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Abstract.  

The resonance energy transfer of electronic excitation 

between two weakly coupled molecules is discussed. The energy 

transfer mechanism between an isolated ground state acceptor 

and an excited sensitizer is studied in the dipole-dipole 

approximation , and the limitations of this model noted . 

Using the single acceptor-sensitizer pair interaction the 

behaviour, of a whole system of transferring species is investigated. 

A new cell-model is proposed for the statistical treatment of 

the transfer in solution and the results of a computer 

simulation of a random solution presented . The effect of 

diffusion on the transfer rate is also theoretically investigated. 

The time-dependent luminescence of a randomly distributed 

collection of sensitizer and acceptor molecules is discussed 

using a Green's function method when the exciting light is an 

arbitrary function of time . This theory is applied to the 

interpretation of phase-fluorimetry results. 

Theoretical expressions describing the effect of light 

attenuation in fluorescing solutions are given , and a model 

for secondary fluorescence and the trivial effect is proposed 

and tested against experimental results . An account of an 

apparatus for the observation and measurement of resonance energy 

transfer is given , and the results of an experimental 

investigation presented. 

The treatment of molecular 1T-electrons in the semi- 
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empirical self-consistent field (SCF) approximation is discussed. 

A derivation of the Hartree-Fock SCF equations for both closed-

shell ground states and half open-shell states is given. The 

nature and validity of the semi-empirical SOF approximation and 

the Tr-cy electron separability is considered. The Pople-Pariser-

Parr approach is followed throughout . 

The calculation of 	spectral properties from the 

-Tr-electron SCF wave functions of molecules is discussed, and 

the spin properties of the open-shell methods considered. 

The application of a spin projection operator in the form of a 

single annihilator to obtain spin eigen states is also described. 

A semi-empirical self-consistent treatment of the 

Tr-electrons in polymeric systems with simple translational 

symmetry is presented , using the crystal orbital Bloch approx-

-imation . 

FORTRAN IV computer programs of the SCF molecular 

and polymer treatments are included , with a description of their 

particular usage .Results obtained with these programs are 

finally presented. Theoretical predictions of TV-electron 

properties in molecules and polymers are compared with 

experimental results. The band widths of helical analogues of 

DNA were calculated in the delocalized iT -electron model. 
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CHAPTER I. 

RESONANCE ENERGY TRANSFER AND RELATED PHENOMENA.  

(I) Introduction.  

The first observation of resonance energy transfer was 

made by Carlo and Franck in 1922, (I). They studied the 

emission spectrum of a mixture of Mercury and Thallium vapour 

excited by a Mercury-resonance light source, and found it 

contained Thallium lines as well as the anticipated Mercury 

components. Since Thallium did not absorb any of the exciting 

light used, they concuded that the Thallium was indirectly 

excited by the Mercury atoms. This non-radiative transfer 

could not be attributed to trivial reabsorption, or collisional 

effects,and indicated a long-range transfer of excitation 

across space between the isolated atoms, with Mercury as the 

"donor" or "sensitizer" and Thallium as the "acceptor". 

The mechanism for this transfer was first discussed by 

J. Perrin,(2), using a classical coupled-oscillator model. 

This theory was expressed in quantum mechanical terms by 

F. Perrin,(3), and Kallmann and London,(4).These treatments 

culminated in Th. Forster's discussion of resonance transfer 

between vibrationally relaxed sensitizer and acceptor molecules 

in solution, (5),(6). 

In the extensive theoretical discussion which follows 

we shall consider the evaluation of the transfer rate using 
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time-dependent perturbation theory and the dipole-dipole 

approximation. The theory will be applied to bulk systems 

of acceptors and sensitizers. The time-dependence 

is explicitally considered, and a new model for the transfer 

is proposed. Finally we consider some of the experimental 

problems involved in the study of the phenomena, and illustrate 

these with an experimental investigation. 
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(2) Time-dependent Perturbation Theory.  

(a) Introduction.  

A quantum mechanical treatment of resonance energy 

transfer involves the use of time-dependent perturbation 

theory to evaluate the rate of inter-state transition under an 

applied perturbation. 

In the following conventional development of time-

dependent perturbation theory,(7),(8), we shall assume the part 

of the Hamiltonian * which varies with time is small in 

comparison to the time-independent part, 	. Thus we can 
write our total Hamiltonian as, 

(6) 	= 1-1 0  -t- 
Additionally we presume knowledge,of the orthonormal eigen-

functions of the unperturbed time-independent Hamiltonian, Ho 9 

H 0 = 	541  0 (1-2) 
For the perturbation problem, as /-1 is now a function of 

time, we must use the time-dependent Schrodinger equation, 

(-24 D1) =7, 14 -‘1) 
(1_3) b e 

Where lit69 represents the total wave function of the system, 

and may be expanded in the stationary eigenfunctions of Ho  

except now the time-dependence of idinl must be included, 

n  ) 	2 Er1-11- (1-4) 

* See the section on Wave Mechanics, Chapter 2., for a 

fuller discussion of the concepts used here. 
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The expansion coefficients depend on time, representing the 

evolution of the new state from the state at t"...=() ,(9), 

and the sum over /1 includes all the discrete set of 

eigenfunctions of I-10  together with a continuum for 

completeness. Substituting T-tt) into the perturbed Schrodinger 

t Ey, Z. 
n 	± 	n  64n  

y 

(1-5) 

A 
Multiplication by 	, followed by integration gives, 

Dqk 	
E  dit 

k" 7n 
E 	efo  1.1  r.1 

t (1-6) 

f 	H i c4, 	/4 I,/  
/ 

where I-1 is refered to as a matrix element of the 
perturbation and if we also use an angular frequency defined 

by , 

equation we find, 

-e. 

Writing the integral on the left as, 

1.0 k n (1-8) 

then we have, 

Lt) 

t4  K ti a n  e_ 	kn 

 

 

Y1 

 

(1-9) 



as 
	H we find, 
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To find CkK 	
we express these expansion 

coefficients as power series in X 	, 
• . • 

CLK 	
K(0) -I— 

and if we write HI  

(I-1o) 

2  ckk(o) 	'›k 	ca. 0,1) + 	ca,  lc( 	- • 

I 	
.2- H 	A 	to) 	(1) -FA0.,,(2_)-t-••• • • 

ic rt. [ 4.. coknt 

(I-11) 
. • • 

gea/ft 
ftftgaa 

On equating coefficients, and setting X= 1 we have, 

fteaft,  
malle 

 

) rt 

s+i) = 
(A) t 

1-4 arts) K 
ron 

(I-12) 

These equations can be integrated in principle to 

approximate for any desired order in the perturbation. 

(b) First - Order Perturbation.  

The zero order coefficients, 0.00), are 

independent of time, as 	Cik.te(0) 	and are hence 

t 



for 
	
(I) 

3 ci c( I) 	
.--1 

--1— • 

and, 
	t 

( I ) 

(...0,<„,:t 
• e. 

if.A)/ti t 
J 

- 6 

constants, giving the initial conditions of the problem, 

specifying the state of the system before the 

perturbation is applied. This state may be represented 

by all but one of the 	being zero, thus for 

a system initially in state j , represented by 

then, 

0-) K. 

where 	is the Kronecker Delta, defined by j K 
with) $ A'‹ )Ic. 	

with .„) 111:. k 

Hence substituting for a (0) in our expression 
K 

We have assumed the perturbation is "switched on",at 

t = 4) 	and"turned off" at time t , then evaluating 

the integral at these limits we find, 

c. 	 (1) 
H • 	to .t Kd — 

(A)   
19 

( I-16 ) 
In this first - order theory we represent the probability 



that after time 1; 	, under the influence of the 

perturbation fil  , a transition from 	e4 .J171: will 
i k  

have been induced by 10- KW I 	-1,— -I: tA) :i; 1 r — t wi<  ..t .1 

2. -- 
I °1/4-  K (1  ) 1 	LCX )lt  Ck.K0 il : I frIK'i  

te,„) z., 
or, expressing the right hand side in terms of a real)  r 

le 
''' 	(I-17) 

function, 

21r-  Wicit.  1 

1 	K (I)  I = 
4- H(1-2*-  ) 

CJL  • 
The predominance of the transitions with 	CA) 	C) 

can be seen from evaluating _S-4.11-01‹.)1.)as a 

function of CA) • 	2- 

(I-18) 

Hence we find the probability for a transition between 
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two sharp states 	and J  , represented by the ordinate 

depends on t . This implies that the transition probability 

increases quadratically with time, which is not observed 

physically or expected intuitively. This ambiguity is removed 

by giving the final state K a finite width , with a density 

of states, e(Eic) . The requirement of a finite width of I< 

is easily fulfilled in real systems as 9K is not exactly 

stationary. Under the influence of unspecified interactions 

H e 
other than the perturbation, 	, it will be split. We 

shall assume A: ACquires the nature of a continuous 

distibution centred at eji<  , with tak )otE representing 

the number of k-states with energy between E
A;  and E CIE 

Additionally we shall take e() to be only a weak function 

of Etc  . Then the transition probability per unit time 

for the transition Li to )< is given by, 

-I- Co 

C1. kW e(E,)eAE,, 
00 

Then,since 
1-(Xj.  (! EK) 

varies little over the important 

range, ek  Ej 

P (i) 	
77— 	. I I-4 	L  

4  
(I-20) 

It will be noticed that the conservation of energy principle 

(I-I9) 
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for the transition J-4 	is automatically fulfilled, and 

does not have to be inserted as a special requirement. 

The principle is however suitably modified by the uncertainty 

relation of Heisenberg, which gives an energy width of NI J.3. 

We have neglected transients from the "switching on" of the 

perturbation, and have obtained a probability which is constant 

per unit time, unlike the "sharp states" transition which 

increased with time. 

Let us now consider transitions between two 
0 

o  Lorentzian distributions, centred on 60: 	and (A)L., 

representing the initial state 
J  , and the final state 

The broadening of these corresponds to the coupling of the 

states with their environments. 

We then find the total transfer probability per unit time, 

which according to our first-order perturbation treatment 

is given by equation (1-20), 



- I0 - 
t 00 

-11  	. 
( 	 (;_c,)-) t F72 ) 

-  

7-ir dWk  

1-7:*) 
(I-21) 

Further, on assuming, 	
/-7.; = r7c 	

/r-7  , and 

also assuming that I 
	

j j is not a strong function of 

and 1.1)/ 

oc' 

dcolc Guo,i 

 

t-o; 	)(( (();-"V-f c) 
(1-22) 

Without any further qualifications PO) may now be 

evaluated by Riemann integration, (8), 

/ i:)±4-  4 r P(o 
(( k 

(1-23) 

This result can also be obtained by a simpler route -- 

if we insert the conservation of energy principle, by 

using the Dirac delta function, E(u)k-i..)j) . This function 

has the property, 

— Lt)*) GILJK j)(4)_)) 

(1-24) 



Hence, 

P(I) (f)21Kj12.2-- Tr 	- 
S6,)k -Lootwk aw.i 

kiA):-(')02--tra)k'D-"A,)).3-+r7) 

  

_Oo 

This a much easier Riemann integral, and gives the same 

result as before, equation (I-25). 

The case of (4 = L.?! , can be solved, using 

the conservation of energy principle, without recourse to 

complex integration, giving, 
CUD 

P o 	2 r  WI'. 	Wk 
	 11" 

Trr j  (cwi—L402- +P.z-Y-  P 
-- 00 	 (1-26) 

It should be realised that these derivations of the transfer 

probability per unit time ignore initial transient effects 

from the "switching on" of the perturbation. This is shown 

by the more rigorous evaluation of the probability, which 

involves the determination of, 



- 12 - 

 

1_00 	 ± 00 

cloa3 

LA)S-f- 	) J (( .4-1-otc) / -1- r79 

 

  

 

 

 

  

• / 	C(..J ‹.  

CO L  (1-27) 

Using Riemann integration it is found, (8), with the 

assumption that is not dependent on WK and 11Jj9  

( 
(w 

a 	.0 2 C.. r) 

(LV- (-4);+ 2 L 

 

+ 	_ 
(04-,-,-)iv-+ 4 

   

(u)K°-  LA): -I- 2z ) 2- 

 

(I-28) 

The first terms in the curly brackets are the transient 

terms, decaying rapidly with time, and leaving a constant 

probability per unit time represented by the last term. 

This will be recognised as the expression derived in the 

simpler procedure given earlier. 
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(c)Second - Order Perturbation. 

In this section we are concerned with the magnitude 

of a, (2) , the second non - zero term in the 

expansion for a. K  (±.) given in equation (I-I0). 

For the transition 	
,
-4 k 	, we have 0,. Is  (0) =---* 0 , 

and a
K 
 (I) 	is determined as described in the last section. 

The term al(2) represents the contribution of second 

order processes to the j -= /( transition. Using the 

recurrence relations for 	CtN(S 1) . 4. 	with the result for a i< Q ) 
we obtain from equations (I-I2) and (I - 16), 

c: (A) 
a 1,,(2.) 	 H„ tfyij 

1) € 

(I-29) 

If we have only one state n, with rl == f for which I-4 Kr) 
and kl 	are non - zero, on integration we find, 

a(2- -=-
K 

I Hk  H C.0 
 LA).

rc 

 t- 
-) 

C.3 

(I-30) 

This corresponds to the transition 	A: passing through 

an intermediate state, '(9, , coupled to both the initial 

and final states. Thus it is a three - state interaction effect 
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which we are considering in the evaluation of these second- 

order coefficients. 

Representing each of the states, 

as a Lorentzian distribution, we require the integral, 
-t oa - 

P62-) 1.7 I Tr 	11<trr awl< 
t 

_ 	(( wi° - (A02-  + F:j4) (c,A)1 )  - Lk) 	rK 2) 

re iTr-  d u)Q 	ac 7 	(z) 

( 	1,) ey -1- re  z  ) 

(I-31) 

This has been evaluated explicitly for the case where, 

[-' and f ( K  = 	- 

 

0 	0 
cA)
k 
=

J 
 -= , using 

Riemannian integration, (8) • 

  

P(2) I-1 la.  • Hej 
Li-  113  

 

(1-32) 

This discussion of the second-order process is included so 

that we have an insight into what conditions militate for the 

breakdown of the simpler first-order perturbation transfer 

route. This will be discussed later. 
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(d) The Perturbation Matrix Element, 	 K t.  

As we have established from the discussion of 

first-order perturbation theory, it is possible for a transition 

from the state I 
so, 	

of a system to the state X to occur, 

so long as and K both have the same energy, and are 

coupled via the perturbation matrix element, I Hi; 	• 

Now we shall specifically concern ourselves with the case 

of resonance energy transfer between two species. Let S denote 

the sensitizer and 11 the acceptor. The initial state of 

the system 	corresponds to an excited sensitizer in the 

neighbourhood of an acceptor, which is in the ground state. 

. The final state, with the transfer to the acceptor 
0 

having occurred can be written as, r 
,v)   fl• 

. Competing 
'S 

radiative effects and non-radiative transitions are ignored 

for simplicity. 

Then the matrix element required is; 

Obs*  ltel° (H1 1 	)bt,*.  > 
The perturbation coupling the two states, without which an 

energy transfer is impossible, arises from the electronic 

interactions of the molecules. Normally we consider only the 

coupling of the excited valence electron on the 

+ Note here antisymmetrization is ignored. 

5 	fq 

This situation can be represented by the simple wave function, 
yi*,]41 0 



N SA {. 

where; 

R 5- 
(1_34) 

the distance vector between the A 

LX -Ss a  •  

R3  
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sensitizer with the corresponding ground state electron on 

the acceptor, but initially we must at least acknowledge 

the presence of all the others. Neglecting retardation and 

magnetic effects,(8), we represent our matrix element as,(I0),(I2), 

I Asa 1 	< 	IA° 
 
I 1-1" I 10):> 

° A 

 

ea_ 
°'''11 .0t-t S IA s 

 

r ran, s 	rn, A)  

(1-33) 
The sums involve all the electrons effected in the transition, 

1r11 	refering to sensitizer electrons, and lel 	to 

acceptor electrons. The integrals are over the coordinates of 

both electronic distributions. If the element is expanded in 

a Taylor Series, and we retain only the dipole-dipole term,(IO), 

(11),(12), 

centres of the sensitizer and the acceptor, and E:::: Y1Z  7  is 
the dielectric of the medium. 
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As  
X,) \Ps

o  
 ct'Vs  • 

(1-35) 

These are the transition dipoles between the ground and excited 

states for both the sensitizers and acceptors. 

This "dipole - interaction" model is only an 

approximation, we usually consider only a single electron 

on both the sensitizer and the acceptor as being involved, 

and have totally neglected electron exchange. Also in the 

Taylor expansion we have ignored higher order interactions, 

such as dipole - quadrupole, and quadrupole - quadrupole (10). 

This is reasonable so long as this dipole - dipole term is 

non - vanishing. If it were not, higher order interaction 

would have to be used. 

In the evaluation of the transfer probability we 

require the square of 
	

I 14  S/A 	, and from equation 

(I - 34), we obtain, 

11-1- —4 ffs 3  ( ass k)(A.  
R2  

(I-36) 

which immediately brings us to the familiar inverse - sixth 

power variation of the probability of resonance - energy transfer. 
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Clearly however we have ignored the specific angular properties 

of the transition dipole as 	and 	alcy 	in 	H 	I 

and only one pair of sensitizers and acceptors have been 

considered. 

We shall particularly concern ourselves with the 

application of the principles discussed to the sensitizer 

acceptor transfer for species with large band - widths in the 

next section, then it will be possible to proceed to the 

statistical problem of macro - ensembles of interacting 

molecules. 

(3) Resonance - Transfer via Dipole - Dipole Coupling.  

Now we shall consider the specific problem of energy 

transfer between two vibrationally relaxed species, (14), (15), 

(IC), (5), both with broad undefined energy levels. The two 

coupled transitions which give rise to the transfer are shown, --- 
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We have used P/0....)
S 
 ) and 

S 
PA  (WA) to represent the 

vibrational energy - state distributions for the excited 

state of the sensitizer and the ground - state acceptor 

respectively. These distributions are normalized to unity, 

00 

P, (Ws')ch,05/ = 

00 

PA  (WA) LA)/ 

(1-37) 
0 	 0 

It will be noted that we do not commit ourselves to any 

particular form of distribution - the Lorentzian distribution 

which was used to illustrate the first and second - order 

perturbation results, generally does not well represent the 

experimental spectra of molecules in solution. The wavefunctions 

applicable to the individual molecules in their initial states 

are normalised, 

(1-38) 

The final states ' (WO and *(6..)(4/) are not 

unique as are the starting states, the excited ciensitizer 

may return to a band of states, and similarly the acceptor may 
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La co 

d W t 

J 
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be excited to anywhere within a band of states, ZS. CA.) 

Hence we normalize these states as for a continuum, r  ÷ CO 

	

(4) 

	
-1(( ws) d = 

	

, (tA)A') 	, ((ut\) d teifi 

(1-39) 

The integrations over Cl./1 	and Crrel f  involve all the 

electron coordinates of the appropriate molecules. 

Antisymmetrizing the initial and final states, 

denoted byL 	and 	F 	respectively, 

wA) , 	(r-z,  ("),A) 

fli c,)s0 \Iiti( 7?-1 1  WAS 

(--)s) -ww(FicA)) 
(1-40) 
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Here 	and. 	are the valence electron. 

coordinates - here we have taken the simplest two electron 

model for the transition, (I0),It will be seen overlap terms 

of the type, 

-41—  	z Ws) Chjs ; 

have been ignored. It is reasonable to expect them to be 

small, especially within the dipole - dipole approximation, 

which is only valid for R5A ?r- 	. If they were 

non - zero the VIT expansion coefficients in the 

antisymmetrization procejdure would be affected. We write 

the dimensionless matrix - element between the initial and 

final states as, 

H i ")zir  d S cIT 
	

(JS1 W P ) 	
L) 

I  t.4)A 

Thus the transfer probability, in the first - order 

perturbation approximation can be written 
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as, 

(I-4I) 

We have assumed the transition may only occur between two 

non - degenerate states. In order to integrate for 

we invoke the Frank - Condon Principle, that is we assume, 

(Ws 	Ws) = 643  F-1 (-t-)  A 	. This is an approximation 

which is analogous to the conservation of energy principle 

discussed in the section on first - order perturbations. Now, 

however, we have to take into account the fact that the two 

molecules are coupled to non - specified other systems, 

which give them such broad energy bands. The Frank - Condon 

principle also allows us to assume the jump rY 

is much faster than any other external process, and as an 

isolated mechanism must conserve energy. 

Hence in the expression for P:sfil 	we can use the 

8-((u3- WS) — (WA/"." WA)) 

Integrating over 	, using the properties of the 

Delta function, (see equation (I -24)  ), 

Dirac Delta function, 
• 
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' S ) H 	E, WA+. E>) 
(1-42) 

The perturbation matrix element is obtained using the 

conventional dipole - dipole approximation, considering 

only the single electrons on the acceptor and sensitizer 

explicitly involved in the transition. Unfortunately this term 

has an angular dependence, given by, 

2_ (s ets9 t,y1 9 s  .5:-*v1 °A c--4).  YZA — 	c  " rfr3  s- 
(1-43) 

arising from the coupling of the two transition dipoles, 

Thus the transfer rate is dependent on the orientation of the 

two dipole vectors. If we assume our sensitizer and acceptor 

Fl 



mean value of this angular term, 

integrate over all 	) el; and 

2) 	
, we 

A 
, with 

have to 
2. 
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are rotating at a speed much greater than 
	

Psf4 
then this angular dependence may be averaged out. To find the 

weighted by a suitable probability function, 

 

sue, es  s, -)94  des  de, 6 

8 
(1-44) 

where 	represents the probability that the dipoles 

are orientated with angles 

7 -r -rr 
GA ) . Hence we require, 

(12 ) rnee).-ri 

 

(st- y e 	e 
4/tel styi qs, .g(ti eA  

8-rr 

   

(9.5. o  GA,o  

This gives, (6), 

o  
2c Os  CeN 64) 	

A 
ae 	d 

- 	5 	 4 

(1- 45 ) 

(V),„„) ---- 2/3  
Hence we can write, 

Z. 

S WA  I WI uis'-E)col4 +E 

	

er\ao- 

(L./60A.  
Rs 

2. 	1 
3 6  

I gs  (Ws 	01 " Id (W A W AtE )1 

(1-46) 
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It is found that performing the averaging at this step, 

for only two molecules, yields an identical result to 

averaging at a later stage in the development of the 

statistical model, (14). Thus we finally obtain, 

_ 14- 17- 

s A 
	

R')14  

00 

S,HA,L0A+15)) 

 

w14 	 (1-47) 

This is the full theoretical expression for 	Ps/ 	, 

and from it we might consider it would be simple to insert 

the various quantities to calculate 
	

PS / A 
	in any given 

circumstances. Unfortunately the distributions PS1 and Poi 

and the moments 
	
as 	and 
	

are usually 

unavailable --or of low accuracy. The solution to this problem 

is, as shown by Forster (5), (10), to relate the triple 

integral directly to the extinction coefficients of the 

states, which are easily obtained experimentally. We shall 

follow this development and first we consider the 

coefficient for spontaneous emission of an excited species, 

this is the Einstein coefficient 	11 	, (15), 

  

co 

E 
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w - s 2_ 

I cis (u);/ws (-6)1 
(1-48) 

is the mean value of the Einstein coefficient over 

the whole of the emission band; a) is measured in units of 
energy. This integral represents the fluorescence spectrum 

of the sensitizing molecule, whilst the second integral in 

	

, over (AD A 	corresponds to the absorption 

spectrum of the acceptor. This absorption is related to the 

mean value of the Einstein absorption coefficient, 

r 

	

6.(-JA)coAi-E) 	4. 17 	&L.0  e 0-(t-DA — 
3 	r1-1- 

(1-49) 

This coefficient is also related to the decadic extinction 

coefficient, 	E , of the absorbing species, 

(,J i6) wA i-E) 	c- eq/0) E(F) 

E 	
(1-50) 
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20 
Where 	N 	is the number of molecules per millimole, 6-02X IC) 

While it is experimentally quite simple to find 

from a measurement of C( E) , the corresponding 

measurement of A 	for the emission spectrum is not 

so easy, and it is better to try and relate this to the 

absorption spectrum. This is possible if we assume the 

vibrational structure of the sensitizer is approximately 

the same in both the ground and the excited states, 

as (toss,as  (WS /—E )  w$ /) 

(I-51) 

Then if in addition we use this "mirror symmetry", (16), (17), 

to relate the energies to the plane of symmetry, 	E0 
between the absorption and fluorescence bands. 

.2E„-E 	E 0  
Using the relations derived for and 
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3 
ri 	E) 	—7( 

A (E) 

 

(1-52) 

Then, 

=(2 E 0`E)7-  ,/ p 	E(zEo -E) 

3 C.2  Tr -  N 	 (1-53) 

From these relations (1-51), (1-53),  and (1-47), we can 

now derive s A in terms of integrals over extinction 

coefficients, 

00 

3 	c2. 	co ) 2-  

y1-2- (root Tr3  

E :::. 6 

E6(E) es  (2 Et,- E) 4 F-

E (2e,-E) 
(1-54) 

With the reasonable approximation, Eo  = E Ej lE-.>(), then, 

010 

Ps 'A 	
3 e 	OW- 	Eaci ( )(2E6-6) C;  

nI 01(1167- 
(1-55) 

Hence the rate of transfer is obtained as a function of 

easily observable parameters, and involves a special type 

of "overlap integral" over the absorption bands of the 

transfeieng molecules. This is the same type of integral that 
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occurs in the discussion on the trivial effect, however 

it must be remembered that here it represents the possible 

coupling between two states - not the possibility 

of photon emission and reabsorption processes. The usual 

working definition of transfer probability is, (5), (6), (9), 

(1-56) 

where ld 	is the radiative lifetime of the sensitizer in 

solution. Thus the radius parameter 	, often called 

the "critical radius", (5), (6), is given by, 

2- 

4- Tr' EQ  (NT-n.1  
(1-57) 

where 	is the overlap integral, 

C= op 

(1-58) 
o 

Most experiments in the field of energy transfer are aimed 

towards a determination of 	b , rather than the direct 

confirmation of a calculated 	, (19), (18). 
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The correlation between calculated 	and their 

experimental values is not always good, this is due to many 

causes - the approximate nature of the statistics used in 

solution, the inherent failings of the dipole - dipole 

approximation, and finally the value of the integral 

is not always very accurately known. 

(4)The Break - down of the Dipole - Dipole Approximation.  

Here we shall discuss the breakdown of the approximations 

used to derive the transfer rate given in the last section. 

Apart from various minor assumptions in the derivation of 

the major basis of the theory is the use of first - order 

perturbation, and the retention of only the dipole- dipole 

term in the multipole expansion of the perturbation matrix 

element.Considering first the perturbation approximation, 

we must recognise the basic differences between the 

various orders of perturbation. In first - order perturbation 

induced transitions we picture energy transitions between 

sensitizers and acceptors as being a series of single jumps, 

no intermediate states are involved in the transition 

across space between the two molecules. Representing the 

initial and final states as Lorentzian distributions, with 

the same band - width, and centred at the same point, we 

found 	P 	I H I, I Z/n 	. (See 

equations (1-20), to (1-28)). The transfer of excitation 

through an intermediate state is described by the magnitude 
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of the second-order perturbation term. Here we can regard the 

sensitizer as passing its energy to the acceptor via a third 

molecule, acting as an intermediary in the transition. This 

transition is however aconcerted one , and the intermediate 

has only a transitory existance. The probability for this 

transition was found to be, 

P(2) -7- 

Thus the ratio of the squares of the perturbation expansion 

coefficients is given by, 

PO) 	r'2 
 

assuming, ILI I< 	H z:j 	H 	, and for the 

perturbation series to converge we must require, 11) fl  ,(II). 

This corresponds to a "weak coupling" model ,(6),(20), where 

the perturbation must be small compared with the band-width 

of the states, 1 	.When the reverse holds, and (i1) '.'!t PO) , 

then we can no longer consider the excitation as localized 

between jumps, it is essentially delocalized, and may transfer 

through a number of intermediate states. This is the "strong 

coupling" case, and certainly is not appropriately described 

by any of the foregoing theory. For this case the exciton 

model is used,(21),(8). 

Coupling criteria have been discussed by Fbrster,(6), 

who proposes three categories, strong, medium, and weak . Our 
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"weak coupling" corresponds to that of F3rster's, and he 

distinguishes the higher couplings by whether of not 

resonance exists between individual vibronic levels in both 

molecules. The situation in molecular crystals, such as benzene, 

where the transfer has to "wait" for the correct vibration 

before transfering, is refered to as a "medium interaction" 

case in Forster's nomen-clature. For this mechanism we regard 

the excitation as being only slightly delocalized, in the 

"strong coupling" limit, delocalization is complete. Here 

the interaction is so strong that the vibronic levels of the 

two species are in resonance and vibrational quantization 

may be neglected. For two "strongly coupled" molecules 

we find an oscillation of excitation between the two centres. 

Considering the time dependent functions for the sensitizer 

and acceptor, we can write two antisymmetric functions 

representing the exciton splitting, (21), 

   

("Sbi;IP -f- 	Nie) - 	6 , s 	A 

 

    

    

    

the time dependent wave function is given by, 

(I-60) 
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Squaring 	we find, 

(I-6I) 

Thus the transfer is a purely oscillatory process between the 

sensitizer and acceptor, and the excitation is effectively 

delocalized with a rate of -,, 21-1/7T$ . It is this delocalized 
excitation spreading over the whole system of molecules 

involved in an aggregrate which is refered to as an exciton,(22). 

In both of these last two cases, the absorption and fluorescence 

bands are effected by this strong coupling, although for the 

medium coupling the effect may only be slight, the molecules 

in an aggregate retaining their individuality. With strong 

coupling the bands are very distorted, and we must consider 

states of the system rather than the individual molecular 

excited states. 

Hence our "resonance transfer" theory applies 

only to weakly coupled systems, with essentially localized 

excitation. These conditions are however likely to break down 

at high concentrations of acceptors and sensitizers, when the 

interaction term, H 	, becomes large, with the increased 

likelyhood of close proximity,(v5 I ), of acceptors and sensitizers. 

We assumed the interaction between the two molecules 
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is purely Coulombic in form, representing the interaction 
ez- 

of the electrons on each molecule as, - r-J•)19) LiS 
(see equation (1-33) ) . This neglects all magnetic, exchange 

and retardation effects,(8), the exchange omission seems 

reasonable at large separations. The other omissions may however 

be more important. The Breit Interaction , which has been 

discussed elsewhere,(8), helps remove some of these critisisms, 

and a residual term in I./R appears in the multipole 

expansion, so the use of a better interaction term may be 

very important. Also in the multipole expansion of the interaction 

we only retain the dipole-dipole terms, this approximation is 

reasonable, except of course for non-polar states where 

dipole-quadrupole terms are vital. All these expansions are 

based on the "single electron" model, but as we see from the 

SCF descriptions of molecules, the representation of the 

excited states of molecules by single electron transitions is 

inadequate. We should really concern ourselves with the total 

state wave functions, dependent on all the molecular electrons. 

Finally we should note that with the simple 

dipole-dipole expression transitions are only possible between 

singlet states, and zero rate is predicted for singlet-triplet 

transfer,(23),(24), when the intermolecular overlap integrals 

vanish. However, if the Breit Interaction is used in place of 

the Coulomb interaction, the theory predicts that resonance 

transfer of triplet excitation energy can compete 
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effectively with spontaineous photon emission over distances 

as large as 30 A ,(8). 

(5) Resonance Transfer in Solutions.  

(a) Introduction.  

After discussing the preliminary theory, aimed 

at deriving the transfer rate between an isolated acceptor-

sensitizer pair, let us now consider the problem of an assembly 

of such sensitizers and acceptors. Our specific concern is 

solutions, and we assume our approximation concerning the 

mutual orientation of the species is valid, and that they are 

rotating rapidly in solution. We shall develop our theory 

towards explaining the enhancement of the acceptor, and the 

quenching of the sensitizer fluorescence, as this is the major 

experimental technique employed for the study of resonance 

transfer in solution,(I8),(19). The luminescence of a system of 

sensitizers and acceptors in solution is made up of the 

individual contributions of each species, with each molecule in 

its own exclusive environment . Thus the physical model used to 

explain the phenomitna of sensitized fluorescence must make some 

assumptions concerning the distribution of molecules in solution. 

We shall always regard the solvent as just a medium for the 

solute molecules, and these molecules are taken as being randomly 

distributed throughout the bulk of solvent. This random 

distribution was assumed by Fbrster,(5), after a preliminary 

lattice theory,and he assumed that the molecular positions 

were constant over the 
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lifetime of the excitation in solution.Since the development of 

F5rster's original theory the effect of Brownian Motion on the 

transfer has been investigated---with some evidence for a slight 

diffusional effect at low viscosities,(25),(26).We shall have 

more to say about this later, when a rather oversimplified model 

including diffusion is proposed. In moderately viscous media 

however, the nrster model seems well established , and 

confirmed by many experimental results,(18),(35),(36),(32),(33). 

In our discussion we shall consider the sensitizers and acceptors 

separately, and the applicability of a new simplified model 

will be investigated. Throughout our treatment we shall assume 

the inverse-6 power law for the transfer rate, 

715 ~c, 1° )

6 

sA 
(1-62) 

where -Cs  is the lifetime of the sensitizer in solution alone, 

and ies,R  is the distance between the sensitizer and acceptor 
pair. We shall not consider explicitly other random processes 

competitive with resonance transfer, such as internal quenching 

and radiative decay,(27). These are all contained within the 

lifetime term irS , where it-e 	is the rate of decay of the 

sensitizers in the abstence of acceptors,(19),(28). 

The random nature of all these competing processes, and their 

consequent constant probabilities with time, always results in 

pure exponential decay,(27), so long as no resonance transfer 

occurs. 
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This is observed experimentally, using direct pulse scintillation 

measurements of fluorescence decay, (30),(31). Also it should be 

noted any possibility of back-transfer from acceptors to 

sensitizers is ignored, in any case the Stokes Shift,(16),(29), 

helps make this unlikely. 

(b) Sensitizers.  

(i) General Theory.  

We shall consider the decay of the excited 

sensitizers with time, in the presence of acceptors. The 

excited sensitizers are assumed to be randomly distributed 

throughout solution,(14), having been excited by a flash 

of radiation at time , f— :=C) . Then if we let S7.(brepresent 

the probability that the j -th sensitizer is still excited 

at time 	, we have,(8),(5), 

okb 
	 j 	

(1-63) 
The sum over K gives the total de-excitation probability due 

to the acceptors at various distances 	from the -th 

sensitizer. Thus we obtain; 

Sj 	= -c.0) 	( 
(1-64) 

We shall assume that the initial excitation probability, cj(0), 

is independent of ,) , so that S'(p) ---- S(04). Then the total 

excitation probability of a sample containing hh- sensitizers 
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(1-66) 
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tql; 

S ( 	(0) 	 ("S 
I --( I  -fr 	 "el<  

(1-65) 
Jr:71 

But the observed sensitizer fluorescence intensity, Is  (e) 

is given by, NS  

Although it is easy to write an expression for Ts(69 as 

in (1-66), it is not so simple to evaluate it as a function of 

time. The presence of the sums over j and ,k' forces us 

either to propose a distribution for the species in solution, 

so as to obtain an integrable function in place of the sums, 

or to set up a simulation of a small representative volume of a 

"random solution", and watch the probability decay with time. 

This latter more direct evaluation ofj. (&) is possible using 

a computer simulation. However we shall first consider simpler 

statistical models involving the use of distribution functions. 

Forster,(5),(18),(32), assuming a completely random distribution 

of acceptors and sensitizers in solution, obtained the result, 

s 	 ;) 

with, 	
R3g == 
	3 V 	(1-67) 
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Here A/ is the number of acceptors contained within the 



Thus he evaluated the integral, 
A/ 3  _g 

(7 K) -Ts  GJ(ROaRK 
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volume V 	RO and T have been previously defined. 

This expression for the decay of the sensitizer luminescence 

is clearly not purely exponential since it involutes,` titi l  S 

This is what we would antLcipate. Sensitizers in particularly 

unfavourable environments, with the close proximity of acceptors 

will be quickly de-excited leaving those in more favourable sites 

to decay almost unaffected by acceptors. The method used by 

Fbrster,(I8),(32),(33),(19), to obtain this expression for 

was to assume a distribution function for the acceptors around 

each sensitizer and replace the sum over acceptors by an integration. 

where C1/4)(R) 
0 

represents the distribution function. 

(1-68) 

The result 

was independent of the sensitizer concentration, and depended 

only on the concentration of acceptors, which provided the 

environment for each sensitizer, the number of sensitizers 

considered was only important from a statistical point of view in 

giving an "average" result. This is seen in the full expression 

for the intensity, given in equation (1-66), where the sum 

over j only serves to add up all the sensitizers contributions, 

whilst the sum over K represents the energy-transfer contribution, 

depending on the number of acceptors in solution. It will also be 

noted that we cannot factor the expression, ('+ 	 ( 
ic 	KJ. 
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out of the sum over j 
	. This would only be possible if all 

sensitizers were in identical environments, and then purely 

exponential decay of excitation would occur. Thus it is the 

non-uniformity of the environments in solution which gives 

rise to non-exponential decay. 

Unfortunately the quantityl (O is usually 
5 

unmeasurable because the lifetimes of excitation in solution 

are of the order 10-8 to 10-9 sec. Recently however, the decay 

has been observed directly with the use of special techniques. 

These are usually pulse scintillation methods,(31),(30),(34), 

in which a pulse of X-rays is used to excite the molecules, 

and then the output observed on a travelling beam oscilloscope. 

This work is difficult because the duration of the exciting 

pulse and the response time of the photo-multiplier are all of 

the same magnitude as the lifetimes under investigation. 

For this reason one is lead to seek for a more easily measured 

parameter, derived from 1 (. ).Such a quantity is the Quantum 

Yield,(37),(19),(32), defined by, 

Oa 

(1-69) 

The quantum yield represents the total output quanta in the 



(1-70) 
K 

expression for 	-7-  le) we find (19), (32), 
Nis 	 

Using porsterls 

- 41 - 

presence of acceptors, divided by the quanta which would 

have been emitted in the absence of acceptors. This is the 

ratio, 

    

    

'S  
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(I-71) 
where, 

and, 

with, 

Co  

35—T1Z 	(-12)3 
3/ 2 )1T-1  1V/R3  

Often when discussing a particular example of resonance 

transfer we refer to it's eff icieAitcy. Remembering the 

definition of (1/40)s  , (equation 1-69), we are able to 

express the transfer efficiency as 	f --(12tYl ) • Also we 

may define, 



giving the concentration in units of Forster's 

Thus our idealized solution consists of 
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/ ItAtI  represents the efficiency of the transfer to 

the acceptors - and may be alternatively defined as, 

oc) 

11. 
11, A 	

ctC•e) _0 (.6.) at. 

(1-73) 
0 

° where :Evq  (e7) represents the yield of the acceptors, 

when all the energy absorbed by the sensitizers is passed 

on to the acceptors. 

FOrster's expressions are in good agreement with 

experimental results. However, his model does not allow 

a discussion of the acceptor luminescence as a function 

of time. For this reason a simpler alternative model is now. 

proposed. 

(ii) The Cell Model: Sensitizers.  

In this model (38), we allow each acceptor to 

dominate a volume of solution given by MA /V , where \i/  

is the total volume of solution. This "sphere of action"in 

which the acceptor can act is assumed spherical, with 

,- y3 
radius( rF1/12 L A 	measured in units of 	. Here 

reduced units of acceptor concentration 	C 11 are used, 

each with a dominating acceptor at it's centre. These acceptors 

are regularly distributed throughout the solution, for example 
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they might be arranged in a regular hexagonal lattice. Now 

we add sensitizers to the solution, and an average 	
115  

fall inside each sphere of influence - then the distribution 

function for the sensitizers inside each "average" acceptor 

volume is given by, 

C06Q)(IR = 11, ki-T7  e 	lis 	Goq R7-01R 
ve. 	 (1-74) 

where 	Vf.r. is the volume of the spheres.Using this 

distribution function in equation (1-66) we lose the sum over 

A: 	, as we only consider the single acceptor, and the 

becomes a definite integral. The total intensity is given 
J 

by, 

c(0) 
"t's  

(11,-7".2cio)i 

• ccp 	 R. 
(1-75) 

0 

is in units of Forster's Xo 	, and 	(11S WA  ) 
is just the total number of sensitizers 	/Yr 	.When 

this function is evaluated numerically for various 

concentrations, (see Fig. I), it is found to be almost 

identical with that of FOrster's at low concentrations, 

however larger deviations occur at high concentrations. This 

is only to be expected of such a simple model, but as we 

shall see later it does have the great advantage of 

yielding analytic functions where FOrster's model does not (19). 



T,time. 

The decay of sensitizer luminescence as a function of time. 

The abscissa represents time in units of 	, the ordinate the 

log of the excitation probability for an individual sensitizer 

• excited at T.O. The letters on the curves refer to the acceptor 

concentration CA  measured in units of C ,a=.00I,b=.I,c=.3,  
d.I.0, and f=5.0. The solid lines show Forster's function, the 

dotted line the computer simulation, and the dashed curves show 
- the cell model. At r' 4:.3,the first two are identical,at c 

A <:•1 all are. 
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We can easily calculate the quantum yield in this 

formalism, with 

— clor 
v-TrA 

ND Ar-frpciA)Y3  
L S  ( 446) Rz: 

  

	

J 	 (1-76) 

	

0 	0 
On reversing the order of integration, integrating first 

over 	t 	, and then changing variables, and integrating 

over 1'2 	we obtain, 

  

CIA +Z1  (J Tr 
) 

 

   

   

  

(1-77) 

This tends towards the same low concentration result as 

does Forster's expression, on expanding la-," 	we obtain, 

with CA 4:: 1 

CNA 1 

 

CA (1-78) 

 

At high concentrations however the results deviate, on the 

model proposed here with C A  >> 1 we find, 

( 	/ 	a).5 	—171t 2C 
	

(1-79) 

For the identical requirement, Ca )> 1 , FOrster obtains, 

( 	) 	= I / 2 Cilz 	(1-80) 

Over the region where effective measurement of Clino 	is 

possible the difference$ in the predictions of the two models 

is quite small. The form of is shown in Fig.2. 
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Fig. 2.  

I.0 

.8_ 

dr, 

s; 	.4 — 
F 

.2— 

I 	I 

-2. 	-I. 	0. 
Log( C ) 

Quantum efficiencies as a function of reduced acceptor 
concentration, CA/CO  . The ordinate shows the sensitizer 

quantum efficiencyN11;)Is' 
this is the same as 1 —Nqb)A  

whereN10lk is the efficiency of the transfer. The solid 

line shows the results of Forsters statistics, the dashed 

line is obtained from the cell-model, and the points are 
from the computer simulation. 



-47- 

(iii)Steady - State Illumination.  

All of our discussion until now has been based on 

the "flash - excitation" model as used by Fdrster, (19), 

Galanin (13) and others, where we have sought to describe the 

decay of an initially random array of excited sensitizers. 

The reason we say "initially. random" is that after the time 

= 	
, those sensitizers in close proximity to acceptors 

will be quickly de - excited, whilst those in effective "holes" 

in the acceptor distribution will decay relatively 

unaffected by resonance transfer (14). Thus after a time there 

is a correlation between the distribution of excited sensitizers 

and the distribution of acceptors - the sensitizers in the 

"holes" predominate. Experimentally however, instead of 

watching directly the decay of species in solution by a 

sophisticated technique mentioned earlier, we normally 

observe steady state fluorescent intensities, excited by a 

constant incident intensity. 

Thus we must now consider the steady state situation, 

where the fluorescent intensity is no longer time - 

dependent. As we now show, in the case of the sensitizers, we 

obtain the same result as for "flash - excitation" and the 

mode of excitation is unimportant.By assuming low concentrations 

of excited acceptors and sensitizers, we are able to preserve 

the requisite of a random distribution of excited species. 

Then we obtain the excitation probability from the "driven" 
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differential equation, 

Li 
	ieo \‘, c_ -i- T. 0.)j- 

J i<  

where; 1  is the incident intensity, independent of time, and 

O. represents 

sensitizer. At a steady state, 	CtS
.  
j p , hence; 

S • •••••••• 

a,k 

les At -1- 7)(- 1, y7) 
J 	(1-82) 

the capture cross-section for the ,) -th 

With no transfer occulring, the probability is given by; 
/Vs 	Nis  

0 

Thus we find the quantum efficiency,given as; 

(1-83) 

(1-1 ) = -s 771  S 

Ns 

IVs k Rkf 

(1-84) 

This expression for C11 (Os  is identical with that obtained 

for flash excitation in equation (1-70). Thus as we would 

expect, the efficiency of transfer is unchanged by the mode of 

excitation -- we could have represented our steady state 

illumination just as easily by a series of flashes, but this 

interesting point is left until we consider explicitly time 

dependent excitations. 
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(iv) Sensitizer Life - times. 

Until now we have been concerned mainly with the 

probability that a sensitizer is still excited after a 

certain time - lapse from it's initial excitation. Here we 

shall consider the "mean - life" of the excitation on the 

sensitizers. 

Many definitions of mean - life are possible, but we 

shall use that proposed by Inokuti, (37), writing the meaning- 

life as 	fY len 	9 

eb, 
6 

00 r t  ___ 
_VE) ak"  

00 

r
ICE) dk 

0 (1-85) 

Thus for pure sensitizers we have, 

 

Ts. 

(1-86) 

To evaluate the mean - life 	"rs 	, of sensitizers in 

the presence of acceptors using the cell - model we require, 

00 	(17P712 C4AY3 

f
tca. R 2 24s  4- Vff ()) (IR  

0 

	

f
0c) L. 	C4A 

	

46-K 	 ( I -1-  VR6) aR 

0 

as a ratio of the mean - life in Normally we write 

(1-87) 
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absence of any transfer "cs  , hence on integration we find, 
i 3 CA 

	

/ 	
4_0,..,-- 1(  -.s-i---0 )) 

	

1., 	(I -÷. z(i + -Tr cA'7-) 	-P--r- 	2.(26 
....... 

	

)45 	( I --- 2. CA 
.4-Mil 

--freA•71( yTc1,8) ) 	
(1-88) 

At low concentrations, (7P\  44.. 1 , the above equation reduces to; 

5  
^es 	2 	(1-89) 

This is the same result as that obtained by Galanin,(13), in the 

low concentration limit using the Dirster model. 

' l! The form of 	5 obtained with this simple cell 
1'5 

model deviates quite appreciably from that derived from Fdrsterls 

using numerical integration , see fig. 3. In fig. 4 a 

comparison of the cell model 
	and the experimental data 

of $chmillen,(39), is given. 

Having considered the sensitizers in some detail 

we shall now turn to the recipients of the transfered energy, 

the acceptors. In this field there is much less experimental 

and theoretical work available for comparison. 

(c) Acceptors. 

(i) General Theory.  

As in the case of the sensitizers we shall first 

consider "flash-excitation" of the solution of acceptors and 

sensitizers at time,t-=(). Then the decay of the acceptors is 

described by the differential equation, 

Ns N 
 _ 	(E) -+- 

at 
P 6 

(E) 
it< 

(I-90) 
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Pig. 3.  

-2. 	-I. 	0. 
J 	Log( C ) 

The dependence of sensitizer lifetime and phase angle on 

acceptor concentration . The concentration is measured in 
„, 

units of C
o
. The solid line shows ccrt?s  obtained from Fdrster's 

decay function, the points were obtained from the computer 

simulation of S(T). The dashed line gives the function "w(c,13s)  

forCOT:,= .04, which is identical to ISItes  derived from the LoTs 

cell-model. With IV't's  =1.33, the form of  l'4((:s)is  shown by 
CA)"ei  

the dotted line. At CA 	I. the functions '"Vsl  and 1-4'1 "(cY)  

	

are the same, even with co'Yst&I. . 	"rfs 	CA.3.Y5 



Fig. 4.  

.8 

.6- 

.2 

1 
-2. 0. 

Sensitizer lifetime as 

Log( C ) 

a function of acceptor concentration. 

C is the reduced acceptor concentration, measured in units 

of Co. The solid line represents the cell-model function, 

the various points are experimental results of Schmillen,(39). 

Different points are used for the differing transfering 

systems; 0 =Trypaflavin/Rhodamine-B , 	=Trypaflavin/ 

Rhodamine-6G 	=Fluorescein/Erythrosin . 



at any time 	will be 
NA 

lrA  

given by, 

t/ell  

kz-, 
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Where A,,(t) ±s the probability that the IS -th acceptor is 
excited at time 17 ,and .c(L) the corresponding quantity for 

the sensitizers. Making use of the ..c() derived previously in 

equation (1-65), and integrating we have, 

&co) 
(Ableik)' t-,  

(" I" 
+DR./ Rit:Y> 

/1„o9 represents the probability that the A 

A4 
± So) 

( !?2  ) 
K 

(I-91).  
-th acceptor 

is excited at t7== c) , before any transfer can have occurred, 

and is the result of dir4ect excitation. Hence the total intensity 

NA 

CE 	e  -es 	
k ; t  

Here we have assumed all the 	k( -_,) 	(1-92)  

/"Cf4 	(R„he k,)4  
Sp5)  are equal, 

corresponding to the initial random excitation requirement. 

This expression describes the acceptor fluorescent intensity as 

a function of time for flash-excitation.'i'he first term on the 

right corresponds to the dirlect excitation decay, and the 

second to the transfer contribution donated by the sensitizers. 

From this equation we may derive an expression for the transfer 

efficiency, the ratio of the quanta received by the acceptors 



(1 4-(Ro/R 1)6 ) 
1</ 

(1-96) 
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via resonance transfer to the quanta absorbed by the sensitizers, 

0/0 ==. 
0 p, 

1— ts/r4 -1-• 	1(4YR' 
ts' 

The number of quanta which are absorbed by the sensitizer and (1-93) 

which may be tranfeired to the acceptors, is given by, -5(0)Ars 

Integrating gives us the quantum efficiency, 

f~S / 
J 

This efficiency does of course refer to flash-excitation conditions, 

however it can be shown to apply equally well to steady-state 

systems, under constant incident exciting light. Under these 

conditions we have, for the 	-th acceptor, 

Ns 
&A K -_-_- _ 1 A 4- _ 	(Ry \c. -1-6-.'; Ifs  

.s j=, 	Ail(' I _i_ Eceo/RJ.1). 	(1-95) 
ciE 	1401 K 	 ' 

NA , 

	

K'
Since 	

1 clikk .... ,-, 
, and the quanta absorbed by the sensitizers •---•  

K=r okk 
per unit time is i-cri, NS ,then, 

J pis 	At 

il 	 el i: 	( g° \ --,---)- ) 

	

k . t 	 
J 	K 	F,)1( 

and, 

)/(i 
"Jk K ,Pc/ 

(1-97) 

(go/i jk)6 

 

(1-94) 
+ (Ro/ kjV) 

k' 
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Thus the quantum efficiency is the same regardless of the 

excitation mode, and in passing we confirm that our equations 

obey the conservation of energy principle,(see equation (1-72) ), 

(1-1- 	 /1111 	A 	s (110)  

gjx, 	 K' 
(ii)The Cell Model:Acceptors.  

  

 

)= 
(1-98) 

In this section we shall utilize the cell model as proposed for 

the sensitizers, and develop it to account for the behaviour of 

the acceptors. 

We now have to consider the excitation of the acceptor in 

the centre of its cell by the sensitizers contained in the "sphere 

of influence", radius(/2CA) . Following the arguements 

used before, we have 	such cells, each containing 1 

sensitizers, with Yjs IVA = ,\/5 . Thus we lose the sums overj and k 

in equation (1-92) and obtain, 

-- 	 --tfreA 111(.0 = 	 (D) e 
pi/ z C.9) 3  

0 

' -1-.10) e aR  
e (e- 

-tire  s R 

1 	1 —Ersi TA  + 	(1_99)  
By setting A

,1; 
(o) = 0 , we derive the expression when no acceptors 

are dir/ectly excited, and their excitation is all the result Of 

energy transfer from the sensitizers, 
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has been evaluated for various p 5 vA  ratios, 

0 

The form of 
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, 

(TIIT / 2 C 
/ 	 ( I ± I ijo 

SAC)  — •  ".-• 1\15 6 c4; S(o )  (ye 	--e_ 
— ' 

A Ste' 	i 	— rk's "tiq 	\ 

and concentrations, as is shown in fig.5. 

If we have C7 >>1 , and 1 	, at high concentrations then 
R 6  

j".  (.6) = 1VA fk°) 	S(o) 6C4A 

(A41- A(D) 

elept  

Thus the energy absorbed by the sensitizer is apparently 

instantaneously transfered from sensitizer to acceptor. 

However, this transfer does need a finite time, for when we put 

C) 	in the original expression for 24,(e)  we find, 

we obtain, (WIT /2CA) 

e7t, R2  

S (9) 

(1-102) 

The factors controlling the energy flow from sensitizers to 

acceptors are the ratio TS  YA  and the reduced concentration, 

CA . Clearly any transfer is helped by higher concentrations, 

and also if the sensitizer has a long radiative lifetime, 	5' 

Now let us turn to the quantum effiency of the transfer. As we 



Fig. 5.  

— 

.7 

N 

N 

N.. 
N 
N . a 

N 	b 

\c 
1 

2. 
T,time. 

Acceptor luminescence as a function of time. The ordinate 

represents the excitation probability of an acceptor initially 

in the ground-state at T=0 . Time.is measured in units of 
The letters on the curves show the values of the parameters 

used in their evaluation;a=0.5,b=I.0,c=2.0 . The solid lines 

show the function for reduced concoo ration, CA=1.01  the dashed 

lineICA.0.51  and the dotted line, CA.O.I ..  
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have seen, the yield is the same for either flash or steady-state 

conditions, so applying our cell model we obtain, 

(-1-77/zcAP 
	 . (J-6) aR 

iiR6) 

-1-6;v110-rr`) 
--Tnr 

(1-103) 
This could have been obtained dirlectly from Oin 	,using 

equation (1-72). 

(iii) Acceptor Lifetime.  

Using the definition of "mean - life" mentioned earlier,(37), 

we obtain with the cell model the ratio of the relative lifetimes, 

00 

A()telA okt + 6c4q S(0)  

00 	("RiZcPt) 3  
-±:( -t-10\cl t_cue 	—  

- 

+  CA S(0) 
ATA 

cbt 	e 	"E  4s(  :RI: 61:4))  cIR  
00 r 

—1-tem + 	R6  
This expression may be easily integrated to give, 

2,Cin 	i! 
-1- 	5 ( I 

Ffr' TA 
_ FIT-1/2  Cf9 

A 	20 + 1174.cf4-2-) 

C(o) "toZ1( 1-Tr‘ 
ST-1T 	2C 

(1-105.) 
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Here to represents the lifetime of the acceptors in solution, 

with no resonance transfer occuring. At high concentrations 

with CA  >> 1 , we obtain 1! iAJ=A  1. This is as we would anticipate, eirc 
because if the excitation is transferred instantaineously from 

sensitizers to acceptors we might as well excite the acceptors 

directly 	At the other limit, with CR << 1 , we find withilACT: 01, 

"VA/ 1A = 	-I-  s (.21 1A .Without A(o) = O , then we have, 

withCA <KI ,/44'‘'4;1--1 .This latter result would explain why 

Schmillen,(39), and Galanin,(13), both observed lives tending to 'VIA 

at low concentrations as well as at high concentrations of 

acceptor. In any experimental set up using filters or even 

monochromators it is unlikely that A(o) would be zero, and 

the acceptors would undoubtedly absorb directly some of the 
/ A, incident light.When cpoiteA• is evaluated as a function of 

acceptor concentration a maximum occurs whose position is 

determined by the ratio, /169 /E(c) .This is shown in fig.6. 

The effect of the transfer is to increase the lifetime of the 

excitation in solution. At moderate concentrations the excitation 

lives on the sensitizers until it is passed to the acceptors where 

it acquires a new lease of life, so that ;:014 . In contrast, 

with increasing tranfer probability the excitation's life on 

the sensitizers becomes successively curtailed with cs 	Ls. 

All the foregoing concerns decay after flash excitation, we do not 

have to copider an input intensity which is time-dependent. 

However, most experimental measurements of lifetimes in solution 
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4IN 

The dependence of acceptor lifetime and phase angle on concentration. 

The solid lines show 	 against reduced concentration,C, •-tR 	 " N The ratio S(0)/A(0) is shown on the curves.Function TP 	with h 
w's7.),A  

Co^te, =1. , Co; =1.33,-is given by the dashed lines. When, b_:. 10-c
'6 

I . I  
TAN 0, 	't the functions 	, become the same. 
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involve the use of modulated input light,(39),(40),(41),(42), 

and we shall now turn to the problem of fluorescence excited by 

time-dependent illumination. 

(6) Time-Dependent Fluorescence.  

Here we shall be concerned explicitly with the fluorescence 

emitted by a solution of acceptors and sensitizers under excitation 

by a time-dependent incident intensity. Previously we have had either 

a constant incident beam, or a flash-excitation with the form of a 

Dirac Delta function. The treatment given now is perfectly general, 

both the case of steady illumination and the case of flash excitation 

can be derived as special examples. In this Green's Function 

method,(38), we consider first the function, 
00 „ 

(t )   	I(e) 6-(t-t3 -"J 
-CO 

(I-106) 

where, 
---t)  

0-/ 	-e.) 

J-C 	and Cr are the illumination intensity and sensitizer 

capture cross-section respectively. 

It can easily be shown that this function S,.)(,) 	is a solution 

to the "driven differential equation” expressing the 



S 	 (I-I08) 

00 

differential equation governing the excitation 

- 6 2 - 

time-dependence of SD , equation (I-8i),since we have, 

-i- 	(lc) 6 • 
I 	)) 	—t5 

K  (I-107) 

so that, 

+ 	( 	± 	(/g ')) S-j' (6-  ) Oa- 00 

  

Similarly, the 

probability of the acceptors under time-dependent illumination, 

	

415f-s: = — Ak 	 ko/ 	)65 • 	cr _T_(W 
3 

J J 
has, as a solution, 

(.6) =
f

okt r(0 	6/) 
00 

with, 	 / 
-c- —e -i-ZO;))  

. 01  Z(--2  )Ye 	e- 'Ts 	.))< )/(1-'1--sfreA-I"Xf-i:
J 	ilk 	

1?) S i( 

it can be seen that on replacingg1(6 by a delta function,(t-t), 

to give the case of flash-excitation the results for E;(t)and 

assume the same form as we have derived previously. 

We can now use our cell model to help evaluate the 
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N4 

function 	 J ej) , which we need to interpret the bulk 
u=1 

properties of the solution. In this model we consider the 

acceptors dominating their own particular "sphere of influence", 

which contains lls 	sensitizers, with NA:ris z-14S.Thus the sum 

over j , 	A(s. , reduces to a sum over /1s  , all the 

sensitizers in our averaged cell. Normalizing the result we obtain, 

(t-6 = Gs(t 	 (Jr7r/24 
ce:s ace 	C; , (14  R . j__%(t-t- -t6 )01R 

s 
(I-III) 

Hence we find the total emission of the sensitizers, 
oc,  

1:5( .) =_- i'Vs S'(&)  = Ais 	d,± I.C6 Gs  (-t --C) 
•vs 	-t S  _c)c, NA 	(I-II2) 

Using the same model for the acceptor function 	C 	 we find, 
k 

TA(&) = 
Alta Of  _1(63 6-4(6---- (I-II3) 

 

where, 

CA (t--6-)  

r(-1-r-172.cio's 
_ ( 	R1-1- 6 ))d Ns 	 y 40,1 Rye—  - 	e  

O, Apr 	I 	 'VA  -I- 	g 6 

It will be noted that either of these expressions could easily 

be modified to apply to transfer processes which were not 

governed by the inverse-6 law, all that would be necessary 

would be to replace tAR C  by F(R) . The evaluation of the 
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integrals at later stages might not however be so straight 

forward as with the Vie 

(7) Phase-Fluorimetry.  

Most experimental methods used to measure the lifetimes of 

fluorescing species observe the phase-shift between the modulated 

input light and the appropriately time-dependent fluorescent 

output, (13),(39),(40),(41),(42),(43). The only methods not 

involving the measurement of this steady phase-shift are those 

using pulse scintillation techniques,(30),(31),(34). These methods 

follow the decay of excitation in solution, and hence determine 

A  and 1 les 	directly from the observed 1-f4(t) and Jr; (t) . 

We shall consider the special case where the intensity of the 

beam illuminating the sample is a sinusoidally modulated function 

of time * , 

E:c<it 
I 	co-3 (Lo 	+ 	== 	 e  ;) 

(1-114) 
Here Is is the constant background intensity, and CO is the 

frequency of modulation. 

Then the function .5(t) is given by using equation (I-112), 

S(6-) cAk 	-1-  Le) G-j -C-- t i)) 

„ 

 

 

 

(1-115) 

* By, 4(f)  , the real part of function JF 
implied, for example, 	(x 	. 

,is 
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S(6) 

 
L "e -frig) ace_t.,„ 

(vi--12c)>e3 

f(.1. —e) 
IC 6 ) 

0 

Hence, 

Rta 
( -116 ) 

we have, 

S(E) 

0 
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Using the relation, 

/ig 

(PP/ cya) 
R2-,1 a0  -I- YRO cal Li.) 	sc,,i(at] 

6) 	((--)-10L  
÷ ;M.*.  li g 6 ) ) • 

(1-117) 
Similarly, from equation (I-113), 

0711/2Cite3 

2C ft e V11/4  
/4. Vg6/ 

(11/2 C4) 

To 	coo wt 	 +. R 2c1 
+ Hybotit 	2C* e) IS)6I 

—1'strA 4 1/g C  

]) + (1 	//c CY+ (() 'esyt 
(Tr I/ 2 CI q) '3 

6:5 	(470  R lck 
I ---.r.5/'e-4- ERG L i  +('-')'e AYL 

1 +(Lk) it',4)1  

ON1  • • 	÷ FP- 
I 	(i-o A10,.)1 	•ZCiA 

VtIA (1 -"F  viec) 
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For these equations the corresponding phase-shift, 	and 

of the fluorescent 

sine-wave input is 

wee, 

and  

light of the two species with respect to the 

given by, 

(crir /.2c-A) 
R 

0 	Vi? 02-  1LO `t/s)2- 

("rf-if  C4A3  

o  0 "+ 1/R6  )1'  + (Ejj%12- 

AVIr1/2  C 

6)fl R ct 	{ I 	 
-1-(1.01/Ay- zca 	(--t-strA  +ve L 	(4re,,,)-a 

0 

— (.b/1‘../.4)1' j) /( 	e A  

	

0 -oksr-±(co-rr) 	t -1-(ctirt,,kr. 
os---IT/ 2 c 4.'? 

C16 ) 
) 	Kid I; 	. F 	( 	.__../li,,,((i- yi? ‘)  -1  

	

11 6 	-1-n14+)/(e)"..- 1+ -.4-'1/4)2-  (14-  Yr 6)2.- -i-(LiTs)21  
0 (I-120) 

Usually in the interpretation of phase fluorimetry results the 

relation to,../In 	=(-_11 is used to relate lifetimes to 
11  

observed phase-shifts,(39),(40),(43).As we have shown above 

this is not exactly correct in a sensitizer/acceptor system 

except with (4)116<< 1 and Ckit'A  •<< I ,when we find, 

4 

477' 
RciA 
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and, 

gq = A1 	(1-122) 
Lo 'VA 

Thus the relationship between the phase-angle and the lives is 

very simple, so long as the inequalities given are fulfilled.*  

(8)Reabsorbtion of Fluorescence.Time-Dependent Theory.  

Much experimental evidence concerning the effects of 

secondary fluorescence comes from results of lifetime studies of 

single-component solutions asa function of concentration,(13). 

Because these results are obtained using phase-fluorimeters we 

must once again consider the time-dependence of the problem in 

deriving a phase-angle to approximately describe the contributions 

of primary and secondary fluorescence. 

First we shall start with some relations expressing the decay of 

higher order fluorescence in solution. Considering a solution of 

pure sensitizer, initially excited at 1: 	,then with time the 

total probability decays from its value S:(0) at t = ,so that at 

any time t , 

ii(t) 	S (69 =- S(o) e l4eS 	(1-123) 

The rate of loss of probability at any time, : ,is given by, 

d(s (c.) 	(,o) (1-124) 
6,h7 

If we imagine the radiative fraction of this probability to be 

reabsorbed, then the increment SE 6 gives rise to the new"S19)" 
* See figs. 3 and 6, where equations (I-119) and (I-120) have 
evaluated for various defining parameters. 
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term for secondary fluorescence. Thus we find, 

t 

(I-125) 

From this expression for 77(e) we find the lifetime of secondary 

fluorescence, 	, using definition (1-85), 

e" 	oo 
— 	— 	:4L 

S2 	
(1126) o 

So, as we might have anticipated, the lifetime of reabsorbed light 

in solution is exactly twice that of the simple primary fluorescence. 

Also we observe that 1. le) reachs it's maximum value at le 9- 	 S 
A similar treatment for tertiary fluorescence, assuming two 

complete re-absorptions before eventual emmission gives, 

(t) 	= E Co) -11 1. 
3 	 1' (S (1-127) 

With a maximum at 2 	, and a lifetime of .3 1q . 

In these equations we have assumed complete reabsorption occuring, 

rather than the partial effects we would expect to observe, so 

the total intensity could be better represented as, 

(C--) 	TO-) 	(E-_) -+ 	(6-) 	. 

- Hence, 

t"( 	SCC")(e- 	fl 	-Q 1:5 	ef, - r  
fr E75  2_ 	7 _ 
1-s 	5 f3  + • - 

Ts-t- 

•• 	• • 

• 

(1-128) 
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Where- 1  7f2.  4 3 iti 7 	 ft:, are the appropriate coefficients 

representing the proportions of the various orders of fluorescence. 

In order to simplify our problem we shall consider only primary 

and secondary fluorescence, neglecting higher-order effects, 

== 	:I=zQ7) 	(1-129) 

Using 1 and 12_, given by equations (1-123) and (1-125), and 

applying the time-dependent theory discussed in the last section, 

we find the total intensity _L 	as a function of time excited -r  
by a modulated input, f (e) . 	e eis 

S (J1 fia% 

i= 
4- 2'7-  I-2; Se ac' 

f 	f„( e)s (t. —e)  out' ) 	
(I-I30) 

If we ignore any constant background term in the modulated input, 

and write:F(E) ..-:-Cc.5(4.7t- , then we obtain, 
f(E) 

-?s 	(1--(LJ -tsr) +ft  (QA-551 

(cov3  --i- fPc1 
(1-131) 

Hence we can find the phase-shift between the input and the output 

light, 4 , with 

,S(:)(C.ArnLcotp:, 

-4-(wqsr) + 2 -7s  

Eff(1.± (wel'5)1-1-175 fz (1—w--sYL)] 

(1-132) 

Results of phase-fluorimetry studies are usually expressed in terms 
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of lifetimes derived from the 
 

equation:fain =Lore, so on rewriting 
l  

our expression with (f2:Yls if f)=1?, the ratio of the lifetimes 

with secondary fluorescence is given as, 

A-is / 
cu'e 

The ratio Ji  is obtained simply from the relative intensities 

of secondary and primary fluorescence, Ez_1 F7 , under steady 

illumination, and may be calculated theoretically as we shall 

see later. 

(9)The Computer Simulation of a Random Solution with Energy  

Transfer. 

This computer simulation of a system of sensitizers and 

acceptors was directed at the explicit evaluation of 

equation (1-65). The species in the sample are allocated 

coordinates to give an appropriate random disribution, and then the 

sums over j and 	may be evaluated. The purpose of this 

simulation was to test the validity of Forster's assumptions,as 

well as those in the similar proposed cell model. The statistics 

of the transfer were studied by simulating a small volume of 

solution with random acceptor and sensitizer coordinates, and 

the decay function of the sensitizers obtained in this microscopic 

system. The treatment includes the same basic assumptions as those 

proposed before in alternative statistical treatments. Apart from 
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the basic premise of the form --,..EsQt) , the particles were assumed 

to have no finite size, and may be represented as points, without 

any intermolecular attractive/repulsive pottatial, and with a 

random distibution in solution. 

The practical application of the simulation was limited to fairly 

small sample solutions of only about 500 sensitizers and 500 

acceptors. Any increase over 1000 total particles resulted in a 

disproportionate increase in computer time, the evaluation of 

the 	R JR  matrix becoming prohibitive.Fortunately the 1/1 4' 

dependence of the transfer rate means that long-range transfers 

are unlikely and that the behavior of the small sample closely 

corresponds to that of a large one. While the size of the sample 

is not important from the point of view of the transfer rate, as 

long as it is above a certain critical size, it is important that 

enough sensitizers should be taken to give a good statistical 

sample. 

The position coordinates of the molecules were allocated by three 

numbers from a pseudo-random number series, (44). These numbers,  

with a normal distribution between 0 and I , where generated from 

a truncated Log function. The sensitizers were given coordinates 

in the range 0 to I, while the acceptors were assigned with 

coordinates between -.15, and 1.15 ,the distribution of the 

pseudo-random series had to be renormalized for this last step. 

