C^{(2)}$.
4.4 Theorem T is weak mixing if, and only if,

$\frac{1}{n} \stackrel{n-1}{2} \int_{0}\left|\|_{X^{(2)}} F \mathrm{~d} \mu_{k}-\int_{X^{(2)}} F \mathrm{~d} \mu\right| \rightarrow 0(\mathrm{n} \rightarrow \infty)\left\{\begin{array}{l}\text { for all } \\ F \in C^{(2)} .\end{array}\right.$
$\int_{X^{(2)}} F d \mu_{n} \rightarrow \int_{X^{(2)}} F d \mu(n \rightarrow \infty, n \notin J, \delta(J)=0)$
Proof Analogous to that of 4.2 , replacing ordinary convergence by strong Cesaro convergence and its trio divalent forms of convergence. // 4.2 cannot be extended to all $F \in L_{1}\left(\mu^{(r \div 1)}\right)$, as the function
x_{∞} $\underset{n=1}{U} G_{\Delta}^{r}(T)$, for any sequence $\Delta_{n}^{r} \in \mathscr{D}$, shows. 4.3 and 4.4 similarly cannot

CHAPTER III

Linear Fractional Transformations Mod One.

Si Introduction.
This chapter is concerned with the ergodic properties of
f-transformations, T_{f}, which will be introduced, together with f-expansions, in $\delta 3$. These transformations of the unit interval onto itself, which in general do not preserve Lebesgue measure, have been investigated by several authors. A. Rényi [29] gave sufficient conditions for the validity of f-expansions and a sufficient condition for T_{f} to be ergodic and have a finite invariant measure equivalent to lebesgue measure. V. A. Rohlin [32] showed that this condition implies also that T_{f} is exact, and gave a formula for the entropy of T_{f} with respect to the invariant measure. W. Parry [27] gave an explicit formula for the invariant measure of one class of f-transformations, namely the linear mod one transformations $\mathbb{T} \mathrm{x}=(\beta \mathrm{x}+\alpha), \beta>1,0 \leqslant \alpha<1$, where (y) denotes the fractional part of y .

Sufficient conditions for ergodicity and infinite ergodic index of a general many-one transformation of a probability space with a generator are given in §2. These conditions, when applied to f-transformations, generalise Rényi's condition for ergodicity and invariant measure, and are used in $8 \$ 4,5$ to study two classes of linear fractional transformation mod one, some of which also satisfy Reni's condition. In some cases, the invariant measure could be found, using
a result of $\mathbb{7}$. Parry [27] which is proved in $\$ 2$, while in others we did not succeed in doing this. For the former, the entropy is computed [32] and also the frequency with which the digits occur in the f-expansion. Throughout the study of f-expansions, the distinction between dependent and independent digits plays an essential part. \$6 lists those questions which we were unable to resolve.

Ergodicity and Invariant Measure
Throughout this section, unless otherwise stated, T will denote a many-one, measurable and non-singular transformation of the probability space (X, f), where p is non-atomic.
2.1 Lemma. For each $n=1,2, \ldots$ let $\xi_{n}=\left\{E_{n}(y): y \in X\right\}$ be a countable measurable partition of X such that $E_{n}(y) \backslash\{y\}(n \rightarrow \infty)$ for each $y \in X$, ie. $\xi_{n} \lambda \in(n \rightarrow \infty)$.
Then for all $E \in \mathbb{E}$,

$$
\frac{1\left(E_{n}(y) \cap E\right)}{Y\left(E_{n}(y)\right)} \rightarrow \chi_{E}(y) \quad(n \rightarrow \infty) \quad \text { for almost all y } \in X
$$

Proof Let $\hat{\xi}_{n}$ denote the sub- $\sigma-a l$ gebra of $C B$ generated by ξ_{n}, $f(x)$ be any integrable function and $E\left(f \mid \hat{\xi}_{n}\right)$ be the conditional expectation of f with respect to $\hat{\xi}_{n}$. Then by the Martingale theorem,

$$
E\left(f \mid \hat{\xi}_{n}\right)(x) \rightarrow E(f \mid:)(x)=f(x) \quad(n \rightarrow \infty)
$$

almost everywhere and in $I_{1}(p)$ mean.

Putting

$$
F_{n}(x)=\sum_{y \in X} X_{E_{n}(y)}(x) \frac{\int_{E_{n}(y)} f(z i d p(z)}{f\left(E_{n}(y)\right)}
$$

we have that $\mathrm{F}\left(\mathrm{f} \mid \hat{\xi}_{\mathrm{n}}\right)(\mathrm{x})=\mathrm{F}_{\mathrm{n}}(\mathrm{x})$, since
$F_{n}(x)$ is mensurable with respect to $\hat{\xi}_{n}$ and

$$
\int_{y_{n}} F_{n}(x) d p(x) \quad=\int_{y_{r}} f(x) d p(x)
$$

for all $Y_{n} \in \hat{\xi}_{n}$, each such Y_{n} being a disjoint union of sets $E_{n}(y)$. Putting $y=x$ and $f(z)=X_{E}(z)$ gives the required result. $/ /$

If T has a finite or countable generator $\xi=\left\{X_{n}\right\}_{0}^{N}$,
$0<N \leqslant \infty$, let $\varepsilon_{n}(y)=y_{n}=$ the unique integer such that $\mathrm{T}^{\mathrm{n}-1} \mathrm{y} \in \mathrm{X}_{\mathrm{y}_{\mathrm{n}}}, \mathrm{n}=1,2, \ldots$,
and $C_{n}(y)=X_{y_{1}} \cap T^{-1} X_{y_{2}} \cap \ldots T^{-(n-1)} X_{y_{n}}$. Clearly ,
either $C_{n}(y), C_{n}\left(y^{\prime}\right)=\phi$ or $C_{n}(y)=C_{n}\left(y^{\prime}\right)$, and
$\left\{c_{n}(y): y \in X\right\}=\bigcup_{i=0}^{n-1} T^{-i} \xi$
Since ξ is a generator of $T, C_{n}(y) \backslash\{y\}(n \rightarrow \infty)$ for each $y \in X$.
$\varepsilon_{n}(x)$ is a measurable function of x, since for every Bore set B in $[0, \infty), \quad E_{n}^{-1}(B)=\bigcup_{K \in B} T^{-(n-1)} X_{K}$.

$$
\begin{aligned}
& \varepsilon_{n}(x) \in L_{T}(p) \text { if, and only if, } \sum_{k=1}^{N} k p\left(X_{k}\right)<\infty . \\
& \varepsilon_{n}(x)=\varepsilon_{1}\left(T^{n-1} x\right) .
\end{aligned}
$$

For each $y \in X$ and $n=1,2$, ... , the probability measure

$$
\nu_{n}(E ; y)=p\left(C_{n}(y) \cap T^{-n} E\right)
$$

is absolutely continuous with respect to p . Thus, by the Radon-Mikodym theorem there exists a positive, integrable function $d^{n}(x, y)$ defined almost everywhere such that

$$
P\left(C_{n}(y) \wedge T^{-n} E\right)=\int_{E} w^{+}(x ; y) d p(x), E \in B
$$

In fact, for each y and $n, 0 \leqslant \omega^{n}(x, y) \leqslant 1$ for almost all x.
2.2 Lemma For each $m=1,2, \ldots$ Let $\xi_{m}=\left\{I_{m}(x): x \in X\right\}$ be a countable or finite measurable partition of (X, \dot{u}, p) such that $I_{m}(x) \searrow\{x\}(m \rightarrow \infty)$ for each $x \in X$. Then for $n=1,2, \ldots$ and $y \in X$,

$$
\operatorname{li}^{n}(x, y)=\lim _{n \rightarrow \infty,} \frac{p\left(C_{n}(, j) \Gamma_{i} T^{-n} I_{m}(x)\right)}{p\left(I_{m}(x)\right)} \quad \text { for almost all } x
$$

Proof As in 2.1,

$$
\sum_{z \in X} X_{I_{m}(z)}(x) \frac{I_{I_{m}(z)^{n 2^{n}}(w, y) d f(w)}^{p\left(I_{m}(z)\right)} \rightarrow \omega^{n}(x, y) \quad(m \rightarrow x)}{} \quad \rightarrow \quad(m)
$$

for almost all x and in $L_{1}(p)$ mean $/ /$
2.3 Theorem If

$$
\overline{l i m i n}_{n} \frac{\inf +\cdots(\because, y)}{\mu\left(C_{r}(y)\right)}>\Leftrightarrow \quad \text { for almost all } y \text {, }
$$

then T is ergodic.
If further

$$
\operatorname{Lin}_{n_{0}} \frac{\therefore f}{p\left(C_{n}(y)\right)}>\therefore \quad \text { for almost all } y \text {, }
$$

then T has infinite ergodic index.

Proof. Suppose $T^{-1} E=B \in \mathcal{U}$ and $0<p(E)<1$. Then

$$
\begin{aligned}
\frac{p\left(C_{n}(y) \cap E\right)}{p\left(C_{n}(y)\right)} & =\frac{p\left(C_{n}(y) n^{-n} E\right)}{p\left(C_{r}(y)\right)} \\
& =\int_{E} \frac{\omega^{n}(x, y)}{p\left(C_{n}(y)\right)} d p(x) \\
& \geqslant \frac{i x f x^{n}(x, y)}{p\left(C_{n}(y)\right)} p(E)
\end{aligned}
$$

Since ξ is a generator of $T, 2.1$ implies that

$$
\begin{aligned}
X_{E}(y) & =\lim _{n \rightarrow \infty} \frac{p\left(C_{n}(y) \cap E\right)}{p\left(C_{n}(y)\right)} \\
& \geqslant \lim _{n} \frac{\ln _{x} f \omega^{n}(x, y)}{p\left(C_{n}(y)\right)} p(E) \\
& \geqslant \lim _{n} \frac{\inf _{x} f \omega^{n}(x, y)}{p\left(C_{n}(y)\right)} \cdot p(E):
\end{aligned}
$$

from which it follows that $\chi_{E}(y)>0$ for almost all $y \in X$, ie. that $\mathbb{Z}=\mathrm{X}(\bmod 0)$. Note that the theorem remains true if inf $0_{1}^{n}(x, y)$ is taken, not over all x, but over almost all x. x

To prove the second assertion, let S be another non-singular, measurable and many-one transformation on (x, v, p) with generator $\eta=\left\{\mathrm{Y}_{\mathrm{m}}\right\}_{0}^{\mathrm{H}}$ where $0<\mathrm{N} \leqslant \infty$. Ye sharpen the previous notation as follows:-

$$
\begin{aligned}
& \sigma_{n}^{S}(y)=Y_{y_{1}} \cap S^{-1} Y_{y_{2}} \cap \ldots \cap S^{-(x 1)} Y_{y_{n}} \\
& P\left(C_{n}^{S}(y) \wedge S^{-n} E\right)=\int_{E} \omega_{S}^{n}(x, y) d p(x), E \in O
\end{aligned}
$$

and similarly for T. It is further assumed that

$$
\frac{\lim _{n}}{} \frac{\operatorname{lnf}_{x} \operatorname{ins}_{s}^{n_{0}}(x, y)}{p\left(C_{n}^{J}\left(y_{j}\right)\right)}>0 \quad \text { for almost all } y \text {. }
$$

T xS is a non-singular, measurable and many-one transformation on
($\mathrm{X} \times \mathrm{x}, \alpha \times \beta, \mathrm{B} \times \mathrm{p}$) with generator $\xi \times \eta$. If
${\underset{i n}{i}}=\left(x_{i}, y_{i}\right) \quad i=1,2$, then

$$
\begin{aligned}
C_{n}^{-T_{n} S}\left(\underline{z}_{2}\right) & =\left[X_{E_{1}\left(x_{2}\right)} \times Y_{E_{1}\left(y_{2}\right)}\right] \cap \ldots \cap\left(\left(T_{\alpha} \dot{j}\right)^{-(n-1)} X_{E_{n}\left(x_{2}\right)} \times Y_{\varepsilon_{n}\left(y_{2}\right)}\right] \\
& =\left[X_{\varepsilon_{1}\left(x_{1}\right)} \cap \ldots T^{-(n-1)} X_{\left.E_{n}\left(x_{2}\right)\right]}\left[Y_{E_{1}\left(y_{2}\right)} \cap \cdots \cap S^{-(n-1)} Y_{E_{n}\left(y_{2}\right)}\right]\right.
\end{aligned}
$$

Thus $(p \times p)\left(C_{n}^{T h S}\left(\underline{z}_{2}\right)\right)=p\left(C_{n}^{T}\left(x_{2}\right)\right) p\left(C_{n}^{S}\left(y_{2}\right)\right)$.
Also

$$
C_{n}^{T x S}\left(\underline{z}_{2}\right) \cap(T x S)^{-n}(H \times F)=\left[C_{n}^{T}\left(x_{2}\right) \cap T^{-n}\right] \times\left[C_{n}^{S}\left(y_{2}\right) \cap S^{-n} F\right]
$$

for all $E, F \in B$ and $\underline{z}_{2} \in X \times X$.
Therefore,

$$
\begin{aligned}
& \int_{E_{x} F}^{\int} c_{i \alpha}^{n}\left(z_{1}, z_{2}\right) d(p, p)\left(z_{i}\right)=\int_{E} \omega_{T}^{n}\left(x_{1}, z_{y}\right) p_{p}\left(x_{1}\right) \int_{F} \omega_{s}^{r i n}\left(y_{1}, y_{2}\right) d p\left(y_{1}\right) \\
& =\iint_{E, F} \omega_{T}^{n}\left(x_{1}, i_{2}\right) \omega_{s}^{n}(y+i y x) d(p \times p) \text {, by Fubini's theiorsm. }
\end{aligned}
$$

Thus $\omega_{\mathrm{TxS}}^{\mathrm{n}}\left(\underline{z}_{1}, \underline{z}_{2}\right)=\omega_{\mathrm{T}}^{\mathrm{n}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \omega_{S}^{n}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$, for almost all \underline{z}_{1}, since $\{E \times F: E \in \mathbb{B}, F \in S\}$ generates $B \times \theta$. Finally, throwing out a $p \times p-n u l l$ set from $X \times X$, we have that

$$
\begin{aligned}
& \geqslant \frac{\lim _{n}}{n}\left[\frac{i_{3} \omega_{1}^{\sim}\left(x_{7}\left(x_{1}, x_{2}\right)\right.}{p\left(c_{n}^{\top}\left(x_{2}\right)\right)}\right] \cdot \frac{\lim _{m}}{n}\left[\frac{\inf _{1} \omega_{s}^{n}\left(y_{1}, y_{2}\right)}{p\left(c_{n}^{S}\left(y_{2}\right)\right)}\right]
\end{aligned}
$$

>0 for almost all \underline{z}_{2}.
Putting $S=T^{n-1}(n=1,2, \ldots)$ and using induction give that T has infinite ergodic index.

We note that this result is independent of whether T preserves a finite or σ-finite measure. In the former case, T could only have ergodic index 0,1 or $+\infty$, while in the latter case the ergodic index of T could take any non-negative integer or $+\infty$ as value [13]。

Assume for the rest of this section that T is one-one on each set X_{n} of the generator $\xi(0 \leqslant n \leqslant N)$ and that $\mathbb{F} \in \mathbb{C}$ for all $F \in \mathbb{B}$. It follows that $X_{n} \cap T^{-1}\{x\}$ consists of a single point, where $\{x\}$ denotes the point set x. Let $\gamma_{n}(\mathbb{E})=p\left(X_{n} \cap T^{-1} E\right)$. The measure γ_{n} is absolutely continuous with respect to p, and hence has a Radon-Nikodym derivative $\frac{d \gamma_{n}}{d p}(x)$.
2.4 Lemma For all measurable functions h, for all $E \in \mathcal{B}$ and each $n=0,1, \ldots, N$,

$$
\left.\int_{x_{n} \cap T^{-1} E} h(y) d p(y)=\int_{E} h\left(x_{n} n T^{-1} ; x\right\}\right) d \phi_{n}(x)
$$

in the sense that if one side is finite, then so is the other and they are equal.

