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ABSTRACT

When a fluid flows through a curved pipe, a secondary
flow is set up, the fluid in the middle of the pipe moving
outwards and that near the walls moving inwards. Near the
entrance to the bend, the secondary flow changea a great
deal and in some cases appears oscillatory. If the bend
is of sufficient length, the changes in secondary flow are
damped by viscosity and a region where the flow is fully
developed is reached. It has been shown theoretically
and experimentally, that the dynamical similarity of fully
developed laminar flow depends on a non-dimensional para-

meter
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where WO is the mean axial velocity, v i1s the coefficient
of viscosity and 'a'! is the radius of the pipe which
is bent into a circle of radius R .

The first part of the present work investigates the
particular case of entry flow where the viscous forces
are not dominated by the centrifugal forces. The second
part investigates the fully developed laminar flow region

for small and large values of the parameter Kw . The
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effects of ftorsion in a coiled pipe are discussed and
theoretical results for the increase in resistance due

to curvature are obtained for pipes of small and large
curvature ratio k defined as k = /R . These results

are used to determine the point at which the flow separates
and it is found that the theoretical results agree reasonably

well with the available experimental observations.
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CHFAPTER 1

Introduction to the physical problem

When a fluid flows through a curved pipe, a pressure
gradient is required across the pipe to balance the centri-
fugal force arising from the curvature. The pressure at
the outer wall (i.e. that part of the wall furthest from
the centre of curvature of the pipe) must be greater than
that at the inner wall. The fluid near the wall of the
pipe is moving more slowly than the fluid some way from
the walls and hence the pressure gradient is reduced.

Ag a result of these different pressure gradients,; the
faster flowing fluid moves outwards, whilst the slowex
flowing fluid moves inwards. This flow is known as the
secondary flow and it is superposed on the main stream.

In the case of a circular curved pipe lying in a horizontal
plane, the fluid in the widdle of the pipe moves outwards
and that above and below it, moves inwards; thus the
resultant flow is helical in the top and bottom halves

of the pipe.

The secondary flow has the effect of shifting the
high velocity region towards the outer wall and creating

a much thicker layer of slowly moving fluid at the inner



wall. The total frictional loss of energy near the walls
of the pipe is, however, increased and the flow experiences
more resistance in passing through the pipe.

The flow in a curved pipe can be divided into three
regions. At the entrance to the bend, the upstream
velocity distribution is modified in the 'inlet region'.
The velocity distribution at the point where the bend
begins will be called the injection velocity; it may be
formed by a preceeding section of pipe or by the flow of
g fluid directly into the pipe. If the bend is of
sufficient length, 'fully developed curved flow! will be
established. In this region, the velocity profile is
invariant with axial distance down the pipe. Towards the
end of the bend, this velocity profile is again modified
in an toutlet region'. If the bend leads into a straight
pipe, the effect of the bend may extend to an order of
50 diameters downstream.

In the majority of engineering situations, bends are
generglly restricted to right angled or 180° bends and
there is no fully devéloped region. There are, however,
some situations, such as in heat exchangers, where a pipe
is wound into a coil; the flow in such a coil does become
fully developed if the coil is not wound too tightly.

Also, the flow in these pipes is nearly always turbulent.
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Because of this, the theoretical work carried out to
date - most of which concerns itself with laminar flow
in the fully developed region - does not have many
applications to engineering problems. As a consequence,
the study of laminar secondary flows has been neglected.
Renewed interest in these flows has emerged, however,
due to the fact that the flow in the cardiovascular
system is usually laminar. In contrast to the requirements
of engineering, where the increase in resistance due to
curvature is mostly sought, a knowledge of the velocity
distribution is required in the study of cardiovascular
systems so that the distribution of injected substances

may be better understood,

Historical Survey

The first theoretical study of flow in a curved pipe
was carried out by Dean (4,2), who pointed out that in
laminar flow, the dynamical similarity in the fully
developed region depends on the non-dimensional parameter

- the Dean number -~
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where WC is the axial velocity at thé centre of the
pipe, Vv is the kinematic coefficient of viscosity and
a 1is the radius of the pipe which is bent into a circle
of radius R . He derived a solution of the equations
of motion by considering the secondary flow as a small
perturbation upon the Poisewille flow. BExtending his-
solution so as to include the dominant fourth order terms,
he calculated the flux as a function of Ky . This
expression was found later to be accurate for values of
Kp wup to 162,

The experiméntal results of White (3) in 1929 confirmed
that in the laminar region, the parameter Ky adequately
defines the flow. He introduced a more convenient

parameter

where WO is the mean axial velocity and showed that the
critical Reynolds number at which the flow becomes
turbulent, increases with the curvature ratio. It can

be shown that for sufficiently small Kw , it is related
to KD by

B s

N
Kw'"J/QKD )
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He also obtained an empirical formula for the

increase in resistance in a pipe due to curvature

I o) -1
Yq . 0045}25b2
el = 4 _ {1a.06
== 1 { 1 { 7 ) , (1.1)

rd

valid for 11.6 < Kw < 2000 , and showed that the flow
can remain laminar for values of Kw up to 5000
(Goldstein (4), 1938).

In 1937, Keulegan and Beij (5) summarised the
experimental results of White, Taylor (6) and Adler (7)
for the critical Reynolds number, in the curve shown in
fig (1.1). Curve I gives the minimum critical Reynolds
number with disturbed inlet conditions and is based on
the work of Taylor, White and Adler. Curve II was derived

by Keulegan and Belj with a special inlet design to
minimise disturbances. It is interesting to note that
with a sufficiently long bend, it is possible to have
turbulent flow at the inlet leading to laminar flow in
the bend.

Adler, in 1934, deduced that for large Kw , the
viscous effects tend to be restricted to a boundary
layer on the walls of the pipe. He assumed that outside

the boundary layer, the surfaces of equal total pressure
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Pig. (1.1). Critical Reymolds number for fully developed
flow in curved pipes. Curve I after Taylor, White and
Adler, Curve II after Keulegan and Bel] with special

inlet designed to minimise disturbances.

were perpendicular to the plane of the pipe and obtained
a simple velocity distribution for this region. Applying
a. Polhausen ( 8) method to the momentum equations in the
boundary layer he obtained an expression for the increase
in resistance due to curvature. Baruz (9) and Mori and
Nakayama (410) made similar assumptions and obtained more

accurate values of the resistance. These theories will
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be considered in detail in Chapter 6.

The work so far carried out in the inlet region is
by no means straightforward; there are large discrepancies
found in the results reported in the literature for losses
in the flow of a fluid through right angled and 180°
bends. The reason for these discrepancies is that the
upstreanm conditions have a large effect on the downstrean
flow,

Yost of the theoretical work carried out to date
‘assumes that the inlet velocity profile has been formed
by viscous forces acting in a preceeding length of straight
pipe. It is then assumed that in the inlet region, the
centrifugal forces dominate the viscous forces and that
the viscous forces can be neglected. Thus, in the
initial stages of a bend, secondary flow is generated by
the centrifugal force. A physical explanation for this
phenomenon was offered by Squire and Winter (11) as
follows: if a small elemental cylinder of fluid is
considered such that its axis is normal to the flow and
in the plane of the bend, and if it has a rotation about
its axis, the axis will be turned about an axis perpendicular
to the plane of the pipe as it proceeds down the bend
and it will set up a rotation about an axis perpendicular

to the other two, by analogy with the gyroscope. They
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obtained a simple formula for the generation of vorticity,

namely

de:=2wn@G y
where ) 4 is a measure of vorticity in the direction of
the flow, W) n is the component of vorticity along the
radius vector generating the streamline and © measures
the axial distance along the streamline. This result
applied only to a streamline, but was found to be
approximately representative of flow in the inlet region
of a pipe of very small curvature ratio.

In the same year Hawthorn (12) extended the under-
standing of the generation of vorticity by considering
the effect of centrifugal forces on the Bernoulli surfaces.
He deducéd that no secondary vorticity would be produced
if the Bernoulli surfaces were perpendicular to the
radius vector generating the bend.

The flow in the outlet transition region is even
more complicated and the results have been restricted
almost entirely to experimental results.

A detailed review of the experimental work on losses
due to bends can be found in a paper by Hawthorn (13);

much of the work is restricted, however, to turbulent
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flow, whereas this thesis will be concerned with laminar

flow.

Degcription of present research.

The object of this thesis is to investigate in
detail a type of entry flow not as yet considered and to
analyse and extend the theories of previous workers in
the study of fully developed laminar flow. The basis of
this study will be the Navier-Stokes equation of motion
and the equation of continuity for an incompressible,
viscous fluid. These equations are written out in a
convenient coordinate systemn.

Although previous theories of flow in the inlet
region neglected the effects of viscosity, there are
certain cases where this effect is not negligible and
others where it 1s dominant. Such cases are those where
the fluid is injected into a bend so that, in the initial
stages, secondary vorticity is generated by the viscous
effects at the wall and not by the centrifugal forces.
Clearly, as the injection profile is distorted, centrifugal
forces act in the regions effected by viscosity and as
this region grows eventually occupying the complete cross

section of the pipe, the centrifugal forces can, for large
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Reynolds number flow, dominate the viscous forces over
most of the crogs section. In the first part of the
thesis, the type and subsequent development of such
injection velocities is considered.

In the second part, the fully developed flow region
is investigated for the two cases of low and high Dean
number flows. The flow in pipes of large curvature ratio
is considered and torsional effects, which are a practical
consequence of large curvature ratio pipes, are discussed.
A more accurate solution for flow at low Dean numbers is
derived so that the increase in resistance due to curvature
can be found. The investigation into the flow at high
Dean numbers follows a similar line of approach as previous
theories. It is, however, extended to include curvature
effects and to satisfy more boundary conditions. Finally,
it is hoped that a better understanding is obtained of
the assumptions made and the results derived from such

an approach.
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CHAPTER 2

The Coordinate System and General Lguations of Motion.

The two coordinate systems used throughout this thesis
are illustrated in fig. (2.1). The surface of a pipe of
circular section, coiled in a circle, is a torus; the

figure shows Oq , the axis of the torus and a section

of it by an axial plane that makes an angle € with a
fixed axial plane. The radius of any cross section is 'a’,
and R is the radius of the circle in which the pipe is
coiled; the distance along the pipe axis from the fixed
plane is thus Re = s . The position of any point P

is specified by the orthogonal coordinates (r, ¥,s)

and the corresponding components of velocity at this point
are (u,v,w).

The alternative coordinate system (r1,®,z) that
will be found useful is also shown and the corresponding
velocity components (u1,w1,v1) . It is also useful %o

xhibit the corresponding vorticity components for this
particular system as (u)n,nat,ujb)

If v is the coefficient of kinematic viscosity

and p and p are the density and pressure respectively,

the Navier-Stokes and the continuity equations for a
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Fig. (2.1). The (r,¥,s) and (r1,@,z) coordinate

systems.
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steady incompressible fluid are

where

vacurl v = grad (% + %gg) + v curl curl v , (2.1)
div v = 0 , (2.2)
)
vy = (U.,V,W) ’
N I . o L (o }
div v = rh{ ald(rhu) F Sy (bv) - == (rw) t ,
8
A ? A ?LGB)
_ . i rY hg
curl v = =
/o sy %es
u rv hw
J
n=aq.zsint (2.4)
R is the radius of the pipe bend.

and

The full equations of motion depicting flow in curved

plpes can then be written as
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(2.5)
0 §) 4 2 1 0
oV Yoy WOV opWw ,oouv _ 40D
UaT ! > 9% " h 9s r * r pr AY¥
v |d 170 6l h,0 ou
T h '5'5{53 Fp(hv) -3 (fV))} - W{;(ﬁ(fV% )} (2.6)
Qw ¥V 0w , W 3w L Bvw _ 1. 2p
Uy YT T mgs T OW T S - O 3s
L .2. _(‘;?__ £ [ _a___ _:L O . . "
S [ar{h( B ar(hw))} 5¥ {rh(d‘f(hw) s (IV))} (2.7)
s=(rhu) + g---(hv) + 2 (rw) = 0O (2.8)
or a‘f’ os ’
where
-l gh _ j_ oh
R and § = h TF (2.9)

The problem 1s now to find solutions of these equations

subject to the boundary conditions; these require that



the velocity (u,v,w) should be zerc at the surface of

the pipe,

i.e, u=v=w=0 at r=a, (2.10)

and that the flux through any cross section of the pipe

is constant.
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THE FLOW IN THE INLET REGION

OF

A CURVED CIRCULAR PIPL
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CHAPTER 3

Introduction

If fluid is injected into a curved, circular pipe
so that the axial velocity is initially non zero at the
wall edge, an infinitely thin boundary layer is subseguently
formed round the walls of the pipe since the velocity at
the wall must be zero. The thickness of the boundary
layer will increase with distance downstream eventually
Tilling the whole cross section of the pipe. Until this
happens, there is a core of fluid effectively uninfluenced
by viscosity. Since the flux across any cross section
is constant and the boundary layer thickness is increasing,
this core is accelerated and there is a corresponding fall
in pressure.

The pressure is also altered if secondary flow is
generated in the core, the condition for which -~ as will
be seen later - is that there is a component of vorticity
along the radius vector generating the pipe.

The fully developed flow is theoretically attained
asymptotically; because of the complicated nature of the
flow, however, a solution is obtained which is wvalid only

for a short distance down the pipe. In this region, the
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effect of curvature on the developing velocity distri-
bution is investigated.

The method used here is similar to that due to
Goldstein and Atkinson (14) for the corresponding problem
in a straight circular pipe. They derived a series
expansion solution in ¥ , where § is a non-dimensional
parameter defining distance down the pipe. The series
obtained is found to give reasonable results when compared
with the experimental observations of Nikuradse (15), for
values of } up to 0.05; there is, however, some
discrepancy very near the entry probably caused by the
singularity in the solution at § =0

The solutibn obtained from the present analysis
includes that of Goldstein and Atkinson as a special
case (i.e. when the curvature ratié is zero and with
constant velocity injection) and for small curvature
ratios, the solution probably has a similar region of
validity as .that for a straight pipe. TFor large curvature
ratios, however, it will be seen that the region of validity

is necessarily reduced.
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Boundary Layver Equations

The problem is considered for large values of the
28V
and the approxi--

Reynolds * number defined as Re =
mations usual in boundary layer theory can be applied to
equations (2.5)-(2.8). Thus, if the boundary layer
thickness is taken to be of order Re“1/2 and terms of
order one and Re~1/2 are considered to allow for a
growing boundary layer, the equations representing the

motion in the boundary layer are

wgw .y Qu L wow , awr , By _ _1 00 , |28, (Ligdu]
5T " T oy T h ds T F T T PR es T V[ar? N (a+a) rl ’
J

(3.1)

v2 1 dp

—F-l-O(,W :"p'ary (32)
ugy..‘.l.a..g-}.ﬁﬂ +EX_B£—QJ_.§_E+V.§_?_E4(.1+OC)§£
or r 3y h 0s T r  pr Oy 6r2 a T

(3.3)

together with the equation of continuity
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(rw) (rhu) | 2 _(nv) _ 4 . (3.4)

a_ 2
ds or b d

Continuing a conventional boundary layer analysis,
it is clear from eqguation (3.2) that the pressure variation
can be neglected across the boundary layer. Since this
approximation yields only third order differential equations,
nothing can be said of the behaviour of the radial component
of velocity u some way from the wall of the pipe.
Consequently, the analysis will break down if terms
containing wu , which do not tend to zero away from the
wall, are retained.

One such term is auw in equation (3.41), but this
may be rejected if the curvature ratio is such that terms
of order Re—1/2(%) can be ignored relative to terms of
order Rem1/2 and one, Terms of order Re“1/2 were
retained in equations (3.1)-(3%.4) so that the analysis
would incorporate the theory of Goldstein and Atkinson as
a special case, obtained by letting % - oy ., Thus, for
small curvature ratio, the terms of order Re“1/2(§) can
be rejected whilst retaining comparable accuracy to that
for a straight pipe. If, however, % is of order one,
the analysis can be continued without terms of order
ReM1/2(%) , but the results obtained will be valid for

a smaller region because of the reduced accuracy of the
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equations; a consequence of retaining some terms of
order Re /2 and rejecting others.
The only other term that will create difficulties

in this respect, supposing there to be no initial

secondary flow, is u%% . This is because the axial

velocity in the core is, in general, a function of r .
The nature of the complications that arise will be

considered as and when they occur.