The sensitizers are contained in a unit cube, with origin at (0,0,0), 
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while the acceptors occupy a larger cube, surrounding the inner 

one containing the sensitizers. This cube has its origin 

at (-.15,-.15,-15) , with a side of 1.3 units, 
-11 

%-e 

C— -Is:— 15;—.15) 

This proceidure, imposing a larger acceptor environment on the 

sensitizers in the inner cube, was followed to eliminate 

"edge-effects" : that is to say all the sensitizers were placed in 

reasonable environments. If acceptors were- contained only in the 

inner box, the sensitizers at the sides would feel a marked edge 

effect, having only half an effective environment. This correction 

was especially needed as the initial sample was so small, and 

consequently the cube had a high proportion of side for it's 

volume ,(Surface Area/Volume)cube=6/L. The ratio of concentrations, 

Cs/CA = Ns/ NA=500/200 , was chosen, but as we had to 

consider the acceptors occupying the larger cube, we were 

involved in dealing with 439 of them also, (200*1.33), although 

only 200 were in the inner cube. Hence each final result represented 

the average for 500 sensitizer environments. 
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For one particular random set of acceptor and 

sensitizer coordinates the box size was scaled by appropriate 

factors for each acceptor concentration investigated. Thus 

the same sums over A; could be re-used with scale factors 

and they did not need to be constantly re-evaluated. While this 

was not so satisfactory from a statistical point of view, since 

a new random distribution was not generated for each new 

concentration, it certainly was very effective in saving large 

amounts of computer time. 

As well as evaluating 1 (..1. ) for the micro-solution 

the program also calculated the quantum efficiency of the 

transfer and the lifetimes, using direct numerical integration 

of the results for is  at the various times. Also some read-

outs of individual environments were used to investigate the 

concept of the "average environment". 

The program was run using various random number 

series, and the results evaluated over arange of concentrations. 

The results, however, were rather "noisy". This could have been 

due to poor random numbers. However the pseudo-random numbers 

used passed several standard tests for "randomness",(44). The 

most likely cause was the small size of the sample taken, but 

by taking I0 total "configurations" of acceptors and sensitizers, 

that is sampling the environments of 5,000 sensitizers, the 

average was considered to have settled down sufficiently to give 

acceptable consistency . The deviations from the average results 
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were most marked, as we would expect, at high concentrations, 

when the interaction distances of the sensitizers and acceptors 

were tending to approach the sample size. 

Comparing the results obtained from this simulation 

with those of FOrster,(see Table I and fig. 2 ), it is found 

there is little deviation. This deviation is however of 

significant size, and reflects the validity of the approximations 

in FOrster's model, which apply less rigorously as concentration 

increases.The differences are of the magnitude of typical 

experimental errors, and often in experimental work results 

are fitted to theNI ) itv plot to obtain PO)  ,and no direct 

° • 

Hence discrepancies would be hard to confirm experimentally. 

Perhaps the greatest hope of an experimental check is at high 

concentrations. In the main, the statistical theory of Forster 

is validated by our computer simulation, including its rather 

unexpected dependence on 	in the exponential. 

(I0) The Effect of Diffusion on Resonance Transfer. 

(a) Introduction.  

In all our considerations of resonance energy 

transfer we have assumed the interacting sensitizers and acceptors 

404..occupy fixed positions throughout the lifetime of the 

excitation in solution. Thus we have taken the rate of energy 

transfer as being much faster than any variation in intermolecular 

comparison is made using the theoretical expression for 
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Table I .  

Comparison of Computer Simulation_ Results and those of Forster. _  

CA * 
........ 

Cling (71.11,)c 
0  IiI)r  141)0  ;(5)1  ;(5)c  

1.0 .248 .215 24.8 19..2 .039 .021 

0.3 .617 .587 100.9 98.6 .881 .754 

0.1 .848 .829 150.7 148.9 2.154 2.087 

0.03 .955 .939 173.4 172.4 2.945 2.921 

0.01 .989 .975 180,3 179.9 3.222 3.204 

* Reduced acceptor concentration, measured in units of C. 

@ (T) gives the number of sensitizers still excited in a 

sample of 500 at time T after the initial excitation. 

This time T is measured in units of 
5 • 

f This indicates the Fdrster Model. 

c Indicates the Computer Simulation. 
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distances. The diffusion, or Brownian Motion of the solute 

molecules was only involved to the extent of producing 

a random solution, which was necessary for the statistical 

treatment of the transfer. 

Despite the omission of diffusional effects the 

treatments of both F8rster,(I8),(19), and Galanin, (I3), 

have been shown to be in quite good agreement with experimental 

investigations of the transfer phenomina. Several studies have, 

however, been specifically directed towards the detection 

of a diffusional effect,(48),(45), both Weinreb,(46), and 

Feitelson,(26), obtained evidence in favour of the diffusional 

enhancement of the resonance transfer rate. However a contradictory 

result was obtained by Hardwick, (47), who concluded that the 

effect was negligable. 

To some extent these differing results may perhaps 

be explained by the experimental problems involved. In order 

to change the diffusional parameters of two solutes in a solvent 

it is inevitable that either the temperature or the solvent 

must be altered,(46). The obvious disadvantage is that both 

methods would also effect the resonance transfer rate quite 

appreciably.In the first method the change in solvent viscosity, 

, with temperature, T , is relied on to change the 

diffusion coefficient, which is proportional to 

There is, however, some evidence that viscosity may effect the 

fluorescent efficiency of the individual molecules in solution, 
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Bowen,(49),(50), found that the return of the excited-state to 

the ground-state seems to require certain amplitudes of vibration 

to be reached against the solvent viscosity. Also we must always 

remember we are considering the bulk macroscopic viscosity , 

which may not necessarily be applicable on a molecular scale. 

The use of temperature changes to obtain different 

diffusional parameters is also suspect since changes in thermal 

energy may alter the vibrational populations of the systems 

concerned, and these populations are directly involved in the 

transfer probability. Thus any band changes with temperature 

indicate a shift in the resonance conditions. Attempts have been 

made to allow for all these variations experimentally,(46), and 

to isolate the diffusional effects, but often the corrective 

factors involved are relatively large. 

Variation in the solvent has also been applied to alter 

the mobility of species in solution. Solutions are investigated 

and then polymerized,(0),(51),(52),(55),(54),(55), or the 

system's viscosity changed by adding various proportions of 

other solvents to the main solvent,(46). 

While these methods are valid for the F8rster mechanism, 

assuming no band shape changes and no solvent-solute interaction 

effects, one should remember that if the transfer goes even 

partially through excited states of the medium any solvent 

change may alter the whole process. This may be a serious 
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objection to the polymerization method, where the whole 

mechanism of the transfer may be altered. We may have virtual 

excited-states in the solid phase, or even exciton delocalization 

Most evidence seems to point to the fact that if a mechanism 

of transfer is essentially of the single-jump variety, with 

localized excitations, the diffusional effect is not too large, 

and the model is one of the Forster type rather than the essentially 

diffusion controlled quenching discussed by Bowen,(49),(50), such 

as oxygen quenching of organic dyes in solution obeying the 

Smoluchowski rate, 

8 
0. 
 R T/3000,1 

where Ck.= a molecular dimension. 

A theoretical treatment of the effects of diffusion on the 

FOrster model has been attempted by Feitelson,(26), using a 

mean displacement approximation. This method seems rather 

fallacious however. The idea of allowing for diffusion by taking 

a term appearing in FOrster's statistics, and then allowing this 

" average distance " term to change with time seems questionable 

We shall now consider an alternative to this model. 

(b)The Diffusion Model.  

Solving Fick's second law,(58), 

= 	 (1-134) 

6t 
for spherical symmetry, we find the probability function of the 
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diffusing particle, initially at 	at t7117" 

r- 
• 

0 ,  

-Tr 12-  dA  r 

(1-135) 

where D  is the diffusion coefficient.The function 

expresses the probability of finding the particle between a 

radius of 1—  and -1"-+- dl from its starting point after a time 1= 
•••••••••••••• 

The mean displacement of the particle is given by 
CO 

f r- 	f' (r) 	p(r) r_ 	2bt 

(1-136) 

Clearly if we had taken the mean value 9 	, we would have 

obtained zero. 

We shall use this mean displacement instead of integrating 

over f(i-isat- , in order to simplify the mathematical treatment 

used later. The meaning of e(r-)ar and 4e-2" can be 

understood as the statistical average of the Random Walks or 

Brownian Motions of a large number of particles, all started 

at 	and -e := 0 . 

Before considering the interactions of a whole system of 

acceptors and sensitizers with diffusion, we shall first 

consider the pair interaction for an excited sensitizer 	and 

an acceptor separated by a distance 	. The rate of transfer 

is given by equation (1-62), but for our time-dependent problem 

1 

-z_ 
0 

0 



we must rewrite this, 

(t) -- 1 	lea (1-137) 
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Let us simplify the situation by fixing the acceptor, and allowing 

the sensitizer to diffuse, with a diffusion coefficient ,11) 

given by ,(17), 

(1-138) 

Then the rate 11,31c  at any time can be obtained using 

the diagram below, 	 %/011, x•> 
Q:9  

sL,x(e) d e  
(f( Rlo). 	2-3)qh- 	e +2-bti3  

JK 	 JK 

and we find, 

6 
ffi"(69 	

R. 
Pt's -37 

0 
(1-139) 

Note here that we have used the mean displacement model for 

simplicity, the probability the sensitizer is at radius PC and 

angle 8 being given by, SLA 	 44,,84 

   



On integration we find, 

( g(c)jk  q— 211)0 

g20)jls 

(I-140) 
z>6-)1+ 
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This result represents the averaged time-dependence of the transfer 

rate over a large number of systems, started with= JK 	JK 

This result corresponds to that obtained by Feitelson,(26),however 

we must observe, as Feitelson did not , that 11-  ()has a 
)1‹ 

discontinuity at L. 	
NO)J K , that is when etc)). 	;t› 

4-   

2.3> 	 JK 
The reason for this incongruity is obvious, in either the 

mean displacement or the full distribution model we must always 
2 

have this problem. For at t 1?(0)• on the mean displacement model 
2.3„) J k 

we place a small probability of excited sensitizer on the acceptor, 

which since the i?' term is now zero, results in the 

discontinuity. Similarly,on the distribution model we have the 

same trouble, except here it occurs at any time t ,with t77.1,C), 

as there will always be some probability, however low, of the 

sensitizer sitting on top of the acceptor.Fortunately this 

problem can be circumvented quite simply by allowing the 

acceptors and sensitizers to have a certain collision size, and 

this will be discussed in more detail later. Now, however, we 

turn to the basic differential equation, expressing the decay 

of the sensitizer luminescence as a function of time, although 

now we allow for time dependent coordinates, 

S 	
K 	

(6))) Tice)  
Jt: 



(1-143) ( '0 ) RJ•1  (L.), 

- 82 - 

Replacing the time-dependent term sum, 	(tSby 	(It) 

and integrating over time we obtain, 

.17  z 14 (c..) -e" r (- ( -- 7  + 
	

v  
(t) a--) 

../ 	
) 

J 	 re,'s  ,., 
(1-142) 

0 

.1-* representing the decay of the 	
. 
J -th sensitizer in the 

1/4./ 
vicinity of the acceptors , 	11,j(tj has been defined earlier, 

and the meaning of its integral is perhaps best understood on the 

Brownian Motion model. 

Although after a time t, the mean displacement of the 
'Y 

sensitizer is represented as (2 P t.) -2-th e molecule will in fact 

have moved very much further than this, having performed many 

short random walks in solution. If we denote each "infinitely 

fast" jump by 	, and give a residency time of Yt: after each 

-th jump, then we may write for the total possibility 

transfer has occulred, 

where 
	

IV jumps occuring in time t  . Clearly in 

the limit when lt(i is small this reduces to , 

(Lo 6A- 

'‘CS 8jK(t)) 
0 
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To obtain our final total intensity, 	we shall 
jzi 

use the cell model already proposed, thus dropping the sum 

go 6 
over K in ()It) , 	 as we are only concerned 

A's r`jk 
with one single acceptor occupying its own isolated cell,hence 

we have to evaluate, 	
r
t 
-,(E) da) 

/4o) e 
0 

(1-145) 

before we can find the total intensity function. Unfortunately 

in obtaining the integral over t of /140we immediately run 

RI
2 

• into the problem of the discontinuity, with e-;?.. 

.1)1  

J1( 

= Rani 
> 

However, as mentioned briefly before, we can easily remove this 

• problem by assigning the sensitizer/acceptor distance 	,), K a 

certain minimum value, / 	„›..- G. This is physically reasonable, 

for apart from the physical size of the two molecules, there is 

the solvation shell of each to consider. 
0(0), -92  _ (4). 

Thus in the time range 	,Pc 	Jk 	, that is 
op 2 p 	A 	 11,  

as 	passes from R(01 -nc to A(0)..tNc the rate of transfer 
Jk 
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017- 
is taken as constant, with the value of -ri • 640)...ik  —PI outside j 	, a. 3:3 
this range we integrate normally. Hence we have three domains 

ft  

--(1-(6)  At 
J 

notation, 	0 	t 

	

„...-t- 	 r ‘ 1 R.  

	

J 	
I 

Ys 
 

.../ 	 , 	( 45  ?; k  - 2- 67) 
o 

11- 
o -- 	(1-146) 

and omit the zero in the radius at .--C:=-- 0 term, Nb)s  --> R. . 
J k 	J I< 

(a). With 0 ‘ t < (1!)Km.-1,Rc)1-  

On evaluation of the integral as a function of time 

we obtain, 

-2_ 

s 	(1Q:7;21)t)  j 

(b). with (/)/K 	 (RjEci-gc)2- 
2_ > 	 :011› 

The total probability is regarded as constant in this range, 

where the discontinuity occurs, and set equal to in ((P . R02
JK 

 

Thus we have, 	 2_,)> 
2_ 

1,- n  z. 	3 	R- c C — P1-)3 	2-(z RjK PC7 Pc?,  

to consider the evaluation of over.We shall use the 

(1-147) 

R 	ecz: —2 R j.  

( 2  J K 
(1-148) 
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( R' R   2-  (c ) . With -e 	Jk  

For this,the final domain we have, 

L  
(e) 	_L Rd Z ie• 

fi  c 	
R• 

(IR 	--2-1)9 3 	(fic,--1-2Ritsk) 

2  ( 
	&) 

(1? :+2  k R  c).2-)  

(2  Ri 	RZ-1---  Z Risk c)  o 

	

12,`+ 	(.21e j ic  — recyle 

3  (2 Ri /?c, — jec93 2  ( 2 Rjk IR,- Pc) z.  6 
These integrated rates may be inserted into the cell 

model, using the appropriate I (6) depending on, 

	

with the modification of the "closest approach" distance 	• 

Thus we find our total decay represented as, 

t: 

Q)kf (----C(E)) R2-61k  
3 	-es 

	

-*1...5(6) =  	
(1-150) 

e":7-Rc 

Where the radius of the cell, g , is measured in units of 

Hence 15(E) may be obtained by numerical integration at 

each time -6-  as required, using the appropriate form of 17;107.) 

given by the equations (I-147to 1-149) for each combination of 

t) in the integral (1-150). 

no 
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From -1(e.) for a given concentration of acceptors C:A , 
1) and a reduced diffusion coicient 1(-- 	with -3:511c  ef 	 — D 

the quantum efficiency and the lifetime were calculated from 

numerical integration of .-4(t) itself. It was found the results 

were not critically dependent on Rc , so the value of 	was  

standardized in all calculations at 0 - ( units of R0 9 

that is 3-4 I . 
nal 

The results of evaluating TIE) and Milb 	" 
c5/4/  , as 

.5 
functions of concentration and reduced diffusion coefficient, 

shown in figs. 7 to 12, indicate as we might have expected that 

diffusion has its greatest effects at intermediate concentrations. 

At high concentrations the transfer of excitation is so fast that 

diffusion hardly has time to occur and affect the issue. At low 

concentrations the radiative decay of excitation predominates 

any non-radiative effects, and the separations between sensitizers 

and acceptors are so large that diffusion does little to favour 

transfer within the lifetime of the excitation in solution. 

As we would expect , the most sensitive parameter to diffusion 

is I3(t) ,whilst unfortunately the least sensitive is Of 
Ab )  

which is the usual experimentally measured quantity. Thus although 

we do find a diffusive effect it would be hard to detect, as 

often we fit experimental (liyi ) to obtain our values of 
s 

and C0  , and as we can see the transposing of the various 

functions with differing viscosities, could be done in such a 

way that that they could all approximate to the function0/ with' =0 . 
nto s 

tea 
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Fig. 7.  

CA=0.I 

Rc=0.I 
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W T o - • - a 

-2.- 

-3. 

The diffusion model: the decay of a sample of 500 sensitizers 

with a reduced acceptor concentration, CA=0.I . Time is 

measured in units of Ts  . The critical radius for the 

sensitizers isRa=0.I . The appropriate reduced diffusion 

coefficients,D-, are shown underlined on the curves. 
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Fig. 8.  

2., 
CA  =0.3 

RC 

-3._ 

6. 7. 

The diffusion model: The decay of a sample of 500 sensitizers 

with a reduced acceptor concentration, CA=0.3 . Time is 

measured in units of -rs  . The critical radius for the 

sensitizers is Rc=0.I . The appropriate reduced diffusion 

coefficients, D 	are shown underlined on the curves. 
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CA=I.° 

R =0.I 

Time,T 

Hth 

-2.- 

-3.- 

-4.- 

The diffusion model: The decay of a sample of 500 sensitizers 

with a reduCed acceptor concentration, A=0.5 .Time is 

measured in units of 'Z' . The critical radius for the 

sensitizers is Rc=0.I . The appropriate reduced diffusion 

coefficients, P , are shown underlined on the curves. 
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Reduced Diffusion, D 

The Diffusion Model: The effect of diffusion on sensitizer 

quantum efficiency,(1,41)
s 
 at various acceptor concentrations. 

Diffusion coefficients are expressed in reduced units, as 

are the acceptor concentrations marked on the right by 

their respective curves. The critical radius Rc=0.I . 
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Fig. II.  
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I.0 

0.5 	I.0 	1,5 
	

2.0 

Reduced Diffusion, D 

The Diffusion Model: The effect of diffusion on sensitizer 

lifetime, ftlity , at various acceptor concentrations 

The critical radius of the sensitizers, Re.O.I . Both 

diffusion coefficients and acceptor concentrations shown on 

the curves are in reduced units. 
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-2.0 	 -1.0 
	

0.0 

Reduced Concentration, C
A 

The Diffusion Model: The effect of several rates of diffusion 

on sensitizer quantum efficiency, (1),Aijs., as a function of 

reduced acceptor concentration, CA- . The reduced diffusion 

coefficients appropriate to the various curves are shown on 

the right. Again the critical radius, Re.0.1 . 
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We see the relatively small effect of diffusion on the 

apparent values of 	, the coupling parameter in Table 2. 

These results were obtained by calculating the various 

concentrations, CA , which with the diffusion coefficients 

given, 1k 1k  ;, give the same quantum yield as with(-; =0.3,and 1=.0 

The apparent 	values are obtained on an arbitary assumption 

that /go =30 I with no diffusion. 

Table 2.  

CA D 
*

- 
Ro 

0.30 0.0 30.0 

0.26 0.05 31.0 

0.24 0.10 32.5 

0.20 0.20 34.5 

The interaction distance could be theoretically derived 

from the absorption spectra of the species concerned, but as 

these are not always exactly known R0 would be indeterminate 
0 

within several A units . So diriect theoretical/experimental 

comparisons of /0o would be a very unfavourable way of attempting 

to isolate a diffusional effect. We may note that for a j) = .1, 

changes from L> =.0 to 	=0.1 by only 2.5 f , and 

yet in the lifetime of the excitation the sensitizer could have 
0 

diffused ^-1  13. A . This illustratesthe relative unimportance 

of the diffusional effect , as it only begins to change the 
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disribution in solution after the initial decay or transfer 

has occurred. 

(c) Experimental Comparison with Proposed Model.  

There are unfortunately few sources of data suitable to 

test these approximations.The results obtained certainly agree 

with Weinreb's rather qualitative pulse scintillation data,(25), 

which showed an increase in decay constant, Ites  , with 

decreasing viscosity. 

Some earlier results of Weinreb,(46), are more suited to 

test the theory. He measured the efficiency of transfer of 

Naphthalene to Anthracene in paraffin oil as a function of 

temperature, correcting for all non-diffusional effects, thus 
/ 

obtaining (11f.A  ) as a function of the diffusion parameter, I/1 
Tio s 

- Using Ts  = 5.2*10-9  sec., (59), and 
pp 

=40 A. obtained from 

his)} =0. results , and the viscosity as a function of 

temperature 12(T) for paraffin oil he quoted, it was possible 

to find the reduced diffusion coefficients for various temperatures .  

The equation used was, 

with T taken as constant over the small range of temperature 
),A- X 3k involved, T  =295 °K and CL =2.5 I. Then 1,)=VD,s  

with 11_ in centipoise, this agrees with Feitelson,(26). 

With these parameters a reasonable correspondance with 
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the experimental results was obtained, see fig. 13,using the 

model previously discussed. However a similar comparison 

attempted for the Toluene/Anthacene system in paraffin oil did 

not give such good results, but as Weinreb concluded this system 

did not appear to be of POrster type mechanism, the lack of 

correspondance is not surprizing. 

(II)Some Comments on Resonance-Transfer.  

We must first acknowledge that the origional FOrster 

transfer mechanism and statistical treatment was,and still is, 
perfectly satisfactory in explaining experimental singlet/singlet 

transfer phenomtna in solution. The neglect of diffusion has been 

largely validated, and the effect of averaging over all the 

possible orientations of the dipoles shown to be the same, 

irrespective of at what stage in the statistics this averaging 

is carried out, (14). Even the statistical treatment of the 

solution problem has been shown to be basically correct by the 

use of a computer simulation. 

Thus it would appear to all intents that the Forster model 

is well established, and until much more accurate experimental 

results are available it would seem unlikely to be dropped in 

favour of a more sophisticated model.We have only to remember 

all the difficulties in the discussion of secondary fluorescence 

and other reabsorbtion effects to realize that any increase in 

experimental accuracy would be quite diffult.A full discussion 

of these reabsorbtion effects is given in the next section. 



Fig. 13.  

0. 	IO. 	20. 	30. 	40. 
Temperature, T °C. 

The variation of transfer efficiency,(T,1n )A  , with temperature ,  
for the system Naphthalene/Anthracene in paraffin oil is 

shown by the solid line. These results were obtained by 
Weinreb,(46) 	The diffusion model prediction is given by the 

dashed line. The Forster model is independent of diffusion 

parameters, and hence is invarient under tempe4:ture changes. 

50. 	6o. 
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In fact , in view of the inaccuracy of most results, the cell 

model proposed would seem of sufficient accuracy, and is certainly 

useful for deriving physical quantities as analytic functions, 

rather than as numerical integration problems, as often occurs 

with the Forster model. 

As we have stated previously the mechanism is well established 

but has nothing to say in the "allowing" of transitions between 

states of different multiplicities, essentially the singlet/triplet 

transfer problem,(24),(60)t For this situation a more complex 

interaction term is needed, (8). 

The break-down of the dipole-dipole approximation at high 

concentrations is again difficult to confirm experimentally , 

because this is just where the output intensities of solutions 

are at their lowest, and where reabsorption processes tend to 

dominate any possible measurements. 

(I2)Light Reabsorption in Fluorescent Solutions. 

Before any treatment of the reabsorption of fluorescence we 

first consider the phenomtna of primary fluorescence, ignoring 

contributions from secondary fluorescence following light 

reabsorption in solution. 

(a). Primary Fluorescence.  

The evaluation of the intensity of primary fluorescence 

is essentially a geometric problem, (61),(62). We are vitally 

concerned with the spatial arrangement of the cell containing 

the sample and the system used to excite and detect the 
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fluorescent light. In the following treatment we consider the 

effect of exciting a fluorescent sample , in the form of a cube 

of side L. , with parallel monochromatic light of constant 

wavelength, 'X , and intensity 	. The coordinates (x,y,z) 

are chosen with the light incident parallel to the x-axis, and 

perpendicular to the face formed by the z and y-axes. 

x 
The fluorescenqe emitted by an incremental volume of solution, 

dxdydz, at (x,y,z) is obtained using Beer's Law,(17), 

F 

	

	
E c x 

tax 
A 

EX C. Je_ 	-)7 	 Cij GI •E' 
(1-152) 

where C: is the concentration, and E>, the extinction of the 

fluorescing species. The factor 7 
	

is the quantum efficiency 

of the subsequent fluorescence process, that is the fluorescent 

conversion ratio, 

qA  =(fluorescent quanta/absorbed incident quanta) 
This increment of the total fluorescence is emitted in all 

dirfections, as in solution all the molecules are randomly 

However in leaving the solution this intensity suffers 
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attenuation by reabsorption given by the extinction of the 

r- ?‘/ 
solution for the fluorescent light c. 	*. The intensity is also 

distributed throughout the fluorescent spectrum of the species 
/ c t i 

concerned, hence the output in the range )\,/ to Al'clAis given 

by dFf(N,ax' ,wheref  is the normalized intensity function, 

-F•Pocl>. 
In most practical investigations the intensity of fluorescence 

is observed through the use of some detector of effective area A 

The area /N may represent a monochromator slit, an appropriate 

filter or lens, in any case it will,(especially in the case of 

the monochromator),only be sensitive to a certain "pass-band" 

of radiation, and will subtend a certain solid angle, &) , at 

each volume increment of solution. Hence the proportion of 

fluorescence in the band .6)\/  incident on area A , positioned 

parallel to any of the sides of the cell will be given by, 
V = ›.../ q' 4S >Y2_ 

el F„ 	I 11 . • ENc  x—Ekc8 
4--/Tr2-  

	

>,„),/._.,axiiz 	
(A) ciA"chdyd 	(I-I53) 

In order not to complicate the solid angle term, 6 	, 

• 

it 
and the attenuation term, 2.11)11-Evcw 	

:Tr r-3--  
) , we have assumed y-:5;> L. 

. 
The total output incident on l) in the band zaA is given by 

* Although we "allow" reabsorption ,we do not take account 

of any subsequent re-emission contributions to dF here. 
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further integrating 	' 5> over x,y and z, giving, 

E

)1/ 4
c  

e- 	) (1-154) 

/ 
This involves the further restriction that 

c  
1  

function of A in the range , L A , 

is not a strong 

 

— Ey/ C. 

f 

 

If 	 (1-155) 

  

is a constant for a given spatial arrangement and fixed 

incident and fluorescent wavelengths. 

A 

 
, 	- 

117T-Ft. 	
X) 01)4" (1-156) 

 

With
A 	

and E:‘/ C i_<< 1 , we obtain the linear form, 

(1-157) 

This is equivalent to the extension of Beer's Law into fluorescence, 

with 	' 

	

sz, 	dirrectly proportional to EA  , C , 77"k  , and 

sample size Z--3  .At the other limit, with 5E L. ;>7 i and Ep.71, I , 

..-. -q /\ L / E ' c 
3—  4) 	 (1-158) 

The "straight-through" fluorescence, which is observed from the 
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face opposite to that illuminated by the incident light, may 

be obtained in an analogous manner, 

E 	EXic L 	E(E),- Ei)c  L- 
F 

c 
(1-159) 

This equation includes all the assumptions given previously 

for side viewing. 

In the case where EC:L.4C ( and Ex  /(:1-41we obtain the 

same result as given in equation (1-157) , the limiting 

expression for side viewing. At the other extreme however, 

with L>> E fct...> I , and Ex  > E/ we find , 
lt‘ 

L_ . S 	
bt 	 (I-160) 

( Ex-  EX) 	
F " It will be noted how much faster 	S-  .7 	after 

reaching a maximum than F-  	the latter only falling as SI> 

the reciprocal of concentration. 

The final case we have to consider for our cubic sample 

is "forward viewing" , observation from the same side as 

excitation. We shall consider the case with light incident at 

an angle E)  , and observed at as shown. 

pi 6F 

(J- 	st5 
6,xsk3 
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Refraction effects on leaving and entering the solution through 

any glass cell wall are neglected. Allowing for the new 

geometry , but with the same approximations as before, we find, 

fqxcc- L2.  (1 --e7c 	-+- ( 
cos e 	cos  id 

(I-I61) 

CN%/COS e + E> icon 
 

With the appropriate conditions for weakly absorbing solutions, 

(Exlcos e -1--  E-xlicos c L«1 we again obtain the result (1-157). 

At the other extreme, we find; (EA CoS e 	xi/CoS 

/ 
F" = E L /(  -s•>‘ 	Exi  X 	cos e 	cos 

(1-162) 

Thus at high optical densities the output observed 

becomes concentration independent, all the incident light is 

absorbed by the solution and a constant proportion re-emitted. 

The analogy with the straight through high optical density result 

can be clearly seen by using,() =0? , and, 0 =180? , then the 
Q A 	term in equation (1-160) represents the additional 

attenuation of the fluorescence, due to passage through the bulk 

of the solution. The expressions (1-154), (1-159), and (1-161) 

have been evaluated with typical parameter values and are 

shown in fig. 14 • 

All of these equations describe the movement of the 

fluorescing volume from the whole solution to the front face9  

nearest the illuminating source. This transition between 

"homogenious" and "localized fluorescence" is governed by the 



.0— 

-2 — 

)3 

Fluorescence Attenuation: The fluorescent intensity of a I. cm. 

cube observed from various directions as a function of 
concentration, C . F=front viewing, equation(I-161), S=side 

viewing, equation(I-154), B=back viewing, equation(I-I59). 

For the set of curves I, the parameters used were,E>,=7500,C =300; 

whilst for curves 2,4=10000, 5! .20000. Curve 3 was obtained 
using the same extinction parameters as for 2,except a .1cm. sample 

thickness was used, the overall volume however was still Iml. . 

This illustrates the value of front viewing of thin samples. 
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optical density terms, with / >CACI_ >J , the transition 

occum,ing at 	. At low optical density the solution 

absorbs only weakly , and hence each incremental volume 

fluoresces equally , being subjected to an incident intensity 

which is virtually independent of position (x,y,z). Thus in this 

situation the output fluorescence intensity is the same in all 

a 
dirfections , and proportional to L , C)s  , -714.  X and concentration 

as expected. At high optical densities however, light is strongly 

absorbed on entering the solution, and the fluorescence becomes 

essentially localized at the illuminated face. 

Although we have considered the effects of reabsorption, 

by assigning a value EZ ›; to the extinction coefficient for 
the fluorescent light , we have not considered any re-emission 

as a result of this absorption.This is reasonable for low 

optical densities, or if 1-tx  is small ,and in fig. 15 we see 

that experiment and the model proposed do agree quite well. 

Also it will be noticed we have only considered one-species 

solutions, in mixtures fluorescence may be reabsorbed by 

several different types of molecule, and hence the fluorescence 

of additional species is observed, although it was anticipated 

only from that which absorbed the excitating light dirtectly 

All these considerations bring us to the problem of 

secondary fluorescence. 
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Fig. 15.  

3• - 

I. - 
1 -6. 	 -5- 	 -4- 	 -3- 

Log( C ) 

Test of the theoretical fluorescence intensity function, FSD 

Experimental points are shown as circles, whilst the solid 

line represents the fitted function Fs")  

The points were obtained for Trypaflavin solutions, viewed 

from the side using a Farrand Spectrofluorimeter. 
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(b)Secondary Fluorescence.  

This is usually considered in qualitative terms only,(63), 

and is only observable indirtectly, such as in the apparent 

increase in lifetimes of fluorescing species as measured using 

a phase-fluorimeter ,(13), or in polarization investigations,(64). 

The measured intensity of fluorescence is the sum of all orders 

of fluorescence, 

Fr 
.1101m, 

00 

11 

(1-163) 

where; F-7,Qc) = primary fluorescence contribution, r--(C) secondary 
2_ 

contribution, arising from the reabsorption of F 	and 

(c) = tertiary component., 
3 

and so on 	 

as a result of reabsorption of 

The form of Fc) has been dealt with already, and the model 

we shall use here to approximate F(c) is just a simple extension 2. 
of that used for f7(c) .We consider the reabsorption of primary 

fluorescence emitted from an incremental volume d;Cr:Ciir dkit- 

at 	(X(7,p,i.P.7c.) by another volume d x idij. tat (7:1,V,2!") , 

followed by it's subsequent re-emission as secondary fluorescence. 

As in the discussion of primary fluorescence , the coordinates 

used have their origin at one corner of the cubic sample, 

with the exciting light incident parallel to the x-axis. The 

fluorescence of the C -th incremental volume, emitted in all 

directions , and distributed throughout the entire fluorescence 
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spectrum is given by equation (1-152). The proportion of this 

primary fluorescence in the wave band a X incident on the 

-th cell , at a distance 177J' is given by, 

c 
--excx,: — c›,:,  c ry /I 	(V) &>•//  

L 

ci/ c: clyt:  d- 	/I 	rt. (1-164)  
is the area of the j -th element in the dirrection tli , A j  

and f(>0 the intensity distribution. From the derivative of the 

above equation with respect to r-,Ii  , and ignoring the contribution 

from the purely geometric term arising from the solid angle, we 

find the intensity absorbed by the J -th element as, 

/ 	1. 	n— Exc .x. c: _ E  it c i_ . • 
esI.= I, E  E ; C )7 A -C- . 	, 	e_ 	›. 	(...1/4)  

J 	,A 

477-1-ij 

Hence the total intensity absorbed by the ) -th element is given 

rx" -=.°° by, 	dkJ- #:. and the total secondary fluorescence emitted by 
„,"=o 

the incremental volume is, 

(>') d)," clrg  dxt  d c),-L 
(1-165) 

L/ 

Here we have assumed that 

not depend on A 

(1-166) 

, the quantum efficiency does 

_ x 

,00 
4 	• r--• 

e_ 	c  vio‘D a v. 	(J  
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As the light has still to leave the bulk of solution,we 

need a further attenuation factor , and for the case of side 

viewing in the fluorescence wave band LA we derive, 

c A 	A 

4 Tr-rz: 	/Err= 1.  
6.>,/  
-27 

(1-167) 

z 
This represents the secondary fluorescence intensity emitted by 

incremental volume j in the tk direction within the 

wave band 4.)., . The expression needs further multiplication 

by a factor of rii/tfirr—  , where /1 is the area of the detector, 

distant r- 	from the solution, but this may all be included 

in a machine constant, 	later,( see equation (1-156) ).  

Now we shall turn our attention to the integral over ok Xir 

contained in equation (1-167), 

—E 	c c • 
3  X) d X"  

  

o 

First we must consider the absorption and emission bands of the 

fluorescing species. 
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01 measures the emission/absorption overlap interval,and a 

the band width of the fluorescence , hence the integral over 

can be split into domains, and using the assumptions; 

bsi 

we retain only one term in 

E 	
raj 

  _ 	E-)/ e_ f'" "\if Jx".„).0 
Thus we finally derive, 

44,,Fz3 	Ex 

_ 	dt---.. ctx,- of 

(1-168) 

-L. 	E 	,. . 
C 71.  e._ 	VI" 

;-k-r 

If >;' c  > 1) d \'` 



- 

Where, 	 = -);, 	 Ir
2 

fo)ck>\' and we have assumed c-_,>„ does 

1+77 r- 
not vary much across the instrument pass band , ,es,>; . In 

addition if we place AJCIRJ:= d,XiCkyidt'o 

of secondary fluorescence is given by, 
X°4--$0.>s 	r L 

4-(x-) 	dx 

z-. >s.o 
X - N • 	' =0 t 1../L) L 

the total output 

L.. 

J 
j 	j 4 r 

• ) . .4 )) j 

E~n Ei\ 
2_ —e c-DcZ e 	 0 

(1-169) 
Now we consider the integration over 	,involving the term, 

This integral over the diskibution function, f , is the mean 
.6 

value, Ex" e A 	V 	,assumingrejis approximately 

constant. This is reasonable as 10‹ 	 whilst C)4, /dl; 

and as a further simplification we approximate, 

(I-170) 

i 
with, E> / :.,..-,.. A-A - E>,' 00k / . Thus 	E ," .." 	assumes the form 

of a semi-empirical parameter , only approximated by the actual 

mean overlap extinctions. Substituting this into the equation 

for 	r s ' ,(i-169), changing coordinates and integrating, Zs' 

we obtain , 

=_>.° 



F2_5 1>  -- 

  

E x" 

 

e_ 
E cL  

-rr 	"Tr 

J 	e co,> 75 +2, E.)i„ -f)can 

 

E 

  

   

o 	0 

rE 	e c.c# -I- 2 	—E,t  (93) 
" 

If we write secondary fluorescence as a ratio of primary output, 

the expression is simplified , for side viewing to , 

271-  7T- 

( F2- 1   als 	e  
isj> 4- Tr 	c(Es;..Oceid 	co-e) 

6 	0 

 

Lbc("" e 	E 	c°' 

(I-171) 

This function is shown in fig.16 , evaluated using typical (1-172) 

parameters. 

A similar method may be used to find the ratio,Fz 
( 
F5 

9 for forward viewing , which is found to be 

1)F 	-(1), E' 
G d 	2 	G a 9  

0 

c4-4 + 2 E),* 

(1-173) 

(1 
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Fig. 16.  

I 	I 
-6. 	-5. 	-4. 	-3. 	-2. 	-1. 

Log( C ) 

'Secondary Fluorescence: The ratio of secondary to primary 

fluorescence as a function of concentration and sample 

thickness. The sample is observed from the front, and the 

various thicknesses are shown on the curves. The extinction 

parameters used were, Mx  =7500, 	=20000, E%/=300 . 
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At low optical densities, or sample sizes, with, 

(E>,C(--"/‘ e C<)"' -I- 2. 	- tE)C 	e 	1 
and the corresponding condition for front viewing, 

El>OTL,v,GCeclA —I— 2 E 
the results for both directions of observation are analogous, 

(7 	
Ez 
 ( 	

E ),,f L -)1 X c 	 (1-174) 
s 

In the other extreme, with high overlap extinction, E),:t>> Ex 9 

, and G:(7..,1...>>( we find, 

(F24- )1s. = (P-2/r; F 	A (1-175) 
The approximated forms of F47,_ and FT are progressively 

less reliable as they depart from linearity at high optical 

densities. These are all rather empirical formulae, employing 

many approximations, and the value of E", the overlap 

extinction is hard to evaluate, but as experiments involving 

the direct measurement of F; are impossible we do not need 

a highly sophisticated model to interpret the meagre experimental 

results available. Secondary fluorescence is often observed by 

it's effect on the apparent excitation lives of fluorescing 

species in solution, when it is found the lifetimes derived are 

functions of concentration and sample geometry. 

In order to test the validity of the foregoing theory, 

and the expression derived earlier for the life of excitation in 
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solution with reabsorption , equation (1-133) , some experimental 

comparisons are now given. 

(c)Experimental Test of Model.  

(i). Galanin's Results.  

Galanin, (13), using a phase-fluorimeter, was able to 

measure directly the dependence of fluorescent lifetime, 

of fluorescein on the thickness of the sample taken. The exciting 

light was of wavelength 436 nu., and modulated at 1.47*108c/s, 

with the samples viewed from the same side as the incident 

exciting light. The value of 'es  , the lifetime at high dilution 

was taken as 4.*I0-9sec. , the shortest life observed. Hence we 

find , for equation (1-133), 

1.3,5-- 	2J2 
Y.c kis" 0- 6-57Q 

0 
The values of 	, 

1\  4 	

, were obtained assuming "Yl,  =. 8,(17) 

W  and using E.),,t =2.*I0' and E),  =7500 to derive FVF1  as a 

function of sample thickness, we can compare the experimental 

and theoretical quantities, see Table 3. 

Table 3.  

Sample 
ness cm. 

Cone =.60 	.11 	0 . •• 	:au 	u 

expt. thick /V 1'1571's theory expt.11 stheory 

0.8 1.38 1.49 1.52 1.58 

0.1 1.25 1.17 1.48 1.44 

0.02 1.0 1.04 1.30 1.29 

0.04 1.0 1.00 1.05 1.08 



(ii). Schmillen's Results.  

The lifetimes of various organic dyes in solution were 

also measured by Schmillen, (39), using a phase-fluorimeter. 

This time however a lower modulation frequency was used. With 

, we can use the relation (1-133) to obtain, 

-t— z R  1/57/eis  
I --t- R 

With the values found from the absorption spectrum of 

Trypaflavin for the extinction parameters, E =7500, and 

EX' 	=3000, with --r) ..37, (17), 

corresponding values of 	found. 

Table 4. 

we show in Table 4 the 

    

Log(concn) 1!../' 	-lw 

	

3Y/ Ls 	expt. 'e
t 
VI,  theory 

-5.0 1.02 1.01 
-4.4 1.05 1.02 

-4.0 1.12 1.05 
-3.7 1.16 1.09 
-3.3 1.25 1.18 

-3.0 1.27 1.23 

At concentrations greater than ̂ /io-3m. self-quenching begins, 

and the function defining the ratio FVF becomes unrealistic, 

so this was taken as the upper limit of testing the theory. 

For a similar treatment of Fluorescein, using the same parameters 

as in the duplication of Galanin's results the comparison 

colis441 
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is shown in Table 5 . 

Table 5. 

Log( canon ) IA expt. theory 

-5.0 1.0 1.07 

-4.5 1.0 1.18 

-3.8 1.22 1.38 

-3.6 1.39 1.42 

-3.2 1.55 1.44 

(iii). Bailey and Rolleson's Results.  

Bailey and Rolleson (43), made another phase-fluorimeter 

study, although this time a large 2 cm. sample was used. The 

use of such a thick sample was rather unfortUnate in view of the 

increased possibilities of reabsorption distorting the lifetimes 

observed. Fluorescein was studied, so the same parameters as used 

before were applied, and also because Cot/ '<1, the simplified 
5 

equation could be used. The results obtained are given in Table 6, 

above Log( C ) =-3.7 the value of R is unity and the theory 

breaks down. 

Table 6.  

Log( concn ) 	N/q(s 	expt 
"v.,' 
nAf theory 

-5.8 1.02 1.02 
-5.1 1.02 I.II 
-5.0 I.II 1.12 

-4.1 1.40 1.39 
-4.0 1.47 1.41 

-3.7 1.55 1.44 
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(iv). Conclusions.  

The first comment that seems valid is to wonder at the 

quite reasonable degree of accuracy in the theoretical 

predictions considering all the uncertainties involued. The 

situation is helped by the fact that all the experimental results 

lie in the range where 3  is between I.0 and 1.6 , but even so 

the fit is quite satisfactory considering the rather lengthly 

theoretical digressions and approximations involved in the 

calculation of the ratio Fvr and in the application of the 

time-dependent theory. In any case the results do illustrate 

the need for understanding the large effects reabsorption can 

have on the measured lives of species in reabsorbing media. 

Now we can appreciate the reasons for the often wide 

discrepancies in the values of les  ascribed by different 

workers to the same compound. The case of anthracene is 

particularly bad , with a large choice of "accurate" "es. 
possible , all varing with the subdivision of the solid sample. 

Clearly care is needed in reaching conclusions based on lifetimes 

in bulk media. 

Finally we must recognize the many assumptions in our 

theory, the neglect of competing effects such as resonance 

transfer , self-quenching, all effecting secondary fluorescence. 

Also the approximation of the modulation of the exciting light 

by a sine wave may not be very good, it might perhaps be better 

represented as a chopped beam. 
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(d)The Trivial Effect.  

From our treatment of secondary fluorescence we are now 

in a position to estimate the magnitude of the radiative transfer 

of energy between a system of sensitizers and acceptors, known 

as the "trivial effect" . In studies of resonance transfer it is 

important to exclude the radiative process as a competing 

mechanism of energy transfer. Thus we must compare the magnitude 

of this reabsorption process with the efficiency of radiationless 

energy transfer, written as the ratio 0/11;)
A 
 , given by 

equation (1-97). This ratio tells us the fraction of quanta 

absorbed by the sensitizers which are passed onto the acceptors, 

to reappear as acceptor fluorescence. The transfer of these quanta 

by the trivial effect would occur through sensitizer emission 

followed by the reabsorption and re-emission of quanta by the 

acceptors. Resonance transfer however occurs via the coupling of 

the sensitizer and acceptor dipoles as we have seen, and no 

emission and reabsorption processes are involved. 

Until now we have regarded the acceptors and sensitizers 

as different species, this need not be the case, they could well 

be different molecules of the same type. This is the situation 

we shall consider, so as not to complicate matters further by 

having to extend the seconcary fluorescence theory to cater for 

two species in solution. Such an extension is simple , but results 

in more complex expressions. 



QOA = I68>,  

r2--Tr  r 
ck0 

c:(st-..,Aecc.5%6-F12. Ex,) 
0 	0 	 (1-178) 

  

E c L 
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The trivial quantum efficiency can be defined as , 

(VT 	
( Quanta reabsorbed by solution ) QUA 
(Quanta absorbed from exciting intensity) C:QA 

(1-176) 
For the upper term we shall only consider a single reabsorption 

of radiation; that is the absorption which leads to secondary 

fluorescence. Higher order cascade effects are neglected. The 

lower term , representing the quanta absorbed from the incident 

exciting beam may be easily derived using Beer's Law ,( see 

equation (1-152)). Considering the usual sample cube , of side 

L. , and with coordinate origin at one of the corners, we find, 

(1-177) 

where 	Q the intensity incident in the x-dirfection is in 

units of quanta/sec/area. We have assumed the incident exciting 

light is monochromatic. The calculation of the primary fluorescence 

intensity absorbed by the bulk of the solution can be handled 

in an analogous manner to that used for secondary fluorescence, 

and we find, 
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Hence we have , 

QIQ A 	 E C. "rt 

4-  Tr 
A 

2--tr 

2 5-z-,‘ e 	e  Lt. 

a 
(Exv,e, B co-,  +-2 

(1-179) 
Where E:), is the semi-empirical mean overlap extinction 

previously discussed, equation (I-170) . In fig. 17 the results 

of evaluating equation (1-179) with the appropriate parameters 

are compared with experimental measurements of Birks (65) of 

the trivial effect in TPB/polystyrene glasses. 

At low optical densities , 	CL e.:1 and €. 	<Kt 

= 
PYZ 

E i; 	C (I-I80) 

This is exactly the same as (f216) , the primary/secondary 

fluorescence ratio at low concentrations , equation (1-174) • 

The linear dependence of the trivial effect on these parameters 

is as might have been anticipated. Now we can compare the magnitude 

of this effect with that of resonance transfer. For the latter 

mechanism we have an efficiency at low concentrations given by 

equation (1-78), 

 

I c 

Co 
--Tr 



- 121 - 

Fig. 17. 

-6. 

-2.— 

-3. 	-2. 

Log( c ) 

0 

I 

The Trivial Effect: Comparison of theory and experiment. 

The experimental results shown are those of Birks,(65), obtainea 

for the trivial effect in TPB/Polystyrene glasses. 

The solid line was obtained from equation(I-179) with; 

L=1.0, E'%!  =40000, Z2!=500, E.%  =7500, and the quantum 
efficiency of polystyrene,-9 	.16 . 
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Where C:c)  is the critical concentration, ^-, IO-4M. 

Hence as _I_ ev E.-- Io4  , the ratio of the two concentration 
C' 	Xi 

proportionality constants for the two processes is, 
[2-7I 1. L-] X 

and as /1_.5 we finally conclude that the trivial effect 
A 

should only be about one seventh of the non-radiative effect. 

This is only an approximate result, dependent on the individual 

parameters for any situation, but it serves to give a reasonable 

basis for the omission from consideration of the trivial effect 

in typical resonance energy transfer experiments. At concentrations 

where(11(40) is not small the factor litx  in equation (1-179) 

should be written as (1 --(1116,c) ) 77 A  , so that as the resonance 
fu 	-( 

transfer efficiency increases, the corresponding trivial efficiency 

is reduced. At the other limit, with e"(21._>>1,with high overlap 

and extinction, we find, 

(fifrOT 	11  A 
Thus we find the maximum transfer efficiency by the trivial 

process is 77, , whilst it is I. by the non-radiative route.  
"A 

The reduced efficiency of the former is due to the requirement 

of fluorescent light emission by the sensitizer , this requires 

internal conversion within the excited state. In the resonance 

coupling required for radiationless transfer the sensitizer does 

not have to be in a potential fluorescing state. 
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(13)A Practical Investigation.  

(a).Construction of Apparatus  

An experimental system for the investigation of 

fluorescence spectra was built. It consisted essentially of four 

basic units , with which the sample under test was positioned, 

excited,and its fluorescence detected and displayed. 

(i). Exciting System  

The sample molecules are excited to a fluorescing state 

by the absorption of light quanta from an incident light beam. 

The lamp used was of the Xenon Discharge type ( AEI-Mazda,250Watt. 

operating off 	the 240 Volts AC mains via an inductive 

ballast, see fig.18 . This Xenon lamp provides a very intense 

light source , with a continuous spectrum in the near ultra-violet, 

visible , and near infra-red. The powerful emission at the high 

frequency limit particularly suits the lamp to the study of 

conjugated molecules, which generally absorb in this region. 

The AC arc between the tungsten electrodes in the pressurized 

Xenon atmosphere is struck initially by the use of the appropriate 

AEI lamp starter unit, which generates a potential of 20 Kv. 

Due to this very high voltage the lamp has to be well insulated 

to prevent "striking" to earth, rather than across the electrodes. 

To increase lamp life and improve stability a centrifugal 

cooling fan was used to blow a powerful current of air directly 

onto the lamp and its mountings. These mountings were 



240Volts AC 

I6Omfd. 
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Fig. 18.  

Xenon Discharge Lamp. 

The diagram above shows the Xenon Discharge Lamp control 

circuit, the lamp being a 250Watt AC type. 
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specially designed to hold the lamp without strain by the two 

brass caps at it's extremities, and to allow for differential 

expansion during the warming and cooling down periods. 

Throughout the operation of the lamp, and when it was cooling 

down after switching off, the fan was kept in use. The lamp 

assembly is shown in Fig. 19. 

The output from the lamp was focused by a quartz 

lens. ( I.in diameter, f.I.5in. ), onto the entrance slit of 

a Beckmann GM-I139 Monochromator. From the exit slit of this 

instrument a further quartz lens focuses the monochromatic 

light onto the sample. This monochromator uses a replica diffraction 

grating, with higher order radiation removed by filters 

selected automatically 	as the wavelength scale is 

scanned. Both the entrance and exit slits are variable, a 0.95mm 

combination gives a half intensity bandwidth of",  IOrAtA A. These 

slits are co-'linear, and hence the instrument operates as a 

highly selective filter. 

For the production of excitation spectra a Smiths 

syncronous motor can be used to drive the monochromator across 

its range. This motor did not require a clutch or reverse 

gear, as after scanning 	the whole range, 250 to 7001.1t, 

the machine is automatically ready to re-scan again 

commencing at 250rt 
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Fig. 19. 

cooling air from 
a centrifugal fan. 
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(ii). The Sample Holder.  

This was a thermostated brass block, with water 

circulated through it from a temperature controlled bath by 

a Stewart-Turner rotary water pump. This maintains the sample 

at a predetermined temperature throughout an experiment.This 

block, adjustable in the vertical plane, pivots about a vertical 

axis perpendicular to the exciting beam from the input monochromator. 

The holder, shown in Fig. 20, was suitable for ordinary 5mm 

and IOmm cells, and also Rile uV-0I thin layer cells, allowing 

both front and back viewing. The most frequently utilized 

position was oblique front viewing. 

(iii). The Detection System.  

The arrangement of the physical units used for the 

observation of the sample fluorescence depended on the chosen 

experimental geometry. For straight through viewing the cell 

was positioned perpendicular to the exciting beam, and a lens 

used at an angle to this beam to focus the fluorescence onto 

the output monochromator, see Fig. 21a. The choice of angle OC 

is such as to avoid the cone of scattered incident intensity. 

For reasons discussed in the section on light attenuation 

this experimental geometry is not very favourable , more 

useful is front viewing, with oblique illumination and 

observation of the cell, as shown in Fig. 21b. Again the angles 

have to be chosen to avoid the reception of large amounts of 
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Fig. 20.  
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Fig. 2I(a).  

sample cell. 
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scattered light by the detector. 

The fluorescent light emitted by the sample in any 

particular geometry is focused onto the slit of the output 

monochromator, another Beckmann Grating Monochromator, GM-I139. 

As with the input instrument 'this could be driven across 

its scale by a syncronous motor, which in conjunction with the 

display system enabled fluorescence emission spectra to be run. 

Against the exit slit of this monochromator was the 

detector, a RCA 113-28 photomultiplier. This nine-stage 

phototube was directly attached to the monochromator, with 

its dynode chain resistors housed in a separate container, 

connected to the phototube by a multicore cable. 

The ripple-free (4: .01% RMS) stabilized DC power-supply 

used to provide the phototube potential via the dynode resistor 

chain was an AEI type R-1184, with a stabilized range of 

300 to 1100 Volts DC, at 2. Ma. The quartz glass envelope of 

the IP-28 was covered with an electrostatic shield, connected 

to the same potential as the photocathode, with a 10 meg ft 
resistor to reduce leakage. This "noise" reducing shield had 

a window for the light incident from the monochromator onto 

the photocathode. 

Unfortunately the course scale divisions on the power 

supply rendered accurate and reproducable readings of it's 

output impossible, so a 50Meg, resistor in series with a 
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Pye Scalamp mirror galvanometer was connected across the 

anode and the 5-th dynode. The galvanometer reading was then 

used as a direct measure of the DC potential across the 

phototube, and could be read to ^al% accuracy. The curcuit of 

the dynode chain and the phototube is shown in Fig.22. 

(iv). Display.  

The output from the phototube could be displayed directly 

on a RCA Ultra-Sensitive DC Microammeter, MV-84C, connected in 

series to the tube output.Alternatively the micro-ammeter can 

be used to provide an amplified signal for feeding into a 

I0 mV Honeywell-Brown Electronic Chart Recorder,Electronik 5015. 

Together with this recorder and the motor driving either of 

the monochromators, both fluorescence and absorption spectra 

could be obtained. The six scales on the microammeter, and the 

power supply to the dynode chain, provide easily obtained 

varations in sensitivity. 

There was a facility for "backing off" the phototube 

dark-current from the chart recorder, this is important at 

high sensitivities when the dark-current is quite a large 

proportion of the signal. In addition it was found useful, 

except for very strong signals, to place a damping capacitor 

across the phototube output, usually in the range .I to .01pic 

to smooth out random noise. 

A simplified block diagram of the whole system is given 

in Fig. 23. 
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Fig. 22.  
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Fig. 23.  
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(v)Calibration.  

The sensitivity of the apparatus was calibrated against 

the potential supplied to the phototube by using a fluorescent 

sample, excited and observed at fixed wavelengths. This overall 

sensitivity independent of wavelength, is shown plotted against 

the monitoring galvanometer current, which is directly 

proportional to the applied voltage; see Fig. 24. 

No attempt was made to calibrate the system for relative 

sensitivity as a function of wavelength, and thus all spectra 

obtained have to be examined bearing this in mind. The phototube 

response is a function of the incident wavelength, the IP-28 

has a pronounced peak in the ultra-violet. Also the lamp intensity 

and monochromator performance are all wavelength dependent. 

If however readings are taken at a fixed excitation and 

emission combination, comparisons can be made directly, knowing 

the overall sensitivity for various phototube potentials. 

Finally reproducability; this was good to 	I% ,except 

when the lamp was warming up, or over long time periods, when 

the lamp intensity varied with the mains voltage, as the supply 

circuit had no constant-voltage mains transformer. 

(b)Experimental Investigation of a Transfering System,  

Fluorescein/Rhodamine-B.  

To underline the effect of attenuation, which has previously 

been investigated at length , and self-quenching, both 

dependent on concentration, the fluorescence signal of 
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Fig. 24.  
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Fluorescein was followed as a function of concentration. As 

may be seen in Fig. 25, at low concentrations the plot is 

linear. However at high concentrations as attenuation becomes 

important instead of giving a constant signal as all the 

exciting light is absorbed, as we would expect for front 

viewing, the yield decreases under the influence of self 

quenching. 

Also it was interesting to observe the effect of 

self-absorption on the position of the maximum fluorescence 

intensity. As may be seen, Fig. 26, this effect is very large 

for back viewing with a 5mm cell, although it is diminished 

appreciably by the use of a thin layer of material, as shown 

by the results for the .1mm layer. 

All this helps to experimentally emphasize the problems 

which have already been discussed in theoretical terms 

concerning the measurement of radiationless transfer in the 

presence of appreciable attenuation effects. 

The way we may partially circumvent these problems 

was first mentioned by F6rster, (18).We must first use only 

forward viewing, then the fluorescence of A in the presence 

	

of E? 	is given by, 

	

F I 	
,7? A ExA 	L2_ 

e  — 12 )1-r ELECA(EXAhee+E)ICIP6 cide:/14 e+ E>
C

*f0i) 
a 

cosys(c4  EEAA/c415 e E;/ .3 + cs  CE:s/ce EA16.0 P3) 
(1-182) 



- .137 - 
Fig. 25.  
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Fig. 26.  

E 5- 50_ 
?-) +, 

a) 4, 
H • 540_ 

E 

• 530—  
4-1 

0 
4-1 
4-1  5 2 0 — n-1 

0 

510 — 

2. 3. 
Log( Relative concentration ) 

The wavelength at maximum fluorescence intensity of Fluorescein 

samples as a function of concentration and aell thickness. 

The sample was viewed in the straight through position, 

and the advantage of a thin cell is clear. Cell thickness 

is shown on the curves, and concentration is in units 

of 3.86*I0-5M . 



- 139 - 

Then at high optical densities with, 

CA{eqat,(3) +-6-),A/cono -f-c8  Ee/cee + ›Ice 4_} 	I 

/1, 	L2-  
L-EAi te, 6 	a@\1 / 413/c05(9 -+cE),81/erneky 

CA • 

(1-183) 

That is, so long as Cg

/ 

fcjg  is constant, the effect of attenuation 

on the fluorescence of A 	will be constant. 	The 

validity of this expression clearly depends on the inequality 

holding at a given concentration of A and F . For solutions 

of Rhodamine-B and Fluorescein the condition is obeyed at 

concentrations greater than 	and so this enables the 

investigation of transfer between the two species in solution 

to be carried out in a straight forward manner, ignoring 

attenuation effects at these concentrations. 

With this assumption results confirm the FOrster theory 

within experimental error, see Fig.27, except that deviations 

appear to occur at high concentrations. From the results the 

value of Forster's parameter, the critical concentration is 

obtained as (7.° 	2.8*10-3M. (See FOrster's result, 

e =2.3*I0-3M. for the system Trypaflavin/Rhodamine-B,(32).) 

(c)Some Conclusions.  

From this experimental work, and the work of others, 

which confirm the already discussed theoretical treatment, 

we find, 

FFA  
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Fig. 27.  
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it seems we must recognize two basic points; 

(a). The impossibility of obtaining results of high 

accuracy, approaching I.%,due to attenuation effects, lamp 

instability and other sources of error. Thus these and similar 

experiments seem inappropriate for the investigation of 

various theoretical models for the transfer mechanism. 

(b). If, instead of studing the integral properties of 

the systems, their time-dependent behaviour is studied, perhaps 

much more could be learnt. It would seem more relevent to 

investigate the decay of the excitation on the acceptors 

and sensitizers directly, measuring the intensity decay of 

systems as a function of time. Hence the transfer mechanism 

could be investigated at first-hand , rather than through 

insensitive integrals appropriate to steady-state conditions. 

This time-dependent method is however the most difficult 

experimentally, requiring quite sophisticated electronic 

techniques, but it seems the most likely area for"critical 

experiments" at the present time. 



- 142 - 

CHAPTai 2. 

THE CALCULATION OF THE PROPERTIES OFT -ELECTRON SYSTEMS.  

(I.) Introduction.  

At the end of the 19-th Century the discovery of 

the electron by Thomson and the deductions of Rutherford 

concerning the nature of the positive nucleous paved the way 

for the "classical" quantum mechanics of Max Planck (1900), 

and Niels Bohr (1913). The idea of discrete stationary states 

for electrons introduced by Bohr gave non-radiating states 

for an electron in a central field, unlike classical mechanics. 

Bohr also proposed that the structure of many 

electron atomic systems could be represented, to a good 

approximation, by regarding each electron as being in a 

stationary state in the field of the nucleous and the charge 

distributions of all the other electrons. 

The use of three quantum numbers (n,l,m) to 

describe electronic levels in atoms proved only partially 

successful for atoms heavier than Hydrogen. Experimental 

results indicated the need for a fourth quantum number, and 

this was introduced as spin with the Pauli Exclusion Principle. 

A decisive step forward came with the inception 

of Wave and Matrix Mechanics by Schrbdinger and Heisenberg 

in 1925. Schrbdinger's mechanics was based on much earlier work 

by Hamilton, who established a formal analogy between mechanics 
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and optics. The new wave nature ascribed to the electron 

confirmed Heisenberg's Uncertainty Principle and De Broglie's 

investigations into the wave properties of matter. This 

important advance however led to the loss of the simple 

classical idea of an electron orbit, electrons lost their 

identity as all measurable quantities had to be symmetric 

functions of particle coordinates. This "exchange phenomtna" 

is very important in the transition from one electron to many 

electron systems. 

The final stage in the basic development of quantum 

mechanics was the evolution of Relativistic Quantum Mechanics 

by Dirac, who removed discrepances in SchrtSdinger's mechanics, 

using a four-component wave function and relativistic operators. 

(2.) The Schrodirver Wave Equation.  

The general time-dependent form of the Schrddinger 

equation for a one electron system in a conservative field is 

given as, (66),(67),(7), 

tip 	(2-I) 

The quantum mechanical Hamiltonian, El represents, as in 

classical mechanics, the sum of kenetic and potential energy, 

except now to form the quantum operator we transform linear 

momentum; 
	k,  a 

CX 
Hence we have for the Hamiltonian, 
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=Vci?-) 
2m 

 

(2-2) 

Where; 	= the potential energy of the system. 

= 1C72- 

	

	
÷ at 

the Laplacian Operator,— o tjt 
The time dependence of the wave function 1.‘11  is represented as, 

Ezt (2-3) 

   

being the wave function of the system at t: =0. 

Hence for a stationary state, with E: not dependent on time, 

we obtain the time-independent form of the Schrddinger equation, 

Without any further detailed consideration of I-1  and #111  

some general conclusions can be reached as to the properties 

of solutions of the equation above with a given Hamiltonian. 

For a solution representing a particular stationary 
7-  2.  

state, 	,)1! 	0 and Hie/ ctrconverges as f---2› 00 

0 
The set of energy values, [E./ , the "eigenvalues", for which 

the equation has solutions, have corresponding "eigenfunctions", 

(y1, which are finite and single valued throughout space. 
Usually the convention is adopted that \4(--: 0 as 	oo, so 
the values of E. for stationary states are negative. 

It is clear for the form of the Schrddinger equation 

that if 	is a solution, for the system with energy EZ, 
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then so is any constant multiple (3...Ni" L , thus it is 

convient to normalize the function, so that* cli. *.Y aT =I . 
d L 4.. 

For two different normalized solutions 'N,b,.:  and t:f  it 

can be shown that, 	-\11.)--Y/. CIT" S 
9 
. . where Sij is the 

L 	J 	' 
Kroenecker Delta .This is expressed by saying 	and'\P

j
' 

G  

are orthogonal and the set of solutions, f Niel , is said 
to be "orthonormal". 

If the state of energy EL is degenerate, and 

can be represented by two eigenfunctions k l  and P\fia , the 

Schrodinger equation does not force Nit.  .. and ll.to be orthogonal. 1 

We could however use any combination,ON- ,....y,,,.. ,as a (.I 

solution for energy L-L, , so we just chose two orthogonal ones 

from the infinite set. This imposes no additional restrictions, 

and enables us to preserve the orthogonality principle. A 

similar proceedure may be followed for roots with higher 

degeneracy. 

Finally we must consider the vectorial 

interpretation of the Schrbdinger equation. In the matrix 

mechanics of Heisenberg we represent wave functions as vectors, 

and operators,( such as the Hamiltonian,) as matrices. This 

transformation from the differential form of Schrbdinger's 

wave equation is easily followed if we expand our prospective 

solution to the wave equation, 	in terms of a complete 

* Integration over all electronic coordinates is implied when 
-‘1,* no limits appear in an integral. r.is  the complex conjugate of Y' 
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set of orthonormal basis functions, 

(2-5) 

Then we have, 

1/4.j 
	J.== (2 - I 

On multiplying this equation by the complex conjugate of one 

of our basis set, say 
04‘ 

 , and integrating we obtain, 

-> 1  C e, • j TK t4GI  11 	c: C K (2-7) 

If we use 	, covering our entire basis set, it 
can be seen we obtain a matrix equation of the form, 

h7icc c = EL  cc: 
	 (2-8) 

Where Cc' is a column vector, representin CIEJ , with the 

coefficients C7c,:j 	giving the components of the basis functions 

appropriate to eigenvalue . This expansion technique of 

solving eigenvalue problems is a special case of a method first 

proposed by Ritz,(76). 

The matrix equivalent of the Hamiltonian, L1'9( 

has elements, 	= 59'n 	ciet 
Such matrix equations may be easily manipulated and solved 

using conventional matrix methods. 

Thus we can regard our wave function:Vic:, as a 

vector, with components, C:(:,5 , of the orthonormal basis set,f9•?. 
J 

The action of the Hamiltonian operator matrix representative 

(2-6) 



original unit length 

of this eigenfunction 

clY 

of the eigenfunction. The normalization 

is expressed by, 

 

1 /4 J / 	̀ -1 /41 

  

(2-9) 
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on such a vector, if it is an eigenfunction of the system, is 

to give a parallel vector, of length E 	compared to the 

The orthogonality of the eigenvectors corresponding to different 

eigenvalues, Et: and ek , can be written in a similar manner, 

1 * 
"IP* 'Y. Oft t= 	/ (2  I.  )(0 96•Ci 	ul ti  Cx -C• • =0. 

j  
(2-10) 

Thus this integral can be considered as the scalar product 

of two vectors at right angles to each other. In the more 

compact vector notation we summerize these properties as, * 

(2-11) 

The complex vector space we are considering is refered to as 

Hilbert Space, and in this space the eigenvectors of the 

wave equation are all perpendicular, and such that kiCc: 

gives another vector parallel to 	with length representing 

the eigenvalue, 	. 

In this consideration of the properties of the 

Schrddinger equation no approximations have been made, this 

however is certainly not the case in it's solution for many 

electron problems. The question of importance here is what 

approximations are valid in a given context. 

*Ctis the complex conjugate transpose of column vector 
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(3)The Many-Particle Hamiltonian.  

For an interacting system of Pi nuclei, labeled 

J and j , and 11. electrons C. and L ,by neglecting spin 

terms and only considering two-body potentials the Hamiltonian 

may be written as, 

f 2- VJ 

(2-12) 

Where 	are the nuclear masses, r1 the electronic mass, 

and e are the nuclear and electronic charges 

respectively. The potential terms result from nuclear-nuclear 

and electron-electron repulsion, and the electron-nucleous 

attraction. With 	"J > 1840. it seems reasonable to assume 
me 

that the nuclei are essentially fixed in space, as long as we 

are not concerned with vibrational problems. This omission of 

the kenetic energy of the nuclei from the Hamiltonian is the 

famous Born-Oppenheimer Approximation,(68). 

If we assume the separability of the electronic and 

vibrational components of our wave function, the Schrodinger 

equation for the electonic wave function, Yd  , can be written, 
• Z-  • / 	2_ 

211 e 	
, ./ 

>j r-jj-/ 	>L r<U 

H 
-11,1\/ 



-149- 

The fixed nuclear framework over which the electrons move 

enters the Hamiltonian as a 	parameter. This nuclear 

repulsion term 	j si is constant for a fixed nuclear conformation 
/41' 4:iV/  

so we may omit it from the electronic energy,(67), 

E 7M  

-a  • 
J J  

Hence we finally obtain, using units of electronic mass and 

charge, 

(2-14) 

(c 

      

'yid= c2Iii.61  
(2-15) 

      

      

  

L L, 	• C(.. 
••"- 

The inner brackets enclose a sum of single electron 

	

operators, —± 	7- 	 v.:te, -7 .l.  , describing the motion of 

	

2- 	
.t 
ci tij•  

each electron in the field of the nuclei alone. These are 

often refered to as the "core operators", (67),(69), 

(2-16) 

   

Ejj 

   

Hence, 

 

-n 

H 

(2-17) 

Thus we may represent our many-electron Hamiltonian by two 

components, the core-electron and electron-electron interaction 

terms. 
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Several other general properties of the Hamiltonian 

are important, first the Hamiltonian is a linear operator as 

it contains only derivatives and multipliers. 

Also it is a Hermitian operator 

f ;Y! 	oft J 
Hence the diagonal elements of 

and also, H-.7- 14.4(  • This compactly 
notation gives,w-p=uu . The invariance 

permutation operator is very important. 

interchange of electrons 	C and Li 

R,0-0 	This equation holds since 

both electron coordinates and momenta, 

equation (2-15). 

(4)Many-Electron Wave Functions.  

For the single electron in the Hydrogen atom we 

have only nucleous-electron interactions to consider, however 

with any problem involving two or more electrons we have to 

consider in addition the electron-electron repulsion terms. 

Thus any wave function used to describe a many-particle system 

should take these electron correlations into account. 

Consider a two electron system, with the coordinates 

of electron 1 denoted by 11 	and electron 2. by 1 	,(70). 

fib
J 
H 

the matrix ti 	rr--are 
CC 

expressed in 

(2-19) 

real, 

the matrix 

of H under any 

If we represent the 

by 	then, 

H is symmetric in 

as can be seen from 
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nlj 	-% 
The total wave function (r)  inis given by, l 

. 

71  ± 

2 

	vc 	 ) E 	11) 
(2-20) 

The potential term can be written as, 

a -> 	-..\ 	....N 	 _... .--. 
V( r r 1 j 	2-.) _ \/ ) ( n) -1-  Vz_Crij + VI 2. ( ri - ri) 

(2-21) 
the last component, Vrz , is the relative position contribution. 

If we ignore inter-electron interaction and set, )112.=0, then 

the force on electron 1 	
, - .\, 	

.....1 

-'''=-.1  , is independent of ri_ , , 
so we can write our separable wave function corresponding to 

each electron moving independently as , 

= 0(6 
	

(2-22) 

The one electron wave functions 
c6/ 

and 9c_ represent the 

motions of each individual electron in the potential field, 

and the corresponding energies Er  and Ez are the independent 

one electron energy levels. 

