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ABSTRACT

This thesis describes several original advances to the art of
estimation of discrete time systems from data records. The theory
"developed here shows that systems given by rational Z polynomials
are better characterised by the roots of the polynomials rather
than the coefficiénts.

The root description allows general expressions to be found
for the system response and output autocorrelations for both infinite
and finite data lengths. From such expressions, the importance of
filter stability in Rstrém's estimation method can be seen very
clearly. A novel transformation is introduced which is usedito
restrain the filter estimatés to the class of stable systems.
This leads to the establishment of a new estimation method which
'describes systems in terms of polynomiél roots

The breakdown of estimation methods for limited data sets is
- shown to be due to a relation between the pole 'strength' and the
length of the data record. As a result criteria are developed which
enable judgements to be made about'fhe length of data fequired in
order to expéct a satisfactory estimate to be achi;ved. Rstrém's
proofs of consistency etc., are shown to hold for the new root
description approach. Several examples are given to illustrate

the practical benefits of the new estimation method.
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NOTATION

nth order polynomial in =z

1B coefficient matrix of polynomial matrix: A(z)

Continuous time pole in S plane

Complex conjugate roots

1% coefficient of polynomial A(z)
n#h order polynomial in =z

th

i“" Coefficient matrix of polynomial matrix B(z)

Continuous time zero in S plane

i* coefficient of polynomial B(z)

 Contour of integration

nth order polynomial in z .

th

i*" coefficient matrix of polynomial matrix C(z)

i*® coefficient of polynomial C(z)

msr Matrix
Region in the complex variable plane

Denominator polynomial of junior system

3B coefficient of D(z) polynomial

-

Partial differentiation operator
Expectation operator

Expectation with respect to the distribut ~ion
defined by the true parameters gg

kth-member of a random sequence
System matrix nsn

General function of a camplex variable z



£.. ijth element of F

ij )

fk -General discrete time signal
I Total vector of fi

£(X,8) General probability distribution
G ' Control matrix n+r

Go Constant Gain term equivalent to b0
G(z) General rational function of 2z

. .th
gij ij element of G
g(X, «eeee Xn) Generalised estimator of ©

g(X1 conee Xn,ﬁ)_ Joint probability density

g(o) ‘ Probability density of ® in Bayesian sense

H Observation matrix msn

Hi ' ith estimate of a second derivative matrix inverse
H(z) Generél rational function of z

hk . , General discrete time signal

h | Total vector of hk

hij ijtp element of H

Im Unit matrix of order m

IN(Q) : Information matrix of O for data record N; see(5.14)
J ' nsm matrix

K(z) .Matfix polynomial in z

k Discrete time index

L(z) Matrix'polynoﬁial in 2z

TOR Likelihood function of &

L Logarithm of L(6) |

1¥(v,8) Logarithm of the likelihood function of § based

on data Y



116,08 ) nZ;m 1 £ 1Vy,8)
—-12 Newoo T° © b4
Lgﬁ(Y,éﬂ) . Second derivative matrix of L'N(Y;Qy)
LEG(Q,QO) Z%Jiooll\f'Eo L;‘:(Y,é)
i,j,1 - General runnihg indicies
M | n.n.matrix
or ' '
Total matrix of m_ seguence products
m QOrder of observation vector
m Measurement vector at time k
N Length of data record
N(z) : Numerator polynomial of junior system
n Order of system state variable
n, i¥ coefficient of N(z) polynomial
m, Order of pole )
P Esfimate of covariance matrix
Pi ‘, ~Pole in the z plane
P | Controllability or observability index
o A complex variable
Q Matrix ®2V(9)
b@iBGj
q | - General variable defined locally
Ro . Region in Euclidian r space
R(&) Risk function of 8
Ri - Residual of a rational ﬁolynomial at the ith pole
ARx,RZ o Radii in the X space and 2z plane
r AOrder of control vector

or .
, General integer constant
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1
T
or
™ (v, 8

t (superscript)

Bo '

s
s
v
vd)
V(k)

RN
U
u(k),u

k

w(k),wk

X, X

X1 ...;. XN

x(k)

ith coefficient of a z polynomial
Transformation matrix nan

Sampling period of discrete time

Matrix of orthogonal eigenvectors of 1,L;ﬁ(¥,

N
Transpose of a matrix
Set in R

-Lapladian complex variable in S plane
Sum vector of f and h

Total vector of v, sequence

k
A

Estimation cost associated with O

Total scalar disturbance sequence at time k
kth member of disturbance sequence v
Total N vector of control sequence u

kth member of the control sequence

k

kth member of disturbance sequence w

10,

AN
6 )

nth order transformation with saturating charact-

~-eristics

. Generalised data set

nthorder state vector at time k

Total N vector of observation sequence Ty
kth member of observation sequence
Cbmplex variable plane

"Zero in the Z plane

Unit time advance operator

Hill climbing correction factor
.th

i root of polynomial A
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Pi ' ith root of polynomial B
P Disturbance input matrix nsn
Ki ith of polynomial C root
S(j) Defined as 1.0 for j=0 ; otherwise 0.0
$4 1% root of polynomial D(z)
€ . Napierian base
th '
€y k" member of a random sequence

B(SIX X ) Conditional probability density
1 [N N N ] N th

Di 1”7 root of polynomial N(z)

[ Vector of parameters

Qo Vector of true parameters

A

23 Egtimate of O at jth iteration

) Estimate of © from data of length N

0 i®® element of _

i
-K,X' : Constant bias term in a signal
/\ : , Covariance matrix of a disturbance signal
. /\N(Y’gy) ‘ Diagonal matrix of eigenvectors of %,Lég(y’éy)
k : Scalar variance of ek
JJ , Mean of a probability distribution
§=1(q) : Defingd as q1sq2sq3 ceces *q,
i Projection operator
0; pole of F(z)
§§i=1(q) Defined as Qq+Qp+az seess +4,
Vi ~ Variance of aisiénal e ”

T . Discrete time variable



g 2

r (systems)'q

or

t (prime)
" (double prime)

2 (superscript)

-3
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Weighting matrix

Power gpectral density of a signhal f
Serial autocorrelation at delay r
Sample estimate of ¢r over data record N

Cross corfelation between two signals produced by
the named systems. see(4.51)

Co§ariance matrix of ﬁ

Sign denoting estimated value

Denotes error between true and estimation values
Sign denoting a specially filtered value

A term which is not ﬁresent in all cases

Used to denote a transformed variable in some sense

Implies deletion of a term
Defining equality
General Norm

Integral around a closed Contour

Probability of a variable (.)
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CHAPTER. 1

THE STRUCTURE OF THE PROCESS

1e1 Introduction.

A problem which often arises in the areas of commissioning and

- running a process control syséem, is that of estimating the parameters
of the plant. These estimates are used for deciding on controller
settings for the various digital control loops within an on line
computer, Alternatively we may be interested in the synthesis of a
control'system and its further study, and neéd a mathematical model

of the process and its environment.

Knowledge is frequently lacking sbout industrial processes, and
the basic'equations are often dubiously known. Even if the structure
of the equations governing the process can be found, the parameters
of these equations are often unknown. In this thesis, we will present
a technique for numerical identification of a process using measurements
of the relevant input and output variables. This technique attempts
to represent the observed system as a single input, single output,
linear dynamical system with statioﬁary normal disturbances having
rational spectra. Such a system can be described by a transfer |
function with a finite nﬁmber of parameters. Once a structurg and
its order hasbbeen chosen, the identification problem can then be
regarded as a parameter estimation problem.

The assumptions made about the s&stem ;re restrictive in that
estimates are obtained for a linear and time invariant model. It

is also assumed that the process is sampled at a fixed sampling rate.



14,

This enables the modelling to be done in discrete time form, whiéh
is ideal for direct digital control. by a process control digital
computer.

The assumptions mentioned above imply a finite dimensional
parameter space which is essential for the algorithm presented later
" based on a hill climbing procedure. Relaxations could be permitted
in the assumptions as long as a given structure, for example & non-
linearity, can be decided on. The mathematical formulation of the_
present method would not necessarily hold in this case, although
engineefing judgement could be exercised in this respect. Siﬁilarily
the method should produce acceptable engineering results for n6n—
éaussian disturbances, since it attempts to produce "white" or
independeht residual prediction errors.

One cannot expect an exact model can ever be obtained in practise
from a data record of a plant.. We are obliged to propose a suitable
model structure and then use an estimation algorithm to assign numerical
values to the parameters. It will be shown later that various models
of the same order nmay be transformed into each other as convenient
after the estimation process is finished. Thus it would be quitelvalid
to choose a structure for estimation, which we knew was well‘suited
to some algorithm, aﬁd later transform the model into any other
desired form.

Naturally there is a fisk inlpre-deciding a model structure and
an estimation procedure, and it remains very necessary to exercise
Judgement as an essential part of such a scheme. There is no advantage

in proposing a complicated model or estimation procedure unless the
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results can be used in practise, Thus the complexity of the model or
estimation will depend largely on its later intended practical use.
The algorithm will be seen to be extendable to the multidimensional

16

input - output case without severe difficultly now that Rowe = has

developed a suitable canonical form, Much of the work and methods
shown in this thesis are similar to those of Qstrym 01 11012,37 .
However the ciaiﬁ is made that tﬁe parémeter set chosen here has
considerable advantages in that the algorithm has faster convergence,
and valid decisions caﬂ be easily made about continuing the climbing
process, or about specifyiﬁg the length of data record required.

The work presented here is devoted to obtaining the most accurate
estimates in the quickest manner and is not concerned with controlling
plant using those estimates. A control engineer may not be interested
.in obtaining estimates which would give him less than say 1% of plant
-running cost improvement. The schemes proposed have the advantage of

giving simple "rules of thumb" which can be used to make decisions

about the quantities of data required to achieve an acceptable result.
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1.2 Outline of the Thesis.

The rest of this chapter is devoted to a development of the model
which will be used for estimating‘the process. It is assumed that
all systems will have a state-space description, together with
conditions on controllability and observability. This description
is fransformed tola transfef funqtion description betvten measurable
input and outﬁut variables.

Various estimation methods as used by previous workers are
outlined in Chapter 2 together with the failure areas of their
algorithms. A full description is given of the maximum likelihood
algorithm as ﬁsed by 2str6m, careful consideration shows that an
alternative parameter set is better suited for estimation purposes.

A closed form solution is given in Chapter 3 for the variance of

- the output of a discrete time rational transfer function, whose input
is vhite noise. Various contour plots are shown of the variance as
the poies and zeros of a simple discrete time filter are moved on
the z transform plane. A non linear transformation is introduced
which is used to confine the pole positions in the z plane within the
étable regiog, while allowing a hill climbing procedure to work in
an unconstrained space, It is further shown that the proposed method
will also cover non-minimuh phase piants which have z transform
zeros outside the z plane unit circle.

Chapter 4.deve10p¢s the first and second differentials of the
maximum likelihood function in the chosen parameter space. Expressions
are also obtaingd for the variance of the second differentials and

the bias arising from the fihiﬁ%ess of the data recorded from the
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original process. This leads to some gmple criteria for either stopping
the estimation procedure, or for pre-deciding how much déta is

required to be recorded from the plant. These criteria are then

related to other criteria derived from more intuitive ideas, and

shown to be similar in resultf

In Chapter 5, the necessary statistical proofs of consistency,
efficiency and unbiasedness follow similar lines to those of 3str6m,
but are derived in the new parameter space.

Several computed examples are given in Chapter 6 to demonstrate
the usefu%fhess of the new estimation method; The improved convergence
rate of the new method is shown in comparison with Astrém's method,
thch has been taken as the most effective method known in the
literaturé to date. The examples have been chosen to demonstrate
the progress made in areas where estimation is known to be difficult,
for example, where the system disturbance is by correlated noise.

The final chapter summarises the work of the thesis, and mentions a
number of areas in which more work can be done. It is shown that the
new estimation scheme can be extended to the multivariable situation
where both the system inputs and ou£puts are vector quantities., A
further transformation of Rowe's canonical form16 is required. The
essential principle femains that climbing efficiency can be greatly
improved by having constrained control over the eigenvalues of the
dynamic system used during maximuﬁ likelihood éstimation, thus

ensuring system stability.
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1.3 Contributions of the Thesis,

The principal contributions of this thesis, which are believed
to be advances in the state of the art of estimation, are summarised
below.

A fully described technique has been developed to calculate the
output variance and any autocorrelation term of a discrete time system
fed with a 'white' sequence, It is now clear that the roots of the
defining polynomials, rather than the coefficients, are the most
distinctive features of a system. This means that the above results
can be given by general expressions for systems of any order. All
the auto~correlation calculations have beén repeated for the case of
a data sequence which has a'finite history, sad—wiich—ds—theresfores
=ssdndetly—sen-gtationpnyy, Variance‘contour plots have been given for
various pole-zero configurations and these have been shown to change
to so: - degree for the finite data situation. It has been shown that
zeros lying outside the unit circle in the Z plane are strongly
related to continous time non-minimum phase systems, and that such
systems can be satisfactorily estimated without difficulty.

The imfortance of filter stability has been realised when using
gstrﬂm's estimation method, A novel transformation method has therefore
been developed to reétrain these filters to the class of stable systems.
Any hill climbing procedure usedvin the estimation process can now
work in an unconstrained space and yét ensure convergence through
being able to define stable estimates only. This approach has been
used in a new and practical estimation method which describes a system

in terms of the polynomial roots. It is shown that the new scheme
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is as equally easy as Xstrdm's, since the estimation cost and its
derivativés can be célculated with a similar efficiency. The new
method has been shown to satisfy Rstram's theorems and proofs for
consistency etc., without any great modification.

The effect of finite data lengths on the estimation procedure
" has been studied. Valid new ﬁriteria have been developed, which
relate the length of a data sequence to the 'strength' of the poles.
These criteria, which originate from the non-stationarity of filtered
data, have been seen to be similar to those given by more heuristic
reasoning. Several examples have shown that the new estimation
method has a faster convergence in difficult situations than Rstram's,

and this is aided by using the above criteria for stopping tests.
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1.4  Model Structure.

It is assumed that the process is described by a general discrete
time state variable description given by (1.1). This model is linear,
time invariaﬁt with stochastic disturbances and is assumed to be stable,

controllable, and observable.

x(k+1) = Fx(k) + Gu(k) + Mw(k)

(1.1)
Hx(k) + du(k) + v(k) + »
k=1’2, snese

y(x)

In equation_(1.{) x is an n vector of state variables, and in general
‘there are r controls u,and_m observations y. Thus matrig{%s H and G
are m.n and n.r respectively. Since in this thesis we are principally
considering a single input single output process, then the control
u, observation y and d;sturbances v, w are scalars, with m=1, r=1.
‘Matfi%{és H and G reduce to 1.n and n.1 respectively, while F is
square n.n and I' is n.1. In general there will be a constant bias
term X in the observations y(k).representing a bias level in the
measuring instrument. Both v and w are scalar random noise variables,
eacﬁ drawn at time k from a univariate normal distribution and have

the following statistical characteristics.

E(w(k)) = 0. : ' (1.2)

E(w(k)ow(k-1)) = ¢5.S(k-i> ‘ (1.3)
E(v(k)) = O. . (1.4)
E(v(k)ev(k=1)) = ¢2.8 (k=i) - (1.5)

E(v(k)ew(k-1))= 05, .5 (ki) | (1.6)
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where E(.) = expected value of (.)

0v©,¢  are the variances of the v and w sources.

oy
~~
e
)
’.l-
A
>

£ 1.0 H k=i =0

1

0.0 ; k=i #O0

If disturbances w(k) and v(k) were in fact zero, the system of
(1.1) would be deterministic. Some of thg following sections initially
require this condition when developing the required transforums.

Frequently we might expect F to be partioned and G to have some
zero eléments such that there are some states in x which belong to a
measurement noise or disturbance processlwhich is distinct from the
plant controlled by u(k). These extra states are then regarded as
the ncisé states used to describe some coloured noise disturbance.
Thus the assumptions are extended in that the state vector x is taken
to bé controllable from the inputs u(k) or from w(k) or from both.

The concepts of observability and controlability introduced by

2,3,50,51

Kalman, and others will be defined in the following manner.

Assume the system of equation (1.1) is noise free and therefore

deterministic. For a seguence—uld) keldr—rrvrrrn—and=e given initial

condition on x at time k=1, the system is said to be controllable if

state x can be changed from any initial condition to the origin of the
uk),k=1,...n

state space of x in a finite time by applying 1nput R over this periodnpn

as shown in equations (1.7) to (1.10).
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x(2) = Fx(1) + Gu(1) ' (1.7)

x(3)

Fx(2) + Gu(2) = F2§(1)+FGu(1)+Gu(2) : (1.8)

then x(n+1)-F'x(1)

P00 (1) +F 7 26u(2) eeee. +Guln) (1.9)
‘ Fn—'l

(G,FGy eoees ¢) [u(n)

. (1.10)
u(1)
As we were given 'x(1) and x(n+1) then the controls could be
uniquely found only if (G,FG, ..... F*~1G) had rank n and was therefore
invertible. This result is more complicated for the case when r)»1

51 16

as demonstrated by Luenberger” ' and by Rowe ~« The array

(G,FG, seees FP~1G) must have rank n, where p is & contrdlability
51

index” ', p< min (nm,n—r+1) and n_ is the degree of the minimal

. polynomial of matrix F. Since we are considering only single input

single output systems at the moment, thigs consideration does not appiy.
By an analogous approach to the contrdlability condition, a

similar dual condition applies for the observability of the system.

The state x at time k=1 can be determined uniquely by observing y(k)

for a finite time if
(Ht,(HF)t, ceee. (HFFHHE (1.11)

has rank n, and is therefore nonsingular. Again, for the situation
where m»1, the power of F runs to p-1 and pg¢min (nm,n-m+1) is now an

index of observability similar to the case above.
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1.5 Transformation to companion form.

A transform T, an n.n non-singular matrix with constant elements,
can be used as an equivalence transform to change the co-ordinate set
of the deterministic system to x'=Tx, where the prime symbols refer
to the new system. The system matric#es are then given by (1.12).

F' = TFT

a' TG H!

i
i}

HT (1.12)

An equivalence transform has the property that for the same set of
inputs u, the original system and the new system will both give the
same outputs y, as in (1.13),for appropriate initial conditions. = This

has been more formally given by Athans and Falb”>,
y' = H'X' = HT 'Tx = y (1.13)

If T is defined as (qt,(qF)t sevre (an-1)t), where q is an
arbitrary vector which satisfies T having rank n, then the system F!

can be seen to reduce to the normal companion form51, with the states

x; referred to as phase variablesao.

Fi=|q | F q -1 q FqF—1 =1 é(l’f)(J)~1
qF qF qF q
. . : : (1.1%)
. . an-a .
n-1 n-1 ne1 ne=2
..qF - _qF .J _qF - -.qF -
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Because of the particular structure, ith row of M equal to the (i+1)th
row of J, and J non-singular, it can be shown16 by postmultiplying both
sides of (1.14) by J, that the (i+1,i)th element of F' is 1.0, while

the rest of the Fij elements are zero, for i=1, eeeee N,j=1, eeeee n=-1.

Thus F' takes the form of (1.15); which is the normal companion form,

(1.15)

. . . 0 0 1

-a_ =a essssese =8
n n=1
B 1

The &y terms, i=1, <se.. n, have yet to be determined but will satisfy
the charactefistic polynomial of both F and F' since this is a criterion
for their similaritysa.. The terms are therefore unique and independent
of the.choice of the n-vector q.

Vhen q is chosen to be the vector H for the scalar observation case
‘studied, the transforming matrix T is the observability matrix in
equation (1.11). The new system matrix H',1.n, also has a particular
form when T is chosen in this maﬁher, and is given by (1.16).
Equation-(1.16) may be compared with (1.14) and it can be seen that M

is nov 1.n, while J' is still n.n and non-singular.
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gt~ = H rH =1 2 gt f-HF'1 =L mnyan)™!
HF H
. N (1.16)
HFn-1 HFn-a
L . L .

By a very similar argument to (1.15) H' reduces to (1, 0, 0, cevee, O)
| (1.17)

The new matrix G' = TG does not show any special form. A precisely

dual transformation derivea from controllability conditions can also

be used on F to give the transposed canonical form for F, and a simple

form for G'.

1.6 Transfer function description.

We propose here a transfer function description of the system as
‘a rational Z polynomial between the input variables u(k) and the output

“variables y(k).

y(kg/a£k) = B(2)/A(2) : | C(1.18)

or y(k)+a,¥(k-1)uuseota y(k-n) = bju(k—1)+Bau(k42).....bnu(k-n)

' (1.19)

Thus A(z 1) = 1.0 + a2 + aaz—a..... az " (1.20)
B(z™") = L AT (1.21)

The direct control term bou(k) and the bias term ¥ in y(k) have not

been included at this point.. The operator z is the unit advance operator
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in discrete time and (1.18) describes the transfer function as a
rational z polynomial. We will now show that the description (1.18)
can be transformed to give the coﬁpanion form description of equations
(1.15) and (1.17), and that the two descriptions are therefore
equivalent to the deterministic version of (1.1) with d=0.0. From

(1.1) and using the companion form of F as in (1.15)

x1(k)

it

xa(k—1)+g1u(k-1)
xz(k) = x3(k—1)+gzu(kj1)

xn(k) -anx1(k-1) cesne -a1xn(k—1)+gnu(k-1) (1.22)

vhere g, are the elements of G' defined by (1.12)
Due to the form of (1.17)
y(k) = x1(k9 . (1.23)

The set of equations in (1.22) can be re-arranged and the identity of

(1.23) used to give the set (1.24)

xz(k-1) = x1(k)-g1u(k—1) = y(kl—g1u(k-1)
x3(k-1) = xz(k)-gzugk—1) = y(k+1)-g1u(k)—g2u(kv1)
x (k=1) = xn_1(k)-gn_1u(k-1) = y(k+n=2)-g u(k+n=-3).c.0o-g _ ulk=1)

(1.24)
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It follows by changing the time index k to k+1 that
xn(k) = y(k+n-1)-g1u(k+n-2) cesse -gn_1u(k) (1.25)
Equation (1.25) can now be used in (1.22) to give

y(k+n-1);g1ﬁ(k+n-2)—g2u(k+n;3) cocee -gn_1u(k)

"'anx1 (k"1 )-an_1x2(k-1 ) escess =8

1xn__1(-k.-1)+gnu(k--1)

—any(k'.'"l)_an;'][y(k)"g,lu(k"'l)J evseoa

~a1[?(k+n-3)-g1u(k+n-h) PR -gn_1u(kszi]+gnu(k-1)

(1.26)

Equation (1.26) can be re-arranged and the time index shifted again

‘to give (1.27)

y(k)+a1y§k-j)+ csoes an_qy(k-n+1)+any(k-n)
= g1u(k~1 )+82u(k-2) sees e gnu(k-n)

+8

n_‘,lg,lu(k--n)+ ceces +a1[?1u(k—2)+g2u(k-3) ceses gn_1u(k-ni)

(1.27)

= boulk=1)+bu(k-2)+ ... b u(k-2) , (1.28)
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By equating co-efficients in (1.27) and (1.28) then

b, a, 1 0.. 0 offg,

b a a 1 0° 0

5 2 (1.29)
bn an._1 an_2 s a1 1 gn

The equivalance of the traﬁsfer function description to the companion
form can now be seen since equation (1.27) is identical to (1.19).

- There are also n initial conditions to be set on the y(k) sequence,

k = «n+1,-n+2, seseey ~1,0 before the system is released at time k=1,
and correspond to the n initial conditions on the state vector x _

at k=1.

. The transfer function description is only slightly changed for
the case where the co-efficient 4 in (1.1) is non-zero. This allows
a. direct comnection between system input u and output y. Vhen the
co-ordinates of the state x are changed, as in (1.12), the term
dsu(k) appears without modification in equations (1.22) to (1.29)

which can be reworked to give (1.30).
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(bo = F“ 0 0 seeves 0 0 (d-}
b1 &1 1 O ecees O (0] 81
b a a 1 0 0 g .
2 .2 1 - - .2 (1.30)
Lbn 8y Bpeq Bpaptct B4 11|84

Thus the polynomial B(z) has been-extende& by the term bozo and
therefore now has a total of (n+1) coefficients. Such a system may
well exist in discrete tiﬁe, and yet have no physical meaning in a
continuous time system. This is because most physical plant will

take at least some small time to respond to a control input u(k).

1.7 Number of parameters.
16

Rowe has developed the arguments of the previous two sections

to thg'multivariate input output case where m$1 and r»1. The
transformation matrix T corresponding to that in section 1.5 is then
not unique as H is no longer a vector, The requirement for T to have
rank n can be met by several seleéfions of n linearly'independaﬁt Tows
from the roﬁs of the complete arrayrHFi, i=0,1, .:... P pgmin(nm,n-m+1

Thus there are as many difference equation transfer function description
like (1.28) as there are ways in selection the rows to make T. However,
for the case m=1, r=1 the matrix F must have n_=n in order to be
observable and controliable from the scalar input and output. The
transformation T becomes then unique as (1.11), and the transfer

function description is also unique.
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The original system (1.1), without direct control via 4, could
be specified by n2 parameters ig F, nm in H, and nr in G. By
employing the transformation T derived from the observability arfay,
a new system can be obtained with F' having n and G having nr
parameters. Thus the total numbér of parameters is n{m+r) and this

50,16

can be shown to be the minimum necfessary to describe the system.
The original system could also have had the number of parameters n(m+r)‘
if it was already the minimal form with some zero elements. There
are other transformations . T which will provide a minimal form for the
system; for example a dual approach using the contrdlability conditions
. can be used to derive a T2 with similar results. An extra number of
parameters mr should be included with the minimal form for the case
where direct control of the output is allowed i.e. for d in (1.1).

For the case studied m=1, r=1, the minimal number of parameters
is 2n = n(m¥r) and the transfer function description (1.19), (1.28)
is unique and also has 2n parametcrs. Two extra parameters are required
to desbribe the 4 or bo term when present and the constant bias term
) on Vi There are naturally n initial conditions also to be inserted
~into the sequence y(k) for complete identity with system (1.1) to be
achieved. Thus there is no loss and much to be gained if the transfer
function description is easierqo'15 to estimate than other descriptions.
Other f&rms maj be derived if required after the estimation procedure

has been completed.
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1.8  Stochastic system description.

We will now consider the full case of system (1.1) including all
the noise terms. As mentioned in. section 1.4 only soﬁe of the states
‘in the model are under the direct influence of the control u. The
estimation procedure can only be concerned with the states that are
both observable and controlléble from u and — or the disturbance.
Rowe16 shows that it is necessary to assume the system is observable,
controllable by the control and noise inputs together, and output
controllable in the mean by the control input u. The observability
conditions remain as for the deterministic case.

The system is controllable by the inputs u and w if the array
. 2 -
( (GyT) F(G,T) F(G,T)y soses JFP 1(G,T) ) (1. 31)

has rank n, where the controllability index ps;min(nm,n-r-j+1) and

T is (n.j). For the system studied in this thesis w(k) is a scalar and
thus j=1. This statement is amilar to (1.10), and arises because the
image of the vector space of dimension (r+j) spans the space of x

when the array (1.31) is of rank n; If the system is output controllabl
in the mean sense, it implies that thc¢ expected value of y(k),k»p,

can be reached from'arbitary initial conditions. This condition
requires16 array (1.32) to have rank m for the least positive integer

p £ min(nm,n-r+1)

( HG,HFG, ..... ,HFP"1a,D ) | | (1.32)
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1.9> Stochastic Difference eguation.

The transformation methods used to derive a difference equation.
in the deterministic case can alsd be applied to the full stochastic
system (1.1). The difference equation takes the form of (1.33),
where in general A,B,K and L are matrix polynominals, but reduce to

scalar polynomials for this study.
-1 1 -1 =1
A(z” Dy(x) = Blz Du(k)+K(z HDwlk)+L(z v(k) (1.33)
The procedure for obtaining A and B given system (1.1) is not changed

by the inclusion of stochastic disturbanées16. The co-efficients

of K(z-4) can be found in the same way as (1.29).

-K{ = [1 O 0 aees. O] l",l1
K, a, 1 0 eeeee O T
K3 a5 a, 1 . TB
LKn. _an_1 8. p cevedy t- i Pn-
where K(z™ 1) =.K1zf1+Kaz-2 cesse an-n

It can be shown16 that in fact L(z ') is equal to A(z ). The total
scalar disturbance V(k) to the difference equation is the sum of the

extra components in (1.33).
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V(k) = K(z" Dwk)+L(z v (k)

(0 1) |w(k)| + (K1 a1) W(k=1)| ceeoe (Knan) w(k~-n)
v(k) v(k-1) v(k-n)

(1.34)

The serial auto-correlatiqns Qé{of V(k) are defined by (1.35),

and will be ‘scalar for the m=1 case.
¢'ré E (V(k).V(k-¥) ). , T=0,%¥1,%2 ..... (1.35)

There are-in the general case m(m+1)/2 parameters in ﬁ;, and m° in
-ﬂk, T=:1,12, ceees 1 since ﬂ; is symetric. When m=1 there are n+1
parameters in total needed to describe ﬂ%. Since the sequences v(k)

and w(k) have the independance propertiecs as expressed in (1.2) to

(1.6), ﬁ% is zero for /T¥/»>n.

1.10 'Statistical Equivalence of processes.

The sequence V(k) defined by (1.34) has a normal distribution
‘because it is formed as a linear sum of the random variables w(k)
and v(k) which are themselves normally distributed. Thus the Gaussian
procéss V(k) is defined completely by its zero first moment and the
(n+1) seeond moments from (1.35).

Another scalar process V'(k) is proposed by the definition in
(1+36), which has the samé number of degreés'of freedom as V(k) in

- the choice of its parameters.
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V'(k)é(1.0+c1z-1+022.2..... cnz'n))e(k)=c(z—1lke(k) (1.36)
where E(e(k)) = O, |

ECe(k).e(k=i)) = 1.08(k=1), and e(k) is normally distributed.

This new process V'(k) is also Gaussian with zero first moment, and
(n+1) non-zero second moments % given in (1.37).

gy =E (Vi(k).V' (k-1));¥=0,%1,%2, ..... in (1.37)

For the general case16, eaéh of the co-efficients in (1.36) is an

m.n matrix and A is replaced by a symetric matrix.A% with m(m+1)/2
parameters. It is claimed that the two processes V(k) and V'(k) can be
statistically equivalent when E(V(k)) = E(V'(k)), and ﬂ; =.¢% ,
T:O,f1.i2, essse in. Later work in this thesis will be concerned with

representing the process (1.1) by the difference equation (1.38) which

employs the c(z"M description in place of that used in (1.33).

Az NDy(k) = Bz Duk)+c(z” e (k)4

where A(z™1) = 1 + aqz-1 cesas anz—n.;
' -1 -1 -n
. B(z ) - b0+b1z 'EEXEK] bllz 1
-1 - =1 ' -n
C(Z ) = 1 +C1z sesee cnz ;
. 3
)’L —K* (1+a1+82 sevee K an)

for convenience in notation the polynomials can be multiplied
throughout by z" to give

A(z)y(k) = B(z)u(k) + C(z)he(k) +)A! (1.38)



35.

The problem of finding the parameter values for the V'(k)
process given only ﬂ} equal to ﬂ; is the problem of spectral
factorization. This is not easy és there are n simultaneous equations,
m(m+‘l)/2+pm2 in the general case obtained bybequating moments, which
are non-linear and their soiution is not unique. Some solutions will
havé unstable roots and muét be discarded. Other workers have studied

16,54-58

these problems s and given more formal and general accounts.

The conditions under which factorization is possible are given in (1.39)

#(z) = g+'°° P/izl is a rational function in 2z with

i=-oo
i) flz) = gz
ii)  gy> 0. (1.39)

We maintain that it is easier to estiﬁate a process with the
descriptiﬁn (1.38), with the minimal number of parameters,than the
original model (1.1). This has been noted by Rstrﬂm;7 and Mayne15 in
that it is far simpler to construct a likelihood function which avoids
introducing unknown state variables.

There are %n+3 parameters in (1.38) needed to define the system,
which is the'éame as the minimal number required to describe (1.1).
These are made up from n in A(z),n+1 in B(z), n in C(z), with two more

used for A and (', The other n parameters belong to initial conditions.

It will be seen later that for long data sequences y(k),u(k) it is
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possible to ignore the initial conditions y(k),k= -n+1, -n+2, cece.

see y=1,0 on the model at time k=1, which correspond to the initial i

conditions on the state vector at k=1, Any initial conditions are
regarded as having decayed within_the data length to be insignificant
compared to the stochastic disturbahces. This leaves only 3n+3 paramet-
ers to be considered for estimation.

