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Summary  

In this thesis some problems concerned with reinforced holes in 

cylindrical and spherical shells are considered. 	The flat plat_ 

theories are inadequate in describing the stress distributions around 

holes in shells and this thesis presents a method of applying shallow 

shell theory to such problems. 	Though only two types of shells are 

considered, the results are applicable to cases where the local struc-

ture can be assumed to be a cylinder or a sphere. 

Firstly, the case of a reinforced circular hole in a cylindri- 

cal shell is investigated. 	This problem is representative of a window 

in a fuselage shell. 	The analysis is carried out using shallow shell 

theory with the assumption that the reinforcement is a compact bead of 

constant cross-section having finite extensional, bending and torsional 

rigidities. 	In the case of pressure loading the hole is assumed to be 

covered by a diaphragm which allows the hole edge to deflect and rotate, 

the pressure force being communicated to the shell as a suutabi- 	dis- 

tributed shear around the hole edge. 	It is shown that it is possible 

to find an optimum reinforcement for a given set of dimensions des- 

cribing the cut-out, and the cylinder. 	The theory proposed gives good 

results for the shell and reinforcement stresses as shown by comparison 

with the experimental results obtained from tests on an aluminium alloy 

cylinder with a reinforced circular hole, under torsion. 

There are cases when the reinforcement has to be flush with the 

outer surface of a shell for aerodynamic or other reasons. 	In such a 

case the shear centre of the reinforcement cross-section does not lie 

on the shell middle surface which causes coupling between the bending 

and membrane stresses. 	It is found that this TrIo6crij leads to an in-

crease in the principal stresses as compared with a symmetric reinforce-

ment for pressure loading. 



It is very often advantageous to use hole shapes other than circu- 

lar. 	In order to solve such problems,a conformal mapping technique is 

used. 	Though the method is applied to only two shapes, ellipse and 

a square with rounded corners, it is applicable to holes of any shape 

provided there are no sharp corners. 	In the analysis, only first- 

order effects due to the given hole shape being different from a circle, 

are considered. 

The next problem considered is that of a reinforced circular hole 

in a spherical shell under pressure. 	The shell is assumed to be 

shallow and the reinforcement is assumed to be a compact bead, with 

bending rigidity. 	In this case it is possible to find a neutral hole, 

i.e. a hole so reinforced to leave the stress distribution in the shell 

undisturbed. 	The reinforcement required is the same as for a flat 

plate under uniform tension. 	The case when the reinforcement is flush 

with either inside or outside of the shell is considered which showed 

that the stresses always increased with eccentricity. 

Throughout the thesis an attempt has been made to develop and use 

methods of analysis which are applicable to real situations, mainly 

because all previous work on reinforced holes was restricted to a small 

curvature parameter quite unrepresentative of typical aircraft and 

pressure vessel configurations.ni 
	

crie C(aSe C4 Tei-,4orceck aTCLA0..,r- 

co,a e_W_Fcca. koLe5 	Cti,--,c-A.rtIcc--L Shells, L7..:5cD 	r-1 
	 clescrib 

pressure , 	 70Y- 

Cor,s't1e-ree1. 



ACKNOWLEDGEMENTS  

The author would like to express his grateful thanks to 

Dr. G.A.O. Davies for his helpful guidance and constant encouragement 

and also to Professor J.H. Argyris for all the help given by him 

during the course of this project. 	Thanks are also due to Miss M. 

Hudgell for transforming the draft to the present form and to Mrs. 

Bartley for the help in preparing the drawings. 

The author would like to take this opportunity to thank the 

Commonwealth Scholarship Commission of the United Kingdom for the 

award of the scholarship without which the present work would not 

have been possible. 

4 



INDEX 
page 

7 General Notation. 

Introduction. 11 

I. Cylindrical 	shell 	with a 	reinforced circular hole. 17 

1.1 Introduction. 17 

1.2 Formulation of the problem. 21 

1.3 The solution of the differential 	equation. 23 

1.4 Formulation of the boundary conditions. 25 

1.5 Method of solution. 29 

1.6 Results and discussion. 30 

II Cylindrical 	shell 	with reinforced arbitrary shaped holes. 52 

2.1 Introduction. 52 

2.2 Formulation of the problem. 54 

2.3 Conformal 	transformation. 57 

2.4 Solution to the differential 	equation. 58 

2.5 Formulation of the boundary conditions. 60 

2.6 Some details used 	in obtaining the boundary conditions. 63 

2.7 Application to the case of an elliptical 	hole. 67 

2.8 Application to the case of a square hole with rounded 

corners. 69 

2.9 Method of solution. 70 

2.10 Results and discussion. 70 

III Reinforced circular hole 	in a 	spherical 	shell. 84 

3.1 Introduction. 84 

3.2 Formulation of the problem and solution. 86 

3.3 Formulation of the boundary conditions. 89 

3.4 Typical 	examples and discussion. 91 

Discussion and conclusions. 101 

References 104 



LIST OF APPENDICES: 

Effect of increasing sheet thickness 	in a 

fuselage shell. 

Shallow cylindrical shell equations. 

Moment in a reinforcing bead due to a 

rotation. 

Boundary conditions for a reinforced circular 

hole in a cylindrical shell at r = 1. 

Flow diagram for computation - Reinforced 

circular hole in a cylindrical shell 

Influence of torsion bending constant r 

Discussion of a method of solution in the case 

of an arbitrary shaped hole in a cylindrical 

shell 

Stress and moment resultants in terms of the 

complex stress function 

Boundary conditions for a reinforced 

elliptical hole in a cylindrical shell 

Boundary conditions for a reinforced square 

hole with rounded corners in a cylindrical 

shell 

Flow diagram for computation - Reinforced 

arbitrary shaped hole in'a cylindrical shell 

Applicability of the present theory 

We; -4o-rCe_ct C,6-ci.,.(0,0,- hole 	e. 	 5heLl 

CL ocka.,:—.0  

1?e,,-?-14o1-cec..1 	 shc_LC. 

CL CA-C(C ,-, 	Cck 

Appendix Page 

I 113 

II 114 

III 116 

IV 117 

V 118 

VI 119 

VII 120 

VIII 130 

IX 133 

X 137 

XI 141 

XII 142 

>cln 1+6 

XI)/ 155 



GENERAL NOTATION  

a 	: Radius of the hc,le. 

R: Radius of the shell middle surface. 

t 	: Shell thickness 

v : Poisson's ratio. 

F 	: Airy's stress function for the membrane stresses. 

(Non-dimensional) 

w 	Normal displacement. 	(Non-dimensional) 

F; w 	 : Asymptotic values of F and w away from the hole. 

F* 	F — T. 

w* 	 w — w. 

Es  ; ER 	Elastic moduli of shell and reinforcement. 

E
R
A 	,Extensional ) 

E
R

I 	: Bending 	) 	Rigidities of reinforcement. 

E
R
J 

HI 	: Hankel functions of the first kind, order n. 

a2 	. a 	32 
: Laplacian operator 

r 	Dr 
art 	r2 382 

vti 	 v2v2 .  

A 	A/at. 

p 	1/At2. 

E t3 
S 	

/12(1_v2). 

p 	Pressure loading. 

w, 
rr 

3r2  

F' 	Airy's stress function (dimensional). 

w' 	Normal displacement (dimensional). 

2(1+v) 	
Torsional 



ADDITIONAL NOTATION  

CHAPTER I : 

132  

(E
1
-1E

2
)  

Curvature parameter = 8Rt (12[1-v(12[1-v2])1 2 

✓ cos° = x/a. 

✓ sine = y/a. 

fexp[(1-WE] • exp[-(1 -013Eil /2. 

( 	-iE
4
) 
	

fexp[(1-013E] - expE-(1-WEil (1+1) • 

A
n
, B

n 

(1) 

H2  
n 

Constants occurring in the complex stress function P. 

w - IF 

Hankel function of the second kind, order n. 

a r. 

Torsion bending constant. 

Z 	r e
ie 

CHAPTER 11 : 

Z 	r e
ie
. 

i 
Pe

y 
 

ft° 
	Mapping function occurring in (1.1.]). 

The angle between the normal at any point on the 

C
n
, D

n  

ds 

dn
o 

contour and the radial direction through that point. 

Constants occurring in W. 

The angle between the normal to the hole contour at 

any point and the 'x axis'. 

An elemental length of the bead. 

Angle made by the projection of an element perpen- 

dicular to the generator at the axis of the cylinder. 



(E12)Z 

(E34)  

(E
12

) 

(E
34

)
c 

Krylov functions in (r,8) coordinates. 

Krylov functions in (b,y) coordinates. 

- 

w(C) 	c+ c f(c), Mapping function. 

L
1, 

L
2 	

ppendix Operator defined in A 	VIII. 

4)t; 	Compl ex stress function for the case of a circular 

hole in a cylindrical shell. 

4)14 	Additional contribution to the complex stress 

function  dua to the hole contour perturbation. 
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A 

ERI 
E s rot3  

ERJ 
E • 
S rot3  

Characteristic dimension of the problem. 

r
o
2 

(12(1-v2)) 112  Curvature parameter - 
8Rt 

Complex conjugate of c. 

v2 	• 
z 

V2  

82 
+ 	l 	8Y 82 

31.2  

32 

— _-+_ r 	» r 	r2  

1 	3 — 	— — . 

— • 302  

a2  
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ft 

r  
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: 	+ in 

: 	Defined in (2.1.1). 
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(alb)  
2 	for an elliptical hole with 'a' and 'b' as 

semi-major and semi-minor axes. 

6a 
for a square hole with rounded corners of 

side '2a'. 

r cos 6 = x/r
o
. 

rl 	 r sin 	=y/ro. 

CHAPTER III  

= R 

a

t  
z 	1/2 

a2 	Curvature parameter 	[12(1-v2)] 

A
1, 

A
2 
and C : 	Constants occurring in complex stress function 4. 
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INTRODUCTION 

In general cut-outs are introduced into aircraft and spacecraft 

structures in order to facilitate access or visibility. 	As these 

cut-outs weaken the structure, reinforcement is necessary to reduce 

the stress concentrations. 	To find an optimum reinforcement to 

reduce the stresses to given limits is the problem faced by engineers 

in general. 	An aeronautical engineer has the additional problem of 

reducing the weight of reinforcement to low values even if it means 

a small increase in stresses consistent with the requirements. 

The typical cut-outs in an aircraft are windows, doors, and 

canopy, and the designer's problem is to contain the rise in stress 

level due to these discontinuities. 	The ideal would be to have a 

window frame of such a shape and section as to leave the stresses 

outside the frame unaltered. 	A hole with this kind of reinforcement 

is referred to as a "Neutral Hole" (1). 	In practice, however, even 

if one can make a hole neutral in the structure it is found that the 

reinforcement required is too heavy. 	The theory of neutral holes 

has been considered by Mansfield (1) and by Gurney (2) for flat plates. 

Mansfield arrives at the conclusion that a circular hole is the 

neutral hole for a flat plate in an axisymmetrical stress field and 

an elliptical hole for a plate subjected to a biaxial stress system 

of unequal principal stresses with the same sign. 

It was hitherto assumed that flat plate theory could be used for 

solving problems connected with very shallow shells without causing 

much error in the estimation of stresses. 	As one can see, the 

application of flat plate theory to a shell is not truly representa-

tive of the actual conditions obtained in a shell since the bending 

stresses and the curvature effects on the membrane stresses are 
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ignored. 	In fact the neglect of the effect of curvature is shown 

theoretically to lead to errors of large magnitude by Lurie (3) and 

Vandyke (4) amongst others (5), (6), (7) and (8). 	Experiments 

conducted by Houghton and Rothwell (9), Jessop et al. (10), Richards 

(11) and Durelli et al. (12) have shown the significant differences 

in stresses between the flat plate and the shell. 	In some cases 

the bending stresse3 are of the same order as the membrane stresses 

and flat plate theory assumes zero bending stresses. 

Experimental studies of the state of stress in shells around 

holes with sufficiently smooth contours show that the perturbation 

in the state of stress around the hole in a shell has a local 

character and the perturbations die away rapidly with the distance 

from the hole. 	This has been shown by Sevin (13) who concludes that 

the entire perturbed zone lies within an ellipse with semi-axes "a' 

and 'b' (a = 1.5 d, b = d) in the case of a cylinder under pressure 

and tension. 	In the case of a sphere this perturbed region lies 

inside a circle of radius r = 1.5 d, 'd' being the diameter of the 

hole. 	So it is reasonable to assume that the influence of one hole 

on neighbouring holes is negligible as long as the distance between 

their centres is more than '3d'. 	This has been shown theoretically 

(14) to be true for a flat plate and the experiments conducted by 

Durelli et al. (15) do show that there is no interaction between the 

stress distributions in the neighbouring bays of a ribbed cylindrical 

shell. 

One can optimise a structure if one has a clear picture of the 

structural behaviour of the individual components. 	Williams (16) 

proves that it is worthwhile to optimise the construction of a fuse-

lage, which is of interest to us, by considering a typical example of 

a fuselage cabin. 	In the cabin with a main section 10 ft in diameter 
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and walls of 20 gauge (0.036"), the maximum stress is that associated 

with the hoop tension in the main section of 16,600 psi (approximately) 

for an internal operating pressure of 10 psi. 	For an ultimate stress 

in the sheet of 60,000 lb/in2  the Lheoretical maximum pressure is 

therefore 36 lb/in2. 	The introduction of a multiplicity of discon- 

tinuities must inevitably weaken the structure, but the maintenance, 

by good design, of a failing pressure of 30 lb/in2  would not appear 

an unreasonable target to aim at, in spite of discontinuities. 

Suppose the figure achieved actually is 20 lb/in2, the outcome is, 

that for the latter figure, the cabin is loaded to half its ultimate 

load at every flight, whereas for the target figure it is loaded only 

to one-third of its ultimate. 	Having regard to the shape of S-N curve, 

the value of such a reduction in the ratio of the working load to the 

ultimate load is obvious, increasing the working life some ten-fold. 

Also it is clear that a design, using a sheet thickness appropriate to 

the maximum stress existing would be inefficient in terms of the struc- 

tural weight. 	(See Appendix I.) 	The edge reinforcement around win- 

dows and doors is 	rt 	reasonable way of bringing the local high 

stresses to permissible levels. 	At the same time caution should be 

exercised not to overstiffen the hole region as it is shown that this 

defeats Its objective by actually increasing the stresses in the sheet. 

Richards (11) constructs a neutral hole for pressurised cylinder 

(17) and obtains significant stress concentrations. 	He goes further 

and shows that a circular hole with constant area reinforcement around, 

has the same performance as the neutral hole but the validity of these 

results is questionable since the bending stresses are 25% of the mem-

brane stresses even at distances '5a' (a is radius of hole) from the 

centre of the hole. 	Some other unsatisfactory tests have been con- 

ducted by Houghton and Rothwell (41) who incorrectly resist the pres-

sure load over the hole by external means. 
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All this leads us to search for an analysis whidh takes into 

account the effects not considered in flat plate theory. 	Among the 

various methods of solution to this problem are the analytical er,proach 

and the matrix displacement method. 	The types of element required for 

problems of this type for using matrix displacement method, has recently 

been proposed by ArgyrTs (18) and (19), (CUBA and SHEBA elements). A 

representation of a shell by polyhedron surfaces may lead to serious 

errors especially in the presence of pronounced bending effects. 	In 

order to obviate this difficulty the SHEBA family of shell elements, 

for the matrix displacement method, take into account the curvature 

effects. 	In this thesis the method employed is analytical in nature, 

starting with the shallow shell equations. 	The boundary conditions 

are satisfied by collocation technique. 

The flat plate theories are inadequate in describing the stress 

distribution around holes in shells and this thesis presents a method 

of applying shallow shell theory to such problems. 	Attempts made so 

far on reinforced holes in shells consider values of the curvature 

parameter $ << 1 (44) which are quite unrepresentative of typical air-

craft or pressure vessel configurations. 	Even in the case of unrein- 

forced holes, the solutions were restricted to $ << 1 (42) and in some 

cases (46) boundary conditions on moment and normal shear were not 

satisfied. 	By considering values of 13 << 1, it was concluded (42) 

that for tension loading shell stresses differ very little from flat 

plate solutions. 	It can be seen (43) that this conclusion is not 

correct for pressure loading. 	Throughout this thesis an attempt has 

been made to develop and use methods of analysis which are applicable 

to real situations (i.e. a > 1). 

Any loading on the region around a window in an aircraft fuselage 

can be obtained as a superposition of three basic loadings, tension, 



pressure and torsion. 	Also the usual shape of window is circular, 

elliptical or a square with rounded corners. 	A spherical shell that 

one comes across in spacecraft structures is generally subjected to 

pressure loading and the cut outs are circular in shape. 	All these 

cases have been considered in this thesis. 

In the first chapter the problem of a reinforced hole in a cylin- 

drical shell is considered. 	Firstly the results of Vandyke (4) have 

been extended for values of '0 1  up to 7, for the case of an unrein- 

forced hole. 	Theoretical estimates are made for a reinforced circular 

hole in a cylindrical shell under torsion in order to compare with ex- 

perimental results obtained by Rothwell (20). 	It is shown that an 

optimum reinforcement can be found for a given value of 0 for pressure 

loading. 	As the number of parameters that can be varied is large, it 

is a formidable task to try to optimise and hence this is done only 

for the important pressure loading case. 	Cases do arise when it is 

preferable to make the outside of reinforcing ring lie flush with the 

outside of the shell skin for aerodynamic or other reasons. 	Results 

have been obtained to show the penalty of attaching the reinforcement 

eccentrically. 