However, when the electrons are allowed to interact 

with \42... + 0, — 	depends on r, and rx  , and the two 

electron wave function is no longer separable into one 

electron components. Only the two electrons together are in 

a stationary state of constant total energy. The individual 

electrons can no longer be assigned independently to 

particular one electron levels. 

This inseparability is basic, even though we may often 



- 152 - 

use a product wave function as an approximation for the total 

wave function. When using such a product function the motion 

of each electron in the field of the nuclei and all the 

other electrons is considered to derive the approximate one 

electron function. Clearly however,in such a case the energy 

associated with this one electron wave function is meaningless 

without recognition of the interdependence of the whole set 

of electrons. 

The product wave function approximation was implied in' 

some of Bohr's work,(71), where electrons were considered to 

occupy levels given by quantum numbers, the levels being 

singly occupied in accordance to Pauli's Exclusion Principle. 

We may write such a product function as , 

    

(2-23) 

 

where, are the one electron wave function 

 

labels, and 1.)21 - --in are electron labels, standing for space 

and spin coordinates. The function 35" , dependent on the 

coordinates of all electrons, is not implied to be a solution 

of the Schrodinger equation appropriate to the system. It may 

however be used as a flexible function which through variations 

in the set 	can become a reasonable approximation to the 

real solution, 
11„, 

In the function 	, the individual. orbitals give 

an average charge density for the 1+  -th electron 9 
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suggesting that each of the functions, {?3:41 , should be 

determined as a solution to Schrodinger's equation for one 

electron in the field of the nuclei and all the other electronic 

distributions. This quickly leads to the idea of " Self-

Consistent Field " orbitals, (72), where a product wave function 

is used, and the set00 varied to give a function f the 

closest possible to the correct solution, 

The multiple product approximation does not however 

fulfill a very important requirement for a wave function, it 

is not antisymmetric with respect to electron exchange. This 

may be illustrated by considering a solution Eo  with 

eigenfunction 
D' 

 
. If the coordinates of electrons L. and j 

are exchanged in 4 , we represent the new function as, e;  
J 	 ° ' 

where ezi is the appropriate permutation operator. The 

Hamiltonian of the system is unchanged by Pi.l..; , Pei ±=N so

if i  is a solution to the wave equation, then so is f0, 
for any ( and j 	. As long as Ea, is non-degenerate then 

P. - (-.) must be a constant multiple of Ylf 	 ) , P- ,  "Yi --z. c-- 
But since P. P. „...1., 	c-.P‘  

V 9 	V (-J 
For a function with C:t:j =+i., 10095::\k, and Yo  is termed 

a "symmetrical" wave function. With Cc; =-I., P.j  1).--t, 
J 	

(- 	0  

and 	is an "anti-symmetrical" wave function. 

It is found that the only valid form of wave 

functions derived from the Schr&linger equation are the anti-

symmetric ones. This is the wave mechanical foundation of the 
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wave function, 	we 
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Pauli Principle for particles of half integer spin. 

To conform to this requirement we must represent 

our wave function as a series of products giving a final 

antisymmetric form. The prescription for this is to represent 

our state,one particular electronic configuration, as a 

determinent. We use this form as a determinent has the correct 

properties. It is antisymmetric with respect to electron 

exchange, column interchange in the determinent, and becomes 

zero if the Pauli Principle is not obeyed, with two identical 

columns in the determinent. Hence for our total many electron 

In this function all permutations of electrons are equally 

possible, the sign to be taken with each permutation depends 

on the parity of the particular permutation,( 

The normalizing factor I/V1  ensures that, 

and assumes the fe are individually normalized and orthogonal. 
Also the determinent is unaltered by writing, ÷A- 

11 	3  
so the orthogonality requirement for the set 	1 93,e1 	imposes 

no additional restrictions upon the determinent. These 

representations are often known as Slater Beterminents,(74). 
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An alternative notation is possible in the 

antisymmetrization of many electron wave functions. Instead of 

writing the total wave function in determinental form we use 

an antisymmetrizing projection operator, (69),(75), 

1:14S 

   

) P 
(2-25) 

   

    

on the wave function. P is a permutation operator acting on 
all electron coordinates, and ;0,  is the parity of the particular 

permutation. The result of applying the operator to the wave 

function, A 	, is exactly the same as as expanding out the 
as 

Slater determinent in the equivalent notation. 

We must remember that this concept of electron 

exchange only arises as a result of the indistinguishability 

of the electrons involved in any particular configuration. 

The idea of "exchange energy" has no physical meaning, in our 

approximations all the energy is essentially coulombic, (73). 

Up to now, except in so much as we have adhered to 

the generalized Pauli Principle, electron spin has not been 

our wave functions. All the orbitals 

spin-orbitals, involving spin as well 

07-4:tVA. The spin coordinate 

explicitly involved in 

used, (A 1 	, are 

as spatial coordinates, 

S , is usually taken as the projection of the intrinsic 

moment of the electron onto an arbitary Z-axis, + 	. 

Hence we can represent the spin possibilities either in a 

single function,54(x4)tS) , where S 	, or as a pair 
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of functions, 9'S

= 2  

(xjj)) and (k,  y)%) . The "barred" function 

indicating S 	1 
-. 

If we neglect spin-orbit interaction, that is we 

ignore any variation of 	& 51)i-0 under spin effects, then . I  

the spin component of our wave function may be factored out 

to give, 	M7) /(S.,)* Usually we write 2'6.-.--i) .7.LCK andXF:-.9f-)3, 
2 

thus in this approximation an electron j in orbital 
96C 

with S =+-2- is represented as 9ki) 0<.(). If 5 =-2. 

	

po 	

1 for the 
( j̀ 	, 

electron of opposite spin, we have .(i)k). Note in this 
CJ 

approximation we assume our two possible spin orbitals are 

spatially degenerate, that is we have essentially "paired" 

orbitals. These spin functions are normalized and orthogonal, 

r pi ) 

	

og() oe (1) 	= 	 () a (ATI   

fc 0)  / Q) 
	0 	

(2-26) 

With this notation we may represent a doubly occupied 

(2-27) 
or using the nomenclature, &NC= ) It02-)*/)it may be 

of 

expressed in equivalent form, 

2  	c6 co ( )  w 	(_, 
Further spin properties involved in wave functions will be 

explained as they are met in later sections. 

(2-28) 

system of 2) electrons by the determinent, 

I 	0(0) ac(i) 	
(2 

) ik1) ,1.;c2P)P)1 
2.01.  
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(5)The Variation Principle.  

As we have considered some valid approximations 

for the wave function of a system of nuclei and electrons, 

it is important to introduce the variational theorem, which 

allows the optimization of a variable wave function, IF 9  
with a given Hamiltonian , H . This theorem is of general 

importance in quantum theory, but we shall be specially 

concerned with it in the setting up of a series of secular 

equations for molecular orbitals. Even time-dependent 

perturbation theory can be derived from the principle as a 

special case, (70). 

If we consider the case of an exact wave function, 

which describes a stationary state, LE- 0 , then we have, 

fy, . Eo 	(2-29) 

Now we consider the quantity E , usually refered to as the 

"expectation energy", and defined by, 

E 
	H 	oft 	

(2-30) 
• 

To find how 	depends on E , which is not in general a 
solution of the wave equation, variational calculus is used, 

and it is found, (70): 
(i). If 	is an exact solution to the Hamiltonian, 

ti 	, that is 	aE 	, then C= is stationary, with LS E 	0 



-157- 

to first order for any variation, 6 	. Thus if 	is an 

Eapproximation to the exact solution 	, .Ttty, then 	is 

a better approximation to the exact energy, Ea , than 	is 

to ry/ 
r-/  

(ii) If is stationary, that is AC:--.0 for 

any 61, then this 17 is a solution, y.,/ , of the wave equation, 

and E Ea  • 

It can be shown that for the lowest energy state 

E /  attainable by a system, 	is an absolute minimum. Hence the 

E value of 	can be used to compare various approximations to 

the wave function of the ground state.The "best" wave function 

E being regarded as the one to give the lowest 	and as of 

course we do not know the exact solution this is a useful 

criterion. The fact that a given wave function is the"best" 

to describe the ground state energy does not necessarily 

mean it 	is the best to describe other physical properties of 

the system. Other approximations may be much better for other 

properties, but as it seems no one criterion can judge the 

appropriateness of a given wave function, the energy one appears 

the most useful, (77),(78),(79). 

It has been shown by Pock, (81), and also Slater,(82), 

that the variational principle applied to many electron wave 

functions of product or determinental form leads to effective 

eigenvalue equations for the component single electron functions 
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of either the product or its antisymmetrized form. Thus the 

wave function of equation (2-27), can be reduced to a series 

of equations of the type, 

i604 (i) 	Ex  96, (1) 	(2-31) 

by the use of the variational principle, (C.(4 	0. 
These eigenvalue problems can then be solved using matrix 

mechanics. We expand the function
ck 
 in terms of a basis 

set,IT.? , and obtain the eigenvectors of this set appropriate 

to 96c4  by solving, 

(2-32) 

This equation should be compared with equation (2-8). 

The analogy between the right hand side of this equation , and 

the right of (2-30) is obvious. By solving for E0(..) fr--  we 

can find the component one electron eigenvectors,ce  

with which the wave function is constructed. Thus we see the 

basic nature of the variational principle, and it's contribution 

to self-consistent field theory which we shall be considering 

later. 

Results (i) and (ii) of the variational principle 

apply to excited states as well as to ground states, except here 

the stationary E for the excited state need not be an 

absolute minimum. Thus the energy minimum criterion is certainly 

no good in evaluating the degree .of accuracy in an excited 

-t- 
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state wave function. Also it is possible that in searching for 

the excited state, the class of function we have chosen to 

vary may not contain a combination giving a stationary value 

E of G near the excited state. 

(6)The Molecular Orbital Approximation.  

Until now we have only been concerned with 

generalities concerning molecular systems, now we are going 

to consider the various methods available for the calculation 

of molecular properties in T7-electron conjugated systems. We 

shall use exclusively the molecular orbital,(MO), approach 

originated by Mulliken, (80),(83), where the MO is constructed 

from a basis set of atomic orbitals centred on the various 

atoms in the molecule. This approach is not the only one 

possible, although it is now well established as the most 

convenient for molecular studies. 

Two possible alternatives are the Valence Bond,(VB), 

(84), and Free Electron,(FE), methods, (85). These fall either 

side of the MO model in their degree of electron delocalization. 

In VB the electrons are localized in the bonds of the various 

canonical structures, while in the FE method the electrons 

move entirely freely in a potential groove. 

These three methods, different as they seem, can be 

shown to be equivalent in many ways. They all emphasize 

different aspects of the same problem,Slater has studied the 

connection between the VB and MO methods,(86), and the 
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MO/FE comparison has also been made. We have only to remember 

the transformation properties of orbitals to realize that 

under suitable unitary transformations the invarient total 

wave functions of molecules can be made up in very different 

manners, all of which are in fact equivalent, (88). 

The h0 treatment has proved to be the most useful 

up to the present time, the electronic spectrum of a molecule 

is simply interpreted as transitions between empty and filled 

orbitals,and the MO obtained is generally symmetry adapted 

to the molecule in question. Also the effect of electron/electron 

repulsions is easily introduced, and additionally the problem 

of which orbitals are the "best" for a given electronic 

configuration can be solved with the use of self-consistent 

field theory. 

(7) The 0-1-1TSeparation.  

The first additional approximation we have to 

make before further investigation is to assume that we need 

only consider -TT--electrons explicitly. This step is justified 

by experimental observation, and to differing degrees by 

various theoretical calculations. 

It has long been realized from experimental work 

that the -11--electrons in a conjugated molecule are those 

which are involved in many physical properties such as, optical 

transitions, magnetic properties, and it is these electrons 

which give rise to the characteristic 	"conjugated" properties. 
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Thus we may feel we are justified in only considering the 

movement of theTr-electrons over the core of the CC-electrons 

and nuclei. 

This formal separation was first proposed by 

}Rickel 	in 1931, (89), and has been used ever since, with 

various degrees of success. Even so it was soon realized that 

such a separation 	did not remove the question of the Cr.J.--717 

interaction,(90), which may be treated in various rather 

empirical ways. Normally the 11--electrons are considered 

explicitly, and the Cr' -electrons regarded as effecting the 

potential they move in. 

Various 	attempts have been made to treat systems 

allowing direct al— IT interaction. Altmann ,(91), treated 
Ethylene using a VB method, taking the 6d-77T-resonance 

effect into account, and concluded that the -T1--approximation 

was not valid. The 4-7r- interaction was found especially 

important for excited states. A contradictory result was found 

by Moser,(92), who used an 8-electron MO treatment on 

Ethylene, and found cy -excitations had little effect on the 

ground state. A similar treatment of Acetylene by Ross,(93), 

agreed with Moser's conclusions. Some levels were found to be 

purely -Trin nature, and the ones of mixed e—IT-character 

were at least 22.6ev. above the ground state. The situation 

became worse as R c-c increased, but it was found as long as 

R 	4 1.5 I., the effect of C-1  electrons on the 7n--levels c-c 
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was unimportant. Finally evidence in favour 	of the separation 

was given by Parks and Parr,(94), who studied Formaldehyde as 

a 6-electron problem, and adjusted the-Tr and 01  functions 

to each other until self-consistency was reached. Their 

conclusion was that a fixed Cr. -contribution leads only to 

small errors in energy, but is not always good in determining 

wave functions. 

The exact nature of the separation theorem is best 

understood by considering the a/  +-TT- problem, and then 

simplifying to just the treatment of 11--electrons, (95). 
The essential idea behind the 17r-approximation in a many 

electron problem is that some electrons can be treated separately 

from the rest. We shall represent the (y'-core as 

and the 711--shell as Vier(-1)•-)Y16/1, where both of these 

many electron wave functions are antisymmetrized. Then the 

total wave function for the system of 01  and 17-electrons 

is approximated by the antisymmetrized product of 	and Yom , 

P r)bo•Ab  eTr 	1r 
Where I?  is an appropriate antisymmetrizer, crir 

exchange. Here we have represented 

of electrons by two many electron functions, 

(2-33) 

accounting for 

our two groups 

and it has been 

shown in such systems that the inter-group correlation is much 

less important than the intra-group correlation,(96). 
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Our total wave function can be  written in determinental form, 

- 61,(A,) 

I 
I 
' 

1 

Tr _06i - 17) 
n 

06J--viv)! 

Hence satisfies the Pauli Principle, and C1J-77 exchange 
(2-35) 

has been taken into account. These terms, ensuring the 

antisymmetry of the two group wave functions, are in the upper 

right hand side and the lower left of the determinent.If the 

factorization into two groups of electrons is valid then it is 

very important to know whether we may apply the Variational 

Principle to one of the groups individually . Justification 

of the application of the theorem to -TT -electrons using 

a 77--electron operator has been given by Lykos and Parr,(97). 

We can write the total Hamiltonian for the molecule 

as, 	 -4,14 -Yi ,$) 

I-4 	2, (— J 
c ... , 	

fle÷lir Yi 64 	ne -I- A -n- 
t 	 i 

(..= I j=f1d4-1 	cl =-rid4- I 
The central term is the '-core electron/ 1T- -electron 

interaction term, the other bracketed quantities are the 

kenetic energy, electron/ core and electron/electron terms 

a c 

of rod 

(2-35) 



or,si 
cc.  

, 	• (2-39) 

the C7 -coordinates. 

H 
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for the cri  and lq--electron groups alone. Thus the total 

energy of the system can be represented as , 

E T  = E 	E 	+- E Tr 	(2-36) 

The cross-term, cm, can be removed into an effective 

-Tr-Hamiltonian, 

(2-37) 

with, 

)1T*  t 	Vir  otZ 	(2-38) 

an operator depending on the coordinates of the 

CY and Tr -electrons, while c depends directly only on 

E /  7r 

6J + 

__ ‘ v - _ 7  a .3, 4  cc() (
C 
...,) 	-=.- 	-_-2. 	(... 

(2-40) or 	 1---.9(C 

and we have ignored nuclear/nuclear terms, 0( and /3 being 

nuclear indices; 
cx  2113  
1-6(  is 

G (L) is an operator accounting for the cr'-=1-7 coupling 
e 

between the C. -th -Tr-electron in MO Iri., , and the 11 .0„/ 

7 
electrons their orbitals, [0

J 
 ; 

Where, 

(2-41) 
> 
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r  

6).0)  ,siso) 	(20 
J 12. 

rvs, 	
r  G- )  (L) m • 

›k- 
C-i• 	(2.) 	 T. '1 z.  

( 
	

(2-42) 

The first term is the coulomb expression, and the second the 

exchange, (see later). Thus it is possible to define an energy 

operator VITT. for the -IT -electrons alone, so that it's 

expectation value over an antisymmetrized product wave function 

for the IT-electrons alone includes the e--a- coulomb and 
exchange interactions. 

Such a method was used by Parks and Parr ,(94), 

in varying the Cr' and -Tr groups in turn to achieve a consistent 

result, but as Stewart has shown, (98), the "best" wave 

function can only be obtained by varying the total energy 

r El - , not just 
6, 

 or L.11- . 

A different approach to thee-7-problem was 

followed by Coulson, (99), who calculated the electron density 

in Benzene 0.35 A. above the molecular plane. This was a 

direct test of Hfickel's arguiment that the Cy' -electrons 

and Tr-  -electrons have little overlap, due to the Tr -nodes 
being at the nuclefus. From the separately computed results for 

the Cri  and IT-  densities, it was found the largest overlap, 

as expected, was over the carbon atoms, where the Cid  and 

densities were about equal. Thus there appeared considerable 

(5.---Tr overlap, and thus the separation hypothesis becomes 
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rather doubtful . 

However in the final analysis, quite good results 

can be obtained using the 0J----Tr factorizability, and it seems 

until the procefdure is positively invalidated , this approach 

will continue to be used. 

(8) The Hartree-Fork Equations.  

Now we shall follow the development of the perfectly 

general Hartree-Fock scheme for a closed-shell state through 

various stages of its specialization for calculating II-molecular 

orbitals using the semi-empirical Pople-Pariser-Parr method. 

By a closed-shell state it is meant all electrons are spin 

paired, the orbitals occurring in spatially degenerate pairs. 

As a consequence the molecule is in a singlet state, with <S=0. 

The total wave function of the molecular state, 0' 

is assumed to be a normalized Slater determinent, with doubly 

occupied orbitals, 

(b) 	J 	
961(' 	

) 	(3) 

ri(2(2:4"- 31))-C-11(")1  

constructed from a complete set of )1 space orbitals, 

The differing spin functions are just indicated by a "bar", 

91  0) = 9 (  (0 0( (1 
	

Or, co == 	(/) 
(2-44) 

The set is mutually orthogonal and normalized, 

• 	
(2-45) 

(2-46) 

The set of 211 occupied orbitals, [-O.. 4 
C) j 	

is 



H , can be written, 

1 

-=- 	1  E 
° @-‘)! 0) 4,,(2)  

  

From the Variational Principle, the best set, 

and, 

with, 
E

c s  
(2-50) 

rn 

Ctina )1) 1 

Ct > 

n 
2 Eci 	(z 

f 	j 

(2-48) 

K (:).) 
(2-49) 
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The use of these YA spin-paired orbitals ensures that the 

final total wave function is a pure spin state, that is an 

eigenfunction of both 	and S2. 

The expectation energy of our system with Hamiltonian, 

approximating the closed-shell state will be that which gives 

(2-47) 

no first order change in total energy, c, when the orbitals,64j 

are subjected to a small variation whilst still preserving 

their orthogonality. 

From equation (2-47), and taking the Hamiltonian 

in its core plus electrons form as in equation (2-17), we find,* 
2n 

*Using the convenient modified Dirac notation, and remembering 

that the wave functions are still determinents.Integration 

is implied. 
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Thus these 	are the mono-electronic energies in the field 

of the nuclei ; thec-j 	t and )4( are Coulomb and Exchange 

integrals respectively, 

 

--L-n  
c 	( 	

z. 	J 	
(2-51) 

(1) 	rj  n" 	1  'Ne) (2)a't 
c C11  (I) J 	 J 	(2-52) 

K • t. j  

It will be seen use has been made of the space function 

equivalence of each electron pair in an orbital to reduce 

the sums limits to 71 instead of.2 	. This result for the 

total energy, to  , given in equation (2-49) , is quite easy 

to find using special methods developed for determinent 

algebra , (100),(70),(IOI). 

The first order variation in an orbital, 
47si 

can be written, ( 67), 

j
11 
----)' k 	ic  ..1  41., 	vl 11( 	 K 

For 
9, 	

and 	to be orthonormal to the first order we find,* 

C2c.1 -- -- -- 	C J 	(2-54) 

This holds for 14:::: C.,,J (01 ; that is only for occupied orbitals. 

In the expansion (2-53), K ranges over the complete set, not 

just 1..,<K,71,and now the set includes p/ 

complete set M-->. 60  may occur,(66 ),(103). 

For a 

The wave functions are assumed real from here onwards. 

(2-55) t 1C 
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Now we investigate the effect of a first order 

variation in the occupied orbitals on the total energy, 

examining the change in each term in the total energy expression 

in turn. We retain only first order terms in all series, then, 

where, 

= 574:  Co k() 	d (2-57) 

   

The Coulomb and Exchange terms become, 
4. K 

.11 	I e 
ei t:i 

	

cis  ± 
2  cle 

	+ 

K ..) 	Q.,  . i. 	- e 	
( 2 -59 ) 

	

9. 0 -I- ,, (/) 	(2, aT, ct -e2...  
J r---2_ K e 

variation in orbitals the energy ts, 	 k 
. , 

K 	i, 	j j 

-71cje ie_c 
il] -S LR 

  
 

(le 

E 	Li-- 7,  sKLE,:, 	 
1<)*(: 	 I 

where i<7.,< n ,are the indices of occupied orbitals, 

( 	N ,this index covers the entire basis set. 

with; 

Hence for a first order 

c:x  

(2-60) 

becomes, 

cj 

KJ 



(2-65) 
JJ 
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Thus appling the Variation Principle and requiring the first 

order change in energy to be zero we find, 
11 

 	C t:K EC 	( 2  
LK 

JJ 
(2-62) 

In this double sum occur terms of the type, 

221  S -- ) 
LI J.) kJ 

+ CK 	 1--L (2 
which, since C.LK  = C, - for ( ...‹.K)  ..<Y1 , from the orthonormality 

requirements (2-54),  and from the definitions of the 

functions, (2-60), we can 

— 

Thus all these terms give  

see, 
. • 	 . 

GI 

	

no contribution to the sums in 	(2-63)  

equation (2-62). 

Hence for self-consistency in our orbitals we require, 
N 

 

1  	, (,) 
J1 /4 ) 	k 

 

     

(2-64) 

L.= I 

     

so, as in general we cannot expect Ct.: =0 for 1..,51.1.anan+1..< 
then we must assume, 

YL•I  

	

E LK 	 	, 
J=/ 

 lZ 

This expression may be rewritten in terms of some special 

operators, -{; and /\‘), and we have so long as 	, 

and. 4+ 	 ft" 



(2-67) 

and , 

(2-68) 4) -1- r12_ 
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{ 
O 

(2-66) 

The Coulomb and Exchange operators are defined by, 

Now we can derive the effective Hamiltonian for 

use in SCF treatments by applying the operator, 11 J 

to an orbital 	. The result can be expressed in terms of 

the complete set, 	I  
K 

EN C-t- 	 (z 	 2(^_k K 	(2-69) 

Multiplying each side by 4 and integrating, 

Pgc E 
ii.
c
-i- 	I 

Thus , in conjunction with equation (2-66) we find, ELK --::: 0 , 

for n+1 s,"." K ..5. INI and / ... t: ‘11 . Hence our expansion over a 

i 
complete sot, 54 __, 	-- - 91 , reduces just to that involving 

0 	rl 	N 

the occupied orbitals, 1401 	, 	, and , 

CH ' ÷ ;\-1,  (z  4,- --- ,(').)7 0,2 z--- 	K CIK 

(2-70) 

(2-71) 
This is often written, 

=E c 	I71;; 
	(2-72) 

Kit 
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Where 	F is the Hartree-Fock Hamiltonian, F*:•• ••  H 4- 	02-1J-ki). 
The set of coefficients, LK ' can be shown to be 

a matrix of Lagrangian Multipliers by using a more rigourous 

approach to the Hartree-Fock Hamiltonian where variational 

calculus results in the introduction of these multipliers,(I03). 

These coefficients serve to ensure the orthogonality of the 

I- 
orbitals, 	, despite first order variations. 

( 
Clearly it would be very advantagous to have a diagonal matrix, 

so that we would have a set of effective eigenvalue problems 

for the self-consistent orbitals, 

 

(2-73) 

can be This is Possible, for the basis set used, 

transformed into another set, 19V s? , using any suitable 
unitary transform, for example, 

/1 ' 
'`J 561/ 

Or for the whole set, using matrix notation; 

(2-74) 

(2-75) 

Both the total many electron wave function, equation (2-43), 

and the Hartree-Fock operator are invarient with this change 

in basis set, {03 , to, 	.With appropriate choice of the 

transformation, 	, the off-diagonal elements in 	vanish 

and the effective Hamiltonian, F ,gives a simple eigenvalue 

problem, equation (2-73), which ensures the self-consistent 

orbitals form an orthogonal set. 
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The invariance 

function can be 

transform, 

of the Fock operator and the total wave 

seen by considering the effect of the unitary 

to 	ir, on these quantities. 

In the operator F the core term 14  is uneffected 

by choice of basis set, the inter-electron term, 
	

(23-3 -  Kj) ,  
is also independent. This 

expressed in terms of the 

original 	set, (14 , then, 

E Ty156/Y = TT 

may be shown by expanding 	, now 

( new basis, 	..f , in terms of the 

J 
unitary transforms, that 

But since 61 - 	1-421e  .)K 

4/ ri2 r I  

(-1' 1 K C4JL c6 	'9•(1) J r 
L:  and using the property of 

we find, u-+Iu Li] 
(2-76) 

40) fit 	cat  77  Ti jOf (2-77) 
K 

Similar argulments apply to f#Y 
The total antisymmetrized wave function, 

also be shown to be unchanged in the transformation 

another property of unitary matrices, 

Vio , may 
using 

,,O) 0{2) 

(2-78) 

Now as (CA( =r , then, and our total wave 

function is unaltered. 
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F operator or the 

I 

Thus having shown neither the 

total state function, 

3 to 	j, then we just have to chose 
5i/  

so as to 

, to be changed by the transformation, 

diagonalize the matrix that is 

 

= e/  (2-79) 

where 
	

is the new diagonalized matrix of Lagrangian 

Multipliers. 

This choice of orbitals which diagonalize the 

Lagrangian matrix is clearly just a matter of mathematical 

convenience, to give an eigenvalue problem easily solved using 

convential methods. The idea of a "molecular orbital" is thus 

not invarient and such orbitals can be subjected to any suitable 

unitary transformations. Delocalized MO's can be transformed 

so as to produce the loges of localized bonds, (73), thus we are 

able to understand the essential similarity of the VB and MO 

approach. 

One fundamental property of the molecular orbitals 

of any molecule is that they should automatically reflect the 

symmetry of the molecule under consideration,(75). 

The Hartree-Fock functions obtained by solving (2-72) have 

been shown to be symmetry adapted to their nuclear framework. 

Thus the SCF MO's form a basis for the irreducible representations 

of the molecule, and do correspond to a specific total energy 

minimum,(134). This energy may not however be the absolute 

minimum, a lower energy may be obtained from a wave function 
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which is not necessarily symmetry adapted. This question of the 

overall symmetry of the total wave function of a molecule 

will be met again in discussions on the application of 

Spin-Polarized SCF to calculate ground state properties.In these 

cases lower energy ground state wave functions are obtained than 

for the corresponding spin-paired wave functions by the removal 

of the symmetry restriction of electron pairing. This problem 

is however resolved by the use of a spin projection operator, 

which in effect re-introduces spin-paired orbitals. 

(9)The Roothaan Equations.  

In the development of the Hartree-Fock equations we 

considered a complete basis set of orbitals, 

If only a limited number of basis functions 	are used, 
	

4rrii 9  

which are themselves constructed from a restricted set,•17(.3 2 

then the Roothaan equations result,(I03). 

With 	71.  doubly occupied orbitals, and a basis 

set of 111 components, no > 7) , the first order variation of 
an orbital now becomes, 

(2-80) 
' t ) C 

and the self-consistent conditions become, 

7KL 	L'(-2 T) 
u=1 

with 	fl and + 	re-) 

(2-81) 



of 111 components, 
^n1 

c P mk 

The core integrals,<2(ipitf/T4), are 

with the diagonal element 

( 
to 1  

J=1  

often 

°eCr 7:.(Xf1 14  I )(f>>. 

	 c,i r f 2-h I  an  
/7 5  
-1-<f) -SY 

written as 

(2-84) 

rct ' 
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The molecular orbitals, 	and 9(. , and 	
IP J'  / 

are 4 i 

Iexpanded by the Ritz technique,(76), using a basis set, xy , 

rel 

CJ  X (- ) 	• 	- (2-82) 

In the well known LCAO-MU method, the set [Z]  consists of 

atomic orbitals localized at the various atomic centres of the 

molecule. The Tr-electron approximation limits the set 

further, it only contains the 2pz  orbitals of the constituent 

atoms. Substituting equations (2-82) into our Hartree-Fock 

operator , for the matrix element, f=— . 	, we obtain, 

71. yy) 

CiS[ 2 7 
J=1  ri S 

ririV 
(2-83) 

Thus we have for the element ii)01,  of our Hartree-Fock matrix 

using a limited basis set, 

C6,1- = 



Put 

Start. 

Initial 
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Construct 

irCC ') 
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NO 
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To solve this self-consistent problem we have to 

diagonalize 	, which is constructed using some initial 

guess at the eigenvectors, CC 

(2-85) 

Then we use the resulting eigenvectors (:0- 4: to repeat the 

process, and this is carried through until the required degree 

of consistency is achetved. This may be illustrated in a 

diagrammatic form; 

• / 
YES 

Self-Consistent Field 

This all assumes we can construct the  

Diagonalize 

gives and EE 

matrix', but this 

unfortunately is difficult to do exactly and approximations 

are often used in the evaluation of<Vficf? 	and integrals 

such as <f? 	/ rX> 	. We shall now discuss these approximations. 
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(IC)) The Goeppert-Mayer and Sklar Core Potential.  

This approximation to the core Hamiltonian, 
	

C  

was first used in a famous paper treating Benzene,(I04). 

The potential was originally introduced for use in the treatment 

of Hydrocarbons, but we shall consider it's generalized 

extension into hetero-atomic -Tr-systems. To find the potential 

we require the following, 

(1). Hydrogen nuclei and surrounding electrons 

are regarded as giving no potential contribution to the core. 

These nuclei are regarded as completely screened by the 

electronic distributions. 

(ii). The potential contribution from an individual 

nucleus and surrounding electrons is approximated as the 

pottatial due to the atom in its valence state, less the charge 

distribution of -27..k -Fr:electrons delocalized in the MO. 

is the effective nuclear charge when the 2pz  electrons 

contributing to a MO are removed. 

(iii). Exchange terms are neglected. 

This potential has the form, 
2 	A 

-I- V  0) 1- 	 Lt 
-V1

) (2-86) 

the summation of K extends over all the atomic cores, 

with G(r 	the potential of the K-th ionized core. 

Writing (4 	for the potential due to a neutral valence state 

atom, 	
K (j) 	( 1)-ffTric  -(z) _I_ ot 4e7_ 

(2-87) 



From the definition of 

dcf, = <qs 1—y_to  f 

(4 
(2-90) 

,we would expect the approximate 
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Hence, 

. 1!) 	;> 8  ( 6(,(1 ) --7 </JCK1 
— 	K 	ri 2. 

The diagonal term, c.e`,,,„ = < 	t-teci 	, becomes, 

c'4:; 	k-  l zw-1-77((itip 	(i< i<:;>) I 9 ,,›  
r- 

and, with rearrangement, 

e— 

i40) (2-88) 

(2-89) 

ionization energy, 	" , of the valence state -Ti—lelectron 

to be given by, 

K \76) 	(1) i<o) -z. 
Hence for the core term we find, 

(2-91) 

? 	  (<i) I  uK(1)  I r).— 	<K I re>) 
tP 	L 	 (2-92) 

The first terms in the sum over r• are usually termed the 

penetration integrals, 

fukoiliD> =11(4 (0 (2..)t cve,z_ 
(2-93) 

giving the mutual potential energy between a neutral atom in 

its valence state, and the charge distribution represented by(fit> 

A full discussion of the values to use for the 

ionization potential, the Coulomb and penetration integrals will 

be given later. Also it will be noted C=Ay y 11/)h as not vi t 



matrix, 

Fr r 

<I ( C 
c • 
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been discussed, this is because it will be used as a semi- 

empirical parameter. 

I  (II) The Pople-Pariser-Parr Approximation to LF 

This semi-empirical form of SCF theory was developed 

by Pople,(I05), from the Roothaan equations, using assumptions 

similar to Pariser and Parr,(106), in their treatment of 

Ethylene and Benzene.. It was introduced after the results obtained 

by non-empirical solution of the SCF equations proved rather 

disappointing. 

The Goeppert-Mayer and Sklar Potential is 

substituted into the diagonal element of the Hartree-Fock 

, 

I (A lp( p> - 	K 1 fl>1 
K) 

(2-94) 
If we neglect differential overlap everywhere, 

i 1411.  cS 
	

(2-95) 
we obtain, 

1-- 	cJrcip<efiff> 	sf±, lP1a id 

= 	
—r E 71,  <fflri 	,1 
P 	1-n1 

11  'm  

(2-96) 

The diagonal element is, 

r, 5 
 J'- 	I-  s> w 1 ~ ,sP>) 

(2-97) 
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The neglect of overlap will be fully discussed in the next 

section. 

The difficulty of evaluating OlaK  ID> , the 
penetration terms, is avoided by neglecting them completely. 

This is justified by the fact that they are generally small, 

or probably since the term is constant,can be added to the 

effective value of the ionization energy used. Some numerical 

examples of penetration integrals taken from Ohno,(69), are 

given in table 7. 

Table 7.  

Molecule p 
, 
' 

Penetration. i'tri 	lo 
i ntegrals 
Penetration. 

Ethylene I 2 -0.989 ev. 

I
D-----=0

2 

Benzene 
I 
2 

7
13 )

\\: 

I 

I 

I 

2 

3 

4 -0.003 ev.  

-0.856 ev. 

-0.013 ev. 

If we use the substitution for the two centre Coulomb 

integrals, 

(2-98) 

and define a charge and bond-order matrix, 
yt 

C ezz_  c.,Kj 	(2-99) 
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Then, neglecting penetration integrals, we obtain the matrix 

elements, 

fro 	fi- r  — r- Xr r- 	(Fr 
(2-100) 

i3cPci/ 	
(2-I0I) 

In matrix notation this can be written as , 

(2-102) 

with the matrix elements given by , (107), 

    

':#'P 

S 	2 Pt-  Xtr 
-2' 

P z  (2-105) 

(12) The Zero Differential Overlap Approximation.  

The Pariser and Parr approximation of assuming 

zero differential overlap, equation (2-95), is of primary 

importance in reducing the difficulties in the evaluation 

of the 	matrix elements. In this approximation all four 

centre two electron integrals,</f)7, /r- S> , so long as 

r#S' ,  and thus only the relatively simple two centre 
Coulomb integrals are left. 

The fact that such a sweeping approximation does not 

jeopardize the success of the Pople-Pariser-Parr method in 

molecular predictions indicates this neglection of overlap has 
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a real physical basis. This may be shown by expanding our 

molecular orbitals in a basis of Ldwdin orthogonalized atomic 

orbitals,(108). Each Lowdin orbital is a linear combination of 

atomic 1T -orbitals containing one main term from the atom 

in question, and a small amount from the others to ensure 

orthogonality. 

To find these Ldwdin orbitals we must reconsider 

our expansion of solutions of the wave equation in terms of 

an orthogonal set, as used in equation (2-8).1f instead we use 

a more general non-orthogonal set, such as could be constructed 

from the atomic orbitals in any molecule, then from the -11. 

components of this basis set, f/td, we can build a non- 

diagonal overlap matrix, 	, with elements, 

cX1 (1) 7,7o) cf -t, (2-104) 

require a 	Yt 

(2-105) 

C.J 
Now to obtain a diagonal overlap matrix we 

component set,/?d, such that, 

-rt. -TL ) ,/ 
If we construct this orthogonal set from our non-orthogonal 

one, 

17(: 7-41 	1 	KC ' LK 	(2-106) 

then the orthogonality condition, equation (2-105), gives, 

- 	)k- K 	61  L • #)( 	Lti  4rtl 

a 	Li IQ 

(2-107) 
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In the equivalent matrix notation this becomes, 

Le(CA = [1] 

	
(2-108) 

where [1]  is the unit matrix, 1:1  jj 

Hence we can construct our orthogonalized atomic orbital set 

using any suitable transformation matrix 	in equation(2-108). 

To simplify matters it is reasonable to chose 	such that 

Ut-= 	, and hence we find, 

(2-109) 

the basis, "kt•'}, to, 

(2-II0) 

So we can represent our transform from 

by, 

where 	and X are row matrices, corresponding to the 

the respective orbital sets Ni and 
P/J . 

The wave equation stated in matrix form for the 

evaluation of eigenvectors, 	, in terms of a non-orthogonal 

basis set is, 

Where 1F-11 is the matrix representative of the Hamiltonian, 

and 	a diagonal matrix of eigenvalues. The corresponding 

molecular orbitals are given by, 

(2-112) 

Now on the transformation to the new basis 	i7,we find, 

(2-113) 
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On replacing 
	

in equation (2-III) by 	we obtain 

the simple eigenvalue equation, (compare with equation (2-8) ), 

c E (2-114) 

where 	is the new matrix representative of the Hamiltonian, 

g:0/  

1 

64] 	Z. 	(2-115) 

This new form of 
	must be remembered in the calculation of 

resonance integrals, Pplr , for the HUckel and SOF schemes. 

The wave functions in the matrix element are not pure atomic 

orbitals, but their orthogonalized derivatives. 

The evaluation of 	1L can be achekved by a matrix 
-_L 

expansion technique, (I08), or alternatively by subjecting S-7 

to a diagonalizing unitary transform, finding the inverse 

root of the transform, and then reverting to the original basis. 

If we use the former method, and neglect terms higher than 

first order in the overlap matrix, then, 

and hence, 

7_ 	9 
S a 

These orthogonalized atomic orbitals contain in general a 

negative "cusp" on each neighbouring nuclelus. The cusps 

however occupy only a small volume of space, and the overall 

effect of the transformation to Lowdin orbitals from atomic 

orbitals, apart from the orthogonalization, is to compress each 

atomic orbital more tightly about its nucleOus. 

ti 	••• 
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Thus there is no implied restriction in expanding 

the molecular orbitals as linear combinations of 

orthogonal functions instead of real atomic orbitals, as they 

form equivalent sets. However , we must always transform 1.(-L1 

into the new basis. Using these Ldwdin orbitals Peradejordi,(I09), 

has compared the results of evaluating the many centre integrals 

for the normal 2pz  ‹,b lc,d> and Ldwdin orbitals, <9.,bic,d> 

for trans-Butadiene. The comparison is shown in Table 8. 

Table 8.  

Lowdin Orbitals ev. Atomic Orbitals ev. 

a,,AlLi9P2) 17.28 4a,a(a,a> 16.92 

4.12.,b I 12,12.> 17.57 <b,b tb,b> 16.92 

<a/2• (b,1> 9.01 4:a.,a lb,b 9.23 

<1202 (2/2> 8.63 <b,b tc,c> 8.69 

(a,2 t 9' '12> -.06 <a,a I a,b> 3.60 

<b,b i a,b) -.08 <b,b 1 a,b> 3.60 

<2,13_ 1 IDtc› .01 <a,b ( b,c> .63 

<;a,b 1 c,d -.0I </.a,b I c,d> .46 

It is seen that while the two centre integrals 

change little, the three and four centre integrals are 

markedly effected. A similar comparison has been made between 

the two orbital sets for Benzene by McWeeny,(II0). 

Leroy,(III), has shown that the usual Pariser-Parr treatment 

and that using Ldwdin orthogonalized atomic orbitals give similar 

results for Alternant Hydrocarbons. However it was found less 

satisfactory with hetero-atomic systems such as Pyridine and 

Pyrrole. These orbitals have also been used by McWeeny in 
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non-empirical calculations on conjugated systems, (II0). 

Finally, if it is accepted we are not using 

"ordinary" atomic orbitals in the SCF treatment it must 

always be remembered that this is so when any attempt is made 

in interpreting basis coefficients. Strictly a new change in 

basis functions by an appropriate transform is necessary before 

any conclusions based on the normal atomic orbital basis set 

are made. In the semi-empirical SCF treatment we do not need 

to specify the exact form of our basis set. However in non-

empirical calculations where the zero differential overlap 

approximation is not valid,(II9), we must make a choice of basis. 

Slater atomic orbitals are often used, but atomic Hartree-Fock 

SCF orbitals have 	been used also, (II2). Attempts have 

been made in the non-empirical treatment to determine the best 

distorted atomic orbitals using simple model systems,(I13),(II4). 

However all these problems are circumvented, if not forgotten, 

in the relatively simple semi-empirical method. 

(13) The Parameters. 	(a) Introduction.  

In the semi-empirical Pople-Pariser-Parr approximation 

it will be seen,on neglection of differential overlap, there 

are three parameters needed to construct the 	matrix. 

IF, They are the valence stae ionization energy, 	p introduced 

by the use of the Goeppert-Mayer and Sklar potential, the core 

resonance integrals, 

over our basis set, 

and the two electron integrals 
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The introduction of these parameters as semi-empirical quantities 

usually enables us to obtain wave functions giving reasonable 

agreement with experimental observations. The use of the 

three parameters as semi-empirical rather than calculated 

ones is necessitated by the poor agreement obtained between 

experimental values of the integrals,<prirr> estimated 

spectroscopically 	, and their theoretical values found 

using Slater atomic orbitals. The methods used to obtain 

values for these parameters are now discussed briefly, for 

a more rigorous treatment see references (120) and (125). 

(b) The Valence State Ionization Energy,  
• 

This was introduced as a result of the method used 

1: 
to obtain the core potential, II (I) . If we take Carbon 

as an example, represents the energy difference between 
e  

the two valence states k_ 
f_t

L.  V3) and C(V4) , (69), 

Tc7 	c+0'3)-1 	E r C vo] (2-118) 

The value of Tc.  can be estimated if the ionization potential, 
of the Carbon atom in its ground state is known, 

c?2 r).1 - 	c( 3  1:))7 	(2-119) 

together with the valence state promotion energies, V 

= E EC+013)] - E [cA2 PA 

(2-120) 
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This can be shown diagrammatically, 

C (V3) 
rr 1c  

/1-2.6 	n 	 c (V1f) 
V C C 30] 

3 p 

The experimental value _lc  =11.26 ev. for the ionization 

of gaseous Carbon is given. 

The valence state energy FLV3] and EVO can be 

expressed in terms of observed spectroscopic values, and as 

Moffitt showed, (II5), using experimental results,(II6), 

Hence, 

V Ect( v3). 	g- 42- 	VECCV4)] q-ZC 

Ic-Fr= 	VECtV3)] VCC (Vti)] =11.42 ev. 

This result is just for Carbon, but using data tabulated by 

Pritchard and Skinner,(II7), or Hinze and Jaffe,(II8), other 

values for hetero-atoms can be found. 

(c)The Core Resonance Integrals, 	ft • 

These integrals, 	(1/.1H I 	, are treated 
in the Pople-Pariser-Parr method as empirical parameters, 

and varied to give the best possible"fit" for a given set of 

C 

C 
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"qv and OfIcVt> additional parameters. For two non- 

C).  
The best set of values of 	110P

Pct.- to fit an 
experimental property is, of course, dependent on the methods 

ij 
used to evaluate 1 r and Ofkl(1:› so quite a range of 

nC is to be expected. For Benzene Pople and Pariser, (106) 

found the optimum value was -2.39 ev. , and it is to be 

anticipated that most treatments using the Pople-Pariser-Parr 

method will use values of5 	near this. The variation of 1 

with interatomic distance for a given atomic pair is often 

given as 

   

101,0 ) 

f37,  (rz_) 
(2-121) 

ret Crt:) 
This equation however re-introduces the problem of the basis 

set, the question is, do we calculate the overlap 5ft using 

Slater atomic orbitals or SCF atomic orbitals. Hence the ig  

have still to be fixed empirically . 

The g21,,,  mentioned have only been considered 

as being between two Carbon atoms, for hetero-atomic links 

other suitable values have to be arrived at,(166),(167). 

ac These are often quotedinunits of 	, and usually these 

core integrals have a rather insecure theoretical basis, and 

are best regarded as empirical parameters to be fitted to 

experiment. In the section on results we shall see how the values 

ofia fall in a relatively small range, and that SCF calculations 
Pl, 

bonding atoms p , q , we require, 
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are not very sensitive to their reasonable variation. 'Rickel 

wave functions are more sensitive, (120). 

(d)The Two Centre Coulomb Integrals 	I 1-1-> •  

First we consider the special case of these, < Fr  
which are only one centre forms. 

These were obtained semi-empirically by Pariser and 

Parr, (I06), who considered the reaction, involving two Carbon 

radical atoms, 

C 	 + C 
If the cores are assumed unchanged in the reaction the energy 

change should be0f10> for the 2pz  atomic orbitals. Thus, 

p rf> 	-- E 
	

(2-122) 

where Z 	is the valence state ionization energy and El, the 

electron affinity of the valence state of atom 	f' 	• 
This method applies for atoms other than Carbon, but it is 

very interesting to compare the value obtained fo4r1 0 in 

the case of Carbon with the theoretical value, obtained using 

Slater atomic orbitals. It is found that .(rfirr> empirical 

= 10.84ev., whilst the theoretical value = 16.93ev.,(122). 

This discrepancy between theory and spectroscopic values 

suggests either the Slater orbitals used are inaccurate, or, 

more likely, that the electron correlation possible in the 

ion results in much reduced electron repulsions. 

If we accept an empirical value for 0/3430, it 

is necessary also to chose an appropriate method to obtain 6Q 
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These two centre integrals have a classical analogue, the 

repulsion between two charge distributions appropriate to 

the 2p
z 

77--- orbitals. This simplified model is often used 

in their approximation. In Ethylene Pariser and Parr used a 

theoretical value of0"01,7) =9.25ev., and this is regarded 

as much too high. 

Various approximations are possible for<RIVe> 9(69)9 

and it has been found that usually calculations are relatively 

insensitive to which ever method is used. In the calculations 

presented later the Mataga and Nishimoto approximation was used, 

(I24); 

qflalf ct>  

With R in ° 
rct, 	

A units, and 

14- 1+0  (2-123) 

 

 

1-  
If ° (2-124) 
•  

{ (IP-Er) +-Cll.- El0j.  
All the semi-empirical methods, except the simple 	il'oeci) 
approximation go smoothly into the value of(lae yr> at 440. . 

The need for these semi-empirical inter-electronic 

integrals arises chiefly from the inadequacy of atomic orbitals 

available. As only such inaccurate wave functions are readily 

accessible for individual atoms, the use of such functions 

in molecules must lead to inevitably less accurate results,(123). 

Now we have all the necessary prescriptions for 

the generation of the g matrix, and can solve the self-
consistent problem. Thus we must consider further the nature 
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and application of the self-consistent model in the deduction 

of molecular properties. 

(14)Closed Shell 	SCF Molecular Properties.  

(a)Ground State Properties.  

With the use of the Pople-Pariser-Parr method to 

solve the Roothaan equations the SOP antisymmetrized total 

wave function of the closed shell ground state, k)  , is 

found. The form of y/ is given in equation (2-43). 

Hence the ground state energy of the n -electrons may be 

obtained, E0  <rtiftr+P> , using the usual expression 

for our Hamiltonian as shown in equation (2-49). This latter 

expression can be written in matrix form as, 

= Z Tr 	 IT°- Lpl] 	(2-125) 

F is the charge and bond-order matrix,( see equation(2-99) ), 

a e+ c 	(2-126) 

is the Hartree-Fock matrix, equation (2-100) and (2-101), 

the elements of the core integral matrix,M , are given in 

equations (2-103). 

It is interesting to compare the total energy 

expression, g5 	to that of the individual Hartree-Fock 

orbital energy parameters, Ek  . If we return to the effective 

eigenvalue equation for orbital 7.‘ 	, equation (2-71), 

e=, 
(2-127) 
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sry-e_ and K R.  are the Coulomb and Exchange operators which 
have been previously defined. Then we find, 

Olk ( 	[I 2 TELT- 1<d) tc  okif =: K 	
) ,2-I28, 

and, 	E4A-,-; 	SK 	E) 	(2-129) 
e=, 

Hence; 

	 (E.c 
E0 	(2-130) 

K--r- 
This shows clearly the interdependence of all the electrons 

in the system. Only the total energy of the system as 

represented by the many electron antisymmetrized wave function 

has meaning . The nearest it is possible to get to an 

individual electron energy is the set of parameters, E'1 

representing the energy of the various electrons in the 

field of the core and the other electrons. To obtain the 

total energy we sum over all Ek  and add Eitc: to allow for 
the "other" electron in each orbital, in this way no 

interactions are counted twice. This is the reason for refering 

to "orbitals" rather than to "levels" in many electron 

systems treated using SCF methods. 

It is also valid here to comment on the nature of 

the 	"Virtual Orbitals" , that is those orbitals , C 1,c , where 

K ›)," . The meaning of these virtual orbitals can be 

understood by considering equation (2-129), with I<>/l, then 

the sum over 4! includes no terms of the type,(2JKL—Kta). 
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Hence, the function, 	, corresponds to an electron moving 
K 

in the field of the core and .211 other electrons, but not 

itself contributing to the potential field. Thus the virtual 

orbitals are not self-consistent in that they minimise 

electron repulsions, as they are not included in the Hartree-

Fock effective Hamiltonian. 

It should be noted in the 7t E0  

represents the total energy of the system of 2-n 11 electrons 

moving in the field of the core of a'-electrons and nuclei. 

The energy clearly does not represent the total electronic 

energy of the molecule, and is indirectly sensitive to the 

03 	-core density via the `IT-0'' coupling term, 6";
0-) 	

see 

equation (2-39). 

Having obtained a self-consistent ground state it 

is of value to know the way in which the electrons are 

distributed over the molecule, and how strong the —n-bonds 

are between bonded atoms. This information is contained in 

the charge and bond-order matrix, 	, equation (2-126) and 

(2-99). The diagonal elements of L"r- 
11 

)(.. i. 
7... 2 	I 

C.K L 
("27K 

 c 
• 	• :=7 

ckc: 	(2-131) 

K=t 
give the charges, 7,. , localized on the centre, C. , as seems 

t. 
conceptually reasonable. Also we note:T:1P] =.:-.211' . ctij• 

L 
Similarly the p -electron bond-order resulting from electron 

delocalization between bonded centres C and j is given by, 

	

pz,  j- -- 2 "_...._ c_0(,... c_ xj. 	(2-132) 
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This concept of charges and bond-orders stems largely from 

the Hfickel theory, and has been extensively discussed elsewhere, 

(126),(127),(110),(128). 

A simple consideration of a two centre orbital 

in the MO approximation can be used as an illustration of these 

quantities; with an orbital, Q -rx-- 	-k-Ct2:2_ , then, 

/ > cz. ± c o_ ± 2 	rx 2:4> ( 2-133 ) IL 

The values of 2.Cl t% and ZC-2-17.  for the doubly occupied 

orbital give the charge densities at centres 	( and Z . 

The cross-term -.2C tiZ gives the magnitude of the overlap, 

0,1  /Xz.) , and hence is a measure of the bond-order. For a 

pure double bond, such as in Ethylene, 7;2_ I. . 

In Pople-Pariser-Parr SCF theory the various 
fl 

elements of the 	matrix are open to the same interpretation 

as the litickel counterpart, however we must consider how much the 

basis orbitals used are like any simple undistorted atomic 

orbital. This problem was discussed in the section on the 

neglection of differential overlap, and must inevitably raise 

questions as to the unambiguity of such simple explainations 

as used in the Mickel approximation. For this reason often the 

expression " density matrix" is perhaps to be prefered to 

charge and bond-order matrix. The density matrix* 4D is 

given by, g) = 	, that is, 

C i CKJ 	(2-134) 
V 	K.,./ 

* See (128),(129),(66); many different expressions are termed 

"density matrices". 
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lf however we assume in the transformation from our non- 

overlapping set to the real set of atomic orbitals the 

charges and bond-orders differ little, then the 'Rickel concept 

of them can be carried over into the SCF treatment. 

As it is now possible to represent the ground state 

-TT-  -electron charge distribution we can calculate the 

IT -contribution to the permanent dipole-moment of any 

molecule treated.The expectation value of the dipole-moment of 

a delocalized wave function of TT -electrons can be written as, 

/ue e 	r:' 'o dd (2-135) 

Since 
	

is determinental in form , we use the rules of 

determinent algebra, (100),(70),(IOI), to find, 

/(Ae' 
 

C 	L 	
(1) mot I (2-136) 

Where 	represents the total antisymmetrized ground state 0  

wave function, equation(2-43), and rt:  is the radius vector 

of the C. -th electron. 	are the SCF molecular orbitals. 

If the molecular orbitals are expanded in terms of a m -component 

orthogonal atomic set,)' /, then we find, 

:_..

7 

1.‘ 
 

-2. 	

:j  j 	

72-
c
±. 

e  
= 	— 	c 	c ,-: • ce, • 	(2-137) 

x.. 0)  170)  X4...(or..Vsik  justification 
J 

by Daudel,(67). Recalling our definition 

of atomic charge 17. , and the 
Yr 

matrix, equation (2-131), we 

have, 	

tki 
	 (2-138) 

Here we have assumed 

of this has been given 
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The total -nr-dipole moment is thus given by, 
"rn 

Ao (ri J 
(2-139) 

with 	representing the virtual charge of the L) -th atom, 

with its 0 -bonding electrons removed, and 	the effective 
J 

—ni -density on the J -th atom. 
Clearly re  is invarient of the choice of origin 

of the vectors 
t 
	so long as the system is electronically 

--A 

uncharged, for if we write , T—.17.—f-Aoir , then, 
71  

j- 
But as as 

is unchanged. It should be noted such a treatment only calculates 

the "TT-  -contribution to the total moment of the molecule, 

and the dipoles represented by hetero-atomic Cr'—bonding 

are omitted. 

It is also possible to calculate many other properties 

from ground state wave functions, such as magnetic properties, 

bond-polarizabilities,(130),(131), and the reactivity of the 

various atomic centres to chemical reagents,(132),(133). 

Here , however, our main interest is in the extensively 

observed and recorded optical properties of conjugated molecules, 

so these ground state characteristics will not be further 

discussed and we shall turn to the excited states of our 

molecular systems. 

1) 
(2-140 

J 	
for a neutral system, the dipole-moment 
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(b) Excited States.  

(i) Introduction.  

In this section we shall consider the approximation 

of non ground-state wave functions using virtual orbitals 

obtained in the ground-state SOP procedure .The use of these 

antieymmetrized ground-state orbitals for excited states can 

be expected to generally give a poorer approximation to the total 

wave function than that obtained originally for the closed shell 

ground-state. We cannot expect a state constructed by re-allocating 

the occupation numbers of SOP orbitals to be still "self-consistentl 

Within the closed-shell of spin-paired electrons repulsions will 

be partially minimised, but as soon as we depart from our 

closed-shell state using the ground-state occupied and virtual 

orbitals, our new state will certainly not be "self-consistent". 

Methods for dealing with excited states in a self-

consistent manner, which depend on the complete or partial 

removal of the spin-pairing constraint, will be discussed later. 

In this section on excited states both electron affinities and 

ionization potentials will be considered. 

(ii) Ionization Potential and Electron Affinity.  

The ionized state of a molecule, which previously 

had 2:n. bound electrons, and now has 2n-1. to consider, may be 

written as a single determinental wave function where we assume 

electron pairing in all un-ionized orbitals, then with the loss 

of an electron from orbital 	, with /4. eo, , we have, 
\----gle\-1)\. \ I'll ' Fi t' e n rn 	(2-141) 
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Here the orbitals, [c61 , are taken as the new orbitals 

appropriate to the new molecular state. 

The requirement of spin pairing for the doubly 

occupied orbitals does impose additional restriction on the 

problem, and is the same approximation as used by Roothaan in 

obtaining SCF wave functions for certain excited states,(134). 

With the use of the less restrictive spin-polarized method, 

given later, this requirement can be removed, and the spin 

correlation accounted for. This apparent restriction of electron 

pairing must however be qualified by observing that,as it will 

also be seen later, spin-polarized orbitals can be transformed 

into a set of substantially doubly occupied orbitals, 

plus the unpaired orbitals. So , once again as in the neglect 

of differential overlap, our apparently gross assumption can 

be well justified with the use of more complex theory. 

If , as afurther simplification, it is proposed that 

the set,i'73] , are unchanged from the closed shell ground state 

set, i)6/ ,to a first approximation, then we have, assuming 
the electron e with spin ie is removed, a total state function, 

(2-142) 

The removal of an 0‹ -spin electron would be equally valid. 

Thus we assume the removal of one electronfrom the molecule 

does not markedly change the field experienced by those remaining. 
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The energy of the ionized state is thus given by, 

c 	j  

4'e 	,1 	E.,;p'e ,),* e 

+ Ec + 7: ( 2  `lei -- A--ez) . 	(2-142a) 

i:., *e   
With this ionic state energy, Et , and the ground state 

_.. 
energy, Eo , equation (2-49), we can find the ionization 

potential of the particular electron,'? , 

(2-143) 

and hence, 	z  = 	E e  

where Ee  is the Hartree-Fock "orbital energy" 
equation (2-127). As for an occupied level E <a 
is always positive. 

Thus the diagonal elements of the Hartree-Fock 

energy matrix, 	, can be associated with the energy required 

to remove an electron from the appropriate orbital, assuming 

such a removal leaves the rest of the Z11—{ electrons in 

unaltered orbitals. 

With e=r1n , we obtain the first ionization 

potential, the energy required to remove an electron from the 

highest occupied level. This is a special form of Koopmans 

Theorem, (135), and the agreement between the highest occupied 

orbital energy and ionization potential was observed in early 

applications of the SOP method, (136). For a 	more rigourous 

discussion of ionization potential than the prece/ding,see (137). 

(2-144) 

given in 

, then 
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Later the validity of this theorem is tested, and further 

discussed, using SCF wave functions applicable directly to 

the ionized state, that is we avoid placing 	ti 

Finally we must observe that the often poor agreement 

between highest occupied orbital energies and ionization energies 

may be appreciably worsened , by nlIev. , with the consideration 

of penetration integrals, which are introduced with the use of 

the Goeppert-kayer and Sklar core potential,(139). These integrals 

are completely ignored in conventional Pople-Pariser-Parr methods. 

This neglect helps Koopmans Theorem, but it may not be very 

valid in the case 	of complete electron removal. 

The electron affinity of a molecule may be determined 

by adding an additional electron to the system of 2 n electrons 

already present. The electron is placed in a virtual orbital, K 

K‘rn where "WI is the limited basis set, equal to 

the number of 2pz  atomic orbitals in Roothaan's method for 

Tr -electrons. These virtual orbitals are obtained using the 

relations (2-127) and (2-129), with -1+1E. .11. As, i‘e 	rl 

while 	rn in these expressions , the 	sum over 

contains no equal Coulomb and Exchange integrals , thus for 

our electron in the virtual level we have 2,, repulsions 

whilst the doubly occupied orbital electrons have only :Zvi-1 ,(I38). 

Using the determinent 	to represent the system of 2,1+ 
electrons, made up of ground state orbitals plus one virtual 

orbital of spin 04 , we find; 
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—L— 	ck 	— - ckti 4e) ck 

	

(2n+)1. 	
I / (2-145) 

Then, 

 

2 Eic  4 	, 	KID) 

+ Eck + 	 -] 

(2-146) 

   

Thus the electron affinity can be found, using the ground 

state energy given in equation (2-49), 

E, 	- E° 	(2 j:;1‹  
J 

So the electron affinity of the molecule corresponding to the 

placing of an electron in the 	A: -th virtual orbital may 

be identified with the Hartree-Pock energy, Ek 
It must be remembered that all the qualifications 

we used in obtaining the ionization potential also apply to 

the deduction of electron affinity. The addition of an electron 

is regarded as leaving unchanged the distribution of the rest, 

and here, as in the case of the consideration of the ionization 

potentials, we have omitted from our theory the c7' -core. 
This core may be quite distorted after the removal or 

addition of a 1T--electron, (139). 

It is interesting also to see the analogy between 

the identification of these same properties with the energy 

levels in the Hfickel approximation. In this treatment, which 

ignores any explicit consideration of electron/electron terms, 
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these electronic properties can be directly obtained from the 

magnitude of the energy of the level in question. As is 

obvious however, the analogy is only formal, and as is to be 

expected the self-constant field procefdure is more revealing 

in its interpretation of the factors involved. 

(iii)Optical Excited States.  

Here.  we are going to consider "optically excited" 

states, this does not imply all the transitions possible for 

the electrons may actually be observed. Many optical 	states 

may be forbidden on grounds of symmetry or multiplicity. 

In the closed shell SCF approximation the virtual 

orbitals obtained from the 	matrix are used to construct 

excited states . It is hoped that configurations built from 

these orbitals represent reasonable approximations to the 

real functions of the excited states, in the absence of a 

SCF 	treatment for these states. We shall see how 

we may improve our excited state built up from ground state 

orbitals in the next section. 

Considering the excitation of an electron from 

molecular orbital K to 	, with 1.‘ r‘n and 	e 
this situation can be described by either, 

pnt " 
—2-1y-I-pf0 1 96  - 	- 	h ei 

(±) 

N 



.'T r T 	..„.(ili) 

TK “964 011000.(ilr) 
	 I 	56 
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Examination of (i) and (ii) shows that they are degenerate, 

and by combining the two. antisymmetrio. wave functions for 

the total state of the molecule can be written,(67), 

(A) 

ic'e  
(B)0 

v  
3 

  

(2-148) 

C/ -"A--Se 

  

  

  

A-4ja 	 (2-149) 
The first of the-set 	, represents a singlet state, 

At*.
,  the second a triplet, 	both of these states have 

3 
zero spin projection on the z-axis; that is (q=0. The last 

state, (B), is degenerate with (iii) and (iv) of our original 

set, but the latter have spin projection,01.I . Hence we can 

take either (iii) or (iv) to represent another triplet state, 

( c ) 
3 (2-150) 

This state is given by a single determinent as shown above, 

and hence the energy corresponding to the function is easly 

found; 
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›-"" 	Ec: q— 	/2 7.- • — — 	 3 	
tj 

tdJ K 

Ect< 	— kik ) E E -Tie  ryQ) 
* k 

+ -OK 	K  € (2-151) 
The last two terms, -71;c 	Kke , are the K-electron / 

-electron interaction contributions. 

For the states with zero spin projection, the 

energy calculation is not so straight forward, as there are 

two component determinental wave functions to consider, 

and we have off diagonal terms in the Hamiltonian. The singlet 

state represented by (A) has energy, 
iE 	

, given by,  

C4/ 	-0-4\ 

	

(16, 	ce„ cie—igt17 	 717. 
E " 	 () 

	

The first term in 	, with the same wave function each 	
2-152 

 

side of the Hamiltonian, is just what we would expect to obtain, 

had a single determinent representation of the singlet state 

been used. The second term is off diagonal in the sense that 

one wave function represents a permutation of the spin 

coordinates of A: and e, . We find, using determinent 

algebra, 

L.) 
KJ, e 	 (2-153) 

LJ+) 

(2 n)! V IC/561- 
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Thus the energy of singlet state (A) is given by, 

CP EE,  e 2    (2. 	
— KL:j) 

	

1<• 	/I( 

E ck  2.: (23 	-4- Ee.  4 (23-e Keil --I- j; 
4-1( (2-154) 

	

Of the last two terms, 	arises out of the Coulomb 

repulsion, and the Exchange integral KK t is the off diagonal 

non-classical contribution. 

Similarly for the triplet, (B), the total energy is 

to be represented as , 

e=<1016-0-4 3 	 k e l 1-1cC+  ±.1961 511-1il k > 

C6ei> v 

and hence we obtain, 

0 1E K e 
This energy,0 

c3 
e 

is found to be identical with that of the 

triplet state, 'EE":? the latter having4q=I in units of 
3 

So in our approximation neglecting spin interactions these 

states are degenerate, even if they are represented by different 

antisymmetrized wave functions constructed from the same 

orbitals. With the ground state energy given in equation (2-49), 

the excitation energies of the singlet and triplet states may 

be written; 

(2-155) 
So for the triplet with/S

z=0 the diagonal term has to be added, 

Kt<e  (2-156) 
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0E  e L = 

= E K+e E  = 
Li 1-3  

E — Et<  --1- 2 Kr  

,E k e E  
(2-157) 

El< 
(2-158) 

Where EL  and 	are the SCF orbital energies. It will be 

noticed that in this properly antisymmetrized treatment, 

the triplet state is lower in energy than the singlet for any 

given transition. This agrees with Hund's rule concerning 

spin-pairing. 

The evaluation of the transition energies requires 

the calculation of the integrals Kke  and JIIItt to take account 

of the difference in Exchange and Coulomb forces in the 

transition to the excited state . This situation is not so 

simple as in the Mickel approximation where it is only 

necessary to take the energy difference between the two one 

electron levels to find the energy required. The fact that the 

orbitals in the SCF model are one electron does not mean 

they take no notice of the other electrons, this is the 

complicating factor. 

The use of the virtual orbitals is a poor approximation 

and this may be improved by a proceldure known as Configuration 

Interaction. 

(iv) Configuration Interaction.  

As has been stated, using the virtual orbitals 

obtained from the closed-shell ground state SCF we can only 

hope to derive very approximate wave functions for the excited 
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states of the system. Some account must be taken of the fact 

that 	the 	alteration of the occupied electron 

orbital population does change the potential field the electrons 

move in . 

Any solution for the excited states may be improved 

by what is termed "Configuration Interaction", (66),(141),(142), 

(143),(144). In this method the electronic excited state of 

a many particle system, 142 , is expressed in a linear 

combination of approximate states,i4: , representing various 

excited states of the system. The component states, the 

"configurations" , are all expressed in full antisymmetric 

Slater determinent form, and sometimes even the ground state 

is also included. Lowdin has showed, (66), how any many electron 

wave function can be expressed as a sum of Slater determinents, 

built up from a complete basis set of one electron functions. 

Thus we have a reasonable basis for the proceidure of configuration 

interaction. 

The method corresponds to a re-use of the Variation 

Principle to optimize the stationary excited states of the 

system. Thus our total wave function for excited state C 

can be written as , 

1//e 
a LI a • ''  /e 	(2-159) 

The set of states, 	comprising all the N configurations 

considered are orthogonal, and hence we haveDq;viq11 and also .  

as the t' are generally approximate, we would not expect 
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any 1:k. 	•tz 1 for 	NI, unless a state was unable to mix 

with others on grounds of symmetry or multiplicity. If it does 

happen however, the state is invarient under this proce,dure. 

The set of improved states, NI can be obtained by solving 
the eigenvalue problem; 

=-EA 

 

(2-160) 

 

The matrix of eigenvectors, gk , gives the weights, fCTi? 
of the various basis configurations, 4, , in the new state 

of energy E(._ 

Hence we need to know how to evaluate the matrix 

elements,4/4/ 
	

, where 	- and 	 . represent 

different excited states. Here we shall confine ourselves to 

considering singly 	excited states, singlets and triplets, 

which will be treated in two separate configuration interactions 

as they do not interact,because of differing multiplicity. 

The ground state is not involved in the interaction,as all 

matrix elements between this state and singly 	excited states 

are zero in the SCF approximation. This is Brillouin's theorem, 

(145). It will be noted here we are considering exclusively 

configurations built from ground state SCF orbitals. The 

interacting configurations could in fact be wave functions 

obtained in the Mickel approximation, although here we would 

have to include the ground state in the interaction matrix,(I06). 

Doubly excited states and muliplicities other than I or 3 will 

be neglected. 
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It may be anticipated that some 	and 5• will 

not mix on grounds of symmetry, but here we consider the 

general interaction between the singlet transition 

and C -->j 	, the respective excited states denoted by 	
a<--> 

and 	'. Any latent symmetry in the two states is ignored. 

We have for the singlet configuration functions, 

	

csIl"e.=2j-1--)1t  1196' 	
q,--. 	__51e1 

	

,t14fic41 	-.6:1%  I —  NI (T3:r 	cAj 11 
These may be compared with equation (2-148). 

	( 2-162 ) 

Hence we obtain, 

C < H  I 	 1"Q> 	 91jCk:-  4:*-51‘11 14  Iii, 	c Cite> 

<146 151/* 	S&P*/ 9;96, -- srde 
The element of the triplet matrix is likewise given by, 

(2-163) 

al.3̀ ,j1 HI °f 1(-e>= 	-56./Ho.,cb,--0,--4e> 

In these equations ti 	is the Hamiltonian defined in 
	(2-164) 

equation (2-17). These matrix elements may be evaluated by 

standard methods,(100),(I0I),(70) , and it is found, 

leis>---(LK\c> 

( j% 
(2-165) 

— K> 
(2-166) 
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Thus the singlet and triplet matrix elements are given 

by, (124), 

`-k)I °Ire> 
<0  3°J ht 	 .,K-›-e>  

lek> 

we define <mil rs\> as , 

r i S 	 w > ff iz r E (a) 	(a) al', clic 
(2-169) 

f 
where the orbitals, 0./, are the SOF molecular orbital set. 

c 
These are the off diagonal terms, the diagonal elements are 

obtained as indicated in the previous section, equations (2-157) 

and (2-158), and the ground state energy Lo  is taken as the 
energy zero. Then our general configuration interaction 

matrix elements become; 

(i).Singlet. 

