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ABSTRACT 

This thesis adopts the approach that a linear system is 

specified in terms of its transfer operator or weighting 

function. Usin:.; this basic assumption, certain topics in the 

theory of linear control systems are investigated and some 

new rosults are presented. 

An abstract point of view is followed wherever possible, 

to enable the tools of functional analysis to be applied. A 

brief review of linear systems theory is first given and 

certain concepts of control theory are shown to have abstract 

interpretations. The theory of optimality to a quadratic 

performance criterion is examined, and some new theoretical 

results and computational algorithms are given. The optimal 

control of stochastic processes is seen as_ a further example 

of the abstract theory. Filtering is shown to be a dual 

problem to control. Using the weighting function approach, 

estimation becomes a linear problem, and'an algorithm is 

presented for solving this. 

Modelling errors and their effect on control calculations 

is investigated. The insight that the weighting function 

method gives, enables results in sensitivity and cost bounds 

to be derived. A method of design whicl,. accounts for modelling 

errors 'a priori' is presented. 

The final part of the thesis considers the problem of 

optimisation of the gains of a closed loop system when only 

incomplete state feedback is used. The insight provided by 

the state space approach is used to derive algorithms for the 

sub-optimal case, though these are formulated abstractly. 
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INTRODUCTION  

During the past decade, the concept of "state" of a dynamical 

system has both dominated and directed control systems research. 

The state-space approach is especially useful for the study of optimal 

control problems, since the dynamic programming method of solution 

indicates that the optimal control is a (time-varying) function of 

the instantaneous state. In particular, the study of linear recursive 

models, with quadratic cost criteria leads to an optimal control 

problem whose solution is a linear function of state. The associated 

matrix Riccati equation and its solution are well known. The dual 

problem of the Kalman-Duey filter has also been an important example 

of the power of the state-space approach. 

Unfortunately, there are some fundamental practical drawbacks 

to the use of these methods in engineering design. The most usual 

complaint is that not all the states of a system are accessible to 

physical measurement, and hence unavailable for feedback control. 

This is not an insuperable difficulty, however, for the Kalman filter, 

or other kinds of observers, such as those proposed by LuenbergerrIal 

may be used to estimate the inaccessible states from the measured 

outputs, leading to compensator design. 

A more serious difficulty is that control system designs based 

on optimality tend to become very complicated if the dimension of the 
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state-space is large, and hence expensive to implement. This is 

decidedly non-optimal in terns of monetary value. The optimal design 

may depend critically on the structural details of the dynamical 

plant model. If the model is only an approximate representation of 

the true physical plant, it is then quite possible for the implemented 

control scheme to be sensitive to "minor" structural inaccuracies, and 

produce closed loop plant behaviour very different to that of the model. 

All these disadvantaLes contribute to the fact that modern control 

theory has not had a great impact on industrial control design. However, 

classical linear control theory, based on transfer functions, Bode 

plots and Nyquist diagrams, still proves a very useful tool in control 

design, though the techniques become unwieldy for multivariable systems 

analysis. These methods show at a glance the effects due to the 

introduction of extra modelling dynamics, small time delays, and other 

non-dominant phenomena, which may produce large structural changes in 

a state-space model. This nrovides the motivation for our thesis, 

which follows an approach quite different from the standard state-space 

theory. In order to reduce all linear systems to a uniform description 

and a uniform level of difficulty, we have adopted the view that a 

linear system is represented by its impulse response, or weighting 

function. To be more general, we use the concept of a system operator 

which maps inputs into outputs. For time-invariant continuous systems, 

this reduces to a convolution integral with a pre-measured weighting 

function. Once the system operator is known, the transfer characteris- 
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tics of the linear system are known, and in particular its behaviour 

in a feedback cortrol scheme. 

While this approach is a reversion to the original Wiener-

Kolmogorov theory, many of the results and computational algorithms 

presented are original. In Chapter 1, the weighting function approach 

is abstracted to become a part of linear systems theory, and basic 

assumptions are re-appraised. The chapter sets out a summary of the 

theory of linear systems that we wish to use in the remainder of the 

thesis, and presents the notation and the abstract development that 

forms the framework for our theory. Apart from the method of approach, 

there is little original contribution in this first chapter, except 

for the section on stationarity and causality, which is formalised to 

fit in with the abstract development. 

Chapter 2 develops the main body of results on optimality for a 

quadratic performance index. The author has made some theoretical and 

practical original contributions in this chapter. The proofs in 

Section 2.2 of the conditions of optimality are the author's own work. 

The discussion of the perf,,rmance of gradient algorithms in relation 

to non-minimum phase is also new. Most of sections 2.5, 2.6 and 2.7, 

which develop the theory of optimal control, is original, and new 

methods of spectral factorisation are given in Section 2.9. Compen-

sator design is discussed in Section 2.9, and new design methods are 

presented, leading to a practical implementation of optimal control 
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in a feedback structure. Properties of optimal systems are discussed 

in Section 2.11 and the author's generalisations of previous results 

are proved. The whole chapter tries to show what parts of optimality 

theory depend purely on the property of linearity, as distinct from a 

state-space representation. 

The abstract theory can be used to derive results for stochastic 

processes, and its power is demonstrated in Chapter 3. Although most 

of the results are well known, the derivations, and approach, is 

original. However,' Section 3.1., on identification and estimation, 

presents a new estimation result based on the maximum likelihood 

technique. 

The remainder of the thesis is concerned with the design of sub-

optimal control systems. Chapter L considers some practical problems 

associated with modelling, and optimal control theory as a design method 

for a class of systems. The power of the weighting function approach 

enables an original generalisation of results on system sensitivity 

to be derived. Other original results in this section include a 

stability bound, and the discussion of an "a priori" design method. 

Further research work is still required in these topics, which con-

stitute a particularly difficult field. 

Chapter 5 considers the problem of optimisation of a fixed 

feedback structure. New algorithms are developed for this problem, 

which are based on optimal control theory. Used in conjunction with 



some of the lower bound results of Chapter 4, computer-aided feedback 

control design techniques for multi-input/multi-output systems 

described in this chapter are considered to be of engineering utility. 

Virtually all of this chapter is original, and design examples are 

given. 

The concluding sections of the thesis indicate further avenues 

of research, especially in the field of non-linear systems and their 

representation. While several new results have been demonstrated, 

many more new problems are raised, and these are summarised at the end 

of the thesis. 

11 



CalTRIBUTIONS OF THIS THESIS 

The introduction has indicated the contents of this thesis, and 

in what respect it embodies the results of the author's own research 

and observation. These investigations appear to the author to advance 

the study of control systems in the following ways. 

1. The abstract approach to linear systems, and its interpretations, 

lead to a greater understanding of the fundamental problems. 

2. Convenient computational algorithms for optimal control and 

compensator design, when only empirical impulse responses are known, 

form a useful tool for control systems design and digital realisation. 

3. Approximation and the related design methods of Chapter 4 give a 

guide to the limitations on control systems achievement, which are 

imposed by modelling. This limitation is not generally appreciated. 

4. The fixed configuration design methods of the final chapter 

provide a new, and potentially useful, method of linear systems design. 

nth further research, these methods may also find application in 

non-linear systems. 

12 



CHAPTER 1 

SYSTEMS THEORY.  

1.1 Physical Systems and Mathematical Models  

Time is a basic entity of the physical world. Measured quantities 

change their values as time advances and this evolution of physical 

systems is of interest to the control engineer, especially if the 

evolution can be influenced by external manipulations. We seek to 

characterise some physical processes by mathematical models, so as to 

be able to deduce their evolution, or to deduce the form of manipula-

tions which viii allow the system to perform in a desirable way. 

When one starts with the premise that any mathematical model, 

no matter how complicated, can only be an approximate representation 

of a physical system, it is then easy to see that the one physical 

system may be modelled by many mathematical equations, with more or 

less accuracy. The model chosen should be complicated enough to 

portray the physical phenomena that is of interest, but no more so. 

Any further detail only ccnfuseS the issue, and makes computation 

difficult. However, it is essential that an estimate of the approxi-

mation errors be known. There is always the danger of using a simple 

model for a situation in which the simplifying assumptions are invalid, 

and this can very easily be done in control systems design, as will be 

pointed out in this thesis. 

13 
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The simplest of models proposed for the representation of physical 

systems is the system of simultaneous algebraic equations. This model 

is not usually general enough for control system studies, which are 

concerned with dynamic systems, and transient phenomena. The complexity 

can be increased by introducing terms which depend on time rates of 

change of the variables, to give a set of differential equations, 

together with appropriate boundary conditions. 

If these equations only involve a finite number of variables, then 

the model is represented b.; ordinary differential equations and we 

are dealing with lumped systems. On the other hand, the variables 

may be collections of functions of spatial coordinates, together with 

various spatial derivatives. We are then considering distributed 

systems and partial differential equations, and the boundary conditions 

may become quite complicated. The boundary conditions usually depend 

on the spatial geometry of the dynamic sys.cem. If the forcing or 

control signals appear in the dynamic equations, we have spatial control, 

but if they appear in the boundary conditions, then we have boundary 

control. 

However, even partial differential equations do not exhaust the 

possible mathematical models. In particular, variables at one instant 

of time may depend on the values that they had at previous instants, 

leading to differential-difference equations. 
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Integro-differential equations, integral equations and other 

forms of functional equations are also proposed as system models, and 

many examples may be seen in the literature. [BC 1]. 

A further degree of complexity is added when we consider the 
• 

variables in our equations to be random, with underlying probability 

distributions, and the physical systems generate stochastic processes. 

It is also possible to sample all these continuous time systems, both 

deterministic and stochastic, to obtain sequences of a discrete variable. 

These systems will be called discrete time systems, or sampled data 

systems. 

The theory of functional analysis can be fruitfully applied to 

the design of engineering systems. Because of the abstract notation 

and concepts, many diverse engineering problems can be reduced to the 

same problem in functional analysis. In the rest of this chapter a 

brief outline of some of the important results of functional analysis 

is presented. Certain basic concepts of control theory are generalised 

and restated in the language of functional analysis to provide insight 

and a useful abstract framework. 
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1.2 Linear Algebra  

Two important concepts in control engineering are "signal" and 

"system". In this section, we consider abstractions of these ideas, 

which have certain mathematical properties corresponding to the physical 

situation. Basic terminoloEy and notation are introduced. 

Consider first a set cf underlying scalars which lie in a field 

[Hl; p.1] , £BM 1; p.33D . In particular, the field is required to be 

ordered and complete, and will be taken to be the set of real numbers 

in this thesis. Signals are then considered to be elements of certain 

abstract linear vector spaces over Z  H 1; 	, [B11 1; p.523. 

These spaces may be spanned 'by a set of linearly independent vectors 

which constitute a basis r H 1; p.7-13J. The cardinal number of this 

basis is the dimension of the space. 

Systems will be defined as transformations from one space of 

signals to another (or possibly the same) space. If for all 	e 
	

s 

Y eg a y ) where IL 11 are vector spaces, 

y = T(u) 	 1.1.2 

we call S the domain of T, and Ot its range, and write 

T : 1.2.2 

The system T is linear if its domain is a space 14, and if 

for all u
1, 

u
2 E u , and al 	scalars, 



T(al  ul  + a2 u2) = - 
a 
 1 

T(u
1
) 	a2 T(u2), 	1.2.3 

from which it is seen that the range of T, written Q (T) is also 

a linear space. There may be a set of vectors u E U for which 

T(u) = 0, and this set is denoted by X(T). This set is also a 

linear space and is called the null space of T. For linear trans-

formations the brackets will be omitted, and we will write 

y = T u. 

Consider the class of all linear operatbrs 	, where if T E uy, 	:I uy 

T : 	. 

7 	is then a vector space. For the space of linear operators :t uy 	 uu 

a multiplication of operators can be defined. If u 6 11, and T1, 

T2 
e :T , then 

T2(T1  u) = (T2  Tl)u 
	

T
3 
 u , 

where T
3 

is a new operator which maps / 
 into itself, and we write 

T3  = T2  Ti  . 

This multiplication is associative, and distributive with respect to 

addition and so we have proved the following: 

Theorem 1.2.1: The space of linear transformations from a vector 

space into itself under the operations of addition and multiplication 

as defined above form a linear algebra over the field J . In general, 

17 



neither commutativity of multiplication,nor existence of inverses 

are assumed. 

A particular class of linear operators on a space U is the 

class of linear functionals, which map U. into the scalar field 'g. 

These functionals lie in a vector space over g , called the algebraic 

conjugate or algebraic dual space le CT 1; p.34]. If f e Le, and 
u E U. the special notation <f, u> is used for the scalar function. 

f 
We can also consider the space of functions 1.4..f  on the space of 

- 
functionals 

A.f 
 . If 1,4.ff  = 	then U.. is called algebraically 

reflexive.. 

Theorem 1.2.2:  ET 1; p.45 ] A space is algebraically reflexive if and 

only if it is a finite dimensional. 

If u e./...L and y e u , and 	T, such that 

y = T u , 

then T induces a linear transformation from 	f into 1.1..f  denoted 

by 	T'. To each y
l e • 

f 
there corresponds a u

1 
 E. 	such that 

<u
1
, u> 	= <:y

.1, y> = < 
37.1

, T u > 	for all u e - tt. 

i.e. 	u1 	i = 	y1 	1.2.4 

where TR  is the algebraic conjugate of T, and we have the identity 

	

< y
1
, T u > 	

< Tlf y1, u  1.2.5 

18 



The equation 

y = T u 

is also open to the following interpretation: since y, u, T are 

all members of vector spaces, we can consider the map 

u : T --0- y . 

That is, u is considered to be a linear transformation on the 

space i7 , mapping into If . Hence, if 	f  is the dual space of .7 , 

the transformation u induces another transformation u
m from  Vf 

to :rf  such that 

• 
<y
1 
 , T u > = < y

1 
u
m
, T > . 	1.2.6 

The chain of relationships for linear functionals become 

1, T y 	u >. = < y1, u> 	<Tx,  u y 	= < 	u 	> 

1.2.7 

This interpretation enables the control concept of correlation to be 

incorporated into the abstract framework. If there exists a one-to-one 

linear correspondence between the elements of two vector spaces, they 

are called isomorphic. [H 1; p.]4]. 

It is often possible to consider composite vector spaces made up 

of simpler vector spaces. There are two main methods of combining 

spaces. The first is the direct sum of spaces (or sometimes called 

19 



20 

Cartesian product). If yi  E lii  then 

	

= 	1 	® Y2 0  • • • e Y n. 
where 	is the space of ordered collections of the vectors tyil . 

[ H 1; p.28]. A more complicated method of combination is the direct 

product, tensor product, Ktonecker nroduct, or outer product, denoted by 

	

= 
	0U2 	z 1-t n 

The tensor product space It
1  0 722 

is defined to be the set 

of finite formal sums 

E ai  bi  

wherea.etiv andb.eli,andtheoperationa.Ob.a  is 

bilinear. [ H 1; p.40],[ BM 1; p.187], EDS 1; p.90]. 

c 1 	 2  

	

If the set 1.u. 	is a basis of 7,,C1  and U . is a basis of /12' 

then Lua.' x 112. 1 forms a basis of 	e LL2. [ H 1; p.40]. In 
.7 4  

the final chapter of this thesis, we shall be particularly interested 

in transformations from product spaces to the elemental spaces which 

are called contractions. 

Example 1.2.1:  Consider II 1  = space of 3-dim coordinate vectors, 

and. tt. 2  = space of 2-dim coordinate vectors. Then U3 = Lt1 °1-1-2 
in the 5-dim space of coordinate vectors, Thereas 1,1 4. 	11.1  a LL 
is the 6-dim space of 2 x 3 matrices, corresponding to the space 



21 

of sums of 2 x 3 dyads. The product a 	b corresponds to a b T 

For finite dimensional spaces, ve have the following relations 

H 1; p.30, p.37]. 
Theorem 1.2.3: If 	= u l  a) Z.(2, dimti= 	+ dimU2 	• 

Theorem 1.2.4: If 	' Lk 3 14' dim U = dim U1  x dim U2 

1.3 Linear Control Systems and Linear Spaces  

Using control systems terminology, we shall consider the dependent 

vectors or signals as system outputs, and the independent variables 

as system inputs. Inputs may be of two kinds; those which can be 

directly manipulated, and those which cannot. The former are called 

controls and the latter disturbances. If u represents controls, 

and v disturbances, then the output y is given by 

y = T(u, v) 	 1.3.1 

and for non-linear systems 

y 	T(u, o) + T(o, v) 

in general. However, for linear systems the law of superposition holds. 

i•e• 	 yl 	yo 
	 1.3.2 



where yo  represents the output of the system due to disturbances 

alone, while y1  represents the output due to controls. In fact 

u 

where TI is a linear transformation on the space of controls and so 

the general explicit linear system is given by 

y = yo 	W U . 	 1.3.3 

These representations are explicit, whereas the general physical 

relationships usually derived are of the implicit type; 

Ly = Bu 

+ boundary conditions 
	

3 

	 1.3.4 

where L and B are linear operators. We assume that the form 

1.3.3 is derivable from 2.3.4 and our results will usually be stated 

in terms of the form 1.3.3. In fact, the title of the thesis stems 

from representation 1.3.3, since in many cases W is representable 

by an integral kernel or weighting function. 

Because of its abstract nature, the representation 1.3.3 can cover 

many situations. In the rest of this section, some examples of linear 

spaces of signals are considered. 

For single input-single output systems, input and output can be 

deterministic functions of time. There are many kinds of functions 

22 
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of a single variable, and these may be defined over different intervals. 

Common spaces are; 

(a) The spaces 	consisting of the set of functions of a 

single variable t e Tl where T is a point set, and all of whose 

derivatives up to n:th order exist and are continuous. Addition and 

scalar multiplication are defined in the usual way. 

(b) The spaces P L (T), consisting of the equivalence classes of 

functions which are identical almost everywhere and which are absolutely 

p:th power Lebesque integrable over the point set IT} with respect 
to interval measure. (p 	1)- 

(c) The sequence 1
P 
 (p  > 1), consisting of sequences of points 

(finite or infinite) which are absolutely p:th-power summable. These 

spaces are very useful for sampled-data system studies. 

(d) The spaces of n:th order distributions whose elements can be 

considered to be n:th-order 8-functions and all smoother functions. 

[K 1; p.265]. These have a special duality relationship with the 

spaces (a). 

The above examples comprise the spaces of functions of one variable 

that will be considered in this thesis. Dunford and Schwartz [DS 1] 

present a comprehensive list of function spaces. For a fixed value of 

the time variable, the signal may not be a scalar, as in single input - 

single output deterministic systems, but an element of another vector 



space. In particular for multivariable systems this space may be 

(e) Euclidean n-dimensional vector space, over the-real field denoted 

by Rn. 

Using the direct product notation, these multivariable signals• 

are considered vectors in the space Rn 4) F, where P is a space 

of time functions. 

Signals can be functions of two or more variables, and these 

occur in distributed systems, when functions are defined over spatial 

domains. Suitable generalisations of the spaces (a) -(d) are then 

used. Ne would like to be able to use the algebraic notions of direct 

sum and product to form these more complicated spaces. However, the 

direct product of two infinite dimensional spaces is difficult to 

define usefully. [ DS 1; p.90]. Vie shall consider this question 

further in the next section. 

1.4 Topologies, Metrics and Norms  

To proceed with problems of interest, it is necessary to introduce 

analytical or geometrical considerations into the discussion so that 

concepts of distance, convergence, continuity, etc., can be used. 

In this section, a brief summary of the basic logical development of 

24 
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functional analysis is presented, to lead to the most important useftl 

spaces, the Banach and Hilbert spaces. 

In general, the notation and terminology of Taylor[ Tl ]chapters 

2 and 3, are followed. One begins by defining a topological space 

as consisting of certain sets called open sets, and their complements, 

the closed sets. 	T 1; p.57]. From these notions, it is possible to 

define continuity of functions[ T 1; p.61], and compactness of sets 

[T1; p.62 ]via the Heine-Borel condition of finite open coverings. 

An interesting property is that continuous functions map compact sets 

into compact sets. A set is called relatively compact if its closure 

is compact. Separability and separability axioniSenable a classifica-

tion of topological spaces. 

A specialisation of these spaces is the metric space, on which 

a distance function is defined[ T 1; p.68]. It is in fact possible 

to start with the distance function and from this define open sets. 

This method sets up a topology, called the metric topology, which 

enables the notions of convergence, continuity and compactness to 

be specialised to metric spaces. A set of spheres ET 1; p.683 can 

be constructed around any point, and a set is bounded if it is contained 

in some sphere. Metric spaces have some important properties ET 1; p.70, 

71] among which are 

Theorem 1.4.1: A compact set in a metric space is closed and bounded. 

Theorem 1.4.2: In a metric space a set S is compact if every sequence 

in S contains a convergent subsequence with limit in S. 



Theorem 	A compact metric. space is separable. 

If there exists an invertable mapping f from one metric space 

X to another metric space Y, such that the distance between any two 

points in X and the distance between the image points under f in Y 

are identical, then X and Y are isometric. 

The property of completeness is of importance[ T 1; p.74] . This 

is the property possessed by a metric space X when every Cauchy 

sequence in X possess a limit in X. Incomplete metric spaces can 

be regarded as dense subsets in a complete metric space [ Ti; p.743. 

Mien the topological and linear algebraic structures are combined 

we have a very rich field in which to investigate linear systems theory. 

Chapter 3 of Taylor [ T 1] provides an introduction to the linear theory, 

and begins by defining a topological linear space as the combination 

of a linear vector space and a topological space, where addition and 

scalar multiplication are continuous operations. 

If linear properties are imposed on a metric, the concept of a 

norm can be defined. [Ti; p.83]. If :11, x2  E X a normed linear 

space, then the norm of x1 
is denoted by 	, and the distance 

between x1 
and x

2 
is II x

l 	
x211 • 

A normal linear space is called a Banach space if it is complete 

ET 1; p.98]. Banach spaces are the most usual kind of space of, 

26 



27 

signals met with in control theory. 

On some spaces, it may be possible to define a norm by means of 

an inner product, or a bilinear map of two vectors into the scalars. 

ET 1; p.106]. If X is an inner product space, and xl, x2  e X, 
then their inner product is denoted by <xl, x2> . The Schwartz and 

Bessel inequalities hold for inner product spaces, and the concept of 

orthogonality can be introduced. If the inner product space is complete 

it is called a Hilbert space, and these include the finite dimensional 

Euclidean spaces R
n
, with the normal scalar product. With an 

appropriate norm, all the spaces mentioned in Section 1.3 are Banach 

spaces (e.g. L spaces are complete by the Riesz-Fisher theorem). 

However, the L2 
and 1

2 
spaces are the only simple infinite dimen-

sional Hilbert spaces in cur examples. 

• 

The concept of direct sum of Hilbert spaces causes no difficulty, 

and the sum space becomes a Hilbert space with an appropriate inner 

product. EDS 1; p.255-7]. We wish to define the direct product of 

two Hilbert spaces R a.  and{ 2, such that 

= 	1 0.R2 	1:4.1 

is a Hilbert space. This can be done as follows. Define the space 

PH to be the space of finite sums of formal products a 0 b. 
N
1 

i.e. 	x1 
= E a. 	bi 	1.4.2 
1=1 



vthere 	Dcle PH, a.G:Ji 	and b. ell 1 	1 	3. 	2' 

Also let 	N2 

x2 
= E 	c. 0 d. . 

j=1 	J 	J 
1.4.3 

28 

The r0. symbol implies a bilinear operation. A simple product 

a QD b is called a dyad. In general, the expansions 1.4.2-3 are 

non unique. An inner product is defined on ,PH as 

N1 	 N
2 

<xl,x2>=<Eaj Ob.,E C. Q d. > 
i=1 	j=1 

• 

N1 N2 
= 	E 	E < a.1 	b , c . Q d. > 
i=1 j=1 

N
1 

N2 

	

= E 	E 	< a., c.> . <b., d.> . j 1=1 j=1 

That this is a valid inner product is easily verified. We show that 

< x 	x1> =0 	and 

< xl, xl  > 	0  if x 	O. 

N1 N1 

	

rOW<X1 X1 = E 	E 	a.> < b., b.>.. 
i=1 j=1 
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If 	<a., a j> is the i,j th element of the matrix A, and 

<b., b.> is the i,j th element of the matrix B, then 

= tr AB. 

But A and B are positive semi-definite, being 
	• 

matrices, and so by the lemma 5.4.1 (to he proved in Chapter 5) 

x.3.> = tr AB 

0 

e assume that it is possible to represent all vectors by the 

sum of orthogonal dyads. 

Now if 
	xl 	= a 6D b 

then 
	

< 
	 <a0b, a Ob> 

= 	<a , a>- <b , b> , 

0 

unless either a = 0 or b = 0, in which case, since a ED b is 

bilinear, x1  = 0. 

If 
	

x
1 

= E d. 

where 	< d1., d j 	= 
	

for i / j 

then < 	>- E <di, di>. 



o 

unless 	all d. 	= 0 . 

Thus PH is a pre-Hilbert space, but it is not, in general, complete. 

We define A to be the completion[ T 1; p.74.] of PH so that J{ 
becomes a Hilbert space. 

1.5 Linear Operators I 

The effect of topologies on linear operators can now be discussed. 

One of the important topological notions is continuity. The continuous 

linear operators from a topological linear space X into a space Y 

form a subspace of all linear operators from X to Y. If X = 

then they form a sub-algebra of the algebra of all linear operators 

from X into itself. 

If X, Y are nonmed linear spaces then a linear operator A 

is continuous if, and only if, it is bounded;[ T 1; p.162] i.e. 

11 Y 11 	= 	11A x11 	< co 	IIXII 5  1 . 

For such an A, we define 

I I A 1 1 = 	sup 11A x 	• 
	1.5.1 

Iixil = 1 
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The space of continuous linear operators with this norm is a normed 

linear space, 	. If Y is complete, then so is J . If X is a 

Banach space, then the set of continuous linear operators from X 

into itself is a Banach algebra. 

As in the algebraic case, the special linear operators which map 

out a space onto the scalars are considered. However, in this case, 

the set of continuous linear functionals form a topological space XR  

which is called the topological conjugate, or topological dual space 

of X, and is a subspace of Xf. If X is normed, so is X. 

We may also consider the normed conjugate space X" of XR  , and 

in some cases X
xx  isisomorphic and isometric (congruent) to X. In 

this case, X is norm-reflexive, and, in contrast to the purely 

algebraic case, infinite 	dimensional spaces can be norm-reflexive. 

Also following the algebraic development, the continuous conjugate 

of a continuous linear operator [ Tl; p.213 is defined, and will be 

used extensively in the development. For the important case of Hilbert 

spaces X, Y, the dual space 21  is congruent to X, and linear 

functionals are identified as inner products, for which re use the 

same notation. Similarly, if A maps X ii to Y, then the adjoint 

operator .e maps Y into X, and is defined by 

<Ay, x> = < y, Ax > 
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In this way, the adjoint is identified with the continuous conjugate. 



One of the most important properties of a Hilbert space is the 

orthogonal decomposition property. If M is a subspace of X, a 
Hilbert space, and MI  is the space of all vectors y such that 

<y, x> = 0 V x E M, then X= MED Mi. 

The following is a summary of the properties of linear operators 

and their adjoints on Hilbert space [ T 1; p.250 -1][ A S 1; p.480]. 

Theorem 1.5.1 	II Am  II = 11 A 11 	 1.5.2 

(AB)x  = it  e 	 1.5.3 

A7x  = A 	 1.5.4 

1717.11= AA') 

wrzy 

= ,At (A) 

R(A) 	taie(A)3-1  

If 	AR  = A, A is called self-ad joint, and this class of operators 
is important in control theory. 
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1.6 Linear Operators II  

In this continuation of the summary of linear operator theory, 

we will assume that our basic spaces X, Y are noimed. If T:X--0.7.  

then TE 	. Then we can state XY 

Theorem 1.6.1: T 1 exists and is continuous if and only if there 

exists a constant m > 0, such that 

'IT xli 	Ni x e X . 

Certainly a necessary condition for the existence of a bounded inverse 

is that T x = 0   x = O. However, this is not sufficient. 

For from Titchmarsh's theorem CM 1], corvolution operations have this 

property, and yet may not have bounded inverses. 

Example 1.6.1: Convolution of a function with the weighting function 

e-t is a bounded operation in any L space. However, the inverse 

operation, which consists of adding the function to its derivative, is 

unbounded. 

If T 1  does exist, then ET 1; p.2501, 

(T 
T 1)N = (T::)-1 . 	1.6.1 

A common Lype of operator arising in control systems studies is 

the compact operator [ T 1; p.274] or completely continuous operator. 

An operator is compact if it maps all closed bounded sets in its 

domain into compact sets in its range. The following general theorems 

are important: 

33 



34 

Theorem 1.6.2: 	Schauder;[D&Sli p.485] 	A linear operator 

from one Banach space to another is compact if its adjoint is compact. 

Theorem 1.63:  A compact operator is continuous. 

Theorem 1.6.4:  If A is compact, and B is bounded, where 

B 6  7XX' then A B, B A are compact. 

Theorem 1.6.5:  A compact linear operator T E '  does not have a XX 

bounded inverse if there exist non-compact closed and bounded sets in X. 

Proof 1.6.5:  (Contradiction) 

- Assume T 1 exists, bounded. 

Then, if V is a bounded, closed, but non-compact set in space X, 

,..,-1 	 1 
1 	V is a closed bounded set, since T , being bounded, maps bounded 

sets into bounded sets. roreover, since T is continuous, T
-1 

maps 

closed sets into closed sets. However, T(T 1  V) is a compact set 

by assumption. But T T
1 

= I. 

Therefore V is a compact set, which is a contradiction." 

For T a compact operator on these spaces, 

II T x 11 	milx li 
	

x 	for any m > 	0. 

An important class of compact operators are those corresponding 

to "smoothing" filters. For example, the operator given by 

t 
y(t) = T u(t) = f W(t -T) u(s) dt 	t E [0,1'] 

0 

where w(t) e Cto, T3 	and u(.) E Z2  [0, T] 	is compact. This 
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can be proved using Arzela's theorem on compact sets in the space of 

continuous functions. [ V 1; p.314] . The function y(t) is "smoother" 

than u(t) in the sense that y(t) is absolutely continuous. 

Operators may be unbounded, but may have closed range [T 1; i).3.75]. 

These comprise operators such as differentiation on L2, etc., which 

may have compact inverses. 

A class of operators on Hilbert space into itself, that finds some 

application is the set of isometric transformations. An operator U 

is isometric if 

< y, x > = < Uy,UX > 	 V x, y e X , 

or equivalently 

U U 	= 	I . 

However, U 1 may not exist, in which case U3  is only a left 

inverse of U. If U 1  does exist, then 

trl  

and U is called a u:dtary transformation. 

Theorem 1.6.6:  In finite dimensional space, every isometric trans-

formation is unitary. [ RN 1; p.260]. 

Example 1.6.2: An isometric transformation which is not unitary is 

given by the shift operator T1  on 12(0, a ), defined by 



Tl : [uo, u1, u2, 	[ 0, uo, u1, u2, 	3 

[RN 1; p.281]. 77  is defined V x e x, (but T-1- is not). 

Theorem 1.6.7: If there exists a W, such that Vi3e  W = P, a self 

adjoint operator on Hilbert space, then the set of all such W differ 

from each other by an isometric transformation. 
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Proof: (a) Sufficiency: Let Wi  = U W. 

   

If U is isometric, then 

1 1 = 	e U = 

(b) Necessity: Assume 173; W2  = P. 

Then 	<x,PY> = <x, TIN  W2 	= <W2 x, W2 x > 2  

= <Y2' 3r2›-  • 

Consider the transformation 

Y2 
= W2 x 

We also have that 

y = W x . 

So this transformation defines another transformation U, su ch that 

Y2 = Uy = UW x 

Then <y2, y2  > = <U x, U x> = < U y, U y > . 



U(s) = a - s  a + s 

Then < U x, U y > = a + s  
a - s 

x(-s) . a - s a + s y(s) ds 
1 
2ij 

x 	Y(s) ds 

But 	< x, P x> = <_171 x, IV x > = < y, y> 

Hence U is isometric. 

Example 1.6.3: An example of an isometric transformation is the all-

pass network of classical linear control theory. E.g. 

1.7 Representations of Linear Operators and Functionals  

In this section, we investigate some particular spaces and examples 

of linear functionals and operators, with particular reference to 

linear control systems. The spaces L and 1 are of particular 

interest, and it is known that the normed conjugate of L
P 
 (1p) is 

1 1 
q 

L
q 
 (1 

q 	 P 
) for p, q - 1, and 	+ — = 1 [ T 1; p.193, p.380]. 

Also if 1 < p < a) , then L
P 
 (1 

P
) is norm reflexive. However, this 

is not so for p = 1 or ®. Also it is known that for the spaces Cn(T) 
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where T is compact , the normed conjugates are the spaces of n:th 

order distributions. [ K 1; p.293] £11 2; C11.20. 

Linear operators can be often represented in much the same way as 

functionals. It is known that the most general operator from L [0,1] 
P • 

to L , p, q >1, has the form 
q 

tl 

y(t) = T u(t) = 
ds

I K(t, s) u(t) at 	1.7.1 
0 

[DS 1; p.490]. However, no satisfactory expression for the norm of 

T is known, and no conditions on K are known which are equivalent 

to the compactness of T. However, sufficient conditions for compact—

ness of some operators are known. [V 1; p.313]. In control systems 

design, we are interested in operators of the form 

t 
T u = f Vi(t, 	u(T) dz 

0 

co 
or 	T u = I 117(t,T ) u( 

-cp 

1.7.2 

1.7.3. 