-1
Rejecting terms of order Re /2(%) , equations (3.1),
(3.3) and (3.4) reduce to

uovl vV 0w W oW 1 3dp W 1 0w
gme b o= e g = = - ==+ Y| = e .
or r oY h, 0s a pﬁg ds ar2 a or{ ’ (3.5)
wy  vov, owov o' w4 2p, |oaly, 10v
or r Y ho 08 a a pT 3y 31 a or
(3.6)
9 (xw) 8 (rhu) 3 (bv) _ , (3.7)
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oh
- ; = A 0
where h_ =1 +}X sin¥’  and Bo“ho R
Since the variation of pressure is being neglected
across the boundary layer, the pressure is determined
from the inviscid flow in the main stream which is the
core. IT Wy is the axial component of velocity in the
core and there is no secondary flow in the core, the
pressure in the core can be obtained from
axv1
S

= ~W ch——

19

o) K¢
(a3 {ay]
0} o}
]

@
T
\J

7 (3.8)

C
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-\

o) =Y
3k

- 2
= W
Py

A

The condition that there is no secondary flow in the
core imposes restrictions on the type of injection
velocity. The class of such injection velocities is
considered next.

Clearly there must be no initial secondary flow and
the initial axial component of velocity must be such as
to generate no secondary vorticity.

Scorer and Vilson (16) obtained an equation for the
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generation of vorticity in a curved streamline and for
an inviscid, incompressible, counstant density fluid, it
takes the form

(w-f) =X Wy (3.9)

S

where ¢q 1is the fluid velocity along a streamline, W
is the vorticity component along the streamline, QJKL is
the vorticity component along the radius of curvature of
the streamline and X 1is the curvature ratio of the
streamline., Ior pipes of small curvature ratio, the
streamlines are approximately parallel to the walls of
the pipe and equation (3.9) can be applied to the fluid
in the core of the pipe. It is seen from this equation
that no secondary vorticity is generated if LJ]& is

zero. Thus, using the (31,Q,z) coordinate system of

fig. (2.1), no secondary vorticity is generated if

S Il U R 3
W, = -5 == 0 . (3.10)

In the same coordinates

au1 Ov1
We =35 - =0, (3.11)

or
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since initially (0, 1is zero by definition and by (3.9)
and (3.10) no seoondary vorticity is generated. It is

therefore possible to see that a necessary condition for
u1 and vy and thus v and v %vo be zero in the core,

throughout the region under consideration, is that

w, = w1(r1,Q) . The reason for this is that if w was

1

a function of 2z , then v would have to be a function

1
of © , which is not permissible.

For pipes of large curvature ratio, the streamlines
are not approximately parallel to the pipe wall and the

full vorticity equation has to be considered; namely

@ (W.grad)y . (3.12)

ofe

Since no secondary vorticity is to be generated in the

core
ow ow ow
W, 1 .w 1. S T
maT, s 78 W g = 0, (3.13)

where (u%,u%,u%) are the components of vorticity
corresponding to the (r1,0,z) coordinate system. Then,
because UJS is sero initially, w  must be zero in

equation (3.13). Thus, since
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W 1 0 au1
Tl RS (5.18)

equation (3.13) can be written as

(;L v, awi) aw1 . (6w1 . zl ) 331) aw1 6

T, 06 0z ar1 621 Ty 06

or
1 av1 aw1 . zl aw1 ) au1 aw1 . 3 15)
r1 06 ar1 r1 093 06 9z ¢ °

Again it can vbe seen that a necessary condition for u,
and vy and thus uw and v +o remain zero in the core
as the fluid flows into the bend is that w, = w1(r1,Q)

This condition, however, is not sufficient as can
be seen by considering the continuity equation in the

(r1,@,z) coordinate system

ow ov
9 (r,u O 1 _
= 177 4w T = 0 . (3.16)

1

For, if w, = w1(r1,9) , equation (3.15) yields the fact

1 ‘is independent of © . DBut v, is zero over

the whole cross section initially and thus is identically

that v

zero throughout the core region. It can be seen therefore,
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ow
from equation (3.416), that if «51 is non zero, there

i}
must be a contribution from uy . It is assumed, however,
in what follows, that this contribution is negligible

relative to the terms retained in equation (3.8).

Transformation of Coordinates

So long as a core uninfluenced by viscosity exists,

the following non dimensional variables may be formed:

1
/2 2 2
2 -
¥ = (aIS{e) , 1= je a§§ (%3.17)

where Re 1is the Reynolds number defined as

2a WO
v ?

Re = (3.18)

W, is tﬁ;i;Zén axial velocity and € is a function of
¥ to be determined later.

Bquation (3.7) using the above transformation can

be satisfied by introducing two non-dimensional stream

functions f and g and putting
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_ .9 &
YTy 0
r W
0 28
V= 9T H3IRe g (5.19)
oo y1ar 408, 12 (eg) _nde
rh_ Re | y 0F 52 on € 0y e d¥ oq

Transforming equation (3.5) and (3.6) and applying
the results of (3.8), (3.9) and (3.19),

29 ¢ £y £ £, | £ i § IR L
(1469 1)=F Tpqq * Ly fqq = I | fqx - 5] =4+ 5r

4h T ) f,,l.g 5 (eg)
so f’l'l * Bo§g717 +}'g,(f“, " {s ay 0, (3.20)

+

2 b Eq
- 5 1
= f{ezﬁohg ¥ (4§Lw§~f,2£) + (1..451})[45}(1-—a0)(1~48r(§) /2

4h 1
Pt g (e 24 ~ng+ (1-4eq 1) /% x

{48206(){2(2—0(0)(1-—48'[}) + 285(1—-050):% -2¢ }(1-—&0))&
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+ (1~48Q})(gqyf~-ﬁogq)g? ; (3.21)

in which a literal suffix denotes, as usual, differentiation
with respect to the appropriate variables and where
Wy = WO w, and a, = lﬁ§%fﬁﬂ o
The boundary conditions on f and g must be such
as to allow uw =v =w =0 on the pipe wall and w = Wy o
v = 0 at the interface of core and boundary layer.

These are satisfied as follows:

:grzzfvgr-gy,zo a't'z=os

1

f-,? -—>2§wo, g,z—*}O as # — D,

(3.22)

Expansion in Series

Equations (3.20) and (3.21), subject to the boundary
conditions of (3.22) may be solved by expansions in series

of powers of § . It is assumed that f , g and w, are
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analytic functions of ¥ , so that

o0 (o ¥ oD
n n n
fzifng ’ g=§ &n% o Wc:ZKn7§
n=1 n=- n=0

where f , g and K,  are functions of 7 and f’

(the latter being obtained from expansions of r from
1

r = (1-4eq §) /2). The boundary conditions of (3.22)

then become

of og
_ n _ I < R -
T = a.z = 8p = R 0 at ’z =0,
(3.23)
of dg
n n o
.5_;[“%21(1’1“1’ 7—--90 as!(-—->DO_Lor n > 1

Substituting the above expansions in (3.20) and
(3.21) and equating coefficients of like powers of §

the terms independent of ¥ yield

3 2.
h_o°f 0T
0 1 1 _
T 1
ho 03g 62g1
m-—2- 3 + f1 '“""’“2“’ = 0 ® (3025)
€ aq on

Before continuing, a more detailed investigation of the
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expansion of the core velocity is required.
The core velocity is a function of r , Y’ and s

and it can be expanded as a power series in [ as follows:

= K, (7)) + (K, + K, (N +[Ky0 (M) 4K, (M) 7 Ky (V)2 115+

Yo
(3.26)
The coefficients of F are of the type shown in view
of the form of the expansion for r . Also, KO(Y) is

non zero for all 0 < ¥ < 2n , since it was assumed earlier
that the injected flow is non zero at the wall edge.

Returning to equation (3.24), it is seen that since,
at § = 0 , the flow must approximate to the Blassius

flow, and since f1 must tend to 2KO(%7 as N —> ==

£, = K ) £.00) (5.27)
hO
. =jm) , (5.28)
and
By + £ Mo = 0, (3.29)

where fw(o) = f;o(o) =0, f1io(7) —> 2 as r( —_— D
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and a prime is now used to denote differentiation of a
function of one variable with respect to that variable.
Using (3.28), equation (3.25) can be solved in

terms of f10 as
g,() = Af, 5 + B = C . (3.30)

The boundary conditions of (3.23) are such that
A=B=C=0 and so

g,(n) =0, (3.31)

Tquating the coefficients of the E terms from
(3.20) and (3.21) and using the results of (3.31) and
(3.28),

) 8°f or.,
e e e—— 1 e 11 - - . .
K | =3+ 07 fo 7 + om0 £, 4K, K+ 4eK
1 7
(3.32)
0’8, 0%, b
o7 P o s Howy T O (5.33)
1 0

The solution of (3.33) with the boundary conditions

of (3.23) is g, = 0 (see Appendix to this chapter).

<

T ™10

ot
+ 110),
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Equating coefficients of like powers of ¥ wup to } 4
using &y = 8y = 0 and 3.28,

{ a3f3 a2f3 , af i i ? )
K + f - 2F1 2 4 3fM £ | = _4(K “+2K K
01,623 10 512 10 37 10 3 1 o2
0 V2 3 2
3°f of { 97f 3cF
~ of, 22 +(a’22) + 48[? 32 + 22} , - (3.34)
ari arz arz
g 3% dg ot, \°
3 083 9851 2. .2 2 ( 1)
K + f ~ 2f! = Re“B h° | 4K — ,
o) 3‘13 10 6»22 10 57 e} o{ 0 azz
(3.35)

” 10 377 10 77 10 T4
2%t 3¢, 50f, 0f 878,  8°f
_.2£2 _..x.g?_,. - 3f3 2!— + .5...._. e 4-8 ?-—-3;2 + -—-722 ,
o1 o1 (A 7
(3.%6)
2
37¢g g dg 2ar, af,
4 4 2 2 _ 1 2
X ;,—F_ + f1o-a=7?—2-— - 3”0’6’7{" = Re (301’10 f_"}KOKJI _“87 -*——67
2 2
af, |2 0°g af, g 3°g
. 1 =3 272 3
“487{“0“('57) ” - 2%, R T A '6'73' (6-2a)
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From the form of the expansion of w from (3.26),

c
solutions for fn of the form fﬁ + FIl are required,

where

o))
H
=Y

— 2Kn__1so SO

@
~3

oF
n 2 . n-1
67 > 2[?1Knn1’1(%7 + Kn~1,2(*3 toeeo Ty Kn~1,n~1]’
for n » 2 . If the f> and F, can be found, the boundary
layer flow will match exactly on to the core flow.
Unfortunately, the £F  cannot be determined from
an analysis of this type due to the fact that inconsistencies

arise in the equations for large 7 . This can be

1llustrated by considering equation (3.32). For large
Q ’

(27+131)2K11 - 4(K1O+7KH) = —4(K1O+7K11) ,

where B1 is the constant of integration obtained by

integrating the boundary condition f%o = 2 , This

equation is satisfied only if K11 is negligible. The

term (27 +B1)2K11 arises from u%% in equation (3.5)

and it can be seen that equation (3.32) could be made
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consistent if the axial momentum equation in the core

wag taken to be

udw oW dw _ _ 1. 00
dr  h 0s ph 0s

The complications that arise by considering the more
exact equations in the core are, however, manifold and
deemed impracticgl because of the nature of a boundary
layer analysis.

Since the g, are functions of the fn y 1t follows

that any inconsistency in the determination of the fn
will effect the g, - It will be seen later that the
Fn need not be determined if only the behaviour of the
core flow is required. In the calculation of the skin
friction and the limiting streamlines, however, there is

a contribvution from the I but it will be assumed

n
negligible. The errors involved in this assumption will
vary depending on the form of the velocity distribution
in the core. It is probable that an accurate estimation
of the error will be obtained only by comparing the
theoretical results with possible future experiments.
From the form of the equations (3.32) - (3.37),
the functions £, , € and f10 , and the boundary

.1
conditions on fi , 1t is clear that f§ R f? ) fﬁ ’ €3



42,

and 84 can be expressed as linear combinations of

functions of Q with coefficients in functions of ¥ .

They are:-
f§ = Kyofo0 * €fpy >
® o - z2 , 2
f3 = (K20K0f30+K1Of31T€K1Of32+£ 133)/1{O ,
%o . - 3 2
£ ..[K30K0f4O+K1OK20f41+(K1O/Ko)f42+(sK1O/Ko)f43
+(e2K, /KN, +eK, L, ot(e2/K )E, - | /K ?(33
' 10/ 0/ 447 720745 0’146 o’ .
2 2
g3 = Re BO ho KO gBO , ‘
\\\
= Re®B WP | K, @, ntEE ,,+EK &, o+ (X _/e)g, K o € |
gg = Re"Bohg | Kyo80T 844 TEK 80T E8 45t \ R0/ E1EY 4000585 g

If the differential operators Dn and Ln are

defined as

3 2 ’
d d d
L o= = + £, =5 ~ (n-1)f!y g5 + nfy ,
n dQB 10 d?d 10 dn 10
.
D = QZ + f QE - (a-1)fl, &= 2
n T e 10t 10 dq

the fij(q) and gij(q) satisfy the following ordinary
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differential equations which can be solved numerically:

LZ f20 = ~-4— 3 L
(3.40)

\
Ly T35 = -8
Ty fu, = <4 + £12 . of__fu
3 T34 20 o0t20 0

F(3.41)
L

5 T30 = =20,0f%, = 225, 8% + 20h0Fh, + 4(NTR+EY,)

f>
— 1 - L LR
Ly T35 = =285, 8%, + £15 + 4(pfy + £9.) ,

L4 f4o = .;.12 y

Ty fgq = 12 = 20,0080 = 3250000 + SE4TL
Ly 40 = =20, = 3T 840 + 3Lh0E8.
by Taz = wBpofhp - 3Egpfho  3ThoThy - 25Ty b (5 40

w334 Thy + 3L T4y + Al Iy,
o Faa = mEp0 Tz - 3E55Th0 + 3Thofhs - 20,58y,

BTy + 3L 0L, + A T, 4£8)
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L, £45 = -20p, 8% ~3E50f%, + 314,84 + 407 MG+TYo),
H(3.42)

L, 45 = =205y f%5 = 3fg3f%, + 3£h,f45 + 4(n fgg+fg3),
Dy gon = 4 « £1°2 (3.43)

3 ©30 10 ]
D, &40 = 8  28§oTho = 2Tp08Y%0 + 2850840
D4 g41 = =2f%ofé1 - 2f21g%0 + 2fé1g%0 + 8@%0 + 2f108%0 ?
D, 8,5 = 4pn(4-£12)

4 842 {4 107 ¢
D4 g43 = ng%o , $(3044>
Dy 844 = ~2850E107 1 £10)
Dy 845 = —2830T40

The boundary conditions on fi. and gij are, from

J
(3.19),
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( ' (0 G b=
. (0) = g!t. = 0 1 (o) = O
8;5(0) = g}4(0) ;8]0 20 P
. , i=1,2,%3,4
fij(O) = fij(O) =0 , fij@zo =0, {
j 2
fio(OO) = 2 3 i = 1,2,3340
of

Determination of the Kn

Since W, is assumed to be an analytic function of

} , 1t is possible to consider W, in the forms

o0

Vo = o Kl T (3.46)

n=0

w & Ki(r,?ﬁ En', (3.47)

where the Kn1 are determined from the Kﬁ by expanding
r = (1—4£n?§) /2 as a power series in §

From the equations af (3.8) determining the pressure
in the core, it is essential, in order that they be

compatible, that

v (3.45)
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21 2
ow ow
.Q.._ (-——2) + 2[3 c

3%\ 35 35 =0 (3.48)
2 2
ow ow
S(e ) ~fle ) <o (3.50

Equations (3.48) and (3.49) integrate readily yielding

2 2
oW, _ A(s,¥) end ow, - B(s,r) ,
s h2 os h2
and so
ow
c _ A(s)
= > . (3.51)

Equation (3.50) reduces to

2 2
on ow,, _ 3h awC .
¢ or or oy ?

which means that the Jacobian of h and w2 with respect

c
to r and Y dis identically zero. There is thus a

functional relationship between h and w and since

a N
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W, is also a function of s

W, = wc(h,s) (3.52)

Inserting the value of w., from (3.47) in (3.51)

c
and assuming that A 1is an analytic function of ¥ ’

the Kj can be derived from

- 5 . . A A A 32
[K§+Kf"§+K§ }2+.°.][Kf+2K§ §+3K§ }2+..°] = —% + g§ + _jg + ..
h h h
(3.53)

where the A are constants and, from (3.52), K? must
be a function of h alone.
Bquating coefficients of like powers of § , it is

seen that the Kii take the forms

A
KT = __::j_? )
T Fy
(o]
Kss _ A2 _ K}EQ " 1
271 R T l okE
= 0

(3.54)




48,

The Kio can be determined in terms of the An directly

from these relations by expanding h as a power series

in } . Thus
KOO = Kg(ho) s
A1 £
K, = — = k() (3.55)
000
. .. =
and in general K;, = X5 (h-ho) .