(ii). Triplet. 

2<,j 1.eK> 	/(1-ei> 
Ex) 6-4  je  (2-170) 

—<LK 	+CE-e— Eic)kicSje. (2-171 )  

The Hartree-Fock parameters, E and El!, are readily available 
after diagonalizing the Fock matrix 	, but the integrals, 

and(k/4.7-0i> are not. They can however easily be 

obtained in the zero differential overlap approximation 
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E r 	 K =77  S  fXs 	(2-172) 
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First the SCF molecular orbitals are expanded in terms of the 

basis functions , f iq , the SCF procepure having determined 

the optimum 	expansion coefficients, 

Thus, 

f_cKs<?( F,717,111d( s.> 

P r) S  

(2-173) 

• and, 

ej) C 	
Ce  C <-7(1:Xs 1 

(7  f)C-121,f- 	s  

p,/,,r) S 	 (2-174) 
Since with zero differential overlap, 

	

<2(10 	 eXt- Xs> 	e r-r> S̀-f) 
 

SrS 
	(2-175) 

and with the notation,qfirrYpt-/we obtain, 

< J  ) e 	
?f C • 	C 

	

P 	 r- 	t) r- 	
(2-176) 

r- 

(2-177) 

	

I ei> 	Cep 	Cer C  /c70  
r 

With these expressions, (2-170),(2-171),and (2-176),(2-177), we 

can set up our configuration interaction matrix, then,before 

diagonalization the diagonal elements represent the excitation 

energies of the configuration interaction basis, 

After diagonalization the eigenvalues are the new excitation 

energies, the eigenvectors showing how much of each configuration 
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has been included in the state the energy represents. 

The effect of configuration interaction in Anthracene is 

shown diagrammatically in Fig.28 

Following the whole treatment of the optical state, 

we have first used an antisymmetrized molecular orbital, 

constructed this orbital to optimum values of the basis set of 

atomic orbitals in the SCF approximation, and finally used a 

configuration procetdure. Clearly one of the most uncertain 

steps is the last, the configuration interaction. How many 

configurations should be used, often the state resulting from 

o 
a interaction procedure proves to be very slowly cvergent as 

more states are mixed in,(146). Also we have only given 

here the treatment of single electron excited states, perhaps 

higher, especially doubly excited states ought to be 

included in the process,(147). 

In general, except for simple molecules, we are 

forced to use a "limited configuration interaction" to improve 

the wave functions of the optical states. Fortunately the 

effect of the interaction depends very much on the proximity 

in energy of the two states. States separated by large 

differences are little effected, but degenerate states are very 

strongly effected, this is known as "first order" configuration 

interaction and presents no converggnce problem,(148). Thus 

the effect is most important in highly symmetrical molecules, 

with much degeneracy, less symmetric molecules do not present 

such problems. 
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Fig. 28.  
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The effect of Configuration Interaction in Naphthalene. 

Energy is relative to the ground state,with the new states 

shown on the right of those obtained before the interaction 

procefdure. 
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Finally it may be noted that configuration 

interaction is less important the more accurate the initial 

approximation to the state under investigation is. Thus there 

is an advantage in using SCF states as starting points rather 

than HUckel approximations, which are expected to be quite 

poor guesses at the excited state. Hence, with less inter-

state mixing, the results converge much more quickly , and 

fewer configurations need be included in the interaction matrix. 

(v) Intensities of Electronic Transitions.  

After using the SCF wave functions to calculate 

the energy of a transition, it is of great interest , 

especially when attempting to correlate experimental and 

theoretical band positions, to calculate the intensity of an 

electronic transition. This is very important in MO treatments 

as usually many more transitions are predicted within a certain 

energy range than are actually experimentally observed , so 

the number of allowed bands and their intensity becomes vitally 

significant. 

To find the intensity, which is usually expressed 

experimentally 	in terms of the "oscillator strength" for 

a particular transition, we have to evaluate the transition 

moment, given by,(67), 

.=.. r 0 e4, -) 42' 	
r-. 	 t 	(2-178) 

‘./ 
sci 	l<=, 

Where t 	represents the excited state, with one electron 
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0 

in orbital A; excited to the orbital 
	

is the 

ground state wave function. Both of these are to be taken as 

the total antisymmetrized wave functions representing the 

particular states. r-' is the radius vector of the L -th 

electron, all2 T1 -IT-electrons being included in the sum. 
0 

As the ground state, 	, is a singlet, transitions 

to other states of higher multiplicity are forbidden, thus all 

ground state/ triplet transitions are strictly forbidden without 

consideration of vibrational effects. This does not mean 

excited triplet/ triplet transitions are forbidden, and these 

triplet/triplet spectra are being increasingly studied, both 

theoretically and experimentally ,(149). 

	 0c/sick,- -4,--4I—H4-47,--4/1 

1 
-a 
r, 

i 	- On A1 I ' 
represents the appropriate 

(2-179) 

The first term in front of 

singlet function. With the use of determinent algebra we obtain, 

0 K-)R. 
Thus for an excited singlet state, 	, given 

in equation (2-148) , the intensity of the transition from the 

ground state may be expressed in terms of the transition 

dipole, given by; 

f c6k 	je r- 	Lp 0) Of 

The SCF orbitals 94,,  and cZe  are expressed in terms of a 
basis set,IIV , 

(2-180) 
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' C 	 1C le 7.,  I< iD l/IP 	 A  TZ 

F' 	 7,-. 

Thus if we assume the components of the set c7( 3 are 
orthogonal, or on the other hand if we neglect all overlap 

terms which result from a non-orthogonal set, then, 

ci  ice 
	

,k z'
I 
'C 1.< 	C e id  7:71".* ICI • 

". 	
.^ 

—.S 
where rip are the position vectors of the atomic centres, 

vs> 

(2-181) 

(2-182) 

and Cf<) and C:n r_110 are the eigenvectors of the orbitals ft: 

and . 	respectively applicable to the atom p . It is found 
0 ic.,-e 

using the triplet function, 	
3 	

, equation (2-149), that zero 

moment is obtained, as we would expect from symmetry considerations 

forbidding transitions between states of differing multiplicities. 

Having calculated the transition moment and the 

electronic energy required for the excitation, it is possible 

lr
to find the experimental parameter, the oscillator strength, 

given by, 

 

e1 
Z. 

 

 

0.087516- (2-183) 

   

Thus we are ina position to compare both the energies and the 

intensities of transitions obtained from SCF calculations 

with experimental values. 

The transition moment from the ground state to an 

excited singlet represented by a series of Slater determinents, 

as obtained in the configuration interaction proceOdure,may be 
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easily obtained by substituting the linear combination of 

e 
configurations into the expression for 

configuration, 	can be represented as, 

The singlet 

(2-184) 

J 
Where N total configurations are allowed to interact. The 

coefficients Cltj represent the weights of the various 

singlet components, 	. Thus the strength of our mixed 

transition, C. , is given by, 

(;-.1 	 (2-185) 

with 7.:"I  representing the ground state to excited singlet 

configuration, I , transition dipole. 

It will be noticed that after configuration 

interaction our transition may no longer be represented as a 

single electron excitation from one orbital to another. The 

need to express the total wave function of the excited state 

as an expansion of Slater determinants unfortunately leads 

to the loss of a simple physical interpretation for the 

transition. This is an inevitable consequence of attempting 

to treat many electron problems accurately . 

(15) Comments on the Pople-Pariser-Parr Method.  

Here we shall present some general observations 

on the physical implications and limitations of the closed-

shell SCF theory. Many comments will be specific to the 
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Pople-Pariser-Parr development, but many more will be 

applicable to the overall concept of the Hartree-Fock self-

consistent field approach. 

The Elements of the 	Matrix.  

The following represents an attempt to understand 

the terms occurring in the Pople-Pariser-Parr formulation of 

the Hartree-Fock matrix, 	,(146). 

(i) The Diagonal Elements, ; these are given by equation 

(2-100). 

  

The terms in the g? matrix are derived using 

a one electron effective Hamiltonian, 	, given as,  

, in the Fock approximation. 

Thus fie, 	represents the motion of a given electron, C ,in 

the field of the nuclei 	and the statistical distribution of 

negative charge of all the other electrons. The ionization term, 

, is the sum of the kenetic and potential energy of an 

electron adjacent to nucleyfus P 
	due to the attraction 

of the nuclefus. The attraction factors,-  Zrifor  represent 
T34.P the attractions of all the other nuclei , whilst the repulsive 

I) 	, rr fr 
electrons in the system. This is apparent when we consider 

that an electron in atomic orbital -a,,_ would produce a 

potentialOpir-r‘>z-seer, since however there are er-i- electrons 

in orbital Xr , the repulsion isPN4pr, and we have to 

sum this over all electrons. Also in this closed-shell approximation 

terms give the total repulsions of all the other 



- 221 - 

half of the electrons on centre p r 
	will have Q( -spin 

and I_ PPP 	0 -spin, this will give rise to the final 
2-  

repulsion term,ep 

(ii) The Off-diaEonalsj.  C17/._; In the Pople-Pariser-Parr 

approximation these are given by equation (2-101). 

The first parameter, (34 ,3, , is usually assigned 
7, 

a semi-empirical value in this treatment, it may also be fitted 

to give the best theoretical/experimental agreement. The 

significance of this parameter has been discussed by Ruedenburg, 

(150), and may be illustrated by considering a simple diatomic 

Ti -system,with doubly occupied molecular orbital, -y• , where 
(2-186) C  

Here 	and 'X
2- 
are atomic orbitals centred on atom I and 2 

respectively . CI  and C2, are expansion coefficients of the 

molecular orbital. Then if we assume ry/ is real, 

, /' // a_ CI-L 7( 7- + 2 c c a  -Xi  2(z  1 	4-  '2_ f'2_ 	(2-187) 

The term between the two individual density functions, ClAi Z.  
q 	l_ 	 t 	 ; Ik  —,, 

and CZ  Az, represents additional electron density in the 

region where X, and X2.  overlap. Hence an electron in 11/ 
will be more tightly bound than one would expect from T./  

and X 	atomic binding energies. This extra binding appears 

in the off-diagonal elements of EP as 
per 

t . The 

non-classical exchange terml lyTarises 'from the 

repulsion between two like spin-electrons centred at 

The i occurs as in our closed-shell model 0‹ and 
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electrons are equivalent, and electron overlap measured by 

Plpt,  , needs multiplying by this factor to give like spin 

repulsion. This term corresponds to a statement of the Pauli 

Principle, that two electrons of the same spin cannot 

simultaneously occupy the same point in space. 

(16) Correlation in the Closed-shell Approximation.  

The term " electron correlation " is used to deAibe 

the 	tendency of electrons to avoid each other as a result 

of Coulomb interactions and the interactions between electrons 

of different spins. This discussion will be essentially 

concerned with the effect of correlation in the closed-shell 

model, the open-shell proceldures to be discussed later take 

account of correlation much more explicitly, especially spin 

effects. 

We may define a specific "correlation energy", 

(66),(73). This is defined as the difference between the energy 

obtained in the Hartree-Fock approximation and the exact 

expectation energy obtained from the same specified Hamiltonian. 

Thus the definition of correlation energy is essentially a 

non-physical one, experimental comparisons are not involved. 

The correlation error is incurred by the neglect of ordinary 

Hartree-Fock methods to include the correlation between 

electrons with opposite spins. We normally force electrons 

of anti-parallel spin into the same space orbital, in 

accordance with the semi-classical Pauli Principle, and also 
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to ensure a resultant pure spin state using a single 

determinent wave function.In general the kenetic energy of 

electrons in the Hartree-Fock scheme is too low, electronic 

motions are too simple. The effect of including a proper 

deswtion of correlation is easily obtained using the Virial 

Theorem,(151); the potential energy of the system is lowered 

at the expense of the kenetic energy, with an overall energy 

reduction. 

One of the strongest argufments against ordinary 

Hartree-Fock methods is that they do not treat correlation 

between particles of different spin types in a proper way,(152). 

In the study of the most probable electronic configurations in 

atoms,(73), it has been found electrons of the same spin try 

to separate out from each other as much as possible . A wave 

function for a system of like particles with 	integer spin 

must be antisymmetric as we have shown. This implies the 

probability of finding two electrons with the same spins at the 

same point is zero. Hence like spin electrons try to keep as far 

apart as possible. The converse is seen to occur for anti-

parallel spin electrons, which may occupy the same area of space 

at the same time. This will of course result in high Coulombic 

repulsions, but jt will not contravene the antisymmetry 

requirements. Thus we must consider how much correlation is 

accounted for in the Hartree-Fock scheme, and where improvements 

are desirable. 
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In the original Hartree "independent particle" 

model, the approximate product wave function has the form 

of equation (2-23). The set of orbitals, is determined 

mainly by the nuclear framework, but there is the very 

important Coulombic potential term, 	, between electrons 

C 
	

and 	. The potential becomes large as 	0 , and 

keeps the electrons apart, forming a"Coulomb Hole". This 

potential is entirely ignored in this approximation, which 

includes no Coulomb Hole for either parallel or anti-parallel 

spin electrons, and gives rise to a correlation error. 

If a state is approximated by a Slater determinental 

antisymmetrized wave function, the situation is much improved. 

From considering the properties of the second order density 

matrix, L8wdin,(152), was able to show the probability density 

for two particles with the same spin 	at the same place 

was zero, at least to second order. Thus using the determinent 

wave function a "Fermi Hole" is obtained,antisymmetrization 

itself acts as if there were strong repulsion between particles 

with the same spin at small separations. This consequence of 

the generalized Pauli Principle automatically diminishes 

error due to electron correlation,it does not however mean it 

is explicitly considered, the degree to which antisymmetrization 

"relieves" the correlation is uncertain. 

We should not however judge the Hartree-Fock method 

too harshly. The correlation energy is a relatively small 
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proportion of the total, approximately I% , so the overall 

success of the SCF method is not really endangered. 

Unfortunately however this I% will be of the order of Iev. 

per electron pair, and this is not insignificant , small as it 

is compared to the total electronic energy of the system. 

In some cases, when taking differences 	in energies 

between two states, the correlation energy may be approximately 

equal in both cases, and hence apparently good experimental 

predictions may be made, even in the presence of large 

correlation errors. The fortuitous cancellation is most 

likely between two isoelectronic systems with doubly filled 

orbitals. With states of differing multiplicities no such 

cancellations can occur. 

In the semi-empirical method of Pople-Pariser-Parr, 

the effects of correlation are masked to a large extent by the 

optimization of parameters to obtain the best experimental 

fit possible. As mentioned previously the fact that our total 

wave function is fully antisymmetrized helps to reduce 

correlation errors. Also the semi-empirical nature of the two 

centre Coulomb integrals , largely arrived at from experimental 

results which include correlation effects of course, is a 

further compensating factor. 

Dewar ,(146),(153), has discussed the effect of two 

types of Tr -electron correlation on the elements of the 
Hartree-Fock matrix DT . 
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(i) Vertical. Correlation.  

This term describes the tendency of two electrons 

of differing spins to separate partially 	onto opposite 

sides of the-nodal plane. This does not effect the total 

electronic density, it just gives unequal distributions of 

Oe and (3 -spin electrons in the two lobes of a 2pz  

Tr atomic orbital. In the 	matrix, the diagonal term, 

is effected by this correlation, which reduces _keep  err. 
The repulsion integral, < 	 pe> , is reduced by the spin 
polarization at centre I) 	. The effect of correlation on 

Ofi f)e 

	
was discussed in the section on parameters. 

The terms Prr4pr- are uneffected, as the total repulsion 

of t;Ws. and IS electrons is being considered between the 

atomic orbitals at P 
	

and r- 
In the off-diagonal term, pf„..„ may be assumed 

practically invarient as it is a one electron integral. 

However correlation will tend to increase the exchange term, 

Z Pfl 
Xrl  , as the value ofopi l,7 > between atomic orbitals 

Z.  
of the same spin will be greater, the orbitals being more 

concentrated , and this results in a lowering of the overall 

total -p- -energy of the system. 

Dewar,(153), has proposed the use of split 2pz  

orbitals to deal with this correlation, O' and 	electrons 

are each assigned to the opposite lobes of the 2pz  orbital . 
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(ii) Horizontal Correlation.  

This concerns the tendency for all---system to lower 

its energy by alternating 0‹ and 	spin density along 

a -Tr-chain. L8wdin,(75), suggested the use of different orbitals 

for the electrons of differing spin . These molecular orbitals, 

"Alternate molecular orbitals", (AMO's), introduced a spin 

separation by artifical means. The best idea, however, seems to 

use entirely different orbital sets for the 00C and j3 -spin 

electrons, and allow both sets to be varied in a SCF procefdure. 

The execution and result of such a method is considered later. 

(17)Alternant Hydrocarbons and the Mickel Approximation.  

The reason for discussing the Mickel approximation 

within a section on one particular type of conjugated molecule 

will become clear later. 

First an "Alternant Hydrocarbon" must be defined. 

It is merely a hydrocarbon in which the Carbon atoms can be 

divided into two sets, no two atoms of the same set being 

directly linked,(130). If one set is labeled 	with stars, then 

no two starred atoms are to be bonded. Some examples of 

alternant hydrocarbons are shown below. 

Butadiene. Benz.L1 Radical Naphthalene. 

  



(17 m 

and j refer 

••••.,••• 
	

X • 

to atoms in the different sets. 

(2-189) mM 
where 
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The molecular orbital for an alternant hydrocarbon 

with an even number of Carbon atoms assumes a very simple 

form. This was first deduced from the 'Rickel theory, but later 

shown to apply also to the Pople SCF formalism,(154). The 

distinctive properties are set out below. 

(i) We find in the charge and bond-order matrix that all fir  

and all P. = 0 if p and a belong to the same set, starred rt.  

or unstarred. unstarred. Also for each occupied molecular orbital, 9 110  , 

there corresponds an empty or virtual orbital,r
rn 
 , with , 

c"--t 
C • X.  ÷ ML 

6 

C rAi (2-188) 

(ii) Singly 	excited configurations arising from transitions 

between pairs of related orbitals, 
le 

 and G&  , are unique, 
m/ Yn 

but remaining transitions appear in degenerate pairs. For 

example the transition 44 32C will be degenerate with -n 
#17- 041   , both in the Tickel and SCF approximations. 

(iii) For an alternant hydrocarbon the mean of the highest filled 

and the lowest empty orbital energies is constant. That is the 

mean of the ionization potential and electron affinity as 

defined by Koopman's Theorem does not depend on the particular 

alternant hydrocarbon studied, (155). 

These theoretical deductions explain several properties 

of alternant hydrocarbons. For example they are non-polar, whilst 
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Clearly all diagonal elements have the same value, say 

-h 
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non-alternants like Azulene, Fulvene, have appreciable dipole 

moments. Also it is possible to conclude that substituents 

have little effect on the lowest Tr11 transitions,(156), 

and that there is no change in charge density on the atoms in 

these transitions, unlike in non-alternants. 

Of the first four transitions in an alternant 

-f- 
hydrocarbon, from the levels 93 

it-! 

,••••• 	 41.••• 

to Al  , 544_1  , two are 

unique, and two degenerate, 	
01-1 and 
	. Analysis by 
171-1 	rn 

Clar,(157), shows a first-order configuration interaction splits 

then into two states, transitions to the lower being partially 

or completely forbidden, and the transition to the higher levels 

being correspondingly intense. These observations may be compared 

with the SCF results obtained for Butadiene, Benzene, and 

other alternant hydrocarbons. 

When applying a SCF treatment to an alternant 

hydrocarbon we can simplify our Hartree-Fock matrix elements 

by using the fact that plo,4= 	, and find from equations (2-I00) 
and (2-101), 

OC, and this 0‹... can be associated directly with the 

Mickel parameter. In the off diagonals of the 	matrix, the 

term 	)1  is zero whenever f) and 7,  belong to the same 
1. ft_ 
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set, starred or unstarred, as r,V C) in this instance. 

Hence if we neglect 141,  for non-bonded atoms, and neglect 

also IP 2( 
rt fl. for C> and c"" separated by more than two 

bonds, then FRi70 if ( --) and q are not directly linked. 

In alternant hydrocarbons bond lengths and orders do not 

change very much , so we can write a mean value for 

corresponding to the }Rickel parameter. 

Thus we are able to gain some insight into the 

reason for the relative success of the Mickel method when 

applied to alternant hydrocarbons, especially for ground state 

properties. It is possible however to see why care must be 

taken in considering non-alternants and hetero-atoms in this 

approximation. 

For strongly alternant bond-orders, of the type that 

usually result from a HUckel-type approximation, a fixed value 

-1- PPt. of 	is not justified. The 	YPc two electron exchange Z  
term introduces a positive feed-back increasing strong/weak bond 

alternation. Thus the Htickel method underestimates bond alternation, 

allowing too high a degree of electron delocalization,(I46). 

The application of the Mickel method to non-alternants, and 

hetero-atomic systems is hence a rather uncertain proceidure, 

but with much parameter variation reasonable results may be 

obtained,(158),(159). With its complete disregard of inter-

electronic terms the method gives no singlet/triplet separation, 

however well it may be possible to reproduce the singlet spectrum 

using appropriate parameters. 
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(Y8) Spin-Polarized Self-Consistent Field Theory.  

(a) Introduction and Derivation of SCF Conditions. 

Until now we have only considered the closed-shell 

self-consistent problem, where all the electrons are spin paired. 

This is the "Restricted Hartree-Fock" approximation. We are 

going to examine here a method of assigning C‹ and p -spin 

electrons into different orbital sets. This allows us to remove 

the spin pairing constraint, and is known as an "Unrestricted 

Hartree-Fock" method. This treatment is very important for 

obtaining self-consistent excited states, and is especially 

valuable as it explicitly considers an increased degree of 

electron correlation compared with the restricted approach. 

The problems of SCF theory in handling open-shell 

systems have long been recognized,(I45). The total energy of 

a molecular state cannot be identified with the expectation 

value of a single Slater determinent in the case of degenerate 

configurations,(I29), for example singlets and triplets with 

Even if we can write the energy in convenient form, any 

effective Hamiltonians derived are not unique, and contain 

off diagonals. The Hartree-Fock Lagrangian energy matrix cannot 

be diagonalized by any simple transform,(134).Also the 

orthogonality condition between excited and ground states 

cannot be strictly applied,(160),except sometimes excited 

states are automatically orthogonal to the ground state for reasons 

of symmetry,(for example the Benzyl Radical), or multiplicity. 
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To build an approximate wave function, 

depending on the space and spin coordinates of the electrons 

involved in an open-shell state, we can use a variational 

approach, with the requisite 	that 	has the correct 

symmetry, and that it is an eigenfunction of the total spin 

operators Sz and S2  . If a single determinent is used to 

represent 	, often the spin requirements cannot be fulfilled. 

In such cases we chose a single determinent which is a near 

eigenvalue of the spin operators, and build a "good" wave 

function after the variational procejdure by the application 

of a projection operator, to give an eigenfunction of the spin 

operators. 

In the spin-polarized treatment of half closed-shell 

systems, the OK and p -spin electrons are separately 

assigned to different sets of molecular orbitals. These orbitals, 

constructed from an atomic orbital basis set, are then optimized 

using the variational principle,(152),(160),(161),(162),(163). 

The state is represented by a single Slater determinent built 

f 	i  
2 	

4 0(1100 	Olot-i-i) 	(itchlis 
A 	a( 	13 

j
(6°< + 6  01 	1 	

40/41 	114411p 

(2-192) 

not and "Y\13 are the number of electrons with c< and ig  

spinand the indices , C ,) , and, -e ,m n, will be used to refer , 	
• 	. 

to C>( and p -spin orbitals respectively. 

from the two orbital sets; 



(2-194) a) P(2)at'? e 

NI 

C c• K 

- 233 - 

The total -Tr-energy of the system may thus be written; 
-no( 

	

c. • 	-4- 

ci>C. 
-11 	 p 	-n g 

	

4 - 	T e 	 epl erh) 
(2-193) 

It will be noticed that the spin of each molecular orbital 

is indicated by its subscript, 

The important central term in equation (2-193), summed over 

3 
o< and 	-spin orbitals, represents the coupling of the 

two different orbital sets.It gives the Coulombic repulsion between 

the two sets of occupied orbitals. There is no exchange term, 

as the two sets are of different spin. 

To obtain our self-consistent conditions we shall 

proceed in an analogous manner to the derivation followed 

for the closed-shell problem. Each set of orbitals will be varied 

separately in the field of the core and the other set. We shall 

first consider the effect of a first-order variation in the 

O. -orbitals, in the field of the core and /3-orbitals. 

The result may then be generalized to the SCF conditions for 

the 	-spin orbitals also. 

Varying the 0( -orbitals we write, 

(2-195) 
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Here 	represents a "complete" basis set, A/ — 	00 9 
and,, 1,.‘• 	. As we require our (X -orbitals to remain 

orthonormal throughout this first-order variation we find, 

C 	 C 
	

(2-196) 

with, / 	K 114  and 	. To find the change in 

energy resulting from this first-order variation, we need the 

effect of these variations on all the quantities in the total 

energy expression involving 0c-orbitals .These are easily 

derived by substituting the new perturbed orbitals into our 

equations as in the closed-shell case. Hence we find; 

+ 	 C E c; 	 (2-197) 

31• 	
C.

-+ 	c-• -I- 	 cue  
JJ• 	qA.," 	

- (2-198) 
el< 	Pi 	cJ • • 

. - 	N 

	

11  c•J  --, K (:i 4. 	C • LK +2 cie  
xj 

0 + z  ....) , c. 	pKi 4_ 
-- 	J c: e 	7 . 	i 	3 K 	e e 	

... _ 

k) ti_ 
- 	(2-200) 

Only first-order terms are retained. 

On substitution of these equations into our total 

energy expression, equation (2-193) , and requiring that there 

should be no energy change for a first-order variation in orbitals, 
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•• 

c  ee 

it is found that, 
no( 	ti 

c,„ 
Ki 

— 0 (2-201) 
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If we use the orthonormality condition, given in equation(2-196), 

we find that since in general CLK  with flort-1 	K 	N is not 

zero, then, 

oi 
cl< 

CZK 	

( 	
§ 	± 

z  §, r ; 
j.; 

  

•••••• C) 	(2-202) 

  

With, I 4 C. fl 	, and, no-I4 
On rewriting the above equation in terms of core and electron/ 

electron operators, we obtain, ykoc, 
rir il4c 	 -E (3  .0':(1) at 0 (i) 	 e (2-203) 

Now ,proceeding as in the closed-shell formalism, 

the result of the above operator in square brackets on 	can 

be expressed in terms of the,  whole basis set,V4.1 . With the 

further use of the SCP requirement, equation (2-202), the set 

can be limited to 11 	terms, and we finally derive, in analogy 

to equations (2-70) and (2-71); 

n oc 

[ 	7:°( 	-c<  J J 

is 	no( 

+77  
(2-204) 

The 0K-set of spin orbitals can now be subjected to a unitary 
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Af3 
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transformation, eliminating the off diagonal multipliers in the 

Hartree-Fock energy matrix. Thus we obtain an effective 

eigenvalue problem, 

na 

[tic  +-ZT( 74— 

(2-205) 
This transformation of the matrix 	to diagonal form was 

fully discussed in the section on closed-shell SCF theory. 

A similar derivation may be followed for the ? -spin 

orbitals, these are varied in the field of the 0<-orbitals and 

the core, and we find, 

Thus we have two eigenvalue problems, coupled 

together through the Coulomb terms, which have to be solved to 

self-consistency . The iterative nature of the problem arises 

as all the Coulomb and exchange operators are functions of the 

molecular orbital orbital we are using our SCF proceedure to 

obtain. 

The general matrix elements of our spin-polarized 

effective Hamiltonian may be derived on the supposition of a 

limited basis set, the orthogonalized atomic orbitals of the 

system. Both the 	and ?-spin orbitals will be constructed 

from the same basis. This limited basis corresponds to an 

extension of Roothaan's procefdure for closed-shell states. 



Hence, expanding the molecular orbitals in linear combinations 

of the atomic orbital basis functions , we have; 

c: = 	k F rx P 
P 

o( 
2] ?(s 

eu 
13  C 
et/ 	v 	(2-207) 

V 
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with, 	4; no. 	/ 	1.00: < n 	, and, 

ct. , 	Ck 3 V 	1 
 . Thus the element (?:‹ F 44> 

is given by, 

1\1-7,  CL:p C 	f< 	2C  
p N r 

,j(r  ciNoTirs>  (f risz, j 	z cei ixceir7,14Avq ft/ 

r.-„s 	 f 

	

not fs/ 	 (2-208)  

04 	H 	Cj-(r  Cjel; 	rs> 	r'-1>J Frt  
1 	r; 5  

±  	</i) IA V> e 	u ,v 
If the Pople-Pariser-Parr approximations are now introduced; 

that is we use the Goeppert-Mayer and Sklar core potential, 

ignore all penetration integrals, and assume zero differential 

overlap, then we find, 

F 

fv 	no(  

E 17  c1/4 jekr. 

j= 1  

   

<ff Iff  et, .er 

if er 	Z}qPir'> c-er r 
(2-210) 

and; 

(2-209) 



1< 
n   

Cr   	Kt • C 

bond-order matrices, 
AX 

e< 
C C • 
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Writing (rP/ › =YPV and with the assumption, Yir-z• 

we may simplify these expressions by the use of QC and 	-spin 

These matrices have the properties, 	 - Q;) , and, 

rr T Y)  04. 	Yi  r'  • 

Hence for equations (2-210) and (2-211) we have; 

FOP 	= 	Qr f (Tr - Er) 

	 ( 177r 
	 XID 

	

tf' 
	

(2-214) 
oC 

F 151  
QC 

(2-215) 

The analogous definitions for the 	-matrix elements are; 

F ig  - —Ip + Pe p(r-E0 
PP 

4-  Z, (car -r -f Pr-- -- r) ?pr 

	

f P 	c 	n  J71: 	
(2-216) 

	

el, 	= fi ft Qrzy (2-217) 

In terms of these two matrices 	and 	we can express 

the total Tr-energy of the system as, 

= 	 + 6=0 ) + (LT' ICJ 
(2-218) 



we can write the total energy 
Tex 	not 110( 

e. _t_  EA._ 7  
L *-(x *ct -5,*4.,>Z 

)1/1 

of our ionized system.. as, 

• -  
) 	 e 

Jep, (2-219) 

e 
It will be seen only terms • involving (X - C.< and tx. - 

C 
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This should be compared with equation (2-193). The matrix 

elements of N are given in equations (2-103). 
As we have now derived the elements of the two 

Hartree-Fock matrices, and a matrix expression for the total 

energy of the system, it is of interest to investigate the 
vC 

physical meaning of the energy parameters, 	and 	. 
If we remove an 0( -spin electron from occupied orbital cL 

and assume our SOP orbitals are unchanged in this process, then 

interactions are effected in the energy change, the cross term 

arises from the altered c< - /g Coulomb interaction. 

Subtracting from this energy the ground state energy, FIT  9 

given in equation (2-193), we obtain the "ionization potential" 

of the electron 
nm 

- Ell- ▪ • 	 ( To, 	1<4 j) +T Jo, Q. 

(2-220) 

As, however, J4. q — 	ck 	, we find the right hand side 

of the equation above corresponds to the Hartree-Fock coefficient 
„0‹ 

o.. 



- 240 - 
nfl 

(T,;  — c'G ‘i 	e 	(2_221) 

j 	j 	
e  

Y) 04 

which Fes/ °(> can be found from evaluating < 04  1F  

Thus these coefficients may be identified with 

orbital energy as in the closed-shell treatment. They represent 

the total energy required to remove the appropriate electron 

from the T('-system, with no resultant change in the potential 

field. This is an extension of Koopman's theorem into 

unrestricted SOF theory. A similar extension is also possible 

for electron affinities as represented by the unoccupied 

orbitals. 

(b) Spin Properties of Unrestricted Wave Functions.  

The spin-polarized method for finding molecular 

wave functions attempts to improve on conventional Hartree- 

Pock treatments, whilst still having the physical advantage of 

assigning electrons to orbitals,(I64),(I65). The use of 

different orbitals for C4 and g-spin electrons allows electron 

correlation,( Dewar's horizontal correlation), to be included 

to a greater degree than in spin-paired orbitals as used in 

closed-shell theory. Unfortunately however, the unrestricted 

wave function is generally not an eigenfunction of the spin 

operator, S2, with an expectation value of , 

(2-222) 
but this can be corrected by the application of spin projection 
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techniques,(164),(I65). 

Before we can consider such proce4dures we must 

first obtain the eigenvalues of the spin operator, S
2, when 

it operates on a generalized Slater determinent of spin-orbitals. 

The single electron operator can be written in terms of the 

projections of the individual electron's spin along the x,y, 

and z-axis,(67), 

S'2-(K) = 	+ .5;00 ± -S-(K) 	(2-223) 

For an assembly of n electrons, the total operators are given 

S 	 K) (2-224) 

The two possible eigenfunctions oe(K) and. P k9 of the one 

electron operator, Sz(k) , correspond to a projection of 	
2 

for the electron spin of K along the arbitrary z-axis, 

	

Sz(k) c'< 	= 	(k) 

(k) 	(k) = 	 (2-225) 
a 

From the commutation rules for intrinsic 	spin-momentum we find, 

	

.5-x0) 0( (e) = 	(K) 	w 0( (K) 	(k) 
Z 

.57,x  (k) 13 (k) = 	k) 	Pk) 	x(10 (2-226) 

To find the effect of S2 on a determinental wave 

function of 11 	0(-spin and. 7‘,3 r  -spin orbitals, where, nce )1(3, 

it is simpler to use the commutation rules further to re-write 

by; 

S 
	

St( 
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S2 as; 	

(sx - zs-j) (s.,± 	.1q 	+ 	(2-227) 

Now we shall evaluate the results of applying these components 

of S
2 on our determinent of spin-orbitals, given in equation 

(2-192). 
If we first take Sz , then it has an eigenvalue 

710? 

.S> =0/ 	 CF-(k)/ i>= < CiY)I 
i)0(4- t 1(3 

+ f 	< I WK.) I T> (2-228) 

On integration over all space coordinates, and using the rules 

for the evaluation of matrix elements of single elecron 

operators,(I00),(I0I),(67), we find, 
not 	 np 
77/De (e)15-2(k aqx- 	 , ( e )1 spr) fr)> 

(2-229) 
With the earlier expressions for the single electron operators, 

(2-225), and since the spin functions are normalized, then, 

52> 	(A 	-Y1 (3) 	 (2-230) 

Hence we can write our eigenvalue equation as 

52 • 	 n - '11 ) 	 (2-231) 
2 

This leads directly to the result for S
z
2  

, since we have; 

(s4 	- 	. 	(2-232) 
At. 

Thus we see any single determinent of spin orbitals is forced 

to be an eigenfunction of S
z and S

2 , so long as integral 

orbital occupation numbers are used.Finally we note that in 

given by, 

kr.r/ 	 no(4-1 
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later work we shall often write the eigenvalue of Sz  as(S;) 

, (5" 
of (sx - (15,06:x. -1 Z5) 

on our determinent. If we expand the two operators in terms of 

one electron components we find, 

(Sx 	S
te!) 
	(c.71_ (k) 	S t (K)) 

(Sx 4 	221(Sx  (g) 	(it')) 	(2-233) 

and these individual one electron operators are seen to either 

annihilate or interchange the spin functions, 

(sx_(K) - E1 /4.) (40) (K) 	F  lo (s---.00÷is-j(k))  «oK) =0 
(2.234) 

(S.x + 	(S-:c( K) gjoo) 	(5.? (k)  (.-Sys)) 

(Sx(k) - Sy(10) tg(k) = 0 

The effect of(SIt  ;.,C,)) on 

	

(lc< 
	1-  is given by, 

(gx(1<) 4  Sj(K))/6 01-1) **4 

11.14-6 

	 (2-235) 

	

k=1 	 (2-236) 
As the operator annihilates 000 spin functions the first 

term gives zero contribution, whilst the Mfunctions in the 

second sum are changec1 into  f.1o 4heir opposite spin counterparts, 

(k) 	.2( (k.)] 

We must now consider the effect of the operator(cx_- C. S 	on 

this result, 	rle< 

(Sx.  Z 	(SX - 5.) 	
LE=.1.(cx(o _ 	f p(x) 401 

14 siot+no 

L-na-4 I 	it".= not41 	 (2-238) 

itself, and use it in units of 	, that is 

Now we have to find the effect 

(2-237) 
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The last teem just gives fnp 	since (C(.14- 1:5-(t.))annihilates C(t)  

fw..0 , and gives 1 p(1-.) after operating on Oqt..), so only the 

term for L--= k remains, giving back the original determinent; 
400- fg 	 a -4-110 

	

) (Sx,(L) 	S (0) feK40e0oi 

kz-n 0L+1 flo1-1-rg 

	

= 	
iS(X) C<(k) j  0'4 CK) 	()]-411(3f 

	

kr- f U-10 
	

(2-239) 

The first term in equation (2-238) is given by, 

E  
40( 	 no( a  

= 	k=710(-1-1 7. 11N+.110 
fior )÷0eK)} 0(0.),130_,)j 

(2-240) Hence we have, 	 I- 

-not 	-110 

N._ i)(-"5)) 	E n 

< 	 (2-241) 
where PL.K  symbolizes the interchange of the spin functions 

and 	. 

Before we can finally determine <S21>we have to 

evaluate 	/ crt-Kia- , this is most easily achieved by 

substituting for 3E ,using equation (2-192); 

(1-1Er PL.,(1E> = -Z ffP(1) 64u  Pu--)  r(2)  ' 11K19  (‘) cle() ID(L)  Pqdri. dz. 
Ly< 	 L. 	 g 	 L  

lc' 

	 P 	 r 	I 

_ 	(icz(i) 0) di/l 5 

	

say  K 
	1- 	Kt 

	
(2-242) 

This expression, involving the overlap between the Oe and p -spin 

molecular orbital sets, may be simplified if these original sets, 

eel and ?e-e/ are transformed into "Corresponding Orbitals" 
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in the manner of Amos and Hall,(164),(165). These new orbitals 

are given by, 

igx 
	nx 

CL. 
IK 

(2-243) 

As we have seen in the annihilation of the off diagonals in 

the Hartree-Fock Lagrangian matrix, such a transform leaves 

all physical quantities unaltered. We chose our transformation 

such that, 

/)/ 	
" 

of ,„ 	(,) 
J 

so that we obtain for the right of equation (2-242), 

,t< 	f 	561(  1) 	)  
of 	becomes; 

<5  > = 	^ c"( n 	
1_ 	

naC t\ 3) 	IK 	
(2-246) 

These [TA I are the non-zero eigenvalues of the matrices 

and 	. 	and 	are charge and bond- 

order matrices, defined in equations(2-2I2) and (2-213). 

The sum,E ii -7-<  , is simply given by Ir151 	as , Tr CP 

7, AD 9 ike.1 =7-17- [0 pcol . The sum may be physically 
interpreted 	as the number of doubly occupied 	orbitals. 

Thus a single Slater determinent with 7i .... np only represents 

a pure spin-state if the number of doubly occupied orbitals 

defined by  -r, it p Q equals 713 . 

From diagonalizing_NLsti  andOf-  cqi , as well as 
{

obtaining the values of 7; , we can find the eigenvectors of 

(2-244) 

(2-245) 

Hence our final expression for the e40,4a4values of S2 in units 
tvp ectftt 4a  ,t  
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the corresponding orbitals, kdd , and, fe , respectively, 

with 14 k 	. These orbitals may be related to the 

"Natural Orbitals" which diagonalize the first-order density 

matrix,(164),(165), 

(SK/4-4/if') /172. (1  

L 
dio 0V 	p' 	.1-12 0 	z 

K 

	

k
K 	n • 	 (2-247) 

Their respective occupation numbers are 	-- Tic , and 

unity, with typical T values in the range -7 —cc  ‘ 	, the 

R} closely resemble a doubly occupied set of orbitals,(168). 
Writing, LAK  =-1--(1 — 	, and with our assumption that T k 
is nearly unity, A 4,(/ , we find, 

ei4b4 K + A 

K 
	 (2-248) 

Thus the corresponding orbitals are shown to be symmetrically 

split about the natural orbitals, so long as the value of 4, K 
is small. 

For orbitals obtained using closed-shell SCF methods 

we consider our single electron wave functions as being occupied 

by two electrons, that is we have, 

ei*()) eiooI = 

where e41  and gi are molecular orbitals. Thus no suitable 
transform is needed to ensure orthogonality between the O( and 

(2-249) 
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f? -spin orbitals as before. Hence in ordinary closed-shell 

treatments we do in fact obtain directly corresponding orbitals, 

and all the [1-K] are unity for the doubly occupied functions. 

Similarly our natural orbitals are also equivalent to the 

molecular orbitals. Since for these wave functions all— I 11 p 
we find 	=Ir ILN). Thus we have, 

I) 
(2-250) 

where,<E)(4)-1-1) are just the allowed eigenvalues of S2  

Thus we see both ground states and excited states constructed 

from orbitals found in a spin-pairing approximation will 

automatically be correct eigenfunctions of S2. This is why 

no explicit consideration of spin properties is necessary 

for either closed-shell SCF or Roothann's Open-Shell method 

to be discussed later. 

Self-consistent wave functions obtained with the 

spin-polarized scheme generally give states such that11-tif-*<))?. 

Thus such states are not exact eigenfunctions of S2 and may 

be regarded as linear combinations of determinents representing 

electronic configurations of various multiplicities. The major 

component in this expansion will be that of the state sought, 

that is with <S2)6(q((SZ+ I ),hence for the state f we have, 

= 	S t 1 s + 	2.5+S C Z z 	- 

Where, S=7 ±(A pt- Y1/0 , corresponding to <Sz> for the first 
(2-251) 

component wave function, with ‹S
z) measured in units of 
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The eigenvalue, <S2> , of the pure spin state sought, is 

given by S(S4 1) . The multiplicity of this state is 2. 5 "4" I 

In the mixture of various multiplicities, 

0 the possible values of 	) for the individual components 

have the limits ,yrielpp, (5.i).:12.4-Act-119). The removal of the 

unwanted components from the wave function, with it's 

consequent improvement, may be achieved by the use of projection 

operators as proposed by Ldwdin,(I69). The operator, 

Is 
 

acting on a mixture of wave functions will annihilate the 

contribution of the state of multiplicity :154- 1 . Repetition 

will remove higher energy components, further improving the wave 

function. The spin eigenfunction2S-H can be chosen exclusively 

from a mixture of different multiplicities by the use of the 

projection operator, 

(2-253) 
e, *s s(s-fro --e(e* 

This may be seen by considering the effect of the operator on 

the linear combination of various multiplicities represented by 

- 	=-- 
eJtS  $(S#+)— W-tl ) 	

iC(2'eV)2.S+, 
± 

C i 
/1 	 S - e(e4-1) 1  

+ 

	Ni  

(2-254) 

If the product -Tr 4st_ e(e+0] is applied to a component 
ej  Is I. 

different from Yi 
	, 2 ii-i 	

for which , 

7,..-  S(.5 -f-i) 1//j 	(2-255) 
Z 

s 	(16S -1-I 	 25-1-1 

es  st— 
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there must be a factor of zero. For example,with 	= S 

the term f SZ   (g-1-1)(S 7-),/ lib will be zero as, 
zst3 

51'  'Yjz s 	= (/ 4'1)(5 	flfr2s ÷ 3 	(2-256) 

4123 4.  I Thus the contribution Co 	may be selected from the series, 

(2-250). 
Amos and Hall,(I64), have shown that high multiplicity 

terms are generally small, C0> C1 	, and that the 

component of next highest multiplicity to that required, that 

is 4/54.3  , is the most contaminating unwanted wave function. 

Thus the use of a single annihilator; 

A, 	EL 	+7..) 	(2-257) 

is usually sufficient in place of the full projection, and the 

improved wave function is given by, 

= 	 (2-258) 

With the application of this single annihilator relatively 

simple expressions result for the various properties of the 

new wave function , which is an improved approximation to the 

exact eigenfunction of S2. Only in special cases , where 

terms of higher multiplicity than 25+3 are not involved 

in our state, 	, will a single annihilation ensure an exact 

eigenfunction of S2 . 

The new expectation value of the total 11 -energy 

of the molecule represented by the improved wave function, 9? 

is given by; 
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H 	 ckiT 	s 	H (As  Dd't 

Vrr/  chit 	S-64s  Pt.s crt 
(2-259) 

One characteristic property of projection operators,(152), 

is that I 	
A 

 = 5  . If in addition we assume As  and e commute, 
that is we have NO— 8 Ns---0. Then we obtain from equation 
(2-259),where the operator 0 is the Hamiltonian, 

f 	 ti As otZ Eo 
cvt 

This initial assumption that the annihilator and all operatorsit 

it encounters,(including the Hamiltonian), commute,was made by 

Amos and Hall,(164),(165), and results in relatively simple 

equations for various properties after the single projection. 

The requirement that e  and 	commute was removed in a 

later paper,(I68), but results in much more complex expressions. 

First we shall review the various equations , obtained on the 

assumption that As0- 9 fl-r•-• 0 

With the component of next highest multiplicity 

removed, the improved value of (S2) isgiven by, 

(51> = <S; > 	-L-  (.01 0 -5-10 	)- 
2 

• 6,1 - Tr- i-P41) 2 TrIPC z7(--[pQ 6) c71)J 

651 1K-C4-2) — (S2> 	(2-262) 

The new (%. and 	(3 charge and bond-order matrices, 

and Ea , obtained after a single annihilation are, 

(2-260) 

where, 
(2-261) 
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r) 	(2_263) 

= 	_x 	QP-J- Pe) (2-264) 
The total-Tr-energy is given by, 

E: = Tr{ 	 ± 	f Fl t: Tril° 81 C  
(2-265) 

is the familar core integral matrix defined in equation 

(2-103) . In the Pople-Pariser-Parr approximation the 

and 	matrices have the elements, 

t 

F-5<  = 	Yse 	 (2-266) 
6-t; 	6?„ Pt„).) 	Pte ate (Ai  e 
Gs, t 	GSt e 	 (2-267) 

The value of C. , which is usually small,is given by, 

Z(P1- 2X tds  
]).5i P--• Cei el 5  Yeis (2-268) 

With these equations, (2-261) to (2-268), we can evaluate 

spin-densities, charges and energy for a-Tr-wave function 

subjected to a single annihilation. 

These expressions all depend on the idempotent 

and commuting character of As  . Ina later paper, however, 
Amos and Synder,(168), showed thatS did not always commute 

A© -  - e , 5 	0 , and that Ps  was with an operator, 
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not exactly idempotent, with listt A5 ,(168),(170). 

Discarding their previous assumption of an idempotent and 

commuting As 	, they were able to obtain new more accurate 

expressions for the calculation of the charge and bond-order 

matrices after a single annihilation. These 	are; 

{ AL_ 2 A.-Frifp.93÷ nal  nv  rIp  

37rup (0) ±2-772-ip91_2.cripvceil -6)  

4. (n o, _Tri IFQ3) Cw + 	IF- (4) 

4_ (iv- 4-Triew-3 --1-2(1) pg 

-z(PVPV + VP4,P) --1-11-PVpo 
(2-269) 

The normalization,tar , is given by, 

Al_ 	211:rriP(f3 	W-TriP 3 

+ Z TrIIPOS + 2 	 -i-rpppip91 
(2-270) 

where, 	- 2. (<S 	4- 4 
	

(2-271) 

and (V is the total number of electrons, ri -1- A 	. 

The analogous expression for the 	-spin electron matrix, 

is obtained by interchanging ) and (Aoe 	rip), in 
equations (2-269) and (2-270). 



Where; 

With, 

6 7-1- iP 
4s it>  = 	Ad  4p 4. 2.(e-ipm 

—(28-t-N-2):-T-ri 
s6> 	4- enoe  n 	(2. F + N —2..) 

61-.1.3 8 (4-2) -1-(a -24)2-  noe n - 4(fl.c --1)("Vi)) TIPP 

4-2.(3 g -I-3 W.- 0) (TrIP (Pi 	fP Q 	) 

4(TriC--)  j -31; 	Tr 91 1PQP 	6PJ 7-1-F>wvP491 
(2-275) 

= 	+ <eS)(6t> 	) 	(2-276) 

cl) 

(2-273) 

Po3 
(2-274) 

(2-272) 
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The improved approximation to the eigenvalue of 

S2 as a result of the single annihilation may be obtained from, 

	

4 4 	 1 z 

	

2 (<5-i- 1)(0?  ) ) 	(<52) --+  -2-05"?.> +z)  
> 

+)(45 	z>4-01-((s-i> 4-2.)1  

When the annihilator encounters the Hamiltonian it does commute 

with it exactly, and the only error in the energy obtained 

using equation (2-269) instead of (2-259) arises from the 

fact that As is not exactly idempotent. However it has been 
shown that the error involved in assuming an idempotent 	s  
is of the order, (Es--  Est.2

)cC , which is generally quite 

small.Thus the expression for the total energy after a single 

annihilation,(2-265) is still reasonably accurate. 

The evaluation of equation (2-269) to find the matrices 
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and IX after a single annihilation involves much numerical 
work, but the improved approximation does give appreciably 

different results than those obtained in the simpler approach, 

equations (2-263) and (2-264). 

Thus we can now calculate spin-projected results 

for the bond-orders, charge and spin densities, and total 71" 

energies of open-shell states that can be represented as single 

determinents. The importance of the spin projection varies 

between molecules, as will be seen in the results section. 

In few cases can it be said to be inconsequential. Adams,(171), 

commented that such projection was especially necessary to 

produce meaningful results for spin-related properties. 

Also the single annihilation ensures that the final wave function 

is a close approximation to an eigenfunction of S2 , and thus 

circumvents a basic objection to the unprojected results for 

spin-polarized functions. 

The minimization of the total IT--energy of a 

molecular state using a spin-polarized wave function which 

is not an exact eigenfunction of S2 for the state, followed 

by spin projection is clearly a compromise. It would be better 

to use an exact eigenfunction of S2, say es  T , in minimizing 
the total energy with the Hartree-Fock equations. Such methods 

"Extended Hartree-Fock" proceidures, give improved wave functions 

as we vary only the desired component in reaching a self-

consistent state. In the method we have discussed the energy 

is minimized with respect to an impure wave function. As, however, 
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the main contribution to the "mixed" function is always the 

one we require, Cci %)>C1 >C2•••9 the selection of an eigenfunction 

of S
2 from the final multiplet is not a bad approximation. 

Finally we note the importance of accurate spin-

projection using a single annihilator. The simpler treatment 

assuming an idempotent and commuting annihilator gives 

unsatisfactory results in many cases as we shall see in some 

results found by both methods. The inadequacy of the simpler 

method is especially apparent when applied to SOP ground 

states. The accurate proceidure markedly changes spin densities, 

represented by (DT and 	, however the total bond-order 

matrix,( 	1 f- x) , is practically invarient between the 
two levels of approximation. 

(c)Some Comments on the Spin-Polarized Method.  

It seems pertinent to include a few general 

observations on the spin-polarized method here. 

An important point to note is it's advantage over 

both the closed-shell, and Roothaan's open-shell methods in 

relaxing the electron spin-pairing constraint.In the treatment 

of radicals the method seems especially superior,(172), a high 

degree of electron correlation is taken explicitly into account. 

Experimental results often indicate negative spin-densities, 

that is apparent contributions of spin-density by closed-shell 

electrons, and the spin-polarized method is the only treatment 

to predict these simply ,(I72),(173),(174). 
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These spin-densities are directly obtained from the 

diagonal elements of the p4 and 	 ? electron bond-order 

matrices, 	and 4 , and after projection, 	, 

= CP S 
(2-277) 

(2-278) 

(y). , represent the unprojected results, 	. the projected 

ones.<Sz) is the total z-axis spin projection of the state, 

for example, a radical,<Se , whilst for a quartet, CS i=3/2 

Other methods have been used to calculate spin-

densities. The Valence Bond treatment can be used to give quite 

good results,(173), and the HUckel approximation has been 

frequently applied,(176),(177). Roothaan's open-shell method 

gives reasonable results,although this method like the more 

primitive Mickel approach does not take spin-correlation 

directly into account and can only give positive spin-densities 

as all closed-shell electrons are fully paired. 

A point not yet considered is the effect of a lone 

11--electron on the Cr-core. It would be reasonable to assume 

a degree of induced polarization in the Cr-core due to the 

-Tr-  -electron. Attempts have been made to include this 

polarization,(178),(179), but it is a rather uncertain effect. 

Although we have been considering the spin-polarized 

method as applied to none closed-shell states, fl Aklesp , the 
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method could equally well be used on a closed-shell ground 

state. Here we would expect some O( and /3-spin separation, 

as this would lead to a lower ground state energy. This spin-

polarized state however does not have the full molecular 

symmetry, and we find after the use of an accurate annihilation, 

that the final pure spin state has no variations in spin-

density. In fact the orbitals are exactly those we would have 

obtained from the spin-paired closed-shell SCF proce4dure. 

Hence the spin-polarized ground states obtained by Dewar,(53), 

must be viewed with this in mind, as the appropriate wave 

functions are not eigenfunctions of S2. If these functions 

were improved by a projection operator in the manner previously 

discussed, we would anticipate no resultant spin-densities or 

energy reductions. This will be illustrated by results in a 

later section. 

Finally we must always remember the single 

annihilator technique used is only valid so long as, LS 9 

equation (2-247), is small. With ZS 	the proce4dure 

gives inconsistent results, and the annihilation fails to 

produce a close approximation to an eigenfunction of S2 . 

As we shall see when discussing the results obtained for 

various molecules 
	

is usually small, only becoming large 

for ground state systems, which as we have just commented, need 

not be treated in this spin-polarized manner. 
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(19) The Open-shell Self-Consistent Theory of Roothaan.  

(a) The SOP Equations.  

This open-shell proceidure represents another method 

of obtaining self-consistent wavefunctions for excited states, 

and may be used successfully on more molecular states than the 

previously discussed spin-polarized treatment. Roothaan considered 

the closed-shell and open-shell orbitals as forming two sets, 

with the closed-shell orbitals each containing two electrons. 

This spin-pairing is an added restriction on our wave function 

similar to that imposed in the Hartree-Fock treatment of fully 

closed-shell states. Normally the problem of the Lagrangian 

cross-multipliers between the two sets of open and closed-shell 

orbitals cannot be easily solved. Roothaan, however, showed how 

this difficulty could be circumvented for molecular states 

whose energy could be written in a certain general form. Here 

we shall follow a derivation of the Roothaan method very similar 

to that used in the evaluation of both the closed-shell and 

spin-polarized SCF Hamiltonians. 

The total wave function for the system is represented 

as a general sum of antisymmetrized products, each containing a 

doubly occupied closed-shell core, fc p 	, and a partially occupied 

open-shell chosen from the set, Lc. . The final wave function 

C6c 	• 

The set 
	

is assumed orthogonal , thus the sub-sets, 

and -.. 001 are normalized, and mutually orthogonal. 
The basis of the derivation is writing the total 

may be written as a combined set of orbitals, 
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expectation energy of the state as, 

E, Eck  + L 	1 (z3-;L   it:L) 

+f 2.EE 	pck..—fmn _ K„)  +.2> :(2-3—,m_ 
m 

Where ck 	e- 
, 
1: 
 , 

are specific constants depending on the 

state under consideration. In this expression, and throughout 

the following theoretical development JC and L- refer to 

doubly occupied orbitals in the closed-shell; TrI and 

refer to single electron open-shell orbitals; L and 

refer to any orbitals. The number f represents the fractional 
occupation of the open-shell, the number of available open-shell 

orbitals divided into those actually occupied. Only those states 

whose energy can be expressed as shown in equation (2-279) may 

be treated with this self-consistent procejdure. Thus excited 

singlets and triplets with ‹S
z) =0 , are not included in the 

theory. 

For all our use f • 	cX, 	 --.2.; we have half 
closed open-shells, with all the unpaired electrons having 

parallel spins. This covers all excited triplets,( With 	I ), 

and a doublet state with a single open-shell electron. Thus the 

total energy becomes; 

E 

rrl 
(2-279) 

E - 2 	 E,   (2- 
ki_ 

e 	t 	
• EC2 / 	-zrAn 

m,  > nn 

(2-280) 
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The last term gives the open-shell/closed-shell interactions. 

liow to obtain our SCP equations we shall vary first the closed-

shell orbitals in the field of the open-shell and the core, 

then turn to the open-shell, and examine it's stability to a 

slight variation in the field of the core and the closed-shell. 

(i) Closed-Shell Variation.  

The only two energy terms changed in equation (2-279) 

by a first order variation in the closed-shell orbital set, 1 

mK L.)k 
j 

(2-281) 

are; 

+ 71,  C-2. TI(L-  K Kt) +2 	(231<m--  /cm) 
K 	L 	 Kjtn 

The first order variation in an occupied closed-shell orbital 

is expanded in terms of a complete set, including the and 

fOcii sets. Hence to maintain orthonomality we require, 

C (2-282) "="- -- 

	

with, 	Y11:  f) 	, and, 1 	K 	1)c 

Applying this first order variation to the energy terms given; 

	

EK 	Eci( 	7_;  ckt• EKE  

r./ 	kK lc( 	‘ 
t_ 	__ 	 i: ...) 	-I- 2 ) CL 	i L. L. 	i 	L -I-  TK 	---9  Ik 1 —1"" 2 	CK  

t- ic 	 J,*L 
NI 	10.- 	IV 	 KL. 

K,<,_ 	k L- 	. 
+ 2 	+ 2 	C

e  . 
	.+ 

(..., #-k 	 i /* 1- j  
1  	 j 

-t" 

P-1 



first order change in energy we 

cc 
cKC -3/4- [2 E C 

Thus for a zero require, 

KZ—E2 	C:L
L 1_

I 
- 
J, L 

2 

O 
(2-284) 
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INt 

Jim 

k g, 	rn 
±2 
	

GkJ 
 

j,rfc (11I.< 

(2-283) 

KL 

L 

+.2f7714--E cgs)  
i,*1< 

and hence; 
Ki 	 1 

Z Z Cic  Z re C 	
K L 

i(z.  -1-- 1412  L L. 	t- L i 
1..,* K R. 	 L 

	

4› Ki 	L nn 1  

	

+f 7[2- 5 ril rn 	n-N K i 
m 

However with the requirement expressed in equation (2-282), 

in general, 

E K .  K 
K 	KL- 

LL- 	L L -1 L 

f 	 cir:1 
m L  

Lrn 

rri k 	
=- () (2-286) 

with, no (lc 	; 1 	K j 	; and , 	11  . 

0  (2-285) 



L 	rn 

on one of the closed-shell set can be expanded in terms of the 

complete set; 

Z‘(z 	1(,) 	K iv)]9:1.) tc  
L 	 N, 	

I 
 

(2-289) 
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Re -writing this equation we have; 

+ 	+1. 	 (27rn — Km)] cl-e- 
(2-287) 

The result of the above operator, 

i-tc + 	(z 	KL) 	7-‘, 	Thq--  i<m) 
	

(2-288) 

Hence; 

<4 I 	 (z TNT 	Ckk 
(2-290) 

But from our SCF conditions we have Ki 	 0 for, I .„';'/< rlc  

+n  a 	c  +1  , thus we finally obtain; 
Y‘,4- T10  

(2  3(1—  tv,)] 49 --= c• rn 

(2-291) 
(ii) Open-Shell Variation.  

To derive the self-consistent equations for the 

open-shell orbitals in the field of the core and the closed- 

shell electrons, we need to consider the effect of a first 

order variation in the orbitals on the terms in the total energy 

expression, 

1,1 
f 	(2 0, T„ - km,) 



T 	T 	2- 	;c r, - thrl 

 

C 

  

+- 2 km 

z  c„ 	 j  
J,*n 

, 
JJ  n 

 

Mc 

•ft 

mn 

rvi 

e  
S 

rnn 

rv% Iv% 1 
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Writing our first order variation as , 

C 
	

(2-292) 

(41 are members of the complete set, and. from the 

orthogonality requirements we find, 

(2-293) 

for, I L 010-4-11c  , and, I 	-no  . The effect of this first 

order variation in the energy terms is; 

C M -'l E + 2 	Cm E m 
-rn 

. <2 (7. 
k icr, 	 + 2 	 . 	

c m S - - 	
(2-294) 

L * 	
101-‘  

Requiring there be no energy change for this ;variation we 

have, 

11-f 	c . m ec 
m -(:)*m 

   

L *rn 
E CM t 

-F 
M 171 

 

 	r\J 	

Pet n 

C 

ran 	 \ 

rvj,i)4n 
L 

km 
— O 

(2-295) 
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Thus we find finally; 
rri 

Cn 

(2-296) 

  

Lr me me 7; cnr, 
ez.,*-rn Yt 

  

)<: K 

l< 
From the orthonormality conditions applying to the 

coefficients given in equation (2-293), we have in general, 

	

-1- 	 )--‘1  ( 2  
1Y1C — -,ec • n  ) !3)   j 	r‘ 	 ri In 	C r, 

FP  i< K  
± 7 (2- prni — 	k' ill ) ::: (2-297) 

k. 
with, (1,--1(1..i0 ... C  ‘ N ; 	1 .‘ len, n 4 no  ;and, 1 -..... k 411. 

Proceeding analogously 	to the closed-shell development, 

equations (2-289) to (2-291) , we find; 

5  [1-1 
C+ 
 2  II  (2 :37c  — Kk) + f 7—'4  (2 c1 /4  3-n— .e.-  k" )] S,11  

	

k 	 11 n o 

117°   , Ems93e -- E E yyv n On 	(2-298) 
e 	T1 

where the effective Hamiltonian is, 

(2-299) 

(iii) Transformation into an Effective Eigenvalue Problem.  

As we have seen in the derivation of the self-consistent 

equations for both the closed and open-shell orbitals we have 

the problem of the Lagrangian multipliers, -6-01)ei and -Ervi n  . 

Here we have multipliers involving both open and closed-shells, 

and as the two sets of orbitals can only be transformed within 

themselves, 
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(2-300) 

we cannot diagonalize the Lagrangian matrix completely using 

such a single unitary transform as we did for the closed-shell 

and spin-polarized methods. We can only diagonalize the open 

or closed-shell coefficients separately , no general transform 

is available to totally diagonalize our S matrix. 

Hence Roothaan devised a method to solve this problem, 

and to obtain a pseudo-eigenvalue equation for both the open 

and closed-shell cases. This is now given, but first we must 

define some new operators, Coulomb and exchange terms 

K 	 rn 

	

kc.  ":"-' r,  k K 	k o = S - E Km 
k 	 m

T -7- 'Z. 	+ J; 	/CT  -= K e, ± k c 
	(2-301) 

and coupling operators, between the closed and open-shells; 

ci 0 = (ki i7J> 
= <tsiK ck> 

Lc =77L,, 	L 0  

(Y) 	(Y\T< 	 in0 

c) 	7Y)  T.  
(2-302) 
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Hence we can now write our closed and open-shell equations as, 

Efic+  2 3-c- - 1<c +. 2 To — K07 c6  = 	 EKLO 

m 	L 

If we multiply equation (2-303) by 	, and (2-304) by 

(4/6'   T Ern „ 

m 

 042-304) 

we obtain, on integration, 

Et c+ 2 .3-c — 	+ 2 3.— K0 C 931<> =-- E k  ry) 	(2-305) 

A
( 	14c  + 2 3-c.—Kc.--f-2c.,J:— & 	93;>. 	E m 	(2-306) 

The Lagrangian matrix 	is Hermitian however, so E -7: E , 
--f 	kin rilk 

hence from multiplying (2-305) by 	and (2-306) 
1 	 i--f 

by 1 _ f , on adding we find, 

Erni(
_ —f< Om 1 2  °< JO --13k0i0K> 

--cx 	 — er where, 0( 	
I 	

,and, 	I 	
. For the closed-shell equation 

I — 
we can express the Lagrangians of the open-shell as, 

!C>  -n 	 (2-308) 

and using the coupling operators defined earlier we find, 

(2-307) 

(2-309) 

Similarly we can show, 

L- 
(2-310) 
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Thus for our open and closed-shell equations,(2-304) and (2-303), 

we can now write, after the addition of (2-3I0)and (2-309), 

respectively ; 

[ H 	2 	Kc 2 3-0 —  Ko 2 oc  L 0 irno"-] Olc  
F c 

0k 	) EKL Or_ 	 (2-311) 
and, 

±2o.T0 —K0 cl  
F ° Om = E E -yyl n 0 n 	(2-312) 

G 	o 	)1 
F 	and  F are the new closed and open shell effective 

Hamiltonians, defined in these equations , and do not exactly 

correspond to the original operators,(2-288) and (2-299). 

Now we can use the available unitary transforms, 

given in equation (2-300),to diagonalize the open and closed- 

shell 	 : matrices, and obtain our eigenvalue problems; 

c- F 9k  
__ 	EA-. si( 	 (2-313) 

F ° 0111 — Em  . 0 -- Erin m(2-314) 

There is little analogy between Ek  and E 1  nn and the closed- 

shell SCF orbital energies. When we find the eigenvalues of 
o 	

F C  the t- 	and 	operators, the first /'1c  of 	refer to 

F occupied closed-shell orbitals. For t— , the valid eigenvalues 

are those belonging to the roots beginning &c  +(through 

to no i-nc , the orbitals lower than ric.-f-/ might be expected 
r
"-  to resemble the closed -shell ones as F and F are quite 

similar. 



c‹.(L o  f 5",,) --p(mo—f Ko)] 
with, 	

I20e 	— p Ko Orl  
(2-322) 
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There would be an obvious advantage in reducing 

the solution of the system F= and F to a single eigenvalue 

problem. This is indeed possible if we add to the closed-shell 

equation, 

-fi 	ajc 	c6k 	 OL_ „ (2-315) == 
L_ 

wherewe derive 'S 	using the operators previously defined; 
1< L. 

[2  

o< Jo — (2-316) 

Hence we find, 

EF c+ 2 	• c.. —  To) — p(nric— <o ).] 561< ,_, 

and, 

where; 

F 	(EkL_ 
1- 

F 	2 TT  — 	 _ p Cm — 
(2-319) 

Thus an eigenvalue is finally obtained, 

i( 

	

-=_ 	
9AZ. 

	

- 	E k 	 (2-320) 

where E.  represents a column matrix, as we have diagonalized 

[FE -f 53 with an appropriate transform. 

Similarly ,if we add to the open-shell Hamiltonian 

F°  , defined in equation (2-312), the equation, 
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we obtain the same form for our total Hamiltonian as in the 

closed-shell case, 

F° + c.c)( 	0 ) — (M c,— K.) (2-323 ) 

and if we diagonalize the open-shell matrix, g+ g we 

obtain the same eigenvalue problem as before, 

F 	Prl m 
	 (2-324) 

Thus to find all our orbitals we need to solve; 

  

= 
p 

1:11)11  

 

  

(2-325) 

 

(11) 

    

     

is a diagonal matrix of eigenvalues. The set, 10? 9 

satisfying this equation is equivalent to itil and i-Od 

Fo 
	FC 

satisfying 	and 	, the two sets being related by a 

unitary transform. Also the eigenvalues 	will in general 
o 	C 

be different from 	and 	. These values of Mcannot 

be identified in any way with orbital energy in the Koopman 

approximation. The total energy for the system is given by, 

E= / ( Fi x  -F 	) ± f 	 ti 	E 
rn 

f (-2(x Ticm— icr11) 	 fiemn) 
ko.n 	 rn,y1 	 (2-326) 

As we have now formulated the open-shell SCF proceidure, we 

must consider what basis functions and approximations we are 

going to use to obtain F7  in tractable form. 



	 C-Zp 

We assume orthogonality,hence; 
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(b) Open-Shell SCF Matrix Elements. 

In the Hoothaan approximation used here we expand 

the basis functions, 0 1 , which are the molecular orbitals c 
of the system, in terms of an orthogonalized atomic orbital 

set; 

(2-327) 

(2-328) 

For convenience we normalize the vector 	• to half the 

number of electrons contained in the orbital C it represents, 

v: cc L k 	S 	v,‘ 0 

S M CP n  = 3 PA n 	 (2-329) 

Roothaan derived the expression for the open-shell 

Hartree-Fock Hamiltonian as, (134), 

  

Ei -4-P- a + (2-330) 

   

with the corresponding eigenvalue problem; 

 

IS" (C: 	E 	 (2-331) 

The component matrices of 	, equation (2-330), are defined 

as follows; 

is the core integral term, and in the Goeppert-Mayer and 

Sklar approximation may be obtained from equations (2-103). 

b23 
 

is given by, 

(2-332) 
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refers to the total density matrix, 

DT D 	0  

pc;_. = 	(I Au- 

V37 	C • C -r" 
We note also that, 

where 

with; 

(2-333) 

(2-334) 

(2-335) 

lPD°D`r c) 
and AO? are supermatrices, with elements defined by; 

:r-P7/ ' 	
= 637,'r-s> 	(2-336) 

	

r//> 	(2-337) 

Hence the elements of IP are given by, 

ri g 

	:2 e4  s> 	ps 1 r7 ))1)-rsi_ 	(2-338) 

With the Pople-Pariser-Parr approximation we neglect differential 

overlap, and obtain; 

	

PPP   zqPir r-> 	<f) r 1  Pf> 

-- 	f> f I 	̀ t;› 

is closely analogous to 

( 2 0( 	p 
and with neglect of differential overlap we find; 

PP 

(2-340) 

(2-241) 

(2-339) 

Qef =  2 of  r <fort> b°,_, +(.2.4-obopr<for 
1-,Te (2.342) 

Qt1 (2-343) 
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. In the zero overlap approximation we have, 

D (9 + 	V- 	(2-344) 

and hence; 

R e`C 	brer Qr41 	Qfir 
 

rl/ 	
(2-345) 

Pt-P 	 (2-346) 

Thus we have all the matrix elements necessary to 

evaluate 	After obtaining the required degree of self- 

consistency 	in the iterative process , we can find the total 

energy , with; 

E7.- 	{(N 4- F3) 4 	 f L°) 	(2_347) 

(c)Comments on Roothaan's Open-Shell Method.  

