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ABSTRACT 

This thesis describes several original advances to the art of 

estimation of discrete time systems from data records. The theory 

developed here shows that systems given by rational Z polynomials 

are better characterised by the roots of the polynomials rather 

than the coefficients. 

The root description allows general expressions to be found 

for the system response and output autocorrelations for both infinite 

and finite data lengths. From such expressions, the importance of 

filter stability in astram's estimation method can be seen very 

clearly. A novel transformation is introduced which is used to 

restrain the filter estimates to the class of stable systems. 

This leads to the establishment of a new estimation method which 

describes systems in terms of polynomial roots 

The breakdown of estimation methods for limited data sets is 

shown to be due to a relation between the pole 'strength' and the 

length of the data record. As a result criteria are developed which 

enable judgements to be made about the length of data required in 

order to expect a satisfactory estimate to be achieved. astram's 

proofs of consistency etc., are shown to hold for the new root 

description approach. Several examples are given to illustrate 

the practical benefits of the new estimation method. 
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NOTATION 

A(z) 	n
th 

order polynomial in z 

A 	ith  coefficient matrix of polynomial matrix. A(z) 

a 	Continuous time pole in S plane 

(a+jb),(a-jb) 	Complex conjugate roots 

a.1 
	

i
th 

coefficient of polynomial A(z) 

B(z) 	n
th 

order polynomial in z 

it h B. 	3. 	Coefficient matrix of polynomial matrix B(z) 

b 	Continuous time zero in S plane 

b.
1 	

ith  coefficient of polynomial B(z) 

C 	Contour of integration 

C(z) 	nth order polynomial in z 

C. 	ith coefficient matrix of polynomial matrix C(z) 

ci 	ith  coefficient of polynomial C(z) 

D 	mgr. Matrix 

D' 	Region in the complex variable plane 

D(z) 	Denominator polynomial of junior system 
ith di 	coefficient of D(z) polynomial 

Partial differentiation operator 

E(.) 	Expectation operator 

E0(.) 	Expectation with respect to the distribut--ion 
defined by the true parameters 200  

ek 	k
th 

member of a random sequence 

F 	System matrix n*n 

F(z) 	General function of a complex variable z 
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f. 	ij
th 

element of F 
1j 

fk 	
General discrete time signal 

f Total vector of f. 

f(X,G) 	General probability distribution 

G Control matrix n*r 

Go 	
Constant Gain term equivalent to bo 

G(z) 	General rational function of z 

gij 	
30th 
10 	element of G 

g(X1 	 Xn
) 	Generalised estimator of 0 

g(X1 	 X
n
A. 	Joint probability density 

g(0) 	Probability density of 0 in Bayesian sense 

H Observation matrix m*n 

H. 	i
th estimate of a second derivative matrix inverse 

1 

H(z) 	General rational function of z 

hk 	General discrete time signal 

Total vector of h
k 

hij 	ijth  element of H 

Im 	
Unit matrix of order m 

I
N
(0) 	Information matrix of 0 for data record N; see(5.14) 

J 	n*m matrix 

K(z) 	Matrix polynomial in z 

k 	Discrete time index 

L(z) 	Matrix polynomial in z 

L(A) 	Likelihood function of 

L' 	Logarithm of L(0) 

LIN(Y,0) 	Logarithm of the likelihood function of 5 based 
on data Y 
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LI(6,g0) 	"Tim 	1 E L' (Y,6) 
N..1.03 Yr 

44.10(Y,ON) 	Second derivative matrix of 	Ys6N) 

L'00(_0,.§4)) 	clim 1.E0 
 L'N(y,6) 

N-4'co N 

il j,l 	General running indicies 

M 	171•11 matrix 
or 

Total matrix of mk  sequence products 

m  Order of observation vector 

k 	Measurement vector at time k 

N  Length of data record 

N(z) 	Numerator polynomial of junior system 

n 	Order of system state variable 

ni 	ith  coefficient of N(z) polynomial 

m. 	Order of pole ei  

P 	Estimate of covariance matrix 

P.
1 	Pole in the z plane 

p 	Controllability or observability index 
or 

A complex variable 

Matrix 112V(0)  

st)0i?)0i 

q 	General variable defined locally 

Region in Euclidian r space 

R(0) 	Risk function of 

Ri 	 th . Residual of a rational polynomial at the 1 pole 

R 
x I
R
z 	Radii in the X space and z plane 

r 	or Order of control vector 
General integer constant 
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r. 	 ith coefficient of a z polynomial 

T 	Transformation matrix nsla 
or 

Sampling period of discrete time 

N AN T (Y10 ) N A Matrix of orthogonal eigenvectors of 1.1,1  (Y,0 ) 
N 

t (superscript) 	Transpose of a matrix 

o 	Set in R,  

Laplacian complex variable in S plane 

Sum vector of f and h 

V 	Total vector of v
k sequence 

14) 	Estimation cost associated with le 

V(k) 	Total scalar disturbance sequence at time k 

v(k),vk 	kth member of disturbance sequence v 

II 	Total N vector of control sequence uk  

u(k),uk 	kth member of the control sequence 

w(k),wk 	k
th 
 membere disturbance sequence w 

X 	X' 	nth order transformation with saturating charact- 
-eristics 

X
1  
	 XH 	Generalised data set 

x(k) 	nthorder state vector at time k 

Y 

yk y(k) 

• Z. 
1 

z 

di  

Total N vector of observation sequence Y
k 

kth  member of observation sequence 

Complex variable plane 

Zero, in the Z plane 

Unit time advance operator 

Hill climbing correction factor 

ith  root of polynomial A 



Scalar variance of ek 

Mean of a probability distribution 

Defined as q1*qeq3  *q1 

ith root of polynomial B 

Disturbance input matrix n*n 

.th of polynomial C root 

S(j) 	Defined as 1.0 for j=0 ; otherwise 0.0 

Si
th root of polynomial p(z) 

C 

Ek 

P9IX1 	 XN 

7i 
0 	Vector of parameters 

90 	Vector of true parameters 

6, 	Estimate of 0 at jth  iteration 

6N 	Estimate of 0 from data of length N 

Oi 	ith  element of 

)400 	Constant bias term in a signal 

Covariance matrix of a disturbance signal 

AN  (Y,0) 	Diagonal matrix of eigenvectors of 1.1,L0
N 
 (Y,0

N 
 ) 

11. 

Napierian base 

k
th member of a random sequence 

) 	Conditional probability density 

.th root of polynomial N(z) 

Qi 

( 
i=1

n) 
 

cr e 
.r 

Projection operator 

pole of F(z) 

Defined as q1+q2+q3  

 

+qi 

 

Variance of a signal e 

Discrete time variable 
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' (prime) 
" (double prime) 

A  (superscript) 

A 

jrc 

Prob. (.) 

Weighting matrix 

Power spectral density of a signal f 

Serial autocorrelation at delay r 

Sample estimate of Or  over data record N 

Cross correlation between two signals produced by 
the named systems. 	see(4.51) 

Covariance matrix of 

Sign denoting estimated value 

Denotes error between true and estimation values 

Sign denoting a specially filtered value 

A term which is not present in all cases 

Used to denote a transformed variable in some sense 

Implies deletion of a term 

Defining equality 

General Norm 

Integral around a closed Contour 

Probability of a variable (.) 

§ff (Z) 

°r 

0: 

95r (systems)* 
 0.2 

J1 

A 

s 

or 
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CHAPTER,1 

THE STRUCTURE OF THE PROCESS 

1.1 	Introduction. 

A problem which often arises in the areas of commissioning and 

running a process control system, is that of estimating the parameters 

of the plant. These estimates are used for deciding on controller 

settings for the various digital control loops within an on line 

computer. Alternatively we may be interested in the synthesis of a 

control system and its further study, and need a mathematical model 

of the process and its environment. 

Knowledge is frequently lacking about industrial processes, and 

the basic equations are often dubiously known. Even if the structure 

of the equations governing the process can be found, the parameters 

of these equations are often unknown. In this thesis, we will present 

a technique for numerical identification of a process using measurements 

of the relevant input and output variables. This technique attempts 

to represent the observed system as a single input, single output, 

linear dynamical system with stationary normal disturbances having 

rational spectra. Such a system can be described by a transfer 

function with a finite number of parameters. Once a structure and 

its order has been chosen, the identification problem can then be 

regarded as a parameter estimation problem. 

The assumptions made about the system are restrictive in that 

estimates are obtained for a linear and time invariant model. It 

is also assumed that the process is sampled at a fixed sampling rate. 
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This enables the modelling to be done in discrete time form, which 

is ideal for direct digital control. by a process control digital 

computer. 

The assumptions mentioned above imply a finite dimensional 

parameter space which is essential for the algorithm presented later 

based on a hill climbing procedure. Relaxations could be permitted 

in the assumptions as long as a given structure, for example a non-

linearity, can be decided on. The mathematical formulation of the 

present method would not necessarily hold in this case, although 

engineering judgement could be exercised in this respect. Similarily 

the method should produce acceptable engineering results for non-

gaussian disturbances, since it attempts to produce "white" or 

independent residual prediction errors. 

One cannot expect an exact model can ever be obtained in practise 

from a data record of a plant.. We are obliged to propose a suitable 

model structure and then use an estimation algorithm to assign numerical 

values to the parameters. It will be shown later that various models 

of the same order may be transformed into each other as convenient 

after the estimation process is finished. Thus it would be quite valid 

to choose a structure for estimation, which we knew was well suited 

to some algorithm, and later transform the model into any other 

desired form. 

Naturally there is a risk in pre-deciding a model structure and 

an estimation procedure, and it remains very necessary to exercise 

judgement as an essential part of such a scheme. There is no advantage 

in proposing a complicated model or estimation procedure unless the 
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results can be used in practise, Thus the complexity of the model or 

estimation will depend largely on its later intended practical use. 

The algorithm will be seen to be extendable to the multidimensional 

input - output case without severe difficultly now that Rowe16 has 

developed a suitable canonical form. Much of the work and methods 

shown in this thesis are similar to those of astram/°' 11912 937 • 

However the claim is made that the parameter set chosen here has 

considerable advantages in that the algorithm has faster convergence, 

and valid decisions can be easily made about continuing the climbing 

process, or about specifying the length of data record required. 

The work presented here is devoted to obtaining the most accurate 

estimates in the quickest manner and is not concerned with controlling 

plant using those estimates. A control engineer may not be interested 

in obtaining estimates which would give him less than say 1% of plant 

running cost improvement. The schemes proposed have the advantage of 

giving simple "rules of thumb" which can be used to make decisions 

about the quantities of data required to achieve an acceptable result. 
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1.2 	Outline of the Thesis. 

The rest of this chapter is devoted to a development of the model 

which will be used for estimating the process. It is assumed that 

all systems will have a state-space description, together with 

conditions on controllability and observability. This description 

is transformed to a transfer function description betrcen measurable 

input and output variables. 

Various estimation methods as used by previous workers are 

outlined in Chapter 2 together with the failure areas of their 

algorithms. A full description is given of the maximum likelihood 

algorithm as used by astram, careful consideration shows that an 

alternative parameter set is better suited for estimation purposes. 

A closed form solution is given in Chapter 3 for the variance of 

the output of a discrete time rational transfer function, whose input 

is white noise. Various contour plots are shown of the variance as 

the poles and zeros of a simple discrete time filter are moved on 

the z transform plane. A non linear transformation is introduced 

which is used to confine the pole positions in the z plane within the 

stable region, while allowing a hill climbing procedure to work in 

an unconstrained space. It is further shown that the proposed method 

will also cover non-minimum phase plants which have z transform 

zeros outside the z plane unit circle. 

Chapter 4 developgs the first and second differentials of the 

maximum likelihood function in the chosen parameter space. Expressions 

are also obtained for the variance of the second differentials and 

the bias arising from the finitness of the data recorded from the 
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original process. This leads to some thnple criteria for either stopping 

the estimation procedure, or for pre-deciding how much data is 

required to be recorded from the plant. These criteria are then 

related to other criteria derived from more intuitive ideas, and 

shown to be similar in result. 

In Chapter 5, the necessary statistical proofs of consistency, 

efficiency and unbiasedness follow similar lines to those of astrOmi  

but are derived in the new parameter space. 

Several computed examples are given in Chapter 6 to demonstrate 

the usefulness of the new estimation method. The improved convergence 

rate of the new method is shown in comparison with astrem's method, 

which has been taken as the most effective method known in the 

literature to date. The examples have been chosen to demonstrate 

the progress made in areas where estimation is known to be difficult, 

for example, where the system disturbance is by correlated noise. 

The final chapter summarises the work of the thesis, and mentions a 

number of areas in which more work can be done. It is shown that the 

new estimation scheme can be extended to the multivariable situation 

where both the system inputs and outputs are vector quantities. A 

further transformation of Rowe's canonical forml6  is required. The 

essential principle remains that climbing efficiency can be greatly 

improved by having constrained control over the eigenvalues of the 

dynamic system used during maximum likelihood estimation, thus 

ensuring system stability. 
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1.3 	Contributions of the Thesis. 

The principal contributions of this thesis, which are believed 

to be advances in the state of the art of estimation, are summarised 

below. 

A fully described technique has been developed to calculate the 

output variance and any autocorrelation term of a discrete time system 

fed with a 'white' sequence, It is now clear that the roots of the 

defining polynomials, rather than the coefficients, are the most 

distinctive features of a system. This means that the above results 

can be given by general expressions for systems of any order. All 

the auto-correlation calculations have been repeated for the case of 

a data sequence which has a finite history.Arogi=e0 

ii4*ftw=4eamftm Variance contour plots have been given for 

various pole-zero configurations and these have been shown to change 

to so:.- degree for the finite data situation. It has been shown that 

zeros lying outside the unit circle in the Z plane are strongly 

related to continous time non-minimum phase systems, and that such 

systems can be satisfactorily estimated without difficulty. 

The importance of filter stability has been realised when using 

RstrBm's estimation method. A novel transformation method has therefore 

been developed to restrain these filters to the class of stable systems. 

Any hill climbing procedure used in the estimation process can now 

work in an unconstrained space and yet ensure convergence through 

being able to define stable estimates only. This approach has been 

used in a new and practical estimation method which describes a system 

in terms of the polynomial roots. It is shown that the new scheme 
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is as equally easy as Ltram's, since the estimation cost and its 

derivatives can be calculated with a similar efficiency. The new 

method has been shown to satisfy 5tstram's theorems and proofs for 

consistency etc., without any great modification. 

The effect of finite data lengths on the estimation procedure 

has been studied. Valid new criteria have been developed, which 

relate the length of a data sequence to the 'strength' of the poles. 

These criteria, which originate from the non-stationarity of filtered 

data, have been seen to be similar to those given by more heuristic 

reasoning. Several examples have shown that the new estimation 

method has a faster convergence in difficult situations than strBm's, 

and this is aided by using the above criteria for stopping tests. 
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1.4 	Model Structure. 

It is assumed that the process is described by a general discrete 

time state variable description given by (1.1). This model is linear, 

time invariant with stochastic disturbances and is assumed to be stable, 

controllable, and observable. 

x(k+1) = Fx(k) + Gu(k) + rw(k) 

Y(k) 	= Hx(k) + du(k) + v(k) + 
k=1,2, 

In equation (1.1) x is an n vector of state variables, and in general 

there are r controls u1and m observations y. Thus matrices H and G 

are m.n and n.r respectively. Since in this thesis we are principally 

considering a single input single output process, then the control 

u, observation y and disturbances v, w are scalars, with m=1, r=1. 

Matrices H and G reduce to 1.n and n.1 respectively, while F is 

square n.n and r is n.1. In general there will be a constant bias 

term X in the observations y(k) representing a bias level in the 

measuring instrument. Both v and w are scalar random noise variables, 

each drawn at time k from a univariate normal distribution and have 

the following statistical characteristics. 

E(w(k)) = 0. 

E(w(k).w(k-i)) 

E(v(k)) = O. 

E(v(k).v(k-i)) = Tv2.(5 (k-i)  

E(v(k).w(k-a= 4w.S(k-i) 
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where E(.) = expected value of (.) 

2 
Tv
2

*14 are the variances of the v and w sources. 

S(k-i) 4 1.0 ; k-i == 0 

0 0.0 ; k-i / 0 

If disturbances w(k) and v(k) were in fact zero, the system of 

(1.1) would be deterministic. Some of the following sections initially 

require this condition when developing the required transforms. 

Frequently we might expect F to be partioned and G to have some 

zero elements such that there are some states in x which belong to a 

measurement noise or disturbance process which is distinct from the 

plant controlled by u(k). These extra states are then regarded as 

the noise states used to describe some coloured noise disturbance. 

Thus the assumptions are extended in that the state vector x is taken 

to be controllable from the inputs u(k) or from w(k) or from both. 

The concepts of observability and controlability introduced by 

2 3 50 51 Kalman, ' 	' 	and others will be defined in the following manner. 

Assume the system of equation (1.1) is noise free and therefore 

deterministic. For a 

 

given initial 

 

condition on x at time k=1, the system is said to be controllable if 

state x can be changed from any initial condition to the origin of the 
u(k),:k =1,...n. 

state space of x in a finite time by applying input 	over this periodin 

as shown in equations (1.7) to (1.10). 
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x(2) = Fx(1) + Gu(1) 

x(3) = Fx(2) + Gu(2) = F2x(1)+FGu(1)+Gu(2) 

then x(n+1)-Fnx(1) = Pn-1Gu(1)+Fn-2Gu(2) 	 +Gu(n) 

= (G,FG, 	 Fn-1G) u(n) 

u(1) 

As we were given'A(1) and x(n+1) then the controls could be 

uniquely found only if (G,FG, 	 Fn-1G) had rank n and was therefore 

invertible. This result is more complicated for the case when r>1 

as demonstrated by Luenberger51 and by Rowe16. The array 

(G,FG, 	 Fp-1G) must have rank n, where p is a controllability 

index51, p‘min (nm,n-r+1) and nm is the degree of the minimal 

polynomial of matrix F. Since we are considering only single input 

single output systems at the moment, this consideration does not apply. 

By an analogous approach to the controllability condition, a 

similar dual condition applies for the observability of the system. 

The state x at time k=1 can be determined uniquely by observing y(k) 

for a finite time if 

(Ht,(HF)
t  	 (HFn-1 )t)t 

has rank n, and is therefore nonsingular. Again, for the situation 

where m>1, the power of F runs to p-1 and p4min (nm,n-m+1) is now an 

index of observability similar to the case above. 
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1.5 	Transformation to companion form. 

A transform T, an n.n non-singular matrix with constant elements, 

can be used as an equivalence transform to change the co-ordinate set 

of the deterministic system to x1 =Tx, where the prime symbols refer 

to the new system. The system matrices are then given by (1.12). 

F' = TFT 1  GI = TG H' = HT-1 (1.12) 

An equivalence transform has the property that for the same set of 

inputs u, the original system and the new system will both give the 

same outputs y, as in (1.13),for appropriate initial conditions. This 

has been more formally given by Athans and Falb53. 

y = H'x' = HT-/Tx= y 
	 (1.13) 

If T is defined as (qt1(qF)t 	 t  (qFn-l)t)'where q is an 

arbitrary vector which satisfieS T having rank n, then the system F' 

can be seen to reduce to the normal companion form51, with the states 

xi  referred to as phase variables20. 

Fs=
_ 	- 	_ 	- -1 . q 	- -qF-1 q  

 qF 	qF 	qF 

-1 A(m)(j)-1 

(1.14) 

	

. 	. 

	

.. 	. 	. n-2 

	

. 	. qF 	. 

qFn-1  qFn-1  qFn-.1 qFn-2 

	

_ 	- 	,_ 	_ 	- 	- - 	_ 
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th Because of the particular structure, i 	row of M equal to the (ill)th 

row of J, and J non-singular, it can be shown16 by postmultiplying both 

sides of (1.14) by J, that the (i+1 ,i)th  element of F' is 1.0, while 

the rest of the F. elements are zero, for i=1, 	 n,j-1, 	 n-1. 

Thus F' takes the form of (1.15), which is the normal companion form. 

44. 

(1.15) 

• 0 0 1 

-a
n -an-1 	 -a

1 

The a. terms, i=1, 	 n, have yet to be determined but will satisfy 

the characteristic polynomial of both F and F' since this is a criterion 

for their similarity52.. The terms are therefore unique and independent 

of the choice of the n-vector q. 

When q is chosen to be the vector H for the scalar observation case 

studied, the transforming matrix T is the observability matrix in 

equation (1.11). The new system matrix H' I l.n, also has a particular 

form when T is chosen in this manner, and is given by (1.16). 

Equation (1.16) may be compared with (1.14) and it can be seen that M' 

is no(l.n, while J' is still n.n and non-singular. 

F' = O 1 

O 0 1.  

O 0 0 

• • 	• 
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-1 H 	= H H 

HF 

HFn-1  

-1 
= HF 

 1 HF-1 -1 -1 
= (11')(P) 

  

  

H 

HFn-2 

 

(1.16) 

 

       

       

By a very similar argument to (1:15) H' reduces to (1, 0, 0, 	, 0) 

(1.17) 

The new matrix G' = TG does not show any special form. A precisely 

dual transformation derived from controllability conditions can also 

be used on F to give the transposed canonical form for F, and a simple 

form for G'. 

1.6 	Transfer function description. 

We propose here a transfer function description of the system as 

a rational Z polynomial between the input variables u(k) and the output 

- variables y(k). 

y(k)/u(k) = B(z)/A(z) 	 (1.18) 

or y(k)+a1Y(k-1) 	+a
ny(k-n) - b1 	* 

u(k1)+b
2  u --2) 	

bnu(ke-n) - -  

(1.19) 

/ -1 	-1 Thus A(Z ) = 1.0 + a1 	
-2 	 anz z 	+ a

2
z (1,20) 

B(z-1) = 	
b1 1 
	z 	- z 	+ b

2
2 

bn
z-n 	(1.21.) 

The direct control term b
o
u(k) and the bias term *Kin y(k) have not 

been included at this point.. The operator z is the unit advance operator 
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in discrete time and (1.18) describes the transfer function as a 

rational z polynomial. We will now show that the description (1.18) 

can be transformed to give the companion form description of equations 

(1.13) and (1.17), and that the two descriptions are therefore 

equivalent to the deterministic version of (1.1) with d=0.0. From 

(1.1) and using the companion form of F as in (1.15) 

x1(k) = x2(k-1)+131  u(k-1) 

x2(k) = x3(k-1)+g2u(k-1) 

xn(k) = -anx1(k-1) 	 -a1xn(k-1)+gnu(k-1) 
	

(1.22) 

where gi  are the elements of G' defined by (1.12) 

Due to the form of (1.17) 

y(k) = x1(k) 
	 ( 1 . 23) 

The set of equations in (1.22) can be re-arranged and the identity of 

(1.23) used to give the set (1.24) 

x2(k-1) = x1  (k)-g1  u(k-1) = y(k).-g1  u(k-1) 

x3(k-1) = x2(k)-g2u(k-1) = y(k+1)-g1  u(k)- 2u(k.-1) .• 

xn(k-1) = xn-1 (k)-gn-1 u(k4-1) = y(k+n-2)-g1 	°°
e
21-1 u(k+n-3) 	- 	u(k-1) •  

(1.24) 
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It follows by changing the time index k to k+1 that 

x
n
(k) = y(k+n-1)-g

1 
 u(k+n-2) 	 -g

n-1
u(k) 
	

(1.25) 

Equation (1.25) can now be used in (1 	22) to give 

y(k+n-1)-g1u(k+n-2)-g2u(k+n-5) 	 -gn-1 u(k) 

= -a
n
x
1
(k.-1

)
-a

n-1
x
2
(k-1) 	 -a

1
x
n-1

(k,..1)+g
n
u(k1) 

= -a y(k.-1)-a 
n-  

.
1 
 Cy(k)- g

1
u(k-1)) 	 

-a1  cir(k+n-5)-g 1 u(k+n-4) 	 -gn-1u(k.-2)-.)-1-gnu(k-1) 

(1.26) 

Equation (1.26) can be re-arranged and the time index shifted again 

to give (1.27) 

y(k)+a1y(k-1)+ 	 a
n-1 

 y(k-n+1)+a
n
y(k-n) 

.= g
1 
 u(k-1)+g

2
u(k-2) 	 g

n
u(k-n) 

+an.,1 
g1  u(k-n)+ 	 4111Cfiu(k-2)+g u

(k-5) 	
 
gn-lu(k-n)) 

(1.27) 

= b
1
u(k-1)+b

2
u(k-2)+ 	 b

nu(k-2) 
	

(1.28) 
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By equating co-efficients in 

1 	0 	0.. 

(1.27) 

0 	0 

and 

gi  

(1.28) then 

b2  a1 	1 0.. 0 0 g2 
b3  a

2 	a
1  

1.. 0 0 
(1.29) • • • 

• • • 
• • 

b
n 

a
n-1 

a
n-2 .. a

1 
1 g

n 

The equivalence of the transfer function description to the companion 

form can now be seen since equation (1.27) is identical to (1.19). 

There are also n initial conditions to be set on the y(k) sequence, 

k = -n+1,-n+2, 	, -1,0 before the system is released at time k=1, 

and correspond to the n initial conditions on the state vector x 

at k=1. 

The transfer function description is only slightly changed for 

the case where the co-efficient d in (1.1) is non-zero. This allows 

a. direct connection between system input u and output y. When the 

co-ordinates of the state x are changed, as in (1.12), the term 

d.u(k) appears without modification in equations (1.22) to (1.29) 

which can be reworked to give (1.30). 
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bo 1 	0 	0 	 0 	0 

b
1 

a1 	1 	0 	 0 	0 gl  

b2 
a2 	

a1 
	1 	0 	0 g2 (1.30) 

bn an 	an-1 an-2 	 al  1 gn 

Thus the polynomial B(z) has been extended by the term boz°  and 

therefore now has a total of (n+1) coefficients. Such a system may 

well exist in discrete time, and yet have no physical meaning in a 

continuous time system. This is because most physical plant will 

take at least some small time to respond to a control input u(k). 

1.7 	Number of parameters. 

Rowe16 has developed the arguments of the previous two sections 

to the multivariate input output case where m>1 and r>1. The 

transformation matrix T corresponding to that in section 1.5 is then 

not unique as H is no longer a vector. The requirement for T to have 

rank n can be met by several selections of n linearly independant rows 

from the rows of the complete array HF1, i=0,1, 	 p; polin(nm,n-m+1 

Thus there are as many difference equation transfer function description 

like (1.28) as there are ways in selection the rows to make T. However, 

for the case m=1, r=1 the matrix F must have nm=n in order to be 

observable and controllable from the scalar input and output. The 

transformation T becomes then unique as (1.11), and the transfer 

function description is also unique. 
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The original system (1.1)., without direct control via d, could 

be specified by n
2 parameters in F, nm in H, and nr in G. By 

employing the transformation T derived from the observability array, 

a new system can be obtained with F' having nm, and G having nr 

parameters. Thus the total number of parameters is n(m+r) and this 

can be shown
50,16 to be the minimum necessary to describe the system. 

The original system could also have had the number of parameters n(m+r) 

if it was already the minimal form with some zero elements. There 

are other transformations .T which will provide a minimal form for the 

system; for example a dual approach using the contrdlability conditions 

can be used to derive a T2 
with similar results. An extra number of 

parameters mr should be included with the minimal form for the case 

where direct control of the output is allowed i.e. for d in (1.1). 

For the case studied m=1, r=1, the minimal number of parameters 

is 2n = n(m+r) and the transfer function description (1.19), (1.28) 

is unique and also has 2n parameters. Two extra parameters are required 

to describe the d or bo 
term when present and the constant bias term 

}Con yk. There are naturally n initial conditions also to be inserted 

into the sequence y(k) for complete identity with system (1.1) to be 

achieved. Thus there is no loss and much to be gained if the transfer 

function description is easier10'15  to estimate than other descriptions. 

Other forms may be derived if required after the estimation procedure 

has been completed. 
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1.8 	Stochastic system description. 

We will now consider the full case of system (1.1) including all 

the noise terms. As mentioned in section 1.4 only some of the states 

in the model are under the direct influence of the control u. The 

estimation procedure can only be concerned with the states that are 

both observable and controllable from u and-- or the disturbance. 

Rowe
16 shows that it is necessary to assume the system is observable, 

controllable by the control and noise inputs together, and output 

controllable in the mean by the control input u. The observability 

conditions remain as for the deterministic case. 

The system is controllable by the inputs u and w if the array 

( (6,r),F(G,r),F2(G,r), 	 ,FP-1(G,T) ) 	(1.31) 

has rank n, where the controllability index p < min(nnon-r-j+1) and 

r is (n.j). For the system studied in this thesis w(k) is a scalar and 

thus j=1. This statement is dmilar to (1.10), and arises because the 

image of the vector space of dimension (r+j) spans the space of x 

when the array (1.31) is of rank n. If the system is output controllabl 

in the mean sense, it implies that the expected value of y(k),k?p, 

can be reached from arbitary initial conditions. This condition 

requires
16 array (1.32) to have rank m for the least positive integer 

p ‘ min(n
m,n-r+1) 

( HG,HFG, 	 ,HFP-1G1D ) 
	

(1.32) 



r2 
r3  
• 
• 
• 
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1.9 	Stochastic Difference equation. 

The transformation methods used to derive a difference equation. 

in the deterministic case can also be applied to the full stochastic 

system (1.1). The difference equation takes the form of (1.33), 

where in general A,B,K and L are matrix polynominals, but reduce to 

scalar polynomials for this study. 

A(z 1)y(k) 	B(z-i )u(k)+K( z-  )w(k)+L(z-  )v(k) 
	

(1.33) 

The procedure for obtaining A and B given system (1.1) is not changed 

by the inclusion of stochastic disturbances
16. The co-efficients 

of K(z-1) can be found in the same way as (1.29). 

1 	0. 	0 	 0 

a
1 	

1 	0 	 0 

a2 
a1 1 

• 
• 
• 

an-1 an-2 'al 1  

K1  
K
2 

K
3 

K
n 

- 1 where K(z ) = K1  z
-1+K2 z-2 	 Knz—n  

- 1 	- 1 
It can be shown

16 that in fact L(z ) is equal to A(z ). The total 

scalar disturbance V(k) to the difference equation is the sum of the 

extra components in (1.33). 
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V(k) = K(z-1)w(k)+I(z-1)7(k) 

= (0 1) w(k) 

v(k) 

+ (K1  a1) [w(k-1)] 	 

v(k-1) 

(Knalw(k-ni 

v(k-n) 

(1.34) 

The serial auto-correlations rg of V(k) are defined by (1.35), 

and will be'scalar for the m=1 case. 

0 E (V(k).V(k-T) 	, 2'=0,±1,12  
	(1.35) 

There are-in the general case m(m+1)/2 parameters in 0, and m2 in 

T=1-1 1.12, 	 -n since pro is symetric. When m=1 there are n+1 

parameters in total needed to describe gr. Since the sequences v(k) 

and w(k) have the independance properties as expressed in (1.2) to 

(1.6), 4 is zero for /t6.n. 

1.10 	Statistical Equivalence of processes. 

The sequence V(k) defined by (1.34) has a normal distribution 

because it is formed as a linear sum of the random variables w(k) 

and v(k) which are themselves normally distributed. Thus the Gaussian 

process V(k) is defined completely by its zero first moment and the 

('2+1) second moments from (1.35). 

Another scalar process V'(k) is proposed by the definition in 

(1.36), which has the same number of degrees of freedom as V(k) in 

the choice of its parameters. 



IP(k)g(1.0+clz-l+c2z 2 	 cnz-n).Ae(k)=C(z 1 ),Xe(k) 	(1.36) 

where E(e(k)) = 0. 

E(e(k).e(k-i)) = 1.0&k-i), and e(k) is normally distributed. 

This new process V*(k) is also Gaussian with zero first moment, and 

(n+1) non-zero second moments %' given in (1.37). 

= E (IP(k).V t(k-V));21=0,2:1,-t2, 	 -n 
	

(1.37) 

For the general case161  each of the co-efficients in (1.36) is an 

m.n matrix and Xis replaced by a symetric matrix Al  with m(m+1)/2 

parameters. It is claimed that the two processes V(k) and V'(k) can be 

statistically equivalent when E(V(k)) = E(V'(k)), and sc = fg, , 
T=0 ±1 1 1.'2 
	-n. Later work in this thesis will be concerned with 

representing the process (1.1) by the difference equation (1.38) which 

employs the C(z-1) description in place of that used in (1.33). 

A(z 1)y(k) = B(z i)u(k)+C(z-1)Xe(k)+yd 

-1 	-1 	-n 

	

where A(z ) = 1 4, a
1
z   a z 	; 

B(z 1 ) = bo+b1
z1n  ; 	 b z 

21 

- C(z-1) = 1 +c1z-1 	 c z n  ; 

ye =g. (1+a1+a2 	 + an) 

for convenience in notation the polynomials can be multiplied 

throughout by zn  to give 

A(z)y(k) = B(z)u(k) + C(z)Xe(k) +A' 	(1.38) 
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The problem of finding the parameter values for the V(k) 

process given only Ate  equal to pit  is the problem of spectral 

factorization. This is not easy as there are n simultaneous equations, 

m(m+10+pm
2 
 in the general case obtained by equating moments, which 

are non-linear and their solution is not unique. Some solutions will 

have unstable roots and must be discarded. Other workers have studied 

these problems16'54-581  and given more formal and general accounts. 

The conditions under which factorization is possible are given in (1.39) 

Az) = 1-1*°°  X.zi  is a rational function in z with i=-00 

i). A(z) . Az 1) 

ii) 12(a  0. (1.39) 

We maintain that it is easier to estimate a process with the 

description (1.38), with the minimal number of parameters thanthe 

original model (1.1). This has been noted by astr3m37  and Mayne15  in 

that it is far simpler to construct a likelihood function which avoids 

introducing unknown state variables. 

There are 411+3 parameters in (1.38) needed to define the system, 

which is the same as the minimal number required to describe (1.1). 

These are made up from n in A(z),n+1 in B(z), n in C(z), with two more 

used for A and ytt . The other n parameters belong to initial conditions. 

It will be seen later that for long data sequences y(k),u(k) it is 
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possible to ignore the initial conditions y(k).,k= -11+1, -n+2, 	 

,-110 on the model at time k=1, which correspond to the initial 

conditions on the state vector at k=1. Any initial conditions are 

regarded as having decayed within the data length to be insignificant 

compared to the stochastic disturbances. This leaves only 3n+3 paramet-

ers to be considered for estimation. 

