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ABSTRACT 

As a first step in the study of dumping or weeping, a theoretical 

model for the mechanism of bubble formation has been set up. Equations 

have been derived for pressures involved in a single orifice bubbling 

system and for radial expansion of a spherical bubble. The theory has 

known limitations; nevertheless a fair agreement with the experiments 

has been found over a certain range in the 'dumping region'. 

A simplified model for behaviour of a sieve tray, based on the 

single orifice theory, has been suggested. 

A simplified criterion for dumping in a single orifice or a sieve 

tray is described. It is shown that the mean pressure in the gas 

chamber under a plate and the liquid pressure behind a bubble rising 

above a plate has considerable effects in the dumping studies. A fair 

qualitative analysis of the behaviour of a system for predicting different 

degrees in dumping rate has been made possible using the present 

theory. 

Experiments have been carried out for measuring bubble frequency, 

pressure fluctuations in gas chamber and dumping rates. High speed 

cine photographs have been taken both from a three dimensional appa-

ratus and from a two dimensional apparatus, the latter mainly for 

distinct observations of the dumping phenomenon. 
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CHAPTER 1 

INTRODUCTION 

Sieve trays (perforated plates) have been used for many years 

for liquid vapour contacting in distillation or absorption columns. 

These trays have many distinct advantages over conventional bubble 

cap trays, being easier to fabricate and more economical. 

However, their usage was limited until a few years ago, because 

of their poor performance, resulting from poor design. It is a fact 

that almost any bubble cap plate design, no matter how poor, will 

operate fairly well over a reasonably wide range of vapour rates; 

whereas perforated plates must be designed carefully to give good 

operation. 

A turning point in the conventional attitude towards sieve trays 

began about 15 years ago when more fundamental design procedures 

started to be published. Studies by Mayfield et al. (1) and Arnold 

et al. (2) showed that the pobsible range of vapour and liquid flow 

for stable operating condition of a sieve tray is sufficiently wide 

for many applications in the chemical industry. Several years later 

more studies dealing with the performance of such sieve trays were 

published, some of them being of considerable importance for 

present design (3, 4, 5, 6). 



For the last few years it has been known that sieve tray effi-

ciencies are greater than those for bubble cap trays under similar 

conditions, they have greater capacities, and their hydraulic gradient, 

entrainment and pressure drop characteristics are superior to those 

of bubble cap trays. So the use of perforated plates must be seriously 

considered in any particular case, and there are signs that they are 

becoming the standard plates for most normal duties. 

There are several books (7, 8, 9) in which considerable data on 

sieve trays design has been published. 

Stability of a sieve tray requires intimate contact between vapour 

and liquid, with no liquid passing through the holes and vapour passing 

through all the holes in as uniform manner as possible. Harris (10) 

shows the typical shape of a sieve tray stabilit y region, and points 

out the limits for a stable operation of such a plate, as a function of 

liquid and vapour rates. 

It is quite obvious that the limitations for a stable operation 

are much more dependent on the vapour flow rate, especially in the 

lower range of flow rates. A convenient way of describing the action 

of a perforated plate is by a plot of pressure drop against vapour 

velocity through the holes, for constant liquid load, as shown by 

Prince (11). 

He defines the "seal point" as the vapour rate required to just 

maintain the liquid level on a plate at the weir height, i. e. all liquid 
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fed to the plate weeps through the perforations. Similarly, the "weep 

point" is defined as the vapour rate required to prevent any liquid 

from weeping through the plate perforations. The region between 

these two points may be referred to as the "weeping range" (dumping 

range). The cverall pressure drop shows little or no increase over 

this range. 

Workers on sieve tray stability (1, 3, 11, 12) have tried to predict 

the weep point, either visually or graphically (beyond the weep point, 

the pressure drop will increase more rapidly). 

Lockhart and Legget (13) have produced a purely empirical 

correlation for weeping, based upon observations of Leib son et al. 

(12) and Mayfield et al. (1). The graphical correlation relates the 

dry pressure drop to the calculated head of liquid on the plate at the 

outlet weir. 

Davidson and Schiller (17) have calculated a critical value of 

flow rate, for the prediction of the weep point. 

The different weep points reported by various workers, differ 

a great deal, not only in the magnitudes and ranges of the values found, 

but even qualitatively in the trends observed with changes in condi-

tions. There is no doubt that these results can reflect on the complex 

behaviour of a tray in the weeping range, and the difficulties in predict-

ing the true mechanism of dumping for such a tray. 



Prince and Chan (14, 15) have suggested, and it is a fact, that 

a plate can be operated also in the "weeping range", provided that the 

proportion of liquid which weeps through a plate is low enough to 

allow reasonable overall mass transfer efficiency. Therefore they 

have tried to predict the s eal point, which seems to be the lower 

limit of operation of a perforated distillation plate. 

In the paper referred to (14) a model has been set up for fluid 

flow in the weeping range, by postulating that the variation of liquid 

to vapour flow throagh a particular hole is caused by periodic pressure 

fluctuations. By further postulating that the amplitude of these fluc-

tuations is the minimum required to obtain the overall fluid flow 

through the plate, the seal point corresponding to any set of external 

conditions, could be predicted. In their second paper (15) they have 

shown that for a multiplate column operating at low loads, periodic 

and stable pressure fluctuation will always be set up between the 

plates. 

Their work might be regarded as an attempt for a qualitative 

explanation of the "dumping" phenomenon, but nevertheless it is far 

from explaining the true mechanism of this process. 

Considering a plate working in the "weeping range", at a parti-

cular instant we could have liquid flow through some of the holes 

(dumping), vapour flow through some others (bubbling) and no flow 
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through the rest of the holes (bridging). The number of holes showing 

each of the mentioned types of flow will depend on the relative flow 

rates between the phases. At every instant the behaviour of the holes 

can be different. 

These visual observations have led to the idea that the periodic 

behaviour of each hole, consists of bubbling and either dumping or 

bridging. The size of the bubbles and their frequency are some of 

the most important factors in studying the dynamics of a particular 

system, which can determine whether dumping will occur, or not. 

It is quite obvious that any attempt at describing the mechanism 

of dumping must be followed by an accurate prediction of bubbles 

properties. 

Despite the intensive research which has been carried out for 

determining the diameter of bubbles formed on perforated trays, there 

is not even a single pure theoretical equation, but empirical correla-

tions only. Even among the empirical equations there is hardly any 

general agreement between different workers, which can emphasise 

the complexity of this problem. 

Many workers have tried to examine the bubbling process 

in its simplest form, i. e. the formation of single bubbles at sub-

merged orifices. Accordingly, they have pointed out that in many 

cases conditions on sieve trays are not radically different from those 
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at single orifices; so much of the knowledge gained with the latter 

can be applied in modified form to a plate. 

Nevertheless, even in this field of research, and despite the 

relative simplicity of the experimental arrangements involved, the 

conclusions of diffe.rsat workers do not always agree. 

Valentin (9) pointed out 18 different principal factors which might 

be expected to affect the diameter of a bubble formed at an orifice, and 

some are necessarily dependent on each other. So it is quite obvious 

that most of the published work contains empirical correlations only. 

In addition to the simplest mechanism of bubble formation at a 

capillary tube, there have been several attempts at setting up theo-

retical models for the formation of bubbles such as that of Davidson 

and Schiller (16, 17) which islimited to low flow rates through compara-

tively small orifices. 

The present investigation is of a somewhat more basic nature. 

It is an attempt at deriving a general theoretical model for the forma-

tion of bubbles, mainly in the "dumping region", for conditions much 

more applicable in industry. 

