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ABSTRACT 

The. Faddeev equations for three particles is given a new basis of 

representation.according to the group SU(3). 	We obtain three new results. 

Firstly/ the Faddeev equations take the form of a coupled set of one-variable 

integral equations which can be reduced to a finite set using Smith's 

criterion of simultaneous togetherness for a three-particle system. 

Secondly, by using the iterated Faddeev equations for particles interacting 

with a Yukawa potential, we can ensure that the SU(3) kernel is L
2 
 or 

'Hilbert-Schmidt' with only a point spectrum of boundstate-poles. 	Thirdly, 

a new approach to include spin and isospin is undertaken. 	With the help 

of Omnests symmetric angular momentum reduction, we show how the SU(3) 

kernels , can be evaluated in practice. 	The case of the three nucleons in 

the boundsta.te of the triton is treated in detail. 
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PREFACE 

In this thesis, group theoretical methods are used to classify the 

states of three nucleons. 	The representation offered by these states is then 

used in the Faddeev equation to solve the triton boundstate problem. 	In 

order to present the theory in a way uninterrupted by details of calculations, 

I have tried to include only results in the text. 	A somewhat extensive 

Appendix is therefore provided to cover these calculations. 	A particular 

appendix is referred to in the text by its number in squared brackets. 
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CHAPTER 1 	INTRODUCTION 

Until only recently, (1) the application of Faddeev's theory
(2) 

for a 

three-particle system was dealt with by assuming that the particles interact in 

pairs through non-local -separable potentials. (3) 	One main reason for making 

this assumption is due to the large number of variables involved. 	Even 

Omnes's method
(4) 

of symmetrical angular momentum reduction still leaves 
L 

three integrating variables in the final equations. 	Osborn(5) succeeded in 

reducing Omnes's- result for the non-iterated Faddeev equations to two variables 

and actually solved- the equations for the idealized case of three spinless bosons 

interacting through a simple Yukawa potential. Although reasonable results 

were obtained, it required a rather complicated numerical method: in particular, 

the integral equations have variable limits, and it seems difficult to generalize 

the method to nucleons •interacting with spin-isospin dependent potentials. 

Our aim in -this thesis is to obtain solutions of Faddeev's equations by solving 

only one-variable integral equations so that even when spin-dependent local 

potentials were used, the calculation could still be performed on a medium-sized 

computer. 

Our method proceeds by solving the Faddeev equations in the SU(3) 

representation of three-particle states. 	Classification of three-particle states 



7 

has been-discussed elegantly by Dragt
(6) 

and others.V) 	Simonov, (8) on the 

other hand, expanded the three-particle wavefunction in terms of six-dimensional 

surface harmonics. 	Using the SchrOdinger equation in configuration space, he 

showed that for the triton boundstate problem the eigenvalue, X2, of the 

squared generalized angular momentum tensor, A2, in , 	six-dimensional space, 

first introduced by Smith, (9)  together with another quantum number 	completely 

classify the harmonics. 	It was also shown
(10) 

that the generalized partial 

wave amplitudes are only significant for small values of X. 	This is reminiscent 

of two-particle scattering problems at low energy when only small 	need be 

considered. 

This thesis has been arranged as follows. 	Chapter 2 gives a short account 

of Drages. work, and is-brief enough to introduce the notations and formulae 

used later. 	The reader is well recommended to read the original paper, 

especially on the group aspect of the subject. 	Chapter 3 is a description of 

the angular variables used in parametrizing S5, the manifold of a five-dimensional 

sphere on which we construct irreducible representations (I.R.$) of SU(3). 

The construction, in differential forms on S5, in configuration space of the 

two Casimir cperators„ A 2 
 and S,whose eigenvalues characterize an I.R. of 

SU(3) is undertaken in Section I of Chapter 4. 	We also give their eigenfunctions 

classified- in terms- of the SO(3) subgroup. 	We are then able to show the 

one-to-one correspondence between I.R.s of SU(3) and the surface harmonics on 
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S5. 
	

Section II of this chapter starts with a Fourier transformation to momentum 

representation followed by a discussion on the orthogonality, normalization, 

etc, of such states.. 	We then show how to construct an alternative set of 

SU(3) states- which have simple transformation properties under the symmetry group 

of three objects, S3 , for certain values of the total angular momentum. 	We 

also give here a. relation between the generalized partial wave amplitudes in the 

two representations, configuration and momentum. 	Thus we are able to draw 

on the results of Simonov
(11) 

to justify, at least for the boundstate problem, 

that only a small number of partial wave amplitudes in momentum representation 

are significant. 	Chapter 5, Section I contains some pertinent results of 

Faddeev's theory and a modified Omnes angular momentum analysis. 	In 

Section II we write Faddeev's equations in the SU(3) representation. 	The result 

is already a set of coupled integral equations in one variable. 	We simplify 

them by specializing to the case of three spinless identical particles and taking 

X < 4, we obtain for the boundstate problem, just two coupled equations. 

Chapters6 and 7 are devoted to generalization to include spin and isospin. 

In Chapter 6, we classify the states of three nucleons in spin-isospin space. 

The method used is again group theoretic: The multispinor carrying I.R.s of 

SU(2) is analysed by means of the symmetry group S3. 	As algebraic treatment 

of the symmetry group is very difficult, we use the diagrammatic technique of 
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Young. 	In Chapter 7 we apply the SU(3) representation to the Faddeev 

equation for the boundstate wavefunction of the triton. 



r ) 2 ' (2.1) 
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CHAPTER 2 	CLASSIFICATION OF THREE-PARTICLE STATES 

In configuration space, the state of a three-particle system can be 

characterized by their coordinates r.. 	These can be reduced in the CM 

system to two relative vectors r(1)  - and r(2) if we take an orthogonal trans- 
*WI 

formation such 

ti'L2,1,3)  -> 	(0,r (2) 

1 = 
1/2 

- 

1 — (2r - r 
1/6 	 3 	 1  

1 (r + 1 	L2 +L3) = 	• 

We note that r (1)  and r (2) are in the directions of the usual relative 

	

vectors commonly used in three-particle problem. 	They are, however, 

normalized so that 

(1)2 	(2)2 2 	2 	2= —1 
+r 	= r +r +r 	= 

1 —2 —3 

where r = (r (1) (2)) will be treated as a six-dimensional vector. 	We also 

note that r 2 is invariant under SO(6) for which the Lie algebra QC 0  is 

parametrized by the 15 antisymmetric 6 x 6 matrices 

R.ij = 11)(11 - 11)(1 1 i,j = 1,...6 , 	(2.3) 

with r (1)  

r (2)  

r (3)  

(2.2) 



where I1) denotes a six-component column vector in a real vector space 

whose t component is unity, whilst others zero. 
th. 	

is the corresponding 

row vector. 	The algebra £ o  is given by the commutation rules: 

[Rii ,Rmn] 	 0 , 	 i/j/mXn, 

[Rii,Rik1 = R
ik' 
	 (2.4) 

R.. 
II 	 II 

We will be interested in elements of 	
o 

which are stable under the 

transformations of S3. 	The advantage of working with such a subalgebra is 

that operators and I..R.s constructed from it will automatically have simple 

symmetry properties under S3. 	This is particularly useful for introducing 

spins and statistics into the system. 	The subalgebra "Cl is nothing but U(3), 

the elements of which are 

J.. = R.. + R.
1+3 +3 

. 
I R.. 	,1  1,1 < 3, i 

(2.5) 

K.. = R. . 	- R. 	. 	, 	i,j < 3 . 
I 	1,1+3 	1+3, 1  

This is nine-dimensional. 

operator of U(3),  

If we extract from 	the linear Casimir , 

3 
I /K.. 	 (2.6) 

i=1 
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then the remaining eight elements form the Lie algebra (C 2 for SU(3). 

For a quantum mechanical system we need a realization of d o' 1 and £
2 

as Lie -algebras of Hermitian operators on three-particle state vectors. 	Denoting 

by p = (p
(1)

,p
(2)

) the- corresponding six-dimensional momentum vector, the 

quantum analogy of R.. is a set of operators A.. with the following properties: 

(2.7) 

and the A are given by 
ij 

A.. rip.- r.p. . (2.8) 

It is easily seen that r and p are Hermitian and canonically conjugate, that 

is, 

[ri ,pi l 	= 	i Ti 6.. . 	(2.9) 

Thee commutation rules of ;C 
o 

for A.. are the Hermitian analogue of (2.4): 

[A i  , A im , = 0 	/ k I m , 

[A 	A kl 1 	= 
	

(2. 1 0) 

A. 



6 for the Laplace operator in six dimensions. Notice that using the 
Q 2 
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In this representation, the A11 satisfy the bilinear identity 

Aij Akl + Ail Ajk 	Aik Al. 	= 0, 	i/j/k/I. 	(2.11) 

The quadratic Casimir operator A2 
for 0(6) which is also the. square of the 

grand angular momentum tensor is 

A 2 	= 	( Ai.)2 
	

(2.12) 

Then, it can be easily verified the relation
[4] 

 

A 2 	 . 
= 	r

2
(2mT - pr

2 
 + 51Tir

-1 
 pr) 	(2.13) 

where- T-'and p
r 

are the operators for the total kinetic energy of the system 

	

and the linear momentum associated with r. 	In configuration space, they 

are of course given by 

Tit (1)
2 	

Ti
2 

v7  2 
T = - 	(V 	+ v

(2)2
) = 

2m 	 2m '6 
(2.14) 

Pr 
= - un  a___. 	 (2.15) 

V" We have used V" for the Laplace operator associated with r (1) and 

, 
relettiv normalized vectors r (0, we can factor out -11 

2 
 /2m )with m the mass 

of each particle.. 	For three non-interacting particles traversing straight 

line trajectories. A2 
will have eigenvalues, X(X+4)T)

2 
say, which are good 

quantum numbers. 	With p = Ilk, we can deduce from Eqn.(2.13) that for 
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given X and k the minimum value of r, say r
o

, is given by 

1/777-4- 	= k r
o 
	 (2.16) 

Hence r
o has the property of an impact parameter for a three-particle system. 

In passing, we will use k instead of p for the rest of this work. 

The elements of k 1  in terms of the A.. are the quantum analogue of 

(2.5): 

J.. • 	nil + Ai+3,j+3' 	i,j < 3, i t  I 

(2.17) 

K.. 1 • A. 	- A. ,i+3 	1+,i ' i,j < 3 . 

Using the bilinear identity (2.11), we can express A 2  entirely in terms 

of elements belonging to 	1  for 

A2 
= 2 Z(A..)

2 3 
i l(Ai i+3  
,j 

- Hill . A 1.+3,1 .+3 ) 

. 	ij 
	 (2.18) 

Therefore 	
2

must be the quadratic Casimir operator for QC 1 ; together 

with S, their eigenvalues specify an I.R. of SU(3). 	Finally we give the 

Lie algebra of oC
1 
 as 
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[J.,J 1 1•k 	
= 	i 	

jklJI 
, 

[Ji ,Kkil 	= 	i E..i 	K 	+ i E. 
ilm

K
km km ml 	 , 	 (2.19) 

	

[Kii,Kmn1 = 	i(8. J. + 8. J. + S. J. + S. J. ) , 
IM in 	in im 	im in 	in um 

where J.
1 
 =li..

ik J k' 
 and are therefore seen to be the generators for SO(3). 

i 

We have chosen to decompose SU(3) in terms of this subgroup because,then, 

the vectors of a given I.R. will be characterized by the eigenvalues of J, 

J
z 

and possibly another cubic Casimir operator a to remove any further • 

degeneracy.
(6) 
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CHAPTER 3 	DESCRIPTION OF THE COORDINATES 

Since we will be interested to construct I.R. of SU(3) on S
5 carrying 

representations of SO(3), it is natural to use the Euler angles(12) a, p and 

y as three of the angular variables. 	As is by now a well-adopted 

procedc.ner  we. can take the three vertices of the vectors r
1 
 , r

2  and _3r — 

as forming a triangle with body-fixed axes (u,v,w) : u,v in the plane of the 

triangle, w = u Av. 	Omnes parametrized the shape of this triangle in 

momentum space by lkil . 	In our case, in order to treat the three particles 

on equal- footing as much as possible, we use the Dalitz-Fabri(13)  coordinates 

r, p and IS. 	Consider an equilateral triangle of unit altitude (see Fig.1), 

with 0 as centroid; if we denote the distances of an interior point from the 

sides of the-triangle by ri/r 2  , we see that Eqn.(2.2) is automatically 

satisfied. 	The magnitudes of the vectors r. are then given by 

2 	1 r. 	— 3 r2 (1 + p 	(3.1) 

and so 

-2 
Lik = r2 (1 	P g i) 

where rjk =  ( k  - I)) , 

cos (flf 	3Tr) 

cos (PC + 

cos 

(3.2) 

(3.3) 

Fig.1. 	The Dalitz-Fabri 
coordinates 
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Now in the CM system, r (3) = 0. 	This means if the vectors r. are 

to be real, the sides of the triangle (not the equilateral triangle) have to 

satisfy the usual triangular inequality: 

r ki  - r it j 
< r

jk — 
< r . + r.. 

—  (3.4) 

Using Eqns. (3.2) and (3.3), this condition is satisfied if p2 
< 1 and we 

therefore choose the fifth angular variable to be 	such that 

p = cos 2 'k . 	 (3.5) 

In keeping with our attempt to treat the three particles symmetrically/  

we choose the body-fixed axes (u,v,w) as follows. 	Imagine unit mass at each 

vertex of• the triangle. 	We take u and v to coincide with the two principal 

axes of inertia. 	In other words, we require 

(r .u)(r..v) 	0 . 	 (3.6) —  
i 

However;  this does not define u and v uniquely for the condition does not 

speCify ,the directions of u and v in space. 	In Zickendraht,(14)  while 

maintaining both alternatives, the range of jrf was taken to be 0< Id < 4rr and 

a one-to-two correspondence between r and the set (r,Wiaj3y) was obtained. 

We can obtain a one-to-one correspondence with the prescriptions[1]: 

r(1) = r(cos ‘71,  sin Al u - sin 4,  cos — ft( v) , 
2 	 2  

1 

(3.7) 
flf 	 1 

2 
r(2) = r(cos y,  cos— 

2 
 u + sin )4, sin — p,  v) . 
— 	— 
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We remark that for given r, y- and IS, the last equation defines the 

angle E between r (2) and u unambiguously. 	Finally, the body-fixed axes 

(u,v,w) are related to the space-fixed axes (i,j,k) by 

cosacosPcosy-sinasiny -sinacosi3cosy-cosasiny sinPcosyl 

cosacosf3siny+sinacosy -sinacosPsiny+cosacosy sinpsiny 

-cosacosP 	 sinasini3 	 cos(3 
J 

7  

w 

i 

(3.8) 

k 

In summary, we have obtained a one-to-one correspondence between r 

and the set (r,,orfci3y) which we will denote collectively as C. 	Given C , 

we find r in terms of u and v by Eqn. (3.7). 	The actual directions in space 

are then given by Eqn. (3.8). 	The ranges of the variables in C are 
MOONS 

O < r < co 

O < 	< Tr/4 , 

O < ftf < 2n. , 
C , 	 (3.9) 

O < a < 2Tr 
WORN 	 Imml, 

O < 13 < 

O < y < 2Tr , 

So far, we have used r = (r (1),r (2)) with r (2) along r3. 	It will be 

seen that both for performing Omnes's angular momentum reduction and for the 

study of the symmetry properties of the functions carrying the l.R.s, we will 
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require representations expressed 

vectors r 1  =(r (1)(2))and - -1 

in terms, 	of the other two six-dimensional 

( 	 ( 
= (LP' r22)),

2) 	
1 )), with r 	along r 	and r2

2)  
1 	- 

along r 2. 	Note that instead of introducing yet another symbol for the six-

dimensional vector, we prefer to use the same as for the three-dimensional- 

vector of the individual particle. 	As can be easily verified, (r (1), r (2)) 

transform as -the two-dimensional representation of S3'
(15) that is, 

 

r(1)  

r(2)  

  

(12) 1-1 , etc. 	(3.10) 

     

Thus we find 

,/3 ,  
= 	2 

-13
- 
 1 

and 

     

     

 

2 

1/3 

  

(3.11) 

 

L
r(2 

 

   

 

2 

   

These together with Eqn. (3.7) allow the angles 	t2  between 112)  and 
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( u, 22)  and u respectively to be determined. 

As can be obtained by Jacobian calculations, we give here the volume 
6 

element dr = II dr. in some of the coordinates used later: 
1=1 

dr = 3 1/3  d dR 
119 

1 	r5 dr dr cos 2 if,  d(cos 2 9, 	dR 
	

(3.12) 

= r5dr d.R (#1) 

where 

dca 	= dr 12dr 2 	3 
2dr 2 

dR 	= da sin 13 df3 dy , 	 (3.13) 

&an 	=-1ET  cos 2 y. d(cos 24,)dyS dR . 

