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2. 

ABSTRACT 

In this thesis, contributions are made to the general problem of 

identifying linear, multivariate systems (with more than one input and 

more than one output) from operating data for purposes of control. The 

problem is shown to be the proposal of a suitable mathematical model 

structure followed by the task of estimating parameters within the 

structure by statistical methods. 

From the initial assumption that the systems of interest have a 

state-space description, deterministic canonical forms having fewer 

parameters than the original description are derived by means of linear 

transformations. The methods for construction of these transforms are 

related to the conditions for controllability and observability. The 

method for transforming an important new form, the A-canonical form, into 

a vector differential (or difference) equation in the input and output 

variables only is developed. The inverse problem, of transforming back 

into the A-canonical form is solved. Then both descriptions are extended 

to include structure for stochastic inputs that appear as correlated 

disturbances at the system output. 

The problem of estimating the parameters of the multivariate stoch-

astic difference equation is investigated. It is found that estimations 

by conventional least squares leads to unsuitable estimates. Consequently, 

a new, modified method of least squares is developed and shown to be 

asymptotically unbiased. Algorithms for estimation by maximum likelihood 
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methods are also developed. A number of examples are computed to 

illustrate the effectiveness of the algorithms and for comparison 

purposes. A simple example of stochastic control using a model, the 

parameters of which are estimated by running data, is shown. 

In the final chapter, some possible extensions of the work are 

considered. 
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CHAPTER 1 

THE SYSTEM ILENTIFICATION PROBLEM 

1.1 Introduction 

In this thesis, the general problem of identifying multivariable 

systems from operating data is considered. The types of variables 

involved in the processes of interest are shown in Figure 1.1 which 

has been adapted from [1]. 

Independent 

Variables 

Controllable  

Uncontrollable Inputs 

. . w 
S 

   

Process 

w1 w2 

u1 

u2  

Inputs 

1 
xn 

Intermediate Variables 	/Dependent 

Variables 

Figure 1.1 	A Multivariable System 

The identification problem is concerned with finding mathematical 

relations between the set of independent variables and the set of 

u 	"•• r 
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dependent variables of the system. 

The controllable inputs can be measured and manipulated whereas 

the uncontrollable inputs are disturbances which may or may not be 

measurable. The latter may also include changes originating within the 

system. In the following, distinction will be made between random 

processes, which cannot be controlled and control systems which have 

controllable inputs but may also have uncontrollable inputs. 

The set of dependent variables includes, along with the measurable 

outputs, other convenient quantities that are part of the process but, 

possibly, cannot be measured. They are classed as intermediate variables. 

The motivation for the identification of a control system is 

provided by the requirement to control the process in some optimal 

fashion. The implementation of control algorithms derived from modern 

control theory requires a knowledge of both the structure and para—

meters of the differential or difference equations describing the system. 

With this knowledge, and in the absence of disturbances, the optimal 

input from a class of inputs usmaJly can be determined to achieve a 

desired response. In real situations, this objective may be obscured 

by the presence of disturbances that do not belong to the class of 

measurable inputs and affect the output in an undesirable manner. 

The control policy in such circumstances must then be modified to cope 

with the disturbances and minimize their influence in some sense. If 

the response to the uncontrolled inputs can be predicted, an improved 

control procedure can be devised; hence, the identification procedure 

must also determine the structure and parameters of the mathematical 
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relations connecting the uncontrollable inputs and the dependent 

variables of interest. 

The identification of a random, uncontrollable process is 

motivated by the requirement to predict future behaviour given a 

recent history of past performance. Such processes may be encountered 

in economic planning situations as well as in the study of physical 

phenomena. 

So far, we have implied that the task of system identification 

is undertaken in order to furnish an investigator with a mathematical 

description or model of the system for purposes of control or prediction. 

It is overambitious to suppose that an exact set of relations among 

the variables of the process of interest can be synthesized from a set 

of terminal measurements; hence, practical considerations force us to 

first propose a suitable mathematical model of the system specifying 

its structure (the functional relations among the dependent and 

independent variables) and then an estimation procedure to assign 

numerical values to the parameters in the model by experiment. Clearly, 

there is a risk involved in exercising judgement in proposing a model 

structure along with a parameter estimation procedure. Hence, a per-

formance index is an essential element of any identification scheme as 

a measure of the "goodness" of a particular identification policy for 

which a model structure and an estimation procedure are assumed. 

However, there is no advantage in proposing an elegant model and a 

sophisticated experimental parameter estimation programme if the 

results cannot be fully utilized. Thus, it must be concluded that the 
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identification problem or model building task is strongly object-

oriented [2] and the techniques employed will differ widely over 

the broad range of objects or systems investigated. 

Let us now pose the identification problem in a very general 

mathematical form. We are required to estimate the elements in the 

vector of parameters -9(t) appearing in the vector differential 

equation and observation equation 

x(t) = f[x(t), u(t), v1(t), 9.i.(t)] 

y(t) = ex(t), u(t), 43 (t)] 

+ hCx(t), v2(t), 
	 (1.1-2) 

which minimizes some cost or risk functional R where 

x(t) is the model state vector of dimension n 

u(t) is the r-dimensional control vector 

y(t) is an m-dimensional observation vector 

v1(t) is an input noise vector 

v2(t) is a measurement noise vector. 

The model state vector x(t) is equivalent to the vector of 

intermediate variables x of the general process shown in Figure 1.1 

if the above equations are an exact description of the process of 

interest. 

The major difficulty with this model is that it requires knowledge 

of the state-variable vector x(t) in order that the parameter vector 

9(t) can be estimated. Thus, for this model, the identification 
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problem must be extended to include state estimation along with 

parameter estimation C2, 65]. The solution to this problem is 

difficult because it involves the joint estimation of parameters and 

variables appearing as products in the model. This is a nonlinear 

estimation problem. Unless the minimization of the risk function R 

specifically includes the requirement that an estimate be made of the 

process intermediate variables, it would be advisable to seek another 

model form in which the state variables have been eliminated. It is 

to this restricted class of identification problems that we now turn 

our attention. 

The problem with which we shall presently be concerned is that 

of finding mathematical relations between the set of independent 

variables and the set of output variables of some noise—perturbed 

multivariate control systems or stochastic systems. We shall limit 

our main discussion to linear realizations with parameters that are 

invariant with time but will indicate how these constraints can be 

relaxed in some special circumstances. 

For the purpose of this thesis, we shall define multivariate 

systems as processes for which, at any instant of time, it is necessary 

to represent the input and output variables by vector quantities of 

at least two dimensions respectively. The reference to single—input 

single—output systems which will be encountered throughout is self — 

explanatory. 

The term stochastic process will be applied to the fabily of real 

time functions f(t,tr ) defined for the outcomes tc'' of an experiment 
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specified by the probabilities of the random events that make up C-. 

For every specific outcomeCf--;i, f(t,)i) is a single time function 

which, for our purposes, will be a real vector function when we dis—

cuss multivariate stochastic processes. 

1.2 Process Identification 

The introduction to the system identification problem in the 

last section leads to a natural subdivigion if the problem into 

five parts: 

(1) the motivation to identify a system 

(2) the proposal of a model structure  

(3) an experiment to obtain data to which the model can be 

fitted 

(4) an evaluation of the results of the experiment 

(5) confirmation of the model or reproposal of the model 

structure. 

Savas [1] makes an important distinction between models proposed 

for process design (or redesign) and models fitted to process data for 

prediction or control purposes. In the former, certain parameters and 

variables will correspond directly to such quantities as physical 

dimensions or material constants so that their influence on some 

performance criterion (or risk function) can be assessed directly. 

We are concerned with the latter requirement for which the model risk 

criterion should reflect the prediction capability only of the model 
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or models fitted. This specifically excludes the identification phase 

of the dual control problem considered by Feldbaum [66], Kwakernaak 

[67] and Riordan [68] because the cost function devised for their 

problems includes a measure of the controller performance. 

Consider the selection and minimization problem: 

r\ 
choose minimize R[1(y(t) 	yi(t)), t; tl] 
E. 

(1.2-1) 

where the loss function 1 L, 

parameters 	E w , 

models 	Ei  

and where the risk function R is defined as the expected value of 

the loss function 1 over the interval of time from t
o to t. 

gi(t) is the best prediction of the output y(t) by the model i  

given all available prior knowledge of the system behaviour from 

measurements in the interval from t
o to tl. 

For example, for selecting and evaluating a discrete time model, 

we might choose to minimize the mean square output prediction error. 

Then the selection and minimization problem is (multivariate case): 

t 
choose minimize 	E Cy(T) - y(T;.,T-1)311...A.7Ey(T) -Y(T;4.,-r-1)] 
E . 	9 	T=0 1 

where 	is a weighting matrix. 

The purpose in introducing a selection procedure into the criterion 

is to allow a comparison of models that may differ in structure. For 

example, the order and degree of differential or difference equations, 

(1.2 -2)' 
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the duration of lags, etc. Hence, the model Ei  is chosen from the 

set of models P that the investigator may propose to compare by 

means of equation (1.2-1). Detailed examples are provided in the 

literature, in particular by Box and Jenkins, for systems with a 

single output [33]. Suitable models for the multivariate case are of 

current research interest. 

Having chosen a model structure, how do we estimate the parameters 

4 so that the risk function is minimized, given only a record of input 

and output measurements? In this thesis, we shall investigate a 

number of statistical methods for estimating the parameters of models. 

We shall show formally, and experimentally verify, that the classical 

method of least squares estimation leads to biased results when used 

to estimate the parameters in the dynamical models developed for 

multivariate systems. Thus we will be required to modify and extend 

existing statistical methods of parameter estimation to seek a 

solution to this problem. The results of the experiment will be 

evaluated by obtaining a measure of the mean square prediction error. 

This, we claim, provides the necessary model information for the design 

of a suitable controller. For example, if we can minimize the mean 

square prediction error of the output, we should be able to regulate 

the output within the same region of error. 
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1.3 Outline of the Thesis  

Chapter 2 is a study of some state-variable canonical forms of 

constant, linear, multivariate, deterministic systems. The initial 

assumption is that all systems have a state-space description. This 

allows us to relate the well known conditions for controllability and 

observability [8] to the construction of some useful transformations. 

These are used to provide canonical state-space descriptions having 

fewer parameters than the original description. In particular, a new 

state-space description, the A-canonical form, is described. 

In Chapter 3, it is shown how the A-canonical form leads to a 

description in the multivariate output and control variables. This 

description is called a vector differential (or difference) equation. 

It is related, in this chapter, to forms that have appeared in the 

literature a number of years ago and to matrix transfer functions. 

The procedure for transforming the vector difference (or differential) 

equation back into A-canonical form is given. A number of examples 

are supplied. 

Systems with stochastic inputs are discussed in Chapter 4. It 

is shown that from a set of terminal measurements, systems with noise 

inputs to both states and outputs can be modelled by a description in 

which all the noise sources are combined into one vector noise process. 

The transforms relating stochastic state-space descriptions and 

stochastic vector difference equation descriptions are derived. This 

chapter provides a general model form suitable for the identification 

of multivariate systems. 
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Problems of parameter estimation are considered in Chapter 5. 

It is shown that estimation of the parameters of the models developed 

in Chapter 4 by least squares leads to incorrect estimates. A new 

method of modifying the least squares method is developed so that the 

estimates are asymptotically unbiased. The method of generalized 

least squares estimation is examined and passed over in favour of 

maximum likelihood estimation. The algorithmsfor estimating the para-

meters of the multivariate descriptions developed previously are 

provided. 

In Chapter 6, examples of identification, prediction and control 

are provided. The superiority of the modified least squares method 

developed in Chapter 5 is demonstrated in comparison with other forms 

of least squares estimation. The criterion for comparison is the 

closeness of the estimated parameters to the true parameters of the 

systems simulated and also the variance of the prediction errors. 

The method is also compared with maximum likelihood estimation. The 

conclusion drawn is that the new method is suboptimal but considerable 

saving in computer effort is achieved. Finally, a simple regulator 

is designed for a multivariate system. New problems are shown to arise 

at this point. 

The final chapter is a review of the contributions of the thesis 

and outlines the possibilities of future research. 
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1.4 Contributions of the Thesis  

The principal contributions of this thesis, believed to be 

original, are the following: 

(1) New and practical techniques have been developed for transforming 

multivariate state-space descriptions into vector differential (or 

difference) equations in the input and output vector variables- only. 

The core of the procedure is the transformation of a state-space 

description into the A-canonical form which is a new form. Attention 

is drawn to the fact that the transforms for reducing systems to Lur'e 

coordinates and phase-variable canonical form are special cases of 

the transform for reducing systems to the A-canonical form. 

(2) It is believed that the vector difference equation in the input 

and output variables has never been generalized for systems of any 

order and has never been applied to problems of system identification 

in the form presented here. The system description closest to the 

above appears to be the well known transfer function description 

[3, 29]. The chief distinction is that if a controllable and observable 

system can be described by a set of n first order difference equations, 

the vector difference equation requires fewer than n vector observa- 

tions of the output if the output is of dimension greater than one. 

(3) The modified least squares method for parameter estimation 

(denoted here by the name "bootstrap" estimator) is believed to be a 

unique extension of methods introduced by Levadi [54] and Mayne [20, 56]. 
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It is shown to perform remarkably well when compared to an optimal 

estimator and results in significant saving in computational effort. 

(4) The derivation of algorithms for the identification of multi—

variate systems by maximum likelihood methods is thought to be an 

original extension of Astrom's [18, 19] elegant methods for the 

identification of single output systems. 

In this thesis, an attempt has been made to illustrate the 

usefulness of the proposed algorithms by the computation of a number 

of examples. 
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CHAPTER 2 

SOME STATE-VARIABLE CANONICAL FORMS OF A CONSTANT, LINEAR, MULTIVARIATE 

DETERMINISTIC SYSTEM 

2.1 Introduction  

In this chapter, the tnstk of developing system models suitable for 

identification purposes is approached from the assumption that all 

systems have a state-space description. Some state-variable canonical 

forms will be developed that are useful from the identification point 

of view because they can be described with a minimum number of para-

meters in certain circumstances. The last form considered, the 

A-canonical form, will take us close to our ultimate objective of 

finding a suitable relation between the input and output vector variables 

only. 

Assume that a linear, constant, multivariate, deterministic process 

has a known state-variable description Z . The state variable equa-

tions of E are 

* = Pk f Gu 	(2.1-1) 

y = Hx 	 (2.1-2) 

where x is an n-vector of state variables, u is an r-vector of 

controls, and y is an m-vector of measured variables. For convenience, 

the time dependence of the input vector u = u(t), the state vector 

y = y(t) and the output vector x = x(t) will not be shown when they 

are attached to continuous-time descriptions of a system. 
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Suppose that there is a description E I  defined by 

*1  = Fixi  + G1u (2.1.-3)  

y1 = Hx1 (2.1-4) 

such that the output of E l  is identical to that of E for the same 

input and appropriate initial conditions. Then description E is 

equivalent to E. This can be stated formally [27]. 

Definition: System description E1  is equivalent to description E 

if there is a non-singular n x n matrix T with constant entries 

defined by 

x1  = Tx 	 (2.1-5) 

where x is the state vector of E and x1 is the state vector of 

El  such that for the same input to E and E 1, the output 

, = n/X1 	 (2.11-.6) 

= 	y 	 (2.1 7) 

Then the transformed system matrix Fil  control matrix Gi  and observa-

tion matrix H1 are defined by 

F1  = TFT". 	G1  = TG ; H1  = HT.1 
	

(2.1.8) 
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2.2 The Minimum Number of Parameters in a State-Variable Canonical  

Form 

2.2.1 The Problem 

In this Section, the problem of finding the minimum number of 

parameters in a state-variable model sufficient to describe a linear 

multivariate system is considered. 

The state-variable equations of a linear, time-invariant, multi-

variate system E = E (F,G,H) are given by (2.1-1) and (2.1-2). 

In general, n2 + n(m + r) parameters are required to specify E . 

The problem posed is that of finding a non-singular transformation 

Tm defined by 

xm = Tmx 
	

(2.2-1) 

so that the new description E m(Fm, Gm, Hm) has a minimum number of 

independent parameters. By definition, E m  is equivalent to E . 

We shall call E m a minimum-parameter canonical form. 

Kalman [3] has stated that the minimum number of independent 

parameters in some 'normal' form of E is 

NM = n(m + r) 
	

(2.2-2) 

In support of this statement, he outlined a scheme whereby P was 

reduced to a matrix Fm 
of n independent parameters. Then n para-

meters of either Gm  oz' Hm 
were free to be chosen arbitrarily. As 
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Kalman did not provide the details for constructing the transformation, 

they are derived in the following Subsection. 

2.2.2 Transformation to a Minimum-Parameter Normal Form 

(1) In the first step, system matrix F is reduced by similarity 

transformation to-any of its normal forms EQ.. For example, a companion 

matrix or a diagonalized matrix is said to be a normal form. (An example 

of transformation to companion form is given in Subsection 2.4.2). Let 

us denote the transform by Ta  and the resulting description by 

Ea(Fa, Ga Ha). If the degree of the minimal polynomial* of F is 

nm  , (nm 	n), then the transformed system matrix Fa has exactly 

nm independent parameters. Hence the transformed description E a 

has nm + n(m + r) independent parameters. 

(2) Now we look for a transform that will allow us to arbitrarily 

choose some of the elements of the control and observation matrices 

without altering Fa. We are thus restricted to matrices of the following 

form which will commute with Fa. (That is, TbFa = FaTO 

n-1 
Tb = aoIn + a11'a + ..•  an 	

m 
m (2.2-3) 

where In is a unit matrix of n rows and columns. We shall now 

Note: The minimal polynomial of a square matrix F is that poly-
nomial m(s) of least degree nm  such that m(F) = 0, 
the null matrix. 
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show how the coefficients m0' a ... an w1 can be found to make 

certain elements of the control matrix take on arbitrary values. We 

could equally well have discussed the observation matrix. Setting 

Gm = TbGa 

and substituting for Tb, we obtain 

n 
Gm 	 ''' 621-1.m1Fa  4, 	+mn 1  Fam ] Ga 0 n 	t7 

(2.2-4) 

(2.25) 

Letusdefine. gja =j
th column of a and substitute for the 

columns of Ga and accordingly for Gm. In one additional step 

n_ -1 

Isla Fegla 	
r  . 	r  
a Isla 	m0 

n -1 
g 	F g 	• Fa g2a 2a 	a 2a 	 al 

' 	. 	.  

. ' 	. 	. 	 . 

• . 	. 	. 

we write 

glm 

g2m 
• 
• 
• 

grm  
n 

• • m  Fa  gra 
•••••••0 

gra Fagra 

(2.2-6) 

r- 

The array in (2.2-6) has rnm  rows and nm  columns. Each row corresponds 

to an element of G
m in the vector on the left. Clearly, we tan solve 
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(2.2-6) for the vector of coefficients m. (j = 0, 1, .., nm..1) by 

first constructing a non-singular matrix Tc  with nm  rows taken 

from the array and used as in the following equation. 

  

Annla..-vector of 

elements selected 

from Gm and set 

to some desired 

arbitrary value. 

 

Tc, a non-singular nm x nm 

matrix of rows taken from the 

rnm x 	array in(2.2-6); 

one row for every element 

selected in the 21,-vector on 

the left. 

 

as  
a1  

4- 

    

   

an .1 

       

       

(2.2-7) 

We are free to choose both the rows and the value of the corres-

ponding element of Gm  subject only to the restriction that rank 

Tc = nm. Thus we specify the value of nm parameters of Gm, 

solveforthevectorecoefficientsa.
3 
 and compute Tb. We then 

calculate the remaining coefficients of the minimum-parameter canonical 

form t m. The number of parameters in E m  is 

nm in Fm 

rn - nm 	in 	Gm 

mn in Hm 

which totals n(m + r) in all. 
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A significant drawback is that we cannot decide, a priori, which 

elements of Gm (or Hm) can be chosen and set to some fixed value 

without first checking the rank of matrix Tc. For example, it can 

be shown that the elements of a column gim  of Gm can be set to 

predeterminedvalues if, and only if, 

rank Eg
im 	

... Yu
)" 3
ng.

m 
= n 	 (2.2-8) 

This equation implies that the states of system E are completely 

th controllable by the j element alone of the control vector. 

In Section 2.5.2 it will be shown that complete controllability 

or complete observability is a sufficient condition to enable the 

derivation of a minimum-parameter canonical form in Nm  independent 

parameters. 

2.3 The Conditions for Controllability and Observability of a Linear, 

Constant, Multivariate System  

Although the conditions for the controllability of a linear, 

constant, multivariate system are well known [831  a particularly simple 

proof is presented here because it provides an introduction to the 

construction of a useful transforming matrix. This proof has been 

influenced by the recent publication of Chen, Desoer and Niederlinski 

[9] who obtained the same simplified conditions for controllability 

by a somewhat different approach. 
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Theorem: Consider the state-variable equation (2.1-1) and (2.1-2) 

of the linear, constant system E in which the rank of G is 

and the degree of the minimal polynomial of F is nm. Then E is 

controllable if rank c 	c p p P = n where P is defined by 

c p 	
_m-1 

P = A [G FG 	Y G] 

and the controllability index by 

p 115  min(nm
, n-r+1) 

(2.3-1) 

(2.3-2) 

Definition [10]: The controllability index p of the system E 

is defined as the smallest positive integer for which c  Pp  has 

rank n. 

Proof: The solution of (2.1-1), the state equations of system E is 

given by 

t 

x(t) = eFtx(0) + f eF(t -T)Gu(T)dt. 
	(2.3-3) 

0 

The system is said to be controllable if the state of the system can 

be changed from any initial state x(0) to the origin of the state 

space X in a finite time tf by the application of an appropriate 

input u over this period. Hence, if E is controllable, any x(0) 

may be expressed as 

tf 
x(0) = - e-2.rGu(T)dT 	(2.3-4) 

0 
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It is well known [27] that for an nth  order linear, constant system, 

coefficients ak  may be found that satisfy 

n-1 

e-FT = E ak(T)  Fk 	 (2.3-5) 
k=0 

But, if the degree of the minimal polynomial of F is 	n6n , 

then every term 	for all k nm is a linear combination of terms 

of lower degree. Thus, in the general case, we can write 

nm-1 

e#-FT = 	E acc(T) Fk 	(2.3-6) 
k=0 

On substituting (2.3-6) in (2.3-4) and reversing the order of summa- 

tion and integration 

nm , tf 
x(0) = 	41 ai*c(T)u(T)dT 

k = 0 	0 
(2.3-7) 

tf  

Let 
	

at(T)u(T)ft = 
	 (2.3-8) 

0 

n
m-1 

Then 	x(0) = 	FkGu -k 
k=0 

n -1 
= CG FG . . . F m  G3 

  

(2.3-9) 

  



We redefine p to be the observability index 

p 	min(nm, n m + 1) (2.3-11) 

P = o p H 

 

(2.3-10) 
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Clearly, if cPli  has rank n, its range spans the entire vector 
m 

space X including the point x(0). Therefore, 40' 41' ." 4 -1 nm  

can be found to satisfy equation (2.3-9).*  This proves that Z 

is controllable if c  Pp  has rank n and p = n
m. 

The part of the proof to show that p 4 n r 1 follows from 

Chen et al. CO who observed that the dimension of the range of 

c s (0 -4 	
p) is at least one greater than the dimension of the range 

of cP8-1 each time that a block of the form Fs iG is added to 

cPs_i. Now if the rank of G is r, then up to n r blocks of the 

form FsG are required in c  Pp  . Hence, p • min(nm, n-r+1) . 

Finally, they show a special example in which c  Pp  has rank n and 

p < min(nm, n-r+1). This concludes the proof. 

Corollary: The system described by equations (2.2-1) and (2.2-2) is 

observable if rank P = n where o p 

It will always be clear in which context p is used. 

* See 126, 27j -for a ireertmeni of ill e pro Pe wt : 
9i ve n ) -rind u(), 



32. 

Corollary: The results apply when the system equations are formulated 

in discrete time: 

	

x(t + 1) = Fx(t) + Gu(t) 	(2.3-12) 

y(t) = ax(t) 	 (2.3-130 

Corollary: Systems for which the degree of the minimal polynomial of 

F is less than n are neither controllable nor observable by a 

scalar input or scalar output respectively. This can be demonstrated 

in the observable case by making each matrix H a row vector. Then, 

	

if p 2 nm n, it follows that rank 	 p < n. o  

It should be observed that arrays c  Pp 	o and Pp  are not neces-

sarily square. In the following sections, some important canonical 

forms are derived by constructing nonsingular transformations from 

these arrays. There may be more than one such matrix for each array 

depending on the number of combinations of n independent columns 

(rows) that can be found. 

2.4 A Useful Aid to the Derivation of Canonical Forms  

In this Section, a useful lemma is proven that provides simple 

rules whereby most of the elements of the transformed matrices in many 

canonical forms can be written down by inspection. The result is.  

employed throughout the remainder of the Chapter where canonical forms 

are considered. An example is given to illustrate the use of the rules. 



33- 

2.4.1 The Lemma 

th. Given the 1 row vector a. of matrix A which has n columns 1 

andatleastonerowandb.,the jth row vector of the nonsingular 

n x n matrix B, if 

b. = a. 
3 

th. then the 1 row of the matrix E in 

E = AB-1 

is given by 	e. 	(0, ..., Si., 0 ...) 

	

1 	13 

(2.4-1) 

(2.4-2) 

(2.4-3) 

That is, the jth 	1 elementofe.is unity and all the other elements 

are zero. 

The proof is obvious by inspection after postmultiplying both 

sides of equation (2.4-2) by B. 

Corollary: A parallel result can be obtained for the form E = B-1A. 

If b. = a. where b. and a.1  are the jth  and ithcolumns of B 3 	1 	3  
th. and A respectively, then the 1 column of E has unify only in 

th 
the j position and zeros elsewhere. That is 

e = 	0 )T  1 	3i' 
(2.4-4) 

2.4.2 A Simple Example of a Canonical Form Obtained with the Lemma 

Consider the n x n transform 

Tm = Ed Fd . . F
n-1d] 
	(2-4-5) 
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where d is any n-vector that satisfies the condition 

rank Tm = n 
(2.4-6) 

- 
Substituting x2  = Tm

1  x in (2.1.1) and employing the corollary above 

F2 	= CF -id d . Fn-2d]-1Ed Fd . . Fnr1 d] 

O 0 	0 -con  

(2.4-7) 

	

1 0 	0 -w  n-1 

O 1 	0 

• ► 	• 

• 1 	•{0 1  

which is the transpose of a normal form of F, the companion matrix 

M.Becausetheno.terms satisfy the characteristic polynomial 

f(A) (2.4-8) of both F and F2  (a criterion for their similarity 

[4]), they are unique and independent of the choice of the elements of 

the n -vector d. 

f(A) = (-)n(An  + w1f-1  + 	+ con) 	(2.4-8) 

Thus d can be chosen, by the lemma, from columns of G to make 

n elements of G2 arbitrary provided that the condition (2.4-6) 

is satisfied. There is no reduction in the number of independent 

parameters in H2 
for this choice. Hence, the transformed system 

E 2 is completely specified by Nm = n(m + r) parameters if d 
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is so chosen. 

In the special case of control by a single variable, the trans-

forming matrix constructed with the single-column matrix G is that 

used for testing controllability [8] of a single input system. The 

basis of the state vector of E is transformed into the basis of 

Lur'e coordinates by operation with this matrix C13, 12, 5]. It is 

also basic to the method of Wonham and Johnson in constructing the 

phase-variable canonical form [6, 7]. 

2.5 	Multivariate State Variable Canonical Forms Defined with the  

Conditions for Controllability  

In this section, the corollary of the last section will be used 

with the conditions for controllability to show how some simple 

canonical forms for multivariable systems can be derived. The trans-

forming matrices T in the cases discussed will be made up of linearly 

independent column vectors taken from the array 
c  Pp  shown in (2.3-1) 

and used for testing system controllability. Hence the functional 

dependence of T may be shown by 

T = T(F,G) 	 (2.5-1) 

We shall be interested to see if the canonical forms derived have 

Nm parameters, and are thus minimum-parameter realizations in the 

sense used by Kalman [3], (2.2-2). 
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Definition: If there is a system E l  , completely specified by Nm  

parameters which is equivalent to system E, then E l  is a minimum-

parameter canonical description of E. 

In the following, it will become evident that transformations 

to minimum-parameter realizations are not unique. 

2.5.1 Companion Matrix (Transposed) Canonical Form 

Consider the system E described by state-variable equation 

(2.1-1). If the system E is controllable, then array P c p 

(2.3-1) has n independent columns. 

The feature of the construction of the transform for this form, 

for which the complete details are given in [10], is that the con-

trollability of the system state by each control term is tested in 

turn. The linear independence of all vectors. 
gJ 

of G is assumed. One of the columns of G (say g1) is selected 

and entered in the first column of T. Then subsequent columns 

P&p  F
2
g1, ..., etc. are added until a dependency is reached or n x n 

Pi  
matrix T is full. In the first case the dependent vector F 'gl  is 

discarded and the cycle is repeated forg2,  g3 etc. until T is full. 

The resulting transform is 

P  11 	p 
g2  gv -v 

1 	p -1 
T = [g1  Fgl  . . F gi  g2  Fg2  . . F 

2 	. F vgv] 

where v is an integer such that v 	r and T has n independent 

columns. 

(j = 1, 	r) 
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On carrying out a change of coordinates under equivalence trans-

formation from the basis of E to the basis of Z
3 

we get 

F
3 

= T 1FT 

= (F.1T)-1T 

-1 	P1-2  -1 	P"2 - 
[F 	g1 g1 Fg1 ". F  g1 F-1 g2 — F 

v 
 gv]  1  

2 	P1-1 	p -1 
• [g1  Fg1  F gi  ... r gl g2  ... F v  gv] 

and 
P -1 	Pv-1  

G
3 

= [g.1  Fg1  F
2g1 	F 1g1  g2 ° F g

v] G 

Now by carefully comparing columns in the matrix products according 

to the corollary of Subsection 2.4.1, we can write down the arbitrary 

columns of zeros and ones of F
3 

and G
3 

immediately by inspection. 

For example, the second column in the first matrix of the matrix 

product in (2.5-3) is the same as (can be paired with) the first 

column of the second matrix. Hence, the first column vector of F
3 

has a one for its second element and zeros everywhere else. Continuing, 

we find that F
3 

and G
3 

have the form 



0 0 . 	0 
1 0 • 
o 1 

0 . . 	1 

0 0 

o o 
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and 

..... 	 .... 

1 0 . 0 x . X 

	

0 . 	X 	. X 

	

0 • 	 . 	. 
0 	• 

. 0 • . X * X 
Q3 = • 1 	 • 	• 

	

0 	0 
N.  

• I k 

o • 

	

0 • 	0 X 	x 

(2.5-5) 

(2.5-6) 

where x's stand for the non-zero elements which characterize the 

system. The system matrix F3 in the new coordinates is composed of 

v companion matrices (transposed) located in square blocks of 

dimension p. along the main diagonal. The blocks can be considered 1)0 
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as coupled subsystems of order p.. There will be v such columns 

corresponding to the v companion matrix (transposed) blocks resulting 

from a transformation constructed with just v columns of G. By 

similar reasoning, there will be (r v) nonarbitrary columns in 

G
3 

corresponding to the (r - v) columns of G3  not employed in 

the construction of T. 

Totalling the number of parameters that are not unity or zero in 

this form (and hence the parameters that specify the system), we find 

that there are nv in F3  and n(r-v) in G3. The number of inde-

pendent parameters in H
3 

remains unaltered under this transforma-

tion. The total is then 

Nm = n(m r) 	 (2.5-7) 

hence, a minimum-parameter realization has been found. 

As in the first minimum-parameter canonical form discussed, we 

cannot tell in advance which columns of the control matrix can have 

predetermined elements without first conducting some tests. 

2.5.2 An Assertion on the Realizability of Minimum-Parameter 

Canonical Descriptions 

Assertion: Complete controllability or complete observability is a 

sufficient condition to show that the minimum number of parameters 
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required to describe E is given by 

Nm = n(m + r) 	 (2.5-8) 

Proof: In the last Subsection, a reduced canonical form in 

N 	= n(m + r) parameters was found for any selection of column 

vectors of G, subject only to the condition that the rank of T must 

be n. If the system is controllable, then T can be formed by taking 

n independent columns from c  Pp  which has rank n. Then the rank of 

T is n and a canonical form in Nm parameters can be found. This 

proves the assertion for controllable systems. The assertion for 

observable systems can be shown similarly. Alternatively, the duality 

theorem of Kalman can be invoked directly [8]. 

2.5.3 Another Reduced Form 

The reason for introducing the following transform is that its 

dual, derived using the conditions for observability, leads to a system 

description in the input and output variables. 

Again consider the system E . This time, the construction of T 

will be undertaken by inserting blocks of the form FG adjacent to 

each other. The steps are: 

(1) An integer q in the range 

p 	q 	n 	 (2.5-9) 

is selected where p is the controllability index (which may not be 

known) and n is the dimension of the state space. 



(2) The n x n transformation T is constructed as discussed 

below. 

T = [Fq-P(G) Fq-P+1(G) 	
-1 

Fq-2(G)2  F' 
P-1

A 	1]  (2.5-10) 

The construction of transformation T is initiated by inserting the 

n x r block Fq-1G in the last r columns of T. Then additional 

blocks in descending powers of q are inserted, deleting columns which 

are dependent upon column vectors previously inserted. When T is 

full, p is then known. The brackets and subscripts on a matrix (G)j  

are used to remind us that (G). is comprised only of columns of G 

such that the columns of the product Fq-j(G), are independent of 

the columns of Fq-kG for 01  integers k <:j. There is no special 

ordering of the columns. Then the n columns of T are independent. 

Clearly, T can now be simplified by premultiplying by FP-q. 

On changing the coordinates from the basis of E to the basis of 

E 	under equivalence transformation we get 

F = T-1FT 

= 	EP-1(G)p (G)p-1 F(G)P-2 .. FP-3(G)2 F
-n-2  (G)1  ]-1 

 
• 

C(G) P F(G)P-1 F2(G)p-2  .... FP-2(G)2 FP-1(G)1] 
	

(2.5-11) 

and 

= 	[(G)p F(G)p-1 ". FP-2(G)2 
FP-1(G)1  ]-1G 
	(2.5-12) 
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Again, employing the corollary of Subsection 2.4.1, we can write 

down the arbitrary columns of zeros and ones in F4  and G4  by 

inspection. We first note that all the columns in (G).
0 
 appear 

in (G)j+1  because the independent columns were inserted sequentially 

from the right. 

(0) PIP 
	

. 	(0)p,2 x x 

[6] 
P-1  , 9P 	

. 	x x 

CO] p-2,p-1 
F4 

X j 

(2.5-13) 

• x x 

(0)1,p 	 CEO1,2 x x  

The notation, admittedly difficult, is explained in this way. 