A model is set up for bubbling through a single orifice, and an 

attempt is made at describing the mechanism of bubbling through a 

sieve plate. The sirapiicityof the model, in spite of its limitations, 

is necessary in order to arrive at a fair qualitative explanation of the 
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mechanism of dumping through an orifice, and with further assump-

tions, through a sieve tray. 
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CHAPTER 2 

FORMATICN OF BUBBLES-LITERATURE SURVEY 

2.1. Bubbling at a Single Orifice  

Because of the large number of factors which are responsible 

for the formation of bubbles at an orifice, and because none of the 

workers so far were able to take into account all of them, it is quite 

clear that discrepancies exist in the conclusions concerning this 

problem. 

Nevertheless there are some general trends in the behaviour 

of bubbles, and a brief summary of the effect of some main para-

meters is given below. 

2.1.1. Effect of gas flow  rate 

Many workers (12, 17, 18, 20, 21, 22, 30) have tried to explain the 

mechanism of bubble formation for various gas flow rates, distin-

guishing among various regimes. Others (9, 23) have tried to summ-

arize the work in this field and to reach some general conclusions. 

It seems that there exist 4 clif -c. erent regimes, for the formation 

of the bubbles. 

a. Constant volume region:. For very low gas flow rates. The 

region extends up to an orifice Reynolds number of 200 (9). Bubble 

diameter is a function of orifice diameter and surface tension. Gas 
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flow rate and liquid viscosity have negligible effects. The bubbles 

are formed individually and regularly in shape. 

The diameter of the bubble is calculated by balancing the buoy-

ancy against the surface tension force. Nevertheless a correction 

factor might 	included, depending on viscosity of liquid, volume 

of gas chamber, etc. (19, 29): 

613 cr 	1/3 
DB  = const 	o 

n, 
(2. 1) 

b. Slowly increasing volume region: Still for comparatively low 

gas flow rates. Reynolds number up to 1000(9). Bubble diameter is 

a stronger function of gas flow rate, but also a weak function of dia-

meter of the orifice. There seems to be some effect of viscosity 

and inertia of the liquid. The bubbles are still formed mainly indi-

vidually, but there are some possibilities of formation in pairs, this 

mainly to the effect of volume of gas chamber underneath the orifice 

(19). 

The weak effect of the viscosity on bubble diameter has been 

shown by Quigley et al. (30) who have suggested the correlation: 

DB = const Do
0. 33 G0.1251,0°c-onst G1' 09 

	
(2. 2) 

The second term is only a correction for large orifice diameters and 

high gas flow rates. 
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The main contribution to the studies of this region is the work 

of Davidson and Schiller (16, 17), who distinguish between the two 

extreme cases; that is, constant gas flow rate and constant pressure 

of gas. 

They have found out that for constant gas flow rate, the volume 

of the bubble is a function of gas flow rate and kinematic viscosity 

only, whereas for constant gas pressure, the orifice diameter and the 

surface tension become also important in determining the bubble 

volume. 

The suggested equation for constant gas flow rate: 

115 +G1  3/4 
V= const 2g 	.1 

The suggested equations for constant gas pressure: 

dV 
dt 	k(= k(rPv.-  Pgh 2a

a- 
Pgs)1/2 

= 
1/3 

	

ds 	ll u  d2s 11 ds dV - 
F4'1:21 	dt 	16 dt2 +16 dt dt 

(2. 3) 

(2. 4) 

The detachment of the bubble from the orifice will occur when the 

distance between the centre of the bubble and the point of gas supply 

is equal to the radius of the bubble (s = a); or s = a + a., if the radius 

of the orifice (a 
0
) is large enough. 

Behaviour of any particular system used for formation of bubbles 

will therefore be in between these two extreme regions. 
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PL
3
g

a 
(11L G)2 - 

o 5 Do
5 

uo = const (2. 7) 

- 18 - 

c. "Laminar" region: For moderate gas flow rates. Reynolds 

number below 2100 (9, 12). In this region the bubble frequency is 

constant, depending on the orifice diameter (24). Surface tension 

becomes less important, and inertia of the liquid appears as a main 

factor in determining bubble diameter. 

Davidson and Harrison (25) have suggested an equation similar 

to that derived by Davidson and Schuler (16), for the volume of bubble, 

which balance the buoyancy force against the rate of change of upward 

momentum of the liquid surrounding the bubble: 

6/5 
V = const 

 

(2. 5) 

 

g 

Leibson et al. (12) have suggested the following correlation, 

which is in agreement with Davidson and Amick (19) results: 

DB = const Do
1/2 Re1/3 (2. 6) 

Van Krevelen and Hoftijzer (22), from their work with capillary 

tubes, have calculated a critical value of gas velocity through the 

orifice: 

Below that critical value there is a moderate dependence of • the 

diameter of the bubble on the gas flow rate and viscosity of the liquid: 



- 19 - 

f 4 
DB= const 	Gp. 	1 1  

[g(PL-PG)1 

(2. 8) 

Above the critical value, the dependency on the gas flow rate is 

stronger, but practically no more dependence on viscosity: 

pL

G)1 

1/5 2/5 
D

B 
= const (P -13 

	
G 	 (2. 9) 

When the bubbles are formed at a comparatively high frequency, 

the spacing between them decreases, and each forming bubble can be 

affected by the presence of the preceeding one. 

This is the region in which coalescence may start to occur. 

(Observations were mainly for air bubbles in water.) Bubbles can 

be formed either individually or in groups of two. 

d. "Turbulent" region: For high gas flow rates. Reynolds number 

up to 10000(9,12). The orifice diameter and gas flow rate have a weak 

decreasing effect on bubble diameter, till about Reynolds number of 

5000. Above this range, the ultimate bubble Size depends primarily 

on the turbulence in the continuous phase. There are no correlations 

for the bubble diameter in this region. 

Coalescence may occur very close to the orifice, and it is possible 

to form groups of two, three or even four bubbles, which are quite 

irregular in shape (12, 18, 19, 21). The predominant shapes of bubbles 

in this region are spherical cap and toroidal bubbles. 
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Leibson et al. (12) describe another region of higher turbulence 

for Reynolds numbers above 10000. The gas turbulence becornes 

fully developed, and what appears to be a continuous jet of gas is 

actually a series of closely spaced, irregular bubbles, rising with 

a very rapid counterclockwise swirling motion. 

The average diameter of the bubbles, for this high turbulent 

region, is given by: DB  = const (Re)-0. 05 	 (2. 10) 

2. 1. 2. Effect of physical properties of the system  

Because the main work carried out for investigating the formation 

of bubbles at submerged orifices is forthe system air-water only, 

there is limited information on the effect of different physical parameter 

on other types of systems. Nevertheless, some of the conclusions 

gathered so far are described below. 

a. Effect of surface tension: Surface tension has the predominant 

effect in determining the diameter of the bubble, for the very low 

gas flow rates. By increasing the flow rate, surface tension effects 

become less important. 

Hayes et al. (18) have distinguished between two regions of flow 

rates for which surface tension force is greater or smaller compared 

to rate of change of the momentum of the gas entering the bubble. 

According to Davidson and Schuler (16), for a constant gas flow, 
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the surface tension has no effect other than that due to small forces 

arising from contact round the edge of the orifice, whereas, for 

constant gas pressure, the surface tension has an appreciable effect 

on the pressure in the bubble, and so to some extent, governs the flow 

into the bubble. 

Surface tension may have also effect on the coalescence of bubbles 

(28). 

b. Effect of viscosity of the liquid: There is very limited published 

information concerning the effect of viscosity of liquid. For compara-

tively low gas flow rate, where Stoke' s law is a fair approximation, 

since the velocity of a rising bubble is inversely proportional to the 

viscosity, an increase in viscosity will therefore increase the size of 

the bubble before detachment, as proved by Davidson and Schiiler (16). 

Although the pressure within a viscous moving liquid is not the 

same in all directions, the nett effect on the mean pressure in the 

bubble can be neglected for this range of flows. 

