THE THREE-NUCLEON PROBLEM

‘A Thesis presented
for the Diploma of

Imperial College of Science and Technology

by

STEPHEN PAK-YUEN LEE

" Department of Mathematics,
Imperial College,
LONDON, s.W.7.'

March, 1969,



ABSTRACT

The Faddeev. equations for three particles is given a new basis of
.representatien . acecording to the group SU(3). We obtain three new results,
Firstly - the- Faddeev- equations take the form of a coupled set of one-variable
‘integral eguations- which can be reduced to a finite set using Smith's
criterion- of simultaneous togetherness for a fhrée-particle system,
- Secondly, by using the iterated Faddeev equations for particles interacting
-with o Yukawa potential, we can ensure that the SU(3) kernel is L2 or
' Hilbert-Schmidt" with only a point spectrum of boundstate-poles.  Thirdly,
a newl‘appr:oach to include spin and isospin is undertaken. W‘ifh the help
‘of Omnes's symmetric angular momentum reduction, we show how the SU(3)
‘kernels:can-be evaluated in practice. The case of the three nucleons in

- the boundstate of the triton is treated in detail,
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PREFACE

-In this thesis, group theoretical methods are used to classify the
states of three nucleons.  The representation offered by these states is then
used- in the Faddeev equation to solve the triton boundstate problem. In
- order to present ‘the theory in a way uninterrupted by details of calculations,
| have: tried to include only results in the text, A somewhat extensive
- Appendix is therefore provided to cover these calculations. A particular
appendix is: referred to in the text by its number in squared brackets,
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CHAPTER 1 INTRODUCTION

Until only recenfly,(]) the application of Faddeev's theory(z) for a
three-particle system was dealt with by assuming that the particles interact in
pairs through non-local separable potenfials.(3) One main reason for making
this assumption is due to the large number of variables involved, Even
Omnes's methed" / of symmetrical angular momentum reduction still leaves

AT , = (5) :
three. integrating variables in the final equations,  Osborn'™’ succeeded in
reducing Omnes"s: result for the non-iterated Faddeev equations to two variables
and actually solved the equations for the idealized case of three spinless bosons
interacting through a simple Yukawa potential, Although reasonable results
‘were -obtained, it-required a rather complicated numerical method: . in particular,

the -integral equations have varicble limits, and it seems difficult to generalize

- the method to nucleons interacting with spin~isospin dependent potentials,

- Qur aim in -this thesis is to obtain solutions of Faddeev's equations by solvin
q b4 Ing

only one~-variable- integral equations so that even when spin-dependent local
_ potentials were used, the calculation couid still be perfofmed on a medium-sized
computer,

Our method proceeds by solving the Faddeev equations in the SU(3)

- representation- of three-particle states.  Classification of three-particle states
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(6) ) (8)

has been-discussed- elegantly by Dragt'™’ and others, Simonov," ' on the

other hand,»expar—rded :‘fhe three-particle wavefunction in terms of six-dimensional
surface harmonics. -Uking the Schrodinger lequation in configuration spdcé, he
showed -that for -fhve» triton boundstate problem the eigenvalue, )\2, of the

squared generalize’& angular momentum tensor, /\2, in six~dimensional space,

first introduced by Smith‘,‘(q) together with another quantum number Jx completely

(10)

- classify the harmenics. - It was ‘also shown ‘that the generalized partial
~wave amplitudes: &re only significant for small values of A, This is reminiscent
of two-particle scattering problems at low energy when only small £ need be

considered,

This thesis has been arranged as follows.  Chapter 2 gives a short account
of Dragt’s. work, eand is-: Briéf enough to introduce the notations and formulae
-used later. - The reader is well recommended to read the original paper,
especially on i-hé group aspect of the subject.  Chapter 3 is a description of
the angular variables used: in parametrizing 55, the manifold of a five-dimensional
sphere on.-which..we construet irreducible representations (I.R.s) of SU(3).
'The-eonsfrucfionf,‘ .in. differential forms on 55, in configuration space of the
two Casimir -operators, A 2 and S,whose eigenvalues characterize an [.R, of
SU(3) is undertaken in :S‘ection | of Chapter 4. We also give their eigenfunctions
classified- in -terms éf the SO(3) subgroup, We are then able to show the

one~to-one correspondence between |.R.s of SU(3) and the surface harmonics on



S5. ‘Section Il of this chapter starts with a Fourier transformation to momentum
representation followed by a discussion on the orthogonality, normalization,
.ete. of :such states, We then show how to construct an alternative set of
SU(3) states: which-have 'simple transformation properties under the symmetry group

-of three -ebjects; §;, for certain values of the total angular momentum, We

37
-also give here a:relation between the generalized partial wave amplitudes in the
two representations, - configuration and momentum.  Thus we are able to draw

_an

on the results -of Simonov to justify, at least for the boundstate problem,
-.that only a small -number of partial wave amplitudes in momentum representation
are significant,  Chapter 5, Section | contains some pertinent results of
‘Faddeev's theory -and a modified Omnes angular momentum analysis. In
Section ~‘»I'l we write Faddeev's equations in the SU(3) representation,  The result
is-already a set-of coupled integral equations in one variable, We simplify
them by specializing to the case of ‘three spinless identical particles and taking
A <4, we obtain for the boundstate problem, just two coupled equations.
Chapters 6 and 7 are-devoted to generalization to include spin and isospin.
In Chapter 6, we classify the states of three nucleons in spin-isospin space.
The method used is again group theoretic: The multispinor carrying I.R,s of

- SU(2) is analysed by means of the symmetry group S3. As algebraic treatment

of the symmetry group is very difficult, we use the diagrammatic technique of
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Young. In Chapter 7 we apply the SU(3) representation to the Faddeev

equation for the boundstate wavefunction of the triton,
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CHAPTER 2 " CLASSIFICATION OF THREE-PARTICLE STATES

‘In configuration space, the state of a three-particle system can be

characterized by their coordinates r.. These can be reduced in the CM

system to two relative vectors 1(1) and _r(z), if we take an orthogonal trans-
formation such- ﬂ;af
(Fyrrprg) — (r_(]),g(z),r_(s))
with L 7]-('2_r1):
- , =2 =17
1 ,
(2) —_—(2r, ~r, ~1,), (2.1)
r = Jé -3 -1 =2 »
L(s) = —\/]—(_r== trytrg) o .
3 =

(1)

We note that r and'r(z) are in the directions of the usual relative
vectors commonly used in three-particle problem.  They are, however,

normalized so that

M. @ 2. 2. 2 2
L L
where r = (L(]),:_(z)) will be treated as a six-dimensional vector.  We also

note that L2 is invariant under SO(6) for which the Lie algebra o( o is

parametrized by the 15 antisymmetric 6 x 6 matrices

R.. = |Gl - Ipal ., ii=1,...6, (2.3)
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where - |i) denotes a six-component column vector in a real vector space
.th . . a1 s .
- whose i~ component is unity, whilst others zero. (i| is the corresponding

row vector, The algebra "Co is given by the commutation rules:

[Rii,Rmn]. = 0, i#FjAm#n,

[Rii,Rik ] = Ry, (2.4)
R.., = -R...
i ji
We will be -interested in elements of oCo which are stable under the
- transformations of S3. The advantage of working with such a subalgebra is
that operators and [..R.s constructed from it will automatically have simple
symmetry properties under S3. - This is particularly useful for introducing

spins and statistics into the sysfem. The subalgebra ,C] is nothing but UQ),

the elements of which are

Jii = R * Ris, 3

i T Ruis TR,y =
This is nine-dimensional. If we exiract from gC 1 the linear Casimir

- operator of U(3),

; |
s =} K., (2.6)
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then the remaining eight elements form the Lie algebra o( 2 for SU(3).
-For--a quantum mechanical system we need a realization of 0(0, pc] and 0(2
as Lie -algebras of Hermition operators on three-particle state vectors,  Denoting

by p = ( (]),2(2)-") the. corr esponding six-dimensional momentum vector, the

-quantum anclogy of RII is a set of operators l'\.ii with the following properties:

[Aii'r—] ] iRiiL ’ (2.7)
[/\ii,g] = iRiig ,

and the A T given by
/\ii N R (2.8)

It is easily seen that r and p are Hermitian and canonically conjugate, that
is,
[ri,pi] = ih Sii . (2.9)

The commutation rules of "Co for /\ii are the Hermitian anclogue of (2.4):

[Aik’Alm] = 0Oy iZAkAl#m,

A Al = TRAy - @109
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In this representation, the /\ii satisfy the bilinear identity

’AiiAk|+Ai|/_\-ik+AikAli = 0, iZi#k#Zl. (2.11)

The quadratic Casin:nir operator /\2 for O(6) which is also the square of the
grand angular momentum tensor is
A% -y Z(/\ii)2 . (212)
i :

Ll

Then, it can be easily verified the relation

A% - r2(2mT - pr2 + 5iT|r-]pr) (2.13)

where- T-and p, are the operators for the total kinetic energy of the system
- and the linear momentum associated with r, In configuration space, they

are of course given by

2 2 2 2
+ - _ h (1) 2 _ _h 2
T - (V + Iy = > V6 (2.14)
P = = 'i'h% (2.15)

02 .
We have used V(') for the Laplace operator associated with L(l) and

V % for the Laplace operator in six dimensions. Notice that using the

6
relative normalized vectors r('), we can factor out -712/2m ,with m the mass
of each particle.. ~ For three non-interacting particles traversing straight
line trajectories: '/\2 will have eigenvalues, >\()\+4)'F12 say, which are good

quantum numbers. ~ With p = hk, we can deduce from Eqn.(2.13) that for



_]4_

given X and k the minimum value of r, say For is given by
\/NXTI-ZF = k ry e - (2.16)

Hence T has the property of an impact parameter for a three-particle system.
In -passing, we will use k instead of p for the rest of this work.

The elements of & . in terms of the /\ii are the quantum analogue of

(2.5):

Bio= At Mg WS TAT
~ | | (2.17)
i T Ai,i+3 T Aug,p e 23

Using the bilinear identity (2.11), we can express Az entirely in terms

of elements belonging to oC] for

2 1 ~ 1 2
A = 3 ZI(A ) =z IE-\(J“ + Kl ) + Z‘(A ,|+3A|+3 i
- A /\|+3,|+3
= %5(J+K)-5 (2.18)

]

Therefore--/\~2-. must be the quadratic Casimir operator for £ 17 together
with S, their eigenvalues specify an I.R, of SU(3). Finally we give the

Lie algebra of ‘1() ]
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[Ji,Jk] = ey
[Ji'KkI] - Skmml T € imkm o (2.19)
[K.,K ] = i, J. +6 J +8 J +8 J. ),

ij° mn- mjn in |m |m jn"im

where Ji = %VtxiikJik' and are therefore seen to be the generators for SO(3).

- We: have chosen to decorﬁpose SU(3) in terms of this subgroup because,then,

the vectors: of a -given I.R. will be characterized by the eigenvalues of J,

™ .
+J_ and possibly another cubic Casimir operator ) to remove any further :

(6)

degeneracy.
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CHAPTER 3 DESCRIPTION OF THE COORDINATES

Since we will be interested to construct |.R. of SU(3) on 55 carrying
représéﬁfations of SO(3), it is natural to use the Euler angles(lz) a, B and
y as three -of the angular variables.,  As is by now a well-adopted
procedure; we can take the three vertices of the vectors _r_], __r_2 c:nd_r3
as forming a triangle with body-fixed axes (u,v,w) : u,v in the plane of the
friangle, w = 2,\:. Omnes parametrized the shape of this triangle in
momentum  space by l_lsil . In our case, in order to ~freaf the three particles

(13)

on equal footing as much as possible, we use the Dalitz-Fabri coordinates
r, p and 4. Consider an equilateral triangle of unit altitude (see Fig.1),
with O as centroid; if we denote the distances of an interior point from the

sides. of -the triangleé by__r_iz/_r__2 + we see that Eqn.(2.2) is aqutomatically

satisfied. - The magnitudes of the vectors 1. are then given by

T (P S M R )
and so
=t =gy, (3.2)

where _r_ik = (_r_.l< - Li) P
g] cos (4 - %") ,
§, = cos (4 + 2m)

£q = cos &

(3.3)

Fig.1.  The Dalitz-Fabri
-+ coordinates
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Now in the CM system, r_(3) = O. This means if the vectors r, are
to be real, the sides of the triangle (not the equilateral triangle) have to

satisfy the usual triangular inequality:

k75 S TRk S Tk T .4

Using Egns. (3.2) and (3.3), this condition is satisfied if p2 <1 and we
‘therefore choose fhe fifth angular variable to be y such that
p = cos 2. (3.5)
In keeping with our attempt to treat the three particles symmetrically,
we- choose the body-fixed axes (_g,_\:,_v!) as foltlows. Imagine unff mass at each
vertex of the triangle. ~ We take u and v to coincide with the two principal

axes of inertia. . In other words, we require

i
- However; this: does not define u and v uniquely for the condition does not
specify the directions of u and v in space. In Zickendrahf,(M) while
- maintaining both alternatives, the range of g was taken to be O< 4 < 4n and
‘a one-te-twe correspondence between r and the sef (r,\};z(aBy)_ was obtained.

[,

We can obtain a one-to-one correspondence with the prescriptions- *:

L(]) ~ ooy sin%lg - sin v cos %;f!) ’
o p (3.7)

r{cos \f'cos—2-2+sin g sin %ﬁx_) .
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We remark that for given r, y and g, the last equation defines the

(2)

angle & between r*“" and u unambiguously,  Finally, the body-fixed axes

(ﬂ"_’.'ﬂ) are related to the space-fixed axes (_l_,|_,£_) by

-4

- T . _ . .. 4 em
u i = | cosacosPcosy-sinasiny sinacosPcosy-cosasiny snnﬁcosy‘ i !
P
v = cosacosPsiny+tsinacosy  -sinacosfsiny+cosacosy  sinfsiny i (3.8)
wi| = -cosacosf sinasinf cosp l k .