The x's are elements which characterize the system. 0 is a null 

matrix. (0)1. ,3  . is a null matrix with as many rows as columns of 

(G)i  and with the same number of columns as (G).. 
[67k-1,k is 

a matrix of zeros and ones with as many rows as columns of (G)k-1 

and with the same number of columns as (G)k. From the rule for paired 

columns, the matrix element 6..31  (of Eel]k -1,k) = 1 if the nth  

column of FP-k(G)k-1 is the same as the i h  column o 	(G)k. 

One possible permutation of G
4' 

depending on the initial 

ordering of the columns in G is 



x 	x [6] 
PIP 
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(2.5-14) G
4  

0 

By inspecting equation (2.5-11), it can be seen that the r 

columns of the last block FP-1(G)1  which cannot be paired result in 

r nonarbitrary columns in F4  of nr elements. Similarly, the 

columns of G that are not paired with columns of (G) in equation 

(2.5-12) result in nonarbitrary columns in G4. 

2.6 The A.-Canonical Form Derived Using the Conditions for  

Observability  

The final canonical state description that we shall consider is 

that provided by operation with the dual of the transform (2.5-10) 

discussed in Subsection 2.5.3. We shall call it the A-canonical form. 

The reason for its importance is that it has many features common to 

a vector differential equation in the input and output variables. 

This will be made clear in the next Chapter. 

In the following, we write down the transform, discuss the 

structure of the transformed description E A(FA, GA, HA) and illu-

strate it with an example. 
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2.6.1 The Transformation 

The transformation TA is constructed from independent rows of 

() p given by equation (2.3-10). TA  is the dual of the last trans- 

form (2.5-10) developed in Section 2.5. 

(2.6-1) 
(H)p_iFi  

By analogy to the previous notation, the brackets and subscripts on 

matrix (H)p-k now mean that (H)p-k is comprised only of rows of 

H such that the rows of the product (H)p.ik  are independent of the 

rows of (*j. for all j >k. 

Using the transformation 

xA = TAx 

the new system matrices are 

(2.6-2) 

TA 
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FA  

GA 	= 

and 

HA = 

For convenience, 

(H) 

(H) 

...-. 

TAG 

H 

(H)
P  

(H)2PP-2  

HFP 

AF 
P- 1  

P-  F
2  

z- 
. 

—I  

- 
(H) 

P 

(H) p-1 

' 

(H)2FP 

„P -1  

we can 

F 

-2  

order 

r 
/ F.1 on p 

(H) P
-1  

(H)p -2F 

• 
(H)2FP-3  

HFP-2  

-1 

the rows 

-1 

(2.6-3) 

(2.6-4) 

(2.6-5) 

of 	H 	so that the non- 

arbitrary rows appear together in a block. With the lemma of Sub-

section 2.4.1, we write 

(0) 	[6] 
PIP 	P1P-1  

. 	(0) 
P,- 

ft] p-1,13-2 

	

. 	 . 

	

(0) 	° 	. [a]2,.
2,P  

-A 

	

P 	
-A 
P-1

A  -Ap-2 	
. -A1  

I 
(2.6-6) 

. 
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where (0)ilj  . is a null matrix with as many rows as (H)1  and as 

manycolumnsasrowsof(H),[6]
k, k-1 is a matrix of unity and 

zero elements with as many rows as (H)k  and as many columns as rows 

of (H)k...1. From the lemma, the matrix element 6ii  (of E.Oklic_i) 

= 1 if the ith  row of (H)kg k  is the same as the jth  row of 

(H)k-1FP  k. ThesubmatricesA.have dimensions m x (the number - 	3 

of rows of (H).). The reason for the negative sign associated with 

Aj  will  be apparent later. 

One permutation of H gives 

x 	. x 

HA 	x 	. x 	(2.6-7) 

(S) 	0 
_ PIP 

where the x's are nonzero elements. 

This system is not generally a minimal realization because the 

m rows of HA are reduced to zeros and ones only if (H) has 

m rows. 

It will be shown in the next chapter that the submatrices A. 

of FA are identically the same as the matrix coefficients in the 

homogeneous part of a vector differential equation description of 

the original system E . For this reason, we note here that by 

comparing FA  in the product form of (2.6-3) and the partitioned 

form (2.6-6), we can write down the identity 
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HFP-1(T A F
-1
)
-1 RFPTA  -1 	(2.6 -8) 

= -CAp  Ap_i 	Al] 	(2.6-9) 

2.6.2 Algebraic Examples 

Consider a simple algebraic example of a system for which n = 6, 

r = 2 and m = 3. The three rows of H are designated by h1, h2  

and h3. Now suppose that as a result of discarding dependent rows, 

the nonsingular transforming matrix is given by 

h3 

TA 

h2F 

h3F 

h1
F2 

h
2
F2 

h3F2 

(2.6-10 

Then in our notation, p = 3 and 

h2 

h3  

(H)3  = h3  

h3F-1 -1  

h2 

h3 

h
2
F 

h3F 

(H)2  = 

Substituting in (2.6-3) 

F
A 

113 
h2F 

h3F 

h1
F2 

h
2F
2 

h3F2 

  

(2.6-11) 

(2.6-12) 



0 0 0 

0 1 0 

0 0 1 (2.6-13) 

—A1  

O 0 1 

O 0 0 

FA 
	O 0 0 

I 	t 
...A, —A2 

with the pairing shown. Using the lemma, we can write down the 

first three rows immediately. Then 
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where Al is 3 x 3, A2  is 3 x 2 and A3  is 3 x 1. Now for 

HA there is only one pairing 

h1  h
3 

 -1 

H
A h2 

h
3  

h2F 

h
3
F 

h1
F2 

h
2
F2 

h
3
F2 

(2.6-14) 

X 	x 	x 	x 	x 	x 

X 	x 	x 	x 	x 	x (2.6-15) 

1 	0 	0 	0 	0 	0 

There is no simplification in GA. The total number of parameters to 

be specified in this realization is: 3 x 6 for FA' 6 x 2 for GA 
and 2 x 6 for HA, totalling 42 parameters in all. Clearly, these 



parameters must be combinations of Nn = 6(2 3) = 30 basic 

parameters in some minimal realization. 

For general interest, let us now look at a minimum-parameter 

realization for the same system using the information derived in the 

construction of TA  (2.6-10). The new transform Tm to be constructed 

is the dual of the companion matrix (transposed) canonical form dis-

cussed in general terms in Subsection 2.5.1 and shown in equation (2.5-2). 

Since, in our example, h1F was discarded in constructing TA 

because h1F and h1F
2 

are linearly dependent, we discard the latter 

for T. Continuing in this manner, we get 

Tm 

h1  

h2 

h2F 

h
3  
h
3
F 

h3F2  

(2.6-16) 

   

The system matrix in the new coordinates is shown with its pairs 

F5 = 

h1  

h
2 

h3F  

h3  

h3F 

h3F2 

h1F 
-1 - 

h2F  

h2 

h3F-1  

h3  

h3F 

—1 

(2.6-17) 
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X1XXXXX 
•••••.- • ......... A 

O `0 	1 1 o 0 0 
• 

X I X X 1 X X X 
• -..-• 

O 0 0 10 1 0 

4 

O 0 0 10 0 1 

x x x Ixxx 

(2.6-18) 

  

Subsystems of order 1, 2 and 3 in companion form are set out in boxes 

along the principal diagonal. The nonzero entries outside the boxes 

can be considered as connections between the subsystems. 

In the same way it can be shown that 

   

H
5 

1 0 0 0 0 0 0 

O 1 0 0 0 0 0 

O 0 0 1 0 0 0 

(2.6-19) 

   

but G
5 

is not reduced. Totalling the number of parameters specific 

to the realization, we find that 3 x 6 belong to F5  and 2 x 6 

belong to G5  which sums to Nm  = 30. Thus the description is 

minimal; a significant reduction from the basic description in 

6(6 + 2 3) = 66 elements in all. 

* It has recently come to the attention of the author that in C10], 
Luenberger mentions a special construction with which the matrix in 
(2.6-18) can be reduced further. 
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CHAPTER 3 

TRANSFORMATION BETWEEN A STATEVARIABLE DESCRIPJJ..ON AND A MCRIPTION 

IN THE INPUT AND OUTPUT VARIABLES 

3.1 Introduction  

In this Chapter we shall develop a description in the multivariate 

output and control variables of a controllable and observable system. 

We would like to be able to write down such a description, given only 

a set of state-variable equations E and the requirement that the 

two descriptions respond identically to the same input. Conversely, 

given system equations in the input and output variables only, we 

would like to be able to transform them into a state-variable description. 

The term vector differential (or difference) equation or description 

ED  will be applied to the set of equations in the input and output 

vector variables that can be separated into two parts as in the example 

of equation (3.1-1). For example, the Laplace transform with zero 

initial conditions of a vector differential equation of order 2 with 

the usual substitutibn s = d/dt is 

(s2Im + sA1 + A2)7(s) = (s2B0 
 + sB1 + B2)u(s) 
	

(3.1-1) 

Equation (3.1-2) below defines the ED description in Laplace transform 

notation. Obtaining the E D  description is equivalent to determining 

the polynomial matrices A(s) and B(s) which satisfy equation (3.1-2) 
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A(s)y(s) = B(s)u(s) 	(3.1-2) 

The solution of the homogeneous part of (3.1-2), A(s)y(s) = 0, 

gives the free response of the dynamical system. The vector 

B(s)u(s) is the forcing function. Although state-variable descrip- 

tions are first-order vector differential equations in the state 

variables, we shall not refer to them by this term. 

In Section 3.2, the computational procedures for transforming 

between the state-variable description E and the Laplace transform 

of a vector differential equation description ED  are stated 

and then illustrated with algebraic and numerical examples. The 

procedures are later justified in Section 3.3. 

The work of Duncan and Collar [14, 15] is related to this work 

and shown to be a restricted treatment of the general approach discussed 

here. A matrix transfer function description, Ez, also in the vector 

input and output variables, is derived and shown to fit the ED  description. 

The Chapter is concluded with a discussion based on a comparison 

of the number of parameters employed in some of the descriptions that 

have been considered. 

3.2 The Transformation to Description El)  

In this Section, the procedure for deriving the Laplace transform 

of a vector differential (or difference) equation of order p, termed 

description EDI  from a state-variable description E is stated and 
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illustrated with a numerical example. The justification of the trans-

formation is given in Section 3.3. 

3.2.1 The Computational Procedure 

(1) Construct the transform TA used in the derivation of the 

A-canonical form and recalled here from (2.6-1) for convenience. It 

must have a nonzero determinant. 

(H) 

(H)
P-
1F 

(H)p -2F
2 

(3.2-1) 

p -1 
HP 

(2) Calculate the m x n matrix product below and partition 

according to the notation employed in deriving the A-canonical form. 

This identity follows immediately from equation (2.6-9). 

HFPTA1  = -Ap -Ap -1 -Ap -2 " -A1] (3.2-2) 

Recall from equation (2.6-6) that the submatrices Ak  have the same 

number of columns as rows of (H)k. They are the matrix coefficients 

of the matrix polynomial A(s) of the ED  description defined by 

equation (3.1-2). Then A(s) is given by 

TA 
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A(s) = sPIm + sP-1A1  + sP-2A2  (I m  )2 
 + 

+ sA A(I ) A + A (1 ) p-i m p-1 	p m p (3.2-3) 

The bracket notation, (Im)k  (k = 2, 3, 	p), is used in the 

following way. Recall that in Subsection 2.6.1, certain rows of H 

were deleted to form (H)k. By this means, the reduced matrices were 

employed in making up TA  as in equation (3.2,1). For every row 

deleted from H to make (H)k, we delete the corresponding row 

from the unit matrix Im  to make (Im)k. That is, if we delete the 

jth 	
th row from H, we also eliminate the j row from Im in construc- 

ting (H)k  and (Im)k  respectively. Then (H)k  and (Im)k  

have the same number of rows. 

(3) Construct the following lower triangular matrix with the 

m x m 

for (3.2-3). 

matrix products of the form 	Ak(Im)k  

1m 	0 

Al 	Im 

A2(Im)2 A1 

calculated in step (2) 

0 	. 	. 

0 	. 	• 

Im 

0 

• 

. 

T = 
A 	. 	(I 	. 
P-J-1 	m

) 
 P-3-1 

Ap_j_2(Im)p_j_2  • 0  

. . 

. . Al  Im' 0 

p-1(Im)p-i p_2(Im)10-2  
. A2(Im)2 Al Im 

(3.2-4) 
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T is an invertible matrix of mp rows and columns. Note that the 

m x m submatrices are duplicated along lines parallel to the principal 

diagonal. 

(4) Finally, calculate the elements of the array below 

_ 
B1  
B
2 

B. 

Bp  

= TP oPp G (3.2-5) 

wheretheLterms are the matrix coefficients of the matrix poly-

nomial B(s) below for the ZD  description defined by (3.1-2). The 

calculation to include B0  for direct control will be given in a later 

Section. 

B(s) = sP-1B 	sP-2B2 + 	sBp-1 Bp 1 (3.2-6) 

3.2.2 Extension to Include the Vector Difference Equation Form 

By the simple substitution of the forward difference operator 

for the differential operator s, the method may be used for discrete- 

time models. Then the E D  description is 

A(z)y(t) = B(z)u(t) 	(3.2-7) 
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where 	zy(t) 0 y(t + 1) ; 	zu(t) 4 u(t 1) 	(3.2-8) 

By comparison with (3.2-3) and (3.2-6), we write 

zPIm + zP-1A1  + zP-2A2(Im)2 + 	zA (I m  ) 	+ A (I ) p-1 	p-1 	p m p 

(3.2-9) 

(3.2-10) 

We may prefer to write (3.2-7) in terms of past controls and 

observations. This is easily obtained by multiplying both sides of 

the equation by z -P. Then, with the definition of (3.2-8), we have 

y(t) = -A1y(t-1) - A2(y(t-2))2  ... -A (y(t-p)) 

+ B1u(t-1) + B2u(t-2) 	B u(t-p) 
	

(3.2-11) 

where 
	(y(t-k))k  ° (im)ky(t-k) 	(3.2-12) 

The addition of a current control term Bou(t) will be intro-

duced later. 

3.2.3 A Numerical Example 

The system matrices used in this example are 

0.42 - -3.82 o.4 -0.7 

F = 0.16 o.48 8.64 G = 0.9 -0.2 

0.50 o.o -1.50 0.1 -0.3 

A(z) 
and 

B(z) = zP-1B1 + zP  B2 + 	zBp -1 + B  
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0.8 -0.2 0.4 

0.5 0.6 -0.3j (3.2-13) 

 

(1) Under transformation by the matrix TA, 

TA 

h2 

h1F 

h2F 

  

0.500 0.600 -0.300 - 

0.504 -0.288 -5.384 (3.2-14) 

0.156 0.168 3.724 

the matrices in the A-canonical form can be found. (This step is not 

necessary for the construction of the vector difference equation.) 

••••• 

0.0 0.0 1.0 0.710 -0.380 

-0.915 -3.031 -3.472 GA = -0.596 1.320 

0.604 2.526 2.431 0.586 -1.260 

- .4%263 1.258 1.905 - 
(3.2-15) 

1.0 0.0 0.0 

(2) From the last two rows of FA' (or by multiplying out the pro- 

duct' 	HF2T 1  ) we get 

   

3.031 	3.472 

-2.526 -2.431 

A2 = 0.915 

-0.604 (3.2-16) 

   

. 
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(3,4) We now calculate the product 

   

r H 
G 

HE j 

 

B1  
B2  

 

12 	0 

Al 	12 
(3.2-17) 

    

    

and obtain 

B1  0.180 

0.710 

.-0.6404o 

-0.380 

B2 -2.415 

1.595 

-1.939 

1.280 

(3.2-18) 

To assist in this calculation, we note that the matrix belonging to 

the A-canonical form 

G 	 (3.2-19) 

H 

 

r h2 

h1F 

h2F 

GA 

  

    

is contained in the last three rows of the product 

in (3.2-17). 

Then, substituting (3.2-16) and (3.2-18) into (3.2-7) 

HF 
G used 

A(z) = z21m + zA1 + A2[0 1] 	(3.2-20) 

B(z) = zB1  + B2 	(3.2-21) 

so that 
_ - 	_ 
y1 	1 

	

_ y (t-1) 	u (t-1) 1 	1 	1 	u1(t-2)
_ 

 
= -A1 	- A2y2(t-2) + B1 	, + B2 y2(t) 	y2(t-1) 	u2kt-2) 	u2(t-2) 

(3.2-22) 
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2t is a simple additional step to find the characteristic equation 

for this system by transforming F into a companion matrix (transposed) 

by the method described in Subsection 2.5-1. We obtain the character-

istic equation of F 

	

A3  + o.6o 2  0.80 	o.48 = o 	(3.2-23) 

which has a real root at 

= -0.60 	(3.2-24) 

and two imaginary roots 

\2'
A
5  = 
	 (3.2-25) 

within the unit circle in the z plane. 

	

The three system models, 	(F , G , H) , EA( FA  , GA  , HA) and E D(A,B) 

were simulated in discrete time on a digital computer. The output 

trajectories of the three were identical to eight decimal digits, 

starting from zero initial conditions, over ten time intervals. 

3.3 Derivation of the Transformation from Description E to E D  

The method used in deriving the transformation is to find two 

independent sets of vector equations in the input, state and output 

vector variables. Subject to certain conditions, the state variables 

can be eliminated between the two equations giving us the required 

description in the input and output vector variables. 
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We proceed by differentiating system equations (2.1-2) p 1 

times and combining the result with equation (2.1-1). Let us assume 

that this operation can be carried out and that formal Laplace trans-

forms with zero initial conditions can be taken at each stage 

(s = d/dt). Then we write 

y(s) = Hx(s) 

sy(s) = HFx(s) 	HGu(s) 

say(s) = HF2x(s) + HFGu(s) + sHGu(s) 

sjy(s) = HFjx(s) 	HFj -1Gu(s) + 	. . sj
-1 

 HGu(s) 

= 
) + HFP-2Gu(s) 	. 	. sP-2HGu(s) (3.3-1) 

We claim that the system states x(t) are observable if, and 

only if, the array introduced as equation (2.3-10) 

H 1 
HF 

(3.3-2) 

Hpp-1 

is of rank n. Recall that we selected n independent rows of P o p 

to make up the nonsingular matrix TA  of equation (2.6-1). Here 

P = o p 
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we select the corresponding set of n equations from (3.3-1): so 

that every equation includes a row of TA. 

With our notation, we write n equations 

(y(s)) 	= (H) x(s) 

s(y(s))p-1  = (H)p-1 Fx(s) + (H)p_1Gu(s) 

Ay( s) ) 

	

	s) 	.Fj-IGu( 	s(H).0-2Gu( s) 13_ 
P-J 	P-O 	10-a 

-1)P-JGu(s) 

sp-ly(s) = HFP -1x(s) + HFP-2Guks'' ) + 	sP-2.HGu(s) 
	

(3.3-3) 

Note that there may be more than one way to select the n 

independent rows of TA from rows of 	 p P which corresponds to a o  

choice in the outputs and successive derivatives of the outputs 

employed in the model. Regrouping the equation of (3.3-3) into 

vector form we get 

S(s)y(s) = TAx(s) + Q(s)u(s) 
	

(3.3-4) 

where S(s) is an n x m matrix and Q(s) is n x r. 



(0) 

(H) AG p— 

(H)p 
—2 

 FG 

(0) 

(0) p —1 

(H) FG p —2 
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(3.3-5) S(s) = 

s
p —1

I 
m 

Q(s) = 
(H)p—JFj-1G  

(H)10-3 
.F-j-2  G 

• 
BFP-3G HFP —2G 

+ 

+ . 	sj  

(0) 

(0)p-3  

(H)p_ j_iG 

LIPP -j -2G 

+ . . + sp-2  

(0) 

(0)10—i  

(0)2  

HG 

(3.3-6) 
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Now we take the Laplace transform of the pth  derivative of y(t). 

This gives us m new equations. 

spy(s) = HFPx(s) HFP-1Gu(s) 	sP-1HGu(s) 
	

(3.3-7) 

Because the inverse of TA exists, we can premultiply (3.3-4) by 

1 T
A 
. Then 

x(s) = T 1S(s)y(s) - T 1Q(s)u(s) 
	

(3.3-8) 

Eliminating x(s) by substituting (3.3-8) into (3.3 -7),we get 

p__D -1 	_„p-1 
[SPIm HY-TA S(s)]Y(s) = 

-riF
A 
Q(s)u(s) + 	Gu(s) 

p-1 
+ 	+ s HGu(s) (3.3-9) 

4  [—HFPTVQ(s) + R(8)7u(s) 	(3.3-10) 

Replacing the m x m matrix on the left by A(s) and the m x r 

matrix on the right by B(s) as defined by equation (3.1-2), we obtain 

A(s) = sPIm •-• HFPT-A1
S(s) 
	(3.3-11) 

B(s) = R(s) HFPT71.1Q(s) 
	(3.312) 

In the expression for A(s) we substitute for HFPT -1  from 

the identity (2.6-9) and for S(s) from (3.3-5) and obtain the 

matrix polynomial A(s) given by equation (3.2-3), repeated here 

for convenience. 

A(s) = sPIm + sP-1A1  + sP-2A2
(Im)2 + 	sAp-1(Im)p-1 + Ap

(Im)p 

(3.2-3) 
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The derivation of the matrix coefficients in B(s) is less 

direct. In equation (3.3-10) we substitute for HOT-Al  from 

(2.6-9), for .Q(s) from (3.3-6) and for R(s) from (3.3-9). 

Noting that, by definition, the number of columns in F . is the 
P-J 

sameasthenumberofrowsof(H.,we calculate the term )P -J 

-HFPT-1Q(s) = CA ... A1  ] Q(s) 
	 (3.3-13) 

= 	Ap -1 C(H)p -1G 	+ s(0)p-1 	 + sp -2(0)p -1 ] 

+ Ar_2[(H)p-2FG 	+ s(H)p -2G 	s2(0)p-2 	 + sP-2(0)p `  

+ 	. 	 • 	 • 
i-1 	i-2 	

• + sP-1(H) .G . + sP-2(0 	. + A .[(H) .F" G + s(H) .F- G + s2(H) .Fj-3G 
P-J 	P-J 	P-J 	p-j 	p-j 	)13-J3  

+ 

+ A1[HOD -2G 	+ sHFP-3G 	+ sP -1HFP -j -1G . + sP-2HG] 

(3.3-14) 

idecannowevaluateeachofthematrixtermsB.because we know that 

B. is the matrix coefficient that appears with the operator sP-j. 

Collecting these terms, we write 



HFG 

HF2G 

n  
'G 

-1 HF- G 1m 
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B1 	= HG 

B2 	= A1HG HFG 

B3 	A1HFG + A2(H)2G HF
2G 

Bp 
-i 	

= A1HFP-j -2G -I- A2(H)2F
P -j -3G + 	+ p -j -1(H)p -j -1G HFP -j -1G 

Bp 	= A1  HFP -2G + A2(H)2FP-3
G 	+ Ap -1(H)p -1G HFP -1G 

(3.3-15) 

The terms in HFiG can be removed if we insert a suitable 

operator that picks out the appropriate rows for every term. We 

can accommodate this requirement in our notation so that we write 

r 
0 I HG Im 

Al 	Im 	
0 

A2(Im)2 	A1 m  0 

• 

Ap-j-1(Im)p-j-1 Ap-j-2(im)p-j-2 

A p -1(Im)p -1 	Ap_2(Im)r,2 

B1  

B2 

B3 

B 
P-3 

• 

B 
p  

(3.3-16) 

Finally, we note that the array on the right of the last equation can 

be separated into the matrix product 	 p
P G giving us the identity 
o  

(3.2-5) in step (4) of the computational procedure. 
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3.4 Modifications to Include Direct Control of the System Output  

Suppose that a system which we wish to describe by a state-vector 

equation or vector differential equation in the input and output vector 

variables has a direct connection between the system input u and the 

system output y. The descriptions that we have discussed up to now can 

be extended to cope with this new requirement. 

3.1+.1 Complete State-Variable Description 

The state-variable equations of a linear time-invariant, multi-

variate system E , set out in (2.1-1) and (2.1-2) are modified by the 

addition of an output-control term Du. The new continuous-time equa-

tions are 

X = Fx + Gu 
	 (3.4-1) 

y = Hx + Du 
	 (3.4-2) 

The corresponding set of equations for a discrete-time formulation, 

replacing (2.3-12) and (2.3-13), is 

	

x(t+1) = Fx(t) + Gu(t) 
	(3.4-3) 

	

y(t) = Hx(t) + Du(t) 
	(3.4-4) 

It can be seen that matrix D is unchanged if the basis of x 

in X undergoes transformation; hence the state-variable canonical 

forms of Chapter 2 are easily modified by the addition of the Du 

term as above. 
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3.4.2 Complete Description ED  with Direct Control 

The addition of a term B0 
 u to the E D  description to correspond 

with the Du term in the state-variable form alters all the other matrix 

coefficients in the polynomial matrix B(s). This affects steps 3 and 

4 of the computational procedure of Section 3.2. It is a simple matter 

to insert the additional term in the derivation of the transform 

starting with equation (3.3-1). Following through the derivation, it 

is found that m additional columns are added to matrix Tp  derived 

in equation (3.3-16) and (3.3-15) but first defined in step 3 of Sub-

section 3.2.1. The modified form, shown below with an asterisk, should 

be compared with equation 3.2-4. 

Im 01 

Al  

A2(Im)2  

T* P = TP  (3.4-5) 
Ap_j_1(Im)p-j-1  

A (I ) 
P 	m P 

T* is a lower triangular, invertible matrix of m(p+1) rows and 

columns with T imbedded in the lower right corner. 



Equation (3.2-5) in Step 4 is replaced by 
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B0  1 	D 

B1 
	HG 

B2 
	= TP  BIG 
	 (3.4-6) 

Bp 	HFP-1G 

Finally, we write in place of (3.2-6) 

B(s) = sPB + SP-1B + 	s+ Bp  1 "" p-1 p 

and and in place of (3.2-10) 

B(z) = zPB + zP-1B 	'" + 	zB 	+ Bp  

and 	

1 	p-1 p 

and 	y(t) = -A1y(t-1) - A2(y(t-2))2  ... Ap(y(t-13)) 
P 

+ B0u(t) + B1u(t-1) + ... BP 
 u(t-p) 

in place of (3.2-11). 

(3.4-7) 

(3.4-8) 

(3.4-9) 

3.4.3 A Numerical Example 

A discrete-time model of a first-order subsystem and a third order 

subsystem coupled one way was made up for this example. The system 

matrices were 
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o 

0.25 

-0.5 

-0.5 

1.0 

-0.5 

0 

0 

1.0 

0 

0 

0 
F = G = 

0 0 -0.5 1.0 0 0 

0 0 0 0.75 O 1.0 

0 0 0 1.0 1.0 0.5 
= D = 

0 1.0 1.0 0 0.5 1.0 

(3.4-10) 

The vector difference equation was computed by following the steps 

laid down before. 

(1)  

TA = 

h2 

h2F 

h112 

h2F
2 

(3.4-11) 

    

(2)  

(3,4) 

B1  

B2 

B
3  

Ai  

The product 

	

-2.114 	2.068 

	

-2.273 	2.364 

below was calculated 

12 	0 

1 Al 	2  

A2[0 	1] 	Al  

A3Co 	1] 	A2CO 

A2 

0 

. 	. 

12 	. 

1] 	Al 	12 

-0.148 
-0.080 

HG 

HFG 

HF2G 

A3 

(3.4-12) 

(3.4-13) 

-0.068 

-0.051 
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0.5 r-1.080 • 2.011 

1.0 
B1  = 

-1.091 1.277 

-1.511 -0.170 0.477 
• B3  = 

-1.352 -0.128 0.358 

from which 

1.0 
B0  = D = 

L
0.5 

0.176 
0.210 

B2 

= -A1  

 

+ B0  

(3.4-14) 
Substituting in the form of (3.4-9): 

71(t -1)  
y2(t -1) 

u1(t)1 

u2(t) 

J 

- A2  

+B  1[  

72(t-2) 

ru1(t-1) 

u2(t -1) 

- A3  73(t 

+B  2 

-... 

-3) 

1u1(t-2) 

u2(t -2) 
+B

3 

u1(t -3) 

u2(t -3) 
c.. 

(3.4-15) 

The roots of the characteristic equation were found at 

A1,2 = -0.25 ± j 0.25 

= -0.5 ; A4  = 0.75 
	(3.4-16) 

They are distinct. The transformation method was recalculated without 

difficulty for a system with a pair of multiple roots. The models 

were then simulated on the computer. The output trajectories of the 

transformed models agreed with those of the initial description to at 

least seven decimal digits. 
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3.5 Discussion of the ED  Description  

In this Section, some background for the E D  description is 

provided. The various forms in which the description may be useful 

are then summarized. The problems of existence and uniqueness of 

the description are then discussed. 

3.5.1 Historical Perspective 

In the introduction of his book, Pipes [17] credits Duncan and 

Collar [14, 15] with initiating the use of matrix algebra in engineering 

applications. One problem with which they were concerned is of interest 

to us because it has features common to the descriptions discussed in 

this Chapter. 

Duncan and Collar dealt with solutions to the Lagrange equations 

of motion of a general system of m degrees of freedom oscillating 

in the neighbourhood of an equilibrium position. Their problem, 

formulated in our notation, was to solve the set of m second-order 

homogeneous differential equations 

A0  *. + A1* + Ax = 0 
	(3.5-1) 

which we write in the manner of (3.1-1) as 

[s2Im + sA*1 
 + Apx = 0 	(3.5-2) 

where x is an m-vector of generalized coordinates. The elements of 

A0, A11  and A2 
are inertia coefficients, damping coefficients and 
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stiffness coefficients respectively. The coefficient matrices are all 

m x m and A0  is symmetric. Their method was to reduce the set of 

m second order equations to a set of 2m first-order equations in a 

space of n = 2m dimensions in the vector variables x and X. The 

reformulated system equations were 

(3.5-3) 

(3.5-4) ; A; = A_
1  
u A1 ' 	2 • A* - 	A u1 2 

   

* 0 X = 
0 

	

-A* 	-A* 

	

2 	1 

x* 

   

x 

This is a special case of a transformation method to be described in 

Section 3.6 with n = 2m and p = 2. 

In [16], Frazer, Duncan and Collar also discuss the solution of 

a set of second order nonhomogeneous equations with a constant forcing 

term. This corresponds to the example of (3.1-1) with B2 	0 and 

B0  = B1 = 0. 

Pipes [17] has revived interest in second-order vector differen-

tial equations, principally as a convenient way to derive the Lagrange 

equations of high-dimension for vibration analysis. However, he trans-

forms the equations to first-order before he undertakes the formal 

analysis of the problem for the reason that the powerful methods of 

modal analysis can be employed directly. 

where 	x* = 
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Astrom and Bohlin [18] presented a method for the numerical 

identification of a process from single-input, single-output data. 

With Wensmark [19], they conducted a thorough investigation of a number 

of model forms. A difference equation description was found to be 

suitable for identification purposes. They remarked that they were 

restricted to studying systems with a single output because they did 

not have a suitable canonical form for multivariate systems. 

In a recent paper, Box and Jenkins [23] proposed a multivariate 

model of the form 

y(t+1) = y(t) 	u(t+1) + B1u(t) 	(3.5-5) 

as an analog of a scalar process which they had investigated in detail. 

The components of u(t) are taken from a sequence of uncorrelated 

disturbances. 

Mayne proposed an ad hoc form [20] which was studied by Tzafestas 

[21]. Their model, which will be investigated in more detail in a 

later Chapter, is a vector difference equation with n = 4, p = 2 

and m = 2. 

3.5.2 Forms of the ZD Description 

Let us list and name the forms of D by giving simple examples. 

d2y(t) 	
dt 	A2y(t) = u(t) (1) 	A0 	+ Al 

dt2  
(3.5-6) 
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is a nonhomogeneous equation of order 2 with constant coefficients 

first discussed by Frazer, Duncan and Collar [10 and referred to in 

the previous Subsection. The corresponding form, derived for control 

purposes in the last Section, is a normalized, more general version 

d 
2
ykti 	dY(t) 	

A2y(t) 

dt2 
 4.  A

1 dt 

d
2
u(t) 	du(t) = B 	+ B

1 	
+ Bu( t) 0 dt2 	dt 	2 (3.5-7) 

(2) (s2Im  + sA1  + A2)y(s) = (s2B0  + sB1  + B2)u(s) 	(3.5-8) 

is the Laplace transformed version of (3.5-7) with the substitution 

(s = d/dt). 

(3) (z2Im  + zA1  + A2)y(z) = (z2B0  + zB1  + B2)u(z) 	(3.5-9) 

is the z-transformed version of (3.5-8). 

(4) In preference to (3), we use the vector difference equation in 

operator form as in (3.2-7) where we treat z as a forward-shift 

operator. Then 

(z2Im + zA1 + A2)y(t) = z2B0 + zB1 + B2)u(t) 	(3.5-10) 
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(5) The discrete-time system equation in the input and output 

variables is 

y(t) = - A1  y(t-1) - A2y(t-2) 

+ Bou(t) + B u(t-1) + B2u(t-2) 
	(3.5-11) 

(6) In a later section, we shall discuss the transfer function 

Z(s) 	H(sI-F)-1G 	 (3.5-12) 

where 	y(s) = Z(s)u(s) 	 (3.5-13) 

By substitution from (3.1-2) 

Z(s) = A-1(s) B(s) 	 (3.5-14) 

which, in this example, is 

Z(s) = [s2Im  + sA1 
4. A2]  -1[s2B0 + sBi  + B2] 	(3.5-15) 

We can see, by setting m = r = 1, that the equations listed are 

the familiar forms of the scalar-coefficient, single-input, single-

output descriptions found in most textbooks on control. 

The author believes that Kavanagh was the first to give the 

transfer function Z(s), precisely as in (3.5-14), in terms of poly-

nomial matrices A(s) and B(s) [35]. He gave a numerical example 

to show how a pair of simultaneous second-order equations could be 
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written both in terms of three first-order equations and as a 

transfer function matrix. However, he did not indicate a general 

method. 

Reference to a multivariate transfer function first appeared 

in Western literature in a study of non-interacting controls by. 

Boksenbom and Hood [36]. Their method, in a broad treatment, is more 

readily accessible in Tsien [37]. The problem of synthesis of the 

matrix transfer function was first considered by Amora [38]. Other 

early contributions are listed in the extensive bibliography of con-

tributions up to 1962 prepared by Kavanagh [35]. 

3.5.3 Comments on the Existence and Uniqueness of the Description 

We now summarize the conditions that must be met in order that 

we can obtain the Z D  description. The following are restricted 

conditions because they pertain to and justify only the procedures 

of Sections 3.3 and 3.4 in deriving the description. 

(1) The system has a known state-space description E or any 

other state-space description that is equivalent to Z. This is 

required because the derivation is based on a given description E. 

(2) The system is observable. The critical step in eliminating 

the intermediate variable x depends on being able to invert TA  

which is comprised of n rows of the observability array 	 pP . o  

TA 
is non-singular if the system is observable. 
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(3) Formal Laplace transforms of the system equations can be 

carried out as in (3.3-1). 