- Once an estimation procedure has been completed using description
in (1.38), it is §05éible to obtain a sti.te representation by reversing
thé transformations described. This has been studied at length by |
Kalman39, Deweyqo, and Mayne38 among othere, for the minimal realisation
:condition."Such a condition is required to wmake the solution unique,
because there are a large number of possiblc state realisations. For
example, the minimal realisation of the deterministic scalar input-
output system of (1.1) has only 2n parameters in (1.15) and (1.17).

The original description required (n°+2n) parameters.

| It should be clear that having estimated a transfer function
as (1.38), vwe cannot derive a state variable description that includes
both v(k) and w(k). This follows from the above section in that we
are unable to distinguish between two independent Gaussian noise
sources and must classify them ags one. ‘Such a state variable description

is given .by (1.40), and in more detail by Rowe16.

x(k+1) = F'x(k)+G'u(k)+rte(k)

y(k)

H %) +Dulk) + e (k) | (1.40)
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1e¢11 Deciding the order of the model.

If we were provided with a data record y(k),u(k);k=1, secee N
of a plant, then an estimate of its parameters could be obtained only
after the structure (1.1) or (1.38) had been chosen. In particular
we would have to select a value of n, the state dimensionality,
conéistent with any prior knowledge of the plant and later usage of
the model. Tﬁis.is naturally a higher level procedure than the simple
parameter estimation problem. MHany people have studied this

a13,16,12,43,44

are without any definitive answer being found for
determining the model ordef n. The best engineering approach seems
to be that of starting with n=1 and increasing it by one after having
estimated the corresponding parameters. A close watch is kept on
some index of performance and the confidence which can be placed on
.individual estimates. The whole procedur: -appears to be akin to
-hypothesis testing and can only provide results in a probabalistic
sense. It is expected that some lower plateau of performance would
be reached for values of n equal to or greater than a value n*, and
that poorer coﬁfidence levels would be associated with the estimates
for n>n*. The value of n* and the parameter estimates for the 1:1“th
order modeliére then adopted as a satisfactory solution to the whole

estimation problem. An exémple of this procedure is given in

Chapter 6.
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CHAPTER 2

PARAMETER ESTIMATION

2e1 Properties of Estimators.

It is well known that field trials with phyical plant are
arduéus, and that data colléction from such a system is expensive.
We should therefore be interested in making optimal use of the data
when estimating plant parameters. These estimates would probably
be used to effect a low mean square prediction error of the plant
output by being used in a stochastic regulator. This prediction
error may be ﬁore important in practice than the individual parameter
errors obtained in estimation. A situation Qhere this occurs is
shown in section 2.2.

21,23

Statisticians can present an argument based on experience
as far back as K.F. Gauss, 1809, that a quadratic loss function of
the fofm (2.1) is quite realistic for many parameter estimation
problems, and is often chosen for mathematical convehience.
Loss = Function [(9-§)t(0-6)1
where é_is the esfimate of parameters O and satisfies (i) Lossz0.
for all permitted 8 and § ,(ii) There is one.g for each § value
for which Loss = O. | | (2.1)
~The value of risk R(®), defined as the expectation of the random
loss (2.1) for a given estimation method, can be compared for various
methods. The estimation method that gives the minimum risk R (8,

will minimise E[kgfg)t(gré)], the mean squared error. However this
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method may only produce a minimum mean squared error for some values
of . Thus since ® is ubknown, the choice of estimation method may
well contain an arbitary element.
Other than the above criteria, estimation methods can be classified

broadly according to their following basic properties.

Unbiased estimate: Expected value of the estimate O is equal

A
to the true value 8. E(8) = 8 (2.2)

. A A
Consistent estimate: Let §1 cesee Qn be a sequence of estimates

of O for increasingly larger sets of data. This sequence is
23
then a squared error consistent estimate of Q if

a(n-»oo E((Q-én)t(g-én)) = 0. for all O (2.3)

Since R . (8)
min'—

.
E((Q-Qn)t(s-%)) it follows that the above condition

Vol
implies that both the bias and variance of §g approach zero.

A
Efficient estimate: If O is an unbiased estimate of © and has

a finite loss, and no other unbiased estimate has a smaller

-

: A
loss, then © is an efficient estimate of 0. (2.4)

Mood and Greybill23 point out that there are estimators which are

only efficient in a limiting sense for very large data sets.

i.e. asymptotically efficient. Also since estimators with minimum
mean-squared error rarely exist for all‘Q values, a reasonable procedure

is to restrict the class of estimating functions to unbiased estimators
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and see if an estimator with minimum mean squared error can be found.
This occurs much more frequently than the existance of a general

minimum mean-square estimator.

’ A
Minimum variance unbiased estimate: 1If 0 = g(X1, cvease Xn) is

"an estimate of O based on data X, ceess Xn drawn from a distribution

1

A
£(X,0), then ® is a minimum variance estimate, provided that:

(1) E@) =8 | | (2.5)

A
(ii) Covariance (@) is less than the covariance of any other

estimate satisfying condition (i) (2.6)

2.2 Least squares estimator.

This method of estimation is based on theory presented in a
large number of text Eooks, but which was first introduced by Gauss,
and has since had very little development., The transfer function
descriﬁtion (1.38) is re-arranged to give a mixed autoregressive-
moving average model (2.7). As will be seen later the bias term X’
‘can be droppeé@ from the model as it can be separately estimated.

The notation y(k) has been changed here, and in succeeding sections

to ¥, similarly u(k) becomes .



-a DU eeeee +b 1 +@, +C e essoce +C €

n

VR TRYke1 TR Yen ™%k n"k-n*%k"%1%%-1 ©n®k-n
= m1,kGH +‘m2,k®2 ceses mq‘an + v
=E;.Q+vk H k=1, eesee N
t .

Where q = 2n+1 ; 9 = (-a,l,"aa eoesee -an,bOj-’b'l, LI bn) H 1.q
mt.é (y y cees y u u, )i 1eq
=k k=1""k-2" * %-n'"k* ****° “ken’’ :

(2.7)
. . st nd

u, is bounded and has finite 1 and 2 moments and

Vi is a zero mean coloured noise sequence defined by

Vi S @k Cooe . oseses Co€ (2.8)

A loss function (2.9) is now defined and can be regarded for this work

‘as quadratically costing the predictioh error v, between Yy and the

k
predicted output g; ® for an estimate @ of Q;

R(§) =g§=1 (yk - gfc' g)a = (Y-Mg)t(Y-Mg)

where N is the length of the data sequence yk)uk

Mt

t 2 4
and Y° = (Y1!y2' ""f yN) H 1fN 3 = (21’22’ esoss EN) 3 q'N

(2.9)

44~ can %333 be minimised by setting the derivatives with réspect to é

equal to zero to discover the resulting conditions.
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dR(P) = -2nPye2ntup = o. (2.10)

Lo )

28
The least squares estimate is thus given by
9 = (M M)

MY 5 qet . . (2.11)

The risk R(Q)'can be written as a squared norm of a vector as in(2.12)

R(8) = [t-msf = [¥)3-vPug-atuty + gtutre (2.12)

1My were defined from (2.11) as MY =NMB (2.43)
Then (2.12) becomes R(8) = JJ¥}|2+(8-8)F1bn(e~8)- Fu'u g

= JeI? + ucg-Bf % 81 (2.14)

= Jre-n6]? > )2 Jné) 2 (2.15)

since each term (2.14) is positive

‘Now R(8) in (2 14) will be minimum iff O = 9 wiere @ is given by(2.11).
Also (2.13) is another form of (2.11), and hence it has been shown®
that (2.11) gives an absolute minimum for risk R(8) given the structure
(2.7) and (2.9).

For the model as given by (2.7), the estimate é can be shown to
be biased. |

-1t

E(ﬁrg)' B )" Tt y-8) = B((*m) ™ T h8+(M )" Ty v-g)

E((utm)~ Tty (2.16)
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If the terms M and V in (2.16) were independant then (2.16) would
reduce to E((HtM)-1Mt) «E (V) which is zero since V has zero mean.
However the matrix M includes gi as the 1 *B row and m;

elenents Vet Tjeont eooee Yy po and these elements must be related to

contains

Xk is correlated over n delays

in definition (2.8). Thus the bias term (2.16) is not zero, and

Vieq?Vgop? e=ees through (2.7), since v

the least sqﬁares estimator is biased for estimates of the co-efficientg
of Yimq? **** Yyop? but unbiased for Wy eovne By co~-efficients
if the w and v, Sequences are uncorrelated.

The biased estimate ﬁight be used in practise to predict i in
a controller. The value of the sum of the prediction error squared,
i.e. the value of R(g), can be obtained by substituting (2.11) in

(2.9), and (2.7) for the value of Y. The value of the bias on 0 is

- taken from (2.16)

A A t A

R(Qbiased)z(ngxact+v-Mgbiased) (Mgexact+v-ugbiased) (2.17)

tov=1, bt

= -MB -
: (Mgexact+v MO act M(MHM) MTV)
ty=1,t
-HO -
(Mgexact+v HO ot M(MHM) MV)
. A ot B vy by pabarn=1

oe R(Qbiaséd)'v (I-M(H M) M) (I-u(M M) M)V (2.18)

A
If instead of the biased § we had used the exact value of 8§, then

the value of R(P) would have been
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_ A t ot
R(Qexact)_(ngexact+v M'g'exac*t:) (Mge xac t+v MGZX ct) =V
(2.19)
By the argument of (2.12) to (2.15), R(_@_b:L ) is less than

R(®

) and we would expect the prediction performance to be
—exact

improved by using the biased esﬁimate. This is because the biased
estlmates have partially absorbed the effect of the cy co-efficients
and thus offset some of the colouration in Ve Should the case arise

that ¢ yi=1, +eees 0 is zero in (2.8), then v, would be an independant

sequence given by ey The data Yo B at each time k would now be-

k

independant of all v, and the bias term (2.16) would be zero. There

k
~would then be no distinction in performance between (2.18) and (2.19).
The co-variance matrix of the least squared estimate can now

be calculated in (2.20)

cov. (§)=T= K0-8)(8-8)%) (2.20)
= BT " T r-9) (et~ ) )

n

(8 ™ b0+ et~ Tirbv-0) (B T (uBi) " Mbu-g)
e [0t~ b Corfany T ) B)

. - t -
o =t e v Juostn ™ | (2.21)
where A (v1,v2; cessee VN) i 1N
1f E(W®) = ¢2 . 1, | (2.22)
e °
then equation (2.21) be simplified to give the minimum variance

propeftyaB, described in section 2.4.
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Cov (ﬁ) = qu Uéz.(MtM)-1 (2.23)

This again requires the sequence v, to be independant and thus all

k

ci,i=1, esees n to be zero, i.e. the disturbance on the model (2.7)
to be white.

R.C.K. Lee19 describes the least squares algorithm above in a
recursive manner. Assume @& solution to (2.11) has been obtained
for a data set k=1, eeeee N ; N>gq and more measurements are taken
at N+1 to give LIRS The matrix ¥ defined in (2.9) will now have

mt as an extra row, and the vector Y an extra element y « The
=N+ N+1

new solution to (2.11) is now given by (2.24)

At -1t
P = (Mh+1ﬂN+1> ﬂN+1ﬁN+1 ‘ (2.24)

The inverse of the matrix required in (2.24) can be efficiently obtained

19

using the matrix inversion lemma as shown in (2.25)

t -1 t t -1
( ! Y= (MM +m, . m. )
N+1 M)N-b'l %m 11\[ TN N+1=N+1

-1 t
N+1 PN * B Bieq

w .
"

e

[ ]

*J
]

-1t
#1077 my APy (2.25)

g
1}

. t .
Pn - PNEN+1 (EN+1 PnEN+1
_The only inversion now required is a scalar which is computationally
useful if n is large. The formula for least squares recursive

estimation can now be given by (2.26)
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-n°8 ) (2.26)
N

A A -
8 =8 s nn’emn

N (Iy4q

where m = L

The old estimate for § has been updated by a correction term based

on the new data and the old value of Pye The algbrithm,using

equations (2.25) and (2.26) recursively, after a minimal data set
N = q has been obtained, is a form of the Kalman sequential estimating
method2’3.

| Any estimate obtained from these equations will be identical

for the same data length N to that of (2.11), and will therefore

. - A
_ share the same faults. Thus the estimate § will still be biased due

K Lee19 shows that the matrix PN

always decreases and in the limit approaches the null matrix when

to the correlation of Yy and v

N+, independant of the assumed initial conditions. He concludes

that for the condition Vi is white, and PN

to the covariance matrix (2.21), the estimate é is statistically

is therefore proportional

consistent. VWhen Vi is coloured as in the general case from (2.8),

the correct conclusion must be that the least squares estimate is

i) biased; ii) not comnsistent, due %o its bias; iii) not efficient,

23,21

s8ince there do exist more efficient estimators as shown later

in section 2.4.

2.3 Methods of avoiding bias.
Various devices have been suggested to remove the bias on the
. .
estimate of ® in (2.11). Lee updates the algorithm (2.25),(2.26)

only every n data points, and thus trys to avoid the bias effect,
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since By neq cannot be correlated with Vi which contains terms only
St bias remains a8 S, & affected By all phe st alues of €,

as far back as ek_n.‘kHowever the matrix M'M in (2.11) tends to be
nearly singular and difficult to invert. There is aléo a large
wastage of data with this approach which might be used in a more
optimal manner. Thus the covariance of the estimates with Lee's

method must be worse than the simple method of (2.11).
' 27 . .

Mayneaé_and Tzafestas have used an estimate m, in equation (2.11)

k

derived from data at time k-n-1 and before, so that the elements

Ymq? =ovee Yy, Bre un-correlated with Vi

The vector m, is provided by a linear regressioa estimator

k

which may in turn be biased, butT;hich the only important property is

“that of prediction. The two estimators, for m,

be updated together in a recursive manner, The estimate for O can

and then for & can

be shown26 to be asymptotically unbiased and consistent, but lacks
efficiency. 'Ruckeréo and Levadié1 have also developed a method which
first estimates Yie and m, assuming a noise free model, and then
applies a sequential least squares algorithm. It is claimed that

the estimate of O is unbiased and consistent but not minimum variance.
Rowe16 has given a "bootstrap estimator' which is similar to the above
methods and is also asymptotically unbiased, and_consistent but
not‘minimum variance.

Once some estimate of © has been obtained, the residuals vy

27

may be examined to give an estimate of the ci,i=1, cseee I

coefficients of C(z) in (1.38) or (2.8).

A t A ' ‘
Vi = Ve "y 8 . (2.27)
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. &
Vi S €y Cabq R S o eeeee C 6 (2.28)

] > A
where v, is defined by (2.8) ang €y _.Xek

Using the residual sequence v, we can form the sample auto correlations

k

A

g, (2.29)

A _'A
g. = 1 <N 3

i T =2 k=1"k ki

; i=0,1, L N B n ‘ (2029)
N-i ‘

From (2.28) the auto correlations ¢i of v, can be expressed in
terms of the F co-efficients j=i, ees.. n of C(2z)
B, = Elvyv, i) =c 05 #C1Cs 4 eeeos C sC) (2.30)
where c, 2 ), and i=0,1, eeee. 1 ; g, 4 0.0 for i>n due to (2.28)
The set of equations (2.30) can be compared to the set (2.29)
derived from the plant data,and a n+1 set of non-linear simultaneous
equations obtained in n+1 unknowns ci,i=0,1 esese N This is now the
same as the spectral factorization problem mentioned in section 1.10
and requires some iterative routiné for its solution. Since the
estimate of © has already been shown to be biased and the effect

of the coloured noise sequence v, partially absorbed, we cannot expect

k

the estimate of the cj co-efficients to be of statistical utility.
Clarke's > approach to estimating C(z) is to invert the model

for C(z) into an autoregressive procéss and then use the data from the

residuals Gk to estimate the terms of this process, by re-applying the

least squares algorithm. This method is extended iteratively and will



k9.

be re~examined in the next section. The final result is a cascade of
autoregressive filters of indefinite number which are said13 to converge

in practise and might then be inverted to give C(z).

2.4 Generalised Least squares estimation,

- If we are permitted to assume some knowledge about the vy
sequence of (2.8), then some predetermined weighting could be applied
to the components of the risk function (2.9), and a more general risk

function could be defined as in (2.31).
A A A t A
R(8) & (Y-MO)" § (y-MB) (2.31)

The weighting matrix @ need only be considered symetric, since any skew
- symetrical portion will not contribute21 to the value of R. It also
"has to be positive definite to make R positive only. The minimisation

of section 2.2 can be repeated to give (2.32)

A ... - -
§ = 0% "my™ Wty (2.32)
i 21 A R 4
It can similarly be shown™  that O gives an absolute minimum for R(8)
given the model (2.7) and the weighting matrix .
The co-variance matrix of the estimation errors can be obtained as

in section 2.2 and becomes (2.33)

Y= o e § Tt (2.33)
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Suppose now that @ is chosen to be equal toj\étE(VVt), then the
co-variance matrix q?becomeslp* as in (2.34) due to the resulting

simplification.

\p* .-.:(Mt@”m'1 = S mevvEHmT - (M?A[1M)*1 (2.34)

21462 410t this choice of ¢ yields a

It is possible to demonstrate
‘minimum error co-variance matrix ﬁp*, and thus the smallest possible

value for the risk R(@);

Thus \[/* <\ for all choices of @, where ‘LIf‘ is for § = A\
(2.35)

This is intended to mean that the difference qr-\y* is non-negative
definite, since both 1P'and'Qf* are positive definite. The estimate
for § obtained from (2.32) under the condition @ = /A is thus a minimum
variance estimate or Markov estimate. Since in practice f&will nof
be knan, the minimum variance condition is unattainable, and insfead
we must employ some @ which will be close toj\, or attempt an iterative
- procedure for which each success;ve é will be closer tolﬂ. One
possibility might be to use the fesiduals 6k from the least squares

estimate to evaluate a suitable @, for example as in (2.36).
AA
§ = wt (2.36)

13

However as Clarke - shows, @ in this case has a zero determinant and

is therefore non-invertible and cannot therefore be used in (2.32).
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The generalised least squares method can be viewed as transforming
the data YooYy to another set yiuﬁ for which the transformed noisg
sequence v, now has zero autocorrelation ¢i for all i#0. For this it
is again necessary to have full knowledge of the covariance matrix of
the original noise process f\= E(WE).

The iterative procedure mentioned above could be performed by
choosing an estimate 6(2) of the polynomial C(z) and then filtering

YWy to give yp,up'in (2.37).

yg=_1_y,. s ut=_1_u (2.37)
k ey k' kT gy k

then from (1.38)

ACz) C(2) yp = B(z) G(z) ug + AC(z) ey (2.38)

For the scalar inputebutput case considered, the polynomials in =z will

commute and we can premultiply (2.38) by ¢"(2) to obtain
A(z)y* = B(z) ux + 6-1(2)XC(2) e (2.29)
k k k ¢

The model can now be recast into the form of (2.7) and has the same
meaning for 0. As C(z) approachés C(z) the disturbance sequence
vg = 6-1(z) C(z))\ek becomes more independant and un-correlated with
its past. The estimate for 8 and hence A and B will become less
biased and approach the minimum variance situation as‘Q*j\in (2.34).

. - - 3 - A .
Thé remaining problem is how to choose successive values of C(z) to



approach C(z) more closely at each iteration,

63

A number of authors have tried the above approach. Durbin 7,

Clarke13, Tretters, and Steigl:i.tzlF have all suggested the two staée
method of searching for the parameters of C(z), and least squares
solution for A(z) and B(z). Thé‘latter pair of authoré represented
6(2)“ih terms of its co—efficients and optimised these by Powell's
minimisation'algorithm8. The complete scheme came very close to

Astrém's method1o’11'12’37

which will be discussed later.
Clarke13, as mentioned before, represents C(z) as an ever increasin;
cascade of auto regressive filters, one of which can be estimated by
- the least squares algorithm at each iteration of the process. The
scheme is halted when the process appears to have converged. The
estimate of ﬁ is then approaching the minimum variance condition for

the generalised least squares method since the residuals v, are as

k
.white as possible. The ((z) polynomial could be recovered in principle
by inverting the cascade of auto-regressive filters, but cannot be
éxpected to be a statistically satisfactory estimate. Box and

43, LY

Jenkins have described a process in an alien notation which is

" similar to the methods of this section. 1In effect 6(2) is represented
as a second order polynomial and the risk contours examined in cs
co-efficient space within stability constraints to find the optimum,

As will be shown later the stability constraints on 8(2) are important.

Their presence greatly affects the shape of the hill during the climbing

procedure,‘and determines whether or not the final system estimate

would be of practical use.

The advantage of a least squares estimation procedure is that no
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explicit assumptions have to be made about the statistical properties

of the random variables, beyond their boundedness. If we permit
ourselves some knowledge or assumption about the probability distribution
of the variables, then we can obtain more general estimation methods.

It will be seen later that maximum likelihood or Bayesian methods

rlreduce to the least squares case when the disturbances have Gaussean

distributions.

2e5 Maximum likelihood Estimation.

The principle of maximum likeliho&d was introduced by Gauss and
developed. much later by R.A. Fisher in 1912. This approach is commonly
'regarded as providing a satisfactory estimation method because it
makes the most optimal use of available data, and satisfies asymptot-
ically the properties listed in section 2.1. In return for this
benefit, we have to assume more knowledge about the stochastic
disturbances, in particular the probability density function of the
noise,

Given a set of data X1 cesecs XN drawvn as a raﬁdom sample from a
_probability density £(X,9) then the joint probability density
g(X1, cense XN.é)vis known as the likelihood function. We want to
knoﬁ from which density this particular set X1 csees XN is most likely
to have come. As5 6 takes different values the density changes and
we wish to find the value of 8 which maxinmises gO%, xN,ﬁ),

This value is a function of the data set X1, eeses L, and is the

N
maximum likelihood estimate (MLE) of ®. The likelihood function

. A A A
g(X,y eoees X ,8) can be regarded as function L(®) of © for a given
1 n ' g
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data set, and form of probability density £(X,8).

N
L) = £(X 8 £ (X0 wuen 220X, 0) =Hi=1f(xi,0)
(2.40)

If L(®) can satisfy regularity dénditions, vhich is commonly the

case, then the maximum likelihood estimate (MLE) can be obtained from

VL(O) = 0. = b-]ﬂ £(X,,0) (2.41)
<4li=1 p

20 Ry

Since Loge L is monotonic in L and attains its maximum when L is

~a maximum, equation (2.42) is often easier to handle.

dLog L = O.. = 121;:1 Log £(X,,0) (2.42)

6 00
For the case when O is in fact a vector Q,then (2.42) becomes a
vector set of equations.

It has been pointed23 out that it is unwise to rely on the
differentiation process to locate the minimum. The function L(8)
‘might have cusps or other discontinuities on the first derivative.
Equation (2.41) will also locate minima and other stationary points
than maxima, unless'the form of L(®) is well kno@n or the resul£
is checked

Under fairly géneral conditions, Fisher has shown that L(®)
'approaches a normal distribution for large data sets. In fact a
21,423,64

magimum likelihood estimate is asymptotically normal,

asymptotically efficient and asymptotically consistent. According to
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25

the literature21 little can be stated about the properties of a MLE
for small sample sizes. This will be further discussed and some
conditions suggested in Chapter 4., A further property of a maximum

23

likelihood estimate which can be demonstrated is that of invariance.
Thus if é is a MLE of @ in the density £(X,8), znd 9(§) is a function
of O with a single-valued inverse, then the MLE of‘?(g) is g(ﬁ).

We are going to assume that all the noise disturbances on the
system (1.1) or (1.38) are normally distributed. Thus f(X,8) is a
normal or Gaussian probability density function . This assumption
appears reasonable in pracfical situations, indeed it is possible to

L8 e duém&é:on a)C’ Hie sum of" a /M_a]e mnrfw af
show =~ Uy the central limit theorem that -e - : -

normed ’-*A&a#gs=da¢a=a££4== The probability of a value X being

drawn from a normal distribution mean p, variance e is given by (2.43)

Prob. (Xi) = _ 1 .exp (-_1_ (X, —y) ) (2.43)

Jem ¢ 202

The jqint probability of a sequence Xi cenee Xh being .drawn is

PrObo (x1, essee XN)=]’[I:=1(PrObo(xi))

=( 1 )“/2 exp(-_1_$h_, (X,-p)?) (2.44)
21’&‘0‘2 202‘

The logarithm L' of the likelihood function defined by (2.4%4) is

2 R I - - - . :
L' = _Iéwl_Loge 2n _I;_Loge 1 2‘1 ; (X j’) (2.45)
2r :
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The maxima of L' with respect to 32 and F are given by the solutions

“of (2.46)
N
%-%'— = 6—_—%—-—21:1 (X;=p) = 0.
AN AN2 '
W = -N A+ S (Xi—y) = O. (2.46)
252 2 §2 20

Thus the MLE of p and ¢° is given by (2.47)

peagin 8% =25l oP° BRER
Tl nis

The estimate‘p is unbiased, but that of ¢2 is biased by N . This
. N-1
illustrates that the MLE may in general be biased, but can freguently

be simply adjus‘ced@+ to produce an unbiased estimate (2.48)

A2 A2

52 anvtases = L+ , (2.48)
istr8m1o’11’12'37

has extended the maximum likelihood procedure

to the model (1.38) by finding an expression for'ék.in terms of the

measured variables.

A

€, = (12 [A(z)yk -B(z)uk]; k=1, eeese N (2.49)

where ék is defined as‘Xék and taken to'be normally distributed witl

. . A 2
- zero mean and variance'k .
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It is also assumed that y}_,uk are available from time k=1 with zero

initial conditions in the plant. The joint probability of a sequence

é1, evevey €4 eeneey € 18 mow a likelihood function L(8) dependant

‘on the parameter setAé vwhich is defined by (2.50). Strictly @ should
also include the n initial conditions on equation (1.38) corrosponding
to those of the plant (1.1), and the bias component ¥', and the value

ofx. For brevity'these have not been included here but are considered

lat er'e

st = ("a11 soves _an'boyb"’ LI R 101, ®sscee Cn) ; 1.(3n+1)

b - °n
| (2.50)
L(Q) = PrOb-(é g cesee é ) = 1 N/Zexp(— 1 SN éa)
1 N —'}4\2 -—)-t-é' k=1 "k
2 2 (2.51)
The logarithm of the likelihood function now becomes
. A A N a2 A2
t - = - - - -
L'(8) = Log L(®) = - 1.4 € -N log, \ I\la_LogeE‘n’ (2.52)

ZAE 2

A
Since only the first term of (2.52) is a function of © defined in
"terms of A,B,. and C polynomials, the conditions that minimise (2.52)

- ~
with respect to 8 are the same that minimise the cost function V(é)(E.BB
v@) - 3gY &2 (2.53)
= k=1“ R *

This implieé that the MLE method and the leaét squares method of
sections 2,2 and 2.4 are strongly related since (2.53) is very similar

to (2.9) and (2.31). Indeed for the assumption of Gaussian disturbances
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the two methods are essentially identical and differ only in their
philosophy.

As in (2.46), equation (2.52) can be differentiated to give

W= 2t A %E o L (2.5h)
i:é_- 2#\221{—1 k ﬁk

A

The MLE estimate © would then be that value for which the vector set
of equations (2.54) were equal to zero and thus a stationary point in
é space. Astrdm points out that L'(§) is quadratic in the A and B’
terms in &, but is non-quadratic in the C terms in 8. Thus an analytic
. solution cannot be found for equations (2.54), and it is necessary to
‘resort to some non-linear programming method of solution. This can be
described as hill climbing in é space.

The function V(é) of (2.53) is treated for simplicity as returning
the altitude of the hill for each é value. Notice that strictly a
miﬁimum of V(@) is required corr%sponding to a maximum likelihoode For
ease the procedure will still be referred to as hill elimbing, the
negative sign being understood.

Having optimised L'(é) via V(é) by this method, it is necessary
to consider the estimate of A in (2.52). Differentiating L' with

respect to A gives (2.55)

bL' = _l_ N éZ - N (2.55)
TSP CALe AL S |

A

If we tzzxke-)\2 to be given b 1N 62 'y Wher é is th idual
g y ﬁ2k=1 K e €, 1is the re51 ua

A

sequence left when € is applied to the data yk,uk.then this value
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of X2 will make (2.55) identically zero. Thus optimisation in N is
in a sense meaningless. This should not be surprising, since from
(2.49) we are only measuring a cohstant gain factor 12, the variance
of €k, relative to a base of 1.0, the variance of ¢ _in (1.38).

The term W' describing the bias level on the measurement Y in
(1.38) canva;so be estimatéd separately by measuring the means of
signals, and will be shown in detail later, ‘Thus the complete set of
(3n+3) parameters in (1.38) has been dealt with. The implied assumption
in this development is that the length N of the data set is such that
the n initial system conditions have decayed to an imnsignificant level
compared to the stochastic signals. This assumption is explained more
fully in Chapter 5, where it is shown that initial condition estimates
are always inconsistent.

It might be thought that there would exist a recursive form of
the MLE method parallel to that of section 2.2. Such concepts appear
to be'élien to the maximum likelihood method of solution described in
this section., Searching for the optimum value of é réquires running
over the whole data set to evaluate L(8). This process is in effect
summarised in a few matrix and vector terms for the A and B coefficients
in the least. squares estimate. Thus for estimates which contribute
quadratically to the cost'we might.expect the easy addition of the
knowledge of an extra data point. Since L'(®) is non-quadratic in C(z)
the above does not apply. It might be assumed that the estimate C(z)
would not change‘a gréat deal from that for a data set of size N to
that for a set of size N+i, where i is an integer. We might then

evolve some heuristic scheme of estimating the A and B coefficients
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recursively by least squares and re-estimating C each i time steps.
For i—~eo, i.e. CG(z) fixed, we would have the generalised least sgquares

method of section 2.3, since we would have decided @ as some estimate

of the covariance matrix of vk.

2.6 Feedback Control.
10,114,124 37

Astrém's application of the MLE to the system model
(1.38) will be developed in greater detaii in section 2.8. It is
necessary to repeatedly run over the data set Vi By using equation (2.49
and thé estimates of A,B, and C polynomials. The prediction error Gk
is evaluated at each time step k. If it is worked out in detail, this
.is exactly the same as applying one step fecdback control of the system
in a stoéhastic regulator problem65. The object then is to remove

from the output ¥y all poésible predictable disturbances leaving only
the value €k which is not predictable, since by definition it is a
random sequence independant of all other signals. Thus it is argued
that in solving the MLE equations, the stochastic one’step regulator
problem has also been solved as a by product and will not be ccnsidered
at length in this thesis. It shouid be clear that the estimated
polynomial 1/6(2z) in equation (2.49) must be stable. This would be
vital for a controlAscheme based on these estimatés,,and will be shown
to be very important during the estimation process itself. The poles
of 1/C(2) must be restricted to iie within thé unit circle on the
complex Z plane to ensure the discr¢£e time stability of the estimate
and to ensure a satisfactory hill climbing.procedure. We will later

show that climbing in the space of the coefficients af 6(z) is most
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unsound. A transformation is used to convert an unconstrained climbing
space into the space of all roots of 6(z) lying within the unit circle.
The resulting hill climbing in the new unconstrained space then shows
considerable improvements over previous methods. It was assumed in
section 1.4 that the systeﬁ, and hence the polynomials.A and B in
(1.38) represented a stable system, and this would also be required

for their estimated values.

2.7 Bayesian Estimation.

Given a set of data k1 sosc XN’ we proposed in section 2.1 to
find a best (by some criterion) estimate of a parameter O assuming
that the parent distribution £(X,8) was deterministic in ®. This is
known as the classical approach, and the object is to find an estimation
. method for the random variable 6, which satisfies some of the properties
of gection 2.1 relevant to the problem considered.

The Bayesian approach assumes that.® is known to vary randomly,
and has a known probability density function g(®). This supposition
.may not be realistic and will be discussed later, Bayes theory.
.indicates that a good estimate woﬁld be based on the é posteriori
conditional égobability density function F;(G\X. . XN), sin;e it
contains all the statistical information . H;ving:g'we could adopt
any suitable criterion to obtain a 'best' estimate. For example we
might choose a loss function, lLoss (8-6), as described in section 2.1

and desire to minimise the risk R(8).
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" R(®) = E,1q (T0s8 (0-8)) (2.56)

oo . .
‘/:wLoss (e-8) ¢l - ; )as (2.57)
1 LI B 3 N

The 'best! estimate of O would then be the mean of the conditional

density I;(@h
1

) . Alternative 'best’ estimates by other
X Y

sa0ee N

criteria could be derived from the mode or median of this distribution.
In general J;(@'X xN) is evaluated with the aid of Bayes
1 L N N ] ‘ L‘
rule. This rule has been badly used in history6r, but its

will be taken as valid here.