In summary, we have obtained a one-to-one correspondence between r
and the set (r,gaBy) which we will denote collectively as C. Given C ,
-we find 1 in terms. of u and v by Eqn. (3.7).  The actual directions in space

are then .given by Eqn. (3.8). The ranges of the variables in C are

O <r <o
©O < w< wa ,
O < g < 2n , ‘
c, (3.9)
O < a < 2,
o B .
O <y,
So far, we have used ro= ([_(]),E_(z)) with L(Z) along Iae It will be

seen- that both for performing Omnes's angular momentum reduction and for the

study of the symmetry properties of the functions carrying the I.R.s, we will
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. . . f o .
require representations expressed in terms? C of the other two six-dimensional

vectors 0 =(r](]»),.£_](2)) and r, = (Lé(])' :_2(2)), with L](Z) along L2 and r2(2)

aleng oy Note that instead of introducing yet another symbol for the six-

dimensional vector, we prefer to use the same as for the three-dimensional-

vector of the individual particle. As can be easily verified, (_(]), L(Z))

transform as -the fwo-dimensional representation of S3,(]5) that is,
R y L
(12) =
i , etc. (3.10)
& | RS
Thus we find
(1) o1 43 0K
. Ill . } N R S
"‘ E
@0 L 431 @
e .22 o=
and
O B S B I A O
-2 . _ 2 2, -
! , oo (3.11)
! ! . :
2 A8 1 @y
2 | . 2" 2. L
(2)

These together with Eqn. (3.7) allow the angles ’;], % between 2 and
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(2)

u, r and u respectively to be determined.

- =2
As can be obtained by Jacobian calculations, we give here the volume
)
element dr = || clri in some of the coordinates used later:
- o

V3

dr = 3T dﬂ- dR

= g rdr cos 2y dlcos 2y)df oR (3.12)
= r5dr dn (:)
where
_ 2, 2, 2
dw = d_r_] cl_r_2 dr_3 ’
dR = dasin B dp dy , (3.13)
d_Q_(_I":) = ]8- cos 2y d(cos 2y)dg dR .
We -now consider the transformation properties of C under 53._ First
take <the internal coordinates r, ¥ and g . It is obvious from definitions

that r and v are invariants while g transforms as
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ef
02 = -g,

I
RN

@ = -4+3, RV
@Y = -4-F,
123y =~ g+
amp = g+,

- -where~e -denotes. the identity element, (ii) a transposition and (ijk) a cycle.
- With regard- fo‘fhe changes in the external variables a, B and Y, we note,
by definition of the body-fixéd axes in Eqn.(3.7), that the transformation in
-~#v-and- the Euler. angles are coupled. (3.14) has been chosen so that under

(2]

: exchan‘ges; of.any pair, the changes in a, B and y are the same:

.4 — a
B — B-nm , (3.15)

Yy —n-y.

In momentum-space, there is a complete analogy with the configuration
space:coordinates.  We use k in place of r with same meaning attached to
the suffices, - Herver, to simplify fhe‘ notation, we introduce the neQ
variables (hl, _i_l) , instead of (Ei(]), _ligz)) , as the relative momgntum vectors,
Where--n'é-confusion" can-arise, we use the same symbols for the angular variables.

In: Chapter- 4, section Il, when we consider the Fourier transformation to
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A
, k to denote

|-1>

- momemntum space, beth coordinates will appear, then we use

both :the six~dimensional unit vectors and their associated angular variables,
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CHAPTER 4. THE SU(3) REPRESENTATION

I. The SWU(3) States

We have seen in Chapter 2 that three-particle states can be classified
by SU(3). - Now each I.R. of S‘U(3) is characterized by the two Cartan

indices(lb)-(}\],}\i) ond we saw that both /\2 and S commute with all elements

(15)

of "CZ Hence by Schur's lemma, their eigenvalues, soy %(}\+4)52 ond

2pmh respegtively, denote an I.R, and must be related to the Cartan indices.

(6)

Indeed, it can be shown that

NN
| (4.1)
| Noh
/M’ = —'—T——_.

From now on we will use (\, ) to denote an I.R.  To obtain represen-
tations of these I.R,s as functions on 55, we require the differential operator

analogies of /\2 and S in our coordinates C .,  These differential operators

in other angular variables have been used before by Beg and Ruegg(w) to -

construct harmonic functions of SU(3) on 55. Nelson(ls) used a set of

coordinates- similar to ours, but he analysed the group SU(3) in terms of the

(19)

usual SU(2) subgroup of unitary symmetry type in particle~physics; and
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therefore: his results are not useful to us, In principle, /\2 and S can be
constructed from Eqns.(2.18) and (2.6).,  This is very easy for S but extremely

tedious for /\2. An alternative method to obtain ',/\2 is through the
(20)

Laplace-Betrami operator on the manifold S.. However, /\2 constructed

5
in this way does not show up the operators of the SO(3) subgroup explicitly

and hence is unsuitable for interpretation,

Using the definitions for Kii and Aii’ the operator S can be expressed

(1) (2)

in terms of r and r**’,  The result is

= == () 9 _ (@ 3
S = ﬂ’)(r_ . -a—r(ir r . w) . (4.2)
Introducing the complex vector z and its complex conjugate z*
v
z = 5_(2)+i£_(]) = re 2(cos yu-=isinyyv),
4.3
L @y
z* = _r_(z)-ir_(]) = re (cos y«g-&isin V’l) R

we see that the simple exponential dependence on g allows S to be constructed

[3]

without recourse to a complete coordinate transformation, Thus we find

— gy O
S = 2|Tua—-¢r . ‘ (4.4)
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For /\2, we use Eqn.(2.13) which, in configuration space, is

2 _ .22 2_1 9,52
AN = T‘"(Vé ;g-a?(r ?” (4.5)

The advantage of this approach is that when we express v62 in terms of
C, we can build in the angular momentum operators of SO(3). In these
coordinates, V62_ also separates into a part containing the Euler angles
(21) 2
V6

and another for the other variables., In. Gallina et al., for S-wave

was considered., Zickendrahf(m) whose method we follow shows the separ-
ation in the general L # O case., The coordinates used are similar to ours
but- the ehoice of the body~fixed axes is different,as discussed in the last
chapter;  We curky the transformation from r 'rol C in steps.  First the
original Fnam‘ev So with axes (i,j k) is rotated by Euler angles a, B] “and
vy to S'] such that £ is along L(Z)’ X in the plane of the triangle, This
is the same rotation as Omnes,  To bring the (il 'Z]) plane into the plane
of the triangle, we rotate S

1
(2),

52 is now along [’ the Euler angles of 52- are d,, B2, and 178 Then

‘we infroduce ‘the -coordinates r, ¥ and g .  Finally we rotate 52 into §

about X by n/2 so that Yy of the new frame

whose axes are (u,v,w) by rotating about z, the angle (_12_r -£), The Euler
‘angles=of 'S are, by definition, a, B and y. Note that we have used the

samenumerical- lable i for the frame 5; and the quantities associated with i.
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For example, z. is the z-axis of the frame Si’ The result of this transfor-

mation is that for /\2 we have

2
A2 - B Aty B 4 i 25 -,
3 2 sind y Oy ;5'2’ o
92 2,& ) 3in Zy/
( ; - 22 )L£f4iﬁ-——-——s'" 2y % +
cos 2y sin” 2y - cos
cos 2¥ (Li _ Lg)] (4.6)
S i n 2 \F - l,;:',' !
where b = (L v W) is the angular momentum operator with respect to the

S »frqme and

Lﬂ ih 5
- 1 o4l = ¥y 9 _ .9 - . 0
Lf Lgi' IL‘_’, i he <sm B3a I_aﬁ + cot {S—uay ). (4.7)

This can be identified with the Laplace-Betrami operator on S with

@

5

same C. Since it is also the angular part of the six-dimensional ‘Laplace

operator,, :its eigemfunctions are surface harmonics S‘;\(ﬁ) on S_ of degree )\’(22) :

5
that is,
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INCGIERR LX) (4.8)

where - v represents the set of labels characterizing the independent surface

. harmonies of degree A, The total number of such surface harmonics is

-h()\) = (LEZ)I(XI_MZ). . _ (4.9)

. v . .
‘It is easily shown that the S)\(r"\) are also eigenfunctions of S, By
definition, the surface harmonics are related to the harmonic polynomials

P;(_r_ ) of degree A by

S = :Ix A0 . (4.10)
with
e = O, (4.11)

(23)

p V
In terms: of the complex vectors z and z*, P>\(r) can be written as

b b

" ~ b.b,b a a a : b
ORI Cotarey 9 ) ) ) ey
20, =P N
2b;=a. (4.12)

..p+q=>\

4
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and we note that for given A, the range of (p-q)/2 is

N >
-

1
N| >
+

-
.
L ]
-
N
1
e
-
N >

The coefficients are of course determined by Eqn. (4.11).  Using Eqn. (4.3)
we fil;‘ld that the Sl;\(f_) are eigenfunctions of S with eigenvalues A& = (p-q)/2.
Indeed (p,q) correspond to the Cartan indices ()\],)\Z).

Writing the surface harmonics as 'S';’b('r\_) with v now denoting the
remaining labels, we see that on 55 the (A, 1) L.R. of SU(3) is carried by the
-surface harmonics S';’v(_r:). It also follows that 1.R.s of SU(3) form a
complete orthogonal set on 55. From the classification of vectors belonging
- to a:given (A, m) l.R., v consists of L, M and the eigenlva|ues, w say, of

‘the cubic ‘op’er‘.dfo‘r‘ A . However, for L = 0,1 and some L # O, Si'LM(i)

(24)

is multipliicity free in which case we need not consider w. In any case,
it is best not to require the S;(f_) to be the eigenfunctions of .r,;. as w is in
general -irrational and their .eigenfunctions are difficult to be expressed in
closed forms, We are sctisfied if they are all the independent solutions of

- Eqn.(4.8). - The SW(3) representation of a three-particle state in configuration

| space is then given by

FMErE) = uln) ST (4.13
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The radial part satisfies the equation,

[+ 2 2)- 288 L2 o = 0 @4
r r

. . -2 -2 .
the solutions of which are (kr) J}\ 2(kr) and (kr) N>‘+2(kr) with J>‘+2(kr) and

>‘+2(kr) the Bessel functions of the fist and second kind respectively, We

require all.the surface harmonics SM (r) satisfying the eigen-equatiors 3

M LM A

SSYE) = 2uh sﬁ\"”’f@ . (4.15)
spMe = wwr? S Me) (4.16)
LsitMe) = masyMe) . (4.17)

By the Peter-Weyl fheorem,(26) 5’;’ LM(_f_"_ ) can be expanded in terms of

mafrix elements of the SO(3) subgroup, that is,

ST = 2 ey (v Dy® (4.18)
K
where'D!'k(-R)-- = e'Mq L K([3) 'KY is the rotational matrix in the notation

. of Edmcmds.(2 ) 1t is obvious that S’;’ LM(;_\_) in this form satisfies Eqns.(4.16)

and (4.17).  If we write
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M, K LM, K -
Cru (vB) = N Irnu (¥ e g, (4.19)
Then Eqn.(4.15) is also satisfied and hence we have

sty = N, e "M‘Z K(#) D ® (4.20)

where N.o. is a normalization constant such that

5'“w“ms‘*'LM“<) o) = B8, 8 By .21)

AN /“/ul LLf °MM! ®k ®?

with & the parameter to remove any further degeneracy.

Using. Eqn (4.20) for S'“’ (f) in Eqn.(4.8) gives a set of coupled equations

for the g)\ (Y)

2 - 2 .
[ d 4 coz 4v aa' _ 4,4; .2 (L(L+l)-K2) - 4K S 2y
sin 4 ¢ t  cos 2y sin2y ‘ cos 2y
x(x+4>] (vf)
_ cos 2 LM K+2 L M, K-2
= £ 2¥ (e (#)+Cp g (v)) (4.22)
A SRSV S )\,u.
with k= [+ kLK (LK) V2 (4.23)

The solutions to this are difficult to obtain for general L.(28) In, Zickendraht

a method was devised fo construict all the G (y) which satisfy Eqn.(4.22)
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for L <2 and some for L >3 .  Nevertheless the differential system provides

the following useful information: -

i)

iii)

iv)

It does not depend on M at all and we will therefore leave it out in
future.

For given A pand L, the g[;\;(K(\f) with even and odd K are coupled
separately,

In general for L > 2, there will be more than one solution for given

A M, Land K,  Having found the independent solutions, we can
ortho~normalize them and since a general SU(3) state is classified by

the set- (k2 #AP.LMw) and there is a one-to-one correspondence (apart

from the k2) between this and a Sﬁ’ U(\_l;_) surface harmonic, the

constructed ortho-normal solutions of Eqn.(4.22) labelled by say gl;\’;i(\y),
%)

form surface harmonics S";' which span the subspace of the three-

particle states on S_ with given (kZ,A;MLM) and hence must be related

5
to the state labelled by w by an orthogonal transformation. A three-

particle state can therefore be classified by the set (k2,}\f4 LMk),

&
Such states need not be eigenstates of the cubic operator st .

- However;.-the important thing is that they form a complete set for a

- three-particle system.

Restricting to the case when k is redundant and using Egns.(4.21) and

(4.23) it is easily shown that
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LK _ L,-K
9}\/4, = gA_/N . (4.24)

'v)’ ' By Eqn.(4.1), replacing by - 4 means exchanging A] and )\2 which
in turn implies going to the adjoint representation of a SU(3) I.R, It
follows that, for given kz,}\, L and M, the multiplicity of the sfates(24)

wifh. p and =4 is the samé.

