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ABSTRACT 

After an introductory chapter, we study characterisations of 

mixing, weak mixing and ergodicity of a finite measure-preserving 

transformation T due to N. Oishi [251. These characterisations are in 

terms of convergence of suitably defined entropies of finite partitions. 

We show that the characterisations can be given in terms of (countable) 

partitions with finite entropy, extend the characterisation to mixing 

of degree r and give further characterisations in terms of convergence 

of the suitably defined measures of Jordan measurable sets and, in the 

case of a compact measure space, in terms of weak convergence of these 

measures. It is shown that these characterisations cannot be extended to 

convergence of the corresponding entropies of TxT nor to all measurable 

subsets, respectively. 

Chapter III studies the ergodic properties of two classes of 

linear fractional transformation mod one, which turn out mostly to have 

similar properties to previously studied f-transformations (29.1, [32]. 

The main tool is a sufficient condition for ergodicity of non-singular, 

many-one transformations of a probability space, which, applied to 

f-transformations, generalises a similar theorem of A. Renyi [29). 

R4nyi's theorem states the existence of a finite invariant measure 

equivalent to Lebesgue measure. In some cases, using a result of 

W. Parry [27], we have succeeded in constructing this invariant measure. 

Throughout, results were only obtained for f-transformations with 

independent digits (in the sense of Renyi). The dependent digit case is 

much more delicate, and we were unable to obtain results in this 

direction. 
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Of particular interest is the ergodic transformation T 	whose 

1+x 
a--finite invariant measure is exhibited. Its associated f-expansions 

have a striking distribution of digits. It is an open question whether 

is exact and what value its entropy [22] takes. 

1+x 
In chapter IV the isomorphism problem for irreducible, null 

recurrent and aperiodic Markov shifts is studied using a necessary and 

sufficient condition for ergodicity due to Kakutani and Parry [131 and 

the divergence properties of certain renewal sequences. The latter 

provide metric invariants which are then used to investigate three 

classes'of Markov shift, it being shown that they each consist of a 

continuum of non-isomorphic transformations. Non-isomorphism between the 

three classes is also discussed. A generalised Hopf ergodic theorem is 

proved as a corollary to the methods developed. 
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§1 

CHAPTa. I 

Preliminary Definitions and  Results 

Lap_...sure 

If A is a set and x is an element of A then we write 

x e A. If x is not an element of A then we write x / A. If A is a 

subset of B then we write A C B or B D A. The union, intersection, 

difference and symmetric difference of two sets A and B are denoted 

by A U B, A fl B, A - B and A B respectively. If we are studying 

the subsets A of a set X then we write '0 A for X - Al  the complement 

of A. The empty set is denoted by (15 ; sets A and B are said to be 

disjoint if A 1113 = cj. 	[xi denotes the point set x. 

Unless otherwise stated, the same notation as that relating 

-to sets will also be used when dealing with classes or families of 

sets. 

1.1 Definition 	If X is a non-empty set and. I is a non-empty 

colle ction of subsets of X then ti is a LtIg if L.' Eft and F E 12 

implyE-FcRandEUF c 

An algebra is a ring R such that X c 

A a-ring  Cf is a ring such that En  e d (n = 1, 2, 
CO 

imply U E 	d . 
n=1 n  

7.. 



A a-algebra  a is a a-rinc such that X e 115 . If 

a are a-algebras we write a C:03 if A c 0. implies 

A c(3 

Since the intersection of an arbitrary class of a-alsobract 

is again a a-algebra, the a-algebra ,generated by a class of subsets 

of X is uniquely defined as the intersection of all a-algebras of 

subsets of X containing this class. It always exists since the 

a-algebra of all subsets of X contains every class of subsets of X. 

1.2 Definition The pair CK,(. ), where X is a non-empty set and 
d3 is a a-algebra of subsets of X, is a measurable space. Elements 

of i i are measurable or Borel subsets of X. 

A non-negative, possibly infinite-valued set function 

defined on (X, tL ) is a measure if 

(1) p(0) = 0  

(ii) Ea 	(n = 1, 2, ...), E:irt E.j  = 95 	imPlY 
00 

p( U E) = n=1  n n=1 P(En) • 

E c 	is a null set of p if p(E) = 0. An important principle 

of measure theory is that of neglecting null sets. This gives far 

more generality to results and definitions than 7ould be possible if 

a purely set-theoretic approach were adopted. Thus, if P(x) is a 

proposition depending on x, we say P(x) llolds almost evert here if 

ix : P(x) does not holds is a null set. Similarly, A = B (mod 0) 

or A = B modulo zero mean that A B is a null set. In particular 



A CB (mod. (3) if A - B is a null set. Applying this to a-algebras, 

we say that 0- C (46 (mod. 0) if fcr every A E CL there exists 

B E 	with A = B (mod. 0). Hence a-• = C 	(mod 0) means that 

Ct C Ca C a, (mod 0). 

p is finite if p(X) < co ; p is cr-finite if p(X) = co 
CO 

X= kJ Xn , 	X. ri x. = 	(1 /j) and p(Xn) < co (n = 1, 2, ...) • 
1 n=1 

IX n o r which is not unique, is called a a-finite partiti on of X. 

(X, CB , p) is then a finite or a-finite measure space respectively. 

It is a probability space  (p is a _probability  measure) if p(X) = 1 . 

A is an atom of (X, CR , p) if A E 	, p(A) > 0 and 

B C A , B c 03 	implies p(B) = 0 or p(B) = p(A). If (X, CB , p) 

has no atoms then it is non-atomic. 

If (X, ta p) satisfies this condition: 

A c 03 1  p(A) = 0 , B C A implies B e „ 

then (X, (33 , p) is a complete measure space. There is no loss 

of generality in assuming, as we do from now on, that (X, 03 , p) 

is complete; there exists a unique a-algebra 	D L of subsets 

of X and a unique pleasure 71 on (X, i13 ) such that (X, 	, 

is complete, Ta(1,r) = p(E) far all L E (21  and. for each A E 

there exists A c 	A D A such that 71(A - X) = 0 [7, p. 55]. 

A countable collection A C (2) is a basis for 

(X, (81 , p) if the following conditions are satisfied:- 

9. 



(i) For every A E (23 there is a set B belonging to the 

<7-algebra generated by A such that A C B and p(B - A) = 0 

(ii) For every pair x, y of distinct points in X there is a 

set A e A such tint either x c A, y j A or x j  A, 

y e A . 

separable if it has a basis. Note tint the 

definition of separability applies equally to a-finite measure spaces, 

since (i) depends only on null sets of p, and. that countable subsets 

of a separable measure space are measurable by (ii), since 

[xi = fl A. If (X, (18, , p) is separable and non-atomic then 
AEA 

p(ixi) = 0 for all x c X. (X,1 , p) is complete with respect to 

A = [Ai  : i e I! if all intersections 

n Bi 	, 
icI 

where B.1  = A. or X - A.. If a probability space (X, G , p) is 3. 
separable and complete with respect to a basis then it is called a 

Lebesgue space. 

For example, if Y = (0, 	= a-algebra generated. 

by the ring of finite, disjoint unions of intervals of the form 

[a, b) and. A is the measure determined by Vja, b)) = b - a then 

(Y, X , A) is a Lebesgue space. In fact, all non-atomic Lebesgue 

spaces are essentially th e same as (y, vt. , A) [31 ]. That 

measures on a ring can be extended_ -to measures on the generated_ 

a-algebra follows from the next result. 



11. 

1.3 Theorem [7, P 54-]. If v is a measure on a ring R of subsets 

of X then those 9=igtsa a unlautie MeaSure u definod on the a-algebra 

generated by n such that 1,(E) = p(3) , E E R . 

1.4 Definition g 	.,-where 1 < N 4 co , is a measurable  

azpALbk12 (mod 0) of the Lebesgue space (X, CB , p) if 

(i) En e 	, p(En) > 0 	(n = 1, 	N) 

(ii) X. n x. = 
J 

N 
(iii) X = U X (mod 0) . 

n=I n  

The set of integers 11, 	Ni is the index set of g . The 

(at most) countability of g is essential: the existence of an 

uncountable, disjoint class of sets of positive measure whose union 

is X would contradict the finiteness of p. - Te shall consider 

measurable partitions only of Lebesgue spaces, and refer to them 

simply as 'partitions'. Two frequently used partitions are v and 

a, where v =X; and s = 	: x E X] . The latter is not 

strictly a partition in the sense of 1.4, since all its elements 

except at most a countable number of atoms are null sets. :Towever, 

we shall refer to a as a partition, as it consists of a disjoint 

class of measurable subsets of X whose union is X. 

If A C X, let 	= [13 !IA B E 41 denote the partition of A 

induced by the partition ('L of X. 

A partial ordering on the class of all partitions of 

(X, (B , p) is given by .1., where 4 n if n is a refinement of 



g i.e. if every element of n is a subset of some element of g. 

-.7e say tint g 5 n (mod 0) if there exists a set A ECre',  

A = X (mod 0) such that gA. 	77A  . g = n (mod. o) is defined 

similarly. g 5 n (mod 0) anl n C (mod 0) imply g = n (mod 0) 

since CA  4 nA  and gB  4 77B 	p(611) = p(1B) = 0 , imply 

;,B = nArB , p(U(A (13)) = 0 . The smallest partition of X is 

v 	the largest is 6 . 

For any collection of partitions [Ei  : i E 	of X there 

exists the 12112 	V gi  defined as a partition g of X having the 
iEI 

properties:- 

(i) ci  4 ;(mod 0) far all i e I 

(ii) if Ci  g' (mod 0) for all i c I where g° is a partition 

then g V (mod. o) 

similarlythereexiststlemetii gi  defined as a 
ieI 

measurable partition g having the properties:- 

(i) Ci  3 g (mod 0) for all i E I 

(ii) if gi  3 gl (mod o) for all i where g' is a partition 

then E El (mod 0) . 

The join and meet of two partitions g and n are written g v n and 

g A n respectively. It is easy to verify that 

n 	 n 
V gi 	[ 	: A. c 	. 

i=1 	i=1 1 1 1.  

t). 



CO 

7e write grI P g (n 	op) if gn  4En 1, E = V En  and 
4.  co 	n=1 

(n --> "co) if -411  ;1,4  , 	= A ,; , 	 n n=1   

Let e denote the sub-a-algebra of ITS generated by the 
A A 

partition g of (X,S , p). Then [32] g C n if, and only if, 

g 	n. Also e%  =CB 

p0)  For r = 1, 2, A..., k. 
fv.
m
(r) o  (r) 

p .64J 	$ 
(

/ denotes the r-fold 

direct product of the measure space (X, es , p) with itself, i.e. 

X(r)  = X x 	x X (r times) 

(r) = a-algebra generated by the ring of finite, disjoint 

	

unions of sets of the form B1 x 	x Br  (B. E (.6 ) 

El x • • • 

(r) = measure uniquely determined (see 1.3) by 

µ(r} P 	(11.1  x...x Br) = p(B1)...µ(Br) . 	(Bi  E 03 ) . 

A measurable rectangle  in S(r)  is a set of the fo 

x E
r  , L. E 06 	(i = 	r). 

4r) = ring of finite, disjoint unions of measurable 
rectangles in uc (r)  

E e (r) is Jordan measurable  if for all 8 > 0 there 

exist R8  , 8  
S 	, R (r) 	R5  C:E C:(1  0 8  , such that 

µ(E - R8) < 8 and µ(S8  - E) < 8 

If gi, 	, gr  are partitions of X then gi  x„..x 

stands for the partition [E1  x...x Er  : Ei  E gil of X(r), In 

particular s(g,g1) denotes the sub-a-algebra of 3(2)  generated by 

r. 



E x Et and p' '  denotes the restriction of p(2)  to .5(E,EI), i.e. 

the measure uniquely defined on (X(2),  S(E,E')) by 

p l (E) = p(E) , E c 	. 

Y gl Note that p" 	has atoms x F , E e E, F e Es . 

If E c a (r)  then 

e X v(E) = ix e X : for some (x2'... xr) 	(r-1) , 

•I213c = 1 	 x) 
	

x(r-1) : (X1'x2'"*Ixr)E El . 

c)2 Ileasurable Functions and Absolute Continuty 

Let CK, al , p) be a measure space. 

2.1 Definition 	If T; C X the characteristic  function  xE(x) 

of L is defined as follows:- 

X C 

X / 

n 
f is a simple function if f(x) =

11 1 
a.xE(x)wherea.are real. 

= 

00 

f is an 	 11elm lakamsaaElIan if f(x) = 27, a. 	(x) , where a. 
i=1 1 1 

are real. 

2.2 Definition 	A real-valued function f on X is measurable if 

for all Borel subsets II ce [-00, m] f -1(1:)E 	. 
is measurable if, and only if, E e . The sum of 

two measurable functions and multiples of a measurable function are 



measurable. For further faots dbout measurable funotions, see 

[7] or [19) . 

2.3 Definition 	If v is another measure on (X, ) then p is 

absolutely continuous vdth respect to viµ « is, if p(r,) = 0 

whenever v(E) = 0 . p is equivalent to v if p << v « µ . 

2.4. Theorem (Radon-'r ikodym) [7] [19]. If the measures p and v 

are defined on (X, ) and p is absolutely continuous with respect 

to v then there exists a finite valued measurable Ainction f such 

that 

p(E) = 
J 

f(x) d v(x) , E 

f is called the Radon-I ikodym derivative of p with respeot to v 

Two points on notation:- If c El will sometimes be used 

instead. of tx : f(x) E El ; ix f(x) is to be understood as 

inf f(x) . 
xeX 

§3 Integrable Functions  

Let (X, a3 p) be a measure space. 

3.1 Definition 	A measurable elementary function 
CO 	 CO 

	

<f(x) = 	a. 	(x) ) 0 is integrable 	if E a. p(E.) 	03 and. 

	

1=1  3. 	 i=i  1 
03 

its integral is -then written 	f(x) d p(x) = E ai   
i=1 

In writing integrals we sometimes adopt the convention that f f d p 

stands fcr fx  f(x) dp(x) . 

15, 



3.2 DefinitLon An elomontary Nnotion f 0 is integrable on E,  

E ea if x.7,(x) f(x) is integrable; we write f XE  f dp = f dp . 

3.3 Definition A measurable function f(x) ?, 0 is integrable on E,  

p(D) < co , if there exists a sequence of elementary functions 

n(x) 0 such that fn(x) p f(x) (n —> .) uniformly on E and 

fn(x) is integrable on D (n = 1, 2, ...) . Its integral over E 

f(x) dp = lim
j 
 fn(x) du . 

tee' 

3.4. Definition 	A measurable fb.nction f(x) is integrable on 

p(3) < co , if f+(x) and f(x) are integrable on E, where 

f+(x) 

f(x) if f(x) 	0 

0 if f(x) < 0 

if f(x) 4 0 

(x) j
e 

t
0 if f(x) > 0 

and then f f dp =jedp - f  f dp 

1 
p(Xn) < co , then f is ki-laz9131e if it is integrable on each 

co 
Xn and 1 1 fx f 4 1 < co in which case we write 

16. 

, 

3.5 Definition If (X, 1  p) is a-finite with X = V Xn  , 



f. co 
Pdµ = 2. fx  S d µ • 

1 	n 

For more dp-Enils of this approanh to intogration theory see [21] . 

Write L (p) = If : If! P 
 
is integrable on (X, (, p)1 , 

p 1 . 

( is a Banach algebra with norm 

11f 11 p  = 	1f1P  ciP)
1/P  

provided that functions which are equal almost everywhere are 

identified; f is a linear functional on L (p), i.e. 

f, g 	1 (p) imply f(a f + g) dp = a f fdp+/3f g dp 

for all real a, p. 

3.6 Theorem: 'folder's Inequality [19]. Let p > 1 , q > 1 and 

+ - 7). I 	1 , f L (p), g La(p). Then f g c 	(p) and - 

11f gill 	Ilf 	• 

3.7 Theorem If f e L1(p)  , g c L1  (p)  andfE  dpf 	= pj 	a. 

  

for all E c a then f = g almost everywhere. 

Proof Since f is a linear functional on L1 (p) , it is sufficient 

to prove that fE  f dp = 0, E e B, implies f= 0 almos t 

everywhere. 

17. 



i.e. P(3k,n)  = 

P(Bk,n) = 0 k < -1 

k > 0, n = 0, 1, 	. Similarly, 
CO 	 CO 

Since [x : f(x) 	01 = k,n k=-co n=0 

Lpit E 	ix myrt 
00 <k = 0, ±1, 	n = 0, 1,... 

2n  

Then 
	

(B since f is measurable and 

o= J f dp 

Ek$n 

P (E 	) 
2n 	k,n 

kI0, -1 
the result followso  

3.8 Definition 	If tfn(x)1: is a seouence of integrable functions 

and f(x) e L1  (p) then we say that 

f--> f (n —> co) (pointwis  ) if for each x e X and 

8 > 0 there exists no(3, x) such that n > no  iiplies 

I fn(x) 	f(x)I < 8 . 

fn  —> f (n —> co) almost everywhere  if 

ix : fn(x) -1-> f(x) (n --> co) 1 is a null set. 

fn --> f (n —> co) almost uniformly  if 

[x : fn(x) --/=> f(x) (n —> co) uniformly is a null set. 

fn --> f (n —> co) in measure (in probability if 

p(X) = 1) if plx Ifn(x) - f(x)I 	81 --> 0 (n —> CO) for each 

6 > 0 . 

fn  —> f (n —> ©) in Li  ( p) norm if 11 fn  - f II 1—> 0 	„ 
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The relationships be tweon itho var-louc rorms of convergence 

are th moue:0.3f discussed in [19]. 

A 

3.9 Definition If g is a partition of (X, 	and g 

denotes the generated a-algebra, a function f : X —> [-co,co] is 
AA 

measurable with_respect to 	if f (B) e g for all Borel 

subsets B of [-co, co]. 