The second chapter deals with holes of shapes other than circular 

in a cylindrical shell subjected to pressure loading. 	Though the 

method employed is general, application is made to two specific cases, 

the hole shapes being an ellipse and a square with rounded corners. 

The reinforcement is assumed to be a compact bead with the shear 

centre of its cross-section lying in the shell middle surface. 

The third chapter deals with a reinforced circular hole in a 

spherical shell under pressure. 	The theory is given for both sym- 

metric and eccentric reinforcements. 	Experimental results obtained 

by Houghton and Rothwell (9) for an unreinforced circular hole agree 

well with theory proposed. 



Though this thesis deals with two types of shells, the results 

are applicable to many cases where the local structure can be assumed 

to be either a shallow cylinder or a shallow sphere. 	This excludes, 

of course, structures with negative Gaussian curvature like- the cool-

ing towers or toroidal shells. 

All the computations leading to the results in this thesis were 

carried out on the University of London Computer 'ATLAS' using EXCHLF 

autocode. 	Throughout this thesis the value of v is taken as 	. 
3 
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CHAPTER I 

CYLINDRICAL SHELL WITH A REINFORCED CIRCULAR HOLE  

1.1: 	Introduction:- 

In this chapter stresses due to the presence of a reinforced 

circular hole in a cylindrical shell, subjected to prescribed loads 

away from the hole, are obtained by the use of col location technique. 

The reinforcement is taken to be a compact bead placed around the 

inside of the hole and the shell is assumed to be shallow. 	A 

shallow, cylindrical shell may be described as a shell whose ratio 

of rise to base length is small, which implies that its circumfer-

ential dimension is small compared with its radius of curvature. 

By limiting the ratio of the hole radius to the radius of curvature, 

R 
, the effects of the hole may be confined to an area which is within 

a small radial distance from the hole; this region of the shell may 

be considered as a shallow shell. 	The shell configuration is shown 

in fig. 1. 	The formulation has been done for the general case when 

the shear centre of the reinforcement cross-section does not lie in 

the shell middle surface. 	The symmetric reinforcement case is a 

particular case of this general formulation. 

The application of edge reinforcement to holes in flat plates 

started as early as 1924 when Timoshenko (21) obtained an approxi-

mate solution of the problem by using the theory of curved bars. 

Gurney (2) attempted to find the optimum reinforcement of constant 

cross-section to make the hole neutral for a given loading. 	The 

theory developed by him indicates that as the size of the ring is 

increased, the maximum circumferential stress at the hole decreases, 

and that the maximum shear stress in the sheet near the hole in- 

creases. 	Hence it is not possible, using a uniform ring, for both 
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FIG. 1 	CYLINDRICAL SHELL CONFIGURATION 
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these stress concentrations to be reduced simultaneously but it is 

possible to find an optimum reinfocement by compromising between the 

direct and shear stress concentrations. 	He also concludes that 

neutrality can be obtained only under special conditions. 

Reissner and Morduchow (22) treated the problem of reinforced 

circular holes in plane sheets by permitting variations of the sec- 

tional area. 	Gurney (2) expresses the stress distribution in the 

sheet and the reinforcement by means of Airy's stress functions, the 

constants in which are evaluated by satisfying the boundary condi- 

tions. 	The approach used by Reissner (22) is different in that the 

reinforcement is a curved beam having extensional and bending 

rigidity. 

Mansfield (1), (23), assuming the reinforcement to be a compact 

bead capable of carrying only tension, shows that for a given loading 

of the sheet it is possible to find the shape of the hole and the 

reinforcement which leaves the stress distribution unaltered every- 

where in the sheet. 	He has discussed the design of neutral holes 

in pressurised shells (17) and shows that for a developable surface 

the neutral hole corresponds to that in the developed sheet. (These 

have been restudied more recently in (24) and (25).) 

Shell 
The case of an unreinforced circular hole in a cylindrical/ was 

first considered by Lurie (3). 	He obtained a perturbation solu- 

tion, the results being valid for small values of the curvature para- 

meter
a 

 a2 
= 8R 

[12(1-v2)]
1/2 	

The shallow shell equations are 

solved exactly, expressing the solution in terms of the Henkel func- 

tions of the first kind, and of Krylov functions. 	Each of these 

functions are expanded in powers of 'V retaining terms of the order 

of a2.. 	The boundary conditions on the direct stress, shear stress, 

bending moment and Kirchoff shear are satisfied which leads to the 

solution of the unknowns assumed in the series solution. 
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Shevliakov and Zigel (7), using a perturbatiou- method similar 

to that used by Lurie obtained a solution for the problem of a cylin- 

drical shell with a circular hole for small values of 'B' (corres- 

ponding to torsion loading). 	The first extension of these results 

for larger, more practical values of 'al was made by Withum (8) for 

a cylinder under torsion. 	Values of W up to 2 were considered. 

Lekkerkerker (5) expands the exponential functions in the exact 

solution of shallow cylindrical shell equations as a Fourier series 

involving Besse] functions and applying a numerical procedure obtains 

solutions for B up to 2.8, for tension and torsion loading cases. 

Each term in the Fourier series solution satisfied the hole boundary 

conditions. 	Experiments conducted by him on a steel cylinder for 

/fa = 1 showed good agreement with the theoretical estimates for tor-

sion loading case. 

Eringen and his coworkers (6) use a numerical procedure similar 

to that of Lekkerker (5), but the boundary conditions are satisfied 

by a collocation technique. 	Values of 'al up to 1.75 are considered 

for tension, torsion and pressure loading cases. 

Vandyke (4) using the exact solution and using collocation pro-

cedure for satisfying the boundary conditions extended the solution 

up to 0 = 4 for tension, torsion and pressure loading cases. 	The 

series solution is terminated when an increase in the number of 

terms does not alter the stress values. 	In fact the method suggested 

by Vandyke now seems to be applicable to all values of a, the only 

limitation being shallowness of the shell and the restriction that 

the deflections are not large. 

For practical values of a (a>1), no theoretical work on rein-

forced circular holes in cylindrical shells seems to have been pub 

lisped. This  is so in the case of reinforced holes of arbitrary 

shape also. 
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The assumption that the hole reinforcement is a compact bead is 

a limitation (27) in the case of aircraft fuselages where windows 

and doors may have complex 	cross-sections to accommodate seals. 

However in this thesis the reinforcement is still idealised as a com-

pact bead possessing flexural, torsional and extensional rigidities. 

1.2 Formulation of the problem  

The equations which govern the behaviour of a thin shallow shell 

were obtained in the non-linear form by Marguerre (28). 	For the 

cylindrical geometry the iinearised form of the equations become 

	

v 4  w1 + 	F' 	= 2- RD 'xx 

Est 

and 	- 	w: = 0 
xx 

These equations can be obtained by using Donnell's approximations 

(26) for shallow shells. 	(See Appendix II.) 	It is assumed that 

the shell although shallow is not so shallow that the curvature due 

to deformation becomes as significant as the original curvature. 

If this were so then the edge effects around the hole would be con-

fined to a boundary layer in which the non-linear equations would 

not be tractable in simple form (29). 	The sign convention for 

stress resultants and stress couples is shown in figure 2. 

For the purpose of non-dimensionalising the stress resultants, 

a reference stress, 
Nref' 

is chosen as the applied stress away from 

the hole in the case of tension and torsion loadings and hoop stress 

in the case of pressure loading. 

Defining 	F = F'/a2N
ref 

w = 
W.E

s
t2  

(1.2.3) 
a2N 	[12(1-v2)] 

1/2 

ref 
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the two differential equations (1.2.1) and (1.2.2) can. be  combined into 

a single complex differential equation 

04) 	8W(p, 	= 8/32 
	

(1.2.4) 

where the right-hand side exists for pressure loading and is zero for 

other cases of loading, 

and 	(1) = w 	iF. 

The effect of a hole in a shell is shown by Savin (13) to be con- 

	

fined to a local region around the hole. 	The stress function and nor- 

mal deflection may therefore be written as, 

	

F = F + F* ; w = w + w* 
	

(1.2.5) 

where F and ;Tare prescribed values of F and w away from the hole in 

which region F* and w* vanish. 

p2 ,2 
F is given by n2/2; En; and 

2 
 + t for tension, torsion and pres- 

sure loading cases respectively. 

Then the residual problem reduces to a homogeneous equation for 

all loadings and is given by, 

v4e + 84i2(1),&= 0 	(1.2.6) 

where cp* = w* - i * and tends to zero away from the hole. 

1.3 The solution to the differential equation: 

Equation (1.2.6) can be put in the operational form as, 

LI L2  (I)* = 0 
	

(1.3.1) 

where 
	L 1 	[v2  - 2(1-047] 

and 	L
2 

= 1v2  + 2(1-i)P2aTi 
	

(1.3.2) 

As the operators L1  a
n
d L

2 
are commutative, 
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= 43 1 * (P2*  

where 
	Li 

 
1
* = 0 	; 	

L2
(I)
2;; = 0 	(1.3.3) 

Choosing the form 
	

$1 * 	e(1-i) $1(E,n) 

412 	

e-(1-06 1112(,71) 	 (1.3.4) 

we find that the functions ip
1 

and ip
2 
must both satisfy the equation, 

V211, + 2i12.21.1) = o 	 (1.3.5) 

Equation (1.3.5) can be solved by separating the variables and assuming 

that 	11.1 = f 1 ( r) sin ' 
trl 	(n0). 	 (1.3.6) 

The problems concerned with tension and pressure loadings are 

symmetric in 	and n whereas for torsion loading the problem is anti- 

symmetric. 	It can be seen that in both cases it is sufficient to 

satisfy the boundary conditions in a quadrant of the circular hole. 

It is convenient to form Krylov functions (3) which are symmetric and 

antisymmetric in E as follows, 

(E 	-iE2 ) = [e
(1-i)13 

+ e ]/2 

(E -iEL) = (e
(1-i) 	_ e-(1-0n1(1+0/4 

3 	"I- 
(1.3.7) 

For problems which are symmetrical in 	and Ti (1.3.6) takes the 

form 
00 

C H1  (ariff) cos ne + 
n n 

 

D H2(f3r/2T) cos nO 
n n 

 

in which the part containing the Hankel functions of the second kind 

should be discarded as they grow larger with the argument. 	Also, 

H1  (Sr 2i 	einff  H1  Oril-T), and C and D are complex constants. 
-n 	 n  

Hence the solution to a problem symmetrical in E and n is, 
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00 

e 	(E
1
-iE

2
)

n 
+ iBn) q(Br)271) cos ne 

0,2,.. 

+ 	(E
3 
 - iE4) 	A

n 
+ iB 

n
) H1(ari-27) cos nO 	(1.3.8) 

1,3,.. 

where the unknown real coefficients A
n 
and B

n 
are to be determined. 

For antisymmetrical problems 'cos nO 1  terms must be replaced by 

'sin no' and the even summation started at 2. 

Applicability of present theory is discussed in Appendix XII. 

1.4 Formualtion of the boundary conditions  

Reissner and Morduchow (22) and Mansfield (1) considered the pro-

blem of a reinforced hole in a plane sheet and concluded that for com-

pact beads the bending rigidity of reinforcement could be neglected. 

Mansfield considers the problem of a typical reinforced circular hole 

in a flat plate subjected to uniform stress away from the hole and 

shows that the energy stored in bending is only 1% of the extensional 

energy. 	This is so even for a reinforced elliptical hole, though the 

ratio of the bending energy to the extensional energy is slightly 

higher. 	Clearly in this problem the bending stiffness of the rein-

forcement cannot be ignored since we have shell shear forces to react 

around the boundary. 	However (like the flat plate) we will ignore the 

ring bending forces in the local tangential plane of the shell boundary. 

For beadswhosecross-section does not differ drastically from a square, 

it can be formally shown that this assumption leads to fractional errors 

in the shell boundary conditions of the order of (d/a)2  and in the 

reinforcement stresses of the order of (d/a), where 'd' is a typical 

dimension of the bead cross-section. 
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The assumption that the reinforcement is a compact bead is a 

severe limitation. 	Shin-lchi-Suzuki (51) has shown that for a flat 

plate under tension, stresses begin to vary through the depth of rein-

forcement when h/t > 6 where 'h' is the depth of the bead and 't' is 

the sheet thickness. 	This puts a limitation on the values of the 

bending efficiency p. 

For the pressure loading case, unless we analyse a window as a 

shell, some assumption has to be made for the mechanism by which the 

pressure over the cut-out portion is communicated to the hole edge. 

All the previous works referred to in this thesis make the assumption 

that the pressure over the cut-out region is distributed as a uniform 

shear - that is the hole is covered by a plate the edge of which is 

supported by a very flexible seal. 	This will be referred to as" 'Case 

A' and is included in the results of this chapter. 

However aircraft windows are not in general very flexibly supported 

and an alternative mechanism can be found if we assume that the curved 

'window' is infinitely rigid in planes normal to the cylinder axis com- 

pared to planes parallel to the cylinder generators.* 	The relative 

rigidities in these directions can be shown to be of order 	(for the 

window) and consequently this becomes more valid for large 0. 	This 

model also has the singular advantage that for the neutral hole it pro-

vides the necessary edge shear to completely balance the normal compo-

nent of the reinforcement tension and so ensure that the hole is neutral 

in the curved cylinder. 	This idealisation will be referred to as 

'Case B' and the results are presented in Appendix XIII. 

If the hole is neutral then 'Case B' clearly gives no stress con-

centrations for all B but for the circular hole it will be difficult to 

assess the realism of either model (A) or (B) unless B is large or, un- 

* The author wishes to thank Dr. E.H. Mansfield for suggesting this 

idealisation. 



less, for small S, the two models give similar answers. 

Equilibrium Equations: 

Figure 3, shows the reinforcement forces and moments and the shell 

forces and moments per unit length. 	The equations of equilibrium are 

given below taking into account the eccentricity of the reinforcing 

bead. 	The expressions for a symmetric reinforcement can readily be 

obtained by putting h = b = 0. 

N rr = Va 	 (1.4.1) 

N
r0 	a 

= - 	(1 - —b
'0 

) T 	 (1.4.2) —
1 	

a  

N 
rr 	a 	a 
h = —

M 
 + —

I 
H
'0 	

+ 
+ Q.b 	2-9- b 	(1.4.3) 

Mrr 
+ 	 2 

1 	H 
(1.4.4) re 	a '0 a 

Q 	= —1 P
'0 	R 	2 

+ —T  cos20 - P2- 	(1.4.5) 
a  

The component of tension in (1.4.5) is obtained as follows. 	Consider 

an element of length 'ds' whose projection perpendicular to generators 

of the cylinder makes an angle '4' at the axis of the cylinder. 
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Component of tension in the bead normal to the shell middle sur-

face per unit length is, 

T cos e. 5111' 
ds 

But we have a sin e = 1111) and ds = ad?, using which the required compo-

nent becomes, 

T cos2e  

R 

Compatibility Conditions: 

It is assumed that the normal displacement and its derivatives at 

r = 1, are the same for the reinforcement and the middle plane of the 

sheet. 	This ensures compatibility of deflections, 	slopes and curva- 

tures in both the reinforcement and the shell. 	This leads to, 

M = 

E
R
I w' 	

E
R

I 

w,
r 208 

a2 	a2  
(see Appendix III) 

 

E
R
J 

and 	H = 	w, n 
2(1-1-v)a2 	" 

 

(1.4.6) 

The tangential strains of the reinforcement and the middle plane of 

the shell at r = 1 are equal. 	Here the effect of bending (29) has 

been taken into account. 

Mh 	1 
AE
R 	

E
R

I 	
(N

ee 
- vN

rr
) (1.4.7) 

For the stress resultants and couples in the shell, the usual flat 

plate relations hold. 	All the forces, moment and Kirchoff shear 

can now be eliminated in terms of F' and w'. 	After non-dimensional-

ising, the four boundary conditions are obtained as given in Appendix 

IV. 
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1.5 Method of Solution: 

The boundary conditions are satisfied by a collocation procedure 

for the three loading cases of internal pressure, longitudinal tension 

and pure torsion of the cylinder which leads to the finding of unknowns 

in the series for P. 	For a symmetric reinforcement the only coupling 

between F and w occurs in the normal shear equilibrium equation, where 

the shell curvature produces a component of the bead tension to the same 

degree of approximation as in the shallow shell equations. 	There is 

no other coupling if it is assumed that the shell is connected to the 

bead at its shear centre, which coincides with the centroid (h = b = 0). 

For the symmetric loading cases the series (1.3.8) is truncated 

at an odd value of n leaving (2n+2) coefficients An  and Bn  to be deter- 

mined. 	The necessary equations are generated by satisfying the equa- 

tions given in Appendix IV at (n+1)/2 equally spaced discrete points 

in the first quadrant of the circular hole. 	The procedure is identi- 

cal for antisymmetrical loading with the series truncated at an even 

value of n and using n/2 collocation points. 	The series for 4* is 

terminated at successively higher values of n until all the stresses 

calculated remain essentially the same. 

For an eccentric reinforcement, there is additional coupling be-

tween the membrane and bending forces but the numerical procedure for 

obtaining the unknowns in 4* is the same as for symmetrical reinforce-

ment case. 

The numerical calculations for this procedure were carried out 

on an ATLAS Computer. 	In all the numerical calculations v = 1 /3  was 

assumed. 	Appendix V shows the flow diagram used for computation. 
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ee 
- 1.65 64/3  + 1/2 (1.6.2) 

1.6 Results and discussion: 

To start with the problem of a cylinder with an unreinforced cir- 

cular hole was solved for values of 6 in the range 4 	0 4 7. 	This is 

done in order to verify the validity of projected connection suggested 

by Vandyke (4) who obtained an asymptotic solution for large a by using 

boundary layer techniques (between 6 = 4 and very large values of a). 