We conclude this section by giving the solution for. gI}\’/L( for L= 0 as

 this only: is important for the boundstate problem.  Eqn.(4.22) reduces to

just one equation- which can be solved in terms of the Jacobi polynomials

(5]

- giving
' o | l}AI,O
58 = N, e W cos 291" Pl A (1-2 cos® 2¢) . (4.25)
-2-(7- wl )

I, Some Properties of the SU(3) States

In the last section, we have undertaken to construct I,R.s of SU(3) in
configurcﬁc;n space, It is obvious from the symmetry of p and r in Eqns.(2.7),
- (2.8) and (2.9) that apart from the radial part, I.R.s in momentum space
| foke“-vexacfly' the same form: we only have to replace the angular variables
by their momentum space counterparts,  We now give an alternative method

to obtain ‘the momentum space representations by a Fourier transformation,
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For notational convenience, we use Dirac's ket or bra to represent a state,
Again we use -y to denote any remaining labels; a general normalized
SU(3) state in configuration space therefore is
Jy  Alkr)
M
<k av> = L INZ D ovay (4.26)
T 3 N\
V2 r
The normalization has been chosen so that orthogonality of the states takes

the form

2 2 2,.2
<k ,)\_vlk' V> = §kT-kt ) 5)\)\, 5, (4.27)
which also determines the completeness of the states to be
s j[kz,xw kdk <kZAw| = 1.  (4.28)
nN '
The Fourier transformation is
<k! lk2,>\y> = f<.'§'|£,>d£..<.;"_lk2'>‘“> , (4.29)

-3 ik'.r . . .
where <r|k'> = (21) “e'= °L is the properly normalized plane wave state with
the six-dimensional vectors k and r.  Like the partial wave decomposition
of the plane wave state in two-particle problem, it can also be expanded in

terms- of -theysuitably standardized Gegenbauer polynomials, [5] Ci(g.ﬁ) ,for a
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six-dimensional space.  These polynomials are simple generalizations of the

well-known Legendre polynomials.  The expansion is
>\" 2 A A
< k> = 2N 42— heag®ICED - (4.30)

2n3 N (k)

Then, apart from possibly an irrelevant factor of i, we have in the momentum

representation the normalized state

2 2

« 2 &(k! A
w e = A g @.31)
In deriving this, we have used the following resulfs:(29)' ]
©
2,2
[y o) oy e = 280245, (4.32)
o

L

2113

[SED 3O an ) = 5, v 37 S . (.39

In discussing symmefry properties, it is more suitable fo introduce a new

sef- of 'surface‘hdrmonics denoted by S where 1= 1,2 and ,ui is either

M,
)\y. u:

positive or zero and has the following meamng For A even,

3n+1,

T
I

3n+2, n=0,1,2,... ., (4.34i)

=
N
i

My = 3n;
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and for A odd,

. 5

//(..I = 3n +-§-,

My = 30 +.;-, h=0,1,2 ..., (4.34i1)
_ 3

,L&3 = 3n +7.

The S;’;%m written shortly as Syv are defined as:

for L even,

M i }L-ILMR _Iu-lLMk
Sx = e (S, ! -s, ! ),
ple V2 A A
a (4.35i)
M, MR =4, MR 1j#1
SAIMM = “']"'(SA' + S5y | ) "{ 7
a8 V2 =
and for L odd,
Ji., MR =), LMK 1j#1
SI;\A:M ——]—-(S>\ + S)\ ) xi ,
i V2 -lj=1
(4.35ii)
. K, Mk =k, , LMK
szw = - —) - Sy | )
i \/2

Note that these -surface harmonics can be constructed because of remark v)

ofter Eqn.(4.22). They are orthonormal in ()\,Mil k LM) and by construction
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form a. complete-set on 55. By appending the radial part to them, we
obtain-an  alternative complete set of SU(3) states.  The orthogonality and
completeness -relations for these new states are the same as Eqns.(4.27) and
(4.28) respectively with the proviso that 1 now represents the set ( ,u.il.k LM).
From now on we will use these new states,  For states with L values éuch
that ‘& is redundant, we can use the symmetry properties of C and Eqn.(4.24)
to show that for j = 3 the states lkz,kﬂilLM> and lkz,)\/AiZLM> are
asymmetric and symmetric respectively whereas for other j values, the pair
‘transform-as the two-dimensional representation of 53. d The restriction in
‘the: L values-follows from the multiplicity of states with given A, ,tci,L and M,
which means that Eqn. (4.24) is not precise enough.

To gnd the discussion on the symmetry pro!)erfies of S)\v ; we consider

spatial inversion P,  Under this operation, only y changes to y+r.  Hence

we have.

P2, av> = ) k2w, (4.36)

But the .spatial parity of a SU(3) state is also given by (-1)8 and depending
(6)

~ Therefore, for given A, the summation over K in S, s

on >\ only. v

over- either even or odd valves. In particular, for L = O, K = O, only

-positive parity A even states are possible,
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By completeness of the states ik2,>\)xi LM &> , we can express a

general-threemparticle interacting state  |'¥ > in momentum space as

I
Z <l e de de 1§ >

Au

<I£I\E>

)(Nu‘ (k) A
2 —7 S

(4.37)

where )(}\u(k') = w/2<l<2,>\ul ¥ > is the generalized partial wave amplitude,

Analogously, in configuration space, we have uxu(r) defined by

<y > = P —— 5,,{1) . (4.38)

It follows from .Eqns.(4.29) and (4.30) (with S: replaced by S>\v) that

the two amplitudes are related by
LN I PN O PR ORE (4.39)
from which, with the help of Eqn.(4.32), we have

Jix, 0Pk = fro, 0F ra . (4.40)

That is, fhyeﬂir— contributions to the normalization integral are the same, as

expected.
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CHAPTER 5 FADDEEV'S EQUATIONS IN SU(3) REPRESENTATION

l. The angular momentum reduction of Omnes
It has long been recognized that due to the disconnectedness of the
kinematics of a three-particle system, the Lippman-Schwinger (L-S) equation

(30)

has a &-function in. .its kernel which persists upon iterations and therefore

prevents any- iterated kernels to form a completely continuous integral operator

in-any function space.(3]) Faddeev rewrote the L-S equation for fhe" three-
particle interacting state [ > in operator form as
AU I S B o | Tlem
1M = hg s - LGN e @@ ||[E
Fa 19 e . e @ | |19
3 (3) 3 3 Y (3)
_IY >J »_'Y_o > G (2)T4z) G (2)T4(z) . | LI‘I >
(5.1)
with
; B0
1e> = &>+ SIEYH (5.2)

where I\jgo(')> and |§:;°> are known asymptotic sfates,(z) Go(z) is the

free three-particle Green's function, z a complex parameter and Ti(z) is the
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transition operator of the i-two-particle subsystem in three-particle Hilbert

space. In momentum representation, the kernel of the operator Ti(z) is

@IS = (5 LN eI 6.9
with

A iEedg> = et =gt (5.4
as the two-body transition amplitude of the i-subsystem. Because of the
&—function in ﬂi‘Ti(z)IE'> , the matrix-operator in Eqn.(5.1) is still not
completety continuous though its kernel can be bounded in space of square-
integrablefunctions (L2 .(32) However, for particles interacting with Yukawa
potential,. it can be shown that the squared matrix-operator is completely

(33)

- - 2 - - ., . -
continuous in L~ for all z including the positive real axis. Therefore, - in

contradistinction to all previous practical applications of Faddeev’s equations,

we use the iterated equcfion(34)
AL 1§ O 4 ko) gy |20, (5.5)
where l'\}o(i)? = h-é‘o(i)) - iéiGo(Z)Ti(Z) ,S-L’o(i)> (5.6)

and K("')(z) is the mairix of operators
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-
Go T-]Go T2+Go T]Go T3 G, T]Go T3 G, T]Go T2
K(z) = Go TzGo-.T3 Go TZGo T]+Go TZGo T3 | Go TZGo T]
G, T3Go T2 ‘ (30T36o T] C, T3Go T]+Go T3Go T2_J
(5.7)

Complete continuity: of the operator K("i)(z) in L2 is implied if the Schmidt
norm for its kernel <'|_<_|K(I’i)(z)ll<_'> exists, that is,

[l Dnes = [lak@Veie> |2 dde <o . (5.8)

The -advantage of Egn.(5.5) over the non-iterated Eqn.(5.1) is that the Fredholm
theery now sirictly applies; in particular, the resolvent of K when it exists is

given by
-k = & (5.9)

where- 6, A -are the modified Fredholm determinant and first Fredholm minor.
It will be seen in the next sub-section that the introduction of SU(3)
-representation for -the Faddeev equation (5.5) is best done through an intermediate
~step. when .the operator K(z). |s first expressed in a representation diagonalised in
L= (l_<_]2,_|_<_22,k 2);, rhg total angular momentum L, and its components M and

K -about the space- and body-fixed axes respectively.  Such three-particle
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state is denoted the ket I.f?)_.’.LMK> . The same system, in a representation
diagonalised in the particles' momenta can also be represented by the
»kef—-.|5i>»where _k;l = (ii’li) is the six-dimensional vector, For a given
-.-configuration -of the three particles in momentum space, we can choose to express
the state in any. one of fhe six-dimensional vectors, L(ai; hence the states

. lki-»>'=For i=1,2, and 3 are actually equivalent.  The transformation between

the states I-k-i> and |& ,LMK> is given by
<kt o, MK> = A8(w’-w)Dy (RY) . (5.10)

The constant A is determined by the orthogonality condition which is chosen

to be -
1 TAAT KB = . T
<, LMKl L' MIK> = §(0-w)8)) B pr - (5.11)

Then A is given by

A2 - 2L+]2 7 , (5.]2)
3v3n
and the completeness relation is
% (12, kode <, K| = 1 (5.13)

LMK

The operator Tl.(z) in this representation is
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<, MKIT.(z) |w®,L'M'K'>

= (3‘/8—%)2]5(_“’_'_2*)5(5_'?&' )s(f’_i*-ii”)iz.i*“i(z .._i_iuz) I.Zl,_,,i"> D;_\.ALK(R*) %

Dyys s (R)dw* d o™ dR® dR" (5.14)
. 2 _ 3
with ii = Twi ’
2 _ 1 i
dy T g @ t2ey - e,

In order to use the S(EE*- ii") in evaluating the matrix element in
Eqn.(5.14), we choose the coordinate frame, say gi (for i = 3, §3 is same as
S] in Chapter 4) .such that the body-fixed z-axis is along —é-i"’ the y-axis
normal: to the triangle.  The component of L along the body fixed z-axis -is
therefore-that along -;é-i“ . We denote it by K, so that the new ket is
‘I'_ai,LMK?"dependinjg on i. The matrix element <__6*_>_,LMKifTi(z)L¢i' L M'Ki'>

[7]

is then found to be

&(w .~ w.")
T AAL 1 - 2 | 1 .
<£’LMKi lTi(Z)I_(A_-L‘rL M Ki > = 4\/21‘1‘ —;—;W—- 5LL|5MM,5KiKi, X
i
2 2 2 ' ’ |
G A A T} ) Vi 61:0) Yiuic 6.0) (5.15)

2 2

2, . . -
where'»t-illsi (')ll, 71:‘ ; oz - gi' ) is the I' -partial-wave off-shell transition
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amplitude of;;thg iﬁubsysfem, Ylm (©,9) the spherical harmonics; Si,S“i are

the angles. between . and ii ’ 1’i and -flli respectively, so that

N2, e

cas: Si = (wk- wi) [wi(Zwi + Zwk -t
and cos Si' defined similarly with w' replacing w .

To remove the dependence on i of the state iw,LMKi>, we carry the

~
rotation ‘which takes Si into S.  In terms of Euler angles, this is -

Ra@By) = RG.-F.-€) (5.17)

recalling. that ¢ : is the angle between -f;—i and the body fixed x-axis.

The transformation property of |"2LMKE>" under SO(3) then gives(lz)

_ : L T
lﬁll—MK> - %" DKKiu(fl
i

7 = E) @, LMK 1> (5.18)

Hence, we have finally

<&, IMK T (2)] eof , L' MK >

S(w-w‘)
_ 42 02
_42rr—___72_LL'MM'l2”|I"(n PP E ) X

HES

™ E.)L

w
) DKI Kiu(i" ’

w w
D*KK;I‘I'(_Z_I = 21 = = ‘71 = ii)Yl'Ki”(si’O)Yl' Kiu(sinro) .

(5.19)



[I.  The reduced Faddeev equations
To avoid encumbering the formulae, we consider the homogeneous
equation of Eqn.(5.5). In the SU(3) representation, it reads
D% INRTC 2 3 1lind) 2 2 0
&S v |eVs = 33 j<1< A KM RS > 2kt dkEo<r et |3
. i=] )\'D' .
i,i = 1,2,3 . (5.20)

We ' recall:that » represents the set (,uilLM k). Eqn.(5.20) is already
' )

a set of ‘coupled one-variable equations in k',  The operator K(I is usually
‘known: in' the representation when k = (_y_,_i) is diagonalised.  If we iry to

calculate. the  kernel direct from
<k27\l/l K(i'i)(z)lk' 2, AN >
= j<]<_,2}\)_, |£*>d_k_*<]i*| K(i'i)(z)lku >d£ll<|_(-ll Ilklzl}\lul >, (5.2])

we find that this involves a ten-fold, non-trivial integration. To complicate
matters. further, the iterated kernel <k*| K(I")(z)lk"> itself contains a six-
fold integration,  Pustovalov et al.(35) have derived a complete set of

LM A
surface -hermonics like our 57\/“ M(l_<_), but in terms of z and z* of Eqn.(4.3)
“(or equivalently in terms of k).  While expansions of wavefunctions satisfying

Schrodinger's: equations in configuration space in these harmonic functions
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havevbeenamply justified in practical calculations of fhreer(”) and Foun(-s-é)
particle boundstate -wavefunctions and binding energies, the introduction of
- such surface: harmonies in Eqn.(5.21) involves the abovementioned integrations.

Now our §: (k) have the dependence on a, B and y separated out already

A,u Pk
“in- DMK(R), |f is natural to obtain K( ")(z) in a representation such that the
SO(3)- element- is again separated out.  Such representation is afforded by

Omnes"s angular momentum analysis.,  In place of introducing complete sets

of: k> in Eqn.(5.21), we use those of |to,LMK> to obtain
4w (Ko 2, wur >
= z Z J<k )\ylw* L*M*K*>dw*< w* L*M*K*'K( 'I)(z)lwuLnM"K"M'

L*M*K* Lll MII KII

<_l::>_",L"M"K" ,klzl)\l >, (5.22)

Using Eqns.(4.35), (4.31) and (4.18) to find <k*|kZ,A\¥> and Eqn.(5.10) for

<k') w ,LMK> , we have for the transformation coefficient

2
2 _ 3Y6 n°A S(k —k* )
<k l)\”'—&*, L*M*K*> _—.__-2L+] SLL*SMM* KK* 2 k*z )\ﬂtn ( ¥ ﬁ*) 7

(5.23)

where. the GL K are defined in terms of the G;;;KK and G;’\:ik exactly

)(,u} k

" like E n,(4,35) for the S M . and in arriving at E n.(5.23), we have used



(3.12) and the orthogonality of the rotational matrices.