Now we inquire if the description ED  is unique. This question 

is of particular importance when parameters of a system are to be 

estimated. We shall investigate the problem for ED  written as a 

difference equation, the form that we shall use in later Chapters 

when we investigate methods of parameter estimation by statistical 

means. 

Assertion: The description ED  is unique for a specified selection of 

observations that satisfy the conditions for state observability. 

Proof: The n equations (3.3-3) in difference equation form can be 

represented by 

Y* 	= 	f1[x(0), u(0), zu(0), z2u(0), 	zP-2u(0)] 	(3.5-16) 

where (Y(0)) 

z(y(0))p-1 

r (y(0))p 	- 
(y(1))p_i  

Y*  

zp-1y(0)  y(p-1) 

(3.5-17) 

y* is an n-vector made up of selected elements of the output over p - 1 

time intervals beginning with t = 0. f1C•7 is a linear function of 

the system initial state vector x(0), and p 1 control inputs 

beginning with u(0). For simplicity, the dependence on time of all 
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the variables is not shown in the following notation. The m equations 

(3.3-7) can be written 

zPy = f2 	zu, .., Cx u, zP-2u, zP-111] 
	(3.5-18) 

Provided that the initial system states are observable with the choice 

y*, there is a function g that can be obtained from (3.3-8) such that 

	

x = gCy*, u,zu ..., z12
uj 
	

(3.5-19) 

Hence, in (3.5-18) 

zpy 	f r 	u, p-2 	p-2 = 	2 	zu, "42 	UJI u, zu, .0.2 	U2 	4.4.J f2[g[y*,  

= 	f'Cy* u,zu, 	 zP  2u, z
p-1 

 ui 
	(3.5-20) 

because f
2 is a linear function of its variables. (3.5-20) is the 

difference equation form of (3.3-9) in the n selected elements of 

y over p 1 intervals and u over the same number of intervals. 

If f2 is not a unique representation of the system in the con-

trol and selected elements of the observation variables, then there 

exists another multivariate set of m linear relations f'[..] 
3 	2 

such that 

zpy 	= f3Cy*, u, zu, 	zP-2u, zP-1  u] 
	

(3.5-21) 

But, substituting from (3.5-16) for y* 

zPy 	= f3Cf1  Cx, u, zu, 	pu, zu, 	zp-2u, 	1 u] 

(3.5-22) 



2 ' 	 3 	
u, z f Ex u, zu, 	zP-2u, zP-lui 	f Ex, u, zu, P-2 	P-1u] = 0 z 
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, = 	f3  [x u, zu, 	 z
2 
 u, z1 uJ (3.5-23) 

Now we subtract equation (3.5-23) from equation (3.5-18) and obtain: 

(3.5-24) 
Clearly, to satisfy (3.5-24) (for any nontrivial choice of the initial 

state x and the sequence of p controls u, zu, sea zP-iu) implies 

that f C-1 = f
3
[-]. If this is true, then 

f'Cy*
' 
 u, zu, ..., z 1

2  u] = fi[y* u, zu, 	zP-  u] 
	(3.5-25) 

which contradicts our original statement that fiC-] 	This 

proves the uniqueness of f2 and f2 
for the choice of elements of 

y*. By substituting for f2 in (3.5-20), which has been proven unique, 

we get the required form 

A(z)y(t) = B(z)u(t) 	 (3.5-26) 

corresponding to the choice of y*(t). 

We conclude that the pair [A(z), B(z)] is unique for a specified 

selection of observations that satisfy the conditions of state obser-

vability, thereby proving the assertion. 

Corollary: There are as many descriptions E D  that are input-output . 

equivalent to a state-variable, observable system Y as there are ways 

in which n rows of independent vectors can be selected, without regard 

for order, from the observability array 	 p for E. o  
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Proof: The description ED  of the theorem was unique for a specified 

selection of outputs corresponding to the selection of n independent 

rows from the mp x n array o  Pp  for the nonsingular transform TA. 

Suppose that n rows are selected to form a nonsingular matrix TA1. 

Corresponding to this selection, there will be a vector y; of n 

elements (see equation (3.5-17)). If we make a new selection for 

another nonsingular matrix T 	such that at least one row of T A2 	 A2 

is different than the previous selection for TA1' this will define 

a new vector y*
2 
 of n elements. There will be as many elements 

of y2 different from 51 as rows of transforms TA2  that are 

different from rows of transform TAl. Thus for every other such 

transform TAi, there is a unique vector y!, disregarding all those 

cases in which the elements of y* are reordered. Hence, by substi-

tuting the new vector y1' for y* in (3.5-19) and subsequent equations, 

itisclearthatthereisanewdescriptionE„for every unique vector 

yt- This concludes the proof. 

Note that in the single-output case (m = 1) there will be only 

one choice for TA because 	 p has only n rows. o  

3.6 Transformation of the E D  Description into State-Variable Form  

The requirement of this section is to establish a procedure for trans- 

forming the ED  description of order p into a set of state equations. 

The transformation from the state description E (in variables x, y 

and u) into the form E D (in variables y and u) discussed in this 



(H)2FP-3  
BFp -2 

-1  

(2.6-3) 

(3.6-1) 
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Chapter, resulted in a unique model. The problem is that the converse 

is not true; hence, it is necessary to propose a structure (or form) 

for the state-variable model so that the elements of the matrices in 

the proposed form can be determined uniquely from the parameters of 

the vector differential (difference) equation of order p. 

It is most convenient to propose transformation into the A-canonical 

form of the last Chapter for the reason that simple relations have 

already been established in this Chapter to connect the matrix elements 

of the two descriptions. Then any other state-variable description can 

be derived from the A-canonical form by a suitable choice of a basis 

in the state space. 

3.6.1 The Procedure for Transformation into A-Canonical Form 

(1) Determine the integer n by totalling the number of columns in 

the matrix coefficients Al' A2' 
... A . Then commence construction 

of the n x n matrix FA 
by imbedding the above coefficients in the 

last m rows, observing the proper sign as in equation (2.6-6). 

(2) Recall FA 
in the form reproduced here from (2.6-3) for conven-

ience. 

FA 

r 
(H) 

(H)p -1F 

(H)
p -2
r2 

• 

(H)2F13-2  
up-1  

A TAK
-1  
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th 
Now the element 6.. at the intersection of the 

. row and jth  
ij 

column of FA is unity if the i
th  row of TA and the jth  row of 

th 
X are the same. (The rest of the 

. row is made up of zeros.) 

The components of vector y and the derivatives of y that are 

used in the vector differential equation are known from the E D  

description. As a consequence, we know which rows of each submatrix 

He "-k have been eliminated as in Subsection (3.3.1) to form trans-

form TA 
although we do not know the row elements explicitly. We 

then also know which rows of every product HFk  have been used to 

construct matrix K in 3.6-1. Hence, we can write down the locations 

of the pairs that match, the rows of TA  and K, even though we cannot 

write down the quantitative value of each element. Finally, having 

paired n m rows in TA 
and K, we can enter the appropriate zeros 

and ones in FA 
according to the method previously discussed and 

shown in equation (2.6-6). This will be made clear in an example in 

the next Subsection. 

(3) The matrix T* of m(p+1) rows and columns is constructed from 

the submatrices Al' ... A as shown in (3.4-5). Its inverse exists 

because it is triangular with ones all along its principal diagonal. 

Then we calculate the array on the left. 

r D 1 	r 	1 
B0  

B1  

HFG 	= T* 1  P 	B2 

HG 

(3.6-2) 

Bria•m1G  

 

Bp  

   



(HG) 

(HFG) p A  -- 

(HFP-2G)2 
17p-1G  

r  (H) G 

(H) FG p-1 

(HI 2pp-2G  
i  

HFP-1G 
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This gives us D immediately. By the same method as in step (2), 

we eliminate all but n rows of the mp rows remaining in (3.6-2) 

after the removal of D, noting that 

(3.6-3) 

= TAG 

G  
A 

(3.6-4) 

(3.6-5) 

from (2.6-4). 

(4) To find the observation matrix HA, we recall the following 

identities. Under equivalence transformation 

FA = TAFTA
1 
	(3.6-6) 

- HA = HTA
1 
	(3.6-7) 

and from (2.6-9) 

(3.6-8) 



We define a new matrix of m rows and n columns 

84, 

(3.6-9) 

which has an m x m unit submatrix at the right and zeros elsewhere. 

Comparing (3.6-8) and (2.6-6) 

= HIFA 	 (3.6-10) 

Now it is easy to establish that 

FP  = TAA  FPT-1 
	

(3.6-11) 

then 
	FP  = TA  F-AT A 
	 (3.6-12) 

Substituting (3.6-12) into (3.6-10) we find 

-1 p -1 HTA FATATA HIFA 

-1 HTA 	H-FAA F-P 

(3.6-13) 

(3.6-1If) 

Finally, with (3.6-7) 

HA = 
."-1A 
F-p+1 (3.6-15) 

This completes the derivation of system matrices FA' GA and 

HA in A-canonical form from description E D. 
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3.6.2 An Algebraic Example 

Consider the input-output description of a discrete-time system 

that corresponds to the algebraic example discussed in Subsection 

2.6.2 

Y1(t) 

y2(t) 

y
3
(t) 

- Al  

+ 

yi(t -1) 

y2(t -1) 

y
3
(t-1) 

u1(t) 

u2(t) 
+B 

- A2 

1 

- 

un  

u
2(t-1) 

y2(t -2) 

- 
y3(t -2) 

(t-1) i 
' 	

J 
+ B2 

A3y3(t-3) 

r 
ul ( t".2) 1  

u2(t-2) - 	
] +B 

3 

(3.6-16 

u1(t-3)  
u2(t-3) 

where Al is 3 x 3, A2 	x 2, A3   is 3 	is 3 x 1 and all of 

B. are 3 x 2. 

(1) To find n, we total the columns in the matrix coefficients 

Al, A2, A3: 

n = 3 + 2 + 1 = 6 	(3.6-17) 

We then proceed to imbed Al, A2  and A3  in the last three rows 

of a 6 x 6 matrix FA as in the example, equation (2.6-13). 

(2) We know that the equations used to derive (3.6-16) originated with 

the set below which corresponds with the equation set (3.3-3) for the 

general case. 
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y3(t -3) 

y2(t-2) 

y3(t -2) 

y1  (t -1) 

y2(t-1) 

y3(t -1) 

Therefore, we  

h3x(t -3) 

h2Fx(t -3) + hGu(t -3) 

h3Fx(t -3) + h3Gu(t -3) 

h1  F
2x(t -3) + h1  FGu(t.-3) 

h2F2x(t -3) + h2FGu(t-3) 

h
2F
2x(t-3) + h3FGu(t-3) 

can immediately write down  

+ h1Gu(t -2) 

+ h2Gu(t -2) 

+ h3Gu(t -2) 

the algebraic 

(3.6-18) 

form of TA 

without being able to assign numerical values to its elements 

r h3 

TA = (3.6-19) 

h2F 

h
3
F 

h1F2  

h2F2 
 

h3F
2  

We can also write down the algebraic form of 

FTA 
-1 = ETA F1-1  (3.6-20) 

Finally, the algebraic expression for FA  can be written down exactly 

as in (2.6-12) with the pairs shown there. Then, with the lemma of 
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Subsection 2.4.1, the first three rows of FA  can be filled in as in 

(2.6-13), without ever calculating TA  explicitly. 

(3) The lower triangular matrix T; is constructed from the matrix 

coefficients 

and columns. 

T* 	= 

(4) We calculate 

A. 

Note 

A2 

A3  

HG 

HFG 

HF2G 

as 

how 

1
3 
Al  

r0 I 
L0 0 

CO 0 

the 

in 

- 0 

1 

1] 

the 

array 

- - 

(3.4-5). 

A2  

T*- p 

submatrices 

It has 

0 

1
3 

Al 
- 
0 1 0- 

0 0 1 

Bo  
B
1  
B2 

B
3  

m(p+1) 

repeat in 

0 

0 

1
3  

Al 

= 	3(3+1) 	= 	12 

no 

0 

0 

0 

1
3  

(3.6-21) 

(3.6-22) 

rows 

giving us D immediately. From the remaining array of 9 rows, we 

pick out rows 3, 5, 6, 7, 8 and 9 corresponding to the choice of rows 

for TA in (3.6-19). Thus 
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r 

  

 

b3 
h2FG 

h3FG 

h1 F
aG 

h
2
F2G 

h3F2G 

 

GA 

  

(3.6-23) 

     

by elimination of rows calculated in (3.6-22) but without explicit 

calculation of H, F or G. 

The method has been tested by construction and simulation on a 

digital computer. Models were constructed from each other in the 

following order: 

E (F,G,H) 

E A(FGPHA) 

41 
E D(A,B) 

' E (F1  G H ) A 	A 	A' HA)  

The effect of round-off error was evident in the last model derived 

because the output trajectory observed sometimes showed departure in 

the seventh or eighth decimal place from that observed for the other 

models. This can be attributed to errors accumulated through the 

computation of a number of matrix inversions and the calculation of 

powers of matrices employed, all in single-precision arithmetic. 
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3.7 Matrix Transfer Function Description E z  

3.7.1 Derivation of the Transfer Function 

Given the E description (3.4-1 and 3.4-2) we can derive the 

matrix transfer function in the manner of Kalman [3] but with the 

addition of the direct control term D. Replacing d/dt by s, we 

write the formal Laplace transform (with zero initial conditions) 

sx(s) = Fx(s) + Gu(s) 
	

(3.7-1) 

y(s) = 	+ Du(s) 	 (3.7-2) 

From (3.7-1) 

x(s) = [an  - F]-lau(s) 	 (3.7-3) 

Hx(s) = H[sIn- F]-1Gu(s) 	Du(s) + Du(s) (3.7-4) 

Then from (3.7-2) 

Y(s) = [H[sIn  F]-1G + D]u(s) 	(3.7-5) 

We shall call this set of equations description E z  in the input and 

output variables. We define the m x r matrix transfer function 

Z(s) 	H[sIn  - F]-1G + D 	(3.7-6) 

where only the D term is different from Kalman's [3]. (3.7-6) is 

the form considered by Rosenbrock in two recent papers on linear system 

transformations with the generalization, D(s) in place of D [28, 29]. 



(..)n(..)n(sn 	al sn-1 IsIn  F I = 	 + can) 

which factors for roots .. Then 

I 	F 1 = TT (s -,N.) 
j=1 

(3.7-11) 

(3.7-12) 

Hence in (3.7-8) 
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A direct way to find the poles and zeros of Z(s) is to 

decompose the inverse matrix in (3.7-6) into its adjoint and deter-

minant by the identity [22] 

CsIn - F][sIn F].4.  = [sin  F] ITsIn  - Fg 

= 	I sIn  F IIn 	(3.7-7) 

where [sIn F74  is the adjoint of [sin  - F] and IsIn  F I is 

its determinant. We can substitute for the inverse matrix in (3.7-6) 

 

Z(s) = 	HCSI - Fed + D IsIn  F n (3.7-8) 

Now [22] 

sIn - F 1 = (-)n  IF - sIn I 

= (-)nf(s) 

(3.7-9) 

(3.7-10) 

where f(s) is the characteristic polynomial of F defined by (2.4-8). 

Substituting for f(s), we get 

Z(s) - 1  
n 	 HEsIn - 154b + D 

TT 	(s - A.) 
j=1 	3 

(3.7-13) 



s-X1 	0 

0 	s->,  2 	0 

s-> 

EsI3 - F] ▪ = (3.7-15) 

91. 

3.7.2 Algebraic Ekample of a Matrix Transfer Function 

It is not difficult to show that (3.7-13) is invariant for any 

basis of x in X. For our example, let us choose a system with 

three real and distinct roots and a basis such that F is in diagonal 

form. We assign some nonzero elements of G and H for simplicity, 

ensuring for this ecample that the system is both observable and 

controllable. 

 

r 

    

    

    

F = 

   

1 

1 

1 

 

      

      

H = 

   

0 

0 
(3.7-14) 

       

The adjoint matrix is 

(s -X2)(s -X3) 	0 	0 

o (s -N)(s -X3) 	o 	(3.7-16) 

O 0 	(s -X.1)(s -X2) 



Then 

Z(s) - (s-))(s->)(s-->) 
1 

(s-X2) (s->3)

2(s-X1)(s- x22+>‘3 ) 
(3.7-17) 
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The system has a single pole between the input and the first output 

and a zero and two poles in the path to the second output. The 

calculation is tedious and not very well suited for routine computa-

tion on a digital computer because of the algebraic operations in 

finding the minors of the adjoint matrix. In general, Faddeev's 

modification of Leverrier's method [30] is preferable for expanding the 

adjoint and finding the coefficients of the characteristic polynomial, 

provided that the roots are distinct. A clear exposition is given 

by Zadeh and Desoer [25, p. 301]. 

3.7.3 The Transfer Function Description as the Laplace Transform 

of a Vector Differential Equation of Order n 

Let us expand (3.7-5) as a matrix polynomial in s. Substituting 

for the inverse, we write 

(sn  + wisn-1  + 	+ wn)y(s) 

= 	[HESTn - Fg
4d (sn  + - -n-1  + 	+ w n' ' \DnU(s) 

	
(3,7-18) 

which is the Laplace transform of a nonhomogeneous vector differential 

equation of order n. To illustrate this in a simple case, let us 



93. 

again consider a system with three real and distinct roots and a 

basis so that F is in diagonal form. We partition H into column 

vectors h. and G into row vectorsg .. l  

0 	0 

O >\2 

O 0 	>\3 

H = L h1 
	h2 	

h3  ] ; D = D 
	

(3.7-19) 

Substituting for the adjoint matrix from (3.7-15) 

HEsI3 - FTI'd = (s ->N2)(s X3)h1g1 

- )h gT  3 2 2 

>- \2)h3g3T  

(3.7-20) 

= s2Ch1gT1  + h24 + h34] 

- + >3)1114 + 

+ X X 
T 	T 

-2 3h1-R1 + -1,3h2-g2 

( "xi +.yh3g3T, 

X12h3g; 	(3.7-21) 

We can now substitute with equations (3.7-18) and (3.7-21) for all the 

terms in the general matrix differential equation form for n = 3 and 

P = 3, 

cs3  s2 
 
AlIm  + sA2Im  + A3Im]y(s) = Cs3B0 + 82B1  + sB2 + B3ju(s) 

(3.7-22) 

r 
F 

 

T1 
g1 

g2 
T 
g3  

= 
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where 	Al = w1 = -.()\1 + X2 + X3)  

A2 = w2 = (>1X2 X2X3 X3X1)  

A3 	= w3 = - X1 )̀2\3 
	 (3.7-23) 

B0  = D 

B1 = HG w1D 

B2 = 	)3)h1gT1  - 	)15)h2g2 - 01  4-X2)h3g; w2D 

B
3 	

T 
(3.7-24) = X2  --igiT  ...1A34,24 , 1̂,-,e3g3  w3- 

Intheabove,theA.and B. terms were calculated by expanding 

the matrix transfer function without recourse to the earlier methods 

of the Chapter. Let us multiply out the following identity adapted 

from equation (3.4-6) of Subsection 3.4.2. 

B0  
B1  

B2 

B3  

m 

A1Im 

A2Im 

A_I 
m 

0 

Im 

A1Im 

A2Im 

Im 

A1Im 

0 

Im 

D 

HG 

HFG 

BF2G 

(3.7-25) 

This yields 

B0  

B1 = HG w D 1 (cont.over) 
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B
2 = co

2
D 

T, - (Xi  + 	+ ),3)LhigiT  + h2g2  + h3g3J 

, 
)\1h1g1 X2h2g2

T 
 A3n3g3 

= -  (2 + ,\3)h1 g1 - (X1 \3)h2g2 (X1 42)113g3 w2D  

B3  = etc. 	 (3.7.-26) 

The coefficients are the same as in (3.7-23). 

Without completely formalizing this discussion, we tentatively 

conclude that 

(1) the matrix transfer function description Ez  is the 

Laplace transform of a nonhomogeneous vector differential 

equation of order n 

(2) the description Ez  can be calculated from a state variable 

description without requiring the algebraic expansion of.the 

inverse of a matrix polynomial or the minors for an adjoint 

matrix. The steps-are shown in the next subsection. 

3.7.4 Calculating the Matrix Transfer Function Corresponding to E 

(FIG,H,D) 

Given a description E with system matrices F, G, H and D, 

we seek the transfer function Z(s) of description Ez  . 

(1) The companion matrix for F is found. (See, for example, 

Subsection 2.4.2). This provides us with the coefficients (0.
3 
 of 
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the characteristic equation of F. (This approach for finding the 

coefficients w.
3 
 is not recommended for systems of high order because 

of the accumulated effect of numerical round-off when calculating the 

higher powers of F. The Leverrier-Faddeev method cited before [30] 

is preferable.) 

(2) The array TZ  is calculated: 

Im 	0 	0 

w1Im 	Im 

w
2
Im 	w1Im 

0 

wnIm 	wn-1 Im 	w1Im 	Im 

TZ  (3.7-27) 

(3) The m(n+1) x r array below is calculated: 

1 

D 

HG 

(3.7-28) 

Bpn-1G  

BO  

B1  

= TZ  
O 

Bn 

(4) The terms are collected in the following expansion for 

Z(s): 

Z(s) 	  EsnBo + sn IB1 + 	Bn]  
sn 	

n-1 
+w1  s 	+ 	wn 

(3.7-29) 
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The general element z..(s) of Z(s) is: 13 

zij(s) - 	(s 	+ s
n-1

b1i + 	+ b ..) 
sn +(S

n-1 
1 

+ 	w 	

nbui 	
j 	n13 

(3.7-30) 
. where bkij 	 1
th 

is the element at the intersection of the 	row and 

.th column of Bk.  

If E is a minimal realization, there will be no cancellation 

of zeros with poles. Then, in the Ez  description there are 

(214.1)mrelementsbkij andnelementsw.totAlling n(mr + 1) + mr 

parameters in all. The last mr terms are for the direct control 

term B0  = D. 

3.8 The Problem of Parametrization 

3.8.1 A Comparison of Some Descriptions 

By now the reader will be aware that the number of parameters 

in any one description may differ from the number required in another 

description, even though the descriptions are input-output equivalent 

and are derived for some abstract system E . For example, neglecting 

the D or B0  term of mr parameters which is invariant for any 

description discussed, we can compare the number of parameters in 

the following Table for some descriptions of a completely observable 

system. A range in the number of parameters for some descriptions is 

shown to account for special situations described in notes with the 

Table. 
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Description  

Basic state-
variable E  

Number of Parameters 	Notes 

n(m+r) to n2 + n(m+r) In the state coordinates of 
a physical system. 

Minimum, normal 	n(m+r) 
state-variable 

A-canonical 	n(m+r) to n(2m+r -1) 
form EA 

Matrix diff. 	mn + mpr 
equation E D  
of order p 

Matrix transfer 	n(mr+1) 
function E 

Obtained by a change of 
basis in the state space. 

Minimum only for the case 
that n = mp. (p is the 
observability index.) 

mn + mpr = n(m+r) in 
the case that n = mp. 

E is a minimal realiza-
tion. 

Fin 
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3.8.2 An Algebraic and Geometric Interpretation of the Problem 

The problem of parameterization first discussed by Kalman [3] 

is concerned with finding an "efficient" description of a system. 

A system is not efficient in a quantitative sense if another descrip-

tion can be found with fewer parameters. Then the parameters of an 

inefficient description must be algebraic functions of the fewer para-

meters of a more efficient description. For example, we can find 

n
2 
+ n(m+r) functions for the same number of parameters e of E 

(D = 0) in terms of the N
m = n(m+r) parameters je of E m 

Algebraically, this yields a degenerate [3] set of equations 

e1 	e1(41' 421 oeir, 41.
m

) 

e
2 
	

e2(i°1'
m
)  

n+n(m+r) = n2+n(m+r)
(41' e2'

m) 

	(3.8-1) 

e 	8., a Euclidean space of n2  + n(m+r) dimensions 

T, a Euclidean space of only n(m+r) dimensions 

The geometric interpretation in the space 43., is that the system 

is defined for a point anywhere on a surface of n(m+r) dimensions. 

The solution to the problem of parameterization in this case is that 

of moving on the surface to preferred coordinates. This can be 

accomplished for state-space models by a change in basis of the inter-

mediate variables, the state variables. If we assume that the normal 
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form E m is an efficient state.-space description, then n2 of the 

components of a on the left hand side of equation (3.8-1) are 

equal to a constant or zero. 

Figure 3.1 Coordinate Surface for e 

Figure 3.1 illustrates a surface of two dimensions in the space 

of three dimensions. If by some means we can make a component of 

e, e1  = 0, then a is constrained to the line on which e' is shown. 

There is a one-to-one correspondence between any point e' on the line 

and /5 in the two dimensioned space . 

The important point to be made here is that for a state-variable 

description E , e is a unique point in 43 only if a basis is chosen 

(which fixes the relations between parameters) or sufficient appropriate 

parameters are setts arbitrary quantities. Hence one or other of the 

above requirements must be satisfied in order to determine a unique 

e from a noise-free record of input and output data (m < n). 
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Now let us consider the E D  description. We have noted that 

this description is as efficient as the E m  description only if 

n = mp. For the case n 	mp, e is still unique for a parti-

cular selection of components of the derivatives of the output in the 

continuous case (or specification of a particular set of past outputs 

in the discrete case) even though it is not efficient. Hence, we should 

be able to determine a unique e for E D  from a noise-free record 

of data. 
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CHAPTER 4 

MULTIVARIATE STOCHASTIC MOnTIMS FOR IDENTIFICATION, PREDICTION AND 

CONTROL 

4.1 Introduction  

In this Chapter, the deterministic system descriptions derived in 

the last two Chapters are extended to include the effect of additive 

stochastic disturbances. We continue to assume that the multivariate 

process to be identified and controlled is linear and add the basic 

premise that the vector observations on the process inputs and outputs 

are made at discrete instants of time. The theoretical and practical 

reasons for departing from the study of continuous time processes are: 

(1) the exact response of the system at the sampling instants 

can be described satisfactorily by difference equations instead of 

differential equations; 

(2) the problem of taking derivatives with respect to time of 

the stochastic process that is an input to the system is avoided; 

(3) there is an extensive body of applied statistical estimation 

theory that can be employed directly and conveniently in solving 

problems concerning physical experiments which are devised so that 

their outcomes are discrete random events; 

(4) in direct digital control practice, plant observation points 

are sampled periodically and control is adjusted in discrete steps. 
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In most industrial plants, the time constants are sufficiently long 

that a central digital processor can monitor and adjust a number of 

subsystems in sequence. Discrete-time models are ideally suited to 

being updated periodically and employed in control schemes in which 

corrective action is generated in steps. 

4.2 A General Discrete-Time State-Variable Model of a Stochastic  

Process  

Let us assume that a linear, constant, multivariate, stochastic 

process is modelled (at uniformly spaced, integer sampling instants) 

by the general discrete-time, state-variable description Es  below. 

x(t+1) = FX(t) + Gu(t) + 
	(4.2-1) 

y(t) = Hx(t) + Du(t) + v2(t) 	(4.2-2) 

where the observation y is an m-vector and the control u is an 

r-vector as before. x is an n -vector of state variables of both the 

physical process and a "coloured" -noise process [24]. 

In this model, v1(t) is a e  -vector of random variables drawn, 

at time t, from ae-variate normal distribution with statistical 

characteristics given below. The observation vector, v2(t) is an 

m-vector, of random noise variables, also drawn from a multivariate 

normal distribution. The noise processes have the following statis-

tical characteristics. 
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ECv1  (t)] = 0 	 (4.2-3) 

ECvl(t), vTI(T)] = Vilb(t-T) 	(4.2-4) 

E[v2(t)] = 0 	 (4.2-5) 

E[v2 	2 (t), vT(.0] = V22b(t-T) 	(4.2-6) 

Evi(t), VT2(T)] 

	

= V126(t-T) 	(4.2-7)  

where 	EM = expected value of [•] 

V11,  V22 are positive definite correlation matrices 

es(t-T) = 1 ; t = T 
(4.2-8) 

= 0 	t 	T 

Let us now look at the structure of the stochastic model in more 

detail and distinguish pure measurement noise from noise disturbing 

states that are also under the influence of the control. Suppose 

that we could partition F as follows: 

F 
	Fa 	0 	

(4.2-9) 
0 	Fb 

where Fa is a square matrix of na  rows and Fb  is a square 

matrix of nb  = n na rows. If the model is a minimal realization 

(the dimension of the state vector cannot be reduced [3]), there will 

be no common factors between the characteristic polynomials of both 

Fa and Fb. In addition, we state that G has zero elements in its 
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last nb  rows and that there is at least one nonzero element in each 

of the last nb  rows of r. Then the final nb  states of the model 

belong to a measurement noise process which is distinct from the 

operation of the remainder of the plant model. This concept is 

illustrated in Figure 4.1. It is not uncommon to find this structure 

in industrial process situations where the measuring instruments are 

known to be inherently noisy. 

The purpose in distinguishing measurement noise from the rest 

of the process is to draw attention to the fact that, in the general 

case, only some of the system states in the model are under the direct 

influence of the control. For purposes of plant identification, we 

are only concerned with 

(1) system states that are observable 

(2) system states that are controllable from either the control 

input or the noise process or both together. 

The conditions for observability to which we referred in previous 

chapters are unaltered for use with this model but the conditions for 

controllability have to be modified because the model has more inputs 

than from the control alone. Thus we introduce two new assertions. 

(a) Assertion: The system is controllable by the control input and 

noise input together if, and only if, the array 

c p 
p = UV Fe F2V . . F133 

is of rank n where 

1 	CG 

(4.2-10) 

(4.2-11) 



Disturbance 
v1 

Process of 

Order n
B 

  

Disturbance 
v2 

  

Plant of 

Order nA 
Control Output 

Coloured Noise 

Figure 4.1 Plant With Coloured Measurement Noise 

0 
ati 
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and the controllability index p is defined by 

p 4 min (nm n-r-1.+1) 
	

(4.2-12) 

Proof: The assertion is sufficiently close to the theorem of 

Section 2.3 that a formal proof is not warranted. We first define 

a vector of dimension (r + 

(4.2-13) 
v1 

The problem then is to show that the image of the vector space 

N (1) EN) of dimension (r + 	spans the space of x provided that 

c Pp  is of rank n. By the Theorem of Section 2.3, the assertion is 

proved. 

(b) Assertion: Given the system description E s  by equations (4.2-1) 

and (4.2-2) and the conditions of equations (4.2-3) to (4.2-7), then 

the system is output controllable C26] in a mean sense, if the array 

oPq defined by 

01-1 Pq = CHG HFG 	HF-  G Ig (4.2-14) 

has rank m for some positive integer q of least magnitude such that 

q K- min (nm 	) 
	

(4.2-15) 

Definition: By output controllable in a mean sense, we imply that the 

expected value of any final output y(k) for any k c  q can be 



u(1) 

n(0) 

u(q) 
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reached, starting with arbitrary initial conditions in the plant 

at t = 0. 

Proof: We adapt the result of Kreindler and Sarachik [26] to the 

special model considered here and introduce a controllability index 

q into the proof. 

The expected value of the state vector of the system E s  at 

every time interval, starting from t = 0, is given by 

Ex(1) = FEx(0) + Gu(0) 

Ex(2) = FEx(0) + FGu(0) + Gu(1) 

Ex(q) = F°Ex(0) + F4-1Gu(0) + 	+ FGu(q-2) + Gu(q -1) 

(4.2-16) 

where E is the expectation operator. Premultiplying (4.2-16) by 

H and combining it with (4.2-2), we obtain 

Ey(q) HelEx(0) = [HG HFG 	HFcl -IG D] 

(4.2-17) 

We want to determine m elements of the r(q+1) vector of controls 

in (4.2-17) so that we can reach the expected value of any arbitrary 
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output Ey(q) given the expected value of the initial state Ek(0). 

Clearly, the condition for a unique solution to exist is that rank 

oPq = m for some smallest positive integer q. 

To establish a lower bound on q, we note that if rank D = m, 

it is sufficient that q = 1. For the upper bound, we take 

q = min (nm, n--r+1), the same upper bound employed in the theorem 

on controllability discussed in Section 2.3. This ends the proof. 

Suppose that one is required to calculate the control sequence to 

take (the expected value of) the output to some specified point, given 

only observations on the input and output. We can see from the last 

proof that the (states of the) plant must be observable (but not 

necessarily controllable by the input) in order that a solution to 

the control problem can be found. 

We conclude this section with the assumptions that description 

Es is 

(1) controllable by the control and noise inputs together 

(2) observable 

(3) output controllable by the control input u. 

4.3 Transformation to Stochastic Vector Difference Equation Form 

4.3.1 Introduction 

In this section, we shall transform the stochastic state-variable 

description E s, defined in the last section, into a stochastic vector 

difference equation description in the output variables y, control 
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variables u and noise variables v1  and v2. This is a direct 

application of the procedures developed in the last chapter. We 

shall find that, given observations of the control and output only, 

we are unable to distinguish between the effects of v1  and v2. 

This will lead us to a new description, Eps' in the output y, control 

u and a single vector noise e. 

Before we write down the description E ps, it will be convenient 

to introduce a slight modification in the convention used in previous 

chapters for the difference equation description. We had (3.2-9) 

A(z) = z
p 

 Im 
zP- lA1 + 	+ A (1 ) 

P m P 
Then 

A(z-1) = z-P1m + 1  + 	+ A (I ) 
P m P 

Let us define 

A*(z 1) 	iPA(z) 	 (4.3-3) 

= 	Im  + z -1A1 + 	+ z-PA
p(1m)p 

(4.3-4) 

and 

B*(z-1) 4  zPB(z) 	 (4.3-5) 

= B0  + zr1B1  + 

(4.3-6) 



Then, if 

A(z)y(t) = B(z)u(t) 
	

(4.3-7) 

it follows that 

A*(z 1)y(t) = B*(z i)u(t) 
	 (4.3-8) 

But for convenience we will drop the asterisk, that is, we mean equa-

tion (4.3-8) if we write 

A(z-1)y(t) = B(z-1)u(t) 
	

(4.3-9) 

This convention will be used in the E 	description that follows here. Ds 

A(z-1)y(t) = B(z-1)u(t) 	- 1 C(z 	1/2
e(t) 
	(4.3-1o) 

where y(t) is an m vector of the system output at time t, u(t) is 

an r vector of controls and e(t) is an m-vector of random variables 

from an m-variate normal distribution such that 

E[e(t)] = 0 
	 (4.3-11) 

Ke(t), eT(t)] = Im 	 (4.3-12) 

ECe(t), eT(T)] = I b(t-T) 
	(4.3-13) 

where $5(t -.0 was defined by equation (4.2-8). 

is an m x m symmetric matrix that will be specified later 

in the derivation of the model. Finally, 
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A(z
1
) = Im + z-1A1 + 	+ z-PA (I ) 

P m P 

B(z-1) = B 	z-1B1   ... z-PB 

C(z-1) = Im + z-1C1 + 	+ z-PC 

(4.3-14) 

(4.3-15) 

(4.3-16) 

In the case that m = r = 1, this model reduces to the single-

input, single-output model of Astrom, Bohlin and Wensmark [19]. Each 

of the coefficients A.
J 
 , B. . and C. are then scalars and_A V2  is 

a scaling constant so that the independent noise source has a unit 

variance. In the absence of control, this case is called a mixed 

autoregressive moving average model by Box and Jenkins [33]. 

