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i. 

ABSTRACT  

The statistical thermodynamics of sorption in 

zeolites is studied. 	The multicomponent sorbate is 

regarded as a localized assembly of quasi-independent 

subsystems each contained in a sorption cavity of the 

microporous sorbent. 	Molecular exchange among the 

subsystems as well as between the assembly and the gas 

phase that is in thermodynamic equilibrium with the 

sorbate is allowed. 	Molecular statistics of the sorbate 

is worked out in detail with respect to a few representative 

ensembles. 

In effecting thermodynamic association of 

theoretical results, a quasi-grand partition function is 

related to the sorption system which is in complete thermal 

and material but only in partial mechanical eauilibrium 

with its surroundings. 	Fundamental thermodynamic 

equations of the sorbate are derived, and their conditions 

of integrability with respect to physical variables are 

interpreted in relation to 'surface effects' and certain 

operational restrictions connected with the sorption 

system. 	A study of small-system thermodynamics further 

helps to clarify the behaviour of individual subsystems, 

especially as regards fluctuations. 

A quantitative theoretical study of the sorption 

of krypton and methane in Linde molecular sieve 51 is 
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attempted. ,By means of analytic mathematics and Monte 

Carlo methods, statistical thermodynamic functions of the 

subsystems are calculated from relevant physical parameters. 

Some interesting features of the techniques used are also 

discussed. 	Interactions of the sorbate and sorbent, and 

in particular the effects due to exchangeable cations in 

the sorption cavities, are investigated. 	To indicate the 

degree of localization of the sorbate, probability 

distribution functions of the sorbate molecules within a 

specific subsystem, together with their distribution 

densities among all the subsystems are presented. 

Thermodynamic functions of the assembly are then calculated 

and compared with available experimental data. 	Finally, 

the usefulness of various approaches to the study of 

sorption in zeolites is assessed. 
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CHAPTER 1  

THEORETICAL STUDIES OF SORPTION IN ZEOLITES  

1.1 INTRODUCTION  

Zeolites are crystalline aluminosilicates of 

open structures with large sorption cavities which are 

interconnected by channels and openings of definite and 

uniform sizes. (Fischer & Meier 1965, Meier 1967) 	They 

are of general interest because of their crystal structures 

and mineralogy, their syntheses and modifications, their 

selective sorption and diffusion properties, their 

ion-exchange and molecular-sieve behaviours, and also their 

chromatographic and catalytic activities. 	In fact some 

of them already have important industrial applications. 

(Society of Chemical Industry Conference on Molecular 

Sieves, London, 1967) 

Sorption properties of zeolites are determined by 

the geometry of their cavities, channels and openings, as 

well as by the chemical compositions of their aluminoRilicate 

frameworks. 	Molecules having appropriate dimensions with 

respect to openings of the internal cavities can enter and 

be sorbed. (Barrer 1963, Kiselev 1965) 	As zeolites are 

microporous sorbents, in the study of their sorption 

properties the usual concept of 'surface adsorption' is, 
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strictly speaking, inapplicable. 	Instead it should be 

more appropriate to consider the sorption as a filling of 

space volumes of the sorption cavities. 	Consequently 

in this case a detailed analysis of the sorption data may 

require some special theories other than those which have 

already proved successful in their application to sorption 

in other solids. (Bakaev 1966) 
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1.2 OUTLINE OF THE THESIS  

The principal aim of this thesis is to study the 

sorption in zeolites from the standpoints of statistical 

mechanics, small-system thermodynamics and macroscopic 

thermodynamics. 	Is particular an attempt is made to study 

the effects of microporosity of the sorbent on equilibrium 

properties of the sorbate. 

Molecular statistics of the multicomponent sorbate 

in zeolite will be formally discussed in Chapter 2. 	There 

analytic expressions for the partition functions of some 

representative ensembles will be derived. 	In the theoretical 

model of interest the molecules sorbed in each cavity are 

considered as a quasi-independent subsystem for which 

statistical thermodynamic functions can be calculated. 

However, since the number of molecules in a subsystem is 

small, fluctuations in its statistical thermodynamic 

quantities can be relatively large. 	In consequence, not all• 

of these - functions have the significance of measurable 

thermodynamic quantities, and for each subsystem different 

ensembles of statistical mechanics are not necessarily 

equivalent. (Hill 1962) 

It is certainly interesting to study the individual 

subsystems, especially as regards their fluctuations; so 

this will be attempted in Chapter 3. 	Chapter 4 is 

primarily concerned with the molecular statistical 

interpretation of certain measurable thermodynamic quantities 

that characterize the sorption. 	Thus thermodynamic 
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association of theoretical results is made. 	The remaining 

chapters present details of pertinent mathematical 

techniques and evaluate the statistical thermodynamic 

quantities of interest from appropriate molecular and 

atomic parameters. 	In Chapters 7 and 8 calculations are 

carried out explicitly for the sorption df krypton and 

methane in Linde molecular sieve 5A. 	Some of these results 

are then compared with available experimental data. 

• 
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1.3 STATISTICAL MECHANICAL APPROACH 

_-The.main object in-studying statistical mechanics 

of the sorption in zeolites is to give it a molecular 

interpretation. 	Initially it is necessary to derive 

certain statistical thermodynamic functions that characterize 

a reasonable molecular model of the sorbate. 	To some of 

these can then be given the appropriate meanings of 

measurable thermodynamic quantities. (Hill 1956a) 	It is 

hoped that in this manner equilibrium experimental 

quantities could be conveniently related to the arrangements 

and properties of the individual atoms and molecules which 

compose the macroscopic system. 

The zeolite sorbent is considered here as a large 

ordered assembly of distinguishable sorption cavities with 

identical structure. 	The sorbate molecules are chemically 

inert and are taken reversibly from the multicomponent gas 

phase that is in thermal and material equilibrium with the 

sorbed phase. 	Exchange of molecules among the cavities 

as well as between the whole assembly and the gas phase is 

permissible. (Bakaev 1966) 	In this open thermodynamic 

system complete and stable equilibrium is attained when 

the bulk chemical potential of each molecular species of 

the sorbate is identical in the two phases. (Guggenheim 

1959) 	Nevertheless, from this fact it does not necessarily 

follow that the chemical potentials of the individual 

subsystems are thermodynamically well-defined and can thus 

be equated. 
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...On the other hand each subsystem of relatively 

few molecules (up to about 16) in a single cavity is 

assumed to be quasi-independent. -This means that its 

internal energy averaged over the. relevant canonical 

ensemble is not an explicit function of the detailed 

distribution of other sorbate molecules in the neighbouring 

cavities. 	A theoretical treatment of the molecular 

statistical model described will be given in Chapter 2. 
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1.4 SMALL-SYSTEM THERMODYDAMIC APPROACH  

It is of particular interest to study the 

sorption in zeolites from the point of view of small-system 

thermodynamics, for this should provide effective methods 

in analyzing, classifying and correlating equilibrium 

experimental data. 	As in macroscopic thermodynamics the 

primary object in studying the individual subsystems is to 

derive some equations that give useful interconnections 

between the thermodynamic functions characterizing them. 

However, since fluctuations in thermodynamic quantities can 

no longer be expected to be negligible, it is specifically 

required to derive those interconnections showing how the 

size of a subsystem does affect its intensive and extensive 

properties. (Hill 1963,1964) 	Of course there is no such 

effect in macroscopic thermodynamics. 

Strictly speaking, ordinary thermodynamics 

applies only to the infinite limits of macroscopic systems. 

So it is useful to have a natural extension of its results 

to include an analysis of small subsystems, the behaviour 

of which should approach those of macroscopic thermodynamics 

in the appropriate large limits. 	Equations of macroscopic 

thermodynamics connect mean values of certain fluctuating 

extensive properties, such as the number of molecules in 

the system studied, its internal energy, entropy and free 

energies. 	Only the mean values are of real interest in 

this case because fluctuations about them are ordinarily so 

small that they are virtually the only possible results of 

any thermodynamic measurement. 	In contrast, for each of 
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the small subsystems fluctuations cannot always be ignored: 

higher moments of the probability distribution functions of 

fluctuating extensive quantities are generally of interest 

as well as their mean values. 	Moreover, the higher 

moments are in fact related to derivatives of the mean 

values, so that in certain cases the derivatives could be 

conveniently estimated from fluctuations of appropriate 

quantities. 	Thus in Section 7.3 heat capacities of some 

specific subsystems will be calculated from fluctuations 

of their internal energies. 	In general, a hierarchy of 

thermodynamic equations can be derived which involve higher 

moments of the probability distribution functions of 

extensive properties; and these include the mean-value 

thermodynamic equations as the first members. 

Chapter 3 deals primarily with small-system 

thermodynamics of the sorption in zeolites. 	Attempts 

will be made to understand the statistical thermodynamic 

behaviours of individual subsystems; and fluctuations of 

certain extensive quantities will also be studied. 

Evidently this approach can provide equations connecting 

some thermodynamic functions that characterize the subsystem, 

and such equations can subsequently be used to test the 

validity of a chosen molecular statistical model. 

Nevertheless it should be pointed out that, since in 

principle the magnitude of any thermodynamic function cannot 

be obtained by applying pure thermodynamics alone, the 

relevant quantities still have to be measured experimentally 

or else calculated from an appropriate theoretical model. 

In Chapter 7 certain thermodynamic functions for the 

subsystems of interest will be evaluated. 
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/.5 MACROSCOPIC THERMODYNAMIC APPROACH 

Equilibrium thermodynamics of the sorption in 

zeolites will be studied in detail in Chapter 4. 	A purely 

thermodynamic study results in a set of formal relations 

between various ecruilibrium quantities associated with the 

sorption system. 	These relations are of course very 

general, since thermodynamic arguments do not depend 

directly on any molecular interpretation. 	When all the 

quantities that occur in a thermodynamic relation can be 

measured experimentally, this naturally provides a useful 

check of correctness and consistency of the physical 

interpretations and measurements. 	When all but one of 

these can be measured, again the relation can be applied to 

deduce the remaining quantity. 	In addition, a general 

thermodynamic theory can be used to determine which of the 

equilibrium quantities have to be measured or calculated 

in order to specify a particular system completely. 

Admittedly, when thermodynamics is supplemented by 

statistical mechanics, it is no longer a general theory that 

is completely independent of the laws governing detailed 

behaviours of the atoms and molecules which constitute the 

sorbent and sorbate. 	But while it becomes less general it 

is nevertheless more informative, for the behaviours of 

individual sorption systems can now be quantitatively 

studied. (Wilson 1957a) Thus, in this thesis statistical 

mechanics and small-system thermodynamics will be used., 

wherever appropriate, to supplement the arguments basod 

primarily on pure thermodynamics. 
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CHAPTER 2  

STATISTICAL MECHANICS OF'SORPTION IN ZEOLITES  

2.1 NOTATION 

In dealing with multicomponent systems it is 

particularly convenient to use the generalized set notation, 

since many formulae of statistical mechanics can thereby be 

written in.the same general forms as those for a single-

component system, and equations for the single-component 

system may themselves be written more concisely. 	In fact 

it turns out that many mathematical operations which are 

difficult to describe in standard notations may easily and 

systematically be presented in this specialized notation. 

(Mayer & Montroll 1941, McMillan & Mayer 1945, Meeron 1957, 

Friedman 1962a) 

Let 

B 	. the number of distinguishable sorption cavities of 

identical structure in the zeolite sorbent, 

= the number of localized subsystems in the macroscopic 

thermodynamic system; 
- 	- 	- 

Aj = the space volume of the j th labelled cavity, 

where j = 1,2,...,B; 

O' = the number of components of the sorbate, 

= the number of chemically inert molecular species 

constituting the sorbate; 
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N 	= the number of molecules of the s th component sorbed 
s 

 

in all the B cavities, 

where s 

tr, 	(31'112'••  • ,Ne) 
= the composition set of the sorbate in the system; 

N =
1
+N
2
+...+N cr ,  

= the total number of molecules in the B cavities; 

net07 the number of molecules of the s th component sorbed 

in the j th cavity; 

ns  = the number of molecules of the s th component in any 

chosen subsystem, when its location in the assembly 

is clear from the context; 

(n n 	n ) 
1, 	d ' 

= the composition set of the sorbate in the subsystem; 

n 	n
1
+n
2
+...+n , 

Cr 
= its total number of molecules; 

ms  = the molecular mass of the s th component; 

(m
l'

m
2 

_ ' ...,mey), 

= the molecular mass set of the sorbate; 

r, = {is} , the position coordinates, with Cartesian 

components (x
is 

,y
is' zis' 

) of the i th molecule of the 

s_ th component; 

P, = Lis] , its momentum coordinates, with Cartesian 

components.(pxis,pyis,pzis); 

{ n
8
}= {1s} ,{2s}, 	,{ns}, 

...the coordinate set of the n
s 

molecules of the s th 

component in the chosen subsystem; 
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(n 	= [1s],[28],...,[ns] , 

= their momentum set; 

	

{1.1.} 
	

f nil , {n2} , 	,{ ne} , 

= the coordinate set of the n molecules of composition 

set n in the subsystem; 

, [n2] , • • • , [ nd] p 

= their momentum set; 

{ Nal = flsj , f281 , 	, {N.  el 

= the coordinate set of the N molecules of the s th 
s 

component in the macroscopic system; 

[Nal = [la] , 	,rNesj , 
= their momentum set; 

130 = fNIMN21"."{Nel' 
= the coordinate set of the N molecules of composition 

set N in the system; 

	

11,) 	[NI] , [N2] 	, [Nell  , 

. the correspondlng momentum set; 

B
n 	= the number of cavities in each of which n molecules 

of composition set mare sorbed; 

= the number of cavities in each of which exactly i 

molecules of the a th component are sorbed together 

with any number of molecules of the other components; 

= the set (B
i1

,Bi2,...,Bie) 

= the number of cavities with at least one molecule of 

the s th component sorbed in each; 

= the set (S1,S2,...,80) ; 

B
is 

Bi  

S a 

S 
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Nis  - the number of molecules of the s th component in all 

the B
is 

cavities; 

Ni 	the set (N
i1

,N
12
,...,Ntd) 

It follows from the above definitions that 

N
is 

IM iB
is 

. B +B +...+B 5
s 	Is 2s 	Ns 

s 
 

S 	. 	B
1 
 +B

2 
 +...+B 

,‘, 	......N. 

B = S
s
+B

Os 

B 	. 	S + B .... 	 , 	..,,0 

Ns 	= 
	N

ls
+N

2s
+...+N

N s a 

= 
B
ls
+2B

2s+...+Ns
B
Nes 

and 	N 	. 	+N +...+N 
•••• 	^1 2 	^01i 

. 	B +2B +...+NB 
evl --.N 

(2.1.6) 

(2.1.7) 

Let 

ti. s 	= the chemical potential of molecules of the s th 

component of the cf.-component gas phase that is in 

thermal and material equilibrium with the sorbate; 

z
s 	

= the corresponding activity, 

and 

A8 	= the corresponding absolute activity. 

Clearly 	21,s = exp(p(s/kT) 	(2.1.8) 
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and 
-3 

z = A 8   X. 8 8 (2.1.9) 

where T is the temperature of the two phases, 

and Aa is the de Broglie thermal wavelength associated 
with one kinetic degree of freedom of a molecule 

of the s th component. 

An explicit expression for)18  is 

A $  . 	h/(27tm kT)* s (2.1.10) 

where k is the Boltzmann constant, 

and 	h is the Planck constant. 

The sets of chemical potentials, activities, 

absolute activities and thermal wavelengths for the 

le-component system can now be defined by 

and 

A 	. 	(111.'2 , . . . ,Me )  

	

z. 	( z z 	z ) ,... 	l' 2" . 
" cr 

1 . 61.1'1'2"."%d 

A 	= 	(Ai,A2, ... ,Ad) 

(2.1.11) 

From the foregoing it should be apparent that in 

the set notation some, but certainly not all, of the 

operations defined for the sets n, N, m,p, etc., are like r., A.,  ,.. p-v 
those with vectors in d dimensions. 	For example, N  ' B  
n, m,,pandA do represent d-tuples of ordered components, ,-.• iv 	..... 
while (2.1.3), (2.1.5) and (2.1.7) parallel additions of 

vectors. 	On the other hand, addition, outer product and 

scalar contraction of arbitrarily chosen C=tuples, such as 
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N + AG , m All, and m.B , have not been defined. 0.• 

The followings are examples of useful abbreviations 

for multicomponent systems: 

Products of factorials 

n! 
(2.1.12) 

NI 
	

N1"2"174i!  

Products of exponentials 
n
1 

n 	nd 
 _ 

	

141 	itt'2 	• • • IWO' 

N N 
•A,̂ ' 	11‘  2 	it, Nd 

= 	1 	2 ••• Cf 

n
lA 

n
2 

	

1 	2 	• • 

n 

(2.1.13) 

Scalar products 

Lit 	 . n 	ffi n 	n 2/%2 +. • + nee 
	(2.1.14) 

Out of these relations only (2.1.14) has any real vectorial 

significance. 
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• h 	df4d[0 exp(-H(LIMn})/kT) 

Aj 

ZA(n,j,T) 

(2.2.2) 
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2.2 CANONICAL PARTITION FUNCTION Z(n,T) 

Consider a subsystem of n distinguishable 

CY-component molecules of composition set n and mass set 

m in the j th cavity of space volume Aj. 	The classical 

Hamiltonian for this subsystem with the n molecules 

having momentum set [ n] at space positions fnj is 

II(E1,(111) 
=1 

2 	2 	2 (p 
xis 

 +p  yis +pzis ) + C({0) 

(2.2.1) 
where (p

xis
,p
yis,pzis

) represents the set of scalar 

components of the momentum vector p.a  in a Cartesian 

frame of reference (x,y,z), and U({33}) is the total 

potential energy of the n molecules interacting in 

n(n-1)/2 pairs between themselves and each interacting 

with the common environment consisting of the cavity wall 

and all other molecules and atoms outside this cavity. 

The canonical partition function ZA(z,j,T) for 

the j th subsystem at temperature T is given by 

where 

d[30 ▪ Edrns1 
8=1 

n 	n 

8 
s 

dins] 	• 	11d,via 	11 
= 	dp 	dp 

z
. 

xis yis is i=1 	i=1 



diEj = 1—fdfns1 
8=1 

n 	n 

	

s 	s 

	

and 	dinsl 	m  11 	dr 	. I—fdx
is

dy
is

dz
is 

	

1...1 	i=1 
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(2.2.3) 

The integration with respect to each of the 

momentum components is performed over all possible values 

of this ranging from -CO tocO . 	The integration with 

respect to the space coordinates of each molecule is 

restricted to the space volume 21
i 
 of the cavity. 	The 

dividing factor h3n takes account of the fact that the 

6n-dimensional volume: 
cy n 

TT IT APxis AP • APzis Ax is A isy Az. yis 	is 
s=1 i.1 

in the classical phase space ([nd],(n1) associated with a e 

single quantum-mechanical state of the subsystem is h3n. 

Certainly this factor can also be regarded as a consequence 

of the quantization of phase space, for essentially it 

represents the uncertainty principle limit of accuracy in 

assigning the position coordinates and momenta of the n 

molecules in the neighbourhood of a specified point of 

the 6n-dimensional phase space. 

According to classical mechanics the Hamiltonian 

H(C311,(0) can be separated into the kinetic part 

V 	n 

 

1 

 

2 	2 	2 
(p xis  +p yis +pzis ) 

13= 
2ms i=1 
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and the configurational part U(01). 	Therefore, in 

classical statistical mechanics the momentum integration 

in (2.2.2) can be performed directly, giving 

A  -3n " 
Z(n,j,T) = /1 	Q(n,j,T) 
	

(2.2.4) 

where (102,j,T) is the configuration integral of the 

subsystem which is defined by 

Q(n,j,T) =Jr  4,10 exp[-U({ni)/kT] 	(2.2.5) 

A J 

Since the zeolite cavities are of identical 

structure and the subsystem is quasi-independent, the 

internal energy U(CB1) does not depend directly on the 

label j. 	So the configuration integral and the canonical 

partition function for the subsystem of composition set n 

in any chosen cavity with identical space volume „6 are 
given respectively by 

Q(12,T) 	= Q(n,j,T) = 	df0 exp[-U({1,1})/kT] 

AA 
 -3n

(2.2.6) 
and 	Z

w
(n,T) = Zw(n,j,T) . 

ey
/1 " Q(n,T) 

for all j = 1,2,...,B. 

In the physical subsystem of composition set n 

of subsequent interest, the ns  molecules of each component 

(s = 1,2,...,01() are actually indistinguishable. 	This is 



27 

a result of the invariance of the quantum=mechanical 

wave function describing the subsystem with respect to 

any permutation of the n
s 

molecules. 	So its canonical 

partition function is now given by 

Z(51,T ) zA(n T)/n' N 

-3n 
4 ".  Q(a.T)/11: (2.2.7) 

It is important to note carefully the various 

assumptions inherent in the above derivation of Z(B,T). 

So far the; essential argument has been based on classical 

statistics. 	Nevertheless the presence of the dividing 

factor rini
3n 

is basically a quantum-mechanical result. 

But apart from this fact the use of classical Boltzmann 

statistics is well justified, for in this case the number 

of accessible quantum-mechanical states characterizing the 

subsystem is necessarily so large compared with the number 

of molecules in it that both Bose-Einstein and Fermi-Dirac 

statistics should approach their common limiting form of 

Boltzmann statistics, and thus the choice of the dividing 

factor n! to take account of the indistinguishability of 

the non-localized sorbate molecules in any single subsystem 

should indeed be appropriate. (Mayer 1958) 	In sorption 

studies, quantum phenomena are generally of interest only 

as regards the sorption of light molecules at very low 

temperatures. 	Therefore, in this thesis quantum effects 

associated with the sorption in zeolites will not be 

considered any further. 
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2.3 A LOCALIZED ASSEMBLY OF ISOTHERMAL CLOSED SUBSYSTEMS  

First, consider a theoretical system of N 

distinguishable d=component molecules of composition set 

IL in an ordered assembly of B distinguishable cavities 

such that in each of the B
n 
labelled cavities n molecules 

of composition set 12, are sorbed. 	The n molecules in any 

single cavity will then be regarded as an isothermal 

closed subsystem which cannot exchange any molecules with 

outside. 	All the localized subsystems are in thermal 

equilibrium at temperature T with each other and with 

their common environment. 

Let the j th cavity with space volume 13, contain 

n
(j) 

molecules of composition set n. 
	

The canonical 
eiqj) 

partition function for this subsystem is 

Zm(n, T) 
1̂(j) 

-3a( )1( j )3. 	1r( expi-u(132(  )s  )/kT1 

= 
-3n 0  

A 
Al #v("  Can 	,T) 

ev(j) (2.3.1) 

Since each subsystem is quasi-independent, closed, and 

localized within the assembly, the canonical partition 

function for the system of N sorbate molecules is 

evidently a direct product of those of the subsystems, 

and is thus given by 
B 

closed(N B T) 	ZN(n 	T) 
	

(2.3.2) 

j=1 
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In this case every subsystem is completely distinguishable 

in the sense that a subsystem of n molecules sorbed in a 

chosen cavity is to be labelled both by the label of the 

cavity and by the n labels of the individual molecules of 

this subsystem, which are necessarily different from the 

labels of other subsystems in the assembly. 

Now, consider a more realistic system of N 

molecules sorbed in an ordered assembly of B distinguishable 

closed cavities in almost the same manner as the above 

system except that the n molecules of each component 

(s = l,2,..., e) in a particular cavity are in the present 

case indistinguishable. 	Two molecules of different 

components in a single cavity, or of the same component 

but in two distinct cavities, nevertheless remain 

distinguishable. 	The canonical partition function for 

this system is 

B 

Z 	(N 13 T) 	= 	ITL Z(n 	T) closed 0.0' ' 	A.,(J)' 
j=1 

(2.3.3) 

Such a system can indeed be physically realized. 

Examples are the clathrates of v-component guest molecules 

in closed cavities of the host lattice structures, with 

varying number and composition set of molecules from one 

cavity.  to another but with a definite number 

set in each. 	In these 

in the sense that it is 

clathration. 

and composition 

instances a molecule is localized 

confined to a single cavity after 
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The molecular statistical model just described 

may also be of some interest in connection with the present 

study of sorption in zeolites. 	Mention should be made of 

the specific case of sorption of comparatively large 

molecules at low temperatures, especially when the sizes 

of the sorbate molecules are approximately the same as the 

free diameters of openings and channels connecting the 

sorption cavities. 	Once the sorbate molecules have been 

trapped within the cavities, any molecular exchange between 

them may be quite negligible. However, in such a situation 

there may arise certain difficulties associated with the 

metastable equilibrium of the sorption system. 	This will 

be considered in Section 9.2. 

It is clear that in the theoretical models 

considered above there is in effect no coupling between 

the subsystems other than thermal exchange. 	Any extensive 

statistical thermodynamic quantity of the total system is 

accordingly a direct sum of the distinct contributions 

from individual subsystems. 	For a macroscopic assembly of 

isothermal closed subsystems with a large total number of 

sorbed molecules, it can be expected that fluctuations in 

the internal energy of the assembly, as averaged over an 

appropriate ensemble of statistical mechanics, are very 

much reduced by thermal exchange. 	Therefore, in the 

macroscopic limit this internal energy can correctly be 

identified with the corresponding thermodynamic quantity 

measured for the system, even though the internal energy 

of any individual subsystem may not itself be a 

thermodynamically measurable quantity. 
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When the fixed distribution of molecules among 

the closed cavities is known, the internal energy of the 

assembly can be evaluated, since this is simply a sum of 

the statistical mechanical values of the corresponding 

quantities for individual subsystems. 	With regard to the 

entropy of an assembly, however, some complication may 

arise in connection with the 'residual entropy' that 

persists down to absolute zero temperature. (Wilson 1957b) 

If the assembly with a fixed arrangement of distinct 

subsystems were indeed in complete and infinitely stable 

thermodynamic equilibrium, and if these subsystems were also 

closed at all temperatures, the entropy would again be just 

the sum of the contributions from individual subsystems, 

for then in principle all the relevant information concerning 

the partitioning of molecules among the ordered arrangement 

of cavities is completely known. 

But, physically, it is more likely that the 

equilibrium is in fact only metastable; and hence there is 

in reality a finite residual entropy associated with the 

arrangement of the subsystems in the assembly. 	For the 

present this point will not be discussed any further; 

nevertheless it should be mentioned that the preceding 

consideration does have an important theoretical implication 

when the 'communal entropy' of an assembly of open 

subsystems is considered in Section 4.4. 



Ns
! 	n

sX1) 	
n
s(B) • x

1 	
...XB 

	i n
s(1)

:21
s(2)

!... n
s(B). 	

(2.4.2) 

Ns  
(x

1
+x
2
+...+x

B
) . 
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2.4 COMBINATORIAL COEFFICIENTS  

The combinatorial- coefficients which have 

subsequent applications in this thesis are presented here. 

Further details of the results quoted can be found in any 

standard work on Combinatorial Mathematics. (For examples, 

MacMahon 1915, 1916, Riordan 1958, Beckenbach 1964) 

The coefficient (Ns;n8(1),n8(2),...,ns(B)) is 

defined as the number of ways of putting 

Na 
	' 

n
s(1)

+n
s(2)

+...+n
a(B) 

distinguishable molecules of the s th component into B 

distinguishable cavities, with exactly 
ns(j) 

(ranging from 

0 to N
s
) of these molecules in the j th cavity together with 

any unrestricted number of molecules of the other components, 

where J  . 1,2,...,B, and s = 1,2, . . . ,d . 	This is given by 

(Ns;ns(1)'ns(2)'••"ns(B)
)  

N 
= 	

s 	
(2.4.1) 

n n
s(1).  s(2).."

n 
 s(B)t  

which is immediately recognized as the multinomial 

coefficient of the term 

n8(1) n
s(2) 	n

s(B) x
1 	x2 	...x

B 

in the expansion: 
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The summation in (2.4.2) is over all possible partitions 

of the N
s molecules into the sets ofne(j)  (j = 1,2,...,B). 

Clearly 

(N -n 
s' s(1)'ns(2)"."ns(B))  

N
a 

ns(1)" 	+...+n 
st2) 	s(B) (2.4.3) 

By using the set notation these results can be 

generalized to the case of a 0=component system: 

N'  

U.;!zurz(2)--21(B) )  = 

 

!...n 	! 
,v(2) 	 ,̂(B) 

(71  

(N s'n  s(1)'ns(2)"."ns(B))  

(2.4.4) 

and 

BN (1,;3.,(1)',11,(2)' • • • '1.-^'(B) ) 
(all partitions of N) 

(2.4.5) 

By definition the coefficient fbi -3 	B 	B 	1 
s' Os' ls' 	' N s 

is the number of ways of partitioning 	8 

the set of 
N
s 	

B
ls
+2B

2s+...+Ns
B
N s 

• 
distinguishable molecules of the s th component into the B 

8=1 
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distinguishable cavities, Bis  of which each contains exactly 

i of these molecules together with any unrestricted number 

of molecules of the other components, where i . 0,1,...,Ns. 

This is given by 

flis ;BOs ,Bls , ... , Br 81 
s 

 

B! Na ! 

 

a 

. 	Os 
(OH

B 
 B

Os
:(1!)

3 ls
Bls!...(Ns

!)
B A
8
sB 

 N a 
: 

S 
 

Ns 2(B;BOs,Bls,...'/3Ns) S 
St 

B
Os 	

B
ls 	

B 
 Na 

(0!) 	(1!) 	...(Ns!) s  

(2.4.6) 
A generalization of this gives 

Ns I B! 
{N , NO, 	B11 et,  ' "10 ' B1, 	 iv BOs 	 BN s s=1 	 s 

(0!) 	B
Os

2 ... (Ns!) 	BN s2 
s 

1= 	{N
s
;B

Os
,B
ls"'"

B
Nsl 

s=1 	S  
(2.4.7) 

By considering all the possible permutations of the 

N distinguishable molecules of composition set N,,  in all the 

B distinguishable cavities, it follows that 

01  

 

{N;B1., ... ,BN  1 A,  NO , A.. 	A/ ,,,, 
a BN 

(2.4.6) 

    

where the summation is restricted by the 26' simultaneous 

conditions: 

B
Os
+3ls4-...+BN 

 s 
s 

and 	B
ls

+213
2s

+...+N
s
B
N s 
s 

for all s = 1,2,...,61. 