.Once an estimation procedure has been completed using description 

in (1.38), it is possible to obtain a st%te representation by reversing 

the transformations described. This has been studied at length by 

Kalman39, Dewey4°, and Mayne
38 

among others, for the minimal realisation 

condition. Such a condition is required to make the solution unique, 

because there are a large number of possible state realisations. For 

example, the minimal realisation of the deterministic scalar input-

output system of (1.1) has only 2n parameters in (1.15) and (1.17). 

The original description required (n
2+2n) parameters. 

It, should be clear that having estimated a transfer function 

as (1.38), we cannot derive a state variable description that includes 

both v(k) and w(k). This follows from the above section in that we 

are unable to distinguish between two independent Gaussian noise 

sources and must classify them as one. Such a state variable description 

is given by (1.40), and in more detail by Rowel6. 

z(k+1)= F'x(k)+Gi u(k)+Ve(k) 

Y(k) 	= H'x(k)+Du(k)+Xe(k) 	 (1.40) 
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1.11 	Deciding the order of the model. 

If we were provided with a data record y(k),u(k);k=1, 	 

of a plant, then an estimate of its parameters could be obtained only 

after the structure (1.1) or (1.38) had been chosen. In particular 

we would have to select a value of n, the state dimensionality, 

consistent with any prior knowledge of the plant and later usage of 

the model. This is naturally a higher level procedure than the simple 

parameter estimation problem. Many people have,  studied this 

area13,16,12,43,44 without any definitive answer being found for 

determining the model order n. The best engineering approach seems 

to be that of starting with n=1 and increasing it by one after having 

estimated the corresponding parameters. A close watch is kept on 

some index of performance and the confidence which can be placed on 

individual estimates. The whole procedur,- appears to be akin to 

hypothesis testing and can only provide results in a probabalistic 

sense. It is expected that some lower plateau of performance would 

be reached for values of n equal to or greater than a value n*, and 

that poorer confidence levels would be associated with the estimates 

for n>n*. The value of n* and the parameter estimates for the n*
th 

order model are then adopted as a satisfactory solution to the whole 

estimation problem. An example of this procedure is given in 

Chapter 6. 
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CHAPTER 2 

PARAMETER ESTIMATION 

2..1 	Properties of Estimators. 

It is well known that field trials with physical plant are 

arduous, and that data collection from such a system is expensive. 

We should therefore be interested in making optimal use of the data 

when estimating plant parameters. These estimates would probably 

be used to effect a low mean square prediction error of the plant 

output by being used in a stochastic regulator. This prediction 

error may be more important in practice than the individual parameter 

errors obtained in estimation. A situation where this occurs is 

shown in section 2.2. 

Statisticians
21
'
23 can present an argument based on experience 

as far back as K.F. Gauss, 1809, that a quadratic loss function of 

the form (2.1) is quite realistic for many parameter estimation 

problems, and'is often chosen for mathematical convenience. 

Loss = Function [(0-6)t(9-6)] 
A 

where 0 is the estimate of parameters 0 and satisfies (i) Lossn. 

for all permitted 0 and 0 1(ii) There is one 0 for each e value 

for which Loss = O. 	 (2.1) 

The value of risk R(0), defined as the expectation of the random 

loss (2.1) for a given estimation method, can be compared for various 

methods. The estimation method that gives the minimum risk R (0), min — 

will minimise E[(0-0)t(A-6)), the mean squared error. However this 
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method may only produce a minimum mean squared error for some values 

of 0. Thus since 0 is unknown, the choice of estimation method may 

well contain an arbitary element. 

Other than the above criteria, estimation methods can be classified 

broadly according to their following basic properties. 

A 
Unbiased estimate: Expected value of the estimate 0 is equal 

to the true value 0. 	E(e) = e 
	(2.2) 

A 

Consistent estimate: Let 6
1 	
0

n 
 be a sequence of estimates 

— 

of 0 for increasingly larger sets of data. This sequence is 

23 • then a squared error consistent estimate of (9 if 

4-"° E(("ki)t(Q.411)) = O. for all 0 (2.3) 

Since Rmin  (0) = E((0-6n)t
(0-0)) it follows that the above condition 

implies that both the bias and variance of 	approach zero. 

Efficient estimate: If 0  is an unbiased estimate of 9 and has 

a finite loss, and no other unbiased estimate has a smaller 

loss, then 6 is an efficient estimate of 0. 	(2.4) 

Mood and Greybill23  point out that there are estimators which are 

only efficient in a limiting sense for very large data sets. 

i.e. asymptotically efficient. Also since estimators with minimum 

mean-squared error rarely exist for all 0 values, a reasonable procedure 

is to restrict the class of estimating functions to unbiased estimators 
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and see if an estimator with minimum mean squared error can be found. 

This occurs much more frequently than the existance of a general 

minimum mean-square estimator. 

Minimum variance unbiased estimate: If 6 = g(X1, 	 X
n
) is 

an estimate of 0 based on data X
1 
	 X

n drawn from a distribution • _ 

f(X,0), then 6 is a minimum variance estimate, provided that: 

(i) E(A) = 0 
	 (2.5) 

A 

(ii) Covariance (0) is less than the covariance of any other 

estimate satisfying condition (i) 	(2.6) 

2.2 	Least squares estimator. 

This method of estimation is based on theory presented in a 

large number of text books, but which was first introduced by Gauss, 

and has since had very little development. The transfer function 

description (1.38) is re-arranged to give a mixed autoregressive-

moving average model (2.7). As will be seen later the bias term Ki  

can be dropped from the model as it can be separately estimated. 

The notation y(k) has been changed here, and in succeeding sections 

to yk, similarly u(k) becomes uk. 



ki. 

Yk= 	Yk-1 	 -anyk-nqtbo
u
k 
	 +13

n
u
k-n+0k+c1ek-1 

	 +c
n
e
k-n 

= m1 k01 +.  m2,k6)2 
	 m

q 
+ v

k 

; 	k=11 	 N 

where q = 2n+1 	; 0t  = A (-a1t-a2 	 -an,bcobil 	 bn) ; 1.q 

to ,i 	 y 	l 	$ 	 u 	)q  1« 12k = ‘5rk-I'Yk-2' 	k-n u  k 	k-n ' 	• 

(2.7) 

uk is bounded and has finite 1
st and 2nd moments and 

vk is a zero mean coloured noise sequence defined by 

vk = ek 	1e  	cn ek-n 
	(2.8) 

A loss function (2.9) is now defined and can be regarded for this work 

as quadratically costing the prediction error vk between yk and the 

predicted output m: 0 for an estimate 0 of 0. 0 

,nN 
k=1 

R(0) =z, 	(y 
k 	

m
k   
0)2 = (y_mo)t(y_mo)  

where N is the length of the data sequence ylouk  

and Yt  = a (y1,y2, 	 yN) ; 1.N ; Mt 	(m 1 m' 2' 
	

mN ' ) • q.N 

(2.9) 

A 

R(0) doco 	not havc the cxpeetatien form defined in section 2.1; but 

4A- can  still be minimised by setting the derivatives with respect to 

equal to zero to discover the resulting conditions. 

= Ek. + vk  
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)R(A) = -2MtY+211t110 = 0. 	 (2.10) 
as 

The least squares estimate is thus given by 

8 = (mtm)-imt_ ; q.1 	 (2.11) 

The risk R(e) can be written as a squared norm of a vector as in(2.12) 

R(6)) = „Nor  = 1142_ytm0_otmty 9tmtm9  

TM were defined from (2.11) as 	MY =MM 

Then (2.12) becomes R(9) = 042+(0-6)tlim(o-8)- ©tuts 6 

= 1142 	1IM(G-6)II 2_111412 
	

(2.14) 

= iiY-moll2 1lyt1 2-oc6311 2 
	

(2.15) 
since each term (2.14) is positive 

Now R(9) in (2.14) will be minimum iff 0 = 6, where 6 is given by(2.1j). 

Also (2.13) is another form of (2.11) and hence it has been shown
21 

that (2.11) gives an absolute minimum for risk R(9) given the structure 

(2.7) and (2.9). 

For the model as given by (2.7), the estimate 6 can be shown to 

be biased. 

E(6-0) =, E(( mtm)

-

lmty..0) = E((mtm)".1mtm0+(mtm)

-

lytv..19) 

= E((MtN)-1MtV) 
	

( 2 . 16 ) 
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If the terms M and V in (2.16) were independant then (2.16) would 

reduce to E((MtM)-1Mt) .E (V) which is zero since V has zero mean. 

However the matrix M includes mk  as the k
th row and mtk  contains - 	- 

elements vk-1ak-2' 
	 yk-n, and these elements must be related to u  

vk_i  vk..2 	 through (2.7), since vk is correlated over n delays 

in definition (2.8). Thus the bias term (2.16) is not zero, and 

the least squares estimator is biased for estimates of the co-efficients 

of yk-1, 	 yk-n, but unbiased for uk' 	 uk_n  co-efficients 

if the uk  and vk  sequences are uncorrelated. 

The biased estimate might be used in practise to predict yk  in 

a controller: The value of the sum of the prediction error squared, 

i.e. the value of R(0), can be obtained by substituting (2.11) in 

(2.9), and (2.7) for the value of Y. The value of the bias on m is 

taken from (2.16) 

A 
R(0 	6 

biased).(ml'exact
+V-M 

 -biased)t(m2exact +V-A-tiased) 	(2.17) 

=a1.2
exact+V-M.2exact-M(M

t 
 M)-1  MtV)t  

(M0 -exact+V-M0 
 

-exact
-11(Mt M)

- 
 iMtV) 

R(6tiased )=V
t(I-M(MtM)-1M)t(I-M(Mt/)-1M)V -  (2.18) 

If instead of the biased 9 we had used the exact value of 0, then 

the value of R(0) would have been 



) = VtV 110 	)
t
(MO M0exact -exact).(4.2exact

+V- 
 -exact 	-exact

+V-  - 
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(2.19) 

By the argument of (2.12) to (2.15), R(6biased) is less than 

R(.6]exact)  and we would expect the prediction performance to be 

improved by using the biased estimate. This is because the biased 

estimateshavepartiallyabsorbedtheeffectofthec.co-efficients 

and thus offset some of the colouration in vk. Should the case arise 

that c.,i=1, 	 n is zero in (2.8), then vk 
would be an independant 

sequence given by ek. The data yk, uk  at each time k would now be 

independant of all vk 
and the bias term (2.16) would be zero. There 

would then be no distinction in performance between (2.18) and (2.19). 

The co-variance matrix of the least squared estimate can now 

be calculated in (2.20) 

coy.(6).111. Eto-e)(e-W) 	 (2.20) 

= Emmtm)-1mty_0mmtm)-1mty_0)t)  

= EUMtM)-1Mt1119+(MtM)-1MtV-0)((4tM)-1M
tM04-(MtM)

-1
M
t
V-0)

t 

= E  [
(M

tm)-1mtv) (mtm)-1mtv)t) 

.7. Ili =04
t

M 1MtE[VVt)M(MtM)-1 	(2.21) 

where Vt A= (v1'v2' 
	 vN) ; 1.N 

If E(VVt) = 
	 (2.22) 

then equation (2.21) be simplified to give the minimum variance 

property
23, described in section 2.4. 
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Cov (0) = lt= Ore2.(MtM)-1 
	

(2.23) 

This again requires the sequence vk 
to be independent and thus all 

c.,i=1, 	 n to be zero, i.e. the disturbance on the model (2.7) 

to be white. 

R.C.K. Lee19 describes the least squares algorithm above in a 

recursive manner. Assume a solution to (2.11) has been obtained 

for a data set k=1,' 	 N ; N>q and more measurements are taken 

at N+1 to give m N+1. The matrix M defined in (2.9) will nowy1. The have 

111N+1 as an extra row, and the vector Y an extra element N  

new solution to (2.11) is now given by (2.24) 

6 
N+1 = 

(Mt M 	)- 
- 

N+1 N+1 1N+1 
(2.24) 

The inverse of the matrix required in (2.24) can be efficiently obtained 

using the matrix inversion lemma
19 

as shown in (2.25) 

-1 	t -1 
PN+1 = 1+1MIN+1) = 

(1 1N
+ 

P-1 	= P -1  + 	mt N+1 	N 	-1+1 -N+1 

then 

P 	= P 	P m 	(mt  P m +1)-1  mt  P N+1 	n 	NN+1 -N+1 n-N+1 	-11+1 N (2.25) 

The only inversion now required is a scalar which is computationally 

useful if n is large. The formula for least squares recursive 

estimation can now be given by (2.26) 
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,,,  6 	= 	+13m(mtp m+1) 	y 	—m t 0)  
N+1 	 N "— 	

N+1 — 
N—.  

where m = m —11+1 

(2.26) 

The old estimate for A has been updated by a correction term based 

on the new data and the old value of PN. The algorithm,using 

equations (2.25) and (2.26) recursively, after a minimal data set 

N = q has been obtained, is a form of the Kalman sequential estimating 

method2,3. 

Any estimate obtained from these equations will be identical 

for the same data length N to that of (2.11), and will therefore 

share the same faults. Thus the estimate 0 will still be biased due 

to the correlation of yk  and vk. Lee19 shows that the matrix PN 

always decreases and in the limit approaches the null matrix when 

independant of the assumed initial conditions. He concludes 

that for the condition vk 
is white, and P

N is therefore proportional 

to the covariance matrix (2.21), the estimate 6 is statistically 
consistent. When v

k 
is coloured as in the general case from (2.8), 

the correct conclusion must be that the least squares estimate is 

i) biased; ii) not consistent, due to its bias; iii) not efficient, 

since there do exist more efficient estimators23'21 as shown later 

in section 2.4. 

2.3 	Methods of avoiding bias. 

Various devices have been suggested to remove the bias on the 
A 

estimate of 0 in (2.11). Lee updates the algorithm (2.25),(2.26) 

only every n data points, and thus trys to avoid the bias effect, 
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since m 	cannot be correlated with v which contains terms only i k-n-1 	 ,_. k , 
'711'" 1° ca--s  '4,74'3 a--  k_, / K-2 I'S a#C6ell  'tt_i 

a-a "P-14  72tr 1144i" 	ek - 
as far back as e

k-n A 
. iflowever the matrix M M in (2.11) tends to be 

nearly singular and difficult to invert. There is also a large 

wastage of data with this approach which might be used in a more 

optimal manner. Thus the covariance of the estimates with Lee's 

method must be worse than the simple method of (2.11). 

Mayne26 and Tzafestas27 have used an estimate mk  in equation (2.11) 

derived from data at time k-n-1 and before, so that the elements 

Yk-11  
	 y

k-n 
are un-correlated with v

k. 

The vector m
k  is provided by a linear regression estimator 

of 
which may. in turn be biased, butAwhich the only important property is 

that of prediction. The two estimators, for m
k  and then for 0 can 

be updated together in a recursive manner. The estimate for 0 can 

be shown
26 

to be asymptotically unbiased and consistent, but lacks 

efficiency. Rucker
6o 

and Levadi61  have also developed a method which 

first estimates yk  and mk  assuming a noise free model, and then 

applies a sequential least squares algorithm. It is claimed that 

the estimate of 0 is unbiased and consistent but not minimum variance. 

Rowe16 has given a "bootstrap estimator" which is similar to the above 

methods and is also asymptotically unbiased, and consistent but 

not minimum variance. 

Once some estimate of 0 has been obtained, the residuals v
k 

maybeexaminee7 togivearlestimateofthec.li=1 1 	 

coefficients of C(z) in (1.38) or (2.8). 

A 

 k 	
t 6 v 	yk  -m k — (2.-27) 



A v
k 	

Ek + c1  Gk-1 
+ c2k-2 	 cnGk-n 

where vk 
is defined by (2.8) and ek A Aek 

(2.28) 
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Using the residual sequence vk  we can form the sample auto correlations 

(2.29) 

A A  
Oi  = 1 <

k=1 
V
k 
Vk+ 1 . 	i=0,1,  	(2.29) 

44  N-i 

From (2.28) the auto correlations 	of vk can be expressed in 

terms of the c co-efficients j=i, 	 n of C(z) 
• 

0i= E(vv 	) =cc +c k k-i 	o i 	1 c.  1+1 n-icn 	(2.30) 

where co g A, and i=0,1, 	 n ;01  . 	0.0 for i>n due to (2.28) 

The sot of equations (2.30) can be compared to the set (2.29) 

derived from the plant datal and a n+1 set of non-linear simultaneous 

equations obtained in n+1 unknowns ci,i=0,1 	 n. This is now the 

same as the spectral factorization problem mentioned in section 1.10 

and requires some iterative routine for its solution. Since the 

estimate of & has already been shown to be biased and the effect 

of the coloured noise sequence vk  partially absorbed, we cannot expect 

the estimate of the c. co-efficients to be of statistical utility. 

Clarke's13 approach to estimating C(z) is to invert the model 

for C(z) into an autoregressive process and then use the data from the 

A 
residuals vk  to estimate the terms of this process, by re-applying the 

least squares algorithm. This method is extended iteratively and will 
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be re-examined in the next section. The final result is a cascade of 

autoregressive filters of indefinite number which are said13 to converge 

in practise and might then be inverted to give C(z). 

2.4 Generalised Least squares estimation. 

If we are permitted to assume some knowledge about the vk 

sequence of (2.8), then some predetermined weighting could be applied 

to the components of the risk functiOn (2.9), and a more general risk 

function could be defined as in (2.31). 

R(6) A (Y-m6)t 	(y-mg) 
	

(2.31) 

The weighting matrix 11 need only be considered sy►m,etric, since any skew 

symetrical portion will not contribute21 to the value of R. It also 

has to be positive definite to make R positive only. The minimisation 

of section 2.2 can be repeated to give (2.32) 

6 (Mt-1M)-1 	
(232) 

It can similarly be shown21 that 0 gives an absolute minimum for R(6) 

given the model (2.7) and the weighting matrix 

The co-variance matrix of the estimation errors can be obtained as 

in section 2.2 and becomes (2.33) 

(2.33) 
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Suppose now that is chosen to be equal toA  E(VVt), then the 

co-variance matrix 11rbecomesly* as in (2.34) due to the resulting 

simplification. 

. (mtrm  -1 = (Mt(E(VVt 
))m)-1 	(mtp:1m)-1 	(2.34) 

It is possible to demonstrate 
21'62 that this choice of yields a 

minimum error co-variance matrix 111", and thus the smallest possible 

value for the risk R(6). 

Thus' J* 	for all choices of 	where W* is for () =A 

(2.35) 

This is intended to mean that the difference 	* is non-negative 

definite, since both V.  and qr* are positive definite. The estimate 

for 0 obtained from (2.32) under the condition =A is thus a minimum 

variance estimate or Markov estimate. Since in practice Awill not 

be known, the minimum variance condition is unattainable, and instead 

we must employ some 1 which will be close toA, or attempt an iterative 

procedure for which each successive it will be closer to A. One 

possibility might be to use the residuals k from the least squares 

estimate to evaluate a suitable 	for example as in (2.36). 

T 
y 
 =vv 

AAt 
(2.36) 

HoWever as Clarke13 shows, 	in this case has a zero determinant and 

is therefore non-invertible and cannot therefore be used in (2.32). 
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The generalised least squares method can be viewed as transforming 

the data yk,uk  to another set ypikc  for which the transformed noise 

sequence vk now has zero autocorrelation i for all i0. For this it 

is again necessary to have full knowledge of the covariance matrix of 

the original noise process A= E(VVt). 

The iterative procedure mentioned above could be performed by 
A 

choosing an estimate C(z) of the polynomial C(z) and then filtering 

yk,uk  to give ypcluOn (2.37). 

y* =  1 	y ; u* = 1 u 	 (2.37) k c(z)  k k 0(z) k  

then from (1.38) 

A(z) C(z) yll = B(z) C(z) ull  4..c(z) ek 	(2.38) 

For the scalar input-output case considered, the polynomials in z will 

commute and we can premultiply (2.38) by C-1(z) to obtain 

A(z)y* = B(z). u* + 6-1(z)XC(z) ek 	 (2.39) 

The model can now be recast into the form of (2.7) and has the same 

meaning for 0. As e(z) approaches C(z) the disturbance sequence 

= 8- 1(z) C(z)Xek  becomes more independant and un-correlated with 

its past. The estimate for 0 and hence A and B will become less 

biased and approach the minimum variance situation as 	(2.34). 

The remaining problem is how to choose successive values of e(z) to 
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approach C(z) more closely at each iteration. 

A. number of authors have tried the above approach. Durbin63 , 

Clarke13 , Tretter5, and Steiglitz4 have all suggested the two stage 

method of searching for the parameters of C(z), and least squares 

solution for A(z) and B(z). The latter pair of authors represented 
A 
C(z)- in terms of its co-efficients and optimised these by Powell's 

minimisationalgorithm8• The complete scheme came very close to 

~str8m's method10 ,11,12,37 which will be discussed later. 

Clarke13 , as mentioned before, represents C(z) as an ever increasin, 

cascade of auto regressive filters, one of which can be estimated by 

the leas~ squares algorithm at each iteration of the process. The 

scheme is halted when the process appears to have converged. The 
A 

estimate of ~ is then approaching the minimum variance condition for 

the generalised least squares method since the r~siduals vk are as 
. A . 

. white as possible. The C(z) polynomial could be recovered in principle 

by inverting the cascade of auto-regressive filters, but cannot be 

expected to be a statistically satisfactory estimate. Box and 

Jenkins43 ,44 have described a process in an alien notation which is 

similar to the methods of this section. 
A 

In effect C(z) is represented 

as a second order polynomial and the risk contours examined in c. 
~ 

co-efficient space within stability constraints to find the optimum. 
A 

As will be shown l~ter the stability constraints on C(z) are important. 

Their presence greatly affects the shape of the hill during the climbing 

procedure, and determines whether or not the final system estimate 

wo~ld be of practical use. 

The advantage of a least squares estimation procedure is that no 
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explicit assumptions have to be made about the statistical properties 

of the random variables, beyond their boundedness. If we permit 

ourselves some knowledge or assumption about the probability distribution 

of the variables, then we can obtain more general estimation methods. 

It will be seen later that maximum likelihood or Bayesian methods 

reduce to the least squares case when the disturbances have Gaussean 

distributions. 

2.5 	Maximum likelihood Estimation. 

The principle of maximum likelihood was introduced by Gauss and 

developed. much later by R.A. Fisher in 1912. This approach is commonly 

regarded as providing a satisfactory estimation method because it 

makes the most optimal use of available data, and satisfies asymptot-

ically the properties listed in section 2.1. In return for this 

benefit, we have to assume more knowledge about the stochastic 

disturbances, in particular the probability density function of the 

noise. 

Given a set of data X1  
	 XN  drawn as a random sample from a 

probability density f(X,O) then the joint probability density 

g(Xi, 

 

XN' 
&) is known as the likelihood function. We want to 

 

know from which density this particular set Xi 	 XN  is most likely 

to have come. As 6 takes different values the density changes and 
we wish to find the value of 0 which maximises g ' 

	 XN' 6). 

This value is a function of the data set X
1' 
	 X

N and is the 

maximum likelihood estimate (MLE) of G. The likelihood function 
A 	A 

g(X1 	 X
n1
6) can be regarded as function L(0) of 0 for a given 
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data set, and form of probability density f(X,G). 

L(G) = f(X 	f(X 
19 	29  

 

TrN 
f(XN,@) =j4=if(Xj10) 

 

(2.44) 

If L(D) can satisfy regularity conditions, which is commonly the 

case, then the maximum likelihood estimate (MLE) can be obtained from 

IsL(&) = 0.. . 	i=1 f ( xv°) 
	 (2.41) 

Since Loge  L is monotonic in L and attains its maximum when L is 

a maximum, equation (2.42) is often easier to handle. 

'Log L = 0.. = 	V1=1  Logef(Xi10). 	(2.-42) 

.60 

For the case when & is in fact a vector & then (2.42) becomes a 

vector set of equations. 

It has been pointed
23 out that it is unwise to rely on the 

differentiation process to locate the minimum. The function L(0) 

might have cusps or other discontinuities on the first derivative. 

Equation (2.41) will also locate minima and other stationary points 

than maxima, unless the form of L(G) is well known or the result 

is checked 

Under fairly general conditions, Fisher has shown that L(0) 

approaches a normal distribution for large data sets. In fact a 

maximum likelihood estimate212364 is asymptotically normal, 

asymptotically efficient and asymptotically consistent. According to 
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the literature21 little can be stated about the properties of a MLE 

for small sample sizes. This will be further discussed and some 

conditions suggested in Chapter 4. A further property of a maximum 

likelihood estimate which can be demonstrated23 is that of invariance. 

Thus if 0 is a MLE of 0 in the density f(X,0), and S)(0) is a function 

of 0 with a single-valued inverse, then the MLE ofg(0) is S(ib. 

We are going to assume that all the noise disturbances on the 

system (1.1) or (1.38) are normally distributed. Thus f(X,0) is a 

normal or Gaussian probability density function. This assumption 

appears reasonable in practical situations, indeed it is possible to 
Pre  disl-At6a-45,2 /he SW of 4.14,45e ilaorkt of 

show48 by the central limit theorem that 41x1:;14.iFs+1V3.ti4zriFe44.s=1, six- 
uoi.eateA 	dieb‘i6ititons , Aid &pa,. nomad . 
4tccrtiefectexzes.cilt*re 	The probability of a value Xi  being 

drawn from a normal distribution mean y, variance 0-2  is given by (2.43) 

Prob. 	(X.) = 	1 	. exp (- 1 
 0c4  —y )2) 2 -1. 

2 

(2.43) 

The joint probability of a sequence Xi 	 XN  being.drawn is 

XN) 	=IIi 
N 
 .1  (Prob.(Xi)) 

= 	1 	)11/2  exp( - 1 2:!,411. =1 	i 
 (X -y)2) 

k 	21 22-0-  20.  

Prob. (X1
, 

(2.44) 

The logarithm L' of the likelihood function defined by (2.44) is 

L' = -N Log 2n-2 Log 2_ 	 A  2 Loge 
e 	(Xi-p) 

2T 

(2.45) 



A2 A 
The maxima of L' with respect to ~ and f are given by the solutions 

. of (2. 1 .. 6) 

Thus the MLE of y and 0-
2 is given by (2.47) 

A ~N, ,,2 
~i~=1 (X

i
-y)2 (2.47) Y = 1 . 1X. CJ = N 1= 1 

The estimatej is unbiased, but that of ~2 is biased by N This 
N-1 

illustrates that the MLE may in general be biased, but can frequently 

be simply adjusted64 to produce an unbiased estimate (2.48) 

A2 
cr unbiased = 

N 
N-1 

(2.48) 

~str8m10,11,12,3? has extended the maximum likelihood procedure 

to the model (1.38) by finding an expression for €k in terms of the 

measured variables. 

e k = 1 [ A ( ~) Y k - B ( z) Uk] ; k= 1, • • • •• N 
c(z) 

where €k is defined as ~ek and taken to be normally distributed witl 

. '2 
zero mean and variance A • 
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It is also assumed that ywuk  are available from time k=1 with zero 

initial conditions in the plant. The joint probability of a sequence 

61' 	 #ek,  	
is now a likelihood function L(e) dependant 

A 

'on the parameter set 0 which is defined by (2.50). Strictly 0 should 

also include the n initial conditions on equation (1.38) corrosponding 

to those of the plant (1.1), and the bias component )411  and the value 

°a. For brevity these have not been included here but are considered 

later. 

= (-a1, 	 -a
n
,b
o
,b

1
, 	 b

n
,c

1 	 cn) ; 1.(3114,1) 

(2.50) 

L(0) = Prob.(61, 	 EN
) =( 	)N/2ex_(.... 	/IN 

k=1 
211:P 	2)t2  

(2.51) 

The logarithm of the likelihood function now becomes 

L1(0) = LogeL(6) = 	N A2
-N log V-NLog

e 

 2IT 

e  

(2.52) 

A 
Since only the first term of (2.52) is a function of 0 defined in 

terms of A,B, and C polynomials, the conditions that minimise (2.52) 

with respect to 0 are the same that minimise the cost function V(0)(2.53 

v(L)e k 2 
	

(2.53) 

This implies that the MLE method and the least squares method of 

sections 2,2 and 2.4 are strongly related since (2.53) is very similar 

to (2.9) and (2.31). Indeed for the assumption of Gaussian disturbances 
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the two methods are essentially identical and differ only in their 

philosophy. 

As in (2.46), equation (2.52) can be differentiated to give 

-2 	
Nk=1k 

 . )e 

2  /12 

	

	
k 

21\ 

(2.54) 

A 

The MLE estimate 0 would then be that value for which the vector set 

of equations (2.54) were equal to zero and thus a stationary point in 
A 

6  space. fitstrft points out that L'(&) is quadratic in the A and B 

terms in 0, but is non-quadratic in the C terms in 0. Thus an analytic 

solution cannot be found for equations (2.54), and it is necessary to 

resort to some non-linear programming method of solution. This can be 

described as hill climbing in 0 space. 

The function V(0) of (2.53) is treated for simplicity as returning 

the altitude of the hill for each 6 value. Notice that strictly a 

minimum of V(0) is required corro
\
sponding to a maximum likelihood., For 

ease the procedure will still be referred to as hill climbing, the 

negative sign being understood. 
A 	A 

Having optimised L'(0) via V(0) by this method, it is necessary 

to consider the estimate of X in (2.52). Differentiating L' with 

respect to A gives (2.55) 

eld 
Tx- 	55 4 k=1 k 

If' we take 2 to be given by r  le  k=1 k 

(2.55) 

, where C
k 

is the residual 

sequence left when 6 is applied to the data yk,uk  then this value 
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of A2  will make (2.55) identically zero. Thus optimisation in Xis 

in a sense meaningless. This should not be surprising, since from 

(2.49) we are only measuring a constant gain factor A 2 the variance 

of €
k' 

relative to a base of 1.0, the variance of ek 
in (1.38). 

The term K' describing the bias level on the measurement yk  in 

(1.38) can also be estimated separately by measuring the means of 

signals, and will be shown in detail later, Thus the complete set of 

(3n+3) parameters in (1.38) has been dealt with. The implied assumption 

in this development is that the length N of the data set is such that 

the n initial system conditions have decayed to an insignificant level 

compared to the stochastic signals. This assumption is explained more 

fully in Chapter 5, where it is shown that initial condition estimates 
are always inconsistent. 

It might be thought that there would exist a recursive form of 

the MLE method parallel to that of section 2.2. Such concepts appear 

to be alien to the maximum likelihood method of solution described in 
A 

this section. Searching for the optimum value of 0 requires running 

over the whole data set to evaluate 	This process is in effect 

summarised in a few matrix and vector terms for the A and B coefficients 

in the least squares estimate. Thus for estimates which contribute 

quadratically to the cost we might expect the easy addition of the 

knowledge of an extra data point. Since L'(09) is non-quadratic in C(z) 

the above does not apply. It might be assumed that the estimate e(z) 

would not change a great deal from that for a data set of size N to 

that for a set of size N+i, where i is an integer. We might then 

evolve some heuristic scheme of estimating the A and B coefficients 
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A 

recursively by least squares and re-estimating C each i time steps. 

For 	i.e. 8(z) fixed, we would have the generalised least squares 

method of section 2.3, since we would have decided ,1 as some estimate 

of the covariance matrix of vk 

2.6 	Feedback Control. 

astremis10,11,12,37 application of the MLE to the system model 

(1.38) will be developed in greater detail in section 2.8. It is 

necessary to repeatedly run over the data set yk,uk  using equation (2.49 

and the estimates of A,B, and C polynomials. The prediction error Ck  

is evaluated at each time step k. If it is worked out in detail, this 

is exactly the same as applying one step feedback control of the system 

in a stochastic regulator problem65. The object then is to remove 

from the output yk  all possible predictable disturbances leaving only 

the value Ck  which is not predictable, since by definition it is a 

random sequence independant of all other signals. Thus it is argued 

that in solving the MLE equations, the stochastic one.step regulator 

problem has also been solved as a by product and will not be considered 

at length in this thesis. It should be clear that the estimated 

polynomial 14(z) in equation (2.49) must be stable. This would be 

vital for a control scheme based on these estimates, and will be shown 

to be very important during the estimation process itself. The poles 

of 1/C(z) must be restricted to lie within the unit circle on the 

complex Z plane to ensure the discrete time stability of the estimate 

and to ensure a satisfactory hill climbing procedure. We will later 

show that climbing in the space of the coefficients of 8(z) is most 
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unsound. A transformation is used to convert an unconstrained climbing 

space into the space of all roots of 6(z) lying within the unit circle. 

The resulting hill climbing in the new unconstrained space then shows 

considerable improvements over previous methods. It was assumed in 

section 1.4 that the system, and hence the polynomials A and B in 

(1.38) represented a stable system, and this would also be required 

for their estimated values. 

2.7 Bayesian Estimation. 

Given a set of data X
1 
 .., XII, we proposed in section 2.1 to 

find a best (by some criterion) estimate of a parameter A assuming 

that the parent distribution f(X19) was deterministic in 0. This is 

known as the classical approach, and the object is to find an estimation 

method for the random variable 0, which satisfies some of the properties 

of section 2.1 relevant to the problem considered. 

The Bayesian approach assumes that m is known to vary randomly, 

and has a known probability density function g(0). This supposition 

may not be realistic and will be discussed later. Bayes theory,  

indicates that a good estimate would be based on the a posteriori 

conditional probability density function I;(01
X1 	 

y ), since it 
-Ti 

contains all the statistical information
48 . Having Ewe could adopt 

any suitable criterion to obtain a 'best' estimate. For example we 

might choose a loss function, Loss (0-g), as described in section 2.1 

and desire to minimise the 	risk R(6). 



x ....xN) = Prob. (0,X1....XN) 1   S(' 
Prob. (X1 	XN) 
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R(o)Balls(loss (0-6
)) 
	

(2.56) 

=  Jr
00 

	

Loss (0-6) S 	 (2.57) 
1 

-00   X )" N  

The 'best' estimate of 0 would then be the mean of the conditional 

density !(($ 	 x  ) . Alternative 'best' estimates by other 
1 

criteria could be derived from the mode or median of this distribution. 

rule. 

In general S(01, 	

XN 

N) is evaluated with the aid of Bayes 
141 	 61+ 
This rule has been badly used in history I., but its 

uScur will be taken as valid here. 

