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ABSTRACT 

Dean's simplified Navier-Stokes equations for the fully-

developed flow of a viscous incompressible fluid through a 

tube of circular crops-section with its axis bent in a 

circular arc produce a two-dimensional non-linear elliptic 

equation of the sixth order to be solved in the circular 

domain. A number of partial-range approximate solutions have 

been developed, their ranges being expressible in terms of the 

widely-used non-dimensional parameter 

k  2Wma 

V 

where a is the radius of the tube, Wm  the mean axial velocity, 

L the radius of curvature of the axis, and )01 the kinematic 

viscosity. The range k<16.6 has been covered by Dean (1927, 

1928) as a perturbation of Poiseuille flow. For k:::100, 

asymptotic solutions have been reported by Adler (1934), 

Barua (1963) and by Mori and Nakayama (1965). The region 

17<k<100 has proved intractable to analytical techniques. 

The present thesis gives an exact numerical solution 

of Dean's equations for 16.64:k4:77.1. The first part formulates 

the method, describes the numerical solution, and provides the 

results as a set of field plots produced directly by a high-

speed computer and associated plotting device. These plots 

give a complete picture of the progressive change with 
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increasing k of the flow patterns for the perturbation solution 

into those for the asymptotic, and in particular, validate for 

the first time the physical accuracy of the two assumptions 

on which the asymptotic solutions are based. The second part 

studies the convective axial dispersion of a substance injected 

into the tube uniformly over the cross-section, and presents 

the results in terms of the statistical distribution of mean 

axial velocity over the injected particles. 

The calculated flux ratio is checked against White's 

(1929) measurements, and the necessary close agreement found. 
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CHAPTER I 

1. DELIMITATION OF THE PROBLEM 

The present thesis is concerned with a limited aspect 

of the laminar flow of a viscous incompressible fluid through 

a tube of circular cross-section with its axis bent into a 

circular arc. Interest is confined to 'fully-developed' flow, 

which means that the region of flow being examined is 

sufficiently far downstream from the inlet region for all 

irregularities to have died out, producing a constant velocity 

profile over'any cross-section. The second limitation has to 

be expressed in terms of one of the several related non-

dimensional parameters on which dynamic similarity can be 

based, and it is 

the widely used 

convenient 

2Wma 

to express it 

a 

in terms of 

(i) k = 

where W 	is the mean axial velocity over the cross-section, 

a the radius of the tube, 	) the kinematic viscosity, and L 

the radius of curvature of the axis. The solution given in 

the present thesis covers the range l06.64k....77.1, a range 

intermediate between that covered by other theoretical 

solutions, and in which the physical behaviour of the fluid 

was hitherto unknown. 
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2. THE PHYSICAL PROBLEM 

Simple physical arguments give a qualitative picture 

of the flow. The fluid is moving under the action of the 

pressure in the axial direction, and the centrifugal body 

forces at right angles to the axis. The axial velocity profile 

over the cross-section will be a distortion of the para-

boloidal profile for Poiseuille flow, but will still be zero 

at the walls of the tube, and will have its maximum on the 

central diameter in which the cross-section intersects the 

plane of the curved axis, and will be symmetrical about this 

diameter. The body force experienced by any fluid element 

will be very nearly proportional to the square of,  its axial 

velocity (at least for small a/L) so that the fluid near the 

centre will move in the direction of the centrifugal force, 

from the inside of the tube (nearer the centre of curvature) 

to the outside, and the fluid near the walls will be pushed 

in the opposite direction. By symmetry, the ends of the 

central diameter are stagnation points, so the overall effect 

of curvature is to divide the motion of the fluid into two 

independent regions, symmetrical about the plane of symmetry 

of the tube, in each of which the fluid particles move in 

helical paths, the pitch of the helix and the velocity 

varying from particle to particle. 
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A quantitative study of the physics of the flow, in 

particular of the importance of the secondary flow normal 

to the axis of the tube arising from the centrifugal forces 

must be based on a solution of an appropriate formulation 

of the Navier-Stokes equation and the equation of continuity 

for the system. The formulation is straightforward, but the 

resulting equations, because ,of the centrifugal body-force 

terms which depend on the square of the axial velocity, 

are non-linear, and insoluble in their full form. The 

problem is of sufficient physical - and more recently 

physiological - interest to have stimulated the development 

of a number of partial range solutions, of which the present 

is one, and a considerable amount of experimental work. 

3. HISTORICAL SURVEY 

The first significant theoretical work on the problem 

was done by Dean (1927) who formulated the full Navier-Stokes 

equation for the system in a set of toroidal coordinates 

which were a modification, to cope with curvature, of the 

natural cylindrical polar coordinates for the straight tube, 

and simplified these equations by assuming that a/L was so 

small that the radius of curvature in the centrifugal body-

force term could be taken to be constant over the cross-section 
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of the tube and equal to L; the equations should therefore 

be physically realistic for small a/L. Dean's equations 

reduce to a non-linear elliptic equation of the sixth order 

in two independent variables which has to be solved in the 

circular domain, and so further simplifications have to be 

introduced before an approximate analytical solution is 

possible. 

Dean developed a solution of the equations by considering 

the secondary flow and the change in W, the axial velocity 

as small perturbations of the known field patterns for 

Poiseuille flow. This solution enabled him to plot the 

secondary-flow streamlines, where the secondary-flow stream- 

line of a particular particle is the actual path of the 

particle in a cross-section which moves axially with the 

particle; because of the helical motion, these streamlines 

form two families of closed curves symmetrical about the 

central diameter (Plots of the secondary-flow streamlines 

for the intermediate range are given in figure 3, of Chapter II). 

In an extension of his original solution Dean (1928) showed 

that dynamic similarity depends on 

K = 2 W 2a3 
	

(2) 

vz L 
where Wo is the axial velocity at the centre of the cross— 
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section, and extended his solution by assuming series 

expansions in powers of K, inserting these in his equations 

and comparing powers of K. In spite of the immense work 

expended on the complex manipulations involved, the results 

were disappointing, in the sense that predicted departure 

from Poiseuille flow was small. For example, Dean derived • 

an expression for the ratio of 	, the flux (1Ya2Wm) for a 

curved tube to S that for a straight tube with the same 

pressure gradient, as the first three terms of a power series 

in, h2  ; at the upper end of its range of validity K = 576, 

the expression predicts a drop of less than two percent 

in the ratio. Dean's work, however, is important, since all 

subsequent theoretical work on the problem starts from his 

equations, and his identification of the appropriate 

parameter for dynamic similarity has provided a common 

reference for subsequent theoretical and experimental work. 

His solution covers k in the range (0, 16.6). 

White's (1929) experimental measurements of the ratio 

of )rs the resistance in a curved pipe to 	the resistance 

in a straight pipe for the same flux !s  established that 

dynamic similarity depends on K, though he introduced and 

used the derived parameter k defined in equation (1). 

For sufficiently small K, 

k = (3) 

White's results showed (15 /It being equal to (9e/Qs  ) that 



14 

Dean's prediction of the virtually constant value of the 

flux ratio in the range K 	576 (k< 16.6) was fulfilled. 

An unexpected discovery from these experiments was that 

an increase in the curvature ratio increased the value of 

the Reynolds number below which turbulence is damped out. 

This aspect was directly examined by Taylor (1929), and the 

same phenomenon appeared in the work of Adler (1934) who 

also measured the resistance ratio as a function of k. 

The work of these three on turbulence is considered briefly 

and quantitatively in Chapter III, where a comparison of 

White's measurements with the flux calculations of the 

numerical solution is also made. 

The first asymptotic solution was given by Adler (1934), 

who deduced that for large K, viscous forces tend to be 

confined to the boundary, while in the core of the tube, 

surfaces of equal pressure are perpendicular to the central 

plane of the tube. By applying a Polhausen analysis to the 

momentum equations in the boundary layer, he obtained an 

expression for the increase of the resistance ratio with 

increasing k. With the same basic assumptions, Barua (1963) 

and Mori and Nakayama (1965) have given solutions which 

produce more accurate expressions for the variation of 

resistance with k. Two relevant questions arise. 
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The first is whether the upper end of the numerical 

solution approaches the lower end of the asymptotic, and 

the second is whether, if the ranges approach, the field 

patterns and other physical properties are compatible in 

the region where the solutions impinge. Though an exact 

lower limit to the asymptotic solutions cannot be given, 

it can be justifiably claimed that the numerical solution 

does bridge the gap between the perturbation and asymptotic 

solutions, since the secondary-flow field patterns it 

produces at the upper end of the range justify both initial 

assumptions of the asymptotic solutions. A further indication 

of the bridging role of the numerical solution is given in 

the discussion of "median" lengths in Chapter III. 

4. THE PRESENT PROBLEM 

There is not a great deal of engineering interest in 

laminar flow through curved tubes with a small curvature 

.ratio (a/L), since relevant flow in curved tubes is usually 

turbulent, as in heat exchangers, or the curvatures are too 

sharp or the lengths too small to allow fully-developed 

flow to occur. However, when the present work was started, 

it appeared that current investigations into the cardio-

vascular system would be greatly helped by a knowledge of the 

physical behaviour of the fluid flow in the intermediate region 
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of k, in particular, by a knowledge of the effects of 

curvature on the dispersion of an injected substance. 

A further motivation was provided by the local interest 

in the problem of the Physiological Flow Studies Unit at 

Imperial College. 

It was felt that the present development of computers 

would make it possible to extend Dean's work upwards by a 

numerical technique. A number of attempts to solve the 

problem in the circular cross-sectional region by finite-

difference techniques failed because a suitable grid could 

not be found. A different approach was tried, in which the 

symmetry of the field patterns about the central diameter 

could be exploited. The scaled axial velocity(f and the 

scaled secondary-flow stream function C were expressed 

respectively as cosine and sine Fourier series in the polar 

angle t  measured from the central diameter, with coefficients 

which are functions of r only, r and 	being the natural 

polar coordinates in the cross-section. After substituting 

the expressions in the original equations, a set of coupled 

non-linear ordinary differential equations involving ttr, 

and derived quantities, all functions of r only, were obtained. 

The problem was discretised, and values of 	and the 

other quantities sought by iteration. 

It was felt undesirable to base dynamic similarity 

on a parameter depending on Wm  in a theoretical investigation, 

since W is not known even approximately at the outset. 
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Instead, dynamic similarity was based on a non-dimensional 

pressure gradient 

Ga3 2a D - 
L 

where G is the mean pressure gradient. 

(4) 

The iterative method proved to be less convergent 

than had been anticipated. It started at D = 96 corresponding 

to Dean's K = 576, and in its original form stopped converging 

at about D = 140: However, the behaviour of the systeM 

suggested that convergence could be forced for higher values 

of D, and after testing a considerable number of schemes 

(which have not been chronicled here), one was found which 

gave convergence up to D = 605.72. The field patterns which 

had meanwhile emerged showed that no more physical insight 

would be gained by pushing the value of D higher, since the 

secondary-flow field patterns at the upper end of the range 

of D were extremely close to the pattern assumed at the 

outset of the asymptotic solutions. 

Numerical solutions of field problems provide difficulties 

in interpretation and presentation. With an analytic solution, 

it is usually possible to see the physical behaviour of the 

system from the known properties of the functions in which 

the solution is expressed. In a numerical solution the 

results are necessarily given as numbers, and this type of 

interpretation is not possible, though in grid methods, 
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some insight into the field patterns may be obtained 

without too much difficulty. The translation of the results 

of the Fourier-series solution into field patterns by human 

effort not being feasible, it was decided to make the 

plotting automatic, so that the field plots would be 

drawn by an electro-mechanical device, the CALCOMP Plotter, 

using a magnetic tape produced by the IBM 709411  computer. 

The flow lines in the numerical solution had to be obtained 

as a set of discrete points by interpolation along fixed radii. 

As the plotter could only join these points by straight lines, 

an algorithm was developed to generate intermediate points 

on a smooth curve passing through the points. This work 

was carried on in parallel with the numerical solution of 

the equations. All the figures in the present thesis, except 

figure .1 of Chapter II, have been drawn automatically. 

When the equations had been solved, the flux ratio Ot/OT 

defined earlier was calculated. This enabled k and D to be 

correlated, and also made possible a direct test of the 

numerical solution against White's resistance measurements. 

Both these are described in Chapter III. This test is crucial 

since White's measurements are made for small a/ L, and 

Dean's equations are virtually the full Navier-Stokes 

equations for small a/L, so that a solution which is claimed 

to be an exact solution of Dean's equations must agree 

closely with white's well-established measurements. 
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The extension of the method to the study of the 

dispersion of an injected substance is given in Chapter III. 

This has involved the development of algorithms for the 

evaluation of line integrals around the secondary-flow 

streamlines, and for calculating the areas enclosed by the 

streamlines. The developments of these algorithms has 

necessitated the refinement and sophistication of the 

algorithms for constructing the streamlines for display, 

developed in the first part. 

The three-dimensional physical picture of dispersion 

is exceedingly complex, and must be simplified for calculation 

and presentation. This has been done by restricting interest 

to the convective axial dispersion of a substance of the 

same density as the fluid injected as a thin disc uniformly 

over the cross-section, and by considering only the mean 

axial velocity of the particles. The statistical distribution 

of this mean axial velocity over the particles of the 

Injected substance is given in a form which can be used to 

obtain the downstream axial distribution of the substance 

at a considerable distance from the site of injection. 