= 
	 B 

= 
	 N s 



2.5 A LOCALIZED CLOSED ASSEMBLY OF ISOTHERMAL SUBSYSTEMS  

It is now appropriate to study the statistical 

mechanics of a molecular model that truly describes the 

macroscopic sorption system of interest with respect to a 

specific thermodynamic environment. 	Consider a closed 

system of N distinguishable a=component molecules of 

composition set y; sorbed in an ordered assembly of B 

distinguishable cavities such that these molecules can 

distribute themselves in any possible manner among the 

cavities, and each of them is accordingly free to move to 

any part of the entire closed system. 	As in the cases 

previously considered in Section 2.3, all the sorbate 

molecules are regarded here as a closed thermodynamic 

system in thermal equilibrium with a large heat bath that 

forms its environment. 	However, in contrast, as regards 

the present case the individual subsystems are themselves 

open and isothermal. 

At a given instant any subsystem can contain 

only a relatively small number of the sorbed molecules; 

and this can vary from one cavity to another. 	Thus, a 

free exchange of molecules between the cavities does not 

necessarily imply that a complete material equilibrium is 

actually established between the subsystems in the sense 

that the chemical potential of each molecular species as 

defined by statistical mechanics is uniform at the 

molecular level throughout the assembly. 	In fact, for 	a 

single subsystem the moaning of a chemical potential that 

35 
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is thermodynamically measurable cannot properly be attached 

to the corresponding theoretical value. 	The Helmholtz 

free energy A(,14,T) appropriately averaged over the 

canonical ensemble at temperature T can be defined for each 

composition set ir..)#, of the subsystem; but this is not a 

continuous function of n
s 
(s = 1,2,...,o') which is itself 

a small integer. 	In consequence A(13,T) cannot be directly 

differentiated with respect to n in the same manner as for 
s 

a macroscopic system. 	Clearly, difference equations can 

be used in place of the ordinary differentiations to obtain 

statistical mechanical estimates of the chemical potentials. 

However, the resulting quantities are not experimentally 

measurable; and indeed they must always be characterized by 

both the initial and the final composition sets. 

On the other hand, the system of all the sorbate 

molecules in an ordered assembly of B cavities is 

macroscopic and can correctly be regarded as a thermodynamic 

system for which the chemical potentials may in practice be 

measured•. 	Nevertheless it should be noted that each of 

these chemical potentials is defined only in the macroscopic 

sense and must not be identified with the corresponding 

statistical thermodynamic quantities of individual 

subsystems. 

As each of the N distinguishable molecules can at 

a particular instant be in any one of the B cavities of 

space volumesill,112,...,AB, the canonical partition function 

for this closed system is 
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ZN(N,B,T) 
	-3N Jr 	

40 expi-U({N})/kT] 
A'1+A2 +...+AB 

(2.5.1) 

where the integration with respect to each of the N 

molecules is carried out over the whole sorption space of 

the B cavities. 

By partitioning the N molecules into the B 

cavities, the 3N-dimensional configuration integral can be 

rewritten in terms of the integrals each restricted to a 

single cavity, so that 

e(R0B,T) 
A  -3,kT, 

" 	LA (31;11q1) 	" • 1111(B) )  

j=1/1 
d (i 	exp [ ({ ( 	)/kT7 

(2.5.2) 
B 

=X(N• 
''''
n  
(1)".111(B))17:ZA(11

( ) ,j,T) 
J=1 ^,3 

where the summations concerned are over all the partitions: 

n 
0+(1) + ,."(2)  

n 	+...+ '
(B) 

 N 

and Z94.(j),j,T) is the canonical partition function at 

temperature T for the n
(J) 

molecules of composition set 

(J) in 
the j th cavity. 

The quasi-independence of each subsystem implies 

that Z(
ev
n(j), j,T) is independent of the label j ; i.e., 



B
n 

B 

n4:N 
(2.5.5) 

B 11 1 re(1,T)1 Z(N,B,T) 
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Z
A
(Ai),j,T) = ZK(n 

e(j)T)' 	(2.5.3) 

for all j = 	Hence (2.5.2) can be rewritten as: 

B 

Z
E
(N,B,T) 

= 	 (14;x1  ,v(1)""Z(B)
)17fe(n  ed(j)

1p) 
 

j=1 
(2.5.4) 

where the summation has the same specification as for 

(2.5.2). 

Since Z(z(j),T) depends only on the magnitudes 

of the components 
ns(j) 

(s = 1,2,...,6) and is not 

otherwise a function of j, the product in (2.5.4) can now 

be written in terms of the products of powers of ZR(,,,,T): 

where the products are of the distinct contributions from 

all the possible sets of the Bn  subsystems each with a 

composition set B. 	The summation is over all possible 

partitions of the N molecules among the B cavities, with 

the restriction that 

N 

      

B and 

   

n B 
sn s 

= N
s 

1=1 

  

n 0 s 

 

for all s 	These form 20/simultaneous 

conditions. 	The right hand side of (2.5.5) may also be 

regarded as a homogeneous polynomial of degree B in the 
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parameter set Z (n,T) (with variable n), in which the 

coefficient of a typical monomial term is {N;B ,B 	I. 

Now, in the physical system of N e-component 

molecules of composition'set N sorbed in B open zeolite 

cavities, although the subsystems of the ordered assembly 

are in fact localized, the molecules of each component in 

any specific subsystem are themselves non-localized, and 

are thus indistinguishable. 	As each subsystem is here 

assumed to be quasi-independent, the canonical partition 

function for the system of N molecules is therefore given 

by 

  

Z(N,B,T) = 9  ;B 
J. 	

[Z(n,T)  

N B n 

= N! 

n4 N  
[

Z(n,T) 

n! 
,B 
	

B ) (2.5.6) 

where the products and sums have the same specifications 

as in (2.5.5), and 

(Bt) 
(2.5.7) 

B
0 
 !B
1 
 !... Bri t 

— - 	".. 

In the last paragraph Z(N,B,T) was obtained from 

Z(N,B,T) by replacing each contribution of Z(41,T) in 

(2.5.5) by Z(B,T). 	This means that, whereas the n
s 

identical 

molecules of the s th component are indistinguishable 

within an individual subsystem, the molecules of the same 

component in different subsystems nevertheless remain 
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distinct, and they can be simultaneously identified by the 

labels of the distinguishable cavities containing the 

localized subsystems at any particular instant. 

Undoubtedly this is a consequence of the quasi-independence 

of individual Oubsystems. 	For, if the subsystems were 

themselves non-localized, Z(N,B,T) would then be equal to 

(Li,B,T)/1,1:. 	But this is not the case, since the 

arrangement of zeolite cavities is known to be fixed and 

ordered. 	If, on the other hand, the subsystems were 

completely independent with regard to material exchange, 

yet remain thermally equilibrated, so that in working out 

the canonical partition function of the assembly each 

subsystem could be regarded as independent, closed, and 

isothermal, then the system would in fact be identical 

with that considered in Section 2.3, at least in the 

mathematical sense. 

It should be emphasized that in the evaluations 

of Z
*
(y,,,B,T) and Z(N,B,T) every region of the 

6N-dimensional phase space has indeed been taken into 

account. 	In this respect, (2.4.5) and (2.4.8) could 

provide very valuable means of checking the correctness 

-of the summations over the molecular partitions in (2.5.2), 

(2.5.4), (2.5.5) and (2.5.6). 	As regards the physical 

implication of the foregoing results, however, these 

shoUld become more apparent in the subsequent applications. 



2.6 THE CONTOUR INTEGRAL FORM OF Z(N,B,T) 

Because of the restrictive conditions of series 

summations in the analytical expression (2.5.6) for the 

canonical partition function Z(N,B,T), it is not convenient 

- to apply this directly in calculating statistical 

thermodynamic quantities characterizing the macroscopic 

sorption system. 	It is interesting to express Z(4.1,B,T) in 

the form of a generalized contour integral in cr complex 
variables, as this may lead eventually to a more effective 

method for relating the canonical partition functions Z(A,T) 

of individual quasi-independent subsystems to some 

thermodynamic relations and quantities that truly describe 

the sorbate in the total assembly. 	By inspection of the 

form of Z(N,B,T) in (2.5.6) it appears that the use of 

certain generating functions should be appropriate to this 

type of combinatorial problem. 	More specifically, the use 

of an exponential generating function for the sequence of 

Z(N,B,T) is suggested. 

By definition the exponential generating function 

of a sequence a
0 
 ,a
1  ,

• ..,a
n 	is the sum: 

E(t) = a
0
+a
1
t+a

2
t
2
/2!+...+a

n
t
n 

+... 	(2.6.1) 

whereas the ordinary generating function of the same 

sequence is given by 

A(t) 	a 
0 
 +a 

 1 
 t+ a

2  t
2+...+a t +... 	(2.6.2) 

41 
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The sequence a0,a1,...,an,... is ordered and may be finite 

or infinite. 	Its elements can be regarded collectively 

as a multiple entity in their separated forms; and these 

may, but need not, be distinct. 	The parameter t is taken 

as an abstract mark or indeterminate, the function of 

which is to keep distinct through its powers the elements 

of the sequence united in the sum defining the generating 

function. (Riordan 1958a, Beckenbach 1964a) 

The definitions of these two generating functions 

can readily be generalized to the case of many parameters. 

The d=parameter generating functions for the' sequence of 

an are defined by 

N 
E(t) 	= 	a ntv 

 /n 	(2.6.3) 
.... 

3:? 'it  

and 	A(.1,) 	y  a t"22 	 (2.6.4) ne. 

where 	t 	= 	(ti,t2,...,td  ) 

and 	n 	= 	(ni,n2,...,ney  ) 

In particular, the 2-parameter generating functions are 

given by 

E(r,t) = a
00 
+a
10 

r+a
01 t+a20 r

2
/2:+a11rt+a02t2  /2!+... 

(2.6.5) 

and 	A(r,t) = a +a r+a t+a r
2
+art+a -t2 
	C C1 

11 00 10 01 20 	02 
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Formal operations such as addition, multiplication, 

differentiation and integration with respect to any number 

of the parameters i
s 
(s = 	can be defined for 

each set of the sequences E(t) and A(Z). 	These are known 

as Blissard or umbral calculus for those involving the 

sequences E(,), and as Cauchy calculus for those involving 

the sequences A(,,) alone. (Bell 1940) 

Now consider the exponential generating function 

E(I) for the sequence of the canonical partition functions 

Z(n,T) of a subsystem, viz., 

E(t,T) 	= 

 

n 
Z(n,T) t /n: (2.6.7) 

In order to find the multinomial expression for E
B
(t,T) 

the technique of Blissard calculus is applied. 	Thus, a 

sequence of Z(n,T)„ 	is replaced by that of 

n
1 

n
2 ZN 	

z1 z2 ...Za,nd  

with the exponents treated as powers during all formal 

operations, and only restored as indices when the operations 

have been completed. 	The exponential generating function 

E(t,T) accordingly behaves like an exponential function in 

the sense of Blissard calculus: 

E(I,T) 
	

e xp 	EL: Z(n,T) 
	

(2.6.8) 

where Z and t in the formal relation may be regarded as 

e-component vectors. 



N 
t ea 

N 0 

B 
n 

,B 	'BN / 
	[Z(n,T)I 

n N 
A• ••• 

•••••••••••••IM 
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On applying this technique to the generalized 

multinomial expansion of E (t,T), it follows that 

B n 

(B;B ,B ,..B ) 
ovN 	 n! 

N 	 12-4..1% 
(2.6.9) 

where B is any positive integer, and the summations 

are carried out for all partitions of the composition set 

N, with the restriction that 

Ns 
= B 	and 	n B S S Ns 

i=1 	 n
E / 0 

for all s = 1,2,...,c(. 

By comparing (2.6.9) with (2.5.6) it becomes 

apparent that the canonical partition function Z(L,B,T) of 

the assembly is just the coefficient of rt'/N: in the 
exponential generating function E(B,T,I) defined by 

11Z(N,B,T) el  /W. "a 	N 	.../ 
, I E(B,T,t) 	m E (,T) B 	 N 

N ;> 0 
"I A./ 

Up to this point the ce parameters t are still ..0 
indeterminate. 	In the followings the parameter set 1" will 

Z(nN,T) T 

(2.6.10) 



45 

be replaced by a set of complex variables rj 	
(1 '52' —501)  py 

Then (2.6.7) and (2.6.10) give 

E( ,T) 
ni% 

Z(n,T), /n! 	(2.6.11) 

?r  sea 
and E(B,TX) 	E13( ,T) 	Z(Z,B,T)17 	(2.6.12) 

ew 

//2/2, 

Evidently the functions E( Yj ,T) and E(B,T,y,) are holomorphic, 

since these are polynomials with bounded sequences of real 

positive coefficients of powers of thee," complex variables 

. • Without going into the mathematical detail of 
or, 
considering the holomorphy of these functions of many 

complex variables, it is quite sufficient to use only a 

relatively simple geometrical concept as regards the 

'continuity' of the functions concerned within the closed 

domains of physical interest. 	In view of this the 

preceding statement can be regarded as merely implying that 

,' T) and E(B,T,r) are single-valued, non-singular, as 0,1 

well as continuously differentiable, within their radii of 

convergence, with respect to each variable 5 	(s = 

separately (with other variables fixed). 

According to the generalized Laurent's theorem 

(Vladimirov 1966a) and Cauchy's theorem of residues of 

multivariable complex calculus (Vladimirov 1966b), Z(Z,B,T) 

can be expressed as a contour integral on the appropriate 

complex planes with respect to the c( separable complex 

variables '5 • 



Z(N,B,T) 
Br! 

(2/ti)
ce  

E(B,T,4) 
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(2.6.13) 
N+1 

 

where the point y = 0 is within the inner region of the 
".1 

integration contour on the complex plane of each variable, 

and each integration is carried out in the positive 

(counterclockwise) direction. 	The point 4 . 0 can, 

of course, be regarded as the common intersection of the 

d complex planes. 	Geometrically the integration contour 

can then be visualized as a continuous path encircling 

the origin on the Riemannian surface that describes the 

holomorphic continuation of the functions concerned with 

respect to the c( complex variables. (Cartan 1963) 

Moreover, for physical reasons it is clear the resulting 

surface which represents the holomorphic domain of interest 

is single-sheeted (schlicht). 

Because of the restriction on the number of 

relevant terms in the summations of (2.6.9) when applied 

to the physical system of sorption in zeolites, it is 

mathematically desirable to study the convergence problem 

concerning the termination of the series in (2.6.12) in 

more detail. 	For simplicity, only the case of a 

single-component system will be analyzed. 	In this case 

a useful result can easily be obtained by considering the 

absolute activity 1 of the sorbate as a value specified 
by some point on the real positive axis of the complex 

plane of the single variable 1,; . 
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From the specialized forms of (2.6.10) and 

(2.6.13), it follows after bringing the summation under 

the integral sign that 

Bn 

   

E
B
() 

    

E(B,TA) 	= 
1 

   

(+) 
dYj 

     

       

n=0 

Bnx+1 

 

1 EB(;)  

	 dic 
1 	

e(Yj) a\ 
d5 

2/ri 
= 

21T i 

(2.6.14) 

where n
x 

is any positive integer greater than the maximum 

number of molecules in any cavity at temperature T. 	Here 

the series E(B,T,S) is terminated after BnR  terms. 

By applying Cauchy's theorem of residues to the 

first contour integral in (2.6.14), the integrand of which 

is certainly analytic on the whole complex plane (i.e., its 

radius of convergence is infinite) except at the point of 

singularity '5,7zit , it follows immediately that this 
integral is just equal to EB(A.,). (Phillips 1957) 	The 

contour of the second integral encloses the singularities 

at '5= 0 and 	, but may take any arbitrary shape on 

the complex plane. 	It is thus possible to choose this 

contour to be outside the circle of radius /X about the 

origin such that I/1/514.1. (Fowler 1936, Eyring et al. 

1964) 	Consequently, for a macroscopic thermodynamic 
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system of the sorbate in an assembly of B zeolite cavities 

with B ̂ di()
20 

, the second integral is always negligible 

in comparison with the first. 

• It has thus been shown that, as regards the 

special case of a single-component system, the use of the 

truncated series in (2.6.12) and (2.6.13) is well 

justified, both mathematically and on an obvious physical 

basis. 	A slightly more elaborate analysis should lead 

to a similar conclusion for the cases of multicomponent 

sorbates in zeolites. 	The summations concerned are now 

restricted to the 2ce simultaneous conditions: 

0 L  N < B n x  

w 	w where 	n 	(ni,n2,...,n0e) represents any o'-tuple 

of positive integers each greater than the maximum number 

of molecules of the appropriate component in any single 

cavity at temperature T. 	At this stage the real physical 

implication of the foregoing analysis should at least be 

intuitively clear. 
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2.7 AN OPEN ASSEMBLY OF ISOTHERMAL SUBSYSTEMS  

This section deals with a macroscopic system 

consisting of a variable number IT of chemically inert 

molecules of component set 11 sorbed in a large _ordered 

assembly of B distinguishable zeolite cavities with 

identical structure: 	Both the assembly and the individual 

subsystems are open, so that any chosen molecule can be in 

any one of the cavities, or, alternatively, in the gas 

phase that is in thermal and material equilibrium with the 

sorbed phase. 	It is recalled that this molecular model 

of the sorbate in zeolite was briefly mentioned in 

Section 1.3. 

Again, it should be pointed out that the molecular 

exchange among the cavities does not necessarily indicate 

that the chemical potential of each component is uniform 

and definite at the subsystem level throughout the assembly. 

In fact, although a chemical potential that is 

thermodynamically measurable cannot be defined for a single 

subsystem, it can nevertheless be defined for the 

macroscopic sorbate system as a whole. ' It is the chemical 

potential of the total assembly in this case that is 

actually equated to that of the gas phase.. 	Certainly 

this chemical potential depends not only upon the 

statistical thermodynamic Helmholtz free energies of the 

individual subsystems but also upon how the molecules are 

physically distributed among the cavities. 	Here 

fluctUations in the number of molecules in each cavity 
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should give a significant contribution to the randomness, 

and hence to the entropy, of the macroscopic system. 

The grand partition function 17.(B,T,7t.) for the 

system that is in thermal and material equilibrium with 

the gas phase at temperature T and absolute activity set 

It is given by 

"(B,T,1) 	 (2.7.1) 

N),0  
.011 

Its inverse formula then gives the canonical partition 

function as a contour integral of DB,T,';.A).) : 

Z(N,B,T) X1C (2.7.2) 

where the contour integration with respect to each complex 

variable a 	(a = 1,2, . . . ,01  ) is in the positive direction 

and encloses the origin at /L= 0 . 

The grand partition function r;7(B,T,1,) as given 

by (2.7.1) is a polynomial in the parameter set 	with 

real positive coefficients each representing a canonical 

partition function of an individual subsystem. Physically, 

it Is known that the power series for E(B,T.,-;,A;) is 

absolutely convergent in all the applications of interest, 

for certainly any thermodynamic function characterizing 



A(t) 	(exp-s) E(ts) ds 

10 

00 

(2.7.3) 
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a finite macroscopic system of the sorbate in zeolite is 

experimentally well-defined. 	However, as the relevant 

summations cannot be carried out explicitly, it is not 

yet convenient to use 2(13,Ta) directly in this form 

to evaluate the required statistical thermodynamic 

quantities. 	The results in Chapter 4 will show that 

this difficulty can best be avoided by using E(B,Ta) 

instead to relate theoretical results to thermodynamics 

of the sorption. 

It may have been noticed that Z(B,T1) is in 

effect the ordinary generating function for the sequence 

of Z(N,B,T), whereas the corresponding exponential 

generating function is given by E(B,T,?;) in (2.6.12). 

According to a well-known result in combinatorial analysis, 

the ordinary generating function A(t) as given by (2.6.4) 

and the exponential generating function E(t) as given by 

(2.6.3) for the same sequence of an  are related formally 

by 

where t and s are regarded as sets of real variables: 

t = (t t 	t ) l' 2" 01  

and 
	

(s
1 
s
2 	.sd ) 

Also, by definitior, 
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to 	• 	(t s t s 	t s ) 
1 l' 2 2"d d 

and 	de 	• 	delds2...dse 	. (Riordan 1958a) 

This is just the generalized relation for Borel's 

summation of series. (Whittaker & Watson 1927) 	Hence, 

by substituting E(B,Tas) for E(ts) and fr(B,Ta) for 

A(t) in (2.7.3), it follows that the grand partition 

function is analytically given by 

00 

17-7  ( B ,T 
	

(exp-g) E(B,Tas) ds 	(2.7.4) 

This relation suggests that E(B,T,9w) may have an 

interesting physical interpretation. 	Subsequent studies 

will show that this is in -fact the case. 	For the 

present it suffices to point out that mathematically 

E(B,T,?1.) is well-defined and is necessarily convergent 

whenever rii,(B,TA)hasthe physical significance of defining 

a proper thermodynamic system. 
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2.8 STATISTICAL THERMODYNAMICS OF THE SORPTION  

The multicomponent sorbate in the localized 

assembly of subsystems is macroscopic. 	Thus, in principle 

thermodynamic association of its statistical mechanical 

results can be achieved by means of any one of the partition 

functions which characterize some specific ensembles. 	In 

this case it is clear that fluctuations of extensive 

thermodynamic quantities within any particular. ensemble are 

quite negligible in magnitude in comparison with the mean 

values. 

A sorption system that is closed and isothermal 

has already been discussed in Section 2.5. 	Of immediate 

interest is the fact that its internal energy can be 

expected to be non-fluctuating. 	It follows from this that 

the thermodynamic significance of such a theoretical model 

should not alter when the constraint of constant internal 

energy is additionally imposed on it. 	In other words, 

for the purpose of effecting thermodynamic association 

the equilibrium properties of an adiabatic sorption system 

can also be correctly averaged over the appropriate 

microcanonical ensemble. 	This case will now be considered 

as another illustrative example of the representative 

ensembles for the present formal studies. 

The microcanonical partition function 42(U) is 

the state density of distinguishable statistical mechanical 

systems within the microcanonical ensemble, each system 

having a - fixed internal energy U. 	This is formally 
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related to the canonical partition function Z(11,B,T) by 

J/r 00 

Z(N,B,T) = 	1Z(U) exp(-U/kT) dU 	(2.8.1) 

U 
0 

where U
0  is the zero point energy of the system. 	In 

addition .1/(U) has to satisfy the conditions: 

12(U) 	0 , lim ft(U) exp(-IXU) = 0 	(2.8.2) 
U-1x0 

for an d> O. 

According to (2.8.1), when /3= 1/kT is regarded 

as a complex variable, Z(N,B,T) is the one-dimensional 

Laplace transform of the function J2(U) of one real 

variable U. 	Its inverse relation then gives 

1 
11(U) 	21Ci J 	Z(f3) exp(pu) dp , vp>0) 

p - i00 

1 
z(r+ip") exp[fi' + ip" )U] ditgo 

 

,p,  and 
/2" 	

(2.8.3) 

where are real, and Z(p) = Z(N,B,T) as given by 

(2.5.6), or, equivalently, by (2.6.13). 	The contour of 

the complex integration is along the infinite line parallel 

to the imaginary axis of the complex plane of p and cutting 

the real positive axis at p'. (Kubo 1965) 
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Statistical thermodynamic quantities specifying 

the sorption system can be related to the partition 

functions already referred to by means of standard results 

of equilibrium statistical mechanics. (Hill 1956a) 	The 

relations of interest are presented here, and their 

physical interpretation will be considered in Chapter 4. 

The general sets of extensive and intensive quantities 

specifying a sorption system are represented by itv  and X, 

respectively, where x
i and Xi are conjugate components. 

Certainly, the variable B can also be included in the set 

The bar over any fluctuating quantity represents an 

averaging over the appropriate ensemble. 

(a) Microcanonical Ensemble  

Jl(U,N,x) 	is a function 

and x. 	The relevant fundamental 

is given by 

TS 	= 	kT 

So 	 1 	= 	kT 

kT 

and 	-kT 
rie 

11111 

(
a inn.) 

of the parameters 

thermodynamic relation 

(2.8.4) 

(2.8.5) 

(2.8.6) 
,x 

(2.8.7) 
Nt (t4s) 

U 

("? 

2 xi  

N
sx 
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(b) Canonical Ensemble  

Z(N,B,T) is a function of the environmental 

variables NT, x and T. 	Thermodynamic association is made 

through 

	

A 	= 	U - TS 	= 	-kT ln Z 	(2.8.8) 

For an open system, 

	

dA 	= -SdT - X.dx + F.dN = -d(kT In Z) 	(2.8.9) 

It follows that 

(aln Z) 
? Ns  

T,x,N
t 
 (ts) 

es-  

( gln Z 
k In Z + kT 	

) 

T 

-kT (2.8.10) 

(2.8.11) 

U kT
2 
(21n Z 

a T 
x,N 

(2.8.12) 

and Xi  = kT 	 
( 	

)T,y,xi(jAi) 
(2.8.13) 

(c) Grand Canonical Ensemble  

rE,(B,T,a) is a function of T,pand x. 	The 

fundamental thermodynamic equation concerned is 

x.X ev TS + 	U 	= 	kT In /7-) 	 (2.8.14) 



9  ( In'  

a T
)  

kT ln + kT 
x,  f0 

(2.8.17) 
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This can also be written in the differential form: 

d(xIV .X) 
011 

• X.dx + SdT + N.dr. = d(kT In a) (2.8.15) 

As a consequence, 

ai 
kT 
(.3 ln 

a xi 	T,p"x (JAi) 
r' 

(2.8.16) 

U • kT
2 

(
a  ln sz,) 
a T (2.8.18) 

 

a in  19 

tt, s 2,,,at (t4s) 

 

and N • kT (2.8.19) 

  

Certainly, apart from the three cases just 

considered there exist other ensembles of statistical 

mechanics that could equivalently be used to effect the 

required thermodynamic association. 	However, these will 

not be further discussed here, since for the purpose of 

giving a molecular interpretation to the sorption in 

zeolites these ensembles appear to be only of formal 

interest. 	For example, the generalized ensemble (Hill 

1956a) represents a physical system that is in complete 
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thermal, mechanical and material equilibrium with its 

environment; and, therefore, its thermodynamic meaning 

in the case of sorption in zeolites is not likely to be 

straightforward. 	Owing, to the presence of sorbent 

surface that gives a potential field significantly 

affecting every sorbate molecule, the condition of complete 

mechanical equilibrium is in reality not attained. 	The 

same conclusion should apply to the use of any other 

ensemble that implies a complete mechanical equilibrium 

in this sense. 

On the other hand, it will be shown in Chapter 4 

how a certain ensemble that is intermediate between the 

grand canonical and the generalized ensemble, which thus 

does not imply a complete mechanical equilibrium, can be 

directly related to the generating function E(B,T,1). 

As a matter of fact this turns out to be mathematically 

the most convenient ensemble to use in making the required 

thermodynamic association. 	The constituent systems 

in this case can be interpreted as being in complete 

thermal and material but only in partial mechanical 

equilibrium with the environment. 

Admittedly, some of the foregoing remarks call 

for further clarification. 	So this will be the primary 

object of the theoretical studies in the next two chapters. 
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CHAPTER 3  

THE SUBSYSTEMS  

3.1 INTRODUCTION 

A notable feature of the thermodynamics of a 

small subsystem is the breakdown of the principle of 

equivalence of environments that applies in general to 

macroscopic thermodynamics. 	In order to characterize the 

subsystem a distinct set of thermodynamic quantities is 

required for a particular environment, so that in this 

case it may be convenient to consider each environment 

separately. 	For subsequent physical interpretation it is 

certainly very important to choose only the appropriate 

environments; and these could be open or closed, isothermal 

or adiabatic, isobaric or undeformable, etc.. 	Admittedly 

it is also possible to consider the most general case and 

thereupon to derive some thermodynamic equations that are 

applicable to all environments. 	But for most purposes 

this does not appear to be the most convenient approach. 

(Hill 1963, 1964) 

In analyzing the subsystems certain operational 

restrictions should'be noted. 	Thermodynamic properties 

that can be continuously varied at will for any macroscopic 

system may not under actual circumstances be so varied in 

the case of a single subsystem. 	This is well illustrated 
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by a variation in the number of molecules in the subsystem, 

which are themselves relatively small integral quantities. 

Extensive thermodynamic functions of the subsystem 

evidently cannot be differentiated directly in the usual 

manner with respect to any of such quantities; but, 

instead, difference equations must be used. 

In the following statistical thermodynamic 

analyses it is very important to observe that the sorbate 

and sorbent are treated theoretically on quite different 

bases. 	The subsystems consist of the sorbate molecules 

alone interacting with the potential fields provided by 

the sorbent. 	The physical implication of this will be 

discussed in Sections 4.8 and 9.2. 
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3.2 STATISTICAL THERMODYNAMICS OF THE SUBSYSTEMS  

In interpreting the sorption it is desirable to 

consider the relatively small number of multicomponent 

sorbate molecules in a particular zeolite cavity as a 

closed isothermal subsystem and to identify certain 

thermodynamic quantities that characterize this with their 

corresponding ensemble-averaged values. 	The subsystem is 

in thermal equilibrium at temperature T with its 

surroundings and is specified by a set of extensive 

variables x which are conjugate to the set of intensive 

variables X. 	In the following an ensemble-averaged 

qUantity will be indicated by a bar over it. 