To determine the K? completely, the An's have

to be evaluated. This is achieved by considering the
fact that the flux through the pipe must be constant.
Thus

2n s a 21 £ a
wo(s=0)r dr dY’=J/— Jﬂ w, T dr ay
0 0 0 0

2T £ a
- «/K J{ (wbuw)r dr ay, (3.56)
0 0

where w represents the axial velocity in the boundary
layer which matches on exactly to the axial core velocity

w, . Substituting for w, from (3.46) and (3.47);
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substituting for w from (3.419) and transforming the

last integral from r +to )

~

2nra o, /48}
0 =[ J z_ K‘“(r ‘f‘)rfdr ay - a [ f 2e I %
0 0 n=1

:;? K ( Y)}n - Ef_ dn a¥
0\ R e
n=0
n--14
From (3.26) K (1,¥) = 2 K, n>1 , and
J=
so for large 7 .
n-1 oKn Jj+1
. < Tl
fn"'1 = 2— J+1 + Bn_,_i‘ > (3057)
J=0

where Bn*1 is a function of Y obtained up to n = 3

by numerically integrating equations (3.24), (3.32),
(3.34) and (3.36).

Since fn(vz) =0 at # =0
yields

, tThe flux condition



whereupon, equating like coefficients of ¢ ,

2% fa 27
p:S 2
[ K (r,)r dr ay = -a f eB d¥ , n2>1. (3.58)
0 0 0

This equation together with those of (3.54) are
sufficient to determine the An and thus the axial core
velocity.  Since it was not necessary to approximate to
the boundary layer velocity in determining (3.57), the
development of the axial core velocity can be determined
for any injected velocity profile which is a function of
h and which does not in itself generate a large amount

of vorticity.
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APPENDIX

To prove that g2(7,Y0 = 0 for any Y and all N in [0,02)

From equation (3.33), g, satisfies the equation

3
07 g 2 0g
2 . p, 2B gy 22
53 T2 Towy =0 (A1)
1 1

subject to the boundary conditions

2y 682 =0 t 7 = 0 °¢
; 7 ’ 87

o is proved identically zero by supposing that for

~> 0 as fz —> 20, (A.2)

any ¥, there exists an 7 in [0,2¢) such that

dg.
(7 ¥) > 0 and obtaining a contradiction. If 325 > 0

a'(
for some 7 in [0,e) +then, in view of the boundary
conditions, there will be at least one maximum point in
0g

. . . . 2
this range. If this point is r21 , 5?7(71,Y7 >0,
2 63{;

(7 ,¥) = 0 anad ——-w-(rz,Yﬁ < 0. It is assumed

? 1 a? 1

that the injection velocity is nowhere negative and so

f%o(71) 2 0 . Therefore at § = 7, , the left hand side
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of (A.1) must be less than zero. This is a contradiction
0g
which is repeated if 3m2 is assunmed negative for some

7

og
7 in [0p0) . Thus -57?2- is zero throughout this
range and for all ¥ . Since 8o must be zero at

7 = 0 , it follows that g, must be identically zero.
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CHAPTER 4

The Numerical Solution

Equations (3.29) and (3.39) - (3.44) together with
the boundary conditions of (3.45) are entirely independent
of external parameters such as X or Re and can be
calculated without reference to them. The coefficients
of fij
narameters and in particular, Kf e Ki are dependent on

and gij are, however, dependent on these

J& . These eguations were solved numerically using
Gill's process for the fourth order Runge-Kutta method,
on the I.B.M. 7090 computer at Imperial College. As
usual in computations of this type where succeeding
functions depend on previously calculated functions,
accuracy decreases owing to build up error. The first
few functions were calculated to six decimal places,
however, and it is reasonable to assume that the functions
f4j , that is the functions more prone to build up error,
are accurate at least to three places of decimals. The
results, together with the program for solving a set of
successively dependent, simultaneous differential equations,

can be found at the end of the thesis.
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Comparing the behaviour of £ (Q) for large n

1j

with that of fg from (3.38), the functions B, were
found to be
B, = ~1.7208 X
B, = 1.3008 K, + 0.0717 &

N . o
By = [2.7561 Ky = 4.6072 Kjo + 3.0351 € K, -

- 1.7196 €°)/K
Y OO ]
(4.1)

— 3

By = [3.8732 KoK, ~ 14.931 K,oKpq + 14.655 Kjo/K

2 , 2
- 18,689,8K1O/K00 + 16.3%5 € K1O/KOO

+ 5.569 € Kpy ~ 7.185 e7/K  1/K_ -

These functions were substituted into equation
(3.58) together with the functions for the Kﬁ as given
by (3.54) for the special case of constant injection
veloecity (i.e. K, = 1) . The various integrals were
evaluated numerically yielding values of A1 R A2 , A3
and A4 for various curvature ratios [see table (4.1)].

It is seen from table (4.1) that if the values for
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A, - A

1 4 Wwhen Y = 0 are inserted in (3.54),

< =

Ky = 3.442 , K5 = -9.099 , K = 141.9 and K = -2784 .
These values are effectively the same as those obtained
by Goldstein and Atkinson for constant velocity injection
into a straight pipe, any deviation being in the fourth

significant figure.

M A1 AQ A3 A4
0.0 5.442 -6 .351 331.7 -9016
0.05 3.455 -6.319 333.1 ~9428
0.1 3.414 6,222 337.1 -9474
0.2 3.330 ~5.831 353.9 -10931
0.4 2,992 ~4,206 428.6 ~18700
0.6 2.417 ~1.178 595.5 ~44805
0.8 1.573 ! 4.702 1051 ~206136

TABLE (4.1). The variation of the A, with curvature
ratio for the particular case of constant

velocity injection.

It is now possible to write down the velocity
distribution in dimensional form in terms of known
quantities. Thus, from equations (3.19) and the expansion
of £ , the axial velocity component in the boundary

layer is
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of of of 2
w:___;_wo ..._.1+-=--2—)} +-——§- Z T oeeeaae (4.2)

T 1 °1 ‘

. 2 2
. If gz 1s replaced by Re.BOhOG3 and 84 by
]
Re2BOth4 and so on, the tangential veloclity distribution

in the boundary layer can be written as

W | oG 3G
_ 0 2n 12 3 ¢35 4 <4
v = 210Re§ Re BOhO i.—_ E + .T § + ....] )

~

W s oG oG
i.e, v =-f%m cosY’{E-é + gwﬂ t + seees } ‘ (4.3)
i 1

Similarly the radial component of velocity in the
boundary layer becomes
aeW % of of
_ .9 1423
”‘"ahos [(f1+2f2§f“9)~7( + +)
a €

2 ~
; A.Q_(i.g? £ g gq}(g%ﬂm ce )] G

Application to the skin friction and the limiting streamlines

These two applications are considered together
because the expressions for the skin friction can be
applied directly to obtain the limiting streamlines at

the wall of the pipe.
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There are two components of the skin friction and

they will be defined as

- |3 - [
Ty = “(ar)r:o and T . = 1"(ar)r=0 . (4.5)

Transforming these using the relations of (3.17) and

eliminating w and v using equations (%.19),

)
- O
‘L-WS - 48a}2 f,Zf((o) H (4‘06)
~p¥
O

(4.7)

T - 0) .
Wy 4sa§2hoRe g/Z'Z( )

In order that these results may be compared with
possible future experiments, the mean drag coefficient
will be found as a function of distance dowm the pipe.

If the mean drag coefficient is defined as

¢ 2n
B L
DL =7 — Z“J T o AY .ds
YA J o 0
1
then )/

1

o 27 £ (O)
D(El() —r X . -_’6-7-—---—€§ dvat (4.8)
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The results of the previous section for constant
velocity injection were inserted in this integral and
the integration was carried out numerically for various

v

@ = -—2-£ /2 i 't
values of '§X = (aRe) and for various curvature
ratios. The increase in resistance with curvature is

D
exhibited by plotting == against ¥ ¢ where Dy is
s
the drag coefficient for a straight pipe and Dc is
that for a curved pipe [see Fig. (4.1)].

The equation for the limiting streamlines at the

wall can be written as

a d¥ _ lim

L amadi

) T2,

£l

and since w and v are zero at the wall,

ov
e dy_ lim 0T _ Twy
ds =~ r=a 0w ~ T o (4.9)
or

Transforming as before and using equations (4.6) and

(4.7)

a ¥ Eqq (o)
a—%/ :B‘_—f%‘r‘;y . (4.10)
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/-5

/-2

I b

Y=04
105 | __‘~—#~“_*’“__,,,ef*”"”’/

l.o . 1 1 ] I ]
Y 0] 02 03 X o¥

Fig (4.1). The increase in resistance due to curvature.
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To obtain a first approximation to the streamlines,
for constant velocity injection, f?,( (o) and g?,z (o)

will be written as

i

f77 (o) = 1.328 §

2,172 Re®B_nZ 7 .

gw (o)

Equation (4.10) then becomes

%—-\; = -1.64 Re” }'(,cos?('.f3 y

the solution of which can be written as

- ‘,VO = 2 tan" | [exp {«0,41 Rez)ﬁflj’}} - /2 (4.11)

where ¥ is the initial value of ¥ at § =0.

Equation (4.410) was solved numerically, again for
constant velocity injection, taking the first four terms
in the expansion of f?? (o) and the first two terms in
the expansion of g77 (0) . The results were found to

)
be dependent on X and Re“X and the limiting stream-
N 1/" :

lines for Re X 7/° = 2000 and X = .05 are illustrated

in Fig. (4.2).
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ps® 0° Lo ® q0° Y

Pig. (4.2). The limiting streamlines in the top half of
the pipe for the particular case of Re X;/g = 2000 - and
X = .05 . (The limiting streamlines in the bottom half
of the pipe are identical dué to the symmetry about the
¥ = 90°% , ¥ = -90° line).
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Conclusions

The object of this investigation was to find the
effect of wviscous forces in the inlet region of a curved
pipe. The types of injection velocity were restricted
to those that were nowhere zero at the wall, those that
had no initial secondary flow and those that generated
little secondary vorticity apart from that produced by
the viscous forces. In this way, an attempt was made to
isolate the effects of viscosity.

It was shown that a necessary condition for there to
be no generation of vorticity is that w, = wc(r1,0)
which is equivalent to w, = wc(h,s) . It was noted,
however, that seconcary vorticity has to be generated to
preserve continuity if W varies with © . The analysis
was then continued on the assumption that the secondary
flow produced was sufficiently swall so that the equations
of (3.8) represented reasonably well the pressure distri-
bution in the core. This additional restriction on the
injection velocity is now considered and it will be seen
that the particular case of constant velocity injection,
which was used to obtain the numerical results of this

chapter, is a satisfactory example within certain

limitations.
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Since the flux across any cross section is constant
and the boundary layer thickness is increasing, the core
is accelerated and so there nmust be a variation in axial
velocity with axial distance. This is, however, an
effect of the growing boundary layer and the amount of
vorticity generated by this means will increase from
zero as the boundary layer thickness increases. It 1s
therefore reasonable to assume that the equations of
(3.8) become invalid because of this effect some way
down the pipe, which may well be beyond the point
where the boundary layer approximation breaks down.

If it is nearer the entrance of the bend than this point,
it merely restricts the validity of the theory to a
smaller region at the entrance.

In a similar way, since there is no initial
secondary flow, any other means of generating secondary
vorticity will only effect the validity of the equations
of (3.8) when a certain amount of secondary flow has been
produced., Again this will occur a little way from the
entrance depending on how quickly the secondary vorticity
is generated. This may be kept to a minimum by letting
the core be represented by the inviscid irrotational

flow through a curved pipe.
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If W, , UJb and ng are zero, the following
equations may be obtained from (3.40), (3.41) and
(3.44).

av1 anI

Ry il (4.12)

ou v

x| 1 _

57 A, T o, (4.13)

3 611,1

..,,.__.ar (r1.w1) o r1 -a-é- = O ° (4‘014‘)

1

A solution of these equations which also satisfies

the continuity

u.JI = VJI =

_ A

Wy = ;:-—
where A is a

equation of (3.46) is

0 ’
F (4.15)
A
T ’
4
constant. Thus, with an injection velocity

given by (4.45), secondary vorticity is generated only

by the growing

velocity is of

boundary layer. This particular injection

practical interest since it can be obtained

by having the dynamic pressure constant across the cross
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section at the entrance to the bend. This may be the
case if a curved pipe takes fluid from a reservoir at
constant pressure. The proof is as follows: if the

dynamic pressure is constant at the entrance to the pipe

P 1 2l
5 = const ~ w1(s—0) ,
- 1yl ¢2
= const - 5 W Ko(h) , (4.16)

where WO is the mean axial velocity and is constant.

From the equations of motion in (r1,9,z) coordinates

2 2 .2
1 oF Wy wo Ko(h)
PO, TT, T T T, (4.47)

Eliminating the pressure from (4.16) and (4.17) yields
the injection velocity

W
w, (8=0)= —ﬁ‘?- ( (4.48)

If ¥ << 1, hZ1 and this injection velocity is
a good approximation to constant velocity injection.
If X is of order one, the constant injection velocity

case is still valid but in a smaller region near the
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entrance to the bend.

In the historical survey of Chapter one, it was
seen that most research work on the inlet region considered
injection velocities which were modified by the centri--
fugal force, The past two chapters have considered
injection velocities which were modified by viscous
forces. In practical cases, it is often a combination
of these factors which modifies the injection velocity.
The consideration of this problem is, however, formidable,
since the equations of (3.8) will be far more complicated
and the Fn’s from the boundary layer would probably

have to be matched to the core velocity.
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CHAPTER 5

Introduction

In Chapter ohe, the fully developed region was defined
as that region, sufficiently far from the entrance to thé
bend, where the flow is similar at every cross section.

The equations of motion depicting flow in this region
contain only two independent variables instead of three
and, as a consequence, most theoretical investigations
concentrated on this region.

In practice, fully developed flow is obtained by
passing fluid through a pipe which is coiled about a
cylindrical former. Vhen comparing theoretical results
with experimental résults, it is assumed that the torsion
introduced in such a coil is negligible. For pipes with
very small curvature ratio, such an assumption 1s
justified. If, however, this curvature ratio is increased,
the amount of torsion in the pipe is also increased.

The results obtained in previous theories assumed
that the curvature ratio was very much less than one and
were not éoncerned with the effects of torsion. Results
derived in this thesis are, however, extended to large

values of the curvature ratio and a comparison with
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possible future experiments is practical only if the
effects of torsion are uvunderstood. To this end, a
suitable orthogonal coordinate system including curvature
and torsion will be derived and the corresponding equations

of motion investigated.

Effects of torsion

If a point in a curved pipe with torsion 1s defined
by (x,y,s) , where s is the distance measured along
the axis of the pipe and x and y define a point in
the cross section relative %o a set of axes (1,m) at
right angles to and capable of rotating about the axis of
the pipe. If the unit vectors +t , n , b are the
conventional unit vectors of differential geometry [see
fig. 5.1], the med=ie can be written as

pesition veckor

r=xr -+ lt+ oy, (5.1)

where 1

1l

sind n + cosg b ,
(5.2)

m = -cosg n + sing b .
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effects of +torsion.

At
b
Fig. (5.1). The coordinate. system for investigating the
Using the Frenet formulae,
- I |

dn = (-~ = L + k) ds ,

ap =~ 2 nds , (5.3)

dz, = & ds ,

where %

is the curvature and % is the torsion, equation

(5.1) can be differentiated yielding

+
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dr = [1 - %(x singd - y cosg)] ds &
+ [sing dx -~ cosfd dy +-{~ %(x cosd + y sing)
d . d .. .
+ X o singd - y i cosgd } ds]n + [cosd di + sind dy
+3d(x sind - y cosd) + x . cos £+ 4. singd } ds] b
T M ds Y 35 -~
(5.4)
For orthogonality, the coefficients of dx.dy ,
dy.ds and dx.ds , obtained from (dr)2 must be zero.
This condition is found to be satisfied if

4 . ,a a .
=+ singd = cosgd - cosf = sind = 0 ,

whereupon

Al
)]
&

or # =-J-Q§ . (5.5)

In this case

(5]
(dg)2 = [1 + %(y cosf - x sinﬂ)] 2 as? + ax® + dy“ .
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If (x,y) is transformed to (r,\) using
X =1r cosh and y = r sinAh ,

"

(d_x_:_)2 = [1 + % r sin(xuﬁ)} 2 382 4+ »° ar® + ar® . (5.6)

The scale factors for the new coordinate system thus
become h, =1, hy =r and hy =1+ % r sin(A-4) .