If W(t, T ) is just a function of t -T , then T is a convolution 

operator. If W(t) E L1[o, co), and u(t) E LE 0, co), then 

y(t) = T u(t) E Lp  Co, cc) 

and 	 p 	1.7.4 

[ DS 1; p.528]. 

Adjoints are found from the formulae for linear operators, and 

38 
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linear functionals. For a map from Rm eL2  [0, T ] into Rn L2 0, T 3 

with the operator of 1.7.2, we have 

T m  
TT  y(t) = f M4  (r, t) y(T) at 

t 
1.7.5 

where W is a matrix valued function. This can be shown as follows: 

• T( 
% 	I 	% I y (t) ( f Wkt, T) ukt) dT) dt 

O 0 

T t 

= I f yT(t) "c7t, T ) u(T) (3.1.  dt 
0 0 

T 
	

T 

= f dT f y
T
(t) w(t, T)u(T) dt 

0 

(where change of order of integration is permissible, which is certainly 

true if the integrand is continuous in the two dimensional region) 

T 	T 

= f dt j y T(T) W(T, t) u(t) dT 
0 	b t 

(changing roles of dummy variables) 

T T 

= f E" I vi-T(T, t) y(T) dT 3 u(t) 

0 t 

Another common operator arising in control theory is the discrete 

time weighting sequence. Instead of the above development, we replace 

integral signs by summations, and continuous variables by discrete, 

to obtain 



N 
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y)k  = 	 WT T . W . 
	75. i

£
=k 

1.7.6 

Transforms from a time domain into a complex variable domain 

constitute an important type of linear operator. In general, these are 

invertable operations and hence set up isomorphisms between spaces. 

In much of our work, it matters little whether the formulae are inter-

preted in the time domain or the frequency (complex variable) domain. 

We shall freely use transform theory, when it simplifies the development. 

1.8 Stationarity and Causality 

The terms stationarity and causality are important physical 

concepts. - However, in keeping with our preference for abstractions, 

we shall give meaning to these terms in a nay which does not depend 

on coordinates. 

To define stationarity or time-invariance of operators, we first 

consider the semi-group of operators called shift operators. These 

are a one-parameter family, and obey the relations 

T(t1  t2
) = T(t1) T(t2) = T(t2) T(t1) 	1.8.1 

	

T(0) = I 	 1.8.2 

	

it T(t)11 = 1 	 1.8.3 



The parameter t e 	, and maybe continuous or discrete. If 

t E (-co , co ), then this set constitutes a full dbelian group. 

However, it is only a semi-group on the half-liner0, co), since 

then T(t) has no inverse. An operator W is stationary, or time 

invariant if and only if it commutes with T(t) for all t in its 

domain. i.e. 

Tt W u = W Tt u . 	 1.8.1. 

Theorem 1.8.1: The set of time-invariant operators form a sub-algebra 

of the algebra of operators 	from a vector space into itself. 

Proof: Time-invariant operators obviously form a vector space. Also, 

if V, U are time invariant, then 

T
t
VUu =VT

t 
(U v) 

= V U Tt u . 

i.e. V U is also time-invariant. 

Examples: The space of signals is the Hilbert space L2'  
(-cc co ) 

Tt 
u is defined by 

Tt 
: u(s)---+ u(s +t) . 

Then the operator W defined by 

y(t) = 	T) u( 	dT 
-cc 

41 
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is time-invariant. For we have that 

y(t + s) = f 17(t + s 	) U(T) dT 
- CO 

Put S = T s, giving 

co 

y(t + s) = f 17(t - S) u( S + s) a 
- co 

i•e• 	17Tu = TIVu. 

The operator R defined by 

y(t) = R(t) u(t) 

is not time-invariant, unless R(t) is a constant. 

Causality is even more basic than stationarity in the modelling 

of physical systems. To define causality, we assume that it is possible 

to decompose the space cf signals X into two fundamental subspaces' 

M and M such that 
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X = M C) bs 
	

1.8.6 

and. 	m n . - 1.8.7 
_ - 

This decomposition defines two projections it+  and n_ ET 1; p.240-42] 

where 	n = I - it 	 1.8.8 - 	+ 

and 	It +
2 

= 7+ 
1.8.9 

2 
= I - 2n + IC 	= I - IC+ = 

IC n = 	it = 0 . 

(IQ = tAil(%) = M+ 

(%_) = X(74) = M 

1.8.10 

1.8.11 

Now since it, IC
- 
 are linear operators mapping X into itself, they 

belong to the linear algebra of operators from X into itself. 

Considering it + , n- 
 in this latter interpretation, we define 17 to 

be causal, or non-anticipatory, if for all uE M+
, Wu6.M. The 

set of causal operators is denoted by }. Similarly W E :T_ if, 

7.1=u e M, W u e M, and W is then completely anticipatory. 

Theorem 1.8.2: The set of causal operators form a sub-algebra :r +  of 

the algebra .7 X of linear operators from X into itself. 

Proof: It is obvious that the causal operators form a vector space, 

since, if T, S E 7+, then so does 

2 



al  T + a2 S 	i al' 
a
2 

scalars. 

Also T S E :7 , since for u E. M++   

Su = y E 11+  . 

But 	T y € M.I.  

i.e. 	T S u <4., M+ 	V' u G. M.i.  . . 

So 	TS e :I + . 

Examples: Once again, we choose the basic space as L2  - 

We let 	M = L2 
Co, ea) 

and 	L
2 
(-Co': o] 

Then we have 	X = M+ 0 m 

and 	m n m = 0 . + 	• - 

If u f  L2[ o, 
a))' 

then the operator defined by 

t 
y(t) = f W(t,T ) u(T) dT 

0 

(where Sqt,T ) is such that y  E L2[10, oo )), is causal. On the 

other hand 

oa 
.3r(t) 	 f 171(T, t) u(T) dt 

44 

defines a completely anticipatory operator. 



While M
+  fl M is void, 74.ri:T is not necessarily so. 

Consider the operator R defined by 

	

y(t) = R(t) u(t) 	. 	
' 

L
2 
 (-co co ) 

Then R 

In general, the subspaces M+  and M are chosen such that the 

shift operator T(t) is causal for t > 0, and non-causal for t < 0. 

Both causality and stationarity have been defined an mappings from a 

space into itself. These definitions can be easily generalised to 

mappings from one space to another: The following theorem relates 

causality and adjoints. 

Theorem 1.8.3:  If We 21. is a causal map from Hilbert space into 

itself, then its adjoint W is completely anticipatory. 

Proof: If ye. 	and x E M , then x71  such x, y 

< y, x> = 0 

row since W e , 	x E M+ 79t x E m+ 

i•e• 	< Y, Wx> = 0 

i.e• 	< Vr y, X > = 0 	x e M4, y G m_ 

i.e. 	y G M 	 y Em_ 

i.e. 	wm e 	. 

45 



Many of the common causal operators used as models in control 

systems design are non-invertabie compact operators. There is an 

important sub-set of causal operators such that, while the operator 

G71 N-1  
may not be bounded, the operator ( cI G) 	does exist, and 

is bounded for all small E. I.e. 0 < c < eFollowing control 
max 

systems terminology, such an operator is said to have infinite gain 

margin. This term arises when the operator G can be considered part 

of a feedback control scheme, as shown in Figure 1.8.1. 

G 

fig. 1.8.1 

C = 	I + G)-1. r 

1 The term  is the "gain" of the closed loop system. The operator 

G may be unbounded. 

Another important concept in control theory is that of minimum 

phase. For operators specified as rational transfer functions, minimum 

phase implies no zeros in the (strict) right half complex plane. Now 

if these transfer functions are inverted, the zeros will become poles. 

Hence a minimum phase transfer function has an inverse with no poles 

in the strict right half plane. We generalise these concepts to 

operators on any space as follows. A causal operator W is said to 

z6 
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be minimum phase if there exists a causal operator W(E), depending 

, continuously on the parameter e , such that W-1(E) exists, and is 

bounded for all 0 < E< C 
max

3  and 

VT . WT 1(e) --a- I 	as 	c--0-0 

where the convergence is with respect to the operator norm. If there 

exists no causal W(e) with this property, the operator is non-

minimum phase. This definition is seen to be consistent with the usual 

definition via frequency response in the case of single-input/single-output 

time-invariant systems mapping L2  Co, co). Note that operators with 

infinite gain margin are always minimum phase. 

Let 	y(s) = W(s) u(s) • 

Example 1.8.1  

 

 

s +  17(s) - + bRs a> 0 

is minimum phase. For let 

 

= c  -I-17(S) W(S, E 

Then + w(s)) —1  (s + b)(s + c)  
(s + a) +e (s +1;)(s + o) 

(s + b)(s + c) 
SS2 	s(1 -FE (b + c)) + a + eb c 

which, for e small enough is always stable. 

Obviously lim 	(C + W(s))-1W(s) = 
E-4.0 



II s - a E w-1(e e) 	s +a 
s + a 	s — a 	3 11  

Example 1.8.2  

s - a . W(s) = s + a -- Is non-minimum phase for a>.0. If it were 

minimum phase, then 3 111(s, s ) as above, such that 

H .1771(s, E ) vi(s) — 1 II < 8 	for E small enough. 

i.e. 	
s - a 
s + a W 1 (s,E) - 1 II < 6 

- a 	-1 i.e. 	s 	
W (s,e) 	

s + a - H < 8 s +a 	 s - a 

s + a  
But s  

----- is all-pass, and so 
a 
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= Yri(s,E) - — s s a  II < 
8 

But 
s + a is unbounded. 
s - a 

Therefore, for small enough E
1
(S,E) must be unbounded. 

Note that we have used the term unstable in the conventional sense. 

Vie shall equate stability with boundedness in this thesis. It is then 

seen to be a norm dependent property. Consistent with this conventional 

terminology, an isometric operator that is causal and non-minimum phase 

is called all-pass. 



1.9 Contraction and SEectral Theory 

An operator A in a metric space X is said.to be a contraction 

if for all x, y e X 

f(A. x, Ay) < K f(x, y) , 	1.9.1 

where K < 1 is a positive constant. 

A fixed point of an operator A is x such that - 

A x = x . 	1.9.2 

Now the contraction operators are important due to the theorem of 

Banach, Which states: 

Theorem 1.9.1: If the contraction operator A maps a complete 

metric space X onto itself, then we have a uniaue fixed point and 

this point can be obtained by the method of successive approximation 

for any initial point xo 
6 X. 

Proof: CV 1; p.115] 

This theorem finds its main application in the theory of the solution 

of operator equations of the form 

Xy — Ay =h 	1.9.3 

49 

or y = 	A y  
X 

1.9.4 

Then it is possible to find conditions on X under which the operator 

on the left side of 1.9.4 represents a contraction. An operator A 



may not be a contraction, but a finite power A.N  may be. In this 

case, theorem 1.9.1 still holds for A. Using this fact, it can be 

shown that the causal operator given by 

t 
y(t) = f W(t,T ) u(T) dT 

	1.9.5. 
co 

represents a contraction, [ T 1; p.168-93, for y, u on finite 

intervals. In fact, with this Volterra operator, equation 1;9.4 can 

be solved by successive approximation for any non-zero X. 

The solvability of equation 1.9.3 is very important in control 

studies, and the parameter X plays an important role. Spectral 

theory is concerned with investigating the set of (complex) scalars X 

and vectors x E X, such that 

Ax = Xx. 	 1.9.6 

Such X are called eigenvalues, and the corresponding x are eigen-

vectors. The theory of spectral analysis is well known and re shall 

merely state a few results which we used in the sequel. The set of 

eigenvalues of A is called the spectrum of A; denoted o"(A), 

and its complement is the resolvent set. The operator 

21.(X, A) = (X I - A)-1 	1.9.7 

defined on the resolvent set, is called the resolvent of A. It is 

known [DS 1; p.568 Jthat 

c-(A) = T(e) 	 1.9.8 

50 
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Some important results that will be used are as follows: 

Theorem 1.9.2: If T is a compact operator, its spectrum is at most 

denumerable and has no point of accumulation in the complex plane 

except possibly at X = 0. 

Proof: [ DS 1; p.579]. 

Theorem 1.9.3: If T is self-adjoint, and X is an eigenvalue of T, 

then X is real, and eigenvectors corresponding to distinct eigenvalues 

are orthogonal. 

Proof: [ T 1; p.324]. 

Corollary; If A is self-adjoint on a Hilbert space, with eigenvalues x, 

11 All 	= 1 74 max  

and if A71  exists and is bounded 

Proof: [ T 1; p.325]. 

Theorem 1.9.4: If T is a compact mapping from a Banach space S 

onto itself, and 	/ 0, the equation (X I - T) x = y has 

a unique solution V- y E X, if and only if the equation (X I - T) x = 0 

has no solution other than x = 0. 
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Proof: 	DS 1; p.515]. 

By the contraction mapping principle, it has been shown that, for all 

X, the Volterra integral equation over a finite interval 

XX - WX = y 

has a unique solution for all y, and hence the only eigenvalue of W 

is zero, by theorem 1.9.4. The same reasoning also applies to causal 

weighting secuences V.., where W. = 0 for all i. The difficulty 
13 

in the argument for infinite intervals is that (X I - W)-1  may not 

be bounded for some I %I <IXImax- 

1.10 Semi-groups of Operators and State Space  

The concept of a semi-group of operators was introduced in 

connection with stationarity. In this section, more general semi- 

groups of operators are discussed, and the concept of state is introduced. 

We follow closely the notationzterminology of Dunford and Schwartz, 

Vol. 1, Ch. VIII. A one-parameter semi-group is called uniformly 

continuous if the operator f : 	T(t) is continuous with respect 

to the norm of T. [DS1; p.614]. 

Theorem 1.10.1: Let T(t) be a uniformly continuous semi-group. 

Then there exists a bounded operator A, such that T(t) = e
At 
 for 

t 	0. The operator A is given by the formula A = lim (T(h) - I)/h. 
h-..o 



For the real part of X sufficiently large, the resolvent of A can 

be expressed in terms of the Laplace transform of the semi-group, by 

the formula 

CD 

R(X, A) = (X I - A)-1  = I e-xt  T(t) dt • 
0 

Proof: C DS 1; p.615]. 

A is called the infinitesimal generator of the semi-group, and we 

may write 

dT = A T(t) • 
dt 1.10.2 

A semi-group may only be strongly continuous, rather than uniformly 

continuous EDS 1; p.610. If it is not uniformly continuous, it will 

have an infinitesimal generator which is unbounded, since uniform 

continuity is necessary and sufficient for boundedness of A. 

'Example 1.10.1:  The shift operators on L2  Co, op) constitute a 

strongly continuous semi-group, which is not uniformly continuous;. The 

infinitesimal generator is then the (unbounded) operation of differen-

tiation at. This corresponds to the Laplace transform of the delay 

operator e
sT
. 

Example  1.10.2:  The semi-group of operators eAt where A is an 

r x n matrix is uniformly continuous with infinitesimal generator A, 

operating on n-dimensional euclidean space. 
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Let T(t) be a map from the space X onto itself. 

Then x(t) E X for each fixed t, where 

x(t) = T(t) xo. 	x
0 
 E X 	1.10.3  

dT(t)  - A T(t) 
dt 

Therefore dx _ 
dt 

A x 	 1.10.4 

This differential equation represents the autonomous evolution 

of a trajectory of vectors from an initial vector xo. For control 

systems studies, we may wish to add forcing terms, and observation 

terms to result in 

dx = Ax + Bu dt 

y= Cx 	Du. 

 

The y variable is the output variable at time t, and the 

variable is the control. A, B and C are linear operators in 

appropriate vector spaces. This description 1.10.5 is called the state 

space description of linear systems. For added generality, it may be 

assumed that A, B and C are functions of time. The variable x 

is called the state of the system at time t. It is easy to rewrite 

1.10.5 in terms of the explicit notation for linear systems. 
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y(t) = c(t)(t, to) xo  

t 

+ C(t) f a(t„) B u(T) dT 
O 
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= Y0 
	 + 17 u 	 1.10.6 

where 	is the transition operator of the system. 

The dimension of the state-space is called the dimension of the 

system. If it is finite dimensional, then 1.10.5 is a set of simul-

taneous ordinary differential equations representing lumped systems 

as discussed in section 1.1. However, 1.10.5 is more general than 

this if the system is infinite dimensional. 

Example 1.10.3: [ DS 1; p.624]. An example of an autonomous system 

where the state is infinite dimensional is the system described by 

co 

at 
_ a

2x 
2 

+ h(s) x + 	K(s, u) x (u, t) du 	1.10.7 
at — as  

x(s, o) = X
o
(S) 

where t G C o, co), s G Co, a)). This is of the form 

dx dt = A x , 

where A is the unbounded operator on the left of equation 1.10.7. 

There are equivalent forms for discrete time systems 'where the 

semi-group is no longer continuous. We then use difference equations, 

and the concept of semi-group generator no longer becomes necessary. 
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It is not at all clear that all linear system operators can be 

represented in state-space form, though, as will be pointed out in the 

next chapter, this representation has interesting theoretical-advantages. 

The point of view adopted in this thesis is that linear operators will 

be investigated independently of semi-group theory and state-space, 

and then comparisons will be made between these results and known 

state-space results. In particular, we shall try and use the insight 

that the state-space description gives to design control systems for 

more general models. 



CHAPTER 2 

OPTIIIAL CMTROL 

2.1 Performance of Control Systems  

For, the system represented by 

y = Yo + 17 u 	2.1.1 

the general control problem is to choose u from an allowable set 

SO that the resulting y is good in some sense. It maybe quite 

difficult to attach a precise meaning to "good" in an engineering 

problem. In this section, some engineering performance criteria are 

examined. Firstly, we restrict our discussion to continuous single 

input single output (SI/SO) causal systems. That is, y and u lie 

in some appropriate space of scalar time functions defined on an 

interval [ 0, T], or [0, a)). The signal yo(t) may either repre-

sent disturbances due to initial conditions of the system, or some 

external influence such as change of desired set point, or a super-

position of both these effects. 

Engineering requirements usually dictate that the difference 

between y
.c) 

and (- W u), i.e. y, should be small in some sense. 

The signal y usually represents the error between the actual and 

desired performance. On the other hand, it may only be possible to 
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make y small by making the control u large, which can be undesirable, 

and an engineering compromise between smallness of y and largeness 

of u has to be made. A large class of simple systems can be specified 

in terms of their response to a step signal. If y
0 
 (t)= 1, t> 0, 

then a typical desirable response of — W u is as shown in Figure 2.1.1. 

yo(t) 

fig. 2.-1.1 

t 

We may require either zero or very small steady state error 

a fairly quick response, but with not too much overshoot, and also a 

quick decay of any oscillations. If this kind of response can be 

obtained without too much control effort, the system designer is 

usually content. Of course, other criteria are also specified, such 

as noise rejection, velocity lag, sensitivity, etc. 

It is difficult to sum up all these criteria in terms of one 

number. However, to compare various alternatives, and for automatic 

design, such a cost functional is needed. Norms are a convenient 

scalar measure of the size of a signal, though they are inadequate to 

express properties of signal shape. However, it is possible to use 

weighted norms, by emphasising different instants of time. A typical 

cost function becomes 
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= 	f(II YII w  (t) 	w
2 
 (t)) 
	

2.1.2 

A useful and mathematically convenient norm is the Hilbert space 

norm. The cost is taken to be 

J = <y, Q yr> 	<u, R 	2.1.3 

where Q and R are self -adjoint positive operators. In L2' 
Q 

and R can be positive scalar time functions, and then 

= f (y2(t) q(t) + u2(t) r(t)) at . 	2.!L). 
0 

The relative weightings Q and R depend on the designer. The 

smaller that R. becomes, relative to Q, the larger the control allowed 

for a fixed control cost, and hence it is to be expected that the 

output response should be better. A system with a good value of 

quadratic performance criterion should tend to have a response which 

is neither overdamped nor over oscillatory. 

This criterion ,however, does have some disadvantages. On the 

one hand, it can allow a finite cost to a system with infinitely fast 

oscillations confined in an exponential envelope as in Figure 2.1.2. 

y t 

fig. 2.1.2 
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On the other hand, it may give an infinite cost to a system with 

non-zero steady state offset, which is not necessarily bad. This 

latter difficulty can be removed by the choice of a decaying q(t), 

r(t), but it is often convenient to choose q and r constant numbers. 

With multivariable systems, the performance criteria become even 

more difficult to specify. Cross-coupling and interaction between 

outputs may or may not be considered good. Conflictint requirements 

on the various outputs make design very difficult, and in fact there 

are no simple design methods for multivariable systems which enable 

the designer to obtain an intuitive feel for the problem, as there 

are for SI/SO systems. In particular, the Q and R operators 

become matrix functions of time, whose elements are at the designer's 

choice. 

Performance criteria of the type 2.1.3 will be used primarily 

throughout this thesis, and u, y will be considered elements of 

Hilbert spaces ItuAy. Having chosen such a cost function, it is 

natural to ask the question: what u E 	minimises J ? This is 

answered in the next section. 



2.2 Conditions of Optimality  

The work of Hsieh [H 4] is of fundamental impOrtance to the, next 

few sections. However, the derivations and proofs presented here 

differ from Hsieh's work. The theorem statements are more explicit • 

than Hsieh's, and the proofs are original, and more direct. 

Consider the system 

y = Y
o 

+ W u 	2.2.1 

with u eltu, y  E  Ji , where (
u 

and It are Hilbert spaces. 

We propose the cost function 

J = < y, Q y > + < u, R u > 	2.2.2 

.where the operators Q and R are self-adjoint mappings of ./1 

and 	u respectively. As distinct from the approach of Hsieh, we 

first assume that there exists a u 6
u
, which produces a 	E y  

according to equation 2.2.2, such that there is no other u which 

produces a lower cost. 

Theorem 2.2.1: If the operators R and Q are positive semi-definite 

and bounded, anu 17 is bounded, then a necessary and sufficient 

condition for optimality of the control u
, is that the vector 

g e u, given by 

= R 	+ 175E  QY 
	

2.2.3 

is zero. 
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Proof: For any u E 1, 

J = < y: Q  y > + < u, R u 

= < y +Ay, Q(ys .1•Ay)> + < u +Au, R(.6. + Au)? 

= < Sr, Q Jr  >- 	< ft, Rt > + 	Q Y>  + 2<Au, R0 > 

+<Ay,Q AY> + < Au: R au > 

+ 	2413r, Q > + 2<A u, R u > + <AT, Q kr> + < LLu, R Au>. 

But Ay = au 	 2.2.4 

So J-3 = 2 <l'i&u, Q Sr> + 2<Au, R 	+ <7hu, Q TiAu> 

+ <Au, Rau> 

= 2<&u, R to + V3  Q >- 	<Au, 	Q Vt  + R)Au> . 2.2.5 

Certainly, if g = 0, then 

J- 3 = <Au, (7i3E  Q 	+ R) bku > 	 2.2.6 

?: 0 	 17t.  A u 	9 

since R + 7rIE  Q 11 is positive semi-definite. 

However, '8 = 0 is also necessary, for, if g 	0, then 

choose Au 	E G, which we can do, since Au is arbitrary, and 

C > 0 is a scalar. Note that 	since all the operators 
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in 2.2.3 are bounded, and S, Y are Hilbert space elements. Then 

consider two cases. 

(±) 
	

< g, 	Q + R) g y = 0 , 	but g 1-1  0 • 

Then J - 3 A A = — e<g, g> 

	

0 	> 0 

which is a contradiction to S being the optimal cost. 

(ii) 	< t, (ix  Q 	+ R) g > 	o , 	 / 

Then choose < -, >  > 0, finite . 2.2.7 

 

< g, (77, Q 	+ R) g> 

J - 3 = - 2 c <g, e> 	c2< g, (v3  Q + R) 	> 

< 	
e < 	(Vi3t  Q 7,7 + R) e>  

ts: g > (2  - 	<g: g > 

= — c < g, g > 

< 0 

which is again a contradiction to optimality. 

Therefore g = 0 is a necessary and sufficient condition for optim-

ality. 

Two questions have now to be answered. Is there any u e #11u' 

which satisfies the above conditions, and if so, is it unique? 



Theorem 2.2.2: Under the conditions of Theorem 2.2.1, a unique 

exists if R +' Q W has a bounded inverse and yo  

Proof:  1,'v Q is a bounded mapping from 	to 

So 	 f = -V3  Qyo  

eXu 

Consider the unique vector 

	

= 	- 	+ W Q W)-1  W3E  Q y 
0 
	2.2.8 

	

= 	+ 173/  Q W) if 

€ 

But 
	

(R + 1113€  Q 17) ; 	Yo = 0 

R u + 7/31  Q (y + 	= o 
0 

Let 	 E 

A 

= ye  + 1fi u 

Then 	 R 	+ 	Q y = 

i.e. 3 	6 4/1u satisfying the necessary and sufficient conditions 

for optimality. 

In Theorem 2.2.2, (R +173/  Q W)-1  bounded is only a sufficient 
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condition for existence of 11, but not necessary. If the vector 

—X Q yo 4i a (it + 	Q ) then still existsin. However, 

u may no longer be unique. 

Theorem 2.2.3: The optimal cost a is given by 

a = < yo, Q;> 
	

2.2.9 

Proof: 3 = < y, Q Srs  > + <u, R 

  

< yo  + 	"ST > + 	R > 

= < yo  , QY > + < 	Q'Ssr> + <ft, R > 

= < yo, QY > + 	Wm  Qy +Rui>- 

= < Yo, Q g > 

In the preceding work, it has been necessary to assume W:R 

is a bounded operator, and yo  e 	This may exclude initially 

unstable systems. 

However, the vector y 6 It may be achieved by y + VT u 

without either y
o 
 or Wu ezkY' if the sum is defined appropriately. 

Hence, with W unbounded and a y
o from a particular class, it may 

be possible to find a u 	which can stabilise the system. The 

difficulty in the analysis of unbounded systems is that unboundedness 

and discontinuity are synonymous for linear operators. This means 
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that if u gives a finite cost,. u +Au may give an infinite cost, 

no matter how small 	u II is chosen. This topic is taken up in 

Section 2.7. 

The classical method of solution of functional equations of the, 

type 

(R 	Q W) t7i = - 	Q yo 
	 2.2.10 

is in terms of eigenfunctions and eigenvalues of the operator ti"R  Q W 

or associated operators. In fact, equation 2.2.10 is first converted to 

1 	1 	 1 
(1 + 	Q R-2) v = - R 2  WR  Q yo 

	2.2.11 

where it is assumed. that R 2  exists, bounded, and is self-adjoint 

are, 	v = R 2  U . 	 2.2.12 

Then if W is compact, so is R 2  TIN  Q W R 2  (being the product 

of bounded and compact operators), and hence it has a denumerable 

spectrum with eigenvalues X., and. associated eigenvectors i. 
_1 

However, • R 2 	Q W R 2  is self-adjoint, so the Xi  are real, and 

the OP. are orthogonal. 1.:oreover, the only accumulation point of the 

X. is zero. 1 

Following the procedure of Hsieh CH /_; p.130 or Riesz-Nagy 

[RN 1; p.235] we obtain 
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1 
1 	< Q  Yo' W R 2T4  > 

u = - R-2  (74N  Q yo + 	E 	
_L 	ii) 	

2.2.13 
i 	1 +X. 

i 

where the 0. are assumed normalised. .11 

This approach is not at all convenient for practical computation. 

In fact, it is just a method for writing 

= - (R 	Q 17)--1 	Q yo  

in terms of an eigenfunction expansion, where calculation may be far 

more work than evaluating the inverse of R -+Tf.  Q W explicitly. The 

next few sections develop feasible algorithms for computation of optimal 

controls. They represent a considerable extension of Hsieh's work. 

2.3 Gradient Algorithms  

Male the eigenvalue-eigenvector solution presented in the last 

section gives an explicit solution to the optimal control problem, it 

is often quicker to find the optimal control vector than to find 

eigenfunctions, without explicit inversion of the operator R +WN  Q 

Among the methcas that exist for finding optimal controls are the descent 

methods which directly minimise the cost function. Descent methods 

are iterative methods, and find a sequence of control vectors which 

directly minimise the cost function, such that the cost is monotonically 



reduced at each iteration. They have the advantage that the algorithm 

may be terminated after a finite number of iterations, to provide a 

sub-optimal control which may give a satisfactory cost. The basis 

of these methods is the following: 
• 

J = <y, Qy> + <u, R u > 

If u is changed to u +Au, then, similar to the derivation of 

section 2.2 

= 2<Au, R u + V1 Q y > + < Au, (R + 7;31  Q W) Au > 

It has been shown that if g = R u + Z Q y is non-zero, it is 

possible to find an E >0, such that Au = 	E g will allow a 

decrease in cost. This procedure gives rise to the method of steepest 

descent, but there are other ways of choosing Au which also decrease 

the cost at each iteration. All first order descent algorithms can 

be put into a standard form: 

Algorithm 2.3.1:  

1. Choose a nominal control uo 
(perhaps zero). 

2. Calculate yi  from the control ui  via the dynamic equations. 

3. Calculate the gradient gi. 

!4. 	Test stopping procedure for convergence. 



5. From gi  and any other previous information, calculate 

a search direction pi. 

6. Letum. +1  = 	. + a. p. , wherea. is a scalar 
' 
u
1 	1 3.   

chosen to give a decrease in cost. 

7. Go back to 2. 

In step 6, it is often most efficient computationally to choose 

the scalar  a.1  to maximise the decrease in cost in the direction pi. 

Theorem 2.3.1:  The optimal ai, in direction pi, is given by 
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a. 1 

< Pi, R u.> • <W Pi, Q Yi> 1 2.3.1 
<pi, R. pi> • <W Pi, UrPi> 

Proof: 	LiJ = 2<&u, gi> + <ISu, (R + el  Q '7) Au > • 2.3.2 

But 	Ciu = a. p. 

2 
So 	 •biJ = 2 zz<p, g 	 •> • a. <p., (11 	Q17) .> iii  	1 	Pi 

But 10 is a differentiable function of a, with positive (constant) 

second derivative. So a unicue minimum is given by 

6AJ 0 
Oa. 1 

i.e. 	2 <pi, gi> + 2 ai< pi, (R 	Q TO pi  > = 0 



i.e. 
	 <Pi' > 

< pi, (R + Vec  Q 	pi> 

< pi, R ui> 

< pi, R ui> + < W• pi, Qigpi> 

The three main gradient procedures used in practice are 

(a) Steepest descent 

(b) Partan 

(c) Conjugate gradient (Fletcher aM Reeve's Method [FR1]) 

The main difference between these methods occurs in step 5 of the 

general algorithm 2.3.1. 

Algorithm 2.3.1a: Steepest Descent. 

Step 5 becomes pi a. g = - 

Hsieh EB4; p.141] has shown that the steepest descent method 

produces a sequence of costs which converge to the optimal cost, and 

also the sequence of control vectors converge strongly to the optimal 

control vector. Steepest descent can have rather poor convergence 

properties. Kantorovich has derived a bound for the rate of convergence 

of this method. Specifically, if 

m <x, x> < <x, (R + 715€  Q w) x> 	L <x, x> 	2.3.3 
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cost contours 

ridge 

fig. 2.3.1 

terations 	--------- 

u1 

1 M - 
then 	

m  
It 	- 	=-11  ( Td 4. m  ) 	(e7(1.10 ) - J(U)) 2  2.3.24. 
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1 - m n 
= K ( 	) 
	 2.3;5 

1 

The smaller -M 
 , the inverse of the condition number, the poorer 

the convergence. This poor convergence is interpreted geometrically 

as the "ridge phenomenon", where the algorithm takes small steps 

backward and forward across a ridge, as illustrated for a 2-dimensional 

Euclidean space in Figure 2.3.1. 

m  The ratio - is a measure of the difficulty of a problem. 

Hsieh introduces a modified steepest descent algorithm which tries 

to speed up convergence by performing many simple steepest descent 

iterations in one modified iteration. It is mainly the poor convergence 

properties of the steepest descent type algorithms when prompts 

research into other methods of choosing a search direction. While 

it is known that, for steepest descent, if there is no convergence 

r 
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at the first iteration, there can be no finite convergence, there do 

exist methods which have finite convergence in finite dimensional 

Euclidean space, for the quadratic problems considered here. -The 

first of these is Partan, which modifies the general algorithm as.  

follows. 

Algorithm 2.3.11: Partan. 

Renumber the iterations 0, 2, 3, • • • (i.e. omit 1). Then 

Step 5 becomes 

5 (i) At a point of even subscript p2m  = 

5 (ii) At a point of odd subscript 102m+1 = 	- U u2m+1 2m-2 2.3.7 -  

The heuristic basis for this algorithm is that it tends to line 

up the search directions along a ridge, rather than allow them to 

zig-zag across it. In an n-dimensional space, this method will con-

verge to the exact optimum in at most 2n iterations. 

The most efficient first order algorithm is the conjugate 

gradient method of Fletcher and Reeves. 

Algorithm 2.3.10: Conjugate Gradient. 

Step 5 becomes: 

Calculate gi 



Calculate a = 
I 

< gi, gi> 

< 	gi-1>  
2.3.8 
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Pi 	gi + Pi Pi-1 • 
	2.3.9 

A basic reference for the properties of this method in Hilbert 

space is tie paper by Antosiewicz and Rheinboldt Ca 1 1. Lasdon, 

Mitter and Waren UMW 1] also prove some results of interest to 

control systems. Both papers state the following properties. 

(1) The set pi  are orthogonal with respect to the operator 

R 	vim Q W. 

i.e. 	< pi, (R + W Q W) pi  > = 
	

2.3.10 

(2) At the i:th iteration, J is minimised over the set u, 

such that 

u =+ E y. p. 0 	j=1 

This set is denoted by 

(3) The roan  of the error $1  1,11  1111 and the cost J are 

decreased at each step. 