For the pressure loading case 	tangential direct and tangential bend- 

ing stresses are plotted in figures 4 and 5, and figures 6 and 7 corres- 

pond to tension loading. 	The effect of shell curvature is particularly 

marked in the pressure loading case, the membrane stress concentrations 

increasing from 2.5 to 50 as 6 increases from 0 to 7. 

As the required Henkel functions 111-ri(6rifp in 0 are generated 

using the recurrence relations, it is necessary to use accurate 

values 	of 	H1 (6rifi) and H1 (6ri-iT) (available to 10 places of 
1 

accuracy in tables) as well as the value of (6r). 	Errors in the start- 

ing values get amplified particularly for la rgevalues of n. 

At 6 = n/2, for tension loading case the agreement between the 

values obtained now and those by Vandyke's suggested formula, 

a
66 

-3.05 6
2/3 	

1 
	

(1.6.1) 

is very good. 	The bending stresses in this case also show a trend of 

having reached a maximum value. 	For the pressure loading case at 

6 = n/2, the suggested formula 

30 . 

gives slightly lower values. 	At6 = 0, the membrane stresses seem 

to tend to the values predicted by boundary layer theory at a much 

slower rate. 	The bending stresses do not show any trend of having 
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reached a maximum value. 	For vI3 = 10, values of n up to 39 were 

necessary for convergence. 	In the case of unreinforced and symmetri-

cally reinforced holes the largest difference between the stresses cal-

culated by the two longest series is less than 1% and the corresponding 

value for the eccentrically reinforced case is about 3%. 

For symmetric reinforcement case it was found that the convergence 

depended almost entirely on the curvature parameter $, the larger the 

value of a, the slower the convergence. 	The effect of the various rein- 

forcement parameters was marginal. 	It was also found unfortunately 

that only for 13 < 0.3 could the bending and torsional rigidities of the 

bead be ignored. 	This confirms our suggestion that for reinforced 

holes in practical shells it is not possible to use the concept of a 

compact flexible bead possessing only extensional rigidity. 

Experimental results for a reinforced circular hole have been 

obtained at the College of Aeronautics by Rothwell (20). 	In the experi- 

ment a light alloy cylinder with a reinforced circular hole was sub-

jected to torque loading and both the reinforcement and the shell were 

strain gauged on both inner and outer surfaces to separate the bending 

and the membrane stresses. 	The dimensions of the specimen are, 

R = 8 ins; 	a = 3.15 ins; 	t = 0.064 ins; 

so that we require our parameter to be, 

13 = 2.824; 	v = 	
at 

; 	— = 0.1687; 
3  

I = 0.3763; T 	2.6206; 	17; = 0; 	= fin.  

Ate 

Convergence was sufficient at n = 20. 

Figure 8 shows the bending and membrane stresses in the reinforce- 

ment and figure 9 shows the tangential strain distribution at r = 1.05 

in the shell. 	The agreement between theory and experiment is re-:son-

able whereas, in the shell, the experimental results are somewhat 
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sparse and unreliable as the strains were small. 	It-was also observed 

that the scatter increased as one moves away from the hole centre. 

Figures 10 and 11 give the stresses in the shell for the reinforced 

and unreinforced cases. 	The volume of this particular reinforcement 

is small (being only one-third of the volume of the shell removed by 

a 
the hole), even so the maximum principal stress is 73--=  19.5 compared 

with IL- = 38.8 for the unreinforced hole. 

flat plate (30) is a mere 2.51. 

Stress concentrations of the order of 20 are clearly intolerable 

and one must select a better reinforcing ring. 	However there are 

five independent non-dimensional structural parameters in the equations 

given in Appendix IV and the selection of an optimum configuration is 

a formidable task particularly if one attempts to show the penalty of 

departing from the optimum. 	This has been done for the most important 

pressure loading case (including the effect of eccentrically attaching 

the reinforcement). 

The non-dimensional parameters naturally arising in the solution 

E
R 

are the curvature parameter a, the elastic moduli 	, and the exten- 

S 
A 

sional, bending and torsional rigidities 
a 	

— and 	To sim- 

at3 	at3  
plify the results it is now assumed firstly the ring and the shell are 

made of the same material, that is ER/Es  = 1. 	Secondly that the ring 

cross-section is either a closed tube or solid section not differing 

greatly from a circle, in which case J/1 is of order 2. 	The problem 

is now defined by the three parameters S, A = A/at and p = I/At2. 

(It has actually been found that the stresses decrease if J/I is 

increased and vice versa as shown for some typical sections by figure 

12. 	Very small J/I implies that the section must be a thin-walled 

open tube and it has been found that one can then not ignore the tor- 

sion bending rigidity (figure 13). 	Details are given in Appendix VI. 

The value for the reinforced 
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In the examples chosen, it is assumed that the web and flange have the 

same dimensions.) 

The values of the shell curvature parameter are chosen as /4 = 2, 

3 an' 4, as this covers most typical aircraft configurations. 	The para- 

meter A is a measure of the extensional rigidity and also of the weight 

the volume of the ring referred to 
penalty since it is equal to a half the volume of the shell removed by 

the hole - the range chosen is 0.4 	A 	2.0. 	The paremeter p is a 

measure of the bending efficiency of the ring cross-section since it is 

equal to the square of its radius of gyration referred to the shell 

thickness, the range chosen is 1 	p 	8. 	The stress concentration in 

the shell is obtained by searching around the edge of the ring for 

the maximum principal tensile stress, a., and referring it to the maxi- 

mum shell stress at infinity. 

The carpet diagrams, figures 14, 15 and 16 show how the stress 

varies with both A and p. 	For constant p(or A) the stress falls as 

A (or p) increases until a minimum is reached and then the stress rises. 

It clearly pays to increase p if the bending stresses can be conse- 

quently reduced. 	Since this does not imply a weight penalty, but by 

examining the 'constant A' curves, it is clear that there may be a 

critical value at which the stress is a pronounced minimum. 	The 

'constant p' curves tend to produce minimum stresses at excessively 

large values of A, for example if 	= 4 and p = 5, the value of 

A = 2 produces a stress concentration of 3.1 whereas if A is reduced 

to 0.8 (a 60% reduction in weight), the stress is increased to only 

3.25. 	The stresses increase with S and for the smallest practical 

value of lip. = 2, the minimum is about 1.75 occurring at the largest 

chosen value of A = 1.8. 	This compares with Wittrick's (32) minimum 

stress of 1.306 for the flat plate (fi = 0) at a value of A = 1.0. 

(-;"..e-Se. Co 	e 	c1.7% cz -no I' ct3 t: 	 Co. -sz_ 15 L•z-i-I; 

6,C4ct,44.e.d. 	otala:t 	 X111 - 
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In assessing the effects of eccentrically attaching the reinforce-

ment and to restrict the embarrassing number of additional parameters, 

we assume that the ring has a doubly-symmetrical rectangular cross-

section whose centre is offset distances 'b' and 'h' from the edge of 

the hole as shown in figure 3. 	Although the boundary conditions 

produce further coupling between the bending and membrane forces the 

numerical solution converges only slightly slower than that for a sym-

metrical reinforcement. 

The results are given in figures 17, 18 and 19 and are clearly 

markedly different from the corresponding symmetrical cases. 	The 

stresses are invariably higher and the deleterious effect of using too 

high a bending efficiency (P) is more pronounced. 

Mansfield's 'Efficiency factor': 

For reinforcements around holes which are neutral or nearly neu-

tral Mansfield (17) has suggested that an eccentric reinforcement may 

be effectively replaced by a symmetrical reinforcement whose cross-

sectional area is reduced by a factor which turns out to be 1/4 for a 

rectangular cross-section. 	His argument is restricted to an axi-

symmetrically loaded flat plate which offers no bending resistance to 

rotation of the reinforcement and so to test Mansfield's assertion we 

must choose reinforcements which produce little bending in the shell. 

On examining the bending stresses it is found that they are small only 

when p > 7, particularly for large values of a. 

In table I, the stress concentration factors are given for eccen-

tric reinforcement with a cross-sectional area A = 1.6, and compared 

1 
to the symmetrical case with A = -4- (1.6) = 0.4. 	The agreement is re-

markable, especially when one considers that these holes are far from 

neutral and the stress system is infinitely more complex than Mansfield's 

simple model. 
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TABLE I 

= 3 

li 

Symmetric 

A = 0.4 

Eccentric 

x = 	1.6 

Symmetric 

x = 0.4 

Eccentric 

A. 	= 	1.6 

Symmetric 

A = 0.4 

Eccentric 

x = 	1.6 

4 2.48 2.50 

5 2.50 2.55 3.23 2.93 

6 2.54 2.58 3.05 2.97 4.0 3.66 

7 2.91 2.99 3.78 3.46 

8 3.60 3.52 

In conclusion therefore it appears that figures 14, 15 and 16 may 

be used, with care, for any shape of reinforcement, symmetrical or 

eccentric. 
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-30 	-----Vandyke's Projected Values. 

FIG. 4  DIRECT STRESSES AT HOLE EDGE 
(PRESSURE LOADING). 
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FIG. 5  BENDING STRESSES AT HOLE EDGE  
!PRESSURE LOADING) (UPPER SHELL SURFACE). 
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_4- 

FIG .6  MEMBRANE STRESSES AT HOLE EDGE 
(TENSION CASE). 
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FIG. .7 BENDING STRESSES AT HOLE EDGE  

(TENSION CASE) (LOWER SHELL FACE). 
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FIG. 11  SHELL STRESSES ALONG e =60°  
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FIG 12  VARIATION OF MAXIMUM PRINCIPAL 
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FIGURE 14 SYMMETRIC REINFORCEMENT, 	p =2 



FIGURE 15 SYMMETRIC REINFORCEMENT, frp = 3. 



FIGURE 16, SYMMETRIC REINFORCEMENT, m3 = 



FIGURE 17 ECCENTRIC REINFORCEMENT, 1113 = 2 



FIGURE 18 ECCENTRIC 	REINFORCEMENT, 	iYf3 =3. 



FIGURE 19 	ECCENTRIC REINFORCEMENT, af3 = 4 



CHAPTER II 

CYLINDRICAL SHELL WITH REINFORCED ARBITRARY SHAPED HOLES  

2.1 	Introduction: 

In aircraft structures one comes across cutouts of shapes other 

than a circle like ellipses (Viscount, Friendship and Jetstream have 

elliptical windows), square with rounded corners (most other aircraft), 

or a triangle with rounded corners (Caravelle windows). 	Hence it is 

logical to consider a method to estimate the stress distribution around 

such types of cutouts. 	In this chapter an approximate method is given 

to estimate the stresses around a reinforced hole of arbitrary shape 

in a circular cylindrical shell. 	Though the method is general, parti- 

cular application is made to elliptical and square holes with rounded 

corners in cylindrical shells under pressure loading. 

The problem of an unreinforced elliptical hole was first solved 

by Inglis (33) and using his solution the problem was extended to 

reinforced elliptical holes in plane sheet in (34) and (35). 	In plane 

stress problems concerning a plate with an arbitrary shaped hole, the 

usual technique employed is conformal mapping, developed by 

Muskhelishvili (36). 	Once the solution for the case of a circular 

hole in a plate under a given loading is known, the solution for an 

arbitrary shaped hole can be readily obtained as long as a conformal 

transformation function can be found. 	Such a function maps the 

region outside the boundary of the hole on to the region outside the 

unit circle and one can always find such a function provided the given 

contour of the hole does not have sharp corners. 	Extensive theoreti- 

cal work has been done (27,32,37,38, and 39) on holes in plates and 

the results predicted by theory agreed well with experimental values 

(40) and (41). 	Wittrick (32) arrives at the conclusion that for an 

52 
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elliptical hole with the axes in the ratio if : 1, astress concentra-

tion factor of 1.09 can be achieved by using a uniform reinforcement 

whose weight is only about half that required for Mansfield's neutral 

hole. 

The problem of an unreinforced arbitrary shaped hole in a cylin-

drical shell has been solved approximately for small values of S, in 

recent years by Guz and Savin (42) and (43) and the method has been 

extended to reinforced curvilinear holes (44). 	Reference (45) gives 

the stresses around an elliptical hole in a cylindrical shell subjected 

to longitudinal tension for S << 1 and for any value of eccentricity. 

The technique used by Guz and Savin, 'theory of perturbations', 

makes it possible to evaluate the stresses everywhere in the shell. 

This method of perturbing the boundary shape consists in choosing a 

mapping function of the form 

= 	e f(0 
	

(2.1.1) 

where e < l; 	Z = re
TO
; 	= pe1'. 	If f(c) = c-N, then N is a 

number which defines the shape of the hole. 	N = 1, 2 or 3 correspond 

to an ellipse, a triangle with rounded corners and a square with 

rounded corners respectively. 	Also such a transformation implies that 

the stresq distribution in the shell can be obtained as the sum of the 

solution for a circular hole and a perturbation component caused by 

the departure of the given hole contour from a circle. 	The solution 

fOr the circular hole case is used to evaluate the additional pertur-

bations. 

In (42), for the circular hole problem, the complex stress func-

tion (1)* is expanded in powers of the curvature parameter 1 13 1  (f3 < 1) 

and terms of order 132  are only retained. 	This implies that their 

solution is only applicable to cases where the hole size is small 
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whereas for the aircraft windows the range of 	is given by 2 4 1/2 

4 4. 	Also they conclude (not unnaturally) that flat plate solution 

can be used without much error for a cylindrical shell with a hole of 

arbitrary shape under tension loading. 	It can be seen from the first 

chapter that the bending stresses for this particular loading is 

about a fifth of the membrane stresses even for S = 4. 	On the other 

hand if one considers either pressure or torsion loading the bending 

stresses are of the order of membrane stresses. 	Hence one can expect 

that a change in hole shape will alter the direct as well as the bend- 

ing stresses, especially if one considers pressure loading. 	This 

happens for large values of 13 thus proving that the predictions by 

flat plate theory are not applicable to problems of shells with holes. 

In (42) it is shown that the solution one obtains to the order 

of 'e' is quite a good approximation to the true solution. 	In this 

chapter solutions are obtained to the order of 'e' as the equations 

become very cumbersome if one tries to include higher order terms. 

Exact solutions are either impossible or very cumbersome. 	As long 

as one can obtain a mapping function for the given hole contour in 

the form (2.1.1), this method can be employed to predict the stresses 

in the shell. 

In this chapter also, the shell is assumed to be shallow and the 

bead is placed symmetrically on the hole edge. 	It is also assumed 

• that the shear centre of the bead cross-section coincides with the 

C.G. and they lie on the shell middle surface. 	Cylindrical shell 

configuration with an arbitrary shaped hole is given in figure 20. 

2.2 Formulation of the problem  

The governing differential equation for the residual problem of 

a cylinder with a cutout is given in (1.2.6). 	In the case of a cir- 
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FIG. 20 



cular hole the radius of the hole forms a characteristic dimension. 

In this case we define a characteristic dimension based on the dimen-

sions of the cut-out. 

Governing differential equation is given by 

+ 8 )(32q5,* 	= 0 
	

(2.2.1) 

Assume the following relations in the form of a power series in para-

meter e, 
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+ e2N

1(.1
) N

ns 	
N 	 + ... 

(so) 	(1) 	(Z) 
M
nn 

= M(0) 
 + 
	+ 	+ e2m eM 

nn 	nn 

M 
	m(o) em(1) e2m(2) 

+ 
ss 	ss 	ss 	ss 

(o) ▪ EM (1)  M 	
= M  ns ns 	ns 	e2Mn2s)  

Q 	
Q(0) 

▪ 01(11) ▪ e2Q(2) 
n 	 n 

(2.2.3) 

(see figure 21) where N(°), N(°),..represent the solution for the 
nn 	ss 

case of a circular hole and N
(I)

, N
(2)

, N
(i) 

N
(2) 	

are the addi- 
nn 	nn 	ss ' ss ' 

tional contributions due to the fact that the given hole contour 

departs from the circle. 

Using (2.2.2) in (2.2.1), 

IQ ci3O* 	84324,0*,u] 	EDI 41*  4. 8I132(E] = 0 

(2.2.4) 

(From now on we retain only terms of order c.) 
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First the problem is solved assuming c = 0, which gives 

o 
v4
Z  * 
	

o 
Em32 *' 
	

0 	(2.2.5) 
CC 

This yields a solution fort)* corresponding to the problem of a circu-

lar hole, as in Chapter I, using $0*, the various stress components 

N
nn

(0)
, N

ss

(0)
, etc. can be obtained for the circular hole case. 	Then 

for any given c, 

1 
v4
Z (

1)  * + 81a2 
41*,u 

0 	 (2.2.6) 

the solution 4 1* of which is used together with 40* to evaluate the 

additional components N
(1)

, N
(1), etc. 

nn 	ss 

Both $0* and 4)1 * tend to zero away from the hole. 

We must now proceed to use the solutions 4)0* and 4)1 * to satisfy 

the boundary conditions on the arbitrary shaped hole. 	It will be 

found impossible to convert the boundary conditions by merely trans-

forming the dependent variables and all differential operators in 

terms of r,8 to those in terms of e,y. 	In fact the solution of 

(2.2.1) could have been obtained in this manner and the formal equi-

valance of this approach with the solution of (2.2.5) and (2.2.6) is 

shown in Appendix VII. 