81r2

JOR R D R AR = ST 5 6 By - (5.24)
By the rotational invariance of K(i’i)(z) under SO(3), we have
<o, Lmeke KDy ome Lo
= 8 By < LMekr KO D) o v LMk L (5.25)
Thus by Eqn.(5.22) and aofter integrating over the S§-functions, we have for the

SU(3) representation of K(i'i)(z)
<, ik e 2>

4 2
= —— A2 ) [ v kKT g 2, g imicr>
2(2L+1)° KK® j ' ‘

*L, K L, K 2,,2
thiw (V) Gyt (W8 K5 Ja 28
where-~dA-- = cos 2y * d(cos 2y*) cos 2" d(cos 2 ') dg*dg" (5.27)

~ and we have expressed the Omnes kernel in Dalitz-coordinates to emphasize
-that the .integrations are over the angular variables. It should be noted that,

- with.the range of y given in (3.9), the kernel

<k2, Yk, LMKIK(i'i)(z)“("z, "' g"  LMK'> is always defined. By introducing
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complete ‘sets:of SU(3) states in Eqn.(5.8), it can easily be shown that

kel = 4 Sl KD || <o
AV
Alv|

Hence

” <k2,>\” IK(i’i)(z)lk'ZA'u'> “5 <o , (5.28)

that is, the SU(3) kernel <k2,>\bIK(i'i)(z)|k'2,>\'u'> as an integral opérofor
in Egn.(5.20) is completely continuous in L2 whence all the powerful methods
of function theory can be applied to it.

For the rest of this chapter, we specialize to the case of three identical
- bosons ‘interacting in pairs with a simple Yukawa potential in s-state - that is,
- we consider only the s-state contribution to the two-particle transition
amplitudes.  Thus the summation over |' in Eqn.(5.19) is reduced to just the
term with ' =0, We are looking at the boundstate of the system with L= O
and therefore g will be redundant, Since the state [¥ > and its
components: - |§(')> must be totally symmetric with respect to all transformations
~of 53, ‘nthe-summation over ' in Eqn.(5.20) we need only to include
\'" =2 .and the-set {3} which also implies that the summation over N is
overt X' = O, 4, 6, 8, and then even integers.  With the help of the

orthogonality: relation of the Jacobi polynomials,[5] Eqns.(4.35i) and (4.25)
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we have for the properly normalized surface hdrmonics

| }%z(k) = Cpal¥d)

T for /g #0,
/u3 ﬂ ,O 2 ’
= / c05/43d(c052 ¥) "~ (1-2cos 2v) x
B 2 - A) 1 :
— for,(x3 =0
V2
(5.29)

~ The SU(3) kernel of Eqn.(5.26) fhen simplifies to

[2)(x 4272
6‘/31:

K2 e ?

<k2,>\,u3lK(i’i)(z)lk'2,>\',u'3>

o . ‘M Al
x [<k2, woge I D) k02, o gt cospgrconut, £ (cos2 ¥) Seos2 ¥it) ° x

o] o
X /;%A (1-2cos22tp*) X
2y = M)
1 for M ,,u:'; # O,
/u3,O ]
114 4
x P](>\l )(1 2cos 2y )]dA x :/-—2-—- for one of Mar fy # O, (5.30)
2' 2 3
1 _
7 for My k3=0
where we have left out the label ' =2 ,

To proceed further, let us just confirm a labelling convention which we

have hitherto adopted implicitly: If (r,s,t) is a set of particle labels in cyclic
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order, we -use r--to denote both the odd particle associated with the vector
R and the-two~particle sub-system formed byv particles s and t.  Thus from
~Egn.(5.7), a typical term of K(i’i)(z) in Omnes's representation is denoted
by <w| GoTrGoTll-f-o-'> and in SU(3) representation by

&2

AU NG TG T |k'2,)\'1"-'> with r and | unequal. Now for identical
73 Tor ol 3
particles the functional dependence of the transition amplitude of the r sub~-

system on: (c.ar w uf) should be independent of r, -~ That is, if we denote

- this function: by t, we should have

oy e') = oot , b b ! »
ers®) = i o ot ) (5.31)

r———— s f

Hence, using Eqn.(5.19) with L = I* = O, the matrix element

o ) I | . .
<_:'_|G°T]G°T2|i > is given by

4
‘ 32n 1
_ e
<wI|G T,G T,[=*'> S T
192
(w:/z +£ué]/2)2
, .3 T S
§( ooy ooty 2=y bo M ald o sl sz oo )t (5.32)
(W2 g1 FEE——

and then it can be verified that

123
rst

231,

| mn)S@IG T T)ls"> (5.33)

. o 8 =
<& (G TG Tla'> ( )
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where»'—.(': f '?)“Glnd (,23I l)' are permutation operators on the labels in ¢ and
&' respectively.,  Eqn. (5.33) takes a particularly useful form when expressed
in terms of the Dqlifz-coordinafes.- Noting that the permutation operators

‘belong' either to the cycle (123) or (132) and by the transformation properties

of g, we can-replace Eqn.(5.33) by

<2, p816 TG Tlk?, wa> = 4, v g0 |G TG T Ik 2, wigson>  (5.34

. _4n _ 2n
with =7+ € = 3
2w 4n
',=__a ' = [T
el 3 '’ e3 3 °

For the fact that /;«3 are  multiples of three and that
<k2,lf’pf|GoT]GoT2Ik'2,\,b')d'> is periodic in its g and ' dependence, we

can deduce from Eqn.(5.30) the relation
A2 16 TG Tk 2 N> = <4, M |G 1,6 T, 1k 2, Mat > (5.35)
S ISP LR S L R S B y

This remarkable property in the SU(3) keinel <k2,)\/<3'K(i'i>(sz‘2, N/.)L:'3>
allows the matrix-Faddeev equation of Eqn.(5.20) for fhé totally symmetric
boundstate: I~§s> to simplify to just a coupled set in A' and /Ha', by adding
1 ()

up the equations for . >, we have
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2 - — 2 lz 1,1 l2 '2 1,0 4
& 1> 4)\5:.1'« MG T G Tolk!, Mutodk! e &, w0 1§ >
| 3

By virtually repeating the same orgumeﬁf leading up to Eqﬁ.(5.28), we can sh
that the -integral operator in Eqn.(5.36) is completely cor;finuous in L2.
This is to be con'frosted with the case when the non-iterated equation of
(5.1) is used. In that case, the kernel would contain the &-function,
S(wi-- tu:), which apart from complicating the evaluation of the kernel itself
would also. produce the same misgivings as the &-function in the original L-S
- equation, |

‘We now bring in the only approximation in the theory in stating that
only small N' need be considered in Egn.(5.20).  This question was first
(10)

discussed by Smith.(9') For the friton problem, it has been shown that

for all pair potentials which, for small rii’ can be expanded as
a

- -1
V(rii) = W + Clo + a

2
]rii + az(rii) + .., (5.37)

the partial wave amplitudes W (r) in configuration space satisfy the following

i
estimates:

0,
U2,1(r)max <% uo,o(r) !

U4,O(r)qu S 6% Uo,o(r) ! (5.38)

o)
u6,3(r)mox’u4,2(r)mox < 1% Uo,o(r) !

u (l’) Y 1 ’
)\,/Lli max -—77'2“ uo’o(r), M2 >> s

(5.36)

ow
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Thus by Eqn.(4.40) and the remark following it, we can to a good approxi-
mation consider only those )(M(B with A <4, For our totally symmetric
boundstate - ]§S>, Egn.(5.36) becomes just two coupled equations for
)(O,O(k) and )(4’°(k) which can then be solved and used in Eqn.(4.37) to

construct the wavefunction in momentum space.
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CHAPTER 6 THE SPIN-ISOSPIN STATES

We wish to construct, in spin-isospin space, all the possible states of
three:‘nueleons -corresponding to given total spin,. isospin (S,1) and their
z-components: (S“z‘."‘lz')" Moreover, we require the states to have definite
symmetry’ prop'»'er..f.ivey with respect to 53. Since the spin and isospin states
can be freated analogously, we confine ourselves first to the spin states of
the system. .- We follow the same approach as in previous chapters for the
spatial classificdfion and endeavour fo construct the states by group mefh'ods.
-This ‘means;- inthe first place, deciding the group with respect to which the
system- is- invariant and then to find its irreducible representations. In
this ‘cormeetion, we have used many results on the symmetry group 53; a.
detail discussion of these can be found in Chapters 7, 10and 11 of
Hamermesh. (15)

Let us: represent the spin state of a nucleon (5=2) as a two-component

spinor
(6.1)

with Xpr %o representing the spinor with S = %, =% respectively,  The
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spinor is normalized such that

L

2
P ﬁxiijz - 1. 6.2)
I=

o

If ‘the basis vectors x. are subjected to a unitary transformation so that
xg = U,X. , (6.3)

we -obtain “another basis for the same spinor space.  This unitary transfor-
mation can be m?:de unimodular by taking out a phase factor and therefore

* we-may-regard the spinor space as providing an [.R. of the group, carried

by the: 2x2 wnimodular unitary matrices, which is SU(2); and a nucleon state

~ with spin % is invariant with respect to it,

For a three-nucleon system, the spin space is spanned by the components
- of the 3-rank tensor (or a multispinor of rank 3)

F. . = x(.])x(?)x(.s) (6.4)

fiyig b i g

(2)

where;: for example, X,
2

This tensor is, of course, to be defined with respect to SU(2), that is

is the spinor representation of the second nucleon.

] -
=

iii Ui.Ui.Ui.F... 7 (605i)
1'2'3 1 "2l2 '3i3 lylal3
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or symbolically,

F! (6.5ii)

O OTOH0)
This'23 dimension tensor space obviously provides a representation of SU(2).
However, what we- are interested in are the [,R,s of SU(2) carried in this

tensor spaces  Fhis means resolving the tensor Fi]i2i3 into component-tensors

which transform irreducibly ‘under the group.  Such a resolution is achieved through

the: wommutating property of the transformation (u x u x u with the index-

permufaﬁon;:of‘.-Ss, which is defined as follows: Let p be the permutation,

p = (:],2, 31}) -which when operating on the tensor F, . . produces another
11234 iisia
‘tensor pF such that :
(pF). . . _ F. . . (6.6i)
2's T irfrls
or symbolically

Now consider the effect of p on a transformed tensor F':

®h = e

“p (Rt P (i)

o) -
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The producf'up(i)p(i) iz bisymmetric and therefore when the same permutation

is applied to(i)and(j), the product

0O 00
Thus,we have

OFo = we® - 7)

Hence; -tensors of a particular symmetry transform among themselves under the
transformation defined by Eqn.(6.5). The problem of resolving a tensor
© ‘into" irreducible tensors with respect to SU(2) is reduced to resolving it into
tensors of definite symmetry with respect to 53.

The- I.R.s of S3 in the regular representation can be found by forming
the outer-product of three one-dimensional representations of each object.

- By the Young tableau method, this gives

IR T AR M

Ol ® [2] @ [3] = D3l @ 1] @ [1[2 & (13

28 13 '2 (6.8)
i3
with {0k i, 1‘5 and ==i~' the Young patterns (Y.P.) denoting the

i [

Bt
totally symmetric, totally asymmetric and the two-dimensional (mixed symmetric)
representatiens. respectively. A function of three objects issaid to have a
definite symmetry property if it is a basis function of an I.R. of S3 in the

regular representation,
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The Pierce resolution of the identity element
e = S+A+Y+Y (6.91)

provides the four idempotent operators:

1
S=_ZRI
6 R

O] —

8 R,
(6.9ii)
Y = t[e-aa][e+q2] .

v = 2[e-02][e+ a3,

where- R-is-an element of 53 and 8R

- When:-these- operate on any function of three objects they produce basis

is the parity of the permutation.

-functions for -the symmetry, asymmeiric and the two-dimensional representations.
We “must note, however, that the basis functions generated by ¥ and Y® need
not-belong to-the same two-dimensional representation.  Using Eqn.(6.9) to

resolve the tensor F.;,:..» we have
1'2%3

i = Frrret Femt Ferm + Fr—e (6.10)
123 121 '3 " "1'2 "1'3
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where
F = =%ZRF.”
'11'2]'3 R "1'2'3 -
FII =YI:||| = q,ial lll-iii_Flll' (6'”)
1] 2 123 123+ 213 321 231
3]
F:I =Y'FIII = Pinia inini i idili ’
113 123 123 213 321 312
2
and

= AF, = O

because A anti-symmetries the indices i],lz and i3. This cannot be done
since: there -are -only- two values for each index and any three must have two
equal indices. - It can easily be checked that the first tensor in Eqn.(6.11)

has four independent. components while the other two each have two

independent components,  Thus for Fr——=— , we have
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Fam = Frem™ 3@ 2 ~ Fann ~ Fi) -
2] 1]
6.12)
| o o _
Fim = o™ 3 Fie * Faz - P ) -
2] 1]
and for F T
1’3
| '2]
F = For = S(2F... -Fo . - F...)
1]1] 2]T] 3121 211 1127 7
2 ! (6.13)
_ 1 _ .
Firg = Frr = 3% * Fa - ZFard) -
o [

We -recall that the spinor of Eqn.(6.1) provides an [.R, for SU(2)
and the D(%) .-repres_entarion of SO(3). Now we wish to know which
representations: D(J) of SO(3) are contained in the irreducible tensors of
Eqn.(6.11). ,The answer is very simple for SU(2): Since the Youné
‘pattern l:l - for .one spinor has J = L, the outer-product of fwo spinors
D ®L1 = B ® [ ] have, by vector addition, J = O, 1 .