SCR

Prob.'(G,X1....XN)
Prob. (X1.....XN)

n

Prob. (X1""XN1®) . Prob. (0)
Prob.*(xq.....xN)

where Prob.(9®) = g(®), the a proiri probability density function
of O, ' -
The densi?y Prob.(X1,....., XN\G) is often regarded as a likelihood
function L"(® X1 s XN) which indicates more correctly that the

data points X, eseee XN'have particular values and that the parameter

1
® is to be estimated. Recursive schemes may be easily constructed
since a posteriori knowledge;g at time N can be used for
a priori knowledge g(®) at time N+1. The initial information g(®)
decays in importance as more information is accumulated. Thus it is

possible to start with a dénsity g(®) which is poorly known and yet

obtain a Bayesian estimate after a long data sequence.
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"The validity of the Bayesian estimation method has been questioned

by some statistician521'23’64

, since a pridridensity g(®) must be
assumed and its existence is in many problems doubtful. Even if it
exists, often the form of g(®) is unknown, and the Bayes solution
cannot be explicitly calculated. Without any a proiri knowledge, we
might assume g(®) to be uniform, i.e. all values of ® to be equally

likely. Lee19 shows in this case that the Bayés estimate reduces to

the most probable estimate which lies as an abscissa to the maximum
of 5(e|y
"

obtained by the Elassical maximum likelihood approach of section 2.5.

X ). This is also the same estimate that would be
>0 000 N .

We would expect this anyway if the density functions were unimodal

and symetric. Aoki points.out that working with density functions
directly, involves storing the whoie function as a table of points which
is rather unliandy for qalculation. For the above reasons we have

adopted the maximum likelihood doctrine for the purposes of this thesis.

2.8 Qstrém's method in detail.

This maximum likelihood estimation scheme was introduced in
secfion 2.5 for the model of (1.38), and will nov be given in greater
detail. It was shown that the method could be reduced to minimising
(2.53) with the sequence ék given by (2.49). Values designated by the
sign * are those of the approximate model, which are estimated values
of the true variables or parameters. - The derivative of V(é) with

A

respect to the parameter set © is given by (2.58)
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dV(H) ____2ﬂ=1 é‘k . 0€k (2.58)

—

28 08

The optimum @ to make equations (2.58) equal to zero is obviously the

same solution as for equation (2.54). The necessary derivatives

D€k can be obtained by differentiating the difference equation (2.49).
08
A - o
b k = 1 /) iyk i=1, esoeece N (2.59)
08, &(z™")
A -
bek = 1 A u i=0,1, ecosse N (2-60)
3; B “
i C(z )
A -l
€Kk = .z lé‘k 121, eeeee N (2.61)
¢, &z~ '

The evaluation of the derivatives of V(§) (2.58) can now be
- seen as a simple run over the data set 1, ..... N at each stage

multiplying ék with a signal yk,'u or ék passed through a filter

k
1/6(2); The same filter is used in each of (2.59) to (2.61), and each.

th differential can be obtained by a simple shifting process before

i
multiplying. This naturally leads to considerable simplifications of
the computations. The second differentials of V(§) can also be derived

from (2.58) as shown in (2.62);
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2ol | 2A
YVD) _ oN B L ¥k + SN 6. DEk (2.62)
36,28, 30; 08 25;0 8,
And from (2.59) to (2.61)
o - —g 361{ = 1 g3
—1—37\— - oo ¢ 33 P ¢ Ik (2.63)
vey 3 C(z ") 8 C(z ')
' ' . 1—1’ oo 9 ae n
j_1, esees 1
24 i A i
} ek = 1 o=z J BE}C = 1 ot+Z 1 Juk (2061‘}') .
$b6.%¢E. A, = Y A2, =1
J C( ) 1 C ( ) i=0,1, veese I
j=1, seeesas N
2A A . A
dEK = -1 2 0k« 1 -zt €k i=1, eesee N
Bcihcj 6(2‘1) Ci 6(2-1) Bcj J=1' eeceae 1IN
= 1 . +2 3~l€ +z-l-jé =2, 1 .z_i“jék
Ao, ~1 k' —1 S TN
C(z" ") : c(z" ") C(z" ")
(2.65)
2A 2A 2A
V€ = VEx = V€ = o. (2.66)
baiaﬁj Bbibbj 'aaibbj

If an exact match ® with @ had been achievéd, then we would expect
ék to be an independént sequence. Thus the 28 term of (2.62) would
go to zero at the exact match, as well as the terms arising from
(2.66). There would be some justification-f§r ignoring this 2" term
altogether,.even under mismatch conditions. Th2 second derivative

matrix of V(é) would then be positive semi-definite due to the 15t
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term in (2.62), being effectively a correlation matrix of a set of
signals of length N. The full expression might give a non-positive
definite matrix, which would be difficult to handle with the Newton-
Raphson hill climbing routine used by Astr¥m. There would be a loss
of climbing efficiency due to using the approximate matrix, but
thié could be offset by thé easier computation. The 1st term also
requires only.the sum product of the first derivative terms which
have already been generated.

The Newton-Raphson‘algorithm used to optimise V(@) is given

by (2.67)

2 A _1 A
8. = 6. - IL) .BV(Q) at the ith iteration (2.6%7)
—* Y

At the first iteration i=1, and %str8m sets the £(z) coefficients
-6j,j=1 eeses n to be zero. This gives a simple least squares solution
of A and B coefficients for éa, which will be biased since the
colouration due to C(z) is not accounted for. Idealij the factor « is
1.0 on quadratic hills and gives one step convergence, but is commonly
éet 0.<¢<1.0 according fo the ease of climbing. -Thus for difficult
hills £ may be quite small, and even negative to produce some climbing
‘ Practical _ _

action if theApatrix is not po;itive definite.

We givé some examples in Chapter 5 to illustrate this effect
and it is suggested that another algorithm due to Fletcher and Powe119
could be useful here. The iterative scheme of (2.67) is replaced by

(2.68), where the second derivative matrix has been replaced by an

estimated matrix Hi;
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A A .th .
= §% —u.Hi V(D) at the 1~ iteration (2.68)

where Hi = I initially

'ya>

i+
08;
Here Hi is forced to be positive definite, and updated with gradient
information at each iteration, and tends to the inverse of the

second derivative matrix at the optimum. The factor X is determined

A
by searching for a minimum along .the line defined by Hi* A%le 50
. 8

that the (i+1)th gradient is orthogonal to the line. For a quadratic
surface the algorithm of (2.68) takes q iterations, where q is the
dimension of ®. For more éeneral surfaces the Fletcher-Powell
algorithm frequently shows improvement in convergence over the

Newton-Raphson, and thus is bengeficial for the problem studied.

- 249 Filter stability.
The method of section 2.8 requires several runs over the data

set y,,u_ with a filter ——  which is defined in terms of
k' k &(z"N

cbefficignts éi’ i=1, sesee n as in (1.38).. So far there has been

no restriction on the values of 6i'and the filter could easily bé
unstable with its poles outside the unit ciréle iﬁ'the z plane. The
output of such a filter will not remain bounded over a finite interval
when excited with bounded arbitmry sequence. This can cause a great
deal of trouble with a hill ¢limbing routine, especially when the

roots of C(z) lie near the unit circle. A small change in one of the
éi coefficients can give an extremely large change in the cost function

value. The natural response is to use a much smaller value of « in

(2.67) or (2.68). This effect can slow down the whole convergence,
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as it is equivalent to striking a constraint, the unit circle, which
the climbing algorithms given cannot handle effectively. The alternative

is to check analytically the stability of - before being used

-1
C(z )
to evaluate the function. This in general requires finding the n
roots of the polynomial when given the coefficients, and there is no

easy method when n is largef than 4. Resort must then be made instead

to say Jury‘s29 gest for stability before proceeding. Some method of
constraining the roots of e(z), or at ‘least of detecting sensitive
conditions, has to be fbund to cover the situation, and avoid human
intervention in the climbiﬁg process which has been required on

occasion with Astrdm's method.,
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CHAPTER 3

THE ARCHITECTURE OF THE ESTIMATION HILL

3.1 The variance of a signal.

The maximum likelihood meth@d introduced in sections 2.5 and 2.8
is prone to difficulties due to. sensitivity and unstable filtering
as explained in secﬁion 2.9. To analyse these troubles we would like
to be able to predict the cost V(é) in equation (2.53) for various
syétems and parameters, before the estimation pmcedure is started. .We
require to calculate the sample variance of the output signal of a
1discrete time system expressed as a rational z ﬁolynomial, and then
examine the result for possible sensitive regions.

Consider a simple discrete time filter as in equation (3.1),
which as a rational 2z polynomial is a mixture of moving average and

32

auto-regressive representations” .

-1 -2 -m
v, = 1 + N,z 0+ N,z secee N7 e, = N(z) e (3.1)
1+ d1z-1 + clazm2 ceve. dtz7d D(z)
_ vhere N(z) = zl + n1z1—1 + nazl”a 4+ eesee + nmzl—m
! -1, 1l=2 o .
D(z) = 2= + d,z + d,2 ceces diz 5 1ym
e, is a random independent sequence, E(ek) = 0.
2 .
_ E(ek'ek-i) = 0g » §(1)
The system as defined gives no prior response to an input ey and is

therefore physically realisable for all positive values of m and 1.

A physical plant may well give no output
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at time k due to an input at time k, and this would require delay
terms in (3.1).

The variance of the output v, can be calculated, for example

k
for 1=1,m=0, by expanding (3.1) as (3.2).

vk +- d1vk_1 = ek

e« o Y = € -d1vk 1 (3.2)

Equation (3.2) is’now squared and expectations taken to give (3.3)

2 2 :
E(vk) =. E(e ) + d E(vk 1) - 2d1E(ekvk_1) (3.3)
2 2.2 |
=g + d5E(vy_ ) (3.4)
: The last term of (3.3) is zero since € and vk_1 are independent;

_8lso we can take E(v2 ) = E(vi) for a stationary process. Thus

the variance of the signal Yy is o /Q1 d ), which is a simple result.
For larger values of m and 1 it is easier to invert the polynomial

D(z) by synthetic long divisionB?‘to give a moving average

representation. The squared terms can then be summed as shown in (3.5)

v, = N(z). [D(z)]
- -1 -
- (r +r1z +r22 vsesses rjz a)ek ; j——'—ﬂo
. g 2 2. 2.2 2, 2 .
SE(vy) = (roariers ... rj) 0, i J——o° - (3.5)

where r, = 1.0 for N and D defined as in (3.1)
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[

The cross product terms E(ek. ﬁ1>0 are all zero due to the

ek_i) 'y

independence of the e, sequence. The inversion process in general

produces a chain of coefficients, T, as shown, which converge

asymptoti¢ally to zero magnitude when j—=-eoif Dgz) is a stable
polynomial.

45

It is easy to show tha£ the inversion process to obtain
TaTqsTp eeeee is equivalent to exciting a syétem 5%;7 starting at
zeroc initial conditions with deterministié pulses from k=1 to k=m+1.
The successive amplitudes of these pulses;arec given by the successive
coefficients of N(z). After k=m+1 the system is allowed to run free
until k=j+1 3 j=«. It is obvious that any finite limit on j would

be an arbitrary one decided by numerical convergence. Only by knowing
the dynadic modes of such a system, i.e. the roots of D(z)17, can ve
easily obtain a closed form solution to the sum shown in (3.5). ts
one might expect, the simple structure for the variance in terms of
the coefficients of D(z), as exemplified by (3.4), is not repeated for
higher orders. Many text books?g’Bo’31 give tables of .variances
expressed in terms of the coefficients of N and D, and these demonstrate
all to§ clearly that no structure eﬁists as the polynomial order is
increased. We claim that only by working in the roots of N and D can

the structure of the variance calculation be made plain, and the

analysis mentioned above really be attempted.
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3.2 Approach via complex variable theory.

The variance calculation considered in the provious section can
be approached more rigorously using complex variable theory21’34’49.
A complex variable z is defined to have real and imaginary components
in the complex plane. A general function of z, F(z) is regular in a
region D' if it is single valued and its differential exists at all
points within D'. Then the partial derivatives at each point have
to satisfy the Cauchy-Riemann differentiai equations. A singularity
is any finite point z, where F(z) ceases to be regular, but is regular
in the.neighbourhood of Z . Cauchy's integration theorenm, aé derived
from the Cauchy-Riemann equations, states that the integral of F(z)

round a closed contour C surrounding region D' is zero, provided that

F(z) is regular in D' and on C.
er(z)dz = 0, for F(z) analytic on and inside C (3.6)
C
If F(z) has a singularity at z= 0 within C, then the integral becomes

: j(F(z)dz = 2%j «(residue at the singularity Z= Ci) (3.7)
C

When F(z) is a rational function the only singularities are poles of

finite order. A poie is defined by (3.8)

F(z) has 2 pole Ci.Of order mg if F(z) = —Fi(z) (3.8)

(z- ¢4

where F'(z) is regular within C and non-zero at z= Cs
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The residues in (3.7) can then be calculated by equation (3.9)

Residue of F(z) at a pole p; of order m,

e T (G- gi)miF(z))

. o m-1
('mi-“). }Z * Z:fi

(3.9)

Jury21 defines a z transform as (3.10), which can be regarded

as a Laurent series in z. .

-
éé‘ -k _ -1 -2 o =3
F(Z) = k=0sz = fo"’-f_‘z +f22- +f32 ., eeeee (3.10)
where fk is the value of a signal f at discrete time k.
"Given F(z) we can obtain fn by multiplying the series (3.10) by 21
and integrating around a contour C enclosing any singularities of F(z).

The only surviving term from the integration is given by (3.11)

j(FTz)zn-1dz = 2% .(Residue of F(z)zn-j at z=0.) (3.11)
c , S

-

2w of o  (3.12)
n
The analysis can also be extended to a two sided z transform (3.13)

if F(z) =6 % sz‘k ._ (3.13)

k:-oa
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then f = —__‘¢~ F(z)z"" az | (3.14)
27 :

n

The contour C must lie in the riné of convergence of F(z) in the =z

plane with the point 2=0. in its interior. If{ is bounded, the
n

unit circle /z/=1.0 will belong to the ring and can be used for C.
The two sided z transform is often used to describe the power spectral
density éff(z), (3.16),0f a discrete time signal f, in terms of its

auto~correlation function‘ﬁ; as defined in (3.15)

X N |
;f = ?v 1 oy I.T ; where n is an integer  (3.15)
n im 2N+12k- N "k"k-n

B, () 45027 - (3.16)

n—-—

Since p; is even and bounded if fk is bounded it can be recovered

from éff(z) in the same manner as (3.11). Contour C can again be

the unit circle,

= -1 u%; §ff(z)zn-1dz | ' (3.17)

Now the variance of the signal f, is defined as ﬂ' in (3.15) and .

k
can therefore be obtained for n=0 from (3.17) if §ff(z) is given.

The spectrum @ (z) can be found from equatlons (2.13),(3.15) and (3. 16)
and can be written as F(z)F(z~ ), since it is symmebric. The

2
‘variance O

T of the signal f

K is then given by (3.18)
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variance (f,) = m? =f = 1 ‘/1F(z)F(z‘1)z—1dz (3.18)
o .
2njy C

If the signal fk were passed through a system with transfer G(z),

then the variance of the output would be given by

variance of output signal = _1 JfG(z)G(z—q)F(z)F(z—q)z-qdz
‘ ' 2%jJC

.

G(z)G(z—q) ()2 \az
Zﬂjj; B

(3.19)
The contour C in (3.18) can be conveniently chosen as the unit
circle, as this would always separate the singularities of F(z)/%
from those of F(z-1). It should now be clear that since we have to
evaluate all the residues of‘F(z)/% given that F(z) is a rational
fuhction of z, it is most desirable to know the roots of F(z),
explicitly. Otherwise it is necessary to solve for the roots of F(z),
or else integrate (3.18) numerically as a definite integral around the
unit circle. This latter method is quite easy, but does not shed any
light on the structure of the variance result. Similarly, the method

" of Nekolny46’47

, although having the advantage of indicating filter
stability, again fails to supply us with any insight into the structure

behind the sensitivity of paramefers.
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3.3 Calculation of signel variance.

We are going to represent the simple filter (3.1) in terms of

its roots as (3.20) in order to gain the advantages seen in the

previous section.

M (z-n.) ,
N(z) = Tiwat=s . _ (3.20)
D(z) ]-[i::'l(z_gl)

where Di’si are the roots of N(z),D(z) respectively as defined

in (3.1)

For the case m<l in (3.1), the root form of (3.20) has an extra factor
zl-m which can be considered as l-m extra terms. Each of these terms
can be taken to haveDi equal to zero. Thus the strict equivalent

. system to (3.1) is given as (3.21)

. 1 .
N(zg = 51095 wnere 9i = 0.0 5 i=m+1, «eeesl  (3.27)
D(z 1

TTiaq (265D

The residues R, at the poles Si will be required when (3.21) is

broken down inic partial fractions.

1

R, 2 yﬂ(&'%)
T

i=1 (6.1-5:])

The system in (3.21) can be reduced to a proper fraction by long

(3.22)

division. This can then be expanded in partial fractions to give (3.23)
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N(z) = 1.0 +2§=1 2_15. _‘Ri i (3.23)
1

5

The roots Ui and Ji of the polynomials are in general complex, but
have been taken for ease to be distinct. A similar analysis may be
repeated for multiple roots, but has not been given here.

To calculate the variance of the v, sequence of (3.1) we can
consider it in the sense of (3.19) by substituting N(z)/b(z).for G(z).
The power spectral density Qee(z) of the signal e, is a conétant

qi.zo since by the definition of e_in (3.1), all the auto-correlations

k
ﬂ; are zero, =-o9¢id®, except p; which is (ri. This means (3.24)

can be simplified as shown.

fl

‘variance (vk)

i_f N(z) . NG2TD) § ()27 e
AWV pz)  pz™)

2 |
Te f H(z) « N(z~1) 2z~ tdz
213dc D(z) Dz

" where C is the unit circle /z/ = 1.0 (3.24)

The partial fraction forms of N and D can be substituted in to (3.24)

from (3.21) or (3.23). The same expansions will hold for F(z—1), since

we can derive the partial fractions in terms of z-1.



78.

'variance (vk) 4 Us = 0-2 1. [1 .0 +2 o] —3 Rl ] 1.0 '2 1 __Ei__ dz
: 2%3 C = 2= 81 ” ~1 5

(3.25)

This can be split into four separate integrations i) to iv):

2

i) (e 1+ 1.0 dz  Residue at z=0.0 is a;a
273 c A i
2 R, Z
ii) Oe 1 1.0 éa_1 v dgz Residue at 2=0.0 is 0.0
2% ) 2 U q- gvz
| 2 R, 1 R
iii) Oe ‘1.2@ i + 1.0 dz Residue at 2=0.0 is S. i
I 2 &=t ;:?— i=1 :Z—
C i ' i
. Residue at z=J& is “i 0-2
i
p
sosub total =5 B -fF R - o.0
i=1

& TG

2 .
iv) - Oe a. i_1 Ry .é%_1 R,2 dz  Residue at 2=0. is 0.0
2Tifg B o Emgy T 1-§,e
Residue at z=J: is Ei R95; 62;
Sj_ 1- 876‘1

. 1 @l RR
C.sub total§y L S0 i Y o,
8563

. 2 . _ 2
Jo ¢, = total of residues = [1 0 ﬁgl 12? -1 - } Ry ] Oe
1

v (3.26)

»

ASlightly different forms can be obtained for (3.26) by factorising

in different ways. For example, for the case of m=l, we can evaluate

the initiel resﬁonse v, to a unit pulse input e

1 1

by using (3.11) and
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this gives (3.27)

1.0 by long division of (3.20) or (3.1)

for e 1.0 ‘ (3.27)

The identity (3.27) can be substituted in (3.26) to give the other

possible forms (3.28),(3.29), and (3.30)

2 m ( ) 1 R, ¢l A1 . R.R 2
Uv = _]-.[_iil_i_ qhéi:" .S.l +21=1€7=1 1-18-2 Te (3.28)
i=1(Si) i 10y
Rits m R.R 1 41 R.R 2
0-5-.: H;iLﬂ(T)i)J;'O-Hiﬂ(Di) -héi=1 i:‘i 157 + i=1£?=1 i™» Te
i ( | 1 R.R, 2
U% ]Ii=1(pi)<1.0 + ;=151 + §=1£y=1 i -7 - Te
50080 { 6 £ ,(1-8,6,) (3.30)

The form of (3.26) will be adopted here as being the simplest and can
be ﬁsed fof m=1 or for m<l. Some further
simplifications can be made if the 5; poles include complex pairs.
Then certain terms containing Siés pairs, where 55 is a conjugate of
5;, vill combine algebraically. The structure of the variance
calculation can now be easily seen from (3.28) for any number 1 of
poles 6; and any mimber m of zeros pi, for the system (3.1) or (3.20).

This is in distinct contrast to the variance expressions given in



80.

terms of coefficients on1y29’30’31. The way is now open to making some

more definite statemeﬁts about the sensitivity of the estimation

' procedures given in Chapter 2. It will be made clcar later that one

of the results of the estimation method will be to reduce the variance '
03 of such a simple system as (3.20) to as small as possible. For

m=1 this is achieved bymaching all the poles Si and zeros Djf All

the residues Ri then go to zero, and U; = qi « VWhen m<l, complete

matching of all pi and gi cannot occur due to the lack of sufficient

Zero8e.

3.4t Sample variance of a finite data set.
o2 - estimated

‘of a signal v, can frequently only be esleuleaied

The variance

A k -
N -
from a sample, k=1, eeeee N . Then.ﬁs igs defined as E%Tsk=1(vk—v) 1
' H
where Vv is the mean value of Vi and is given by %£k=1vk + The E%T

factor occurs due to the loss of one degree of freedom. If the signal

Vi is known to have zero mean, i.e. it originates from a bias free
N 2
source as in (3.1), then 03 can be calculated as %£k=1vk .

For the case when Vi is formed from an infinite past history

Gk i k=1,0, eceee =% the gignal is stationary in the statistical sense.
5 o 5 5 expeckation of the

Then E(v1) = E(VZ) S eseee = E(vN) and thejsample variance is equal to

that for the infinite data case.

During the estimation procedure to be used later, a signal

v i k=1, «ccco N can only be generated as in (3.1) from a finite data
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set e, 3

memory property and is strictly non-stationary. Thus

E(va) £ E(va) ceeee £ E(va).

;i k=1, seees N . The filter N(z)/D(z) therefore has a growing

expectation of the
To be able to calculate tthgample variance above, E(v ) can be

expanded as E(v'e e. ). Here v is defined as

ok k-1 k-1 1
the impulse response at delay i of the system (3.1) when excited by

"'Ve .oooo‘f‘V

an input e% = 1.0 and thereafter ei = 0.0, k>0, The term E(vﬁ) can now

be expressed as Ui ;2#~1'2

V. , since cross terms e
i=0'1i

kek-j ; j#0 have an

expectation of zero. Ve now require a closed form expression for
?;g Jf , for any value of k, to be able to calculateE&i in the
finite history situation.

Consider two sequences fk and hk whose z transforms as defined
by (3.10) are F(z) and H(z). Jury21 shows, by arguing from the
Laplace transform definition, that the product fkhk sequence can be

represented as a z transform G(z) by means of the convolution integral

(3.31)7

- -1 -2
1_J[ ) F(P)H(q/%)dp foh + f1h1z + f2h2z vesos
2n] c

L=

>

G(z)

2 residues of p-1F(p) -gresidues of H(z/p) (3.31)

where p is a complex variable, and contour ¢ encloses all the

singularities of F(p)/p, but excludes those of H(z/p).

By setting z=1.0 in (3.31), we can obtain the sum‘é;.ofkhk as in (3.32)

00
| 2 (3.32)



Suppose the sequence fk was defined to be equal to a sequence (vi) ' 82,

o0
then (3.32) would give.gL=o v ihk Ve will now define the sequence

hk to be 1.0 for o$k<N'and zero for any other value of k. Thus the z

transform H(z) of the h

| Begquence can be defined by (3.33) as from(3.10)

=2
n

i = 140 for 0¢ {k<N' ; 0.0 othervise
(1.0 for 0{ k¢~ )=( 1.0 for N'{k oo )
!

' ! : .
SoHE(z) = _ 1 - 2 (1-27) (3.33)

]
-
1
N
n
N

The sum product 2& ~oTk k in (3.32) in this case will now be equal to

] .
the sum of v'i for o{ k< N, i.e. i:g v'ﬁ. Thus we have obtained the

sum of v‘2 for a finite length Nt

k

égﬂagv'i = 2i_ofkhk = _1_ lF(P)H(P-1)dp
) 2nj Jop
(3.35)

where H(z) is defined as in (3.33)
: 00

. 4 2 .=k
F(z) is the z transform ~2£k=ov x Z (3.36)

Now F(z) defined by (3.36) can be calculated using the convolution

integral (3.31) . -
F(z) = 1 N(p) . 1 N(z/p) . dp (3.37)
2% Jg D(p) D(z/p)

This can be expanded as shown before in (3.25)

Fz) = 1 fq(m +£1 I~ Ri y(1.0 £ Ry jap (3.38)
—_— 2 §=1 —
2MJg 5‘1 - 5,
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Then in a similar way to that of (3.25) to (3.28) we can show

F(z) = 1.0 +$+ ¢t RiRy
$im1 &5 7§15 (3.39)

Now (3.35) can be calculated.explicitly using F(z) from (3.39) and

H(z) from (3.33)

1
2N:1V'2 = 1 111.0 fg} 1_ BR P 1(1-ﬁ5dp
k=0" k == - 1=1y="1
21 c P p- p-1_

i~y
bibs 1
| . . : | N
The 1st term in .| gives: 1 1 .« 3d-p_ .dp
| Mg » TP

residue at p=0, is 0;2 only.

. L]
The i,?'th term of [.J gives _1 ‘/P a. RiR? . 1#PN .dp
Mg P Pfify P

residue at p=0.0 is = RiR¢
dids
. N'
residue at p= 6;5; is TiRy | 1-(gi8;)

818y 1- 85685

-

| 1-(§. § N1
these two residues combine algebraically to give RiR? . iYy

The sum of all the above residues gives

FePpiance—6S:
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, N'-1
ﬁ:cﬂ v'2 = 1.0 +,g‘1 gl JR;R . 1'(5159) (3.40)

1-SiS§

b@uhdﬁanﬁm
We can now form theAsample variance for a finite data history

mentioned btefore by using a separate term for each E(vﬁ),k=1, eevee N

and using the relation of (3.40).

' : N 2 2 2
" Fxpectalionof Sample variance of Vkﬂigs = %_[E(v1)+E(v2) cevee E(VN)]

= 1)E(v'e )2 for E(va)
LRCHI ' ]
L
+ E(vée2+v1e1) . for E(va)
4+ oesvaes ' ) ssese
+ E(v'é + ee + v' + vy _e )2 for D(v )
o N=1 ceeee 3 2 N-Z 1 N 1
2
[ ] ]
+ E(voeN o seees VL S0, 4 VL € 1) for E(vN)
5
=le} 1.0
N 1 41
+ 1.0 + 2]._:122:1121}29

"4+ ecevese

+ seeoo

o +‘21 21 R R 1-(5'.5 yN-2
. i=19y=1"1"" 1= J’ g
i )’
LA =g 8,00
ioy

All these terms add together to give (3.41):

N 2 ' ' |
EO’ =}5 o3 +-%9£L1 ,=1 RiR_ E«m.-é’igy)-*l.o + (J‘i{y)N]
-J'l{-;)a

Fi 1g » } 1.0 = 1068
y= (1. gg, . NQL=gg)
(3.41)
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Clearly (3.41) is biassed but will converge to the infinite memory
stationary cace of (3.26) when N is large. If we decide on a
particular value for the bias, then N and (Eigy) are clearly related.
Such a relation is shown in graph form in figure 20 and will be

discussed in Chapter 4 as a criterion for N given (Sigv).

2.5 Auto-correlation function of Vi

The auto-correlations ﬂ; of the signal v,, defined by (3.17)
can be evaluated in a similar way to the variance ﬁ; in the previous
section. The system z transform N(zl/b(z) can be broken down into the
form of (3.23) for conveniénce and can then be substitu ted into (3.17)

in the manner of (3.19).

e
]

1 f N(z) o M) . d (=) Nas
c

2%y D(z) D(z" 1)
2
= 0o (1.0 +4.2EL B (1.0 +gl Ry ) ag

Sy i=] —— y=1 ———
21 c : z—& 2-“1-8
i 7

(3.42)

since §ee(z) =~q;2 only,due to the definition of ey in (3.1)

This integral can again be expressed as the sum of four parts.

2
i) Oe zr-1.1.0 1.0 dz No singularities for r»0
2nj c
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2 :
ii) e 2" 1.1.0 i§3—1 Ry 2 Laz No singularities for r»0

———

2T g = 5,2

- 2 r-1 ol R, . . 2 r-1
iii) Je z 'i§i=1 i 1.0 dz Residue at z:J; is ¢ Ry 44

Sub. total-—o' egl 1R;

2
iV) & r-1 1 . 2 1 . dZ
273 Jo z-§ V= I
Residue at z=6; is Ue 1é;r_‘€y » Ry ;
‘ 1= 8}81
| 2
sub. tota12 _15_1 o
‘ 1- &;8'1
1 r-4 r >
}{r = Si=1RiSi 1 1€7 =1 .__.._. U‘e (3043)

1= 8,»81

By repeating this derivation in other ways,equivalent forms for ﬂ;

can be found.

A similar result can be derived for the cross correlation ﬁg
between the outputs of a system N(z)/D(z) and another system N'(z)/D'(z)
éach with the same input e Unless the systems were the same the
auto-cofrelation function would not be symetric i.e. ﬂ&r #‘ﬁhr' The

two possible orderings of the z transforms in (3.42) would then be
significant. Equation (3.43) would have either R, and 39 derived

from N'(zl/b'(z) or R andé; derived from N'(z)/b'(z), depending on

i

the sign of r.
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AN
As in section 3.4, ﬂ; for a finite data set v, is defined as

k

N . s ess -
er 2k=r+1 ViV p and will be equal to the infinite data case 1f. Vi

is a stationary sequence derived from an infinite input history. If

Vi is generated from only a finite length input e, k=1, ¢sees N , and

k’

is therefore non-stationary, then E(v,v, ) # E(vyvy_)s K=T+1y eeees N-1

To calculateﬂég E(v il ) can be expanded as

v! ' 1 :
E(voek Viep.q stese Vi s Yel(v? dCpy teeees vk o1 1) . The various
k- r -1 ' s
terms E(vkvk ) can 'be expressed as 2 1+rv1 « Again cross

products of ey have a zero expectation. The necessary expressions.will

now be developed by first defining F(z) in a similar way to that before.

-k

‘A
= tylt ) - 3 v! i
F(z) 25::0 Ve Vier? s where r is the index of pﬁ and ig the

k
inpulse response.

(3.44)

Then using (3.32) we can derive (3.45) in the same say as for (3.35)

_222;51-r viv{+r = E}T' F(Z)H(z-1)z_1dz (3.45)
. X C

vhere F(z) is defined above.

H(z) is defined as (3.33), but with the limit N' replaced by
N'-p

' From the definition of F(z), (3.44) and from the convolution
integral (3.31) we can derive the following in the same way as (3.37)

to (3.39), and (3.42)’ (3043)0
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Fz) = 1 [ Np) . N(z/b) .dp (3.46)
215 Jo D(p) D(z/p)
1 R
= E%i/ﬂ gl i 1 )(1.0 +é%=1 —1v5)dp
¢ b 2P = 0y(3,47)
F(z) =S?_1ﬁ. g‘f‘1+§}—1€1—1» ___RiRVS_ir (3.48)
i=1"1 01 i=14 4= z—lfi& |
we can now substitute this in (3.45)
N -i-r N 1 A RRET
I‘- -T &
‘vl= 1 e A=z "dz + _1_ [ A5, .S . i 901 .
1 1 Eﬂjf fj =1 i 1=z 2ﬂj£ z 21"127"" z=§. 5y
‘ (] .
1=2F Laz (3.49)
-2

16t integral: Residue at z=0. is él =185 Sr-

S | RR §.T
2nd integral: Residue at z=0. is Si=1€9=1 o
=§165
]
T N-r
Residue at z=SiSy is RiR'?é,i . (1_(8:189) )

§16y (=658,

1
Sub. total isSi‘___,lgi':,l RRT (1-(§ Jy)N—r)
61y (1_5159)

These last two residues add algebraically to gi\}e a total:

N""‘ -r 1

r-1 a1 4l r (1=(§. SO
g. tvis St 4 *'21:12,,:131%51 . 1
i=0 ' (1-815',,)

where IP>0 4 N » r+2 . ' (3.50)
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A
As beforeﬁﬁ? can be formed by using (3.50) for each

E(vkvk_r), k=r+1, seeee N &and finding the mean.