Chapter II was published in the Proceedings of the 

Royal Society, A 307 in 1968. Chapter III is a sequal which 

is being communicated by Professor M.J. Lighthill, Sec. R.S. 

for publication in a future issue of the same journal. 



Detailed discussion of numerical methods has been 

confined to the Appendix, where some of the topics of 

possible interest to other workers in the field are 

briefly discussed. 

References to the work mentioned in this introduction 

are given at the end of Chapter III. 

20 
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CHAPTER II 
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Motion of a fluid in a curved tube 

BY D. J. MCCONALOGUE AND R. S. SRIVASTAVA* 

Imperial College, London, S.W. 7 

(Communicated by M. J. LigAtkin, Sco.R.S.—Received 6 March 1968) 

Dean's work on the steady motion of an incompressible fluid through a curved tube of 
circular cross-section is extended. A method using  a Fourier-series development with respect 
to the polar angle in the plane of cross-section is formulated and the resulting coupled non-
linear equations solved numerically. The results aro presented in terms of a single variable 
D = 4R./(2a/L), where It is the Reynolds number, a the radius of cross-section of the tube, 
and L the radius of the curve. The results cover the range of D from 96 (the upper limit of 
Dean's work) to over 600. From these it is found that the secondary flow becomes very 
appreciable for D = 600, moving the position of maximum axial velocity to a distance less 
than 0-38 a from the outer boundary, and decreasing the flux by 28% of its value for the 
straight tube. 

Theso calculations fill a large part of the gap in existing knowledge of secondary flow 
patterns, which lies in the upper range(of Reynolds number for which flow is laminar. This 
range is of particular interest in the investigation of the cardiovascular system. 

1. INTRODUCTION 

In this paper the steady motion of an incompressible fluid through a pipe of circular 
cross-section which is coiled in a circle has been studied. Dean (1927, 1928) has con-
sidered this problem theoretically. He found that, to first approximation, (Dean 
1927), the relation between pressure gradient and rate of flow is not dependent on 
the curvature. In order to show its dependence he modified the analysis by including 
terms of higher order and was able to show (Dean 1928) that the reduction in flow 
due to curvature depends on a single variable K, equal to 2R2a/L, I? being the 
Reynolds number in Dean's notation, a the radius of the tube and L the radius of 
curvature of the bent tube. Dean (1928) showed that his analysis was reasonably 
reliable for values of K up to 576. Earlier Dean (1927) had sketched the streamlines 
in the plane of the cross-section according to his first approximation; these would 
be accurate only for values of K considerably less than 576. The present investiga-
tion has been carried out with a view to finding not only the relation between rate 
of flow and pressure gradient but more generally the whole pattern of flow for values 
of K ?, 576. 

Dean mentions that for a complete discussion of possible laminar motions one 
must have a solution for K up to perhaps 105, corresponding to values of aIL around 
0-01. The analysis of the present problem has been carried out in such a manner that 
it depends on a single variable D such that 

D 	j(2a3) Gat 
v2L p 

G being the mean pressure gradient, v being the kinematic viscosity and ,a is the 

* Permanent address: Defence Science Laboratory, Delhi. 
[ 37] 
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coefficient of viscosity. The D of the problem is related to Dean's K and R by the 
relation 	

D = 4.NIK = 41V 2a 

at least for the lower values of K such that mean velocity is related to G approxi-
mately as in Poiseuille flow. For higher values, the mean velocity is not known even 
approximately in advance and so D, expressed in terms of pressure gradient, is a 
much more convenient parameter than K or B. 

Now in a straight tube the lower critical Reynolds number below which all dis-
turbances damp out is approximately 2000. Some experiments conducted by 
several workers on curved tubes have shown that there is an increase in critical 
Reynolds number for curved tubes. Taylor (1929) found experimentally that for 
L/a = 31.9, the lower critical Reynolds number rose to about 5000. If we substitute 
in the relation D = 44(2a1L), we deduce that values of D up to about 5000 are of 
interest. 

We have solved Dean's equations by an iterative method, and have succeeded in 
obtaining convergent results for values of D between 96 (which corresponds to 
Dean's K = 576) and. 605.72. For several values in this range, the streamlines in the 
plane of the cross-section have been sketched, clearly demonstrating the character 
of the secondary flow. Apart from the streamlines in the plane of the cross-section, 
the lines w = constant have also been sketched, w being the non-dimensional 
velocity perpendicular to the plane of the cross-section, and these show the very 
Considerable displacement of the location of maximum axial velocity which results 
from the secondary flow. 

In engineering situations, laminar flow rarely occurs because Reynolds numbers 
are usually too high, and for this reason research on laminar secondary flow has 
been neglected. But in the cardiovascular system flow is usually laminar. Study of 
this system (in only parts of which bent tubes occur) makes it desirable, therefore, to 
investigate laminar secondary flows. Understanding of their streamline patterns 
can assist, for example, in understanding the distribution of injected substances. 

Calculations of such distributions in a bent tube have been attempted by 
Erdogan & Chatwin (1967), using Dean's solution for small E, but the flow patterns 
derived in this paper make such an analysis possible for much higher Reynolds 
numbers, similar to those occurring in the arteries. Such an analysis is now being 
undertaken. 

The gap in existing knowledge has, in fact, been in the upper part of the range of 
Reynolds numbers for which the flow is laminar. The present paper fills a large part 
of that gap, and shows that for these Reynolds numbers particularly dramatic 
changes due to secondary flow occur. 

Mathematically, a complicated. non-linear elliptic system of the sixth order in two 
independent variables needs to be solved in a circular domain. A preliminary review 
of the methods available for doing this indicated that a method using a Fourier-
series development with respect to the polar angle had certain advantages. By 
contrast, methods aimed at determination of function values at points of a grid 
suffered from the difficulty of choosing a grid ideally suitable for a circular domain. 

23 



Motion of fluid in a curved tube 

Finally, the Fourier-series method was chosen, and proved thoroughly convenient 
for the purpose. 

2. FORMULATION OP THE PROBLEM 
Figure 1 shows the system of coordinates for the consideration of motion of fluid 

through a pipe of circular cross-section coiled in the form of a circle. The axis of the 
circle in which the pipe is coiled is OZ and C is the centre of the section of the pipe 
by a plane that makes an angle 0 with the fixed axial plane. OC is of length L which 
is the radius of curvature of the coiled tube. The plane passing through 0 and 
perpendicular to 02 will be called the 'central plane' of the pipe, and the circle 

FIGURE 1 

traced out by C its `central line'. The coordinates of any point P of the cross-section 
are denoted by the orthogonal coordinates (r', a, 0) where r' is the distance CP and 
a is the angle which CP makes with the line OC produced. The velocity components 
corresponding to these coordinates are (U,V,W),U is therefore in the direction CP, 
V perpendicular to U and in the plane of the cross-section, and W perpendicular to 
this plane. 

The motion of the fluid is supposed to be due to a fall in pressure in the direction 
of 0 increasing. The motion is expected to be a steady one in which U, V, W (but 
not P, the pressure) are independent of 0. 

Dean (1928) obtained simplified equations for such a motion when the curvature 
of the pipe is small, which means that alL is small. The equations of motion are 

au 	v au V2  W2 cos a 	a (P\ v a (ay V 1 au,  U—+----- (1) ar' r' as r' 	 ar' 	1 r' aaar'+;:' 771  aCC, 

Tr  av V.V U V W2  sin cc 	1 a OD\ 	a (av  v 1 0P 
dr 	-r7 	r' 	L 	/)) + V  ar'  kari 	Oa, ' 	(2)  

Tr 8W 	v aw 	1 a (P\ 	 92 -w 1 a -Pv 1  92W  
ar' +7 as = 	CO kp— ±r  \ 82.'2 r' Or' 4-  ;•77' aa2  

24 
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The equation of continuity is 
au U 1 av 

	

Sr' 	r' 	at% + - + — = 0. 	 (4) 

These are identical with the equations of motion in cylindrical coordinates r', a and 
LO (the latter replacing z) with the addition of a centrifugal force W2/L per unit mass 
acting in the a = 0 direction. To this approximation this centrifugal force is the only 
result of the pipe's curvature. 

Now as U, V, W are assumed to be independent of 0, it follows from (3) that P/p 
must be of the form Of 3.(r' , a) ± f 2(r% a) and then from (1) and (2) one immediately 
finds that f,(r' , a) must be a constant. This being so, one can write 

1 a( P\ _G 
kp 
	 (5) 

where G is a constant which may be termed the mean pressure gradient; it is equal 
to the space rate of decrease in pressure along the central line. 

From (4) we can write 

	

rIU = Of -- V = - 	 (6) 

where f, the stream function of the secondary flow, is a function of r' and a only. 
Now by the use of the equations (1), (2), (3), (5) and (6) one obtains the following 
two equations 

i a  ( 

	

aw. 	aw) . - vr'Vl 	(7 ) le a  + of  -a  \. vTf + —2W (2-' sin a - 1,7  + cos a -a.: 	f - as Sr' Sr' as 	L 

and 	
1 f _ af aw +Rt.  alv,\ . G+ pv2 Ty  

(8 ) r' 	al.' as ach ar / 	p 	1  
2 	 2  1 a 	1 52  where 

\71  = 52,2±.? Ori+  72  Oa2* 
Now introducing the non-dimensional variables 

f = vc,h, W 	92  w, 	ar 	 (0) 

we obtain 
1 (a0 aw50 51 viw +11= — 	 (10) r asar or as 

and 	Visb 	 vi + w (sin a baWr co2s. aa ccw) (11) 

Gat /20 
where du, v2L 

In the equations (10) and (11) Vi stands for 

	

52 	1 a 1 a2  
Or2+  Fr+ 2  0a2. 

25 
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Motion of fluid in a curved tube 

3. We now introduce the series 
w = 	w cos na 	 (12) 

n=0 
co 

and 	 ch = E ksinna, 	 (13) 
n=o 

where wn  and c6„ are functions of r only. 
Substituting w from equation (12) in equation (10) and by equating the coefficients 

of cos na, the following equations are obtained. For n = 0, we obtain 
&zoo  1 dwo  

= dr2 +r dr 	 fo(r), 	 (14) 

fo(r) = —1{ mO —+ E mw, 	- D. 

	

2r 7,1  "' dr r„1 	dr 
oO 	cic5 where 	 (15) 

	

dew 	1 dw, n2  For n 1, we have 	n+ 	w = fn(r), 	 (16) 

	

dr 	r dr r-.  

where 	dem(r) = 2—r 	mOm 	dnr-m 	E ms 4n' 	(17) "' dr 

	

1 cc' 	ds 	1 c° 

In equations (16) and (17) we have used the following relations 

= 

Sm  = Wm  (m > 0), 
sm  =--w, (m < 0), 
so  = 2wo. 

If we now introduce the vorticity then from (6) we have 
a2f 1 of 1 a2 f 

(19)  ars 2  r' Or' r' 2  acc2  
With 	(v/a2) (where is non-dimensional vorticity), by the use of (9) we obtain 

ao la2c5 
are + (20)  27  err +r2 09C42  = 

CO 

Here 	 sin na, 	 (21) 
n = 0 

bn being a function of r only, satisfying 
d2¢ 1 	 r  

	

dr2n  r dr r2 ¢n= 	
(22) 

Now substituting ci5 from (13) in (11) and equating the coefficients of sinner, one 
obtains for n 1 	d2  g.  1 g,2±  n2  

— 	 — 	= F (r) 	 (23) dr r dr r2  ' ' 
where 

1 c. 	dO 	1 c° 	4n--m Fn(r) = 	E 247,  n-m+ 	mcb, 
r 	_ co 	dr 	r , 	n dr 
1 	dsm  , 	 , 	.,„c° 

- 	m 	sn-(m+3.)-  n---(2n-1)) 	m 	cc,  M'S(Sn—(m+i) S n—(m—D) • 

In equation (24), in addition to the relations given by (18) we have 	= - bm 

(18) 

(24) 
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4. SOLUTION 
By the application of the method of variation of parameters (Jeffreys & Jeffreys 

1962) one obtains from (14) 

wo  = A + B ln r + J r  6(ln r -ln 6)4(g) (16, 	 (25) 

where A and B are constants and u may be taken arbitrarily. 
Now the velocity TV has to be finite at r = 0 which implies that wn  has to be 

regular at r = 0 for all n 0. 
At r = 0, therefore we would have 

0 
wo  N Blnr +lnr Ef0(6) dg 

o 
which gives 	 B = -5 g AO dg. . 

The velocity TV is zero at the boundary and so we get wn  = 0 at r = 1. The condi-
tion wo  = 0 at r = 1 therefore from (25) gives 

A = 
J 1  (gin )fo() ag. 

Finally, from (25) we obtain 

wo = f (61n g)/0(6) dg + ln r fo  gfo(E)dg. 
r r  0 

Again from (17) we get 
, 

to = Arn Br'n 
1 	

(rng-n+1  - r-  
j' nTh+i)fn() d. 