(if) If 	= U Bi, thenthesequenceofu.converge 

• 



strongly to the optimal u, and the seauence of cost functions J. 

converge to the optimal J, if u
o u. 

The property (2) makes this algorithm optimal, and implies 

finite convergence for finite dimensional problems. In fact, the 

conjugate property (1) implies (2) as follows: 

and. 

where 

=. + 
gi+1 	gi+1 

= AAui  

A = R + 1731  Q 77 

= A u.1 
 + b 

gi  

2.3.11 

2.3.12 

2.3.13 

2.3.14 

and 
	

gi+1 = A ui+1 
+ b • 

But 
	

Au.1 	1 =a. p. 	 2.3.15 
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So 	gi +1 = g. + a. A p. 
1 	1 

• 2.3.16 

Now, for property (2) to hold, gi+1  is required to be orthogonal 

to all previous search directions p. i 

 < p., g 	> = 0 	j = 1 	i 	2.3.17 
J 1+1 

i.e. 	< 	 1 e p., 	.> + a. < p., A p.> 	= 0 	. 2.3.18 
- 

Now this property holds up to iteration i, for j = 1 ... i-11  if 

< pi, A pi  > = 0. It is also true fcr i = 1. But by theorem 



2.3.1, ai  is chosen so that 2.5.18 holds for j = i. Hence by 

induction (2) is true itLi. 

The choice of pi  can be shown to preserve the conjugacy of 

the search directions. 

Lasclon et al. [LMW 1] show that this method is always better 

than the steepest descent method. Antosiewicz and Rheinboldt [AR ]J 

give similar geometric convergence rates to equation 2.3.4, which 

depend on the convergence factor 

= (1 - 	 ) M 

where m, M are defined in equation 2.3.3. This algorithm takes full. 

account of the eccentricity of the cost contours, and theoretically 

avoids the ridge behaviour. However, numerical inaccuracies may upset 

these properties as is pointed out in the next section, where computed 

examples of control trajectory design are presented. 

2.L Computational aamples  

This section presents some computed optimal control examples to 

illustrate the properties of the gradient algorithms, primarily the 

conjugate gradient algorithm. Computational problems are also dis-

cussed, including the truncation of the time axis, and numerical errors 
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with ill-conditioned problems. 

In computation of trajectories, only finite intervals of time 

can be considered. Hence, we are required to approximate an infinite 

interval optimisation problem by a finite one; i.e. the time axis . 

is truncated after a time T. Then, if the computed trajectories of 

input and output converge to zero in the time interval [0, T] , and 

the assumption is made that they remain at zero from [T, op), then 

these trajectories approximate the infinite time optimal trajectories. 

This assumption is quite difficult to justify in general. In a causal 

system, the output trajectory at time t only depends on the past, 

and so the important parts of yo  and AIT are the relevant restric-

tions to the truncation interval. The optimal control is determined 

by the future behaviour of the optimal output, but if this decays to 

zero, then the far future will have negligible effect on the present. 

This restriction of yo  and W to the smaller space may seem rather 

drastic truncation, especially when yo  and W are unbounded on the 

infinite interval, but bounded on a finite interval, as is the usual 

case for unstable cpen-loop systems. The justification of the method 

is a problem for future research, though some of the difficulties which 

arise in practice are discussed in the sequel. 

For multivariable control problems the expressions for the dynamics, 

gradient and cost are as follows. 



(1) Sampled data: 

Yk = yok  + E' W U. j=0 	k 
'
j  

2.4,1 

77 

N 

J = E 	Qk Yk 	uk Rk uk k=0 

gk = Rkuk  W. 	Q. y j  
j=k  

2.)..2 

2.4.3 

(2) Continuous time: 

t 

y(t) = y0(t) 	f W(t,t ) 11(T) dT 	2.4.4 
0 

T 
g(t) = R(t) u(t) + 	t) 'Q(T) y(T) clt 	2.4.5 

t 
T 

J = I (yT(t) Q(t) y(t) + uT(t) R(t) u(t)) dt . 2.4.6 

If R 1(t) is an absolutely continuous function of time, then 

without loss of generality so is the optimal u(t). For, from 

equation 2.4.5, 
T 

u(t) = - R 1(t) . T(T, t) Q(T) y(T) dT 
t 

the product of two absolutely continuous functions. 



Example 2.4.1: Sampled data. 

3'ic+1 
= v

k 
 + EL 

where 	y
o 
 = 2 

N 
and 	j = E y

k
2 

+ 0.75 uk
2 

k=1 

This system fits neatly into the state-space formulation to be discussed 

in Section 2.8. If the summation in J is taken over zero to infinity, 

then the optimal solutions are given by 

uk = 	2/3  Yk 

and 3'k+1 = 1/3 Yk  

with 	J = 6 . 

Our method sets 

k 

yk 	 E 	. u = 	k-0j 
k j=o 

where 	yok 
= 2 	77t k 

and 
	= 1 

	
k 	0 

	

0 	for k = 0 

and 
	

N = 19 	is supposed large enough for the 

trajectories to converge to zero. In fact, N = 6 would have been 
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artan 
fig. 2.4.1 

Steepest descent 

Conjugate 
gradient 

4 	 10 2 14 
no. of iterations 

Cost 

10 
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aufficient. The three algorithms 2.3.1a-c were used to solve this 

problem, and the relative performance is shown in Figure 2.4.1. The 

same nominal control of zero was used in each case, and the time per 

iteration was substantially the same in the three cases. 

The convergence bounds of the type 2.3.4 may be calculated. We 

require m, M, where 

m<x, x> <= <x, (R e Q 71) x> 	b' <x, x> 	2.4.7 

For SVS0 sampled data systems which are time invariant, the 

operator W can be represented by a matrix 



18 17 .. 	.. 0 

18 17 OS 	.. 0 

17 17 .. 	.. 0 

16 .. SO 

Also 1I' V7 = 

( 

17 

18 

19 

U = '0 o 
2.14 .8 

 

8o 

 

W1 W 0 

1172 W1 W 

1
3 

W
2 

W1 W 0 

\ • 

   

     

   

• 

 

     

If the time axis is truncated, this matrix is finite, and la is 

represented by the transposed matrix. If IN0  = 0, the matrix is 

singular, and so is W5 V. Hence, for example, 

- r = o.75 . 

and by Gershgorint s theorem EW 1J, the maximum eigenvalue lies in a 

disc centre 19 and radius 18 x 9 

W II 5= 181 

M - m 1.5 
M 	m 181.75 

= 1 - 	0.0083 

i.e. 

So 
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By equation 2.3.24 , the steepest descent method would give three 

figure convergence in less than n iterations, where 

- u - 	= 0.001 

_ ( M  - ra  )n 
m 	0.75 

as 	n ' 930 . 

This bound is rather crude, but the example serves to show the very 

large range of eigenvalues 'that occur in control problems of this sort. 

It is for precisely these ill-conditioned problems that the conjugate 

gradient method is best suited. In fact, it is known that the conjugate 

gradient method converges in a finite number of iterations in the 

finite dimensional case, and at a rate faster than any geometric series 

for infinite dimensional problems CH 3], CSL 1]. However, numerical 

inaccuracies can upset these properties far very small condition 

numbers, and it is still important to keep these as small as possible. 

Note that II73Ei W II depends to a high degree on the total costing 

interval. For continuous time systems (SI/S0), if 
t 

z(t) = I 	) u(T) aT 	 2.4.9 
0 

t 

 kW 2 	1 k(t, '01 2  dT 
t 

. J lu(T) I 2  ar 
0 

2.4.10 
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T 	T t 

llz( -01 2  at 	 f 	T )1 2  at) at.! u(T) 2  d 
o •o 

2.4.11 

T t 

i.e. 	Ti31  1.7 I I 	I( I ITI(t, 	I 2  aT) at . 	2.4.12 
0 0 

While this is sometimes a crude bound, it illustrates the dependence 

of the norm on the interval T, and T should be no larger than 

necessary, four times the optimal response decay time being a reasonable 

upper limit for accurate results. 

Example 2.4.2: 

9 
2 

min J = E 
 Yk2 + r uk  

u 	j=0 

for the system of Figure 2.4.2. - 

0.264 + 0.368z  
z-1) (z-0.368) 

zero 
order 
data u

k 
	

hold 

1 
s(s + 

fig. 2.4.2 

The computed trajectories are shorn in Figure 2.4.3 for a range of r. 

The response of the continuous plant between sampling intervals is 

calculated by means of the modified z-transform. As r becomes smaller, 

the condition number R + W QW becomes larger, and more iterations 
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are required. The optimal response for one value of r is used 8.13 

the initial approximation for the next lower value. (This is true for 

all the examples in Section 2.4). 

A unique solution for optimal u exists for all r 	0, That 

for r = 0, u9, the final control value, may be anything at all, 

without affecting the cost. However, u9 / 0 will be a poor 

solution, since 

(a) it is desirable to make u(r) continuous at the 

origin, and 

(b) unless u9 2= 0, the control trajectory on the finite 

interval will not approximate the infinite time optimal 

control. 

The response for r = 0 (with u9  = 0 for uniqueness) is to 

be expected from engineering intuition. Since IVO = 0 no amount 

of control can make yo  = C. However, after this interval it is 
• 

possible to make yk  = 0, for all k > 0. 

i.e. 	y(z) = 1 . 

(z - 1)(z - 0.368)  
Hence 	u(z)= - 0.264 + 0.368z 	• z - 1 

= - 
0.264 + 0.368z 

which corresponds to the computed control. Consideration of the 

continuous output shows that r = 0 does not produce a good system, 

according to normal servo design criteria. 

z - 0.368 



Continuous ,•-•"----.-...'  
respons 

r=1 

• 0 

i 	 i 

Dead-beat sampled response. 

Continuous response 

shows 'hidden' oscillations. 

Sampled response 

Optimal step response -
of 2-pole, 1-zero 

system 

3 	4 	9 	6 	4/ 

yo - 
0.4 

0.2- 

0.0 

r= 0.01 
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3 r=0 

85 

2 - r=.0_ Optimal control sequences for 

2-pole, 1-zerO plant. 
1 _ 

0 
r=.1 

5 4 5 0 
r=1. 

-1 _ 

fig. 	2.4.3 (cont.) 
-2 - 

...••••••••••••0 

-3 - 

L 

0.264 + 0.368z  
z-1) (z-0.368) 

0.2 
z 

fig. 2.4.4 

z-0.368 

2 (0.264+0.368z)  
(z-1) (z-0.368) 



zero 
order 
data 
hold 

e
-1.5s 

s(s +1) u
k 

fig. 2.4.6 

Example 2.4.3:  We require to minimise 

19 
T J = E Yk Yk 	uk (r I) uk  

k=0 

for the multivariable plant of Figure 2.4.4. Graphs similar to Figure 

2.4.3 are plotted in Figure 2.4.5. 

Example 2.4.4:  The last three examples all possessed z-transforms 

which were simple rational functions, and hence amenable to the state-

space treatment to be described in Section 2.8. However, we now 

consider the plant shown in Figure 2.4.6, which does not have a finite 

recurrence relation representation. 
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,t) re. 

y(t) 

The dimension of the state space is irrelevant to cur algorithms, and 

the computed optimal trajectories are plotted in Figure 2.4.7 for the 

same cost function and disturbance as example 2.4.2. The plant is 

non-minimum phase, since its inverse is anticipatory by more than one 

Sample interval. 

Example 2.4:  Another non-minimum phase plant is the rational plant 

shown in Figure 2.4.8. 



Unit step 
applied to 
output 
only. 

continuous 
output 

1 
Output 
I 

0.4 
0.2 

Output 
II 

r= 1.0 	r=0.1 	r- 0.05 	r= 0. 

Optimal step responses for multivariable plant. 

     

Output 
ZC 

   

Unit step 
applied to 
output Ti 
only. 

    

     

Output 
f 

 

  

fig. 2.4.5 
	

• 

00 



r= O. 

fig. 2.4.7 

• 
00 
00 

r= 0.01 

continuous respon r= 1.0 

discrete response 

r= 0.1 

Optimal step responses 
for system with pure 

time delay. 



-1(1+2.34z 1)(1+0.16z- 

(1-z-1) (1-0.368z-1)2  

zero 10 
4.1yo 

order 
s(s+1)2 data y 

hold 
fig. 2.4.8 

The z-transform represents an N.M.P. plant, since the zero at, z = - 2.34. 

lies outside the unit circle, even though the original continuous plant 

is minimum phase. The N.M.P. property is introduced by the sampling 

operation. The results for the cost function of example 2.4.2 are 

plotted in Figure 2.4.9. 

The interesting lesson from both the examples 2.4.4-5 is that, for 

r = 0, the type of dead-beat response obtained in example 2.4.2 did 

not result. Cf course, for the pure-delay example 2.4.4, the system 

could not possibly respond until at least the second time instant, 

but after that the response may have been expected to be dead-beat. 

In fact, for example 2.4.5, the dead beat response is inieed the true 

optimum and proauces a lower cost than that calculated (1.0 vs «1.4), 

and the conjugate gradient method has not converged to the correct 

answer. If a dead-beat response is assumed, and the control calculated 

as for example 2.4.2, then 
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• 

r= 5. 

Optimal step responses for 
plant with zero outside unit 

'circle. 

• 

r= 1. 

• • 



(1 - 0.368z-1)2  
111(z) = (1 + 2.34z-1)(1 + 0.16z-1) 

which is unstable due to the pole outsile the unit circle. However, 

the time response restricted to any bounded interval is bounded, and 

hence gives the strict optimum control. However, it is not a useful, 

type of control whereas the control calculated by the conjugate 

gradient algorithm is stable, and hence applicable in an engineering 

design. In fact, the control that we have computed corresponds to 

- 	
(1 - 0.3685-1)2  

(1 + 2.34z )(1 + 0.16z-1) 

i.e., the unstable pole has been replaced by its reciprocal with 

respect to the unit circle. This behaviour can be interpreted as an 

extreme instance of "ridge phenomenon". A plot of II 1-1 	vs r 

looks similar to the graph of Figure 2.4.10. 

The knee of the curve becomes sharper and closer to the axis as the 

time interval is increased. 

For a two-dimensional problem this state of affairs is simulated 

by highly eccentric contours, as in Figure 2.4.11. 
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pseudo-minimum 
fig. 2.4.11- 

true minimum lie 
along this line 

Due to numerical inaccuracies (which may be very small), the 

conjugacy property is lost and the search vectors are not quite in 

the exact directions. However, the cost for moving a small distance 

off the true conjugate direction maybe several orders of magaitude 

larger than for large distances along the true direction, and hence 

only very small steps are taken around the pseudo-minimum. For 

y = 0 

92 

or Vr w u .3•E = — 5 yo  

then u 	 - w+ 
 yo = - 	TO+  yo  

where + denotes pseudo-inverse. However, apart from the obvious 

singularity of T1 due to 170  = 0, the non-minimum phase effect 

approximately decreases the rank further; i.e. the cost contours 

(all Figure 2.4.11 for a two-dimensional representation) are almost 

degenerate (parallel straight lines in two-dimensions) in which case 
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the control with minimum norm is found. From an engineering viewpoint, 

the interpretation of the small eigenvalues of 171;7 as zero gives 

a good stable design, and makes gradient algorithms preferable to 

direct inversion. 

• 

Example 2.4.7:  A final example is the continuous system 

- 	 t 
y(t) = yo(t) + I w(t - T 11(T) at 

0 

Where 	Yo(s) 

w(s) 

i.e. 	7(t) = erfc ( 	) 

could arise in an idealised model of the engineering system shown 

in Figure 2.4.12. 

!Y output temperature 

fuel flow 

fuel 
	heated diffusion system (  

fig. 2.4.12 

The weighting function is plotted in Figure 24.13, and the 

corresponding 17(jw) on the Nyquist diagram in Figure 2.14..1k. Then 

with cost function 

10 
J = I q y

2 	u
2 
at 
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1
(t)= 1 - e-t 

(first order Pade approximation to- W) 

0.5- 	W(t)= erfc( 

fig. 2.4.13. 

Impulse responses 
0.0 

1.0 

Optimal output responses 

q=0.1 	q=1.0 

q=0. 

fig. 2.4.15 

fig. 2.4. 4 

1 
s s+1 0. 

Nyquist 
diagram 

.01 	Optimal controls 

-5 

-10 



the optimal trajectories have been computed and plotted in Figure 

2.L.15. The integration procedure uses a fourth order Newton-Coates 

formula. 

This method is considered excellent for calculating optimal • 

trajectories for linear systems, especially where the weighting 

function is only known empirically. No state space approximations 

or identification is required. However, no structural configuration 

in feedback form is implied, and this has yet to be considered. 

2.5 Direct Solutions and Return Difference 

The algorithms developed in Section 2.3 are essentially iterative. 

Eethods of solving the conditions of optimality explicitly are now 

investigated. One such method is the eigenvalue-eigenvector expansion 

mentioned in Section 2.2. The case of W being a causal operator is 

of particular interest. Causality is introduced by considering the 

Hilbert spaces 14 u and It as subspaces of larger spaces H 
and 

y. We will change our notation and say u e u 	y E 	4., where 

J-t u+ o 41{3, = H 	 2.5.1 

and 	 .R y+ 
 Oy- 

= Hy 
	2.5.2 

For example, if :Ku+  = L2  CO, co), then 
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H 	= 	L2 
 (-co (-co a›) • 

The operator W is causal, so, for all u+E u 

Wu E 

and 17 e Lr+(Hu y  , H ). We shall assume that the operators 

Q, R E .7+  n 7_ i.e. are instantaneous . 

From Theorem 1.8.3, 1751  is completely anticipatory from the space 

Hu into y. Since u can only be chosen on the space 	 +,-31 	the 

optimality condition 2.2.3 becomes 

u + IC+ (WM  Q Y) = 0 	2.5.3 .  

We shall use an abbreviated notation for this projection operation 

R u + [\V Q y4 = 0 	2.5.4 

or 	Ru + 1751 Qy - [TITQy] 	= 0 • 	2.5.5 

Put 	v = -[17m  Q Y3 	 2.5.6 - 

Then 	v G Itu  

and 	R u + 71 Q y + v = 0 • 

But y = y
o 
 + VT u , 	 2.5.7  

So 	(R+ Wm  Q W) u + Wm  Q yo  + v = 0 . 	2.5.8 

96 

• 



A factorisation of the self -adjoint operator R +Wle  Q 17 is now 

assumed. Consider a transformation F from A u
+ into j{  u+ that 

is causal and bounded, and whose inverse F-1 exists from 	Into 

u 	and is also bounded. 

Theorem 2.5.1: Under the above conditions, F
1 

is necessarily causal. 

Proof: F is causal, so v G 	
+ 	

u u where 

v = F u 

But F is invertible, so for any v G 	B a u such that 

u = F
-1 

 v 

i.e. F-1  iscausal. 

Then vie assume it is possible to find such an P so that 

14e  F = R + 1711 Q W 	2.5.9 

From Theorem 1.6.7, regardless of whether F
-1 exists, all F which 

obey 2.5.9 differ by an isometric transformation. However 

Theorem 2.5.2: If F satisfies 2.5.9, and has a bounded inverse, 

then all such F differ by a unitary transformation. 

Proof: If _ 	TIN T = R 	YJR QW, then all F with this 

property differ by an isometric transformation (Theorem 1.6.7.). 

97 
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i.e. 	F = U F
1 ' 

where 	Um  U = I • 

But F1
-1 

exists by assumption, as does F.-1  . 

So 	U = F F1  
-1 

which is bounded 

and 
	

U
-1 

= F
1 
F-1 
	

which is also bounded. 

i.e. U is unitary. 

With these assumptions, and a particular F, 2.5.8 becomes 

FM  F u + 	Q yo  + v= 0 	2.5.10 

u 	Fm-1  WQ yo FM-1  v= 0 	2.5.11 

/v 
Now both sides of 2.5.11 are projected into .Pt

+
Since F is 

causal, F u e u+. Fm-1 is  purely anticipatory, so 

Hence 

L  Fm-1 
L 	v]+ 

 = 0 . 	 2.5.12 

F u + Ei-1 vi Q yo'  + = 0 	2.5.13 

u 	= - F 1  [ Fm-1  Vm  Q yo 3 4.  . 	2.5.14 

We digress to discuss a particular interpretation of these equations 

for time-invariant continuous systems. In this case, Um  y is 

interpreted as the vector 



9? 

OD 

Z(t) = f
T( T- t) y(T) aw 	2.5.15 	- 

t 

and z e 	if t C o, co ). However, if z(t) is defined 

7tF. t e (-co, a ), then we are interested in calculating rz] 

By Parsevalts theorem 

co 	 ico 
. . I 	aT(t)b(t) dt = 27

1 
 0 	f a

T 
 (-s) b(s) ds . 2.5.16 

o 	'' -ico 

j03  
Hence 	z(t) = 2.37-tj 	f 	wT(...$) est . y(s) ds 

—ico 
2.5.17 

By assumption y(t)E L2P roco) and hence y(s) is analytic ... 

in the right half s plane, whereas VT (-s) is analytic in the left 

half s plane. Equation 2.5.17 resembles an inversion integral, but 

only the stable part is counted, since the implied contour integral 

excludes the right half plane singularities. Hence, if 

T, 
W k"-s) y(s) =s, a,( 1  + b(s) 

= c v7(—s) y(s)3 	EviT(—s) y(s) 3_ 

where a(s) is stable and b(s) is purely unstable, then 

z(s) = a(s) = C WT(-s) Y(s)3 
	

2.5.18 

For bilateral Laplace transforms, there is an ambiguity of interpre-

tation, which, however, does not affect our argument. For example, 

a transform 



F(s) = 
s + 1  17; 

may be interpreted as either unstable, but causal, or anticipatory, 

but stable. However, if we require causality and boundedness, then 

only left half plane singularities can be considered. Similarly, 

for F 1(s) to be causal and bounded, requires F to be 	minimum 

phase. 

Example 2.5.1: llinimise 

J = I y2  
0 

+ u2 dt 

where y(s) - 1 	1 
u(s) s + 1 	s + 1 2.5.19 

R+ Q 	= 1 - s
1 

 + 1 	s + 1 

 

2- s2 

  

 

(1 + s)(1 — s) 

  

 

( .12 - 5)(  	+ s )  
1 - s 	1 + s 2.5.20 

100 

• 

So .12 + s 
1 + s , which has a stable inverse. 

Then[F
x-le 	1 s 	1  

— 	

1 a,
0  1(2 '- s • — 5+ 1 's+ 1 J  

The projection operation simply takes these partial fractions whose 

poles are in the left half s plane. 
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i . e. 	[ FIE-1 t.v Q 	3 	1 	1  
Jo 	+ 	4/ 2 + 	s + 1 

Then 	u(s) - — 1 + s 	1 	1 
42 + s ' f2 + 1 • s + 1 

- ( 12 - 1 ) 2.5.21 412+ s  

From 2.5.19, 	Y(s) -1+ s 
	• 	2.5.22 

Transforming to the time domain 

u(t) 	- (A/2 - 1)e 42t 

y(t) = et • 

i.e. 	u(t) = - (A/2 - 1) y(t) . 

A similar interpretation in terms of the z -transform can be Obtained 

for sampled systems, where the left half s plane maps into the interior 

of the unit circle in the z plane. 

We now assume that a solution of the optimal control problem 

exists and investigate the spectral factorisation cf R WNW. We 

choose yo to be initial conditions of the system. 

i.e. 	y = 	cc] +  , 	 2.5.23 

where 	a E vl u 	 2.4.24 

For systems on L2(12);   this implies that the only initial conditions 



on the system are those that entered via the control input prior to 

time zero. If the system is controllable, then all initial conditions 

can be reached by an a(t), where a(t) is bounded and lies on a 

finite interval E -t1, 03 • 
• 

From 2.5.8, 

(R + Dm-  Q Vir )u + Vi3' Q yo  + v = 0 	. 

(R + 1VN  Q 17)u + [TN  Q VI al+  + v = 0 , 

or 	(R + Vim  Q Y1)u + ViN  Q W a + v1 = 0 

where vl  e 	u-  . 

i . e . 	(R + YiN  Q 71)u + (R + e Q 17)a + v2 = 0 	2.5.25 

where 	 v2 E IC u- • 	 2.5.26 

Now u depends linearly on a. We propose a solution 

T u = -CT a] 	 2.5.27 

- 1 where T is a causal operator to be determined and T exists. 

Then 	T u + T cc = y E. X u- 	 2.5.28 

i.e. 	(R + YIN  Q W)T ly = v.
2 	

2.5.29 

, 
But y, v2  e „K u  but otherwise arbitrary, depending on a. 

102 
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Hence 	+ 7i Q W)T-1  E J. 
	

3 
2.5.30 

= S 

Rote that T 1 must be bounded, since u E to 

Hence 
	R +17m QW=ST. 	2.5.31 

But 	R + t Q W is self-ad joint 

i.e. 	Tm  Sm  = S T • 	2.5.32 

i.e. 	Sm  T 1  = Tm-1  S . 	2.5.33 

But Sm  T 1  e :r whereas Tm-1  S e J ; i.e. both operators 

belong to 	n 

2.3.34 S' T-1 = 1m-1 S = i.e. V' .  

S = Tm  V 	. 	2.5.35 • 

So 	(R + yeE  Q VI) = Tm  V T 	. 	2.5.36 

If V is factorisable, then this solves the spectral factorisation 

problem. However, there is no need to factor V in order to solve 

the optimal control problem by the equation 2.5.11. 

Now T E : 'is invertible. So split T into D 6 j+  A 
and H 4 7+\ j+  n a_ • 

i.e. 	T = D 	H 	2.5.37 



where D is invertible. 

Then 	T = D(I + G) • 

i.e. 	(R + 	Q 	(I + G)31DN  V D (I +G)  

104 

• 

(I + G)N  M (I + G) . 	2.5.38 

1 - Also 	u = T [ T a] 4.  

= (I + G)-1  D-1  DE (I + G) a] 

(I + G)-1[ G a]+ 	2.5.39 

Re-define 	T = I + G 
	

2.5.40 

and call T the optimal return difference. The optimal structure 

becomes 

fig. 2.5.1 

For continuous time systems, with infinite cost interval and time 

invariant operators, ecustion 2.5.38 can be interpreted as equations 

involving Laplace transforms and power spectra, in which case Ralman's 



result ER 2] is a corollary. 

i.e. 	R + i72(-s) W(s) = (I + G7(-s))R (I + G(s)) 	2.5.41 

M = R follows from the behaviour as s approaches infinity. Also, 

G(s) must have the same singularities as W(s). 

Equation 2.5.38 can also be interpreted for discrete-time systems 

as z-transforms, in which case M 	R. However, it is more genaral 

than transform eauations, and can be interpreted as time-domain 

operations. 

2.6 Contraction Alporithms  

While a direct solution as discussed in section 2.5 is usually 

the best, for complicated problems factorisation becomes difficult to 

perform explicitly. We return to iterative methods of computing optimal 

controls. We have already discussed the iterative methods based on 

directions of descent, and these have proved very useful. In this 

section, algorithms based on contraction and the fixed point theorems 

discussed in Section 1.9 are discussed, and shown to have very useful 

properties, which sometimes give the engineer a better feel for the 

problem he is solving, than the gradient methods. They are also useful 

in that they can provide a solution cf the spectral factorisation 
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problem when applied to the Banach alEebra of operators, rather than 

the Hilbert space of control trajectories. This will be discussed in 

Section 2.9. The methods presented in this section are not new to the 

theory of linear equations, but their interpretation and application to 

optimal control is believed to be new. 

We wish to solve 

(R + 	,Q W)u = f 	2.6.1 

Assume that the operator R + W Q W can be decomposed into the sum 

	

+ WI(  Q 17 = A = D + A+  + A 	2.6.2 

where 	D e 7+  n .7_ 	 2.6.3 

A+ e 7+\( n 7_) 	2.6.4 

A_ E 1_\( 1+ n 	. 	2.6.5 

However, 	R + Wm  Q W 

• • 

is a self -adjoint operator on Hilbert 

D
m 	= 	D 	p.D. 

space. 

A+ = A • 2.6.6 

A = A+
m  

From equation 2.6.2, 

(D + A A•-•)u = f 2.6.7 
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Re-arrangement of this equation can lead to various well-known iterative 

algorithms for computing u. 

Algorithm 2.6.1: Simple iteration; Jacobi's Method . 

	

D uk41 	- (A4  + 	uk 	2.6.8 

Algorithm 2.6.2: One-step cyclic iteration; the method of Gauss-Seidel. 

(D A+) uk+1 = f 	A- uk 

	

or uk+1 	(D A4)-1  f - A uk 	2.6.9 

Algorithm 2.6.3: Method of over-relaxation . 

(D + w 	uk4, = (1 - w) D uk 	w A uk 
+ w f 

uk+1 
= (D + w A)-1 	- w) D u - w uk  + w f 

2.6.10 

The parameter w is called the relaxation factor and may depend 

on k in nore complicated procedures. It is chosen to accelerate 

the convergence of the algorithm. ,Note that for w = 1, 2.6.10 

reduces to 2.6.9. 

These three algorithms have been well investigated in the liter-

ature, but mainly in the context of finite sets of linear equations. 

Collatz [C 1; p.223] describes these methods, and gives convergence 

criteria. In fact, all these methods have the form 
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x+1. = T uk  + s 
	

2.6.11 

and ccnverge, if T is a contraction, by theorem 1.9.1. 

i.e., if 
	

T < k < 1 , 	 2.6.12 
• 

the convergence rate being at least as fast as (1 - k)n. A more 

specialised result which is useful for optimal control is a generali-

sation of theorem 3 of Collatz[ C 1; p.228]. We extend this result 

to more general operators, and offer a different proof. 

Theorem 2.6.1: If the operator R -FU Q 17 is self-adjoint, positive 

definite, and possesses a bounded inverse, then the Gauss-Seidel method, 

and, more generally, the relaxation method converge for 0 < w < 2. 

Proof: 

uk+1 
= (D + w A+)-1[ (1 - w)D uk -, co A uk  + co fl. 

Hence 	 T = (D + w A+)-1[ (1 - co)D + co A 3 

(D + w A +)T = (1 - w) D - w A 

Yultiply both sides by 2 . 

(2 D + 2 w A.4.)T = (2-w)D-wD-2wA 

[ (2 - w)D + w D + 2 w A)T = (2 - w) D - w D 2: co_ A 

But 	 A-A = D + A+ 
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[(2 - w)D + to(A - A ) + w 	= (2 - w)D - w(A - 	- 	- 2 w A 

[(2 - w)D + w A + w(A+  - 	= (2 - w)D W A + w(A+  

2.6.13 

Put 	S = (2 - w)D + w(A.1.  - 	. 	2.6.124_ 

Then 	S + S = 	2(2 - w)D + w(A+  + A - A - A+  ) - -  

= 2(2 - w)D 

Since D is self-adjoint, P.D., so is 

S + SR 	for w < 2 . 

Then (S + wA)T = (S - wA) 	 2.6.15 

Put 	B = w A 

Then B is P.D. self-adjoint, for w > 0. 

i.e. for 0 < w < 2, loth S + Sm  and B are P.D., and 

(S + B)T = S - B . 

T = (S + B) l(S 	B) 	2.6.16 

Let X be a (complex .in general) eigenvalue of T, and x the 

associated eigenvector (which we assume exist-). 

(S + B)T x = (S + B) A x 



So 	XSx+XBx = 	- B x • 

(X + 1)B x = (1 - X) S x . 

(X + 1)<x, B x> 

Take the complex conjugate 

(5: + 1)< x, B x> 

Divide 2.6.17 by 	1 - ?, 

f x + 1) 	(5,7 + + 

= 	(1 - X)< x, S x > 

(1 - X) <ex, x > 

of both sides • 

= 	(1 - 7X)< x, ex > 	• 

and. 2.6.18 by 	1 - 7 	• 

	

B x > 	= 	< -x, (S + S')x> 

1 	+l 	> 

• 

2.6.17 

2.6.18 

2.6.19 
1

1. `a. 	- 

X + i.e. 	 0 1 - X 1 - 

(x + 1)(1 - 7,) + (7 + 1)(1 - x) 	> 0  
1 - X12  

or 
	 2(1 - X 7)  > o 

I 1  - 

i.e. 	 (X I < 1 	for 0 < w < 2 . 

Hence I1T11<k< 1, so the napping is a contraction and. convergence 

follows by theorem 1.9.1. 
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Collatz [Cl] and Varga [172] give many interesting properties of 

these algorithms including convergence and error bounds, and methods 
_ - 

of choosing good values of w. We present an example to show how 

these equations can be interpreted for control systems. 
• 

Example 2.6.1: We choose the same system as in Example 2.5.1. 

oo 

J = 
f y

2 + u
2 
dt • 

o 

y(s) — s + 1 (1 + u(s)) . 

Now (R + UN  Q W)(s) = 1 	_-2__ 	---2-- 
s 

which corresponds to the operator splitting of 2.6.2, where 

A = 	 . • + 	s + 1 

Also — 17'1  Q - Yo 
1 	2. 

L -s+1 • 5+1-1 + 

= 	• 
s + 1 

The relaxation algorithm becomes 

= (1 

But 

2 
(1 

S + 1 k+1 

(1 + 2  ) -1  s + 1 

— 03)uk  — Lo [ —2--- u 3 	w  
1 — s k + s +1 '  

0.1 s + 1 + 	_1  
s + 1 ) 

.2s + 2 + w)-1 
2(s +i) 



2s +2 +w 

Then the relaxation algorithm becomes 

_ 	2(s + 1)  
uk+1 - 2s +2 +w (1 - w)uk  - 	572:7 uk 

For any w, the solution 

42 - 1 () 
s +12 

is a fixed point of the algorithm, as is easily checked. 

