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ABSTRACT 

When a fluid flows through a curved pipe, a secondary 

flow is set up, the fluid in the middle of the pipe moving 

outwards and that near the walls moving inwards. Near the 

entrance to the bend, the secondary flow changes a great 

deal and in some cases appears oscillatory. If the bend 

is of sufficient length, the changes in secondary flow are 

damped by viscosity and a region where the flow is fully 

developed is reached. It has been shown theoretically 

and experimentally, that the dynamical similarity of fully 

developed laminar flow depends on a non-dimensional para-

meter 

K 	a1;!o ( a 
-I /2 

w v R • 7 

where Wo is the mean axial velocity, v is the coefficient 

of viscosity and 'a' is the radius of the pipe which 

is bent into a circle of radius R 

The first part of the present work investigates the 

particular case of entry flow where the viscous forces 

are not dominated by the centrifugal forces. The second 

part investigates the fully developed laminar flow region 

for small and large values of the parameter Kw  . The 
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effects of torsion in a coiled pipe are discussed and 

theoretical results for the increase in resistance due 

to curvature are obtained for pipes of small and large 

curvature ratio k, defined as 	= a/R . These results 

are used to determine the point at which the flow separates 

and it is found that the theoretical results agree reasonably 

well with the available experimental observations. 
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CJIATTER 

Introduction to the physical problem 

When a fluid flows through a curved pipe, a pressure 

gradient is required across the pipe to balance the centri-

fugal force arising from the curvature. The pressure at 

the outer wall (i.e. that part of the wall furthest from 

the centre of curvature of the pipe) must be greater than 

that at the inner wall. The fluid near the wall of the 

pipe is moving more slowly than the fluid some way from 

the walls and hence the pressure gradient is reduced. 

As a result of these different pressure gradients, the 

faster flowing fluid moves outwards, whilst the slower 

flowing fluid moves inwards. This flow is known as the 

secondary flow and it is superposed on the main stream. 

In the case of a circular curved pipe lying in a horizontal 

plane, the fluid in the middle of the pipe moves outwards 

and that above and below it, moves inwards; thus the 

resultant flow is helical in the top and bottom halves 

of the pipe. 

The secondary flow has the effect of shifting the 

high velocity region towards the outer wall and creating 

a much thicker layer of slowly moving fluid at the inner 
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wall. The total frictional loss of energy near the walls 

of the pipe is, however, increased and the flow experiences 

more resistance in passing through the pipe. 

The flow in a curved pipe can be divided into three 

regicins. At the entrance to the bend, the upstream 

velocity distribution is modified in the 'inlet region'. 

The velocity distribution at the point where the bend 

begins will be called the injection velocity; it may be 

formed by a preceeding section of pipe or by the flow of 

a fluid directly into the pipe. If the bend is of 

sufficient length, 'fully developed curved flow' will be 

established. In this region, the velocity profile is 

invariant with axial distance down the pipe. Towards the 

and of the bend, this velocity profile is again modified 

in an 'outlet region'. If the bend leads into a straight 

pipe, the effect of the bend may extend to an order of 

50 diameters downstream. 

In the majority of engineering situations,bends are 

generally restricted to right angled or 180°  bends and 

there is no fully developed region. There are, however, 

some situations, such as in heat exchangers, where a pipe 

is wound into a coil; the flow in such a coil does become 

fully developed if the coil is not wound too tightly. 

Also,the flow in these pipes is nearly always turbulent. 
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Because of this, the theoretical work carried out to 

date - most of which concerns itself with laminar flow 

in the fully developed region - does not have many 

applications to engineering problems. As a consequence, 

the study of laminar secondary flows has been neglected. 

Renewed interest in these flows has emerged, however, 

due to the fact that the flow in the cardiovascular 

system is usually laminar. In contrast to the requirements 

of engineering, where the increase in resistance due to 

curvature is mostly sought, a knowledge of the velocity 

distribution is required in the study of cardiovascular 

systems so that the distribution of injected substances 

may be better understood. 

Historical Survey  

The first theoretical study of flow in a curved pipe 

was carried out by Dean (1,2), who pointed out that in 

laminar flow, the dynamical similarity in the fully 

developed region depends on the non-dimensional parameter 

- the Dean number - 

2Wc  a
3  

KD  = 	2  
v R 
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where We is the axial velocity at the centre of the 

pipe, v is the kinematic coefficient of viscosity and 

a is the radius of the pipe which is bent into a circle 

of radius R . He derived a solution of the equations 

of motion by considering the secondary flow as a small 

perturbation upon the Poiseuille flow. Extending hiS .  

solution so as to include the dominant fourth order terms, 

he calculated the flux as a function of KD ° This 

expression was found later to be accurate for values of 

KD  up to 162. 

The experimental results of White (3) in 1929 confirme 

that in the laminar region, the parameter KD adequately 

defines the flow. He introduced a more convenient 

parameter 

2a 	1,42. W 
Kw  = --9- (L) v R 

where Wo is the mean axial velocity and showed that the 

critical Reynolds number at which the flow becomes 

turbulent, increases with the curvature ratio. It can 

be shown that for sufficiently small KW , it is related 

to KD  by 

1  K = 1/2 K_ 
-1) 
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He also obtained an empirical formula for the 

increase in resistance in a pipe due to curvature 

0.45 2.22 -1  Yc . 	f 	(11.6) 
Ys  	 k Kw  , (1.1) 

valid for 11.6 < Kw < 2000 , and showed that the flow 

can remain laminar for values of Kw up to 5000 

(Goldstein (4), 1938). 

In 1937, Keulegan and Beij (5) summarised the 

experimental results of White, Taylor (6) and Adler (7) 
for the critical Reynolds number, in the curve shown in 

fig (1.1). Curve I gives the minimum critical Reynolds 

number with disturbed inlet conditions and is based on 

the work of Taylor, White and Adler. Curve II was derived 

by Keulegan and Beij with a special inlet design to 

minimise disturbances. It is interesting to note that 

with a sufficiently long bend, it is possible to have 

turbulent flow at the inlet leading to laminar flow in 

the bend. 

Adler, in 1934, deduced that for large Kw  , the 

viscous effects tend to be restricted to a boundary 

layer on the walls of the pipe. He assumed that outside 

the boundary layer, the surfaces of equal total pressure 
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Fig. (1.1). Critical Reynolds number for fully developed 

flow in curved pipes. Curve T after Taylor, White and 

Adler. Curve II after Keulegan and Beij with special 

inlet designed to minimise disturbances. 

were perpendicular to the plane of the pipe and obtained 

a simple velocity distribution for this region. Applying 

a Polhausen ( 8) method to the momentum equations in the 

boundary layer he obtained an expression for the increase 

in resistance due to curvature. Barua (9) and Mori and 

Nakayama (10) made similar assumptions and obtained more 

accurate values of the resistance. These theories will 
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be considered in detail in Chapter 6. 

The work so far carried out in the inlet region is 

by no means straightforward; there are large discrepancies 

found in the results reported in the literature for losses 

in the flow of a fluid through right angled and 1800  

bends. The reason for these discrepancies is that the 

upstream conditions have a large effect on the downstream 

flow. 

Most of the theoretical work carried out to date 

assumes that the inlet velocity profile has been formed 

by viscous forces acting in a preceeding length of straight 

pipe. It is then assumed that in the inlet region, the 

centrifugal forces dominate the viscous forces and that 

the viscous forces can be neglected. Thus, in the 

initial stages of a bend, secondary flow is generated by 

the centrifugal force. A physical explanation for this 

phenomenon was offered by Squire and Winter (ii) as 

follows: if a small elemental cylinder of fluid is 

considered such that its axis is normal to the flow and 

in the plane of the bend, and if it has a rotation about 

its axis, the axis will be turned about an axis perpendicular 

to the plane of the pipe as it proceeds down the bend 

and it will set up a rotation about an axis perpendicular 

to the other two, by analogy with the gyroscope. They 
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obtained a simple formula for the generation of vorticity, 

namely 

dos = ndg 

where tO s  is a measure of vorticity in the direction of 

the flow, u) n  is the component of vorticity along the 

radius vector generating the streamline and 8 measures 

the axial distance along the streamline. This result 

applied only to a streamline, but was found to be 

approximately representative of flow in the inlet region 

of a pipe of very small curvature ratio. 

In the same year Hawthorn (12) extended the under-

standing of the generation of vorticity by considering 

the effect of centrifugal forces on the Bernoulli surfaces.  

He deduced that no secondary vorticity would be produced 

if the Bernoulli surfaces were perpendicular to the 

radius vector generating the bend. 

The flow in the outlet transition region is even 

more complicated and the results have been restricted 

almost entirely to experimental results. 

A detailed review of the experimental work on losses 

due to bends can be found in a paper by Hawthorn (13); 

much of the work is restricted, however, to turbulent 
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flow, whereas this thesis will be concerned with laminar 

flow. 

Description of present research. 

The object of this thesis is to investigate in 

detail a type of entry flow not as yet considered and to 

analyse and extend the theories of previous workers in 

the study of fully developed laminar flow. The basis of 

this study will be the Navier-Stokes equation of motion 

and the equation of continuity for an incompressible, 

viscous fluid. These equations are written out in a 

convenient coordinate system. 

Although previous theories of flow in the inlet 

region neglected the effects of viscosity, there are 

certain cases where this effect is not negligible and 

others where it is dominant. Such cases are those where 

the fluid is injected into a bend so that, in the initial 

stages, secondary vorticity is generated by the viscous 

effects at the wall and not by the centrifugal forces. 

Clearly, as the injection profile is distorted, centrifugal 

forces act in the regions effected by viscosity and as 

this region grows eventually occupying the complete cross 

section of the pipe, the centrifugal forces can, for large 
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Reynolds number flow, dominate the viscous forces over 

most of the cross section. In the first part of the 

thesis, the type and subsequent development of such 

injection velocities is considered. 

In the second part, the fully developed flow region 

is investigated for the two cases of low and high Dean 

number flows. The flow in pipes of large curvature ratio 

is considered and torsional effects, which are a practical 

consequence of large curvature ratio pipes, are discussed. 

A more accurate solution for flow at low Dean numbers is 

derived so that the increase in resistance due to curvature 

can be found. The investigation into the flow at high 

Dean numbers follows a similar line of approach as previous 

theories. It is, however, extended to include curvature 

effects and to satisfy more boundary conditions. Finally, 

it is hoped that a better understanding is obtained of 

the assumptions made and the results derived from such 

an approach. 
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CHAPTER 

The Coordinate System  

The two coordinate systems used throughout this thesis 

are illustrated in fig. (2.1). The surface of a pipe of 

circular section, coiled in a circle, is a torus; the 

figure shows On  , the axis of the torus and a section 

of it by an axial plane that makes an angle 0 with a 

fixed axial plane. The radius of any cross section is ;a  

and R is the radius of the circle in which the pipe is 

coiled; the distance along the pipe axis from the fixed 

plane is thus RIG = s . The position of any point P 

is specified by the orthogonal coordinates (r, y,$) 

and the corresponding components of velocity at this point 

are (u,v,w). 

The alternative coordinate system (ri ,G,z) that 

will be found useful is also shown and the corresponding 

velocity components (u1I ,w1 ,v1
) . It is also useful to 

exhibit the corresponding vorticity components for this 

particular system as (IA)n't'
m)b) 

If v is the coefficient of kinematic viscosity 

and p and p are the density and pressure respectively, 

the Navier-Stokes and the continuity equations for a 



ri 

AW 
10 

On  

Fig. (2.1). The (r,y',$) and (ri ,G,z) coordinate 

systems. 
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steady incompressible fluid are 

VA curl v = grad 	42) + v curl curl v , 

div v = 0 , 

(2.1) 

(2.2) 

where 	v = (u,v,w) , 

div v = - 1h Dr  16 r 	(Thu) + 	(hv)  a ( rw) Ds 9 

 

A 	
hs 
A 

°/or 	6/0 	6/as 

u 	ry 	law 

curl v = 77  

  

(203) 

h = 1 + r sin ' (2.4) 

and R is the radius of the pipe bend. 

The full equations of motion depicting flow in curved 

pipes can then be written as 



au, v Du , w au 	v 	2 	I .a..2 
Un- 	n Ds r 	"""' 	r 

.•_ CNT = r P ar 

[..L. 	(L.( 
rh DY 'ir‘ar \- a')  aYij 	Lh‘ar""" 

(2.5) 

0 
Dv v av w av 	uv 	1 an u-- 	+ = 
ar 	r 	h as 	pr 

 

 

a L 
r 

1.2(.,Lerv) --lil; a 1.+17,(hw)--2--as(rv)1 — -67  as r (2,6) 

   

   

aw 	v aw w aw 	. 2vw 	1 22, u-- + 	— 	+ guw + 	= Dr 	r a'/'  h Ds 	ph Ds 

 

[
+ i'..- -61.-1  §(—#- aar(hw)) + +y„- i—lhGrr(hw) —fr,(rv))1 (2.7) 

  

47(rhu) -F ,a.-T(hv) + 4F(rw) = 0 , 	(2.8) 

where 

21 

7 

a  
1 ah 

= F ar and _ 1 ah 
h (2.9) 

The problem is now to find solutions of these equations 

subject to the boundary conditions; these require that 
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the velocity (u,v,w) should be zero at the surface of 

the pipe, 

i.e. 	u = v = w = 0 at r = a , 	(2.10) 

and that the flux through any cross section of the pipe 

is constant. 



PART I 

THE FLOW IN THE INLET REGION 

OF A CURVED CIRCULAR PIPE 

23. 
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CHAPTER 3 

Introduction 

If fluid is injected into a curved, circular pipe 

so that the axial velocity is initially non zero at the 

wall edge, an infinitely thin boundary layer 

formed round the walls of the pipe since the 

the wall must be zero. The thickness of the 

layer will increase with distance downstream 

filling the whole cross section of the pipe.  

is subsequently 

velocity at 

boundary 

eventually 

Until this 

happens, there is a core of fluid effectively uninfluenced 

by viscosity. Since the flux across any cross section 

is constant and the boundary layer thickness is increasing, 

this core is accelerated and there is a corresponding fall 

in pressure. 

The pressure is also altered if secondary flow is 

generated in the core, the condition for which - as will 

be seen later - is that there is a component of vorticity 

along the radius vector generating the pipe. 

The fully developed flow is theoretically attained 

asymptotically; because of the complicated nature of the 

flow, however, a solution is obtained which is valid only 

for a short distance down the pipe. In this region, the 
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effect of curvature on the developing velocity distri-

bution is investigated. 

The method used here is similar to that due to 

Goldstein and Atkinson (14) for the corresponding problem 

in a straight circular pipe. They derived a series 

expansion solution in 1 , where 1 is a non-dimensional 

parameter defining distance down the pipe. The series 

obtained is found to give reasonable results when compared 

with the experimental observations of Nikuradse (15), for 

values of 	up to 0.05; there is, however, some 

discrepancy very near the entry probably caused by the 

singularity in the solution at 	= 0 . 

The solution obtained from the present analysis 

includes that of Goldstein and Atkinson as a special 

case (i.e. when the curvature ratio is zero and with 

constant velocity injection) and for small curvature 

ratios, the solution probably has a similar region of 

validity as .that for a straight pipe. For large curvature 

ratios, however, it will be seen that the region of validity 

is necessarily reduced. 
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Boundary Layer Equations 

The problem is considered for large values of the 
2aWo Reynolds - number defined as Re = -- and the approxi-

mations usual in boundary layer theory can be applied to 

equations (2.5)-(2.8). Thus, if the boundary layer 

thickness is taken to be of order Re-/2  and terms of 
-1/2 order one and Re 	are considered to allow for a 

growing boundary layer, the equations representing the 

motion in the boundary layer are 

1 uaw 	v ow w aw , auw + pvw = 	ap . r a2w 	f1 N aw, 
ph as 1- v  --7 '7'171 ar 	' 	7 7- 

Lar  

(3.1) 

	

v2 	2 	1 ,22, + aw =  

	

r 	p Or ' (3.2) 

	

ug + y 21 + w aw 	jw2 

r 	h as 	
+ uv = 	 22, 	v  a

2v - (14.a  
pr art a are  

(303) 

together with the equation of continuity 
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a (rw)(rhu) 	0  + 	+ — a (hv) 
as 	ar 	ay/ (3 . 4) 

Continuing a conventional boundary layer analysis, 

it is clear from equation (3.2) that the pressure variation 

can be neglected across the boundary layer. Since this 

approximation yields only third order differential equations 

nothing can be said of the behaviour of the radial component 

of velocity u some way from the wall of the pipe. 

Consequently, the analysis will break down if terms 

containing u , which do not tend to zero away from the 

wall, are retained. 

One such term is auw in equation (3.1), but this 

may be rejected if the curvature ratio is such that terms 

of order Re /2(R) can be ignored relative to terms of 
-1/ 

small curvature ratio, the terms of order Re-1/2  (A) can 

be rejected whilst retaining comparable accuracy to that 

for a straight pipe. If, however, i is of order one, 

the analysis can be continued without terms of order 
21 	

/ 

/ ( 	, Re / 	but the results obtained will be valid for '11 

a smaller region because of the reduced accuracy of the 

order Re 
-1/2 

and one. Terms of order Re 	2  were 

retained in equations (3.1)-(3.4) so that the analysis 

would incorporate the theory of Goldstein and Atkinson as 

a special case, obtained by letting 
a- -400 . Thus, for 
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equations; a consequence of retaining some terms of 

order Re /2  and rejecting others. 

The only other term that will create difficulties 

in this respect, supposing there to be no initial 

aw 
-Dr 

velocity in the core is, in general, a function of r 

The nature of the complications that arise will be 

considered as and when they occur. 

I a Rejecting terms of order Re /2 (R\ , equations (3.1) ki 

(3.3) and (3.4) reduce to 

secondary flow, is This is because the axial 

    

u8w 
Or 

Gov''' + v aw 	w aw 	ap v  
r a y ▪ ho as +  a = " pho  as 

a2w 	1 Ow 
2 + 7 Dr , (3.5) 

    

    

 

n  ,i2 

+ =.+v   
a 	a 	pr a y- 

 

  

uhv _ay av 
r 	y/ ▪ ho  as 

a2v1 av 
--7 7 77 or 

   

(3.6) 

a 	(rw) 	8 (rho  u) 	(ho  v) 	, as 	Dr 	ay (3.7) 
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an 1 	o where ho 	),c sin 5(' 	and po 	. 

Since the variation of pressure is being neglected 

across the boundary layer, the pressure is determined 

from the inviscid flow in the main stream which is the 

core. If w
1 is the axial component of velocity in the 

core and there is no secondary flow in the core, the 

pressure in the core can be obtained from 

Op 
p as 	wl as 

OP a
l p 

Or 	w  

.g.2= p w 2  
P ay' 

(3.8) 

The condition that there is no secondary flow in the 

core imposes restrictions on the type of injection 

velocity. The class of such injection velocities is 

considered next. 

Clearly there must be no initial secondary flow and 

the initial axial component of velocity must be such as 

to generate no secondary vorticity. 

Scorer and Wilson (16) obtained an equation for the 
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generation of vorticity in a curved streamline and for 

an inviscid, incompressible, constant density fluid, it 

takes the form 

D (b)sl 
77A 77) 	, (3.9) 

where q is the fluid velocity along a streamline, W s  

is the vorticity component along the streamline, L3n  is 

the vorticity component along the radius of curvature of 

the streamline and X is the curvature ratio of the 

streamline. For pipes of small curvature ratio, the 

streamlines are approximately parallel to the walls of 

the pipe and equation (3.9) can be applied to the fluid 

in the core of the pipe. It is seen from this equation 

that no secondary vorticity is generated if W 	is 

zero. Thus, using the (r
1
,G,z) coordinate system of 

fig. (2.1), no secondary vorticity is generated if 

Dv
1 
 awl . 