AN
Eﬁr = Nzr {E(vr+1v1) + E(vr+2v2) cesee +E(VNVN {}
2
= OE vivy!
Ner | °

+viv! & vivy?
or 1 r+1

+ L B A N J

+v°v; + v1v; 1 + esese vﬁ_r_1 Yﬁ-1}
2
~ O r-1
- ﬁ%; {. i=1 15
) 1
1 r=-1 r 1=-(A. L)
+gi=1Rigi +2 =104 vgf * d:by
. Si&p

+ L N N N 2

1 r-1 r 1-( yN=r=1
' +2i=1Rigi +21 12y 1R1R?‘(§;’* = gg }
10»

Again these terms can be added to give

AR AR O R LU
{(N,r-ﬂu-gig),) - 665 (1-(5‘i87)"'r'1)}]

e pAN 2,41 r-1 261 o1 R.R, LT
LA AS ST S A 1= p= ———-——(1_}%) *
10

{5.0 -1 . (1'(51'&‘)}1-1”)
N-r (1-Ji5»)
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N . . .
ThusBﬁr is biassed as a function of r under the given conditions,

but converges to the stationary case (3.43) vwhen N is large.

3.6 Response of system N(z)/D(z).

The relations obtained in the last few sections will be completed
by an expression for the response of the system of (3.1) to a unit

pulse input at time k=O. We can substitute N(z)/D(z) aﬁ,in (3.23)

- /’/1
into (3.14). .
v('):_’l_f RIS < L L (3.51)
27 J ¢ 2-§4

‘This again can be treated as the sum of two integrals as before.

1st integral: Residue at z=0. is 1.0 only
2nd integral: Residue at 2=0. is‘21_1 Ri
_51
R.

Residue at z=5; is i , total residue‘21_1 Ei

di s

These last two terms cancel leaving vé = 1.0 only
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The response v;,r>0 can be obtained similarly, but there are now no

residues at z=0. Thus the full response becomes

., . i . 1 . 1 . 1 2
Vo ] V,,ll evese --1-0 ] 2i=1Ri ] 2i=1Ri£- ’ gi-"—"lRiSi seasne
(3.52)

The outputs shown in (3.52) can be summed in various ways
as considered in equation (3.34) to give all the relations shown in

sections 3.3 to 3.5.

3.7 Representation in terms of roots.

The results of the previous sections demonstrate very clearly
the value of expressing N(z)/b(z) of (3.1) in terms of their roots.
The structure of the variance relation (3.25), among others, is now
clear and simple for all orders of the polynomials. This is in distinct

29-32

contrast to the text book relations given in terms of the
coefficients of the polynomials. It will be shown that such a root
formulation will be of great value in deriving a measure of the
sensitivity of the estimation procedure. Since we can always derive
the polynomial coefficients knowing the roots, wé will estimate the
system (1.38) in terms of its roots, and thereby gain the benefit of
being able to prediét difficult or unrewarding areas of the estimation
process. Even if the original problem was posed in the sense of

- finding the coefficients, we have chosen a root formulation to make

.the process easy for ourselves.
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As mentioned before there is a need to ensure the stability of
the eétimated polynomials for later practical use, and to ensure.
correct bounded filtering of the data set during estimation. A check
on the stability of a system when given the polynomial coefficients
is not easy and would héve to be done at each step of the hill climbing
described in section 2.5. Stability is relatively easy to ensure once
the roots are known; a simple check will determine whether they lie
inside or outside the unit circle in the z plane. VWe will develop
a transformation in a later section which will confine the roots of
&(z) to lie within the unit circle, and yet allow the hill climbing

-procedure to operate in an unconstrained space.

3.8 A canonical state representation.

The correspondence between the representation in root form and
a canonical or normial form of thé state representation of (1.1) can
be easily demonstrated. The wminimal parameter deterministic version
of (1.1), for m=r=1, is given here as (3.53) with F in-diagonal form.

x(k+1) = Fx(k) + Gu(k)

y(k) Hx(k) + Du(k) + M ' (3.53)
where F is diagdnal n.n withn non-zero parameters fii’ i=1, eceso n
G or H contain n non-arbitary elements, and are n vectors.

D is 1.1 in this case j D.C. component X taken as zero

 Equations (3.53) can be expressed in transfer function form16 (3.54)

which can be also obtained by the parallel programming approachao.
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(k) = [H(zI-F)-,‘IG + DJ u(k) (3.54)
e -
= [H z-f,, o G + D] u(k)
z-f22
0 ..
) z-fnn
- pat
y(k) = [%-1H [ 1 G + D] u(k)
1-f__z1
11 0
1 .
-1
1—f22Z . (3.55)
0 L1
1-fnnz-q
. -
Sy = Bi181r 4 Ba2B2q ooi. & Pana z_1uk+duk (3.56)
- 1-£, .27 =gz 1-f__ 2"
11 22 nn
n : n il
._.h..g .[ L (1-f, .2 )] -
- _ él_n 1i°1i JTﬂzg ~33 2" (k) + du(k) (3.57)

Y. =
k
n -1

: ||i=1(1-fiiz )

We can now compare (3.57) with the root form in D(z), coefficient form

in N(z), of the sysfem in (3.1), and by comparing the coefficients
of uk&—

diagonal elements of F

(3.58)

Coefficients n, of N(z) are related to H,G and D of (3.53) by:

Roots §i of D(z) are given by the £.4
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o
doz [2111111'd0(f] [2 3131311+dC(fﬂ

J#i
n -3
[21 12;, S IRLIFLIPLIP PP )] seree (3.59)
j#i 1#4
1#3

(;here qi or g., i i=1, ceces N may be chosen to be 1,0 for
simplicity and nck(fii) are all the combinations of f. . taken

in groups of k )

Equivalent to

) -1 -2 -3
NgZ + M,Z  # DyZ 4 DB T 4 eeees (3.60)

As Lindorff30 has shown, we cannot expect a direct relation for the
zeros of N(z). The root form will be retained however in view of the
simple forms shown in the previous sections. This canonical normal
form of‘F shows the states of (3.53) in an uncoupled form. This can
be useful since the discrete time system could be represented as if
it were a sampled continous time system of uncoupled differential

20,30

equations , whose eigenvalues are individually related to the

f.. elements in F.
ii

3.9 Contour plots of the variance expression.

It is of interest to consider the contour plots of the variance
relation (3.26) for an infinite data set, as the poles and zeros
of the system (3.1) move over the z.plane. For example the contours
of equal variance qs are shown in figure 1 for the case of a complex

pair of poles Si'ég fixed at z=(+0.2,+j 0.876), radius 0.90 from

-2
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FIG. 1 Isovars for a pair of poles (0.2, %j0.876)
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the ﬁrigin. A corresponding pair of Zeros ?igh are allowed to scan
ofer the portion of the z plane shown. The variance contours will be
referred to as "ISOVARS". This term has been derived from a mixture
of Greek and Latin roots, and is more concise than the fully Greek
version "isoataktos'.

The isovars of figure 1 are symetric about the real axis., Similar ;
patterns would arise if the fixed poles were in the negative half of
the z plane. The contours are smooth and appear quadratic about the
pole pogitions with a saddle point on the real axis. It shoqld be
noted that the Zeros can be outside the unit circle without introducing
discontinuities. The figure.on each isofar is the‘value of the variance
0;2 on that contour to a base of 0;2 = 1.0, where 0;2 is the variance
of the input signal e, in (3.1). Naturally when the zeros coincide
vith the poles, complete matching has occurred leaving the term
1.00;2 in (3.26). If Qe now move the fixed poles closer to the unit
circle, the contours close in towards the matching point. This is

due to the effect of the terms in (3.26); thus as /J;/v1.0,

_
=58,
any pole-zero mis-match components'left in Ri and Ry are multiplied
by iarger factors. Ve can qualitdtively assign a '"strength" to a
pole, depending how close to the unit circle it is.

The inverse case to.figure 1 is shown in figuré 2. Heré a
complex pair of zé;os are fixed at z=(0.20, % 0.876), and a pair of
poleé allowed to scan over the z plaﬁe. The poles cannot lie
outside the unit circle without giving an unstable system, and an

'infinite variance 0;2 for an infinite length data set. Consequently
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I
Unstable system _ A
_#1-0
— T -
~~
~
zero
(-2,.876)
I
0 R

FIG. 2 Pair of fixed Zeros



all the isovars of all values, 1.O<q;a<00, must pass between the

pdsifion of the zero and the unit circle. Thus the gradient in this
region is large and quickly changing. The hill surf&ce'probably
cannot be easily matched by an analytic surface, such as a quadratic,
except in very small areas. We could not expect a normal hill climbing
routine to work efficiently under these conditions. The situation
becomes increasingly worse if the zeros of the system lie closer to
the unit circle.

It is possible, in special cases only, to constrain the poles
within the unit ‘circle by restraining the coefficients for low order
polynomials; The constraints may appear‘linear in certain termqu’44
and allow simplifications to be made. These methods are clearly not

universal, and cannot be applied to higher order systems. Unless the

inherent pole structure as shown in (3.26) is accepted and used, wve

cannot hope to solve more than a few special cases of restricted interesi

In the sense of section 2.8 we will consider the estimation
process as one of selecting filter dynamics, i.e. ©poles and zeros, to
give a minimum cost V(é) of the e, Sequence from equation (2.49).

The estimation process thus reduces in this chapter to matching the
poles and zeros of a filter to those of a fixed system. As a result
we are concerned with the sensitivity of V(é), or the variance of the

filter output, to the variable teyms describing the dynamics of the

filter.




3.10 Transformation to restrain poles.

A number of efficient hill climbing routines, such as Newton-
Raphson or Fletcher-Powell, do not easily handle constraints. It
would therefore be of advantage to us,.if the optimising routine could
operate in an unconstrainedAZ dimensional space X, each point of which
wouid relate to a point on4the Z plane_constrained within the unit
circle. The fransformation suggested is that the radius Rx of a
point in X space would be operated on by a saturation function to
produce a pdint at a rédius Rz in the Z plane whose maximum value
would be 1.0. The corr?sponding angles @x and C; could have the same
value. Any point in thé infinite domain of X transforms according to
these rules, into fhe finite range in the 7 plane represented by the
unit circle. If we consider only the set of points inside the unit
: circie in the Z plane, then the transformation is one to one. The
" isovars of figure 2, when expressed in the new space X, would be
stretched but to cover the whole extent of X space.

A suitable saturation function has to be selected. Some of the
known ones are shown in figure 3a. The curves have all been normalised
fo saturate at 1.0, and to pass through the-point’Rx,Rz = (1.00,0.7616).
The 1St,2nd and 3rd derivatives are also given in figures 3b, 4a and
kv, where it can be seen that the fﬁnction Tan-1 is the least smooth
of the set. The function Rz = Tanh(Rx) was arbitrarily chosen as the
transformation to be used although the alternative Erf or Exp. functions
would be equally valid. The Tanh function was also used later for
a similar purpose by Shaw and Robins;on'“+ but with a different intention.

Figure 5 shows that the isovars drawn in the new space X now
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Radii on Z plane

FIG. 5 Two fixed Zeros in X space
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appear as elipses instead of the more tightly circular contours of
figure 2. The gradient of the surface is now considerably less, and
the whole hill appears smoother aﬁd more easily fitted locally by
quadratic approximations. Figure 5 can be redrawn for various positions
of the fixed zeros. The aséect ratios of the elipses surrounding the
optimum increase as the zerés approach the unit circle. It will be
noticed that the hill is almost symmetric about a radial as shown,
and it would be natural to describe it in polar coordinates.

When the number of po;es increases it is then more convenient
to redefine X space in the sense that one dimension of X' space is
reserved for éach pole radius, with extra dimensions in X' being used
to describe the angles of complex pole pairs. Thus X' space has the
same dimensionality as the number of poles, while the Z plane is
"restricted to the usual two dimensions. The transformation now gives
n points on the two dimensional Z plane corrosponding to one point in

the n dimensional space of X', as defined by (3.61)

xex-<n_>_,.-g1,52 ceeeny SHEZ(?) _ (3.61)
where /6;/

-

- — x 1
Tanh(x1) 3 Ang(8;+1) = “r+l

. .«

/J‘r/ = Tanh(xr) Ang(&r) =X
r & number p of real poles + number of complex pole pairs

5;+i

n = total number of poles.

complex conjugate of 5p+i, i=1y eeeesy B=I

Multiple poles are covered by the definition (3.61), since the

corrosponding components in X' space are quite distinct. An extra
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pole may easily be added to the arrangement as required. This m;rely
increases the dimensionality of X', while leaving all other components
and poles alone.

A hill climbing routine can now work in the n.dimensional
unconstrained space of X', whilé the system poles are constrained to
move onl& within the unit circle on the two dimensional Z plane.
Negative values of all the xs components of X! afe permissable since
both the Tanh function and angular measure are odd functions. Values
of angle greater than 27 radians simply cover again the same area of
Z space as angles lesa than 2%. Hence there will be more than one
~solution in X' space corrﬁsponding to a single Z plane configuration.
This is in general of no concern as most hill climb procedures only
climb to the local optimum, and all the optima in X' space will give
identical solutions in the Z plane, of equal cost.

The only remaining consideration is that of uniqueness of the
solution in the Z plane, and ié part of the estimation theory alone.
Naturaily we may exchange pole positions in the Z plane with no effect
on the estimation cost or model behaviour. This means that there will
" be again more than one point in X' space, for a single solution in the
2 plane, but this is of no importance due once more to the local
ability of the hill climbing roufine. All of the optima in X' space
will give identical solutions in the Z plane.

It will be seen later that on occasiqn we will want to freeze
the radius'of certain poles at less than 1.0 in the Z plane. To cover.
such a situation it is only necessary to fix one component of X' spaée,

and continue to climb in the subspace remaining.
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‘Because the transformation of (3.61) is defined in terms of
analytic fuhctions, we can obtain the derivatives in X' space of the
cost hill, if we can calculate the corrosponding gradients in the 2
plane. This process will be described in more detail in Chapter b,
For the moment, it is enough that we have the information of the cost
and its 1st derivative in the new X space, both being derived from
pole-zero positions in the Z plane via the sugéested transformation.
We can therefore now employ fairly sophisticated minimisation routin658’9
which work best in an unconstrained space, to solve the estimation

problem.

3.11 More complex configurationse.

Figures 6, 7 and 8 show the isovars for the case of three fixed
poles and the system as (3.7); one complex pair is at (-0.20%3 0.876)
and a third at (-0.980;j 0.0) in the Z plane. There is no local effect
on the isovars of a complex pair of variable zeros Z1'2 due to the pole

P, or the pair P1 The only effect is a global one on the hill

system, which is a distinct contrast to the well known root locus

plots also ‘involving pole and zero positions. As the third zero 2

3

"moves from the origin towards P3 in successive figures, the hill system
for the pair Z1 > changes from a single optimum on the real axis, to a
)

double optimum near the poles P (A1l these figures are symmetric

1,42°

about the real axis and a 'pair' is understood to be a complex

conjugate pair with equal positive, and negative imaginary parts.)

i
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FIG. 6 Three fixed poles, Zjat -0.3
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FIG.7 Three fixed poles, Zs at -0.6
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FIG.8 Three fixed poles, Z;at -0.8
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From a parameter estimation viewpoint P cannot be correctly estimated

1,2
unless P_ has been reasonable well matched by 2

3 3°
the poles P1 2 and P3’ by matchihg them with the zeros, it implies
14

that the positions of Z1 > and Z3 are coupled. This estimation
?

procedure can be interpreted as climbing a curved ridge hill in 3 space,

If we were estimating

one dimension being assignéd to each of the degrees of freedom of Z1 >
. . . 9

and Z.. The altitude of the hill can be considered as thelcost in a

3

fourth dimension. Another requirement, that of following curved ridges
has therefore been placed on the optimisation routine.
By detailed and repeated reference betwcen figures 6,7 and 8, it

L5

is possible to see ” that if the positions of 2 and ZZ are

A 1,2
separately and independantly optimised, then all three zeros will
finish near point Q on the figures, The separate climbing of each can
- be iterated as an attempt to improve the estimation. As each zero will

have its own respective locd optima near §, the estimation process will

be trapped in a ridged hill situation. Only when the climb procedure

couples Z1 > and 23’ can a search be made along the fidge direction,

3
and the absolute minimum be found. Advanced routines such as Fletcher
and Powe119 do have this ability to choose new search directions other

than the co-ordinate axes of the space.

The situation for twoApairs of'poles is shown in figure 9. Ther
isovars corrospond to the motion of two variable filter zeros Z,]’2
moving on the Z plane, while another pair 23’4 remain fixed as showi.
An exactly similar isovar pattern applies if Z.,],2 were fixed and 23,4

were in motion. This gives rise to a similar climbing situation as the

one in the previous case. Both pairs of zeros see local optima and
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FIG. 9 Two pairs of poles
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cannot escape by independant optimisation. Only if the coupling, i.e.
the curved ridge hill, were recognised, could the correct estimate of
the poles be achieved. |

The inverse situation is shown in two dimensional X space in
figgre 10. Here wé have tyo pairs of fixed complex zeros Z1’2 and 23’4
with one complex pair of poles P3’4 temporarily fixed, and one pair
P1’2 variable over the X plane, giving the isovars shown, Again a
local optimum effect éxists for independant climbing.around the
position of P3’4 which can only be resolved by again recognising the
curved ridge situation.

A third alternative is shown in figure 11 for completeness. One
complex pzir of zeros 2 L and a complex pair of poles P

) 3.k

on the z plane and hence in X space. The isovar plot is given for the

are fixed

_variable poles P,],2 with the zeros Z1_,2 temporarily fixed as shown.
Besides fhe usual ridge hill sithation, it is clear from this and thé
other figures that the variable poles and zeros do not anihilate

each other to the extent of causing any discontinuit& in the contours,

il.e. such a condition does not give any local change in the

smoothness of the cost surface.

3.12 Breakdown of the transformation.

Given a system model as in (3.1) and a data record vk,k=1 eeees N,

the paramcters of the model might be estimated by adding a filtcr which
was an approximate inverse of the system. The input to the filter
would be Vi and the parameters of the filter could be adjusted until

the variance of the output signal e, of (3.62) was minimised.

k
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FIG.10 Two pairs of fixed Zeros in X space
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A A A .
€ =D(z) v = D(z) . N(z) € (3.62)
k f(z) k f1(z) D(z) k
—
filter

A A
Then 5; would be an estimate of Si’ and yi of 7i' The stability of the

61 foots of ﬁ(z) has to be ensured to make the sequence ék bounded.
The'arrangement of (3.32) is ver& similar to the estimation procedure
described in section 2.8. A data sequence Vi ok=1, aee.o N s filtered
to give a signal ék of residuals. For correct parameter estimation,
the residuals should be white, i.e. independant, and minimum variance.
Since we have only a finite data set of length N, we ought to use
'ihe expression in (3.41) to calculate the expected sample variance of
Ek in order to investigate possible sensitive regions. The X'
transformation described by (3.61) can be used to control the roots
ﬁi within the unit circle on the 2% plane. Let us apply this

transformation to a simple 1st order process shown in (3.63).

A A

€ = (z=8). v . (3.63)
kT gy

where vk is for the moment taken as a white sequence;

E(vyv, ) = 0}2; 3(1) 5 g(i) = 1.0 for i=0; 0.0, if0

‘ A
From (3.41), the expected sample variance of the Ek sequence is

A A2 A 2N
gé =) 1.0+ 91767 [1.0 ) ] 0° (3.64)
A2 A2
1=7), N(1-71 )
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The transformation that we have described, was used to offset the effect

of the term

2 5 in (3.64) e.g. figure 5. For a stable filter of

1-91

A .
the type of (3.63), /71/ must be less than 1.0 and this must also he
true for all poles of higher order filters. As 61 approaches the unit
’ A
circle, with N finite, the magnitude of QiN becomes significant
compared to 1.0. Some idea of the size of this effect can be found
A

from figure 12. Here the magnitude of DiN has been plotted for various

values of N, as 61 approaches the unit circle.

Equation (3.64) can be described in the transformation X space,
as figure 13, which was drawn for 91 equal to 0.998. The independant
variable X, single dimension, gives the value of 61 along the real
axis in the Z plane. The optimum falue of_ﬁq lies at X=3.45, which
corrosponds through the transformation to 61 matching 91 at a value of
0.998, and is the same solution whiéh would be obtained for infinite
data. It will be notided that for N=o0o, the curve appears convex, and

the cost 05:%%25 éi ' should prove to be easily minimised using
k=1

standard optimisation routines. The corr&sponding curve for N=200,
however, shows non-convex behaviour away from the optimum. For a higher
order filter, the space shown in figure 13 would be of higher dimension

and non-convex, and the second derivative matrix would no longer

appear positive definite. This fact would reduce the computational
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efficiency of hill climbers such as the Newton-Raphson, since a non-
positive definite 2nd derivative matrix would make the algorithm step
in the wrong direction. '

From the above it should be obvious that there could be disadvantag
in using the transformation.blindly owing to this breakdown effect with
finite data sequences. Coﬁparing figures 12 and 13, we might decide
that it was uﬁwise to continue to search for an optimum if /6&/50.998
and N<500 to ensure sufficient convexity in the neighbourhood of the
optimum. This suggesté a limit for 6$N of 0.10 in figure 12 as a
criterion which strikes a balance between the data length N, and the
nearness of 61 to the unit circle. To validly employ a stronger pole
61 to estimate some 91, a longer data length.should first be obtained
to satisfy the above criterion. In chapter 4, we shall develop such -

- 1deas further and present other criteria with similar'effects, but
derived in other ways. These criteria will then automatically ensure
that the breakdown effect described here, is fully cqntrolled and not

critical.

3.13 Finite data isovars. o
It equations (3.64) are reworked, it is possible to demonstrate

that we can have»the poles.of a sysfem outside the unit circle for a

finite data length, and yet produce a finite cost or sample variance.

This is only to be-expected, since the data length is not infinite and

even an unstableisystém would have a bounded output sequence. 'Unstablé'

is defined here as producing an unbounded output within infinite time

for an arbitrary, but bounded input sequence. Even if such a system
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can be validly estimated from a short data length, it would be useless
to employ the eétimate on a real plant which is effectively working
for infinite time.

Despite this remark, we show in figure 14 the isovars for a system
with a complex cbnjugate pair of fixed zZeros inside the unit circle at
a radius of 0.9777, and a variable complex pair of poles, which can
also move outside the unit circle.

The relation (3.41) is used with a data length N of 50 to calculate
the sample variance, and as a result the isovars exist outside the
unit circle. The cost increases rapidly with radius in this region and
. there is some cyclic motion of the isovars as the angle of the poles
changes in the Z plane. This is due to.the aliasing effect of a finite
data length, with the exponentially growing sinusoid produced by the
pair of complex conjugate poles. The variance calculation can be
viewed for this purpose in the manner of section (3.1) as the sum
squared response to a unit pulse input at k=1. As the frequency changes
with the angle in the plane, so the number of cycles within the data
length changes. The final cycle will be the largest and produce a
significant change in the sample variance depending on its phase at
the end of the data'length N. A similar cyclicArepetition of maxima
has been observed in.the stochastic case when filtering a finite noise
sequence.with an external pole.

We cou;d replot figure 14 in thé transformation X space, bﬁt only
fo? pole positions inside the unit circle on the Z plane. The isovars
would be similar to those of figure 5, although in a different attitude.

The most notable difference would be that some of the isovars would be
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unit
circle

Pair of zeros at (9669480 *j-14335699 )

FIG. 14 Pair of fixed Zeros, finite data set
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open ended at infinity in X space, since they cross the unit circle in
figure 14, Thus, again we have another view of the breakdown of the
hill in transformation X space. It would be possible for the hill
climbing routine to fail with the open ended and infinite length
contours, i.e. the hili appears t$ be singular iﬁ certain regions.,

' Once again the cure when estimating is to limit the pole radius
in relation tb the data length. VWe might limit the maximum pole radius,
but continue to optimise the pole angle in the Z plane. At the final
point we would expect to find the local gradient non-zero and aligned
along a radial. A final check on the optimum cost could be made
_exactly oﬁ the unit circle at the intersection with the above radial.

An example of this procedure is given in Chapter 6.

3,14  Zeros outside the unit circle.

An interesting situation develops when the zeros of a process (3.1)
lie'outside the unit circle. As demonstrated in figure 1, this is
quite a valid condition for a system, and gives a finite variance of
the output for all data lengths. Such processes are not uncommon in
real plants which show non~minimum phase characteristics. A pole
placed exactly over the top of the zero ouﬁside the circle would
éompensate for the latter's presence. Such an idea cannot be
counte#nahced in practise, as exact matching could never be achieved.
As a result the system would be unstable, anq the method impossible
to apply.

| ansidér the simple system described by (3.65), which is éimilar

to (3.1) with the same definition of the e sequence.
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-1 ' A
v, = 1-.'912' . € _ (3.65)

k 3 k
1-8}2

The autocorrelations ¢r, defined in (3.15) can be repeated for this

case from (3.26) and (3.43)

/do =41.0 + M 0;2 3'52{1 = (Sr%) + (51-))1)2 .51}0;2 ;
175'12 1'512

2 .
gé = {kg}-y1)8} + (81-91) .8;%}0;2 etc. (3.66)

2
-4

For the case /31/21.0 i.e. Real zero inside the unit circle,
all ﬁ;,r>1 can be made zero, by choosing 8}=71. This leaves g;, the
central varianpe term, which is 1.0(22. Thus the spectrum of vy is
white, an indepen@ant random signal with the same variénce as the ey
sequence. If we closely examine the terms in (3.66) when /51/31.0
i.e. Real zero outside the unit circle, then all ¢;,r;1, can be made
zero by choosing S1=1.Q/b1. The variance term ﬁ; is now however equal
to 912.0;2. This result may also be derived from (3.26) for any number
of matching poles and zeros. The system of (3.66) has been compensated
by é choice of g1 in the sense that it has White output spectrum, but
now has_é gain of yalue /91/.

The philosophy of whitening the residual signal v, a8 much as
possible is in line with Wiener Theory, and‘it can be shown that the

6}:1.Q/b1 matching does in fact give the minimum mean-square value of

Vi for the condition that 81 is constrained to give a stable filter.
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An example is shown in figure 15 for a complex conjugate pair of
zeros at (=1.0,%31.0). The isovars of the variable pole pair are
drawn in X space, and the figure shows an optimum at the internal radial
inverse of (1.0,231.0) in the % plane i.e. at (.50 ,£5.50 ) in the
Z plane. The optimal cost is 4.06;2 which corrdsfonds to the square
of the external zero radius, and suggests a square law between the
radial position of the system zeros and the minimum cost. This is in
fact borne out by c;reful study of ﬂ; given by (3.26).

The complete system 6f a set of external zeros matched by a set
of inverse internal poles is very similar to an 'all pass' system in
: continoué time described in the Laplace transform s plane.7o For a pole
at s=-a, and a zero at s=+a in the complex s plane, the 'all pass'
continuous time system has unit gain at all frequencies, but has a
phase shift which changes from zero negatively as the frequency
increases. If we were given a continuous time system as in (3.67),
we could express this as a z transform as shown Below. The term 1/s
has been included to make the system physically realisable and gives a.

term 1/«1-z_1) in the discrete time description as expected.

System Laplace transform F(s) =s-b . 1 ; b0, a0 (3.67)
S . , s+ta B

Samﬁled at every T seconds
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X1

Zero pair at (10,*j10 )

) in the Z plane
Above optimum is at (-50,%j-50)

FIG., 15 Pair of external zeros, in X space
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z transform F(z)

1 [ () . 1 .dp
21yl -jo (p+a)p 1-exp(-T(s-p))

gResidues at poles p=0, and p=-a

= p-b . 1 + p=b. 1 where z=exp(Ts) and T
p+a _=1-pT P a_,~1-pPT is the sampling period
1-2 € p=0 1-2 € p=-a
= ~b . 1 + a+be. 1
a 1-z_1 a 1_z—1€-aT
‘ =1 €aT » '
F(z) = 1=2z__(1+b/a (1=-€"7)) (3.68)
(-2 (1-2"")
S=—a
S+a,
When b is equal to a in (3.67), the all pass continuous time tergAcan
be seen from (3.68) to become (3.69) after samplinge.
1-2"1(2-€72T) (3.69)

1_z-1€'aT

This can be compared to (3.65), but will not have the all pass
characteristic 5:1.cy§ as obtained before in discrete time. Sampling
at discrete times T.hasvdestroyed the continuous time property of
constant gain at all frequencies. i.e. the all pass property.
As an alternative, let the S=1.Q/b criterion be applied to (3.68),
The term 1+b/%(1—€TaT) is then equal to €+aT' and this occurs when
aT

b=af ~. Such a system shows the all pass characteristics in discrete

time, but obviously does not in continuous time, since we have lost the
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property a=b. As we might expect, if the sampling time T becomes very
small, the two forms of discrete and continous time all pass filtgr
tend to become identical. For the case S:y;/b/21.0 for (3.68), the .
corrosponding value of b in (3.67) can be formed by equating 1+b/a(1=¢ 2
with €73T, This gives the solution b/a=-1.0 which implies a zero
exagtly over the left half s plane pole in the continuous time
description.

The discrete time system of (3.65) for the case S=1.Q/§;/b/>1.0
cannot be identified as being any different from a system in which'

S=9;/D/21.0 as far as output data on v, alone is concerned. Both

k

possibilities give a white spectrum output v, due to their all pass.

k
nature. The only difference is that the variance of the output is
either 02 or 1.0 times 052 respectively. If we cannot measure e,
directly or know its variance, both possibilities are equally valid.

The results abové,comparing the continuous and discrete time forms,
indicate that if we changed the sampling time T, we should obtain a
relatiQe movement between the s plane pole and zero corrosponding to
the discrete time form. This is naturally a reflection that what is
‘really required is phase information between the e, and Vi signals of
(3.65). A non-minimum phase system, even when exactly'matched'will
show considerable phase shifts c&mpared to the minimum phase alternative
If ey coﬁld be measured or was otherwise known, for example the signal

Uy in (1.38), then a proper compensator/controller design could be

employed.
Figure 16i shows the impulse response of a simple system similar

to (3.65) for U=2.0 i.e. outside the unit circle, and a zero value for
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(i) uncompensated response (1-2.7 )
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s $resp 11-057

FIG.16 Response of simple system |
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J: By the arguments of section 3.4, we would expect the output

2+2.02)0é2=5.00é2. We cannot in practise apply the

variance to be (1.0
ideal compensation of a pole 5‘at:z=2.0, and so we have to resort to a .
pole § at 2=0.5 which is the inverse condition. The result is the
impulse response in figure 16 ii which can be recognised as a typical
non-minimum phase impulse response. In fact the expected output
variance comes to only 4.00;2 compared to 5.0(l'e2 for response i. Ve
can also form ﬂ;,r=1,2, eveee and show numerically as in section 3.5
that ﬁ;,r;1 is zero for such a compensation.  The system giving response
ii could be used also for a special coding in time of an input signal
without having any effect on the signal épectrum.

The results in parts 6f this section have aiso been given later

by Rowe16 who employed a spectral view point. The spectral density

@vv(z) of the output v, of a system such as (3.1) or (3.65) is given

by (3.70).
9, (2) = N(z) N(z-:) §,. () (3.70)
D(z) D(z ') ‘
where,@ee(z) is the power spgétral density of the e, Sequence.

If there are some réots.of N(z) which lie outside the unit circle,

then the corrbsponding roots of.N(z-1) will lie inside the unit circle.
Thus we can choose D(z), all of whose poles lie inside the unit circle,
to cémpensate for the roots of N(z) énd the roots of N(z-1) which 1lie
within the unit circle. As pointed out by Rstr6m1o and by Doobhg,

this choice can always be made for a process-with a rational spectral
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density. With such a compensation scheme @(z) must be equal to
@ee(z), i.e. white, within a gain term given by (3.71). This is a
slight advancement on Rowe's work, as the terms can be more simply

expressed as here in root form.

Gain =']_[(Radius of any zero of N(z) outside the unit circle)2

(3.71)

Such compensation schemes can #e readily be applied when estimating non-
minimum phase systems with the method of section 2.8 but will not
return minimum variances. This must be of academic interest only,

since the minimum variance estimator requires an unstable filter.

' 3.15 1Isovars for a Finite data set and external zeros.

Figﬁre 17 shows the isovars for a complex pair of zeros at
(0.9935127, ¥ 3 0.15075), radius 1.005 in the Z plane for a data length
of 500.. As before, the figure is symetric about the'real axis, and
only paft of half of the complete figure is shown. Two minimum cost
locations are found for the variable pole pair, and these corrospond
to the exact matching point over the zeros and the inverse matching
point at (0.9836527, ¥ j 0.15000). Since the data length is finite,
we can have poles outside the unit circle and yet have a finite sample
variance. The isovars have a steep slope around the external minimum
and a saddle poiﬁt aléo outside the unit circle. Clearly this part of

the region could cause trouble with hill ¢limb routines such as the

Newton-Raphson. Ve would expect a large number of iterations without



FIG. 17 External
pair of conjugate

zeros , N =500 ©@
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being sure of convergence to the optimum.

