LINEAR FRACTIONAL TRANSFORMATIONS MOD ONE

AND FRGODIC THEORY

by

Stephan Martin Rudolfer

A Thesis submitted for the degrees of Doctar of Philosophy
in the University of London and Diploma of Membe rship of

the Imperial College.

(R F- e . i L
Wl0mar s panattt
NN 6 vy cwt

B RPN

Department of Mathematics,
Imperial College,

London, S.VW,.7. August 1968,



ABSTRACT

After an introductory chapter, we study characterisations of
mixing, weak mixing and ergodicity of a finite measure-preserving
transformation T due to N, Oishi [25]. These characterisations are in
terms of convergence of suitably defined entropies of finite partitions.
We show that the characterisations can be given in terms of (countable)
partitions with finite entropy, extend the characterisation to mixing
of degree r and give further characterisations in terms of convergence
of the suitably defined measures of Jordan measurable sets and, in the
case of a compact measurs space, in terms of weak convergence of these
measures. Lt is shown that these characterisations cannot be extended to
convergence of the corresponding entropies of TxT nor to all measurable
subsets, respectively.

Chapter III studies the ergodic properties of two classes of
linear fractional transformation mod one, which turn out mostly to have
similar properties to previously studied f-transformations [?9], [32].
The main tool is a sufficient condition for ergodicity of non-singular,
many-one  transformations of a probability space, which, applied to
f-transformations, generalises a similar theorem of A. Rényi [?9}.
Rényi's theorem states the existence of a finite invariant measure
equivalent to Lebesgue measure. In some cases, using a result of
V. Parry [27], we have succeeded in constructing this invariant measure,
Throughout, results were only obtained for f-transformations with
independent digits (in the sense of Rényi). The dependent digit case is
much more delicate, and we were unable to obtain results in this

direction,



Of particular interest is the ergodic transformation T x whose

. 1+x
o -finite invariant measure is exhibited. Its associated f-expansions

have a striking distribution of digits. It is an open question whether

T < is exact and what value its entropy [22] takes,

T+x
In chapter IV the isomorphism problem for irreducible, null

recurrent and aperiodic Markov shifts is studied using a necessary and
sufficient condition for ergodicity due to Kakutani and Parry [13] and
the divergence properties of certain renewal sequences, The latter
provide metric invariants which are then used to investigate three
classes of Markov shift, it being shown that they each consist of a
continuum of non-isomorphic transformations, Non-isomorphism between the
three classes is also discussed. A generalised Hopf ergodic theorem is

proved as a corollary to the methods developed.
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CHAPT:ER I

Preliminary Definitions and Results

llecasure 3paces

If A is a set and x is an element of A then we write
x € A, If x is not an element of A then we write x f A. If A is a
subset of B then we write ACB a B O A, The union, intersection,
difference and symmetric difference of two sets A and B are denoted
by AUB, ANB, A~ B and A + B respectively, If we are studying
the subsets A of a set X then we write ¢ A foar X - A, the complement
of A. The empty set is denoted by ¢ ; sets A and B are said to be
disjoint if ANB = ¢, {x} denotes the point set x.

Unless otherwise stated, the same notation as that relating
to sets will also be used vhen dealing with classes or families of
sets,
1¢1 Definition If X is a non-empty set and R is a non-cmpty
collection of subsets of X then R isa ring if L e R and F ¢ R
imply E-FeRand EVUF ¢ R,

An algebra is a ring R such that X ¢ 2,

A goring 4 is a ring such that B ¢ (n=1, 2, «,)

o0
imply U En € d .
n=1



A g=algebre (B ie a o-ring auch that X ¢ B . If
&, B  are o-algebras we write A CB  if A ¢ A implies

Ae@

Since the intersection of an arbitrary class of o-elgobras
is again a o-algebra, the o-algebra generated by a class of subsets
of X is uniquely defined as the intersection of all o-algebras o
subsets of X containing this class., It always exists since the

o-algebra of all subsets of X contains every class of subsets of X.

1.2 Definition The pair (X, B ), where X is a non-empty set ani

B isa g-a2lgebra of subsets of X, is a measurasble smace. ZXZlements

of 3 are measursble or Borel subsets of X.

A non-negetive, possibly infinite-valued set function u

defined on (X, ® ) is a measure if

(i) w(¢) =0
(1) 5 e® (n=1, 2, ...), By NIy = ¢ (i # §) imply
u(Uﬁn)= : uw(®) .
n=1 n=1

Be@® is a null set of p if p(B) = 0. An important principle
of measure theory is that of neglecting null sets, This gives far
more generality to results and definitions then wrould be possible if
a purely set-theoretic approach were adopted, Thus, if P(x) is a

proposition depending on x, we say P(x) holds almost everywhere if
{x : P(x) dces not hold} is a null set. Similarly, A = B (mod ©)

or A = B modulo zero mean that A + B is a null set, In particular



ACB (mod 0) if A - B is a null set. Applying this to o-algebras,

we say that & € & (mod 0) if for every A ¢ G +there oxists

Be® with A=3 (mod 0). lience = =& (mod 0) means that
A CcB ca (mad o).

p is finite if p(X) < w ; u is g=finite if p(X) =  ,

X= U X_, Xiﬂxj=¢(i;!j)arﬂu(xn)<w(n=1,2, I

{Xn;z vhich is not unique, is called a o-finite partiti on of X.

(X, B , p) is then a finite or o-finite measure space respcctively,

It is a probability space (u is a probability measure) if u(X) =1 .

LAiseanatom of (X, B, n) ifAe¢ B, u(A) >0 and
BCA, B e® implies u(B) =0 or u(B) = u(a). 1If (X, B , u)
has no atoms then it is non-atomic.,

1f (X, & , u) satisfies this condition:

Ae@® , pu(A) =0, BCA implies B ¢,
then (X, @ , ) is a conplete measure space, There is no loss
of generality in assuming, as we do from now on, that (X, B , p)
is complete; there exists a unique o-algebra C.é D@ of subsets
of X and a unique measure g on (X, (& ) such that (X, B , 1)
is complete, p(E) = u(E) far a1l & ¢ (R eand for each A € B
there exists A ¢ (B , ADZL such tmt (4 - %) = 0 [7, p. 55].

A countable collection AC (B is a basis for

(x, @ , ) 1if the following conditions are satisfied:-



10.
(i) For every 4 ¢ B  there is a set B belonging to the
o-algebra generated by A such that A CB and p(B - A) = 0 ,
(ii) For every pair x, y of distinct points in X there is a
set A € & puch tint either x ¢ 4, y f A or x / A,

y €A,

(X, ® , p) is separable if it has a basis, HNote tiat the
definition of separability applies equally to o-finite measure spaces,
since (i) depends only on null sets of p, and that countable subsets
of a separable measure space are measurable by (ii), since

fx} = n A, If (X, ® , p) is separable and non-atomie then

p({x} )A:AO for all x ¢ X. (X, & , u) is complete with respect to
A= {Ai : i ¢ I} if all intersections

n B # 9,
iel

where Bi = Ai o X - Ai. If a probability space (X, &8 s p) is
separable and complete with respect to a basis then it is called a
Lebesgue space.

For exsmple, if ¥ = [0, 1) , ;f = g=algebra geincerated
by the ring of finite, disjoint unions of intervals of the form
[2, ) and A is the measure determined by A{[a, b)) = b - a then
(¥, £ , A) is a Lebesgue space, In fact, all non-atomic Lebesgue
spaces are essentially tie same as (Y, £ , A) [31], Tnat

measures on a ring can be extended to measures on the generated

o-algebra follows from the next result,



1.3 Thearem (7, p 54]. If v is a measure on a ring R of subscts
of X then thoere exists a unique messure p definod on the g-algebra
generated by 2 such that (B) = u(@), EeRr .

144 Definition & .= {Enfl,f -y-where 1 < N €0 , is a hiea'su'r'able

partition (mod 0) of the Lebesgue space (X, B8 , u) if

(i) =2 & , u(En)>O (n=1, vee , N)

n
(ii) X, r\x‘i =9 (1#3)
N
(ii1) X =V X (mod 0) .
n=4

he set of integers 21, seay N} is the index set of & ., The
(at most) countability of £ is essential: the existerce of an
uncountable, disjoint class of sets of positive measure whose union
is X would contradict the finitencss of p. “’e shall consider
measureble partitions only of Lebesgue spaces, and refer to them
simply as 'partitions', Two frecuently used partitions are v and
€, viiere v = iX} and € = {{x} ¢t x € X} « The latter is not
stricily a partition in the sense of 1.4, since all its elements
except at most a counteble number of atoms are null sets., Ilovever,
we shall refer to € as a partition, as it consists of a disjoint
class of measurable subsets of X wliose union is X.
If ACX, let &, = BN A : B ¢ &] denote the partiiion of A
induced by the partition & of X.
A partial ordering on tie class of all partitions of

(X, ® , n) is given by <, where £ € n if n is a refinement of

11,



1.,

E , i.e. if every element of n ig a subset of some element of &,
e say that £ € n (mod 0) if there exists a set A e(® ,
A = X (mod 0) such that E, <m, . E=71 (med 0) is defined
similarly. & < n (mod 0) and 1 < £ (mod 0) imply € = n (mod 0)
since g <mn, and E € 7ny pu(BA) = p(eB) = 0 , imply
Evp = Map 2 p(8(ArMB)) = 0. The smellest partition of X is
v , the largest is e ,

For any collection of partitions {Ei : i€ I} of X there

exists the join v Ei defined as a partition & of X having the
iel

properties:~
(1) E; € Z(mod 0) fa all i eI
(i1) ir g, <& (mod 0) far a1l i € I where &' is a partition
then & < £' (mod 0) .
Similarly there exists te meet .AI Ei defined as a
1€

mezsurable partition & having the properties:-

(1) E; 2 E (mod 0) for a1l i € I

(11) if g, 2 E' (mod 0) for all i vhere E' is a partition
then E 2 E' (mod 0) .
The join and meet of two partitions & and n are written £ v n and

E A n respectively, It is easy to verify that

n n

V E = § 0 4, : A €E ).
. 1 .
i=1 i=1



(-]
7, =
e write Enfg(nwm) :1_f'En<gn1, E,_nL En and
ENE(n—%)if B, 28,4, 86= A E .
n=1
Lat g, denote tie sub~o-algebra of R generated by the
A A
partition £ of (X,® , p). Then [352] ECn if, and only if,

E n. MSOS:@ °

N

For r = 1, 2, ..., (X(r), {B(r), “(r)) denotes the r-fold

direct product of the measure space (X, B , p) with itself, i.e.

X('r) =X X eee ¥ X (r times)

E(r) = o-algebra generated by the ring of finite, disjoint

unions of sets of the form B, X ... X Br (Bi e @ )

u(r) = measure unicuely determined (see 1.3) by

u(r)(B1 Xeeax B ) = u(By)eean(B,) (B, ¢ B ) .

1

A measurable rectangle in @)(r) is a set of the form

E1 x...XEr,EiE & (i=1, seeoy r)-

f\’(r) = ring of finite, disjoint unions of measurable

rectangles in (B () .

B e (B(r) is Jordan measurable if for all & » 0 there

exist R, , 5 ¢ r (r) » By CECS, , such that

8§27
p(E-R8)< § amd u(SB-E)< § 2
If 51, cve 3 e‘-;r are partitions of X then 51 X4 00X E’r
stands fa the partition {E1 XeooX Er : Ei € E;i} of X(r). In
particular S(E,E') denotes tie sub-g-algcbra of (E(z) generated by



§2

1y

]
Ex & and por® denotes the restrioction of u(z) to 3(&,5'), i.e,
the measure uniquely defined on (X(z)’ s(&,E')) by

u5 8@ = u@®) , B e 5(5,E) .

= 1
Note that p‘°’€ has atoms S xTF , 5 ¢ &, T ¢ &' ,

Ifs e @ (r) then
(r=1)

7(B) = {x ¢ X : for some (%5000 xr) eX , (x1,x2,...,xr)e 5}

i x(r=1)

< = {(xz"O" xr) € : (x1’x2,cno,xr) € E} .

1

lieasurable Functions and Absolute Continuity

Iet (X, ® , u) be a measure space.

2.1 Definition If % C X tie cheracteristic function xE(x)
of 5 is defined as follors:-
( 1 s X €3
Xz(x) = <
0 , =xg35.

. n
f is a simple functon if f(x) = 2 2. XE(x) , where e, are real.
= i

o]

-

f is an elementary function if f(x) = 32 a; X, (x) , where 2,
i=1 ! )

are real,

2,2 Definition A real-valued fuiction £ on X is measurable if
for all Borel subsets Ii of [-oo, ) f-1 (i7) € B .
xE(x) is measurable if, and only if, T €%, The sum of

two measursble functions and multiples of a measursble function are



§3

15,

measurable, Pa further faots ebout measurabla fum tions, see

[7] ox [19].

2,3 Definition If v is another measure on (X, & ) then u is

absolutely continuous with respect to vyu << v, if u(3) = 0

viienever ¥(E) = 0 . p is equivalent to v if p << v << p .

2.4 Thearem (Radon-Nikodym) [7]1 [19]. If the measures u and v
are defined on (X, & ) and pu is absolutely continuous with respect
to v then there exists a finite valued measurable function f such

hat

u(B) = j
E
f is called tl» Radon-likodym derivative of u with respect to v .,

f(x) 4 v(x) y B e .

Tvio points on notation:- ir e E} will some times be used
instead of {x : f(x) ¢ B} ; inf f(x) is to be understood as

inf £(x) .
xeX

Integrable Functions

Let (X,(32 , u) be a measure space,

3.1 Definition A measurable elementery function
(=]
f(x) = 2

2 a, XEi(x) > 0 is integrable if I a, u(Ei) <« and

=1
[~ ]
its integral is then written éf(x) au(x) = z 8, u(g) .

1:1
In writing integrals we sometimes adopt the convention that f fau

stands far fx f(x) au(x) .



3.2 Definition An elemontary function £ 2 U ia integrable on &,

L e® if x (x) £(x) is integrable; we write S Xg £ ap = é £ du .

3.3 Definition A measurable function £(x) 2 0 is integrable on

H,

—

p(BE) < » , if there exists a sequence of elementary functions
£ (x) > 0 such that £ (x) A £(x) (n —> «) unifarnly on i ad

fn(x) is integreble onE (n =1, 2, ...) . Its integral over T

j £(x) du = 1lim j f‘n(x) ay .

B n"")z«»E

3.4 Definition A measurable function f(x) is integrable on B,

u(3) < w , if £7(x) and £ (x) are integrable on E, where

r £lx) , if £(x) 20

£ (x)

10 , if £(x) <0

£7(x)

‘( -f(x) , if f(x) €0
l 0 R if £(x) >0 ,

and then [ fap =/ au-/ ¢ ap .

3.5 Definition If (X, , p) is o-finite with X = i,

n

u(xn) < w, then £ is integrable if it is integrable on each

==}
X, end 2 ! '[X £ du | < w in which case we write
1 n



17,

)
1 n
For more detailsg of this approach ta intogration theary see [21] o

Write Lp(u) = {f: !£]P is integreble on (X, B, u)} ,
p=z1.

LP( 4) is a Banach algebra with norm
: 1/p
el = (11T e

provided that functions which are equal almost everywhere are
identified; [ is a linear functional on Lp(u), i.e.
£, gel, (n) inply f(a £ + B g)du=aftau+p[) gan

for all real a, (.

n
3.6 Theorem: Holder's Inequality [19]. Tetp>1, g > 1 and
1 1 )
5+E=1 , feLP(u),geLq(u). aenfgeL“(u) and

e elly < ligll, sl .

3.7 Theorem If f ¢ L1(p) , B € L1(p) and '/E £ du =f

58 au
for all & ¢ B then £ = g almost everywhere.

Proof Since [ is a linear functional on L,(u) , it is sufficient
to prove that fEf dp=0, Ee®, dimplies f = 0 almost

everywviere,



18,

x+1
Tot B = lrif g0 TRl k=0, 5, iy ns 0,

Then "k n € (E since £ is measurable and
3

o=j £ dy > -li-nu(E

2
Ek,n

k,n) I

I

i.e, u(Ek’n) 0 k>0, n=0,1, eeo o Similarly,

u(Ekn)=O k<-1, Bince {x : £f(x) 0} = U U
’ k=~ n=0
k#0,-1

“x ,
the result follows,

3.8 Definition  If ifn(x)}: is a semence of integrable functions
and f(x) € L, () then we say that
£ =>f (n = ) (pointwise) if for each x ¢ X and
& > 0 tiuere exists no(B, x) such that n > n, iaplies
[fn(x) - f(x)], <5 .

£ = f (n =—> ») almost everywhere if

fx s fn(x) - £(x) (0= w) ] is a mull set.

£, = f (n = «) almost unifarmly if

fx ¢ fn(x) > £(x) (n =—> ) uniformly} is a null set,
£, = f (n => ») in measure (in probability if
u(X) = 1) if pix : }fn(x) - £(x)

d >0,

> 5} ==> 0 (n => ) for each

£, —f (n => «) in L1(u) norm if[ifn - f[}1—> 0 (n —=>x),




1 9,
The reletionships betweon the various Yorms of convergence

are thoroughly discussed in [1 9].