=Prob. 	. Prob. (e) 

Prob. (X1 	X
N
) 

where Prob.(0) = 

of 0. 

g(&), the a proiri probability density function 

The density Prob.(X1, , XN10) is often regarded as a likelihood 

function L"(01x 	 ) which indicates more correctly that the 
1 

data points X1 	XN  have particular values and that the parameter 

0 is to be estimated. Recursive schemes may be easily constructed 

since a posteriori knowledge Sat time N can be used for 

a priari knowledge g(G) at time N+1. The initial information g(&) 

decays in importance as more information is accumulated. Thus it is 

possible to start with a clnsity g(0) which is poorly known and yet 

obtain a Bayesian estimate after a long data sequence. 
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The validity of the Bayesian estimation method has been questioned 

by some statisticians21
,23,64, 

 since a pribridensity g(0) must be 

assumed and its existence is in many problems doubtful. Even if it 

exists, often the form of g(0) is unknown, and the Bayes solution 

cannot be explicitly calculated. Without any a proiri knowledge, we 

might assume g(0) to be uniform, i.e. all values of 0 to be equally 

likely. Lee19 shows in this case that the Bayes estimate reduces to 

the most probable estimate which lies as an abscissa to the maximum 

of L5(64, ). This is also the same estimate that would be 
1-1 

obtained by the classical maximum likelihood approach of section 2.5. 

We would expect this anyway if the density functions were unimodal 

and symetric. Aoki points out that working with density functions 

directly, involves storing the whole function as a table of points which 

is rather unhandy for calculation. For the above reasons we have 

adopted the maximum likelihood doctrine for the purposes of this thesis. 

2.8 astrUm's method in detail. 

This maximum likelihood estimation scheme was introduced in 

section 2.5 for the model of (1.38), and will now be given in greater 

detail. It was shown that the method could be reduced to minimising 

(2.53) with the sequence tic  given by (2.49). Values designated by the 

sign ^ are those of the approximate model, which are estimated values 

of the true variables or parameters. The derivative of V(0) with 

respect to the parameter set 0 is given by (2.58) 



)V(,f31) 	<1 N 	^ u ck 

Tr— 	
k=1 ""k---A--

Q.  
(2.58) 
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The optimum 6 to make equations (2.58) equal tá zero is obviously the 

same solution as for equation (2.54). The necessary derivatives 

can be obtained by differentiating the difference equation (2.49). 

	

elc = 	1—i .z yk 	i=1, 	 n 	(2.59) 

	

Bgi 	8(z 1)  

	

)gic = 	1 	.z iu
k 	

i=0,11 	 n 	(2.60) 

	

Bi. 	Cc z-1) 

6 

	

)( 	= 	1 .  z 
_i 
e 
A i=1, 	 n 	(2.61) k 

	

o1  . 	8(z-1)  

The evaluation- of the derivatives of V(6) (2.58) can now be 

seen as a simple run over the data set 1, 	 N at each stage 

multiplying gkk  with a signal yk, uk  or k passed through a filter 

1A(z). The same filter is used in each of (2.59) to (2.61), and each. 

ith  differential can be obtained by a simple shifting process before 

multiplying. This naturally leads to considerable simplifications of 

the computations. The second differentials of V(6) can also be derived 

from (2.58) as shown in (2.62); 

)ek 
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k=1 
)21/(6) 	)t'k 	L̀/6 11c 4, 
6i) bj  

And from (2.59) to (2.61) 

2A 	 • 

ek = 	1 	. -z aEk 
as  j  6(z-1)  

2A 
ek =  1  

113.116. 	-1 C(z ) 

, 2A  el N 	ek 

i=0,1 
j=1, 	 

i=1, 	 
j=1, 	 

(2.62) 

(2.63) 

(2.64) 

	 n 
n 

 Bia 6 j 

= 	1 	.-z-i-jyk 
A2 	 1 (z 	) 

-i-j 1 	.+z 	uk 
C A2(z 1 

)Ek = 

2A 
ek 	= -1 	.z-i aCk + 	1 	.-z-i ek 	i=1, 	 

o(z-1) 	6(z-1) 	
j=1, 	 

1 3 	 1 

= 	1 	. 	ek+ 	1 	+z 	uek= 2. 	1 	.z 	ek 
A2 -1 	A2 	A2 -1 
C (z ) 	 C (z ) 

(2.65) 

) 2tic  = ,o 2ek  = 

aria . 	 j .2) ."615 . 	.113  
0. 	 (2.66) 

A 
If an exact match 0 with 0 had been achieved, then we would expect 

gk to be an independent sequence. Thus the 2
nd term of (2.62) would 

go to zero at the exact match, as well as the terms arising from 

(2.66). There would be some justification for ignoring this 2
nd term 

altogether, even under mismatch conditions. Ths second derivative 

matrix of V(0) would then be positive semi-definite due to the 1
st 
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term in (2.62), being effectively a correlation matrix of a set of 

signals of length N. The full expression might give a non-positive 

definite matrix, which would be difficult to handle with the Newton-

Raphson hill climbing routine used by astrOm. There would be a loss 

of climbing efficiency due to using the approximate matrix, but 

this could be offset by the easier computation. The 1st term also 

requires only the sum product of the first derivative terms which 

have already been generated. 

The Newton-Raphson algorithm used to optimise V(6) is given 

by (2.67) 

= b. _.f )i(1 )1-1  
-1 t77-071i  

th i 
at the iteration (2.67) 

At the first iteration i=1, and strum sets the 6(z) coefficients 

C.31j=1 	 n to be zero. This gives a simple least squares solution 

of A and B coefficients for 0
2'  which will be biased since the 

colouration due to C(z) is not accounted for. Ideally:  the factor a is 

1.0 on quadratic hills and gives one step convergence, but is commonly 

set 0.<000.0 according to the ease of climbing. Thus for difficult 

hills X may be quite small, and even negative to produce some climbing 
Practical 

action if theAmatrix is not positive definite. 

We give some examples in Chapter 5 to illustrate this effect 
and it is suggested that another algorithm due to Fletcher and Powell9 

could be useful here. The iterative scheme of (2.67) is replaced by 

(2.68), where the second derivative matrix has been replaced by an 

estimatedmatrix/L. 
1 



a. 	= 6 -c(.H.211/(6)  th 
at the 

. iteration 
where Hi  = I initially 

(2.68) 
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Here H. is forced to be positive definite, and updated with gradient 
1 

information at each iteration, and tends to the inverse of the 

second derivative matrix at the optimum. The factor o( is determined 

by searching for a minimum along the line defined by H.* ay  l so 
1 	;go 

that the (i+1)th  gradient is orthogonal to the line. For a quadratic 

surface the algorithm of (2.68) takes q iterations, where q is the 

dimension of O. For more general surfaces the Fletcher-Powell 

algorithm frequently shows improvement in convergence over the 

Newton-Raphson, and thus is benificial for the problem studied. 

2.9 	Filter stability. 

The method of section 2.8 requires several runs over the data 

set yk'uk 
with a filter 	 A -1 C(z ) 

which is defined in terms of 

coefficients 6.1, i=1, 	
 n as in (1.38).. So far there has been 

norestrictiononthevaluesofc.and the filter could easily be 

unstable with its poles outside the unit circle in the z plane. The 

output of such a filter will not remain bounded over a finite interval 

when excited with bounded arbitrary sequence. This can cause a great 

deal of trouble with a hill climbing routine, especially when the 

roots of 6(z) lie near the unit circle. A small change in one of the 

A c. coefficients can give an extremely large change in the cost function 

value. The natural response is to use a much smaller value of gin 

(2.67); or (2.68). This effect can slow down the whole convergence, 
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as it is equivalent to striking a constraint, the unit circle, which 

the climbing algorithms given cannot handle effectively. The alternative 

is to check analytically the stability of 	 before being used 
8(z-1) 

to evaluate the function. This in general requires finding the n 

roots of the polynomial when given the coefficients, and there is no 

easy method when n is larger than 4. Resort must then be made instead 

to say Jury's29 test for stability before proceeding. Some method of 

constraining the roots of 0(z), or at least of detecting sensitive 

conditions, has to be found to cover the situation, and avoid human 

intervention in the climbing process which has been required on 

occasion with astrEim's method. 
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CHAPTER 3 

THE ARCHITECTURE OF THE ESTIMATION HILL 

3.1 	The variance of a signal. 

The maximum likelihood method introduced in sections 2.5 and 2.8 

is prone to difficulties due t 	sensitivity and unstable filtering 

as explained in section 2.9. To analyse these troubles we would like 

to be able to predict the cost V(&) in equation (2.53) for various 

systems and parameters, before the estimation procedure is started. We 

require to calculate the sample variance of the output signal of a 

discrete time system expressed as a rational z polynomial, and then 

examine the result for possible sensitive regions. 

Consider a simple discrete time filter as in equation (3.1), 

which as a rational z polynomial is a mixture of moving average and 

auto-regressive representations32. 

1 + n z-1 + n2z
-2 	 n vk 	1 	z-m e

k = N(z) ek 
1+ d1 z-1 + d2 

z2 d
1
z
-1  

1 
where N(z) = z + n

1
z1-1 + n2z

1-2 
 + 	 + nmz

1-m  

( 3.1 ) 

D(z) = zi  + d
1
z1-1 + d

2
z1-2   d1z

o 
; 

ek is a random independent sequence, E(ek) = 0. 

E(ek.ek-i) = g 	8(i) 

The system as defined gives no prior response to an input ek  and is 

therefore physically realisable for all positive values of m and 1. 

A physical plant may well give no output 
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at time k due to an input at time k, and this would require delay 

terms in (3.1). 

The variance of the output vk  can be calculated, for example 

for 1=1,m=0, by expanding (3.1) as (3.2). 

d v 	ek 1 k-1 	k 

vk Irk = ek-d1vk-1 	 (3.2) 

Equation (3.2) is now squared and expectations taken to give (3.3) 

E(vfc). = E(e) +. dE(v2  1 k-1) 2d1E(ekvk-1) (3.3) 

2 = 
Te (v2  ) k-1 (3.4) 

The last term of (3.3) is zero since ek  and vk-1  are independent; 

also we can take E(IT,..1) = E(vk) for a stationary process. Thus 

the variance of the signal yk 	
_usf, is  2/( 2 1_41) ' which is a simple result. 

For larger values of m and 1 it is easier to invert the polynomial 

D(z) by synthetic long division32 .to give a moving average 

representation. The squared terms can then be summed as shown in (3.5) 

vk = N(z). [D(z)1.-1  

= (ro  +r1  +re 
z-1 	-2 

ek 

J ) ek  ek  • j 	00 

	

:.E(v2) = (r2+r2+r2 	2  	 r2) a- ; j 

	

o 1 2 	e ( 3.5 ) 

where ro = 1.0 for N and D defined as in (3.1) 
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The cross product terms E(ek.ek_i), lil>0 are all zero due to the 

independence of the ek 
sequence. The 	inversion process in general 

produces a chain of coefficients, rk  as shown, which converge 

1 
z) asymptoti6ally to zero magnitude when j—a-00if D( 	

is a stable 

polynomial. 

It is easy to show
45 that the inversion process to obtain 

rer1,r2 	 is equivalent to exciting a system 17
177 starting at 

zero initial conditions with deterministic pulses from k=1 to k=m+1. 

The successive amplitudes of these pulses are given by the successive 

coefficients of !\1(z). After k=m+.1 the system is allowed to run free 

until k=j+1 ; j--o°. It is obvious that any finite limit on j would 

be an arbitrary one decided by numerical convergence. Only by knowing 

the dynamic modes of such a system, i.e. the roots of D(z)
17 can we 

easily obtain a closed form solution to the sum shown in (3.5). As 

one might expect, the simple structure for the variance in terms of 

the coefficients of D(z), as exemplified by (3.4), is not repeated for 

higher orders. Many text books
9,30,31 give tables of.variances 

expressed in terms of the coefficients of N and D, and these demonstrate 

all too clearly that no structure exists as the polynomial order is 

increased. We claim that only by working in the roots of N and D can 

the structure of the variance calculation be made plain, and the 

analysis mentioned above really be attempted. 
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3.2 	Approach via complex variable theory. 

The variance calculation considered in the provious section can 

be approached more rigorously using complex variable theory21,34,49 

A complex variable z is defined to have real and imaginary components 

in the complex plane. A general function of z, F(z) is regular in a 

region.  D' if it is single valued and its differential exists at all 

points within D'. Then the partial derivatives at each point have 

to satisfy the Cauchy-Riemann differential equations. A singularity 

is any finite point zo  where F(z) ceases to be regular, but is regular 

in the neighbourhood of zo
. Cauchy's integration theorem, as derived 

from the Cauchy-Riemann equations, states that the integral of F(z) 

round a closed contour C surrounding region D' is zero, provided that 

F(z) is regular in D' and on C. 

iF(z)dz = 0. for F(z) analytic on and inside C 
	(3.6) 

If F(z) has a singularity at z=.ei  within C, then the integral becomes 

IF(z)dz = 270 .(residue at the singularity Z= ei) 
	(3.7) 

When F(z) is a rational function the only singularities are poles of 

finite order. A pole is defined by (3.8) 

F.(z)hasapolec i oforderm.if F(z) F'(z) (3.8) 
(z- 

where F'(z) is regular within C and non-zero at z= 



The residues in (3.7) can then be calculated by equation (3.9) 

Residue of F(z) at a pole P. of order m. 
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m. 
1 	. 	 ((z-ei) 	) 

• M (m.-1): 	)z .-1  z=ei  
(3.9) 

   

Jury21 defines a z transform as (3.10), which can be regarded 

as a Laurent series in z. 

F(z) = f o +f1 z
-1 +f2z-2+f3z 

 

(3.10) 

 

where f is the value of a signal f at discrete time k. 

'Given F(z) we can obtain fn  by multiplying the series (3.10) by 21+1  

and integrating around a contour C enclosing any singularities of F(z). 

The only surviving term from the integration is given by (3.11) 

4F(z)zn-/dz = 2.1rj .(Residue o F(z)zn-1  at z=0.) 	(3.11) 

= 2Tri .f 
n 
	 (3.12) 

The analysis can also be extended to a two sided z transform (3.13) 

if F(z)  = kk= 000,  fkz-k 	 (3.13) 
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then f = 1 jr F(z)zn-idz 
n 27rj C 

(3.14) 

The contour C must lie in the ring of convergence of F(z) in the z 

plane with the point z=0. in its interior. If f is bounded, the 
n 

unit circle /z/=1.0 will belong to the ring and can be used for C. 

The two sided z transform is often used to describe the power spectral 

density 4f(z), (3.16),of a discrete time signal fk  in terms of its 

auto-correlation function yfn  as defined in (3.15) 

<IN 
002144-144k=-14 fkfk-n 

where n is an integer 	(3.15) 

§ff (z) 4n=90 d z-n 
n=-0en (3.16) 

Since )2( is even and bounded if fk is bounded it can be recovered 

from i.1,(z) in the same manner as (3.11). Contour C can again be 

the unit circle. 

:L = Ll 	.z.  f 	) zn-ldz 
2g; c 

(3.17) 

Now the variance of the signal fk  is defined as %0  in (3.15) tnd 

can therefore be obtained for n=0 from (3.17) if ff(z) is given. 

The spectrum f.f(z) can be found from equations (3.13),(3.15) and (3.16) 

and can be written as F(z)F(z-1), since it is symme&ric. The 

variance o
-2 of the signal f

k 
is then given by (3.18) 
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variance (fk) = Tf  p 0 = 1  J F(z)F(z
-1)z-1dz 

27rj rC 
(3.18) 

If the signal fk 
were passed through a system with transfer G(z), 

then the variance of the output would be given by 

variance of output signal = 1 fG(z)G(z-1)F(z)F(z-1)z idz 
2Trj C 

= 	1 f G(z)G(z-1)6rff(z)z-idz 
2itj C 

(3.19) .  
The contour C in (3.18) can be conveniently chosen as the unit 

circle, as this would always separate the singularities of F(z)/z 

from those of F(z-1). It should now be clear that since we have to 

evaluate all the residues of- F(z),/z given that F(z) is a rational 

fuhction of z, it is most desirable to know the roots of F(z), 

explicitly. Otherwise it is necessary to solve for the roots of F(z), 

or else integrate (3.18) numerically as a definite integral around the 

unit circle. This latter method is quite easy, but does not shed any 

light on the structure of the variance result. Similarly, the method 

of Nekolny
46,47 although having the advantage of indicating filter 

stability, again fails to supply us with any insight into the structure 

behind the sensitivity of parameters. 
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3.3 Calculation of signal variance. 

We are going to represent the simple filter (3.1) in terms of 

its roots as (3.20) in order to gain the advantages seen in the 

previous section. 

h. N(z)  = 	(z-di )  (3.20) 
D(z) .=1 (z-S.) 

1 

 

where 9i,Si  are the roots of N(z),D(z) respectively as defined 

in (3.1) 

For the case m<1 in (3.1), the root form of (3.20) has an extra factor 

z1 m which can be considered as 1-m extra terms. Each of these terms 

can be taken to have hi  equal to zero. Thus the strict equivalent 

system to (3.1) is given as (3.21) 

N(z) = IT1= 1(z-Di)  ; where hi  = 0.0 ; i=m+1, 	1 	(3.21) 

77 	T11- =1
(z-S.) .11.1  

The residues R. at the poles Si will be required when (3.21) is 

broken down into partial fractions. 

R. 
3. 

A 113:1=1 4i-  9j )  

M=141- SP 

(3.22) 

The system in (3.21) can be reduced to a proper fraction by long 

division. This can then be expanded in partial fractions to give (3.23) 
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1 	.R. N(z)  = 1.0 + 1,1 i=1  D(z) 	=1 zSi  (3.23) 

Theroots9i andtof the polynomials are in general complex, but 

have been taken for ease to be distinct. A similar analysis may be 

repeated for multiple roots, but has not been given here. 

To calculate the variance of the vk 
sequence of (3.1) we can 

consider it in the sense of (3.19) by substituting N(z)/D(z) for G(z). 

The power spectral densityLe(2) 
 of the signal ek  is a constant 

2 o since by the definition of ek in (3.1), all the auto-correlations Cre" 

ic are zero, - C4 < 	except /0  which is 	2'  This means (3.24) (r e 
can be simplified as shown. 

variance (vt.) = 1 JC N(z) . N(z-1) ee(z)z ldz " 
210 C 	-1 D(z) D(z ) 

2 
= Ire Jr N(z)*. N(z 1)  z-1dz 
2Vj C D(z) 	D(z-1) 

	

where.0 is the unit circle /z/ = 1.0 	(3.24) 

The partial fraction forms of N and D can be substituted in to (3.24) 

from (3.21) or (3.23). The same expansions will hold for F(z 1), since 

we can derive the partial fractions in terms of z-1. 
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(v ) 	2 or2f1. 	 R idz variance 	[1.0 + 1 	Ri 1.[1.0 k 	UV 	c 	- 	i=1----- 	9=1 	 

	

2Aj c z 	z-ei 	-1 c 
z - 

(3.25) 

This can be split into four separate integrations i) to iv): 

2 

C 
i 	

2 
i) 	ae 	1 . 1.0 dz 	Residue at z=0.0 is a- 

27.0 c z 	 e  

JC 

2 	
1= i ii) 	Ue 	1 1.0 e A 

21fj c z 

R~,Z dz Residue at z=0.0 is 0.0 
1- SyZ 

2 	 Ri c2 iii) 	re 	1e =4 . 	Ri . 1.0 dz Residue at z=0.0 ise 11 	 3.=1 270 	z 	z- Si -di 

Residue at zj 	R. 
i is 1 n-2 

r ve 
oi 

. 40: R 
.. Sub total -41=1 R1 . 1=1 ,i = 0.0 1 -7.- 

Oi 	6i 

iv) 
2ji 1 	R. Ue 	1.. 4 	1 - anj C z 	z- Si 

R9Z dz Residue at z=0. is 0.0 
gyz 

Residue at z= g. 1 
R. R Si 

	2; 
Si 

1  / 	; 
Si 1- SAi 

:. Sub total;V: <11 	R R 2 
11 <9=1 	 Cre 1- S,Ei 

2 	 1 1 = total of residues = [1.0 &=1 9-1 R
1R1 or 2 

 

(3.26) 

Slightly different forms can be obtained for (3.26) by factorising 

in different ways. For example, for the case of m=1, we can evaluate 

the initial response v
1 to a unit pulse input e1 by using (3.11) and 



[ 

= TIT=1(9i) +. 

3.-{ii=1(85.) <
<1 	Pi  
i=1 7— 

oi 

4..  <1 	ea 	RiR 0.? 
(3.28) </i=1<4=1 

1-EDS9  

2 
cv 

this gives (3.27) 

_ Tr _1()i) 4. <1 R. 

Jit.i (S1)  

= 1.0 by long division of (3.20) or (3.1) 

for e1  = 1.0 
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(3..27) 

The identity (3.27) can be substituted in (3.26) to give the other 

possible forms (3.28),(3.29), and (3.30) 

[ t3_ 7  3IT.101-2:0_IIT=101 
Ill=1(si) 	j[1=101)  

41 

	

4,.,14:1 el RiR), 	el RiR1  _2 
i-1C,=1 	i=1‹ly=1 	 ve 

	

Sig/ 	14i4 (3.29) 

2 
(T",y TI

T  

	

=1(9i) 1.0 +.<11 Ri 	 11 <1 	R.R, 

	

44 i=1 — 	i=1 9=1 	 

Ift=i (Ei )  

	

b. 	 6', ( 

  

2 
C'e  

(3.30) 

  

   

     

     

The form of (3.26) will be adopted here as being the simplest and can 

be used for m=1 or for m<l. 	 Some further 

simplificationscanbemadeiftheSi  poles include complex pairs. 

Then certain terms containing gi  sj  pairs, where Ei 
 is a conjugate of 

gi., will combine algebraically. The structure of the variance 

calculation can now be easily seen from (3.28) for any number 1 of 

poles ai  and any nurni)er m of zeros n., for the system (3.1) or (3.20). 
This is in distinct contrast to the variance expressions given in 
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terms of coefficients only29,30,31.  The way is now open to making some 

more definite statements about the sensitivity of the estimation 

procedures given in Chapter 2. It will be made clear later that one 

of the results of the estimation method will be to reduce the variance 

T
v
2  of such a simple system as (3.20) to as small as possible. For 

m=1 this is achieved by coaching all the poles Si  and zeros 	. All 

the residues 	'then go to zero, and q2 = e 
2 
. When m<l, complete 

matching of all ). and Si  cannot occur due to the lack of sufficient 
/1 

zeros. 

3.4 Sample variance of a finite data set. 

0; 	
tstimochA 

The varianceAof a signal vk 
can frequently only be .1g*4=a4 

N (v  
A 

from a sample, k=1, 	 N . Then T2 	
N 

	

is defined as — v)  k 	1 
1€ v 
N  where v is the mean value of vk  and is given by k=1 k . The R_,T 

factor occurs due to the loss of one degree of freedom. If the signal 

vk 
is known to have zero mean, i.e. it originates from a bias free 

N 2 
source as in (3.1), then T2 can be calculated as — k=1

v 
 k . 

For the case when vk 
is formed from an infinite past.history 

Ck ; k=110, 	 -w the signal is stationary in the statistical sense. 

2 	opeciai:cono.; the 
Then E(v1) = E(v2) - 	 = E(vN) and theAsample variance is equal to 

that for the infinite data case. 

During the estimation procedure to be used later, a signal 

vk  ;  k=1, N can only be generated as in (3.1) from a finite data 
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4 fh +fh +fk=Ofkh  = o o 	1 1 	2h  2 = 1 f F(pV.H(p-i )dp 
270 c  

(3.32) 
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setek  ;  k=1, 	 N . The filter N(z)/D(z) therefore has a growing 

memory property and is strictly non-stationary. Thus.  

E(v2) jl  E(v
2) 	 / E(4). 2 expgriatiori 4 the 

To be able to calculate theAsample variance above, E(vk) can be 

expanded as E(v'oek 	1 + v'ek-1 	 + ve  e1  )
2. Here vi is defined as k-1  

the impulse response at delay i of the system (3.1) when excited by 

2 an input el = 1.0 and thereafter el'c  = 0.0, k>0. The term E(vk) can now 

be expressed as u_2e . 	' 4k-1,e since cross terms ekek-j ; j/0 have an 

expectation of zero. We now require a closed form expression 

vi 
	

for 

1=0 
	 A  for any value of k, to be able to calculateET

v
2 
 in the 44 ' 

finite history situation. 

Consider two sequences fk  and hk  whose z transforms as defined 

by (3.10) are F(z) and H(z). Jury21  shows, by arguing from the 

Laplace transform definition, that the product fkhk sequence can be 

represented as a z transform G(z) by means of the convolution integral 

(3.31). 

)1  
G(z) g 1 	p-1F(p)H(z/p)dp A foho + f1h1z-1  + f2h2 '''2 	 

21tj c  

= 	residues of p 1F(p) = -residues of H(z/p) 	(3.31) 

where p is a complex variable, and contour c encloses all the 

singularities of F(p)/p, but excludes those of H(z/p). 

00 
By setting Z=1.0 in (3.31), we can obtain the sum =0fkhk as in (3.32) 



F(z) = 1 	N(p) . 1 
211:j c f D(p) 	

p D 	P 
N(z (3.37) . dp 

Suppose the sequence fk  was defined to be equal to a sequence (v0 , 82. 
2 then (3.32) would give ,ikc v 1  khk. We will now define the sequence 

hk to be 1.0 for o‘k<N
I and zero for any other value of k. Thus the z 

transform H(z) of the hk  sequence can be defined by (3.33) as from(3.10) 

hk = 1.0 for O.< k< 
	; 0.0 otherwise 

= (1.0 for 0<ke..0  )-( 1.0 for NI41“00  

-NI 	-NI  
.. H( z) = 	1 	- z 	= z (1-z ) 

-1 1-z-1  

	

1-z 	z-1 

(3.33) 

Do 
The sum product;&.cfkhk  in (3.32) in this case will now be equal to 

eN=0 
L1 
 v,2e the sum of 	for o,< k< NI, i.e. 	k 	Thus we have obtained the l 

sum of Nri c  for a finite length NI 

<INI-1 1 2 = <-11c=0v  k =0 fk  hk  = 1 	1F(p)H(p-1)dp - 
21Ij Op 

(3.35) 

where H(z) is defined as in (3.33) 
00 

2 
F(z) is the z transform A

ik=0
v1k 

z-k  (3.36) 

Now F(z) defined by (3.36) can be calculated using the convolution 

integral (3.31) 

This can be expanded as shown before in (3.25) 

F(z) = 1f 1(1.0 
21rj c  p 

4..../141 	R. 
i=1 	)(1.0 

p 2 - ui 	
9=1 

RI )dp  

zp 
-1 v 

(3.38) 



Then in a similar way to that of (3.25) to (3.28) we can show 

. RI  F(z) = 1.0 + 3.=,1  1_1  R  1  
z-SiS, 	(3.39) 

Now (3.35) can be calculated explicitly using F(z) from (3.39) and 

H(z) from (3.33) 
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Al 4N-1.02 
44k=0 k = 2Tj 	

Al

P 
1.0  

C 

RiR1

] 	

 11,  p-1(1_ dp  

[ 	
1 . 1-pNI .dp The 1st term in .] gives: 	1 

22j c  p 1-p 

residue at p=0. is °e2 	only. 

. 9 th 	 [ The 	term of 1 	.] ,, 	gives 1 	1.  1 R.R .9. 1-pN  .dp 
2117j c  p 	1-p 

R. residue at p=0.0 is - R  1 / 

residue at p= S, 
Sig/ 

is RiR, 1-(8iP
NI 

Si SI 	1- Si  S, 

rr  NL1 
these two residues combine algebraically to give RiR, .1- ( 

1-Ei  

The sum of all the above residues gives Wall=e4sp-e-G-t-atits,n-cif-thr--sanspax- 
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4:IN'-1 	1 2 	1 	1 	1-(E . N'-1 
1.0 +...̂1 	. . ,R.R .  	)7  4-11c=0' v  k 	 1 1=1 1 5, 

1-Si 

(3.4o) 

txpecbtkiovt OS tile 
We can now form theAsample variance for a finite data history 

mentioned before by using a separate term for each E(v:),k=1, 	 N 

and using the relation of (3.40). 

Z--xpederitiary'Sample variance k o 	 f
,?,)+E(v ) 	 E(Ntfid of v = OP = 1 Ecv  

= 1 E(vl
o
e
1  )
2 	 for E(v.21 ) 

N   

+ E(v'odN-1 +. 	 4- 1/14_3e2 
 + vii-2e1 ) 2 for E(4/...1 ) 

+ E(v'eN 
	N 
+   + vA..2e2 	v'

-1  e1 )
2 

	

for E(v
2
) o  

=ere 1.0 

l 
+ 1.0 +A

i=1 
R.R 

=1 1 9 

    

    

+ 1.0 +4,1=14=1RiR, 

+:1.0 +1,1.4=1R0), 

All these terms add together to give (3.41): 

E 	egN = a 
v r0 '6 

2 
4. (re  ,e1 

IT<i=1Ly=1 
R. 1R 	[1.1(1.- E )-1.0 + (Si4)N1 

(1.-414)2 

RiR, ]* li1.0 - 1  .-( Si 4)11  11 
(I. 	-h&c) 	N(1.-sig,) 

2 =u- + 

(3.41) 

+ E(vs;e2+v1e1 )
2 

for E(v
2
2) 
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Clearly (3.41) is biassed but will converge to the infinite memory 

stationary case of (3.26) when N is large. If we decide on a 

particular value for the bias, then N and (gis),) are clearly related. 

Such a relation is shown in graph form in figure 20 and will be 

discussed in Chapter 4 as a criterion for N given (sieo. 

3.5 	Auto-correlation function of vk. 

The auto-correlations pc of the signal vk, defined by (3.17) 

can be evaluated in a similar way to the variance pro  in the previous 

section. The system z transform N(z)/D(z) can be broken down into the 

form of (3.23) for convenience and can then be substitu ted into (3..17) 

in the manner of (3.19). 

	-1  r-1 

	

N(z) . N(z) 	(z)z 	dz c, = 1 	ee 
2/rjf. D(z) 	D(z-1) 

2 

	

= Ge 	(1.0 	
Al+ 

i 	

Ri  ) 
1=1 z-4 (1.0 +V 	

R 
1-1 	_ 1 /  

z -Ey 
)zr-idz 

25rj c  

(3.42) 

since ee  (z) = (r-e
2  only,due to the definition of ek  in (3.1) 

This integral can again be expressed as the sum of four parts. 

2 
i) 	(re 	zr-1.1.0 .1.0 dz 	No singularities for 1,0 

2RJ c 
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2 
ii) (der-1 
	R z .dz z 	.1.0 	No singularities for r>0 

1 21rji 	=1 1- 	Slz 

iii) zr-1 ea=1 	 e 
R. .1.0 dz Residue at z=cr is T2R. r r-1 

	

Zi 	 1 Oi 
21rj C 	z-Si 	 r  r-1 21 Sub. total=p- eA i=1R.  i 

2 
Al 

• iv) 	zr-l<11 	
R. . l

=1  
 R y z 	. dz 

41=1 
1 

21ijc 	z- f. 	gyz vi 

Residue at .4.1  is 2R.  r-1e1 , 
ue iui 417=1 

R,) 
 

1-  gygi  

R.R gr 2 
sub. total i=1 	

1 / 1  Te  
1-  EICi  

[ 	

R.R E. ri 2 fir  = 	i l=iRiE r-1 	l 3 i 	.1.. ii=1;=1  
I  a- 

1- gygi 	e 
(3.43) 

By repeating this derivation in other ways,equivalent forms for p( 

can be found. 

A similar result can be derived for the cross correlation 3‘,1  

between the outputs of a system N(z)/D(z) and another system N/(z)/D 1(z) 

each with the same input el.. Unless the systems were the same the 

auto-correlation function would not be symmetric i.e. -r  0'r. The 

two possible orderings of the z transforms in (3.42) would then be 

significant. Equation (3.43) would have either Ry  and Sy derived 

fromW(z)A 1(z)orRi andg.derived from N.(z),/bf(z), depending on 

the sign of r. 
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As in section 3.4, 0r  for a finite data set vk is defined as 

1and will be equal to the infinite data case if v
k k=r+1 vkvk-r  N-r 

is a stationary sequence derived from an infinite input history. If 

k is generated from only a finite length input ek, k=1,  
	

I and 

is therefore non-stationary, then E(vkvk-r) / E(vNvN-r)' k=r+1, 	 N-1 

To 	calculateE 	, E(vk vk....r  ) can be expanded as 

E(v'ek  + v1
e
k-1 
	

 vk-1  e1  ).(vo'ek-r  + 	 vic_r_lei).. The various 

terms E(vkvk-r)  can 'be expressed as T
2k-r-1 

0vi+r  vi  ! . Again cross 

products of ek have a zero expectation. The necessary expressions will 

now be developed by first defining F(z) in a similar way to that before. 

00 

F(z) 	k=0 	z- vv k  , where r is the index of 

impulse response. 

and vl is the 

(3.44) 
Then using (3.32) we can derive (3.45) in the same say as for (3.35) 

eN'-1-r v'v! 	= 	jr  F(.)H( -1 ).-1 dz i i+r 21j c  
(3.45) 

where F(z) is defined above. 

H(z) is defined as (3.33), but with the limit N' replaced by 
N'-r 

From the definition of F(z),. (3.44) and from the convolution 

integral (3.31) we can derive the following in the same way as (3.37) 

to (3.39), and (3.42), (3.43). 



= 	dr pr-1( 1.0 +i
R  ) (1 .0 

p...si  
R 
	)dp 

-1 
zP  "(3.47) 

<1=1 21tj 

R i R.; r  
Si  

- 
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F( z) = 1 
271j 

r-1 
p 	N(n) . N(z ) .dp 

D(p) 	D(z p) 
(3.46) 

F( z)  = 	R.  f
i
-1 <11 zi 1 

41=1 	0 	+4i=1 <2.3=1 
R R S. r  1 / 1  

z- 
(3.48) 

we can now substitute this in (3.45) 

= 	i di 1.t1 	
S' . r-1.  1-z -rdz + 1 f 

1  1+P  2Tri• 	z 1=1 1-z 	2Rj c  z 117-  
i=o 

1-zNi-r  .dz 
1-z 

N-1-r 

(3.49) 

1st integral: Residue at z=0. is /13. 1-=1  R. s.
r- 1 

1 4 	3.  