2.3 Conformal Transformation: 

The mapping function which transforms the region outside the 

ie 
boundary of the hole in the plane Z = re on to the region outside 

	

the unit circle in the plane 	= 
	is, 

Z 	= 	w(C) = 	of (0 	(2.3.1) 

From this transformation one gets, 
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and 

r 

0 

	

= 	{Cc 

	

= 	P(1  

	

= 	tan 

	

= 	y 

e24 = 

= 

1 /2  

(2.3.2) 

(2.3.3) 

(2.3.4) 

(2.3.5) 

+ eFf(C) + 	.1(0] + 62fQ) f(c)} 

+ 

-1  

+e[(f(0 

2p2  
+z;f(c)]) 

E 	(f(0
2
T  f(c))] y  [sin  

+ 6 	(f (C) 	f(C)) cos y 
2 

- f(0) 	(f(;) f(0) 

eZIY 

. cosy 
2ip 2p 

sny 

[14(01 2[W(C)12  

iw(4)121w.(c)1 

(see figure 20) 

(f 1 (0 	- 	(C))] [Cf 

2i 

In all the expressions given above only terms of order e are retained. 

Also, 

Z = 	
2 

in = p(cosy + i siny) +e[f (C) 	f(C) 	i . f(C)
2
;f(C)] 

(f(0 + f(C)) E = p cos y +e 	 (2.3.6) 
2 

2.4 Solution to the differential equation: 

'Equation (2.2.5) is solved exactly as in (1.3) giving a complex 

stress function for the symmetric problem of a circular hole in a 

cylindrical shell, cpo* as, 

(1'0* = (E1- iE2) z 

 

(An  + iBn) Hill(Or121) cos no.. 

 

0,2,.. 

co 

+ (E
3
-iE

4
)Z 	(An+if3n) Wn(SriliT) cos no 	(2.4.1) 

1,3, • • 
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Now let us consider the solution to equation (2.2.6)-  

Z 
n4 $l* + 8432W/EE = " 

0 	 (2.4.2) 

The coordinate transformation effected is given by, 

Z = 	Ef(C) 

To the order of 'E', one can write the solution of (2.4.2) 

41 * 	3¢1* 

$1 *(r,e) = W(P,Y) 	+ AY. Ty  --- 

(2.4.3) 

(2.4.4) 

where 	r = 
	

P 	pp;  0 = y 	Ay 	given in (2.3.2) and (2.3.3) 

respectively. 	It is readily seen that Ap, and Ay are of order 'E'. 

Also, 	Vi = {1 - ejr(c) + f'(c)]Yg 

giving 	vZ = {l - E[P(c) + fl(c)11{VZ 

 

(2.4.5) 

- E 72(fl(r) 
	f '  (1v2} c' 

(2.4.6) 

Using (2.4.4) and (2.4.6) in (2.4.2), 

 

- EW(C) 	f 1 (0])TVZ 	c[vVf l (C) 	f'(OP11 

acp* 	4
1
* 

*(p,y) +Ap ap t 
	+ Ay. Tr } - 

+ WW(P,Y),c 	+ Terms 0(01 11   

where 	c = l  + ini. 

As only 'c' order terms are needed in the solution for e = (f)0* +01 *, 

(2.4.7) reduces to 

044)0(p,y) 84324),*(p,y) Iic  = 0 i  (2.4.8) 

This equation is of identical form to (2.2.5) except that the vari-

ables are changed from (r,0) to (p,y) and hence the solution can be 

written as, 

= 0 	(2.4.7) 



CO 

4, 1 * = 	(E
1 	

iE
2  ) 
	(C

n 
+ i n) I-13n(bi2i) cos ny 

0,2,.. 

CO 
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(E
3 
- iE ) 

4  C 
1,3,.. 

+ ID ) H1 ((3pV21-) cos ny 
n n 

(2.4.9) 

where the unknown coefficients C
n 
and D .  are to be determined. 

2.5 Formulation of the boundary conditions: 

In the case of a hole of arbitrary shape also, it is assumed that 

the bending rigidity of the reinforcing bead in the local tangential plane 

of the shell is negligible. 	Only the important pressure loading case 

will be considered and the two alternative models (A) and (B) will again 

be taken for the shear distribution around the window edge. 	'Case A' is 

examined here and the results for 'Case B'. are given in Appendix XIV. 

Equilibrium equations: 

Figure 21, shows the reinforcement forces and moments and the 

shell forces and moments per unit length. 	By considering the equi-

librium of an element 'ds', we obtain, 

(2.5.1) 

(2.5.2) 

(2.5.3) 

(2.5.4) 

(2.5.5) 

Nnn = T.a,
s 

N
ns 

M
nn 

= M.a,
s 
+ H, , s  

M
ns 

= -M,
s 
+ H.a,

s 
- P 

Q
n 	

P,
s 
+ T.cosa.n 

o,s - 
q 

a is given by the equation where q is the distributed shear. 

is 	iy  1/4 1 (d 
e = e Iwi(01 

[1 4. e(f 1 (0 2-  P(0)] (2.5.6) 



61 .  



62 

a 	is the angle between the normal to the hole contour at any point 

and the 'x' axis. 

dn
o 

: is the angle made by the projection of an element 'ds' perpen-

dicular to the generator at the axis of the cylinder. 

Compatibility conditions:. 

The compatibility conditions are formed just similar to the case 

of the circular hole (1.4). 	In doing so, we ensure that the tan-

gential strains of the bead and the middle surface of the shell are 

equal at the junction. 	Also normal deflections and slopes must be 

equal for the bead and the shell at the hole edge. 

1 

Est 
(N
ss 

- vN
nn

) 	 (2.5.8) 
AE

R 

E
R

I 

- E I w' 	 (2.5.9) R 'ss r
o n  

E
R
J 

and H (2.5.10) = 
2(1+v) . wlns 

The stress resultants and couples in the shell around the curvilinear 

boundary must now be expressed in terms of the complex stress function 

as shown in Appendix VIII. 	All the forces, moments and Kirchoff 

.shear can consequently be obtained in terms of F' and w'. 

The complete formulation of the boundary conditions is algebraic-

ally very complex so a few of the salient steps will now be developed 

and the final four expressions presented in Appendices IX and X for 

two special cases. 

CORRIGENDUM 	There is an error in equation (2.5.9) where the average 

curvature lir
o 

appears, instead of the actual curvature a,
s
. 	The 

correct expression should be read as, 

M 	= 	- E
R 
 I w

'ss  
' 	- 

ER I 
 w'n . a

s 

This modification gives rise to some extra terms on the right hand sides of 

the moment and normal shear equilibrium equations of order 'c' in Appendices 

IX and X. 	A few typical cases considered showed that the errors thus caused 

in the maximum principal stresses are not significant. For example /4 = 4, 
E
R 	 (o) p 

-E-- = 1,X= 0.8, p= 6 and -= 2, 	ma) 
 changes from 2.258 to 2.224 for an 

elliptical hole and 7.721 to 7.897 for a square hole with rounded corners 

(an error of about 2%). 



C = T cos a. 
as 

The required component is 

an
o (2.6.4) 

2.6 Some details used in obtaining the boundary conditions: 

The conformal transformation is given by 

Z = 	+ ef(0 	 (2.6.1) 

The elemental length 'ds' in the (f),Y) set of coordinates is given by, 

(ds)2  = r
o
2[(dP)2  + p2(dY)2](1 + e[f%0 T PM]) 

 

on the hole boundary dp = 0. 

ds = 	r 
1
p 	El 	(f' (c) 	f' (0)1 
0 

ds 

  

2.6.2) 

To obtain, for example, the expression for the Kirchoff shear 1 11  in 

terms of the complex stress function, 	we proceed as follows, 

am
s 

+ Q
e 

sinIP 
as 

n 

 

Using results in Appendix VIII, and (2.6.2) 

Qr 
(0) 4. 

c  r 
[Q(1) 	

L 1 r 	
L2 	

Qe 
Q(0) 	(0) 

r 	
,„ 1 	a 	f. El 	(f t  (0 + f t  (‘V1 	• T7: Vins N  

i 
0 

i.e. 
(o) 	(1) 	(0) 	L2 	(0), Qr 	c[Q,r 	+ LI Qr 	+ -27 Qo  J 
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r 
 
El 

1 	3 
ay 	r 

[m(0 - 	MO 	p f' (C))] — • — 	
e mre(1

e 	
) cL

1 r 
M
(oe) 

EL 
+ 	

2

2 
(M (°) - M

(0)fi 

ee 	rr 
(2.6.3) 

where Q
(0)

, Q
(0) 

...etc. are given in terms of the stress function 

in Appendix VIII. 

To obtain the component of tension to normal shear 



era  e 	
(0)  

a is given by, 	e Y [1 it 1  f l  () 	(  
2 	J 

Also, 	r s i n.a = Rn
o 
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0 
is defined in the notation). 

Using results in (2.3), 

p11 + 	f(C) + Tf(0)] 
2p2  

x {siny 	ccosY 
[f(C) - f(C)  

cosy 
f(C) f(C)  siny 

2ip 	2p 

31-1 

3 
o 

from which 	can be found. 
1 

(2.6.4) gives, 

T cos c,,e 
(1 - 	[f' 	+ f' (C)]) 

an
° 

r
o
p 	2 	3y 

(2.6.7) 

(2.6.8) 

n r o 

To obtain a typical equation given in (2.7) or (2.8): 

Consider equation (2.5.1) 

N
nn 

= T a,
s 

a,s 
	[1 
	

(f' (C) + f (C))] r
o  

(2.6.9) 

= r [ 1  - 2 (f' (C) + f' (c))] 	 2 	e0[1 + 	(f"( ) 	i1  + f"(c) e-iY)] 

0 

(using (2.6.5) 

= r 	2 [1 - 	(e(c) + fl(C) 	2 

	

)+ 	(fm(deiY+ f"(de-il)] 	(2.6.10) 
0 

 

Also 	N 	= N
(o) 

 + EN
(1)  

nn nn 	nn 

N = N
(o) 	(1) + e 

ss 	ss 	55 



From (2.6.9) 

N
(0) 

+ EN 
 (1) = 	AE

R (o) 	(o) 
( 	- vN 	) 

nn nn E
S
.tr

o 
ss nn 

+ E. 	 . (N
)  -v N(1)) 

	

E
S
.tr

o 	
ss 	nn 

AE
R  

T ' E
S
.tr

o 
{(P(C) eiY  

-X (0°)  - VN(°)) 
ss 	nn 

   

IY) - (f' (c) + f' f"(;) e- 

Comparing the coefficients of equal powers of e, 

AE
R  

(N  (0)  - vN
(o)

) c
o
: 	

N (o) 
nn E

S
.tr

o 
ss nn 

(2.6.11) 

e : 	N(1). 
= 	AER 
	 (N(1)  - vN(1) ) + 	N(°)  l(f"(C)eil+P(c)e-'Y) 

nn 	ss 	nn 	2 nn 
E
S
.tr

o 

- (f' 
	

+ ft (C))} 

[Using (2.6.11)] 	 (2.6.12) 

Equation (2.6.12) gives (2.7.5) for the elliptical case and (2.8.5) 

for the square hole with rounded corners. 

Moments on the bead: 

Define 	M = M
(0) 

+ ELI 

H = H
(0) 

+ (1) 

The expression for H is derived below. 

E
R
J 

' 
2(1+v) 

w  ,
ns  

(2.6.13) 

(2.6.14) 

ERJ 	(o) 	(1) 	(o) 	L
2 	

aw,(o),  
a 	aw' 	aw'  

1 3p 	
+c 

2(1+v)ro 	3s 	I. r3p  
 + eL 	

2 	. 3.y. 

E
R
J app 

°) (1 	E2  [f' (c) + f1(0 	
s 
 o) 

1) a 	+c
,(1  

3p 3y 	3p 
2(1+v)r(2)  
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AE 

aw,(o) 
+ eL

1 ap 

 

L
2 3w1 (o) 

2 • 3y 

 

+ E. (2.6.15) 

    



(q1 	q2) 	(q1 	q2)  
2 	2 

But e2ict = e2iY(1 e[fi(c) Na]) 

cos2a 
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N 	= N(°  + N(°)* + e(N(1)  + (1)*) 	(see Appendix VIII) 
nn 	nn 	nn 	nn 	nn 

where, 

nn
)  

Normal stress around the circle for the uncut cylinder. 

N(o)%° = Perturbation stress to be added to N
(o) 

for obtaining 
nn 	 nn 

stress distribution for the case of a circular hole. 

EN(1) 	 (o) 
= Additional normal stress to be added to N(0)  to obtain nn 

the stress distribution around the non-circular hole, 

for an uncut cylinder. 

(1)., 	 (o) 	(o) N
nn 

- = Perturbation stresses to be added to (N
nn 

+ N
nn 

* + 

eN(1)) to obtain the stress distribution for the case 
nn 

of a non-circular hole in a cylinder. 

) 
N
n

(

n 
* is obtained from the stress function (Po*. 

N(1)* is obtained from the stress functions (Po*, and (1)1 *. 
nn 

To obtain N (1) 	(1) 
and N

(1)
; 

nn ' ss 	ns 

Let q1 , q2  represent the principal 'stresses in x and y directions 

far away from the hole. 

Then, 

cos2a + q2  sin2a N
nn 

given cos 2 a = cos 2y + i e sin 2y . [f 	fl 

 

 

sin 2a = sin 2y 	i ecos 2 y.jf 	- f"(d] 

   

(2.6.18) 



(2.6.16) gives: 

4121 	(ql-q2) 	
(q

1 
 -q

2
) 

N
nn 	2 ' 	2 	

cos2y 
2 

X 	E sin 2y .(P(.7;) 	f'(C))1 

N
(o) 

- 
(ql+q2) 	(ql-q2)  

nn 	2 	2 
cos 2y 

( 	) 
1) 	ql 

2 
 q2  

N
n
(
n 

= 	i sin 2y .(f.'(c) - f' (c)) (2.6.19) 

Similar expressions can be found for N(1) and N
(1) 

 in non-dimensional 
ss 	ns 

form. 

For the elliptical hole, (pressure loading) 

N(1)  = 2 sin2  2y 
nn  

N(1) = -
2 • 

sin2  2y 
ss  

N(1) = (1) 	sin 4y  

ns 
 

4 
(2.6.20) 

For the square hole with rounded corners, (pressure loading) 
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N
(1) 

= 
nn 

3 
2 • 

sin 2y. sin 4y 

N() = - 
2 
 sin 2y. sin 4y 

ss 

 

) 	3 
N
ns 

= 	. cos 2y. sin 4y 

2.7 Application to the case of an elliptical hole: 

The transformation function required in this case is 

Z = w(d = 	+ 

ia 
giving; 	e = e1 Y(1 + i e sin 2y), using (2.5.6) 

(2.6.21) 

(2.7.1) 
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from which 
3a1 

= 

	

	 - /, 
÷ 3 scos 2y), at p = I 

o 

(2.7.2) 

Also 
= Tf(C) + cf (0 3 + [(“C) 	f(0)  

2p 	ap 	zip 

_ (f(c) + f(c)
) . snyi  

2p 	ay 

cos 2y 	a _ sin 2y 	3 
• 3p • 31 

P
2 

L
2 	

Tf(C) 	'(4) - f'  (C)  

21p2 	
2i 

4 sin 2y  
P2 

cos Y 

(2.7.3) 

(2.7.4) 

Using the relations given in (2.5), to the order of at p = 1, the 

equations to be satisfied are: 

, 
E
R 	A 	(1) 

. N (6 + 2
r 

E
R 	A 	

N 	- p. — . 	= 18 cos 2y N
(0) 

E • Es  rot ss 	nn 
S 

r
o
t nn 

(1) 

 

3Nnn ) 
= 

 
M(I) 	(1) 

6N(1)  + 2. 111 	
A 	

(3 	ss 6 N(0) cos 2y 
ns 	E

S 
• r

o
t 	31 	3y 	ns 

(1) 	M
(1) 	1 	M(1) 	m(o) 	(0) 

cos 2y 3H 
 

M
nn

+ 	+ 3 	 
r
o 	

r
o 

3y 	r
o 

cos 2y + 
r
o 	

3y 
(2.7.7) 

(1)  

Q(1) = 	i 	3201)  + 1 	m(1) 	
AER 	1) 

- 
N 

	nn 	cos2 y 
ss 	3 

r 2 	31(2 	
E
S
.t.

R 
0 	 r

o
2 • ay  

AE
Ro

N(°)  
sine 2y. (N

() 	nn 

- ES.t.R 	ss 	3 
2 cos 2y 320°) 

a  rot 	y2  

(0) 2 sin 2y  3M 	4 cos 2y 3H (°) 	6H(°)  

3y 	3y 
r
o
2 	r

o
2  r

o
2 

sin 2y. 	(2.7.8) 

(Refer to Appendix IX for details of these four equations in terms of 

4)0* and (1)1*.) 