We now consider the transformation properties of C under S3. 	First 

take the internal coordinates r, y,  and id . 	It is obvious from definitions 

that r and NI,  are invariants while IS transforms as 
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eftS 	= 	fi , 

(12W . _ p , 

	

(23)16 	= 	
_ is  4_4rr

7 , 

	

(31)10 	= 	- AC - 12.1 , 

	

(123)0' 	= 	Af + V  , 

(132)/S =
2rr 

Ar + 7 

(3.14) 

where -e-denotes the identity element, (ij) a transposition and (ijk) a cycle. 

With regard to the changes in the external variables a, f3 and y, we note, 

by definition of the body-fixed axes in Eqn.,(3.7), that the transformation in 

fif and the Euler angles are coupled. 	(3.14) has been chosen so that under 

exchanges of any pair, the changes in a, f3 and y are the same:
121 

a  --> a 

R --> R  - TT 
	

(3.15) 

y 	 y 

In momentum-space, there is a complete analogy with the configuration 

space coordinates, 	We use k in place of r with same meaning attached to 

the suffices. 	However, to simplify the notation, we introduce the new 

( 	, (2)%  
variables (h., i.

1
) , instead of kk.

1) 
 , K. ) , as the relative momentum vectors. 

t 

Where no confusion can arise, we use the same symbols for the angular variables. 

In Chapter 4; section II, when we consider the Fourier transformation to 
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A A, 
momentum space, both coordinates will appear, then we use r , k to denote 

both , the six-dimensional unit vectors and their associated angular variables. 
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CHAPTER 4. 	THE SU(3) REPRESENTATION 

I. 	The SU(3) States 

We have seen- in Chapter 2 that three-particle states can be classified 

by SU(3). 	Now each I.R. of SU(3) is characterized by the two Carton 

(16) , 	 A 2 indices 	kX
1 
 ,X

2 	 A ) and we saw that both 	and S commute with all elements 

of 4. 	Hence by Schur's lemma,
(15) 

their eigenvalues, say X(X+4)112 
and 

2frtil respectively, denote an I.R, and must be related to the Carton indices. 

Indeed, it can be shown that(6) 

(4.1) 
X

1 
- X

2  
2 

From now on we will use (X,A4) to denote an I.R. 	To obtain represen- 

tations of these I.R0 as functions on S5, we require the differential operator 

analogies of A2 
and S in our coordinates C . 	These differential operators 

.1•11.4 

in other angular variables have been used before by Beg and Ruegg(17) 
to 

construct harmonic functions of SU(3) on S5. 	Nelson
(18) 

used a set of 

coordinates similar to ours, but he analysed the group SU(3) in terms of the 

usual SU(2) subgroup of unitary symmetry type in particle-physics; (19) and 
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therefore his results are not useful to us. 	In principle, A2 
and S can be 

constructed from Eqns. (2.18) and (2.6). 	This is very easy for S but extremely 

tedious for A 2 
An alternative method to obtain A2 

 is through the 

Laplace-Betrami operator on the manifold S5.
(20) 

 However, 
2 

/1 constructed 

in this way does not show up the operators of the SO(3) subgroup explicitly 

and hence is unsuitable for interpretation. 

Using the definitions for K. and A ., the operator S can be expressed 
1 1 

in terms of r (1) and r 
(2)

. 	The result is 

S - rt ,..(1) 	a 	..(2) 	a 	, 
"iv • 8r (2) 	 a-Or/ 

(4.2) 

Introducing the complex vector z and its complex conjugate z* 
••• 

i 
z = r(2) +r(1) = re (cos .2. u - i sin? 	, I 

• RC.  
r  (2) 	. (1 ) z* = 	- 	= re 	(cos 	u + i sin 4., v) 

(4.3) 

we see that the simple exponential dependence on ji allows S to be constructed 

without recourse to a complete coordinate transformation.Di Thus we find 

(4.4) 
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For A2, we use Eqn.(2.13) which, in configuration space, is 

A2 
= 

221 	2 	1 	a (r5 	)) • " r 	6 - 5 ar 	ar
r  

(4.5) 

The advantage of this approach is that when we express C7
6
2 
 in terms of 

C, we can build in the angular momentum operators of SO(3). 	In these 

coordinates, 0
6

2 
also separates into a part containing the Euler angles 

and another for the other variables. 	In,  Gallina et al.,(21)  V
6

2 
for S-wave 

was considered. 	Zickendraht
(14) 

whose method we follow shows the separ- 

ation in the general L X 0 case. 	The coordinates used are similar to ours 

but the choice of the body-fixed axes is different,as discussed in the last 

chapter.... 	We carry the transformation from r to C in steps. 	First the 

original frame & :with axes (1,1,k) is rotated by Euler angles al , 131  and 

yi 	to S1  such that zi  is along L 
(2) 
 , xi  in the plane of the triangle. 	This 

is the same rotation as Omnes, 	To bring the (x1 y
, 1 

 ) plane into the plane 

of the triangle, we rotate S
1 

about x1 
	 Y2 

by n/2 so that 	of the new frame 

S2  is now along r(2),  the Euler angles of S2  are a2 , 132 , and yr 	Then 

we introduce .the coordinates r, 	and fl‘ . 	Finally we rotate S2  into S 

rr whose axes are (u,v,w) by rotating about z
2 
 the angle (-

2 
 -E). 	The Euler 

Ier• boom •   

angles-of S are, 4y definition, a, 13 and y. 	Note that we have used the 

same numerical lable i for the frame Si  and the quantities associated with i. 
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For example, zi  is. the z-axis of the frame Si. 	The result of this transfor-

mation 2 
 is that for A we have 

2 	21
2 

a2 
• 

4 cos 4 ,1, 	a 	+ 	4 	a 	r — 
1-7 , yi 	 2 )41.2"—  a 	sin 4 	a 	

cos
2 	ap 	tin 2 y,  

1 	2 	2 a ) Lw  + 	sing /I'  Lw  
2 

cos
2 

2 y. 	sin 2 9, 	 cos2y,  — 

cos 2* 
(L2  - L

2
)
1 

+ - 
sin 21' 

(4.6) 

where.E 	(L ,L
v-  

,L 
w

) is the angular momentum operator with respect to the 

S frame and 

L 	= - iii 	 , 
ay 

L
+ 

= L
u 
 +iL

v 
 = 

+ 
iy 	1 	a 	• a 

-e 	'sin 13 as - aR ; cot  ay (4.7) 

This can be identified with the Laplace-Betrami operator on S
5 

with 

same C. (7) 	Since it is also the angular part of the six-dimensional Laplace 

v 
operator its eigenfunctions are surface harmonics S (r

A  
) on S

5 
 of degree X,

(22) 
X  

that is, 
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A 2sPxe) = x(x-F4).t2 
	

(4.8) 

where ti represents• the set of labels characterizing the independent surface 

• harmonies of degree A. 	The total number of such surface harmonics is 

h(A) — 0 12X(0+2)  +3)1. 	 (4.9) 

I) It is easily shown that the S (rA  ) are also eigenfunctions of S. 	By X 

definition, the surface harmonics are related to the harmonic polynomials 

PPx(r) of degree A by 

1 v Svx(i:') 	P (r) 
r 

(4.10) 

with 

cr26 X`
fi. 

 / 
	= 	0 	 (4.11) 

In terms of the complex vectors z and z*, PA(r) can be written as(23) 

PP(r) = I:31)X'  (z z*) — 	-- c 
b1  b2  b3 	al 	a2 	a3 	bi 	b2 	b3 
aia2a3  (1) (q) (zi  

Zai  = P 
= q 	 (4.12) 

p+q = 
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and we note that for given X, the range of (p-q)/2 is 

- - 2  + 1 

The coefficients are of course determined by Eqn. (4.11). 	Using Eqn. (4.3) 

v 
we find that the S (r) are eigenfunctions of S with eigenvalues 

X 

Indeed (p,q) correspond to the Carton indices (X1 z 
,k). 

jfk = (p-0/2. 

Writing the surface harmonics as Sit"(fr% ) with u now denoting the 
X 

remaining labels, we see that on S5  the (XdA) I.R. of SU(3) is carried by the 

surface harmonics SAx''')(P). 	It also follows that I.R.s of SU(3) form a 

complete orthogonal set on S5. 	From the classification of vectors belonging 

to a given (X„ct) I.R., v consists of L, M and the eigenvalues, w say, of 

LM , 
the cubic operator _a . 	However, for L = 0,1 and some L 0, Sx

A 
 (r) 

is multipliicity free in which case we need not consider w.
(24) 

In any case, 

„, 
_a it is best not to require the S

X 
 (r) to be the eigenfunctions of 	as w is in 

general irrational and their .eigenfunctions are difficult to be expressed in 

closed forms. 	We are satisfied if they are all the independent solutions of 

Eqn.(4.8). 	The SU(3) representation of a three-particle state in configuration 

space is then given by 

0(k2,r,i) = ux(k,r) 	LM() 	 (4.13) 



where IX (R) MK 

of Edmonds. (27)  

eiMadMKL  (8) ei KY is the rotational matrix in the notation 

in this form satisfies Eqn5e(4.16) At,LM,A, It is obvious that S 	kr) X 
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The radial part satisfies the equation, 

C 5  
r 

a i 5a, )0+4)  
ar 	ar 	r2 

21 ux  (k,r) = 0 	(4.14) 

the• solutions of which are (kr)-2JX+2(kr) and (kr)-2NX+2(kr) with JX+2(kr)  and 

NX+2 (kr) the Bessel functions of the first and second kind respectively. 	We 

require cal, the surface harmonics Sx  (r) satisfying the eigen-equations1 

LM 	 A 

	

sx!
M, 	(r) 	= 	2/.4'h Sx LM  (r) , 

2 LM, 	 2 

	

L SAt 	(r) 	= 	L(L-FlTh Sx
A, LM  (r) , 

(4.15) 

(4.16) 

LzSX'  (P) = M 	 • 
	 (4.17) 

By the Peter-Weyl theorem,(26)  SAx'LM(P) can be expanded in terms of 

matrix elements of the SO(3) subgroup, that is, 

s'itiLm) = LMK G ( MK(R)  (4.18) 

and (4.17). 	If we write 
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LM,K 	 LM,K G 	( yi,A0 = NAL  g 	( kp) e 

Then Eqn.(4.15) is also satisfied and hence we have 

S,4i,LM(p) = N e-i/A$C gXIA LM,K„ DMK
L (R) 

K 	• X  

(4.19) 

(4.20) 

where N sL  is a normalization constant such that 

S(i) 	 (f) =8 	 5 	(4.21) XX' p/14 	MMf 	K 

With ft the parameter to remove any further degeneracy. 

Using. Eqn.(4.20) for SAxILM(r) in Eqn.(4.8) gives a set of coupled equations 

for the g ,K LM  (y) X/tA 

F a2 	4 cos 4* a  -  4 	- 
sin 4 tp 	

2  	n k 	 .-eys4 v2% 	A ,, sin 2y,  
k 

a 	 cos22..r 	sin22 	 cos 2 tt,  

X(X+4)] g xiA  (y- ) 

cos 2 	L 	LM,K+2 	L 	LM K-2 
(CK+1 g )µ ) CK-1 g 	(4,  )) sin22 

with 	CL  = {(L + K+1)(L+K)(L-K)(L-K+1)] 1/2  • 

(4.22) 

(4.23) 

The solutions to this are difficult to obtain for general L.(28) In, Zickendraht 

LM,K a method was devised to construct all the Gxik  0.0 which satisfy Eqn.(4.22) 
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for L < 2 and some for L > 3 . 	Nevertheless the differential system provides 

the following useful information: 

i) It does not depend on M at all and we will therefore leave it out in 

future. 

ii) For given ki.A.and L, the g
X
L,K(+r) with even and odd K are coupled 

itt 

separately. 

iii) In general for L > 2, there will be more than one solution for given 

X,/4 , L and K. 	Having found the independent solutions, we can 

ortho-normalize them and since a general SU(3) state is classified by 

the set (k2 ,Xp. LMw) and there is a one-to-one correspondence (apart 

ft from the k2) between this and a S
,u 

 kr
/k  

) surface harmonic, the X 
L,K 

constructed ortho-normal solutions of Eqn.(4.22) labelled by say g.. 	, 

form surface harmonics Si'i'LMKti') which span the subspace of the three-

particle states on S
5 

with given (k
2

,X ALM) and hence must be related 

to the state labelled by w by an orthogonal transformation. 	A three- 

particle state can therefore be classified by the set (k
2

,X1A LMR). 

Such states need not be eigenstates of the cubic operator 

However.-the important thing is that they form a complete set for a 

three-particle system. 

iv) Restricting to the case when k is redundant and using Eqns.(4.21) and 

(4.23) it is easily shown that 
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L,K L,-K 
g = g (4.24) 

v) 	By Eqn.(4.1), replacing ptloy -ft, means exchanging 
X1 

 and .)\ which 

in turn implies going to the adjoint representation of a SU(3) I.R. 	It 

follows that, for given k
2 
 ,X, L and M, the multiplicity of the states

(24) 

with frt. and -fr, is the same. 

L,K We- conclude this section by giving the solution for g x.,  for L = 0 as 

this only is important for the boundstate problem. 	Eqn.(4.22) reduces to 

just one equation which can be solved in terms of the Jacobi polynomials 

giving f51 

2 
S 	= N 	e i'41 (cos 2y") 	P1 x 	(1-2 cos 2V)) 	(4.25) 

)44  

2(2 	1#1 ) 

II. 	Some Properties of the SU(3) States 

In the last section, we have undertaken to construct I.R.s of SU(3) in 

configuration space.. 	It is obvious from the symmetry of p and r in Eqns.(2.7), 

(2.8) and (2.9) that apart from the radial part, I.R.s in momentum space 

take exactly the same form: we only have to replace the angular variables 

by their momentum space counterparts. 	We now give an alternative method 

to obtain the momentum space representations by a Fourier transformation. 
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For notational convenience, we use Dirac's ket or bra to represent a state. 

Again we use v to denote any remaining labels; a general normalized 

SU(3) state in configuration space therefore is 

J 	(kr) 1 	X+2 	sv(t)  <rjk2,Xv> 
r2  

(4.26) 

The normalization has been chosen so that orthogonality of the states takes 

the form 

<k2, X v Ile 2 X' .v1 > 	= 	8(k2-le 2) 5xx, 81),), (4,27) 

which also determines the completeness of the states to be 

fik2,X v> 2kdk < k2,Xvi 	= 	1 (4,28) 

The Fourier transformation is 

<le 	II<
2,X1d> 	= 	f<k'Ir>dr<r lk2,Xv> 	, (4.29) 

where 4 	= (23r)-3 eikr  
— *— is the properly normalized plane wave state with 

the six-dimensional vectors k and r . 	Like the partial wave decomposition 

of the> plane wave state in two-particle problem, it can also be expanded in 

E5) 2 4 A 
terms- of ,the7.suitably standardized Gegenbauer polynomials, 	Cx(k.r),for a 
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six-dimensional space. 	These polynomials are simple generalizations of the 

well-known Legendre polynomials. 	The expansion is 

I 
3 	

c' 	
2 ' 

AD <r Ilc"> = 	
2rr 	

(X' + 2) 	J 	(0 r)C (k r ) • 	(4.30) 
(k' r )2 Xl +2 	X °— 

Then, apart from possibly an irrelevant factor of i, we have in the momentum 

representation the normalized state 

' 2-v 1"<, <k' lk2,X 	= 	8(k 
2 k

2

)  s X‘-- 

In deriving this, we have used the following results:(29), [51 

a) 

Jx+2(0r) Jx+2(kr)rdr = 25(0 2-k2) , 

(4.31) 

(4.32) 

Ar) 
P A 	 2rr3 2' A  C2(IC J Sp(r) 	(P) = 8xx, 	S x(k) . 	(4.33) 

In discussing symmetry properties, it is more suitable to introduce a new 

LM set of surface harmonics denoted by Sxito:x  where t = 1,2 and A is either 

positive or zero and has the following meaning: For X even, 

/41 ▪ 3n + 1 , 

2 • 3n + 2 , 	n = 0,1,2,. .. f 
	 (4.34i) 

A3  3n 



LM 	
= 	 I 	- 	I 	) 

Xls-t 	
V2 

A, LM 	 LM k 

(4.351) 
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and for X odd, 

= 

At2 = 

Al3  

n = 0,1,2 ... , 	 (4.3411) 

The S
LM 	

written shortly as SXI, are defined as: 

for L even, 

LM 
S 	

1  ii,LMK 	-41..,LMK 	{1 j / 1 
= 	 + 	I 	)S?_ k 

1/2 	 -1 j = 1 

and for L odd, 

LA4 	
1 	 ..,LMK 	-)A.,LMK 	1 	1 

S 	
1 

= 	(Sx 	+
X 

I 	) x 
it 

1111 	 -12 	 -1 j = 1 
(4.35ii) 

-)4.,LMK 

S
LM 

= - 2--(S 	
- SA 

I 	) 
2 	

1/2 

Note that these-surface harmonics can be constructed because of remark v) 

after Eqn.(4.22). 	They are orthonormal in (Xisti t k IM) and by construction 



- 36 - 

form. a completeset on S5. 	By appending the radial part to them, we 

obtain an alternative complete set of SU(3) states. 	The orthogonality and 

completeness relations for these new states are the same as Eqns.(4.27) and 

(4.28) respectively with the proviso that ), now represents the set (,u..tk LM). 