The open-shell proceldure of Roothaan is simpler 

in execution than the spin-polarized method. We do not have 

to iterate two coupled Hamiltonians to self-consistency as 

in the latter . The use of spin-pairing in the closed-shell 

orbitals facilitates this, in the spin-polarized method all the 

spin-orbitals have different spatial dependence, as well as 

opposite spin functions. 

The restriction of spin-pairing does, however, 

result in the introduction of a correlation error. This spin 

correlation is relieved to a certain extent by using an 

antisymmetrized wave function, but it is certainly not explicitly 
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accounted for. 

Wave functions obtained with Roothaan's proceldure 

are automatically eigenfunctions of S
2 

, and so we do not 

need to consider any spin-projection techniques to obtain a 

valid state function. 

As well as being numerically simpler than the 

spin-polarized method, the Roothaan proceldure has the advantage 

of converging for states which have un-occupied orbitals at 

lower energies 
	

these are virtual orbitals),than the highest 

unpaired electron. The spin-polarized method could not be 

persuaded to converge in such circumstances. 

(20)Self-Consistent Wave Functions for Polymeric Systems. 

In this discussion of IT 	polymer 

wave functions , we shall limit ourselves to one-dimensional 

chains of conjugated monomers. Such macromolecules are 

clearly analogous to one-dimensional crystals, and we use 

solid-state theory to calculate the energy levels and wave 

functions of the system. We shall only consider the delocalization 

of the TT-electrons, the cr— -core of each monomer will not 
be explicitly involved , although it may be allowed for by the 

use of semi-empirical parameters. 

The important simplifying factor in any one-

dimensional linear array of identical molecules is the 

translational symmetry present in such a structure. We shall 

deal only with perfectly periodic systems, in which a repeated 
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unit cell can be defined. We shall neglect "end-effects" 

assuming our polymer to contain a large number of monomers. 

The simple LCAO-MO Crystal Orbital method will be used, and 

the Pople-Pariser-Parr approximations introduced to simplify 

the final equations. We only take into account "nearest-

neighbour" interactions between the monomers. 

Representing the one electron polymer wave function 

as 	Q , we have an eigenvalue problem of the type, 

E6?) 	 (2-348) 

Where 	is some effective Hamiltonian, for either Rackel 

or SCF approximations,(166). (D indicates the wave number 

of the Bloch orbital, and "er is the band-index. If NI is 

the number of unit cells, and 71 	the number of atoms with 

2pz  orbitals per cell, then for these integers we have, 

, and, I 4 I ‘1,-1 . This approximation 

of the crystal orbitals, 	, by delocalized Bloch functions 

allows complete electron exchange over the whole polymer. 

If we expand the orbital 
	

P, er  in a linear 
combination of the atomic orbitals of the whole polymer,(I80), 

then, 

eY1P.A 

In this 	-electron approximation WSJi  represents the 2pz  

orbital of the f -th atom in the m  -th unit cell.From the 

m j 

pG -mjX-rv.  (2-349) 
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translational symmetry of the one-dimensional chain, with 01.. 

as the primitive translation vector, we can write; 

(Y) 0. (2-350) 

whererl  is the distance from the 	-th atom in the first 

unit cell, thus, 

)% 6- 
..... 7-  :  E J (7 

PA : 	
C . j n1 

We now use the Born-Von Karman Boundary Condition, 

joining our "infinite" chain at the first and the last 

elementary cell. Thus we have a cyclic chain, and; 

= Pp/0e ± N 0.) 	(2-352) 

This means our wave function must have the same value after 

translations. Using this we derive the Bloch condition, 

(I81); 

(2 	: nid 	
r( 2-Tr  c 	C 	(2-353) 

As fV is very large , we can introduce a continuous variable, 

, such that, 

K = 

 

(2-354) 
N 

with, 0 " K 	2-7r. Hence we find; 

C: 
1;6- : n(!ij 	

x  pL K TY) ) C 
er 	(2_355) 

Altering our notation, as I) is a function of AC , we can write, 

C: 
P 	

.e/Kf 	KrvN) Ce.  (K) 	(2-356) 
:   

VY1 
(2-351) 



r*,/  
c (f<) e 	()( rh j 

But the sum, 

C_ /gni - 	) 

2., e  
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and our polymer wave function is represented as , 
1 

o'c)- -€)/(f)((.- km) )(n,‘ 
crj 	

(2-357) 
If we consider the derivation of a general matrix 

element obtained from an effective Hamiltonian F= , we 

multiply the equation; 

C , .cho .eix 10( Knlyk 	:= (k) Cy 1K ) 	• 
) 	(hi 

-LKf
,  

'Y'd) 	(2-358) 

by say 	 on both sides, and integrate; 

k'(rn- m') 
,., F.--1 ty),i c

e -
(x) e j  

ni,  I "X j> 
tycj 

Assuming an orthogonalized basis of atomic orbitals we find, (2-359)  

Ei(k)c, .5K) Cc 
 

(2-360) 

• - (lc) 
,,eV (2-361) - / 

is independent of nn 	, so we can write, with 
r- 

J 
representing 

the "lattice sum" term, 

(K) 	J
,e, 

J J  
(K) 	E e go c. ei , (K) 

(2-362) 

So we have reduced our series of Aix -n secular equations to 

just the set /1 	, which we can evaluate to find our eigen-

vectors. Clearly in a SCF procepdure, we use these to build 
r-/ 

a new r" 	matrix, and continue iterations until self-consistency. 

ry, 	J 

rn,i 
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Ladik and co-workers have obtained expressions 

for the SCF matrix elements, F-/ 00, using the LCAO-MO 
JJ 

and nearest neighbour approximations, with a limited basis 

set of fl 	atomic orbitals as in the Roothaan method,(I82). 

With the Pople-Pariser-Parr approximation it is found,(183); 

FL  (PO  

Pgs 	 ) L  -± 	 (Pss— 	()SLI-s±  

bi-
L 
 Z. 	 c: 1< 0+ 	 -- 

1 	—ji Lt--- 	-e-- 	'L. L U LL e  
(2-363) 

and the off diagonal elements are, 

13:s Z _s 	s 	PLO Ls e-- 
el< 

LS Ls 	R 
(2-364) r- LS 	 LS - 

In these expressions; 

L, 
(2_365) 

	

)C1:s =-11XL*(1)-r"--ja)` 	.4 XL(1-i tL )* --LH' 

\2;(2; 	Otx) 	s_(1± r)`) AT!  (AX 1  
(2-366) 

Where K(r-jitk) is the atomic orbital centred on the L. -th 

atom of the _1 -th elementary unit cell. These quantities 

represent interactions between nearest neighbours, and hence the 
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superscript + or - indicates interaction with a cell on 

the right(+), or the unit cell on the left(-). Thus with 

and 0) matrices representing the inter-unit cell interactions, 

the intra-unit cell interactions arize as the familiar terms 

in the Pople-Pariser-Parr molecular SCF method. For our 
-t- 

helical polymers we have, 13 	and 0 i-S L 	L$ — L 
the two matrices giving the resonance binding and Coulomb-

exchange terms between each cell and it's neighbours. In the 

Rickel approximation the F matrix elements are much simpler 
(184),(185). 

FL, s 

The bond-order matrices are defined as, 
2_ Tr 

C 	C rs (l< ) K * r- (2-367) 
Tr 

0 

± k * 	 K r_ (10 C r
1 	

s 	R._ 
,-, 
0 	..., ± 

All the elements of 1-P and lr' 	are real,and whilst the first 

is symmetric, P s:---  F;;1...  , we find for the inter-unit cell 

interaction matrices, Pt — 	. As we see in the definitions 
— 

LS 	P, L 
of CP and 	we need to know CV)for any band 	, 

in order to perform the integration over K . Our eigenvalue 

problem, 

(2-368) 

(2-369) 

must thus either be solved for E,, (K) with 	derived as an 



f teeca (F) 	( ) 

1 -1-040ti CIF ) 	Rke•dt(r) 

 

 

Ve 
Where 	, 	, 
mo (K) is the real and 

tr 
complex column vector , 

and E-4are all functions of /: 

(k") the imaginary component of the 

(K) . The eigenvalue problem 
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analytic function of I( , or we can solve for various values 

of K , and interpolate for results between established points. 

This latter is the only possibility considered here, so the 

AD=E 
integrals in 	and C- 	, equations (2-367) and (2-368), 

become numerical integrals. 

The complex eigenvalue problem can be solved by 

partitioning the matrix 	into real and imaginary parts,then; 

(2-370) 

en 
dimensioned 2n*2n is degerate, the roots E-- (0arising  in pairs, 
with respective eigenvectors (14eHLW ,and ipt+ '4) ,or 
—(1(1-Zg±i- 

 Ye-) .Hence we can express an element of 	(K) as, 

CC (K)=. N_pc)-1-VeriK, the 

If we cycle the process, after an initial choice of 

P and P—  , and provide the parameters, 	, 11 	, 
?(T , 	g , we can thus obtain the energy band 

structure of a one dimensional polymer. The 	matrix is easily 

constructed if we know the geometry of the polymer, but the 

inter-molecular resonance terms in 	must be evaluated 

more carefully. We require to know the overlap terms between the 

indicating the matrix element. 
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2pz  orbitals on the atoms in the different unit cells. This will 

be discussed in more detail when the results of some calculations 

are presented 
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CHAPTER III.  

Four Semi-empirical SCF Computer Programs.  

(I) Introduction.  

In this chapter four computer programs are 

presented for the solution of 117-felectron self-consistent field 

problems. These programs represent precise and complete 

procedures for solving the many sets of equations and individual 

relations encountered in the previous chapter.The language used 

to express these algorithms is the electronic computer code, 

FORTRAN IV . After the FORTRAN source program has been compiled 

into basic machine instructions, all that is required to examine 

a particular molecule, or set of molecules, in the programmed 

approximation is the appropriate input data. Thus the systematic 

study of a whole series of conjugated molecules, or the effect 

of parameter variations on a single molecule, may be readily 

achieved. 

As all the programs are written in the semi-empirical 

Pople-Pariser-Parr approximation they are relatively simple, 

and require little input data. The main block of data for a 

given molecule is common to all the first three programs, the 

last program, treating polymers, requires special consideration. 

This data block is sandwiched between cards supplying additional 

control information concerning the execution of a particular 

program. 

This common data is first the geometric matrix,R, 
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specifying interatomic distances. Then follow the ionization 

potential,AI, electron affinity,E,and virtual charge,Z, for the 

constituent atoms. Finally the 'Rickel matrix of core integrals,H, 

HPq <x,141(xel. , is required. Typical values of these 

parameters were discussed in chapter II , and individual quantities 

may be obtained from chapter IV . 

In reading the symmetrical doubly dimensioned matrices, 

H and R , only the elements of the upper triangle are required. 

Most data is read as one item per card, the use of such an 

uneconomic format is to facilitate rapid data preparation and 

checking . 

The Mataga and Nishimoto approximation has been used 

for all Coulomb integrals,(I24), although some programs have 

options for multiplying these values by constant coefficients. 

The matrix diagonalization and eigenvector routines 

were obtained from the IBM-Share Library at Imperial College, 

(186),(187). These routines have been modified to various extents, 

and in the case of degenerate roots, the gradients method is 

used to give orthogonal vectors,(I88),(I89). 

It should be noted that the first three programs are 

all dimensioned for molecules of 30 constituent 11--electron 

atoms or less.The polymer program only treats polymers composed 

of monomers with up to 20 atoms per unit cell. The variable 

identifiers used in discussing data input are in general those 

used within the programs, although this may not always be the case, 



- 283 - 

as frequently overwriting is necessary to economize on storage 

space. 

In the following description of input forms, all matrices 

have their size specified in brackets, for example H(N,N), and 

Z(N) . Also all formats are indicated for individual variables, 

and variable lists. Input enclosed in slashes, for example, 

/H(N,N)/ , represents a whole sequence of data cards, the absence 

of slashes implies a single input card. 

In the next sections the programs are presented.It is 

hoped that they will prove useful to others who are interested 

in conjugated systems. Such users may of course wish to introduce 

their own modifications and improvements. 

(2) The Closed-Shell SCF Program, with Configuration  

Interaction for Excited States  . 

This program treats closed-shell ground-state conjugated 

molecules in the self-consistent spin-paired Pople-Pariser-Parr 

approximation , outlined in sections (II) to (14) of chapter II . 

Configuration interaction is used to obtain excited states. 

Mickel orbitals are utilized as the starting point of 

the SCF iterations, directed at finding the self-consistent 

doubly occupied ground-state orbitals. The orbitals are found 

to a degree of consistency determined by the variation in the 

elements of the bond-matrix, P , between successive iterations. 

The totalllr-energy of the system is calculated at each SOP 

iteration, indicating the convergence of the state. 
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When a self-consistent state has been achieved, or the 

program has run out of its specified number of SCF iterations, 

the /7--contribution to the dipole moment of the molecule is 

calculated, and the excited singlet and triplet states found. 

These single electron excited states are found both with and 

without configuration interaction,(see section (14b) of chapter II). 

The degree of interaction invoked is determined by the input 

control cards, NU and NL 	In addition the intensities of the 

electronic transitions are calculated,(see section (14b) of 

chapter II ). 

The input data is now specified in the required sequence, 

with a description of the various options available. 

NI,(13): This control card is used in subroutine RITE to label 

any write statements to be compiled. Usually, however, as shown 

in the following program the title is read in execution time as 

an item of data. 

Program Title,(Free Format): The contents of this card are 

printed at the head of the computer printout . This serves to 

identify a particular program. 

N,(13): This is the number of IT 	atoms in the molecule, 

with the restriction, 11.30 . 

NIT,(13): The maximum number of SCF iterations allowed. 

If matrix P has not converged to the required extent after NIT 

iterations, the program prints out all results, and then reads 

N2,(see later); usually NIT 	12 . 
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NF,(I3):  The number of doubly occupied orbitals, half the total 

number of electrons. 

NU,(13):  Upper limit of virtual orbitals to be included in the 

configuration interaction. Orbitals are labelled from the lowest 

upwards. We require NU<N, and an additional restriction is 

given below. 

NL,(13):  Lower limit of configuration interaction; with restrictions, 

NF ).NL I , and (NF-NL+I)*(NU-NF) 4, 30 . 

CONV,(F20..8):  Convergence requirement. Program regards a self- 

consistent state as being achieved when successive P matrices 

do not differ by more than CONV for all corresponding elements, 

that is, 

1P. 
	+1 
.- Pi  . 	

CONY 
ij j `, 

1 i,j N 

A typical value of CONV is 0.001 . 

/R(N,N),AI(N),E(N),Z(N),H(N,N)/,(F20.8):  This is the block data 

common to all the first three programs. Only the upper triangles 

of the geometric matrix,R , and the Mickel matrix,H, are read. 

For example the matrix R is presented as; R11, R12 	R1N ; 

	

R2N ;  R33 ' 	R3N  ; and so on, a total R22 ' R23 , 	  

of N(N+1)/2 cards 	 

N2,(13):  This is the final card read by the program, after either 

stopping because NIT iterations were exceeded, or a SOF state 

obtained. If N2=1 , the program restarts, reading in another 

set of data. When N2/1, computation ends. 
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SIBFTC DECK1 	DECK 

• 

DECK1 
	

EFN 
	

SOURCE STATEMENT 
	

IFN(S)_ 

DIMENSION AI(30) / E(30),,Z(30),BETA(30/30)1GAMA(30,30), 
-, - EN(30),P(30,30)1()(30,30),F(30130),C(30,30)0(30y30)1AA(30p30) 

2 	ICCORDX(30),COORDY(30),COORDZ(30) 
POLECULEICLCSED SHELL SCF 

1 READ(5 / 2) N1 _ 
Ni LABELS THE TITLE REQUIRED.: 
CALL RITE(N1) 
:READ(5,2) N 
N LABELS NUMBER OF ATOMS IN MOLECULE 
READ(5,2) NIT _ 

2FORMAT(I3) 
±,,READ(5/2) NF 
NUMBER OF FILLED LEVELS 
READ(5,2) NU 	--- 
READ(592) NL 

-11EAD(5,4) CONV 
.D0 3.I=1 I N 
)0 3 ..)=I/N 
READ(5,4) C(I,J) 

- READ(5,4).H(I2J): 
BETA(I,J)=H(I,J) 
BETA(JI I)=H(I,J) 
H(J,I)=H(ItJ) = 

DC 6 I=1IN 
6 BETA(III)=0.0 

CALL XYZ(CI COORDX I COORDY,COORDZ/N). 
_ WRITE(627) 
7-FORMAT(I4H HUCKEL MATRIX://) 

- 
_8 WRITE(629) (H(I,J)i-J=14N) 
_9 FORMAT(12F8.3) 

WRITE(6210) 
10 FORMAT(1H 1 ///t21H IONIZATION POTENTIAL,//) 

- WRITE(619) (AI(I),I=1,N) 
WRITE(6,11) 

1 FORMAT(IH g///118H ELECTRON AFFINITY,//) 
WRITE(6,9) (E(I),I=11 N) 
WRITE(6,12) 

12 FORMAT(1H ,///,14H 	MATRIX,//) 
DC 13 I=1 ,N 

3 C(J/I)=C(I,J) 
C IS THE GEOMETRIC MATRIX 

4 FORMAT(F20.8) 	- 
_READ(514) (AI(I) / I=10) 
READ(5,4) (E(I)/I=1/N) 
READ(5,4) (Z(I)7 I-710) 

_DO..5 1=11N 
J=I1N 
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-'13 WRITE(619) (C(I,J),J=1,N) 
WRITE(6,902) 

902FORMAT(1H t///p9H X COORDS,//) 
WRITE(6,9) (CCORDX(I),I=1 / N) 

- WRITE(,6,903) 
903 FORMAT(1H 1///y9H Y COORDS,//) 

--r - - WRITE(6,9) (COORDY(I)II=101) 
WRITE(61900) 

.900  FORMAT(1H ,///,9H Z COORDS,//) 
WRITE(6t9) (COORDZ(I),I=1/N) 

--.LWRITE(6,1d7t) 
i4 FORMAT(1H t/t/t17H RESONANCE MATRIX,//) 

DO 15 I=1,N 
A5 WRITE(6,9) (BETA(I,J),J=1,N) 

WRITE(6t16) 
16 FORMAT(1H 1///123H NUMBER OF PI ELECTRONS,!!) 

WRITE(6,9) (Z(I) / I=1,N)-_, 
CALL COUL(AI,E,C,GAMA,N) 
GAMA(I,J) MATRIX 
CALL CALBM(H,P,C,EN,N,NF) 
HUCKEL APPRGX CHARGE AND BOND ORDER 
WRITE(6,800) 
FORMAT(1H ,///,21H HUCKEL APPROXIMATION///) 
WRITE(6,26) 
WRITE(6,19) (EN(I)0=1,N) 
FORMAT(1H gl0F1.0.5) 
WRITE(6,27) 
DO 801 I=1,N 

-_-801 WRITE(6119) (C(I,J)1J=1,N) 
WRITE(6,17) 

A.7_TORMAT(1H 2///,29H_CHARGE.AND BOND ORDER MATRIX,//), 
DO 18 I=1 /N 

_A8:WRITE(6,19) (P(I/4)7J=1,N) 
WRITE(6,802) 

.." 

FORMAT(1H g///115H.SCF PROPERTIES / in 
WRITE(6,803) CONY _ 

:803 FORMAT(1H ,18H CONV REQUIREMENT=tF10.51M_ 
DO 20 L=1 / NIT 

FMAT(AI,E,PI ZIGAMA / BETA / NI F)_ 
CALCULATES THE F MATRIX 
CALL RECAL(F,OIN,NF) 
J1ECALCULATES P AS Q 

_,..,IF(L.EQ.NIT).G0 TO 100 
DO 21 I=1.1 Nr _ 
DC 21 J=1,N 

21 IF(ABS(P(I,J)-Q(I/J)).GT.CONV) GO TO 82 
100 WRITE(6122) L 
22 FORMAT(1H ,///,22H NUMBER OF ITERATIONS=03////) 

WRITE(6,23) 
	

7== 
FORMAT(.15H FINAL:P MATRIXT//) 
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DO 24 - 1=1 / N - 
4 WRITE(6,19) (Q(I1J),J=1/N) 

CALL CEGEN(EN,F,C,N,N) 
WRITE(.4126) 

_•.26 FORMAT(1H ,///,12H EIGENVALUES,//) 
WRITE(6119) (EN(I),I=1,.N) 
WRITE(45227) 

27 FORMAT(1H 1////13H EIGENVECTORS///) 
DO 28 I=11N 

28 WRITE(6,19) (C(I1J) / J=1/N) 
--FEN=TOTEN(F,C),AItBETABZ/GAMA/N)_ 
WRITE(61 998) FEN 

8 FORMAT(1H ,///,17H TOTAL PI-ENERGY= / F9.41 //) 
CALL SING(CIENI GAMA I NFINI NUI NLI COORDX / COORDYI COORD2) 
CALL TRIP(CIENIGAMAINFIN / NU/NL) 	- 
CALL DIPOLE(4)1COORDX / COORDY/COORDZIN) 

-_GO TO 31 
82 _00 32 I=10 

DD 32 J=1IN 
32 P(I/J)=Q(I1J) 
20 CONTINUE 
31 READ(5,2) N2 

-:-.N2=1 FOR ANOTHER MOLECULE 
N2 .NE.1 FOR STOP 
IF(N2.EQ.1) GO TO.1 
STOP 

- END 

SIBFTC - DECK4 

ECK4 EFN 	SOURCE STATEMENT±- _ ,_IFN(S) 

SUBROUTINE CALBM(H/ P I CHIENI NINF) 
DIMENSION H(D07:',0) 1 P(30 / 30)1CH(e;0/30)/EN(30) 
CALL DEGEN(EN / H-/ CHI N/ N) H 	- - 
DO 2 J=1 1 N 
J)0 2 J=1/N 
P(I/J)=0.0 
DO 2 - K=1 1 NF.  

2 P(I 1 J)=P(I / J)+2.0*CH(KI I) •CH(K/J) 
?-±RETURN 
END 
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$IBFTC DECK3 

   

SOURCE STATEMENT 

SUBROUTINE CDUL(AI,E,R,GAMA,N) 
DIMENSION, AI (30)I E(30 )IR( 30,::.-'0)1GAMA(30130) 
DO I 1=10 

__DO I,  
1__GAMA 	J =1. 0./i( R( Lg.)) /14. 	( 2.0/( AI ( i) -E( I ) +AI I J 	J 	) 
__RETURN 	- 
END 

7=7 

7.L. 

113FIC DECKS 

DECKS SOURCE STATEMENT 7 I FN ( S ) 

SUBROUTINE. FMAT (AI,El  P I  Z1  LAMA, BETA,N,F) 
DIMENSION Al (30) lEr0 ) IP(S07.:A ) a(n) 'GANA( 30 ,B0) 

-:',.,BETA( 30 t30 )1K:10,30) 
DO I I=1 

QC) 2 J=1, N 
IF(I.EQ.J) GO TO 2 
F(II J)=BETA( I / J)-0.a;*P( I t  ..1)*GAMA( IfJ) 
FtTlI).-.FtlII)+(f1(.11.1)-Z(.1))*GAMA(IIJ) 

2 CONTINUE 
1 F(I I I)=FJI / 1)-AI(I) D.5*PJI1J)*(AI(I)-E(1)1 

	.., 

RETURN 

SIBFTC DECK6 

EFN .1 ,-SOURCE: STATEMENT 
	

IFN( S) 

SUBROUTINE RECAL( F f  Q1 NI  NE ) 
DI W7-2NSI ON F( 301n) y()(?0,30) TEN( 30),C( 30,30) 
CALL DEGEN( EN, F C, NI NE) 
DO 2 I =1 2 N 

_ 2 J=1 I N 

-- 	Q(I/J)=0.0 
DO 2 K=I NF 

2 Q(It..1)=Q(I/J)+C(KII)*C(K/J)*2.0 
__,RETURN_ _ 
END 



IBFTC SCIIFIG 

SCNFIG 	 EFN ,---SOURCE STATEMENT . 	IFN(S) 

SUBROUTINE SING(CIEIGAMA/NFOINU,NLI COORDX,COORDY,COORDZ)- 
OIMENSION C(30,30)tE(30),GANA(B0,30),G(30,30),CC(30:30), 
-:-:EC(30),C9OROX(30),COORDY(30),COORDZ(3011QX(30),QY(a0),CIZ(30 
WRITE(61 1) 

I FORMAT(111 1///130H SINGLET EXCITATION PROPERTIES///,„ 
129H NO CONFIGURATION INTERACTION,//) 
1RITE(622) 

2 FORMAT(11H TRANSITION75X,7H ENERGYIFX / ISH TRANSITION DIPOLE 
	 15X,EH ALPHA:5X,5H BETA / 6X 1 13H OSC STRENGTH///), 

NFP1=NF+I 
-M1=0' 
NG=(NF-NL+1)*(NU-NF) 

-±IF(NG.GT.30) GO TO 100 
DO 3 I=NL,NF 
:D0'3 J=NFP1INU 

- . 	M1=M1+1 
-41=0 
_DO 4 K=NLINF 
DO 4 L=NFP11,1467: 
M=M+1 
G(M10)=ELMENT11,41 K / L,GAMAI C I N)+(E(J)- (I))*DELTA(1 1 0.  
l*DELTAWI LI 

IF(I.EQ.K.AND.J.EQ.L) GO TO 50 
-.G0 TO 4 	- 	- 
QX(M)=DIMOM(COORDXyCII,J0) 
:Vi(M)=DIMOM(COORDY,CilIJI N) 
_gZiM)=DIMOM(COORDZ:CtI,J,N) 
Q2=2.0*(QX(M)*CIX(M)+QY(M)-*QY(M)+QZ(M)*QZ(M)) 
W1=QY(M) 

__ALPHA=PATAN(W1 1 W2)/*-77.2958 
3ETA=ATANNX(M)/SQRTIQZ(M)*QZ(M)+QY(M)*QY(M)))*5 .2958 

_F=0.087511*Q2*G(MIIM) 	- 
-WRITE(6p5) I,J,G(M1 I M),Q2iALPHAI BETAI F 
FORMAT(3H 	II2t1H2 022 X 1 1PE13.515X 1 1PE13..5,SK OFF3...20.X7.0PF7 
1.!.216X,E13.5 t /) 

4 _CONTINUE 
:3= CONTINUE 

WRITE(626) 
.6- - -.FORMATUN ,///,31H WITH CONFIGURATION INTERACTION, 
_ WRITE(622) 

CALL DEGEN(EC7G,CCI NGI NG) 
DO 7 J=1 / NG 

:::0X1=0.0 
_OY1=0.0 
Cal=0.0 

__.DO 8 I=1 I NG 
r:QX1=QX1+CC(JiI)*QX(I)_ 
_QY1=QY1+CC(JII)*QY(I). _ 



IP EFN :SOURCE STATEMENT I FN( S ) 	- - . 

SOURCE STATEMENT EFN DFN IFN(S) 

DELTA=0.0 

REAL FUNCTION DELTA(I1J 
DELTA=1.3 
IF(I.NE.J) 
RETURN 
END 

REAL -FUNCTION DIMON( COORD / C, I , K 14,1 ) 
DIMENSION COORD(30)1C(30730)_. _ 
DIMOM=0.0 - 
DO 1 J=10 
DIMON=DIMOM+C(I,J)*C(K / J)*COORD(J) 
RETURN 
END = 

77. 

$IBFTC DFN 

7-7-F-7-7 

- 291 - 
C)Z1=9Z1+CC(.11 1)*QZ(I) 
Q2=2.0*(QX1*QX1+U1*QY14C)11*Q21) 

__r_ALPHA=PATAN(QY12W1)*77.2958 
	 BETA=ATAN(QX1/SQRT(QZ1*QZ1+QY1*QY1)) 57.2958 

F-=.0.08751611-02*EC(J) 
J/ECW1 02/ ALPHA / BETAIF 

9: FORMAT( 4F1 	t6X/1PE13.5111PE13.5 8X 7 OPF7.2 3X I DPF7.2/ _ - 
16X,E13.51/) 
CONTINUE 
rWRITE(61 10) 
FORMAT (1H 1 /// 1 22H CONFIGURATION-VECTORSIM 
DO. 11_1=1 / NG 

71711_14RITE(452 12) (CC(J / J),J=1ING):___ 
12 FORMAT(1H /12F9.) 

-=100 RETURN 
END 

$IBFTC ELMT 

EFN 	SOURCE STATER 

REAL FUNCTION ELMENT(I,J,K,L,GAMA,C,N) 
_DIMENSION C(70/30)10ANAl30 / 30):: 

DO . 1 JP=1/N 
DO 1 JR=1/N 

1 ELMENT=ELMENT-(C(I/JP)*C(K /-JP)*C(J/ JR)*C(L/ JR)- 
1 	2.0*C(L/JP)*C(KIJP)*C(J / JR)*C(I / JR))*GAMA(JP IJR) 
RETURN -- -- 
END 

IBFTC DIP 



100 RETURN 
_ 
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JAFTC TCNFIG- 

CNFIG 	FN -SOURCE 'STATEMENT -  - IFN(S) - 
• 

tSUBROUTIN TRIP(C2E2GAMA2 NF,NI NUI NL) 
DIMENSION C(30230),E(30)2 GAMA(30 230)2T(30230)2CT(30230)2EC(30) 
WRITE(62 1) 	- 

1 FORMAT(IM 2 ///230H TRIPLET EXCITATION PROPERTIES,//, 
129H NO CONFIGURATION INTERACTION, //. )_ 
WRITE(6 22) 
FORMAT(11H TRANSITION25X2 7H ENERGY,//) 
NFP1=NF+1 
41G=((CIF.-NL+1)*(NU-NF) 
IF(NG.GT.30) GO TO 100 

DO 3 I=NL2NF 
LD0_3 4=NFP1I NU__‘  
M1=M1+1 

74=0 
DO 3 K=NL I NF 
DO 3 L=NFP1 I NU 
M=M+1 

-T(M12M)=TELMNT(I7J2KpLI GAMAIZIN)+(E(J)-.E(I))*DELTA(TIK 
1ADELTA(J2L) 

IF(I.EQ.K.AND.J.EQ.L) GO TO 4 
GO TO 3 

4 WRITE(6,7) I2J2T(M1yM) 
-5:-FORMAT(ZH .- 2I211H22I224X21PE13.52 /) 
3 CONTINUF 
-WRITE(6,6) 
fORMAT(1H 1///431H_MITH DONFIGURATION INTERACTION,//) 

- CALL DEGEN(EC2T,CT2 NG2 NG)- 	- 
WRITE(62 2) 
)07 J=1 2NG 
WRITE(62 8) ..12EC(J),__._ 
FORMAT(4H -.72I226X21PE13.;5-2/) 

	7 CONTINU 
WRITE(6 2 9) 

9FORNAT(1H ,///,22H CONfIGURATION_VECTORS,//)-
DO 10 I=12NG 

__10 WRITE(62 11) (CT(I2J)2.1:171 I NG) 
11 FORMAT(1H 2 12F9.:7) 
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IBFTC TEL 

FN =  -SOURCE _STATEMENT 

EAL.FUNCTION TELMNT(I /J/ KI L I GAMA 
DIMENSION C(30,30),GAMA(30,30) 

-1-TELMNT=0.0 ' ' 
DO 1_JP=1 /N 
-_DO 1 JR=10 -

1.TELMNT=TELMNT-C(I/JP) 
77:RETURN: 
END 

IBFTC  PAT -  

STATEMENT  _.- 

4L1JR)*GAMA(JP / JR) 

IFN(S) 
=REAL--  FUNCTION PATAN(Y / X) 
PATAN=ABS(ATAN(Y/X)) 
IF(X.LT.O.O.AND.Y.GT.0.0) 'PATAN=3.14159-PATAN_ 

	 IF(X.LT.O.O.AND.Y.LT.0.0) PATAN=PATAN+3.14159 
IF(X.GT.0.0.AND.r.LT.0.0) PATAN=6.28:-A87PATAN 

	 RETURN 

.sIBFTC TEN 

EFN 	OURCE STATEMENT - 	:IFN(S) 

REAL FUNCTION TOTEN(F/PIAI /SETAI Zi-GAMA/U)-  '7 
DIMENSION F(30130)1P(30/3COIAI(30)/ BETA(30/ 30),Z(30) 

1IGAMA(30/ 30) 
_ :CALCULATES THE TOTAL ENERGY:FORACLOSED SHELL GROUND STATE 

TOTEN=04 
D0.1 I=1 / N 
X=0.0 
-DO 2 J=11N_- _ 
IF(J.EQ.J) GO TO 2 
JOITE7N7TOTEN+P(11J)*(BTA(JTI)1-f(J/I)) 
X=X;Z(J)*GAMA(J/ I) 

2 CONTINUE 	- - 
1-  TOTEN=TOTEN+P(I/I)*(F(III)-X-Al(I)) 
JOTEN=0,5*TOTEN 
RETURN 

-=END 
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:_EFN - SOURCE STATEMENT — 	FN S ) 

SUBROUTINEXYZ(R,X,Y,ZI N) 
DIMENSION R(30130)7X(30),Y(30),Z(30) 	• 

__CALCULATES -THE ATOMIc:COORDINATES X,Y, AND Z,FROM=THE 
:1NTERATOMI.CDISTANCE MATRIX, R. 
X(1)=0._-
Y(1)=0. 

-z(1)7p, 
X(2)=0. 

Z(2)=R(1 / 2) 
X(3)=0. 
WI=R(1 1::;)R(1,3) 

--142=R(223)*R(21 3) 
W3=R(142)*R(112) 

72(3)=CW1-W2+143)/(2.*R11t  2)) -: - v 
Y(3)=SQRT(W1-2(?)*Z(:5)) 
DO :1 I=,4tN 
S1=R(I I 1)*R(I / 1) 
S2=R(//2)*R(I72) 
S3=R(1 1 3)*R(I13) =  

_,-r21 I )=(Z(2)*Z(2)tS1S2)4(2.*Z( 2) ). 
Y(I)=IY(3)*YJ3)+(Z(I)-2(3))*(Z(J)-Z(S))-(2(I)-2(2)) 

AZ(I)-7.(2))+S2-S3)/(2.*Y(3))' 
1 X(I)=0. 
	 tMAX =0. 

DO 11_1=4/N  
W4=R(41)*R(T7- 1)(1)*Y(I)-'2(I)*Z(I) 
IF(W4.LT.0.0) W4=1.0E-20 
X(I)=SQRT(W4) 
IF(X(I).GT•XMAX) J=I_ 
IF(X1I).GT.XMAX) 'XMAX#X(I 

11 CONTINUE  
D(1-12 1-42N  
_IF(I.EQ.J) GO TO 12 

_ 	. 1143=R(I,J)*R(I2J)- --  
	 WO=W-5771Y(T).-Y(J)).1k(Y(I)-Y(J))7(Z(II7Z(4)) 

:447=146-(X(I)-X(J))4(X(I)-X(J)) 
W8=W6-(X(I)+X(J))*1X(I)+X(J)) 

	 .-_149=w7*w7 	_ 

IF(W10.LT.- W9) X(I)=7X(I) 
12 CONTINUE 

	 ,RETURN- 
END . 

(2(1)-1(..1)) 
= 
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$IBFTC DIPOL  

EFN 
	

SOURCE STATEMENT 
	

IFN(S) 

SUBROUTINE bIPOLE(PI X / Y / 1 1 CZ,N) 
`AUMENSION P(.lao)fxraolmo),(30),cz(3o) 
DIX=0.0, 
sjy=o.o' 
DIZ=O.O 

-DO 1 IF-1/1`1  

JnX-7DTX+ALPHA*X(I) 
DIr=DIY+ALPHA,Y(I) 

_A),IZ=DIZ+ALPHA*Z(I)-.. 
.DTX7DIX*0.8 
DIY=DIY*4.8 
DIZ7DIZ*4.8 
PIT=SQRT(DIX,4I'DIXDIYDIY+DIZ*PIZ) 
ALPHA=ATAN(DIY/D1Z)*57.2958 
BETA=ATAN(DIX/SQRT(DTZ*DIZ+DIY*DIY)) 57.2958 
WRITE(61 2) 

,.FDRHAT().11 ,/ /// /:':3H_PI_CONTRIBOTION TO DIPOLE MOMENT / fa; 
DIX,DIY,DIZ 

-1 FORMAT(1H / 8H MOMENTSOH.:X=if7.31 41,-,3H Y=iF7.3/4)( 1-3H ZF/F7.3i//) 
WRITE(6/4) DIT 1 ALPHAI BETA 

'.FORNAT(1H'ili:M TOTAL HOMENT=/F7.3,1DX/7H ALPHA=1 F7.2/10X 
I 	76H_BETA=,f7.274) 

END 

- XIBFIC DECK2 	DECK 

DECK2 
	

EFN 	SOURCE STATEMENT 
	

IFN(S) - 

SUBROUTINE RITEIN) 
DIMENSON CHAR(12) 
REA0(571) (CHAR(I)7I=17 12) 

1 FORMAT(12A6) 

WRITE( 6,2) (CHAR(I)71=17 12) 
2 1-ORMAT(1111 1 1H 712467///) 

RETURN 
END 
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DG3 
	

i.EFN' 	SOURCE SIATEMENT 	11-N(S) 

DEGEN(E1G0- 7C,NINF) 
_DMNSTON EIG(30),I-A30 

11 1(30) 

	

.D0 1-I=10 	- 
IX(I)=0 
DO A. J=1 1,N 
C(.1 7 1)=0.0 

1 A(I,J)=F(I I, J) • 
CALL HESSEN(A,N) 
CALL 4REIG(A,N,E1G)- 
NM1=N71 
A(17 1)=0.0 
DO 2 I=1,NM1 
1P1=1-1-1 
11-(ABS(E.1"G(I)-EIGt1P1)).51.0.001, GU TO 2 
A(1 1 1)=A11,1)+1 -.- 0 
IX(1)=1 
IX(IP1)=1 
CONTINUE 
IF(A(1,1).LT.0.5) GO TO 3 
00 4 I=1,111-' 
IFIIX(I).EQ.1) GU ft) 4 
Y=EIG(I) 
CALL VCTR(FI V I N,Y) 

	

DO 5 3=1,N 	' 
5 C(I,J)=V(J) 
4 CONIME 

WB=F(1,1)- 
_AF(F(1,1)!GT.O.01) GU TO 1-5 
DO 16 1=11 N 

16 FII,I)=I:.(1,I)+1.0 
15 W=F(1,1): 

F(111)=411,1)*1.01 
WA=F(1 71) 
DO 6 I:=1tN 

-00 6 J=1,N 
.6 At 1,J)=I- ( t,J) 

CALL HESSEN(A,N) 
_CALL,QREIG(A,N,Z) 
DO 1 I=1,NF 
JF(IX(4).E(.).0) -30_10 1 
y=2(f) 

CALL VCI RI F, V,N0' ),_ 
f'(1,1)=W' 
CALL COV(J,V,IXIA,C,F,N,NE) 
Ft 1,U=WA 
DO 9 J=1,N 

9 CCIIJI=V(J) 
IX(1). =0 

'30),C(30,30),V(30)tA(30,30),1?<(30) 
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7 CONTINUE 
J(111)=WB_ 
11- (1,48.61.0.01) GO TO 10 
DO 18.I=2,N 

18 F(I,1)=F(1,1)-1.0 
GO TO 10 

3 DD 11 I=1,NF 
Y=E1G(I) 
CALL.VCTR(F/ V IN,Y) 
DO 12 J=1.0 

12 C(I,J)=V(J) 
Al CONTINUE-, 

REIURN 
END 

	

;i1BI- TC CV 
	

'DECK 

CV 	- 	EFN 	-SOURCE STATEMENT - IFN(S) 

:.-SUBROUTINE.COV(I,V,IXIA,C,F,N,NE) 
OIMENSIJN V(30),IX(30),A(30,30),C(30,30),F(30,30) 

IL-A(5,2)=0.2 
NITER=40 
CALL-OTH(I,V,C,A,IX,NI NF) 
A(513).=0.0 
DO 5 L=1,NI1Ei 

.00 2 J=1,N 
-•A(41J)=0.0 
DO 2 K=1,IN 

2 A(4,J1=A(4,J)+HJ,K) V(K) 
A(511)=0.0 
DO 3 J=10 

3 A(511)=4(5,1).+V(J)*A(4,J) 
DU 4 J=1,N 	- 

_4 V(J)=V(J)-A(5,2MA(4,J)-A(5,1)*V(J)), 
- DO 7 J=1,N 
IFCABS(V(J)-A(6,J)).GT.0.000005) GO TO 8.- 

-1 CONTINUE 
CALL OTH(I,VICIA,IX,NINF) 
GO f0.9 

8 A(51 3)=A(5,3)41.0 
IF(A(5,3).GT.4.2) CALL OTH(I,-V IC,A,IX,N,NF) 
IF(A(5,3).GT•4.2) A(5,3)=0.0 
DO 10 J=1 / N 

10 A(6 / J)=V(J) 
5 CONTINUE 
9 RETURN 

END 

- 
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EIBFTC 3TC DECK 

UTC 
	

Et-N - SOURCE STATEMENT. 	AFNtS) 

7:::ISUBRUOTINE OTHIIIV,C,A,IX,NINF) 
DIMENSIDN V1301,C(30,30),A(30,30) TX(30) 

L_DO.L J=1,NF 
1F_UX(J)f!,1) GO TO 

..:A(2,.J)=0•0 
_DO 2 K710 

2 A(2,J)=A(2,J)+V(K)*C(J110 
1 CONTINUE 
- D3-3 J=1,NF 

If-TIX(J).E0.1Y GU 10 3 
DU 4 K=1,N 

-4_V4K)=V(K)-A(2,J)4!C(J,K) 
--3 CONI1NdE 

43,1)=0.0_ 
DU 5 J=1,N 

.:5_At31.1)=At3,1)+V(J)*ViJ) 
A(3,1)=SQRT(A1 -3,1)) 
U0 6 J=1,N 

-6 V(J)=V(J)/A(311) 
RETUR1 
END- 

SIBETC QRCN 

QRCN EFN 	SOURCE STATEMENT - IFN(S) 

PROGRAM TO CALL QR TRANSFORMATION, -MAXIMUM 
UBROUTINE QREIG(A-1M,ROOTRV.H _ 	- 
DIMENSION A(30,30),ROOTR(30),ROOTI(30) 
PRNT=0 
N = M 
1450=N; 
IF(IPRNT) 80,81 

:(6,104)- 
81 ZERO 0.0 

JJ=1-- 
177XNN=0.0 

- XN2=Q.0 
AA =0.0.  
B . =.0.0 
C =_0.0 
DO;  =  '0.0 
R=0.0 

=:SIG=0.0 
ITER = 
IF(N-2) 

_13 IF(IPRNT) 82,8:3,82 
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WRITE—(e,105)A(1/1) 
ROOTR(1) = A(1 1 1) 
ROOTI(1) = 
M50=N50-1 
DO 	K-50=1,1A5O, 
K1=K50+1. 

   

= 

           

               

               

               

               

                  

                  

-=:1,00-505 j50=K14- NFO: 
IF(ROOTR(K50).LT.ROOTR(J50)) GO TO 505 

4 X1=ROOTR(K50) 	— 
ROOTR(K50)=ROOTR(J50) 
ROOTR(.150)=X1—

_.505 CONTINUE 
RETURN 
J4=-1  

2 X._=_.(A(N-1iN-1) 	A(N/N))** 
S = 4.0*A(NIN-1)*A(N71/N) 

=ITER + 1 - — 
IF(X .EQ. 0.0 .OR. ABS(S/X) .GT. 	. r=-8)-00 TO 

tl6AF(ABS(A(N-11.N-1))—A3S(A(N/ N))) 	21:;21/31 
= 
-=:A(NI N) 

—00 -71-033 
N-1)  

=.A(NO) _ 
3±F. =;_0. 

H = O. 
GO TO 24 

- S = X + 
X = A(N-1,N-1) + A(N,N) 
jf(S) 	 i9.  

19  SQ=SQRT(S) . 

21 

H=0.0 	_ _ 
IF-`(X). 21,.21,22-. 
E=(X—SQ)/2.0 
G=t)(.+SQ)/20 - 
GO TO 24 

rc,G=(X—SQ)/2.0 
	... 

:E=(X+SQ)/2.0 
-::GO TO 24 - 

18 F = SORT(—S)/2 

G=E 
H=—F 

24 'F(s)) 28170170 
O - D-=-1.0E-10*(ABS(G) 	F 
IF(ABS(A(N-1,N-2)) .GT. D) GO TO 26 

847 85,84 
WRITE (6,105)E,Ft  ITER 

---_WRITE16- 1 105)Gt H 
85 	ROOTR(N) =E__ 

ROOTI(N) = F 



ROQTR(N-1)= 
„ROOTY(14-I) = 
N=N-2 
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IF(JJ).. 1,177,177 
_26.. IF ( ABS ( A(N 7 N-1) ) .GT. 	.0E-10*ABS( A( r171‘1.) ) ) 	GO TO 50 

=2R IF(IFRNT) 861877 86 
86 __WRITE (6 7 105 )A(N7i4), 
87- ROOTR(14). A(Nyti) 

ROOTH N).. 	0.0 _ 
"N=N-1-_ 

___GO TO 177 
IF (ABS( ABS( XNN/A(N7N-1) 	) -1.0E-6 ) 63 7 63762 
IF(A8S(ABS(XN2/A(N-17 .N-2) )-1.0)-1.0F.-_6) 	62, 7 63 7 _7 0 
_VQ=ABS( A( 	) ).7ABS( A( N71 7 M-2 ) 

_ IF (ITER-.15) _53116416c.: 
'164 IF(VQ) 1657165,166 
165 R = A(N-1,N-2)**2 

2.0*A(N-17 N-2) 
.G0 TO 60 

ZERO, ITER 

. SIG = 2.0*A(NO-1) 
GO TO 60 

64 IF(VQ) 67467 7 66 
F(IPRNT) 88,85,88 

,,;RITE (67107 )A(N-17N-2) __:Go TO  84 
IF(IPRNT) 89787789 
WRITE_ (6 7 107 )A(NIN-1) 
GO TO 86 

700 IF(ITER .GT. 50) GO TO 63 
IF(ITER .GT. 5 ) GO TO 53 

701.Z1= 	±:( (E-AA):**2+(F-f3)**2)/(E*E+F*F) 
Z2= 	( ( G-C)**2+ ( H-DD)**2) / ( G*G+H*H) 
IFAZ1-0.25) 51,i51,72: 
IF ( Z2-0.25) 	53153754 
R=E*G-F*H 	"- 
SIG=E+G 
GO TO 60 

54 R=E*E 
_":,;SIG=E+E 
pc) TO 60 
IF(Z2-0.25) 55 55 601' 
R=G*G 

iSIG=G+G 
GO TO 60 

01-  R = 0.0 
SIG = 0.0  
XINN=A(N7N-1) 
XN2=A(N-17M-2) 
CALL ()RT.( A I N 7 .114SIG70) 
AA=E 

18=F 
C=G 
80=H 
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TO 12 

4-:-FORMAT(////1X/ 9HREAL PART - -6X - -14HIMAGINARPART1::-26X-77._. 

	 I _13HTAKEN AS ZERO E-X 4HITER 1.1) 
05t:',FORMAT(1X/E117.8t--i.X17-1541 42X:13). 
1G7 FoRmAT(5f,x E13.$) 

7.7 

_ END 
TBFTC HESS 

'SS - EFN:SOURCE STATEMENT 	IFN(S) 

SUBROUTINE_TO PUT MATRIX IN UPPER HESSENBERG FORM.- 7r-7— _ 
SUBROUTINE HESSEN(A / M) 

-_DI fLtJSIDr A(30130)7 B(50) 
DOUBLE.,-PRECISION SUM 

32 DO.._40 	= _a / M 
.7.LLC+73, 

= N_71 

NI -= Ni 
DIV = ABS(A(N1*.1)) 
DO 2 J=1 / N2 
IF(ABS(A(N;J))- DIV) 2,2 

I NI = J 
tDIV = ABS(A(N1 J)) 

2 CONTINUE 

3 IF(NI 7141) 49  14 
4- 00 514 	11 N 
_DIV =.A(JINI) 

A(J/N1)__ 
5A(JI NI) = DIV 

- D0'6 J = -101 
DIV =_ A(NI,J) 

A(N1,J) = DIV 
K:=A4-N1 

26 B(K) = A(N/ K)/A(N N-1) 
DO 45-J =_-104—. 
SUM_= 0.0 

- Ni). A-6,431  
IF(B(J)) 41143,7:;-1 

41 A(N/J) = 0.0' - 
DO 42 K = 11N1. 

__A(K/J) =_A(KI J) -,A(K/Nl)*B(J) 
	42 SUM 	SUM +_A(K$J)*B(K) 

GO TO 
„43 DO 4-4 K = 11 N1 
-:_44-  SUM = SUM + A(KI J)*E(K) 

	

= SUM__ 	
40LONTINUE 
.30 RETURN 



sIBEN ,QRT 

*QIIT 

- 30.2_7  

- EFNSOURCE STATEMENT _ •_ 	• IFN(S) 
• 

SUBROUTINE QRT( AI NIR I SIGI  0) 
'DIMENSION A(30,30 )IPSI t2) / G(3) - 
N1 = N - 1 
IA:. =7N 
IP = IA 
IF (M3) 10111016V' 
DO 12 J = 3IN1 

1\1 -:J 	- 

---- IF(ABS ( A(J14-1 1 J1) )-D) 	10,1 
I pEN-7--Am+17,J141)*tA(J1+1,J14-1)7sIG)+A(J1471-1J1+2)*AAJ14-2,-.11 4  
Liwt: 

— IF(DEN) 61 / 12,61 
7 IF (ABS(A(J1+1,J1)*A(J1+21 J144 )*(ABSI A(J14-1,J1+1)+A( J1+2 J)j2) 
1-SIG)+ABS(A(J1+ 1 J14-2) ))/DEN)-D) 	101 10,12 

J=1,JP 
JI=JP-J+1:- 
If (ABS( A(J1+1 Ji))-p) 	3113/ 14-
IQ=J1 

13 DO 	J=IP 1 
1FAI7IP) 

15 .._G(1)=A(IPIIP)*(A(IPTIR)7SIG)tA(IP I IP+1)._*A(IPt121p)+R 
GM=A(IP+1,IP)*(A( IP /  IP)+A( IP+1, IP+1)7SIG)_ 
G(3)=A(IP4-11IP)*A(IP-1-22IP+1) 

GO TO 19 
-,;.:G(1)=A( I 

G(2)=A(J414I71) 

G(3)=A( 1+20-1) 
G0 TOA:9 - 

18 G(3)=0.0 
- G(2)**2 4- -G( 3)**2) 1_ G(1) ) 

2 

_ 	• 
XK =-SIGN(SQRT(G(1)**2:i 

_1_22 IF(XKL. 23,24,23 
I)/XK+1.0-   

PSI(l )=G(2)/( G(1 )+XK) 
iPSI(2)=G(.5)/(G(1)+XK): 
GO TO. 2:;" 

24 iAL=2.0 
_PSI (1)=0.0 
_PS1(2)=0.0 

26127,26 
2e,29: 

	

8 	A(I, I-1)=-A(I 0-1) . 
_-GO-  TO 27-  

	

29 	At I7 1-1)=-XK 
A:10 30 -:J=I N 

31,311E2 • 

	

31 	C=PSI (2)*A(I-1-2iJ) - 

• 



32 

35 

36 

= , 
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GO TO 33 
C=0.0 
-E=AL*(A(1 1.1)+PS1(1)*A(I+1 1 J)+C)-
A(I1J)=A(I,J)-E 
A(I+1,J)=A(I4-1/..1)-PSI(1) 
IFtI-IA) 	34,34,30 
A(I+2,J)=A(I+2,J)-PSI(2)*E-
CONTINUE 
IF(I-IA) 	3.5435,316 

GO TO 
L=N 

-D0.-40 J=IQI L 
IF(1-IA) 38,38,39 
C=PSI(2) A(J1 1.4-2) 
GO TO 

_E=AL*(A(JI I)+PSI(1)*A(J2I+1)+C) 

A(J,I+1)=A(J11+1)-PSI(1) E 
7itIF(T-IA) 42,42140 

42 	A(J,I+2)7A(J,It2)-FSI(2) 
40 - CONTINUE 

IF(I7N+3) 
:E=AL*PSI(2)*A(I+31I1-2) 
A(14-3 / I)=-E 
A(I+3,I4-..1)=-PSI(1)*E-- 
A(1+3,I+2)=A(I+31I+2)-PSI(2)*E 

-J00 CONTINUE 
101 RETURN 

END - 

41 
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IBFTC:'-.RWVCTR 

    

      

RWVCTRi 	EFN - :SOURCE STATEMENT-:_ 	 IFN(S)_ 

-SUBROUTINF- VCTR(AX7 V / NIXY): 
	DIMENSIONAX(30730),A(30 2 30),V(30) 

'ALFHA=XY 
DO 501 I51=lyN 
_DO 501 J51=10 

501 A(151,451)_=AX(I51 2 J5-1) 
A(111)=A(1 1 1)7ALPHA_ 
DO _15 1=2IN _ 
A(III).77A(14I)-ALPHA 

     

II=I-1 
-- DO i5J=17II,:  

       

            

            

            

            

IF (A(12J))921579 
IF_ (ABS- (A(Jt..)))74BS (A(I1J)))1111P, 

10 	R=A(IIJ)/A(JIJ) 
,,,;.G0 TO 130 

lI 	R=A(J,J)/A(ItJ) 
-D0.12: 	K=1,N 
C=-..tk(J,K) 
A(J2()=A(II K)- r - :-  

12 	A(I/K)=C 
-±1.50JJ=J+1 

K=JJ/N 
A(.12K)=A(I / K)-R*A(JI K) - 
CONTINUE 

-rn:_C -A(N/ N) 
	___V(N)=1. 
'1)0:29 I=2,N:- 
JJ=N-I+1 

I I=N-I+2 _ 
:DO 25 K=II / N 
R=R+A(JJ,K)*V(K) 

(AUJIJJ1)1.0E-1.0)27.127-/28; 
V(JJ)=1._ 

26 J=1104 
V(J)=0. 
GO TO 29 

28 	V(JJ)=(C-R)/A(JJ,JJ) 
_29 CONTINUE_ 

r-- 

X50=0.0 
DO 502 J52=10 

2 X50=X5O+V(J52)*V(J52 
X51=SQRT(X50) 	- 
DO 503 J53=1,N 

- 503 V(J53)=V(J53)/X51 
RETURN . 
END 
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(3) The Spin-Polarized SCF Program, with Spin Projection.  

This program calculates SCF spin-polarized wave 

functions for half closed-shell states of molecules and radicals 

as discussed in section (I8) of chapter II . In addition to 

the theoretical limitation of the method to states which can 

be represented by a single determinent, it is found to be a 

non-convergent procedure for occupation numbers involving "holes" 

in the electronic population of the two spin-orbital sets. 

These "holes" are unoccupied virtual orbitals at lower orbital 

energies than the highest occupied spin orbital. 

From a starting point of the spin-paired SCF closed' 

shell orbitals, the program iterates the two sets of coupled 

c< and 	-spin orbitals to a pre-determined degree of consistency. 

The total 77- -energy of the molecule is calculated at each 

iteration. 

The use of a spin projection routine on this SCF state 

is controlled by an input data card. The results of these various 

approximations are printed out at the conclusion of each step. 

Special procedures are included to help the iterations 

converge, one of these is a subroutine VSORT . This routine 

sorts the vectors from successive iterations so as to ensure 

electrons are always assigned to the intended orbital, even if 

in the SCF procedure they may chance to become energetically 

unfavourable. The input data is now detailed. 
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N33, ICV, ICON,(3I3): These three control integers are all 

punched on the same card. N33 controls the use of the spin-

polarizing routine PURV , which is only called if N33=5 . 

Subroutine PURV serves to alternate CK and
i 

-spin density in 
 co.K, -ED 	5-p the input bond matrices vs 	and 1,--  9 and is used to obtain 

spin-polarized ground-states. For non-ground state use N33/5 . 

If ICV=I , the routine VSORT is by-passed, with ICVyI , it is 

used after every iteration . ICON controls the spin-projection 

routine, with ICON=2 only the simple projection is used,(see 

page 248 ) . If ICON=3, both simple and accurate projections 

are performed, and the set of "corresponding orbitals" found. 

With ICON=I , only the projected results are obtained. 

Title Card,(Free Format): This is read as in program (2) . 

N,(13): The number of atoms in the molecule, N <, 30 . 

NIT,(13): Maximum number of SCF iterations, typically NIT 450 . 

GA,CONVG,DVC,(3F20.8):  GN controls the approximation used for the 

Coulomb integrals. These are given the value of GN times the 

Mataga and Nishimoto approximation. Normally GN=I . CONVG  is the 

convergence criterion. For a self-consistent state we require 

simultaneously, 

(pri,_,j_1)1  < 

e 

CONVG 

CONVG 

Usually we have CONVG=0.00I . 
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DVC controls the degree of feed-back for successive bond-matrices 

used as input for the SCF iterations. A typical value would be 0.3. 

/R(N,N),AI(N),E(N),Z(N),H(N,N)/,(F20.8):  These are defined in the 

previous program. 

/ANA(N)/,(F20.8):  This matrix specifies the CC-orbital 

occupation numbers, counting from the lowest occupied upwards. 

Thus ANA(i)=I if 0CK  is occupied , otherwise ANA(i)=0 . 

/ANB(N)/,(F20.8):  The ? -occupation matrix , assigned as ANA 

above. 

N5,(13):  If N5=5, the program restarts on a new set of input 

data, after concluding the SCF procefdure on tho first set of 

molecular data. Otherwise,if N5=I , the program stops. 

When N5/2 or 5 , a new set of occupation numbers,ANA and ANB, are 

read, and another excited state treated. 
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SIBFTC CECK4 	DECK 

DECK4 EFN_ 	SOURCE STATi.7.1 	— IFN(S) •••._ 
••___ • 	• - 

DIMENSION AI(30)1 E(30)“(30),ANA(30) / ANB(30)/3ETA(30 /30)/ 
,.; 1 GAMA(30/ 30) / ENA(30)1 P4(301 30) / P8(30 / 30)/TA(30730)1  

2 F8(30 / 30)/OA(30/30)1Q8(30130),C(30,30)j0(30130), 
3 CH(30,30),CA(30,30),CB(30,30) _ 
4 	/ X(30 / 30)/CF(30/30) 

C 	.-MOLECULE OPEN SHELL LCAO.MO.SCFs' 
208 READ(5,984) N33/ICVIICON. 
984 FORMA-1(313) 

C 	N33 LABELS TITLE REQUIRED 
CALL RITE(N33) 

500 READ(5,1) N 
N GIVES. THE NUMBER OF_ ATOMS Or  THE MOLECULE 

1 FORMAT(I3) 
READ(5,1)NIT.  

READ(51 900) GN,CONVG,DVC 
900 FORMAT(3F20,8) 

-N5=1 
_D.0_21=1/N 
DO 2 J=I,N 
READ(5,3) PA(I / J) 

2 PA(J1 I)=PA(1 1 J) 
3 FORMAT(F20.8)- 
READ(5/ 3) (Al(I)I I=1IN) 
READ(51 3) (E(I) / I7=1/M).  
READ(5,3) (Z(I)II=11N) 

-DO 9_I=1 I N 
DO 9 J=I T N 
READ(5,3) H(I/J)— 
BETA(I / J)=H(I,J) 
BETA(JI I)=H(I1J) 

9 H(J/ I)=H(I 1 J) • 
READ THF: HUCKEL 	•_-- 

C 

	

	
• 

RESONANCE INTEGAL MATRIX 
DO .10 I=1 / N. 

10 BETA(I 1 1)=0.0. 
WRITE(6 1 23) 

23 FORMAT(14H HULK EL MATRIX,//) 
DO 24 I=1 7 N 

24 WRITE(.6 / 301) (H(I / J)1,1=1/N) 
301 FORMAT(12F8.3) 

WRITE(6151) 
51 FORMAT(1H 1 ////21H IONIZATION POTENTIAL///) 

WRITE(61 30I) (A1(I),I=1/N) 
WRITE(61 52)  

52 FORMAT(1H //// / 1BH =L CTRON AFFINITY,//) .  

WRITE(6 / 301) jE(I),I=11 N) 
WRITE(6,56) 

56 FORMAT(1H ,///,14H 	MATRIX///) 
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DO 57 1=1 / N  
57 WRIT(6 / 301) (PA(I,J)/J=10) 

WRITE(61 58) 
58 FORMAT(1H / /// / 17H RESONANCE_NATRIX t//) 

DO 59 I=10 
59 WRITE(6 / 301) (BETA(I,J) J=I IN) 

WRITE(61 53) 
53 FORMAT(1H ,///,23H NUMBER OF P1 ELECTRONS,//) 

WRITE(6,301) (Z(I)tI=1,N) 
CALL COUL(AI / EI PA I GAMAI N) 
DO 753. 1=10 
00_753 J=1,N 

:753 GAMA(I/J)=GN GAMA(I / J) 
WRITE(6 1754) GN 

754 FORMAT(1H ,/// / 13H-GAMA FACTOR=1 F6.3,//) 
GAMA(I,J) MATRIX 
READ(51 3) (ANA(I)I I=1/N) 
READ(5,3) (ANB(I)II=1 / N) 
WRITE(6154) 

54 FORMAT(1H ,///,17H ALPHA OCCUPATION,//) 
WRITE(6 1 301) (ANA(I)/IF:11N) 
WRITE(6 / 55). 

5 FORMAT(1H ////,16H B'ITA OCCUPATION,//). 
WRITE(61 301) (ANB(I)/I=1 / N) 
WR1T2(6 1 901) 

901 FORMAT(1H ,///,31H CLOSED.SHELL SCF APPROXIMATION / //) 
IF(N5.NiE.1) CALL PUTIN(CH / PA I PBTANA,ANB/N) 
IF(N5.N-.1) GO TO 581 
CALL SCFCS(HpBETA I GAMA/AIgE/Z/FAICA/CB/PAOBIANAIANB/ENA,N) 
IF(N33.EQ.5) CALL PURV(PA / PBI N) 
DO .902I=1,N 
DO 902 J=1,N 
CH(I1J)=CA(I1J) 

581 WRITE(6,60) 	: 
.60 FORMAT(1H ,///110H PA MATRIX,//) 

DO 61 I=1IN 
61 WRIT (6 1302) (PA(I/J),J=1-0)' 

_302 FORMAT(1H liOF10.5) 
WRITE(6 1 62) 

62 FORMAT(1H ////110H PB MATRIXt//) 
DO 63 I=1/N 

63 WRITE(6 / 302) (PB(J1J),J=1 N) 
,MRITH(61903) 	. 

903 FORMAT(1H 1 ///1 19H SPIN POLARIZED SCF, //) 
DO 11 L=1 I NIT 
VC=1.0-DVC*FLOAT(L) 
IF(VC.LT.0.0)VC=0.0 
VCM=1•0-VC 
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CCNV=VCM*CONVG 
CALL FMAT(A11EIPA/PB/L,GAMA,BETA 
F MATRICES ALPHA AND. BETA -- 
CALL RECAL(FA,QA,ANA,N,CA,X,CF,ICV) 
CALL RECAL(FBIQB,ANBINIC8,X/CFIICV) 
RECALCULATES P MATRICES AS QA AND QB 
PEN=POLEN(FA / FBIQAIQB,AI/BETA/LiGAMAIN)- 
WRITE(67757) PEN 

757 FORMAT(1H 1 ///117H TOTAL PLENERGY7,F10.4///) 
IF(L.7'1Q.NIT) GC TO 81  
D0,13 I=1 IN: 	- 
DO 13 J=1/N 

13 IF(ABS(RA(I,J).".QA(I / J)).GT.CONV.OR. 
1 	ABS(PB(I,J)-QB(I,J)).GT.CONV) GO TO 

CONY 
904 FORMAT(1H / ///28H METHOD HAS CONVERGED/ 

51. WRITE(6,31) L 
31 FORMAT(1H ////122H_NUMBER OF IT -T-:RATIONS= 13 ///) 

WRITE(61 16) 
16 FORMAT(16H FINAL PA MATRIX,/1) 

DO 64 I=1IN 
64 WRITE(6,302) (QA(It..1),J=10). 

WRITE(6 / 17) 	. I - 	
• _ _ 

17 FORMAT(1H ////216H FINAL PB:.MATRIX/f4) 
DO 65 1=1 1 N 

' 65 WRITE(61 302) (O6(I1J)/J=11N) 

905 FORMAT(IH ,//,29H CHARGE AND 
00,906 I=1,N. 
DO 906 J=1 I N 

906 C(I,J)=QA(I,J)+QB(I2 J.)_ 
DO 907 .1=1 / N 

=907 WRITE(6,302) (C(I/J)2:17=.1/N)  
WRITE(61 908) 
FORMAT(1H ,///,5H ATO111 1.013H SPIN DENSITY 10X, 
115H CHARGE DENSITY//) 

,:_.. _DO 909 I=11N 
:X(1 1 1)=QA(III)-QB(I / I) 
WRITE(62755) I1X( 1 / 1 )- /C(1.1I) 

_755 FORMAT(IH / 13,14X / F8.5,14X/F3.51/) 
909 CONTINU 

CALL BEGEN(NA / FA/C / MI N) 
:CALL_VSORT(CI CAIX/CFIENA,NIIQV). 
WRITE(61 69) 

69 FORMAT(1H ,///,18H ALPHA .EIGENVALUES1 / ). 

WRITE(6,302) (ENA(I),I=1IN). _ 
WRITE(62 70) 	_ 	.. • - - 

70 FORMAT(1H 1///,19H ALPHA .EIGENVECTORS7//)_ 

91_ 

CONV.F.,F8.51/) 
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DO 71 I=1 / 11'. 	
7 - 

71 WRITE(67 302) (C(I 7 J)74=17N)_ 
CALL CEGEN(ENAIFB,C7N7N) 
CALL VSORT(C I CB7 X7CFJENAIN7ICV) 
WRITE(6,72) - 	r 	- 

72 FORMAT(1H 7 ///717H BETA EIGENVALUES7//) 
WRITE(67 302) _(ENA(I),I=17 N) 
WRITE(6773) 

:73 FORMAT(1H 7 ///t1SH BETA_EIGENVECTORS7//) 
DO 74 I=17N 

.,.:34_WRITE(67302) (C(I,J)7J=11N) 
CALL SPIN(QAtQB7PAIPB7FA,FBICA CB7C7 CF7H7.XIBETA,AI 

INI ICONI ANAuANB) 
GO TO 205 	_ 

-91 DO 32 I=1,NI 
DO 32 J=17N 
PA(.17,1)=VC*PA(I7 J)+VCM*QA(I,J) 

32 PB(I 7 J)=VC*PB(I7 J)+VCM*08(I,4) 
-11 CONTINUil 
205 READ(57 1) N5 

IF(N5.EQ.5) GO TO 208 
IF(N5.EQ.1) GO TO 751 
WRIT; (6,752) 

752 FORMAT(1H 7 ///,14H EXCITED STATE, //) 
GO TO 800 	 • 

751 STOP 
END 

Z 7 GAMAI  

SIBFTC SPP 	DECK 

SPP 
	

EFN 	SOURCE STATEMENT 
	

F N(S) 

SUBROUTINE SPINNAI QB7 PAI PB FAI FBI CA 7 CB,C 7 CF 7 H7X I BETA 7 AI 7 E I Z 
-1 GAMA I NI ICONIANA7 ANG) 
DIMENSION QA(307 30)70B(30730),PA(30730) 7 PB(30,30) 7 FA(307 30)_, 
1 FB(30730)7 CA(30730)7CB(307 30)7C(307 307CF(307 30),H(307 30)- 
1 ,X(30730)7BETA(30730),AI(30)7E(30)7Z(30)7GAMA(307 30) 

IANA(30)7 ANB(30). 
Q=0.0 
P=0.0 
DO 1 I=1 7 N 
P=P+ANA(I) 

1 Q=Q+ANB(I) 
PPQ=P+Q 
PMQ=ABS(P-Q) 
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SZ7PMQ*0.5 
SM=SZ*(SZ+1.0) 

WRITE(612) 
FORMAT(1H 1 /// 1 31H***)1SPIN PROJECTIM.4. ROUTINE****1//) . 
WRITE(6,3) 
FORMAT(23H MULTIPLICITY:OF STATE=4I2 1 10X / 21H 	COMPOMENT 

1F5.2,//,25H SPIN OF PURE STATE,(S2)=I F5.2i//) 
CALL AMAT(QA 1 Q8 1 FAiN) 
STORES (PQ) IN FA. 
T=SECTR(FAgN) 
T=TRACE(PQ) 
SM=0.25*PMQ*PMQ-1-0.5*PPQ-T 
WRITE(614) SM 

4 FORMAT(23H UNPROJECTED SP_IN/IS2)9.61//) 
WRITE('6,5) 

r,5 FORMAT(27H SIMPLIFIED SPIN:PROJLCTION.71/) , 
DO 6 I=11 N 
DO 6 J=10 

6 X(I1 J)=FA(I1 J) 
CALL AMAT(FA,X,FB,N) -..- 

C STORES(PQPQ) IN Fa 
T2=SECTR(F80) 
T2=TRACE(PQPQ) 
X(1,1)=(SZ+1.0)*(SZ-4-2.0)-SM 
SM=SM-UP-T)*(0.-T)+2.0*(T-T2))/X(111) 
WRITE(677) SM 

7 FORt4AT(23H AFTER PROJECTIONI (S2)= 1 F9.61 //) 
CALL AMAT(FA,QA,CA,M) 
CALL AMAT(QBt FA lCB g N) 
CALL AMAT(QB I QA,CF I N) 

C 	CA=(PQP) 	CB=(QPQ) 
DO 8 I=10 
DO 8 J=IgN 
PA(I 1 J)=QA(I,J)-(-CA(I J)-0.5*(FA(I1J)+CF(IgJ)))./X1111) 
PA(JI I)=PA(IgJ) 	- - 	--- 
PB(I 7 J)=0B(I1J)-(CB(I1J)-0.5*.(FA(IpJ)+CF(I1J)))/X( 1 1 1 ) 

8 PB(JI I)=PB(IIJ)  

PA AND PB ARE NEW SPIN PROJECTED MATRICES 
WRITE(60) 

9 FORMAT(29H SPIN PROJ:CTD BOND MATRICL-i"Sg//) 
WRITE(6/10) 

10 FORMAT(11H ALPHA SPIN, //) 
DC 11 1=1 1 N 

11 WRITE(6212) (PA(1 1 J),J=1gN) 
12 FORMAT(10F10.6)_ 

WRITE(6213) 
13 FORMAT(1H y///110H BETA SPIN,M 

DO 14 I=1 1 N.  
14 WRITE(6 1 12) (PB(I 1 J),J=11N) -;* 

... 