Comparatively high gas flow rates into a viscous liquid would give 

rise to foaming and jetting. 

c. Effect of density of the liquid: An increase in density of liquid 

has the effect of increasing the velocity of rise of a bubble, therefore, 

for a constant gas flow rate, the ultimate size of a bubble tends to 

decrease. 
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The pressure into a growing bubble is related to hydrostatic head, 

which is proportional to the density of the liquid. Therefore, for a 

rising bubble under constant gas pressure conditions, increase of 

density will decrease the hydrostatic head, resulting in a decrease in 

the pressure of the bubble, that is, an increase of the gas flow rate 

into the bubble. 

These conclusions were verified by Davidson and Schuler (16). 

2.1. 3. Effect of gas chamber volume 

Many workers (14, 17, 18, 19, 20) have acknowledged the strong 

effect of the volume of gas chamber underneath the orifice, on the 

formation of bubbles under various conditions. 

Hughes et al. (20) have defined a "capacitance number" N 

which relates the acoustical properties of the gas-orifice system to 

the chamber volume: 

g(pL-pG)Vc N - c 	Ao pG 
co

z (2. 11) 

Their visual observations have shown that for small chamber 

volumes (N
c 

< 0. 85), delayed release occurs; that is, the bubble 

grows slowly, separating when its buoyance becomes too large. 

Bubbles are steady and independent on chamber volume. 

For larger chamber volumes (N
c 

> 0. 85), immediate release 

occurs; that is, the flow is large just prior to break off and the 
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conditions are similar to constant chamber pressure. There is a 

continuous rise in bubble volume, for increasing chamber volumes, 

however, there is simultaneously also a tendency towards formation 

of bubbles in pairs, rather than individually. 

Further increase in the chamber volume, has no more effect on 

the diameter of the bubbles, as stated also by Hayes et al. (18). 

Davidson and Amick (19) have observed the same type of behaviour, 

but have suggested that the critical value of Nc  is also a function of 

gas flow rate and it may decrease till 0.2 for high flow rates. 

In the light of these observations it is possible to estimate the 

importance of Davidson and Schiller' s work (16, 17), who distinguish 

between the two extreme cases, i. e. constant gas flow rate (no effect 

of gas chamber) and constant gas pressure (infinite volume of gas 

chamber). Most of their conclusions are reported in sections 2.1.1 

and 2. 1. 2. 

2. 1. 4. Coalescence of bubbles 

Coalescence of bubbles occurs when the flow rate of the gas is 

high enough to cause a second bubble, from a "double bubble" forma-

tion, to penetrate into the first one. Coalescence may take place 

closer and closer to the orifice, depending on the gas flow rate. 

Some workers (19, 21) have tried to explain the mechanism of 
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coalescence. It seems that there are two possibilities for coalescence: 

a. The liquid film separating the two bubbles will break, resulting 

in a larger bubble with shape of the first one; 

b. The liquid film will remain unruptured and the second bubble will 

either be partially or complete1.y swallowed by the first bubble, or 

will shoot completely through the first bubble, rising through the 

inner column of liquid in the bubble and emerging on top. 

Walters and Davidson (27) have derived a simple criterion for 

the coalescence to occur, by postulating that the velocity of the front 

of the second bubble must be equal to, or exceed the velocity of the 

rear surface of the previous bubble, just when it has left the orifice: 

G > const g1/2 a0
5/2 	 (2. 12) 

In fact there are limited industrially practicable systems in 

which fully coalescing conditions can occur, as has been described 

by most of the workers for air-water systems. 

Although there is no precise mechanism by which coalescence 

is actually hindered, it is evident that forces which accelerate the 

thinning or drainage of the liquid film separating the bubbles, will 

promote coalescence, while forces opposing thinning will reduce this 

tendency, as stated also by Danckwerts et al. (28). Main effects in 

reducing this tendency might be the "surface elasticity", due to a 



- 25 - 

resistance to the formation of fresh high surface tension surface, 

and the "surface viscosity", due to a concentration of polar-nonpolar 

molecules at the surface. 

2.2. Bubbling on a Sieve Tray  

In addition to most of the factors which can affect the formation 

of bubbles at a submerged orifice, the plate geometry is one more 

main factor which is responsible for the formation of bubbles on a 

sieve tray. 

Under specific conditions of flow rate, the perforations diameter, 

the arrangement of the perforations and the distance between two 

consecutive perforations, can determine the extent by which inter-

action between neighbouring bubbles can occur, resulting in a specific 

bubble size distribution along the plate. Some photographs which 

correspond to such a complex behaviour have been shown by Helsby 

(21). 

Most of the workers on bubbling at a single orifice have suggested 

that their correlations might be useful, to a certain degree of accuracy, 

also for the bubbling on sieve trays. 

Some workers (24, 29, 31, 32) have investigated actual perforated 

plates, and have tried to relate the results to single orifice behaviour. 

Most of the work in this field has been summarized by others (9, 23, 

33). 
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Because of the size distribution of the bubbles formed on a plate, 

the most useful method for determining the average diameter is by 

calculating the Sauter mean bubble size, which is given by: 

D,3  
5 

B 	n DB 
(2. 13) 

Unfortunately most of the published work on bubble size refers 

to the ultimate size of the bubbles, that is, to the bubble size distribu-

tion at a certain level of the column, which do not always agree with 

the actual size distribution on the plate itself, because of coalescence 

or collapse of the bubbles, as they ascend through the column. 

Nevertheless, the general trends of the effect of gas flow rate 

is as follows: 

a. Low gas flow rate. Reynolds number below 1000. Practically 

no bubbles size distribution. They ascend independently through the 

liquid, essentially in the same manner as a single bubble. Therefore, 

most of the correlations for diameter of bubbles formed at a single 

orifice hold also for bubbling on a plate. 

b. Moderate gas flow rate. Reynolds number up to about 2500. 

Bubbles are randomly distributed in size, due to collapse or coalescence. 

The mean diameter of the bubbles increases with increase of the flow 

rate. Some of the correlations for a single orifice are still used for 

calculation of the mean diameter of the bubble, especially for small 
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perforations. 

This is the region in which foam formation is observed (34). 

c. High gas flow rate. Reynolds number above 2500. Smaller and 

stable bubbles are produced, having approximately the same size. 

The mean diameter of the bubble is no more dependent on gas flow 

rate. There are no correlations for bubble size in this region. 

Calderbank (31) and Yoshitozr.e (29) have observed a constant 

value of about 3 - 4 mm. , for the mean diameter of air bubbles in 

water. 

This is the region in which froth formation is observed. The 

Leibson correlation (2. 10), has been confirmed also by Calderbank 

(24) to hold for the mean diameter of bubbles on a plate, for the 

highly turbulent region. 
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CHAPTER 3 

APPARATUS AND  EXPERIMENTAL TECHNIQUES  

Two types of bubbling apparatus were used for investigating the 

mechanisms of bubble formation and dumping through a single orifice 

plate. 

An apparatus for formation cf two dimensional bubbles, through 

a gap between two plates, has been used, primarily for the purpose 

of photographing the sequence of events for the bubble formation and 

leakage through the gap. Studies of these photographs have led to 

the ideas used for the investigation of the mechanism of dumping 

through a sieve plate. 

An apparatus for formation of three dimensional bubbles, through 

a single orifice in a plate, has been used primarily for investigating 

the behaviour of the type of bubbles which are formed in practice, 

under various conditions. 

The schematic diagram for the experimental apparatus, is given 

in figure 3. 1. 

3.1 "Two dimensional bubble" Apparatus  

The constructional details can be aeen in figure 3. Z. 

The two dimensional (cylindrical) bubbles were formed by blowing 

air into a water layer, through the gap between two pieces of brass, 
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held betwQQn two flnt perspc:tx abeetg 16 x 10 x 0.25 in., which were 

0. 25 in. apart. 

The gap between the brass plates was variable up to 1 in. , so 

that the orifice dimensions could be varied up to 1 x 0. 25 in. 

The thickness of the brass plate near the orifice was changed 

by using 3 different plates. Thickness investigated I /32, 1/4, 1/2, 

in. 