Proof Let $F \in \mathbb{W}$. Since $p(x)=1, \chi_{\Gamma}(x) \in L_{1}(p) \cap L_{1}\left(\gamma_{n}\right)$, $0 \leqslant n \leqslant N$. Noting that $\chi_{A u B}(x)=\chi_{A}(x)+\chi_{B}(x)$, whenever $A \cap B=\phi$, and that $F \cap X_{n}=\phi$ implies the vanishing of both the integrals in the Lemma, it is sufficient to consider $F \subset X_{n}$, for which

$$
F=X_{r, n} T^{\cdots ;} F
$$

The inclusion $F \subset X_{n} \cap T^{-1} T F$ follows from $F \subset T^{-1} T F$, while if $x \in X_{n} \cap T^{-1} T F$, then $T x \in T F$, say $T x=T y, y \in F$; but T is one-one on each X_{n} and so $x=y$. Also

$$
\chi_{F}\left(X_{n} \cap T^{-1}\{x\}\right)=\chi_{T F}(x),
$$

and so

$$
\begin{aligned}
\int_{E} X_{F}\left(X_{n} \cap T^{-1}\{x\}\right) d X_{n}(x) & =p\left(X_{n} \cap T^{-1}(E \cap T F)\right) \\
& =p\left(X_{n} \cap^{-1} E \cap T^{-1} T F\right) \\
& =p\left(T^{-1} E \cap F\right) \\
& =p\left(T^{-1} E \cap X_{n} \cap F\right) \\
& =\left(X_{n} P^{1} T^{-3} E \quad X_{F}(x) d p(x)\right.
\end{aligned}
$$

Since $\int_{E} f(x) d p(x)$ is a linear functional on $L_{1}(p)$, it follows that 2.4 is true for arbitrary measurable, simple functions $\sum_{\nu=1}^{a_{\nu}} X_{A_{\nu}}(x)$ 。

$$
\int_{X_{-} \cap T^{-i} E} h(y)+p(y)<\infty \quad \text { if, and only if, }
$$ $h(y)$ is integrable on $X_{n} \cap T^{-1} E$ if, and only if, there exist measurable, etenentaryfunctions $h_{m}(x)$ such that $h_{m}(x), h(x)(m \rightarrow \infty)$ uniformly on $X_{n} \cap T^{-1} E$ and then $\int_{x_{1,} n^{-1} E} h(j) d p(y)=\lim _{m \rightarrow \infty} \int_{X_{n} n T^{-1} E} H_{m}(y) d p(y)$

$$
=\operatorname{iim}_{m \rightarrow \infty} \int_{E} h_{m}\left(x_{n} \cap T^{-i}\left(x_{j}\right) d r_{n}(x)\right.
$$

$$
=\int_{E} h\left(X_{A} \cap T^{-1} f x^{i} j\right) d \gamma_{\mu}(x) \quad \text { if, and only if, }
$$

there exist measurable, elementuryfunctions $h_{\text {in }}(x)$ such that $h_{m}\left(X_{n} \cap T^{-1}\{x\}\right) \Rightarrow h\left(X_{n} \cap T^{-1}\{x\}\right)(\mathbb{m} \rightarrow \infty)$ uniformly on E $\left[X_{n} \cap T^{-1}\{x\} \in X_{n} \cap T^{-1} \mathbb{E}\right.$ if, and only if, $\left.x \in E\right]$ if, and only if, $h\left(X_{n} \cap T^{-1}\{x\}\right)$ is integrable on E. //
2.5 Theorem T has an invariant measure v equivalent to p if, and only if, there exists 2 measurable function $h(x), 0<h(x)<\infty$ almost everywhere, such that
and then

$$
\begin{aligned}
& \left.L(x)=\sum_{n=0}^{N} h_{1}\left(X_{n} \wedge T^{-1} \mid x\right\}\right) \frac{d X_{n}}{d p}(x) \quad \text { almost everywhere, } \\
& h_{i}(x)=\frac{d_{2}}{d p}(x)
\end{aligned}
$$

Proof Suppose T has an invariant measure ν. Put $h(x)=\frac{d \nu}{d p}(x)$. Then

$$
\begin{aligned}
0<h(x) & <\infty \text { almost everywhere. } \\
\int_{E} h(x) d p(x) & =\sum_{r_{i}} \int_{x_{n} \cap T^{-1} E} h(y) d p(y) \\
& =\frac{E}{n} \int_{E} h\left(x_{n} n T^{-1}\{x\}\right) \frac{d \gamma_{n}}{d p}(x) d p\{x): \text { ty } \text { i. } 4 .
\end{aligned}
$$

If $\mathrm{N}<\infty$, the integration and summation commute, while if

$$
N=\infty, \sum_{n=0}^{m} h\left(X_{n} n T^{-1}\left\{x_{3}\right\}\right) \frac{d \delta_{n}}{d p}(x) \ngtr \sum_{n=0}^{\infty} L_{n}\left(X_{n} n^{-1}\{x\}\right) \frac{d \gamma_{n}}{d p}(x) \quad(m \rightarrow \infty)
$$

and hence by [7, theorem 27.B],

$$
\sum_{n=0}^{\infty} \int_{E} h\left(X_{n} n T^{-1}\{x\}\right) \frac{d \gamma_{n}}{d p}(x) d p(x)=\left(\sum_{n=0}^{\infty} h\left(X_{n} \cap T^{-1}(x\}\right) \frac{d \gamma_{n}}{d p}(x) d p(x)\right.
$$

for all $E \in \mathbb{O}$.
Conversely, let $\nu(\mathrm{E})=\int_{\mathrm{E}} \mathrm{h}(\mathrm{x}) \mathrm{dp}(\mathrm{x}), \mathrm{E} \in \dot{\mathrm{H}}$.
Clearly, ν is a measure equivalent to p.

$$
\begin{aligned}
& \nu\left(T^{-i} E\right)=\int_{T \cdot i E} h(x) d p(x) \\
& =\sum_{n} \int_{x_{n} n^{-1} E} h(\cdot j) \cdot l_{p}\left(y_{j}\right) \\
& \left.=\sum_{n} \int_{E} h\left(X_{n} n^{T^{-1}}\right) x_{i}\right) \frac{d \gamma}{d p}(x) d p(x) \\
& \left.=\int_{E} \sum h\left(X_{n} \cap T^{-1}\right\} x_{i}^{?}\right) \frac{d J_{A}}{d p}(x) d p(x) \\
& =\nu(E)
\end{aligned}
$$

Let $f:[0, \infty) \rightarrow[0, \infty)$ be a differentiable function such that $f^{\prime}:[0, \infty) \rightarrow(-\infty, \infty)$ is continuous. We distinguish two cases:
A) $f(x)$ strictly decreasing, $x \in\left(f^{-1}(1), \infty\right)$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=0 \\
& \left|f^{\prime}(x)\right|<1, x \in\left(f^{-1}(1), \infty\right)
\end{aligned}
$$

B) $f(x)$ strictly increasing, $x \in\left[0, f^{-1}(1)\right)$

$$
f(0)=0
$$

$$
\left|f^{\prime}(x)\right|<1, x \in\left[0, f^{-1}(1)\right)
$$

In both cases a further distinction is necessary, namely
(1) $f^{-1}(1)$ is zero or a nonnegative integer or $+\infty$
(2) $\mathrm{f}^{-1}(1)$ is a finite, positive non-integer.

Such a function f can be associated with a measurable, nonsingular transformation $\mathrm{T}_{\mathrm{f}}:(\mathrm{I}, \overrightarrow{\mathrm{B}}, \mathrm{p}) \rightarrow(\mathrm{I}, \hat{\mathrm{K}}, \mathrm{p})$,
where $I= \begin{cases}(0,1) & \text { case } A) \\ {[0,1)} & \text { case } B)\end{cases}$

$$
\begin{aligned}
& V_{s}=\text { Bore subsets of } I \\
& p=\text { Lebesgue measure on } I .
\end{aligned}
$$

Let

$$
T_{f}(x)=\left(f^{-1}(x)\right), \quad x \in I
$$

and $\varepsilon_{n}(x)=\left[f^{-1}\left\{T_{f}^{n-1}(x)\right\}\right], x \in I, n \geqslant 1$, where (y) and $[y]$ denote the fractional and integer parts of y, respectively. T_{f} is called an f-transformation.

For any given function f, f-expansions are said to be valid if for all $x \in I$ either

$$
T_{f}^{n}(x)=0 \text { for some } n,
$$

in which case x has the finite f-expansion

$$
\begin{aligned}
x & =f\left(\varepsilon_{1}(x)+f\left(\varepsilon_{2}(x)+\ldots+f\left(\varepsilon_{n}(x)\right) \ldots\right)\right) \\
& \equiv f_{n}\left(\varepsilon_{1}(x), \ldots, \varepsilon_{n}(x)\right)
\end{aligned}
$$

or

$$
\lim _{n \rightarrow \infty} f_{n}\left(\varepsilon_{1}(x), \ldots, \varepsilon_{n}(x)\right) \text { exists and equals } x .
$$

$\varepsilon_{1}(x), \varepsilon_{2}(x), \ldots$ are called the digits of x in its f-expansion. They take nonnegative, integral values. The values they can take, or their admissible values, depend on f, as mill be seen later. A finite sequence of non-negative integers $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right)$ is called canonical if there is a $y \in X$ such that

$$
\varepsilon_{i}(y)=\varepsilon_{i} \quad(i=1, \ldots n)
$$

f-expensions with independent digits occur if every sequence of admissible digits is canonical. In the opposite case, the digits are dependent. This terminology was introduced by Renyi [29], and should not be confused with stochastic independence. This distinction between these two kinds of independence is discussed later (3.9). $\varepsilon_{n}(x)$ are measurable functions of x, since for all Bored sets B of $[0, \infty),\left\{x: \varepsilon_{n}(x) \in B\right\}=\underset{k \in B}{U} \mathbb{T}_{f}^{-(n-1)} X_{k}$.

There is a natural partition $\bar{\xi}=\left\{X_{n}\right\}$ associated with T_{f}, namely that for which $X_{n}=\left\{x: \varepsilon_{1}(x)=n\right\}$. For the four cases considered, we have

$$
X_{n}=(f(n+1), f(n)), \quad n=f^{-1}(1), \quad f^{-1}(1)+1, \ldots
$$

AR)

$$
X_{n}= \begin{cases}\left(f\left(\left[f^{-1}(1)\right]+1\right), 1\right), & n=\left[f^{-1}(1)\right] \\ (f(n+1), f(n)), & n=\left[f^{-1}(1)\right]+1,\left[f^{-1}(1)\right]+2, \ldots\end{cases}
$$

Note that ξ is a partition mod 0 of I, since the countable, and hence null, set of subdivision points of ξ are omitted. The admissible digits here are $\left[f^{-1}(1)\right],\left[f^{-1}(1)\right]+1$,
Bi) $\quad X_{n}=[f(n), f(n+1)), \quad n=0,1, \ldots, f^{-1}(1)-1$.
B2) $\quad X=\left\{[f(n), f(n+1)), n=0,1, \ldots,\left[f^{-1}(1)\right]-1\right.$ $X_{n}=$ $\left[\left[f\left(\left[f^{-1}(1)\right]\right), 1\right), n=\left[f^{-1}(1)\right]\right.$.

The admissible digits now are

$$
\begin{array}{ll}
0,1, \ldots, f^{-1}(1)-1 & \text { case } B 1) \\
0,1, \ldots,\left[f^{-1}(1)\right] & \text { case } B 2)
\end{array}
$$

Each $\mathrm{C}_{\mathrm{n}}(\mathrm{y})$ is an interval, being a finite intersection of intervals.

$$
T_{f} \text { is measurable, since for each }[a, b) \subset I \text {, }
$$

$$
\begin{aligned}
& X_{n} \cap T_{f}^{-1}[a, b) \text { is an interval, } \\
& T_{f}^{-1}[a, b)=U_{n} X_{n} \cap T_{f}^{-1}[a, b)
\end{aligned}
$$

the union being taken over the index set of ξ,
the ring (algebra in case B)) of finite, disjoint unions of half-open intervals, i.e. of the form $[a, b)$, generates β and T_{f}^{-1} commutes With set-theoretic union, intersection and difference. Also $T_{f} E \in(\bar{X}$ for $a l l \in \in$ since for $\mathrm{all}[\mathrm{a}, \mathrm{b}) \subset I \quad T_{f}[a, b)$ is a finite $o r$ countable disjoint union of half-open intervals,

$$
T_{f} A=U_{n} T_{f}\left(A \cap X_{n}\right)
$$

and the restriction of T_{f} to each X_{n} commutes with set-theoretic operations of union, intersection and difference.

$$
\left[f^{-1}(x)\right] \text { is a step function with countable number of }
$$

discontinuities and so $T_{f}(x)$ is an almost everywhere differentiable function of x, with

$$
T_{f}^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)} \quad \text { almost everywhere. }
$$

Since f^{\prime} is assumed continuous and strictly positive (or negative), for each $E \in \mathcal{O}, X_{n} \cap T_{f}^{-1} E$ is a 'continuously shrunk' ('continuously shrunk and reversed') version of E. Thus T_{f} is nonsingular.

One would expect valid f-expansions to distinguish between different points, although two distinct f-expansions may represent the same point. A simple example is afforded by any r-adic expansion $\left(f(x)=\frac{x}{r}, r\right.$ an integer $)$, for which

$$
0.1 \text { and } 0.0(r-1)(r-1) \ldots
$$

represent the same real number $\frac{1}{5}$. In fact the following result is true.
3.1 Theorem $[27]$ Let $f:[0, \infty) \rightarrow[0,1)$ be either strictly increasing or strictly decreasing throughout its domain of definition. Then f-expansions are valid if, and only if,

$$
\varepsilon_{n}(x)=\varepsilon_{n}(y) \quad n=1,2, \ldots
$$

implies $\mathrm{x}=\mathrm{y}$.

Proof increasing:

$$
\begin{aligned}
& \text { Let } \rho_{n}(x)=f_{n}\left(\varepsilon_{1}(x), \ldots, \varepsilon_{n}(x)\right) \text {. Then for each } x \in[0,1) \\
& \qquad \rho_{n}(x) \leqslant \rho_{n+1}(x) \leqslant(x)=f_{n}\left(\varepsilon_{1}(x), \ldots, \varepsilon_{n}(x)+T_{f}^{n}(x)\right) .
\end{aligned}
$$

Thus $\rho(\mathrm{x})=\lim _{\mathrm{n} \rightarrow \infty} \rho_{\mathrm{n}}(\mathrm{x}) \quad$ exists and $\rho(\mathrm{x}) \leqslant \mathrm{x}$.
(\Rightarrow) If $\varepsilon_{n}(x)=\varepsilon_{n}(y) \quad n=1,2, \ldots$
then

$$
\rho_{n}(x)=\rho_{n}(y) \quad n=1,2, \ldots
$$

$$
\text { and so } \mathrm{x}=\rho(\mathrm{x})=\rho(\mathrm{y})=\mathrm{y} \text {. }
$$

(\leqslant) Since for each x and for each $n, \quad \rho_{n}(x) \leqslant \rho(x) \leqslant x$, the result will follow from $\left[\rho_{n}(x), x\right] \subset C_{n}(x)$ for each n :

Suppose

$$
\rho_{n}(x) \leqslant y \leqslant x
$$

Then $\varepsilon_{1}(x)+T_{f}\left(\rho_{n}(x)\right) \leqslant T_{f}(y)+\varepsilon_{1}(y) \leqslant T_{f}(x)+\varepsilon_{1}(x)$,
from which it follows that $\varepsilon_{1}(y)=\varepsilon_{1}(x)$ and $T_{f}\left(\rho_{n}(x)\right) \leqslant T_{f}(y) \leqslant T_{f}(x)$. So by induction $\varepsilon_{i}(y)=\varepsilon_{i}(x) \quad i=1, \ldots, n$.
f decreasing : the proof is analogous, noting that for each $x \in(0,1)$

$$
\rho_{2 n}(x) \leqslant \rho_{2 n+2}(x) \leqslant x \leqslant \rho_{2 n+1}(x) \leqslant \rho_{2 n-1}(x) \quad n=1,2, \ldots . / /
$$

3.2 Corollary f-expansions are valid if, and only if, ξ is a generator of T_{f}.
Proof f-expansions are valid if, and only if, $c_{n}(y) \searrow\{y\}(n \rightarrow \infty)$ for each y.

$$
\bigvee_{i=0}^{-7} T^{-\cdots}=\left\{C_{,}(y): y \in X\right\} / /
$$

3.3 Theorem [27] If f satisfies A) or B), then f-expansions are valid for all $x \in I$.

Proof The Mean Value theorem implies that for $x \neq y$

$$
\left|\frac{f(x)-f(y)}{x-y}\right|<1
$$

This is equivalent to the following: if $\delta>0$, there exists $\varepsilon>0$ such that for $|x-y|>\delta$,

$$
\left|\frac{f(x)-f(y)}{x-y}\right|<1-\varepsilon
$$

The second condition trivially implies the first, while if for some $\delta>0,|x-y|>\delta$ implies $\left|\frac{f(x)-f(y)}{x-y}\right| \geqslant 1-\varepsilon \quad$ for all $\varepsilon>0$ we get a contradiction of the first condition.