CF7--(QP1 

..• 
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DO 15 I=11 N 
_ 	DO 15 J=I/ N 

H(I/ J)=PA(I1J)+PB(I1J) 
H(J/I)=H(I1 J) 
_WRITE(6/ 16) 

16 FORMAT (1H 1//11SH TOTAL -BOND MATRIX/ if) 
DO 17 I=11 N 

17 WRITE(6,12) (H(I1 J)/ J=11N) 
_ CALL SPWRT(PA/ PB1 H/X/ N) 

CALL PROJEN(BETA I AIIEI ZI OAMAI QA/ QB/FAIPAIPB/X:H/CIN) 
IF(ICCN.EQ$2) GO TO 26 
4IRITE(6 1 18) 

18 FORMAT(371-****MORE ACCURATE SPIN PROJECTION****///) 

IF(P.GT.Q) X(1y2)=Q 
_X(1,2)=X(1/2)+SZ*(SZ+1.0) 
X(1/2)=A 
X(113)=X(112)*X(1/2) 
X(113)=A*A 

--T3=TRACH(FBI FA I N) 
T3=TRACE(PQPQPQ) 
X(1/4)=X(112)-T 
X(1,4)=S*S 
X(1/ 5)=X(1/ 3)+P*Q+2.0*(T*T-T2)-T*(2.0*X(112)+PPQ-2.0) 
X(115)=S*S*S*S 
X(116)=X(11 3)*X(11 2)+X(112)*P*Q+P*Q*(2.0*X(1/ 2)+PPQ-2.0) 
X(116)=X(1/ 6)-T*(3.0*X(1/ 3)+3.0*X(112)*(PPQ-2.0)+(PPQ-2.0)* 
1 	(PPQ-2.0)+P*Q+4.0*(P-1.0)*(Q-1.0)) 
X(116)=X(1,6)+2.0*(3.0*X(112)+3.0*PPQ-10.0)*(T*T-T2) 
X(1:6)=X(116)-6.0*(T*T*T-3.0*T2*T+2.0*T3) 
X(1/6)=S*S*S*S*S*S 	_ 
X(1/7)=(SZ+1.0)*(SZ42.0) 	..- 
X(126)=X(1,7)*X(117)_ 
SM=X(1/6)-2.0*,q11 7)*X(115)+X(118)*X(114) 
SM=SM/(X(115)-2.0*X(117)*X(114)+X(118)) 
WRITE(6,19) SM 

19 FORMAT(23H AFTER PROJECTIONI(S2)=/F9.61//) 
CALL AMAT(OB I CA:HIN) 
CALL AMAT(FB/QAtCyN) 
CALL AMAT(HIQB/PBI N) 
H=(QPQP) C=(PQPQP) 	PB=QPQPQ) 
X(11 2)=X(11 2)-S2*(SZ+1.0)-2.0*(SZ+1.0) 
X(11 3)=X(112)*X(1/ 2) 

C 	NEW A AND A*4 VALUES 
X(211)=X(113)+P*Q+T*(3.04-2.0*T-2.0*X(112)-PPQ) 

C 	X(2,1)=A*A+PO+TRACE(PQ)(3-2TRACLAP0-2A-N) 
X(21 2)=PPQ-4.0*T-3.0+2.0*X(1t2) 	_ 
X(2/ 2)=N-4TRACE(PQ)-3+2A 
X(2/3)=2.0*T+1.0-X(1/2) 
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X(21 3)=2TRACE(PQ)+1-A 
X(21 4)=X(1 7 3)+P*Q+T*(2.0+2.0*T-2.0*X(112)-PPV 
(21 4)=Ag-A+PQ+TRACE(PQ)(2t2TRACE(P072A-N) 

T3=SECTR(HI N) 
T3=TRAC(QPQPQ) 
DO 21 I=1,N 

, DO. 21 J=I I N 
C(I,J)=4•0*C(I,J)+QA(I,J)*(X(2,1)-Q72.0*T2) 
C(I,J)=C(I14)+(P-T)*.QB(I,J)74CB(I,J) 	--

C(I 1.1)=C(I,J)+X(2,2)*CA(I,J)+(FA(I,J).71- CF(I J))*.(X(273)7N. 

_C(I,J)-7C(I,J)-,2.0*.JFB(I,J)+H(Ilj)) 
C(. I,J)=C(I,J)/(X(2,4)-2.0*T2) 
C(JI I)=C(I,J) 
PB(I,J)=4.0*PB(I,J)+QB(I,J)*(X(211)-P-2.0#T3) 

-PB(I,J)=PB(I,J)+(Q-T)*QA(IiJ)+CA(11- J)  
PB( I 1.1)=PB( I,J)+X( 2, 2 )*CB ( I 1  J )+(FA(.1 .1)+CF(3.1_4 

...PB(I,J)=PB(I,J)-2.0*(H(I14)+FB(1.4_4))_ ---  
PB(I,J)=PB(I,J)/(X(2,4)-T3#2.0) 

-RB(..111)=PB(I,J) 
21 CONTINUE 

C. AND PB ARE:,.NEW_D77:NSITY MATRICE 
WRITE(6,9) 
WRITE(6,10) 
DO 22 I=1,N 

22 WRITE(6,12) (C(I,J),J=1,N) 
WRITE(6,13) 
DO 23 

3 WRITE(6,12) (PB(I 
DO 24_1=11N 
DO 24 J=I1N 	• 

_PA(I,J)=C(I,J)+PB(I,J) 
24 PA(J,I)=PA(I,J) 

_WRITE(6,16) 
DO 25 I=1,N 
WRITE(6,12) (PA(I,...1),J=1/N) 
CALL -SPWRT(CI PB,PAIXIN) 
CALL PROJEN(BETAIAI,E1Z/GAMA/QA,UrFAICIPB4X,PAIH/N) 
IF(ICCN.Q.3) CALL EQ0B(CAICBIQAt9BIPATPBINIAI.) 

26 RETURN 
END 

..1),J=1,N) 



SUBROUTINE AMAT(ArB,C,N) 
DIMENSION A(30230)2B(302 30)2 C(302 30) 
DO 1 I=1 2 N '77 
DO 1 J=12 N 
C(I2J)=0.0 
DO 1 K=1 I N 

1__C(I1 J)=C( I J)+A(I,K)*6(K/ J) 
RETURN 
END. 

. DECK 

EFN 	SOURC. STATEMNT 
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-SIBFTC SW 

SW 

DECK 

SOURCE STATEMENT 

SUBROUTINE SPWRT( PA, PB,H2  X I N ) 
DIMENSION PA( 302  30 )_ 2  PB( 30 2  30 ) 2 X( 302  30) 2 1-1( 30 230) . 
WRITE(6211 . 

1 FORMAT ( 1H 2 // 5H ATOM, 10X, 13H .SPIN DENSITY, 10X, 15H .CHARGE _. 
DE.NSI TY 	)  

E)0.. 2 I=1 
X(1 2 2 )=PA( 	I )-PB( I/ I) 

- WRITE(613) IIX(1-7 2)4H(II I ) 
2 CCNTINUE 
3 FORMAT(1H 1132 14X, F6.5,14X, F.8.52 / ) 
RETURN ..,.  

SIBFTC AM 
	

DECK 

AM - EFN 	SOURCE STATEMENT _ _ 	. FN( S_) 

SIBFIC TRC 

TRC 

REAL FUNCTION TRACE (A I B / N) _ 
DIMENSION A(30,30)78( 30,30) 
TRACE=0.0 
DC 1 I=1 
DO 1 J=1 TN 

1 TRACE=TRACE+A( I /J )*.B( J I ) 
RETURN 
END 
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iI6FT&H1<L 

SUBRUOTPIL 116C1<HF-/C- NAiPf;t4) 
DIPENSIUA k(30 7 3U),CA(30 30},ENA(30), 

40F,  
OH 

PA(I T J)=0.0 

PAtI,J)=PA(1,J)+CPAK I I)*CA(K 
REFU:kti 
END 

DECK 

0 ECK1 
	

EFN 	SOURCE STATEMENT - IFN(S) 

SUBROUTINE COUL(AI,E,R,GAMA,N) 
DIMENSION AI(30),E(30),R(30,30),GAMA(30,30) 
EQUATION 8 ,MONOMER,OPEN SHELL .  

DO 1 I=1 1 N 
DO 1 J=1,N 

1 GAMMI,J)=1.0/((R(I,J)/14.41)+(2.0/(AI(I)-E(I)+AI(J) 
_1-E(J)))1 
RETURN.  

END 

SIEIFTC PT 	DECK 

EFN 	SOURCE STATEMENT 	IFN(S) - 

SUBROUTINE PUTIN(CHI PAI PB,ANA / ANB,N) 
-LOIMENSION CH(30,30),PA(30,30),PB(30,30),ANA(30),AN8(30): 
DO 1 1=1 I N 

I - j=1IN 
PA(I,J)=0.0 
PB(I / J)=0.0 
DO 1 K=1 1 N 

_PA(I,J)=PA(I,J)+CH(K / I)*CH(KIJ)*ANA(K) 
1 PB(I,J)=PB(I,J)+CH(KII)*CH(KIJ)*ANB(K) 
RETURN 
END 
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SIBFTC DECK3 	DECK 

0E0(3 
	

EFN 
	

SOURCE STATEMENT— 
	IFN(S) 

SUBROUTINE FMAT(AIIEI PAOBI ZI GAMATBETA,NtFAIFB) 
:TDIMENSION AI(30)1 E(30)tPA(30130),PB(30130),Z(30), 
1. GAMA(30,30),BETA(30,30),FA(30,30),FB(30,30) 

=.=EQUATIONS 3 AND 4 ,OPEN SHELL MOLECULE 
DO 2 I=It N 
FA(I t I)=0.0 
FB(ItI)=0.0 
DO 1 J=1,N 

_ IF(I.EQ.J) GO TO 1 
FA(I t A=BETA(I1 J)—.PA(It.1)*GAMA(I1J) 
FB(It..1)=BETA(I 1 J)—PB(I t.))*GAMA(ItJ) 
-FA(I t I)=FACII I)+GAMA(I t s))*(PA(JtJ)+PB(JtJ)—Z(J)) 
FB(II I)=FB(ItI)+GAMA(ItJ)*(PB(JtJ)+PA(JtJ)—Z(J)) 
CONTINUE 

__FA(II I)=FA(I t/I)—AI(I)+PB(ItI)*(AI(I)—E(I)) 
2 FB(I t I)=FB(I I I)—AI(I)+PA(III)*(AI(I)—E(I)) 
RETURN 
END 

,SIBFTC POL 
	

DECK 

POL 
	

EFN 
	

SOURCE STATEMENT 
	

IFN(S) 

r.—REAL FUNCTION POLEN(FA t FBOA,PBt AI T BETAI Z t GAMA T N) 
DIMENSION FA(30130),FB(30,30)0A(30730)08(30,30),AI(30), 

2(30),BETA(30,30),GAMA(301.:;10) 
,POLEN=0.0 
—DO I I=1111 

DO 2 J=10 
AF(I.EQ.J) GO TO 2 
POLEN=POLEN+PA(..10)*(FA(I,J)+KjA(It J))+PB(J,I)*JFB(I,J)-1- 

1 - 	BETA(I,J)) 
- X=X+Z(J)*GAMA(..it I) 
2 CONTINUE • 
1 _POLEN=POLEN+PA(I t I)*(FA(I I I)—X—AI(I))+PB(I t I)*(FB(I t I)—X- 
1AIM) 

-.POLEN=0.5*POLEN 
RETURN 
END . 

•.••E-.7777:  
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DECK6 

DECK 

EFN 	SOURCE STATEMENT 1fN(9) 
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URCEESTATMD 

	 UBROUTINEPURVT-PN-i7PBtUr 
DIMENSION PA(0/.30) / PB(A 130) 
-WRITE(61 1)',- 

	 1 FORMAT(1H 1//1 26H PA AND P6 ANTISYMMETRIZED,/) 

PA(I I I)=PA(I / I)*1.2 

DO 3 1=2011 2 

3 PA(I,I)=PA(1,1)*-0.7 
-RETURN 

	 END 

$IBFTC STRCSTRC 	DECK 

STRC SOURCE STATEMENT 

_ . 1 

SUBROUTINE RITE(N) 
DIMENSION CHAR(12) 
READ(51 1) (CHARII),I=1 / 12) 
FORMAT(12A6) 
WRITE(6,2) (CHAR(I)/I=1112) 
FORNAT(1H1 1 1H ,12A6,///) 
RETURN 
END 

REAL FUNCTION SECTR(A / N) 
DIMENSION A(30,30) 
SECTR=0.0 
DO I=10 

1 SECTR=SECTR+A(III) 
RETURN 
END_ 



$IBFTC PJE 

PJE_. EFN_ SOURCE- STATEMENT: IFN(S) 

SUBROUTINE PROJEN(BETAtAI.IE T Z,GAMA I QA / QB,FA / PA / PB,X,HI C / N).  
DIMENSION BETA(30,30),AI(30),E(30),Z(30),GAMA(30,30),QA(30,30), 

I 	4B(30,30),FA(30,30),RA(30 1 30)1PB(3c00),X(30 / 30) 7.H(30J30).,. 
,2--- C(30,30) - 

DO 1 I=717 N 
:C(I,I)=0.0, 
DO 2 J=17N 

.G0_710.2 
C(I t I)=C(I / I)-Z(J)*GAMA(I 

2 CONTINUE 
- C(I,I)=C(III)-AI(.I) 

X(10)=TRACE(HI C,N) 

)1(I / I)=0.0 

DO 4 J=I 1 N 
_ -„IF(I....:Q.J)._GO-170 4 .-- 

_C(ItI)=C(IyI)+NA(J,J)+QB(J,J))*GAMA(ll_J) 
.C(..I,J)=1.-Q81I1J)*GAMA(I,J) 
H(I,J)=-QA(I / J)*GAMA(I / J) 

▪ CONTINU3.  
H(I t I)=C(I t I)+QB(II I)*(AI(I)-E(I)) 

3---C(I T I)=C(I 1 I)+QA(I 2 1)*(AI(1)-E(I)) 
X(1,3)=X(113)+0.5*(TRACE(PA,H,N)+TRACE(e13.7CtN)) 
X(11 4)=0.0 
D0_5 I=1,N 
DO 6 J=1,N - 
IF(I.EQ.J)..G0 TO 6 

6 CONTINUE 
(AI(I)-E(I)) 

DECK 

- 319 - 

X(114)=0.5*X(174)/X(It1) 
WRITE(6,7) X(11 4) 

.7 FORMAT(1H 1//117H_CORRECTION TERM7 F10.62 //) 
▪ _ -_-X(1,3)=X(Iy3)-X(1,4) .  

WRITE(628) X(113) 
8:FORMAT(34H TOTAL ENERGY WITH SPINPROJECTED=,F12.6,//). 
RETURN 

-_.END . 
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7-$IBFTC COBO 	DECK 

COBO 

.SUBROUTINE EQ0B(CAtCBIQATQBIPAIPBgNtEIG) 
DIMENSION CA(30 1 30) 1- CB(30 1 30) 1 QA(30 1 30),QB(30y30)1PA(30,30) 

1 	PB(30t30) t EIG(30)_ 
C.B=QPQ 

DO 1 I=10 
1,--DO. 1 J=10 
QA(ItJ)=CA(IIJ) 

- CALL HE- SSE=N(QA,N) 
CALL QR1EIG(QA I NI EIG) 

2 r=ltN . 
2 QAII t I)=EIG(I) 

_QB(111)=0.0 
N:1 3 J=1IN 

IF(EIG(I).GT.1.0E-5) QB(1 1)=QBUlalt1.0_ 
3_CONT/NUE 

J=IFIXIQB(1,1)) 
WAITE(6,4) 

4 FORMAT(1H ,///,34H CORRESPONDING ORBITAL COEFFICENTS 
- 	WRITE(6g5) 

.5- FORMAT(BH ORBITAL210X 1 10H C-0 COEFF 
-DO  6 . 1=-I g J -7  
QB(30)=21G(I) 
QB(1t1)=SQRT(EIG(I)) 
QB(1y2)=0.5*(1.0-QB(111)) - 

.-IF(QB(1 / 2).LT.1.0E.710)-QB(11_2)=1.0=-10. 
,QB(112)=SQRT(QB(112)) 

IgQ8(11 1)7QB(1y2) 
6 CONTINUE 	_ _  

F ORM AT ( 1H 3:C 1 121 15X, F6.4 1 .12X 1 F6.4g/ 
WRITE(6 1 8 ) 

1///110H ALPHA C-70 1 /) _ 

-. DO 9:  I=11 ,1 

CALL VCIR(CAgEIGI NgW) 
WRITE(6,10) (EIG(OyK=11N) 

10 FORMAT(10F10.6) 
9 CONTINUE 

WRITE(6111) 
_11 FORMAT(1H ,///,9H BETA O-Dt/). 

DO 12 I=1,J 
W=QB(31 I)  
CALL VCTRICBIEIGgNgW) 
WRITE(6,10) (EIG(K)1K=1IN)_. 

12 CONTINUE 
RETURN 

EFN 	SOURCE STATEMENT 	IFN(S) 

//) 

10)( 1 6H DELTA,/) 



321- 
SIBFTC SOTVCT. DECK 

	

SOTiCT 	EFN 	SOURCE STATEMENT 
	

IFN(S) 

SUBROUTINE VSORT(CyCH/ X 1 CFI ENA I N,ICV) 
DIMENSION C(30,30)1 CH(301 30)1X(301 30)/CF(30,30), 

	

1 	ENA(30)1ENAF(30)1IM(30) 
-,IF(ICV•EQ4,1) GO _TO 
DC 1 M=10 
DC 1 I=1 / N 
X(MI I)=06,0 
DO . 1 J=1IN 

1 X(M1I)=X(M / I)+CH(I/J)*C(M J) 
DC 2 M=10_  
.IM(M)=1 
-0072 J=21N 
IF(X(M/J).LE.X(M/1))G0 TO 2 

-X(M1 1)=X(M1 J) 
.IM(M)=J 
CONTINUE 
IY=0 

I=11N 
3JY=IY+IM(I) 

IF(IY.EQ.IZ) GO TO 15 

_ 
DO 10 I=1INM1 
IP1=I+1 
DO 10 J=IPlyN 
IF(IM(I).EQ.IM(J)) GO TO 

10 CONTINUE 
-,.,,-.,,11.1F(X(I11).GE.X(J/1)) GO TO.1 

IM(I)=IZ-IYtIM(I) 
TO .13 

12 IM(J)=IZ-IY+IM(J) 
. 	7 

. 	DO 14 I=1 / N 
.14JY=IY+IM(I) 

IF(IY.EQ.IZ) GO_TO 15. 
:7--,MRITE(6/16) 
16 FORMAT(13H DOUBLE DEGEN/ /) 

15 DO 6 .1=1 / N  
. K=IM(I) 
ENAF(K)=ENA(I) 
DO 6 J=1 / N 

-6 C(K / J)=C(I1J) 
DO 7 I=1 / N 
ENA(I)=ENAF(I) 
DO 7 J=1 1 N 

7.-C(I,J)=CF(I/J) 
18 RETURN 

_ 	 • 
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SIBFIC DG3 

DC3 

DECK 

EFN 	SOURCE ST 

SUBROUTINE DEGENtEIG/ F/  
-DIMENSION EIG(30)1F(30i 
DO 1 I=1 / N 
IX(I)=0 
D0._1_ J=1 1 N 

1 A(I/J)=F(IrJ) 
GALL HESSN(A/N) 
_CALL QREIG(A / N/EIG) 
I-NM1=N-1 
A(1/.1)=0.0 
DO 2 I=1 1 NM1_ 

IF(ABS(EIG(I)7EIGIIPI)) GT,O.001) GO TO 2 
_A(111)=A(111)+1.0 

IX(IP1)=1 
--2 CONTINUE 	_ 

IF(A(1 / 1).LT40.5) GO TO 
_ 	J/0 4 I=1 / NF 

IF(IX(I).EQ.1) GO TO 4 
-:Y=EIG(I) 
-CALL VCTR(F,V,N,Y) 
DO 5 J=1 1 N 

5 C(I1J)=V(j), 
CONTINUE -----. 
WB=F(111) _ 
IF(F(111).GT.0.01) GCF_TO 1.5 7-  
DO 16 I=1 1 N 

15 W=F(111) 
F(1 / 1 )=F(1/1)*1.01 
WA=F(111) 
DO 6 I=1/N 
DO 6 J=10 

,:.6 A(I/J)=F(I/J) 
CALL HESSEN(AIN) 

_ 	CALL QREIG(A/N1Z) 
DO 7 I=1 / NF 
IF(IX(I),E(-).0) GO TO 3: 
Y=Z(I)  
CALL VCTR(F,V,N,Y) 
F( 1 / 1 )=W 
CALL COV(I / V / IX / AICIFININF)- 
F(1/1)=WA 
-DO 9 J=1 / N 

9 C(I / J)=V(J) 
1X(I)=0 

= 

A.TMENT 

CI N/ NF) 
30)1 C(301 301V(30)1A(30130)/IX(30)17.(30 
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CONTINUE:  
F(1/1)=WB 
IFtWB.GT.0.01) GO TD 10 
D0,18 I=2/N 

GO TO 10 
DO 11 I=1/NF 
Y=EIG(I) 
CALL-VCTR(f/V NO') 
DO 12 J=11N 
C(I / J)=V(J) 

11 CONTINUE 
:10 RETURN 

END 

$IBFTC CV 	DECK 

CV 	- EFN. 	SOURCE STATEMENT., 	 ••• 

SUBROUTINE COV(I / V / IX / A / C / F INI NF) 
DIMENSION V(30)/IX(30) / A(30/30)1C(30/30)1F(30/30) 
A(51 2)=0.2 
NITER=40 
CALL OTH(I / V / C / A /  IX / N / N 
A(51 3)=0.0 	-.._ 
DO . 5 L=1INITER 

--DO 2 J=1/N 
A(4 / J)=0.0 
DO 2 K=1 / N 

2 A(4/J)=A(4/J)+F(J / K)*V(K) 
A(5/1)=0.0  
Da 3 J=1 IN 

....:.3-A(5/1)=A(5 / 1)+V(J)*A(4/J) 
DO 4 J=1/N 
V(J)=V(J)-A( 5 / 2 )*(A(4 / J)-A(5 / 1)*V(J)) 
DO 7 J=1/N 
IF(ABSCV(J)-A(6 / J)).GT.0•000005) GO TO 3 

7. .CONTINUE 
_CALL OTH(I/V/CIAIIXININF) 
GO TO 9 

8 A(513)=A( 5 / 3)41.0 
IF(A(5/.3)•GT.4.2) CALL OTH(I,V,C,A,IX,N,NF) 
IF(A(5/3).GT.4.2) A(51 3)=0.0 
DO 10 J=1 / N 

.10 A(6 2 ,1)=V(J) 
5 'CONTINUE 
9 RETURN 

END 
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SOURCE STATEMENT 

DECK 

EFN 

SIBFIC DECK5 

••• 

SUBROUTINE RECAL(F,Q,ANINI CHIX,CFIICV) 
-DIMENSION F(30,30),Q(30,30),AN(30),ENA(30),C(30,30),CH(30,30 ) 

1 	,X(30,30),CF(30,30) 
RECALCULATES P FROM F EIG_NVECTORS RETURNS AS 

. CALL DEGN(ENA,F,C,N,N) 
CALL VSORT(C,CHI X I CF,ENAIN4ICV) 
DO 2 I..t..1 1 N 
DO 2 J=10 
Q(I,J)=0.0 

2 K=1,N 	- - 
2 Q(I,J)=Q(I,J)+AN(K)*C(K,I)*C(KIJ 

DO-3_1=1,N 
DO 3 J=1,N 

_ 	CH(I,J)=ClI,J) 
RETURN 

SIBFTC OTC 
	

DECK 

OTC 	EFN 	SOURCE STATEMENT. 	IFN1.$) - 
_ 	 - 

SUBROUTINE OTH(/,VICIA,IX,N,NF) 
" 	. 	 V(30)7C(30,30),A(30,30) IX(30) 

DO 1 J=1,NF 
1F(IX(J).EQ.1) GO :TO 
A(2,J)=0.0 
DO 2 K=1,N 

2 A(2,J)=A(2,J)+V(K)*C(J,K 
1 CONTINUE 

DO 3 J=1,NF 
IF(IX(J).EQ.1) GO TO 3 
DO 4 K=1 1 N' 

4 V(K)=V(K)-A(2,J) C(J,K) 
3 CONTINUE 

L,„,=,-„=„.--A(311)=0.0 
DO 5 J=1 1 N 
A(3,1)=A(3,1)+V(J)*V(J) 
A(311)=SQRT(A(3,1)) 

6 V(J)=V(J)/A(31 1) _ 
„:„-,RETURN 	_ 

END 

- " 	- 



4IBFTC QRCN 	DECK 

QRCN 
	

EFN 	SOURCE STATEMENT 
	

IFN(S)- 

PROGRAM TO CALL QR TRANSFORMATION/  MAXIMUM ITER IS 5 
SUBROUTINE QREIG(A,M,ROOTR) 
DIMENSION A(30,30),ROOTR(30) ROOTI(30) 

-IPRNT=0  
N = M 
A150=N 

_.,_,.-1F(IPRNT) 80,81,80 
WRITE (6/104) 

81 	ZERO = 0.0 
jJ=1 

477 XNN=0.0 

AA = 0.0 
8-= 0.0 

= 0.0 

FZ.=0.0 

r.ITER =.0 
1 _IF(N-2) 13/14/12 
13 IF(IPRNT) 82,83,82 
:82 _WRITE (6,105)A(1,1) 

ROOTR(1) = A(1/1) 
- ROOTI(1) = 0.0 
1 M50=N50-1 
DO 505 K50=1050 
K1=K50+1 

, CO 505 J50=K1 /N50 
IF(ROCTR(K50).LT.ROOTR(J50)) GO TO C)5 

504 X1=ROOTR(K50) 
_,ROOTR(K50)=ROOTR(J50) 
ROOTR(J50)=X1 • 

505 CONTINUE 
RETURN 

14.  JJ=-1 
-12 X = (A(N-1,N-1) - A(N,N))**2 

S = 4.0*A(NIN-1)*A(N-10) 
.ITER = ITER + 1 
IF(X .EQ. 0.0 .OR. A8S(S/X) .GT. 1.0E-8) GO TO 15 

16 IF(ABS(A(N-1 1N-1))-ABS(A(NIN))) 32,32,31 
_31 E = A(N-1,N-1) 

G = A(N,N) 
. GO TO 33 

32 G = A(N-1,N-1) 
E = A(N,N) 

33 F = O. 
H = O. 
GO TO 24 
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15 S = X + S . 
X = A(N-1,N-1) + A(N,N) 
IF(S) 	181 19,19 

19 -  SQ=SQRT(S) 
F=0..0 
H=0.0 
IF (X) 21,21,22 

-21 E=(X-SQ)/2.0 
-G=(X+SQ)/2.0 
GO TO 24 
G=(X-SQ)/2.0 
E=(X+SQ)/2.0 
GO TO 24 

18 F = SQRT(-S)/2.0 
E=X/2.0 

-G=E 
H=-F 

24 IF(JJ)- 28,70,70 
70 0 = 1.0E-10*(ABS(G) + F) 

IF(ABS(A(N-1,N-2)) .GT. D) GO TO 26 
28 IF(IPRNT) 84,85,84 

	

84 	WRITE (6,105)E,F, ITER 
WRITE (61_105)G,H 

	

85 	ROOTR(N) = E 
ROOTI(N) = F 
ROOTR(N-1) = G 
ROOTI(N-1) = H 
N=N-2 
IF(JJ) 1,177,177 

26 IF(ABS(A(N,N-1)) .GT. 1.0E-10*ABS(A(N,N))) GO TO 50 
29 IF(IPRNT) 86,87,86 

	

86 	WRITE (6,105)A(N,N), ZERO, ITER 

	

-87 	RGOTR(N) = A(N,N) 
L.ROOTI(N) = 0.0 
N=N-I 
GO TO 177 

50 IF(ABStABS(XNN/A(NIN-1))-1.0)-1.0E-6) 63,63,62 
_.62 IF(ABS(ABS(XN2/A(N-1,N-2))-1.0)-1.0E-6) 63i63,700 .  

63 VQ=ABStA(N1 N-1))-ABS(A(N-1,N-2)) 
IF (ITER-15) 53,164,64 

164. IF(VQ) 165,165,166 
165 R = A(N-1 1 N-2)**2 

SIG = 2.0*A(N-10-2) 
GO TO 60 

166 R = A(N,N-1)**2 
SIG = 2.0*A(N,N-1) 
GC TO 60 

64 IF(VQ) 67,67,66 
66 IF(IPRNT) 88,85,88 

	

_88 	WRITE t6,107)A(N-1,N-2) 
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GO TO 84 
67 IF(IPRNT) 89,87,89 
89 	hRITE (6,107)A(N,N-1) 

GO TO 86 
700 IF(ITER .GT. 50) GO TO 63 

IF(_ITER_.GT. 5 _ ) GO TO 33  

	

701 Z1= 	((E-AA)**2+(F-B)**2)/(E*E+F*F) 

	

-'22= 	. -((G-O)**24-(H-DD)**2)/(G*G+H*H) 
JF(Z1-0.25) 51,51,52 

51 1F(Z2-0.25) 53153,54 
53 R=E*G-F*H 

SIG=E+G 
GO TO 60 
R=E*E 
SIG=E+E 
GO TO 60 
IF(Z2-0.25) 55 5 691 
R=G*G 
SIG=G+G 
GO TO 69 

6 1 R = 0.0 
SIG = 0.0 

60 XNN=A(N/ N-1) 
XN2=A(N-1,N-2) 
_CALL QRT(A,N,R I SIGI D) 
AA=E 
B=F 

- C=G 
DO=H  
GO TO 12 

104 _FORMAT(////1X, 9HREAL PART 6X 14HIMAGINARY 
-1,  13HTAKEN AS. ZERO 6X 4HITER //) 

105. FORMAT(1X 1 E15.813X1 E15.8, 42X 13) 
107 FORMAT(56X E13.8) 

END 

... 

--- 

PART 26X 
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-SIBFTC *QRT 	DECK 

*QRT EFN .SOURCE STATEMENT. 

SUBROUTINE ORT(A/N,R,SIGID) 
DIMENSION A(30,30),PSI(2),G(3) 
N1 = N - 1 
IA = N 2 
IP = IA 

IFN(S) 

IF(N3) 101,10,60 
60 	DO 12 J = 3,N1 

J1 = N 	J 
IF(ABS(A(J1+1,J1))D) 	10,10,11 

11 ZEN = A(J1+1,J1+1)*(A(J1+1,J1+1).-SIG)+A(J1+1,J1+2)*A(J1+2, 
1J1+1)+R 
IF(DEN) 61 1 12,61 

61 	IF(ABS(A(J1+1,J1)*A(J1+2,J1+1)*(ABS(A(J1+1,J1+1)+A(J1+2/J 
1 +2) 
1-SIG)+ABS(A(J1+3,J1+2))l/DEN)-D) 10,10,12 

12 IP=J1 
10 DO 14 J=1,IP 

J1=IP-J+1 
IF(ABS(A(J1+1,J1))D) 

	
13,13,14 

14 IQ=J1 • 
13 DO 100 I=IP,N1 

IF(I -IP) 	16,15,16 
15 	G(1)=A(IP,IP)*(A(IP,IP)-SIG)+A(IP,IP+1)*A(IP+1 IP)+R 

G(2)=A(IP+1,IP)*(A(IP,IP)+A(IP+1,IP+1)-SIG) 
G(3)=A(IP+1,IP)*A(IP+2,IP+1•) 
A(IP+2,IP)=0.0 
GO TO 19 

16 	G41)=A(I,I1) 
G(2)=A(I+10..-1) 
IF(I-IA) 	17417,18 

17 	G(3)=A(I+21I-1) 
GC TO 19 

18 	G(3)=0,0 
19 XK = SIGN(SQRT(G(1)**2 + G(2)**2 + G(3)**2), G(1)) 

22 	IF(XK) 	23,24,23 
23 AL=G(1)/XK+1.0 

PSI(1)=G(2)/(G(1)+XK) 
PSI(2)=G(3)/(G(1)+XK) 
GC TO 25 

24 AL=2.0 
PSI(1)=0.0 

' PSI(2)=0.0 
25 	IF(I-IQ) 	26,27,26 
26 	IF(I-IP) 	29,28,29 
28 	A(I,I-1)=-A(I,I-1) 
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GO TO 27 
29 	A(I,I-1)=-XK 
27 	DO 30 J=I I N 

IF(I-IA) 31,31,32 
C=PSI(2)*A(I+20) 
GO TO 33 
C=0.0 
E=AL*(A(I,..1)+PS1(1)*AtI+1,J)+C) 

Ati-f1 r J)=A(I+1 7 J)-PS1(1)*E 
IF(I-IA) 	34,34,30 

34 	A(I+2,..1)=A(I+2,J)-PSI(2)*E 
30 .CONTINUE 

IF(I-IA ) 	35 35 36 
1=1+2 
GO TO 37 

36 L=N 
37 DO 40 ..1=IQ:1_ 

IF(I-IA) 38,38,39 
C=PSI(2)*A(J,I+2) 
GO TO 41 

39 C=0.0 
41 	E=AL.*(A(..1,1)+PSI(1)*MJ,I 11-4-C) 

A(J,I)=A(J,I)-E 
AtJ,I+1)=AtJ,I+1)-PSI(1) E 
IF(I-IA) 42,42,40 

42 	AtJ,I+2)=A(J,I+2)-PSI(2) 41-E 
40 CONTINUE 
- = IF(I-N+3) 	431431100 

43 E=AL*PSI(2)*AtI+3,I+2) 
AtI+3,I)=-E 
A(I+3,I+1)=-PSIM*E 
A(I+3,I+2)=A(I+3,I+2)-PSI(2)*E 

100 CONTINUA 
_101 RETURN 

END 
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$IBFTC HESS 	DECK 

•. 

- EFN 	SOURCE STATEMENT - IFN(S). - 

SUBROUTINE TO PUT MATRIX IN UPPER HESSENBERG FORM. 
SUBROUTINE HESSEN(A,M) 
DIMENSION A(30,30),B(50) 

- DOUBLE PRECISION SUM 
IF (M - 2) 30,30,32 

32 DO 40 LC = 3,11 
N = M - LC + 3 

= N - 1 
112 = N 	2 
NI = NI 
DIV = ABS(A(N,N-1)) 
DO 2 J=1012 
IF(ABS(A(N,J))- DIV) 2,2,1 
NI = J 
DIV = ABS(A(N,J)) 

2 CONTINUE 
IF(DIV) 3,40,3 

3 IF(NI - N1) 4, 7,4 
.4 DO 5 J. = 1,N 

DIV = A(J,NI) 
A(JINI) = A(J,N1) 

5 A(J011) = DIV 
DO 6 J = 104 
DIV 	A(NI,J) 
A(NI,J) = A(N1,J) 

t A(N1,J) = DIV 
7 DO 26 K = 1, N1 
26 B(K) = A(N,K)/A(N,N-1) 

DO 45 J = 1 1 M 
SUM = 0.0 
IF (J - N1) 46',43,43 

-46 IF(B(J)) 41,43,41 
41 A(N,J) = 0.0 

DO 42 K = 1,N1 
A(K,J) = A(K,J) 	A(K,N1)*B(J) 

42 SUM = SUM + A(K,J)'B(K) ' 
GO TO 45 

43 00 44 K = 1,N1 
44 SUM = SUM + A(K,J)*B(K) 
45 A(N1,J) = SUM 
40 CONTINUE.  
30 RETURN 

END 
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EF.INL SOURCE STATEMENT. 

1-, 

-SUBROUTINE VCTR(AX / V / NI XY) 
-= DIMENSION AX(30/30)/A(30/30)/V(30) 

.VNR=1.0 
		±ALPHA=XY 

_DO 501 I51=14N 
--110 501 J51=1 / N 

501_AtI51 / J51)=AX(I51 / J51) 
=A(1 / 1)=A(1 1 1) -ALPHA 
DO 15 I=2,N 
-A(I lI)=A(I4I)-ALPHA 

611=1-1 
DO 15 J=1 / II 
IF (AtI / J))91 151 9 
IFAABS (A(J/J))-ABS (AtI / J)))111 10/10 
R=A(I/J)/A(J I J) 
GO TO 130 

	

_11 	R=A(J 1 J)/A(I 1 J). 
DO 12 K=1/N 
C=A(J/K) 
A(J/ K)=A(I 1 K) 

12 A(I,K)=C 
130 JJ=J+1 

	

.13 	DO 14 K=JJ/ N 

	

14 	A(IIK)=A(I 1 K4-R*A(J/ K) 
15 _CONTINUE 

-:•C=A(N IN) 
VIN)=1. 

:=)0 29 I=2 / N 
JJ=N-I+1 
R=0.
II=N-I+2 
DO 25 K=II / N 

25 R=R+A(JJ/ K)*V(K) 
=IF (ABS (A(JJ/JJ))-4.0E-10)27127,28 

	

27 	V(JJ)=1. 
C=O. 
DO 26 J=II 1 N 

26. V(J)=0. 
GO TO 29 

	

28 	V(JJ)=(C-R)/A(JJ/JJ) 
29 CONTINUE 

X50=0.0 
DO 502 J52=10 

502 X50=X50+V(J52)*ViJ52) 
X51=SCRT(X50/VNR) 

-DO 503 J53=1/N 
503 V(J53)=V(J53)/X51 

RETURN- 
END 
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£It3FTC SCS 	DECK 

   

SUBRUllT1NE SCFC.S(1-1,BFT,A,GAMA,A1,F, Z _ 	- - - 

inmErs1SIum Itv3.0; 3.0) ,}sc,..EA (30,30) ,G 1( 3000) ,AI (30) ,E t 0 )1 
FA(30,30),CA(30,30),(M(30,30)7PA-(30,30),P3 (30,30),1(3° 

ANA( 3()_ ) 	( 
NI T=- 5 

LA 	1=1 01 
-jW+.IAt I ) +A 	• 
W=W*0.5 

IFI X( W 
CALL HUCK( t-i,Nf-  CA 
DO 3 L =1:  
01] 4 1=1 ,N 

)=0.0 
DJ 5 J =1 , N 

I 

FA( I , 	 (J)._)(.3A'.1A(1,4) 
5 CUNT l',.11.1E 

FA( I', I )=f rii-:(1 	1(1 )4.0. 	( I ;- I I 	( 	I (1)-E( n)" ,.. 
IF( L 	T) P_!1-=`) 

A L 	(-5:(.; EN ( 
IF (L.F.Q.:'11 -f 	Tr) 7 
DJ 6 11411 
DO 6 J=1,01 

00 6 K=.! ,NF 
- PA( I_,J )=?-) A( I 7 .1 )+CA:1K' 1)CA(K --,J)-7 0 

3 CLINT PIM= 
DO 3 	! 
WI 8  

--_ CB( I 	i=C4(1,J) _ 
PA.( I ,J)=0.0 
PB( I ,J 
00 3 K1,! 
PA ( I ,J )=- 13 ;‘,( I y .1) +( A ( K , I ) --;--CA(K,J) 	K) 	- -  

8 1)1311,J )=PI3(1,J)+CA(K,I.)*CA(K,J)*AN8(K) 
I-ZE TLIR*9 
1-J1D 

• 
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(4) A Program of Roothaan's Open-Shell Procedure .  

This program obtains self-consistent wave functions 

for half closed-shell states using the technique introduced by 

Roothaan. This method which was fully discussed in section (19) 

of Chapter II, may be used for a greater variety of excited 

molecular states than the spin-polarized method. Empty virtual 

orbitals of lower energy than the highest occupied open-shell 

orbital usually cause no trouble. 

With this procejdure some difficulty may be 

experienced in obtaining convergent results for some particular 

molecular states. However, with the judicious use of the input 

feed-back control, DVC,(see later), convergency may usually be 

achieved. 

The starting point of the SCF iterations is the 

closed-shell SCF orbital set of the particular molecule,and 

self-consistent results are assumed to have been reached when 

the bond matrix, P , has converged to the required degree. 

The total T1 is calculated at every iteration, and after 

obtaining a self-consistent state, or running out of iterations, 

the results are printed out. 

The form of input to the program is very similar 

to the previous program discussed. 

NI,(I3): This integer may be used to label various write statements 

in the subroutine RITE , but it is frequently redundent, as the 

program title is read from the next card . 
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Title Card,(Free Format): Columns I to 72 of this card are used 

to head the print out . 

N,(13):  The number of atoms in the molecule; N‘30 . 

NIT,(I3): Maximum number of SCF iterations, usually NITOO . 

If NIT iterations are reached before convergence, results are 

printed out and N2 read. 

A,B,FR,GM,(4FI0.5):  The first three of these correspond to 

Roothaan's a,b, and f ,(see page 259 ) . GM specifies the 

multiple of the Mataga-Nishimoto Coulomb integrals to be used. 

Normally GM=I. ; and for all triplet and doublet states, 

A=I. ,B=2. , and FR=0.5 . 

/R(N,N),AI(N),E(N),Z(N),H(N,N)/,(F20.8):  This is the usual block 

of input data. 

/ANC(N)/,(F20.8):  This matrix provides the closed-shell occupation 

numbers, counting from the lowest energy upwards. That is ANC(i) 

=I. if A:  is doubly occupied , otherwise it is zero. 
/ANO(N)/,(F20.8):  The open-shell occupation numbers. ANO(i)=I. 

for all occupied open-shells, otherwise it is zero. 

CONV,DVC,(2F20.5):  The first variable is the convergence 

criterion, normally CONV=0.00I .For convergence we have the 

same condition as the closed-shell SCF program,in section (2) . 
A typical value of DVC is 0.3, but if difficulty with convergence 

is experienced, values as low as 0.05 may be tried. 

N2,(13): This control integer is read at the end of the program. 

If N2/2 the program stops , if N2=2 another set of ANC and ANO 
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matrices are read in, with a new CONV,DVC card; thus a new 

excited state may be treated. 
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EFN 
	

SOURCE STATEMENT - IFN(S) 

DIMENSION AI(30),E(30),Z(30),BETA(30,30),GAMA(30,30),EN(30), 
00(30130)0C(30/30)0T(30130),C(30130)/AA(3000)i 

2 	Q0(30/30)1QC(30130) 
_4H(30720) 1 ANO(30) / ANC(30)0(30/30)1Q(3000)/F(30,30) 
. tCH(30/30) 
RCOTHAANS -OPEN SHELL SCF 
READ(57 1) N1 

-LABELS- TITLE REQUIRED 
CALL RITE(N1) 

-- FORMAT (I3) -- 
READ.(51 1) N 

--NUMBER .OF ATOMS IN. MOLECULE 
READ(5,1) NIT 
MAX. NO. ITERATIONS 
READ(5t29) A,B,FR,GM 

___RCOTHAANS A I B T F, AND THE GAMA FACTOR 
29 FORMAT(4F10.5) 

- -- 
A1=(1.0-A)/(1.0-FR) 

-:81=-(1.,0••.B)/(1.0-FR) 
RCCTHAANS ALPHA AND BETA 
DO-2 1=11N 

2 J=I I N 
----READ(5 13) -C( I ,J) 
2 C(J/ I)=C(I1J). 

"----:-GECMETRIC MATRIX READ AS C 
3 FORMAT(F20.3)  

READ(5,3) (AI(I),I=1/N) 
READ(5 /3):_(E(I)/I=11N) 

-READ(5,3) 1Z(I)I I=1,N) 
IONIZATION POTENTIAL/AFFINITY VIRTUAL CHARGE 

-DC=-4A=1,N 
DO 4 J=I1N 	_ _ 

	-- READ(513) 
__BETA( 1,J) =Ht I I ..1) 

----,IBETA(J4 I)=H(I1J) 
_ 	 4.H(J/ 1)=H(I,J) 

-C-----RESONANCE AND HUCKEL MATRICES 
WRITE(6,30)A/BIFR 

0_,FORMAT(1H 2////22H ROOTHAAN COEFFICIENTS/5Xr3H A=4.F.6.3, 
15X,3H B= 1 F6.3,5X13H F=,F6.3///) 
WRITE(61 6) 

6 FCRMAT(14H HUCKEL MATRIX / H) 

7 WRITE(6,B) (H(I,J),J=10) 
v-I8JFORMAT(12F8.3) 

WRITE(6 / 9) 
:9:FORMAT(1H 1 ///12IH IONIZATION POTENTIAL,//) 

OK1 
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WRITE(618) (AI(I)ti=10) 
- 	 WRITE(6 / 10) 
10 FORMAT(1H t ///,18H ELECTRON AFFINITY,//) 

(E1I),I=1/N) 
WRITE(67 11) 
FORMAT(IFLt///4 14H R(I t..1) MATR IX,//) -.  
DO 12 I=17N 

	12 WRITE(6-1 8) (C(ItJ),J=1,N) 
WRITE(61 13) 

-13-fORMAT(1H 4/// 1 23H NUMBER OF PL LECTRONS1//), 
WRITE(6;8) (Z(I),I=1,N) 	... 

	 'E'.1OALLtOUL(A17E7C7GAMA7N) 
DO 93 I=17N 

- DOCV- 93 J=11 11- 	77E, 
93__. GAA(I,J)=GAMA(I1 J)*GM 
- - REPULSION.EXCHANGE MATRIX 

54_ READ(5,3 ) (ANC( I ) t  1=1 01) 
':- READ(5/3) (ANO(I)7 1=10) 

OPEN AND CLOSED SHELL OCCUPATIONS 
-READ(5760) CONV,DVC 
CONV2=CONV 

-=60  FORMAT(2F20.5) 
WRITE(6,14) 

4i1FORMAT(1H ,///,24H CLOSED SHELL OCCUPATION,//) 
WRITE(6,8) (ANC(I)/I=1 / N) 

	 ___±tiWRITE(6 t  15) 
15 FORMAT(1H ,///,22H OPEN SHELL OCCUPATION,//) 

WRITE(6,8) (ANO(I),I=1 7 N) 
IF(N2.EQ.2) CALL PUTIN(CH,P,DO,DC,0101ANCIN) 
IF(N2.EQ.2) GO TO 70 
CALL SCFCS(H,BETA,GAMA,AI,E,Z,F,C,PIDO,DC,ENIANO,ANCOICH) 

	-70 WRITE (6,16) 	- 	 • 

_ _ _ _ _ _ _ _ _ 16 _-FORMAT C 	 M1H t///,31H CLOSED SHELL SCF APPROXIMATION,  
IF(N2.NE.1) GO TO 55 - 
WRITE(6,17) 

	--17:-fORMAT(1H ,//,12H EIGENVALUES,//) 
WRITE(6,18) (EN(I),I=1,N) 

8. -FORMA-1(1H pl0F10•5) 
WRITE(6,19) 

9:FORMAT(1H /////13H EIGENVECTORS,//) 
	 DO 20 I=1 7N 
-20 WRITE(6,18) (C(I7J)/J=1,N)- 
55 WRITE(61 21) 

-- 21 FORMAT(1H -/ ///729H CHARGE-AND BOND ORDER MATRIX///) 
_DO 22 1=1,11 

	22.: WRITE(6, 18) --( P( I ,J) 1,1=1,N) 
WRITE(61 23) 
ORMATI1H ////128H CLOSED SHELL DENSITY MATRIXt//) 
DO 24 1=10 
_WRITE(6718) (OC(I/J),J=1/N) 
WRITE(6,25) 
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5-J:.FORMAT(1H ,///,26H OPENSHELLDENSITY_MATRIX,/iL 
DO 26 I=1,N 

t WRITE(6,18) 100(4J),J71,N).  
WRITE(6,27) 

27:FORMAT,(1H 1///126H OPEN SHELL SCF PROPERTIES 
DO 28 L=1,N1T 

---74/C-1-71.00VC*FLOAT(L).  
	 IF(VC.LT.0.0) VC=0•0 
	 VCM=1-.0-VC 

=1=7=7= 

CONV=CONV2*VCM 
CALL .F.MAT(AI EI ZIDO,DC,GAMAINIBETArAly BlyAA,F) 
RETURNS THE F MATRIX 
CALL:RECAt( FpNIANOpANCIO / QC,Q,C, EN) 
RECALCULATES THE DENSITY MATRICES 
ENERGY=ENGY(BETA,AIIZIGAMAIF,Q0,QC,AAIFRIN) _ 
WRITE(6,50) ENERGY 

0:.:TORMAT(1H ,/,17H TOTAL PI-ENERGY= 1F11.51 /) 
	 IF(L.EQ.NIT) GO TO 31 

______0032 I=1I N 
DO 32 J=1,N 

i_32:1 1.FIABS(P(I1J)-Q(I,J)).GT.CONV) GO TO 33_ 
WRITE(6,90) CONV 

90_-:_FORMAT(1H ,//,28H METHOD HAS CONVERGED, CONV=IF8.51/) 
31 WRITE(6,34) L 
4FORMAT(1H 1///1 22H NUMBER OF ITERATIONS=03 //). 

WRITE(6,?=5) 
35 :FORMAT(15H FINAL P MATRIX,//) 

__DO 36 
36'WRITE(6,18) NCI J),J=1,N) 

_WRITE(6,23) 
-1:1037 I=1,N 

37 WRITE(6,18) (QC(I,J),J=1,N) 
WRITE(6,25) 
DO 38 I=1,N 

	 --38 WRITE(6,18) (Q0(I,J),J=1,N) 
WRITE(6,91) 

	 91-FORMAT(1H 1///15H ATOM,10X,13H SPIN DENSITY,10X,_ 
115H CHARGE DENSITY,/) 

I=1,N 
QO(I,I)=2.O*Q0(I,I) 

- WRITE(6 1 92) I'M It I),Q(I,I) 
92 FORMAT(1H 1 13,14X,F8.5,14X,F8.5,/) 

39 ANC(I)=1.0 
-CALL ENVEC(F,N1ANO ANCI CI EN) 
WRITE(6,17) 
-WRITE(6,18) (EN(I),I=10) 

	 WRITE(6,19) 
DO 40A=1,N 

40 WRITE(6,18) (C(I,J),J=1 N) 
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	 -GC TO 41 

33 DC 42 11,N 
DO 42 	'14 
P(I,J)=VC*P(I,J)+VCM*Q(I,J) 

• DOH ,J)=VC*D0( I,J)+VCM*Q0(I7J) 	_ 
42 DC( I J ) =VC*DC ( I J )+VCM*QC ( I t  J 
28_ CONTINUE 	-  
41 READ(51 1) N2 

IF ( N2•EQ. 2) GO TO 51 
GC TO 52 

1 WRITE 6 3)  
53 FORMAT (1H 1////, 18H SCF FOR NEW STATE, /// ) 

GO TO 54 	- 	 - 
52 STOP 

END 

• 

ENT 

  

DECK 
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El-N 	S.3uRCE S IA lEAENT 	- 	IF-NI 5) 

SU EittuUriNL ENv Ec( t-,N, AND, ANC C E IG ) 
NIENS 	F( 	3C ), ANC( 30 ) I AN: ( 30),C( 30,3C- ) /El (30) ,V(30) 

x=1.0/Soi-ti( 	) 
NF=0 
DO 1 I =1 , N 
11-- ( Ar-40( I 1. Gi .0 . .OR .ANC11 .GT.C.11 

1 CUNT VIDE 
- 11-,1= 1 	• 	_ • - - 	_ 

CALL SUEG( LIG, I-, C/N rIF, IR ) 
!l-( IF.G1 .1. ) Gi T.3 2 
Do 3 11,N1- 
IF( ANo( I ) .L1 .c.1'.AND.ANC( I I .L T . 	_ 	3 
Y 	E 1 (A 1) 

_ • 
	 I Ft ANC( 1 ) . GT 	1) CALL SvC1-t 	Y 1 1. (11 

IF( ANL3( I 1.GT.,(7.1 ) CALL Sv:,I (hlv,N,y,O. 5) 
Du 4 J=1, \I 

4 C(1,J)=V(J) 
3 CONTI\WE 

GO TO 5 
- z uo 6 1=1,14,F 

11-(ANC(1).LT.C.1) 
DO 7 J=10 

1 CtI,J)=CiT,J)*X 
6 CONTINUE 
5 RETURM 

END 

G9 TO 6 
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EFN 	SOURCE' STA I EME NT 

'SUBRO01- INE- 	EIG;F 'CO 	IR ) 
DIMENS ION EIG( 30 )1F( 30 30 ) 	I 30,30) ,V(30) 
DO 1. •1=1

.
,V 

IX i 1)=0 
F- DU 1 -.)=1",N 

Ct I t J)=0.0 
I At ITJ)=F( 1,J ) 

CALL HESSEN( AO ) 
CALL QREIGI A, N, E 1G) 
NM I = N=.1.  

00 2 1=1 MVO: 
1:1P1=1+1 	 • 

IF( ABS( E 	I)-EIG( IP 1) ).:3 • 0. 001 ) 0.0 10 2 

ix(1)=1-  
.':IX(IP1)=1 
2 CUNT INUE 

IF( IR. EQ .1 ) GU TO 10 
DO 4 I=1 ,NF 
IF( IX( I) .EQ.1) 
Y=EIG( I) 
CALL SVC ER( F,V.Nt Yf l• 

00 5 J=I 
Ct 1,..))=V(J ) 

4 CONE INUL 
1,46=F(11 1 ) 
1F(F(171.).GT.O.01) G3 ILI 1 
DL) 16 1=1,N 

16 Ft t, I)=F( 1, I)+1.0 
15 W=Ft 1, 1) 	- 

Fl It 1)=F( 1, 1) 4'1.01 
WA=F(l►I ) 
DO 6 1=101 
DO 6 J=1,N 

6 A( I t J)=Fl I,J ) 
CALL -HESSEN(A,N ) 
CALL QRE 1G( A,N7 L ) 
00 1 
IF( IX( I) .E0 .0 ) G3 TO 7 
Y=1( I) 
CALL SVCTR(1- 11.1/NtY, 1.0) 
F( 
CALL CUV(I,VIIXIA,C,F N T NF) 
Fl It I) =WA 
DO 9 J=1,N 

9 C(I1J)=V(...1) 
IX( I )=0 

A(30 30) 'IX (30 ) /Z(30) 



DU 10 J=1, N 
10 A( OI J) =V (J ) 
- 5 CUNT INUE 
9 RETURN 

END 

- .541 - 
7 CONT.  INuE•• 

F( 1 7 1) =t43 
If-: ( WB.GT .0.01 ) GO-  TO - 10 
DO 18 1=27 N 

18 l'•- ( 1,1)=41 
10 RETURN 

END 

EIBFTC CV DECK 

V 
	

EFN - 	SOURCE S EA1EMEN 	1F-N( S) - 

- SUBROUTINE COV( 1,V,IX / A 1 C,F I N,NF1 
ION V( 30 )-, IX( 30 ) I A- t 30 / 30) / CI 30 9 30) iF(30130) 

A( 5 7 2)=0.2 _ 
NITER=40 
CALL 01Fit 
A( 5 /  3)=0.0 
DO 5 L=1,N ITER 
UD 2 J 	N 
A( 41 ..1)=0.0 
DO 2 K=1 I N 

-A( 4,J)=A(4 1 ,1)+F(J1K)*V(K) 
At 51 1)=0.0 
U0 - 3 -.)=1 7 N 

5/ 1)=A( 51 1 )+V (J PAt 
DU 4 J=1 IN 

4 - V(J)=V(J )-4( 5-7 2)*(A(- 47 J)-A( 51 1)*V(J)).  
1)0 	I J =1 N  

ABS(VIJ )-A( blJ I ).G1.0.000005) GU TO 8 
7 CONTINUE 	 • 
- CALL OTHI I t V,C T A T  

GO 10 9 
8 A( 513)=A( 5,3)+1.0 

II- ( A( 5 9 .3 ).GT.4.2) CALL UTH(I 1 V / C,A,IX,NINF) 
1f- ( A( 5 1 3 ).GI .4.Z) A( 5,3)=0.0 
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EFN 
	

SOURCE :STATEMENT 

SUBRUUTINE OTH1 
DIMENSIJN VI 30 ),C( 307 30},A(30,30) 
al 	I J=I,NF 	 - - 
IF( IX( J) .EQ.1) G3 TU 1 

• At 2,,J) =0 .0 
U0 2 K=1 IN 

2A(2,3)=A(2,3 l+V(K);--C(J KJ 
1 CONTINUE 

- 	' "" 00 3-J=1 ,NF  
(IXrJ 	) GU Ti 

D1.1 4;K=1,N 
)=-V (K )--At 	)*C(-3 7 1( 

3 - CONT HUE 
A(3, 

5 J =1;N 	- 
A( 3 71) 	14=V-IJ-)*V(J ) 
A(3,1)=SURT( A( 3, li ) 
00 -  6 ...I =I 
V{J)=V(J )/A( 3, I) 
RETURN 
EN 

 

L 

   

F -SOURCE _STATEMENT IFN(S) 

 

      

         

REGAL.( F NI  ANO, 
( 30, 30 }y ANC( 30 
EIG(30),Q(30ta 
F, 	ANC)?  ANC, C, 

ANC?  Q0,QC1Q1CIEIGICH) 
I ANO(30)7Q0( 30130) 'RG(3000) 
0) 
EIG) 

SUBROUTINE 
DIMENSION F 

-- C(30,30), 
CALL ENVEC( 
AM 1 I=17 N 
DO I J=1 7 N 
Q0(1/J)=.0.0 
QC(I/J)=0.0 
DO 2 K=I1N 
QC(I/J)=QC( 

2 Q0(IIJ)=Q0( 
1 Q(I / J)=2.0* 

RETURN 
END 

I 1 J)+C(K/I)*C(K1J)*ANC(K) 
I I .1)+C(KII)*C(KIJ)*ANO(K) 
(QC(I,J)+Q0(I/J)) 
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— $ _ _ 	EFNSOURCE.STATEMENT — IFN(S) 

'-l-TSUBROUTINE SCFCS(HIBETAI GAMATAIgE / Z I F I C/PIDOI DC IENIANOyANC,N,CH) 
DIMENSION H(30130)/ BETA(30,30),GAMA(30130)/AI(30) /E(30),Z(30), 
--:::F(30/30),C(30/30)0(30130)1D0(30,30)/DC(30/30)/EN(30), . 

ANO(30) / ANC(30) / X0(30)/ XC(30) 

NIT=5 

CO 1 I=1/N 

XC(I)=0.0 
W=W+ANC(I)*2.0+ANO(I) 
W=W*0.5 

l_NF=IFIX(W) 	= — 
DO 2 I=1/NF 
XC(I)=1.0 

- CALL HUCK(MI XO / XCIN/ NF / ENI  
3 _L=1, NIT 

DO 4 I=11N 

DO 5 J=11 N 
JF(I.EQ.J) GO TO _5  
F(I/J)=BETA(I / J)-0.5*P(I/J)*GAMA(I/ J) 

-_;.F(I,I)=F(IiI)*(P(J1J)—Z(J))*GAMA(I/J) 
5 CONTINUE 

F(ItI)=F(II I).—A1(I)+0.5*P(I4I)*(AI(I)—E(1)) 
IF(L.LT.NIT) CALL ENVEC(F,N0(0,XC/C/ENA 

	 IF(L.EQ.NIT) GO TO 10 
DO 6 I=10 

==. 	2D0_6,1=1IN 
P(I1J)=0.0 
DO 6 1:=1 I NF__- 

6 P(I / J)=P(I / J)+C(K1 1)*C(K J)*2.0 
—3 CONTINUE 
10 NFP1=NF+1 

DO 11 .1=NFP1IN 
11 XC(I)=1.0 

ENVEC(F,N,XO,XC,C,EN) 
7 DO 8 I=1 1 N 
DO 8 J=10 
CH(I / J)=C(I / J) 

:DO(I,J)=0.0 
DC(I / J)=0.0 

— — DO 9 K=1 I N 
DO(I,J)=DO(I,J)+C(K,I)*C(KIJ)*ANO(K)*0.5 

9 DC(I,J)=DC(It sll+C(KI I)*C(KIJ)*ANC(K) 
8 P(I,J)=2.0*(DC(11J)+00(IIA) 

RETURN! 
ENO 
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EFN 	SOURCE STATEMENT r IFN(S) 

SUBROUTINE PUTINICHOIDOIDCI ANOIANC,Nr 
DIMENSION CH(30/30),P(30130)1D0(30,30)1DC(30730),ANO(30),ANC(30) 
DO 1 I=1,N 
D01. J.-21pN 
DO(I,J)=0.0 

DO 2 K=1,N 
-DO(I / J)=DO(ItJ)+CH(KI I)*CH(K/J)*ANO(K)*0.5 

2 DC(I,J)=DC(I,J)+CH(KI I)*CH(KIJ)*ANC(K) 
LP(I1 J),;:2.0711JDC(I,J)+DO(I,J)) 
RETURN 

TBFTC tiLE 	TAECK 

:EFN.' SOURCE-STATEMENT - IFN(S) 

ISUBROUTINE HUCK(HI XO,XCyN/NF,ENIC,P) 
DIMENSION H(30,30),X0(30),XG(30),EN(30),C(30/30)0(30,30) 

-CALLENVEC(HIN,X02XCIGgEN) 
DO 1 I=12N 
DO 1 J=17N 
P(I / J)=0.0 
=DO 1 K=1iNF - 
P(I,J)=P(I,J)+C(K,I)*C(KtJ)*2.0 

___zYRETURN 
END 

fiE5FTC UECK2 	DECK 

DECK Z 
	

EFN 	SOURCE SIAIEMENT - IFN(S) - 

SUBROUTINE RITEtri 
Di M ENS IDN CHM ( 12 )  

READ(51 1) (CHAR( i 11  I=1/ 121 
1 f-ORMAI (12A6 

WRIFE16,21 (CHARt1),1,-- 1,1ZI 
Z FORMAI ( 11-11 ?  IH 	12A6, /// 

-RETURN 
END' 



C 
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F 
	

EFN 	SPURGE 	
- 7 

STATEMENT 	IFN(S) 

= SUBROUTINE FMAT(AI,E,Z,DOIDC4GAMAINI BETA I A1,81A/F) 
DIMENSION AI(30),E(30),Z(30)200(30,30),DC(30,30),GAMA(30,3 ) 

IBETA(30,30),AA(30,30)- 
4Q(30230),F(30,30) 

_DO 1 I=1I N 	; 
OI/I)=0.0 
DO 2 J=1,N 
IF(I.EQ.J) GO TO 2 
3II,J1=-GAMA(I ,J)*DO( I ,J) *Bl 
	= 

Q(I,I)=Q(I,I)+DO(JI J)*GAMA(I/J) 
2CONTINUE 
1 Q(III)=O(III)*A1*2.0+(2.0*A1-51)*(AI(I)-E(I))*DO(ITI) 
-DO-3 tr-tIN 
F(. III)=00 

_DO 4 4=1/N 
F(III)=F(IiI)+(DO(I,J)+DC(I,J))*Q(J,I)+Q(IIJ)*(DO(J/I)+DC(JTI)) 

	IF(I.EQ.J) GO TO 4 
F(I,J)=0.0 
DO 5 K=IiN 

5 F(I,J)..F(I,J)+CDO(II K)+DC(II K))*Q(KI J)+Q(I,K)*(DO(K,J)+DC(K J)) 
tffIiJ)=F(I,J)+BETA(I,J)-Q(IfJ)-GAMA(I1J)*(DO(I,J)+DC(I,J)) 
F(I,I)=F(IiI)+GAMA(I,J)*(2.0*(DO(J,J)+DC(J,J))-Z(J)) 

-.f-4CONTINUE  
3 F(II I)=F(I I)-AI(I)-Q(III)+IAI(I)-E(I))*(DO(III)+DC(III)) 

RETURN 
END...

7 	 7: 

J3FTC CL 	DECK 

EFN 	SOURCE STATEMENT - IFN(S) 

SUBROUTINE COUL(AIT E/R,GAMA,N) 
DIMENSION AI(30),E(30),R(30,30),GAMA(30,30) 
DO 1 I=1,N 
DO 1 J=1,N 

1-GAMA(I,J)=1.0MR(I,J)/14.41)+(2.0/(AI(I)-E(I)+AI(J)-E(J)))) 
RETURN 
END 
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EFN 	SOURCE STATEMENT - IFN(S) MM. 

PROGRAM TO CALL QR TRANSFORMATION, MAXIMUM 
SUBROUTINE QREIG(A,M,ROOTR) 
DIMENSION A(30,30),ROOTR(30) 
IPRNT=0 	- 
N = M 
N50=N 
1F(IPRNT) 80,81,8 
WRITE (5,104) 

81 	ZERO = 0.0  

177 XNN=0.0 - _ 	_ 
XN2=0'.0 
AA = 0.0 

ITER IS 50. 

ROOTI(30) 

B._= 0.0 :  

-:0()_.= 0.0 
R=0.0 

,iSIG=0.0 
ITER = 0 

- 1 -:1F(N-2) 	13,14,12 
13_ IF(IPRNT) 82,83,82 

11RITE (6/105)A(1/1) 

	

_83 	ROOTR(1) = A(1,1) 
_fROOTI(1) 
1 M50=N50-1 

DO 505 K50=11M50 
K1=K50+1 
DO 505 J50=K1 1N50 
IF(ROOTR(K50).Lf.ROOTR(J50)) GO 

504 X1=ROCTR(K50) 
	ROOTRIK50)=ROOTR(J50) 

:: ROOTR(J50)=X1 --- 
505 CONTINUE 

	

. 	
_ 

1E RETURN 
	 14 	J.J=-1 

_12 .X = (A(N-1,N-1) 7 A(NIN))!*2: 
S 	4.0*A(NI N-1)-t-A(N71/.N) 
ITER -= ITER + 

- IF(X-.EQ. 0.0 .OR. ABS(S/X) .GT._1.0E-8)_GO TO 
16 IF(ABS(A(N-10-1))-ABS(A(NIN))):--  32132/31 -ft: 
31_8_= A(N-1,N-1) 

G:=.•A(NIN) 
GO TO 33 

- 2 G = A(N-1 /N-1)-
E = A(N,N) 

33 F = O. 	- 
H. 
GO TO 24 

=.= 

TO 505 

15 
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5 S 	S - 

X = A(N710-1) + A(N,N) 
IF(S) 	18,19,19 

19_ SQ=SCIRT(S) 
F=0.0 
H=0.0 
IF (X) 21,21,22 
E7(X-SQ)/2.0 
ilG=(X+SQ)/2.0 - 
GO TO 24 
G=(X-SQ)/2.0 
8=(X+SQ)/2.0 

'-GO TO 24 
18 F = SCRT(-S)/2 0 

71=X/2'.0- - 
G=E 
H=-F? 

24 IF(JJ) 28,70,70 
70 D = 1.0E-10*(ABS(G) + F)- 

IF(ABS(A(N-10-2)) .GT. D) GO TO 26 
28 :21F(IPRNT) 84185,84: :- 
84 	WRITE (6,105)E,Fl_ITER 

:JJRITE- (6,105)G1H 
85 	ROOTR(N). 