From now on we will use these new states. 	For states with L values such 

that IC is redundant, we can use the symmetry properties of C and Eqn.(4.24) 

to show that for j = 3 the states lk
2

,X p..1LM> and 11(
2

,X p..2LM> are 

asymmetric and symmetric respectively whereas for other j values, the pair 

transform as the two-dimensional representation of S3. 
[61 

The restriction in 

the L values follows from the multiplicity of states with given X, ,k.,L and M, 

which means that Eqn. (4.24) is not precise enough. 

To end the discussion on the symmetry properties of S xv  , we consider 

spatial inversion P. 	Under this operation, only y changes to y-Err. 	Hence 

we have 

t 
P 	

2 
 ,Xv> = (-1)

K
k2 ,Xv> (4.36) 

But the spatial parity of a SU(3) state is also given by (-1)
X 

and depending 

on X only.
(6) 	

Therefore, for given X, the summation over K in Sxv  is 

over- either even- or odd values. 	In particular, for L = 0, K = 0, only 

positive parity X even states are possible. 
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By completeness of the states ik2,XAL. LM k > , we can express a 

general thremparticle interacting state 	in momentum space as 

1c I 	>  <kik' 2  ,Xv>2k'dle<le2,X1;@ > 
Xto 

(k) 
	 S i,(k) 	 (4.37) 

k2 

where 115‘v  (k) 	1/2<k2,X1,1:i> is the generalized partial wave amplitude. 

Analogously, in configuration space, we have uAv  (r) defined by 

u, (r) 
<r 	 2 	 S Xv— 

	 (4.38) 

It follows from Eqns.(4.29) and (4.30) (with Sx  replaced by S x,) that 

the two amplitudes are related by 

,Xx  (k) 
	f Jx+2(kr) uXv  (r) r dr 	 (4.39) 

from which, with the help of Eqn.(4.32), we have 

f 1)(xv  (k)I 2  k dk = f lux „(r)12 r dr 	 (4.40) 

That is, their contributions to the normalization integral are the same, as 

expected. 
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CHAPTER 5 	FADDEEV'S EQUATIONS IN SU(3) REPRESENTATION 

I. 	The angular Momentum' reduction of Omnes 

It has long been recognized that due to the disconnectedness of the 

kinematics of a three-particle system, the Lippman-Schwinger (L-S) equation 

has a 8-function in its kernel which persists upon iterations(30) and therefore 

prevents any iterated kernels to form a completely continuous integral operator 

in any function space.(31) 	Faddeev rewrote the L-S equation for the three- 

particle interacting state 	I > in operator form as 

     

     

(1)>  Go(z)Ti  (z) 	Go(z)Ti  (z) 

Go(z)T2(z) 	 Go(z)T2(z) 

Go(z)T3(z) Go(z)T3(z) 

  

  

i(2)>  

(3)> 

      

      

      

      

      

(5.1) 

with 

> = 
3 	,.‘ 

+ 	I i°1> 
i=1 

(5.2) 

where 	(to  (i)> and 	iTo> are known asymptotic states.(2) 	Go(z) is the 

free three-particle Green's function, z a complex parameter and T.(z) is the 
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transition operator of the i-two-particle subsystem in three-particle Hilbert 

space. 	In momentum representation, the kernel of the operator T.(z) is 

with 

<k ITi(z)jk' > = 8(1i- 	Iti(z-4 2) 	> 

<3_, t,(z-1.; 2 ) 144. > = 	 ; 	2  , 

(5.3) 

(5.4) 

as the two-body transition amplitude of the i-subsystem. 	Because of the 

8-function in <I IT.(z)Ikl> , the matrix-operator in Eqn.(5.1) is still not 

compl-etely continuom though its kernel can be bounded in space of square- 

integrable" function (L
2
).

02) 
However, for particles interacting with Yukawa 

potential, it can be shown that the squared matrix-operator is completely 

( continuous in. L
2 
 for all z including the positive real axis.

33) 
	Therefore, in 

contradistinction to all previous practical applicbtions of Faddeev's equations, 

we use the iterated equation(34)  

= 	0(i)> + 	(z) 	, 	 (5.5) 

where Cio(i)> = 	rio(1)> - 	G 
o

(z)T.(z) t (I)> 
	

(5.6) 

and KO' )(z) is the matrix of operators 
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Go  Ti  Go  T2+Go  T1 G0  T3 	Go  T1 G0  13 	 Go  T1 G0  T2  

Go  T2Go  T3 	 Go  T2G0  T1 +Go  T2Go  T3 	Go  T2G0  T1  

Go  T G T2 	 G o  T3G0  Ti 	Go  T3G0  Ti+Go  13G0  T2  

(5.7) 

Complete continuity of the operator K(iii)(z) in L2  is implied if the Schmidt 

norm for its kernel <k1K(iii)(z)lki> exists, that is, 

K(z) = 

Ikk  I K(i  i)(z) 	>11 Si 
0 1 	 2 K 	 dk dk' < co (5.8) 

The advantage of Ecin.(5.5) over the non-iterated Eqn.(5.1) is that the Fredholm 

theory now strictly applies; in particular, the resolvent of K when it exists is 

given by 

(1-K(z))-1  = 
	

(5.9) 

where 8, 	are the modified Fredholm determinant and first Fredholm minor. 

It will be seen in the next sub-section that the introduction of SU(3) 

representation for the Faddeev equation (5.5) is best done through an intermediate 

step when the operator K(z) is first expressed in a representation diagonalised in 

2, 2 2, 
c.) = 	,L2 , ), the total angular momentum L, and its components M and 

K about the space- and body-fixed axes respectively. 	Such three-particle 
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state is denoted the ket 4.),LMK> . 	The same system, in a representation 

diagonalised in the particles' momenta can also be represented by the 

ket ..I k.> where k-._ 	'n.) is the six-dimensional vector. 	For a given 

configuration of the three particles in momentum space, we can choose to express 

the state in any one of the six-dimensional vectors k.; hence the states 

I k.> for i = 1,2, and 3 are actually equivalent. 	The transformation between —1 

the states I k.> and I i.,),LMK> is given by 

<ki' I , LMK> = A6(4) ' 	)DmI" K(R9 . 	(5.10) 

The constant A is determined by the orthogonality condition which is chosen 

to be 

<10,LMK I to' ,L1 M1 1<i> = 8( co-cos)8LL,6mmi6KK, • 	(5.11) 

Then A is given by 

A2 2L-1-1  

avi3rr2--- 
(5.12) 

and the completeness relation is 

I 63,LMK>de..› <0, LMK I = 1 . 	 (5.13) 
LMK 

The operator Ti(z) in this representation is 
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< 	LMK I Ti(z) 
	

',L'M'K'> 

=3E  .1/ .!1)21.5(4) 	 ;.1)<._11  

DM
, K1 

 (R")dtd* d " dR* dR" 
	

(5.14) 

with 
2 	3 

= 

2 	1 
= 	 + 2 tok  - cod 

In order to use the 8(c,.*- ,.") in evaluating the matrix element in 

Eqn.(5.14), we choose the coordinate frame, say S. (for i = 3,
3 

is same as 

ti 
S1  in Chapter 4) :,such that the body-fixed z-axis is along 	. , the y-axis 

normal to the triangle. 	The component of L along the body fixed z-axis -is 

therefore—that along 5'." . 	We denote it by K. so that the new ket is 

to,LNIK:> depending on i. 	The matrix element < w , LMK.IT.(z)jeos,LEM1  K.1 > 
•••••=•• 	 MiMeMiN, 	 I 

 

is thenthen found to be17] 

2  8(4).
1
-6''')  

<w, LMK. IT.(z)10" L' M' K.' > = 4v
/ 
 2irr to ,1/2 
	

8LL' 8 
	8 
MM1  K.K.' 

t. 	(1,2
' 	12; z 	

v 	(.11 
YID K 

 
' (6.' ,O) /, 	1,1' 	 4 i 

i 
(5.15) 

; z - 
1
,2

)
•
is the 1"-partial-wave off-shell transition 
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amplitude of the i,'subsystem, Yirn  (42+40 the spherical harmonics; 	are 

the angles between .t
. and 	, ag,i  and 	respectively, so that 

cos: 8. 	
14'1<- 6̀ )j)  1.44)(2 Ap j + 2  '`;1( 	

1-1/2, 
	(5.16) 

and cos 8. defined similarly with 	replacing co 

To remove the dependence on i of the state I ca, LMK.>, we cam" the 

rotation which takes S. into S. 	In terms of Euler angles, this is 

R(a,(3,y) 	= 	 - 	- 6 i) 
	

(5.17) 

recalling. that L is the angle between 4  and the body fixed x-axis. 

The transformation property of 	LMK.> under SO(3) then gives(12) 

, LMK> Tr D
K
L 	

2 -  	 LMK"> K. 	2 	' 	i 	 i K." 
(5.18) 

Hence, we have finally 

<1.),LMK 	 ,L'M'K'> 

= 4V2Tr2 
	

sir) 8
LL' 

8
MM' 	

t. ,  ( .
2, 11

,2
; z- gi

.2
) x 1 1/2 

l " 1  

L 	 Tr 	 w  
D* 	Tr — - 	L 	rr 	IT D - 
KK" 2' 	2 ' 	i 	K' K." ̀ 7 	- 

c  
-1/ '1' K " (8V 0)Y1 ,  K " 	,O) • 

(5.19) 



II. 	The reduced Faddeev equations 

To avoid encumbering the formulae, we consider the homogeneous 

equation of Eqn.(5.5). 	In the SU(3) representation, it reads 

3 
2 	- (i)> 	 S 4c2 ,xv IK(i,j)(z)10 2 , ., 

A ul> 2k' dk° 
j=1 kb' 

1,1 = 1,2,3 . 	 (5.20) 

We , recalkthat x) represents the set ( /A.ILM k ) 	Eqn.(5.20) is already 

a set. of Coupled one-variable equations in k'. 	The operator K(1' I) is usually 

known in the representation when k = (Ail) is diagonalised. 	If we try to 

calculate the kernel direct from 

<k2 X2/11((iii)(z)11(" 2 ,Xivi> 

j4k2 XD I k*>dk*<k*I K(i 'i)(z)1 k" >dk"<ku I k' 2 , 	> , 	(5.21) 

we find that this involves a ten-fold, non-trivial integration. 	To complicate 

matters further, the iterated kernel <k*IK(i'i)(z)lku> itself contains a six- 

fold integration. 	Pustovalov et al.(35) have derived a complete set of 

LM A 

surface- harmonics like our 
SAiudit  (k), but in terms of z and z* of Eqn.(4.3) 

- - 

(or equivalently in terms of k). 	While expansions of wavefunctions satisfying 

SchrOdingerls equations in configuration space in these harmonic functions 



frave4eervarnftly justified in practical calculations of three7
(11)

ond four- 
(36) 

particle boundstate-wavefunctions and binding energies, the introduction of 

such surface harmonics in Eqn.(5.21) involves the abovementioned integrations. 
IA  A 

Now our S 	(k) have the dependence on a, p and y separated out already 

L 
K

, 
in D

M 
 kR), it is natural to obtain K(' '1)(z) z1 in a representation such that the 

SO(3) element- is again separated out. 	Such representation is afforded by 

Omnesis angular momentum analysis. 	In place of introducing complete sets 

of , lk> in Eqn.(5.21), we use those of 1/42,LMK> to obtain 

<k
2,Xv IK' j)

(z)10
2 ,Xivt> 

E 
L*M*K* L" M" K" 

j) 2 
1 	 I XvIw* L*M*K*>d *< u)*, L*M*K* K • '(z)11•3°,1 L' M Ki°>dbi 

<w" , L" M" K" Ile
2

, X1 1)!  > . 	 (5.22) 

Using Eqns.(4.35), (4.31) and (4.18) to find <kg I k2 , XP > and Eqn.(5.1 0) for 

<WI (.3,LMK> , we have for the transformation coefficient 

<12 ,xvii,„ ,L*m*K*>  _ 	Tr2 	 6(k
2

-k* 
2L+1 

A 
 8 LL*

8 
 MM*

8 
 KK* 4, 	2 

K k* 

K 
Gx* 	(Y* ,fri*) 

(5.23) 

where.:. the G L'  K 
	

are defined in terms of the G
L
'
K 

and G L'
K 
	exactly Xp...1.1Z 	 4•K 	A-p.k 

like Eqn.(4.35) for the S
LM 	

and in arriving at Eqn.(5.23), we have used X,14.1K 



(3.12) and the orthogonality of the rotational matrices, 

L* Eirr2 
RSDMK ( 1) DM*K* (R') dR' = 

2L+1LL*
8
MM*

8
KK* (5.24) 

By the rotational invariance of K(i'i)(z) under SO(3), we have 

<4.)*, L*M*K*I K(i'i)(z) I " ,L" M" K"> 

= 	6L*L' ,8
M*M" <6.)*,L*M*K*IK(i'1)(z)110",L"M"K"> 

	
(5.25) 

Thus by Eqn.(5.22) and after integrating over the 8-functions, we have for the 

SU(3) representation of K(i'i)(z) 

<k2,XvIK(i'i)(z)lk 

4 2 
rr cc A 	

[<k2, 
*,0,* LAAKIK(i,j)(z)  ik , 2 , y.." 	,LAAK s >  

2(2L+1)2 KK' 

*L 	 K 
G, ' K 
	 '

I kl 
( eftf*) GL' 	( v,"1:0  )k2 k'2 

Nog 	 A4.  
(5.26) 

where-,-A-A - = cos 2f* d(cos 2 \pt.) cos 2 V," d(cos 2 ye") dyl*dyl" 	(5.27) 

and we have expressed the Omnes kernel in Dalitz-coordinates to emphasize 

that the integrations are over the angular variables. 	It should be noted that, 

with the range of v.. given in (3.9), the kernel 

<k2 , *!d*, LMK I K(i'i)(z)ile 2, ii, "56" ,LMK1 > is always defined. 	By introducing 



- 47 - 

complete sets of SU(3) states in Eqn.(5.8), it can easily be shown that 

11<1( 1<(  '1)(z)11(511 s  = 4 
	 IK(i,j)(z)i 	 < co 

XI 01 

Hence 

11 <1(2,A v I K(ii 1)(z)lk` 2Thi > IL < co 
	

(5.28) 

that is, the SU(3) kernel <1(2 ,Xp I K(i'1)(z)l  ks 2 ,Xivi> as an integral operator 

in Eqn.(5.20) is completely continuous in L2  whence all the powerful methods 

of function theory can be applied to it. 

For the rest of this chapter, we specialize to the case of three identical 

bosons interacting in pairs with a simple Yukawa potential in s-state - that is, 

we consider only the s-state contribution to the two-particle transition 

amplitudes. 	thus the summation over 	in. Eqn.(5.19) is reduced to just the 

term with 	-= 0. 	We are looking at the boundstate of the system with L= 0 

and therefore ic will be redundant. 	Since the state 	IR> and its 

compon-en1 	y ->- must be totally symmetric with respect to all transformations 

of S3 , •in the summation over 	in Eqn.(5.20) we need only to include 

= 2 and the- set- {p 	which also implies that the summation over X' is 

over X',  = 0, 4, 6, 8, and then even integers. 	With the help of the 

orthogonality relation of the Jacobi polynomials, 	Eqns.(4.350 and (4.25) 
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we have for the properly normalized surface harmonics 

\ 2(1f) 	
G

XA32
( 17i),A0 

cospi(cos2 ) 	Pi  "x 	(1 -2cos22 ) x 
)43  itin,0 

2(2 A13)  
1  for 	= 0 . 