The equations of motion are the same as those given
by (2.5) - (2.9) except that h , a function of r and

¥, is replaced by h3 , a function of r , A and s

Tt is immediately evident that if '/t is non zero, the
flow cannot become fully developed in the sense described
earlier.

Before proceeding to an approximate solution of
these equations for a particular type of flow, it will
be constructive to comsider a pipe of radius 'a' coiled
about a former of radius (R-a) so that the torsion
introduced is kept to a minimum. This would be the case
in an experiment designed to investigate flow in the fully

developed region. In such a coil, the centre of the pipe

forms a helix defined by the equations

[N

x = R cose® y = R sin® and = RO tamnvy ,
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where (x%,y,z) now represents the cartesian coordinate
system and where vy is the helix angle. Since this

angle is to take its minimum practical value, 2z mnust
increase by 2a for each complete revolution about the

former. Thus

2a = 2n R tany

1 1

or vy = tan” ﬁ% = tan” , (5.7)

2

if N is defined, as is usual, by K = /R .

The curvature and torsion can then be written as

1 COSQY 1
c R - 247
(B }
R [1 . (ﬂ)
(5.8)
1 _ siny cosy _ X
T R -

TR [1 + (%)2] .

If s and 1r are replaced by as' and ar' ,

then, since the torsion is constant,

) |
h3 =1 -+ —aﬂhzl—ﬁ sin | A -~ S 5 (5.9)
1+ () Tt{']-k(%)}



74,

If it is assumed that the torsional effects are very
small,

2 -
H t
)“Cr sin A - K s ?cosk

7 |
1+(k) ! P+ (2

Thus, if they are to be neglected, it is necessary that
Host KK 1 . (5.10)

Physically, this restriction implies that two
reference points on the coiled pipe yield effectively the
same results so long as the distance between them is much
less than 1/£F . This fact must be taken into account
if the results derived later are compared with experiment.
In addition, it should be noted that (5.10) is a
necessary condition; a sufficient condition is derived
only after consideration of the equations of motion.

Returning to the eguations of motion, it can be seen
that for the case of constant torsion, they can be trans-
formed from the (r,A,s) coordinate system to the (r,¥,s)

coordinate system using the transform

¥ =rx-4,
=\ -/t (5.11)



5.

It can then be seen that a solution exists such that

the velocity distribution is a function of r and ¥
alone and the pressure takes the form p =-Gs + p'(xz,¥) ,
where G 1is a constant. In this case, the equations of

motion become

2

NI R S IO |
Uit TT Ay TR Yy T A ¥ rnL

9 31ha ouY 40 _fx(lou . 2l

6?{.f ar(rV) ar-}“ T 0y { h(r y T ar(ﬂw)} ) (5.12)
v X.Q.Ed..li..@_‘.{n_@ﬂh wo_ 1.3 Yy
UsT T T 3F T TH OF r+f""pr6‘f—ﬁ'[

RIS a [nifa ,. au

T ay{fh(ar(hw) ar(”)] T T | 5. Gv) - a‘r)} ) (5:13)
0w | ¥ 0w w Qu L. BYw _ & 4 8p' .,y
Y5r T T 3y T Th gy Toom g h T Th ooy ?{
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where h =14+ -3;6- sin Y’

If a solution is obtained from these equations
subject to the usual boundary conditions, it is probably
valid some way from the entrance of the bend and fully
developed flow can be said to exist in a curved pipe
with constant torsion if it has a velocity distribution

of the above form.

Solution for flow at low Reynolds number in a pipe of

small curvature ratio.

If a fluid is flowing through a curved pipe with
constant torsion in the fully developed region as defined
in the last section and if it is assumed that the curvature
ratio of the pipe is sufficiently small, so that terms of
order X cén be rejected relative to terms of order one,

the flow is represented by the equations

u ., ¥y3u wou v° 2 _ _ op! 2 u 2 av7
uar—l-ray,-u,rar--r-—aw—-ﬁ%-V[VU»j-—?T'{x
L r r
(5.16)

WX L XYY WOV
or r oy T Y pr oy -

N’

Bw", uv _ 1 op! 2 2 0du j;
.-£‘-+‘-£_-—--"""-_R+\){v V+;—§a’b- 2‘}1
(5.17



T

0w . ¥ Q0w W 0w, L P 1 0nt 2y
US b S opg o E gt Quw b TR = G- 3 v Vow o, (5.18)
and
J V. 10 N
Or(ru) + Al OY(lw) =0 , : (5.19)
wnere
v 1,40
= ) 7 o
are r or rd aye
and

In deriving these equations, all curvature effects were
rejected in the viscous terms and they were only retained
elsewhere when directly coupled with the axial velocity
W . The fact that 1/7 is of the same order as /o

was also used.

If equations (5.16) - (5.19) are made non--dimensional
. \ \A :
replacing v by ?§ y U by %% s w by Uow A
by ar , s by as and p' by Uép , where U  is the
mean axial velocity,
o8 , ¥ du  alle wou xg - aRezsinYw2 - _pec 02
ar r oY T o¥ T o A T
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(@3]
<

Q)
=

)
; Re” 2
wov u;f _ akRe cos)",w

Re”™ 0p o 2  ou v
e M e o V V o+ = mm - ey (5.21)
T ¥ I'2 oY g
ow ., v 8w  alle wow _ _a@ aRe dp . 2
VR Y T RR a5 i il i Vv, (5.22)
md S(pu) + &Y _ 2Re 2 B} .
and ar(ru) Ty = Ty (rw) = 0 , (5.23)

Since %<<1 , %-‘f: W and %ﬁ1/2)tsin 2y

A solution for low Reynolds number can now be obtained

by considering an expansion sclution of the form

W= W, +)-s{w1 Foeee

u

u1k -+ v o @ b]

r(5.24)
v=v1}'{, s

p = )-(,p1 + ewe ,

Inserting (5.24) into (5.20) - (5.23) and equating

coefficients of like powers of X

V2WO - =0 (5.25)
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and

0 oV,
-é—_z(ru_‘l) + v(f)—? =0 , (5.29)

The boundary conditions for these equations are
=0 at r =1

This set of equations (5.25 -- 5.29) are almost
identical to those obtained by Dean in his first analysis
and the boundary conditions are the same. It is thus
possible to write down the solution immediately in

dimensional form., To a first approximation

: 2 & .
u = £ (1 - T/aB)%(s - A -§5‘£—2Z > (5.30)

cos“y
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"‘t.":‘ ~ . 4 I
(1 - T/ (4 - 037 /P 4 7E /Y eos. 7 (5.31)
- cos“y

<
I

r</ 2 Re“ K r sin¥ 29rp° | grt 4O |
w = 2U0(1 - /%.) 1 4+ 9 {19 R m?}‘j;
23,040 cos”y a” a a

(5.32)

2all
2%

v

where Re =

If the helix angle vy 1is zero, these results reduce
to those of flow in a curved pipe without torsion. The
upper limit of v 1is seen from (5.8) to be restricted
by the condition X << cos® Yy and so ooszy must be
of order one. It can also be seen from (5.1) that ¥
is measured from the binormal; thus the velocity distri-
bution is determined,

Prom eguation (5.23%3), it can be seen that this
expansion solution breaks down when Re = O(T/a) . In
such a case and for higher Reynolds numbers, the problenm
becomes difficult to solve owing to the dependence on
two non-dimensional parameters Reg){ and Re M and
the fact that the equation of continuity contains u ,

v and w ., Ior the remainder of part II, it will be
assumed that torsional effects are negligible and the
original definition of the fully developed flow region

will be applied.
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Lguations of motion for the fully developed region,

In the fully developed region it is assumed that

the components of velocity are independent of s and
that the wotion is steady.

The Havier--Stokes equations
and the equation of continuity are

2
TAw= ga;.ad(lg- + 1/21(,“) +voeurl &

(5.%3)
divy= 0,

(5.34)

where v

p 1s the density, p

(r,Y¥,s)

is the Kinematic coefficient of viscosity,

is the pressure and,

in the
coordinate system
y = (U.,V,W) ’
div v = - E-]"(rhu) o (hv)l (5.35)
h L or v f ’ e
N
Ww=ocurl v = f% 2 Y hs
0 0 ~
/a_r /a\f"/ O ! (5030)
u rv hw
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and o=+ f8in¥ (5.37)

oince u , v and w are independent of s ,

@
=

i

= const = - G say. The pressure then takes the form

o

S

p = ~Gs + pt(x,Y) , (5.38)

p'(r,¥) can be eliminated by considering the axial

component of the cuxrl of equation (5.33).

_{cggl (X,Aqg)} = V{-qg£l (curl ui)‘} . (5.39)

S S

From equation (4.35), a stream function f can be

introduced so that

_—1. 8L _ 1 0oL
u = o= o and v = NI (5.40)

If these are substituted into (5.36, and the axial
component of (5.33), and if the equations are made non-
dimensional by replacing r» by ar , w by Wow and
putting f = v , the equations of motion can be written

in the form



83.

' or

2 :
L[8) 2 fe) 128080 [ B 2 Qu
F (ar) 1 ( ,)) + o Y ( 3 K°w{r cos¥

~-D14 (5.41)

! 2
! 1 >
+ h{i? 2w + a%¥ -+ Q_ ar - la o+ -ng) w? ; (5.42)
T
d

where
, Y 1 oh 1 0h
h=1+HKzsini |, a =g 57 s B o= W ‘é"": , (5.43)
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vz_a __j__Q___l__'_Lg@
= a5 T ey
ore r Jor - aY“
VN < B
D=3t 23y
> 3 (5.44)
2W" a
ng 0') ’
v°R
2
Ga
C=5r >
o

and W is the mean axial velocity.

Since, without any loss in generality, the pipe is
taken to be of radius one, the boundary coundition on

equations (5.41) and (5.42) are

w-::-@é .Qé_—-_-o a-t I‘=1

£ = : (5.45)

The flow is seen to depend only on the non-dimensional
parameter K since the value of C can theoretically be
found as a function of X by applying the constant flux
condition.

These egquations represent a non linear sixth order
system in two indepnendent variables and a solution is

required in a circular domain.
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If K is sufficiently small so that terms of order

X can be neglected relative to terms of order one,
these equations reduce to those derived by Dean in his
second paper. The parameter K in his theory, however,
is different from that used here, since ha takes the
axial velocity at the centre of the pipe as his
representative velocity. PFrom here on, his parameter
will be denoted by Kp and it is related to the Dean

number of this theory, at least for low Dean number, by
Ky = 4K (5.46)

It should be noted that both these values differ
from the Dean number chosen by most experimentalists.
Since White was the first to use this parameter, it will
be denoted by KW ; 1t is related to K as follows:

K, = 2K . (5.47)

Resistance Coefficient

If the resistance coefficient in a curved pipe is

denoted by Yo ° then according to the usual definition
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a
_ /2 p
Te = g o 0s
Ll
. i _C
Since - 3% = G and G = ——x
aL
o0
YC - Eg (504‘8)

Equations (5.41) and (5.42) are seen to depend on
C and X and it is clear to see

K,
K by considering the flux

the parameters
is a function of

that C
relation
ZTC &
nazwo = rwo w(K,C,%) dr 4y (5.49)
0 0

Thus 1f the mean axial velocity is known for the
is obtained,

flow in a curved pipe, and a relation for w
the resistance coefficient can be found as a function of

which 1s also known.
In a straight pipe the resistance coefficient can

K
be denoted by Vg where
: (5.50)

—

i

Yg =

L
=
@
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The increase in resistance due to curvature is

. c
generally measured as the ratio %E for the same

Reynolds numbers. Thus

1w - 8
q{s 8 (5«:51)
The experimental values of %% against KW for

¥ << 1 were collected by Goldstein and the results are

shown graphically in Fig. (5.2)
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Fig. (5.2). The experimental observations of White and Adler for the

increase in resistance due to curvature. The curve 1is the mean of the

observed results which differ by no more than + 2% (Farugia, M. Unpublished).

‘88
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Solution for small K

The first approximation for low Dean number flow,
namely that of investigating a small perturbation of
order X from the Poiseuille flow, has been considered
earlier, The second paper produced by Dean extended this
approximation by assuming series expansion solutions in
powers of KD . He inserted these expansions in the
equivalent of equations (5.41) and (5.42) for small
curvature and obtained solutions by comparing coefficlents
of like powers of KjDa An expression for the decrease

in flux was then calculated to the fourth power of KD as

< =1 = (-5-1%)2 (.03058) +(;§-I7{%)4(901195) ,  (5.52)

where F, and FS represent the flux through a curved
pipe and a straight pipe respectively. In both cases the
flux was defined as the mean axial velocity multiplied
by the cross sectional area.

In this analysis, however, it was assumed that C
was a constant equal to that for a straight pipe. Since

the resistance coefficient must increase with K , it

can be seen from (5.51) that C dis a Ffunction of X
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and should contribute terms when coefficients of like
powers of K are equated. Also, the decrease in flux
was obtained assuming that the central velocities in
the curved and straight pipes were equal. This makes
the result extremely difficult to compare with experiments,
which generally measure the increase in resistance for
equal flux. A modification of Dean's theory will now be
considered which does not include these restrictions.

If it is assumed that M << 1 and w 1is replaced

by C.w , equations (5.41) and (5.42) reduce to

('Qé . : )vzﬂ{ + Jw (r cos)”.-gvg- - sin\y%%g) = wrv475 ,

0 3r ~ Br 0P

(5.53)
1 {034 dw oF _ 2
?(ar‘a"r»“asé‘a*f) =1+ Vo, (5.54)
where
0(27
J =% = £&a_ (5.55)

If an expansion solution i1n o 1is mow assumed and
inserted in (5.53) and (5.54), comparison of coefficients
of like powers of J will yield equations identical to

those produced by Dean. The flux through a curved pipe



91.

can thus be found as a modification of Dean's result.

21 1
ro= W, C wr dr ay,

. WOCn I )2 T 4
i.e. TEWO = - 1 - (?W (.03058) + (m) (.01195)

(5.56)

It WS and CS are the mean axial velocity and the
non-dimensional pressure gradient for a straight pipe,

W C.¢w
o= = g L (5.57)

s 8
To find the increase in resistance due to curvature,
equation (5.56) can be solved for C in terms of X
and this can be substituted into (5.54). To find the

decrease in flux for equal pressure gradients (G = GS) ’

2 4

¥ o7 e T
c G" a ) G~ a
—= 1 - | (.03058) + {- . ) (.01195)
Py (8;576°p2v4R1 8x576 p°viR
| (5.58)

If C 4ds assumed to have a solution of form
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_ 2 4
C——-CO + C_1K }‘CQK +nao-oe’
the Ci can be obtained by inserting this solution in
(5.56) and comparing coefficients of like powers of K .
In this way, C Dbecomes

- K 1 ...
C =8+ .06116 (7?) - 00364 (7§}

and this can be compared with experiment by replacing

2

K° by 1/2 Ki . The increase in resistance due %o

curvature is then

x \4 g 8
%—‘é’- =1 + .1223 (-ﬁ') - ,1165(ﬁ’) . (5.59)

An upper bound of the region of validity of this
formula can be obtained by noting that it has a maximun

value when Kw L 20,4 and that %% increasgses as Kw

increases throughout the range of Kw and so this
formula is certainly not valid for X > 20.4.

It has been assumed by Adler and Hawthorn that a

Fo/F

relationship exists between %% and s of the form

&)

|

Yo .