3.10 Definition 	Let (X, 	, p) be a probability space, d 	be 

a sub-a-algebra of 63 and. 0 f F L1  (p) 	Then the set function 

uf (B) defined by pf (B) = f f dp (B c 	) is a finite measure on 
B 

03' 	which is absolutely continuous with respect to the restriction 

of p to 02: . Ilene° by 2.4. there exists E(fI(B1 ) e L1  (u)which 
. „ 

is measurable with respect to Lb such that 

f dp = j E(fICR') 	B E Q . 

E(fl 03'  ), the conditional expectation of f with respect toig, is 

only determined up to a null-set, since any two versions of II:(f I 03' ) 

are equal almost everywhere (replacing qi by (B' in 3.7). 

Co 

3.11 Hartingale Theorem [2] 	If 1E }o  is a sequence of partitions 

of the probability space (X, 52) , p) such that n  T g (n —> co) and. 
A 	A 	A 

f is measurable with respect to g then p(fIgn) --> E(fig) (n 	02) 

If (Xi, 	pi) (1.1, 2) are finite or a-finite measure 

sequences then (X1  x X2  , 	x 	, u1  x p2) denotes the direct 

i)roduct of 'LIE two measure spaces, i.e. 



Cb  1 x 
	= a-algebra generated by' the ring of finite, 

disjoint unions of sets of the form 

B1 x B2 (Bi 	J..) 

p1 
xµ2 	measure uniquely determined (see 1.3) by 

p1 x p2 (B1 x B2) = p1(B1) p2(B2) 

(Bi  cal) . 

3.12 Pubinits Theorem [7, p. 148] 	If h E L1(p1 x p2) then 

h dp2  e L1  (p1) , j h dpi  e L2(p2) and 

h a(P1xP2)  = I 	I 
h dp2) dpi  = j 

X1xX2 	X:1 X2 	X2 X1  

h dpi) dp2  . 

§4.4. akslaipal Feasure spaces 

Let X be a compact, Trausdorff topological space. Eeasurability 

and measure are connected with tIm topology as follovs:- 

4.1 Definition  63 = a-algebra generated by the compact subsets 

of X. 

p = a regular measure on a , i.e. for all 
E 63 

p(E) = inf u(U) 
ECU 
open 

= sup p(C) 
CC 

C compact 



the r-fold direct product of (X, ( , p) viith itself, 
oc(r), 	(r), 1.1(r) 5  also compact and Trausdorff with respect to 

the product topology [15] , r = 2, 3, ... 

4.2 Definition C(r) = the Banach algebra of all continuous, 

real-valued. functions f defined on X(r) , 
-provided Yri-th the uniform topology, i.e. 

the topology defined by the norm 

f ii=  sup 	If(x)C . 
xcX(r)  

C (r) is a sub-algebra of the Bane oh algebra Li  (p(r)) 

GL(r) 	[1(2c) = 	 a. real, 

f.j c C(r)  and x = (x1,..., xr) 	. 

(r) is a subalgebra of C(r) . 

§5 Transformations  

Let (Xi , 	 (X2) G3 2, P2) be measure spaces. 

5.1 Definition 	The transfcrpaillon T : X1 --> X2 (Xi  is the 

domain of T) is measurable if A e lS 2  implies T-1  A e 1 • 
Tx is the image of x e Xi  under T. 

T is non-singular if it is measurable and if A 6 ea  2 ' 
tt2(A) = 0 implies p1(T-1A) = 0. 

T is measure-preserving or a homomorphism if it is measurable 

and if A c 6?" 2  implies p2(A) = p1(T-1A) . 



Li. 

T is one-one if Tx = Ty implies x = y. It is many-one if 

at most a ocuntable number of distinct points can have the same 

image under T. If T is 1-1 onto and both T and. T-1 are homomorphisms 

T is called an isomorphism. (Xi 	, Pi ) and (X2, 03 2, P2) 

are -then said to be isomorphic. If the two spaces coincide, 

homomorphisms are called endomorphisms and isomorphisms, automorphisms. 

The endomorphism T2  of(X2, CB 2, ;/2) is isomorphic to the 

endomorphism Ti  of (X1, CB 1 , pi ) if there is an isomorphism T from 

Xi  to X2  such that T Ti  = T2  T . 

	

If T : 	0 1, p1) —> (X2, 63 2, p2) then T(r)  denotes 

the transfac tion from (X i(r),  oz,i(r) , pi(r))to (x2  (r), 	(r) 112(r))  

given by T(r)(xi , 	xr) = (Tx.'  •••, Txr).Similarly,ifT.is an 

endomorphism of (Xi  , 	i, pi) (1 = 1, 2) then Ti  x T2  defined by 

Ti  x T2  (x1, x2) = (T1 x1  , T2 x2) is an endomorphism of 

(X1  x X2, 43 1  x 	2 	x p2) , with the latter defined analogously 

to (x(r), 63 (r) , p(r)) • 

If E C X1 the restriction of T to E, denoted by TI E, 

is defined by TI L, x = Tx , x e11. If T : (Xi , 	111)—>(X2, 	2,P2) 

is measurable and non-singular then so is TI E: 

TI 	: (E, E 	1 —> (X2, 03 2' 112) 	where 

(1631  = [E nB : Be C13 1} 

	

piE(F) = 	1(r) 
	

F c E otf.. 1 • 

If T-1 E = E c 1 and T is measure-preserving then so is TI E . 



If (Xi, a I, pi) are oompact Hausderff measure spaces 

(i = 1, 2) then T is continua's  if T-1 02 is open for all open 

sets 02  C X2 

A measurable non-singular transformation T of CX, 	, p) 

is odic if T
-1 

E = E ece implies p(E) = 0 or p(X-E) = 0 . 

Such sets E are invariant under T. 

5.2 Theorem [8] 	T is ergodic if, and only if, f(Tx) = f(x), 

where f is a measurable function, implies f(x) = constant almost 

everywhere. Such functions f are invariant under T. 

5.3 Theorem 	If T is an ergodic endomorphism of (X, e, µ) which 

preserves another measure v equivalent to p then p = c v where 0 is 

a positive constant. 

Proof Denoting the Radon-Nikodym derivative of p with respect to v 

by 	,we have 11(r'J)  = fE dv (x) dv 

f
a 

(x) ay 
T-1:0 

E dv (Tx) dv , 	c 

dm If p(X) co , i.e.— L1  (v) then 3.7 can be applied, giving that dv  

a ` / 
/Tx) = a(x) almost everywhere. 

2,3. 



	

gIn the annowml oase, 	e(x) 	(x) and.  

C+ 	: f(Tx) > f(x)1 . 	Then C+  E CB , and. for each n, 
co 

o 	p(c+ nxn) < co where iXni i  is a a-finite partition of X with 

respect to the measure p. Thus 

f(Tx) dv J 	
f(x) dv < 

C (lX n 	 en Xn 

i.e. 	 ,f(Tx) - f(x)1 dv = 0 . 

C+11En  

Putting Ek,m  = 	: k:m 4 f(Tx) - f(x) < 	1 and. using the argument 
2 	 2m  

of 3.7 we see that v(C+  n Xn Ek,in) = 0 , k = 1, 2, 

M = Ot  i t 	. -pence v(C+) = 0. Similarly, 41k  

C = 	: f(Tx) < f(x)i = 	(mod 0). 

Thusv 	dv c-18(Tx) -C-1 (x) almost everywhere. 

5.2 nicm implies that dv(x) = c almost everywhere. c > 0 

since p and v are both non-negative set functions which take positive 

values far some sets. // 

5.4 Definition A subset J of the positive integers has density 

S(J) = 0 if urn v ) w • = 0, where vn(J) = number of integers 
n-->co 	n 

between 1 and n inclusive which belong to J. 

If T is an Endomorphism of a probability space (X, (27  

then T is weak mixisq if any of the following three conditions 

holds:- 



25. 

, 

n 

n—i 
E 	n T-IcB) 

n-1 
Z 	[1.1(A) n T IrB) o 

p(A) p(B)t —> 0 (n —> co) 

(n —> cc) 

for all 

A,b e e --> p(A) p(B ,. 	._> 

p(A ll TB) —> p(10 p(B) (n —> 03) n / J, &(J) = 0) 

The three definitions of weak mixing are equivalent, since the 

forms of convergence to which they correspond are equivalent for bounded 

sequences of real numbers. 

5.5 Definition T has ergodic index ek(T) = r if 

T(s) is 
ergodio , 1 	s r 

not ergodic , r < s . 

Clearly, T(s)  ergodic implies T(51)  ergodic for all 1 	s' < s. If 

T(s) is ergodic for all positive integers s then we put ek(T) = m 

while if T is not ergodic we put ek (T) = 0 

5.6 Theorem [13] If T is an endomorphism of the finite measure 

space (X,(B p) then ek(T) = 0, 1 or co . 

Proof It suffices to prove that T(2)  ergodic implies T(n)  ergodio 

for n > 2. Now T
(2) 

is ergodic if, and only if, T is weak mixing 

[8, p. 39]. S weak mixing anl T weak mixing imply S x T weak mixing, 

since for bounded sequences of real numbers ianl, ibn] 

an --> a (n --> co In Ja, 8(Ja) = 0) and 

bn --> b (n —> co, n Jb, 8(Jb) = 0) imply an  bn —> ab(n--> 



n 	Ja u Jc ' 15(ja jb)  = 0) : see 5.6. Putting S = T(n) and 

using induction gives the required result. /7 

Let 0
(0 

denote the class of sequences cf positive integer 

r-tuples A: = (kin  , 	kin') such that 

lim inf 	lki  - n = co . T is mixing of degree r if n n--->co 1.1i<j4r 
k1  - 	-kr  

lim p(Eo rl T 	E1 	T n  E
r
) = p(Eo)...p(E) 

for all [A: E
(r) 

and E. ES (0 i r) 

This definition is equivalent to the usual definition of 

mixing of degree r[32]. Also if T is mixing of degree r it is mixing 

of all degrees less than r. 

When r = 1 we say that T is mixing, simply. 

A partition of (X,a , p) is a generator cf T if 

co 
V T n 

= e (mod 0). T is said to be exact [32] if it has a generator 
n=o 	00 
g such that A T-n = v (mod 0) when v = [X. Since the definition 

n=o 
of exactness only depends on the null sets of p we can, and do, extend 

the definition to a-finite endomorphisms (see for example [28] ). 

5.7 Ergodic Theorem [21i.] 

If T is a finite or a-finite endomorphism of the measure 

space (X, 63 , 0 and f E L1  (p) then 

1 n-1 

n E f (715) --> f*(x) (n —> 00) almost everywhere and 
0 

in L1(g) norm 

n--->c 



f* E L (p) and f*(Tx) = f*(x) almost everywhere. 

If p(X) < co then Jr  f*  dp = ff* dp . 

5.8 Corollary If T is a finite eadomorphism then the ergodioity 

of T is equivalea t to the following co nditi on :- 

n-1 1 — 	p(A (l T-k  B) --> /./ p X(A 1(B)  (n --> co) for all 

B . 

Proof If the Cesaro convergence of measures holds and 
- 1 	 tv12 

E = T 	c G5 , put A = B = E to give p(E) p(X) 

Conversely, the Ergodic Theorem implies 

E1  E f(x) g(Tkx) --> f(x) g*(x) (n --> co) in L1(p) norm if f(x) 

a bounded function. Put f = A14., g = XB  and integrate term by 

term (norm convergence implies convergence ct the sequences of 

integrals. 

5.9 Corollary Mixing implies weak mixing implies ergodicity. 

Proof Ordinary convergence implies strong CeStIrt convergence implies 

weak Ce8L-o convergence. 

5.10 Thew ern [12, p.405] Let T be an endomorphism of the a-finite 

measure space (X, cg , p). Then there exists an invariant set C, 

unique up to null sets, suoh that 0 f c Li  (p) , x E C and 
co 	 00 n f (T x) > 0 implies that E f(Tnx) = 	C is the conservative  

27. 

1 
n 
is 



part ur T. D = X - C is th dissipative port ar T. 

If X = C (mod 0) , T is conservative. 

5.11 Definiti on 	1.7 e 03 is a wandering set of T if 
VI nT n  'FT = 01) n = 1, 2, ... . 

 

5.12 Theorem T as defined in 5.10 is conservative if, and. only if, 

it has no wandering sets of positive measure. 

00 
Proof Let [Xnil  denote any o-finite partition of X. For 

co 
E e(i5 , A(E) < 0* , put fE(x) = E xE  (T x) 

and lim T-n  n 

co 	cc, 
= 	n 	u T n E 

m=o n=m 

= €x : Tn  x e E infinitely often] . 

Clearly fE(x) = 	if, and only if, x e 13nm T-n E. Thus 

C = llm T n  E [fE  = Oi . 

Suppose T is conservative and that E e 43 is a wandering 

set of positive measure. There is no loss of generality in assuming 

that p(E) < co , since 0 < u E nxn) < co for some n and E r1 Xn  is 

a wandering set. 	co 
0, 	x U T-n  E 

fE(x) = 	
1, xcUT-n  E 

Thus D q'(mod. 0) , which contradicts the assumption that T is 

conservative. Hence T has no wandering sets of positive measure. 

28. 



Suppost T is not conservative, i.e. p(D) > 0. Then there 

exists E 	, p(E) > 	E C D ; for example, D Xn  for some 

n. Put 00 	co 
F=U T n  E - y T-n E . 

F is a wandering set, since T m  commutes with set-theoretic difference 
Co 	 CO 	 Co 

and countable union and also U T m ECUT-ri ECU T-n E m+1 
c°    (m = 1, 2, 	) . If p(F) = 0 then U T n 	n E = U T E (mod 0) 

00 
(m = 1, 2, ...) and. lim T 11  E = U T n  E (mod 0) . It follows 

that E C G (mod 0) which contradicts E C D. Hence p(F) > 0. if 

5.13 Hopf Ergodic Theorem [11] Let T be a conservative endo-

morphism of the a-finite measure space (x, (2 , p). 

Then for f e 	(p) 	0 g e L1 (11) 

Z f(T x) 
lim 	o 	=.hf,g(x) exists and is finite almost every- 

00 
where on [x : E g(Tx) > 01. hf,g(x)  is invariant and 

J f dp = J ghf g 
 dp . 

) 

Applying the principle of igncring null sets, we say that 

endomorphisms Ti  of (Xi,Ceii, pi) (i = 1, 2) respectively are almost 

isomorphic if after discarding null sets from either or both of 

X1, X2 the resulting endomorphisms are isomorphic. 

It follows easily that if T3 is an endomorphism of (X3' Q'3' p3) 

such that T1  x T3  is not isomorphic to T2  x T3  then T1  cannot be 

isomorphic to T2. In other words T1  isomorphic to T2  implies Ti  x T3 

n->00 n 
g(Tkx) 
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isomorphic to T2  x T3  . A quantitative or qualitative function t (T) 

of the endomarphism T is said to be a metric invariant if S isomorphic 

to T implies t(S) = t(T). Taxing and ergodicity are examples of 

qualitative invariants, while one of the most powerful quantitative 

metric invariants is entroa. 

5.14 Definition Let T be an endomorphism of the probability space 
CO 

(x, 66 , p) and g = lEni l  be a countable partition of X. 
CO 

The entropy [2] of g with respect to p is H (g) = - E p(En)logp(En) . 
n=1 

If g is uncountable we define H (g) = co 

Z 	= 	partitions g:H 
11
(g) < coi. 

If g ,n e Z the conditional entropy of g relative to n is 

H (gin) = E p(E(1r)log p("51)  . The main properties of partition 
Eeg 	 A (F) 
Fen 

entropy are as follows: - 

1) 0 H (gin) 	00 ; H(gin) = 0 if and only if g 	n (mod 0) Agin) 

H (g v n14) = H (g1) + H (nig v 

3)  H (gin) 	H (dn) if g 

4)  H (gin) % H (gH 	if 77 P -1- 4 

5)  H (g v nIg) H (gig) H (7714) 

6)  H (T-1 	1 gIT = H( ip) 	, 

where T 1  g = [T 1  E : E e g], 

7) H (g) = H (gl 	. 



5.15 Theorem [2] .1p(fr' 	= 

n-1 1 	- lim 	H ( V T 1 	exists for n p i=0  

31. 

all 	e Z . 

5.16 Definition [2] The entropy or Kolmogorov-Sinai invariant of 

T with respect to p , h (T) = sup h (T, ) . 
EeZ p  

5.17Theoreni MifT.is  an endomorphism of (X
3.
., 	3_3  p..) 

(i = 1, 2) then Ti  almost isomorphic to T2  implies that 

h (T1) = hp (T2) . Pi 	2 

5.18 Theorem [2] If e Z is a generator of the endomorphism T 

of (X, (8 p) then hp(T) = hp(Tp g) 

For futher properties of hp(T),see [2] . 

5.19 Definition An endomorphism T of the measure space (X, (, p) 

is periodic with period n if there exists a positive integer n such 

that Tnx = x , X E X. 

5.20 Theorem 	If the endomorphism T of the non-atomic Lebesgue 

space (X, 03, p) is periodic then h (T) = 0 and T is not ergodio. 
kn-1 . k-1  

Proof 	V 	T-3-  = V T-IE (k = 1, 2, ...) and so h (T, E) = 0 
i=o 	i=o 

where n is the period of T. 

Since p is non-atomic there exists a set E E 63 with 
n-1 _i  

0 < p(E) < 	. En  = 	E is invariant as T has period n, and. 