The conditions on wn  determine A and B. They

( 

 are 
1 

A_ 	E"±if.(6) 	
1

u  6-n+lin(6)clE 

and 	
1 r 

gn+1.ing B = 	 ) dE• 
2n u 

Finally, we have 

rn 
w 	

1 	 rn 5 r 	 - r-n f 
0 
r  

= ......._ gn-o 	+ 
2n 
_ 

1  ' 	' 2n 
c--21+1A(6) dp _ ,z• n+if no dg.  n 	274

f
0  0 fn(S) cy 	

' 

Again from (23) we obtain 
2' 611-1-1r-n+2 - rng—n+3 

On = Arn + Br-n + Crn+2  + Dr-n+2  + 1 Eng) dE 8n 	,i, 	n - 1 
r E-n +1 rn +2 r—ngn+3 

n + 1 
	 11(6) dd  

where A, B, C, and Dare constants. Now 0„ is regular at r = 0. Therefore we should 
have 

27 

2n u 

(26)  

(27)  

(28)  

(29)  

p = — 1 f 6n+3 	 O A'n-1-1 1  
8n u n+1 

F (g)dg and D = - —
S 	

Fn(E)dg. 
• 

822 n-1 
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At r 1, U and 1r hotlt arc zero. This boundary condition diem fore gives 0„ = 0 and 
0„ = 0 a.t r = 1. This determines A and C. After A and C have been determined we 
obtain from (29) for n 2 

l 
= rn 

[ f 
sn — 0 g-4-3  F (g) dg  8 f 0  6  nn +1 -F-(6)  ad -1 

0 n+i-F()cig 11 	 FTh( g)  
- 72 	 8 0  n+ 1 

fr  gn+3Rng) 	r-n+2  f r  6n+111(g)dc  
8n, J 0  n, +11 	8n J 	n-1 

j 
g-n-raj' 	)-zir 

8n 1  n- 1 E+ 8n 	n+ 1 	dE. 

For n = 1, one obtains from (23) 

r 3  b = Ar3 	cfr 	+ +16  ru F1(6) d6 —161  r f ur  g4F1() dg 

28 

(30) 

(rin r)f  r 
4 ju  g2F,(6) 	

4  f u 
(62 in 6) F1(6) (31) 

After applying the conditions on 0/, we get 

= 12-6E (2g2-  64)F3.(g)dg+ IX (64- g2)Fi(g) dE 

+i-1361:Fi(g)dg-Ifo  g44.(g) dg -Ij11--41r  f ro  g2Fi(g)dg 

+raf (g21n g)Fi(g) d6. 

Now by using the equations (22) and (30) one obtains 

= 
(n + 1)241  j.1 67'.1-1F (E) 	gn+3F (6) dg 

rn 

	

2n 	0 	n 	2n 0 	n  

+ —2n 6-1"-1-En(g) dg- 2 o gn+l-Pn(g) dg• 

For numerical purposes it is easiest to use (33) to obtain 	directly, and then to 
deduce On  from (22) in the same manner as wn  was obtained from (16), namely as 

	

n 	 r-Th fr = 	r-u-I-1 U6) dr— 	 -1-1. 71(g) clE n 2n,1 1 
	 2n 0 rn  

using the fact that 
1,1 

6n+1  fl(6) d = 0, 

which can be established directly from equation (33). 

(32)  

(33)  

(34)  
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The equations (33) and (34) are true for n 1. We also need the following results 
for derivatives: 

	

Jodr - 	b./0(6) dg, 	 (35) 

dwn 	rn-  If
o 
1 	rn-I r r 	 r-1  

	

dr 
- 
	n

(E)cg+-2 	E-n+V.(6)d6+ 	2 0  gn+Vn(6) dE, (36) 

6 

	

dg.„, — _ 	
2 	0 

(n+ rn-1  jr1 	 nrn-151 
+'4() dg 	2 	0 g

n 3 
F () d dr  

rn--1  rr _n  
j 	6 	+ 11,()cic+ r-n-1  f r  4- 	2 	 6

o 
 71+1F 

	

2 	,,,() 
1 

ci
d  O

n  2. n-1 r r 
n÷1  ±

r-71-1 r: 
n +1  Ug) dg• r  j d6 fl( 6) 2  

At r = 0 our formulae take the special forms: 
1 

(woo
r 

 = 0  61n uo(g)dg, 

= 0 (n 1), 

(cldwro).  = 

(V0 2101(62-1).fi(g)d6, 

rfurt 	
(n 2), 	 (43) 

	

(OA,  = 0 (n i 1), 	 (44) 

( cti)0  = 12 .101  .1.(6) d6,  (45) 

(dcit„,)0= 0 

	

(n > 2), 	 (46) 

	

(CO0  = 0 (n 1), 	 (47) 

(t) 	= fo  l  g2Fi(E)dg- f01  (g4+ 1) Fi() dg, 	 (48) 

	

(dcfrn) 0 0= 
0 (n 2), 	 (49) 

(4)0  = (ddcbr)0  (ddwr)0 _ (50) 

(fn)0 7  0 (n i 1) 	 (51) 

	

(Fn)o = 0  (n 1). 	 (52) 
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The flux across any cross-section is given by 
a12r 

	

Qa  = 	Wr' dr' da 
o o 

	

= 	/1,7,2E\  i• a r 2ir 
wn  cos 	r' dr' du k2a3) j 0  J o  71,,_ 0 

= 27ra2  4/(----v2a-113) jil rwo  dr. 

Now if Qs  denotes the flux in a straight tube for the same pressure gradient as that 
in a curved tube, then we have 

Qc 16  rw dr,  
Qs =1  D 	° 

(53) 

1.0----- 

0•s 

	

0.6 	 1 	 1 	 1 	 I 	 i 	 1  

	

0 	 200 	 400 	 600 
D 

FIGURE 2 

NUMERICAL SOLUTION 

The equations (26), (2S) and (33) to (38) express wn, On  and Sn  and their derivatives 
in terms of Li  g) and Fn(6), which are, in turn, defined in terms of wn, On  and bn  and 
their derivatives in equations (15), (17) and (24). This has been done because it is 
not possible to obtain analytical expressions for w and 0. In consequence, numerical 
values for their Fourier coefficients defined in equations (12) and (13), corresponding 
to particular values of D are sought by numerical iteration, using the equations 
just listed. 

Since numerical techniques cannot cope with functions defined at every point in 
a continuous range, w, 0 and their related functions must be replaced by discretized 
representations. For the present numerical work, the range (0, 1) has been divided 
into ten equal parts, so that each function is replaced by a vector whose elements 
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correspond to the eleven values of the function at = 0(0.1)1. It will be convenient 
to denote the vector analogue of any function v by a bold face v, and the elements 
of v by vs, s = 0(1)10. 

To solve the discrete analogue of the original problem, a process must be devised, 
which, starting from a set of approximations to vv,, cpm  and fin, and the related 
derivatives, uses the known relationships between them to get an improved set of 
approximations. The process is applied repeatedly to each successive set of approxi-
mations, until convergence, which is taken to have occurred when a set of 
approximations has been obtained, on which the application of the iterative 
process produces changes which are less than a. chosen tolerance. This implies that 
a mutually consistent set of vectors has been obtained. 

Evaluation of the integrals 
Before any iterative scheme can be devised, a method must be developed for 

evaluating the integrals occurring in equations (26), (28) and (34) to (38), in which 
the integrand is of the general form popg), where p(6) is one of the continuously 
defined weighting functions In E, 	(n = 1, 2, ...) butfo has been replaced 
by the vector f. To derive quadrature formulae, f must be replaced (implicitly or 
explicitly) by a continuously defined approximating function, for which it is 
customary to use a collocating polynomial. For each p(E), the range (0, 1) may be 
covered in increments of 01, by a set of two-panel formulae (generalizations of 
Simpson's rule) of the form 

`
(s+2)/10 

J silo 
P()f(6) d6 = AOL+Alfs+1+ A2fs+2+E (s = 0(1)8), 	(54) 

E being an error term, with special one-panel formulae for (0, 0.1) and (0.9, 1). 
In (54), f(6) is replaced by a quadratic over the range of integration, so E will only 
be zero when f O is a polynomial of degree two or less, and the piece-wise approxima-
tion will lead to discontinuities in the integral. The A's depend on p(g) and s, but 
not on f()), and this can be used to obtain their numerical values from the three 
simultaneous equations which arise by making (54) exact when f(6) is taken as 
1, 	and S2  in turn (the method of undetermined coefficients). The different triplets 
of A's corresponding to each p(6) need be worked out once only, outside the iteration 
loop. 

This approach was used initially, but was found to give increasingly inaccurate 
results for p(g) = g-n+1, with increasing n and decreasing E. It was not usable for 
n> 6. 

Because of the form of the weighting functions, and because the method of piece-
wise collocation gives rise to discontinuities in the integrals, taere are obvious 
advantages in replacing f by a single polynomial covering the whole range (0, 1). 
The integrations can then be carried out analytically. The unique polynomial of 
degree ten passing through (0.1s,fs) would not be a suitable choice, since its value 
could oscillate unrealistically between the collocation points, and while the error 
due to this oscillation would tend to cancel out with unit weighting function and 
integration extending over the entire range, the partial-range integration combined 
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with the steeply varying weighting functions would amplify any error due to 
spurious oscillation. 

It was decided to approximate f by a least-squares polynomial, the degree of 
which would be determined by numerical experimentation, as the best compromise 
between the need to minimize unwanted oscillation, and the need to represent f with 
sufficient accuracy. 

Since the least-squares approximation has to be done repeatedly, it becomes 
computationally economical to carry it out in terms of the Gram polynomials 
(Hildebrand 1956), the discrete analogues of the Legendre polynomials. The relevant 
set is the set {0,.(s, 10)}, where cbr(s,10) is a polynomial of degree r in s, and the 
members are orthogonal under summation, i.e. 

10 
E 0,(8, 10) 0„,(6., 10) = 
s=o 

The least-squares polynomial of degree q is given by 

 

a 
pa(6) = E arki0E, 10) (q 10), 

r=0 
1 11)  

ar = — E fsOgs, 10), 
Yr 6=- 0 
10 

Yr = 	Ogs, 10 ). s=0 

 

where (56) 

  

Considerable algebraic manipulation is necessary to derive the polynomials in s, 
and to transform them into polynomials in g. The actual computing time, however, 
for each least-squares approximation is very short, since the values of 0,.(s, 10) at 
s = 0(1)10 can be stored initially as a set of eleven element vectors; ar  is then 
obtained as the inner product of two eleven element vectors, divided by a constant 
'yr, also calculated once only. 

A polynomial of degree eight was found suitable, and used throughout the 
investigation. It is expected that 2v,,, and On  would decrease very rapidly with 
increasing n, so only the first few terms in the infinite summations in equations 
(15), (17) and (24) contribute significantly to the values of the sum. The computer 
program made provision for twelve terms, and this was found more than adequate. 

Iterative schemes 
By increasing the parameter D in steps, initial approximations to w„, On  and 

derived quantities for a particular value of D are provided by the final iterated 
values of the corresponding quantities for the immediately lower value of D. The 
process was started from D = 96, which corresponds to Dean's K = 576. 

For this value of D, the first approximation to wo  from (26) is 

Ivo  = 4)(1 - 2-2 ). 

The first approximation to cb„ from equation (31) is then 

= (4D)2th( — r7 + 6r5  — 9r3+ 4r). 
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For w1, equation (28) gives 

wl 	 — r3  + ;12'5 — 17.7  -1-10". 

By the use of equation (22), an approximation is obtained to 	and differentia- 
tion gives approximations to the corresponding derivatives. 

For the subsequent discussion, it is convenient to use the symbols vT)  and v(P)  to 
distinguish between the initial and final approximations to the vector v in the loth 
iteration. 

In each iteration, n gives from 0 to 11. In the ic,th iteration, for n = 0, equations 
(11) and (49) use vsq,ki )r, 45gf )./- and their derivatives to calculate fo, which is then used 
in equations (20) and (40), and (25) and (41) to obtain w(04i, and (dw0idr)(1,i ). A choice 
is now available between using WV or iNtk) (and their respective derivatives) in the 
subsequent calculations with n > 1; more generally, the choice is between incorpo-
rating new values immediately, or continuing with the old values until the end of 
iteration (analogously to the Gauss—Seidel and Jacobi processes for the iterative 
solution of linear simultaneous equations). Experience with both methods shows 
unambiguously that the new values should be used as soon as they become available. 

At the outset, the straightforward iterative scheme 

v(+1)  = 

was used for all the vectors, and D, starting at 96, was increased by a factor of 
10°'1  (= 1.259). It is, of course, necessary for any iterative scheme (unless it is highly 
convergent), that the initial approximations should be reasonably close to the final 
converged values. 

The straightforward scheme worked well for D = 96, but became more slowly 
convergent for increasing D, and finally became divergent. Since the convergence 
depends on the initial approximations, it is not practicable or necessary to fix a 
precise value of D at which it breaks down, especially as the results of this part of 
the work showed several properties of the beha'.riour of the system which could be 
used to increase the value of D for which convergence could be obtained. 

The convergence or divergence of the system was dominated by the behaviour of 
wo. Also the effect of the iterative scheme was to make the values oscillate, whether 
convergent or divergent. Accordingly, a better result could be expected by taking 

vrrn = -(vP+ vP) 

for all the vectors. This increased the rate of convergence for the previous con-
vergent values of D, and extended the value of D for which convergence was 
obtained, but again began to give oscillatory values, and was found to be non-
convergent for values of D around 260, even starting from a good approximation. 
A new approximation was tried in which v1' 4-1)  was the average of all the previous 
means, i.e. 