Suppose $x, y \in I, x \neq y,|x-y|>\delta$, say, yet
$\varepsilon_{n}(x)=\varepsilon_{n}(y) \quad n=1,2, \ldots$ 。
Then there is $\varepsilon>0$ such that

$$
\left|\frac{T_{f}(x)-T_{f}(y)}{x-y}\right|=\left|\frac{f^{-1}(x)-f^{-1}(y)}{x-y}\right|>\frac{1}{1-\varepsilon} .
$$

By induction,

$$
\left|\frac{T_{f}^{n}(x)-T_{f}^{n}(y)}{x-y}\right|>\frac{\delta}{(1-\varepsilon)^{n}}, n=1,2, \cdots
$$

which is impossible since $\left|\mathbb{T}_{f}^{n}(x)-\mathbb{T}_{f}^{n}(y)\right| \leqslant 1$. Hence the result, by 3.1. //
3.4 Corollary If $\left|T_{f}^{\prime}(x)\right|>1$ almost everywhere, then f-expansions are valid.
Proof $T_{f}(x)=f^{-1}(x)-\left[f^{-1}(x)\right]$, and the set of discontinuities of the step function $\left[\mathrm{f}^{-1}(\mathrm{x})\right]$ is at most countable. //

Regarding the dependence of the digits in f-expansions where f satisfies
A) or B), case 1) corresponds to independent digits, since then $T_{f} X_{n}=I$ for all n.

Case 2) gives rise to dependent digits:
By the assumption on the domain of $f, f^{-1}(1) \in[0, \infty)$, i.e. $f^{-1}(1)<\infty$.

A2) Let $M=\left[f^{-1}(1)\right]$. Although me have only considered (0,1), $T_{f}(1)$ is well-defined by $T_{f}(1)=\left(f^{-1}(1)\right)$. Thus $0<T_{f}(1)$.

$$
\begin{aligned}
& \text { Consider }\left(0, T_{f}(1)\right) \text {. Since } T_{f}\left(X_{[J}\right)=\left(T_{f}(1), 1\right), \\
& X_{M} \cap T_{f}^{-1}\left(0, T_{f}(1)\right)=\phi .
\end{aligned}
$$

Now $\underset{x \rightarrow \infty}{\lim } f(x)=0$ implies that

$$
x_{n} r_{i}\left(T_{f}(1), 1\right)=\phi
$$

if, and only if, $f(n)<T_{f}(1)$, i.e. $n>f^{-1}\left(T_{f}(1)\right)$. Thus

$$
X_{n} \subset\left(0, T_{f}(1)\right)
$$

for all $n>\varepsilon_{2}(1)$. No assumption is made about the validity of the f-expansion for 1. Any sequence of digits containing the subsequence ii, $\varepsilon_{2}(1)+1$, for example, is not canonical.

B2) Let $N=\left[f^{-1}(1)\right]$,

$$
\begin{aligned}
\delta_{1} & =N \\
\delta_{n} & =\operatorname{Max}\left\{\delta: N \delta_{1} \ldots \delta_{n-1} \text { is canonical }\right\}, n>1 .
\end{aligned}
$$

Then $\varepsilon_{n}(1)=\delta_{n}, \quad n=1,2, \ldots$, since $f_{n}\left(\delta_{1}, \ldots, \delta_{n}\right)$ increases with n, is not greater than one, and $x<\lim _{n \rightarrow \infty} f_{n}\left(\delta_{1}, \ldots, \delta_{n}\right)$ for all $x \in[0,1)$.

If $\delta_{n}=N$ for all n, then $T_{f}(1)=1$, winch is impossible since $f^{-1}(1)$ is not an integer. Let \vec{n} be the least n for which $\delta_{n}<N$. Then the sequence

$$
\delta_{1}, \delta_{2}, \ldots, \delta_{n}+1
$$

is not canonical, yet consists of admissible digits.

We nowt obtain an explicit formula for $\omega^{n}(x, y)$. For each $y \in I$ and $n \geqslant 1$, let

$$
S_{n}^{y}(x)=c_{n}(y) \cap T_{f}^{-n}(x): \quad I \rightarrow C_{n}(y)
$$

Where $C_{n}(y)$ is defined in terms of the natural partition ξ associated with f. S_{n}^{y} is one-valued since T^{n} is $1-1$ on each $C_{n}(y)$. Since f-expansions are assumed to be valid,

$$
C_{m}(y) \searrow\{y\} \quad(m \longrightarrow \infty) ;
$$

also $C_{m}(x)$ is an interval, with end points $a_{m}(x)<b_{m}(x)$, say. Then

$$
p\left(C_{n}(y) \cap T^{-n} C_{m}(x)\right)=\left|S_{n}^{y}\left(b_{m}(x)\right)-S_{n}^{y}\left(a_{m}(x)\right)\right|,
$$

and so by 2.2

$$
\left.\omega^{n}(x, y)=\left|\frac{d}{d t} s_{n}^{y}(t)\right|_{t=x} \right\rvert\,
$$

since in case A) or case B) $S_{n}^{y}\left(b_{m}(x)\right)-S_{n}^{y}\left(a_{m}(x)\right)$ is of constant sign as $m \rightarrow \infty$.

For the independent digit case,

$$
S_{n}^{y}(t)=f_{n}\left(\varepsilon_{1}(y), \ldots, \varepsilon_{n}(y)+t\right),
$$

since $\mathbb{T}^{n} f_{n}\left(\varepsilon_{1}(y), \ldots, \varepsilon_{n}(y)+t\right)=t$
and

$$
\varepsilon_{p}\left(f_{n}\left(\varepsilon_{1}(y), \quad, \varepsilon_{n}(y)+t\right)=\left\{\begin{array}{l}
{\left[f^{-1} f_{n-r+1}\left(\varepsilon_{r}(y), \ldots, \varepsilon_{n}(y)+t\right)\right]=\varepsilon_{r}(y), r d,,^{n-1}} \\
{\left[f^{-1} f\left(\varepsilon_{n}(y)+i\right)\right]=\varepsilon_{n}(y) \quad, r=n}
\end{array}\right.\right.
$$

So for case 1),

$$
\left.\omega^{n}(x, y)=\left|\frac{d}{d t} f_{n}\left(\varepsilon_{1}(y), \ldots, \varepsilon_{n}(y)+t\right)\right|_{t=x} \right\rvert\,
$$

We have shown incidentally that for case 1) $C_{n}(y)$ is the interval with endpoints $f_{n}\left(\varepsilon_{1}(y), \ldots, \varepsilon_{n}(y)\right)$ and $f_{n}\left(\varepsilon_{1}(y), \ldots, \varepsilon_{n}(y)+1\right)$.
3.5 Theorem For the independent digit case T_{f} has invariant measure μ equivalent to p if, and only if, there exists a measurable function $h(x), 0<h(x)<\infty$ almost everywhere, such that

$$
h(x)=\sum_{n} h(f(x+n))\left|f^{\prime}(x+n)\right| \text { almost everywhere, }
$$

Where the summation is taken over the index set of ξ, and then $h(x)=\frac{d \mu}{d p}(x)$.
Proof Using the notation of $2.5, X_{n} \cap T^{-1}\{x\}=f(x+n)$ and $\frac{d y_{n}}{d p}(x)=\omega^{1}(x, y)$, for any y with $\varepsilon_{1}(y)=n$

$$
=f^{\prime}(x+n) \cdot / /
$$

3.6 Theorem [29] If f-expansions are valid, with independent digits, and further

There $C \geqslant 1$ is independent of y and n,
then T_{f} is ergodic and has a finite, invariant measure v equivalent to p such that

$$
\frac{1}{c} \leqslant \frac{d \nu}{d p}(x) \leqslant C
$$

2.3 is a genuine extension of 3.6 , since for $b=c=1$, the f-transformation studied in $\$ 5$ satisfies 2.3 and has a σ-finite invariant measure equivalent to p. The first condition of 2.3 generalises conditi on C), because

$$
\frac{\operatorname{lin} x}{r} \frac{\sup ^{n}(x, y)}{p((, y))} \geqslant 1 \quad \text { for all } y
$$

and if C) holds,

$$
\begin{aligned}
& \frac{1}{C} \leqslant \lim _{\operatorname{lin}^{2}}\left[\frac{\operatorname{monf}^{x} \sin ^{n}(x, y) / f\left(C_{n}(y)\right)}{\sup _{x} \cos ^{n}(x, y) / f\left(C_{n}(y)\right)}\right] \\
& \leqslant \frac{\lim _{n} \inf _{x} \omega^{n}(x, y) / p\left(C_{n}(i,)\right)}{\frac{\lim _{n}}{n} \sup _{x}: N^{n}(x, y) / p\left(C_{1}(y)\right)} \\
& \text { and so } \lim _{n} \frac{\inf _{x} \cos ^{n}(x, y)}{p\left(C_{n}(y)\right)} \geqslant \frac{1}{C}
\end{aligned}
$$

For the second condition of 2.3 suppose

$$
\frac{\sin }{2} \frac{\operatorname{cin}_{x} \omega^{n}(x, y)}{p\left(C_{n}(y)\right)}=C \quad \text { for } y \in E, p(E)>0
$$

and that C) holds. There exist $n_{i}=n_{i}(y), i=1,2, \ldots$, such that

$$
\frac{\operatorname{mif}^{m_{i}(x, y)}}{p\left(C_{n_{i}}(y)\right)}<\frac{1}{3 C} \quad i=1,2, \ldots \quad y \in E .
$$

On the other hand,

$$
\frac{\sup _{\mu}^{n}(x, y)}{p\left(C_{n}(y)\right)} \geqslant 1 \quad \text { for all } y \text { and } n \text {. }
$$

Thus, for each $y \in E$ there exists a positive integer n_{y} such that

$$
\frac{\sup _{x^{n}} \omega^{y}(x, y) / p\left(C_{n_{y}}(y)\right)}{\inf _{x} \operatorname{ain}^{n}(x, y) / p\left(C_{n_{y}}(y)\right)}>3 C>C
$$

a contradiction.
3.7 Theorem. If f-expansions are valid, T_{f} is ergodic and has finite, invariant measure μ equivalent to p , then the (asymptotic) frequency of occurrence of the sequence of admissible digits $i_{1} \ldots i_{k}$ in f-expansions is well-defined by

$$
\begin{aligned}
\phi_{i_{r-1} i_{k}} & =\lim _{n \rightarrow \infty} \frac{1}{n-k+1} \sum_{\nu=0}^{n-k} X_{x_{i_{i}}, \ldots n T_{f}^{-(k-1)} X_{i_{k}}}\left(T_{f}^{\nu}(x)\right) \\
& =\frac{\mu\left(X_{i_{1}} \cap \ldots n T_{f}^{-(k-1)} X_{i_{k}}\right)}{\mu(I)} .
\end{aligned}
$$

Proof The existence of $\phi_{i_{1}} \cdots_{i_{k}}$ follows from the Pointwise Ergodic Theorem, while its independence of x is implied by the ergodicity of T_{f}. //
3.8 Corollary If $i_{1} \ldots i_{k}$ is a non-canonical sequence of digits, then $\phi_{i_{1}} \ldots i_{k}=0$.
Proof $i_{1} \ldots i_{k}$ being non-canonical implies that

$$
X_{i_{1}} \cap \ldots \cap \mathbb{T}_{f}^{-(k-1)_{X_{i}}}=\phi . / /
$$

Normalising the measure μ, we have the following
3.9 Corollary If the random variables $\left\{\varepsilon_{n}(x)\right\}_{n=1}^{\infty}$ are independent $[19, p .295\}$ then the digits in f-expansions are independent.

Proof The independence implies that for any admissible digits $i_{1} \ldots i_{k}$

$$
\phi_{i_{1} \ldots i_{k}}=\phi_{i_{1}} \ldots \phi_{i_{k}}
$$

Since $\phi_{i_{r}}>0,1 \leqslant r \leqslant k, 3.8$ gives that $i_{1} \ldots i_{k}$ is a canonical sequence of digits.

The converse of 3.9 is false, as can be seen with $T_{f}(x)=\left(\frac{1}{x}\right), 4.7$, which has independent digits $1,2, \ldots$.

$$
\begin{aligned}
\mu\left(X_{1} \cap T_{\frac{1}{2}}^{-1} X_{1}\right) & =\mu\left(\frac{1}{2}, \frac{2}{3}\right) \\
& =\log \frac{1 c}{9} \\
& \neq\left(\log \frac{4}{3}\right)^{2} \\
& =\mu\left(X_{1}\right)^{2}
\end{aligned}
$$

3.10 Theorem [32]. Under the conditions of $3.6, T_{f}$ is exact. T_{f} has finite entropy if, and only if, $\int_{0}^{1} \operatorname{ling}\left|\frac{d}{d x} f^{-1}(x)\right| d p<\infty$, in which case $h_{\mu}\left(T_{f}\right)=\int_{0}^{1} \log \left|\frac{d}{d x} f^{-1}(x)\right| d \mu$.
§4 The transformation' $T_{f}(x)=\left(\frac{1}{a x}-\frac{b}{a}\right)$, when $f(x)=\frac{1}{a x+b}$.
4.1 Theorem f-expansions are valid for all $a>0$ and. $0 \leqslant b \leqslant 1$.

Proof $f^{\prime}(x)$ must be negative :
$a>0$
$f^{-1}(1)$ must be in $[0, \infty):$
b $\leqslant 1$.
If $\mathrm{b}<0$, dependent digits could give rise to negative $f_{n}\left(\varepsilon_{1}(x), \ldots, \varepsilon_{n}(x)\right), e . g . b=-\frac{1}{2}, a=1$ when the admissible digits are $0,1, \ldots$ and $f(0)=-2$. Independent digits never do this, however, since $a \varepsilon_{n}(x)+b \geqslant a\left(\frac{1-b}{a}\right)+b=1$. Even in the latter case, where there do not seem to be a prior objections to $\mathrm{b}<0$, complications arise in the proofs. Ye thus take $\mathfrak{b} \geqslant 0$.

$$
T_{f}(x)=\frac{1}{a x}-\frac{b}{a}-\left[\frac{1}{a x}-\frac{b}{x}\right]
$$

is a piecewise continuous and differentiable function whose points of discontinuity are $\frac{1}{a n+b}, n>\left[\frac{1-b}{a}\right]$. Therefore, provided x is not a point of discontinuity of T_{f}, T_{f}^{\prime} exists and

$$
T_{f}^{\prime}(x)=-\frac{1}{a x^{2}} .
$$

Hence

$$
\begin{aligned}
\infty>\frac{d}{d x} T_{f}^{2}(x) & =T_{f}^{\prime}\left(T_{f}(x)\right) T_{f}^{\prime}(x) \\
& =\frac{1}{a\left\{\frac{1-h x}{a x}-\left[\frac{7-b x}{a x}\right]\right\}^{2}} \cdot \frac{1}{a x^{2}}
\end{aligned}
$$

since $0<1-b x-a x\left[\frac{1-b x}{a x}\right]<1$ for $x \neq \frac{1}{a n+b}, n>\left[\frac{1-b}{a}\right]$.
From now on in the study of $\frac{T}{a x+b}$, we consider $I=\bigcup_{n=\left[\frac{1-b}{a}\right]+1}\left\{\frac{1}{a n+b}\right\}$ $=I(\bmod 0)$.