The rear perspex sheet had 5 openings for changing the position 

of the tube for the overflow liquid. Thus the liquid layer depth could 

be varied to 0. 5, 1, 2, 4, 6 in. 

Air was supplied through a 1/4 in. rubber tube, connected near 

the bottom of the perspex sheet. Water was supplied in the open gap 

between the upper parts of the perspex sheets. 

The pressure into the vessel was measured through a 3/16 in. 

rubber tube, connected below the gap between the brass plates. 

The rate of liquid dumping was measured by collecting the liquid 

which flew through a 1/4 in. rubber tube, connected at the bottom of 

the perspex, sheet. 

3. 2. "Three dimensional  bubble" Apparatus  

The constructional details can be seen in figure 3. 3. 

The three dimensional bubbles were formed by blowing air into 
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a water layer, through an orifice drilled in a plate, held between 2 

glass flange joints, type FG100. (Supplied by Quickfit - I. D. approxi- 

mately 10 cm. ), which were modified as shown in figure 3. 3. A. 

The connection between the flanges was made with a fitted clip, 

typeJC 100F. 

The two orifices investigated - diameters 1/8 and 1/4 in. - were 

made by drilling single holes in the centre of 1/16 in. brass plates 

(6 in. diameter of the plate). 

About . 1. 5t; in. apart from the centre of the orifice, another 

hole was drilled, through which a 3/8 in. copper tube, 1 in. long, 

was soldered. Other four copper tubes of different lengths were used, 

to get various liquid depths (0. 5, 1, 2, 4, 6 in. ), by screwing each 

of them respectively, to the soldered tube. 

Air was supplied through a 1/4 in. rubber tube, connected to the 

chamber below the plate. Water was supplied in the open vessel 

above the plate. 

The pressure in the chamber was measured through a 3/16 in. 

rubber tube, connected about 2 in. below the plate. 

The rate of liquid dumping was measured by collecting the liquid 

which flowed through a 1/4 in. rubber tube, connected at the bottom 

of the chamber. 

The overflow liquid was drained through a 1/4  in. rubber tube, 
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connected to the downcorner, which passed across the chamber and 

extended through a 3/4  in. opening in the chamber wall, towards a 

drain. 

A few runs were made under constant gas flow rate conditions. 

These conditio'as were obtained by welding a piece of 1/8 in. sintered 

brass (Porosint Sinter Metal Filters - grade C, produced by Sintered 

Products Ltd. ), to the lower side of the orifices investigated. 

Runs were made with ethanol (methylated spirit) as well as 

water. In these experiments, the overflow liquid was recycled with a 

centrifugal pump, supplied by Stua:rt Tanner Ltd. , which had a capa-

citance of 40 gallon/hour, for a head of 20 ft. 

The same apparatus was used also for investigating a sieve plate 

behaviour. Two different plates were used, in which the number of 

holes was varied by closing some of the perforations. 

a. 7 holes maximum, 1/4 in. diameter each, arranged in a triangular 

pitch of 3/4 in. 

b. 19 holes maximum, 1/8 in. diameter each, arranged in a triangular 

pitch of 3/4 in. 

The volume of the chamber underneath the orifice was 2250 cc. 

To investigate the effect of smaller volumes, the chamber was replaced 

by a 3/4 in. copper tube, as shown in figure 3. 3. B. Minimum volume 

obtained under these conditions was 200 c. c. 
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A glass flask, filled partially with water, and connected in series 

to this tube, was used for varying the volume of the gas chamber. 

In most of the runs in which cine photographs were taken, for 

improving their quality, the upper glass vessel was replaced by a 

square vessel, made of 4 perspex flat sheets 9 x 4 x 1/8 in. 

3.3. Experimental TechnicLua; 

3.3.1. Photographic Techniques 

The formation of bubbles was photographed either by a Milliken 

cine camera - Model DBM-5, at 200 frames/sec. (max. speed obtain-

able with such a camera - 400 frames/sec. ), or by a Bolex-Paillard 

cine camera, at 64 frames/sec. The Milliken camera was run by an 

internal motor connected to an external D. C. power source of 28 

Volt. It had a timing light which provided light mark on the edge of 

the running film, each 1/100 sec. 

Rear illumination was found to provide the best quality of lighting 

at the image plane. The necessary intensity of light was provided by 

a 500 watt "photo pearl" lamp. Kodak trace paper was used as a 

diffusing screen to ensure a fair distribution of the illumination in-

tensity across the image plane. 

Films used were 16 mm Kodak Tri-X or 4-X, which possess very 

fine grain size and fast emulsion speeds. 
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In several runs it was necessary to take simultaneously photo-

graphs of the sequence of formation of bubbles and the relative pressure 

fluctuations in the chamber underneath the plate, which were shown by 

a trace on the oscilloscope, connected to the system. For this purpose, 

a mirror was set up in front of the bubbling apparatus, in a plane 

inclined 45o 
 in respect to the bubbles plane. The oscilloscope was 

located in a plane perpendicular to the bubbles plane, at a distance 

from the mirror, equal to the distance of the bubbling plane from the 

mirror. Thus, it was ensured that the rear image of the trace will 

be in the same plane as the bubbles. 

3. 3. 2. Pressure Measurements 

Measurements were made for pressure fluctuations and mean 

pressure in the gas chamber underneath the plate. 

The pressure fluctuations were measured by an I. R. D. Micro- 

manometer - type M. D. C. , supplied by Furness Controls Ltd. It 

is a capacitance manometer supplied with various measuring heads, 

according to the range of differential pressures required. The micro- 

manometer has a range switch which can reduce the sensitivity of 

the measuring circuit, by a factor of 10. The head used was for a 

full scale range of + 12. 5 mm. H20, so it was possible to record 

fluctuations up to + 125 mm.
20, by operating the range switch. 
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Being a differential instrument, one side of the micromanometer 

should be connected to a reference pressure, which is in the limits 

of the mean chamber pressure. The set up of the reference pressure, 

as shown in figure 3.1, included two flasks, partially filled with 

water and connected in series with the instrument. One of the flasks, 

which was left open to the ambient atmosphere, was lifted with a 

laboratory jack, with respect to the other closed flask. The pressure 

in the closed flask, which was connected to the micromanometer, had 

increased gradually, till a pressure equal to the mean pressure in 

the gas chamber was obtained, shown by a balance between the two 

limbs of the U type water manometer. 

The connection of the other side of the micromanometer to the 

measuring source was by a contraction to a 1/16 in. polythene tube. 

It was decided on experimental grounds to use such a tube, it having 

the minimum diameter which had ensured against any damping of 

the pressure fluctuations through the entire length of the tube. 

The pressure fluctuations were recorded by connecting the micro-

manometer output, either to a recorder or to an oscilloscope. 

The recorder used was an U. V. Recorder, type S. E. 2005, sup-

plied by S. E. Laboratories Ltd. This is a direct writing oscillograph 

which utilises different recording galvanometers according to the 

range of frequencies required. It was found adequate to use a 
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galvanometer of type A. 35 which gives a flat response up to 20 cycles/ 

sec. The speed of the recording paper could be varied between 1. 25 - 

2000 mm/sec. , depending on the frequency of the fluctuations. 

Full details of the resistances circuit to adjust the actual micro-

manometer output to the galvanometer sensitivity, and the method for 

calibration of the recorder, are given in the Instruction Manual for 

this type of recorder. 

The oscilloscope used was of type 515 A, supplied by Tektronix 

Guernsey Ltd. The pressure fluctuations were recorded by a trace, 

moving vertically only (the horizontal display switch was set in external 

position). The position of the trace was photographed simultaneously 

with the related position of the bubble, by the method described in 

(3. 3. 1). 

The mean pressure was measured by an S-type water manometer, 

with one limb submerged in the water layer above the plate and the 

other limb connected to the chamber underneath the plate, as shown in 

figure 3.1. The measurements were taken by a Vernier Microscope, 

with an accuracy of 0. 1 mm. 