1 k 
v(P±I)  = — E (v(r)± v(P). 2/07-1 (vi 

Because of the oscillatory effect of the iterative process, this scheme could be 
expected to be stable and self-correcting. This was indeed borne out in practice, but 
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the scheme was not pushed to its limits, because the convergence was somewhat 
slow, i.e. v(P)  and v(iP approached rather slowly. As this was seen to be due to the 
continuing influence of the values for the lower values of k, the rate of convergence 
could be increased by weighting the later mean values more heavily according to 
the scheme 

V(P+1)  = f, Sr(v(P-F v()/2 E 
r=1 	r=1 

where {Sr } is a monotonic increasing sequence, whose actual form is not of primary 
importance; a typical useful form was Sr  = 1 + (r/12)4. This scheme would be con-
vergent for all values of D for which v(P)  and VP tended to a common limit with 
increasing k, for all the vectors. 

Above D = 380, exponential incrementing of D had to be replaced by arithmetic 
incrementation, 25 being found to be a suitable increment between 380 and 480, 
and 10 between 480 and 605. 

RESULTS 
Figure 2 gives the plot of flux against D for values of D up to 605.72. The dotted 

line is a plot of Dean's formula for the flux, 
X )2 

1— 	(0.03058) + (5-7--76-K  )4  (0.01159) 

and the continuous line from D = 96 is a plot of twenty-eight values obtained in the 
present work by evaluating the integral in equation (53). 

In figure 3 a—i, level surfaces of (75 = constant and w = constant have been plotted 
for nine values of D in a geometric progression whose first term is 96 and common 
ratio 100'1. For w, ten lines have been drawn, the constant increment being wmax./11, 
where wmax. is the maximum value of w, found by interpolation along the diameter 
a, = 0, and for 0, eight dotted lines with increments 0-max./9, (6, max. being the maximum 
value of 0, found also by interpolation. The position of wmax. is also indicated on 
each graph. 

Figures 2 and 3 have been drawn mechanically on a CALCOMP Plotter, using 
a magnetic tape produced by the Imperial College IBM 7090 computer. When the 
iterative procedure had converged for a particular value of D, the values of w at 
the twenty-one equally spaced points along a set of diameters 3° apart, were 
calculated by summing the Fourier series (12) at each point. The points along 
the grid lines corresponding to w = constant were obtained by direct cubic 
interpolation, giving a set of points lying on a closed curve. These were joined 
using a special computer routine which enabled the CALCOMP Plotter to pass a 
smooth curve through them, having a continuous slope. 

The curves for 0 = constant were similarly obtained, except that 0 was defined 
at eleven equally spaced points along the radii. 
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FIGURE 3 

D IFM8Y. (i5MS.X. 

a 96 23.4 0.95 
120.86 28.8 1.36 
152.15 35.0 1.85 

cZ 191.55 42.2 2.42 
241.14 50.5 3.08 
303.58 60.0 3.83 

9 382-18 71.3 4.69 
h 481.14 83.9 5.71 
i 605.72 98.5 6.81 
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Physical discussion of results 

The pattern of streamlines of the secondary flow in the plane of the cross-section 
that Dean (1927) obtained for small D was symmetrical between the inside and the 
outside of the bend. It could be thought of as driven by a distribution of centrifugal 
force which is a maximum in the centre of the cross-section (where for small D the 
axial velocity is greatest) and falls to zero at the walls. 

For larger values of the pressure-gradient parameter D, however, the secondary 
flow has convected the axial-momentum peak well away from the centre of the 
cross-section, as figures 3a—i show. Accordingly, the distribution of the centrifugal 
force which drives the secondary flow itself is no longer symmetrical; the centrifugal 
force takes much greater values on the outside of the bend. The secondary-flow 
streamlines are, accordingly, not symmetrical between the inside and outside of the 
bend, and indeed, their form shows that secondary-flow velocity components take 
much greater values on the outside of the bend. 

The streamline patterns for large D show, furthermore, that a gradient of pressure 
(between high pressure on the outside of the bend and low on the inside) so opposes 
this distribution of centrifugal force that in a large central region of the tube cross-
section the secondary-flow velocity is approximately uniform. This central region 
of approximately uniform secondary flow is a particularly interesting and 
unexpected result of the computations. 

Approximately the same pressure gradient acts near the wall (far from the plane 
of symmetry) where centrifugal force is much lower, to accelerate further the 
secondary flow, which attains its highest speeds on this part of the circuit, while 
returning towards the inside of the bend. This, however, is a region where viscous 
forces are, no doubt, effective in restraining further build-up of secondary-flow 
velocities. 

It is not surprising that within the central region of approximately uniform 
secondary flow there is a subregion where the lines of constant axial velocity w 
indicate a uniform gradient of 10 (increasing towards the outside of the bend). This 
subregion is far from the walls of the tube, and viscous forces may be small there, 
in which case the constant axial pressure gradient must produce an approximately 
constant axial acceleration. If x is a Cartesian coordinate in the plane of the cross-
section, pointing towards the outside of the bend, and the secondary flow has an 
x-component of velocity approximately constant and equal to U, then this axial 
acceleration is approximately U(awiax), so that its approximate constancy in a 
central subregion would imply approximately uniform gradient awfax in that region. 

Finally, the movement of the axial velocity peak nearer the wall increases the 
viscous rate of dissipation due to shear, and so for given axial pressure gradient there 
is a considerably reduced flux Q0  in the curved tube compared with the value Q, for 
a straight tube. Figure 2 shows that, where D has reached the value 600, the ratio 

QCIQS has already fallen to 0.721. All these results confirm that secondary flow 
produces very big effects at the higher Reynolds numbers for which laminar flow is 
to be expected. 
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The Effects of Secondary Flow 
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ABSTRACT  

The numerical solution by McConalogue and Srivastava 

(1968) of Dean's simplified Navier-Stokes equations for the 

laminar flow of an inviscid fluid through a tube of circular 

cross-section of radius a, coiled in a circular arc of radius 

L, and valid for k in the range (16.6, 77.1), where k = R 

R the Reynolds number, is compared with experiment, correlated 

to the asymptotic solutions for k>100, and extended to study 

the convective axial dispersion of a substance injected into 

the tube. The variation of the calculated flux ratio agrees 

closely with White's (1929) measurements of the inverse 

quantity over the same range, and the field patterns for the 

upper end of the range establish the validity of the two basic 

assumptions of the asymptotic solutions. The original method 

is extended to calculate the mean axial velocity of a typical 

particle of the fluid and to present the statistical distribution 

L 



of mean velocity over the particles of a substance injected 

as a thin disc uniformly over the cross-section of the tube. 

These distributions are used to display the variation with 

k of the shape of indicator concentration-time curves. The 

anticipated effect of secondary flow, in producing a more 

uniform distribution of velocity over the fluid than in 

Poiseuille flow, is evident. , 

1. INTRODUCTION 

The iterative Fourier-series solution of Dean 's (1927) 

simplified Navier-Stokes equations for the laminar flow of an 

incompressible viscous fluid through a curved tube of circular 

cross-section given by McConalogue and Srivastava (1968) is 

extended in the present paper to calculate the effects of the 

secondary flow on the dispersion of a substance injected into 

the tube. As a preliminary to this extension, the validity of 

the numerical solution is tested, directly by comparing its 

results with experiment, and indirectly by relating its results 

to theoretical work for a higher range of the dimensionless 

parameter on which dynamic similarity is based. 

The numerical solution was made to depend on a single 

varaible D, a non-dimensional pressure gradient defined by 
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GaT: 
rev 	L 

where G is the mean axial pressure gradient, a the radius of 

the tube, L the radius of curvature of its axis, 	the 

viscosity and )1 the kinematic viscosity. Convergent solutions 

were obtained for D in the range (96, 605.72), a region inter-

mediate between the ranges covered by the perturbation 

solution of Dean (1927, 1928). and the asymptotic solutions 

of Barua (1963), and Mori and Nakayama (1965). The numerical 

solution starts at D = 96, the top of the range for which 

Dean's series solution is valid, and the straightforward 

relationship of the two solutions has been adequately treated 

in the previous paper. The relationship to the asymptotic 

solutions is discussed here. 

The numerical solution predicts the variation of flux 

ratio with D, flux ratio being defined as the ratio of Qc, 

the flow through a curvea tUbe to Qs, the flow through a 

straight tube for the same pressure gradient. This prediction 

is tested against White's (1929) experimental measurements 

of the reciprocal quantity over the same range of D. 

In White's work and in the asymptotic solutions, dynamic 

similarity is based on k, defined by 

2aWm j7; k = V 

D - (1)  

(2)  
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where Wm is the mean velocity of flow in the axial direction, 

and in experimental work is obtained from the flux which is 

directly measured. In theoretical work, Wm  is known only when 

the distribution of W over the cross-section has been obtained, 

so k and D have to be related through the flux calculations. 

Letting 

= 
Qs 	f (D) . 

and using Poiseuille's formula, 

'Is 
Ga4  
8r (4) 

it follows that 

W 	ri
_s _ Ga2 f  to 	

(5) ' 2 8ew 14 a 

or, using equations (1) and (2).  

Df(D) = 4 N5k 	 (6) 

The corresponding values of D and k are given in table 1. 

D 

Table 1 

Wmax k 

a 96.00 16.60 18.95 

b 128.86 20.47 23.19 

c 152.15 25.03 28.23 

d 191.55 30.39 34.04 

e 241.14 36.75 40.83 

Q. 
(3) 
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f 303.58 44.32 48.79 

0 382.18 53.35 58.25 

h 481.14 64.10 69.45 

i 605.72 77.05 82.62 

Using Dean's results, together with the twenty-eight 

values of the flux ratio calculated in the numerical solution, 

the relationship 

f(D) = 1-0.428481x10-5D2+0.101103x10-7D3-0.711096x10-11D4 
	

(7) 

has been found, which covers D in the range (0, 605.72) to 

better than + 1.3 per cent. 

2. COMPARISON WITH EXPERIMENT 

White measured the variation with k of the ratio of 4. 

to 
is 

, the resistance coefficients in the curved and straight 

pipos for the same flux Qs, and found that when the flow it3 

laminar, his experimental results could be represented by the 

empirical formula 

= 1 - [3. 	(11;c6 )21 
1 
x 

(8) 

where x = 0.45, the formula being valid for 11.64!k4;3000. 

A plot of log 	 /YS against log k is given in figure 1, based 

on White and on Goldstein (1938). 
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It can be shown that 

(9) 
4‘4- 	(S1S 

and a logarithmic plot of the reciprocal of the calculated 

flux ratio as a function of k for 16.60<k077.05 (l.22 log k 

44:1.89) is superimposed on the logarithmic plot of White's 

relationship in figure 1. 

The agreement is close, as is to be expected from an 

exact solution of what are virtually the complete equations 

of motion. The only simplification of the Navier-Stokes 

equations is in taking the radius of curvature in the centri-

fugal body-force term to be constant over the cross-section 

of the pipe, and equal to L; for small a/L, the physical 

effects of this assumption should not be significant. In 

White's experiments, a/L was in the range (0.00049, 0.066). 

3. RELATIONSHIP TO THE ASYMPTOTIC SOLUTIONS 

The asymptotic solutions for large k developed by Barua 

.and by Mori and Nakayama are based on two simplifying 

assumptions about the secondary-flow field. The first is 

that the viscous forces are of the same order as the inertia 

forces only in a thin boundary layer close to the wall of 

the tube. The second is that the motion outside the boundary 

46 
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layer is confined to planes parallel to the plane of symmetry 

of the tube. Neither of these assumptions was based on any 

firm theoretical or experimental evidence. However, the 

exact field patterns produced by the numerical solution, 

especially those for D = 382.18, 481.14 and 605.72 establish 

the physical accuracy of this model, since they show both 

a central core in which the secondary flow streamlines are 

parallel to the plane of symmetry, and a boundary layer. 

For the resistance ratio, Barua's solution provides the 

relationship 

17.1 3  
(1

4k
.22)3 	[(1.81)2  + It? 

A logarithmic plot of this is superimposed on White's 

empirical curve in figure 1, to give a quantitative indication 

of the range of validity of Barua's solution, and its relation-

ship to the numerical solution, On the basis of its prediction 

of the resistance ratio, Barua's solution appears to be 

reasonably accurate for k>100. The numerical solution thus 

bridges the gap between the perturbation and asymptotic 

solutions by providing a detailed picture of how the field 

patterns for the perturbation solution change progressively 

into those for the asymptotic solution with increasing k. 

(10) 



4. TRANSITION TO TURBULENCE 

White found that for each of the three pipes tested 

in his experiments, there was a critical value of k below 

which the measured values of y.//5  lie on the common curve 
given by equation (8), but above which they leave the curve 

steeply, as shown in figure 1. The critical k depends on the 

curvature ratio a/L, and increases as a/L increases. White 

attributed this result to the fact that the turbulence at 

the inlet to the pipes no longer dies out above this critical 

k, and this conjecture was verified experimentally by Taylor 

(1929). The existence of the critical k has also been observed 

by Adler. White found that the onset of turbulence for each 

pipe occurred at 

48 

)St 
-1 k? a 

wrii2 = 0.0090 p 

where L 0 is distance along the axis, and P the pressure; 
Adler's measurements are compatible with this (Goldstein). 