4.3.2 The Stochastic Difference Equation Form in Both Noise 

Variables 

The difference equation obtained by transformation with the pro-

cedures developed in Chapter 3 has the form 

A(z 1)y(t) = B(z-1)u(t) + K(z 1)vi(t) 	L(z 1)v2(t) 
	

(4.3-17) 

Note that (4.3-17) involves both v1  and v2. 

The computational procedure to find A(z
-1  ) and B(z-1) is 

unaffected by the extension to include stochastic disturbances. That 

is, the matrix coefficients of A(z
-1) can be found by the procedure 

of Subsection 3.2.1 and the coefficients of 8(z
-1

) by the method 

of Subsection 3.4.2. 



o 

 

(4.3-20) 

Lo 
	

Im 

L1 	0 

L2 
	= T* 	0 

The coefficients of K(z-1) are obtained by step (4) of 

113. 

Subsection 3.2.1. 

K(z-1) 4 z -IK1 z - 22K 	z -Pk 

where 	K1  

= T P 17 P o p 

K p 

K2 

(4.3-18) 

(4.3-19) 

from (3.2-5). The coefficients of L(z-1) can be obtained from 

(3.4-6) by setting 

where the null matrices signify that the noise v2  does not disturb 

the system states. Then 

A L(z-1  ) = 	z -1L1  + z 2L2 + 	+ zPL (4.3-21) 

= 	Im + z-1A1 + 15
-2A2(Im)2 + 	+ z-PA

P 
 (I 
m  )P 

 (4.3-22) 

= A(z-1) 	 (4.3-23) 

by comparison with (4.3-14). 
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At time 	t, the 

obtained by subtracting 

(4.3-17). 

v(t) 	g 	A(z-1)y(t) 

	

= 	K(z i)v1  

	

= 	[K(z 1) 

	

= 	CO 	I ] 
m  

+ CI( 

disturbance 

A(z 1)3 

v1(t)  

4 	v2(t) 

A (I 
P 
	pm 

B(z-1)u(t) 

B(z-1)u(t) 

(t) 	L(z-1)v2(t) 

v1(t) 

v (t) 2 

) 
P 

in 

j  

[K1 

the 

vl(t-P)-

v2(t-p) 

from both 

A1] 

difference equation form is 

sides of equation 

(4.3-24) 

(4.3-25) 

(4.3-26) 

v1(t-1) 

v2(t-1)  

(4.3-27) 

We define the unnormalized matrix autocorrelation with delay T, 

Rv(T), of the stochastic process v(t) by the following relation. 

RV(ti) 	EV(t)vT(t-T) 	 (4.3-28) 

where c is an integer as is t. For example, Rv(0) and Rv(1) for 

the simple case in which 	p 

Rv(0) 	= 	EEO 1m  K1  Al] 

= 1 	are given 

v1(t) 

v2(t) 

v1(t-1) 

v2(t-1)  

by 

[v1(t) v2(t) v1(t-1) v2(t-1)] - 0 

Im 

K1 
T A1 

1 
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= 	[0 	Im 	K1 	Al] 

where the covariance matrices 

V11 

V
21 

0 

V12 

V22 

0 

0 

V11,  

0 

0 

V11 

V21 

V22,  

]0 

0 	- 

0 

V12 

V
22 

V12 
were 

-^ 0 

Im 

K1  

A1 

defined 

(4.3-29) 

in 

(4.2-4) to (4.2-7) 	and 	V21  = 

Rv(1) = CO 	Im 	Kl 	Al] - 0 0 0 	0 0 

0 0 0 	0 Im (4.3-30) 
V11 V12 0 	0 K1 

V21 V
22 

0 Al  

In the general case, 	Rv(0) is an m x m symmetric matrix and 

Rv(T), (1 4:T 	is also m x m but not symmetric. The auto-

correlation of the process v(t) is completely specified by 

m(m 4- 1)/2 parameters in Rv(0) and m2  parameters in each matrix 

Rv(T) for T = 1, 2, 004 p. Rv(T) = 0 for T > p. We shall refer 

to the sequence R(0), Rv(1), 	Rv(p) as the serial autocorrelations 

of v(t). 

4.3.3 The Equivalence of Stochastic Processes in a Statistical Sense 

The vector stochastic process v(t) defined by equation (4.3-24) 

is a linear function of the vector random variables fyi(T), v2(T)3 

for T = t, t-1, ipso, t-p. Since v1 and v2  are normally distributed, 

v(t) is from a normal distribution. Now a Gaussian process is completely 
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specified by all of its first and second moments. We have noted that 

v(t) has zero first moments and m(m+1)/2 + pm
2 second moments. 

Consider a new vector stochastic process v'(t). We define 

the process v'(t) to be statistically equivalent to v(t) if all 

the moments of v'(t) are equal to the moments of v(t). 

The problem with which we are concerned can now be stated: 

v(t) is a Gaussian process having rational (discrete) spectra; all of 

its (finite number of) moments are known. Can we find the parameters 

of a Gaussian process v'(t) such that v'(t) and v(t) are equi-

valent in a statistical sense? 

Since 

EVI(.e) = Ev(t) 	(4.3-31) 

(by assumption), we satisfy the above requirement if 

Rv,(T) = Rv(T) 	(4.3-32) 

+ for T = 0, -
+

1, - 2, 	p and 

R1(T) = 0 
	 (4.3-33) 

for 1 T 1 >0. 

Suppose that v'(t) is given by : 

v'(t) = (Im  + z-1C1  + 	+ z-PC )2\2/2e(t) 
	(4.3-34) 

which has the same number of degrees of freedom as moments in choosing 

the coefficients of C.
3
(j = 1, 2, .0f p) and A2/21  provided that 
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_.A2(2  is symmetric. A convenient way of determining the serial auto-

correlations for the process v4(t) is to compute the function 

ck,(z) 4 c(z)_,keT(z-1) 	 (4.3-35) 

= 	(1m  + zG1  ... + zPb P  )..k(im  + z 1C1  ... + z-Pep)T  

(4.3-36) 

Rv,(0) + zilv,(1) + z iRv,( -1) + 

+ zPR 1(13) 	z-  v,(-p) 
	

(4.3-37) 

by the definition of equation (4.3-28). For example, if p = 2, 

4, (z) = (Im  + zCi)AfIm  +Ci)T 

= 	C1   A_CT + zC1JL+ z -1(01  JO
T 

from which 

11,,(o) = 

R.0(1) = C A_ 1 - 

Rv, (-1) = 

(4.3-38) 

= 	RT '(1) 
	

(4.3-39) 

To find C(z) (or C(z -1)) and.A., given Oko(z) only, is the 

problem of spectral factorization. The usual difficulty of this 

problem is to find factors with stable roots (within the unit circle 

for discrete-time analysis). Recently, Ho and Kalman have described 
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an algorithm for spectral factorization (in the scalar, continuous-

time case) using the Riccati equation [57]. Their iterative method 

commences with an arbitrary, stable initial estimate. 

The problem in the multivariate case has been considered for con-

tinuous-time systems by Youla C58] and a general solution given by 

Davis [59]. More recently, Anderson has presented an algebraic solu-

tion to the multivariate spectral factorization problem [60; 61] 

and briefly compared the solution method with that obtained by using 

the Riccati equation. 

Because the spectral factorization solutions referred to above 

are too lengthy to record here, we shall simply note the conditions 

under which a.(z) can be factorized in the discrete-time case and 

then present a direct method for finding the parameters of the 

factors. The conditions are: 

Q (z) is a rational function in z subject to 

(a) R(z) 	aiT(z-1) 
	 (4.3-4o) 

(b) R
v
(0) -4 0 
	 (4.3-41) 

Condition (a) is satisfied if the autocorrelation terms 

Rv(T) = RiTr(-T) 	(4.3-42) 

The second condition implies that the power gain of the process v(t) 

is non-negative. 

The most direct method of finding the parameters of C(z -1) 

and 	is to employ the method of moments: Suppose that the 
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probability density of a random variable IS is a function of n 

parameters e., f(fg; e1, ..., en). The population moments are 

M.3(e1' 	en) = I idj f(e11  "' en) d$ 
	(4.3-43) 

In this univariate case, we can solve for e by computing as many 

moments lq.
3 
 as there are unknown parameters e., i = 1, 2, ..., n. 

We generalize this method to the multivariate case by choosing 

the coefficients of C(z-1) and _&. to satisfy all the moment equations 
given by (4.3-32). (The first moments are all assumed zero.) Then 

v'(t) is statistically equivalent to v(t). Note that if a solution 

is found by the method of moments, the conditions of (4.3-40) and 

- 1 (4.3-41) are satisfied. That is, if we substitute z 	for z in 

equation (4.3-37), equation (4.3-40) is satisfied. Also, if we satisfy 

Rv,(T) = Rv(T) 
	 (4.3-44) 

for all T, and Rv(0) 	0; then Rv,(0) 	0. 

The task of calculating the coefficients of C1, C2, ... Cp, 

_AY2  given Al, ... A and K1, K2, ... K is one of choosing the 

coefficients so that equations (4.3-31) to (4.3-33) are satisfied. 

There are m(m+1)/2 + pm2 independent equations (Rv(0) is symmetric) 

to be satisfied by the same number of coefficients. Unfortunately, 

because the equations are nonlinear, the solution by the method of 

moments is not unique. 

The following iterative methods of determining the coefficients of 

C/, 02 	Cp, and..A.:1/2  that satisfy the above conditions has been 



1=1,m 
j=1,m 
k=1,p 

[(x.(lc) rvt.ij(k)]2 	(4.3-49) 

used on a number of occasions without difficulty. 

(1) The elements of the autocorrelation matrices Rv
(.0 of 

the process v(t) are calculated for all integers T = 0, 1, 

as in the example following equation (4.3-28) 

Rv(T) -4- E v(t)vT(t-T) 
	

(4.3-45) 

(2) We define a process 

v'(t) = Cc,  + z-lc, 	... z-Pcqe(t) 1 

where C' is symmetric. Then the algebraic relations between the 

autocorrelation matrices 	Rvi(T) 	and the matrix coefficients 

C!, j = 0, 1, 	p 	are found. 	For example, if 	p = 2 	and 	m = 2, 

R(0) 	= 	C'2 + C1C1T + C202T 	(4.3-46) 

Rv' (1) 	= 	c'c' + C'C'T 	 (4.3-47) 1 0 	2 1 

R(2) 	= 	C'C' 	 (4.3-48) 
2 0 

In this case, we have 11 equations in 11 coefficients of C.. 

(3) A scalar cost function is devised of the form 

fc 	= 	E [ (rvoij  (0) 	rvi.ij(0)72 

120. 

p 

i=1,m 
j=1,i 
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th 
where rv.ij 
	

ith  
.(k) is the element of the 	row and j column of 

R(k) and r , ..(k) is an element of RITI(k) located at the 
v 	1j 

same place. 

(4) An iterative numerical method is employed for choosing the 

coefficients to minimize fc
. The algorithm used by the author was that 

of Fletcher and Powell [317. It requires algebraic expressions for the 

gradient of the cost function with respect to each of the elements of 

' 	1,  C! C' 	p 
C'. Recent experience indicates that the algorithm developed 

0  

by Powell [32], requiring only function evaluations, is equally 

effective (both are second order methods) and easier to program for 

a digital computer. 

To initiate the computation, it has been found convenient to 

choose C6 = [Rv(0)]
1/2 and CI = 0 for j = 1, ... p. In the 

3 

examples considered, the zeros of zPC'(z -1) have, fortunately, 

settled inside the unit circle in the z plane for this starting con- 

dition. It is clearly implied by the references on spectral factori- 

zation that solutions with zeros outside the unit circle can occur, 

yet the moment relations are satisfied. Hence the solution obtained 

by this method is not unique. 

(5) Finally, the required parameters are found by the following 

identities: 

C1  

C. . 

4  

4  

c1c ,0  -I 

010'-1  
3. 0  

(4.3-50) 

(4.3-51) 
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and 1/2 
= Of 0 (4.3-52) 

WethensubstitutetheparametersC.determined in the above 

procedure into the identity, equation (4.3-16) recalled here. 

C(z-1) = Im + z -1C1 + 	z-P0 
	

(4.3-53) 

This concludes the derivation of the EDs description, a stochas-

tic difference equation defined by 

A(z-  )y(t) = B(z-1)u(t) + c(z-1 	1  /2e(t) 
	

(4.3-54) 

which has a noise process statistically equivalent to the noise pro-

cess contained in equation (4.3-17). 

4.3.4 Some Special Cases 

In the development of the EDs description, the presence of two 

disturbances v1 and v2 was assumed. v1 corrupted the system 

states and v2 appeared as measurement noise. Let us consider some 

special cases that may arise. 

(1) P = 0; the system states are noise free. Then from 

(4.3-17) and (4.3-23) 

A(z-1)y(t) = B(z-1)u(t) + A(z-1)v2(t) 	(4.3-55) 

We define 

A(z -1)v2(t) 4  C(z-1)-A1/2e(t) 
	(4.3-56) 
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where 	C1 = A1  J\ -1/2  

C2  = A
2(Im)2-A I/2  

and 

Cp  = A 	.1`:1/2  
P
I
(  m)P 

fly2 = 1/2 
22 

(4.3-57) 

(4.3-58) 

(2) Measurement noise v2 = 0. Then from (4.3-17) 

A(z-1)y(t) = B(z-i)u(t) + K(z-1)vi(t) 	(4.3-59) 

and from (4.3-25) and (4.3-18)' 

v(t) = (z-1K1  + z-2K2 + 	z-PK p  )v1  (t) 	(4.3-60) 

If we are given a section of record of observations of the process 

v(t), we are unable to distinguish the sequence in (4.3-60) from 

v(t) = (K1  + z-1  K2 + 	z-P+1Kp)v1(t) 
	

(4.3-61) 

because we will discover that 

Rv(p) = 0 	(4.3-62) 

Hence, in this special case, when fitting matrix coefficients 

C1'  C2' 	C of C(z-1) to the matrix autocorrelations 

Rv(0), Rv(1), 	Rv(p-1) we set Cp  = 0. Note that in this special 

case, if R  < m, every autocorrelation term Rv(T) will be singular (and 

of rank 	m). Hence fitting the coefficients will take special 

consideration. 
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4.4 Transformation from the EDs- 
Description to State-Variable  

Form 

We recall that the stochastic process modelled by the state-variable 

description Es  defined by equations (4.2-1) and (4.2-2) involved two 

noise sources, v1 and v2. These disturbances were combined into 

one when the EDs description was derived after we discovered that, 

given only observations, we were unable to distinguish between v1 and 

v2 together and a vector random variable from an m-variate normal 

distribution. Thus, given only the description E Ds, we are unable to 

derive a state-variable description that includes both v1  and v2. 

Clearly, there must be a new description, E si, that is equivalent 

to the Es 
description of (4.2-1) and (4.2-2) but in which the two 

noise variables are replaced by e(t). Such a description appears 

below. 

	

x(t+1) = Fx(t) 	Gu(t) + I) S(t) 	(4.4-1) 

	

Y(t) = Hx(t) 	Du(t) +.ta/ e(t) 	(4.4-2) 

where e(t) is from an m-variate normal distribution n(0,Im). In 

this description, the system and control matrices F, G and D are 

	

identically the same as in 	the equations of the E 	description (4.2-1) 

and (4.2-2). 

We are unable to derive the Es1 description of (4.4-1) and (4.4-2) 

directly. However)  by applying the transformation procedures of Section 

3.6, we can find a state variable description of 7. -sA which is also 

equivalent to Es. The new description E  sA is 
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x( t+1) = FAx(t) + GAu(t) + A
e(t) 

y( t ) 	= HAx(t) 	D u(t) 12e(t) 

(4.4-3) 

(4.4-4) 

A 1 By noting the correspondence between B0  an d....J\ _/2  , B1 and 

Cr  /2, ... BP  and CP_AY2 can we 	 substitute directly into (3.6-2) A. 
 

and obtain 

/2 

HI; 

HET 1 

p-1 BF r 

Cl  
_1\1/2 

Cp  

Im 

= 	T* -1  p (4.4-5) 

We then find PA  in the same way that GA is found by selecting the 

appropriate n rows from (4.4-5). The procedure to find FA, GA 

and HA from A(z-1) and B(z-1) is unaltered by the presence of 

the C(z-1) terms. 

Finally, consider the two special cases discussed in Subsection 

4.3.4. In the first case, we found that for the noise process in the form 

v(t) 	(1m z -1C1  + 	z -PC )„A1(2e(t) 	(4.4-6) 

C1 = Al 

C2 = A2 

Cp  = A p  

This is the result when P = 0. Hence, IA  = 0. 

( 4.4-7) 
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In the second case, Rv(P) = 0 so that 

}MI  

AFT1  

Im 
Cl  

= T-1 
p 

(4.4-8) 
C 

Hpp-1r  
1 	p -1 

and there is no noise term in the observation equation (4.4-2). Again, 

IAA  is found in the usual way. The above can be modified for the case 

in which e < m. 
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CHAPTER 5 

STATISTICAL METHODS OF PARAMETER ESTIMATION 

5.1 Introduction and Statement of the Problem  

In this chapter, the following problem is considered. Suppose 

that we are given the data record of 

(1) a sequence of inputs ..(12(t), t = 1, 2, ... N1 

and (2) the corresponding outputs ty(t), t = 1, 2, ... N1 

of a dynamical stochastic system E. We are required to identify the 

plant in the sense that we fit a suitable plant model to the data for 

purposes of output prediction and control. 

Recall that in Chapter 1, we divided the identification problem 

into two parts. The first was concerned with finding an algebraic 

structure between the input and output variables. The second dealt with 

estimating parameters in the assumed structure. 

We shall presume that the first part of the problem is solved to 

the extent that we are justified in fitting the E ps  description to 

the data or, in other words, the mathematical relations between the 

input variables and the output variables are closely defined by the 

EDs 
description. This statement implies that: 

(1) the system is linear 

(2) the system has finite dimensions 

(3) the system is constant 

(4) the system is stable 
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(5) the system states are observable 

(6) every system state is controllable from either the control 

input or the noise process or both together 

(7) the disturbances are stationary, gaussian random processes 

with rational spectral density functions [19]. 

The first five parts above were assumptions leading to the deri-

vation of the E Ds description. The sixth part relates the disturbance 

to physical processes with rational spectra that can be conveniently 

simulated with linear elements. 

The second part of the problem, then, is the estimation of the 

parameters 

(a) n, the order of the system 

(b) p, the degree of the vector difference equation. (In one 

sense, (a) and (b) belong to the first part of the identification 

problem). 

(c) the parameters of A(z-1), B(z-1), C(z-1) and J0/2. 

Some special cases have been treated in the literature, a few 

of which are discussed below. 

(1) Al = A
2 	= A = 0, B1  = B2  = 	= B = 0, 

C1 = C2 = 	= C = 0 is the problem of multivariate regres-

sion considered by Anderson C40]. The sequence {u(k)j is known. 

(2) Bl  = B2  = 	= Bp  = 0, C/  = C2  = .•• = Cp  = 0 

is the problem of identifying a multivariate autoregressive series. 
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The problem for the single-output case has received attention from 

a number of authors, beginning with Mann and Wald [41]. A particularly 

clear exposition is provided by Box and Jenkins [33]. 

(3) Bo  = B1  = 	= B = 0, Al  = A2  = 	= A = 0 

is a multivariate, finite moving average process. Again, [33] is a 

useful contribution because it discusses both this case and its 

relation to the autoregressive series in (2) above for the single-

output case. 

(4) B0  = B1  = 	= B = 0 only. This is a combination of 

(2) and (3) and so is termed a mixed autoregressive moving average 

(ARIA) model in [33]. 

(5) c = C2 = 1 0 0 • = C 	= 0 is the problem of a system with 

observable states (no measurement noise). It has been studied by 

Kalman [42] and Lee E433 in the single-output case. 

To motivate the identification task, the reason for which the 

system model is required should be supplied. In this thesis, the 

requisite is to minimize the mean square error in predicting y(t + 1), 

given the sequence of data ily(t), u(t), y(t-1), u(t-1) . If we 

can solve this problem, we also claim that we can provide a control 

algorithm that will minimize the variance of the regulated output. 

We shall consider and compare a number of parameter estimation 

methods for solving the multivariate identification problem posed here. 



130. 

These are listed below: 

(1) classical least squares estimator (LSE) 

(2) modified least squares estimator (MLSE),developed to 

minimize the bias in the classical least squares estimator) 

(3) generalized least squares estimator (GLSE), (also known as 

the Markov estimator, minimum variance estimator or best 

linear unbiased estimator) 

(4) maximum likelihood estimator (MLE). 

In order to compare the estimators, we list and define the 

usual statistical properties of estimators C34]. 

Definitions  

(1) Unbiased estimator: An estimator '8 is an unbiased estimator 

for e if E03 = e for all e in Q. That is, the expected value 

of the estimator e is equal to the true value e. 

(2) Consistent estimator: For indefinitely increasing sample 

sizes N 

lim 	Prob (e 	< < e + E) = 
N co 

for every e in Q and every E. >0. (This is a definition of simple 

consistency [34]). 

(3) Efficient estimator: If "e' is an unbiased estimator for e 

having finite variance, and no other unbiased estimator has a smaller 

variance, then ES\  is an efficient estimator for e. Because there may 

exist estimators that are efficient in a limiting sense for very large 
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sample sizes, we prefer to use the following criterion in place of (3). 

(4) Minimum-variance unbiased estimator:  g, a function of a random 

sample from a distribution f(x;e) is a minimum-variance unbiased 

estimator for e if 

(a) E(e) = e 

(b) var(e) is less than the variance of any other unbiased 

estimator. 

5.2 Linear Least Squares Estimator  

5.2.1 Linear Regression Model 

The stochastic description Ens  is not a suitable regression 

model for least squares estimation in the form in which it appears 

in equation (4.3-10). Before we rearrange (4.3-10) into a satisfactory 

form, let us briefly describe what we mean by a linear regression 

model and a regression function. 

Suppose that the conditional expectation ECy;x] is the random 

variable which minimizes some risk function E[RCy - K(x); x]] where 

x is a vector random variable from an n-variate distribution and 

K(x) is some function of x. The quantity ECy;x], considered as 

a function of x, is called the linear regression function of y on 

x if we can write 

ECy;x] = g K0x 	(5.2-1) 

where g is an n-vector and Ko  is n x n C39]. g and K0 
 are 
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called regression coefficients. In place of (5.2-1) we can write 

Cy;x] = g KoX e 	(5.2-2) 

This is called a regression model. The residual e is a random 

variable. 

In the general case, we write 

EEYOxk'xk-1' 	xk-p] = µ + Koxk  + 	Kpxk_p 	(5.2-3) 

K(11,x) 	(5.2-4) 

where x is a vector of vectors xk, 	 xk  
-P 

The linear least squares regression problem is to determine 

and K. (j = 0, 1, ... p), such that the risk function 

R = E[y K(µ,x)]TCy - K(g,x)] 
	

(5.2-5) 

is minimized. In classical regression, it is assumed that all the 

vectors x. are random variables from an infinitely large population 

and the residuals e are unobservable, independent random variables 

from n(0,Im). 

Let us write the stochastic difference equation description E Ds  

of equation (4.3-10) as a regression model (5.2-3). We have already 

indicated a possible structure in (3.5-11) when we discussed forms of 

the ED  description. Be rearranging (4.3-10), we obtain the regres-

sion model (with i = 0): 
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y(t) = 	Aly(t-1) 	A2(Im)2(t-2) 	- A
P 
 (I 
m 

 ) 
P
y(t-p) 

+ B0u(t) + B1  u(t-1) 	+ B u(t-p) 	v(t) 

where 

v(t) = —A u 1/2e(t) + nl _J ,  h1/2e(t^1) 	C__Ki.(2e(t-p) 

(5.2-6) 

(5.2-7) 

Because (5.2-6) is a linear relation in y, u and e, we observe 

that y(t) is a random variable for all integers t if u(t) and 

e(t) are random variables. Clearly, we cannot claim that y(t-1), 

y(t-2), 	y(t-p) are independent, nor that the residuals v(t), 

v(t-1) ... are independent. 

There is no loss in generality in arranging the control sequence 

so that E u(t) = 0 and in assuming that there is no other constant 

input to the system. Then the constant term g that appears in equa-

tions (5.2-1) to (5.2-5) is not required in the regression model 

(5.2-6). It will be convenient to make this assumption throughout 

the remainder of the thesis. 

Lastly, it will be helpful to simplify the notation further by 

writing in place of (5.2-6), the regression model in general form 
Ak 
4- 

y(t) = Gx(t) + v(t) 	(5.2-8) 

where 	is an m x s matrix (s = n + (p+1)r) of regression coef-

ficients defined by 

(5.2-9) 
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y(t -1) 

(Im)2y(t-2) 

(Im)py(t-p) 

u(t) 

u(t-1) 

u(t-p) 

and 

x ( t ) (5.2-10) 

Here x(t) is not a state variable. It should not be confused with 

the use of x(t) in other places in the text where it is clear that 

it is the state-variable vector of a set of first order equations. 

5.2.2 The LSE Algorithm 

Let us rewrite the general regression model (5.2-8) in the form* 

y(t) = X(t)e + v(t) 

   

1 

  

     

 

xT(t) 	0 

0 	xT(t) 

0 

 

eI 

 

A 0 . . 0 

• 0 

xT(t)  

  

0
2 

       

       

* Note: We introduce this form here, in preference to equation (5.2-8) 
because we shall be concerned with matrix operations on y(t) and X(t) 
directly in a later portion of this chapter. 



(5.2-13) 

0 • 0 

xT(1)  . 0 

. 0 

0 . xT(1) 

0 • 0 

xT(2)  . 0 
(5.2-14) 

• . 

. . 

0 . 0 

xT(N) . 0 

0 • xT(N) 

mN x ms 

X(2) 

X(N) 

T x (1) 

0 

. 

0 

xT(2) 

0 
= 

• 

• 

xT(N) 

0 

and 

X 41  

0 
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where 	is the jth row of 4. Suppose that we observe y(t) and 

x(t) for N time intervals, N 	s m. We can arrange the data 

in the form 

= Xe v 	(5.2-12) 

where 

6 = 

y(N) 
mN x 1 

V = 
OM. 

ms x 1  

v(1)  

v(2)  

v(N) 
mN x 1 

Y 

r- 

e 

e. 

em 



From (5.2-5), the linear least squares problem is to minimize 

EvT(t)v(t) = Ely - Xe]TEy - Xe] 
	

(5.2-15) 

The minimizing LSE solution, on differentiating (5.2-15) with 

respect to e is 

ExTx] -1  )iTy 
••• 

(5.2-16) 

As this requires the inversion of an ms x ms matrix, it is advan-

tageous from a numerical viewpoint to decompose (5.2-16) into m 

separate estimators e. for each vector a.. We note that 

N 
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E XT(t)X(t) 
t=1 

N 

E x(t)x(t) 	0 	 0 
t=1 

N 

0 	E x(t)xT(t) 	0 
t=1 

N 
0 	0 	E x(t)xT(t) 

t=1 

(5.2-17) 

XTX = 

Similarly 

N 

= 	E X(t)y(t) 
t=1 

(cont.) 



N 
E x(t)y1(t) 
t=1 

N 

E x(t)y2(t)   
t=1  
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(5.2-18) 
N 

E x(t)ym(t) 
t=1 

th 
Where Y .(t) is the . element of y(t). 

This gives us the well known result UFO]: 

N 	 N 

e. = [ E x(t)xT(t)]
-1 E x(t)y.(t) 

3 	t=1 	t=1 
(5.2-19) 

whereby each row of 	is estimated separately and only one s x s 

matrix inversion is required. Alternatively, by manipulating equation 

(5.2-19), we may write the matrix estimate 

N 	 N 

= C E y(t)xT(t)]C E x(t)xT(t)]-1  
t=1 	t=1 

(5.2-20) 

N 

The matrix C E x(t)xT(t)] of equations (5.2-19) and (5.2-20) 
t=1 

can be partitioned in a meaningful way when N is sufficiently large. 

Let us define the symmetric matrix 

N 

g(N) ‘1,  E x(t)x
T
(t) 

t=1 
(5.2-21) 



N 

t=1 

u(t) - 

u(t-1) 

cuT(t)...ukt—p)] 

u(t-p) 
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y(t-1) 

(Im)2y(t-2) 

ry(t-1)...(im)pY(t—p)] ru(t) l[uT(t)...uT(t-P)]- 

u(t-1) N 

E 
t=1 

u(t-p) 

• 

(I ) py(t-p) 

F  u(t) -Ey(t-1)...(cpy(t-o] 

u(t-1) 

• 

do. 

N 

E 
t=1 

N 

t=1 

u(t -p) 

(5.2-22) 

As N approaches infinity, 

1 
Unnormalized 
autocorrelations 
(autocovariance) 
of system outputs  

Unnormalized cross 
correlations (cross 
covariance) of sys-
tem output to input 

.14(N) = 

Transposed form 
of unnormalized 
cross correlations  

Unnormalized auto-
correlations (auto - 
covariance) of system 
inputs 

(5.2-23) 
The covariance between e. and e., two rows of 4, is defined by 

cov(e1.,e.) j A E[g.3.-e.1][g%30-e.3
T 

(5.2-24) 

First let us examine just the term 
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N N 

	

e. 	e. = 	 x(t)y.(t)[ExeOljeW-1 E 	- 0. 

	

3 	J 	t=1 	t=1 	
j 

N N 

C E x(t)xT(t)]-1  E x(t)CxT(t)e. ▪ v.(t)] 	e. 
t=1 	t=1 	3 	J 

N 

	

= 	-1 (N) E x(t)v.(t) 
	

(5.2-25) 
t=1 

th where v.(t) is the j element of v(t). For convenience, we define 

S(N) 	C 
	

(5.2-26) 

N 

C 1E x(t)xT(t)]-1 
	

(5.2-27) 
t=1 

and note that S(N) approaches a constant, positive definite, symmetric 

matrix for large N (the inverse of the matrix in equation (5.2-23)). 

We also need to define the m x m symmetric matrix 

Ev(t)vT(t) :11 V 	 (5.2-28) 

withelementsV..given by ij 

Ev(t)vj(t) = Vij 
	(5.2-29) 

Now with equations (5.2-25) and (5.2-27) we can substitute in equa-

tion (5.2-24) 

N 	 N 

cov(a., 	= E S(N) E x(t)v.(t) E v.(T)x2(T) S(N) 
J t=1 	t=1 

(5.2-30) 



140. 

N 
1 	1 	T 	1 

= 7  S(N) N E Ev.(t)v.(T) — x(t)x (T) 	S(N) N t,t=1 
(5.2-31) 

If, and only if, 

Ex(t)v(t) = 0 
	

for k = 1, 2, ... m 	(5.2-32) 

can we simplify (5.2-31) and obtain the minimum variance property 1403: 

A cov(e.,e
A 	V ij N  .) = 	— S(N) (5.2-33) 

for all i = 1, 2, ... m and j = 1, 2, ... m. 

Under what circumstances is this true for the regression model 

of equation (5.2-8)? Since the first m elements of x(t) are fully 

correlated with v(t-1) (see equations (5.2-8) and (5.2-10)), then 

equation (5.2-32) is satisfied if 

Rv(T) 	Ev(t)vT(t-T) 
	

(4.3-4) 

= 0 	 (5.2-34) 

for all integers T / 0. This is the case when the stochastic system 

is an autoregressive process only and C. = 0 for j = 1, 2, ... p. 

In this circumstance alone, the LSE for E given by equations (5.2-19) 

or (5.2-20) is the maximum likelihood estimator for 	[40]. 

5.2.3 Limitations of the LSE 

In the following, we consider only the complete mixed autoregressive 

moving average model (with control terms) given by equation (5.2-6). 



The LSE was given by equations (5.2-19) and (5.2-20). 

(1) Bias: The least squares estimator for the parameters of 

the regression model is biased. This is apparent on substituting 

equation (5.2-26) into equation (5.2-25) from which we obtain the 

bias term: 

N 	 N 
/N  e. e. = E E x(t)xT(t)]-1 E x(t)v.(t) 	(5.2-35)  
J 	3 	t=1 	t=1 

N 

= S(N)—N E x(t)v.(t) 	(5.2-36) 
t=1 

N 

S(N) E v.(t) 
t=1 3  

y(t -1) - 

(1m)2y(t -2) 

(Im)py(t-p) 

u(t) 

u(t-p) 
	

(5.2-37) 

Since every observation y(t-k) is a linear combination of e(t-k), 

e(t-k-1),...,e(t-k-p)fork=1,2,...pandv.(t) is similarly 

a linear combination of e(t), e(t-1), 	e(t-p), we can see that 

v.
3
(t) and y(t-k) are correlated for k = 1, 2, ... p (t-k> 0). 

We also recall that S(N) is a constant matrix for N large. Provided 

that the control sequence iii(t)15 is independent of the observations, 

it follows that: 



	

E[g. 	S(N) Ev.(t) 

	

J 	J N-4 CO 
y(t-1)1  

(Im)2y(t 
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= S(N) 
N--oaD 

An n-vector of nonzero constant 
elements, the unnormalized corre-
lations of v.(t) with v.(t-T) 

for T = 1, 2, ... p. 

(Im)py(t-p) 

0 

0 	 (5.2-38) 

An (s-n) vector of zeros 

o 	 (5.2-39) 
A 

Hence e
j is biased and 9 is biased. 

(2) Consistency: Clearly, the LSE is not consistent for the 

case discussed because /• converges to a biased value rather than 

its true value. 

(3) Efficiency: Here we shall  simply state that there is a 

more efficient estimator for 49. than the LSE for they Ise discussed. 

This is well known for the single observation case and follows directly 

for the multivariate case. 

We conclude that in the mixed autoregressive moving average (ARMA) 

model, the LSE is not an unbiased, minimum variance estimator. 
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5.3 Sequential Least Squares Estimator  

In the previous section, the least squares estimator required the 

inversion of an s x s matrix (s = n (p+1)r) with which each row 

of 49. was estimated in a separate operation. We shall now show that 

matrix 9 can be updated, row by row, each time that new data is made 

available. The convergence properties will be discussed briefly. 