"en r aG az = 0 . (3.10) 

In the same coordinates 

  

Dv
1 

Dr1 
0 (3.11) s 
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since initially tos  is zero by definition and by (309) 

and (3.10) no secondary vorticity is generated. It is 

therefore possible to see that a necessary condition for 

and v1 and thus u and v to be zero in the core, U
1  

throughout the region under consideration, is that 

Iv/  = w/(r1 ,0) 	The reason for this is that if w was 

a function of z , then v1 would have to be a function 

of Q , which is not permissible. 

For pipes of large curvature ratio, the streamlines 

are not approximately parallel to the pipe wall and the 

full vorticity equation has to be considered; namely 

D c/.2= p.grad)v 
Dt (3.12) 

Since no secondary vorticity is to be generated in the 

core 

aw 
Wn 

Ow1 
 4- 1,0 	1  -1-0 aw ar t 	s WQ 	b '67z1— 0  (3.13) 

where (co) 0..0 4) are the components of vorticity n s —o 

corresponding to the (r1,0,z) coordinate system. Then, 

because Ws  is zero initially, Ws  must be zero in 

equation (3.13). Thus, since 



or 

1 av1 awl 	w1 awl 	au1 awl 
ao Or r az ao az 	° (3.15) 

3 2 . 

a 	
a u. -2.L.   74-1  , b 	r1 ar1 

(riw) 
 

(3.14) 

equation (3.13) can be written as 

( 	av
1 
 aw) aw

1 	
(aw

1 	
w
I 	

au
1
) awl _ 0 1 

r1 	1 	. aG 	az 	ar ' Or + r 	aQ 	az — 1 

Again it can be seen that a necessary condition for u1  

and v1 and thus u and v to remain zero in the core 

as the fluid flows into the bend is that w1 = w1  (r 

This condition, however, is not sufficient as can 

be seen by considering the continuity equation in the 

(r1,0,z) coordinate system 

n a (r u1) --- 1 A 
awe 

 --- 	
av

1 r 	= v 
ar

1 	
ao 

(3.16) 

For, if wi  = w1(r/,0) , equation (3.15) yields the fact 

that vl  is independent of 0 . But v1  is zero over 

the whole cross section initially and thus is identically 

zero throughout the core region. It can be seen therefore, 
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aw.1 from equation (3.16), that if 7-4.- is non zero, there 

must be a contribution from u1  . It is assumed, however, 

in what follows, that this contribution is negligible 

relative to the terms retained in equation (3.8). 

Transformation of Coordinates 

So long as a core uninfluenced by viscosity exists, 

the following non dimensional variables may be formed: 

1 

= (2e) /- 
q = a2  -2r2 

4c a 
(3.17) 

where Re is the Reynolds number defined as 

2a W 
Re = -- 2  9 (3.18) 

o is the,mean axial velocity and 6 is a function of 

yf.,  to be determined later. 

Equation (307) using the above transformation can 

be satisfied by introducing two non-dimensional stream 

functions f and g and putting 



r W 
.§.11 

v - 2a ho, Re 	atz (3.19) 

"0 of 
w  

34. 

aWo 	of 	of 	i a (eg) 	a de 2a- 
rho  Re / as 	12 Df/ 	6 04- 	6 d' biz 

Transforming equation (3.5) and (3.6) and applying 

the results of (3.8), (3.9) and (3.19), 

h 
(1..4c 1)7 i'vvz +f  fle? - 

awc 1.2 = -4 wo a 

4h0/ 	 f 
q/- 4  8 	(sg) f 

VI  p0 
 Igf +Tgf. 

lr
. 	, 	(3.20) 

e 	q 7 	2  

2 h 
(1-49 1) 7  gm  + (1-4c })fl gvi  

2 	2 	0  2 	 1/2 
= Re Poho  / (4rwc-f ) + (1-4Eft 	46/(1-a0)(1-4et0) 

=kV 

4h 1 a 	(eg) 	ri de 
6 	E ay 	6 d r grt 

*N1/2  + (1-467 ) 

  

2 4e ao s (2-a0 )(1-46/1) + 261(1-adfs  -2e TO-ad y, 



e I

2h 1 
(2+ae) - 3 47,(Eg)  + 4 'g4 

26 Isi  _If ± .1 a---(60 - 4 g ho 	 -gli _ 	1 	1 	6 aY' 

+ 	- 	g to. 	(3  0  grd g 
	

(3.21) 

in which a literal suffix denotes, as usual, differentiation 

with respect to the appropriate variables and where 

W 	XsihnY' and ao = ------- r--1 = o we 

The boundary conditions on f and g must be such 

as to allow u = v = w = 0 on the pipe wall and w = w1 , 

v = 0 at the interface of core and boundary layer. 

These are satisfied as follows: 

i 	= g = f = g y, = 0 at / = 0 , 

f7  -4 2 we  , gez 	0 as q 
	(3.22) 

Expansion in Series 

Equations (3.20) and (3.21), subject to the boundary 

conditions of (3.22) may be solved by expansions in series 

of powers of 	. It is assumed that f g and we  are 

35. 
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analytic functions of 	, so that 

	

tz.c) 	cap 	 Ao 

f = 	fn 11 
	

g = 	 gnIc = 	Knel  

	

n=1 	n=1 	n=0 

where fn , gn and Kn are functions of q and 

(the latter being obtained from expansions of r from 

r = (1-44) /2) 	The boundary conditions of (3.22) 

then become 

afn 	agn 
fn 	0r(. 	gn 	a J:.) . 0 at 

(3.23) 
afn 	ag 

r7 	
2Knu,~ , 

al? 
0 as it --> 00 for n > 1 . 

Substituting the above expansions in (3.20) and 

(3.21) and equating coefficients of like powers of 1 

the terms independent of 	yield 

2. a ho a3f1 	
f 	o 

6 	a rt 	aq 2 — 
(3.24) 

a3 0 	 + f 	2 
5 2"I 

2" re 	aq 
= 0 	 (3.25) 

Before continuing, a more detailed investigation of the 



e = (3.28) 

and 
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expansion of the core velocity is required. 

The core velocity is a function of r , 	and s 

and it can be expanded as a power series in 1 as follows: 

we = K0(71") 	
[K1001+V(11(Y4)]I+[K20M+K21 0417 +K22(nri2112-1 

*00000 	 (3.26)  

The coefficients of 	are of the type shown in view 

of the form of the expansion for r . Also, 'Yr) is  
non zero for all 0 <r< 2n , since it was assumed earlier 

that the injected flow is non zero at the wall edge. 

Returning to equation (3.24), it is seen that since, 

at 1 = 0 , the flow must approximate to the Blassius 

flow, and since f1  must tend to 2Ko(11 as )7 	06  , 

f i  = Ko(fl f10(7) , 	 (3.27) 

+ 	— 0 10 ► 10 (3.29) 

where f 10 (0) = (0) = ft0 	, 	1  (0) = 0ft0 ( (q) —42 as 17 	c%f) 
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and a prime is now used to denote differentiation of a 

function of one variable with respect to that variable. 

Using (3.28), equation (3.25) can be solved in 

terms of f10 as 

g1  (q) = Af10  + BrI 	C 
	

(3.30) 

The boundary conditions of (3.23) are such that 

A = B = C = 0 and so 

g l (q) 	0 . 	 (3.31) 

Equating the coefficients of the 	terms from 

(3.20) and (3.21) and using the results of (3.31) and 

(3.28), 

a3f2 	a2f, 
Ko 43 	

f 10a 7,2 

af0  
f 10 a 	0 2+ 2f" 	= -41(11(0 	4cK0  ( 	11' o  r   

+ f ) 

(3.32) 

a
3
g2 	a2cr b2 	ag2 f 	fl 	. 0 	(3.33) 2 10 2 10  a 	0 rt 

The solution of (3.33) with the boundary conditions 

of (3.23) is g, = 0 (see Appendix to this chapter). 



'g4 3ft ---ioa/ 

a2g3  
2 

07 

- 

= Re2  poho2  

2af2 0g3 + 
a? a? 

afi)]
D / 

2afi  af, 
8K K 	--= 0 I 	a 	al 

(8-2a0) 

(3.37) 

8 2g3  
2 

a/ 
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Equating coefficients of like powers of 	up to 4 

using g1  = g2  = 0 and 3.28, 

r a3f3 	
flO al 

a2f
3 	

1 of 

Ko ar 	
, 

2f'0 a 	3f11
10  f 3  = -4(K1

2+2KoK2) 

2f 2 
a
2
fo  (af t) 2  

a7 

a3f, 
+ 4-e [?art3-  

a 2f 2
1 

+ (3.34) 

      

 

A3p- 	82, 
- -3 	f 	b3 	2f1  

	

10 
a/

2 	10 aq 

 

I- 
2 

(aft 
2- 

4K0- a ) 

(3.35) 

Ko Poho2  

  

     

     

   

Ko 
a 3f 4 	D`f 4 	of 
a 	

4 
fio ;717- 3f lo 	410 f 4 q 

-12(K3K0+K1K2) 

  

  

2 
a f3al-f2 	3af 2 8f 3 	a3f 

6? 
-2f2 a 	

3f3 	 a + 41? 33  
ay q  

a2f3  
aid 

(3.36) 
7  

6)g4 	 6264 Ko f10a?2 

(8f11 2/ -4e gi4K 2  

a,  b3 + 2 --a 	ef1(1-ao) 
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From the form of the expansion of we  from (3.26), 

solutions for fn of the form fx  Fn are required, 

where 

= 
8f- 
77 ,  -4 2K_190  (v') 

aFn
22[ Kn....! 	2(yr) 	

0 0 0 

	 n-1, 

for n > 2 . If the e and Fn can be found, the boundary 

layer flow will match exactly on to the core flow. 

Unfortunately, the Fn cannot be determined from 

an analysis of this type due to the fact that inconsistencies 

arise in the equations for large 11 . This can be 

illustrated by considering equation (3.32). For large 

(2 /7 ÷Bi )2Ki1   - 4(1.(10+ rOcii)= -4(1(10+ K11)  ' 

where B1 is the constant of integration obtained by 

integrating the boundary condition flo  = 2 . This 

equation is satisfied onlyif K11  is negligible. The 

term (2? 1-B1 )2K11  arises from ufy- in equation (3.5) 

and it can be seen that equation (3.32) could be made 
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consistent if the axial momentum equation in the core 

was taken to be 

uaw w aw 1  A2 
n as 	'R.): as ° 

The complications that arise by considering the more 

exact equations in the core are, however, manifold and 

deemed impractical because of the nature of a boundary 

layer analysis. 

Since the gn  are functions of the fn  , it follows 

that any inconsistency in the determination of the fn  

will effect the gn  . It will be seen later that the 

Fn need not be determined if only the behaviour of the 

core flow is required. In the calculation of the skin 

friction and the limiting streamlines, however, there is 

a contribution from the Fn , but it will be assumed 

negligible. The errors involved in this assumption will 

vary depending on the form of the velocity distribution 

in the core. It is probable that an accurate estimation 

of the error will be obtained only by comparing the 

theoretical results with possible future experiments. 

From the form of the equations (3.32) - (3.37), 

the functions f1 	c and tic)  , and the boundary 

conditions on fHn 	2 , 3  it is clear that fH tH  , 4  fH 
' g3 
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and g4  can be expressed as linear combinations of 

functions of 0 with coefficients in functions of ',4" 

They are:- 

2 = K10 20 f 	+ of 21 ' 

3 

f3  4 

= (K K f +K2  f +E.K. f +c2f )/K 20 o 30 10 31 	10 32 	33 )/K0 

K 	K f +K K f +(K 00/K )f +(cK 0/K0 
 )f 

30 o 40 10 20 41 	1 	0 42 	1 	43 

+ ( e2K10/Ko )f44
+eK20f  45+ ( e3/Ko

)f 467 °' 

g3  = Re
2 po h2 o o g30 

9  2 
g4 = Re  Poho K10g40+cg41+6K0g421-aocg43+(Ka/e)g44+KoaoEg45 

If the differential operators Dn  and Ln  are 

defined as 

(33. 

, 

1, 

d3 	d2 Ln = dl3 
+ f10 dr/2 

d2 

Dn = 
d3 	

110 (1' 	dq2  

(11-1 )110 17,1 11±1 0 

(n-1 )f10  
(3.39) 

the fil(7) and gii(q) satisfy the following ordinary 
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differential equations which can be solved numerically: 

L2 f20 = -4 

(3.40) 
L2  f 21 = 4f10  (1- of 10) 

L3 f30 = -8 

L3 f31 = -4 + f20  ---2f f2020 	' 

(3.41) 
L3 f32 = -2f 20f'21 - 2f21f30 + 2f20f21 + 4(t?f201-f20)  

L3  f33  = -2f2If 1  + f!).1")  + 4Crif21 + 11) 

L4  f40  = "12 y 

L4. f41 = 12  - 2f2010 - 3f30D20 + 3f20f30 

L4 f42 = -2f20f31 - 3f31f20 + 3f  20f  31 2  

L4 f43 = -2f20fS2 - 3f32D20 + 3f2092 - 2f21f3t1 	(3.42) 

-3f3111 + 3f21f31 + 4(  q. 1'1+11)  

'-'3f 3 211'121 	3'q1f 3 2 	4(rl ft32 +f32) 
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1,4  f45 = -2f 2110  --3f 3oft$21  + 3f21 f30  + 4( if/ I0+90), 

14 1'46 = -21'2113 w  3f3311 	3'1'2193 + 4(1? 1'33+f1313 

3.42) 

D 	- 4 - f 2 
3 '.30 	10 (3.43) 

D4 g40 = 8 	2f' of 20  f 	206  0 - 2f 011  + 2f 2083 0 ' 

D4 841 = -2110f 21 	2f211021 830 8°30 2f10q0 

D4  g42  = 4 g(4-fl o2) , 

D4  g43  = -210  

D4 g44 -28.30(f10-q f l0)  

D4 g45 -2gi0f10 

The boundary conditions cnfij 	ij and g. . are, from 

(3.19), 

(3.44) 
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. j(0) gl  

f..10 (0) 

= 

= 

g!.3.3(0) 

f!.(0) 

= 

= 

0 	, 

0 

g!.(co) 

f! . (co) 

(ct.1) fio 

= 

= 

= 

	

0 	, 

0 

	

2 	, 

= 

j 	> 

i = 

j ? 

i = 

3,4 
0 

1,2,3,4 

1 

1,2,3,4. 

(3.45) 

Determination of the Kn  

Since we is assumed to be an analytic function of 

1 1  it is possible to consider we in the forms 

acs 

we = 	Kn(?'') 
	

(3.46) 

n=0 

we = Y/)  (3.47) 

where the Kn  are determined from the Kn  by expanding 
1/2 

From the equations of (3.8) determining the pressure 

in the core, it is essential, in order that they be 

compatible, that 

r r (1-46q1) as a power series in 
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a 
ay,  awg)as  + 213 

awc
2  

3s = 0 (3.48) 

a  ( awg 
8r as + 2a 

awc
2  

as 0 (3.49) 

= 0 . 	 (3.50) 

Equations (3.48) and (3.49) integrate readily yielding 

2 awc A(s,)  
as ^ 

 h
2 

and 
awe 

as 

and so 
aw 2 

as 	h2 
	 (3.51) 

Equation (3.50) reduces to 

2 	2 
ah 'w0 	ah vwc = n  
ay" ar 	ar at' 9 

which means that the Jacobian of h and wc
2  with respect 

to r and r is identically zero. There is thus a 
2 functional relationship between h and wc and since 
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we is also a function of s 

we = w0(h,$) 
	

(3.52) 

Inserting the value of we  from (3.47) in (3.51) 

and assuming that A is an analytic function of 

the K .  can be derived from 

Ele+Ie1 	2 +le 2  
0 	+- 0. ][KH1 	2 +21.e +3K3 / 2 + . ] =  

Al 	A2  I A I2 
—2-  + -7- 4.  h h 

(3.53) 

where the An  are constants and, from (3.52), Ko must 

be a function of h alone. 

Equating coefficients of like powers of 	, it is 

seen that the Kn take the forms 

= le 
A1 

-777-7 K2th 

Ie = 
2 1 

KH I 1 

i j 2Ie o 

31e le 1 2 

  

3 
A3 

[ h2  
I 

3K 

(3.54) 

   

4 
2 

K' 3 	2 - 2Ie I  --7  ,etc, 
4K2  

   

   



27-1 a 

0 
(wc-w)r dr df, (3.56) 

48. 

TheKi .o  can be determined in terms of the An directly 

from these relations by expanding h as a power series 

in 	. Thus 

Koo 	o = KH(ho  ) 

= lo 	
A1 

	o) K h2 = le(h 

oo o 
(3.55) 

and in general Kio = K (h=ho) 

To determine the K completely, the AnIs have 

to be evaluated. This is achieved by considering the 

fact that the flux through the pipe must. be  constant. 

Thus 

r  2TE a 

wc(s=0)r dr d)4' 

Jo 	0 

2Tu a 

0 
we r dr dr 

where w represents the axial velocity in the boundary 

layer which matches on exactly to the axial core velocity 

we , Substituting for we from (3.46) and (3.47); 
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substituting for w from (3.19) and transforming the 

last integral from r to 	9 

jr 2n (1/4-EI 2n r a 
0 =

0
Klit(r,t)Xr dY' a2 	26 x 

0 n=1 	0 

Ici(g,f)111  
n=0 

of 
2T ay d? 

   

n- 
From (3,26) Kia(1,)1 K • j nj n > I , and 

j=0 
so for large 

n-1 

n+1 = 
j=0 

2K.f7j+1  
11:1 (  

j+1 
+ Bn-1-1 (3.57) 

where Bn+1  is a function of )1.-- obtained up to n = 3 

by numerically integrating equations (3.24), (3.32), 

(3034) and (3.36). 

Since fn (? ) 
	0 at 	= 0 , the flux condition 

yields 



21 	n j+1 

j+I 
q 
j+1 

j+1 	+ Bn+  

	

jr211 	ar 2TE 

lc:n r dr d)i' = a2t-L' 	6  n+I 

	

n= 0 0 	n=0 0 

50. 

whereupon, equating like coefficients of 

21-c 

len!(r,rr dr cif 	-a2 	e Ian ay 	n > I . (3.58) 
0] 	0 	0 

This equation together with those of (3.54) are 

sufficient to determine the An and thus the axial core 

velocity. Since it was not necessary to approximate to 

the boundary layer velocity in determining (3.57), the 

development of the axial core velocity can be determined 

for any injected velocity profile which is a function of 

h and which does not in itself generate a large amount 

of vorticity. 
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APPENDIX 

To prove that g2(royl = 0 for any 41' and all q in [0,t)c.N) 

From equation (3.33), g9  satisfies the equation 

a
.
3
g2 

flo 	- flo 2A2- 	° art 
( A . 1 ) 

subject to the boundary conditions 

g2 
	6°2 = 0 at 	= 0 , 0g2  - 	--> > 0 as t - 	0. (A 2) 

g2  is proved identically zero by supposing that for 

any 	, there exists an 7  in [0,00) such that 
ag2  

—0 
 Dg2 (',Y)  > 0  and obtaining a contradiction. If 0by? 

for some 7 in [0,00) then, in view of the boundary 

conditions, there will be at least one maximum point in 

'6  this range. If this point is qi  , 72(11 41 > 0 , 

og2 
(111'1')  = 0 and ä

3
g2 --m— ($ ,Y1 < 0 . It is assumed 2.  a? 	are 

that the injection velocity is nowhere negative and so 

fi0(71) > 0 . Therefore at q = ( 1 , the left hand side 
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a 	is zero throughout this q 

range and for all )1, 	Since g2  must be zero at 

1-1 . 0 , it follows that g2  must be identically zero. 

of (A,1) must be less than zero. This is a contradiction 
g2 

which a  is repeated if 	is assumed negative for some 

8g2 
ft in [0?(2) . Thus 
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CHAPTER 4 

The Numerical Solution 

Equations (3.29) and (3.39) - (3.44) together with 

the boundary conditions of (3.45) are entirely independent 

of external parameters such as X. or Re and can be 

calculated without reference to them. The coefficients 

of fib  and gib  are, however, dependent on these 

parameters and in particular, KilE  - K4 are dependent on 

)1C.- . These equations were solved numerically using 

Gill's process for the fourth order Runge-Kutta method, 

on the I.B.H. 7090 computer at Imperial College. As 

usual in computations of this type where succeeding 

functions depend on previously calculated functions, 

accuracy decreases owing to build up error. The first 

few functions were calculated to six decimal places, 

however, and it is reasonable to assume that the functions 

f43  , that is the functions more prone to build up error, 

are accurate at least to three places of decimals. The 

results, together with the program for solving a set of 

successively dependent, simultaneous differential equations 

can be found at the end of the thesis. 
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Comparing the behaviour of fii(q) for large q 

with that of e from (3.38), the functions Bn were 

found to be 

B1 = -1.7208 K oo 

B2  = 1.3008 K10  + 0.0717 E 

B,)  = [2.7561 K20  -- 4.6072 Ki2  0  + 3.0351 e Klo  - 

- 1.7196 62 ]/K00 
(4.1) 

B4 	[3.8732 K30Koo - 14.931 K10K20 + 14.655 K3,/K lu oo 

18.689.eK1
2  0/Koo Jr. 16 335 	o/K oo 

+ 5.569 e K20  - 7.185 3 	
]i-K oo • 

These functions were substituted into equation 

(3.58) together with the functions for the Knas given 

by (3.54) for the special case of constant injection 

velocity (i.e. Ko = 1) . The various integrals were 

evaluated numerically yielding values of Al , A2 , A3 
and A4 for various curvature ratios [see table (4.1)]. 