The effect of increasing the curvature ratio for a 

tube is thus to increase the critical value Rcrit' of the 

Reynolds number R (customarily taken to be 2Wma/-1) ) below 

which turbulence is damped out after a certain length, but 

0 above which any turbulence persists. For straight pipes, 

crit is about 2000. A plot of Rcrit 
versus a/L is shown 

in figure 2 based on Keulegan and Beij (1937) who analysed the 

results of White, Taylor and Adler. 
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This well-established experimental fact has not so far 

been satisfactorily explained. Lighthill (1969) argues that 

an interpretation might reasonably be based on the boundary-

layer model, now that its physical accuracy has been 

established by the numerical solution of the complete 

equations. For a curved tube, all the vorticity is confined 

within a boundary layer of thickness g which is a small 

fraction of a, the tube radius, and E/a decreases as a/L 

increases. Now the usual type of transition criterion depends 

on a Reynolds number based on boundary-layer thickness, and 

for a curved tube, might depend on some value of such a 

Reynolds number, say 

R = 2Wm S (12)  
1.) 

The corresponding critical Reynolds number based on the 

tube diameter would be 

Rc 
Rcrit -677; 

and would increase as a/L increases. 

These arguments presuppose no net influence on stability 

from centrifugal effects, which are destabilizing nearer to 

the outside of the bend than the position of maximum axial 

velocity, but stabilizing nearer to the inside. 

50 

(13)  



is given by the relative sizes of 

and its molecular diffusivity 1‹, . 
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5. THE EFFECT OF SECONDARY FLOW ON THE DISPERSION OF INJECTED SOLUTE 

The flow fields obtained in the iterative Fourier-series 

solution are now applied to study the dispersion of a substance 

introduced into the tube by analysing how the particles of the 

a continuum model 

factor, molecular 

will therefore be 

convection is the 

convected, depending on the streamlines 

deposited. Such an analysis based on 

takes no account of the other dispersive 

diffusion, present in all real fluids. It 

physically accurate only for fluids in which 

predominant agent. 

substance are variously 

on which they have been 

In Poisduille flow, convective dispersion is purely axial, 

and is brought about by the different axial velocities of the 

particles, depending on their radial distances from the axis. 

Any transverse diffusion is due to molecular diffusion. In 

flow through a curved tube, in which secondary flow causes 

convective radial dispersion, a measure of the relative 

and diffusion for a particular fluid 

its kinematic viscosity N) 

One effect of radial diffusion 

importance of convection 

of the molecules is to diffuse the axial momentum, since 

molecules from faster regions will move to slower regions 

and vice versa. The total diffusion of axial momentum is, 
0 

however, much greatei, being measured by the kinematic 

viscosity\) . Convection and diffusion are in balance for 
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the axial momentum. However, for liquids, V and 	are 

respectively of order 10-2 and 10-5 cm
2/sec., so that ft 

plays a role three orders of magnitude less than that of 

Hence convection may be much more important than diffusion 

for transfer of an introduced substance. For gases, both are 

of order 10
-1 

cm2/sec. The effects of diffusion, however, 

increase with time, the root mean square linear displacement 

in time t seconds being 

so that the results of this convective analysis would be valid 

for a tube of radius a only for a time t4t: a2/vc after injection. 

The present analysis assumes that the injected particles 

are dynamically indistinguishable from the fluid particles, 

and is therefore valid only for a substance of the same 

density as the fluid, 

The iterative solution provides sufficient information 

to enable the three-dimensional path and velocity of any 

particle of the fluid to be calculated, so in principle, a 

complete three-dimensional analysis of the convective diffusion 

of an injected substance of arbitrary initial distribution 

could be carried out. Such a complete physical picture would 

be difficult to interpret and present, so some simplifying 

assumptions and limitations must be introduced at the outset. 



54 

1) The non-dimensional time T taken for the particle to 

traverse its closed secondary-flow streamline. The secondary-

flow streamline for a particle is sometimes described as the 

projection of its helical path on the cross-section; it can 

be thought of more accurately as the actual path of the particle 

in a cross-section which moves axially with the particle. 

Streamlines are defined by 	 = c  where 4) is the secondary- 
jjjj 

flow stream function and 	is a constant. 

2) The non-dimensional axial distances which the particle 

travels in time T. 

3) The area A enclosed by its streamline. 

The study of axial dispersion in a curved tube is 

complicated by the fact that a particle does not have a uniform 

axial velocity, since w may vary widely at different points 

of the secondary-flow streamline. This leads to the third 

simplification through the definition of a mean velocity for 

the particle 

(15) 
110.1•1. 

An analysis in terms of the statistical distribution of w 

will, of course, only give an accurate picture at a considerable 

distance from the site of the injection. This will be considered 

quantitatively later. 

The area A enclosed by the streamline given by 	= (1)  
II 	1 	c 

is used to derive the independent variable F, in terms of 



and F( max) 

and TB' J2A 

= 0, 

and QB 

max being the maximum 

and wA and wB be the 

velocities associated with the streamlines 

which the statistical distributions of T, it and w over the 
partcles of the injected substance are presented. F is a 

monotonic decreasing function of 4, and is defined by 

F( c ) 
= 2A 	 (16) 
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so that F

1

(0) = 1, 

(31  
value of . Let TA 

times, lengths and 

, 	,  
defined by 9) 	A  and B' 	A C 	andL r = F ( ? B) -- PIfA) 
Then the proportion of the total fluid in the upper half of 

the tube circulating between these streamlines is given by 

ib‘P• and since T, 	and w are monotonic functions of , d F 

will give the proportion of the fluid in the upper half of 

the tube with time, length and velocity in the ranges (TB, TA), 

and (WA, wB). Since the flow fields are symmetrical 

about the central diameter, g F will give the fraction of the 

total fluid in the tube with the above distribution of physical 

properties, and the distribution over the injected substance. 

The non-dimensional quantities T and are given by line 

integrals. 

streamline 

streamline 

A particle at any point 

defined by 4)= 	will have a velocity 

given by 	/r e1/, the derivative in the 

normal to the streamline at the point. If s is the 

along the streamline measured from some convenient 

the time dt to travel distance ds will be 

along the 

direction 

distance 

point, 

on its secondary-flow 
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dt = 
	(Ls 	

(17) 

and in time dt it will travel a distance wdt in the axial 

direction, w being the axial velocity at the point. The total 

time of circulation T of the particle around the streamline 

0{S 
• T( c) = 	

70 	(18) 

!P\I 
and the total distance 	travelled in the axial direction is 

Vol E 

	

) = 	 (19) 
3-51 
257A,  

both line integrals being taken around the closed streamline 

The integral for T in (18) can be transformed into a 

derivative which provides an alternative calculation of T. 

If A and A 4.L A are the areas enclosed by the streamlines 

and 	= 	+ 	
f' 

= 	c 	c  6,i) ( is taken as positive so that 
6 A<0 if L4> 0), then 

d.S 

7.11, 	A 4 -i› 0 

J-. 	,641, 	 L A 
64)-->o ,64)--.0 

or 
dA T 7  - 71- (20) 

is then 

GAS 
cp 

Ami 
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since LtIld  at any point is the distance between the curves 

along their limiting common normal. This expression was used 

as an independent check on the calculations of T, being 

particularly convenient as A had to be calculated to get F. 

6. NUMERICAL METHODS FOR CALCULATING T, AND A 

Each integrand in (18) and (19) can be obtained in 

discrete one-dimensional form, as a periodic function defined 

at unequal intervals of the independent variable s, and the 

integrals can then be evaluated by any suitable combination 

of interpolation and integration. The coordinates, of a sequence 

CI)
of points on a streamline defined by 	can be calculated, 

together with the values of the integrands at these points. 

The directions of the tangents to the streamline at the points 

are obtained in the process of calculating .D(111  /Slid at the 

points, and these directions and coordinates are used to 

construct the streamline, to give the arc lengths between 

adjacent points of definition of the integrands. 

Now 6 q 17/ 
(0 ) 2 	gth y2 2 

= 	()r. (21) 

and 	ar and Ver( GIS /fack) are given as Fourier series 

whose coefficients are directly calculated in the process of 

the iterative solution. The iterative solution gives w, 
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d dx 	 y  

•c?-i)  sing( - .311? coste-f -  Z0( 
3_  

Tok- 	-6c'r 
sinok.  

(22) 
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and 1/11-(̀ 4/2rr ) at the eleven points r = 0(0.1)1 along any 

radius at an anglec4 . Cubic spline interpolation (Greville 

1967) was used to give a continuous representation of the 

four quantities for all r in the range (0, 1). 

For each value of D, the quantities were evaluated on 

radii at an angular spacing of 2°  from o = 2°  to a. = 178o. 

The coordinates of the intersections of these radii with the 

streamline 	= 	were found by direct interpolation from 

the approximations for 	along the radii, and the values 

of w, (Dib  /err and 1/re( .01//laal) at these points of intersection 

from the corresponding approximations. 

In addition to defining `d /21'.. at the point ('r, CZ) on the 
streamline, 	/4.6.r and lAr(ecp /0,k) being -( a/v ) V and (a/V) U , 
where U and V are the radial and transverse components of 

velocity, also determine the slope of the streamline at the 

point. In Cartesian coordinates, which are used for constructing 

the streamline, the relationship 

holds. From (22), the sines and cosines of the slopes were 

calculated separately. 

The algorithm for constructing the streamlines was 

developed to treat the x- and y-coordinates symmetrically 

(and hence independently of axis orientation) and to 
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incorporate the known values of the slopes. The complete 

,)streamline is represented by a sequence of separate arcs 

joining adjacent points, these arcs having the calculated 

slopes at their end points, thereby giving the complete 

curve tangential continuity. Let P denote the point 

(x q, yo) on the streamline, and 0 q  the angle which the 

tangent'at Pq  makes with the x-axis. The x- and y-coordinates 

of the arc joining Pq  to the adjacent point P 	are 
q4.1 

defined separately as cubics in a parameter t, which varies 

from t = 0 at P , to t = Tq  at P 4 . The cubics arise from 

integrating separate quadratic expressions for dx/dt and 

dy/dt constructed to give them the values cos k) 	sine 

and cos 0 	and sin.eq4:1 	at P and pq c14.1  , and with 

one parameter to satisfy the end conditions on integration. 

The expressions for the derivatives are:- 

dam: _ 
dt 

dt 

cos e • (  cos 
cc. 	(1,41 

sink + (sin 0 
q/-19 

- cos Ofti ) 41-1/ 

- sin Ott) tfreti  

+ 	rk,d _ 

+ Do (To,  
(23) 

Taking X,
'V 

 and 440  as the constants of integration, and the 
0 

condition that ...C. ..:*
ili-11 ' 1 = it i I 

at p 	determines fiot,and D. 
l 	Rf 41 

The curve generated will depend on the value of i
s' 

but 

for all let/  it will have the reqUired value of dy/dx at Pk/ 

• and ? 	and also 
gjil 

) 
(JA _ 

dt

2  

dt 	‘ 	▪ (ff)2 2 
	

(24) 

will be unity at these points, s being the arc length measured 
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from 	The total arc length is then 
-Ter 
ds 
dt 

The optimum TTcv  is taken to be the one which minimises the 

departure of ds/dt from unity over the range (0, Ty) on the 

least-squares criterion, the determining equation being 

dT 	(dt - 1)2dt = 0 	(26) a,  
V 

Equation (26) would have to be solved by numerically 

minimizing the integral. This, however, is not necessary, 

since in the neighbourhood of the optimum TV, the value of 

dS,,/dT is so small that an adequate approximation to the 

optimum T, is obtained as a root of the quadratic equation 

in T, which results from making ds/dt = 1 at t = T,/2. 

Equation (25) must be evaluated numerically, and as the 

integrand is knwon in the. middle of the range and at both ends, 

an odd-order. Lobatto quadrature formula (Krylov 1962) is the 

most efficient; the five-point formula (requiring two 

evaluations of ds/dt) is adequate. 

The area enclosed by the streamline is obtained by 

calculating 

A = 2 
dv 	dx1  
dt 	Y  dti  dt 	(27) 

for each arc, using equations (23) and their integrated forms, 

and summing over all the arcs. 

dt 	 (25) 
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The adequacy of equations (23) and (27) in the present 

calculations was checked by repeating selected calculations 

with radii spaced at 3o and 5°  apart. The results were 

sensibly the same as those for the 2°  spacing. The alternative 

expression for T, namely -dA/d1S was calculated by numerical 

differentiation as a further check on the calculation of (18), 

and corresponding values agreed closely. 

One refinement was introduced to cope with the indeterm-

inacy of 100 /Zits) on the boundary r = 1. This indeterminacy 

can be resolved by applying L'Hospital's rule to the square 

of the integrand giving 	 1 IL vo  
&A:NJ 	 S 

7.0y- 
2.1+37,1 ) 

= 
sc (1) 

where 	(I) is the vorticity on the boundary. 

On any radius which intersected a streamline near the 

boundary r = 1, the integrand in (19) was obtained by cubic 

interpolation from the values of the ratio at the adjacent 

points r = 0.7, 0.8, 0.9 and the value at r = 1 calculated 

directly from (28) instead of by three separate spline inter- 

polations for w, 	/Tr and 14r( tOnia). 

In the early stages of the work, the integrals were 

calculated by representing the integrand between the points 



T 

l ·0 

0'0 
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of definition by cubic Lagrangian interpolation using the 

values at the end points of the interval and the adjacent 

points on each side and integrating this. This was later 

replaced by cubic spline integration (Greville). 