But the 2-rank tensor B is asymmetric and therefore has J = O while.

~ [:]:[ has J = 1. Next, from the product ® [ = :I @ [

!

and the fact that for SU(2) the tensor with @ is absent, we find that B
has J = %, Finqlly, the product [ | ] ® [ = ] @ ]:]:D
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implies that the right hand side has J = 4 and J = 3/2; and since i
|

has. J =%, it follows that [:[:[j has J = 3/2.  Indeed, it is easily

seen that the:two independent components of F = , say, have SZ =3

13
and ‘S'Z'= -3 and thus form an equivalent spinor space on which the elements
of SO(3) are represented by ‘fhe Pauli matrices,

So far, we have used the elements of 53 as index-permutations on a
tensor to give irreducible tensors and tensor compﬁnenfs whose SO(3) content

- s known.  For example, the states with § =S = % are carried by the

(i]’iZ’iS) = (1,1,2) components of Fe—— and F —T - These two states

"11'2 11'3

E 2|

are orthogonal because they are constructed by operating on the tensor

Fi o with Y and ¥* which are themselves orthogonal.  Since permutations
123
of particle :labels of a state cannot change its S and Sz, these two states

must form the: basis functions for the two-dimensional representation. In

fact, by a change of base, the properly normalized basis functions

© = M (Fom + P ) ,

‘ 2 |l hlis

_ /3 :
92"/;Fi,i

(6.14)

fes
=
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provide the two-dimensional representation on which the elements of 53
are- represented by the Yamanouchi matrices and we can identify the basis

»'-Func:ﬂons GT- aﬁd 92 with the Yamanouchi-symbols (Y-symbol) [121] , and

[2”] respectively.
- Analegous considerations can be used to obtain isospin states with

J =3, lZ =.~% and which transform as the Yamanouchi basis functions in the

two-dimensional representation,  They are

B = (G + 26 )

by b '
- L8l "2 (6.15)

3
n, = ‘/; G
2 ! Y b
|5
with (i],iz,i3)\= (1,2,2) and Giri ;= yi“) ygz)ys?’) is the analogue of

1'2'3 1 2773

F. .. with y the isospinor,
|.I|2|3 .

We 'are now in a position to construct spin and isospin functions for
three :nueleons with definite symmetry properties,  For the triton boundstate
probl{em-;ﬁ.»fwe- may restrict ourselves fo those states with S = %, Sz =13 and
=%, -lz»= -3 . The product spin-isospin space is spanned by the four

basis functions
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e.r, ,

i, = lor2,
L

(6.16)

and the [.R.s of S3 contained in this is given by the inner product of the

constituent two-dimensional representations :

—

| x | =

(6.17)

The four functions, Gi_n'i.; , must therefore form the basis for one symmetric,
one asymmefric and one two-dimensional representations. In fact, by a

basis transformation B, we  can obtain a new set of four basis functions

=[] = B T
é er B e]“]
40 el"Z
(6.18)
Z; e
(4 S,m
- . b "]
which transform under 53 as
o r - - - r -

(12)

] a3y [z, =] 7], ee...

6.19)
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Eqn.(6.19) and the transformation properties of the ei and m actually

determine E.- Thus we find

(6.20)

where c is an arbitrary constant which is fixed by normalization of the states.

In summary, we list below the spin-isospin functions of those states

with § = 5= 3 , | =-L,= 3 and their corresponding Y-symbols to indicate
their transformation properties Qnder 53:.
- ' X
Z. - 5 (©m + Opmy) [vi1]
Z = (e ~o,nm) .[321]-
a V2 172 2717 ’
(6.21)
. o 1.
4.' = ‘/—2(9]112 + 9211'.' ’ [:] 2 ]] y
7 1 K
L, = —©m S,m,) [211] .

V2
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CHAPTER 7 GENERALIZATION TO INCLUDE SPIN

In this chapter we wish to obtain, in the SU(3) representation, the
Fdadéev équ.atfon for the boundstate wavefunction of three nucleons interacting
in. pairs. with.more realistic spin-dependent potentials.  To this end,I we must
construct in the produci-space of spin-isospin (hereafter referred to as spin
space) cﬁd momentum space the form of the complete ket vector it >
of the ssystem.satisfying Pauli's Principle.  Also, we require a generalization
of the Faddeev equation to include spin.

(37)

The physical system we have in mind is the iriton, According to
the charge independence of nuclear forces, the triton has three possible 25_;_
(L= .O:,:-S“ = J = %) states: The dominanf s“fcfe that is fully symmetric in fhe.
space coordinates of all three nucleons, o state that is asymmetric in the
interchange of space coordinates of any pair of nucleons, and a state of mixed
symmetry,  The other states present in the boundstate wavefunction are the
‘three 2P%~sfctfes, the 4P% state and the three 4D% states.  There is reason to
‘believe that the P-states are not present to any appreciable extent and that

the D-states have a total probability of only a few percent. We will,

. 2 . . .
therefore, consider only the ©S; states in the subsequent discussion,
2
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The ‘triton has isospin, | = % , and isobaric z-component, | = =%,

1

+ The ‘z-compoment-of the spin, Sz, is arbitrary, so we can take Sz =3,

Hence the:spin-isospin states (hereafter referred to as spin states) of our triton
- are the four -given-in-Eqn.(6.21).
‘We -introduce @ new notation é(«l), ~ =1,2,3,4, for the spin-

states. These -are defined as follows:

Lo = 4,

S

Lo = 7.,

7.1)
L@ = L.
a4 = L,,
Then, the most general state of the system is
-— 4 ot
> = 3 [%)»ZW) (7.2)
Al =]

where- the kets E\I’(-’U )> are, as yet, arbitrary and may be regarded simply
as expansion coefficients of a vector in the four-dimensional spin space of

the 7 (V)s.  Let us denote b-y ]@s> the completely symmetric, I§d> the
asymmetric spatial kets and by | % ]>, l§2> the spatial kets of mixed
symmetry (they: transferm under 53 like 4] and 42). The Pauli -Principle,
which requires the complete ket | > to be fully asymmetric in exchanges

of all- the- coordinates (spin, isospin and space) of any pair of nucleons,

‘specifies-the symmetry properties of the kets lq_’ (v )> as follows:
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n
23
\%

v

S
v

I
3
v

1 (1)
Iy (3>

(7.3)

]

t
]
A\

x>, | & (4>

We wish to inquire how the kets | C_fs>, | @a>’ l§31> and IEE2>
are represented- in the SU(3) representation,  Since L = O, only the states
|-k%)\~/ui\> .are -required to form a basis of representation for the spatial
.coordinates of our system,  Furthermore, with the symmetry properties of these
states: already-‘known, it is easy to deduce that the necessary condition for the
kets |§'s> ,  YI\ZG> etc, to have the required symmetry properties in the

SU(3) representation is for each ket to be represented in terms of SU(3) states

of the same symmetry type only.  Thus we have

13 > = 2 SlkgA/A31>dk2

A ul] & >,
a i3 a
YR

s .2 2.2
I > = AZ,LI PRVl SR VSR B

S

3
and (7.4)
12> = 2 {|hwada o 1 2>,
1 A | 7 1
M.
! i # 3.
v 2 2,2 -
= 3
e, > )\Z Slk,A/Ai2>dk CEAp2 [ E>
A

The condition is moreover sufficient for | ‘;_k°> and l‘_{’s> . For | \f]>

and I@z

>, however, sufficiency is only guaranteed if further
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2 -2 - .
&5 A I %> = KT w2 |&2> , i #3 . (7.5)

In anticipation of using Faddeev's equations to obtain the state IEE >,
let us decompose each of the " coefficients® or the ¥ partial-wave amplitude:®
of the SU(3) states in Eqn.(74) into three components:

ol s o 52 _ (i)
Apgl L ¥ > = 20 &5 gl g 2>

—

2 . 3 2 - (i)
K Ap2] ¥ > = EI KA p2 1E V>, |
’ (7.6)
2 _ 3 9 — ()
<k,>\,uill‘_t]>: 2. <|<,>\,ui1|&:]>,
| i=1
, i #3
2 < o 2 - (i)
KEAp2 Y > = E] KEAp2 I y>
and define the ket li}/m(d )> such that
- S o)
g @)> = 20 1¥%Yw)>, 7.7)

i=1
where, for example, I;f(')(4)> is given by

1% D> = 'ZSIkZ,A/‘iI>dk2<k2,>‘/“i] l@(li)>: i#3. (7.8
A,
|

We can then construct the component-kets
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o 4
1@ = 5 1e0wysZw), =123, 7.9)
A =]

so that the complete ket of the system is

QNS (7.10)

The spin-generalised Faddeev's equation for 1Y > s
1805 = e @ g gy, ixg 7.11)

and Ti now has the form

: 4
L= LT 7.12)
o=
with Pi a(ik) the projection operator for the two-nucleon spin-isospin state

denoted by a and Ti a the transition operator of that state.  The projection
r .

operators are of course given by

+ o+

ir = BPeo
P2 T A
s - e (7.13)
P4 = PP,

with
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and (ik)cr,v fhe operators for the permutation of the spin () or isospin (%)
variables of particles | and k.  Thus Ti,2 and Ti,3 are respectively the
triplet and singlet transition operators of the i-subsystem.

We can now verify that if, for a certain z, Egqn.(7.11) has a solution
for - qu(i)> ther; ¢ > given by Eqn.(7.10) does in fact satisfy the

Schrédinger equation with z the total energy of the system, that is

—

[H, vy + v, + V9] 1> = 2 18> (7.14)

where -'-Ho is- the- free -‘Homiltonian and Vi is the potential between particles | and k
and has the same form as T. in Egn.(7.12).  Multiplying the Eqn.(7.11) by
1+ Go(z)vi and. using the Lippman Schwinger equation for the transition

operator of the i=-subsystem

T. = Vi - ViGo(z)Ti (7.15)

we find
[+ 6@V, 1120 = 6 @1 (180> + 13k
-6, @V,-T)(1 7 D> 41 30
= -G @V,(I ¥ sy g (_k)>) ,

or Ift (i)> = -Go(z)Vi Iy > . | (7.16)
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On adding up similar equations for the other component-kets, we have
¥ > = -Go(z)(V] + ‘V2 + V3)|‘f> (7.17)
which after: multiplying on the right by Ho + zI ines the required result,
The Faddeev equation as it is in Eqn.(7.11) is an operator equation

- in spin and abstract Hilbert spaces. To extract the spin states, we use

Eqn.(7.9) for 1'& (i)> and the orthogonality of the Z,(’U )s to obtain

8% = o [ 2 zew, Zoy 1, Jag Py w13 Oy |

| ! 7.18)

We may reéord the spin-sfafes Z(¥) as forming a basis for the four—
dimensional -spin space.  Then, in order to evaluate fh; matrix element
Z(V)Pi’q-z (ru‘) we require the matrix representations of the projection operators
in this spin space. As these are expressed in terms of the transposition
operators (jk), and (|k).& , it is the matrix reéresenfofions of these we want

to find.  Using the transformation properties of the Z(«)s under 33', we

find o
T V3 1] -
(23)5- = L] v T 7 ’ (23)_c = 3 - ° —T —2- "
| 1o IR
, 2 2 ‘ 7 "2
V3 1

w N~

M'_.Nl&
Sy



_ | V3 1] T v3 1
@By =] + - ozl @)= . L e 7 |, 009
143 1 A8
: 7 2 - ) 7
3 _¥8 1
7 2 ) ° ’
13 13
7 2 ] 2 2 °
12, = [. . L P ) P . o =17,
-1 1 .
-1 1 .
-1 . . . -1

The mairix representations of the projection operators can now be con-
structed and the mairix elements evaluated.  The result is that Eqn.(7.18)
becomes a -set of 12 coupled equations for I\}(')(d > ,i=1,2,3and

W =1,2,3,4:

g (] - -G_(z) [ o 1 Tg®s
1§ @, , - L 18P @20
3 (3) | -(3)
\ L.
| ] ¥ >—] ] |3 3 | -I N4 >J

where

TALESE FTAQRIN
- (i)
27> . i=1,2,3, 1)
1§ >

| Y (i)(4)>¢l
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®
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2(Tg 44T 4]

As in the spinless case, we assume that the subsystems interact. only in

s=states, _

transition operators, T,
. symmetric i spin-space,

two-nucleon -interacting states projected by these operators cannot have | = O,

Hence T, -
i,l

and -Ti 4 are null operators,
I

Now by virtue of the projection operators Pi

i,1

and Pi

4 the

and Ti 4 e for two-nucleon states which are
I

Therefore in order to satisfy Pauli's Principle, the

It- follows that the states

1,3"

1,3"

3011305130 3*T) )

Ty, 4

T

1,4

7.22)
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|i(i)(])> for i =1,2,3 and |§(3)(4)> vanish identically. By a

rearrangement of rows and columns, the remaining equations can be written in

the form
1¥@> ] = [, b Ly | [1¥T@>
1% (3)> Jag Jaz dgy | |1 2G> 7.23)
1% (4)> Ji0 a3 JM | ¥ (4>

where- - |\}(.g )>, with a bar to distinguish it from | X (#)> , are the

volumn vectors:

= 180T, dee- 18], 1&we - 130,
152> 1 ¥ 23> | Eay>
1% 1$%3)>
(7.24)

and the J,‘,,‘\_,.ﬂ , given explicitly in Appendix 8, are matrices of operators,

In order to obtain a completely continuous operator, we iterate Eqn.(7.23)
once-and ‘for convenience of interpretation, we revert through relation (7,3)
to the kets- |§ts>, |q:]> and 'gf2> . The final spin—generclised'

Faddeev equation is



with

K

SS

Ksl

Ks2

K]s

KH

K2

K2s

K2l

K22

Eqn.(7.25). can
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sS sl s2

s 1 12

J2+J J

J J

~dggdas -

Jpglog +
il
= gl
= Tl J

J32J22' +J
~J3pdo4

J32J23 + J

A < 4, we note from .th.(7.4) that

two states 1k2,002> and 1k%,402> while 1§%)>and 13

2 21 22

22 723732

tatdyy

4

J 44

23734 ™ Jog

23733 *

Doslaz
43732 ~

]
5y

+

43734

13733~ Ja4l43

J34J

33732 42
33734 ~ J3494
) |

33 * d34da3 -

again be solved in the SU(3) representation.

daadan

(7.25)

(7.26)

Taking

IC_}('S)> is expressed in terms of the

(i)
2

> involve

only |k2,2‘H> and |k2,21'2> respectively.,  We propose two methods to

obtain a numerical solution.
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The Direct Method. The complete equation , Egn.(7.25) , is solved as

a homogeneous: equation.  In the SU(3) representation, there are 11 unknown

2 002 |§(s‘)>, «2,402 | Ff(s‘)> and

2

partial-wave .amplitudes: <k

<1<2,21qu ivg)> for i =1,2,3;: <k

,211 | 9(]‘)> for i =1,2. Once
- solved; : they-can.be used in Eqns.(7.6), (7.4), (7.3), (7.9) and (7.10) to
reconstruct ‘the-ket. |¢ >.  The wavefunction inj.momentum space, <_0L il .\I’ >,
then follews  immediately on using the momentum spo;ce representation of the
SW(3)-states.: - The binding energy of the system is, of course, the value_' of z
wher; a solution exists,

If a 15~-point integration formula is used for the integration over-k™, a
matrix-of order 165 x 165 has to be inverted to yield the binding energy and
the 11 'unknewn functions.  This is not prohibitive. However, because of
relation (7.5), at least ane of the five partial-wave amplitudes associated

- with the:mixed-symmetry states is not independent.  Therefore, the matrix is

likely to be ill-conditioned which has to be remedied.