3. 3. 3. Bubbles Frequency Measurements  

Three different methods for bubbles frequency measurements 

were applied, under different experimental conditions. 
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a. Photographic method: The frequency was calculated by counting 

the number of frames per bubble, for a given speed of photographing 

of the bubble formation. 

b. Stroboscopic method: A stroboflash, type No.1200 D, supplied 

by Dawe Instruments Ltd. was used for direct measurements of bubbles 

frequency. Range of frequencies of the stroboflash was 250 - 18000 sec 

so for very low frequencies, the number of bubbles per unit time were 

visually counted. 

c. Recorded pressure fluctuations method: The frequency of the 

bubbles was calculated from the number of cycles of pressure fluctua-

tions recorded for a given speed of the recording paper. 
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CHAPTER 4 

MECHANISM OF THE DYNAMIC BEHAVIOUR OF A BUBBLING 

SYSTEM 

4. I. Basic Assumptions on the Behaviour of the System 

From experimental observations for the air-water system it 

has become quite clear that in the region where dumping has occurred, 

large discrete bubbles were formed in the liquid. The gas flow rates 

used were low to moderate. Under certain conditions, the formation 

of bubbles was in pairs; the secondary bubble being much smaller 

often coalesced with the first one, right above the orifice. 

Following these observations, several assumptions are neces-

sary for the developing of a theoretical model for the bubble formation, 

a. Irrotational Fluid Motion: Since the motion of the forming 

bubble starts practically from rest, it is assumed that the motion is 

initially irrotational. Studies of solid spheres accelerating from rest 

in a fluid have shown that the ' wake' behind the sphere is not fully 

established until the sphere has moved an appreciable distance. It 

seems likely to expect the similar behaviour for flow around an 

accelerating bubble. 

This assumption enables the use of potential flow theory, which 
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includes more powerful mathematical methods for solution of fluid 

dynamics problems, rather than solution of the dynamic equations by 

direct integration. 

Further postulating incompressible fluid motion, the mass-

conservation equation becomes the well known Laplace' s Equation 

cf. 2 	= 0 
	

(4.1) 

This equation is used for determining the velocity distribution of the 

liquid around the bubble 

b. Inviscid Liquid Flow: The effect of the viscosity on the 

motion of the bubble is assumed negligible, thus the inviscid fluid 

theory can be applicable in this case. 

For the flow of a real fluid past a body at rest or in motion, no 

matter how small the viscosity is, its effect is significant in the 

neighbourhood of rigid boundaries, in the form of a boundary layer. 

Thus the no-slip condition at a rigid surface can be satisfied, resulting 

in a relative fluid velocity which increases from zero at the surface 

to some value characteristic of an inviscid fluid at the other end. 

Boundary layers occur also at free surfaces and at interfaces 

between fluids, such as an air-water interface. In such cases the layer 

is characterised by rapid changes in velocity gradient determined by 

stress conditions at the interface, and not only by velocity conditions. 

Moore (36) has used this assumption of stress continuity at the interface 
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to calculate the thickness of the boundary layer on a spherical gas 

bubble rising steadily through liquid of small viscosity and has found 

that it is small. 

Provided that separation of the boundary layer does not occur, 

it is possible to apply inviscid fluid theory. Even in cases in which 

separation does occur, there are large parts of the flow which locally 

are not affected significantly by the viscosity of the fluid, and the 

inviscid fluid theory may still be applied. The obvious case of separa-

tion of the boundary layer is the formation of a wake' behind a bubble, 

resulting from the vorticity created by the action of the viscous stresses 

in the boundary layer. 

The drag coefficient for a spherical gas bubble was calculated 

by Moore (36) from the dissipation of energy in the boundary layer 

at the bubble surface and in the wake: 

48 	2.2  c - 	- 	0(Re -5/6
)
1 

D ReL 	Re 
1/2 L (4. 2) 

Using this equation it is obvious that the drag force of a steadily 

rising air bubble in water is negligible compared to other forces which 

affect the bubble motion, for the type of bubbles of interest in the 

pre sent investigation. 

Thus, adding the assumption of inviscid liquid flow to the former 
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assumptions of irrotational and incompressible flow, the general 

equation of motion (Navier-Stokes equation) is reduced to the well 

known Bernoulli' s Equation, for unsteady flow (Batchelor (38), pLi 

383): 

+ 	+ — q -2  F(t) = const. "Zt p 1 L 
(4.3) 

This equation is used for determining the pressure around the 

bubble. F(t) in the present investigation is the gravity force. 

c. Spherical Bubble Formation: It is assumed that the bubble 

is spherical throughout formation. Nevertheless, while the bubble 

rises through the liquid, there is an increasing tendency of distortion, 

which can be caused by different dynamic forces. 

The criterion for distortion of a bubble rising in a comparatively 

inviscid liquid is given by the relative magnitude of the dynamic 

pressure pLuCausing distortion, and the surface tension pressure 2cr 
a 

available to resist it: 

We - 2ap
Lua 	

(4.4) cr 

For We << 1 the bubble will remain spherical, and for We >> 1 there 

is a great distortion. Moore (35) has shown that moderate distortion 

will cause the initially spherical bubble to become oblate spheroid, 

for which the ratio of the cross stream axis to the parallel axis is 

given by: 
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9
4  

= 1 + 6 	+ 0(14Te 2) (4. 5) 

It has been observed that for very viscous liquid, the bubble 

tends to remain spherical, even when its radius is so large that the 

effect of surface tension could not be dominant. Because the bubble 

size is not important, the distortion will depend mainly on liquid 

properties, so the criterion is in the form of the dimensionless group 

M, defined as: 
4 

M - 	3 
	 (4. 6) 

PLc  

For example, Moore (37) has shown that 50/o distortion occurs 

when the Reynolds number is: 

ReL  = 1.1 M
-1/5 	

(4. 7) 

Despite these limitations, since the field of interest in the 

present investigation is mainly for bubble formation and behaviour in 

the vicinity of the orifice, the above assumption of sphericity of the 

bubble is partially justified. Even if the bubble is found to be spheroidal 

the calculations will be for an equi-volume sphere. 

Further, it is assumed that the motion of the bubble is not 

affected by the presence of another bubble im:mediately above it. 

It is obvious that this assumption is invalid for a secondary bubble, 

in a group of two bubbles, which formation is mainly affected by the 
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pressure field behind tie primary bubble. (Usually it is an elongated 

bubble having a much smaller volume and which coalesces with the 

first one. ) 

The theoretical prediction for the volume of a bubble which is 

derived in the present investigation assumes that bubbles form indi-

vidually, throughout all range of flows studied. 

4.2. Mechanism of the Behaviour of a Single Orifice Bubbling System 

4.2.1. The Idealised Stages for the Bubbling System 

Hayes et al. (18) have applied Newton's Second Law for the 

motion of a bubble, postulating that the velocity of the centre of the 

bubble is equal to the rate of growth of the radius of the bubble through-

out the entire period of growth of the bubble, whereas Davidson and 

Schuler (17) have distinguished, right from the very beginning of the 

motion, between these two velocities, postulating that the rate of 

growth of the radius of the bnbble is determined by the pressure 

difference across the orifice (for the case of constant pressure flow). 

It seems that the true mechanism is of a more complex nature, 

as has been also acknowledged by Krishnamurthi et al. (39). 

The proposed mechanism in the present investigation is a 

three stage mechanism (Figure 4. 1). 

a.  Growing Stage: The bubble grows above the orifice, laying 



IDEALISED STAGES FOR THE BUBBLE FORMATION.  