Recall the regression model, given by equation (5.2-8) 

Y(t) = ex(t) + v(t) 	(5.3-1) 

A 
Let us define e<N) as the LSE for e given the set of data 

	

tY(1), y(2), ... y(N), x(1), x(2), 	x(N) 	and eyN) as the 

LSE for e.(N) for the set of data 1-5r.(1), y.(2), ... y.(N), x(1), . 
x(2), ... x(N)::; . The current estimate of the jth row of € is: 

N 	 N 
E x(t)xT(t)]-1 E x(t)y.(t) 	(5.3-2) 

t=1 	t=1  

N 

	

= 4 -1(N) E x(t)y.(t) 
	

(5.3-3) 
t=1 

by the definition of equation (5.2-21). Clearly 

N 

"e‘.(N4.1) = d-1(N-1-1)[ E x(t)y.(t) x(N+1)y.(N+1)] 

	

t=1 	3 

(5.3-4) 

By the matrix inversion lemma 

n —1 Q6 (N+1) EQe(14) 	x(N1-1)xT(N.0)] -I 

-1(N) 	d -"i(N)x(N.11).T(N4-1)4 -1(N)  

xT(14.1) -1(N)x(N-0) 

(5.3-5) 

(5.3-6) 
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N 
N 	-1

M  x(111-1)3cT(14-1-1  4 -1(N)  t z :=1 "Yi(t)  `3‘.(N+1) . a-i 	 8(N) E x(t .(t) - 
3 	t=1 	

)y3 	
xT(N+1)i-1(N)x(N+1) + 1 

kl(N)x(N+1)x2(N4.1)J -1 	. 	) + -1(N)x(N+1)y.(N+1) 	 (N)x(N+1)5rj(N+1  
xT(N+1)a 1(N)x(N+1) + 1 

(11)1c(\141)CY.(14-1.1) ....j(N+1)e.(N) 
= e`.(N) 

xT(N+1)3-1(N)x(N+1) + 1 
(5.3-7) 

This.is a normalized- form of the Kalman sequential estimating equation. 

This algorithm is useful for the estimation of e ifimmediates estimates 

are required in an on-line situation. Of course, because it is identi-

cal to - the estimator givenby equations.(5.2-19) or (5.2-20), it is 

also subject to the limitations of the LSE set out in Subsection 5.2.3. 

The bias arises because of the correlation between x(N+1) and 

Y3  .(ff+1) in the numerator of equation (5.3-7). 

Let us rewrite (5.3-7) in terms of the matrix S(N) which approaches 

a constant as N--04co: 

S(N)x(N+1)Cy.(N+1) xT(N+1)14;(N)] 
13.(N+1) 	= 	1?i..(N) + 	3  

xT(N+1)S(N)x(N+1) + N 
(5.3-8) 

If the system is stable and the input is bounded, the inner 

product xT(N+1)S(N)x(N+1) has a constant upper bound. Clearly, . 

the denominator term increases with N. Also, the numerator term 

Y.(14-1) 	IcT(4-1-1)1e.(N) 	 (5.3-9) 

= T(N+1)Ee. le\.(N)] + v.(N) 	 (5.3-10) 
J 

Then 



11+5. 

tervistodecreaseas ie)̀.(N) approaches constant value for increasing 
3 

N. Convergence of the algorithm can be established from the equation 

obtained by combining (5.3-10) with (5.3-8). 

'w.01.4.1) = [I 	S(N)x(N+1)xT(N+1)  
3 	xT(N+1)S(N)x(N+1) + N 	3  

S(N)x(N+1)  
T. 	v. 	(5.3-11) 
x kN+1)S(N)x(N+1) + N 

where 	/.1ij).(N) 	e.
3 	

(5.3-12) 

The subject of convergence is discussed by Lee [43] and Mayne [44]. 

Lee shows that, as N--)10000, the estimate becomes independent of the 

initial conditions assumed. 

We note that if x(N+1) is correlated with yi(N+1) in equation 

(5.3-8), the estimate will converge to an incorrect (biased) value for 

the reasons discussed in Subsection 5.2.1, unless 

	

Rv(T) = 0 
	(5.2-13) 

for all integers T / 0. Again we conclude that the LSE is 

(1) a biased estimator 

(2) not a consistent estimator 

for the parameters of the multivariate ARMA regression model of (5.2-6). 

Clearly, a more suitable estimator is required. 
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5.4 Generalized Least Squares Estimator 

5.4.1 The Classical Viewpoint 

In the last section on linear least squares regression, the rows 

of 4 were determined so that the risk function 

R = ECy(T) 	ex(T)JTCy(t) -,09c(t)] 	(5.4-1) 

= EvT(t)v(t) 
	

(5.4-2) 

was minimized. The difficulties encountered (biased, inconsistent and 

nonminimum variance estimates for 4) were attributed to the correla-

tion arising between the variables x(t) of the regression model and 

v(t) when the stochastic disturbance v(t) exhibits serial correlation. 

The method of generalized least squares estimation (GLSE) [46] is 
to transform the data so that the elements of the transformed noise 

sequence have zero autocorrelation for ¶740. The solution in the case 

of scalar (m = 1) observations y(t) of a process in the variables 

x(t) is to find a matrix T so that the variance-covariance matrix 

of the transformed noise process becomes: 

ETvvT TT  = X IN 	(5.4-3) 

where A2  is the variance of the "whitened" noise process. To find 

this transformation T, it is necessary to have complete knowledge of 

the N x N variance-covariance matrix of the noise process, EvvT 

(For the scalar observation case, the variance-covariance matrix 

R T  
im 	is a Toeplitz matrix.) The well known solution in this case is 



147. 

(compare with equation (5.2-16)): 

= 	[X
TTTTx] -1XTTTTy 
	

(5.4-4) 

in the notation of the last section. With 

[TTT] = A2[EvvT]-1 
	

(5.4-5) 

the GLSE is unbiased, efficient and consistent. However, in order to 

acquire these advantageous properties, it is obvious from equation 

(5.4-5) that a complete description of the noise process is required in 

order to compute the matrix TTT. A clear exposition on the subject 

is given by Johnson [47] for scalar observations. 

5.4.2 The Filtering Viewpoint (m = 1) 

In this subsection, we review the method of generalized least 

squares estimation for the following conditions: 

(a) The system model in the form of the Ds 7 	description is: -  

A(z-1)y(t) = B(z-1)u(t) +Xe(z-1)e(t) 	(5.4-6) 

(b) The observations are scalar (m = 1). 

(c) The parameters of C(z
-1 
 ) are known. 

(d) Updated estimates of the parameters of A(z-1) and 

B(z-1) are required at every time interval. 

Mayne [44] has suggested filtering the input and observed output 

sequences as in Figure 5.1 to obtain: 
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\ Output 
y(t) 

	 Plant Control 
u(t) 

Filter 

c
-1

(z
-1

) 

Filter 

c-1(z-l) 

y*(t) u*(t) 
Ass e mble 
x*(t) 

Estimate 

e 

Least Squares 

Estimator 

Figure 5.1 Generalized Least Squares Estimator 

(m = 1) 



y*(t) 1  y(t) ; u*(t) = 
C(z 1) 

u(t) 
c(z) 

(5.4-7) 1 
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Substituting for y(t) and u(t) in (5.4-6): 

A(z-1)C(z-1)y*(t) = B(z-1)C(z 1)u*(t) .4AC(z-1)e(t) 	(5.4-8) 

Because C(z 1) commutes with A(0-1) and B(z 1) (for m = 1 only), 

the transformed system model obtained by premultiplying (5.4-8) by 

C
-1
(z-1) is: 

A(z-1)y*(t) = B(z-i)u*(t) -0\e(t) 	(5.4-9) 

In the transformed system model of (5.4-9) the noise sequence is 

independent and uncorrelated with its past. The parameters of 

A(z-1) and B(z-1) can then be obtained by applying the conven-

tional least squares estimator given by equation (5.3-7) (for j = 1). 

The regression model is 

y*(t) = eTx*(t) +\e(t) 

where e is an s -vector and 

y*(t-1) 

y*(t-2) 

x*(t) =  
e(t-n) 

u*(t) 

u*(t-1) 

u*(t-n) 

(5.4-10) 
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Estimation by this method has also been discussed by Briggs, Clarke 

and Hammond [48] for the identification of control systems with dis-

turbances that are serially correlated. Again,the disadvantage of the 

method is that the parameters of the noise process are required. 

5.4.3 GLSE When the Noise Process is Unidentified 

A number of authors have sought the advantages of GLSE by 

estimating the parameters of the noise process separately from the 

remaining parameters of the system model (m = 1). 

Durbin [49] appears to have been the first to suggest a two•-stage 

estimation prodedure. Tretter and Steiglitz [50] obtained the para-

meters of a mixed autoregressive moving average stochastic system by 

least squares estimation of the parameters of A(z
-1
) and direct 

search for the parameters of C(z
-1) to minimize the variance of the 

residuals. Clarke [51], adjusted the parameters of an all-pole filter 

approximating the function of the ideal filter discussed in the last 

subsection for "whitening" the residual noise sequence. Norris has 

investigated special cases in which the latter two methods may fail [52]. 

5.4.4 GLSE in the Vector Observation Case (m 

Filtering the observation and control sequence in the vector 

observation case (m > 1) is not a simple extension of the method 

for the scalar observation case. The reason is that the algebraic 

operation between equations (5.4-8) and (5.4-9) (commuting C(z 1) 

with A(z-1) and B(z-1)) is invalid if A(z-1), B(z-1) and C(z-1) 
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are matrix polynomials for which m ›.1. In the following, we show 

that the principle of removing serial correlation by filtering can be 

extended to the multivariate observation case. The design equations 

for a suitable multivariate filter are developed. 

The regression model in general form (see equations (5.2-8) to 

(5.2-13)) is: 

y(t) 	= 	ex(t) 	v(t) 

= 	X(t)e 	v(t) 

(5.4-11) 

(5.4-12) 

where 	e 	is defined by equation (5.2-13) and 

xT( t) 	 0 	0 0 

0 	xT(t) 	0 0 
x(t) (5.4-13) 

is a matrix of 

• • 

0 	0 	0 

m 	rows and 	ms 	columns. 	Recall 

xT(t) 

v(t) 	= 	o(z-1)._,&2e(t) (5.4-14) 

Substituting in (5.4-12): 

Y(t) 	= 	X(t)e 	C(z-1)A2e(t) (5.4-15) 

Then 	C-1(z-1)y(t) 	= 	C-1(z-1)X(t)e + 21/2e(t) (5.4-16) 

It will be convenient to rewrite (5.4-16) as 

y*(t) 	= 	X*(t)e +.K112e(t) (5.4-17) 
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which should be compared with the model of equation (5.4-12) in which 

the stochastic process v(t) is serially correlated. Also, (5.4-17) 

should be compared with the filtered equation (5.4-9) for the simple 

case (m = 1). Note that X*(t) is uncorrelated with e(t) in the 

transformed model of equation (5.4-17). This is a necessary condition 

for the unbiased, least squares estimation of 4 from the filtered 

data. 

The remaining problem is to design the filters in terms of the 

parameters of C(z-1). 

(a) The filter to obtain y*: 

From equations (5.4-16) and (5.4-17) 

y*(t) = C-1(z-1)y(t) 	(5.4-18) 

That is 
	CI + z-1C1  + z-2C2 + 	z-PC

p
Jy*(t) = y(t) (5.4-19) 

Writing out equation (5.4-19) in full and rearranging, we obtain: 

y*(t) = -ECiy*(t -1) 	C2y*(t -2) ... + Cpy*(t -p)] + y(t) 	(5.4-20) 

which is simply the recursion relation of a multivariate dynamical 

process of order p. This is the design equation of the multivariate 

filter to find y*(t). 

(b) The filter to obtain X*(t): 

Following the same derivation as in (a), we obtain: 

[I + z-1C1 + z-2C2 	000  + 	z PC ]X*(t) = X(t) 	(5.4-21) 
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That is: 

X*(t) 	Ec1  x*(t-1) 	C2X*(t-2) 	
C X*(t-p)] + X(t) (5.4-22) 

Note that (5.4-22) is the matrix difference equation of a dynamical 

process. Although X(t) is a matrix comprised mostly of zeros and 

rows that contain the same information (see equation (5.4-13)), 

X*(t) is a full matrix of rows that do not resemble each other. 

Provided that the sequence of inputs fu(t)l- is from an r-variate 

distribution of random variables, we are assured that the elements of 

X*(t) are random variables because only linear operations are 

involved in deriving X(t) and X*(t) from -1(u(t) and ke(t)",). 

Equations (5.4-20) and (5.4-22) are the design equations of the 

digital filters employed to filter y(t) and X(t) as shown in 

Figure 5.2. Note that the filters are identical. The fact that one 

filter is excited by a vector process and the other by a matrix process 

is irrelevant. It is easy to see this after partitioning X(t) and 

X*(t) into s column vectors of dimension m. We note that the k
th 

column of X*(t) is dependent (or excited by) the kth  column only 

of X(t). Hence the same algorithm (or computing subroutine) can be 

used to update y*(t) and each column of X*(t) in turn. 

5.4.5 Filter Stability 

In designing filters, the question of stability arises. Will 

the output of the filter remain bounded over any finite interval of 

time when excited by any arbitrary sequence of bounded inputs? To 

answer this question, we must evaluate all the natural modes [25] 
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Figure 5.2 Generalized Least Squares Estimator 

(m > 1) 
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of the filter. 

The filtering equation may be written as 

C(z-1)y*(t) = y(t) 	(5.4-23) 

This is a vector difference equation of order p in which each of 

the matrix coefficients C. (j = 1, 2, ... p) is m x m. This 

fact facilitates the reduction of equation (5.4-23) to a set of mp 

first order difference equations by the methods of Section 3.6. We 

obtain the 

form by inspection: 

discrete-time state transition matrix 

0 m 	0 

FA 	in 

0 

canonical 

0 0 m 
0 

FA = . . . 	. . (5.4-24) 
0 0 0 	. I

m 

-C -C -c 	. -G 
ID p-1 p-2 1 

The filter of equation (5.4-23) is stable provided that the eigen-

values of FA 
fall within the unit circle in the z plane. 

In what circumstances can some or all of the eigenvalues of FA  

fall outside the unit circle in the z plane? This is the case when 

zeros of the stochastic process C(z)(t) are found outside the unit 

circle, corresponding to zeros of a continuous-time process in the 

right-hplf s-plane. Such conditions are encountered in real situations 

that exhibit nonminimum phase characteristics. 
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We shall consider two possible solutions to the problem if the 

above conditions are encountered and illustrate the discussion with 

examples for the case m = 1. 

(1) Reduce the order of the filter, so as to exclude compensa- 

tion for the "troublesome" zeros of the noise process. 

Suppose that the noise process is given by 

v(t) = (1 - 1.5z-1)e(t) 	(5.4-25) 

which has a zero at z = 1.5. The corresponding filter to "whiten" 

this process has a pole at the same location. Clearly, it is unstable. 

The solution proposed above is unsatisfactory because the filter of 

reduced order is zero order and no compensation is offered. Least 

squares estimation of the parameters of a system driven by this noise 

would lead to biased estimates. 

(2) Find the best stable filter that will "whiten" the noise 

process. The solution to this problem is a special case of the solu-

tion given by Wiener for the optimum realizable linear filter that 

minimizes the mean-square error between a "desired" signal corrupted 

by additive white noise and the observed output signal [62]. Because 

the "desired" signal is zero and the noise source e(t) is white, the 

problem is greatly simplified. 

Consider the following filtering equation in which the filtered 

output is given by y(t) and the correlated disturbance by v(t). 
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A(z-1)y(t) = v(t) 	(5.4-26) 

where 	v(t) = C(z-1)e(t) 	(5.4-27) 

is a moving average stochastic process of order n. The sequence 

{e(t)S is from n(0,X). 

The problem is to find the polynomial coefficients of A(z-1) 

so that: 

(1) Ey(t)y(t-T) = 0 for all T / 0. 	(5.4-28) 

(y(t) is then a white noise process). 

(2) The roots of A(z-1) are within the unit circle in 

the z plane; that is, the filter is stable. Clearly , A(z-1) 

and 	C(z
-1  ) must have the same number of real zeros and complex 

zero pairs to satisfy equation (5.4-28). 

- 1 Let us write C(z ) in factored form as the product of real and 

complex roots to be annihilated or compensated by real or complex 

(but stable) roots of A(z-1). The roots are enumerated as follows. 

There are: 

(a) p1  real roots within the unit circle; that is (1 + 1a.z-1) 

is a factor of C(z-1) to be annihilated by (1 + 1aiz-1), a 

factor of A(z-1) for i _ = 1, 2, ... p1. 

(b) p2  real roots outside the unit circle; (1 + 2  a.z
-1 
 ) is a 

, 
factor of C(z-1) to be compensated by (1 + 2a.  a.z

-1 
 ), a factor 

of A(z-1) for i = 1, 2, ... p2. 

-1 
(c) q1  complex root pairs inside the unit circle; (1 + ibiz + c.z

2 

	

1 	) 

is a factor of C(z-1) to be annihilated by (1 + 1kz-1  + /yiz-2), 
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a factor of A(z 1) for i = 1, 2, ... q1. 

(d) q2  complex root pairs outside the unit circle; (1 + b.z
-1 

2 z- + c. 2 
23. )  

is a factor of C(z
-1) to be compensated by (1 + 2 

 p.z
-1 + 2y z-2) ' 

a factor of A(z 1) for i = 1, 2, ... q2. 

pftC(z- 	
p1 

1) = 	(1 	1aiz 
1, 
- 	(1 + 23.  a.z ) 

i=1 	i=1 

c11 	g2 
. 	(1 + 13.  b.z 	1 + c.z-2) II (1 	2  b.z-1 	23.  

c.z-2) 
i=1 	i=1 

(5.4-29) 

An identical equation can be written for A(z -1) with the replacement: 

a for a, p for b and y for c. 

The problem can now be restated: 

Find a3..,P3. . and Yi 
 so that Ely(t)y(t-T) = 0 for T 0. The 

problem is solved if the (discrete) spectrum of the output y(t) can 

be demonstrated to be representative of a white noise sequence. 

We assume that the original disturbances of the system have 

rational spectra so that the white noise source e(t) also has a 

rational (discrete) spectra given by Iee
(z). The filter is linear 

and a1., p1  
. and yi  are chosen so that the filter is stable. The 

discrete-process spectral density of y(t) is given by 

C(z)C(z
-1
)  T (z) 	I(z) 

YY 	A(z)A(z-1) ee  

We require: 

(5.4-30) 

YY
(z) = (constant) . Iee

(z) 
	(5.4-31) 

Then 



We choose: 	tai  = lai  for i = 1, 2, ... p1  

1pi  = lbi  for i = 1, 2, ... 

ici  for i = 1, 2, ... q1 

With this substitution, the poles of A(z-1) within the unit circle 

cancel the zeros of C(z-1) within the unit circle, leaving: 

p2 
IT 	(1 + 22.  a.z)(1 + 2  a.z

-1) a. 
1 1 =  

0 (z) = 
YY 	P2 	-1 iT (1 + 2ai

z)(1 	2a.z ) i=1 

q2 
.7 	 ‘ (1 	

2 	2 b.z + c.z2N, 	23. + b.z-1  + 2ciz
-2  ) 

i=1 

	

c12 	 -1 
2 

	

T{ 	2 	2 	2 (1 + p.z + y.z2)(1 + a. 	+ y.z-2) 
i=1 

(5.4-32) 
The solution to satisfy (3.4-31) is: 

tai = 1/2ai - 

for i = 1, 2, ... p2, and 

	

2pi 	2bi/2ci  

2 

	

y. 	= I/
2  c. 

(5.4-33) 

(5.4-34) 

(5.4-35) 

for i = 1, 2, ... q2. Substituting the above values in equation 

(5.4-32) we obtain: 

159- 

bee 
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p2 	q2 
g (z) = T[ a. IT c. 
YY 	1=1 1  i=1 i ee 

(5.4-36) 

That is, if the variance of the white noise source e(t) is X2, the 

variance of the white noise of the output y(t) is given by 

P2 	q2 TT a. IT c.  
i=1 1  

It can be shown that the filter defined by A(z-1) 

is the optimum (minimum mean-squared error) stable filter given by 

the Wiener theory. 

Example (1): 

v(t) = (1 2z-1)e(t) 
	(5.4-37) 

From equation (5.4-33), we choose 

A(z-1) = (1 - 0.5z-1) 
	

(5.4-38) 
Then 

a (z) 	(1 - 2z-1)(1 - 2z) 	
pa.(z) YY 	(1 -- 0.5z 1)(1 - 0.5z) -- 

1 - 2z - 2z-1
1 
 4  

ee(z)  
1 - 0.5z - 0.5z + 0.25 

4  1 - 2z - 2z-1  + 4  
ee(z)  

4 - 2z - 2z-1  1 

= 4 ee(z) 

and 
	Ey2(t) 	4  A2 	 (5.4-39) 
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Example (2): 

From equations 

Then 

(z) 	_  
YY 

= 

and 

	

v(t) 	= 	(1 + 2z-1  + 2z-2)e(t) 

(5.4-34) and (5.4-35) 

	

A(z-1) 	= 	1 + z-1  + 0.5z-2  

(1 + 2z + 2z2)(1 + 2z
-1 

+ 2z 2) 
ee (z) 

(z) ee 

(5.4-40) 

(5.4-41) 

(5.4-42) 

(5.4-43) 

- 1 	-2 (1 + z + 0.5z2)(1 + z 	+ 	0.5z 	) 

9 + 6z + 2z2 + 6z-1  + 2z-2 

2.25 + 1.5z + 0.5z2 + 1.5z-1  + 0.5z-2 

4g 	(z) ee 

E y2(t) 	2 

We conclude that, given a description of a stochastic process with 

a finite number of nonzero serial autocorrelation terms (a finite 

moving average process), we can always find a stable filter to effec-

tively remove the correlation. Although reported here in detail only 

for the case in which m = 1, the writer has found that the principle 

can be extended to the multivariate case for m 1. To establish 

the principle (but not the details of finding the parameters of the 

filter), we prove the following: 

Given the finite moving average stochastic process of order p 

v(t) = C(z-1)e*(t) 	 (5.4-44) 
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such that 

(1) Ee*(t) 	= 	0 (5.4-45) 

Ee*(t)e*T(t-T) 	= 	for 	T = 0 

(5.4-46) 

= 	0 	for 	¶ / 0 

(2) R(z) 	L-62 	C(z)11,pT(z-1) (5.4-47) 

= 	Rv(0) + zRv(1) + z iRv( -1) 

zPRv(p) 	z-PRv(-p) 

= A.7( z-i)  (5.4-48) 

(3) Rv(0) 	0 (5.4-49) 

Then we can find a stable filtering equation 

y(t) (5.4-50) 

such that the roots of the characteristic equation for A 1  (z
-1 
 ) are 

within the unit circle in the z plane and 

Ey(t)yT(t-T) = 0 for T 0 	 (5.4451) 

The proof is based on being able to factorize eq(z) by performing 

the discrete-time procedure analogous to the continuous-time method 

for spectral factorization given by Anderson [61] and referred to in 

Subsection 4.3-3. The factorization of dq(z) requires assumptions 

(2) and (3) above. Now 
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§ YY (z) = A-1(z).1 vv(z)[A-1(z-1)]T 	(5.4-52) 

where 

vv(z) = C(z)1e*e*(z)CT(z
-1 

 ) 

= C(z)_N3T(z-1) 	(5.-53) 

g R(z) 	 (5.4-54) 

By assumptions (2) and (3) above, we can find a matrix polynomial 

A(z-1) such that 

A(z)AT(z -1) =GR(z) 	 (5.4-55) 

Then substituting equations (5.4-54) and (5.4-55) into (5.4-52), 

we find 

YY(z) = Im 

Performing the inverse transform, then 

Ey(t)yT(t-T) = Im for ' = 0 

= 0 	for T / 0 

(5.4-56) 

(5.4-57) 

as required. 

We conclude that a generalized least squares estimate can be found 

for the parameters of the system model (equation (5.4-6) without imposing 

restrictions on the zeros of C(z
-1). However, in such circumstances, 

the estimates obtained are not minimum variance. This point is of 

little practical interest because the minimum variance estimator requires 

an unstable filter. 
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5.4.6 The Estimating Equation 

Finally, we consider the least squares estimating equation for 

El., given filtered data y*(t) and X*(t). Substituting directly 

into equation (5.2-16) for /a, we obtain 

= 	[X*TX*] -1x*  y* 
	(5.4-58) 

from which the rows of e• can be worked out from equation (5.2-13). 
A 

Alternatively, 9 may be updated with each new set of observations 

y*(N) and X*(N) by updating the complete vector e(N-1), m times, 

taking each transformed observation yt(N) in turn for j = 1, 2, ... m. 

The variance-covariance of e ^ is given by: 

E[e—e][8—e] T  = EX*TX*] -1X*11,AX*CX*TX*] 
	

(5.4-59) 

It is quite likely that (5.4-59) can be simplified. 

5.4.7 The Estimator for _A_ 

To estimate 	we observe from equation (5.4-17) that 

y*(t) = X*(t)e _A1/2e(t) 
	(5.4-6o) 

where _7\1/2 is assumed symmetric. If we proceed directly, using 

(5.4-60), we obtain 

E_A_ = E[y*(t) 	X*(t)e][y*(t) X*(t)eJT  

= E[y*(t)y*T(t)] - EEY*(t)e
T
X*
T
(t) + X*(t)ey*T(t)J 

	

Epc*(t)eeTX*T(t)] 
	(5.4-61) 
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This equation, although correct, is not acceptable for computing 

purposes because it requires complete storage of both X* and y*. 

Hence, a method that minimizes storage is desired. This is the feature 

of the following solution to the problem of estimating_k. 

Equation (5.4-60) can be rewritten 

eT 	0 	. 	0 	x*(t) 1 1 
T e 0 	. 	0 	x(t) 2 	-I- fee(t) 

. 	0 	0 

y*(t) = 

0 0 eT 

 

(5.4-62) 

     

where x*.T(t) is the jth  row of X*(t). Replacing equation (5.4-62) 

by the following new notation: 

y*(t) = EeT]x*(t) _i /2e(t) 	(5.4-63) 

we rederive the expression for 

E_/\_= ECy* (t)y*T(t)] P ECy*(t)x*T(
o[eT reT1 x*(t)y*T(t)]  

EUeT]x*(t)x*T(t)EeT]T] 	(5.4-64) 

Now we substitute for y*(t) in this last equation, using the fact 

that Ee(t)x*T(t) = 0. Thus 

EEY*(t)Y*T(t)] EE[eT]x*(t)x*T(t)CeT] 

521T1 x*(0x*Tmely] BEreT]x*(t)  
(t)CeT3 	(5.4-65) 

= ECY*(t)y*T(t) CeTlx*(0x*TWEeT] 	.(5.4-66) 



t=1 
1 = E y*(t)y*1(t) (5.4-67) 

t=1 - 
S2 = E x*(t)x*T(t) (5.4-68) 
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The feature of equation (5.4-66) is that it is sufficient to store 

the following two arrays: 

which is m x m and 

which is ms x ms, but being symmetric, can be stored in compact form. 

The unbiased [40] estimator for _!\_is then given by 

= , 
e] N

1 
m  r 

 
'"1 	2 C  (5.4-69) 

5.5 Modified Least Squares Estimators  

5.5.1 Introduction 

Again, we recall that the difficulties encountered in obtaining 

an unbiased, minimum variance estimator were attributed to the corre-

lation arising between x(t) and v(t) of the regression model given 

by equation (5.2-8) and restated here: 

y(t) = 9x(t) + v(t) 	(5.5-1) 

Suppose that, in place of postmultiplying both sides of (5.5-1) by 

x(t) and summing as below for the first part of finding the LSE for 

N 	 N 	 N 

E y(t)xT(t) = 8 E x(t)xT(t) + E v(t)xT(t) 
	

(5.5-2) 
t=1 	t=1 	t=1 
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we postmultiply by the vector x(t), an estimate of x(t) subject to 

the condition that 

Ev(t);?(t) = 0 	 (5.5-3) 

This is the underlying principle of the method proposed by Rucker 

[53] and generalized by Levadi [51+,  55] for the continuous time esti-

mation of parameters in systems in which m = 1. 

The remainder of this section is devoted to ways of determining 

X(t) from current running data so that unbiased estimates for 43. can 

be updated on-line for real-time identification, prediction and control 

purposes. 

5.5.2 The Rucker-Levadi Method 

The main principle of the method proposed by Rucker [53] and 

improved by Levadi [54, 55] can be stated in our notation for discrete-

time problems as follows. (Our notation extends the method to include 

cases for which m 7 1). The (noise-free) system model with output 

Y(t) is given by (in our notation) 

A(z-1)5(t) = B(z i)u(t) 	(5.5-4) 

The measurement noise, 	is additive at the output, that is: 

y(t) = 5(t) Y(t) 	(5.5-5) 

Then 	A(z-1)y(t) = B(z-i)u(t) A(z-1)3.(t) 	(5.5-6) 
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The regression model and the system model (before the measurement noise 

is added) are respectively given by 

y(t) = ex(t) + v(t) 	(5.5-7) 

y(t) = 431.7c*(t) 	 (5.5-8) 

where 

y(t-1) 

y(t-2) 

y(t-p) 
x(t) = 

u(t) 
7c(t) = (5.5-9) 

u(t-p) 	u(t-p) 

The estimating method is iterative. At each new scalar observa- 

tion, the following steps are taken. 

(1) A system model output 9(t) is synthesized by the model 

y(t) 	(t-1; y(t-1), x(t-1), 2(t-1))CW (5.5-10) 

where: 	(a) 9(t) is an estimate of 7(t); 

(b) ;(t) is an estimate of x(t), updated by the inclu-

'sion of 9(t-1) (from the last iteration) and u(t); 

(c) y(t-1), x(t-1), ";t-1)) is the most recent 

estimate for Q., conditional on the observation y(t-1), 

x(t-1) and the estimate 1kt-1). 
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(2) The estimate €kt;  y(t), x(t), x(t)) is obtained by a sequen-

tial LSE algorithm. See reference [54] for the details of the sequential 

estimator used by Levadi for the continuous-time updating of 9 for the 

case in which 4 is a vector of three elements. 

Rucker used x(t) everywhere in the estimating equation. Levadi 

[54] shows why this method can fail. Because 2(t) is correlated 

with y(t) (hence not correlated with v(t)), it is claimed that the 

estimator is unbiased and consistent. It is not a minimum variance 

estimator. 

Clearly, the method is not generally applicable to the systems 

considered in this thesis because the method identifies only that part 

of the system persistently excited by -tu(t)3. However, the principle 

has merit which can be exploited further. 

5.5.3 Mayne's Method 

Mayne has published an independent method of obtaining x(t) by 

a two-stage estimating scheme so that equation (5.5-3) is satisfied 

[20, 56]. We shall review his method for the case m = 1 and It.u(t) 

assumed independent. 

Suppose that the serial autocorrelations Rv(T) defined by 

equation (4.3-41) are zero for T > n. Mayne regresses y(t) on to 



y(t-n-1) 

y(t -n -2) 
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y(t-2n) 

u(t) 

u(t-1) 

(5.5-11) 

u(t -2n) 

The corresponding regression model is: 

y(t) = $Tµ(t) + v(t) (5.5-12) 

where )/(t) is a linear combination of v(t), v(t-n-1), v(t-n-2) 

v(t-2n) and 14 is a vector of regression coefficients. Clearly, 

1.1(0 is not correlated with v(t). Although 12.  is biased when 

obtained by a least squares estimator, the sequence of predictions 

9(t-1) 	/4(t..1) 

y(t -2) = Aµ(t-2) 

(5.5-13) 

y(t-n) = 41(t-n) 

is not. Hence 
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F 9(t_1) 

9(t...2) 

x(t) = &'(t-n) 

u(t) 

u(t-n) 

(5.5-14) 

is uncorrelated with v(t). 

In a real-time estimation situation, ffts5 and 	are updated 

together. The model in 	is used to provide up-to-date running 

estimates of x(t) employed in a sequential LSE algorithm. 

The estimate for & obtained by this method is unbiased and 

consistent although not minimum variance if 	is obtained by a 

previous experiment on different data. If 	is is obtained concurrently 

with 43., the method is only asymptotically unbiased and consistent. 

The method has been extended to systems of two output variables 

with success [20, 21, 56]. 

5.5.4 Bootstrap Least Squares Estimator 

The writer has developed a sequential estimator which (in hindsight) 

combines some of the features of the methods of both Levadi and Mayne. 

As previously, the purpose is to provide an estimate x(t) for x(t) 

using the current running data. 
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The method is most easily understood by referring to the flow 

diagram of Figure 5.3 and the following explanation. Suppose that 

the serial correlations Rv(T) = 0 for T > p. 

(1) The n-vector x(t-p) is stored. (See equation (5.2-10) 

for a definition of x(t) and replace t by t-p-) 

(2) The most recent estimate, 

G(t-1; y(t-1), x(t-1),(t-1)) 	(5.5-15) 

is used to estimate 9(t-p) by the model relation below: 

y(t-p) = 4(t-1; ...)x(t-p) 
	(5.5-16) 

(3) The vector 5t-p...1.1) is assembled. It is different from 

x(t-p+1) only where 9(t-p) replaces y(t-p). 

(4) By the same means, {/3(t-p-1), 	9(t-1): is estimated. 

Thereby x(t) is obtained. 

(5) A new estimate get; y(t), x(t), x(t)) is obtained by the 

following modified sequential least squares estimator (compare with the 

sequential LSE of equation (5.3 -7)): 

1(t)Cat) 	.(t) - xT(t)e'. (t -1)) 
le\.(t) = /4e.(t -1) 	

(y3 

2 	xT(t) -1(t)i)\c(t) 	1 

where 

so that 

t 

(t) 	E ')\c(k)x(k) 
	 (5.5-17) 

k=1 

-1(t) = 
^1 	(i i(t...1)kt)XT(td.-1(to-1)  

(t) = 	(t-1) 
xT(t) -1(t)xW + 1 

(5.5-18) 



z 
1' 

x(t-p) 

T4(t-10) 

Assemble x(t-p + 1) 

:/(t-p +1) 

e(t-1;y(t-1), 
x(t-1)92(t-1)) 

ti 

t-1) 

Assemble x(t)< 	 
y(t-1) 	, 

z-J-1( 

Assemble (t) 

173. 
Disturbance 

Input 	 
u(t) 

Plant 
L 

>Output 
y(t) 

Assemble X(t-1 

	.1 

Modified Sequential Least 

Squares Estimator 

Estimate 

	 /cii(t;y(t),x(t), 
X(t)) 

Figure 5.3 Bootstrap Least Squares Estimator 
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The new estimate is used to predict x(t+1) in preparation for the 

next estimate; hence the name "bootstrap estimator". 

(6) To initiate the estimating scheme, the writer has usually 

obtained a minimal data set estimate after setting x(t) = x(t) for 

the first s intervals. Thereafter, 	is estimated and incorpor-

ated into the algorithm of equation (5.5-18). 

We cannot claim that the bootstrap estimator is a minimum variance 

estimator, but we can attempt to show that it is asymptotically unbiased, 

hence consistent, by a proof similar to that given by Mayne in C56]. 

To the seven assumptions concerning the system stated in Section 

5.1, we add the following: 

(a) )7,u(t).)5 is a stationary process, uncorrelated with -(v(t)I. 

(b) The sequential estimating equation given by equation (5.5-17) 

is stable so that for N large, e converges asymptotically to some 

constant value independent of the initial (or early) estimates. 

Hence we claim that: 

(1) By including assumption (a) above, 	is a stationary 

process. 