0 < p(En) tc. n p(E) < 1. Thus T is not ergodio. 	// 
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§6 Markov and Bernoulli Shifts 

A. measure-preserving transformation T on a finite or a-finite 

measure space (X, 01 ,p) is said to be a Markov shift or M-shift if 
N 

T has a generator = 1Xn 	where 0 < N 00 , such that 
0 

tA ( X n 	,/11. 	An K-1 ) 	r (xp,_i 

for all 0 4 nr4 N, r= 0, 1, 

are positive. The set 10, 1, 

M-shift. 

k provided all the measures involved 

Ni is the state space of the 

µ(X.n T-I  X. ) 

• • • 

• • • 

Putting An  = p(Xn) andpij  .. p(Xi) 

	

we see that An 0,Pij = 	l
j A. = E A. p. 	and that(X, 	,p,T) 

is isomorphic to the shift (0,701, m, S) defined as follows:- 

	

0 = 101  ..., Ni 	n = 1, 2, ... 

0 	0 n = 	n 1 

-en = a-algebra of measurable sets generated by the 

cylinders 16) : wn  = io, .." cantk = ik/  

0 	it 4 N 	(r = 0, 1, 	k) 

and n = 0, 1, *as 

m = measure uniquely determined by the equations 
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m(10 : wn = ioi) = A. O 

m(lw wn  = io, 	wm*lc = k = to PI  p. . ... • 
k1 

1
k 1 1o  11  

(the uniqueness follows by the Kolmogorov Extension Theorem [19, p.159] 1 

(5 co) n = wn+1 ' where w = 	'v.") E n  • 

We note that S preserves m, since the measure of a cylinder is 

independent of its initial co-ordinate, and that m is finite if, and 
N 

only if E A < 00 . 
n=0 n  

Writing A far the N + 1 dimensional vector (A0, ..., AN) 

and P for the (N4.1) x (N+1) matrix (pij), the pair (a., P) determines 

the Markov shift T up to isomorphism. When talking of M-shifts we 

shall sometimes refer to (A, P) as the PS-shift. In particular, a 

shift (f2,7571/, m, S) defined as above in terms of (A, p) is an 

f2-shift if n  0, 	 Ai pij, iee.  pij 	j pij 	i i 

— A = A P in matrix form (xn  = iw: w1  = ni fcrm a generator for S). 

and 

Let pij(0) 

pij(1 ) 

p..(n) 
1,) 

= 

= 

= 
i1'n-1 

0, 

1, 

pij 

E 
" 

i / j 

i = j 

p.. 111 
p. 	. 
1n-1 J n > 1 

Then we see by induction that Pn, the nth power Of P, is the matrix 

(p..ij01Th Also, 	r1Tnx 	pij  (n) = X. p..(n) . 

. 



Define f(0) = 0 

f..(1) = lj 	plj 

f..(n) 1,) 
= 

r=1,...1n-1 

Pii Pin-1 ' 1  
n> 

n-1 
The relation betweenplj  ..(n) and f..(n) is p..(n) = E f..(n-r)p..(r) 

1J 	13 	 13 - JJ r=0  

which can be expressed in terms of generating functions 

	

co 	co 

	

F..(z) = Z 	 j 3.3 	f..
3
(n) zn  and P..(z) = E p.(n) z

n by 
n=0 3" 	1,3 n=0 1 

(Fii(z) p..(z) 	, 	I. I  j 

Pij(Z) 1 

	

Fii(z) Pii(z) + 1 , 	i = j . 

For the following definitions, we follow [30]. 

The M-shift (21., P) is irreducible if for any states i, j 

there exists a positive integer n such that pii(n) > 0 . Unless 

otherwise stated, all M-shifts in the sequel will be irreducible. 
00 

The state i is transient if Z pii(n) < co , 
n=0 

03 

positive recurrent if Z p.
1i
(n) = 	and 

n=0  

00 

n f..11(n) < co . n=1 
Co 

null-recurrent if E p..(n) = co and 
n=0 11  

CO 

11=1 

	fii (11) = co . 
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aneriodio  _if pii(n) > 0 for all large enough n. 

We consider only aperiodic M-shifts. 

6.1 Theorem If (A, P) is irreducible and aperiodic, all states are of 

the same type, ie. transient, positive recurrent or null recurrent 

[5, P. 355]. 
n-1 

n 
1 

11 For all states i, lino, — Z p..(k) exists. i is positive 
n!->00 	o 

n-1 
recurrent if, and only if, lim - n 	Z  o  pii(k) > 0 [30] .  

n->oo 

One can therefore talk of a transient, positive recurrent or 

null recurrent M-shift. 

6.2 Theorem Given two M-shifts 	P) = 	m, s) and 

p') 	(CV ,111: m' 	) with, On  = 	= i0, 1, ... 	n =1, 2, • • • 

03 

let n" = n (n x nn) , n  

111. = a-algebra generated by the cylinders 

[w" 	: 01'1  = (i0  jo 	w" 	= (ir, jr  )I nfr 

mft = measure uniquely determined by the equation 

mn(10 w = n 	(i0, 	cdn+r = (ir' 4)0 

= 	 P• p. . 	p. 	Pt A. 	1 

o Jo 
lo 	Joj1 	Ir-1 

•
r 	j

r-1 
j
r 

Then (0 x 0' ,101xTd, m x m', S x S9 is isomorphic to 

0"70,7mtl  SH). 

Proof Define 0 : 0 x 01 	0" by 0(0, col) 
C.3 

= i(W  (e)1 n' n 1 , where 
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co 	co 

w = [wn~1 and w' = tw'ni1 . Clearly 0 
is 1-1 onto. It is measurable 

since 

1 - 
0 ice con

11 = (i 	,***, Wit 	= 0,j o) n+r 	(ire 
 

w: w = i 	fogey 0 	= 	X [W I : 	= j
o 	ji n n+r r 	n+r r  

and the ring of finite disjoint unions of cylinders generates the 

measurable subsets in each respective sequence space. 0 is measure- 

preserving by the definitions of mu. Finally, 

OS = S'0 . /7 

6.3 Theorem [13] 	If T is an M-shift on the a-finite measure space 

(K, 01 , p) then T is ergodic if, and only if, it is irreducible and 

recurrent (positive or null). 

6.4 Corollary 	If (n, m, m, S) and (n',11i111 , 10, SI) are M-shifts 

preserving a-finite measure such that S x S' is irreducible then 

S x SI is ergodic if, and only if, it is recurrent. 

Proof By 6.2, S x SI is isomorphic to Su as defined in 6.2. Clearly 

S" is an irreducible M -shirt preserving a-finite measure. The result 

follows from 6.3 noting that ergodicity is a metric invariant. // 

The next result shoes that the recurrence in 6.3 and 6.4 is null 

recurrenoe. 

6.5 Theorem 	Let T = (A , P) be an irreducible M-shift. 

(i) 	If T is transient the only measure preserved by T is the 

trivial one µ(E) = 0 far all E 



37. 

(ii) If T is positive recurrent is preserves a finite measure. 

(iii) If T is null-recurrent it preserves a a-finite measure. 

In (ii) and (iii) the invariant measure is unique up to constant 

multiples. 

CO 

Proof (i) E p..(n) < Co implies that p..(n) 	0 (n 	o). Since 
0 

pii(2n) ?: pijji (n) p (n) it follows that Pri —> 0, the zero 

(N +1) x (N + 1) matrix, (n —> 00). For X to satisfy AP = A , ire 

must have APn = X for all n, i.e. A = 0 . 
N 

(ii) [30] There is a unique vector Aa AP with E An  = 1 . 

CO 

(iii) [30] There is a unique vector A = AP with E An  = m . 
o 

The uniqueness of the invariant measure in (ii) and (iii) follows from 

the ergodicity of T (I. 5.3). /7 

6.6 Definition (2%. , P) is a Bernoulli shift or Bernoulli endomarphism 

if A.
J 
 = p j  for all i, j. Thus, with the notation at the beginning of 

.56,m0w:wri =i0,...,o),
-Ficn 	
=iici)=A..."A..We shall sometimes 

ok 

use A to denote the associated Bernoulli shift. 

N 
6.7 Theorem (i) The entropy of the Bernoulli shift A is - E A log An 

(ii) Every Bernoulli shift is mixing of all degrees. 

Proof (i) See for example [2] 

(ii) Let r be a positive integer, a A _ , ..., A 

	

	Ind 
-k 

cylinders  r 1  
-k 	-Icia 

An
Ar = (ki' ''' n Z) e 0(r). Then Ao' 	T n A"." T 	A n 	 1 	r 
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are tylinders depending on sets of co-ordinates which are 

pairwise disjoint if n is large enough. Hence for large 

enough n, 	
-k1 
	

-kr  
p(A0  rl T n (l...rl T 	 Ar) = p(A.0)...p(Ar) 

The result follows, since the cylinders generate the measurable sets. 1/ 

Renewal Sequences 
03 

7.1 Definition [18] A sequence 2 = [pri!
0  of real numbers is a 

renewal sequence if pc.  = 1 D." E - n7k=1 r1 mr.
f
r1. 	

f
rk 

(n ?. 1), 

03 

where 0 s fn and Ef 4 1. 
n=1 

This can be expressed in terms of generating functions: 
CO 	 CO 

P(z) = o " 
	1 

p_ zn  and F(z) = E fn 
zn  satisfy P(z) = 1 :1717  . The 

series F(z) and P(z) were called by T. Kaluza "reciprocal pager series" 

[14], and we shall sometimes write F (z) far the power series 

reciprocal to P(z). A very important subclass of renewal sequences was 

studied by him, although in a different context to the present one. It 

was rediscovered by J. Lamperti [21] and developed by J.F.C.Kingman 

[18]. 

CO 

7.2 Definition [18] A sequence [pni n  of real numbers is a Kaluza 

2 
sequence if p0  = 1, 0 4 pn  1 and pn  pn-1  pn+1  for all n. 

7.3 Theorem [18] If 2 is a Kaluza sequence then pn  % pn+1 for all n. 



39. 

Proof Let un  = Pn Then un un*1 ' 
Also by induction 

Pn-1 

pn = u1 	un • p n  p  n+1  , if, and only if, un+1 	
1. Suppose 

un > 1 for some no. Then un 
> 1 for all n > no, in particular o 

 

un > 1 + e for son 	> 0. Thus pno+n > u1  ... u 1 + e) --> 00 n  ( 
0 

(n —> m) . This contradicts the boundedness of 2 . 

7.4 Theorem [21f] If 2 is a Kaluza sequence then it is a renewal 

sequence. 

Proof The proof of 7.3 implies th 	
Pn+1at lim 	exists End does not 

n->00 Pn 

exceed 1. Hence P(z) converges for 1z1 < 1. So does F(z), since it is 

the reciprocal power series of P(z). However, the relation between F 

and P holds irrespective of the value of z since it follows on equating 

coefficients of z
n in the identity P(z) = F(z) P(z) + 1. Now 

c0 
1 	P(z) 	co if 0 4 z and sof 	1. 

1 n  
An induction shows that fn 0 for all n: 

and hence 

0 = pn  - Z pn-v fv ' v=1 

n 
f
n+1 

= p
n+1 -v1  Pn-v+1 

fv 
= 

n 

fn+1 Pn = vZA  (Pn-v Pn+1 Pn-v+1 Pn)  =1 
fv  ; • since 

Pn+1 Pn — 	% ... % 
Pn-v+1 , f

1 	
0, ..
', fn : 0 Pn Pn-i 	Pn-v 

The first step of the induction is given by f1  = p1 • 

imply fni.1 

/7 

0. 



7.5 Definition [16] A renewal sequence 

if tpnt  i o  , where pn  denotes pn  raised to the power t, is a renewal 

sequence for ail t > 0. 

The defining inequality for Kaluza sequences gives the 

following 

7.6 Theorem [16] Every Kaluza sequence is infinitely divisible. 

We mention the interesting converse to 7.6. 

7.7 Theorem [16] Every zero-free infinitely divisible renewal sequence 

is a Kaluza sequence. 

Anticipating Chapter IV, we shall use the same notation for 

renewal sequences as we have done f cr M-shifts. 

00 
7.8 Definition A renewal sequence 2 = ipni o  is said to be 

00 
transient if E pn  < 00 o  

00 
positive recurrent if E pn  = Co and. n f n < Co o  1 

Co 	 CO 
null recurrent  if  p n = 00 and E n f n = 00 o  1 

aperiodic if pn  > 0 for n large enough. 

7.9 Theorem If 2 is a Kaluza sequence then either it has only a finite 

number of positive terms or it is aperiodic. 

Proof By 7.3 any zero in 2 is followed by zeros. 

When 2 is a recurrent Kaluza sequence, f n  grows more slowly 

than pn 

is infinitely divisible 



7.9 Theorem If z is Kai uza aryl. roourront then 
f n 
pn 

0 (n —>crib). 

n 	pn-s Proof -21- = 1 - f 	1 - E f . 
Pn 	s pn 1 	 1 

f 
Hence 0 5 lim 	0 O. 

P
n 
n 

§8. Continued Fractions  

8.1 Definition 	If x is a real number the integer part of x is 

defined. as timipert:.;:;t integer [x] 	x. Thus x - 1 < [x] 	x. 

The fractional part of x is defined by (x) = x - [x]. Thus 

0 	(x) < 1. 

If f is a 1-1 real-valued. function of a real variable then 

f -1 denotes the functional inverse of f : f(f-i  x) = x. 

8.2 Definition An nth order continued fraction is an expression of 

the form 
1  

a + 
a + .  2. 	G. 

where ao, 	an are real numbers. Vre shall always write such a 

continued fraction as 
1 	1 	1 ao + al  a2+ 	+ an 

a + 



4-2. 

If lim (ao 
+ 	1 }exists, we denote it by a1 + "' +  a

n 

a + 	... and refer to it as an infinite continued fraction. 
o a

1

i+ a2+ 

Since a + 1 
	is obtained by a finite number of 

o ai+ 	+ an 

rational operations on at), ..., an, it can be represented as the ratio 

of two polynomials. 

P(ao,40410, an) 

Q(a yew, an) 

in ao,..., an with integral coefficients. This representation is not 

unique since in evaluating the finite continued fraction a factor 

common to numerator and denominator may occur. To overcome the 

ambiguity we define — 'canonically' [17] : 

= a
o 

P(a
on

) 
- a

o 
+ 

Q(aon) a + 1 
1 — a2+ 

1 1 

1 
	 = a + ri 	say 

+ an 

0 • • 

r1 
is an (n - 1) st order continued fraction with canonical representation 

= DI  r1T , say. VTe then define 

P(aon
) 

Q(a01...,an) 

nt 
a + 
o p 

a
o
p'+q' 

 

i.e. P(ao 	
a
n
) = aop' + ql, Q(ao 	

an) = p' . The definition 

is now completed by induction. 



43. 

P(ao/...yan) 
qa o,...,an) v  

is the nth convergent or partial quotient of 

a + 	... 4— • o 	al + 	+ an 

For more details about continued fractions, see [17] . 
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CHAPTER II. 

Characterisations of Mixing Properties for Measure- 

Preserving Transformations. 

§1 Introduction 

N. Oishi [ZS] characterised mixing, weak mixing and ergodicity of 

finite measure-preserving transformations in terms of convergence of 

suitably defined entropies. We have extended the convergence criterion 

from all finite partitions to all partitions with finite entropy and also 

characterised mixing of degree r in the same way. Further characterisations 

in terms of convergence of suitably defined measures and, in the case of a 

topological measure space, weak convergence of the same measures are given. 

It is shown that these results are the 'best possible'. 

§2  A lemma 
Throughout this chapter, T will denote a measure-preserving 

transformation of the non-atomic Lebesgue space (X, 	, p).. 

If ' is another probability measure on (X, CE), we define 

log 	dy 
dp 	

if y is absolutely continuous 

X 

+ CO , 
	 otherwise 

where a denotes the Radon-Nikodym derivative of ' with respect to p. dp 

2.1 Lemma [2,51 Let iyi, 12, ... I be a sequence of probability measures on 

(X, CO such that yn 	p for all n , where c 1 is a constant then 

H (y) 	= with respect to p 



45- 

Yn(E) 	P(E) (n 

if, and only if 

lim Hp(yn) = O. 

uniformly for E E(13 

11-"""'> op 

Proof. Since, by assumption, - c)dp 0 

   

dYn for all E c 	 p - almost everywhere for each n . Yn(E) —> p(E) 
dyn  

(n —> 03) uniformly for E c aj if, and. only if, 	—> 1 (n —> o3) in dp 
L1(p) norm, since, on the one hand, 

1rn(E) - p(E)1 
f din 

dP 11 dp 

c  clYn while, on the other, if S = t (3-7- > 	S 	and. 

f 

dy 
dpn - 11 dp = 	(dpclYn  - 1)dp + f (1 - clYn)dp 

dp X 

= 1 in(s) - P(S) 1 + 1 yn(es) - P(es) 1 • 

Suppose Hp(yn) —> 0 (n —> 03) 	Since 

x log x 	1 + 2c 	- 1)2  for any x with 0 4. X -1 C 

Hp (&n) 2c 	`dp 
1 	f (clYn - 1)2 dp 	0 for each n . 

dyn  
Hence d7).- —> 1 (n —> 00) in L2(p) norm and. so  also in L1  (p) norm (by 

, 
Holder's inequality, ( If' dp)2  < r 1f12  dp for f c L2(p) ) 

dYn Conversely, let -Ei; —> 1 (n > 00) in L1  (p) norm. 



dyn  
--> i  (n --> 	in probability, since for all s dp 

e P(E ) n,e 
dy 

1 dp  - lidp 
dYn 

- ilap 

E
n,e 

where En,s 	[ I dyn 
	

1 1 	6  1 • 

Now Ix log xl 	Ix - 11 + Ex - 1)2  for any x 0 , so that 

dy 
din -.11- log --a-i 4  	--> 0 (n —> «) in probability 

l aYn 1 log -d-pdYn 	Max[c log 0,- 1  log70 = K, say, for all n . 

r ay 

• dp 
X 

dyn  
log -3.5  dYn dp 	I d-73-- log 

X 

dyn  
I dp dp 

46. 