The internal energy u(T;n,x) of the closed 

subsystem is a function of the equilibrium temperature T, 

the extensive parameters x, and the fixed composition 

set n. 	The ensemble-averaged internal energy u(T;n,x) 

can now be appropriately identified with the corresponding 

,time-averaged quantity u(T;n,30 : 

u(T;n,x) 	u(T;n,x) 	(3.2.1) 

where 	u(T;n,x) = jid[2]./d{n)p(T, En] tial;L)  H([a]  1{0;30 

(3.2.2) 

In (3.2.2) H(W,{n];30 is the classical Hamiltonian of 

the subsystem in the state ([n],{n}), and this state is 

constrained by the set of extensive variables x. 	The 

probability density of the state (LY13,fni) at temperature 

T is given by 



1 
3n  idErn dfirliexp[-H([123,1;L)/kT3 

n111 
Z(n,T;x) 

(3.2.4) 
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P(T ,{n1;z) = exp(-11(Enj,{n};L)/kIj 
	

(3.2.3) 
Z(n,T;x) 12:h

3n 

where Z(n,T;x) is the canonical partition function of the 

subsystem: 

The presence of the dividing factor n:113n in the above 

expressions indicates that in each case an integration has 

to be carried out with respect to the 6n continuous 

dynamical variables ([!.1],.(n1) instead of a summation over 

the quantum states. 

Further associations of the type (3.2.1) can be 

obtained when (3.2.2) is written in the differential form: 

dii(T;n,x) =fdL3.3.1.1d{Qp(T,[0,b11;x) dH(DA 451} 

ild[njid(n)H([0,{24;x) dp(T,(0,{22};t0 

(3.2.5) 

It is then postulated that, for the set of intensive 

variables X, the following association could be made: 

xi 

 

xi  (3.2.6) 

 

where 	-fdiBlfd(511p(T,E101W;35) 

(3.2.7) 

x and X being a conjugate pair. 	Since the extensive 

quantities x are here regarded as continuous variables and 

each dx1  is an exact differential, it follows that 

ax e  
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da(T;n01) 	-3.dx - kTfd[12.11d(nl[ln p(T,[0,01);I) 

+ ln Z(n,T;L)JdP(TILO.(a);x) 

= 	- kirldWid(n1 p(T,E13),{n};x) 

.ln p(T,[1,[11);x) 	(3.2.8) 

The fundamental thermodynamic equation appropriate 

for this closed subsystem is 

du 	• 	T ds - X dx 	(3.2.9) 

Therefore the statistical thermodynamic entropy s of the 

subsystem can now be defined by 

s(T;n,x) • -kidfljfd{a}p(T,[5.3 W ),;?L) in p(T,(40,[11}; 10 

(3.2.10) 

Equations (3.2.4), (3.2.9) and (3.2.10) then lead to 

kT ln Z(n,Tu„) 	Ts - u 	-A(n,T;x) , 	(3.2.11) ' 

where A(n,T;x) is the Helmholtz free energy of the subsystem 

of composition set n at temperature T and at specified 

extensive parameter set x. 	Also, 

s(n,T;x) • k in Z(n,T;x) + kT(A—T  ln Z(n,T;x).)  d  x,n 

(3.2.12) 

and 	Xi- (n,T) • kTiL  ln Z(2)....,T;x)) ax In 
T,11„xj(gi) 

(3.2.13) 
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It is important to observe that the chemical 

potentials of the d molecular species of the subsystem have 

not hitherto been defined. 	The fundamental thermodynamic 

equation for an open macroscopic system is 

dU 	- 	T dS - .S.dx + tk.dN 
	(3.2.14) 

If this were indeed also applicable to the small subsystem, 

it would then follow from (3.2.11) in its differential 
form that 

d(kT In Z(B,T;as.)] . sdT + X.dx - I)1.dn . 	N N 

	

dA(n,T;x) 	(3.2.15) 

The chemical potential of the s th component would 

accordingly be given by 

µ (T,x) = (--a  - A(n T"•x1)) 1 s 	. 	an 	6-/ s 	-- 
T,,nt(tAs) 

9 
= -kT(--  In Z(3.si,,T;..$) 

ans  
T,x,nt  

(3.2.16) 

where s = 1,2,..., ce. 	On the other hand it has previously 

been pointed out that the canonical partition function 

Z(n,T;x)- for a small subsystem is in reality properly 

defined only for the discrete values of n
s
; and thus it 

follows that the Helmholtz free energy A(n,T;x) is in this 

case not a continuous function of n
s
. 	In other words, 

although A(n,Tus) is itself well-defined, it cannot be 

differentiated in the way represented in (3.2.16). 

However, it is still quite conceivable that by some suitable 

means this difficulty could be avoided. 	So this problem 

will again be considered in Section 3.4. 



(51T1) n x Z + 
kT 	

3n  d[N] d.(2:11. H exp(-H/kT) 
. 	 1 

n!h 

3.3 FLUCTUATIONS IN THE SUBSYSTEMS  

Consider the canonical ensemble of isothermal 

closed subsystems. 	From (3.2.2) and (3.2.3) it follows 

that 
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ii(T;n,x) Z(n,T;x) = 
1 fd [ ]fd {p} rn] 

n:h
3n 

.exp [-H(L39 , {n} ; ,,)/kT] 	(3.3.1) 

Differentiation of this with respect to T gives 

1 	1 
	3n  d[n] dtril H2.exp(-H/kT) (3.3.2) 

kT
2 

n:h 

where H = H(L-n3,f0;x) and u = U(T;LI,x) as defined by 

(3.2.2). 	It is now appropriate to define u2 by 

u
2 	

= cl 
f 

[#7.2.] d[n1P(T,[n],b);x) H2([113,fnl;x) (3.3.3) 

so that (3.3.2) may be rewritten simply as 

2 — 	— u 	- (u)
2 
 = (u - u)

2 
 = 	kT

2 (9 71 
T n,x (3.3.4) 

In the foregoing results an averaging over the 

canonical ensemble is indicated by a bar over the quantity 

concerned. 	Thermodynamic association can be achieved by 

postulating that the time-averaged internal energy of the 

subsystem could be identified with 7. 	That is, 



1 I, 
3n 

JC  
(
111—)exp(-H/kT) 
dxi  

1 

n!h 

66 

heat 

a a- 

variables 

ka T) 

u(T;n,x) 

capacity 

x and at 

n,x 

kT
2
C(T;n,x) 

of the 

fixed 

(3.3.5) 

subsystem at 

composition 

(3.3.6) 

(3.3.7) 

u(T;n,x) 

So it follows that 

constant extensive 

set n is given by 

C(T;n,x) 

Consequently, 

H 

the 

— 
n - u 2 

m2 u2 

As C(T;,,T.,) can be expected to be 0(nk) and u 

to be 0(nkT), it becomes apparent'that fluctuations of u 

as given by 

_ 2 
u - u 

0(1/n) (3.3.8) — 2 
(u) 

 

can be comparatively large for the small number of molecules 

n (up to about 16) in any one subsystem. 	Thermodynamically, 

therefore, T. must not be thought of as a directly measurable 

quantity for an individual subsystem. 

Fluctuations in an intensive variable X. can be 

obtained by differentiating the expression: 

(3.3.9) 

with respect to the conjugate variable xi. 	This leads to 
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. 	1 	 (d H 
Z(n,T ;x) ax 	- 

kT 	ti3n 
d (12j d{n} 	exp ( -H/kT ) i  

1 	 2 	
1  

	ji:[111 	(a xi  exp(-H/kT) - 
n!li

3n
kT nfla

3n
kT 

2 
H 

.exp(-H/kT ) 
x. 

(3.3.10) 

As a result 

   

	

[21: a2u 	gii 	

- 
ax. 

Xi
2 
 -(X)

2 	
kT 	+ 	= kT a x 	2 

	

i  xi 	x i  dx i   (3.3.11) 

in which the statistical thermodynamic meaning of the 

ensemble-averaged quantities should need no further 

explanation. 	Thermodynamic association: x
i' 

 then gives 

    

 

(Xi- )2 	kT 9x i  ax. 

(x )2 	X.4 
'a xi 	xi  

(3.3.12) 

To obtain any quantitative information concerning 
a2 92C 

the 	terms. 	
i and ax

13. 
 2 , the equation of state 

a xi 
	

axi 
of the subsystem together with the detailed laws of sorbate-

sorbate and sorbate-sorbent interactions are required. 

Qualitatively, however, it is clear that fluctuations in X
i 

are not always negligible for the small subsystem. 	And 

for this reason it is relatively difficult to find any useful 

concept for the interpretation of those mechanical variables 

which characterize the sorption in zeolites at the level of 

individual subsystems. 
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3.4 AN ASSEMBLY OF SUBSYSTEMS CHARACTERIZED BY/LI.,x T 

In order to demonstrate further the influence of 

the sorbent on statistical thermodynamic properties of the 

sorbate and also to motivate the thermodynamic consideration 

in Chapter 4, it is appropriate to study in some detail the 

effects of a specific set of environmental variables on an 

assembly of the small subsystems. 	For the present it is 

required to find out how certain thermodynamic parameters 

characterizing the assembly are interrelated and subsequently 

to show how some thermodynamic functions that are average 

properties of the assembly can properly be defined. 

Consider an assembly of B equivalent, distinguishable 

and quasi-independent subsystems, each with a fixed position 

in space and all characterized by the environmental variables 

/4, x and T. 	In this case B is not included in the set of 
•-• 

extensive properties x. 	Also the partial characterization 

of a subsystem by 	should be carefully noted. 	Let the 

number of molecules of each component be macroscopically 

large. 	The entire assembly with a very large fixed value 

of B is a thermodynamic system. 	Thus, the fundamental 

thermodynamic equation appropriate for this is 

dU 
	

T dS - BX.dx + p..dN 
	(3.4.1) 

Now, for a similar assembly but with variable B, 

it is apparent that U is a function of S, x, N and B, so 

that 

dU 	= T dS 	+ fb.dN + I.dB 
	

(3.4.2) 

where by definition the intensive variable I is given by 
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(d u) 
ka B S 	 (3.4.3) 

It is useful to define a set of intensive 
A 

functions X by 

A 
I 	MT 	-X.x 	 (3.4.4) 

When A, x and T are fixed, U is a linear homogeneous 
pv 

function of S, N and B. 	Consequently, by Euler's theorem 

on homogeneous differential functions, (3.4.2) on 
integration gives 

A 
II 	TS + 	BX.x (3.4.5) 

In the macroscopic limit of each subsystem when x
i 
tends to 

A 
infinity individually, X

i 
can be identified with Xi, for 

then (3.4.1) implies that 

U 	• 	TS + bk,.N 	BX.x 
	 (3.4.6) 

Clearly (3.4.6) is not true in general, and in particular 

it does not apply to the case of an assembly of small 
A 

subsystems. 	It is the difference between X
i 
and X

i 
 that 

characterizes such an assembly. 

The next reasonable step is to define E., H and W 

Tor an assembly with fixed B by 

• B H 

• B H 

and 	S 	= 	B E 

By using this notation (3.4.5) can be rewritten as 

• TT +.`n- X.x 
A 

Hence . I 	= 	X.x 	= 	u - TE- jw.T. 

Likewise (3.4.1) and (3.4.8) can be rewritten as 

(3.4.7) 

(3.4.8) 

(3.4.9) 
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• T dF - X.dx + Ah dN 	(3.4.10) 

and 	u 	▪ 	TF - X.x 	(X-2).x 	(3.4.11) 

If 7 were a linear homogeneous function of 7, x and 	the 

last term of (3.4.11) would be identically zero, as would 

then follow from the integration of (3.4.10). 	Thus, as 

regards the sorption in zeolites it seems appropriate to 

consider the term (X-%).x as arising from the 'surface 

effect' of the sorbent on the thermodynamics of individual 

small subsystems. 

It follows from the foregoing results that the 

exact differential of I can be related to the exact 

differentials of the environmental variables T, x andg by 

dI = -Er dT + X.dx + 

(0 I) 
Thus aTi 

(a 1) 
= 

Vaxii  T,pxj(j/i) 

d 
 11  and 	n

s = (314el l  T,A,,p,t(ts) 

(3.4.12) 

(3.4.13) 

(3.4.14) 

(3.4.15) 

At this point other fundamental thermodynamic 

equations for the assembly of small subsystems can be 

presented; for example, 

	

d((X-X).x) = 	dT + x.dX - n.d 	(3.4.16) •-• 
and 

	

d((x-x
A 
 ).x/T). 	d(i/T) - x.d(X1T) + T.d(VT) 

	( 3 . 4 . 1 7 ) 

For a macroscopic system the left hand side of each of these 

equations certainly vanishes, in which case these equations 
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would be just some identities connecting the interdependent 

variables T, ii, and f.. 	Thus it is clear that the assembly 

of subsystems has one more degree of freedom than an 

ordinary macroscopic system. 

The results thus far may seem to be merely of 

formal interest; but in reality these are very important to 

the full understanding of the sorption system under study. 

They help to clarify the relationships between the time-

averaged behaviour of a closed subsystem, the statistical 

mechanical functions averaged over various ensembles, and 

the thermodynamic properties of the macroscopic sorption 

system which can be experimentally measured. 	In the next 

chapter they will be used to support the argument for 

setting up the fundamental thermodynamic equation that can 

be most conveniently related to the statistical mechanical 

results of sorption in zeolites. 

It may be tempting to regard the functions Ti, :ri 

and F as defined by (3.4.10) as the physical properties of 
a specific subsystem. 	So it is here emphasized that, 

strictly speaking, this is incorrect. 	Indeed each Of these 

quantities is meaningful only in a very specific sense as an 

average property of the macroscopic localized assembly. 

Certainly the chemical potential of any individual subsystem 

is not properly defined. 	Nevertheless the above results 

do indicate that it is still meaningful to think of the 

average chemical potential of a subsystem in the assembly, 

provided of course that the very specific manner of the 

averaging implied by this is fully recognized. 
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CHAPTER 4  

THERMODYNAMICS OF SORPTION IN ZEOLITES  

4.1 THERMODYNAMIC ASSOCIATION 

This chapter is concerned with the physical 

interpretation of certain statistical thermodynamic results 

previously obtained for a macroscopic system of the 

multicomponent sorbate in a localized assembly of open 

small subsystems. 	It was shown in Section 2.8 how the 

sorption system could be characterized by the microcanonical, 

canonical and grand partition functions. 	In principle 

these partition functions can be calculated directly from 

the relevant atomic and molecular parameters for the chosen 

theoretical model; and any statistical thermodynamic 

quantity of interest can hence be deduced. 	Nevertheless, 

in practice, because of the presence of complicated 

summations and integrations in the analytical expressions 

for these partition functions, it is not mathematically 

convenient to use any of them for the purpose of obtaining 

numerical results. 

The following discussion will show how the 

exponential generating function E(B,T,2) could alternatively 

be used to effect the desired thermodynamic association. 

This function is simply related to the canonical partition 

functions of individual subsystems, and seems to have 

emerged quite naturally from the combinatorial analysis in 

Chapter 2. 
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4.2 THERMODYNAMIC SIGNIFICANCE OF E(B,T,X) 

The sorbate is a dense phase that is in thermal 

and material equilibrium with the multicomponent gas. For 

the present interest it is proposed to study certain 

properties of the exponential generating function E(B,T,X) 

in relation to the statistical mechanics of this equilibrium. 

In the thermodynamic method of dealing with a polyphase 

assembly, various expressions for thermodynamic functions 

of the separate phases are first derived by means of 

statistical mechanical analysis. 	The equilibrium compositions 

of the assembly, more specifically the relative amounts of 

the various phases, can then be determined by the method of 

equating the chemical potentials of each component. 

(Rushbrooke 1949a) 	It is essentially this approach that has 

been used to obtain the grand partition function 71(B,T,) 

in Section 2.7. 

In the case of sorption in zeolites, the canonical 

and the grand partition functions are complidated functions 

of both B and N. 	However, in the thermodynamic limit only 

the asymptotic forms of this dependence is of real interest. 

Physically the intensive thermodynamic properties for a 

macroscopic amount of the sorbate are explicit functions of 

72 = 11/B but not of N and B separately. 	On the other hand 

extensive properties are also linearly dependent on B, or 

equivalently on each component of N. 	Therefore, in the 

macroscopic limit it can be expected that 

and 

Z(N,B,T) 

--(B T ."-• 	, ,a) 

— 
= 	f

B 
 (L,T) 

. 	>  • : T(N) 

N 0 ,.—s- 
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where 	TqL) 	
fB(1,T),ABT1 

(4.2.3) 

and f(T3,T) is independent of B. 	Because of the restrictive 

condition that fixes B, it is clear that the summation over 

all N in (4.2.2) cannot be performed directly. 	However, in 

view of subsequent thermodynamic applications it is still 

reasonable to assume that only the greatest term in the grand 

partition function (4.2.2) actually makes any significant 

contribution to the sum; so that, to a very good approximation, 

B 
[f(ii,T) ,--i-11 	(4.2.4) 

where BT.! is the equilibrium composition set of the sorbate. 

Neither Z(N,B,T) as given by (2.5.6) and (2.6.13) 

nor ,S(B,T,?,.) as given by (2.7.4) appears to be expressible 

as the B th power of some function that is independent of B. 

Yet, physically, it is known that (4.2.1) and (4.2.4) are 

both valid when B tends to infinity. 	On the other hand the 

discussion in Section 2.6 has shown that 

E(B,T,t) = 	EB(T,I) 	(4.2.5) 

is an exact mathematical result whenever Z(N,B,T) and 

7S(B,T,a,) have the real thermodynamic significance. 
0%1 

Thus for a macroscopic assembly E(B,T,2,) and. E(T:X) 

(B,T 	= 

are simply related to the 

Z(N,B,T) by 

(B ,T 	= 

and 	Z(N,B,T) 2,
R  

so that 	=  

asymptotic forms of FA B,T ,a) and 

E(B,T,a) KB(F,T) 
	

(4.2.6) 

E(B,T,A) KB(11;,T) 
	

(4.2.7) 

21(T,a) K(T,T) 
	

(4.2.8) 
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where K is a parameter not directly dependent on the extensive 

variable B. 	If K and E(B,T,?) could be given a thermodynamic 

interpretation, the latter would accordingly be a very 

convenient function to use in effecting the desired 

thermodynamic association of previously derived statistical 

mechanical results for the sorption assembly, since 

mathematically E(T,.) is very simply related to the canonical 

partition functions of individual subsystems by (2.6.11). 

The physical significance of E(B,T,X) is suggested 

by the following phenomenological considerations. 	First, it 

is observed that In E(B,T,10 as given by (4.2.6) is a linear 

homogeneous function of B, whereas E(T,a),  as defined by 

(2.6.7) is independent of the parameter B which specifies the 

dimension of the assembly. 	Also E(T,1) is completely 

determined by the environmental variables T and IA, as well as 

by the intrinsic nature of the sorbate-sorbent and sorbate- 

sorbate interactions within individual subsystems. 	Thus it 

is quite conceivable that the exponential generating function 

E(B,T,A,) should describe the growth in extent of the ..... 

macroscopic sorption system that is thermodynamically linear 

in B. 

Now, as regards an assembly of small subsystems the 

discussion in Section 3.4 has indicated the rather special 

circumstances under which the fundamental thermodynamic 

equations are integrable with respect to the variable B. 

It is recalled that, owing to the effect of sorbent surface 

on each subsystem, the dependence of any thermodynamic 

function characterizing the sorption system upon an appropriate 

set of environmental variables is not in general quite 
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straightforward. 	In particular the necessary condition for 

Utobe a linear homogeneous function of S, N and B is that 

x and T be simultaneously fixed. 	Here the intrinsic 

nature of the sorbent is assumed to be independent of B. 

Physically it is clear that the increase in magnitude of a 

measurable extensive thermodynamic function of the assembly 

is directly proportional to the increase in B or N only when 

the growth in extent of the assembly takes place at constant 

temperature T and at constant sorbate concentration W. 

However, for the purpose of effecting the thermodynamic 

association of statistical mechanical results it is 

mathematically inconvenient to describe such growth of the 

assembly by varying B in the analytical expressions for 

Z(N,B,T) andS(B,T,1) while keeping T and ii-  orp, fixed. 

In order to obtain a better insight into the nature 

of dependence of the statistical mechanical description of 

the sorption system on B and N it is appropriate to approach 

the present problem from a different angle by simultaneously 

taking into account the sorbate and the gas phase which exist 

in equilibrium. 	Consider a compound system of N+xN molecules 

of composition set N+xN, consisting of N molecules of 

composition set N in an assembly of B zeolite cavities and 

another xN molecules in the equilibrating gas phase which 

surrounds this assembly, where x is an unspecified number. 

Let v be the gross volume of each subsystem, and V be the 

volume of the as phase. 	The yolume of the compound system 

is Bv+V. 

Imagine the growth in extent of this compound system 

at constant ,/k and T, while keeping the ratio of the numbers 
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of molecules of each component in the two phases 1:x. 

Thermodynamically these phases have to remain in thermal and 

material equilibrium throughout. 	When AB subsystems are 

added to the assembly the volume of the gas phase has to be 

increased by (VAB)/B, so that the volume of the compound 

system now becomes (Bv+V)+(v+V/B)AB. 	With these restrictions 

the compound system can grow linearly to any desired extent 

from B=C) onward. 	For the gas phase, when all second-order 

effects such as those caused by the presence of surfaces and 

gravitational fields are neglected, the only mechanical work 

term is PV, where P is the static gas pressure. 	The 

mechanical work of the sorbate, on the other hand, is given 
A 

by x..s as defined by (3.4.4). 	As regards the compound 

assembly it is clear that the linear growth just described 

is actually accompanied by a volume increase of (v+V/B),AB 

instead of just (VLB)/B for the expansion of the gas phase 

alone. 	Thus the work done by the compound assembly on its 

environment also has a contribution of pv,AB from the growth 

of the sorption assembly. 

This suggests that, when the sorption assembly 

alone is considered as a thermodynamic system, its linear 

growth at constant T and u, will cause the work of PvAB to fi-= be 

performed on the surroundings. 	Accordingly the statistical 

mechanical function which describes the assembly in such 

environment would be truly linear homogeneous in B only when 

the mechanical work enters the resulting statistical 
A 

thermodynamic fundamental relations as B(X.x-Pv) instead of 
N 

the more familiar X.x terms, for example in the grand partition 

function case in (2.8.14). 	The next step is thus to find an 

explicit function with this property. 
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Consider a statistical mechanical compound system 

consisting of the sorbed phase in thermal and material 

equilibrium with the gas phase surrounding it. Let F(B,V,T,X) 

represent the partition function appropriate to the 

statistical mechanical ensemble which characterizes this 

compound system subject to the restriction that the ratio of 

the numbers of molecules in the two phases be 1:1, i.e. x=1. 

The number of molecules in any representative system itself 

is not specified. 	On the other hand the environmental 

variables B, V, T and X1,1, are all fixed. 

At equilibrium the volume V is certainly a 

characteristic of the sorbent concerned, for it specifies 

the sorption capacity of this sorbent under the environment 

T 	When there are 2N molecules .in the compound system, 

the canonical partition function for the sorbate assembly is 

Z(N,B,T), whereas that of the ideally non-localized gas phase 

isgiven by J2-(V,T)/N! where .12
s
(V,T) is the microcanonical 

partition function at temperature T of each gas molecule of 

the s th component within the volume V. 	Since the compound 

system of interest is macroscopic, its canonical partition 

function Z(2N,B,V,T) is simply the product of the canonical 

partition functions of the two separate phases. 	Thus 

Z(211,B,V,T) 	= 	Z(N,B,T).121I(V,T)/N! 	(4.2.9) 

By definition lir(B,V,T,X) can be written as 

..1 2N 
r(B,V,T,a) 	= 	Z(2?2,B,V,T),(1. — 	(4.2.10) 

N> 0 ...,-' ... 

It is clear that this summation takes into account all the 

restrictions imposed on the compound system. 



17  E(B,T,) [12,(V,T)  2  

(4.2.11) 

1 

R 70 27ei 
ry 	0.• 

7.9 

For mathematical simplicity consider a single- 

component compound system. 	The generalization of the 

following results to the case of multicomponent systems 

should be fairly straightforward. 	Choose the contour 

integral in (2.6.13) as the explicit expression for Z(N,B,T) 

in (4.2.9). 	With this choice, substitution of (4.2.9) in 

(4.2.10) gives 

After reversing the orders of summation and integration 

and carrying out the summation of the resulting geometrical 

series, (4.2.11) gives 

1 	E(B,T,5) 
r(B,V,T,1) = 27ri  

-12..(V,T)a2 d5  (4.2.12) 

- lim 
2lCi 	5 -./7(V,T)A? 

1 E(B,T,5) 	.12(V,TM, 
et2 

11400  
	 dc 

In order to evaluate the two integrals in (4.2.12) 

Cauchy's theorem of residues is applied, as in the analysis 

of Section 2.6. 	The integrand of the first contour integral 

is analytic on the whole complex plane of ' except at the 

isolatedpoint singularity 	...Jacv,T):1 2. 	Thus the value of 

this integral is given by the residue of E(B,T,5) at this 

point which is a pole of order one, that is E(B,T,I2(V,T)e). 

The contour of the second integral on the other hand encloses 

the two isolated singularities at 5. 0 and 5= .0.(V,T)20. 
Nevertheless this may take any arbitrary shape on the complex 
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and 	nv,v,T,A.) 	Z(2N,V,V,T)  
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plane of 1 	It is thus possible to choose this contour to 

be outside the circle of radius li(v,T)A.2  about the origin, 

such that 1.12(V,T)A2/51‹ 1. 	As a consequence this integral 

vanishes when N tends to infinity in the macroscopic system. 

The final result for a general case is 

(B,v,T,A.) 	E ( B , T , 	( V , T 	2 ) 
	

(4.2.13) 

This result is of fundamental importance. 	It 
q 

indicates that E(B,T,Ja(V,T)A
2 
 ) should have some statistical 

thermodynamic significance of describing the growth in 

extent of the compound system that is truly linear in B. 

However, at this stage there appears to be no direct physical 

interpretation of the restriction imposed on the summation 

in (4.2.10). 

In order to obtain a further insight into the 

meaning of F(B,V,T,a) , it is proposed to study the following 
idealized situation. 	Consider a compound system with a 

similar specification as that described by the partition 

function pB,V,T,A4 above, but in the present case it is 

assumed that there is no sorbent surface present. 	In other 

words, at equilibrium this is simply a system consisting of 

the gas molecules in volume 2V divided into two halves by a 

hypothetical partition. 	In this case the relations 

equivalent to (4.2.9) and (4.2.10) are given by 

N 0 
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For this compound system r(V,V,T,X) can indeed be 

given a physical interpretation. 	The following discussion 

will show that in the macroscopic limit 

	

kT in r(V,V,T,A) 
	

2PV 	(4.2.16) 

where P is the equilibrium gas pressure. 	First, for a 

single-component system (4.2.15) can be rewritten as 

	

r(V,V,T,A.) 
	

T(N) 
	

(4.2.17) 

N.?. 0 

where 	T(N) q 
(V,T)A

2N 
 /(1!)

2 	
(4.2.18) 

and T(0) = 1. 	Then it is assumed that in the macroscopic 

limit only the maximum term in (4.2.17) need be taken into 

account in making a thermodynamic association. Differentiation 

of in T(N) with respect to N and use of Stirling's 

approximation give 

a N  In T(N) 	= 	2 1n12(V,T) 	2 1n2- 2 ln N 

(4.2.19) 

T(N) is maximum when both sides of this equation vanish. 

Thus 
N 	12.(V,Ta 	(4.2.20) 

and 	r(V,V,T,1) 	ev 	
N
2N
/(N!)

2 	
(4.2.21) 

Use of Stirling's approximation leads to 

kT In 	2NkT 	(4.2.22) 

so that if the gas is perfect (4.2.16) immediately follows. 

Thus it appears that as far as the thermodynamic 

association is concerned r(V,V,T,..) behaves as if it were the 
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grand partition function of the compound system. 	However, 

it- may be observed that the derivation in the previous 

paragraph is rather cursory, as the essential step in the 

argument involves the picking out of the greatest term in 

(4.2.17) and the use of Stirling's approximation. 	Before 

any conclusion similar to (4.2.16) will be made concerning 

IAB,V,T,24, therefore, it is important to examine the 

mathematical significance of the above derivation in more 

detail. 	For the macroscopic compound system without a 

restriction on the ratio of the numbers of molecules in its 

two separate parts, the appropriate grand partition function 

is given by 

25(V,V,T,a) • S(V,T,2..) Z,(1T,T,2.) 
	

(4.2.23) 

N where 	= (V ,T ,1) 	Z(N,11,T)/1.• '̂ 

N>0 

(4.2.24) 
• 0 

It is clear that mathematically Z(V,V,T,1A differs 

from r(V,V,T,A) only in that the former includes additional 

terms in the summation concerned. 	The fact that they lead 

to thermodynamically equivalent results means that the 

neglect of certain terms in this case does not produce any 

appreciable effect. 	In other words only the contribution 

from the greatest terms need be taken into account in both 

cases. 

It is thus reasonable to think that when only 

thermodynamic applications are of interest the use of 



~",,( B,V,T ,2..)  cr(B,T,A) 'ES(V,T,A.) 

>7.1
1 Z(N,B,T) Z(M,V,T)/L

M+N 
(4.2.26) 
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IAB,V,T,AJ as defined by (4.2.13) instead of 2S(B,V,T,a) to 

describe the compound assembly should at least give a good 

approximation of the subsequent thermodynamic results. 

However, it is quite possible that the neglect of small terms 

in r(B,V,T,a) as a result of the restriction already described 

could produce some finite effect in this case. 	So it is 

proposed to examine 	(4.2.13) 

For a single 

as 

r(B,V,T,2.) 

where Z(n,T) 	is given 

partition function for 

in more detail. 

-component system this can be 

B 

is the 

volume 

rewritten 

B 

 (4.2.25) 

canonical 

V. 

Z(n,T) 	Jin(V,T) /1,2n/n:L-n/n., 
[ 

Z(n,T) 	Z(n,V,T) /2n 

0 

by 	(2.2.7) 	and Z(n,V,T) 

n gas molecules in the 

On the other hand the grand partition function of this 

compound system is given by 

M ,N 

where the summation concerned is over all M and N each ranging 

from 0 to infinity. 	It is quite clear that lE(B,V,T,A,) 

includes additional terms not already present in (4.2.25). 

However, if it could be assumed that only the greatest terms 

are really significant in both cases, the two partition 

functions r(B,V,T,2) and S(B,V,TA) would accordingly be 
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thermodynamically equivalent. 