=
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This is not possible, however, since %% is
defined assuming that the mean axial velocities in a
straight and curved pipe are equal. Since the cross
sectional areas of the straight and curved pipes are the
same, this implies that FC = FS , implying from equation

(5.60) that vy, =Y
(5.60)is false.

g ¢ »oince this is untrue, equation
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CHAPTER 6

Introduction to method of solution for large Dean Number flow

The purpose of this chapter is to obtain a method
for solving equations (5.441) and (5.42) for large values
of the parameter K . The analysis of Adler, Barua and
Mori and Nakayama will be considered in detail and the
problems inherent in their approach to the problem will
be discussed,

The major simplifying feature for flow at large Dean
number is that the viscous forces are of the same order
as the inertia forces only in a thin layer next to the
wall of the pipe. This idea first appeared in Adler's
paper, no doubt prompted by Prandtl whose supervision was
acknowledged in that paper. A further assumption that
the nmotion outside this layer is confined to planes
parallel to the plane of symmetry of the pipe is also
made. ‘ '

The experimental eviaence 5ustifying these assumptions
is very sparse. Barﬁa ou?iines the experiments of Hawes
(17), showing that there is approﬁimately a linear rise
in the axial velocity from the inner part of the wall to

the outer.part, and of Squire (18), who shows that the
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lines of equal dynamic pressure appear vertical over
most of the cross section. It appears, however, that
Barua overlooked the fact that Squire!s experiments were
conducted in the turbulent regime. Despite this, it

does seem highly likely that for large Dean number flow,
the lines of equal dynamic pressure in the laminar regime
are similar to those in the turbulent regime; dbut it
would be more satisfying to the theory if the experiments
of Squire were repeated for laminar flow.

In what follows, the thin layer next to the wall,
where viscous forces are of the same order of magnitude
as the inertia forces, will be called the boundary layer
and the region where viscous forces can be neglected,
that is the rest of the cross section, will be called
the core, The surface separating these two regions

will be called the interface.

The velocity distribution in the core

Assuning that the lines of equal dynamic pressure
are vertical and that viscous forces are negligible, the
equations of motion and continuity for the fully developed
flow region can be written in the (r1,9,z) coordinate

system as follows:



2
ou ou w
—t —t . 2 - 10
YisE, YV vz T T, T p BT, (6.1)
1 1 1
ow ow u,w
1 1 11 .. 1. ¢6p
Y YV T T, - er, 08 7 (6.2)
av1 6v1
YT, T TiEm C 0 (6.3)
d v,
-E—)-fn:'- (I‘1U) T 1‘1 e = 0 , (6"4‘)
Since the velocity distribution is assumed independent
of © , p must be of the form
p = =GR + p'(x,¥) , (6.5)
where G 1s a constant.
A solution of these equations is
v, =0, (6.6)
= A
u, = o , (6.7)

96.
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S (z, + =)

Wy = T , (6.8)

3
il

2r

2.

A GR 2 B

~GRO -—-% + (QA ) [I‘,,I+2]3]_O§,"I'_,I .- ZEA,, (6.9)
1 14

where A and B are constants. Although A and B

could be functions of =z , the complications introduced

into the analysis by such a step makes this prohibitive.
The velocities can be non-dimensionalised by

yu Vv
.1

by —L vy by =—, w1 by w1wo )

replacing u, .y 3

R )
A by &gﬁ and B by BR" , where U is a constant

and VW, 1s the mean axial velocity. Then

2 2 Y- 2
p = -cro - Lx-B 4 p (%Law) lh2+2B.loth - -11-—4, (6.

2h

where h =1+ %- sin ¥ = ==

Introducing a stream function in the (r,Y¥,s)

coordinate system and replacing r by ar , the
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corresponding non-dimensional velocities can be written

as
R B - 1232
W=z VT H or (6.13)
g =Tr cos¥, we=wie| b+ (6.14)
? T 2xU h})’ :
Ga2

where C = 7;-‘-,-;- and h =1 +XT sin'f .

The non-dimensional pressure P defined by P = gﬁw

pW*~

becomes °

2

. 2 2 .
_ =20 8 U ¢ 2. - B- .
P= o3~ 7+ 2(333) {ﬁ +2B logRh - ?] . (5.45)

h°Re o 2h*

Equations (6.43) and (6.14) will be taken to represent
the velocity distribution in the core. It can be seen
that for any given curvature ratio, the velocity
distribution can be found only whemn B , C and U are
known. Ideally, these three constants should be determined
from a consideration of the equations of motion in the

boundary layer.
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Equations of motion in the boundary layer

In earlier papers, there are discrepancies as to the
correct form of the boundary layer equations. Barua
rejected the axial pressure gradient term after an order
of magnitude analysis, whereas Mori and Nakayama retained
it. Since many of the approximations made by Barua depend
on this order of magnitude analysis, equations valid in
the boundary layer will be deduced formally and the
effects of rejecting this term will be considered.

In the last chapter, equations representing the
flow were derived and it was seen that any solution of
these is a function of the non-dimensional parameter K .
In a conventional boundary layer analysis, the boundary
layer thickness is assumed to be of order Re_1/2 . It
will, however, be assumed in this analysis, that the

Prom the definition of 4 (i.e. f = vd) and K ,

41
x /2

boundary layer thickness is of order K
it is clear that 4 and therefore U are of order o
To obtain the orders of magnitude of w and C , the
relations obtainea from the constancy of axial momentum
and mass flux will be considered.

Integrating the non-dimensional axial momentun

equation (5.42) across the cross section of the pipe
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having divided through by h ,

21 (1 ,
8¢ 9w 94 dw) | w_9h 9, w_ 2u 4 .
{ Ak ¥ ayar)"rz raY’+ warfrdrdyl‘
C 0
2n (1 21 ¢ o o
g ax av, {———-——a———
o Ja o jol% r- of
" 2
1{611 dw , 1 2h aw) W [ah}‘”t ah}
e -+ e B b r dr 4 6.16
R\3r °or T 2 O¥ Oy he( or) T 2)ey oo )

Using the boundary conditions of (5.45) and integrating

by parts,
“é 2n g
dh a oh 0 ) _ r dr 4% .
[[ %o oo [ cgar,
0 0
2T
/(%}!) av. (6.17)
r=1
0
For constant mass flux
2T (a
o)
na“Wo = : r w dr 4y
0 J O

Considering the non dimensional form of this equation
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21 (1
T o= -]' rw dr 4¥ . (6.418)
0 0

From equation (6.18), w is seen to be of order

1/2

so it follows from equation (6.47) that C is of order
K/2

ow

one., In the boundary layer, 3T is of order X and

If equations (5.41) and (5.42) are transformed using

y

1

r =1 ~ QIK /2 ,

b =4, K ; 6199
? .19

vevu, k72 '

= Uy
1

¢ = c, x /2 ,

)

and only the coefficients of the dominant powers of K

are equated,

2 2 4
o aﬁ)  (of . . n ot
9 1 8%, 9 1 1,2 a2 R0 Ay
6‘2( Vgl b a?(a?) o
(6.20)
o4 04 04 2
1 Ow 1 ow 1 0 =
¥ 9T g oy Ty T E T 0 (G2
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oh
- v S I )
where h, =1+ } siny and B, = i, TY (6.22)

are

The essential boundary conditions on these equations

W = g = 5= =0 at 7 =0, (6.23)

It is also required that w and ﬁ1 and as many

derivatives with respect to ¥ and q as is practical

are continuous across the interface. If, from the relations

for the velocity distribution in the core,

large

C
- . B
ﬁo U,r cos ¥ and Wo = B0 ( h + h} ;

“74
/61 = '60 ) w o= WC ) (6024‘)
1
g /2 08, ) .?i?. 1{1/2 aw OV
T - dr ’ a? T oy ??
, (6.25)
o]
g 98, 074, K 8% _ 0 Vg .
D T s = T, G0
o or arl or

It is seen from these relations that, for asymptotically

K,
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2
08, 078,
Faali iR =0 ,
7 87
, at the interface . (6.26)
ow 62w _ - 0
- Y T o9 o oo - ]
(G-T
] 08, 08, 274,
If it is assumed that at least 3 ) = and =
dn© Y
1 (

are zero at the interface, equation (6.20) can be

integrated readily with respect to 7 yielding

od 02;6 o8 & . 63;6
2 Z 2 .
3?; ;“ﬁl - Bo(ﬁﬁ;) + %hocosfi(wc1—w ) + hg 31 =0, (6,27
7 o7

where Waq is the velocity in the core as given by
equation (6.14) when » = 1

Bquations (6.21) and (6.27) are identical, save
for a different notation, to those deduced by Barua after
a conventional boundary layer approximation and an order
of magnitude analysis. The axial pressure gradient term
is not evident in the asymptotic form of the equations,
it being of order Km1/2 compared with those terms
retained in equation (6.21). The effect of retaining
this term by Mori and Nakayama is not critical but
superfluous and in fact rejection of this term would have

made their analysis simpler. The fact that equation
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(6.20) is directly integrable is expected since this is
recognition that the pressure does not vary appreciably
across the boundary layer.

L complete solution of equations (6.21) and (6.27)
subject to the boundary conditioms of (6.23), (6.24) and
(6.26) is extremely improbable and approximate methods
have to be applied. Adler, Barua and lMori and Nakayama
employed the Folhausen approximate method (8), but because
of the widely different techniques of application, it
will be constructive to pause in the development of yet
another Polhausen approximation and congider the differences
and assumptions, together with their consequences, of

these three theories.

Analysis of the theories of Adler, Barua and Mori and

HNakayama

Since the equations (6.21) and (6.27) are effectively
the same as those obtained by Barua, the theory of Barua
and its differences with the theory of Mori and Nakayama
will be considered first and then the theory of Adler,
though first to be published, will be considered last.

Integrating the boundary layer equations across the

boundary layer with respect to the non-dimensional radial
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component 7 , Barua inserts profiles of the form
v==mﬂq—2q2+q3),

2
w o= WO(Z'Z“‘Z ),
where w_ 1s the axial velocity in the core, f = %L
and & 1s the boundary layer thickness. The boundary

conditions satisfied are

The two momentum integrals then reduce to two first
order non linear differential equations in &(¥) and
v, (¥)

Mori and Nakayama likewise integrated the boundary
layer equations across the boundary layer and inserted

the profiles

. . 2
v = -Dein ¥ {t_:%?. + 6}% + (‘26& - 9} % +(..-152- + 4) =

o
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2 D
_ 28 &7 8e 1 1
W= Vg ("5" - 2) iy COS‘/T(‘@“ 59‘) ’

where Vas is the axial velocity in the core at the
interface, } =14 - /a2 and & is again the boundary
layer thickness; v and w satisfy the boundary

conditions

<
i
=
il
)
&
Lo
i
O

at E =6 .

ow
_ v _ Qw _ A
vV =V, . =0, w Wag o K = (a§ )6

The constants D and C can best be seen by their
connection with the velocity distribution in the core,

namely:

u=Dsin'¥ |,

1‘{
v =DcosyY ,
C .
wo= A + =% g sin V¥,

which is the same as the core velocity distribution
represented in the present analysis by (6.13) and (6.14)

for the limiting case when X. tends to zero. Barua's
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analysis in the core is essentially that deduced in the
present analysis.

Inserting these profiles, the momentum integrals
reduce to two ordinary equations with V¥ as parameter.
The reason for this is that the profiles are specified
as to their variance with ¥ as well as with § . Also,
the variation of &6 with ¥ is neglected in the derivation
of these equations although it is considered later. In
contrast, Barua does not specify the variance of the
tangential velocity v with Y , though he does so with
the axial velocity w ; the variation of o6 with ¥ is
also taken into account.

Mori and Nakayama combine the average value of the

xial momentum equation in the form E + F cos ¥
with the relation obtained between the axial pressure
gradient and the velocity gradient at the wall to form
an expression between D and 6m , where 6m is the
mean value of § +through ou’ the interval (-"/2, "/2) .
the relation used is the limiting form as Y > 0 of
equation (6.417). Another relation between D and ém
is obtained from the tangential momentum equation by
equating only the constant terms and assuming that

variations in & with V’ , neglected in the past,

account for the variable terms; averaging this last
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equation would have led to discrepancies when compared
with experiment.
1
Expanding D and 6m as a power Series in KW/2

of the form

Tirst and second approximations were found to the
resistance coefficient by comparing coefficients of like
powers of Kw together with the constant flux condition.
Good agreement with the experimental results of Ito (19)
was obtained for wvaiues of Kw > 250 , the increase in
resistance due to curvature being calculated 1o a second

approximation as

1
o 0.108 ¥,/ 6. 28)
Yo | : .28

Y -1/
5 4 -3.253 K /2

Barua derives two firs+t order differential equations
in v and 6 without assuming small curvature xratio,

O I I I NPt Sl
but in the determinsation of the relevant constants which
arise from the core flow analysis, an assumption that Vo

has a stationary point at Y = 0° is made and the variation
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in the boundary layer thickness 6 is assumed very small.
The advantage gained by assuming that v = 0 at the
interface is readily seen sincc the equation of continuity
is of such a form that substitution in the axial momentum
equation determines the Y variation in v,

Assuming that & = 8("/2) +throughout the range
("/2, -"/2) and that K << 1 , Barua obtains an expression
for the increase in resistance due to curvature in the

form

7;:’- = .09185 KT:’/Z + 0.5093 + ..., (6.29)
which again agrees well with the experimental observations
for KW > 250 . The variation of v, and 6 were then
calculated numerically and the most prominznt feature was
found to be that for small curvature ratio, the transverse
velocity reverses its direction of flow at about Y’ = mGBO
This appears to indicate a condition of separation,
together with a bresk down in th= boundary layer approxi-
mation. Thus the motion c-nnot b2 specified from Y = 63°
to ¥ = ."/2 . Tvidence of this separation was said by
Barua to be apparent in Squire's experiments, but, as
was pointed out es—lier, these applied to the turbulent

regime,
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The assumption that a sfdionary value of Vs exists
at ¥ = 0° is probably good for small curvature ratic,
but may deteriorate as the curvature ratio is increased.
A criticism of the theory is that the tangential momentum
equation is only satisfied a+t one point (i.e. at ¥ = dﬁo
Although Mori end Nakayama maintain that, among others,
Barua did not consider a momentium balance analysis and
that discontinuities at the interface led to the
unreasonable result of a finite tangential velocity at
W= -"/2 , it should be stated here that Barua did not
have a finite tangential velocity at ¥ = -"/2 and even
if this were the case, this would have been as a result
of the break down in the boundary layer approximation
after separation. The discontinuities at the interface
are consistent with the order of megnitude analysis used
by Barua and if a momentum analysis is applied to his
results, it is scatisfied %o an error of j?% s a value
well within the boundazy laver approximations.

The review of Adler'is paper is considered last since
much of his work was dcfinitely dlmnroved by the methods
of Barua and Mori and Nakayama. There are, however,
certain fundamental differences to those of the previous

two which deserve mention.
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Adler inserted velocity profiles into the momentum
integrals to obtain two first order non linear differential
equations in & , the boundary layer thickness and D ,

a variable introduced in the tangential velocity profile.
The solution of these equations was sought as a power
series in Y about the point ¥ = /2 . As in succeeding
theories, the equations were dependent on three constants.
Adler gave numerical values obtained from experiments for
two of these constants and successive approximations to

& and D were obtained by considering solutions in the

form

o) ¢
8 2 (W 2 4 . 4
— = 1 2" + 2"“‘ - c a e s
5 5 ("/2-Y) 5. (/2= +
Do (Yo¥) g3 (/) 4 52 (V2 o
D1 :D1 :I:)1 © o a

It was found that for values of ¥ in the range
(™/2, -"/6) , & was sufficiently well represented by
four terms of the series. The series for D , however,
was more erratic up to four terms in the series though
it did converge in the region (%/2,0) . Adding
successive terms made the value of D alternately positive
and negative at ¥ = -"/2 , which, in the light of Barua's

theory predicting back flow in this variable, is not
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It is, if anything, justification

that there is a breakdown in the equations representing

this flow after a certain valve of Y’;

o0 much should

not, however, be read into this since only four terms

were considered,

Summary of Problem

The problem is that of solving the two differential

=

(6.30)

=0, (6.31)

‘f (6.32)

eguations
Bow gy o Y, L
5% o7 " Tn oy Fo¥F 0o 2T
1 { 1 o
8, 3%, 24, 1 2
s - «0(6 } + w5h oosY’(w 4w ) + b
¥ g 1 67
for ﬁ1 and w , subject to the boundary conditions
0, 98,
W—'a-?j’ =a='=:?=~= 0 at ’Z
fé,] = ﬂgc y W= W, at ’2 =6 ,
and as many as is practical of the following:
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2
06, %4, 08, . ‘1
- = povad N N = Iy
67 622 67j
fat o = 8 ,1(6.32) contd.,
»]

dw _ 0w _ _
'6‘“ o 672 — o 0 0o ¢ ¢ 0 - O H

- J

S

where & = 6(¥) represents the unknowvn boundary layer
thickness and ﬁc and w, are representative of the

velocity distribution in the core given by

g,=1U, rcos ¥, (6.33)
C,
1 B
WC = -Q*Ejﬁ*; L h + T]_j) s (6.34)

h=1+Hr sin¥ .