=1 
n,s 

dYn 
1 75— log dYn 

dp lap 
dyn  

+ 	I 75- log 

n , a 

dYn 
dp 

lap 

K p (En ) 

Hence 
lim Hp(Yn) = ° • 	// 

n—>co 



§3 The Characterisations  

Let 
G(Tn) = [(x, Tnx) : x e Xi , 

Pn denote the measure defined on (X(2), 	(2)) by  

µn(E) = p(ir [Enq(Tn)i] 	E c (2
(2) 

49,01  

Pn 	denotes the restriction of pn to the a-algebra 

S(0 0') generated by 0 x 81 	0, 0' being finite partitions of X 

for which we also define 

(0 x 0') = 	Z 	pn 	
p(E x F)

(E x Flog
EcO,Fc0' 

3.1 Theorem. The following are equivalent: - 

(i) T is mixing 

(ii) H 	x 	Hµ(6 x e') (n 	00) for all 0,0' a Z 

(iii) µn(Ii) 	(H) (n 	0) for all Jordan measurable Mc(13(2) 

	

Proof. (1) <=> (ii): We first consider the case of finite 6,e' 	[2.5 

0 0' dpn  

dp 

Pn(E x F)  (x, y) = 	E 	X 	(x, y) ExF 	p(E x F) 
EcO,Fc0.  

pn(E x F) 

and 
, I 	dpn  0 - 	, d  0,01 _ 

19,0f 	
p 	EcO ,Fc0 

jX(2)  

pn(E x F) - p(E x F) 

Hence T is mixing if, and only if p 

dun 	 0,0' 
—> 1 (n —> a) in L1  (µ) norm for all finite 

0O f  
dp 



48. 
partitions 0,0' . The proof of 2.1 now implies that T is mixing if, 

and only if, for all finite 0,01, pn°'et(M) --> u3, 91(M) (n --> co) 

uniformly for M e 3(0, 01) . 

The result for finite 8,01  follows from 2.1, noting that 

d 
 e'er 
Pn 
a 0,0r
II  

- 
Max -1 
Fee' p(F) 
p(F)/0 

I (0 x co) = H e,eT (pn640') Pn 

and 	H (e x e') = H (0x81) - I
p 

(a x e') . 
n 	 n 

 

Now let o, e' c Z be infinite. They can be at most countable. 

Thus 0 x e' . ID1'  D2, "' 	, 1 	where Dig are disjoint, measurable 

rectangles. 

H (0 x e') 	H (0 v T n  01) 
Pn 

H
P 
 (0) + H

P 
 (01) 

= 	H
P 
 (0 x el) , for each n . 

Thus linm H (e x e') 	H 
11 
 (0 x 01) . Let 	be the partition of x(2) 

Pn 
co 

given by ci  = ID1 , D2, ... 3 Dn  , U 	Dk1 . Then ;1  7 0 x O f  

k=n+1 
(n —> co) , since each sot ofn' L'n is a union of (at most two) sets of 

;24.1  , while if n..), g.1.„ for all n, each Dn is a union of sets of n 

and hence 0 x 0'..5. n . 



It 9, 
By the first part of the proof, 

H k) --> HilQn) ( k --> 00) for each n . Also 
Mk 

H (fin) 15. H (0 x e') which implies that 
flit 	Mk 

H P 
	k (;) 4 11—la  H (0 x e') for each n . Let n --> co : 

Mk 

H (0 x 0') 4 1-1.--m H (0 x 0') ; hence 
P 	k 	p 

lc 

H(e x 01 ) 4. 	H 	x 0,) 4 lim 	lim H 
Pk 

 (0 x 0') 4 Hm(0 x 6,) 
K 

P 

/

k 

i.e. H (0 x el) = lim H (a x 	. 
n->o, n 

(ii) => (i) follows trivially from the first part of the proof, since 

every finite 0 is in Z . 

(i) <=> (iii) : 	T is mixing if, and only if, pn(M) --> p(M) (n--> co) 

for all M F R , by the finite additivity of measures. (iii) => (i) 

follows at once, since every set in R is Jordan measurable. 

Let T be mixing and M, Jordan measurable. For all positivo 

integers n, there exist Rn and Sn such that 

MDRn eR 	p(M - Rn) < 

MC Sn e R , 	P (S n  - M) < 

co 	co 
Hence p(M - ') Rn) = 0 = p((1 Sn - M) 



i.e. 	1,1( 	Rn) = P(M) = 	e°9 Sn) 

	

rr 	 co 
Let IN  = U Rn  . Then IN  e R and IN  p U Rn  (N —> co) . 

Hence 	µk(IN) )R  µk  (U Rn) (N —> co) for each k 
1 
co 

7 g 	Rn) (N —> m) 
1  

and 	µk(IN) 	p(IN) (k —> co) for each N . 

co 
Let 	JN = 	Sn  . Then JN  e R and JIT yi r Sn (N —> co) . 1 

co 
Hence 	pk(JN) 	tik(c) Sn) 	0,) for each k 

co 
p (JN) ""u p (r1 Sn) 	(N --> co) 

1 

—> co) for each N . 

pk(JN) for each k and N. Keeping N fixed, 

lint µk(M) 
k 

4  F  Pk(M) 	P(M) 

• 

go. 

and ijk(jN) µ(TN) 

let 

pk(IN) 

k —> co 

< µk(M) 

p(IN) 

p(m) 

:5. lint 	$ik(M) 
k 

lint 	Pk(M) 
k 

i.e. P(N) = lint 	Pk(M)
k  

Lot N --> co • 



3.2 Lemma. T(2)  preserves pn  for each n . 

Proof 

TriG(Tn),(M(T(2))-1 -1  = T 1  riG(Tn).--,. Ei for all E c (1! (2)  

Since T(2) also preserves p , one might conjecture that 

T is mixing if, and only if, h (T(2)) 	h (T(2)) (n —> 00) 
Pn 

where h 	(2)\ (T 	) is the Kolmc:orov-Sinai invariant of T(2)  with respect 
Pn 

to pn . That the conjecture is false is shown by 

3.3 Theorem  IX(2) r7 (2)  k 	Pn  2 T(2)) is almost isomorphic to 

(X,Ce, , p, T) 

Proof 	Since pn is concentrated on G(Tn) , X(2) G(Tn) is a 

pn  -null set. 

Let 0n(x) = (x, Tn  x) , x e X . On is one-to-one onto G(Tn) . 

It is measurable and measure-preserving, since 

0111  (E) = 	(E r,  G(Tn) ) 

FinallyT (2) 	f  0n(x) = OnkT) for all x E X 

f 3.4 	Corollary h kT(2)  ) = hp  (T) 
n 

Proof 	Almost isomorphic transformations have the same entropy. 

3.5 Corollary h
P
(T(2)) —> h (T(2)) (n 	co) if, and only if , 
n 

 

= n [ E1-(T")] . 

/ 



h (T) = 0 or co 

, Proof 	h (T(2)) = 2h (T) . 

The conjecture is disproved since, on the one hand, Bernoulli 

endomorphisms with countable state space are mixing yet have finite, positive 

entropy, while on the other hand, periodic endomorphisms of non-atomic 

Iebesguespaces are not ergodic yet have zero entropy. 

One might also ask whether (iii) of 3.1 could not be replaced 

pn(M) P(M) (n 00) for all M E 	(2) 

This is answered in the negative by 

3.6 Theorem 0 	for all n . 

  

f Proof 	p(G(Tn)) = 	p[G(Tn) rldp = j p(tT-
n  
xl)dp 

X 

where ETfl  xi denotes the point set Tn x , 

= 0 since p is non-atomic . /7 
co ,,, (2) 

(iii) 	is false for V G(Tn) ect 	, since 
i 

co 	 CO 

P ( U G(Tn)) = 1 for each m, but p( 	G(Tn)) = 0 
1. 

3.7 Theorem The following are equivalent:- 

(i) T is weak mixing 

4  n-1 
(ii) H 	(0 x0f) --> H (0x B') 	(n ---> 00) for all 0,0' E Z 

n o  Plc 



X = 

where c = Max 	1  ▪ The latter inequalities are obtained by putting 
PeG' 777 

P(F)/ 
0 0' dpk  

dp
0 8' 	 2o 

1 / 	. 	1 in the inequalities x - 1 + --kx-i)2  E x log x E I x-11+-2(x-i )2 , 

53. 

(iii) 

Proof 

n-i 
71. 	[Pk(M)--  P(M)12 	0 	(n 	co) 

n-1 
0 

for all Jordan 
/- 	measurable M e 

follows from 

x 0') 

x F)]2  

(2)  

Pk(M) 	P(M) 	> 	(n ---> 

Pn(M) 	P(M) 	(n --> co 	n /47, 	= o) 

(i) <=> (ii) : 	For finite 	8, 0' 	[IT ] , 	the result 

n-1 	 n-1 
1 	H 	(8 x t9') 	= 	Hm(0 	x 0') - 	In  (0 

4k 	 1-4k 

1E 	 n-1 1 	1 and E,c 0, F 	0' 	 x F) - p(E 2c p1/4E x F) / 0 	x 1") 	n 

1 n71  • E 	2] I 	(0 x 0') 
EEO, Feel n  o Mk 
m(E x F)/ 0 

	

n-1 	 n-1 1 	.1  	1 .c. — E 1 p (E x F) - p(E x F)1 + 2 	E 	1 	-n- E n o k 	 o EcO,Fc0' 7E7F 
p( ')/0  

igk(Exp)-u(')]2  

el for 0ExEc, integrating mith respect to p ' 	and taking Cesar° sums. 

(ii) => (i) now follows for 0,0' E 2,
P 	

as in 3.1 . The rest of the proof 

is entirely analogous to that of 3.1. 



54. 
(i) <=5. 	: Since the throe forms of convergence corresponding to 

weak mixing are equivalent for bounded sequences of real numbers, the proof 

need only consider one of them. 

T is weak mixing if, and only if, 

1 n-1 

n 	E 	1 µk(11) - p(11) 1 --> 0 (n —> o) for all M R 
o 

by the finite additivity of measures and the triangle inevnlity for 

moduli. (iii) => (i) follows at once, since every set in R is Jordan 

measurable 

Let T be weak mixing and M, Jordan measurable. With the notation 

of 3.1, 

n-1 	n-1 
n 	111kON) - 11(01 	n 

£ 
Illk(JN) - M(JN.)! + !P(JN) 	P(M)I 

k=o k=o  

Therefore 

  

n 

n-1 

 

lim 
n 

E Itik(Jr) - P(M)I 4  !P(JN) - 1/(01 
o 

for each N . 

Similarly, 

  

n-1 
E 

n , ic=o 

  

lim 
n 

hic(IN) 	P(11)1 4  I 	- P(M)I for each N . 

Now Itik(E) - P(1I)! 	Itik(IN) 	P(M)1 	- P(M)1 	since 

a 4 b 4 c implies 1b1 4 1 al + 1c1 , whatever the values of a, b, 0 . Thus 

n-1 	n-1 	, n-1 
lim J. 	i /1/  E 	i pkk,) - p(M)1 4 lim .1 E Ipk(IN) - µ(1,t) I+ lim = ZIA 0 )-110,1)1 n 	 n 	- x N 	' n 	k=o 	n n k=o 	n 	k=o 



111(0 - gm)! + IP(JN ) - gm)! 	for all N . 

n-1 

	

Let N —> 	lim 	E p(M) - /4101 = 0 . // n 

	

11•>eo 	.K.= 0 

The conjecture that T is weak mixing if, and only if, 

hn_ (T(2)) --> ii (T(2)) 	( n --> co) 

	

o 	Tic 

if, and only if , 

n-1 1 71. 	E 	pk(11) - p(11)1 —> 0 (rr--> co) for all 	(2)0  

is disproved by 3,5 and 3.6. 

Let pn  be the measure defined on (R (2) by 

n-1 
(E) = 1 	11k(E) , E E 	(2) 

0 

	

3.8 Theorem 	The following are equivalent 

(i) T is ergodic 

(ii) H- (0 x0') --> Hp(0 x 0') (n --> co) for all 6,0' e Zp  

(iii)i7n(M) --> p(n) (n —> co) for all Jordan measurable 11 cf:Je (2)  

Proof Since by the ergodic theorem T is ergodic if, and only if, 

7n(E x F) --> p(E x F) (n —> co) for all E, F e 

we can replace p
n by gn in 3.1 



That 3.8 represents the best possible results in those dirs.ctions 

follows from 3.5 and 3.6. 

For each sequence Ar  c 0(r)  (n = 1, 2, ...) let pAr be the 
it 

N by measure defined. on (r+1) 	(r+i))  

par(E) = p 	G•Ar(T) I ] , 
n 	 n 

e 	(r+1) 

kr  
where GA  r(T) = [(x, T n  x , 	T n  x) : x c Xi . 

11 

,3.9 Theorem 	The following are equivalent:- 

(.) 	T is mixing of degree r 

(ii) HpAr (e x 	x Br) --> H 11(r+l) (0o x o  
n 

x 0 ) (n —> co) for 

r all 	An c 0Cr)  and O. E Z p = Oy mos p r • 

(iii) pAr(N) (r+1), 	, 
p 	 —> 0:,) for all Ar c r) and 

Jordan measurable H c 06(r+1)  

Proof. follows that of 3.1. 

T(r+l) 
9 3.10   Lemma 	preserves pAr for each 	and. on e 

 (r) 
 n 

Proof Ir[GAr (T)/1 (T(r+1))-1  El = T-1  viG. r(T)A.Fil 

for all E c 03 (1-.11)  • 

56. 



3.11 Theorem
(.1  

p
(r+i) (GAr(T) ) = 0 for all n and An e 0 . n 

Proof p(r+1)  (GAr(T)) = pq(GAr(T)] )d P 
n 

. (r) c, k j p 	(IATna x, 	Tkn 

X 

x)i)dP 

= 0 , since p is non-atomic." 

2,1? Theorem (x(r+1) 
	

(r+1) , pAr , T(r+1)) is almost 
n 

isomorphic to (X, 0, p, T) . 

kl kr Proofr (x) = (x, T n: x , oeo , T n x) : X 	GAr (T) An 

gives the required isomorphism. 

As before, 3.9 gives the best possible results in these directions: 

Bernoulli endomorphisms with countable state space are mixing if all degrees, 

yet have positive, finite entropy, while periodic endomorphisms of non-atomic 

lebesgue spaces are not mixing of any degree r 1 , yet have zero entropy; 

for any given sequence An e 
Cr)0 	U G r(T) E 	(1'14)  

n.1 
An 

(  pAr ( U GAr(T)) = 1 for each n , but p-r+1)  ( U G r(T)) = 0 
m=1 

Am n m=1 m 

c7 



§k ala222212zisaL!gpaa 

Let (X, VE , p) now be a compact, Hausdorff probability space, 

and T be a continuous measure—preserving transformation of (X, 03 , p) . 

cx(r+1) , cob (r+1) 	m(r+i) is also compact (by Tyohonoff's theorem) 

and Hausdorff, with respect to the product topology, r 0 . 

4.1 Theorem  0.(r+1)  is dense in C(r+1)  with respect to the uniform 

topology on C(r+1) r 0 . 

,..„(r+1) Proof 	contains the constant functions, since C(r+1) 
does. 

(r+1) 
LA, 	separates points at' X,(r+1)  

Let (xop *** , xr) / (yo, *** , yr) * Then at least one x.. Yi  

Since X(r+1) is Hausdorff, there exist disjoint open sets U.
1 	1 

V. such 

that 

X. E U. '  y. 	V. 
1  I 1 

X(r+1) , being also compact, is completely regular. Hence there exist 

f., g. E C(1) such that 

f.
1 
 (x.

1
) = 0 
	

fi(& Vi) = 1 

g•1  (Y•1) = 
0 	gi(U Vi) . 1 • 

zr) = H f.1(z.I) + 2 n g.(z.) , • . 1 

where the products arc taken over indices i for which x.. 
YI , is in 

C  (r+1) and separates (xo, 	, xr) from (yo ••• , yr) . Hence by the 

Stone Weierstrass Theorem [ 15, p 2W+] , (1.
(r+1) is dense in C(r+1)  . 



4.2 Theorem T is mixing of degree r if, and only if, 

F dpAr 

X(r+1) 
I

"4(r+1)  

x(r+i) 

co) 

04 
for all An 0 and F c (nil)  • 

Proof T is mixing of degree r if, and only if , 

59. 

X 

f o  (x  o  )... fr (xr ) dpArn  
 

(r+1) 

(x0, *ea, X) 

kr  
fo(x) 	fr(T n  x) dp 

fo(x0)...fr(xr)dp
(r+i)(x0,..., xr) = J fo(x)dp...j  fr(X)dp iX(r4.1) 

	 X 	X 

(n ----> co) for all A: c [r)and fi t Li(p), and in particular for all 

f. e C(1)  . To see this, consider characteristic functions and use L1(p) 

approximation. By linearity of integrals, it follows that T is mixing 

of degree r if, and only if, 

F (r1.1) r  dp(ril) (n ---> co) 

X(r44) 	X 

for all Ar c 0
(r) 
andF c(r+1) . The proof is completed by 4.1. // 

This theorem includes the case when T is mixing, i.e. mixing of 

degree ona. Putting r = 1 and replacing pn  by pn  in 4.2, we get 



4.3 Thecceia T is ergodic if, and only if, 

X(2) 

 Fa7 n  --> 
I ( 2) 

F dp (n —> 00) 

for all F c C(2). 