1/2 

(5.29) 

The SU(3) kernel of Eqn.(5.26) then simplifies to 

<12 	 IK(i,
(z

)lk t  2 ,  Ai h

r 

 > [(X+2)(X' +2)]1/2  
61/3n 

r 2 	 1(3 	/43  
x 	V.k , (11•*,:fr I K

O' j)(z)i k' 2 , ii,")6" >cosAsii*cos,4413 	(cos2 y,*) (cos2 	) 

At3,0 
x 	P 	 (1-2cos

2
2 y,  *) x 

IX IA  
TT -rY 

1 for/4-3  / 0 , 

x Pl  x, 	(1-2cos
2
2?")]clp x 

2( 	3)  

1 for )43 , ii,t; / 0 , 

— for one of m3, 3 / 0, 
1/2 

0 
(5.30) 

for /A3 , /A 3 = 0 • 

where we have left out the label 	1 = 2 . 

To proceed further, let us just confirm a labelling convention which we 

have hitherto adopted implicitly: If (r,s,t) is a set of particle labels in cyclic 
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order we use r -to denote both the odd particle associated with the vector 

1, and the ?two-particle sub-system formed by particles s and t. 	Thus from 

Eqn.(5.7), a typical term of KO/0(z) in Omnes's representation is denoted 

by <01 GoTrGOT1  I 	> and in SU(3) representation by 

	

GoI 	o 	' X',14.13> with r and I unequal. 	Now for identical 

	

r 	l  

particles the functional dependence of the transition amplitude of the r sub- 

system on-(a)r s  Lit) should be independent of r. 	That is, if we denote 

this function by t, we should have 

r s (5.31) 

Hence, using Eqn.(5.19) with L = 	= 0, the matrix element 

— Go 
I T,G OL  T,,I 1> is given by 

32rr4 	 1  TiG T 	- 
- 0 I OL

„k 
	

x 
„;7_, 
1 21  

(141/2 +co , 1/2)2 
1 	2 

	

it 	3 	 3 
w co 	z- 	)t(t.o" 0" c.) 	r" • 	)d " 

	

1 2413 	2 1 	2 3 l' 2 3'1'  2 2 "3 	(5.32) 

    

: ( EA) 
1/2

- 4")
1/2

)
2 	

1 	2 
- z) + 

1 	2 

and then it can be verified that 

<lc IG T G T, — or oi 
1 2 3 2 3 1 °  = ( 	)( 	)<NIG T G T rs t Imn 	ol o 2— (5.33) 
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where ( 	•3  ) and .(1 m )1  are permutation operators on the labels in 6 and r s 

' respectively. 	Eqn . (5.33) takes a particularly useful form when expressed 

in terms of the Dal itz-coord inates . 	Noting that the permutation operator.; 

belong either to the cycle (123) or (132) and by the transformation properties 

of if, we can replace Eqn.(5.33) by 

<k2, V-IS IGoTrGoTIlk' 2' 	56' > = 1(2 , Ifritf-Fer I 	T1 GoT2I  k' 2, Y-'`ii` 4-9'1  > 	(5.34) 

with 4rr 	 2rr e2 3 , 	e3 = 3 

49° = 2rr 	 41r G' =  1 3 ' 	3 	3 

For the fact that ,t43  are 	multiples of three and that 

<k2
,tt'iSiGoT/ GoT21k12,NP'ff'> is periodic in its /lc and id' dependence, we 

can deduce from Eqn.(5.30) the relation 

<k2 , A p31 GoTrGoTi  I 2, Pik'? = <k2 , X,L43 1G0T.I  GoT2Ik' 2, Pk; > . 	(5.35) 

This remarkable property in the SU(3) kernel <k2,A4,1K(i'1)(z)Ik' 2,AlifiL1 > 

allows the matrix-Faddeev equation of Eqn (5.20) for the totally symmetric 

boundstate I is> to simplify to just a coupled set in A' and /43; by adding 

up the equations for I i (1)>, we have 



V(r..) = r..1 + a + a
1 
 r.. + 	,2 

z, 
	+ 	, 

ti 	 II  

a 
(5.37) 
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<k2
,3 s  

I > = 	<k2,,/41G
o

T
1
G

o
T
2

I k'
2
, 	>dk' 2<le 2 viola,-  > 	(5.36) 

mug 	 3 	s °  
3 

By virtually repeating the same argument leading up to Eqn.(5.28), we can show 

that the 	operator in Eqn.(5.36) is completely continuous in L2
. 

This is to be contrasted with the case when the non-iterated equation of 

(5.1) is used. 	In that case, the kernel would contain the 6-function, 

6(w.- 1.) which apart from complicating the evaluation of the kernel itself 

would also produce the same misgivings as the 6-function in the original L-S 

equation. 

We now bring in the only approximation in the theory in stating that 

only small X' need be considered in Eqn.(5.20). 	This question was first 

discussed by Smith.(9) 	For the triton problem,(1°)  it has been shown that 

for all pair potentials which, for small r.., can be expanded as 

the partial wave amplitudes u 	(r) in configuration space satisfy the following 

estimates: 

	

u
2,1 	

< (r )
max 	

9% u
o,o 

 (r) , 
—  

< 6 u4 	
u 	(r) , 

	

,0 	
% (r )

max — 	o o , 

< u
6,3

(r)
max ,u4,2

(r)
max — 	

1 % u 
o,o(r) 

 , 
 

u, 	(r)  max 
 

u 	X+2 >> 1 . A,4,Li  max -772-  0, 0 

(5.38) 
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Thus by Eqn.(4.40) and the remark following it, we can to a good approxi- 

mation consider only those 	with X < 4. 	For our totally symmetric 

boundstate
s
>, Eqn.(5.36) becomes just two coupled equations.. for 

o,o(k) and  ,X4,o(k)  which can then be solved and used in Eqn.(4.37) to 

construct the wavefunction in momentum space. 
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CHAPTER 6 	THE SPIN-ISOSPIN STATES 

We wish to construct, in spin-isospin space, all the possible states of 

three •nucleons• corresponding to given total spin, isospin (S,I) and their 

z-cornporrents,  (Sz,li). 	Moreover, we require the states to have definite 

symmetry properties- with respect to S3. 	Since the spin and isospin states 

can be treated analogously, we confine ourselves first to the spin states of 

'the system. 	We follow the same approach as in previous chapters for the 

spatial classification and endeavour to construct the states by group methods. 

This means, in the first place, deciding the group with respect to which the 

system is invariant and then to find its irreducible representations. 	In 

this cormeetion, we have used many results on the symmetry group S
3; a 

detail' iscussion of these can be found in Chapters 7, 10and 11 of 

Hamermesh.(15) 

Let us- represent the spin state of a nucleon (S=1) as a two-component 

spinor 

(6.1) 

with x1, x2 representing the spinor with Sz = 	-1 respectively. 	The 
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spinor is normalized such that 

2 
;'x.i 

2 
= 1 . 	 (6.2) 

1=1 
1 

 

If the basis vectors x. are subjected to a unitary transformation so that 

= u..x. 
11 	1 (6.3) 

we obtain another basis for the same spinor space. 	This unitary transfor- 

mation can be made unimodular by taking out a phase factor and therefore 

we may-regard the .spinor space as providing an I.R. of the group, carried 

by- the 2x2 unimodular unitary matrices, which is SU(2); and a nucleon state 

with spin 1- is invariant with respect to it. 

For a three-nucleon system, the spin space is spanned by the components 

of the 3-rank tensor (or a multispinor of rank 3) 

F. . . 
1 2 3 

x(1)x(2) x(3) 

'1 '2 '3 
(6.4) 

where-, for example, x
(2)
. 	is the spinor representation of the second nucleon. 
1
2 	

• 

This tensor is, of course, to be defined with respect to SU(2), that is 

Ft. . 	= u. . u. . u. 	F. . . , 
11'2'3 	'Ili 121 2  131 3  11 1213  

(6.5i) 
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or symbolically, 

F(i)  = u 	F 
(1)(i) (1) 

This 23 -dimension tensor space obviously provides a representation of SU(2). 

However; what we- are interested in are the I.R.s of SU(2) carried in this 

tensor space. 	This. means resolving the tensor F.. . into component-tensors 
1 1 1213 

which transform irreducibly under the group. 	Such a resolution is achieved through 

the commutating property of the transformation (u x u x u) with the index- 

permutation,of S3, which is defined as follows: 	Let p be the permutation 

1 2 3 (1,,31.),,which when operating on the tensor F. 	produces another 
1 1 ;213 

tensor pF such that 

(pF).. . 	F. 
'1'23 	11' 2' 3' 

(6.60 

or symbolically 

	

pF 	= 	Fp(i)  . 	 (6.6ii) 

Now consider the effect of p on a transformed tensor F': 

(pF° )(1.1) 	= 	F' p(i)  

= up0)130)Fp(i) 

u
P(013(i) 

(pF)
(0 

 . 
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The product up(i)p(i)  i bisymmetric and therefore when the same permutation 

is applied to ( i) and (j), the product 

uP(Op(i) 	u(i)(i) 

Thus, we have 

u(pF° 	= 	. . 
)(I) 	(I)(1)

(pF) 
 (I)  .  

(6.7) 

Hence; tensors of a particular symmetry transform among themselves under the 

transformation defined by Eqn.(6.5). 	The problem of resolving a tensor 

into irreducible tensors with respect to SU(2) is reduced to resolving it into 

tensois of definite symmetry with respect to S3. 

The 1..R.s of S
3 

in the regular representation can be found by forming 

the outer-product of three one-dimensional representations of each object. 

By the Young tableau method, this gives 

EL 0 	® 	= j21? (14 Fi e,  1142j (f) 1 31 
2 f 	# 3 (6.8) 
3 

with and the Young patterns (Y.P.) denoting the 

totally symmetric, totally asymmetric and the two-dimensional (mixed symmetric) 

representations:respectively. 	A function of three objects is said to have a 

definite symmetry property if it is a basis function of an I.R. of S
3 

in the 

regular representation. 
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The Pierce resolution of the identity element 

e = S+A+Y+ 
	

(6.9i) 

provides the four idempotent operators: 

S = 1 	R , 
R 

1 	
SR R R 

(6.9ii) 

Y ir 3 	- 03) j L_e + (12)J  

ye = 	r 3.e -  (12),+ 3ii 

where R is -an element of S
3 and SR is the parity of the permutation. 

When -these operate on any function of three objects they produce basis 

functions for the symmetry, asymmetric and the two-dimensional representations. 

We mast note, however, that the basis functions generated by Y and Y° need 

not belong to the same two-dimensional representation. 	Using Eqn.(6.9) to 

resolve the tensor F oi 	we have 
1

1 12,13 

il l 	i+ 
l i112 1 31 	1 1 

i
2 
i3  

+F 

  

1 

 

 

i
3 

 

   

F. (6.10) 
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where 

F 

F = 

= 

1 	R 	F. 	. 	. 6 R 	'1'2'3 

YF. 	F. 	+ F.  

	

1 1 12
1
3 	= 	Y 	2 1 3 

Y° F. 	. 	. 	= 	F. 	. 	- 	F. 	. 
1
1

1
2

1
3 	 ~211'3 

F i 	• 	• 3'2'1 

	

+ F. 	. 

'2'3'1213 - 	F. 	. 	• 

- F. 

' 
(6.11) i1 

i3 
i2 

i31 

'2 

and 

;2 

AF.. 	= 0 
'1'2'3 

 

i3 

 

   

because A anti-symmetries the indices 11,12 and 13. This cannot be done 

since- there ,are only two values for each index and any three must have two 

equal indices. 	It can easily be checked that the first tensor in Eqn.(6.11) 

has four independent components while the other two each have two 

independent components. 	Thus for F 

  

, we have 
1 '21 

    



2 1 
_ 1 §(2F1-,-Li  - F211 - F112) ' 

(6.13) 

- -F F 1 11 
2 

(F122 + F221 	2F212)  F 

  

1 2 

 

2 
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- F 

   

_ 1 
-d"" (2F 
	

F 112 - F211 	121 )  

 

2 1 

  

1 

  

     

(6.12) 

- F 

 

r 	r 	- 2F221 )  , 2j  -34'122 212  2 

   

    

and for F  
i
1 i3 

i2 

We recall that the spinor of Eqn.(6.1) provides an I.R. for SU(2) 

and the D()  representation of SO(3). 	Now we wish to know which 

representations D(J) of SO(3) are contained in the irreducible tensors of 

Eqn.(6.11). 	The answer is very simple for SU(2): Since the Young 

pattern 0 

000 = 

for one spinor has J = 1, the outer-product of two spinors 

     

  

Q 1 	1 have, by vector addition, J = 0, 1 . 

      

is asymmetric and therefore has J = 0 while- But the 2-rank tensor 

has J = 1. 	Next, from the product 

and the fact that for SU(2) the tensor with  is absent, we find that 

has J = 2. 	Finally, the product 

 

IGED 
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implies that the right hand side has J = 2 and J = 3/2; and since 

has J 	follows that 

 

has J = 3/2. Indeed, it is easily 

 

   

seen that the:: two independent components of F 

   

, say, have Sz  = 

 

it  i2 

  

3 

  

and Sz = 	and thus form an equivalent spinor space on which the elements 

of SO(3) are represented by the Pauli matrices. 

So far, we have used the elements of S3  as index-permutations on a 

tensor to give irreducible tensors and tensor components whose SO(3) content 

Is known. 

(iViV i3)  

For example, the states 

(1,1,2) components of F 

with S = Sz = 

and F 

-2-1 	are carried by the 

These two states 
1 i2 1 

i3  

i3  i2 

are orthogonal because they are constructed by operating on the tensor 

F. 	. 	with Y and arc  which are themselves orthogonal. 	Since permutations 1
1

1
2

1
3 

of particle labels of a state cannot change its S and Sz, these two states 

must form the basis functions for the two-dimensional representation. 	In 

fact, by a change of base, the properly normalized basis functions 

9 = (F 1 	1 
I2  

  

+ 2F 

  

  

i3 
i2 

 

 

i2 

 

     

    

(6.14) 

     

e2 

    

 

ii  i2 

 

      

   

i3  

  

      



. + 2G 
'21 

i3  
1 
. 	) 
3  
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provide the two-dimensional representation on which the elements of S
3 

are represented by the Yamanouchi matrices and we can identify the basis 

functions G
1 

and G
2 with the Yamanouchi-symbols (Y-symbol) [121] , and 

[2111 	respectively. 

Analogous considerations can be used to obtain isospin states with 

1, Iz 	and which transform as the Yamanouchi basis functions in the 

two-dimensional representation. 	They are 

1

2 

 /,-, 
7T1 	= 	k1/4.7 

11 

12 	 (6.15) 

Tr2 = r G  

43 

( with 	= (1,2,2) and G. 	= y.( 1) y 2) y.(3)  is the analogue of 
'1 1213 	11 	12 	'3 

F. . with y the isospinor. 
1 1 1213 

We are now in a position to construct spin and isospin functions for 

three :nucleons with definite symmetry properties. 	For the triton boundstate 

problem; ,we may restrict ourselves to those states with S = 	Sz 	and 

' = 	'z = 
	

The product spin-isospin space is spanned by the four 

basis functions 
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49.n. , 	1,1 = 1 or 2 , (6.16) 

and the I.R.s of S
3 

contained in this is given by the inner product of the 

constituent two-dimensional representations 

(6.17) 

Thp four functions, 9.1r. , must therefore form the basis for one symmetric, 

one asymmetric and one two-dimensional representations. 	In fact, by a 

basis transformation B, we can obtain a new set of four basis functions 

9
1 

Tr
l 

4a 

41 

42_ 

(6.18) 

which transform under S
3 

as 

 

r 

 

r 

          

           

    

45  

      

(12) 

 

cs  

    

1 

    

, etc... 

     

4. 
41 
_42 

 

-1 

1 	iJ3  
2 2 
1/3 1 
2 -7 

 

41  

 

(6.19) 

     

4 2 

  

42_ 

 

             

             

             



- 63 - 

Eqns.(46.19) and the transformation properties of the 49. and Tr. actually 

determine B. Thus we find 

• 1 -1 . 

. 1 

1 	. -1 

(6.20) 

  

  

where c is an arbitrary constant which is fixed by normalization of the states. 

In summary, we list below the spin-isospin functions of those states 

with S = Sz= z , I =-Iz= 2  and their corresponding Y-symbols to indicate 

their transformation properties under S
3

: 

 

1 n,. i 	
+ = 	 Tr 

V2 	1 1 

1 f 

1/2 	1 
Ti 

 2 

1 
= 

-12 

1 fn  
= 

V2 	1 
IT 

 1 

492n2)  
[1 1 1] ; 

 

4a  

4, 

42 

 

(6.21.) 
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CHAPTER 7 	GENERALIZATION TO INCLUDE SPIN .  