Corresponding results from the two algorithms did not differ 

significantly. 

7. PRESENTATION OF THE RESULTS 

Plots of T and ,e calculated from equations (18) and (19) 

against F are given in figures 3 and 4. At F = 1, corresponding 

to 0, the limiting streamline is the central,  diameter 

and the semi-circular wall of the tube, and -dF/d<i, is infinite. 

The numerical techniques for the line integrals are inadequate 

close to this singularity, and values of the integrals above 

F = 0.8 have not been calculated. This corresponds to a 

about 0.9 times the maximum value of 	on a radius at an angle 

of 20  to the diameter, so that the streamline passes very close 

to the central diameter. For all D, the curves for T and are 

asymptotic to F = 1. Also, close to 0) max  (P = 0), the 

numerical techniques again become unreliable, since (3 / vA/ 

approaches zero, making the integrands approach infinity, as 

the path lengths tend to zero. Here, however, extrapolation 

from adjacent reliable values is legitimate. 
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Figure 4 shows that the curves of tfor the larger values 

of D tend to bunch. Such an effect is implicit in the 

asymptotic solution, and its occurrence in these calculations 

is a further indication that the upper end of the numerical 

solution approaches the lower end of the asymptotic. Let.&.,..,  

be a dimensionless "median" length such that half the fluid 

, and half14 J214.1 ;t„% is the axial distance tr. 

travelled by a particle on the streamline which encloses an 

area ofW/4. 

The plot of t„ against k in figure 5 is seen to be 
consistent with the idea that 	is asymptotic to about 310 k-1 

for small k and to a constant value of about 14 for large k. 
/ 	. These non-dimensional values have to be multiplied by i(-1  aL) 2 

to convert them to dimensional values. In dimensional terms, 

doept  is about 110V)L/all for small k and about 10\/ (aL) for 

large k. 

The types of proportionality involved here can be under-

stood from considerations of force balance as follows-. For 

small k, centrifugal forces of order m
2/L per unit mass must 

be balanced by viscous forces resisting the secondary flow. 

If a maximum secondary-flow velocity in dimensional terms is 

Vm, this suggests that IVm
2IL and Vm/a

2 are proportional, so 

that Vm is proportional to a
2Wm

2/L. But from the definition 

(19) oft, 	 may be expected to be proportional to Wma/Vm 

and therefore to VL/a1Vm in this range of k. For large k, 
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however, the centrifugal forces of order Wm 	must primarily 

be'balanced by the inertial forces in the secondary flow, 

and these are of order Vm
2/a, suggesting that Vm is proportional 

to Wilor(a/L) and so that t is proportional to \f(aL). These tht, 

arguments, on the other hand, give merely orders of magnitude, 

and the important conclusion from the computations is that 

for large k the typical distance 	in which a spiral stream- 

line turns around once is actually as great as 10 1r(aL). 

A plot of 	 max  against F is given in figure 6,V1 max 
•••••• 

being the maximum value ef\V, which occurs at F = 0. This form 

was chosen to display the departure of the distribution of 

velocities from that for Poiseuille flow, in which since A F 

is proportional to LW, a plot of W/vmax  against F would be the 

straight line joining (0,1) to 1/41,0). 

Since particles at the wall of the tube have zero velocity, 

,/=
p
0 at F = 1. No useful expression was found for the form 

of /T in the neighbourhood of F = 1. The curves were extended 

beyond F = 0.8 by cubic spline interpolation as far as F = 0.95, 

since any error in the shape of the extended curve must be small 

and physically unimportant in this region of lowW. The 

extensions are shown in dashed lines in figure 6. The values 

of Wmax are given in table 1. 

Because of secondary flow, particles close to the centre 

of the tube, and therefore in a region of high axial velocity 

are periodically carried into regions close to the wall of the 



6.o 
r. 0 O'S 

• 

.s 



69 

tube, of low axial velocity, and back again to the centre 

thereby narrowing the spread of mean velocity over the particles. 

This effect is seen in figure 6, where the departure of the 

distribution from that for Poiseuille flow is progressively, 

with increasing D, in the direction of the limiting rectangular 

distribution for all the particles having the same velocity. 

As mentioned earlier, this periodic variation in the 

axial velocity-means that the curves in figure 6 cannot be used 

to get a meaningful picture of dispersion close to the point 

of injection. For a particle injected at time t = 0, the 

ratio 	wdt/i7t will oscillate with period T about unity with 

- • 
an amplitude decreasing as lAArt, as t increases. The 

distribution in figure 5 therefore is only applicable after 

a time, and a corresponding distance large enough to make the 

periodic departure of the ratio from unity negligible for the 

bulk of the particles; this means at distances >>-t. the 
epq 

median length or 10T(aL)in terms of true lengths. 

Experimental measurements of dispersion of an injected 

substance in straight and curved tubes have been reported by 

Caro (1966). In these, a thin bolus of dye was injected 

uniformly over the cross-section of the tube, and at a fixed 

distance X downstream, the variation with time of the concentra-

tion of dye inside a short section of tube of length L>.( 

was recorded. It was shown that convective dispersion by 
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Poiseuille flow would produce indicator concentration-time 

curves which are hyperbolic and this was borne out experimentally. 

It was also verified that the effect of tube curvature is to 

make the distribution of velocity over the injected particles 

more uniform, so that the bulk of the injected dye passes more 

quickly through the monitored region. 

The present calculated values for Wean be used to 

predict how the. shapes of the indicator concentration-time 

curves vary with D for curved tubes. At time t> (X + A x)/v,J x  

after injection, the proportion of the dye inside the disc of 

length Li X, isL F, the proportion of the fluid with velocity 
11..•m• 	 •••••• 	 Sam 

between ( and IP) +LW , where 

= X/t and 	= L.X/t 

Since LI' and 6W are both taken as positive, 

A 	••- 
F  = 	dam;,in IA) = 61'X (A) dF 

dcj d6,7 (29) 

/- Also, t = X/1,1. The shape of the indicator concentration-time 

dF 
curve will thus be given by a plot of-1.1)-7.7. versus 1/W. 

alAS 
The set of plots is given in figure 7. 

The cul-ves are asymptotic to the line -wdF/di7 = 0. For 

these curves, the calculated values of w had to be smoothed, 

since in the region of V = 0, di'sr/dF is very small, and the 

value of dF/di7r is correspondingly sensitive to computational 

"noise". Least-squares cubic approximation was adequate. 

The effect of secondary flow in levelling out the velocity 

distribution with increasing D is again evident. 

0 
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The original scaling of the simplified Navier-Stokes 

equations implies that the dimensionless T, 	and w have to 

be multiplied by a2, 	aL/2 and (V /a) 	L/2a to convert 

them to true times, lengths and velocities. 

The author acknowledges his indebtedness to Professor 

M.J. Lighthill, Sec. R.S., Royal Society Research Professor, 

Imperial College, for his continued creative interest in the 

problem. 
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APPENDIX A  

CALCULATION OF ARC LENGTHS AND AREAS 

Integration of equations (23) of Chapter III and 

application of the conditions at t = 0 and t = Tq  gives 

[ 
C4 	

A X = 	 (cos—a - 	• cos e qq-ld 
q' 

and 
	

(1) 

D 
q. 

6 = ,r- 3  
q 

Ayq 	7a(sin q ▪ sin 0 q+1)..] 

where LS xq  = xq+1 - xq  and yq  = Yq+1 Yq 

The criterion for the optimum Tq  given in equation 

(26) of Chapter III is based on heuristic considerations, 

rather than on any rigorous variational considerations. In 

testing the algorithm on known curves, it was found that 

the change in curvature across the points was minimised when 

Sq  and Tq  were equal for each arc. When this occurred, the 

equation ds/dt-1 = 0 had a root somewhere in the open range 

[0, Tcl )where T 	is the value of Tq  satisfying equation 

(26). Such a root was found to occur only for Tq  lying in the 

narrow range (T0 	- G, 	Tortk; for 

Tq 	Tol,k  4.41

i• 

, ds/dt 	1, for Tq  4 Tvg:. - 6, ds/dt 4 

everywhere. A sufficiently good approximation to To  can 

thus be found by imposing the condition that (ds/dt)2  should 

be unity at t = T /2. This condition gives rise to a quadratic 
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equation in Tq  which can be written in the standard form 

aT 2  + bT + c = 0 
q 	q 

where 

	

a = 7 - sin 0 sin 	cos 0  cos 6 
q 	q+1 - 	q 	q+1 	,, 

b= 6 Cb.xq(cos e q  -1.- cos 8 q+1) + Li y (sin e ci  .1. sine q 	 q+1)  

and c'-= -18( Lx 2 + LY 2) q 	q 

The relevant root corresponds to the positive value of the 

discriminant. 

The computer subl'aUtine was applied to a number of 

curves including the set of points on the ellipse given 

parametrically by 

X 12 3 ÷ r 2 cos 9 
y = 2 + (1/42) sin°.  

the slopes at the points being obtained from the analytic 

expression. For 36 points given by a = 10°  (100) 360°, the 
area (4N) was given to an accuracy of 0.0004 per cent, and 

the maximum error in the arc length was 0.004, and occurred 

for the arcs adjacent to the major axis. 

It has been found that Sq  and Tq  differ by a very small 

fraction of one per cent (in the previous example, the  

maximum difference was 0.0017 per cent) so that Tq  is an 

adequate approximation to the arc length and could be used, 

if only the line integrals are required. 

This algorithm, combined with another to supply slopes 

where these are not given is the one used for passing a 

(3) 
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smooth curve through a sequence of points in producing 

the figures for the present thesis. 



APPENDIX B 

CUBIC SPLINES FOR INTERPOLATION AND INTEGRATION 

The particular form of spline used in the present 

work has a separate cubic between each node:; no cubic 

continues from one panel into the next. If Pk denotes the 

node given by (xk, yk), the second derivative is written 

as the linear Lagrangian 

d2 	(x 	x) Ck 	(x xk) Ck+1 

dx2  

y 

x 
	

A xk 
	 (1) 

where Ck and C.k+1 are the second derivatives at Pk and Pk+/, 

as yet arbitrary, but giving second derivative continuity 

across the nodes. This is integrated twice, and the constants 

of integration chosen to make the curve pass through Pk  and 

Pk+1 . The condition for first derivative continuity across 

the nodes is imposed, and this gives rise to a set of linear 

simultaneous equations connecting Ck_1, Ck  and Cki-1 at the 

point Pk. This system of equations is known to be under-

determined since at the end points P1  and Pn, there are 

no Co and Cn+1 respectively. In the present work, this 

indeterminacy was resolved by giving the cubics for the 

end panels the appropriate slope where this was available 

as with w and (6 where dw/dr and di>/dr were given by the 

iterative process. Where the end slopes were not readily 
n, 

available, as with 1.1,-.( ( 4/"OCA. ) and -.°) /richr , o was linearly 

extrapolated from Cl  and C2, and C from Cn-1 and Cn-2' 

78 
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In the line integrals, of course, the periodicity of the 

function made the system determinate, 

This is the only departure from the scheme set out 

by Greville referred to in Chapter III, who arbitrarily 

setsCo  and Cn  both zero. The scheme given by Greville for 

the solution of the simultaneous equations by successive 

over-relaxation was used, and, found to be completely 

satisfactory. This was used only for the line integrals. 

For the other approximations, the independent variable 

was given at eleven fixed points, so two 9x9 matrices 

had to be inverted at the outset, one for each method 

of coping with the indeterminacy. 



SUBSIDIARY MATTER IN SUPPORT OF CANDIDATURE 

Of the two enclosed papers, my contribution was in analysis 

and numerical analysis. 	I assess my contribution to "Anharmonic 

Model for the Thermal Conductivity of Liquids" at about 40 per cent, 

and to "Mutual Diffusion in Dense Superiritical Fluids" at 20 per cent. 
44/44444to,  

It was anticipated that this paper'would 4* published in "Molecular 

Physics" before the, submission of this thesis. 	As this has not 

occurred, a typescript has been inserted. 
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On the vibrational model of thermal conductivity energy is transferred down the temperature 
gradient by a vibrational transfer mechanism. Using the Lennard-Jones and Devonshire lattice 
model of the liquid, vibrational frequencies are calculated which take into account terms up to the 
fourth power of the displacement. Use of these anharmonic frequencies and the corresponding 
specific heat gives better agreement between calculated and experimental thermal conductivities than 
was obtained previously on the harmonic oscillator model. 

In a previous paper 1  on the thermal conductivity of liquids it was shown that the 
diffusive displacement type contribution to heat conduction was negligible and the 
main contribution arising from vibrational motion was given by 

(1) Avib = 

where v is the vibrational frequency, a the nearest neighbour distance and C„ the 
lattice specific heat at constant volume per molecule. The model assumes a lattice 
structure for the liquid and omits contributions to conduction from the internal 
modes, as studies of the thermal conductivities of isotopic molcules 2  and the 
dimensionless ratio 3  of thermal conductivity to viscosity 	suggest that rotational 
and internal vibrational modes do not participate in energy transport in the liqud 
state, at least for simple molecules. m is the mas of a molecule, and k is Boltzmann's 
constant. This contrasts with the situation in the gas phase where corrections such 
as the Eucken factor are applied to take into account the role of internal degrees of 
freedom. 