As the data length increases, the external contours shrink more
tightly about the external zero and the saddle point moves radially
outwards towards it. 'Finally for infinite data the minimum must be
needle sharp at the extérnal zero.‘ The isovars inside the circle
would be less affected, as the data length increased, but would have
to crowd into the radial space between the internal inverse matching
point and the unit éircle as in figure 2.

The transformation technique suggested in section 3.10 would allow
us to find only the internal minimum at the inverse matching point.
~This would be valid since we require a filter which is stable both for
the estimation process and for later use in the real plant controller.
The absolute minimum cost solution would be difficult to estimate and
useless in practise.

It will be noticed that in figure 17 the inverse optimim point
for‘a finite data set is not exactly in the same place, nor has the
same cost as the optimum point for infinite data. The variance of the
output signal for a finite data set is given by (3.41), which includes
terms such as 1.~(Sig;)N. Under the conditions of figure 17, the value
of this term, from (3.6) and figure 12, is.apprOXimately 0.996 instead
of 1.00>for infinite data. This difference is related to the strength
of the poles Xi and the length of the data set N. Some criterion can
easily be developed, as for example in section 3.12, so that it is

possible to predecide on a data length N for a given pole or vice versa,
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so that such position differences are kept small. This suggestion will
be explored again in chapter k4.

During an actual estimation frocess the isovars and hills which
have been shown here cannot be evaluated from the expected variance
relations (%3.26) or (3.41) in an analytic ménner. They instead can be
only evaluated from severalArﬁns_over the data set of say yk‘tb

give € for different values of é(z) in the manner of (3.63) in section

k
3.12. Figure 18 shows a section through such a practical hill for one
data set. The system was similar to that of figure 17 but with an
external zero pair and with a data set of only 50. The hill section
shows a large amount of positive added white noise which is due to the
digital round off noise in the computer being amplified by the unstable
filter pbles. The effect becomes worse as the pole radius increases
" as would be expected. When the calculation was repeated in double
precision‘(16 decimal digits instead of 8), the digital noise was
largel& suppressed, at these pole radii.

One would suspect from figure 18 that estimating by a climbing
proceduré with poles outside the unit circle is very unsatisfactory.
A movement of 1 part in 108 is sufficient to give .a wild variation in
the cost and destroy any logical decisions relying on surface smoothness
Hill climbers of all types tend to éet 'lost! and give very poor
convergence. This yet again emphasises that it is only meaningful to

climb with the poles constrained within the unit circle,
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CHAPTER 4

DERIVATIVES AND CRITERIA

L, The First Derivative of the estimation cost.

A number of simple closed fsrm relations can easily be found by
differentiating the varianpe expression (3.26) with respect to a pole
5; or a zero 9i of the system of (3.1). Alternatively the derivatives
of the estimation cost V(é) £ Oéa can be obtained in open form by
differentigting the ék sequence directly as in (4.1) to (4.5),’when'
applied to the estimation procedure suggested in section 3.12. For

.exact matching we require the number of poles equal to the number of

zeros i.e. m=1l, and hence the notation will be dropped. From (3.62)

and (3.20)
. A
A (ze ,
€k = I[i(z Si) vk (4.1)
T; (2= 6;)
. A A . ‘S_
where Ki and gi are estimates of the poles and zeros i’;& of a

system such as (3.1)

A A
bek = -Hi#i(z-gl)vk = -1h .Ii(z-si)vk = - OEAk
iif;' ][i(z-ﬁi) (zfgj7 ][i(z-y;7 Zz—§j5 (5.2)

N v, = 41

A A
b'e:k Y O ) a6,
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2

4 A R .
-.. 30-6 = 22‘k€k . Bek = ZZ'kék . -ZA 1-1 ék (l]..ll.)
BRIIEN ¥ 1- sz
bﬂg =2 é . B@k = A . +z_1 A (4.5)
—_ 2& kK * — %gkek €k
)3 ¥Y; 1-%y2

A
where(ré is defined as the sample variance of €k, taken as

A
V(®) above.

At the optimum matching point, aéa is a minipum, and both sets of

derivatives in (4.5) must be zero. This is only true when tﬁe residues

_ék are 'whife' or independent i.e. ék is uncorrelated with ék+i;/i/>0.
It will be seen from equations (4.4) and (4.5) that the filtering

- method of obtaining the 1st differential with respect to ﬁ. or f; is

i
almost as simple as Rstrém's shifting method explained in section 2.8.
The new procedure can be programmed very easily as follows as shown in

, A
the following example for the derivative with respect to t%.

i) Initially set a variable ¢=0.0, and k=1
A

'4i) Sum €, « q to give ¥ differential (4.5)

k (h.6)

1ii)  Set new q=ék + 6j » previous value of g

iv) Recycle to ii) with new value of k, until the end of the data

The'whole process requires two additions and two multiplicationsfor
each k step, whereas Rstrém's shifting method required one additionm,
one multiplication and one shift for each step. Since in general #he

the roots are complex, the arithmetic used in (4.6) appears at first
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pight to be in the complex mode, which is not required by Rstrém.
However many modern computers can perform complex or éouble precision
"arithmetic in the same time as single precision.

Equations (4.4) and (4.5) can be further developed for complex
conjugate_rbots. Suppose ﬁ(z) contains a complex conjugate pair ﬁ,f'

described by (a+jb),(a-Jb).

Then & = (z-a<jb)(z-a+jb) D% (2) v (D)
k __NTET k

A A A
where D™ equals D(z) less terms containing the pair of roots o, b+

3ék = =(z=a+jb) 645(2) Vi

-(z-a=jb) 5% (2) Yy
2a (z) R(z)

AR 3€k ==2(z-a) . B(2) vy = -2(z=-a) ¢y (4.8)
da (z-§)(z-§*) N(z) - (z-5)(z-§%) ‘

Wy = -j(z-a+jb) D42 (2) §(z-a=jb) D% (2) v
3% ey VT Sy x

(4.9)
Wy = +2b A

?b (z-f)(z—ﬁ')ek

Similarly if (a+jb) and (a-jb) represent a conjugate pair of roots

6s6‘ from fi(z) we can show

A
Wk = +2(z-8) A 3 %€k = -2b © (4.10)
a (z=%)(z-4*) Ek 2 (z-ﬁ)(z-ﬁ‘)ék
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The.derivative with respect to(&f can be obtained in the same manner
as (4.4) and (4.5). The simple filtering required in (4.8), (4.9)
and (4.10) can % once more be performed by a method similar to (4.6),'
and requires only three adgitions and two multiplications at each step
A

to 'provide both‘%gaE and %%£ above. Both the single root,and the
conjugate pair of roots filter case can therefore be treated without
using complex arithmetic. .» |

The equations in (4.10) could be combined to give (4.11). This

method does however require the filter, though simpler than before, to

be run using complex arithmetic.

A A ’
¥k +j €k = _2(z-a=jb) & =

2 A (4e11)
Ya - b (z-%)(2-%*) k (z=-%*) k

A A
where Y ,n*

(aZjb)

The individual gradients of Q? with respect to a or b can now be
taken from the real and imaginary parts of the sum of (4.5), using the
simple filter of (4.11). An exactly similar form of (4.11) also

A A
holds for the roots §,5*, but with a negative sign.

" 4,2 Derivatives in the transform X space.

Whilst the hill climb routine is working in unconstrained X space
as described in section 3.10, the cost V(®) must be evaluated using
poles and zeros described in the complex Z plane. Using equations

(4.4) and (4.5), the gradient of the cost can be found with respect to
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the fole and zero positions in the Z plane. The hill climb routine
réquires the cost gradients with respect to points in X space, and

these can be found by applying a transformation to the Z plane gradient;.
Consider a single pair of complex conjugate poles at (a b jb) in the

Z plane. The transformation between the Z and X?description of their

position is given by (4.12)

i
L

Rad, ,Cos(xa) ;

o
n

Rad, .Sin(xa) where'Radz=Tanh(x1)=z plane pole radius.
| (4.12)

i.e. Point (x1,x2) in X' describes pole pair (aZjb) in Z plane.

As before, one dimension X, describes, via the Tanh function, the

radius of the poles in the Z plane, while x._ describes the angle in

2
the 2 plane, Angz, betﬁeen the vectors (a+jb) and (1.0,0.0).
Given the cost gradients 0V/db obtained as in section 4.1, we

can express these in polar co-ordinates in the Z plane.

DV = . Cos(Ang,) + 3V . Sin (Ang,) (4.13)
dRad,  2a b

2V =-2V . Sin (Ang,) + 3V . Cos (Ang,) : (4.14)
bA va )b

ng, -

Since we have related the angle in X space directly to the Z plane
angle Angz, we can relate X, of X' space to Angz as in section 3.10.

The component x4, of X' space and the radius in the 2 Plane are related
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by the Tanh function, and therefore the cost differential with respect

to x, is given by (4.16)

B = dRadz . Dy = oTamh X)) oy (1.0-Rad§). v
1x1 2 x1 bRadZ 3x1 . aRadz | 3Radz
(4.16)
' Then V_ = (3V.Cos(Ang_) + BV .Sin(Ang ))*(1.0-Rad®)  (4.17)
I, da Z z z
W = -V ., Sin(Ang ) + OV .. Cos(Ang ) (4e18)
¥x, Oa Z % Z

lEquations (4.17) and (4.18) will give the required gradients in X' space

For a single real pole at z=a, described by x, in X' space, the

3

angular terms in (4.17)do not exist, and the gradient in X' space

reduces to (4,19)

o/

. (1.0-Rad®) =¥ . (1.0-a%) (4.19)
da

V = + 0V

ax3 da
As described in section 3.10, X' space is increased by one

dimension for each extra pole in the Z plane. Clearly the above

~derivative transformation methods can be extended to any order of poles,

includiné complex pairs, in order to provide a complete set of first

derivatives in the X'spacé. Conceptually this can be extended to

second derivatives for a Newton-Raphson procédure, but the suggested

' Fletcher-Poweil hill climbing routine 6nly requires the first

derivatives in the ¢climbing space.
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A slight ambiguity arises between the Xf and Z representations
as regards the derivatives in (4.17). A point in the 2 plane can be
described by more than one possible point in X' space. This is because.
the angle Angz repeatedly sweeps over the Z plane as X, passes through
increasing multiples of 27 radians. It turns out however that the
" relation in (4.15) still holds within any segment O—+2x of the

dimension x, and the hill climbing procedure is unaffected. Box

2
describes similar transformations and shows that no extra local minima
are .produced in the constrained space because of this effect. It is
possiblé however.to have negative values of X, in X' space, or Radx in
X space which describe,by convention,posiﬁive radii in the Z plane.

This means that (4.17) should be modified by multiplying by the sign of

x, or Radx to retain the correct relationship between 2V and Vv .

]Radz ?x

k.3 Second Derivatives of €, in the 2Z plane.

As demonstrated by equation (2.62) the second derivative of the
estimation-cost V(é) can be calculated from the first and second
derivatives of ék’ with respect to éhe pole and zero positions. From
(4.2), the first derivative with respect to §i may be differentiated

again as in (4.20), and (4.21).

‘526”1i - [ -1 gk]'= > (=(z=£3) . D(a) ka
S?;BSj 5?5 z=§i) ij Atz‘gi) N(z)
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A A ' A
= 4 1 D %zz v, = 1 . ﬁ(Z) v e
, iz-f;5 N(z) k z-§.)(z- ﬁ(zi k (z-f )(z-g y &

i J
(4.20)
where ﬁA(z) = ﬁ(z) less the term (z-§.) i.e. ﬁ(z)
3 G530
"Similarly
226 - B[ 1 ] [(z- . D‘é(z) vJ
Waafy oy U 35 ((==9;)
= -1 D%z v, = -1 ..ﬁ(z) v, = -1 ¢

g K@) * G0 Ma) © (@5,

(k.21)

Again the 1st derivative in (4.3) can be differentiated =agein to give

baék = b[ 1 ] {: . ?(z) vl{] '
351363 Bﬁj (z— bDJ ?z-ﬁ )(z—ﬁ ) N4(z)

= 1 o ﬁ(‘z) e v, =
. k Ek
(Z-ﬁi)(z‘ ﬁj)?. F(Z) —(vZ"ﬁ )(Z-éJ)

for i#j ; * factor 2.0 for i=j

(4.22)

A

where ﬁA(Z) 4 ﬁ(z) less the term (z-ﬁj) j.e. H(z)
v Z-D')
J

Clearly we are now in a position to assemble the second derivative of'
cost as in (2.62) by a simple filtefing process similar to section 4.1.

If the first derivative sequendes (4.2) andv(4.3) have already been
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stored, 'of if they are generated in parallel, then the second
derivatives can be obtained by running the simple filters of (4.6) with
the )ék/)f; or )ék/bﬁi signals as inputs. Indeed the same simple
filtering program can be used for all these serics.

As for the case of secfion 4.1, the opérations appear to require
comﬁiex arithmetic for othe¥ than_realvroots; but again the equations
can be re-worked for conjugate complex pairs,'so that only real
arithmetic need be considered. Equation (4.8) can be differentiated to

give (4.23) and (4.24)

dék = 2 -2(z-a) . B(z) v ] - 2 2 (k.23)
dada 33'[ z-§; ) (z=§3 N(zy (z-§,)(z=§2) k
since - ﬁ(z) is independant of a.
(z—§i)(z—§;)
where f. = (a+jb) ; f? = (a-jb)
| i i

2, ' -
D€k = -2(z-a) . B(2) v, | = 0.0 (4o2k)
dadd  ob | (2= )(z-2) N(z)

Ffom (k.9) _ ‘ S
, . _ |
Y€k = ) cBz) v &, (4.25)

o 2b k= +2
b b | (z=§)(z=f1)  §(2) (z-§,)(z-§2)

It will be noticed that in this case, two of the second derivatives
(4.23) and (4.25) are the same, and (4.24) is zero, thus allowing

simplification.
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: ' A A
For the second derivatives of a complex pair M, and 9;, the
derivation is more complicated than the above case. Differentiating

(4.10) gives (4.26) and (4.27).

o/
™
~
I

3 2(z-a) B(z) v,
dapa  2a (z-ﬁi)z(z-ﬁ;)a z

A N20 A N2 . | Ay 2 A A2
{}2 (Z-Di) (z-vi) -2(z-a)[?(z—yi).-(z-vi) *2(2'71)"(2'91).]

* ' 1 . Q?(z) .V
(2=, (z-f* N0 (2
-2 A 8(za)® 4 (4.26)
(29, )(z-97) (z-ﬁi)a(z-ﬁz)z
where ﬁi = (a{jb) 3 6{ = (a=3jb) 3 ﬁ‘d(z) 4 N(z)

(z-ﬁi)(z-ﬁ{)
The first term in (4.26) is very similar to the result in (4.23)

24

d€x = k3 (pmn) D(z) Vi
babb bb (Z—vA. )2(2_9?)2 ﬁAn(Z)
. i i

-2(z-a) a(z-ﬁi>.-j(z-§§)a+z(z-§{>.+3(z-§i>2]

*

: 1 e _D(z) w
: Za k
(z-ﬁi)h(z_ﬁ;)4 (z)

-8b(z-a)
(2-9;)%(z=f1)°

k . (4.27)
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From the second half of (4.10)

o/
M
-
n

' = -2b . B2) Vi
ALb b (z_ﬁi)z(z_ﬁ;)z N42 (z)

{}2(z-ﬁi)2(z-ﬁ§)2‘+ 2b[?(z-ﬁi)(z-6§)*2bJ:}

. 1 IR
4
A 2
= -g - ek + - 8‘23 A* 2ék (4028)
(z-pi)(z-pi) (z-yi) (z-yi)

As in the single pole case similarities and computational simplifications
can be spotted for equations (4.26) to (4.28). Only simple real

arithmetic filters are required and little storage need be involved.

L4t Usage of the second derivatives.

This thesis presents an es?imation scheme similar to Astrém's
maxiﬁum likelihood method described in section 2.8. The latter method
required the calculation of the 1Bt:derivative vector and the 2nd
derivative matrix of the estimation cost V(é) with respect to the
parameters estimates é.. Two changes have been made here from that
formulation. Chapter 3 has demonstrated the wisdom of estiméting
polynomial roots instead of coefficients, and the Fletcher-Powell
“algorithm (2.68) is used which avoids difficulties with a non-positive
definite an derivative matrix. Altﬁough the an derivative matrix
is not directly balculated during our hill.climbing procedure, it

will be computed at the final optimum to provide a statistical measure
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of the parameter estimation errors.

t

A
4.5 Computation of the 15% derivatives of V(D)

The estimation method we will be using requires the vector set of

15 derivatives BV/bQ. From equation (2.49), the prediction residual

error is given by

ék = é%%% Ve " éo %%2% u, ‘ (4.29)
The biaé term ¥ should also be included in (4.29). This terﬁ may be
modeled as convenient as a bias on Yie 1V or ek signa{g, and will be
aiscussed in Chapter 6. A scalar gain factor Go has been included in
order to.redefine B(z) as a normalised polynomial B(z) £ ?=1(z-pi).
For convenience we will consider ék to be formed of two components

Wes V. 85 in (4.30)

where w. 2 A(z) Y. 3V 48 8(z) u (4.30)
k mk k ,Om—)' k :

The methods of séctionsA4.1 and 4.3 can be easily applied to derive

_ A
the 15% derivatives of the cost V 2 %gN__ Ei . The detailed workings

will not be repeated, as they should clear from the above sections,

\ _
From (4.2) ¥x = -1 W . where CH is a real root of A(z)

k
i (z=«.)
o * (4.31)
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From (4.8) bgk = -2(z-a) W, where «.,«! are a pair of
da (z-di)(z—ui) A
conjugate roots (a¥jb) of A(z)
- (k.32)
From (4.9) bék = +2b W, ' (4.33)
b (é-ai)(z—d{)
1 From (4.2) kek = 41 v where @3, is a real root of B(z)
Y (z-p.) k. *
* * | (ko3h)
From (4.8) hék = 2(z-a') v, where f3,,8* (4.35)
da’ Tz_ﬁi)(z_p{) k Fl'lgl
are a pair of
From (4.9) ¥y = -2b! conjugate roots (a'Zjb') of ﬁ(z)
- ovt (z-p ) (z-p1) Y
(4.36)
From (4.3) Wk = +1 Ak where ¥. is real root of C(z)
i
¥ (=¥ ) :

(k.37)

From (4.10)Bék +2(z-a") £  where V., X{ are a pair
ya©  (z-y,)(z-73) *

‘ of conjugate (4.38)
From (4.10)b£k = -2b A roots (a"*3jb") of 8z) (L4.39)
b (z-¥, ) (z-¥} y 4
From (4.29)}€k = -B(2) U = =V A | (4.40)
bGo C(z) )

If the bias term M were moaelled as.a bias y% on ék then the derivative
Dék/b;% would be 1.0 only. As from equation (2.58), the cost gradient

can be obtained from Bék 4

WV 21{_1 Ak .bek " (bol1)
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The gradient bV/kyg is now equal to the mean of ék which is easily
calculated. It should be evident that equations (4.31) to (4.40) are
very similar in structure, and employ the simple filtér algorithm bf
(4.6) with different poles and input sequences. Thus it is quite
natural for all these equations to use the same program to evaluate

the components'bw/héi of (4.41).

4,6 The estimation algorithm.

The full estimation procedure is similar to that of section 2.8,
but uses the Fle_tcher-Powell9 hill climbing method to avoid difficulties
with non-positive definite second derivative matricies. The iterations

progress as in (2.68), which ié shown again in (4.42) |

&, = .@5 ~of B, AV o | (k. b2)

Sﬁg at the jth iteration
The estimate éj is updated from an initial §L by a term such that the
optimum @»is approached. The positive definite matrix Hj’ initially
set to I, the unit matrix, is updated in turn by information obtained
from the change in cost, and the chénge in gradient achieved during the
last step. Finally at the optimum, H is an estimate of the
inverse of thé secoﬂd defivative of cost matrix at the optimum. The
scalar NP is Aetermined by minimisation along a line defined by
-H..}%_ 3 the precisé method used is open to seiection._ In our experienc
thebggmpler quadratic minimigation d#e to Powell8 is far less ill-

conditioned and is more effective in practise than the cubic

minimisation due to Davidon and used in the published Fletcher—Powell9

routine.
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" In our case the parameter setVQ for the model (4.29) describes the
roots “i' Py 1 Xi i=1, seeee. n of the polynomials ﬁ(z), f(z) and 6(2),
where n is the state vector dimensionality of (1.1). The normalising
gain Go is also included in ®. As in section 2.8, the evaluation of
the cost requires a run over the data set Yy Yy k=1, eeeee N with

- A B i ¢
the signals A(z)yk and éo' (z)uk passed through a filter @/ (z). To
ensure stability of this filter, and of the algorithm, the corrosponding
A

§; components must describe the roots Xi of 8(z) only through the

A
X' space transformation. A suitable definition for # is thus given

by (4ob2) to (4.48)

a .
B, = @, i=1y veveem  if &, is a real root of A(z) (4.h2)
A A
or &i = aj 01+1=b for a .complex conjugate pair of roots
* = s 4
Ko 8F 4 = (a gb) of A(z) (4.43)
éi =} Fj’ i=n+.1‘ esenve Zn; j=i“n
if ﬁj is a real root of ﬁ(z) (4.44)
A
or 01 = a' ; &i+4 = b' for a complex conjugate pair of roots
’ Fj'ﬂ? =(a'Zjb') o2 8(z) (4.45)

>
"

xj ' Xj=Tanh (XJ),i=2n+1, csase 31:1 H j=i“2n

if Xi is a real root of G(z) (4.46)
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3n+1 o)

A A
or Oi = %y : Pi+1 =X5iq R = Tanh(xj) :
o I -
¥y = (R cos X; 40 +R sin xj+1) P ¥ T conjg( b’j).
for a complex conjugate pair of roots Y ,85;1 of é(z), and xfkn
' (4.47)
A A . .

The term ){' in (1.38) describing the constant bias level on jk
is not includéd at this point, and neither are the n initial system
conditions which have been assumed to be zero so far. The estimate of
).as described in (2.55) can be left until the optimisation of é has.
' been concluded, and is then given by 2V/N.'

The gradient terms é¥¥ for each iteration of (4.42) can be easily
. i

calculated using (2.58) and the methods of sections 4.1 and 4.5.
For the constrained roots, equations (4.17) to (4.19) have to be used
to express the Z plane derivatives in terms of X' space variables.

Thus the whole estimation algorithm can be ekpresged as follows in (4.49

A
i) Choose some initial value of gg and set H°=I ; j=0
)
ii) Set a temporary vector § = Qj
A
iii) Transform_g via equations (4.42) to (4.48) to give the roots

A
s Fi’ Yi of A(z), B(z), and €(z) and the scalar 85
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iv) Run the data set Yier U though the model or filter as given by

k
(4,29), generating the signals Wy and Vi and evaluating the
cost from (2.53). The filter system will be stable since the
'Xi roots lie inside‘the_unit circle, oﬁing to the X' space
transformation.

v) Run the simple filter described by (4.6) as required to generate
Bfk/Bdi, bék/b[zi, Bé\k/hb’i, b@k/bGo as in equations (4.31)to(4.40

vi) Totalise the products in (4.45) to get the cost gradient BT/B@i-
For the roots Xi of é(z), ve have to first find bV/BXi and then
employ the gradient transform (4.17) to (4.19) and (L4.46),(4.47)
to obtain the correct values of 3[/361, i=2n41, seses 3N

vii) Knowing the cost from iv) the value of é can be modified by

‘minimising along a direction =H, 3V _ as shown in (4.42) to
;jbo:: .
=J

find the optimum value of the scalar «°. This involves repeated
re-cycling back to stage iii) until &° is determined.

A
- viii) 0, and the matrix Hj can now be updated by the Fletcher and

J
.Powell9 algorithm using 5° and the change in gradient s0 that
H tends towards an estimaﬁé of the second derivative matrix,
but femains positivé definite. This compietion of anliteration
j—rj+ﬁ requires recycling backAto ii) following a test for
convergence which is generally related to the rate of progress
and the successive values of &o. When the test is satisfied,
the estimation érocedure is ended

(4.49)

For the initial entry to the procedure stages v) and vi) have to be
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completed with é = éb. Thereafter stages v? and vi) can be omitted for
minimising along a line, if Powell's quadratic minimisation is employed,
since this requires the functions'V(é) only and no gradients. At the
finish of each iteration, gradient information is again required to

A
update H, and ..

J =J
" As a consequence of thg simplicity of the filtering required in
stages v) and‘vi) many of the operations can be made to run in parallel
with stage iv). This avoids the storage of the intermediate signals
such as bék/}xi. In tﬁe extreme case the only storage required is

that for the data set Tper Yy although the coding is by then rather

complicated.
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4,7 Computation of the second derivatives of V.

When the estimation procedure of the previous section has been
completed, the matrix of second derivatives of V can be calculated
using equations (4.20) to (4.28) and the first derivatives of V at
the optimum point. The defining equation (2.62) is repeated here

as (4.50)

b2V =2§=1 bék'&rk"'glli:‘l ék' Baek (4.50)

The storage of fhe first derivatives signals can be avoided by
multiplying and summing the signals during the final iteration of the
estimation procedure, to give the first term of (4.50).

The second term of (4.50) can.be computed by applying the equations
of section 4,3 to the model equation (4.29) generating ék' Derivatives
5261{ and baé\k can be easily obtained by substitutions in (%.20),

SRS Opidf;
but with the signals w, and -v, replacing ék respectively. Similarly

k k

24
d €x  can be found by using ék and equation (4.22). The cross
381363

2A
product terms d €x  are zero by differentiation of (4.31) or (4.34).
)o(iB[Zﬁ '
If we differentiate (4.37) with respect to dj or‘ﬁj, it is clear

: baA BEé\ : -
that €k and k again depend on the signals w
'bﬁh% b&)%,

Kk and =V

with the poles of the simple filters'being 3&, K& and X&,F% respectively.

The other case to be considered are the defivatives associated with éo'
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2A
are both zero, d €x is given by
d obﬁi

YR LAY

k
L
()
. "% ana %€x vy Yk .
Zz—pij Y IRY 7 (z-zis
All these terms can be found for the case of complex conjugate
:odts in an equally simple manner, either by re-running the above items
using complex arithmetic or by employing equations (4.23) to (4.28) in
place of (4.20) to (4.22).
A
At the final iteration, the residuals Ek of (4.29) should be
s A
independant. If this is not true either the optimum &j has not yet
been reached or it must be concluded that the model does not fit in the

37

:sense that it is lower order than the plant from which the data
Yy oy was obtained.

By studying the second derivative eqations for Bzék/béihéj in
(4.20) to (4.28) it can be seen that the second derivative signals
contain no undelayed terms in ék as there is at least one delay term
-1

: A
Z in each equation. Since the signal Ek is independant, we must

expect the second term of (4.50) to have a zero mean and a variance
proportional to N for large data sets of length N. This is similar to
Xstrdm's case in section 2.8, Again if these second terms in (4.50)
were'ignored, the maf;ix would at. least be positive semi-definite. and
indicate that the Newton-Raphson algorithm (2.67) could be applied

successfully.
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4,8 Calculation of the expected second derivative matrix.

The theory due to Cramer and Rao can be used to assess the
achievable accuracy of an estimation procedure. This will be described
in the next section. The information required'is the expected matrix
of second order partial derivatives of the estimation cost V. We can
theﬁ place a lowgr bound oﬁ the qovariance matrix of the estimation
errors. Due £o the expectation operation the second term of (4.50)
will be taken as zero'ife. assuming ék to be independant when the
estimation has been completed.

Consider the system as in eqﬁation (1.38), with the output yk
generated by input signals u

k

which will be useful in writing down the first terms of (4.50)

and ek' A notation is now introduced

/ 2 . . . s
g; eD * gl «0, 1is defined as the sample cross correlation
¢ hJ for delay ¥ between two systems (z-e)D(z) ey
(z-£)C(z)
and (2z-g)I(z) e
(z-h)J(z) k
(4.51)

. Large polynomials are written as capital subseripts such as A,B, or C,
while individual roots such as d,ﬁ,,or'ﬁ, are in lower case letters.
Consider a root X of A(z), then from (4.2),(4.29) and (4.50), the

first term of the second derivative is given by (4.52)

2, . N 2 .
E 0°V 'E£k=1[-1 Alz) yk] where N is the data length.

ot et : (z-x) C(z)
(4.52)



i .
= E2§=1. (;1,() . égz; [ng(zz) w, + C(Z)ek)J

~

N
=F -1 . G.B(z)
Skﬂ | (z=&) C(z? UJ +E£k 1[ﬁ€k]

+F -1« G.B(2) « u_ & _=1 (4.53)
gk"‘ [:(z K) c(z) .k (z=«) Gk]
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The last term of (4.53) is taken as zero if u and ek are independant

of each other. The signal u,

is assumed to arise from a stationary

unarrelated source of variance 0‘;!2. Then (4.53) can be written as

(4.54%) vsing the notation defined in (4.51)

¥y = N,G 2 + N, T2 (4.54)
E Yow o /oB . B ﬁ/

—_—

XC «&C

‘For a root [b of B(z) we dmilarly obtain (4.55)

2
« G.B(z) u
}[sbp 2"‘ 1[ c(z) “}

.~2 . :
ﬁ(o B .B ° Ty . (4.55)
fC - fC -

Also the cross products:

5

Y (=) c(2)

¥y Y (=1 . )
E Y = Esk=1[;:-§ (2) v, » __1 G.B(z) u,

2.
= N= -GO‘ﬁO_B_ . _B_ .a;l' (4056)
' «C

fC



For the C(z) polynomial, consider one root ¥:

¥y ‘Efk 1): €k]2

| 2
=Nefo1.a°0G (h:57)

¥ ¥

Again the cross product terms can be found:

-4
n

<

{]

N
.| _=1[c.B(=) u, +€
oy £ [ 1 [ess }

. 2 .
=N -fF 4 40 (4.58)
« ¥ '
E,bzv = zero, since uy and 6k are assumed to be uncorrelated
0B VY ‘
f (4.59)

The cross products with Go:

= N.'G°‘¢; 5. B .052 (4.60)
¢ «C
32y = pgN 1 .GB(z) u)s-Bz)u
E YRR Efk_1[(z_[3) Ol k} ey K
2
=M 6, 4, 5 . 3 <0 | (4.61)

158.
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E Y2y = zero, as u_and , are uncorrelated (4.62)
DG, '
Y 2 | |

£ VG = N £, 5.3 % (4.63)
d ob ) c ¢

The above equations (4.52) to (4.63) have been given essentially for
real roots only unless the calculations are done in complex arithmetic,
and then ﬁ'will havé real and imaginary components. For our purpose

it is wiser to choose parameters 0i,83+ as in (4.43) to describe,for

1
example,the components a and b of a complex conjugate pair of rooté
®,o* in A(z). This could also be repeated for the B(z) and C(z)
polyﬁomials. In the case of e(z), this involves a re-definition of
.91’&i+1 as in (4.47) from measuring in X' space to measuring in the

7% plane. Once the estimation process has been completed and &(z) is
a stable polynomial, we may well choose to describe it in the Z plane
for our own éonvenienée.

' Consider a complex conjugate pair of roots o«,X* of A(z), then
from‘(#.S),(h.29) and (4.3é), the first term of (4.50) is given by
EXA =g [ catea) . A ykJ 2 (4.64)
dada | (z=%) (z=a*)  C(z)

= N r =2(z=a) . Alz) GoB(Z) ou +-C(zs e
EZk:i‘_(Z-“)(z-a(*) C(z)[ A(z) k) k]

where &,X* = (a+jb), (a-jb)
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(z-) (z-x*

N G B(z) 2 2
=ES5 -2(z-a) . o u + -2(z-

(z=)(z-u*) C(z) (z=a) (z-ot*)

+E2§=12[ -2(z=-a) . GOB(Z) ) * -2(z-a) ek:)
(4.65)

The last term of (4.65) is taken as zero for the u and €, signals
being independént of each other. The other terms can be written as

(4,66) using the notation defined in (4.51)

2, 2 2 2
E%_N‘AGO'}Z{O aB_ . _ap_ Ty +N*4/do._a_..__g_'0_e
‘ e e WA (4,66)

For the imaginary components b of & ,X* we can use (4.9) and (4.50)

k1
w'o’
(=2
ol <3
o

2. N 2
= 2b . Al2) ¥ (4.67)
Ezk:ﬂ[(z-o()(z-o(") c(z) k]

=F N_ 2b A(z) G0°B(Z)u + C(z) 2
P (2-%) (2-%*) C(z)[ Wz A=) z)ek]

where «,x* = (a+jb), (a=jb)

Q2

e N2 2, 2 ) 2 2 2
.'E h V = N'll'Gob ﬂo B . B Oa_u + N*"l'b %o 1 . 1 OU-e
KA *C xKa *C A * ox*

(4.68)
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The cross products are similarly obtained:

¥y = N -2(z=a) o A(Z) Yo » 2b « AlzZ) ¥ |
Ebaab Eék:ﬂ[(z-“)(z—«‘j c(z) K (z=m)(z=a*) C(z) k

(4.69)

| N ‘ G_.B(z) G_.B(z)
=E2k=1[ ~-2(z=-a) )[ 0 “k*%J* 2b [ oc(z) uk+€kﬂ

(z=x) (z=-&* c(z) (z=%)(z=x*)
2 2 2 2
EZ X‘ N, b %1 b .1 "0 -N. 4G, ﬁ'('n bB . _B Oy
dad oA * o0l * _ ®X*C X+
(4.70)

Similar equations to (4.66) to (4.70) can easily be written for
root pairs in B(z),C(z), and any cross product terms. These are
quite large in number énd will not be shown here as they do not shed
any more light on the situation. .