4.4 Theorem T is weak mixing if, and only if , 

1 
n 

n-1 
[ 	k o J 

X
(2) 

1  F du ]2 —> 0 (n —> 

     

1 n-1 
n 	 dpk 

j 	
F dp I —> 0 (n 

0 	(2) x(2) 
ammo.> co) 

for all 
F c C(2) . 

j
Fdtin—> 	dp (n —> 00, n J, 8(J) = 0) 

X(2) 	 X(2)  

Proof Analogous to that of 4.2, replacing ordinary convergence by 

strong Cesaro convergence and. its trio ecuivalent forms of convergence. 

4.2 cannot be extended to all F c L1 (p
(r+1)), as the function 

00 
C-Sr 	 .r Ln(T) , for any mcluence A

n 
c 	shows. 4.3 and 4.4 similarly cannot n=1 

be extended to all F c L1(µ) (consider F = X 	) • 
U G(Tn) 

60. 
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6i. 
CHAPTER III 

Linear Fractional Transformations Mod One. 

§1 Introduction. 

This chapter is concerned with the ergodic properties of 

f-transformations, Tf, which will be introduced, together with f-expansions, 

in §3. These transformations of the unit interval onto itself, which in 

general do not preserve Lebesgue measure, have been investigated by several 

authors. A. P‘nyi [2,IP] gave sufficient conditions for the validity of 

f-expansions and a sufficient condition for Tf  to be ergodic and have a 

finite invariant measure equivalent to Lebesgue measure. V. A. Rohlin 

[32.] showed that this condition implies also that Tf  is exact, and gave 

a formula for the entropy of Tf  with respect to the invariant measure. 

W. Parry [2.7] gave an explicit formula for the invariant measure of one 

class of f-transformations, namely the linear mod one transformations 

Tx = (px 4. a) , p>1 , 0 5a<1 , where (y) denotes the fractional 

part of y. 

Sufficient conditions for ergodicity and infinite ergodic index 

of a general many-one transformation of a probability space with a 

generator are given in §2. These conditions, when applied to 

f-transformations, generalise Renyi's condition for ergodicity and 

invariant measure, and are used in §§4, 5 to study two classes of linear 

fractional transformation mod one, some of which also satisfy Renyils 

condition. In some cases, the invariant measure could be found, using 



Wiz. 
a result of W. Parry [27] whioh is proved in §2, while in others we did 

not succeed in doing this. For the former, the entropy is computed [3a..] 

and also the frequency with Which the digits occur in the f-expansion. 

Throughout the study of f -expansions, the distinction between dependent 

and independent digits plays an essential part. §6 lists those questions 

which we were unable to resolve. 

Eapdicity and Invariant Measure  

Throughout this section, unless otherwise stated, T will denote 

a many-one, measurable and non-singular transformation of the probability 

space (X,JL , p), where p is non-atomic. 

2.1 Lemma. 	For each n 1, 2, ... let gn  = [En(y) : y E X1 be a 

countable measurable partition of X such that En(y)% 	(n 	03) 

for each y e X, i.e. ;). 7' 	(n 	03) . 

Then for all E e Uri 1  

t, 	E) 	XE  (1) 	(it --,.00) for almost all y e X 

	

1--^(1)) 	 and in L1(p) mean. 

A 
Proof 	Let 	denote the sub-a-algebra of 03 generated by gn, f(x) 

A 
be any integrable function and E(fIgn) be the conditional expectation 

A 

of f with respect to gn  . Then by the Martingale theorem, 

E 	 :2) (x) = c-(x) 
	

(n- oo) 

almost everywhere and in Li(p) mean. 



63% 
Putting 

F (7) Ex )(En() \.X1 	 Fill)) 

we have that E(flci) (x) = Fn  (x), since 

A 
Fn(X) is measurdble with respect to Si  and 

Fn(X) arit) 	c(x) ,Ii,(x) 
• I A  

for all Yn  E 	each such Yn  being a disjoint union of sets En(Y)* 

Putting y = x and f(z) = XE(z) gives the renuired result. // 

If T has a finite or countable generator = [XX()  

0 < N 4 , let en(y) = yn  = the unique integer such that 

mn-i yeX 	,n= 1, 2, 
Yn  

and 	Cn(y) = X
YI

fl T 1  X /1 	
-(n -1) X_ . Clearly 

Y2 

either Cn(y)(ACn(y') = q5 or Cn  (y) = Cn(yl) , and 

v1-1 

= 
t= o  

Since g is a generator of T, Cn(y)\[ y (n —> 00) for each y e X 

en(x) is a measurable function of x, since for every Borel set %, 
B in [0, m) , 	e, (ET) 	 Al( • 

t• 



6 it. 
N 

en(x) c L1  (p) if, and only if, Z k p(Xid < m . k=1 

en(lc) = e1(Tn-1  x) . 

For each y c X and n = 1, 2, ... , the probability measure 

is absolutely continuous with respect to p. Thus, by the Radon-Nikodym 

theorem there exists a positive, integrable function un(x, y) defined 

almost everywhere suoh that 

(ciS.ijn 	 "EJ 	cp"`(-/,;,i ) 	) L c W . 

In fact, for each y and n, 0 ..wn(x, y) 4 1 for almost all x. 

	

2.2 Lemma For each m = 1, 2, ... let 	= tIm(x) : x e Xi be a 

countable or finite measurable partition of (X, a, , p) such that 

Im(x)% ixi (m --> m) for each x e X . 

Then for n = 1, 2, • • and ycX, 

((.,(,i) r,1"1„,(4)  
(A) 1 

for almost all x 

and L 1(p) mean . 



2.3 Theorem 	If 

to,j- 

65. 

Proof 	As in 2.1, 

 

,)"(71,1)  
•'S X 	7.0  (2) 	 ) 

for almost all x and in L1  (p) mean" 

for almost all y , 

then T is ergodic. 

If further 

-4 --,"-(3[31) 
.'• for almost all y , 

 

cf11) 

then T has infinite ergodic index. 

- 1 Proof. Suppose T E = E ea; and 0 < p(E) < 1 . Then 

C.,(1\,IT -61-7) 

c, (111 ', tro(y ) 

orlx: ••L (4(.4.) 

E:lq 1.4:4  GC 

•=: 



,d• 

>0 
rt„ f 	t 

i.4.1s  k --)( 1,1) 

66. 

Sim-se Z is a generator 	T , 2.1 implies that 

X I  t 

	

''',;11 a13`111 		(,(E ) 
n 	12  (C-fyi) 

,i a`by.))  b(E) , 
t)(c.„(1)) 

from which it follows that 4(y) > 0 for almost all y c X, i.e. 

that 3 = X (mod 0). Note that the theorem remains true if 

inf
n
(x, y) is taken, not over all x, but over almost all x. 

To prove the second assertion, let S be another non-singular, 

measurable and many-one transformation on (X, %),?, , p) with generator 

71= [Y m 0 

follows:- 

where 0 < M 	. Ye sharpen the previous notation as 

c
co<  (-y, j ) 

6 
E 

and similarly for T. It is further assumed that 

for almost all y 

T x S i& anon-singular, measurable and many-one transformation on 



6 7- 
('x X, Cg x GB , p x p) with generator g x n. If 

(xi, yi ) i = 1, 2 , then 

L n 
2 „(Y 1 

Ei(1 	
1(---()-('-') 

( 
A xy ) (L. 11 	 rnxs.) 	 ^60-1 

- (n-1) v 
T-'1)-/) X 	-F Y vu)  n 1 

	

[X 	n.. 

Thus (p x p) (Cr(z2)) = p(en(x2 )) p(en(y2)) . 

Also 
Tx3, on 	u,2)  n (Txs)-n (xF) = [ cTii(x2 ) n T-nE] x [C3n(y2 ) n s-n  F] 

for all El  F EA and z2  X x X . 

Therefore, 

e--4-7s 	 :rit co-r” ("x1l xj1j)(4,1)f cas6.(1012.1 JKI;) E x 

coTkl-i)-1-2,11-os kI ji 	ci 4,4:1 F1412;1,1; 's J 

Thus w 	(al  , 	= 4(x1  , x2)(y1 , y2 ) , for almost all z1  
since IE x F : E E JS , F 	1 generates i2.1 (2) 	. Finally, 

throwing out a p x p-null set from X x X, we have that 

	

w 	
gy

p
}141t Lt›Tv 	 ) 	) 	 ( 	) 4'1y1 / 2.)  •- I 

Apr h) 	 1.7i) 	

". 	 /7( 	
(X2A ( (if (i0)ii (  

LA 4 Yt. 



CSR. 

1 	13 2.) 	 1̀i _ 
1/( cf(Az  

1 
1.44 4 (741 I 

xx 

12, 	cr: (.3(4  .1\ 

  

ut 	 ( , 
( 

 

   

   

   

     

> 0 	for almost all z2  . 

Putting S = Tn-1 (n = 1, 2, ...) and using induction give that T has 

infinite ergodic index. // 

7e note that this result is independent of whether T preserves 

a finite or a-finite measure. In the former case, T could only have 

ergodic index 0, 1 or +Do , while in the latter case the ergodic index of 

T could take any non-negative integer or +00 as value [13 ]. 
Assume for the rest of this section that T is one-one on each 

set Xn of the generator g (0 n N) and that T F Eck for all 

F E 	It follows that Xn  fl T
-1 ix 1 consists of a single point, 

where 1x1 denotes the point set x. Let yn(E) = p(Xn  fl T 1  E). The 

measure yn is absolutely continuous with respect to p, and hence has 

a Radon -Nikodym derivative dy 
---12(x) 
dp 



2.4- Lemma 	For all measurable functions h , for all E 	and 

each n = 0, 1, ..., N, 

1„(X ,v ,-1 -1 -1-tt x})(143;.G.) 

in the sense that if one side is finite, then so is the other and they are 

equal. 

Proof Let F e 	. Since p(X) = 1, xp(x) E L1(p) rl L1  (in) .7 

0 5 n N. Noting that xAuB(x) = xA(x) + XB(x) , whenever Ani3 = gS, and 

that F n Xn  = (f) implies the vanishing of both the integrals in the Lemma, 

it is sufficient to consider F C Xn  , for which 

F = X el 7 7 F 

The inclusion F C Xn  nT 1 T F follows from F C T-1 T F, while if 

x E Xn T• -1  T F , then T x E T F , say Tx = Ty ,ycF; but T is 

one-one on each Xn  and so x = y. Also 

rxF (xt, 	
= KrF 	7 

and. so 

SX = - ("0 ,,r\ 	(E- 	F )) 
E 	I

-(  

I)( )crir 	"1-11" 

F )  

= 1 ( 1 -1E n ArlF) 

X 



Since f f(x)dp(x) is a linear functional on L1 (p) , it follows that 
k 

2.4 is true for arbitrary measurable, simple functions E av  XA  (x) 
v=1 

X 	E 
h(y) is integrable 

) 4t() < oc, 	if, and only if, 
-1 on xn  (-) 	E if, and. only if, 

there exist measurable,4togolmfunctions hm(x) such that 

hm(x) 7 h(x) (m --> co) uniformly on Xn  fl T 1 E and then 

1,(/)Ap(1) 	c 	'm (Jiat(i) 

r 	.1 
,,n1 i-t')) 	( ) 

( 	I.,xn ri 14) Ar jx) 	if , a:3 only if, 
r. 

there exist measurable ,eitfilibittryfunctions hm(x) such that 

hm(Xn n T-1  ix)) 76  h (xn.  n T 1 ixi) (m 	co) uniformly on E 

[Xn  n T-1  ixi c X n T-1  E if, and only if, x c E] 

if, and only if, h(Xn  n T-1  [xi) is integrable on E 

2.5 Theorem T has an invariant measure v equivalent to p if, and only 

if, there exists a measurable function h(x), 0 < h(x) < 	almost 

everywhere, such that 

ra 
almost everywhere, 

and then 	 = 

- 



Proof Suppose T has an invariant measure v. Put h(x)= dp dv (x) . Then 

0 < h(x) < CO almost everywhere. 

t,(4eifLt).-=-• 	 I,  (1) Li t ;,1) 

'A I, (X r' 	 (-)c)cttc4 

If N < m , the integration and summation commute, while if 

z 	x 	 itn 	al) 	111-4 

and hence by [ 7 , theorem 27.B], 

co 
0 E 
	X (CrliX.0* (7) 4(7 ) 
	

1?--0.cit(1) 

for all E fa 

Conversely, let v(E) = 	h(x)dp(x) , E ett:. 

Clearly, v is a measure equivalent to p . 

-1-1E 

V‘() -4(1) 
n  

= 	r  L(kn-1-4 k\) 	(y.)46.) 
E 

6 
k (X (NT-11i,("))4(x) 

n 



72. 
§3 ...1:flaaa&mggai171a111Limatuaa 

Let f : [0, co) 	[0, co) be a differentiable function such 

that f' : [0, o) 	(-m, m) is continuous. ire distinguish two 

cases: 

A) f(x) strictly decreasing, x e (f 1(1), co) 

lim f(x) = 0 
X"""'").03 

If'(x)I < 1 , x E (f".1 (1), co) 

B) f(x) strictly increasing, x e [0, f-1(1)) 

f(0) = 0 

Ife(x)1 < 1 , x e [0, f-1(1)) 

In both cases a further distinction is necessary, namely 

(1) f-1(1) is zero or a non-negative integer or +co 

(2) f-1(1) is a finite, positive non-integer. 

Such a function f can be associated with a measurable, non- 

singular transformation Tf : 	, p) 	(I, 	p) 

where 	(0, 1) 	case A) 

	

{ [0, 1) 	case B) 

V. = Borel subsets of I 

p = Lebesgue measure on I . 

Let 

Tf(x) = (f-1(x)) , x E I 

I = 



lim fn(el(x), 	e (x)) 
11—>co 

exists and equals x . 

and en(x) = lf-1[4-1(x)i] , x e I 	n 1 , 

where (y) and [y] denote the fractional and integer parts of y, 

respectively. Tf  is called an f-transformation. 

For any given function f 

if for all x E I either 

Tf(x) = 0 for some n , 

in which case x has the finite f-expansion 

x = f(c1(x) + f(e2(x) + 	+ f(en(x))...)) 

or 

fn(e1(x) 2 ow*, 

73 

f -expansions are said to be valid 

61(x), e2(x), 000 are called the digits of x in its f-expansion. They 

take non-negative, integral values. The values they can take, or their 

admissible values, depend on f, as will be seen later. A finite sequence 

of non-negative integers (el, e2, ..., en) is called canonical if there 

isa yeX such that 

e.(Y) = e. 
	

(1 = 1, 	n) . 

f-expansions with independent digits occur if every sequence of admissible 

digits is canonical. In the opposite case, the digits are dependent. This 

terminology was introduced by Renyi [-.419 ], and should not be confused with 

stochastic independence. This distinction between these two kinds of 

independence is discussed later (3.9). en(x) are measurable functions of 

x, since for all Borel sets B of [0, 00) , ix : en(x) c B] = U T (n-1)Xk keB 



?y. 
Thera is a natural partition E 	associated with Te, 

namely that far which Xn  = ix :si(x) = ni. For the four cases 

considered, we have 

Al) 	Xn  = (f(n+1), f(n)) , n = f-1(1), f
-1
(1) 	ly see 

A2) 	(faf 1(1)]+ 1), 
Xn = 

(f(n+1), f(n)) 

) , n = {f-1(1)] 

n  = [f1(1)]+1,  [f 1(1)]1-2, 

Note that is a partition mod 0 of I, since the countable, and hence 

null, set of subdivision points of are omitted. The admissible 

	

digits here are [f-1(1)], [f-1(1)] + 1, 	. 

B1) Xn  = [f(n), f(n+1)), 	n = 0, 1, 	f 1(1) - 1 

B2) ([f(n), f(n+1)) 	n = 0, 1, ..., [f 1(1)] 	1 
X =- 

n tifqf 1(1)]), 1), n = [f-1(1)] 

The admissible digits now are 

0, 1, 	f 1(1) -1 	case B1) 

0, 1, 	[f 1(1)] 
	

case B2) 

Each Cn(y) is an interval, being a finite intersection of intervals. 

Tf is measurable, since for each [a, b) C I , 
r Xn  r1Tf1  La, b) is en interval, 

-1r 	-1r 	the union being taken 
T 	La b) = Li X fl T Lal  b) f/ 	nnf/ 	over the index set of 



the ring (algebra in case B)) of finite, disjoint unions of half-open 

intervals, i.e. of the form [a, b), generates G. and Tf
1  commutes 

with set-theoretic union, intersection and difference. Also Tf E 

for all E e Q  since for all [a, b) C I Tf[al  b) is a finite or 

countable disjoint union of half-open intervals, 

Tf  A = nTf  ( A clXn) 

and the restriction of Tf to each Xn commutes with set-theoretic 

operations of union, intersection and difference. 

[f -1(x)] is a step function with countable number of 

discontinuities and so Tf(x) is en almost everywhere differentiable 

function of x, with 

Tf(x) - 

 

almost everywhere. 
v(f -1(x)) 

Since f' is assumed continuous and strictly positive (or negative), 

- 
for each E 	Xn n Tf

1  E is a 'continuously shrunk' 

('continuously shrunk and reversed') version of E. Thus Tf is non- 

singular. 

One would expect valid f-expansions to distinguish between 

different points, although two distinct f-expansions may represent 

the same point. A simple example is afforded by any r-adic 

expansion (f(x) = 25. , r an integer), for which 

0.1 and 0.0 (r-1)(r-1)... 

1 
represent the same real number 7  . In fact the following result is 

true. 



3.1 Theorem [271 Let f : [0, m) --> [0, 1) be either strictly 

increasing or strictly decreasing throughout its domain of definition. 

Then f-expansions are valid if, and only if, 

8n(x)  = En(y) 	n = 1, 2, ... 

implies x = y. 

Proof 	f increasing: 

Let pn(x) = fn(ei(x), 

ion(x) 	P.,1(x) 4(x) = 

e
n
(x)). Then for each x E [0, 1) 

f (e (x) n 1 	' 	en(x) +(x)). 