2.8 Application to the case of a square hole with rounded corners: 

The transformation function required in this case is, 
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Z = w(i) = c 	1  
6 0 

giving 	e
ia 

ell  (1 + E .3i sin /0 

Da from which 	= 	(1 + 15 E cos 4y) , at p = I 

	

= 	cos 4y  

1 p3 	• 

8 sin 4y  
L
3 4 

Also 
a 
	

sin 4Y  
ap 	

0
4 	• ay 

(2.8.1) 

(2.8.2) 

(2.8.3) 

(2.8.4) 

Using the relations given in (2.5), to the order of E at p = 1, the 

equations to be satisfied are, 

(6 .4. 2. R 	A 	m(1) 	
ER 
	A 

. N
(1) 

= 90 cos 4Y.N
(0) 

(2.8.5) 
E
S 	

r
o
t' "nn r t 	ss 	nn 

S o 

2 
E
R . A 

. 	aN(1) 	aN(1)  
nn 	(o 

6N(1)  + -- (2.8.6) 

	

ns 	Es 	r
o
t .0 	a" 	aY 

) = 18 cos 4y.  N
ns)  

M 	= (1) 	
m(1) + 
	+ 	M 	+ 

1 	am(1) 	15 cos ily 	(o) 	3 cos 4y 	am(0)  

nn 
 

r
o 	

r
o 
 ay 	r

o 	
r
o 	

• ay 

(2.8.7) 

(1) m(1) 	1 	am(1) 	
AE
R  _ 1 	a 	

r
(N

(1) - 1 (1)) cos
2
y 

Qn = 	ay2 	ay ES.t.R ss Nnn 
ro  2 
	

0  

• AE
R 	(o) 	1 N(o)) 

	
6 cos 41 a2m(0)  

3.sin 2y.sin 4y.(N 
- E

s
.t.R 	ss 	3 nn 	r 2 	ay2 

0 

12 sin 4Y 	
3m(o) 

18 cos 41 am
(o) 	

60 sin 4Y. 
 H 

 (o) 
ay 	ay 

r
o 	0  
2 	r 2  r

o
2 

(2.8.8) 

(Refer Appendix X for details of these four equations in terms of 

4)0* and f 
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2.9 Method of solution: 

The boundary conditions (Appendix IX for an elliptical hole and 

X for a square hole with rounded corners) are satisfied by colloca- 

tion procedure. 	First solution of the problem of a circular hole 

gives the coefficients A
n 
and B. 	Having got 4)

o
*, the boundary con- 

ditions give the unknowns C
n 

and D
n 
in ¢

1
*. 	The series for ¢1*  is 

truncated at an odd value of n, leaving (2n+2) unknowns to be deter- 

mined. 	The required equations are obtained by satisfying the bound- 

ary conditions at (n+1)/2 collocation points in the first quadrant. 

The series for y is terminated at successively higher values of n 

until the stresses calculated remained essentially the same. 	The 

stresses are obtained by using the relations given in Appendix VIII. 

The flow diagram used for computation is shown in Appendix XI. In 

all the numerical calculation, as in Chapter I, v is taken as 1 /9. 

2.10 Results and discussion: 

Firstly solutions for ,T alone (that is for arbitrary c) were 
obtained for unreinforced elliptical holes and square holes with 

rounded corners, in cylindrical shells and are presented in figures 

22, 23, 24 and 25. 	The results cover a range 0 4 f3 	7. 	(The 

values of a considered in (42) and (45) were less than unity.) It 

was necessary to evaluate the coefficients An  and Bn  in ybo*, to 9 

places of accuracy in order to make the residual errors low for 

= 10. 	The number of terms required in y was about the same 

as the number of terms chosen in (po* for any given a. 

For any given 13 and c: the following is the procedure to obtain 

the stress distribution. Let us consider the case of an elliptical 

hole. 	Figures 4 and 5 give the membrane and bending stresses for 

the given value of a for a circular hole. 	Figures 22 and 23 give 
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the perturbations in membrane and bending stresses.-  

a 	a
(o) 

a
(1) 

ss_ 	ss  
= 	+ , . 	 (2.10.1) 

a 	a 	a .   

a
(0) 	

a (1) 

s 	

a

s s 	s 
where a 

	
, 	are token from figures 4 and 22 respectively. 
. 	. 

The procedure is identical for the bending stresses. 

It should be noted that the angle 'y' refers to the unit circle 

in the 	plane and the corresponding angle 	in the plane of the 

cut-out is given by 

1.-

+e

% e 
tan0 = 	tany 	 (2.10.2) 

1  

for the elliptical hole and, 

siny 	esin 31  
tane = 

	

	 (2.10.3) 
cosy + ecos 31 

for the square hole with rounded corners. 

It can be seen that the bending stresses as well as membrane 

stresses are affected to a large extent for larger values of c. The 

conclusion, that flat plate theory is applicable to non-circular holes 

in cylindrical shells under tension, by Guz and Sevin (42) is true for 

small values of f3 only. 	The increase in membrane stresses in the 

case of a square hole with rounded corners (c =-1/6) for large values 

of .13' is about 100% as compared with circular hole solution. Though 

we are restricting ourselves to terms of order 'c' only, the conver-

gence is reasonable as shown by Guz and Savin (42) for small values of 

S. 	It is, thus, expected that the inclusion of 'e2' order terms 

do not contribute substantially to the stresses for all values of 

and for practical values of 'c' 

To check the solution given by Sevin (43) for the case of an 

elliptical hole in a cylindrical shell under pressure a value of 

I/2-f3 = 0.5, c = - 1/6 was chosen. 
	The tangential stress given by 
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Savin to the order of e' is, 

= (1.5 + cos 2y) + E(3cos 2y + cos 4y) + 7132(1 + 1.25 cos 2y) 

iTa2.E [5 + 16 cos 2y + 5 cos 4y] 	(2.10.4.) 

r
z 
0 

where 132 = 8Rt . 12(1-v2) 

It has been pointed out by Vandyke (4) and others (5,6) that there is 

an error in Lurie's solution in the term containing f32  and that the 

correct values were one half of Lurie's values. 	It is found that 

there is a similar error in the term containing 'c 2 i and the correct 

values are a quarter of those given in (2.10.4). 

In reference (46), the expression for the tangential stress is 

obtained as, 

a
ss_ 	1.5 - [c - cos 2y]  

am 
	(1 - 2E cos 2y) 

na 2  [3(1-V2)]112[2 + 3ecos 2y + 2.5 cos 2y + ecos 2y] 

(2.10.5) 

= 	(.1.5 - je - cos 2y]) (1 + 2 Ecos 2y) 

(I + 2e)(2 + 4c cos 2y + 2.5 cos 2y)(1-2E +2E cos 2?) 
2 

= (1.5+cos 2y) +E(3 cos 2y+cos 4y) +71- 2(1 + 1.25 cos 2y) 

ITa2e  
+ 	(16 cos 2y + 5 cos 4y + 5) (2.10.6) 

(2.10..6) is the same as the expression (2.10.4) except the factor 1/4 

in the 'ES2' term. 

a 
Figures 26 and 27 show 

ss
distribution for an elliptical hole 

a 

with e= ± 1/6 	 i z CI b = 1.4) and figure 28 shows the distribution for b 

a square hole (E = -1/6). 	The value ii13 = 0.5 is chosen. 	The agree- 

ment between the present solution and Savin's solution is good, though 

TFCt 	(1 + 2e - 2e cos 2y) 
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1 13 1  is slightly greater than 0.3 which is the limit for applicability 

of Lurie's solution for the circular hole problem. 	The influence of 

curvature can be seen by considering the case of an elliptical hole 

ass 
with 1= 1.4 (figure 27). 	The maximum stress that occurs is a 

2.32 as compared with the value for the flat plate of 1.93. 

In the case of a square hole with rounded corners, the require- 

ment that the transformation is conformal implies,E < 1/3. 	If 

E = 	1/6 is chosen, the solution corresponds to the case when the 

diagonals are parallel to the x and y axes. 

In order to study the influence of reinforcement Wittrick's 

(32) optimum bead with A = 	- 0.8 was chosen. 	For 	= 6; 
rAt 	

11  

o 
 

= 2 and E
R
/E

S 
= 1, figure 29 shows the variation of maximum prin- 

cipal stress with a. 	The reduction in shell stresses one obtains by 

choosing A = 1.489 (reinforcement area giving weight equivalent to 

that required for Mansfield's neutral hole),y = 6; J/I = 2; 

ER/ES  = 1; is also shown in figure 29. 	For V-2-13 = 4 the maximum 

principal stress corresponding to Wittrick's optimum bead is 2.258, 

about twice that for the flat plate and increasing A to 1.489 brings 

down the stress only to 1.729. 	For a reinforced elliptical hole with 

= -1/6, it is clear from figure 30, that it pays to increase the 

bending efficiency. 

The influence of the shape of the cut-out is illustrated by the 

following table obtained for ER/ES  = 1: A = 0.8 and J/I = 2. 



TABLE II 

/113 = 2 

Ellipse 
S.C.F. 

Square 

with 

rounded 

corners 

S.C.F. 

Ellipse 
S.C.F. 

Square 

with 
rounded 

corners 
S.C.F. 

Ellipse 

S.C.F. 

Square 

with 
rounded 

corners 

S.C.F. 

2 1.679 5.191 

3 1.613 5.163 

4 1.581 5.086 1.932 6.173 

5 1.558 5.158 1.842 6.035 

6 1.543 5.161 1.805 6.171 2.258 7.721 

7 1.780 6.179 2.165 7.874 

8 2.098 8.010 

In the case of square hole with rounded corners choosing ER/ES  

= 1; A = 1.489; p = 6: J/I = 2, the stresses increase to 5.187, 

6.26 and 8.659 for Vf(3 = 2, 3 and 4 respectively showing that over- 

reinforcing defeats its own objective. 	More results need to be eval-

uated to enable the optimum A and p to be selected, specially for 

square holes with rounded corners as the stress concentrations are 

too high. 

CU -5-e 0 Cco t 3 c,,,c1 "-L e 3u113  Ccpyr.e 	 e 
a 

Ce, 	e cd- 	 e. 	 0  La 	 LT.; P. 	 \ V . 
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FIG. 23 BENDING STRESSES (PRESSURE 
LOADING). ELLIPTICAL HOLE.  SHELL 

UPPER SURFACE  
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FIG. 24 MEMBRANE STRESSES (PRESSURE 
LOADING). ( SQUARE HOLE.) 
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FIG. 25 BENDING  STRESSES (PRESSURE  
LOADING). . ( SQUARE HOLE)  
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CHAPTER III  

REINFORCED CIRCULAR HOLE IN A SPHERICAL SHELL  

3.1 	Introduction: 

Many structures in aerospace, nuclear, marine and petrochemical 

industries consist of thin spherical shells. 	Cut-outs are introduced, 

for example, in case of pressure vessels for inspection purposes and 

in case of solid propellant motor cases, to accommodate the propellant 

igniters or thrust terminators. 	To alleviate the stress concentra- 

tions, it is necessary to reinforce the holes. 	In this chapter a 

solution is given for the case of a reinforced circular hole in a 

spherical shell. 	The shell is assumed to be shallow and the loading 

considered is pressure. 

A shell is considered to be shallow, as postulated by Reissner 

(47), if the height to the base diameter ratio is 1/8. 	A general 

theory of shallow shells was formulated by Marguerre (28) and a detailed 

study of a shallow spherical cap was made by Reissner (47) and (50). 

Reissner neglects the contributions of the transverse shearing stress 

resultants to the equilibrium of forces in the meridional and tangen-

tial directions and the contribution of the stretching displacements 

to the change of curvature expressions. 	Reissner's assumptions regard- 

ing shallow spherical shells are identical to Donnell's assumptions for 

cylindrical shells and lead to an analogous set of basic equations. 

As a result of Donnell's assumptions, the cylindrical shell is treated 

as a curved rectangular plate while as a result of Reissner's assump-

tions, the shallow spherical shell is treated as a curved circular plate. 

Theoretically it has been shown by Penny (48) that the influence 

of curvature on the stress concentrations around a cut-out, is not 

negligible in the case of a spherical shell and experiments by Houghton 
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and Rothwell (9) confirmed this theory. 	The differential equations 

governing the small deformations of the isotropic shallow spherical 

shell with constant wall thickness were obtained by Reissner (47) and 

these are used in this thesis. 	The problem of a reinforced circular 

opening in a spherical shell has been considered by Mansfield (17) in 

which the asymptotic solution was made use of. 	Mansfield's solution 

is based on Timoshenko's asymptotic solution which is not valid near 

the axis of symmetry of a shell and the equations thus obtained are 

not valid for shallow spherical shells. 	Also, in obtaining the stress 

concentration factor the increased tangential direct stresses due to 

the presence of the cut-out are not considered. 	Greszczuk (49) made 

an attempt to find the ideal reinforcement for a circular hole in a 

spherical shell by considering the effect of reinforcement geometry. 

In this paper however optimisation was wrongly carried out on the basis 

of the radial stresses and no account was taken of the more important 

tangentialstresses. 	The tangential stresses are in fact higher than 

the radial stresses and the optimisation as suggested does not ensure 

minimum tangential stresses. 

The problem of an arbitrary shaped hole was considered by Guz 

and Savin (42) in which conformal mapping techniques were used. Later 

this method was extended to ring reinforced holes of arbitrary shape 

in spherical shells, (44). 	Guz and Savin do not take into account the 

component of bead tension, in the normal shear equilibrium. 	Also, the 

boundary conditions are expressed in terms of the displacements u, v, 

and w, whereas in this thesis the Airy's stress function is made use of. 

It is confirmed that the area required for a neutral hole in a 

flat plate under uniform tension would make a circular hole neutral for 

a spherical shell under pressure. 	It is also found that, when the 

shear centre of the reinforcement does not lie in the shell middle surface, 



vow' 4.  1 

DR 

E
S
t 

R 
V4Fil 

the shell stresses always increase, disproving the suggestion (49) 

that one achieves a minimum stress level for a particular value of 

eccentricity. 	It is found that the bending rigidity of the bead can 

be ignored. 

A spherical shell configuration is shown in figure 3 1. 

3.2 Formulation of the problem and solution: 

The equations governing the behaviour of the thin shallow spheri-

cal shell (47) can be written in the form, 

v2F'= 2_ 	 (3.2.1) 

V2w' = 0 	 (3.2.2) 

The sign convention used for stress resultants and stress couples is 

the same as for cylindrical shell (figure 2).For the purpose of non- 

dimensionalising the stress resultants, a reference stress Nref 	2  , 

is chosen. 	A non-dimensionalisation is carried out so that the two 

differential equations could be combined to contain a single complex 

unknown, 

F = Fl/a2N
ref 

2 
E,t 

(14 1 /a2N 	) ( 	 
' 	ref"

[120-y2m1 2  

(3.2.3) 

Defining cp = w - iF, equations (3.2.1) and (3.2.2) can be combined to 

give, 

v44, ia2v2(1)  = E32 
	

(3.2.4) 

The effect of a hole in a shell is shown by Savin (13) to be restricted 

to a local region around the hole. 

F = F + F` ; w = w w* 
	

(3.2.5) 
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FIG. 31 
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where F and w are prescribed values of F and w, away from the hole, in 

which region F* and w* vanish. 

For the case under consideration, 	F = r2/2 	(3.2.6) 

Then the residual problem reauces to the homogeneous equation, 

v40 432v24)* = 0 	 (3.2.7) 

where (I)* tends to zero far away from the hole. 

Equation (3.2.7) can be written as, 

v2[v2 	432] (11* = 0 	 (3.2.8) 

Then 
	. (pi* + op2* where 

0241* = 0 	 (3.2.9) 

and 	(V2 
	

432) (1,2* = 0 	(3.2.10) 

The solution we seek should satisfy the axisymmetry of the problem, 

that is, the solution is independent of e. 

Solution to (3.2.9) is (p i* = (B + iC) loger 	(3.2.11) 

and to (3.2.10) is 4)2* = (A1  + iA2) H10-(16r/T) 	(3.2.12) 

As the real part of cp* should tend to zero as r tends to infinity, 

B should be zero. 

. . The required solution is, 

(i5* = iC1g
e
r + (A

1 
 +iA

2 
 ) Fli

o
(Or/T) 
	

(3.2.13) 

where C, Al  and A2  are constants to be determined from the boundary 

conditions. 

(Any additional constants that occur are discarded as they do 

not contribute to the stresses.) 

Applicability of the theory is discussed in Appendix XII. 



3.3 Formulation of the boundary conditions: 

Here also we assume that the bending rigidity of the reinforcement 

in the local tangential plane of the shell is negligible and th-c the 

hole is covered by a diaphragm which transmits the pressure force to 

the shell as a uniform shear distributed around the hole edge but 

allows the hole edge to rotate and deflect freely. 

Equilibrium equations: 

Figure 32 shows the reinforcement forces and moments and shell 

forces and moments per unit length. 

The equations of equilibrium are given below for the general case 

of eccentrically attached reinforcement. 	Symmetric reinforcement case 

can be dealt with, by putting h = b = 0. 

N
rr 

= 	 (3.3.1) 

M
rr 	a 

= — - N 
rr 

 .h + 
2 
 . b 	(3.3.2) 

Qr = 
_ (3.3.3) T 

R 

The component of tension in the reinforcement in (3.3.3) is obtained 

as follows. 

Consider an elemental length 'ds' of the reinforcement (figure 

31). 	The required component per unit length is 

T . sin 11) 	
fit . 
ds 

Using the relations ds = adO and sin 1p = a/R, the contribution of the 

bead tension to normal equilibrium becomes, 

T/R. 
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FIG. 32 
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Compatibility conditions: 

The tangential strains of the reinforcing bead and the sheet at 

the junction should be equal 

1 	Mh 
(N 	- vN 

AE
R 

E
s
t 60 rr

) 
 E

R
I (3.3.4) 

Also the normal deflections and slopes for the reinforcement and the 

middle plane of the sheet should be the same at r = 1. 

M = - 
E
R

I 

a2  

Idw I N  
dr 

(3.3.5) 

(For details see Appendix 111.) 

For the stress resultants and couples in the shell, the usual flat 

plate relations hold. 	All the moments, forces and Kirchoff shear 

can now be eliminated in terms of F' and w'. 	After non-dimensional- 

ising the following equations result. 