(a) w = 1; 

uk+1 
1 

- 2s + 3 	1 — s uk + 	s + 1 
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Uo  

u 1 

u2 

= 

= 

= 

1 

954 

s + 1 

2 
+ 

135 

3 

+ 18 
- 
5(2b 

600s2  

+ 3)2  

+ 1126s + 

125(2s + 3)3  

u0(t)1 t=0 
	- 1 

ul(t)i t=o 
= — 0.75 

u2(.01  t=o 
= — 0.65 

u.4(t), 
I  t=0 

= — 0.5 

The time domain curves are plotted in Figure 2.6.1. 



Restart algorithm: 

(b) w = 0.8; 

s +  uk+l 	
0.2 uk  - L1  s  tL 

S 	1.4 	+ s + 1 

uo = 
s + 	 u0(0) 	- 0.5  

u1 	s-+— ul(°)  = 0.4  1.4 

- (0.4133s + .5733)  u2 = 	 u2(0) = - 0.4133 

The time domain trajectories are plotted in Figure 2.6.2. 

It is seen that the method expands the closed-loop response into 

an infinite product of poles and zeros. The factor w seems to give 

good convergence if it is chosen so that an approximation to the 

dominant closed loop mode appearsjnlhe denominator of the inverted 

operator. 

A computer algorithm working in the time domain is very easy to 

implement. For example, for L2  [o,co), the equation 2.6.9 becomes 

where 

t 	op 

R u(t) + I SI(t,T ) u( 	+ J S2(T, t) u(T) dT = f(t) 

OD 

61
(t,T ) = f VirT(S, t) Q W (s, T) ds 
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• 

(s + 1.4)2  



0.5 	1.0 	1.5 	2.0 t 	2.5  

-1.0 

uo 

co = 0.8 

fig.2.6.2 

Convergence of contraction algorithms. 



115 

and 	S2(T, t) = SlT(t,T ) . 

First of all, the resolvent kernel of the equation 

R u(t) 	w f SINT ) u(T) dT  = g(t) 	2.6.21 
0 

is found, by iteration, and this scheme always converges for Volterra 

equations. 

t 

i.e. 	u(t) = 271  g(t) + j K(t, T) g(T) dT . 	2.6.22 
0 

t 	OD 

Then g(t) = f(t) - (1 - w) S (t,T)uHdT- f S (T, t) u(--r) dT. 
0  1 	1 2  

2.6.23 

These iterative methods for solving integral equations, and general 

functional equations, have been neglected in the field of optimal con-

trol, but seem attractive computationally, since only integration is 

required. The main disadvantage of the method is that a feedback type 

structure is not predicted. 

A basic operation to be performed is the inversion of the 

operator. D + w A+ 
. Does this inverse exist, and is it stable? 

This is answered by the following theorem, in the case of operators 

represented as 'Laplace transforms. 

Theorem 2.6.2: If R, Q are P.D., P.S.D. symmetric matrices, such 

that 
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R + G(s) + GT(-s) = R + W2(-s) Q W(s) 	2.6.24 

then (R + w G(s))-1  is stable for any allowable R and any w>0. 

Proof: Consider first the special case when R = r, a positive 

scalar, and g(s) is a scalar transfer function. 

Then 	2 Re g(jw) = g(jw) + g(-jw) • 	2.6.25 

i.e. 	2 Re g(jw) = q I w(jw)1 2  

> 0 

But g(s) is stable, so g(jw) lies entirely within the right 

half Nyquist plane, and so is stable for any gain whatever. 

- 
r l(1 + g(s))

-1 
is stable 

(r + w g(s))-1 	is stable V- r, w > 0 . 

row consider 	(R + wG)-1  • 

G + GN  = 	Q17 

i.e. 	C. + G
m 	is P.S.D. 

But if X(jw) is an eigenvalue of G(jw), then X + 	is an eigenvalue 

of G + Gm, where 	denotes complex conjugate. Therefore 

Re(X) > 0 • 

i.e. 

Or 



1 	1 
But 	(R + GJG) = R2(I + (..)R 2 	R7 2)R2 • 

where R2  exists, P.D., since R is P.D. 

Put 	H= R 2  GR 2  • 

Then if µ(jw) is an eigenvalue of H(jw), by the same reasoning 

as above 

Re(µ) > 0 . 

Now diagonalise H. i.e. we find an M, such that 

H = M(diag ui) M 1  

Then 	(R + w G) 	R2  - M (I + w(diag p.)) 
1 R2  ▪ 	2.6.26 

(R + w G)-1  is stable if det(R + w G) is stable ; 

i.e. 	if det(I + w diag p.) is stable. 

But this will be stable if each loop 

1 + w µi  (jw) is stable. 

However, Re p4  (jw) > 0, so pi  (jw) can never encircle the -1 

point on the Nyauist diagram; in fact, it is stable for all w > 0. 

Theorem 2.6.3: The iteration scheme 

K+1 	Tuk + s 
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derived from the equation 

(R + 71131  Q 17) u + Tr 	yo  = 0 

by algorithms 2.6.2-3, produces a decrease in cost at each iteration 

if T is a contraction with respect to the norm 	11 = <x, A x> 

where A = R+ 1731 Q 57. 

Proof: From equation 2.2.5, the change in cost in one iteration is 

But 

A&uk, 3k 	= < 2 g 	+ Auk  > 

gik 	= 	(R + 	Q W) uk 	+ 	VrIEh 

2.6.27 

yo 	2.6.28 

= M(uk  - T uk  - s) 

= - MAuk  

where 	- A = M(I - T) 2.6.29 

aryl M 1 = (I - T) A-1  

So Auk  = - M -1 gk  

= (T - I) A 1  gk 	. 2.6.30 

= <2 gk  + A T A-1 gk  - gk, 	- 	A-1 gk > 

1 	 1 
< gk  + A T A gk, A 1(A T A - I) gk  > 
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-<t, A l  g > - <ATA-1  g,A-1  gk > 

+ <gk, A 1  ATA 1  gk> + < A T A gk, A-1 A T A 1  gk> 

- <gk, A 
1  gk  > 	< A T A-1  gk, T A

-1 

Put 
1 h = A gat:  

1SJ = - <A h, h> + <A T h, T h > . 	2.6.31 

However, by assumption, 

< T h, A T h > < < h, A h> • 	2.6.32 

So there will be a reduction in cost at each iteration. 

Corollary to  Theorem 2.6.1: Under the conditions of Theorem 2.6.1, 

T is a contraction with respect to the norm 11 x 11 = <x, A x> 2. 

Proof: Using the notation of theorem 2.6.1 

(S + B)T = S - B 	 2.6.33 

where for 0 < w < 2, S SN  and B are P.D. 

Now 	ST + BT = S B • 

B(T + I) = S(I - T) 

Then 	(I - TN)B(I + T) = (I - TN)S(I - T) 	• 

gic > 
• 

B 	TSB BT - TNBT = (I - TN)S(I - T) 
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Now operate on any non-zero vector h, and take the inner product 

with respect to h. 

< h, Bhp - <h, TB:h > + <h, BTh> - < h, TNBTh> 

= < h, (I - T')S(I - T)h > 

< h, Bh > 	< h, T5EBTh> = < h, (1 - TnS(I - T)h .> 

> 0 	for 0 < co < 2 . 

i.e. 	< h, Ah > < <Th, ATh> 

2.7  Unbounded Operators 

It is often the case that the system operators are unbounded 

(unstable) and the unforced response yo  is also unbounded, and yet 

it is possible to find a u E 	 such that 

y= y
o 
+17 u el • 

'Mien this is so, u is said to stabilise the syster,. If such a u 

exists, then there will exist a u u, and a 	
which minimise 

the performance criterion 

3 = < y, Qy > + < u, R u >, 

providing N7 is closed and the domain of W is dense in 'Ku. That 



is, we assume there exist vectors liu, Qy e au, A respectively, 

such that 

Ay = W Q u 	 2.7.2 

and Au E 00(W), the domain of W, which is a linear manifold in JCLI  

whose closure is all of 	u. C RN 1; p.297]. The existence of u can 

be proved in a similar way to the bounded case. If there is no other 

u, which stabilise the system:  than that hypothesised, then this is 

the unique optimal control. If there is more than one u, then suppose 

there exist u1, u2 G Xu, and y1, y2 e.1-1 Y' which satisfy 2.7.1. 
Then Aue.hu and tiy e J , and 

Ay = 17 Du 

But 17 is linear, so its domain is a linear manifold. If Au is 

restricted to JD (W), the cost remains finite. As in the bounded 

case, we find a necessary and sufficient condition for optimality, and 

then show that a exists which satisfies this. 

From Section 2.2 

= 2c&u, R > + 2<ay, Q y> + < /Nu, 11 Au > + <Ziy, Q by > 

= 	2 	R > + <M Au, Q g> 	<41u, IL Au > +<17 Su, 

Since OM is dense in A u, 

and we obtain 

3E 
71, 	can be defined DK 1; p.299] 
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J 	=<4u, 2 g.  + (R + 	Q 17) Au > . 	2.7.3 

Then we use 

Theorem 2.7.1: If the linear transformation T is closed and its 

domain is dense in J4 the transformations 

B = (I + eT)-1  , 	C = T(I + TAT)-1 	2.7J 

are defined everywhere and bounded, 

IIBII -1  1 	, 	II CH 	1 	 2.7.5 

and B is symmetric and positive. 

Proof: Riesz and Nagy [RN 1; p.307 ]. 

Now consider the operator S Yi R 2, where S is any operator 

such that 

S
m 
S = Q 	• 	 2.7.6 

Q, and hence S, is assumed bounded, so S 	2  is closed, with 

domain dense in au 
(This implies some kind of controllability and 

observability which needs further research.) 

Then 	B = (I + R 2 	Q R 	 2.7.7 

- 
i 	i 

and 	C = S R 2  (I + R-2 	Q TT 	 2.7.8 

exist, are bounded, and have norms less than unity. 
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Hence 	R-2 BR 2  = [R2  (I+R 2  Yr- QWR 2)R2 i 

= (R 	QV)
-1 	 2.7.9 

is bounded, and 
• 

II (R 	Q  vo-in s II RIn 	• 
	 2.7.10 

W(R +17N  Q )--1  is bounded, and. so  is its adjoint 

(R + i7 Q 17)-1 	. 

Nov if 	g / 

then a chance Liu from is.). is proposed, given by 

Au = - (R + rr Q 17)-1  "g 

- (R +1731  Q17)-1  R 	+ (R+17 Q17)-1 	Q 

-which is bounded, by virtue of the fact that all operators on the right 

are bounded, and t e .li u , Sr e Xy• 

3f 	\ -1 But 	• J = < - (R + I7 Q V) 	I , 2-.E - 2 > 

= -< (R+ l'i' Q 'f7)-1  g, i > 
... 

5  o 

by Theorem 2.6.1 and equation 2.7.9. Therefore, unless 	= 0, 

u cannot be an optimum control. If such a q exists, then g 
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.1 is also sufficient for a minimum, since (R + YIN  Q VT) 	is positive 

definite. The oupstion of existence can now be investigated. 

Consider the control 

= - (R 	
^i 

Q 	Q y . 2.7.11 

By.  assumption, 3 u y e 1 y, such that 

Yo =y-Viu 	• 

So 	ia = - (R -fr. Y1 Q 1V)-1  17N  Q y + (R + Till  Q Y1)-1  TIN  Q W u 

= - CC R + le€  Q 11)-1  71513 Q y - [ (R + ti's  Q VI)-1] R u . 

2.7.12 

Therefore, q is bounded, since only bounded operators and vectors 

appear on the right of 2.7.12. 

But 	(R+ 	0,17) u = - Vir Q yo 

i.e. 	F u + r  Q y = 0 

Example 2.7.1: Consider the system 

t 

y(t) = e
+t  + 	' 	dT 

0 

(1 + u(s)). 

We wish to minimise 
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or y(s)  
1 

s - 
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co 
J = f y2 + u2 dt . 

0 

For this system stabilising controls are known. In fact, if we- propose 

u(s) = k 
s + a • 

Then -  Y(s) - s - 
1 	(s + a 

1 	5 + a k)  

which is stable for 

and 

i.e. 

which gives 

a - k 

a 

k 

u(s) 

y(s) 

= 

> 

= 

= 

- 1 

0 	• 

a + 1 

(a + 1) 
s +a 

1 
s +a 

For optimality, we require 
co 

u(t) + I e( 	t)  y( 1.) 	= 0 
t 

For u(t) we propose the form 

u(t) = - (a + 1) e-at  

oo 
(a + 1) 	e e-at 	3 -ale- atds= 0  -  

0 CO 

(- (a + 1) + I e(1-a)I ds)e-at = 0 

Then 



which shows that the form of u(t) is correct. If a> 1, the 

integral on the left converges, to give 

— (a + 1) 	
1 	= 0 

• 1  a 

a =- A/2 

and 	u(t) 	
- (7 

+ 1
770 

This example, though numerically trivial, Presents a few important 

points. The first is that while all that is necessary.for stability 

is a > 0, the gradient is infinite unless a > 1. So gradient type 

algorithms ray not work for unstable systems. Even if g exists, 

finite, Au = - cg may not be in the domain of W, and hence 

u + Au will not stabilise the system. 

The spectral factorisation methods may still be applicable. The 

operator R +3=  Q W, though unbounded, may have a factorisation such 

that 

= R+ 71- QW 

where F is unbounded in general, but 

o9 	= ON) 

and F
-1  exists and is bounded. Then, as for the bounded case 

u 	- F-1  E FR-1  e Q yo 	. 
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If yo  is unbounded, then the projection operation gives an unbounded 

response, which when operated on by F 1 must 	.be bounded. From 

the previous example 

R + VIR Q 17 = 1+ - s1 	 1  
- 1 • s + 1 

.4./ 2 + s 	At2 - s  
1 - s • 1 + s 

F . 	 F31  

u(s) = (1- s)  cr  1 +s 	1 	1  _ 
2+s 4/2-s • 1+s • 1-s poles of 

v (s) only , 

(1 - s) 	1 	1 
.1 2 + s • A/2 - 1 • 1 - s 

;12 + 1  = - d2 + s 

This method is not very practical when the weighting functions and 

disturbances are only lore numerically. However, for the causal 

operators on discrete or continuous systems, though they may be 

unstable on the infinite time interval, on any finite interval [ 0, T ] 

they are bounded if their weighting functions are exponentially bounded,. 

as is usually the case. Hence gradient algorithms can be used to 

solve finite time problems. However, if the optimal trajectories of 

both u and y converge to zero in this interval, it may be possible 

to infer that these u and y constitute a close approximation to 
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the optimal solution. Although in a practical design such a u cannot 

be applied open loop, the compensator designed by the methods of Section 

2.10 may stabilise the system, even far small inaccuracies in the 

optimal trajectories. In fact, most of the examples of Section 2,4 

were unbounded on the infinite interval, due to the presence of pure 

integrators. The comments made in Section 2.4 about the choice of 

optimisation interval are particularly relevant, to avoid the ratio 

of minimum to maximum bounds on R 	Q 17 becoming too small. 

A further method of optimising unstable systems is first to 

stabilise the system by feedback, and then optimise as for bounded 

systems. Unfortunately, this leads to a cross-coupled cost function, 

but this is no essential difficulty. 

The existence of stabilising controls is not a trivial prOblem. 

In the case of systems which have a finite state-space description, 

with initial conditions as disturbances, controllability is enough 

to guarantee the existence of stabilising controls. However, for 

infinite dimensional systems, the answer is not obvious. Consider the 

time invariant system whose impulse response is a square wave (Figure 

2.7.1). 

fig. 2.7.1 	Square wave impulse response. 



This may arise from an ideal model of a vibrating elastic bar. The 

Laplace transform 
tanh s

nas poles at s 	(n + 1)  j  7E,  and 

_ - 
the existence of stabilising controls is not obvious. One would not 

expect results obtained from truncation to be applicable here to the 

infinite time case. 

2.8 State Space Solutions  

Quadratic optimality for finite dimensional linear systems, 

described by state equations 

ax(t)  - A(t) x(t) + 13(t) x(t) 
dt 

2.8.1 

y(t) = C(t) x(t) 

for continuous systems, or 

$k+1 = 1k xk 	Bk uk 
2.8.2 

Yk = Ck xk 

for discrete systems, has been extensively investigated in the 

literature. The state-vector x(t) is an n-dimensional vector, y 

is p-dimensional, u is m-dimensional, and the matrices A, B, C, Q, 

R are of the appropriate size. The relevant cost functions 
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T 

J = f xT  Q x + u
T 
R u at 
	

2.8.3 
o 

N 

or 	J = E 	
(xT y  .. x  + uT R  )k  k=0 

2.8.4 

• 
are to be minimised. 

The solutions to this problem, derived via dynamic programming 

are well known. They rely on Denman's principle of optimality which 

states that any portion of an optimal trajectory is an optimal trajec-

tory. Using this principle, and the state concept, an optimal control 

law is obtained, which states that u(t) is an instantaneous function 

of state and time. 

For continuous systems, the optimum u(t) is given by 

u(t) 	R 1(t) BT(t) P(t) x(t) 	2.8.5 

where P(t) is the n x n matrix given by the solution of the 

Riccati differential equation 

dP(i).  • -Q+PA+ AT P-PBR1 
B
T P 

dt 
2.8.6 

P(t) = 0 

The optimal cost from time t to T is then 

J(t) = xT(t) P(t) x(t) 
	 2.8.7 
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Similar results are obtained for sampled systems, where 

m  T 	m )-1 m  T n  
uk = (Rk -k A"k+1 -ki -u 'k+1 Ak xk 

2.8.8 

and. 
T 	

T 
-1 T 

Pk 2 Qk Ak Pk+1 Pk+1 Bk(Bk Rk Pk+1 Rk)  Bk *Pk+1 Ak 

2.8.9 
PN 

= Qn  

and also 2.8.10 sTic T • = Xk Pk Xk 

For the continuous time case, these results are derived from the 

conditions of Section 2.2, to show the link between the methods. The 

fundamental property of the state-space approach is the semi-croup law 

obeyed by the transition matrices 

(t, T) 	s) 4(S, I ). 	2.8.11 

t 
Now 	x(t) = 	(t, o)xo + I Z2" (t, T ) 	u(T) dT 

O 

t 
	 2.8.12 

	

= 	xo(t) 	Ti(t , T ) u( 	dT 

O 

	

Then for R P.D., Q 	(and the system controllable), the 

necessary and sufficient condition for optimality is 

T 

R(t) u(t) + I wir  (T, t) Q( T) X(T) d't = 0 • 	2.8.13 
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T 
However 	I viT  (T , t) Q(T) x( dT 

t 
T 

= f BT(t)e(T, t) Q(T) x(T) d T 
t 

T 
BT(t) l T(r, t) Q(T) x(T) d T 

t 

= B
T(t) 1.(t) 

' T 
where 	x(t) = I e(T, t) g(T) x(T).d. T 	• 	2.8.]4 

t 

Now, from theorem 2.2.3 

J(t) = I 	( 	Q x( 
	

2.8.15 
t 

where 	xt(T) = §(T, t) x(t) . 	 2.8.16 

i.e. 	J(t) = xT(t) x(t) 
	

2.8.17 

and. 	u(t) = - R 1(t) BT(t) X(t) 	 2.8.18 

T 
Now 	X(t) = f .1T (T, t) Q(t)[ 	(T, t) x(t) - lT  (T, s) 

-1 ) T.. B(s) R (s)  B (s) 7.(s) ds] dT 



T 	 T 

= C f lET(T, t) Q(T)(1(T, t) a Tjx(t) - f T(T, t) Q(t) 
t 	 t 

T 

t 
	(T) s) B(s) R 1(s) 1T(s) X(s) ds dt 

This is a linear inteual equation for X(s) 	t s T and hence 

the solution is linearly dependent on x(t). In particular 
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X(t) = P(t) x(t) 	. 

Then 	u(t) = - R71(t) BT(t) P(t) x(t) 

= - K(t) x(t) 

and 	3(t) = xT(t) P(t) x(t) 	. 

2.8.19 

2.8.20 

2.8.21 

T 

But 	3.(t) = I( xT  Q x 	uT R u)dt 
t 

T 
xT 	x 	xT 	R K xklt 

t 
T 

= I xIT CQ +KT RKJ x dt 	• 	2.8.22 
t 

x(T) = qi(T, t) x(t) + f 4(T, s) BT(s) K(s) x(s) ds 
t 

qr(T, t) x(t) 
	

2.8.23 

on solving the resultant integral equation. 
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T 

Then 	(t) = I xT(t).ig(r, t) (Q + KT R 101-(t, t) x(t) at 
t 

xT(t)E I  'Cr.T(t, t) (Q 	KT  R K) 	t) d'r Jx(t) 
t 

xT(t) P(t) x(t) . 

T 

So 	P(t) = 	t) [Q + KT  R Kj1.1-(T, t) dT . 	2.8.24 
t 

Therefore, without loss of generality, P(t) can be symmetric, and 

also P(T) = 0. 

Since P(t) is expressed as an integral, it possesses a derivative 

a.e. Differentiate both sides with respect to t 

- dP = Q(t) + KT  R K (t) — 	 t)  EQ KT  R KMT,t)d.T 
dt 	 at 

T 

	

- I INZT(T, t)E Q + KT  R 1C-1 at 	t) dt 

Now 	x( 	= -k( T, t) x(t) . 

So 
ax( ,r) 

— 	a 
11)(1., t) 	x(t) 	t) (A — B K) x(t) 

at 	t 

= 0 	X 	• 

V  i.e. a T  at
,t) CT, t) (A - B K) • 2.8.25 

T 



So _dP _ 
dt Q + KTRK + CA - BK)TP + P(A - BK) 

Q + ATP + PA + PBR 1BTP - PER-1BTP -. PBR 1BTP 
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= Q + ATP + PA - PBR 1BTP 	• 	2.8.26 

This derivation has been rather long winded compared to the simple 

dynamic programming argument, but the link between integral and 

differential methods is established. In our derivation, no use was 

made of the fact that x(t; is a finite-dimensional vector. A similar 

procedure can be used for sampled-data systems. An alternative deriva- 

tion has been given by Luenberger for the time-invariant case 	. 

2.9 Spectral Factorisation  

An important operation to be performed in control calculations 

is the factorisation of a self-adjoint operator A into the product 

of a causal operator and its adjoint, or, more generally, the product 

of a causal operator, a self-adjoint instantaneous operator, and the 

adjoint of a causal. operator. Tie shall assume that A has a bounded 

inverse. Then 

A = FR P 
	 2.9.1 

or 	A = Tx  S T = (I + Gx)S(I + G) 	2.9.2 



where 	F, T G 
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2.9.3 
3 

and 
	s 	n 7 

• 

A further restriction that is imposed is that the operators F, 

T and S all have bounded inverses, though these factorisations may 

not be unique. The operators F and T are bounded only if A is 

bounded. In this section, we first present general methods for the 

solution of the problem, followed by particular methods for special 

cases. 

1. The solution of the optimal control problem for all 

= 	a  3.1.  
yo 

specifies G of 2.9.2 uniquely, where 

. u = - (G u + CG a 3 ) + • 

In control problems, when the P.D. operator R + \TIE  Q TT has a bounded '14 

inverse, we know that a factorisation exists, because of the existence 

and uniqueness of the optimal control. 

2. Any method. used to solve the control problem can be turned into 

a method of spectral factorisation. The iterative methods of Section 

2.6 are particularly useful. 



Put 

(I + 0-1  . (I + G - G)(I + 0-1  

= I - G(I + G)-1  

= I - (I + G)-1  G . 

M = G(I + 0-1  

2.9.4 

2.9.6 
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E 	\ n J_ if G does. 

Also, if G is compact, so is M. The method below finds M rather 

than G. However, we can always find G from L, since 

M+MG = G 	 2.9.7 

and the iteration scheme 

	

Gk+1 = M + M Gk 	2.9.8 

is usually convergent since it is generally a functional ecuation of 

Volterra type. 

Now 	(I + G)1:S = A(I - M) 

= A - A M • 	 2.9.9 

NOW put 	A = A+ + A + D 

as in 2.6.2-5. Then 

	

S + eS = A+  +A +D-A+M-AM-DM 	2.9.10 
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Now project 2.6.10 into the various mutually exclusive subspaces. 

Then 	S = D • 	 2.9.11 

0 = A+  -AM-DM-[A M] + . 	2.9.12 + 	-  

Gx S = A - EA M] 	2.9.13 -  

'5,e concentrate on 2.9.12, which can be arranged into any iterative 

form desired. E.g. 

( ) 
	

Jacobi method 

M 	= 	D 1  (A + -A+M- [AM]+  ) . 

(ii) 	Relaxation nethod (Gauss-Seidel for w = 1; Jacobi for w = 0) 

M = (D + wA+)-1( A+  - (1 - w)A - [ A M ]+ ). 2.9.15 

EXample 2.9.1 Laplace transform domain 

Factorise 	1 

Answer 	(1 + G) 

and 

1 

 

(1 — s)(1 	s) 

0./ 2 + s  
1 + s 

G(1 + G) -1  

(see example 2.5.1) 

— 1  
2 + s 

However, using the Gauss-Seidel method, we obtain 
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1 1 — 
2 --- —2-- + (1 — s)(1 + S) 1 	1 — S 	

+ 
1 + s 

(D + A4)-1  = (1 	+ 71--) )-1  
+ S 

2(1 + s) 
2s + 3 

(s)  
dlc+1 	1  = 

1 + s 	( 	1 1 
(5)3 + 2s + 3 	1 + s 1- s 

m (t), 

M
o 

M2 

1.1.3 

t=0 

= 

_ 

= 

0 110(t)i t =0 
 

(t) 
1 t=0 

LI2(t) 

1.13(t)i 
' t=0 

= 

= 

0 

0.5 

0.4 

0.416 

2s + 3 

8s + 13 

t=0  5(2s + 3)2  

42.6s2 	1380s 4. 984 

125(2s + 3)3  

0.414 ... 

The main difficulty in the transform domain is the partial fraction 

separation. No such difficulty exists in the time domain. In fact, 

for more general continuous systems, specified by their impulse response, 

we find 

oo 
R(t) u(t) 	f A(t, T ) 11( T) at = - f '4T  (T, t) Q(T) yo(T) d T 

0 

CO 

= f(t) 
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oo 	t 	oo 

and I A(t, T) u(T) dT = f B(t, T ) u(r) dT 	B(T, t) u(T) 

"ae wish to find li(t,T ) where, equating the kernels of 2.9.14, 

we obtain 

t 
R(t) M(t, T ) = B(t, T 	- I B(t, s) 1!(s, T) as 

00 

- f B(6!, t) 11(S, T ) ds 

t 

The procedure is very similar to the methods of Section 2.6. 

3. 	The classical method of separating rational power spectral densi-

ties into reciprocal poles and zeros with respect to the jw axis 

in the s domain, or the unit circle in the z domain is perfectly 

valid for simple analytical examples. However, it is not a computa-

tionally attractive method, since it is not easily mechanised. Youla 

[Y 1], Davis [D 1] and other writers have discussed these kinds of 

techniques for multivariable systems, i.e. square matrices whose 

elements are rational functions of s. 

). 	If the control system is amenable to a state-space treatment, then 

the spectral factorisation problem can be solved by means of the 

ratrix-Riccati equation. If u, x are optimal trajectories, then 

= 
	 2.9.16 

where 	K e .7+  n J_ . 	 2.9.17 
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Also 	x = § (x0  8 + B 	2.9.18 

where 8 is the impulse function, and 	maps the space of state-

trajectories into itself. 

• 
Then 	I = 	xo  8 + W u 

= 	a] 	+ 17 u 	2.9.19 

if all states are controllable from the input. 

Theorem 2.9.1:  

(I + BT  4  KT)S(I + K§B) = R + 117.  Q t7 	2.9.20 

where 	S E 7+ n7_ 

Proof: 	111 = - Kai x0  8 - KW II 

[ K § B a 3+  - 	B) 	2.9.21 

= 	.4[G. a] 	- 

Hence by the results of Section 2.5,  equations 2.5.23-4.0 

(I + 
BT 41 m 	+ K§B) =R +171t(ZW. 

For the particular case of continuous time-invariant dynamics, Q and 

R. constant matrices, and infinite cost interval, these results can be 

stated in the frequency domain as a generalisation of a result of 

Kalman's [K 2] . 



Theorem 2.9.2: 

(I 
	BT .r 2(-s) P B R 1)R(I + R 1  BT  PEs) B) 

. 
= 	R + Bt §-T  (-s) Q §(s) B 	2.9.22 

where 	Q+PA+AT P-PBR 1 BT P = 0 

2.9.23 
P is positive definite, symmetric 

and 	1(s) = (s I - A)-1 
	

2.9.24 

Proof: 	Kalman has proved the result for single input, single output 

systems, with R = 1. The gemralisation is very simple to prove 

and follows Kalman's proof very closely. We shall omit the proof. 

However, re shall prove a similar, but not so well known, result, for 

discrete tine systems. 

Theorem 2.9.3: For discrete time systems, under the sane stationarity 

conditions as Theorem 2.9.2, 

(I + ge(2.-z ) KT )(R + BT  P B)(I + KT  (z) B) 

R BTi5T(*Ez) B 	2.9.25 

where 	P = Q+AT PA+A
T PBK 

2.9.26 

with 	P positive definite, symmetric , 

K = (R + BT 
 P Br BT P 

	

1 

	A 	2.9.27 

and 	§ (z) = (z I - A)-1  . 	 2.9.28 
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Proof: 	From 2.9.26 

P-AT PA+AT PBK = Q 

z(AT P 

ATP) z-1(P A - P A) + P - AT P A + AT P B K = Q. 

(z-1  I - AT)P(z I - A) + ATP(z I - A) + (z-1  I - AT)PA + AT  P B K = Q 

Then multiply on the left by e = e(i), and on the right by 41 . 

P+rAT P+PA.1-+ AT PBKI = 	 § • 

Now multiply on the left by BT, and. on the right by B. 

T BT P B+ BT  R" AT  P B+ BT P A 433+BT,lat AT PBK ,IB  = BT§3E Q1B  

Now add R to both sides. 

R + BT P B +B 	+ BT  P B) 1(R + BT  P B) 

(R 	 BT  P B)(R + BTp B)-1BT p A 	 BT  4-'1  AT P B(R + BT  P B)-1  

(R + BT  P B)K. (1B 

R + TiN  Q . 

The left hand side can be simplified to give 

(I + BTe KT)(R + BT  P B)(I K B) = R + l`r4  Q. . 

It is known that (I + K B)-1  is stable if P is the unique positive 

definite solution of 2.9.26. So the spectral factorisation problem is 

solved. 
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5. 	For discrete systems with signals in 12[0, N], 12[0, co) or more 

generally Itin  0 12  CO, N3 etc., a very simple numerical method is 

available for factorisation of self-adjoint operators, in terms of 

components. To be general, we describe the algorithm for operators 

mapping Rin e 12  [ 0, W] into itself. 

If 	u E 	0 12  [0, 1T] , 	2.9.29 

then u can be represented as a sequence of m-vectors uk. The self-

adjoint operator A mapping u into b, i.e. 

A u = b 	 2.9.30 

is represented by 

N 

E 	A ik  uk  = bi  
k=0 

where the Aik  are m x m matrices, and 

AkA. = • 

2.9.31 

2.9.32 

If u is represented as a column 

«11 
	

2.9.33 

...2 

NN) 



A becomes a partitioned matrix of 'm x m blocks, i.e. 

A = 

	

All  A121 	I A1N\\ 

A21 	A22 I 	 

	 1_ 

AN11 	I 	I ANN if  

= A
T 2.9.54 

   

   

Now—this is required to be factorised into the product of a causal 

operator and its adjoint 

i.e. 	F = A . 	 2.9.35 

However, a causal operator is represented by a lower block triangular 

matrix, since it can only operate on past and present time. Hence the 

factorisation problem reduces to decomposing a symmetric matrix into 

the product of an upper triangular matrix and its transpose. Men A 

is positive definite, this decomposition is unique, and very easy to 

perform computationally via the Cholesky algorithmE P 1; p.8. 19] . 

Let 	a.. 'be the elements of the EU x mN matrix A, and u.. be 
ma 	 10 

the elements of F. Then the algorithm is organised to replace the 

lower half of A with F. 

11+5 



repeat 

For j = 1 to i 

For r = 1 to j - 1 

a. 	= a. - u u 
1j 	

. 	
. rj 

u.. 	a. /u.. if i 	j 
10 

i = j 
JJ 

repeat 

For i = 1 to mN 

repeat . 

14.6 

Algorithm 2.9.1: 

This method is explicit and easy to perform computationally. Note 

Paige's comments on solution of the equation 

A x = b 

by first finding 

F x = F31-1 b = c 

and solving 	x = F
1 
 c .  

This is precisely the factorisation method of optimal control solution 

that we propose in Section 2.5. Paige shows that this is an exceptionally 



0 
U Fll 

UF 1 UF
22 21 

U F31 	
U F 
 32 

• 

F 2.9.36 

11+7 

stable numerical method, and is very insensitive to rounding errors. 

Note also that the solving of the equation 

F x = c 

is simply performed by back substitution, due to the triangularity of F. 

The factorisation is only unique to within a unitary transformation. 

If U is any m x m unitary matrix, then 

will be another solution. 

2.10 Feedback and Compensator Design 

For a control system to be termed automatic, it must have built 

into it a method for recognising the presence of disturbances and 

correcting for them. This is most easily done by feedback. From classi-

cal design concepts it is known that well-designed feedback does more 

than realise particular controls for particular disturbances. Reduction 
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of non-linear effects, disturbance rejection, and reduction of sensi-

tivity to plant variations are all beneficial side effects. In fact, 

a feedback realisation of a control system is used because the know-

ledge of the plant and disturbance is deficient in some sense, and a 

basic problem is to design feedback systems which have good stability 

properties. 