<11 	 1A 	R.1RV  (sir 
2nd integral: Residue at z=0. is 4c1=14/-1 

-giE/ 

R. R 	r 
Residue at z= 	is  I 	i  . 

Sib 

 

rr 
Sub. total is S 1. =1 

1  
1=1 

 RiRloi 

i1 

These last two residues add algebraically to give a total: 

	

/4 -1-r 	1 

	

v. Nr! 	1• 	R • =1 i i 
r-1 	el. 	R. R 1 	r r ( 1- ( E. )N-r-1) 

<1=1 9=1 	i 	3."?  
( 1- 	) 

where r>0 N r+2 
	

(3.50) 



As beforeE can be formed by using (3.50) for each 

E(vkvic-r ), k=r+1, 	 N and finding the mean. 

E°: = 	fE(vr+1v1) + E(vr+2v2) 	 +E(vNvN-r )1 

2 
= Te fv'v? o N-r 	r  

+v'v' + v'v' o r 	1 r+1 

+ V I V
r  
I .•1-  ViVt r+1 	 vN-r-1  .N-1 1  

= ce2  <3. R.  r. r-1 
N-r 44i=1 (13. 

<1 	S' r-1 	 1 
▪ </i=1Ri 	 + 1=14=1RiRY S; 4+ 1 -(Eir)))  1 Sr - 

pN-r-1 1 	 +<3.. R.R gr 1-( + 1=1 1 1 	 43.=1 9=1 a. 7' 
1-Si g:i 

Again these terms can be added to give 
2 = cre 2 	 + 0-er 
	

1 i=.1 ,11.1  R.R 3. oY  * 
(1 -SiEy )2  

616; 	Ey)N-r-1)1) 

= 	
<i 

2 413. R 	r-1 	2<3. 	 61; 
i=1 iUi 	ve 4i=1</p1 	 * 

* (1-(giEy )N-r) { 1.0 - 1 
N-r 	(1-gii rv ) 
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J 



Thus. 	is biassed as a function of r under the given conditions, 

but converges to the stationary case (3.43) when N is large. 

9 0 . 

3.6 	Response of system N(z)/D(z). 

The relations obtained in the last few sections will be completed 

by an expression for the response of the system of (3.1) to a unit 

pulse input at time k=0. We can substitute N(z)/D(z) as in (3.23) 

into (3.14). 
	 1//) 

vi = 1 	z-1(1.0 4.:31 	Ri )dz 
i=1 	

(3.51) 
2Vj 	z-Ei  

This again can be treated as the sum of two integrals as before. 

1st integral: 	Residue at 	is 1.0 only 

2nd integral: 	Residue at z=0. is 1 
	R.  

-Si  

Residue at z=Si is
Ritotal residue 

1 R. 
i=1  

Si 	Si 

These last two terms cancel leaving v; = 1.0 only 
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The response v;,r>0 can be obtained similarly, but there are now no 

residues at z=0. Thus the full response becomes 

1 <1 R  E 	<11 R cZ 
vo ; v1; 	

 =1.0 
1=1 	' <41=1 i I 9  Ci1=1 lU I 

(3.52) 

The outputs shown in (3.52) can be summed in various ways 

as considered in equation (3.34) to give all the relations shown in.  

sections 3.3 to 3.5. 

3.7 	Representation in terms of roots. 

The results of the previous sections demonstrate very clearly 

the value of expressing N(z)/D(z) of (3.1) in terms of their roots. 

The structure of the variance relation (3.25), among others, is now 

clear and simple for all orders of the polynomials. This is in distinct 

contrast to the text book relations 	given in terms of the 

coefficients of the polynomials. It will be shown that such a root 

formulation will be of great value in deriving a measure of the 

sensitivity of the estimation procedure. Since we can always derive 

the polynomial coefficients knowing the roots, we will estimate the 

system (1.38) in terms of its roots, and thereby gain the benefit of 

being able to predict difficult or unrewarding areas of the estimation 

process. Even if the original problem was posed in the sense of 

finding the coefficients, we have chosen a root formulation to make 

.the process easy for ourselves. 
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As mentioned before there is a need to ensure the stability of 

the estimated polynomials for later practical use, and to ensure 

correct bounded filtering of the data set during estimation. A check 

on the stability of a system when given the polynomial coefficients 

is not easy and would have to be done at each step of the hill climbing 

described in section 2.5.. Stability is relatively easy to ensure once 

the roots are known; a simple check will determine whether they lie 

inside or outside the unit circle in the z plane. We will develop 

a transformation in a later section which will confine the roots of 

A 
C(Z) to lie within the unit circle, and yet allow the hill climbing 

procedure to operate in an unconstrained space. 

3.8 	A canonical state representation. 

The correspondence between the representation in root form and 

a canonical or normk1 form of the state representation of (1.1) can 

be easily demonstrated. The minimal parameter deterministic version 

of (1.1), for m=r=1, is given here as (3.53) with F in diagonal form. 

x(k+1) = Fx(k) + Gu(k) 

Y(k) = Hx(k)+ Du(k) + yc 	 (3.53) 

where F is diagonal n.n withn non-zero parameters f.., i=1, 	 

G or H contain n non-arbitary elements, and are n vectors. 

D is 1.1 in this case ; D.C. component 	taken as zero 

Equations (3.53) can be expressed in transfer function form 	(3.54) 

which can be also obtained by the parallel programming approach20. 



y(k) = CZ 1H 1 
1-f11z- 

1  

1-f22z 
-1 . 

0 

z-1u(k) + du(k) (3.57) Yk = 	-1 
Jr.=1"-fiiz  ) 

• • 

[310,3(1-fi iz -1 

)] 
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y(k) = [H(zI-F)-1  +. D 

= [H z-f11 

z-f22 

u(k) 

0 

0 

• z-fnn 

-1G D u(k) 

0 

(3.54) 

G + D3 u(k) 

(3.55) 

1  

1-fnnz 
-1 

yk = 	
h
11
g
11  +  h  12g  21  	 +  h1ngn1z-1uk+duk (3.56) 

1-f z 1 1-f22z
-1 1-f 11 	 nn

z-1 
 

We can now compare (3.57) with the root form in D(z), coefficient form 

in N(z), of the system in (3.1), and by comparing the coefficients 

of u0- 

Roots Si of D(z) are given by the f. diagonal elements of F 
(3.58) 

Coefficients n. of N(z) are related to H,G and D of (3.53) by: 
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d zo 	
-1  

40 h 7 -d nC (f..dz 	-g1.14.1fihligii+d nC2(fijlc  o 	i=1 1i i1 	1 li 
jA 

+Ri=ii=ioni=i 	n 
fjjf11h1igi1-d C31 (f..;_l

z-3 	 (3.59)  
j/i 1/i 

1/j 

(where 	or gil  ; i=1, 	 n may be chosen to be 1.0 for 

simplicity and nCk(fii) are all the combinations of f.i  taken 

in groups of k ) 

Equivalent to 

noz
o + n

1
z-1 + n2

z-2 + n
3
z-3 + 

 

(3.60) 

 

As Lindorff
30 has shown, we cannot expect a direct relation for the 

zeros of N(z). The root form will be retained however in view of the 

simple forms shown in the previous sections. This canonical normal 

form of F shows the states of (3.53) in an uncoupled form. This can 

be useful since the discrete time system could be represented as if 

it were a sampled continous time system of uncoupled differential 

equations
20,30  , whose eigenvalues are individually related to the 

f.. elements in F. 

3.9 	Contour plots of the variance e ression. 

It is of interest to consider the contour plots of the variance 

relation (3.26) for an infinite data set, as the poles and zeros 

of the system (3.1) move over the z plane. For example the contours 

.of equal variance g
2 are shown in figure 1 for the case of a complex 

pair of poles g.,s fixed at z=(+0.2,+j 0.876), radius 0.90 from 
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FIG. 1 Isovars for a pair of pores (0.2, ±j0.876) 
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the origin. A corresponding pair of zeros ni d  nj  are allowed to scan 

over the portion of the z plane shown. The variance contours will be 

referred to as "ISOVARS". This term has been derived from a mixture 

of Greek and Latin roots, and is more concise than the fully Greek 

version "isoataktos". 

The isovars of figure 1 are symtric about the real axis. Similar 

patterns would arise if the fixed poles were in the negative half of 

the z plane. The contours are smooth and appear quadratic about the 

pole positions with a saddle point on the real axis. It should be 

noted that the zeros can be outside the unit circle without introducing 

discontinuities. The figure on each isovar is the value of the variance 

10-2  on that contour to a base of 0-2  = 1.0, where 0-2  is the variance 

of the input signal ek  in (3.1). Naturally when the zeros coincide 

with the poles, complete matching has occurred leaving the term 

1.0 cr-2 in (3.26). If we now move the fixed poles closer to the unit 

circle, the cohtours close in towards the matching point. This is 

due to the effect of the 	terms in (3.26); thus as /j1/-1.0, 
1- 

1  
giS, 

anypole-zeromis-matchccmponentsleftinR.and R are multiplied 

by larger factors. We can qualitcitively assign a "strength" to a 

pole, depending how close to the unit circle it is. 

The inverse case to, figure 1 is shown in figure 2. Here a 

complex pair of zeros are fixed at z=(0.201  ± 0.876), and a pair of 

poles allowed to scan over the z plane. The poles cannot lie 

outside the unit circle without giving an unstable system, and an 

2 
infinite variance g- 	for an infinite length data set. Consequently 
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Unstable system 

FIG. .2 Pair of fixed Zeros  



. 2 
all the isovars of all values, 1.0<0': < 00, must pass between the 

v 
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position of the zero and the unit circle. Thus the gradient in this 

region is large and quickly changing. The hill surface probably 

cannot be easily matched by an analytic surface, such as a quadratic, 

except in very small areas. We 60uld not expect a normal hill climbing 

routine to work efficiently under these conditions. The situation 

becomes increasingly worse if the zeros of the system lie closer to 

the unit circle. 

It is possible, in special cases only, to constrain the poles 

within the unit ·circle by restraining the coefficients for low order 

polynomials. 43 44 The constraints may appear linear in certain terms ' 

and allow simplifications to be made. These methods are clearly not 

universal, and cannot be applied to higher order systems. Unless the 

inherent pole structure as shown in (3.26) is accepted and used, we 

cann6t hope to solve more than a few special cases of restricted interest 

In the sense of section 2.8 we will consider the estimation 

process as one of selecting filter dynamics, i.e. poles and zeros, to 
A 

give a minimum cost V(~) of the ek ,sequence from equation (2.49). 

The estimation process thus reduces in this chapter to matching the 

poles and zeros of a filter to those of a fixed system. As a result 

'" we are concerned with the sensitivity of V(~), or the variance of the 

filter output, to the variable terms describing the dynamics of the 

filter. 

\' l' 
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3.10 Transformation to restrain poles. 

A number of efficient hill climbing routines, such as Newton-

Raphson or Fletcher-Powell, do not easily handle constraints. It 

would therefore be of advantage to us, if the optimising routine could 

operate in an unconstrained 2 dimensional space X, each point of which 

would relate to a point on the Z plane constrained within the unit 

circle. The transformation suggested is that the radius R
x 
of a 

point in X space would be operated on by a saturation function to 

produce a point at a radius Rz  in the Z plane whose maximum value 

would be 1.0. The coritsponding angles ex  and 0 could have the same 

value. Any point in the infinite domain of X transforms according to 

these rules, into the finite range in the Z plane represented by the 

unit circle. If we consider only the set of points inside the unit 

circle in the Z plane, then the transformation is one to one. The 

isovars of figure 2, when expressed in the new space X, would be 

stretched out to cover the whole extent of X space. 

A suitable saturation function has to be selected. Some of the 

known ones are shown in figure 3a. The curves have all been normalised 

to saturate at 1.0, and to pass through the point,Rx,Rz  = (1.00,0.7616). 

The 1st,2nd and 3rd derivatives are also given in figures 3b, 4a and 

4b, where it can be seen that the function Tan 1  is the least smooth 

of the set. The function Rz 
= Tanh(R

x
) was arbitrarily chosen as the 

transformation to be used although the alternative Erf or Exp. functions 

would be equally valid. The Tanh function was also used later for 

a similar purpose by Shaw and Robinson
14 
 but with a different intention. 

Figure 5 shows that the isovars drawn in the new space X now 
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FIG. 5 Two fixed Zeros in X space 
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appear as elipses instead of the more tightly circular contours of 

figure 2. The gradient of the surface is now considerably less, and 

the whole hill appears smoother and more easily fitted locally by 

quadratic approximations. Figure 5 can be redrawn for various positions 

of the fixed zeros. The aspect ratios of the elipses surrounding the 

optimum increase as the zeros approach the unit circle. It will be 

noticed that the hill is almost symmetric about a radial as shown, 

and it would be natural to describe it in polar coordinates. 

When the number of poles increases it is then more convenient 

to redefine X space in the sense that one dimension of X' space is 

reserved for each pole radius, with extra dimensions in X' being used 

to describe the angles of complex pole pairs. Thus X' space has the 

same dimensionality as the number of poles, while the Z plane is 

restricted to the usual two dimensions. The transformation now gives 

n points on the two dimensional Z plane corrosponding to one point in 

the n dimensional space of X', as defined by (3.61) 

x 	(n11.-  	Ericz (2) 
	

(3.61) 

where ay = Tanh(x1) ; Ang(g
P+1

) = xr+1 

/4/ = Tanh(xr) Ang(4) = xn 

	

r 	number p of real poles + number of complex pole pairs 

Sr+i 	= complex conjugate of gp+i i=1, 	, n-r 

n = total number of poles. 

Multiple poles are covered by the definition (3.61), since the 

corrosponding components in X' space are quite distinct. An extra 
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pole may easily be added to the arrangement as required. This merely 

increases the dimensionality of X', while leaving all other components 

and poles alone. 

A hill climbing routine can now work in the n dimensional 

unconstrained space of X', while the system poles are constrained to 

move only within the unit circle on the two dimensional Z plane. 

Negative values of all the xi  components of X' are permissable since 

both the Tanh function and angular measure are odd functions. Values 

of angle greater than 21fradians simply cover again the same area of 

Z space as angles lesa than 2n. Hence there will be more than one 

solution in X' space corr ksponding to a single Z plane configuration. 

This is in general of no concern as most hill climb procedures only 

climb to the local optimum, and all the optima in X' space will give 

identical solutions in the Z plane, of equal cost. 

The only remaining consideration is that of uniqueness of the 

solution in the Z plane, and is part of the estimation theory alone. 

Naturally we may exchange pole positions in the Z plane with no effect 

on the estimation cost or model behaviour. This means that there will 

be again more than one point in X' space, for a single solution in the 

Z plane, but this is of no importance due once more to the local 

ability of the hill climbing routine. All of the optima in X' space 

will give identical solutions in the Z plane. 

It will be seen later that on occasion we will want to freeze 

the radius of certain poles at less than 1.0 in the Z plane. To cover 

such a situation it is only necessary to fix one component of X' space, 

and continue to climb in the subspace remaining. 
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Because the transformation of (3.61) is defined in terms of 

analytic functions, we can obtain the derivatives in X' space of the 

cost hill, if we can calculate the corrosponding gradients in the Z 

plane. This process will be described in more detail in Chapter 4. 

For the moment, it is enough that we have the information of the cost 

and its 1st derivative in the new X space, both being derived from 

pole-zero positions in the Z plane via the suggested transformation. 

We can therefore now employ fairly sophisticated minimisation routines
8'9 

which work best in an unconstrained space, to solve the estimation 

problem. 

3.11 	More complex configurations. 

Figures 6, 7 and 8 show the isovars for the case of three fixed 

poles and the system as (3.1); one complex pair is at (-0.20±j 0.876) 

and a third at (-0.980,j 0.0) in the Z plane. There is no local effect 

on the isovars of a complex pair of variable zeros Z„ , due to the pole 

P3  or the pair P1,2. The only effect is a global one on the hill 

system, which is a distinct contrast to the well known root locus 

plots also involving pole and zero positions. As the third zero Z3  

moves from the origin towards P
3 

in successive figures, the hill system 

for the pair Z1,2  changes from a single optimum on the real axis, to a 

double optimum near the poles P1,26 
(All these figures are symmetric 

about the real axis and a 'pair' is understood to be a complex 

conjugate pair with equal positive, and negative imaginary parts.) 
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P3  (-.990,0. o ) 

FIG. 6 Three fixed poles , Z3 at -0.3 



P3 (-.990,0.0) 
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FIG. 7 Three fixed poles , Z, at -0.6 
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FIG.8 Three fixed poles ,  Zs  at -0.8 



From a parameter estimation viewpoint P1 	
cannot be correctly estimated 

4 

unless P3  has been reasonable well matched by Z3. If we were estimating 

the poles P112  and P3, by matching them with the zeros, it implies ,  

that the positions of Z12 
and Z

3 
are coupled. This estimation 

procedure can be interpreted as climbing a curved ridge hill in 3 space, 

one dimension being assigned to each of the degrees of freedom of Z12 

and Z
3. 

The altitude of the hill can be considered as the cost in a 

fourth dimension. Another requirement, that of following curved ridges 

has therefore been placed on the optimisation routine. 

By detailed and repeated reference between figures 6,7 and 8, it 

is possible to see
45 

that if the positions of Z
1,2 

and Z7  are 

separately and independantly optimised, then all three zeros will 

finish near point Q on the figures, The separate climbing of each can 

be iterated as an attempt to improve the estimation. As each zero will 

have its own respective local optima near Q, the estimation process will 

be trapped in a ridged hill situation. Only when the climb procedure 

couples Z
12 

and Z
3
, can a search be made along the ridge direction, 

and the absolute minimum be found. Advanced routines such as Fletcher 

and Powell9 do have this ability to choose new search directions other 

than the co-ordinate axes of the space. 

The situation for two pairs of poles is shown in figure 9. The 

isovars corrospond to the motion of two variable filter zeros Z
12 

moving on the Z plane, while another pair Z34  remain fixed as shown. 

An exactly similar isovar pattern applies if Z
1,2 

were fixed and Z
3,4 

were in motion. This gives rise to a similar climbing situation as the 

one in the previous case. Both pairs of zeros see local optima and 
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112. 

FIG. 9 Two pairs of poles 
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cannot escape by independant optimisation. Only if the coupling, i.e. 

the curved ridge hill, were recognised, could the correct estimate of 

the poles be achieved. 

The inverse situation is shown in two dimensional X space in 

figure 10. Here we have two pairs of fixed complex zeros Z
12 

and Z
3,4 

with one complex pair of poles P3,4 
temporarily fixed, and one pair 

p
1,2 

variable over the X plane, giving the isovars shown. Again a 

local optimum effect exists for independant climbing around the 

position of P34 
which can only be resolved by again recognising the 

curved ridge situation. 

k third alternative is shown in figure 11 for completeness. One 

complex pair of zeros Z
3,4  

, and a complex pair of poles P
3,4 

are fixed 

on the Z plane and hence in X space. The isovar plot is given for the 

. variable poles P
1,2 

with the zeros Z
12 

temporarily fixed as shown. ,  

Besides the usual ridge hill situation, it is clear from this and the 

other figures that the variable poles and zeros do not anihilate 

each other to the extent of causing any discontinuity in the contours, 

i•e• such a condition does not give any local change in the 

smoothness of the cost surface. 

3.12 Breakdown of the transformation. 

Given a system model as in (3.1) and a data record vk,k=1 	 N, 

the parameters of the model might be estimated by adding a filter which 

was an approximate inverse of the system. The input to the filter 

would be vlc' 
and the parameters of the filter could be adjusted until 

the variance of the output signal ek  of (3.62) was minimised. 



o. 	 1.0 2.0 X1 

4- 

FIG.10 Two pairs of fixed Zeros in X space 
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FIG. 11 Pair of fixed poles and a pair fixed zeros in X space  
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D(z)  . N(z)ek 	(3.62) 
fl ( z) 	57)" k = D(z)  vk n(z) 

filter 

A 	 A 
Then 4 would be an estimate of Ei, andyi  of 9i. The stability of the 

roots of If(z) has to be ensured to make the sequence ek  bounded. 

The arrangement of (3.32) is very similar to the estimation procedure 

described in section.2.8. A data sequence vk,k=1, 	 N is filtered 

A 
to give a signal Ek

of residuals. For correct parameter estimation, 

the residuals should be white, i.e. independant, and minimum variance. 

Since we have only a finite data set of length N, we ought to use 

the expression in (3.41) to calculate the expected sample variance of 

Ek 
in order to investigate possible sensitive regions. The X' 

transformation described by (3.61) can be used to control the roots 

hi within the unit circle on the Z plane. Let us apply this 

transformation to a simple 1st order process shown in (3.63). 

A 

Ek = z- g ). v, 77:717 

where vk 
is for the moment taken as a white sequence; 

2 
E(vkyk-i) 

 = a; S(i) ; E(i) = 1.0 for i=0; 0.0, iO 

(3.63) 

A 
From (3.41), the expected sample variance of the Ek 

sequence is 

A 2N 

4 = 	1.0 + (91 -i1 2  ) 	[1.0 -  1-91 	i 0-2  

{ 

	

1+h12 
	N(1-512) 

(3.64) 
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The transformation that we have described, was used to offset the effect 

1 
A 

1-91
2 

 

the type of (3.63), 	must be less than 1.0 and this must also he 

A 
true for all poles of higher order filters. As 91  approaches the unit 

4  circle, with N finite, the magnitude of 1N becomessignificant 

compared to 1.0. Some idea of the size of this effect can be found 

from figure 12. Here the magnitude of 91
2N 
 has been plotted for various 

values of N, as 	approaches the unit circle. 

Equation (3.64) can be described in the transformation X space, 

as figure 13, which was drawn for Di  equal to 0.998. The independant 

A 
variable X, single dimension, gives the value of 91  along the real 

axis in the Z plane. The optimum value of 	lies at X=3.45, which 

corrosponds through the transformation to 	matching 91  at a value of 

0.998, and is the same solution which would be obtained for infinite 

data. It will be noti6ed that for N=00, the curve appears convex, and 

the cost cr.. 	k . e 	 should prove to be easily minimised using Q  
k=1 

standard optimisation routines. The corresponding curve for N=200, 

however, shows non-convex behaviour away from the optimum. For a higher 

order filter, the space shown in figure 13 would be of higher dimension 

and non-convex, and the second derivative matrix would no longer 

appear positive definite. This fact would reduce the computational 

of the term in (3.64) e.g. figure 5. For a stable filter of 
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FIG. 13 Values of cry from (3.64) plotted in X Space 
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efficiency of hill climbers such as the Newton-Raphson, since a non-

positive definite 2nd derivative matrix would make the algorithm step 

in the wrong direction. 

From the above it should be obvious that there could be disadvantai 

in using the transformation blindly owing to this breakdown effect with 

finite data sequences. Comparing figures 12 and 13, we might decide 

that it was unwise to continue to search for an optimum if /W>0.998 

and N<500 to ensure sufficient convexity in the neighbourhood of the 

optimum. This suggests a limit for 6,114  of 0.10 in figure 12 as a 

criterion which strikes a balance between the data length N, and the 

A 
nearness of 91  to the unit circle. To validly employ a stronger pole 

A 
91  to estimate some 91, a longer data length should first be obtained 

to satisfy the above criterion. In chapter 4, we shall develop such 

ideas further and present other criteria with similar effects, but 

derived in other ways. These criteria will then automatically ensure 

that the breakdown effect described here, is fully controlled and not 

critical. 

3.13 	Finite data isovars. 

If equations (3.64) are reworked, it is possible to demonstrate 

that we can have the poles of a system outside the unit circle for a 

finite data length, and set produce a finite cost or sample variance. 

This is only to be expected, since the data length is not infinite and 

even an unstable system would have abounded output sequence. 'Unstable' 

is defined here as producing an unbounded output within infinite time 

for an arbitrary, but bounded input sequence. Even if such a system 
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can be validly estimated from a short data length, it would be useless 

to employ the estimate on a real plant which is effectively working 

for infinite time. 

Despite this remark, we show in figure 14 the isovars for a system 

with a complex conjugate pair of fixed zeros inside the unit circle at 

a radius of 0.9777, and a variable complex pair of poles, which can 

also move outside the unit circle. 

The relation (3.41) is used with a data length N of 50 to calculate 

the sample variance, and as a result the isovars exist outside the 

unit circle. The cost increases rapidly with radius in this region and 

there is some cyclic motion of the isovars as the angle of the poles 

changes in the Z plane. This is due to the aliasing effect of a finite 

data length, with the exponentially growing sinusoid produced by the 

pair of complex conjugate poles. The variance calculation can be 

viewed for this purpose in the manner of section (3.1) as the sum 

squared response to a unit pulse input at k=1. As the frequency changes 

with the angle in the plane, so the number of cycles within the data 

length changes. The final cycle will be the largest and produce a 

significant change in the sample variance depending on its phase at 

the end of the data length N. A.similar cyclic repetition of maxima 

has been observed in the stochastic case when filtering a finite noise 

sequence with an external pole. 

We could replot figure 14 in the transformation X space, but only 

for pole positions inside the unit circle on the Z plane. The isovars 

would be similar to those of figure 5, although in a different attitude. 

The most notable difference would be that some of the isovars would be 
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Pair of zeros at ( •9669480 +'j •14335699 ) 

FIG. 14 Pair of fixed Zeros , finite data set  
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open ended at infinity in X space, since they cross the unit circle in 

figure 14. Thus, again we have another view of the breakdown of the 

hill in transformation X space. It would be possible for the hill 

climbing routine to fail with the open ended and infinite length 

contours, i.e. the hill appears to be singular in certain regions. 

• Once again the cure when estimating is to limit the pole radius 

in relation to the data length. We might limit the maximum pole radius, 

but continue to optimise the pole angle in the Z plane. At the final 

point we would expect to find the local gradient non-zero and aligned 

along a radial. A final check on the optimum cost could be made 

exactly on the unit circle at the intersection with the above radial. 

An example of this procedure is given in Chapter 6. 

3.14 	Zeros outside the unit circle. 

An interesting situation develops when the zeros of a process (3.1) 

lie outside the unit circle. As demonstrated in figure 1, this is 

quite a valid condition for a system, and gives a finite variance of 

the output for all data lengths. such processes are not uncommon in 

real plants which show non-minimum phase characteristics. A pole 

placed exactly over the top of the zero outside the circle would 

compensate for the latter's presence. Such an idea cannot be 

countenanced in practise, as exact matching could never be achieved. 

As a result the system would be unstable, and the method impossible 

to apply. 

Consider the simple system described by (3.65), which is similar 

to (3.1) with the same definition of the e
k 

sequence. 
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z-1 vk = 	
1 	. ek 

ri 1-61
z-1  

(3.65) 

The autocorrelations 0r
, defined in (3.15) can be repeated for this 

case from (3.26) and (3.43) 

Pro  = 1:1.0 + 	 
1- +12 =f(  S1 91) 

(rr 
g1-121

)2 
g 

e
2 

r12 
 

if 2  = U1 -)1 )E1  + ( g17)1 )2  .r1  2  0- 2e  [ 	etc. 

412 	

(3.66). 
1  

For the case A01.0 i.e. Real zero inside the unit circle, 

all 0,r?..1 can be made zero, by choosing g,mi. This leaves, the 

central variance term, which is 1.or2. Thus the spectrum of vk  is 

white, an independant random signal with the same variance as the ek 

sequence. If we closely examine the terms in (3.66) when /)1/>1.0 

i.e. Real zero outside the unit circle, then all Or,r1, can be made 

zero by choosing 51=1.0,/,1. The variance term yo is now however equal 

to 1)12.re2. This result may also be derived from (3.26) for any number 

of matching poles and zeros. The system of (3.66) has been compensated 

by a choice of $ci  in the sense that it has white output spectrum, but 

now has a gain of value b)h/c 

The philosophy of whitening the residual signal vk  as much as 

possible is in line with Wiener Theory, and it can be shown that th,.! 

4=1.C6 matching does in fact give the minimum mean-square value of 

vk' 
for the condition that S1 is constrained to give a stable filter. 
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An example is shown in figure 15 for a complex conjugate pair of 

zeros at (-1.0,±j1.0). The isovars of the variable pole pair are 

drawn in X space, and the figure shows an optimum at the internal radial 

inverse of (1.01±j1.0) in the Z plane i.e. at (.50 ,±j.50 ) in the 

Z plane. The optimal cost is 4.ocr2 which corresponds to the square 

of the external zero radius, and suggests a square law between the 

radial position of the system zeros and the minimum cost. This is in 

fact borne out by careful study of pro  given by (3.26). 

The complete system of a set of external zeros matched by a set 

of inverse internal poles is very similar to an 'all pass' system in 

continous time described in the Laplace transform s plane." For a pole 

at s=-al  and a zero at s=+a in the complex s plane, the 'all pass' 

continuous time system has unit gain at all frequencies, but has a 

phase shift which changes from zero negatively as the frequency 

increases. If we were given a continuous time system as in (3.67), 

we could express this as a z transform as shown below. The term 1/s 

has been included to make the system physically realisable and gives a 

term 01-z-1) in the discrete time description as expected. 

System Laplace transform F(s) = s-b . 1 ; bz.0, a?0 	(3.67) 
s+a s 

Sampled at every T seconds 



Zero pair at (1.0,±j1.0 ) 

}Above optimum is at (.50,±j.50 ) 
in the Z plane 
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FIG. 15 Pair of external zeros , in X space 



z transform F(z) = 1 fie° 	(p-b)  . 

= .Residues at poles p=0, and p=-a 

	

= 2=12 	1  

	

p+a 	-1
C 
 pT 

p=0 

+ p-b. 	1 	where z=exp(Ts) and T 
p 1-z 11EpT 	is the sampling period 

p=-a 

   

= -b . 	1 	+ a+b. 	1  
a 1-z-1 a 1-z-1C-aT 

F(z) = 1.4z-1(1+b/a (1-CaT)) 
	 (3.68) 

(1-z-1 caT
) (1-z-1)  

s÷a. 
When b is equal to a in (3.67), the all pass continuous time termAcan 

be seen from (3.68) to become (3.69) after sampling. 

1-z-1(2_e-aT) 	 (3.69) 
1-z-1-aT  

This can be compared to (3.65), but will not have the all pass 

characteriStic 5=1.06 as obtained before in discrete time. Sampling 

at discrete times T has destroyed the continuous time property of 

constant gain at all frequencies. i.e. the all pass property. 

As an alternative, let the 5=1.0/9 criterion be applied to (3.68). 

The term 1+1),/a(1-E
TaT) is then equal to C+aT, and this occurs when 

b=aC 
aT. Such a system shows the all pass characteristics in discrete 

time, but obviously does not in continuous time, since we have lost the 

127. 

1 	.dp 
2nj -jeo (p+a)p 	1-exp(-T(s-p)) 
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property a=b. As we might expect, if the sampling time T becomes very 

small, the two forms of discrete and continous time all pass filter 

tend to become identical. For the case 5=9;//<1.0 for (3.68), the 

corrosponding value of b in (3.67) can be formed by equating 1.4-b/a(1-C7a  

with 
E-aT.  This gives the solution 101=-1.0 which implies a zero 

exactly over the left half s plane pole in the continuous time 

description. 

The discrete time system of (3.65) for the case E=1.0.6;/9/>1.0 

cannot be identified as being any different from a system in which 

E=9;/9/<1.0 as far as output data on vk  alone is concerned. Both 

possibilities give a white spectrum output vk  due to their all pass 

nature. The only difference is that the variance of the output is 

either 1)2 or 1.0 times Tel respectively. If we cannot measure ek 

directly or know its variance, both possibilities are equally valid. 

The results above,comparing the continuous and discrete time forms, 

indicate that if we changed the sampling time T, we should obtain a 

relative movement between the s plane pole and zero corrosponding to 

the discrete time form. This is naturally a reflection that what is 

really required is phase information between the ek  and vk  signals of 

(3.65). A non-minimum phase system, even when exactly matched
t
will 

show considerable phase shifts compared to the minimum phase alternative 

If ek could be measured or was otherwise known, for example the signal 

uk in (1.38), then a proper compensator/controller design could be 

employed. 

' Figure 16i shows the impulse response of a simple system similar 

to (3.65) for /
1 
=2.0 i.e. outside the unit circle, and a zero value for 
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(I) 	uncompensated response (1 -2.Z 
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(ii) compensated response (1-2.Z)' 
(1 -0.5Z ) 

FIG .16 Response of simple system 
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S. By the arguments of section 3.4, we would expect the output 

variance to be (1.02+2.02)0e2=5.0 0-e2. We cannot in practise apply the 

ideal compensation of a pole E at.  z=2.0, and so we have to resort to a 

pole Eat z=0.5 which is the inverse condition. The result is the 
impulse response in figure 16 ii which can be recognised as a typical 

non-minimum phase impulse response. In fact the expected output 

variance comes to only 4.0Cr
2 compared to 5.00"2 for response i. We 

	

can also form p(r.I r=1,2, 	 and show numerically as in section 3.5 

that 0 ,W is zero for such a compensation. The system giving response 

ii could be used also for a special coding in time of an input signal 

without having any effect on the signal spectrum. 

The results in parts of this section have also been given later 

by Rowe16 who employed a spectral view point. The spectral density 

(z) of the output vk  of a system such as (3.1) or (3.65) is given 
Cry 

by (3.70). 

	

= N(z) N(z 	ee(z)  1) 	 (3.70) 
t'vv(z)   

D(z) D(z') 

where.(1ee
(z) is the power spectral density of the ek sequence. 

If there are some roots of N(z) which lie outside the unit circle, 

then the corrosponding roots of N(z 1) will lie inside the unit circle. 

Thus we can choose D(z), all of whose poles lie inside the unit circle, 

to compensate for the roots of N(z) and the roots of N(z 1) which lie 

within the unit circle. As pointed out by htr8m10  and by Doob48, 

this choice can always be made for a process with a rational spectral 
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density. With such a compensation scheme 11(z) must be equal to 

41)
ee
(z), i.e. white, within a gain term given by (3.71). This is a 

slight advancement on Rowe's work, as the terms can be more simply 

expressed as here in root form. 

Gain = f{(Radius of any zero of N(z) outside the unit circle)2  

(3.71) 

Such compensation schemes can 4a* readily be applied when estimating non- 

minimum phase systems with the method of section 2.8 but will not 

return minimum variances. This must be of academic interest only, 

since the minimum variance estimator requires an unstable filter. 