The - lterative: Methed. In order to avoid the difficulty of over determinancy
e'ncounferefd' in-the Direct Method, we can solve for | ‘:lfs>,' | §]> and
1% 2>'separarely_ in. an iterative procedure, The equations we want to

solve are -
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2 | 2 v
pz 8= Z 1 el @l o 2ue el g 21T >
»3
2 a2 21,2 N
-+J<k 2 |K @)k, 2110dk! T D211 | > 7.27)
2 2 2,2 v |
+ | < 21K () k2 212k 2 2 | >,

2 ¢ >= X [« 02 30 25kt 2402 a2 |
aon | & >= L | ekl @k 2de 2 My 21 E >

A'/Ala
+ [« anik, @le? 2o ?ae o | & > 7.28)
+ 5 <k2,2H|Klz(z)lk'2,212>dk'2<1<'2,2]2 | ¢ 9> 1

a2 | > = 2 ~f<|<2,212l|<2$(z)|k'?',wua 2>dk: 2

2 a9
2 KN 2] Y >

2

+ f <1<2,212|K2](z)|k'2,211>dk' <|<'2,2n | E_ > 7.29)

2,2

&'C2120 ¥ ,>,

4 j 2,212 Kyl k' 2, 2125dk? )

 with (A, ,44.3). taking only two sets of values, (O,0) and (4,0). The ifefaﬁon
scheme: consists- in this case of the following steps:  Since the triton exists

predominantly: in the totally symmetric state, the homogeneous equation for

2

<k ,7\/4‘32|\§s> should be solvable to give the binding energy, and the wave-

function in the zeroth approximation.  Knowing <k2,>\/u32 IES>, one then

solves the inhomegeneous solutions for<k2,211 | g’ ]> and <l<2,2]2| \E{_ 2> ,
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keeping -only: the contributions from <k )\/43 I \_-fs > . In the next

2,211 I \’5 > and<k?,212 | ¥ o> back in Eqn.(7. 27),

iteration, we substitute <k
‘which is ‘then solved as an inhomogeneous equation to find the correcﬁon to
<k2,)\/‘32 | %s> in the next approximation etc,

To contlude.this chapter, we justify our method of spin-generalization
by showing that- if we allow the spin space to ®shrink away®, the homogeneous

equqfion'for':<k2 32 ’ ‘J > in Eqn.(7.27) reduces to Eqn (5.36) of the

spinless case. -- With the help of the J ., matrices, the matrix Kss is easily

found to be . -
K@) = Mzt Mg My My ;
Mg Myt My My (7.30)
L My My Mg+ My
with
1
My = gL, 4G )Ty , + 36,@), ,6 @), 4 +
(7.31)

3G°(’z)Tr’ﬂ3G°(z)T|’2 t G, 36 (2T 4] .

Each term °f'Mrsl is of the same form as GoTrGoTI in K(z) of Eqn.‘(5..7)'- '

only now the transition operators may be different.  Furthermore, the kernel

2 12 ye
<& Min2IM ) Tk x b

2> is again mdependenf of r and 1.  Thus we have
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2. - j 2
<K M2 Y% > =1 %‘;. <k ,xfaszlc;oT]’zGoTZ’z +3GT) ,GT) 5+
5 .

l2 1,1t l2
GoTp o + GoTy 3G, Ty glk! ", Npg2>dk

+ 36T 2,2 7 %N,3%

2 -
<K', Nm21 Y >
1,3 ! ,"'4'32 s ¢
In the limit the spin space "shrinks" to zero, there is only one two-particle
transition operator T, = T. , = T. 5 and so we find that Eqn.(7.32) reduces
4 ’ ’
exactly to Eqn.(5.36). There is one remaining pleasant surprise,  The
zeroth approximation in the iterative method turns out to be exact. It arises

because -in: this case, as can be easily verified, the totally symmetric state

l\jf.s> is uncoupled to the mixed symmetry states in Eqn.(7.25).

(7.32)
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CHAPTER 8 CONCLUSION

. We- have shown how the SU(3) representation of the three-particle
states- can form a basis for the full power of Faddeev's Theory to be applied
in practice.” In this representation, Faddeev's equations can be approximated
to any desired :accﬁrccy by a finite set of cbupled integral equations .in
one veriable.only, . Furthermore, for particles interacting with Yukoqu
potential; by'-fﬁk-ing the iterated equations [Eqn(56)] we have a SU(3)
kernelfv’vhich can be shown to form a completely continuous im‘egrq. opérdfor
in L‘2 and hence poessesses only a point spectrum of boundstate poles, To
pass from the SU(3) representation to either the momentum or c‘onfigurqﬁon
representation, we only. have to use the functions carrying the [.R,s in the
appropriate space as transformation coefficients,

It -must be menfipned that insofar as we are just trying to reduce the

n

~ number of variables from six to one in a three-particle problem, we could

N . 10,1 . v .
apply- the method of Simonov to expand the - wavefunction in terms of
.six-dimensional spherical harmonics,  Through the connection between the
“1iR.s of SU(3) and the surface harmonics on 55, we found that both methods
are equivalent, However, we believe our .qpproa_ch is more general and more
“suitable. for Faddeev’s equafions because it suggests so naturally the form of

fhe~'»surfaée harmonics [Eqn.(4.]8)] , which is important for the evaluation of

the SU(3) kernel from the normally known kernel in momentum réepresentation,

i
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- For three=particle systems existing predominantly in the L = 1,0 states,
-and these- include boundstates and low energy nucleon-deuteron scattering,
the :symmetric. properties of our SU(3) states make it relatively simple to
-introduce-spins and: the Pauli Principle into the theory. = We demonstrate this
'by deriving the Faddeev:equation in the SU(3) representation for the boundstate

‘wavefunction of the triton,
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Appendix 1 Choice of the body-fixed axes (2,1,_)

We wish to choose the body-fixed axes (_9.,_\5,_)

such that
5 v
2 (o)) = O, (A1.1) . r
i=1 - -3
(1) \\_1/&;
When expressed in terms of the relative vectors, T \ y
i
and 5_(2), (A1.1) is 2
2 . .
2 (r_(').g)(r_(').x) . (A1.2)
i=1 |
Hence fo-choose u and v satisfying (A1.1) is equivalent to choosing the
components of the relative vectors along u and v satisfying (A1.2). By
means' of “Eqns.(3.1) and (3.2) we can easily obtain the other three
conditions satisfied by these components:
M 2., (1) 2 Mm%2 12
(GRIRT) I (") I —%rii =-§r.(1 - cos2V cosg)
_ .1 A2 . 1,2
= (r cosysin -z-y() + (r siny cos 75) , (A1.3)
@ 2., @2 _ @*_ 3.2 _1
(r .E) + (f_ ‘.Y;) = r A T -7(1 + cosZ\},co.sp{)
= (r cosy cz:as—'-fzzg-)2 + (r sinysin —]75)2 . (A1.4)
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0@+ (Ve - —Jzi SREARRL

3) = Jf r2c052 ywsing

NN

= (r cosy sin-é-)(r cos \{fcos-’%) - (r sinycos %,d)(r sintisin %—p’) (A1.5)

2

If we solve the Eqns.(A1.2), (A1.3), (Al.4) ond (Al1.5) for the
c0m§0'nem$"'we'=iare bound to obtain more than one set of solutions,  This is
becqqse~ *the: condition (A1.2) only demands u and v to be along the principal |
- axes of: inertia; . it does not specify rh_e direction in space, In any case,
it is not easy to solve them in this way,  This is why we have expressed

the -conditions in such a fo;m so that a solution by inspection is possible.

It is clear that a necessary condition for (A1.2) to be satisfied is that one

of the components must be of the opposite sign. Thus, if we choose
(1) _ . ]
(r .x) = -7 sm\,bcos?z( (A1.6)
so that
(E_(Z)’X.) = 1 sin \}'sirr]?zf (A1.7)

and therefore by (A1.3) and (Al.4)

(E_(]}-ﬂ) = r ;:os“w}/sin-]éd p (A1.8)
(L(Z)‘g) = r ¢os V/COS.I?{ . ' (A1.9)

This is the prescription used in Eqn,(3.7) to define the body-fixed axes.
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Appendix 2 ~ - Transformation of the Euler angles, a, B and y under 53.

We-first consider the transformation of these Euler angles under the
exchange of particles 1 end 2, (12), Let us denote the transformed body-
fixed -axes by"(glﬁ,._\-/-'!' ’lv..) and the transformed Euler angles by o', B' and y'.
By standard ‘matrix transformation theory, if the qoordinafes, with respect te

- basis vectors e;~and e'z, of a fixed vector x in two dimensions is transformed

o] T -

by

x = A'x (A2.1)
then the base e = (9_] ,32) is transformed by

E'- = AE . : (A2.2)

The vector L(Z) is unchanged in spc;ce under the transposition (12},

Its coordinates with respectto base (u,v) are, however, transformed to

It

(12)r coswpcos%p’ = Ul

(A2.3)

(f_(z).l/_)' = (12) (1(2).“\_/_). (12)r sin-‘/fsi‘n%;z{ = “(_[_(2)._\_/_) .

where we:have-used Egn.(3.14) for the transformation properties of 8,  Hence

by virtue of (A2.1) and (A2,2), we have

ic
nad
ic

(A2.4) "
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For the other iranspositions,(23) and (31), we use r 52) and ng)
respectively, - It can then be verified that (23) and (31) induce the same
transformationon u and v and therefore the changes in the Euler angles are

-the: sames . «We-note that (A2.4) is effected by the rotation R(rr,x,O) on

the: (_9_;_\1,&) -frame,  Thus
R B'y') = R(m m.OR( B v} (A2.5)

which is equivalent to

;o " ‘Rc(fy"-ﬁ' -at) = RC(O-ﬂ-n)RC(-y-ﬁ-G) (A2.6)

: :wherei;R;c rdénotes a rotation on the original coordinate frame SO;, that is fo

“say,’ it is'a rotation in the passive sense, . Since the rotation matrices
L
Opmme

. two successive rotationsis represented by

" offer a representation of the three-dimensional rotation, the result of

D,I\"AM_»u('yl,-ﬁ'-ql) = D;'AM,,(O-_nw)DkA"M,(-y-p-q) , (A2.7)

or

it

Dii (@ B'Y') = iy m ODFyu (o B ) (A2.8)

since

DkAM'(‘Y'P“") = D“,&-M(a BY) . (A2.9)
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And on using

droap® = EMNMeg oy (A2.10)
dh ® = My 6 (A2.11)

we have

ork e pry) = Mg MO L a212)

Therefore
ad = a ,
B' = PB-rm, (A2.13)
Y= my

and

= (-I)LD;\'A_M.(G By). (A2.14)
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Construction of §

We:'present two methods to obtain the differential operator for S on

the manifold 55.