A general system is represented in Figure 2.10.1 in block 

diagram form. There may exist subsidiary outputs which are available 

for feedback, but not directly costed, and these are included in the 

y vector. The cost matrix Q will then be only semi-definite. H1 

and H2 
are general causal operators to be designed. 

This configuration may allow the achievement of other design require-

ments besides a satisfactory performance index. 
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If W is the weighting function for a finite state system, 

Y• represents initial conditions, and y is a measurement of the 

complete state vector, then it is possible to minimise the perfor- 

mance index 

T 
. 

J =f x
T 
 Qxt u

T
Ru dt 

0 

by setting H1  = 0, and H2 the instantaneous operator 

R 1(t) g(t) P(t) using the notation of Section 2.8, and this is true 

for all initial conditions. In particular, if R, Q, A and B are 

time invariant, and T = OD then H is just a constant gain matrix, 

since P(t)---. Pco,  a constant positive definite matrix. If all 

the state vector is not available for feedback, it is not possible in 

general to achieve optimality for all initial conditions. 

In this section, we present a method for achieving optimal 

control for particular disturbances, using a causal feedback compensator. 

We shall begin by assuming Hi  9 0, and design a time invariant 

causal filter H = H
2 

which allows optimal control for some initial 

disturbance. In fact, if u is an optimal control, and y is the 

corresponding optimal output, then 

=- Hy  	 2.10.1 

7e particularise, and examine multivariable discrete and continuous 

time systems. In discrete time, 2.10.1 becomes 
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k 

uk = E 	Yi 
i=0 

where the subscripts refer to time increments
, uk 

2.10.2 

is m-dimensional, 

yk is p-dimensional, and Hk is an m x p matrix. In order to. 

solve for the Hk  uniquely, we find p sets of independent optimal 

trajectories, using p sets of independent disturbances, and use the 

same H to relate these. Then, defining the matrices 

t  
Yk 	= ky

1 
 5 y25 

2.10.3 

Uk  = (ul'  u2, 

one obtains 

k 

Uk = E. K-1 
Y. 
1 

i=0 

2.10.4 

Providing Yo 
is invertible, H is now uniquely specified. If 

= 0, as is usual, 

Y
o 	= Yo o 
	 2.10.5 

and hence Y
o 

is invertible if Y
0 is.is. Then we obtain 

Algorithm 2.10.1 

- Ho = U Y -1 
o o 

-H1  = (U1 
+ H

O
Y
1
) -1 	 2.10.6 

Bk 	Uk  + (HoYk  + HiYk_i  +...
\ 

Hk-1Y11 Yo 

yP)k 

10) 
'k 



(simple back substitution). 

Itisdesiral°-ethatthesecLlencell.is stable 

i.e. 

 

as j-9"oo . 

 

However, it is difficult to give necessary and sufficient conditions 

which ensure this. If the seouences U and Y are expressed in 

terms of z transforms, then 

H(z) = - U(z)Y 1(z) . 	'2.10.7 

Since optimal controls are stable, U(z) is a stable transfer matrix. 

However, there is no guarantee that Y(z) is minimum phase. To obtain 

a stable H, Y
o
(z) should be chosen to make Y(z) M.P. 

Bat 
	 Y = y

o 
+ WU 
	

2.10.8 

= Yo - W H Y 
	

2.10.9 

i.e. 	(I +Ti 	= Yo 	 2.10.10 

(I + TT H5-1  = Y Yo -1 
	

2.10.11 

But the closed loop system is stable, since both U and Y are 

stable. Hence Y Yo
-1 will be stable, and so Y must be N.M.P. if 

Yo is. However, Y
o 

minimum phase does not seem to guarantee that 

Y is also. 
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Examples 2.10.1! Figures 2.10.2-3 present the results of applying 

algorithm 2.10.1 to some of the examples of Section 2.4. 

The same procedures are conceptually the same for continuous 

systems, but their numerical application is more difficult. We 

require to find K. and F(t) such that 

t 
- U(t) = 	E Ki  Y(t -Ti) 	.1 F(t -T) Y(T) dT 	2.10.12 

i 

where F is integrable. 	Pbr constant R, the optimal U(t) is 

absolutely continuous (by corollary to equation 2.4.5), except possibly 

att=0.11ence,L=0 	i > 0; i.e. without loss of 

generality 

t 

- u(t) = E:0  Y(t) 

	

	
F(t - T) Y(T) dT ▪ 	2.10.13 

0 

We assume that -I/
.c)
(0) = Y(0) is invertible. Then 

- K
o 	

= U(0) y0-1  

t 

U( t) - U(0) = - j  F( T) Y( t - T) ciT 
0 

To find F, we propose fcur methods. 

1. 	If it is possible to take Laplace transforms cf both sides of 

2.10.15, then 

- F(s) = (U(s) - U(0)) Y-1(s) 
	

2.10.16 

152 
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Examples 2.10.1 

1. System of example 7.L.7. 	r= 0.1 
Filter designed by back substitution algorithm. 

-C.1z=C5E Cl 

-0.2649CE-01 

..185e2E-fr  

C.S!ECCE CC -C.2Ece2E CC C.8764CF-01 

0.8CnCCE-C2 -C.24CE5E-C2' C.11C3CE-C3 

0.74275E-C4_ 

fig. 2.10.2 

2. System of example 2.4.3 	r= 0.1 

C.12CL1E Cl 0.74.512E CC 

H11.152!°S21 4E-C1 C.5/33CE-C1 

-C.12C55E-C1 C.S13CE-C2 
-C.221E1E-C2 C.135E5E-C2 
-0:2151iE-C2 -C.21CC1E-C2  

-C.26521E CC 

-C.26321E-C1 

-C.65252E-02 
-C.ElzICEE-C3  

fig. 2.10.3 

C.142S2E_CS__ 

C.21C21E-C1 

0.7659lE-C2 
-C.5C510EIC3' 

H
12 

C.2E26 SE CC 
-0.28535E CC 
C.422C8E-C1 
C.65146E-C2 
C.1i225E-C2  

-C.7t2E2E CC 
-C.17717E CC 
-0-27307E-C1 
-C.47512F-C2 
-C.C4C4EE-C2 

C.6C8CE CC 
L..1114CE CC 
C:17154E-f-__1 
(-7.21526E-02 
-C.2C661E-03  

-C.45767E 
-C.CSECcE-C1 
-C.1Cf-C1E-c1 

-0.628ECE7C3: 

H
21 

,.---, 	 - 
-C.1 	1 164 E CC -C.66C26P-Cl_ C.1C?.2EE CC_-C.7if-61-  
0.42896E-01 -0.2286E-C1 	C.1CCC7F-C1 -C.11'12E-C1_ . 	__ 	 , 
C.62E61E-C2 -C.45G56E-C2 C.2 2C' 	-C.1/f6=72E-C27 

C.145811----( 9  7C.Eigc(76E-0.3j -0.4;3704E-C3 7C.577C,Eq7C3 
- - 

- C.1212/F-C2  C.454CCE-C2 -C.1710EE-C4 - C.5C181E-C4.7 

...a.--  • 

-0.34420E CO 
-0.f7252E-C1 
-C.C1722E-C2 
.-0.1(746E-02 

-C.c1177F CC_ 0.1L7KE CC 
70.146888  00  r,..c.C658E-C1 

H22 
-C.21.872E-C1 0.13555E-01, 
'-c.2E551E-C2 
7f.D.15EEE-C2-  C.227CIE-C3_  

0.33835E 00 

C -.5 1752E-C2 
C.7E868E-02 

-C.46938E-0J- 



2. In the time domain, differentiate both sides cf 2.10.15 

t 

T 
at= F(t) Y(0) + f F( T) 

a T 	T?  a T 	2.10.17 
- 

0 

t 
- F(t) = at d T 

y(o)-1  ( F(t - T) dY(7)
/  

aT"IY 
0
-1 
	

2.10.18 
0 

Since 2.1C.18 is a Volterra equation, this will converge from any 

starting point by simple successive substitution. 

3. Neither method 1 nor 2 is particularly suitable if U and Y 

are only known numerically. A third method of solution is to place 

t 

E(t) = U(t) - U(0) + I F(t -T)y(T) dt 	2.10.19 
0 

co 

and minimise tr. f E2(t) dt with respect to F, with such algorithms 

as the conjugate-gradient method of section 2.3. 

4. A method which can be used in conjunction with method 3 is to 

approximate the integral by a numerical integration procedure, and 

solve the resultant equations in a similar ray to the discrete time 

case. This approximation is then refined using method 3. 

The same stability problems arise with continuous time systems 

as with discrete systems. If 

H(s) = Ko  + F(s) 	2.10.20 
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then the eouations 2.10.8-11 also hold for continuous time. Having 

calculated a feedback operator H by the methods above, one can use 

this directly as a feedback compensator, if it is suitable. However, 

it may be computationally convenient to use the more general configura-

tion 2.10.1, where H1  / 0. 

Then, to achieve the same trajectories 

• = (I + HI)-1  H2 	 2.10.21 

• + H1  H = H2 	 2.10.22 

• Considering the continuous time case as an example, it seems preferable 

that the weighting functions 111(t) and H2(t) decay as quickly as 

possible, for ease of simulation. Let H
2 have the same instantaneous 

transmission as H, i.e. 

H = KO + F 

2.10.25 

H2 = Ko 
+ F

2 

F + Hi K
e 

+ H
1 
F = F

2 
	2.10.24. 

Using this as a dynamic equation for F
2 

in terms of F1
, one possible 

design method is to minimise ( for single input/output systems) 

oo 
J = f H12  + a H.2" dt . 

o 

The following property is a consequence of these methods: 

2.10.25 



Theorem 2.10.1: The compensated system, as designad above is optimal 

for the entire subspace spanned by the initial disturbances which make 

up the cDlumns of the matrix Y. 

Proof: 	(R 	Q W) ui  = - 	Q yoi 
	

• 

for each i, if ul  is optimal. Consider a disturbance 

1 
yo 	E a. yo 

wherethea.are scalars. Since the closed loop control system as 

designed above is linear, the control whibh will result is 

u = 	E a. u. . 

But 	(R +175€  Q 71) u 	= E a. (R +TIN  Q W) u. 
. 

=- E a;  173e  Q y
o
i 

i 

Q( E a. Y i) 

	

. 	o 

= 	vr‘ f  Y 0 • 

i.e. the control is optimal for any linear codbination of the yo
i
. 

Example 2.10.2  

Consider the continuous system represented by 
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Y(s) - as 2 
+ b  + 1 + 

2 s u(s) A s s 
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If we minimise 

J = 
i co 	2 1 f 134 

27cj 
--i co 

2 
+ 	I u I 	cis 

u > 	x2 
	IP 	

fig. 2.10.4 

1 
	 Y 

1. 

by the method of Section 2.5, we obtain 

I 1.10 i  = 

 

as + (,13 - 1)a + (2 -4/3)b  

S2 + 13s + I 

Y( s)  \ YlSl 

 

(4/3b -b + a)s +b _ 2 	1 S 	+ il3S + 1 

By the state space methods, one obtains 

(13 	1 - J3 
P = 

J3 - 2 	213 - 3 

and the optimal gains shown in Figure 2.10.5 



-1 
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x1 

+1 
+1 

fig. 2.10.5 

This also leads to the optimal u(s), y(s) as above. This configura-

tion is optimal for all initial conditions. However, if only y is 

accessible, then H(s) becomes 

H(s) 	
u(s)  

	

) 	
as + (43 - 1)a 	(2 - 0,3)b  

y(s 
 

(W3b - b + a)s +b 

Note that this filter depends on the particular initial conditions. 

For a = b = 1, the disturbance yo  is just the impulse response 

of the system, and in this case we have the theorem: 

Theorem 2.1C.2:  In a SI/SO system, if the initial condition 

is the system impulse response W, then 

G = H W 

where 	(1 + C7)(1 	= 1 +1'1 W 

yo 

2.10.26 

and 	H(s) = 

Proof: When yo  represents initial conditions 

= -Gu-EGrx 
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from equation 2,5.38. Now here 	a 	= 	8(t) 	the unit 

= 	- G u - G 

impulse., so 

2.10.27 

and y = W(1 + 2.10.28 

Put 1 + u = 1 - (1 + G)-1  a 

= (1 	a)-1 	• 2.10.29 

So 	y = W(1 + G)-1  

But 	H 'Sr = H W(1 + G)-1  = 	a 

= + 	+ 0-1  

i.e. 	G = H W . 

This is true for our example. If yo 	w(t) is non-minimum phase, 

then H(s) may be unstable. 

An alternative design procedure for designing a compensator is to 

try and build a system such that the total open loop transfer function 

is G. This will be optimal when yo(t) = w(t), for al/so systems. 

It is shown in the next section that this kind of system has excellent 

stability properties. One possible structure is shown in Figure 2.10.6 



fig. 2.10.6 

11 

ye 

16o 

• 

A more general type of structure which takes into account the dis-

turbance yo 
is developed in Chapter 3. However, the structure of 

Figure 2.10.6 may be useful. 

Example  2.10.3 e-s  U(s) - - s 

  

(1 + G(-s))(1 	G(s)) = 1 - 1 
s
2 

G(s)
1  = 

Require 	Hi 	= 1 s 

Then 	
H1 

- 
1 - e-8  

F (s) is the transfer function of a zero-order data hold with impulse 

response Hi(t) as in Figure 2.10.7. 
• 



fig. 2.10.8 
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0 1 	 t • 

fig. 2.10.7 

The overall control system becomes: 

• 



fig. 2.11.1 
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2.11 Properties of Optimal Systems 

This section devotes its attention mainly to time-invariant 

single-input single-output continuous systems, which are specified in 

terms of their impulse response, or transfer function in the frequency 

domain. Then by optimality of a feedback system rie shall mean a system 

with open loop gain G, where 

2 	2 
I 1 + G 	= 1+ IWI 	2.11.1 

and 1 + G is minimum phase. 

• On the Eyquist disgram 

2.11.2 

implies that 1 + G lies outside the unit aircle. If G is plotted 

on the Nyquist diagram (Figure 2.11.1) 



then G lies outside the unit circle centred on the -1 point. 

Since (1 + G)-1  is stable, G must satisfy the Nyquist criterion 

for stability with gain 1. Then also: 

Theorem 2.11.1: If G is an optimal transfer function, then 

(1 + kG)-1  is stable for k e (1, co). 

Proof: Since G lies entirely outside the unit circle centred on -1, 

it encircles the - 1 point exactly the same number of times as it 

encircles the -1 point, where - 1 — e (-2, 0). Hence (1 + kG)-1  is 

stable for k e 	op), since (1 + G)-1  is stable. 

Corollary 2.11.1: G has infinite gain margin. 

Proof: (1 + kG)-1  is stable as k---p. op. 

Corollary 2.11.2: G is minimum phase. 

Proof: If G is minimum phase, then, from the basic definition in 

Section 1.8, El an F with infinite gain margin, such that 
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as C 

 

 

and for e < e max,
-1
(e)  is stable. But by corollary 2.11.1, 

eI + G has this property. 

i.e. 	+ G.)-1  is stable for 11--  < 2. 



1 	-1 	1 G) 	= 	1 _ 1 	G.)(i. G) -1 

= 	- t(i G)-' 

as k --g- co. 

Corollary 2.11.3:  G(jw) has a phase margin greater than 600. 

Proof: The phase margin of a transfer function G(jw) is the angle 

1800  -/G(jw),  then . 1G(jw) 1 = 1. Consider Figure 2.11.2. 

G(jw) lies on the unit circle C1  if IGI = 1. However, G(jw) 

must lie outside circle C
2. The phase margin of G is the angle . 

But by construction 
	

However, m 
 is the angle of an equi- 

lateral triangle. 

• • 

>0 
= 60 2.11.3 

The phase margin is an indication of the damping and overshoot of the 

closed loop transient response. 
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Any transfer function G that possesses the properties 

and (1 + G)
-1 
 is stable, will be called optimal. 

Theorem 2.11.2: If G is optimal, so is kG, for k ..>=. 1. 

Proof: (1 + kG 1  is stable for k = 1 from Theorem 2.11.1. 

2 
But 	I 1 +kGI 	= 1 + kGm + kG + k2GmG 

(k - 1)Gr (k - 1)G + (k2  - 1)GMG'+ GM + G + GmG 

1 + rff12  + (k - 1) [ G + GM + GAG + (k2  - k)GMG 

rwl2 	(k  _ 1)  iw  12 + k(k - 1) I G 	4  

- 
for k = 1. 

Exam-oles 2.11.1, 2: The transcendental transfer functions 

1. 1 
.47 

2.  
1 

s + 0.5 + 0.8e0.7s  

are both optimal. (See Figure 2.11.3.) 
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t=0 
Lemma 2.11.1: If g(t)1 is finite, non zero, then 

1 

Unit circle 

fig. 2.11.3 

lim 	/G(jw) = - 900 	if G(s) is M.P. 

Proof: By initial value theorem 

lim 	s G(s). = g(0) 	under quite general conditions. 
s IA. co 

But 	s G(s) = Re s G(s) + j. Im s G(s) • 

Hence 	lim s G(s) = lim Re s G(s) + j lim Im sG(s) 
14-4-co 
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= g(0) / 0 real, finite. 

i.e. 	lim Im sG(s) = 0 
Iskwco 

lim 	G(s)  = lim tan -1  Im G(s)  
Re s G(s sl 	-•-co 

= 0o 

	

1 	the minimum phase. 

But 	G(s)  = A + As)  

• • 	 lim 	A(s)  = — lim 
s -..co 	s -woo 

— 900. 

A more comprehensive stability theorem than Theorem 2.11.1 can 

be proved, with the aid of the following geometrical lemma. 

Lemma 2.11.2:  If a point P lies outside a circle, then the angle 

subtended by the diameter of the circle at P is less than 90°. 

Proof: 

167 

fig. 2.11.4 



168 

Consider the diagram of Figure 2.11.4, where AB is a diameter. At 

least one line, AP or BP, intersects the circle at C. But ACP  

is a right angle, since ACB lies in a semi-circle. But ABP 	0, 

and since the sum of the angles of a triangle is 180°  
• 

APB  = a < 90° 
	

2.11.4 

In fact a = 90°  is only obtained when P lies on the circle. 

Theorem 2.11.3:  If G(s) is an optimal open-loop transfer function, 

i.e. I 1 4- GI2  = 1 	1171 2, and (1 + G)-1  stable, then the closed 

loop system in Figure 2.11.5 

G 

-1 fig. 2.11.5 

is asymptotically stable (in the sense of the Popov criterion-) if 

f is a memoryless non-linearity, in the sector "f'co and obeys 

the assumptions of the Popov criterion. 

Proof: The Popov criterion as formulated by Dewey [D 1] or Aizerman 

and Gantmacher [AG 1]gives a condition for stability with f in a 

sector (0, k). So the given system must be transformed into such a 

system as shown in Figure 2.11.6. 



G 

-1 

2 	, 

1 + -2-  G 

Now put 3 = f 

F 
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fig. 2.11.6 

• 

F 

-1 fig. 2.11.7 

To satisfy the Popov criterion, we plot 

FII(jw) = Re F(jw) + jw Im F(jw) 	2.11.7 

and the graph of i(jw) must lie entirely to the right of a line 

intersecting the real axis at - , for the system of Figure 2.11.7 

to be stable with p in sector (0, k). However in this case 

Re F11(jw) = Re F(jw) 	0. 	2.11.8 



For 	Re F(0) - Gc0)  
1 	-f G(0) > 0 	by assumption 
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and 
	I A( iw) = I /GOO - 	+ 	I 	2.11.9 

But G(jw) lies entirely outside the circle of diameter 2 centred 

on the - 1 point. (FiEure 2.11.8). 

Hence, from lemma 2.11.2 

/F( ) = a S  90°  

and so 	Re F(jw) = 0 
	

w 	2.11.10 

Hence, F and r lie 'entirely in the right half plane, and any 

vertical line in the left half plane is a Popov line, and so the 

system Figure 2.11.7 is stable for 5, in the sector (c, co); i.e. 

the original system in Figure 2.11.5 is stable for f in the sector 

( ': co). 

Kalman [K 2] investigated the asymptotic characteristics of the 

closed loop system, when 
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2 	2 
1 1 + 	= 1 + 	171 

. 
and 1)---*. op. Els conclusions are also shown to be true for non- - 

rational G, 7. The approach that we adopt uses the Bode diagram, 

rather than root-locus techniques which become inconvenient for non-

rational functions. From 2.11.11 

1  

	

1 1 + G12 	1 + -ct)1 711 2  

1 w12 

11 
• • 

	

+ 01  2 	
1 + -f117 

1  
1 +  1  

4. 
"fs 17 12  

tI12  Now consider the behaviour of 
11 + GI 2  

2.11.12 

in various frequency ranges. 

(I;ote that 	is the closed loop transfer function from input to 
1 + G 

costed output.) For most systems, 17 is essentially low-pass, with 

maximum 171 near zero frequency, and as frequency increases 17(jw)1 

is asymptotic to k w y, where 9 is real in general, and may be 

infinite. Define w
o 

as the bandwidth of the closed loop system. 

I.e., for w = wo  

r 	= 1 
2.11.14 

Then 

  

2 
I 1 + G12  

iw o 



I V.1.1  
G.) o 

But if 	is large enough, then for w near wo  

117 I 

2 —2)) i.e. 	k wo 	= 1  
1 

coo 	
Grk2)2V 

2.11.15 

2.11.16 
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For w << w  
h .  2 , 

1 
11 + G-14  

For w = wo 

= 0.707 

Hence 1)1171
2 	

1  
1 + GI 2 	0)29 

1 + 
co 2Y 

0 

i.e. • 2.11.17 

This behaviour is Plotted in Figure 2.11.9. 

1 
.707 

fig. 2.11.9 
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With reference to Guillemin [G. 1 ], it is seen that this behaviour 

corresponds to the gain response of a Butterworth filter, for integral 

(finite) , and V corresponds to the excess of poles over zeros 

of W. However, if this response characteristic is defined as generalised 

Butterworth for V real, then Kalman's result can be generalised. 

17 
G 

For 17 minimum phase, 1 + 
	approaches a true Butterworth 

filter of order 	. However, if Ti is N.n.P., W = 71
1 ' 

A. where 

is then asymptotic to the v:th 

order Butterworth filter cascaded with the all-pass system A. 

• When •V 	op, the response in Figure 2.11.9 approaches that of 

the physically unrealisable ideal low pass filter. However, in this 

case, there will be no finite wo, since in general, we would need 1? /  

infinite. 

w 
i.e. 
	

Y I 	
co 
	if ( 	) > 1. 

The inverse Nyquist diagram is often used for control systems 

design. Circles in the Nyquist diagram, centred on the real axis, and 

passing through the origin will map into straight lines parallel to the 

imaginary axis, on the inverse Nyquist plot. In particular, a circle 

1 
of radius a maps into a line distance -- from the origin, as in 2a 

Figure 2.11.10. 

W
1 
 is M.P. and A is all pass. 

 

1 +G. 



Hence an optimal a — on the 
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the Nyquist diagram with asymptotic radius of curvature a, then 

Nyquist diagram 

fig. 2.11.10 

inverse Nyquist  

Inverse 
Nyquist diagram 

diagram lies entirely 

to the right of the vertical line with abscissa 2. If G 	0 on 

1 
Cr 

1 
is asymptotic to the vertical line 	= 	, 

2a 



CHAPTER. 3 

RANDOM PROCESSES  

3.l Optimal Control of Stochastic Systems  

While almost all of the results in this short chapter are known, 

it is included for two main reasons. One is to show how abstract 

concepts can deal with stochastic processes ouite concisely. The 

other reason, for this chapter is to develop the problem of identifica-

tion, which provides a motivation for Chapter 4. 

Loeve EL 4; Ch. 8 ] develops conditions under which stochastic 
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can be 

can be 

lion). 

space, 

or with zero mean) 

considered as elements of Hilbert spaces. The inner product 

defined by an expectation operation (with perhaps time inteEra- 

For families of stochastic processes which constitute a Hilbert 

the development of Section 2.2 is valid. In particular, for the 

processes (not necessarily stationary, Gaussian, 

stochastic control ordblem, the eauations 

J = <y, Q y> 	<:u, R u> 

y = yo  + U 

7c(R u le€  y) = 0 

where yo, y and u are interpreted as stochastic processes, remain 
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meaningful and valid. The 7t of ecuation 3.1.3 is included. for 

greater generality, and represents a projection operation of the 

gradient into the space of allowable control variation. For deter-

ministic problems, it projects the gradient onto the subspace of, time 

fUnctions which are identically zero for negative time. For stochastic 

problems, since usually only the past and present data (noisy measure-

ments) are given, the projection operator projects the gradient into 

the space spanned by these measurements. The projection it enables 

the notion of causality to be used, as developed in Section 1.8. 

The operator R is taken to be instantaneous (and hence causal) 

with bounded inverse R. Then from 3.1.3 

u= 	R
1 It 	y) 

	

- (R 1  y) 
	

3.1.14_ 

where u e $47t) by assumption. In general, the only variable 
available for control synthesis is the past history of a measurement 

vector m, which consists of a linear operation on the outputs, corrupted 

with additive independent measurement noise v. i.e. 

m =Cy+ v 	 3.1.5 

3t 
Hence, from 3.1.4) 	

-1 , 
is the optimal linear estimate of - R 	Q y, 

even if yo, and hence u and y, are non-Gaussian processes. To 

specify the projection explicitly, we write 3.1.4 as 



• - 	(R-1  WN  Q y) . 
Im 

However, this projection can be arrived at in two steps. 

= 
I1  

( 'n (R 1 1  Qy)) • 

I m  Y 

3.1.6. 
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Let 
	• = 	(R7 131  Q y) 

I; 

= IC (I l 	Q y) 

= 1-13.  V 

where H1 
is a causal operation on y. But 

• = -I% (H y) m  1 

= - 111 171 (y) 

3.1.7 

3.1.8 

due to the commutation of projection and causal operators; 

i.e. 

where 

111 

- H 1 2 m  

Sr = H2 
 m 



178 

is the optimal linear estimate of y from the data m, and H2  is 

causal. This derivation shows the application of the certainty equi-

valence principle, that if variables are not measured directly, they 

should be replaced by their optimal linear estimates. 

For Gaussian processes, optimal linear estimation and optimal 

estimation are eauivalent; i.e. projectioning, and conditioning are 

eauivalent for Gaussian processes EL 4; p.462]. Hence 

	

R u + E N31 Q y = 0 	 3.1.11 
Im 

Also 	u = E (R 1  V3 Q y) 
Im 

= E (E R 1 	Q y) . 
Im 	13r 

3.1.12 

If y represents all of the states x of a continuous system 

represented in a finite state-space form, then 

u= E (E R 1  BT  P x) 
Im Ix 

= E (R 1  BT  P x) 
im 

1 
=R B

T
Px 3.1.13 

where P is calculated from the Riccati eouation 2.6.6 independently 

of the stochastic processes involved, and x is an estimate of x 

independent of the control problem. Hence the problem reduces to 
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finding Hi  and H2, or Hi H2  = H in equations 3.1.9-10. To 

compute these operations, knowledge of statistical parameters are 

required. In particular, for Gaussian processes, knowledge of means, 

and auto- and cross-covariances completely specify the processes- 

-z id• 2 Correlation 

Auto- and cross-correlation functions, and their transforms (if 

defined) have proved very useful in the study of linear systems. For 

deterministic sit-nals, the cross-correlation of two (vector) time 

functions can be defined as an integral: 

oo 

r yu(t) = l y(t) UT( 	 . 	 3.2.1 
-c°  

For stationary zero-mean stochastic processes, the expectation operator 

(which is just an integral with respect to probability measure) is used: 

ryu (t) = E y(T) uT(T- t) 	• 	3.2.2 

It is preferable to have an abstract definition of correlation, 

applicable to elements of a general Hilbert space, and this can be 

obtained by the use of the development in Section 1.2. If W 

is a map from it
u 

to Y , where if u 	, y E 

y = W u 



then, if also z 6 Jy, we can form the inner-product 

f = <z, y> 

= < z, 17 u> 

However, if u is interpreted_ at a mapping from the Banach algebra 7 
into J , then we can define its conjugate mapping from 14 

	
into 

the space of continuous functionals on 3' . 

i.e. 	 f = < z, 	u > 	 3.2.3 

< z u

3E

, 	 > . 	

• 3.2.4. 

The functional z u = r 	is defined as the cross-correlation of zu 
z and u. 

Theorem 3.2.1 	ryu  = (ruy  )l 	 3.2.5 

Proof: 	is shown to represent a linear operation, and the X 
yu 

operation denotes its adjoint. Then consider, W E 3' y  alai u 
H e YY. Then the inner product 

f = 	< H y, W u > 	 3.2.6 

on 	is defined. 

But 	 f = < (H y)21, TT > 

3.8o 

< H(y 	> . 	 3.2.7 
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But y u'al  can be considered a linear 

operator on H. Hence, by the rule for definition of conjugates 

f = 	<H, 17(y 13 )51  > . 	 3.2.8 

However, from 3.2.6 

<H, 17 	3r31  > . 	 3.2.9 

Since W and H are arbitrary, we must have 

u y 	= (y u31)N  

uy 	(r3rur  

Returning to the control problem, the correlations of 3.1.2 with, 

respect to the variables yo, y and u yield 

✓ .+ 17 r 
yyo 	

= Ty oy o 	uyo 

= r 	+ r 
Y• Y 	Y 	 uy 

o 

y = Y • u 	+ 	r o uu 

3.2.10 

3 .2. 11 

3.2.1 

Since u 6 42 (7t), and hence H u e :?,.(7c) when H is causal, it is 

orthogonal (independent for Gaussian processes) to the error in pro-

jection. So 

• i•e• 
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< R u + 	Q y), H u 	_< R u+ 1.73E  Q y, H u > 

+</t(l'im.  y) - 	y, H u>- 

= < R u + 	y, H u > + 0 

.3•E 
= <RuuM +1 d̀ Qyu

m
,H >. 

Since H is arbitrary 

R ruu 	r yu = 0 	 3.2.13 

This analysis applies whether stochastic cr deterministic problems 

• are being considered, and shows that the solution of the problem 

depends purely on t.le correlation functions, for equations 3.2.10-13, 

p 
together with 

u = - H m 	3.2./4 

completely specify the solution. Hence if deterministic and stochastic 

problems have the same correlations, the filter H will be the same, 

and so solution of the stochastic problem is reduced to finding an 

equivalent deterministic problem. 

For systems conveniently describable by the state-space approach, 

the separation cf control and estimation provides a very useful method 

of systems design. For stationary, zero-mean systems only empirically 

known in terms of weighting functions and measured correlations the 

following method is proposed. Consider Figure 3.2.1. 
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yo 

4?) 
	C 

  

      

    

m 

 

      

       

fig. 3.2.1 

For convenience, we will take C = I. This is not necessary, however, 

and C can be included throughout if desired. 

Then m = v + v + W u 
o 

=d +Wu 	3.2.15 

However, we assume that 

= 0 	 3.2.16 

Yov  

and 
	r 	= a-  5 	 3.2.17 vv 

VV 

where crvv is assumed a P.D. covariance matrix, and & represents 

the unit operator (dirac delta). (This is not strictly a functional 

in J", but belongs to the wider class .:7f.) But from 3.1.3 

+Q y) 
I m 

R u + % -e Q(m - v) 
I m 



But since v is white, and W35" is an anticipatory operator 

7t
Um Q v = 0 	 3.2.18 

m 
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i.e. R u + 	Q m = 0. 
1m 

3.2.19 • 

Hence 3.2.15 and 3.2.19 define a dynamic ecuation and a gradient 

equation. The method then reduces to finding a deterministic matrix 

signal D with auto-correlation rdd, and performing an optimal 

control calculation as described in Chapter 2. With the appropriate 

trajectories, a filter.  H is calculated via the algorithms of Section 

2.10. Note that if v is white, the matrix D will have an impulse 

in it, but since this cannot be corrected by any control, it will not- 

affect the solution. In fact, D can always be chosen mir.imum phase, 

as shown in, the next section, thus eliminating some of the difficulties 

associated with the stability of H. 

If 	(I + L)r (I + In = r 	+ r 
Y Y 	_vv o o 

r
dd 

 1 

3.2.20 

where (I+Jis stable, then L is a suitable matrix signal to use in 

the algorithms of 2.10. However, the' of 3.2.20 simplifies calcula-

tion, for we will wish to find H such that 

= H(I + Y) 
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= H +H Y. 

i.e. 	H = U —HY 
	3.2.31 

and this equation can be used recursively to calculate H. 

• 

.3.3 Optimal Filtering and Duality 

In the last two sections, it was shown that for Gaussian processes, 

optimal filtering can be separated from optImal control, leading to a 

certainty equivalence principle. Filtering also has important appli—

cations in its own right. However, when the filtering problem is 

formulated in abstract notation, a duality with the control problem 

becomes immediately obvious. We shall consider the least squares 

filtering problem; i.e. we wish to find the minimum variance estimate 

of a noisy signal. Consider the system of Figure 3.3.1. 

w 
K S 

n 
P  

p+n 

fig. 3.3.1 

r r 
 
=. I 3.3.1 

rnn = Crin  I 3.3.2 

r
nw 

= C 	. 3.3.3 
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If s = S 17, where S is a causal operator & K is an instan- 

taneous operator, we wish to choose a causal filter L such that 

= L(p +n) 

= L(S K w + n) 
	 3.3.4 

where 	 = <s - s, s - As >- 	 3.3.5 

is to be minimised with respect to L. 

But 	 J = < s - L(p + n), s L(p + n) > 

• <s - Lp, s - Lp > - 2 < s Lp, Ln> + 	Ln > 

However, since n is uncorrelated with w, and. hence with s or p,r. 