3.15 	Isovars for a Finite data set and external zeros. 

Figure 17 shows the isovars for a complex pair of zeros at 

(0.9935127, ± j 0..15075), radius 1.005 in the Z plane for a data length 

of 500.. As before, the figure is symetric about the real axis, and 

only part of half of the complete,  figure is shown. Two minimum cost 

locations are found for the variable pole pair, and these corrospond 

to the exact matching point over the zeros and the inverse matching 

point at (0.9836527, fj 0.15000). Since the data length is finite, 

we can have poles outside the unit circle and yet have a finite sample 

variance. The isovars have a steep slope around the external minimum 

and a saddle point also outside the unit circle. Clearly this part of 

the region could cause trouble with hill climb routines such as the 

Newton-Raphson. We would expect a large number of iterations without 



1.10 

FIG. 17 External  
pair of conjugate  
zeros , N = 500  2 
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being sure of convergence to the optimum. 

As the data length increases, the external contours shrink more 

tightly about the external zero and the saddle point moves radially 

outwards towards it. Finally for infinite data, the minimum must be 

needle sharp at the external zero. The isovars inside the circle 

would be less affected, as the data length increased, but would have 

to crowd into the radial space between the internal inverse matching 

point and the unit circle as in figure 2. 

The transformation technique suggested in section 3.10 would allow 

us to find only the internal minimum at the inverse matching point. 

This would be valid since we require a filter which is stable both for 

the estimation process and for later use in the real plant controller. 

The absolute minimum cost solution would be difficult to estimate and 

useless in practise. 

It will be noticed that in figure 17 the inverse optimam point 

for a finite data set is not exactly in the same place, nor has the 

same cost as the optimum point for infinite data. The variance of the 

output signal for a finite data set is given by (3.41), which includes 

terms such as 1.-( sa)N• Under the conditions of figure 17, the value 

of this term, from (3.6) and figure 12, is approximately 0.996 instead 

of 1.00 for infinite data. This difference is related to the strength 

of the poles Si  and the length of the data set N. Some criterion can 

easily be developed, as for example in section 3.12, so that it is 

possible to predecide on a data length N for a given pole or vice versa, 
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so that such position differences are kept small. This suggestion will 

be explored again in chapter 4. 

During an actual estimation process the isovars and hills which 

have been shown here cannot be evaluated from the expected variance 

relations (3.26) or (3.41) in an analytic manner. They instead can be 

only evaluated from several runs over the data set of say yk  to 

A 
give ek 

for different values of C(z) in the manner of (3.63) in section 

3.12. Figure 18 shows a section through such a practical hill for one 

data set. The system was similar to that of figure 17 but with an 

external zero pair and with a data set of only 50. The hill section 

shows a large amount of positive added white noise which is due to the 

digital round off noise in the computer being amplified by the unstable 

filter poles. The effect becomes worse as the pole radius increases 

as would be expected. When the calculation was repeated in double 

precision (16 decimal digits instead of 8), the digital noise was 

largely suppressed, at these pole radii. 

One would suspect from figure 18 that estimating by a climbing 

procedure with poles outside the unit circle is very unsatisfactory. 

A movement of 1 part in 10
8 

is sufficient to give _a wild variation in 

the cost and destroy any logical decisions relying on surface smoothness 

Hill climbers of all types tend to get 'lost' and give very poor 

convergence. This yet again emphasises that it is only meaningful to 

climb with the poles constrained within the unit circle. 
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CHAPTER 4 
DERIVATIVES AND CRITERIA 

4.1 	The First Derivative of the estimation cost. 

A number of simple closed form relations can easily be found by 

differentiating the variance expression (3.26) with respect to a pole 

4 or a zero )1. of the system of (3.1). Alternatively the derivatives /1 

of the estimation cost V(&) g 52  can be obtained in open form by 
A 

differentiating the Ek  sequence directly as in (4.1) to (4.5), when 

applied to the estimation procedure suggested in section 3.12. For 

exact matching we require the number of poles equal to the number of 

zeros i.e. m=l, and hence the notation will be dropped. From (3.62) 

and (3.20) 

A 	Jr (z-t.) E, = i 	vk 17753. (4.1) 

A 	A 
where Ei  and 9i  are estimates of the poles and zeros S.07i  of a 

system such as (3.1) 

64c = -JIT(z-tdv k =  -1 	=  -1  
(z-gi) 1ri( z-9± ) " 	( z-Si) 

aEk  = +Jri(z-ei) 
- 

v,-  +1  .3ri(z-Si)v - +1 	e. K. )9j 	(Zqp4ffigi(”i) (z 1j ) jri(zli) k-(z1.)  

J 	(4.3) 
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 k 
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(4.4) 
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2 
11°C)  = 	. 

 

A , 
k6k 	 E k 

A "..1 1-1)iz  
( 4.5 ) 

   

A 
where q-A2  is defined as the sample variance of C

k' taken as 
A 

V(&) above. 

At the optimum matching point, 07.2 is a minimum, and both sets of 

derivatives in (4.5) must be zero. This is only true when the residues 

A 
ek  are 'white' or independent i.e. ek  is uncorrelated with eki.i;/i/O. 

It will be seen from equations (4.4) and (4.5) that the filtering 

method of obtaining the 1st differential with respect to 	or S  is 

almost as simple as astr(im's shifting method explained in section 2.8. 

The new procedure can be programmed very easily as follows as shown in 

A 
the following example for the derivative with respect to 11.. 

ij 

i) Initially set a variable q=0.0, and k=1 

ii) Sum tic  * q to give -a- differential (4.5) 
A 	A 

iii) Set new q=ek  + 9j  * previous value of q 

iv) Recycle to ii) with new value of k, until the end of the data 

The whole process requires two additions and two multiplicationsfor 

each k step, whereas astrdm's shifting method required one addition, 

one multiplication and one shift for each step. Since in general 

the roots roots are complex, the arithmetic used in (4.6) appears at first 

(4.6) 
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sight to be in the complex mode, which is not required by 2.strem. 

However many modern computers can perform complex or double precision 

arithmetic in the same time as single precision. 

Equations (4.4) and (4.5) can be further developed for complex 

	

A 	 A A 
conjugate roots. Suppose D(z) containsa complex conjugate pair 8,6* 

described by (a+jb),(a-jb). 

Thengk  = (z-ajb)(z-a+jb) f146 (z)  vu 	(4.7) 
R(z) " 

A 	 A 	
A A 

where D''equals D(z) less terms containing the pair of roots S,E* 

-4k = -(z-a+jb) D46(z) vk  -(z-a-jb) b"(z)  vu  

	

FUT 	g(z) 

=-2(z-a) 	. l(z) v = 	-2(z-a)  
la 	(z-g)(z-g*) 	DIT k 	(z-g)(z-s*) c k 

(4.8) 

.gk = -j(z-a+jb) 6"(z)  vk  +.j(z-a-jb) D°°  (z)  vk  
ab 	 R(z) 	g(z) 

(4.9) 

= 	+2b  tk ST (z-t)(z-t*) 

Similarly if (a+jb) and (a-jb) represent a conjugate pair of roots 

M* from kz) we can show 

. 	Yak = 	+2(z-a) 	gk  ; .be-k = 	-2b 	• (4.10) 
la 	zi)(z.1*) 	lb 	(z-j)(z-1* 
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The derivative with respect to (1-g2 can be obtained in the same manner 

as (4.4) and (4.5). The simple filtering required in (4.8), (4.9) 

and (4.10) can Aolifr once more be performed by a method similar to (4.6), 

and requires only three additions and two multiplications at each step 

to'provide both baEk  
A 
k be 

and .7-3- above. Both the single root,and the 

conjugate pair of roots filter case can therefore be treated without 

using complex arithmetic. 

The equations in (4.10) could be combined to give (4.11). This 

method does however require the filter, though simpler than before, to 

be run using complex arithmetic. 

*ak +j 	=  2(z-a-jb)  6k = 	2 	ek 
la ' 	lb 	(z-)(z-9*) 	z--1)*) 

where 1)0
A 
 * = (a-jb) 

(4.11) 

The individual gradients of 2̂  with respect to a or b can now be 

taken from the real and imaginary parts of the sum of (4.5), using the 

simple filter of (4.11). 	An exactly similar form of (4.11) also 
A A 

holds for the roots s e g*, but with a negative sign. 

4.2 	Derivatives in the transform X space. 

Whilst the hill climb routine is working in unconstrained X space 

as described in section 3.10, the cost V(0) must be evaluated using 

poles and zeros described in the complex Z plane. Using equations 

(4.4) and (4.5), the gradient of the cost can be found with respect to 



140. 

the pole and zero positions in the Z plane. The hill climb routine 

requires the cost gradients with respect to points in X space, and 

these can be found by applying a transformation to the Z plane gradients. 

Consider a single pair of complex conjugate poles at (a f jb) in the 

Z plane. The transformation between the Z and Xi description of their 

position is given by (4.12) 

a = Radz •Cos(x2) ; 

b, = Radz .Sin(x2) 	
where Radz=Tanh(x1  )=z plane pole radius. 

(4.12) 

i.e. Point (x1,x2) in X'describes pole pair (atjb) in Z plane. 

As before, one dimension xi  describes, via the Tanh function, the 

radius of the poles in the Z plane, while x2  describes the angle in 

the Z plane, Angz, between the vectors (a+jb) and (1.0,0.0). 

Given the cost gradients 'ilVAb obtained as in section 4.1, we 

can express these in polar co-ordinates in the Z plane. 

1b1/ = 	. Cos(Ang ) + 	. Sin (Ang) 

	

(Radz  la 	z bb 	z  

bV =-n . Sin (Ang ) +.)V . Cos (Angz) z — 

	

b a 	-61) 
b Angz  

Since we have related the angle in X. space directly to the Z plane 

angle Angz, we can relate x2  of X' space to Angz  as in section 3.10. 

The component x1  of X' space and the radius in the Z plane are related 
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by the Tanh function, and therefore the cost differential with respect 

to x
1 
 is given by (4.16) 

)V = ?Illadz . 	a v  = )(Tanh x1) . ), t, V 	= (1.0-Rad2).. % V 
1x1 	?, x

1 
bRadz )x1 	*bRadz 	

z  )Radz 

(4.16) 

+ %V .Sin(Angz))*(1.0-Rad:) 	(4.17) 
bb 

)V = -)V Sin(Ang ) 
)x2 7; 

aV Cos(Angz) bb 
(4.18) 

Equations (4.17) and (4.18) will give the required gradients in X' space 

For a single real pole at z=a, described by x
3 

in X' space, the 

angular terms in (4.17)do not exist, and the gradient in X' space 

reduces to (4.19) 

au  = + %V . (1.0-Rad:) =IV . (1.0-a2) 	(4.19) 
Dx3 	21a 	as 

As described in section 3.10, X' space is increased by one 

dimension for each extra pole in the Z plane. Clearly the above 

derivative transformation methods can be extended to any order of poles, 

including complex pairs, in order to provide a complete set of first 

derivatives in the X'space. Conceptually this can be extended to 

second derivatives for a Newton-Raphson procedure, but the suggested 

Fletcher-Powell hill climbing routine only requires the first 

derivatives in the climbing space. 

Then %V = OV.Cos(Angz) 

c1 	a  



g ) . 114(z)  v,j 
R(z) 
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A' slight ambiguity arises between the X' and Z representations 

as regards the derivatives in (4.17). A point in the Z plane can be 

described by more than one possible point in X' space. This is because. 

the angle Angz  repeatedly sweeps over the Z plane as x2  passes through 

increasing multiples of 21rradians. It turns out however that the 

relation in (4.15) still holds within any segment 0-.-27E of the 

dimension x2 
and the hill climbing procedure is unaffected. Box 

describes similar transformations and shows that no extra local minima 

are produced in the constrained space because of this effect. It is 

possible however.to have negative values of xi  in X' space, or Radx  in 

X space which describel by convention positive radii in the Z plane. 

This means that (4.17) should be modified by multiplying by the sign of 

x1 or Radx 
to retain the correct relationship between -eV and )V . 

A 
4.3 	Second Derivatives of e k in the Z plane. 

As demonstrated by equation (2.62) the second derivative of the 

estimation cost V(6) can be calculated from the first and second 

A 
derivatives of 	with respect to the pole and zero positions. From 

(4.2), the first derivative with respect to ti  may be differentiated 

again as in (4.20), and (4.21). 

"a Rad z 	x1 

1,4k  . 	r  
Ihlt; 	 ;1 
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= * 	1 v - 	1 	(z) vk = 	1 	4‘ 
(z-S1 	k (z-1,)(z-rdj  fl(z) (z-gi)(V 6j) 	

k 

(4.20) 

	

where tA(z) = p(z) less the term (z-i) i.e. 	p(z)  

Similarly 

   

A 
(z-gj )  DA(Z)  V 
(z-li) 11(Z) ki 

a 2eic = 	1  g ic).. 
iTtSzli)  J 

  

  

  

-1 	. t4(z)  v, = 	-1 	..A(z)  vk  = 	gk  
R(z) (z—ti)(zli) n(z) cz—y(z-9

A

i) 

(4.21) 

Again the 1st derivative in (4.3) can be differentiated 	to give 

)2ek  = 	ek..1  

) i a9j   
= 	1 	.  D(z)  

b.9j z-51. )(z-5j) 	frd(z) 

z. 	1 	. 	(.z) '. vk 
= 	1 	A 

(zii)(z-9j)2 144(z) 	(z-9i)(z-V k 

for i4j ; * factor 2.0 for i=j 

where N°( z) A g(z) less the term (z4j) i.e. 

(4.22) 

Clearly we are now in a position to assemble the second derivative of 

cost as in (2.62) by a simple filtering process similar to section 4.1. 

If the first derivative sequences (4.2) and (4.3) have already been 
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stored, 'of if they are generated in parallel, then the second 

derivatives can be obtained by running the simple filters of (4.6) with 

the loei  or 4k/b'  signals as inputs. Indeed the same simple 
filtering program can be used for all these series. 

As for the case of section 4.1, the operations appear to require 

complex arithmetic for other than real roots, but again the equations 

can be re-worked for conjugate complex pairs, so that only real 

arithmetic need be considered. Equation (4.8) can be differentiated to 

give (4.23) and (4.24) 

2A 
ek = z r 	-2( z-a)  

aaaa 	 L(z-h)(z-gp 
. n(z)  v 1 = 	+2  
1(z) k 	( -t)(z-E!)Ck  

(4.23) 

since 	tl(z) is independant of a. 

  

(z-f1)(z-gi) 

where § = (a+jb) ; Si = (a-jb) 

2A 
Ck = 	-2(z-a) 	. 	vic  = 0.0 

labia 	(z-hgz-gi) 

From (4.9) 

(4.24) 

2A 
e k = 	[ 	2b 	. 	z) v = 	+2 	̂  	(4.25) 

libbb 	(z-ti)(z-ti) T(z) 	(z-gi)(z-gp " 

It will be noticed that in this case, two of the second derivatives 

(4.23) and (4.25) are the same, and (4.24) is zero, thus allowing 

simplification. 
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• A 	A 
For the second derivatives 

derivation is more complicated 

of a complex pair 191. and 91, the 

than the above case. Differentiating 

(4.10) gives (4.26) and (4.27). 

/2ek = .1) [ 	2 (z -a) t(z)  
Eq a 	(z_v2(z_k)2 1112 (z) 

= f-2 ) 2(z-a)P(z- 'i).-(z111)24-2(z-.k).-(z4)2.] 

. 	~(z) . vk. 
N44(z) 

- • A

k 

. -2  
c 	

8(z-a)2  gk 
(z-1)(zip 4,2(z41)2 

(4.26) 

A 	 A * 	
A A4 

where n. = (a+j 	r) b) ; . = (a-jb) ; N (z) A _ 	N(z)  /1 	/1 (z-li)(z-q) 

The first term in (4.26) is very similar to the result in (4.23) 

2A 
b ek = 	2(m-n) 	D(z) vk 
labb . bb (z_02(z+)2 	 (z)Ta 

-2(z-a)[2(z4).-j(z42+2(z-91).+gz-'i)2] 

.D(z) v, 
4(z- b A )14 

	0 (z) ! / 

 

-8b(z-a) Ek (4.27) 

 

1 



From the second half of (4.10) 

,2A 
ek =6 [ 	-2b 	. 	6(z)  1.r .) 

abab ?lp z1i)2(z_k)2 1144(z) 

= /.72(z4)2(z-41)2.+ 2b((z-'95.)(z-I)*241 
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1 .  A z) 
( z ) 

vk 
(z4i )4( z4p4 

A 	
b
2 -2  

(z-X)(z-911) e k . 
	

( z4)82(z-k)2k  

(4.28) 

As in the single pole case similarities and computational simplifications 

can be spotted for equations (4.26) to (4.28). Only simple real 

arithmetic filters are required and little storage need be involved. 

4.4 	Usage of the second derivatives. 

This thesis presents an estimation scheme similar to Istram's 

maximum likelihood method described in section 2.8. The latter method 

required the calculation of the 1
st derivative vector and the 2

nd 

derivative matrix of the estimation cost V(6) with respect to the 
A 

parameters estimates 0. Two changes have been made here from that 

formulation. Chapter 3 has demonstrated the wisdom of estimating 

polynomial roots instead of coefficients, and the Fletcher-Powell 

algorithm (2.68) is used which avoids difficulties with a non-positive 

definite 2
nd derivative matrix. Although the 2

nd 
derivative matrix 

is not directly calculated during our hill climbing procedure, it 

will be computed at the final optimum to provide a statistical measure 



From (4.2) gk = -1 	wk  
Ti=7;77  

I 

A 
where ai  is a real root of A(z) 

(4.31) 
aai  
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of the parameter estimation errors. 

4.5 Computation of the 1st  derivatives of Val)  

The estimation method we will be using requires the vector set of 

1
st derivatives )VM. From equation (2.49), the prediction residual 

error is given by 

= A(z)- y 	g(z) u 
k (z k 	0 	k (4.29) 

The bias term ylLshould also be included in (4.29). This term may be 

modeled as convenient as a bias on ykiuk  or ek  signals, and will be 

discussed in Chapter 6. A scalar gain factor Go has been included in 

order to redefine B(z) as a normalised polynomial B(z) 4  TE1,1(z-pi).  
A 

For convenience we will consider ek to be formed of two components 

wk, vk as in (4.30) 

k = wk vk 
AA % where w -  A(z, 

 k 	k 	p 	k;v ig kz) u k 0(z) 
(4.30) 

The methods of sections 4.1 and 4.3 can be easily applied to derive 
4  	A 

the 1st derivatives of the cost V 	
f
k=1 = 	e k 	The detailed workings 

will not be repeated, as they should clear from the above sections. 
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From (4.8) A = 	-2(z-a)  w, where ce3..oe are a pair of 

	

2)a 	(z-ce.)(z-oci) 1 conjugate roots (atjb) of A(z) 

(4.32) 

From (4.9) 06‘1‹ = 	+2b 	wt. 	(4.33) 
bb (z-4i)(z-al) - 

From (4.2) 'Ek = 	+1 	vk 	where pi  is a real root of 11(z) 

/ Pi "5717 (4.34) 

From (4.8) )ek = 	2(z-a') 	vk where pip' 	(4.35) 

	

ba' 	(z-(3i)(z-pi) 

From (4.9) )tk = 	-2b' 	v 	conjugate roots (a'tjbl) of A (z) 
)to (z-pi)(z-pI) k 

(4.36) 

From (4.3) 4k = +1 ek A where 	is real root of o(z) 

	

1)j.  	(z- 
(4.37) 

From (4.10)gk = 	+2(z-a")  e 	where Y., Y.! are a pair 
la" (z-b1)(z-/(1) 

of conjugate 	(4.38) 

From (4.10)gk = 	-2b 	€ 
A k roots (a"±jb") of 6(z) (4.39) 

	

'203" 	(z- i)(z-V) 3. 

From (4.29))tk = -h(z) u = -v 
-TTZT k 	k Go 

(4.40) 

If the bias term $were modelled as a bias Xe  on e‘k  then the derivative 

btk/We  would be 1.0 only. As from equation (2.58), the cost gradient 

can be obtained from gk 
w 

k=1 k el  6 

 

(4.41) 

  

are a pair of 





Oi  = gi  i=1, 

A 	A 
or 0. = a; 1. (9 +1 

i=n+1, eil4peo 

A 
or 0. = a' = b' 6i+1 
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In our case the parameter set & for the model (4.29) describes the 

roots ai,
pi,  ?ri  i=1, 	 n of the polynomials 1(z), A(z) and 6(z), 

where n is the state vector dimensionality of (1.1). The normalising 

gain Go is also included in 0. As in section 2.8, the evaluation of 

the cost requires a run over the data set ykok, k=1, 	 N with 

the signals .kz)yk  and 60A(z)uk  passed through a filter Vd(z). To 

ensure stability of this filter, and of the algorithm, the corrosponding 
A 
9i  components must describe the roots Y. of 8(z) only through the 

A 
X' space transformation. A suitable definition for N is thus given 

by (4.42) to (4.48) 

A 
= X. 

A 
if 	is a real root of A(z) (4.42) 

for a complex conjugate pair of roots 

A 
cle.70

1+1 
 = (atjb) of A(z) 	(4.43) 

2n; j=i-n 

if 6.
J 
 is a real root of g(z) (4.44) 

for a complex conjugate pair of roots 

pi, pr =(a'tj13') of)g(z) 	(4.45) 

A 
if ri  is a real root of C(z) (4.46) 

'.=Tanh (x ) i=2n+11 	 3n ; j=i-2n 
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A 	A 
or 	O.1  = xj ; 

9
i+1 

=xj+1 ; Rz = Tanh(x,) ; 

yj  	= (R z cosxj+1' +Rz 	j sin  x.+1  ) ••' yj+1 
* 

= conjg(Y.) 

for a complex conjugate pair of roots yj j,z(*+1  of 6(z), and )(EX' 

A 	A 
0 	= G 3n+1 	o 

(4.47) 

(4.48) 

The term ),() in (1.38) describing the constant bias level on yk  

is not included at this point, and neither are the n initial system 

conditions which have been assumed to be zero so far. The estimate of 

A 
X as described in (2.55) can be left until the optimisation of 0 has 

been concluded, and is then given by 2V/N.°  

The gradient terms —7— for each iteration of (4.42) can be easily 
bOi 

calculated using (2.58) and the methods of sections 4.1 and 4.5. 

For the constrained roots, equations (4.17) to (4.19) have to be used 

to express the Z plane derivatives in terms of X' space variables. 

Thus the whole estimation algorithm can be expressed as follows in (4.49 

A 
i) Choose some initial value of 

—6) and set Ho
=I ; j=0 o 

A 
ii) Set a temporary vector 49 = 6. 

A 
iii) Transform 0 via equations (4.42) to (4.48) to give the roots 

di, pi, yi of A(z), A(z ), and 6(z) and the scalar 'de 
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iv) Run the data set yk, uk  though the model or filter as given by 

(4.29), generating the signals wk 
and v

10 
and evaluating the 

cost from (2.53). The filter system will be stable since the 

?ri 
 roots lie inside the unit circle, owing to the X' space 

transformation. 

v) Run the simple filter described by (4.6) as required to generate 

)gklGo as in equations (4.31)to(4.40 

vi) Totalise the products in (4.41) to get the cost gradient 100i. 

For the roots I  'of6(z),IdehavetofirstfandWIKand then 

employ the gradient transform (4.17) to (4.19) and (4.46),(4.47) 

toobtainthecorrectvalueso n+1, 	 3n. 

vii) Knowing the cost from iv) the value of 6 can be modified by 

minimising along a direction -H aV as shown in (4.42) to 
. 

find the optimum value of the scalar %°. This involves repeated 

re-cycling back to stage iii) until Ac)  is determined. 

A 
viii)(2j andthematrixH.can now be updated by the Fletcher and 

A 
Powell9  algorithm using g

o  and the change in gradient so that 

H tends towards an estimate of the second derivative matrix, 

but remains positive definite. This completion of an iteration 

j--014.1 requires recycling back to ii) following a test for 

convergence which is generally related to the rate of progress 

O A 
and the successive values of oc . When the test is satisfied, 

the estimation procedure is ended 

(4.49) 

For the initial entry to the procedure stages v) and vi) have to be 
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A 	A 
completed with 0 = 0. Thereafter stages v) and vi) can be omitted for 

minimising along a line, if Powell's quadratic minimisation is employed, 
A 

since this requires the functions V(0) only and no gradients. At the 

finish of each iteration, gradient information is again required to 
A 

update Hi  and 23. 

As a consequence of the simplicity of the filtering required in 

stages v) and vi) many of the operations can be made to run in parallel 

with stage iv). This avoids the storage of the intermediate signals 

such as tlk/' . In the extreme case the only storage required is 

that for the data set yk, uk, although the coding is by then rather 

complicated. 
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4.7 Computation of the second derivatives of V. 

When the estimation procedure of the previous section has been 

completed, the matrix of second derivatives of V can be calculated 

using equations (4.20) to (4.28) and the first derivatives of V at 

the optimum point. The defining equation (2.62) is repeated here 

as (4.50) 

s 2v  . 	)gk 4.4N 	)qk  
	 44k=1 	Gk=1 aka 	W .60. 	 b• 1 

(4.5o) 

The storage of the first derivatives signals can be avoided by 

multiplying and summing the signals during the final iteration of the 

estimation procedure, to give the first term of (4.50). 

The second term of (4.50) can be computed by applying the equations 

of section 4.3 to the model equation (4.29) generating ek. Derivatives 
2A. 	,2A 

0 0  Ck and  	ek  can be easily obtained by substitutions in (4.20), 

("(i Zle(j 	)pi)pj 

but with the signals wk and -vk'replacing 
A
k  respectively. Similarly 

A 
can be found by using ek and equation (4.22). The cross 

2A 
product terms 

	
ek  are zero by differentiation of (4.31) or (4.34). 

mi -apj  

Zopj 

with the poles of the simple filters being Yi,Pej  and 	respectively. 

The other case to be considered are the derivatives associated with
o 

If we differentiate (4.37) with respect to a j  or fl;j, it is clear 
2  that a Ek 	and 	Gk again depend on the signals wk  and -vk' 
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\ 2A 	\ 2A 
)0  From (4.40), 	
2A
ic and 0 el, 	are both zero,  0  ek 	is given by 
2 	P„TT; 	)6011i 

0
26 

+ 	vk 	and 	& k by 	 vk . 

77:737 	T6:5 	(Z— 1T 

All these terms can be found for the case of complex conjugate 

roots in an equally simple manner, either by re-running the above items 

using complex arithmetic or by employing equations (4.23) to (4.28) in 

place of (4.20) to (4.22). 

A 
At the final iteration, the residuals ek of (4.29) should be 

A 
independant. If this is not true either the optimum Oj has not yet 

been reached or it must be concluded that the model does not fit in the 

sense that it is lower order37 than the plant from which the data 

yieuk  was obtained. 

By studying the second derivative egations for )2g A6.A. in 

(4.20) to (4.28) it can be seen that the second derivative signals 
A 

contain no undelayed terms in C k as there is at least one delay term 
-1  in each equation. Since the signal ek is independant, we must 

expect the second term of (4.50) to have a zero mean and a variance 

proportional to N for large data sets of length N. This is similar to 

astrOm's case in section 2.8. Again if these second terms in (4.50) 

were ignored, the matrix would at-least be positive semi-definite, and 

indicate that the Newton-Raphson algorithm (2.67) could be applied 

successfully. 
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4.8 Calculation of the expected second derivative matrix. 

The theory due to Cramer and Rao can be used to assess the 

achievable accuracy of an estimation procedure. This will be described.  

in the next section. The information required is the expected matrix 

of second order partial derivatives of the estimation cost V. We can 

then place a lower bound on the covariance matrix of the estimation 

errors. Due to the expectation operation the second term of (4.50) 

A 
will be taken as zero i.e. assuming 6k  to be independant when the 

estimation has been completed. 

Consider the system as in equation (1.38), with the output yk  

generated by input signals uk  and ek. A notation is now introduced 

which will be useful in writing down the first terms of (4.50) 

eD gl 'veis defined as the sample cross correlation 

fC hJ for delay Tbetween two systems (z-e)D(z)  
(z-f)C(z) 	" 

and (z-g)I(z) e, 
(z-h)J(z) n  

(4.51) 

Large polynomials are written as capital subscripts such as A,B, or C, 

while individual roots such as a l l& or V, are in lower case letters. 

Consider a root a of A(z), then from (4.2),(4.29) and (4.50), the 

first term of the second derivative is given by (4.52) 

E 	b2V -=17 1N  
=1  

—1 

[ 
A(z) yb.] 

" 
where N is the data length. 

(4-.52) Bala (z—pc) C77 



= E 	,[_i  
z77:75c A(z) 

uk c(z)e  117 
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N 	2 
=E 	-1 	. G.B(z) uk 2 +0k=1 -1 -1 ed 

45k=167075. CTET 	
•z-E:7-c 

 

AN .G.B(z) . u tE,k_12p17 	k * 7 ‘z-g4 

   

(4.53) 

    

    

The last term of (4.53) is taken as zero if uk and 	are independant 

of each other. The signal uk  is assumed to arise from a stationary 

unarrelated source of variance a-
2. Then (4.53) can be written as 

(4.54) using the notation defined in (4.51) 

E )2V = N.G 2  0( 	,_2 
o B . B "u + N. y(° 	

. 	.tr2 

XC aC 	 R 	e 

For a root of B(z) we dmilarly obtain (4.55) 

)211  
= Eek=i 1 • G.B(z) u 2  E 

14°P 	C5777 	C(z) k  

2 = N.G02 Pc B . B 
pc (C 

Also the cross products: 

(4.54) 

(4.55) 

)2v  
E 	

AN 
G.B(z) uk  ad 	

EZ k=1 —1  A( Z) k 	1 • 	y 
z— cc 777 	

7_7 
cTE3  

= N* o flo B . B 
pcc . pc 

(4.56) 



For the C(z) polynomial, consider one root r: 

E 
12v 

= E 	12  
as ?< 	 (z-11) 

= N* ro (4.57) 

Again the cross product terms can be found: 
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1,2v  _ ,N 17 	[ -1r.B(z) 
" 

ot)2f 	z-be 775--  "b  

-21
2 

ro t . 1 "re 
 

+ 64* -5 -1 0-ek 

(4.58) 

1: 2v  = zero, since uk  and 6k  are assumed to be uncorrelated 

biOr (4.59) 

The cross products 

11 2v  

with 

AN 
Ezk=1 

=N, Ga  
• 

=E4=1p_1_7 

=N* Go 

Go: 

1
[B(z) G 

uk  * 

-B(z) u
k 

(4.60) 

(4.61) 

iccl 	O 

b 2v  

z-a 

[ 

B  

a 

u
k 

 C(z) 

2 
B • Cru  

aC  

• G B(z) 

C(z) 

- B(z) u 
k 

bpG0  

	

(z14) 	°T(TY. 

	

)21 B . 	B 	
.0;

2 

757 

pc 
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E " 
),2„ 

woo  
zero, as uk 

and k  are uncorrelated (4.62) 

E )2V  = V  N* 0 
00100 

. 0-2 B . B 	u 
C C 

(4.63) 

The above equations (4.52) to (4.63) have been given essentially for 

real roots only unless the calculations are done in complex arithmetic, 

and then will have real and imaginary components. For our purpose 

it is wiser to choose parameters 0i,611.11  as in (4.43) to describe /for 

example /the components a and b of a complex conjugate pair of roots 

di ce in A(z). This could also be repeated for the B(z) and C(z) 

polynomials. In the case of 8(z), this involves a re-definition of 

as in (4.47) from measuring in X' space to measuring in the 

Z plane. Once the estimation process has been completed and 6(z) is 

a stable polynomial, we may well choose to describe it in the Z plane 

for our own convenience. 

Consider a complex conjugate pair of roots ala* of A(z), then 

from (4.8),(4.29) and (4.32), the first term of (4.50) is given by 

2V=  El k =1 	-
2(z-a) 	. A(z) k  2  

)a)a 	k-  (z-V)(z-a*) 7(73.  
(4.64) 

;411c_i i 	-2. 
(z-a) 	. A(z) [G B(z) o .0 2 (z-g)(z-o(*)_ C(z) A(z) 

k 
 

where Ce,g* = (a+jb), (a-jb) 



GoB(z) u j 2 +  -2(z-a)  el;)2  

	

.E 1kN=.1  1 	
...

-2(z-a)
(e 
 . 

(z-N)(.) 777-  k 

tEg=12[1
co  

-2(z-a) 	. GoB(z) 

(z-a)(z-a*) 	ult* , 	 
(4.65) 

The.last term of (4.65) is taken as zero for the uk and ek signals 

being independent of each other. The other terms can be written as 

(4.66) using the notation defined in (4.51) 

2 
E 

	

2V = N *4Go. 	 0-  . ito aB . aB 	u
2 
+N*141 o a . a .0-e Ziaz?a 	ocd*C ag*C 	ax* .  ax* (4.66) 

For the imaginary components b of alas we can use (4.9) and (4.50) 

0 -1 2V =VN 	
2b k-[ - DbDb 	 (z-a)(z-a* • 1-!)5. yk

2 (4.67) 

.17e 	
k

N 	2b 	A(z) iGo•B(z)  u + C(z) c 112  k-1 / 	%/ z-a)kz-c<*) C(z) I 	A(z) 	
k 	k(z)  

where doe = (a+jb), (a-jb) 

/)2V N 4Gb2 	2 + N.4b2 * o 	 1 . 1 *8;
2 

1:,?41) 	aasc aasc 	 aas 

(4.68) 
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The cross products are similarly obtained: 

1.2v 	AN -2(z -a) 	. A(z) y 	. A(z) Yk  k-1 
[(z -0 )(z -d*) 	k

* 	2b  
(z-a)(z-a*) .6775.  

(4.69) 

N r 2b 	(Go.B(z)uk+61;,. = 	-2(z-a)  Go.B(z) 
[(z-a)(z-g*)

( 
C(z) 	(z-g)(z-a*)l C(z) 

2 N E 	v N*4b 	 . 2 	2 0;  -N.413G. 
b 	1 	Y1 bB 	Cu B 	2  

(41) 040 04X* 	gx*C ax*C 

(4.70) 

Similar equations to (4.66) to (4.70) can easily be written for 

root pairs in B(z),C(z), and any cross product terms. These are 

quite large in number and will not be shown here as they do not shed 

any more light on the situation. 