(2) Because the model to find 9(°) given by equation (5.5-10) 

involves operations on x(t-p), x(t) is a random process. Further, 

by assumption (b) above, x(t) becomes a stationary process as e 

approaches a constant value. Hence x(t) tends to a stationary process 

N 
1 	, 

From (2) above, it follows that the matrix — E xkt)x (t) is 
t=1 

a nonsingular matrix (for N suitably large). We shall designate 

that is correlated with x(t). 
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its inverse by 
N 

A A 	-1 S(N) =E TT  Ex(t)XT  (t)] 
t=1 

(5.5-19) 

A 
In the limit, S(N) approaches a constant matrix with inverse given by 

A-1 	A T S (co) = Ex(t)x (t) (5.5-20) 

By analogy with equation (5.2-36), the estimation error term is 

rei.(N) A A 
e.(N) - e. (5.5-21) 

N 

= /S\(N) 	E x(t)v (t) 
	

(5.5-22) 
t=1 

Since A  x(t) is uncorrelated with v(t) for large N (from assump-

tion (2) and by construction), the asymptotic error term is 

E. = 0 	(5.5-23) 
3 

A 
As before,49-ismadeupfromtherows iZfor i = 1, 2, ... m. 

By analogy with equations (5.2-30) and (5.2-31), we obtain the co- 

variance given by: 

N 	N 
1 	A 	1 

	

cCi(e.i.,/ei) = E 1-7 S(N) E x(t)vi(t) E v.(T)xT 	N (T) - ST  (N) (5.5-24) 
t=1 	' T=1 J 

N 
1" 	1 	.-T 	1 AT = 	--S(N)IN E Ev.(t)v.(T) --xkt)x (Tii — S (N) 	(5.5-25) N__) co N 	 j 	N t,T=1 

N 	 N 	 N 
= 	Vii[  . E x(t)xT  (0] 	x 

A 
 (t)x

T 
 (t)H 	x(t))7(t)]-1  

t=1  t=1 	t=1 
(5.5-26) 



which is symmetric. 

Let us now compare the above covariance with the usual least 

squares estimator. For convenience, we define: 

N 
- (a) E x(t)xT(t) = [x(1) ... x(N)] r  xT(1)  

t=1 

xT(N) 

(5.5-27) 

N 
(b) E x(t)xT(t) = [X(1) ... Cc.(N)] 	xT(1) 

t=1 

176. 

[(x(1) -'rco))...(x(N) VN)] 

CP QJTP 

N 

(c) E (t)xT(t) = CP OTEP Q] 
t=1 

AN) 

(5,5-28) 

(5.5-29) 

With these substitutions, we replace the modified least-squares co-

variance of equation (5.5-26) by: 

^ j cov(e.,e.) = V. .[(14Q),T  P]-1  [(P+Q)T(P144)HPT(P+Q)] -1 (5.5-30) 

and the usual least squares covariance (for uncorrelated noise) by: 
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j 	
v..cpTp]  -1 
1j 

Now assume the simplified form: 

r(RoleprlE(p4.410 )T(p+Q)][pT(p+Q)]^1  = cpTprl 

(5.5-31) 

(5.5-32) 

Premultiplying and postmultiplying by the appropriate matrices, we find 

that 

[P4-410
T
[P+Q] = [P+Q]

TPCPT -1PT[P+Q] 	(5.5-33) 

= EP+e[P+Q] 	 (5.5-34) 

which is true. Hence equation (5.5-32) is true so that for the"bootstrap" 

estimator, in the limit, 

N 

4V(6'.18'.) = lim V..[ E x(t)xT(t)3-1  
N-7>co 	

t=1 

= cov(e.,e.) 

(5.5-35) 

(5.5-36) 

That is, in the limit, the "bootstrap" covariance equation and the 

covariance given by equation (5.5-31) are equal. 
0.• 

Having estimated 9- (recall equation (5.2-8) defining €0, 

(5.5-37) 

-1 
we have the remaining problem of estimating the parameters of C(z ) 

and _../q2. We proceed by obtaining estimates of the serial auto- 
A 	A 

correlations Rv(0), Rv(1), 	Rv(p) by the following relations: 

A ^ 	A A A 	A 

.4'21  = -A1 -A2 ... Ap BO B1 	Bp] 
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Rv(T) 	EEv(t)vT(t-T)] 

= Ey(t) ex(t)Hy(t-T) ettx(t-T)Y1  

The best unbiased estimate for R(T) is given by: 

N 
A 
Rv(T) = N-M-r E Cy(t) ex(t)]Ey(t-T) ex(t T 

t=T+1 

(4.3-37) 

(5.5-38) 

(5.5-39) 

N 
1 

Cy(t)y
T(t-T) ex(t)yT(t-T) Y(t)x

T
(t-T)49.

T 
N-M-T 

ex(t)xT(t,r)4T] 	(5.5-40) 

By storing the arrays 

t=T+1 

N 

S2(T) = E y(t)xT(t-T) t=1.4.1 

s3(T) 
N 

= E x(t)yT(t-T) 
t= t+1 

N 

S4(T) = F x(t)xT(t-T) 
t=T+1 

(5.5-41) 

we obtain an estimate for Rv(T) employing our (nonminimum variance) 

estimate for &. Then 

t=T+1 

N 

S1  (T) = E y(t)yT(t-T) 



The simplicity of the method is achieved at the expense (1+) 	 of 

(3) 

available data. The reason is that the prediction 

ditional on x(t-p), is superior to the prediction 

on past predictions. 

is easier to implement in on-line situations than Mayne's 

because it is unnecessary to estimate the parameters of a 

regression model. 

increased variance in the estimates. 

x(t) based 

method 

second 

con- 
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A 
Rv(T) = 	 

N- 'L 
A " 	A 

S (T) S
2
(T)49-T  - 06

3
(T) +GS(T)4

T 
 

(5.5-42) 

The procedure of fitting moments for finding Ci, C2, ... Cp  

1/2  and 	is the same as that set out in Subsection 4.3.3. 

This concludes the description of the method of "bootstrap" 

least squares estimation. Numerical examples are given in the next 

chapter. We have observed that the "bootstrap" estimator: 

(1) is asymptotically unbiased 

(2) is an improvement of Levadi's method because it makes use of 
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5.6 Maximum Likelihood Estimator 

5.6.1 Introduction 

Maximum likelihood estimation, by making the most optimal use of 

available data, is said to provide the "best" estimating method when 

judged by the properties listed at the beginning of this chapter. 

Cramer states: "From a theoretical point of view, the most important 

general method of estimation so far known is the method of maximum 

likelihood". 

In this chapter, we shall extend the elegant method of Astrom et 

al [18, 19] for the MLE of parameters of single output systems to the 

general multivariate case (m > 1). Astrom anticipated that possibly 

this might be accomplished when a suitable canonical form was available. 

The vector stochastic difference equation model (from equation (4.3-10)) 

1 	 1/2  A(z-  )y(t) = B(z-i)u(t) C(z-1  )1\_ e(t) (5.6-1) 

fulfils this requirement precisely. 

The contribution here is in proposing and incorporating a suitable 

multivariate model into the MLE method and solving the new problems 

that arise in doing this. 

5.6.2 Formulation of the MLE problem 

The formulation of the multivariate MLE problem is similar to that 

given by Astrom and Bohlin for the scalar observation case [18]. We 

define the one-step-ahead prediction error e*(t) by the equation 

obtained from (5.6-1): 
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e*(t) = C(z-1)CA(z-1)y(t) - B(z-1)11(t)] 	(5.6-2) 

where y(t) and u(t) are observed values from the stochastic 

sequences -ty(t)j and iu(t) . The numbers e*(t) are from an 

independent, normal, m-variate distribution n(0,2‘). The negative 

logarithm of the probability density function (likelihood function) of 

the sequence 1e*(t)2; is [LEO]: 

N 
mN In L(4,-A) = 7- ln( 210 + 12-1  In I 	z  e*T(t)j\-le*(t)  

t=1 
(5.6-3) 

L* (4,-A-) 
	 (5.6-4) 

where 49- stands for the parameters in A(z-1), B(z
-1 
 ) and C(z

-1 
 ). 

The likelihood function L is dependent upon 	and _I ....taken as 

variables. Since lnL is a monotonically increasing function of L, 

its maximum is at the same point in the space of 	and _JAL.as the maxi- 

mum of L. In the problem formulated here, we seek to minimize L*(4E,J1) 

by choosing an optimal 4:4° and J\. That is, the maximum likelihood 

estimates of 49. and _A_ are those parameters .9°  and_A? such that 
L*(8°,.../N°) is a minimum. 

In the scalar case (m = 1 and e is a vector), the negative 

logarithm of the likelihood function is simply 

N 
L*(e, X2) = N  In (2n) + N lnA+ 1 	E e*(t)2  

2X2  t=1 

for the scalar model: 

(5.6-5) 

A(z-1)y(t) = B(z-1)u(t) + c(z-1)Ae(t) 	 (5.6-6) 
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The optimum estimate 0°  is obtained by minimizing the risk function 

N 

R(e) = j 	e*(t)2 	(5.6-7) t=1  

with respect to e by an iterative method. 

The optimum value of i\2  is obtained by minimizing the function, 

L*(eo, 
 ) with respect to A. Then the optimum estimate 

N 
Ao2 = 	E (e*(eo,t))2 	(5.6-8) 

t=1 

2 = 	R(eo  ) (5.6-9) 

The procedure is less direct in the multivariate case. For convenience 

in minimizing LN(44,1), we show five identities: 

Identity A  

The determinant of the product of two square matrices P and Q 

is given by [22]: 

PQ  I = 1 1'11 Q 	(5.6-10) 

If we define a new matrix I such that I-1 -A_ 	(5.6-11) 

then 	31J/\,_ I = 1 	 (5.6-12) 

and 	In LA__ 1 = 	j 	I 	 (5.6-13) 

Identity B 

The inner product with a vector variable x(t) given by: 

N 	m N 

E x
T
(t)Px(t) = 	E 	E pi4xi(t)xj(t) 

t=1 	i,j=1 t=1 
(5.6-14) 



1 d w  I 
— In 	I = 	dl T  

n 
= x..(/). • 
t=1 13 13  

is the cofactor of element Tij  of I: 

Since 

where 

ICI 

(T). 
 1J  

(5.6-20) 

(5.6-21) 

From the properties of the trace of a matrix: 

trace PQ = 	E p, i i,j=1 	j ji  

  

(5.6-15) 

where p.g  and 	are elements of P and 

N 
Q. Then 

 

E xT(t)Px(t) = trace PQ 
t=1 

  

(5.6-16) 

where 	N 

Q 
	

E x(t)xT(t) 
	

(5.6-17) 
t=1 

Identity C  

Let us define a nonsingular m x m matrix P by 

N 
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P
-1 

= 1 
N E x(t)xT(t) 

t=1 
(5.6-18) 

Substituting in equation (5.6-16) of Identity B: 

N 

E xT(t)Px(t) = trace NEPP-1] 
t=1 

= mN 	 (5.6-19) 

Identity D 

Consider the following function of the nonsingular, symmetric 

matrix 
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di 0 = (T dyij 	)ij (5.6-22) 

Then 
- 1 I 

1 	d. . _d`{'.13_ 
M X M 

(5.6-23) 

  

. 131 M X M 
(5.6-24) 

  

   

= T
-1 	 (5.6-25) 

Identity E 

  

Consider the inner product 

m 
xTTx = E 	x. i,j=1 1 13 3 (5.6-26) 

Clearly 

  

a 
777- x

T 
 Ix = x.x. 1 3 

ij 

Let us partition 	by columns 

(5.6-27) 

 

C*1 y'2 ... Tin] (5.6-28) 

where the element Ltd.. is the ith  element of column 	We define 13 

the derivative of a scalar with respect to a column vector to be a 

column vector. 



a 
a j 

C 

. 
1j 

a 
a Y 

mj 

r x2  1 	X1Xm 
d T -dyx Ix = 	x.x. 1 

x2 XmX1 

(5.6-30) 

Similarly 

N 	 N 
E xT(t)lx(t) = E x(t)xT(t) 
t=1 	t=1 

(5.6-31) 

Now let us consider minimizing the function L*(4,1L) (equation 

(5.6-4)). 

(1) The optimum value of -A..for a given & is obtained by minimizing 

I,*(4,..A..) with respect to 	As we find it more convenient to 

minimize L*(4,_^) with respect to I', we note that at the optimum 

_AO = 

Incorporating identity A, we obtain: 

L*(ft, i) 
N m  

W 
mN 	1 = 	— .x. J. , • ln(2,t) - 

N  - In(I) + 2  - E ei'ie
* 
 (t) (5.6-32) 2  t=1 

77). xT  Ix 

and 
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xT  x = 

X X. 111 

(5.6-29) 

   



Then with identities D and E: 

N  L*(e, 	= 	N z-1 	E 
2 - 	L e*(t)e*T(t) 

t=1 
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for 

= 0 

N -1 	1 
— E e*(t)e*T(t) 

t=1 

(5.6-33) 

(5.6-34) 

(5.6-35) 

 

That is, for some choice of 49., we can generate the sequence /Le*(t). 

With this choice of e, the function I,*(410.1-1) can be minimized with 

respect to _A...by setting _A_ =:A...(4) according to equations (5.6-34) 

and (5.6-35). The resultant value of L*(41:A._(4)) is: 

mN 	" 	A4. 
1.21°  (4 	- (4) ) = 	ln(2n) + 	1n1.1\44. 	E e*(t)...A_

1 
 e*(t) 2 

t=1 

N 	)A+ rnN = 	In(2n) + — In I L 
2 	' 	2 

(5.6-36) 

(5.6-37) 

by applying Identity C. 

(2) The optimum value of 49. is obtained by minimizing 11*(43-,A(.6)) 

with respect to 	It can be seen from equation (5.6-37) that the 

./N 
optimization problem is equivalent to minimizing In I_t(8)I with 

respect to 	for _I\. given by equations (5.6-34) and (5.6-35). At 

the optimum 

e(e99,...A2(.9° 	= )) 	(1n(2-7) + 1) + 2 in 1J\!(.8,c)i (5.6-38) 
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Let us now differentiate In 11_(.101 with respect to ems, an 

element of 411.. We define: 13  to be an.element of J\_and 	to 

/Zk 
be an element of 	=  

aa N L*(4,_/A_\(43)) = ae 	in 
/‘ 

aeki kl 
(5.6-39) 

N m a 	,\ s 
E 	In i_Ak&) I --1-1 	(5.6-40) 

itj=1 	 a ekl 

From Identity D, we have by substitution in equation (5.6-25): 

 

. LA(e) I = 
1j 

(5.6-41) 

 

Substituting (5.6-41) into (5.6-40): 

m 	 a A 
aea 	L* (0-, I\_(.9)) = 

4 
E 	 --1-1  

kl 	i,j=1 i j a  ekl 

m 	N 
=E LP;  • 	 E e(t)e(t)3

i,  i1 j=1 j -e
a 
 kl t=1 1 

M A N 	ae*.(t) 
et(t) 

i,j=1 ij  t=1 	se kl 

N 
=E e*"..

m  
(t) ae*(t) 

t=1 	aokl 

T 	:s. 	• ae*( 
= 	e* _ 	6e 

t=1 	
, ae

+)  

kl 

(5.6-42) 

(5.6-43) 

= 	L* (4a, ..A..(49)) 
ekl 

(5.6-44) 
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When calculating derivatives of L* for all elements of 9, a nota-

tional difficulty arises. The gradient of L* with respect to 

is a matrix and the array of second derivatives is a three dimensional 

array. For this reason, we prefer to decompose 9 into m row 

vectorse.for i = 1, 2, ... m as in previous sections. Then 

is a vector of e
1  
. 

	

	 th rows of n+(p4.1)r+pm elements from the i 
 

Al' 	... Ap, B0, ... Bp, Ci, ... C P
. As before, we designate e as 

the long vector of vectors 

e 	= 

where 	s 	is now 

s 	= 	m(n 	(p 

Then the vector form of equation 

L:(4,./.44)) 	= 	E 
t=1 

e1.: 

e1 

e2 

em 

1)r -4- pm) 

N 

(5.6-44) 

e*T(t)A71(9) 

s x1 

is 

ae*(t) 

(5.6-45) 

(5.6-46) 

(5.6-47) 

The matrix of second derivatives of L* with respect to elements 

eik 	ell  and 	of e is obtained from equation (5.6-43). The elements 

of the matrix are given by: 



189. 

aae 

2 

ae. 

	

L*(49.,..A1,9)) = 	a L: (4, 'L($)) . ik 31 	ik j1 

	

= 	a e*T(t) K-1 ae*(t) 

t=1 	aeik 	a ej1 

+ E e* 
T 
(t) A. l\-1 a2  e*(t)  

ae
i  ae. t=1 	k J1 

(5.6-48) 

(5.6-49) 

= L* 	(49.1j\..(0) 0. e . ik 01 

One particularly useful aspect of this decomposition is that 

the gradient and the matrix of second derivatives of L*(&) with 

respect to elements of 	have precisely the same structure (and per-

form the same function) as their counterparts in the single-observation 

case. This will be discussed later. 

5.6.3 The Iterative Solution of the= Problem 

The solution in the single-output case is notably simpler than 

in the multivariate case. The reason is that it has been possible to 

find a risk function (R(9) given by equation (5.6-7)) that is easier 

to minimize than the negative logarithm of the likelihood function as 

in the multivariate case. 

In the single-output case discussed in [19], a second order method 

is employed for updating e. The gradient of R(e) is obtained by 



Re(e) 	SR(e) 
se. 1 

e = 	o* 	De.(t) 	*(t)  

t=1 	1 
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(5.6-50) 

(5.6-51) 

where 0i  is an element of vector e. The elements of the gradient 

vector are calculated by the relations obtained from (5.6-51): 

C(z
1
) a e*(t)  - z-iy(t) sA. 1 

c(z ) amt) - zu(t) aB. 

C(z
-1) a e*(t)  - -zie*(t) ac. (5.6-52 

whereA.,Ii.and C. are scalar parameters of A(z-1), B(z
-1
) 

and C(z-1). The second order partial derivatives of e*(t) are obtained 

from 
R 	( e ) A s2R(e) 
ee 	ae.ae. 1 

(5.6-53) 

( 	+ e*(t) 
ae*(t) 	ae*(t) 	a2  e*(t)

) E ae. 	ae . 	ae.ae. t=1 	3 	j 
(5.6-54) 

To minimize the risk function, the following Newton -Raphson algorithm 

is used at the k + 1 iteration. 

e(k + 1) = e(k) R-e:(e(k))Re(e(k)) 
	

(5.6-55) 

In the multivariate case, we use the following procedure: 

(1) Given 6(k) where €1.(k) stands for the model parameters in 



 

.th element (5.6-59) 

 

m x 1 
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A(z,1  ), B(z -1) and C(i-1), we calculate the sequence fe*(t; .9.(k)).2t 

by the equation: 

e*(t; 4(k)) = C(z-1)CA(z-1)y(t) 	B(Z-1)u(t)] 	(5.6-56) 

To avoid complication at this point, we shall assume that the observa-

tions are available from the time of zero initial conditions in the 

plant. 

(2) _"\\_.(e(k)) is calculated by 

.A(49.(k)) = 1 — E e*(t; 9(k))e*T(t; 9(k)) 
t=1 

(5.6-57) 

(3) The derivatives of e*(t) are obtained by differentiating the 

difference equation written as 

C(z-1)e*(t) = A(z-1)y(t) B(z-1)u(t) (5.6-58) 

For example, if Akij  

of Ak, then 

th is the element of the . row and jth column 

0 

Y3  .(t) 
c(z-1)  a e*(t) 

5 Akij 

Similarly: 

0 

0 

z-ku.3(t) 

0 

th 
<-1 element 

— mx 1 

(5.6-6o) 
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C(z-1) 	rt) kij  
-z
-ke.(t) .th element (5.6-61) 

0 — mx1 

Considerable simplification can be achieved by shifting [19]. We 

note that for k 6= t 1 

ae(t) 	ae(t—i+1)  

aAkij 	
a Aiii  (5.6-62) 

hence, it is only necessary to calculate equations (5.6-59) and (5.6-61) 

for k = 1 and equation (5.6-60) for k = 0. The remaining terms 

are obtained by shifting. The second order partial derivatives for 
e 

L*ee(43,.A.(49)) A computed in a similar fashion. Considerable saving in 

numerical effort is again realized by shifting. 

The algorithm for minimizing the risk function in the scalar case 

(m = 1) is [18, 19]: 

(1) Set e(1) = [least squares (biased) estimate for the parameters 

ofgz-l)andB(z-1)withC.=0 for i 0]. 

Evaluate Re(e(k)) and Ree(e(k)) with equations (5.6-51) to 

(5.6-54) where k is an iteration index. 

Calculate e(k 1) by equation (5.6-55) and repeat from (2). 

The algorithm for minimizing the risk function in the multivariate 

case is essentially the same. 
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(1) Set e(1) = ELSE for the parameters of A(z-1) and B(z-1) 

with. C.1  = 0 for i )-0]. 

(2) Evaluate L:(4(k)) and L:e(e(k)) with equations (5.6-47) and 
.11.11.0 

(5.6-49). 

(3) Calculate 

e(k + 1) = e(k) - L*ete 
 1(E30(k))1,:(,9(k)) 
	

(5.6-63) 

Even for very small systems, L*ee  (4) is a (symmetric) matrix 

of formidable size. For example, if n = 4, m = 2 and r = 2, the 

dimension of L*ee(E0 is 2(4 + 3x2 + 2x2) = 28. 

5.6.4 An Alternate Solution of the MLE Problem 

To ease the programming and computational burden, the decision 

was made to develop an alternate algorithm for the multivariate case, 

without explicitly calculating L:0(4) or its inverse, but preserving 

the superior convergence capability of a second order method. This 

decision was based on the following experience: 

(1) Studies in the estimation of the parameters of simulated 

plant models (with m = 1) indicated that the LSE "bootstrap estimator" 

discussed in a previous section provided estimates close to the true 

values but the estimated standard deviations did not instil confidence 

in the results. 

(2) Experience derived in using the second-order numerical descent 

methods of Fletcher and Powell [31] and Powell [32] for function minimi-

zation led the writer to believe that application of one or other of 

these methods would rapidly converge on the optimum solution provided 
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that a good initial estimate for e• was supplied. 

In the Fletcher and Powell routine, the algorithm for function 

minimization with respect to e is (compare with equation 5.6-63): 

e(k+1) = e(k) H(k)L:e(e(k)) 
	

(5.6-64) 

where H(k) is a positive definite symmetric matrix updated with the 

most recent gradient information. The algorithm ensures that as the 

procedure converges, H tends to the inverse of the matrix of second 

derivatives evaluated at the minimum. The initial condition for the 

inverse matrix of second derivatives is taken to be 

H(0) = Is 
	 (5.6-65) 

On the assumption that the risk-function surface is nearly quadratic 

near to the optimum and after (at least) s iterations, H(k 	s) 

is taken to be an estimate for L*ee1  (40(k)). 

5.6.5 The Adaptive Filter 

It is constructive to compare the maximum likelihood method 

discussed here with a generalized least-squares estimator in which 

the parameters of the filter in the GIBE are adjusted to minimize 

a minimum-variance risk function. Recall from the discussion of Sub-

section 5.4.3 that Tretter and Steiglitz [50], and Clarke [51], adjusted 

the parameters of C(z
.1 

 ) (scalar case only) to minimize the variance 

of the residuals. Note that in the MLE method, the computation of 

L(.13.1j1_‘(.9)), the gradient L'eki.,(.9.) and the matrix of second derivatives 



all  require numerical filtering by operation with C-1(z -1). 

For example 

N 
E e* (t),(t) 
t=1 

 

(5.6-66) 

requires the calculation of 

e*(t) = C-1(z-1)44z-1)y(t) C-1(z*-1)B(z-1)u(t) 	(5.6-67) 

C-1(z-1)v*(t) 	 (5.6-68) 

where 	v*(t) 4 A(z-1)y(t) - B(z-1)u(t) 	(5.6-69) 

by computing 

e*(t) = - C1  e*(t-1) 04,0 	e*(t../3) 

y(t) 	A1y(t-1) ... A
P 
 (I 
m 
 ) 
P
y(t-p) 

B0u(t) - B1  u(t-1) 	B u(t-p) 
	

(5.6-70) 

Similar expressions can be obtained for the partial derivatives of 

e*(t). The following important points can be made: 

(1) The process of finding e*(t) (and its derivatives) is one of 

filtering by operation with C-1  (z
-1 
 ). Clearly the filter must be 

stable. (The roots of the characteristic equation for C
-1
(z 

-1
) 

must lie within the unit circle in the z plane). 

(2) The problem of stability in the MILE case is identical with 

that of the GLSE case. (See the discussion of Subsection 5.4.5). 

(3) An important distinction can be drawn between the MIE methods 

195. 



196. 

and the adaptive GLSE method. In the former, the parameters are 

adjusted together; they have a direct effect on the likelihood function 

which can be gauged by observing the reduction in the gradient of the 

likelihood function. In the adaptive GLSE method, adjustment of the 

filter parameters has a somewhat indirect effect because of the sequen-

cing of operations in the two-stage procedure. That is, after altering 

the parameters of C(z 
-1) according to past performance and filtering 

the data, the parameters of A(z -1) and B(z -1) are adjusted to 

minimize the squares of the residuals. The intuitive impression is 

that the two-stage procedure of the adaptive GLSE approach couples 

the parameters of A(z 1) and B(z -1) to C(z -1) rather more tightly 

than in the MLE method which is a one-stage procedure. This may make 

minimization of the risk function more difficult. 

5.6.6 Discussion of the MLE Method 

We have already noted that by decomposing 410 into the vector e, 

functions L:(9) and L:0(4) resemble their counterparts in the 
•••• 	 AMMO.. 

single-output case. Summarizing, the models are: 

e*(t) = C-1(z-1)a(z-1)y(t) - B(z-i)u(t)] 

where in the multivariate case, e*(t) is the m-variate distribution 

n(0,A.) and in the single-output case, e*(t) is distributed accor-

ding to n(0,A2). 

The multivariate case likelihood function is: 

L* (4,_A_($)) = nill 2- 1-n(2rt) 	Int _Al + 
N 	- 
E 	e*

T 
 (t1)\-

1 
 e*(t) 

t=1 
(5.6-71) 



and in the scalar case: 
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N 
L*(e, X2(e)) =in(271) + 	+ 1 	E (e*(t))2  2 2  2tiv t=1 

For 

A N 
_/\_(&) = E e*(t)e*T(t) 

t=1 

A (e) = E (e*(t))2  
t=1 

L* ($, 	= f (In(2,0 + 1) „g 

L*(e, A2(e)) = 2(in.(27E) + 	+ 

Note that the effective term to be minimized in (5.6-75) is 

whereas in (5.6-76) it is simply 51 2(e). 

The gradient of L* is: 

N 
=E e*T(t)X71($) ae*(t) 

t=1 	ae 

whereas 

N 
L:(e,', 2(0)) 	E e*(t) 

t=1 
   

(5.6-72) 

(5.6-73) 

(5.6-74) 

(5.6-75) 

(5.6-76) 

In lii_1(e) 

(5.6-77) 

(5.6-78) 

Finally, the elements of the matrix L:e(e',X(.40)) are given by 

N 

ikJ 	

T-t- -1 ae*(t) ( ) A a2 
L*(49.1X.(8)) = E ae* 

	
- ae ae.1 	

t=1 a 0. 

T 	"-1 a2  e*(t)  E  e* (t)j k ae. ae. t=1 
(5.6-79) 
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and of L*ee (0,12(e)) by 

a2 	
E 

"2 	1 	ae*(t) ae*(t) 
ae
1  

L*(e, 	
A 

(0)) = 72- t=1 
	1 

	

a e. 	a e. . ae
j   

a2e*(t) 
E e*(t) De. ae. 

	

4- 
1 

\2 t=1 	1 3  
(5,6-80) 

In [18, 19], Astrom and Bohlin discuss the large sample properties 

of the maximum likelihood estimator for the single output model above. 

They show that: 

(1) for large N, the estimate e°  obtained by the method is unique 

and esymptotically consistent subject to the conditions that: 

(a) the system, the model and the optimal predictor of e*(t) 

are all stable (that is, the roots of A(z -1) and C(z-1) are 

all  within the unit circle in the plane) 

(b) the input u(t) meets certain boundedness conditions and is 

persistently exciting. In practice, the conditions can be met if 

the system is excited by an observed random process having finite 

moments. For example, a pseudorandom binary sequence (PRBS) is a 

satisfactory source of excitation. 

(c) Every state of the system is controllable from either u(t) 

or e(t). 

(2) The estimate e°  is a stochastic variable that is asymptotically 

normal with mean being the true value of e. One important consequence 

of this point is that calculation of the matrix L*
ee  
-1
(e

o
) gives the 

covariances of the parameter estimates directly. Another is that 
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confidence regions can be determined and significance tests performed. 

(3) The estimates are asymptotically efficient. This means that we 

cannot expect to find an estimator with greater accuracy for long 

samples. 

The formal derivation by Astrom and Bohlin [18, 19], the results 

of which are summarized above, also includes the multivariate case with 

only a minor extension. We require that the elements of the vector 

input sequence fu(t) are uncorrelated with each other. That is 

1 lim — E u(t)uj 	0 for every i, j = 1, 2, 	m 
N co t=T 

and for every positive integer T. Then: 

(1) for urge N, the estimate 41: is unique and asymptotically 

unbiased subject to the conditions given previously; 

(2) 4°  is a stochastic variable that is asymptotically normal. The 

mean of the distribution is the true value of 4. The parameter co— 

variance matrix is given by L*—ee1(.9P,..1kW)). 

(3) The estimates are efficient. 
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CHAPTER 6 

EXAMPLES OF IDENTiiiCATION, PREDICTION AND CONTROL 

6.1 Introduction 

The purpose of this chapter is to demonstrate how the modelling 

techniques developed in the previous five chapters can be employed in 

problems of identification, prediction and control. In addition to 

the restrictions that were assumed in earlier chapters (with respect 

to linearity, controllability, observability, stationarity, etc.) 

we assume the following conditions for reasons of simplicity: 

(1) the systems are initially at rest 

(2) the systems have zero offset. 

These limitations can be removed in practice without difficulty. 

The first few sections are devoted to contrasting the "bootstrap" 

method with other methods for estimating the parameters of systems 

of known order. The problem of identifying systems of unknown order 

is then briefly reviewed. The thirty—one parameters of a multivariate 

fourth order system are estimated by both the MIE and "bootstrap" 

estimators. 

In the later examples, the importance of minimizing the variance 

of the one—step—ahead prediction error is emphasized because this is 

the crucial step in deriving minimum variance control algorithms. 

To conclude, a simple multivariate control example is shown. 
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6.2 A Comparison of Some Sequential Least Squares Estimators  

of a Parameter of a First Order System 

6.2.1 Purpose and Procedure 

To illustrate the features and failings of 

(a) the conventional least squares estimator (Section 5.3) 

(b) a discrete-time version of Levadi's modified least squares 

estimator (Subsection 5.5.2) 

(c) the author's "bootStrap" modified least squares estimator 

(Subsection 5.5.4) 

the estimators were compared in the following problem. 

The simple system below was simulated on the digital computer. 

x(t+1) = Fx(t) + u(t) + I'v1(t) 	(6.2-1) 

y(t) = x(t) + v2(t) 
	

(6.2-2) 

where x, y, u, vi  and v2  were all scalar quantities and F = 0.8. 

The three sequential estimators were required to estimate the parameter 

F and the standard deviation of the estimate for the two cases of 

= 1 (the state disturbed by v1) and I' = O. 

The difference equation of the process for estimating purposes 

is given by 

w(t+1) = Fy(t) + v(t+1) 	(6.2-3) 

where 	w(t+1) = y(t+1) u(t) 	(6.2-4) 

v(t+1) = v2(t+1) FV2(t) + I'vl(t) 	(6.2-5) 
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Zero initial conditions were taken each time. The input excitation 

was provided by a 63 bit pseudorandom binary sequence (PRBS) of 

± unit amplitude adjusted for zero mean. The stochastic variables 

v1(t) and v2(t) were generated by a machine algorithm providing an 

n(0,1) distribution of random numbers. 

6.2.2 Observations and Discussion 
A 

A comparison is shown in Table 6.1 which displays estimates F 

for F along with their standard deviations calculated from the 

variance estimated by the relation 

A  N 	A 
s.d. = CV( E y(t)y(t))-1-1/2  

t=1 
(6.2-6) 

where 9(t) = y(t) for the conventional estimator but ;`(t) is 

obtained by a linear predictor in the case of the modified estimators. 

V is the estimated variance of the noise process v(t) based on the 

last computed estimate F. The variance expression within the square 

brackets in the above expression was derived in Subsection 5.5.4. 

There, the true variance V of the noise process was assumed known. 
N  

In addition, it was assumed that N was large enough for F E y(t)y(t) 
t=1 

to be equal to E y(t)/1.(t) with negligible error. 

For comparison purposes, we have calculated the "standard deviations" 

for the conventional estimator as in (6.2-6) but with the replacement 

^ 
of y(t) for y(t). This gives a conservative but imperical measure. 
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Trial Run 
Length 

True 
F 

Conventional 
Least 	Squares 

Levadi's 	Bootstrap 
Method 	Method 

n 
F s.d. 

t, 
F s.d. 	F s.d 

r = 0 189 o.8 0.647 0.0433 *0.826 0.0525 0.831 0.0500 

II = 0 190 0.8 0.555 0.0452 0.756 0.0568 *0.757 0.0552 

Continue 567 0.8 0.517 0.0243 0.749 0.0326 *0.774 0.0359 

= 1 189 0.8 0.687 0.a4-53 0.777 0.0692 *0.814 0.0562 

r = 1 189 0.8 0.659 0.0484 0.746 0.0790 *0.792 0.0381 

il 	= 1 190 0.8 0.701 0.0465 0.871 0.0727 *0.862 0.0554 

Continue 567 0.8 0.680 0.0270 0.845 0.0406 *0.811 0.0322 

* Best estimate of trial 

Within one s.d. of true 

Table 6.1 Comparison of Conventional and Modified Least Squares Estimators 
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The best estimates are marked (*) in Table 6.1. Estimates 

within one standard deviation of the true parameter are underlined. 

The bias in the conventional least squares estimator shows up 

strongly in both the table and the graphs of Figures 6.1 and 6.2. 

These display the convergence of the estimators for the two longer runs 

summarized in the table. 

In the examples shown we observe that: 

(1) The conventional LSE is strongly biased in this example. 

(2) The "bootstrap" estimate is closer (in all but one case) to the 

true parameter value than the discrete-time version of Levadi's 

estimator.. 

(3) The standard deviations calculated for the "bootstrap" estimator 

are smaller (in all but one case) than the standard deviations 

calculated for the other modified LSE. 

(4) In spite of the observation in (3) above, the true parameter 

is within one standard deviation of the estimated parameter in 

one more case with the "bootstrap" estimator than the other. 

All estimates obtained by the modified estimators are within 

two standard deviations of the true parameter. 

We conclude that although the discrete-form of the Levadi estimator 

is considerably improved over the conventional LSE, the "bootstrap" 

estimator is superior and merits further consideration and evaluation 

as a useful method of estimating parameters of system models when 

conventional LSE methods lead to biased estimates. 
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6.3 The Sequential Estimation of the Parameters of a Second Order 

System with the "Bootstrap" Method  

6.3.1 Purpose and Procedure 

In this section, the "bootstrap" method is used to estimate the 

parameters of a second-order discrete-time system during simulation. 