Method 1

By definition,

1
5‘5 Kii

T Mes

If we introduce the

we have

_ 15 _ _
B 'Z'Z‘(Ai,i+3 A';+3,i) i, i+3
. d d
= -hS (e - r.. =)
2 i arH_‘3 i+3 ari

complex variables

g

.
[y

z = 17 +ir = re” (cosyu - isinyv),
. _i_é
z* = _r_(z) - r(]) = re (cos wu + i sin Y‘) ,
and therefore
z - z¥
r(]) - T
= Zi
(2) z + _-*
L = 5 ’
s %z 5 % 5 5 3
(= = )

dz*
s _ %2 a8 = 2 9., 0
s — - 2 =),
3 (2) 3 (2) * oz or 2) o0z dz 0z

(A3.1)

(A3.2)

(A3.3)

(A3.4)
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then S expressed in terms of z and z* is

. ] v O d 1 ., 9 _ 0
AS?'v“_.__'.'.h [‘Q‘T(i - z*) (3’5 + 52;) - “2’(3_ + z*)e l(“éz ‘5‘5-;)] (A3.5)

SN
G RE

[ [

Now consider the operator —% on a function of z and z*:

d
3 & - (9Z 0 az;* d *
% f(-_Z_,__Z_ ) (“é?* . -az + 55 52;")“515) (A3.6)
But by (A3.2),
%~ 7
(A3.7)
dz* .
_::.’. = - __l_,z*
57 T
it fo"ows that
o _ i, @8 _ .8, |
“*5;— 5 (Z.’ 5 z .“a-g;;) (A3.8)
which when compared with Eqn.(A3.5) gives
S = 2P (A3.9)
"'a‘?' . °

Method 2

The-result of the first method shows that S is independent of the Euler
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angles, so we -might attempt to construct it by performing the coordinates
transformation taking r to r,¥,4,a,B,y with a = B =y = 0. By Eqgns.
(3.7) and (3.8),. we see that in this case the body-fixed axes coincide with

the space-fixed axes and the non-zero r. s are

P

roo= r cosysin

2
4

rn ==r sin Y cosiz—
2 peosz

4 r cosy/sin-éz— ’
4

r sin }Lsin i

2

(A3.10)

.,
I

..,
n

(M

These: are..just the components of the vector r

(2)

and r with respect to u

and v. - Because eF the condition (A1.2), only three of them are independent

variables which are chosen to be Fyr Fo and ry s° that

i (A3.11)

The differential operators for the two sets of coordinates are related by

9] i e 1 . I . -

maf?' ©®= | cosysin 5 siny-cos 5 COs \/-cOs 5 mar]
0 N - , '] . g 3

—— = -r sinsin & -r cosi-cos L5 -r sinyf-cos 5 | |5 (A3.12)
a,» 2 2 2 8r2

-—a—az- J = -rz—- cos lj»cos-ﬂ;— If sinysin %— - % cos ysin %—-J —g—~ J
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whose inverse is

(2] = ] rsin g
or . 8
1 2r coz\fcos--2=
K - -r sin 2)1’)
3r2
) Lr(cos g+ cos2y )
_8r3 ] -

We can now construct the differential operators for Kii

-2 cosay

sin 21/*

4 coszéz—- —a%
0
' oy
-2 sin g 9
|13
(A3.13)

on the sub-

mani'fold«'oF'Ss (with a = 8 =y = 0). We use a prime to denote operators

defined only on this sub-manifold.  Thus

1 = t - H — ] — N - 3
Kip = Mg = Ay = 20, = 200, o, 407, )
= tb(m a2 g a _ g _ 4,0
= 'h(!2r sin"y tan - - = sin 2tffcn7 4-87) ,
! = ! - A' = g = - s
Kp= Mo~ Moy = 2M55= 275 s
-ih(2r sin ercn 22 + sin 2\//fcn 7{
2 or
K 5= Al - ' = 2N - 2(r r __?‘_
337 73,6 6,3 3,6 3 a6 6 ar,

(A3.14)

)=0.,

(A3.15)
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Consituction of /\2

Let us first establish relation (2,13) ,

where

is the operator for the tofal kinetic energy and

is the momentum operator whose commutation relation with r is

/\2 = r2(2mT - pr2 +5 ih l’-]Pr) p
6
_ 1 2
T = Zm ié] pl

v

T

P
o= mg = X,

= ih

Using Eqgn.(2.8) for /\ii, we have

But

AZ =

Z/\2 L(rp -rP)
ll ll

21_ (,luo| P - ,P'r'p,)

= L rip - iF 5P,

. .
Ir]

= rPomT - itrp

(A4.1)

(A4,2)

(A4.3)

(Ad,4)

(A4.5)

(Ad,6)
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and

Z r.p.r.p.

PP 2 ri(ripi ~ i'h)pi

L] 'ri

i

-5ih rp, + rpIp,

3
]

-5ih rp, r(r'p‘r - ih )Pr
= r2pr2 - 6ih P . (A4,7)
Substituting Egns.(A4.6) and (A4.7) in Eqn.(A4.5), we obtain the required

relations (A4;1)., Since T = -('hz/Zm) ‘Vg and P, = i(h/r) Zri %ri , we
i

hdve the ‘felation
2729 (A4.8)

The problenr of. obtaining /\2 in coordinates C is therefore reduced to

- finding the :Laplace operator Vé in six-dimensions in the same coordinate:,

2

We write vé as
' 2 2
v2 =18 S8y, ] 9 (r(2) 8y .
6 rmz 3, (1) il 22 % N0
C 6y By
- () (A4.9)

ne 0 @

[

. . . i
where I'/,) izthe- angular momentum operator associated with r( ). We have
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not specified the ceardinate frame yet.  In the original space-fixed frame So'

it is of course given by

2 .2 01 9 .
Loy =Y o 55t 5o * 3

where Gi ond ;:fi are the angles of L(I) in Sy-

We deFing
3
NORS
cos & ~—., o, (A4.11)
A1(2)
L = L\” + J—(Z) - (A4.12;
Then, the last term in Egn.(A4.9) is
2
. L L.l
e e N SR L N A S L) (A4.13)
R R e @

We can new introduce the reprezentations for the angular momentum

operators L and: E:(]\ directly in S'I' This frume has Euler angles gives by
. == =/ .

[0 g

]

" (Ad.14)
B, = ©

1

2 . I = g =1 y -
rin y;co ) \.me,].,m(ib] F{Z)
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(1)

In this frame, r*"" is always in the (3-(-'5 ,_5]) plone, therefore _1(.‘) = (i ,l

.....

has to be- defined in the limit when the azimuth angle, £ say, tends to

- zero; viz.

0 d
I = Lt (h{-sin ¢ == + cot § cos ¢ —>)
x . EH 2p ' 7
-1 £=20
(A4, 15}
. 0 . a
I = Lt ik (-cosg -z« + cot § sine ),
4 o % %
L N T
Z ¢ Zy
These operators obviously satisfy the sume commutational rules:
(L.t ] = ih | efe. (Ad.16)

Using (A4.15) we find

2 1 2
I = e | P
~(1)

sinzﬁ Z«]

and Eqgn.(A4.9) becomes

Gl L)
Xy Ly F
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g2 - 1 & (r(l)z_,a L1 8 (r(2)2 .y,
6 r(1)§ ar 1) arll) @2 & ar'2)
2
1 1 ? 3
+ e ) + cOt & 5-)
v .r(z)z. . 38
| | (A4,17)
2
L
] { = 1 1 1 2 2
= ——— + ( + ) - - L
w ey [ W°  @° sin % r(z)Q] Z
2h 2 2 cot & | } |
+ &0 9y 2522 L |
@ n® @t mEH
We go from S, fto 52 by taking
Xy T X
52 S ‘X] ’

and as a result, the last term in bracket in Eqn.(A4.17) goes over to

2
1 { = 1 i ] 2 2

e R ¢ + e ) - —— || -
12 {27 [r(])z @ anfs  @f %

_ JFR 8 et b (A4,19)
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1.

The coordinates r, ¥ and @ are now introduced in place of r''’/,

2 ahd 8. By Eqns.(A1.3), (A1.4) and (A4.11) we have

2 2
r2 = r(]) + r(z) ,
1
[(r(2)2 - r(])2)2 + 4 r(])2r(2)2cos28] :
cos 2y = : ! , (A4,20}
2 2
0, @
Zr(”r(z_)cos 5
tan ,d = = -,
@ _ )

and the differential operators are related by

8 g

r 1 , 0 1 sind 8
. = SN R sin 24 cos Bue— + —a
ar“s r-or Ef“; Oy r('I) cos2y a9
@) ,
d r 0 1 . a 1 sind 3
= — - sin 2y cos 4 - : e s (4.21)
ar(?) r or | ari25 I lV(Z) cos 2y Frs
%: 3 sin#%-- tan 2y cos,d?% .

. . . 2, .
Then, after-a tediouz caleculation, we obtain Vé in these coordinates as
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vi._ = 0 - 5 2 7 [L2 2 cc;/ysmd' Lo
T (14c0s2 Y cosg) siney Xy Yo
{(A4,22)
2 cos2 ¥ sinZy 9 o
+ e (c cosZy + cos;l{)L - 2ih L (gsmm -
sin“2 v ) zy O cosly 3 )
where Os is the S-state operator
- 1 2,509 1 62 4 cos 4y 4
OS. = ._.5_ .5F(r ‘5;) o+ 5 ( 5 + — + 2 ) (44.23)
r ‘ rT 9y sin 4+ cos Z\f o8

Finally, we bring the uxes X and ¥y 1o coincide with the two princip:l oxes

(2)

of inertia- of -the triangle such that r '™ subtends the angle ¢ with v in his,
S, frame, - “This means that the third Euler angle y is increased by -;— ~-£

with the result that

a . @ sin 4 - a
oy oy ~ (T ¥ cos 2y cos g) dy !
(Ad,24)
d — 9 _ sin 2V 8
kXS S 2(1 + cos 2¢cos g} 9y °
The: rotation operators with respect to 52 and S are related by
L = sin& L ~cos¢e L ,
X 19 v
X9 Y v
L = cosge L. +sine L , (A4,25)
Y2 2 N
L = L .
Z _"l’.
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So we have

2
ZL
R S PN S W,
' ST H sin"2y cos 2y sin"2¢ -
(A4.26)
.4 Sin 2 9 ::QSZX' 2 2
+ 4:‘5_-—2 - ng;,— + == (L, + L_)]
cos 2y — in 2}1"
with
L= L %ol (A4,27)
t oy Ty At

Using the fact that a rotation operator cun be resolved info components

like a vector, we find

= mth(-S5Y 8 ey L A
L_‘i it ( s B +osiny 5P +c.05ycoi"ﬁay .
e _ap(Sny @ o 3d a [aA
Ll_’_ ih ('&'TTE 5o tcosy 5B - sin y cot ﬁ&y {A4,28)
. O
L_\_N_ = "IT']—%’

Relations (4.8) and (4.7) thus follow immediately,
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Appendix-5: - = On orthogonal pofynomials and spherical harmonics in

six~dimensions

-In this appendix we collect together some results on orthogonal polynomials
and spherical harmonics in six-dimensions details of which can be found in
- ref.(22), - We also indicate their relevance in this thesis,

A family of quadratically integratable (Lz) functions is said to form an
orthogonal system in the interval (a,b) with a weigh function w(x) which is
non-nqgwive-~~fh-¢r¢~~if for any two distinct members, #](x) and ﬁz(x), their
‘-scular“'producf vanishes, that is, |

b
@) = [wigdydx = O. (A5.1)
a
Since- the space of L2 functions is separable, it follows that an orthogonal
systenr consists either of a finite number or at most of o denumerable infinity
- of elements, - ~Thus- an orthogonal system can always be written as o sequence,
'-;56,}!5] s or-shortly as .i;fn(x)f . Now every orthogonal system can be

-
normalized by replacing ,dn(x) by (,dn,;fn) z;a’n(x),dnd we have an orthonormal

system i.e, }ﬁni such that

BB = By (A5.2)

If )sz is a polynomial in x of exact degree k, denoted by P, (x) say,
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then ka(x)f is a sequence of orthogonal polynomials,  The interval and
weigh ‘function determine the system of orthogonol polynomials up to an
arbitrary factor in each Pk(x). The polynomials can be standardized by the
‘adoption of additional requirements,  Our standordization is such thot for a
‘given X s Pk(xo) shall have o prescribed value,  The orthogonal polynomizls
of interest to us in this thesis, apart from the well-known Legendre

- polynomials, are the Jacobi (or hypergeometric) und the Gegenbauer (or vlt-a-

spherical) polynomials for a six-dimensional sphere,

The Jacobi Polynomials
~ We 'use Szego's notation Pn(q'@(x) for the suitably standardized orthegonal
- polynomials associoted with
a=d, b=1, w()=1-%anP .
We -give below some properties of these polinmomials which are used in
the text:

standardization
Pfid,ﬁ)(w - (r::a) | (A5.3)

oo

with (r:) = ’r\fu‘.(m_*rvn}.

explicit expression

27 0 (TR e T )™ (8509

n=m
-M=0

Pf]a' B )(x)
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differential equation

(]-xz)y” + [ﬁ-a-(a+[3+2:)x]y' + n(ntotBil)y = O (A5.5)

where y = Pf]a’B)(x) .

orthogonalization

+1
§ =010 2Py PPl =
-1

ZG_JFBH r(n+a+l) l’<n+5+1) 5 (A5.6)
@2n+atp+l) [ (1) r(n+a+B+]) mn
In Chapfer 4, Section I, in order to obtain representations of those
SU(3) states --whfch L == O, we have to solve the differential equation (4.20})
when L = K = O, The differential equation concerned is
2 2

d 4 0054"/" 0 4/4 - [y
+ - — - + NMH4) (y) = O, (A5.7)
[aYZ smlf% oy c0522y« ] g>)/~* ¥

We now give a method of solution, By a change of variable
p = cos 2y ,

Egn.(A5.7) becomes

2 2
2, 98”1 3 .1 4} -
{(1-,0 _).59_2 e lp by [MM+4) - -ﬁ-]} 9y, ) = O . (A5.8)

We seek a solution of the form

9@ = ol hy 0 (A5.9)

Then, the differential equation for h(p} is
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3 2% 2
A @l -2l -1 -2 2 +p[z,u+,u POwlh =0,  (A5.10)
9° :

where; for simplicity, we have left out the labels A, ;v on h{p) and the modulus

sign on M
If we change the variable again to

‘5"'—‘]-2‘)2,

we have for h the differential equation

(1- G_2)E)2h +[ _ _ [ _ _
p /'«</u+2)0'] -+ 30 -y /«)+,u+1]h 0. (A5.1

This can be compared with Eqn.(A5.5) for the Jicobi polynomial P'(jq”ﬁ)(x) :

-and so we find .

. p 11,0
hy (5) = (7)
~ <~ - i)
Thus |
. QMA(V) = (cmzy)wl P'};\"O (l-2c0522‘}’) . (A5.12)
‘ %(“2" - il) '

The Gegenbauver polynomials

L :
‘We use Gegenbauer's notation C;P (x) for the suitably standardized

polynomials associated with

2,3(p-1)

a==1,b=1, wx) = (1-x , P > -1 and forw(x) positive and

square-integratable,



- 109 -

These polynomials are generalizations of the Legendre's polyromials
for'a (p+2)-dimension=! sphere.  Since the manifold we are concerned
with is the five~dimernsional surface 55, we consider the case of p = 4,

- The polynomials Ci(x) are standardized in accordance with

2.-) _ >\+3)_ ' (A5.13)

G ('

1
The differential equation for Czp(x) is

(A" - (pHijxy' + Aply = O (A5.14)

It is obvious from the above equation that for p=1, we have the
differential- equation for the Legendre's function, In common with the usual
i . A - ikor . . .