When the exact mathematical forms of r(B,V,T,X) 

andS(B,V,T,A) are also of interest, there is indeed a marked 

difference between these two functions. 	The function 

in DB,V,T,2.) is truly linear homogeneous in B, whereas, in 

the strict sense, L(B,V,T,A0) is not. 	On the other hand 

the foregoing phenomenological consideration has indicated 

that the non-linearity should be attributed to the presence 

of the BPv work term, the magnitude of which is certainly 

very small compared with the total mechanical work associated 

with any sorbate system of physical interest. Thus it is 

reasonable to postulate that the magnitudes of kT ln,S(B,V,T,A) 

and kT lnr(B,V,T,A.) differ only by the BPv term which 

results from the neglect of certain small terms of a,'-(B,V,T,1) 

in r(B,V,T,2,). 	In other words 

kT In S(B,V,T,3) - kT In r(B,V,T,X) 	BPv 	(4.?.27) 

In (4.2.27) E(B,V,T,a) is given in terms of the grand 

partition functions of the two phases by (4.2.26), whereas 

1-1B,V,T,) is given in the unseparated form by (4.2.13). 

Now, if the sorbate assembly alone is considered, 

it should also be expected that the non-linearity is again a 

result of the small BPv term as in (4.2.26). 	Since it is 

known that the function In F,(B,Ta) is truly linear homogeneous 

in B, whereas the actual grand partition will not behave thus 

in the strict sense, it is reasonable to conjecture that 

kT 111 1,5(B,T,a) - kT in E(B,T,2,) 
	= 	BPv 	(4.2.28) 
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kT In E(B,T,X) 
A 

▪ B(X.x - Pv)  (4.2.29) 

(4.2.30) 
A 

and 	kT in E(T,X) 	• 	X.x - Pv 

As a consequence the parameter K in (4.2.6)-(4.2.8) can be 

given the following physical meaning: 

	

K(Ti,T) 	▪ 	exp(Pv/kT) 
	(4.2.31) 

Then, with the assumption that the thermodynamics 

of the sorption assembly is completely specified by T, 

and the intrinsic nature of the sorbent (which is independent 

of B), (3.4.11) and (3.4.16) take the specialized forms: 

	

kT 111 E(B,T,2,) 	= B(X.x-Pv) = TS - BPv + ith.N -U 

(4.2.32) 

and 	d [kT In E(B,T,X)] = 
A 

d [B(X.x-Pv)] 

• S dT + By dP - N.dM 	(4.2.33) 

Accordingly the required thermodynamic association for the 

sorption system can now be achieved with the help of E(B,T,a) 

or of E(T,X). 	This will be studied in the next section. 

At this point it is appropriate to define the Gibbs 

free energy and the enthalpy of the sorbate by 

	

G = A + BPv 	= 	U -TS + BPv 
	(4.2.34) 

and 	H 	= 	U + BPv 
	(4.2.35) 

Thus (4.2.32) and (4.2.33) may be rewritten as 

kT In E(T,X)= X.x - Pv 	= TV + n. 	H/B (4.2.36) 
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and 	d[kT in E(T 	= 	d(% .x - Pv) 

= 	s dT + v dP - 	(4.2.37) 
for a sorption system with fixed B. 

Now the grand partition of the multicomponent gas 

at temperature T and total pressure P that would occupy the 

volume By in the absence of the sorbent is given by 

‘1"-(Bv,T,A..) 	= 	exp(BPv/kT) 	(4.2.38) 

It follows from (4.2.6), (4.2.32) and (4.2.38) that 

E(B,T,a) = Z(B,T,1.)/E(Bv,T,A) 	(4.2.39) 

This indicates that E(B,T,1..) is closely connected to the 

!surface excess' thermodynamic properties of the sorption 

system. (Steele 1966) 

Here it should be pointed out that the postulates 

given in (4.2.27) and (4.2.28) are based upon the 

phenomenological consideration of this section and does not 

appear to have any obvious statistical mechanical 

interpretation. 	The essential arguments are physically very 

plausible, but on the other hand it has not been possible to 

prove the uniqueness of the descriptions oflinear homogeneous 

growths by the functions E(B,V,T,2,) and. E(B,T,2.). 	In many 

respects, however, the function E(B,T,2..) behaves very 

similarly to the grand partition function S'-(B,T,A.) of the 

sorbate. 	It will thus be referred to as the 'quasi-grand' 

partition function of the sorption assembly. 

In fact E(B,T01) is intermediate between the actual 

grand partition functionS(B,T,A.,) and the generalized partition 
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function that describes a system in complete thermal, material 

and mechanical equilibrium with its environment. 	In the 

absence of the sorbent the only work term of the system 

would be just BPv, and in view of (4.2.28) E(B,T,.) would then 

be the generalized partition function of this system so that 

kT In E(B,T,t) = 0. .Because of the presence of the sorbent 

surface which significantly affects each subsystem, however, 

a complete mechanical equilibrium is not attainable, and 

accordingly the expression -kT In E(B,T,J) describes the 

finite surface excess free energy of the sorbate. 	Following 

this it is appropriate to regard the quasi-grand partition 

function as describing a thermodynamic system that is in 

complete thermal and material, but only in partial mechanical 

equilibrium with its surroundings. 	As for the real 

justification in using E(B,T,1) to effect the desired 

thermodynamic association, strictly speaking, this should 

finally rest upon the reasonableness of the subsequent physical 

applications. 

In the present connection it should be pointed out 

that the non-linearity associated with the coupling together 

of two different phases is not only peculiar to the present 

situation. 	Even in the very simple case of an equilibrium 

between a perfect crystal and a perfect gas of the same 

molecular species, it has been noted by Rushbrocke (1949b) 

that a rather uncritical derivation of the grand partition 

function of the solid by assuming a linear growth of this phase 

can give a result which is slightly different from the exact 

result. 	In this case it is possible to find a simple 

explanation for this difference. 	Strictly speaking, the use 

of the Einstein model to describe the condensed phase is 
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physically appropriate only when it is also taken into account 

the fact that each energy state and its degeneracy depend not 

on the total volume V of the assembly but on the specific 

volume V/N, where N is the number of independent subsystems 

in the assembly. 	Accordingly the linear description of the 

assembly can only be correct when the canonical partition 

function of each independent subsystem is a function of T and 

V/N, but not of V.and N separately. 	In this case it is also 

easy to show that the small difference is thermodynamically 

associated with a PV term, where P is the equilibrium gas 

pressure and V is the volume of the solid. 

Rushbrooke has used the term 'quasi-grand' partition 

function to describe the function the logarithm of which is 

linear homogeneous with respect to the size of the assembly. 

The analogy of this situation with the case of an assembly of 

quasi-independent subsystems of interest should be obvious. 

The function E(T,2) which describes the quasi-independent 

subsystems is truly independent of B except through n and 

and thus the quasi-grand partition function E(B,T,X,) is a 

linear homogeneous description of the extent of the assembly. 

Finally it is pertinent to remark that (4.2.4) does 

not imply that f(Ti,T) 2,1."1"' is the grand partition function of 

a single open subsystem in the strict sense. The subsystems 

are not in reality completely independent. 	In this case it 

is certainly incorrect to think of the grand partition 

function of the assembly simply as the B th power of the 

'grand' partition function of a representative subsystem 



4.3 INTEGRAL THERMODYNAMIC FUNCTIONS  

It has been shown that the function E(B,T,a) can 

be identified with the quasi-grand partition function of 

the sorbate. 	Thus any thermodynamic function of interest 

may now be conveniently deduced from the theoretical 

results of Sections 2.8 and 4.2. 	From (2.6.11) and 

(2.6.12), 

E(B,T,2,) 	= 	EB (T,,e) 	(4.3.1) 

and 	 Z(n,T)j"/n! 	(4.3.2) 
0 

It is from hence assumed that the volume of the 

subsystem is constant and that the sorbent acts as an inert 

solid furnishing the potential field of interaction with 

the sorbate. 	In other words the sorbent structure does 

not vary with the sorbate concentration. 	Under this 

condition any thermodynamic function characterizing the 

sorption system can be regarded as a property of the sorbate 

alone. 	A detailed consideration of this will be given in 

Section 4.8. 	Also here B is kept fixed. 

Then, from (4.2.39) it follows that the integral 

thermodynamic functions of the sorbate are given by 

In  E(Tao) • 
1 	oxi 	T,pxj(JA) 

(4.3.3) 

89 



90 

S/B 	= 

ns 	N /B = 

H/B 	=' 

and 	(X.x—Pv) = 

In 	(4.3.5) 	N
s 	

is 

component in the 

molecules of the 

kT 

kT 2(9T  

kT 

the 

same 

k ln-E(T,V 

sorption 

In E(T,a)) 

2_ In E(T41)) 

In E(TA) 

number of sorbate 

system 

component 

+ a ln E(T,/)) 	(4.3.4) 
zoid 

(4.3.5) 
To,E,,N(ts) 

(4.3.6) 
)(T. 

(4.3.7) 

molecules of the s th 

less No, 
	

the number of 

in the equilibrating gas 

phase that would occupy the same volume as the bulk sorbent. 

Similarly, in (4.3.4) S is the entropy of the sorbate less 

the entropy of the No  molecules of the gas phase. 	The 

thermodynamic meaning of the remaining quantities should 

be quite obvious. 

At this point, following Bakaev (1966), it is 

appropriate to introduce a new function: 

n ^ 
Z(n,T)A, /n: 

g(n,T) 	= 	 (4.3.8) 
E(T,,%) 

which can be interpreted as the. probability of finding the 

composition 31, in a chosen cavity at temperature T. 	Or 

alternatively it can be regarded as the fraction of all 
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the subsystems in the macroscopic assembly that have the 

same composition set n at any chosen instant. 

From this it follows immediately that 

g(n,T) 	= 1 	(4.3.9) 
nn 

E n s  g(n,T) 	. 18  = N /B 8 	
(4.3.10) n'^, 

 
and 	E u(n,T) g(n,T) 	. H/B (4.3.11) 

n,0  ...,.., 

where the internal energy of the subsystem of composition 

set n is given by 
Pe 

u(g„T) = 
 kT1(1 9   

.,--- In Z(n,T)) 
dT  

x,n /.. .., 

(4.3.12) 

The entropy of the sorbate as given by (4.3.4) 

can now be related to g(A,T). 	By (3.2.12) the entropy of 

the subsystem of composition set Bn is 

• s(a,T) 	= 	T
_i 
 u(n,T) + k In Z(n,T) 	(4.3.13) 

Thus, 	S(k,T) 	. 	S
1 

+ S
2 	(4.3.14) 

where 	S
1 
 /B 	= 	g(n,T) s(n,T) 	(4.3.15) 

21.; 0 ,.. r 

and 	S
2
/B 	=-kE g(n,T) In g(n,T) 	(4.3.16) 

n>0 



4.4 MOLECULAR INTERPRETATION 

The physical significance of (4.3.10) should be 

clear, for (4.3.9) indicates that the distribution 

probability g(A1,T) has been normalized to unity. 	On the 

other hand the interpretation of (4.3.11) is not quite 

straightforward and in fact needs rather careful 

consideration. 	Intuitively the presence of H instead of 

IT in this can be explained by the fact that in a 

hypothetical assembly with variable B the introduction of 

an additional subsystem into the assembly will displace 

the same volume of the gas phase, and this has to be taken 

into account by a Pv work term. 	The real physical 

implication of this should become clearer after the 

subsequent discussion on the role of the sorbent and on 

the nature of the mechanical variables characterizing the 

sorption system. 

It should, however, be emphasized that the results 

of the last section have been based implicitly upon an 

assumption that the sorbent could be considered as an inert 

solid of rigid structure furnishing an interaction 

potential between each sorbate molecule and the sorbent, 

such that there were no dimensional change in its structure 

following any change in the sorbate concentration. 

Otherwise, (4.2.39) would not have led directly to the 

statistical thermodynamic relations presented in the 

previous section. 

An interpretation of the two distinct contributions 

to the entropy in (4.3.14) is as follows. 	The principal 
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term S
1 
represents the direct sum of the entropies of all 

individual subsystems which have a distribution probability 

g(„11,,T) in the localized assembly. 	The other term S
2 
can 

be associated with the indefiniteness of the number of 

molecules in any particular subsystem of the assembly at 

any moment. 	As g(n,T) is normalized to unity, 3
2 

is 

certainly non-negative. 	Alternatively it can be 

considered as the 'communal entropy' of the sorbate 

molecules which are free to move to any part of the entire 

sorption system. 	This entropy should be regarded as a 

property that is associated with the assembly as a whole, 

and not with the individual subsystems. 

An interesting question now arises concerning the 

behaviour of 5
2 

at very low temperatures. 	If in a 

theoretical model of the sorption the redistribution of 

molecules among the cavities were permitted even down to a 

temperature approaching absolute zero, S2  would always be 

positive, and in consequence there would be a definite 

residual entropy. 	This is in striking contrast to the 

case of an assembly of closed subsystems discussed in 

Section 2.3. 	The redistribution necessarily implies an 

incomplete knowledge of the molecular dynamics of the 

sorption system; and this lack of information is reflected 

iri the positive entropy contribution. 	Physically, 

however, the model could not be expected to be really 

applicable at very low temperatures, for presumably some 

complication. due to the system being in a state of 

metastable equilibrium now becomes significant. 	Thus the 

foregoing remark can probably be only of formal interest. 



(4.4.1) 
n 

Z(n,T)/t7 

The form of (4.3.8) does indicate that g(iB,T) 

changes continuously when the parameters 11., or ik afe varied. 

Nonetheless it will be observed that with any particular 

set of values of 71, the probability g(54,T) need not be 

highly peaked at a single composition set n. 	This reflects 

the important fact that in any single subsystem fluctuations 

in its composition can indeed be quite significant. 

Explicit results in Chapter 8 will confirm this conclusion. 

As it now appears that the function E(B,T,90 is 

of fundamental importance in the statistical thermodynamics 

of sorption in zeolites, it is interesting to look at its 

form as given by (4.3.1) and (4.3.2) more critically. 	In 

a sense the presence of the factorial factor in this is 

rather a surprise. 	For if it were assumed that each 

zeolite cavity constitutes a thermodynamic subsystem for 

which the chemical potential of any component is defined, 

at first sight the grand partition function for the 

subsystem would be expected to be given by 
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where w is the chemical potential set of the subsystem. 

In this case the grand partition function for a localized 

assembly of B equivalent subsystems would be just 

B 

• B ,tA,) = 	(T 
	

(4.4.2) 

As already pointed out in Secticn 3.2, the main 

objection to this type of deduction is that in (4.4.1) and 
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(4.4.2) it is tacitly assumed that the chemical potentials 

are thermodynamically well-defined and are uniform 

throughout the assembly even down to the level of individual 

subsystems. 	It has been argued that in the case of 

sorption in zeolites such an assumption would not be valid. 

The chemical potential of any component of the subsystem is 

not just an inherent property of the sorbate molecules, but 

is in addition strongly dependent on the nature of the 

sorbent. 	Evidently this fact cannot be properly taken 

into account when the grand partition function - is defined 

for the representative subsystem, since in the theory of 

the grand canonical ensemble the nature of the boundary of 

any subsystem is not at all explicitly defined. 	The only 

assumption concerning this appears to be that it is permeable 

to all the molecules put into the ensembles but is 'thick' 

enough so that the interactions among the molecules in 

different subsystems are negligible. 	Certainly such a 

boundary cannot meet all the physical requirements of the 

actual sorption system, as in the case under study. 	It is 

therefore not surprising that the use of (4.4.1) and (4.4.2) 

would not give a satisfactory basis for investigating the 

surface properties of the real system. (Mayer 1958, 

Friedman 1962b) 

A result rather similar to (4.4.2) has in fact 

been presented by Bakaev (1966) in an analysis of the 

sorption in zeolites. 	His argument is only slightly 

different from that given immediately above (4.4.1), 

being based essentially upon an assumption analogous to 

the generalized cell theory of liquids. 	However, it is 

clear that such an approach would also be open to the same 

objections as given above. 



4.5 DIFFERENTIAL MOLAR QUANTITIES  

Experimentally it may be convenient to measure the 

change of enthalpy of the sorbate system caused by an 

additional sorption of a small number of molecules of a 

particular component. 	Thus it is useful to derive certain 

statistical thermodynamic expressions for the differential 

molar parameters. 

Partial differentiation of (4.3.8) with respect to 

the absolute activity of the s th component gives 

where 

it - g(n,T) 

n 
 

= g(n,T)(ns-ris) 

N
s
/B 

Now by (4.3.10) 

g(n,T)(n
8  ) = 0 

no 
> n 0.  A 
0 

l 

It follows from these equations and (4.3.11) that 

(4.5.3) 

 

ag  

s
) 
T,35,Nt(ts) 

 

 

	

1 	 . 	u(n,T)(n 
s  -il  s  )g(n,T) ..,  

D(F7 
s 	,11. 	(4.5.4) 

 

where 

 

D(ns,T) 

 

g(n,T)(n 	)
2 

s s (4.5.5) 

   

n> O  

Clearly D(ns,T) as defined by (4.5.5) is the variance of the 

distribution g(n,T) with respect to ns. 
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The differential molar entropies can then be 

obtained by differentiating (4.3.15) and (4.3.16) with 

respect to N. 	That is, 

(a si) 
s(n,T)(n 	)g(n,T) a Ns]Tor,N (tAe) 	D(27 ,T) 	iv 	s s 

t 	 (4.5.6) 
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and 

(2 S2) 

s T,x,N
t 
 (tA) 

-k 

 

(n88)g(n,T) In g(n,T) 
ov 

(4.5.7) 

where s(n,T) is given by (4.3.13). 

It is observed that the forms of (4.5.4), (4.5.6) 

and (4.5.7) have certain similarity. .Their physical meaning 

is in fact quite straightforward. 	The common factor, 

(n -n )g(n,T)/D(71
s,T), can be associated with the s s 

partitioning among the B cavities of the molecules of the 

s th component infinitesimally added at constant temperature 

to the assembly in which the distribution of the 01-component 

sorbate molecules is initially described by the function 

g(n,T). 	Alternatively it can be considered as a measure 

of the redistribution of all the sorbate molecules when an 

infinitesimal amount of the s th component is added to the 

assembly._ The variance D(ris,T) indicates how far the 

number occupancy Nof any cavity does vary with respect to 

the s th component from the mean value n . 	Of course, in 

the case of an assembly of small subsystems the fact that 

n
s is not necessarily an integer is really quite significant. 
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4.6 HEAT CAPACITIES  

Theoretically the most interesting and important 

of second derivatives of the isothermal data with respect 

to temperature is the heat capacity of the sorbate at 

constant sorbate concentration. 	This is defined as 

C(1,41;,T) 
= t au) T( 2  k a Thi,j3 	a TL 

12,2  
(4.6.1) 

When the nature of the sorbent can be assumed to be 

completely independent of the temperature and sorbate 

concentration, the entropy of a specific subsystem, s(B,T), 

is not a function of IT and B. 	As a consequence, N 

     

(9 s  a T 2) R,B 

 

      

   

a T 
D  

(4.6.2) 

   

   

where 

  

1 

(a 
0- 1 

NA B 

      

  

g(n,T)h s(n,T) s(n,T) 

z2)0 
g(aT Z'" n  

n 0 

(4.6.3) 
and 

1 

73(dT 2 n,B 

 

(aT g(12,T)) 

 

+ 

n 

(4.6 .4) 
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Again the physical implication of the foregoing 

results can readily be explained in terms of the probability 

densities g(n,T). 	The principal contribution to C(TioT) is 

certainly the first sum in (4.6.3), for it is recognized 

that T 9T  s(n,T) is the heat capacity at temperature T of 

the quasi-independent subsystem with composition set n. 

The second sum in (4.6.3) arises from the redistribution 

of the N sorbate molecules of composition set ,t= BE 

among the B cavities of the assembly following an 

infinitesimal change of temperature. 	For the assembly of 

small subsystems, as in the case of sorption in zeolites, 

this contribution can be quite significant, since the 

results in Section 8.1 will show that there is in general 

an appreciable change in the distribution densities g(n,T) 

at a particular value of 71,,  when the temperature is varied. 

The sum in (4.6.4) is associated with the 

variation with respect to temperature of the degree of 

randomness in the distribution of sorbate molecules among 

the cavities. 	Following the interpretation of S
2 

in 

Section 4.4, it can also be regarded as a measure of the 

change in the 'communal entropy' of the sorbate which 

accompanies an infinitesimal increase of temperature. 



4.7 MECHANICAL VARIABLES AND EXCESS FREE ENERGIES  

-From a-practical-standpoint the fundamental 

thermodynamic equation which should be the most useful for 

a quantitative study is that given by (4.2.21). 	The 
A 

mechanical work directly related to E(B,T,,1,,) is B(x.X-Pv), 
M ,,,, 

which can truly be interpreted as a measure of the effect 

of sorbent surface on the thermodynamics of the sorbate. 

If the only mechanical work term characterizing the sorbate 

were BPv, E(B,T1) would be identical with the generalized 

partition function T(P,T1,,). 	That this is not so, because 

of an additional degree of freedom of the sorption system, 

has already been pointed out in Section 3.4, and thus 

requires no further discussion. 	In fact, in general 

kT In E(T,10 	. 	(g 
N iv 

	

_x).x 	(4.7.1) 

where X.x now signifies the set of mechanical work terms 
fti Ad 

associated with the gas phase, which can of course be just 

one Pv term. 

In the case of sorption in zeolites the physical 
A 

significance of the work term x.X in (4.7.1) is certainly /... ,L,  
difficult to visualize. 	It seems to be a normal practice 

in studying sorption to postulate that 

	

X.x 	= 	Pv 
N ".• 

(4.7.2) 
and 	.2q-p.k 	= 4) A 

in which A is then interpreted as the 'surface area' of the 
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'adsorbate' and Of as the 'surface pressure'. 	Also it is 

implicitly assumed that the sorbent concerned can only 

act as an inert solid, the dimensions of which do not 

change when the sorbate Concentration is varied. 

Certainly the use of (4.7.2) does not give a very 

reasonable physical picture when the sorbent surface is 

actually divided up into a large number of approximately 

spherical closed surfaces, each having a radius of curvature 

of the same order of magnitude as the molecular diameters, 

as indeed is the case of sorption in zeolites. 	It is also 

expected that at a moderate concentration of the sorbate 

the sorbate-sorbate interaction should not be ignored. 

The physical state of the sorbate molecules is thus 

necessarily rather complicated. 

A 
of the sorption. 	Indeed, x.X and x.X can in this case be .0.. N 	..,./ .".• 4 
sums of any number of terms of the types x

i
X
i 
and x.

3
X.
J
, 

respectively, which need not even be explicitly specified. 
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On the other hand, the theoretical results 

hitherto appear to indicate that it should be more 

satisfactory not to give any further physical interpretation 
A 

to (X-X).x than to regard it as just an excess free energy 
IV ov AI 
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4.8 ROLE OF THE SORBENT  

From the foregoing theoretical results it appears 

that the sorbent has not been treated thermodynamically on 

an equivalent basis as the sorbate; but, instead, any 

observable change in a thermodynamic property of the 

sorption system has been attributed to that of the sorbate 

alone. 	For this reason it is desirable to examine more 

closely how the sorbent does in fact determine the physical 

behaviour of the sorbate. 

In general, the sorption may lead to a change in 

certain intrinsic properties of the sorbent, such as its 

various polarizations and its shear strain energies. 	In 

order to provide for all the conceivable ways that the 

energy of the sorption system may change reversibly, the 

general form of the fundamental thermodynamic equation may 

be written as 

dU 	. 	T dS + A.da 
	

(4.8.1) 

In this relation the requirement that TdS be present and dS 

be an exact differential is a direct consequence of pure 

thermodynamics. 	In contrast, the actual assignment of any 

observable parameters to the set of extensive variables a 

and to the set of intensive variables A is essentially based ....I 

upon some phenomenological consideration and physical 

plausibility. 

For the system of sorption in zeolites the 

expression A.da is a sum of: 
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(1) The work terms or their thermodynamic equivalents 

representing the work done by the system on its 

environment as it grows in extent from suitable 

sources with respect to the intrinsic extensive 

variables, while the physical nature or state of 

the system remaining invariant; 

(2) The terms associated with the translational and 

rotational displacements of the system as a whole 

with respect to the permeating scalar potential 

fields; 

and (3) Any other energy or work terms not obviously 

belonging to the two categories already specified. 

In the present consideration the thermodynamic 

system consists of only the sorbate, whereas the sorbent is 

included in its environment. 	Now consider the growth in 

extent of this system. 	First it is noted that for any 

sorption system the internal energy is not necessarily a 

homogeneous function of first degree in the intrinsic 

extensive variables. 	More specifically, in the case of 

sorption in an assembly with a fixed number of zeolite 

cavities it does not appear reasonable to assume that a 

change in the internal energy of the system caused by an 

infinitesimal increase in sorbent concentration at constant 

temperature is directly proportional to the number of 

sorbate molecules added to the system. 	However, it is 

physically much more reasonable to assume that the nature 

of the sorbent does not change appreciably with sorbate 

concentration. 	The growth in extent of the system at 
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constant sorbate concentration n by increasing B and N 

.proportionately is then associated with the change for 

which the physical nature of the system remains invariant. 

Accordingly in the present consideration the volume change 

of the sorbate is to be understood as an appropriate change 

in B and not as that caused by expanding and compressing 

the individual subsystems while B is being kept fixed. 

With this assumption a useful fundamental thermodynamic 

equation can conveniently be set up after eliminating all 

the other contributions to the change in internal energy of 

the system by keeping the corresponding differential 

parameters fixed. 	Thus, thermodynamic association of the 

theoretical results can be effected. 	Following this 

consideration the implicit, yet very significant role of the 

sorbent should now become clearer. 	It is certainly of 

theoretical convenience to regard the sorbate as a 

thermodynamic system in the non-uniform potential fields 

provided by the sorbent. 
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CHAPTER 5  

THE MONTE CARLO METHODS  

5.1 INTRODUCTION 

In an explicit calculation of statistical thermo-

dynamic functions for the multicomponent sorbate in zeolites, 

it follows from the theoretical results of Chapters 2-4 

that configuration integrals and Boltzmann averages have to 

be evaluated from the relevant physical parameters. 	The 

configuration integrals are multidimensional, and in general 

involve complex integrands that are non-separable with 

respect to their many variables. 	The Boltzmann averages 

of statistical mechanical quantities characterizing a 

subsystem are given by ratios of multidimensional integrals, 

which may individually be too complicated to be directly 

computed by means of conventional numerical methods. 	To 

obtain quantitative results for these problems, standard 

techniques of mathematical analysis and integrations by 

summation of quadratures are not very effective. 	In 

practice it is far more efficient to use the Monte Carlo 

methods to estimate the quantities of interest on a digital 

computer. 

The general principles of Monte Carlo methods of 

statistical trials have been discussed in standard works, and 

thus need not be considered here. (Hammersley & Handscomb 

1964, Shreider 1966) 	In the following only certain special 

features of the methods used in Chapter 7 will be discussed. 
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5.2 COMPUTATION OF MULTIDIMENSIONAL INTEGRALS  

The multidimensional integrals to be evaluated 

are of the general form: 

J 	=f f (P) dP 
G 

(5.2.1) 

where G is an arbitrary region of the integration in a 

d-dimensional space, P is the representative point 

(xl,x2,...,xd) within G, dP is the volume element given 

.by 

dP = dxldx2...dxd 	(5.2.2) 

and f(P) is the integrand which is an explicit function 

of P. 

As yegards the configuration integral Q.(B,T), 

it follows from (2.2.6) that the dimensionality of 

integration d = 3n, 

dP = d{12} 

and 
	

f(P) = 	exp[-U({,0)/kT] 
	

(5.2.3) 

The restriction of the integration to a 3n-dimensional 

region G represents the physical confinement of the 

individual n molecules to a 3-dimensional space volume 4 
of the single sorption cavity under consideration. 

Now, for the integrals that represent differential 

coefficients of the configuration integrals with respect to 
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some thermodynamic variables, and for integrals that are 

present in the expressions for Boltzmann averages and 

statistical fluctuations, the integrations concerned still 

have similar specifications as above, but the momentum 

integrations may have to be included. 	In each case the 

integrand has to be replaced by an appropriate function 

of the sets of variables C n] and 10 . 	However, if the r-J 

integrand of interest is indeed of the form: 

f(P) 	. 	NW) exp[—H([3,11,(1,11)/kT] 
	

(5.2.4) 

and F(.(n.1) is thus not an explicit function of the .... 

momentum set [ n] , the momentum integrations and the .., 
configuration integrations can be performed separately. 

The total integral is then given by 

d 
-3n 

= A - d{A} F({2}) expr-u(a1)/kT) (5.2.5) 
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5.3 THE SIMPLE MONTE CARLO METHODS  

In the simple Monte Carlo calculation a sequence 

of independent random points P() has to be generated 

within the 3n-dimensional region G such that, for a 

sufficiently long sequence, the random points are uniformly 

distributed with a constant point density throughout the 

region. 	If g denotes the set of 3n random variables 

(f 1'52' 3n
) which locate the random point P(5) 

representing a definite configuration set { if of the n 
molecules within a cavity of space volumeA, then the 

probability distribution function of the random point is 

defined by 

pf0{,L1}) 1A -11 	iffrplies within G, 

0 	otherwise', (5.3.1) 

where An  is the 3n-dimensional volume of the region G. 

The mathematical expectation of the function f(g) is 

M f(t) 	= 	 : f(P) 44zi ) dP 

JA-n 	(5.3.2) 

For a long sequence of K independent random trials, N
C 

each with a set of configurations . = (f.1 S 	) 
,  ,1 12 

where i = 1,2,... ,N, the mathematical expectation of 

f() is given by 

M f(') 	N-1 (5.3.3) 
1=1 

As a consequence, a simple Monte Carlo estimate of the 

integral J can be conveniently calculated from 
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(J )MC 

N  

e N-1 	f(f ) 
1=1 

(5.3.4) 

In prtctice, f( ) is evaluated from a sequence of 
i
, the 

od 
sum 11 f(k) is accumulated within the computer, and (J)MC 

i= ^  
is computed after all the N trials have been made. 