Suppose $x \neq y$, yet $\varepsilon_{n}(x)=\varepsilon_{n}(y)$ for all n. Then $T_{f}^{2} x$ is continuous in $[x, y]$ and differentiable in (x, y), so that

$$
\begin{aligned}
\left|\frac{T_{4}^{2}(x)-T_{f}^{2}(y)}{x-y}\right| & =\frac{d}{d x} T_{f}^{2}(\xi) \quad, \xi \in[x, y] \\
& >1 .
\end{aligned}
$$

This is equivalent to the following: if $\delta>0$, there exists $\varepsilon>0$ such that for $|x-y|>8$

$$
\left|\frac{T_{f}^{2}(x)-T_{f}^{2}(y)}{x-y}\right|>1+\varepsilon
$$

So $|x-y|>\delta, \varepsilon_{n}(x)=\varepsilon_{n}(y)$ for all n imply that

$$
\left|T_{f}^{2 n}(x)-T_{f}^{2 n}(y)\right|>(1+5)^{n} \delta
$$

Which is impossible for all n. Hence $\varepsilon_{n}(x) \neq \varepsilon_{n}(y)$ for some n, and f-expansions are valid by 3.1 .
4.2 Theorem Let

$$
\begin{aligned}
\frac{P_{n}(y, t)}{Q_{n}(y, t)} & =f_{n}\left(\varepsilon_{1}(y), \cdots, \varepsilon_{n}(y)+t\right) \\
& =\frac{1}{b+a \varepsilon_{1}(y)+\frac{a}{b+a \varepsilon_{2}(y)+} \cdots+\frac{a}{b+1\left(\varepsilon_{n}(y)+t\right)}} .
\end{aligned}
$$

Then

$$
\frac{P_{n}(y, t)}{Q_{n}(y, t)}=\frac{\left\{b+a\left(\varepsilon_{n}(y)+t\right)\right\} P_{n-1}(y, 0)+a P_{n-2}(y, 0)}{\left.i b+a\left(c_{n}(y)+t\right)\right\} Q_{n-1}(y, 0)+\cdots Q_{r-2}(y, c)}, n \geqslant 3 .
$$

Proof. Writing $\varepsilon_{n}(y)=y_{n}, P_{n}(t)=P_{n}(y, t)$ and $P_{n}=P_{n}(0)$ we have

$$
\begin{aligned}
\frac{F_{n}(b)}{Q_{n}(t)} & =\frac{P_{n-1}\left(\frac{1}{b+a\left(y_{n}+t\right)}\right)}{Q_{n-1}\left(\frac{1}{b+a\left(y_{n}+t\right)}\right)} \\
& =\frac{\left\{b+a\left(y_{n-1}+\frac{1}{b+a\left(y_{n}+t\right)}\right)\right\} P_{n-2}+a P_{n-3}}{\left\{b+a\left(y_{n-1}+\frac{1}{b+a\left(y_{n}+t\right)}\right)\right\} Q_{n-2}+a Q_{n-3}} \\
& =\frac{\left\{b+a\left(y_{n}+t\right)\right\}\left[\left(b+a y_{n-1}\right) P_{n-2}+a P_{n-1}\right]+a P_{n-2}}{\left.\left\{b+a\left(y_{n}+t\right)\right\}\left[b+a y_{n-2}\right) Q_{n-2}+a Q_{n-2}\right]+a Q_{n-2}} \\
& =\frac{\left\{b+a\left(y_{n}+t\right)\right\} P_{n-1}+a P_{n-2}}{\left\{b+a\left(y_{n}+t\right)\right\} Q_{n-1}+a Q_{n-2}}, \quad a s \operatorname{sumin} 3 \text { relation }
\end{aligned}
$$

holds for $\mathrm{n}-1$; but

$$
\begin{aligned}
P_{3}(t) & =\left\{b+a\left(y_{3}+t\right)\right\}\left(b+a y_{2}\right)+a \\
& =\left\{b+a\left(y_{3}+t\right)\right\} P_{2}+a P_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
Q_{3}(t) & =\left\{b+a\left(y_{2}+t\right)\left\{\left(b+a y_{1}\right)\left(b+a y_{2}\right)+a\right\}+a\left(b+a y_{1}\right)\right. \\
& =\left\{b+a\left(y_{3}+t\right)\right\} Q_{2}+a Q_{1} . / /
\end{aligned}
$$

4.2 implies that

$$
\frac{P_{n}(y, t)}{Q_{n}(y, t)}=\frac{P_{n}(y, 0)+a t P_{n-1}(y, 0)}{Q_{n}(y, 0)+a t Q_{n-1}(y, 0)}
$$

4.3 Theorem For $a>0,0<b \leqslant 1$ and $f^{-1}(1)=\frac{1-b}{a}=1,2$, \ldots, T_{f} is exact and has a finite invariant measure equivalent to p.

Proof

$$
\omega^{n}(x, y)=\frac{a\left|P_{n-1} Q_{n}-P_{n} Q_{n-1}\right|}{\left(Q_{n}+a x Q_{n-1}\right)^{2}}
$$

Therefore,

$$
\frac{\operatorname{sun}_{i<k, 1} \omega^{n}(x, y)}{\inf \omega^{n}(x, y)}=\left(1+\frac{a \cdot\left(x_{n=1}(y, 0)\right.}{Q_{n}(y, 0)}\right)^{2}
$$

But $Q_{n}(y, 0)=\left(b+a y_{n}\right) Q_{n-1}(y, 0)+a Q_{n-2}(y, 0)>\left(b+a y_{n}\right) Q_{n-1}(y, 0)$,
thus

$$
\frac{a Q_{n-1}(y, 0)}{Q_{n}(y+0)}<\frac{a}{b+a, y n} \leqslant \frac{a}{b}
$$

So 3.4 holds with $C=\left(1+\frac{a}{b}\right)^{2} . / /$
4.4 Theorem For $b=1, T_{f}$ has finite, invariant measure μ given by

$$
\frac{d \mu}{d p}(x)=\frac{1}{a x+1}
$$

Proof

$$
\begin{aligned}
\sum_{n=0}^{\infty} h\left(\frac{1}{a(x+n)+1}\right) \frac{a}{[a(x+n)+1]^{2}} & =\sum_{n=0}^{\infty} \frac{1 / a}{\left[x+\frac{1}{a}+n\right]\left[x+\frac{1}{a}+n+1\right]} \\
& =\frac{1}{a x+1} .
\end{aligned}
$$

So by $3.4, \frac{d \mu}{d p}(x)=\frac{1}{a x+1}, \mu(I)=\frac{1}{a} \log (1+a)<\infty$.
4.5 Corollary

$$
\phi_{i}=\frac{\log \left(\frac{[a(i+1)+1]^{2}}{[a i+1][a(i+2]+1]}\right]}{\log (a+1)}, i=0,1, \ldots
$$

4.6 Proposition $\varepsilon_{n}(x) / L_{1}(\mu)$ for each n.

Proof $\varepsilon_{n}(x) \in L_{1}(\mu)$ if, and only if $\sum_{n=1}^{\infty} n \log \left(\frac{[a(n+1)+1]^{2}}{[a n+1][a(n+2)+1]}\right)<\infty$;
but

$$
\begin{aligned}
& \sum_{n=1}^{N} n \log \left(\frac{[a(n+1)+1]^{2}}{[a n+1][a(n+2)+1]}\right)=\log [a(N+2)+1]+(N+1) \log \left[1-\frac{a}{a(n+2)+1]}\right]-\log (a+1) \\
& \rightarrow \infty(N \rightarrow \infty) \cdot
\end{aligned}
$$

4.7 Corollary $\frac{1}{n} \sum_{k=1}^{n} \varepsilon_{k}(x) \rightarrow \infty(n \rightarrow \infty)$ almost everywhere.

Proof Note that $\varepsilon_{k}(x)=\varepsilon_{1}\left(T^{k-1} x\right)$ and, for N a positive integer, put

$$
f_{N}(x)= \begin{cases}\varepsilon_{1}(x), & \text { if } \varepsilon_{1}(x) \leq N \\ N, & \text { if } \varepsilon_{1}(x)>N\end{cases}
$$

Then $f_{N}(x) \in L_{1}(\mu)$ for each iN and so

$$
\frac{1}{n} \sum_{1}^{n} \varepsilon_{k}(x) \geqslant \frac{1}{n} \sum_{0}^{n-1} f_{N}\left(T_{x}^{k}\right)
$$

$$
\begin{aligned}
& \rightarrow \sum_{1}^{N} k \log \left(\frac{[a(k+1)+1]^{2}}{[a k+1][a(k+2)+1]}\right)+N \sum_{N+1}^{\infty} \log \left(\frac{[a(k+1)+1]^{2}}{[a k+1][a(k+2)+1]}\right) \quad(n \rightarrow \infty) \\
& \rightarrow \infty(N \rightarrow \infty) \cdot
\end{aligned}
$$

4.8 Corollary The digits in f-expansions are almost everywhere unbounded.
4.9 Corollary $h_{\mu}\left(T_{f}\right)<\infty$; in fact

$$
h_{\mu}\left(T_{f}\right)=-\frac{\log a \log (a+1)}{a}-2 \int_{0}^{1} \frac{\log x}{a x+1} d x .
$$

Proof

$$
\begin{aligned}
\int_{0}^{1} \log \left|\frac{d}{d x} f^{-1}(x)\right| d p & =\int_{0}^{1} \log \left(\frac{1}{a x^{2}}\right) d x \\
& =2-\log a<\infty . / /
\end{aligned}
$$

$I(a)=\int_{0}^{1} \frac{\log x}{a x+1} d x$ does not appear to have a closed form expression when a >1, although for all a > 0 it satisfies the differential equation

$$
I^{\prime}(a)+\frac{I(a)}{a}+\frac{\log (a+1)}{a^{2}}=0 .
$$

$I^{\prime}(a)=\int_{0}^{1} \frac{\partial}{\partial a} \frac{\log x}{a x+1} d x=a \int_{0}^{1} \frac{-\log x}{(a x+1)^{2}} d x$, since
$-\frac{\log x}{(a x+1)^{2}}<-\log x, \int_{0}^{1}-\log x d x=1$ and thus $\int_{0}^{1}-\frac{\log x}{(a x+1)^{2}} d x$ converges uniformly for $a>0 ; \int_{0}^{1} \frac{\log x}{e x+1} d x$ converges pointrise by 4.9;
$f(x, a)=-\frac{a \log x}{(a x+1)^{2}}$ is continuous on $(0,1 \times(0, \infty]$ and hence by
[1 , p.443] integration and partial differentiation can be reversed.

$$
\begin{gathered}
\text { For } a=1, \quad[6, p .563], \\
\int_{0}^{1} \frac{10 g x}{x+1} d x=-\frac{\pi^{2}}{12},
\end{gathered}
$$

While for $0<a<1$,

$$
\int_{0}^{1} \frac{\log x}{a x+1} d x=-\sum_{1}^{\infty} \frac{(-a)^{n-1}}{n^{2}}:
$$

$$
\begin{aligned}
\int_{0}^{1} \frac{\log x}{a x+1} d x & =\int_{0}^{1} \log x d x+\int_{0}^{1} \sum_{1}^{\infty}(-a x)^{n} \log x d x \\
& =-1+\sum_{1}^{\infty} \int_{0}^{1}(-a x)^{n} \log x d x
\end{aligned}
$$

since $\left|(-a x)^{n} \log x\right| \leqslant \frac{a^{n}}{n e}$ for $0 \leqslant x \leqslant 1$ and thus the series is uniformly convergent.
4.10 Theorem If $b=0, a=\frac{1}{N}(N=1,2, \ldots)$, then T_{f} is exact and has a finite, invariant measure equivalent to p.

Proof The admissible digits are $\frac{1}{a}, \frac{1}{a}+1, \ldots$, i.e. zero is not an admissible digit. Thus

$$
Q_{n}=a y_{n} Q_{n-1}+a Q_{n-2}>a Q_{n-1}
$$

$$
\begin{aligned}
& \text { and so } \sup _{\frac{\sup _{\ll 1} \omega^{n}(x, y)}{\inf _{0<x<1} \omega^{n}(x, y)}}=\left(1+a \frac{Q_{n-1}}{Q_{n}}\right)^{2} \\
&<4:
\end{aligned}
$$

3.4 holds, with $C=4$.
4.11 Theorem For $b=0, a=\frac{1}{N}(N=1,2, \ldots)$, the invariant measure μ is given by

$$
\mu(E)=\int_{E} \frac{d x}{x+\frac{1}{a}}
$$

Proof

$$
\sum_{n=N}^{\infty} \frac{1}{N+\frac{N}{x+n}} \cdot \frac{N}{(x+n)^{2}}=\frac{1}{x+N} \cdot / /
$$

$\mu(0,1)=\log \left(\frac{(N+1)}{N}\right)<\infty, \frac{\int_{n}^{n}}{n} \frac{d x}{N+x}$
and $\quad d_{n}=\frac{\mu\left(x_{n}\right)}{\mu(0,1)}=\frac{\int_{n+1}^{n+1}}{\log \left(\frac{N+1}{N}\right)}$

$$
=\frac{\log \left[\frac{\ln +1)^{2}}{n(n+2)}\right]}{\log \left(\frac{N+1}{N}\right)} \quad, n=N, N+1, \ldots
$$

$h_{\mu}\left(T_{f}\right)<\infty$, since $\int_{0}^{1} \log \left|\frac{d}{d x} f^{-1}(x)\right| d x=\int_{0}^{1} \log \left(\frac{N_{2}}{x^{2}}\right) d x$ $=\log N+2$.
$h_{\mu}\left(T_{f}\right)=\int_{0}^{1} \log \left(\frac{N}{x}\right) \frac{d x}{N+x}$

$$
\begin{aligned}
& =(\log N)\left[\log \left(\frac{N+1}{N}\right)\right]-2 \int_{0}^{1} \frac{\log x}{N+x} d x \\
& =(\log N)\left[\log \left(\frac{N+1}{N}\right)\right]-2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2} N^{n}} .
\end{aligned}
$$

4.12 Proposition $\varepsilon_{n}(x) / L_{1}(\mu)$ for each n.

Proof $\sum_{n=N}^{M} n \log \left[\frac{(n+1)^{2}}{n(n+2)}\right]=\log (\mathbb{K}+2)+(M+1) \log \left(1-\frac{1}{M+2}\right)$

- N $\log N$. //
4.13 Corollary $\frac{1}{n} \sum_{1}^{n} \varepsilon_{k}(x) \rightarrow \infty(n \rightarrow \infty)$ almost everywhere.

Proof Apply the truncation argument of 4.7. //
4.14 Proposition $\log \varepsilon_{n}(x) \in L_{1}(\mu)$ for each n.

Proof. $\log n \log \left(\frac{(n+1)^{2}}{n(n+2)}\right)=\log n \log \left(1+\frac{1}{n(n+2)}\right)$
$\begin{aligned} &<\left(n^{\frac{1}{2}}+\log 2\right) \frac{1}{n^{2}} . \\ & 4.14 \text { follows since } \sum_{n=N}^{\infty} \frac{1}{n^{p}}<\infty \text { if } p>1 . / /\end{aligned}$

almost everywhere.

Proof By 4.14 and the Individual Ergodic Theorem,

$$
\frac{1}{n} \sum_{1}^{n} \log \varepsilon_{k}(x) \rightarrow \frac{\int_{I} \log \varepsilon_{1}(x) d \mu}{\mu(I)} \quad(n \rightarrow \infty) \text { almost everywhere. }
$$

The result follows, noting that for $a_{n}>1$ and $\sum_{1}^{\infty} a_{n}<\infty$

$$
\sum_{1}^{\infty} \log a_{n}=\log \left(\prod_{1}^{\infty} a_{n}\right)
$$

4.6-4.8 and 4.12-4.15 generalise corresponding results for

$$
T x=\left(\frac{1}{x}\right) \quad[2, p .45]
$$

§5 The transformation $T_{f}(x)=\left(\frac{b x}{1-c x}\right)$, where $f(x)=\frac{x}{b+c x}$
5.1 Theorem. f-expansions are valid for $b \geqslant 1$ and $0 \leqslant c \leqslant 1$.

Proof $f^{\prime}(x)$ must be positive : $b>0$
$f^{-1}(1)$ must be in $(0, \infty]: \quad c \leqslant 1$.
$c \geqslant 1-b$, since if $c<1-b, \frac{b}{1-c}<1$ and $f^{-1}[0,1) \in[0,1)$, $\varepsilon_{n}(x)=0$ for all $x \in[0,1)$ and all n, and f-expansions are not valid, by 3.1 .
c must be non-negative, since otherwise negative $f_{n}\left(\varepsilon_{1}(x), \ldots, \varepsilon_{n}(x)\right)$ can occur, e.g.
$b=4, \mathrm{c}=-1: \mathrm{c}>1-\mathrm{b}$ and $\frac{\mathrm{b}}{1-\mathrm{c}}=2$, i.e. independent digits.
The admissible digits are 0, 1 .

$$
f_{2}(0,1)=-\frac{1}{13}
$$

$b=4, c=-\frac{1}{2}: c>1-b,\left[\frac{b}{1-c}\right]=2$, i.e. dependent digits.
Admissible digits are 0, 1 .

$$
f_{2}(0,1)=-\frac{2}{113}
$$

and the sequence $(0,1)$ is canonical since $T_{f} X_{0}=I$.
Now suppose $b \geqslant 1$ and $o>0$

$$
f^{\prime}(x)=\frac{b}{(b+c x)^{2}}<1
$$

$\Leftrightarrow g(x)=c^{2} x^{2}+2 b c x+b(b-1)>0$.

Zeros of g are $\frac{ \pm \sqrt{b}-b}{c}$ and if $b \geqslant 1, c>0$,

$$
\pm \frac{\sqrt{b}-b}{c} \leqslant 0 .
$$

Hence $g(x)>0$ for all $x \in\left[0, \frac{b}{1-c}\right)$, ie. by 3.3 f-expansions are valid.

Finally, f-expansions are not valid for $0<b<1$ and $0<c \leqslant 1$: if $c<1-b$, f-expansions are not valid (see first part of this proof) while if $x \in X_{0}$ is an invariant point, then

$$
x=\frac{b x}{1-c x}
$$

i.e. $x=0$ or $\frac{1-b}{0}$; but if $0<b<1,1-b \leqslant c$ and $0<c \leqslant 1$,

$$
\frac{1}{b+c}-\frac{1-b}{c}=\frac{b(b+c)-b}{c(b+c)}=\frac{b(b+c-1)}{c(b+c)} \geqslant 0
$$

Thus $\frac{1-b}{0} \in X_{0}$ and so $\varepsilon_{n}(y)=0$ for all $y \in\left[0, \frac{1-b}{c}\right)$ giving no valid f-expansion by 3.3 again.