: --parhalv-waveﬁ expansion of a plane wave state, e ="—, in three dimensions
in terms: of ‘the ‘Legendre polynomials, we have the corresponding result for

the plane -wave state in six-dimensions in terms of the Gegenbauer polynomicls:

: A A .
ML= Qlen) ooy 5L i) (Asa5)
A (kr) T4 -

| ;fihére Jm(x) is the Bessel function of the first kind,

~ The: following addition theorem for the Gegenbauer polynomials is also
useful to us:.

_ Lef-"-S;\(i), | = 1,... h, be h=h (N [Eqn.(4.9)] linearly independent

'surface"'hdrmén'ics of degree A, and let the S;\ be orthonormal- on 55 so that
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for I,m=1,2,... h

m

et @an ) = 5. (A5.76)

o)
then for any fixed unit vector k

b e A
) = 2m2 stls6) (A5.17)

where co is the total surface area.

A
Corollary, For every surface harmonics S}\(,lf) of degree A,
5"2(;* e w20 P
Cykr)syda &) = 8,4 C\(1)5,() . (A5.18)

For 55, it can eusily be shown that in any polar coordinates irrespective
of the choice of angular variables &« = n'3. Consider the integral

+o +00

2 .
5 exp(.—rﬁ-rg...rg)dri...dr6 = ( g e 'l cIr])6 = S exp(-rz)dV =
-0 : -0 v
= S exp(-rz)rsd,a, dr. (A5,19)
Vv

L 5
where,  by-definition, d . = dV/(rsdr) and is of the form T] gi(?) dei with
P i=1
Gi‘denof-ing the angulur variables,  Using the equality of the second and

3
lost term, we get & = g,
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It is interesting to use Eqn.(A5.15) and the addition theorem to obtzir
the *8~function, 8(k-k*), in terms of the surface harmonics S;\(E) We start
with ™

- k!
slk') = a7 T Iy

- H - .'
(2r) 65 e'E-'L e k' .r, dr .

By Eqn.(A5.16), we have

A LN
T (1) (2N 42 20 n 2 AR
5(5;.51) = _16 Z‘ I ( I) (2+2)( A) S rJM,z(kb.)J)\' +2(k'r)dr SC)\(I_(.‘;[)Ci' (;k_".r_’d‘o'

4° 50 KY) -

8(kc-k") [~ 2,
3 2. 5305k (A5.20)

where we have used the relation
frag ety i = 280k
P N+2 :
If & is a three-dimensional vector, the corresponding result is .
. _ 8( g_ l) Z \{rn A *m i\.
8(g-¢) = ———:}2 o f (g gD
m
which suggests that

§(g-5') = -2; §( £2- £2)5(cos® - cos ©')5(F-F")  (A5.21)
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This relation is used in Appendix 7 to evaluate the matrix elemenis in

Omnes's angular momentum analysis,
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Appendix 6 On the spherical harmonics S

LM
)\/uitk

In this appendix, we show how tc arrive at the spherical harmonics

M

57‘/4 Lk which have the following symmetry properties when &k is absent:

i LM LM . :
For j = 3, S>‘/”‘|] and S)‘/“iz are asymmetric cnd symmetric respectively
whilst for other | values the pair transform as the two-dimensional represent:tion
of 53.

Let us consider the effect of exchanging particle 1 and 2 on the spherical

harmonics
A
;LM“‘) = Np M Z_sg (‘f)D R (A6.1)

By the symmetry properties of g and the Euler angles, we have

A 0
(12)5’;‘LM(_,|_<“) = (-1) N 'Mzgm(\p)o R (A6.72)
On changing K to =K and using relation (4,25) that

gk/';(y) = Gk;f(w) ‘ (A6.3)

we find

(12)5':LM = (n's)” S (A6.4)
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This suggests the following alternative set of spherical harmonics Sl;";;‘“
where -1 =1 or 2 and defined by
. ' A
s (k) = == (s My 57 M)
V2
(A6.5)
_ iN..n. Z( liuig‘LK( ) - Il]ﬂ‘LK ('))DL ®)
- J2 K 9 sl ¥ IPMN
LM M, » |
ey P = LMy v 53 My
V2
(A6.6)
.O_ ilul LK Ml g LK L
- L A gy + VUK (g )
‘/2 K
Let us first 'sfud)," the symmetry properties of S%U;‘"‘ when A is even

and hence Il s integral.  We divide the set of 1u|'s into three sub-

sets f/uii 1= I’,2 or 3, such that

M =  3n + 1
’4"‘2 = 3n+2 n=0,1,2,-- (A6.7)
/A43 = 3n

LM
M

Then, i follows from Eqn.({Aé.4) that S for all j, transform under (12)

as
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LM 5 L 171 M
25,0 ] = 07| - Sap.
' ' (A6.8)
M LM
S +1 S
)\/uiZ b A/uiZ
. LM
Now consider the effect of (23) on S)\/“ v " Taking j = 1 ond
_ i
L =1, we have
4n
iN - im (g =) iR (ﬁ{" =)
LM e 13 gtk 1¥" 3 1K
(23) s (k) = 2ule () - e 9=, (D,
M= e K M M T MK
(A6.9)
But .
RS i‘!2'§= ‘
e
Sy AT , (A6.10)
S B R V3
e = -y l-—2=— .
Therefore on using Eqn.(A6.3) again, we find
LM +1 L V3 (M
(23) SM]] i 2SM] T Sap2) (A6.11)
Similar argument for 1 = 2 leads to
LM Js M LM
(23) s (-1) ( - 3S ). (A6.12)
A2 AT A pg2

Eqns.(A6,11) and (A6,12) are equivalent fo
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IM § _, Lr, V3 LM
(23) sM], =(-D7} 2 SM]I (A6.13)
M V3 LM
“Sap2l 7 el
LM .
The effeets: of (23) on S)\ ma for other | values can be treated by
|

the same method.. The results aresfor j = 2

LM T V3 ][ M |
sM V3 |

. >‘;M22 2 M‘-ZZ ’

and for j = 3
LM L[, M 7
(23) | s = (1) -1 S (A6.15)

7\/1431 >\/&3l _
LM - W

S . 1 S
A/a32 | 4 A‘/&x32

Since the transpositions (12) and (23) can generate all the elements of

S3, Eqns.(A6.8), (A6.13), (A6.14) and (A6.15) completely specify the

transformation properties of Sl;‘,\//‘\‘ . under S . fFrom Eqn.(A6.13) we see that
i

if SLM

A2 is-redefined with a negative sign, then for L even, the spherical
1
harmOni"cs'S");M and SLM

al & i2
This leads to-the definitions adopted in Eqn.(4.35i). For L odd, the extra

do have the required symmetry properties,
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factor of -1 suggests the definitions used in Eqn.(4.35ii). -
For A odd, iu| is half-integral.  We again divide the set of 1ul's

into three sub-sets }Mii 1 =1,2 or 3, such that

_ 5
/{A] = 3n +-2- r
_ 1 o
My = 3nts n=0,1,... . (A6.16)

3
/('l3 = 3n +7 ’

Then, it can be verified that the spherical harmonics defined in Eqrs.(4.35i)

and (4.35ii) also -have the required symmeiry properties.
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Appendix 7 - :  On the evaluation of the matrix element

<no_o,LMK'lTi(z) leo', LYMYK*>

The matrix element to be evaluated is

<l LMK, 1T (@) ot LMK = (U242

fateom a8 <851 e D TINGE £7 LD RIDY e ey
deo*d wt dR*GR" , (A7.1)

.. | 2\ 2
and we note that <_'_iz_;‘| fi(z- g ;J )L,L;o depends only on 1?=: , ;l:c and
_2_“: _ﬁ_:' which is given by
A* A" = cos &% cos &' + sin &% sin SMCOS( * - ”) (A7 2)
/BRI i °% 9 i eyt T vl .

Hence, in-so far as dependence on the Euler angles is concerned, the two-

particle transition amplvitude depends only on
u = y* - y" (A7.3)

and so we write it as

PPyt = nipEogE vz -5 ?) (7.9
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Using Eqn.(A5.21) for §( 5:‘ - _g_;') and the &-functions §(« - «*} and
8(_@_1_"-_'_02'), the integrations over de* and dag™ f:cm be performed trivially,
The result is

8( ;é,iz- £ %
£i

<WIMK T ()l w LT MIKE> = (_3wg6 A
(A7.5)

2 2 ' 2 |
FIG00T i v 2 £ DD (R0 o (R MRPAR =o' olospt-cocp™)
Now, by virtue of relation (A7.3), we can choose the measure dR* to be

dR* = da* sinp*dp*du (A7 .6)
and so, after integrating over the remaining &-functions in Eqn.(A7.5), we

obtain
' 2

& )
<o, IMKL T (2)] w' , LEMIKE> = (38‘/—6—A)2 ;'g' i x

(A7.7)

J._( (77 ’[l ,Uv z- g )D K(a , B*, u+ y® )DM'K'(G B"y")dR*du .
u R

But

-iMa® 'iKi(U"’Y")
O (@8 ™) = Mg (pe

-iKiu L
I (A7.8)
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and we -can -integrate over dR", using the orthogonality of the rotation

matrices. ‘[Eqn.(5_.24)] , to obtain

3 857 -
4

<_ai,LMKiITi(z)I o ,L'M'K;> =

2n
8, ,,0 S ' 2,2 ;
LL' "MM! KiK'i’ {fi(’)“,?! ,U; z- §i Je du
The last integral in Eqn.(A7.9) can also be evaluated.

fi(?]iz, ’Z;vz’U; z~- g:z) in terms of partial wave amplitudes

w7 i = 0 = an 8 LT 5 O 6 )

(A7.9)

We expand

(A7 .1

where f,(‘S;,;Jf)' and (8:,;6':) are the angular - variables of 3 and l‘: respectively

in a coordinate frame whose z-axis is alon . s0 that g-g' = u, Thus
g ]

2 2 .2 g, TiK;u
Jti('l]i,-?]; JU; z-g: Je du
o]

2m i(mf -K%u

I'm'
o

i 2t (s 13 = 400, (&0l Yyus (8 ).

an 2t gt gD, (5,00 L (8L0) | e

ldu

(A7.11)
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where we have used

T i(mt-Ku

l  —
S e dv = 2n8m, K; .

~ Putting ; -[,2- i§ and substituting Eqn.(A7.11) in Eqn.(A7.9) , we

have finally

S(LJ— ’)
vi
FA) XL 4 | N’ =
<W, MK T (2) 1 0f, LE MK 4 2n -—-'r-'—-' 8| L Spame SKK..i x

2 2 2'\
’i,l'(7;"7§ vzT £ )YI'K;(Si’O)Y“K“i(5;’°) - (A7.12)

It is perhaps worthwhile to mention the range of CJ], MZ and tog

in the Omnes representation of three-particle states.  In the centre of
' 3
mass system, the cendition 2, k = O has to be satisfied, We have seen,
i=1 2
in the case of Dalitz coordinates, that this restricts p~ < 1.  Since

1
(medk")2 represents the length of the vector kk , in order that the vectors

can form a closed tricngle their lengths must satisfy the friangulor inequality

which in terms of (/&k is

[\

1 1 1 1
(«;oi2 -c-,,i2) < «:ak < (c;.i2 + c\si2)2 . (A7.13)

The completeness. of the states | & ,LMK> therefore refer to the set of w 17
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tJ and:e‘us such that the above condition on @ K is satisfied.  Hence

2

the completeness relation for these states should be

1 1
5,2
o o (iu +cu|) |
2§ dw {do § dl, IwIMKS<w LMK] = 1. (A7.14)
LMK ' ' k = =
o o ¥ 3.2 ’
(o} =)

The choice -of ‘which ¢ to be restricted in range is immaterial provided it

is integrated first, In this connection it is important to find out the behaviour

of &~function:s in such limits, Consider the integral
2,2
. . © ® (w + Lu: ) '
ole) = §dwy §duy N COTO) () W A
1 1
° ° chz- L\J'if)z '

To extend the range of w'k to cover the whole of the positive real axis,

we modify.the integrand by means of theta-functions so that

® (w'f + w'%)

8) = Jowy favg fewfBepeithh -
‘(wif-wi%)

- Ol ~(ars w'i%l)zﬁS(iu_-“ﬁ' () (A7.16)
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]

h. h . . P(cg w% %f)_ Sl - ;.2 + %
which gives g(&) = K~ ( .-wi (évk (&7 +ool

that is, provided the c>s satisfy the condition (A7.13), &-functions in these

Ires)

integration limits behave in the usual manner.
When we -iterate the Faddeev equations in the Omnes representation,

we have to consider integral of the form

1 1
(ct? + wif)z

Q Q
j d o 3 dcu; } det §(w - a.,;)S(wi- tai)f(ﬁ-) . (A7.17)
o o % 2

(i wi®)

[t can be seen that in this case the &-functions can be integrated first.
The reason why this can be done is that the §-functions pick up the limits
for the dw;( integration,  This is how we arrive at the limits of

integrations in Eqn.(5.32).



Appendix 8

42

23

24

53

= G,(2)

= J

= G,

32

G ()

= @)

1

-
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The ‘Mafrices s

1
2T ,*Ty,3)
1
2(T5,2%T2,9 .
1
3T3,9*T3,8) 2(T3,54T3 9)
1
77,2719

:
172,277, 3 .
1

J | B ‘\'/13"”1 21,3
T, 9 '

ls(Tl 2,3 _]8'(T] 2,9 |
%“2,2”2,3) . %(Tz,zﬂz,-s)
213 5*T3,5)  2(T3 5*T3 5) ]

1
2Ty 9%y 3)

I

i
|72173,27T3,8 70275,

I

2211y o)

] -
iM,2N,9
1

2T2,2772,3)




J34 - Go(z)
J42~ N Go(z)
J 3= G.o(z)
J44 B Go(z)

V3,
72,247,353
Js,
T302,27T9,3)
V3,
52470 3
312 57Ty 3)

Ty 3

Js
““(Tz 27 T2,9

V3
T(Tl 2tT 3

8(22 23)
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