It is seen from table (4.1) that if the values for 
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Al  --A4 when X.,-= 0 are inserted in (3.54), 

= 3.442 , K = -9.099 , K3 = 141.9 and 11.  = -2784 . 

These values are effectively the same as those obtained 

by Goldstein and Atkinson for constant velocity injection 

into a straight pipe, any deviation being in the fourth 

significant figure. 

X Al ''1 ,̀ A3 A4 

0.0 3.442 -6.351 331.7 -9016 
0.05 3.435 -6.319 333.1 -9128 
0.1 3.414 -6.222 337.1 -9471 
0.2 3 550 -5.831 353,9 -10931 
0.4 2,992 -4.206 428.6 -18700 
0.6 2.417 -1.178 595.5 -44805 
0.8 1.573 4.702 1051 -206136 

TABLE (4.1). The variation of the An  with curvature 

ratio for the particular case of constant 

velocity injection. 

It is now possible to write down the velocity 

distribution in dimensional form in terms of known 

quantities. Thus, from equations (3.19) and the expansion 

of f , the axial velocity component in the boundary 

layer is 



I3 r3 + 
 _4__aG 

4+.,../  art 	 a 	 Re2p 2hc;ReI 	
oho  

W 
v - 

56. 

W 1 af l 	af 2 J af3  2 
+ -- 1 aq (4.2) 

  

     

     

. If g3  is replaced by Re2  poho2  G3  and g4 by 

Re2  pohoG4  and so on, the tangential velocity distribution 

in the boundary layer can be written as 

 

r 
a 
G3 

  

W s 
i.e. v = Rcosr 

a G4  
al (4.3) 

  

  

    

     

Similarly the radial component of velocity in the 

boundary layer becomes 

acW0 	 af 
U = ah 	1 (f1  +2f2  + • • .) -- l5n  

os 
af2 

+ + . 

a _ (EG,+EGA I  
41- • 

(4.4) 4s2( 1 
" 	E 

Ui de 2H1 
62 Trt; 	rz 

Application to the skin friction and the limiting streamlines.  

These two applications are considered together 

because the expressions for the skin friction can be 

applied directly to obtain the limiting streamlines at 

the wall of the pipe. 
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There are two components of the skin friction and 

they will be defined as 

T aw T.wy, ws 	8r )r.0 and  
kly1 
krjr=0 • (4.5) 

Transforming these using the relations of (3.17) and 

eliminating w and v using equations (3.19), 

-VW = o f (0  
ws 4ea12  II\1 

 

1  
(4.6) 

w 	g 	(0) 	(4.7) y,  

In order that these results may be compared with 

possible future experiments, the mean drag coefficient 

will be found as a function of distance down the pipe. 

If the mean drag coefficient is defined as 

4ea I2h0Re 	qg 

then 

Dv)  ,. 1 
-1 

2 	
2-17c 	Tws 

d .ds  r  
—Or_ f cr- 	0 	., 0 

	

f i 	

r2n 

4-2r1/2  
laRe 1 	I27c 

D(St) = .f.. J 0  

0 
(4.8) 

f
QT 

(0) 
d'edI e 
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The results of the previous section for constant 

velocity injection were inserted in this integral and 

the integration was carried out numerically for various 

(.....11  /2 values of 	= 	and for various curvature aRe 
ratios. The increase in resistance with curvature is 

Do  
exhibited by plotting 77 against If  where Ds  is ,s  

the drag coefficient for a straight pipe and D0 is 

that for a curved pipe [see Pig. (4.1)]. 

The equation for the limiting streamlines at the 

wall can be written as 

a VP_ lim v 
d s   w 

and since w and v are zero at the wall, 

Dv 
a Ay-__  lim ar tiw- 

ds 	rya Dw = Tws Dr 
(4.9) 

Transforming as before and using equations (4.6) and 

(4.7) 

 

(4.10) 

 

h fro (o) ' 
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D•a 
	 •01 	 •0 2 	.o 3  . 	•DZv' 	 •05- 

Fig (4.1). The increase in resistance due to curvature. 
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To obtain a first approximation to the streamlines, 

for constant velocity injection, fff  (o) and 
// 	

(o) 

will be written as 

f 17 (0) = 1.528 

gi/(0) = -2.172 Re2(3 0q) 
 

3  

Equation (4.10) then becomes 

= -1.64 Re2  Y.,cosY'43  , dT 

the solution of which can be written as 

Y- 1  2 tan 	exp f -0.41 Re2  X,  Of] 11/2  (4.11) 

where Neo is the initial value of /' at 	= 0 . 

Equation (4.10) was solved numerically, again for 

constant velocity injection, taking the first four terms 

in the expansion of f17  (o) and the first two terms in 

the expansion of g,7  (o) . The results were found to 

be dependent on XL, and Re2X, and the limiting stream-

lines for Re X 1/-, = 2000 and ) 	.05 are illustrated 

in Fig. (4.2). 
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.01p 

•03 

.02. 

.01 

-le 	 e 
	

0° 

Fig. (4.2). The limiting streamlines in the top half of 
1/2 the pipe for the particular case of Re }G= 2000 .and 

)?.. = .05 	(The limiting streamlines in the bottom half 

of the pipe are identical due to the symmetry about the 

y/ = 90°  , 	. -90°  line). 
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Conclusions.  

The object of this investigation was to find the 

effect of viscous forces in the inlet region of a curved 

pipe. The types of injection velocity were restricted 

to those that were nowhere zero at the wall, those that 

had no initial secondary flow and those that generated 

little secondary vorticity apart from that produced by 

the viscous forces. In this way, an attempt was made to 

isolate the effects of viscosity. 

It was shown that a necessary condition for there to 

be no generation of vorticity is that we  = we(r1 ,0) 

which is equivalent to we  = we(h,$) , It was noted, 

however, that secondary vorticity has to be generated to 

preserve continuity if we  varies with 0 . The analysis 

was then continued on the assumption that the secondary 

flow produced was sufficiently small so that the equations 

of (3.8) represented reasonably well the pressure distri-

bution in the core. This additional restriction on the 

injection velocity is now considered and it will be seen 

that the particular case of constant velocity injection, 

which was used to obtain the numerical results of this 

chapter, is a satisfactory example within certain 

limitations. 
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Since the flux across any cross section is constant 

and the boundary layer thickness is increasing, the core 

is accelerated and so there must be a variation in axial 

velocity with axial distance. This is, however, an 

effect of the growing boundary layer and the amount of 

vorticity generated by this means will increase from 

zero as the boundary layer thickness increases. It is 

therefore reasonable to assume that the equations of 

(3.8) become invalid because of this effect some way 

down the pipe, which may well be beyond the point 

where the boundary layer approximation breaks down. 

If it is nearer the entrance of the bend than this point, 

it merely restricts the validity of the theory to a 

smaller region at the entrance. 

In a similar way, since there is no initial . 

secondary flow, any other means of generating secondary 

vorticity will only effect the validity of the equations 

of (3.8) when a certain amount of secondary flow has been 

produced. Again this will occur a little way from the 

entrance depending on how quickly the secondary vorticity 

is generated. This may be kept to a minimum by letting 

the core be represented by the inviscid irrotational 

flow through a curved pipe. 
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If bt)
n ' 

LA)
b 

and LA)'s are zero, the following 

equations may be obtained from (3.10), (3.11) and 

(3.14). 

Dv1 	awl 
r1= = ° 

au 	aVI  

aZ u  art  = 0  

a 
au, 

rr w 	77d= 0 . Dr 	1' 1' 1 

(4.12) 

(4.13) 

(4.14) 

A solution of these equations which also satisfies 

the continuity equation of (3.16) is 

u1 = v1 = 0 

(4.15) 
At A 

w I = 	= 

where A is a constant. Thus, with an injection velocity 

given by (4.15), secondary vorticity is generated only 

by the growing boundary layer. This particular injection 

velocity is of practical interest since it can be obtained 

by having the dynamic pressure constant across the cross 
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section at the entrance to the bend. This may be the 

case if a curved pipe takes fluid from a reservoir at 

constant pressure. The proof is as follows: if the 

dynamic pressure is constant at the entrance to the pipe 

1 
1k  
1 ,N = const 	2 W S=V) 

1 = const 	2 W2 K2 (h) o 0 
(4.16) 

where Wo is the mean axial velocity and is constant. 

From the equations of motion in (r1 ,8,z) coordinates 

2 
aP 	wl 	Wo

2 K
o
2  
(h)  

61' P 	r1 	r1 
(4.17) 

Eliminating the pressure from (4.16) and (4.-17) yields 

the injection velocity 

Wn  

w1  (s=0)= 71:4 (4.18) 

If X. << 1 	h -1;1 and this injection velocity is 

a good approximation to constant velocity injection. 

If )4(..,  is of order one, the constant injection velocity 

case is still valid but in a smaller region near the 
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entrance to the bend. 

In the historical survey of Chapter one, it was 

seen that most research work on the inlet region considered 

injection velocities which were modified by the centri- 

fugal force. The past two chapters have considered 

injection velocities which were modified by viscous 

forces. In practical cases, it is often a combination 

of these factors which modifies the injection velocity. 

The consideration of this problem is, however, formidable, 

since the equations of (3.8) will be far more complicated 

and the Fn's from the boundary layer would probably 

have to be matched to the core velocity. 



PART II 

67. 

FL OW IN THE FULLY DEVELOPED REGION 
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CHA2TER 5 

Introduction 

In Chapter one, the fully developed region was defined 

as that region, sufficiently far from the entrance to the 

bend, where the flow is similar at every cross section. 

The equations of motion depicting flow in this region 

contain only two independent variables instead of three 

and, as a consequence, most theoretical investigations 

concentrated on this region. 

In practice, fully developed flow is obtained by 

passing fluid through a pipe which is coiled about a 

cylindrical former. When comparing theoretical results 

with experimental results, it is assumed that the torsion 

introduced in such a coil is neglAEible. For pipes with 

very small curvature ratio, such an assumption is 

justified. If, however, this curvature ratio is increased, 

the amount of torsion in the pipe is also increased. 

The results obtained in previous theories assumed 

that the curvature ratio was very much less than one and 

were not concerned with the effects of torsion. Results 

derived in this thesis are, however, extended to large 

values of the curvature ratio and a comparison with 
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possible future experiments is practical only if the 

effects of torsion are understood. To this end, a 

suitable orthogonal coordinate system including curvature 

and torsion will be derived and the corresponding equations 

of motion investigated. 

Effects of torsion  

If a point in a curved pipe with torsion is defined 

by (x,y,$) , where s is the distance measured along 

the axis of the pipe and x and y define a point in 

the cross section relative to a set of axes (1,m) at 

right angles to and capable of rotating about the axis of 

the pipe. If the unit vectors t , n b are the 

conventional unit vectors of differential geometry [see 

fig. 5.1], the 11441- 	can be written as 

r 	ro  + lx + 	, - (5.1) 

where 	1 = sin/ n + cos$ b 

(5.2) 
m = -cos/ n sin/ b 
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Fig. (5.1). The coordinate, system for investigating the 

effects of torsion. 

Using the Frenet formulae, 

do = (— 1  t + 	b) ds , 

1 db = 	T n ds , (5.3) 

dro  = t ds , 

where 	is the curvature and 1  is the torsion, equation 

(5.1) can be differentiated yielding 



+ [sin/ dx 

+ X ds sin/ 

+ 1-(x sin/ 

cosj dy + {- 

d - y 	COS4 

- y cosh) + x 

1 dr = [1 	—(x sin/ y cos/)] ds t 
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ti 
	cos/ + y sine) 

dsjn + [cos/ dx + sine dy 

u7  cos / + y ds  sin/1 de] b , 

(5.4) 

For orthogonality, the coefficients of dx.dy , 

dy,ds and dx.ds , obtained from (dr)2 must be zero. 

This condition is found to be satisfied if 

+ sin/ u7  cos/ - cos/ - sin/ = 0 , ds 

whereupon 

T ds ' 

or IC 
ds 
ti (5.5) 

In this case 

(dr)2  = {. + iJ(Y. 
 cos/ x sin/)] 2 ds2 + dx2 + dy2 
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If (x,y) is transformed to (r,X) using 

x = r cos). and y = r sinX 

(dr)
2  = [1 + A r sin(X-4)1 2  ds2 

	r2 	dr2 . (5.6)  

The scale factors for the new coordinate system thus 

become h1 	, 2  =1h =r and h
3 
= 1 + G  r sin(X-/) 

The equations of motion are the same as those given 

by (2.5) - (2.9) except that h , a function of r and 

, is replaced by h3  , a function of r , X and s 

It is immediately evident that if 1/T is non zero, the 

flow cannot become fully developed in the sense described 

earlier. 

Before proceeding to an approximate solution of 

these equations for a particular type of flow, it will 

be constructive to consider a pipe of radius tal coiled 

about a former of radius (R-a) so that the torsion 

introduced is kept to a minimum. This would be the case 

in an experiment designed to investigate flow in the fully 

developed region. In such a coil, the centre of the pipe 

forms a helix defined by the equations 

x = R cosg 	y = h sing 	and z = R9 taw( , 



h3  . 1 +  )‘I"  2  sin [X 
TE 11 + (f) 

(5.9) 
h2s t 
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where (x,y,z) now represents the cartesian coordinate 

system and where y is the helix angle. Since this 

angle is to take its minimum practical value, z must 

increase by 2a for each complete revolution about the 

former. Thus 

2a = 2TE R tang 

or 	y = tan-1 a = tan-I  — , 	(5.7) 

if ) is defined, as is usual, by X = a/R 

The curvature and torsion can then be written as 

I _ cos
2 
 _ 	1  

R r 	2J ' 
R I 1 + A 

(5.8) 

_ siny cosy  - ti 
TER { I 

If s and r are replaced by as' and ar' , 

then, since the torsion is constant, 
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If it is assumed that the torsional effects are very 

small, 

r 	X. 2 h, = 1 	' 	sin X 	s° 2  cos X 
1 + (—,)  E t + (kr) 

Thus, if they are to be neglected, it is necessary that 

)1C--  st << 1 . 	 (5.10) 

Physically, this restriction implies that two 

reference points on the coiled pipe yield effectively the 

same results so long as the distance between them is much 

less than 1/)J . This fact must be taken into account 

if the results derived later are compared with experiment. 

In addition, it should be noted that (5.10) is a 

necessary condition; a sufficient condition is derived 

only after consideration of the equations of motion. 

Returning to the equations of motion, it can be seen 

that for the case of constant torsion, they can be trans-

formed from the (r,X,$) coordinate system to the (r,y,,$) 

coordinate system using the transform 

(5.11) 
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It can then be seen that a solution exists such that 

the velocity distribution is a function of r and 

alone and the pressure takes the form p .-Gs + p' (r,/') , 

where G is a constant. In this case, the equations of 

motion become 

au v au 	w au v2 aw u 	' ar 	r ay -  TE ay/ = 
DPI 	V

I ar 	rhL 
 

a 1h /a 	al 
 -7 75," 	+ ay- 

D 	rii 2a 	
" ar TA77'rv) rqj - 	FAT' (5.12) 

	

av 	v ay 	w av 	Ow'r-  , uv 	1 221 

	

Usamo 

	at 

mem 
at 

= 

	

ar 	r at Th at 	pr 

ti 1  L ) 	))1 y, rh ay, 	--- 	ry h 
—ari l )(5.13) 

    

r 
Davrz auw  pvw aw v aw + — 

or 	r at  	
1 .121  + 

F. r 	—11 	 r 

(hw) - :17  4-)1 	-gay, 

(5.14) 

ar(r010 ay-(w) 
T

a 
  (rI 	0 (5.15) 
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where 	h = + E- sin y/. 

If a solution is obtained from these equations 

subject to the usual boundary conditions, it is probably 

valid some way from the entrance of the bend and fully 

developed flow can be said to exist in a curved pipe 

with constant torsion if it has a velocity distribution 

of the above form. 

Solution for flow at low Reynolds number in a i e of 

small curvature ratio. 

If a fluid is flowing through a curved pipe with 

constant torsion in the fully developed region as defined 

in the last section and if it is assumed that the curvature 

ratio of the pipe is sufficiently small, so that terms of 

order X can be rejected relative to terms of order one, 

the flow is represented by the equations 

au 	v au w au v2 

	

2 	Dp' 	2 av 

	

_ ctIer 	- ar  + v v u 	—r7 - 	, + 77, T ar r 
r 

,7) 

	

uav 	v av w av _ ow-+  uv = 	211 .1.  

	

ar 	r 	¶ a' rr 	pr aye v [V' 2v + 

(5.16) 

2 au 

a ) 

(5.17) 



77. 

aw 	v aw w Ow F auw fta = G 1  "I  u-- Or 	r ay T ay' 	T 

and 

/ 	aV 	1 a Irw -Fr-krui 	-67.kl  = 0 , 

(5.18) 

(5.19) 

where 

3
2 1 

Nicr...M. 0  + Ma.  
rOr 

1.1.0 
a2 

r arc- 

and 
sintr _cos y/ a = 	and 	p

G 	 CJ 

In deriving these equations, all curvature effects were 

rejected in the viscous terms and they were only retained 

elsewhere when directly coupled with the axial velocity 

w . The fact that 1/T is of the same order as 1/c 

was also used. 

If equations (5.16) 	(5.19) are made non-dimensional 

vy replacing v by 	by El 	by Wow , r a 	a 

by ar 	s by as and p' by ol) , where V/o is the 

mean axial velocity, 

au 	v au aRe wau v2 aRe2 	
40 2 sint.w = -Re2  22  usy + T ar r  Or 

+ 	u -,-0  - 2  - 	(5.20) 
r - 	r, r 



av u-a-r, v av _ aRe wav 21.7 ae 2 - 	,w = w 2 i r ay 	ay 	a cos 
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2 au v 	v— 	 (3.21) 2 ar 
Re-  Op 
r ay 

awv Dw aRe water 	aG 	aRe ap 	v72 u—_ 	
r 

_ 
Or r 	T ay,  Wo 

 ¶ 

	

ay 
	. , (5.22) 

and 2 (ru) 	Dv aRe A_ (rw) 
= 0  

	

— 	av  

	

Dr 	r , T ay' (5.23) 

Since a — << I , a ez x and a A 1/2  )C sin 2y 

A solution for low Reynolds number can now be obtained 

by considering an expansion solution of the form 

W = WO + ) w1 

V = v X. ... 

P = 	kPI -1- . .. 