'GROWING' Stage  ' ELONGATING' Stage  'WAITING' Stage 
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on the plate. Through'mt this stage, the sum of the downward forces 

(inertia forces and reaction forces due• to presence of the plate) 

exceed the upward forces (buoyancy forces), though the difference 

between them reauces gradually ao the bubble expands. This stage 

terminates at the moment in which the buoyancy force just equals 

the inertia force. 

b. Elongating Stage': The bubble continues growing while 

moving away from the plate but being still connected to the orifice by 

a small tail. Throughout this stage there is a balance between the 

upward and downward forces. This stage terminates at the moment 

in which the bubble has lifted to such an extent that the tail breaks 

off and the bubble accelerates away from the plate. It has been ob-

served experimentally that the break off occurs when the bubble has 

moved a distance approximately equal to the radius of the orifice 

for an 1/4 in. orifice diameter, and nearly twice the radius of the 

orifice for an 1/8 in. orifice diameter. 

c. Waiting Stage'  : The pressure in the gas chamber increases 

gradually to such an extent that another bubble starts forming above 

the orifice. 

4. 2. 2. Equation of Motion for a Growing Bubble 

The motion of a growing bubble is governed by two simultan- 

eous effects: a) Translation, that is, the upward movement of the 
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centre of the bubble, b) Pulsation, that is, the radial expansion of 

the bubble. The method of describing this motion is by the velocity 

potential function, derived from Laplace's Equation (4.1). The 

velocity potential for the flow around a translating sphere in an in-

finite inviscid liquid, which satisfies the boundary conditions: 

(1) - 	= 0 at a plane in infinity 

(2) - 	= u cos 0 at the surface of the sphere 

3  is given by (Lamb ua  , p.123): ST = -27 cos 0 	 (4. 8) 

where (r, 0) are polar coordinates fixed at the centre of the moving 

sphere. 

Similarly, the velocity potential for the flow around a pulsating 

sphere in an infinite inviscid liquid, which satisfies the boundary 

contions: 

(1) - 	- 0 at a plane in infinity 

(2) ,„)S da r 	dt  at the surface of the sphere 
a  cis. a r  is given by (Lamb i4cr. , p. 122): Op  - 	dt  (4. 9) 

Since both equations (4. 8) and (4. 9) are linear solutions of 

Laplace' s Equation, the overall velocity potential which describes 

the motion around the bubble is given by their summation: 

(4.10) 
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Since the growth of the bubble is affected by the presence of 

the plate, the well known ' Method of Images' is applied for the correc-

tion of the values of the velocity potential. Full details of the method 

applied is given in Appendix A. 

Provided the depth of the liquid is more than a few bubble dia-

meters, the assumption of infinite depth of liquid is accurate. Hayes 

et al. (18) have assumed that minimum depth necessary is about two 

bubble diameters. 

Shiffman and Friedman (45) have derived an approximate theory 

for the velocity potential for the flow around a sphere pulsating between 

a rigid and a free surface, assuming a flat free surface, which might 

have been taken in account for the present investigation. Preliminary 

calculations of this effect have shown negligible contribution to overall 

value of the velocity potential. 

Such an approximation is invalid when the bubble diameter is 

nearly as large as the liquid depth, mainly because the free surface 

ceases to remain flat. A further approximation has to include the 

effect of the surface waves on the velocity potential, in a similar way 

to that shown by Kirkwood (45). Nevertheless, the forthcoming theory 

neglects any effect of the free surface, assuming infinite depth of 

liquid. 

Thus the values of the velocity potential obtained as a result of 
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a6 a6 	a9 
+L- + 	61cos 

s A 
 

(4.11.a) 

(4. 11.b) 

dt 

= da 

+ 2r 	c 

ra 2 	2 a r 

ar

3 
+ 	3 2cr 2  

5 

c 	2r2c 

5 	8 a r 	a 
dt ip c5 	2c5r2 

Substituting (4. 11) in (4. 10) and noticing that c = 2.s (by defini- 

tion): 

cs  = Its a3 	air 	a6 a6r 	a9  
2-7 +—I + ----T + — T.-- + 128r 2 s6 8s 	16s r a  64.s 

da la 2
1 	

I  a ar 	a5 	a5r 	a8 
 + dt 	r 

j_ 

r  I T .  +8b2r2 -r  32isf+  64t5  r2 )cos A 

• 

(4. 12) 

cos 0 

Applying equation (4. 3) for determination of the pressure in the 

liquid around the bubble: 

-2-   - 1 	 P  pi, 	t 	q2  - g(s+rcos9) + c°  
PL 

Since a, s, r and  are functions of t, the value of 	is cal- 

culated by: 

 

dads 	dr 	dc) 
dt + 	dt t  41- dt + -00 dt (4.14) 

 

where the rate of change of r and A for a fixed point in space (Lamb 

s 1400 , p. 124): dr — = d cos dt 

do 	dt sin 
g 

 

(4. 15) 

dt 

  

(4. 13) 
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The absolute velocity in space, in polar coordinates 

q2 = 

'

:4S 2 	1 	2 
Dr 	r (4. 16) 

Substituting (4. 14) and (4. 16) in (4. 13), the pressure change 

due to the liquid motion around the surface of the bubble (that is for 

r = a), and neglecting powers of (a) higher than the seventh: 

13-1'03  

PL 

d2a 	3 da 2  
- •a d2 + (at) - gs 

• d2a 3a2  3a
5 

+ cos  ()l a  --cfp ( 7  + 	 5) 
64s 

des ,
2  
1 	3a3 	3a6 	ida la 1.9....a2 +  9a5 

+ a —t2-, t—  + 	3  + 	6 	tdt 	'8 7 32 0 5 ) d 16s 	 28s 

ds a  - 9a4 9a7 da ds 39a6 

(71t.)  ( 16 s4 	64s 7)  + 	(2 -128s 6 )  ga  

1 ds 	 ! ds 	5 	9a3 	6. ?a6  + cos 20 	(—) 2  - sin 0 2 dt 	 dt 	8 32s." 128su  

da 2  9a4 	2.25a7 da ds 9a2 	9a5  
+ 	 + dt dt dt 160 

64s
5  ) 128s4 128.s 

(4.17) 

The nett upward force on the bubble is found by integrating the 

vertical component of the pressure over its surface: 

it 

F = 	(2.7rr 2  p sinA cost)) r=a 
do 	 (4.18) 

As stated previously, the Growing Stage' terminates when the 

nett upward force becomes zero, that is the buoyancy force FB  just 
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equals the inertia force Fr  

For this stage s is identical to a. Substituting (4.17) in (4. 18) 

and putting F = 0: 

FB a 

da a FI 	1.13 	+ 2.13 (-)a  
dt 	dt 

(4.19) 

For the initial stages of the growth of the bubble, when its radius 

is slightly larger than the radius of the orifice, and because the bubble 

is connected to the orifice, there is an error in integrating the vertical 

component of the pressure from 0 to Tr. The error decreases quite 

rapidly with the increase of the radius of the bubble. An attempt has 

been made to derive a modified equation, compared to equation (4.19), 

while the integration has been carried out over the part of the surface 

of the bubble which is in contact with the liquid. Since equation (4. 19) 

is valid only for the termination of the growing stage' where the 

radius of the bubble is large:. compared to the radius of the orifice, 

the results which have been obtained have shown a negligible difference 

for the total time of growth of the bubble and its ultimate volume, 

using either of the two equations. 

For the Elongating Stage' the nett upward force is consistently 

zero, while the bubble accelerates away from the plate, that is s is 

no longer identical to a. The equation of motion is found again by 
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substituting (4. 17) in (4. 18) and putting F = 0: 

     

a 2 	a5 d - (0. 375 	+ 0. 047 —) 
s
5 dt 

des 
dt 

 

1 

 

g  3 	6 
0. 5+0. 188 a3  + 0. 023 2:—.6 s s  

 

   

a a 	a5 1 da 4 	 a7 1 ds - (1. 125 2- + O. 282 	 ) (— )2  + (0. 563 	+ 0. 141 —) (— )2  
s
5 a dt 

	

s
4 	

s
7 a dt 

6 da ds - (1.5- 
S 

 (4.20) 

  

4. 2. 3. Equations for the Radial Expansion of the Bubble and Pressures 

in the System  

The growth rate of a bubble depends on the gas flow rate and 

pressure change in the bubble, which are related to the pressure 

change in the gas chamber. Thus, an equation for the radial expansion 

of a bubble might be obtained i:?orn the corresponding dynamic pressure 

equations which are derived below. 