A
3.9 Definition If £ is a partition of (X, B , ¢) and &
denotes the generated o-algsbra, a function £ : X —> [-oo,oo] is

A A
measurable with respect to £ if £ (B) € E for all Borel

subsets B of [=w, oo].

3,10 Definition  Let (X, (B , #) be a probability space, (B  be
& sub-g-algebra of 5 and 0 € f ¢ L, (#)e Then the set function
uf(B) defined by uf(B) =ffay (B« ®' ) is a finite measure on
CB' which is absolutelyBcontinuous with respect to the restriction
of pto B . ilence by 2.4 there exists E(f|(®B’) ¢ L, (1) which

is measurable with respect to @' such that

[

j- £y = j 2(e|® )ap, Be® .
B B

(f] B ), the conditional expectation of f with respect to®, is

only determined up to a null-set, since any two versions of B(f] B )

are equal almost everyvhere (replacing (B by @' in 3.7).

©

3411 Hartingale Theorem [2] Ir {En}o is a sequence of partitions

of the probability space (X, B , u) such that g, & (n = «) and

f is measurable vith respect to 2 then E(fy'én) —_— E(fzé) (n =3 ») .
If (Xi’ @i’ ui) (i =1, 2) are finite or o-finite measure

seqguences then (X1 x X2 ’ @1 x B o By X u2) denotes the direct

product of tie two measure spaces, i.e.



(B g % @2 = g-algebra genereted by thse ring of finite,
disjoint unions of sets of the form

Oy

uy X p, = measure uniquely detemired (see 1,3) by
By, x uy (By x B,) = u,(B,) u,(8,)
(Bi e(f:i) .

3.12 Fubini's Theorem [7, p. 148] If hoeL(u x “2) then

Jﬁ h dyu, € L, (/.11) , j h au, L2(u2) and

X2 X

[ el = | (| mag)am s | (] naw) .
X

Xy X X4 %5 1

8§ Topological lleasure Spaces

Let X be a compact, Hausdorff topological space, Ilieasurability

and measure are comected with the topology as follars:=-

4,1 Definition &

o-algebra generated by the compact subsets
of X,

a regular measure on ® , i.e. for all

B e CB

p(E) = inf u(V)

U open

=
"

= sup  u(C)
CC
C compact



§5

the r-fold direct product of (X, (B , W) with itself, 21.
(X(r), & (r), p(r%\i_s also compact and jlausdorff with respect to

the product topology [15] , r =2, 3, eee .

4.2 Defimition CF) = the Banach algsbra of all continucus,
real-valued functions £ defined on X(r),
provided with the unifarm topology, i.e.
the topology defined by the narm

el = sup  [£(x)] .
C(r) is & sub-algebra of the Bamch algebra L, (u(r)) .
al) < f2@) = 3 o, £16e)enntllx) ¢ 2y vosd
- - J‘ i i 1 se 0 i r - i ,
f'jt‘C(r)andx—(x x.) }
i = = R e .

G(r) is a subalgebra of C(r) .

Transformations

Let (X,l, ® 19 u,l) anl (Xz, B ,» p2) be measure spaces.

5.1 Definition The transfarmation T : X, = X, (X1 is the

donain of T) is measurable if A ¢ B, implies T 4 B, .

Tx is the image of x €X1 under T,

T is non-singular if it 14 measurable and if A ¢ ® 2 s
uy(4) = O implies p, (r7a) = o.

T is measure-preserving or a homomorpiism if it is measursble

and if A ¢ (3 > implies pZ(A) = iy (T‘1A) .



AL

T is one-one if Tx = Ty implies x = y. It is many-one if
at most & countable number of distinct points can lmve the same
image under T, If T is 1-1 onto and both T and 71 are homomorphisms
T is called an isomorphism. (X1, B 4 u1) and (X2, 13 o p2)

are then said to be isomorphic, If the two spaces coincide,

homomorphisms are called endomorphismg and isomorphisms, automorphisms.

The endamorphism T, of(X,, @ ps My) is isomorphic to the
endomorphism T, of (X1 , B 17 p1) if there is an isamerphism T from

X1 to X, such that 'l“I.'1=T T.

2
T (X, B, ) &, B

2

o9 “2) then T(r) denctes

the transformation from (Xgr), &1(1‘), ”1(1'))1;0 (Xgr), @R grz ng))

given by T(r)(x1, xr) = (Tx1, ceny ‘.'L‘xr) . Bimilarly, if T, is an

endomorphism of (Xi , B,

1 pi) (1 =1, 2) then T

1
T, x T, (x1, x2) = (T‘l xy, T, x2) is an endomorphism of

X T2 defined by

(X,I x Xos
to (X(I‘), ® (r)’ p(r)) .

If E CX, the restriotion of T to B, dencted by T:F,
is defined by Tj, x = Tx , x ¢ 3. If T : (%, 3 ,, u)—>(x,, 3 ,,u,)

B, x B o s By X [,12) , with the latter defined analogously

is measurable and non-singular then so is Tj.:
T{S : (L: E 0@1: ”133) -> (Xz, @25 ”2) » vhere

B n@.:1

T NB : 36(31}

ug® = w@, ?ennb, .

T E=Ee @1 and T is measure-preserving then so is TIE .



23,

If (Xi, 8%) 1 yi) are ocompact llausdorff mpasure spaces

1

(1 =1, 2) then T is continuous if T 0, is open for all open

2

sets 02 C X2 .
A measurebls non-singular transformation T of (X, (B , u)
is ergodic if T B =3 ¢® implies u(E) = 0 or u(X-E) = 0 .

Sucll sets £ are invariant under T.

5.2 Theaem [8] T is ergodic if, and only if, £(Tx) = £(x),
where f is a measurable function, implies f(x) = constant almost

everywiere, Such functions f are invariant under T.

5.3 Theorem If T is an ergodic endomorphism of (X, & , u) which
preserves another measure v equivalent to u then gy = ¢ v where ¢ is

a positive constant.

Proof Denoting the Radon-Nikodym derivative of u with respect to v

d . d
by iﬁ ,me have u(%) =fE a—% (x) av

%‘5 (x) dv

f-1

T &

.J/_E.%u;(m)dv,'x?eﬁ .

If pu(X) € » , i,e, %“; € L1(v) then 3,7 can be applied, giving that

4y _ du
7= (™) = T (x) almost everywhere,
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In the ganexel oasa, write £(x) = %(x) and
CF = fx : () > f(x)} . ThenC* ¢ B , and for each n,
0 s p(c* NX ) < o where {xn}j is a o-Cinite partition of X with
respset to the measure u., Thus

j‘ £(Tx) dv j P(x) dv < o ,

ctnx ¢tn X

i.e. j f2(mx) - £(x)} av = 0 .

ctrE,
Putting T — .k k+1 } .
utting By © fx : ;E s £(Tx) - £(x) < ZE— and using the argument

of 3.7 we see that v(C" annEk,m) =0,k=1, 2, ves ,

m=0,1, s o Hence v(C*) = 0, Similarly, *“ =

6T = fx: £(mx) < £(x)} = ¢ (mod 0).

Thus %%(Tx) = -‘_%'(x) almost everywhere.

5.2 now implies that %ﬁ(x) = ¢ alnost everywhere, c¢ > O
since u and v are both non-negative set functions which take positive

values fa some sets. [/

5.4 Definition A subset J of the positive integers has densily

§(3) = 0 if 1lim :r_x_({) = 0, wherc vn(J) = number of inmtegers
2w n

between 1 and n indlusive waiel belong to J.
If T is an endomorphism of a probability space (X, ®& ,u)
then T is weak mixing if any of the following three conditions

holds:-
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n~1

% E [u(A N T7B) - p(a) u(B) ~—> 0 (o —> =)
0
for 411
n-1
175 (@ n ™) - w@) 1B — @— «) ab e B

p(A N TB) —> pu(a) u®) (n=> o, n £ 3, 8(3) = 0)

The three definitions of weak mixing are equivalent, since the
forms of convergence to which they correspond are equivalent for bounded

sequences of real numbers.

5.5 Definition T has ergodic index ek(T) = r if

v ergodic , 1 €3 <r

T(s') is \
1 not ergodic , r < s ,
1
Clearly, 7(s) ergodio implies 2(s") ergodic for all 1 < s' < s. If
o(s)

is ergodic for all positive integers s then we put ek(T) = « ,

while if T is not ergodic we put ek (T) = 0

5.6 Theorem [13] If T is an endomorphism of the finite measure
space (X, B, p) then ek(T) = 0, 1 or o .

Proof It suffices to prove that T(2) ergodic implies T(n) ergodic
for n> 2, Now T(z) is ergodic if, and only if, T is weak mixing
[8, p. 39]. S weak mixing amdl T weak mixing imply S x T weak mixing,

since for bounded sequences of real numbers {a.n}, {bn} »

a ~=a (n=> o ny o S(Ja) 0) and

b —>b (n=> o, ng Ty S(Jb) 0) imply a b —> ab(mr—> o,
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n o ‘Ta. U Ty » 8(Ja U Jb) = 0) : see 5.6, PuttingsS = T(n) and

using induction gives the required result. //
Let %(r) denote the class of sequences of positive integer

r-tuples A% = (k. , oo, k) such that

lim inf Ikl-ki! = o . T is mixing of degree r if
s 1gicjsr .
~x! -iF
o n n
n_l_f: uE Nt Ey Mo T Er) = p(Eo)...u(Er)

-1

for all {A¥} eg(r) andEieGb (0 sis<r).

n’o
This definition is equivalent to the uswal definition of
nixing of degree r[32]. Also if T is mixing of degree r it is mixing
of all degrees less than r,
¥Wien r = 1 wve say that T is mixing, sinmply.

A partition £ of (X,® , u) is a generator of T if

<o

V " £ =¢ (mod 0), T is said to be exact [32] if it has a generatar

n=o0 =)

£ such that A T 2 & = v (mod 0) when v = {X}. Since the definition
n=0

of exactness only depends on the null sets of u we can, and do, extend

the definition to o-finite endomorphisms (see for example [28] ).

5.7 Ergodic Theorem [24]

If T is a finite or o-finite endomorphism of the measure
space (X, B , y) and £ « L, (p) then
n-1

I f (lecc) —> £*(x) (n —=> ») almost everywhere and
. 2

1
n

in L1(u) norn



£* € L, (p) emd £*(Tx) = £%(x) almost everywhere,

If u(X) < w then [ £ ap=/[f*ap.

5.8 Corollary If T is e finite endomorphism then the ergodioity
of T is equivalent to the following condition :-

n-1

2 planrEp) — £8) ulB
0

e (n = ) for all

A, Be@B .

Bl

Proof If the Cesaro convergence of measures holds and

2
E=T % e¢® ,put A=B =E to give u(E) = pEX .

Conversely, the Ergodic Thearem implies

n-1

% 2 £(x) g(T‘kx) —> £(x) g*(x) (n => &) in L1(p) norm if £(x)
o :

is a bounded function. Put f = Xps 8 = XB and integrate term by

term (norm convergence implies convergence of the sequences of

integrals, //

5.9 Corollary Mixing implies week mixing implies ergodicity.

Proof Ordinary convergence implies strong Ceshro convergence implies

weak Cesfro convergence. //

5,10 Thearem [12, p.405] TLet T be an endomorphism of the o-finite
measure space (X,B , #). Then there exists an invariant set C,
unique up to mull sets, suwoh that 0 < f € L, () , xeC and

o o0
2 £ (T™) > 0 implies that £ £(T'x) = o . C is the conservative
o o

27.



part f T, D =X ~C is the digsipative porrt of T,

If X=C (mod 0) , T is conservative.

5.11 Definition W e®B is a wandering set of T if

WAT "W = n=1, 2, see »

28.

5,12 Thearem T as defined in 5,10 is conservative if, and only if,

it has no wandering sets of positive measure.

-]

Proof Let ixn} 4 denote any o-finite partition of X. For

Ee® , u(B) <w, put fE(x) = 3 X (%)
(o]

—_— ] oo -n
andl%anE= n U TYE
mM=0 nN=m

fx : ™ x ¢ E infinitely often} .

Clearly fi(x) = = if, armd only if, x ¢ ?L-nﬁf T B, Thus

C:T#T-nEU{fE=OZ .

Suppose T is conservative and that E ¢ & is a wandering
set of positive measure. There is no loss of generality in assuming
that p(E) < « , since 0 < u B ﬂXn) < w for some n and E QXn is

a wandering set, -
0, xfYT E
fE(x) =

Thus D # ¢{mod O) , which contradicts the assumption that T is

conservative, IHence T has no wandering sets of positive measure.
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1
Suppost T is not conservative, i,e. u(D) > 0. Then there
exists Ee(® , u(B) >0, ECD ; fa example, D NX for some

n. Put
F =

oCs8
=
e
)
_\C
+3

F is a wandering set, since T commutes with set-theoretic difference
= =]

[¢ o] [¢ o]
and countsble union and also V) PR EC J PR C Y PR

oC8

(m = 1’ 2’ (XY} ) . If u(F) = 0 then HT-n E = T-n E (mOd 0)
(m=1,2 ...) and Iim 0 g =Y T7E (mod 0) . It follows

that E C 6 (mod 0) which contradicts E C D, Hence u(F) > 0. 4/

5.13 Hopf Ergodic Theorem [11] Let T be a conservative endo-

morphism of the o-finite measure space (X, B, i)

Then far f ¢ L1(u) s, 0sge L1(p)

Sl
z £(T x)
lim o =h, g(x) exists end is finite almost every-
]

i g &(T%)

where on {x : I g(T%) > 0}. h, g(x) is invariant and
o 3

ffdu=fghf’gdp .

Applying the principle of ignaring null sets, we say that
endomorphisms T, of (Xi,@i, ui) (i =1, 2) respectively are almost
isomorphic if after discarding null sets from either a both of
X,‘ s X2 the resulting endomorphisms are isomorphic,

It follows easily that if Ty is an endomorphism of (X5’ @5, uz’)

such that T1 x T-3 is not isomorphic to T, x T, then T, cammot be

2" 73

isomorphic to T,. 1In other wards T, isomorphic to T x T

3

implies T

2 1
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jisomorphic to T, X T A quantitative or qualitative function ¢ (T)

2 3°

of the endomorphism T is said to be a metric invariant if S isomorphic

to T implies ¢(8) = ¢(T). MNixing and ergodicity arc cxamples of
qualitative invariants, vhile one of the most powerful quantitative

metric invariants is entropy.

5.14 Definition Let T be an endomorphism of the probability space
[e0]
(X, B, p) and &€ = iEn;‘l be a countable partition of X.

o
The entropy [2] of E with respect to u is Hu(E) == u(En)logu(En) .
n=1

If £ is uncountable we define Hu(E) = e

Z, = { partitions E:Hu(E) < o,

If E ,ne¢ Zu the conditional entropy of &€ relative to n is

H(eln) = 2 uEn¥)log H(E.’T) The main properties of partition
H Eeg |73 (F)

Fen
entropy are as follows: -

1) 0 % Hu(gln) € o ; %gg}n) = 0 if and only if £ < n (mod 0)

2) H, (Ev nlg) = Hp(alz;) + Hu(nia v Z)

3) Hp(Eln) < Hu(a_;ln) if E <

[

L) Hu(gln) > Hu(g!v) ifnsy .

5) H(&vlz) < B,(&2) + B (0l2)

~1 -1 _ !
6) Hu(T E|T Z) = H,(& {n) ,

where T_1 E={7 B : EfE},

7) Hu(g) = Hu(Eiv) .
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n-1 .
5.15 Theorem [2] H,(T, &) = lim du (v 1 E) exists for
H o - P i=o

all €2 .
2 H

5.16 Definition [2] The entropy or Kolmogorov-Sinai invariant of

T with respsct to ¢ , h (T) = sup h (T, E) .
H EeZ# H

5.17 Theorem [2] If T, is an endomorphism of (Xi, CBi’ ui)

(1 =1, 2) then T, almost isomorphic to T, implies that

1
h#1 (T1) = hpz(Tz) .

5.18 Theaenm [2] IfE ¢ Z# is a generator of the endomorphism T
of (X, ®, u) then h#(T) = h#(T’ ) .

For futher properties of hp(T) ,see [2] .

5.19 Definition An endomorphism T of the measure space (X, B, k)
is periodic with period n if there exists & positive integer n such

tha.tTnx=x,xeX.