In this chapter we wish to obtain, in the SU(3) representation, the 

Faddeev equation for the boundstate wavefunction of three nucleons interacting 

in pairs. with_ more realistic spin-dependent potentials. 	To this end, we must 

construct in the product-space of spin-isospin (hereafter referred to as spin 

space) and momentum space the form of the complete ket vector 	> 

of the -system:satisfying Pauli's Principle. 	Also, we require a generalization 

of the Faddeev equatiOn to include spin. 

The physical system we have in mind is the triton.
(37) 	

According to 

the charge_independence of nuclear forces, the triton has three possible 
2
Si 
2 

(L = 0, S = J = ) states: The dominant state that is fully symmetric in the 

space coordinates of all three nucleons, a state that is asymmetric in the 

interchange of space coordinates of any pair of nucleons, and a state of mixed 

symmetry. 	The other states present in the boundstate wavefunction are the 

three 2 
	 4 
PI  'states, the P1  state and the three 

4
D1  states. 	There is reason to 

2 

believe that the . P statesare not present to any appreciable extent and that 

the D-states have a total probability of only a few percent. 	We will, 

therefore, consider only the 
2

S /  states in the subsequent discussion. 
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The triton has isospin, I = 2 , and isobaric z-component, I = 4. 

The z-component .of the spin, S
z

, is arbitrary, so we can take S
z 

= 

Hence the-spin-isospin states (hereafter referred to as spin states) of our triton 

are the four given in Eqn.(6.21). 

We introduce a new notation 	4(.4 	= 1,2,3,4, for the spin- 

states. 	These are defined as follows: 

4(1) = 6S , 

t (2) Zia . 
(7.1) 

Then, the most general state of the system is 

4 

1 	= 	li('ki)>4(^-/) 	 (7.2) 
=1 

where the kets 	I y ()0> are, as yet, arbitrary and may be regarded simply 

as expansion coefficients of a vector in the four-dimensional spin space of 

the 	4-(4.)) Let us denote by 	I i'
s
> the completely symmetric, 	> the 

a 

asymmetric spatial kets and by I ti 
1
>, 	I Ci

2
> the spatial kets of mixed 

symmetry (they transform under S3  like 	41  and 

which requires the complete ket I ai > to be fully asymmetric in exchanges 

of cu 1= the-coordinates (spin, isospin and space) of any pair of nucleons, 

specifies-.the symmetry properties of the kets 	I' (Ai 	as follows: 

4(3) 61 

(4) ' 

42). 
	The Pauli Principle, 
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I 	(1)> = 	I 	a
> , 

(3)> = I 	2> , 

(2)> = 

(4)> = 
(7.3) 

We wish to inquire how the kets I 	s>, 	I a>, 	I T 1> and 
	

I  

are -represented- in the SU(3) representation. 	Since L = 0, only the states 

I•k,X1AP are required to form a basis of representation for the spatial 

coordinates of our system. 	Furthermore, with the symmetry properties of these 

states already known, it is easy to deduce that the necessary condition for the 

kets I Ci' s> , 	I a> etc. to have the required symmetry properties in the 

SU(3) representation is for each ket to be represented in terms of SU(3) states 

of the same symmetry type only. 	Thus we have 

a> 	S  

	

k, XjA31>dk2<lc2, X 31 I 	, 
X/43  

I 	s> = 	I XAA2>dk2<k2, X 32 1 	
s X 	 ' 

3 
and 	 (7.4) 

I ii> . 2., 51k,2  XAt.1>dk2<k2,XiA.1 I i
1 
 > 

At  X. 	1 	 I 
I 

l`i 2> = S `I k2, X14.2>dk2<k2, X µ.2 I '2> , 
X jai 	 I 	 / I 

The condition is moreover sufficient for I `" a> and 	I T s> . 	For 	I 

and 	2
> however, sufficiency is only guaranteed if further 
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<k2, X44.1 I
1 
 > = <k2, 	

2
> , 

' I  / 3  • 	(7.5) 

In anticipation of using Faddeev's equations to obtain the state I 	> 

let us decompose each of the "coefficients' or the 'partial-wave amplitudes" 

of the SU(3) states in Ecin.(Z4) into three components: 

2 ,X)1431 
3 

a> = Z <k2,X/it
3
1 I 	(i)> 

i=1 

3 
<k

2
,Xitt

3
2 I 	 c- = 	2 1(32 I 	(1)  > , 

i=1 
(7.6) 

2 , Xfr.1 I 	> 
3 

1=1 
<k2, X,u1 1  I c Cio> , 

i 	3  
3 

<k2,X)14.2 I ± > 	<k2
, )14-.2 2 i=1 

and define the ket 
	- 	(-1-))> such that 

3 
I i(1.1 )> 7-7  E 	ri'')(4) )> , 	 (7.7) 

i=1 

where, for example, 	I `Y (')(4)> is given by 

I 	(i)(4)> = "Z1 I k21  Xfr..1>dk2<k2, X .1 I 	> , j / 3. 	(7.8) 
Xitai  

We can then construct the component-kets 

(21)› 
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4 
‘4' (i)> = 	(i) 	

)> 4(4 ), i = 
4=1 

so that the complete ket of the system is 

3 
I W > = 	1 

i=1 

(7.9) 

(7 . 1 0) 

The spin-generalised Faddeev's equation for 	> is 

.:-Go(z) (I)> + I P(/<)>) 	I (7.11) 

and T. now has the form 

4 
Ti 	= 	Z., Pi  (jk) T,a 	i ,a a=1 

(7.12) 

a(i)with P.1 	k the projection operator for the two-nucleon spin-isospin state 

denoted by a and 	 a T.1 	the transition operator of that state. 	The projection 

operators are of course given by 

Pi 	P
+

i  = P+ ,  

with 

+ - Pi  ,2 = P P er T.. 

P1,3  . = PP+  - 1., ' 

= P  

	

1, 	cr t 

P 	(jk)= 	- (jk) tr, 	 r, 

(7.13) 
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and (jk)a, ti  the operators for the permutation of the spin (G- ) or isospin (T..) 

variables of particles j and k. 	thus T.1,2 	t and T. 3  are respectively the 

triplet and singlet transition operators of the i-subsystem. 

We can now verify that if, for a certain z, Eqn.(7.11) has a solution 

for 
	I i(1)> then I 	> given by Eqn.(7.10) does in fact satisfy the 

Scheodinger equation with z the total energy of the system, that is 

[H 
0 
 +.(V

1  +V2  +V3)Hi> = z 17.i> 
	

(7.14) 

where Ho is the free Hamiltonian and V. is the potential between particles j and k 

and has the -same form as T. in Eqn.(7.12). 	Multiplying the Eqn.(7.11) by 

1 + G (z)V. and using the Lippman Schwinger equation for the transition 

operator of the i-subsystem 

	

Ti 	= V. - V.G o(z)T. 	 (7.15) 

we find 

[1 + Go(z)Vi 	(i)> = -Go(z)Ti  ( I q(i)> + I (k)>) 

-Go(z)(Vi-Ti)( 	(I)> + o 	(k)>) 

= -Go(z)Vi( I •i• (i)> + 	(k)>) 

Or 	 (1)> = -Go  (Z)Vi 	> 	 (7.16) 
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On adding up similar equations for the other component-kets, we have 

> = -Go(z)(Vi  + V2  + V3) 	 (7.17) 

which after multiplying on the right by Ho + z1 gives the required result. 

The Faddeev equation as it is in Eqn.(7.11) is an operator equation 

in spin and abstract Hilbert spaces. 	To extract the spin states, we use 

Eqn.(7.9) for 	I 4% (i)> and the orthogonality of the 	t,(1.))s to obtain 

-0) (1))> 
4 

= 	-Go(z) [ 	4(0)P. 	(4° ) 	(I (i)(4° )> + I 	(i< )(1.0 )>) 
cr.., 	1,a 

(7.18) 

We may regard the spin-states 4(4) as forming a basis for the four- 

dimensional spin space. 	Then, in order to evaluate the matrix element 

a 4v (-0)P.1  4 (v ) we require the matrix representations of the projection operators 

in this spin space. 	As these are expressed in terms of the transposition 

operators (jk)(7, and (1k)., , it is the matrix representations of these we want 

to find. 	Using the transformation properties of the 4(4)s under S3, we 

find 

 

13 
• ° fr 7 

1 	V3 
2 	2 

 

V3 1 
•

- 
2 2 
1 V3 

• 2 2 
V3 	1 
2 	2 	• 	• 
1 V3 
2 	2 

  

(23)6. = (23) = -t 
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(31)0„ =  1 
ry 

2 7 
1 	1/3 
2 7  

, 	(31)1,  

_ V3 	1 

	

2 	2 
1A/3 

	

-2 	 2 

'1/3 	1 
2 
1 113 
7 2 

(12)cr  = 

	

-1 0 	 • 

• •. 	-1  

, 	(12)z  = • -1 • 
1 

I 

The matrix representations of the projection operators can now be con-

structed and the matrix elements evaluated. 	The result is that Eqn.(7.18) 

becomes- a set of 12 coupled equations for 	I (1)(4  )> , i = 1,2,3 and 

A)  = 1,2,3,4 

• 7.19) 

= -Go(z) • 

13 	13 

(7.20) 

1 1 

--• 

where 

q", ( ')>   = 

i = 1,2,3, (7.21) 
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and 

2(T
1,2

+T
1,3

)  

_ 4 1,2 
T 

 1,3) 
V3 

I
I 

= 1(T1 , 1 +T1 ,4) 

• 

1/3 
-T 	) 

4 1,1 1,4 

(Ti 	,3) 

1 
-(3T

1,1 
+T

1,2 +T1,3 + T1,4 
 ) 

8  
V3 
-Er(1-1,1-T1,2-11,3+T1,4)  

(T
1,1 

- 
1,4

) 
4  

-(T ,2-T1 ,3) 

V3 
--(T -T -T +T 8 	1,1 	1,2 1,3 

1 ,4) 
 

T +3T +3T +T ) 
1,1 1,2 1,3 1,4 

12 

1/3 --(T
2,1 -T2,4 ) 4  

(T -T ) 
4 2,1 2,4 

1(1.2,1+12, 

4.(T
2,2

+T2,3) 

(T22-T2,3) 

T2,3) 

1/3 (T. 	T  

- 4 2,1-•2,4' 

4 
1 
-(T

2,2 -T2,3 ) 

8 
1 
-(3TZ1 +T

2,2 
+T

2,3 +3T2,4 ) 
3(7. T 

2- 
T 

2,1-  2, 2,3 2,4' 

4 2,1
-T 

 2,4
) 
 

-
/3

(T 2 T ) 
4 ,2 2,3 

2/11T  
- 8 `'2,1 -T2,2-'

T 
 2,3

4.

• '
T 

2,4' 

8 
1 
-(T +3T +3T +T ) 

2,1 2,2 2,3 2,4 

1
3 - 

-(T
3,1

+T
3,4) 

• 

3, 
+T 

 3,4) 

- ET3,1-T3,4) 

	

+T ) 	 -T ) 
3,2 3,3 	3,2 3,3 

-.21(T 7,T ) 	;-(T +T ) 

	

32 3,3 	3,2 3,3 

1(T +T ) 
3,1 3,4_ ° (7.22) 

As in the spinless case, we assume that the subsystems interact, only in 

s-states. 	Now by virtue of the projection operators Pi,1  and PiA  the 

transition operators, 1. 1  and TiA  are for two-nucleon states which are 

symmetric-in'spin-space. Therefore in order to satisfy Pauli's Principle, the 

two-nucleon interacting states projected by these operators cannot have I = 0. 

Hence Ti 	
and T.

1,4 
 are null operators. It follows that the states 
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I (i)(1)> for i = 1,2,3 and 	I I(3)(4)> vanish identically. 	By a 

rearrangement of rows and columns, the remaining equations can be written in 

the form 

I 

(2)> 

(3)> 

(4)> 

J22 

J32 

J42 

J23 

J33 

J43 

J24 

J34 

(2)> 

(3)> 

I •:k (4)> 

(7.23) 

where I 	)>, with a bar to distinguish it from 
	

i(4)› , are the 

volumn vectors 

I "i(2)> = 	I i(1)(2)> , 	I (3)> = 

i(2)(2)>. 

i(3)(2)>  

g(1)(3)>, 	I q(4)> = I ZP(1)(4)> , 

(2)  (3)> 	 I t(2)(4)> 

(3)(3)›. 

(7.24) 

and the J.,) ,), , given explicitly in Appendix 8, are matrices of operators. 

In order to obtain a completely continuous operator, we iterate Eqn.(7.23) 

once-and'for convenience of interpretation, we revert through relation (7.3) 

to the kets 	I is>, 	I 1 > and 	I 2> . 	The final spin-generalised 

Faddeev equation is 
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with 

> 
-s  

"-±; 	> 

‘± 2>  

Kss 

Ksl 

Ks2 

K11 

K
12 

K2s 

K21 

K
22 

K ls -J 

=  

= 

= 

= 

=+ 

Kss 	Ksl 	Ks2 

Kls 	K11 	K 12 
K2s 	K21 	K22 

2 J22+  J23J32 

-J22J24 - J23J34 

J 	J 	+ J 
22 23 	23 

J 	- J 42 22 	43 

J42J24 + J43J34 

-J 	J 	-J 42 23 	43 

J 	J 	+J 32 22 	33 

-J32J24 - J33J34 

2 
J32J23 	j33 

+ 

J 

J 

J 

J 

I 	
s
> 

—  

I 

I 	2>  

J24J42 

+ J 33 	24J  

J 32 	44J  

2 
+ J44 

-J 33 	44J  

+J 
32 	34

J  

+ J34J43 

J24_144 

- J34J44 

' 

' 

43 ' 

42 ' 

I 

43 ' 

42 ' 

' 

(7.25) 

(7.26) 

Eqn.(7.25) can again be solved in the SU(3) representation. 	Taking 

X < 4, we note from Eqn.(7.4) that 	I %i0)> is expressed in terms of the 

two states I k2,002> and I k2 ,402> while I Ci-(ii)> and I (2› involve 

only f k2 ,211> and I k2 ,212> respectively. 	We propose two, methods to 

obtain a numerical solution. 
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The Direct- Method. 	The complete equation , Eqn.(7.25), is solved_ as 

a homogeneous equation. 	In the SU(3) representation, there are 11 unknown 

partial-wave amplitudes: <k2 ,002 I i (i)>, <0,402 I "i(i)> and 

<0,212 i2i)> for i = 1,2,3; <k2 ,211 I4' (:)> for i = 1,2. 	Once 

solved, they can be used in Eqns.(7.6), (7.4), (7.3), (7.9) and (7.10)' to 

reconstruct the ket I 	>. 	The wavefunction in momentum space, <4.. j i 	>, 

then follows ,immediately on using the momentum space representation of the 

SU(3) states 	The binding energy of the system is, of course, the value of z 

when a solution exists. 

If a 15-point integration formula is used for the integration over- k
2
, a 

matrix of order 165 x 165 has to be inverted to yield the binding energy and 

the 11 unknown functions. 	This is not prohibitive. 	However, because of 

relation (7.5), at least one of the five partial-wave amplitudes associated 

with the mixed symmetry states is not independent. 	Therefore, the matrix is 

likely to be ill-conditioned which has to be remedied. 

The Iterative Method. 	In order to avoid the difficulty of over determinancy 

erteocrnterecP in the Direct Method, we can solve for I 'i
s
>, 	I

1 
> and 

2
>-separately in an iterative procedure. 	The equations we want to 

solve are 



2 
1> 
	<1‹ ,211IKls(z)jki 2 

V4.1  2>dk12<k12  X' 23 • )4 9 <k2,211 
3  > 
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<k2,X/k32 	
5
> = G S <k2,XJA321Kss(z)ikl 2,PY3  2>dkI2<1<12,V/A1  2 I ± 5> 

Agito 3  

• <k2dyk32IKs (z)lkt 2,211>dk' 2de 2,211 I 	> 1 

+ I <lc2,X,14321Ks2  (z)lle 2,212>dki2<k' 2,212 I — 2> 

(7.27) 

<k2,212 

+ 1<k2,211iKii(z)11(12,211>dki 2<k12,211 I i 1> 	(7.28) 

+ i <k2,211IK12  (z)10 2,212>die 2<k12,212 I `r 2  > , 

i 
2 ,MAt3  
> = E f <k2,212IK2s(z)1k12 s 2>dk°2<k12,PR3 

	s 2 I i > 
X1,1A1 

+ f <k2,212IK21(z)Ik' 2,211>dk'2<k' 2,211 1 	1> 	(7.29) 

J <k2,212I K22(z)I lc' 2,212>dle 2<le 2,212 1 	> 2 

with (A, /4k3) taking only two sets of values, (0,0) and (4,0). 	The iteration 

scheme- consists- in this case of the following steps: 	Since the triton exists 

predominantly in the totally symmetric state, the homogeneous equation for 

<k2  ,X /k32 I '.s> should be solvable to give the binding energy, and the wave- 

function in the zeroth approximation. 	Knowing <1(2dvik32 I is>, one then 

solves the inhomogeneous solutions for<k2,211 I 	1 > and <k2,212 I 	2> , 
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keeping only the contributions from <k2, X)432 I 	> 	In the next 

iteration we substitute <k2,211 	1 > and<k2,212 I "i2> back in Eqn.(7.27), 

which is then solved as an inhomogeneous equation to find the correction to 

• <k2,X/ix3
,  2 	

s> in the next approximation etc. 