Thus p(x) = lim pn(x) exists and p(x) 4 x . 
rr->00 

16. 

en(x) = En(Y) 

pn(x) = pn(y) 

n = 1, 2, • • • 

n = 1, 2, • • • 

=> ) 
	

If 

then 

and so x = p(x) = p(y) = Y. 

<= ) Since for each x and for each n , 	pn(x) 4 p(x) 4 x 

the result will follow from [pn(x), xi C Cn(x) for each n 

Suppose 

p
n
(x) 4 y 4 x . 

Then e1(x)  + Tf(pn(x)) 4 Tf(y) + el(y) 4 Tf.(x)  + el(x) , 

from which it follows that E1(y) = e1(x) and Tf(pn(x)) 4 Tf(y) 4 Tf(x) . 

So by induction ei(y) = ei(x) 	i = 1 	n • 



f decreasing : the proof is analogous, noting that for each 

x E (0, 1) 

P2.(x) 	P2n+2(x) 	x 	P2n1-1(x) 	P2n-1(x) 
	

n = 1, 2, • • • • 

3.2 Corollary f -expansions are valid if, and only if, E is a 

generator of Tf  . 

Proof f-expansions are valid if, and only if, Cn(Y) 	by}  (n -->00) 

for each y. 

/1 

3.3 Theorem [..7 ] If f satisfies A) or B) , then f-expansions are 

valid for all x c I. 

Proof 	The Mean Value theorem implies that for x y 

1.7.(x) -i(1)1 < 

This is equivalent to the following: if 8 > 0, there exists c > 0 

such that for Ix - yl > 8 , 

77. 

1 

The second condition trivially implies the first, while if for some 

8 > 0,1x - yl > 8 implies I f(x) - f(y)I 1 - e for all e > 0 we 
x - y 

get a contradiction of the first condition. 



Suppose x, y e I , x ?ry, 
en(x) = sfl(Y) 	n = 1, 2, 0.0 

Then there is e > 0 such that 

8 , say , yet 

7g. 

  

x 	 1 	7 - 
By induction, 

--1(.' 	-i. , 	) 
: 	z. —.i 

which is impossible since 11(x) - Tnf(y)1  4 1 . Hence the result, by ' 

3.1. // 

3.4 	Corollary If 14(x)1 > 1 almost everywhere, then f -expansions 

are valid. 

Proof Tf(x) =f -1(x) - [f -1(x)] , and the set of discontinuities of the 
step function [f 1(x)] is at most countable. // 

Regarding the dependence of the digits in f-expansions where f satisfies 

A) or B), case 1) corresponds to independent digits, since then 

Tf Xn = I for all n . 

Case 2) gives rise to dependent digits: 

By the assumption on the domain of f, f-1(1) e [G. co) 

i.e. f-1(1) < 



A2) Let /I = [f 1(1)]. Although we have only considered (0, 1), 

Tf(1) is well-defined by Tf(1) = (f-1(1)). Thus 0 < Tf(1) . 

Consider (0, Tf(1)) . Since Tf(Xu) = (Tf(1), 1) , 

Xm FTh T f  (0, Tf(1)) = 0 . 

Now lim f(x) = 0 implies that 

Xn  rt (Tf (1), 1) = 

if, and only if, f(n) < Tf(1) , i.e. n > f-1(Tf(1)). Thus 

Xn  C (0, Tf(1)) 

for all n > 62(1). No assumption is made about the validity of the 

f-expansion fair 1. Any sequence of digits containing the subsequence 

e2(1) + 1 , for example, is not canonical. 

B2) 	Let N = [f-1(1)] 

1 = N 

n = Max i8 : NS1... n-1 is canonicaln > 1  

Then 	en(1) = n , n = 1, 2, • • • y since 

8n)  *es y fn(81' 

x < lim fn(81 P  
Ir">00 

increases with n, is not greater than one, and 

,n) for all x e [0, 1) . 

If Sn  = N for all n, then Tf(1) = 1 , which is impossible 

since f
-1(1) is not an integer. Let n be the least n for which 

8n 
 < N . Then the sequence 

IS1'2' 	811. + 1 

is not canonical, yet consists of admissible digits. 

79. 



We now obtain an explicit formula for con(x, y). For each 

y c I and n31 ,let 

SK(x) = Cn(y) r1T;n(x) : 	Cn(y) 

where Cn(y) is defined in terms of the natural partition g associated 

with f. SY  is one-valued since Tn  is 1 - 1 on each Cn(y). Since n 

f -expansions are assumed to be valid, 

(131-> ) ; 

also Cm(2) is an interval, with end points am(x) < b (x), say. Then 

p(Cn(y) fl T n  Cm(x)) = 1 SY111(bm(x)) - SYnl(ath(x)) 1 , 

and so by 2.2 
wn(x,  ) = 	SK(t) t  = 

since in case A) or case B) SK(bm,(.x)) SK(am(x)) is of constant 

sign as m 	cc . 

For the independent digit case, 

SK(t) = fn(el(y) 

since Tn  fn(el(y), 	, en(y) 	t) = t 

and. 	 ) • • „ 	. 	= Ertl) 

f 
S o for case 1) , 

wn(x,  Y)  = 	dt fn(61(Y)' '" , en(Y) t)I t = x 



81 

We have shown incidentally that for case 1) Cn(y) is the interval 

with endpoints fn(e/(y), 	, en(y)) and fn(si(y), 	, en(y) 4. 1) 

3.5 Theorem 	For the independent digit case Tf  has invariant 

measure p equivalent to p if, and only if, there exists a measurable 

function h(x), 0 < h(x) < 00 almost everywhere,such that 

h(x) = k h(f(x n) ) Ifqx n)I almost everywhere, 
where the summation is taken over the index set of 	and then 

h(x) = P (x) . 

f ) 
Proof 	Using the notation of 2.5 , n 

rIT l  tx3 = f(x n) 

and arn (2)= w1  (x, y) , for any y with c1(y) = n 
dp 

= fqx n) • 1/ 

3.6 	Theorem  [ a.ci ] If f-expansions are valid, with independent digits, 

and further 

condition r.) 

3  ) 
0 ex <1 :C , for almost all y 

1,0( 	Lev"( it ,,j) 

0 .5 .3e <1 

where C ?, 1 is independent of y and n , 

then Tf is ergodic and has a finite, invariant measure v equivalent to 

p such that 

1 
-ch (x) 	C dp 



I  L 
A." 11 
10- 

u. 
for all y 

nrc,s4 

p((4(60) 

I 

C 

2.3 is a genuine extension of 3.6, since for b = c = 1 , the 

f-transformatian studied in §5 satisfies 2.3 and has a a-finite 

invariant measure equivalent to p. The first condition of 2.3 generalises 

condition C), because 

• L A., 0'1'1 

 

nt 

/-..(1)) 	

1 for all y 

 

and if 0) holds, 

I fop( ,;(x).5)1f;  ( (A(1))  
"17  "( J .V 

and. so  

For the second condition of 2.3 suppose 

for y e E, p(E) > 0 



andthatOholds.Thereexistn..n.(y) , i = 1, 2, ... , such 

that 

to,:zfL2'417,) 

On the other hand, 

w"(x,1) 

P(Cri-(1)) 

Thus, for each y e E there exists a positive integer n such that 

$41, co  
(33.3(xolif'(c.1(1)/ 

a contradiction. 

> 3C 

3.7 Theorem. 	If f-expansions are valid, Tf  is ergodic and has 

finite, invariant measure p equivalent to p, then the (asymptotic) 

frequency of occurrence of the sequence of admissible digits 

i1 '.. ik in f-expansions is well-defined by 

n-I( 

k1..ikr; 
tk..y% 	X .), , 0  - ,X z in  , () Ts 	

1  Tv/ \ -(k44, \ f 0(9) 
rt-k4-1 	 'lc n -SO oc• 	 i 

4 -1k ( X. 
11''

li 
1. 

n  f 	.X. ) 
.••••• ILL  t 1 	.  	 ' 	4  K  

r  
Proof 	The existence of0. .... 	follows from the Pointwise 11  ik  

Ergodic Theorem, while its independence of x is implied by the 

ergodicity of Tf. // 

e3. 

i = 1, 2, ... 	y e E . 

1 	for all y and n . 



3.8 Corollary 	If i1"k is a non-canonical sequence of digits, 

then . 

Proof 	being non-canonical implies that 

- 
X. 	(1... n Tf(k-1) X. = 0 . 4/ 
1k 

Normalising the measure p, we have the following 
co 

3.9 Corollary If the random variables ien(x)in=1 are independent 19,,:L951 

then the digits in f-expansions are independent. 

Proof The independence implies that for any admissible digits 

= 
-1."-k -1 Oik 

Since cbi 	0 , 	k, 3.8 gives that i1k is a canonical sequence 

of digits. if 

The converse of 3.9 is false, as can be seen with Tf
(x) = (:1) , 4,7, 

which has independent digits 1, 2, 	. 

(xi 	..fit -1
X? S) 
	

= 	( 

	

) 3 

= 



3.10 Theorem [:31L]. Under the conditions of 3.6, Tf  is exact. 
ri  

Tf has finite entropy if, and only if, 3 14.11iYIWIcii) 

in which case L 	( 	cl  to ) 	c-lkfi\A eir  
o 

	. 

§4 	The transformati.one2f(x) = 	- 	, When f(x) = 7.1113. 

4.1 Theorem  f-expansions are valid for all a > 0 ane. 0 4 b 4 1. 

Proof f' (x) must be negative : 	a > 0 

f-1(1) must be in [0, m) : 	b 4 1 . 

If b < 0, dependent digits could give rise to negative 

fn(e1(x), 
	en(x)) , e.g. b = 4, a = 1 when the aanissible 

digits are 0, 1, ... and f(0) = -2. Independent digits never do this, 

1-bx however, since a en(x) b ?, a (---) b = 1 . Lven in the latter case, a 

where there do not seem to be a priori objections to b < 0, complications 

arise in the proofs. Ve thus take b 0 . 

p!, 114 

is a piecewise continuous and differentiable function whose points of 

1 +b ' 	
r1-b discontinuity are an 	n > 	j . Therefore, provided x is not a 

a point of discontinuity of Tf, T1, exists and 

es: 

    

I 

  

    

axz  

 

Hence 
> 

at- 

, 
(i4  (7 )) - (1-) f  

   

t Q.* Laxf 



:;..11 since 0 < 1 - bx -.ax 11=1-a ] < 1 for x /;1 	n > 	[ 1 A • 
L  ax 	7  ,  

cc 
From now on in the study of T 1  , we consider I = U 	1-1-1 

/1=11.111.1 an+b 
ax+b 	‘ a ' 

= I(mod 0) . 

2 
Suppose x /y, yet en(x) = en(y) for all n. Then Tfx is 

continuous in [x,y] and differentiable in (x,y), so that 

ITEi.S.21:11.0) 
- d 

Tr2  ‘%. 

> 1 . 

This is equivalent to the following: if 8 > 0, there exists e > 0 

such that for Ix - y! > 8 

X -1 

1 - e. 	. 

So 	lx - y l > 8 , en(x) = en(y) for all n imply that 

which is impossible for all n. Hence en(x) en(y) for some n, and 

f -expansions are valid by 3.1. Al 

4-.2 Theorem 	Let 

PV.(111€1 	(E8/ ''') EAtiOE) 

Ott  (1) 



(.3, 	46+ ( z,,(4)4HIP,/ (I) c) 	(1 7 0) 
Q, 	6+ 0, (E,A) 4-01 Q„.160) 	(z..,;.( j1c) 

Then 

87. 

Proof- 	en(y) = yn, Pn(t) = Pn(y,t) and Pn  = P
n(0) we have 

1  
Pr= -1(  

Gin-1 k 1.4.(1.4t) 

tt( Jp-1 	17 4 rA 

" 11" 6.4-1   Q 	Q, 
" "-4  

124-0.(%,.+14[(L44li.,_1)P„_z -1-0k Pit-j 4- 01,4_ 

(1,t b)}16  `kiln  1 ) „ „L .+ a• ()in Cl Qn_2s  

mkti-t- 	+a 

i64,(5„+01G2,,i-ckar _2.  
cu  511.1m;n 	r e tcd1Or. 

holds for n 	but 

P5(b) 	169 ck.(1/-1-01(6-1- 1,12)+ 

= 615-)-01 +aPi  

ax, 
Q.3 (E)7_.  64.A (cil-stqc64 ,91 )(64.0./0+ al o. -t 

= 4 b4. 4(y;+ EV Q7. + ai 



4.2 implies that 

Pr, 	= 	Fn  ( ly 	÷ 	Pn_,(1 7 0) 

0, ( 	+ 	E 	(3, 

1-b 4.3 Theorem For a > 0, 0 < b 	1 and f
1
(1) = 	= 1, 2, ..., a 

Tf is exact and has a finite invariant measure equivalent to p. 

Proof 

L,t3*.tx 	
Q., - F., Q„_, 

( Qv, + 
Therefore,'  

Siq 14 1-4/4)  Aelaill............... 	...... 

inS UTI(X71) 

CCX<1 

Gt.,.,( )01  

But Qn(y,0) = (b+ayn) Qn_1(y,0) + a Qn_2(y,0) >(b+ayn)(1n_1(y,0), 

thus 
et Girt-41115)‹.  

So 3.4 holds with 0 = (1 +b}2  .1/  

4.4 Theorem  For b = 1, Tf  has finite, invariant measure p given by 

2g(x) = 
dp‘ 	ax+1 

Be. 



Proof 

89. 

00 k(  
V1.=0 

	..z  
a. (-te +n)-11 	[c c: n)-1-7] 

   

n=0 Cx.4 2 -frel{z-ti.+44.1) 
0. 

c<7( t 1 

S o by 3.4. , dp 	
= 

` 	ax+1 . p(I) = a log (1+a) < CP, // 

4.5 Corollary 

cf 

 

Lia(c+11* 132'  
[at. +13C 0. i 2.1:—+ -15  

Lati(ct -4-1) 

 

4.6 Proposition en(x) 	1(p) for each n. 

r ( Proof en(x) c 	(p) if, and only if, rt La.k4.1)-p  
A. 	 Ea..14131.a- (n-1 	-11) 

00 ; 

but 

N 	ni,,,(E0_(K40-t 1 32-  
( i 

E 	n 4-1] ta (r%.4.2.).i.fi 	
c51.44-1)+1/14141ci _ 	Pl 1 La 

-J12 g(N,23411--J‘ 
( 

Gt -t 

—> co ( N --> .3) . 1/ 

1 n 
k 4,7 Corollary n — Z1  c (x) —> co (n —> co) almost everywhere. = k 



Proof Note that ek(x) = el(Tk-lx) and, for N a positive integer, 

put 

Ei (,() 	E1(x) N 

N 	+ 	(x) > ty . 

9o. 

Then f
N(x) e LI(p) for each N and so 

1 (x) 	f„,(1-  .) 
ft 

( 	C, (kt 4 -+ 1 3 	N .ry 	ra(k4 1)+ 13
2  

--) NruK-i-"Org.(k-t1)-0) 	14+1 - \[ a1 +O[ 014 2_)+1] 

co ( N —> 

4..8 Corollary The digits in f-expansions are almost everywhere unbounded. 

4.9 	Corollary h 
11 
 (Tf  ) < co ; in fact 

1  LL, 
hrtri) rz 	txtickGni (cttl) 	( 	cix 

• )0  cxxil 

Proof 

  

 

4,07)14= 

2 - Loy% <co • 



.24Z. I(a) = Jr 
0 ax+1 does not appear to have a closed form expression 

91, 

when a > 1, although for all a > 0 it satisfies the differential 

equation 

I(a) 	log(a+1)  Il(a) + 	+ 	- 0 . 
a a2 

Ii(a) = 
J 
2- 12L a- dx = a 	dx as ax+1 J o (ax+1)2  0 

since 

uniformly for a > 0 ; 

= _ 2'225;a is f(x, a) 	2  
(ax+1) 

1 
- log x dx = 1 and thus i - 1.2a2L-2  

0 	
(ax+1) dx converges 

dx converges pointwise by 4.9; ax+1 

continuous on (0,i x (0,00] and hence by 

- log x 

(ax+1)2  
< - log x 

[ 	Y p.445] integration and partial differentiation can be 

reversed. 

For a = 1, [ 6 	, P.563], 

1 

12-EZ dx = - v
JJ 	

2 

x+1 	12 ' 

while for 0 < a < 1 , 

12 1 	
.0 / k-a)n-1 

6 ax  =  
ax+1 

40 
	n  

0 

1 



Proof The admissible digits are 
1 1 
a' a • • • i.e. 

(.4 (ANx7 1) 
in<7.<7 

< Alt 

i and so sup wn  kx,y) 
r.)<x<1 

1  + 

9 ) • 
1 	1 	1 co 

I

' lo --L1C dx = i log x dx + 1 E (-ax)n  log x dx 
ax+1 

0 	jo 	0 1  

co 	•1 
= - 1 + E I (-ax)n  log x dx , 

1 0 

ik
n  

ir 	N since -ax)n 	
a 

log xJ 	for 0 4 x i and thus the series is ne 

uniformly convergent. 

1 
4.10 Theorem If b = 0, a = - N  (N = 1, 2, ...), then Tf is exact and 

has a finite, invariant measure equivalent to p. 

zero is not an admissible digit. Thus 

Qn  = aY 0 	+ a 0 	> a n 'n-1 	
0 

'n-2 	'n-1 

3.4 holds, with C = 4- 17 

4.11 Theorem For b = 0, a = 1 - (N = 1, 2, ...), the invariant 

measure p is given by 

r I 	) 
dx  
x41  a, 

Proof 
w 'I 	N 	=. 	i  

N 	ti 	 x4 N /1 
n 4.-. N 	+ 	( X -4-n,)1" 

x+ 11 



p(0, 1) = log (") < c , 

and N.1( 
It 	n+1 4(10X;!)  