5.20 Theorem If the endomorphism T of the non-atomic Lebesgue

space (X, B3, u) is pariodic then h#(T) = 0 and T is not ergodic,
kn-1 - k-1 -3

Proof vV T%=V T &€(k=1,2, ...)andso h (T, E)=0,
i=o i=o H

where n is the period of T,

Since y is non-atomic there exists a set E ¢ ® with
n-1 .
0 < u(B) < ':-1 - B =Y 7' E is invariant as T has period n, amd

0 < u(En) < n p(E) <1. Thus T is not ergodic. //



32,

§ Markov and Bernoulli Shifts

A measure-preserving transformation T on a finite or o-finite

measure space (X, (B ,pu) is said to be a Markov shift or M-shift if
N

T has a generator & = {an , Where O < N € » , such that
o

F(Xh‘n...nT’&‘Xn&\ = {‘-(Xn‘(_g '”‘TAX“K)
-(R-1
M (Xnon.../\T(_ ,Xnn,,) I"(Xn.“_q)

for 211 0 sn.<s N, r =0, 1, ..., k provided all the measures involved

are positive. The set {0, 1) eees N} is the state space of the

M-shift. ~
- w(x, T X,)

Putting A = u(Xn) and Py = u(Xi) ,
Wwe see that A 2 0, § Py; = 1, Aj = i Ai P 5 and that(X, @ ,u,T)

is isomarphic to the shift (Q, 301, m, S) defined as follows:-

Qn = ioy sesy N; sy n=1, 2, «ia
o0

O = 1I0Q

n n
1

0L = o-algebra of measwsable sets generated by the

cylinders {w U, =1, eeey wn+k = 1k§
0<i <N (r =0, 1, ccuy k)
and n=0, 1, ... s

m = measure uniquely determined by the equations
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I

=
\:;4

1

>
-

n(fo : o

n{fw :

ijl'.,w =i;)=A. P. s ees Do .
0 n+k k 1, "1, 1y g i

[
n
(the uniqueness follows by the Kolmogorov Extension Theorem (19, p.159] )

(Sw)n = @, 4 » Where o = (w1, Py e,

nyees
W¥e note that S preserves m, since the measure of a cylinder is
independent of its initial co-ordinate, and that m is finite if, and
only if Ig. An < o e

n=0

Writing A fa the N + 1 dimensional vector (Ao, sees 7&\1)
and P for the (N+1) x (N+1) matrix (Pij)’ the pair (Z\_, P) determines
the Markov shift T up to isomorphism, TVhen talking of M-shifts we
shall some times refer to (A, P) as the l-shift., In particular, a

shift (Q, 70, m, S) defined as sbove in terms of (A, P) is an

- '] 3 > . .. = . = . P .o -

H-shif't if An o, PiJ =z 0, 2:‘; le 1 and AJ i Al le, i,e

A = AP in matrix form (Xn = {w: w, = n} farm a generator for S),
0, 143

Let pij(O) =
1, i=
p;;{1) = py;
and Pij(n) = I Pgq »ee Py 3 o D>
11’...’11'1-1 1 n—1

Then we see by induction that Pn, the nth power of P, is the matrix

(py5(n)). Also, u(x; NT77X,) = A pyy(n) .
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Define fiJ(O) =0

fij“) = pij

f,.(n) = = Pis ees D sy n>1
ij r}, ii i oL

i #d 1 n=-1
r=1,,..,0=-1
n~i
The relation between Pij(n) and fij(n) is pij(n) = rzofij(n-r_)pjj(r)

which can be expressed in terms of generating functions

F..(Z) = ;

o0
n
1 2 fij(n) z and Pij(z) = §

n=0
(Fij(z) ps;(2) » 1A

n
pij(n) z by

Pij(z) =
Lz'ii(z) Pii(z) +1 i=3j.

For the following definiti ons, we follow [30].

The M-shift (A, P) is irreducible if for any states i, j
there exists a positive integer n such that Pij(n) > 0, Unless
otherwise stated, all H-shifts in the sequel will be irreducible.

0
The state 1 is transient if 2

ne0 pii(n) < oy

positive recurrent if I pii(n) = o amd
n=0

n§1 n fii(n) < o

mill-recurrent if I

A pii(n) = o and

n21 n fii(n) = .
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\n
°

aperiodie if pii(n) > 0 for all large enaugh n.
Wo eonsider only aperiodic M-shifts,
6.4 Theorem If (A, P) is irreducible and aperiodic, all states are of

the same type, ie, transient, positive recurrent or null recurrent

[5, p. 3551].

n-1
For all states i, Iim JI;- z Pii(k) exists. i is positive
n~>eo o
4 n-1
recwrrent if, and only if, 1lim 3 p,(k) >0 [30] .
Ir=>w

One can therefore talk of a transient, positive recurrent ar

null recurrent H-shif't.

6.2 Theorem Given two K=-shifts (A, P) = (Q,30, m, S) and

(A" P') (Q'J—W‘”" m', S') with Qn = Q;l = 50, 1y oo }: n=1,2, ..

t ) .
I11 (nn X nn) y b
m' = g-algebra generated by the cylinders .. -

let Q"

" (s :
r (11.’ JI‘)} L

{w" : w.;; = (ioy jo)’--ox wn

n" = measure uniquely detemined by the equation

m"(iw" : w; = (iO’ jo)a asey w;"H-I‘ = (ir, vjr)})

i
>
>

o . P . P'. s see D
1 Jo to ™ '3031 1

. p'. X
r-1 v dp-q I
Then (0 x Q' ,¥0LxT0 , m x m', S x8') is isomorphic to
(Qll’m”, mu, S").
foe
1

Proof Define ¢ : 2 x Q! —=> Q" by ¢(w, ') = {(wn,w;l)} , Where
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[e] - -]
w = {wn}1 and. &' = imﬁh . Clearly ¢ is 1-1 onto. It is measursble
since

-1 s s s
‘/’ iw" : w;".l = (10330),--~s w;',x-:-r = (1r: Jr)}

= [ e Gy = dgs eeer €= ir} x {at o = ‘jo""’wx'1+r = jr}

and the ring of finite disjoint unions of oylinders generates the
measurd le subsets in each respective sequence space. ¢ is masure-
preserving by the definitions of m", Finally,

B =8%. /

6.3 Theorem [13] If T is an M-shift on the o-finite measure smpace
(X, B, p) then T is ergodic if, and only if, it is irreducible and

recurrent (positive or mull),

6.k Corollary If (Q,70, m, S) amd (Q',7M’, n', S') are N-shifts
preserving o~finite measure such that S x S' is irreducible then

S x 8' is ergodic if, and only if, it is recurrent,

Proof By 6.2, S x8' is isomorphic to S" as defined in 6.2, Clearly
S" is an irreducible M=-shif t preserving o-finite measure. The result

follows from 6.3 noting that ergodicity is a metric invariant. //

The next result shows that the recurrence in 6.3 and 6.4 is null

recurrence,

6.5 Thearem Let T = (A, B) be an irreducible M-shift,
(i) If T is transient the only measure preserved by T is the

trivial ore u(E) = 0 far allE ¢ .
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(ii) If T is positive recurrent is preserves a finite measure.

(111) If T is null-recurrent it preserves a o-finite measure.

In (ii) and (iii) the invariant measure is unique up to constant

multiples,

Proof (i) 2 Pii(n) < « implies that pii(n) ~—> 0 (n —> »). Simce
o

. n
pii(2n) = pij(n) P,ji(n)’ it follows that P° —> 0, the zero
(W +1) x (W + 1) matrix, (n —> ). For A to satisfy AP = A, we
must have APn =A for alln, i.e. A=0. :
N

(ii) [30] There is a unique vector A = AP with I An =1 ,
o

(1i1) [30] There is a unique vector A = AP with Z A = .

o]

The uniqueness of the invariant measure in (ii) and (iii) follows from

the ergodicity of T (I. 5.3). //

6.6 Definition (A , P) is a Bernoulli shift or Bernoulli endomarphism

Py

§6, m(iw H wn = 10’ sesey wn+k

if /\j =Dy for a1l i, j. Thus, with the notation at the begimming of

= ik;) = 7\10... Aik. We shall sometimes

use A to denote the associated Bernoulli shif't.
N

6.7 Theorem (i) The entropy of the Bernoulli shift A dis - Z A log A .
1

(i1) Every Bernoulli shift is mixing of £l1 degrees.,

Proof (i) See for example [2]

(ii) ILet r be a positive integer, A, ..., A, be cylinders and
r 1 'kn ‘kn

- r (r)
An = (kn} sen kn) € 9 . Then AO, T 'A1""’T Ar
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are oylinders depending on sets of oo~ordinates which are

pairwise disjoint if n is large enough, Hence for large
enough n
A -
u(A, AT NN T A) = p(A))een(h)

The result follows, since the cylinders generate the measurable sets. /

Renewal Sequences

(o5

7.1 Definition [18] A sequence p = {pnio of real numbers is a
. n
reneval sequence if p =1, D=2, r1+.%.+rk=hfr1'" frk (n21),

©0
whereOsfn ad 8551.
n=1

This can be expressed in terms of generating fumctions:

P(z) = Zp 2" and F(z) =
o B

n . 1
f 2z satisfy P(z) = 50T The

series F(z) and P(z) were called by T. Kaluza "reciprocal power series"
[14], and we shall sometimes write FB(z) far the power series

reciprocal to P(z). A very impartant subclass of renewal sequences was
studied by him, although in a different context to the present one. It

was rediscovered by J. Lamperti [21] and developed by J.F.C.Kingman

(18],

(o5

7.2 Definiti on [18] A sequence ipn;o of real numbers is a Xaluza

sequence if Py = 1, 0 sp <1 and pi for all n.

<
n pn-'I pn+1

7.3 Theorem [18] If P is a Kdluza sequence then P, 2 p for all n,

n+1
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P
Proof Tet w = B | Thenu < u . Also by induction

Pp =Y eee W o P 2P g if, and only if, U, g € 1, ©Supposse

u, > 1 for some no. Then u, > 1 for all n > no, in particular
o

un>1+s for some € > 0, Thus p >u

n
n_+n 400 Yy (1 +¢) >

o)

(n => ©) . This contradicts the boundedness of p . //

7.4 Theorem [24] If p is 2 Kaluza sequence then it is a renewal

sequelce,
P
Proof The proof of 7.3 implies that lim —=X1 exists end does not
Ir>co n

exceed 1. Hence P(z) converges for |z| < 1. So does F(z), since it is

the reciprocal power series of P(z). However, the relation between F

and P holds irrespective of the value of z since it follows on equating
. . n ., . .

coefficients of z in the identity P(z) = F(z) P(z) + 1. Now

oo
1 $P(2) € if 0 €z and so I £ €1,

An induction shows that ;n 2 0 for all n:
n
O=p,- 2 P, %),
v=1
n
fn+1 = P v§1 Pp-vst v
n
and hence fn+1 Ph =v§1 (pn-v Pret 7 Pnovsd Pn) fv ; since
Pni Pn Py

————— — > a ——— LA K ] ; i 3 L]
P 2 Py 2 eee D, R f,' Z 0, veey fn 0 imply fn+1 0

The first step of the induction is given by f1 =Py . //
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-]

7.5 Definition [16] A renewsl sequence ipn}o is infinitely divisible

(==
if ip;tx}o s Where P; denotes 1 raised to the power t, is a renewal

sequence for all t > 0O,
The defining inequality for Kaluza sequences gives the

following

7.6 Theorem [16] BEvery Kaluza sequence is infinitely divisible.

We mention the interesting converse to 7.6.

7.7 Thearem [16] Every zero-free infinitely divisible renewal sequence
is a Kaluza sequence,

Anticipating Chapter IV, we shall use the same notation far
reneval sequences as we have done fa M-shifts,

o]

7.8 Definition A renewal sequence p = {p } is said to be

n'o
transient if % P <
o] o]
positive recurrent if L p = wand 2 n f < o
6 °n 1 n
oo} oo}
nmull recurrent if Z p = wand I nf = o
6 “n n

1

aperiodic if P, > 0 for n large encaugh,

7.9 Theorem If p is a Kaluza sequence then either it has only a finite
mumber of positive terms or it is aperiodic.
Proof By 7.3 any zero in p is followed by zeros, ,/

When p is a recurrent Kaluza sequence, f’n grows more sl owly

than P ¢
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f
7.9 Theorem If p is Keluza and roourront then 55 —> 0 (n —>ov).
n \
f n pn_s n
Proof —= =1 -2 f £1 -3 £ .
Py 7 8 pn 1 8
Hence 0 ¢ im 5— 0. /
n
Continuwed Fractions
8.1 Definiti on If x is a real number the integer part of x is

defined ag theg@uiest integer [x] €£x, Thus x -1« [x] € X.

The fractional part of x is defined by (%) = x - [x]. Thus

0 < (x) < 1.
If £ ig a 1-1 real-valued function of a real variable then

f_1 denotes the functicnal inverse of f : f(f-1 x) = X.

8.2 Definition An nth order continued fraction is an expression of

the farm

a_ + 1 — ?

1 Q+.,.+.’.\_
*

where By wee B are real numbers. Ve shall always write such a
continued fraction as

1 1
8t 2t aa+r "t o+
1 2

Ll
a

o]
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If lim (ao + S see "L-) exists, we denote it by

a,+ + a
oo 1 n
a + " 1 ewe ard refer to it as an infinite continued fraction.
o o+ a2+

Since a_ + - cee L is obtained by a finite number of
0 A+ +a,

rational operations on Bor sees 205 it can be represented as the ratio
of two polynomials,

P(ao,ooo, a-n)

ICTT a )

in & yesas By with integral coefficients. This representation is not
unique since in evaluating the finite continued fraction a factar
common to numerator and denominator may occur, To overcome the

ambiguity we define-g 'canonically' [17] :

P(ao) .
Qiaos o
P(ao,...,an) .. 1 oL L oy
- - H
Q(ao,...,arp o a-1+l... . 1 o’ r,
a.+ + a

2 n

T is an (n - 1) st order continued fraction with canonical representation

t
T, = -E—,- , say. ‘e then define

P(ao,...,&n) .9:
= a_ +=7 = ; ,
Q(ao:u-,an) o P P

i.e. P(ao,..., an) =ap'+q', Q(ao,..., a.n) = p' . The definition

is now completed by induction.



P(aseerss)

is the nth convergent o partial quotient

Q(aoJ ese 1an7
A i
a + a *ow @ a *

o] + +
1 n

For more details abaut continued fractions, see [17] .

of

L3,
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CIAPTER II.

Characterisations of Mixing Properties for Measure-

Preserving Transformations.

S1 Introduction

N, Oishi [15 ] characterised mixing, weak mixing and ergodieity of
finite measure-preserving transformations in terms of convergence of
suitably defined entropies. We have extended the convergence criterion
from all finite partitions to all partitions with finite entropy and also
characterised mixing of degree r in the same way. Further characterisations
in terms of convergeﬁce of suitably defined measures and, in the case of a
topological measure space, weak convergencc of the same measures are given.

It is shown that these results are the 'best possible’,

§2 A lomme
Throughout this chapter, T will denote a measure-preserving

trensformation of the non-~atomic Lebesgue space (X, R , P)-
If y is another probebility measure on (X, ®), we define

log %% dy , if y is absolutely continuous
X

Hp(x) with respect to p

+ o otherwise

where %g- denotes the Radon~Nikodym derivative of y with respect to p.

2.1 Lemma [2-5] Let {y1, ¥ps3 ese ! be a sequence of probability measures on

(X, ®) such that y <cp for alln, vhere c 2 1 is a constant then
n



B’n(E) — p(E) (n — ») uniformly for E ¢ (B
if', and only if

lim Hp(xn) = 0,
m=>w

&y
Proof, Since, by assumption, j(.(ﬁ- - c)dp < O
B

. dy, :
for all E € &, T S° P- almost everywhere for each n . xn(E) — p(E)
dy
(n = ») uniformly for E € Zj if, and only if, EP;I}-—-» 1 (n—> ) in

L, (p) norm, since, on the one hand,

d
@ -e@l < [ 152 - e
X

while, on the other, if S = f = >1 i » S €3 and

dp
ay 4y dy
£ - 1] a (== -1)ap + f (1 - In)ap
fx | P e ~/ dp dp

5 &S

i

1}

| ¥ (8) - p(3) | + 1 »(88) - n() | .
Suppose Hp(xn) —> 0 (n—> ») . Since

xlogx;x-1+';—c(x—1)2 for any x with O<x s¢ ,

dy 2
1 ___11-1) dp 20 for each n ,
Hp(xn) > 5= f(dp
X

dy
Hence ?1-52 —> 1 (n —=—> ») in I‘Z(p) norm and so also in L, (p) norm (by

Holder's inequality, (j | £] dp)2 < []f|2 dp for f € Lz(p))

dy
Conversely, let -EI-I; —> 1 (n-—> ) in L, (p) norm.
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dy
?1-@2 ~—> 1 (n => o) in probability, since for all e > O
dy dy
{ {
n n |
sp(En’s)s j | o 1ldp < j l 3 - lide
E X
where E = { | == 1] 2¢1.
n,e dp

Now |x log x| < |x - 1] -1-12-(:{--1)2 for any x > 0 , so that

dyy 1 ¥n . cqs
& le—g — 0 (n =~ ) in probability .
d
[Xn log =2 | < Max[c log ¢, ~ 1o 1] = K, say, for all n
d’_p dp = g ’ o g e - ’ s .
~ dy dy dy dy
n n n n
[JI = log—5 dp Isj | 57 toe 7= | @
X X
dy dy { ¥ dy
' n n n n
= — — —_— ——
jl & s g la o+ j 5 108 3 lep
En,s EEH;B
<Kp (En, E)+ss .
Hence

Lin H(r)=0. /
~>e0
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8% The Characterisations
Let

(™) = {(x, ™) : x e X} ,

p, denote the measure defined on (X(z), 68(2)) by
b (8 = olr [Bee(t™}], = e®® |

8,6"
T denotes the restriction of By to the o-algebra

S(6 6') generated by 6 x 8' , 6, 6' being finite partitions of X ,

for which we also define

1 (9% 6) (& x P)1og Lo

0 x = z U (B x F)log
Hn Ee6,Fes’ O u(® x F)
341 Theorem. The following are equivalent:-

(i) mis nixing

(11) 2 (ex6') =—>H(6x6') (n~— ) for all 6,6' €2

Ho H P

(i11) un(Ii) —> p (M) (n—> ) for 21l Jordan measurable MECB(Z) .