To ccmclude,this chapter, we justify our method of spin-generalization 

by ,showing that- if we allow the spin space to "shrink away" , the homogeneous 

equation 	.< for .1<2 	'ifs > in Eqn.(7.27) reduces to Eqn.(5.36) of the 

spinless case. With the help of the j-ti matrices, the matrix K is easily 
ss 

found to 'be 

K ss(z) = 	12 
+ M

13 	M
13 	M12 

M23 	M21 + M23 	M21 
	 (7.30) 

M32 
	

Mai 	M31 M32 !; 

with 

Mr 	
1 = 	G o (z)Tr,2 G  o (z)T1,2 + 3G o  (z)Tr  2  G  oi  (z)T.,3  + 

(7.31) 
3GoWTr,3G0(z)T1,2  + Go(z)Tr,3G0(z)T1,3  . 

Each term of Mn I is of the same form as G o  TG oT in K(z) of Eqn.(5.7) - 

only now the transition operators may be different. 	Furthermore, the kernel 

<k2,Xi.1321Mrr1  Ik' 2 	2> is again independent of r and 1. 	Thus we have 
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<k2,X42 I 	s> = 	S <k2,X1A321G0T1,2G0T2,2  + 3G0T1,2G0T2,3  
Pik; 

s + 3G- T1 ,3o T2,2 +GoT1,3 G  oz  T-  ,4 	
2 _Ik' ,X1/4; 	22>dk' 	, 2,  A, 

I3 	s 2 I 	> o 	• 

In the limit the spin space "shrinks" to zero, there is only one two-particle 

transition operator Ti  = T. 2 = T.1,3 and so we find that Eqn.(7.32) reduces ,  

exactly to Eqn.(5.36). 	There is one remaining pleasant surprise. 	The 

zeroth approximation in the iterative method turns out to be exact. 	It arises 

because in this case, as can be easily verified, the totally symmetric state 

y > is uncoupled to the mixed symmetry states in Eqn.(7.25). 

(7.32) 
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CHAPTER 8 	CONCLUSION 

We have shown how the SU(3) representation of the three-particle 

states can form a basis for the full power of Faddeev's Theory to be applied 

in practice. 	In this representation, Faddeev's equations can be approximated 

to any desired accuracy by a finite set of coupled integral equations in 

one variable only. 	Furthermore, for particles interacting with Yukawa 

potential;  by taking the iterated equations [Eqn.(5.6)] we have a SU(3) 

kernel-which can be shown to form a completely continuous integral operator 

in L
2 
 and hence possesses only a point spectrum of boundstate poles. 	To 

pass from the SU(3)- representation to either the momentum or configuration 

representation, we only have to use the functions carrying the I.R.s in the 

appropriate space as transformation coefficients. 

It must be mentioned that insofar as we are just trying to reduce the 

number of variables from six to one in a three-particle problem, we could 

0 0, 11) 
,apply' the method of Simonov 	to expand the wavefunction in terms of 

Six-dimensional spherical Karmonics. 	Through the connection between the 

I.R.s of SU(3) and the surface harmonics on S5 , we found that both methods 

are equivalent. 	However, we believe our approach is more general and more 

suitable, for Faddeevis equations because it suggests so naturally the form of 

the surface harmonics [Eqn.(4.18)] , which is important for the evaluation of 

the SU(3) kernel from the normally known kernel in momentum representation. 
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For three-particle systems existing predominantly in the L = 1,0 states, 

and these include boundstates and low energy nucleon-deuteron scattering, 

the symmetric properties of our SU(3) states make it relatively simple to 

introduce spins and the Pauli Principle into the theory. 	We demonstrate this 

by deriving the Fcrddeev equation in the SU(3) representation for the boundstate 

wavefunction of the triton. 



- 81 - 

REFERENCES 

(1) J.W. Humberston, R.L. Hall and T.A. Osborn, Phys.Lett. 27B, No.4, 

195 (1968). 

(2) L.D. Faddeev, Soviet Physics, JETP 12, 1014 (1961); 

L.D. Faddeev, Mathematical Problems of the Quantum Theory of 

Scattering for a Three-particle System. 	English translation by J.B. 

Sykes, Harwell, 1963. 

(3) C.. Lovelace, in Strong Interactions and High Energy Physics, edited 

by R.G. Moorhouse (Oliver and Boyd, London, 1964); 

C. Lovelace, Phys. Rev . 135, No.5B, B1225 (1964); 

A.C. Phillips, Phys.Rev. 142, 984 (1966); 

N.M. Petrov, S.A. Storozhenko and V.F. Kharchenko, Soviet JNP 6, 

No.3 340 (1968). 

(4) R.L. Omnes, Phys.Rev. 134, 81358 (1964). 

(5) T. Osborn and H. Pierre Noyes, Phys.Rev.Lett. 17, 215 (1966); 

T. Osborn, Faddeev's Equations for Local Potential, SLAC report 

No.79 (1967). 

(6) A.J. Dragt, J.Maths.Phys. 6, No.4, 533 (1965). 



- 82 - 

(7) Jean-Marc Levy-Leblond and Francois Lucrat, J.Math.Phys. 6, No.10 

1564 (1965); 

Jean-Marc Levy-Leblond and Monique Levy-Nahas, J.Math.Phys. 6, 

No.10 1571 (1965). 

(8) Yu.A. Simonov, Soviet JNP 3, 461 (1966). 

(9) F.T. Smith, Phys.Rev. 120, No.3, 1058 (1960). 

(10) A.M. Badalyan and Yu.A. Simonov, Soviet JNP 3, No.6, 755 (1966). 

(11) Yu.A. Simonov and A.M. Badalyan, Soviet JNP 5, No.1, 60 (1967). 

(12) A;  R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton 

University Press, Princeton, New Jersey, 1957). 

(13) R.H. Dalitz, Repts.Progr.Phys. 2, 163 (1957): 

E. Fabri, Nuovo Cimento 11, 479 (1954). 

(14) W. Zickendraht,. Annals of Phys. 35, 18 (1965). 

(15) M. Hamermesh, Group Theory (Addison-Wesley, 1962). 

(16) C. Fronsdal, in Elementary Particle Physics and Field Theory, 1962, 

Brandeis University Summer Institute Lectures in Theoretical Physics 

(W.A. Benjamin Company Inc., 1963), Vol.l. 

(17) Mirza A.B. Beg and Henri Ruegg, J.Math.Phys. 6, No.5, 677 (1965). 

(18) T.J. Nelson, J.Math.Phys. 8, No.5, 857 (1967). 

(19) Gourdin, Unitary Symmetries (North-Holland Publishing Co., 

Amsterdam, 1967). 



- 83 - 

(20) T.Y. Thomas, Concepts from Tensor-Analysis and Differential Geometry 

(Academic Press Inc., New York, 1961). 

(21) V. Galling, P, Nato, L. Bianchi and G. Viano, Nuovo Cimento 24, 

835 (1962). 

(22) A. Erdelyi, Higher Transcendental Functions Vol.2 (Bateman Manuscript 

Project, McGraw-Hill, 1953). 

(23) N.Ya. Vilenkii, G.I. Kuznetsov and Ya.A. Smorodinskii, Soviet JNP 2, 

No.5, 645 (1966). 

(24) Jeanne-Yvonne Pasque, J.Math.Phys. 8, No.9, 1878 (1967). 

(25) G. Racah, Proceedings of the Istanbul International Summer School, 

1962 (Gordon and Breach, New York, 1965). 

(26) L. Pontrjagin, Topological Groups (Princeton University Press, Princeton 

New Jersey, 1939), Sec.29. 

(27) There are about as many conventions for the rotational matrices as 

workers in the field; 	We have found it more suitable to adopt 

Edmonds°
(12) 

conventions throughout this work. 	Hence a rotation of 

R(a,(3,y) is used in the passive sense, that is, on the coordinate frame. 

(28) R.C.Witten and F.T. Smith, J.Math.Phys. 9, No.7, 1103 (1968). 

(29) A. Gray and G.B. Mathew, A Treatise on Bessel Functions (MacMillan, 

1895), p.80, 

(30) See for example: Faddeev's first paper of Ref.2, and S. Weinberg, 

Phys . Rev. 133, No .1B, B232 (1964). 



- 84 - 

(31) Spectral theory of completely continuous operators can be found in 

any standard textbooks on Functional Analysis, see for example: 

F. Riesz and B. Sz-Nagy, Functional Analysis (Frederick Ungar, 

New .York, 1955); 

B.Z. Vulikh, Functional Analysis (Pergamon Press, 1963). 

On L
2 

or (Hilbert-Schmidt) kernel: 

F. Smithies, Integral Equations (Cambridge University Press, New - 

York, 1958). 

(32) A _very useful discussion from the physics point of view on the 

difference between bounded and completely continuous operators can 

be found in the Appendix of Weinberg's paper [Ref.301 . 

(33) M.. Rubin, R. Sugar and G. Tiktopoulos, Phys,Rev. 159, 1348 (1967). 

Faddeev, using more general potentials, obtained the same result 

[Ref.2] with the fifth power of the operator in Eqn.(5.1) in a 

certain. Banach space. 

(34) Om. the possibility of having spurious non-Schr6dinger homogeneous 

solutions, see for example, 

J.V. Noble, Phys.Rev. 148, 1553 (1966); 

J.V. Noble, Phys.Rev. 161, 1495 (1967); 

R.G. Newton, Phys.Rev. 153, 1502 (1967). 



- 85 - 

(35) V.V. Pustovalov and Yu.A. Simonov, Soviet Physics JETP 24, No.1, 

230 (1967). 

(36) A.M. Badalyan, E.S. GaI'pern, V.N. Lyakhovitskii, 

V.V. Pustovalov, Yu.A. Simonov and E.L. Sinkov, Soviet JNP 6, 

No.3, 345 (1968). 

(37) L.I. Schiff, Phys.Rev. 133, 8802 (1964). 



- 86 - 

APPENDICES 



87 

1 

APPENDICES INDEX 

Choice of the body-fixed axes (u,v,w) 
•MINI 

Page 

88 

2 Transformation of the Euler angles a, p and y 

under S
3 

90 

3 Construction of S 93 

4 Construction of 	A 2 
97 

5 On orthogonal polynomials and spherical 

harmonics in six dimensions 

105 

6 On the spherical harmonics SLM
1. )94.K 113 

7 On evaluation of the matrix element 11'8 

< 	, LMK 	T.(z) I o',L'M'K'› 

8 The matrices J. ,0 , 124 



- 88 - 

Appendix 1 	Choice of the body-fixed axes (u,v,w) 
••• •1•0 

We wish to choose the body-fixed axes (u,v,w) 

such that 

3 
(r..u)(r. I .v) = 0. 	(A1.1) 

- - 1=1 

 

 

.r  (1) When expressed in terms of the relative vectors, 

and r (2), (A1.1) is \
12 

2 	
(r (i).u)(r (i).v) 
	

(A1.2) 
i=1 

Henceto-choose u and v satisfying (A1.1) is equivalent to choosing the 

components of the relative vectors along u and v satisfying (A1.2). 	By 

means ofEqns.(3.1) and (3.2) we can easily obtain the other three 

conditions satisfied by these components: 

(
(1) 2 	(1) 2 	1_0121 2 1 2 r 	.u) + (r 	.v) 	= 	. = 2 r (1 - cos2* cosig) 

= 	(r cosy sin (r sin* cos (A1.3) 

(2) 2 (2) 2 	(2)2 3 2 	1 .u) + 	.v) 	= r 	=
2  r3 = 	+ cos2v,cosig) 

= 	(r cos,t,  cos 	+ (r sin sin 
	

(A1.4) 
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(r (1).u)(r (2).u) + (1),, (2) , 	2 	2 	2 	2 , 	1 2 
.19t 	 (r2  + r31  - r1  - r23) = r cost y,sinp 

1 	 1 = 	(r cos sin-11  )(r cos ki.cos 	) - (r sin ifrcos 	r sin tf 	2 sin M. (A1.5) 2 	 2  

If we solve the Eqns.(A1.2), (A1.3), (A1.4) and (A1.5) for the 

components we are bound to obtain more than one set of solutions. 	This is 

because -the-condition (A1.2) only demands u and v to be along the principal 

axes of. inertia;. it does not specify the direction in space. 	In any case, 

it is not easy to solve them in this way. 	This is why we have expressed 

the conditions in such a form so that a solution by inspection is possible. 

It is clear that a necessary condition for (A1.2) to be satisfied is that one 

of the components must be of the opposite sign. 	Thus, if we choose 

so that 

1 (r (1).v) = - r sin I),  cosyi 

, (2).v) 	 1 kr 	r sin kit,  sin-1 
.—NMO 	aact 

(A1.6) 

(A1.7) 

and therefore by (A1.3) and (A1.4) 

(r (1).u) = r cos*s (A1.8) 

(r (2),,u) = r cos*co (Al .9) 

This is the prescription used in Eqn.(3.7) to define the body-fixed axes. 
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Appendix.2 
	

Transformation of the Euler angles, a, p and y under 53. 

We first consider the transformation of these Euler angles under the 

exchange of particles 1 and 2, (12). 	Let us denote the transformed body- 

fixed 'axes by- (u",v4t,w1) and the transformed Euler angles by a', pi and 	. 

By standard •matrix transformation theory, if the coordinates, with respect to 

basis vectors e and e2, of a fixed vector x in two dimensions is transformed 

by 

= Z-1„ 	 (A2.1) 

then the base e = (e1 , e
2 
 ) is transformed by 

e' = Ae 
	

(A2.2) 

The vector r (2)  is unchanged in space under the transposition (12). 

Its coordinates with respect to base (u,v) are, however, transformed to 

1 	, 
(12) 6- (2).u) 	(12)r cos* cos— 	= -1-kr (2)  .u) 

2 

1 
(12) (r (2).v) 	(12)r sin y'sinvi = -(r (2).v) , 

(A2.3) 

where,  we-=have-.used -Eqn.(3.14) for the transformation properties of /5. 	Hence 

by virtue of (A2.-1) cn (A2.2), we have 

  

v' 
(A2.4) 

  

   



Or 

(a° (3{  y° ) = DtsAL„M(ir if 0)D*L im  p y) mo  (A2.8) 
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For the 'other transpositions,(23) and (31), we use r (2) and  r (2) 
1 

respectively. 	It can then be verified that (23) and (31) induce the same 

transformatiarr on u and v and therefore the charges in the Euler angles are 

the same;: 	We note that (A2.4) is effected by the rotation R(trirr,O) on 

the (u,v,,w).frame. 	Thus 

R(a°(3• yi) = R(rr,tr,O)R(a p 	 (A2.5) 

which is equivalent to 

Itc(-y (3e -a°) = Rc(0-rr-tr)Rc(-y-I3-a) 	(A2.6) 

where R fdenotes a rotation on the original coordinate frame Sor that iz to 

say, it is a =rotation in the passive sense. 	Since the rotation matrices 

offer a representation of the three-dimensional rotation, the result of DMM° 

two successive rotations is represented by 

DMM' (-y° -(31 -a°) = DLMM°' (O-rr-rr)DL 	(-y-13-a) , 	(A2.7) M M 

since 

DL 	(-y-8-a) = D 	(a f3 
M' M 

(A2.9) 



(-1)L+M5mu 

(-1)
L-  

Mdmi m(P-TO 

iM(Y-Tr) • P-Tr)e = 	e 	dMI  N1(  

= 	a 

(A2.10) 

(A2.11) 

(A2.12) 

(A2.13) 

And on using 

di" m  (Tr) = mu 

dL -M(3) = 

we have 

a' P' 	) 

Therefore 
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and 

= 1T-y • 

L DL 	(at  P' y') = e
iMa 

 dmmi (P-rr)e
iM' (n-y) 

MM` 

 

 

= 	(-1)11:0 44, (a P y) • (A2.14) 



r(1)  
z - z 

2i 

z + z* 
r (2) 

2 

(A3.3) 
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Appendix 3 	Construction of 5 

We-present two methods to obtain the differential operator for S on 

the manifold S5. 