In order to evaluate eqn. (1) a specific model of the liquid must be chosen. 
Previous cases studied are those which consider the liquid as a system of harmonic 
oscillators 1  or hard-sphere particles in a rectangular cell.' As neither of these 
models is completely realistic only moderate agreement between theory and experi-
ment is obtained. We have extended this work to take account of anharmonic 
oscillators up to the fourth power of the displacement and also the limiting case of 
pure quartic oscillators. 

ANHARMONIC AND QUARTIC FREQUENCIES 

As for the harmonic oscillator model, evaluation of the frequencies and specific 
heats is done using the Lennard-Jones and Devonshire theory 5  of liquids. On this 
model the change in potential energy of a molecule, displaced from the centre of its 
cell a distance r, due to its neighbours at the centres of their cells, is given by fi(r)-
0(0). This change is an angle-dependent quantity but in the theory is replaced by an 

*Centre for Computing and Automation 
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average value determined by considering the z nearest neighbours, as smeared uni- 
formly over a spherical surface of radius a. For a f.c.c. lattice, a3  = .\/2 v, where 
v = V/N is the volume per molecule and z the co-ordination number is 12. 

If the intermolecular pair potential is of the 12 : 6 form with e the potential 
minimum and a the molecular diameter, then the theory gives 

tir(r)-1//(0) = ze[v"L(y)-2v*2M(y)] 	 (2) 
where v* = vo/v and vo  = a3, L(y) and M(y) are functions of the square of the reduced 
distance y = (r/a)2. When all the atoms are at the centres of their cells 

ifr(0) = ze[1.01v*4-2-41v*2]. 	 (3) 
Eqn. (2) and (3) are those of Wentorf, Buehler, Hirschfelder and Curtiss 6  which 
modify the original Lennard-Jones and Devonshire expressions to take into account 
the effect of second and third nearest neighbours. 

Expanding eqn. (2) for the potential well to terms of the fourth power in r yields 
on using the known expression for L(y) and M(y) 

ZE 	 ZE 
IP (r) —0(0) = —i[Liv" im1.2. — v*27  + a

4[L2v*4  — M2v*2]r4  + etc. 	(4) 
a 	 --1   

where L1  = 22.11, L2 = 200.6, M1  = 10.56 and M2 = 28-67. Eqn. (4) is of the 
form 

tif(r)—t11(0) = P1r2  —P2 r 4, 	 (5) 
and as the motion of the molecule oscillating in the potential well satisfies the energy 
balance equation for terms to the fourth power in r, 

rni212 = e—P1r2+P2r4, 	 (6) 

where m is the molecular mass ; this enables the frequency to be determined. 
The period a of execution of a complete vibration follows' from eqn. (6) as 

= 	
dr 

4 
2J 0(e — P 2 /.2  — P2 r4 )1' (7)  

where r1  is the positive real root of Pi  r +P2 r4i = as the points at which the potential 
energy P,r? +P2rt equals the total energy e gives the limits of the displacement. 
e is assumed to remain constant throughout the vibration and the potential minimum 
is taken to be the zero of energy. 

Eqn. (7) may be rewritten 
dr 

= 
2  PVIP2 — Pir2/P2 -- r4 )1.  

(8)  

and since P2 and P1  are positive, then factorized and expressed eventually as a com-
plete elliptic integral of the first kind as 

1 	(
_(

m 1 1__, (9)  
(a2  + b2)i 	2P2  

where 

K(. I1) = 
in/2 	dB (10)  

o (1 — .( .2  sine  0)+' 
= b/(a2+b2)+, (11)  
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and 

a 	2 2, = 	 e  +4 	, l P2  p2  

b2  =1-1--P1  -1-(13? -1-4 2 13 -2  pi p2  • 

It follows, therefore, that the anharmonic frequency VA  is 

(12)  

(13)  

(F1 +46P2)1  vA  = 	 1 

  

(14) 

K[
1  	P1  
[2{1  (P? + 48P2)+.1 1 

Unlike the harmonic case (P2  = 0) where the frequency becomes 
vH  = Pt/2,/2n1+K(0), 	 (15) 

the frequency of the anharmonic oscillator depends on the energy N. In the pure 
quartic case (P1  = 0) the frequency vc2  

vQ  = (4 eP2)412 ,ifm+K(1/ V2), 	 (16) 
also depends on g which is, however, independent of volume and given by 9kT/4. 
(Although we use the terms harmonic and quartic oscillators, P1  and P2  and hence the 
restoring force constants are functions of volume). 

THERMODYNAMIC PROPERTIES 

In order to complete the evaluation of eqn. (1) expressions are required for some 
of the thermodynamic properties of 
to be evaluated is 

mkTy crc 

the systems. 

Zconfig  exp 

R 'PO — 

becomes zeonfig. 
, e exp (— 

o 

The 

-1fro)  
[ 2kT1 

appropriate partition function 

(17) 

r, 	 (18) 

4) cg, 

(19) 

Z 	h2  

where 

zconiig = lexp— 

which for the anharmonic oscillator an

-

harmonic 

kTy.f°° 
= 47r(— 

g 	Pi 
= 47t(k T/P1 )1f(E), 

tfr(0)} 

exp (-E 

on replacing P1r 21kT by 	and writing E = kTP,IP?. 
The upper limit of integration in eqn. (19) was taken as infinity rather than the 

cell boundary. This makes no substantial difference to the results and was done so 
that similar integrations in (20) and (23) were analytic. For the harmonic case only 
the first term of eqn. (5) is included, therefore 

Zclionf• 	4n(kT IP Di ,1 2  exp (— 2) 
	

(20) 
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The integral in eqn. (20) is m/4, hence the total partition function for the anharmonic 
oscillator can be expressed in terms of the harmonic as 

zA = zH 4f(E)/e. 	 (21) 
Likewise, the partition function for the quartic oscillator z0  in terms of the harmonic is 

zQ = z11  F()/7c1Ei, 	 (22) 
as 

zg, fifig = 2n(kTIP2 )41. 	exp (— e) (23)  

where the integral is +FM and F is the gamma function. 
The thermodynamic properties of systems of anharmonic and quartic oscillations 

can therefore be expressed in terms of the corresponding harmonic case using the 
standard formulae connecting the partition function and the thermodynamic properties. 
The results necessary for the present work are 

( U
A

( U )11  T of(E)\  ( 	d ln f(E) 
kkT) - 	± f(Ea OT )„= Va") d 	I n E ' 
(C 

c
„
)

A  (y
)H  2 

d
d  In 
ln  f(7_-,e) 

+ (E 
d 
 IRE) ddE, f

f(E)I1 (25) 
L  

where U and 	are the internal energy and specific heat at constant volume per 
molecule respectively. Corresponding results for quartic and harmonic oscillators 
are well known. 

NUMERICAL WORK 

The integrals to be evaluated to determine the thermodynamic properties are of 
the form 

	

I„(E) = 	exp (—e) exp ( E„t4-)  d, 	 (26) 

therefore f(E) = /2(E); f'(E) 	—I6(E) and f "(E) = /10(E). These integrals cannot 
be evaluated analytically and numerical integration is necessary. The integrands 
being even functions of about the origin have their odd-order derivatives zero at 
this end of the range of integration, and away from the origin all their derivatives go 
rapidly to zero with increasing 	The trapezoidal rule applied to such integrals 
gives a high order of accuracy as suggested by the Euler-Maclarin sum formulae.8. 9  
Sufficient accuracy was obtained with a step length of 0.1 applied to a region of t near 
the origin. 

With the values of these integrals, (Uconfig/kT)A  and (C„ c„„fig /k)A were generated 
as a function of T* = kTle and v* = vo /v as 

T* [L2v*2 —M 2 ] — — 	 — 

	

12v*2  [Li  v* 2 — Mir 	
(27) 

is a function of T* and v* only. Once (U,„„fig /kT)A is known it is then possible to 
calculate vA  as 

	

e _ 	u A  1110 3 +d In f(E) 
kT 	kkT) 2kT 	d In E • 

00 

(24)  

(28) 
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o•eo 	1.00 	1.20 	1.40 
V*  

FIG. 1.—Anharmonic/harmonic frequency ratio as a function of v*. Curve 1, T* = 0.6 ; curve 2, 
T* = 0.9 ; curve 3, T* = F2. 

0.80 	1.00 	1.20 	1.40 
vs  

FIG. 2.—Quartic/harmonic frequency ratio as a function of v*. Curve 1, T* = 0.6 ; curve 2, T5  = 0.9; 
curve 3, T* = 1.2. 
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This was done as the ratio in the form 
vA  (1-2K2 )-1  

H 2 MX) 
where 

= -
1

{1 	
Pi  

V2(Pi + 4SP2)+ 
F* 	tikT and (1- 2X"2)2  = (1 + 48P4.$)-1. 

The tables obtained have not been included but cover a range of T* = 0.6 x 0.05 
to 1.2 and v* = 0.75 x 0.05 to „/2. As the main interest in the present work lies in 
the frequencies, these are plotted in fig. 1 for three values of T* over the range of v*. 
As expected, the ratio falls rapidly as the density of packing tends towards the close-
packed structure where the vibrations are essentially harmonic. The internal energy 
and specific heat likewise tend to the equipartition values at the high density end. 

The ratio of the quartic to the harmonic frequency is obtained from eqn. (15) and 
(16) as 

vcdvi, = (4XP2)+K(0)/K(1,/2)Pt = 1.46746 	 (30) 
Fig. 2 gives the ratio vQ/vH  as a function of v* for three values of T*. 

APPLICATION TO THERMAL CONDUCTIVITY 

With the available values of specific heat and the anharmonic frequencies, eqn. (1) 
can be evaluated. This has been done for a series of simple liquids using previous 
values of slk, and the densities. References to the experimental results are those 

TABLE 1.-COMPARISON OF CALCULATED AND EXPERIMENTAL THERMAL 
CONDUCTIVITIES 

Ax 104  J cm-1 sec-1 °C-1 
temp °K 	j  11 	AA(1) 	AA(II) 	A  expt. 

Ar 	84.2 	9.98 	12.65 	10.94 	12.60 

	

87.3 	9.38 	12.22 	10.47 	12.16 

N2 	694 	10.37 	12.84 	1121 	15.11 

	

71.4 	9.94 	12.55 	10.87 	14.80 

	

77.3 	8.58 	11.48 	9.75 	13.96 

CO 	72.0 	7.81 	11.02 	9.22 	15.89 

	

77.7 	6.71 	10.28 	8.43 	15.05 

	

80.8 	6.16 	9.94 	8.07 	14.21 

CH4 	93.2 	17.36 	20.67 	18.34 	21.53 

	

103.2 	15.42 	19.22 	16.73 	20.27 

	

108.2 	14.52 	18.57 	16.01 	19.64 

C5116 	288.2 	11.94 	12.79 	12.05 	14.94 

	

298.2 	11.50 	12.40 	11.62 	14.63 

	

308.2 	11.02 	11.96 	11.16 	14.24 

	

318.2 	10-58 	11.57 	10.74 	13.89 

CCI4 	298.2 	loao 	10.67 	10-23 	10.64 
3082 	9.81 	10.30 	9.84 	10.51 

	

318.2 	9.45 	9.97 	9.49 	10.39 

(29) 
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previously given 1  with the exception of benzene which has been altered to take into 
account the results of Horrocks and McLaughlin." Table 1 gives the experimental 
results, together with the values calculated on the harmonic approximation Ali. 
These differ slightly from those previously given due to the use of the Wentorf, 
Buehler, Hirschfelder and Curtiss values of L, and M, in the present work. The 
effect of the change to the anharmonic frequency alone is denoted by AA(I) which 
still includes the harmonic specific heat, while AA(II) is the result obtained when both 
the anharmonic frequency and specific heat are used. Comparison of AA(I) and 
AA(II) shows that the correction for the anharmonic specific heat decreases the effect 
of including the anharmonic frequency alone. In general, however, there is better 
agreement between calculated and experimental values on the anharmonic model 
than was obtained in the harmonc approximation. As expected, the correction is 
greatest for the most expanded liquids like CO. 

Better agreement is obtained between experiment and AA(I) which contains the 
specific heat as a constant multiple of k than the case AA(II) which includes a tempera-
ture and density dependent specific heat. This is also found when the experimentally 
determined value of the ratio of the viscosity to the thermal conductivity of the same 
series of liquids is examined in the form milkg. For all the present liquids this is 
within about 10 % of the value 2.5 with a slight dependence on temperature whereas 
the ratio mAIC,,n produces no correlation when C,, is either the total or configurational 
specific heat. 

As can be inferred from fig. 2, calculations using the pure quartic frequencies 
would be worse than the harmonic approximation. This case has only been included 
because of its use in examining the temperature dependence of thermal conductivity 
on the present model which is being investigated. 

Thanks are due to the National Coal Board for the award of bursaries to A. F. C. 
and J. K. H. 
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(ABSTRACT) 

An expression of the mutual diffusion 

coefficient of a dense binary system of hard 

spheres is derived by using the Percus-Yevick 

approximation for the contact radial distribution 

function together withnorne's extension of the 

Enskog theory. The variation of the mutual 

diffusion coefficient with pressure, composition 

and the ratio of the molecular diameters is 

considered and applications are made to real 

systems. 