I. 	It is assumed that the initial conditions for the growing of a 

bubble, that is for t = 0, are: 

(1) The radius of the bubble is equal to the radius of the orifice: 

(a) = a . 0 0 
da (2) The growth rate is zero: (—)o  = 0. dt  

(3) The pressure in the gas chamber is equal to the sum of 

pressure at the orifice and the surface tension pressure, which is 
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Fig. 4.2 

  

Schematic Model of the  

 

Bubbling System 

     

the minimum pressure required for starting the growth of the bubble: 

20 (P ) = P 	p gh V o 	atm L 	ao 

It is most convenient to describe the relation between the pressure 

in the gas chamber (PV ) and the pressure in the bubble (PB), for the 

bubbling period (figure 4. 2), by a set of three equations, as follows: 

a. Pressure drop across the orifice 

If uois the gas velocity through the orifice, the pressure drop 

is given by 

P - P V B  
PG 

KU 2  0 (4. 21) 
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where K is an experimental constant. 

Putting dV 	Traz  da 4  dt 	dt  u - 	- ° Ao 	
A

o 

equation (4. 21) becomes: 

PV - PB  16172Ka4 
 da 

	

Az 	(dt) PG 
(4. 22) 

b. Pressure in the Gas Chamber  

Adiabatic conditions are assumed for the flow of gas through 

the chamber. Thus: 

PV VcV  = const 	 (4. 23) 

The relation between velocity of sound and pressure in the 
Y pv 1/2 

gas chamber is given by: co = (- ) (4. 23a) 
PG 

Differentiating equation (4. 23) and substituting the value of y 

from (4. 23a) the change in pressure in the chamber is given by: 
2 

dP -c o 	%-r  

dV 	Vc 
(4.24) 

While the bubble grows the pressure in the gas chamber changes 

from its initial value (PV)0 to a value P V'  whereas the volume changes 

from (Vc + Vo) to(sVc + V) CI. e. the change in volume is (V - Von . 

Thus, by integrating equation (4. 24) the pressure obtained is: 
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co2pG  
PV  - (P ) o  - 	 ;(V-Vo) - Gti V 	Vc 

(4. 24a) 

Since in further calculations the pressure in the gas chamber 

PV  is a differential pressure related to the hydrostatic pressure above 

the orifice (Patm + pL gh), the pressure can be written as: 

2cr 	PG  PV 	a = 	- 	i(V-Vo) - Gt.] V 	 (4. 25) 

c, Pressure in the bubble  

Since the bubble is assumed to be spherical, at any point on the 

interface there is a pressure difference compared to the pressure 

in the surrounding liquid, due to the surface tension, which is assumed 

to be equal to 2a- . a 

The pressure in the liquid at any point on the interface is given 

by the sum of the hydrostatic pressure (Patm + pL gh) and the inertia 

pressure, due to the motion of the liquid (equation 4. 17). 

The pressure in the bubble is assumed to be invariant across 

its surface, so the inertia effect, given by equation (4. 17), includes 

only the terms which are independent of A, for the pressure determina- 

tion. 

Cc mbining all these terms, the pressure in the bubble is given 

by: 

	

daa 	3 da 2 	• 	cr2 PB = Patm +p  Lgh + 	!a d--77 	(71V gsi 	a (4. 26) 
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Similarly, for further calculations, the pressure PB  is a diff-

erential pressure related to the hydrostatic pressure, thus: 

d2a 3 da 
PB = PL -c-1P 	(Tit 	g a  I + a (4. 27) 

It is convenient to disintegrate this equation in its pressure 

components, thus to find their effect for different dynamic conditions. 

II. The equation for the radial expansion of the bubble is found by 

substituting (4. 25) and (4. 27) in (4. 22), and rearranging: 

2  e 	o-  a 	2 	1 	1 	16Tr zKa3  da 2 4m-co pG 	3 	3 
- 	 - a 	a 	A a() 	(a - ao ) dam- ap

L o 	o p dt 	3aVc  pL  

2 
co PG 	3 da 2   

+ arc 	Gt - 	( ) 2a 'dt 	g  a p L 
(4. 28) 

For the ' Growing Stage' , s is identical to a, thus the last term 

in equation (4. 28) is replaced by g. This stage is terminated when 

FB = FI (equation 4. 19). 

For the Elongating Stage' , because the last term of (4. 28) 

includes the distance s, the radial expansion equation is solved simul-

taneously with the equation of motion (4.20). This stage is terminated 

when s= a+ao (for 1/4 in. orifice) 

s = a + 2ao (for 1/8 in. orifice). 

III. For the ' Waiting Stage' , the recovery of the pressure in the 
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gas chamber from its value at the detachment of the bubble (PVd) 

is given by an equation similar to (4. 24), with no flow out of the 

system: 
2P

o G PV  - PVC -  V Gt (4. 29) 

Using equation (4. 29) the ' waiting'time (t) is the time necessary 

for the recovery of pressure fromiPVd  ) to I(PV)o 
2o- 7  

0 

IV. The mean pressure in the gas chamber is given by integration 

of its instantaneous value over the entire period of the three stages 

of the bubbling process: 

T 	 t 	t „B 	o.) 

	

1 	
dt + 	P dt 

t  

	

= = 	P.vdT - 	 

	

mean tB+to.) 	V. T  (4. 30) 

eqn(4. 25) 	eqn. (4. 29) 
V. In conclusion it can be seen that a dynamic equation for the 

radial expansion of the bubble (equation 4. 28) has been derived from 

the dynamic pressure equations which represent the bubbling system. 

The rim thod applied for the solution of .this equation and the pressure 

equations, including all the necessary assumptions and evaluation of 

the parameters involved, is given in Appendix B. 

da d , 
	dt

2a 	ds Results have been obtained for values of a, — —2-s, dt' dt  
2 

 

dt r , PV  and PB (including also the different pressure components 

from equation 4. 22, 4. 25, 4. 27), all as a function of bubbling time, 
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and values of tw, T and Pmean for a whole cycle. 

4.2.4. Criterion for Coalescence of Bubbles at the Orifice  

When the bubble detaches from the orifice, it leaves behind a 

small bubble (usually of the diameter of the orifice size). This bubble 

might either grow immediately, resulting in a secondary bubble which 

coalesces with the first one, or be pushed back in the gas chamber 

by the liquid pressure, resulting in a certain amount of dumping through 

the orifice. The pressure in the liquid behind the bubble at the moment 

of detachment is found from equation (4. 17) by putting 9 = 

	

PLD 	d2a 	3a 2 	3a5 1 	d2s 11 	3a3 3a6 
= 

	

PL 	dt 	- 64s5.1 a  cl—P.  1, 2 + 16s3 4. 12886
1 

,da , a  3 9a2 - 9a5 	ds 2 1 1 	9a4 9a7 

dt 	- 2 - 85 	3265 .1 (dt) 1.2 + 1654  -r  64 s 7 J 

da ds 3 
dt dt 2 - 

9a6 

12856  - g(s-a) 	 (4. 31) 

Since the pressure in the small bubble which remains attached 

to the orifice is assumed to be equal to the pressure in the gas chamber 

(PV) (applying again the initial conditions for the growing of a bubble), 

this bubble continues to grow and coalesce with the detached bubble, 

provided its pressure is higher than the pressure in the liquid behind 

the detached bubble, that is: 
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P > 
V LD (4.32) 