The model employed is that used by Mayne for illustrating his method 

for estimating discrete-time transfer functions [20]. 

(1 - 1.5z-1  + 0.7z-2)y(t) = (1 	z-1  + z-2) u(t) + 1(1 - z-1  + 0.2z-2)e(t) 

(6.3-1) 

The regression model form is 

y(t) = e1y(t-1) + e2y(t-2) + e3u(t) + e1u(t-1) + e5u(t-2) + v(t) 

= 	xT  (t)e + v(t) 	 (6.3-2) 

where 	v(t) 	,\(e(t) + c1e(t-1) + c2e(t-2)) 	
(6.3-3) 

Both the control sequence and the disturbance sequence were from a 

distribution of normal random variables of unit variance. 

The sequential estimation procedure to find the five parameters 

in e is given in Subsection 5.5.4. The estimating equations are 

given by: 

'8(t) = '8'(t-1) p(t)c(t)(y(t) xT(t)18(t-1)) 	(6.3-4) 
xl(t)P(t)X(t) + 1 

P(t) = P(t-1) - 	m  P(t-1)(t)xT(t)P(t-1) 	(6.3-5) 
pe.(t)P(t)X(t) + 1 
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The above equations were employed following the fifth iteration after 

obtaining the minimum data set solution at the fifth iteration by 

matrix inversion. The prediction procedure for finding ';'i.(t) was 

employed for the first time at the sixth iteration and used the 

estimate e(5) from the fifth iteration. 

Estimates of the serial autocorrelations k(0), R11(1) and 
A 
v(2) were obtained by the procedure given in Subsection 5.5.4 by 

storing the quantities 

N 
S1  (T) = 	E y(t)y(t-T) 

t=T+1 

N 
S2(T) = t=T+1 y(t)x(t-T) 

N 
s3(T) = 	E x(t)y(t-T) 

t=14-1 

N 
S4(T) = 	E x(t)x

T
(t-T) 

t=T+1 

for T = 0, 1 and 2. Then 

(6.3-6) 

li (1'.) = 	 --Es1 	2 (T) - sT(1 	3)8(N) - sT(T);(w) + e(N)s4(i;(14)] N-T1  

etc. For the coefficients in v(t), the parametersc * 6X' c1 * = 	= c1A 

and c; = c2/,\ were found by the method of moments described in 

Subsection 4.3.3 with the initial estimate 

c*  = (Rv(0))
1/2 
 c\*  = c; = 0 ; 	=  0 0 

(6.3-1) 
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6.3.2 Observations and Discussion 

The estimates obtained from an ensemble of ten trials, each commen—

cing from zero initial conditions are given in Table 6.2. Standard 

deviations computed from the variances of the estimates are shown 

alongside the parameters Ie. If the true value falls within the 

calculated standard deviation from the estimate, the estimate is shown 

underlined. Threeout- of fifty estimates are outside two standard 

deviations. They are followed by an asterisk. 

In Table 6.3, the ensemble estimates a for the ten trials are 

summarized and compared with the ensemble results of ten similar trials 

carried out by Tzafestas when testing Mayne's method [21]. It is not 

clear from the referenced report if the parameters of the predictor 

equation were derived from the current running data or from a separate 

record. (In 120], Mayne estimated the parameters for the linear pre—

dictor from a separate record using normal regression analysis.) 

The number of trials is insufficient to conclude positively that 

one estimator is superior to the other. Because a is known, it is 

possible to calculate the true error which is displayed as a percentage 

of the true value. By this comparison, the "bootstrap" estimator is 

superior. 

Note that for both estimators, the true value of e falls within 

one standard deviation from the estimated mean. 

The estimates of both the autocorrelation coefficients and the 

parameters of the stochastic process v(t) are given in Table 6.4. 



True 	Values 4 1 	= 15 . 2  4 	= -0.7 43  = 1.0 e4  = 1.0 4 5 	= 1.0  

Trial Itera- 
tions 

A 
43. 1 s.d. e'2 

A s.d. 43.3  s.d. 44  
,N,  

s.d. 45 s.d. 

1 240 1.475 -0.678 0.973 1.169 0.838 
two 1.497 0.0181 -0.695 0.0166 1.023 0.0479 0.987 0.0508 0.944 0.0559 

2 240 1.463 -0.675 1.054 1.032 1.186 
1,000 1.483 0.0156 -0.688 0.0149 1.043 0.0462 1.036 0.0488 1.097 0.0527 

3 24o 1.463 -0.673 0.897 1.007 1.214 
1,000 1.495 0.0141 -0.698 0.0134 1.004 0.0428 1.027 0.0461 1.027 0.0494 

4 240 1.465 -0.672 0.908 0.997 1.220 
1,000 1.487 0.0166 -0.692 0.0155 0.990 0.0464 1.070 0.0491 1.004 0.0539 

5 240 1.486 -0.690 0.908 1.068 1.037 
1,000 1.509 0.0150 -0.710 0.0145 0.920 0.0462 1.043 0.0491 0.944 0.0540 

6 240 1.499 -0.70o 1.038 1.125 0.871 
1,00o 1.508 0.0163 -0.707 0.0154 0.953 0.0461 1.094 0.0493 0.888* 0.0545 

7 240 1.484 -0.681 0.993 1.127 0.964 
1,000 1.481 0.0154 -0.683 0.0147 0.996 0.0453 1.047 0.0474 1.041 0.0527 

8 24o 1.495 -0.696 1.047 0.997 1.009 
1,000 1.516 0.0149 -0.712 0.0142 1.039 0.0448 0.979 0.0472 0.927 0.0522 

9 24o 1.462 -0.673 1.013 1.133 0.937 
1,000 1.498 0.0175 -0.698 0.0165 1.027 0.0475 1.025 0.0504 0.952 0.0553 

10 240 1.484 -0.685 0.930 1.004 0.977 
1,000 1.493 0.0157 -0.695 0.0150 0.998 0.0469 0.891* 0.0493 1.109* 0.0536 
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Method 
Parameter 432  4/  $3 .44 4

..5 

True 	Value 1.5 I 	-0.7 1.0 1.0 1.0 

Mean 1.4966 -0.6979 0.9993 1.0198 0.9933 
"Bootstrap" 

Per Cent Error -0.2251 -0.3015 -0.0734 1.9796 -0.6749 
Method 

Standard Deviation 0.0111 0.0095 0.0384 0.0532 0.0744 

Mayne's Mean 1.5082 -0.7082 0.9981 0.9919 0.9744 

Method Per Cent Error 0.5487 1.1786 -0.1930 -0.8110 -2.5620 

(Tzafestas) Standard Deviation 0.0212 0.0289 0.0307 0.0258 0.0752 

1 

Table 6.3 Comparison of the Estimates of .8. by the "Bootstrap" Method and 

Mayne's Method 
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Parameters Rv
(0) Rv(1) 

Rv(2) 01  i\ C2 

True 	Values 2.04 -1.2 0.2 1.0 -1.0 0.2 

T rial 
Itera-
tions 

R(0) vv 
 R v(1) R(2) /A 

161 

A 
C2  

1 1000 2.264 -1.328 0.221 1.061 -1.000 0.196 

2 1000 2.164 -1.281 0.231 1.045 -0.968 0.211 

3 1000 1.906 -1.121 0.182 0.955 -1.025 0.200 

4 1000 2.085 -1.228 0.239 1.057 -0.905 0.214 

5 1000 2.104 -1.341 0.438 1.043 -0.877 0.401 

6 1000 2.178 -1.340 0.333 1.064 -0.913 0.293 

7 1000 2.000 -1.171 0.209 1.024 -0.929 0.200 

8 1000 2.001 -1.14o 0.154 1.00 -0.980 0.152 

9 1000 2.165 -1.338 0.351 1.067 -0.899 0.308 

10 1000 2.167 -1.290 0.282 1.088 -0.877 0.238 

Mean 2.103 -1.258 0.274 1.041 -0.937 0.241 

Table 6.4 The Parameters of a Noise Process Estimated by the Method of 

Moments 
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It is not possible to determine the variance of these estimates at 

each trial. In the next and later sections, the merit of this method 

of finding the stochastic process parameters will be assessed by 

comparing its performance with a maximum likelihood method. 

The entire set of ten trials, including the simulation, estimation 

and data reduction parts took 4.5 minutes of machine time for compilation 

and execution. 

6.4 A Comparison of the Estimation of a Second Order System by the  

"Bootstrap" and MLE Methods  

6.4.1 Purpose and Procedure 

The estimation problem is: 

given the input sequence 	t = 1, ... N')` 

and the output sequence -1,,y(t), t = 1, ... Nj 

of the process discussed in the last section and described by equation 

(6.3-1), estimate the parameters Al  A2, Bo, B1, B2, X, Ci  and 

C2. We shall compare the "bootstrap" estimates with the MLE estimates 

in this task. We shall also compare the one-step-ahead prediction 

capability of the models found. 

The estimating equations for the "bootstrap" estimator are given 

in the previous section. The data is processed sequentially. The 

estimating equations for the MLE method are summarized in Subsection 

5.6.3 of the last chapter. 

The control excitation was provided by a 511 bit PRBS sequence 

(unrepeated) of unit amplitude adjusted for zero mean. Zero initial 
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conditions were assumed. 

The machine algorithm for producing random numbers came under 

suspicion when it was observed that the MLE algorithm was capable of 

generating a sequence of noise estimates ,,...e*(t)i with variance 

noticeably less than unity. Chi squared tests were conducted on a 

number of sequences produced by the computer. It was found that the 

mode of the chi squared variates for 19 degrees of freedom was in 

the region of the seventy per cent significance level. It was con-

cluded that the computer algorithm was a satisfactory source of normally 

distributed random numbers. However, for the relatively short run 

lengths in subsequent simulations, the random number sequences were 

adjusted to zero mean and unit variance (without altering their chi 

squared values) so that parameters determined by the estimation pro-

cedures could be compared sensibly with their true values. In the 

parameter estimation experiment described here, the sample variance 

was 0.9791 and the sample mean was -0.0571 before shifting and 

resealing. A chi squared value of 8.421 for nineteen degrees of freedom 

was calculated. The significance level is 	98 per cent. 

6.4.2 Observations and Discussion 

The parameters found by the two estimating methods are shown in 

Table 6.5. In addition, the MLE method produced an estimate of the 

constant component, D, in the output record. Standard deviations are 

shown for all the elements of the parameter vector (excluding A  ) 

estimated by MLE. This is one distinct advantage of the MLE method. 



Parameters Al  A2 Bo B2 A C1C2 
True Values -1.5 0.7 1.0 1.0 1.0 1.0 -1.0 0.2 0.0 

Estimated -1.5042 0.7030 ---1 0.9970 0.99050.94280.9928 -1.0617 0.2116 -0.0005 
Maximum 

True Error -0.0042 0.0030 -0.0030 -0.0095 -0.0522 -0.0072 -0.0617 0.0116 -0.0005 
Likelihood 

Std. Dev. 0.0076 0.0061 0.0440 0.0638 0.0592 - 0.0434 0.0443 0.0066 

Estimated -1.5023 0.7007 1.0159 x0.9942 0.9314 1.0289 -0.9888 0.2082 - 
"Bootstrap"  

True Error -0.0023 0.0007 0.0159 -0.0058 -0.0686 0.0289 0.0112 0.0082 - 
Estimator 

Std. Dev. 0.0242 0.0229 0.0648 0.0693 0.0759 - - - - 

Best estimate of this parameter 
- Within one s.d. of true 

Table 6.5 Comparison of the Estimate of the Parameters of a Second Order System by MLE and the 
"Bootstrap" Method 

r2N 



216. 

As expected, the standard deviations obtained for the "bootstrap" 

method estimates are much higher than their counterparts of the MLE 

estimates. However, note that the true error is well within one 

standard deviation. 

The autocorrelation terms calculated with the parameters derived 

by the "bootstrap" method were 

Rv(0) 	= 	2.400 ; 	Rv(1) 

which led to the estimates: 

= -1.265 ; Rv(2) = 0.222 

C; 
	= 	1.0289 ; 	0* = -1.0174 ; 0* 

2 = 0.2142 

/s. fs,  
From these, the estimates A, C1  and C2 shown in Table 6.5 were 

derived. 

Previously, we have proposed that the models identified by employing 

one of the parameter estimation schemes might be used in a control 

algorithm that is required to minimize the mean square deviation of 

the output from a desired target value. An important step in finding 

the control algorithm is to demonstrate that the model is a minimum 

variance predictor. We can write (in our previous notation) 

e*(t+1) = c 1(z-1)A(z 1)y(t+1) C-1(z-1)B(z-1)u(t+1) 	(6.4-1) 

Let us define 	y(t+1) = zy(t) 
	

(6.4-2) 

Taking the difference between (6.4-2) and (6.4-1) we obtain 
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y(t+1) 	= 

= 

A = 

e*(t+1) + zy(t) 	C
-1
(z

-1
)A(z

-1
)zy(t) + C-1(z

-1
)B(z

-1)u(t+1) 

c-1(z-1)B(z-l.
)

e e(t+1) 	 u (t+1) + 0-1(z 1)CC(z-1)-A(z 1)]zy(t) 

(6.4-3) 

e*(t+1) + y°(t+1; y(t), 	u(t+1), 	...) 	(6.4-4) 

The term y°(t+1; y(t), 	u(t+1), ...) in equation (6.4-4) depends 

only on the data y(t), y(t-1), 	u(t), u(t -1), 0 • • and the control 

exercised at u(t+1). We interpret y°(t+1; y(t), GOO, u(t+1), ...) 

as the minimum mean square prediction of y(t+1) given this data 

with prediction error Xe(t+1) 	e*(t+1). 

For our comparison, we write the following recursive relation corres- 

ponding to equation (6.4-1): 

e*(t+1) = y(t+1) + A1y(t) + A2y(t-1) 

A

0  - B u(t+1) B1u(t) - 2u(t-1) 

- C1  e*(t) 	C2e*(t-1) 
	(6.4-5) 

/N 
where the parameters A., B., C. are the estimated parameters of 

the model and the numbers e*(t) are generated recursively. Then, 

given observation y(t+1), we can compare the prediction error 

e*(t+1) obtained by equation (6.4-5) with the true disturbance 

e*(t+1) generated for the simulation. We can calculate the standard 

deviation of the prediction error by measuring the variance of the 

sequence ,.,.._e*(t)..; . Also, we can calculate the autocorrelations for 

the series. 



Prediction Error  

for Maximum 
True 	Likelihood 

Disturbance 	Estimator 
Model 

for "Bootstrap" 
Method 
Model 

-1.0845 
1.5137 
0.0656 
1.0264 

-0.5668 

*-1.0870 
1.4411 
0.0354 

* 0.9540 
*-0.6094 

-1.0686 
* 1.5566 
* 0.0426 
0.9377 
-0.7324 

0.8993 * 0.8016 0.6903 
0.6115 * 0.6539 0.5139 
0.6953 0.8353 * 0.6857 
-0.9302 -0.7P83 *-0.8570 
1.5417 1.6812 * 1.6480 

-0.2628 -0.1235 *-0.2892 
-1.4769 -1.1343 *-1.4994  
0.4130 * 0.4835 0.4847 
0.4155 * 0.5311 0.5571 
0.7804 0.8470 * 0.8281 
-1.1894 *-1.1442 -1.2393 
-0.1937 *-0.2593 -0.3147 
2.0517 * 1.9620 1.9344 
0.2986 0.4089 * 0.2561 

-4).6942 -0.5944 * -0.7927 
0.6839 0.7761 * 0.7005 
-0.1019 * 0.0455 0.0079 
-0.9271 -0.8744 *-0.9230 
-0.5241 *--0.5975 -0.6144 
-1.6078 *-1.6661 -1.1600 
0.0859 *-0.0101 0.1768 
2.0659 1.9500 * 2.0786 
-1.0464 -0.9820 *-1.0008 
-1.0601 *-1.0127 -0.9851 
0.2660 0.2063 * 0.2644 

- 	_ 
15 	15 

* Closest to true 

Table 6.6  Comparison of Prediction Errors 

218. 
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The prediction errors are compared in Figure 6.3. This graph 

clearly indicates that the predictor error for each model is very 

close to the true disturbance. The prediction errors determined by 

the two models are listed in Table 6.6. For comparison purposes, the 

prediction error closest to the true value is shown with an asterisk. 

By this measure, the model obtained by the "bootstrap" method compares 

favourably with the model obtained by the MIE method. 

The standprd deviation of the prediction error sequence generated 

by each model over the record length of 511 observations is given in 

Table 6.7. 

Standard Deviation 

True noise sequence 1.00000 

Prediction error sequence 
generated by the MIE method 
model 

0.992796 

Prediction error sequence 
generated by "bootstrap" 
method model 

1.00049 

Table 6.7  Comparison of the Standard Deviation of the Prediction 
Errors 

The first nineteen normalized autocorrelation coefficients, 

Re( z) were found for the true noise sequence -{e(t).} and the pre—

diction error sequences generated by the two models. The defining 

equation is 



2.5 

2.0 

1.5 

1.0 

0.5 

Symbols  
o True disturbance 
x MLE model prediction error 
• 'Bootstrap' model prediction error 

Noise 
;10.0 

Amplitude 

—0.5 

—1.0 

—1.5 

—2.0 

Figure 6.3 Comparison of Prediction Errors 



Re(T) 

N 
E e(t)e(t-T) 

N 	t=T+1 
N^T 

(6.4-6) 

E e(t)
2 

t=1 
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where N = 511 is the record length. The three sets of autocorrelation 

coefficients for the true noise and prediction errors are shown plotted 

against time shift T in Figure 6.4. 

We reject the hypothesis at the five per cent level that the 

sequences are correlated if not more than one in twenty autocorrelation 

terms exceed 2/V-5171 = 0.0883. (In this experiment, we should 

have recorded the autocorrelations for twenty shifts; we show nineteen.) 

Only one spike occurs at the fourteenth shift. Hence we claim that 

the input stochastic disturbance is uncorrelated. 

Observe that the autocorrelation coefficients for the prediction 

error sequence generated by the model with parameters determined by 

MLE are particularly small for the first few lags. The reason is that 

in the MLE method, the model parameters are adjusted until the variance 

of the prediction error sequence te*(t)2, is minimized. Hence any 

correlation of the input sequence for short runs (however slight) is 

removed and incorporated into the model parameters. That is, the model 

includes the combined second Order dynamics of the process and input 

noise. Thus the prediction error sequence is more truly independent 

than the input noise sequence! This explains why the standard 

deviation of the prediction error obtained by the MIE method is less 

than unity in the last example. 



Autocorrelatio 
.04 

Coefficients 

i 	.02 

20 

Symbols  
o  True disturbance 

x NILE model 
• 'Bootstrap' model 

Figure 6.4 Comparison of Autocorrelation Coefficients 
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The autocorrelation coefficients for the prediction error 

sequence generated by the other model (with parameters determined by 

the "bootstrap" method) do not exhibit the effect referred to above. 

However, on the basis of the evidence presented, we would reject the 

hypothesis (at the five per cent level) that the prediction error 

sequence generated by the model with parameters determined by the 

"bootstrap" method is correlated. 

The prediction error sequences were subjected to a Chi Squared 

test to ascertain the closeness of fit of their distributions to a 

normal distribution divided into twenty classes. The results of 

this test are summarized in Table 6.8. 

......./ 2 
,,,I__ 

Significance 
Level (per cent) 

True noise sequence 8.421 98 

Prediction error sequence 
generated by MLE method 
model 

5.77e ._ 	99 

Prediction error sequence 
generated by "bootstrap" 
method model 

a 735' 97.5 

Table 6.8 7e Test (19 degrees of freedom) 

The Chi Squared test indicates that the prediction error sequence 

generated by the MLE method model fits a normal distribution more 

closely than either the true noise sequence or the prediction error 

sequence generated by the "bootstrap" method model. We present this 
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as an observation for which we are not prepared to offer an explana-

tion without further investigation. 

The time taken to compile and execute the MLE method, including 

data processing, was 2.1 minutes. The corresponding time for the 

estimation of the parameters by the "bootstrap" method, along with 

all the other functions, was 1.1 minutes. 

We conclude that while the MLE method represents the optimal 

solution to the parameter estimation problem, the performance of the 

model determined by the "bootstrap" method was only slightly suboptimal 

by comparison. We have demonstrated that the latter generates a 

prediction error sequence very near to minimum variance that is statis-

tically uncorrelated. It has accomplished this with a significant 

reduction in computation time. 

6.5 The Estimation of Parameters of Systems with Zeros of the 

Noise Process Outside the Unit Circle  

6.5.1 Statement of the Problem 

In Section 5.4, it was shown that for a stochastic process with 

a finite number of nonzero serial autocorrelation terms (a finite 

moving average process), we can always find a stable filter to remove 

the correlation. Two examples were given showing filters designed to 

"whiten" a correlated noise process described by equations with one 

or more zeros outside the unit circle. 



225. 

In this section, we show the results of simulating two systems 

with the noise processes discussed in Subsection 5.4.5 and referred 

to above. We shall require the MLE and "bootstrap" estimators to 

find the parameters of the systems. 

6.5.2 System with One Zero Outside the Unit Circle 

The equation of the system simulated is: 

(1 - 1.5z-1 	0.7z-2)y(t)  . (1  4. z-1 	z-2)1  1(t) + 1(1 + 1.5z-1  - z-2)e(t) 

(6.5-1) 

The stochastic term v(t) factors as: 

v(t) = 1(1 + 2z-1)(1 - 0.5z-1)e(t) 	(6.5-2) 

which has roots in the z plane at -2 and 0.5. 

By analogy to example (1) (equations (5.4-37)) we expect to 

identify the process 

v(t) = 2(1 + 0.5z-1)(1 	0.5z-1)e(t) 
	(6.5-3) 

The simulation of the process in equation (6.5-1) and the estimation 

of the process parameters by the MLE method and "bootstrap" method 

was carried out as in the last section. The results are reported below. 

6.5.3 Observations and Discussion 

The parameters found by the two estimating methods are shown in 

Table 6.9. The MLE method finds only the solution with zeros within 



Parameters Al 	A2 Bo  B1  
B2 ," 01  02 D 

True Values -1.5 0.7 1.0 1.0 1.0 1.0 1.5 -1.0 0.0 

Stable Values ft rI Tr it II 2.0 0.0 -0.25 0.0 

Maximum 
Estimated 
(Stale Values) 

3-1.4967 0.7137, 0.9460 1.0.721 1.0659 1.9808 0.0501 -0.3063 -0.0009 

True Error 0.0033 0.0137 -0.0540 0.0721 0.0659 - - - 
Likelihood 

Std. Dev. 0.0261 0.0229 0.0882 0.0952 0.1022 - 0.0521 0.0489 0.0653 

Estimated -1.4805 20.6994 0.9689 1.1408 1.0966 1.251 1.055 -0.798 - 

"Bootstrap" True Error 0.0195 -0.0006 2-0.0311 0.1408 0.0966 0.251 -0.445 0.202 - 

Estimator Std. Dev. 0.0274 0.0256 0.0920 0.0956 0.1044 - _ - , - 

Estimated - - - - - 1.9618 0.1234 -0.3280 - 
(Stable Values) 1 

Best estimate of this parameter 
Within one s.d. of true 

Table 6.9  Comparison of the Estimates of the Parameters of a System with One Zero of the Noise 
Process Outside the Unit Circle 
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the unit circle. The reason is that the value of the number 

e*(t) = C-1(z-1)CA(z-1)Y(t) E(z-1)u(t)11 	(6.5-4) 

employed in the iterative estimation algorithm grows quickly if the 

-ls 
poles of 

c(z  ) are outside the unit circle. We call  this the 

"stable" solution for brevity. 

Two sets of parameters are shown for the estimates of A, Ci  

and C2 
for the model obtained by the "bootstrap" estimator because 

the two stochastic processes have the same autocorrelation coefficients. 

The autocorrelation terms calculated for the one-step-ahead 

prediction error sequence -,./26*(t) 	(computed with the "stable" 

parameters) are listed in Table 6.10. For both models, we claim at 

a 95 per cent confidence level that the prediction error sequences 

are uncorrelated. 

This simulation has demonstrated that a stable filter can be found 

by both the MLE method and the "bootstrap" methods to eliminate 

effectively the correlation of a stochastic process described by an 

equation with one zero outside the unit circle. 

6.5.4 System with Two Complex Zeros Outside the Unit Circle 

The equation of the system simulated is: 

(1 - 1.5z-1  + 0.7z-2)y(t) = (1 + z-1  + z-2)u(t) + 1(1 + 2z-1  + 2z-2)e(t) 

(6.5-5) 

The stochastic term v(t) factors to give two roots outside the unit 



Autocorrelation Terms for 

Shift 

 

MLE Model 	"Bootstrap" Model 

     

1 0.0210 -0.0405 

2 -0.0150 0.0354 

3 -0.0577 -0.0820 

4 0.0511 0.0654 

5 -0.0052 -0.0297 

6 -0.0391 -0.0344 

7 -0.0774 -o.o847 

8 -0.0469 -0.0402 

9 -0.0716 -0.0709 

10 0.0107 0.0113 

11 0.0525 0.0568 

12 -0.0333 -0.0336 

13 0.0737 0.0840 

14 -0.0097 -0.0146 

15 0.0352 0.0386 

16 0.0352 0.0306 

17 -0.0604 -0.0531 

18 -0.0513 -0.0544 

19 0.0367 0.0379 

Table 6.10 Autocorrelation Terms for Prediction Error Sequences of 

Models Found by the MIE and "Bootstrap" Methods 

228. 
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circle at z = - 1 -V -1. As shown by equation (5.4-40) of example 

(2) in Subsection 5.4.5, we expect to identify the process 

v(t) = 2(1 z-1  0.5z-2)e(t) 
	

(6.5-6) 

The simulation of the process in equation (6.5-5) and the estimation 

of the process parameters were carried out as in the previous sub-

sections. 

6.5.5 Observations and Discussion 

The parameters found by the MLE method and the "bootstrap" method 

are shown in Table 6.11. The standard deviations shown for the 

parameters of the model obtained by the "bootstrap" estimator which 

are lower than their counterparts for the model parameters obtained 

by MLE are not recorded in error. 

The autocorrelation terms for the prediction error sequences of 

the models estimated are shown in Table 6.12. We accept the hypothesis 

that the sequences are uncorrelated at the 95 per cent confidence level. 

This simulation has demonstrated that a stable filter can be found 

by both the MLE method and the "bootstrap" method to effectively 

eliminate the correlation of a stochastic process described by an 

equation with a pair of complex zeros outside the unit circle. This 

example and the last example together demonstrate that the stochastic 

processes described by equations with real zeros or complex zero pairs 

outside the unit circle can be compensated by stable filters so that 



Parameters Al  A2  Bo B1  B2 )N, C1  C2  D 

True Values -1.5 0.7 1.0 1.0 1.0 1.0 2.0 2.0 0.0 

Stable Values II IT I 1 It tl  2.0 1.0 0.5 0.0 

Maximum 

Likelihood 

Estimated 
(Stable Values) 
True Error 

Std. Dev. 

-1.4659 

0.0341 

0.0321 

0.6735 20.9899 1.0790 21.0429 1.9895 

- 

- 

0.9696 

0.0421 

0.5179 

- 

0.0426 

-0.0027 

- 

0.2178 

-0.0265 

0.0319 

-0.0101 

0.0883 

0.0790 

0.1155 

0.0429 

0.0885 

"Bootstrap" 

Estimator 

Estimated 

True Error 

Std. Dev. 

Estimated 
(Stable Values) 

-1.4759. 20.6795 0.8353 

0.1647 

0.1301 

- 

1.0199 1.0789 0.860 

-0.140 

- 

2.017 

2.289 

0.287 

- 

0.9752 

2.335 

0.335 
- 

0.4283 

- 

- 

- 

- 

0.0241 

0.0299 

- 

-0.0205 

0.0272 

- 

0.0199 

0.1330 

- 

0.0789 

0.1390 

- 

Best estimate of this parameter 
-- Within one s.d. of true 

Table 6.11 Comparison of the estimates of the Parameters of a System with Two Complex Zeros of the 
Noise Process Outside the Unit Circle 



Autocorrelation Terms for  

Shift 

 

MIE Model 	"Bootstrap" Model  

     

1 0.0072 -0.0293 

2 -0.0031 0.0813 

3 -0.0124 -0.0956 

4 -0.0303 0.0061 

5 0.0010 -0.0018 

6 -0.0155 -0.0425 

7 -0.0260 -0.0015 

8 -0.0024 -0.0026 

9 0.0337 0.0369 

10 0.0144 0.0168 

11 -0.0920 -0.0877 

12 -0.0557 -0.0527 

13 0.0162 0.0879 

14 -0.0059 -0.0029 

15 0.0091 0.0028 

16 -0.0525 -0.0473 

17 -0.0031 -0.0075 

18 -0.0031 -0.0176 

19 0.0251 0.0464 

Table 6.12 Autocorrelation Terms for Prediction Error Sequences of 

Models Found by the MIE and "Bootstrap" Methods 
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the prediction error sequence is uncorrelated. The consequence of 

this demonstration is that a physical process that may have non-

minimum phase characteristics in its stochastic part will be iden-

tified as a system with minimum phase characteristics in its stochastic 

part. 

6.6 The Estimation of the Matrix of Second Derivatives of the  

Likelihood Function  

6.6.1 Purpose and Procedure 

In Subsection 5.6.1+, it was proposed that a second-order minimiza-

tion algorithm such as the Fletcher and Powell routine [31] could be 

used to minimize the negative log likelihood function without requiring 

the explicit calculation of the matrix of partial second derivatives. 

Recall that the Newton-Raphson iterative algorithm that uses the matrix 

of calculated partial second derivatives is (m = 1) 

e(k+.1) = e(k) L*1(e(k))L:(e(k)) ee 
(6.6-1) 

where the elements of L*ee 
 (e(k)) are given by 

a2 
ae.ae. L*(e(k)) = 	[ E ae*(t) 	ae*(t)  

t=1 ee.1 °e.  

+ 	e (t) 	 
a2e*(t) 3  

E aei  ae. t=1 * 
	

3 
(6.6-2) 
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The alternative solution proposed was to employ the iterative algorithm 

e(k+1) = e(k) H(k)1,;(e(k)) 	(6.6-3) 

where H(k) is a positive definite symmetric matrix updated with the 

most recent gradient information. (See [31] for a complete description 

in which it is shown that H(k) tends to the matrix of partial second 

derivatives evaluated at the minimum.) 

One proposed advantage of this alternative method is that it 

simplifies the programming effort. A possible disadvantage is that it 

may not converge to the same solution obtained by calculating the 

matrix of partial second derivatives and inverting it at every itera-

tion. 

The purpose of the following experiment is to compare the two 

algorithms in estimating the parameters of the second order system 

previously discussed in Section 6.3. Plant data (from zero initial 

conditions) was generated and stored. The proper MLE method employed 

was that used in the preceding sections. The alternative method using 

the Fletcher-Powell (FP) algorithm was initiated with a unit matrix 

for H(0). 

6.6.2 Discussion 

The first experiments with the FP algorithm failed. It was found 

that the parameters obtained in the first iteration resulted in over-

flow values for L*(e(1)) from which it was unable to recover. 
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Further investigation showed that Davidon's cubic interpolation procedure 

recommended by Fletcher and Powell, which employs function and gradient 

values for minimization along a line, would not work in this applica-

tion. The first step away from the working point in the direction of 

steepest descent invariably resulted in a choice of parameters such 

that the zeros of the polynomial C(z ) were outside the unit circle 

in the z plane. 

To constrain the search to points for which the zeros of 

were kept within the unit circle, the following procedure was 

developed. 

(1) A search point was found along the descent direction chosen by 

the FP algorithm. 

k 
(2) The estimate C(z

-1 
 ) of the polynomial 

(3) If the absolute value of the distance from the origin to any of 

the roots found in (2) exceeded 0.975, the step size in the descent 

direction was halved. 

(4) The procedure was repeated from (1) until the roots were all 

within the constraint circle of radius 0.975. 

(5) The resulting parameters were used to generate the prediction 

error sequence -1:18*(02; 

As a result of this modification, no further difficulty was 

experienced. The function and gradient values all remained finite. 

Table 6.13 compares the estimated parameters and the standard 

deviations of the estimates for the two alternative NIE methods. The 

G

(

z  1 ) 

c(z..1) 

was factorized. 



A1  A2Parameters
2 

Bo  B1  B A Ci  C2 D 

True Values -1.5 0.7 1.0 1.0 1.0 1.0 -1.0 0.2 0.0 

MLE Estimated -1.4917 0.6932 -0.8558 1.0849 0.4618 1.0705 -0.9668 0.1291 0.0015 

(Calculated 
covariance) Std. D. 0.0144 0.0121 0.0443 0.0615 0.0582 - 0.0425 0.0418 0.0072 

MLE Estimated -1.4917 0.6932' -0.8432 1.0833 0.4627 1.0705 -0.9665 0.1286 0.0015 

(Estimated 
covariance)  Std. Dev. 0.0146 0.0125 0.0346 0.0464 0.0516 - 0.0432 0.0414 0.0067 

Table 6.13 Comparison of the Estimates of the Parameters of a Second Order System by Alternate 

MLE Methods 
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two sets of estimated parameters are quite close to each other. The 

observation that two of the standard deviations derived from the 

estimated covariance matrix are twenty per cent low is cause for con-

cern because it suggests that the associated parameters are estimated 

more accurately than is justified in the circumstances. 

More computation was involved in using the FP algorithm than 

the direct method. This is shown in the following table. 

1 1 
MLE 

(Newton -Raphson) 
MIE 

(Fletcher-Powell) 

Number of 
Iterations 10 11  

Total Time 
(minutes) 2.1 3.8 

Table 6.14  Comparison of Computation Effort 

Possibly the main reason for increased computation time is that 

unstable roots were encountered in the minimization-along-a-line 

section of the FP algorithm 51 times during the first two iterations. 

Since carrying out the above comparison, D. W. Norris has modified 

the Fletcher-Powell algorithm by replacing Davidonts minimization-

along-a-line procedure by cubic interpolation with a quadratic 

minimization method. The important advantage to the above problem of 

this modification is that the steps in the descent direction are 

initially smaller than in the original procedure. 



6.7 Testing the Order of the Model 

6.7.1 Purpose and Procedure 

The consequences of changing the order of the model in an 

identification problem is well known. If the order is assumed too 

low, it is impossible to remove the correlation from the prediction 

error sequence 	. On the other hand, Astrom and Bohlin [18] 

note that the matrix of partial second derivatives, L*BO,  may become 

singular on choosing a model of too high order. 

In this section, we show the results of having investigated 

changing the order of the model fitted to data generated by a second 

order system. The parameters are fitted by the MIE method. However, 

Mayne's pseudo-inverse routine E643 is used to invert the matrix 

L*ee for reasons that will become clear. 

The second order model used for simulation is the same as that 

employed in the last and other sections. Zero initial conditions were 

assumed. The record length was 511 observations as in previous trials. 