The various autocorrelations fir  can be analytically calculated 

either for finite or infinite data sets using the methods of chapter 

three. The final expected second derivative matrix and the matrix 

obtained at the end of the estimation process for the same parameter, 

set can be compared and conclusions drawn in the sense of the next 

section. 

161. 
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4.9 The Cramer-Rao theorem. 

The inequality due to Cramer and Rao
69 can be used to describe 

a lower bound to the accuracy of estimating a parameter. This result 

can be shown in different ways
12,21,35,69, but its derivation will not 

be shown here. 

Consider a probability density function f(1/4) and an independant 

set of samples 11,1 	 fN  drawn from the population of density f. 

Assume f is continuous in and differentiable with respect toe. Based 

on those samples we wish to find 6, an unbiassed estimate of 0. The 
A 

covariance matrix i!of the estimation errors of 0 is defined by (4.71). 

E (6-0(6-0)t  
f 	 f (6.4)(6-9)tf. d -f1 ,  

	
(4.71) 

The Cramer-Rao inequality is now given in (4.72) and (4.73). Kendall35  

shows the two expressions 

twice with respect to 0. 

Logefulk 
	j 

[12Logef 	,12)1 [—E 100 

are equivalent if fq,0) can be differentiated 

• • 	1-1  
Logef( ,!2)) 	(4.72) 

as 

(4.73) 

-1 

Equation (4.72) thus describes a lower bound for 	and it would be 

desirable to have an estimator which achieved this lower bound. It 
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has to be proved in each particular case that the maximum likelihood 

estimation method used has this property at least asymptotically. 

The probability density function that we are concerned with is 

the likelihood function L(0) defined in (2.40) in chapter 2. For our 

own convenience we have been considering L'=Loge(L) instead of L for 

maximisation, and this is permissable since L' is monotonic in L. Thus 

the vector set of (2.42) is the same as the vector in (4.72). For the 

purpose of equation (4.73) we therefore require a value of 

,r)
2Loge(L)) 	 and this can be obtained by differentiating (2.54) to 
OV) 

give (4.74), and hence Fisher's information matrix IN(0). 

) 
E 1

21,1  
m2 	x2 -1-̀  

where V(0) = iCitic  from (2.53) 

(4.74) 

Now expressions have already been found in section 4.8 for .c, r )2  V  Iva& 
and now these can be substituted into (4.74) and hence into (4.73) to 

give a lower bound for V., the covariance matrix of the parameter 

estimation errors (4.71). This enables us to examine an estimation 

scheme to see how the lower bound on 	and hence the expected accuracy 

of the estimated were influenced by the structure of the model and 

different input signals. At this point the matrix term corrosponding 

to 	can be inserted. By differentiating (2.55) we get 

, = 	
e4 	N. But is given by lec=„gc  and hence 

1)2L 	

2 
‘INk=1c-k 	

b2L, 

"TrE 	A2 	 ?1 21   

reduces 2N to 	. 



164. 

21,1  
As estrum has pointed out, if the matrix E 	is singular 

then there there are probably too many parameters in the problem and only 

linear combinations can be estimated. It now remains to investigate 

whether the estimation process which we have constructed allows the 

lower bound to be achieved. Chapter 5 attempts to prove that the 

process we have used has at least asymptotically the minimum variance 

property, and chapter 6 shows some comparison results to demonstrate 

this in practise. 

For a practical situation we cannot know the true parameter values 

0 and have only a finite data set. Thus we cannot obtain the expectation 

results required in (4.73), and have to resort to an estimate of the 

information matrix of (4.74) by using (4.50). This can then provide 

us with some confidence region in which we believe the true parameters 

will lie. Such an application is mentioned again in section 4.13 and 

demonstrated in Chapter 6. 

4.10 Breakdown due to a finite data set. 

astrOm ha6 noted in reference 37 at least one example where his 

method has failed to converge owing to a short data length. The 

optimum roots of 6(z) in his case were very close to, or lay outside 

the unit circle. With more data the estimation procedure was successful. 

Examples of this behaviour have been often seen for pole positions 

near the unit circle. In particular the second derivative matrix of 

the estimation cost, derived from the finite data set in the manner of 

section 4.7, the 'practical' matrix, does not favourably compare for 

these cases with the 'theoretical' expected matrix for the same data 



165. 

length, derived as in section 4.8. As the poles of 6(z) approach the 

unit circle the 'practical' matrix elements appear to contain a large 

correlated random factor, and thus the matrix tends to be singular. 

The climbing routines can frequently be seen to lose their convergence 

properties and produce an estimate which differs significantly from 

the theorectical value. The actual estimate will still be the one with 

the maximum likelihood for that data set, but probably indicates an 

error distribution outside the range suggested by the Cramer-Rao 

theory using the theoretical 2nd. derivative cost matrix. 

The effect is definitely due to a relation between the length of 

the data set and the position of the poles, and can provide a 'rule of 

thumb' to guide the whole procedure. 

We shall examine an element of the 'theoretical' matrix (4.74) 

for a data length N as described in section 4,8. In particular it 

will have a mean value affected by the bias demonstrated in (3.41) 
A 

which will arise since ek is strictly a non-stationary sequence for 

non-infinite N. 

Consider a typical element of the matrix from section 4.8 for 

the pterms as given in equation (4.55). We will calculate the 

variance of the practical summation repeated here as (4.75). Since 

uk is a finite data set, k=1, 	 N, the signals used in the 

summation are strictly non-stationary as described in section 3.4. 

The mean of (4.75) must therefore be given by a form similar to 

(3.41) 
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2 
1 V = e 	1 k=1 [— 
41)1L 	z-p 

G B(z) 	] 2 

717) k  
(4.75) 

= 2  Gm 	[ ci k=1 ukvoi  * uk-1111 + uk-  v2   	 u v' 2 	1 k-1 2  

 

where the expansion of (3.52) is implied, with vi being 

the unit impulse 

1 	B(z) 
z-1, CCEY 

response at delay i of the system 

The variance of this chosen matrix element is defined in (4.77) 

into which we substitute (4.76) 

van(' 211  

ai64J 
A  Er .62V  - I: 1)

2
V 
] 2 

)11)p 
(4.77) 

2 N = E k=1  

where vi is  

(uko v' + uk-1  v1   	u1 vk-1  ° 	)2 

AN 

	

-EZ=1(uk7t; 4' uk-1v1 
	 u1k v'-1 )

2) 2 

the unit impulse response of the system of (4.75) 

at delay i 

= G2E  

+ 2 u u v'v' 1 2 	0  + u1
2

1  v' 2  

2 12 u1  vo  

+ u2o  
2v'2 

2 1  uN  vo2  	 + u2 v'2 1 N-1 

112 

-E do. 
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2 	 2 
=.Go EU

N 	
i=1 m=1 	j=1 1 3 u.u.v' 	. v' 	.) -E( 	do. 

) 

r12  m-3. m-3 

= G2 	(Si' 
m=,  
IN 

n=1V=4;=1,  111.c=1 o 

-2(
N  

4m=1 e/11=1 Mi=l V;:r*-1 l'Er1=1 1n=1 juiuj )' 	' 	' 	' ,E(u ku v 1 	m-iv  m-jv  n-kv  n4 

N  ( se4n E(uuj)*E(u u 	v' 	v'" 

	

m=1 	n=1 i-  
om em e  4n

1 j =1  4  k=1 41=1ik 	. m-3 n-k11-1,) 

(4.78) 

Now uk has been assumed to be an independant sequence with zero mean 

and a Normal distribution with a variance T-2. This means that the 

only terms to survive from (4.78) will be those described by (4.79) 

	

E(u.u.) = GI2 
	

for i = j, and zero otherwise. 

2 E(uiujukui) = E(ujuj)*E(ukul) = 2) = ai 

for i.= j ;'k=1 ; i/k, and zero otherwise. 

E(ujujukui) = 3 GI4 for i=j=k=1, being the fourth moment of 

the u sequence which was assumed to have 

a Normal distribution 

(4.79) 

The First term of (4.78) reduces to 

4N 411 4m en 	E(u2u2‘1.0 2 v,2 
4m=14n=14i=14k-1 	i k' m-i n-k kX3. 

4.4N 4N ‹imin(m,n) 	4 	2 	2 
4m=1n=14j=1 	E(u.) v'

m-J  
. vln-  . J 	0 

for j=i ; k=1 ; i/k 

for j=i=k=1 

= ,4 
 

AN 4 	v  N 	4m 4n 	,2 102 	20.4 4N 4 	v ,2 	,2 

	

N <min(mln) 2 	2 . v 	. v u4m=1n= 4i=14k=1 m-i n-k 	u<Jm=1‹n=1Cj 	m-3 n-3 

(4.80 



The second term of (4.78) reduces to 

168. 

-24N 4N o 4n 	1, 2 	, 2. 2 
n
2 (u)*Etuk)ve .v 1  

Gm=1‹n=14j
m 
 =1‹k=1 	m-j -k for i=j k=1 

= _2 0_4 4N 	<im en v '2 v , 2 
U 	n1=1‹ n=1<k=1<lic=1 	m- j n-k 

The third term similarly reduces to 

4 N 411 Am en 	12 ,2 
Cru 4 m=1Gn=1Z j=1 k=1 vm-j vn-k 

Most of these terms therefore cancel to leave (4.83) 

*.20.4 44N eN emin(m,n)v,2 
var 	.2)2V] = G2 	 . v 2. 

u4m=14n=1<j=1 	m-j n -0 
111)(3 

(4.81) 

(4.82) 

(4.83) 

A similar result to (4.80) can be obtained for any element of the 

cost 2nd. differential matrix of section 4.8. Thus we can expect 

each element to have a mean value given by an equation similar to 

(4.55) and a variance given by an equation similar to (4.80). The 

above derivation can be repeated for the variance of pri N  or 

which occurs in some elements, and also for the covariance 4 . 31  

4.11 4.11 	Calculation of the variance of a matrix element. 

The relation given in (4.83) can be pursued further to provide a 

closed form expression. If the summation limits of (4.83) are examined 

it will be seen that they can be modified to give (4.84) 



+v4iN. c-1e 102.102 201y gn 104 
u m=1 n=1 j=1 m-j n-j 	u m=1 j=1 m-j 
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(4.84) 

Expression (3.52) can be used to replace the v' elements with terms 

iRisi-1 etc. The second term of (4.84) can then be expressed as 

follows 

2R 	. E Go *  2°. :C=1=4=4=1t=1RiR), jRk ((E  1Pj k)mi 	 4g51SjEk71 

where R1,81.  ; i=1, 	 1 are the residuals and 

roots of 	1 . B(z) 
z-j3 6177 

= G2 * 2 ay 4N 
u .4m=i • 1-(84)m  

1-8 
4 A  

where the obvious notation z R
4  and 8.4 has been introduced 

as an economy. 

1 	2 
2 	4 = G 	2g- 44  R4  . 	1 	[T1-4(8 ) 	(E4) 	 64)N1 
O U h  6 _r 	 • 

N 
= G2  ' 27.  2 R4 	r4 .N  1- 	. 1-(0

4 
 )  

O * 	u 
4 4 	[ r 

84(1.44) 	144  J 
(4.85) 

% 
We might have expected Iraq. o

2  V to be linear in N as the part 

shown in (4.85). A bias term can be seen in (4.85) which arises 

as in (3.41) from the statistically non-stationary filtering done 

on the uk sequence. This term is of more importance when N is "short". 

The above process can be repeated for the first term of (4.84): 

• • • 
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G2 4o- 4 AN 0 * u m=1 
m -1 1 ei1 e1 

111 -n 
	c ) 

n 
 -2(  c c)  -2 

n=1 Li=14y=14j=14k=1 	v i `91 	°)Ii 	v iVn  

(Ei S,,E jEk )° (SiE9 E jEk )-13 

G2 kfrif 
o * vu 03=1 <0=1 

4 	m-n R 	Ei E),) 	i _(  s4)11  

1-8 

where 4R4 and S4  are defined as before. 

2 	 . IN 	,44 4 G *kr 	R  o u m=1 z  84 )  
[ Eigy  )M71 

 

Ey )1  

 

...{( gis.)7)m-1(sig )1( 	 - idi s   (Eigy)1(sisI)ni-1(6. 

2 4 = G 11-0- 	4RI+  o* u m=1 84( 6.4 )  
[

1-(si g;)m  _ 
- 616,  y  

(gib`$)m 	1-(E.0 )m  
1-SjEk  

Go* (ru  2 	4 £4R4  

0(1-84 ) [ { 	( gi Sy  )1  

1 	gi Sy 

 
 	( Si  )N 

	  r(g.
1

sy  
1- E icig  

= G *  4,2  $4R4 	N  0 u Pci-TF 1  6.  Ai 
- Si S; 1-(giG)N  -Si E),1

(1
(iCv)N  

6.4" )(1-.E ) j k 

4. 1-Or4 )
N  

(1-64)(1-E.8 )] k 

 

(giEy)
N  - ( e) 

 

..(6 4 ) }.7 

  

(1-Ei6), 2  
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2   

	

= G2 	44R4  

	

° 	u 
S4(1- S)(1-8iEY 

1.0 - giS),  . 1-( Ei8v )N  - gig,, 	 
gik 

.84.  1..(g4)N 	(4.86) 

144  

ill. 1 
where 4R4  = 15i=4.4j4k=1RiyjRic  ; 8

4 
= Ei EY Ej gik 

It can also be shown that the terms in (4.85) can be considered 

to be included in (4.86) with small error provided that (3.-44)-1.-2.0 

and (1. 	gist'  )-}-2.0 which is true for strong poles i.e. close to 

the unit circle. ' 

Equation (4.86) is now the closed form expression for the variance 
))2v  

of - and is a linear function in N. The bias term apparent in (4.86)- 

again arises from the strictly non-stationary filtering required in 

the estimation problem. The magnitude of the bias term can be seen 

plotted in figures 19 and 20. If for a given set of poles Ei  the 

data length N is short, then the bias term is significant in (4.86). 

As a result the standard deviaticin of 9 will not be a function of 

OTT , but will be larger. 
The aboire results clearly are valid for any of the elements of 

12V 
the matrix 705 , but will be more important when considering roots. 

A 	A 
of A(z) or C(z) close to the unit circle. The results enable a 

criterion to be established from figures 19 and 20, which relates the 

magnitude of a pole to the minimum data length N. Unless such criteria 

are followedphe data length N may well prove too short for a satisfactory 

estimate to be obtained. A maximum likelihood estimate can be 

obtained for short N, but the actual estimate 9 may have a large error' 
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variance and therefore not of practical use, 

From figures 19 and 20 we can set a criteria relating N and 

any gig, ; i,y =1, 	 1 so that the bias terms are less than say 

10% of the full value in (3.41) or (4.86). This criteria can be 

stated as : 

N 	10  (4.87) 

  

4.12 	Equivalence of several criteria. 

Criteria connecting the length of the data set and the estimated 

system parameters could be used by plant engineers to assess experiments 

during plant identification in the field. The criterion suggested in 

.(4.87) is in fact similar to others derived from other considerations. 

Intuition might suggest that the data length N ought to be significantly 

longer than the decay time of 0(z) or 1/8(z). From (3.52) the 

i-1 decay envelope of the impulse response is proportional to Eat delay 

N-14 .  i from the initial impulse. If we specify that E 	be less 

than some small value C then 

1  eN-2 
(4.88) 

This is very similar to requiring 6.2N to be small compared 

with 1.0 for a given value of C in the expressions shown in figures 

19 and 20. 
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A. significant error may arise when using the suggested estimation 

method due to ignoring the initial conditions on the system at time 

k=1. This gives a further viewpoint, and the criteria for this is 

again very similar to the above impulse decay idea. We would require 

any such initial condition effects to decay appreciable within the 

data length N compared to the continual disturbances. 

The breakdown of the constraining transformation mentioned in 

section 3.12 yet again suggests that c2N  should be small compared to 

unity. All these viewpoints can be seen to reduce to a genuine 

'rule of thumb' which can be used to make judgements, even during the 

estimation procedure itself, on the data lengths required for particular 

problems. The suggested criterion which satisfies these demands has 

been given in (4.87). 

We require the 'strongest' roots, i.e. those nearest the unit 

A 
circle, of A(z) or 6(z) to satisfy the above criteria. The B(z) 

polynomial does not appear from equations (4.54) to (4.63) to be 

directly involved. This is probably due to the role of B(z) in 

both the system equation (1.38) and in the estimation filter equation 

(2.49) being that of providing the zeros of the process. As shown in 

figures 1 to 11, zeros unlike poles may lie at any point in the z plane 

without causing any irregularity in the shape of the isovars. 

The cross product term of equation (4.58) between a root of A(z) 

A 
and a root of C(z) is also of interest. If during estimation A(z) 

was discovered to be very similar to 8(z) i.e. pole-zero cancellation 

between a and V occuring in (2.49), then the matrix element in (4.58) 

when calculated practically as in section 4.7 would be very similar to 
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(4.57) and the second term in (4.54). From the preceeding analysis we 

would expect in practise the matrix to be ill-conditioned if the above 

criteria were not satisfied. 

4.13 	A Conflict of Philosophies. 

The Bayesian approach as explained in section 2.7 assumes that a 

parameter 0 varies randomly and has a known probability density function 

/(Q). The problem considered is of estimating the value of m, from 

a data set X
1 
 	 XN  drawn from the parent distribution f(X,0). 

The estimate of 0 should be based on the conditional probability 

density function of 0 given the data X1  	since this contains 

all the statistical information. The basic assumption which is made 

in Bayesian theory is that the probability density function g(0) 

- is known in all its detail. It is then possible, provided the 

algebraic manipulations are not intractable, to obtain an analytic 

expression for the mean of 0 and the variance of 0. Thus before any 

experimental data X1  to Xn  is collected, we can define fixed limits 

which would have say a 95% probability of containing the value of the 

random 0. If in fact the estimation process does"not give estimates 

of 0 which lie within these limits in about 95% of a large number of 

cases, we might suspect the validity of either the estimation procedure 

or of the initial assumption about g(0). 

The classical statistical approach assumes 0 is fixed and 

A 
deterministic, b4t that any estimate & of 0 will be random and have 

a probability density function. No assumptions need be made about the 
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parent distribution f(X). After the data for an experiment is collected 
A 

an estimation procedure is used to derive a value of the estimate 0 and 
A 	A 

its variance var.(0) about 0. The Central Limit theorem might well 

now be invoked to show that the sample distribution of the estimate 

could be taken as Normal. Indeed it is well known21'
23 

that maximum 

likelihood estimates asymptotically approach a normal distribution 

as the data length N-4"4. The desire now would be to define a fixed 

interval which with say a 95% probability contain the true value of 0. 

However since 0 is fixed it can only lie either inside, or outside the 

interval with no intermediate possibility. The statements which should 

be made is that the confidence interval suggested above is random and 

covers the true 0 with a probability of 95%. The limits can be found 
A 

from the assumed Normal distribution of 0 whose parameters are the 

estimated mean and variance oft. 

The experiment may be repeated and a new data set collected, 
A 

but the assumed distribution for 0/ will have a different mean and 

variance for each experiment and hence the confidence limit will also 

be different for each experiment. It cannot be necessarily expected 

that the limits obtained will be similar to the Bayesian limit based 

on an assumed g(0). If the estimators are unbiassed and consistent, 

then for large data sets 	we could expect the statistical 

confidence interval to be small and centred on the true value of 0, 

the mean of the Bayesian interval. 

The matrix elements which we have discussed in the previous 

sections represent for a vector 6, the inverse of variance of the 
estimates of & and'are therefore the parameters of the probability 
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density function of 6 in the above statistical approach. We have also 

been calculating the variance in turn of those matrix elements themselves 

It seems clear that if these variances were kept small compared to the . 

mean value of the elements, we might expect that the classical and 

Bayesian confidence intervals would more nearly corrospond. 

This demonstrates the utility of a criterion in showing the relation 

between the parameters 0 and the data length required to make the 

estimation philosophies agree in some sense. This enables a practical 

data length N to be decided for a maximum likelihood estimation method, 

whose properties in general can only be proven asymptotically as 11--co. 

Given only one data set, it is commonly accepted that the estimation 

procedures should be allowed to iterate or 'climb' until the gradient 

of the likelihood cost function such as (2.53) is zero. This gives 

a maximum likelihood estimate in the classical statistical approach 

as above. The confidence limits however are unlikely, unless N is 

large enough, to appear like the Bayesian limits. Further experiments 
A 

will only confirm an apparent wide spread in the estimates 0. A 

wiser procedure would be to run one experiment with a chosen data 

length, to get some idea of the 0 parameters. Later experiments would 

be run with the data length N chosen via some criterion as above so 

that the estimates A for different experiments could show some 

practical agreement. 

This approach could be built into a single experiment estimation 

method. As successive estimates of 0 were obtained at each iteration, 
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equation (4.87) could be used to verify that the iterations should be 

continued, or that the method should be halted. The recomendation 

to the operator then would indicate that the estimate 6 was losing 

validity in the above sense, because the data length was not long 

enough. 
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CHAPTER 5 

CONSISTENCY AND CONVEXITY. 

5.1 	Rstrdm's work. 

We are concerned in this chapter with defining the conditions 

which are required for the maximum likelihood estimates to have the 

desirable properties mentioned in section 2.1. 

astrtim has done a lot of work in this area as given in referenc'es 

11 and 37. He has described the systems in terms of the coefficients 

of Z polynomials in forms similar to (1.38). We have shown in previous 

chapters the utility of estimating systems in terms of the roots of 

the Z polynomials. 

For a satisfactory estimation procedure we require the probability 

that an estimate lies close to the true value, to approach unity as 

the number of available data points N approaches infinity; i.e. a 

consistent estimate in the sense of section 2.1. This property is 

often demonstrated by using the law of large numbers, but Rstrdm has 

used the method of Wald modified for samples which are not independant. 

Since the theorem proofs of Rstrtim are very fully given in references 

11 and 37, we shall not repeat them here in detail. In certain areas 

the proofs are affected by our system description in terms of roots 

instead of coefficients, and therefore require more detailed explanation 

5.2 Notation.  
A 

The vector of parameter estimates is defined as O. Rstrdm 
A 

takes 9 as (421+3) in length and defined as in equation (2.50), but 
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including the D.C. level)(', the value of A and the n initial conditions 

of the system (1.1) or (1.38). For the work of this thesis 6 is 

again (k41+3) long but describes the n roots of the Al B, and C 

polynomials, the gain Go, together with )0,A, and n initial conditions. 

Changes in definition can be used as before to avoid complex values by 

describing conjugate pairs in terms of their real and imaginary 

components as in chapter 4. 

The vector Y denotes the N vector of output observations as in 

equation (2.9). Similarly the u
k sequence is denoted by U. The 

operator Eo  is the mathematical expectation with respect to the 
A 

distribution of Y when the parameter estimates f) have their true 

values 0. The logarithm of the likelihood function of section 2.5 

• A 
is defined as L1(Y,6). 	This and the estimate 0 depend on the number 

, 	AN of data points N and therefore have the notation L'N  (Y,u) and 0 . 

5.3 	Assumptions about the input. 

In order for the following proofs to hold, the input signal must 

be assumed bounded and CAparo summable, that is the limits in (5.1) 

exist. 

dim N-o-ed3 
1 

N 
; o
2
imN...00 	 .1k=lukuk+i 

for 1=0,1,2 	 

(5.1) 

5.4 	Lemma 1. 

The following Lemmas and theorems are numbered and derived as 

in references 11 and 37 but are reproduced here using the notation of 

this thesis. The theorems deal with the asymptotic properties of 



functions of a single data sample. This data is assumed to have 

ergodic properties 60 that results for a single realisation are 

equivalent to those of an ensemble. 

Lemma 1 states that 

,. 
= L'(<9,& ) 

- -0 

with probability 1.0 provided that the input satisfies the condition 
A 

in (5.1) and that ~ and ~ both belong to a region ~ in an r dimensional 

Euclidian space, where r is the dimensionality of ~, which is strictly 

(4n+3). This region is defined as in (5.3) 

A 
~=all'values of & for which the roots of the polynomials 

~(z) and $(~) have magnitudes less' than unity, and for which 

Xis greater than zero equation (1.38) ..... 

This Lemma gives the asymptotic properties of the likelihood function 

for the problem studied, and implies that a single realisation of the 

data can be used instead of an ensemble. The pro~f ~str8m gives 

N " expresses L' .(Y,~) as in (5.4) 

constant - N Log). ;~2 ~~=1~k 2 

:: - N Log A -1 V(~) from equation (2.52) 
e r2 

A 

where V(~) is a cost defined in(2.53 
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N A 
The convergence of L' (Y,0) is now equivalent to the convergence 

of V(6) since Ago. The value of gk can be substituted in terms of 

the known signals yk,uk  from (2.49) and then the various terms in 

A 
V(0) can be examined. Koimogoroff's criterion71  of the strong law of 

large numbers can be applied to each term and implies almost certain 

convergence if the partial sums are bounded. These partial sums are 

shown37 to be generated by difference equations, which produce bounded 

results provided that the roots of the polynomials .t(z) and 6(z) have 

A 
magnitudes less than one. Thus Lemma 1 holds provided that 0 belongs 

to region RR. This means that both the system and the model are 

asymptotically stable.. In this thesis we have so chosen the roots of 

6(z) with the aid of the X' transformation of section 3..10 	that the 

A above criterion is satisfied. The roots of A(z) should also have been 

so chosen to ensure the validity of (5.2), however in the practical 

examples chosen the roots of A(z) did not in fact exceed the unit 

circle. The original test systems were also stable i.e. the roots 

of A(z) had magnitudes less than one. 

Lemma 2  

Let the input uk  satisfy assumption (5.1) and,  let R,' be a closed 

set contained in R., then L'(0,1120) is an 	alytic function of 0 within 

the set 	Lemma 2 states that 

1, 1 ILINcy 61 	.4m 	1. E0L'N(Y,b = 	.1,1(6,0 ) = 
(^' N-00 N VAL 	 bOi 	N4-00  Ti 

with probability 1.0 	(5.6) 
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This relation also holds for higher derivatives. These results can 

be demonstrated37  because L'N(Y1 g) is infinitely differentiable in 

and by analytic continuation we can define an analytic function of 
A 

a complex variable 0. The function L'N(Y,6) increases monotonically 

1 	A with N, but not faster than N. Therefore N  L'N  (Y,2) is bounded and 
A 

converges uniformly for 0 belonging to 1M, and is thus an analytic 

function. These Lemmas establish that the average over the sequence 

A2 length N of ek converges to its ensemble average as N-P-00, which is 

differentiable in 0. 

5.5 	Theorem 1  

This theorem is concerned with the uniqueness of the maximum of 

the likelihood function and requires the previous Lemmas to hold true. 

Let S
o be a set in r dimension Euclidean space defined by (5.3) 

such that 

A 
So 	0 for which L'(6 0 ) = L'(® ,

-0 ) —o o (5.7) 

Assuming that the signal uk  satisfies assumption (5.1) and that for 
A 

all N sufficiently large 0 (140,whereW is a closed set contained 

in B, then 

k
;14 	 (5.8) 

with probability 1.0, where re is the projection of 0 on both 

So  and R,' i.e. the nearest point in both So 
 and R,' 
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a 	37 strum proves this theorem by following Kendall's:work in reference 35 

but uses Lemma 1 in place of the strong law of large numbers since the 

observations are not independent samples. The proof depends critically.  

on the fact that 6N is chosen so that the likelihood function has an 

absolute maximum, which cannot be guaranteed in prpactise. The 

climbing algorithms used will find the local optima of a function but 

not necessarily the global one unless the function is convex. This 

difficulty is well known for maximum likelihood estimates and can only 

be covered in practise by assuming that ON  is the globally optimum 

value when N is sufficiently large. 
N A 

Theorem 1 implies that the estimate 0 converges into the set 

So,  as N-'.  If the set So contains only one point --0o  then the estimate 

is strongly consistent. The maximum is then unique if N is large 

enough for So  to be a point, even if the function has several equal 
A 

magnitude maxima. Any model with 0 belonging to So generates 

realisations with the same statistical properties as the given data 

set of system output Y. We can no longer tell which of the points in 

S
o 

generated the observed output, For our representation in root form, 

So  would contain all the permutations of the roots which gave the same 

coefficient values. This point will be covered again later. 

Huzurbazar has discussed39 consistency at length and shows that 

logically consistency is first proved and then a statement should- run 

"The consistent solution of the likelihood equation is a maximum of 

the likelihood function with a probability approaching 1.0 as N-1-c4." 

He also proves that a consistent solution of the likelihood equation 

is unique. 
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By employing Lemma 2 and theorem 1, ~strBm3? shows (5.9) to hold. 

1 IlL' N ( y ,~N) - L' (~N ,6) ) ! ----0. N &9 - && ---0 
• •••• 

with probability 1.0 as N--~, where L' is the notation for 
" && 

the 2nd derivative matrix of L' with respect "to 9. 

This means that the quantity L,N (y,!N) which is computed in the manner 
&S 

of section 4.7 is an almost sure estimate of the information matrix 

IN(~) = N. L&& (~,~) for large values of N. This is the matrix used 

in the Cramer-Rao theory described in section 4.9, and ~str8m's result 

" shows that it is not necessary to compute it separately. The practical 

difficulties mentioned in section 4.10 cast doubt on this approach for 

some cases. This only arises when the value of N is not large enough 

for (5.9) to be true, and it was for this reason the criteria of 

section 4.12 were introduced. 

5.6 Theorem 2 

So far all the results of the previous Lemmas and theorem 1 

can be shown to be valid for ~ being any complete set of parameters as 

in section 5.2 provided that the fez) and C(z) polynomials have roots 

which lie within the unit circle. Theorem 2 shows that some parameters 

cannot be consistently estimated. 

Let! be defined as in equation (2.50) and also include the n 

initial conditions on the system (1.38) as well as the D.C. component~' 

and the vaiue A. Let J!! (y ,§.N) be the diagonal matrix of eigenvalues 
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A 	A 
of N 

LIN (Y,0
N 
 ) and T

N 
 (Y,0

N 
 ) be a corrosponding matrix of orthogonal os  

eigenvectors. Then 

 

je(y,611)  Nt(yi p')  6N 4(y,614) TNt(y10) 0  

 

= 0. 

  

with probability 1.0 	(5.10) 

The proof by astrUm requires the previous results of Lemmas 1 and 2 

and theorem 1, but will not be repeated here. 

N 
The theorem indicates the linear combinations of 

A
that are 

A 
consistent, even if some or all of the components of 0 	are 

inconsistent. As a corrolary estrum shows that if i LI N (yap)  
N 616)  

converges to a value La; then 

IN (Y, AN)  AN 	t  
• L,so N 00 

(5.11) 
with probability 1.0 

This implies that the estimate is strongly consistent if La'a  is non-

singular. 

Consider now the set So 
in Theorem 1. One of astrUm's results 

is that a set S' in So is linear in the 3n + 1 coefficient parameter 
A 

in equation (2.50) and in )t/ and X. Hence 9 will at least converge 

into a hyperplane So  for these parameters i.e. components orthogonal 

to this hyperplane will be consistently estimated. However So  will 

always contain the n dimensional sub-space spanned by the parameters 

associated with the n initial conditions of (1.38) or (1.1) since the 

corrosponding sub-matrix of the information matrix 1N(0) reaches a 
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finite lower bound as 	Thus these initial condition parameters 

cannot be consistently estimated. This situation is frequently 

overcome in practise by choosing the data length N long enough. The 

initial conditions then decay in magnitude compared with the stochastic 

disturbances and can be justifiably ignored as not contributing 

greatly to the total cost. If the set of parameters in S; or their 

transformed equivalents have consistent maximum likelihood estimates 

i.e. Sc, contains only one point, then the system could be described 

as "completely identifiable." 

In this thesis we have tried to show a case for representing the 

A 	A 	• 	A 
(z),B(z) and C(z) polynomials in terms of their roots d. 0.3. 

 , and b". 
/ 

respectively, where i=1, 	 n, in place of the coefficient 

descriptiontlatastritimusesing5.Fore,mnple,thea.coefficients of 

n which are a subset of the components of 6, can be 

described in terms of sums and products of the roots al. This relation 

is defined in (5.12). 

a. = n c 
3  
.( 

1
) 	; 	j=1, 	 (5.12) 

where 21 C. denotes the sum of combinations of n roots taken 

as a product of order j 

Naturally the order of the roots ai  may be permutated amongst themselves 

and yet give the same value of the coefficient a. as shown in (5.12). 
A 

The conclusion therefore is that a subset of 0 can be defined in 

terms of the roots a. and these estimates will be consistent within 1 

a permutation of the order of the set of ai. Similar reasoning applies 

A(z), j=1, 	 
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9Cm  

1 <IN 
imN 4.1k=1ukuk-i where 

1.9. 

tothesetsofa.andnroots belonging to the f3 and C polynomials. 

A 
Thus 0 can be defined in terms of the roots and astrUm's consistency 

result will still apply with the permutation proviso added. In practice 

this is no difficulty and the effect will only show itself for example 

by the occasional exchange of the imaginary components in complex 

conjugate root pairs for similar estimation runs. 

5.9 -  Excitation and Identifiability. 

aStrOm37 defines an input signal uk 
to be "persistently exciting" 

of order m if the limits of (5.1) exist and if the matrix in (5.13) is 

positive definite. 

00 	01 

°o 951 

(5.13) 

Theorem 3 

This theorem states that the system (1.38) is completely 

identifiable if uk 
is persistently exciting of order 2n. astrIlm's 

proof involves the detailed definition of the set S' of the previous 

section. For S' to be a linear set a quadratic form in uk must equal 

zero as II-9-n This in turn requires the matrix in (5.13) to be 

positive definite. If this holds then S' only contains the set 90, 

and therefore the estimate & as in section 5.6 is consistent. 
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The requirements of SL can eventually be reduced to having every 

state of the system controllable either from the input uk  or from the 

disturbance ek. In the initial problem statement in chapter 1, this 

controllability condition was assumed and would also be true for all the 

other system transformations. In practise this might be violated 

since in general the properties of the physical system will not be 

known before data is collected. As a result the estimate of the 

information matrix I
N  (0) can become singular for large values of N. 