Proof. (i) <=> (ii): We first consider the casc of finite 6,8" [2z5] .

6,6

Y (E x F)
—L— (x,¥)= & Yoo (%, 3) Fn
3 8,8 4 = Eee,Fee' ExF » m G
u ( 5
8,8°
du_ " _ 6,6 5 ) |
. f o =i T AT = memes | WEET) - wExE) |
X L
du

Hence T is mixing if, and only if ,

0,6"
&y, 6 ,6"

—t—r— > (n —> ) in L1(u ) norm for all finite
¢
du



partitiens

and only if, for all finite 6,6',

4 8.

8,8' . The proof of 2.1 now implies that T is mixing if,

( !
20w — W@ (2 )

uniformly for X ¢ 3(8, 6') .

The result for finite 6,8' follows from 2.1, noting that

a, 6,6"
’; Z < Hax = —— ,
a”? Feg' p(F)
H p(F)#0
6,8"
T (6x6') = H 9,6 !
#n( 8 ) u’? (ﬂn )

and H (9x8')= H(6x8 ~ T 6x8') .
Loxe) s B (0x0) - T, (6% 6)

n

n

Now let 4, 8' ¢ ZP be infinite. hey can be at most countable.

Thus 6 x 8' = {D1, D2, oo } s Where Dk are disjoint, mcasurable
rectangles.
=11
7 (ex6') = H(6v T @'
y(ox0) = B )
< H (86 H (8!
o ) + P(e )
= Hu(e x 6'), far each n ,
Thus Egn? Hu (6 x6') < Hu(a x 0') . Let g, be the partition of x(z)
n
o«
givenby g = {D1, Dyy ess 5 D, U Dkl . Then § 76 x 6
k=n+1

(n —> ) s, 8ince cach set of gn is a union of (at most two) sets of

gn+1 , while if 75 2 gn for all n, ecach Dn is a union of sets of 7

and hence

6x 6" <s17.
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By the first part of the preof,

Huk(?én) - H“(En) (xk=> w) for each n , Also

3 () <« B (0 x 6') which implies that
“kgn "

dim ' .
Hu(e‘-;n) < X H“k(e x9') foreach n. Let n——> w :
H(ex o) < -:-%E H (0 x 0') ; hence
T i
. = ' '
H (6 x 0') s-l—lgiH (6 x o) s]‘kmhy(exe) SHu(exO),
H ko ug k
i.ce H(0x0') = 1im H (6 x6') .
K >0 “n

(i1) = (i) follows trivially from the first part of the proof, since

gvery finite 6 is in Zp .

(1) <=> (4ii) ¢ T is mixing if, and only if, pn(m) ~ (i) (n = )
for a1l ¥ ¢ R, by the finite additivity of measures. (iii) => (i)
follows at once, since cvery set in R 1is Jordan measurable.

Let T be mixing and M, Jordan measursble., For all positive

integers n, there exist R and Sn such that

1
MDOR €R , u(M -Rn) <=
. 1
MCS e R, "'(Sn"M)<n

<o o0
Hence  p(XM -y Rn) = 0= u(@ Sn-M)
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i.e. u( ;;Rn) = [J(M) = u ( E;Sn)

N

Let Iy = :)Rn. Then I € R and Ile:) R, (V=) .
Hence pk(IN) 2 b (:I Rn) (N —> ») far each k
Wiy 2w (U R) (W= )
1
and uk(IN) —_— u(IN) (k => ») for each N ,
N e
Let Jy = ? S, « Then Jg ¢R and JH\? S, (N=—> ) .

Hence pk(JN) Ny pk(r\ Sn) (N =—> ») for each Xk
1
(@Y N s) N— )
1
and “k(JN) — u(JN) (k => ) for each N .

pk(IN) < pk(M) < uk(JN) for cach k and N, Keeping N fixed,
let k—> « :

wIy) < %@  (36)

/5%
[
~ |

uk(M) < u (JN) .« Tot N=—> o .

u() s ;_licg m () < Tim p 01) < u(w) ,

i.e. u) = lm p (@) . g
k



3.2 Lemma., T(z) preserves Hy for each n ,

7{G(T™) v (21'(2))'1 Bl = T 7{6(T") Bl for all E ¢ (}3‘(2) /

(2)

Since T also preserves pu , one might conjecture that

T is mixing if, and only if, hy (T(z)) - hp(T(z)) (n = »)
n

where hp (T(z)) is the Kolmcrorov-Sinai invariant of T(z) with respect
n

to By e That the conjecture is false is shown by

3.3 Theoren (X(z),!ﬁ?(z), no o T(z)) is almost isomorphic to

(X: & s P» T)

Proof  Since u is concentrated on &(1") , x(2) . (") is a

un—null sct,

Lot ¢n(x) = (x, ™ x), xeX. ¢, 1is one-to-onc onto () .

It is mcasurable and measure-preserving, since
-1 -1/
by (B) = ¢ EATY) ) =7 [ Boae(Th] .

Finally T(2)¢h(x) = ¢n(T‘) for all x ¢ X 357

3. Corollary h (T(z)) = hp(T)

n

Proof Almost isomorphic transformations have the same entrqu:;7
/

3.5 Corollary b (r{2)y —, hp(T(z)) (n —> ) if, and only if ,
n




hT:O 0 o
(™) or

proof b (2¢2) = 2 (1) .
Broof b 0

The conjecture is disproved sinece, on the onc hand, Bernoulli
endomorphisms with countable state spacec are mixing yeot have finite, positive
entropy, while on the other hand, periodic cndomorphisms of non-atomic
lebesgue spaces are not ergodic yect have zero entropy.

One might also ask whethor (iii) of 3.1 could not be replaced
by
(311) " b () = u(i) (n—> ) foral ue®P)

This is answcred in the negative by
3,6 Theorcn (™)) = 0 foralln.

Proof  p(e(r™)) = ] ple(r™) Jap jf

X
n . n
vihere {T x} denotes the point set T x ,

p({1 x})ap

X

= 0 since p is non-atomic . /

t <0
(iii1) is falsc for U G(T") €@ (2) , since
1

um(zj (™) = 1 far cach m, but g(h) (™) = 0.

3.7 Theorem The folloving are cyuivalent:-

(i) T is week mixing

n-1 .
(11) 2 2 H#I_(e-xef) —> H, (0x6') (n==> o) forall 6,6' ¢2_

‘9



1 0=t 2

s I [0 - p)] — 0 (n=> )

; n=1 for all Jordan (2)
(iii) = 3 ka(M) - (M) | ~=—> 0 (n=> ) { measurable M € 5

un(M) —> p(1) (n=>w,n¢J, 8(J) =0)
Proof (i) <=> (ii) : For finite @, 6' [A5 ], the result follows from

n-1 ( ( 4 n-1 ( )
1 H (6x8') = H(0 x08')=-= & I (0xo
i 3 He n o Py

1z
and, 5. 2 €0, T

1 n-1
< 3 T LI (6 x o)
Eeo, Feo?
u(E x F)£ 0
L B x B) ] 5 L () o) P
$= 2 (pExF) -puExTF)| += z 1 - z ExF)-u(ExF)
n ook 2 geo,Pe0' T(mE) * © " ’
u(ExF) 70
1
where ¢ = Hax . The latt incqualiti arc obtained b tti
c ooy -P;(-ﬂ e er incqualitics C ained by pu’ ing
p(F)# 0
d”ke’e' 1 2 1 2
X = —s— in the inequalities x -1 + 55(x-1)%< x log x € [x-1]45(x-1)" ,
dp~?

!
for 0 ¢£x € ¢, integrating with respcet to ue’e and taking GCesaro sums,

(ii) => (i) nos follows for 6,6' ¢ Z, » as in 3.1 . 'The rest of the proof

is entirely analogous to that of 3.1.



St

(1) <=» (4ii) : Since the throec forms of convergence ocorresponding to
weak nixing are equivalent for bounded sequences of real numbers, the proof
need only consider one of them.

T is weak mixing if, and only if,

n~1
15 | Q) - p@) | =>0(n-> ) forallller

by the finite additivity of measurcs and the triangle inequality for
- moduli. (iii) => (i) follows at once, since every set in R is Jordan

measurable

Let T be weak mixing and M, Jordan ncasurable., With the notation

of 3.1,
- () o 3y) - ua)|
= | (3y) ~u() so & (30) = (I + |u(3y) - u(ir)
oo PEN n oo A N N
Therefore
—_— n~1 '
im = I [,uk(JN) ~ u(l)| s lu(JN) ~ p(#)| for cach N ,
n k=0
Similarly,
—_— n~1 '
li.m = kﬁo ;pk(LN) - u()] < Iu(IN) - u(ti)] for each N .

Now |m () -~ (] < [a(xy) - w0 + | (3 - @] , since

2 <b <c implies [b] € | al + |c¢| , waatever the values of a, b, ¢ ., Thus
’ n~1 n~14 L ) ) 1 n—1l (

im = 2 ojp (M) - Q)] sUm 1 2 (g (T.) - p()+ lim = 2 J Y-u(a)|

n ? k=0 “i n n k=o e n ® keo et



Yol et
LY

< lu(xg) - pQO! + [u(3) - s(M)]  for al1 1w,

Tl

1
et N = o ¢ 1im;11- z fuk(M) -u(M)| =0. 4
m=>c k=o

The conjecture that T is weak mixing if', and only if,

n-1

(2) (2)
i huk (7)) — hl—l(T ) (n—— &)

gl

if, and only if ,

1n n; [uk(M) - p()] == 0 (r— ) for all M ¢ (8(2)

is disproved by 3.5 amd 3.6.

Let L-r: be the measure defined on (§ (2) by

-1
u_ (2) = -11-_1- 18 uk(E) s Ee@(z) .

3.8 Theorem The following are equivalent

(i) T is ergodic
(i1) H;n(e x6') —> Hu(e x6') (n=> ») for all 6,6' ¢ zp
(i11) 'ﬁn(M) —> p(l1) (n== ») for all Jordan measursble N ¢ & (2)

Proof Since by the ergodic theorem T is ergodic if, and only if,

Zn(ExF) —> wExF) (n=—>w) forall E,Fe@® ,

4

we can rcplace pu_ by En in 3.1
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That 3.8 reopresents the best possible results in these dirsctions

follows from 3.5 and 3.6,

(r)
Por ecach sequonce Ai € 2 (n=1, 2, +..) let upr be the
n

measure definecd on (X(r""‘) , B (r+1)) by

wr® = slriEncs@il, e @),

X K
where GAr(T) = §(x, T %, oo, T Ux) : xeX}.
n

3.9 Theorem The following are equivalent:-

(i) T is mixing of degrec r

(ii) HuAI‘ (60' X vee X E)r) — Hu(r+1) (60 X eee X Gr) (n=> ») for
n

all Aie@"’and 6 €2, 120, weu, .

(i1i) uAr(IfI) -— p(r+1)(l‘£) (n = &) far 2ll Ai € (") and

n

Jordan measurable ii € CB(r+1) .

Proof', Tollows that of 3.1. //

3,10 Lemma T(r+1) preserves qu for each n and A::l € 93(‘-)
Proof w{Gr (T)N (',13(‘”’1))“1 8 = 7 {2 (TINE}
n ol

for all B ¢ B (r:1) 4
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3.11 Theorcm u(r+1) (GAr(T) Y =0 for all n and Afl € 90’.’

n

Proof u(r+1 ) (GAr(T)) = j p(rt(G—Ar(T) ]x)dp
n % n

.- 1 r
J G x, ... ™0 x)])ap
X

= 0 , since p is non-atomic. //

3,12 Theoren (X(r+1), (B(r+1) s HAT T(r+1)) is almost

n
isomorphic to (X, B, p, T) .
K K"
Proof ¢,r (x) = (x, T x, «e.. , Tnx): X=> Gr ()
n n

gives the required isomorphisnm, //

As before, 3.9 gives tiic best possible results in these directions:
Bernoulli endomorphisms with countablc state space arc mixing if all degrces,
yet have positive, finite entropy, while periodic endomorphisms of non-atonic
Iebesgue spaces are not mixing of any degree r 21 , yet have zero entropy;

. (oo
for any given sequence Afl € 92)('! U G-Ar(T) e & (r+1) ’
n=1 n

U 6,r(T)) =1 fa cach n , but u(r“)( U er(T)) =0
— m m

upr (
An m=1 n=1



§4  The Topological Case

Let (X, & , p) nov be e compact, Hausdorff probability space,

and T bc a continuous measure-preserving transformation of (X, B , p) .
1 1

(r+ ) , (B (r+1) u(r+1)

is also compact (by Tychonoff's theorem)

and Hausdorff, with respect to the product topology, r > 0 .,

41 Theorem a-(r+1) is dense in C(r+1) with respect to the unifornm

topology on G(r+1) , 0.
Proof Q(r+1) contains the constant fuuections, since C(r+1) does.

Q(r+1 )

Let (xo, ces xr) ;! (yo, see yr) . Then at lecast one Xs ;( Vi .

separates points of X(r+1)

r4+ )

Since X( is Hausdorff, therc exist disjoint open sets Ui ’ Vi such

that
xieUi,yieVi.
X(r+1) , being also compact, is complctely regular. Hencc there exist

fi, g € 0(1) such that

fi (xi)

]
-

0 fi(e Vi)

]
—

g () =0 g (ev)

f(zo; eve ZI‘) = 1:Ifi(zi) + 2 ? gi(zi) ’

where the products arc teken over indiccs i for which xg ;! Y5 o is in

G(r+1 )

and separatcs (xo, sve 3 xr) fron (yo, cee 3 yr) . Henec by the
a(r+1) (r+1)

Stone Woicrstrass Theorem [ 15, p 244) , is dense in ©

53.

-/
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4,2 Theorem T is mixing of degree r if, anpd only if,

j T duAZ —_ j r @) (n— )
X(I‘+1) X(r+1)

Q] .
for all A; €9 and P ¢ C(r—'1).

Proof T is mixing of degree r if, and only if ,

kI‘

j fO(XO).” fr(xr) dﬂAI‘ (xo, cesy XI‘) =j f (X) ves T (T n X) dp
X(r+1) n x ° ¥

fo(xo)...fr(xr)du(r+1)(xo,..., xr) = j fo(x)dp... j fr(x)dp

— ./X(r+1 ) X X

(v
(n =5 o) for all L\:; ¢ 9 and £, € Iy (p), and in particular for all
£, € C(1). To see this, consider characteristio functions and use I, (p)
approximation, By linearity of integrals, it follows that T is mixing

of degree r if, and only if,

j F du,r —> F d,u(r”) (n =—> )

X(r+1 ) n ./X(rM )

(r)
for all A:; €P and F ¢ o,,(r“) . The proof is completed by 4.1. //

This theorem includes tie case vnen T is mixing, i,e. mixing of

degree ore, Putbing r = 1 and replacing Hy by Zn in 4.2, we get
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4,3 Theawem T 1is ergodioc if, and only if,

—— e e b

'[ Fdp n j Fdr (n—> o)
e @)

for all F ¢ 0(2).

L4 Theorem T is weak mixing if, and only if,

n=-1
;11- z[j quk-j Fapl’ — 0 (a—>a)’
o
£(2) £(2)
’ n-1l' [ ( ) fora:él;
- 2 Fdy = F 4 0 (n=— o 2
TR R e R a TP
X X

Fd‘“n—')j 7 du (n-—~>oo,n/J,8(J)=0)l
2 2 g

J

Proof Analogous to that of 4.2, replacing ordinary convergence by

strong Cesaro convergence and its two ewivalent forms of convergence. //

k.2 cannot be extended to all F ¢ L, (y(r-ﬂ))’ as the function

X

Q0

U G r T : . -

e An(l) , for anymquence 4 ¢ 9, shows. L3 and L.k similarly cannot
be extended to all F ¢ L1(u) (consider F = X ) .

) U (")
1
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CHAPTER ITT

Linear Fractional Transformations Mod One.

Introduction.

This chapter is concerned with the ergodic properties of

f~transformations, T,, which will be introduced, together with f-expansions,

f
in §3. These transformations of the unit interval onto i$self, which in
general 4o not preserve Lebesgue measure, have been investigated by several
authors. A. Rényi [2.9] gave sufficient conditions for the velidity of
f-expansions and a sufficient condition for Tf t0 be ergodic and have a
finite invariant measure equivalent to lLebesgue measure. V. A, Rohlin
EBQ] showed that this condition implies also that ‘1‘f is exact, and gave
a formula for the entropy of Te with respect to the invariant measurs.
W. Parry [3L7] gave an explicit formula for the invariant measure of one
class of f-transformations, namely the linear mod one transformations
™= (Bx+a), B>1, 0 <a<1, where (y) denotes the fractional
part of y,.