Method 1 

By definition, we have 

3 
— S = — , K 	= -,-, 	( i2 . 	i 	z 	''A i,i+3 - Ai +3,i) 	i, i+3 

1=1 

	

( r. 	a 	a - 4-, 	ari+3 	ri+3 ar. 

	

( 1 ) 	a(2) 	a (r 	. 
ar (2) - 	ar 	/* r27  

If we introduce the complex variables 

i.(2) + r ) 	2 z 	= 	 re 	(cos tfr u - i sin y•v) 

-1 • 

z* = r(2) --•Ir (1) 	2 = re 	(cos v-u + i sin r)  

(A3.1) 

(A3.2) 

and therefore 

az 	 az* a 	 a 	 a 	( a _ a 
ar-(1) 	ar -Tir • az 	ar (1) • az* 	az 	-az* 

(A3.4) 

z a 	 a* a _ — 	a + z 	a 	a a 
ar 	a (2) 	---37) • az 	 T2T • az* — -a7 Tz7  

r 	— 	ar 
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then S expressed in terms of z and z* is 

[..221-(z a*)*(
a 	a 	 a 	a 

b-i. 	z *).   (A3.5) 

= 	- 	a
z  
 - •

a 
*) • 

Now consider the operator 	on a function of z and z*: afb. 

	

a 	az* 	a  
* qffe) 	a  is  • 	+ 	 . az 
	z*) (A3.6) 

But by (A3.2), 

a. 
2 7;• 

It follows that 

ap 

(A3.7) 

• z* 
dz
a  (A3.8) 

(A3.9) 

which when compared with Eqn .(A3.5) gives 

2i1 -a- ai • 

Method 2 

The- result-of the first method shows that S is independent of the Eli! er 



a 
a y,  

a 
57 _ 

r 
a - 

art  

a 
ar2 

a 
ar

3 

(A3.12) 

cos lt• sin —Id'  
2 

-r sinV-sin 
2 

cos y-cos 

sin lecos1-2- 	cos ttcos 

-r cosikcos-1-- 	-r sin-y-cos 

r -2- sin tfr sin 2- 	- 2 COS ydsin -2-1‘ 
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angles, so we might attempt to construct it by performing the coordinates 

transformation taking r to r, tti,,jzca,13ty with a = 13 = y = 0. 	By Eqns. 

(3.7) and (3.8), we see that in this case the body-fixed axes coincide with 

the space-fixed axes and the non-zero r. s are 

r cos y-sin1C-- 
2 

r2 	=- r sin V-cos--2--/‘ , 

r4  = r cos/,sin f4 

r5 	r sin r-sin 2 
(1) 	(2) 

These-  are4ust the components of the vector r 	and r 	with respect to u 

and v. 	Because of the condition (A1.2), only three of them are independent 

variables .which. are chosen to be rl' r2 and r4 
so that 

r1r2  (A3.11) r5  

The differential operators for the two sets of coordinates are related by 

(A3.10) 

r4 



a 
ari  
a 
rri 
a 

_ ar3  - 

2r costcos-,1‘ 
2. 

1 
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whose inverse is 

4 cost 	a r sin fd 
• 

	

2 	ar 
a -r sin 2)(5 	 -2 cos

2
* 

r(cos fd + cos2 -tfr ) 	sin 2 Ifr 	-2 sin 1 r - 	 . -57 
(A3.13) 

We can now construct the differential operators for K.. on the sub- 
!! 

manifold of S
5 

(with a = (3 = y = 0). 	We use a prime to denote operators 

defined only on this sub-manifold. 	Thus 

. 	a 	a K'
11 	1 

= A, 4  - 41 = 2 A'
14 21141 ar4 

= 	 r  8 1 )  

-it (-2r sin2li,  tan--fill 	- sin 21i tan 
2  - 
	, ar 	 ap 

a K22  = A25   - A52 
	2 

= 2A,
5 
 = -2 r5 a-- 

r2 

(A3.14) 

= -iTt(2r. sin24-tan 	+ sin 21ktan 	, 

A' - A' 3,6 	6,3 2 Al 	= 3,6 
a a  ) = o . ar6 	r6 ar

3 

and therefore 

   

 

K. = K11 
	2 
+ K' 2 = 2it 

 

(A3.15) 

i=1 

 



But 

A2  ij 
(r.p. - r.p,)2 

I 	' 

r.p.r. 	r.p.r.p.) 	 (A4.5.) 
I I 

A2 
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Appendix 4 	Construct ion of A2  

Let us first establish relation (2.13) 

A2  = r2(2m1 - p2  + 5 iT1 r-ipr) 

where 

6 
1 	2 
2m " Pj j=1 

is the operator for the total kinetic energy and 

(A4.1) 

(A4.2) 

Pr 
dr 	-1 v m a- 	r 	rip. (A4.3) 

is the. momentum operator whose commutation relation with r is 

	

— prrp 	= iii 

	

r 	r 
(A4.4) 

Using Eqn.(2.8) for ., we have 
I. 

	

r opr.p. = 	- i I S. )p. 
• e I 	I 

	

= 	r22mi - 	pr (A4.6) 



and 

ri(r;pi 	rh)pi  
ill 	I 

rip:ripi  
''I I 
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-5itrpr 	r  + rprpr  

= 	rpr  + r(rpr  

= 	r2pr
2 - 6itt rpr (A4.7) 

Substituting Eqns.(A4.6) and (A4.7) in Eqn.(A4.5), we obtain the required 

relation,  (-,44-1). 	Since T = -(h2/2m) V2 and pr = i(h/r ) E r . /br.  . , we 

	

6 	 i I 
have the r'elation 

A2 = _ }12r2
L.
v2 _ ‘1 1.(r5.L )-1 

6 	5 ar 	arr  
(A4.8) 

The probfern of obtaining 	A2 . n coordinates C is therefore reduced to 

2 finding the Laplace operator V 6  in six-dimensions in the same coordinate:. 

2 We write V/
6 as 

	

v  2 	= 	1 	a 	tr(1 	a )+ 1 	a 	(2)2 a 	\ 

	

6 	
2 er 	

rTiT 	r(2)2 ar(2) 	—ar  -3-2 /  
r (1)  

2 	12 
1 ('(1) +_—(2) 

r(1)2 	r.(2)2r(2)
2 (A4.9) 

where l• 	isthe.angular momentum operator associated with r (i). 	We have 
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not specified the coordinate frame yet. 	In the original space-fixed frame S
o, 

it is of course given by 

a
2 2 

1 	a 
sin O. 20. (sin G. 

	a 	+ 	2 
sin G. ae.  (A4.10) 

where G. and A‘. are the angles of r (i) 
	

. 	We define 

r (1) 	(2) . e a 
cos S 	

r(1)r(2) 

L 	I.?, 	( 
+ I

)  . it 	 ,,, 

	

---..,) 	—2 

Then, the last term in Eqn.(A4.9) is 

1 _ L
2 

1 	1  L.1(1 
2 	2 	

)1  I  — 	
L(1) 

-0 1 2 	- 
-4- I ‘ 	2 ', 
	

` 	2 
11 	

L 
r(2) 	r(1) 	

r(22 '\ 
) 	r(2)  

(A4.13) 

We can now introduce the repreentations for the angular momentum 

operators L and.: L, 	directly in Si. 	This frame has Euler angles given by 

a1 	A 	
(A4.14) 

ei  

ylco.s S = sinGisin(g i- .02) 
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In this frame, . r (1) is ;11ways in the (x ,z ) plane, therefore I . = (I 	I 	,I ) c.. 1 1 	 ) x.. 7 z 
1 —1 i 

has to be- defined in the.  limit when the azimuth angle, 	say, tends to 

zero; viz. 

	

Lt 	(-sin 	+ cot S cos 	, 

(A4.15) 

a
s

a 

	

= Lt 	(-cost a
- + cot S sine. 	), 

zi 
= 	= L. . a E. 

These operators obviously satisfy the same commutotional rules: 

[ iTi 	 (A4.16:, l
x 	

I
z 
 , etc. .i 

Using (A4.15) we find 

1 	1 2 I 2 

	

-(1) = 
	

2 L'z sin 8 —1 

and Eqn.(A4.9) becomes 
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6 CO (I- 	03 + —2- —17(r ---7)  1.0 	ar 	ar 	i.(2> 	ar 	ar 

2  (--1-(-27  + cot 5 	) ro y. 	r(2) _ 	as  

2 
1 r( 1 	1 	1 	2  
"I 	2 	LI 2 + 2 	7  (r(2) 	r(1) 	r(2) sin 6 	r(2) 	1 

'L a 9 cot 6 

,.(2)2  Xi as 	
L L 

r(2) 	Lc! a 

We go from S1  to S2  by taking 

(A4.18) 

= - 1 

 

and as a result, the last term in bracket in Eqn.(A4.17) goes over to 

2 + 

2- 1
\  

[   — 	- —5-1 L2  
ti2 r(2)2 

0) 	r(2) si

1

n  5 	r(2)` X2 

_ 	2it -L  a + 2 cot2.5 Lx Ly  

r(2)2 	as 	r(2) 	—2  '2  
(A4.19) 

2 	1 	a (1)2 a 	1 	a (2)2 a 

(A4.17) 
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r(2) 

The coordinates r, y- and fl‘ are now introduced in place of r (1); 

and 6 . 	By Eqns.(A1.3), (A1.4) and (A4.11) we have 

r2 = r(1)2 +
- 

r(2)2 , 

[(r(2)2 
	

r(1)2  )2  + 4 r(1)2  r(2)2  cos2611  
cos 2 yt, 	 (A4.20) 

r0)2  + r(2)2 

tan g 
2r(1 )r(2)cos 6 

2  r(2) - r(1)2  

and the differential operators are related by 

a (1)  

ar 	
r 	a 

67 + CO 2r  
• a1 	sin t# sin 2 cos fs-a._ . 

r"' co7_72y,  

a ..... r(2)  

Br(27- 
1 sin 21/.• cos  fc a_  - 	1 	sin 	a 

aY" 	r(2) c;772"7-737 (2) .  2 1 ) 

a 
as 

a sin flS y, '• tan 2y,  cos f6-- 	. a  

Then, after-a tedious calculation, we obtain 72 in these coordinates 6 
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2 17 	• 0 
s 

2 2 	2 cos2+sineSP  L x 	y 
—2 —2 

• - 
t2r2(14cos2y,cos,d) 

[ 	
sin2 11,. 

	

2 cos2 	 a 	sin24- a 2-- (cos2 4 cosyS)L2 - 2it L 	
cost- 1/2  

- 
sin 

where O
s is the S-state operator 

a t5a, 	4. a2 	4 cos 4/'  +  4 	a2 

	

5 	aar r̀  r 	2 	2 	 2 r 	 r 	ay 	sin 44' 	cos 2y- afs 

(A4.22) 

(A4.23) 

Finally, we bring the axes x
2  and y2  to coincide with the two princip-.1 ,-xes 

of inertia of the triangle such that r (2) subtends the angle ,6 with u 	is, 

S, frame. 	-This mean; that the third Euler angle y is increased by 7.-P:  -g 

with the result that 

a 	a 	sin ,a 	a 
ay, 	ay, w 0 + cos 2 it-cos JO ay 

(A4,24) 

a 	a 	sin 24- 	a 
-57 	7 	2 (1 47cos 2 y:-cos 56) ay • 

The. rotation operators with respect to S
2  and S are related by 

Lx 	= sing L - cos c L
v u2  

cos E L + sin c 	, 
Y-2 

L = Lw  

(A4,25) 
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So we have 

,-,2 1 
0= 

v  6 	s -  2 r ti' 

21_2 
1 	2 	2 

( v,  

	

sin 2y 	cos22 	JEr - 

 

 

(.A4, 26) 

sin 2 	a 	cost 	2 	2 + 	 + 	 (L + L 
2 	w 	. 2 	- 

cos 2y/ — 	sin 2 

with 

I Lv . 
	 (A4,27) 

Using the fact that a rotation operator can be resolved into components 

like a vector, we find 

L c 
as 	

a 	 „ a + sin y -57 	 p + cos y cot -67 , 
 

Lv 	
- 	 + cos sIn v a a y 	- sin y cot a 

si]n p as 

Lw 	- ay • 

Relations (4.6) and (4.7) thus follow immediately. 

(A4,28) 
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Appendix.=5. 	On orthogonal polynomials and spherical harmonics in 

six-dimensions 

In this appendix we collect together some results on orthogonal polynomials 

and spherical harmonics in six-dimensions details of which can be found in 

ref.(22). 	We also indicate their relevance in this thesis. 

A family of quadratically integratable (12) functions is said to form an 

orthogonal system in the interval (a,b) with a weigh function w(x) which is 

non-negative there-if for any two distinct members, f61(x) and 162(x), their 

scalar product vanishes, that is, 

b 
,,C2) = f w(x)161y62dx = 0 	 (A5.1) 

a 

Since the space of L2 functions is separable, it follows that an orthogonal 

system consists either of a finite number or at most of a denumerable infinity 

of elements: -- Thus an orthogonal system can always be written as a sequence, 

16006.1 ... or -shortly as .116n(x)1 . 	Now every orthogonal system can be 

normalized by replacing ,r6n(x) by Vniit(n)-2f‘n(x),and we have an orthonormil 

system i.e. ii‘ni such that 

6hk 
	 (A5.2) 

If ):Ck  is a polynomial in x of exact degree k, denoted by Pk(x) say, 
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then I Pk(x)1 is a sequence of orthogonal polynomials. 	The interval and 

weigh function determine the system of orthogonal polynomials up to an 

arbitrary factor in each Pk(x). 	The polynomials can be standardized by the 

adoption of additional requirements. 	Our standardization is such that for a 

given, x,P
ko

) shall have a prescribed value. 	The orthogonal polynomials 

of interest -to us in this thesis, apart from the well-known Legendre 

polynomials, are the Jacobi (or hypergeometric) and the Gegenbauer (or ult.-a-

spherical) polynomials for a six-dimensional sphere. 

The Jacobi Polynomials 

We use Szego!s,,  notation Pn(a'14(x) for the suitably standardized orthogonal 

polynomials associated with 

a =-1, 	b = 1, 	w (x) = (1-x)a(a+x)13  

We give below some properties of these polynomials which are used in 

the text: 

standardization 

(a,13) 	n+a 
Pn 	(1) 	( n 

(A5.3) 

with en) 
 

n.km ---n)11T  

explicit expression 

n 
P
(a, 0

(x) = 	
-n 5- (n

m n
-Fa )(n+13

-m) (x 
...1)n-1)r: 	)m (A5.4) 

4-1   m=o 
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differential equation 

(1 .x2)y, + [p-a-(a+pri-2)xl y' + n(n+a+(3+1)y = 0 - 	(A5.5) 

where y = P(a, 
p) 

 (x) 

orthogonal ization 

P(a43)(x) P(ar13)(x)dx = 	
2a+13+1  1(n+ a+1) 1 (n+13+1)  8 	(A5.6) 

(2n+a+(3+1) r(n+1) c(n+a+P+1) mn  
n 	m 

In Chapter 4, Section I, in order to obtain representations of those 

SU(3) states which L 	0, we have to solve the differential equation (4.20) 

when L = K = 0. 	The differential equation concerned is 

L
r a2 + 4 cos4 tk 	a _ 4 2 

	
x+4)] g ( ) 

2 	sin4v, a y, 	 a  V" 	cc:n.42 y,  

We now give a method of solution. 	By a change of variable 

p = cos 2 y,  , 

Eqn.(A5.7) becomes 

€(1"p2) a

2 	1 
+ (To.  

ap • 

) a 	1 	4 pt.' 2  + 1-1  [X(X+4) - (p) = 0 . 	(A5.8) 

We seek a solution of the form 

Xit (P) = PIPI hX/A  (P) 
	

(A5.9) 

Then, the differential equation for h(p) is 

0 	(A5.7) 



Thus 

gx 	) = (co:32\k) f 1  P x '
0 
	(1-2cos22y/) . 

- 	I ) 
(A5.12) 
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3 a. h 	.2. 	2 	 ah 	r 	2 	1 

. ap 
p. 	'4- (3p - 	- 1 - 2,A.) 	p L2/4 +/(4 	

4  
- 	x+4) h = 0 , 	(A5.1 0) 

• ap  

where;  for simplicity;  we have left out the labels X,/.4. on 4:4 and the modulus 

sign on itA, 

If we change the variable again to 

1 - 2p
2 
 , 

we have for h the differential equation 

2
h 	

r-, X 
0-T2) 	+ [-im-Q4+2)(d----ah  + 1(--x  -74)1.1(7 -A) 	+ 	h 0 • (A5•1 a- 

This can be compared with Eqn.(A5.5) for the Jacobi polynoMial Pn(a°13)(x) ; 

and so we find ..  

liAt 0 
= P ' (T) . 