For $c=0$ we have $T_{f}(x)=(b x)$, which has been studied in $[26],[29]$.
5.2 Theorem

$$
\begin{aligned}
\frac{P_{n}(y, t)}{Q_{n}(y, t)} & =\frac{1}{c}\left[1-\frac{b}{\left.b+1+c \varepsilon_{1}(y)-\frac{b}{b+1+c \varepsilon_{2}(y)-} \cdots-\frac{b}{b+c\left(\varepsilon_{n}(y)+t\right)}\right]}\right. \\
& =\frac{b P_{n-1}(y, 0)+c\left(\varepsilon_{n}(y)+t\right)\left(P_{n-1}(y, 0)+\ldots+P_{1}(y, 0)+1\right)}{b Q_{n-1}(y, 0)+c\left(\varepsilon_{n}(y)+t\right)\left(Q_{n-1}(y, 0)+\ldots+Q_{1}(y, 0)+c\right)}, n \geqslant 2
\end{aligned}
$$

Proof Defining the partial (quotients 'canonically' [17], we have, using the notion of 4.2 ,

$$
\begin{aligned}
\frac{P_{1}}{Q_{1}} & =\frac{c y_{1}}{c\left(1+b y_{1}\right)} \\
\frac{P_{2}(t)}{Q_{2}(t)} & =\frac{b=y_{1}+c\left(y_{2}+t\right)+c^{2} y_{1}\left(y_{2}+t\right)}{c\left[b^{2}+b c y_{1}+(b+1) c\left(y_{2}+t\right)+c^{2} y_{1}\left(y_{2}+t\right)\right]} \\
& =\frac{b P_{1}+c\left(y_{2}+t\right)\left(P_{1}+1\right)}{b Q_{1}+c\left(y_{2}+t\right)\left(Q_{1}+c\right)}
\end{aligned}
$$

Assuming relation true for $n-1$,

$$
\begin{aligned}
\frac{P_{n}(t)}{Q_{n}(t)} & =\frac{P_{n-1}\left(\frac{y_{n}+t}{b+c\left(y_{n}+t\right)}\right)}{Q_{n-1}\left(\frac{y_{n}+t}{b+c\left(y_{n}+t\right.}\right)} \\
& =\frac{b P_{n-2}+c\left(y_{n-1}+\frac{y_{n}+t}{b+c\left(y_{n}+t\right)}\right)\left(P_{n-2}+\ldots+1\right)}{b Q_{n-2}+c\left(y_{n-1}+\frac{y_{n}+t}{b+c\left(y_{n}+t\right)}\right)\left(Q_{n-2}+\ldots+c\right)} \\
& =\frac{b P_{n-1}+c\left(y_{n}+t\right)\left(P_{n-1}+\ldots+1\right)}{b Q_{n-1}+c\left(y_{n}+t\right)\left(Q_{n-1}+\ldots+c\right)}
\end{aligned}
$$

5.3 Theorem If $\frac{b}{1-c}=1,2, \ldots, \infty$,
$b \geqslant 1,0<c \leqslant 1$ implies If_{f} is ergodic;
$b>1 \quad 0<0 \leqslant 1$ implies T_{f} is exact and has a finite, invariant measure equivalent to p.

Proof

$$
\begin{aligned}
& \text { Proof } \omega^{n}(x, y)=\frac{c\left|Q_{n}\left(P_{n-1}+\ldots+1\right)-P_{n}\left(Q_{n-1}+\ldots+c\right)\right|}{\left[Q_{n}+c x\left(Q_{n-1}+\ldots+c\right)\right]^{2}} \\
& p\left(C_{n}(y)\right)=\frac{c\left|Q_{n}\left(P_{n-1}+\ldots+1\right)-P_{n}\left(Q_{n-1}+\ldots+c\right)\right|}{Q_{n}\left[Q_{n}+c\left(Q_{n-1}+\ldots+c\right)\right]} \\
& \begin{aligned}
& \frac{\inf f}{x} \omega^{n}(x, y) \\
& p\left(C_{n}(y)\right)=\frac{Q_{n}}{Q_{n}+c\left(Q_{n-1}+\ldots+c\right)} \\
& \text { Nov } \quad=b Q_{n-1}+c y_{n}\left(Q_{n-1}+\ldots+c\right) \\
&>c y_{n}\left(Q_{n-1}+\ldots+c\right) \\
& \geqslant c\left(Q_{n-1}+\ldots+c\right) \text { if } y_{n} \neq 0 .
\end{aligned}
\end{aligned}
$$

Hence

$$
\frac{Q_{n}}{Q_{n}+c\left(Q_{n-1} \div \ldots \div c\right)} \geqslant \frac{1}{2} \text { if } y_{n} \neq 0
$$

$$
\begin{aligned}
z & =e\left\{y: y_{n} \neq 0 \text { infinitely often }\right\}=\left\{y: y_{n}=0, n \text { large enough }\right\} \\
& =\bigcup_{n=1}^{\infty}\left\{y: y_{i}=0, i \geqslant n\right\} .
\end{aligned}
$$

Each $\left\{y: y_{i}=0, i \geqslant n\right\}$ is countable and hence null by the nonatomicity of p, i.e. $p(z)=0$. Hence

$$
\lim _{n} \frac{\inf ^{n} \cos ^{n}(x, y)}{p\left(c_{n}(y)\right)} \geqslant \frac{1}{2} \quad \text { for almost all } y \text {. The }
$$

first part follows by 2.3 .

If $y_{n} \neq 0$, then $\frac{c\left(\phi_{n-1}+\ldots+c\right)}{\varphi_{n}} \leqslant 1$,
while if $y_{n}=y_{n-1}=\ldots=y_{n-r+1}=0, y_{n-r} \frac{1}{r} 0$, then

$$
\frac{c\left(Q_{n-1}+\ldots+c\right)}{Q_{n}} \leqslant \frac{1}{b}\left(c+\frac{1}{b}\left(c+\ldots+\frac{1}{b}(c+1) \ldots\right)\right)=\sum_{c=1}^{5-1} \frac{c}{b^{2}}+\frac{c+1}{b^{r}}
$$

If $\mathrm{b}>1$, suppose firstly that $0<c \leq b-1$. Then

$$
\begin{aligned}
& \frac{1}{b}(c+1) \geqslant \frac{1}{b}\left(c+\frac{1}{b}(c+1)\right) \geqslant \ldots, \\
& \text { i.e. } \\
& \qquad \frac{c\left(Q_{n-1}+\ldots+c\right)}{Q_{n}} \leqslant \frac{c+1}{b} \leqslant 1 .
\end{aligned}
$$

Thus 3.5 holds with $C=4$.

If $b-1<c \leqslant 1$, then

$$
\begin{aligned}
& \frac{1}{b}(c+1)<\frac{1}{b}\left(c+\frac{1}{b}(c+1)\right)<\ldots \\
& \sum_{\nu=1}^{i} \frac{c}{b^{i+}}+\frac{c+1}{b^{i+1}}-\left[\sum_{\nu=1}^{i-1} \frac{c}{b^{\nu}}+\frac{c+1}{b^{i}}\right]=\frac{c+1-b}{b^{i+1}} \quad(i=1,2, \ldots)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\sum_{\nu=1}^{r-1} \frac{c}{b^{\nu}}+\frac{c+1}{b^{r}} & =\frac{c+1}{b}+\sum_{i=2}^{r} \frac{c+1-b}{b^{i}} \\
& =\frac{c+1}{b}+\frac{(c+1-b)\left(1-\frac{1}{b^{r-1}}\right)}{b(b-1)} \\
& 1 \frac{c+1}{b}+\frac{c+1-b}{b(b-1)} \quad(r \rightarrow \infty) \\
& =\frac{c}{b-1} .
\end{aligned}
$$

Thus 3.5 holds with $c=\left(1+\frac{c}{b-1}\right)^{2}$.
Finally, :Te show 3.5 breaks dow for $b=1$:
if $y_{n}=y_{n-1}=\ldots=y_{n-r+1}=0$ and $y_{n-r} \neq 0$, then

$$
\begin{aligned}
\frac{c\left(Q_{n-1}+\ldots+c\right)}{Q_{n}} & =r c+\frac{c\left(Q_{n-r-2}+\ldots+c\right)}{Q_{n-r}} \\
& >r c ;
\end{aligned}
$$

$$
\text { but for all } n \text { ama } r\left\{\begin{array}{ll}
y: \varepsilon_{i}(y)= & 1 \leqslant i \leqslant n-r \\
& 0 \\
& n-r<i \leqslant n
\end{array}\right\}
$$

is nontrivial, thereby contradicting 3.5.
5.4 Theorem For $c=1$, the invariant measure μ equivalent to p is given by

$$
\mu(\mathbb{I})=\int \frac{b d x}{b+x-1} .
$$

Proof $\sum_{n=0}^{\infty} \frac{b}{b-1+\frac{x \div n}{(b+x+n)}} \cdot \frac{b}{(b+x+n)^{2}}=\frac{b}{b+x-1} \cdot / /$
$\mu[0,1)=b \log \frac{b}{b-1}$, i.e. μ if finite for $b>1$, σ-finite for $b=1$.

$$
\begin{aligned}
& \text { 5.5 For } b>1, \\
& \qquad \begin{aligned}
\phi_{n} & =\int_{\frac{n}{b+n+1}}^{b+n} \frac{b}{b+x-1} d x / b \log \frac{b}{b-1} \\
& =\frac{\log \left[\frac{(b+n)^{2}}{(b+n-1)(b+n+1)}\right.}{\log \left(\frac{b}{b-1}\right)}, \quad n=0,1, \ldots
\end{aligned}
\end{aligned}
$$

5.6 Proposition $\varepsilon_{n}(x) / I_{1}(\mu)$ for each n.

Proof

$$
\sum_{n=1}^{N} n \log \left(\frac{(b+n)^{2}}{(b+n-1)(b+n+1)}\right)=\log (b+N+1)+(N+1) \log \left(1-\frac{1}{b+N+1}\right)-\log b \cdot / /
$$

5.7 Corollary $\frac{1}{n} \sum_{k=1}^{n} \varepsilon_{k}(x) \rightarrow \infty(n \rightarrow \infty)$ almost everywhere.

Proof Apply the truncation argument of 4.7.
5.8 Corollary The digits in f-expansions are almost every: here unbounded.
5.6-5.8 generalise corresponding results for $\mathrm{Tx}=\left(\frac{1}{\mathrm{x}}\right)$
[2, p.45].

$$
\begin{aligned}
h_{\mu}\left(T \frac{x}{b+x}\right)<\infty, \quad \operatorname{since} \\
\begin{aligned}
\int_{0}^{1} \log \frac{b}{(1-x)^{2}} d x & =\log b-2 \int_{0}^{1} \log (1-x) d x \\
& =\log b+2 \\
h_{p}\left(\frac{T_{x}}{b+x}\right) & =\int_{0}^{1}\left[\log \frac{b}{(1-x)^{2}}\right] \frac{b}{b+x-1} d x \\
& =[b \log b]\left[\log \left(\frac{b}{b-1}\right)\right]-2 b \int_{0}^{1} \frac{\log x}{b-x} d x \\
& =[b \log b]\left[\log \left(\frac{b}{b-1}\right)\right]+2 \sum_{a=1}^{\infty} \frac{1}{n^{2} b^{n^{-1}}}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { and }{ }^{\infty}{ }^{\infty} X_{\infty} \quad\left(I^{n} x\right)=\infty \text { almost everycinere, since } \\
& \left\{x: \sum_{0}^{\infty}{\underset{\sim}{\infty}}_{\substack{\infty \\
1}}\left(T^{n} x\right)<\infty\right\}=\bigcup_{i=1}^{\infty}\left\{x: \varepsilon_{n}(x)=0, n \geqslant i\right\} \\
& =\phi(\bmod 0) . \\
& \text { Let } 1_{\varepsilon}(x)= \begin{cases}1, & \varepsilon \leqslant x<1 \\
\frac{x}{\varepsilon}, & 0 \leqslant x<\varepsilon,\end{cases}
\end{aligned}
$$

where $0<\varepsilon<\frac{1}{2}$. Then $1_{\varepsilon}(x) \in I_{1}(\mu)$. By the Hopi $\operatorname{Brgodio}$ Theorem, for each admissible digit $K \neq 0$,

$$
\frac{1}{n} \sum_{i=0}^{n-1} X_{X_{k}}\left(T_{f}^{i}(x)\right) \leqslant \frac{\sum_{i=0}^{n-1} X_{X_{k}}\left(T_{f}^{i}(x)\right)}{\sum_{i=0}^{n-1} 1_{E}\left(T_{f}^{i}(x)\right)}
$$

$$
\longrightarrow h_{k, \varepsilon}(x) \quad(n \longrightarrow \infty) \text { almost everywhere. }
$$

$h_{k, \varepsilon}(x)$ is invariant and hence constant by the ergodicity of T_{f} :

$$
\begin{aligned}
h_{k, \varepsilon}(x) & =\frac{\mu\left(x_{k}\right)}{\int 1_{\varepsilon}(x) d \mu}=\frac{\mu\left(x_{k}\right)}{1-\log \varepsilon} \\
& \rightarrow 0 \quad(z \rightarrow 0) .
\end{aligned}
$$

Hence

$$
\overline{\lim } \frac{1}{n} \sum_{i=0}^{n-1} X_{x_{k}}\left(T_{f}^{i}(x)\right) \leqslant \lim _{\varepsilon \rightarrow 0} h_{k, \varepsilon}=0,
$$

i.e. $\phi_{k}=0$ for $k \neq 0 . \phi_{0}=1$ since

$$
\frac{1}{n} \sum_{i=0}^{n-1} x_{x_{0}}\left(T_{f}^{i}(x)\right)=1-\frac{1}{n} \sum_{i=0}^{n-1} \chi_{U_{K=1} X_{K}}\left(T_{f}^{i}(x)\right)
$$

and

$$
\begin{aligned}
\overline{\lim }_{n} \frac{1}{n} \sum_{0}^{n-1} \chi_{{\underset{W}{K}}^{\prime} K_{k}}\left(T_{f}^{i}(x)\right) & \leqslant \lim _{n} \frac{\sum_{0}^{n-1} X_{\dot{U} X_{k}}\left(T_{f}^{i}(x)\right)}{\sum_{0}^{n-1} 1_{\varepsilon}\left(T_{f}^{i}(x)\right)} \\
& =\frac{\mu\left(\bigcup_{1}^{\infty} X_{k}\right)}{\int 1_{\varepsilon}(x) d \mu} \\
& \rightarrow 0 \quad(\varepsilon \rightarrow 0)
\end{aligned}
$$

Finally, for any nonnegative integers i_{1}, \ldots, i_{k},

$$
\phi_{i_{1} \ldots i_{k}}=\left\{\begin{array}{l}
0, \text { if } i_{r} \neq 0 \text { for some } r, 1 \leqslant r \leqslant k \\
1, \text { if } i_{r}=0,1 \leqslant r \leqslant k .
\end{array}\right.
$$

For by the Hope Ergodic Theorem,

$$
\begin{aligned}
&{\overline{\lim } r_{n}}^{\frac{1}{n-k+1}} \sum_{\nu=0}^{n-k} X_{X_{i_{0}} \ldots \ldots n T_{f}^{-k} X_{i_{k}}}\left(T_{f}^{\nu}(x)\right) \\
& \leqslant \frac{\mu\left(X_{\left.i_{0} n \ldots n T_{f}^{-k} X_{i_{k}}\right)}^{\int 1_{\varepsilon}(x) d \mu}\right.}{} \\
& \leqslant \frac{\mu\left(X_{i_{r}}\right)}{\int 1_{\varepsilon}(x) d \mu} \\
& \rightarrow 0 \quad(\varepsilon \rightarrow 0), \text { if } i_{r} \neq 0,
\end{aligned}
$$

while

$$
\begin{aligned}
& \rightarrow 1(n \longrightarrow \infty), \text { since } \mu\left(\underset{1}{\cup} X_{i}\right)<\infty .
\end{aligned}
$$

Unresolved Questions
6.1 The proceeding discussion makes the restrictive assumption that the f-expansion digits are independent. It mould be of great interest to know chat results hold for the dependent digit case.

Abstract

A. Renyi [$2 \dot{9}$] and V. A. Roillin [32], after proving their theorems for indpendent digits, applied tiem to f-trensformations with dependent digits by observing the beinviour of the parificular f-expansions. It seems probable tiat similer results could be obtained Witll linear fractional mod one transformations.