The various autocorrelations ﬂ; can be analytically calculated
either for finite or infinite data sets using the methods of chapter
three. The final expected second derivative matrix and the matrix
obtained at the end of the estimation procesé for the same parameter
set can‘bé compared and conclusions drawn in tle sense of the next

.section.
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4,9 The Cramér~Rao theorem.

The inequality due to Cramér and Ra069

can be used to describe
a lower bound to the accuracy of eétimating s parameter. This result
can be shown in different ways12’21’35’69’ but its derivation will not
be shown here.

b‘Consider a p?obability‘density function f£(¥,8) and an independant
set of sampleé y1 ceses ?N drawn from the population of density f.
Assume f is continuous in and differentiable with respect tof. Based

on those samples we wish to find é, an unbiasssed estimate of . The

A
covariance matrix  of the estimation errors of 8 is defined by (4.71).

[[[=

A
TLE B-0)6-0°
t .
- !
f..‘..f ég (Q Q) fc dy,], eveose d?N (*.71)
The Cramér-Rao inequality is now given in (4.72) and (4.73). Kendall35
shows the two expressions are equivalent if f(wﬁ,Q) can be differentiated

" twice with respect to f.

. _1 .
P -t .
¥ )E(Logef('SC 8)) [ Log £(,8) | (4.72)
3 Y I B AT '
-1
5 _E(B-?Lo;zez;\{a ’9)} (4.73)
88

Equation (4.72) thus describes & lower bound for qy, and it would be

desirable to have an estimator which achieved this lower bound. It



163,

has to be proved in each particular case that the maximum likelihood
estimation method used has this property at least asymptotically.

The probability density funcfion that we are concerned with is
the likelihood function L(§) defined in (2.40) in chapter 2. For our
own convenience we have beeﬁ considering L'#Loge(L) ingtead of L for
maximisation, and this is ﬁermissable since L' is monotonic in L. Thus
the vector s;t of (2.42) is the same as the vector in (4.72). For the
purpose of equation (4.73) we therefore require a value of

2
I:[b Loge(L) and this can be obtained by differentiating (2.54) to
I8 " :

give (4.74), and hence Fisher's information matrix IN(Q).

2 - 2 »
2838 ) CRa 12 )
where V(D) = %Sg___,‘éi from (2.53)
: 2
Now expresslons have already been found in section 4.8 for E:BQBQ

_and now these can be substituted into (4.74) and hence into (4.73) to
give a lower bound for q?. the covariance matrix of the paramete¥
estimation errors (4.71). This enables us to exéﬁine an estimation
scheme to seé how the lower bound on ﬂ? and hence the expected accuracy
of the estimated were influenced by the structure of the model and
different input signals. At this point the matrix term corrosponding

to X can be inserted. By differentiating (2. 55) we get

‘oaL' %21{ 1512{ - N. But )\ is given by 1 k 1ek and hence L'
2 N A2

reduces to ——-.

22
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ey,

PYRLY

then there are probably too many parameters in the problem and only

As Rstrﬂm has pointed out, if the matrix E is singular
linear combinations can be estimafed. It now remains to investigate
whether the estimation process which we have constructed allows the
lower bound to be achieved.' Chapter 5 attempts to prove that the
prodess we have used has af least asymptotically the minimum variance
property, and chapter 6 shows some comparison results to demonstrate
this in practise.

For a practical situation we cannot know the true parameter values
O and have only a finite data set. Thus we cannot obtain the expectation
results required in (4.73), and have to resort to an estimate of the
information matrix of (4.74) by using (4.50); This can then provide
us with some confidence region in which we believe the true parameters
'Awill lie. Such an application is mentioned again in section 4,13 and

" demonstrated in Chapter 6.

4,10 Breakdown due to a finite data set.

Rstrém has noted in reference 37 at least one example where his
method has fgiled to cénverge owing to a short data length. The
optimﬁm roots of 6(2) in his case were very close to, or lay outside
the unit circle. With moré data thé estimation procedure was successful.
Examples of this behaviour have been often seen for pole positions
near the unit circle. In particular the second derivative matrix of
the estimation cdst, derived from the finite data set in the manner of
section 4.7, the ‘practical’ matrix;.does not favourably compare for

these cases with the "theoreftical' expected matrix for the same data
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length, derived as in section 4.8. As the poles of E(z) approach the
unit circle the 'practical' matrix elements appear to contain a large
correlated random factor, and thus the matrix tends to be singular.
The climbing routines can frequently be seen to lose their convergence
properties and produce an estimate‘which differs significantly from
the theorectical value. The actual estimate will still be the one with
the maximum likelihood for that data set, but probably indicates an
error distribution éutside the range suggested by the Cramér-Rao
théory using the theoretical 2nd. derivative cost matrix.

The effect is definitely due to a relation between the length of
~the data Eet and the position of the poles, and can provide a 'rule of
thumb'! to guide the whole procedure.

Ve shall examine an element of the ‘theore\tical' matrix (4.74)
for a data length N as described in section 4,8. In particular it
will have a mean value affected 5y the bias demonstrated in (3.41)
whiéh will arise since ék is strictly a non-stationary sequence for

non-infinite N,

Coneider a typical element of the matrix from section 4.8 for
fhe.ﬁiterms as given in equation (4.55). We will calculate the
variancé of the pracﬁical summation repeated here as (4.75). Since
u, is a finite data set, k=1, ...;‘ N, the signals used in the
summation are strictly non-stationary as described in section 3.4.

The mean of (4.75) must therefore be given by a form similar to

(3.41)
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2
Yv= ¢ 7 .G B(z) 2 (4.75)
—-S; ék:‘l [Z'P (o)(zj uk

v' + u v! +u v . u, v, 2
k_1 -1"1 k=22 *°°** T17k-1

where the expansion of (3.52) is implied, with v! being
the unit impulse response at delay i of the system

e B(2)

~~

S

=P

The variance of this chosen matrix element is defined in (4.77)

into which we substitute (4.76)

"a“[b;"[&] éE[B_ZV- EB_ZVJZ (4a77)

2
G [ (u vy o+ U, 1 .....u,]vk_1 )

2] 2
- LT t 1
B S (0 + BeaqVq seeee UqVgaq) ]

where v{ is the unit impulse response of the system of (4.75)

at delay i
_ Al 2 _,2
= GOE u, vo
2_,2 ' 2,2
+ u2 Vo oo# 2 u1u2v1v + u1 v1
+ [ N N N )
+ u2 v'2 ceece +-u2 v'2
L N "o * 1 N-1

-E do.
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2
= Gi E (ngl 2?:1 2?:1 u:i.u,]'v'm-:i. v'm-j )-'( do. )}
: E{(fﬁ:‘l €§=1 é?:']é?:ﬂéﬁ:'] Sl.-'lua.uaukulvr;l -1¥m-3"n-k"n-1 )

-2”( b3 2=1 SN=1S?=.1 2?:1 S=t S1e1 04V O AP AT AR A

t l 1 1
+(2m 12n-1£1 12 —15k=1%1- ABlugu gl Bluguy vy sve gvn-k‘{a-a)
(4.78) -
Now Uy has been assumed to be an independant sequence with zero mean

and a Normal distribution with a variance U;z. This means that the

‘only terms to survive from (4.78) will be those described by (4.79)

E(uiuj) =.¢h2 for i = j, and zero otherwise.

2
: 2 4
E(u, uaukul) = E(uiuj),E(ukul) =~(0; ) = 7,

for i'= j 7 k=1 5 i#k, and zero otherwise.

3 Ghu for i=j=k=1, being the fourth moment of

E(uiujukul)

the u sequence which was assumed to have

a Normal distribution

(%.79)
The First term of (4.78) reduces to
N N am 4n 2.2, ,2 2 e
2m=1£n=1€i=12§§1 Blugu vy svame  for =i kel g idk
i
N ¢N dmin(m,n) 12 42 el
ts _12 _12 | E(u ) v 25 Vhej for j=i=zk=1

(m,n)
12n-121-12k- m-‘ n2k 20-‘2m—12n-1 A m-3 véfa

(4.80)
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The second term of (4.78) reduces to

-zgm 12’ 123-12}: A )*E(ua)v' Jv;lzk for i=j ; k=l

= -2 U_ 1€n_1€k-1£k =1 Vm-j lfk (4.81)

The third term similarly reduces to

12 .
0- 5m—12n-12'3 1€k_ m- -k (4-8c)

Most of these terms therefore cancel to leave (4.83)

32 2 min(m, n) 2
var [-——-—-—b V] = *- 20- fm-‘l Sn—‘lg -j vn-j (4.83)
prp
A similar result to (4.80) can be obtained for any element of the
cost 2nd. differential matrix of section 4.8. Thus we can expect
each element to have a mean value given by an equation similar to
(4.55) and a variance given by an equation similar to (4.80). The
e ' : N N
above derivation can be repeated for the variance of ﬂ; or ﬂ;

which occurs in some elements, and also for the covariance ﬂﬁ * ﬁ§

k.11 Calculation of the variance of a matrix element.
‘The relation given in (4.83) can be pursued further to provide a
closed form expression. If the summation limits of (4.83) are examined

it will be seen that they can be modified to give (4.84)
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| 2 v12 y12 4 ﬁ m R
[ 1£n =1 3 =1 Ym-j"n-3 * %0 Sm=1 S3=1 vm-j]
(4.84)

i elements with terms

‘213185 T ete. The second term of (4 84) can then be expressed as

. follows

2 L AN 1 -
G, « 20, 2m=1£i=1 y=1 j:‘lgilc 1R1R7R3Rk{(glgy8:]8 )m vesne +(£-LS 5 § j]l

Expression (3.52) can be used to réplace the v

where Ri’gi $ i=1, eeees 1 are the residuals and

roots of 1 . B(z)
} z-f3 ¢(z)

4 L 4
= O' * 20- 2"1" 2 . 1"'(3 )m
1e=

where the obvious notation 24R4 and SA has been introduced

as an-economy.

=G§. 2¢ 2 . [ﬁ-{w ) +(8“)...u.(5) } ]
gh
: (1= 8 )
‘,2 b gl N
= G5, 20, i : 8.§ [1 8 . 1= (S 1-(87) ] (4.85)
1_ .

We might have expected var AE!] to be linear inlN as the part

- shown in (4.85). A bias term can be seen in (4.85) which arises

as in (3.41) from the statistically non-stationary filtering done

on the u, sequence. This term is Qf‘more importance when N is "short'.

The above process can be repeated for the first term of (4.84):
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G2 - - -
_ 40‘ 2m—1 n=1 1 14y = 123 121: 1 R, R?RJRR(S g )m nﬁs g)n '(S &)n

..... + (§;6,6,6,0° + ‘(Sigygjgk)-'l]

n=1 AR (S §5) ool ®
*40' 2[“ 12 s >’ . 1 (gl*)
1=

b b

where §'R’ and Sl* are defined as before.

._.w-gm1§i“ (86,7 evens ¢ (58"
1-8")

—{{Sis,,f"”(sis,ﬂ(ijkﬂ b oeeens (sis,,f('gig,>““1(gjgk>m'1}]

1-(§, £, L
= 62, bgt SN 3.0y -<sis>..__;,_li_]
o 34(1 &) [%m 7 1- 836k
' 4 b 4 | N
= G l+a- $'R N-(g §5) = cevee —(Sib”),)
§*1-¢H U [ Y Sv{ g }
' 1 N
| (56507 + veen + (5.8 M6 s it
&sk{ y (b, | }

tm 5'R N =88« 1=(8385)" -5 £ 1-(81)"
54(1-84)['-518; " (1-§, 6,27 G NI

N
e S7+)(1 558,
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_ ' , N N
= 2£'*R'* N [1.0 - $iby . 1066y L gi8, 1-(656,)
§+(1- 8°)(1- 5, 5,) N 1-6585 N 1856
N
« 8% -8 :} (4.86)
N 1

bh o1 1 1 1 S
where § R =£i=1€9=123=1£k=1RiR7Rij i 6 = gig)’gj‘fk

It can also be shown that the terms in (4.85) can be considered
to be included in (4.86) with small error provided that (3.-5&5;)-»2.0
and (1..+.Si8y)—>2.0 which is true for'strong'poles i.e. close to

the unit circle.

Equation (4,86) is now the closed form expression for the variance
2y
of —— , and is a linear function in N. The bias term apparent in (4.86)"

d }ﬂ
agalizarlses from the strictly non-stationary filtering required in
the estimation problem. The magnitude of the bias term can be seen
plotted in figures 19 and 20, If for a given set of poles Si the
data length N is short, then the bias term is significant in (4.86).
As a result the standard deviation of é’will not be a function of

1/J% , but will be larger.

The‘abo#e results clearly are valid for any of the elements of
2
2008 !
of A(z) or 8(z) close to the unit circle. The results enable a

the matrix but will be more important when considering roots
criterion to be established from figures 19 and 20, which relates the
magnitude of a pole to the minimum data length N. Unless such criteria
are followedthe data length N may well prove too short for a satisfactory
estimate to be obtained. A maximum}likelihood estimate can be

- obtained for short N, but the actual estimate © may have a large error
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variance and therefore not of practical use,

From figures 19 and 20 we can set a criteria relating N and
any Sigy 3 1,9 =1, eveese 1 50 that the bias terms are less than say
10% of the full value in (3.41) or (4.86). This criteria can be

stated as :

N > 10 R (4.87) |
-1"85_8‘))

k.12  Eguivalence of several criteria.

Criteria connecting the length of the data set and the estimated

system parameters could be used by plant engineers to assess experiments

during piant identification in the field. The criterion suggested in
' (4.87) is in fact similar to others derived from other considerations.
Intuitionvmight suggest that thebdata length N ought to be significantly
1onger.than the decay time of 1/A(2) or 1/8(2). From (3.52) the
decay envelope of the impulse response is proportional to 81-1 at delay

i from the initial impulse. If we specify that SN-Eé. be less

than some small value £ then ' .
1 (4.88)
§< V-2

This is very similar to requiring SEN to be small compared
with 1.0 for a given value of § in the expressions shown in figures

19 and 20.
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A significant error may arise when using the suggested estimation
method due to ignoring the initial conditions on the system at time
k=1. This gives a further viewpdint, and the criteria for this is
again very similar to the above impulse decay idea. We would require
any such initial condition effects to decaj appreciable within the
daté length N compared to fhe continual disturbances.

The breakdown of the constraining transformation mentioned in
pection 3.12 yet agaih.suggests that 62N should be small oompared to
unity. All these viewpoints can be seen to reduce to a genuine
‘rule of thumb' which can be used to make judgements, even during.the
estimation pfocedure itself, on the data lengths required for particular
problems. The suggested ;riterionwhich satisfies these demands has
been given in (4.87).

We require the 'strongest' roots, i.e. those nearest the unit
circle, of A(z) or &(z) to satisfy the above criteria. The B(z)
polynoﬁial does not appear from equations (4.54) to (4.63) to be
directly involved. 'fhis is probably due to the role.of B(z) in
both the system equation (1.38) and in the estimation filter equation
(2.49) being that of providing the zeros of the process. As shown in
figures 1 to 11, zeros unlike poles may lie at any point in the 2z plane
without causing any irregularity iﬁ the shape of the isovars.

The cross product term of equation (4.58) between a root of A=)
and a root of 6(2) is also of interest. If during estimation A(z)
was discovered tb be ﬁery similar to G(z) i.e. pole-zero cancellation
between X and ¥ occuring in (2.49),‘then the matrix element in (4.58)

when calculated préctically as in section 4.7 would be very similar to
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(4.57) and the second term in (4.54). From the preceeding analysis we
would expect in practise the matrix to be ill-conditioned if the above

criteria were not satisfied.

4,13 A Conflict of Philosophies.

The Bayesian approach as explained in section 2.7 assumes that a
parameter 8 varies randomly and has a known probability density function
ﬂ“ﬁ). The problem considered is of estimating the value of ®, from
a data set X1 conea XN drawn from the parént distribution f(X,G),

The estimate of @ should be based on the conditional probability
density function of & given the data X, eeees X since this contains
all the statistical information. The basic¢ assumption which is made
in Bayeéian theory is that the probability density function g(@) -

- is known in all its detail. It is then péssible, provided the
algebraic manipulations are not intractable, to obtain an analytic
expression for fhe mean of § and the variance of ®. Thus before any
éxperimental.data X1 to XN is cﬁllected, we can define fixed limits
.which wéuld have say a 95% probability of containing the value of the
random 0.> If in fact the estimation procesé does not give estimates
of O which 1ie within these limits‘in about 95% of a large number of
cases, we might suspect the validity of either the estimation procedure
or of the initial assumption about g(®).

The classical statistical approach assumes ® is fixed and
deterministic, but that any estimate 6 of ® will be random and have

a probability density function. No assumptions need be made about the
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parent distribution f(X). After the data for an experiment is collected
an estimation procedure is used to derive a value of the estimate 5 and
its variance var.(3) about 6. Thé Central Limit theorem might well

now be invoked to show that the sample distribution of the estimate

could be taken as Normal. Indeed it is well known21‘23

that maximum
likelihood estimates asympfotica}ly approach a normal distribution
as the data length N—=°°, The desire now would be to define a fixed
interval which with say a 95% probability contain the true value of 8.
However since & is fixed it can only lie either inside, or outside the
interval with no intermediate possibility. The statements which should
be made is that the confidence interval suggested above is random and
covers the true O with a probability of 95%. The limits can be found
from the assumed Normal distribution of 6 whose parameters are the
- estimated mean and variance of‘é.

The experiment may be repeated and a new data set collected,
Sut thé assumed distribution for 6 will have a different mean and
variance for each experiment and hence the confidencé limit will also
be different for each experiment. It cannot be necessarily expected
that.the lim;ts obtained will be similar to the Bayesian limit based
on an assumed g(f). If the estimators are unbiassed and consistent,
" then for large data sets N;—“’, ve éould expect the statistical
confidence interval to be small and centred on the true value of O,
the mean of the Bayesian interval.

The matrix elements which we have discussed in the previous

sections represent for a vector Q, the inverse of variance of the

estimates of Q and are theréfore the parameters of the probability
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density function of é in the above statistical approach. We have also
been calculating the variance in turn of those matrix elements themselves
It seems clear that if these variénces were kept small compared to the
mean value of the elements, we might expect that the classical and
Bayesian confidence intervals would more neérly corrospond.

This demonstrates the ﬁtility of a criterion in showing the relatiop
between the parameters Q and the data length fequired to make the
estimation philOSOphies_agree in some sense. This enables a practical
data length N to be decided for a maximum likelihood estimation method,
wvhose properties in general can only be proven asymptotically as N-=<0,

Given oniy one data set, it is commonly accepted that the estimation
procedures should be allowed to iterate or 'climb' until the gradient
‘of the likelihood cost function such as (2.53) is zero. This gives
"a maximum likelilicod estimate in the classical statistical approach
as above.' The confidence limits however are unlikely, unless N is
large énough, to appear like the Bayesian limits. Further experiments
will only confirm an apparent wide spread in the estimates &. A
wiser prbcedure would be to run one experiment with a chosen data
length, to get some idea of the 8 parameters. Later experiments would
be run with the data length N chosen via some criterion as above so
that the estimates é for different éxperiments could show some
practical agreement.

This approach could be built‘into a single experiment estimation

method. As successive estimates of § were obtained at each iteration,
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equation (4.87) could be used to verify that the iterations should be
continued, or that the method should be halted. The recomendation
to the operator then would indicate that the estimate Q was losing

validity in the above sense, because the data length was not long

enoughe.
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CHAPTER 5

CONSISTENCY AND CONVEXITY.

5.1 ﬁstrdm's work.

We are concerned in this chapéer with defining the conditions
which are required for the maximum likelihood estimates to have the
desirable properties mentioned in section 2.1.

Rstrdm has done a lot of work in this area as given in references
11 and 37. He has described the systems in terms of the coefficiepts
of Z polynomials in forms similar to (1.38). We have shown in previous
chapters the utility of estimating systems in terms of the roots of
the 2 polynomials.

For a satisfactory estimation procedure we require the probability
that an estimate lies close to the true value, to approach unity as
the number of available data points N approaches infinity; i.e. a
consistent estimate in the sense of section 2.1. This property is
often demonstrated by using the law of large numbers, but Rstrém has
used the method of Wald modified for samples which are not independant.
Since the theorem proofs of Rstrém are very fully given in references
11 and 37, we shall not repeat them here in detail. 1In certain areas
the proofs are affected by our system description in terms of roots

instead of coefficients, and therefore require more detailed explanation

5.2 Notation.
A
The vector of parameter  estimates is defined as 8. 3str8m

A
takes 0 as (4n+3) in length and defined as in equation (2.50), but
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including the D.C. level ) ', the value of A and the n initial conditions
of the system (1.1) or (1.38). For the work of this thesis @ is

again (4n+3) long but describes the n roots of the A,B, and C
polynomials, the gain Go’ together with )(,',)\, and n initial conditions.
Changes in definition can be used as before to avoid complex values by
deseribing conjugate pairs.in te;ms of their real and imaginary
‘components ag in chapter 4.

The vector Y denotes the N vector of output observations as in
equation (2.9). Similarly.the w, sequence is denoted by U. The
operator Eo is the mathematical expectation with respect to the
distribution 6f Y when the parameter estimates § have their true
values §. The logarithm of the likelihood fﬁnction of section 2.5
is defined as L'(Y,@). This and the estimate é depend on the number

) ata poinvs an ereiore inave e notation ,A an & -
of data points N and therefore have the notation L' (Y,§) anda &"

5.3 Assumptions about the input.

In order for the following proofs to hold, the input signal must

be assumed bounded and Ce{saro summable, that is the limits in (5.1)

exist.

-

' N ' N
15, .u i 1< au (5.1)
Zim - Négk-1 k ZimN Nigk-1 Kk+d _

for i=0,1,2 sevee

5.4 Lemma 1.
The following Lemmas and theorems are numbered and derived as
in references 11 and 37 but are reproduced here using the notation of

this thesis. The theorems deal with the asymptotic properties of



functions of a single data sample. This data is assumed to have
ergodic properties so that results for a single realisation are
equivalent to those of an ensemble.

Lemma 1 states that

Loooatad e r o azniad)
imy . o mN_wN

A

1
L'(8,8)  (5.2)
with probability 1.0 provided that the input satisfies the condition
in (5.1) and that é and ® both belong to a region B in an r dimensional
Euclidian space, where r is the dimensionality of ®, which is strictly

(kn+3). This'region is defined as in (5.3)

. A .
R=all values of & for which the roots of the polynomials
ﬁ(z) and 6(2) have magnitudes less than unity, and for which

Ais greater than zero equation (1.38) ..... (5.3)

This Lemma gives the asymptotic properties of the likelihood function
for the problem studied, and implies that a single realisation of the
data can be used instead of an ensemble. The proof Rstrém gives

expresses L'N(Y,é) as in (5.4)

1Ny, 8)

- - N a2
constant NLoge)\ 2_;\_221{=1ek (5.4)

- N L‘ogel -1, V(ﬁ) from equation (2.52)
A

: A
where V(8) is a cost defined in(2.53

|
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] A
The convergence of L'N(Y,Q) is now equivalent to the convergence
of V(é) aince;\#b. The value of Sk can be substituted in terms of
the known signals i 1 Uy from (2.49) and then the various terms in

71

A

V(€) can be examined. Kolmogoroff's criterion’  of the strong law of
large numbers can be applied to each term and implies almost certain

confergence_if the partial sums are bounded. These partial sums are

37 to be'generated by difference equations, which produce bounded

shown
results provided that the roots of the polynomials A(z) and &(z) nave
magnitudes less than one. Thus Lemma 1 holds provided that é belongs
to region . This means that both the system and the model are
asymptotically stable.. In this thesis we have so chosen the roots of
6(z) with the aid of the X' transformation of section 3.10 , that the
above criterion is satisfied. The roots of ﬁ(z) should also have been
so chosen to ensure the validity of (5.2), however in the practical
.examples chosen the roots of ﬁ(z) did not in fact exceed the unit
circle. The original test systems were also stable i.e. the roots
" of A(z) had magnitudes leés than one.
Lemma 2 . |

Let the input u, satisfy assuﬁption (5.1) and let ﬁﬂ be a closed |
set containe&'inﬁ%, then L'(@,Q%) is ani%halytic function of é within

the set R'. Lemma 2 states that

OZim rlz_)"[ “‘(y,é)]: > .jim 1. E 1My, 8) = 3 10(8,8.)

FYS N+w N FYES o

with probability 1.0 cesee (5.6)
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This relation also holds for higher derivatives. These results can

a°7 because L'N(Y,ﬁ) is infinitely differentiable in R!

be demonstirate
and by analytic continuation we can define an analytic function of

a complex variable é. The function L'N(Y,ﬁ) increases monotonically
with N, but not faster than N. Therefore % L'N(Y,ﬁ) is bounded and
converges uniformly for é belonging to R', and is thus an analytic
function. These Lemmas establish that the average over the sequence

length N of éi converges to its ensemble average as N-«, which is

differentiable in 8.

5.5 Theorem 1

This theorem is concerned with the uniqueness of the maximum of
the likelihood function and requires the previous Lemmas to hold true.
ﬁet So be a set in r dimension Euclidean space defined by (5.3)
such ‘that '

A
5, 2 8 for wnich 10(8,8)) = 1:(8_,8) (5.7)

Assuming that the signal u, satisfies assumption (5+1) and that for

A
all N sufficiently large QNﬁfb',where]%' is a closed set contained
in B, then

A
N g

with probability 1.0, where T8 is the projection of § on both

S, and B' i.e. the nearest point in both S, and R
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ﬁstr0m37

proves this theorem by following Kendall's: work in reference 35
but uses Lemma 1 in plaég of the strong law of large numbers since the
obgervations are not independant samples. The proof depends critically
on the fact that éy is chosen so that the likelihood function has an
absolute maximum, which cannot Se guaranteed in prgactise. The

climbing algorithms used will find the local optima of a function but
not necessarily the.global one unless the function is convex. This
difficulty is well known for maximum likelihood estimates and can only
be'covered in practise by assuming that §F is the globally Optimum.
value when N is sufficiently large.

Theorem 1 implies that the estimate 6N converges into the set

So?as N+®o, If the set So contains only one point §Q then the estimate
.is strongly consistent. The maximum is then unique if N is large
enough for So to be a point, even if the function has several equal
magnitude maxima. Any model witﬁ é belonging to So generates
reaiisgtions with the same statistical properties as the given data
set of system output Y. We can no longer tell which of the points in
So generated the observed output.. For our representation in root form,
S.o would contain all the permutations of the roots which gave the same
éoefficient values. This point will be covered again later.

| Huiurbazar has discussed39 consistency at length and shows that
logically consistency is first proved and then a statement should run
YThe con51stent solution of the likelihood equatlon is a maximum of
the llkellhood function with a probability approaching 1,0 as N+, ".

Hb.also proves that a consistent solution of the likelihood equation

is unique.



By employing Lemma 2 and theorem 1, ﬂstr6m37 shows (5.9) to hold.

—0. cececece (5-9)

N ANy AN
%"LG@ (.27 " Lo 8°.8,)

with probability 1.0 as N--°, where Lé@ is the notation for

the 2nd derivative matrix of L' with respect to O.

This means that the quantity Lﬁ! (Y ) which is computed in the manner

of section 4.7 is aﬁ almost sure estimate of the information matrix
IN(Q) = Ns I,ko (g,§5) for large values of N. This is the matrix used
in the Cramer-Rao theory described in section 4.9, and Astrém's result
. shows tha£ it is not necessary to compute it separately. The practical
difficulties mentioned in section 4.10 cast doubt on this approach for
some cases. This only arises when the value of N is not large enough
for (5.9) to be true, and it was for this reason the criteria of

section 4.12 were introduced.

5;6 Theorem 2

So far all the results of the previous Lemmas and theorem 1 i
can be shown to be valid for @ being any complete set of parameters as i
in sectlon 5.2 provided that the A(2) anad C(z) polynomials have roots ‘
whlch lie within the un1t circle. Theorem 2 shows that some parameters

cannot be consistently estimated.

Let & bé defined as. in equation (2.50) and also include the n

initial conditions on the system (1.38) as well as the D.C. component X'

and the value ).. Let .Ay(Y @ ) be the diagonal matrix of elgenvalues
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of %-L;ﬁ (y,@?), and TN(Y,ﬁﬁ) be a corrosponding matrix of orthogonal

eigenvectors. Then

og_mN—rw

t t
N AN N AN, AN ,N AN N AN
A,8) 7 (Y,8) 8 -A(yv,8) T (Y,8) 8 ” = 0.

with probability 1.0 (5.10)

The proof by Retrém requires the previous results of Lemmas 1 and 2
and theorem 1, but will not be repeated here.

A
The theorem indicates the linear combinations of QF that are

_ A
consistent, even if some or all of the components of QN are
inconsistent. As a corrolary Astrém shows that if 11%? (Y,éﬁ)

. . N o]

converges to a value L./ then
1t adH S L0 (5.11)
N 80 s 0

‘with probability 1.0

This implies that the estimate is strongly consistent if Lsé is non-
singular.

Consider now the set S, in Theorem 1. One of Rstrém's results
is tﬁat a set Sé_in.S° is linear in the 3n + 1 coefficient parameter
in equation (2.50) and in ' and A. Hence é? will at least converge
into a hyperplane So for these pgrameters i.e. components orthogonal
to this hyperplane will be consistgntly estimated. Howevgr So will
always contain the n dimensional sub-space spanned by the parameters
associated with the n initial conditions of (1.38) or (1.1) since the

corrosponding sub-matrix of the information matrix IN(Q) reaches a
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finite lower bound as N—=?°, Thus these initial condition parameters
cannot be consistently estimated. ?his situation is frequently
overcome in practise by choosing the data length N long enough. The
initial conditions then decay in‘magnitude compared with the stochastic
disturbances and can be justifiaﬁlj ignored ag not contributing
greatly to the total cost. If the set of parameters in Sé or their
transformed equivalénts have consistent maximum likelihood estimates
i.e. S° contains oniy one point, then the system could be described
as "completely identifiable." |

In this thesis we have tried to show a case for representing the
lﬁ(z),ﬁ(z)'and &(z) polynomials in terms of their roots d.,p;, and 6&
respectively, where i=1, ...se n; in place of the coefficient
description that Rstrém uses in é. For example, the aj coefficients of
A(2), §=1, eeess n which are a subset of the components of é, can be
described in terms of'sums and pfoducts of the roots “&. This relation

is defined in (5.12).

n
aj = Cj(di) H j-—1' eseess 11 (5.12)
where n(jj denotes the sum of combinations of n roots taken

~as a product of order j

Naturally the order of the roots di may be permutated amongst themselves

and yet give the same value of the coefficient aj as shown in (5.12).
The coﬁglusion therefore is that a subsét of é can be defined in‘

" terms of the roots X, and these estimates will be consistent within

a permutation of the order of thke set of “i' Similar reasoning applies
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to the sets of Piand Ki roots belonging to the B ana € polynomials.

Thus é can be defined in terms of the roots and Rstrém's consistency
result will still apply with the permutation proviso added. In practice
this is no difficulty and the effect will only show itself for example
by the occasional exchange of tﬁe imaginary components in complex

conjugate root pairs for similar estimation runs.

5.9 Excitation and Identifiability.

%str6m37 defines an input signal u, to be "persistently exciting”
k
of order m if the limits of (5.1) exist and if the matrix in (5.13) is

positive definite.

g B, veereenn 8]
1 o L 2R N IE 3N BN BN N J m-1 _ -1- N
| where 'di-o&mN =1 e
. N 60
gm ¢m-1 esesesnsy ¢o

(5.13)

Theorem 3
' fThis theorem states that the system (1.38) is completely

identifiable if u, is persistently exciting of order 2n. Astotm's

k
proof involves the detailed definition of the set Sé of the previous
section, For Sa to be a linear set a quadratic form in L must equal
zero as N+°2 This in turn requires the matrix in (5.13) to be

poéitiVe definite. If this holds then Sé only contains the set Qo’

A
and therefore the estimate O as in section 5.6 is consistent.
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The requireménts of Sé can eventually be reduced to having every
state of the system controilable either from the input u, or from the
disturbanee ek; In the initial problem statement in chapter j, this
controllability condition was assumed and would also be true for all th;
other system transformations. In practise this might be violated
since in geperal the properties of the physical system will not be
known before datﬁ is collected. ‘As a fesult the estimate of the
information matrix IN(Q) can become singular for large falues of N.