0 0 0 

(5.24) 

   

Inserting (5.24) into (5.20) - (5.23) and equating 

coefficients of like powers of ) 

2wo + C = 0 
	

(5.25) 



and 

av, 

47(rui) + 7-' = 0 (5.29) 
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G a 

	

where C = !I 	and wo = wo(r) only, wo 

apl 	u1 	av1 2 2 sink`  

	

o Re pro= 	+ '1).1 	
(5.26) 

ar cos -y 	r 	r a 

	

w 	ap 	,
2 a  
Du 

pew 
2 cos 	

- 	ra 	
2 

	

v + 	 I 	27) 
y- 	y 	g, 

cos y 

awo 
u1 Dr W

1 
(5.28) 

The boundary conditions for these equations are 

w = 	= u1 = v1 =0 at r= 1 

This set of equations (5.25 	5.29) are almost 

identical to those obtained by Dean in his first analysis 

and the boundary conditions are the same. It is thus 

possible to write down the solution immediately in 

dimensional form. To a first approximation 

u288a (4 
	r2  2) 2(4 	r /a2)  sink' 

cos y 
(5.30) 
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r- 
a2) 

c 	4 23r/a2 7/.44)  cos7 
cosy 

(5.31) 

0 	 0 
9r4  _ 	42) 1  .,, Re-  )( r sink  f 19 	' 	r6 w = 2W0  (1 	

r 21r
---77 + -----4 - ci 

23,040.cos'y 	a' 	a 	a 

(5.32) 
2aW 

where Re ---2  

If the helix angle y is zero, these results reduce 

to those of flow in a curved pipe without torsion. The 

upper limit of 
	

is seen from (5.0) to be restricted 

by the condition ).C. << cos' y and so cos2y must be 

of order one. It can also be seen from (5.1) that 

is measured from the binormal; thus the velocity distri-

bution is determined. 

From equation (5.23), it can be seen that this 

expansion solution breaks down when Re = 0('/a) . In 

such a case and for higher Reynolds numbers, the problem 

becomes difficult to solve owing to the dependence on 

two non-dimensional parameters Re2 	and Re }C, 	and 

the fact that the equation of continuity contains u , 

v and w . For the remainder of part II, it will be 

assumed that torsional effects are negligible and the 

original definition of the fully developed flow region 

will be applied. 
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Equations of motion for the fully developed region, 

In the fully developed region it is assumed that 

the components of velocity are independent of s and 

that the motion is steady. The Navier-Stokes equations 

and the equation of continuity are 

Y. A L,2) = grad ( 	+ 	+ v curl 
	

(5.33) 

dive= 0 , 	 (5.34) 

where v is the Kinematic coefficient of viscosity, 

p is the density, p is the pressure and, in the 

(r,T,$) coordinate system 

= (u,v,w) 

div v = h 
I a 

-3
r
--- 	w (rhu) + 3 r, k1V /1 	I x  

L 
(5.35) 

60= curl v = 17117 r 
A 

r 	hs 

% r 	
% 0 

u 	ry 	hw 

(5.36) 
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and 
	r sin'e 	

(5.37) 

Since u v and w are independent of s 

ap as = const = - G say. The pressure then takes the form 

-Gs 	(r,T) 	(5.38) 

p,(r,y1 can be eliminated by considering the axial 

component of the curl of equation (5,33). 

i

curl (v ALO) .1  

{

. v curl (curl W) 	. (5.39) 

Prom equation (4.35), a stream function f can be 

introduced so that 

—1 of 	, u = 7/3. 	and 1 
v = 	

af 
 W 8/7  (5.40) 

If these are substituted into (5.39; and the axial 

component of (5.33), and if the equations are made non- 

dimensional by replacing r by ar 	w by Wow and 

putting f = v/ , the equations of motion can be written 

in the form 



a s ay5  —67( 	"b- Y- "ariji 
„.1 

g.)2 

a/ a/ D 
Dy Dr Dr 

a,„ D 
6Z ray- ay- K2w(r 

w 	-F CtTD11  - .1  -F o 
P 

V!' 

( 2 a + 	9 	(5.42) -F 
2 

e- 

L 

tbe_s_ 
k ,r Dr 

r_7 	2 ra/ 
arj 	W 	of 

ppA v-72,‹ 
Dri 1.1  
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a(h f 
21 

. 
ay- Dr 	D r DrJ 

i+  
a 

tbrjr a 
2 

	

war 	
= 	[V 2--.D] 	

0 
-Difj 
	

(5.41) 

and 

1PQV aw ,.,. 	.° 	- 	
it ay - „I 	RY.  + 	, (Jr  ( 	 , = a r Dr ay' Dr Dr) _ r ay- 	r _  

where 

h = I +k, r sin n 	an 	(5 °4,) 
9 	 w ay  
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2 	a 
2 	

, a 	a 
2 

= --7 	--7 ar 	r af- 

D = a 77  + 

2112 a3 

K = 

.12., a 
r2 ay/ 

(5.44) 

= Ga2 

and Wo is the mean axial velocity, 

Since, without any loss in generality, the pipe is 

taken to be of radius one, the boundary condition on 

equations (5.41) and (5.42) are 

w  = 	= 	= 
y ar 0 at r = 1 . 	(5.45) 

The flow is seen to depend only on the non-dimensional 

parameter K since the value of C can theoretically be 

found as a function of K by applying the constant 

condition. 

These equdtions represent a non linear sixth order 

system in two independent variables and a solution is 

required in a circular domain. 
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If X, is sufficiently small so that terms of order 

X can be neglected relative to terms of order one, 

these equations reduce to those derived by Dean in his 

second paper. The parameter K in his theory, however, 

is different from that used here, since he takes the 

axial velocity at the centre of the pipe as his 

representative velocity. prom here on, his parameter 

will be denoted by KD  and it is related to the Dean 

number of this theory, at least for low Dean number, by 

KD = 4K` 
	

(5.46) 

It should be noted that both these values differ 

from the Dean number chosen by most experimentalists. 

Since White was the first to use this parameter, it will 

be denoted by 1C ; it is related to K as follows: 

K = f2K 

Resistance Coefficient  

(5.47) 

   

If the resistance coefficient in a curved pipe is 

denoted by yc  , then according to the usual definition 
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a/  
.2 22 
, 	as 

19 
 ,) 
1' o 

1111 C 
Since 	G 	and G = --A— as 

2C 
Yo = Re (5.48) 

Equations (5.41) and (5.42) are seen to depend on 

the parameters 	C and )C and it is clear to see 

that C is a function of K by considering the flux 

relation 

2m, a 

na2Wo = 	rWo w(K,C,M) dr dr 
	

(5.49) 
0, 0 

Thus if the mean axial velocity is known for the 

flow in a curved pipe, and a relation for w is obtained, 

the resistance coefficient can be found as a function of 

K which is also known. 

In a straight pipe the resistance coefficient can 

be denoted by ys  , where 

= 16 
s he 

7— (5.50 
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The increase in resistance due to curvature is 

generally measured as the ratio i
s 

for the same 

Reynolds numbers. Thus 

Ys 
	c 

	 (5.51) 

The experimental values of 	against K1  for 

<< 	were collected by Goldstein and the results are 

shown graphically in Fig. (5.2) 



a•O 2 • 5 3,5- 

1 	L 	 
2-0 1.0 	1 • 5- 	tog 	„ 
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Ys 
04 

0.2 

0 

Fig. (5.2). The experimental observations of White and Adler for the 

increase in resistance due to curvature. The curve is the mean of the 

observed results which differ by no more than + 2% (Farugia, M. Unpublished).  
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Solution for small K 

The first approximation for low Dean number flow, 

namely that of investigating a small perturbation of 

order X. from the Poiseuille flow, has been considered 

earlier. The second paper produced by Dean extended this 

approximation by assuming series expansion solutions in 

powers of KB  . He inserted these expansions in the 

equdvalent of equations (5.41) and (5.42) for small 

curvature and obtained solutions by comparing coefficients 

of like powers of KB. An expression for the decrease 

in flux was then calculated to the fourth power of KD as 

2 KD 	KB)4  
= 1 - (37) (.03058) +66  (.01195) / 	(5.52) 

'F
c 
s 

where Pc and Fs represent the flux through a curved 

pipe and a straight pipe respectively. In both cases the 

flux was defined as the mean axial velocity multiplied 

by the cross sectional area. 

In this analysis, however, it was assumed that C 

was a constant equal to that for a straight pipe. Since 

the resistance coefficient must increase with K , it 

can be seen from (5.51) that C is a function of K 
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and should contribute terms when coefficients of like 

powers of K are equated. Also, the decrease in flux 

was obtained assuming that the central velocities in 

the curved and straight pipes were equal. This makes 

the result extremely difficult to compare with experiments, 

which generally measure the increase in resistance for 

equal flux. A modification of Dean's theory will now be 

considered which does not include these restrictions. 

If it is assumed that }C << 1 and w is replaced 

by C.w , equations (5.41) and (5.42) reduce to 

Y'9 
3w 

— ar  7p) 	/ Jw (r cos 4/ 	sin -6-1 	
A vj 

'3r 	'  

(5. 53) 

 

aw 1  72w r k ar 3)' 	av° ar (5.54) 

where 

2 	c2C4-
2
a
7 

J = C K p2an  (5.55) 

If an expansion solution 	J is now assumed and 

inserted in (5.53) and (5.54), comparison of coefficients 

of like powers of J will yield equations identical to 

those produced by Dean. The flux through a curved pipe 



1 
Fc 
Fs 
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can thus be found as a modification of Dean's result. 

2m I I  , 
Pc = 	WoC wr dr dY, 

0 j 

WoCm 
i*" Tajo r-- 	(16xj5-76) 

\4 
.03058) 	 (.01195) (16x576/ 

(5.56) 

If Ws and Cs are the mean axial velocity and the 

non-dimensional pressure gradient for a straight pipe, 

W C s
8 
 s  Fs 	- Ws  (5.57) 

To find the increase in resistance due to curvature, 

equation (5.56) can be solved for C in terms of K 

and this can be substituted into (5.51). To find the 

decrease in flux for equal pressure gradients (G = Gs) 

4 2 7 	
G2 a7 	(.01195) G- a,=-1 (.03058) + (8)676 p2v  8x576.p v41/ 

(5.58) 

If C is assumed to have a solution of form 



C = Co + C1 
K2  + C2K4  + 

the C. can be obtained by inserting this solution in 

(5,56) and comparing coefficients of like powers of K 

In this way, 0 becomes 

2 2 	4 v  
C = 8 + .06116 (1.2) - .00364 04',) 

and this can be compared with experiment by replacing 

K2  by 1/2  K2  . The increase in resistance due to 

curvature is then 

/ K 	V3  
IL = 	+ ,1223 	

) 
(7i 4  `".1165 	(5.59) Is 

An upper bound of the region of validity of this 

formula can be obtained by noting that it has a maximum 

value when Kw  11'20.4 and that 	increases as Kw  

increases throughout the range of Kw  and so this 

formula is certainly not valid for Kw  > 20.4. - 

It has been assumed by Adler and Hawthorn that a 
Fc/F relationship exists between 	and 	s of the form 

IL — 
Is 

Fs 
Fc ° (5.60) 

92. 

• e • 3 
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xa This is not possible, however, since - 	is Ys 
defined assuming that the mean axial velocities in a 

straight and curved pipe are equal. Since the cross 

sectional areas of the straight and curved pipes are the 

same, this implies that Pc = Ps , implying from equation 

(5.60) that y0 = .s ° Since this is untrue, equation 

(5.60) is false. 
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CHAPTER 6 

Introduction to method of solution for large Dean Number flow  

The purpose of this chapter is to obtain a method 

for solving equations (5.41) and (5.42) for large values 

of the parameter K . The analysis of Adler, Barua and 

Mori and Nakayama will be considered in detail and the 

problems inherent in their approach to the problem will 

be discussed. 

The major simplifying feature for flow at large Dean 

number is that the viscous forces are of the same order 

as the inertia forces only in a thin layer next to the 

wall of the pipe. This idea first appeared in Adlerfs 

paper, no doubt prompted by Prandtl whose supervision was 

acknowledged in that paper. A further assumption that 

the motion outside this layer is confined to planes 

parallel to the plane of symmetry of the pipe is also 

made. 

The experimental evidence justifying these assumptions 

is very sparse. Barua outlines the experiments of Hawes 

(17), showing that there is approximately a linear rise 

in the axial velocity from the inner part of the wall to 

the outer,part, and of Squire (18), who shows that the 
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lines of equal dynamic pressure appear vertical over 

most of the cross section. It appears, however, that 

Barua overlooked the fact that Squire's experiments were 

conducted in the turbulent regime. Despite this, it 

does seem highly likely that for large Dean number flow, 

the lines of equal dynamic pressure in the laminar regime 

are similar to those in the turbulent regime; but it 

would be more satisfying to the theory if the experiments 

of Squire were repeated for laminar flow. 

In what follows, the thin layer next to the wall, 

where viscous forces are of the same order of magnitude 

as the inertia forces, will be called the boundary layer 

and the region where viscous forces can be neglected, 

that is the rest of the cross section, will be called 

the core. The surface separating these two regions 

will be called the interface. 

The velocity distribution  in the core  

Assuming that the lines of equal dynamic pressure 

are vertical and that viscous forces are negligible, the 

equations of motion and continuity for the fully developed 

flow region can be written in the (r1,8,z) coordinate 

system as follows: 
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Since the velocity distribution is assumed independent 

of Q , p must be of the form 

p = -GRG + p'(r,`e) , 	 (6.5) 

where G is a constant. 

A solution of these equations is 

= 0 , 	 (6.6) 
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GR / 	B\  w 	--- kr +  1 2Ap 1 rl  
(6.8) 

where A and B are constants. Although A and B 

could be functions of z , the complications introduced 

into the analysis by such a step makes this prohibitive. 

The velocities can be non-dimensionalised by 
vu l 	v/  

	

replacing u1 by a 9 v1 	a by 	wi  by wiWo  , ' 

RUv 	0 
A by -7- and B by BR-  , where U is a constant 

and Wo is the mean axial velocity. Then 

n2 2 
p 	-GRQ -- 

2a h 
p  6GRa 7) h2+2B.logRh B2 .1  

2h2 
, 	(6.12) 

where 	h = 1 + 	sin y/ a 	R 

Introducing a stream function in the (r,y,$) 

coordinate system and replacing r by ar , the 
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corresponding non-dimensional velocities can be written 

as 

1 2Z
= 	

1 2Z 
V - rh 	h ar (6.13) 

= Ur cosy-, 1 	B w 5717 h ,) (6.14) 

G
2 

where C = v  and h = 1 -1-)tr sinr 

The non-dimensional pressure P defined by P = 
PW 

becomes 

   

} 
B2  

2h- 

 

P -2C sU2 	o a 1
2 

- Re a - h2Re2 ' 
4. 

-(2  U) hG  2B logRh (6.15) 

     

Equations (6.13) and (6.14) will be taken to represent 

the velocity distribution in the core. It can be seen 

that for any given curvature ratio, the velocity 

distribution can be found only when B C and U are 

known. Ideally, these three constants should be determined 

from a consideration of the equations of motion in the 

boundary layer. 
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Equations of motion in the boundary layer 

In earlier papers, there are discrepancies as to the 

correct form of the boundary layer equations. Barua 

rejected the axial pressure gradient term after an order 

of magnitude analysis, whereas Mori and Nakayama retained 

it. Since many of the approximations made by Barua depend 

on this order of magnitude analysis, equations valid in 

the boundary layer will be deduced formally and the 

effects of rejecting this term will be considered. 

In the last chapter, equations representing the 

flow were derived and it was seen that any solution of 

these is a function of the non-dimensional parameter K 

In a conventional boundary layer analysis, the boundary 
f)  

layer thickness is assumed to be of order Re /2  . It 

will, however, be assumed in this analysis, that the 
-1/2 

From the definition of / (i.e. f = 4) and K 
1 2  

it is clear that / and therefore U are of order K 

To obtain the orders of magnitude of w and C , the 

relations obtained from the constancy of axial momentum 

and mass flux will be considered. 

Integrating the non-dimensional axial momentum 

equation (5.42) across the cross section of the pipe 

boundary layer thickness is of order K 
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Using the boundary conditions of (5.45) and integrating 

by parts, 

ia1 r dr di". 	(6.16; a y,  
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_y dr dy ' = C 

40 
a h 

tan - ar - 
29 

2771 
r dr 0 4_ 

0 

For constant mass flux 
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r w dr dr 

Considering the non dimensional form of this equation 



0 1 . 

11 27Ef 
m= 	rw dr (1)1" . 

0 	0 
(6.18) 

From equation (6.18), w is seen to be of order 
aw 	/2 

one. In the boundary layer, 	is of order K 	and 

so it follows from equation (6.17) that C is of order 
1/2 

If equations (5.41) and (5.42) are transformed using 

r = 1 - tzK
-1/2  

/ = /1 1
/2 
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U = Ul  K 
1 / 2 

C 	C1 K 
1/2 

and only the coefficients of the dominant powers of K 

are equated, 
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where 	ho = 1 + }c sin Y"  (6.22) 
1 	0 

and f30 ho r 

The essential boundary conditions on these equations 

are 

a/1  a/1  
w = 	— 0 at q = 0 	 (6.23) r Dr  

It is also required that w and /1  and as many 

derivatives with respect to ' and q as is practical 
are continuous across the interface. If, from the relations 

for the velocity distribution in the core, 

)14 = U1r cos' and we = —1-- ( hT h) ' 1 

/c 
	W = W 
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, etc. 

It is seen from these relations that, for asymptotically 

large K , 
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If it is assumed that at least 

are zero at the interface, equation 
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integrated readily with respect to q yielding 

3 , 
Vi  0

2
/1 	 a p1 — pa 	+ -17,h2cos (w 	= 0 	(6.27: 

5 	2 o 	• 	-w2) 	ho 
a?' 	 a )  

where wc1 is the velocity in the core as given by 

equation (6.14) when r = 1 

Equations (6.21) and (6.27) are identical, save 

for a different notation, to those deduced by Barua after 

a conventional boundary layer approximation and an order 

of magnitude analysis. The axial pressure gradient term 

is not evident in the asymptotic form of the equations, 

it being of order 
-1/2 compared with those terms 

retained in equation (6.21). The effect of retaining 

this term by Mori and Nakayama is not critical but 

superfluous and in fact rejection of this term would have 

made their analysis simpler. The fact that equation 
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(6.20) is directly integrable is expected since this is 

recognition that the pressure does not vary appreciably 

across the boundary layer, 

A complete solution of equations (6.21) and (6.27) 

subject to the boundary conditions of (6.23), (6.24) and 

(6.26) is extremely improbable and approximate methods 

have to be applied. Adler, Barua and Mori and Nakayama 

employed the 2olhausen approximate method (8), but because 

of the widely different techniques of application, it 

will be constructive to pause in the development of yet 

another Polhausen approximation and consider the differences 

and assumptions, together with their consequences, of 

these three theories. 

Analysis  of the theories of Adler,__Barua and.Mori and 

Nakayama 

Since the equations (6.21) and (6.27) are effectively 

the same as those obtained by Barua, the theory of Barua 

and its differences with the theory of Mori and Nakayama 

will be considered first and then the theory of Adler, 

though first to be published, will be considered last. 