6.2 It would be interesting to lenow minetiner 2.3, in addition to implying ergodicity, also implied the existence of an invariant measure equivalent to p. This measure need not be finite, as $\frac{T}{1+x}$ shors.
6.3 In the majority of cases considered it ras not possible to compute the invariant measure, even rhen its existence was knom by 3.5. The generalisation of the exhibited cases is by no means clear.
6.4 Is T $\frac{x}{1+x}$ an infinite exact enfonorphism and has it got finite entropy in the sense of Irengel $[22]$? What value does its ergodic index take? $\quad T \frac{x}{1+x}$ does not satisfy the stronger condition of 2.3 , which would inply tinat it has infinite ergodic index.

Metric Invariants for l-shifts

S1 Introduction

In the isomorphism problem, invariants play an important part in the negative sense of exhibiting non-isomorphism. Indeed, it is genera ally much harder to prove two transformations isomorphic than non-isomorphic. For ll-shifts this is just the case. Metric invariants for nuil-recurrent, irreducible li-sinifts are introduced and studied in §3. They are based on a certain class of Kaluza sequence which was mentioned by J.F.C. Kingman $[18$]. They depend for their effectiveness on the criterion for ergodicity for nullrecurrent li-shifts given by S. Kakutani and T. Parry $[13]$. The duality between li-sinifts and renewal sequences, which is well-knom, is studied in §2. Indeed, isomorphism of li-shifts is studied entirely in terms of their associated renewal sequences. As a consequence of the methods of $\S 3$, a general ised Hopf ergodic theorem is proved. In $\$ 4$ three classes of li-shifts are studied using the invariants of 93 . One of these classes was introduced by U. Irrengel [22] and sham n to consist of a continuum of non-isomorphic li-shifts using basically the Kakutani-Parry theorem.
§2 The Relation between II-shifts and Reneral Sequences.
In this chapter we shall only consider null-recurrent, irreducible i -shifts. If T is the li-shift ($\boldsymbol{\lambda}, \mathrm{P}$) then for my state i, $\left\{p_{i 1}(n)\right\}_{0}^{\infty}$ is a renewal sequence. This follows on putting $f_{n}=f_{i j}(n)$, the probability of returning to state i for the first time after n steps, starting at state i.

Conversely, given a renewal sequence $\left\{p_{n}\right\}_{0}^{\infty}$, the following the orem gives an II-shift ($\underline{\lambda}, \mathrm{P}$) for which $p_{00}(n)=p_{n}$. te shall see in 33 that the choice of state 0 is immaterial for our purposes. The construction in 2.1 is well-known [$3, p .40$]; attempts were mate to construct other 1 -sifts having $\left\{p_{n}\right\}_{o}^{\infty}$ as renewal sequence in the above sense, but no results were obtained in this direction. 2.1 Theorem Given a null-recurrent renewal sequence $\left\{p_{n}\right\}_{0}^{\infty}$, let $\left\{\mathrm{f}_{\mathrm{n}}\right\}_{1}^{\infty}$ be the sequence in terms of which it is defined and put $T_{n}=\sum_{n+1}^{\infty} f_{n}$. Then the null-recurrent, irreducible li-shift $T=(\underline{\lambda}, P)$ with

$$
\lambda_{n}=F_{n}
$$

and for $i=0,1, \ldots$

$$
p_{i j}= \begin{cases}f_{i+1} / F_{i} & , j=0 \\ F_{i \div 1} / F_{i} & , j=i+1\end{cases}
$$

has $\quad p_{00}(n)=p_{n}$
and $\quad h(T)=-\sum_{1}^{\infty} f_{n} \log f_{n}$.
Proof T preserves the measure generated by ($\boldsymbol{\lambda}, \mathrm{P}$) since

$$
\begin{aligned}
\sum_{i=0}^{\infty} \lambda_{i} F_{i j} & = \begin{cases}F_{j-1} F_{j} / F_{j-1}, & j>0 \\
\sum_{i=0}^{\infty} f_{i+1} & , j=0 \\
& =\lambda_{j} .\end{cases}
\end{aligned}
$$

$$
p_{o 0}(n)=\sum_{i_{1}, \ldots, i_{n-1}}^{\sum} \quad p_{o i_{1}} \ldots p_{i_{n-1}}
$$

This sum contains two types of terms, namely,

$$
\begin{aligned}
\prod_{\nu=1}^{s} p_{01} \cdots p_{i_{\nu}} & =\prod_{\nu=1}^{s} F_{i} \frac{F_{\nu}}{F_{1}} \cdots \frac{f_{i_{\nu}+1}}{F_{i_{\nu}}} \\
& =\prod_{\nu=1}^{s} f_{i_{\nu}},
\end{aligned}
$$

Where $1 \leqslant s \in\left[\frac{n-1}{2}\right], 0 \leqslant i_{\nu} \leqslant n-1$, and

$$
\left(p_{00}\right)^{k}=f_{1}^{k},
$$

where $0 \leqslant k \leqslant n$. Thus, $p_{00}(n)=\sum_{k=1}^{n} \quad i_{1}+\ldots i_{k}=n f_{i_{1}} \ldots f_{i_{k}}$

$$
=p_{n}, \quad n=1,2, \ldots
$$

$p_{00}\left(c_{1}\right)=1=p_{0}$, by definition.

$$
\begin{aligned}
h(T) & =-\sum_{i=0}^{\infty} \lambda_{i} \sum_{j=0}^{\infty} p_{i j} \log p_{i j} \quad[22] \\
& =-\sum_{i=0}^{\infty} F_{i}\left\{\frac{f_{i+1}}{F_{i}} \log \left(\frac{f_{i+1}}{F_{i}}\right)+\frac{F_{i+1}}{F_{i}} \log \left(\frac{F_{i+1}}{F_{i}}\right)\right\} \\
& =-\sum_{i=0}^{\infty}\left\{f_{i+1} \log f_{i+1}+F_{i+1} \log F_{i+1}-F_{i} \log F_{i}\right\} \\
& =-\sum_{i=1}^{\infty} f_{i} \log f_{i}
\end{aligned}
$$

since $F_{i} \rightarrow 0(i \rightarrow \infty)$ and hence $F_{i} \log r_{i} \longrightarrow 0(i \rightarrow \infty) . T$ is irreducible since any state can be reached from any other via state 0 . That T preserves a σ-finite measure follows from I.65. It can also be verified directly that ($\boldsymbol{\lambda}, \mathrm{P}$) gives rise to a σ-finite measure noting that

$$
\sum_{n=0}^{\infty} F_{n}=\sum_{n=1}^{\infty} n f_{n} \cdot / /
$$

Write S_{p} for the I-shift constructed in 2.1 to have renewal sequence p. Although we shall only use the notation S_{p} in this sense, the results of 83 would also hold if S_{p} were any other irreducible Li-shift having p as renewal sequence.
2.2 Theorem. For renewal sequences p and g,

$$
S_{\underline{p}} \times S_{q} \text { is isomorphic to } S_{p g} \text {; }
$$

where $p g=\left\{p_{n} q_{n}\right\}_{0}^{\infty}$.
Proof. For simplicity of notation we assume without loss of generality that the state spaces of S_{p} and S_{g} are $\{0,1, \ldots\}$. $S_{p} \times S_{g}$ is isomorphic to the shift on $\prod_{n=1}^{\infty} X_{n} \times Y_{n}$ where $X_{n}=Y_{n}=\{0,1, \ldots\}$. If $p\left(i_{1}, j_{1}\right)\left(i_{2}, j_{2}\right)$ are the transition probabilities far the latter (I.6.2)
shift, then $\left.\lambda p_{\left(i_{1}, j_{1}\right.}\right)\left(i_{2}, j_{2}\right)(n)=p_{i_{1}} i_{2}(n) \quad q_{j_{1}} j_{2}(n)$. Thus if
$p_{n}=p_{i j}(n)$ and $q_{n}=q_{j j}(n)$, then $j_{p} \times S_{g}$ is isomorphic to $S_{p g}$. //
§3 Some Vitric Invariants for li-shifts.
This section studies the isomorphism problem for nullrecurrent, irreducible li-shifts S_{p} in terms of the divergence properties of 1 .

For a null-recurrent renewal sequence p, let $k(p)$ be the unique number such that

$$
\sum_{n=0}^{\infty}\left(p_{n}\right)^{\iota}\left\{\begin{array}{lll}
=\infty & , & 6<k(p) \\
<\infty & , & 6>k(p)
\end{array}\right.
$$

If $\sum_{n=0}^{\infty}\left(p_{n}\right)^{6}=\infty$ for all $\iota>0$, as for example when $p_{n}=\frac{1}{\log (n+e)}$,
 comparison test, $\lambda_{n=0}^{\infty}\left(p_{n}\right)^{\iota}<\infty$ for all $\iota>\iota^{\prime}$. Also, $\sum_{n=0}^{\infty} p_{n}=\infty$ and $\sum_{n=0}^{\infty}\left(p_{n}\right)^{c}=\infty$ for all $0<t<1$. Thus

$$
I=\left\{\iota: \sum_{0}^{\infty}\left(p_{n}\right)^{\iota}=\infty\right\} \neq \phi
$$

and

$$
R=\left\{6: \sum_{0}^{\infty}\left(p_{n}\right)^{6}<\infty\right\} \neq \phi .
$$

By the comparison test, every element of I is loss than every element of R. Dedekind's theorem $[10, p .30]$ nor implies the uniqueness
asserted above. $k(p)$ gens er valises the ergodic index, since the powers not
6 are λ restricted to integer values.
If p^{λ} denotes $\left\{p_{n}^{\lambda}\right\}_{0}^{\infty}$ and $\underline{q} g$ denotes $\left\{p_{n} q_{n}\right\}_{0}^{\infty}$, the following is true:-
3.1 ㄲheorem (i) $\lambda k\left(\underline{p}^{\lambda}\right)=k(p)$
(ii) $\frac{1}{k(p q)} \geqslant \frac{1}{k(p)}+\frac{1}{k(q)}$.

Proof

$$
\begin{aligned}
\sum_{0}^{\infty}\left(p_{n}^{\lambda}\right)^{\iota} & <\infty \quad \text { if } \quad \iota>k\left(p^{\lambda}\right) \\
& =\infty \quad \text { if } \quad \iota<k\left(p^{\lambda)}\right.
\end{aligned}
$$

$$
\begin{aligned}
\sum_{0}^{\infty} p_{n}^{\lambda \iota} & <\infty \text { if } \iota>\frac{k(\underline{p})}{\lambda} \\
& =\infty \quad \text { if } \quad \iota<\frac{k(p)}{\lambda}
\end{aligned}
$$

If $\lambda k\left(\mathbb{p}^{\lambda}\right)<k(\underline{p})$, say, then $\sum_{0}^{\infty}\left(p_{n}^{\lambda}\right)^{t}<\infty$ while $\sum_{0}^{\infty} p_{n}^{\lambda_{t}}=\infty$ for some 6 . This is a contradiction since $\left(p_{n}^{\lambda}\right)^{\iota}=p_{n}^{\lambda_{l}}$.
(ii) Let $\lambda=\frac{1}{k(\underline{p})}+\frac{1}{k(\underline{q})}, P=\lambda k(p)$ and $Q=\lambda k(\underline{q})$.

Then $\frac{1}{P}+\frac{1}{0}=1$ and so by Eiblder's inequality $[19, p .186]$

$$
\sum_{n=0}^{\infty} p_{n}^{6} \eta_{n}^{l} \leqslant\left(\sum_{n=0}^{\infty} p_{n}^{l p}\right)^{1 / p}\left(\sum_{n=0}^{\infty} q_{n}^{l Q}\right)^{1 / Q}
$$

If $\iota P>k(p)$ and $\iota Q>k(g)$, ie. if $\iota>\frac{1}{\lambda}$, then $\sum_{0}^{\infty} p_{n}^{\iota} q_{n}^{\iota}<\infty$. Hence $k(p q) \leqslant \frac{1}{\lambda}$.

Define

$$
\log ^{r} x= \begin{cases}x & r=0 \\ \log \log \\ r-1 & , r=1,2, \ldots\end{cases}
$$

and

$$
e_{r}= \begin{cases}1 & , r=0 \\ e^{e_{r-1}}, r=1,2, \ldots\end{cases}
$$

3.2 Theorem $\left\{\frac{1}{\log _{5}^{r}\left(n+e_{r}\right)}\right\}_{0}^{\infty} \quad$ is a Keluza sequence, $r=0,1, \ldots$.

Proof For $r=0$, we have to short $\frac{1}{(n+1)^{2}} \leqslant \frac{1}{n(n+2)}, n=0,1$, which is equivalent to $0 \leqslant 1$; ingle for $r>0$,

$$
\begin{aligned}
\frac{d}{d x} \frac{\log ^{r}\left(x+e_{r}\right)}{\log ^{r}\left(x+1+e_{r}\right)} & >\frac{\operatorname{lom}_{j}^{r}\left(x+1+e_{r}\right)-\log ^{r}\left(x+e_{r}\right)}{\left[\log ^{r}\left(x+1+e_{r}\right)\right]^{2}\left[\log ^{r-1}\left(x+1+e_{r}\right)\right]\left(x+1+e_{r}\right)} \\
& >0,
\end{aligned}
$$

since $\log ^{r} x$ is an increasing function of x.

If p is a renewal sequence, let $\alpha_{0}(p)$ be the unique number such that $\sum_{0}^{\infty} \frac{F_{n}}{(n+1)^{\alpha}} \begin{cases}=\infty, & \alpha<\alpha_{0}(f) \\ <\infty, & \alpha>\alpha_{0}(p),\end{cases}$
again with ti convention that $\alpha_{0}(\underline{p})=\infty$ if $\sum_{0}^{\infty} \frac{p_{n}}{(n+1)^{\alpha}}=\infty$ for all $\alpha>0$. For $r>0$, let $\alpha_{r}(p)$ be the unique number such that
3.3 Theorem If p is a K luz sequence,

$$
\alpha_{0}(p)=1-\frac{1}{k(\underline{p})} .
$$

Proof Since p is monotone decreasing, by the Cauchy Condensation Test [20, p.120] $\sum_{\delta}^{\infty}\left(p_{n}\right)^{l}<\infty$ if, and only if, $\sum_{0}^{\infty} 2^{i}\left(p_{2^{n}}\right)^{l}<\infty$. Tho latter series converges if $\overline{\operatorname{lin}_{\underline{n}}} \sqrt[n]{2^{n}}\left(p_{2^{n}}\right)^{l}<1$, ice. if $\lambda^{\natural}<\frac{1}{2}$, where $\lambda=\overline{\lim _{n}} \sqrt[n]{p_{2}}{ }^{n}$. It diverges if $\lambda^{l}>\frac{1}{2}$.

Similarly, $\sum_{0}^{\infty} \frac{p_{n}}{(n+1)^{\alpha}}$ converges if $\lambda^{\frac{1}{1-\alpha}}<\frac{1}{2}$, diverges if
$\lambda^{\frac{1}{1-\alpha}}>\frac{1}{2}$. Hence $\lambda^{k(\underline{p})}=\frac{\frac{1}{2}}{2}=\lambda^{\frac{1}{1-\alpha_{0}(\underline{p})}}$. //
3.4 Corollary
(i) $\quad \alpha_{0}\left(\underline{p}^{\lambda}\right)=1-\lambda \div \lambda \alpha_{0}(\underline{p})$
(ii) $1+\alpha_{0}(\underline{g}) \leqslant \alpha_{0}(p)+\alpha_{0}(\underline{g})$.

Proof Use 3.1 and 3.3 . //
3.5 Theorem. If p and g are renewal sequences and $\alpha_{n}(\underline{p}) \neq \alpha_{n}(\underline{q})$ for some n, then S_{p} is not isomorphic to B_{g}.

Proof Taking the ab oven n to be the least such n, let $\bar{\alpha}=\frac{1}{2}\left\{\alpha_{n}(\underline{p})+\alpha_{n}(\underline{g})\right\}$ and suppose $\alpha_{n}(\underline{p})<\alpha_{n}(\underline{q})$
Then $\quad \sum_{k=0}^{\infty} \frac{p_{k}}{(k+1)^{x}(k) \ldots\left[\log ^{n}\left(k+e_{n}\right)\right]^{\infty}}<\infty$
while $\sum_{k=0}^{\infty} \frac{(k+1)^{\alpha_{0}(q)} \ldots\left[\log n\left(k+e_{n}\right)\right]^{\bar{\alpha}}}{(\underline{q}}=\infty$.

Thus $\left[\right.$ I. 6.4] the irreducible N-shift $S_{f} \times T$ is not ergodic, although $S_{g} \times T$ being irreducible is ergodic, where T is the irreducible,
aperiodic M-shift associated with the Kaluga sequence
$\left\{\frac{1}{(k+1)^{\alpha}(p) \ldots\left[\log ^{n}\left(k+f_{n}\right)\right]^{\alpha}}\right\}_{k=0}^{\infty}$. It follows that $s_{p} \times T$
is not isomorphic to $S_{g} \times T$ and hence that S_{g} is not isomorphic to S_{g}. //
3.6 Corollary If for Kaluza sequences p and $g, k(p) \neq k(q)$, then S_{P} is not isomorphic to S_{g}.