This is a further effect than that described in section 4.10. The
two sources of the same effect can be separated only if the criteria

of section 4,12 are applied during estimation to decide on a reasonable

length of the data set N for the current estimate.

. 5.8 Asymptotic Normality.

-Thcorem L

Define QA to be the (3n+3) vector of parameters in § when those
corrosponding to the initial states have been discarded. Thus QA is
the same as tﬁe vector defined in (2.50) but including Y' and A terms.
if the set So contains only the p&int goA then éﬁ is éonsistent. |
Theorem 4 then states that the stochastic variable ss(é%A _OA)JE(O -8)
is asymptotically rormal with zero mean and variance-gLeg y. With
probability 1.0 as N=®. If [l (Q%A [ ) is non-singular as well,
then éﬁ is asymptotically normal with a mean of égn and variance

JuL'-1 « Since this converges as N+*, the estimates are also

asymptotically efficient and we cannot expect to find an estimator with
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a gréater accuracy for long samples.

The proof of this theorem is similar to the standard methods, but
in this case the samples are dependent. Astrm therefore invokes the
statements .of the previous Lemma's and theorems. In particular he uses
the result of (5.9) and the fact that LLN(Y,éx) = O. at the end of the
estimation procedure., The proof al;o depends of the boundedness of w
expresced in (5.1) and the fact that stablé difference equations are
obtained if the poles of ﬁ-1(z) and 6-1(3) lie within the unit circle.
This latter property is satisfied if the system (1.328) is stable, which
is a basic assumption. It is possible for the roots of C(z) in (1.38)
_to lie outside the unit circle for non minimum phase systems and
¢ 1(z) to be unstable. However section 3.14 demonstrated that such
a system can be estimated as if the roots Xi lay within the unit circle.
The estimates would not however be minimum variance as described in
section 3.14. Without-any phase information the non-minimum phase-
physical system can cnliaadentified as a minimum phase system.

The asymptotic normality implies that the distribution of & is
known and confidence regions can be de#ermined. This requires an
estimate .of the covariance matrix so that approximate significance
tests can be made on the results.

In general we have demonstrated that all of Astrém's Lemmas and
theorems hold for the parameter set of roots chosen for_Q in this
thesis. It is obvious from the preceding work that it is desirable
for L'sg to be non-singular as was suggested in section 4,10. Theofem 1

would give a stronger statement if the likelihood function were convex

and L'y, were positive definite. A locallunimodal hill climbing
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routine could then be employed in confidence to obtain the single

A
optimum Qy.

5.9 The Information Matrix.

The information matrix, so named by Fisher, was mentioned in

section 4.9 and is defined here in equation (5.14)
N A N N N t
1(8) = - E, L' (Y,8,) = E.LVAY,0 ). LY (Y,8,) (5.14)

This matrix has been implicitly mentioned in theorems 2 to 4. It was

. shown in theorem 2 that an analysis of its rank revealed which
‘components could be consistently estimated. Theorem 3 implies that

if the (3ﬁ+3) square sub-matrix corrosponding to parameters describing
the polynomials A,B,C, and the scalars G,X' and A, is positive definite
then those parameters'are consistently estimated. Theorem 4 shows the
estimates to be asymptotically normal with a covariance matrix
obtainéble from the information matrix. The asymptotic value of the
information matrix at the true parameters é% is given as (5.15), and
"this can be calculated for a given §g and N as demonstrated in section

4.8l
) (5.15)
In practise'gk is unknown and only the form L'GGN(Y,QN) can be

evdaluated as shown in section 4,7. According to one of Rstrén's

results expressed here as equation (5.9), this estimate converges with
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probability 1.0 to the information matrix as N-=°, As explained in
section 4.10 it frequently appears that N is not sufficiently large

for the problem in hand for this ideal convergence to occur. Typically
the 'practical' matrix contains correlated random terms and the matrix |
tends to be singular. The elements in this case are not good estimates
of fhe corrosponding elements of the expected matrix in (5.15).

Sectionslh.{o to 4,12 introéuced the idea of a relation between
the roots ai, Si of the system and the length N of the data set. Now
if a theorem similar to 4 allowed us to take.Lgi (Y,QN) as normally
distributed for finite N ahd certain related pole positions, then the
matrix elements would be defined statistically by their means and
variances. Probabilistic statements could be then made abtout the
;:condition'of the matrix for a given value of N and decisions could then
. be made about further estimation work. For example a test could be
lemployed‘at each iteration of the estimation procedure as described in
sections 4.10 to 4.12 and a decision taken to continue the iterations
or stop for want of a longer data length.

Unfortunately a normal distribution cannot be lightly assumed
éince the results are not derived.from independant saméles and are
valid only a%ymptotically as N-+%®, 1In practise however such a working
assumption might well be made and schemes similar to those of

chapter 4 developed.
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5.10 Positive Definiteness,

It is of interest to examine the second derivative matrix‘V’e9
of the estimation cost V. This matrix describes the surface of the
estimation hill being climbed, and also appears in the Cramer-Rao-
theory of section 4,9 and in Fisher's Information matrix in equation
(5.14). If it can be shown that,VbB is positive definite, then the
hill surface would be convex and have a singie unique maximum. Ve
would therefore expect a simple hill-climbing routine with only a
capability of finding a nearby unimodal solution would be sufficient
for the estimation problem.

For simplicity consider initially a simplified system similar
to (3.62) which has been used before and given here as (5.16).

8 = H(z) v ‘ ; (5.16)
ko N(z) k : ‘

This s&stem is simply a junior version of the full system used in
sections 2.5 and 4.6 for maximum likelihood estimation.

As éhoﬁn in section 2.5 the likeiihodd L and its logarithm L'
are maximised by minimising the estimation cost thék; Ai s, with
respect tothe parameter sgt Q. The first and second derivatives of

. A
V have been covered already in sections 4.5 and 4.7 for O as the root

description of the Z polynomials. The results of sections 4.1 and

" 4,3 allow us to express the matrix (4.50) of the 2nd derivatives of

V as (5.17) here when dealing with the junior system above.
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(5.17)

2A
¥y - z‘N 3ék Dek +£N A . D&
A k=1 C — k=1 k
255 353 I PET 15585
4N A A N a A
= =1 e s =1 B 4+ 8 . 1 e
2k—1z_§i_ k Z-gj- k 2k=1 k (Z-g\i)(z_gj) k

These expressions hold for differentiating with respect to the
roots é; of ﬁ(z). Very similar results apply for the roots 61 of
ﬂ(z) and also for tﬁe cross product terums.

Consider the first term of (5.17) alone. This is equivalent to
the sum of a product of two signalsAfrom different filters, |

1 1 .
f = é and h, = 8 over a finite data set N. It should
k Z- Ei k k Zw §j k ,

‘be noted that no shift terms arise in equation (5.17) unlike the case
for the coefficient description covered in section 2.8.
Define the N vectors f and h to corrospond to the scalar sequences
fk and hk’
A A
if either Si # 55 or the filters have different inputs. Define a

k=1, seeee N, Then f and h are algebraically independant

sum vector s as the inner product shown in (5.18)

2

5 = 213][«1

“2] where aH,a' are arbitary constants. (5.18)

The vector s cannot be null for ahy a1,«é not zero. Thus the inner

~ products of (5.19) must be positive only.

t . t
8= g = (0]
Et

|+

B] oy
o5 (5.19)
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[+
=

t
t t

X4

I
I+
I
I=

This implies that the matrix shown in (5.20) is positive definite, and
this is true even for finite N. The expectation of this matrix is
in fact the zero delay sample cross correlation matrix between the

signals fk and h, and must be positive definite. This result holds for

k
any number of outputs derived from filters as shown. The restriction

is only that the filters must be non~identical if the corroasponding
inputs ére the same, otherwise & positive semi-definite matrix results.

These arguments can be extended to show that the first term of
the 2nd derivative matrix with respect to é for the complete system an
equation.(h.SO) is positive definite. This arises from the very similar
form of the derivatives of ék which have been given in detail iﬁ section
4.5 for the complete system.

Non—-distinct or multiple roots will give a submatrix which is
singular in those roots. This is natural since we cannot then
distinguish one root from the othe;. A singular matrix also arises if
there are common root terms bétween the ﬁ,ﬁ, and € polynomials. This
is equivalent to a zero cancelling a pole in (2.49) and violates the
controllability requirement of section 5.7. A similar non-positive
definite situation might be thought to arise for a submatrix corrospond-
ing to a complex conjugate.pair of pqles. As shown in figures 1 and 2
twin optima appear on the Z plane and this strictly implies an

inconsistent estimate. However, by expressing such root pairs in their

(a+jb) form, it can be seen fpbm equations_(4.8 - 10) and (4.23 - 28)
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thaf-the hill is unimodal in thesebparameters if b is limited to only
positive values. The above first term matrix is again positive definite
by the same recasoning as before.

It is implied by equations (5.18) to (5.20) that the positive
definite condition requires the signals fk and hk to be finite for all
values of N and hence that the sum S is finitely bounded. This
requires the filters to be stable and that their roots lie within the
unit circle. Again this is a repeat of Astr8m's Lemma 1 in that the
estimated polynomials shall have roots of less than unit magnitude.
The condition is covered for the methods of this thegis by using the
Xt transforﬁation of section 3.10. |

Although these results show the first matrix term in (5.17)
above to be positive definite when‘using the estimation procedure, no
information is revealed about the condition of the matrix. If it
were nearly singular, ﬁhe climbing routines would have difficulty in
finding the optimum. This has been covered before in section 4.10,

vwhere further tests were suggested to discover or avoid such a

pituation. ‘ : -

5.11 The second matrix term.

The arguments of section 5.10 can not be applied to show the
‘positive definiteness of the second term of the second derivative
matrix in equation (5.17). This second matrix is again a matrix of
cross-cor;slation products between two signals, in this case

2<%

ék and ;f—gg— o However there are no convenient auto-correlation
i %5 :
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elements in the matrix such as there were in (5.20). As a result

A
positive definiteness cannot be proven. If we consider 61 and Si to

A

be equal to the true values U and Si’ for all i, then e, will be

k
a 'whife' or independant stochastic signal. Thus any correlation
products such as the second half of (5.17) will have an expectation

of zero at the exact matching condition.

This result would also apply as before to the second term matrix
for the complete system é as given in (4.50), since the 2nd derivatives
of ék are again very similar to those in (5.17).

After the estimation or climbing process had been completed we
would hope fhat ék would be effectively white for the finite data set HN.
In this case the hill top is convex, i.e. &a positive definite full
second derivative matrix, since the second half contribution would tend
to a null matrix. This condition would only occur locally about the
top of the estimation ﬁill. Using the methods of chapters 3 and 4,
the various first and second term matriqfes could be calculated given
U,8,6 and § or é and §. Thus séme idea of the size of the convex
region about the matching point could be obtained for particular cases.

" The first term matrix is positive definite globally i.e. under
any ﬁis-match conditions. There would be some justification therefore
in ignoring, at some cost of climbing efficiency, the second term
matrix altogether and onlyAemploying the first term matrix in the

climbing procedure. This was done by Rstrém for his Newton=-Raphson

methOdo
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CHAPTER 6

EXAMPLES AND RESULTS

6.1 The Estimation Program.

A program was. written in'Forfran IV for use on an IBM 7090/94
compdter as an implementation of the work described in this thesis.
This program is shown as a flow chart in figure 21 as a number of
subroutines each of which provide an individual utility. The purpose
of the program was to estimate a syétem described by Z polynomials as
in (1.38) from a data record Yer¥y 5 k=1, ececo N derived from
experimental‘work on a plant. It is well known that data collection
in the field is difficult énd time consuming. All of the following
examples therefore have artificial'data records which have been
generated digitally within the computer. There is the natural advantage
that fhe'true generating 'plant' is thus known exactly and the
estimation procedures can be critically assessed for bias etc.

A permanent record of 50,060 random numbers was generated by a

72

digital random number generator’' ~ with a Gaussian distribution and
kept on magnetic tape. The distribution and independance of these
variates were checked and are summarised in table 1. The numbers were

later used for all the examples to generate the Yy o records by

k
applying them as inputs to digital models of the form of equation (1.38).
One advantage of this approach is that since the entire set of numbers .
is stored, runs may be repeated to compare different methods.

Alternatively ensembles of runs may easily be made. A second advantage

arose here as it was found approximately 8 times faster to read the
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TABLE 1

SUMMARY OF ANALYSIS OF THE RANDOM NUMBER RECORD

Each block of 10,000 numbers were analysed for amplitude
distribution and sample autocorrelation. A typical set

of result is given below for one such block.

AUTOCORRELATION ANALYSIS
DELAY r O 1 2 3 k4 5 6 7 8 9

VALUE ¢§ .9922 ,0024-,0071-.0037 .0012-,0111 0002 .0087-.0169 .0069

DELAY r 10 11 12 13 1% 15 16 17 18 19

VALUE ¢§ .128 -.0071 .0172 .0008-.0032 .0105-.0090~,0054=,0126 .0119

1+

Number of values of ¢§ outside 1.65 is 2

14

2.0 is O

For the complete set of 50,000 numbers 4 out of 100 values
of ¢§'; r>0, were found outside : 2. 0"limits, and 10 out
of 100 were outside ¥ 1.650. The expected levels are 5%
and 10% respectively. It was concluded that the sequence

was therefore sufficiently %hité.
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AMPLITUDE DISTRIBUTION ANALYSIS

CELL UPPER EXPECTED - . ACTUAL
NUMBER : g%ﬁ%T CONTENTS CONTENTS
1 k.75 |  0.0369 0
2 -4.25 - 0.283 0
3 -3.75 2.010 3
4 -3.25 ' 11417 12
5 -2.75 48,60 40
6 -2.25 1654 194
? ~1.75 440.6 440
8 -1.25 918.5 891
9 ~0.75 1498.8 1491
10 - -0.25 1914.6 1911
S 11 0.25 1914.6 1960
12 0.75 1498.8 1492
13 1.25 918.5 896
14 1.75 40,6 452
15 - 2425 : 165.4 ' 153
16 2.75 48.60 54
17 3.25 : 11.17 8
18 3.75 2.010 3
19 4,25 0.283 o]
20 4,75 0.0369 )

'SAMPLE MEAN 0.0C?O,STANDARD DEVIATION OF SAMPLE MEAN 0,0100
SAMPLE VARIANCE 0.9919,STANDARD DEVIATION OF SAMPLE VARIANCE 0.0140

VALUE ”‘? 13;39 FOR 19 DEGREES OF FREEDOM
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valués from tape than generate them from the digital routine
each time.

The estimation program employed the Fletcher—POwell9 algorithm(2.68)
for hill c¢limbing. This method requires both function values and
derivatives, and forms an estimate of the inverse of the second
derivative matrix. This estimate converges for quadratic hills to
the true value. For non-quadratic hills the estimate is forced to be
positive-definite, which enables the routine always to proceed in a
beneficial direction., Other routines such as the Newton-Raphson can
easily get into difficulties on surfaces with non-positive definite
second derivatives.

Fletcher and Powell recommend cubic minimisation as used by
Davidgon to obtain a minimisation along a line. In our experience
quadratic minimisation6 remains better conditioned in difficult cases
althdugh-theorg#%icallj less efficient. Such a quadratic minimisation8
only requires function values and saves some computation compared to
the cubic method which also requires derivatives. After a minimum
along a line has been achieved, thg local first derivative can be
computed and used to update the Fletcher-Powell algorithm. A worthwhile
addition to this mipimisation has been found to check the orthogonality
of the initial and final gradients by comparing their projections on
the line of seaﬁéh. Local minimisation by costing this orthogonality
condition is helpful here as it ensures that the Fletcher-Powell
estihated matrix is updated with correct information and does not bécoﬁe

nearly singular in difficult situations.
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6.2 | The least squares procedure.

Throughout this thesis vwe have so far advocated the estimation of
a system in terms of the roots of its component Z polynomials. This
implies, far the system of (1.38), hill climbing in 3n+2 parameters,
wvhich are the roofs of the A,B, and C polynomials together with G and
| Y' as in section 4,6. The value of A can be calculated after the
climbing has finished as shown in section‘2.5.l The n initial conditions
have been ignored as described in chaptef 5. If we regard the
estimation process as: purely one in -hill c¢limbing, the dimensionality
(3n+2) is rather' large for n greater than 2, and it would be desirable
if this could be reduced to give a more piactical scheme,

As mentioned in section 2.3, one advantage of using a coefficient
description for the ﬁ and ﬁ polynomials is that a least squares solution
can readily be obtained for these coefficients for a chosen value of
é(z).' This scheme was'adopted to reduce the dimensionality of the hill
to only (n+1). At each iteration the n roots of 8(z) were decided by
the climbing algorithm using the X' transformation, and the data set
Yy rby was filtered by 1/6(2) as in equation (2.37). The least squarses:
procedure of (2.11) was then applied to the new filtered data set
y;, u£ to give estimates of the coefficients a, «.... an,bo,b1;.... b
The gain term éo has been implicitly included in the Qi coefficients
and the éo term provides the extrg degree of freedom. After the hill
c¢limbing procedure has finished, the roots of the 4 ana B polynomials
of degree n can be found. This process is in itself non~linear and

time consuming for large n, and is therefore not done at each iteration.
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"From a simple viewpoint the D.C. term W' can be estimated from

the mean values of the signals Ty and u This estimate cannot be

k.
improved by any value of &¢z). Thus the X' term may well be estimated
and extracted from the data set before the main procedure starts.

This means the ¢limbing dimensionality can be reduced further, from

(n+1) to n. A fuller discussion of the worth of this approach is

given later in section 6.9.

6.3 The total cost derivative.

If the decision is taken to adopt the above methods of éection
6.2, the total derivative of the cost with respect to é(z) should be
examined (6.1), since ¢(z) is fixegiggtimating A and B polynomials.

: A
Define the cost V() as in (6.1)

Cost V £ v[ﬁ(é),ﬁ("é).e] =v(&]
then a4V =31 . a4 « ¥ . a8 + (6.1)
ac ac b a3 8

Because of the least squares algorithm the partials 3¥L and }gé will
_ ‘ DAL 2

be Zero fof a given value of £, The derivative 4V is also zero at the
optimum value of~6 i.es at the top of the hill gg'a. The maximum
likelihood estimate‘is only achieved when the all the partials in
ﬁ,ﬁ“ and € are zero, and then a.small movement in any direction in

the space of ﬁ,ﬁ, and € will give zero estimation cost change.

Congsider a simple hill shown in figure 12, The contours are

drawn for equal estimation cost V for a system consisting of one

parameter in ¢ and one in the 4 polynomial. The full dimensional
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climbing method might take a path such as 1, 11, 12, etc. using a
conjugate gradient method in all the dimensions at once. Clarke's
method in section 2.3 solves first.for the least squares solution in

A for constant € to get to point 1. He then treats € as if it described
an auto-regressive process and uses the least squares algorithm to

solve for point 2. The iterations continue to switch as shown along

? 3 ﬁ

The problem alternately has the dimensionality of 2 and then €.
5

the path 1,2,3,4,5,6, etc. between the lines }%k = O. and ]a = O.

The method of Steiglitz” and alsoc of section 6.3 chooses a value
of & and then solves for A at point 1 using the least squares algorithm.
The hill climbing method then rechooses € and the process repeats

along a path such as 1,8,9,10, lying on the line \ﬂ = O. Vhen the
: 2

cost gradient with respect to 6 is required, strictly only 3 is
' A3CA 8
9

evaluated in place of the full version of (6.1). However such an

evaluation is made under the condition %%k = O. and %%L = 0. and is
valid locally. The situation clea;ly is improved if all the contours
‘have a common centre, i.e. a pure quadratic surfgce.

In practiée we have found that if the 8(z) polynomial is only
very roughly similar to the true C(é), the estimates A and £ are
reasonabiy close to their true values A and B. This so called 'ball
park' effect has been noted by other research workers and supports the
bias reduction methods described in chapter 2. The strict maximum

likelihood estimate is only achieved when all the 1st derivatives

including that in 8 are zero i.e. at the exact top of the hill., A
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practical application might stop short of this condition in the sense
that once within the 'ball park' only very small cost improvements

are likely.

6.4 The number of multiplications.

The major computation work in estimating parameters from a long
data set N is thé filtration of fhe reéords Yier 9y by the Z polynomials
ﬁ,ﬁ, and 6. After the cost and its derivatives have been formed the
rest of the climbing and other routines require relatively little
computer time. We should'therefore be interested in using efficient
methods such as in (4.6) to reduce the filtering work to a minimum.
Naturally to this end all the short ways of calculating derivatives
should also be employed as in equations (4.2), (4.3) and (4.11).

For the full dimensional hill climbing approach, i.e. expressing

" all the polynomials by their roots, the Wy and vy signals formed in

(4.29) ‘and (4.30) require 4nN multiplications and 8nN additions. This

arises through using the method of (4.6) for filtering. Advantage can

also bé,takenvof the fact that computers such as the IBM 7094 and

360 take virtually no extra time fér complex arithmetié than for real.

The estimation cost V can be totalised for a furtﬂer N multiplications

and additioné. The total work is thus a linear function of n and N.
For the alternative approach via the least squares algorithm in

. section 6.2, we first form y; and u; as (2.37) but using (4.6). This.

requires nN multiplications and 2nN additions. To form the matrix in

(2.11) we apparantly need #(2n+1) » (2n+2) N multiplications and

additions, since (2n+1) is the number of free coefficients in A(z)
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and B(z). A further (2n+1)N multiplications and additions are also
required to calculate the estimation cost V in (2.53) using (2.7). The
computation appears to be a function of n2 for this case. However by
careful inspection of the form of the matrix MM in (2.11) it can be
seen that there are numerical dependances between the terms which
redﬁce the number of multiplicationsso that the total work varies
linearly witﬁ boﬁh n and N. |

The first derivatives of the cost for the full root description
method are calculated with the methods of section 4.5 and reguire
2N additions and 2N multiﬁlications for each of the 3n+1 components.
The alternative mixed approach has it's 1st derivatives in MtY of
(2.11) and requires 2,(2n+1) shifts and additions for the A and 8
coefficients. The & root derivatives then are calculated as in section
- (4,5) with 4nN additions and 2nN multiplications. The work for the

derivatives is linear in n and fairly equal for the two schemes.

6.5 Example No.1.

This problem was taken as a standard example 51m11ar to - those in

10,11,27,28,37, s0 that sensible comparlsons could be

‘the literature
made. The éxample was tried both with the new estimation program
described in sections 6.1 and 6.2,'and‘with Rstrém's method which was
also available. The random number tape was beneficial here as an
ensemble of results were easily obtained and could be precisely repeated

using both methods. The polynomials used in the true process

generating the plant data are given:in (6.2)
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Y. = G B(Z_)_ 0, + C(Z) e + Y' 3 k=1 seeee 200

k= PosiiZy i )\—(—A 2 % Wi k=T,

ACz) = 1.0 =1.52" 1 + 0.72"%  ,Roots at 0.75 % 30.3708
B(2) = 1.0 =1.0z" ' + 1.02°2  ,Roots at 0.50 % §0.866
C(z) = 1.0 -1.652'1 + 0.6952-2,Roots at 0.825% jOe12

(6.2)

The values of Go(also named bo) and A were both 1.0,and X' was 0.0
The sequences e and u,  were taken from the random number tape for.
each member of the ensemble, and scaled to have zero mean over the data
length of 200. The summary of an ensemble of 10 runs for both estimatio
methods is given in tables 2 and 3.

For this example the data length is sufficient by the criteria
of chapter 4 that the difficulties mentioned there do not arise to
any degree. Both methods give essentially the same estimates for the
respective ensemble members within errorsdue to the cénputer word
length. The stopping criteria for the two methods were not easily
made compatible as they are working in different space descriptions.
As a result the cost minima of table 2 are slightly lower than those of
table 3. For the climbing procedure used by 3str8m, several iterations
have to be repeated at half the step length when a failure has occured
in the Newton-Raphson algorithm. Occasionally steps have also to be
reversed in direction due to the non-positive definiteness of the second
derivative matrix. The number of both these occurrences are given in
table 2.

Using the schemes described in section 4.7 the matrix of second

¥y (8)

derivatives of the cost, @ = —g—= was calculated at the final
3513@'



Final Number of
Cost Iterations H R
=NA/2.
96.386 10 10 2
96.487 12 22 2
- 96.834 1k 2 2
93.905 13 28 2
98.032 14 22 4
97.717 16 22 1
98.069 10 8 2
© 98.593 12 22 1
96.136 12 25 2
97.075 15 31 3
Table 2:  Summary of

Sum

.0007 =1.722
060 -1.674
.0002 -1.677
.02 -1.724

002 -1.676

.001  -1616

.0006 -1.636
.001  -1.622
.000004-1.649

ensemble of 10

Value of estimated

&

0.7759
0.7074
0.7158
0.7750
0.7191

0.6698

0.6836

0.6813
0.7207

0.6652

A
a

1

-1.484
-1.546
-1.514
-1.513
-1.514

-1.504
-1.498
-1.525
-1.537

-1.1503

A
a

2

6.6938
0.7443
0.7026
0.7159
0.7133

0.6978
0.7035
0.7163
0.7287
0.6948

coefficients
6 6,

0.9988 -0.9854
0.9865 -=1.1107
0.9895 -0.9890
' 0.9986 =1.0120
0.9878 -0.9383
1.0415 -1.0789
1.0581 =1.1763
0.9245 -0.8650
0.9236 =-0,9773
0.9921 -0.8778

runs for example 1, Rstrdm's method.

1.050
1.091
0.927

1.031

0.919

Value of

X'

0.344,1072

0.528,107°

-o.5o9~1o‘LF

~0.135*10"2

~0.601*10"~

—0.246%10">

0.348+10"7

-0.339*10'4

-o.283'1o"3

. 0.233*10'3

1e



Final Iter. Final Value of estimated roots Value Value _ Value

Cost Slope ¢ A & of of of

=NA/2. | ' ' G, e 15

96.390 6 .007 6,8614 *50.1838  0.7564 £j0.3786 0.5046 £30.8807 0.9969 -0.415*10"°  8.124
96.506 7 .003 '0.8363 $350.0765 0.7570 *j0.3742  0.4724 50,8448 0.9781 -0.125¢10"2 18.00k
96.835 7 .005 0.8386 *j0.1128 o0.7424 2350.3778  0.4947 ¥30.8972 1.0032 0.263*10"% 18.411
93.962 5 006 0.8622 30,1779  0.7730 ijo.3829 .0.5644 %350.8859 0.9954 -0.140*10'2 34,697
98.079 9 .0013 0.8373 $30.1253  0.7561 %350.3591 0.4979 *j0.8225 1.0022  0.368%107°  9.879
97.720 6 - .00k 0,8081 %30.1297 0.7519 Fj0.3642  0.5201 ijd.857o 1.0435 =0.212*10"° 4,840
98.078 6 .003 0.8187 £30.1193 0.7495 X30.3774 0.5576 X3j0.8700 . 1.0653 -0.399’-10‘2 6.805
98.590‘ 8 .003 0.8110 2350.154k  0.7626 $350.367h  0.4669 2350.8660  .9877  0.436+107°  8.597
96.139 6 .002 0.8249 %30.2019 0.7685 2j0.3716 0.5289 ¥350.8942 1.0013 -0.269+10"° 10.225

97,077 9 .0006 0.8107 $j0.08864 0.7516 2j0.3604  0.4423 *350.8241  .9908  0.848%107°> 14.759

Table 3: Summary of ensemble of 10 runs for example 1: New method of section 6.1 and 6.3

AT
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estimate é for each ensemble member of table 3, the new estimation
method.

The classical statistical approach of section 4.13 allows us to
define a confidence region, in this case an elipsoid, which would
cover the true parameters Q with a probability of 95%. These elipsoids
are individua1 tq each daté set of the'ensemble and would give a
confused efféct if plotted together. Since this example has fixed
known parameters § defined in (6.2), the error vector § £ é:g can be
calculated for each en#emble member. Thus as an alternative presentatio
of the results, we can calculate the statistic §tQ§_ which has a 12
distribution.due'to its quadratic form. These values are shown in the
final column in table 3. The value of'x2 is.16.9 for 8 degrees of

freedom at a 95% confidence level and since the majority of the values

- of étQé lie within this limit, the estimation procedure can be

regarded as statistically satisfactory.

The Bayesian theory of section 4,13 can also be applied to this
problem. Conveniently we know the true value of & and we can therefore
calculate the expected second deriyative of cost matrix using the
ﬁethods of sgction 4.8, This matrix can be used together with sectioﬁ
k.9 té define an elipsoid for the Bayesian approach which have a 95%
probability of containing‘the randoﬁ é values derived later from the
‘estimation process. Projections of such an elipsoid for two parameters:
92 in 8 have been drawn in figures 23 to 25 together with the various
estimates. These elipses of projection are derived by inverting the

partition of the covariance matrix concerning the two parameters QE

to give QZ' The»magnitude of these two dimensional elipses is given
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by the value of X? for 2 degrees of freedom at a 95% confidence level.
Clearly the elipses contain most of the estimated values, and thefefore
confirm the estimation procedure as satisfactory in the Bayesian sense.

The sample correlation of the residuals & can also be examined to

k
verify that the sequence is satiéfactorily 'white'! or independant. If
thig is so then it can belconcluded that all the possible information
has been extracted from the data. This criterion bears a relationship

to the order of the model n which is fitted to the data, as discussed

in section 1.11. We would expect that the residuals would not be

white for n less than some value n° and that a plateau of performance:
.index would be achieved for n;n’.

These effects are shown in figure 26. Here the residual 'colour!
is shown for the 3rd member of the ensemble when the model is estimated
with order n=1,2 and 3. Using the result of (A.14) in appendix 1 we
would expect-that 5% of the ordinates would be outside the limits ¥ 0.141
for delays T#0. This corrbsponds to the usual ¥ 2¢ limit of a normal
distriﬁution with a variance vz of iﬁ/ﬁ, where N=200. Obviously the
model with n=1 does not satisfy this criterion, while those with n=2
and 3 are acceptable. A plateau of estimation cost appears to have
been.reached for ny2. The total costs V are 307.13, 96.835 and 96.828
for n=1,2 and 3 respectively. - -

It Qill be noted that when the residuals are white foilowing the
estimation procedure, the value of i.is significantly less than the
original 1.0 used when geﬁerating the data in (6.2). Now the N sequencé

- for e, was drawn from the long record of random numbers described by

table 1, which had been scaled to have unit variance. The estimation
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n=1

0.0519

0.126

0.145

0.110

n=2
0.0153

0.0143

010720
0.0719

0.0692

0.0371

0.0579

0.00278

n=3
0.0199
010144'
0.0113
0.0720
0.1330
0.0971
0.0912
0.6508
0.0609
0.0462

0.00545

2190

Table 4 : standard deviation of parameter estimates for 3rd ensemble

member.
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ﬁrocedure appears to have the ability to further 'whiten' a relatively
short sequence N drawn from a longer sequence whiéh is already nominally
'white' i.e. random and uncorrelated. This is not unexpected as we
cannot expect that a random sequence will have the same statistical
properties for both short (N) and very long records (table 1).

. If the model order n was higher than the plant order n* producing
the data, we would éxpect that the parameter estimates would be over-
determined and have wider confidence limits., Experimentally we found
that the matrix of second derivatives does tend towards singularity‘as
n is increased larger than n". The estimated standard deviation of
-the paraméters is shown in table 4 for n=1,2, and 3. From these figures
.it is obvious that the estimates for n=1 and n=3 have wider confidence
limits than those for n=2. This could be regerded as a suitable

indication that the original plant order was equal to two.

6.6  Example No.2

Tﬁis example was chosen to be a difficult problem which should
show the advantages of the estimation methods advocated in this thesis.
The true plant parameters are given in (6.3). These were chosen to
give_a wide spread of roots for A(z), i.e. radii of 0.80 and 0,99 in
the Z plane, and a pair of comple& roots for C(z) close, (radius 0.99),

‘to the unit circle

¥ = G B(z2) u o+ A« C(2) e + Y i k=1, 200

A(z)

=
—~
N
~
b=
S
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where

A(2)=1.0-2.37662" 1+2.01342 2=, 634262 0 ;Roots at 0.6933 $30.400, 0.99

B(z):'].O-B.’jOz-1 + B.Oz_a sRoots at 1.5 and 2.0
C(2)=1.0-1.95722" ' + .957662"2 ;Roots at 0.9786 % j0.1500
| G = 1.0 A= j.o ' = 0.0

(6.3)
As a further aifficulty the roots of B(z) lie outside the unit circle,
thus giving a non-minimum phase system as described in section 3.1k.