Two of the three constants in (6.33) and (6.34)
can theoretically be found from the constant axial mass
and momentum flux conditions of (6.47) and (6.18), which

can be written as

T/ i
=2, | - w dr d¥, (6.35)
~n/2 j 0
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/2 % /2 [

r.dr ay .

b=
————
qc)
oy
=4
o)
E
M)
e
e SR
(o]
=
o
~
i
(@]

-~TE/2] 0 ~T /o ¢

(%‘g)rzdw : (6.36)
5

since the flow is symmetrical about the Yy =T/ Y’z o
line,

This problem is not well posed since there are six
unknowns namely: éﬂ(Y) , w(¥) , s(¥) , ¢, , B and U,
andvonly four equations, namely: (56.30), (6.31), (6.35)
and (6.36). It is possible to make the problem well
posed, however, if either an additional physical condition
is imposed or an experimental value is given to one of
the constants and if the three unknown variables are
written in terms of two unknown variables., The differences
in the theories described in the last section are due to
various ways of making the problem well posed.

Barua expressed the velocity distribution in terms
of &(¥) and VO(Y) and assumed that the tangential
velocity had a stationary point at Y’ = 0° s this

reduced the unknown variables from three to two and
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determined one of the constants. The other two constants
were derived by satisfying the constant axial mass flux
condition and by satisfying the tangential momentum
equation specifically at the point‘V = 0° . It was
found necessary to assume that & was approximately
constant to evaluate these constants and this restricted
the validity of his theory to small curvature ratios.
Had Barua tried to find one of the constants using the
constant axial momentum flux condition, thus enabling
him to satisfy both momentum equations up to the point
of separation, the analysis and computation would have
been greatly complicated. The reason for this is that
the equivalent of eguations (6.35) and (6.36) would have
to be solved and the complete solution is not possible
if the flow separates since the velocity distribution in
the boundary layer is not known about a point oX
separation.

Mori and Nakayama expressed the velocity distribution
in terms of &(¥) and reduced the number of unknowns
to four of which only one, 8(Y) , was variable. They
were thus able to find values for these in the way
described in the last section. This method produced
regults which were in good agreement with the experimental

observations for the increase in resistance due to curvature,.
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but it gave no real indication as to the behaviour of the
skin friction and the possibility of separation.

As a result of these investigations, the present
analysis will continue in two svages. Firstly, a theory
will be devised to determine the relevant physical
constants which can be compared with experiment. The
velocity distribution will be expressed in terms of two
unknowns, one of which will be the boundary layer
thickness & and an additional physical restriction
will be imposed. Secondly, a theory will be presented
which makes use of experimental results and those
obtained in the first part to determine the behaviour of
the skin friction and to investigate the possibility of

separation.
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CHAPTER 7

The momentum integral

1t was seen in the last chapter that an approximate
solution to the problem is possible if the velocity
distribution is expressed in terms of the boundary layer
thickness and another variable and if an extra physical
restraint is imposed. It was also seen that complications
arise in determining the other constants if the flow
separates. As a consequence, any theory devised to
obtain values for the constants introduced from the
core velocity profile, must introduce simplifying
assumptions.

The dominant simplifying feature concerns the
tangential momentum equation (6.31). Apart from Adler's
theory, previous theories satisfied the tangential momentur
integral at one point only. In the theory that follows,
the contribution made by this egquation will be restricted
to that of it being satisfied at the wall of the pipe
only. Thus

0’ 1 1 2 i

"“??“(O) =~ /2 h, w,, cos ¥ (7.1)

1
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Imposing this condition on the flow instead of
evaluating the tangential momentum integral is perhaps
extreme, but it 1s no more extreme than evaluating the
momentunm integral and satisfying it at one point as in
the theory of Barua: it has the advantage that 51 can
be specified as a function of ¥ at all points on the
wall and will avold the complications of separation.

Integrating equation (6.30) across the boundary

layer yields

)

{Eéj. ow Eﬁl _a.}’i_g wié". in = -h P_W.(O) (7.2)
o LO¥ 04 67 oy "o 6? i 0 aQ ! ‘
so long as %%(6) 1s considered zero.

Transforming equations (7.1) and (7.2) using
‘? = 6(?/)}(_ (703)
and denoting partial diffecrentiation with respect to x

by primes,

g (0) = - /2 n, 87 Wi, coaV”, (7.4)
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[N ) o x o
O
il.e,
~h w! (0) 1 8%1 S
Oy e WY e woaim b ~r
5 = CF7Z W ﬁ{,'l (O‘f’ Bow)} x . (7.5)
0

The velocity profiles

Following a couventional Polhausen approximate
method of solution, the simplest boundary conditions tha<
the velocity profiles must satisfy, that are consistent

with the derivation of equations (7.4) and (7.5) are:

08, _ ]

vos g w0 8t w0,

w =W O~ 0 at x = 1 - (7.6)
01 , aX <L 5N ’ [

B
A
I
B
[}
A
T
s
i
'
i
i
L]
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i
o
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o+
]
i
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where Wy and 501 represent the velocity distribution

in the core when r is put equal to one. Thus

}501 = U1COSY/ 9 (7-7)
C
1 B
W, = e h  + 7 . (7.8)
ci 2xﬂ1 ( 0 ho)

These conditions are the necessary and sufficient
conditions that the velocity, the gradient of velocity
and the pressure are continuous at the interface within
the errors of the approximation used.

The velocity profiles chosen; consistent with (7.6)

are
By = gy + PIE(WN Je(x) (7.9)
W= W, £f(x) , (7.10)

where f(x), g(x) and ©(x) satisfy the conditions

£f(0) =0 , f£(1) =1 , £'(4) =

It

5(0) = g (0) =0 g(1) =1, g'(1) =g'(1) =¢g*(1) =0,

and F(A) = Ft(1) = ™M(4) = ™(4) = 0 . (7.41)
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These profiles are expressed in terms of two
variables of which one is the boundary layer thickness
and therefore comply with the necessary conditions for
a solution. They differ in form from those considered
in previous theories, in as much as the variable H(Y)
has been introduced together with a multiplier F(x) ;
these allow for any deviation from the standard form of
velocity profile which in this case would be of the form
£548(x)

Inserting these profiles in equations (7.4) and (7.5)

;§C1g"'©) + HLF(O)g"(0)+F1 (0)g"(0) ] = - 1/2h063w§10087’/9 (7.12)
n £1(0) Y
"9"'5”"'“ + (1-P) ay(/H - %?/ (QH) -{-g—;,(log wM) + 5}
X (P, + QH) = 0, (7.13)
1 1
where P = j{f %g(x) dx  ong Q = /ff %E (Pg)dx . (7.14)
0 0

The boundary condition on H(Y) is obtained from
the fact that ﬁ1 must be zero at ¥ = + /2 . IEguation
(7.43) is, however, only a first order differential

equation and (7.12) is an ordinary equation relating
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5§ , H and ¥ and so only one of these conditions can

be satisfied. Any solution obtained from a boundary

layer analysis for the point Y/ = —ﬂ/2 is doubtful,

due to the fact that the flow must detatch itself from

the wall of the pipe about this point. It will, therefore,
be assumed that £, is only necessarily zero at ¥ o= T/

The boundary condition on H(Y) thus becomes
a("/2) = 0 . (7.15)

Substituting for ﬁc1 and w from (7.7) and

ci
(7.8) and replacing QH(Y) by y(¥) ,

h £1(0
%,_{ (b ,-B)y} = “9.5 ( )(h§+B) - (1 ~P)U, sin¥ (h +B)
an’
~PU, costg Y’ ) (7.16)

subject to the initial condition that y(7/2) = 0 .

Bguation (7.12) can be rewritten as

—1,8° ¢} 51°
g’"(O)U,‘GOS\’/'l‘ Ly = W (ho-i—ﬁ-—) cos Y (7.47)
8 0

1

where I = F(0)a"(0) +OF’(O)EV(91
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Having reduced the momnentum egquations to this form,
it is necessary to obtain relations for the constants
O1 s U1 and B .,

Determination of the constants C1 , U1 and B

It was seen in the last chapter that two of the
three constants can theoretically be found from equations
(6.35) and (6.36). Inserting the values of w as given
by (6.34) for the core and (7.10) for the boundary layer,

equation (6.35) becomes

-1
T o= 2 { r w, dr + J[ r W dr}- a¥,
j m?t/z _I oF J

1
45K /2

s , \
{"/2 1 -1, 1 |
= 2 ' rw, dr - K 6(wc1~w)dx ay,
O 0

o]
-TC/2 0 0

c, NV 5 Asa i 3 1 \
I
= -g;zﬁ-j;.? (L’l‘r"ﬁ} r dr -- X 5{h04~ﬁ-)J (1—f(x))d:,:J§ C
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1 /2 ,
J’ {14ﬂx¥dx:[ 60%%%J ay. (7.18)
0 -

Ly

Similarly, equation (6.36) can be written as

29 1. 2T
C
T B)rdfd‘z"—(}f{rdrdy]_ggx
" ®04
OJO

an By £1(0 =172
J’ (hoxho) Q) av+ o /2,
0

’-._\

whereupon D= + O(K /2)

2n o1 _
where S = r dr d\l/o ,
o Jo (Hoxersiny)”

_5,“[ 1 " ‘.,mélﬁ.m_.u.,&_‘g-ﬁ)i—m_).
3K | (12) /% 2140) K (1-8) /2]

(7.20)

s (7.19)
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The term of order Ku1/2 is retained in equation
(7.18) so that a second approximation to the increase in
resistance due to curvature can be obtained. It is not
the complete second approximation, however, since it can
be seen from (7.19) that there is a contribution from B
of order Km1/2 , which can only be calculated by
considering a second approximation of the momentum
equations. Nevertheless, it is constructive to calculate
the contribution indicated in equation (7.18) not only
because it represents the physical situation, but also
because it affords a comparison with similar results
ohtained by Barua and HMori and Hakayamaj; they also
neglected second order effects from the momentum equations.

As was seen in the last chapter, the third constant
can only be obtained without recourse to experiment, if
an additional physical restraint is imposed on the Tflow.
It is required of thid restraint,that, unlike the restraint
imposed by Barua, it be wvalid for a iarge range of
curvature ratios. Since it seems likely that the
curvature will have least effect at the point where the
fluid from the oore’attaches itself to the wall of the
pipe, it was assumed that the deviation from the
standard velocity profile in the boundary layer would

be a minimun at this point. Thus
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%%}n/z) =0 . (7.21)

Since H(™/2) is also zero, this assumption is
tantamount to assuming that near ¥ = T/2 , which is
defined as the attachment point, the stream function
effectively behaves like 501 g(x) = U, cos W.g(x) . It
cannot be stated a priori that this assumption is valid
for a large range of curvature ratios. The justification
can only be obtained by comparing the results of the
theory for various curvature ratios with experiment.

Equation (7.21) implies that %%; 0 at ¥ ="T/2

and thus, from equation (7.16)
n ("/2)£1 (0
5("/2)

(1-B)u, [0S ("/2)+B] = O,

(ng("/2)+8] G (7/2) = ) [0l (%/2)+B] -

-y o= 0 (0)
R T
(1-2)8("/2)

(7.22)

A value of &(™/2) can be obtained from equation (7.17)
and the fact that y(™/2) = 0 . Thus
/3

s("/2) = (7.23)

2
~OKE U? a1y 0) ( ho(n/Q))
o< n ("/2) \n:("/2)+B
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The wvalues of C1 and B , however, depend on a knowledge
of & for all¥€ ["/2 , -7/2] and it is found that 2
particularly simple expression can be derived if it is
assumed that F(O) = P'(0) = 0 . This assumption makes
L zero and the following expression for o6 can be
obtained from equations (7.47) and (7.8):

~2gm(0)u, ] /3

5 = _1;__\,:2—_— o (7.24)

o ¢

The justification for this step is that in any
Polhausen approximate method of solution, there is
considerable licence in the choice of velocity profiles.
It does not seem unreasonable, therefore, that the
profiles affording the simplest solution should be considered
first. The physical significance of the assumption is
that near the walls of the pipe, the deviation from the
standard velocity profile is small and the stream
function again varies like ﬁo1 g(x)

The constants 01 R U1 and B can now be obtained
for a given curvature ratio and thus the increase in
resistance due to curvature can be found from equations

(5,51) and (6.19) as a function of Dean number and

curvature ratio. Thus
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. (7.25)

Special Case when Xt << 1

The simplest polynomial forms for £(x) , g(x)
and PF(x) , consistent with (7.41) and F(0) = Ft'(0) = 0 ,

are

o(x) = 10x° - 20%° + 15x% - 4x° (7.26)
P(x) = x°(1-x)% .

If the curvature ratio is sufficiently small so that
the variation of &(¥) can be assumed negligible in the
integrals of (7.418) and (7.19), 6&6(¥) will be replaced
by 6("/2) and since for } << 1 , S #* 1 [see equation
(7.20)1],

- A - 1
B = L .4+ /28 KU (7.27)
1+ 1/253cu1 ot T

.1
¢, = , (7.28)
o ls, - 1/665 x~1/2
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where 60 = 8(™/2) .

From (7.14) and the profiles (7.26), P = '1/29 ,
g"(0) = =120 and £!'(0) = 2 . Substituting these values

in (7.22) and (7.23) and neglecting higher order terms in

o,

-2
U1 - 5 o 9 (7029)
and
3,2
U
° ol 1420 —1+1/28 U. k1
1 { o1 }

whereupon, eliminating U1 and 61 using the first

approximation to 61

5, = 4.04 . (7.30)

Thus from (7.28) and (7.29)

¢ = 1 , (7.%1)
1 “‘1/2
1.04 - 2.72 K

and U, = 1.04 . (7.32)

1
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Finally, the increase in resistance due to curvature can

be obtained from (7.2%) and (7.31) as

,1
Yo g /2

(7.33)
'\{ ...']
5 g.08 - 21.76 1 /2

In order that this may be compared with the experi -
mental results of Adler and White, K mnust again be

replaced by KW/JQ . Thus

12 ) . 104 Kw (7.3)
Vg : : .

_1/2
1 -3.2 K,

This result bears strong resemblance to that of
lori and Hakayama (LBguation 6.28) and it can be seen
from Figure (7.4) that it agrees with the experimental
observations of Adler and ihite extremely well for
values of Kw greater than 100, There are, however,
certain reservations as to the validity of the second
approximation in (7.34) represented by the term 3.2 K;1/2 )
which also apply to the results obtained by Barua and
Mori and Nakayama. All these results were obtained from

momentumn equations that neglect higher orders in Dean

nuiber or Reynolds number and yet, in all cases, these
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Fig. (7.1). Comparison of the theoretical resistance coefficient for X <K 1 with

the experimental observations of White which also represent the results of Adler
(see Fig. 5.2).
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would have contributed -to the second approximation to
the increase in resistance due to curvature. The
inclusion of higher order effects severely complicates
the problem and it is therefore agsumed that the terms
omnitted have very little effect on the results.

The physical significance of this assumption can bhe
seen by considering the fact that second order effects
were included in the constant wass flux condition and
omitted in the constant momentum flux condition, It
. 1s therefore assumed that the defect in mass flux in
the boundary layer has more effect on the flow than the

defect in momentum flux in the boundary layer.

Numerical Solution for various curvature ratvios

The polynomial forms for f£(x) and g(x) from
(7.25) were inserted in equations (7.22) and (7.23) and
values of U, and §("/2) were obtained. A value of
& was then obtained for wvarious Y from (7.24) and
these values were inserted into equations (7.18) and
(7.49) for various curvature ratios and Dean Number.
Integrating the various integrals using Simpson's formula
with an interval length of /480 , wvalues of B , c,

and U1 were obtained for various curvature ratios and
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Dean number.

Prom the values of C, and equation (7.25), the
increase in resistance due to curvature was plcotted
against Dean number for various curvature ratios and the
results are exhibited in Fig. (7.2). It is seen that
for small X , the curve lies near to that obtained from
experiment and that as the curvature ratio increases,
the resistance increases. The accuracy of these results
Tor large curvature ratios cannot be given until the
experiments of Adler and White are repeated for this
range of curvature ratios. It should be remembered
from Chapter 5, however, that for large curvature ratios,
torsional effects become important; it seems reasonable
to add, therefore, that results for pipes of curvature
ratio greater than about 0.4 are of academic interest.