E
R 	A 	rr 	

E
R A 	h r 

F,
r 

= 	 T  L12(1-v24W,r E
s 

• at • 	'rr -vF'rJ 	E
s 
	at 

w,rr 	
vw,r  - 12(1-v2) 

E
R 	I 

• E • 
S at3 

(3.3.6) 

wi  - 	+ w, 	
w' rrr 	rr 	r)  
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4/2.. 
- —
h 
[12(1-v21J F

Pr 	- a  . a2 

E
R A w, w, 	- w, + 6.2  - (F, rrr rr 	• E • at 	rr  

E 	A  
. E32. E

R 
	h  r12( 1-v2)-jw

' 	= 
f32 

s  at L 	r 

(3.3.7) 

(3.3.8) 

3.4 Typical examples and discussion: 

Expression (3.2.13) is used in equations (3.3.6), (3.3.7) and 

(3.3.8) to solve for the three unknowns C, Al  and A2. 
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Firstly, the problem of an unreinforced circular hole in a 

spherical shell is solved for 13 2  = 3.8, in order to compare with ex- 

perimental results obtained by Houghton and Rothwell (9). 	Theoretical 

solutions were obtained by Penny (48) for this problem. 	The experi- 

ments were conducted on a hemispherical aluminium alloy shell of 16" 

diameter, containing a 3" diameter hole and subjected to an internal 

pressure of 18 psi. 	Measurements were made using resistance strain 

gauges. 

It can be seen from figures 33 and 34 that there is good agreement 

between the present theory and experiment as far as the radial and tan- 

gential direct stresses are concerned. 	Also it is seen that the 

radial bending stresses as predicted by the present method are closer 

to the experimental values than those given by Penny. 	In the theory 

proposed by Penny, the tangential bending moment at the edge of the 

hole is assumed to be zero whereas in reality it is not. 

As the value of B increases, it is found that the tangential direct 

stresses increase as shown in figure 35. 	The formula for the tangen-

tial direct stress for large B given in (9) 

= 1.2 + 2.58 — Rt seems to give very good estimates. 	The 

tangential bending stresses appear to have reached a peak value for 

the maximum value of (3, considered. 	This trend is similar to that 

found in the case of a cylinder with a circular hole subjected to ten- 

sion. 	But the bending stresses are much smaller as compared to the 

case of a circular hole in a cylindrical shell. 	At B = 6 the bending 

stress is about 16% of the direct tangential stress. 

In the case of symmetric reinforcement it can be seen that equa- 

ED  

tions (3.3.6), (3.3.7) and (3.3.8) become homogeneous if --22-  = 1; 
Es  

A 
for which ER 

	

' at 
= 1. 	= 1.5; gives a neutral hole in a spherical 

gee 
a  

A 
= 1.5; thus making e= O. 	This implies that a reinforcement 

at 



93 

shell under pressure. 	The shell principal stresses for various values 

of 
A 
	have been plotted for two values of 13 in figure 36. 	As 

et 

= 	

, 
	 at 

88 
= 1.5 gives a neutral hole all such curves meet at —

a 	
= 1.0; 

—
A 	

= 1.5. 	Mansfield (1 
at 	

7) suggests that the stress concentration 

factor can be put in the form, 

a 

a 	

A 

, 

= 1 	0.4 	- 11 

where A* is the area required for a neutral hole. 

This can be put in the form 

(3.4.1) 

aD  

1 + 0.4 
a 

CO 

 

Aqat 
 1 

A/at 

(3.4.2) 

as the area required for the neutral hole is given by A'/at = 1.5. 

It can be seen from figure (36), that (3.4.2) gives lower values for 

the stress concentration factor and also the dependence on curvature 

is not predicted by this formula. 

It was also observed that the parameter 	has no significant 

at3  
effect on the shell stresses. 	This can be expected to be so as the 

bending stresses are small compared to the membrane stresses. 

Figures 37 and 38 illustrate the variation of maximum principal 

stress with respect to the position of bead relative to the sheet. 

It is seen that eccentricity always causes an increase in stresses. 

Thus it can be concluded that symmetric reinforcements are best for 

spherical shells under pressure with circular cut-outs. 	This result 

differs from (49) as the optimisation is carried out here taking into 

account the radial and tangential, direct and bending stresses. 



Mansfield's 'Efficiency Factor': 

As mentioned in (1.6), for reinforcements around holes which 

are neutral or nearly so, Mansfield has suggested that an eccentric 

reinforcement may be replaced by a symmetric reinforcement, whose 

cross-sectional area is reduced by a factor which turns out to be a 

1/4 fora rectangular cross-section. 	Choosing 0 = 4, A = 1.5, from 

figure 37, one finds that the stresses are almost the same when 1-1 = 

- 6, and equal to 2.6. 	The equivalent Mansfield's symmetric 

. 

rein- 

forcement has A - 	= - 0.375. 	From figure 36, it is seen that the 

stress at A = 0.375, for R = 4, is 2.6. 	Such good agreement should 

be expected as all the conditions used by Mansfield are satisfied 

in this example. 
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DISCUSSION AND CONCLUSIONS  

In many methods of analysis of problems concerned with reinforced 

or unreinforced holes in shell structures, the curvature effect is assumed 

to be negligible. 	The curvature has a very significant influence on the 

distribution of stresses in the shell even for the reinforced holes as 

shown in this thesis. 	In the case of torsion, the bending stresses are 

as important as the membrane stresses. 	In the case of pressure loading, 

the bending stresses are dependent on how the pressure load on the cut- 

out portion of the shell is transmitted to the shell. 	If'it is trans- 

mitted as a uniform shear around the hole edge (Case A) the bending stresses 

tend to he much higher than when the shear varies as given in 'Case D'. 

Even so flat plate theories are in general inadequate in describing the 

stress field in the shell. 

In the case of a cylinder under pressure with a reinforced circular 

hole (Case A) it was found that increasing the bending efficiency 'p' of 

the reinforcement leads to a reduction in the bending stresses and hence 

the principal stresses with no weight penalty. 	It was shown that a rein- 

forcement (A and p) can be chosen to give reasonably low stresses round 

the hole. 	On the other hand, under the assumption in 'Case 6', the prin- 

cipal stresses increase with p. 	These two cases represent two limits and 

the true values may be between them, especially for small values of S. 

In both cases attaching the reinforcement eccentrically increases the shell 

stresses. 

In the case of reinforced arbitrary shaped holes the analysis pre- 

sented in this thesis is applicable to any value of 'S'. 	The approach 

used by Guz and Savin (42) and (44) is valid for S < 1. 	Also in the case 

of reinforced holes, they do not take into account the component of tension 

in the bead, in the normal equilibrium equations. 	This causes an error 
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especially in bending stresses for large values of 13, both for circular 

and non-circular holes. 	It has been found that omission of this component 

of tension in normal equilibrium equations does not give convergent solu- 

tions. 

It is shown in (42) that for 13 = 0.32 and E = 1/9, for a square 

hole in a cylinder under tension, the first approximation to the tan- 
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gential stress (c terms considered) is 52% greater than the zeroeth 

approximation and the second (E2  terms considered) is 12% greater than 

the first. 	In this thesis only 'e' order terms are considered and it 

is felt that the accuracy attained is sufficient for engineering pur- 

poses. 	For vf.-f3 = 4, in the case of an elliptical hole (-1a;-• = 1.4) it 

was found that Wittrick's optimum bead gives a stress which is about 

twice that for a flat plate..i,t 	 13-

The analysis of a reinforced circular hole in a spherical shell 

shows that it is possible to find the reinforcement giving a neutral 

hole. 	This has the same area as that required for a flat plate under 

uniform tension. 	Eccentrically ateo,d-i-^-7 a reinforcement always in- 

creases the shell stresses and should be avoided if possible. 

The effect of large f3 may produce very high stresses (stress con-

centration factors of the order of 50) in the case of a cylinder with 

a cut-out and so even for low mean stresses (as are necessary to 

increase fatigue life) there will be yielding in a very small region. 

The influence of this on the history of likely crack propagation is 

quite unpredictable since the highly stressed yielded region will pro-

bably be very much smaller than the critical crack length. 

Future work: 

The theoretical analysis used for arbitrary shaped holes can be 

extended to other loading cases as well as to other shapes than those 

considered in Chapter II. 	Triangular holes with rounded corners 

(Caravelle windows) or square holes with rounded corners of given rad- 

ius can be investigated. 	For the latter, transformation functions as 

given by Wittrick (38) in the form, 

Z = C PC
-3 

q 7  

can be made use of. 	The analysis for torsion loading will be parti-

cularly useful as it is easy to conduct experiments for such a loading 
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in a laboratory. 	Also the influence of eccentric reinforcements for 

holes of arbitrary shape on shell stresses can be studied. 

In the case of spherical shells, under pressure loading, the pro-

blem of arbitrary shaped reinforced holes can be solved in a manner 

very similar to that given in Chapter II. 

It is not always that one comes across compact bead type rein-

forcements and one may be compelled to treat the reinforcement as a 

plate, to be more realistic. 	The analysis given in this thesis can 

be suitably modified for a plate type reinforcement. 	The next step 

will be to extend the method to load carrying windows. 

Not much experimental work has been done on reinforced holes in 

shells. 	Experiments can be conducted to check the theoretical values 

for the shell stresses in the case of a reinforced circular hole in a 

cylindrical shell under pressure loading. 	The main effect of a hole 

in a cylindrical shell is the occurrence of bending stresses and this 

is very much dependent on the fact whether the pressure on the cut-out 

portion is reacted by the shell or externally. 	In reality the shell 

reacts the pressure on the cut-out portion and the results are close 

to true values only when this is simulated in the experiment. 

Experiments on unreinforced elliptical and square holes in cylin-

drical shells under torsion or pressure loadings will give an idea on 

the accuracy of the solution to the order of 'e' as obtained in this 

thesis. 	In the case of tension loading the bending stresses are low 

when compared with membrane stresses and hence would not give an in-

sight into the influence of curvature. 

Next step will be to undertake tests on reinforced elliptical 

holes and square holes with rounded corners in cylindrical shells. 
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APPENDIX I  

Effect of increasing sheet thickness 	in a fuselage shell: 

113 

   

0 

  

  

    

Let 	radius of window: a 

distance between windows: ka 	(k-,0(1)) 

area of edge reinforcement: A 

shell sheet thickness: t. 

Total volume of structure for each frame bay = V 

V = 471-Aa + 27Rt(k+2)a - 2ffa2t 

V = 4Tra[A + (1 + k/2)Rt] 

R 
a 	1 

« 2 + k as 	= (-0) 	- 

Considering 

V = 4Tra(1 + k/2) Rt 	
A

(1 + k/2) Rt 
+ 1 

Let us consider the order of magnitude of 

A 	1 	a A 
(1 + k/2)Rt 	(1 	k/2) R at ' 

A/at 	2 

1 
(0.1) 

2 = 

= 	0.014 

0.27 

. . Effect of increasing sheet thickness on structural weight is at 

least 4 to 10 times more drastic than increasing 'A'. 

Practical limitations give, 	0.1 4. 

A 	2 
If A 	0.1; 	= 

at 	Cl + k/2)Rt 	3 . 

1 A 	A 	2 
If — 7.- 

at 	= 2, 	(1 + k/2)Rt = 3 



APPENDIX II  

Shallow cylindrical shell equations: 

With the system of axes chosen in figure 1. 

Equations of equilibrium are, 

aNx 	aN xY  
ax • 3y 

am 	aN 
xy  + _Y. 

ax 	ay 
0 

3Qx  3Qy  

ax + ay 
+ 3 [az N  N + ax ax x ay xy 

  

+
a [ 3z 
ay 3x 

 

N +az N 
xy ay y 

 

aM 	aM Qx  = 0  
ax • ay 

am 	aM 

ax
y 
 ▪ ay 
	Qy  = 0 

Substituting (4)' and (5) in (3) and using (1) and (2), 

a2m 	a2m 	a2m  
xY + 	 + 32z.  N 4- 2 a2z 	N 	+ 32z  N = -p 	 + 2 	 (6) 

ax2 	axay 3y2 	3x2 	 axay xy ay2 y 

Stress strain relations are, 

N
x 	

ES  
(E „ 

(1-v2) 	^." 
▪ VC

YY
) 

N 	ES  	 (E 	▪ VE ) 
t 	(1-v2) 	YY 	xx 

)1X. = 	
E
S  

t 	2(1+y) Exy 

	

a2w 1 	@2,41, 
- ( 	 J 

	

ax2 	ay2 
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9  
-D (2w1  + v 	 

32,41
)  

ay2 	ax2 
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a2w'  
M 	= -D (1-v) 
xy 

	axay 
(12)  

Using the above equations (10), (11) and (12) in (6) and observ-

ing that for a circular cylinder 

az 	32z 	 a2 z  
= 	— 0 and 

3x ax2 	 ay2 
N 

v4w 1 	= E. 
RD 

Strain displacement relationships are (Donnell's approximation) 

au 
6 = 
XX ax 

E = By w' 

YY ay R 

E 
	

au By 

xy By ax 

R 

(13)  

(14)  

a2Exy 
326 	326  

xx  yy 1 
axay 	ay2 	ax2 	• 

a2w .I 

ax2  
= 0 	 (15) 

Using (7), (8) and (9) in (15), 

VLiFi 
Est 32W 
R 

Dx2 

— 0 	 (16) 



APPENDIX III  

Moment in a reinforcing bead due to a rotation: 

The rotations of the sheet and the reinforcing bead are assumed 

to be the same at r = 1. 
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ri 

2a 

The radial displacement of a point (r',z) in the bead cross-section 

for a rotation as shown is, 

-Z.w' 
'r' 

The corresponding vertical displacement is 

The stress at the point is 

Z.w' 
- E

R 	
'r 

a 

. . The resultant moment due to this rotation is 

)()r  
Area 

ER 	a  
. 
z
- . 

w''r' 
 )(Z-[r'-a]w'

'ri 
 ) dA 

• where 'dA' represents an elemental area of bead cross-section. 

Noting that 'w , ,' is independent of 'Z' and retaining only first 
r. 

order terms, the resultant moment becomes 

ER.I 

	 . 	' 
a 	

w 
 'r' 

As r' = ar, 

E
R

I 

Moment = 
a2 	

. wI,
r 



APPENDIX IV 

Boundary conditions for a reinforced circular hole in a cylindrical shell at r = 1: 

A 	/ 3F,
r + 3F,00 	ER 

 . 
at 
-A (3F, 

rr 
 - F, 

r 
 - 

F,00) 
 - 

	. 
	

h r—r 
at 	t 
— . 	v90 kw,r  + w,00) = 

ER 
 
s   

0 	 (a) 

A A 	
E 

3F1 	

E
R 

3 - 3F,re  + 
	. 	(1 - -)(3F,

rr0 
 - F

'r0 
 - F

'000
) + 

at • E
s

R 
 "f1

i 	b‘ 
- at • t 156' (w'000 	w'r0)  = 	

(b) 
 

E
R  

'rr 	r 
	(w, 3w 	w' 	w'130 	

29 

Es 	at3 (w,00 "`'rr  
-✓96 . 

'r
J  

+ F,00) 	
R 

 + 12 	. — . w, 
at3 	

r00 

a (1 
"w'rrr 3w'rr 3w'r 8w,00 5w'r00)  = 

0 (c) 

(For tension or torsion) 

= -12. a — . $2 
	

(For pressure) 

E
R 

3w'rrr 	3w,rr • 3W'r 	5w,r00 	
8w,

00 + 32  • E
s 

E 
—

I 
(w,

0000 w'r00) + 12 . 
ER . 

at3 	 S at3  
• w, 

r00 

h 
8132R . at 

A 

	

E
s 

	
. 
cos2 0(3F

'rr 
 - F,

r 
 - F,

00
) - 

1  . 
	

(F'ee 	F'ree)  Y91°  

	

+ 652. ER 
	A 	h 

Y96 . cos20(w,
r 	'00 
+ w 	) = 0 	(For tension and torsion) 

' at ' 	•  

= 1252 (For pressure) 	 (d) 
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• APPENDIX V  

Flow Diagram for Computation  

Reinforced circular hole in a cylindrical shell  

Start  

1 _ 	_ 	, .  

I 	11. Read —
' at 
—
A 	

and 	 reinforcement parameters: 	
E
S 	

' 	' 
At
2 

N 	(number of terms chosen 	in 	(p*) 

Generate Hankel 	functions H
.In
(0riii) 	using recurrence relations 

Choose collocation angle 

Obtain Krylov functions 
increase 

increase n 	= I Formulate the right-hand side 

In varies 0 to N for the boundary conditions 

Evaluate the derivatives of 4,* 

Formulate the multipliers for 

the unknowns A
n 
and B n  

increase < 
Solve for the unknowns 	in 	* by matrix inversion 

I 
Read r and the corresponding Hankel functions H10(Brilf), Hi(0r/ii) 

1 
Generate Hankel 	functions H1 (ari2-01 

Choose 	'0' 	at which stresses are required. 

Obtain Krylov functions. 

increase n n = 1 
n varies 0 to N 

— Evaluate the derivatives of q 	and obtain the stress and moment 

components using the unknowns already obtained 

Add the stresses due to Tand w at chosen 	'0' 

Redefine  

Print stresses 	required 

Redefine 

Stop 



APPENDIX VI 

Influence of torsion bending constant r  

In the case of an open section, 

E
R
J 	E

R
r 

H - 
2(14-1.)a 	

. w,
re 	

o4 	

. w
'reee 

In general r consists of 4.wo parts r1  and r2, where r 1  is due to the 

strain in the middle plane of the walls and r2  is due to the direct 

strain across the thickness of the wall. 	For Z-sections, I-sections 

and channel sections r
2 

can be neglected and 

) 	= (r ) 	.1..r2 	,2 	_ 	ri  
I o 	1 s.c 'o x 	"o y 	o o xy

, 
 

where'o' is the point about which the rotation takes place and E0  and 

n
o are the coordinates of 'o' with respect to orthogonal axes at the 

shear centre (31). 	I x, I
y 
 and I

xy 
 are the moments of inertia with 

respect to parallel axes through the centroid. 

d 

Eo and no are of order
, 
 d and if we neglect the terms of order (d/a)2  

in the boundary conditions (which is consistent with the assumptions 

made so far) then, 

(r
1
)
o 	

(r1 )s.c. 

a3t3 	a3t3  

If the open section is an angle-section or a T-section r1  = o and r
2 

has to be taken into account. 
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APPENDIX VII  

Discussion of method of solution in the case of an arbitrary shaped hole  

in a cylindrical shell: 

SECTION I: 

Instead of solving (2.2.1) by separating into the form (2.2.4), the 

following could have been done. 