Sufficient conditions for ergodicity and infinite ergodic index
of a general many-one transformation of a probability space with a
generator are given in §2. These conditions, when applied to
f-transformations, generalise Rényi's condition for ergodicity and
invariant measure, and are used in §84%, 5 to study two classes of linear

fractional transformation mod one, some of which also gatisfy Rényi's

condition., In some cases, the invariant measure could be found, using



§2

% 2.

a result of ¥, Parry [27] whioh is proved in $2, while in others we did
not succeed in doing this. For the former, the entropy is computed [3'2.]
and also the frequency with vhich the digits occur in the f-expansion.
Throughout the study of f-expansions, the distinction between dependent
and independent digits plays an essential pe.rf. §6 1lists those questions

.

which we were unable to resolve,

Ergodicity and Invariant Measure

Throughout this section, unless otherwise stated, T will denote
a many-one, measurable and non-singular transformation of the probability
space (X, , p), where p is non-atomic.
2,1 Lemma, For eachn =1, 2, ... let & = {En(y) :y e Xl vea
countable measurable partition of X such that En(y)\u iyl (n=— )
for each y ¢ X, i.e. E /e (n = ) .
Then for all B €05,
['(En('-})ﬂﬂ — X ()\ (h->0p) for almost all y € X
F(En(‘j\) BV and in L1 (p) mean.

A
Proof Let & denote the sub-o-algebra of @B generated by g £(x)

2
be any integrable function and E(f| ) be the conditional expectation
A

of f with respect to E‘n . Then by the Martingele theoren,

ECISI) — SR - () (nveo)

almost everywhere and in L‘l (p) mean,



{
F; (r) A ¢ ( ) ’ELLL%

Tyex el H(E )

A
we have that E(flgn) (x) = Fn(x), since

oy tl‘ \1}

A
Fn(x) 1ls measureble with respect to €n and

I CETI Jy () i)

A
for all Yn € E‘n , each such Yn being a disjoint union of sets En(y).

Putting y = x and £(z) = xE(z) gives the required result. //

If T has a2 finite or countable generatar & = {Xn}o s

0 <N <0, let an(y) = = the unique integer such that

n

T YEX ,n=1’2’-c.,
yn

and C_(y) = X_ 1Y ! x N ...AT'(IM) X . Clearly ,
n M Yo N

either € _(y) NG (3') = ¢ orC () =¢ (y') , and

=1
J C . ¢ e x = l T—‘E
L "<‘1)‘ J ﬁ ;.\'=0
Since £ is a generator of T, Cn(y) iy (n=> ) foreachyeX.,

€ (x) is a. measurable function of x, since for every Borel set

v (n-1)
B in [0, «) , (5) U'T( X



6 b,

N
en(x) € L1(p) if, and only if, I k p(Xk) < w o
k=1

en(x) = & (Tn"'1 x) .

For each y ¢ X andn=1, 2, ... , the probability measure

e

= pCl)a T77E)

n

is absolutely continuous with respect to p. Thus, by the Radon-INikodym
theorem there exists a positive, integrable function @n(x, y) defined

almost everywhere such that
T B = oo i) . e
3
In fact, far each y and n, 0 €@ (x, y) € 1 for almost all x.

2,2 Lemma For each m=1, 2, ... let i—;m = {Im(x) t X € XZ be a
countable or finite measurable partition of (X, & , p) such that

Im(x)\ {x} (@ =—> ») for ecach x € X ,

Then for n=1, 2, . and y € X,

4 (C.,(w') F;T-“Im (xJ) for almost all x
- P(Im (.x]) andL1(p) mean .

., (." 3) L'wn



Proof As in 2.1,

for almost all x and in L, (p) mean/

2.3 Theorem It

(;::‘ f’ "n‘(""".'ﬂ) >
~ P(CG)

then T is ergedic.

If further

b o"{xyy)

W
! -
l LAY = oy

o P( Cn(ﬂ)

then T has infinite ergodic index.

6.5.

o Mrg) lmen)

for almost all y ,

for almost all y ,

Proof. Suppose 7' E=%¢& and O« p(E) <1 . Then

pGnE)  _ GAaT TE)
b (7aly)) p(C )]
1 raG)

“;8’ '-*1"(7‘7 ';j)

.i:(t’}



Since E ias a generater of T , 2,1 implies that
P (», = L .t.—--y——-—-—(("( )F‘E}
) e b))
C:T \'s‘ﬂ' wa,y) (E)
5 p{cly)) ‘,
e b w(xyy) 't’(f) J
75 el (y)

fron which it follows that x (y) > 0 for almost all y ¢ X, i.e.

that © = X (mod 0). Note that the theorem remains true if

inf «'(x, y) is taken, not over all x, but over almost all x.
x

To prove the second assertion, let S be another non-singular,
measurable and many-one transformation on (X, . , p) with generator
n= {szlg where 0 < K € «» . Ve sharpen the previous notation as
follows:~

Y

- -1 (1)
(:(7)= Y‘hn Y‘L_n LS 7%

bl S = | @S g dp(s) 5 £ €3
PN E

and similarly for T, It is further assumed that

u:l' iUE(Y,j)

Lom —
~ ()

>0 far almost ally .

T x 5 is anon-singular, measurable and many-one transformation on
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(XxX,Zx® , px p) with generator £x n, If

i(x,yl)i=1,2,then
TSy (a-n)y |
Clg,) = ! Xe  (x,) " E (u)! . O ( 93 E,.(a)x ln@z)_l*

-

~(n - ~in=B
:{X (x‘)n.. HT \ MX&ﬂ{x,_)XK[\{e‘(h)n“ﬁ 3 ( 'Zﬂ('j,,)l ‘

1

Thus (p x p) (67%(z,)) = p(02(x,)) p((3,)) -

Also

0y (25) N ()™ (m¥) = [62(x,) N T7E] x[c3(y,) N5 7]

for all E,Fe@ and e Xx X,

2y

Therefore,

Si‘.’ ""'R Z192 )d(f ‘ "_) —r<""ltlI Mf’(‘)f s('jﬂ'jzl‘jf’(i;)

Ewt

= (J U-’;(“ﬂ L)m (jqi:h,) (P’« 2 LJ F“L‘ﬂ;’g ("’\véu."-.zm s
LELF

Thus w;;s (_z_1 , 52) = w;(x“ x2) %n(y1, y2) » for almost all z, ,

since {Ex T : Ee® , F e | generates Bi¥ . Finally,

throwing out 2 p x p-null set from X x X , we have that

) ol of 7 (2gm) <2 (g0 saﬂ}
er(w) o K e pe)]




- pa— - ————

w.& v-a:r\ (-x“az) ) “g“; ’”; (‘jﬁ.ﬂz}

— g oA —— O -

= . P(C-:("z)) "(<n$(jz))

i

;3‘\- :‘:; (.‘31 "h)
P(C3(4,)) |

_.a-—-'--‘

n

"{4\ wi (=, 37 ) \} L
!

"1 (T 6g)

-

t—

> 0 for almost all Zy .
Putting S = ™' (n =1, 2, ...) and using induction give that T has

infinite ergodic index. //

Yie note that this result is independent of whether T prescrves
a finite or o-finite measure, In the former case, T could only have
ergodic index O, 1 or +w , while in the latter case the ergodic index of

T could take any non-negative integer or +« 23 value [13 ]

Assume for the rest of this section that T is one-one on each

set X, of the generator & (0 $ns<VN)and that TF e for all

1

Fel& . It follows that X, N 77" {x ] consists of a single point,

vwhere {x] denotes the point set x. ILet xn(E) = p(Xn Ao E). The

measure y is absolutely continuous with respect to p, and hence has

dy

a Radon-Nikodym derivative -—-I-l(x)
dp
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2.4 Lemma " For all measurasble functions h , for all E ¢ L and
each n = 0, 1, ..., N,
LR ORRENCRR I TR

X,‘,-’iT E <

in the sense that if one side is finite, then so is the other and they are
equal,

Proof Det Fe({ . Sime p(X) =1, xz(x) ¢ L(p) NI, (v ) ,

0 $n <N, Noting that xAuB(x) = XA(x) + xB(x) , whenever ANB = ¢, and
that F (\Xn = ¢ implies the vanishing of both the integrals in the Lemma,

it is sufficient to consider F C Xn , for which
o= X, ATTTF
The inclusion F CX_ NT ' TF follows fron FCT ' TF , while if
xt’){nf\T-'1 TF, then TxeTPF,say ™x=Ty ,yePF; but Tis
one-one on each Xn and so x =y. Also
X, (x AT D = 2 ()

and so

S 7( XﬂT i‘*ﬂfﬂ'(’l ()( NnT "(E/“‘,TF))

- t,()(“nT"EnT”T F)

il

b 17E ~ F)
= p(TTENY N )

=f N ‘;{F (x)rf[)(:) .

X‘nT =



T0.

Since j:E f(x)dp(x) is a linear functional on L1(p) , it follows that

k
2.4 is true for arbitrary measurable, simple functions I a, X (x) .
v=1 1Y
’ .
j . W) Aply) < e if, and only if,

X.nt
h(y) is integrable on X, N 1 g if, and only if,

there exist measurable ,d(menhqfunctions hm(x) such that
hm(x) 7 n(x) (m => ) uniformly on X, N 1 & and then

Mpdply) = L o ol
§ o YO =52 L Pl

= i je h (x0T a3)d 7 ()

M~

- =1} : v N .

= ( “(X ,r\l ]7(_5)&@;(1) lf, amd only lf,
‘£ @

there exist measurable,elemenfuyfunctions hm(x) such that

hm(Xn N’ {x}) '7" h (Xn Nt {x1) (@ —> «) uniformly on E

4

[Xn Nt §x] € X, nrt g if, and onmly if, x € E]

if, and only if, h(xn Nyt {x}) is integreble on E . //

2.5 Thecrem T has an invariant measure v equivalent to p if, and only
if, there exists a measurable function h(x), 0 < h(x) < « almost

everywhere, such that

r :
i(,} - é L{¥ A TY) %—i{t(") almost everywhere,
kX L 2P

and then
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Proof Suppose T has an invariant measure v, Put h(x) = % (x) . Then

0 < h(x) < » almost everywhere.

Moo= Z M)y
& x“f}TqE
= Z [ nOon TN A ) - by 24
12 n :'?

-

If N < » , the integration and summation commute, while if

N=oo

T E T ) o

=0

M3

A= @

and hence by [ 7 , theorem 27.B],

( t,(x,q"{x})rcxap(z -.-{ MX AT z)f‘ 440 )dj()

g T c

oo
=
n=

for all E ¢ .

Conversely, let u(E) = /ﬁ h(x)dp(x) , E ¢

Clearly, v is a measure equivalent to p ,

D) = g L(-wm

..

W) Apty)

3 s"-’\

]

e
|

WX AT H=) 40, (5) 466)
r_ﬁ{;

il
v {\-ﬁ

?: b (xn/\-l’-‘l 31"))5_}%(1)6’#’(1J

H]
T

= ‘J(E) //
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f-expansions and f-transformations

Let f : [0, ») => [0, ») be a differentiable function such

that f' : [0, @) => (=0, @) is continuocus. Ve distinguish two
cases:
A) f£(x) strictly decreasing, x € (f"1 (1), o)

lim f£(x) = 0
>0

let(x)] <1, xe(£7H1), »)

B) f£(x) strictly inereasing, x ¢ [0, £ (1))

£(0) =0

e x) <1, xe [0, £7(1)) .
In both cases a further distinetion is necessary, namely
(1) ok (1) is zero or a non-negative integer or +w

(2) £~ (1) is a finite, positive non-integer.

Such a function f can be asscciated with & measurable, non-

singular transformation T, : (r,&, p)— (T, R, p),

where ]( (o, 1) case A)
I =
| [0, 1) case B)
bﬁfﬁ = Borel subsets of I

Lebesgue measure on I .

g
1]

Let

Tp(x) = (£7(x)) , x eI

72



and sn(x) = [f—1{Tg-1(x)§] , xeI, n21,

where (y) and [y] denote the fractional and integer parts of y,

respectively, Tf is called en f-transformation.
For any given function f , f-expansions are said to be valid
if for all =x € I either
Tg(x) = 0 for some n ,
in vhich case x has the finite f~expansion
£y (x) + £(ex(x) + wue + £(e,(x))e0))

fn(€1(x): svey en(x)) ’

X

or

lim f (81(3{), ves, € (x)) exists and equals x .
> n n ’

e, (x), 52(x), ees are called the digits of x in its f-expansion, They
take non-negative, integral valucs. The values they can take, or their
admissible values, depend on f, as will be seen later, A finite sequence
of non-negative integers (81, Eny sass sn) is called canonical if there
is a y ¢ X such that

si(y) = & (i=1, voun) .

f-expansions with independent digits occur if every sequence of admissible

digits is canonical. In the opposite case, the digits are dependent. This
terminology was introduced by Renyi [ 9 ], and should not be confused with
stochastic independence., This distinction between these two kinds of

independence is discussed later (3.9). sn(x) are measurable functions of

x, since for all Borel sets B of [0, w) , ix: € (x) e B} = U T;.(n—.1 )Xk .
n keB
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There is a2 natural pertition g = {xni associated with Tf,

namely that far which X = fx :81(x) = n}. For the four cases
considered, we have

#1) X = (2(es), £) , m=27(1), £7(1) +1, ...

2) (@M, 0, ne )]

(), £@)) = [N, (e, ... .

Note that & is a partition mod O of I, since the countable, and hence
null, set of subdivision points of & arc omitted. The admissible
digits here are [f-1(1)], [f-1(1)] + 1, oo o

0, 1, eees f‘-1(1) -1.

B1) X = [£(n), £(n+1)), n

0’ 1: L XN [f-1(1)] -1

B2) ([£(n), £(n+1)) , =

X
n

e D), 1), 0= )]

The admissible digits now are
0, 15 eees f-1(1) -1 case B1)

0, 1, eees [f-1(1)] case B2)

Each Cn(y) is an interval, being a finite intersection of intervals,
T, is measurable, since for each [a, b) €1,
Xn f\T;1[a, b) is an interval,
the union being taken

over the index set of

g,

-1 -1
T [2, B) =YX N T [a, b),



the ring (algebra in case B)) of finite, disjoint unions of half-open
intervals, i.e. of the form [a, b), generates B and T;1 commutes
with set-theoretic union, intersection and difference. Also Tf Eell
for all E €'Y since for all [a, b) C I Tf[a, b) is a finite ar
countable disjoint union of half-open intervals,

Tp A= Y Tf(Aan)

and the restriection of Tf to each Xn commutes with set-theoretic
operations of union, intersection and difference,

[f-1(x)] is a step function with countable number of
dincontinuities and so Tf(x) is an almost everywhere differentiable

function of x, with

t
Tf(x) = —_— almost everywhere.

£1(e7 ()
Since ' is assumed continucus and strictly positive (ar negative),
for each E ¢& X N T;1 E is a 'continuously shrunk'
('continuously shrunk and reversed') version of E. Thus T, is non-
singular,

One would expect valid f-expansions to distinguish between
different points, although two distinct f-expansions may represent
the same point, A simple example is afforded by any r-adic
expansion (£(x) = % , T an integer), for which

0.1 and 0.0 (r-1)(x-1)...
represent the same real number % , In fact the following result is

true.



3.4 Theorem [27 ] Let £ : [0, o) —> [0, 1) be either strictly

increasing or strietly decreasing throughout its domain of definition,

Then f-expansions are valid if, and only if,

8n(x) = En(Y) n=1, 2 ...

implies x = y.

Proof f increasing:

Let pn(x) = fn(e1(x), cee an(x)). Then for each x € [0, 1)

p(x) € p, (%) (x) = £(e,(x), eee; £ (x) + Tp(x)).
Thus p(x) = lim pn(x) exists and p(x) <x .
Ir=>c0
(=) 1f en(x) = en(y) n=1, 2, cee
then p (x) = pn(y) n=1, 2, e
and so x= p(x) = py) =y.

(<=) Since for each x and far cach n , pn(x) s p(x) € x,

the result will follow from [pn(x), x] C Cn(x) for each n ;
Suppose

Then e, (x) + T(p (%)) € T(y) + &,(y) < Tplx) + &, (x) ,

from which it follows that &, (y) = g (x) and Tf(pn(x)) < Tf(y)

So by induction ei(y) = ei(x) 1=1, see, N
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f decreasing : the proof is analogous, noting that far each

x € (0, 1)

pzn(x) < p2n+2(x) £x € p2n+1(x) < Py (x) n=1,2, . « J/

3.2 (Corollary f -expansions are valid if, and only if, € is a
generator of Tf. .
Proof f-expansions are valid if, and only if, Cn(y)\ Iyl (n =>w)

for each y.

Fe=

—_——— !
VTR ) gkl

4 o«

3,3 Theorem [27 ] If f satisfies A) or B) , then f-expansions are
valid for all x ¢ I.
Proof The Mean Value theorem implies that for x ¥ y
\ R -fE <
= -y |

This is equivalent to the following: if & > 0, there exists € > O
such that for |x-y| > 5,
{-_[r(i}'s{j)‘ < 1_. s .

i 1"\_1

The second condition trivially implies the first, while if for some

§>0,x-y| >8 implies ]f(x)_f(z){a1-a for all € > 0 we
xX-y

get a contradiction of the first condition,
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Suppose x, y e I,x#y, |x-y| >8, say , yet
en(x) = sn(y) n=1, 2, 4ee &

Then there is & > 0 such that

,.\-7;{:,)! _ - 5

0 o =

— 1- &

o
-
*
e el

x-y
By induction,

o~

113
— v
l I (x\ _.’r(: (‘j) - __.._._.é..\...._.-« P n:"l.z}... )
3 5 I S s v
| : (1-€)
! x=4 !
. n
which is impossible since ITf(x) - T;.’(y),' €1 . Hence the result, by

3. 4

3.4 Corollary If [TL(x)| > 1 almost everywhere, then f-expansions
are valid,
Proof  T.(x) = (x) - [£7(x)] , and the set of discontinuities of the

step function [f'-JI (x)] is at most counteble. //

Reogarding the dependence of the digits in f-expansions where f satisfies
A) or B), case 1) corresponds to independent digits, since then
T, X =1 foralln,
f™n
Case 2) gives rise to dependecnt digits:
By the a@ssumption on the domain of f, ral (1) ¢ [or =) ,

ivee £7(4) € o .
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A2)  Let M = [f-1(1)]. Although we have only considered (0, 1),
To(1) is well-defined by T,(1) = (£7'(1)). Thus 0 < (1) .