6.7.2 Observations and Discussion 

A summary of the parameters found and their standard deviations 

for models of different order is shown in Table 6.15. The autocorrela-

tion terms for the prediction error sequence - e*(t),1-  of each model 

was computed for 19 shifts as in previous sections. The number of 

terms Re(T) that exceed 2/11-71 is displayed in the table. 

237. 
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Order 	i p = 1 p = 2 P = 3 

Param. Est. s.d. Est. s.d. Est. s.d. 

Al  -0.867 0.021 -1.494 0.008 -0.593 0.140 

Az  - - 0.695 0.006 -0.649 0.211 

A
3  

- - - - 0.625 0.099 

B0  0.973 0.114 0.995 0.044 0.993 0.044 

B1 0.832 0.118 1.017 0.063 1.918 0.143 

B2 - - 1.045 0.060 1.954 0.163 

B
3  

- - - - 0.956 0.139 

2.563 - 0.996 - 0.995 - 

01 0.554 0.036 -1.035 0.043 -0.128 0.144 

C2 - - 0.256 0.043 -0.694 0.141 

c
3 

- - - - 0.247 0.051 

Number of 

Large* 9 0 0 

Terms Re(T) 

Number of 
6 10 15 

Iterations 

* Exceeding 2/1F57 

Table 6.15 Testing the Order of a Model 
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We reject the model of order p = 1 because the magnitude of 

the first nine autocorrelation terms indicates that the prediction 

error sequence for this model is strongly correlated. In addition, 
/-N 

the estimate N is more than two times larger than for the other models. 

We reject the model of order p = 3 because the estimate A is 

not significantly lower than for the model of order p = 2 and because 

standard deviation of parameter estimate  
the ratio 

	

	 is much higher 
parameter estimate 

for the third—order model than for the second—order model. That is, 

the estimates for the parameters of the third—order model do not merit 

the confidence that we have in the estimates of the parameters of the 

second—order model. 

There are two advantages in using the pseudo—inverse routine 

referred to above to invert the matrix L*ee 
 of partial second derivatives: 

(1) When the matrix L*ee 
 is of full rank, its pseudo—inverse 

and true inverse are identical. 

(2) The evidence from experiments in fitting models of up to 

order p = 1+ to a second—order system indicate that the iteration 

procedure is able to converge even when the matrix L*ee 
 is singular 

(or tends towards singularity). This is useful because comparison of 

the models is then facilitated. (The possible alternative is a set of 

meaningless parameter estimates.) 

The prediction error sequence -fre*(t)': estimated by the model 

of order p = 3 was observed to fit the true sequence j,,.e*(t),,, quite 

well. In fact, the sequence for p = 4 was a fair fit. 
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6.8 The Estimation of Parameters of a Multivariate System 

6.8.1 Statement of the Problem 

In this section, the MLE and "bootstrap" estimation methods are 

used to find the parameters of a fourth order system with two inputs 

and two outputs. The following equations of the system considered 

are written in the A-canonical form developed in Chapters 2 and 4. 

x(t+1) = FAx(t) + GAu(t) + IAe(t) 

Y(t) = HAx(t) + DAu(t) 	_PY2e(t) 

where x(t) is the system state vector (n = 4), u is the control 

vector (r = 2) and e(t) is an independent random variable from 

n(0, 12). 

The system parameters were selected to be representative of system 

situations that might be encountered in practice. The derivation 

began with the cross-coupling of two second-order continuous-time 

systems with poles on the real axis (of the s-plane) at,-0.5, -0.1, 

-2.0 and -0.4. Measurement noise was introduced and feedback loops 

were added from the noise perturbed outputs, moving the system poles 

to a1, \2  = -0.3 ± 0.66 .and X3, 	. -1.2 t 1.4. 

For simulation purposes, the continuous-time feedback model was 

made into a sampled-data model and transformed into the A-canonical 

form shown in equation (6.8-3). 



21+1. 

0.0 0.0 	1.0 0.0 	-1 

0.0 0.0 	0.0 1.0 
FA -0.6249 -0.0093 	1.36240 0.0221 

0.3107 -0.1406 	-0.28132 0.4587 

3.0580 6.2429 0.1021 	0.6551 

-1.4o81 -6.4913 -0.6553 	-0.4926 
GA  = TA 1.1748 5.5693 -0.1164 	0.4678 

-o.3864 -1.9434 -0.0043 	-0.2228 

HA 

DA 

= 
1.0 

0.0 

- 10.0 

1.0 

0.0 

1.0 

1.01 
10.0 i 

	

0.0 	0.0 

	

0.0 	0.0 

	

, 	1/2  
\_ =  

; 
1.0 

0.6 

0.6 

1.0 j  
(6.8-3) 

The equivalent vector difference equation of the above system is 

obtained by carrying out the transformation procedures outlined in 

Chapters 3 and 4. The vector difference equation is 

A(z-1)y(t) = B(z-1)u(t) 	v(t) 	(6.8-4) 

where, for later convenience, we may write v(t) in either form below: 

v(t) = C(z-1)2,1/2e(t) 	(6.8-5) 

= Cqz-i)e(t) 	(6.8-6) 



21+2. 

For this problem, 	p = 2 	so that 

A(z-1) = 1
2 
+ z-1A1  + z-2A2 

(6.8-7) 

B(z-1) = Bo  + z-1B1  + z-2B2 (6.8-8) 

C(z -1)_,A,1_{2 = (12  + z -101  + z-202) (6.8-9) 

C'(z
-1
) = C' + z

-1
C' + z-20' 0 	1 	2 (6.8-10) 

The problem is one of estimating the thirty-one parameters of the 

above model (C' 	_AY2  is symmetric). We assume that the order 

is known (p = 2), the experiment is commenced from zero initial 

conditions and there is no delay in the control terms. 

6.8.2 Estimation Procedure 

For comparison purposes, a series of experiments were carried 

out in the following order: 

(1) Operating data was simulated by running the state model for 

a total of 889 time intervals (from zero initial conditions). Control 

excitation for the simulation was provided by 127 bit PRBS sequences 

adjusted for zero mean and repeated seven times. Feedback was taken 

from the fourth register of the PRBS generator for one input and from 

the third register for the other. Thus the chain code produced for 

one input in forward time was the same as the code produced for the 

other input in reverse time. Preferred methods for which the cross-

correlation between channels is reduced are discussed in Chapter 7. 
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(2) The "bootstrap" estimator was used to estimate the twenty 

parameters of A(z
-1
) and B(z ). The equations for the sequential 

estimator in the multivariate case are given by (5.5-17) and (5.5-18) 

in Subsection 5.5.4. 
A 

The serial autocorrelations 	Rv(1) and v(2) were  

obtained by the methods described beginning equation (5.5-38) in 

Subsection 5.5.4. From these, the matrix coefficients 6' 6,  and 0' 	2 

were obtained by the method of moments set out in Subsection 4.3.3 

exactly as for the example shown beginning with equation (4.3-46). 

These led to estimates of C1, C2 and-1\ 

(3) The MIE algorithm was provided with the estimate obtained 

in (2) as the initial starting value. The purpose of this was to obtain 

the value of the likelihood function for the parameters obtained by 

the "bootstrap" method. Then the MLB method was required to improve 

the estimate by minimizing the likelihood function. The Fletcher-

Powell algorithm was employed in this task. 

Two problems were encountered in carrying out this plan. It was 

found that the record length of 889 intervals was insufficient to pro-

vide estimates by the "bootstrap" method that could be used in the 

simple control scheme to be described later. The controller was found 

to be unstable. To solve this problem, it was sufficient to prime the 

first "bootstrap" prediction with an estimate obtained from a previous 

run. However, the covariance matrix was not altered at the same time; 

thus the variance of the final estimate was conditional on the 889 

samples only. 
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The other problem encountered was the effect of numerical round-

off. We are warned (IBM 360 System Scientific Subroutine Package 

Manual) that multiple regression in more than five variables can lead 

to erroneous results if single precision arithmetic is used. The 

problem here can be formulated as that of finding the parameters of 

the regression model in ten variables 

y(t) = 9 (t) v(t) (6.8-11) 

where 

(t) = 

L 

y(t-1) 

y(t-2) 

u(t) 

u(t-1) 

u(t-2) 

(6.8-12) 

The parameters found to be the most sensitive to round-off were 

the autocorrelation coefficients Rv(T) which were affected in the 

third significant digit when computed by single precision arithmetic. 

6.8.3 Observations and Discussion 

A comparison of the parameters obtained by the MLE and "bootstrap" 

estimators is given by Table 6.16 along with the true values. For 

instance, the biased estimates obtained by conventional least squares 

have also been displayed to indicate the necessity for estimating by 

other means. The significant features in the table are summarized 

as follows: 
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Table 6.16 Comparison of Parameter Estimates for a Multivariate 

System 

Parameter 
Matrix 

Estimator Estimated 
Parameters 

Standard 
Deviation 

Al  True -1.3624 
0.2813 

-0.0221 
-0.4587 

LSE -1.0253 0.2994 
0.5135 -0.1548 

MLE .-1.3272 0.0302 0.0465 0.0534 
0.2776 -0.4600 0.0542 0.0532 

"Bootstrap" -1.3501 0.0107 0.0264 0.0378 
0.2837 -0.4384 0.0230 0.0318 

A2 True 0.6249 
-0.3107 

0.0093 
0.1406 

LSE 0.4007 .0.0032 
-0.4840 0.0874 

MLE 0.5935 -0.0040 0.0309 0.0476 
-0.3110 717 0.0351 0.0312 

"Bootstrap" 0.6081 0.0015 0.0190 0.0227 
0.3217 0.1272 0.0159 0.0190 

B0  True 10.0000 1.0000 
1.0000 10.0000 

LSE 9.9449 1.0559 
1.0175 10.0131 

MLE 10.0244 0.9890 0.5250 0.0720 
-7.07573.0 9.9793 0.5130 0.0480 

"Bootstrap" 9.9995 1.0274 0.0498 0.0489 
1.0427 10.0073 0.0417 0.0412 

-----within one s.d. of true 
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Table 6.16 (continued) 

Parameter 
Matrix 

Estimator Estimated 
Parameters 

Standard 
Deviation 

B1  True -10.5881 	4.6591 
0.9465 -10.7966 

LSE -6.8108 	8.1297 
3.604 	-7.6182 

MLE -10.1332 	5.1077 0.528 0.528 
0.9317 -10.9'081 0.556 0.533 

"Bootstrap" 72L122211- 	4-91-)15 0.298 0.389 
-0799479 -10.6 70 0.248 0.326 

B2 True 

	

3.2977 	-2.0743 

	

_1.8468 	3.8850 

LSE 1.6056 	-2.4159 
-3.3526 	2.6867 

M1E 2.9409 	-2.3185 0.532 0.767 
-1.8614 	3.9157 0.476 0.500 

"Bootstrap" 3.o668 	-2.3127 0.194 0.447 
-2.0167 	3.6767 0.163 0.375 

C1  True 

	

-1.8171 	0.9058 

	

-0.2808 	-0.6140 

MLA -1.9171 	1.1425 0.340 0.356 
-0.4196 Z747467 0.298 0.342 

"Bootstrap" -1.8207 	0.9880 
-0.2238 	-0.5588 
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Table 6.16 (Continued) 

Parameter 
Matrix 

Estimator Estimated 
Parameters 

Standard 
Deviation 

• 
C2 True 0.6364 

0.0213 
-0.4115 
0.1288 

MLE 0.5996 -0.4367 0.355 0.394 
0.0877 0.0395 0.320 0.371 

"Bootstrap" 0.7044 —0.5418 
0.0866 0.0266 

__A 
True 1.3600 

1.2000 
1.2000 
1.3600 

MLE 1.3585 1.1950 
1.1950 1.3533 

"Bootstrap" 1.3611 1.2010 
1.2010 1.3659 

"Bootstrap" 2.1226 1.3668 
(see 	text) 1.3668 1.4000 
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(1) The estimates obtained by conventional least squares are 

strongly biaSed. 

(2) All the MLE estimates are within one standard deviation of 

the true parameter. 

(3) 17 out of 20 "bootstrap" estimates for parameters of 

A(z
-1
) and B(z

-1) are within one standard deviation of the true 

parameter. All are within two standard deviations. 

(4) The standard deviations calculated for the "bootstrap" 

method are smaller than for the MLE method. There is strong evidence 

that this is a limitation imposed by the method employed for deter-

mining the matrix of partial second derivatives (that is, by using 

the Fletcher-Powell algorithm in place of direct calculation of the 

matrix). There are two reasons for stating this: 

(a) The evidence of the simple experiment carried out in 

Section 6.6 indicated that, in the main, the standard deviations 

calculated by the Fletcher-Powell Algorithm were larger than those 

calculated directly. 

(b) The Fletcher-Powell routine terminated after 24 iterations 

and 226 function evaluations when it found that the function values 

were being affected by round-off errors. At least 28 iterations are 

required to satisfy a quadratic search. In view of the low likelihood 

function value achieved, it is doubtful that further searching would 

have had significant effect on the parameters. A careful study of 

the search points during convergence showed that in the last six itera-

tions, the dominant terms moved about .001 per cent while the smaller 
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terms moved about .1 per cent; the function value fell from 

2127.0577 to 2126.9687 but the elements on the diagonal of the 

covariance matrix were reduced by factors in the order of 50 to 

100 per cent! Hence, it is concluded that single precision com-

putation has limited the capability of the algorithm. 

(5) The covariance matrix _A_ was calculated from the prediction 

error sequence ; e*(t) - using the parameters calculated by the 

"bootstrap" method. The result is the last entry in Table 6.16. It 

/, 
indicates that the estimate __A_ obtained by the method of moments 

is optimistic; that is, the true variance of the prediction error 

exceeds that calculated by fitting moments. 

(6) The computing time expended to provide the data for Table 

6.16 was divided as follows: 

(a) Compilation and execution of the program to find - (i) the 

- 1 
parameter estimates of A(z ) and B(z-1) by the LSE method (ii) the 

parameter estimates of A(z-1) and B(z-1) by the "bootstrap" method 

(iii) the parameter estimates of C(z-1) by the method of moments 

- took 2.3 minutes. The time to find the parameters by the MLE 

method, starting with the solution obtained by the "bootstrap" method 

took 20.6 minutes. 

The (negative log) likelihood function L*(4) was evaluated for 

the true parameters and for the parameters estimated by the two methods. 

These are shown in Table 6.17 below. 
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L*(43) 

True Parameters 	2126.1 

Parameters by 
MLE Estimator 

Parameters by 
"Bootstrap" 
Estimator 

2126.9687 

2543.9190 

  

Table 6.17 Comparison of Likelihood Values for MLE and "Bootstrap" 
Estimators 

From this comparison, it is clear that the MLE estimates are 

close to the optimum values to minimize L*(4). However, this improve-

ment over the "bootstrap" estimates required significant computing 

effort. 

It is an easy task to transform the vector difference equation 

models in the input and output variables into the A-canonical form as 

state-variable models. The equations of the system for simulation 

were given in A-canonical form at the beginning of this section. 

The method of transformation was discussed in the stochastic case in 

Section 4.4. In the following equation (6.8-13), we show the state-

variable model transformed from the model identified by MLE. This is 

followed by the transformed model identified by the "bootstrap" method. 

The observation matrix H
A 

is fixed. 



0.0 

0.0 

-0.5935 

0.3110 

3.1403 

-1.3770 

1.2052 

-0.3929 

0.0 1.0 

0.0 0.0 

0.0039 1.3272 

-0.1398 -0.2776 

6.1192 

-6.5917 

5.4547 

-1.9028  

o.o 

1.0 

-0.0302 

0.4601 

- 0.0776 

-0.6677 

-0.0666 

0.0616 

GA = 

251. 

0.7584 - 

-0.3692 

0.4631 

-0.2407 

rA 

,A 
DA 

10.0244 

1.0308 

0.9890 

9.9793 j 
(6.8-13) 

   

7 
1 0.0 

A 	1 0.0 

FA -0.6081 

I 0.3217 

0.0 1.0 

0.0 0.0 

0.0015 1.3501 

-0.1272 -0.2837 

0.0 

1.0 

-0.0107 

0.4384 J 

3.0834 6.2120 0.1145 0.6984 

-1.3847 -6.5714 -0.5802 -0.4250 
GA = 

1.1656 
TA 5.5341 -0.0666 0.4631 

-0.4144 -1.9085 0.0616 -0.2410
1  

A 9.9952 1.0274 
DA (6.8-14) 

1.0427 10.0073 
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Note that in transforming the models from the difference equation 

description to the state-space description, the product of various 

parameters is found a number of times in the procedure. Because all 

the parameters are correlated with each other to some extent, (that is, 

the covariance elements are nonzero) these operations must lead to biased 

parameters in the state model. It would be interesting to simulate the 

transformed model along with the difference equation model to ascertain 

the extent of the bias. 

To conclude this section, we note that: 

(1) The MLE method has proven to be a powerful tool for the estima.m 

tion of the thirty,one parameters of a multivariate system. However, 

the method has been demonstrated to be expensive in computing time. 

(2) The "bootstrap" estimator has provided a quick but suboptimal 

estimate of the parameters of a system when compared with the MLE 

method. However, the solution may very well be adequate for the 

estimation of parameters in real situations. 

6.9 Regulation of a Multivariate Stochastic System  

6.9.1 Minimum Variance Control of the Output 

The multivariate form of the identity that leads to the minimum- 

variance predictor equation given in Section 6.4 is also 

y(t+1) 	e*(t+1) + C-1  (z-1)B(z-1)u(t+1) 

+ C-1(z-1)10(z 1) 	A(z-1)]zy(t) 

= e*(t+1) + y°(t+1; y(t), 	u(t+1), ...) 	(6.9-1) 
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where y0 (t+1); y(t), 	u(t+1), ...) is the minimum mean square 

prediction of y(t+1) given the observations y(t), y(t-1), oos, 

u(t), U(t..1), ... and the control exercised at u(t+1). The variance 

of the prediction error is_z\_ if A(z- 1
), B(z-1. 

) and C(z-1) are 

known perfectly. In the special case of B0 = 0 and B1 	0, 

the prediction equation y°(t+1; ...) is conditional only on 

observations and controls up to time t. We observe (in the manner 

of Astrom et al. for the scalar observation case [18]) that 

ECy(t4-1)yT(t+1)] = 

for the minimum variance controlling equation 

B(z-1)u(t+1) = (A1(z-1) C1(z-1))y(t) 

+ (A
2(z-1) 	C2(z-1))y(t-1) 

+ (A (z-1) - 0 (z-1))y(t-p+1) 

(6.9-2) 

(6.9-3) 

The above equation for the controller is the equation of a dynamical 

system of the form 

B(z-1)u(t+1) = ;q(z-1)y(t) 
	

(6.9-4) 

which is physically realizable only if equation (6.9-4) is stable. 

It is not stable if zeros of B(z-1) are outside the unit circle 

(corresponding to a nonminimum phase system). Hence the minimum vari-

ance controller derived above is suited only to a subclass of minimum 

phase systems. 
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6.9.2 An Example 

Let us consider the problem of regulating the system discussed 

in the last section. The theoretical controller equation is 

B0u(t+1) + B1u(t) + B2u(t-1) = (A1  - C1)y(t) + (A2  - C2)y(t-1) 

(6.9-5) 

which has to be solved for u(t+1). In this example, it is particularly 

convenient that B0 is nonsingular. Then we can check the stability 

of equation (6.9-5) with the estimates Bo, B1  and B2 by deter-

mining the eigenvalues of the matrix 

FB 
0 	12 
-1" B 	B 1B 0 B2 	0 1 

(6.9-6) 

   

This method of checking the stability of vector difference equations 

was discussed in Subsection 5.4.5. 

For the parameters estimated by the "bootstrap" method, it was 

found that the eigenvalues of FB  were within the unit circle. Thus 

the controller appeared practical. 

The system equations were simulated on the computer excited by 

noise with the same variance as that used when estimating the para-

meters of the system. However, no attempt was made to make the noise 

sequence zero mean. The controller equation obtained from (6.9-5) 

- 
u(t+1) 	-BO

1  CB1u(t) + B2u(t-1) + (01-A1)y(t) + (C2-A2)y(t-1)] 

(6.9-7) 

was operated with the true parameters. It was demonstrated that 
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the deviation of both outputs at every time instance was the same 

(to more than three significant figures) as the theoretical minimum 

prediction and control error. That is, at every t 

y(t) = e*(t) 	 (6.9-8) 

Then the controller was operated with the parameters obtained 

by the "bootstrap" estimator and tabulated in the last section. In 

Figure 6.5, one of the two outputs of the system regulated by the 

controller with estimated parameters is compared with the theoretical 

minimum control error. It can be seen that the performance is 

remarkably good. However, after operation in the order of one hundred 

time intervals, it was observed that the tracking performance had 

deteriorated. The following analysis explains this observation. 

For simplicity, let us assume that B(z -1) has an inverse. The 

system equation is 

A(z-1)y(t) = B(z-1)u(t) 0(z-1)e*(t) 
	

(6.9-9) 

The control equation 

u(t) = k1(z-1)[A(z-1) - 0(z-1)]y(t) 	(6.9-10) 

is a function of y(t-1), y(t-2) ... but not of y(t) because I
m 

is the first term of both polynomials A(z-1  ) and C(z-1). Hence 

we may combine (6.9-10) with 6.9-9) and obtain 

EA(z-1) B(z-1)i-1(z-1)a(z-1) a(z 1)ny(t) = C(z-i)e*(t) 

(6.9-11) 
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Figure 6.5 Multivariate System Under Control 
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Clearly, if the estimates are exact, equation (6.9-11) reduces to 

the desired relation 

y(t) = e*(t) 	 (6.9-12) 

Otherwise, equation (6.9-11) is the equation of a dynamical 

system. There is no guarantee that equation (6.9-11) is even stable. 

Analysis of this equation is difficult, because both the system 

equation and the controller equation are fourth order. 

It was observed that over several runs, the system behaved like 

a random walk, the direction of drift being unpredictable. 

To test the hypothesis that the closed loop stochastic system 

was operating as if it had a pole near the origin (in the s-plane), 

the impulse response of the homogeneous part of equation (6.9-11) was 

found by two simulation experiments. The factor C(z
-1
)e*(t) on 

the right was replaced by the term g1) = 

experiment and g1) = 
10  
0 
0  J 
1 

for the second. The first experi-

ment

L 

 dominated the results. It showed that the response of each 

output could be fitted approximately by the response to a pole at 

about -0.1 in the s-plane. 

The engineering solution proposed for this problem was to restore 

the nominal operating point of the output to zero by integral-type 

feedback. A moving average over the past 30 samples, fed back from 

each output to the input, restored the tracking performance. 

The cyhclusion is that in a real control situation where the 

1001 
for the first 1 0 
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control algorithm used in the above incorporates estimates of the 

parameters of the system, the controller has to be supplemented by 

a reset actuator if it is required to regulate about a set point. 

This is well known in practice. 

6.9.3 State Control 

In Section 6.8, it was demonstrated that state-variable models 

in the A-canonical form can be constructed from the difference equation 

models derived by the estimating schemes discussed earlier. The 

state-variable system can be written with e*(t) as follows: 

x(t+1) = FAx(t) + GAu(t) + Ile*(t) 
	

(6.9-13) 

y(t) = HAx(t) + DAu(t) + e*(t) 
	

(6.9-14) 

But an estimate of the prediction error e*(t) can be obtained at 

every observation instant. Therefore an estimate of the next state 

can be made after every observation. The procedure is simply: 

(1) Assume x(t) is known. 

(2) e*(t) = y(t) 	HAx(t) ^ Du(t) 

(3) Calculate x(t+1) by equation (6.9-13) and repeat. 

The expectation of the state of this model is related by a 

linear transform to the expectation of the state of the system 

modelled. 

The state-variable model here does not supply any more informa- 

tion than can be obtained from the vector difference equation, However, 
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it m& be more convenient to design a controller with this model 

than with the vector difference equation model. 

For example, a controller based on the solution of the steady 

state Ricatti-equation can be designed to minimize some integral 

criterion based on costing both control and deviation of the state 

from some target value. When used as a regulator, such a controller 

should also cost the integral of the deviation of the state from the 

set point to avoid the "drift" situation encountered in the last 

example. 

The important point here is that by employing either the state-

variable model or the vector difference equation model, the parameters 

of which have been estimated by fitting the model to input and 

output data, the minimum variance prediction error e*(t) can be 

obtained. The design of a controller using this information adds new 

problems of stability, etc, which extend beyond the scope of this 

thesis. 
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CHAPTER 7 

DISCUSSION AND EXTENSIONS 

7.1 Introduction 

In this final chapter, we shall briefly summarize the contribu-

tions of this thesis and indicate areas of engineering application. 

We shall also point out some of the main difficulties in identifying 

systems and briefly indicate how to counter them. Finally, we shall 

suggest directions of extended research. 

7.2 Canonical Forms of Deterministic Systems  

In this thesis, the A-canonical form has been developed to add to the 

list of canonical forms of a state-space description. Each has its 

use; they are complementary to each other: 

(1) Jordan form [25]:- displays system eigenvalues (real and complex, 

including repeated roots) along the diagonal of the system matrix F. 

- useful for stability analysis 

(2) Companion form [4]:- displays the characteristic polynomial of 

the system matrix F in•the bottom row of F. 

- useful for system simulation and analysis. 

(3) Multivariate forms due to Luenberger [10] or Luenberger and 

Anderson [11], (also Section 2.5.1): 

- system decomposed into a series of coupled subsystems, each in 
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companion form 

- useful for designing feedback configurations[113. 

(4) A-canonical form:- provides a direct means of transforming a 

state-space description E (F, G, H) into a scalar or vector 

differential (or difference) equation description E D(A, B) 

- provides a direct means of synthesizing a state-space des-

cription E (F, G, H) from a description E D. 

It is easy to lose sight of the fact that the A-canonical form and 

its associated transforms are not limited to multivariate system 

analysis. We recall that for the case of single outputs, each matrix 

coefficient is simply a scalar. 

7.3 Stochastic Models 

7.3.1 Generalizing the Models 

Two new, multivariate stochastic models have been derived in 

this thesis; the difference equation model (the 
Ds description) 

1 	1 	-1 1/2  A(z-  )y(t) = B(z-  )u(t) + C(z ) 	e(t) (7.3-1) 

and its counterpart, the ESA  description which was given by 

equations (4.4-3) and (4.4-4). The important feature of these 

models is the combination of the noise sources into one vector process. 

That is, the noise process v1(t) that excited the system states and 

the measurement noise v2( t ) 
 

were combined into one stochastic process 

in Chapter 4. 
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To cope with transport delays and nonzero mean processes that are 

to be anticipated in practice, the difference equation model can be 

made more general by the following additions: 

A(z-1)y(t) = z-kB(z-i)u(t) C(z-1)JN1Z2e(t) Po 	(7.3-2) 

where z-k represents a delay as a multiple of the sampling period 

because of transport lag. The m-vector tto  is an offset term. The 

addition of these factors does not affect any of the results reported 

earlier; it simply makes the model more general for use in real 

situations. Similar extensions can be added to the state model. 

7.3.2 Applications of the Models 

It has been shown that the stochastic models are suitable for 

output prediction and output control. We have also demonstrated that 

the parameters of these models can be estimated for the same purposes. 
T7C., 

An importantpis that for control purposes, the models provide informa- 

tion suitable for feedforward as well as feedback control when correlated 

disturbances are encountered. 

We believe that a single output form of the E
Ds 
 description 

shown in equation (7.3-2) has been used to model part of the process 

of kraft paper making at the Billerud Company in Sweden for a number 

of years [69]. The control requirement is the regulation of basis 

weight of the paper within certain narrow limits. With the introduc- 

tion of a multivariate model, which is a generalization of the single 

output model, it would be possible to simultaneously predict and control 
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other output variables which interact with basis weight (such as 

moisture control). 

The use of the EDs description is not limited to control 

situations. In Chapter 5, it was shown that by setting various 

matrix coefficients to zero, the equations can be used to model multi—

variate autoregressive series, moving average processes and combined 

mixed autoregressive moving average processes that arise in time 

series analysis. In their comprehensive series of technical reports 

(including [23] and [33] which we referenced previously), Box and 

Jenkins give a number of examples of interesting time series such as 

stock market trends, weekly business or sales results, etc. The 

EDs description for m = 1 (single output) is essentially the same 

as the difference equation models that they have considered. Hence, 

we suggest that the multivariate stochastic models may have applica—

tion in broader problems in business and economic forecasting. 

7.4 Multivariate System Identification 

7.4.1 The Problem of Choosing a Linear Structure 

In the first chapter, when introducing the subject, we subdivided 

the identification problem into two phases: 

(1) the choice of a model structure 

(2) the estimation of the parameters of the structure. 

Only the latter phase has been considered in detail. We are concerned 

only with linear models for the former. 
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In Section 6.7, we demonstrated how to choose the order of the 

model in the simple case of a single output. In the general case, 

the problem of selecting a structure is much more difficult. The 

problem involves: 

(1)  Choosing p, the order of the vector difference equation. 

(2)  Choosing k, the exponent of the delay term. 

(3)  Choosing n 	(the order of the system matrix 	F). 

For example, consider a system with: 

(a) two inputs, r = 2 

(b) two outputs, m = 2 

(c) three states, n = 3 

We should be prepared to compare the following models: 

(1) n = 2, p = 1 so that the homogeneous term 

A(z
-1 
 )y(t) = y(t) + A1y(t-1) 	(7.4-1) 

(2) n = 3, p = 2 so that either 

A(z 1)y(t) = y(t) + A1y(t-1) + A2y1(t-2) 

or 	= y(t) 	A1y(t-1) + /1.51.2(t-2) 	(7.4-2) 

where A
2 or A'2  are 2 x 1. 

(3) We carry on until we are convinced that the estimated sequence 

of residuals e*(t)A is uncorrelated and that the likelihood function 

L*(9.) is minimized. In addition, we should also test for delayed 

versions of the input sequence be altering the exponent k. 
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Clearly, the problem of finding the structure of a system (and 

a linear system at that) is time consuming. There is considerable 

scope for ingenuity in simplifying the search. Note, however, that 

this problem is common to the identification of single output systems 

also. 

7.4.2 Simplifications 

Recently, Briggs and Williams have demonstrated a method for the 

simultaneous determination of the cross—correlations from several 

inputs to the output of a system as an application of modified pseudo—

random binary sequences [70]. For our application, the most feasible 

method of determining the delay exponent k is to study the first few 

terms of the cross—correlations. No additional measurements are needed 

because the input excitation requirements for cross—correlations by 

the above method and parameter estimation by the methods of this thesis 

are the same. In fact, the input sequences devised by Briggs and 

Williams are superior to the sequences used by the author in the 

example of Section 6.8 because the cross—correlation between the inputs 

is bound to be lower for the former than for the latter. 

The following method of determining the order p of a multivariate 

system model is suggested as a topic of further research. Suppose that 

we fit the following two models by regression methods (using the 

"bootstrap" estimator, for example) to a long record of output obser—

vations obtained from a system that can be described by a model of 

order p: 
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Model (1) of order p is A(z-1)y(t) = v(t) 	(7.4-3) 

Model (2) of order 	p is :;((z-1)Y(t) = v'(t) 	(7 4-4) 

If 	A(z -1) is exact, there are no more than p nonzero auto- 

correlation terms Rv(0), Rv(1) 
	

Rv(p). Now consider the following 

operations on equation (7.4-2). 

-1 1 -1 -1 	 -1 1 A(z 	)cz (z )(2(z )Y(t) = A(z )(X (z 
-1)1/(1) 

= v(t) 

= C(z 1)e*(t) 

Hence 	v'(t) = 0(z-1)A-1(z-1)C(z-1)e*(t) 

(7.4-5) 

(7.4-6) 

which, for an infinitely long record, has an infinite number of terms, 

although C(z-i)e*(t) has no more than p terms. Hence, there will 

be more than q nonzero autocorrelation terms. 

The questions to consider are: 

(1) Under what circumstances, if any, are poles of A
-1
(z

-1
) 

annihilated by zeros of (2(z-1) and C(z -1) in (7.4 -6)? 

(2) Under what circumstanced can we reject the hypothesis that 

model (2) is the correct model? (The likely hypothesis will be 

based on tests of the autocorrelation coefficients R
v,(T) for 

T q.) 

For example, suppose that we fit the first order process 

A(z-1)y(t) = e*(t) 
	

(7.4-7) 
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by the model 	y(t) = v'(t) 
	

(7.4-8) 

Then 	v'(t) = A-1(z-1)e*(t) 
	

(7.4-9) 

which has nonzero autocorrelation coefficients Rv'(T) for T 1. 

Hence we reject the model. 

7.4.3 Spectral Factorization 

In this thesis,the problem of finding the coefficients Cl, C2' 

C 	and _/\1/2  of the process C(z-i)e*(t) was solved by moment 

fitting (see Subsection 4.3.3). The drawback of this method is that 

an "unstable" solution can be obtained. Hence, as a research topic, 

the methods of spectral factorization recently considered by Ho and 

Kalman [57] and by Anderson [60, 61] are worthy of investigation. 

The problem is: given the function (from Subsection 4.3.3) 

ML(z) 	c(z)_/N_J(z-1) 	(4.3-35) 

find C(z-1) andl\_. There is a distinct possibility that the 

solution proposed by Ho and Kalman that employs a solution to the 

Riccati equation can be extended to the multivariate case. 

7.4.4 Estimation of the Parameters of the E Description 

As a direct result of the derivation of the Es description 

in the form 

	

x(t+1) = Fx(t) 	Gu(t) 	r e*(t) 	(7.4-1o) 

	

y(t) = HX(t) 	Du(t) 	e*(t) 
	

(7.4-11) 
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we propose as a new research problem, the estimation of the parameters 

of the above model by MIE methods. It will be necessary to assume a 

suitable canonical form. Then the equations to generate the error 

sequence 4e*(t) 1: for a given set of parameters 49. are: 

(1) Assume x(t) is known. (It may be convenient to assume 

x(0) = 0. 

(2) Calculate 	e*(t) = y(t) Hx(t) Du(t) 	(7.4-12) 

(3) Calculate 

x(t+1) = (F - IH)x(t) +(B ID)u(t) + Ty(t) 	(7.4-13) 

and repeat from (1). 

The (negative log) likelihood function defined for this 

problem is exactly the same as that formulated in Section 5.6. 

L*(4)= mN —2 ln(27) + 2 	E e*T(t)J\71e*(t) 

(5.6-71) 

The method of minimizing L*(9) is essentially the same as that 

explained in Section 5.6. The main.problem is to assume a suitable 

canonical form. In this regard, a form in which H = [I
m 0] is of 

some advantage because it minimizes the number of elements in equation 

(7.4-13) that appear as products of system parameters. For example, 

if D = 0, then equation (7.4-13) is simply 

x(t+1) = [F - ICI
m 0]]x(t) + Bu(t) + Ty(t) 

	
(7.4-14) 

Hence, when we differentiate x(t+1) with respect to any parameter 

t=1 
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of the system in this special case, the resulting function is 

independent of other system parameters. 

An effective solution to the above problem would be of significant 

assistance in the identification of multivariate linear systems. 
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