It is clear that in a simple Monte Carlo 

calculation methods are required to generate the sequences 

ofrandomvariablesg..
1; 
 with rectangularly uniform distribution 

.‘, 

of point density in the 3n-dimensional configuration space. 

How these can be realized on a digital computer will now be 

considered. 

A sequence of pseudorandom numbers with 

rectangularly uniform distribution in one dimension in the 

range 0 to 1 is generated on the computer by a multiplicative 

congruential process. (S hreider 1966B) The sequence is 

determinate, and begins with a fixed standard initial value 

which is set at the beginning of each Program Executions. 

'From this the required sequence of3Ei  can be generated by: 

(a) Method of Indeuendent Random Trials  

A sequence of ordered triples of random numbers 

(g1,f
2:53) each ranging from -a' to a' is first obtained 

from the series of pseudorandom numbers, such that the modulus 

1(1g2:63)1 of each triple, defined by 

- 1(Y1,52;)1 	= 	I (12-422432)'1, 	(5.3.5) 
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satisfies the restrictive condition: 

l' 2' 3 4 	a' 	 (5.3.6) 

where a' 	the cavity radius) is physically the maximum 

distance allowed for any molecule from the centre of the 

sorption cavity. 	In this way a sequence of random points 

Peg') 	 can be generated, each from 

n of the triples. 	These points are distributed with a 

rectangularly uniform density in the 3n-dimensional 

configuration space and satisfy the boundary conditions 

restricting each molecule to the spherical space of radius a'. 

(b) Method of Stochastic Sequence  

At the beginning of the stochastic sequence a 

random point p(g) specified by the ordered 3n-tuple of 
quasirandom numbers ( 1,.g2tf3n

) that satisfy the 
condition: 

32j+2433j+3 
)1-1 

 

 

4 a' 	(5.3.7) 

   

simultaneously for all j 	0,1,2,...,n-1, is generated. 

The next point in the sequence is obtained by displacing 

each i th element of the 3n-tuple bycS 	for all i = 1,2,.. 

..,3n,whereS'g.is a quasirandom number between - a and a 

( a being a numerical constant which is small in comparison 

with a'), such that the conditions: 

)2 
3j+1‹.4-1513j+k I

a' 	(5.3.8) 

are satisfied simultaneously for all j = 0,1,...,n-1. 
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By repeating this procedure a stochastic sequence 

of points, each of which represents a chosen configuration 

set, is obtained. 	In the asymptotic limit when the number 

of such points tends to infinity and the magnitude of the 

maximum displacement Sa is sufficiently small, the 

distribution of these points in the 3n-dimensional Euclidean 

space can be shown to have the required distribution 

properties. 	It is clear that since topologically the 

bounded Euclidean space is simply-connected the sequence is 

ergodic. 	Thus the arithmetic mean of the magnitudes of the 

integrand calculated for each configuration set of the 

sequence gives the correct mathematical expectation value of 

the integral concerned. 

In actual computation, the stochastic sequence is 

large but finitely generated (N/0105), whereas the 

displacement is^,0.01a. 	So the correctness of this method 

in generating the required distribution density has to be 

justified a posteriori. 	Of course, when the displacement 

is finite the distribution of points near the boundary 

of the configuration space will be modified by the geometry 

of the boundary surface. 	This is because the condition 

that each point of a sequence can be anywhere within the 

3n-dimensional cubic neighbourhood(of sides Sa) of the 

points immediately preceding it is no longer satisfied 

when the sequence moves to a position nearer to the boundary 

than 18 at . 



112 

5.4 METHODS OF REDUCING VARIANCE  

In general the rate of convergence of the 

estimates of simple Monte Carlo methods depends on the 

magnitude of N-1. 	So for any practical computation on a 

digital computer, within a reasonable number of random 

trials-  (N/v105), some techniques for reducing the variance 

of the quantities estimated are required in order to 

improve their accuracy. 	As a rule, if analytic 

integrations can be performed effectively with respect to 

some of the variables concerned, the variance can be much 

reduced by carrying our these integrations explicitly 

before applying any specific Monte Carlo method. 	In 

subsequent calculations in Chapter 7, analytical results 

will therefore be used wherever practicable. 	Accuracy 

can be further improved by applying the methods of 

extracting regular and singular parts of the integrands, 

and by applying the methods of importance sampling and 

group sampling. ( Shreider 1966a) 

As regards certain integrals of the statistical 

thermodynamic quantities that characterize a canonical 

subsystem, effective methods of variance reduction can 

normally be suggested by considering the physical behaviour 

of the molecules sorbed in it. 	The interaction potentials 

appropriate for the case of sorption in zeolites have 

highly repulsive cores, causing their effective values to 

increase rapidly at short separations. 	An integrand 

having a factor exp[-U({0)/kT] will thus become negligible, 

particularly at low temperatures, for the configurations 



If A is the volume of a zeolite cavity with only 

one molecule sorbed in it, and if A' is its portion that is 

accessible to the molecule when this is assumed to interact 

with the cavity wall by a hard-core cut-off potential, then 

the value of Jr f(r) dr is given by ,, 
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with short intermolecular distances. 	The contributions 

from these configurations can accordingly be excluded from 

an approximate estimate of the integral concerned. 	Hence, 

by assuming a hard-core potential at a suitably chosen 

distance, the sampling domain of the 3n-dimensional 

configuration space can be much reduced; and the efficiency 

of the Monte Carlo calculation is thereby increased. 

 

N 

A., 
M 	• 

1=1 

 

 

(5.4.1) N 

where the configurationsji  and 	are randomly 

distributed with uniform point densities in the space 

volumes A and ti', respectively. 	The 3-dimensional 

restricted volume is in fact the effective configuration 

integral_ for a hard sphere with no attractive potential 

in the cavity. 

For n identical molecules sorbed in a single 

zeolite cavity of space volume Q, the estimate of 

j(f(inl) 	is likewise given by 

n N 	 M 

;› 
f() 	N

q: 
 ) 

M 	. 

i=1 	 1=1 

(5.4.2) 
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where Q is the configuration integral for n hard 
n 

 

spheres with no attractive potential in the cavity, which 

'thus remains to be evaluated. 	Methods for estimating Q: 

will be considered in Section 7.2. 

Now it is clear that when the hard-core cut-off 

potentials have been introduced new methods are required 

for the purpose of generating the sequence of random points 

P(15) that satisfy the subsequent restrictions. 	This can 
tv 

be achieved by modifying the method of independent random 

trials mentioned in the previous section, by requiring that 

that the 3n-tuples satisfy, in addition to (5.3.6), the 

i 

condition: 	3 

>---1 (53j+k 	3m+k) 11 - 
	

... 
 

CT 
k=1 

(5.4.3) 

for all j m (j,m = 0,1,...,n-1), where cO is the minimum 

distance allowed between any two approaching molecules. 

Alternatively, an efficient calculation can be 

obtained by using the stochastic sequence with (5.4.3) added 

to the restriction (5.3.8). 	This method gives the required 

estimates in the asymptotic limit of Cf'.C4.a' and Sa —> 0; 

but in the actual computation some complication may arise. 

The 3n-dimensional configuration space is no longer simply-

connected, since the presence of hard molecules in the 

subsystem causes certain regions of this space to be 

physically inaccessible. 	A correct interpretation of the 

Monte Carlo results in this case thus depends more on their 

physical plausibility than on any mathematically rigorous 

basis. 



fdiiI3F(631)  exp 	{11})/kTI 

fdail exp [-u( fni )/k173 

<FQ23}0 (5.5.2) 
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5.5 MONTE CARLO METHODS FOR ESTIMATING BOLTZMANN AVERAGES  

According to classical statistical mechanics the 

Boltzmann average of a function F([n],{11}) characterizing 

the subsystem of n interacting molecules of composition 

set n in a single zeolite cavity is given by 

1:ailfga)F(rlal,(0)expE.H(Eajt.(0)/kT] 

fd Li 	exp C H ( 	3.1] )/kT]  

(5.5.1) 

A classical Hamiltonian can in general be separated into 

the kinetic part involving the set (n7 only, and the 

configurational part involving the set i n1 only. 	So, if 

F is in fact not an explicit function of [n] , the 

integration with respect to all the momentum coordinates 

can be performed directly, giving 

Certainly the Boltzmann average 4.  F(fnl);> can be 

estimated by evaluating the integrals of the numerator and 

of the denominator separately, by using some simple Monte 

Carlo methods with variance reduction. 	However, more 

accurate results can alternatively be obtained by applying 

a specific Monte Carlo technique in the following way 

without having to evaluate the two integrals individually. 
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Consider a sorption subsystem of composition 

set Nn. 	The n molecules are assumed to be in a known 

configuration set zil at the sequential time t. 	It is 

important to note that this sequential time is not the 

same as the actual time of physical development of the 

molecular subsystem being considered. 	Instead, it is to 

be understood in the sense of a Markov process as the 

label of a term in an ordered sequence of random trials. 

By using a certain transition probability P('02/tifIqt+1) 

for the change from the configuration set ,Og to a 

set fn 
it+1 

 at time t+l, a random sequence of states bill 

0,42, ---f0t-- can be generated. 	Further, the 

transition probability can be chosen in such a way that 

the distribution of states in this sequence is 

approximately a Boltzmann distribution. 	The estimate of 

the Boltzmann-averaged F({n}) is then given simply as 

M 

<F(1111)> 	7- F(allt) 	(5.5.3) 

t=1 

Fosdick (1963) has investigated the mathematical 

theory of Monte Carlo estimations of Boltzmann averages. 

In the following two sections some specific choice of the 

transition probabilities that will efficiently generate 

the desired distribution of configuration states will be 

discussed. 



5.6 METROPOLIS METHOD OF IMPORTANCE SAMPLING  

A natural choice of the probability density 

p({ n1) for a canonical subsystem of composition set n to 

be in the state described by the configuration set {n} is 

p(fn}) 

 

exp[17U({n})/kTI 
(5.6.1) f dfla exp r-U(1. 31)/kT] 

This is precisely the distribution in a canonical ensemble 

at temperature T of a very large number of statistical 

mechanical subsystems each characterized by the same 

composition set n and the same configurational energy U. 

The probability density (5.6.1) has been used extensively 

in the computation of some equations of state of simple 

liquids and dense gases by Metropolis et al. (1953), by 

Rosenbluth & Rosenbluth (1954), by Wood & Parker (1957), 

by Wood & Jacobson (1957), and by Wood et al. (1958). 

In Chapter 7 it will be used to calculate certain 

statistical thermodynamic quantities characterizing the 

subsystem of molecules sorbed in a single zeolite cavity. 

This specific choice of the method for realizing 

the required Boltzmann distribution is particularly 

advantageous as regards efficient calculation on a digital 

computer, because, by using a uniform Markov chain to 

generate the distribution of states that satisfies (5.6.1), 

it is not necessary to know the denominator of this 

expression explicitly. 	In the Markov chain of interest 

117 
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the transition probability from one configuration state 

to any neighbouring state is a constant which depends only 

upon the probability densities of these two states. 	It 

does not, otherwise, depend upon the history of the whole 

Markov chain of successive configuration states. 	In this 

case the conditional probability p(inl,{n}') for finding 

the subsystem in the state/14' at time t+l, given that 

the subsystem is in state inl at time t, is independent of 

t. 

The existence problem and the uniqueness of the 

asymptotic behaviour of Markov chains will not be discussed 

here in detail. 	The nature of these is well understood 

and has been discussed in standard works on the theories 

of Markov and stochastic processes. (Doob 1953,  Kenemy & 

Snell 1960, Dynkin 1965) 	For the present purpose it 

suffices to state the following. 	Under the assumption 

that no periodicity exists and that any state can be 

reached within a finite sequential time, it can be proved 

that any arbitrarily chosen sections from far separated 

parts of the Markov chain do not correlate. 	In other 

words, if all the states tiO form one ergodic class and 
(s) 	ri p 	(024,1J2I') is defined as the probability that the 

subsystem which at time t was known to be in the state-in} 

should at time t+s be in the state flip, then 

lim p(8)(fO,N11 ) 
-s 

is stationary and is independent of the initial state 	. 



7,  p({22}, CBI' ) 

{32}' 

p(2) ((21,(n}')  
(0.11,f111 — )p(f2 — ,fnl') 

= 1 

= 
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Note that, from the definitions of the various probability 

functions, it follows that 

   

(5.6.2) 

   

    

p(8) (tnl,fnli) ...,  = 	p
(s-1)(

10,{221" )13( fill",10" 

11.31" 

The immediate problem is then to find an explicit 

specification of pq111,N1') such that 

lim p(s)(f0,b11 ) 	= p({ n}') as given by (5.6.1), 
s —4A05 	 (5.6.3) 
and 	P(UP) 	= 	 P({11},Wi)p((0) 

f21 
It is not difficult to see that a solution to this is 
given by 

P(LOAP) = some number Aqn1,(01 ), if U(b....31').“(fnl) 

P({121 , (0') = A({3,1},(0') exp -P({1,11')-U(tn1)1/kT, if 

. 	 u(.021,  ) > u({r,}) 
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and p((liMnI) = 1 -  

all i'331' {1,1,} 

where A(fnl,fnl') is symmetric, i.e., 

A(f22142.211)  = A({n}',fn}) 

(5.6.4) 

A Markov chain defined by (5.6.4) can now be 

generated on a computer in the following way. 	The random 

initial configuration state IBli  of the subsystem at 

sequential time t = 1 is chosen in such a way that it is 

known to be outside the regions of singularity, and the 

configurational energy nail]) is calculated. 	Next this 

state is displaced to 

fnl 	(r +Sr r +S N2, 	r
21+gr ) A,  

where Sr. (45x.pav dz.) is a triple of random 
i 	i 

numbers each ranging from -15-a to c'a (the maximum 

displacement allowed Sak(the cavity radius a ). 	The 

configurational energy U(f01 ) is again calculated. 	If 	it 

is found that U(c3.1').4.;U(011), the new configuration set 

14' is accepted as the state of the subsystem at 
sequential time t = 2; otherwise, exp-ECT(L0')-U(fL13/kT 

has to be calculated. 	The latter, which is necessarily 

between 0 and 1, is then compared with a random number in 

the same range of values. 	If the random number is found 

to be less, the configuration state f nj' is again accepted; 

if not, the state at sequential time t = 2 remains as 011. 
This procedure is repeated so that successive configuration 
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states are generated as the sequential time is increased 

monotonically. 

It is clear that the process just described is 

stochastic. 	The transition probability p({n1,(n}') from 

any chosen state inl to any other state {ri}' is stationary 

and forms the representative element of a stochastic 

square matrix of degree equal to the total number of 

accessible states, which in general may not even be finite. 

By its definition this stochastic matrix satisfies the 

necessary and sufficient conditions 

X, 	P ( {12, } , (1;0' ) 	= 	1 

{r}' (5.6.5) 
and 
	

P({11}, b1') 
	0 

It may also be of interest to note that the 

microreversibility condition : 

Pqn1) p({4,tn11 ) = P({ 3}' 	p(En11 ) 	(5.6.6) 

which is certainly more restrictive than (5.6.3), has not 

been assumed here. 	However, it is well known that (5.6.6) 

necessarily implies (5.6.3) but the converse is not true 

in general, provided of course that the normalization 

condition for p({ n}) is satisfied. (Verlet 1966) 



122 

When the Metropolis method of importance sampling 

is used, the variance of any Monte Carlo estimate of a 

Boltzmann-averaged function is given by (Fosdick 1963) 

1 12 
Id{i2} [F({221)/< F({Lil>> 	exp[HU(. (n})/k1 

PM  

d{al} exp [U({n})/kT] 	
(5.6.7) 

Since this is an explicit function of <F((111)› , which 

is in fact the quantity to be evaluated, the variance 

cannot be conveniently calculated. 	In such a situation 

the most practical way to test the reliability of a 

Monte Carlo calculation is to study directly the 

fluctuations in the estimates of <F(fill);>. with respect 

to the number of random trials. 
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5.7 FOSDICK METHOD OF OPTIMUM SAMPLING 

By considering a general probability function 

for the biassed selection scheme of random configuration 

states of a canonical subsystem, Fosdick (1963) has shown 

that the optimum convergence Of the estimated Boltzmann 

average <F({n})> MG  could be obtained in the general 

procedure of importance sampling when the probability 

density of the representative state{ ni is given by 

p({21}) = 
IF(fLi1)/<F({)2} ).> -1 I exp [U( 	)/kT] 

fd(33} 	)/ <F(W )> -11 exp[-U({12})/kT] 

(5.7.1) 

The optimum criterion concerned is based on a minimization 

of the variance 10`({n})>Mc/ <F(1411 	.-11 2  of the reduced 

random variable 4,F(W)m>/<F(f0)>,  which is of course 

very near unity. 	However, it is clear that p(fn7) does 

depend explicitly on .4:F({n})› , which is in fact the 

quantity to be estimated. 	Accordingly, this optimum 

sampling scheme can be of practical use only in an 

iterative procedure for successive approximations of <F(fn1)>. 
The estimate of <F(fnp> to be used in the first step of 

the iteration has to be obtained initially be using the 

Metropolis method of importance sampling or by using some 

simple Monte Carlo methods with variance reduction. 

As in the case of the Metropolis method, the 

denominator in (5.7.1) need not be known explicitly when 

only the asymptotic behaviour of a Markov chain is of 

actual interest in realizing the Boltzmann distribution of 

configuration states. 	In the infinite limit, the 
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transition probability from the state {n) at time t to a 

neighbouring state <n)' at time t+1 is again independent 

of t. 	The distribution of states of a Markov chain 

satisfying the condition (5.7.1) can be obtained in a real 

computation by a method similar to that considered in the 

last section. 	However, in this case the quantity to be 

compared with the random number between 0 and 1 is 

IF({2}1 )/<F(fi2})> -1 I expP({01 )/kT 

IF(1121 )/G:F({11})› -11 exp P({2.})/kT] 

instead of just the exponential factors by themselves. 

Fosdick has also shown that the variance of an 

estimate obtained by the method of optimum sampling is 

given by 	 2 

ilfitid{r2} IF ( {21 )/< F({/1) )› -11 exp p(f 

V 

ord{ 

	

	2  2/ exp  1.717({0 )/kT]i' (5.7.3) 

From (5.6.7) and (5.7.3) it is clear that the difference 

V
M M 
-V°  represents the variance of M 2  ir(iL11)/4F(.( n})> -11 

with respect to the Boltzmann distribution. 	This suggests 

that the optimum sampling procedure might be narticulerly 

advantageous for the calculation of statistical mechanical 

quantities characterizing a small canonical subsystem. 

In this regard it should be noted that fluctuations of the 

configurational energy of this subsystem can indeed be 

relatively large. 



5.8 GENERAL REMARKS  

Concerning their subsequent applications in 

Chapter 7 the Monte Carlo methods already described should 

be regarded merely as mathematical techniques. 	The 

statistical models used for the purpose of obtaining 

numerical results do not directly represent the physical 

system under study. 	But, rather, they are just some 

mathematical constructions to facilitate efficient 

calculations, on a digital computer, of certain expressions 

which involve multidimensional integrals. 	In particular, 

the time development of a Markov chain is a completely 

fictitious process. 	So this should not be confused with 

the time development of a real sorption subsystem of 

molecules in a single zeolite cavity, even though the two 

different processes may sometimes correlate very well by 

physical intuition. 

In principle, only in the infinite limit of 

sequential time would the use of a stationary Markov 

chain give the desired distribution of selected states 

satisfying all the boundary conditions imposed on a specific 

subsystem. 	For practical computation, however, the number 

of random trials is necessarily finite. 	Therefore, the 

reliability in using a particular Markov chain to find the 

Monte Carlo estimate has to be justified a posteriori by 

some statistical evidence as regards fluctuations of the 

estimate concerned, as well as by the physical 

reasonableness and consistency of the calculated quantity. 
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For practical reasons it is important to choose 

the mathematical conditions in such a way that a Markov 

chain should give the best representation of all the points 

over the whole configuration space. 	When the molecules 

are densely packed in a subsystem, it is certainly 

difficult to visualize the detailed behaviour of any 

Markov chain in the corresponding configuration space, or 

to guess the optimum conditions and relevant parameters 

for the purpose of an efficient calculation. 	Apparently, 

as regards the interaction potentials of interest, the 

resulting configuration space, and hence also the phase 

space, has no finite inaccessible volume bounded by a 

surface of singularity. 	Nevertheless the configuration 

space can still be expected to be partitioned into many 

dense regions which make comparable contributions to the 

statistical mechanical quantity to be evaluated. 	In this 

case the probability of a transition from one region to 

another may be extremely small, despite the fact that 

the points in all these regions do belong to one and the 

same ergodic class of states. 	Some elementary aspects 

of this type of 'quasi-ergodic' problems have been 

discussed by Wood & Parker (1957) and by Fisher (1964). 

So it appears that in practice the sizes of the 

displacements, the boundary conditions and the initial 

configurations of Markov chains could only be adjusted 

basically by trial and error. 	In this regard it should 

be pointed out that some subsequent studies of fluctuations 
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in the quantities estimated with respect to the number of 

random trials, together with an observation of the effects 

of changing the initial state of a specific Markov chain, 

can normally give much useful information. 	Also for 

practical reasons the choice of an optimum value for the 

maximum displacement S a allowed is of special importance. 

Too small a value of this may result in the necessity of 

generating an extremely long chain, whereas too large a 

value may cause certain groups of states to be totally 

inaccessible. 
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CHAPTER 6  

PHYSICAL PARAMETERS  

6.1 SORBENT STRUCTURE  

11 	
2 

Synthetic Linde molecular sieve 5A, 
2

a
2 
 O. 

3
—Ca0. 

3  
Al2032

0
' 

has been chosen for the subsequent detailed 

study of its sorption properties. 	This zeolite is a 

crystalline aluminosilicate with approximately spherical 

sorption cavities interconnected by channels and openings 

of known geometry and dimensions. 	Its crystal structure 

has been determined in the hydrated form, containing 25-35 

wt % H20, by Broussard & Shoemaker (1960). 	Its structural 

unit is ,the 'sodalite' cubo-octahedron containing 24(Si,A1) 

cations interconnected with 36 0 anions which form 6 

octahedrally positioned 4-membered rings and two sets of 4 

tetrahedrally positioned 6-membered rings. 

The structure of Linde 5A, excluding the Na and 

Ca cations, has space group 01-Pm3m with lattice constant 

12.31+0.01 1. 	In this structure the (Si,A1)04  tetrahedra 

are symmetrically arranged so as to place each A-membered 

ring of 0 anions in a plane and to yield point symmetry Oh  

for each sodalite unit. 	Studies of superstructures as 

well as other evidence have further indicated that the SiO 4 

and the A10
4 
 tetrahedra alternate in accordance with the 

rule forbidding A1-0-A1 bonds. (Barrer & Meier 1958, Meier 
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1967) 	The sodalite units are arranged in a simple cubic 

array, with 8 of them located at the corners of the cubic 

*unit cell. 	Accordingly, each sodalite unit is joined to 

each of its 6 neighbours by 4 'bridge' 0 anions connecting 

the 4-membered rings of the (Si,A1)0
4 

tetrahedra. 

(Figure 6.1) 

The truncated octahedral cavity of each sodalite 

unit is called a 'fl-cavity' or a 'sodalite cage'. 	The 

sorption space of interest, on the other hand, is the 

'ot-cavity' which is a relatively large truncated cubo-

octahedron surrounded by 8 sodalite units placed at the 

corners of the cubic unit cell. 	Entry into this sorption 

cavity is by means of 6 channels each bounded by 4 

sodalite units interconnecting 2 neighbouring cavities to 

form an opening of 8-membered ring of 0 anions at the 

centre of the cube face. 	Alternatively, thea-cavity can 

be considered as a building unit of Linde 5A framework, 

which is thus obtained by connecting the square faces of 

it-cavities with each other. (Figure 2) 	Access to ap- 

cavity is through the 6 openings of 6-membered rings of 

0 anions. 	These openings are much smaller than those of 

the 8-membered rings which join all the a-cavities so as 

to form a series of large intersecting channels at right 

angles to each other. 	As a consequence, fl-cavities are 

of little interest except in ion-exchange studies. 

In general, any precise information concerning 

the cation positions in zeolites is still rather limited, 

as thermal and positional disorders, partially occupied 
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sites, twinnings and crystal imperfections have made their 

complete determination very difficult. 	Nonetheless the 

cation positions of Linde 5A are actually known with the 

required accuracy. 	Furthermore, its cation distribution 

has cubic symmetry; and this is very simple to deal with 

mathematically. 	So it appears that Linde 5A should be a 

particularly appropriate choice for the purpose of a 

detailed theoretical study. 

The positions of all the atoms in Linde 5A are 

given in Table 6.1, with the origin located at the centre 

of a fl-cavity at m3m, and with all the Cartesian coordinates 

expressed in fractions of the lattice parameter. 	Table 6.2 

lists the numbers of atoms and ions forming the wall of 

an 0(.-.cavity, together with their distances from the centre 

of this cavity. 



TABLE 6.1 Atomic Coordinates of Linde 5A  

(Broussard & Shoemaker 1960) 

Atom Number in 

unit cell 

	

Coordinates 	(Origin at m3m) 

x 	Y 	z 

(Si,A1) 24 0.0000 0.1972 0.3727 

01(bridge) 12 0.0000 0.2280 0.5000 

0
2(single) 12 0.0000 0.2878 0.2878 

03  (4-ring) 24 0.1118 0.1118 0.3482 

(Na,Ca) 8 0.1950 0.1950 0.1950 

TABLE 6.2 Parameters for v.-Cavity 

Atom Number Distance from cavity centre 

(Si,A1) 48 0.5983 

0
1  (bridge) 24 0.5692 

0
2(single) 24 0.5832 

0
3 
 (4-ring) 24 0.5696 

(Na,Ca) 8 0.5283 
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Lattice Constant 	12.31 + 0.01 I 
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FIGURE 6.1 Arrangement of the Sodalite Cages in  

Linde 5A (From Meier 1967) 

FIGURE 6.2 Arrangement of the Truncated Cubo-octahedral  

Structural Units in Linde 5A (From Meier 1967) 



6.2 SORBATE-SORBENT INTERACTIONS  

In evaluating the statistical thermodynamic 

functions that charactefize a specific sorption system, 

it is necessary to know the relevant potential functions 

for the sorbate-sorbent interactions in detail. 	Krypton 

and methane have been chosen for study here, primarily 

because the forms of their interaction potentials with 

Linde 5A can be expected to be relatively simple. 	In 

fact, the potential functions concerned are known 

sufficiently accurately for a satisfactory quantitative 

investigation. 

The molecules of krypton and methane possess no 

permanent dipole moment and are incapable of any specific 

molecular interactions with the sorbent. (Kiselev 1965, 

Kiselev & Lopatkin 1967) 	As a result the main 

contributions to the attractive potentials are from the 

non-polar dispersion forces and from the interactions of 

electrostatic fields of the sorbent with induced electric 

dipoles of the sorbate molecules. 	Incidentally, 

interactions involving electric multipoles of higher 

orders, as well as those involving magnetic multipoles, 

need not be explicitly taken into account in this case. 

As regards the present interest, any effect of this should 

not be really significant. 	Indeed most of the physical 

parameters required for their determination are at the 

present not known accurately. 
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(a) Dispersion Attraction Potential  

'To a good approximation the charge distributions 

of krypton and methane can be considered to be spherically 

symmetric. . Thus these sorbate molecules should possess 

no appreciable permanent dipole or multipole moments. 

Nevertheless the dispersion attraction still arises from 

the long range interactions of instantaneous dipoles and 

multipoles mutually induced by the sympathetic fluctuations 

of electron distribution densities. (Lennard-Jones 1932, 

Margenau 1939, Young & Crowell 1962a, Crowell 1966) 

For a sorbate molecule that is electrically 

neutral and chemically inert, the attraction potential 

function is given by 

UDee (r) = 

['3.

(6) 	
C
(8) 	

c
(10)  

i 	i 	i  
+ 	+ 

r
i  

8+ 
	

10 6 
r 	ri
i   

	] (6.2.1) 

  

i 

where r., is the position vector of the sorbate molecule, 

r
i 

is the distance between this molecule and she 

i th atom of the zeolite sorbent, 
6) 	8) 	10) 

and 	Ci  , Ci  , C. 	,... 	are respectively the constants 

for the interactions involving induced dipole-dipole, 

dipole-quadrupole, quadrupole-quadrupole plus dipole-

octapole, and for those involving multipoles of 

higher orders. 

The summation in (6.2.1) is over all the atoms and ions of 

the zeolite sorbent. 
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The constants C
(6)

, C
(8)

, 
C(10)

,... can in 

principle be calculated from the wave functions of the 

interacting species. 	Quantum-mechanical analyses based 

on the perturbation theory and the variational principle 

have led to some useful expressions for these. (London 

1930, Slater & Kirkwood 1931, Kirkwood 1932, Milner 1936) 

The Slater-Kirkwood formula for-C
(6) 

is used in this work, 

and this is given by 

3eh 	OC 1C 2 
C
(6) - 
12 mem

e (a1/N1)+(IX2/N2) 

(6.2.2) 

where e is the electronic charge, me  the electronic mass, 

h the Planck constant, k the Boltzmann constant, a (i=1,2) 
the polarizability of the i th interacting species, and Ni  

its effective number of electrons. 

For the interaction between like species, (6.2.2) 

gives 

3eh a
:3/2 1/2 

c(6) 11 
8t 	N1 (6.2.3) 

The interaction parameters used are given in Table 6.3. 