Integrating the boundary layer equations across the 

boundary layer with respect to the non-dimensional radial 
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component 	, Barua inserts profiles of the form 

v = vo(( -2 q 2  + 3) , 

w = wo( 2 q el 2 ) 

a-r where wo  is the axial velocity in the core, q — 

and 8 is the boundary layer thickness. The boundary 

conditions satisfied are 

v = w = 0 at r = a , 

av 	a w 
w=lAro 17=- Or =-  ar =0 at r = a-5 

The two momentum integrals then reduce to two first 

order non linear differential equations in 5(10 and 

vo() 

Mori and Nakayama likewise integrated the boundary 

layer equations across the boundary layer and inserted 

the profiles 

 

1 1
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 2 
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v = -Dsin 
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where w16 is the axial velocity in the core at the 

	

interface, / = 1 	r/a and 8 is again the boundary 

layer thickness; v and w satisfy the boundary 

conditions 

V = W = 0 

v = 0 	w 	w 15 , al — 	at 1= 6 . Ow I 

The constants I) and C can best be seen by their 

connection with the velocity distribution in the core, 

namely: 

u = D s 

v = D cos 'I" 

	

w = A + 	sin D a 

which is the same as the core velocity distribution 

represented in the presant analysis by (6.13) and (6.14) 

for the limiting case when IC, tends to zero. Barua's 
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analysis in the core is essentially that deduced in the 

present analysis. 

Inserting these profiles, the momentum integrals 

reduce to two ordinary equations with '? as parameter. 

The reason for this is that the profiles are specified 

as to their variance with yr as well as with ‘f . Also, 

the variation of 6 with Y.' is neglected in the derivation 

of these equations although it is considered later. In 

contrast, Barua does not specify the variance of the 

tangential velocity v with K , though he does so with 

the axial velocity w ; the variation of 6 with 	is 

also taken into account. 

Mori and Nakayama combine the average value of the 

axial momentum equation in the form E + F cos Y." 

with the relation obtained between the axial pressure 

gradient and the velocity gradient at the wall to form 

an expression between D and 6 , where 5in  is the 

mean value of 5 through out the interval (-m/2, 72) 

the relation used is the limiting form as X, -40 of 

equation (6.17). Another relation between D and 5m 

is obtained from the tangential momentum equation by 

equating only the constant terms and assuming that 

variations in 6 with Y' , neglected in the past, 

account for the variable terms; averaging this last 
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equation would have led to discrepancies when compared 

with experiment. 

Expanding D and 6111 as a power series in K
1/2 

of the form 

D = D K1/2 + D2 + 
w 

6m = 8ml Kw 
/2  + 8m2 K-1 + 

first and second approximations were found to the 

resistance coefficient by comparing coefficients of like 

powers of Kw together with the constant flux condition. 

Good agreement with the experimental results of Ito (19) 

was obtained for values of KW > 250 , the increase in 

resistance due to curvature being calculated to a second 

approximation as 

IC = 
Is 

1  0.108 KW
/2 

 (6.28) 
-1/ 

1 - 3.253 K /
ZT 

Barua derives two first order differential equations 

in vo and 6 without assuming small curvature ratio, 

but in the determiliPtion of the relevant constants which 

arise from the core flow analysis, an assumption that vo  

has a stationary point at Y/  = 00  is made and the variation 
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in the boundary layer thickness 6 is assumed very small. 

The advantage gained by assuming that v = 0 at the 

interface is readily seen sinco the equation of continuity 

is of such a form that substitution in the axial momentum 

equation determines the y/ variation in vo  

Assuming that 6 = 6(n/2) throughout the range 

( / 2, -n/2) and that )1r, << 1 , Barua obtains an expression 
for the increase in resistance due to curvature in the 

form 

Yl

c  
= .09185 Kw/2 + 0.5093 ± 

Is 
(6.29) 

which again agrees well with the experimental observations 

for K > 250 . The variation of vo and 6 were then 

calculated numerically and the most promin(mt feature was 

found to be that for small curvature ratio, the transverse 

velocity reverses its direction of flow at about ) . -63°  

This appears to indicate a condition of separation, 

together with a break down in the boundary layer approxi-

mation. Thus the motion c-imot be specified from `ii'= -63°  

to y/. J'/2 	Evidence of this separation was said by 

Barua to be appa7:ent.  in Squire?s experiments, but, as 

was pointed out earlier, these applied to the turbulent 

regime. 
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The assumption that a stdionary value of vo  exists 

at VI  = 00  is probably good for small curvature ratio, 

but may deteriorate as the curvature ratio is increased. 

A criticism of the theory is that the tangential momentum 

equation is only satisfied at one point (i.e. at y,  = d). 
Although Mori and Na7.(ayama maintain that,,among others, 

Barua did not consider a momentum balance analysis and 

that discontinuities at the interface led to the 

unreasonable result of a finite tangential velocity at 

y/. -72 , it should be stated here that Barua did not 
have a finite tangential velocity at y/. -7/2  and even 
if this were the case, this would have been as a result 

of the break down in the boundary layer approximation 

after separation. The discontinuities at the interface 

are consistent with the order of magnitude analysis used 

by Barua and if a momentum analysis is applied to his 

results, it is satisfied to an error of +2% ; a value 

well within the bowada:2y layer approximations. 

The review of Adlers paper is considered last since 

much of his work was defitel7 im?roved by the methods 

of Barua and Mori and Nakayama. There are, however, 

certain fundamental differences to those of the previous 

two which deserve mention. 



Adler inserted velocity profiles into the momentum 

integrals to obtain two first order non linear differential 

equations in 6 , the boundary layer thickness and D 

a variable introduced in the tangential velocity profile 

The solution of these equations was sought as a power 

series in '? about the point Y. 	. As in succeeding 

theories, the equations were dependent on three constants. 

Adler gave numerical values obtained from experiments for 

two of these constants and successive approximations to 

6 and D were obtained by considering solutions in the 

form 

5 	62 iTC 	xiik 2 	8 
	/ / = 	+ 	2-- i) 	 2--y) • + 	. 

J̀o 

D = (1Y2-1) + — 3  C/2  Y1 3  a D5 (7c/2---n5 
1 

+ 000 

It was found that for values of `// in the range 

(11/2, 	/6) , 5 was sufficiently well represented by 

four terms of the series. The series for D , however, 

was more erratic up to four terms in the series though 

it did converge in the region (92,0) . Adding 

successive terms made the value of D alternately positive 

and negative at y/ 	-Ty2 , which, in the light of Barua's 
theory predicting back flow in this variable, is not 
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really surprising. It is, if anything, justification 

that there is a breakdown in the equations representing 

this flow after a certain value of 'f ; too much should 

not, however, be read into this since only four terms 

were considered. 

Summary of Problem 

The problem is that of solving the two differential 

equations 

 

aw aw 	a/1 	a`w 
-- a 	Pow 	- 	a ho 	= rt 

(6.30) 

 

a3/ 
2cos1` • (w -w2) 	ho  -- 1  = 0 9  (6.31) cl 	 ar?3 

for /1  and w , subject to the boundary conditions 

a41  
a1 

6.32) 
W = = 0 at = 0 

/I = we at r = 

and as many as is practical of the following: 
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a 2/I 	a3/1  
	 = —3  
ag 

a ẁ 
000000 = 

.08 	= 0 00 

 

(6.32) cont e_ 

Ow 0 , 
`at ? = 5 , 

     

1 

where 6 = 5(Y) represents the unknown boundary layer 

thickness and /c and we are representative of the 

velocity distribution in the core given by 

c = U1  r cos ̀ e 

0 4 	/ 
we  = 	(h + H  2)0, 

(6.33) 

(6.34) 

h= 	+}6r sii 

Two of the three constants in (6.33) and (6.34) 

can theoretically be found from the constant axial mass 

and momentum flux conditions of (6.17) and (6.18), which 

can be written as 

71 = 2 dr d 	, 	(6.33) 
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w ( an .a_A 
h2 04' a' 

bh r d 

/ 2 

aw) )1, , 
r=i 

(6.36) 

since the flow is symmetrical about the y/ = n/2 , /1 = --"/2 

line. 

This problem is not well posed since there are six 

unknowns namely: /01 , w(i') 	5(11 , Ci  , 3 and U1  

and only four equations, namely; (6.30), (6.31), (6.35) 

and (6.36). It is possible to make the problem well 

posed, however, if either an additional physical condition 

is imposed or an experimental value is given to one of 

the constants and if the three unknown variables are 

written in terms of two unknown variables. The differences 

in the theories described in the last section are due to 

various ways of making the problem well posed. 

Barua expressed the velocity distribution in terms 

of 8(1') and vo(fl and assumed that the tangential 

velocity had a stationary point at V/  = 0° ; this 

reduced the unknown variables from three to two and 
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determined one of the constants. The other two constants 

were derived by satisfying the constant axial mass flux 

condition and by satisfying the tangential momentum 

equation specifically at the point V/  = 00  . It was 

found necessary to assume that 5 was approximately 

constant to evaluate these constants and this restricted 

the validity of his theory to small curvature ratios. 

Had Barua tried to find one of the constants using the 

constant axial momentum flux condition, thus enabling 

him to satisfy both momentum equations up to the point 

of separation, the analysis and computation would have 

been greatly complicated. The reason for this is that 

the equivalent of equations (6.35) and (6.36) would have 

to be solved and the complete solution is not possible 

if the flow separates since the velocity distribution in 

the boundary layer is not known about a point of 

separation. 

Mori and Nakayama expressed the velocity distribution 

in terms of 500 and reduced the number of unknowns 

to four of which only one, 5(TO , was variable. They 

were thus able to find values for these in the way 

described in the last section. This method produced 

results which were in good agreement with the experimental 

observations for the increase in resistance due to curvature, 
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but it gave no real indication as to the behaviour of the 

skin friction and the possibility of separation. 

As a result of these investigations, the present 

analysis will continue in two stages. Firstly, a theory 

will be devised to determine the relevant physical 

constants which can be compared with experiment. The 

velocity distribution will be expressed in terms of two 

unknowns, one of which will be the boundary layer 

thickness 5 and an additional physical restriction 

will be imposed. Secondly, a theory will be presented 

which makes use of experimental results and those 

obtained in the first part to determine the behaviour of 

the skin friction and to investigate the possibility of 

separation. 
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CHAPTER 7 

The momentum integral 

It was seen in the last chapter that an approximate 

solution to the problem is possible if the velocity 

distribution is expressed in terms of the boundary layer 

thickness and another variable and if an extra physical 

restraint is imposed. It was also seen that complications 

arise in determining the other constants if the flow 

separates. As a consequence, any theory devised to 

obtain values for the constants introduced from the 

core velocity profile, must introduce simplifying 

assumptions. 

The dominant simplifying feature concerns the 

tangential momentum equation (6.31). Apart from Adler's 

theory, previous theories satisfied the tangential momentums 

integral at one point only. In the theory that follows, 

the contribution made by this equation will be restricted 

to that of it being satisfied at the wall of the pipe 

only. Thus 
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Imposing this condition on the flow instead of 

evaluating the tangential momentum integral is perhaps 

extreme, but it is no more extreme than evaluating the 

momentum integral and satisfying it at one point as in 

the theory of Barua: it has the advantage that 	can 

be specified as a function of 	at all points on the 

wall and will avoid the complications of separation. 

Integrating equation (6.30) across the boundary 

layer yields 

r 5  f 	 L_1 °41 caw 	°J41 aw 	a61 	 aw(o) 
O 

_ -h , or rii a  a0 Dr( 	 n 
t. 	o art 	' 

(5) aw so long as -6-7i 	is considered zero. 

Transforming equations (7.1) and (7.2) using 

(7.2) 

8(Y)x 	 (7.3) 

and denoting partial differenti.ation with respect to x 

by primes, 

von  (0) = 	1// 2 	83  w2  
r-1 	ho 	c1 (7.4) 
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X I
2 a8 	II 41  

i.e. 

aw_ dx . (7.5) 

The velocity profiles 

Following a conventional Polhausen approximate 

method of solution, the simplest boundary conditions tba 

the velocity profiles must satisfy, that are consistent 

with the derivation of equations (7A-) and (7.5) are: 

a/S1 	/S1  
w = 	

a 	
o at 	:= 0 , 

aw w = w 	, 	= 0 at x = 	(7.6) el 	ax 	2 

a$1 	a 2 / 	3/ SI  
/1 	/c1 	= 0 at x = 1 9 

ax 	ax 
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where w 	and /cl represent the velocity distribution 

in the core when r is put equal to one. Thus 

jSC1 = U
1  cos '  

we  = 	 (U 	
B 

2)c i 	ho) 

(7.7) 

(7.8) 

These conditions are the necessary and sufficient 

conditions that the velocity, the gradient of velocity 

and the pressure are continuous at the interface within 

the errors of the approximation used. 

The velocity profiles chosen, consistent with (7.6) 

are 

= L/c1 	F(m)H(r]g(x) 

w = wcl f(x) , 

where f(x), g(x) and F(x) satisfy the conditions 

f(0) = 0 	 f(1) = 1 	, f t (1) = 0 

g(0) = gt(0) = 0, g(1) = 1 , g' (1) = e(1) = gilt (1) = 0 

and F(1) = Ft(1) = F"(1) = Flu(1) = 0 . 	(7.11) 
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These profiles are expressed in terms of two 

variables of which one is the boundary layer thickness 

and therefore comply with the necessary conditions for 

a solution. They differ in form from those considered 

in previous theories, in as much as the variable H(Y) 

has been introduced together with a multiplier F(x) ; 

these allow for any deviation from the standard form of 

velocity profile which in this case would be of the form 

Inserting these profiles in equations (7.4) and (7.5) 

/cien'(0) + H[F(0)gm(0)+Ff(0)g”(0)] = 	1/2h053w /cos'e, (7.12) 

ho1'1  

8
(0) 	a/ (I-2) 	01 	.67  (QH ) 	(log w01 ) + El 

	

x(P/c1 	QH )  = 0 , 
	

(7.13) 

1 
where 	P = dg(x) dx 

dx and d f 	(Pg)dx dx 	(7.14) 
0 

The boundary condition on Hoe)  is obtained from 

the fact that /1 must be zero at y/ = n/2 . Equation 

(7.13) is, however, only a first order differential 

equation and (7.12) is an ordinary equation relating 
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8 , H and Y and so only one of these conditions can 

be satisfied. Any solution obtained from a boundary 

layer analysis for the point y/  = -g./2 is doubtful, 

due to the fact that the flow must detatch itself from 

the wall of the pipe about this point. It will, therefore, 

be assumed that /1 is only necessarily zero at 	=  

The boundary condition on H(Y) thus becomes 

H(71/2) = 0 . 	 (7.15) 

Substituting for /c1  and wc/  from (7.7) and 

(7.8) and replacing QE(!') by y(Y") , 

day,f 
(hg1_33)yi hof1(0) 7 

(1-P)U1sin‘Mg-i-B) 

dh2 
-PU1  costdy  -2  (7.16) 

subject to the initial condition that y(7/2) = 0 . 

Equation (7.12) can be rewritten as 

	

--h 83  0 	2 

gui(0)Uicosr-i- L2 2 	
-,,,y = 	o 	B 

	

±h 	cos 'r 
o 

 

EILETL21±22i2111L21 where L = 

(7.17) 
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Having reduced the momentum equations to this form, 

it is necessary to obtain relations for the constants 

01 U1 and B 

Determination of the constants C1 	U1 and B 
sreestama.maszailw=ir 	az:manor 

It was seen in the last chapter that two of the 

three constants can theoretically be found from equations 

(6.35) and (6.36). Inserting the values of w as given 

by (6.34) for the core and (7.10) for the boundary layer s  

equation (6.35) becomes 

-1/2 1-6K 1 

n= r Wc  dr + 	jr r w dr dr,  , 
j 0 	 -1 / 2  

1-5K  

r"/2, 

/I Jo 

-1 
r wc dr -- 

C l  
2itUi  ° 

• 1 -1/2  (  
h+.-) r dr -- K 	h +--)ii (1-f (4dx. 
( 	o h 

0 
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2V, IT 
i.e. -- 1- = 

1 
2t[1,_()11 -2K-/2x 

  

fol 
1
1--f (x)] dx. 

"/2 
6(h 	d o ho 

n/2 

(7.18) 

Similarly, equation (6.36) can be written as 

2;tf1 

CI-1h  

1. 	271 	
C 2-ir dr d 	= c 	0  r dr dY'

0 )0

_. 	l 
( h3 	

'r 	1 	201  

whereupon 

i

27-c
(ho+) 	 -21 clY/4-  o 0   

2Tu h f ?cod r 

J-1 

2XU1S -11 0 2n ft ho 

0(Ic- /2) 

0(K-1/2) p (7.19) 

dt.  

0 

27ti 1 
where S 

=10 0 

 

(1-Ocrsinyr 

5n I 	1  1,1 3 
L(1--)c) /2  

   

3g  
2(1-4) 

7t 

K2 
2 ; 	3) m2 

(1-}e)3/2j 

  

(7.20) 
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/ 
2 i The term of order K-1 /s retained in equation 

(7.18) so that a second approximation to the increase in 

resistance due to curvature can be obtained. It is not 

the complete second approximation, however, since it can 

be seen from (7.19) that there is a contribution from B 
-1/2 of order K 	, which can only be calculated by 

considering a second approximation of the momentum 

equations. Nevertheless, it is constructive to calculate 

the contribution indicated in equation (7.18) not only 

because it represents the physical situation, but also 

because it affords a comparison with similar results 

obtained by Barua and idori and Nakayama; they also 

neglected second order effects from the momentum equations. 

As was seen in the last chapter, the third constant 

can only be obtained without recourse to experiment, if 

an additional physical restraint is imposed on the flow. 

It is required of thiS restraint,that, unlike the restraint 

imposed by Barua, it be valid for a large range of 

curvature ratios. Since it seems likely that the 

curvature will have least effect at the point where the 

fluid from the core attaches itself to the wall of the 

pipe, it was assumed that the deviation from the 

standard velocity profile in the boundary layer would 

be a minimum at this point. Thus 
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dH(Th/2) = 0  . 
ay (7.21) 

Since H(m/2) is also zero, this assumption is 

tantamount to assuming that near y/ 	m/2 , which is 

defined as the attachment point, the stream function 

effectively behaves like /ci  g(x) = U1  cos `'.g(x) . It 

cannot be stated a priori that this assumption is valid 

for a large range of curvature ratios. The justification 

can only be obtained by comparing the results of the 

theory for various curvature ratios with experiment. 

Equation (7.21) implies that 1Y= d 	0 at 	= m/2 kr 
and thus, from equation (7.16) 

[h.(m/2)+D] 1Y-, (m/2) = dy 
ho(m/2)fr(0) 
	 [1(1'0-(/2)-1-B] 

5(m/2) 

(1-P)U1[h(m/2)+D] = 0 , 

U  = (1-00f 1(0)  
1 	(1P)5(m/2) * (7.22) 

A value of 5(m/2) can be obtained from equation (7.17) 

and the fact that y(m/2) = 0 . Thus 

 

2 - 
--0}e 1  fr,"(0) ( 	h0(172) ) 
0'; h (n/2) 	116

o 

 (m/2).1-33 

1/3  

 

6(72) = . 	(7.23) 

    



5 - 	2 ho wc1 

-20"(0)U1  1/3  
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The values of C1 and B , however, depend on a knowledge 

i of 6 for all Ye: ['/2 , - /2j and it is found that a 

particularly simple expression can be derived if it is 

assumed that F(0) = Ft(0) = 0 . This assumption makes 

L zero and the following expression for 5 can be 

obtained from equations (7.17) and (7.8): 

(7.24) 

The justification for this step is that in any 

Polhausen approximate method of solution, there is 

considerable licence in the choice of velocity profiles. 

It does not seem unreasonable, therefore, that the 

profiles affording the simplest solution should be considered 

first. The physical significance of the assumption is 

that near the walls of the pipe, the deviation from the 

standard velocity profile is small and the stream 

function again varies like /c1  g(x) 

The constants C1  , 111  and B can now be obtained 

for a given curvature ratio and thus the increase in 

resistance due to curvature can be found from equations 

(5.51) and (6.19) as a function of Dean number and 

curvature ratio. Thus 
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IC 	C1 

Ys  

K 
1 /2 

(7.25) 0 

  

Special Case when X << 1 

The simplest polynomial forms for f(x) , g(x) 

and F(x) , consistent with (7.11) and F(0) = Ft(0) = 0 

are 

f(x) = 2x - x2  , 

g(x) = 10x2 	20x3  + 15x4  - 4x5  , 	(7.26) 

F(x) = x2(1-x)4  . 