Consider (0, To(1)) . Since T.(X) = (T,(1), 1),
XN Tg (0, 7(1)) = @

Now 1lim f{x) = 0 implies that
X>eo

X M (T1), 1) = ¢

if, and only if, f(m) < Tf(1) , i.ce n> f-1(Tf(1)). Thus

X, C (o, Tf(1))
for all n > 82(1). No assumption is mede about the validity of the
f-expansion far 1. Any sequence of digits containing the subsequence

if, 52(1) + 1 , for example, is not canonical.

B2) Let N = [f1(4)],

51 = N

5, = Max {8 : N§,... 5 , is canonical} , n>1 .
Then en(1) = Sn s, n=1,2, ... , since

fn(81, een Sn) inereases with n, is not greater than one, and

x < lim fn(61, coe an) for all x € [0, 1) .
n>ca

If § =N for all n, then Tf(1) = 1 , which is impossible
since f-1(1) is not an integer, Let T be the least n for which
Bn < N . Then the sequence

81, 82, cee 85 + 1

is not cenonical, yet consists of admissible digits.
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Woe now obtain an explicit formula far wn(x, y). For cach

YyelI and n21, let
8(x) = cC () NTMx) : I—> C (y)
n n f ‘ n

where Cn(y) is defined in terms of the natural partition & associated
with £, 87 is ome-valued since T  is 1 -1 on each C_(y). Since

f-expansions are assumed to be valid,

c,M Nyl (= ) ;

also Cm(x) is an interval, with end points am(x) < bm(x), say. Then

p(C () N1 ¢ (x)) = | 87(b (%)) - 8¥(a (x)) |,

and so by 2.2

n d
Py = & sTwl,

X 4 .

since in case A) ar case B) Si(bm(x)) - Si(am(x)) is of constant

sign as m—> o« .

For the independent digit case,
87(¢) = £.(e,(y) 5 wue y & (y) + ),

since T fn(s1 (¥)s eee sn(y) +t) =t

(f..(ﬂ: ---;H(\,}H 5} = tr(lj) , fedy 0l

and [¢ ¢

r47

\
B [PV DA TR
1 { RO\E14 = e,\y y ! .

~

e

So for case 1) ,

wn(x, y) = "g"{ fn(s‘l(y)’ see Sn(y) * t)l t =x i °
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We have shown incidentally that for case 1) Cn(y) is the interval

with endpoints fn(e1(y), cee 3 En(.V)) and fn(51(3’): cee en(Y) +1) .

3.5 Theorem For the independent digit case Tf has invariant
measure u equivalent to p if, and only if, there exists a measurable

function h(x), 0 < h(x) < » almost everywhere,such that
h(x) = z h(f(x + n) ) |£'(x + n)| almost everywhere,

where the summation is taken over the index set of &, and then
=Sy

h(x) = 35 (x) .

Proof Using the notation of 2.5 , X N {x} = f(x + n)

dxn

dp

and (»)= w1 (x, y) , for any y with € (y) =n

=f'(x+n). /Y

3.6 Theorem [ 2.9 ] If f-expansions are valid, with independent digits,

and further
‘.’.\k . w“(x,:’)

condition %) o €C , for almost all y
\n( m'(l,!l)
o<x<’|

where G 2> 1 dis independent of y and n ,
then To is ergodic and has a finite, invariant mcasure v equivalent to

p such that

1 dv
T < 'ag(x) £ C
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2,3 is a genuine extcnsion of 3.6, since for b = ¢ =1 , the
f-transformati on studied in §5 satisfies 2.3 and has a o-finite
invariant measure equivalent to p. The first condition of 2,3 generaliscs

condition C), because

) tup !-\""7. )
| B "1 \ ’3
Lo

1 for all
X Y

and if C) holds,

e [ T S
N rL

c | o SOl Ry

e

U g " (x,1 )] p( Caly))

£ for all y
. ) n
!a‘/:\u ,-R_,UIP (b (X,ﬂ)/r( C.‘(l]\J
and so I ;:<‘“n(xrﬂj > 1
YL ?( (n<(’)) ) C
For the second condition of 2,3 suppose
i il "’,._("..‘L)_.-k = O for y ¢ E, p(E) > 0
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and that C) holds, There exist n; = ni(y) ,i=1,2, ..., such

that
N, A
‘*’.;:fw (’7_'7} < :Sa i=1,2, ... yekE.,
p(Ca byl
On the other hand,
S_"Pw"(z
a ’j) 1 for all y and n .

P(Crt(5))
Thus, far cach y € E there exists a positive integer n‘Y such that
cu u:“‘1
= (“”)/"(f"s&‘l)_). > 3¢ »C
\:\‘{' N-}(I)‘)}/k( \.na(’)/

a contradiction,

3.7 Theorem. If f-expansions are valid, Tf is ergodic and has

finite, invariant mecasure py equivalent to p, then the (asymptotic)

frequency of occurrence of the sequence of admissible digits

i1 oo ik in f-expansions is well-def'ined by

n-K —
Cw 22 X g ()
¢{1"'{k‘ f?-;; n-k e -,,E,'a X "’ AN T{ x e f

~-{K-)
“ N Tf ‘ka)

- kX n.
p(T)

Proof The existence of ¢i ey follows from the Pointwise
1 k

Ergodic Theorem, while its independence of x is implied by the

ergodicity of Tf. //



k.

3.8 Corollary If i1 ...:'Lk is a non-canonical sequence of digits,

then ¢, =0 .

ooy
Proof 11"'ik being non-canonical implies that
~(e-t)y
xi n sse N Tf Xi = ¢ . //
1 k
Normalising the measure p, we have the following
3.9 Corollary If the random variables {sn(x)}n=1 are independent 3_19*_1451
then the digits in f-expansions are independent.
Proof The independence implies that for any admissible digits
11 e olk

] > = ¢. o e ¢.
11coolk 11 1k

Since ¢ir >0, 1 sr<k 3.8 gives that i1 ...ik is a canonical seguence

of digits. //

1
The converse of 3,9 is false, as can be seen with Tf(x) = (;-c) s, 4.7,

which has independent digits 4, 2, ... .

2
13

e

o

/u (X1 nT;;1X1)

1

¢
——
q

H

{/[-’3
2
+ (b %)

)'2,

= /A(Xz
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3.10 Theorem [ 32.]. Under the conditions of 3.6, T, is exact.
1
T, has finite entropy if, and only if, ‘( 4-3[;. ¢ (1” AP < ocy

in which case L.r (Ts) = g Wj)'— '1(1)\ dm .

1

The transforma.ﬁ.on'."l‘f(x) (-—- - -—) , when f(x) = pre

4.1 Thearem f-~expansions are valid for all a > Oant. 0 € b €1,

Proof f'(x) must be negative : a>o0

f‘1(1) must be in [0, o) : b<1,

If b < 0, dependent digits could give rise to negative

fn(e1(x), cees en(x)) , 8.8+ b = -5, a = 1 when the admissible

digits are 0, 1, ... and £(0)

-2. Independent digits never do this,
however, since a sn(x) +b2a ( ) +b =1 . ILven in the latter case,
where there do not seem to be a priori objections to b < 0, complications

arise in the proofs. Ve thus take d > O .,

is a piecewise continuous and differentiable function whose points of

discontinuity are n > [1§9 ] . Therefore, provided x is not

an+b ?

a point of discontinuity of Tf, T. exists and
‘ 1
£ (;\) F T ax®

Hence e :'!; T;(A} = Tf" (T{ (‘X)) TF (3()

1 1
= o § k= - 3;..‘2:]}’* Cax”
an X



. 1-bx 1 1-b
s:.nce0<1-bx—.ax[—;-x-]<1f'orx;(an+b,n>[a .

o0
From now on in the study of T we consider I =V =}

1 3
ax+b

an+b

n=[-1-;—b]+1
= I(mod 0) .
Suppose x # y, yet sn(x) = sn(y) for all n. Then Tiz,x is

continuous in [x,y] and differentiable in (x,y), so that

—_— -
' S)—|£_(j.). i( —Y;‘(%) b} 5 € {-173]
-1

> 1.

This is equivalent to the following: if § > 0, there exists € > 0

such that far |x -yl > 8

\31(1\ Tyl { > T+¢

-4

So |x~-y| 55, en(x) = en(y) for all n imply that

|76 - T > (s

which is impossible for all n, Hence en(x) # en(y) for some n, and

f-expansions are valid by 3.1. //

4.2 Thearem Let

bt € (e, e lgat) .
Q. (4,t) ’

- \:-\rufi(‘;\-%- 'a-yﬁiz(g\-f -+ b+4(f,\(3)+'.'} ‘

1 X . (2§




Tl_zen
Pn (‘3, ES ';b-bo- ( Z (ﬂ) +t)j ..-1 (") + "-1_ (‘j,o)
Al ibeal £ () +t)} om(g,o +o @ (4,0

Proof. Vriting en(y) = ¥, Pn(t) = Pn(y,t) and P_ = Pn(O) we have

E‘.{i)* = P"“‘( m)
e® . (gi=w)

baaly,+£)

{b-‘rﬁ.( Y et + ;—:;jam)}{:’ ., <+ a ?“_3
ii“*“‘(‘inn

+1Q

mﬂ

i b+=t(5n+f—’)'y[(‘:+wjﬂ_1\ P,,_:_ + o F“_J -+ a.P‘_z_
i ba-d\(‘.‘),,'? E)HZL-\- a'i,,.1)@,,_t+a.(:)n_,‘] +a Qn-z,

'{b* ﬁ(’jn‘i‘b}}ﬁ_, to n -2
ibialy s} QR +aQ

’ C'-SSl‘Md'nj rech'ion,

holds for n - 1; but

P(t)‘ {be a(53+t)}(},+mh + o
ib""’*(hﬁ'b\)_& +a?

and

Qa ([;): i \74—&(‘13 4&)’){(5-&45,)@-1‘-&32) + 0-} + a(b-ta.m)

L “b+a(j.b+ﬁ)} Q’L + a.QT . //



4.2 implies that

Plyt) _ R4 0) +atP, (30

Qn(a,f) Qnly,0)+ atQ@,, (3,0)
-1 1=b
4.3 Thearem For a > 0, 0 <b <1 and f (1)=—Z—=1’2”“’

Tf is exaot and has a finite invariant measure equivalent to p.

Proof ‘
[ Y ‘Pn-1 Qv\- Vn Qh" .
(28] (xﬁ‘j)"' &(Q +axQ )‘L
Therefore,’ -~
2‘::<1 w“(x’nj) = ( .‘ + 0. (. (‘1)0) )
in_f w“('x’j) Q“(t],O\

Ceael

But Qn(Y)O) = (b+ayn) Qn_1 (y,O) + a Qn_z(Y:O) >(b+ayn)Qn_1(Y)0)a

thus
a

aQaaln0) ¢ _a < 2.
Q,._ (‘370) b *“‘jr\. b

(1 +%)2 4

S0 3.4 holds with C

1, T

" has finite, invariant measure u given by

Lot Thearem For b

du _ 14
dp(x) T ax+1l °
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Proof - ) . i E 1/a
éok( “(;*'1-3'*1 )L&(j*n)a—?}z " ns [x" Y '"‘T"‘ +n+1]
e —1
ax+l

So by 3.4 , gp()- u(I)=';j1°g (14a) < w. //

ax+1

L5 Corollg_z_"z

(,[g¢+1\+1]2 .
¢ - (“’3 Lov+ UL alis2) 4131  , = 0,1,...

loy (a +1)

4,6 Proposition en(x) I'4 L, (#) for each n.

oof & (x) € if. and o N o [a(n+1)-+1] \
Proof ¢ (x) € L,(u) if, and only f,é‘:(,,j([q”ﬂ[a(hdu*ﬂ ,
but
N La(nen)41 2% -l a (M 2)+ 7] Nt DL |1 - (q-ﬂ)
,|Z,1 n(‘ﬂ([an-ﬂ] [a(n-&?.)‘r'l]} ﬂ){ lﬂ[ L)j

o (N . /

n
1
k.7 Corollary <+ I, sk(x) —> o (n => «») almost everywhere.
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Proof Note that ek(x) = 81(Tkﬁ1x) and, for N a positive integer,

‘E.,(J() 2 V{- 51(") <N
Mﬂ:jt N

put

Then f (x) € L (p) for each N and so

1 i e (x) 2 % §~ (TFx)

o

n

A
o a{R41) 1% [a(RaD+ 1) ) (n ea)
~» Z Kl (fn%‘t-ﬂ[a(k;:)*ﬂ ) N f \ﬂ([ak #1){a (s ) +7]

—'>co(N'-'>co)o //

4,8 Corollary The digits in f-expansions are almost everywhere unbounded.

4.9 Corollary h( )<m ; in fact

)= loy (_,ﬂ(al 1( _;.S:T_dx.

IA.

Proof

1 -1 L
(M| £ 5N = ln( L) o
- 2-lge <.y



o

1
i(a) = f %55 dx does not appear to have a closed form expression
o

when a > 1, although for all a > 0 it satisfies the differential

equation
I'(a) +Baﬁ.l . }_Qs%il=o .
a
1 1
3 log x [ ~log x
1'(a) = L. 22LX . gx = a =08 X ax , since
da ax+1 (ax+1)2
0 0

N
- log x -
(ax.u.1)2 < leex L

A
log x dx = 1 and thus j 1_o_g__x_2 dx converges
0 (ax+1)

1
uniformly for a > 0 ; ‘/) }Eoi-’i dx converges pointwise by 4.9;

f(x, a) = - -?'—lo-afé{- is continuous on (0,1 x (0,~] and hence by
ax-+1

[ 7 , pA43] integration and pertial differentiation can be

reversed,

Far a=1, [ 6 ’ P0563],

1 log x 1r2
f e e Pl
0

while for O<a< 1,

1

/‘ logxd_x =_%,° !_azn-1 .
i ax+1



1 1 1
{ » I oo
./él-;lf:l-:-cdx=j logxdx+j £ {~ax)" log x dx
0 0 0 1
o 1 n
= =1+ Bj (-ax)" log x ax ,
0
n al
since |(~ax) log x| < = for 0 <x €1 and thus the series is

uniformly convergent.

4,40 Theorem If b =0, a = % (N =1, 2, ...), then T, is exect and

has a finite, invariant measure equivalent to p.

Proof The admissible digits are %, J{; + 15 eee 5 le€s

zero is not an admissible digit, Thus

Q. =ay_ 9 + a q >aQ

n n °‘n-1i ‘n-2 n-1
and so sup1 mn(x,y) 2
\.:.<2< - = 1+ a Q, _,
o<x<1
<4:
3.4 holds, with C = 4. //
4,11 Theorem Far b =0, a = % (N =1, 2, ...), the invariant

measurs 4 is given by

Proof

¢|M8
=z
+ |
‘2
~
Yz
3
=,
i
b
4+ |
z
<



u(0, 1) = log () <o, N

{ Az
and d = (X.-) - 7\%‘ N+
T o Ly (D)

_ u"[%ﬁ%)_l 3 n:N, N*T)“' '

J
- N+ 1
by( 53H)
h (7)) < since i lo ]-c-l—f_1(x) lax = r1log ) ax
W3 <= o st | hem | g5 ) - | hee

= logN+ 2.

1
r N dx
hu(Tf) = j 1°g(x2) N+x

= (log N)[log( )] - 2] 298X gy

N+x

= (log DT)[log(V+1)] -2 ni i;z-:% .

4,12 Proposition en(x) 4 L1(u) for each n.,

M
Proof £ 1 log [
n=N

n+1

. 1
T ] = log(i+2) + (M+1) log(1 - -H—+-2-)

- N lOg N . //
; B
4,13 Corollary = ;8 ek(x) “—> o (n ==> ) almost everywhere.

Proof Apply the truncation argument of 4.7. //



4
L4 Proposition log en(x) € L1(p) for each n,

2
Proof, log n log (%) )= log n log(1 + nzIL-Zj )

1
<(n2+1032)-1—2- .

n
Lo,14 follows since I L <w if p>1. [/
n=N n
logn
log(h%)
e 1
4,15 Gorollary e (x) .0i & (x)] —> nI;IN (1 + m) ' ) (=>e0)

almost everywhere.

Proof By L4.14 and the Individual Ergodic Thearem,

1
n

S

log ek(x) — -fI log &, (x) dpu (n =~> ) almost everywhere,

u(1)

©

The result follows, noting that for a > 1 and I a <
1

(o] (o]
f log a = log (? a). /

4.6 - 1,8 and 4.12 - .15 generalise corresponding results for

™=(=) [ Z ,p.b5].