613( 1*) 

	

[ 	(nr-Vri- 	n N N*7 
in( ji 

f 	i
ri 

h 
ti 

 (T ) < 00 , since 	log 1 dx i -c  f kx) dx =j log (-72) dx 

	

iA 

	 x 0 	 0 

= log N + 2 . 

h (T ) = 	N log(-=) dx 
f 	 N+x 0 

1 
= (log N)[log(1-111)] - 2 	1 

N+x
22 2 ax 

 

= (log N) [log(lt1)] - 2 E 	41.41- • 
n=1 n`kr- y, 

4.12 Proposition en(x) / L1(p) for each n. 

( 112  
Proof 	n log 	) I = log(M+2) 

n=N 
+ (M+1) log(1 - m4.2 ) 

- N log N . // 

4.13 Corollary 1 — E ck(x) 	(n 	co) almost everywhere. 
1 

Proof Apply the truncation argument of 4.7. // 

93. 



l it. 

4.14 Proposition log en(x) E L1(p) for each n. 

2 
Proof. log n log ((n(n+2)  n+" )- log n log(1 + -721-- no.+2)  ) 

1 

< (g + log 2) 7  
n 

w 	1 4.14 follows since E 	< co if p > 1 . A/ 
n=11.  nP 

log n  

log(14) co 
4.15 Corollary  -.N/e1(x) ... en(x) 	> II (1 + 1.7 .71m) . 	)(n->co) 

n=N 

almost everywhere. 

Proof By 4.14 and the Individual Ergodic Theorem, 

2 log  ek(x) 
1 

.11 log c1(x) dp (n --> co) almost everywhere. 

 

pa) 

 

co 
The result follows, noting that for an > 1 and E a < co n 

00 	 00 

1 	1 
log an  = log (II a 

n
) . // 

4.6 - 4.8 and 4.12 - 4.15 generalise corresponding results for 

) 	[ c, y P. 45]. Tx = 



bx §5 The transformation T (x) 	, where f(x) -  Tf(x)  _ 
1 -cx bi-cx 

5.1 Theorem. f-expansions are valid for b .?= 1 and 0 c E 1. 

Proof f' (x) must be positive 	b > 0 

f 1 (1) must be in (0, co]: 	c 	1 . 

r 	r -b , since if c< 1 -b , 1-c < 1 and f L0,1) COO), 

0 for all x 	 d. [0,1) an all n, and f-expansions are not valid, n(X) = 

by 3.1. 

c must be non-negative, since otherwise negative 

fn(ei(x),  • • • sn(x)) can occur, e.g. 

b = 4., c = -1 : c > 1 -bandr-E = 2 , i.e. independent digits. 

The admissible digits are 0, 1 . 

f 2(0, 1)=-113 • 

b = 	= 	c > 1 - b, [1bc] = 2 , i.e. dependent digits. 

95. 

Admissible digits are 0, 1 . 

2 f 2(0, 1) = - 773 

and. the sequence (0, 1) is canonical since Tf 

Now suppose b 1 and. o > 0 
ft(x).=  b 

(b±cx)
2  

<=> g(x) = c2 x2 2bcx b(b-1) > 0 . 

< 1 

X = . 



96. 

ZerV3 of g are tlig - b  and if b 1, c > 0, 

A - b 	4 0 . 

Hence g(x) > 0 for all x e [0, b , i.e. by 3.3 f-expansions are 
valid. 

   

Finally, f-expansions are not valid for 0 < b < 1 and 

0 < c 4 1 : if c < 1 - b , f-expansions are not valid (see first part 

of this proof) while if x f X0  is an invariant point, then 

bx x = 1 -ox ' 

i.e. x=Ocr -b  —0  ; but if 0<b<1,1-b4cand.0<c4 

1_ 	1 -b 	b(b+c)-b 	b 
b+c c = c(b+c) 

-11 Thus 1 — c Xo and so en(y) = 0 for all r 	1-13N ) 
Y E' 0, _7 giving no 

valid f-expansion by 3.3 again. 

For c = 0 we have Tf(x) = (bx) , which has been studied in 

[.6 ]p[ 26i is 

5.2 Theorem  

iPn  (1,0 
an(y,t) 

[1—  6+1+ (E1(1)— b+l-tcEA)— 
1)  • • • 

b+clf,,9-PE).1 

pn 	(1)+0 (P.,. (4,0)+,„ 11),( 0)-1-1 	z. 
b GL,(1)0  c(e„(1)-t-t)( CL1(11 0\ 4Q1(110\ c) 

0 . 



.111111• 

Proof 	Defining the partial quotients 'canonically' [ 17 ] 17e 

have, using the notion of 4.2 , 

c(1+1,31 ) 

02.(k) 	C[124+ 6 -+ (b÷1) (11 -+ 	c2  ' 1 (u-ft)] 

I,  PI  +  c(tu-t-E) 

c(j,..4-0(01+c) 

Assuming relation true for n - 1 , 

Pft-i 31/4 64 c(ukilL41k1  
I 

O 	
In 4  	) v 	b.+coi,,+b 

12(1 6.4c(In4-0 )(Q 7-1 

r(y„-}t) 	4-1) 

QA-1 *c(1.%÷k)(ah-1".1.  r 
5.3 Theorem If b  = 1, 2, 	co , 

b 	0< c 	implies Tr  is ergodic ; 

b> 1 	0 c 0 4 1 implies Tf  is exact and has a finite, invariant 

measure equivalent to p. 

97. 



98. 

c. 	+... +11 — Proof 

Dovisi5) 
[ 0,, c -x( 

gcn i,i)) 
c abs (?„_1 4.. , +1) — 

(;),[ GL*  da„.1 ÷...+ 0.1 

 

 

trnic,i(%.1 1) 

p«„(1)) 	 L( Q..7 +, • c)  
Nov Qn  = b 	+ cyn(qh_l  + 	+ 0) 

	

> cYn(90.-1 	o)  

	

069,1_1  + 	+ 	if Yri  ° 

Hence 	on  
Cit 	... 	c) 	2 if y

n 
/0 . 

Z = 0 ly : yn  / 0 infinitely ofteni = [y : yn  = 0, n large enough 

= U ly: yi  = 0 , i ni . 
n=1 

Each ly : yi  = 0 , i ni is countable and hence null by the non-

atomicity of p, i.e. p(Z) = 0 . Henoe 

"Al•S ‘411%,J)  

p( c.,(1)) 	2. 	for almost all y . The rt.  

first part follows by 2.3. 



Hence c41-11 c+1 =.. (41 4.  2 

441 	(c-o-b)(1— 1±r"--)  4 
(b —1) 

ok..., + ... 4 c) If yn  / 0, then 	  •1. 1 , 
Qn  

while if y = y 	= n 	ii...) 	• •• = Y 	= o  n-r+1 	' Yn-r / 0, then 

\ C+1 
	 •+c)  .5. 1 (c+1(c+.••+14+1)...))=-- rZ-1  .7 + - 

GL 
" 
	b 	b 	b 	'4 =1 a 	6` 

If b > 1, sup:dose firstly that 0 < c b - 1 . Then 

11-; (c+1) 	(c + .43.(c + 	, 

i.e. 

c 	• • • + c) c+1 
b 4 1 . 

cln 

 

Thus 3.5 holds with C = • 

If b-1<c41,then 
(c # 1) -4- -1(6.+1))< b 

  

D 
+ 72:11.1  

zr  1 

 

c -+ 1 
""7- 
121,11 

b 

   

41.  ÷ C41-6 
b 	6(6-1) 

C 
.11•11•• 

b-1 



100, 

Thus 3.5 holds with C = ( 1 + Ta-2-1- )2  . 

Finally, we show 3.5 breaks down for b = 1 : 

if 7n  = yn-1 = see = yn-r+1 = 0 and yn-r  /0 , then 

c(0,,..1÷....÷ c) 	 c(C/„.r-i +-• * 4)  _ r c. 
45? n  GI rt — r 

> r c ; 

but for all n and, r (y • ) = -}. 1 1.1i4n-r 

0 n-r<i4n 

is non-trivial, thereby contradicting 3.5. // 

5.4 Theorem 	For c = 1, the invariant measure p equivalent to 

p is given by 

p ( 	= jj b dx 
b-;-x-1 

is 

00 
Proof Z 	. b 	 b 	b 	

§ ' 	 • n=o 	b -1 +x-:-n 	 -2 	b+x-1 (b+x+n) 

p[0, 1) = b log bbl  , i.e. p if finite for b > 1, a-finite 

for b = 1 

5.5 For b > 1 , 	nf i 
b+.047 

Oa
- 

17+4. 

b -17;7 ) 

 

64. x- 1 

41.111110 
41.111•1116 

43 f 4(r1171:1S)(: + 0 4A)  

I±4) 

0 1 7 	• • • 



101. 

5.6 Proposition  en(x) fi'Ll(p) for each n. 

Proof 

NN I 	( b3 rt  

44-1.1.-1)0,4-tt+7) 
(6+1•1-0) ÷(a+1)105(7_ 	1.11) . 

5.7 Corollary 	Z ek(x) 	co (n 	co) almost everywhere. 
k=1 

Proof Apply the truncation argument of 4.7. 4 

5.8 Corollary  The digits in f-expansions are almost everyi:here un-

bounded. 

5.6 - 5.8 generalise corresponding results for Tx = (7x) 

[ 	,p.45). 

hm(T x  ) < , rime 

11 

— 2.f tv)(1-x)thr 

L0-56 +2 . 

\ (1 

b+x = 0 

= L 171'10{63 (TM .2-'12r.1 14"  " 



5.9 	2orb=1, T x  is conservative : X 0, (x) e L1 (µ) 
1 	 Xn 1 

and 0 	y xm 
 (Px) = co almost everyeaere , since 

00 	 00 
(Tnx) < 001= V 

o V X 	 i=1 
[x : en(x) = 0 n 

m 
= tb. (mod 0) . 

	

Let 15(x) = I 	e 	x < 

	

, 0 	X < E 

where 0 < c < z . Then 1 e(x) E L1(µ) . By the Hopf Ergodic theorem, for 

each Arimi  s s ib le digit K / 0, 	in - 1 
12.. X ( T 6_\) n - i 	 • 

	

t. -4 0 	X it  

i. 	
4- 1 s•- ._ w (Ti (x)) 

n. 

	

= 0 	Xr, 	
n-1 

	

E. 	1 t. ( T4.11 oc) 
"6.4, 

—> h,K (x) (n —> co) almost  t everrhere. 
I b 



0 
rg- 

n--1 
2 
Zne,  

i.e. 	95k  = 0 for k 	0 . 

Xx (148' (X) t zo 

since. 

— 	 (z)) Xi(  
xs 

103. 

h, 6(x) is invariant and hence constant by the ergodicity of Tf  : X, 

KIC  

le  (A ctr  
tA xi() 

I - 	E 

0 

Hence 

and 

:::: 1'-.  x 	(1:k(x)) < Lit.,„ *, 7C  cjxi4  
n. 0 	t7 xK c 	ri.  

ni 1 t  (1" (A rt. 	 K v 1 	
0 

r( 17 X K) 

S 1 I  (-X) jr  

—3> 0 



Finally, far any non-negative integers ii , ... 2 lk 2 

0, if ir / 0 for some r , 1 4 r 4 k .{. 

1, if ir =0 1 14r4 k. 

For by the Hopi' Ergodio Theorem, 

104. 

3.1  • • • llc 

• 
k.A.fit-̂  

rh„ 

y 	(-)e) 
-9 = o 	

y 
L n 	1-  /It o 	

V. 

i t Gt)Jr  

x;,r)  

t  Ar  

a 	0) , 	1 r  *o 
while 

INA 	 ti 
x 	K 	tc.9(14 =1 	1  

re ▪ -k+1. 0 . • Aer1•./17i •IC1) 	 1-1 -Ail 0  

CO 

• 1 (n —> co) , since p(U X.) < co 
1 1  

1 0 	o 

§6 	Unresolved Questions 

6.1 	The preceeding discussion makes the restrictive assumption 

that the f-expansion digits are independent. It would be of great 

interest to know Vast results hold for the dependent digit case. 



105. 

A. Renyi • [Z9 , and V. A, Rohlin [ S;IL ], after proving their 

theorems for indpendent digits, applied them to f-transformations with 

dependent digits by observing the behaviour of the particular 

f-expansions. It seems probable that similar results could be obtained 

with linear fractional mod one transformations. 

6.2 	It would be interesting to know whether 2.3, in addition to 

implying ergodicity, also implied the existence of an invariant measure 

x 
equivalent to p. This measure need not be finite, as T 

	shows. 1+x 

6.3 	In the majority of cases considered it was not possible to 

compute the invariant measure, even when its existence was known by 

3.5. The generalisation of the exhibited cases is by no means clear. 

6.4 	Is Tj 1 +x an infinite exact endanorphism and has it got 

finite entropy in the sense of Krengel [2,1, ] ? What value does 

......c its ergodic index take? T 2 does not satisfy the stronger 
1+x 

condition of 2.3, which would imply that it has infinite ergodic 

index. 
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CHAPTER IV 

Ketrio Invariants fcr %I-shifts 

§1 Introduction 

In the isomorphism problem, invariants play an important 

part in the negative sense of exhibiting non-isomorphism. Indeed, 

it is generally much harder to prove two transformations isomorphic 

than non-isomorphic. For H-shifts this is just the case. Metric 

invariants for null-recurrent, irreducible II-shifts are introduced 

and studied in §3. They are based on a certain class air Kaluza 

sequence which was mentioned by J.F.C. Kingman { 1 	J. They depend 

for their effectiveness on the criterion for ergodicity for null- 

recurrent H-shifts given by S. Kakutani and W. Parry [ 13 	The 

duality between M-shifts and renewal sequences, which is well-known, 

is studied in §2. Indeed, isomorphism of M-shifts is studied entirely 

in terms of their associated renewal sequences. As a consequence of 

the methods of §3, a generalised Honf ergodic theorem is proved. 

In §4. three classes of Li-shifts are studied using the invariants 

of §3. One of these classes was introduced by U. Krengel [z2. 3 

and shorn to consist of a continuum of non-isomorphic /5-shifts using 

basically the Kakutani-Parry theorem. 
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§2 The Relation between N-shifts and Renewal Sequences. 

In this chapter ye shall only consider null-recurrent, 

irreducible H-shifts. If T is the ii-shift (A , P) then for any state i, 

ipii(n)10  is a renewal sequence. This follows on putting 

fn  = fil(n), the probability of returning to state i for the first time 

after n steps, starting at state i. 

Conversely, given a renewal sequence 	, the following 

theorem gives an 11-shift (A , P) for which Poo(n) = pn. ,,re shall see 

in §3 that the choice of state 0 is immaterial for our purposes. The 

construction in 2.1 is well-known [ 3 , p. 40] ; attempts were made to 

construct otheo 11-shifts having [pill: as renewal sequence in the above 

sense, but no results were obtained in this direction. 

2.1 Theorem Given a null-recurrent renewal sequence ipni: , let 

ifniT be the sequence in terms of which it is defined and put 

Pn  = 	fn . Then the null-recurrent, irreducible LI-shift T = (A, P) 
21+1 

with 

A = P n n 

and for i = 0, 

Plj =  
j = 0 

, j = i + 1 



has 	
Poo(n)  = pn 

co 
and 	h(T) = - E fn log fn 

Proof T preserves the measure generated by (A, P) since 

( F j 	, 	7 0 
• • 

L 
 4-J --zo 	

•icj 4 	7 L.. 

p00(n) = 	 poi  	1  040 p. 	0 • 
i1 	04 i 	 n-i, 	n...1  

This sum contains two types of terms, namely, 

Tr i?0-1.- h 	- Tr -v .1 	F • F. 

	

Ii 	S-. L.„ 

109. 

4111111•••• • ••=5••• 
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whore 1 s s[ 91  ] 0 4 iv 4 n - 1 , and 

(, 
00i  )k = fi ‘1,  

n 
where 0 4 k 4 n. Thus  ' Poo(n) 	 f 	f. 

k=1 	
. 	

.k  = n 

pn , 	11 * 1, 2, ... 

p00(0) = 1 = pc,  , by definition. 

1N(T)= 	• 	1;. ;.3 t011)1,.; 	Ez zl 

„i 	Fi.41 	( F:•-v 
F, 1,2,2 

FLo  

since Fi  --> 0 (i 	co) and hence Fi  log Fi  --> 0 (i 	co). T i3 

irreducible since any state can be reached from any other via state 0. 

That T preserves a a-finite measure follows from 1.65. It can also be 

verified directly that (X, P) gives rise to a a-finite measure noting *hat 

2-  F _ 	/1- 
n 1 Ft :17G 
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7rite S for the E-shift constructed in 2.1 to have renewal 

sequence P  . Although we shall only use the notation S in this sense, 

the result s of §3 would also hold if S were any other irreducible 

L:-shift having 2 as renewal sequence. 

2.2 Theorem. For renewal sequences 2 and n , 

S
2 
 x S is isomorphic to S , 

where 2 = [pn gni: • 

Proof. For simplicity af notation we assume without loss of generality 

that the state spaces of S and So are 10, 1, ...I . S
2 
 x S

a 
 is 

co 
isomorphic to the shift on R Xn x yn where Xn = Yn 

= 10, 
n=1 

If P(ii  ,j1)(i2,j2) are the transition probabilities for the latter 

shift, thenA p(11 pj1)(1 2,j2)(n) = pii i2 
 
(n) qjl j2(n). Thus if 

p n = p..(n) and qn  = qjj(n), -hen SP  x Ss,  is isomorphic to Sz  . // 
11 



§3 3ome Metric Invariants for M-shifts. 