The data length of 200 is considered short by the criteria of chapter 4,
and the corrosponding effects arise when estimating the plant parameters.
The impulse response of B(z)/A(z) is shown in figure 27. This

shows a non-minimum phase response typical of physical systems such as
rear steered rockets and drum boilers. The spread of eigenvalues is
~demonstrated by the high frequency ripple on the longer term response.
The impulse response of 1/C(z), which is significant in equation (2.49),
is oscillatory with a period of k=41 and a damping such that the envelope
is approximately # of its initial magnitude at k=200.

The performance of the new estimation method on this problem was
in general better than Rstrém's method which took generally more
iterations and displayed poor convergence properties. A typical run
is detailed in table 5. Xétrﬂm's méthod failed to converge in 30
iterations and estimated the roots of C(z) as lying outside the unit
circle. This occured in about 30% of the runs with this example andv
would be of little practical use as described in.section 2.6. The
large number of steps of the algoritﬁm which were halved or reversed

is evidence of the difficult& of convergence. The reason behind this
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is more clearly shown by example 3.
As shown in table 5, the new estimation method was fairly efficient
in comparison although having a higher final estimation cost. This
was principally due to the automatic decision taken at a pole radius
of 0.99809 that the data length and pole position were becoming

incompatible under the criteria in chapter 4. The value of

§| 2%.0. 168
This particular factor arises for a complex root pair from the (SiSn)N
term in (3.41) when Ealculating the expected sample variance and occurs
in-most of the criteria of section 4.12. Such check calculations c;n
easily be included in the algorithm at each iteration of the climbing
routine.

A similar decision was previously made at a radius of 0.97613 to
change from single precision working to double precision. Experimental
" evidence had previously shown in many cases that such a move was wise
beyond a radius of 0.97. This acfion was taken to reduce the random
noiée introduced by the finite digital word length. There is otherwise
& noise term introduced into the numerical calculations and similar
effects are seen to those described in section 4.10. As the filter poles
. become stronger a ‘roughness' is introduced in computing the cost V,
and this affects the logic of the hill climbing routine which inherently
assumes é smooth function. Naturally these effects are also present
“in {strém's method, but they cannot readily be checked without repeatedly

solving for the polynomial roots.



ﬁstrdm's Method

Number of iterations 30

Number of steps

Number of steps

halved Y

reversed 9

Number of unstable costs evaluated 29

Final estimation cost 91.107

Final slope

Alz) polynomial

ﬁ(z) polynomial

A
C(z) polynomial

Table 5:

1332.9
a, | -2.3426
a, 1.9657
2 -0.62040
b, 1.0245
b, ~3.5581
b, 2.96811
c, -2.0742
¢, ' 1.1529

224,

New Method

Nil
95,288
(157.05, 57.38)
roots(0.67836 I 50.40438),
and 0.98988

roots 2.1591

and 1.4513

roots(0.98473 I 30.15437)

Comparison of Rstrém's method and the New estimation

method for one run of example numﬁer 2e
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6.7 Example No.3

The true parameters for this example are given in (6.4)

k=1, 50

-

L’ Lot Y
N
s
=

W .
+
=

L ]
Q

(z) e, + Y
z ‘ ACz) k %
' (6.4)
. A(z) roots at (-0.20, £ j0.9288)

B(z) roots at (-0.9288, I j0.20)

1+

c(z) roots at (1.01175 jO.1500) ;3 radius 1.023

GsA = 1.0 5 K = 0.0
‘The data iength is very short since the example was only used to
investigate the effect of evaluating the estimation cost V at points
where the roots of £(z) lay outside the unit circle. For one set of
data Vi1 By the cost V has been plotted before as figure 18 against pole
position along a line of search in the Z plane outside the unit circle..
Aibésigally smooth function is indicated which is perturbed by
increasing aq%bunts of added positive noise as the pole radius increases.
This noise is due to the random round-off errors of the finite digital
;ord length (8 decimal places), and disappears at these radii for
dbuble precision working. Any shall roundoff error in the digital
computafion is amplified by the ;ction of the unstable 1/@(2) filter
"until its significance is much greater. The basic functicn is smooth
as this has been recalculated in douﬁle precision arithmetic. The true
. for the gtoen data seb ~ '
optimum in this caseplies at 1.0976 ¥ j0.2015 with a cost of 18.140.

It will be noted that all the noise perturbations are additive

AP N A . . .
due to the definition of V as 25k=1 € with ék-derlved using the
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1/6(2) filter. This example vividly demonstrates the difficulties
which can occur with poles outside the unit circle; many climbing
routines would have their logic destroyed when the function V was

far from smooth.

6.8  Examples No.4k and 5

Equation (6.5) gives the parameters for example 4. The parameters
were chosen to give'a working example with a long data length but
with a strong complex pole pair in 1/@(2). Again the comparison was

made between Xstrﬁm's method and the new method.

Q

¥y, = G ., B(z)u + )\. (z) e + ' 3 k=1, 1000
k o A(zy £ az) ©

A(z) roots at (-0.20, ¥ j0.9288)

B(z) roots at (~0.9288, ¥ 30.20)
C(z) roots at (0.9740, ¥ j0.1500) , Radius 0.985
G, =30 5 A =1.0 ;5 } =0.0

(6.5)
"Figures 28 and 29 illustrate the progress made by each method for a
few_typical estimation runs. In general the new method was superior

and achieved faster convergence. This was again aided by switching

to double precision working for radii beyond 0.970.
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EXAMPLE

For this example the parameters of No. 4 were adopted i.e. those
in (6.5). However C(z) was changed to a complex pair of roots
(0.9792855 ¥ j0.200) at a radius of 0.99900. The data length was
shqrtened to 500. Clearly thesévtwo items are incompatible in terms
of chapter 4, and were used as an extreme test of the abilities of
the new method,

Dﬁring a typical estimation run, the algorithm reduced the cost
from an initial 1272.5 to 246.146 in 9 iterations. The gradient at
this point was (-319.4, 9.377) in the Z plane. The estimate of the
roots ¥of €(z) was then (0.979493 % 30.199385) at a radius of 0.999580.
'The value of IX‘EN was 0.657. As in example 2 the decision was
therefore taken to stop climbing radially due to the indicated
incompatability. The climbing routine was permitted however to search
angularly to.see if a better minimum could be obtained. A further
iteration gave an estimate of C(z) as (0.979880 2 jO.197472) with a
gradieﬁt of (-296,955, -66.6461) and a cost of 246,085, This minimum
wés taken as the best achievable in the cirfumstances, and it will be
-ndted that the gradient vector is virtually aligned with the radial
through the final optimum point.

.As‘g further check, the function was evaluated at the inter-
section 6f the unit circle and the above radial, and this gave a value
of 245,958, This is significantly smaller than the optimum found and
indicated that the true optimum in this case lay outside the unit
~ circle. Jstrdm's method ran into the same non-convergent difficultieé;
‘with this example as were found for example 2, and described in

reference 37.
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6.9 Constant Bias terms.

The basic system model equations (1.1) contain a constant bias
term X' on the measurements Yyco Such a term might be due to a direct
" offset in the measuring instrument. If this is known it can be
accqunted for by subtractiné the bias from the measured values.
Usually the: c'ontrol signal .uk would have a constant bias about the
measurement datum and as a result Yy would also have a constant bias
of a related magnitude. The bias term )(is intended for some unknown
value to be estimated and can represent a disparity between the input
Kk

The value of )} was transformed to appear in (1.38) as Y' and this

and output bias values on Yy and u

is related to Y by the definition in (6.6).

W= Hedico - (6.6)

The maximum likelihood approach of section 2.5 obtains an expression

for the residuals ék and then seeks to minimise the estimation cost
v 4 €§_1 ék.?. Equation (2.49) should be extended as shown in (6.7)

to include the constant bias term. The notation for )£ has been
extended to ){y to indicate that the bias is considered to be on the

¥, signal. Thus )'(e is the bias on e, etc.

/]

A A
ék = 1 [{\(z) ?k - B(Z). uk} + }{e | (6.7)

where }"e = -2;.1:Oai/ ;__1 °j; ‘){y ; )[y é}['
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It should be clear that the choice is open to model this term }(
as convenient, on the Tr € OF Uy signals. The only factors required
when transforming from one to the other are the steady state step
responses of the A,B and C polynomials. These are given by either
the sum of all the coefficiénts or the products of all the roots of
the‘polynomials.

The fuli ma#imum 1ikelihood-solution is now given by climbing
in all the previous parameters plus ){y. This would be most convenientl
done by correcting all the Yy values with a value of }(y chosen from

the climbing routine to give (6.8)

o
"

L (k=) ', - B(2) w) | (6.8)

where ydk 4 Yy - ){y

This method would extend the diménsionality of the space to 3n+2,

which was already considered large and was the reason for the least
équares modification of section 6.2. We introduced there the simple
approacﬁ of dealing with }Cy directl& by wusing the means of the data

on yk_and uk'to correct them to zero mean signais: If the roots of 6(2)
were very near the unit circle and N were not large, the cost response
due to )(y i.e. a bias on Ty would be similar to the response of 1/6(2
The s;mple method is.then not ideal because an estimate ){y intfoduces
components in the fu;l second derivative matrix of section 4,7, and

this matrix would tend to be singular. |

As an alternative approach it will be seen from (6.7) that the

estimation cost V is quadratic in }Ce and therefore the least squares
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procedure can be extended to give an estimate of ){e directly for any
A .
given C(z) value. Thus the dimensionality q of (2.11) and (2.7) is

extended by one to 2n+2 and m has an extra component 1.0.

k
Example number 6 was studied to verify some of these ideas.

The parameters are given in (6.9).

= B(Q) u

Yy Bl k’£<C(z) ey k=1, 1000 ’ (6.9)
where A(z) = 1.0 + 1.Oz-1 + 0.29z-2

B(z) = 2.5 = 2,52 4 0.725z"2

0(2) = 1.0 + 0.9z~ 4 0.8272 4 0.72™> + 0.6z~ F

E(uk) = 1.0 3 E(ek) = 5.0
-g[uk - E(w,) ]2 = 1.0
E[e, - E(e,) ]2 = 1.0

One data run for uy and e, was used as before to generate the Tier W

signals for various trials. Initially C(z) was set to 1.0 only and

thus the system was excited by only white noise from e, with *the bias

k
shown. A least squares solution for K,ﬁ and;ﬂ; enabled the cost
v =2§_13k2 to be found for e(z) = 1,0 only. This gave a value of

1001.531. Using the previbus simplé method of subtracting means first,
the estimation cost was then 1015.256. The increase in cost of about
1.5% is significant compared with other sources of error. When the
polynomial C(z) adopted the value shown in (6.9), the costs were
2219.397 for the complete least squéres method and 2285.662 for the

naive method i.e. ‘about 4% worse.
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This means that even for this trivial example method the simple
method is not satisfactory and cannot be recommended. However if the
Yy and u, signals contain a large constant bias, numerical difficultie;
can easily arise in the full maximum likelilood approach or in the
legst squares method., This is ﬁfincipally due to the finite digital
work length. Clearly in §uch a situation the above scheme of extracting
the signal means beforehand would have a computational advantage. |
During the estimation process itself, this ought to be backed up by
estimating the remnant constant bias.

Such a method counteracts the defect of not estimating the initial
. states on the signals at k=1. Difficulties can occur if all Yy
K= -n+1, =-n+2, sse.. ,0 are taken as zero, whereas there is in fact
a large D.C. bias on those values. The 1/6(2) filter is then excited
by quite the wrong initial conditions and this has a significant
effect on the numerical analysis. The procedure of extracting the
means first at least gives approximately correct initial conditions

and enébles the routines to work without word length troubles.

-6.10 Delay in the System.

The full system described by equation (1.1) is not likely to
describe a physical system in the sense that the model allows the Yy

signal to respond directly to the control signal u Certain

k.
coefficients such as bo and b1 should not be considered when the plant
contains transport or storage times which are significant compared to

the sampling period of the discrete time model. The study of this

area can become quite extensivej however for present purposes we have
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considered a typical delay of two periods on the uy

signal together
with examples 1 and 2.
The estimation runs were repeated for one member of the ensemble

for various delays of the u, signal. The resulting estimation costs

k
are_shown in figure 30. The system of example 1 gives a very clear
minimum for a delay of two‘periods, while example 2 shows a flatter
minimum centred on the same delay. These results are in line with'
Clarke's13 work with a similar probleﬁ. The flatter minimum of the
2nd example is probably related to the non-minimum phase nature of the
plant. Thus the coefficients of B(z) are 1.0, -3.50, +3.0 which are
large and aré dissimilar to those for a polynomial whose roots lie
inside the unit circle.

Given a plant data record some trial idea of the order n of the
' assumed plant structure and any delay terms must be formed before the
estimatidn routine is entered. From the results of section 6.5 and
table 4, it is plain that other values of n must be tried as well before
the true value of the order n* can be comfortably-deéided. From figure
50, it is élso clear that more than one delay time should also be tried.
This means that finding the.correct value of n and the transport delays
in the plant.-is itself a hill climbing procedure, but at a higher level.
The entire estimation process could be considered as a hierarchy of
hill climbing schemes. The topmost level would be deciding the possible
gtructure of the plant, the next deciding the order n and delay terms,~
and the lowest wéuld Be the scheme for climBing in tne parameters as

described in section 4.6, Naturallj the higher levels can only take
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integer values for their variables. This reduces the number of
effective combinations, but also implies that more specialised
integer hill climbing routines are required, although it is likely

that human beings would always be retained "in the loop" at that

level.
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CHAPTER 7

CONCLUSIONS AND EXTENSIONS

71 Summary of Contributions.

Tt is convenient to summarise the work of this thesis by a review
of éach chapter. The underlying structure of the systems studied was
introduced in'Chépter 1 and prinéipall& followed the work of Rowe16.

A. stochastic difference equation was derived from a basic system
description in state variable form. Since the derived form is for a
single input single output.plant, the equations in sections 1.5 to 1.9
are a subset of Rowe's multivariable case. It should be clear that as
it is possible to transform any description to an& other, within
certain conditions, we might as well choose a strﬁcture for which it

. is easiest to estimate the parameters. %strdm and Rowe choose the
-coefficient polynomial description of (1.38), while we advocate here
the root form description set out in section 3.7.

Chapter 2 described the properties of different estimation methods
from the simpiest least squares scheme to methods which made the best
ﬁse of the available data. istraﬁ's Maximum-likelihooa approach
combines theiproperty of being asymptotically efficient with a simple
and elegant computation scheme which reduces to an iterative hill
climbing problem. In practise this approach is not far removed from
the Generalised Least Squares method of section 2.4, although the
underlying philosophy is different. Zstrdm's method also has the

advantage of a theorectical proof of its properties at least

asymptotically, which is lacking in more heuristic methods such as
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Clarke's13.

Section 2.6 demonstrated that Astrém's solution of the estimation
problem in fact solved the stochastic regulator problem as well. This
demands that the system described by the polynomial 6-1(z) should
have all its poles within the unit circle i.e. a stable system. It
is feasible but inconvgnient to solve for the roots when given the
coefficients of low order polynomials during a hill climbing process.
It is clearly more sound to climb in, and describe systems by their
roots. This enables the stability criterion to be readily checked.

Tﬁe method .0of calculating the response of a discrete time system
with a rational polynomial Z transform was given in detail in Chapter 3
.principally since this appeared td be lacking in the text books. This
applies fo both the pulse response and also to calculating the system
output signal variance in a stochastic situation. Other authorsz9'30'32
have -employed the coefficient descriptions and have missed the simple
and elegant results which come from the transformation into a root
description. These results are not surprising in hindsight as similar
root methods have been frequeﬁtly used for continuous time systems
described by rational S polynomial;.

The approach from the root viewpoint does not appear to have been
exploited befpre in1the area of estimating discrete time'systems from

data records. Previous approaches have all(4’5'1o’11’12'13'15’16’19’26‘

27,28,37,39,42,43,44)

described systems in terms of polynomial

coefficients and have on occasion run into convergence difficulties.
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The X transformation method introduced in section 3.10 together
with the system description in terms of roots allows the estimates.to
be constrained within the class of stable systems. This removes the
most common source of non-convergence. The hili climbing routine with
the X transformation operates in an unconstréined space and can
therefore be chosen from a class of fairly sophisticated and efficient

1,73,43,44

algorithms. Several authors have shown that real plant

disturbances frequently arise from finite random walks or white noise

which has been passed through simple low pass filters. The system

disturbance in such cases has a high correlation with itself at noh zZero

time shifts. ‘This implies that the estimated polynomial 8(2) will have

roots close to the unit circle and give convergence difficulties. The

X transformation approach is most beneficial in this area. Not only

‘are the roots constrained as required but the non-linearity of the

Tanh tranéformation appears to match the sensitivity of cost to the

root mofion. Therefore as far as the unconstrained hill climbing

algorithm is concerned the hill is quité regular and free from

difficulf regions. .
Section 3.14 demonstrates more clearly than'ﬂstrﬂmss, by using

the root descfiption, the significance of non-minimum phase systems.

These can be regarded as having zeros outside the Z plane unit circle,

and yet matched by internal reciprocal poles to give an all pass

whitening effect. Thus non-minimum phase systems can be seen to be

equally easy to estimate, although they will limit the performance of
31 '

control systems” . Figure 17 demonstrated that such estimates will
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be strictly biassed fqr a finite data length and this can be seen by
differentiating (3.41) under the above reciprocal pole condition.
Section 3.14 also showed that a continuous time all-pass system loses
that prOpérty on sampling, but the property does appear in discrete
time for an inverse pole-zero relationship in the Z plane.

Sections 4.1 to 4.7 demonstrated that the first and second
derivatives of the estimation cost in terms of a root description can
be obtained in a way which is equally simple to Rstrén's shifting

method10’11

used for coefficient description systems. A trivially
simple filter is.required for each root and fhis can be implehented
with an equivalent ammount of work to that of the shifting method.
Further simplifications also arise.for complex conjugate root pairs.
Derivativés in the transformation X space can be obtained almost
directly from the derivativgs with respect to the roots, and can be

9

used for a hill c¢limbing routine” which requires gradient information.
The rest of Chapter & is devoted to studying the second derivative
matrix of»the estimation cost. This matrix enables statements to be
made about the probable precision of the estimate which has been
obtained and has been treéted beforé by Rstrdm12. However for several
experiments the practical second derivative matrix calculated from a
finite data set did ﬁot match the theoretical matrix for the same data
length. This effect also appeared to be related to the speed of

convergence of the estimate and the occurence of singularities.

Section 4.10 gave an expression for the variance of the matrix elemeﬁts.
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‘The calculation method for such variances was given in sections
4,10 and 4.11 and shows that for a given quality of the second derivative
matrix, the data length N and the pole 'strength' are related. Thus
criteria can be developed as in section 4.12 to enable judgements to
be made, either during the estimation procedure or when planning an
experiment, about the léngth of data required in given circumstances
in order to avoid convergence and other difficulties. For example the
estimation procedure can be stopped by a simple test, such as (4.87)
for want of a longer data length N. -

Chépter 5 draws on Astr¥m's work in order to prove consistency
and efficienby when estimating in terms of a root structure., Lemma 1
is shown to hold since by means of the X transformation the stability
of the A And C polynomials can be guaranteed and the estimate é can
only belong tolthe region B of stable systems.

- Theorem 1 requires‘for a proof of consistency that the climbing
routine finds the global maximum, rather than a leocal maximum of the
likelihood function. Sophisticated climbing routines are of benefit
here as in practise they are more cgpable of dealing with non-convex
regions. The likelilicod surface cannot be shown to be convex for the
same reason that occurs in Qstrdm's work, and hence a solid analytical
backing is not availéble for global convergence statements. The
reason lies in certain cross-correlation terms.in the full expression
for thg second derivative métrix described in sections 5.10 to 5.12.
These terms prevent the matrix from being proven to be positive

definite except at the optimum itself.
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‘Theorem 2 of Xst;&m, described in section 5.6, applies to the
root description approach with a proviso about the pepmutation of the
roots. Such permutations can be shown to be of no consequence to the
final system and such estimates are therefore consistent. Again
similar to Rstrﬂm, estimates qf the system initial conditions are
strictly inconsistent and have been ignored in later examples by
choosing suitable data lengths. The identifiability theorem 3 is
satisfied by the controllability assumptions of Chapter 1 about the
original system, but also requires the control signal to be persistantly
excitiné as defined in section 5.7. All the.previous lemmas énd
theorems are invoked in theorem 4 to shdw'that the maximum likelihood
éstimate is asymptotically normally distributed as the data length
tends to infinity. This leads to the estimates being shown to be
asymptotically efficient.

| Sectiéns 6.1 to 6.4 described the computer program which was

written to implement many of the ideas described in this thesis. Clearly
it is possible to climb.in the full root description of the A,B and

C polynomials. However for a ﬁorking engineering method, advantage

was taken of opportunities to reduc; the dimensionality of the space

to only n instead of 4n+2, and also to reduce the work required for a
cost evaluation. This means a loss of academic nicety, but a
considerable gain of practical worth in the final program. The checks
suggested in Chapter 4 weré incluaed, as this énables the estimation
procedure to halt when the model and.Aata length are incompatible.

The new method gave very similar results as Astrém's program, with
the standard example 1. This is a natural requirement of any new

estimation method. Example 2 was chosen as a difficult problem likely
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to give convergence difficulties. The differences between the new
method and Astrdm's now begin to be apparent. This is shown further
in the later examples which were chosen to illustrate different

features.

7.2 Extensions.

Various possibilities come to mind wheﬁ considering the practical
estimation of parameters from field data records. Section 6.9 briefly
covered the treatment of signals which contain a constant bias. Such
signals and ill defined transducer noise are common in practise and
grise from Both the variable measured and.the instrumentation available.
The bias term may well drift with time or otherwise limit the available
measuring precision. These details can only be properly resolved with
experience of field work, although hypothetical analysis can be used for
background information.i Thus the judgement of whether a sophisticated
estimation method is good or not depends on practical experience
as well as inherent computational advantages.

In a similar way, actual delays in the plant due to transport
or storage are not necessarily amenable to the method described in
section 6.10, There we described a hierachy of climbing operations
involving decisions about structure, order and parameter estimation
at successively lower levels, Suqh schemes cogld evolve to be very
complicated and include pattern recognition algorithms to aid the
decision processes. However it is quite likely that a human being
would be retained 'in the loop!' inAall but a few fast time varying

systems.
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It is possible that the method described here might be extended,
as in Rstrdm's case11, to an on-line adaptive situation. Strictly,
this is not derived from the Maximum Likelihood method which is aligned
towards a hill climbing procedure using all the available data.

However given a value of 6(2), a recursive form of the least squares
metﬁbd19 can be used as in section 2.2. Each new data point would be
filtered as iﬁ (2;37) and used tg update the estimate using the
computation of (2.25) and (2.26). The full Maximum Likelihood method
could conceivably be treated by recursive updating in this manner if
the hill in the é parametefs could be shown to be suitable regular
under certain conditions. For the present theory to hold, any
recursive approach must be proven to be equivalent at each stage to
the full maximisation over the total data set.

The state variable description assuned for generality in (1.1)
may in certain practical cases prove too pendantic. It might be
known for example that a system of (7.1) was nearer a true description
of the‘actua14system. This might be a fast dynamic system described

by the A and B polynomials and a dynamically much slower disturbance

C,D added to the system output.

K (7.1)

Q
~
N
(s
1]

¥y, = B(z) u +
k 2(z) k

[}
—~
N

]

Although the standard description could be obtained by absorbing the
D polynomial in A,B,C set, it might be prefered to rework the equations

of section 4.6 and apply the method to the new stiucture. In such a
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case it would be wise to check that such a set of parameters could be
estimated consistently in the sense of theorem 2. Thus the controlabilit;
conditions must still apply and this implies that pole-zero cancellation
is not permissable.

It seems very likely that the work described here can be extended
to ﬁhe multivariate input—oﬁtput case. As suggested by XStr8m11 and
developed by ﬁowe16, a suitable canonical form is required which is
a minimal representation in order to avoid the singularity effects

described by Kalman25

e« The 'A' canonical form of Rowe is given here
in (7.2). As méntioned in section 1.7, the matrix polynomial A has
a number of péssible zero eiements for a minimal representation. The
¢+ notation (Im)j is used to donate that certain rows of a unit matrix

of order m have been deleted during the transformation from the state-

-description given in section 1.4 and 1.5.

Yy * A1zk-1+A2(Im)2Xk—2 cevee +'Ap(1m)plk-p = B +Bw o eeees

| 3 % 3
+ BpEk-pF*'j& e + C A% 4 eeees Cp Cr-p

(7.2)

-

A working estimation procedure can»be constructed as a multi-
variate form of the prograﬁ used fof the examples in Chapter 6. Given
some value of the e(z) matrix polynomial the vector signals Ty and v
may be filtered by 6(2)-_1 as in section 2.4 to give y¥ and ur .

A multivariate form of the least squares algorithm16 can now be used
to estimate the A and B matrix polynémials. The procedure is iterated

as before towards convergence using a hill c¢limbing technique. . As
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before the stability of the e(z)—1 system is important and its effects
cannot be ignored.

Rowe retained the coefficienﬁ description i.e. the companion form
of the A,B and C matrix polynomials,for the multivariate system.
Computational difficulties ére known to have arisen for the case when
the éigenvalues of é were ciose ﬁo the unit circle. This is simply the
multivariate form of the effects seen for scalar polynomials in this
thesis. Clearly a more rational approach is to express the matrix
polynomial 6 as a Jordan form in which the eigenvalues are displayed
explicitly. A similar treatment should also be applied to the A matrix
polynomial invview of the conditions required by the theorems in
Chapter 5. These explicit eigenvalues can then be treated with the
X transformation method as before to obtain similar advantages to the
:scalar version. A
Consider the matrix polynomial 6(z) to be of the form (7.3)

6(2) = (I + 6 Z +,6 A sevee 6 Z-p) | (7.3)

m 1
. . . A -
where Im is an m*m unit matrix, and Ci.are coefficient

matricies.

The index p is the controllability index as discussed in Chapter 1 for
A

minimal representation forms. If now C(z) is expressed as in the form

of (7.4), there are still m2p parameters, but each "root block" can

be individually treated.
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A -1 A -2 A -1
&(z) = (1, + €@ DI C 775 eian (1627 (7.4)

Each matrix éri is m*m, and from these the coefficient matricies éi
of (7.3) could be calculated. Thus as in section 3.7, we may as well
choose a form which has advantagés for estimation purposes if
altgrnative forms can always be derived later.

Suppose we are concerned with obtaining an m vector output signal
ék from an input v, to a filter &(z)” as in (7.5).

k

A -
a = C(z)]

Sy Yy Yy

1 A -1.-1
) Y

A _=1.=1 L Y; |
= (Im+CrpZ ) Teeees (Im+Cr2z ) (Im+Cr1z

(7.5)

It will be noted that the multivariate form does not commute and the
block order is reversed on inversion. If the intermediate m vector
signal Wy defined by (7.6) is introduced, then we can study the

stability of the elemental form of (7.7) in isolation.

A -1.=1 A =14=1
w = (I + Co(pm1)2 ) weeee (T +C 27 ) 'y (7.6)
4 = -« érpz‘1)‘1 Wy | (7.7)

As shown in Chapter 1, an m*m non singular transformation matrix T can
be chosen in (7.6) so that the matrix Fp is diagonal and explicitly

A
shoving the m eigenvalues of Crp'

A - - ‘ .
g = T (I + Fp2 T (7.8)
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The matrix T-1 is made up of m column eigenvectors each of arbitrary
norm. Thus T;1 contains (mz-m) non~-arbitrary parameters and Fp
contains m eigenvalues., This the same total of m2 parameters as in
& . The procedure can be repeated for each block of (7.4) to give

rp
the total description of (7.9)

=1, o1 -1,=1
) T.T —1(Im+Fp-1z )

141
)
PP

8 =0 V(I 4F =
m p

v - ‘ -
ge=T, T eee T, (I +F, 2

o1 1 T, v

1=k

(7.9)

To ensure stability of such a system, each of.the m elements of
each Fi matrix, i=1, es.eee p, should have a2 magnitude of less than 1.0,
and are therefore candidates for the X transformation process of
Chapter }._ For convenience we can set the m values on the main diagonal
Abf each Ti to be unity, this leaves a total'of p(ma-m) parameters to |
be specified by an unconstrained hill climbing process.

The above procedure has reduced the é(z) description of (7.3)
to a férm (7.9) which is more usefﬁl for estimation in the sense that
tﬁe stability.of 8(2)™7 is ensured as was done in the scalar case; and
any other form may be derived if required. Jordan forms of F, ih vhich
there are more than m non-zero elements, are'not treated so easily, but
have been assﬁmed to be relatively rare. Complex conjugate eigenvalues
or root blocks would probably simplify as in section 4.1 to give
amenable forms.

The actual filter of (7.8) is as easy to implement as that in
(4.6) since it reduces to the structure of (7.10), which is m simple

decoupled scalar filters.
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T 0.
1
..1 ,
(1+f22 ).. )
-1
(1+fmz U
(7.10)

, Wwhere q is any

parameter, are not difficult to calculate so that sophisticated hill

climbing routines can be employed. Thus the multivariate problem,

although complicated can bé regarded and programmed as a set of scalar

filter stages similar to the scalar polynomial systems of this thesis.
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APPENDIX 1

The variance of sample variance of a 'white noise' sequence with a

normal distribution.

. N
Define the sample variance Q’ as @

1S

TaN .2 ’ | ,
St €3 - (A.1)

ﬂN

where €k, k=1 eeeee N is a sample of an independant random source

. . 2 . . .
wvith known zero mean, variance 0o and normal distribution.

i.e. the L4th. moment, E(€£) = 3 Ut

The variance of-ﬂg is given by its 2nd. central noment.
N N N, 2
var. ) = E[d) - EGD] (.2)

Now from (A.1) E(ﬁg) is given by 0‘2 then
var. B = E[(@H2+ 52 - 2 (@D ] (A.3)

: ' N 22 N 4 L N 2 2
E[%{ﬁ:‘lgjﬂeiej + 55164 }*‘ Te = §gi=.1ei* Te ] (a.h)
N j#i ‘ '

N e

N N 22 N I 4 2 2
-12{2i=1£j=1E(€i€j) +2i=1E(€i)} * 0 = -23:::113('51) oy
N 34 (A.5)

Due to independance E'(Ei C';T) =E(€i2) ‘E(e";) for i#}j
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' N 2 2 b 2
var.(ﬂo) = N(N;1).gé sy * j%.}aé + 0 - %? 0 *0e
' N N
4 b I
. N 4 - 4 L2
..Var-(ﬂo) = a—e = _U‘IE; o+ 3;-9 i + 0; - 20-8’ = fq-e‘ (Ao6)

This result can also be derived by considering ﬂﬁ as a sum of squares

as in (A.1), and has a chi-square distribution with N degrees of

freedom.
2 N2 -1
1 & exp (<18 . (4.7)
N 2 pd '
F(E) )

It is straight forward to show from this that ﬁﬁ has a mean and variance
given by

1 E(xa) = o (4.8)
N .

2 2
var. (1) = 20
N

TN

For values of N 230, the Chi-square distribution is closely approximated

by a normal distribution with the same mean and variance.

Variance of a sample autocorrelation.

This can be derived in a similar way to above. Define a sample

autocorrelation ﬂg of shift 1 as

N Nt ' ' :
o=l Zigeg € €ipq (£.9)
where N!' = N-1 and is the maximum number of terms to be summed

for a shift of 1 and a data length N
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N
The variance of ﬁl is given by (A.10)

' i = |
1 21: 4 66, - E(ﬂg)] (A.10)

var.(ﬂg). =k [
N

Now ‘_E(ﬂfg) is zero due to the independance of €i°ei+l for 1#0.

<
o
L2}
.
S~
RSV
~r
fl

123 _EBe e 5 €46 1) ‘for 140 (A.11)

N'I Nl
1 j=1(21=1[3(ei)*E(€i+l)*E(€j)*E(€j-1 } E(e J+1}

N2 143

(A.12)
There will be terms in (A.12) such as E(ejz)*E(ei)-E(€5+l) etc. but

these with most of the others will be zero, since E(ek) = 0,0

.-.var.(ﬂfgq.) _._1_2 B(€2 §+l)
: ,2 |
! (A.13)
. Nt 2 2 .
= ._1.523-=1 E(€j )x E(€j+1) since 1#0
N .
e (N 2 2 ‘*
Svare(g) = B_. g ug" = fe (A1)
N12 Nt '

-

The expected sample autocorrelation p? has therefore zero mean, and
variance of 4 | |

% /i
We could now repeat the process between (A.9) and (A.14) to obtain

the covariance between p’g and ,(Zq s the sample autocorrelations
. . 2

for different delays Il.1 and 12. Equation (A.13) would then contain the
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2 .
term }:‘,(e:j Y * E( €j+l '€j+l ) which would be zero for 11 4 12.

2 1

Hence we would expect ﬁg and }52 to be independant and have a -
1 2

zero covariance for 11 4 12 (A.15)
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