Proof By $3.3, \quad \alpha_{0}(\mathrm{p})=1-\frac{1}{\mathrm{k}(\mathrm{p})} \cdot / /$
3.7 Lemma For $n=0,1, \ldots$ let $p_{n}>0, q_{n}>0$, $0<\nabla_{n+1} \leqslant \nabla_{n}$
and

$$
\sum_{0}^{\infty} p_{n}=\sum_{0}^{\infty} q_{n}=0 . \text { Then }
$$

$$
\left.\begin{array}{rl}
\qquad \frac{\sum_{0}^{N} p_{n_{0}}}{\sum_{0}^{N} q_{n}} & \rightarrow c
\end{array}\right)(N \rightarrow \infty) \text { implies the existence }
$$

$\pi(\underline{p}, \mathrm{q})=\mathrm{c}$ if, and only if, $\begin{aligned} & \infty \\ & \sum \\ & 0\end{aligned} q_{n}=\infty$.

Proof We follow the proof of $[9$, theorem 1 4]. For $N=0,1, \ldots$
let

$$
\begin{gathered}
s_{N}=\frac{\sum_{0}^{N} p_{n}}{\sum_{0}^{N} q_{n}}, \quad t_{N}=\frac{\sum_{0}^{N} w_{n} p_{n}}{\sum_{0}^{N} w_{n} q_{n}}, \\
P_{N}=\begin{array}{l}
N \\
0
\end{array} p_{n}, \quad q_{N}=\begin{array}{l}
N \\
\sum \\
0
\end{array} q_{n}, \quad B_{N}=\begin{array}{c}
N \\
0
\end{array} \nabla_{n} q_{n} \cdot
\end{gathered}
$$

When $p_{0}=s_{0} G_{0}$ and $p_{N}=s_{N} G_{N}-s_{N-1} G_{N-1} \quad(N>0)$.

$$
t_{n}=\frac{\sum_{0}^{m} w_{n} P_{n}}{R_{m}}
$$

$$
=\sum_{0}^{\infty} c_{m, n} s_{m}
$$

There

$$
c_{m, n}=\left\{\begin{array}{cc}
\frac{\left(w_{n}-w_{n+1}\right) Q_{n}}{R_{m}}, & n<m \\
\frac{w_{m} Q_{m}}{R_{m}}, & n=m \\
0, & n>m
\end{array}\right.
$$

Putting $s_{n}=1$ for all n we see that $p_{n}=Q_{n}-q_{n-1}=q_{n}$ and $t_{n}=1$ for all n. Fence $\sum_{o}^{\infty} c_{m, n}=1$ for all m. Since ${ }_{n} \eta_{n+1} \leqslant \eta_{n}$ far all $n, c_{m, n}>0$ and so $\quad \sum_{0}^{\infty}\left|c_{m, n}\right|=1$ for all m. Finally, either $\mathrm{R}_{\mathrm{m}} \longrightarrow \infty(\mathrm{m} \rightarrow \infty)$ or $\mathrm{R}_{\mathrm{m}} \longrightarrow \mathrm{R} \rightarrow \infty(\mathrm{m} \longrightarrow \infty)$. These correspond respectively to $c_{m, n} \rightarrow 0$ and $c_{m, n} \rightarrow \frac{\left(m_{n}-\pi_{n+1}\right)}{R} n_{n}(m \rightarrow \infty)$.

The first part of the lemma nor follows from [9 , theorem 1] and the second part, from [9 , theorem 2].
3.8 Theorem If \underline{p} and \underline{q} are renewal sequences such that

$$
\frac{\sum_{0}^{N} p_{n}}{\sum_{0}^{N} q_{n}} \rightarrow c(N \rightarrow \infty), \quad 0<c<\infty,
$$

then $\quad \alpha_{r}(p)=\alpha_{r}(\underline{q}), r=0,1, \ldots$.

Proof Finite

$$
w_{n}(p, x, r)=\frac{1}{(n+1)^{\alpha}(p) \ldots\left[\log ^{r-1}\left(n+e_{r-1}\right)\right]^{\alpha-1}(p)\left[\log \left(n+e_{r}\right)\right]^{\alpha}}
$$

and similarly for g.
Ye must show that $\sum_{0}^{\infty} p_{n}{ }_{n}(p, \alpha, r)<\infty$ if, and only if,

$$
\sum_{0}^{\infty} q_{n} W_{n}(\underline{g}, \alpha, r)<\infty
$$

Suppose that $\sum_{0}^{\infty} p_{n} \pi_{n}(p, \alpha, r)<\infty$ but that

$$
\sum_{0}^{\infty} q_{n} \pi_{n}(q, \alpha, r)=\infty .
$$

This implies that

$$
\frac{\sum_{0}^{N} p_{n} w_{n}(p, \alpha, r)}{\sum_{0}^{N} q_{n} w_{n}(q, \alpha, r)} \rightarrow 0 \quad(N \rightarrow \infty)
$$

which contradicts 3.7. The converse assertion follows on interchanging p and g .
3.9 Corollary If (λ P) is a null-recurrent M-shift and
$p_{i}=\left\{p_{i i}(n)\right\}_{0}^{\infty}$, the n

$$
\alpha_{n}\left(p_{i}\right)=\alpha_{n}\left(\underline{p}_{j}\right) \quad n=0,1, \ldots
$$

for all states i and j.
Proof

$$
\frac{\sum_{i}^{N} p_{i i}(n)}{\sum_{0}^{N} p_{j i}(n)} \rightarrow \frac{\lambda_{i}}{\lambda_{j}} \quad(N \rightarrow \infty) \quad[30] .
$$

We now prove a generalised Hoof Ergodic Theorem.
If $\mathbb{H}=\left\{W_{n}\right\}_{0}^{\infty}$ where $W_{n} \geqslant W_{n+1}>0, T$ is a conservative, infinite measure-preserving transformation on (X, \mathcal{Q}, μ) and $0<f(x) \in L_{1}(\mu)$, put

$$
C_{f, \underline{W}}=\left\{x: \sum_{0}^{\infty} \pi_{n} f\left(T^{n} x\right)=\infty\right\}
$$

3.10 Leman If $f, g \in L_{1}(\mu)$ and $g(x) \geqslant 0$ almost everywhere, then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\sum_{0}^{n} w_{k} f\left(T^{k} x\right)}{\sum_{0}^{n} w_{k} g\left(T^{k} x\right)}=h_{f, g, w}(x) \\
& \text { exists and is finite on }\left\{x: \sum_{0}^{\infty} g\left(T^{n} x\right)>0\right\} \text {. }
\end{aligned}
$$

Proof By the IIopf Ergodic Theorem, $h_{f, g}(x)=\lim _{n \rightarrow \infty} \frac{\sum_{0}^{n} f\left(T_{x}^{k}\right)}{\sum_{0}^{n} g\left(T^{k} x\right)}$ exists and is finite on $\left\{x: \sum^{\infty} E\left(T_{x}^{n}\right)>0\right\}$. There is no loss of generality in assuming that $f(x) \geqslant 0$ almost everywhere, since in the general case apply 3.10 to $f^{+\quad}, g$ and f^{-}, g respectively and not
 required result. //
3.11 Corollary $C_{f}{ }^{\prime} y$ is invariant and independent of f. Proof $T^{-1} C_{f, \pi}=\left\{x: \pi_{k} f\left(T^{k+1} x\right)=\infty\right\}$. Since $\pi_{n \div 1} \leqslant \pi_{n}$, $\begin{aligned} & \sum \\ & 0\end{aligned} \nabla_{k} f\left(T^{k} x\right) \leqslant \sum_{0}^{n} \nabla_{k} f^{\prime}\left(T^{k+1} x\right)$. Conversely, by 3.10

$$
\frac{\sum_{c}^{n} w_{k} f\left(T^{k+1} x\right)}{\sum_{0}^{n} w_{k} f\left(T^{k} x\right)} \rightarrow=<\infty \quad(n \rightarrow \infty)
$$

Hence $\sum_{0}^{\infty} W_{k} f\left(T^{k} x\right)=\infty$ if, and only if, $\begin{aligned} & \infty \\ & \\ & 0\end{aligned} W_{k} f\left(T^{k+1} x\right)=\infty$, i.e. $C_{f, I}$ is invariant.

Again by 3.10, $h_{f, g}(x)<\infty$ and $h_{g, f}(x)<\infty$ for $0<f, g \in L_{1}(\mu)$. Hence $C_{f, \underline{W}}$ is independent of f. //

Write $C_{\underline{W}}=C_{f, \underline{I}}$ if there exists $0<f \in L_{1}(\mu)$ such that $C_{f, W} \neq \dot{\varphi}$. U. Krengel [23], working with more general positive contractions T on $L_{1}(\mu)$, calls $C_{I I}$ the W-conservative part of T.
j.12 Theorem Under the conditions of $3.10, h_{f, g, I \text { II }}(x)$ is invariant on $\mathrm{C}_{\text {I }}$ and

$$
\int_{C_{\underline{W}}} g(x) h_{f, g, \underline{Z}}(x) d \mu=\int_{C_{\underline{Z}}} f(x) d \mu .
$$

Proof. Apply the Hope ergodic Theorem to $X_{C_{E}}(x) f(x)$ and $g(x)$, noting that by tie invariance of $C_{V I}$,

$$
{\underset{\chi_{C}}{\prime} f, g}(x)=\gamma_{C_{W}}^{\prime}(x) h_{f, g}(x) .
$$

\$4 ITon-Isomorphism of Certain Lishifts
Put $u_{n}(\alpha, r)=\frac{1}{\left[\log ^{r}\left(n+\theta_{r}\right)\right]^{\alpha}}, \alpha>0, r=0,1, \ldots$

$$
\begin{aligned}
& \nabla_{n}(\alpha)=\frac{n!}{(1+\alpha) \ldots(n+\alpha)}, \quad \alpha>0, \\
& w_{n}(p)=\frac{\Gamma(n+p)}{\Gamma(p) \Gamma(n+1)}, \quad 0<p<1 .
\end{aligned}
$$

4.1 Theorem $u(\alpha, r)$ is a null-recurrent Kaluga sequence for $0<\alpha \leqslant 1 \quad(r=0)$ and $0<\alpha(r>0)$

$$
\alpha_{n}(\underline{u}(\alpha, r))= \begin{cases}1-\alpha & , n=r \\ 1 & , n \neq r\end{cases}
$$

Proof 3.2 states that $\underline{u}(\alpha, r)$ is a Kaluza sequence. $u_{n}(\alpha, 0)=\frac{1}{(n \div 1)^{\alpha}}$ is a null-recurrent if, and only if, $\alpha \leqslant 1$.
$[20, p, 120] . \underline{u}(\alpha, r)$ is null-recurrent for all $\alpha>0$ by the comparison test, since $\frac{n+1}{\left[\log ^{r}\left(n+e_{r}\right)\right]^{\alpha}} \longrightarrow \infty(n \longrightarrow \infty)$ for $a 11$ $\alpha>0$ and $r>0$. The last assertion follows from the rates of convergence of the logarithmic scale $[20, p .123]$.

Note that when $r>0, \alpha_{n}(\underline{u}(\alpha, r))$ can take negative values.
4.2 Corpllary ${\underset{S}{u}}^{(\alpha, r)}$ form a continuum of non-isomorphic

H-shifts.

Proof Apply 3.5.
4.3 Corollary $S_{k} \quad$ from a furtiner continuum of non-

$$
\stackrel{K}{\mu}=1_{\mathrm{u}}^{-}\left(\alpha_{v}, \mathrm{r}_{v}\right)
$$

isomorphic li-shifts, where

$$
\prod_{\nu=1}^{k} \underline{u}\left(\alpha_{\nu}, r_{\nu}\right)=\left\{\prod_{\nu=1}^{k} u_{n}\left(\alpha_{\nu}, r_{\nu}\right)\right\}_{0}^{\infty}
$$

Proof $\quad \alpha_{n}\left(\begin{array}{ll}k \\ \nu=1\end{array} \underline{u}\left(\alpha_{v}, r_{\nu}\right)\right)= \begin{cases}1 & n \neq r_{\nu}, 1 \leqslant \nu \leqslant k \\ 1-\alpha_{\nu}, & n=r_{\nu} .\end{cases}$
4.4 Theorem $V(\alpha)$ is a null-recurrent Kaluza sequence for $0<\alpha \leqslant 1$.

$$
\alpha_{n}(\underline{v}(\alpha))= \begin{cases}1-\alpha & , n=0 \\ 1 & , n>0\end{cases}
$$

Proof $v_{n}^{2}(\alpha) \leqslant v_{n-1}(\alpha) v_{n+1}(\alpha)$ if, and only if,

$$
\begin{aligned}
& \frac{n}{n+\alpha} \leqslant \frac{n+1}{n+\alpha+1} \quad \text { if, and only if, } \\
& \frac{d}{d x} \quad \frac{x+1}{x+\alpha+1}=\frac{\alpha}{(x+\alpha+1)^{2}}>0 .
\end{aligned}
$$

$$
[20, p, 288]
$$

$\underline{v}(\alpha)$ is recurrent if, and only if, $0<\alpha \leqslant 1$ by the Gauss test ${ }_{f}$, since

$$
\begin{aligned}
\frac{v_{n+1}(\alpha)}{v_{n}(\alpha)} & =\left(1+\frac{\alpha}{n+1}\right)^{-1} \\
& =1-\frac{\alpha}{n}+o\left(\frac{1}{n^{2}}\right) .
\end{aligned}
$$

$\underline{Y}(\alpha)$ is either transient or null-recurrent since the convergence of the infinite product $\prod_{n=0}^{\infty}\left(1-\frac{\alpha}{n+\alpha+1}\right)=\lim _{n \rightarrow \infty} \nabla_{n}(\alpha)$ is equivalent to that of $\sum_{n=0}^{\infty} \frac{\alpha}{n+\alpha+1}$; but $\frac{\alpha}{n+\alpha+1} \sim \frac{\alpha}{n}$, ie. $\sum_{n=0}^{\infty} \frac{\alpha}{n+\alpha+1}=\infty$. Since $\left.v_{n}(\alpha)\right\rangle(n \longrightarrow \infty), V(\alpha)$ being a Kaluga sequence, $\lim _{n \rightarrow \infty} \gamma_{n}(\alpha)$ exists. If it Fere positive, the infinite product would converge; thus $v_{n}(\alpha) \searrow 0(n \longrightarrow \infty)$.

$$
\begin{aligned}
\left(\frac{v_{n+1}(\alpha)}{\nabla_{n}(\alpha)}\right)^{\iota} & =\left(1+\frac{\alpha}{n+1}\right)^{-\iota} \\
& =1-\frac{\iota \alpha}{n}+0\left(\frac{1}{n^{2}}\right) .
\end{aligned}
$$

Hence, again by Gauss' test, $k(\underline{v}(\alpha))=\frac{1}{a}$. It follows by 3.3 that $\alpha_{0}(\underline{v}(\alpha))=1-\alpha$.

That $\alpha_{n}(\underline{y}(\alpha))=1, n>0$, follows iron $v_{n}(\alpha) \sim f(\alpha+1) u_{n}(\alpha, 0)$ [33, p. 11]. Indeed, 4.4 follows from 4.1 using this result. A different proof of the first part of 4.4 is given since it seems to have interest of its own. //
4.5 Corollary $S_{\underline{v}}(\alpha)$ is not isomorphic to ${\underset{\underline{u}}{\underline{u}}(\beta, r)}$ for all $0<\alpha, \beta<1$ when $r>0$ and for all $0<\alpha \neq\}<1$ when $r=0$.

Proof \quad When $r=0$, for $\alpha \neq \beta \quad \alpha_{0}(\underline{v}(\alpha)) \neq \alpha_{0}(\underline{u}(\beta, r))$. Then $r>0 \quad \alpha_{r}(\underline{v}(\alpha)) \neq \alpha_{r}(\underline{u}(\beta, r))$ for all $0<\alpha, \beta<1$. //

Te have no information when $r=0$ and $\alpha=\beta$, since then $\alpha_{n}(\underline{v}(\alpha))=\alpha_{n}(\underline{u}(\beta, r))$ for $211 n$. This is to be expected, since $\underline{v}(\alpha)$ and $\underline{u}(\alpha, 0)$ are esentially the same renewal sequence (in terms of ∞ nvergence properties).
4.6 Therein $\underset{H}{ }(p)$ is a null-recurrent Kaluga sequence $f o r 0<p<1$.

$$
\alpha_{n}(\mathbb{Z}(p))= \begin{cases}p & , \quad n=0 \\ 1 & , \quad n>0\end{cases}
$$

Proof $\quad \eta_{n}(p) \sim \frac{1}{\Gamma(p) n^{1-p}} \quad[34, p, 53]$. Since $\underline{u}(1-p, 0)$ is null-recurrent, so is $\underline{W}(p)$. Also $\alpha_{n}(\underline{\underline{T}}(p))=\alpha_{n}(\underline{u}(1-p, 0))$. As $\underline{u}(1-p, 0)$ is a Kaluga sequence,
the asymptotic relation implies that $\mathbb{F}(p)$ is Kaluga too. Alternatively,
$\frac{W_{n+1}(p)}{W_{n}(p)}=\frac{n+p}{n+1} \ngtr 1(n \longrightarrow \infty) \cdot / /$
4.7 Theorem $S_{H}(p)$ is not is omorphic to $S_{\underline{u}}(\alpha, r)$ for all $0<\alpha, p<1$ and $r=0,1, \ldots$.