<s 	Lp, In>,  = 0 	 3.3.6 

i.e. 	J = <s - Lp, s - Lp > + <In, In> . 	3.3.7 

Let 	YKw = s - Lp 

= 	- ISKw • 

i.e. 	..71X = S - LSK • 	 3.3.8 

Then 	J = < YKw, YKw > + < In, In > 

• 
= < TIC= YK > + < 	, L > 

= 	<YK, YK > + <Lb- , L. > 



= < 	2yx > + < , 
nn 
T 1.;> 

= <Yr,orY > 	o-nn 121 > vv 

3.3.9 

3.3.10 
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where cr 	and 	are self-adjoint. vv 	nn 

Also 	= SY- _ le! s L3e 
	

3.3.11 

where 	Y = S K 1. 

Equations 3.3.10, 3.3.11 represent (in terms of operators) the 

equations for an optimal control problem. However, the operators are 

represented in terms of their adjoints (duals). That is Ir takes 

the place of IT and S
m 

the place of W. By direct analogy with the 

control Problem, the filtering problem reduces to the spectral facto4-

sation of the operator 

A = T 	+ S• T 
V  SE 	3.3.12 1111 	V 

. 
i.e. 	(I + L)c- 	+Lm) =T

nn 	v +ST v S
m 3.3.13 

For multivariable systems in the time (frequency) domain, duality 

implies transposition of matrices and reversal of the sign of time 

(frequency). 

For !'arkov processes, Kalman and Bucy have shown that the filtering 

may be performed recursively KB 1]. In particular, for the noise 

model of Figure 3.3.2, the filter is shown diagramatically. 
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filter noise model 

=Ax+v 
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fig.. 3.3.2 

• E v(t) vT(t - T) = VV cr S(t - T ) 

E n(t) n
T  (t -T ) 	rin 8(t - T ) 	 , 

E v(t) n
T
(t T) = 0 

.K(t) = S(t) MT  alln-1 
	

3.3.15 

where S(t) is the optimal covariance matrix of the estimation error, 

given by 

dS = AS+SA
T -SMT cr

I
MS+ 	' dt 	nn 	vv  3.3.16 

where the initial S(0) is given. This equation is a matrix Riccati 

equation in forward tine, dual to the backward time equation arising 

in the control problem. The two equations have nany dual properties. 

In particular, the filtering equation can also solve the spectral 

factorisation problem in a similar way to the results of Section 2.9. 
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Discrete systems have similar ecuations. 

This filter forms an integral part of the control system_for noisy 

stochastic systems. The overall controller-estimator diagram (in the 

stationary freouency-domain case) becomes the system in Figure 

al lb  
B 

	plant  

fig. 3.3.3 

BT  

f(s) = (s I — A)-1  

Systems designed using the Kalman filter as a control compensator have 

been extensively investigated. In particular, the filter itself is 

always stable, as in th,-; overall closed loop system. An important 

property is the following. 

Theorem 3.3.1: The overall loop gain from b to a is the optimal 

gain G(s) obtained from considering the control problem alone, and 

this is independent of K arla M. 

Proof: G(s) = R 1  BT  P§(s) B . 3.3.17 

   

But the transfer T from b to a is given by 



i.e. 

i.e. 

X = 	10 a B u) + Bu - iK n 

(I 	M)X = (K M 41.  B.  + cSB)u . 

(I + gEK F)-1  (K I: B + giB) 

(1 + giK m)-1(aK m 1) B 

. 

- T = R 1 T Pdres) B = G(s). 

B 

B 

fig. 

-T = R 1 
B
T 
P H 

where H is the transfer from u to X. But, neglecting noise, 

If the loop at a b is closed, but opened at b - c, then, 

with the plant removed, there seems to be no guarantee that the resulting 

compensator (which is the one that is actually built, and corresponds 

to the filter 	designed by the method above) is stable. That is, 

the system represented in Figure 3.3.14  may not be stable. 
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The loop gain from a to p is given by 

L = Q (K 	+ B 11-1  BT 	 3.3.18 

For stability, (I + L)-1  should be stable . 

Let 	S = I + L 

I + a K 	+ 1B R 1  BT  P . 	3.3.19 

Then S-1 is not guaranteed stable. 

3.4 Identification and Estimation 

The development of the last few sections has shcwn that some 

stochastic prcblems can be reduced to the solution of deterministic 

ones. In fact, considering Figure 3.L.1, 

knowledge of the operators W and D determine the solution of the 

control problem. Correlation measurements on an actual system enable 

191 
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W, and D (to within an all-pass system), to be determined. Of course, 

in any actual statistical experiment, 17 and D can only be determined 

to a finite error variance, due to the essential finiteness of the 

test. It is generally assumed that the input u is accessible, .but 
• 

that the input rr is inaccessible, and this makes 	essentially 

easier to estimate than D. 

A. popular method of estimating W is to let u be white noise 

of unit variance, and measure the cross correlation of the output y 

with u. Let 

u um  = I . 	3.4.1 

u wm  = 0 3.1.2 	c 

Then we can state 

m Theorem 3./,.1: 	W = y u 	3.2-...3 

Proof: 	y = d +IT u 	3.1.1 .24. 

where 	d = D w 	3.4.5 • 

Let H be an operator which maps white noise into a valid element 

of a Hilbert space. W also has this property. Then, formally, 

<y, H u> = 	H> 

But 	< y, H u > = <a + w u, H > 
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= < d u + iv u u2.1, H > 

0 + <17 I, H > 

=< i7, H > 

Since H is arbitrary, 

y u 

Hence the problem of estimatinc 	reduces to estimating r , 
Yu 

the cross correlation of y and. u. Since u is accessible, variance 

reduction 7onte-Carlo technicues can be used. In any practical control 

system, there will be inherent non-linearities in the plant, and the 

estimate of Ti will depend on the actual variance of u chosen, as 

well as its distribution ( not necessarily Gaussian). This estimation 

technique then may provide a convenient method of statistical linearisa-

tion. 

Since w is inaccessible, the estimation of D is a more diffi-

cult problem. It is then only possible to estimate D to within an • 

all-pais filter, and the natural choice to make is that D should be 

minimum phase. For u = 0, 

I 

r 
YY 

= r
dd 

= D w 	w
M 
D
R 

= D 3.4.6 
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Hence a spectral factorisation of r
dd 

 is needed to determine the 

operator D, whose inverse is assumed stable. Since, in general, d 

has a white noise component, r
dd 
 will be bounded below, and- so D 

will have a bounded inverse. Hence, any of the methods of Section 2.9 

are immediately applicable. 	 • 

In general, we car only find an estimate of r 
Y 

due to a finite 
Y 

set of measurements. The following development, for the particular 

case of a stationary discrete time system, shows that in the case of 

a finite (though large) data set, the spectral factorisation method 

produces a good estimate. The techniaue of maximum likelihood estima-

tion is applied to the data set to determine an estimate of the weighting 

matrix seouence D.. That is, we let 

F = D 1 3.4.7 

and construct F such that 

w = F y . 	 3.4.8  

Consider the system in Figure 3.4.2. 

w- 	
D 
	y 	F 
	w 

fig. 3. 4. 2 
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= E 	D. D. . 	j, integral. 	3.4e9 J i=0 

= 	E 	D
k- 

 . w. 	3.4.10 
j 

i=-00 	
j 

 

w. = 	E 	F. . y. 	3.L.11 
j-I I i=-co 

k 	 k 

where E Fj- i D. = 	E D. . F.
1 
 = 18k 	3.4.12 

j=1 	j=1 	0-2. 
 

and 8k is the Kronecker delta function. 

Consider a sequence of N independent random vector variables 

wr which depend on the parameters (F..)k 
 which we include in a 

ij  

vector 0. The seouence of vectors w
r 

can also form a partitioned 

Then the probability of w, given A can be written 

N 

p(wl e) _ % P(wrle) 3.4.13 
r=1  

since the 17
r 

(being white) are independent. Now define 

“1,71 e) = - In  p(wle 

N 
E In p(w 10) . 

r=1 	r  
3.4 .14 

By the maximum likelihood technique, p(wie) is maximised with 

respect to e. This is eouivalent to minimising L, the likelihood 
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vector w. 



function, and the value of 6 that produces this minimum is called 

the maximum likelihood estimator (M.L.E.). However, we can use the 

following: 

Theorem 3./..2: If I\T independent observations W., i = 1 	N, . 

with p(w - 6) known, are available, then provided the prior density 

p(e) is nowhere zero, the posterior density of 6 for large 	is 

approximately normal with 

mean 	= [0 : aL -- = o 1 
.0 Ge 	

3.4.15 

and variance o-ee  - = 1ee 71  (w10) • 	[14 2]. 	3.4.16 

If w. is assumed Gaussianly distributed, with zero mean, and 

unit matrix covariance, then 

N . 

p(w,' e ) = 	 1  
r=1 	r=1 (270P/2  

exp l, — 2 w w 
rT r 

N 

w T.w ] 3.L.17 E- 	E 
1 

‘Np/2 exp 2 	r r • 
r= 

i.e. 

N 
i 	T Z.,  , L(w10) Y p In 

 2 + 2 w10) = 	+ 	W
r  Wr 	

' 3.4.18 
2  

r=1 

For g to be the M.L.E., 

cL  
716 = ° 
	

3.4.19 
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i.e. each matrix 

2L _ 
2F; - for each k = 0, 1, 2, ... 	3.4 .?0 
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But (w r r 
T w  ) 

 	_  
aFk r=1 'a(wrT  wr) 	2Fk  

2(w T  w ) 
E 	r r  

2 	OFk r=1 

However, from 3.4.11 
r 

= E F v r-k "k k=- op 

op 
= 	E 	Fk yr -k k=o 

3.4.21 

3.4.22 

T  r r 

op 	op 
T = ( E 

i=or-i r )( k
E

o 	
yr-k) 

= 

OD op 
E 	E Fk  yr_k) 
i=o k=o 

= tr. 
OD OD 

E 	E (F. y 	T Y ) F 
1 r-i r-k k i=o k=o 

Hence 
a(wrT wr)  

al''lc 

00 

- 2 E F. y 	yT 
r- i r-k i=o 

3.4.21+ 



198 

a L Hence if 
apk 

- 0 	k = 0, 1, 2, ... 

N cc 
T 	= 0 . y 	y E E F 

r-i r-k r=1 i=o 

Changing- the order of summation 

OD 

E F. 
i=o 1  r=1 

T 
Yr -j yr-k 

0 	for k = 0, 1, 2, 

3.4.26 

If the stationary process y is assumed ergodic, then for large N, 

N 
1 

N r=1 

T 
Y Y r-i r-k = r YYk_i 

3.4.27 

provides an estimate of the auto-correlation matrix seouence of y. 

Hence the asymptotic result (equation 3.L.6) is seen to hold for an 

infinite data set. 

i.e. -1 
D 	r

Y 
 = D = 0 	for positive time. 

Y 

However, for a finite data set, the analysis provides an estimate of 

the error variances, though the analysis becomes comnlicated. The 

set of equations 

co 

F. r
k-i 

 = 0 	k = 0, 1, 2 ... 	3.L.28 
i=o 

is arvinfinite set in an infinite cf unknowns. However, there exists 
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an indeterminacy (apart from an arbitrary unitary transformation) that 

is resolved by the fact that 

of 

E Di I D.T ro 	 3.4.29 
i=o 

The following method of solution is proposed. First scale the 

F sequence by Fo-1   ; i.e. 

Eo =F
-1  F = I o o 

= F0-1  F1 	3.4.30 

E2 	= Fo 
-1

F2 
	• • • 

With Bo 
= I, 3.4.28 is only valid for k = 1, 2, 3 ... 	In full, 

the following set of equations is obtained: 

E
l 
r
o 

+ E, r1T 	
4 

+ E, r
2
T + • • • 

3.L.31 

E, r2  + E2 r1 + E
3 
ro + 	• • • 

El rl 
+ E

2 
 rot + E3 r1 

T 
• • • 

r1 

r
2 

i.e. (E1 E2 
E
3'   • 

ro  1 ri  1 

r1 I ro I r1T  I • • • 

LrA 
r2 

 

3.4.32 • • 

• • • 
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This set of equations can be solved by the Choles1 factorisation 

technique of Section 2.9. For the single variable case, a similar 

algorithm has been proposed by Levinson DI 2], which approximates the 

solution by taking larger and larger tcp corner blocks of equ,.tion 

3.4.32. This was programmed and proved_ to be excellent. 

Having found_ the sequence I, E1, E2 	, this is inverted 

by back substitution to provide a solution secuence I, C1, C2 • • • 

where 
	C. 	 1 	 2 	

+ E. ) 
	

3.4.33 

By virtue of Theorem 2.10.1, thiS C sequence can be used directly 

to determine the feedback compensator, by solving an optimal control 

problem using one column of C at a time. 

To determine the scaled sequence D. (which can only be unique 

to within an arbitrary unitary matrix), the following method of solu—

tion is proposed. Let 

co 

ii = 	E 	C. C.
T 

i=1 

Then, from equation 3.4.29 

ro 
= D M D T  . o 	o 

3.4.34 

3.4.35 

If both M and ro 
(both symmetric) are factorised via either 

Cholesky triangulation, or the square root algorithm, such that 
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0 

3.4.36 
and. 	 = A AT  

then, equating factors, 

B = Do A . 

Do = B A71 	 3.4.37 

I 

Hence the C sequence can be resealed to produce 

D.=3) C. . 
1 	o 1 

3.4.38 



CHAPTER 4 

APFROXIU'ATIO..T, SET 7  S 	...47D BOUNDS  

L.1 Design Practicalities 

The previous chapters have considered in detail the properties 

of optimal control, and closed loop design based-on optimal control. 

For control system design, the theory of optimal control has two main 

uses: 

1. To show exactly what can be achieved for a fixed performance 

index, and provide a lower bound for comparison with a sub-optimal 

design. 

2. As a design method in itself. 

In this chapter, the calculation of optimal control laws as a 

design method will be adopted. 

Inherent in engineering design criteria, though often not 

explicitly specified in quantitative terms, is that the resultant 

control system should be as simple as possible. The designer is often 

prepared to allow some degradation in the explicit performance index 

to achieve this. Another important, but often unstated, criterion is 

that the control law should not be too sensitive to the actual plant 

it controls. 

202 
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For linear systems, a simple design usually implies either gain 

feedback from a few important outputs, or a combination of these with 

compensators consisting only of a small number of integrators and

gains. Pure delays may or may not be tolerated as compensator elements, 

depending on whether the realisation of the system is by analog or 

digital means. However, one only obtains simple desicns from optimal 

control theory, when 

. (a) a quadratic cost criterion with constant weighting matrices 

is used, over an infinite time interval, and 

(b) the dynamic system is linear, time-invariant, and has a 

state-vector representation, .where the dimension of the state 

is small. 

In the above case, either pure gain feedback from all te states 

can be designed, if all the states are available for measurement, or 

a Kalman filter type compensator can be used to estimate those states 

that are unavailable. This type of design has been well investigated 

in the literature. However, when the state-space representation is 

not of small dimension, then simple designs no longer result from the 

theory, and designs of the type described in Chapters 2 and 3, where 

dynamic filters are synthesised by numerical convolution of impulse 

responses with measured signals, become more attractive to implement. 

Clami_cal feedback theory; hay ever, shows that good designs can 

often be achieved by simple control structures, even for complex plants. 
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This results from the fact that usually only a few states are "dominant" 

and the remainder contribute very little to the performance. However, 

to achieve the property of infinite gain margin, as predicted" from

optimal control (Section 2.11), all states must be fed back. Since 

there is no physical system whose gain margin is actually infinite,. 

true optimal control can never really be implemented. This implies 

that under high values of gain, simple models may cease to be valid. 

In the light of Section 3.4, the exact transfer characteristics 

of a physical plant can never be measured exactly. It seems reasonable 

to try and approxAmpte physical plants by low-dimensional state-space 

models, though the mathematical justification for this constitutes a 

field for further research. Tie shall sidestep the investigation of 

the errors involved in the approximation of a physical plant by a 

simple model, and confine the discussion to the approximation of a 

complex linear model by a simple one. 

What we wish to do in this chapter is the following. re assume 

that a complex model is given, and that an approximation is made 

according to some engineering criterion to obtain a simple model. 

Algorithms for making approximations have been developed for many 

years, and are still a research topic. Some of these are briefly 

described in the next section. Now if an optimal control problem is 

solved using this simple model to obtain a set of feedback gains, or 

a compensator design, we try to answer the following vestions. 
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1. Is this design good when applied to the complex model? 

2. Hew do we choose the ratrices Q and R such that good designs 

will result? 

Truxal [T2] gives a good resume of the difficulties cf-estimation, 

and the associated control design problem. The reason fcr the design 

difficulty is that while open loop characteristics of two systems may 

be apprcximatey alike, the characteristics under closed loop control 

may be entirely different. In fact, one syster may have excellent 

properties while the other is unstable. From an engineering viewpoint, 

• this is simply explained. At high frecuencies, there is usually more 

phase shift in the actual plant than in the model. This is unimportant 

in the open loop system, since it does not contribute very much to the 

transfer characteristics when the gain is low, and hence is difficult 

to estimate. However, when large gain is applied, the actual gain at 

- 1800  phase shift can become greater than one, casing instability. 

Hence, we are in the unforturate position of having the control design 

depend on the system model, and the system model depend on the control 

design. The more we want the system to do, the better cur model shoUld 

be, such that the open-loop approximations remain valid in the closed 

loop system. The following example can illustrate these points. 

1 
L Example .1.1:  Complex model: 	 

(10 J s 

Simple model: 
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Comparison of the transient responses of the two systems (Figure 4.1.1) 

shows that, on a large time scale, there is little difference between 

the systems. 

Simple 	  
model 

Complex model 

fig. 4.1.1 

A gain of 10 causes instability in the complex plant while the simple 

plant has a good ouick response. However, small gains from 0 - 3 show 

similar closed loop responses from both systems. 

Having performed a control design on a simple model, it is impor-

tant to be able to estimate the degradation in performance of the more 

complex system. Since gain that is too high can cause instability, it 

is useful tc have an estimate of an upper bound on gain in terms of 

modelling errors. If an optimal control calculation is performed, 

limits on the Q and R matrices are preferable. 

Throughout the remainder of this thesis, only time-invariant 

systems will be considered, although those results presented in . 

abstract terms can apply to the time-varying case. In particular, 

continuous time (multivariable) systems are taken as the trime examples. 

Also in the following discussion, the philosophy behind the 

weighting function approach will become apparent. For the state-space 
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description, small changes in modelling only result from small para-

meter changes in the system matrices, whereas small delays, extra 

phase shift, and especially corners in transient response produce 

large structural changes in the model, since the dimension of the 

state space must be increased. However, most small system 1)erturba-

tions of this kind reduce only to small changes in the weighting 

function, which proves more versatile in this context. 

L.2 Approximation 

The classical methods of approximation of systems were originally 

derived in the context of circuit synthesis. These methods, which 

usually work in terms of frequency response, attempt tc fit either 

experimental frequency curves, or irrational frequency functions to 

simple rational models, which are transforms of state-space models. 

Horovitz CH 5; Ch. 12] discusses some of these methods from the point.  

of view of the control engineer. 

One very popular method is Pade approximation. Given a rational 

Laplace transform model, of a size determined by engineering judgement, 

the parameters are fitted to idealised frequency response data by 

expanding both models into a power series in s, and truncating after 

all the unknown coefficients have been uniquely evaluated. In the 
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time domain, this technique is equivalent to fitting moments, and in 

this way is often used for fitting experimental transient responses. 

One advantage of this method is that only simple equations reed be 

solved. However, sometimes this method. does not give very good appro- 

ximations at all, as Horowitz points out. 	••• 

Instead of fitting slopes, curvatures, etc., at the frequency 

origin, other methods fit curves at isolated frequencies. Similar 

methods are also used in the time domain. rodern methods of approxima-

tion specify an error criterion, and use computational hill-climbers 

to minimise this, in terms of the model parameters. rinimum sum of 

square errors, minimum of maximum error, etc., are all popular criteria, 

and have their advantages and disadvantages. In a statistical frame-

work, the maximum likelihood technique has been successfully applied 

by AstromE A2jto fit a rational discrete time model to noisy data 

without first solving the set of linear equations in the filter impulse 

sequence derived in Section 3.4. 

Horowitz makes the observation that it is far more important to 

analyse the errors of approximation when the system is to be incorporated 

into a closed loop, than when used in an open loop fashion. This is 

the prime difference between control design and filter design. 7;e 

have described an example in Section 4.1, where instability results 

when modelling errors are not taken into account. The following 

example shows that approximation may predict instability,  when in fact 

there is none. 
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Example L.2.1:  Ref: EC 2; p.170 ] 

b 
	e-s 

fig. 4.2.1 

It is known that this system is stable if the gain b lies in 

the region 0 < b < 2-2-t  . However, 

b e-s  

• F(s) — 

 

1 4.
b e-s 

b e-s 	Is)  

s + b e
-s - D s) 

D(s) = s + b e-s  

b 
= b- CID - 1)s +b  s

2 
 --6-s

3 
 + 

Truncation of this power series at any point indicates at least one 

pseudo-positive root - indicating instability. 

A further point that arises in approximation theory is illustrated 

by a comment of Zadeh and Desoer E ZD 1; p.4077. They present an example 

of a system whose frequency domain curves differ by an arbitrarily 
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small amount in amplitude, and yet whose time responses differ by an 

arbitrarily large amount at a particular point. This illustrates 

that the term "small" error should be interpreted in ter s of the 

operator norm. 

L.3 Sensitivity  

Assuthe that a linear plant is given by equation 4.3.1. 

Y  = yo 	Wu 	 L.3.1 

A control u is anplied, which may or may not be implemented by a 

feedback law. A cost 

J = <y, Q  y>  + <u, R u > 	4.3.2 

results from this control. Consider an arbitrary perturbation Sig 

in the operator W, which may cause perturbations Eu, Sy, 8Y0  

in u, y and yo  respectively. Other independent perturbations 

of these variables nay also occur. Then the new cost becomes 

J +PJ = < y + Sy, Q(y + Ey) > + < u Su, R(u + Su) > 

= <y, Q y> + 2<y, Q y > + <Ey, Q 8 y> + <u, R u > 

+ 2<u, R E u > + <&u, R 8 u> . 
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i.e. 	J = 2 <y, Q Ey> + 2 <u, R. Eu> + <Ey, Q Ey > + < Eu, P. Eu >. 

L.3.3 

However Ey = Eyo  + 817 u + Zr Eu + 8W 8u 	4.3.4 

AJ = 2<y, Q Eyo> + 2 <y, Q 817 u> + 2< y, Q Eu > 

+ 2 <u, R. Eu> + <Ey, Q Sy> 

+ <Eu, R Eu > + '<y, Q SW Su > 

= EJ + z  82J . 	 4.3.5 

• • 
	 = < y, Q Eyo> + <y, Q Eu> + <u, R. Eu> + <y, Q 817 u > 

= 	4 y, Q Ey°  > + <vp: Q y, Eu> + <R. u, Eu > + <Q y, E77 u> 

= <y, Q Eyo> + <R. u +V%  Q y, Eu> + <Q y 11'1; 81V >. 

4.3.6 

Theorem L.3.1:  (Generalisation of a result by Pagurek [P2].)  

The sensitivity of the cost to small perturbations of the system (both 

parameter and structural) is independent of whether feedback or open 

loop realisation is used, if the unperturbed system is optimal. 

Proof: For optimal systems, the gradient 

R 	 Q Sr 

= 0 . 
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Now tyo  does not depend on the control at all. If feedback is used, 

then 8u depends on 6', and if not, then it is independent of tW. 

But since the sensitivity of cost with respect to Eu is zero, by 

optimality, the sensitivity of cost to t7 is independent of control 

variation, i.e. 

"-L-• 8 J = <37, Q EY0 > 	<Q y u3, 81v > . 	4.3.7 

In control design, the term of prime interest is the term due to 

tW alone, as 8W affects the stability of the closed loop system. 

Using the same disturbance on different systems enables a rood compari-

son of performance, and then Ey°  = 0. In this case, the first order 

increase in cost for an optimal design is 

EJ 	= 2 < Q ryu  , EM' > . 	4.3.8 

For continuous multivariable systems 

oo 

83 = 2 tr f r (T) Q EW(T) dT 	4.3.9 
0 Yu 

The evaluation of EJ gives an estimate of the change in optimal cost 

due to a change in the weighting function. However, for the first 

order approximations to be applicable, we require 

E
2
J << 83 

We shall make the rather drastic assumption that this is equivalent to 

EJ << J 	 4.3.10 



J 
1E31 < 0.3 L.3.11 

For simple systems, a reasonable engineering rule of thunb is 

213 

for the first order estimate to be approximately valid. Using this 

rough criterion, the first order estimate of cost change can prove to 

be a useful check on an approximate design. If an opti:-al design is 

performed on a simplified model, to obtain a cost J. then the control 

law Obtained may be implemented on a more realistic model, whence a 

change in cost AJ.  is obtained. If EJ is a good estimate of ts.,J, 

IEJI 
i.e. 	remains small, then sensitivity provides a quick check on 

the applicability of the simple design. On the other hand, if 	I EJ I  

is large, then the actual closed loop system is invalidating the original 

approximations. 

Example L.3.1: 

A simple example illustrates 

	

Complex model: 	17(s) 	- 

	

Simple model: 	77(s) 	= 

these concepts. 

1 
s(1 + 0.1s) 

1 

A 
s plane- 

-10 

neglected pole dominant pole 

fig. 4.3.1 

EW(s) - 0.1  
1 + 0.1s 

Consider the cost to a step disturbance; i.e. 

YO(s) = 



jco 
I 	 1 	- k 	- 0.1 ds 

s +k s k 1 0.1s 
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CO 

Let J 
	I  ( 2 	1 

u)  
2% 

dt . 
o 	

k2 

Then, for the simple model, from the state-space analysis, 

= 

and the optimal control is a negative feedback gain k. We now inquire 

into the validity of the application of this design to the complex 

plant. Using complex variable theory 

jco• 

IEJ =71-7 	y(-s) u(s) 817(s) ds 
"LILO 

-j CO 

From residue theory 

0.1  
1 + 0.1k 

18J1  =  0.1k  
J 	1 + o.lk 

• 

I 8JI For small k, --5-- is small; the original dominant pole remains 

dominant, and the first order approximations remain valid. In this 

example, there is a large degree of stability margin, and valu'es of, 

k up to about 10 still 7)roduce acceptable responses from the second 

order plant, thourh the first order approximation is no longer valid. 



0 = 

a 

8J - 2 x 0.1  
1 + 0.1k 
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The value 
	E •1 = 

is obtained for 1: ^, 5,- the case cf critical damping. Figure 4.3.2 

EJI 	 A:0* 
plots 	vs. k, and the actual — vs. k. The method may also 

be used to check effects due to discarded cross-coupling texas in • 

mu7tivariable systems. 

Example /..3.2: Consider the system of Figure 4.3.3. This is simplified 

to the system 

117(s) = (21 

	

0) 

1 
0 

by neglecting the nveak" interaction terms. Assuming the cost criterion 

is formulated in terms of the decoupled systems, as for example 4.3.1, 

gains k are fed back from the appropriate outputs as shown in 

Fioare 4.3.3, giving 

But 

• •  

J = J1 
+ J

2 	
2 

by evaluating a complex integral as for example 4.3.1. 



2 3 4. 5 7 
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Sensitivity 

1 

1 

-0.1  
0.1s + 1 

-0.1  
0.1s + 1 

1 
S 

k 

fig.4.3.3 

9 10 11 



  

0.1k 
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J -  1 0.1k ' 

As distinct from Example 2..3.1, this syttem may become unstable-if 

k is too large. 

Sensitivity analysis indicates -what part of the error in weighting 

function is important, in terms of contribution to EJ. A plot of the 

cross correlation of y and u gives this immediately. :rote that it 

is the nominal closed loop output and control that determine this 

sensitivity. 

b\ryu [ t>0 

W ( for a pure time delay) 

fig. 4.3.4 

L.b_ • Cost Bounds  

The previous section has shown how a first order perturbation 

idea can be utilised to obtain an estimate of the cost change due to 

a change in system operator. Unfortunately, sensitivity analysis 

cannot predict syste7 instability, and in many cases it may be desirable 
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to have an absolute bound on the cost change. This is linked with 

stability, since unstable systems will not have finite cost. 

There are two types of bounds that are of use in control design. 

(1) Given a sub-optimal control system, we may wish to form an esti-

mate of the difference between the actual cost and the optimal cost. 

Abound on this difference gives a lower bound to the optimal performance 

index. 

(2) Given an optimal design for an approximate model, a bound on the 

cost difference between the exact system and the model may also be of 

use. Sensitivity analysis tried to estimate this difference. Any 

further refinement, however, has to take into account the neglected 

second order terms, which may become quite complicated. In fact, the 

simplest method of obtaining the cost difference is to actually compute 

the two costs by simulation, and subtract them. 

The lower bound to the optimal performance index is mere useful 

in design. One can either bound the difference between the actual 

cost and the optimal, or find a bound on the ratio. 

Theorem L.4.1:  With the system represented by 

= Yo 
+ Wu 

and. cost 	J = < y, Q y > + < u, R. u > 



let 	g= R u + yr-  Q y 

Then, if 	A = (R. + Vim  Q 17) 

Q 	= J — 3 	where a is the optimal cost 

= < g, A71  g> 	 /4-4.1 

Proof: Note, for J = a, that 

g = 0 
	which is consistent with eauation L .t .1. 

Now 	 J = < y, Q y> 	R u > 

< yo ) Q y> 	u, Q y> + < u , R u > 

= < Yo  3 Q Y> + <u, 	Q y + R u> 

< yo , Q y> + <u, g>. 

6 = R u + 1;'Qy 

I = R u + 	
(Yo + V u)  

(11 	Q TiOu + 1'r -  Q yo  

A u 	Q yo 	 4.4.2 

However 	y = 'sr + 	— ti) . 

So 	 J = <3r03 Q 9 > + <Y0 , Q W(u  - tt) > + <u, g > . 
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From theorem 2.2.3, 

J = <yo, Q 7> • 

Hence 	J = 3 + < yo, 15'(u 	+ <u, g > 

= -41 + <IT1.1  Q yo, (u - ti) > + <u, g> - 

Since la is optimal, 

	

A a 	'413 	Yo 

Also 	A u = E - UN  Q Yo  • 

Since A is self-ad joint and bounded below, A
1 exists, and 

	

A l 	_m 
u =A g-A

1  Qyo 

i.e. 	u- u = A 1  g 

Hence 	J = 3 + < UN  Q yo, AT1  g> + <A 1  g, g> 

- < 7 Q yo, A g> 

= 	+ <E, A71  g> . 

Corollary 4.4.1: (Allwright [A 33) 

If 	m<u, 	<u, EL u > , 	 4.4.3 

then 	S J  
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Proof: 	 8.7 = < g, A 1 g > 

where 	 A = R + 173E  Q 

Now 	 < u, (R + 	Q 17)u > 	<u, R u> since IrNi Q 17 
is P.S.D. 

Let 	T2 	be the factorisation of 	A, such that 	T 1 	exists, and. 	T 

is self-adjoint. 

T2 	= 	R 	Q VT . i.e. 

Then 	<T u, T u> 	sm<u, u>. 

Put T u = g 

i.e. u = T-1  g . 

Then <g, g> m 	-1 g,T 1  g> 

= m<gT 1 T 1 g> 

= m <g, Al g> . 

• 
• • 

1 
< g, A 

1  g> - 	<g: g> • 

This bound. can be quite Lood when the system is near optimal, 

but rather Door away from the optimum. It has the desirable property 

of getting better as the optimum is approached. Allwright [A 3 ] has 

used this to good effect to determine stopping criteria for optimisation 

221. 

• 
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problems. We envisage its use in the investigation of near optimal 

approximate designs. If W is an approximate transfer function, and 

+ f•NF the exact transfer, then 

g = R(u +8u) + (Ti + te)Q'(y  4. 8y) 

If u, y represent the nominal optimal trajectories, then 

g = 	u +17?'E  y + R 	+ 	Q Sy +S'= 	 y + S1:73g-  Q Sy 

= R 8u + 	+ EWr Q ty + 8WN  Q y • 

The lower bound may be evaluated quite conveniently, and since m is 

independent of the dynanics, no factorisation or inversion of operators 

is required. 

An upper bound on the ratio 	can be a useful engineering 

parameter. J
o 

is the uncontrolled cost. Theorem 2.2.3 can be used 

to obtain a result originally due to Brockett. 

Theorem 4.4.2: 

If 	Jo = <Y0, Q Yo  > 
	

4.24-5 

and 	= < y, Q y > + <u, R u> 

where u is an optimal control, then 
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Proof: 	From Theorem 2.2.3, 

J = <yo, Q Y > 

= 	< yo Q(3r0 	17 11)  > 
• 

Jo + <yo, Q W u> . 

But 	u = -R 1 War_ Q y 

3T = Jo 
	<yo, Q W R-1 	Q y> 

Jo -J 	< yo, QWR 1VQy> 

< I'?31  Q yo, R 13E  Q y > 

TM = 	< WIE  yo  + 	Q u - '31 Q u, R-1 	y > 

= < ry Q y, R 1TX  Q y > + <fi Q 17 u, u > . 

Let S' S = Q, and. lot R2 be the P.D. square root cf R. Then 

1 	1 	1 	1 
Jo - J = < S y, (S 	 1 R „ X S )S y > + < R 2  R.2  u, Q W R-2 R2 > 

	

1 	 1 	16 	1 
4 	S W R-1 1,731  e 	 y, S y> + 	Wx  Q R-11<it-u, R u 

IIS II . Hill . IIR11 • 11W II . II'7II <y, Q y> 

1 
IIR-211 II R 2  II 11QII 	Tr' II <u, R u > 

= 	HQ H 11R-111 H 	<y, Q y> + <u, R u> ) 	. 
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Since 
	

11 17  II 	= 	11 1.11 	= 	II TY-3- 711 	= 

(see lemma L.5.1), 

J0 	 (WI IIR-211 Ih w II ) J  

4 1 	4. 	11Q II 11R-111 II le- 7I1. 