The theory devised in this chapter is for
asymptotically large K and it has been seen that any
second approximations are not strictly valid. The
results for asymptotically large K of the various
constants are tabulated as functions of K for various

W
curvature ratios in Table (7.1).
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H L /e B Z&/k1/2

W W Y s W

.05 L T76 .50 -0.876 0.097

. .856 .94 -0.765 0.107

.2 1,01 1,01 0,567 0,127

.3 1,19 1,09 ~0.40 0.149

4 1,42 1.18 -0,276 0.178

.6 2,02 1.38 ~0, 117 0.252

.8 2.90 1.6 -0.039 0.363

.95 3.64 1.77 -0,006 0.455 J

TABLE (7.1). Asymptotic values for the

various curvature ratios.

constants for

It will be noticed that for X = .05, the dominant

1/n
term for +the increase in resistance is .097 KW/“

This value agrees well with the dominant term obtained

by Hasson from White's experimental values for small

curvature ratios.

30 < Kw < 2000 , the relation

-

C
(=]

1/,3
- = 0969 Kw “ + 0.556

Hasson found that in the range

(7.35)

gives a good representation of the observed results.
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The object of this chapter was to find numerical
values for the constants which emerge from this type of
analysis. These values have been obtained and they
have shown reasonable agreement with experimental values
for small curvature ratios. In the next chapter, the
values of these constants for all curvature ratios will
be used to investigate the skin friction and the

possibility of separation.
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CHAPTLER 8

The momentum Integrals

In the previous chapter, assumptions were made
which not only simplified the analysis, but also pre-
determined to a large extent the nature of the flow in
the boundary layer. In a Polhausen approximate method
tyve solution, profiles varying with the non--dimensional
radial conmponent and the boundary layer thickness have
to be imposed; but in the previous theory, further
restrictions were imposed on the profiles by assuming
that separation did not exist. This facilitated a ready
solution of the integrals involved in equations (6.35) and
(6.36), since this assumption implies that the profiles
are valid throughout the range -"/2 < ¥< /o . I,
however, separation does exist, at a point 7” = Yi, say,
the boundary layer approximation breaks down about this
point and the velocity distribution cannot be determined
near the inner wall.

The present chapter will be concerned with finding
a better representation of the velocity distribution in
the boundary layer and in particular, to find whether,

and at what point, separation exists.
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In order that more accurate results may be obtained,
hoth momentum equations (6.30) and (6.31) are integrated

across the boundary layer.

6(%’65 3f 34 { 51
Pt oo [ e

i 07 Yo
SCFYag. 024 86,1 ° ) .
Eé.?'l_. .a_...?l - 50(-5»721} + jg- hg cos )”_(wg,]ww[')} dfz
0 1 2 18(¥)
=h [ —t (8.2)
67 0

Putting fz = §(¥)x and henceforward denoting

partial differentiation with respect to x by primes,

1 1
o8 n
1 - ow . _ o 1
j W wt < f ﬁ}‘ ( a}y ; BOW) L = TEW‘JO 3 (8a3)
0 0
s\ [ 1
) -
;% %?,“ Bo = % %?),r ﬁ%L dx -+ %hg cost] (W§1~w£)dx
o)
’JO 0

1

..l’lo 1
= 3 [;5111]0 . (8.4)
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The velocity profiles

The velocity profiles introduced in this section
will be more complete than those of the previous theory
in that both restrictions imposed by the momentum equations
at the wall will be satisfied. The boundary conditions
at the wall are

04
w = 5§% = ﬁ% =0 at x =0 : (8.5)

in addition, it can be seen from (6.30) and (6.31) that,

at the wall,
ﬁT(o) = - % b, ¥ w§1 cos ¥, (8.6)
w(0) = 0 . (8.7)

At the interface, the following conditions will De
satisfied:
=0 , (8.8)

w(1) = w w'(1) = w({1)

c

£,(1) = 4oy 5 A1) = £1(1)

il
i

g (1) =0, (8.9)
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where 501 and w,, are given by (7.7) and (7.8).
It can be seen from the conditions (8.5) to (8.9),

that all the restrictions on 51 at the wall and at the

interface are satisfied for all derivatives, save for

A (0) , up to the third. Similarly, the restrictions

on w are satisfied for all derivatives up to the second,

except for w!(0) . The values of w!'(0) and #%(0)

are determined from the momentum integrals and these are

the values that determine the skin friction and indicate

any separation.

The velocity profiles chosen, consistent with the

conditions of (8.5), (8.7), (8.8) and (8.9) are

A= { By 84 x(vv} g (x) (8.10)

v =gy + £, AM] 1,00 (8.11)

where 8o » g1 ; fo and f1 satisfy the conditions

g, (0)

Eo

g, (1) = g5(1)

Il

g1(0) =0, g (1) =1, @i(1) = en(1) = gny) =0 .

gl|(1) = n-l!y(»]) =0
! o ' (8.12)

f,(0) =fu(0) =0, £f,(4) =1, f£L=mM01)=0,

£,(4) = £:(1)

il

M) =0
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With these profiles, A(¥) and JL(¥) , together with
their multipliers g1(x) and fq(x) , represent the
unknown deviation from £ = 5C1go(x) and w = WC1fO(X)
in the boundary layer.

Substituting them into equations (8.3%) and (8.4),

ag dw
ci dA ci -
(a‘lwc‘l"'a?ﬂ)dy} + (%Wm*%ﬂ)a‘?f - {3'?’ * Bowc‘l% [(1-a1 )2{01““"’

h £1(0
+{g*‘=n,+ Boﬂ} (32)501"'34?\) + -2 g”"'("’c1+f1(o)ﬂ)= 0, (8.43

5 2 2
—12-{91- ~ By - g)- %7’} (a5,z§01+a6z5017\+a77\ ) +

h
%hgcos‘f':( w 1+8q ﬂ_w +a1oﬁ_2) - {7501+€,1(O)7\} gt (0) = 0

(8.14)
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1
ayg = £°Ff5 ax . (8.15) con=td.
0

Finally, if the condition (8.6) is to be satisfied

{ﬁc1+g1(0)x} g™(0) + 33 (0)g1(0)A = ~ n_ &%w>, cosY,

using the fact that gO(O) = gé(o) =0 ., From(?.]k this

can be expressed as

L1, <32
) }iU*lg'é'(o’ *oghy 67w,

g,(0)eu(0) + 3g5(0)e (0)

A=

} cos V. (8.16)

Eliminating A from (8.13), (8.14) and (8.16) , yields
two first order, ordinary differential equations in ()

and  JL(Y) ; they take the fornm

afl as 3
Tyt gy wsy Yo (8.17)
Q
as _ .6
U 37 = o5 + U (8.18)
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where the Qi's are functions of & , S, 7" , ."51 , B
4] 1 and M which are nowhere singular in the range
/2 < ¥ < /2 . They can be defined in terms of the
following functions:
~ gm(0) . U
P, = “moo ‘lg)o-ﬁo s
17 g, (0)g"0) + 38! (0)gr(0)
1. 2

P = Ty Vg
2 7 g, (0)ghN0) + 3g;(C)eff0)

_ o . 8D
Py = - (P, + 87 Py)

20h

w2 2 2 0
P4 = ho(aB Ve + g wmﬂ_Jr a1oﬁ_) - (WGJ1 +ﬂ) ’
— 2 _ . i 2
PS--aSUJI ~a6UJ1 £3+a7P3 5
whereupon

_ 2
Q, = 3B, 8 (ag wg, +a, JL) , r (8.20)

b

H8.19)
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Q3 = (a1 Woy ¥t ag,fl) U1 sinY’ - (a3 Wy a4J?,)P3 sinYV
%h
o _
dP .
- (. , 3 .2 L. 4
Q = “(aB Vet 7 a4Jl)6 dv * [d?’wc1 By wc1]’€
[_(1-a1)U1 + ag 13? - Py @ S
P5 )
Q5 = g§ ~ Bag U, Py + 6a7 P3 P,
2P5 '
Qg = - :S‘é‘— sin ¥ + Py
)'('P5 oosY’
Q-? = 62 j

The equations (8.17) and (8.18) have singularities
at ¥ =+ "/2 unless QB(jn/E) and Q6(i“/2) are
zero. Conditions cannot be imposed on the flow at
¥ = .. "/2 , because of the strong evidence predicting
scparation. In fact, the equations may well be singular
at this point if, as is the case after separation, they
do not truly represent the flow. If it is assumed that
there cannot be singularities in the equations at YV = W/Z ,

Q3(n/2) = Q6(n/2) = 0 and these two equations give the



145,

initial conditions of & and.fl .

It remains to obtain values for the constants C1 )

B and U, , whereupon equations (5.417) and (8.18) can

be solved numerically.

Determination of the constants 01 , B and U1

It was seen in chapter 6 that two of these constants
can theoretically be found from the constant axial mass
and momentum flux conditions given by (7.418) and (7.19).
It was seen, however, in the development of the theoxry,
that the integrals involved in these relations cannot
be determined completely if the flow separates. It was
also scen that a value for the third constant is cbtained
either by imposing an extra physical condition on the
flow, or by giving to it a result obtained from experi-
mental observations. Since the object of this present
section,is to find a wmore accurate representation of the
skin friction, the latter course of action will be
adopted.

By far the most reliable experiments are those which
measure the increase in resistance due to curvature as a
function of Dean number. The experimental observations

of White and Adler have been shown by Parugia (unpublished)
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to be represented by White's empirical formula

0.45) 2.22 | -1

Y
2= g (J.;:.ﬁ) , (8.21)
s Kw/2

for 11.6 < K, < 2000, within an error of +2%. Unfortunately,
these results only apply to small curvature ratios (i.e.
X< ,067), whereas the present theory requires results
for all curvature ratios. Since the theoretical resulis
obtained in the last chapter agree reasonably well with
the experimental results for small curvature ratios, the
values of 01 (from which the resistance is calculated)
for the present theory, will be taken from table (7.1).
This assumes that the values of 01 for large curvature
ratios are also accurate, but in the absence of experi-
mental observations for pipes of large curvature ratio,
these values will have to suffice.

Once a value for C1 is obtained, B can be found
as a function of U, from equation (7.18) by assuming
that +the Kn1/2 term is negligible. This is gquite
reasonable since the values shown in table (7.4) are only
accurate to the first approximation and the KM“/2 term
was only retained in equation (7.18) so that a second

approximation to the resistance could be obtained. Since
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the remaining terms contain no integrals, they are
unaffected by the possibility of separation and B can

be expressed in terms of U_T as follows:

2xU0
12l
il )

i

B = T . (8.22
e (1 - x5 /2

If the flow does not separate, the remaining constant
U1 can be found by using the following iterative method:
choose a value for U1 ; take the particular value for
01 from table (7.1) corresponding to the particular
curvature ratio being considered and determine B from
(8.22); insert these guantities into equations (8.417)
and (8.418) and solve for &(¥) and JI(VW in the range
/e <Y< /2 . A different value of B can then be
found from (7.19) and thus a different value of U, from

(8.22). This process is then repeated until U, converges

1
suitably.

If, however, the flow separates, or U1 does not
converge suitably, the above method will fail and an
alternative approach has to be considered. In the nex
section, it will be seen that the flow does in fact
separate. The wvalues of U1 for wvarious curvature
ratios were then assumed to be equal to those obtained
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in the previous theory and exhibited in table (7.1).

Numerical solution for various curvature ratios

The simplest polynomial expressions for fo(x) ,

f1(x) , go(x) and g1(x) satisfying the conditions of

(8.12) are
£.(x) = 3x ~ 3%+ x0
f1(X) = (1'X)3 s
" (8.23)
g, (x) = 10x° ~ 207 + 1527 4’
g1(X) = (1~X)4 .

These profiles were substituted into the integrals
of (8.15) +to determine the a;'s which were in turn
substituted into equations (8.13) and (8.14); subsequently,
A and the form of the Qi's in eguations (8.17) and
(8.18) were found.

Bguations (8.17) and (8.418) were solved on the
computer at Imperial College for various values of curva-
ture ratio and the corresponding value of CJI and for

various values of UJI on and about the value given in
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table (7.1). It was found in every case that separation

au
or

evident. As a result of the nature of this separation,

as indicated by the fact that became positive was
values of B obtained from equation (7.19) were, in all
cases, lower than those obtained from equation (8.22).

It was decided, therefore, that the equations did not
represent the flow about the region where ow is positive

or

and that the value of U1 for a particular curvature
ratio should be taken as that given by table (7.4)

Bquations (8.17) and (8.18) were solved numerically
for the following values of X : 0.05, 0.1, 0.2, 0.4, 0.6
and 0.8, Gill's process for the fourth order Runge-Kutta
method was used with an interval length initially of
Z%%ﬁ increasing to 7%5 after 48 steps. This was
necessary to avoid the inherent instability in the
numerical process for the solution of these equations
about the point = /o

The values of Y at which %% became positive
were sought for each value of X and it was found that
values could be obtained only for X = 0.05 wup to
X = 0.4 . TPor values of X equal to C.6 and 0.8, %%
is at all points negative. The available points indi--
cating separation are shown graphically in fig. (8.1).

It is seen that the values shown can be connected with
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—vqo .

—060 t I . 1 1 " i
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Fig. (8.1). Position of point of separation as a

function of curvature ratio.

reasonable accuracy by a straight line recording a value
of ~64° for szero curvature ratio. This compares
favourably with the calculated point of separation
obtained by Barua. He found that the tangential velocity
became positive in the boundary layer at ¥ = -62° 58!
for very small curvature ratios.

The numerical results for 6(¥) , JL(¥) and A(¥)

are shown in figure (3.2} to figure (&8.4). A typical
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2 L
I L
o 1 ] i 1 1 { Y
90° §o° 30° 0° ~30° -40° -90°
X .05’ A .2 X .6 .8
v 2 4
90° 3.01 %.02 3.05 3,04 2.99 2.86
60° | 3.08 3.10 3.14 3.16 3.14 3.03
30° 3,28 3,31 3.38 3,48 3.55 3.53
0° 3 .61 3.65 3.73 3.90 4.07 4,17
~30° 3.97 3.97 3,99 4.04 4,12 4.17
-60° 4.06 3.9%. 3.64 3.1% 2.69 2.35
-89° 3.67 3.36 2.77 1.79 1.0% 0.448
Fig; (8.2). The variation of & with Y for various

curvature ratios.
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q0° - 69° 30° o ~30 - 40° = 10" ¥

-0 7%

X .05 . 2 4 .6 .8

90° | -0.998 | -0.987 | -0.970 | -0.976 | -1.01 -1.10
60° | -0.896 | -0.882 | -0.852 | -0.823 | -0.810 | -0.847
30° | ~0.655 | -0.621 | -0.552 | -0.413 | -0.250 | -0.80

0° | -0.368 | -0.307 | -0.484 0.145 0.615 1.26

-30° | -0.175 | -0.098 | 0.061 | 0.600 | 1.55 3.15
-60° | -0.207 | -0.453 | -0.05% 0.457 1.77 5.12
-89° | -0.%28 | -0.%304 | -0.289 | -0.186 0.013 0.62

Fig. (8.3). The variation of Jl with ¥ for various

curvature ratios.
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5
0.3 -
ok
o]
1 ] 1 1 M ?%
qoo 60.- o oo _300 _600 -—C}OO
y; X .05 A .2 4 .6 .8
90° 0.0 0.0 0.0 0.0 0.0 0.0
60° 0.121 0.126 0.1%6 0.158 0.18% 0.242
30° 0.226 0.235 0.25% 0.291 0.337 0.389
0° 0.292 0.%05 0.330 | 0.384 0.45% 0.532
~30° '0.281 0.297 0.321 0.380 0.451 0.5%2
~60° 0.169 0.178 0.193 0.226 0.265 | 0.307
—89° 0.006 0.007 0.007 0.008 0.010 0.011

Fig. 8.4. The variation of A With ¥ <for various

curvature ratios.
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LAYER

CURAVE

|, EXPERIMENTAL CURVE [HAWZS)

OVTER T INVER
WALL --I | WALL 4
6.0 T T T 7
s oS 0 «0 =0 x = Fosin
T~ .05 0.1 0.2 0.4 0.6 0.8
1.0 1.80 1.79 1.76 1.76 1.83 1.98
0.5 | 1.69 1.68 1.66° | 1.66 1.72 1.85
0.0 | 1.00 1.00 1.00 1.01 1.01 1.01
-0.5 0.58 0.58 0.59 0.59 0.56 0.49
~1.0 0.17 0.16 0.15 0.10 ~0.01 ~0.31

Fig. (8.5). Experimental (Hawes) and theoretical velocity

profiles in the plane of symmetry of a curved pipe.

;




155.

graph for & , JL and A is exhibited and an accompanying
table gives details of the variations for different
curvature ratios. In all cases the graphs were plotted

for the particular curvature ratio of 0.05.