Each N
i 
is taken to be the arithmetic mean of the total 

number and the subshell number of electrons in the atom or 

ion concerned. (Pitzer 1959) 	The polarizabilities of Na 

and Ca cations, with the charges indicated, are taken from 

Iandolt-Bornstein's Tabellen (a). 	The relevant data for 

the 0 anion is lacking. 	The value given, based on a 
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refractivity measurement of K-felspar, has been used by 

several authors for the 0 anions in zeolites. (Barrer & 

Peterson 1964, Rees & Williams 1964) 	This appears to be a 

reasonable choice. 	For a useful comparison the following 

polarizabilities ( 13) may be noted : 0.15 for neutral 0, 

3.88 for 0
2-

, and 1.77,  2.35 & 2.7 for the 0 anions in Mg0, 

Ca0 & CrO, respectively. (Pauling 1927, Ramberg 1954, 

Yamashita & Kurosawa 1954, Barrer & Stuart 1959) 

From the dispersion constant C
(6) 
 the interaction 

parameter E was deduced by using the relation: 

. 	i C(6)r0 
-6 	

(6.2.4) 

where r0  is the equilibrium separation. 	The values of r0 
  

for the sorbent atoms are given in Section 6.2(c). 	The 

relevant parameters for krypton and methane are given in 

Section 6.4. 	For any interaction between unlike species 

612 was calculated by using the combination rule (6.3.4). 
In Tables 6.3 and 6.4 the calculated interaction parameters 

_are presented. 

Theoretical expressions for C(8), 
C(10), 

 etc., are 

available in the literature. (Margenau 1938, Heller 1941, 

Hornig & Hirschfelder 1952, Fontana 1961) 	However, these 

will not be discussed further here; and as regards the 

dispersion attraction potentials used in the statistical 

mechanical calculation of Chapter 7, only the contributions 

from C
(6) 

will be taken into account. 	For the present 

purpose this simplification should not introduce any 

additional inaccuracy. 	It is clear that the uncertainty in 

the most significant contribution involving induced dipole- 
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dipole interactions can itself be quite appreciable. Owing 

to the lack of accurate data for the relevant parameters C4 

and N in (6.2.3), the possible inaccuracy of the results for 

e/k presented in Tables 6.3 and 6.4 may be as high as 10 % 

and 5 % respectively. 	Nonetheless it should be mentioned 

that, in a general case, the dipole-quadrupole term can 

contribute of the order of 10 %, and the quadrupole-quadrupole 

term of the order of 1 %, to the total value of the dispersion 

energy. 	(Young & Crowell 1962a, Crowell 1966) 

TABLE 6.3 Interaction Parameters for Linde 5A  

Atom Charge N1  a 	(13) 1 
E 	/k e K) 
11 

0 -0.25 11.25 1.65 409.9 

Na 1 9 0.196 209.3 

Ca 2 13 0.50 307.5 

TABLE 6.4 Sorbate-Sorbent Interaction Parameters  E.. 
2
/k (

0
10 

Species 2 Species 1 

Krypton Methane 

0 254.5 246.5 

Na 181.9 176.1 

Ca 220.4 213.5 
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(b) Electrostatic Induction Potential  

The ions of the zeolite framework give an 

electrostatic field in the sorption cavity, and this can 

interact with the permanent and induced dipoles of the 

sorbate molecules. 	For non-polar krypton and methane, 

however, only the effects on induced dipoles need be taken 

into account. 	This is given by 

III(r) 	a -a (r) 	(6.2.5) 

where Ot is the polarizability of the sorbate molecule, 

and F(r) is the magnitude of the electrostatic field 

intensity vector due to the sorbent ions, F(L), at the 

point r where the reference sorbate molecule is located. 

It is clear that the electrostatic induction 

energy is not additive. 	In calculating it the intensity 

vector F(r) has first to be evaluated by summing the space 

compo'nents of the electrostatic field vectors of all 

individUal ions interacting with a unit charge at the 

specific location ,5. 	Induced multipoles of higher orders 

interact with the space derivatives of various orders of 

the electrostatic field, e.g., the quadrupole with 7.F(r). 

Quantitative studies of these derivatives certainly present 

a very difficult problem. 	For practical purposes, however, 

their contributions to the total potential are expected to 

be quite insignificant. 	So they will not be considered 

further here. 
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In calculating the electrostatic field intensity 

inside a sorption cavity the charge distribution of the 

zeolite framework can be approximated as follows. 	The 

Na and Ca exchangeable cations are given electrostatic 

charges of e and 2e respectively, where e is the electronic 

charge; and the neutralizing negative charges are then 

distributed equally among the 0 anions, so that each has a 

negative charge of 0.25e. 	As the sorption cavity is 

approximately spherical, it is expected that only the 8 

(Na,Ca) cations and the 72 0 anions lining the surface of 

each cavity should make any significant contribution to 

the electrostatic field. 	The Si and AI atoms are more 

distant from the cavity centre than these ions. 	So for 

the present purpose they need not be taken into account. 

It is well known that when any quantity of 

charges is uniformly distributed on a closed surface, the 

electric field intensity at any point in the resulting 

cavity is identically zero. 	This is, of course,a direct 

consequence of Gauss's theorem in electrostatics. (Reitz 

& Milford 1960, Panofeky & Phillips 1962) 	In the cases 

of interest, on the other hand, the charges are not 

uniformly distributed in the above sense, but are assumed 

to be concentrated at the ion centres. 	As a result the 

field intensity inside a sorption cavity can be expected 

to be practically zero in the major part of the cavity, 

nevertheless in the regions close to the wall a considerable 

field intensity does appear. 
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The potentials due to the interactions of the 

induced dipoles of a sorbate molecule with the electrostatic 

field of Linde 5A were calculated on the digital computer 

along the symmetry axes: 3C4  ([100] direction), 6 C2  ([1101 

direction) and 4 C
3 
([1111 direction). 	The field intensity 

at each point was calculated from the formula: 

F(r) a 

 

e (6.2.6) 

     

    

i 

 

where r is the vector from the i th ion of the sorbent to 
AA 

the reference point r, 

ri  is the magnitude of r1, 

and 	e
i 
is the charge (including sign) of the i th ion. 

For convenience it was assumed that the 8 cations were 

each of charge 1.5e, and were all located at different 

points along the 4 C
3 

axes, at distances 6.5032 1 from the 

cavity centre. 	This then gives the cubic symmetry which 

is particularly convenient to deal with in the calculation. 

The values of the polarizabilities CC chosen for krypton 

and methane were 2.47 and 2.58 13, 	respectively. (Young 

& Crowell 1962b) 

Results for U
I
/10( are presented in Figure 6.2. 

In calculating the potentials given in Set A only the 

contributions from 8(Na,Ca) cations were taken into account 

in the summation of (6.2.6), whereas in Set B those from 

the 72 0 anions were also included. 	As expected, the 

electrostatic induction potential is most significant along 

the C
3 
axis directly approaching an exchangeable cation. 
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The C
4 

axis passes through the centres of two opposite 

8-membered rings of 0 anions; consequently there appears 

to be a considerable difference between the C
4 
 curves in 

Set A and Set B. 

It should be pointed out that the use of (6.2.5) 

and (6.2.6) implies that the electrostatic charges have 

been treated as discrete points at the relevant ion centres. 

This tends to exaggerate the magnitude of the electrostatic 

induction potential. 	In the actual system, on the other 

hand, the charges of the sorbent ions are non-uniformly 

distributed over finite volumes, and the resulting 

electrostatic field does vary significantly over the space 

occupied by a sorbate molecule. 	Therefore it cannot be 

expected that the electrostatic effect has thereupon been 

accurately taken into account. 	It would of course be 

more satisfactory to assume some reasonable charge 

distribution for each atom and ion, and to perform an 

integration over the volume occupied by this for the purpose 

of estimating its interaction with the induced dipole of 

the reference sorbate molecule. (Lenel 1933) 	However, 

in view of the ensuing mathematical difficulties such an 

approach does not appear to be really practicable. 
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(c) Re-pulsion Potential  

The repulsion potential arises from an 

interpenetration of electronic orbitals of the atoms and 

molecules at short distances. 	For mathematical 

convenience the form of the repulsion potential used in 

this work is chosen to be Rr
-12 

. 	The constant R can in 

principle be calculated directly for each atomic species 

of the sorbent by requiring that the minimum in the 

resulting total potential be at the proper equilibrium 

separation. 	In practice, however, this problem is not 

really straightforward. 	The electrostatic induction 

energy, unlike the dispersion effect which involves only 

induced dipole-dipole interactions, is not pairwise-additive. 

As a result the total attraction potential is expected to 

be direction-dependent. 

To a good approximation, therefore, it is 

reasonable first to obtain the 'averaged' attraction 

potential for each atomic species simply by taking the 

arithmetic mean of a large number of such potentials for 

the random directions, generated on the computer, within a 

reasonably chosen solid angle subtended at the centre of an 

exchangeable cation. 	Then the repulsion constant could 

be calculated by minimizing the resulting 'averaged' total 

potential at the equilibrium separation. 	Although it is 

obviously more satisfactory to use a Boltzmann average 

instead of just the arithmetic mean of the total potentials, 

the latter estimate is used here, since thereby the 

complication due to a temperature-dependent potential can 

conveniently be avoided. 
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The equilibrium distances chosen were 3.04 A 

for the 0 anions (Van der Waals radius; Bondi 1964)1 

1.96 I for the Na cations (ionic radius; Kiselev & Lopatkin 

1967) and 2.36 1 for the Ca cations (univalent radius; 

Pauling 1960a) 

(d) Total Potential  

The total sorbate-sorbent potential of a sorbate 

molecule at a specified point within any sorption cavity 

can be calculated by summing the contributions from 

'dispersion, induction and repulsion potentials over all 

atoms of the zeolite sorbent. 	However, it appears that 

to a good approximation only the 72 0 atoms and the 8 

exchangeable cations lining the surface of each Linde 5A 

cavity need be taken into account in this summation. 

If higher accuracy is required, a correction can subsequently 

be made for the background potential due to all other atoms 

and ions outside the approximately spherical cavity surface. 

For this purpose the method described in Section 6.5 can 

be used. 

Calculation of the total potentials was carried 

out on the computer for various distances of the sorbate 

molecules along the C4  , C2  and C3  symmetry axes. 	The 

results are presented in Figure 6.3. 	The value of the 

repulsion constant R certainly has some indefiniteness 
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associated with the rather arbitrary choice of the solid 

angle subtended at the relevant cation. 	Fortunately the 

total potential does not appear to be very sensitive to 

this choice. 	Thus the appropriate value could be obtained 

quite conveniently by using the method of trial and error 

on the computer. 

It is interesting to note that the interaction 

along the C
4 
axis is rather unique. 	This is in fact the 

direction through the centres of the 8-membered rings of 

0 anions, which form the large openings between any two 

neighbouring sorption cavities. 	Of course, this potential 

is very sensitive to the variations in the interaction 

parameters of sorbate molecules. 	Accordingly it can give 

a useful indication of the ease with which a sorbate 

molecule goes from one cavity to another. 	From these 

results it can be seen that the potential barriers opposing 

the passage of krypton and methane through the openings of 

Linde 5A sorption cavities are relatively small. 
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FIGURE 6.3 Total Interaction Potential for Linde 5A 
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6.3 SPHERICALIZATION 

The 72 0 anions lining the surface of every 

sorption cavity in Linde 5A are more or less uniformly 

distributed. 	If the electrostatic effect of these is not 

taken into account, the interaction 

sorbate molecule is given approximately 

function of the Lennard-Jones 

u.
Id 
(r) 	. 	4E 

of each 

by a 

(12,6) 	form: 

anion with a 

potential 

(6.3.1) ( 	12 - 	6 r 	r 

where r = the distance between the reference sorbate 

molecule and the anion concerned, 

d = the effective collision diameter, such that 

uLJ(0') = 0, 

and 

	

	E . the magnitude of the negative interaction energy 

at equilibrium separation. 

. The interaction of the sorbate molecule, located 

at a point r in the cavity, with the 72 anions is then 

given as a sum of the uIJ(ri)  over all these anions: 

U  A.0 A. 
	uLJ(ri) 
	

(6.3.2) 

i 

where r
i is the distance between the sorbate molecule and 

the i th 0 anion. 

147 



148 

In the subsequent statistical mechanical 

calculation, however, it is mathematically more convenient 

to approximate U
0 
 (r) by a spherically symmetric Lennard-

Jones & Devonshire (LJD) potential function (Lennard-Jones 

& Devonshire 1937, 1938) : 

2(12  m(r2  n 	v 1 4  1 a2 	)] ULJD(r) . 'i( ) ( r2 
— 

v
0 	a

2 
0 

 (6.3.3) 

where 1(x) = (1+12x+25.2x
2
+12x3+x4)(1-x)

-10  

m(x) . (1+x)(1-x)
-4 

a 	= radius of the spherical cavity, 

r 	. distance of the sorbate molecule from the 

cavity centre, 

A 	= the energy parameter, given by 72E in this 

case, 

v
x 	Q. 3 . 

and 	
v0 	

a32
-i- = 	. 

The form of the LJD potential is well known and has been 

studied in detail by Wentorf et al. (1950). 	It has been 

used extensively in the cell theories of liquids and dense 

gases. (Barker 1963, Ievelt & Cohen 1964) 

The relevant data for the sorption of krypton and 

methane in Linde 5A are given in Table 6.5. 	The value for 

the cavity radius is the arithmetic mean of distances from 

the cavity centre of the 3 types of 0 anions as given in 

Table 6.2. 	In choosing the values for E and ce , which 
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characterize the interactions between unlike atoms and 

molecules, the following combination rules (Winter 1950, 

Rowlinson & Townley 1953) were used : 

£12 	(C11 E 22 )4. 	(6.3.4) 

and 
	6

12 	
*(0111+ 012 2) 	(6.3.5) 

In view of (6.2.4) it is clear that £ can also be deduced 

directly from the dispersion attraction parameter C
(6)  by 

using 

C
(6) 	4E01

6 
	(6.3.6) 

where 
	d 2-1/6r0 	(6.3.7) 

r
0 
 being the equilibrium separation. 	The values for 6 

are given in Table 6.4. 	The relevant parameters for 

estimating cC are given in Sections 6.2(c) and 6.4. 

Figure 6.4 presents the total potentials along 

the three symmetry axes : C2, C3  and C4. 	In this 

calculation the spherically symmetric LJD potential just 

described was used for the interaction of the sorbate 

molecules with the 72 0 anions. 	On the other hand, the 

8(Na,Ca) cations were treated as discrete atoms with point 

charges, and the electrostatic induction energy arising 

from these were fully taken into account. 	The computation 

was carried out on a digital computer. 	The space 

components of the electrostatic field were summed in a 

manner similar to that already described in Section 6.2. 
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The results are in general agreement with those 

given by the more accurate potentials in Figure 6.3. 

However, it may be observed that the use of the IJD potential 

here causes the potential along the rather unique C4  

direction to change markedly. 	Physically this means that 

the sorption cavity is now bounded by a spherical surface 

of infinite repulsion potential, of radius a. 

For practical reasons, it is necessary in the 

subsequent calculations involving more than two sorbate 

molecules in a subsystem to use a less accurate form of the 

sorbate—sorbent interaction potential. 	In this case the 

contributions from the 8 (Na,Ca) cations, as well as those 

from the 72 0 anions are sphericalized. 	The appropriate 

interaction parameters are given in Table 6.6. 	As in the 

previous case, these were obtained by using the relevant 

data from Tables 6.2 and 6.4, and from Sections 6.2(c) and 

6.4. 	Results are presented as curves S in Figures 6.3 

and 6.4. 	From these it appears that the fully sphericalized 

potentials actually give quite a reasonable approximation of 

the more elaborate potentials for which some or all of the 

sorbent atoms are treated as discrete interaction centres. 



TABLE 6.5 LJD Parameters for the 72 0 Anions  

Parameter Unit 
p 

Krypton Methane 

IVE/Ic degs.K. 	- 18325 17748 
0 

a A 7.066 7.066 

cr A 3.153 3.263 

v
m 13  31.34 34.73 

v0  13  249.5 249.5 

TABLE 6.6 LJD Parameters for the 72 0 Anions and  

8 (Na.Ca) Cations  

Parameter Unit Krypton Methane 

Ar/k degs.K. 19934 19304 

a 1 7.010 7.010 

ce 1 3.114 3.224 

v
m A3 

 
30.20 33.49 

v0  13  243.6 243.6 
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FIGURE 6.4 Snhericalized Potential for Linde 5A  
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6.4 SORBATE-SORBATE INTERACTIONS  

For the cases of sorption of krypton and methane 

in Linde 5A it is reasonable to assume that the sorbate- 

sorbate interactions are pairwise additive. 	The Lennard-

Zones (12,6) potential of the form (6.3.1) was chosen for 

these interactions. 	The interaction parameters used were: 

E/k = 158
o
and 148.2 K, cr= 3.597 and 3.817 1, for krypton 

and methane, respectively. 	These values are based on 

experimental measurements of the second virial coefficients. 

(Hirschfelder et al. 1954a, Barker & Leonard 1964) 

It may be of interest to note that in using the 

lennard-Zones potential with the above empirical constants 

the dispersion effects which involve higher multipole 

interactions are partially taken into account. 	Strictly 

speaking, the Lennard-Jones potential should be used only 

in studying molecular systems in the gas phase. 	It is not 

expected to be a good approximation for a dense phase of 

highly polar molecules. 	In such circumstances the molecular 

interactions cannot be accurately represented by pairwise 

additive potential functions. 	As for the subsequent use in 

statistical mechanical calculations of the sorption of non-

polar sorbate molecules in zeolite, however, the present 

simplification should not introduce any appreciable error. 

At least it can be expected that the possible inaccuracy in 

this case is much less than that of the previous estimates 

for sorbate-sorbent interaction energy. 	The primary reason 

for using the Lennard-Jones potential here is certainly one 

of mathematical convenience. 
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6.5 BACKGROUND POTENTIAL 

. A general expression can be derived for the 

potential of a reference sorbate molecule interacting with 

a system of identical molecules that are randomly distributed 

with a uniform density in the infinite region surrounding a 

spherical space to which the reference molecule is confined. 

This result can then be used to estimate the 'background 

potential' due to the presence of molecules and atoms outside 

the shells of 8(Na,Ca) cations and 72 0 anions forming the 

wall of a sorption cavity. 	This cavity wall is regarded 

here as the immediate environment of the subsystem, and thus 

do not directly contribute to the 'background potential' of 

interest. 	For definiteness the interaction potential 

between the reference molecule and a 'background' molecule 

is chosen to be of the Lennard-Jones (12,6) form as given 

by (6.3.1). 

The interaction potential between the reference 

molecule located at a distance r from the cavity centre and 

all the randomly distributed molecules outside the spherical 

space of radius a is given by (Figure 6.5) 

co n7C 

A 

1P(r) = 8X81 dx 	e [F2(x,(9) - F(x,47)] x2 sinv (6.5.1) 

a 	0 

where 	F(x,°) = Cr6/(r2+x2- rx cos° )3, 	(r4;a), 

6 and cr are the relevant Lennard-Jones parameters, 

and 	is is the number density of the 'background' Liolecules, 
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The integration with respect to 6 is over the volume elements 
each constituted of an infinitesimal circular ring any 

diameter of which subtends a parametric angle 20 at the 

cavity centre. 	Also, the straight line passing through the 

reference molecule and the cavity centre is normal to the 

plane of the infinitesimal ring. 	In consequence every point 

of this ring is at the same distance x from the cavity centre. 

The integration with respect to x is over the infinitesimal 

spherical shells, any representative one of which is of 

radius x and is formed by the previous integration over 0 . 

By integrating by parts it is easy to show that 

(6.5.1) leads to 

p 6 	 16/C 1+9y+12.6y
2
-1.3y

3 
' 

3 / 	9 
3a
x 
(1-y)

9 

1 

	3 

(6.5.2) 

a
x3

(1-y)
3 

wherey = (r/a)2. 	The 'reduced' quantities are defined by 

a
x 

= a/o' , r
x 

= r/a , px  = fe , and 21,3€(r) = vie& . 
A slightly variant form of (6.5.2) has been given by Barrer 

& Stuart (1959) and by Barrer & Reucroft (1960). 	The reduced 

potential le (r) was calculated at various values of the 

parameter a
m
. 	These results are presented in Figure 6.6. 

It is observed that the magnitude of -V (r) near 

the cavity centre decreases gradually as a
x 
 increases. 	In 

the case of sorption of krypton and methane in Linde 5A at 

saturation, the appropriate parameters for ziP(r) are: a
x
-,, 2.5, 

p
x
... 1, and E/k. 	

0
,200 K. 	Accordingly the contribution from 

'background potential' to the total sorbate-sorbent and 

sorbate-sorbate interactions is expected to be only about 10 %. 



sine 

FIGURE 6.5 Integrations of the 'Background Potential' 
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This means that at moderate sorbate concentration, to a 

fair approximation, the configurational energy of a subsystem 

is simply the sum of sorbate-sorbate interactions within 

the single cavity concerned and the interactions of these 

sorbate molecules with their immediate environment already 

described. 	In Section 9.2 this fact will be further 

discussed in relation to the assumption of quasi-independence 

of the subsystems. 
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FIGURE 6.6 The 'Reduced' Background Potential 
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CHAPTER 7  

RESULTS FOR THE SUBSYSTEMS  

7.2 ANALYTICAL RESULTS  

Quantitative studies of the statistical mechanics 

of a subsystem with one or two molecules in the spherically 

symmetric potential field of a zeolite sorption cavity 

can be conveniently achieved by means of analytic methods 

together with some standard techniques of numerical 

analysis. 	The choice of the relevant parameters for the 

sorption of krypton and methane in Linde 5A has already 

been considered in Chapter 6. 	The Lennard-Jones & 

Devonshire potentials, with the contributions from the 72 

0 anions and 8 (Na,Ca) cations fully ephericalized, will 

be used to represent the sorbate-sorbent interactions. 

The sorbate-sorbate interaction potentials are assumed to 

be of the Lennard-Jones (12,6) form. 	By performing the 

Simpson's rule integrations on a digital computer, various 

statistical thermodynamic quantities of interest can be 

calculated from the following analytical expressions. 

(a) One Molecule in a Subsystem  

The configuration integral for this sorbate 

molecule is given by 



0 
aF Q(1,T) exp [-U(r)/kT]r2 dr 

kT2 
= 41E 

U(r) 
(7.1.2) 
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Q(1,T) = 44 

0 

a 

exp[-U(r)/kT] r
2 dr (7.1.1) 

where U(r) 	. 	UIJD(r) as given by (6.3.3). 

As a consequence 

and 
92 

Q(1 ,T ) 'a 22 

a 
U(r) U(r) 	2 

41rjr ___, 	2  - 	 exp [-U(r)/klr2 dr 
0 	 0 kT kT T 

(7.1.3) 

(b) Two Identical Molecules in a Subsystem 

The configuration integral concerned is 

a 	a 	Tr 
21 

Q(2 ,T ) 	= sir 	dr 
1 
 j dr 2 
	

x i de ep EU (3:a  ,z2  )/kT] 
0 	0 	0 

. r1
2
r2
2
sine (7.1.4) 

where U(rV  r )= UIJD (r1  ) + ULJD  (r2  ) + uIJ(r12)' ....-2  

uLJD(ri)  (1 = 1,2) is given by (6.3.3), 

. 0LJ(r12) is given by (6.3.1), 

r1  and r2 are the magnitudes of the vectors r and r ....,1 	....,2 



a 	a 	IC 

• 87G 	dr 
1 
j dr

2 
 de Q(2,T) 

0 

U(r1'— r2  ) 

kT
2 
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from the cavity centre to the two molecules, 

0 is the angle between the vectors r
1 
 and r 

", 
and r12 is the intermolecular distance, which is given by 

r2  ,r12 • (r1  2
4- .2- 2r

1  r2 
 cose ) 	. -  

It follows that 

(7.1.5) 

exp[HU(L1a2)/kT] r r 
1
2 22 sine 

and 
a 	fL 

2 	2 	u(zi,E2) U(L1.,E2) 	2 
Q(2,T) 	= 817t 	drf dr2,11  de 	 I  

0 	0 	0 
a T 2 	 kT

2 	
kT

2 

(7.1.6) 

exp [17(34,r2)/kTi, r12r2
2 sine 

(c) Three Identical Molecules in a Subsystem  

An analytical expression for the configuration 

integral of three identical sorbate molecules in the 

spherical potential field is 
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a 	a 	a 	le 	2 

= 	1 drif dr2
ji drj de

1
1de 

13 
0 	0 	0 	0 	

17 

2 

4  eit  

(7.1.7) 
1 .expEU(Xlq:2,3:1)/kTI ri 2  r22  r32  sineleinel3  

1114(rij)  
1=1 	i=1 j4i 

r1,r
2 
and r3  are the magnitudes of vectors ,yi, x2  and x3  

from cavity centre to the three molecules labelled 

by 1, 2 and 3, respectively, 

e 	is the angle between two vectors Ni  and r., 

i,j=1,2,3), 

and t;f is the angle that the vector 
Ni 

 makes with the plane 

of r and r3. 

It is easy to show that ) is related to 0923  by 

cos 8 23 c°8 e2.2 "5913 - sin 6,12  sin 6' 	cos (15" 
13 

2 

likewise expressions for aT   
Q(3,T) and --- 2 Q(3,T) 

T 
can be written as finite integrals with respect to the 

variables r1, r2, r3, 612' 6113' and 	However, as the . 

integral in (7.1.7) is 6-dimensional, the Simpson's rule 

integration is inevitably time-consuming, and in practice 

was not found to give any satisfactory result within a 

reasonable limit of computing time, 	On the other hand, it 

appears that the Monte Carlo methods can in general give 

much more reliable estimates in the cases of three of more 

sorbate molecules in a subsystem. 	These alternatives will 

be considered in the subsequent sections. 

Q(3,T) 

where 

  

Tgr
1,r2 ,—r3 ) = —— LJD(r)  
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(d) Statistical Thermodynamic Quantities  

When the configuration integral Q(n,T) and its 

first two partial derivatives with respect to T are known, 

statistical thermodynamic functions of interest can be 

evalUated by using the following standard formulae: 

A(n,T) = -kT lnn!T)  2 
- lnA] 

- 12( n ,T ) 	= kT2 a 
	2 
T 	2 

In Q(n,T) - 	nkT 
0  

(7.1.8) 

(7.1.9) 

s(n,T) 

and C(n,T) 

[u(n,P) - A(n,T)] 

kT
2[9 

2 
In Q(n,T) - 

aT 
2 a 
T a T  

(7.1.10) 

In Q(n,T)i- 	nk 

(7.1.11) 

where n is the number of identical molecules in 

a cavity. 

It is useful to define the configurational 

thermodynamic functions (subscript cf) by the followings: 

A
of'

T) 	= 	A(n,T) - 	nkT lnA 	(7.1.12) 

ucf(n,T) 	= 	u(n,T) - 2  nkT 	(7.1.13) 2 

scf(n,T) 	= 	2 	M s(n,T) - 	nk (1 - 	A) (7.1.14) 2 

and 

Cof(n'T) 	.C(n,T) - 2 nk 	(7.1.15) 2- 
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(e) Details of Simpson's Rule Integration 

In evaluating the integrals characterizing two 

identical molecules in a subsystem, efficiency of the 

Simpson's rule integration on the computer was improved by 

(1) Using the symmetry properties of the integrands 

with respect to the interchange of molecular 

coordinates, 

(2) Storing the required values of sine and case at the 

beginning of each Program-execution, 

(3) Using the Taylor's series expansion to approximate 

the factor exp(-U/kT) for small values of the 

exponent, 

and (4) Reducing the ranges of integration with respect to 

r
1 
and r2, and thereby ignoring the contribution 

from configurations with very high potential energy 

near the cavity wall. 

For one sorbate molecule in a cavity the calculation 

was performed with respect to 1000 - 10000 quadratures, and 

for two molecules in a cavity with respect to 40 - 100 

quadratures for each dimension of the integral. 	Results for 

statistical thermodynamic quantities of krypton and methane 

in Linde 5A are presented in Figures 7.1 - 7.5. 
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FIGURE 7.2 Configurational Free Energy of Two Sorbate  

- --L 	I 
- 

	

Molecules in a Linde 5A Cavity  1 	( 
I-- 	' 	- -- 	 • 	, 

1 	-t- 	-i---- 	r 	i 	
. 

1 

---7_17- 1C---  (2 -,T )/k ( 
i

0 t  
K) 	, 

	

t 	1 , 	,  
ofi 

	

CiLin! 1 units) 	
-, 

[ 	_ 

I ___ ___ 

-t 

[ 	
3400 

	520a 

-2800- 

Kr- 

_ 
	2600- 

_-x_200 
 

-1- 

 	2200 
-- 

K) 



-4- 

166 

FIGURE 7.3  Internal Energy of One and Two Sorbate Molecules  
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7:2 SIMPLE MONTE CARLO RESULTS  

The canonical partition functions for specific 

sorption systems of n molecules (n.,4 5) and their partial 

derivatives with respect to temperature were calculated by 

using the simple Monte Carlo methods. 	Following the 

computational techniques described in Section 5.3, some 

mathematical expectations of multidimensional integrals of 

interest were estimated from the arithmetic means of 

integrand values calculated for a large number of trial sets 

of molecular configurations. 	For such a purpose, however, 

it is clear that the point density distribution of randomly 

chosen configuration sets in the 3n-dimensional configuration 

space had to be rectangularly uniform. 	In practice the 

required distribution was efficiently generated on the 

computer by applying the method of independent random trials 

introduced in Section 5.4. 	The detail of the computation 

is on the whole quite straightforward. 

As regards computer-programming mention should be 

made of the following important points. 	Special care was 

taken in choosing a way to nest together the various cycle-

settings, since in general even a slight modification in 

this could effectively save much valuable computing time. 

In particular it can be expected that the evaluation of 

each interaction potential with respect to a specified set 

of molecular configurations tends to be very time-consuming. 

So this step was arranged to be outside the computing cycle 

inside which the integrand was evaluated at a number of 

169 
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temperatures. 	Superficially this method should be very 

advantageous in that the configuration integrals and their 

derivatives could be evaluated for a large number of 

temperatures without having to increase proportionately the 

length of computing time. 	In reality, however, it is 

clear that fluctuations of the resulting estimates for a 

particular integral at different temperatures do correlate, 

and thereby systematic errors can be introduced. 	To obtain 

the most reliable estimates within limited computing time, 

therefore, an optimum number of temperatures for which each 

integral was evaluated by means of a single sequence of 

random configuration sets had to be chosen rather carefully. 