§5 The transformation Tf(x) = (T-E—JE—) , vhere £(x) =

0X b+ex

5.1 Thearem. f-expansions are valid for b 21 and 0 <¢ <1,

Proof  £'(x) must be positive : b>0

£71(1) must be in (0, =] c <1 .

¢ 21 -b, sinceif ¢ <1 ~D ,:i%;<1 and f-1[0;1)c[031)s

sn(x) =0 for a1l x ¢ [0,1) and all n, and f-expansions are not valid,
by 3.1.

¢ must be non-negative, since otherwise regative
fn(e1(x), cees en(x)) can oceur, e.g.

b=4,c=-1:0>1-D andﬁ-; =2, i.e. independent digits,

The admissible digits are 0, 1 .

b=4,c==5: ¢>1-), [—E—] =2, i.e, dependent digits.

and the sequence (0, 1) is canonical since To X =1,

Now suppose b 21 andoc > 0
b
(b+ex)

£1(x) = <1

<=> g(x) = o® %% + Pbox + b(b-1) > 0,
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Zeros of gare Vb -~ b and if b1, ¢> 0,
[+

c

Hence g(x) > 0 for all x € [0, T.!i-c-) , i.e. by 3.3 f-expansions are
valid,

Tinally, f-expansions are not valid for 0 < b < 1 and
0<cg1: if e<1 -b , f~expansions are not valid (see First part

of this proof) while if x ¢ Xo is an invariant point, then

- DX
T f-ex
. 1-b .
ie. x=00a —2=; butif 0O<b<?1,1-bgcandO<ecsi,
1 _ 1-b _ b(bic)-b _ b(brc-1) s 0
bsc ¢  c(bsc) = elbre) ‘

Thus -1—?- € X, and so en(y) =0 far all y ¢ [0, _‘LEP_) giving no

valid f-expansion by 3.3 again,
For ¢ = O we have Tf(x) = (bx) , which has been studied in

(26 1,[ 29 1. /

5.2 Theorem
P, y,t)
Q"(yjt)

1. % b . b ]
< b+1+ ¢E1(1)— L~+I+c£z(‘])- - b+‘-‘f,.(3}+t)

b P _, (ﬁ,o) + c(&‘n(\j)-ﬂi)(?._, (3 ,0\'1'.,, 'fp.,( ,O\)‘I"L)- .
ba,, (4,0) +<(edp+el(Q, {(4,004-4Q (4,0 + )




Proof  Defining the partial uotients 'canonically' [ 17 ], we
have, using the notion of 4,2 ,

5_ Nk
Q, c(1+by,)

i

L = beyy 4+ <{u,+8) 4 czg. (4, tt)
'Qz({_-) c[bz'+ bey, + (b+l)c(‘h+t)+c"|31 («h-f«{:)]

bE 4 c(‘jz‘i"n (P,+ 'l)
bRy + ey, +£)(Q,+c)

]

Assuning relation true forn -1 ,
( g+ E
P (t))___ P A+ c(qgt )
Goaer b+c(y,+t

.+ E
bR+ ¢ (‘4"—* + b?cl:mt%(f’“'ﬁ'“”)

- \.,Qﬂ_z-l—c (‘jn-'r + ﬁﬁ:ﬁ)(Qn-'x-F" ' +‘)

pP._, o+ cly 4t} (P 4. +1) '
b Q,., +ely +XQ, _t..+<) v

5.3 Them‘em If ',il:_)-g = 1, 2’ eoey OO 3

I

b21, 0<c <1 inplies ’i‘f is ergodic ;
b > 1 C<«<e <1 implies Tf is exact and has a finite, invariant

measure equivalent to p.
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Proof ‘
oo™ %y} = e Qn_(?,,_,,-h..-!-'l\-Pﬂ ( Q. :“ + H
[Q,\ +ex(Q _ t.. + Q‘J

cla (Pt +7) - P,"(Q-n_q-r...-'-c)l
4 =
P( "(\m LA, +eQ  + )}

\:ni(.)“'(;)\j) A Qn.
PCG)  Qurel @+t )
Now Q b Qo+ c;,rn(g,n__‘l + ees + C)

oy (Quyq + oo + c)

v

v

0(%_1+...+c) ifyn;t’o,

Hence
@,

I
Qn + C(Qn_1  eee + ) 23. if yn;:/Q )

72 =8 {y: Y, # 0 infinitely often} = {y : ¥y, = 0, n large enough}
= U {y:yi=0, izn} .
n=1

Bach {y : y; = 0, i>n} is countable and hence null by the non-

atomicity of p, i.e. p(2) = 0, Henoce

—  wba’(xy)
n p(Caly))
firast part follows by 2.3.

Z 3 for almost all y . The
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1y A0, ten Syt oy

&
while if Jn = 9paq = o FVppr T 05, Yn-r 7O ’rﬁlen 1
S 5 4&x2
c(Q.wp +...+C-) < -?; (c.-;,-—:’-(c-t-...--(-?E;(‘:‘l’ﬂ---))"-‘,Af-_-«1 -}:‘- + b*

R
If b > 1, suppose firstly that O <c €b -1 ., Then
1 1
(C’P‘l)?%'(c "!'E'(C 4-1)); see

i.e,
(@ _y * see +C) 4

< €1,
%

b
Thus 3,5 holds with C = 4 .

If b=-1<cg1, then
W) <d{c+l(crt)< ...
J};(c-\-) b( b( )<

, -1 +1-b .
L =t . % + Cfﬂ‘“ == (i=1,2,..).
= ey [92:'1 b” b” b 7
v=1
iIence .
1-b
=1 <+l e > AL,
Z pr T T e
»>=1 1
er o)1= T
b k(b -1)
? c 41 + ¢c+1-b (‘_.)m)

b b(h-1)

i




Thus 3.5 holds with G = (1 + 3% )

[+
1

Tinally, we show 3.5 breaks dowm for b = 1 :

if yn = Vpq = cee = Vppiq = 0 and Yner £ 0, then
c(&n_1 +,..+' ‘\ = re + [4 ( Qh‘r" +c-» + C)
' Qv\ Qn-t‘
>r e
but for all n ané * (y:si(y)='1 1€i<n-1r

t 0 n-r<is<n

is non-trivial, thereby contradicting 3.5.

5.+ Theorem For ¢ = 1, the invariant measure g ecuivalent to

p is given by

. b dx
u(ﬁ') = J’b+x-1 .

i)
< b b _ b
Proot nﬁo b-1+x:n * ‘ 2 - bex~1 ° //
(b+xin) (bux+n)
11[0, 1) = b log B{)T s i.e. p if finite far Db > 1, o-finite
for b=1.

5.5 For b > 1 ’ n+

bens? ‘ b
¢n= f Y dx blq-.m

In baor-1
b+n
( (b*r\\l
_ 3 barn-1Dbrns1) s n=0,1).,,

()



5.6 Proposition sn(x) /L1(u) for each n.

Proof

N e
wlog [tbia) Log(b+N+1) + Iuat)logfy- L
2 .3((b+n-‘l)(b+ﬂ.+1)\ j( o 3( ) b

nan

n
5.7 Gorollary % k§1 € (x) —> » (n > ») olmost everyvhere.

Proof Apply the truncation argument of L4.7. -/

5.8 Corollary The digits in f-expansions are elmost everyihere un-
bounded., ce s ‘ -

5.6 - 5.8 generalise corresponding results for Tx = (.1:;)

[ a/ ’ P-’+5].

h(P_ ) <w, Fiace
o x_
b+x

(" loy grigad = lonb = z( Loy (1-2) dx

(-
= Lajb +2.

“r("%:;)’*‘f:{‘“sa:%?] T
= [ blogb][ toy (5 f 2 b

~ [l (2] + 22, =

101,

v/
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5.9 b =1, T_ is comservative : x (%) « L, (1)
Tx UX
; 0
&
and £ x (T%) = » almost everywaere, since
o

fx : otox (TnX)<co})=8 {x:cn(x)=0, nzil
0

i=1

¢ (mod 0) .

Let‘ls(x) 2{1 y € € x < 1

X
-E,Osx<e R

where 0 < € < & . Then 18(x) € L, (1) . By the Hopf Ergodic Theorem, for

each admissible di@‘.t K # o, n-1 ( i ( \)
=<

z X X
L3 2 (T60) & 22—
t=o "Xy = 1, (7

fao <

—> h e(x) (n == o) dlmst everyvhere,
2



hk,s(x) is invariant and hence constant by the ergodicity of Ty

Hence
-1 — ,
E— 1; Z-Z:o XK( lf (1)) < é—*_—:o L*K’i =C y
icee ¢ =0 fork 0. Cfo"" Since
' n-} .
n = L . _ 1- .
2 Z, XKO(T* () =11 >3 XU, XK(—Tf (2))




Finally, far any non-negative integers 1i,, sse , 1k s

0, if ir;e'o for some r , 1 € r €k
. . =
1100011

1, if i =0 ,1$r¢ k.

For by the Hopf Ergodic Theorem,

~— neK »
; 1 = X -& (T (x)
b‘:\ n-K+l 9=0 Xl NN { X;“ ‘f

(.}

$ f‘(x"”"'"-‘—f—:{’ik)
{15('&)(!/'\

£ r-(xir)
g‘lt(ﬂ)t;/\l

->» 0 (E—bo),q- E—._*'-'O;

waile
n-h n-K T -
L7 T =1--L . Ay (71 (x\\
""K”"z"--?&‘o"" "X ( )C ﬂ) . n13 Xf,f-&;ng 1.)(00 ...'nT{.xX )

(=]
~> 1 (n => ) , since p{ U Xi) <ew

&6  Unresolved Questions

6.1 The preceeding discussion makes the restrictive assumption

that the f-expansion digits are independent., It would be of great

interest to know ihat results hold for the dependent digit case.,

{o4,
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A. Renyi [ 29 ] and V. A, Roilin [ 22 ], after proving their
theorems for indpendent digits, applied tuem to f-transformations with
dependent digits by observing tie behaviour of the particular
f-expansions, It seems probsble that similar results could be obtained

with linear fractional mod one transformations,

6.2 It would be interesting to know whether 2.3, in addition to

implying erpodicity, also implied the existence of an invariant measure

equivalent to p, This measure need not be finite, as T T%; shows,

6.3 In the majority of cases considered it was not possible to
compute the invariant measure, even when its existence was knom by

3.5. The generalisation of the exhibited cases is by no means clear,

6.4 Is T<7¥; an infinite exact endomorphism and bas it got

finite entropy in the sense of Krengel [2}1,] ?  VWhat value does

its ergodic index take? T T%; does not satisfy the stronger

condition of 2,3, wihich would imply tnat it has infinite ergodic

index.
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CHAPTER IV

iietriec Invariants far l-ghifis

&1 Introduction

In the isomorphism problem, invariants play an impartant
part in the negative sense of exhibiting non~isomorphism, Indeed,
it is generally much harder to prove two transfarmations isomarphic
than non-isomorphic. TFor lH-shifts this is just the case. Hetric
invarients far null-recurrent, irreducible l-siifts are introdiced
and studied in §3. They are based on a certain class o Kaluza
sequence vhich was mentioned by J.F.C. Kingman [ 12 ]. They depend
for their g\ffecti.veness on the eriterion for ergodicity for null-
recurrent ii-shifts given by S. Kekutani and ¥, Parry [ 12 ], The
duality between H-shifts and renewal sequences, which is well-known,
is studied in §2. Indeed, isomorphism of li-shifts is studied entirely
in temms of their associated renewal sequences. As a consequence of
the methods of §3, a gemeral ised Hopf ergodic theorem is proved.
In §4 three classes of li-shifts are studied w ing the invariants
of 33, Ome of these classes was introduced by U, Krengel [ 22
and sharn to consist of a continuum of non-isomorphic M-shif'ts using

basically the Kakutani-Parry theorem.
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§2 The Relation between li-shifts and Renewal Sequences.

In this chepter we shall only consider null-recurrent,
irreducible H-ghifts., If T is the li-shift (A , P) then far amy state i,
ipii(n)}z is a reneval sequence. This follows on putting
£ = f‘ii(n), the probability .of returning to state i for tie first time
after n steps, starting at state i.

Conversely, given a renewal sequence {pnf: , the following
thearem gives an H-shift (A , P) for which Poo(n) = p . Ve shall see
in 33 that the choice of state O is immaterial far our purposes. The
construction in 2,1 is well-kmown [ 3 , p. 40] ; attempts vere mmde to
construct otha li-shifts having ipn}: as renewal secuence in the above
sense, but no results were obtained in this direetion.

2.1 Thearem Given a null-recurrent renewal secuence ipn}:: , let

{fn}‘; be the sewence in terms of which it is defined and put

(-]
T = & f . Then the mill-recurrent, irreducible li-shift T = (A, P)
n+1
with
/\.n = Fn

"
o
s ]
l:ll
-
~
k=
e
-
e
f
H
+
—
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has Pool®) = P
oo
and W) = - i: £ logf, .

Proof T preserves the measure generated by (_)5, P) since

( ,
£ sy = [ AlBa s a0

. . =<' .
v = {L .Z S‘,,’ 3 J‘-‘-’— o

| S ]

Il

i
b

Pooln) = 5 P

. . oi, ***Pi o °
11’.‘.,11'1“1 1

n-1

This sum contains two types of tems, namely,

s S
hio =T RE  fin
;ﬂ; bor hvc, A ‘-l_;‘: ..Fy:.__..
»



wiere 1 s« [32 ], 0¢ 1 <n-1,and

14

kK k
(pye) =1y »

n
where 0 s k €n. Ts, p_(n) = 2 3. _ . P.oeee £,
00 k=1 :i.,l-x-...-t-:l.k =n i, i,
=pn, 11:1, 2’ sse

p,,(C) =1 =p_ , by definition.
o
wWT)= -2 X 32_:0 PL_‘,L"}";S [22]
= . fi-f FL# E
i) el

t=0

= - :Ein{ g—i.n Lm,-&” + Fi-ﬂ L")F'w‘l - FLL}FL}

o3

-2 S;_(°D'(;. )

i1

i

since Fy == O (i => «) and hence F; log 7y —> 0 (i => w). T is

irreducible since any state can be reached from any other via state O,

That T preserves a o=-finite measure follows from I,65. It can also be

verified directly tlnt (A, P) gives rise to a o-finite measure noting that
Do

AR



Write S_  for the il-shift constructed in 2.1 to have renewal
sequence p . though we shall only use tihe notation SP. in this sense,
the results of §3 would also hold if SB were any other irreducible

II=shif't having p as rencwal sequeince.

2,2 Theorem, For renewal sequences p ard g ,

S xS is isomorphic to 5_ ,
2

2 3 R4
where p g = {p, a3, -

Proof. Far simplicity of notation we assume without loss of general ity

that the state spaces of DB and S_q are {O, 1, ...} . DE ng is
o

isomorphic to the shift on I X xY_ vhere X =Y = {0, 1,...;.
A n n n n

I P(3,,3,)(i,d,) are tie transition probabilities far the latter

(1.6.2)
nift, 7 . s .. = P. . . s . T if
shif't, 1enA p(11 iy )(12,32)(11) P11 lz(n) qJ1 Jz(n) s

p, = Pii(n) md q = qjj(n), then SB x Sg is isomorphic to SP. q° /
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§3 Some Metric Invariants for l-shifts,

This section studies the iszoworpaism problem for null-
recurrent, irreducible Ili-shifts SB in terms of the divergence properties
of p .

For a null-recurrent renewal sequence p , let k(p) be the

unique number suclh that

Zeo ’ t < k(E)

z (pn)‘
n=o <co » L > k(B) -

Ir 2 (pn)" =w forall ¢ > 0, as for example when p_ =

3
n=o log(n+e)

«© t -
put k(p) = » . Otherwise 2 (pn)" <o Ffar some ¢' > 0. By the

EQ'CJ'"L] . n=0 -
compari son tes‘l:,>‘ z (pn) <w forall t> ', Also, & p =
n=0 n=o0

©0
and I (pn)"zoa for 811 0 < t <41, Thus

n=0
L=ft: 2(p) =wlyf ¢
[+
and
R =

(v: 2() <alfo.
(o}

By the comparison test, every element of L is less than every element

of R, Dedekind's theaem [ 10 ,p.30] now implies the uniqueness
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asserted above, k(}g) generalises the ergodic index, since {he powers

not
t arekrestricted to integer values.