I 	INTRODUCTION 

In the study of transport properties of dense 

supercritical fluids attention has been restricted mainly to 

pure fluids. 	There is however a need for measurements on 

mixed supercritcal fluids, not only - for their importance in 

practical systems, but also for use in testing theoretical 

models. 

The present paper deals with the variation of the 

'mutual diffusion coefficient of a dense gas mixture of different 

sized hard spheres as a function of pressure and composition. 

In addition an attempt is made to apply the results to mutual 

diffusion in real gas mixtures' at high pressures. 

II 	Mutual Diffusion in Hard Sphere Systems' 

In a recent paper
1 
Thorne's extension

3 
of the Enskog 

theory2  of transport properties of dense hard sphere fluids 

has been used to obtain an expression for the mutual diffusion 

coefficient D of a dense gas binary mixture in terms of the 

corresponding dilute gas coefficientej at the same temperature. 



The result can be written 

2 

2 
+  3r.'; x1+x2r 
(l+r) 	3 x1+x2r ./ 

The number density in the dense phase is n and that in 

the dilute phase 	with r = Cij 22/ e11 the ratio of 

the molecular diameters of the two species. 	is the . 

ratio of the volume of the molecules to the volume of 

the system, ie. 

et,s, 

= b
11
* b22* 

c61* (xl x2r3)/161  

where 

b..* . 	n 
6 

andxl  - and x2 are the mole fractions. q1* is the volume 

of a molecule of species 1 and n = n1 + n2 = l/'5 where 

r$ is the volume of the system per molecule. 

In deriving ea (1) use was made of the expression 

for the contact radial distribution function g
12
(CY
12
) 

where 

g1  (0-112  ) = f(:7122g11(Cf11) 	0')119.22;i:022  

(2) 

( 3 ) 
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, 	2 
g11 ( 11)  = J (i÷V;) ± 	iL1120  22 2  6 	11 

• 

(1 2

j  
V 

) (5) 



3 

with a corresponding expression for g22(d22)  with the 
• 

species numbers interchanged. 	These equations were 

obtained by Lebowitz4  from the Percus-Yevick approximation 

in the equilibrium theory of fluids. As the equation of 

state of systemoof hard spheres in three dimensions is,  

not known exactly the pressure calculated from the approximate 

radial distribution function differs5  depending on the route 

used for the derivation. When obtained via the compressibility 

equation 

1- (R)dR .bpc/kT"on 4a  / AAP 	
(6) 

the result for a binary mixture on using eq(4) gives for 

the pressure pc  

„ C-"?) 
V. 

I  ) 	\zL, h I  „ • •  
4r...••••••• 	 5 / 	floNt  

(7) 
,, (5 	• 

C. the direct correlation function is related't.to the' 

radial distribution function gij (R) and the intermolecular 

potential 9)ij(a) by the equation 
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/ 
g1  . .(R)/-exp- 	.(R)/kT- 1.7 = exp 	- 	(R)/kr.P.:„, C. .(RY 	(8) - 	ID 	 13 

t ;•"' 

Alternatively whenobtained via the virial theorem 

p /kT = zln. 	2T n.n. f R36 (R)g. (R) dR 	(9) 
1 . 	3 	1 	j 	/ ij  13 

the pressure p is given by 
. 	, 	2 )3  '15.  e",  (' 

ID  tj 1*  - PciSi".- 	.3--,34 	c xl-rx2r  
kT • 	kT 	(1 -T)3  1 	3 +x r 1 2 J 

(10) 

If the correct radial distribution function was known then 

ti 	C. 

P 

In order.to evaluate eq (1) at various constant 

pressures at a fixed temperature the value of 
6 
::0 

must be 

found from either eq (7) or eq (10). For the pure fluid6  

the pressure obtained from the compressibility equation is 

closer to the machine calculations for an assembly of hard 

spheres than that obtained from the virial equation. 

However, in what follows the results for both cases are 

considered. 

Values of nD/4,0Das a function_ of x
1 
 weme 

calculated for 

r = 1, 1, 1, 2, 1, 3, 3 and 5 at p51*/kT = 1, 2, 4, 8, 20 
5 3 2 3 	2 
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and 30. 	These results were obtained by fixing r and p171*/kT 

and solving egs(7) and (10) numerically on a computer to 

give 7: for a fixed xl and r. Where overlap occurs between 

the present calculations_for 's and those of Lebowitz and 

Rowlinson5  a check showed that/\the reduced excess volumes 4 4  

e 
ncs  

1 are in exact agreement. 	The excess volume per 

molecule is defined by 

= es, r• -x • ••• e 	—1°1 2`' 

with and 	the volumes per molecule of pure systems 
9 

composed of species 1 and 2 respectively. 

Figure 1 gives a representative set of curves for the 

variation of nD/4/S)as a function of pc,-01*/kT for r=0.5 

at x1=O, 0.5 and 1. 	These results reflect the expected 

behaviour of a monotonic decrease with increasing pressure. 

It should be remembered however that t;  and n are related by 

eq(2) and hence DZ- will drop faster than nD/-4-40. 	Results 

have been left in the latter form for convenience in 

identifying the common low pressure limit. 	Fig. 2, - gives 

the variation of nD/a.5.)with composition for a series of 



Table 	Comparison of nD/Z) values obtained 
from the compressibility (1) and 
virial pressures (2). 

1 

0 0,2 0.4 .0.6 0.8 1.0 

0.9732 0.7823 0.6945 0.6494 
\ 

0.6229 0.6056 (1) 

0.9732 0.7819 0.6923 0,6450 0,6167 0.5979 (2).' 

0.3127  0,3235 0.3377 0.3569 0.3844 0.4266 (1)  

0.2914 0.3040 0.3202 0.3419 0.3724 0.4182 (2)  

0* 
p" 
- 
(,) /kT = 20 

0 	0.2 	0.4 	0.6 	0.8 	1.0 

0.6958 0,2814 0.2447 0.2315 0.2247 0.2206 (1)  

0.6952 0.2534 0.2076 0.1904 0.1815 0.1760 (2)  

0.0718 0.0743 0.0777 0.0825 0.0900 0.1033 (1)  

0.0434 0.0461  0.0497 0.0549 0.0630 0.0775 (2)  



6 

r ratios at per*/kT = 4. Obviously when r=l the pressure 

and are independent of composition as can be seen from 

eqs (7), (10) and (2) hence D as in the dilute gas is composition 

independent. 	As shown previously' the present expression 

for D in this case, then reduces to the result of Longuet-

Higgins, Pople and Valleau 7  

D = 
	C/(VkT(mi+m 111/2 	,-1 	 (14) 

L 2r/111112 	nkT ) 

In principle it should be possible to obtain diffusion 

coefficients of mixed systems of hard spheres using Monte 

. Is 
Carlo type calculations. 	None are however available, but 

it would be of interest to see if those calculated using Pc  

were better than those from p . 	Table 1 gives values 

of nDh:JD for pvi*/kT = 1 and 20 for r = 1 and 3. 	The 
5 	2 

first line at each r value was obtained using IS from p71*/kT 

and the second from p 	As expected differences are 

less at the lower pressure. 
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III 	Application to, Real Fluids 

In view of the experimental difficulties involved, 

measurements o diffusion coefficients in mixtures of dense 

supercritical gases are rather scarce:.  Results have been 

obtained by Jeffries and Drickamer8 on CO2(1) - CH4(
2) 

mixtures at two compositions xl  = 0.5 and 0.75 which can be 

used to compare with eq (a). 	This is done for the 25°C 

results. 

Hard sphere diameters for CO2  and CH
4 

were obtained by 

equating the experimental for CO2 - CH4 
mixtures at 1 

atmosphere to the Chapman-Enskog expression for the mutual 

diffusion coefficient of a dilute gas of hard spheres 

6\ - 3  (kT(ml+m2) - V 
8-1V°1124.  L 21cm1m2 •i 

(13) 

which is composition independent in the first approximation. 

This gives 012  and hence 22  after obtaining Cril  from the 

corresponding self-diffusion coefficient of CO2  measured by 

Amdur, Irvine, Mason, and Rossi°  together with the equations 



3 	kT 
,8,111/112  (14) 

and 

d12 = (G1114°22) ) 

With these ce and the ratio4urn from the density data of 

Sage, Lacey, Reamer and Olds eq (1) can be calculated for.  

various Pressures., This proceedure is equivalent to 

fitting eq (1) at 1 atm, and comparison between calculated 

and experimental results at pressures between 40 and approximately 

200 atm given in fig 3 shows that the model does give the 

essential features of the experimental results viz a diffusion 

coefficient which falls rapidly with increasing pressure 

and that/a particular fixed pressure the xl = 0.75 isotherm 

is below that for x1  = 0.5. 	Although d: the correct order 

of magnitude however agreement between the calculated 
Is 

and experi mental ,7) is not good but this of course would 

have been anticipated, as in applying the Enskog theory to 

one component dense gas properties 'two point fitting' is 

necessary to obtain satisfactory agreement between calculated 

and experimental transport properties. 	For example for 

(15) 
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the case of viscosity/n, the Enskog equation is fitted at 

the dilute gas end and at the minimum in the .-1/10 curve L 

where 0 is the density of the fluid. 

In order to demonstrate that this can be done for 

,binary dense gas diffusion we use the experimental results 

of Durbin and Kobayashi12  who measured the self-diffusion 

coefficient of Kr-85 in a series of gases at pressures from 

atmospheric to 400 atm. 

While 
	is indendent: of x, D for the dense fluid 

varies with x. At the extreme ends of the composition 

range we adopt the following notation for D: 

C'° 1 	2 
D =D2 	D =D1 

ltx1-10 

and by choosing Kr-85 as species 2 we can re-write eq 1 

in the form 
c';)1 nD2 	(1-b*)2 

(16) 

    

   

(1 -b*)+3b*r 
ltr 
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-rr nu
ll 

where b* = —
6
1as species 2 is present only in vanishingly 

11  

small concentrations. 	e12 was obtained from the 

experimental11 1 atm values for the various systems and 

Cr22 from the 1 atm 2
values as before, so that eq. 16 

fits the low-pressure data., Using the value of a'
11 

only, 

b* was calculated from the appropriate density data, and 

r/l+r taken as a disposable parameter obtained by fitting 

. eq. (16) to the experimental D2001 /G a higher pressure. 

With this value of r/l+r the other values of D2
00 1/ over 

the pressure range were calculated- The results are shown 

in fig. 4.for Kr-85 diffusing in dense supercrital argon 



TABLE 2 Comparison of calculated and experimental 
self-diffusion coefficients of Kr-85 in various 

dense gases at 35°C 

Kr -CO2 	Kr - N2 	Kr - C2H4 

patm D2C°1x 

calc. 

103  cm2sec-1  patm 

exp. 

D2C°1x 103  cm2sec-1  patm 

caic. 	exp. 

D2001x 

caic. 

103  cm2sec-1  

exp. 

5.765 20.43 20.47 17.88 8.94 8.85 13.69 7.70 7.98 

13.66 8.32 8.41 24.55 6.52 6.59 30.25 304 3.18 

21.55 ' 5.17 5.05 34.93 4.60 4.71 45.80 1.65 1.82 

30.36 3.49 3.49 69.33 2.36 2.44 62.07 1.07 0.98 

*43.80 .2.25 2:25 135.74 1.231.29 70.07 0.58 0.64 

57.48 1.56 1.54 *203.8 0.92 0.92 * 	79.94 0.50 0.50 

57.89 1.54 1.52 273.5 0.75 0.72 89.46 0.48 0.45 

339.7 0.67: 0.63 112.12 0.47 0.38 

408.4 0.62 0.55 

*denotes high pressure value at which fitting of eg.Onwas made 



and for purposes of comparison the calculated curve obtained 
'5 

by using r from the 	obtained from the dilute gas and \  
2
o 

 

as was done for the CO2  - CH4  Mixtures is included. 	As 

expected, both methods are not very different at low pressures 

but at high pressures fitting r/1i-r to the experimental 

D2C'31/2at one .fixed high pressure value, in this case 

324 atm, satisfactorily reproduces the values of the diffusion 

coefficient for the other pressures. 

The degree of this agreement is illustrated in Table 2 

for trace amounts of Kr-85 diffusing in nitrogen carbon-

dioxide and ethylene at high pressures where calculated 

and experimental coefficients are seen to agree on 

average within 5% over the pressure range. 	This is 

possibly close to the experimental accuracy of the results. 

One of us, E.McL., wishes to thank the National Science 

Foundation for the award of a Senior Foreign Scientist 

Fellowship during which the major portion of this work was 
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and to Mr. A. de,Souza for initial help with the computation. 
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Figure 1. Variation of nDvc,t9 with pc  A 	nxi*/kT for 

r = 0.5, x1  = 0, 0.5 and 1 
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Figure 2. Variation of nD/42 with x1 for various values 

or r at pciVi*/kT = 4 ; 
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Figure 3. Variation of D with pressure for the system 

CO2-CH4 at 25°C for mole fractions of CO2 

of o.5 and o.75. 	Dotted lines, calculated, 

solid lines, experimental. 
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Figure 4. Variation of log (D2°°1x 1034D) with 

pressure for the self-diffusion coefficient 

of Kr 85 in argon at 35°C. 	Open circles 

indicate experimental results. 	The 

broken curve is obtained from calculated 

values using dilute gas data, and the 

solid curve valueS calculated using dilute 

gas and one high pressure point. 
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