This section studies the isoiaorphism problem far null- 

recurrent, irreducible H-shifts S in terms of the divergence properties 

of .p . 

For a null-recurrent renewal sequence 2 , let k(g) be the 

unique number such that 

=co c < k(2) 
Co 

n=o (Pd‘ 
<co k(E) 

If 	E (pn)4  = 	for all i > 0 , as for example when pn  = 	 
n=o 	 log(n+e) 

co . 	. 0 
put k(2) = Co  . Otherwise Z kpn) < co for some 0 > O. By the 

Ezs,7,  j,n 	n=o co 
comparison test,\ 12 (p 

n  )
4  < co for all t. > 0 . Also, Z pn 

= co 
1' n=o 	 n=o 

co 
and 	E (pn) = co for all 0 < c < 1. Thus 

n=o 

L= 	L : E (pn)' = 0 1 / 0 

and 

R = 	: E (pn) < 	I / . 
0 

By the comparison test, every element of L is less than every element 

of R. Dedekind's theorem [ 10 ip.3O] now implies the uniqueness 



asserted above. k(R) gencralises the ergodic index, since the powers 
nee 

L areVestricted to integer values. 

c itoo If 2.A.  denotes tpnio  o  and 2 a  denotes 

the Collaring is true:- 

3.1 Theorem  (i) A k(EA) = k(2) 

, 	 1 
(ii) 7517 	' 	' 

Proof 
co 

(i) 	2;(1) 	1.  
o n )  

< co 	if L > k(.E. ) 

= co 	if 4 < 	
A) 

  

c°  AL 
pn 	co if t > 

co 	if c < 

k(p) 
A 

k(2) 

 

A 

/ 	A L 	m  
If 	A k(2A) < k(2) , say, then E kp

A  ) < co while Z p
AL 

 = co 
o n 	o n  

/ A 
for some c . This is a contradiction since kIln)

1. 
 = I)n

AL 
 . 

1 
(ii) Let A = 1 

	
uto P = A k(2) and = k(c) 

[Pn 



Then 	1 	and Cilyp.186j - 	= 1 	so by liOlder's inequality 

yf, . 

m 	n=0 trul. 	 11' 

0.P) 
1121 

c; 

n =o 

co L If 	 I. P > k(2) and t. 	> k(2) , i.e. if 	> 1 $ then L P
n  q

n  < 	• 
0 

I Hence Ic(22) 4  X . II 

Define 
r = 0 

logx = 
x

log log x,  r = 1, 2, .•• 

( 	
r = 0 

e 	= r 
er-1 	r = 1, 2, ••• 

to 

3.2 Thecrem  	is a ICaluza sequence, r = 0, 1, • • • • 
.logr(ni-er)`) 

and 



1 I Li% 

Proof For r = 0, we "Eve to show 1 	1— < 
(n+1)2 s. n(n+2) 

which is equivalent to 0 4 1 ; le for r > 0 , 

Lrc 	e,-) 	iori7 (,c• 	-Er r) — tly.  

L3r  
ay- 	

2, r 
(Xiller) 	[141r(14+14eA ttccI( 	C  

n = 0, 1, • • • 

0 

r since log xis an increasing function of x. // 

0 OH 1) u4  	< o 	, 0( > tto  ( t\io  

rn again with tis, convonti. on that acs(2) = co if Z — = co for all 0 (n+1 )a  • „ 
a > 0. For r > 0, let ar(2) be the unique number such that 

   

  

h
rr 

(ri +e 	SoIrk"er)1 64.  

  

  

3.3 Theorem If 2 is a ic.?luz:. sc-quence, 

  

a(2)  = 1  — 7.1.7 • 

 

Proof Since 2 is monotone decreasing, by the Cauchy Condensation Test 
co 

[20, p.120] ; (pri) t.  < 03 if, and only if, Z 21i(p ) < 0o. The latter 
2n  

if —r-P ft/ ni----""ct 	 i  series converges 	13.m V2 	n) < 1 , i.e. if A < 	, where a 	 2  
2 

A = lim Vp n  . It diverges if At > 
2 	

2 • 

If 2 is a renewal sequence, let a0(2) be the unique number such 

that K. 	
= oo 7 	< 0( 0 4) 

G
ov 



0. 
Similarly, L Pn 	converges if 41-12  < 	, diverges if 

(n+1)a  
1 -a0(2) 

Al -a 	 (Ek ) > . Hence A. 	 = 	 • 

3.4  Corollary  (i) ao(RA) = 1 -• A A 0:0(0 

(ii) 	ao(2 2,) 4 ao(2) 

Proof Use 3.1 and. 3.3 . 

3.5 Theorem. If 	and. and a  are renewal sequences and 

an(2) an(2) for some n, then S2  is not isomorphic to 3 . 

Proof Taking the ab ove n to be the least such n, let 
/ a = 1 tan(2) + an(2)1 ani suppose an() < an(g) 

Then 	
12K  

fc 	0C-tir' (1L)  • • • Ettriin. 	`74 
< e<3 

while 
ao 

.1nrolir 

*=o 	( K -t/)` "$) • • • 1411" (K+e,, 8(  

Thus {/.6.1 the irreducible H-shift St  x T is not ergodio, although 

S
a 

x T being irreducible is ergodic, where T is the irreducible, 
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aperiodic M.-shift associated vrita the Kaluza sequence 

	 1  
(kilr4°W • • • UmtiqiCttA 

▪ It follows *that S
2 
 x T 

 

is not isomorphic to S x T and hence that 	is not isomorphic g 
 

toS 
.9, 

3.6 Corollary 	If for Kaluza seqamces z ani • kj) k(s) 

then S
2 
 is not isomorphic to S 

Proof By 3.3 	ao(2)  =. 1  1iT • // 

3.7 Lemma 	Par n = 0, 1, ... let pn  > 0 , qn  > 0 

0 < wn+1 4 wn  

and 
co 

2 Pn = o 

CO 

0 
= 0 . Then 

co 	(N 	co) implies the existence 
N 

4' 1 iM 	WA  P  

• v4A  rt  
0 

co 

< 

  

12), 
and finiteness of s(2, 2,) = 

w(2, 	= 	if, and only if , 	qn  = CO 
0 
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Proof We follow the proof of [ 9  , theorem 1 4.]. For N = 0, 1, ... 

let 
IV 

6 7 

 

N 	 N 	 N 

	

PN  = E pn  f n = -n 	RN = E 	o
11n - 0 

Then > 0) 
Po = so 	

and 
PN = sN 	sN-1 (-41-1 

tre. 	0 	K. 

where 

R 

CM 'A  7 

r. < PY1 

= re% 

0 

Putting sn  = 1 far all n re see that pn  = Qn  0n-1  = qn  and to  = 
co 

for all n. Hence E mjn = i for all m. Since wn+1 wn  far all 
00 

n, cmn 
> 0 and so 	E Ic I = i for all m. Finally, either 

o o mn 

R
m 
---> co (m ---> co) or R

t 
---> R < co (m 	> 00) . These correspond 

(w - r ) 0 respectively to cmn —> 0 and cmh---> 	n 	n+1 la  (m --> 
, 	s 
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The first part of the lemma new follows from 5 , theorem 1] 

and. the second. part, from [ q , theorem 2] . 

3.8 Thecrem 	If 2 and a  are renewal sequences such that 

0 (N 	co) 	0 < c < co , 

then 	lar(2) = ar(a) , r = 0, 1, •00 

Proof %Trite 
r) 

and. similarly far g . 

co 
7e must shavi that E pn  wn(2, a, r) < 03 if, and. only if , 

0 

z _ wn 	, a, r) < co . 

CO 

Suppose that E pn wn (2' a' r)  < 
0  

co but that 

Co 

qn  vfn(2, a, r) = co . 

This implies that 
N 

o w k r) in. ri 2 

tr. W•($ 78:i ) 
0 

which contradicts 3.7. Tha converse assertion follows on interchanging 

2 and .q • // 
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3.9 Corollary  If (A p) is a null-recurrent M-Shift and 
00 

pi = nii(n)10  , then 

an(4) = an(2,j) n = 0, 1 , 

for all states i and j. 

Proof 

We now prove a generalised Hopf Ergodic Theorcm. 
co 

If w = twno where wn wn+1 > 0 I T is a conservative, infinite 

measure-preserving transformation on (Xs  OE , p) and 0 < f(x) E Li(p), 

put 
co 

Cfw = Ix : E wn f(Tn
x) = coi . 

3.10 Lemma 	If f, g E L1(p) and g(x) 3 0 almost everywhere, 

then 

4.(Ticr)  — 
135/id 

vo 	WK  3 (I IC  It) 
0 

CO 

exists and is finite an ix : 	g(ex) > Oi . 



12 o. 

i-(70(3c) 
Proof 	By the Ilopf Lrgodic Theorem, h (xl = lim ° f,g n->w 22t. erK4 

00 0 
exists and is finite on ix 	E g(4) > 0] 	There is no loss of 

0 

generality in assuming that f(x) 0 almost everywhere, since in the 

general case apply 3.10 to f , g and f , g respectively and nott 

that hf,gsw(x) = h 	(x) h _ 	(x) 	3.7 now gives the 
f+  sg,w 	f .g.w 

required result. // 

3.11 Corollary Cf' 	is invariant and independent of f. 

1 Proof 17 Cfsw = Ex : Uk f(Tk+1  x) = 	. Since n4-  w  1  4 wn ' 

wk f(Tkx) S E Uk  f(Tk+1  x). Conversely, by 3.10 

wi(rkeix ) K 

al, (TIC4 

Hence E wk f(Tk  x) = . if, and only if, k f(
„' 4.1  x) = 

0 

i.e. Cf,w is invariant. 

Again by 3.10, hftg (x) < 00 and h
gpf 

 (x) < . for 

0 < f, g E Li (p) . Hence Cfw  is independent of f . A/ , 

Trite Cu  = Cfor  if there exists 0 < f e Li(p) such that 

Cfsw 	. U. Krengel 	3, working with more general positive 

contractions T on Li (p), calls C the w-conservative part of T. 



3.12 Theorem Under the conditions of 3.10, hf,g0w(x) is 

invariant on Cw and 

	

g(x) hf,g,w(x) dp = 	f(x) dp 

Cw 

Proof. Apply the Hopf irgodic Theorem to )(c  (x) f(x) and g(x) 
jxr 

noting that by the invariance of Cw  

C 
4, (x) = G ?(,_ (x) h_,g(x) . 	// 
X3 	w  r 

§4. Von-Isomo hism of Certain 1.1-,3hifts 

Put 	un(a,r) = 	1 	 a > 0 	r = 0, 1, Odle 

[logr(n+e ) la  

vn(a) = 	
n!  , 	a > 0 , 

(14-a)...(n+a) 

wn(P) = r(  n  P) 	0 < p < 1 . 
r(p)r(ni-1) 

4.1 Theorem u(a,r) is a null-recurrent Kaluza sequence for 

0 < a 4 	(r = 0) and 0 < a (r > 01 

an  (u(a,r)) = 

- a 	n = r 

n r 



Proof 	3.2 states that u(a, r) is a Kaluza sequence. 

1 un(a,0) = 	is a null-recurrent if, and only if, a 4 1. 
(n+1)a  

[ 20, p. 120] . u(a, r) is null-recurrent for all a > 0 by 

the comparison test, since 	n 1 	--->04<n ---> co) for all 
[loi(n+er)]a  

a > 0 and r > 0 . The last assertion follows from the rates of 

convergence of the logarithmic scale [20 	p. 123] . AV 

Note that when r > 0 , an(a(a,r)) can take negative values. 

4.2 CorollaryS(a,r) 
 form a continuum of non-isomorphic u 

H-shifts. 

Proof Apply 3.5. // 

4.3 	Corollary k 	fkm a further continuum of non - 

vn1 - u(av' rv  ) =  

    

isomorphic H-shifts, where E 	u(a v, , r v) = v=1 
u 	. r v- v 

CO 

0 

    

k 
Proof 	an( n u(av,  , rv  )) = v=1 t

nirv ,  s  1 4 v 4k 

1-av 	n = ry . // 

4.4 Theorem  v(a) is a null-recurrent Kaluza sequence for 0 < a 4 1 . 

1 - a 	n = 0 
an(vAa.)) 	11 	, n > 0 . 
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Proof  v2(a) < vn-1 (a) vn+1 (a) if, and. only if,  

n 	< n + 1 
n+a 	n+a+1 if )and only if, 

(ZO)  j. 228) 

v(a) is recurrent if, and only if, 0 < a 4 1 by the Gauss tessince 

vn+1 (a) 
(1 + Z1-1  

n+1/ 

 

= 1 - + 0(10 
n 

v (a ) is either transient or null-recurrent since the convergence of 
CO 

the infinite product 
n
II (1 - —) = n->co lim vn(a) is equivalent n+a+1 =0  

03 a 	 a 	a to -that of 	F., 	; but ----- ...-. , n+a.:•1 	n+a+1 	n n=o 

x + 1 	a  
c3x x+a+1 (x+a+1)2 > o . 

00 

i.e. r, 
n=o 

a 
n+a+1 = Since vn(a)% (n —> co) , v(a) being 

a Kaluza sequence, lim vn(a) exists. If it were positive, the 
n->co 

infinite product would. converge; thus vn(a)\A 0 (n 	> co) . 

vn+1 (a)) t 
(

.-4. 
= (1 + 

a ) 
371.—c 	 n+1 

= 1 -+ OL1- 2') n n  



Hence, again by Gauss' test, k(v(a)) = a . It follows by 3.3 

that ao(v(a)) = 1 - a 

That an(v(a)) = 1 , n > 0 , follows fron vn(a) 	1'(a+1)un(a,0) 

[ 3 3 , p. 11]. Indeed, 4.4 follows from 4.1 using this result. 

A different proof of the first part of 4.4 is given since it seems 

to have interest of its own. // 

4.5 Corollary Sv(a)  is not isomorphic to Sn(p,r)  for all 

0 <a l p<i whenr>Oand for all 0 <a/it <1when r = 0 

Proof 	r = 0 , for a #r p ao(v(a)) ao(a(p,r)) . 

when r > 0 ar(v(a)) ar(u(p,r)) far all 0 < a , p < 1 
	

/1 

Ire have no information when r = 0 and a = p , since then 

an(z(a)) = an(E(p,r)) for all n. This is to be expected, since 

v(a) and u(a,0) are esentially the same renewal sequence (in terms 

of op nvergeace properties) . 

Theorem w(p) is a null-recurrent Ealuza sequence far 0 < p < 1 . 

an(w(P)) = 
p n = 0 

1 n > 0 . 

Proof n( P ) 	r(p) n1-13  [ 3 1- 	P • 53] Since 

  

u(1 - p, 0) is null-recurrent, so is u(p). Also 

an(E(p)) = an(12(1 -- 4300)) . As u(1 - p,0) is a Ealuza sequence, 



1 2 5 • 

the asymptotic relation implies that w(p) is Kaluza too. Alternatively, 

wn+1(p) = 11t2 	(n —> co) n±1 

4.7 Theorem 
Sw(P) 

 is not isomorphic to Su(a,r) for all 

0 <a,p<1 and 	r = 0, 1, ... 

Proof 	ao(w(p)) ji  a0(2(alr)) . 

Attempts were made to compute the entropy of the three 

classes of 14-shifts studied above, the problem being to find an exact 

or asymptotic expression for fn  . For u(a,r) and v(a) there appear 

to be no useful closed form expressions for the generating functions 

of the farmer or latter. However, we did obtain t] following 

co 
\ 4.8 Theorem E un(a10) z

n  = 	f4z, a, 1) , 
n=o 

co n  where 	(3)(z, a, v) = E 	z 	
[ 41' 	pp. 27-31] . 

n=o (n+v)a  

Proof This identity is none other than the definition of f . // 

4.9 Corollary F u(a,iz)  = z 	zpa,1) 

Proof Follows from the definitions of F and 92 . 



co 
1..10 Theorem 	L 	vn(a) zn = _r1:(1, 1; a + 1 ; z) 

n=o 

where Ii denotes the hypergeometric fb.notionE -z 	p. 1 13 
00 r(a+nycb+n)r  Proof 	H(a, b; o ; z) = Z r(a)r(b):1:(c÷n)r(n+1) 3  • n=o 

4.11 Corollary 	Fv(a) (z) = gr+1,2; a + 2;  
II 1,1; a = 1; z • 

Since 17(p) is generated by a olased form expression, 

namely (1 - z).-P
• -L

w(P) (z) = 1 - (1 - z)P and 

fn 	
r(n - p)  
r(-p)r(n+f) 

- 1  ti 	 ▪ 	Hence 

4-.12 Theorem [22.J h(3w(p)) < co for all 0 < p < 1 . 

< 03 if, and only if, 

< 00 

7 I log Proof  - 
n=2 n 	np+1  

  

00 
E p+1 

n=2 n  

r( -p) n13+1  

But 

441)1'9'1  
Lry(n+1)  

(Art3  El. 

(1)-41) 	a 4 .6:  ).1 

:7) 	1*. 	I  

 

 

— 	
0,41 ) 	0( :2_ ) 

rt. 
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and so by Gauss' test the latter series converges. The proof is 

completed by noting that series of asymptotically equal terms 

converge or diverge together. // 

Although the renewal sequences studied in -this section 

throw some light on the effectiveness of an(E) as metric. invariants, 

they are too closely connected with the test sequences u(a, r) to 

indicate whether, for example la
n(p)j; might be a complete 

invarient for S where 2 is Kaluza. The answer to this question is 

clearly connected with the universality or otherwise of the 

logarithmic scale of ratio tests. However, as K. Knopp 

[ 	p. 304] points out, no "boundary" exists such that all 

monotonic series on one side of it converge, while those on the other 

side all diverge, irrespective of the manner of definition cf the 

boundary. 
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