If _'Q_A' denct es {T)Afw

Podo and p g denotes fpn qnzo ’

the folloving is true:=-
3.1 Theorem (i) A k(p") = k(p)

(11) T > —— & e .
Ty - @ * g

. @ ANt . A
Proof (i) L(pn )" <ew if 1> k(p")
o

= if < k(BA)

Z pM <€ o if ¢ > k(P-)
o B A
= o if 1t < k(E) .
A
, 2 ML 2 A
If A k(l’.A) < k(.E) , say, then E:) (pn) < o vhile 2; P, =

At
Py

el s . oae . Ayt
for some ¢ ., This is a contradiction since (Pn) =

(ii) LetA:kEB) + k(:'gj,vP=Ak(_E) nd @ = A k(a) .
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Then 3 +% = 1 and so by :iolder's inequality [.79, ‘,_186]
Ui
Yp iz (a\ R
oo ¢ L 2 H’) (z \
2 piqt s (E0) 2

If « P> k(p) and ¢ ¢ > k(g) , i.e. if ¢

Hence k(pg) s% 4

Define
f x ’ r=0
10gr X =
-1
log log =x, T =1, 2, ...
and
( 1 s, =0
e =
T
er_1 3 T = 1, 2, ses .
{e
5o
3.2 Theaem { 1 is a Keluza sequence, r = 0, 1, +ee

\10g"(nve )}
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Proof Far r = 0, we lrve to show L < L n

’
(n+'1)2 n(n+2)
which is equivalent to 0 €1 ;- vhile forr > 0 ,

0, 1, sas o

d bem (acve ) > Lo (o4 14e,) = Low ( xcve, )
ax L’ﬁr("*]‘".—) [L«‘) (u-ﬂ-u.'\:\ [ . '('mheﬂ (x-ﬂ-u)

7 O
since log' x is an increasing function of x. //

If p is a renewal sequmce, let « (p) be the unique number such

that w E j""" ’ “<°(o(k)
P
% (D> | Koo , °‘>°‘o(¥\ ?
agein vith €. convention that a (p) = » if % 37 L. -o faral
n+1 )%

>0, For r> 0, let a (}3) be the unique number such that
00, <A (,?\)

oo )“7°(r(¥) .

2 Pa
% (ne1)"'B), Tleq " (nse 1)]dr-1&_)t\.a{(t\+e' W
3.3 Thearem If p is a K-luzo scquence,

1
a (p) =1 - )
Proof Since p is monotone decreasing, by the Cauchy Condensation Test

oo © .- .
[20, p.120] 3 (pn)" < » if, and only if, % 2*(p n)‘ < w., The latter
2
——— L ! '
series converges if linm V2 (p L) <1, iee if A <L, where
: 2 5

?L-:'l;m \/ It diverges if Al s F .
2



2

8

Similarly, 2z Pn converges if P %, diverges if
o a
) (n+1) 1
= )
A% L L. Hence k@) £ = a ° N4

34 Gorollary (i) e (@) =1 -2+ Ae ()
(i1) 1 + ao(_p_ q) € ao(g) + oco(g) .

Proof Use 3.1 and 3.3 . //

5.5 Theorem, If p and g are renewal seguences and

an(_p_) # a.n(_g) for some n, then SP. is not isomorphic to 33 .
Proof Taking the ebove n to be the least such n, let

a =% {a(p) +alq)l am suppose a (p) < a (a)

00 P = < e
Then KZ:O (Kﬂ)da(ﬂ...[(,q"'(ihen)]i

o

while Ké; (D Ll (Kee )

Thus [I.6.4 ] the irreducible M-shift S; x T is not ergpdic, although
:

5 x T being irreducible is ergodic, where T is the irreducible,

g

115.
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aperiodic lM-gshift associated with the Kaluza sequence

o2

It follows that S.B x T

\
{ B, T (Kre,)) ™ },\, o

is not isomorphic to S.91 x T and hence that DB is not isomorphic

toSg. Y

3.6 Corollary If for Keluza seqences p amd g , k(p) # k(g) ,

then SB is not isomarphic to Sﬂ .

Proof By 3.3, ao(3)= 1-—'1;237 4

3,7 Lemma Forn=0,1, ... let pn>0,q_n>0,

0« Tt % L
0 (3]
and ipn = 4 @G, = 0. Then
[, ]
> b _ .
. —»¢ <o (= «) implies the existence
-05 in o i w k
and finiteness of w(p, g) = lim &£_°'

N
N-}m § w’\qn

w(p, g) = ¢ if, and only if, 2 W, e
°
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Proof We follow the proof of [ § , thewem 1 4}, Far N =0, 1, ...

let N
N
s “So: ’n s E - Z() wn Pﬂ y
N T NTON
? in ? W $n

By = 8 = - )
Then p_ =8 (,omand Py = Sy Gy = Sy e ®>o0).

t" = [-] Wa Pn,
R
n -
= Z cm n °n b 4
o ]
where
(N'\- ﬂki‘G“ o < m
K,
c — \NmQ b » N = rm
V‘ﬂ,ﬂ Rm
o n >m .

3 = =0 - () = =
Putting 8, 1 forwall n we see that Pp= 9% =% =9 and tn 1
for dll n, Hence Z ¢ =1 for all m, Since w €w fa all

o - n+1 n
Ry, Oy > 0 and so Z.j lcm’n[ =1 for 21l m, Finally, either

R w (m ==> ) or R —>R <o (n =—> ») . These correspond

respectively toc  ~—> 0 and c —> (Wn ~ Y"n+‘l)

0
mn \m -> .
, - 2:1) % (2 = o)
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The first part of the lemma now follows from [ § , theorem 1]

and the second part, from [ 9 , theorem 2] . //

3.8 Thearen If p and g are renewal sequences such that

P
= 3.

<}

Mz

0

—> 0 (1 ==> ) , 0<e<ow,

2

then ar(R) = ar(g) ’ I = 0, 1, ves .

Proof irite

1 ;
v, u! 1%, r) = Cou 1).. ou__f“—‘ [ loi.‘ (n-+ ‘. 1)]“':‘-1‘?’(&3:‘(“_%\] o¢
and similarly far g .

o

e must shov that I p wn(P-’ o, T) < o if, and only if ,
o
anwn(_q,a,r)<m.
o

o

Suppose that I p W (p, @y T) < » Dbut that
o

qnwn(g, @, T) = s

oM™Mg

This implies that
N
‘% F-\.wl\-(k 7“7‘—)
% Q.I\ N.(% 7“;")

wiich contradicts 3.7. The converse assertion follows on interchanging

pendg. /

- 0 (N-—-)oo),
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3.9 Corollary If (A P) is a null-recurrent M-shift and
Bi = i Bii(n)}o s then

a, (p;) = an(-Ej) n=0,1, eue
for all states i and Jj.

Proof

%F:c(") — i (Nwe) [20].

N A
% Bij (n) J /

wWe now prove a generalised Hopf Ergodic Theorem,
[~

If v = {Wn;o vhere w > Wt > 0,T is a conservative, infinite

measure-preserving transformation on (X, ® , u) amd 0 < £(x) ¢ L, (n),

put
poy o)
cf,w = §x: 3 wnf(Tx = )
= o
3.10 Lemma Iff, ge L1(p) and g(x) » 0 almost everywhere,
then

n
2;: VK‘_{-(TK:) = ‘W (x)
> ve é""xﬂ(—r“") $r30¥

- -]
exists am is finmite o fx : 2 g(T™) > 0} .
o



e
= £ (%)
Proof By the ilopf Lrgodic Thearem, Iy g(:x[ = 1lim ?1 -
>
I=>00 OZ 3(-1" T)

exists and is finite on fx : 2 g(T% > 0} . There is no loss of
o )
generality in assuming that f£(x) > 0 almost everywhere, since in the

general case apply 3.10 o £ , gand £~ , g respectively and noty

that h, w(x) =h (x) -0 _ (x) « 3.7 now gives the
28131 £5,8,1 £7,8,%

required result, //

5«11 Corollary Cf, W is invariant and independent of f.
| c4-1 .
Proof T cf,w = {x 3 W, :f'(T1 X) = ] . Since W SV,
n 2 k+1
Zow f(Tkx) $ Zw (T x)., Conversely, by 3.10
o o
1 Ked
= w {7
£ S - e <o (n>w)
= v §(T°)
Q
© 3 .
Henoce I w, f(Tk X) = » if, and only if, 2 W f(‘I‘kT1 X) =,
o o
i.e. Cf,_f; is invariant,

Again by 3.10, hf’g(x) < o and hg’f(x) < o for

0<f, geL,(p) . Hemce C, _ is independmt & £ . J/

vrite €_ = C if there exists 0 < f ¢ L1(u) suc that

f,m

Cf - ;! % « U, Krengel [2’5 ], warking with more general positive
L

contractions T on I, (u), calls C_ the @-conservative part of T,

120.
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5.12 Thearem Under the conditions of 3.10, &, g LX) is
10,
invariant on C, and

f g(x) hf,g,w(x) ap = -[ £(x) du .

C:‘E G‘I

Proof. Apply the Hoof “rgodic Thearem to XC (x) £(x) and g(x) ;
w

noting that by the invariance of CW ’

a%h3&)=%%uhhéﬂ. /

4 INon-Isomorphism of Certain ii-Shif'ts

1

Put u (a,r) = 3 a>0 y T = 0’ 1’ e
g o (nro ) I
v \& = ’ a > »
n (1+2) e o(n+a)

Wn(P)=ML . O<pct.

I(p)T(n+1)

4,1 Theorem u(a,r) is a null-recurrent Kaluza sequence for
0O<ast (r=0)and 0<a (r> 0}

1=« s n=r

o, (a(a,r)) =



Proof 3.2 states that u(e, r) is & Kaluza sequence.
1

(n+1 )a

un(a,o) = is a null-recurrent if, and only if, a £ 1,

[ 20, p. 120] « u(a, r) is null-recurrent for all a > 0 by

n+ 1
[20g"(nve ) ]°

a>0amdr>0. The last assertion follows from the rates of

the comparison test, since >e(n ——> ) for all

convergence of the logarithmic scale [20 s Pe 123) . V4

Note tlat whenr > 0, an(g(a,r)) can take negative valws.

4,2 Corollary Sg(a,r) form a continuum of non-isomorphic
H=-shifts,

Proof 4pply 3.5. /

4,5 Corollary Sy fXom a further continuum of non-
vI=I1 -‘-l(av’ rv)
k k )
isomorphic li-shifts, where o u(a,r) = -j o u(e, rv)}
v=1 v=1 n 0o

k 1 , nFfr , 1<v <€k
Proof an( I u(a, rv)) ={ v
v=1 1-av s n=r,. /4

L4 Thearem v(a) is a null-recurrent Kaluza sequence for 0 < a € 1 ,

, n=20

1 ~-a
a (¥(a)) = i
4

s n>0.,



103,

2 . .
Proof vn(a) v, (a) vn+1(a) if, and only if,

n n -1 . .

o € ) if jand only if,

d x+ 1 _ a

dx =+t T >0.

2
(x+a+1) [2 o,p 223}

¥{a) is recurrent if, and only if, 0 < a € 1 by the Gauss tes&,since

vn+1 (a)

1)

|
~
-
+
[
N’
1

a 1
= 1-'r-1'+0(—§).
n

_\_r_(a) is either tramsient or nulle-recurrent sinece the convergence of

o
the infinite prodmet 0 (1 - —%=) = 1im v (o) is equivalent
n+a+1 n
n=0 >0
* o a a
to that of 2z o : but | ~H s
n=o
by o
i.e. nio —— s a=. Jince vn(a)\ (n —> ) , v{a) being

a Kaluza sequence, lim vn(a) exists, If it were positive, the
>

infinite product would converge; thus vn(a)\ 0 (n—> o) .

Vol (a )) L

a y=t
(1 + n+1)

1}
-
)
+
(=]
~
[~ S
N
g
*



Hence, again by Gauss' test, k(v(a)) =?11- . It follows by 3.3

that ao(x(a)) =1 ~-a.

That an(z(a)) 1, n>0, follows fron vn(a) ~ [(a+1 )un(a,O)
[ 23, p. 11]. Indeed, L.k follovs from 4.1 using this result.
A different proof of the first part of 4.4 is given since it sceems

to have interest of its om, J/

4.5 Corollary Sl’.(“) is not isomorphic to sg(ﬁ,r) for all

O<a,2<1 whenr>0and for all 0<a #2 <1 whenr =0,

Proof thenr = 0, for a £ ao(y,(a)) f ao(&(ﬁ,r)) .

“hen r > 0 ar(y_(a)) ;!ar(g(ﬁ.l")) for 11 0<a , g <1 . /

7e have no information wlen r = O and ¢ = 8 , since then
an(x(a)) = an(_g(ﬁ,r)) for 21l n, This is to be expected, since
¥(z) and u(a,0) are esentially the same renewal sequence (in terms

of convergence properties).

4,6 Thearem ®(p) is a null-recurrent Kaluza sequence far 0 < p < 1 .

s n=20
a (a(p)) = { ’
1

1
Proof  w (p) ~ () T [24 ,p.58]. since

u(1 - p, 0) is null-recurrent, so is w(p). Also

an(g(p)) = an@(1 ~p,0)) « 4s u(1 - p,0) is a Kaluza seaence,
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the asymptotic relation implies that E(p) is Kaluza too, Alternstively,

w_ . 4(p)
sz;r =32 A ). [

) L3 . o
L,7 Taeorem SE(P) is not isomorphie to S_q(a,r) for all

O<a,p<1 and r=0,1, eoe =
Proof ao(V_V(p)) ;! ao(g(a,r)) . //

Attempts were made to compute the entropy of the three
classes of H-shifts studied above, tie problem being to find an exact
or asymptotic expression for f . For u(a,r) and v(a) there appear
to be no useful closed form expressions for the generating functions

of the farmer or latter. However, we did obtain the follaring

[-.]
4.8 Theorem 2 u (2,0) 2" = &z, a, 1),
n=o °
© Zn
vwhere %(z, a, v) = L [ 4 , pp. 27-31] .

n=o (n+v)%
Proof This identity is none other than the definitionof §.

2z
4.9 Corollary I‘g(a,O)(z) = z Hza,

Proof Tollows from the definitions of Fand @, //
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(-]
L,10 Thearem I vn(a) 2 HA, 1; a+1;2),
n=o

where H denotes tie hypergeometric function{ %3, p.19]

s Tla+n)T(b+n)T (e n
n=o
hoi1 Corollary T,y (z) = LSWla2ie+2;%)
v(a) a(1,1; a =1; z) °

Since w(p) is generated by a closed form expression,

nemely (1 - z)7F , FW(P)(z) =1 -1 -2)® and

T(n - 1)
7, = - TR

-1

~ -—-—-———-—_!_-1- . dence
r(-p) of
4,12 Thearen [22) h(sw(p)) <w forallO<p<i.,
Procf 7 — og — < e if, and only if
p+1 D+l o . ’
n=2 n
]
5 log n -
p+1
n
n=2

But ( R )P*’ (as1) _ &1* _L)—(IH}) 14! “__'%)]

1
-~
|



and so by Gauss' test the latter series converges. The proof is
completed by neoting that series of asymptotically equal terms

converge or diverge together, //

Althargh the renewal sequences studied in this section
throw some light on the effectiveness of an(p_) as metrie invariants,
they are too closely connected with the test sequences u(a, r) to
" indicate whetler, for example {an(g)}z might be a complete
invarient for SP. where p is Kaluza. The answer to this question is
clearly connected with the universality or otherwise of the
logarithmic scale of ratio tests. wSowever, as K., Knopp
[ 20 , p. 304] points out, no "boundary" exists sach that all
monotonic series on one side of it converge, whiile those on the othar
side all diverge, irresnective of the manner of definition o the

boundary.
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absolutely continuous
admissible digit

algebra

almost everywhere

almost everywhere convergence
almost isomorphiec

almost uniform convergence
aperiedic

atom

automorphism

basis
Bernoulli shif'‘t or endomorphism

Borel subset

canonical

Cesaro convergence
characteristic function
complete

conditional entropy
conditional expectation
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conservative transformation
continued franction
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conyergence in measure, probability
convergence in L1(rJ norm, Lz(rQ norm
convergent

cylinder

dependent digits
digits

disjoint
dissipative

domain

elementary function
endomorphism
entropy

equivalent

ergodic

ergodic index

exact

f-expansion
f-transformation
finite measure
finite measure space
fractional part
frequency

Fubini's theorem

functional inverse

136.

bage

30,

18
18
43
32

73
73

28

21

22
31
15
23
25
26

73
13



generated ¢~algebra
generating function

generator

Hélder's inequality
homomorphism

Hopf ergodic theorem

image

independent digits
index set

induced

infinite continued fraction
infinitely divisible
integer part
integrable function
invariant
irreducible
isomorphic

isomorphism

Jjoin

Jordan measurable

Kaluza sequence

Kolnogorov-Sinai invariant

26

17
21

29

73
11

11

L0

16
25

22

22

1z

13

38
31



Lebesgue space

many-one

Markov or M-shift

martingale theorem

measurable function
measurable partition
measurable rectangle
measurable space

measurable subset

measursble transformation
measurable with respect to *ﬁ
measure

measure preserving transformation
measure space

meet

metric invariant

mixing of degres r

modulo zero

natural partition

non~-atomic

non-singular

nth order continued fraction
ml}l recurrent

null set

138

page 10

22
32
19

11l

13

21

19

0

12
30
26

Th

3, 40



159.

one-one page 22
partial quotient 43
periodic 31
point set 7
pointwise convergence 18
positive recurrent ) 3y 40
probability measure 9
probability space 9
Radon - Nikodym derivative 15
Radon - Nikodym theorem 15
reciprocal power series 38
refinement 11
r-fold direct product 13
regular measure 20
renewal sequence 38
restriction of transformation 22
ring 7
separable | 10
e —algebra 8

o—finite measure
= -finite measure space

o -finite partition

~l W W V0

- -ring



simple function

state space

topological measure space

transient

valid f-expansions

wandering set
W - conservative part

weak mixing

4o

page 1k
32

20

3, 40
73

28

120
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