ROOTI(N)=- F -
ROOTR(N-1)_=_ 
,RCOTI(N-1) 
N=N-2 
IFIJAr.1,177,177 

26 IF(ABS(A(N1 N-1)) .GT. 
29 IF(IPRNT) 86,87,86 
86 	WRITE (6,105)A(N,N), ZERO, ITER 

ROOTR(N) -= A(N,N) 
ROOTI(N) = 0.0 	 • 
N=N-1 
GO TO 177 

-:-.-IFIABS(ABS(XNN/A(N/N-1))-1.0)-1.0E-6) 53,63,62 -  -
62 IF(ABS(ABS(XN2/A(N-11 N-2))71.0)-1.08-6) 63/ 63,700 
_::63 I VQ=ABS(A(N1 N-1) )-ABS(A(N-11N-2) ) 

IF (ITER-15) 53/ 164,64 
164 IF(VQ) 165,165,166- 
165 R = A(N-1,N-2)**2 

SIG = 2.0*A(N-10-2) 
GO TO 60 

166_R = A(N,N-1)**2 
SIG = 2.0!A(N1 N-1) 
GO TO 60 

64 IF(VQ) 67,67146 
66 1F(IPRNT) 88,85,88 - 
88_ WRITE ( 6 / 107)A(N-10-2)__ 

21 

-10*ABS(A(N,N))) GO TO 50 
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6 IF(IPRNT) 89 / 871 89 	._ 
ViRITE (67 107 )A(NIN-1). 
GO TO 86 

_300 IF (ITER .GT. 50) GO TO .63 _ 
( ITER .GT. 5.) GO TO 53 

701 Z1= 	. 	( (E-AA)**2+(F-B)**2)/(E*E+F*F) 
Z2= 	( (G-C)**2+(H-DD)**2)/( G*G+H*H) 
IF(Z1-0.25) 511 51,52 

51 1F(Z2-0.25) 53,53/54 

SIG=E+G 
GO TO 60 

54 R=E*E 
SIG=E+E 
GO TO 60 
IF (Z2-0.25 ) 55,55,601 
R=G*G 
SIG=G+G 
GC TO 60 

601 R  
SIG = 0.0 

_ _ 	XN2=A(N-1 IN-2 ) 
1: CALL QRT(A,N,R,SIG,D) 
AA=E 
B=F 
C=G 
DD=H _ 
GO TO 12 

04 	FORMAT( ////1X, 9HREAL PART 6X 141-11MAGINARY PART, 26X 
1 13HTAKEN AS ZERO 6X 4HITER II) 

7_777- J105 - FORMAT( IX E15.8l3X, E1.81  42X 13). - 
107 _ FORMAT ( 56X E13.8) 

$ IBFTC *QRT 	DECK 

*QRT 	- EFN 	SOURCE STATEMENT 
	

I FN S 

- 	- - 

- 	• - 

IA = N - 2 
= IA 

-IF(N-3) 101,10160 - 
60 	DO 12 J =3,N1 

----- J1 = N - J  
IF(ABS(A(J1+1,J1) )-D) 	10,10,11 

11 DEN = A(J1+11J1+1)*(A(J1+11J1+1)-SIG)+A(J1+1 J1+2)*A(J1+2 J1 - 
1+1) 

... 
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- 

IF(DEN) 61,12,61 -  
'4F(ABS(A(J1+1,J1).*A(J1+2,J1+1)*(A8S(A(J1+1,J1+1)*A(.11+2,31+2) 
1-.SIG)+ABS(A(J1+3,41+2)))/DEN)-0)._ 10110,12_ 
,-IP=J1 	--I- 
n 14 J=1,I 
J1=IP7J+1 
IF(ABS(A(J1+1,J1))-D) -
IQ= ICI=J1 
DC 100 I=IPJA1 

16,15,16 
.G(1)=A(IpvIP)*(A(IP,Ip)-SIG)+A(IPIIP+1)*A(IP+1,IP) 
G12)=A( IP+1,IP) *(A( IP, IP) +A( IP+1, 
G(3)=A(IP+1,IP)*A(IP+2,IP+1) 

:tA(IP+2,Ip)=0.0,:  
GO TO 19 

-7-G(1)=A(III1)z-
G(2)=A(I+10-1) 
IFt2-IA) 	17,17,18 
G(3)=A(I+2,I71) 
GO TO 19L 

18 G(3)=0.0 
=- SIGN(SQRT(G(1)** 

	 22 	IF(U) 	23,24,23 
AL=G(1)/XK+1.0  
PSI(1)=G(2)/(G(1)+XK) 
PSI(2)=0(3)/(G(1)+W 
GO TO 25 

'AL=2.0 _ _ 
PSI(1)=0.0 
PSI(2)=0.0 
IF(I-IQ) 	26,27,26 
JF(I-IP) 	29,28,29 

28 	A(III-1)=-A(III-1) ==, - 
29 _A(I,I71)=-XK 

*D0 30 J=I,N-
IF(1-IA) 31,31,32 
C=PSI(2)*A(I+2,J) 
GC TO 33 

32 C=0.0 
.E=AL*(A(I,J)+PSI(1)*A(I+1,J)+CY 
A(I,J)=A(I,J)-E 
,A(I+I,J)=A(I+1,J)-PSI(1) E 
IF(I-IA) 	34,34,30 

34 A(I+2,J)=A(I+2,J)7PSI(2)*E 
30 	CONTINUE - 

IF(I-IA) 	35,35,36 
35 L=I+2 

GO TO_- 3 
36 L=N 
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--00 40 J=I011.. 
= IF(I-IA) 38,38,39 

C=11.SI(2)*A1J,I+2Y 
GO TO 41 

41_ E=AL*1A(..1,I)+PSI(1)*A(J,I+1)+C) 
A(JII)=A(J,I)-E 
A(J,I+1)r- A(,3,1+1)-PSI1 
IF(I-IA) 42,42,40 
A(JII+2)=A(J7 I+2)—P$I(2)*E 
CONTINUE 
IF(I-7N+3) 	43,43,100 

---_-flE=AL*PSI(2)*A1I+3,I+2Y.-  
	 _A(I+31 I)=-E 

:A(I+3,I+1)='-13SI(1)*E  
A(I+3,I+2)=A(I+31I+2)-PSI(2)*E 

400:-  CONTINUE 
101 RETURN 

—SIBFTC ENY  DECK 

EFN. SOURCE STATEMENT IFN(S) 

_REAL FUNCTION ENGY(BETAI AIIZI GAMAIFIDOI DC,Q,FR,N) 
OIMENSION BETA(30,30),AI(30),Z(30),GAMAt30,30),F(30,30). 

1 .00(30,30),DC130/3011Q(3.0.00 ) 
- 

D0_1_371.0 
=- 

DO 2 d=1,N 
1F(I4EQ.J) GO TO-2 -7-7--
ENGY=ENGyi-(BETA1I,J)tF(I,J)),(00(J,I)tDC(41I))-

_0(1.4j)*(DC(J,I)+FR*13.0(4,.1_)): 
X=X+GAMA(I,J)*Z(J) 
CONTINUE 

1 ENGY=ENGY+1F(I I I)-X-AI(I))*(1)0(I,I)+DC(I,J))-
-,Q(I I I)*(DC(I,I)+FR*D0(I,I)) 
RETURN 
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-JIBFTC HESS 	I - DECK-. 

-HESS 
	

EFN 	SOURCE STATEMENT 	IFN( S) 

-SUBROUTINE - TO PUTiMATRIX±IN UPPER HESSENBERG FORM. - 
SUBROUTINE HESSEN(A,M) 

LDIMENSION A(30 /30),B(50---  
DOUBLE PRECISION SUM 
IFAM--::2) 30130132-, 

32 DO 40 LC = 3,M 
N 7.:j1 7:LC +:3 
Ni = N - 1 
N2 
NI = N1 
mv:. ABS(A(N / N-1)) 
DO 2 J=1 / N2 
:IFCABS(A(N/ J))- DIV) 2141---:- 
1 NI = J 
=DIV = ABS(A(N/ J)) 

2.CONTINUE 
:AF(DIV) 3,40,3 

	 3 	 - N1) 4, 
J =:- 11N1 

DIV = A(J/ NI) 
ACJ/ NI) 

.....5A(JIN1)= DIV 
DO 6 J 
DIY A(NI,A_ 
A(NI,J) =:A(N1, 

6 A(N1,J) =  DIV 

	 26 B(K) = A(N/K)/A(N N-1) 

SUM =_0.0 
_ HIFAJ N1)-- 46/431 43_ 
46 IF(B(J))_ 41 / 431 41 

	 -41-A(N/ J) - =-.0.0_- _. -- 
DO 42 K = 101 

_A(K/J) = A(K/J)--.:A(KI N1) B(J)L 
42 SUM = SUM + A(K,J)*B(K) 

TO 45 
43_00 44 K =_14N1 

_-214SUM=- SUM + A(K /J)*8(K) 
45 A(N11J) = SUM 
40 CONTINUE - 
30. RETURN 

71.4 

= 

• 
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$IBFTC SV 	DECK 

SV 	 EFN 	SOURCE STATEMENT 
	

IFN(S).  • 
SUBROUTINE SVCTR(AX,V,N,XY,VN) 

- DIMENSION AX(30,30),A(30,30),V(30)-
VNR=VN 
ALPHA=XY 	- 
DO 501 I51=1,N 
DO-501 J51=1,N: 

501 A(I51,J51)_=AX(I51,J51) 
L:A(1,1)A(1/1)7ALPHA 

6 	DO 15 I=2,N 
A(IiI)=A(I,I)7ALPHA 

70 II=I-1 
J)0_-15 
IF (A(I,J))9L/5/9 
=IF IABS (A(J,J))-ABS (A(I1J)))11,10710 

- 	R=A(I,J)/A(J,J) 
GO TO 130 

11 	R=A(J,J)/A(I,J) 
12_K=1,N 

C=A(J,K) 
A(J,K1=A(I,K)_ 
A(I,K)=C 
JJ=J+1 
D0_14 K=JJ,N 
A(I,K)=A(I,K)-R*A(JiK): 

15 CONTINUE 
C=A(N,N) 

_V(N)=1. 
-''DO 29 I=2,N 
JJ=N-71+1 

-- 
_II=N-I+2 
=D0. 25  

25 R=R+A(JJ,K)*V(K)  
:=IF=-(ABS JA(JJ,J4)J71.0E-1.0127427.i28_: 
V(JJ)=1. 
C=0.- 
DO 26 J=II 

GO TO 29 
=-LN(JJ)=(C-R)/A(JJ,JJ)  

29 CONTINUE 
X50=0.0- ' 

'DO 502 J52=1,N 
502 X50=X50+V(J52)0(J52)- 
	 X51=SQRT(X50/VNR) 

DO 503 J53=1 1 N 
503 V(J53)=V(J53)/X51 

RETURN.  

END 
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(5) The Polymer SCP Program.  

This program calculates the  

Bloch wave functions and energy-band structures of a one-

dimensional polymer constructed from conjugated monomers. 

Only nearest-neighbour 1r-electron interactions are considered 

between adjacent monomers, and the Pople-Pariser-Parr approximations 

used as in the previous molecular programs. All Coulomb integrals, 

both within and between unit cells , are approximated in the 

manner of Mataga and Nishimoto. This procedure , whose basis was 

discussed in section (20) of chapter II , was originally designed 

for the particular problem of helical polymers composed of 

nucleotide bases. However, the method may clearly be used on 

any one-dimensional polymer with a defined repeating unit cell. 

The program requires additional data compared to 

to those discussed previously . As well as the intra-molecular 

parameters, inter-molecular data is also required to account 

for the interactions between the constituent molecules in the 

polymer. This data is given by additional geometric and resonance 

integrals. 

The Bloch orbitals and energy-bands of the polymer 

are determined as functions of a wave number, k , where 0 4 k4 21V. 

The number of k intervals is left to the discretion of the program 

user, who must remember the additional execution time imposed 

by a large number of intervals. When the wave function for the 

various k values has been found, the monomer bond matrix, P, 
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can be obtained using numerical integration . These bond matrices 

are checked between successive iterations for convergency, 

with a pre-set criterion of 0.001 for all elements in sequential 

iterates. For a SCF state some results are printed out, whilst 

others are stored on magnetic tape. 

It will be noted much of the program is written in 

the complex mode, the eigenvalue problem being solved by 

partition as previously discussed,(see page 279 ). The sub-

routine FMOD is used to account for the H-bonds in the 

particular polymer investigated, and 

The input data for this 

define than in the cases of the last  

is not a general option. 

program is less 

three programs. 

easy to 

Since the 

program uses appreciable amounts of computer time in reaching 

self-consistency ,( 2 hours for an IBM 7090/1401, with II k 

intervals and a 20 atom unit cell), results of runs which did 

not reach a SCF state are stored on tape for future use by the 

program. Thus all tape manipulation is a function of the 

individial program, tape reel, and stage in attainment of self-

consistency. Here initial guesses at P and P± are read from 

cards, but at later stages in convergence they would usually be 

read directly from tape. The tape storing the results of the 

last run which had not yet reached self-consistency. 

Thus it is felt appropriate to leave individual users 

to construct their own input/output forms, utilizing the following 

program as a basis. The input data required will now be listed. 



-355- 

NI,(I3):  This is a title label, and also serves to control 

tape instructions. 

N,(13):  The number of atoms per unit cell, N420 

NK,(I3):  The number of k intervals , normally 11 for N=20 . 

NIT,(I3):  Maximum number of iterations, if this is reached before 

a self-consistent state results are stored on tape. 

NF,(I3):  Half the number of electrons per unit cell. 

tAIPT6E(N),ZSN.Y.(F20.8):  See previous programs. These are the 

parameters of the individual atoms in each unit cell. 

/GAMA(N,NGAMAP(N,NI,BETAIN,N),BETAP,P,,N1J.CP(N,N),CPP(NIN)/,(1120.q):  

These are all read by a subroutine and represent the matrices, 

12 

	
respectively. Any future user 

should be able to feed in this data to the main program using 

a subroutine of his or her own,reading their own data format. 
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$IBFTC KBANC 

KBAND 
	

EFN 
	

SOURCE STATEMENT — IFN(S) 

DIMENSION BA(40140)1EIG(40)1GAMA(20120),GAMAP(20120)?. 
1 	BETA120 1 20)1 BETAP(201 20)7 Z(20)1 AI(20) 1 E(20) 
.CCMPLEX CP(20,20),CPP(20120)1CF(2Cp20),CQ(20,20)7CQP(20,20)t 
1 	CC(20,20) 

C 	LADIKS SCF 
C 	K BANC STRUCTURE OF A POLYMER 

READ(5,1) Ni 
NI LABLELS THE TITLE REQUIRED 
CALL RUB(N1) 
CALL UDATE(CP,AI) 
CALL RITE(N1) . 
READ(5,1) N 
N LABELS THE NUMBER OF ATOMS IN THE MOLECULE 

- 1 FORMAT(I3) 
READ(5,1) NK 
NK=NUNBER OF K INTERVALS 
READ(311) NIT 

t 	NIT = MAX ITERATIONS 
READ(59 1) NF 

C 	NF=NUMBER OF FILLED SHELLS 
REAC(512) (AI(I),I=lyN) 
READ(5,2) (E(I),I=101) 
READ(5,2) (Z(I),I=1,N) 

2 FORMAT(F20.8) 
CALL DATA(GAMA I GAPAP I BETA I BETAPpCPI CPP) 

C 	READS DATA CAMA=R I GAMAP=RP 
WRITE(6,3) 

3 FORMAT(1H ,///,11H INPUT CATA1//) 
WRITE(6,4) 

4 FORMAT(1H ,///,12H R(C) MATRIX,//) 
DC 5 I=1pN 

5 WRITE(6,6) (GAMA(I1J),J=1,N) 
.6 FORMAT(1H p20F5.2) 

WRITE(617) 
7 FORMAT(1H ,///,12H R(+) MATRIX,//) 

DC 8 I=1,N 
8 WRITE(6,6) (GAVAP(Iyi),J=1,N) 

WRITE(619) 
9 FORMAT(1H ,///,15H BETA(0) MATRIX,//) 

DC 10 I=11N 
10 WRITE(6 1 6) (BETA(I 1 J),J=10) 

WRITE(6 1 11) 
11 FORMAT(1H ,///,15H BETA(+) MATRIX,//) 

DC 12 I=1pN 
12 WRITE(616) (BETAP(I,J)PJ=10) 

WRITE(6 1 39) 
39 FORMAT(1H p///p12H P(0) MATRIX,//) 

DC 40 I=IsN 
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40 WRITE(6,41) (CP(I,J),J=10) 
41 FCRMAT(1H t16F7.4) 

WRITE(6413) 
13 FCRMAT(1H ,///,21H IONIZATION POTENTIAL,/!) 

WRITE(6,14) (AI(I)II=11N) 
14 FCRMAT(1H ,18F6.2) 

WRITE(6,15) 
15 FORMAT(1H t ///t18H ELECTRON AFFINITY,//) 

tiRITE(67 14) (E(I)0=11N) 
-WRITE(6,16) 

16 FCRMAT(1H ,///,23H NUMBER .OF PI ELECTRONS,//) 
WRITE(6,14) (Z(I) I I=1 1 N) 
CALL COUL(GAMA,GAMAP,AI,E,N) 
FNK=FLOAT(NK) 
H=2•0/(FNK-1.0) 
PIH=6.28318/(FNK-1.0) 
DC 17 L=1 1 NIT 

-DC 19 ji<=1INK 
AK=PIH*FLOAT(JK-1) 
CALL C‘FMAT(CP I CPP I GAMA t GAMAP t BETAIBETAP t ZtAItEtAKIN,CF) 
CALL FMOD(CF) 

- CALL CPADD(CFICQ,CQP/JKtNKINFtNIAKIH) 
19 CONTINUE 

IF(L.EQ.NIT) GC TO 34 
DC 21 I=1 1 11 
-DC 21 J=1,N 
P=REAL(CP(It4)) 
Q=REAL(CQ(ItJ)) 

21 IF(ABS(P-O.GT.0.001) GO TO 22 
34 WRITE(6,23) L 
23 FORMAT(1H ,///,31H NUMBER OF ITERATIONS FOR StF 

WRITE(6,24) 
24 FORMAT(1H ,///,12H P(0) MATRIX,//) 
. -DC 25 I=1,N 
.25 - WRITE(6,41) (C0(I,J)1J=11N) 

WRITE(6,27) 
27 FCRMAT(1H t /// 1 12H P(+) MATRIX,//} 

DC 28 I=10 
28 WRITE(6,41) (CCP(I,J),J=1/N) 

WRITE(6,29) 
29 FCRMAT(1H ,///,22H ENERGY BAND STRUCTUR //) 

--DC 30 JK=1 1 NK 
AK=PIH*FLCAT(JK-1) 
CALL CFMAT(COpOOP I GAMA t GAMAPI BETA,BETAPtZtAIIE,AK,NICF) 
CALL FMCD(CF) 
CALL CQREIG(OFINtEIGtBA) 
CALL CVCTR(BA,CCINON,EIG) 
CALL TAPED(AK,OF I CCtEIDtCQICQP/JKINK) 
WRITE(6131) AK 
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31 FORMAT(iM ,//,3H K= IF10.6 1 //) 
WRITE(6132) (EIG(J),J=1,N) 

32 FCRMAT(1H p1P8E13.5) 
30 CONTINUE 

GC TO 38 
22 DC 33 I7--1,N 

	DO 33 J=1 IN 
CP(I,J)=CQ(ItJ) 

--33 CPP(I,J)=CQP(I,J) 
17 CONTINUE 
38 STOP 

END 

TPE 
	

EFN 	SOURCE STATEMENT - IFN(S) - 

-SUBROUTINE TAPED(AKICF,CC,EIG,CC/CUpjk,NK) 
DIMENSION EIG(20) 
CCPPLEX CF(20,20),CC(2012C),CQ(20,20),CQP(20,20) 
WRITE(7) AK 
WRITE(7) CF 

-,WRITE(7) EIG 
WRITE(7) CC 
IF(JK.NE.NK) GC TO 1 
WRITE(7) CQ 
WRITE(7) CCP 
REWIND 7 

1 RETURN 
END 

4IEFIC FM 

FM 
	

EFN 	SOURCE STATEMENT - AFN(S) 

SUBROUTINE FMOC(CF) 
CCMPLEX CF(20,20) 
LADIK CORRECTIONS FOR POLY-AT 
CF(1,1)=CF(1,1)-0.478 
CF(10,10)=CF(10710)+0.478 
CF(11 1 11)=CF(11,11)+0.478 
CF(18,18)=CF(18 / 18)-0.478 
RETURN 
END 
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EFN 
	

SOURCE STATEMENT — IFN(S) 

_SUBROUTINE DATA(R / RP18,BP/CPICPP) 
`DIMENSION R(201 20) / RP(201 20),8(201 20)1 BP(20120)0(20120) 
:CCMPLEX CP(20 1 2.0) 1 CPP(201 20) 
M=10 
N=20 
K=M+1 
CC 1 I=1 / M 

. 1 READ(512) (R(I/J)/J=11M) 
2 FORMAT(10F5.2) 

DC 3 I=1 / M 
3 REAC(5p2) (R(I / J)/J=K/N) 

DC 4 I=K I N 
READ(5,2) (R(I7J)1,)=1,M) 
DC 5 I=KpN 

5 READ(5,2) (R(I/J),J=K/N) 
DC 6 I=1 / N 
DC 6 ,1=1/N 

6 IF(J.LT.I) R(I 1 J)=R(J/I) 
DC 7 I=101  

7 READ(5,2) (RP(I / J),J=10) 
DC 8 I=1 / M 

.8 READ(5,2) (RP(I1:1)/J=KIN) 
DC 9 I=K 1 N 

9 REAC(512) (RP(I / J),J=10) 
DC 10 I=K,N 

10 READ(5,2) (RP(I/J)/J=KIN) 
CC 11 I=1,M 

11 READ(5,2) (B(I/J),J=1 1 M) 
DC 12 I=1 / M 

12 READ(5,2) (B(I,J)/J=KIN) 
DC 13 I=K 1 N 

13 REAC(5,2) (8(J1J),J=1,M) 
DC 14 I=K1N 

14 READ(512) (B(I,J),J=KIN) 
DC 15 I=11N 
DC 15 J=1IN 

15 IF(J.LT.I) B(I/J)=B(J/I) 
DC 16 I=1 / M 

16 READ(5,2) (BP(I1 J)/J=1/M) 
CC 17 I=1 / M 

17 READ(5,2) (BP(I / J),J=K/N) 

	

DC 18 I=K IN 	- 
18 READ(5,2) (BP(I1 J)/J=1/M) 

DO 19 I=K 1 N 
19 READ(5,2) (8P(I,J),J=KoN) 

DC 20 1=10 
20 READ(512) (P(I,J)1J=10) 

CC 21 r=1,M 
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$IBFTC COULI DECK 

SOURCE STATEMENT 

- 360 - 

21 REAC(5/ 2) (P(I/J) / J=K I N) 
DC 22 I=K 1 N 

. 22 REAC(51 2) (P(I1J),J=1 1 M) 
DO 23 I=K1N 

23 REAC(5/2) (P(I/J) J=K 1 N) 
D0 24 I=11 N- 
DC 24 J=1 / N 

24 IF(J.LT.I) P(I/J)=P(J/I) 
DC 100 I=11N 
D0 100 J=1 1 N 
B(ItJ)=-2.39*B(I/J) 
BP(I,J)=-2.39*BP(I / J) 
CP(I / J)=CMPLX(P(I / J) / 0.0) 

100 CPP(I1J)=(0.0/0.0) 
RETURN 
END 

$IBFTC TITLE 

EFN 	SOURCE STATEMENT - IFNCS) - 

SUBROUTINE RITE(N) 
DIMENSION CHAR(8) 
DATA (CHAR(I),I=1 1 8)/6H POLY ,6HADENIN,6HE-THYM,6HINE 

16H 28FEBI 6HLACIKS I 6H DATA 1 6H / - 
IND=2 
WRITE(67 1) 

1 FORMAT(1H1/21H POLY ADENINE-THYMINE1///) 
WRITE(7) IND 
WRITE(7) CHAR 
RETURN 
END 

SUBROUTINE COUL(GAMA/GAMAP / AI I E I N) 
DIMENSION GAMA(20t20)1GAM4P(20,20)1AI(20) E(20) 
DO 1 I=1 2 N 
J)o 1 J=1IN 
X=2.0/(AI(I)-E(I)+AI(j)-E(J)J 
_GAMM I I  J 	0/((GAMMI:t 	/14:41)+X) 
GAMANI,J)=1.0MGAMAP(I J)/14.41)+X) 
RETURN 
END 
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;$IBFTC UC 

UD 
	

EFN 
	

SOURCE STATEMENT - IFN(S) 

SUBROUTINE UDATE(CP,AI) 
DIMENSION CHAR(8),AI(20) 
COMPLEX CP(20,20) 

`READ(7) IND 
READ(7) CHAR 
CC 1. 1=1,21 
READ(7) AK 
READ(7) CP 
REAC(7) AI 
READ(7) CP 

1 CCNTINUE 
READ(7) CP 
REAC(7) CP 
RETURN- 
END 

'7= 

$IBFTC CFMT _____ DECK 

CFMT 	 STATEMENT 	IFN(S) 

SUBROUTINE CFMAT(CPI CPP,GANA I GAUPI STAI BJAPI Z,Illt AK I N,CF) 
DIMENSION GAAA(20,20)7 GAMU(20,20),6ETA(20,20)1B:..TAP(2.0.,2:11 
1 Z(20),A1(20),E(20) 
COMPLEX CP( 20 7 20) ,CPP(20, 20) / CF( 20y20) ICX I CY 
CX=CEXP(CMPLX(O.G,AK)) 
CY=CEXP(CMPLX(0.02-AK))._ 
RZ=2.0*COS(AK) 
DO 1 I=11N 
CF(I,I)=(0.0 / 0.0) 
DO 2 J=1,N 
X=1.0 
IF(I.EQ.J) X=0.0 

2 CF(IiI)=CF(I I I)+(CP(J1 .1)-Z(J))*(GAMAP(I I J)+GAMAP(J 
1 X*GAMA(I,J)) 
1 CF(III)=CF(III)-I(1)+0.5*CP(III)*(Al(I)-E(I))____ 
1 	+RZ*( BETAP( I ?  I )-0.:5*CPP( I I )*GAMAP( I , I ) ) 
NM1=N-1 
DO 3 I=II NM1 
1P1=I+1 
DO 3 J=IP1 / N 
CF(I I J)=BETA(I,J)-0.f*CP(I,J)*GA(I,J)+ 

1 	CX*(BETAP(I,J)-0.::-KCPP(I,J)*GMAP(I2J)) 
1 .+CY*(BETAP(J7 I)70.*CPP(J7I)*GAMAP(J,I)) 
CF(JI I)=CONJG(CF(I7J)) 	_ _ -. 

RETURN 
END 
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"L7 

DECK 

SOURC STATEMENT 	IFN(S) 

SUBROUTINE CPAPP(cFJUICPP,JK,NK,NFO,AKO) 
DIMENSION 8A(40,40),RO0TR(40) 
COMPLEX CF(20,20),CC(20,20)..,CP(20 20),CPP(20,20),CX,X 
CALL CC)REIG(CF,N,ROOTR,BA) 
CALL CVCTR(BAI CC T NI NF,ROOTR) 
JF(JK.E1.1) GO TO 
IF(.JK.EQ.NK) GO TO 6 
CX=CEXPJCMPLX(0.0,AK)) 
00.14 I=1,N 

700 14 J=I 7 N 
X=(0.0,0.0) 
DO 1. K=1,NF 

1 X=X+CONJG(CC(KII))*CC(K J) 
CP(I,J)=CP(I,J)+X 
CFP(I,J)=CPP(I,J)+X*CX 

4 CP(J1I)=CONJG(CP(I,J)) 
DO 20 I=2,N 

DO 20 J=1,IM1 

_DO 2 K=1,NF 
2X=X1-CONJG(CC(K,I))ACC(K,J).  

20_CPP(I,J)=CPP(I,J)+X*CX_ 
GO TO 7 

500 9 I=1,N 
4=I I N 1  

CP(I 7 J)=(0.0p0.0) 
.1:00 8 K=1,NF  
_8.__CP(11J)77CR(I0)+CONJG(CC(K 
:CP(I,J)=0.5*QP(I 1 J) 
CP(J,I)=CP(.I,J) 
CPP(I,J)=CP(I,J). 

_9__CPP(J,I)7CP(I,J) 
:WTO 7 

6 DO 10 I=1,N 
-DO 10 J=I,N 
X=(0.010.0) 
DO 11 K=1,NF 

11 X=X+CONJG(CC(KvI))CC(K,J) _ 
?=CP(I,J)=-(CP(I,J)+X*0.f.)*H 
CP(J,I)=CP(I,J) 

1.0.CPP(I-,J)=(CPP(1.1.1)+X*0)*H 
DO 12 I=2,N 

DO 12 J=1,IM1 
-X=.(0.010.0) 
DO 13 K=1',1!F 

13 X=X+CONJG(CC(K,I))*CC(K,J) 

I)) CC(KIJ) 

= 
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_12 CPP(I/J)=(CPP(I/J)+X-41-0.-_5) H 
7 RETURN 

END 

SIBFIC BISH 

BISH 
	

EFN 
	

SOURCE STATEMENT 
	

IFN(S) 

SUBROUTINE RUB(N1) 
DIPENSICN CHAR(8),EIG(20) 
_CCMPLEX CC(20,20) 
CALL FOLD(7) 
REAC(7) IND 
REAC(7) CHAR 
REAC(7)' AK 
READ(7) CC 
READ(7) ETC 
READ(7) CC 
REAC(7) X 
RETURN 
ENC 

$IBFTC CQRCN 	DECK 

EFN CQRCN  5QURCE STATEMENT  IFN(S) 

PROGRAM TO CALL OR TRANSFORMATION, MAXIMUM ITER IS 50. 
ri SUBROUTINE COREIG(FC I MI ROOTR / BA) 	- - 
DIMENSION A(L:-0 1 40)1 ROOTR(40)1BA(40 40)1 ROOTI(40) 

:ICOMPLEX FC(20,20) 
IPRNT=0 
U=M*2 
N50=N_ 	• 
J21,0800 	 ri • 
DO 800 J=1 1 M 
(1=R:AL(FC(I / J)) 
BA(I,J)=X1 
A(I,J)=X1 
IPM=I+M 
...1PM=J+M 
BA(IPM,JPM)=X1 
A(IPM / JPM)=X1 
X1=AIMAG(FC(I 
BA(I/JPM)=-X1 
A(I / JPM)=-X1 
8A(IPM / J)=X1 

_800 A(IPM/J)=X1 
CALL HESSEN(A/N) 
IF(IPRNT) 60 / 81 / 0 

80 	WRITE (61 104) 

J)) 
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81_ -_ZERO = 0.0 

jj=1. 
177 XNN=0.0 

XN2=0.0 
AA .= 0.0 

C =7_0.0 

R=0.0 

ITER= 0. 
17 	 AF(N-2) 

	
13,14/12 

13 .IF(IPRNT) 82,83,82 
.WRITE, (6,103)A(111) 

83 	ROOTR(1) 	A(1,1) 
:ROOTI(1) = 0.0 _ 

1 M50=N50-1 
DO 602 J=1,1430,2 
JPI=J+1 

*00-302 K=JP1,N30 -  
IF(A3S(ROOTR(K)7-ROOTRJJ)).GT 10274) GO TO 

-X1=ROOTR(JP1) 	7 

ROOTR(JP1)=ROOTR(K) 
ROOTR(K)=X1 

802 CONTINUE 
DO 803 J=14 M 

803 ROOTR(J)=ROOTR(2 J-1) 
M50=M-1 
DO 304 J=1 M50_. 
JP1=J+1 
DO 804 I=JP10 
-1F(ROOTR(J).LT.ROOTR(I)) GO TO'804 -
X1=ROOTR(J) 
ROOTR(J)=ROOTR(I) -  
ROOTR(Ii=Xl_ 

804 CONTINUE 
RETURN 

14  _JJ=-1 	• 
12 X =_(A(N-1 1 N-1) 7 A(IM)Y**2 

S = 4.0*A(N,'.'!-1)*A(N-.11N) - 
ITER = ITER + 1 
IF(X .EQ. 0.0 .0R. ABS(`S/X) .GT. 1.0  

16 IF(ABS(A(N-1,N-1))-AB&(A(N,N))) 32/1'2,21 
31 E = A(N-10-1) 

G = A(N,N) 
GO TO 33 

32G = A(N711N-1) 
E =-A(N,N) 

33 F = O. 
H = O. 
GO TO 24 

802 
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X = A(N-1 1 N-1) + A(N,N) 
IF(S) 	18,19,19 

19 	SQ=S0RT(S) 
F=0.0 
H=0.0 
IF (X) 21,21 

21. E=(X-SQ)/2.0 
G=(X+SQ)/2.0 
GO TO 21 
G=(X-SQ)/2.0 
.G=(X4S0)/2-0 
GO TO 21? 

18 F = SQRT(-S)/2.O 
E=X/2.0 
G=E 
H=-F 

24 IF(JJ) 23,70,70 
70 D = 1.0E-10*(ABS(G) + F 

IF(ABS(A(N-1,N-2)) .GT. 	) GO TO 
28 IF(IPRNT) 841 8:',134 
84 	WRITE (0 1 105)E,F, IT_ ER 

WRITE (0,105)G,H 
ROOTR(U) =E 
ROOTI (N) = F 
ROOTR(N-1) = 
ROOTI(N-I) = 
N=N-2 
IF(JJ) 1,177,177_ 

26 IF(ABS(A(NO-1)) .GT. 	.0=-104F8S(A(N N))) GO TO 50 
29 •IF(IPRNT) 86,87,85 
86 	WRITE (67103)A(NIN), ZERO, 	P. 
87 	ROOTR(U) = A(N,1) 

RCOTI(N) = 0.0 
N=N-1 	_ 
GO TO 177 	' 

50 	IF(ABS(ABS(XNN/A(NI N-1))-1.0)-1.0E-6 	63,63,62 
62 	IF(ABS(ABS(XN2/4(N-1 1 N-2))-1.0)-1.0.i- ) 631;:3,700 
:63 VQ=ABS(A(HIN-1))-ABS(AC:-11 N-2)) 

IF (ITER-15) 53111:-;.,6-r 
164 IF(VQ) 1-5,155,156 
165 .R = A(N-10-2)**2 

SIG = 2.0*A(N-1,N-2) 
GO TO 60 

166 R = A(NI N-1)*-*2 
SIG = 2.0*A(N1N-1) 
GO TO 60 

64 	IF(V0) 	67,57,50 
66 IF(IPRNT) 88:E5,88 
88 	WRITE (6,107)A(N-1 1 N-2) 

GO TO 8ir 
67 IF(IPRNT) 89,87,89 
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— 366 
9 	WRITE (6,107)A(NIN-1)-_ 

GO TO 86  
700 IF(ITER .GT. 50) GO TO f3 

IF(ITER .GT. 5 ) GO TO 53 
-:71)1-2.17 	((E—AA)**2+(F—B)**2)/(E*E+F*F) 

Z2= 	((G7C)**2+(H7DD)**2)/(G*G+H*H) 
__„f1F(Z1025) 51,51,52 

1 	IF(1270.25) 
R=E4t-G—F*H—
SIG=E+G 

TO _60 
54 R=E*E 

-.T-SIG=E+E 
	GO T0.. 60 

2 ) =,5 
55 _R=GfG 

-:SIG=G+G 
GO TO 60 
R-=0.0  
SIG = 0.0 
XNN=A(N,N-1) _ 
XN2=A(N-1/N-2) 
CALL ORT(A I NI R I SIGI D) 
AA=E  
3=F 
C=G 

-DD=H 
GO TO 12 

IOS FORMAT(////1X, .9HREAL PART 	I4HIMAGINARY PART, 26X 
1 13HTAKF:M AS ZZRO ('_•)( 4HITER 

105 FORMAT(1X,E15.813X,E15-.8, 42X 
107_ FORMAT(56X E13.3)_ 

$IBFTC 	DECK 

EFN 	SOURCE STATEMENT — IFN(S) — 

SUBROUTINE CRT(A,N,RI SJG,D) 
_DIMENSION A(40-140)0SJ(2)2G(3) 
111 = N — 1 
IA 7eN:— 2  
IP = IA 

-IF(11-3) 101,10,50 
	 7.7 	. 

60 	DO 12 J = 3,N1 
J1 = N — J 
	 - - 	- 

IF(ABS(A(J1+1,J1))-0) 	10,10,11 
1! DEN = A(J1+1,J1+1)*(A(J11- 1,J141)—SIG)+A(J1+1,.J1+2)*A(J1 
1-4-2 1.71+1)+R 
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IF(DEN) 61,12,61 
IF(ABS(A(J1+11 .11)*A(41+2,J1+1)3qAB5(14J1+11+1)+A(JI+2,J1+2) 

17SIG)_+ABS(4JJ1+31 J1+2)))/DEN)-D) _10110112. 
12 	-IP=J1 
10_ DO 14 J=1/ IP 

J1=1P-J+1 
JFIABS(A(J1+1 

14 - 'IQ=J1 
13 DO 100 I=IP/ N1 

IF(IIP) - 16,15,16...- 
15 	G(1)=A(IP I IP)*(AtIP,IP)-SIG)+A(IP,IP+J)*A(1?+1,IP)+R_ 

G(2)=A(IP+1 1 IP)*(A(IPIIP)+A(IP+IIIP+1)-SIG) 
G(3)=A( IP+1 

GO TO 19 
:G(1)=A(I/I71) 
G(2)=A(I+1,I71) . _ 
1F(I--IA) :17117/18' 

17 _G(3)=AJI+2/ I71) 
GO TO 19 

18 __G(3)=0.0 
XK = SIGN(SQRT(G(1)**2-+:G(2)**2 + G(3)**2), G(I)) 

22 	IF(XK) 	23 / 24/ 23 
23 '_AL=G(1)/XK+1.0 

PSI(1)=G(2)/(G(1)+XK) 
PSI(2)=G(3)/(G(1)+XK) 
GO TO 2.; 
AL=2.0 
PSI(1)=0.0 
PSI(2)=0.0 

25_ IF(I-IQ) 26127 / 26 
26 AF(I-IP) 29/ 281 29- 
28 	A(I I I-1)=-A(I/I-1) 

GO TO 27 
29 	A(I 1 I-1)=-XK 
27' 	.z  DO :0 	J=I I N: 

IF(I-IA) 31 / 31/32 
31 	C=PSI(2)*A(I+21J) 

GO TO 
32 C=0.0 

..33 . E=AL*(A(I1J)+PSI(1)*IAI+1,J)+C) 
_A(1 1.1)=A(I/J)-E 
A(I+11.1)=A(I+1/.1)-PSI(1)*E 
IF(I-IA) ' .34/34130-. 	' 

34 	A(I+21 J)=A(1+21,1)-PSI(2)*E. 
-30 CONTINUE 

IF(I-IA) 	B5 /  5i 
L=I+2  
GO TO 37 

36 L=N 

. 	. 	 . - 

24- 
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37 	DO 40 J=IQI L 
IF( I-IA) 	33 / 38 /  39 

	

38 	C=PSI ( 2 )*A( 	I+2 ) 
GO TO -41 	- 

39 C=0.0 
E=AL*(A(JI I)+PSI(1)*A(J I+1)+C) 
_A(J / I)=A(J/ I)-E 
A( J1  I+1 )=A( J1  I+1)-PSI( 1)*E 
IF(I-IA) 42,42,40 

	

.42 	A( J /  I+2)=A( 	)-PSI ( 2)*E 
40 CONTINUE 

IF( I-N-1-3) 	43/ 43/ 100 

	

43 	E=AL*PSI ( 2 )*A( I+3 I+2 ) 
A( 1+311 )=-E 
Ai 1+3 7 1+1 )=-PSI( 1)*E 
A( 1+3 / 1+2 )=A( 1+3 /  I+2)-PSI (2)*E 

100 CONTINUE 

 

101  RETURN 
END 

SIBFTC CVECT 

  

   

 

DECK 

 

GVECT_. 	EFN 
	

SOURCE STATEMENT_ 	IFNI( 

SUBROUTINE CVCTR(bA l COEFF7MINFIIG) 
- DIMENSION 8A(40 / 40)/A(40 / 40) 1 EIG(40),V(40) 
COMPLEX COEFF(20 1 20) / SUM 
\1=M*2 

_DO .500 J50=11NF 
'ALPHA=EIG(J50):-: 
DO 501_151=1/N_ 
Q0:501 J51=1/N 

501 A(I51,J51)=BA(If11J51) 
-- (1 / 1)=A(1 1 1)-ALPHA _ 

DO 15 I=21 N 
-A(I I I)=A(I/1)7ALPHA 

70 II=I-1 
DO 15 J=1 / II 
IF (A(I / J))9115,9 
-IF (ABS (A(J,J))-ABS (A(I 1 J)))11110110 

10 	R=A(I/J)/A(J1J) 
GO TO 130 

11 __R=A(J/ J)/A(I1J) 
DO 12 K=1/N 

___C=A(J/K) 
A(J1 K)=A(IIK) 

12 	A(I 1 K)=C 
130 JJ=J+I .  
13 = DO 14 K=JJ/ N 
14: A(II K)=A(I I K)-R*A(4 / K) 

CONTINUE 
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V(N)=1. 
:DO 29:I=2iN 
JJ=N-I+1. 
_R=0. 

-  II=N-I+2 
_,DO 25 K=II I N 

25 	R=R+A(JJ,K)*V(K 
-*IF (ABS (A(JJ7 JJ))71.0E-10)27,27,28 

27 	V(JJ)=1. - 
-- C=0._ 

DO 26 j=II 
-VJJ)=0. 
GC TO 29 	_ 

28 -./(JJ)=(C-R)/A(JJ,JJ) 
29_ CONTINUE 

SUM=(0.010.0) 
J)C 800 I=IrM 
-:IPM=I+M 
COEFF(J50,I)=CMPLX(V(I),V(IPM)) 
SUM=SUM+COEFF(J_O,I)*CONJG(WEFF(J501I)) 
SUM=CSQRT(SUM) 
DO 801 I=104 

801 GOEFF(J5,01I)=CO:FF(J50,I)/SUM 
- 500,CONTINUE 

RETURN 
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SIBFTC HESS 
	

DECK 	 2  — - 

HESS 
	

EFN 	SOURCE STATEMENT 
	

IFN(S- ) 

HES- ENBeRG SUBROUTINE TO PUT M4ITRIXT- N  UPPER 
:SUBROUTINE HESSEN(A1 M) 
DIMENSION A(40/40)18(30) 
)CUBLE:PRECISION.SUM 
JF_.(M - 2) 301 30,32, 

2J:)0 40 ,LC = 301_ 
N = £1 - LC + 

=_N - 1 
_NZ.= N - 
NI = N1 

ABS(A(N / N-1)) 
DO 2 J = 17N2_ 
IF(ABS(A(N,J))- DIV) 21  

1 NI = J 
DIV = ABS(A(f4J)) 

2_CONTINUE 
IF(D.IV) 3,40,3 

3 IF(NI - _111) 41- 
4, DO 5 	= 1/N__ 

DIV = A(JI NI) 
A(J/ NI) = A(J/ N1) 
A(J1 N1) = DIV 
DO 6 J = 11M 
DIV_= A(NI/J) 
A(NI / J). = A(N1 1 J) 
A(NliJ) := DIV 

7 D0.26 K = 1, N1 
26__BJK) = A(NIK)/A(NINt_l)_ 

_DO 45 J=_1 1 M 
SUM = 0:0 
IF (J - N1) 46,3142 

46 IF(B(J)) 41 / 43i!1,1 
41 A(N,J) 

DO 42 K= J1 N1 
A(K,J) =_A(K I J) - A(K/N1)*B(J) 

42 SUM = SUM + A(KiJ)*=MK) 
GC TO 

- 43 DO 44 K = 1,N1 
44-SUM = SUM + A(K / J)*B(K) 
45 A(N1 / J) = SUM 
40 CONTINU 
30 RETURN 

END 
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CHAPTER IV.  

SOME SELECTED RESULTS OBTAINED WITH THE SCF  

SEMI-EMPIRICAL COMPUTER PROGRAMS.  

(1) Introduction.  

Rather than reproduce all the results obtained 

with the four semi-empirical computer programs given in the 

previous Chapter, only a small proportion of them will be 

presented here. Even the output data quoted for the limited 

number of 1r-systems considered here is only a small portion 

of that obtained from running a program with a particular input. 

Future workers, with an interest in one molecule, or some aspect 

of a whole series of molecules, would be well advised to copy 

and run the programs given in Chapter III , and thus recover 

the maximum information. For those interested in properties not 

covered by the programs given, the SCF eigenvectors produced 

by these programs could be utilized to calculate expectation 

values for physical operators not included in the original deck 

structure. Thus such topics as molecular polarizabilities and 

magnetic properties could be studied. 

It is hoped that the following results will serve 

to illustrate various areas of application of the-FIE-electron 

SCF theory, and reveal the degree of success it is possible 

to achieve. 
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(2) Selected Results. 

(a) The Butadiene Molecule.  

(i) Geometry. 

Both the trans and the less stable cis conformations 

of Butadiene were studied. The molecular geometry, and the 

atomic numbering system utilized in each conformation is 

shown below,(190); 

cis. 	 trans.  
2 	 1.461 	3 	2/ 	 

122°  
122°  

1:35A 

1/ 4 	1 

(ii) Parameters. 

The valence state ionization potential and 

electron affinity of each constituent Carbon atom were assigned 

the values of 11.42 and 0.58 ev. respectively ,(117),(118). 

Coulomb integrals were calculated in the Mataga-Nishimoto 

approximation,(124). The empirical resonance integrals, 

were evaluated in a number of ways. The best set, as defined by 

the closest fit obtained for the first excited singlet, was 

that suggested by the application of an approximation introduced 

by Pllaya,(125).These parameters were it? =-2.98, 	=-2.55 ev., 
12. 

and may be compared with the values of Pariser and Parr, 

f312_ =-2.92, and p -1.68 ,(106). Yet another set, Az  =-2.53, 2_3 
R =-2.11 , may be obtained using the overlap criterion, 

* This set worked very well for the related molecule,Fulvene, 

giving a first singlet at 3.16ev.,compared to the experimental 

value of 3.4ev.. 

1.46A. 
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equation(2-121) , with the Benzene integral, p =-2.39, and, 
c—c 

C-G=1.398, as a basis. 

As these parameters imply the molecule has more in 

common with two Ethylene molecules, than with a benzenoid 

ring structure. 

(iii) Ground State Properties.  

The results for the closed-shell ground state 

were obtained using the Closed-Shell SCF program, with input 

parameters as indicated. 

Bond-Orders.  

Table 9. 

Isomer P
12 P

23 

cis .9392 .3435 

trans .9431 .3325 

Note how the cis conformation results in a slightly increased 

degree of electron delocalization compared to the trans form, 

Both electronic distributions do, however, strongly resemble 

the classical picture of two double-bonds between atoms 1-2 

and 	2-3 . All charges defined by Pii, 1 < i <4 	are unity as 

Butadiene is an Alternant Hydrocarbon. 

Orbital Energies. 

Thesearegiveninev.inTable10,with . e.representing 

the SCF orbital energy of 	, 
and 	

are the orbitals 
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occupied in the ground state. Hence
3 
 and 

AL 
101 are virtual 

orbitals. 

Table 10.  

Isomer el  EL  Ez Eto- 
cis -13.2871 -10.4358 -1.5642 1.2871 

trans -13.3143 -10.3820 -1.6180 1.3143 

The identification of c: with the first ionization potential 

using Koopmans theorem is in variance with the experimental 

value for trans-Butadiene of 9.0 ev.,(191). The 	results of 

investigating this discrepancy are given later. 

Total TilEnergy.  

These energies represent the total Tr-energies of the 

molecules, in a self-consistent state. 

E__ cis=-79.9996ev. E
trns

=-79.4242ev. 

We note from these results an apparent stabilization of the 

cis form of Butadiene,however this is misleading . We are using 

only a 7--electron approximation, and in addition have omitted 

atom/atom repulsions from our Hamiltonian. These would all 

combine to reverse the situation, stabilizing the trans form,(192). 

Self-Consistent Eigenvectors.  

These are shown in Tables 11 and 12 overleaf. 
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Table 11.  

Cib-Butadiene. 

i cii  C. C31. c4i 

1 .4051 .5795 .5795 -4051 

2 -.5795 -.4051 .4051 .5795 

3 .5795 -.4051 -.4051 .5795 

4 -.4051 .5795 	I -.5795 .4051 

Table 12.  

Trans-Butadiene. 

i 
Cli I 	C2i C. 

1 .4085 .5772 .5772 .4085 

2 -.5772 -.4085 .4085 .5772 

3 .5772 -.4085 	-.4085 .5772 

4 -.4085  .5772 	-.5772 .4085 

Notet(a) The molecular orbitals are of the form, 7? 7,7 C.- 

where rX..3 is the atomic orbital basis set. 
.1=1 

(b) These orbitals 	are a good instance of the pairing 

properties of the occupied and virtual molecular 

orbital sets, typical of an alternant hydrocarbon, 

(see section (17). of Chapter II ). 

9 
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(iv) Excited States.  

Here we shall confine ourselves to single 

excited electron states, presenting singlet and triplet results 

obtained from the Closed-Shell(CS) -SCF-CI program. As well as 

the essentially spin-paired treatment, both with and without 

configuration interaction(CI), the two open-shell procedures 

programmed were used to find excited triplet states. First we 

give the CS-SCF-CI results. 

Table 13.  

Cis-Butadiene;no CI.. 

Transition LEs cK's  _4- s j  
L Et  Symmetry 

2,3 6.04 56.9 .569 2.77 B1 

2,4 8.44 148.7 .421 5.82 Al 

1,3 8.44 148.7 .421 5.82 Al 

1,4 10.84 267.1 .008 8.17 B1 

, 
Note:(a) Subscript's denotes singlet, t triplet. 

(b) A  E represents the excitation energy required to 

produce the electronic transition from the molecular 

ground state. 

(c) Os is the angle which the singlet transition dipole 

makes with the 1-2 bond.This angle is taken in a 

direction of rotation in the plane of the molecule such 

that the atom numbered 3 is included in the arc,0-.1DV;180°. 
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(d) f s  is the oscillator strength of the singlet 

transition,see equation (2-183). 

(e) The last column shows the symmetry group of 

excited state. 

Table 14.  

Cis-Butadiene; with CI.. 

Transition LEs  Ckis f s 2Et  Symmetry 

1 6.03 56.9 .568 2.23 B1  

2 7.61 - - 4.03 Al 

3 9.27 148.7 .924 7.61 Al 

4 10.85 196.1 .001 8.71 B1  

Note;(a) That transitions can no longer be labelled by the 

re-allocation of a specific electron from the closed- 

shell into a single virtual orbital after a CI procedure 

(b) Ommissions from the table, denoted '-' indicate 

values less than .0005 . 

Table 15.  

Trans-Butadiene; no CI .. 

Transition A Es  s Y-s zi, Et  Symmetry 

2,3 6.26 11. 1.223 2.79 Bu 
 

2,4 8.36 - - 5.84 A 
g 

1,3 8.36 - - 5.84 A 
g 

1,4 10.,98 327. .296 8.27 Bu 
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Table 16.  

Trans-Butadiene; with CI. . 

Transition 40s (3<s iFs ZEt  Symmetry 

1 6.24 	' 12. 1.174 2.21 Bu 

2 7.71 - - 3.98 A 
g 

3 9.02 - - 7.71 A 
g 

4 11.00 153. .376 8.84 B
u 

These results may be compared with those of Parr and Mulliken,(192), 

Pariser and Parr,(106), and I'Haya,(125); the figures given 

here are very similar to those obtained in these references. 

Experimental results,(191), give the first singlet at 6.0 ev., 

with the possibility of the next at 7.2 ev.. , and thus the 

theoretical results can be regarded as fairly satisfactory. 

With a little parameter variation it would be possible to 

exactly reproduce the first singlet at 6. ev. for the trans form, 

the most likely experimental conformation of the molecule. 

The question of the ionization potential of the molecule, which 

is apparently not represented so well by the same set of 

parameters will be discussed later. 

(v) Self-Consistent Excited Triplet States. 

With the identical input parameters as the 

CS-SCF-CI program various excited triplets of trans-Butadiene 

were investigated by the open-shell Roothaan and spin-polarized 
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methods. Detailed results of eigenvectors and orbital energies 

are not given here for reasons of brevity . 

Table 17.  

State AEt P
11 

P
22 

P
12 P23 Cy1 0-'2 

2,4 5.83 .8591 ' 	1.1402 -7- 4798 .1410 .5000 .5000 

1,4 8.19 1.0000 1.0000 .4352 -.2538 .2538 .7462 

2,3 2.44 1-0000 1.0000 .3853 .8187 .8187 .1813 

1,3 5.83 1.1402 .8598 .4800 .1402 .5000 .5000 

2,3'1' 2.45 1.0000 1.0000 .3863 .8174 .8174 .1826 

Note:(a) By the state i,j , the excited triplet formed by the 

transfer of a paired electron from orbital i to a 

virtual orbital j is implied. 

(b) AEt  is the triplet energy relative to the CS-SOF 

ground state. 

(c) P
11' P22 • ' the diagonal elements of the bond matrix 

give the-electron charges on atoms 1 and 2 . 

Those on 3 and 4 follow from symmetry. 

P
12 ' 

P
23 	are bond orders. 

CY1
2 ' unpaired 17-spin density at the atomic 

centre indicated by the subscript. 

(d) The last row of the table gives the results for the 

first Butadiene triplet obtained with the spin-polarized 

SCF program. All other results were found with the 
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Roothaan procedure . No projection of the spin-polarized 

SOP wave function was necessary, as the molecular 

symmetry of Butadiene ensured it was a pure spin state. 

(e) The energy of the first triplet calculated by both open-

shell methods are in good agreement, and differ only 

slightly from that obtained in the CS-SCF-CI approximation. 

All these values, however, seem in variance with other 

reported values, which are in the range 3. to 4. ev.,(192), 

(106),(125). Since no experimental data is available it 

is impossible to decide on the respective merits of 

any particular result. 

(f) States 2,4 and 1,3 are degenerate, and need splitting 

by a configuration interaction .All these triplet energies 

may be compared to those found with the CS-SCF program. 

(vi) Spin-Polarized Ground State.  

From the form of the spin-polarized effective Hamiltonians 

employed in deriving a self-consistent spin-polarized state, 

it may be seen that if the method is used on a ground state 

molecule, with an even number of electrons, spin-alternation and 

an overall energy reduction may be obtained for the system. 

This spin-alternation has to be introduced artificially into 

ril,Th ex- 
the SCF procedure by the choice of the initial matrices 

and [11' /3, otherwise a normal spin-paired ground state ensues.. 

Such spin-polarized ground-states are not, however, 
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eigenfunctions of S
2 

, and do not have the full molecular 

symmetry. With the application of a spin projection technique 

previously discussed, full spin-pairing is re-established 

in the attainment of a singlet ground state. This state in 

fact is just the normal closed-shell spin-paired SCF ground 

state. 

This is illustrated by the results now given for trans- 

Butadiene, obtained using the set of parameters given previously . 

Unprojected Results.  

S2> = 0.1735 

E
ir 

—79.4390 ev. 

Table 18.  

12 
	

23 
	

011 
	

0-12 
.8978 	.3561 	.3110 	-.2396 

Note:(a) All Pii  ,l < i < 4, are unity. 

(b) Compare with the closed-shell results. 

Table 19.  

0(1-spin orbital energies and eigenvectors. 

i ' Cl C il . 
c i3 014 14 

1 1 -13.3693 .4667 .5401 .6064 .3505 

2 -10.5515 -.6616 -.2976 .5021 .4708 

3 -1.4485 .4708 -.5021 -.2976 .6616 

4 1.3693 -.3505 .6064 -.5401 .4667 
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Table 20.  

p -spin orbital energies and eigenvectors. 

i Ei C il C i2 C i3 C 
14 

1 -13.3693 .3505 .6064 .5401 .4667 

2 -10.5515 -.4708 -.5021 .2976 .6616 

3 -1.4485 .6616 -.2976 -.5021 .4708 

4 1.3693 -.4667 .5401 -.6064 .3505 

Note:(a) The equivalent sets of orbital energies for 0( and 

g electrons. 

(b) How the eigenvectors minimize 041/3 -spin electron 

interaction. 

Projected Results. 

These were obtained with the accurate spin-projection 

routine. 

<S 2,> = 0.0183 
E . =-79.4328 ev. 

This energy may be compared with the CS-SOF ground state 

energy of -79.4242 ev. . 

Table 21.  

P12  P23, Crj 1 CY/2 

.9353 .3410 0.0000 0.0000 

Note:(a) Since C7'1 1  = 0-12  = 0 , we no longer have an alternant 

spin-state. All electrons are effectively paired . 
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(b) P12 and P23 
are very close to their CS-SCF ground 

state values. Deviations can be ascribed to the 

inadequacies of the projection technique, and computer 

round-off errors. 

Now the "corresponding orbital" eigenvectors are given. 

These orbitals are used in a transformation technique associated 

with the spin projection discussed in Chapter II,see page 244 • 

Table 22.  

Ti. Q C. C C. C C. C C . 

1 .9853 .0856 
.4391 .5274 .6265 .3696 

.3696 .6265 .5274 .4391 

2 .9250 .1937 
—.6802 —.3195 .4768 .4560 

—.4560 —.4768 .3195 .6802 

Note:(a) The corresponding spin-orbital set, 	j , is related c   

orbital to the SOF spin-polarized molecular set, 

by; 	cC.,-, j,./  (j.
., 	. 	,(see page 245) 

c J 
(--. -corresponding orbital vectors are shown above t3 

eigenvectors . 

(b) The symmetry of the orbitals for a given closed-shell 

(c) Since '
2 

is appreciable, <S2,› is not reduced more 

closely to zero. 
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(b) The Trans-Butadiene Ion,  C a 
4 g 

(i) Geometry.  

In the ionization process removing an electron 

from the Butadiene molecule to form the positive ion, the 

geometry of the Carbon core was assumed unaltered . Thus the 

geometry given for the molecule of trans-Butadiene was again 

used for the ion, and also the atoms were indexed in the same 

way. 

(ii) Parameters.  

These were approximated by a technique 

introduced by I'Haya,(125), which proved successful in predicting 

the first singlet transition of the molecule. In the treatment 

of this ion the main objective was to obtain a reasonable 

value for the first ionization potential of the molecule, using 

the same methods for the deduction of input parameters as was 

satisfactory in reproducing the molecular spectra. 

This ionization potential, I , was calculated from 

a comparison of the total molecular 7T-energy- before the 

removal of the electron, and the 7T-energy of the ion which 

results from the loss of an electron. As has been already noted, 

Koopman's Theorem fails to accurately predict I , giving a 

value of 10.38 ev. , compared to the experimental 9.0 ev.,(191). 

In an attempt to improve on this situation , three 

sets of parameters were used as input for the spin-polarized 

SCF program, and the results compared. These parameters follow, 
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Set A: This was the ground state set, [3 =-2.98, g =-2.55, 
12 	23 

1,11.42, E.=0.58 . We assumed all parameters uneffected by the 

loss of an electron. 

Set B: This set was chosen employing the method of Ifflaya to 

allow for the change in molecular charge distribution following 

the complete removal of a -Tr-electron.The new effective charge, 

(193), of each Carbon atom in the molecule, Zc, , is approximated 

as Zco + 4.Q Z , where Zco is the effective charge experienced 

by a 2p electron in a neutral Carbon atom C°(sp3). 

= Zc+ - Z
c
o ; Z

c
+ being the effective charge of the 

Carbon ion C+(sp3) for 2p electrons. Thus -if  of an electron 

is regarded as being removed from each Carbon atom in the 

ionization process . With Z
c
o =3.25, and Z

c
+ = 3.60 , (193), we 

find Z
c' = 3.34 . In the ion the screening effect of one 

electron has been lost, and thus those remaining are correspondingly 

more strongly bound. The valence state ionization potential of 

each Carbon core was found using a formula derived from 

experimental results by Moore,(194), 

I. = 3.604*Z.2  - 9.599*Z. + 4.5535 

Thisgives 11  - -- 1  
12.65.34 . With the assumption 

that the one-centre Coulomb integral Spp  was proportional to 

Zi  , and utilizing the normal Carbon integral to obtain the 

constant of proportionality, it is found with Z1= 3.34 , 	11.13. 

Off-diagonal Coulomb integrals were left unchanged in the 

Mataga-Nishimoto approximation,(124). The new values for the 
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resonance integrals were found with the overlap criterion 

of I'Haya,(125), 13ij = y I. + I. ) s.. . The new orbital 

overlap matrix, S..ij 
 , was obtained with the use of the new 

effective charges and tables published by Mulliken,et al.,(193). 

Thus the values used were /3=-3.07 	/3 	. 
12. z3 

Set C: Whereas Set B consisted of fixed parameters, uneffected 

by the charge distributions in the ion, this set of parameters 

was flexible , and varied during the self-consistent procedure 

Thus the differential charge distributions in the ion as it 

approached a SOP state were allowed for. That is the assumption 

that exactly. i of an electron was removed from each atomic 

centre was discarded. Instead,the effective charges of the centres 

were derived from the empirical relation, Z
i = -.35*Pii 	3.60 

This equation was obtained by assuming a linear relationship 

between atomic 1T-charge, P.. , and effective charge, Zi  . 

lienceintheSCFprocedureZ.
1  was re-calculated at the end of 

eachiteration,andfromthisI—and 1 113..  for the next 

iteration were calculated as indicated in data set B . In 

addition the resonance integrals were re-calculated, the overlap 

S..
13(Z.,Z.), being found for the variable effective charges 

using formulae given by Mulliken,(193) . With these flexible 

parameters the spin-polarized SCF program was iterated to 

convergence. 

Results of these various parameter sets are now presented. 
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(iii) Results.  

Orbital Energies. 

Table 23.  

Data E 1 I 	E 2 
-T- 

E:3 ELI- 

A 
-17.709 -10.123 -5.624 -3.399 

-19.055 -16.576 -7.710 -4.354 

B 
-19.006 -11.302 -6.650 -4.388 

-20.399 -17.883 -8.810 -5.384 

c 
-18.182 -10.826 -6.940 -5.456 

-19.336 -17.654 -9.292 -6.313 

Note:(a) The orbital energies, 	, 1 	i s,<. 4 , are in ev. 

with the CL-spin eigenvalues in the first row of 

results for the given data set.The 3 -spin are those 

in the second row. 

(b) The electron removed to form the ion had CL-spin. 

(c) Compare the extra binding of the electrons remaining 

by reference to the ground state orbital energies. 

Totalltenergies and Ionization Potential of  C411164_ 

Table 24.  

Data n--energy Ionization Pot. 

A -69.1921 10.23 

B -73.378 6.05 

C -70.641 8.78 
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Note:(a) Agreement between result A , and Koopman's Theorem, 

which predicts I = 10.38 ev. . Thus Koopman's 

approximation that the wave functions of the electrons 

remaining are not much altered by the loss of one through 

ionization remains valid. What is omitted from 

consideration, and it is vital that it should not be, 

is that all inter-electron integrals and parameters are 

changed with the alteration in the effective charge of 

the Carbon cores. 

(b) That the result for data C compares quite well with 

the experimental value of 9.0 ev. for the ionization 

potential of trans-Butadiene . Thus it does seem possible, 

with sufficient care, to use the same parameter 

prescription for ionization potentials and optical 

transitions in the semi-empirical approximation, and 

still obtain reasonable results for both. 

Electron Distributions.  

Table 25.  

Data P22 P11 P12 0-'1 0)2 P23 

A .6734 .8265 .4758 .0242 .6662 .5612 

B .6752 .8247 .4759 .0241 .6666 .5595 

C .7205 .7794 .5644 .0644 .6378 .5598 

Note:(a) The more even charge distribution obtained with the 

flexible parameters, set C 
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(b) Compare these results with those of Hoyland and 

Goodman,(107),(139) 

(c) None of the results represent pure spin eigenfunctions 

as the spin-projection routine was not yet available 

when this work was done. This, however, does not effect 

the validity of the numerical results, for example, 

the wave function represented by data A has e>=.8060. 

After projection we obtain 32> =.7500 , and the 

following results; 

Table 26. 

P22 P11 P12 el 0-'2 P23 
.6698 .8302 .4411 .0590 .6747 .5649 

These show little deviation from those given in the 

in the previous table , Table 25 . Any energy changes 

incurred by projection would be in the direction 

of improving the fit of the experimental ionization 

potential obtained with data C 

(c) Benzene.  

(i) Geometry.  

The length of the Carbon-Carbon bond was taken 

as 1.39 . ,with an inter-bon
1
d angle of 120°  . 

6 /c)  
120 

1.39 



- 390 - 

(ii) Parameters.  

The valence state ionization potentials and 

electron affinities of the Carbon cores were given the values, 

11.42 and 0.58 ev. , respectively. Data set A , utilizing the 

lvlataga-Nishimoto Coulomb integrals and a Carbon-Carbon resonance 

integral ,=-2.,39 , duplicated results obtained by Mataga 
/c-c  

and Nishimoto with the same parameters,(124). This acted as a 

valuable check for all the procedures embodied in the CS-SCF 

program. 

To investigate the dependence of optical transitions 

on input parameters , the program was re-run with only the 

resonance integrals changed, and re-allocated the value of -2.30 . 

This was data set B . In addition the effect of multiplying 

the two-centre integrals obtained in the Mataga-Nishimoto 

approximation by a constant factor of 1.2 was studied with data 

C . All other data was left unaltered . 

Also the dependence of the results on the degree of 

configuration interaction invoked was investigated, and 

conflicting results 	found for the lowest Benzene triplet 

state. 

(iii) Results.  

As Benzene is an alternant hydrocarbon all 

Tr-densities at the atomic centres are unity. Similarly the 

bond-orders are all identical at 3  , determined entirely by the 

molecular symmetry. In this treatment of the molecule we shall 



- 391 - 

only consider optical excitations. 

Data Set A: No CI.  

Table 27.  

Transition E Es  s3 s fs Et  

1,4 8.74 - - 7.02 

1,5 8.77 - - 7.03 

1,6 11.49 - - 10.01 

2,4 5.94 179. .504 4.47 

2,5 6.55 go. .560 3.63 

2,6 8.77 - - 7.03 

3,4 6.55 27o. .554 3.59 

3,5 5.94 179. .503 4.47 

3,6 8.74 - - 7.02 	..., 

Data Set A: With CI.  
Table 28.  

Transition Es (Xs Ss Et 

1 4.90 - - 2.60 

2 6.13 - - 4.03 

3 6.95 45. 1.163 4.04 

4 6.98 314. 1.202 4.90 

5 8.48 - - 5.56 

6 8.50 - - 5.56 

7 9.01 - - 8.48  

8 9.04 - - 8.50 

9 11.49 - - 10.59 
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Note:(a) For several entries in the table exact degeneracies 

in opitical transitions do not occur where they are 

expected. This is due to the program failing to handle 

a problem with degenerate roots accurately. 

(b) Compare these values with the first experimental 

singlets and triplets of Benzene,(195). 

Table 29.  

Transition Experimental Theory,data A M-N,(124) Symm. 

Singlet 

4.9 4.90 4.90 
1B 
2u 

6.0 6.13 6.13 1B lu 

7.0 6.96 6.96 1E 
lu 

Triplet 

3.8 2.60(3.17)*  3.17 3Blu 

4.2 4.03 4.03  3E
lu 

4.9 4.90 4.90 3B
2u 

* This transition depends strongly on the degree of 

configuration interaction used. The figure in brackets, 

the closest to the experimental value, was obtained 

from considering only the first four excited molecular 

states. The value of 2.60 ev. is obtained by including 

all possible singly excited configurations. All other 

excitations are independent of the 	degree of 

interaction used between the two limits given above. 

Thus a first order interaction seems superior here. 



- 393- 

Data Sets B and C .  

The results obtained with these parameters are quoted 

together in order to save space. Only the results after 

configuration interaction are given, and oscillator strengths 

are omitted . 

Table 30.  

Transition Data B. Data C. 

AEs AEt AEs L Et 

1 4.73 2.40 4.93 2.08 

2 5.95 3.86. 6.41 3.88 

3 6.76 3.86 7.36 3.90 

4 6.79 4.72 7.43 4.92 

5 8.21 5.29 8.73 5.23 

6 8.22 5.29 8.77 5.24 

7 8.75 8.21 9.37 8.73 

8 8.76 8.22 9.41  8.77 

9 11.11 10.24 11.19 10.87 

Note:(a) We find the variation of the two centre Coulomb integrals 

by a factor of 1.2 as in Data C , strongly effects the 

transition energies. A poor fit of the experimental 

spectra is obtained. 

(b) The resonance integrals, given the new value of -2.30 

in Data B , alter the optical transitions rather less 
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severely . However, it seems plain that the choice 

of parameters is very important, crucially effecting 

the predicted optical transitions. Thus the whole 

procedure does appear very sensitive to parameters, 

and the optimum set is unique . 

(d) The Benzyl Radical C H • 7 
(i) Geometry. 

The geometry adopted for this radical in all the 

calculations whose results are presented here, was that used 

by Ladik et al.,(196). The length of all Carbon-Carbon bonds 

was taken as 1.40 R , and inter-bond angles were assumed to 

be 120° . The atomic numbering system utilized is shown below. 

5 	6 

(ii) Parameters. 

The valence state ionization potentials and electron 

affinities were assigned their usual values of 11.42 and 0.58 ev., 

respectively. Within the ring, all resonance integrals had the 

value -2.39 ev., while the 1-7 integral was taken as -2.151 ev., 

.9 of the ring integrals. The Mataga-Nishimoto approximation was 

used for the two-centre Coulomb integrals,(124). Data set A uses 

the normal Mataga-Nishimoto integrals, Data B , 1.5 of these values. 
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With these parameters both the ground state and excited states 

of the Benzyl radical were investigated, with both the spin- 

polarized program, and Roothaan's open-shell procedure 

(iii) Results.  

Doublet Ground State. 

First we present results obtained with the spin- 

polarized program. 

Table 31.  

Quantity Data A. Data B. 

unann ann unann ann 

.3422  .1041 .1361 .0434 

C-2 -.4201 -.2148 -.1815 -.1187 

aj3 .3621 .1097 .0940 .0303 

0-14 -.3911 -.1929 -.1598 -.0947 

0-7 -.8352 -.7010 -.8014 -.7720 

7j Energy -177.901  -177.507 -224.910 -224.916 

<s2  1.1551 .8804 .7903 .7510 

8 1 .1131 .0274 

A 2 .2076 .0559 

.6, 3 .2234 ..0791 

Note:(a) The quantities 	are spin densities. A are the 

corresponding orbital coefficients. The results before 

annihilation are labelled 'unann' , those after 'ann' . 
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(b) The difference in results before and after the use of a 

single annihilator. This confirms the need for such 

a technique , especially in view of the particularly 

poor expectation value of S2 for the wave function 

found with Data Set A . 

(c) The high Q values for the corresponding orbitals of 

Data A , these indicate a poor expectation value for S2. 

Since the 	are quite large, the projection routine 

is not completely successful in removing all unwanted 

multiplicities from the wave function. 

(d) These results may be compared directly with those of 

Ladik, et al.,(196), and Berthier,(129). 

Table 32.  

Spin Density Berthier,(129) Ladik,(196) 

unann ann Data A Data B 

cr'1 .1541 .1033 .340  .140 

0-)2 -.2380 -.2000 -.414 -.186 

al  3 .1333 .0899 .356 .102 

0-14 -.2492 -.2077 -.386 -.162 

(:). 7 -.6952 -.6735 -.840 -.810 

Ladik's Data A and DataB correspond to the data similarly 

labelled in this discussion. The use of 1.5 times the 

Mataga-Nishimoto integrals in Data. B corresponds to the use 

of Slater type 2pz  orbitals in calculating the two centre 
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integrals. 