If the curvature ratio is sufficiently small so that 

the variation of 6(1 can be assumed negligible in the 

integrals of (7.18) and (7.19), 5(fl will be replaced 

by 6(72) and since for k. << 	S 	m [see equation 

(7.20)], 

B= - 1 	1 + 1/2  5 R-11 
1 	+ 	1/26 o x_IT 11 

(7.27) 

1 (7.28) 
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where 8o 8(7/2) 

From (7.14) and the profiles (7.26), P = 11/21 

g"(0) = -120 and f! (0) = 2 
	

Substituting these values 

in (7.22) and (7.23) and neglecting higher order terms in 

, 

21 U = 1 	58 (7.29) 

and 
U3){2 

gn 1 83  . 	----- o 	C2 1 

 

1 

 

i
1±2k. -1+1/280U/X12  

whereupon, eliminating 	U1  

approximation to 	C/  

8o = 4.04 	. 

and Cl 	using the first 

(7.30) 

Thus from (7.28) and (7.29) 

(7.31) C1  -1/2  
1.01 - 2.72 K 

and 	U 	= 1.04 (7.32) 



K 
1/2 

8.08 - 21 76 K 
(7.33) 
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Finally, the increase in resistance due to curvature can 

be obtained from (7.25) and (7.31) as 

In order that this may be compared with the experi-

mental results of Adler and White, K must again be 

replaced by Kw/4-2 . Thus 

Ye 
Ys  

i/2 104 K 

 

(7.34) -1/0  
1 - 3.2 K ea  

This result bears strong resemblance to that of 

'Joni and Nakayama (Equation 6.28) and it can be seen 

from Figure (7.1) that it agrees with the experimental 

observations of Adler and Ilhite extremely well for 

values of K greater than 100. There are, however, 

certain reservations as to the validity of the second 

approximation in (7.34) represented by the term 3.2 K 
-1/2 

which also apply to the results obtained by Barua and 

Mori and Nakayama. All these results were obtained from 

momentum equations that neglect higher orders in Dean 

number or Reynolds number and yet, in all cases, these 
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Fig. (7.1). Comparison of the theoretical resistance coefficient for X. << 1 with 

the experimental observations of White which also represent the results of Adler 

(see Fig. 5.2). 
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would have contributed to the second approximation to 

the increase in resistance due to curvature. The 

inclusion of higher order effects severely complicates 

the problem and it is therefore assumed that the terms 

omitted have very little effect on the results. 

The physical significance of this assumption can be 

seen by considering the fact that second order effects 

were included in the constant Mass flux condition and 

omitted in the constant momentum flux condition. It 

is therefore assumed that the defect in mass flux in 

the boundary layer has more effect on the flow than the 

defect in momentum flux in the boundary layer. 

Numerical Solution for various curvature ratios 

The polynomial forms for f(x) and g(x) from 

(7.26) were inserted in equations (7.22) and (7.23) and 

values of U1 and 	5(51/2) were obtained. A value of 

.5 was then obtained for various ' from (7.24) and 
these values were inserted into equations (7.18) and 

(7.19) for various curvature ratios and Dean Number. 

Integrating the various integrals using Simpson's formula 

with an interval length of n/180 , values of B , Cl  

and U1 were obtained for various curvature ratios and 
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Dean number. 

From the values of C1 and equation (7.25), the 

increase in resistance due to curvature was plotted 

against Dean number for various curvature ratios and the 

results are exhibited in Fig. (7.2). It is seen that 

for small X , the curve lies near to that obtained from 

experiment and that as the curvature ratio increases, 

the resistance increases. The accuracy of these results 

for large curvature ratios cannot be given until the 

experiments of Adler and White are repeated for this 

range of curvature ratios. It should be remembered 

from Chapter 5, however, that for large curvature ratios, 

torsional effects become important; it seems reasonable 

to add, therefore, that results for pipes of curvature 

ratio greater than about 0.4 are of academic interest. 

The theory devised in this chapter is for 

asymptotically large K and it has been seen that any 

second approximations are not strictly valid. The 

results for asymptotically large K of the various 

constants are tabulated as functions of K for various 

curvature ratios in Table (7.1). 
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Fig. (7.2). The increase in resistance due to curvature for various curvature ratios. 



135. 

C / 1/2  
/ K / w 

U/ i /2  

/ Kw/ B 

---- 

- 	1/0  yni
K 	c- 

Is 	14  

.05 .776 -.)0 -0.876 0.097 

.1 .856 .94 -0.765 0.107 

., 0  1.01 1.01 -0.567 0.127 

.3 1.19 1.09 -0.40 0.149 
4 1.42 1.18 -0.276 0.178 

.6 2.02 1.38 -0.117 0.252 
8 2.90 1.6 --0.039 0.363 

.95 3.64 1.77 -0.006 0.455 
I 

TABLE (7.1). Asymptotic values for the constants for 

various curvature ratios. 

It will be noticed that for X, = .05, the dominant 
1 

term for the increase in resistance is .097 K /2  

This value agrees well with the dominant term obtained 

by Hasson from White's experimental values for small 

curvature ratios. Hasson found that in the range 

30 < K < 2000 , the relation 

Y r1  = ,0969 Kw/2 	0.556 
e  

(7.35) 

gives a good representation of the observed results. 
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The object of this chapter was to find numerical 

values for the constants which emerge from this type of 

analysis. These values have been obtained and they 

have shown reasonable agreement with experimental values 

for small curvature ratios. In the next chapter, the 

values of these constants for all curvature ratios will 

be used to investigate the skin friction and the 

possibility of separation. 
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CHAPTER 8 

The momentum Integrals 

In the previous chapter, assumptions were made 

which not only simplified the analysis, but also pre-

determined to a large extent the nature of the flow in 

the boundary layer. In a Polhausen approximate method 

type solution, profiles varying with the non-dimensional 

radial component and the boundary layer thickness have 

to be imposed; but in the previous theory, further 

restrictions were imposed on the profiles by assuming 

that separation did not exist, This facilitated a ready 

solution of the integrals involved in equations (6.35) an 

(6.36), since this assumption implies that the profiles 

are valid throughout the range -11/2  < yi< 	. If, 

however, separation does exist, at a point 	yi, say, 

the boundary layer approximation breaks down about this 

point and the velocity distribution cannot be determined 

near the inner wall. 

The present chapter will be concerned with finding 

a better representation of the velocity distribution in 

the boundary layer and in particular, to find whether, 

and at what point, separation exists. 



(1 a < 
Pi 

a 	wl dx y- )Pow dx=  

I 
aw 
a 

Jo 
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In order that more accurate results may be obtained, 

both momentum equations (6.30) and (6.31) are integrated 

across the boundary layer. 

cola/ 
aw a/1  aw 

ay- a? a 	ay
o  

- 

 

r 
d 	= ho -11.0?--4 

6(T") 
(8.1) 

   

r 5 (f)ax a2 <  
1 

ao 	
072 

1 -2- do  cos Y;(1//2  -I- 	1  

5041) 5 2/  
.-h o al( (8.2) 

Putting q = 8(flx and henceforward denoting 

partial differentiation with respect to x by primes, 

 

1 d.5 
- 	dy) 11  

JO 

fec,1 2 1 dx + -ffho2  cost 
0 

I 
2 -w2)dx 

5 a2 

 

0 

(8.4) 



w  =/' = 0 at x = 0 : T9-- 

a/i  
(8.5) 
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The velocity profiles 

The velocity profiles introduced in this section 

will be more complete than those of the previous theory 

in that both restrictions imposed by the momentum equations 

at the wall will be satisfied. The boundary conditions 

at the wall are 

in addition, it can be seen from (6,30) and (6.31) that, 

at the wall, 

/MN) = 	h b3  w`
9  

cos X/  0 	01 (8.6) 

w" (0) = 0 	 (8.7) 

At the interface, the following conditions will be 

satisfied: 

w( 1 ) = wci 	10(1) = w"(1) = 0 , 	 (8.8) 

/1 (1) = /ci  , 	/1(1) =,1(1) = /1' (1) = 0 , (8.9) 
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where /c1 and wcl are given by (7.7) and (7.8). 

It can be seen from the conditions (8.5) to (8.9), 

that all the restrictions on /1 at the wall and at the 

interface are satisfied for all derivatives, save for 

0(0) , up to the third. Similarly, the restrictions 

on w are satisfied for all derivatives up to the second, 

except for w' (0) . The values of w 1(0) and 0(0) 

are determined from the momentum integrals and these are 

the values that determine the skin friction and indicate 

any separation. 

The velocity profiles chosen, consistent with the 

conditions of (8.5), (807), (8.8) and (8.9) are 

/I =~ci g1 (x) X(Ylj go(x) 
	

(8.10) 

w = 	w 01 	f i (x)J2(?) f (x) , 	(8.11) 

where go , gi 	1'0 and f 
	satisfy the conditions 

go(0) = 4(0) = 0 , gro (1) = 1 , g 1(1) = g"(1) = 41(1) = 0 " 

g1 (1) = 0l(1) = 4(1) = 4'(1) = o 

   

(8.12) 

fo(o) = f7)(0) = 0 , fo(1) = 1 

f1(1) = ff(1) = f"(1) = 0 

ft 
O 

0 
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With these profiles, N(n and JIL(Y1 , together with 

their multipliers g1(x) and f1(x) , represent the 

unknown deviation from f = ,c1 (x) and w = wc1fo(x) 

in the boundary layer. 

Substituting them into equations (8.3) and (8,4), 

(a1 wcl  +a2  J1)d/c/  
dw cl 	Powcl . [(1-a ) (a3wel±a4A)Ty {-d—kr 

(. d .ft + 	+ dy/ Po /1-1- (a2)4c1+a4x)  
h f,(0) / o_. ( 

	+1'1 (0)/1)=  0 , (8.13) 

1 d 1 dO 	/2 
52 	7T - P° 	. 	

( 
a5 ol'a6P

d  
c17\.+a7X

2) + 

2ho2  cost (a8wo2  i+a9Aw +a 1 	10 -11- •2) 
h0  f 
56 /01-Fg1(0)x } 4(0) = 0 

(8.14) 

where 

a1 

ri 

gofpx 
-'0 

1 
a2  = 	go dx  --(f  of  1 )dx , 

,0 
gogigdx 

1 

Jr
a4 = glgo A(f1 fo)dx cri 2dx bo 

,1 

a6 = 2gO A(gogl)a  
0 

(8 15) 
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1 

2f10 f'd7 — 

a10 
	r-o 1f-9  dx . 	 (8.15) con),-d. 

Finally, if the condition (8.6) is to be satisfied 

f

cl+g1(°)X1 gT(0) + 3g1 (0)4(0)X = 	4110  83w 1  00', 

using the fact that g0(0) = 4(0) = 0 . From(7.7,I, this 

can be expressed as 

 

U 01(0) + l 53 2  1 o 	2h0 	w01 

  

  

cos ̀1/. 	(8.16) 

 

g1 	bo 	D1 	'o (0)04"(0) + 3g.  '(0)g"(0) 

 

   

   

Eliminating X from (8.13), (8.14) and (8.16) , yields 

two first order, ordinary differential equations in 8(r) 

and J/(?`) ; they take the form 

0 0 	n  
' ' do 
	-3  + 0 -1 77, 	2 d)' cos r 	-4 (8.17) 

O. 

	

do 	-(3  

	

Q5 dtr 	cos?' + 7 ' (8.18) 



11  "TA. w 2  o c 	 9 P2  =  g1(0)gT(0 	+ 3g1(04,(0) 

(8.20) 
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where the Qi's are functions of 8 ,J1, 	, B 

U1 and X. which are nowhere singular in the range 

-m/2 < y-< m/2 . They can be defined in terms of the 

following functions: 

P g1 MgT(0) + 3E1(0)4(0) ' 
g'o'(o) 	ul  

P3  = 	1 + 53  P2)  

20h 
P 2 ( a8 w01 + a, wc 1 	± 	(12)  4 = h 0 8 01 	 - 	(wci + 

2 P5 = a5 Ui
2  - a6 U1 P3 + a7 P3 

(8.19) 

whereupon 

Q1 = a2 Ul 	a4 P3 

Q2 = 3P2 5
2 (a3 wcl + a4A) 
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Q3  = (al  wol  + a2  J1) U1  sinr 

3ho  ( 

‘wci +JO 

we 1 + a4A.)P-9  sin y,  

	

dP 	- 

-(a3 w01 	a4J1)5)  71— 	[4  wo  

[(1--a1  )U,1  + a3  1:'71 	Po Qi 	9 

Po we  ] X 

P 
 0 - 
'5 - 83 3a6  111  Pp  + 6a7  P3  3.?„ 

Q6 

Q7  -  

2P5 
s' 

)(P5  cos )1.1  

52 

sin y- + P4 

The equations (8.17) and (3.18) have singularities 

at 	\t' = + V2 unless Q
3 
 (+n/2) and 06 - W/2) are -  

zero. Conditions cannot be imposed on the flow at 

n/2 , because of the strong evidence predicting 

separation. In fact, the equations may well be singular 

at this point if, as is the case after separation, they 

do not truly represent the flow. If it is assumed that 

there cannot be singularities in the equations at Y" = 

Q3  (n/2) (7 	062) = 	(n/2) = 0 and these two equations give the 



145. 

initial conditions of 6 and A. 

It remains to obtain values for the constants C1 ' 

B and U1 
, whereupon equations (0,17) and (8.18) can 

be solved numerically. 

Determination of the constants 
	B and U 

It was seen in chapter 6 that two of these constants 

can theoretically be found from the constant axial mass 

and momentum flux conditions given by (7.18) and (7.19). 

It was seen, however, in the development of the theory, 

that the integrals involved in these relations cannot 

be determined completely if the flow separates. It was 

also seen that a value for the third constant is obtained 

either by imposing an extra physical condition on the 

flow, or by giving to it a result obtained from experi-

mental observations. Since the object of this present 

section,is to find a more accurate representation of the 

skin friction, the latter course of action will be 

adopted. 

By far the most reliable experiments are those which 

measure the increase in resistance due to curvature as a 

function of Dean number. The experimental observations 

of White and Adler have been shown by Parugia (unpublished) 



0.45 2.22 
( 11.6) 

1/2  
Yc  

Ys  
(8.21) 

K 
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to be represented by White's empirical formula 

for 11.6 < Kw  < 2000 , within an error of 	Unfortunately, 

these results only apply to small curvature ratios (i.e, 

X.< .067), whereas the present theory requires results 

for all curvature ratios. Since the theoretical results 

obtained in the last chapter agree reasonably well with 

the experimental results for small curvature ratios, the 

values of 01 (from which the resistance is calculated) 

for the present theory, will be taken from table (7.1). 

This assumes that the values of C for large curvature 

ratios are also accurate, but in the absence of experi-

mental observations for pipes of large curvature ratio, 

these values will have to suffice. 

Once a value for C1 is obtained, B can be found 

as a function of U1  from equation (7.18) by assuming 
1/2  

that the K / 	term is negligible. This is quite 

reasonable since the values shown in table (7.1) are only 
-1/2 accurate to the first approximation and the K 	term 

was only retained in equation (7.18) so that a second 

approximation to the resistance could be obtained. Since 



0/2.0, 
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B = 	 
0 1/n 
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the remaining terms contain no integrals, they are 

unaffected by the possibility of separation and B can 

be expressed in terms of U1  as follows: 

(8.22) 

If the flow does not separate, the remaining constant 

U1 can be found by using the following iterative method: 

choose a value for U1  ; • take the particular value for 

C1 from table (7.1) corresponding to the particular 

curvature ratio being considered and determine B from 

(8.22); insert these quantities into equations (8.17) 

and (8.18) and solve for 6 011 and 	in the range 

-72 < y/.< 72 . A different value of B can then be 

found from (7.19) and thus a different value of U1 from 

(8.22). This process is then repeated until U1 converges 

suitably. 

If, however, the flow separates, or U1 does not 

converge suitably, the above method will fail and an 

alternative approach has to be considered. In the next 

section, it will be seen that the flow does in fact 

separate. The values of U1 for various curvature 

ratios were then assumed to be equal to those obtained 
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in the previous theory and exhibited in table (7.1)_ 

Numerical solution for various curvature ratios 

The simplest polynomial expressions for fo(x) 

f (x) 	E (x) 1 	-o 	and g1  (x) satisfying the conditions of 

(8.12) are 

fo(x) = 3x - 3x2  

f1  (x) = (1, x)3  

x3 +  

(0.23) 

go(x) = 
	20x3 	15 4 

	
4x5  

g1  (x) = (1-x 4 

These profiles were substituted into the integrals 

of (8.15) to determine the ails which were in turn 

substituted into equations (0.13) and (8.14); subsequently, 

X and the form of the Qils in equations (8.17) and 

(0.18) were found. 

Equations (8.17) and (018) were solved on the 

computer at Imperial College for various values of curva-

ture ratio and the corresponding value of C1 and for 

various values of U1 on and about the value given in 
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table (7.1). It was found in every case that separation 

as indicated by the fact that 4 became positive was 

evident. As a result of the nature of this separation, 

values of B obtained from equation (7.19) were, in all 

cases, lower than those obtained from equation (0.22). 

It was decided, therefore, that the equations did not 

represent the flow about the region where y is positive 
and that the value of U1 for a particular curvature 

ratio should be taken as that given by table (7.1) 

Equations (8.17) and (8.18) were solved numerically 

for the following values ofh,: 0.05, 0.1, 0.2, 0.4, 0.6 

and 0.8. Gill's process for the fourth order Runge-Kutta 

method was used with an interval length initially of 

4370- 	18 increasing to ---0  after 48 steps. This was 

necessary to avoid the inherent instability in the 

numerical process for the solution of these equations 

about the point Y/ = 	. 
8w The values of Y".  at which b  -- became positive r 

were sought for each value of X, and it was found that 

values could be obtained only for 	= 0.05 up to 

= 0.4 . For values of ), 8w  equal to 0.6 and 0.8, yz, 

is at all points negative. The available points indi 

eating separation are shown graphically in fig. (8.1). 

It is seen that the values shown can be connected with 



150. 

0.0 	 0 .2 	 0.6 

Fig. (8.1). Position of point of separation as a 

function of curvature ratio. 

reasonable accuracy by a straight line recording a value 

of -640  for zero curvature ratio. This compares 

favourably with the calculated point of separation 

obtained by Barua. He found that the tangential velocity 

became positive in the boundary layer at 1' . -62°  581  

for very small curvature ratios. 

The numerical results for 5(Y') , Am and X( t) 

are shown in figture- (7.s.2 	figure (6.4).:-A typical 
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) . .1 .2 .4 .6 .8 

90°  3.01 3.02 3.05 3.04 2.99 2.86 

60°  3.08 3.10 3.14 3.16 3.14 3.03 

30°  3.28 3.31 3.38 3.48 3.55 3.53 

0°  3.61 3.65 3.73 3.90 4.07 4.17 

-30°  3.97 3.97 3.99 4.04 4.12 4.17 

-60°  4.06 3.93 3.64 3.13 2.69 2.35 

-89°  3.67 3.36 2.77 1.79 1.03 0.448 

Fig. (8.2). The variation of i5 with Y' for various 

curvature ratios. 
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A 
6  (100 	60° 	30° 	06 	-30 	-60 	-70°  y 

-o.s 

-0•70- 

.05 .1 .2 .4 .6 .8 

90°  -0.998 -0.987 -0.970 -0.976 -1.01 -1.10 

60°  -0.896 -0.882 -0.852 -0.823 -0.810 -0.847 

30°  -0.655 -0.621 -0.552 -0.413 -0.250 -0.80 

0°  -0.368 -0.307 -0.184 0.145 0.615 1.26 

-30°  -0.175 -0.098 0.061 0.600 1.55 3.15 

-60°  -0.207 -0.153 -0.053 0.451 1.77 5.12 

-89°  -0.328 -0.304 -0.289 -0.186 0.013 0.62 

Fig. (8.3). The variation of 	with y,  for various 

curvature ratios. 
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0.1 

go° 
	

60. 
	