- 

The Gegenbauer polynomials 

We use Gegenbauer's notation C Zp x  (x) for the suitably standardized 

polynomials associated with 

a = -1, b = 1, w(x) = (1-x
2

)
i(p-1),  p > -1 and for wi(x) positive and 

square-integratable. 
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These polynomicds are generalizations of the Legendre's polynomials  

for a (p+2)-dimension:, sphere. 	Since the manifold we are concerned 

with is the five-dimensonal surface S5, we consider the case of p = 4. 

The polynomials Cx(x) are standardized in accordance with 

2..  
Cx(i) = (fix)  . 

The differential equation for C2r(x) is 

(A5.13) 

(1-x2)y" - (p+1)xy' + X(A+p)y = 0 	 (A5.14) 

It is obvious from the above equation that for p=1, we have the 

differential equation for the Legendre's function. 	In common with the usual 

r 
partial wave expansion of a plane wave state, e 

ik—.  —, in three dimensions 

in terms- of -the .Legendre polynomials, we have the corresponding result for 

the. plane •wave state in six-dimensions in terms of the Gegenbauer polynorrids: 

A A, 	 X ik.r 	kr(k.r ) 	(X+2)1 	2 A  
e 	e 	—= 4z, 	 JX+2 

 (kr)CX  (k.r) 	(A5.15) 
X (kr)l  

where Jm(x) is the Besse! function of the first kind. 

The following addition theorem for the Gegenbauer polynomials is also 

useful to us: 

A 
Let-  SALO, I = 1,... h, be h = h (X) [Eqn.(4.9)1 linearly independent 

surface harrnrorries-  of degree X, and let the SX be orthonormal on S5 so that 
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for 1,m = 1,2,..„ h 

Sli(ki)Smx  (11)d R. (r) = 81m  , 	 (A5.16) 

A 

then for any fixed unit vector k 

2 C (k r) 	Ga 2 	E 	(k)S  ) 

	

A 	1-1 
S 

X 	X (A5„17) 

where ti0 is the total surface area. 

A 
Corollary. 	For every surface harmonics S)(k) of degree X , 

SC2X(1C.r)S (1<)i i (k) = 05xxvi c2p N(11) .-- (A5.18) 

For S5, it can easily be shown that in any polar coordinates irrespective 

of the choice of angular variables 4.) = rr3. 	Consider the integral 

+00 	 +03 

..c
2 2 	2 	2 	6 	( exp._ 2 exp(-r1 -r2...r6)dri„..dr6  = (.s e-r 1 dri) = i 	( 	)dV = 

-co 	 -00 	V 

exp(-r2)r5d.r2. dr. 	 (A5.19) 

V 

where, by definition, d 51 = dV,(r5dr) and is of the form Ti g.(P) d9. with 
1 — i=1 

Using the equality of the second and 

last term, we get to 	Tr
3
. 

5 

9i  denoting the angukr variables. 



It is interesting to use Eqn.(A5.15) and the addition theorem to obt,:in 
A 

the ,6-ftmetiorr, 5(k-k'),, in terms of the surface harmonics S X' (k) 	We start 

with 

5(k-k') = (2ir)
-6  sei(k-k' )0. r 

= (2r)m65 e ' ik r 	-ik' .r -- edr . 

By Eqn.(A5.16), we have 

&(k-k') = 
l)X  (X+2)(X1 +2) 

(kk')2  X+2 (k 	+2  (k' r)dr I  
2 A A  2. (le A )d 

A  id 

6(k 

k

-k ' ) 	s lx(i)S),I  (LC° ) 5 
A,I 

where we have used the relation 

(A5.20) (A5.20) 

Jr. rJX+2  (kr)JX'  +2  r)dr = 28(k2-k' 2) 

If 	is a three-dimensional vector, the corresponding result is 

8(4-V)  ZYT(i)Y*im(i') Es( 	V) 	T2 Im 

which suggests that 

5(1- 41) = 
2 

5( e- 2)5(cose - cos el 	) 	(A5.21) 
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This relation is used in Appendix 7 to evaluate the matrix elements in 

Omnes's angular momentum analysis. 
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Appendix 6 
LM 

On the spherical harmonics S 
m.tit 

n this appendix, we show how to arrive at the spherical harmonics 

s
LM 

which have the following symmetry properties when k is absent: Mi  
For j = 3, S 
	

are asymmetric cnd symmetric respectively 
X,A
LM  

1.1 
and S

LM 
Xik.2 

whilst for other values the pair transform as the two-dimensional represent:tion 

of S3. 

Let us consider the effect of exchanging particle 1 and 2 on the spherical 

harmonics 

ikLM 
Si

X 	( k) = 
••_ .s g  LK 	L 

Ì-r )DMK (R)  • 

By the symmetry properties of IS and the Euler angles, we have 

(12)4:114( Ak )
L 	;ilk LK 

(-1) Naie 	gx  ( yi)Dm_K(R) . 
K 

(A6.2) 

On changing K to -K and using relation (4.25) that 

g
LK(1,-) 	G

L-K
eLP) 
	

(A6.3) 

(A6.1) 

we find 

(12)stAtm 	(_i)Ls- 
	

(A6.4) 
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LM This suggests the following alternative set of spherical harmonics S
NI.frot 

where 	= 1 or 2 and defined by 

LM 
S 11 1 1 ( ) 

A 

= 	(Sr( 
-12 

- 1/A•ILM 
- 	 (k)) 

(A6.5) 

iN (e-i 	I fd LK ( )  IS LK , 	 DmL (R)  
- e l 	or)) 

12 K 

LM A  
S 

JA 2( 	 (S )1Aj 	) 	Sx I/41  —k) D 
f2 

(A6.6) 

-i Ill Af...  L
X 

 K 
i (T)  

4. ei IP 
n 

16,.. L
-  
K 

1 1 
I

7
, 1  \DAAL K(R)  • 

1/4  

Let us first study the symmetry properties of Sx .ii  
LM I ., when X is even 

and hence 1/41 is integral. 	We divide the set of 	il's into three sub- 

sets 	, 1 = 1,2 or 3, such that 

3n + 1 

3n+2 

3n 

n = 0,1,2,- 	 (A6.7) 

Then, it follows from Eqn.0.6.4) that SILM, 	, for all j, transform under (12) 
is I 

as 

1/2 K 



But 4Tr 

e IrAl 3 

, 	41r 
V3  

(A6.10) 
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LM - 
(12) SXitt.1 

LM 
Xitt i2 

= ( 1)L 

+1 

 

LM 
SXitt .1 

LM S X  
I 

(A6.8) 

    

    

Now consider the effect of (23) on SI;M  
Apit 

Taking = 1  and 

= 1, we have 

(23) SLM  () 
3 

4Tr iN  )1t 	LK 	L 
4Tr )  

3 	MD K 
-iittivg- 	LK ( ) - ti.. 	e 	exl 	M- 

-(2- 	2, (e 	 xitt T g 
1 3/2 	K 

(A6.9) 

Therefore on using Eqn.(A6.3) again, we find 

LM (23) SX/&11 (-1)L+1(-1SLM +1/3 
"11  -7  

LM SX/1„ 2 ) . 	(A6.11) 
1 

Similar argument for 1 = 2 leads to 

LM (23) S X/A. 2 1 

)L(  sLM _ LM ) 2 X/411 XiA.1 2 (A6.12) 

Eqns.(A6.11) and (A6.12) are equivalent to 



3/3 
7 2 

1/3 
2 

r LM 
(23) 	S1 is 

LM S X/h.1 2 

(A6.13) 
LM 

SAS i  1 

- 
LM 

S A/14 1 2. X/14 2 
1 
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LM 
The effects. of (23) on S xfi.t  for other j values can be treated by 

I 
the same method. 	The results are:for j = 2 

      

    

s 
LM 
Xitt

2
1 

LM 
S

XAt
2
2, 

 

LM (23) S
"21 

LM 
X M22 

= -r 

 

(A6.14) 

     

and for I = 

(23) S 
LM 31 Xii4 

LM 

- 
S
X t 2 3 

= 	 )L 

  

LM 
SX/t31 

LM 
SA/f432 

 

1 

 

(A6.15) 

    

    

Since the transpositions (12) and (23) can generate all the elements of 

S
3' 

Eqns.(A6.8), (A6.13), (A6.14) and (A6,15) completely specify the 

LM 
transformation properties of 	under 53 	From Eqn.(A6.13) we see that 

LM 
ifS 
	 2 

 is redefined with a negative sign, then for L even, the spherical 
Xitt 

LM 
harmonics 	and S

LM 
 

.2 	
do have the required symmetry properties. 

This leads to the definitions adopted in Eqn.(4.350. 	For L odd, the extra 
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factor of -1 suggests the definitions used in Eqn.(4.35ii). 

For X odd, iul is half-integral. 	We again divide the set of IA I's 

into three sub-sets l&t.i 	I = 1,2 or 3, such that 

3n + 5  
' 

= 3n + 1  
7 	

n = 0,1,... . 	 (A6.16) 

/43 
3 

3n + 
2 

Then, it can be verified that the spherical harmonics defined in Eqns.(4.35i) 

and (4.3511) also have the required symmetry properties. 



and f we note that <3,..V ti(z- g 102) El. 

4..A 	
which is given by 

depends only on 2 
/71 ' 

h la 2 
i 

and 
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Appendix 7 	On the evaluation of the matrix element 

< co, LMK I Ti  (z) 	L' M' K1 > 

The matrix element to be evaluated is 

< 	LMK. I T.(z)I tog ,L' M' K> = (
33/3A 

 )
2 

x 
8 

c'i*)6( 	)6( 	P<Ii-S ti(z-  ;°2 )13-7 >Divk.(")Dlin Ito f  (Rig) x 

d (2*d czin dR*dR" 	 (A7.1) 

A A 
* 	Q' = cos 8*. cos 81.1  + sin 8*. sin 8”cos(y* - y"). 	(A7.2) 

Hence, in so far as dependence on the Euler angles is concerned, the two-

particle transition amplitude depends only on 

u = y* - y" 	 (A7.3) 

and so we write it as 

° 
•2, 
i 	)1 1/ 11 	=  > 	ti( r2

,, 1
1,2

, 2 . . 
u; z - 	). (A7.4) 

7  I 
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Using Eqn.(A5.21) for 8(M - I!') and the 8-functions 5(60- cu*) and 

8(i„"- w '), the integrations over dc,* and cli.J" can be performed triviall;7. 

The result is 

<io,LMKi  I Ti(z)I 	K;> 
2 	2 

31/6 A)2 6( 	) 
x 

(A7.5) 

2 	2, 	f,' 	*L C t.( 	, 37! 1  , u; z- 	(R*)Dm, 	(R" )dR*dR" 8(a *-a" )8(cosp*- amp" ) . 
.11 	I 	1 

Now, by virtue of relation (A7.3), we can choose the measure dR* to be 

dR* = da* sini3*d(3*du 	 (A7.6) 

and so, after integrating over the remaining 8-functions in Eqn.(A7.5), we 

obtain 

<LMK. T.(z)I 	, M' K'.> x 

(A7.7) 

2 ,2 	 .L • 
J J ti( 	. ,1.1; z 	

,2
- 	)13PAK.(a„  , 1', u + y")DLI

Mi K!(a”  f3"y")dRudu . 

u 

But 

-iK.(u+y") 
DM* K.(au u ,u472) = e iMa1° dMK.(13P )e 

--= 	
e -iK.0 

DMK. 
 (R1) 
	

(A7.8) 
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and we -can -integrate over dR", using the orthogonality of the rotation 

matrices {Eqn.(5.24)] , to obtain 

• 2.2 
31/3 Es( i <to ,LMK.I T.(z)I 	,L1M°K!> = 
4 

2irr 

6
LL' 6MM' 

6
K.K! 2 2 	

2 
,u; z- 	)e 	du 	(A7.9) 

The last integral in Eqn.(A7.9) can also be evaluated. 	We expand 

(c
ti 	

2 	,2 	.2%  ,u; z- 4 - 	in terms of partial wave amplitudes i 	77  . II  

x 

t.(), 2  3..).4Tr2t 	( ,2 	, 2 7̀z. ; z- 	2)Y 
I' m" 	' 	i 	I' 

g 
6.,flOY*{ (6.40 ,m 

(A7.11 

where (S.,A) and (6!„$(!) are the angular variables of )7. and 17! respectively 

in a coordinate frame whose z-axis is along 	so that 0-16' = 
2-1 Thus 

2rr 

t 

0 

,2 -iK! u 
,u; z- 	

2 
 )e 	du 

2rr i(rrf 
= 4n• 	ti  11(1T, X1;2* z-2)Y

I'm' 	r (6 o)Y* mi  (6' o) 	e du 
I' m" 0 

t. 	74 2 2.' 2- 
IX ( 'L i ' 	

,2 Y
I' Kg.

(6o)Y
PK° 

:,o (A7.11) 
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where we have used 

2rr . i(m1-1<!)u 
e 	du = 278m, K! 

0 

Putting 	40i 	and substituting Eqn.(A7.11) in Eqn.(A7.9) , we 

have finally 

2 8(b.4-1̀4)  < co, UM. TL(z) I 	, 	= 41/2n 	I 	8 	8 	8 
MM' 

t. 	,2 	,,2,v 	vv 	„, 
1,1" 	 l'I'K'i'°111°K"u  'l (A7.12) 

It is perhaps worthwhile to mention the range of (-)
1' 

C+J
2 

and W
3 

in the Omnes representation of three-particle states. 	In the centre of 
3 

mass system, the condition 2', k. = 0 has to be satisfied. 	We have seen, 
1=1 —I  

in the case of Dalitz coordinates, that this restricts p2 
< 1. 	Since 

(2m k
)2  represents the length of the vector k

' 
 in order that the vectors 

can form a closed triangle their lengths must satisfy the triangular inequality 

which in terms of (4
k 

is 

'2 (C.) z.  (A7.13) 

The completeness of the states wLMI<> therefore refer to the set of 1.,) 
1' 



d to '. 	J 
I 

O 	o 	 1 	1  2 (Li _ L2.2.)  
1 

co 

A d 
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G.J
2 

and.-c,;3  such that the above condition on 	
k 

is satisfied. 	Hence 

the completeness relation for these states should be 

co 

d 
LMK 

0 

co 

0 

dc:.. 

14,„ F. 	(4,2:)2 

dw 	I &.),UsikK> < 	M K I = 1 	(A7 1 4) 

(t.,3! 	)2 
 

The choice of which co to be restricted in range is immaterial provided it 

is integrated first. 	In this connection it is important to find out the behaviour 

of 6-functions in such limits. 	Consider the integral 

) 	 (A7.15) 

To extend the range of 4‹,.' to cover the whole of the positive real axis, 

we modify. the integrand by means of theta-functions so that 

(i.)! .2.  + eJt.i)
2' 

co 	co 	1 	I 

S d tu! S 	••cl La" GN- 
I 	.' 1 o 	o 	I 	_ 1,...,1.  i)2 

i 

ik) 
1 

dam' 2)2) - 
i 

  

')f( 	) (A7.16) 
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which gives g(c.)) 
	

§ 	
- 2  f) - etA,

(4Th 	 k 
	

I 2 — 

that is, provided the 	cos satisfy the condition (A7.13), 8-functions in these 

integration limits behave in the usual manner. 

When we iterate the Faddeev equations in the Omnes representation, 

we have to consider integral of the form 

1 
( cjai2 + L ,. 7)1  2 

co 	co 	'   

1 db.) ;  1 d Li! 
1 	

d e-) tc  6( u i- ;)8( 
I 

o 	o 	d i. J-2_ e:2 12 )2 
1 	I 

- e.-1!)f( 	) . 	(A7.17) 
I 

It can be seen that in this case the 8-functions can be integrated first. 

The reason why this can be done is that the 8-functions pick up the limits 

for the clto integration. 	This is how we arrive at the limits of 

integrations in Eqn.(5.32). 
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Appendix 8 	The Matrices Ji.) ,)  , 

J22 = G0(z) 

    

     

   

1 w(T1,2-T1,3) 

1 --2(T3,2 -T3,3 ) 

 

J23 = J32 = Go(z) 

4 	2,2-T  2,3)  

2 
1 —(T3,2 -T3,3 ) 

 

   

    

  

1/3 
-(Ti,2-T1,3) 

  

J24 = Go(z) 

   

   

_133  = Go(z) 
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- .13  
14T  1, +  

  

J34 = Go(z) 

f'3 /IT 	_LT 	1 

   

J
42 

= Go(z) 

J43 = GA(z) 

J44 = G (z) 

• 
1/3 +T 3) 2,2 2 

3 	 _LT 
84T12 2m12,31  

1,2
+1

1,3) 
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