Proof $\alpha_{0}(\underline{\underline{m}}(p)) \neq \alpha_{0}(\underline{u}(\alpha, r))$.

Attempts $n e r e$ made to compute the entropy of the three classes of M-shifts studied above, tine problem being to find an exact or asymptotic expression for f_{n}. For $\underset{\sim}{u}(\alpha, r)$ and $\underset{\sim}{v}(\alpha)$ there appear to be no useful closed form expressions for the generating functions of the former or latter. However, we did obtain the follaring
4.8 Theorem $\sum_{n=0}^{\infty} u_{n}(\alpha, 0) z^{n}=(z, \alpha, 1)$,

Where $\Phi(z, \alpha, \nu)=\sum_{n=0}^{\infty} \frac{z^{n}}{(n+v)^{\alpha}}[4, p p .27-31]$.

Proof This identity is none other than the definition of Φ. //
4.9 Corollary $F_{\underline{u}}(\alpha, 0)(z)=z \frac{\overline{\underline{Q}}(z, \alpha, 2)}{\bar{\Phi}(z, \alpha, 1)}$.

Proof Follows from the definitions of F and $\bar{\Phi}$. //
4.10 Theorem $\sum_{n=0}^{\infty} v_{n}(\alpha) z^{n}=H(1,1 ; \alpha+1 ; z)$,

Where in denotes tile hypergeometric function $[\leq \underline{2}, p .19]$
Proof $H(a, b ; c ; z)=\sum_{n=0}^{\infty} \frac{\Gamma(a+n) \Gamma(b+n) \Gamma(c)}{\Gamma(a) \Gamma(b) \Gamma(c \div n) \Gamma(n+1)} z^{n} \cdot / /$
4.11 Corollary $F_{\underline{v}}(\alpha)(z)=\frac{H(1,2 ; \alpha+2 ; z)}{I(1,1 ; \alpha=1 ; z)}$.

Since $\underline{H}(p)$ is generated by a closed form expression, namely $(1-z)^{-p}, F_{\underline{W}(p)}(z)=1-(1-z)^{p}$ and

$$
f_{n}=-\frac{\Gamma(n-p)}{\Gamma(-p) I(n+1)}
$$

$\sim \frac{-1}{\Gamma(-p) n^{p+1}} \quad$ - Hence
4.12 Theorem $[22] \quad h\left(\mathcal{S}_{\underline{w}(p)}\right)<\infty$ for all $0<p<1$.

Proof ${\underset{n}{2}=2}_{\infty}^{\infty} \frac{1}{n^{p+1}} \log \frac{1}{n^{p+1}}<\infty$ if, and only if,

$$
\sum_{n=2}^{\infty} \frac{\log n}{n^{p+1}}<\infty
$$

But

$$
\begin{aligned}
\left(\frac{n}{n+1}\right)^{p+1} \frac{\log (n+1)}{\log n} & =\left(1+\frac{1}{n}\right)^{-(p+1)}\left\{1+\frac{\log \left(1+\frac{1}{n}\right)}{\log n}\right) \\
& =1-\frac{(p+1)}{n}+\left(\frac{1}{n^{2}}\right)
\end{aligned}
$$

and so by Gauss' test the latter series converges. The proof is completed by noting that series of asymptotically equal terms converge or diverge together. //

Al that th the renewal sequences studied in this section throw some light on the effectiveness of $\alpha_{n}(\underline{p})$ as metric invariants, they are too closely connected With the test sequences $\underline{u}(\alpha, r)$ to indicate whether, for example $\left\{\alpha_{n}(\underline{p})\right\}_{0}^{\infty}$ might be a complete invarient for S_{p} where p is Kaluza. The answer to this question is clearly connected with the universality or otherwise of the logarithmic scale of ratio tests. Forever, as K. Knop [$20, \mathrm{p} .304$] points out, no "boundary" exists such that all monotonic series on one side of it converge, will e those on the other side all diverge, irrespective of the manner of definition of the boundary.

BIBLIOGRAPHY

1. Apostol, T.M., Mathematical Analysis, Addison-Wesley Publishing Co.Inc., 1957.
2. Billingsley, P., Ergodic Theory and Information, John Wiley and Sons, Inc., 1965.
3. Chung, K.L., Markov Chains with Stationary Transition Probabilities, Springer Verlag, 2nd edition, 1967.
4. Erdélyi, A., Editor, Higher Transcendental Functions, volume I, McGraw-Hill Book Co.Inc., 1953.
5. Feller, W., An Introduction to Probability Theory and its Applications, volume I, John Wiley and Sons,Inc., 2nd edition, 1965.
6. Gradšteĭn, I.S., and Ryžik, I.M., Tables of Integrals, Summation, Series and Products, Moscow State PublishingHouse, 1963 (in Russian).
7. Halmos, P:R., Measure Theory, van Nostrand Co.Inc., 1950.
8. Halmos, P.R., Lectures on Ergodic Theory, Chelsea Publishing Co., 1956.
9. Hardy, G.H., Divergent Series, Oxford University Press, 1956.
10. Hardy, G.H., Pure Mathematics, Cambridge University Pross, 10th edition, 1952.
11. Hopf, E., Ergodentheorie, Chelsea Publishing C 0., 1948.
12. Jacobs, K., Lecture Notes on Ergodic Theory, Hatematisk Institut, Aarhus Universitet, 1962/63.
13. Kakutani, S., and Parry, W., Infinite Measure Preserving Transformations with "Mixing", Bull. Amer. Math. Soc. 69, 752-756 (1963).
14. Kaluza, T., Uber die Koeffizienten reziproker Potenzreihen, Math. Zeitschrift, 28, 161-170 (1928).
15. Kelley, J. L., General Topology, van Nostrand Co. Inc., 1955.
16. Kendall, D.G., Renewal Sequences and their Arithmetic, Lecture Notes in Mathematics no. 31, 147-175, Springer, 1967.
17. Khinchin, A. Ya., Continued Fractions, Chicago University Press, 1964.
18. Kingman, J.F.C., An Approach to the Study of Markov Processes, Journal Roy. Stat. Soc. (B), 28, 417-447, (1966).
19. Kingman, J.F.C., and Taylor, S.J., Introduction to Measure and Probability, Cambridge University Press, 1966.
20. Knop, K. , Theory and Application of Infinite Series, Blackie and Son ltd., 1951.
21. Kolmogorov, A. N., and Fomin, S.V., Measure, Lebesgue Integrals, and Hilbert Space, Academic Press, 1962.
22. Krengel, U., Entropy of Conservative Transformations,
Z. Wahrscheinlichkeitstheorie verw. Geb., 7, 161-181 (1967).
23. Krengel, U., Classification of States for Operators,

Proc. Fifth Berkeley Symposium Math. Statist. Probability, 1966.
24. Lamperti, J., On the Coefficients of Reciprocal Power Series, Amor. Math. Monthly 65, 90-94 (1958).
25. Oishi, N., Notes on Ergodicity and Mixing Property, Proc. Jap. Acad., 41, 767-770 (1965).
26. Parry, W., On the β-expansions of Real Numbers, Acta Math. Aced. Sci. Hung. 11, 401-416 (1960).
27. Parry, W., Representations for Real Numbers, Act Math. Acad. Sci. Hung., 15, 95-105 (1964).
28. Parry, W., Ergodic and Spectral Analysis of Certain Infinite Measure Preserving Transformations, Proc. Amer: Math. Soc. 16, 960-966 (1965).
29. Rényi, A., Representations for Real Numbers and their Ergodic Properties, Alta Math. Acad. Sci. Hung., 8, 477-493 (1957).
30. Router, G.E.H., Markov Chains, mimeographed lecture notes, Durham Probability Conference, 1963.
31. Rohlin, V. .., On the Fundamental Ideas of Measure Theory, Mat. Sbornik (N.S.) 25 (67), 107-150 (1949) [English translation in Amer. Math. Soc. Transl. no. 71 (1952)].
32. Rohlin, V.A., Exact Endomorphisms of a Lebesgue Space, Inv. Nkad. Nauk SSSR 25, 499-530 (1961) [English translation in Amer. Math. Soc. Transl. (2) 39, 1-36 (1964)].
33. Sneddon, I.N., Special Functions of Mathematical Physics and Chemistry, Oliver and Boyd, 1961.
34. Titchmarsh, E.C., The Theory of Functions, Oxforduniversity Press, and edition, 1952.

INDEX OF NOTATION AND DEFINITIONS

Numbers refer to the page (s) where the notation and terms are defined.

$$
\begin{aligned}
& \epsilon, f, \subset, \supset, \cup, \cap,-,+, \\
& \varepsilon, \phi,\{x\}, R, \xi \\
& \beta,(x, Q), \mu \\
& (x, \boldsymbol{B}, \mu), \bar{B}, \bar{\mu}, \Lambda \\
& (Y, \mathcal{L}, \lambda) \\
& \xi, \nu, \varepsilon, \xi_{A}, \leqslant \\
& \underset{i \in I}{V} \xi_{i}, \Lambda_{i \in I}^{\Lambda} \xi_{i}, \xi \vee \eta,, \xi \wedge \eta \\
& \xi_{n} \not \neg \xi, \quad \xi_{n} \searrow \xi, \quad \hat{\xi}, \quad\left(X^{(r)}, Q^{(r)}, \mu^{(r)}\right), R^{(r)}, \\
& \xi_{1} \times \ldots \times \xi_{r}, S\left(\xi, \xi^{\prime}\right) \\
& \mu^{\xi, \xi^{\prime}}, \pi(E), E_{x_{1}}, X_{E}(x) \\
& \ll,\{f \in E\} \text {, inf } f(x) \text {, } \\
& \int_{E} f(x) d \mu, f^{+}, f^{-} \\
& L_{p}(\mu),\|f\|_{p} \\
& E\left(f \mid B^{*}\right),\left(X_{1} \times X_{2}, B_{1} \times B_{2}, \mu_{1} \times \mu_{2}\right) \\
& G^{(r)}, a^{(r)}, T \\
& T^{(r)}, T_{1} \times T_{2},\left.T\right|_{E}, 玉 \cap \mathbb{B}_{\uparrow}, \mu_{1 E}
\end{aligned}
$$

$\frac{\partial \mu}{d \nu}$ 23
$\delta(J), \nu_{n}(J)$ 24
ek(T) 25
$\mathscr{D}^{(r)}, \Delta_{n}^{r}, f^{*}$ 26
C 27
$D, W, \overline{\overline{l i m}_{\mathrm{im}}} T^{-n} E, f_{\mathrm{E}}(\mathrm{x})$ 28
$h_{f, g}(x)$ 29
$\iota(T), H_{\mu}(\xi), Z_{\mu}, H_{\mu}(\xi \mid \eta)$ 30
$h_{\mu}(T, \xi), h_{\mu}(T)$ 31
$\lambda_{n}, p_{i j},(\Omega, 7 \pi, m, s)$ 32
$\underline{\boldsymbol{\lambda}}, \mathrm{P},(\underline{\boldsymbol{\lambda}}, \mathrm{P}), \mathrm{p}_{\mathbf{i j}}(\mathrm{n})$ 33
$f_{i j}(n), F_{i j}(z), P_{i j}(z)$ 34
$\underline{\lambda}$ 37
$\mathrm{p}, \mathrm{P}(\mathrm{z}), \mathrm{F}(\mathrm{z}), \mathrm{F}_{\mathrm{p}}(\mathrm{z})$ 38
p_{n}^{t} 40
$[x],(x), f^{-1}, a_{0}+\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots \frac{1}{a_{n}}$ 41$a_{0}+\frac{1}{a_{1}}+\cdots, \frac{p\left(a_{0}, \ldots, a_{n}\right)}{a\left(a_{0}, \cdots, a_{n}\right)}42H_{p}(\gamma)44G\left(\mathbb{T}^{\mathrm{n}}\right), \mu_{\mathrm{n}}, I_{\mu_{\mathrm{n}}}\left(\theta \times \theta^{\prime}\right)$47
$\bar{\mu}_{n}$ 55
$\mu_{\Delta_{n}^{x}}, G_{\Delta_{n}^{r}}^{(T)}$ 56$\varepsilon_{n}(y), y_{n}, d_{n}(y)$63
$\omega^{n}(x, y)$ 64
$\omega_{s}^{n}(x, y), C_{n}^{s}(y)$ 66γ_{n}68
I, T_{f} 72
$\varepsilon_{n}(x), f_{n}\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ 73
s_{n}^{y} 80
$\phi_{i_{1}} \ldots i_{k}$ 83$\frac{P_{n}(y, t)}{Q_{n}(y, t)}$86
F_{n} 107
$S_{p}, p g$ 110$\mathrm{k}(\mathrm{p})$111
p^{λ} 112
$\log ^{r} x, e_{r}$ 113
$\alpha_{n}(\underline{p})$ 114
$\nabla(\mathrm{p}, \mathrm{q})$ 116
$\mathrm{P}_{\mathrm{i}}, \mathrm{C}_{\mathrm{f}, \mathrm{II}}, \mathrm{h}_{\mathrm{f}, \mathrm{g}, \text { 프 }}$ 119
C 120
$u_{n}(\alpha, r), v_{n}(\alpha), \nabla_{n}(p)$ 121
$\prod_{\nu=1}^{i} \underline{u}\left(\alpha_{\nu}, r_{\nu}\right)$ 122
$\Phi(z, \alpha, v)$ 125
H(a,b ; c; z) 126
absolutely continuous page 15
admissible digit 73
algebra 7
almost everywhere 8
almost everywhere convergence 18
almost isomorphic 29
almost uniform convergence 18
aperiodicatom9
automorphism 22
basis 9
Bernoulli shift or endomorphism 37
Borel subset 8
canonical 73
Cesáro convergence 27
characteristic function 14
complete 9, 10
conditional entropy 30
conditional expectation 19
conservative part 27
conservative transformation 28
continued franction 41,42
continuous 23
convergenoe in measure, probability page 18
convergence in $I_{1}(\mu)$ norm, $I_{2}(\mu)$ norm 18
convergent 43
cylinder 32
dependent digits 73
digits 73
disjoint 7
dissipative 28
domain 21
elementary function 14
endomorphism 22
entropy 30, 31
equivalent 15
ergodic 23
ergodic index 25
exact 26
f-expansion 73
f-transformation 73
finite measure 9
finite measure space 9
fractional part 41
frequency 83
Fubini's theorem 20
functional inverse 41
generated -algebra page 8
generating function 34
generator 26
Hölder's inequality 17
homomorphism 21
Hopf ergodic theorem 29
image 21
independent digits 73
index set 11
induced 11
infinite continued fraction 42
infinitely divisible 40
integer part 41
integrable function 16
invariant 23
irreducible 34
isomorphic 22
isomorphism 22
join 12
Jordan measurable 13
Kaluza sequence 38
Kolnogorov-Sinai invariant 31
Lebesgue space page 10
many-one 22
Markov or M-shift 32
martingale theorem 19
measurable function 14
measurable partition 11
measurable rectangle 13
measurable space 8
measurable subset 8
measurable transformation 21
measurable with respect to $\hat{\jmath}$ 19
measure 8
measure preserving trensformation 21
measure space 9
meet 12
metric invariant 30
mixing of degree r 26
modulo zero 8
natural partition 74
non-atomic 9
non-singular 21
nth order continued fraction 41
null recurrent 34,40
null set 8
one-one page 22
partial quotient 43
periodic 31
point set 7
pointwise convergence 18
positive recurrent 34,40
probability theasure 9
probability space 9
Radon - Nikodym derivative 15
Radon - Nikodym theorem 15
reciprocal power series 38
refinement 11
r-fold direct product 13
regular measure 20
renewal sequence 38
restriction of transformation 22
ring 7
separable 10
$\sigma-a l g e b r a$ 8
o-finite measure 9
-finite measure space 9
σ-finite partition 9
zr-ring 7
simple function page $\quad 14$
state space 32
topological measure space 20
transient 34,40
valid f-expansions 73
wandering set 28
VI - conservative part 120
weak mixing 24