30° 
	

0° 	-30° 	-6o° 

.05 .1 .2 .4 .6 .8 

90°  0.0 0.0 0.0 0.0 0.0 0.0 

60°  0.121 0.126 0.136 0.158 0.183 0.212 

30°  0.226 0.235 0.253 0.291 0.337 0.389 

0°  0.292 0.305 0.330 0.384 0.453 0.532 

-30°  0.281 0.297 0.321 0.380 0.451 0.532 

-60°  0.169 0.178 0.193 0.226 0.265 0.307 

-89°  0.006 0.007 0.007 0.008 0.010 0.011 

Fig. 8.4. The variation of X with Y/ for various 

curvature ratios. 
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BouXPARY LAY S R  

E XPER1P 	AL CORN .5 1*IR‘wva. 5) 

ouriER 	 
WALL 

0.0 

po o.s 0 -0.6' -170  

t4;"‘' R 
VIALL 

	2 
= r. Sin Lr 

H
.‘*----'.-6-----?"-----,'C' 

.05 0.1 0.2 0.4 0.6 0.8 

1.0 1.80 1.79 1.76 1.76 1.83 1.98 

0.5 1.69 1.68 1.66 1.66 1.72 1.85 

0.0 1.00 1.00 1.00 1.01 1.01 1.01 

-0.5 0.58 0.58 0.59 0.59 0.56 0.49 

-1.0 0.17 0.16 0.15 0.10 -0.01 -0.31 
, 

Fig. (8.5). Experimental (Hawes) and theoretical velocity 

profiles in the plane of symmetry of a curved pipe. 
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graph for 5 , A and X is exhibited and an accompanying 

table gives details of the variations for different 

curvature ratios. In all cases the graphs were plotted 

for the particular curvature ratio of 0.05. 

Finally since the values of 01  , B and UI have 

been ascertained, it is possible to consider the asymptotic 

axial velocity profiles in the core for various curvature 

ratios. The velocity profile for ),(, = .05 is exhibited 

graphically together with the velocity profile obtained 

from experiment by Hawes for a pipe with X. = 05 and a 

Dean number K = 895, The deviations from the theoretical 

curve for various curvature ratios are shown in the 

accompanying table [see figure (8,5)]. 

Re ion of validity 

The equations of motion for flow in a curved pipe 

[(5.41) and (5.42)] were solved for asymptotically large 

X and without the assumption that the curvature ratio 

was very much less than one. In addition to the 

restrictions imposed on the theory by the simplifying 

features introduced and discussed in the development of 

the theory, there are restrictions imposed by the physical 

nature of the problem. Examples of the former are 
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inherent in the assumptions. They include: assuming that 

viscous forces are only important in a thin layer next 

to the wall and that the constants derived in table (7.1), 

after imposing an intuitive physical restraint [see (7.21)], 

are valid for all curvature ratios. Examples of the 

latter arise from the fact that the flow becomes turbulent 

after a critical Reynolds number and the physical 

necessity of introducing large torsional effects as }G 

tends to one. It is difficult to obtain quantitative 

limitations to the present theory without a direct 

comparison with experimental observations, but it is 

possible, with the aid of fig. (6.6), to derive certain 

limitations imposed by the transition to turbulence. 

It is known from the experiments of White and Adler 

that for given curvature ratios, there are critical 

Reynolds numbers and thus critical Dean Numbers, above 

which the flow is turbulent [see fig. (1.1)]. It is 

natural to ask whether the values of K , which are 

sufficiently large for an asymptotic solution, are 

greater than the critical Dean Number. 

Ito derived an empirical formula from the results 

of White and Adler for the critical Reynolds number as 

a function of curvature ratio of the form 



10 000 
- op 

I)  

V.,  ' 1°  

= 2., 2. le 

I'D 3.0 it- 0  

A 

A 
4 MN. 

Ow. 

Fig. (8.6). The region of validity. 
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4 (ar32  Rec  = 2 x 10 	, 	(8.24) 

R valid for 15 < a- < 860. In fig. (8.6), this curve is 

plotted on a graph of log Re against log R/a and from 
1/0  

the formula KW = Re( l ' , lines of constant Kw  are R  

drawn. The extension of Ito's curve is known for values 

of R/a > 860 since it is known that as R/a 

the critical Reynolds number tends to that of a straight 

pipe which is approximately 2,300. The extension for 

values of 
R
/a < 15 is not known and may be difficult 

to obtain even experimentally. The reason for this 

can be seen from fig. (5.2), where the deviation from 

the common curve for the increase in resistance due to 

curvature for various curvature ratios has been used to 

denote the onset of turbulence. As the curvature ratio 

)1(.- increases, the line deviating from the common curve 

subtends a smaller angle with the common curve. Eventually 

it may not be possible to distinguish the two curves. 

Also, as 	increases, it is likely that this common 

curve will no longer be valid for the increase in 

resistance. In fact the results of chapter 7, illustrated 

in fig. (7.2), indicate that there will be a marked 

increase for these curvature ratios. In fig. (8.6), 
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Itots curve is extended to values of 	< 15 by a 

dashed line continuing the known curve. For values of 

Re above the curve AA1  the flow is turbulent and 

below it, the flow is laminar. The theory developed in 

the last three chapters and those of Adler, Barua, and 

Mori and Nakayama are valid only below this line. 

In order that an estimate of the value of Kw be 

obtained, above which the asymptotic solution is 

sufficiently accurate, it will be necessary to compare 

the theoretical results with those of available experiments 

and to remember the order of the terms neglected. Since 

K 	is of the same order as K and terms of order K tir 

have been neglected relative to terms of order one, it 
1
/2 is essential that Kw: >> 1 . Although there is good 

agreement between the theoretical and experimental results 

for the increase in resistance due to very small curvature 

for values of K down to 250, the velocity profiles in 

the core (see fig. 8.5) are steeper than that observed 

by Hawes who obtained the profile for a pipe with 

= .05 and at a Dean number of W 895 . Nothing is 

known as yet about the behaviour of the velocity profile 

with increasing Kw  , but it may well steepen as Kw  

increases. If this is the case, Kw is not sufficiently 

large. This problem can only be resolved by repeating 



160. 

the experiments of Hawes for several values of the Dean 

number approaching the critical Dean number. 

The accuracy of the theoretical results for the 

resistance coefficient for such low Dean numbers is due 

largely to the second approximation. A comparison of 

the asymptotes of the theoretical results for }C,. << 1 

(i.e. ic/Ys = .104 KI,
1/
'
0 
), for X 	Y°/ = .05 (i.e. 	fys = .097 K 

/) 

/v 
and for )1[, = 0.1 (i.e. Y 0' 's = .107 K1/2), with the 

experimental observations of White is shown in table (8.1). 

It can be seen that although the accuracy increases as 

w increases, the results differ by as much as 15.2,4 fw 

Kti~ = 1000 and 12 	for 	= 2000 . Since the theory 

predicting the separation point depends on these 

asymptotic results, it is reasonable to restrict the 

validity to values of Kw greater than 1000. 

Due to the effects of torsion discussed in chapter 5, 

there is a practical lower bound of 11/a below which 

the theory presented here is invalid. Also, it is 

likely that the assumptions made in the development of 

the theory break down beyond a certain curvature ratio. 

An accurate value of this lower bound is possible only 

by comparing the theoretical results with possible future 

experiments designed to this end. 
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Kw 

Ye  
obtained 

Ys 
from 

White's 
experi- 
ments 

For 
X-<< 1 

Y9
Ya 

For 
)(..• = 	0.5 

— = 
Y, 

1/2  .097K 

For 
j<, 	:--• 	0.1 
Ya 

.Y- 	
_ 
- Ys 

1/2  .107K 
 -/ 

---  
= Ys  

1/2 
.104K w 

200 

400 
600 

1000 

2000 

1.87 

2.48 
2.85 

3.61 

4.93 

1.47 
2.08 
2.55 

3.29 

4.65 

1.37 

1.94 
2.38 
3.06 

4.34 

1.51 
2.14 
2.62 

3.39 
4.79 

Table (8.1) 

The region of validity of this theory can be 

obtained once lower bounds of R/a and K have been 

decided upon. It is represented in fig. (8.6) by the 

area bounded by the curves AA' , R/a = lower bound of 

R/a and Kw = lower bound of Kw 	Thus if lower bounds 

of R/a and Kw  are assumed to be 4 and 1000 respectively, 

the region of validity is represented by the area XYZ 

It can be seen from this that an upper bound of R/a 

would be about 40. In previous theories, it is assumed 

that Y.,  << 1 	If it is assumed that their theories are 

also valid for values of K > 1000 and that R/a = 15 

is sufficiently large to make )1.= a/R << 1 , it can be 

seen that the region of validity would be represented by 

the area X'Y'Z 
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The sep.aration condition 

It was seen earlier that a condition conducive to 

separation was produced from the numerical solution of 

the differential equations (8.17) and (8.18). It was 

also seen that as )1,---> 0 , the calculated value was 

effectively the same as that obtained by Barua whose 

theory is only valid for X., << 1 . The difference between 

the determination of this value is that Barua's theory 

predicts separation in the tangential velocity component 

whereas the present theory predicts separation in the 

axial velocity component. The reasons for this are due 

to the different approaches to the problem and the fact 

that the boundary layer approximation breaks down near 

a point of separation. Thus it should only be deduced 

that separation occurs somewhere near the predicted 

values and that the type of separation is irrelevant 

since the equations are not valid about this point. 

There may, however, be some significance in the 

fact that the separation point of the present theory 

recedes to 	—900  as K, increases [see fig. (8.1)]. 

Although it is quite likely that beyond a certain value 

of 	, the theory is not valid, there may be some 

correlation between this fact and the fact that the 
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flow in curved pipes becomes more stable as X. increases. 

This is not to say that separation causes instability 

in the flow, but it may well give rise to the effects 

which then produce instability and thus turbulence. This 

opinion is reinforced by the experimental observations 

of Taylor (6) which showed that the flow appeared to 

become turbulent initially in a layer next to the wall 

of the pipe. 

Another facet to this problem is that although it 

is assumed that the flow is symmetrical about the 

. ,t /2 , y- -m/2 line and that if separation occurs 

at -64°  then it also occurs at 244°  vortices may 

well be shed from these points alternately in the same 

way as flow over a cylinder. This, and the variation of 

separation point with curvature ratio, awaits experimental 

investigation. 
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C 
C 	PROGRAM FOR SOLVING A SET OF SUCCESSIVELY DEPENDANT SIMULTANEOUS 
C 	DIFFERENTIAL EQUATIONS USING GILL'S PROCESS FOR THE FOURTH ORDER 
C 	RUNGF—KUTTA METHOD, 
C 
C 

REAL A(21)9F(63)9Y(63),Q(63)0G(63) 
N=1 

57 N1=3*N-1 
N?=1*N-2 
N3=7.1*N 
XPRIN=0412 
L=1 
A(N)=1. 
ALP=04 
GO TO (23,52923952923,52,23952,23,52923952923,52,23952923,529239 
1529P1) ,N 

23 WRITE (6,20) 
20 FORMAT (1H1) 
52 X=O. 

H=0.02 
50 DO 96 I=19N 

Y(3*I-1)=049 
Y(3*I-2)=0,9 

96 Y(3*I)=A(I) 
IF (L•FO.1)  GO TO 1 
WRITE (6,21) 

21 FORMAT (1HO) 
WRITE (6.22) X9Y(N2),Y(N1),Y(N3) 

22 FORMAT (1HO,F209293F19496) 
C 
C 
	THE INTEGRATION PROCESS. 
C 

GO TO I 
111 DO 99 I=141 N 

F(3*I-2)=H*Y(3*I-1) 
99 F(3*T-1)'=H*Y(3*1) 

GO TO (61962,63964,65966,67968,69.70971972973974975976977,78979980 
'1 ,981),N 

81 F(63)=—H*(Y(I)*Y(63)-3o*Y(2)*Y(62))-2.*H*ALP*Y(44)*Y(1) 
80 F(60)=—H*(Y(1)*Y(60)-3.*Y(2)*Y(59))-2.*H*ALP*Y(44)*(Y(1)—X*Y(2)) 
79 F(57)=—H*(Y(1)*Y(57)-3**Y(2)*Y(56))-2**H*ALP*Y(45) 
78 F(54)=—H*(Y(1)*Y(54)-3•*Y(2)*Y(53))+4•*H*ALP*X*(4.—Y(2)*Y(2)) 
77 F(51)=—H*CY(1)*Y(51)-3e*Y(2)*Y(50))+29o*H*ALP*1—Y(2)*Y(8)—Y(7)*Y(45 

1).4-Y(8)*Y(44)+Y(1)*Y(44)+49*Y(45)) 
76 F(48)=—H*(Y(1)*Y(48)-3**Y(2)*Y(47))+H*ALP*(84,-249*(Y(2)*Y(5)+Y(4)*Y 

1(45).—Y(9)*Y(44))) 
75 F(49)=—H*(Y(1)*Y(45)-2a*Y(2)*Y(44))+H*ALP*(49,—Y(2)*Y(2)) 
74 F(4?)=—H*(Y(1)*Y(42)-3o*Y(2)*Y(41)+49*Y(3)*Y(40))+H*ALP* (-2•*Y(21) 

1*F'Y(7)+3•*(Y(20)'*Y(8)—Y(19)*Y(9))+4.*(Y(21)+X*F(21)/H)) 
73 F(39)=—H*CY(1)*Y(39)-3**Y(2)*Y(38)+4.*Y(3)*Y(37))+H*ALP*(-29,*Y(7)* 

1Y(12)+34,*(Y(8)*Y(11)—Y(9)*Y(10))+4•*(Y(12)4-X*F(12)/H) 
72 F(36)=—H*(Y(1)*Y(36)-34o*Y(2)*Y(35)+4.*Y(3)*Y(34))+H*ALP*(2,9*( 

1—Y(7)*Y(18).**Y(4)*Y(21))+3•*(Y(17)*Y(8)—Y(16)*Y(9)+Y(20)*Y(5)—Y(6)* 
2Y(19))+4.*(Y(18)+X*F(18)/H)) 
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71 F(33)=-H*(Y(1)*'Y(33)-3.*Y(2)*Y(32)+4.*Y(3)*Y(31))+H*ALP*( 2.*( 

1..•.Y(4)*Y(18)-Y(7)*Y(19))+3**(Y(17)*Y(5)-Y(16)*Y(6)+Y(14)*Y(8)-Y(13)  

1*Y(P))+4**(Y(15)+X*F(15)/H)) 
70 F(30)=-H*(Y(1)*Y(30)-3e*Y(2)*Y(29)+4•*Y(3)*Y(28))+H*ALP*  (341*(Y(14) 

1*Y()-Y(13)*Y(6))-2.*Y(4)*Y(15)) 
6P F(27)=-H*(Y(1)*Y(27)-3o*Y(2)*Y(26)+4**Y(3)*Y(25))+H*ALP*( 34,*(Y(11)-4  

1*Y(9)-Y(10)*Y(6))-2o*Y(4)*Y(12)-12.) 
68 F(24)=-H*(Y(1)*Y(24).-3.*Y(2)*Y(23)+4**Y(3)*Y(22))-124*H*ALP 

67 F(21)=--H*(Y(1)*Y(21)-24.*Y(2)*Y(20)+34*Y(3)*Y(19))+H*ALP*( -2,*y(9).*  

1Y(7)+Y(8)-*Y(8)+4**(Y(9)+X*F(9)/H)) 

66 F(18)=-H*(Y(1)*'Y(18)-2o*Y(2)*Y(17)+3.*Y(3)*Y(16))+2•*H*ALP*( 

1Y(5)*Y(8)-Y(4)*Y(9)-Y(7)*Y(6)+2.*(Y(6)+X*F(6)/H)) 

65 F(19)=-H*(Y(1)*Y(15)-2**Y(2)*Y(14)+3**Y(3)*Y(13))+H*ALP*( -'44,+Y(5)*  

1Y(5)-2**Y(4)*Y(6)) 
64 F(1P)=-H*(Y(1)*Y(12)-2_o*Y(2)*Y(11)+3.*Y(3)*Y(10))-8.*H*ALP 

63- F(P)=-..H*(Y(1)*Y(9)-Y(P)*Y(8)+2**Y(3)*Y(7))+44,*H*ALP*(Y(3)-X*Y( 1)*Y 

1(3)) 
F(6)=...-H*(Y(1)*Y(6)-Y(2)*Y(5)+2**Y(3)*Y(4))-44)*H*ALP 

61 F(3)=-H*Y(I)*Y(3) 

GO TO (100,101+102,0)03)*M 

1 M=1 

GO TO111 

100 D0112I=1.0N3 

G(I)=F(I) 
0(I)=F(1) 

112 Y(I)=Y(1)+0.5*G(I) 

M=2 
X=X+0•5*H 
GO TO111 

101 D0113I=1eN3 

G(I)=F(I) 
Y(I)=Y(I)+.29289322*(G(I)-Q(1)) 

113 0(1)=.58578644*G(I)+.12132034*Q(I) 

M=3 

GO TO111 
102 D0114I=14N3 

G(I)=F(.I) 

Y(I)=Y(I)+107071068*(G(I).-0(1)) 

114 0(1)=304142136*G(1)4.1213203*0(1) 

M=4 

x=x4-n.s*H 

GO TO111 

103 D0111=1.oN3 
G(I)=F(I) 

115 Y(I)=Y(I)+04,16666667*(G(I)-2**0(1)) 

C 

C 	THE CONTROL OF STEP LENGTH AND OUTPUT. 