This is a convenient bound for estimating the decrease in cost 

expected by performing control action, but is not too useful for 

determining whether a given closed loop system approximates optimal 

control. "Te have not been successful in deriving a convenient bound 

of this kind. It is felt that a possible starting point would be to 

use the following lemma, vhich is a generalisation of Theorem 2.2.3. 

	

Lemma 	If y, u are the sub-optimal outputs and controls 

respectively, and y, u are optimal, then 

= 	<y, Q > 	< u , R > • 	4.4.7 

Proof: J = < Yo  Q Y > from theorem 2.2.3, 

   

= 	< y - Vi u , Q sr> 

= < Y2 Q Sr > - < u 

= 	< y, Q Sr > 	< u , 	Q Y > 

But for optimality, 

R + Q = 



Hence 	J = <y, Q Sr** > + <u, R 1.1 > . 

The continuation of the derivation similar to that of theorem 

4.4.2 becomes very messy. 

4.5 Norms and Stability 

Operator norms have been freely used throughout this thesis. The 

basic definition is given in terms of the associated vector norm: 

11 w 11 
H17 uIl sup Hu'  • 

u/o 
4.5.1 

If u 6 	, a Hilbert space, and the norm of u is defined in terms 

of the inner product, then 

Hu H2  = <u, u> . 	 4.5.2 

Using this vector norm, Te obtain the following: 

Lemma L.5.1  

II 1711 	= 	= 11w 	 = 11 Tr' \2d 	4.5.3 

Proof: 	11 17 11 	sup 	
<ii u, 	u>  
< u, u> 	1  u/o 

i.e. 
	

1117 H2  = sup 
u/o 
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• 

u, u> 
<u, 



<u, yr I7u > 
= sup 

U/0 
	U 1  U > 

But 

	

<u, 	u.>  

	

11 	 11 2  
Hu II IIWN W7 u If  

u II 2  

by the Schwartz inequality, and this bound is attained. 

i.e. 	II 1.711 2 	sup 	III 	
;7 u II  
u u/o 

114' w II . 

From theorem 1.5.1, HW H = H 17% / and using the above. analysis 

"1K with V 	replacing W, the result is obtained. 

For time-varying continuous weighting functions over a finite 

interval, the derivation of Section 2.4 shows that, for single-input 

single-output systems 

T t 

	

111711 2 	.r 	T;(t, ,r)f 2 
 
dr)dt . 	4.5.4 

0 0 

This is, in general, a very crude bound, and usually is infinite for 

infinite intervals. That is really necessary is to evaluate the 

maximum eigenvalue of WN  W, and take its &IL-are root. However, this 

can be quite difficult, though iterative techniques are available. 

For time invariant systems over an infinite interval, the 

following analysis produces better bounds to the norm. Taking trans-

forms, 
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aki 	
the coefficients of matrix A, 

the coefficients of a vector d, 

the coefficients of a vector b. 

Let 

= k  

bi 

y(s) = w(s) u(s) • 

jco 

	

1 	N. 
113'11 2 	27c. 	

f uT  (-7s) WT  (s) u(s) ds 
-j co 
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supX 
EwT 

max 
co  

W(ick))] II 11  hi 2  4.%5 

4.5.6 sup 	tr _T(- j))  I7(jco) 	
11  u11 

2. 

A result in the time domain for multivariable systems can be obtained 

from equation 1.7.4. If subscripts denote vector coordinates, then 

t 

y(t) = 
0 
	 )E IV

ki
(t - T . U.1(T  d 

t 

f(t - T) . u. (T) dT 
o 

From 1.7.4 II Y-012 	( E 11"k±11 11lui II 2 ) 	• 
	 4-5.7 

But Yii 22  = 	E ilYk  ii2 - k 
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Then, if 
	

d = A b , 	where d. = Old 

i.e. 

for each k . 

(All  A) nbn . 	4.5.8 

T N-71-  
i.e. (Amax  A Ai-  is a bound on the norm of '7, where 

CO 

= 	f I W..(0 dt . 
0 

It may be simpler to calculate the trace of AT A, and theause 

(`max T  A)2 	 tr T  A)2  . 	4.5.9 

Consider an operator G, which is used to form a feedback system, 

with unity feedback, so that 

F - (I + G)-1  G = G(I G)-1 	4.5.10 

where F is the cicsed-loop transfer operator, which we assume stable; 

i.e. H F H < OD. If there is a perturbation 8G in G, it is of 

interest to find a bound cn the nom of E. 

Theorem L.5.2: 

H8FH 4 II (I + G) i  8G(I +  
1 - H(1 + G)-1  8G H 

4.5.11 

providing 
	

II (I + G)-1  8G H < 1 	4.5.12 

aid   
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Proof: 	F = (I + G)-1  G = 	+ G)-1  . 

i.e. 	 F + GF = G. 

(F + EF) + (G + 8G)(F + EF) = G + 8G . 
• 

i.e. 

From 1,5.10, 

F + EF + GF + E.GF + G.EF + EG.EF 	= 	G + 8G 

EF + G.EF + 8.GF + EG.8F 	= 	8G 

(I + G)EF 	= 	EG - EG.F - EG.EF 

8G(1 - F) - EG.EF 	. 

I - F 	= 	I - (I + 0-1G 

= (I + G)-1(I + G - G) 

(1 + G)-1  

40 EF = (I + G)-1EG(I + G) 	- (I + 0-1EG.8F 

IIEFII = II (I + G)-1EG(I + G)-1  - (I + C-.)1EG.EF II 

(1 + G)-1EG(I + Grin 	+ 	II (I + G)-1EG- H 

i.e. HEFH < H(I 	G)-1EG(I 	G)71H 
1- 	GT' 8G n 

providing H(I + G)-1EG II < 1 . 



Lemma 24 .5.2: If m2  <u, u> 	<T u, T u> 

Then 	 II T 2-11 	< 
	 .5.13 

Proof: Since T is bounded. below, T 	exists. 
414 

H 1-vil T-11j = sup 
H 	H'  

	

u 	T-1y 

y = T u 	• 

2  m< T-1 	-1 y, Ty > - 	<y, y > 

	

1 	> 	<T y, T-1y > 

	

m2 	< y, y> 

	

U T 1'II 	< 1 m 

Theorem ir.5.3:  If 

(I + G) (i 	G.) = I + 	Q w 	 4.5.14 

is the spectral factorisation solution to an optimal control problem, 

then 	 H (I 0-1H .5 1 

Proof: <u,(I + 	+ G.)u> = <u, (I +17m  Q 17)u > 

> <U, 1]. > 
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But 

Put 

But 

i.e. 
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Hence, by lemma L.5.2, 

	

II (I + G)-111 	< 1 	k!.5.15 

For G satisfying 4.5.15, equation 4.5.11 becomes 

	

118111 	-111.1-------F'G -GY-1U 

1  - 	G-T3-  5GII 

< 	H(1 + G)-1  H 2  H SG   H 
1 - H (1 + G)-111 118GH 

II 8G II 	. 	4.5.16 
1 - H 5GH 

In general, this bound is coarser than that of equation /1.5.11, 

but is in general easier to calculate if equation L.5.15 is applicable. 

It is quite good when EG is large at frequencies where G is small, 

as is shorn by the following simple example. 

Exa-,ple L.5.1: 

Complex model: 17(s) - 

Simple model: 171(s) 

For an optimal design using the simple model 

G(s) = 

e-sT 

1 • 



oo 
where 2 1 2 y 	u dt 

Hence 	EG(s) - (1 
-se-sT) k  

Eg(t) = t-1(8G) = k 	for 0 t c T 

and zero other.wise. 

k
2 
2 

EG-(-jco)8G(jr.o) 	— 2(1 - cos wT) 
(.I.)  

(hT)2  2(1 - cos wT) 
(wT)2  

Put x = kT and 9 = 

2 
Then 	IEGI 2  = 	2(1 - cos e) . 

62 

This achieves a maximum for 

e sin e = 2(1 - cos e) 

i.e. 	 6 = 0 . 

8G. . = x = kT = II Og ill 	• 

Instability, on the basis of equation 1..5.16, is predicted when 

kT = 1 

232 
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From exact analysis C2] 

kT = 2 — = 1.57 

is the stability limit. 
• 

A better bound is achieved by considering the value of kT for which 

H —2D+ G1-11 . 1 • 

But 
EG. 

1 + G 
-sT 2 21 1 - e  = k  

s +k 

2k2~1 - cos wT._)  
k2 - (2)2 

2x2(1 - cos e)  
2 	+ e 2 x  

for s = jco 

This achieves a maximum for 

(x2 82) sin 8 = 20(1 - cos 8) 

i.e. sin 5 	1 - cos e 
28 x2 + 82 

But EG 2 
1 	= 1 

x2 sin e
e 

for stability limit. 

Substituting for x2 gives 

e + B2 sing = 28(1 - cos 8) 

8 sin 8 = 1 - 2 cos 8 . 



Unit circle fig. 4.5.1 

Nyquist diagram 
II SG U  

Circle of radius HSGH 
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From tables 

i.e. 

• 
• • 

e 

2 
x  

kT 

A.' 

- 

= 

2 radians . 

 2 

	

- 	2.22 0.9  

	

2.22 	= 	1.45 	. 

This is only slightly below the exact stability limit of 1.57. 

Equation 4.5.16 has a simple interpretation on the Nyquist diagram 

(Figure 4-5.1). 

An error of given norm H8GH produces its worst effect at jw = oo. 

In this case, instability may occur for 1 - 	zero. 
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L.6 "A Priori" Design Eethods 

The methods discussed so far for determining the validity of 

approximate design methods have all be "a posteriori" methods. That 

is, a check is performed after the control system has been designed, 

although it may be possible to keep a variable parameter in the design, 

such as a feedback gain, to adjust during the checking stage. If 

design entails a large amount of work, it may be preferable to have 

some "a priori" guide to the selection of design parameters, chosen 

on the basis of model uncertainty. In particular, for optimal control 

law calculations, guides to the choice of Q and R are useful. 

Due to fundamental limitations in measurement, the impulse response 

of a system can never be exactly known, even assuming linearity. Hence 

it seems reasonable to model an impulse response W
1
(t) as a non-

stationary stochastic process: 

w(t) + u(t) 	 .6.1 

where 
	E(Wl(t)) = w(t) 
	4.6.2 

and 
	

E(I:(t)) = 0 . 	4.. 6.3 - 

We shall further assume that N(t) is a white noise process, but 

with time-varying variance. 

E N
T(t) Q  N(T) 	= Ri(t) 8(t - T) 
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where R1(t) is positive semi-definite, and integrable over [ 0,co) 

such that 

CO 

R
2 

= I R1(t) at 
	 24..6.5 

0 

is positive definite. Thus, the error in mudelling is represented by 

a decaying white noise burst centred on the model as mean, as shown 

in Figure 4.6.1. 

Let y (t) = yo(t) + I w.,
-L
(t - 	u(t) d T 

0 
4.6.6 

= y0(t) + f 17(t - T) u(T) dT + f N(t -T ) 1.1(T) dT 

t 

= y(t) + I r(t -T) u(T) at 	4.6.7 
0 

= y(t) + v(t) . 	4.6.8 

We wish to find a determinstic u(t) to minimise the cost function 
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CO 	 OD 

	

J= E f y1T(t) Q yi(t) dt + I uT  R u dt 	4.6.9 

where Q is chosen symmetric, ana positive definite, to weiEht the 

relative importance of the outputs ana their interaction. However, 

OD 	 OD 

J = E f (y(t) + v(t))T  Q(y(t) + v(t))dt + f uT  R u at 
0 	 0 

00 	 OD 

= E 	(yT y 2  ...3752 Q v +vT Q v)dt + r u
T 
R u dt . 

0 	 0 
4.6.10 

If u is deterministic, so is y. Hence 

co 	00 	 CO 

J = f y
T 
Q y dt + f 2y

T Q E(v) at 4- Ej v-  Q v dt 
0 	 0 	 0 

cc 
+ 	u

T 
R u dt . 	4.6.11 

0 

t 

But 
	

E(v(t)) = E I N(T) u(t - T) aT 
0 

CO 
E N(T) u(t - T) aT 

0 

0 
	 4.6.12 

ao 	co 

vT  Q v at = f E(vT  Q v) at . 	4.6.13 
0 	0 
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t 	 t 
E(vT  Q 	= EE ,r uT(T) NT(t - T) aT . Q I  Y(t - s) u(s) ds] 

0 	 0 

t 
I at 	as u-L(T) [EDT

T(t - T) Q N(t - s) J] u(s). 
0 	0 

4.6.14 

From 4.6.4 

fNT(T T ) Q N(t - s)3 = Ri(t - T) 8('T - s) . 	4.6.15 

J. 	 t 
( So 	EorT  Q v) = I uT(T) ( I R (t - T) 8( T7 S) U(S) aS) aT 

0 	 0 -1  

t 

. I Rr  

	

( ) 	( 	) ( ) 

	

Te 	t - T U(T) d T 4.6.16 

co 	co t 

.. 	I E( vT Q 	dt = f 	I u1(T) iti(t 	) U( T) dz dt. 	4.6.17 
O 	0 	0 

Changing the order of integration (which we assume permissible), 

CO 	 CO OD 

I E(vT Qv) dt = ICI 
T 

u T(r) Ri(t - t) u(z) at 3d T 

OD 	 OD 

I u
T(t) E f R,( 	t) a t]u(t) at, 	'4.6.18 

o 	t 

where the roles of the dummy variables t and T have been inter-

changed. 



co 	 co 
But 	f R.,( T- t) dT = f R1(s) as 

t 	 o 

R
2 
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i.e. 
op 

J = f YT  Q Y 
0 

+ uT(R
2 

+ R)u dt -4.6.20 

t 

where y(t) = yo(t) + f W(t - 	u(7) dt 	4.6.21 
0 

This analysis indicates that the deterministic control u should 

be designed as though the noise N were not present, although the 

cost on control should be increased by R
2
. 7,e have an explicit 

solution to the intuitive idea that, if one is not too sure of the 

effect of control, one should not put too much of it in. 

If Ti represents a simple low-order state model, and N pertur-

bations about this, then u should be generated, ideally, from the 

states of the model, and not the perturbed states, since otherwise 

stability is no longer guaranteed. However, it seems reasonable to 

try feeding back from the inexact outputs, as an approximation to the 

desired closed loop system. 

From theorem 4.4.2, the cost reduction due to optimal control 

depends on n  Q 11R
-1 

it \7 	, which is a measure of the square 

of the system gain. the smaller the value of R
-1 the smaller the 

allowable system gain. That is, the smaller the errors, the larger 
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theperTlissiblegain.lfR>>. R2" then R
2 
 can be neglected and 

our approximation is valid, even in closed loop operation. 

When the modelling error is known as a deterministic ouantity, as 

in system approximation, or model reduction, the application of the. 

above technique is not immediately obvious. We shall use the following 

heuristic argument. Let 

EG.. ij 	ij (t) = 1817..(t)I • 

We shall consider 8G as a kind of standard deviation of our dynamic 

error. But from the stochastic case 

CC) OD 

I (I ECMT(t) Q N(T)) dT) dt 
o o 

00 00 

Ri(t) E(t -T) a T at 
0 0 

= 	I Ri(t) ( I t(t - T) a T) at 
0 	0 

op 

Ri(t) dt = R
2 
. 

Applying the same analysis to EG, we obtain 

R
2 

= I I 13(8G
T
(t) Q EG(T)) dTdt 

• 
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OD 	OD 

= ( f EG(t) at)T  c2(f EG(T) aT) . 
0 	0 

This argument is a plausibility argument only, but it seems the correct 

kind of limitation to impose, as the following simple examples show. 

Example L.6.1: For the models of example 4.5.1, 

- _ esT  
ETT = 	 

8Vi(t) = 1 < < for 0 = t= T 

= 0 	t <0, t > T . 

T 

R = ( f 

= T
2 
a . 

We now design the control to minimise 

co 

= f q Y
2 

T
2 
q  u

2 
at 

0 

with the plant 

y(s) = - 	+ u(s) . 

The problem has the simple answer 

i.e. 

Then 

k2-  = 
1 

T
2 

where 	u = - k y 

kT = 1 



which gives a good stability margin, since instability results for 

kT = 7c/2 (see example L.5.1). 

Exarlple 4 .6.2: 
Complex model: 1(a - s)  

s `a + sl  

Simple model: 1 

Then 	t'a(s) - 
2 

a + s 

:. as above 
	R = 

a
4 

and the maximum gain is k = 	whereas instability results for a 

gain of k = a. 

Example 4.6.3:  Weak coupling in multivariable systems. 

u1 	1 
1 

a 

a 

Y 

fig. 4.6.1 	 -k 
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0 

0 

24-3 

Consider the system cf Figure 4.6.1. The cross-coupling gains 

a are small and we shall neglect them, and perform an optimal design 

on the uncoupled simplified model, leading to gains k as shown on 

the diagram. With this configuration, the closed loop response from 

r1 
to y1  is given by 

1 
Y1 
r 	4.  h(1 a2 k 

`s 	1 + ks' 

The characteristic polynomial p(s) is given by 

p(s) = s
2 	s(1 	k2  - a

2 k2) + k 

and instability results for a
2  = (1 k2)/k2. 

i.e. k
2 	1  

a
2 - 1 

i.e. 	la I > 1 . 

From the preceding ccnsidexations, R is chosen such that 

R > 0 ( 	a) /0 	a 

a 0 (a 0 

> (a
2 

0 a2) 

But 	R = 
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i•e• 	k2 a2 	1 . 

This ensures closed loop stability. 

The topics and methods of this chapter suggest much further 

research. Tihile a lot of the argument has been of a heuristic kind, 

the ideas seem to indicate good methods of ierforming sub-optimal 

designs, using optimal control theory as a design technique. 

• 
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CT-LAP 2,Y. 5 

•F 	D S TRU C PUP:: CPT T1 -IS AI' TM 

5.1 Introduction 

Optimal control theory, as formulated for the state-space approach, 

leads to a feedback control law which specifies the control as a 

linear combination of all the states. The results of the last chapter, 

together with engineering experience, indicate that only the "dominant" 

states need to 1e fed back (or estimated and fed back). However, 

"dtminance" is a function of the closed loop design, rather than the 

open loop system. Cne approach is to approximate the actual system 

with a state-space model of the appropriate dimension, to give the 

desired control structure. This has been discussed in Chapter 4. The 

following approach is the subject of this chapter: 

1. Cn the basis of engineering experience, guided by the dominance 

concept, a control structure is proposed but with unknown parameters. 

2. A quadratic cost function in terms of input and output signals 

is optimised with respect to these parameters. 

The choice of a useful cost function is still open. Note that 

the cost criterion will not in general be ouadratic in the unknown 
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parameters. The limitations of this method will become apparent from 

the discussion, but there are many advantages. 

1. A system of pre-specified complexity is designed and, for a given 

cost criterion and disturbance, the parameters are the best possible. 

2. A feedback design may be achieved, with all the attendant desirable 

properties such as sensitivity reduction, linearisation, and disturbance 

rejection. 

3. No approximation or modification of the linear model is required 

before a design is attempted. 

There are some disadvantages of this technioue. 

1. In a complicated multivariable system it may not be obvious that 

a given structure will enable good control to be achieved. The investi- 

gation of this subject is still a valid topic for research. 

2. The system is, in general, only optimised for one particular 

disturbance, and its performance under other disturbances is not expli-

citly known. 

The main contributions cf this chapter are the presentation of 

algorithms for optimising parameters in fixed structures. Of course, 

any general hill-climbing technique could Le used for this problem, 

but the methods that we propose take advantage of the structure of 

the problem, and can be very efficient. Large numbers of cost 
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evaluations, and line-minimisations are avoided. The original guide 

to this piece of research was an iterative method for solving the steady- 

state
_ 

 Riccati equation, which is demonstrated in the next section. 

5.2 An Iterative 1:ethod for Solvinc the Steady-State Riccati Equation 

The following derivation considers the solution cf the ccntinucus 

time Riccati equation. Similar results hold for the discrete time 

problem, and these are srmmarised at the end cf this section. 

Consider the steady-state equation 

PA+ A7° P+Q-PBR
1 
 BT  P= 0 
	5.2.1 

where P is positive definite, Q is positive semi-definite, R is 

positive-definite, and A, B is controllable. Te shall also 

restrict the discussion to the case where A is initially strictly 

stable; i.e. all eigenvalues of A lie in the open left half complex 

plane. Then the following Tell-known theorem can be stated,.as a 

particular result of Lyapunov stability theory. 

Theorem 5.2.1: If A is a strictly stable matrix, then given any 

positive semi-definite matrix Q
1
, there exists a symmetric positive 

definite matrix-1, such that 

T  P, A + A P - 1 - Q 1 • 5.2.2 
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Using this fact, the following iterative method of solution of 

eouation 5.2.1 has been proposed [KI 1]. 

Algorithm 5.2.1  

1. At iteration C, let Ao  = A, and P..1  = 0. Alternatively, 

if A is unstable, choose K-1  such that AO 
= A - B K..1  is stable. 

2. Solve 

P. A. 	+ A. 	P. = 	Q - K. 	R K 
3. 1-1 3.-1 1 	K.  

5.2.3 

for P. positive definite. The existence of such a P. follows from 

theorem 5.2.1. 

3. Set 

1+. 	Set 

K. = + R7T  P. 1 

A. = A - B K. 

5.2.4 

5.2.5 

5. 	Return to 2. 

Theorem 5.2.2: Algorithm 5.2.1 converges to a solution of equation 

5.2.1, where P is positive definite. roreover, for any x./ o, 

T 	T 
x Pi  x < x Pi-1 x i = 1, 2, 	• 

Proof: [ KL 1]. It is easily verified that a fixed point of the 

algorithm solves equation 5.2.1. The monotone cost decrease ensures 

convergence. 
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The corresponding algorithm for discrete time systems is 

A2rorithm 5.2.2: 

, P. 	= 	+ K.-  R E. + (A - B K. 1
T 	

- B K) 	5.2.6 
1 	1 	a.' 	1 	

i i+1  

N Xi+, = (R + 	Pi  B)-1 BT  Pi  A 	5.2.7 

For numerical work it is not necessary to calculate the P matrix 

explicitly, if it is only desired to calcu]ate an optimal gain K. 

For (in the continuous case) 

J iy(Q + P B -1 BT P)2at 	5.2.8 
0 

where 

Hence 

	

4E = 	A - B K)t 

00 

	

K. = 

	

1 BT( 

	( Q + FT. R K.) a at) ' 	2+1 
0 1  

5.2.9 

5.2.10 

Using equation 5.2.10, or a similar one for discrete time, K
i+1 

can 

becalculatedasafunctionalinvolvingK..This is precisely what 

is done in the following sections, but the rule is generalised to work 

for non-optimal structures. We first give a simple example of the use 

of continuous time algorithm, to demonstrate its power. 

Exa7nle 5.2.1: Continuous time - one state. 

x =ax+ u 
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CO 

J = f x
2 

+ u
2 
dt . 

0 

Then 	2(a - ki)pi+, = - (1 + ki2) . 

+_ki2) 
Pi+1 	2(a - ki) 

But 	 = p 

The 
1+ k.i  

ki41 	2 (k 	a1  • 

• For a = - 1, the optimal answer is k = 4/2 - 1 (from direct 

solution of equation 5.2.1). Application of the iteration technique 

yields the following seouence 

ko = 0 

ki = 0.5 

k2 = 0.416666 

= 0.41421k 

k km = k3 
	to 6 decimal Places 



5.3 Restricted Operators  

We digress to introduce some new notation, which enables our 

ecuations to be written concisely. 

Consider two Hilbert spaces 34 1' J 2' 
where 

a E 	l 	and. 	b G
2 • 

Let K E 721' the space of mappings from 2 
 to 	1. 

Then 
	

f = <a, Kb > 

is an inner product on „II 1. From the previous discussion, this induces . 

a functional on 	such that 

< a bm, K> = < a, K b > 

Tie give these functicnals on '1
21 a special symbol "tr" which is 

interpreted as a generalised trace [DS 2]. For the special case that 

1 and A2 are finite dimensional euclidean spaces, the "tr" 

operation becomes the noltlal trace cf a square matrix. 

<a bE, K> = tr (a b3t)7 K 

= tr b a . K 

= trK.b a 	• 

We now develop this idea one state further. Let X •, jiu 
and a t 

251 

• 
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be Filbert spaces, with 

	

y = 	0  t 

and. 	= 	° Jit • 

The operator K e J
21 

induces a map KO I., from A into Au , It 	Y 

where I
t 

is the unit operator on Jr{ t. [H 2; p.365-369]. Usually, 

this operation is also denoted simply by K. Then the inner product 

a = < u, (K(Dit) Y > 

is defined. This now induces a bilinear map from Au e Jty  into 
zr21' denoted by [ u, y], where 

<u, (Kelt)y> = < Eu, y3, K> 

= tr [u, y] K . 

The E , 3 operation is a kind of contraction in the sense of section 1.2. 

Example 5.3.1: Let ../{ 1 = Rn 2 	
R
m
, and 	= L2 [ Q, cc ). 

Then if y 	, and. u 6 Au 
co 

<u, fi y> = f uT(t) K y(t) at . 
0 

K is represented by an m x n matrix. Then 
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CO 

<u, K y > = I (uT(t) K) y(t) at 
0 

CO 

= tr I y(t) u-(t) K dt 
0 

tr (f  u(t)  YT(t)  at)T  K 
0 

co 
i.e. 	[u, y] = I u(t) yT(t) dt . 

0 

Example 5. 3 .2 : Let ,71 1  = L2 [ 0, 1] , 4/1. 2 = R1, and 11t = L2 E o co ) 

Then K is a .functional on L2  [ 0, 1]. If K is represented by a 

continuous kernel, then 
co 	1 

< u, Ky> = I u(t) ( f K(s) y(s, t) ds) at 
O 0 

or) 1 
= f f u(t) K(s) y(s, t) ds dt 

O 0 

1 co 
= 	( I u(t) y(s,t) dt) K(s) ds 

0 0 

CO 

C'u, y J = f u(t) y(s, t) at 
0 

Example 5.3.3: .1{ 1  = Rn, .R2  = Rn, 	= space of one-dimensional 

stationary stochastic processes with zero mean and. finite variance. 
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<u, K y> 
	

E(uT(t) K Y(t)) 

= trE E(u(t) yll(t))311  K 

If 	L, K G :r 21' then < yl, K y2  > is an inner ...Jroduct on 
where yl, y2  6 	. 

Lemma 5.3.1: 

< E 	y1, Y2/ K>  = < l'E Y1, y2], "› 

Proof: 	< L yl, Ky2> = < yl, L K y2  > 

= < [ Y1' Y2] 	> 

= < 11[ Y1' Y2]' K  

5.L Necessary Conditions for Parameter Otimali-IL  

Consider the system 

y = yo  + W u . 	 5.4.1 

l're will assume that all the parameters that we wish to vary are 

expressed as gains from the output y to the input u. This is a 

restriction, but it covers a very large number of cases, as will be 

shown. 
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Then 	u = - K y 	 5.4.2 

The operator K (typically a matrix of gains though not necessarily) 

is a restricted operator, of the type discussed in the previous section. 

We make the further assumption that, within the restricted class, K 

is arbitrary, i.e. all the parameters are free to be varied arbitrarily. 

Then, for a given K, the closed-loop system becomes 

y = y6  - WKy 	 5.4.3 

Or 	 y = (I + W K)-1  yo 
. 	5.4.4 

We wish to choose K to minimise 

= 	2 < y Q y> + 7-z <U, R. 11> 	5.4.5 

= 	<y, (Q + 	R K) y > . 	5.4.6  

Nov J is definitely not quadratic in K. Hence, we shall employ 

a variational technique to determine stationary values of K, rather 

than try to find explicit minimum conditions. Second order effects 

are investigated in a later section. 

For an arbitrary chance in the control Eu, the first order 

variation in cost 8J is given by 

8J = <R u +li Q y, Eu > 	5.4.7 

(see Section 2.2). But from 5.22,.2 
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8u = 	K Ey - EK y 	 5.4.8 

Hence 	-8J = < R u + W3€ Qy, 8Ky+KEy> 

= <-RKy+7- Qy, EKy +KEy> 
• 

= < 	R K y, 81( y > + < - RKy, K Ey> 

+ <Ti Q y, - Su > . 5.4.10 

However, from ecivation 5.4.1 

Ey = W Eu 	 5.4.11 

- EJ = <- R K y, EK y> + <- R K y, K17 Eu > 

+ <17 ▪ Q y, - Eu 

= 	< - R K y, SK y> + < - R K y, K 1V Eu > 

< Q y, -WEu > 

= < R K y, EK y> + < - (Km R K + 0y, 17 8u . 

5.4.12 

From 5.4.8, and 5.4.11, 

Eu = - 	Eu - 8K y 

i.e. 	 Eu = - (I + KU)-1  SK y . 	5.4.13 

Hence 	EJ = < R K y, EK y > + <(e 	Q)3r Vir(I + IC7)-18K37> 

5.4.14 
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= 	<ER K y, y]  , 8K> - < [F3F-(Q + K-2E  R K)y, y] , 8K > 

5-4.13 
- - 

where 	 F = 77(I + K 17)-1 	 5.4.16 

and the [ , ] notation is consistent with Section 5.3. For a 

stationary value of K, we have 

8J = 0 . 

However, since 8K is completely arbitrary, by assumption, 

R K y, y] = EF51(Q + K31  R K)y, y3 • 	 5.4.17 

From the lemma 5.3.1 

R K y, y3 = R K Ey, y] 	, 	 5.4.18 

:u. R K lies in the restricted cperritcr clas, which -ae rill assume. 

Hence R K[y, y] = C F321(Q + K1.1  R K)y, y] 	 5.4.19 

TTe shall denote the functional 1: y, y by G, and by analocy with 

the case where [ y, y 3 simply becomes a square mtrix, we shall call 

it the Gramian. Furthermore, the invertability of G will be assumed. 

In the case y E Rn 1,2, this is allowable wnen the component functions 

y.(t) are independent. 

For a gain K, the closed loop system is shown pictorially in 

Figure 5.4.1. 
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fig. 5.4.1 

17e prcceed to derive the transfer operator from the subsidiary input 

v to the output y. 

e = v + u 

= v - F: y 

= v-Kyo -K17 e 	• 

(I + K )e = v K yo  

(I +K 17) 	v - 	+ K 1';) 	K yo  • 

But 	 y = Yo +We  • 

y = W(1" + K 1)-1  v + 3r0 
- (I + 11-1  K yo  

Thus 	 F = 	+ K 17)-1  

is the closed loop transfer operator from v to y. rote that also 

y = yo  W(U 4- V) 

= yo -T;Ky +Wv 
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i.e. 	Y = (I + T± K)-1 
	

(I + W K)-1  yo 

Hence 
	

F = W(I + K 17)-1  = (I + W K) 
	5,14-20 

• 

5.5 Computational. Aleorithms I 

The nocessary condition of optimality, given by equation 5./3.19 

is quite a complicated expression in K, and in general no explicit 

algebraic solution is possible. Iterative technioues are therefore 

desirable. Kow 5.4.19 becomes 

R K G = 	+ KN  R K)y, y 3 	5.5.1 

where 	 G = y, y 3 • 

Denote 	FN(Q + K' R K) 3r 

and 	 = 	Y 3 • 

Then 	RKG = 	• 

From 5.14 .15 	EJ = <R K G -*, &K>, 

= < gk, 8K > . 

The following algorithms are proposed. 

5.5.2 

r ' 	;Cy., }:.iv) 

5.5.3 

5.5.4- 
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-1 	-1 K. 	= R 	- i. G.  
1 

• e" 

Alrorithm 5.5.2  

K. 	
= (1 - e }K. +

1  1 	
- -1  

-1-3.  

0 < c < 1 . 

Now 	R K G =A.2 . 

(R + M)K G = M K G + 

Alrorithm 5.5.3  

E141 = (R + 2,_)-1(.S2-. G. 1  + 15 K.) 

5.5.5 

• 

5.5.7 

II positive semi-definite in general. 

Alrorithm  

-1 	-1 
K1+1 

= 	1 -c ) + e(R + )1[12C. G. 	+ M K. ] 5.5.6 

Further variations are obtained by alloying :! and e to vary from 

iteration to iteration. These algorithms were first obtained by 

observation of the similarity of the basic eouations wit the state-

space algorithms of Section 5.2. However, we now nroceed to show the 

convergence properties of these algorithms, and methods for choosing E 

and M. 
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Vie first digress to make the following two observations. 

Lemma 5.5.1:  If, for a certain disturbance yo, K is optimal gain 

(in the above sense), then K is al so optimal for any disturbance 

CC3r, where a is a scalar. 

Proof: Since y = (I + 	N-1 y
o 
, 

then ayo  will produce an output ay for the same K. . But 

Ek 
	R E: 0T, aY3 - CF51(Q 	R K)a3r$ cc.7 

et
2 t R KEY, Y 	L.B4.1(0,, 	KN  R. K)y, y 3 1 

= 0 

if K is optimal for the disturbance yo. 

This property justifies normalising the rradient with respect 

to the magnitude of the signals involved, corresponding to multiplying 

by G
1
. If G

1 is difficult to calculate, as in distributed systems, 

then it may still le useful to perform this normalisation approximately, 

perhaps by dividing by the norm of G. The following lemma also 

proves useful in the sequel. 