In this connection a detailed study of fluctuations in the 

quantities being estimated with respect to the number of 

trial configuration sets could give much useful 

information. 	More reliability was subsequently obtained 

by using the techniques just described in conjunction with 

other independent methods which do not imply the same type 

of correlation. 

The sequence of pseudo-random numbers generated by 

the computer was of course identical in each Program-execution. 

So in order to minimize any systematic error that would be 

caused by subsequent correlation of the sampling.procedures 

in separate computations, an arbitrarily chosen length of 

the sequence was generated and rejected at the beginning of 

each Program-execution, before this sequence was used to 

determine the sets of random molecular configurations. 	At 

convenient stages in the computation similar rejections of 

arbitrarily chosen lengths of the sequence currently 
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generated were also effected whenever these seemed 

desirable. 

Efficiency of the calculation was found to be 

much improved by using appropriately chosen hard-core 

cut-offs in the potential functions concerned as a means 

of reducing variance of the estimates. 	In dealing with 

the sorption of krypton and methane in Linde 5A, the 

cut-offs chosen for the Lennard-Jones & Devonshire 

potentials were at 4.6 - 4.8 I and 4.5 - 4.7 1 from the 

cavity centre, and those for the Lennard-Jones potentials 
0 

between like molecules at 3.1 - 3.4 and 3.2 - 3.6 A, 

respectively. 

Typical numbers of the trial configuration sets 

in these computations were 40,000 - 80,000 for n = 1, 2 

or 3, and 20,000 - 40,000 for n = 4 or 5. 	Fluctuations of 

each estimate were carefully studied; and in general the 

convergence was found to be very reasonable. 	An attempt 

was also made to estimate Q(6,T) and Q(7,T), but because of 

the rather slow rates of convergence in these cases no 

satisfactory result was obtained. 	For practical reasons 

the case of n = 5 appears to be the upper limit of available 

capacity of the computer used. 	As expected, estimates for 

Q(2,T) and their derivatives are in good agreement with the 

results previously obtained by the Simpson's rule integration. 

Thus the reliability and usefulness of the technique of 

independent random trials with appropriate variance reduction 

have been demonstrated. 
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Monte Carlo calculations of Q(n,T) and their partial 

derivatives with respect to temperature, where n = 2, 3 and 

4, were also carried out by using the method of stochastic 

sequence as described in Section 5.3 to generate the sequence 

of trial configuration sets. 	Again the computation was 

fairly straightforward, and similar attention was also paid 

to the manner in which the most efficient programming was 

effected. 	The results are in accordance with those previously 

obtained by applying the method of independent random trials. 

Accordingly the mutual consistency of these computational 

techniques has been checked. 

As pointed out in Section 5.4, when the method of 

stochastic sequence is used with interactions involving 

hard-core cut-off potential functions, it is necessary to 

know numerical values of the relevant Q
n 

explicitly. 	The 

configuration integral Q
1 

for one hard-sphere molecule of 

diameter din a spherical cavity of radius a and of effective 

wall thickness e is clearly just the accessible volume d' of 

that cavity, which is given by 

A' 	 71LR3 	 (7.2.1) 

where 	R 	= 	a - 0" 	is the free radius of the cavity. 

Also an elementary geometrical consideration leads to the 

following result for q2  : (Appendix 1) 

Q
2  
° 	7[2(19 

R6- 
9 
16 3 3 	2 4 18 6 

9 	R 	+ R 	- 	) 	(7.2.2) 

Analytical expressions for Q
n 
with n;)2, on the other hand, 

involve complicated multidimensional integrals which cannot 
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be easily partitioned into directly integrable parts. 	So 

their numerical values were estimated on the computer by 

applying the method of independent random trials. 

Generally speaking, fluctuations, and hence the 

rate of convergence, of estimates resulting from the method 

of random trials and from the method of stochastic sequences 

were found to be comparable. 	However, it turns out in 

practice that the latter method requires a careful study of 

the effects of changing initial configuration sets, which 

tends to make the necessary computation and analysis very 

tedious. 	For this reason, in the present work most of the 

numerical values for the canonical partition functions and 

their derivatives were obtained by means of the method of 

independent random trials. 	Typical fluctuation plots are 

shown in Figure 7.6. 

At this stage statistical thermodynamic functions 

for specific subsystems with n4.6 could be derived from the 

above results by applying the appropriate formulae given in 

Section 7.1(d). 	These values are presented in Figures 7.7 

- 7.14. 	Results for the cases when n = 1 and 2 are of course 

identical with those previously obtained by the Simpson's 

rule integrations. 	Results for A(n,T), u(n,T) and s(n,T) 

with n = 6 and 7 were obtained by extrapolating the plots of 

known results up to n = 5 versus n. 	In the statistical 

thermodynamic calculation of Chapter 8, accurate results for 

A
cf(

n
'
T) (n = 1 to 7) will be needed. 	So these are presented 

in Tables 7.1 and 7.2. 
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FIGURE 7.6 Fluctuations of Simple Monte Carlo Estimates  
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FIGURE 7.7 Free Energy of n Krypton Molecules in a 
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FIGURE 7.8 Free Energy of n Methane Molecules in a 
_ 	-- _l__ 

— - - - - ' — - 
[ 	, 	- 	... 	- 

- Linde 5A Cavity  L
_ 

_  _ _ , . 	- - , - 
- 	I 	_, 

i 	_ 

__-_-= A-  (h.-; T ) it n k -( 	K) - 	- 
. L  ________. _____i____ _ 

5000 ! t - 	-;___ 
-! — __, 

L 
I 	 

800L1 

-- 
____,__ _ i- _ _ 	_,__, 

 1-- 
/ 

__, _______ 
- 

_ -, __,___ ,_ , 	_._ 
--T 

; 
--I 

,- 

)24 

- 
• 1_ 

r - 	h 

6-0
( / i - 

_ 	, 
- 

. n=5" 

__ 
,, 

— 

7i=7_ 

4Z110- , . 

- t 	

- 

_  _ 

.. 
0- 

_ 
--- - 

! 

5600  

r , 

t----- 

I.-- . 

. 

I - 
---- - r-  • - 

_ 

__.. 

- - 	--t . , 
,-- 

1 
--- 1  _ 

. 	_ 



300  TtK 
	1500 

n=1- 
'Y1=3 
72, 

in a. -Linde 5A Cavity  

o 
( KJ • 4- -•---- - 

- 

Z000 

i(100 

	1•900 

- _ 

1700 

-4 

177 

FIGURE  7.9 Internal Energy of n Krypton Molecules  
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FIGURE 7.10 Internal Energy of n Methane Molecules  
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FIGURE 7.11 Entropy of n Krypton Molecules in 	 
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FIGURE  7.12 Entropy of n Methane molecules in 
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FIGURE  7.13 Heat Capacity of n Krypton Molecules  
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FIGURE 7.14 Heat Capacity of n Methane Molecules 	 
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TABLE 7.1 Configurational Free Energy of Krypton in Linde 5A  

T (°K) -Aof(n,T)/nk(K)(A 	in I units) 

n=1 n=2 n=3 n=4 n=5 n=6 n=7 

300.00 3532.4 3420.6 3330.8 3255.3 3189.3 3130.0 3078.2 

288.15 3470.1 3363.9 3278.7 3207.3 3145.4 3083.0 3032.5 

273.15 3391.5 3292.5 3213.1 3147.0 3090.2 3029.7 2979.2 

253.15 3287.6 3198.0 3126.4 3067.3 3017.2 2963.3 2922.0 
233.15 3184.5 3104.4 3040.7 2988.6 2945.1 2899.5 2861.5 
218.15 3107.9 3035.0 2977.2 2930.4 2891.5 2848.0 2814.3 
194.65 2989.1 2927.4 2878.9 2840.5 2808.7 2776.5 2752.0 

150.00 2768.3 2728.1 2697.6 2675.5 2655.5 2642.0 2631.5 
100.00 2530.2 2515.1 2506.2 2502.9 2500.2 2500.0 2500.0 

TABLE 7.2 Configurational Free Energy of Methane in Linde 5A  

eK) T (o 
-Aof(n.T)/n1c640(11 	in I units) 

n=1 n=2 n=3 n=4 n=5 n=6 n=7 

300.00 3657.3 3538.5 3443.4 3358.0 3286.0 3220.5 3159.0 

288.15 3595.7 3482.9 3392.8 3312.0 3243.8 3180.0 3124.5 

273.15 3518.1 3412.8 3329.0 3254.2 3189.5 3131.5 3082.5 

253.15 3415.4 3320.1 3244.7 3177.8 3120.5 3071.5 3025.0 

233.15 3313.5 3228.3 3161.3 3102.3 3054.0 3010.5 2970.0 

218.15 3237.8 3160.2 3099.5 3046.3 3000.5 2964.0 2928.0 

194.65 3120.4 3054.6 3003.8 2959.9 2924.5 2895.5 2868.5 
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7.3 RESULTS FROM IMPORTANCE SAMPLINGS AND OPTIMUM SAMPLINGS  

It has been shown in Sections 5.5 - 5.7 how 

statistical thermodynamic parameters characterizing specific 

sorption subsystems could- be calculated by using the 

techniques of importance sampling and optimum sampling. As 

applied to studying the sorption of krypton and methane in 

Linde 5A, these methods were found to be very efficient; 

and in general very accurate estimates of the quantities of 

interest could be obtained within a comparatively short 

computing time. 	However, it is clear from (5.6.1) and 

(5.7.1) that the partition functions themselves cannot be 

conveniently evaluated by such means, since these functions 

are implicit in the normalizing factors of relevant Markov 

transition probabilities. 	Indeed these methods can only 

give an estimate of the ratio of two integrals, such as the 

Boltzmann average defined by (5.5.2), but not the estimate 

of each of these. 	On the other hand, reasonably accurate 

values of the internal energy could easily be obtained by 

using the methods of importance sampling and optimum sampling 

even when the number of molecules in a subsystem is as high 

as 10. 

Because of the temperature-dependence of the 

transition probabilities, there is undoubtedly a stringent 

limitation on the use of importance samplings and optimum 

samplings in regard to computing time. 	The primary object 

in employing these methods here is for improving the 

reliability of estimates previously obtained by other 

techniques which are less tedious. 	Following (3.3.7) 
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C
cf
(n
'
T) was estimated from fluctuations of the total 

configurational energy of the subsystem under investigation. 

Results for u(n,T) and C
of
(n,T) for small n are in 

accordance with those already obtained in the last two 

sections. 	These are presented together in Figures 7.9, 

7.10, 7.13 and 7.14. 	For subsequent use in Chapter 8 the 

most accurate values of u
of
(n,T) obtained are given in 

Tables 7.3 and 7.4. 	Again, in these calculations it was 

found that studies of fluctuations with respect to the number 

of trial configuration sets could give valuable information 

concerning the reliability of various estimates. 	Typical 

plots of fluctuations are presented in Figure 7.15. 

As remarked in Section 5.7, the Fosdick method of 

optimum sampling can most suitably be applied as an iteration 

procedure for increasing the reliability of Monte Carlo 

estimates. 	So this technique was used for the purpose of 

obtaining the values of the internal energy of specific 

subsystems to the maximum accuracy attainable, particularly 

when a subsystem contains more than 5 or 6 molecules. 	Some • 

typical results are presented in Table 7.5. 	From this it 

may be observed that the internal energy per sorbate molecule 

does not vary significantly from n = 1 to n = 10. 	This is so 

because in the case of sorption of krypton and methane in 

Linde 5A the sorbate-sorbate interaction energy is relatively 

small. 	Also the approach of sorption saturation (at n",13) 

is indicated by the fact that -u
of
(n,T)/nk reaches its 

maximum value when n = 8 or 9. 
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FIGURE 7.15 Fluctuations of Monte Carlo Estimates  
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TABLE 7,3 Internal Energy of Krypton in Linde 5A  

T (°K) 

-u(n,T)/nk 	(° K) 

n=1 n=2 n=3 n=4 n=5 n=6 n=7 

300.00 1500.2 1530.4 1557.3 1586.5 1614.5 1642.8 1671.2 

288.15 1524.8 1555.0 1582.0 1611.3 1640.5 1669.3 1698.1 

273.15 1556.0 1586.3 1613.5 1642.9 1671.4 1700.3 1729.1 

253.15 1597.7 1628.1 1655.7 1685.3 1715.0 1744.7 1774.2 

233.15 1639.5 1670.2 1698.1 1728.2 .1759.3 1790.6 1821.7 

218.15 1670.9 1701.8 1730.1 1760.7 1792.9 1824.0 1854.6 

194.65 1720.0 1751.4 1780.3 1812.0 1843.0 1873.7 1904.5 

150.00 1813.1 1846.1 1877.3 1911.1 1943.3 1975.4 2008.1 

100.00 1916.2 1953.5 1991.2 2024.7 2058.2 2088.5 2118.2 

TABLE 7.4 Internal Energy of Methane in Linde 5A  

T 	(°K) 

- 	-u(n,T)/nk 	(° K) 

n=1 n=2 n=3 n=4 n=5 n=6 n=7 

300.00 1644.4 1676.0 1707.3 1740.8 1776.2 1810.0 1844.6 

288.15 1668.8 1700.4 1731.6 1765.0 1799.3 1833.8 1868.3 

273.15 1699.7 1731.3 1762.4 1795.6 1830.4 1863.8 1897.8 

253.15 1741.1 1772.8 1803.8 1836.7 1870.8 1904.5 1938.9 

233.15 1782.6 1814.4 1845.5 1878.0 1911.6 1944.7 1978.8 

218.15 1812.8 1845.8 1876.9 1909.2 1943.5 1976.3 2010.6 

194.65 1862.5 1895.0 1926.4 1958.0 1993.3 2026.5 2060.5 



TABLE 7.5 Accurate Results for -ucf(n,T)/nk (°K) 

n Kr in Linde 5A, 	100°K CH
4 
 in Linde 5A, 300°K 

1 2066.16 + 0.05 2094.35 ± 0.03 

2 2103.5 ± 0.3 2126.0 ± 0.2 

3 2141.2 ± 0.5 2157.3 ± 0.3 

4 2174.7 + 1.0 2190.8 + 0.6 

5 2208.2 + 1.5 2226.0 ± 	1.0 

6 2238.5 ± 	2.0 2260.1 ± 1.5 

7 2268 + 3 2294.6 + 2 

8 2286 ± 6 2295 ± 3 

9 2212 + 10 2208 + 7 

10 2191 + 15 2189 ± 10 

N.B. The results for n = 1 were obtained by the Simpson's 

rule integrations. 	The uncertainty limits given 

above are only a rough guide, and were obtained by 

studying fluctuations of the Monte Carlo estimates 

with respect to the numbers of trial configuration 

sets, which varied from 20,000 to 100,000. 
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7.•4 EFFECTS OF EXCHANGEABLE CATIONS  

Thus far only certain subsystems with fully 

sphericalized sorbate-sorbent interaction potentials have 

been considered. 	Monte Carlo calculations of statistical 

thermodynamic quantities were also attempted for the 

subsystems of krypton and methane in Linde 5A in which the 

8 exchangeable cations of each sorption cavity were treated 

as discrete interaction centres. 	The total potential for 

any specific molecular configuration set, including the 

electrostatic effect, was calculated in the manner described 

in Sections 6.2 and 6.3. 	As before, all contributions 

from the 72 0 anions were sphericalized. 

To obtain any reasonable result in this case it is 

inevitable that a very substantial computing time will be 

required. 	Consequently, in practice only a few rough 

estimates for the cases of one and two molecules in a 

subsystem could be made within the available computing 

time. 	Nevertheless from these results it becomes evident 

that, in general, there is not a significant difference 

between the values of any statistical thermodynamic quantity 

as estimated for the two cases of partially and fully 

sphericalized potentials. 	More specifically the internal 

energy difference was found to be only about 1 %.(Table 7.6) 

It may therefore be concluded that in so far as 

statistical thermodynamic functions are concerned the 

sphericalization is indeed a good approximation. 	At least 

it is quite adequate for the present purpose. 	On the other 
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hand, in regard to certain behaviours of the subsystems at 

the molecular level, the results of the next section will 

indicate that the representation of sorbate-sorbent 

interactions by fully sphericalized potential functions 

may not in some respects be physically realistic. However, 

this contrast should not cause any surprise here, for it 

is a common knowledge of statistical thermodynamics that 

the magnitudes of many thermodynamic functions are quite 

insensitive to the detailed nature of the laws governing 

intermolecular forces. 	The quantitative study of the 

interaction potentials in Chapter 6 should in particular 

help to clarify some of the foregoing remarks. 

TABLE 7.6 .Effects Of Excha geable Cations on -ucf(n,T)/nk (°K) 

T 	(°K) n 
Kr in Linde 5A CH

4 
 in Linde 5A 

Discrete Sphericzd. Discrete Sphericzd. 

300.00 1 1973 1950.2 2119 2094.4 

2 2003 1980.4 2153 2126.0 

273.15 1 1988 1965.7 2134 2109.4 

2 2018 1996.0 2168 2141.0 

194.65 1 2034 2012.0 2179 2154.5 

2 2066 2043.4 2214 2187.0 

150.00 1 2061 2038.1 2205 2180.0 

2 2094 2071.1 2241 2214.1 

100.00 1 2089 2066.2 2232 2207.7 

2 2127 2103.5 2272 2245.9 
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7.5 PROBABILITY DISTRIBUTION FUNCTIONS OF A SUBSYSTEM 

This section is devoted to a quantitative study 

of the degrees of localization of sorbate molecules within 

specific subsystems of krypton and methane in Linde 5A. 

In this connection the effects of exchangeable cations are 

of special interest. 	Owing to limited computing time 

available, however, it was possible to investigate in some 

detail only the cases of one and two sorbate molecules in 

a subsystem. 	Qualitatively speaking it is expected that 

the sorbate molecules in any subsystem which is not too 

densely occupied should spend most of their time in regions 

near the cavity wall, and in particular around the 8 (Na,Ca) 

cations. 	Nevertheless, because of the complex nature of 

sorbate-sorbent and sorbate-sorbate interactions, the exact 

manner and extent of such localization may not in reality 

be easy to visualize. 

For the present interest each sorption cavity is 

regarded as an isothermal closed quasi-independent subsystem. 

Mathematically the primary object is to study the 

distribution density of the canonical ensemble which 

represents the statistical mechanical behaviour of any 

subsystem in the relevant configuration space. 	However, 

instead of mapping out every detail of the distribution, 

one is merely interested in obtaining certain integrals of 

the density function which would subsequently find the most 

natural physical interpretation. 	These integrals are in 

effect the various probability distribution functions of 

a specific sorption system, some of which will now be 

introduced. 



(a) Localization on Cavity Wall  

A distribution function P(n
s)(r) is defined by the 

requirement that P(s)(r)dr be the probability of finding any 

sorbate molecule within the range dr at a distance r from 

the cavity centre of a subsystem containing n identical 

molecules. 	This function is normalized to unity: 

P(8)(r) dr 	1 	(7.5.1) 

It is obvious that P(s)(r) is related to the 

detailed molecular description of the subsystem by 

n(dr) exp[-U((n})/kT] d(1211) 

P(s)(r) dr (7.5.2) 

 

Q(n,T) 

 

HereiNn(dr) represents the integrated region of the 3n-

dimensional configuration space, in which any point 

specified by the generalized coordinates 
n  = (X1',1.2""Zn)  

satisfies at least one of the following n conditions: 

r 4 	r
i 
 4 r + dr 	(i = 1,2,..,n) 	(7.5.3) 

where ri  is the magnitude of the vector r, from the cavity 

centre to the i th molecule. 

For the subsystem of one molecule in a fully 

sphericalized sorbate-sorbent potential, the distribution 

function concerned is simply given by 

P(s )
(r) 

	41fr
2 

exp[-U(r)/kTI 	

(7.5.4) 
Q(1,T) 
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Typical plots of P(
1
s)(r) versus r are presented in Figure 

7.16. 	The physical interpretation of these results is 

quite clear. 	The maximum of the distribution function for 

one krypton molecule in Linde 5A is at 3.87 A, which is 

of course the distance from the cell centre that gives the 

lowest energy value for the fully spherioalized potential 

shown in Figures 6.3 and 6.4. 	It should also be observed 

that the distribution function becomes more sharply peaked 

as the temperature decreases. 

For more complicated cases, however, there appears 

to be no useful relation equivalent to (7.5.4). 	Thus in 

practice P
(s)
n

(r) was calculated by applying the Monte Carlo 

techniques. 	The 8 exchangeable cations of each sorption 

cavity were treated as discrete interaction centres, whereas 

all contributions from the 72 0 anions remained sphericalized. 

The electrostatic induction effect of the cations were 

fully taken into account. 	On the whole the computation 

was very similar to that carried out in Section7.4. 	Again 

the methods of independent random trials and importance 

sampling were used. 

In evaluating P(
n
s)(r) by the method of independent 

random trials the computer was used to generate a histogram 

the quadratures of which represented the sums of values of 

the integrand in (7.5.2) with respect to intervals of 0.01 - 

0.05 A for the parameter r. 	When the Metropolis method of 

importance sampling was applied, a histogram of the numbers 

of accepted configuration sets satisfying (7.5.3) was 

constructed. 	Certainly these procedures were very time- 



consuming, and in order to achieve any reasonable result 

20,000 - 100,000 trial configuration sets were required. 

Results are presented in Figures 7.17 and 7.18. 

Superficially the general features of these 

plots closely resemble those of Figure 7.16. 	Also there 

seems to be no basic difference as regards P(s)(r) in the 

cases of n = 1 and n = 2. 	However, the presence of 

irregularities and smaller peaks in some of these curves 

may be noted. 	For comparison values of P(s)(r) for a 

fully spheticalized sorbate-sorbent potential are also 

shown in Figure 7.19. 

(b) Localization on Cations  

To clarify further the nature of localization of 

the sorbate molecules in a subsystem, it is appropriate to 

introduce another distribution function P(c)(r). 	By 

definition P
(c)

(r) dr is the probability of finding a sorbate 

molecule in the range dr at a distance r from a chosen 

exchangeable cation of the subsystem containing n identical 

molecules. 	Again this distribution function is normalized 

to unity. 	Calculations of P
(c)

(r) were carried out on the 

computer by constructing histograms with 200 - 400 

quadratures. 	Typical results are presented in Figures 

7.20-7.25. 

As expected, the cases of one and two molecules in 

a subsystem do not differ fundamentally in so far as P(c)(r) 

is concerned. 	This reflects the fact that when the 
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subsystem contains only a few molecules sorbate-sorbent 

interactions are generally more significant than sorbate- 

sorbate interactions. 	Of course, when the subsystem is 

more densely packed, the situation is very complicated 

and the same conclusion maynot apply. 

In contrast, the subsystems with fully sphericalized 

sorbate-sorbent potentials and those with discrete cation 

contributions do show some marked differences as regards 

P(n
c)(r). 	Physically P

(c)
(r) is expected to be peaked at 

those values of r which are approximately the same as the 

distances from the reference point to surfaces of minimum 

potential surrounding each of the 8 exchangeable cations. 

Looking along the C
3 
 symmetry axis, one sees immediately 

that the four peaks should be roughly at distances of 3.5, 

7.0, 8.0 and 10.0 A from the chosen cation. 	The detailed 

nature of the localization is clearly demonstrated by the 

results in Figures 7.20 - 7.23. 

Unlike those of P
(
n
s)
(r), the plots of P

(
n
c)
(r) 

versus r are quite complicated even for a subsystem with 

fully sphericalized sorbate-sorbent potential. Mathematically, 

it is not difficult to see how such a complexity could 

arise as a consequence of the lower symmetry now associated 

with each integrated region of the canonical ensemble 

distribution in the relevant configuration space. 	A simple 

geometrical consideration shows that the volume of an 

infinitesimal region between two concentric spherical 

surfaces, which contains all points at the same parametric 

distance r from any fixed point on the outer surface of the 
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finite spherical shell with outer radius a and inner radius 

b, is equal to 

7tra(1 - b2/a2) dr 	when 	a -b‘r4 a+ b 

andltr
2
(2 - r/a) dr 

{ 0 	.;. r‘a- b 
when 

a + b ( r ( 2a N 	\ 

Following this it is now possible to understand more clearly 

the relationship between P
(s)

(r) and P
(
n
c)
(r) as far as a 

1  
fully sphericalized sorbate-sorbent potential is concerned. 

Figure 7.26 illustrates how some relatively simple forms of 
(s) P
1 	

(r) could generally result in quite intricate functions 

for P
(
1
c)
(r) even in the spherically symmetric case. 

Physically, however, the fine structures of these 

plots appear to have no obvious molecular interpretation. 

So they will not be studied further. 

(c) Intermolecular Separation 

In order to study the extent of sorbate-sorbate 

interactions quantitatively, it is convenient to use a pair 

distribution function P
n
(2) 

 (r) normalized to unity. 	By 

definition P
(2)

(r) dr is the probability of finding any 

pair of n identical sorbate molecules (n *:.i.2) in a subsystem 

at a distance r apart. 	In practice only P(2)(r) could be 

studied satisfactorily within reasonable computing time. 

As in the previous cases, this function was evaluated on 

the computer by constructing suitable histograms. Typical 

results are presented in Figures 7.27 and 7.28. 



From the general features of these plots it is 

observed that the sorbate molecules indeed tend to be 

attracted towards each other, especially at lower 

temperatures. 	However, because the sorbate-sorbate 

interactions are comparatively weak, the I'
2
2)
(r) versus r 

plots are not sharply peaked. 	Again the detailed feature 

of the distribution can be quite complicated. 

In concluding this section it may be remarked that 

in general the nature of localization of the sorbate 

molecules within any specific subsystem can be properly 

understood only in quantitative terms. 	As regards the 

sorption of krypton and methane in Linde 5A many interesting 

results have emerged from the foregoing studies. 	In 

particular the variation in the degree of localization with 

respect to temperature has been noted. 	In sorption studies 

it is customary to think of the sorbed phase as a mobile 

two-dimensional fluid, or as localized molecules on definite 

sorption sites, with or without sorbate-sorbate interactions. 

The results of this section have shown how far such familiar 

concepts can correctly be applied in studying the sorption 

in zeolites. 
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FIGURE 7.17 Localization of One Methane Molecule on the Wall of a Linde 5A Cavity  
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FIGURE  7.21 Localization of One Methane Molecule on the Discrete Cations of Linde 5A 
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FIGURE 7.26 Relations between the Distribution Functions  
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FIGURE  7.27 Pair Distribution Function of Two Sorbate  

- Molecules - in a Linde 5A Cavity  
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FIGURE  7.28 Pair Distribution Function of Two Methane Moleoulea in a Linde 5A Cavity  
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CHAPTER 8  

RESULTS FOR THE MACROSCOPIC ASSEMBLY  

8.1 DISTRIBUTION DENSITIES OF THE ASSEMBLY 

The function g(A,T) as defined by (4.3.8) should 

give a very valuable information on how the N sorbate 

molecules are actually partitioned among the assembly of B 

zeolite cavities. 	For the specific case of a single-

component system, it follows from (2.1.9), (4.3.8), (7.1.8) 

and (7.1.12) that 

211 

g(n,T) 

 

exp [A
cf
(n,T)/kT] z

n
/n: 

(8.1.1) = 

 

E(T,z) 

where 

E(T,z) 
	= 	exp [A

cf
(n,T)/kT] z

n
/n! 
	

(8.1.2) 

n> 

Also (4.3.10) defines the mean molecular 

occupancy number of a sorption cavity as 

i 	. 	N/B 	= 7, n g(n,T) 	(8.1.3) 

n) 0 

From (4.3.9) it is clear that the distribution function 

g(n,T) has been normalized. 	As a result (8.1.3) implies 

E g(n,T) (n - yo 	= 	0 	(8.1.4) 

n .... 0 
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In calculating g(n,T) and IT on the computer the 

series in (8.1.2) and (8.1.3) were summed up to n=7 for each 

parametric value of the activity z. 	The appropriate values 

of A
of
(n
'T) for the sorption of krypton and methane in 

Linde 5A at various temperatures were obtained from Table7.1 & 

7.2. 	Typical graphs of g(n,T) versus n are presented in 

Figures 8.1 - 8.4. 	Evidently, these results confirm the 

previous conclusion that g(n,T) are not sharply peaked at 

any particular value of n, at least as regards the specific 

sorption systems studied within the temperature range 100 -

300 degrees E. 

When it is known physically that N identical 

molecules are sorbed in the macroscopic assembly of B 

zeolite cavities, the variance D(F,T) as defined by (4.5.5) 

should give a useful quantitative measure of the relative 

magnitudes of the molecular distribution function g(n,T). 

Therefore pertinent results for D(F,T) are presented in 

Figures 8.5 and 8.6. 	If any more detailed information 

concerning g(n,T) is required, some higher moments of this 

distribution function should also be studied. Incidentally 

g(n,T) can be completely characterized by all its moments. 

In the present work it has not been found 

mathematically feasible to evaluate the partition function 

Z(n,T} or the corresponding Helmholtz free energy A(n,T) 

when n>8. 	Nevertheless the essential behaviours of these 

functions, and hence also of g(n,T) and D(n,T), are known 

qualitatively. 	For physical reasons the sorption space of 

any Linde 5A sorption cavity cannot accommodate more than 
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about 15 molecules of krypton or methane. 	A semi-

quantitative description of the distribution function 

g(n,T) for 0:›n:›12 is given in Figure 8.7. 	From this 

it follows that the variance D(E,T) should decrease 

monotonically when the average occupancy IT is greater than 

about 6 and should vanish when H is equal to nR, the 

maximum number of sorbate molecules which is allowed in any 

single sorption cavity at the given temperature. 	In the 

latter case every cavity within the assembly is known to 

have exactly the same number n
x 

of identical sorbate 

molecules in it. 