C 

XP=10•*XPRIN+•02 
NIN=xp 
VX=1(!•*X+.02 
ML=VX 
VYT=FLOAT (ML)/10. 
IF (LiE04,1) GO TO 6 



IF (ML0LToMN) GO TO 6 
XPRIN=XPRIN+062 
WRITE (6,201) VXT,Y(N2),Y(N1).0Y(N3) 

201 FORMAT (1H ,F2.0.2.3F19.6) 
6 IF (ML-4) 1.444 
4 H=0005 

IF (ML-30) 1,5.5 
5 H=0.1 

IF (ML-90) 1,292 
C 
C 	THE OETERMINATION OF THE THIRD INITIAL CONDITION A(N). 
C 

2 IF (L-1) 797.33 
7 IF (ALP.EO.O.) GO TO 51 
GO TO 53 

51 V1=Y(N1) 
ALP=1. 
GO TO 52 

53 V2=Y(N1) 
A(N)=1,o—V2/V1 
IF (N.EO.1) A(N)=(2./Y(N1))**1.5 
IF (NoE0o2,1,0R•N•E0•4•OR•NoE04,8 ) 
L=L+I 
GO TO 52 

33 N=N+1 
IF (N-21) 57.57.34 

34 STOP 
END 

A(N)=1.+(2•—V2)/V1 
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tzo (I) 

0. 
0.20 
0.40 
0.60 
0.80 
1.00 
1.20 
1.40 
1.60 
1.80 
2.00 

_2.20 
_2.40 

2.60 
2.80 
3.00 
3.20 
3.40 
3.60 
3.80_= 

 

4.00 
4.20 
4.40 
4.60 
4.80 
5.00 

	0. 0. 5.418492 	 
_ 4.609621 0.103018 

	 0.390262 
- 	1.003247 -----. 	-- 

1.840691 	 3.754175 	 
0.827433 - _- - 	2.500160_____ 2.828604 
1.377550 2.968223 1.845972 

= 2.001503 3.238536 0.864535 
2.660360 3.320502 -0.019541 
3.319115 -_ __ 	- 	--i-  3.244292 -0.701137 
	3.950754 	3.058539 	 -1.107617 	 
	 4.539044  	2.820307 1.230489 
	5.078874 2.581476 	 -1.127669 	 

	5.574027 2.377847 	 -0.895639 --L-- ---  
6.033460 2.225379 	 -0.630124 

- 	6.467573 2.123524 	 	-0.397376 	 _= 
	6.885580 2.062253 	 -0.226271 
	 7.294328 - --  2.028868 0.116904 - 

7.698241 2.012325 -0.054994 
8.099853 _- _ _ 2.004847 __- -- -0.023618 
8.500465 2.001756 	 -0.009278 
8.900679 -- 2.000586_ -0.003339 	 
9.300748 2.000180 	  	-0.001102 

- 9.700768 2.000050-----_-= 0.000334 
10.100773 2.000012 -0.000093 

- =10.500774 -0.000024 2.000002 	 
10.900773 1.999999 -0.000006 
11.300772 0.000002 1.999998-- _ 



SL, LI) 	 J (JO 

0. 0. -2.777293 
0.20 _-0.048456 -0.449067 -1.712617 
0.40 -0.165439 -0.685571 -0.658047 
0.60 -0.309002 -0.717512 0.316351 
0.80 -0.440576 1.090681 
1.00 -0.529627 -0.303265 1.536423 
1.20 0.558587 	_ ____- 0.015030 	__ 1.577937 
1.40 -0.525697 _ 0.302707 1.245427 
1.60 0.443771 - - 0.497635 0.681529 --=';'• 
1.80 -0.334681 0.573351 0.087110 
2.00 __-0.221614 0.542211 	- - 	-0.364617 
2.20 -0.122367 0.442682 -0.592161_ 
2.40 ;i-0.046109 0.319222 _ 	7.-0.613532 
2.60 0.006036 0.205858 -0.506159 
2.80  	0. 119629 -0.354688 0.038077 	- 
3.00 	0.055877 	 0.062967 -0.217227 
3.20 	- 0.064856 	 -- -0.030125 	

_ 
 - -0.118050 	- 

3.40 0.068981 0.013139 -0.057495  
3. 60 - -0.070712  	 	0.005235 	 -=-0.025254 	 - 
3.80 0.071376 0.001909 -0.010048 
4.00 =  0.071609   - 	 ±0.000639 -0.003634 
4.20 0.071685 0.000197 __-0.001197 
4.40 	- =17-10.071707 0.000057: - -0.000360 
4.60 0.071714 0.000016 -0.000099 
4.80 0.071716 - 0.000005 -0.000025 
5.00 	0.071716  	0.000003 -0.000005 

(I)   f3.(1) 
0. _0. 0._- 8.164328 

- 0.20 1.472866 	-- 6.564352 
0.40 	__ 0.567817 2.625820 4.965868 
0.60 	- 	1.181689 3.460034 - 3.380632 
0.80 	1.930953 3.981455 1.847559 
1.00 	2.754549 4.207693 	-- 0.445223 
1.20 	3.596757 4.175628 -0.715825 
1.40 	-- 	4.411506 	- - -3.944774 	-- -1.527406 
1.60 	5.166531 3.592020 -1.931577 ----=,--. 

-1.80E------==5.845581 	 3.197813-  - 1.953418 
2.00 	6.447432 2.829360 -1.695885 

- 2.20 	7=6.81908-:--- -_-_-=2..528697-1-  1.299206 
2.40 	7.464447 2.310372 	 -0.890413 
2.60 -- --------7.911132= --2.-=167829- --- --0.550335 _ 
2.80  	8.335469  2.083613 	  -0.308368 

- 3.00 	=== 	----- 8.747166 	-- 2.038392---  - --0.157222 
_ 	3.20 	9.152350 	 2.016255 -0.073136 

3.40 	9.554471 	- __-2.006353 -0.031105 _ 
3.60 	9.955272_ 2.002298 -0.012111 _ __= 
3.80 	= 	---10.355554 -0.004319 - --7-_::.2.000776 
4.00 _=10.755646, ,--.   2.000253 	 -0.001407 
4.20 	-- 11.155677 -------- 	-2.000090-------:-:-_ . 	0.000414 
4.40 	_11.555689 _.=__= 	  2.000044 -0.000104 

0.000015 - - - 4.60 	--11.955696 	 2.000034_ - 	_____  
4.80_.______ 	12.355702 2.000034 0.000009 _ _ 
5.00 - 	__=._ = 12.755708 0.000015 2.000036 	 

(q) 



0.012714 

- 	 = -- - 0.001293 -7 1= 
0.000360 

- 0.000091:' 
0.000020 
" 

-0.100634 
3.582296 -- 

0.004241 

5.833205 
6.394894 
4.968364 
1.770986 

-2.357725 
-6.042786 
-7.954419 
-7.519180 
-5.218922_ 

	

-2.232725 	 
	0.277622 	 
-1.704852 '  

2.073880 
1.774074 
1.226990 

-.._-7-_ -- 0.735266 _ -..:-_ 

0.384249 

I 	t 
/i 

j:3/ (1) 	 ( 1) 
	

131 (7) 

0. 	 0. 	 0. 	 -0.459910 
0.20 	-0.014528 	-0.171868 	-1.257071 
0.40 	-0.079218 	_ _--=-0.500339   - -2.014610 
0.60 	-0.224031 -0.968429 	-2.630804, 
0.80 	-0.473076 - : 	-1.532634 	- 	-2.945938 

, 1.00 	-0.838367__ 	-2.115060 	 -2.787401 
1.20 	-1.313228 	 -'-'-=-7 -2.609266 - 	-7- ===-7-- 2.060018- 

	

_ 1.40     -1.868822  	-2.905955   -0.843144 	 
1.60 	-7-  ---2.457423_ 	-2.932290 7---:-T--= 	--  0.583443  -±7 	
1.80 , 	-3.023282   -2.684387  	1.835459 	 
2.00 	-3.517391 --7 17- --7:77 	T-72.231213  =7---77= 	2.598367  17------L--7  
2.20   -3.909596 	-1.685379 	 2.763983 
2.40 	-4.192885 7 	- -:------1.158355  - --- 	-- -  2.442653 ----,.J-t--1 
2.60   -4.379321 	-0.725410 	1.864476 
2.80 	-4.4912707--- - ---===-0.414523 7 	±-±---r--7-=±  1.253803 ----7-' 
3.00    -4.552689 	-0.216434  	0.751615 _,___ 
3.20 - ----  - --4.583514  -----7-- 	-0.103378 	 ----- 0.404722  - -,',_---j- 
3.40 	-0.045223 	0.196824 
3.60 4 603651 	-0.018135,-  -=-- -, 	-  0.086785 
3.80 	-4.605959 	-0.006674 	0.034795 

	 -4.597681 
. -  

7-4.00 =- 
4.20 
4.40 

4.80 
5.00 

0.20 
0.40 
0.60 
0.80 
1.00 
1.20 

--1.40 
1.60 

- 	7-7- 74.606778 --  0.002256 	 
 	 -4.607046 	-0.000703 	 

-4.607126 - 	___ -0.000203 - - 	- 
4.60 :4.607149 ___ ._ -0.000057 

-4.607155 _ -0.000017 ttr1 -"--  
-4.607157 	 -0.000008 	 

1)_ 
0. 0. 0. 

	

-,_„L0.0247371- • 	-_ 
	0.188022 

-77-0.370208 	- 	- 
	1.337851 	 

0.- 5795921:,-=---,T1-_ --  
1.220365 3.764585 

_ 2.053847 
2.954996 

-4.463267 ___ 
4.410026 

r----E7- 3. 163412 3.550906. -17, 
4.336326 2.114665 

0.530181-'-±-7' 
	4.568013 	 -0.765162 	 
	4.330407-7-7-  77  1.510541 
	4.001859 	 -1.690970 
 	3.680669_  -  _ _ 
	3.424011 	 -1.081162 	 
	3.247986= 	 =_-0.689492 

3.141534 -0.393531 
- - - TIE.2_ -_-_-_1±-1.,, 	3.083887-1_1-- 	. ::- . - -0.200264 --.-5E 

3.055919 -0.091630 

2.00 
2.20 
2.40 
2.60 

3.00 
3.20 
.3.40 
3.60 

 _ 

- 3.80-1-  . 	--77-3.043680:_------::.-_-.±1---0.037896-- - 	7-- 	-.0.177910l'- 

	

-0.014218 	0.073690 
- 	--_=-_-70.004-848-I-1:7- -- 	-7   0.027485 

	

-0.001500 	~ 	0.009277 
	 --0.000415±±--   _ 0.002847 

	

-0.000094 	0.000800 
---_-.:_5.00----__=_:--E-- _=_ -, 	3.036283___ 	'7=-7--  -0.000007--,--_i• 	.. -- 0.000210 

4.00 	 3.038827 
r _. 4.20 	 --=-7 _±, -3.037078 

4.40 3.036505 
__,L_ 4.60 -=E-r-- 3.036336 -- - 	- 

4.80 3.036291 



0. 
-0.065209 
-0.285913 
-0.649950 
-1.085084 
-1.482042 
-1.736566 

	

0. 	 -2.661767 
-0.697718 ____ _ 	-4.030232 

	

-1.498007 	-3.693002 

	

-2.079579 	-1.857385 
. 	-- -2.177291 	- 	0.965575 

-1.701643_ _ 	3.675618 
___ _ -0.796743 	_ 	5.083572 

-1.794746 0.195130 	4.506437 _ 
-1.67853 ,_ 	0.891107-7-- 	2.260745 _ 	_ 	„7 _----- 
-1.473613 1.066790 	-0.467863_ 
-1.284424 	_ -7- 0.761717 _ 	-2.373039 

	 -1.184908 0.219468 	-2.813962 
----s" -0.279532- - 	- 	- -2.040176 -....-_i 	. -1.193582 	- 

-0.564247 	-0.801131 -1.282150 
-1.403465 - 	-0.614608. ......................0.222997 
-1.517623 -0.509982 	0.737294 

_ _ -0.358179 -  - 	_ 	 -0.790734 
-1.661322 -0.215121 	0.629560 

693301 --1.  - 	0.402974 - -0. 113163- -  
-1.709230 -0.052833 	0.219018 

_-77 716307 	- • . 
4.20- -1.719129 - - 	--1.720142 

_____- 	-0.008291 	0.043444 
- 	- -0.002801 1 	- 	- 0.016252 

-1.720469 -0.000840 	0.005472 
-1.720560 - -0,000206 	0.001675 
-1.720578 	 -0.000019 	0.000476 

0. 
0.20 
0.40 
0.60 
0.80 
1.00 
1.20 
1.40 
1.60 
1.80 
2.00 

_ 2.20 
2.40 
2.60 
2.80 
3.00 
3.20 
3.40 
3.60 
3.80 
4.00 

4.40 
4.60 
4.80 
5.00 

0.20  

- 

0. 
0.195063 

	

0. 	 10.551405 

	

1.871131_ 	- 	- 	8.168006 
0.717134 

- 1.474453 - 
3.272938 	5.869462 
4.228272----- 	-- =. 	 3.711153 

2.380851 
3.357906 _ 

4.770109  	1.744395 
4.943679_ -=---- 	--- ---- 	0.043418 ..,_ 	_ 

,   4.337916 _ 4.81.1844 	-1.292111 
-,i--,,--. 5.2.67781 - 	4.457574 	-- - - 	-2.168425 - 	---:_r-a-, 

6.112582 3.977829 	-2.547549 
- ---r_ 6.856978 - - ----- - ---7-L----=-- - 3.468409 	2.481698 _ 

7.503148 _ 	3,005933 	-2.105236 
- -8.065574 - 2.635683 - 	-1.587352 _ 

2.370468 	-1.075220 8.564476 
9.020041 2.199087-7 -----  -0.658557 

2.098654 	-0.366328 9.448840 
-- 	9.862612 - 	-- 	2.045081 	_ 	-0.185651.=- 

10.268698 2.019001 	-0.085922 
-10.671162 -- ----_-- 2.007390 	- 	 __ _ 	0.036386 
11.072092 2.002653  	-0.014119 

-11.472415 =---- -----0.005024 
_  11.872519 2.000273 	-0.001639 	 

12.272550 -- 	2.000082 	- 	- 	-70.000489 
 12.672559 _ -0.000131 	 _2.000027 

13.072562 - 2.000013 	--0.000028 
13.472564 2.000011 	-0.000001 	_ 
13.872566 	 0.000006 

0. 

0.40 
0.60 
0.80 
1.00 
1.20 
1.40 
1.60 
1.80 
2.00 
2.20 
2.40 
2.60 
2.80 
3.00 
3.20 
3.40 
3.60 
3.80 
4.00 
4.20 
4.40 
4.60 
4.80 
5.00 

J330 $33 (q) 

" _-"__ _•_ 	 _ _ 

- 	 LI) 
	

h bz) 



0 . 0. 
0.20 	-0.083700 
0.40 	-0.395664 
0.60 	-1.014485 
0.80 	-1.989107 	-5.790639 
1.00 	-3.322629 	-7.498806 	 
1.20 	-4.959885   -8.777001 	-4.826271 
1.40 	-6.786486  	-9.355753 	-0.843467 	 
1.60 	-, -8.646156 - 	_ =-9.101165 - 	 -- --f  3.332184 	 
1.80 	-10.375431  	-8.080332 	6.657173 	 
2.00 	-711.843819 --z-_- 	 -6.545544 E-T_=?,_ 	-8.395381------- 
2.20 	-12.982209 	-4.837851 	8.418489 	 
2.40   '---:--13.788166-1-±-": 	1-3.263996ll- 	 --7=----1  7.162392 -._---_- 
2.60 	 714.309566 	-2.011792 	5.319323 	 
2.80 	-14.618057- 	-7---- -1.133882 -1_1;"-----_,-  3.502420   
3.00 _  	 -14.785142 	 -0.584958   2.064303_ _____ 
3.20 --------3. 	- _-14.868057 '----- 	-0.276463  _-- _ _  	  1.096075 _, 
3.40   -14.905789 	-0.119811 	0.526755 
3.60 	--14.921547 	-0.047646:-------  - 0.229899 __ 
3.80 	-14.927591 	-0.017401  	0.091353 
4.00 	- -14.929722     0:005844-- 	-  	---_-:0.033109_  ------.  
4.20 	-14.930413 	-0.001811_ 	0.010954 
4.40 -14.930621 , -------71--    0.000527  __ 	 _ 	__  0.003301 - L: 
4.60 	-14.930681   -0.000155 	 0.000892 
4.80 	714.930700 - 	_ 	-0.000061 --- - 	_  0.000198 ,  -- 

	

_-__ 5.00   -14.930709  	-0.000044 	0.000012 	 

-0.915353_ 
- -2.271091 	 
-3.959322 

-3.390438 
	 -5.735332 

-7.732922 
-8.991395 
	-9.097034_ 
	-7.722163 

7 	 
o . 
0.20 
0.40 
0.60 
0.80 
1.00 
1.20 

	

0. 	 0.   5.578662 
	 0.111586 	_ 	- 1.116048  - 	5.584895.- 
	0.446682 	2.236219 	5.624425 	 

---=  1.006914 _ 	--3.368945  _    5.708934 - -- 

	

1.795505 	4.519673 	5.787329 

	

==-2:815002 	 5.681238 --_ 
	4.060044 	 6.758016 	 

1.40 - 	75.5045767-_,  	- 7.637588=t-1=--f-i- .,,,_4-t----:  3.567038 -  _ 
1.60 	7.088405    	8.117741   1.084124 _ 
1.80=------------ 	- - 8-._713455  _ ____    -__8.028897-17  	-2.018236 -=--_; 
2.00 	10.258346 7.321905  	-4.947566 

i 	2.20 : 	11.608733 - -- __ 
	

-=6.117301 	-6.880410 -: - 
2.40 	12.688718 4.665351  	-7.399510 
2.60   13.477013 -__ 	_______-3.242838- 	  6.651800  = -  
2.80   14.001702   	2.053900 	 -5.166448 	 „,-- 
3.00 - - - 	-  14.320201  1------- 	  1.185889_1-  _  	  3.529654___==  
3.20 	14.496631 	0.624639 	 -2.144491 
3.40 	'III- 	114.585879 	=   = 0.300417------ ---- - 	-  -1.167339 	 
3.60    14.627143 	0.132039    -0.572299 
3.80 r-='=_- 	7-7 14-.:644594 -- 	---=0. 053077-1-1_1_ 	-11-_-_177.0.253676  
4.00 	14.651350 	0.019529 	-0.101966 

= 4.20 :, 	_ 	_L14.653746 	 - 0.006581=-___- 	-0.037255 
4.40 	14.654525 	0.002032 	-0.012398 
4.60 _ 	_-_. _ 14.654756 - -1- 	0.000574=fisj-- 	-0.003764 
4.80 	14.654819 	0.000148 	-0.001045  
5.00 ' : -:- 	- .-='s-  _14:654834 ---  	- 0.000033_  _ _________  _ 	0.000266 



	

 	 0. 
	2. 140779-T-71'j-- 

 

9.716530 
12 . 584850 

 

171t. 
1- 43 tit) .ht 3 ( )  

0. 	 0. 	 0. 	 -9.600487 
0.20 	-0.19662'i- 	-2.000223 	_ 	-10.620522 
0.40 	r  -0.822344 	-4.333190 _ 	-12.899480 
0.60 	-1.966217 	-7.207728 	-15.918193 ...-. 
0.80 	_ -3.744739 	-10.658138 	-18.307141 
1 .00 	-6.245353 	-14.327799  	-17.676284 
1.20 	.. _ -9. 434625 _.- - 	- -17. 365379  	_ 	-11.701767___L„ 
1.40 	-13.072027 	-18.617087 	-0.021843 
1.60 	IT::-16.700682-.-   
1.80 	-19.765555 	-13.074771 	25.857161 
2.00 	.._ -----1.  _T-21. 822335 . .. _ - --_-_-- - -7.361875 .-__ 7.i-- --- _zzi 29.812458 -- -- 	_ 	:.--,..---   	 _ _ _. 

2.20 	-22.716153  	-1.730777 	25.273546 
2.40 - _ _, _ ___ - -22. 61 7606  ,„-.__:_:,_ 	2 . 383405-  :-     	15. 400114 	- 
2.60 	-21.904970 	4.393603   	4 .990683 .,, 
2.80 	z-  - -- :7-  -20.982309 7- 	=1----  4.586509 	 z-'7=---7-  v _ -2.393098 	- 
3.00 	-20.141400 	3.713202  	-5.705148 -,.- 
3.20 	. 	 -19.514518   - - 	- '--"r"  2. 551303.7.----   ----- 	. -5.766614 
3.40 	-19.112274 	1.519284 	-4.448189 

---. 3.60 - - -=- 	- -----=-18. 886289-E-  ---- --r----- -- - - -   0. 797948 -=-.z==t..---=--='----i-  -2.816059 
3.80   -18. 773607 	 

 

0.373574 	 -1.527685 

 

    

	

4.00 	18. 723317 - 	0. 156942- - 	- 	-0.725860 

	

4.20 	-18.703124 	0.059368 	-0.306036_ 

	

4.40 	-18. 695319 	- - 	0. 020172 	_ ____ 	-0.115550 

	

4.60   -18.693459     0.006011    _-0.039412 

	

4.80 	-18.692813 - 	0.001363 	-0.012330 

	

5.00 	-18.69271 0 _ 	-0.000058_ _ 	-0.003709 __ -- 

  

1 I I 
egeq) 

       

O. 	 O. 

	

0. 	- 	- 0. 204336- 

	

0.40 	... 0.924019 

	

0.60 	 400355 	 

	

0.80 	 4. 838040 

	

1.00 	_ 8.1 97337 

	

1.20 	12. 041651 

	

1.40 	- 	_7-  15.580035 

	

1.60 	__17.969444 

	

1.80 	_..-- 	18. 7412 03  

	

_2.00 	 _._J8.__ 	061667 

	

---- 2.20   16. 619324 	 

	

2.40  	15.221713 
zy- 	-- -2 . 60 - 	----7==14.  398502 	-; 

	14.253397 

	

3.00 	--   14.578935 Ti- 

	

15.0821111  	

	

3.40 	r:- 	15. 561184 

	

_ 3.60 	15. 913400 

	

3.80 	16. 129231 	- 
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