Lemma 5.5.2: If A = (a..), and B = (b..) are both positive 
ij ij 

semi-definite and symmetric matrices of the same size, then tr A B> 0: 

Proof: By Schur's theorem EB 1; p.924.1 
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C = (cii) = (aaii ij ) 

is positive semi-definite. 

But 	tr 	B) = 	E a,. b._ i,j  " 

= 	E a.. b.. 
I0 10 1,j 

by symmetry 

= E_ C. 
3 

i:j 1  

However xT C x 	0 

Choose each x. = 1. 

Then 	x
T 
C x = 	E c.. 

i,j 10  

i.e. 	tr (A B) 	0 
	 5.5.9 

Property 5.5.1: The algorithm 5.5.2 produces, to first order, a 

decrease in cost at each iteration. 

Proof: Kn+1 
= Kn(1 - e ) 	C.1  

  

(Dote that algorithm 5.5.1 is just the particular case of algorithm 

5.5.2, vhen E = 1). 
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= 
n+1+1 	

En - c(E
n R 
	G 1) 

= 1^n  
T., eR 1(R

n 
G -1.1)G 1  5.5.10 
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i.e. 	K = - cR 1 
gk  G1 . 

The first order change in cost is given by 

8J = < gk,. K> 

= - <ge  E R ek G1>  

E 	(Ekm 11-1  Ek) G-1  5.5.11 

In the case of K a matrix of Eains, both gk
T 
R
1 	and G

1 

are positive semi-definite matrices. Hence by the lemma 5.5.2 

tr (gkT R71  gk) . 	0  

J y  0 

Since 
	

8J = < gk, K >  

then 	.8J = 0 	only at a stationary value of K. 

i.e. 	--8J > 0 	at each Lon-stationary iteration. 

To ensure an actual decrease in cost at each iteration, c should 

be chosen appropriately. To prove the theorem in general, we use the 

following argument. 



8J = - E< gam, R 1 e.k G 

<gk G- 1  G, R 1 gk G 1> 

3•E 	.1.  
- 	<G, G - 1  gk  R g_k  G> 

-14; m -1 
I'ow the operator G 	gk  R gk G-1 is positive semi-definite. 

-1H 	F 
P.  g G- -1 

Hence 	8J = 	v  w , y], G 	gk  

- E <y, (GT1y 
	

P.  R
1 

gk G
1)y > 

< = •-• • 

Theorem 5.5.1:  Consider the continuous system 

 

= Ax+Bu 	x(o) = X 5.5.12 

where x E Rn, u e Rm, and A and B are constant matrices. 

co 

Let 
	

J = f xT Q x u
T 
R u dt , 	5.5.13 

0 

and 
	u = - K x (Q, R and K are constant matrices). 

Then algorithm 5.5.1 is equivalent to algorithm 5.2.1. 

- 
Proof: 	Kn = 	

1 R lc G 

co 

and 	G = I x(t) xT(t)dt . 
° 

For any gain K, the closed loop response is given by 
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• 
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= 	B K)x 

i.e. x(t) = §k xo 

where 	- 
_ e(A - B K)t 

Hence Fk(t) = Ik(t) . B 

X ( 0 ) = Xo  

co co 
= 	I ( I BIT :T( T - t)(Q KTRK) ?37. ( 	X aT )xT(t) dt 

o t 

But k(T) = §k( T- t)k(t) . 

co co 
Hence 	= I 	BT  IkT( T t)(Q KTRK) Zk( T- t)k(t)XoaT)XT-(t) at 

O t 

co 	co 
I BT(f k  T( T - t) (Q, 	i c TRK) c ( T- t)d-r)x(t).xT(t) dt . •6  
O 0 

Lake a change of variable 	= T - t. Then 

00 	oo 

BT(/ 1:(1)(Q KTR-r-) k(3) aS) x(t) xT(t) dt  . 
0 

co 
But 	P =  f ar-11::(S)(Q + KTRY) Ek(S) di 

OD 

= BT p f x(t) xT(t) at . 

.11/ Itj1t44-, 
,?•' 

4+, tt 't 



But = + R71N? G 
n+1 	n n 

= + R DT  P G G —1 
n n n 

= + R
1 
B
T F  

as for algorithm 5.2.1. 

From the descent property 5.5.1, and theorem 5.5.1, the following 

properties may be expected. 

1. If the outputs from which feedback is derived represent the 

dominant states, then the algorithm 5.5.1 may be expected to converse 

as well as algorithm 5.5.2. (Yote that "dominance" is a,property of 

the closed loop.) 

2. If the output is not a very rood approximation to the dominant 

states, then algorithm 5.5.2, with a small enough value of e > 0, will 

provide a safer, but slower algorithm. It may be convenient to choose 

e to minimise the cost in each search direction. Hcwever, this can 

involve rather a lot of cost calculations and trajectory evaluations. 

It is probably better to modify e in a simpler way, or fix it "a 

priori" to some estimated safe value. 

To illustrate these assertions, we shall present some simple 

examples. When k is a simple scalar gain, it is more convenient for 

hand computation to use the following expression which we first derive. 

For continuous deterministic problems, eouation 5.5.3 
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RKG = 17,:r 

T 	T 	T 	 • 

	

becomes r k f y
2 
at = f ( j 	T - t)(q + rk

2
)y(-r)dT)y(t)dt 

0 	o t 

T 
	

t 

= (q + rk
2
) j y(t) (f F(t -T (T)(1T)dt . 

0 	0 

But 	37(5) = (1 + c?(s) . k)-1  y (s) • 

Hence = - (1 + W(s)k)-2  W(s) yo(s) 

• = — F(s)y(s) 	. 

• 
r k f y2 dt = - (q + rk2) f y(t) 13.-Z (t) dt 

0 	 0 
dk 

T 

	

(o + rk2) a 	2
(t  N  

	

f y 	, at . 2 	dk 0 

Hence alcorithm 5.5.1 becomes 

	

+ rk
n
2 	d 	) 

dk  
n+1 	2r 	Gn 

5.5.14 

where 	Gn  = f yn
2 
dt 	

• 
	 5.5.15 

0 

Example 5.5.1: 2 state example ; 1 dominant state. 



1 	1  ) y(s) 	u\(  s, 
s(1 + s) 	s(1 + s) 

u(s) = - k Y(s) 

Then Y(s) - 	
1

2 
s + s + k 

Ze wish to choose the scalar k to minimise 

CO 

= J q x2 + u2 dt , 
0 

with respect to k. Using Parseval's theorem, we obtain 

1 
= 2k 

Hence 
dG 1 
dk 	 2= k2 

Ecuation 5.5.14 becomes 
1 

kn+1 	
q + k2 2k

2 

2 	2k 

k 
-_ 

2 
a 

2k
n  

exactly as for the simple single state case of example 5.2.1. 

These algorithms may be useful for systems with non-rational 

transfer functions, as the next few examples show. 
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Example 5.5.2: 	u(t) = 

This form of weighting function comes from an idealised model of an 

open-circuited semi-infinite transmission line. If an impulse of 

voltage is impressed at the input, then 7/(t) is the current response, 
• 

1-7 and 	W(s) 	• 

En 1; p.402.] Te desire to design a gain linking the output (current 

signal) to the input (voltage signal) to regulate the current. The 

block diagra:': of the closed loop system is shorn in Figure 5.5.1. 
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1 

Now 	y(s) 

k 

We assume a step disturbance 

fig. 5.5.1 

(y(s) = 
1, 

0 and optimise 

T 
J = 	a y

2 
+ u

2 dt 
0 

= 	
1 

(1 .4- ;i-)-1  
1  

4/6.(4/s + k) 

From tables [CRC 1] , 

1,2+  
y(t) = e-  erfc (knit) 
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y(t) = e k
2
t erfc (kAit) 

where 	erfc (x) = 1 - erf (x) 

2 
= 

2 
J e

-v 
 
dv 

Hence, algorithm 5.5.12 becomes 

Y at  

k  ) n T 

f y
2 
dt 

In this case, 

k
2
t 

di = dk (e e 	erfc (k Jt) ) 

= 2 k t y 	. 

For computation, a convenient numerical techrioue is to use the first 

few terms of the aszinptotic expansion r 

2 
2 e-x 

 
1 	1.3 	1.3.5 	) 

erfc (x) = r— *viz 	2x (I  - 2x2 	
(2x22 

	

) 	(2x2)3  

Computational results are plotted in Figares 5.5.2-3. The computational 

difficulties with this example are caused by the infinite discontinuity 

of the reightinE function, and the fact that 

= 
n+1 



0 2 4 3 1 

fig. 5.5.3 q=0.5 

T = 4. 

Progress of iterations. 

6 

Cost 

5 

3 

0.5 

0 

1.0 1.5 2.0 2.5 

q = 1.0 

Optimal gain 

k = 1.17 

gain 

q = 10. 

fig. 5.5.2 

Optimal gain 

k- = 3.26 

Output responses 

1 	2 	3 
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co 
I y2  dt 

does not converge for any gain k. Bounded weightinr-  functions enable 

standard programs to be written, which simply evaluate the cuantities 

of algorithm 5.5.1 by numerical integration technicues. The following 

two examples illustrate this program. 

Exam-ole 5.5.3  

-ks 
7(s) = e  

+ 0.56)) 

1 1  — • 'o 	
= sd    

7e choose a scalar gain k to minimise 

co 
f y2 + u2 at  
0 

where 1+ 0.5s  
5i(S) 	

h 
04,55'-+ S 	ke 's  

The resulting output resnonse is plotted in Figure 5.5.4, 

Exa- ple 5.5.14.  

Yo, (s) m Yo2 
 (s) = 

*C(s) = 



Output from time delay system. 

fig. 5.5.4 

y(t) 

Optimal gain = 0.1635 
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t 

1.0 
fig. 5.5.5 

q=1.. 

0.5 
= 10.4114\ 

Pi 	 0.5646) 

K = f 1._96:1 
0.695) 

3 

Output from diffusion system 



Design a gain vector 

K = (ki\ 	, to minimise 

‘k2/ 

co 

J = I q y
1

2 
+ u2 

dt 
0 

whe re Y1(s) = 1 
e 
s 	

u(s) 
s  

—
1 s + u(s) •. Y2(s)  = s  

This is the same system as for example 2.1-6. The initial distur-

bance represents a transition from one steady-state operating condition 

to another. For various values cf q, the closed loop trajectories 

are calculated and plotted in Figure 5.5.5. These results are compared 

with the exact optimal trajectories calculated in Section 2.4, corres-

ponding sets of trajectories are seen to be virtually identical. This 

demonstrates that for this system, an infinite dimensional state-space 

need not imply any sophisticated control law for good perfcrmance; 

though, of course, the "two gains" control law will not exhibit the 

infinite gain margin property. 
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5.6 Computational Algorithms II 

So far, algorithms 5.5.1-2 have been discussed. The other two 

algorithms 5.5.3-4 prove very useful, especially for discrete time 

systems. Croce again, algorithm 5.5.3 is a particular case of 5.5.4, 

for 	E = 1, and for r = C, we obtain algorithms 5.5.1-2. 

Property 5.6.1: The algorithm 5.5.14  produces, to first order, a 

decrease in cost at each iteration, if r is positive semi-definite. 

Proof: 	Ki+1 = K. - EK. - 	+ y) 	- rK. ] 

= K. 	E. - (R + 1 )-1C (R + i')K. + '' G-1  - MK. 3 .  
N   = "17_. - c (R + I')-1 	1 -[ RK. + yG-1  ] 3_  

= K. - E(R + l'.)-1 	G 1  . 	 5.6.1 3_ 

EJ = < 	EK> 

= -c 

= -c 

< 0 

< gk 	+ 	gk G-1 > 

m m 	\ 
<y, (G-l  Ea lR M)

-1 
 Ek  G71) Y > 

as for the rroof of rroperty 5.5.1, 

if M is positive semi-definite, since then R + M is guaranteed 

positive definite if R is. In fact, all that is required is R + M 

positive definite. 
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We now.  consider the effects cf second order terms in the cost 

expression, to obtain an estimate of the convergence rate, and a method 

of choosing M. Now 

	

J 	= < y, Q y >+< u, R u > . 	 • 

From Section 2.2, we have 

	

J +©,1 	= 	J + 	<4u, g> + < Lu, Attu > 

where g = R u + i  Q y 

and. A = R + Q wi 

But u = - K y 

u + &u = - K y - 4Ky - Kay - 

i.e. 	L1u = - 4Ky  - 	- hick!  

Also 	 = 

A, u = - AKy - KW/0 - A.K.,7412 

(I +KW + 4Ka)Ab. = - 4Ky 	 5.6.3 

Put 	D = I + 	. 	 5.6.x+  

For a gain K, D is the return difference. Then 

Dkiu = - 4Ky - allIrrau 
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/Au 	=- D-1 &Icy 	1 D 111L7au 

-1 	 , 1   = 	D L./7y - D G:EA-D &Ka,  - D 3-4K‘Vau) 

- D 14.,Ky + D 1 	--aKy + 3rd order terms. 5.6.5 

Then 	J = 2<fau, g> + </flu, Mu> 

= 	- 2<D lAKy, g > + 2<D 1  ZAK5  1D LKy , g > 

+ <D 1  LIKy, AD 14Ky> + 3rd order terms, 

- "Lx = - 	&Ky., D 	g > + <2 &K,'ID -LA• Ky, D-1  > 

,!. +<4.1iy, D 1  .AD  1  4K-y> + 3rd order terms . 

5.6.6 

5.6.7 

We can now consider choosing CsK, so that AAJ is approximately 

minimised. This leads to Fewton-}laphson type algorithms. Introduce 

a perturbation E&K in &K, and consider the first order change in i .:.(' 

cost increment. 

- Eta =- 2< E&Ky, D-151g  >+ 2 <Eb.KWD-16,Ky, D 1 > 

+ 2<4Kci'D 18&Ky, D 1 g > + 2< 	D 131AD 14Ky> 5.6.8 

= 	- 2< 8/1K, ED--Img , Y3> + 2 <E6K, [ 	7D-1t.Ky] > 

+ 2< E11K, r D 11;17imieD 131g, Y3 > + 2 <OLK, E SL KY, Y3 > 

where 	S= D
-1-  AD -1 
	

5.6.9 



278 

For an optiraum, 	= 0 for arbitrary alloviable 86K. i.e. 

[ D 	E., y 3  =g, IVD 14,Ky 	+ D 	D 1  g, 	+ ESAKY, Y3 • 

5.6.10 

D-.15f g = D-1' (̀R  Now 

D 	RKy +17.1Qs) 

D 1Y:  7%y + D 377Y-K'RF-y - 	 I)RKy . 

5.6.11 

From equation 5.6.4, 

D = I + 

Hence 	 = I + TT 1. • 

D 13  g = 	(Q 	RK)y - RKy 	• 

Also 	F = ViD 1 

[ D 1%,y 3 = [F(Q + eIRK)y, 	- RKG 

= 	- RKG 	 5.6.12 

For a gain K, the Nev,ton-Raphson step CiK is given by 

- RKG = [ D-131g 17D-1AKy ] [D i etteD 1g, y +[ St.Ky,  y]  . 

5.6.13 

The self-adjoint operator S is given by 



S= D 	A D
1 

151, 	1 
= D 	+WH  Q W)D . 

As discussed in Chapter 2, the operator 

A = 	WH QW 

has a factorisation 

A = TT  V T 5.6.34 
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• 

where T is the optimal return difference, and V is an operator in 

the sub-space of instantaneous operators. If the gain K feeds back 

from all the state-variables of the system, and the appropriate station-

arity assumptions are made, then 

D = I + riT K 

is the optimal return difference (for arbitrary control variations), 

when K is optimal in its restricted class, i.e. at optimum.  

S° 	TH) V (T D-1) 

= V • 	 5.6.15 

Also at optimum, g = 0. Hence, if the gain K is capable of 

achieving optimal control (for arbitrary control variations) then at 

the optimum, ecuation 5.6.13 becomes 

- RM. = [ V K y, y3 	 5.6.16 
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If V and GK are both restricted operators (e.g. time invariant) 

and commute with the [ , ].operation, then 

	

-RKG = 	G 	• 	5.6.17 

i.e. 	bK = 	- R K G) G 1  

G 1 	7 1 R K 	5.6.18 

i.e. 	Kn+1 = Kn +AK 

- ,   
= E +V

1
NZG

1 
 -V

1 
 R En 

= v 1
( 	1 + (v - R)n)• 	5.6.19 

Near the global optimum, this algorithm is approximately Newton-Raphson. 

For continuous time systems, 

V = R 	 5.6.20 

and so equation 5.6.19 reduces to 

1, 1 
n+1 = R 	G 5.6.21 

- precisely algorithm 5.5.1. 

For discrete time systems (state-space representation equation 

2.8.2) 

V = R + BT P B . 	5.6.22 

If, for a gain K, the closed loop transition operator is 	which 
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maps from the space of initial conditions x
o 

into the trajectories 

x, then 

<x
o
, P x > 	<.ix

0, (Q 
e R K) xo  > • 	5.6.23 

< xo 	— am(Q, e R K)(72) xo > 	5.6.24 

If 	xo = B uo , 

then 	<x
o
, P x

o
> = <u

0
, B

T 
P B u

o 
> 

<uo, (
Brm, 

 -c.1--(Q  e R K) gB)u
o
>5.6.25 

But 
	

B = 
	 5.6.26 

the closed loop impulse response from input to output. 

i.e. 	BT P B = F
t 	

h R K) Ft 
. 	5.6.27 

The subscript t indicates that Ft  is a map from the space of 

vectors uo into trajectories y, and not the operator F mapping 

input trajectories into output trajectories. However, if vie permit 

the 8 function as a valid signal 

Ft  uo = F(uo  8) 

In this way, the vector uo 
is formally extended onto a space of time 

functions, and the symbol uo 	
corresponds to a tensor multiplication 

12 0 8. 
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We have now proved the following: 

Theorem 5.6.1:  The algorithms 5.2.1 and 5.2,2 exhibit second order 

(Newton-Raphscn) convergence near the optimum. 

To implement an exact rewton-Raphson algorithm for these "optimal 

gains" problems is difficult, since the hessian associated with K in 

equation 5.6.13 is very complicated. However, we shall be guided by 

the discrete time algoxithm 5.2.2, and let 

C = Ftx(Q + KN  R K) Ft 	5.6.27 

and 
	

M = a C 	 5.6.28 

Then, we may apply algorithm 5.5.3 

ri+1 
= (R + n

)-1 N2G
1 
 + n En 
	5.6.29 

For systems with complete state feedback, we set a = 1 for discrete 

time while for continuous time systems a = C. With incomplete state 

feedback, a can be chosen to give a decrease in cost at each iteration. • 

That this can be done is indicated by the following: 

Property 5.6.1:  For the algorithm implied by equations 5.6.27-9, a 

first order decrease in cost is obtained at each iteration. 

Proof: n+1 = (R + a C)-1('4G-1 
 + a C En) 

1 1 	-1 	-1 
= K 	

a a 
-  (— R + c) e G 

n  
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Since C is positive semi-definite, then if a is chosen positive, 

the result follo
1  

ws from property 5.5.2. The factor - takes the 
a 

place of C and a should be chosen large enough to ensure that the 

first order term predominates. 

Tie illustrate this algorithm with the following example: 

Example 5.6.1: The discrete time system represented by 

Y(z) = Yo(z) 	( 	2  a +132  ) u(z) 
z + cz +d 

was simulated on a FDF-9 computer, by means cf the implied recursion 

relation. If we set 

u(z) = - k y(z) 

then (- c - bk)y. 	+ (- d - ak)yj-2 + yo, 
+ cy 4- ay 

j-1 	 0
J 	

J-15_2 

We wish to minimise 

q y.
2 +u.2 	

( N = 50 ) 
j=0 

with respect to k, where N is an integer chosen large enough for 

the closed loop trajectories to have converged to zero. By recursion 

relationships similar to the above, the impulse response f, and the 

sensitivity y, can be calculated. With a = 1, the algorithm of 

equation 5.6.29 becomes 



(q + K 2  <77' 	F  > + c K 
K 
	

<Y, Y>  
i1+1 

 

where 	c = (q + Kn2) <f, f> 
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1 + c 

row we let Yo(z) 	
1  

z - 1 • means of the conversational-mode 
• 

facility, various constants were entered into the problem. The following 

particular cases are considered. 

1. 	q=1, a = 0, b =1, c = -1, a = 0, 	=50. 

Then 	= 1 
z - 1 

For this case, we have a single state system, and the disturbance 

represents an initial condition on the plant. Hence the Riccati 

equation can be used to solve for the optimal gain: 

2 
p 	p 	1 - 1 + p 

p
2 - p - 1 = 0 

P = 21  +.111  4 
(taking the positive root) 

= 1.61803 

= --P-- 
1 + p 

= 0.616034 • 

Using our algorithm, the results of Table 5.6.1 were obtained, using 

different values of gain as a starting point. 



GK 	0. 
NEXT * 
SIM 

COST 	 GAIN 

0.510000E+02 
0.171459E+01 
0.161859E+01 
0.161803E+01 
0.161803E+01 
0.161803E+01 

0.000000E+00 
0.806452E+00 
0.631621E+00 
0.618116E+00 
0.618034E+00 
0.618034E+00 

z - plane 

Open loo pole 
loop pole 

COST 

Table 5.5.1 

GAIN LOOPS 
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BPB 

0.200000E+01 0.100000E+01 50 0.200000E+01 
0.162500E+01 0.666667E+00 50 0.162500E+01 
0.161804E+01 0.619048E+00 50 0.161804E+01 
0.161803E+01 0.618034E+00 50 0.161803E+01 
0.161803E+01 0.618034E+00 50 0.161803E+01 
0.161803E+01 0.618034E+00 50 0.161803E+01 

tS 
NEXT * 

GK 1.8 
NEXT * 

*SIM 
COST 
	

GAIN 

	

0.117778E+02 	0.180000E+01 

	

0.186100E+01 	0.921738E+00 

	

0.162117E+01 	0.650472E+00 

	

0.161803E+01 	0.618491E+00 

	

0.161803E+01 	0.618034E+00 

	

0.161803E+01 	0.618034E+00 
ERIS 

NEXT * 

LOOPS BPB 

50 0.117778E+02 
50 0.186100E+01 
50 0.162117E+01 
50 0.161803E+01 
50 0.161803E+01 
50 0.161803E+01 

LOOPS BPB 

50 0.300000E+02 
50 0.171459E+01 
50 0.161859E+01 
50 0.161803E+01' 
50 0.161803E+01 - 
50 0.161803E+01 

Unit circle 

fig. 5.6.1 

This procedure can be viewed as the shifting of a pole 

in the z-plane as shown in fig. 5.6.1. 



Root loop pole 

Non domi 
dynami 

z - plane 

Dominant 0/L pole 

fig. 5.6.2 

Unit circle 
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As expected, for this exaniple, the algorithm has excellent convergence 

properties, as it is identical to algorithm 5.2.2, which is second-

order near the optimum. 

If the parameters a and d are now given non-zero values, then 

a gain k from output to input is no longer an optimal control law. 

2. q = 1, a = 0.1, c'= -1.1, d = 0.1, b = 1.0. 

Cr_ the z-plane, we have introduced an extra pole and zero, as 

shown on Figure 5.6.2. 

The iterations of the algorithm are shown in Table 5.6.2. The second 

order convergence property no longer holds, but good convergence 

is still obtained. 

3. q = 1, a = 0.2, c = -1.2, d = 0.2, b = 1.0 

This example is similar to the last, but diverges even further 

from the single state case, in placing the extra pole and zero 

at +0.2 and -0.2 respectively. Iterations of our algorithm 

are shown in table 5.6.3. 



-
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NEXT * 	
Table 5.6.2 

A 	0.1 
NEXT * 
C 	-1.1 
NEXT * 
D .1 
NEXT * 
GK 	1.2 	 • 
NEXT * 
S IM 

COST GAIN LOOPS BPB 

0.258145E+01 0.120000E+01 50 0.256494E+01 
0.181366E+01 0.801648E+00 50 0.192350E+01 
0.171847E+01 0.648805E+00 50 0.186878E+01 
0.171400E+01 0.615520E+00 50 0.187412E+01 
0.171391E+01 0.610656E+00 50 0.187551E+01 
0.171390E+01 0.610024E+00 50 0.187571E+01 
0.171390E+01 0.609943E+00 50 0.187573E+01 
0.171390E+01 0.609933E+00 50 0.187573E+01 
0.171390E+01 0.609932E+00 50 0.187573E+01 
0.171390E+01 0.609932E+00 50 0.187573E+01 

Is 
NEXT * 

A 	.2 
	 Table 5.6.3 

NEXT * 
C 	-1.2 
NEXT * 
D .2 
NEXT * 
OK 	0. 
NEXT * 
SIM 

COST GAIN LOOPS BPB 

0.789713E+02 0.000000E+00 50 0.658854E+02 
0.191137E+01 0.551058E+00 50 0.236650E+01 
0.190831E+01 0.573976E+00 50 0.234809E+01 
0.190819E+01 0.578454E+00 50 0.234510E+01 
0.190819E+01 0.579383E+00 50 0.234451E+01 
0.190819E+01 0.579 578E+00 50 0.234438E+01 
0.190819E+01 0.579619E+00 50 0.234436E+01 
0.190819E+01 0.579628E+00 50 0.234435E+01 
0.190819E+01 0.579629E+00 50 0.234435E+01 
0.190819E+01 0.579630E+00 50 0.234435E+01 
0.190819E+01 0.579 630E+00 50 0.234435E+01 

S 
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The algorithm 5.5.3, using a "slugging" matrix IS, can also be 

usefully used for the design of continuous systems. For example, if 

the cost is chosen to be 

co 
J = 	f y

T 
Q y dt 	 • 

and the operator K and the dynamics permit a useful solution, then 

algorithm 5.5.3 is directly applicable, although algorithms 5.5.1-2 

cannot be used. If the system mere sampled, and all the states fed 

back, then the optimisation ,)rcblem becomes valid, even though there 

is no cost on control. The following intuitive method is proposed. 

Let a be the estimated time response of the closed-loop system. 

(e.g. dominant tine constant). Then set 

a C 

= a (F
t
-  (Q 	R K) F

t
) 

= a Ft
x 
Q Ft , 

and use algorithm 5.5.3. Due to property 5.6.1, the larger a, the 

more likely the algorithm is to converge, but if a is too large, 

only slow convergence is obtained. The following simple example shows 

the application of the algorithm 5.5.3 on a continuous plant. 

ELaTple 5.6.2: y(s) = 
1 1 — 	. u(s) 
s s 

   

- k y(s) . 



The algorithm becomes 

n+1 1 + k 2  

1  a (n2k n 

1 +k 
2 

1 + k 2 
	 +a( 	

2k 
 n) k  

2kn 	n 
• 

E'11+1 	2k + 1 + k 2 

2(1 + kn2) 
For a = 1, • 
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co 

J = I y2  + u2 at . 
0 

This is the same system as in exPmple 5.2.1. However, we now derive 

the discrete-time algorithm. 

1 
Y(s) 	f(s) - s + k 

< f, fy. + k ) = 1 	k 
2k 2 • 

For a = 0, this reduces to the oriPinal continuous time algorithm. 

From the direct solution the optimal k is 1. However, starting 

from k
o 

= 0, the iterations proceed as 

k
1 
 = 2 

k
2 

= 1.111 

k 	= 1.00276 . 
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5.7 Compensator Design 

This final section of the chapter suggests methods of closed loop 

system design using compensators, based on the alrorithrs presented 

above. The ideas are fairly intuitive, and much future work remains 

to be done in this field. 

If the "dominant states" of a system are not available for direct 

feedback, but can be observed through some measurements, or if the 

achievable closed loop response obtained by gain feedback on the measured 

variables is not satisfactory, then a compensating filter is necessary. 

The basic method of design is to add further dynamics to the given. 

plant, so as to increase the number of independent inputs and outputs 

available for control purroses. Then, using this augmented plant, a 

quadratic cost function is formulated, and the above algorithms for 

computing optimal gains are used. The choice of added compensator 

dynamics is an open question, and the more parameters we wish to leave 

variable, the more flexible the design can be; 

Some basic configurations that one can propose are shown in 

Figures 5.7.1-3. 
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O 

H 
	

AT 

-K 

fig. 5.7.1 

y 
• b. 

fig. 5.7.2 

fig. 5.7.3 

7e shall concentrate the discussion on the case where u and y 

are single continuous time functions, although the extensions to Sampled 

data and multivariable systems may be deduced in some eases. 

The configuration of Figure 5.7.1 is particularly useful when the 

form of the compensator can be obtained from engineering experience. 

For instance, H can be designed tc approximately cancel those states 
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of 71 not available directly from the output. A particularly useful • 

form of H is the three term controller. 

E
d 
s 	KT  

i.e. 	H(s) = s 	s 	
5.7.1 

The coefficient a is either chosen " a priori ", to roll .off high 

frequency noise, or else given as a fundamental limitation of the 

compensator. 

K (s + K — 
H(s) = K + 	+ — 

p 5 + a 

ICd. 	KT  
= 	( Kp  + ) — 	

+ s 

= 	+ K
2 s a ( 	) • 

The closed loop system becomes: 

The cost is then formulated in terms of v and y. 

The structure of the form of Figure 5.7.2 enables the use of a 

simplified reduced order state space model of the plant. Using this 
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model, one can design a Kalman filter, cr Luenberger observer to 

estimate these states, to obtain the structure of Figure 5.7.5. 

fig. 5.7.5 

Now, costing x and u, an optimal K matrix can be calculated using 

the algorithms of the previous sections. Note that there is no stability 

problem with the Kalman filter, if only an approximate plant model is 

used, as distinct from feedback control design. 

The confiEuration of Figure 5.7.3 enables complete generality to 

be achieved. In fact, if 	use integrators as basic building blocks, 

then feedback and feedforward can generate any desired rational function 

of s. For the single-input/single-output case, we have a canonical 

structure made up of a. chain of integrators as shown in Figure 5.7.6. 

14 
k13 k12 11 

k21 

Yo 

w 
A 

k24 k23 =22 

i  

fig. 	5.7 

d 

.6 
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The chain of integrators can be terminated at any desired point. The 

disturbance d is added in to effectively prevent the gains k2i  from 

tending to infinity. Ole cost may be formulated in terms of y and u. 

Alternatively, the cost may be formulated in terms cf the controls v 

and y, and then d need not be introduced. Further generalisations 

for multivariable systems would need to use canonical structures for 

multivariable compensators, which still form a research topic.. 

To sum up the whole chapter, it seems that the algorithms presented 

have the following advantages. 

1. Whenever the optimisation problem approximates the all-state feed-

back infinite time problem in any sense, then convergence may be 

expected. Certainly convergence of the algorithm can le used as a 

test fcr the validity of an approximate state space model. 

2. The algorithms can be implemented on an analog computer, using 

cnly integrators and multiplication. Small matrices must be handled, 

but no storage of trajectories is required, although a sensitivity 

model must be used. Alternatively, if trajectories cal-11)e stored;' 

then the system model can be used as a sensitivity model. 

Further research is needed to investigate better convergence 

criteria, the effect of varying the initial conditions, and the effect 

of non-linearities. 
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SUM ARY 

The weighting function or system transfer approach is not 

new, but has fallen out of favour during the past decade. 

The purpose of this thesis has been to investigate how a 

weighting function approach can be used in the analysis and 

design of linear control systems. In many practical cases 

the use of a weighting function has computational advantages 

over the state space approach, especially when the dimension 

of the state space is large. Many theoretical advantages 

have also become evident. 

The thesis has surveyed the field of the optimal control 

of linear systems with quadratic costs, and the dual problem 

of filtering. From this the subject of modelling errors, and 

restricted structure control has been investigated from a 

weighting function point of view. Simple problems, computed 

either by hand or machine, have been included as examples of 

the algorithms that have been proposed. 
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CONCLUSIONS AND FUTURE RESEARCH  

System linearity is the main restrictive assumption 

used in this thesis. A secondary assumption is that of a 

quadratic performance index. However, under these restrictions 

a fairly unified theory has been developed. While there still 

remain many unresolved problems in this field, it is felt that 

useful computational tools have been developed for linear 

systems design. 

A major conclusion of this thesis is that simple control 

structures, based on dominant dynamics, can produce near 

optimal performance. However, the concept of dominance 

• depends on how the closed loop system is expected to perform. 

Further attention should be devoted to linear systems whose 

transfer functions are non-rational functions of s. These 

systems arise in distributed parameter problems, and appear . 

to have some interesting properties. In particular, systems 

with structural resonances, such as the one possessing the 

square wave impulse response of section 2.7., present 

challenging control problems. 

Most realistic models of engineering systems are non-

linear, and a non-quadratic performance criterion is often 

specified. One common procedure for tackling such systems is 

to approximate the system (locally) by a linear system, 

approximate the cost function (locally) by a quadratic function. 

The term 'locally' implies that the approximation is about 

particular operating point. Hence future research could be 
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directed at applying some of the algorithms presented in this 

thesis to non-linear systems. The descent algorithms of 

chapter 2 have already been applied in this way. However, the 

author feels that, with some re-derivation, the contraction 

algorithms of chapter 2 and the algorithms of chapter 5 

could also be applied to non-linear systems. 

A computational difficulty arises in the simulation of 

non-linear systems. If a model is specified in terms of a 

small number of ordinary differential equations or recurrence 

relations, then this is particularly easy to simulate. However 

the generalisation of the weighting function approach to 

non-linear systems by means of a Volterra functional series 

is extremely cumbersome computationally, since so much storage 

is required. A better method, though perhaps less general, is 

to model a system using only memoryless non-linearities and -

linear dynamics. The general representation of non-linear 

systems is of fundamental importance to the problem of 

identification, but no significant simplifications have yet 

been proposed. 
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