FIGURE  8.1 Distribution Densities of Krypton Molecules in Linde 5A Assembly  
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FIGURE  8.2 Distribution Densities of Krypton Molecules in Linde 5A Assembly  
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FIGURE 8.5 Variance of the Distribution of Krypton  
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1 -  -  	—I—  Molecules in Linde 5A Assembly 
1 

FIGURE 8.6  Variance of the Distribution of Methane__ 
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8.2 ISOTHERMS  

The sorption isotherms of a single-component 

sorbate in zeolite can be readily deduced from the results 

just obtained for H. 	The hydrostatic pressure p of the 

single-component gas that is in thermodynamic equilibrium 

with the sorption system is related to the activity z of 

the sorbate by 

PAT 	 E b (T ) z 	 (8.2.1) 

where each b is a function of the i th 	i j) virial 

coefficients in the equation of state expansion of the gas. 

(Hill 1956c, Uhlenbeck & Ford 1962) 

As regards krypton and methane in the pressure 

range of interest, it is sufficient for the present purpose 

to take only the first term of the series in (8.2.1) into 

account. 	When more accurate results are required, and 

especially for large molecules at high gas pressure, 

however, correction should be made with respect to the 

second and higher order virial coefficients. 	The calculated 

isotherms are presented as solid curves in Figures 8.8 

and 8.9. 

Sorption isotherms of krypton and methane in 

Linde 5A were experimentally determined by Stroud (To be 

published). 	These are presented as broken lines in Figures 

8.8 and 8.9. 	No hysteresis was found, and the sorption and 
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desorption curves all agree to within the limit of 

experimental accuracy. 	It can be observed that the 

agreement between the theoretical and the experimental 

isotherms is very satisfactory. 	This is perhaps rather 

remarkable in view of the fact that there is no adjustable 

parameter in the present molecular statistical theory. 



FIGURE  8.8 Sorption Iaotherms of Krypton in Linde 5A 
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FIGURE 8.9 Sorption isotherms of Methane in Linde 5A  
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8.3 ENTHALPIES AND ENTROPIES OF SORPTION 

Integral enthalpies for the sorption of krypton 

and methane in Linde 5A were calculated by using the 

specialized form of (4.3.11) for a single-component system, 

viz., 

H/B 	U6 
	 u(n,T) g(n,T) 	(8.3.1) 

n 0 

This series was summed on the computer up to n = 7 with 

respect to each set of the parametric values for z and T. 

The values of g(n,T) and E were calculated in the.manner 

described in Section 8.1. 	The pertinent values for the 

statistical thermodynamic internal energies of individual 

subsystems, u(n,T), were obtained from Tables 7.3 and ' 

7 • 4 . 	In Figures 8.10 and 8.11 results for the integral 

enthalpies per mole of the sorbate, H/Nk, are plotted at 

several temperatures against the sorbate concentration F. 

The variation of H/Nk with respect to ii and T 
should be of special interest in connection with the 

question of how far it is justified to use the Clausius-

Clapeyron equation in analyzing isothermal data for the 

sorption in zeolites. 	By using this equation in its 

integrated form, viz., 

	

pl 	1 	1 Ali 

	

In -- 	( 	) 

	

P2 	R 	T1 	T
2 

(8.3.2) 

where p1  and p2  are the equilibrium pressures at constant 
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o 
sorbate concentration at T1 

and T
2 

K respectively, 

for the purpose of obtaining the isosteric heat A H of 

sorption, it is tacitly assumed that the integral enthalpy 

of sorption is constant over a reasonably small range, i.e. 

20 - 30°  , of temperature. 	The present results, however, 

do show some slight variation of H with respect to air and T. 

Following this it is clear that as regards the sorption in 

the microporous zeolite sorbent the use of (8.3.2) is on 

the whole a rather crude approximation. 	In general, 

therefore, provided that one is interested in the accuracy 

of the isosteric heat to not better than about 50 cals mole
-1

, 

the integrated Clausius-Clapeyron equation is still useful 

as a means of estimating H. 	In this regard it should be 

observed that the integral enthalpies of krypton and methane 

in Linde 5A vary very smoothly with respect to both n and T. 

The two distinct integral entropy contributions, 

S
1 
and S2, were calculated on the computer by summing the 

following series up to n = 7. 

S
i 

 /B 	IC 	 g(n,T) s(n,T) 	(8.3.3) 

n> 0 

  

and S
2
/B = -k 

  

g(n,T) In g(n,T) 	(8.3.4) 

n 0 

 

These are, of course, the specialized forms of (4.3.15) and 

(4.3.16). 	The appropriate values of s(n,T) were obtained 

from Figures 7.11 and 7.12. 	Results for 51/Bk, S2/Bk, 

Si/Niv, S2/Nk and S/Nk are presented in Figures 8.12 - 8.21. 
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The physical interpretation of S1  and S2  has 

already been discussed in Section 4.4. 	At low sorbate 

concentration F, it can be seen that the magnitudes of S
1 

and S
2 
are comparable. 	As expected, the latter contribution 

becomes less significant when the sorbate concentration is 

moderate. 	These results indicate that the molecular 

interpretation of the sorption based on the variation of 

the sorbate entropy with respect to B. and T is in actuality 

not always straightforward. 	Accordingly, special care 

should be taken in drawing any direct conclusion from the 

shapes of the entropy curves, especially at low sorbate 

concentration. 	This applies in particular to the 

'suggestions that have normally been made concerning the 

localization of sorbate molecules on the exchangeable 

cations, the specificity of sorbate-sorbent interactions, 

the extent of sorbate-sorbate interactions, and the degrees 

of freedom and the nature of movements of the sorbate 

molecules. 
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FIGURE  8.10 Enthalpy of Krynton in Linde 5A  



FIGURE 8.11 Enthalpy of Methane in Linde 5A 
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NNW 	 FIGURE 8.12  Entropy Contribution for Kryrton in Linde 5A 
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FIGURE 8.13 Entropy Contribution for Methane in Linde 5A 
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..., 	FIGURE  8.14 Entropy Contribution for Krypton in Linde 5A_ 
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FIGURE  8.15 Entropy Contribution for Methane in Linde 5A  
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FIGURE 8.16 Entropy Contribution for Krypton in Linde 5A  
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• 

-  FIGURE 8.17 Entropy Contribution for Methane in Linde 5A  
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FIGURE  8.18 Entropy Contribution for Krypton in Linde 5A  
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FIGURE  8.20 Entropy of Krypton in Linde 5A  
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FIGURE  B.21 Entropy of Methane in Linde 5A  
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8.4 EXCESS FREE ENERGIES  

The'excess Gibbs free energies of the sorbate, 

AG, for the sorption of 'krypton and methane in Linde 5A, 

are defined by 

AG 	▪ 	H - TS - Nike 
	

(6.4.1) 

These were calculated from the exponential generating 

function E(T,z) by using the following direct result from 

(4.2.32) and (4.2.34) : 

AG 	• 	-BkT In E(T,z) 
	(8.4.2) 

All the series for E(T,z) as represented by (8.1.2) were 

	

summed on the computer up to n = 7. 	Results for L1G/Bk, 

AG/Nk and AG/NkT are presented in Figures 8.22-8.27. 

As pointed out in Sections 4.7 and 4.8, in dealing 

with the microporous zeolite sorbents it is preferable not 

to give any direct mechanical interpretation to the excess 

	

free energy of the sorption system. 	Nevertheless the 

variation in the relative thermodynamic stability of this 

sorption system when F. and T change can still be conveniently 

deduced from the behaviour of the AG/NkT curves. 
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FIGURE 8.22 Excess Free Energy of Krvnton in Li 
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FIGURE 8.23 Excess Free Energy of Methane in Linde 5A 
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FIGURE  8.24 Excess Free Energy of Krypton in Linde 5A  

• 

	300 

1_- 

K) 

300°K 	273.15°K - z's-ai5°K 
_I 

_ :111[233./5°K 

- - - 
2_18.15 K.  

-1350  

I 
750°K- 

4 
	/6-0 

- 

1911.65 K: 



244 

FIGURE  8.25 Excess Free Energy of Methane in Linde 5A 
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FIGURE 8.27 Excess Free Energy of Methane in Linde 5A  
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8.5 DIFFERENTIAL MOLAR QUANTITIES  

The statistical thermodynamic formulae for the 

differential molar quantities in terms of the distribution 

function g(n,T) and the variance D(W,T) have already been 

derived in Section 4.5. 	The specialized forms of these 

for a single-component system were used to calculate the 

differential molar enthalpies and entropies for the sorption 

of krypton and methane in Linde 5A. 	All the summations 

concerned were performed on the computer up to n = 7. 	The 

relevant statistical thermodynamic parameters have been 

obtained in the ,previous sections. 	In Figures 8.28 - 8.35 

	

H 	.1 S1 , 9'2 and 9 s results for ‘' 	, .., 	 are presented. 

	

aN 	aN 	2N 	a N 

The small differences between the integral and the 

differential molar quantities should be observed. 	Again, 

these results confirm the previous conclusions in Section 8.3 

as regards the justification in using the integrated 

Clausius-Clapeyron equation and the entropy data for the 

purpose of interpreting physical behaviours of the sorbate 

molecules in zeolites. 
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FIGURE 8.28 Differential Molar Enthalpy of Krypton 
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FIGURE 8.29 Differential Molar Fnthalpy of Methane  
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FIGURE 8.30 Differential Molar Entropy Contribution  
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FIGURE  8.31 Differential Molar Entropy Contribution 
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FIGURE 8.32 Differential Malar Entropy Contribution 
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FIGURE  8.33 Differential Molar Entropy Contribution  
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FIGURE 8.34 Differential Molar Entropy of  
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	FIGURE 8.35 Differential Molar Entropy of 
.  ,  

-- Methane in Linde 5A  
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CHAPTER 9  

GENERAL DISCUSSION 

9.1 THE STATISTICAL THERMODYNAMIC ANALYSIS  

Admittedly the complete statistical thermodynamic 

analysis in Chapters 2, 3 and 4 is rather formal and 

lengthy. 	Thus it seems desirable to outline the important 

steps of the derivations here in order to bring out the 

essential theory into a clearer physical perspective, 

especially as some familiarity with their results has 

already been made through a few specific applications. 

Again it should be emphasized that the thermodynamic 

system of interest consists of the sorbate in all the 

cavities of a macroscopic assembly, and not in just any one 

isolated cavity. 	Thermodynamic equilibrium is truly 

established between the sorbate system as a whole and the 

gas phase. 	Nevertheless the statistical thermodynamic 

properties of individual subsystems are allowed to fluctuate 

to any appreciable extent about their mean values. 	Between 

the subsystems in an assembly, thermal equilibrium is 

required; but, on the other hand, no further assumption 

has been made as regards material, mechanical, or any other 

type of equilibrium. 

The canonical partition function Z(Z,B,T) as given 

by (2.5.6) is a rigorous result for the theoretical model 
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described. 	With this the statistical mechanical problem 

is in principle completely solved. 	The required 

thermodynamic association can subsequently be achieved by 

means of some standard relations, for instance (2.8.8) to 

(2.8.13). 	Mathematically, however, such an approach is 

not in reality very practicable, for (2.5.6) does involve 

complicated sums and products with awkward restrictive 

conditions. 	For this reason an attempt had to be made 

to find a more tractable way of effecting thermodynamic 

association. 

First, Z(N,B,T) was re-expressed as a contour 

integral in (2.6.13); and expressions for the grand Partition 

function 2E(B,T,1), and the microcanonical partition 

function 11(B,T,U) were derived. 	However, it was then 

realized that none of these partition functions could be 

written in any form which may conveniently be differentiated 

or integrated with respect to the relevant thermodynamic 

parameters so as to give useful numerical results. 	More 

specifically, it did not appear that the exact result for 

Z(N,B,T) or for '7.7(B,T,a) could be re-expressed as the B th 

power of some function that is not directly dependent on B. 

Empirically, of course, it is known that the asymptotic 

forms of both functions should behave thus for the 

macroscopic sorption system. 	A closer look at the form 

of (2.6.12) then immediately suggested that a physical 

interpretation of the exponential generating function 

E(B,T,2) itself be made by means of a phenomenological 

consideration. 	Further analysis then reveals that E(B,Ta) 
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is in fact the quasi-grand partition function which can 

thermodynamically be associated with a system that is in 

complete thermal and material but only in partial mechanical 

equilibrium with its surroundings. 	Henceforth, the 

interpretation of statistical thermodynamic functions is 

on the whole quite straightforward. 

A probability density function g(n,T) was then 

introduced in Section 4.3. 	This turns out to.be  of great 

help in the subsequent attempt to give a molecular 

statistical interpretation to the sorption phenomena. 

In Chapters 7 and 8 a quantitative study was made of 

certain specific sorption systems. 	Following these 

results, it is hoped that some basic questions concerning 

the nature and degree of localization of the sorbate in 

zeolite have been satisfactorily answered. 	Attention 

should again be drawn to the fact that the 'averaged' 

statistical thermodynamic quantities, such as Rs, a and 7, 

are not just some inherent properties of any particular 

subsystem. 	The presence of such quasi-independent 

subsystems in a localized assembly necessarily implies an 

averaging over this assembly in a very specific manner. 

As regards the true significance of the function 

E(B,Ta), which appears to be an essential part of the 

present theoretical studies, some further remarks should 

now be made. 	In this thesis, E(B,T,) has been given a 

statistical thermodynamic interpretation. 	This was done 

essentially by identifying the environment of the molecular 



259 

system and the relevant statistical mechanical ensemble 

for which it is the appropriate partition function. 	The 

role of E(Ii,T,,'1 ) here can accordingly be compared with 

those of the grand partition function in its many 

applications to more familiar problems of statistical 

mechanics. 	The real reason for choosing a particular 

partition function to deal with is certainly one of 

mathematical convenience. 	So in this sense the use of 

E(B,T;a.) in the foregoing analysis should not cause any 

undue difficulty. 	As applied to the case of sorption in 

zeolites, the statistical thermodynamic interpretation of 

E(B,TX can be seen to be physically very reasonable. 

This is particularly so in view of the fact that the 

incomplete mechanical equilibrium is also implied by this 

partition function. 	Thus, it is hoped that in the near 

future partition functions of the type E(B,T,') should 

find further useful applications in solving other 

statistical thermodynamic problems which similarly involve 

some localized assemblies of quasi-independent subsystems. 

On the other hand, the exponential generating 

function E(B,Ta) may also be regarded merely as a 

mathematical device. 	Any statistical thermodynamic 

interpretation is then effected through the canonical and 

the microcanonical partition functions. 	In this approach, 

the very specific way of coupling together a large number 

of quasi-independent subsystems of the assembly is simply 

reflected by the manner in which the canonical partition 

function of the assembly is related to the Bliseard calculus 
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of the exponential generating functions with the canonical 

partition functions of individual subsystems as appropriate 

coefficients. 

It may be primarily a matter of taste which of 

the two points of view mentioned above is actually adopted. 

In principle, both are equally valid, provided of course 

that the various assumptions made and the true ranges of 

applicability to the particular system under study are 

fully understood. 	Again, this situation recalls a very 

similar problem concerning the use of the grand partition 

function for the purpose of analyzing any specific 

statistical model. 	It is well known that the introduction 

of a grand partition function into such a theory can 

normally be circumvented by applying the Darwin-Fowler 

method of steepest descents. 	Mathematically speaking, 

there is no real basic difference between these two 

approaches. 	Nevertheless, in practice, one method may 

appear to be aesthetically more satisfying than the other. 

In all cases the analyticity of the complex integrands 

concerned and the existence of the relevant grand partition 

functions are closely interrelated. 	Certainly the grand 

partition function is nothing more than an ordinary 

generating function of the sequence of individual canonical 

partition functions. 	The steepest descent also 

corresponds very well with the picking out of the largest 

term in the grand partition function. 

Ideally, therefore, the appropriate choice between 

any such alternatives should always be based upon their 



relative merits, especially as regards simplicity and 

convenience. 	Physically, however, it may appear that 

one particular set of environmental variables associated 

with the theoretical model of interest is definitely more 

realistic than any other statistically equivalent set. 

Under such a circumstance the choice should not be made 

quite arbitrarily. 

In the present work it has been found more 

reasonable, as well as more informative, to attach a 

physical. meaning to E(B,Ta). 	Mathematically, this is 

also the most convenient partition function to deal with 

.in the subsequent analysis. 	In statistical mechanics, 

it can frequently be observed that the mathematically 

simplest and the most elegant description of a theoretical 

model is also a description that find the most direct 

physical interpretation. 	Thus, it is hoped that this 

remark has been illustrated by the present studies of 

the sorption in zeolites. 
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9.2 PHYSICAL ASSUMPTIONS  

It is now appropriate to examine certain physical 

assumptions which have been made implicit in the foregoing 

theoretical studies. 

(a) Mobility of the Sorbate Molecules  

The assumption that the sorbate molecules can 

move about and be exchanged freely is certainly very 

reasonable as regards the sorption of non-polar molecules 

in zeolites, when the openings of the cavities concerned 

and their connecting channels are comparatively large. 

In these cases the sorbate molecules can travel to every 

- 	part of the system without any need for large thermal 

excitations. 	The relevant potential barriers can be 

expected to affect various kinetic phenomena, such as the 

diffusion of molecules in and through the microporous 

crystals; but these should have no appreciable influence 

upon any equilibrium thermodynamic quantity that 

characterizes the assembly as a whole. 

Sorption of large polar molecules at relatively 

low temperatures, on the other hand, may involve specific 

molecular interactions. (Smith 1967) 	This can indeed 

present a rather difficult problem. 	The polar molecules 

are firmly attached to the cations near the openings of 

zeolite cavities; and as a consequence some high energy 

barriers are introduced, which oppose the passage of 

additional sorbate molecules into these cavities. 	Under 
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such circumstances some complication may arise from the 

metastable equilibrium. 	In particular it is known that 

the true equilibrium sorption of non-polar sorbate in 

certain zeolites can be markedly impeded by presorption 

of highly polar molecules, even when the concentration 

of the polar sorbate is well below saturation. (Barrer & 

Rees 1954a, 1954b, Rees & Berry 1967) 	In interpreting 

the sorption phenomena, equilibrium statistical 

thermodynamics can correctly be applied only when the time 

involved in attaining the true equilibrium is not too long 

in comparison with the time of physical measurements. 

So the above gives a natural limitation to the range of 

applicability of the present theoretical model. 

(b) Quasi-independence of a Subsystem  

At moderate temperature and sorbate concentration, 

any molecule sorbed in a specific cavity is expected to 

spend an appreciable length of time within that cavity 

before it eventually enters a neighbouring cavity or else 

goes into the gas phase. 	No doubt, this molecule, once it 

is sorbed, interacts with all the other molecules of the 

subsystem, with the cavity wall, and with the rest of the 

environment outside that cavity. 	The Boltzmann-averaged 

interaction energy of the subsystem can be calculated, and 

it is physically reasonable to suggest that this averaged 

energy should be almost independent of the location of the 

cavity concerned within the assembly. 	Consequently, as 

far as the interaction energy of a subsystem is concerned, 

the presence of a specific composition set in this subsystem 
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at,a given instant should have no appreciable influence on 

the probability for any other subsystem of the assembly to 

have any one of the possible composition sets in it. 	In 

other words, the occupancy numbers of different subsystems 

do not significantly correlate. 	Here it is recalled that 

in the case of sorption of krypton and methane in Linde 5A 

all contributions from the 'background' potentials actually 

amount to less than 10 % of the total potential of a 

subsystem. (Section 6.5) 

It should be emphasized that the individual 

subsystems are considered as independent only in the very 

specific sense just mentioned. 	And for this reason it is 

preferable to use the term 'quasi-independence' to describe 

each subsystem. 	Indeed, when a large number of the 

subsystems are coupled together to form an assembly, they 

do influence each other, albeit in an indirect manner,through 

the statistical behaviour which necessarily results from the 

various physical boundary conditions that have been imposed 

on the whole assembly. 	The implication of combining 

completely independent subsystems in a localized assembly, on 

the other hand, has already been discussed in Section 4.4. 

A notable consequence of the quasi-independence 

of each subsystem is that the detailed arrangement of such 

subsystems in the assembly does not enter into any 

subsequent statistical thermodynamic formulae. 	Whether 

the sorption cavities are actually arranged in a simple 

cubic array, as in the case of Linde 5A, or otherwise, is 

therefore immaterial. 	As regards the arrangement of the 

cavities within any assembly, the only fact that is 
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directly relevant to the present theoretical model is that, 

in a macroscopic unit of the sorbent, all,the cavities 

are fixed in space and are interconnected in such a way 

that every one of them is accessible to the sorbate 

molecules from all the other cavities. 	Certainly this 

requirement is satisfied by Linde 5A. 

(c) Rigid Sorbent Structure  

In the foregoing the sorbent has been considered 

as an inert solid, such that there is no dimensional 

change accompanying any variation in the sorbate concentration. 

As far as the sorption of non-polar molecules in Linde 5A 

is concerned this -  is certainly a very.reasonable 

assumption. 	It is known that the dimensions of Linde 5A 

framework are almost independent of the concentration of 

a wide variety of sorbates, such as SO , Kr, Xe, Br
2 

and 1
2
. 

X-ray diffraction studies have shown that the movements of 
0 

the 0 anions in this zeolite are not greater than 0.1 A. 

(Smith 1967) 	In general, however, the aluminosilicate 

frameworks of different zeolites have widely varying 

geometrical stabilities, and the extents of their reversible 

distortion can also vary considerably. 	For example, the 

0 anions of the 8-membered rings in chabazite can move as 

much as 0.5 I. (Fang & Smith 1964) 	Some zeolites may 

even collapse irreversibly on dehydration. 

Of even more significance is the fact that the 

exchangeable cations can move in response to the sorbate 



molecules. 	This effect is expected to be negligible in 

the case of sorption of krypton and methane in Linde 5A; 

but in the cases of sorption of highly polar molecules it 

can be quite important. 	As the polar molecules enter a 

sorption cavity the cations tend to move away from the 

framework 0 anions to some positions permitting the most 

favourable contact with the sorbate molecules. 

(d) Internal States of Sorbate Molecules  

In the present study the internal states of sorbate 

molecules have not been considered explicitly. 	It is 

assumed that the rotational, vibrational and electronic 

states of these molecules do not change on sorption. 	As 

regards krypton and methane this assumption appears to be 

reasonable. 	However, the same cannot be expected to apply 

in other cases where there exist specific molecular 

interactions with the sorbent. 	More specifically, it is ' 

clear Wat the relatively simple potential functions which 

have been chosen to represent the sorbate-sorbate and 

sorbate-sorbent interactions in Chapter 6 are quite inadequate 

for the purpose of a detailed statistical mechanical study 

in such cases. 
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9.3 PHENOMENOLOGICAL APPROACHES 

Thermodynamic measurements have already been 

made on sorption systems of a wide variety of sorbates in 

zeolites. (Kiselev & Lopatkin 1967) 	Equilibrium 

thermodynamic properties which have been extensively 

studied include sorption isotherms and heats of sorption. 

The interpretation of these experimental data is normally 

based on the choice of a theoretical equation of state 

that truly describes the sorbate in the system under 

study. (Steele 1966) 	Of course, many equations of state 

are available, each of which describes a particular 

molecular statistical model. 	The choice can thus be 

difficult, especially when quite different models can lead 

to rather similar theoretical isotherms. 	Fortunately, in 

the case of sorption in zeolites the crystal structures of 

these sorbents are known with accuracy. 	As a result the 

reasonable choice of a molecular model for statistical 

mechanical studies is conveniently restricted. 

It is well known that accurate measurements of the 

heats of sorption are difficult. 	So the test of a specific 

theoretical model depends largely on isothermal data alone. 

However, the quality of fit between an experimental and a 

theoretical isotherm is not in itself always an adequate 

proof of the applicability of the chosen molecular 

statistical model. 	Nor is it any guarantee that the 

physical interpretation of the parameters obtained from the 

curve-fitting process is necessarily meaningful. 	Thus, in 

practice, a detailed interpretation of a set of sorption 
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data is convincing only after quite extensive testing of 

experiment against theory, over a wide range of temperature 

and sorbate concentration. 	Indeed the theoretical model 

that has been chosen here appears to be very appropriate 

for the sorption systems studied. 	But, strictly speaking, 

any satisfactory conclusion concerning its validity could 

not be drawn until after more detailed analyses and 

comparisons of theoretical results and experimental data 

in the future. 

In studying the sorption in zeolites the nature 

of localization of the sorbate should be of particular 

interest. 	In this work the molecular distribution functions 

of specific subsystems and their distribution densities 

within the assembly could be conveniently deduced from the 

knowledge of relevant molecular and atomic parameters. 

As regards the sorption of krypton and methane in Linde 5A 

these theoretical results seem to give very reasonable 

physical pictures. 	However, as no experimentally determined 

data are available for direct comparison, the validity of 

the molecular statistical model concerned has not yet been 

subjected to a critical test. 	Quantitative studies of the 

localization cannot in such cases depend entirely on 

equilibrium thermodynamic data, for as a rule thermodynamic 

properties are not very sensitive to the detailed molecular 

arrangements. 

Thus it is clear that more direct data concerning 

the localization of sorbate molecules within the zeolite 

sorbents are at present needed. 	In this connection it 
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should be mentioned that the following techniques are 

likely to give valuable quantitative results in the future: 

X-ray and neutron diffractions, thermal neutron scatterings, 

dielectric measurements, and various spectroscopic methods. 

Moreover, since the present equilibrium statistical 

thermodynamic analyses give no indication of the time-scales 

involved in the sorption phenomena, some of the above 

techniques should at least be useful as supplementary 

studies. 



9.4 CONCLUDING REMARKS  

The most remarkable results which have emerged 

from the foregoing theoretical studies are those concerned 

with interpreting the nature of localization of the sorbate 

molecules within the zeolite sorbent. 	The manner and 

extent of such localization was studied quantitatively, 
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and for this purpose some useful 

molecular 

densities were introduced. 

normal to speak of a sorbate  

concepts such as the 

and the distribution 

In sorption studies it is 

system that is completely 

distribution functions 

localized, or of a two-dimensional sorbate fluid, with or 

without significant sorbate-sorbate interactions. However, 

the foregoing results have shoNn how such qualitative 

pictures may not always be adequate for the true understanding 

of the sorption phenomena. 	In particular one should have 

in mind the gradual changes of behaviour of the sorbate 

following some slight variations of temperature and sorbate 

concentration. 

In principle, the essential statistical mechanical 

problem associated with the molecular statistical model 

chosen for the multicomponent sorbate in zeolite has been 

completely solved. 	On the other hand, in applying these 

theoretical results to any specific sorption system, there 

remain some major difficulties. 	First, the required 

knowledge of suitable parameters for the atomic and 

molecular interactions is still largely inadequate. 	Then, 

the computation for any specific subsystem is extremely 

time-consuming. 	Even with many simplifying assumptions 
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for the case of a one-component system in an assembly of 

identical Linde 5A cavities, the theoretical investigation 

of statistical thermodynamic properties was in practice 

limited by the present computing capacity to the cases of 

fairly low sorbate concentrations, except as regards the 

internal energy of a subsystem. 	When some detailed 

information concerning the localization of sorbate molecules 

was needed, the mathematical difficulty was even more 

serious. 	However, as the computing facilities are likely 

to be much improved in the future, it is hoped that further 

theoretical studies of more complicated cases of the 

sorption in a wide variety of zeolites will be attempted 

following the techniques of the present studies. 
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APPENDIX 1 THE CONFIGURATION INTEGRAL Q
o 
2 

Consider the subsystem shown in Figure-Al of two 

identical hard-sphere molecules of collision diameter C' 
in a spherical cavity of radius a and of effective wall 

thickness d'. 	The free radius of this cavity is R = a-d'. 
Let r and -r be the position vectors of the two molecules 2  

from cavity centre. 	The configuration integral for this 

subsystem is 

e2 	
tirdr j/dr expl-U(r ,r

2 
 )/kTi 
	

(A.1.1) 

where each integration is carried out over the entire 

cavity volume. 

In view of the hard-core cut-off potentials, the 

interaction energy U(/.,,r2) concerned vanishes for all 

configuration sets without molecule-molecule or molecule- 

wall overlap, but is infinite otherwise. 	Thus for all 

positive definite temperatures the integrand in (A.1.1) 

can only take a value of either 1 or 0. 	Now take molecule 

1 as the reference molecule which can be in any general 

position within the spherical space of radius R. 	Consider 

all configurations of molecule 2 for which there is no 

overlap. 

When R>d, it is clear from Figure Al that Q°
2 
 can 

be written as a sum of two integrals with respect to the 

variable r ( the magnitude of xi), the integrations with respect 

to the 	other five coordinates having been carried out 

explicitly, 



R-Cr 

4: . 	[;7(113- lt 0r  d3] dr 
3 

0  

+ 	3  [1gR3_ -1.413-4]47tdr 
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(A.1.2) 

where 0 is the excluded volume of molecule 2. 

Now A is given by the volume difference of two 
segments of the spheres of radii R and Cr made by the common 

plane at distances x and x+r respectively from the centres 

of these spheres, where x = (R2- d2-r2)/2r. 	Thus 

A 1[203-02x+x31 - 112R2- 3R2(x+r) + (x+r)3] 

TIC (R2.42)2_ 2j!i'(R3_,e3) 	7Cr(R24.02) 	71:1 	3 
4r 	3 	2 	12 r  

for R -et r R. 

(A.1.3) 

The first integral in (A.1.2) can be directly 

integrated. 	Substitution of (A.1.3) in the second integral 

followed by an integration and some simple algebraid 

manipulation then lead to the desired result : 

R 
o 	 6 
= 	

12 (R3  -d3  )(R-d)3 + 4 	2.74R2.43)r2+1r(R2-0,2)2 
2 	9 	 3 	4 

R- 

/1' 3 2 2 	71: 5 
+ ir (R +0' ) - --r dr 

12 

eg2 16 R6-  16 R30,34_ R2,01e4_ _1 0e6] 
9 	9 	18 (A.1.4) 

It can be shown by a slightly variant geometrical 

consideration that this result is also valid when 2e4 R..4=0). 



FIGURE AI Cross Section of the Subsystem of Two Hard-sphere  

Molecules in a Spherical Cavity  

cose< • 	(R
2 
 -d
2 
 -r
2 
 )/2r0/  

• ̀Ot
2  -d2  -r2  )/2r 

r + a = 	
(R2..c124.r2 

)/2r 
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