This is a further effect than that described in section 4.10. The 

two sources of the same effect can be separated only if the criteria 

of section 4.12 are applied during estimation to decide on a reasonable 

length of the data set N for the current estimate. 

5.8 Asymptotic Normality. 

Thaorem 4  

Define 0s  to be the (3114-5) vector of parameters in 0 when those 

corrosponding to the initial states have been discarded. Thus 04  is 

the same as the vector defined in (2.50) but including)(' and Xterms. 
AN 

If the set So contains only the point 0oA  then 0 is consistent. — 	—A 

Theorem 4 then states that the stochastic variable 	(00 ),5.(6N-0) 
GO -0A0-0,1 	-2 -o 

is asymptotically normal with zero mean and variance -L01,, ,. with 

probability 1.0 as N-1-40. If u 
 (6) 09 ) is non-singular as well, 

AN 
then 0A  is asymptotically normal with a mean of 0oG  and variance 

1 L'-1  . Since this converges as N-e"°, the estimates are also 
860 

asymptotically efficient and we cannot expect to find an estimator with 
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a greater accuracy for long samples. 

The proof of this theorem is similar to the standard methods, but 

in this case the samples are dependent. astram therefore invokes the 

statements of the previous Lemma's and theorems. In particular he uses 

the result of (5.9) and the fact that 10014(Y,P) = 0. at the end of the 

estimation procedure. The proof also depends of the boundedness of u. 

expressed in (5.1) and the fact that stable difference equations are 

A- 1 	A-1 
obtained if the poles of A (z) and C (z) lie within the unit circle. 

This latter property is satisfied if the system (1.38) is stable, which 

is a basic assumption. It is possible for the roots of C(z) in (1.38) 

to lie outside the unit circle for non minimum phase systems and 

C-1(z) to be unstable. However section 3.14 demonstrated that such 

a system can be estimated as if the roots yi  lay within the unit circle. 

The estimates would not however be minimum variance as described in 

section 3.14. Without any phase information the non-minimum phase 

be. 
physical system can onlyAidentified as a minimum phase system. 

The asymptotic normality implies that the distribution of 6N  is 

known and confidence regions can be determined. This requires an 

estimate .of the covariance matrix so that approximate significance 

tests can be made on the results. 

In general we have demOnstrated that all of astrOm's Lemmas and 

theorems hold for the parameter set of roots chosen for 0 in this 

thesis. It is obvious from the preceding work that it is desirable 

for L'00  to be non-singular as was suggested in section 4.10. Theorem 1 

would give a stronger statement if the likelihood function were convex 

and L109 were positive definite. A local unimodal hill climbing 
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routine could than be employed in confidence to obtain the single 
A 

optimum 0N. 

5.9 The Information Matrix. 

The information matrix, so named by Fisher, was mentioned in 

section 4.9 and is defined here in equation (5.14) 

N 
(0) = 	E

N (Y.0 ) = Eo 9 	v LI
N
(Y.0 ). L'N(Y.0 )t o 99 .-o- 	-o 9 --0 (5.14) 

This matrix has been implicitly mentioned in theorems 2 to 4. It was 

shown in theorem 2 that an analysis of its rank revealed which 

components could be consistently estimated. Theorem 3 implies that 

if the (3n+3) square sub-matrix corrosponding to parameters describing 

the polynomials A,B,C, and the scalars G,X! and A, is positive definite 

then those parameters are consistently estimated. Theorem 4 shows the 

estimates to be asymptotically normal with a covariance matrix 

obtainable from the information matrix. The asymptotic value of the 

information matrix at the true parameters 20  is given as (5.15), and 

this can be calculated for a given Po  and N as demonstrated in section 

4.8. 

(5.15) 

N In practise 0o  is unknown and only the form L'00 	'- 
AN 

(Y 	) can be - 

evaluated as shown in section 4.7. According to one of astram's 

results expressed here as equation (5.9), this estimate converges with 
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probability 1.0 to the information matrix as N.-4.-cm: As explained in 

section 4.10 it frequently appears that N is not sufficiently large 

for the problem in hand for this ideal convergence to occur. Typically 

the 'practical' matrix contains correlated random terms and the matrix 

tends to be singular. The elements in this case are not good estimates 

of the corrosponding elements of the expected matrix in (5.15). 

Sections 4.10 to 4.12 introduced the idea of a relation between 

the roots IX., Si  of the system and the length N of the data set. Now 

A 
if a theorem similar to 4 allowed us to take Ltoo  MooN  ) as normally 

distributed for finite N and certain related pole positions, then the 

matrix elements would be defined statistically by their means and 

variances. Probabilistic statements could be then made about the 

condition of the matrix for a given value of N and decisions could then 

be made about further estimation work. For example a test could be 

employed at each iteration of the estimation procedure as described in 

sections 4.10 to 4.12 and a decision taken to continue the iterations 

or stop for want of a longer data length. 

Unfortunately a normal distribution cannot be lightly assumed 

since the results are not derived from independent samples and are 

valid only asymptotically as N-0-°°. In practise however such a working 

assumption might well be made and schemes similar to those of 

chapter 4 developed. 
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5.10 Positive Definiteness. 

It is of interest to examine the second derivative matrix VBA 

of the estimation cost V. This matrix describes the surface of the 

estimation hill being climbed, and also appears in the Cramer-Rao 

theory of section 4.9 and in Fisher's Information matrix in equation 

(5.14). If it can be shown that.V09  is positive definite, then the 

hill surface would be convex and have a single unique maximum. We 

would therefore expect a simple hill-climbing routine with only a 

capability of finding a nearby unimodal solution would be sufficient 

for the estimation problem. 

For simplicity consider initially a simplified system similar 

to (3.62) which has been used before and given here as (5.16). 

t
k L(z) vk R(z) 

(5.16) 

This system is simply a junior version of the full system used in 

sections 2.5 and 4.6 for maximum likelihood estimation. 

As shown in section 2.5 the likelihood L and its logarithm L' 

are maximised by minimising the estimation cost V 	
k 
el  e2  
44=1 k , with 

A 
respect to the parameter set 0. The first and second derivatives of 

A 
V have been covered already in sections 4.5 and 4.7 for 0 as the root 

description of the Z polynomials. The results of sections 4.1 and 

4.3 allow us to express the matrix (4.50) of the 2nd derivatives of 

V as (5.17) here when dealing with the junior system above. 



 

v  
)gj 

N 	•)4k  
4 k=1 

A N A  2 * 	ek  
k=1 ek 	 ti 
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. 41 N 	A 	 A 	A  N A 	 1 	
A 

ek*  1--17 ek 	k=lek* z- i" z- 	
ek ) (5.17)  

These expressions hold for differentiating with respect to the 

roots 	
A 

J1 
of 

0(z) and also for the cross product terms. 

Consider the first term of (5.17) alone. This is equivalent to 

the sum of a product of two signals from different filters, 

fk = 1 	
4
k 
 and hk z  - 	4k  over a finite data set N. It should 717 	-g.  

be noted that no shift terms arise in equation (5.17) unlike the case 

for the coefficient description covered in section 2.8. 

Define the N vectors f and h to corrospond to the scalar sequences 

fk and hk
, k=1, 	 N. Then f and h are algebraically independant 

A 	A 
if either e. 	F. or the filters have different inputs. Define a 

sum vector s as the inner product shown in (5.18) 

= .112  [ai 0(2] where A'1  ,A'2  are arbitary constants. (5.18) 

The vector s cannot be null for any al,o42  not zero. Thus the inner 

products of (5.19) must be positive only. 

S = 

(5.19) 
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hth 	0(2  (5.20) 

 

      

This implies that the matrix shown in (5.20) is positive definite, and 

this is true even for finite N. The expectation of this matrix is 

in fact the zero delay sample cross correlation matrix between the 

signals fk  and hk  and must be positive definite. This result holds for 

any number of outputs derived from filters as shown. The restriction 

is only that the filters must be non-identical if the corresponding 

inputs are the same, otherwise a positive semi-definite matrix results. 

These arguments can be extended to show that the first term of 
A 

the 2nd derivative matrix with respect to A for the complete system in 

equation (4.50) is positive definite. This arises from the very similar 

form of the derivatives of k 
which have been given in detail in section 

4.5 for the complete system. 

Non-distinct or multiple roots will give a submatrix which is 

singular in those roots. This is natural since we cannot then 

distinguish one root from the other. A singular matrix also arises if 

there are Common root terms between the AA and 8 polynomials. This 

is equivalent to a zero cancelling a pole in (2.49) and violates the 

controllability requirement of section 5.7. A similar non-positive 

definite situation might be thought to arise for a submatrix corrospond-

ing to a complex conjugate pair of poles. As shown in figures 1 and 2 

twin optima appear on the Z plane and this strictly implies an 

inconsistent estimate. However, by expressing such root pairs in their 

(a+jb) form, it can be seen from equations (4.8 - 10) and (4.23 - 28) 
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that the hill is unimodal in these parameters if b is limited to only 

positive values. The above first term matrix is again positive definite 

by the same reasoning as before. 

It is implied by equations (5.18) to (5.20) that the positive 

definite condition requires the signals fk  and hk  to be finite for all 

values of N and hence that the sum S is finitely bounded. This 

requires the filters to be stable and that their roots lie within the 

unit circle. Again this is a repeat of Ltrtim's Lemma 1 in that the 

estimated polynomials shall have roots of less than unit magnitude. 

The condition is covered for the methods of this thesis by using the 

X' transformation of section 3.10. 

Although these results show the first matrix term in (5.17) 

above to be positive definite when using the estimation procedure, no 

information is revealed about the condition of the matrix. If it 

were nearly singular, the climbing routines would have difficulty in 

finding the optimum. This has been covered before in section 4.10, 

where further tests were suggested to discover or avoid such a 

situation. 

5.11 	The second matrix term. 

The arguments of section 5.10 can not be applied to show the 

positive definiteness of the second term of the second derivative 

matrix in equation (5.17). This second matrix is again a matrix of 

cross-correlation products between two signals, in this case 

a2ek 
gk and —7--7z- . However there are no convenient auto-correlation lgosj 
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elements in the matrix such as there were in (5.20). As a result 
A 

positive definiteness cannot be proven. If we consider 
A  
1 and Si  to . 

be equal to the true values '9i  and Si, for all i, then gk  will be 

a 'white' or independant stochastic signal. Thus any correlation 

products such as the second half of (5.17) will have an expectation 

of zero at the exact matching condition. 

This result would also apply as before to the second term matrix 

A 
for the complete system 0 as given in (4.50), since the 2nd derivatives 

of A  e are again very similar to those in (5.17). 

After the estimation or climbing process had been completed we 

would hope that 	would be effectively white for the finite data set N. 

In this case the hill top is convex, i.e. a positive definite full 

second derivative matrix, since the second half contribution would tend 

to a null matrix. This condition would only occur locally about the 

top of the estimation hill. Using the methods of chapters 3 and 4, 

the various first and second term matrices could be calculated given 

S 
A 	A 

1),,) and S or 0 and 0. Thus some idea of the size of the convex 

region about the matching point could be obtained for particular cases. 

The first term matrix is positive definite globally i.e. under 

any mis-match conditions. There would be some justification therefore 

in ignoring, at some cost of climbing efficiency, the second term 

matrix altogether and only employing the first term matrix in the 

climbing procedure. This was done by astrtim for his Newton-Raphson 

method. 
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CHAPTER 6 

EXAMPLES AND RESULTS• 

• 6.1 	The Estimation Program. 

A program was written in Fortran IV for use on an IBM 7090/94 

computer as an implementation of the work described in this thesis. 

This program is shown as a flow chart in figure 21 as a number of 

subroutines each of which provide an individual utility. The purpose 

of the program was to estimate a system described by Z polynomials as 

in (1.38) from a data record youk  ; k=4, 	 N derived from 

experimental work on a plant. It is well known that data collection 

in the field is difficult and time consuming. All of the following 

examples therefore have artificial data records which have been 

generated digitally within the computer. There is the natural advantage 

that the true generating 'plant' is thus known exactly and the 

estimation procedures can be critically assessed for bias etc. 

A permanent record of 50,000 random numbers was generated by a 

digital random number generator
72 

with a Gaussian distribution and 

kept on magnetic tape. The distribution and independance of these 

variates were checked and are summarised in table 1. The numbers were 

later used for all the examples to generate the yktuk  records by 

applying them as inputs to digital models of the form of equation (1.38). 

One advantage of this approach is that since the entire set of numbers 

is stored, runs may be repeated to compare different methods. 

Alternatively ensembles of runs may easily be made. A second advantage 

arose here as it was found approximately 8 times faster to read the 



ENTRY 

"NOI SET" 

Read random numbers from tape 
	--1 	 

"CLIMB" 

Estimation procedure 

Fletcher-Powell hill climbing 

routine in X' space 

"TRANZX" 

A 
Translate C(z) from X' space 

"POLRUN" 

A 
Filter data ykluk, by VC( 74) 

"LSQAB" 

LSQ estimate for A(z),B(z) 

"TOPRUN" 

Calculate the residuals gk  

"TRANDX" — 

Translate gradient bll to ?011 
Yts. 	"bX' 

Gradient calculation aV 
i. 

OCX' 

"CALCFX"  

Function value V(6) 

calculated, OEX' 1. 

V = e‘ic2  

asine steps 17-4. 3 
as in section 6.2 	4. 

"GRADNT" 

Figure 21 

SCHEMATIC FLOW CHART OF ESTIMATION PROGRAM 

	4 	 

"WHTLNG" 

Analysis of residuals g "DECIDE" 

Decision about further 

progress 
"EQROOT" 

Find roots of A,3 polynomials 

f  
"SECDIV" 
"A2NDIV" 

Analysis of 2nd derivative 

matrix 

4. 
STOP 



TABLE 1 

SUMMARY OF ANALYSIS OF THE RANDOM NUMBER RECORD 

Each block of 10,000 numbers were analysed for amplitude 

distribution and sample autocorrelation. A typical set 

of result is given below for one such block. 

AUTOCORRELATION ANALYSIS 

DELAY r 0 	1 	2 	3 	4 	5 	6 	7 	8 	9 

VALUE 01,/, .9922 ..0024-.0071-.0037 .0012-.0111 .0002 .0087-.0169 .0069 

DELAY r 10 11 12 13 14 15 16 17 18 19 

VALUE Or  .128 -.0071 .0172 .0008-.0032 .0105-.0090-.0054-.0126 .0119 

Number of values of ON  outside 	t 1.65 is 2 

- 2.0 	is 0 

For the complete set of 50,000 numbers 4 out of 100 values 

of 0r
N  ; r>0, were found outside - 2.crlimits, and 10 out 

of 100 were outside - 1.65(r. The expected levels are 5% 

and 10% respectively. It was concluded that the sequence 

was therefore sufficiently 'white'. 

201. 
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AMPLITUDE DISTRIBUTION ANALYSIS 

CELL 

NUMBER 

UPPER 
CELL 
LIMIT 

EXPECTED 

CONTENTS 

ACTUAL 

CONTENTS 

1 -4.75 0.0369 0 

2 -4.25 0.283 0 

3 -3.75 2.010 3 
4 -3.25 11.17 12 

5 -2.75 48.60 40 
6 -2.25 165.4 194 

7 -1.75 440.6 440 
8 -1.25 918.5 891 
9 -0.75 1498.8 1491 
lo. -0.25 1914.6 1911 
11 0.25 1914.6 1960 
12 0.75 1498.8 1492 
13 1.25 918.5 896 
14 1..75 440.6 452 
15 2.25 165.4 153 
16 2.75 48.60 54 

17 3.25 11.17 8 
18 3.75 2.010 3 
19 4.25 0.283 0 
20 4.75 0.0369 0 

SAMPLE MEAN 0.00701STANDARD DEVIATION OF SAMPLE MEAN 0.0100 

SAMPLE VARIANCE 0.9919,STANDARD DEVIATION OF SAMPLE VARIANCE 0.0140 

VALUE T2 13.39 FOR 19 DEGREES OF FREEDOM 
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values from tape than generate them from the digital routine72 
 

each time. 

The estimation program employed the Fletcher-Powell9 algorithm(2.68) 

for hill climbing. This method requires both function values and 

derivatives, and forms an estimate of the inverse of the second 

derivative matrix. This estimate converges for quadratic hills to 

the true value. For non-quadratic hills the estimate is forced to be 

positive-definite, which enables the routine always to proceed in a 

beneficial direction. Other routines such as the Newton-Raphson can 

easily get into difficulties on surfaces with non-positive definite 

second derivatives. 

Fletcher and Powell recommend cubic minimisation as used by 

DavidOon to obtain a minimisation along a line. In our experience 

quadratic minimisation
6 

remains better conditioned in difficult cases 

although theore/tically less efficient. Such a quadratic minimisation
8 
 

only requires function values and saves some computation compared to 

the cubic method which also requires derivatives. After a minimum 

along a line has been achieved, the local first derivative can be 

computed and used to update the Fletcher-Powell algorithm. A worthwhile 

addition to this minimisation has been found to check the orthogonality 

of the initial and final gradients by comparing their projections on 

the line of search. Local minimisation by costing this orthogonality 

condition is helpful here as it ensures that the Fletcher-Powell 

estimated matrix is updated with correct information and does not become 

nearly singular in difficult situations. 
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6.2 The least squares procedure. 

Throughout this thesis we have so far advocated the estimation of 

a system in terms of the roots of its component Z polynomials. This 

implies, far the system of (1.38), hill climbing in 3n+2 parameters, 

which are the roots of the A,B, and C polynomials together with G and 

ye as in section 4.6. The value of \can be calculated after the 

climbing has finished as shown in section 2.5. The n initial conditions 

have been ignored as described in chapter 5. If we regard the 

estimation process as purely one in hill climbing, the dimensionality 

(3n+2) is rather.large for n greater than 2, and it would be desirable 

if this could be reduced to give a more practical scheme. 

As mentioned in section 2.3, one advantage of using a coefficient 

description for the A and g polynomials is that a least squares solution 

can readily be obtained for these coefficients for a chosen value of 

A 
C(z). This scheme was adopted to reduce the dimensionality of the hill 

to only (n+1). At each iteration the n roots of e(z) were decided by 

the climbing algorithm using the X' transformation, and the data set 

yk,uk  was filtered by 1/e(z) as in equation (2.37). The least squares 

procedure of (2.11) was then applied to the new filtered data set 

yk, uk  to give estimates of the coefficients a1 	 anlbo,b1 	 b
n 

A 	 A 
The gain term Go has been implicitly included in the b. coefficients 

A 
and the bo term provides the extra degree of freedom. After the hill 

climbing procedure has finished, the roots of the A and g polynomials 

of degree n can be found. This process is in itself non-linear and 

time consuming for large n, and is therefore not done at each iteration. 
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From a simple viewpoint the D.C. term )1(.1  can be estimated from 

the mean values of the signals yk  and uk. This estimate cannot be 

improved by any value of 6(z). Thus the y(' term may well be estimated 

and extracted from the data set before the main procedure starts. 

This means the climbing dimensionality can be reduced further, from 

(n+1) to n. A fuller discussion of the worth of this approach is 

given later in section 6.9. 

6.3 The total cost derivative. 

If the decision is taken to adopt the above methods of section 

6.2, the total derivative of the cost with respect to 6(z) should be 
A 

examined (6.1), since C(z) is fixahnitimating A and B polynomials. 

A 
Define the cost V(0) as in (6.1) 

Cost V n  v[A(C),g(C),6) = v[8'3 
then dV = 

TU 
. dI 	dA 

-dT 1 TIE ) 
(6.1) 

   

Because of the least squares algorithm the partials ?AT and 
4 

will 

   

be zero for a given value of 6. The derivative dv is also zero at the 
dC 

optimum value of-6 i.e. at the top of the hill in C. The maximum 

likelihood estimate is only achieved when the all the partials in 

A,g, and e are zero, and then a small movement in any direction in 
the space of I,A, and 6 will give zero estimation cost change. 

Consider a simple hill shown in figure 12. The contours are 

drawn for equal estimation cost V for a system consisting of one 

parameter in 6 and one in the A polynomial. The full dimensional 
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FIG. 22 Simple hill in 	,A space 
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climbing method might take a path such as 1, 11, 12, etc. using a 

conjugate gradient method in all the dimensions at once. Clarke's 

method in section 2.3 solves first for the least squares solution in 

A for constant 6 to get to point 1. He then treats e as if it described 

an auto-regressive process and uses the least squares algorithm to 

solve for point 2. The iterations continue to switch as shown along 

the path 1,2,3,4,5,6, etc. between the lines 	= 0.. and IV = 0. 

A 

The problem alternately has the dimensionality of A and then 8. 

The method of Steiglitz5  and also of section 6.3 chooses a value 

of 	and then solves for A at point 1 using the least squares algorithm. 

The hill climbing method then rechooses 6 and the process repeats 

along a path such as 1,8,9,10, lying on the line 1) = 0. When the 

is 

evaluated in place of the full version of (6.1). However such an 

evaluation is made under the condition 1 = 0. and a = 0. and is 

valid locally. The situation clearly is improved if all the contours 

have a common centre, i.e. a pure quadratic surface. 

In practise we have found that if the 6(z) polynomial is only 

very roughly similar to the true C(z), the estimates A and 	are 

reasonably close to their true values A and B. This so called 'ball 

park' effect has been noted by other research workers and supports the 

bias reduction methods described in chapter 2. The strict maximum 

likelihood estimate is only achieved when all the 1st derivatives 

including that in 8 are zero i.e. at the exact top of the hill. A 

cost gradient with respect to 8 is required, strictly only IV 
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practical application might stop short of this condition in the sense 

that once within the 'ball park' only very small cost improvements 

are likely. 

6.4 The number of multiplications. 

The major computation work in estimating parameters from a long 

data set N is the filtration of the records ykok  by the Z polynomials= 

A 
,B

A  
, and 6. After the cost and its derivatives have been formed the 

rest of the climbing and other routines require relatively little 

computer time. We should therefore be interested in using efficient 

methods such as in (4.6) to reduce the filtering work to a minimum. 

Naturally to this end all the short ways of calculating derivatives 

should also be employed as in equations (4.2), (4.3) and (4.11). 

For the full dimensional hill climbing approach, i.e. expressing 

all the polynomials by their roots, the wk  and vk  signals formed in 

(4.29) and (4.30) require 4nN multiplications and 8nN additions. This 

arises through using the method of (4.6) for filtering. Advantage can 

also be taken of the fact that computers such as the IBM 7094 and 

360 take virtually no extra time for complex arithmetic than for real. 

The estimation cost V can be totalised for a further N multiplications 

and additions. The total work is thus a linear function of n and N. 

For the alternative approach via the least squares algorithm in 

section 6.2, we first form yk and 14(  as (2.37) but using (4.6). This 

requires nN multiplications and 2nN additions. To form the matrix in 

(2.11) we apparantly need 3(2n+1) * (2n+2) N multiplications and 

additions, since (2n+1) is the number of free coefficients in 11(z) 



209. 

and A(z). A further (2n+1)N multiplications and additions are also 

required to calculate the estimation cost V in (2.53) using (2.7). The 

computation appears to be a function of n2 for this case. However by 

careful inspection of the form of the matrix MtM in (2.11) it can be 

seen that there are numerical dependances between the terms which 

reduce the number of multiplications so that the total work varies 

linearly with both n and N. 

The first derivatives of the cost for the full root description 

method are calculated with the methods of section 4.5 and require 

2N additions and 2N multiplications for each of the 3n+1 components. 

The alternative mixed approach has it's 1st derivatives in MtY of 

(2.11) and requires 2.(2n+1) shifts and additions for the 1/1  and 

coefficients. The 6 root derivatives then are calculated as in section 

(4.5) with 4nN additions and 2nN multiplications. The work for the 

derivatives is linear in n and fairly equal for the two schemes. 

6.5 	Example No.1. 

This problem was taken as a standard example similar to those in 

the literature10,11,27,28,37, so that sensible comparisons could be 

made. The example was tried both with the new estimation program 

described in sections 6.1 and 6.2, and with astrem's method which was 

also available. The random number tape was beneficial here as an 

ensemble of results were easily obtained and could be precisely repeated 

using both methods. The polynomials used in the true process 

generating the plant data are given in (6.2) 
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yk  = G B(z) u +, C(z) 	; k=1, 	 200 
°•A(z) 	" 

A(z) = 1.0 -1.5z-1  4,0.7z-2  ,Roots at 0.75 ±j0.3708 

B(z) = 1.0 -1.021  + 1.0z
2 ,Roots at 0.50 ± jo..866 

C(z) = 1.0 -1.652I  + 0.695z-2,Roots at 0.825± j0.12 

(6.2) 

The values of G (also named bo
) and A were both 1.0,and gi was 0.0 

The sequences ek  and uk  were taken from the random number tape for 

each member of the ensemble, and scaled to have zero mean over the data 

length of 200. The summary of an ensemble of 10 runs for both estimatio 

methods is given in tables 2 and 3. 

For this example the data length is sufficient by the criteria 

of chapter 4 that the difficulties mentioned there do not arise to 

any degree. Both methods give essentially the same estimates for the 

respective ensemble members within errors due to the conputer word 

length. The stopping criteria for the two methods were not easily 

made compatible as they are working in different space descriptions. 

As a result the cost minima of table 2 are slightly lower than those of 

table 3. For the climbing procedure used by astrUm, several iterations 

have to be repeated at half the step length when a failure has occured 

in the Newton-Raphson algorithm. Occasionally steps have also to be 

reversed in direction due to the non-positive definiteness of the second 

derivative matrix. The number of both these occurrences are given in 

table 2. 

Using the schemes described in section 4.7 the matrix of second 
1v(6)  

derivatives of the cost, Q = 	was calculated at the final 



Final Number of 	Sum 	Value of estimated coefficients 	Value of 

Cost Iterations H R Sq. 	62 	a1 	a2 l  0 	 Sc' 2 

=NA/2. 	Slopes 

96.386 10 10 2 .0007 	-1.722 0.7759 -1.484 0.6938 0.9988 -0.9854 1.050 

96.487 12 22 2 .060 	-1.674 0.7074 -1.546 0.7443 0.9865 -1.1107 1.091 

96.834 14 12 2 .0002 	-1.677 0.7158 -1.514 0.7026 0.9895 -0.9890 0.927 

93-905 13 28 2 .02 	-1.724 0.7750 -1.513 0.7159 0.9986 -1.0120 1.031 

98.032 14 22 4 .002 	-1.676 0.7191 -1.514 0.7133 0.9878 -0.9383 0.919 

97..717 16 22 1 .001 	-1616 0.6698 -1.504 0.6978 1.0415 -1.0789 1.043 

98.069 lo 8 2 .0006 	-1.636 0.6836 -1.498 0.7035 1.0581 -1_1763 1.134 

98-593 la 22 1 .001 	-1.622 0.6813 -1.525 0.7163 0.9245 -0.8650 0.89.4 

96.136 12 25 2 .000004-1.649 0.7207 -1.537 0.7287 0.9236 -0.9773 1.001 

97.075 15 31 3 .002 	-1.621 0.6652 -1.1503 0.6948 0.9921 -0.8778 0.868 

0.344.10-3  

0.528*103  

-0.509.104  

-0.135*10-2  

-0.601*10-3  

-0.246-103  

0.348*103  

-0.339*10 4  

-0.283-103  

0.233-10-3  

Table 2: 	Summary of ensemble of 10 runs for example 1, astrem's method. 



Final Iter. Final 	Value of estimated roots 	Value 	Value 	Value  

Cost 	Slope 	
A 	 A 

A 	 of 	of 	of 

^ 	)(A , 
=NA/2. 	 Go  

96.390 6 .007 0.8614 Iy).1838 0.7564 Ij0.3786 0.5046. fj0.8807 0.9969 -0.415*10-2  8.124 

96.506 7 .003 0.8363 fjo.0765 0.7570 fj0.3742 0.4724 I-Jo-8448 0.9781 -0.125*10-2 18.004 

96..835 7 .005 0.8386 ±Jo.1128 0.7424 Ijo.3778 0.4947 ;j0.8972 1.0032 0.263*10-2  18.411 

93.962 5 J006 0.8622 IJ0.1779 0.7730 fjo.3829 0.5644 IJ0.8859 0.9954 -0.140*10-2  34.697 

98.079 9 .0013 0.8373 fJo.1253 0.7561 Ijo.3591 0.4979 Ijo.8225 1.0022 0.368*103  9.879 

97.720 6 .004 0,8081 IJo.1297 0.7519 fjo.3642 0.5201 Ij0.8570 1.0435 -0.212*10 3  4.840  

98..078 6 .003 0.8187 ±jo.1193 0.7495 fj0-3774 0.5576 Ij0.8700 1.0653 -0.399*10-2  6.805 

98.590 8 .003 0.8110 Ijo.1544 0.7626 fjo.3674 0.4669 fjo.8660 .9877 0.4364.1073  8.597 

96.139 6 .002 0.8249 ±j0.2019 0.7685 ±j0.3716 0.5289 ±j0.8942 1.0013 -0.269*10-2  10.225 

97.077 9 .0006 0.8107 fj0.08864 0.7516 IJ0.3604 0.4423 IJ0-8241 .9908 0.848*10-3  14.759 

Table 3: 	Summary of ensemble of 10 runs for example 1: New method of section 6.1 and 6.3 



A 
estimate ~ for each ensemble member of table 3, the new estimation 

method. 

The olassical statistical approach of section 4.13 allows us to 

define a confidence region, in this case an elipsoid, which would 

cover the true parameters ~ with a probability of 95%. These elipsoids 

are individual to each data set of the ensemble and would give a 

confused effect if plotted together. Since this example has fixed 
,.. A 

known parameters ~ defined in (6.2),the error vector S ~ ~-~ can be 

calculated for each ensemble member. Thus as an alternative presentatio 
~ ,.., 2 

of the results, we Can calculate the statistic ~ ~ which has a r 
distribution due to its quadratic form. These values are shown 

final column in table 3. The value Of~2 is 16.9 for 8 degrees 

freedom 'at a 95% confidence level and since the majority of the 

of ~t~ lie within this limit, the estimation procedure can be 

regarded 'as statistically satisfactory. 

in the-

of 

values 

The Bayesian theory of section 4.13 can also be applied to this 

problem. Conveniently we know the true value of ~ and we can therefore 

calculate the expected second derivative of cost matrix using the 

methods of section 4.8. This matrix can be'used ~ogether with section 

4.9 to define an elipsoid for the Bayesian approach which have a 95% 
"-

probability of containing the random S values derived later from the 

estimation process. Projections of such an elipsoid for two parameterEJ_' 

~2 in ~ have been drawn in figures 23 to 25 together with the various 

estimates. These elipses of projeotion are derived by inverting the 

partition of the covariance matrix concerning the two parameters ~2 

to give Q2. The magnitude of these two dimensional elipses is given 
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by the value of .2  for 2 degrees of freedom at a 95% confidence level. 

Clearly the elipses contain most of the estimated values, and therefore 

confirm the estimation procedure as satisfactory in the Bayesian sense. 

The sample correlation of the residuals ek can also be examined to 

verify that the sequence is satisfactorily 'white' or independant. If 

this is so then it can be concluded that all the possible information 

has been extracted from the data. This criterion bears a relationship 

to the order of the model n which is fitted to the data, as discussed 

in section 1.11. We would expect that the residuals would not be 

white for n less than some value n*  and that a plateau of performance: 

index would be achieved for nn'` . 

These effects are shown in figure 26. Here the residual 'colour' 

is shown for the 3rd member of the ensemble when the model is estimated 

with order n=1,2 and 3. Using the result of (A.14) in appendix 1 we 

would expect that 5% of the ordinates would be outside the limits ± 0.141 

for delays TiO. This corrosponds to the usual ± 2crlimit of a normal 

2 	A  distribution with a variance a- of A4/N, where N=200. Obviously the 

model with n=1 does not satisfy this criterion, while those with n=2 

and 3 are acceptable. A plateau of estimation cost appears to have 

been reached for /.12. The total costs V are 307.13, 96.835 and 96.828 

for n=1,2 and 3 respectively. 

It will be noted that when the residuals are white following the 
A 

estimation procedure, the value of Xis significantly less than the 

original 1.0 used when generating the data in (6.2). Now the N sequence 

for ek was drawn from the long record of random numbers described by 

table 1, which had been scaled to have unit variance. The estimation 
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a
1  

a2 

a3  

beI(Go) 

b1  

b2 

b
3  

Cl.  

c2 

c3  

n=1 

0.0519 

0.126 

0.145 

SNP 

0.0973 

0.110 

n=2 

0.0153 

0.0143 

0:0720 

0.0719 

0.0692 

0.0371 

0.0579 

0.00278 

n=3 

0.0199 

010144 

0.0113 

0.0720 

0.1330 

0.0971 

0.0912 

0.0508 

0.0609 

0.0462 

0.00545 

Table 4 : standard deviation of parameter estimates for 3rd ensemble 

member. 
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procedure appears to have the ability to further 'whiten' a relatively 

short sequence N drawn from a longer sequence which is already nominally 

'white' i.e. random and uncorrelated. This is not unexpected as we 

cannot expect that a random sequence will have the same statistical 

properties for both short (N) and very long records (table 1). 

If the model order n was higher than the plant order ny producing 

the data, we would expect that the parameter estimates would be over-

determined and have Wider confidence limits. Experimentally we found 

that the matrix of second derivatives does tend towards singularity as 

n is increased larger than ni% The estimated standard deviation of 

the parameters is shown in table 4 for n=1,2, and 3. From these figures 

it is obvious that the estimates for n=1 and n=3 }mite wider confidence 

limits than those for n=2. This could be regarded as a suitable 

indication that the original plant order was equal to two. 

6.6 Example No.2  

This example was chosen to be a difficult problem which should 

show the advantages of the estimation methods advocated in this thesis. 

The true plant parameters are given in (6.3). These were chosen to 

give a wide spread of roots for A(z), i.e. radii of 0.80 and 0.99 in 

the Z plane, and a pair of complex roots for C(z) close, (radius 0.99), 

-to the unit circle 

yk  = Go.  B(z) uk  + X, C(z) + 	; k=1, 200 
A(z) 	1TET "' 



where 
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- 1 A(z)=1.0-2.3766z +2.013422-.63426z-3;Roots at 0.6933 ±j0.400, 0.99 

B(z)=1.0-3.50z-1  + 3.0z-2  

C(z)=1.0-1.9572z 1  + .95766z-2  

Go. = 1.0 
	

X= 1.0  

;Roots at 1.5 and 2.0 

;Roots at 0.9786 ± j0.1500 

= 0.0 

(6.3) 

As a further difficulty the roots of B(z) lie outside the unit circle, 

thus giving a non-minimum phase system as described in section 3.14. 