The coordinate transformation effected is 

Z = 	+ ef 	 (1) 

The equation (2.2.1) can be put in the operational form 

L
1
L
2
e = 0 	 (2) 

	

where 	L
1 
	- 2 (I- i)g95--) 

	

and 	L
2 

= 	+ 2(1-040 
	

(3) 

As the operators are commutative, 

4)*  = +a* 4)13*  

where L
1

(1
)a
* = 0 

Choosing (1).3* 
	-0(3E  

L
2

(1)
b
* = 0 	 (4) 

= e 	 (5) 4Ib 	1Pb 

both Ipa  and 11)13  should satisfy 

(y2  + 2i(32)*  = 

It is convenient to form Krylov functions as follows, 

ile(1 -0fg e
-(1 -0d/2  (E

1
-IE

2
)
Z 

1 

e-0'0139 
(1+1) 

= [ (1-i)°E  (E
3
-1E

4 	
e )

z 	 4 

(6)  

(7)  



For problems symmetrical in 	and T-1 ,- the solution can-be written as, 

= 	(E1 -iE2)z  Ipsymm  + (E
3 
 -iEv 

antisymm 

where 
IPsymm 

 and IP
antisymm 

are symmetric and antisymmetric solutions of 

equation (6). 

Equation (6) in (p,y) system of coordinates becomes, 

It1-EEP(0 + r(c)liv2  + 2is2111,  = 0 
	

(9) 

Assume 'P  = o 
+ 0

1' 
 and writing equation (9) to the order of e, 

+ 243240  + e([v  + 2if3.2]ip 1  - (f' (c) + f'(OV 4,0) = 0 	(10) 

To the first approximation: e = 0, giving 

(v2 + 2i2) 'o = 0 

As it is the contention to get the solution to the case of a non-

circular hole as a perturbation on the solution for p = 1, (11) is 

solved first. 

The second order term in (10) now gives 

Cv2  + 243241  = (f'(4) + f 1 (0)vipo 	 (12) 

Using (11), 

(v2  + 2ii32)11) 1 	= -21132(P (C) 	f l  (C))'0 	(13) 

The solution for the equation (13) can be written as, 

= 	4)1p 

where, 	IP1c  = complementary function 

a lp 
= particular integral. 

Solution to equation (11) for symmetrical problems, (discarding 

Hankel functions of the second kind as they grow large with argument) is 
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(8) 



)9% {-243240(f 1 (d+f'(0)podp0dy0} 	(17) 
} 

1p  
Area 

of the form, 

co 
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)0(p ,Y) = + iB 	H1 (13p1/27.1) cos ny 
n 	n 

 

 

0 

  

and similarly 

11) 1c 
	

= 	
iD 
nn  
) Hl(Opil-1) cos ny 
	

(15) 

0 

The particular integral of equation (13) can be found using Green's 

function G for the Helmholtz equation, 

(v2  + 2ia2)11, 1 	= 

H0  
I (R/i p4n2 - 2p p

o 
cos (y-yo) ) 

'0 

CO 

hr 	. 	c' cos m ( -y 
o 
 ) J 

m
(0/21) H

m
(Op

o
V2-0 

m=0 

CO 

  

(for p 	
p0) 

JmOpoiii) Hm  (api2T) 
m 
cos 

(for p 	po) 	(16) 

	

where 	E l  = 1 if m = 0 
m 

= 2 if m 0 

	

and 	J 	is the Bessel's function of the first kind, order m. 
m 

From (7), 

2if3e(f(C)-1-f(0)  (E3-iE4) (E
1
-iE

2
)
Z 

= (E 1 -1E 2 

(E -iE ) = (E -1E ) 	+ 13c (f(d+f( ) ) 	(E -iE ) 
3 	4 z 	3 	4 	 2 	1 	2 c 

(18) 
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Now the solution for 4 can be written as, 

= 	(E -4E ) 	2i13E(f(aff(0 	-iE ) 	[IP 	-"I 
) (E 	I 	401 12c 	 2 	3 	lc o 	P symm  

	

(E3-iE4) + 13c(f T+f(d)  (El-iE2)co 	lc 	1p antisymm 

Denoting 

. 	(f (0+f(c))  
2 	(E

3
-iE)

o symm 

(f(d+f(C))  + f3E. 
2 	(E1 -IE2) o antisymm 

+ e(EI -IE2) tplp symm  + E(E
3
-IE)

1p antisymm 	
(18a) 

 

e =$ E2) 	o symm + (E
3
-IE

4
)

o antisymmi  

EUEI-IE2) 	lc  symm  + (E
3
-IE

4
)

lc antisymml  

E . 	 (19) 

This is the solution to the order of 'E' in p and y. 

One should remember to carry out the coordinate transformation in 

the boundary conditions as well. 	If the expression for Kirchoff shear 

is taken as an example, it consists of derivatives, w,
rrr; 

 w,
rr 

etc. 

To transform these into (p,y) system of coordinates is very difficult 

for a general transformation. 	In order to obviate this difficulty, it 

was assumed in (2.2) that 

(i)  * = (/ 	+ • 0 .;
0 	1 
	where 

and 
• 

v44)  * 	* 	= 
Z 0 	0 'CE 

Ogh * + 81 a2 q)
1
*,
EE 

= Z 

0 

0 	 (20) 

Obtaining the solution to the differential equation and the bound-

ary conditions in p,y coordinates, as can be seen in this section, is 

very cumbersome. 	What we do instead is to expand Nrr, Nee, etc. as a 
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Taylor's series around the point (p,y) and use them to obtain expres- 

sions for N , N , etc. (Appendix VIII). 	For example, consider 
nn ss 

N00 _ D

2F(r,0)  
Instead of expressing F as a function of p and y, 

2 

and also 
a5
2 interms of p and y, N08  (r,0) can be written as, 

3r2  

aN 	aN (P,Y) 
N00 (r 0) = N

08
(p
'
y) + AP. 	88

(p,y) 

+ AY- 
08 

' 	 Dp • Dy 

Since r = p + Lip and 0 = y + Ay (from (2.3)), where N00(p,y) 
32 

= 	(F (P,Y) + EF1 (P,Y)). 	In the final expressions that are ob- 
3p2 0  

tained we retain only 'e' order terms. 	The solution to the circular 

hole is got by putting e = 0 and satisfying the boundary conditions on 

p = 1. 	For the case of a non-circular hole (e # 0), the boundary 

conditions on additional stress resultants are satisfied on p = 1. 

As a matter of fact the solution which is obtained in (2.4), 

4)* 	(E
1 
 -iE

2  ) Z 
 1: 	(A n+113 n 

	n 
) H1 (0r/21) cos ne 

0,2,.. 

CO 

-IE4)z 	 (A 
n 
 +16 
 nn  
) HI(BrITZT) cos ne 

,3,.. 

+ el 

 

CO 

 

-iE
2
)
g 

 

(C +iD 
n
) H1 (4/2-0 cos ny 

n 	n 

  

1,3,... 
	

n +ID 
nn  
) H1 (8pi21-) cos ny } 

can be shown to be identical to the expression given in (19). 	This is 

done for the elliptical hole case and is presented in Section II. 

(21) 
CO 

+ (E
3
-iE 



SECTION It; 

From (2.4), 

o
*(E-

I
E
2
)
Z 
E n+iBn) H111 (130/iT) cos ne 

	

0,2, 4 , 	• 

(E -iE ) 
3 	4 Z 

E (A
n
+iB

n
) Hn((3r) cos ne 

1,3,.. 

and 	m 

4)1 
	 n 
* = (E

1 
-iE 

C 	14E: 	
+iD 

n
) H1 (4)/21) cos ny 

0,2,4,.. 
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(E3- i +iD ) H1 (4)121) cos nY 
n n n 

(22) 

In the case of an elliptical hole the transformation function is given 

by, 

Z = C + 
	

(23) 

   

2 cos 2Y 

P
2 

 

which gives 	(VW 	f' (C)) = (24) 

To the order of 'E' using relations given in (2.3) 

4
o
* (p,y) 	4

o
*(p,y) 

4). *(r e) = (1) *qp,y) i-Ap 	Y • ' 	o. 	ap 	ay 

4
0*(p,y) is the same as cpo* given in (22) but r and 0 are changed to 

p and y, which also implies Z is replaced by C. 

(25) 

    

40*(P'Y)  

3p 

 

40*(P,Y)1 

3y 	J 
• 
• 

• 4*  = 4)0*(P2i) 	E PyY) 

 

cos 2y  sin 2y  

P
2 

  

      

(Using 2.3) 
	

(26) 

Expression obtained for 4* in (19) is, 

e = 4)0* (p,y) +01*(p,y) + 

is given in (18a). 	To show the identity required, 



i 132(A 4.:D
ll

1 cos y  
1O 	p 	• 1132(A TB o) cos 2y.1-110(Bpiii-) 

o  airiT 

1-11(B0/-2-1) 

p 
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= c 
[cos 2y  aq)„,*(p,Y) 	36 

Sin 2y 	' 0*(P,Y)  
ap 	p2 ay 

(27) 

  

Substituting the expression for ipo  from (1.4), G from (16) and using 

(24); (17) gives, 

cos(m -2)y 
+ 2102 	(A +113 ) 	 

111 	 4(m-1) 
2,... 

CO 
F1,14,(Bp/fT) cos m+2 y) 

 

E (A 
111
+TB  ) (28) 

4 (m+1) 

  

1,... 

(For details see Section iii.) 

• • 	 CO 

-210E = = -2p 
cosy.(E3-1E4)c  	(A n +iB1-1 ) H1 (00/21-) cos ny 

0,2,.. 

co 
1 

. cosy.(E 1 -iE2)c 	(An+iBn) Hn(00Til) cos ny 

1 232 • • 

+ 	e(E
1
-1E

2
) 	-102(A 

o 
 +113 

 0  ) 0 	
cos 2y 

F11

m

(0pV21-) cos m-2 y 
+ 2102 	(

ViBm) 	4(m-1) 
2,4... 

H1 (131))/27) cos m+2 y 
A +iB ) m 	 
m m 	4(m+1) 

CO 

- 2102  

1 • • 

{ 	

H1(80/2-i) 
+ e(E3-1E4)c  iB2(Al+iBi) ° 	cosy 

Bp 

CO 

+2iB2  A +113
m 	m 

1-1(Bpi2T) cos m-2 y 

4(m-1) 

CO 

▪ 2ia2  
H1(06/10 cos m+2 y 

A +iB ) 	 
m m 	4(m+1) 

(29) 
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— . 

Consider the right-hand side of (27) 

CO 

+ (E
3 
 -iE 

n
+16

n
)[ (cos n+2y + cos n-2y) 

2 	3p 	 

+ 
(cos n-2y - cos n+2y) n . HI (4/fo] 

2 	p 	n 

1.iB  ) [(cos n+2y + cos n-2y)  Min("Iii)  
n  2 	ap n 

3H.1(Epiff) 

• (cos n -2y - cos n+2y) 	n 
. 	. 	

n 
H1  (i30/21) 

2 	p  

24e  
. cosy.(E (A 

n 
 +iB 

n
) 1-1 1 (13piT) cos ny 

n 

CO 

$E 
+ — cos y. (E

1
-iE

2
)
c n 

+iB 
n
) H1 (13orii) cos ny 	(30) 

n 

Let us consider a typical term in (30) and show that it is identical 

to the corresponding term in (29). 

(cos n+2y + cos n-2 y) 
 ;0 n00/1i)  

(E1 -iE2)t  . (A
n
+iB

n
) 

2 	ap 

](cos n-2y - cos n+2 y) 	n . Hl(13org) 

i.e. 	L3.  (An+iBn)(E1 -iE2)c { cos n+2y [-Piff 1-141 WifT)] 

+ cos n-2 y [$/ff HIn_ 1 ($p1/21-)] 

[ 
n   
- H1 

(A
n
+16

n
)(E

1
-iE

2
) 	+ 1322i 	

n+2 
	

cos n+2 y 2 

   

[H1  +11 
n-2 n  

2(n-1) 
+ cos n-2 y.1322i 

      

{

i.e. c (E
1
-iE

2
) 21132  

(A
n
+18

n
) Wri(13pi) cos n-2 y 

4(n-1) 

p 	n 
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}

HrlI(f3pV2T) cos TI+2 y 
- 2432 A

n
+iB

n
) 

4(n+1) 

+ terms of the type included in y (p,y). 

This term can be readily seen in (29) and this is so, for each term. 

Hence the identity is proved. 

SECTION III: 

To find the particular integral of equation, 

(p2 + 2432) = -2432 (f' 	+ fi(c)40  

    

11)1 p  = 
	

{G [-2ii324,0(f' 	+ f' (4)) podpodyjI 

Area 

and for the elliptical hole: 	f1(0 	
-2 cos 2y 

+ f 1 (4) - 	(31) 
P2 

Using (16) and (17) 

= 

2Tr 

02  j fE 
m=0

E cos m(y-y0 )

[ 1 . 

1 mi(40/2T) HmlOpoi2T)1 

p 0 	 . 

x f 2: (A
n
+iB

n
) H

n
Op

o
7270 cos nYo} cos 2y

0  
	 dpo  dy0  

n=0 	 Po 
p 21. 	. 

+ i 	{ E e m cos m(y-yo) Jm(f3p0/2.1) Hm(Bpi/2T) } 

o I J
i  m=0 

{v--"‘ 	

cos 2y0  
x 	(A

n
+iB

n
) H

n
(13p

o
iT) cos nyo } 	 

Po 
n=0 

(32) 

As the problem under consideration is symmetric in 'y"sin my' terms 

can be discarded in (32). 

For evaluating the various integrals that result the following 

relations are mode use of. 

dpodyo1 
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Jn4.1 (Z) Yn(Z) - Jn(Z) Yn+I (Z) 	 (33) 

(Hankel function Hn(Z) = Jn(Z) + iYn(Z)) 

If Km, K
n 
 represent Bessel's functions or Hankel functions of order m 

and n respectively, then, 

z 

f Km(Z) Tn(z) -z̀g- = -z 

z 

Km.1.1 (Z).17n(Z) - Km(Z).Kn+I (Z) 	Km(Z).17
n 
 (Z) 

(m2 - n2) 
m+n 

(34) 

f
Z
-m-n-1 K

m+1 	• 
(Z) K

n+1 
 (Z) dZ 

-m-n 

2(mi-n+1) 
K
m 
 (Z) 177-

n 
 (Z) + Km+1 (Z) 1c1:(Z).] 

m+n+1 
Km(Z) Kn(Z) dZ 

[ Km(Z) Kn(Z) + K
m+1

(Z) K
n+1

(Z)  

I 
m+n+2 

2(m+n+1) 

(35)  

(36)  

Also 

0 

cos(2,y0) dyo  = 0 	if . 2, #0 

= 2JT if 2, = 0: 	 (37) 

Using these relations in (32), and noting that the integrals involved 

in E
n
, F

n in terms of the type, 

(En  + iFn) H;:i(Bpn"T) cos ny 

need not be evaluated as these terms could be merged into the series 

for ip lc' 11p is obtzined in the form given in (28). 



APPENDIX VIII  

Stress and moment resultants in terms of complex stress function  

Define, N 	= N
(0) 

+ EN(1) 
nn 	nn 	nn 

= (N(°)  + N(°)*) + E(N(1)  + N(1)*) 
nn 	nn 	nn 	nn 

N 	= N
(o) 

 + EN
(1)  

ss 	ss 	ss 

= N
(o) 

+ N
(0)

*) + e(N(1)  + N(1);:) 
ss 	ss 	ss 	ss 

N
ns 

= (N
(o) 

+ EN) 
ns 	ns 

) 	o 1 1 
= 	(N

ns 
+ Nn(s)  *) + c(N

n

(

s

) 
 + Nn(s)  9 

Where — denotes the values far away from the hole and * denotes the 

perturbations due to the presence of the cut-out. 