Finally since the values of 01 , B and U1 have
been ascertained, it is possible to consider the asymptotic
axial velocity profiles in the core for various curvature
ratios. The velocity profile for K. = .05 is exhibited
graphically together with the velocity profile obtained
from experiment by Hawes for a pipe with X = .05 and a
Dean number Kw = 895, The deviations from the theoretical
curve for various curvature ratios are shown in the

accompanying table [see figure (8.5)].

Region of validity

The equations of motion for flow in a curved pipe
[(5.41) and (5.42)] were solved for asymptotically large
K and without the assumption that the curvature ratio
was very much less than one. In addition to the
restrictions imposed on the theory by the simplifying
features introduced and discussed in the development of
the theory, there are restrictions imposed by the physical

nature of the problem. Ixamples of the former are
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inherent in the assumptions. They include: assuming that
viscous forces are only important in a thin layer nex

to the wall and that the constants derived in table (7.1),
after imposing an intuitive physical restraint [see (7.21)],
are valid for all curvature ratios. IExamples of the
latter arise from the fact that the flow becomes turbulent
after a critical Reynolds number and the physical
necessity of introducing large torsional effects as K.
tends to one. It is difficult to obtain quantitative
limitations to the present theory without a direct
comparison with experimental observations, but it is
possible, with the aid of fig. (8.56), to derive certain
limitations imposed by the +transition to turbulence.

It is known from the experiments of Vhite and Adler

Reynolds numbers and thus critical Dean Humbers, above
which the flow is turbulent [see fig. (1.4)]. It is
natural to ask whether the valuves of K , which are
sufficiently large for an asymptotic solution, are
greater than the critical Dean Number.

Ito derived an empirical formula from the results
of Vhite and Adler for the critical Reynolds nunmber as

a function of curvature ratio of the form



Kpe2,200  ,100°
2" A

fey &%

Pig. (8.6). The region of validity.

“LGh
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10.3%2
_ 412
Re, = 2 x 10 (R) , (8.24)

velid for 15 <= < 860. In fig. (8.6), this curve is

plotted on a graph of log Re against log R/a and from
the formula KW = Re(%}1/2 , 1ines of constant Kw are
drawn. The extension of Ito's curve is known for values
of /a2 > 860 since it is lmown that as Ja —>050,
the critical Reynolds number tends to that of a straight
pipe which is approximately 2,300. The extension for
values of R/a < 15 is not known and may be difficult
to obtain even experimentally. The reason for this
can be seen from fig. (5.2), where the deviation from
the common curve for the increase in resistance due to
curvature for various curvature ratios has been used to
denote the omnset of turbulence. - As the curvature ratio

¥ increases, the line deviating from the common curve
subtends a smaller angle with the common curve. Eventually
it may not be possible to distinguish the two curves.
Also, as )X dincreases, it is likely that this common
curve will no longer be valid for the increase in
resistance. In fact the results of chapter 7, illustrated
in fig. (7.2), indicate that there will be a marked

increase for these curvature ratios. In fig. (8.6),
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Ito's curve is extended to values of R/a <15 by a
dashed line continuing the known curve. TFor values of
Re above the curve AA' +the flow is turbulent and
below it, the flow is laminar. The theory developed in
the last three chapters and those of Adler, Barua, and
Mori and Nakayama are valid only below this line.

In order that an estimate of the value of KW be
obtained, above which the asymptotic solution is
sufficiently accurate, it will be necessary to compare
the theoretical results with those of available experiments
and to remember the order of the terms neglected. Since
KW is of the same order as K and terms of order K“Jl/2
have been neglected relative to terms of order one, it
is essential that K;/2 >> 41 . Although there is good
agreement between the theoretical and experimental results
for the increase in resistance due to very small curvature
for values of Kw down to 250, the velocity profiles in
the core (see fig. 8.5) are steeper than that observed
by Hawes who obtained the profile for a pipe with
X = .05 and at a Dean number of K, = 895 . Nothing is
known as yet aboﬁt the behaviour of the wvelocity profile
with increasing Kw , but it may well stsepen as Kw
increases. If this is the case, KW is not sufficiently

large. This problem can only be resolved by repeating
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the experiments of Hawes for several values of the Dean
number approaching the critical Dean number.

The accuracy of the theoretical results for the
resistance coefficient for such low Dean numbers is due
largely to the second approximation. A comparison of
the asymptotes of the theoretical results for X << 1 1
/2

Y 1 Y
(0. Mo = 108 1 /?), for k= .05 (te. yy = .097 K

Y 1
and for K = 0.1 (i.e. O/Ys = 107 KW/Q), with the

.
/

experimental observations of White is shown in table (8.1).
It can be seen that although the accuracy increases as
K, increases, the results differ by as much as 15,29 fa
K, = 1000 and 12% for K, = 2000 . Since the theory
predicting the separation point depends on these
asymptotic results, it is reasonable to restrict the
validity to values of Kw greater than 1000,

Due to the effects of torsion discussed in chapter 5,
there is a practical lower bound of R a below which
the theory presented here is invalid. Also, 1t is
likely that the assumptions made in the development of
the theory break down beyond a certain curvature ratio.
An accurate value of this lower bound is possible only

by comparing the theoretical results with possible future

experiments designed to this end.
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' i J
s obtained For Tor For
Vg << 1 | xo= 0.5 X = 0.1
K, vmﬁgr?s %‘q - .?_0. = 1,9_ =
“pents “ C i, "1
°1O4KW nO97Kw ¢107Kw
200 1.87 1.47 1.3 1.51
4G0 2.48 2.08 1.94 2.14
€00 2.85 2.55 2.38 2.62
1000 3,61 3.29 3,06 ‘ 3.39
2000 4,93 4,65 4.34 4.79

Table (8.1)

The region of validity of this theory can be
obtained once lower bounds of R/a and K have been
decided updn. It is represented in fig. (8.6) by the
area bounded by the curves AA' , R/a = lower bound of
B/a ana K, = lower bound of X . Thus if lower bounds

of R a

and KW are assumed to be 4 and 1000 respectively,
the region of wvalidity is represented by the area XYZ

It can be seen from this that an upper bound of R/a

would be about 40. In previous theories, it is assumed
that X << 1, If it is assumed that their theories are
also valid for values of K _ > 1000 and that '/a = 15

is sufficiently large to make Jo= #/R << 1 , it can be

seen that the region of validity would be represented by

the area X'Y'3
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The separation condition

It was seen earlier that a condition conducive to
seraration was produced from the numerical solution of
the differential equations (8.17) and (8.18). It was
also seen that as ¥ => 0 , the calculated value was
effectively the same as that obtained by Barua whose
theory is only valid for X << 1 . The difference between
the determination of this value is that DBarua's theory
predicts separation in the tangential velocity component
whereas the present theory predicts separation in the
axial velocity component. The reasons for this are due
to the different approaches to the problem and the fact
that the boundary layer approximation breaks down near
a point of separation. Thus it should only be deduced
that separation occurs somewhere near the predicted
values and that the type of separation is irrelevant
since the equations are not valid about this point.

There may, however, be some significance in the
fact that the separation point of the present theory
recedes to ¥ = -90° as K increases [see fig. (8.1)].
Although it is quite likely that beyond a certain value
of X , the theory is not valid, there may be some

correlation between this fact and the fact that the
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flow in curved pipes becomes more stable as X increases.
This is not to say that separation causes instability
in the flow, but it may well give rise to the effects
which then produce instability and thus turbulence. This
opinion is reinforced by the experimental observations

of Taylor (6) which showed that the flow appeared to
become turbulent initially in a layer next to the wall

of the pipe.

Another facet to this problem is that although it

is assumed that the flow is symmetrical about the

¥="T/2, ¥ =-"/2 1line and that if separation occurs
at -64° +then it also occurs at 244° , vortices may
well be shed from these points alternately in the same
way as flow over a cylinder. This, and the variation of
separation point with curvature ratio, awaits experimental

investigation.

\
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PROGRAM FOR SOLVING A SET OF SUCCESSIVELY DEPENDANT SIMULTANEOUS
DIFFFRENTIAL EQUATIONS USING GILL'S PROCESS FOR THE FOURTH ORDER

RUNGF—~KUTTA METHOD.

OO0O0O000N

REAL A{Z21)«F(632)eY(63):Q(E63)G(63)
N=1
857 Ni=33N-=1
NP=35#N=2
N3=734#N
XPRIN=042
=1
A(NY=1e
ALP'—'O.
GO TO (23052023152023¢5292305292305?v23152023052923!520230520230
152+23) N '
23 WRITE (6420
20 FORMAT (1H1)
852 X=0. '
H=0.02
S0 DO S6 1=1.N
Y{(33%1=1)=0e
Y(3%1=21=0e
S6 Y(3%1)Y=A(1)
IF (LeFQal) GO TO 1
WRITE (6+21)
21 FORMAT (1HO)
WRITE (6+22) XeY(N2)4Y(N1)YsY(N3)
22 FORMAT (1HO+F2062+3F1966)

THE INTEGRATION PROCESSe

oO0n

GO TO 1

111 DO 59 I=14N
F(3%]=2)=H¥Y(3%]=1)

SO F(3%#T1=1)VsH*¥Y(3%])
GO TO (614652463064 46546606T74¢684694700 716720730744 T75¢76e67 7478479480

1981) 4N

81 FUO3)s—~H#(Y(1)#Y(E3)=BeXY(2)¥Y(62) ) =2 HHIALP¥Y(44)*Y (1)

- 80 F(H0) z~HY(Y(1IH¥Y (60)=B+¥Y(2)HY(59) )=2¢FHRALPHY (44 )XY (] )=X#¥Y(2))

TFO FAST7I==MHE(Y(1)I¥Y(S57)=3e3*Y(2)H¥Y(S6) )=2FHXALP*¥Y (45)

78 F(S4)==HE(Y(1)IHY(S54) ~3eH¥Y(2)IH¥Y(SIIV+4 o FHFALPAXK (4o=Y(2)%Y(2))

TF7 FUS1)=~H¥ (Y{1)1%¥Y(S1)=Be¥ Y (2)%Y (SO I+2eF¥HFALP* (=Y (2)¥Y(B)~Y(7)¥Y (4S5
1)+YU(BI*Y (44 )1+Y(1)#Y{(44)+4a%Y(45))

T6 Fa8)==HE(Y(1)INY(4B8) =B ¥ Y(2)#Y(4T7)I+HRALPF (Be~2¢ ¥ (Y (2)AY(S)+Y (4) *Y
1(4S)=Y(S)Y¥Y (44)))

TS FlAS)==H¥ (Y (1 )#Y(45) =24 XY (2IFY (44) Y+HFALP* (4e~Y (2)%Y (2))

T4 Flapy==H¥ (Y 1)¥Y(42) ~Be* Y {(2IHY QI V44 e H¥Y(B)H¥Y (GO ) IH+HFALPH (=2,%Y(21)
THRY (T4 e FIY(20)¥Y(B)=Y(19)¥Y (D) )44« ¥ (Y (211 +X*F(21)/H))

T3 F(39)=—~H¥(Y(1)IXY(39)=Be*¥Y(2)¥Y(38)+4e¥Y(I)HY(37) ) +HFALPHR (=24 %Y (7)) ¥
IVE12) 434 % (YIBI¥Y (1 1))=Y (D) #EY (1044 ¥ (Y12)+X¥F(12)/H) )

72 F(36)=~H* (Y (1)1 ¥Y(36)=3e¥Y(2)#Y(35)+4 e ¥Y(3)#Y (34 ) V+HHALPH (24 %(
1=Y(7)¥Y(18)=Y(4)#Y(21))1+BeHF(Y(1T7IHYI(BI=Y(16)#Y(O)+Y(20)*Y(S)=Y(6)¥

2Y(19) ) 4Ae ¥ (Y (1B)+X®F (18) /H) )
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71 F(33)=~HR(Y(1)¥Y(33)=3e®Y(2)¥Y (32144 e*¥Y(3)¥Y(31) ) +HFALPH (24%(

1=Y(4)¥Y(1BI=Y(TI¥Y (15143 ¥ (Y (1TIHY(SI=Y(16I¥Y(6)+Y(14)FY(8)-Y(13)
1RY(O))IF+4 % (Y (1S5)+X®F (15) /H)Y)

70 F(30)==H¥(Y(1)I¥Y(30)=3e*Y(2)¥Y(29)+4¢¥Y(3)¥Y(28) )+H¥ALP* (3e¥(Y(14)

1#Y(S)=Y (13I%¥Y(6) )=2e ¥Y(4) XY (15))
69 F(27)=—H¥(Y{1)*Y(27)=Bo%*kY (2)HY(26)+4«¥Y(3)FY(25) I+HRALP* (3 ¥ (Y(]1)%
1%Y(5)=Y{10)¥Y(6) )=2: %Y (4I)HY(12)-12)
68 F(R4Y==H¥ (Y (1)¥Y(24)=3o%*Y(2)¥Y(23)44+¥Y(3)¥Y(22)) 12+ ¥H¥ALP
67 F(21)=~H*(Y(1)I%¥Y(21)=2e%Y(2)¥Y(20)+3¢#¥Y(3)¥Y(19))+HFALP* (—2+ %Y (9) ¥
IY(T794+Y(BYRY(B8)+4 6% (Y(O)+XH#F (9 /H) )
66 F(18)=‘H*(Y(1)*Y(iB)—Zo*Y(Z)*Y(17)+3.*Y(3)*Y(16))+2.*H*ALP*(
IY(S)#Y(B)=Y(4)¥Y(O)=Y(TI¥Y (6} +2e ¥ {Y(OBI+XXF (6)/H))
65 F(18)=~HE(Y(1I¥Y(15) =2eH%Y(2)¥Y (14 )+3e¥Y(3)H¥Y(13))+HFALP¥ (~44+Y(S) ¥
IY(S)=2e¥*Y(4)%Y(6))
64 F12)==HR(Y(1)1¥Y(12)=2e%¥Y(2)¥Y(11)43e*Y(3)%Y(10) )8 ¥HXALP
63 FO)==H¥(Y{1)I¥Y(Q)=Y(2)1¥Y(8)+2e¥Y(BI*Y(T) ) 4+4¢ ¥HFALPH (Y (3)=X*Y (1) ¥Y
1(3))
62 F(6)z=H#(Y(1)¥Y(6)=Y(2)¥Y(S5)+2e%Y(3)¥Y(4)) =8¢ ¥H¥ALP
61 F{3)y==H#Y(1I%#Y(3)
GO TO (100+4101+102+103)eM
1 M=1
GO TO111
100 DO1121I=14N3
G(Iy=F(11}
O(Iy=F (1)
112 Y(I)=Y(1)140eS%G (1)
M=2
K=X40 e S¥H
GO TO111
101 DO113I=14N3
G(Iy=F (1)
Y(I)=Y(1)+429289322%(G(1)1-Q(1))
113 Q(1)=e58578644%G (1 )1+412132034%Q(1])
M=3 :
GO 70111
102 DO1141I=14N3
G(IYy=F (1)
Y{I3=Y(I)+1eT7071068%¥(G(INI-Q(1))
114 Q(11=3e4142136%G(1)=4e1213203%Q(1)
M=4
Ka=X+MN e 53%H
GO TO111%
103 DO1151=1sN3
G(Iy=F (1)
115 Y(I)=Y(1)14+0+16666667%(G(1)~2%Q(1))

THE CONTROL OF STEP LENGTH AND OUTPUTe

XP=10¢ #XPRIN+402

MN=%P

VX=106e¥X+602

ML =vX

VXT=FLOAT (ML)Y/10. ' -
1F (LeEQesl) GO TO 6
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51

S3

33

34

IF (MLoLTeMN)Y GO TO 6
XPRIN=XPRIN+0e2

WRITE (6+4201) UXTeYINZ2)+eY(NL) W YIN3)
FORMAT (1H +F20e2¢3F1946)

IF (ML=4) lede¢4
H=0605

1IF (ML=30) 14545
H=0o1

IF (ML=S0) 14242

THE DETERMINATION OF THE THIRD INITIAL CONDITION A(N)e

IF (L=1) 747433

IF (ALP.EGeOs) GO TO St

GO TO 53

Vi=Y(N1)

ALP=1e

GO TO 52

V2=Y(N1) -
A(NY=1e=-Vv2/V1 : ,
IF (NeEQel) AINI=(2,/Y(N1)Y)*¥*1eS

IF (NeEQeZ2eOReNeEOQs4sOReNeEQe8 ) A(NY=1e+(2s=v2)/V]
L=L+41

GO TO 52

N=N+1

IF (N=21) S57¢57¢34

STOP

END
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