The data length of 200 is considered short by the criteria of chapter 4, 

and the corrosponding effects arise when estimating the plant parameters. 

The impulse response of B(z)/A(z) is shown in figure 27. This 

shows a non-minimum phase response typical of physical systems such as 

rear steered rockets and drum boilers. The spread of eigenvalues is 

demonstrated by the high frequency ripple on the longer term response. 

The impulse response of 1/C(z), which is significant in equation (2.49), 

is oscillatory with a period of k=41 and a damping such that the envelope 

is approximately i of its initial magnitude at k=200. 

The performance of the new estimation method on this problem was 

in general better than Rstrtim's method which took generally more 

iterations and displayed poor convergence properties. A typical run 

is detailed in table 5. LtrUmis method failed to converge in 30 

iterations and estimated the roots of C(z) as lying outside the unit 

circle. This occured in about 30% of the runs with this example and 

would be of little practical use as described in section 2.6. The 

large number of steps of the algorithm which were halved or reversed 

is evidence of the difficulty of convergence. The reason behind this 
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is more clearly shown by example 3. 

As shown in table 5, the new estimation method was fairly efficient 

in comparison although having a higher final estimation cost. This 

was principally due to the automatic decision taken at a pole radius 

of 0.99809 that the data length and pole position were becoming 

incompatible under the criteria in chapter 4. The value of I 
2N^  0.468 

This particular factor arises for a complex root pair from the (sign)14  

term in (3.41) when calculating the expected sample variance and occurs 

in most of the criteria of section 4.12. Such check calculations can 

easily be included in the algorithm at each iteration of the climbing 

routine. 

A similar decision was previously made at a radius of 0.97613 to 

change from single precision working to double precision. Experimental 

evidence had previously shown in many cases that such a move was wise 

beyond a radius of 0.97. This action was taken to reduce the random 

noise introduced by the finite digital word length. There is otherwise 

a noise term introduced into the numerical calculations and similar 

effects are seen to those described in section 4.10. As the filter poles 

become stronger a 'roughness' is introduced in computing the cost V, 

and this affects the logic of the hill climbing routine which inherently 

assumes a smooth function. Naturally these effects are also present 

'in astram's method, but they cannot readily be checked without repeatedly 

solving for the polynomial roots. 
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astrdm's Method 	New Method 

Number of iterations 	30 	8 

Number of steps halved 	41 

Number of steps reversed 	9 

Number of unstable costs evaluated 29 	Nil 

Final estimation cost 91.107 	95.288 

Final slope 	1332.9 	(157.05, 57.38) 

A(z) polynomial a
1 	-2.3426 	roots(0.67836 I j0.40438), 

1.9657 a2 	 and 0.98988 

a3 	-0.62040 

t( z) polynomial 0 	1.0245 	roots 2.1591 

b
1 

b2 
A 
C(z) polynomial 	c1 

c2 

-3.5581 

2.96811 

-2.0742 

1.1529 

and 1.4513 

roots(0.98473 j0.15437) 

Table 5: 	Comparison of astr8m's method and the New estimation 

method for one run.  of example number 2. 



6.7 Example No.3  

The true parameters for this example are given in (6.4) 

y = G 	B(z) u + X. C(z) ek  + 
k o* 757 k 

k=1, 50 
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(6.10 

	

. A(z) 	roots at (-0.20, ± j0.9288) 

	

B(z) 	roots at (-0.9288, ± j0.20) 

	

C(z) 	roots at (1.01175 t j0.1500) 
	

radius 1.023 

Go ,A = 1.0 ; 	
=0.0 

The data length is very short since the example was only used to 

investigate the effect of evaluating the estimation cost V at points 

where the roots of 6(z) lay outside the unit circle. For one set of 

data ykluk  the cost V has been plotted before as figure 18 against pole 

position along a line of search in the Z plane outside the unit circle.. 

A. basically smooth function is indicated which is perturbed by 

increasing alounts of added positive noise as the pole radius increases. 

This noise is due to the random round-off errors of the finite digital 

word length (8 decimal places), and disappears at these radii for 

double precision working. Any small roundoff error in the digital 

computation is amplified by the action of the unstable V6(z) filter 

until its significance is much greater. The basic function is smooth 

as this has been recalculated in double precision arithmetic. The true 
Sr the, etvevt actia. seh 

optimum in this caseAlies at 1.0976 ± j0.2015 with a cost of 18.140. 

It will be noted that all the noise perturbations are additive 

due to the definition of V as eN  e 	with 	derived using the A k  Gk=1 
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0(z) filter. This example vividly demonstrates the difficulties 

which can occur with poles outside the unit circle; many climbing 

routines would have their logic destroyed when the function V was 

fax from smooth. 

6.8. Examples No.4 and 5  

Equation (6.5) gives the parameters for example 4. The parameters 

were chosen to give a working example with a long data length but 

with a strong complex pole pair in 1/0(z). Again the comparison was 

made between astrft's method and the new method. 

y = G 	B(z)u + A. C(z) ek + y.' ; k=1, 1000 k 	A(z  k A(z) 

A(z) 	roots at (-0.20, 	j0.9288) 

B(z) 	roots at (-0.9288, t j0.20) 

C(z) 	roots at (0.9740, 	j0.1500) 
	

Radius 0.985 

Go  -• = 3.0 
	=, 1.0 	; 	= 0.0 

(6.5) 

Figures 28 and 29 illustrate the progress made by each method for a 

few typical estimation runs. In general the new method was superior 

and achieved faster convergence. This was again aided by switching 

to double precision working for radii beyond 0.970. 
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EXAMPLE 5  

For this example the parameters of No. 4 were adopted 	those 

in (6.5). However C(z) was changed to a complex pair of roots 

(0.9792855 ± j0.200) at a radius of 0.99900. The data length was 

shortened to 500. Clearly these two items are incompatible in terms 

of chapter 4, and were used as an extreme test of the abilities of 

the new method. 

During a typical estimation run, the algorithm reduced the cost 

from an initial 1272.5 to 246.146 in 9 iterations. The gradient at 

this point was (-319.4, 9.377) in the Z plane. The estimate of the 

roots IofC(z) was then (0.979493 ± j0.199385) at a radius of 0.999580. 

The value of Id 2N 
was 0.657. As in example 2 the decision was 

therefore taken to stop climbing radially due to the indicated 

incompatability. The climbing routine was permitted however to search 

angularly to see if a better minimum could be obtained. A further 

iteration gave an estimate of C(z) as (0.979880 ± j0..197472) with a 

gradient of (-296.955, -66.6461) and a cost of 246.085. This minimum 

was taken as the best achievable in the circumstances, and it will be 

noted that the gradient vector is virtually aligned with the radial 

through the final optimum point. 

As a further check, the function was evaluated at the inter-

section of the unit circle and the above radial, and this gave a value 

of 245.958. This is significantly smaller than the optimum found and 

indicated that the true optimum in this case lay outside the unit 

circle. astrtim's method ran into the same non-convergent difficulties; 

with this example as were found for example 2, and described in 

reference 37. 
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6.9 	Constant Bias terms. 

The basic system model equations (1.1) contain a constant bias 

term yr,,,  on the measurements yk. Such a term might be due to a direct 

offset in the measuring instrument. If this is known it can be 

accounted for by subtracting the bias from the measured values. 

Usually the control signal uk  would have a constant bias about the 

measurement datum and as a result yk  would also have a constant bias 

of a related magnitude. The bias term ytis intended for some unknown 

value to be estimated and can represent a disparity between the input 

and output bias values on yk  and uk. 

The value of )4: was transformed to appear in (1.38) as )efl and this 

is related to y(by the definition in (6.6). 

X*4 i=0 ai 
	 (6.6) 

The maximum likelihood approach of section 2.5 obtains an expression 

A for the residuals ek 
and then seeks to minimise the estimation cost 

v  ziN 2 
k=1 k:. 

Equation (2.49) should be extended as shown in (6.7) 

to include the constant bias term. The notation for has been 

extended to.1(y  to indicate that the bias is considered to be on the 

y
k signal. Thusf'e  is the bias on ek etc. 

6k  =  1  [.A(z) yk  - B(z).  uk] + )t e  
C(z) 

where ye  . 	c. 1( 	; 4.1=v 2. 	1=1 	/-y 

(6.7) 
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It should be clear that the choice is open to model this term )1 

as convenient, on the yk, ek  or uk  signals. The only factors required 

when transforming from one to the other are the steady state step 

responses of the A,B and C polynomials. These are given by either 

the sum of all the coefficients or the products of all the roots of 

the polynomials. 

The full maximum likelihood solution is now given by climbing 

in all the previous parameters plus yty. This would be most convenient) 

done by correcting all the yk  values with a value of y chosen from 

the climbing routine to give (6.8) 

tk =  1 	(A(z) 7 k C(z)  
- (z) uk )  (6.8) 

where yg
k 4 Yk 

This method would extend the dimensionality of the space to 311+21  

which was already considered large and was the reason for the least 

squares modification of section 6.2. We introduced there the simple 

approach of dealing with X directly by using the means of the data 

on yk and uk
to correct them to zero mean signals; If the roots of C(z) 

were very near the unit circle and N were not large, the cost response 

due to ){ i.e. a bias on yk, would be similar to the response of 14/6(z 

The simple method is then not ideal because an estimate X introduces 

components in the full second derivative matrix of section 4.7, and 

this matrix would tend to be singular. 

As an alternative approach it will be seen from (6.7) that the 

estimation cost V is quadratic in ye  and therefore the least squares 
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procedure can be extended to give an estimate of ),te  directly for any 

given 6(z) value. Thus the dimensionality q of (2.11) and (2.7) is 

extended by one to 2n+2 and mk  has an extra component 1.0. 

Example number 6 was studied to verify some of these ideas. 

The parameters are given in (6.9). 

(6.9) yk  = B(z) uk  + C(z) ek ; k=1, 1000 

where A(z) = 1.0 + 1.0z-/  + 0.29z-2 

B(z) = 2.5 - 2.5z 1  + 0.725z-2  

C(z) = 1.0 +0.9z-1  +0.8z 2  + 0.7z-3  + 0.6z-4  

E (uk ) = 1.0 ; E(ek) = 5.0 

E [uk  - E(uk) ]2  = 1.0 

El [ek  - E(ek) ]2  = 1.0 

One data run for uk and ek was used as before to generate the y
k,uk  

signals for various trials. Initially C(z) was set to 1.0 only and 

thus the system was excited by only white noise from ek  with-the bias 

shown. A least squares solution for A,t3 and 	enabled the cost 

V  q
N 	A 
jkleA k2  to be found for C(z) = 1.0 only. This gave a value of 

1001.531. Using the previous simple method of subtracting means first, 

the estimation cost was then 1015.256. The increase in cost of about 

1.5% is significant compared with other sources of error. When the 

polynomial C(z) adopted the value shown in (6.9), the costs were 

2219.397 for the complete least squares method and 2285.662 for the 

naive method i.e. 'about 4% worse. 
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This means that even for this trivial example method the simple 

method is not satisfactory and cannot be recommended. However if the 

yk and uk signals contain a large constant bias, numerical difficulties 

can easily arise in the full maximum likelihood approach or in the 

least squares method. This is principally due to the finite digital 

work length. Clearly in such a situation the above scheme of extracting 

the signal means beforehand would have a computational advantage. 

During the estimation process itself, this ought to be backed up by 

estimating the remnant constant bias. 

Such a method counteracts the defect of not estimating the initial 

states on the signals at k=1. Difficulties can occur if all yk, 

k= -n+1, -n+2, 	 ,0 are taken as zero, whereas there is in fact 

a large D.C. bias on those values. The V6(z) filter is then excited 

by quite the wrong initial conditions and this has a significant 

effect on the numerical analysis. The procedure of extracting the 

means first at least gives approximately correct initial conditions 

and enables the routines to work without word length troubles. 

6.10 Delay in the System. 

The full system described by equation (1.1) is not likely to 

describe a physical system in the sense that the model allows the yk  

signal to respond directly to the control signal uk. Certain 

coefficients such as b
o and b1 should not be considered when the plant 

contains transport or storage times which are significant compared to 

the sampling period of the discrete time model. The study of this 

area can become quite extensive; however for present purposes we have 
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considered a typical delay of two periods on the uk  signal together 

with examples 1 and 2. 

The estimation runs were repeated for one member of the ensemble 

for various delays of the uk  signal. The resulting estimation costs 

aro shown in figure 30. The system of example 1 gives a very clear 

minimum for a delay of two periods, while example 2 shows a flatter 

minimum centred on the same delay. These results are in line with 

Clarke's13 work with a similar problem. The flatter minimum of the 

2nd example is probably related to the non-minimum phase nature of the 

plant. Thus the coefficients of B(z) are 1.0, -3.50, +3.0 which are 

large and are dissimilar to those for a polynomial whose roots lie 

inside the unit circle. 

Given a plant data record some trial idea of the order n of the 

assumed plant structure and any delay terms must be formed before the 

estimation routine is entered. From the results of section 6.5 and 

table 4, it is plain that other values of n must be tried as well before 

the true valUe of the order n* can be comfortably-decided. From figure 

30, it is also clear that more than one delay time should also be tried. 

This means that finding the correct value of n and the transport delays 

in the plant.is itself a hill climbing procedure, but at a higher level. 

The entire estimation process could be considered as a hierarchy of 

hill climbing schemes. The topmost level would be deciding the possible 

structure of the plant the next deciding the order n and delay terms, 

and the lowest would be the scheme for climbing in the parameters as 

described in section 4.6. Naturally the higher levels can only take 
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integer values for their variables. This reduces the number of 

effective combinations, but also implies that more specialised 

integer hill climbing routines are required, although it is likely 

that human beings would always be retained "in the loop" at that 

level. 
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CHAPTER 7 

CONCLUSIONS AND EXTENSIONS 

7.1 	Summary of Contributions. 

It is convenient to summarise the work of this thesis by a review. 

of each chapter. The underlying structure of the systems studied was 

introduced in Chapter 1 and principally followed the work of Rowe
16. 

A. stochastic difference equation was derived from a basic system 

description in state variable form. Since the derived form is for a 

single input single output plant, the equations in sections 1.5 to 1.9 

are a subset of Rowe's multivariable case. It should be clear that as 

it is possible to transform any description to any other, within 

certain conditions, we might as well choose a structure for which it 

is easiest to estimate the parameters. astram and Rowe choose the 

coefficient polynomial description of (1.38), while we advocate here 

the root form description set out in section 3.7. 

Chapter 2 described the properties of different estimation methods 

from the simplest least squares scheme to methods which made the best 

use of the available data. LtrOm's Maximum likelihood approach 

combines the property of being asymptotically efficient with a simple 

and elegant computation scheme which reduces to an iterative hill 

climbing problem. In practise this approach is not far removed from 

the Generalised Least Squares method of section 2.4, although the 

underlying philosophy is different. astram's method also has the 

advantage of a theorectical proof of its properties at least 

asymptotically, which is lacking in more heuristic methods such as 
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Clarke's
13
. 

Section 2.6 demonstrated that Rstrbm's solution of the estimation 

problem in fact solved the stochastic regulator problem as well. This 

demands that the system described by: the polynomial 8-1(z) should 

have all its poles within the unit circle i.e. a stable system. It 

is feasible but inconvenient to solve for the roots when given the 

coefficients of low order polynomials during a hill climbing process. 

It is clearly more sound to climb in, and describe systems by their 

roots. This enables the stability criterion to be readily checked. 

The method.of calculating the response of a discrete time system 

with a rational polynomial Z transform was given in detail in Chapter 3 

principally since this appeared to be lacking in the text books. This 

applies to both the pulse response and also to calculating the system 

output signal variance in a stochastic situation. Other authors2 -9.30,32  

have - employed the coefficient descriptions and have missed the simple 

and elegant results which come from the transformation into a root 

description. These results are• not surprising in hindsight as similar 

root Methods have been frequently used for continuous time systems 

described by rational S polynomials. 

The approach from the root viewpoint does not appear to have been 

exploited before in the area of estimating discrete time systems from 

data records. Previous approaches have all(4 "510 '1112 "1315 "16 "1926 ' 

27,28,37,39,42,43,44) described systems in terms of polynomial 

coefficients and have on occasion run into convergence difficulties. 
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The X transformation method introduced in section 3.10 together 

with the system description in terms of roots allows the estimates to 

be constrained within the class of stable systems. This removes the 

most common source of non-convergence. The hill climbing routine with 

the X transformation operates in an unconstrained space and can 

therefore be chosen from a class of fairly sophisticated and efficient 

algorithms. Several authors
1,73,43,44 have shown that real plant 

disturbances frequently arise from finite random walks or white noise 

which has been passed through simple low pass filters. The system 

disturbance in such cases has a high correlation with itself at non zero 

time shifts. This implies that the estimated polynomial e(z) will have 

roots close to the unit circle and give convergence difficulties. The 

X transformation approach is most beneficial in this area. Not only 

are the roots constrained as required but the non-linearity of the 

Tanh transformation appears to match the sensitivity of cost to the 

root motion. Therefore as far as the unconstrained hill climbing 

algorithm is concerned the hill is quite regular and free from 

difficult regions. 

Section 3.14 demonstrates more clearly than astrOm65, by using 

the root description, the significance of non-minimum phase systems. 

These can be regarded as having zeros outside the Z plane unit circle, 

and Net matched by internal reciprocal poles to give an all pass 

whitening effect. Thus non-minimum phase systems can be seen to be 

equally easy to estimate, although they will limit the performance of 

control systems
31. Figure 17 demonstrated that such estimates will 
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be strictly biassed for a finite data length and this can be seen by 

differentiating (3.41) under the above reciprocal pole condition. 

Section 3.14 also showed that a continuous time all-pass system loses 

that property on sampling, but the property does appear in discrete 

time for an inverse pole-zero relationship in the Z plane. 

Sections 4.1 to 4.7 demonstrated that the first and second 

derivatives of the estimation cost in terms of a root description can 

be obtained in a way which is equally simple to astram's shifting 

method10'11 used for coefficient description systems. A trivially 

simple filter is.required for each root and this can be implemented 

with an equivalent ammount of work to that of the shifting method. 

Further simplifications also arise for complex conjugate root pairs. 

Derivatives in the transformation X space can be obtained almost 

directly from the derivatives with respect to the roots, and can be 

used for a hill climbing routine9  which requires gradient information. 

The rest of Chapter 4 is devoted to studying the second derivative 

matrix of the estimation cost. .This matrix enables statements to be 

made about the probable precision of the estimate which has been 

obtained and has been treated before by htrdm12. However for several 

experiments the practical second derivative matrix calculated from a 

finite data set did not match the theoretical matrix for the same data 

length. This effect also appeared to be related to the speed of 

convergence of the estimate and the occurence of singularities. 

Section 4.10 gave an expression for the variance of the matrix elements. 
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The calculation method for such variances was given in sections 

4.10 and 4.11 and shows that for a given quality of the second derivative 

matrix, the data length N and the pole 'strength' are related. Thus 

criteria can be developed as in section 4.12 to enable judgements to 

be made, either during the estimation procedure or when planning an 

experiment, about the length of data required in given circumstances 

in order to avoid convergence and other difficulties. For example the 

estimation procedure can be stopped by a simple test, such as (4.87) 

for want of a longer data length N. 

Chapter 5 draws on astrlim'swork;_ in order to prove consistency 

and efficiency when estimating in terms of a root structure. Lemma 1 

is shown to hold since by means of the X transformation the stability 
A 

of the A and C polynomials can be guaranteed and the estimate 0 can 

only belong to the region Roof stable systems. 

Theorem 1 requires for a proof of consistency that the climbing 

routine finds the global maximum, rather than a local maximum of the 

likelihood function. Sophisticated climbing routines are of benefit 

here as in practise they are more capable of dealing with non-convex 

regions. The likelihood surface cannot be shown to be convex for the 

same reason that occurs in Ltrtim's work, and hence a solid analytical 

backing is not available for global convergence statements. The 

reason lies in certain cross-correlation terms in the full expression 

for the second derivative matrix described in sections 5.10 to 5.12. 

These terms prevent the matrix from being proven to be positive 

definite except at the optimum itself. 
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Theorem 2 of 51strtim, described in section 5.6, applies to the 

root description approach with a proviso about the permutation of the 

roots. Such permutations can be shown to be of no consequence to the 

final system and such estimates are therefore consistent. Again 

similar to astr8m, estimates of the system initial conditions are 

strictly inconsistent and have been ignored in later examples by 

choosing suitable data lengths. The identifiability theorem 3 is 

satisfied by the controllability assumptions of Chapter 1 about the 

original system, but also requires the control signal to be persistantly 

exciting as defined in section 5.7. All the previous lemmas and 

theorems are invoked in theorem 4 to show that the maximum likelihood 

estimate is asymptotically normally distributed as the data length 

tends to infinity. This leads to the estimates being shown to be 

asymptotically efficient. 

Sections 6.1 to 6.4 described the computer program which was 

written to implement many of the ideas described in this thesis. Clearly 

it is possible to climb in the full root description of the A,B and 

C polynomials. However for a working engineering method, advantage 

was taken of opportunities to reduce the dimensionality of the space 

to only n instead of 4n+2, and also to reduce the work required for a 

cost evaluation. This means a loss of academic nicety, but a 

considerable gain of practical worth in the final program. The checks 

suggested in Chapter 4 were included, as this enables the estimation 

procedure to halt when the model and data length are incompatible. 

The new method gave very similar results as astrOm's program, with 

the standard example 1. This is a natural requirement of any new 

estimation method. Example 2 was chosen as a difficult problem likely 
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to give convergence difficulties. The differences between the new 

method and astrOm's now begin to be apparent. This is shown further 

in the later examples which were chosen to illustrate different 

features. 

7.2 Extensions. 

Various possibilities come to mind when considering the practical 

estimation of parameters from field data records. Section 6.9 briefly 

covered the treatment of signals which contain a constant bias. Such 

signals and ill defined transducer noise are common in practise and 

arise from both the variable measured and the instrumentation available. 

The bias term may well drift with time or otherwise limit the available 

measuring precision. These details can only be properly resolved with 

experience of field work, although hypothetical analysis can be used for 

background information. Thus the judgement of whether a sophisticated 

estimation method is good or not depends on practical experience 

as well as inherent computational advantages. 

In a similar way, actual delays in the plant due to transport 

or storage 'are not necessarily amenable to the method described in 

section 6.10. There we described a hierachy of climbing operations 

involving decisions about structure, order and parameter estimation 

at successively lower levels. Such schemes could evolve to be very 

complicated and include pattern recognition algorithms to aid the 

decision processes. However it is quite likely that a human being 

would be retained 'in the loop' in all but .a few fast time varying 

systems. 
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It is possible that the method described here might be extended, 

as in astram's case11, to an on-line adaptive situation. Strictly, 

this is not derived from the Maximum Likelihood method which is aligned 

towards a hill climbing procedure using all the available data. 

A 
However given a value of C(z), a recursive form of the least squares 

method19  can be used as in section 2.2. Each new data point would be 

filtered as in (2.37) and used to update the estimate using the 

computation of (2.25) and (2.26). The full Maximum Likelihood method 

could conceivably be treated by recursive updating in this manner if 

A 
the hill in the C parameters could be shown to be suitable regular 

under certain conditions. For the present theory to hold, any 

recursive approach must be proven to be equivalent at each stage to 

the full maximisation over the total data set. 

The state variable description assumed for generality in (1.1) 

may in certain practical cases prove too pendantic. It might be 

known for example that a system of (7.1) was nearer a true description 

of the actual system. This might be a fast dynamic system described 

by the A' and B polynomials and a dynamically much slower disturbance 

C,D added to the system output. 

y 	B(z) u 	+ C(z) e
k k 	k 

A(z) 	D(z) 
(7.1) 

Although the standard description could be obtained by absorbing the 

D polynomial in A,B,C set, it might be prefered to rework the equations 

of section 4.6 and apply the method to the new structure. In such a 



case it would be wise to check that such a set of parameters could be 

estimated consi~tently in the sense of theorem 2.. Thus the controlabilitJ 

conditions must still apply and this implies that pole-zero cancellation 

is not permissable. 

It seems very likely that the work described here can be extenden 

. 0 11 
to the mUltivariate input-output case. As suggested by Astr~m and 

developed by ~owe16, a suitable canonical form is required which is 

a minimal representation in order to avoid the singularity effects 

described by Kalman25 • The tA' canonical form of Rowe is given here 

in (7.2). As mentioned in section 1.7, the matrix polynomial A has 

a number of possible zero elements for a minimal representation. The 

notation (I). is used to donate that certain rows of a unit matrix 
m J 

of order'm have been deleted during the transformation from the state 

'description given in section 1.4 and 1.5. 

i ~, 
+ B~k_p +. A ~k + ~,1 A ~k-1 ...... 

1 
C A"2:e 

p .-k-p 

(7.2) 

A working estimation procedure can be constructed as a multi-

variate form of the program used for the ex~mples in Chapter 6. Given 

A 
some value of the C(z) matrix polynomial the vector signals ~k and ~k 

A -1 
may be filtered by C(z) as in section 2.4 to give Zk and ~k • 
A multivariate form of the least squares algorithm16 can now be used 

to estimate the A and B matrix polynomials. The procedure is iterated 

as before towards donvergence using a hill climbing technique. As 
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A before the stability of the C(z)-1  system is important and its effects 

cannot be ignored. 

Rowe retained the coefficient description i.e. the companion form 

of the A,B and C matrix polynomialsIfor the multivariate system. 

Computational difficulties are known to have arisen for the case when 

A 
the eigenvalues of C were close to the unit circle. This is simply the 

multivariate form of the effects seen for scalar polynomials in this 

thesis. Clearly a more rational approach is to express the matrix 

polynomial 6 as a Jordan form in which the eigenvalues are displayed 

explicitly. A similar treatment should also be applied to the 'A' matrix 

polynomial in view of the conditions required by the theorems in 

Chapter 5. These explicit eigenvalues can then be treated with the 

X transformation method as before to obtain similar advantages to the 

scalar version. 

A 
Consider the matrix polynomial C(z) to be of the form (7.3) 

6(z) = (IM  61  Z-1 	6
2
Z-2 	 C 

A p 
Z ) (7.3) 

A 
where Im is an m*m unit matrix, and C. are coefficient - 

matricies. 

The index p is the controllability index as discussed in Chapter 1 for 

A 
minimal representation forms. If now C(z) is expressed as in the form 

of (7.4), there are still m2p parameters, but each "root block" can 

be individually treated. 
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6(z) = (1 +. C r1)(i 	A 	-1 
) 

m 	r1 	m.  r2-   (I + mC rpZ  (7.4) 

A 

 ri 	
A 

1 
Each matrix C 	is m*m, and from these the coefficient matricies C. 

of (7.3) could be calculated. Thus as in section 3.7, we may as well 

choose a form which has advantages for estimation purposes if 

alternative forms can always be derived later. 

Suppose we are concerned with obtaining an m vector output signal 

k 	
A 

e from an input v
-k  to a filter C(z)

-1 
 as in (7.5). 

A 	. A 	A 	-1 -1 	A 	-1 -1 	A 	-1 I e = C(z) v = (I +C Z ) 	 (Im+Cr2z ) (Im+Cr1z  ')-'v -k 	-k 	m rp 	 -k 

(7.5) 

It will be noted that the multivariate form does not commute and the 

block order is reversed on inversion. If the intermediate m vector 

signal wk  defined by (7.6) is introduced, then we can study the 

stability of the elemental form of (7.7) in isolation. 

wk = (Im 	6r(p-1)z-1)-1  

A e - (I +u A z-1)-1 w 
-k m rp -k 

(Im 	82'1 + 	
z)

1  -1 k 
	(7.6) 

(7.7) 

As shown in Chapter 1, an m*m non singular transformation matrix T can 

be chosen in (7.6) so that the matrix F is diagonal and explicitly 

A 
showing the m eigenvalues of C . 

rp 

A 	- 1 e 	= T 	(I + F z 1)-1 T w -k 	m p 	 k (7.8) 



248. 

The matrix T-1  is made up of m column eigenvectors each of arbitrary 

norm. Thus T-1 contains (m
2-m) non-arbitrary parameters and F 

contains m eigenvalues. This the same total of m
2 parameters as in 

A 
C 
rp
. The procedure can be repeated for each block of (7.4) to give 

the total description of (7.9) 

A 	•-• 
1 (I +F e =T (I +F z"1  ) TT-1  (I 	p_i 	I 	m i 	l  z-1)-1T 	T

-1 
 (I+Fz-1)1Tyk  p 	m p 	p p-1 m 

(7.9) 

To ensure stability of such a system, each of the m elements of 

each F. matrix, i=1, 	 p, should have a magnitude of less than 1.0, 

and are therefore candidates for the X transformation process of 

Chapter 3. For convenience we can set the m values on the main diagonal 

Of each Ti  to be unity, this leaves a total of p(m2-m) parameters to 

be specified by an unconstrained hill climbing process. 

A 
The above procedure has reduced the C(z) description of (7.3) 

to a form (7.9) which is more useful for estimation in the sense that 

A -1 
the stability of C(z) 	is ensured as was done in the scalar case, and 

any other form may be derived if required. Jordan forms of F, in which 

there are more than m non-zero elements, are not treated so easily, but 

have been assumed to be relatively rare. Complex conjugate eigenvalues 

or root blocks would probably simplify as in section 4.1 to give 

amenable forms. 

The actual filter of (7.8) is as easy to implement as that in 

(4.6) since it reduces to the structure of (7.10), which is m simple 

decoupled scalar filters. 
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(I m
+F.z -1  -1.  

As in the 

`OM 	 00.0 

1+f
1 
z-1 0. 

1+1
2
z -1 

0. 	•1+fmz 
-1 

OM& 

scalar case, the derivatives
q  

-1 1 
0. 

1 
(1+f 

0. 

z-1 ) 

(1+f2z-1) 1 

(1+f mz -1 ) 

(7.10) 

where q is any 

parameter, are not difficult to calculate so that sophisticated hill 

climbing routines can be employed. Thus the multivariate problem, 

although complicated can be regarded and programmed as a set of scalar 

filter stages similar to the scalar polynomial systems of this thesis. 
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APPENDIX 1 

The variance of sample variance of a 'white noise' sequence with a 

normal distribution. 

Define the sample variance 	as : 

	

0(N a 	N E2 

	

0 = 	< k=1 k (A.1) 

where Ekl k=1 	 N is a sample of an independant random source 

with known zero mean, variance cr2 and normal distribution. 

i.e. the 4th. moment, 	E(Ck) = 3 or'e
4 

The variance of yo is given by its 2nd. central moment. 

var. ( - E (ed.]2 	(A.2) 

Now from (A.1) E(4) is given by 1017: then 

,-N. 	, 
var. (00  ) = 	[00

N 	
o )
2 

)2 + 	kyr) 	- 
	
* (00)] 0 (A.3)  

[1 4114 411  ee + 41! 2.1' 4 	2 
t }+ 	- 2 4 . 	. * 0

-2 
e fa=14.43=1 i 3 	,3.= 1 i 	— 3.= 1 (A.4)  

 

2 	4 
= 	-ii=-1

A
j
N 
 =1 E(ci

2 e
j) 	1=1 

E(c 
 i 	

4 
- 

N2 

N 

k. 
j/i 

2 (€ ) * cre
2  

(A.5)  

2 Due to independance E(e.2  c.) =JE(ef) * E(c) for ij 3. 3 



1 	(.)
14/2 - 1 

2 
exp (-12) . 

2 r1) 
(A..7) 

var.(fl  = N(N-1).re
2  

N2  

2 
*re 

4 	4 + N .30- + 0- - 2N rr.2  * n-2 
•-•• e e 	e re  
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, 4 4 
+, ..var.(4 	e  ) = (r4 	at 

	

- ve 	
3%
4 

+ 0; e  4 - 2O k  = "ire
4 	

(A.6) ' 

	

N 	N 	N 

This result can also be derived by considering IIo as a sum of squares 

as in (A.1), and has a chi-square distribution with N degrees of 

freedom. 

It is straight forward to show from this that ,Oro has a mean and variance 

given by 

1 E /2)  = cre2 
N 

2 
1 var.(1.2) = 2re 
N 	 N 

(A.8) 

For values of N-30, the Chi-square distribution is closely approximated 

by a normal distribution with the same mean and variance. 

Variance of a sample autocorrelation. 

This can be derived in a similar way to above. Define a sample 

autocorrelation 1 of shift 1 as 

NI g 	. 	c. c. 
1=1 	i+1 ( A 9 ) 

where N' = N-1 and is the maximum number of terms to be summed 

for a shift of 1 and a data length N 
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,N 
The variance of F31 is given by (A.10) 

1  2 NI 
var.(py. = 	CiCifi  - E (4) (A.10) 

Now E is zero due to the independance of E.E. 1  for 1t0. W1 

= 1

2 I-  3 

N  N.
- N t

1  (Gici .ac j  1 
	

for 1/0 	(A.11) 

1 .41..
3.=1 {E(Ei ).E(e.1 ).E(e.) rce 	))+Eee =* 	j 

	

+1 	+1 	j+1 
N ' 2 
	

ij 	 (A.12) 

There will be terms in (A.12) such as E( E.2)*E(e. )4,E( ei+1)  etc. but 

	

J 	1  
these with most of the others will be zero, since E(ek) = 0.0 

N' .var.(iS
N
) = 12j1 1-1 

c 
 j
2 c2 

j+1' 
N' 

(A.15) 

N=1 

I 	2 1 	E(e.2)*  E(ej+3.) since 1/0 
N'2 '-'3 

:.var. 
4 

C61) 	N'2 = "1  *2 * re 	= (re  W' 
(A.-14) 

The expected sample autocorrelation1 has therefore zero mean, and 

variance of0-4/ ei(N' 

We could now repeat the process between (A.9) and (A.14) to obtain 

the covariance between VN and p 	, the sample autocorrelations fl1 	2 

for different delays 11 
and 12. Equation (A.13) would then contain the 

var. 



term E(C.) *E( c 	.6 	) which would be zero for 11  X 12. 
3 	j+1 j 

2 +11 

Hence we would expect 4 and 4 to be independant and have a 

	

1 	2   

zero covariance for 11 X 12 
	 (A.15) 
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