To obtain the stress transformation equations from (r,0) coordin- 

ates to (p,y) coordinates, we proceed as follows. (Refer to figures 

20 and 21) 

Nnn 

	

= N
rr 
 cos24, + N

ee 	
+ N

re
.sin 

= 
Nss 	N rr sing  + N

ee 
 .cos24, - N. . sin 24, 

N
ns 

= (N
00
-N

rr
) sing, cosip + N

re
.cos 24, 

M
nn 

= M
rr 	

4 cos 	+ M
e8 	

+ M
re 

sin 24, 

= Mss 	M 
rr 
 5104, + M

08 
 .cos4 - M

re
.sin 24, 

M
ns 

• (M
00
-M

rr
) sinip cost:, + M

re
. cos 24, 

Qn 

aM
s 

• Q
r 
cosip +.simp 

as 
n 

 
(2) 
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(1 ) 



Define; 

Ni  • = 
rr 

1 
Imag P .4)• 	

12 	yy] ,P  
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N0 	C5.1 ,PP 
= - Imag [ . 	] 

0  

rl Nj 	= 	- Imag 	.(1). 	- 
1  
- .(1). 	] re L—  

P
2 	-1 ,Y 	P 	J,PY 

. (1).  Mj 	= - Real 	+ - 	
4.  v _ 	I rr 	[4)  .1,PP 	P 	J,P 	
P
2 .1,YY 

Mj 	= - Real (--
1 	1 
4. 	+ — cp. 	+ vcp. 	] 

00 P J,P 2 J,TY 
P 	

J,PP 

Mj
e  

= 	+ Real [(1-")(12 - . ci)
J,Y 	P 

- 1  . 
(PJ,PY 
 )] r  

P 

QJ 	= 	Real [(02y,p] r 

Q-01 	= - Real [(-1 - .V2q5j),y] 

  

(3) 

Also, let 

= Tf() + rf(0 .  a 	 (f (r) - f(0)  
1 	2p 	3p 	tie 

(f (C) + f(d) 
2p 	' 

COSY 

sin] 
a 
31 

 

211, = 2Er(0 	f(d 	f' (c) - f' (d)  and EL
2 21p2 
	

2i 
 

(from 2.3)) 

The stresses Nrr, N00, Nre  and the moments Mrr, Mee, Mre  as well 

as 	the Kirchoff shears Q 
r
, Q0  can be expanded as a Taylor's series around 

the point (p,y) to the order of I C I . 

K (0) + el( (1) + Ap DK(°)  + 	3K(°)  
Ay 

Dp 	
.
31 

(5) 

where K represents any of Nrr, Nee, N
ru
,, 

Mee' /Ire' Clr or Q
e. 

Ap, and Ay are obtained from (2.3) since 

r = P 	Ap; 

0 = y + Ay. 
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Using 

N 	= 
nn 

N 	= 
ss 

N 	= ns 

nn 

M 	= 
ss 

M 	= ns 

(4) 	and 	(5) 	in 

N(o) 	+ EN (1)  
nn 	nn 

N(0) 	+ EN(1)  
ss 	ss 

N(0) 	+ EN(1) 
ns 	ns 

1,4  (o) 	+ 	cm (I) 
nn 	nn 

M(0) 	+ EM(1 ) 
ss 	ss 

(o) 	(1 ) M(o)  + eMns 

(2) 

= 

= 

= 

= 

, one obtains, 

N(o) 	
+ e L N (1)  + L N(0) 	+ L N(0)

] 
r 

rr 	rr 	1 	rr 	2 	re 

N (o) 	+ 	 (0) E [N(I) 	+ L N
ee 	

- L N(0)
] I ee 	 2 re 

N(0) 	+E[N(1) + L N
re
(0) 	2 + 	kN

ee
(o)  (o) - N 

r r 

o) - m( 	)] rr 

re 	r6 

M 1-o) 	+ e  [m (1) + L M(0) 	+ L M(0) 
rr 	rr 	1 	rr 	2 	re 

(0) 	(1) 	(0) 	(0) 
meo 	+ c[mee 	+ L mee 	- L

2
m
re 
 ] 

(o) M(0) 
	

+ E[M(1) 	+ L
1
M(o) 
re 	

+ 	2 
2 	

(M(o)  
ee re 

(0) 	(1 ) 	(0) 	(1 ) 	(o) 	12 	( = Qn 	Qn 	+ (111 	= Qr 	+ [Qr 	+ L I Qr 	+ r e
0) I 

 

4  
3w 	,._ _(0) 	aw  ( 1 ) 	

aw4.  
(o) 	314(1) 	_ 

w+  
(o) 	L, 	aw  

4 	
(o) __ow 	+ E 	 =  	e[ 	+ L

I 
'd 	 an 	an 	an 	ap 	ap 	2p 	ay 

w 	= 	w(0) + 
E  fw, 

(1 
 ) 

I.  
. . 
L 	

(0) 1 
IW 	J (6) 



APPENDIX IX  

Boundary conditions for a reinforced elliptical hole in a cylindrical shell: 

Image {-(6+2A)(0,,yy  + 01,p  + 6A01 -;:pp 	= Imag 	(6 + 2A) [cos 2y (4. 
0*o,pp 

 - 0
o,p  
* 	- 20*0

,YY 	00,PYY
* 	) 

- sin 2y (0* 	+ 0* 	) + 4 sin 2y (4* 	- 4* 	)] - 6A [cos 2y . 0* 	- sin 2y.0* 
opPY 	(:),YYY 	o,y 	o,py 	0,PPP 	0,PPY 

 

      

      

- 4 sin 2y (0* ,1 - 0* 	)] - 18 cos 2y (0* 	+ cp
0,11 	nn 
* 	) 	+ 18 N

(o)  cos 	2Y - (6 + 2A) N(1)  + 6! P(1) . 
0 	0,py 	0,p 	 nn 	ss 

Where A E
S  

A 
▪ r

o
t 



Imag 6 00 	 1, -4)* 
1,PY  ) 
	

2A(0 ,YYY 
4. 	* PY ) + 6/14) 1 *,ppy } 

' 1 'Y 

1 

-2 	3 (cos 2y (-24) * + 24) * 
0,y 	0,py  * 	) - sin 2y (4)  * 	- (t)  * 	) 

0,PPY 	o,YY 	0,pyy  
) 

+ 2 sitlay(4) * 	- 4) * - 4) 	) 
o,pp 	o,p 	0,yy = Image 

- A(cos 2y(-4,_*
PY 	

4) * 	+ 
0,PYYY 

+ 	cp * 

[ 	

- 24, 0,YYY* 	) - 2 sin 
0, 	0,PPY  2Y(-(P4P (V,PP 2(Po*aY (P(;:PYY)  

- sin 2y(4)4pyy  + 4)0*ayyy) - 2 cos 2y(40*,py  + 4)4yyy) + 4 sin 2y(4) 0, *YY 	
* 	) 
0,PYY 

+ 8 cos 2y (4) ** 9' 0,1 	o,py 

( cos 2y4 * 	- 2 sin 2y4o*ppp-  sin 2 
y . 4 

0opyy  - 2 cos 2y4o*opy  
0,PPPY 

- 3 cos 2,1,.( * 	* ) 
o,y 	0,PY 4,sin 2y.(4)0*,yy  - (1)174pyy) - 8 cos 2y.(4, y0*,py) 

+ 6 N
ns
(1)  + 2A 	(3Ns(51)  - 11 1r1 )) - 6 Nt(1°s)  cos 2y . 



Real f (3$1 ,PP + 0 1 1:p  + 0 1 *,ly)- 32E(0 1*,11  + 010) + 1251 0 1 *,pyy} 

- cos 2y (30 * 	+ 0 * 	- 	* - 20 * 	+ 	* 	) + sin 2y (34) * 	+ 	* 	+ 0 * 	) 
+ Real o,ppp o,pp o,p 0,7Y opPYY 	0,PPY 0,PY 0,11Y 

+ 8 sin 2y(041  - 00*,py  + 32 II(5 cos 21(0 * 	- 2 sin 2y.0* ) + cos 2 	* - sin 2y.0 * + 2 sin 2y.0 o,y 
0,yy 	Opy 	

.0 
Oppp 	 py  

  

[ 
- 12 0 - 2 cos 270 * 	+ 2 sin 2y(1) * 	+ cos 2y. * 	- 4 sin 2y.0 * 	- 4 cos 2y.4) 

opPYY 	o,py 	0/PPYY 	opPAY 	o,pp 
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+ 32E 0.100*),.yy } 
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E
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E
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E
R 1 
E
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 rota 
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YYYY 34).
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(-4 

40( 001:pyy)  
sin 2y(-00*,yyy 	 4pyry)  
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prie 0,AYY 	 o'PPY 0,py OtYYY 
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APPENDIX X 

Boundary conditions for a reinforced Square hole with rounded corners in a cylindrical shell: 
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Evaluate the derivatives offi* - Formulate the multipliers 
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Read coefficients 	In ¢
0  

Obtain the right-hand side for the boundary conditions at 
collocation points 

the 

Solve for the unknowns 	in 	* by matrix inversion 

Choose 	at which the stresses are required 
obtain Krylov functions 

increase n n = 1 
n varies 0 to N 

Evaluate thr, derivatives of W and obtain the stress and 

moment components using the unknowns obtained 

Evaluate components of 	'e' 	order due to cpo* and add to the 
above 

t 
Add stresses 	e order) due to -- and w at chosen 

..-A.,..F1,,, 	a 
Print the stresses 

Read reinforcement parameters, 	
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— -- 
ES  at 

at
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and 

Generate Henkel functions H1 (8pVTO using recurrence relations 

APPENDIX XI 

Flow Diagram for Computation  
Reinforced arbitrary shaped hole in a cylindrical shell  
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APPENDIX XII  

Applicability of the present theory: 

The range of applicability of shallow shell theory has been dis- 

cussed by Vandyke (4). 

Henkel functions of the first kind behave like 

Hn(gr 2i ti e-r/l(Sr)1/2 

and KryloV functions behave like 

(E1 -iE2) ti (E
3
-iE

4
) ti 

efir cos 0 

for large arguments. 

(E -iE
2 n

1 O )Hr/fi) ti (E3-iE4) H;;(r)/27) 

1 e
-13 -(1 - 'cos* 

(sr) 
1/2 

Consider the decay in 0 = I IT/2, direction, 

4)* A, e-i-///001 /2 
	

(a) 

For a shallow shell, the ratio of the rise 'V to base length '2y' is 

142 

less than 1/8. 

a 	 

For a circular cylinder, 6(2R -0 = 

Neglecting '(52' , 	— = 
	 (b) 

2y 
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Using the shallow shell criterion and the fact that 	ar, (b) becomes, 

ar 	1 
4R TT  T 

As the hole must lie in the shallow shell region, 

a 	1 
R 	2 

Let us assume that at r = r, the hole effects have died down to one 

tenth of their values at the hole edge. 

Using (a) 

e 1  
M1/2 - 10 

R 

t 
-Fr  Using (c) and (e), a relation between T and 	is got which is plotted 

in figure 39. 

However, for large values of 's', we can assume that the entire 

decay is caused by the exponential term in (e) which gives, 

- 1) = 2 . 3 
	

(f) 

2.3 	+ $ 	R 
i.e. 	r = 	(using (c)) 

$ 	2a 

a 	1 	. 
This leads to: 	

R < 2 	

115 

 

Using the definition of ial and (d), this reduces to, 

1 
< 	—

2 
- 3.6 ( t /R) 1 /2 	 (g) 

Relation (g) is true for large values of $, that is small vaues of (t/R), 

and has been plotted in figure 39. 	The analysis given holds for the 

cylindrical shell. 	In the case of spherical shell, the same figure 39 

applies, except that the y axis representst/8R instead of t/R. 

Variation of Poisson's ratio was shown to have no significant 

effect on the shell stresses in (6). 	Hence the results are applicable 

to cases where the value of v is around 1/3. 

(c)  

(d)  

(e)  
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Donnell's assumptions are not satisfactory if the deformations 'w' 

longitudinally or peripherally consist of modes whose wave length is 

of the order of the length of the cylinder or perimeter of the cross- 

seccion of the cylinder. 	In the problem considered in this thesis 

the deformations die away at distances of r = 1.5 from the centre of 

the hole and hence do not contain large components from modes for 

which Donnell's assumptions are unsatisfactory. 
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APPENDIX XIII  

Reinforced circular hole in a cylindrical shell (loading 'Case B')  

Results are obtained in this appendix assuming that the pressure 

load acting on the cut-outportion of the shell is distributed as the 

varying shear round the hole edge referred to as 'Case (B)' on page 26. 

If the relative bending stiffness of the curved window in the 'x 

and 'y' directions are so dissimilar, we may ignore bending moments and 

therefore normal shears on generators such as AB and CD. 	If the edge 

of, the window is free to slide radially then the membrane action is zero 

here and may be ignored over the whole of the shallow window shell. 

Under these assumptions the pressure on an element ABDC is resisted en-

tirely by shear on the edges AC and BD, giving rise to the shear per unit 

length = pa cos20. 

For this case, the equations of equilibrium (1.4.1), (1.4.2) and 

(1.4.4) remain the same whereas (1.4.3) becomes 

M 
rr 

 + N rr 
	a 	a 
h = 	+ 

j
- H,

0 
	Q.b + pacos20.b 

and (1./:.5) becomes 

Qa 

1 	T = - P- cos
2 	

pacos20. 

The right-hand side of the four boundary conditions in Appendix IV 

consequently contain 



1 4 7 

- 24 . a 
	 a 

11  .02.cos20 	instead of - 12. 	.0
2 	

in (c) 

and 

2402cos20 
	

instead of 	1202 	in (d). 

In this case also we assume as in (1.6) that ER/ES  = 1 and J/I = 2 

leaving the three parameters defining the problem 0, A = at and p = 

Ate 

(It is found that the stresses increase if J/I is increased for 

some typical. sections. 
	

Most of. the change occurs in the range 0 	1 

as in Chapter I and in the range 1 v< 	3, the stresses remain almost 

constant. 	Very small J/I implies that the section must be a thin-walled 

open tube and it is found again that the torsion bending rigidity of the 

section cannot then be ignored.) 

The carpet diagrams in figures 40, 41 and 42 show the variation of 

stresses with 0, A and p. 	For a constant p the stresses reduce with 

increasing A and for a constant A stresses increase with p. 	Stresses 

also increase with 5 and for 1/2.-.0 = 2 the minimum stress concentration 

obtained is 1.785 at A = 1.8. 	This compares with Wittrick's (32) solu- 

tion for a flat plate (0 = 0) of 1.306 for l = 1.0. 

As in (1.6) by assuming an eccentric reinforcement to be of a doubly 

symmetrical rectangular cross-section whose centre is offset distances 

'b' and 'h' (figure 3), the stresses obtained are plotted in figures 43, 

44 and 45. 	The stresses for the eccentric reinforcement are in all 

cases higher than those for symmetrical reinforcement. 

Comparing the two Cases (A) and (B) it is found that the bending 

stresses are very much lower in 'Case B' and it seems that this is because 

the window load is being concentrated in the regions where the reinforcement 

and the shell have the curvature necessary to resist normal loads by a 

predominantly membrane action. 	The differences between the two cases are 

most pronounced for higher values of 5  as was predicted. 	In fact for the. 

lowest value V'3 = 2, in the optimum region 1 < A < 1.8 and p > 3 there is 



l43 

very little difference between the two cases. 

Mansfield's efficiency factor: 	(See (1.6)) 

Table 111 gives the maximum principal stresses for symmetrical 

(X = 0.4) and eccentric (X = 1.6) reinforcements. 	The agreement with 

Mansfield's suggested formula seems good though the stress system is very 

complex. _The agreement is much better for 'Case B' as compared with 

'Case A' due to the lower bending stresses previously mentioned. 

It appears that for 'Case B' figures 40, 41 and 42 may be confidently 

used for symmetric as well as eccentric reinforcements for other than 

rectangular cross-sections. 

 

Table Ill  

 

1/Y13=2 12-(3 = 3 1213 = 4 

p 

A = 0.4 

,Symmetric 

X = 	1.6 

Eccentric 

A = 0.4 

Symmetric 

A = 	1.6 

Eccentric 

A = 0.4 

Symmetric 

A 	= 	1.6 

Eccentric 

. 1 2.466 2.151 

2 2.565 2.351 2.851 2.585 

3 2.628 2.465 2.953 2.723 3.176 2.932 

Li 2.672 2.534 3.026 2.829 3.254 3.018 

5 2.704 2.581 3.081 2.907 3.312 3.108 

6 2.728 2.613 3.125 2.964 3.398 3.184 

7 3.159 3.009 3.455 3.248 

8 3.502 3.303 
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APPENDIX XIV 

Reinforced  elliptical hole  in a  cylindrical shell  (loadinq 'Case B') 

It can be assumed as in Appendix XIII that the pressure load acting 

on the region ABCD is transmitted as shears distributed along AC and BD. 

The shear per unit length = pro.r cose.cosa, which using (2.3) 

reduces (to the order of E) at p = 1 to, 

pr
o 
 cost y + Epr

o 
cos 2y.cos2y. 

The equations of equilibrium (2.5.1), (2.5.2), (2.5.3) and (2.5.4) 

remain the same whereas (2.5.5) becomes, 

Q
n 	

P,
s 
+ T.cosa.no 

 s 	
pr
o
cos2y - Epr

o
cos 2y.cos2y. 

, 

(This change gives rise to an additional term on the right-hand side of 

(2.7.8) as 

pr
o 
cos 2y cos2y 

There is a corresponding change in Appendix IX, page 136, where the 

additional term is 

+ 24132  cos2y.cos2y.) 

study the influence of reinforcement Wittrick's (32) optimum, 

almost neutral hole, (X = 0.8, 19; = 1.4) is chosen. 	It was found that 

the variation of the maximum principal stress with p was very small as the 

bending stresses in the shell were very small. 	For example for /2B = 2, 

the variation of a 
P
/a was from 1.446 to 1.457 as p varied between 2 and 
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7. 	The points corresponding to 'Case B' have been plotted for comparison 

with "Case A' in figure 46. 

Even though the bending stresses are small, the reinforcement in the 

curved shell is not as efficient as in the flat plate. 	Considering 

Wittrick's (32) optimum cut-out again, at 0 = 0, the imbalance between 

the window shear and the normal component of reinforcement is only about 

10%. 	But- the shell is very sensitive to such an effect as is apparent 

in the high stress concentrations around a circular hole in a cylinder 

under simple tension. 	The reduction in stress is seen in figure 46 to 

be most pronounced for large B where 'Case B' is a more realistic model. 

For smaller values of B the two cases approach the same value. 
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