(e) Various experimental results are available for the spin- 

densities in this radical. These are shown in the following 

table. 

Table 33.  

Spin Density Tolkachev,(197) Ladik,(196)  Max. Min. 

0-el 	1 - .144 .064 

0-' 2 -.244-1,022 -.201 -.187 

o-,  3 - .068 .064 

C)\̀ '4 -.2441-.022 -.240 -.223 

0-1  7 ...733+.044 -.639 -.594 

As may be seen the results obtained using Data Set A are 

in quite good agreement with these experimental values. 

Variations in the experimental spin-densities assigned 

to the various centres arises from the different possible 

interpretations of the experimental data. Ladik's data 

attempts to bracket the likely value within maximum 

and minimum limits. 

Now the results obtained for the doublet ground state 

with Roothaan's procedure are given, and compared directly with 

the theoretical values found by Berthier,(129). The study of 

Benzyl by Berthier was performed without the assumption of 

zero differential overlap. 
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Table 34.  

i 
Data A Data B Berthier 
o D ii Dc ii D0 J.J. Dc ii 

0 R. c 
Rii 

1 .0000 .5000 .0000 .5002 .0000 .4812 

2 .0505 .4748 .0704 .4646 .1035 .4558 

3 .0000 .5000 .0000 .5003 .0000 .4988 

4 .0283 .4859 .0420 .4787 .0848 .4565 

7 .8707 .0646 .8172 	.0914 .7082 .1530 

Energy -177.656 -224.850 - 

Note:(a) The matrices D°  and De  are open and closed-shell density 

matrices, denoted R°  and Re  in Berthier's notation. 

The diagonal elements of De  give the atomic spin-densities 

directly , this matrix is twice the open-shell density 

matrix discussed in Chapter II . 2*Deii 	Do , gives 

the "Tr-electron charge at centre i . 

(b) The total state energies compared with those found 

with the spin-polarized program. They are very similar. 

(c) Experimental spin densities are not adequately 

predicted with this procedure of Roothaan. The spin-

polarized method seems much more successful . 

The Benzyl Quartet State, 4B2  . - 

In terms of an orbital occupation diagram, this state 

can be represented as; 
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	T 

The wave functions corresponding to these orbital populations 

were calculated in the spin-polarized and Roothaan approximations. 

First the spin-polarized results are shown, compared to Berthier's 

theoretical results, 

Table 35.  

Quantity Data A Data B Berthier 
unann ann unann ann unann ann 

O'1 .1265 .0717 .0756 .0437 .0654 .0527 

O'2 -.2536 -.2334 -.2356 -.2249 -.2408 -.2370 

o-' 3 -.2279 -.2032 -.1957 -.1836 -.1917 -.1868 

0-'4 .1155 .0636 .0458 .0229 .0341 .0249 

O'7 -.2791 -.2620 -.2587 -.2493 -.2344 -.2299 

17-Energy -175.076 -174.963 -221.028 -221.029 - - 

L1 E 2.82 2.54 3.88 3.89 - - 

<S2> 4.0392 3.7747 3.8336 3.7519 - - 

Ai .1905 .0887 - 

LS 2 .1970 .1152 - 

Note:(a) Spin-density for this quartet state is defined by 

-P..), as discussed by Berthier,(129). 11 

(b) LE is the state energy relative to the doublet ground 

state obtained with the same parameters. 

3  -* 
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Now the results of the application of Roothaan's procedure 

are given. 

Table 36.  

i 
Data A Data B Berthier 
o D.. 11 

c D. 11 
o D. 11 

c D.. 11 
o R.. 11 

c R.. 11 

1 .0000 .5000 .0000 .5000 .0008 .4870 

2 .6122 .1939 .6270 .1865 .6710 .1606 

3 .4983
1 

.2509 .4994 .2504 .5001 .2481 

4 .0311 .4844 .0358 .4822 .0514 .4804 

7 .7453 .1274 .7106 .1447 .6056 .2152 

17-Energy -174.326 -220.744 - 

LE 3.33 4.11 3.98  

Note:(a) The close correspondence of the results obtained here 

with those of Berthier. 

(b) The total state energies, and the excitation energy, 

2B2 - 4B2  . Berthier obtained 3.98 ev., with the use of 

a configuration interaction technique 

(c) All atomic -Tr-charges are unity, as the radical is 

alternant. 

Excited Doublet States,2A2  _._ 

The first of these may be described by the orbital diagram; 
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The SCF results for this state when treated with the Roothaan 

program are shown below. 

Table 37.  

i 
Data A  Data B Berthier 

D?. 11 
 c D. 

11 
o D.. 11 

c D. 11 
o R.. 11 

c R.. ii 
1 .0000 .5196 .0000 .5019 .0000 .5128 

2 .2231 .3547 .2434 .3567 .2287 .3406 

3 .2769 .2637 .2566 .2428 .2713 .2400 

4 .0000 .5856 .0000 .6321 .0000 .6432 

7 .0000 .6578 .0000 .6666 .0000 .6827 

II- Energy -173.688 -221.110 - 

AE 3.97 3.74 - 

A second doublet is possible; 

	04 
1- 	A 
T 	73. 

The results for this state are shown on the next page in Table 38. 

meanwhile the following observations apply to this table as well 

as Table 37 . 

Note:(a) These two states are degenerate in the Roothaan 

approximation, neglecting differential overlap. 

Although these states have the same resultant spin-

densities, the diagonal closed-shell density matrix 

elements are not identical . After a configuration 

interaction procedure Berthier obtains two excited 
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doublets ,2.76 ev., and ,3.81 ev., which are in 

accord with experimental data. 

(b) A configuration interaction technique is needed to 

to split the degenerate states obtained here, and 

predict the optical transitions after the fashion of 

Berthier. 

Table 38.  

i 
Data A Data B Berthier 
o D.. ii 

c D.. 11 
_o D.. 11 

c D.. 11 
o R.. 11 

c 
R.. 11 

1 .0000 .4803 .0000 .4984 .0000 .4278 

2 .2231 .4221 .2436 .3995 .2321 .4184 

3 .2768 .4594 .2564 .5009 .2679 .4925 

4 .0000 .4145 .0000 .3677 .0000 .3272 

7 .0000 .3422 .0000 .3333 .0000 .4233 
IT-Energy -173.688 -221.110 - 

L E 3.97 3.74 - 

From all these results we are able to draw several conclusions. 

First as regards spin-densities, it seems clear that the use of 

1.5 times the Mataga-Nishimoto two centre integrals by Ladik, 

et al.,(196) , in predicting spin-densities was only necessitated 

by their failure to use a spin projection technique . With the 

use of the single annihilator method,the improved wave functions 

give quite satisfactory results with the normal unaltered integrals. 

In fact the spin-polarized results are in good agreement with 

experiment. 
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The situation concerning the optical excited states 

is not so clear, and the results given here seem in variance 

with those 	of Berthier. The quartet state, 4B2  , is of much 

lower energy in the spin-polarized approximation than in 

Roothaan's open-shell method. Perhaps this can be attributed 

to the increased spin correlation allowed by the former, or 

inadequacies in the energies obtained after the use of a 

single annihilator. 

(e) Naphthalene.  

(i) Geometry.  

All Carbon-Carbon bonds were assigned a length 

of 1.40 	, with inter-bond angles of 120°. The atomic numbering 

system utilized is shown below; 

7' ,A\) 3  
6 	4 

(ii) Parameters.  

In this alternant hydrocarbon , all Carbon cores 

were given valence state ionization potentials of 11.42 ev., 

and electron affinities of o.58 ev. . Carbon-Carbon bonds were 

assigned resonance integrals of -2.39 ev., and the Mataga-

Nishimoto approximation was used to supply the two centre Coulomb 

integrals. 



-404- 

(iii) Results.  

The following results were obtained with the 

closed-shell SCP program with configuration interaction 

for excited states. 

Ground state bond-orders.  

These may all be obtained from the following matrix elements, 

utilizing the molecular symmetry. 

P12 = .7410 P23 = .5870 	P
45 
 = .5399 

P5,10 - .5416 

All charges are unity as the molecule is an alternant hydrocarbon. 

Single electron excited states.  

The singly excited molecular states are given both before 

and after configuration interaction, (see Fig. 28 ). 

Table 39.  

Naphthalene:No CI. 

Transition 6.Es .  
s n, Et 

3,6 6.04 279. .001 4.63 

3,7 6.86 331. .001 5.87 

3,8  7.94 59. .558 6.46 

4,6 5.02 33o. .9i6 4.01 

4,7 6.36 243. .660 4.32 

4,8 6.86 331. .001 5.87 

5,6 4.61 239 .517 2.56 

5,7 5.02 150. .916 4.01 

5,8 6.04 99. .001 4,63 
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Table 40.  

Naphthalene: With CI. 

Transition LE s 
Sym. LEt Sym. 

1 4.25 - 1
B3u 2.16 3B2u 

2 4.46 237. .254 1B2u 3°40 373lg 

3 5.79 330. 2.113 1B3u 3.77 3B 3u 

4 5.84 - - 
1B lg. 4,.25 3133u 

5 6.19 - - A1g 4.34 3B 
2u 

6 6.23 99. .001 lg 5.54 3A 
g 

7 6.42 63. .698 1 
B2u 

3.83 3B lg 

8 7.54 151. .002 1Alg 
6.19 3Alg 

9 8,02 240. .984 1B2,]  6.83 3B
2u 

Note:(a) Typical alternant hydrocarbon spectra, first singlet 

and triplet are unique , followed by degenerate singlet 

and triplet transitions which can only be separated 

with a configuration interaction procedure . 

(b) The transitions to states 1B3u and 
1B2u may be predicted 

as polarized in the X and Y directions respectively 

from symmetry considerations, 

This is confirmed by the transition dipole angles, 
' 

for the allowed transitions of these symmetries. 
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(c) The lower energy singlets and triplets may be 

directly compared with experimental results,(195), 

(198),(199). 

First the singlets are given. 

Table 41.  

Experimental Theoretical 

A Es  Ss 0 Es f s Sym. 

3.99 

4.35 

5.62 

6.51 

7.41 

- 

- 

1.7 

.20 

.6 

4.2 

4.46 

5.-79 

6.42 

8.02 

- 

.25 

2.,11 

.70 

.98 

15 * 
B3u 
* 1B 2u 
e 1 B3u 

1B 
2u 

1B  
2u 

• This assignment is very uncertain, there is a 

1
Alg state at 7.54 ev. . 

• Confirmed by polarization studies of McClure,(200). 

e Agrees with conclusions of Craig, et al.,(201). 

As may be seen, the overall prediction is quite 

satisfactory , especially as no parameter variation 

has been attempted to further improve the results. 

For the triplet states less experimental 	data 

is available. This is shown in the following table. 
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Table 42.  

Experimental 

AEt 

Theoretical 

'(' Et Sym. 

2.64 2.16 3B 2u 

* 
3.72 3.77 3B 3u 

4.49 e  4.25 

4.34 

3B 3u 
3B 2u 

5.62 e  5.54 

5.85 

3A lg 
3B lg 

6.27 e  6.19 3A lg 

* Tentative , estimated by Kasha and Nauman ,(198). 

O Estimated position , Kleven and Platt ,(199). 

• These are from triplet-triplet data obtained by Orloff, 

(149), who also assigns the 6.27 ev. state a symmetry 

of 3Alg • 

Once again the fit of experimental results by the theoretical 

values is reasonable, within the limits of the rather 

inadequate data available. The first triplet, however, is 

not predicted very accurately . Attempts were made to 

improve on this with the two open-shell programs. 

Naphthalene First Triplet.  

The results of the application of the spin-polarized SCF 

treatment are given in Table 43. 
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Table 43.  

Quantity unann ann 

0-'1 .5183 .4644 
0-'2 .0905 .0870 

Cri  5 -.2171. -.1025 

1T-Energy -299.876 -299.887 

LE 2..09 2.07 

32> 2.1213 2.0057 

A 1 .0000 

LS.2 .0040 

.n.3 .1240 

Z4 .1241 

Note:(a) Spin density is here defined as , P. 	13.13  = 	• 

(b) The poor value obtained for the first triplet excitation 

energy, which has an experimental value of 2.64 , (202). 

The actual calculated first triplet has very similar 

energy to that obtained by the configuration interaction 

procedure just discussed. 

(c) With two centre integrals 1.5 times their Mataga-Nishimoto 

values , that is nearer their Slater orbital equivalents, 

the first triplet is found at 2.76 ev. . This value is 

very satisfactory from the prediction point of view , but 

the use of such a high multiple of the Coulomb integrals 

seems very questionable 	in the semi-empirical 
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approximation . As we have seen in the case of the 

Benzyl radical, and for the CS-SCF-CI excitedAstates 

of Naphthalene , the normal Mataga-Nishimoto integrals 

are perfectly adequate.Additional confirmation of this 

arises from the treatment of the Naphthalene positive 

and negative ions. 

Now the results of a calculation using Roothaan's open-shell 

technique on the first triplet are given. 

Table 44.  

Spin Densities Energy AEt 

.4065 .0935 .0000 -299.566 2.39 

Note:(a) The close similarity with the previous results,Table 43. 

(b) The improved value for the first triplet excitation 

energy. 

The bond-orders obtained with the two different methods may also 

be compared . 

Table 45.  

Bond-order 
element 

Spin-polarized Roothaan's 
open-shell unann ann 

P12  .4352 .4368 .4567 

P23 .8162 .8156 .7990 

P
45 

.5657 .5744 .5700 

P
10,5 .4424 .4487 .4905 
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All the triplet charge densities are unity . 

These results closely resemble those obtained by Amos,(165),  

and Amos and bynder,(168),(170) . This is to be expected as an 

identical method with similar input data was used . 

(f) The Naphthalene Ions 'ClOHi. 

(i) Geometry. 

This was assumed identical to that of the ground 

state molecule given in section (e) . 

(ii) Parameters. 

In this study of the Naphthalene ions no attempt 

was made to allow for the differential ionization of the 

atomic Carbon cores , as was in the investigation of C4H4 . 

The chief objective was the prediction of the spin-densities 

in the ions , which have been experimentally measured by means 

of ESR . All parameters used for the ions were identical with 

those applied to the molecule in 	previous section. 

(iii) Results. 

The ions were treated with both the spin-polarized 

and open-shell Roothaan methods , and the results of both 

approximations are shown together in Table 46 on the next 

page. The following notes apply to this table; 

Note:(a) The entry in the table LE gives the energy of the 

state relative to the CS-SCF ground state. Thus the LsE 

for the negative ion are less than zero, implying 
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Table 47.  

quantity 
Naphthalene - Naphthalene + 

Spin-Polarized Roothaan 
OS 

Spin-Polarized Roothaan 
OS unann ann unann ann 

CrJ1 .2889 .2260 .1908 .2894 .2261 .1908 

0'2 .0107 .0399 .0592 .0103 .0397 .0591 

0-'5 -.0994 -.0316 .0000 -.0997 -.0317 .0000 

P11 1.1637 1.1642 1.1686 .8364 .8358 .8313 

P22 1.0982 1.0969 1.0913 .9018 .9030 .9084 

P
55 

.9763 .9777 .9802 1.0237 1.0223 1.0200 

P12 .5980 .6010 .6087 .5979 .6009 .6080 

P23 .6857 .6868 .6806 .6858 .6869 .6809 

P45 .5525 .5560 .5534 .5525 .5556 .5531 

P10.5 .5066 .5086 .5185 .5065 .5085 .5183 

7r-Energy -304.553 -304.591 -304.415 -292.555 -292.568 -292.414 

A E -2.599 -2.636 -2.461 9.399 9.386 9.540 

02> .8141 .7530 .7500 .8145 .7530 .7500 

A 1 .0000 - .0041 _ 

L2 .0040 - .0572 - 

.63 .0570 - .0750 - 

A4 .0748 - .0855 - 

/...5 .0852 - - _ 

lower energy states than those obtained for the molecule. 

Clearly these tiE represent the approximate electron 

affinities of the molecule, with the positive QE's of 
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the + ion corresponding to the molecular ionization 

potentials. 

(b) The spin-densities of the two ions evaluated in these 

separate SCF procedures are very similar. In fact they 

should be identical as shown by McLachlan,(203), due to 

the pairing properties of alternant hydrocarbon ion 

orbitals. Any deviation from equivalence in the results 

found is due entirely to loss of numerical significance 

in the execution of the computer program. This equivalence 

has been experimentally confirmed by De Boer and 

Weissman,(176), however the two spectra have been shown 

to be not exactly identical by Carrington,(204) - 

(c) The theoretically calculated spin-densities may be 

compared with the experimental quantities , and the 

calculated results of other workers. 

Table 47.  

Reference Experimental result Theoretical result 

C›.1 1 C>'''2 CY' 5 O'j  1 C)j  2 CI'.5 

McLachlan 

(205) 

.203 .076 -.058 .222 

.211 

.047 

.055 

-.037 

-.032
*  

Carrington 

(204) 

.218 .081 -.098 - - - 

Amos 

(165) 

- - - .269 

.243 

.021 

.032 

-.081 

-.055.  

* Variable 's used, p(R C-C ) 
 

• 
	$ Projected results. 
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(d) The charge densities of the two ions are different, 

even though the spin distributions are identical. 

The results given here may be compared with those of 

other investigations. 

Table 48.  

Reference 
Theoretical C108 H+ Theoretical C10  11- 8 
P11 P22 P

55 
P11 P22 P55 

(107) .8308 .8924 1.0536 1.1732 1.1075 .9385 

(165) .821 .899 1.061 - - - 

(e) The corresponding orbital eigenvectors of these ions 

as obtained with the spin-polarized program were 

compared with those published by Amos and Synder,(168), 

as a check for the program. Amos and Synder used virtually 

the same input parameters, and the correspondence 

between the two sets of eigenvectors was very close. 

(g) The Allyl Radical.  

(i) Geometry.  

The radical was assumed planar, with Carbon-Carbon 

bond-lengths of 1.4 	, and an inter-bond angle of 120°  . 

2 
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(ii) Parameters. 

These were all assigned their typical hydrocarbon 

values. The valence state ionization potential and electron 

affinity were given the values 11.42 and .58 ev., respectively . 

All resonance integrals between bonded atoms were given the 

value of -2.39 ev., the Mataga-Nishimoto approximation was used 

for the Coulomb integrals . This particular investigation was 

directed at a calculation of spin-densities, to compare with the 

experimental results. 

(iii) Results.  

These were all obtained in the spin-polarized 

approximation. 

Table 49.  

Quantity unann ann 

()-)1 .7292 .5696 

012 -.4584 -.1392 

P12 .6285 .6758 

17-Energy -52.152 -52.086 

02> .9601 .7500 

61 .2358 

Note:(a) The spin densities are in fair agreement with the 

experimental results ,0-11 = .58 , 2  = -.16 , obtained 

by Fessenden and Schuler , (206). 
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(b) The following theoretical results have been found 

in similar investigations. 

Table 50.  

Reference 011 &-'2  

McLachlan,(205) .594 -.187 

Brickstock,(207) .626 -.252 

(h) The Nucleotide Bases.  

(i) Introduction.  

The five nucleotide bases, Uracil, Adenine, Thymine, 

Guanine and Cytosine , have great biological importance, (167). 

Hence their electronic structure has been investigated by 

several authors, using various semi-empirical methods,(167),(166), 

(208 - 212). In this section results obtained for both the 

ground state and excited molecular states of these bases are 

given. The same set of parameters was utilized for all calculations 

so numerical results may be directly compared and the degree 

of equivalence in the approximations studied. The parameters 

given here could be used asa starting point for the investigation 

of other groups of hetero-atomic conjugated molecules, the set 

being re-optimized as necessary . 

(ii) Geometry.  

The molecular geometries of the five bases were 
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taken froma paper by Spencer,(213). The atomic indexing system 

is shown in Fig. 29 . 

(iii) 

constituent 

Their values 

Parameters. 

ionization potentials of the 

bases are now listed. 

(118) and (117) 

The valence state 

atoms of the nucleotide 

were taken from references 

C— I 	= 11.42 EC  = 0.58 

N—H IN  = 29.16 E
N = 14.49 

 

IN  = 13.83 EN = 0.48 

0 I0  = 17.28 E0  = 2.70 

—Cm H
3 

IH = 13.60 EH  = 0.75 
3 3 

The set of resonance integrals used is shown below; 

pc_c  = -2.39 ev. (3  o-H
3
= 21go-o 

0-0 = Pc_c 	13 C-N = •8*PC-C 

f3
C-N = 1.21?c_c  

These values differ slightly from those of Ladik and Appel,(210), 

giving an increased correspondence between the first two 

experimental singlet excitations of the bases and those found 

in the CS-SCF-CI approximation. 

The Mataga-Nishimoto approximation was used for all two centre 

Coulomb integrals. 

(iv) Results. 

Ground-states : The 1T-electron charge distributions of the 

ground state bases are shown in Table 51 . 
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Fig. 29.  
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Table 51.  

Ground state 1T-electron distributions in the Nucleotide bases. 

Atom Uracil Thymine Cytosine Guanine Adenine 

1 1.8825 1.8826 1.1494 1.8824 1.1444 

2 .6997 .7002 .7319 .8760 .9097 

3 1.8882 1.8875 1.8732 1.1709 1.1361 

4 .9158 .9096 .9187 .9401 .9549 

5 1.0336 1,03998 1.0496 1.0478 1.0356 

6 .7406 ;1404 .8616 .7403 .9098- 

7 1.4261 1.4249 1.4668 1.1066 1.1284 

8 1.4135 1.4106 1.9489 .9615 .9459 

9 .9343 1.8678 1.8797 

10 1.0703 1.9486 1.9556 

11 1.4581 

x For atomic indexing see Fig. 29. 
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From this table the similarities in the electronic distributions 

within the Pyrimidine bases,( Uracil, Thymine, Cytosine), and 

the Purine bases,(Guanine, Adenine ), are evident. These 

11 -densities may be compared with the distributions found 

in other investigations,(166),(167),(214). 

From these ground state 1r-electron distributions the 

-E.' -contribution to the total dipole moment of each molecule 

was calculated , and compared with the theoretical results obtained 

by Pullman,(215),(216) . 

Table 52.  

Base lit(fir, 	(D ) Ar(D),Pullman. 

Uracil 3.64 3.3 

Adenine 1.06 2.7 

Thymine 3.62 2.8 

Cytosine 4.84 5.3 

Guanine 5.06 5.7 

Note:(a) Varying degrees of correspondence between the results 

obtained here and those found by Pullman, who also calculated 

the 	total molecular dipole moments of the bases by 

including the 0J -core contribution, 	1,,,k„.„1„,„ • 

With a parameter set specifically designed for the 

accurate prediction of dipole moments, Pullman obtained 

moments which were in substantial agreement with experimental 

values. These parameters were calibrated in Mickel 
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approximations of simple hetero-atomic molecules. 

The data used here was oriented towards a reproduction 

of the singlet spectra , not the dipole moment of 

the bases. 

(b) The same sequence is predicted for the magnitude of the 

molecular -In--dipoles of the bases by both sets of results. 

Excited States: The singlet excitations calculated with the 

CS-SCF-CI program are shown in Table 53 , and compared to the 

experimental spectra of the bases,(210),in the same Table . 

Examining this table an average deviation of .30 ev. between 

the theoretical and experimental values of the first two singlets 

of each base is found. This represents a marked improvement over 

Ladik's mean deviation of .5 ev. ,(210). 	every instance , 

except for Adenine, each individual calculated transition is 

a better fit of the experimental value than that obtained by 

Ladik and Appel,(210).These results may also be compared with 

those found by ivesbet,(209). Finally it may be noted that as 

is usual for SCF-CI excited singlet states, the intensity 

predictions of the transitions are rather unsatisfactory . 

The first triplet states of the five bases were 

investigated with both the spin-polarized and Roothaan open-shell 

SCF programs. The total 7T-energies of these states are shown 

together with the CS-SCF ground state energy in Table 54. 

The need for the use of an annihilator to improve the expectation 



- 421 

Table 53.  

Excited Singlets of the Nucleotide Bases. 

Base GEth fth LEexp 

I 
fexp 

_ 5,14 .676 4.81 .18 

jracil 
5.68 - .062 

6.05 .226' 6.11 .30 

6,95 .011 

5.09 .712 4.67 18 

5.64 .076 .37 
Thymine 

6.02 .202 5.94 

6.71 .015 

4.41 .378 4.61 .13 

Cytosine 5.51 .053 

6.53 .904 6.26 .72 

6.74 .080 

4.11 .477 4.49 .20 

Guanine 
5.15 .273 5.03 .27 

5.88 .136 

6.07 .213 

5.00 .003 4.75 .28 

Adenine 5.35 .467 5.99 .54 

6.61 .415 

6.78 .267 



Table 54.  

The first excited triplets of the Nucleotide bases. 

Base CS - SCF Spin - Polarized Boothaan CS-SCF 
ground-state 

No C.I. With C.I. Un Ann Ann 4.;> 'e.Ann SCF 

Uracil -362.652 -363.228 -363.276 -363.244 2.12034 2.00000 -363.187 --364.561 

Thymine -466.424 -466,908 -467_.092 -467.053 2.12389 2.00044 -466.991 -468343 

Cytosine -351.049 -351.737 -351.874 -351.801 2.18393 2.00186 -351.497' -353.248 

Guanine -584.653 -585.054 -585-553 -585.123 2.47559 2 12267 -584.843 -586,829 

Adenine -452.016 -452.723 -452.721 -452.479 2.36290 2.06404 -452622 -455.436 
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value of the spin-polarized wave functions with the spin operator, 

S
2 , is made apparent by reference to this table. Even after the 

application of an annihilator to the SOP wave function, the 

spin-polarized function of Guanine does not well represent a 

pure spin state. Configuration Interaction has its usual drastic 

effect on the CS-SOF results obtained initially with the 

virtual orbitals. This implies that the use of virtual orbitals 

in the representation of the molecular excited states is a 

particularly poor approximation. It will be noted that the spin-

polarized method gives lower energy triplet states than Roothaan's 

method, except in the case of Adenine . This is to be expected, 

as the former method does not impose spin pairing in the closed 

-In-electron shell. Unfortunately no direct experimental values 

for these triplet states have been measured to date . There is 
some evidence for a Uracil triplet at 2.1 -2.2 ev.,(212), 

which agrees most closely with the CS-SCF results for the base, 

taking the energy found before configuration interaction. 

All the other approximations give energies of N  1.3 ev., except 

when a restricted four component CI is used, giving 2. ev. 

The SCF charge and spin-densities for the triplet states 

are given in Tables 55 and 56 . From these tables it may be seen 

that the charge densities of the bases seem reasonably 

independent of the method applied to find the wave function of the 

first triplet state. The effect of the single annihilator on the 

impure spin-polarized wave function's charge density is generally 
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Table 55.1_ 

Triplet TI-electron charge densities of the Nucleotide bases. 

Atom Uracil Thymine Cytosine Guanine AdeniLA 

SPO (SPO)ann  ROS SPO (SPO)ann  ROS SPO (SPO )ann  ROS SPO (SPO)ann  ROS SPO (SPO)ann  ROS 

1 1.8975 1.8978 1.8956 1.8970 1.8972 1.8950 1.0542 1.0547 1.0454 1.914C 1.9139 1.9112 1.1332 1.1348 1.1456 

2 .6939 .6937 .6929 .6943 .6942 .6934 .8200 .8101 .7277 .9842 .9814 .9369 .9580 .9563 .8945 

3 1.8894 1.8895 1.8919 1.8896 1.8897 1.8920 1.9001 1.8994 1.9004 1.1224 1.1251 1.1317 1.1025 1.10u9 1.1363 

4 1.0350 1.0346 1.0243 1.0359 1.0355 1.0246 1.0536 1.0543 1.0402 1.0115 1.0115 1.0326 .9761 ..9736 .9020 

5 .9428 .9409 .9490 .9511 .9495 .9575 1.0038 1.0038 .9754 .9559 .9554 .9319 .9609 .9603 1.0379 

6 .9149 .9109 .9881 .9071 .9028 .9769 1.0028 1.0028 .9893 .8557 .8480 .8788 .9140 .9117 .9044 

7 1.4315 1.4315 1.4353 1.4306 1.4306 1.4341 1.20921 1.2186 1.3639 1.0928 1.0960 1.1166 1.1116 1.1142 1.0590 

8 1.1951 1.2012 1.1230 1.1962 1.2023 1.1273 1.9562 1.9563 1.9577 .9369 .9325 .8833 .9670 .9651 1.0445 

9 .9352 .9351 .9332 1.9217 1.9217 1.9104 1.9278 1.9280 1.9221 

10 1.0631 1.0630 1.0659 1.9568 1.9568 1.9507 1.9489 1.9491 1.9537 

11 1.2482 1.2576 1.3161 
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Table 56.  

Triplet -Tr-electron spin densities of the Nucleotide bases. 

).tom 
. 	• 

Uracil Thymine Cytosine Guanine Adonino 

SPO (SPO)ann  ROS SPO (SPO)ann  ROS SPO (SPO)ann  ROS SPO (SPO)ann ROS SPO 'SPO)ann ROS  

1 -.0062 -.0006 • .0107 -.0071 -.0011 .0102 .6247 .5396 .5770 .0208 .0239 .0431 -.1877 -.0768 .0001 

2 -.0041 -.0012 .0007 -.0085 -.0033 .0008 -.3660 -.1617 .0214 ..5697 .4624 .3375 .582C .4788 .0452 

3 .0456 .0448 .0429 .0450 .0443 .0429 .0393 .0446 .0505 -.3491 -.1562 .0351 -.4151 -.1891 .0045 

4 .9031 .8928 .'8146 .9031 .8937 .8232 .7719 .7460 .8269 .6772 .5790 .5161 .676c ..5699 .0860 

5,  .5959 .4980 .1452 .5694 .4760 .1435 .0220 .0516 .1938 .5397 .4330 .3273 .6342 .5407 .0212 

6 -.2458 -.0853 .1563 -.2519 -.0901 .1465 .2263 .1949 .1164 -.3159 -.1300 .1058 .3)18 .2003 .0518 

7 .0025 .0031 .0013 .0076 .0057 .0014 .6666 .5721 .2067 -.3954 -.1805 .0074 -.3099 -.1325 .8062 

8 .7108 .6484 .8283 .7058 .6416 .8194 .0151 .0129 .0073 .5482 .4005 .1110 .6410 .5451 .9401 

9 -.0466 -40221 .0012 .0521 .0419 .0264 .0551 ,0466 .0405 

10 .0830 .0552 .0111 .0289 .0241 .0217 .0226 .0161 .0045 

11 , .6238 .5019 .4687 
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quite small . With the spin-densities, the contrast between the 

methods is more marked. Annihilation has an appreciable effect 

on the spin-polarized orbital spin-densities. Roothaan's 

method cannot, of course, yield negative spin-densities. 

(i) The Nucleotide Base-Pairs, G-C and A-T  . 

(i) Introduction.  

The Hydrogen-bonded base-pairs,Guanine-Cytosine,(G-0), 

and Adenine-Thymine,(A-T), occur as the basic units of the 

double-stranded helical model of DNA proposed by Watson and 

Crick,(217). These base-pairs are planar,and the Hydrogen-bonds 

linking them determine the relative positions of the component 

bases. These Hydrogen-bonds are found to be nearly linear,(213), 

and serve to connect the two 11--electron systems of the 

interacting bases,(216),(166),(167) . The 'Tr"-electron interaction 

between these bases 	may be investigated with the CS-SCF-CI 

approximation, and some results obtained by this method, and 

many more found in the }Rickel approximation have already been 

reported,(211),(216),(209),(218). 

The results presented here show the effects of the 

inter-base interactions on the wave functions of the base-pairs 

and the degree of 17-electron re-distribution caused by the 

pairing. Single electron optical transitions are also discussed. 

(ii) Parameters.  

The geometries of the base-pairs were obtained from 
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a paper by Spencer,(213), and the atomic numbering system 

employed is shown below; N.  1 .  19 	16 
110---N---N 

66 
 1 17  

-7- 
15 	y -)-1-- -I • 112. 	iN/11-1- 

rsi 	1 i, 	11 	V
3 

cl 	Ni\i 
3
,  A-14-- -0 98 

N 
Guanine-Cytosine.  

1.9, 20 

	 15 
./‘\\NI 	11  

14 

i
„).
0 

12  

Adenine-Thymine.  

The valence state ionization potentials and electron affinities 

of the atoms in the base-pairs were given the same values as in 

the discussion of the nucleotide bases, section (h) . The set 

of resonance integrals used here was slightly different from 

that given in (h), the set corresponding to series (a) of 

reference (210). 

Delocalization of the 	through the Hydrogen-

bonds of each base-pair was treated in the manner of Pullmann 

and Ladik,(166),(219). A resonance integralqg x_y  = .15/gc cl 

(/ = -2.39 ev. ), was assigned to the Hydrogen-bond X---11.--Y 
c —c. 

In addition the appropriate diagonal elements of the Fock matrix, 

F 	and FYY ' were altered by -.2 	and +.2/g respectively XX 	 c-c 	c-c- 

is- 

lb 
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at each SCF iteration,( F' = F 	- .2t? : Y F/
Y 
 = F

YY 
 + .2/9.  ). dr  XX XX c_  

All two centre integrals were obtained with the Mataga-Nishimoto 

approximation. 

(iii) Results.  

Charge-densities:  The SCF 11- -electron distributions of the two 

base-pairs are shown compared with those of the free constituent 

bases in Table 5.7 . The charge-densities of the individual bases 

were obtained with the same molecular parameters as were used 

for the base-pairs. 

As might have been anticipated, the Hydrogen-bonds only 

markedly effect the (1'-electron charges of the atoms directly 

involved or closely adjacent to the bonds. The total II -electron 

distributions of the bases are very little effected by their 

pairing with Hydrogen bonding. 

Similarly , the SCF molecular orbitals of the base-pairs 

preserve to a large degree the independence of the two sets of 

Tr-electrons in each base-pair. inspite of the interactions of 

the paired bases, the single electron states of the base-pairs 

tend to be localized on one or other of the constituent bases. 

The base-pair molecular orbitals are sufficiently localized to 

to be directly comparable with the free base orbitals, and the 

eigenvectors and eigenvalues are found very similar . 

The correspondence of the base-pair and free base orbitals 

is shown in Table 58 , where the orbital energies of the molecules 

in the base-pairs are compared both before and after pairing. 
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Table 57.  

Atomic 1T-Charges in G-C and A-T. 

Atom 
Paired-bases 

G-C 
Free-bases 

G+C 
Paired-bases 

A-T 
Free-bases 

A+T 

1 1.8672 1.8865 1.2003 1.1498 

2 .8534 .8697 .8835 .9044 

3 1.1981 1.1861 1.1560 1.1501 

4 .9412 .9531 .9408 .9476  

5 1.0615 1.0515 1.0387 1.0339 

6 -7374 .7623 .8801 .9058 

7 1.1167 1.1174 1.1378 1.1397 

8 .9690 .9635 .9445 .9406 

9 1.8614 1.8614 1.8765 1.8765 

10 1.9316 1.9444 1.9421 1.9518 

11 1.4568 1.4041 1.8840 1.8974 

12 1.2346 1.1706 .7339 .7304 

13 .7278 .7599 1.8966 1.8970 

14 1.8797 1.8809 .9140 .9202 

15 .9007 .9148 1.0469 1.0466 

16 1.0518 1.0525 .7360 .7612 

17 .8110 .8564 1.3774 1.3771 

18 1.4705 1.4193 1.4056 1.3646 

19 1.9297 1.9456 .9328 .9327 

20 - -- 1.0727 1.0729 
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Table 58.  

The Orbital Energies of G-C and A-T 

i
c G-C 
(....- i  

G or C orbital 

A2  (7.  A-T (...- 	1  

A or T orbital 
5:- k 
c... 	i k 

e7k 
r.., 	i  k 

1 -17.0474 -16.9115 C .273 -17.7198 -17.8780 T 

2 -16.8222 -17.2686 G .255 -16.6269 -16.7150 A 

3 -16.4640 -16.6881 G .034 -16.3247 -16.5301 T 

4 -15.5301 -15.9602 c .091 -15.1547 -15.6331 A 

5 -15.0484 -15.7369 G .087 -14.9573 -15.0011 T 

6 -13.5820 -13.4026 c .214 -14.0074 -13.9909 T 

7 -13.3848 -13.5022 G .228 -13.3964 -13.5652 A 

8 -12.4147 -12.5329 G .414 -12.8178 -12.9574 T 

9 -12.2624 -12.3932 C .467 -12.2093 -12.3134 A 

10 -11.7009 -11.7920 G .023 -11.0413 -11.0066 T 

11 -10.3505 -10.1594 C .010 -10.8626 -10.8967 A 

12 -9.2545 -9.3826 G .002 -9.7063 -9.8464 A 

13 -2.8998 -2.7905 C - 
1- 

-2.8325 -2.8097 T 

14 -2.3108 -2.4740 G - -1.7373 -1.8624 A 

15 -.9225 -.9518 G - -1.1962 -1.2602 T 

16 -.7113 -.6401 C - -1.0839 -1.1186 A 

17 -.2052 -.3499 G - .0449 .0378 T 

18 1.1194 1..2422 C - .0766 -.0234 A 

19 1.9325 1.8297 G - 1.8820 1.8538 T 

20 - - - - 2.1823 2.0982 A 
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The classification of the orbitals as essentially localized 

on one or other of the molecules in the base-pairs was made 

entirely as a result of a comparison of the eigenvectors 

representing the molecular orbitals of the individual bases and 

base-pairs . The quantity A
2 noted for the occupied orbitals of 

the pair G-C expresses the degree of delocalization of a 

particular orbital between the two bases. A2 for orbital m 

is defined by A2(m) 	C2 i ; where 1 	i‘ 11 for a orbital Cm  

largely localized on Cytosine, and 12 4 i 	19 for a Guanine 

/ based orbital . Thus A2(m) is a direct measure of the degree 

of delocalization of an electron in orbital Om onto the base 

it is not mainly localized on . From the values of A2 shown, 

there is clearly quite a degree of inter-molecular delocalization 

induced in the occupied levels by the interactions of the 

two coupled 	11- -electron systems in the base-pairs. For all the 

unoccupied orbitals, A2(m) < .001 , 13 < m ‘19 . 

Total -Tr-Energies: These were calculated both with and without 

the Hydrogen-bonds , in an attempt to deduce the stabilization 

energy of the base-pairs in the Hydrogen-bonded situation . 

The bonded state is denoted G-C 	A-T , and the non-bonded, G+C 

and , A+T . 

G-C 	 G+C E 	= -1239.0001 ev. 	E 

EA-T = -1208.3953 ev. 	EA+T 
-rr 

= -1239.3799 ev. 

= -1208.6964 ev. 

On the basis of these energies alone, the Hydrogen-bonded base-

pairs must be regarded as de-stabilized with respect to the 
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non-bonded component bases held in the same conformation. 

This is in direct conflict with Mickel results obtained 

ay Pullman ,(216), who allowed for the base-pair Hydrogen-bonds 

in the same fashion . Pullman found that the Hydrogen-bonded 

states were stabilized by several Kcals. in the HUckel 

approximation , and this has been confirmed by the results of a 

Mickel treatment not presented here . Hence we have a situation 

where the Htickel and the SCF approximations are in direct 

contradiction . This is not surprising 	as the two treatments 

represent entirely different levels of approximation. 

The 'Rickel method ignores all explicit consideration 

of inter-electronic interaction , while the SCF treatment does 

attempt to take some degree of electron correlation in account. 

From SCF treatments of the base pairs both with and without 

Hydrogen-bonds , it has been shown that most of the inter-base 

interaction results from the mutual perturbing influence of the 

two essentially localized 1r-electron charge distributions 

on each other . The Hydrogen-bond coupling of the twollsystems 

has comparatively little significance . Thus a Mickel approximation 

would seem entirely unsuitable for the investigation of these 

base-pairs . The —IT-electron SCF approach seems inappropriate 

also, since apart from the inadequacies in the description of 

the Hydrogen-bonds , these bonds themselves represent a very small 

proportion of the inter-base interactions at separations of 

several R . Finally it seems important to comment that the total 
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T -energies given must be regarded as suspect to a certain 

degree due to computer round-off errors inherent in such a 

protracted calculation • 

Optical Excitations: These were found with the configuration 

interaction procedure incorporated in the CS-SCF program. 

The first four calculated singlet transitions of the base-pairs 

are shown in Tables 59 and 60 , and they are compared with the 

free base transitions found with the same parameters. 

Table 59.  

Base-pair transition 
G-C 

Component base transition 

Trans. L\Es fs QEs is Base 

1 3.92 .504 3.93 .528 G 

2 4.42 .479 4.33 .389 C 

3 4.55 - - - - 

4 5.05 .308 5.04 .236 G 

Table 60.  

Base-pair transition 
A-T 

Component base transition 

Trans. AEs  
f s 

Ls E
s 

..c 
J s Base 

1 4.68 .023 4.57 .003 A 

2 4.96 .586 4.97 .525 A 

3 5.06 - - - - 

4 5.45 .685 5.42 .747 T 
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Note:(a) The forbidden charge-transfer transitions , transition 3, 
for both G-C and A-T . These transfers involve the 

excitation of an electron from an orbital essentially 

localized on one base to a molecular orbital localized 

principally on the other. These transitions are hence 

strongly forbidden , and have no analogue in the single 

base transitions. All other transitions can be readily 

identified with the single base excitations , the 

excitation energies being very similar in the bonded and 

non-bonded cases. 

(b) The SCF treatment appears inadequate in predicting the 

expected hypochromic effect for the base-pair transitions, 

except for the first excitation in G-C . It is felt that 

the whole question of hypochromism , which has been 

extensively discussed elsewhere ,(166),(220),(210), is 

not best treated by an approach such as this . In such 

big molecules configuration interaction is an uncertain 

procedure for determining excited states , as for reasons 

of practical execution ,only such a small number of the 

total range of configurations can be included . In 

addition the numerical problem of finding a 20-component 

eigenvector accurately ,upon which the accuracy of the 

transition dipole calculated depends, is not easily solved. 

It would appear again, as in the .case of the prediction 
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of the Hydrogen-bond stabilization , the semi-empirical 

SCF treatment is not suited to the discussion of such 

weak interactions. 

Finally the base-pair triplets are tabulated, 

Table 61.  

Transition 
G-C A-T 

AEt LEt 

1 1.82 2.21 

2 1.93 2.73 

3 3.43 3.61 

4 3.51 3.95 

These triplet transitions are very different from those 

obtained for the constituent bases , being at appreciably higher 

energies. This is an effect to be expected in larger molecules, 

for as the electron delocalization increases , the exchange 

integral, K.. , which separates the singlet and triplet transitions 

decreases . In these base-pairs an additional factor tends to 

further reduce the singlet/triplet separations for the charge-

transfer type excitations . These transitions between molecular 

orbitals essentially localized in different parts of the -Tr-system, 

will have almost identical singlet and triplet energies. This 

occurs because K..
13 
 tends to zero where the orbitals i and j 

belong to different weakly interacting -Tr-clusters . The effect 
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isadditionaltothereductionofK..consequent on the 

increase in molecular size. 

From these various results found for the base-pairs, 

several conclusions may be drawn . First , the constituent 

molecules in the base-pairs retain a high degree of autonomy , 

this is indicated by the 7F-electron distributions and the 

optical transitions . This independence of the bases is somewhat 

in variance with the degree of delocalization found in the SCF 

orbital eigenvectors,( see A
2 
 in Table 58 ). It is, however, the 

most tightly bound electrons which have the greatest degree of 

delocalization . The higher energy electrons which are directly 

involved in the optical transitions are more localized. 

The second major point to arise from this work is the 

inadequacy of the MO-SCF description for weakly interacting 

11--systems , and this is not easily solved without a more 

'ab initio' approach to the whole electronic problem. 

(j) The Helical Polynucleotides,Poly(G-C),Poly(A-T), and  

Poly(U)  

(i) Introduction.  

The band structures of the periodic DNA models, 

Poly(G-C) and Poly(A-T) have been investigated in the semi-

empirical Pople-Pariser-Parr SCF crystal orbital approximation. 

The theoretical background to this calculation of the SCF Bloch 
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wave functions of 	one-dimensional polymers with simple 

translational symmetry was discussed in Chapter II , section (20). 

A computer program for performing such calculations was given 

in Chapter III . 

The results found utilizing this delocalized self-

consistent model are of general interest in the description of 

polymeric systems . Here, however, investigation was directed 

specifically at determining the M -electron energy-band structures 

of simple anologues of natural DNA , constructed from the base-

pairs G-C and A-T . The periodic polynucleotide chains in the 

models were given the same geometry as the chains in the Watson-

Crick stereo-model of DNA B ,(217) , with a translational 

distance of 3.36 .2 between unit cells, and an inter cell rotation 

of 36°  . 

In addition to these stacked base-pairs, the homopoly-

nucleotide Poly(U) was studied, both in the SCF crystal orbital 

scheme , and by the successive stacking of up to five base 

residues to form a short polymer. This treatment of up to five 

Uracil molecules in the same conformational relationships as 

five unit cells in DNA was performed with a modified version of 

the CS-SCF program . 

Finally it should be observed that natural DNA is an 

aperiodic solid, so the results given here may be of only limited 

value in the interpretation of the properties of the natural 

product . 
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(ii) Parameters.  

The parameters necessary for the polymer-SCF 

program fall into two groups, intermolecular and intramolecular 

quantities . 

The intramolecular parameters of the base-pairs, 

the valence state ionization potentials and electron affinities, 

resonance integrals and interatomic distances, were given the 

same values as in the previous section, where the free base-pairs 

were considered . The Hydrogen-bonds linking the constituent 

molecules in the base-pairs were allowed for in the same manner 

as previously discussed . The intra-base parameters used for 

Poly(U) were identical to those given in reference ,(210). 

The small inter-base resonance integrals, 	
, 

were the same as those which have been applied in previous Huckel 

band calculations of periodic DNA models ,(184),(185) • 

These-resonance integrals between neighbouring stacked base-pairs 

were estimated on the basis of the overlap integrals between the 

orbitals of the superimposed bases of the model DNA chain,(166), 

(221) . The smaller integrals between the two components of a 

base-pair were neglected. 

The two centre Coulomb integrals both within the 

base-pairs and between the base-pairs in the neighbouring unit 

cells were approximated with the formula of Mataga and Nishimoto, 

(124) . The inter unit-cell atomic distance matrix required for 

this, R—st' was obtained from the geometry of the B form of DNA,(222). 
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(iii) Results.  

Poly(A-T) and Poly(G-C).  

The wave functions of the systems Poly(G-C) 

and Poly(A-T) reached the required degree of self-consistency 

in both cases after six iterations of the polymer-SCF program. 

Eleven K values were taken in the range 0 to 2Tr,( see page 275 

with two of these values representing the limits of K , K= 0 , 

and K = 21-ir . This number of intervals at which the band energy 

was derived gave a reasonable compromise between computational 

accuracy and program execution time. In a test of the program 

using 11 and 22 K-values for Poly(U) , substantially the same 

results were produced in both calculations. This is in line with 

the experience of Ladik, et al.,(223) . 

In Tables 62 and 63 the band structures obtained for 

Poly(A-T) and Poly(G-C) are given . The band widths and limiting 

energies are shown , together with the K values of the band 

maximum and minimum . The last column of the Tables lists the 

corresponding orbital energies of a single A-T and G-C pair 

respectively , calculated with the CS-SCF program and the same 

intramolecular parameters . 

Figs 30 and 31 give the comparison of the occupied 

levels of the free nucleotide bases , the base-pairs , and the 

polymer bands in A-T and G-C respectively . 

Prom the K dependence of the energies of the different 

bands , with E
b(K) evaluated at 11 K values in the range , 
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Table 62.  

The band. structure of poly(A-T) in eV-s  

Band. Maximum 

E(K) K 

Minimum 

E(K) K 

Band 

Width 

A-T.1+ase pair 

levels 

1 -17.491 n -18.024 0 0.532 -17.720 

2 -16.292 R -16.618 0 0.326 -16..627 

3 -16.142 n -16.469 0 0.327 -16.325 

4 -14.985 3/5n -15.186 0 0.201 -15.155 

5 -14.586 n -14.961 0 0,375 -14,957 

6 -13.955 n -14.037 0 0.081 -14.007 

7 -13.'68 % -13.330 0 0.362 -13.396 

111 -12.686 % -12.839 0 0.153 -12.818 

9 -11.894 0 -12.107 n 0.213 -12.209 

10 -11.018 % -11.060 0 0.042 -11.041 

11 -10.498 n -10.690 0 0.192 -10.863 

12 - 9.316 0 - 9.615 n 0.299 - 9.706 

13 - 2.767 0 - 2.843 n 0.076 -2.833 

14 - 1.465 0 - 1.567 n 0.102 - 1.737 

15 - 1.175 I - 1.222 0 0.047 - 1.196 

16 - 0.793 0 - 0.869 n 0.076 - 0.084 

17 - 0.102 n 0.096 0 0.006 0.045 

18 0.321 0 0.296 n 0.024 0.077 

19  1.787 0 1.778 n 0.008 1.882 

20 2.471 I 2.410 0 0.060 2.182 
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Table 63.  

The band structure of poly(G-C) in eV-s 

Band t MaTimum 

E(K) Xf-:  

Minimum 

E(K) 

7 	 

Band 	Molecule 

K 	Width 	G-C level 

1 
I 
I 	-16.764 % -17.262 0 	0.498 	-17.042 

2 -16.447 n -17.061 0 	0.614 	-16.882 

3 -16.130 n -16.425 0 	0.295 	-16.464 1  

4 -15.107 n -15.639  0 0.533 . 	-15.530 

5 -14.647 n -14.760 0 0.113 	-15.048 

6 -13.436 7( -13.546 0 0..110 	-13.582 

7 -13.158 7( -13.210 0 0.052 	-13.385 
i 

8 -12.296 
1 

4/57r -12.408 0 0.112 	i-12.415 

9 ' 	-11,993 n -12.141 i 	0 0.148 	# 	-12.262 

10  -11.392 0 -11.551 	1 n 0.159 	-11.701 ] 

11 ! 	-10.257 n -10.348 0 0.091 	1 	-10.351 
----1 

12 - 8.900 0 	- 9.188 n 0.288 	1 	- 9.255 

• 13 - 2.821 0 - 2.915 n 0.094 	- 2.900 

14 - 2.076 n - 2.170 0 0.093 	- 2.311 , 

15 - 0.721 3/5n - 0.755 7( 0.035 - 0.923 
i 
, 
1 

16 - 0.622 0 

0 

- 0.675 3/5n 0.053 - 0.711 

17 0.026 o.o86 A 0.112 
1 	- 0.205 

18 1.183 n 1.169 0 0.014 	1.119 

19 ' 2.181 n 2.152 0 0030 	1,932 
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Fig. 30.  
Occupied bands in Poly(A-T),. 
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Fig. 11.  
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0 < K.<21-r, a Fourier fit for the individual band structures 

was constructed . The Fourier coefficients , 

zTr 

Eeyri  
-Tr 

were calculated , with 1 „cn < 5 . These coefficients are shown 

in Tables 64 and 65 for Poly(A-T) and Poly(G-C) respectively . 

In all cases, the smooth curve obtained by substituting these 

Fourier coefficients in the expression, 

ECM E 	 cd-3( k") 
rt 7: I 

fitted the computed Eb(K) values very well . This comparison 

of the Fourier synthesis and the eleven points was achieved 

with the use of the College's IBM Calcomp incremental plotter , 

thus all graph plotting was automatic . A sample of the output 

illustrating the degree of correspondence obtained is shown in 

Fig 32 , the continuous curve represents the Fourier synthesis 

and the points the calculated values of E
b(K) . The band shown 

is the highest occupied in Poly(A-T) , Band 12 . 

From the results in Tables 62 and 63 it is clear that 

the occupied bands 	in Poly(A-T) and Poly(G-C) have appreciable 

widths. This justifies the delocalized treatment of the(Tlelectrons 

of the stacked nucleotide bases. 

The forbidden band width between the highest filled 
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Table 64.  

Fourier coefficients for the bands of poly(A-T) 

Band 	
4.° E_er,i E',2 -E6,3 E6;# 

1 	-17.756 -0.266 -0.002 0.000 0.000 0.000 

2 -16.452 -0.163 -0.003 -0.00o 0.000 -0.000 

3 -16.312 -0.163 o.006 -0.000 0.000 -0.000 

4 -15.043 -0.087 -0.053 -0.012 0.005 0.008 

5 -14.823 -0.196 0.054 0.013 -0.045 -0.008 

6 -13.994 -0.041 -0.003 -0.000 0.000 -0.000 

7 -13.164 -0.180 0.015 -0.001 -0.000 0,000 

8 -12.777 -0.072 1 0.013 -0.004 0.001 -0.001 

9 -11.978 0.102 -0,022 0.004 -0.001 0.001 

10 -11.039 -0.021 -0.000 0.000 0.000 0.000 

11 i -10.595 -0.096 0.001 0.000 -0.000 0.000 

12 	- 9.461 0.149 -0.005 0.000 0.000 -0.000 

13 	- 2.804 0.038 -0.001 0.000 0.000 -0.000 

14 	- 1.515 0.051 -0.001 0.000 -0.000 0.000 

15 - 1.199 -0.023 0.000 0.000 0.000 0.000 

16 - 0.830 0.038 

-0.003 

-0.002 -0.000 .0.000 0.000 

17 0.099 -0.000 -0.000 0.000 -0.000 
--1 

18 0.307 0.012 0.001 -0.000 
, 
-0.000 
.... ____-- 

0.000 
........_ 

19 1.783 0.004 -0.000 -0.000 
J 
1  -0.000 -0.000 

20 2.440 -0.030 0.000 -0.000 
1 
-0.000 0.000 
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Table 65.  

Fourier coefficients for the bands of poly(G-C) 

Band E,(2 E-?,, 

1 -17.002 -0.248 -0.012 -0.001 0.000 0.000 

2 -16.761 -0.310 0.008 0.003 -0.001 0.000 

3 -16.289 -0.145 0.011 -0.003 0.001 -0.000 

4 -15.378 -0.266 0.006 0.000 -0.000 0.000 

5 -14.696 -0.057 -0.008 0.001 -0.000 0.000 

6 -13.487 -0.055 -0.004 0.000 0.000 -0.000 

7 -13.190 -0.026 0.006 -0.000 -0.000 0.000 

8 -12.333 -0.054 -0.022 0.001 0.001 -0.000 

9 -12.095 -0.072 0.029 -0.002 -0.001 -0.000 

10 -11.460 0.078 -0.011 0.002 -0.000 0.000 

11 -10.303 -0.046 0.001 0.000 0.000 0.000 

12 - 9.042 0.144 -0.002 0.000 0.000 0.000 

13 - 2.866 0.047 -0.002 0.000 0..000 0.000 

14 '- 2.124 -0.047 0.001 -0.000 0.000 -0.000 

15 - 0.733 0,007 -0.015 0.002 0.001 -0.001 

16 - 0.655 0.022 0.013 -0.002 -0.001 0.001 

17 - 0.031 0.056 0.001 -0.000 -0.000 -0.000 

18 1.176 -0.007 0.000 -0.000 -0.000 0.000 

19 2.167 -0.015 -0.000 -0.000 -0.000 -0.000 
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T 	
Fig 32.  

O 

The highest occupied band in Poly(A-T). 
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and the lowest empty bands in Poly(A-T) is 6.5 ev., and in 

Poly(G-C) it is 6. ev. . This gap, however, does not correspond 

directly to the excitation energy of an electron from the filled 

band into an empty one . In the treatment of molecular excitations 

it was seen how additional electron interaction integrals, the 

Coulombterm,J..,and the exchange integral, K.. , are needed ij 

in the calculation of the transition energy for the excitation 

of an electron from orbital i to j . With the use of such integrals 

reasonable predictions of experimental values ere possible . 

For a polymer, clearly both J.. and K.. tend to zero, as the 

excited electron and the remaining hole are delocalized over the 

whole of the polymer in the Bloch approximation. The correlation 

between the hole and the electron is ignored , and it may perhaps 

be accounted for with the aid of Wannier exciton theory,(8). 

The SCF band widths obtained here may be compared with 

those found in the Mickel approximation , and it is found that 

the widths are mostly of the same order ,(185) . 

Finally it may be noted in Table 66 that the charge 

distribution of the lnr-electrons on each monomer of the poly-

nucleotide chain is not appreciably altered from that of the 

free base-pair. 

Poly(U).  

This homopolynucleotide was studied from two viewpoints. 

First the crystal orbital approximation was used to calculate 
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Table 66.  

-ir -electron charge distributions on Poly(G-C) and Poly(A-T). 

Atom Poly(G-C) Free base- 
pair G-C Poly(A-T) Free base-

pair A-T 

1 1.8730 1.8672 1.1997 1.2003 

2 .8617 .8534 .8768 .8835 

3 1.2034 1.1981 1.1588 1.1560 

4 -9465 .9412 .9386 .9408 

5 1.0517 1.0615 1.0364 1.0387 

6 .7374 .8832 .8801 

7 1.1182 1.1167 1.1382 1.1378 

8 .9671 .9690 .9491  .9445 

9 1.8624 1.8614 1.8777 1.8765 

10 1.9269 1.9316 1.9416 1.9421 

11 1.4500 1.4568 1.8848 1.8840 

12 1.2229 1.2346 .7326 .7339 

13 .7260 .7278 1.8983 1.8966 

14 1.8778 1.8797 .9226 .9140 

15 .9030 .9007 1.0410 1.0469 

16 1.0587 1.0518 .7346  .7360 

17 .8170 .8110 1.3794 1.3774 

18 1.4699 1.4705 1.4017 1.4056 

19 1.9280 1.9297 .9333 .9328 

20 1.0716 1.0727 
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the band structure as for Poly(G-C) and Poly(A-T),this was the 

"infinite polymer" treatment . In the second approach , polymers 

of Uracil consisting of from two to five base residues were 

examined by treating these "limited polymers" as just one big 

molecule. In both cases the geometrical relationship between the 

stacked bases was modelled on the stereochemical structure of 

natural DNA B , with a translation of 3.36 R and a rotation of 

36°  between neighbouring bases . 

The"infinite polymer" was treated with the polymer-SCF 

program , while the "limited polymer" wave functions were found 

with a specially modified version of the CS-SCF program . 

The results obtained for an infinite helical chain of Uracil bases 

are shown in Tables 67 and 68 . The first of these Tables shows 

the band widths and limits , and compares the bands with the 

molecular orbital energies. Table 68 gives the coefficients of the 

Fourier synthesis , which was again very successful in fitting 

the calculated points. Here only the coefficients up torl=3 were 

required . The results should be compared with Mickel results 

obtained by Ladik,(184), and also some SCF data published,(223). 

After these results for infinite polymers,we turn to 

the consideration of the polymer analogues , constructed by 

stacking several Uracil bases together . These small 	polymers 

were treated as one large molecule , thus , as for the infinite 

polymers , complete electron delocalization was allowed . 
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Table 67.  

The 7r-electron band structure of Poly(U). 

Band 
b 

Maximum Minimum Band 
width 

Molecular 
energy Et(K) K Eb(K) K 

1 -17.6182 ir -18.1870 0 .5688 -17.8171 

2 -16.4226 1r -16.6669 0 .2443 -16.4761 

3 -14.2060 $g.._,-T1 -14.2385 0 .0325 -14.1911 

4 -12.9263 li -13.0235 0 .0972 -12.9289 

5 -11.0654 11" -11.1077 0 .0423 -11.0483 

6 -2.6783 0 -2.7544 7r .0761 -2.6838 

7 -1.1999 If -1.2604 0 .0605 -1.2049 

8 .4226 0 .4050 li .0176 .4516 

Table 68.  

Fourier coefficients for the Poly(U) bands . 

Band 
b °b,0 Eh,1 Eb,2 Cb,3 

1 -17.9021 -.2844 -.0005 .0001 

2 -16.5482 -.1219 .0035 -.0002 

3 -14.2172 -.0159 -.0055 .0001 

4 -12.9781 -.0485 .0033 .0000 

5 -11.0866 -.0212 .0001 .0000 

6 -2.7157 .0381 -.0007 .0000 

7 -1.2304 -.0302 .0002 .0000 

8 .4141 .0088 -.0003 .0000 
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It was of interest to examine to what extent this freedom of 

11--electron exchange between the bases was utilized by the 

SOP single electron wave functions . Here, unlike the case in 

the crystal orbital approximation with Bloch wave functions, 

excessive delocalization was not imposed by the theoretical 

treatment applied. 

Due to the large size of the effective eigenvalue 

problem obtained by treating a system of up to five Uracil bases 

as a single molecule 	only ten SOF iterations were allowed in 

all cases , which usually meant convergence of at least 	.01 ev. 

in the orbital energy values between successive iterations . 

The maximum and minimum orbital energies found for a 

given 71-electron "band" ,obtained by the splitting of identical 

electron states in the formation of the short polymers, are 

shown in Table 69 together with the band widths for the polymers 

of five or less Uracil residues . The reason it is possible to 

assign a particular orbital energy as belonging to a particular 

"band" , is that within the limited polymers the individual base 

units retain a high degree of autonomy . Individual orbital 

electron distributions as represented by the appropriate eigen-

vectors tend to be strongly localized on one or other of the bases. 

The electrons do not delocalize any further than their nearest 

neighbours , and manage to retain their molecular identities. 

This limited degree of delocalization which the -Tr-electrons 

have is further reflected by the optical transitions which are 
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Table 69  

Band width in analogues of Poly(U) . 

U U*U U*U*U U*U*U*U U*U*U*U*U 
Ec EL  AEi. Et 6EZ Ei: AEZ E-  AE(1 

-17.817 -17.997 .281 -18.069 .413 -18.109 .484 -18.114 .542 

-17.715 -17.656 -17.626 -17.571 

-16.476 -16.579 .143 -16.621 .235 -16.638 .281 -16.635 .317 

-16.435 -16.386 -16.356 -16.318 

-14.191 -14.247 .088 -14.272 .160 -14.262 .178 -14.281 .231 

-14.160 -14.112 -14.084 -14.050 

-12.929 -12.979 .066 -12.989 .083 -13.008 .129 -13.001 .160 

-12.913 -12.906 -12.879 -12.841 

-11.048 -11.141 .162 -11.170 .251 -11.159 .273 -11.178 .326 

-10.978 -10.919 -10.886 -10.852 

-2.684 -2.774 .162 -2.804 .252 -2.796 .276 -2.817 .329 

-2.612 -2.552 -2.520 -2.487 

-1.205 -1.294 .152 -1.263 .115 -1.254 .129 -1.246 .131 

-1.142 -1.149 -1.125 -1.115 

.452  .348 .182 .318 .271 .330 .291 .305 .348 

.530 .589 .621 .653 

Note:(a) The various polymers are denoted,U,U*U,U*U*U, and so on. 

(b) The limiting energies of the 'bands',E are above each 

other . hEc is the pseudo-band width. 

(c) Compare these bands with those in Table 67 . 
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shown in Table 70 . The molecular sizes precluded any form of 

configuration interaction so the virtual levels were used in 

a straight forward manner to obtain the excitation energies. 

The electronic transitions could be directly identified with 

individual transitions occua.ing in one or other of the base 

units , and could thus be compared with the free base transitions. 

The transitions in the polymers were labelled as a result of 

comparison with the free base 	excitations. All the "allowed" 

transitions were very similar to the free base excitations, and 

hence could be interpreted as transitions between single electron 

states strongly localized on individual molecules of the polymer. 

All charge-transfer transitions appeared as "forbidden" excitations, 

as the degree of electron delocalization was so low in the 

higher occupied orbitals and the virtual levels. These transitions 

are not shown in Table 70 . 

Thus it would appear that even in a polymer,the inter-

base interactions of ther-systems of the Uracil monomers are 

unable to induce sufficient delocalization in the optical states 

to give transitions appreciably different to those of the free 

base . A model with "localized excitations" appears applicable, 

and the treatment of optical excitations as electronic transitions 

between energy bands with no electron/hole correlation seems 

incorrect . 
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Table 70.  

Electronic transitions in stacks of up to five Uracil bases. 

Transition 5,6 Transition 5,7 Transition 4,6 Transition 4,7 
N A Es  fs  AEt  4E fs  AE 6 Es  f AEt   Z, Es  Ss  All 

5.67 .926 2.23 6.39 .065 6.09 6.88 .044 6.14 8.23 .532 5.08 

5.66 .894 2.31 6.24 .768 6.00 6.93 .045 6.37 8.30 1.46 5.84 
2 

5.70 1.32 2.29 6,56 .064 6.25 7.19 .207 6.50 8.48 .524 5.70 

5.66 .858 2.41 6.36 .041 6.15 7.23 .195 6.76 8.58 1.05 6.59 

3 5.70 1.26 2.48 6.53 .643 6.31 7.42 .033 7.03 8.72 .160 7.42 

5.70 .899 2.30 6.61 .060 6.3o 7.67 .026 7.18 9.03 .374 7.01 

5.67 .761 2.66 6.68 .055 6.,59 

4 

5.71 .756 2.65 6.7o .069 6.5o 

5.7o .887 2.33 6.82 .026 6.68 

5.72 1.01 2.94 7.00 .517 6.83 

5.66 .894 2.31 7.03 .026 6.86 6.92 .035 6.41 8.79 .029 7.16 

5 

5.70 1.23 2.58 7.08 .375 6.95 7.41 .010 6.97 8.79 .307 7.43 

5.73 .790 2.61 6.65 .051 6.45 7.53 .158 7.10 9.10 .291 8.01 

5.80 .407 3.58 6.73 .078 6.49 7.72 .007 7.49 9.04 .290 8.02 

5.76 .374 3.56 6.23 .050 5.99 7.78 .026 7.42 8.67 .451 6.88 

Note:(a) All excitations are given in evs. . 

(b) N is the number of monomers in the polymer. 

(c) Results are missing for the polymer U*U*U*U due to 

a computer program fault. 
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From all this it must not be infered that no 7r-electron 

delocalization occurs between the residues in a polymer of 

weakly interacting bases such as Poly(U) . As may be seen from 

Table 70 , the excited singlets and triplets do tend to move 

to higher energies, and there is evidence for a hypochromic 

effect, especially in the lowest singlet , which is in agreement 

with experimental observations,(166) . 

Finally it must be remembered that a five residue 

polymer is a very poor approximation of an infinite one, none of 

the effects discussed seem to have converged and the results 

even for five bases stacked together may still be dominated by 

end-effects . Unfortunately calculations on polymers with more 

than five monomers were impossible for reasons of computer time. 

(3) Comments on the Results.  

Most of the individual results which have been 

presented either speak for themselves, or have been discussed in 

context . Some generalities may however be made, and several 

conclusions drawn. 

First we may reflect on the results obtained 

for the polymeric systems of 1T-conjugated molecules . 

Unfortunately here we can make no direct appeal to experimental 

work to confirm our calculations . As we would have expected 

intuitively , it is predicted that in these polymeric systems 

of weakly interacting 17--conjugated molecules , the constituent 
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molecular units will retain a high degree of their individuality. 

Somejr-electron delocalization does occur in the lower energy 

molecular orbitals, but the use of the Bloch crystal orbital 

approximation may well over emphasize this. Confirmation of 

this comes from the experimental observation that the spectrum 

of the DNA chain closely corresponds to that of the superimposed 

spectra of its nucleotide base constituents . The optical excited 

states of the chain seem essentially localized . All these 

comments hinge on the interpretation put upon the results obtained 

for the polymer analogues , constructed from several stacked 

repeating base units. 

In the assessment of the molecular results much experimental 

data is readily available, and generally the theoretical values 

seem in fair agreement with their observed counterparts.Considering 

the assumptions of zero differential overlap and the -In--electron 

separability , the Pople-Pariser-Parr method achieves outstandingly 

successful results . The semi-empirical approach succeeds in 

the accurate prediction of optical spectra and spin-densities 

for a variety of molecules using the CS-SCF-CI , the spin-polarized 

or the Roothaan methods . Even reasonable values of the molecular 

ionization potential may be directly calculated. An excessive 

degree of parameter variation is not required , and the normally 

acceptable semi-empiric values of the resonance integrals and 

two centre integrals give good results for a whole series of 
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molecules . In one case where other workers have found it 

necessary to depart from the semi-empirical two centre integrals 

to reproduce experimental spin densities , it has been shown 

that this was entirely due to their neglect to ensure that the 

total molecular wave function was an eigenfunction of S
2, (196). 

The excited triplet states of molecules seem to be poorly 

predicted by all the techniques used. All methods did, however, 

tend to give the same value , which was usually too low . 

Singlet spectra were much easier to predict . It was found that 

often apparently good results obtained with the CS-SCF-CI method 

could be effectively ruined by increase in the number of 

configurations taken in deriving the triplet state. 

Before concluding we must acknowledge the degree of 

equivalence in all these different molecular methods, as witnessed 

by the similar results often obtained by applying various methods 

to the same molecular state . The Roothaan and spin-polarized 

open-shell procedures are very similar , since although the 

latter does not impose from the outset spin-pairing on the electrons 

in the closed-shell, it does so eventually in the spin projection 

routine , used to obtain a "good" eigenfunction of S2 . In this 

procedure effective spin-pairing is re-introduced within the 

closed-shell. 

Finally it may be seen that the molecular methods 

discussed and applied in Chapters II ,III, and IV , represent 

reasonably sound approachs , which in view of their sweeping 
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assumptions and often gross neglections, give surprizingly 

good results. More work is needed in improving the "rigour" 

with which the molecular problem is approached . A more " ab 

initio" treatment is required so that the empirical nature of 

the approach may be replaced with a more deterministic one . 

The polymer field needs much more investigation , concerning the 

best model to use, and how to treat excited states. The results 

presented here are merely preliminaries to the whole electronic 

problem of weakly interacting systems . 
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