4.2.5. Dimensionless Form of the Dynamic Equations  

A convenient way of presenting the dynamic equations is in a 

dimensionless form, by using the following non-dimensional variables: 

_ 	6- 	G  2/3 Vc 	c o c 

s- 
 S 

V
c 

 

P- 	P  P c L o 

 

  

tc 

Vc 

  

(4. 33) 

Fr = Froude Number - 

2 P c V 1/3  
ire = Weber Number - L o c  

Cr 

Thus the equations derived in (4. 22) and (4. 2. 3.) can be presented 

as follows: 

From equation 4.19 (in the form FB  = F1) 

 

d2‘  - 1.13 aTit;.  --2-  + 2. 13 (12  dt (4. 34) 
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From equation 4. 20  

a, 	 w 5 	2  , d s 	1  	- 1 - 	___ .aa 	a d a r- (0.s i -..-g + 0. 047 —) 	a dt 	 A3 	A6 Fr 	s 	..5 di 
0. 5+0. 188 %- + 0. 023 a  -7  - 	 s 

i D  

a5  1 da 2 a"7  1 d' - (1. 125 s  + 0. 282  A5 	di ) (—)- 	A4 	— + (0. 563 	+ 0. 141 	) - dt  )2 
s a 

6 
- (1. 5 - 0. 070 -) 1 da d  ,6 a dt Tt (4. 35)  

0- 
Gt  (4. 36)  

(4. 37)  

From equation 4. 25  

2 1 	4 PG ,3 „ 3 	PG 
.PAT We 	 - 3 Tr—p 	- a  o ) e o 	 PL 

From equation 4. 27  

d2a 3 da1 	2 1 = 	+— ()2 	+ B 	de 2 di 	Fr 	We a 

From equation 4. 28  

daa  2 
-dra  Vie 

1 ,1 	1 
) 	

.3 
- 16K Pr: a 2  kid- 	4 P 	1 	3 

a 	PI., a a ao 	
-- 

"I ( 
	

T P 	(a -la
o  ) 

0 L 

+ 
P 	a 3 1 15_1 2  

a 	2 S. 'cit)  
1 
Fr a (4. 38) 

From equation 4. 29  

 

P  IS - 	---g Gt - V Vd pL  
(4. 39) 

Since in this dimensionless form, there are still five independent 
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PG groups We, Fr,— , G, ao compared to the initial seven variables 
PL 

in the dimensions equations cr,  , pG
, p 

L
, G, Vc, ao 

c
o
, it is seen 

that there is not much benefit in solving these dimensionless equations. 

Nevertheless using such a procedure it is possible to find out the 

main groups which govern the present set of dynamic equations. 

While the equation of motion (4.35) is governed only by the Froude 

Number (Fr) which is a measure of the relative magnitude of dynamic 

and static pressures, the equation for the radial expansion of the 

bubble (4. 38) is governed, in addition to this group, also by the Weber 

Number (We) which is a measure of the relative magnitude of dynamic 

and surface tension pressures. 

4.3. Pressure Behind an Accelerating Bubble 

As soon as the bubble is detached from the orifice, it accelerates 

upwards in the liquid, resulting in a change of the liquid pressure in 

the vicinity of the orifice, which might have an appreciable effect in 

the dumping studies. 

This pressure behind the bubble along the line of motion can be 

calculated in a similar way as shown in (4. 2. 2). 

A simplified theory for a spherical bubble accelerating from 

rest, neglecting the effect of the plate on the value of the velocity 

potential, has been derived by Jameson and KupLerberg (43). 



dt2 gt Ud  

s = gt2  Udt 4- a + ao  

ds (4.41) 
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For the present investigation it is assumed that the bubble 

remains spherical even through this stage of the translating motion. 

Thus the velocity potential for the flow around the bubble is given 

by (4. 11. a). Using equations (4. 13), (4. 14), (4. 15) and (4. 16), the 

pressure change due to the liquid motion along the vertical path 

followed by the centre of the bubble (that is for r = s and 0 = ir) is: 

LIP I- r a3 a3 6ra3 3a6 a6 2a6 	3a6 	ds z  
PL 1 	3 - c  3 	c4 	 rzc4-  2r6  c 3 r3 - 2c6 	de 

-> 

a3 ra3  rah a6 
d2s 

(-7  +--" + 2r T  c 2r2c3  dt2  
(4.40) 

For a spherical bubble accelerating from rest, the acceleration 

is given approximately by 2g. The validity of this value has been 

shown by Walters and Davidson (27). Although in the present investi- 

gation the bubble at its detachment has an initial velocity Ud, in order 

to get an approximate dimensionless equation as derived in (43), it 

is assumed that the initial acceleration is still 2g. 

Assuming also that the detachment occurs at a distance a  

from the orifice, the acceleration, velocity and distance travelled 

by a bubble after a time t from the detachment are: 

das = 2g 
dt 
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Defining the dimensionless distance: 

s ao 	Udt ▪ gt z 
s = = 1 a a a a 

and substituting (4. 42) and (4. 41) in (4. 40) we find: 

2 6..P 	3._775 	5 	0. 5 0. 344 f l. 25 0. 0861,Ud 	A  aol  
p ga " 	- s-3 - _4 + -6 +1-3 - -6 	ga -K  a' s 

(4. 42) 

(4. 43) 

	

U
d  2 
	ao values of (— - 4 --) . This expression for ra P is subject to two 

	

ga 	a 

main sources of error, as mentioned above: a) the bubble tends to 

stop accelerating as its velocity increases; b) the bubble tends to 

deform quite rapidly from its assumed spherical shape. 

Walters and Davidson (27) have shown in their analysis for 

three dimensional bubbles accelerating from rest that an accelera-

tion of 2g is valid up to s =• 1. 65 approximately, although a tongue 

of liquid might begin to penetrate the rear of the bubble (bubble ceasing 

to remain spherical) at s =• 1. 36 approximately. So the shape of the 

curves beyond s = 1. 65 are slightly in doubt, and the values of nP pLga 

probably subside to zero rather more rapidly than shown in figure 

4.3. More details about the properties of such curves are given in 

(43). 

Some calculations of the pressure distribution along a horizontal 

line (i. e. perpendicular to the line of motion) found by introducing 

Figure 4. 3 shows the magnitude of the group 	for different 
PLga 
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FIG. 4.3.  

PRESSURE AT THE ORIFICE PLANE  
BEHIND THE LINE OF MOTION OF  
AN ACCELERATING SPHERICAL  

BUBBLE.  
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+ a for several small angles a, thus obtaining an equation similar 

to (4.40), have shown a negligible change compared to the values 

obtained along the line of motion. 

Mainly for comparison purposes the pressure behind an accel-

erating cylindrical (two dimensional) bubble has also been investigated. 

The velocity potential for the flow around a translating cylinder in 

an inviscid liquid is given by Lamb L40 , p, 76): 

ua2  cos Q T r (4. 44) 

Using the similar 'Method of Images' as described in Appendix 

A, the effect of the plate on the velocity potential is given by: 

ds 	a 2  a2r 	a4 	a4r , 4, 6 a6 r 

T dt = 	r 	c r + 	+ 	+ —4 I- 	-6 C 
o s c  c cr c 

(4. 45) 

Using the same procedure as for a spherical bubble, the pressure 

behind such a cylinder starting from rest (i. e. neglecting Ud  and 

ao and assuming an acceleration of g L26:1 ) : 

4P 	1.19
- 
 2. 38 0.58 O. 88 0.17 	0.25 

—7:77+ pLga 	 $ 	—6 (4.46) 

6P The values of 	are also shown in figure 4. 3 by a dotted pLga 

line. 
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CHAPTER 5 

DISCUSSION OF THE EXPERIMENTAL RESULTS AND COMPARISON  

TO THE PROPOSED MECHANISM  

5.1. General Description of Bubble Formation  

As has already been stated the investigation of the bubble forma-

tion was mainly in the range in which reasonable rate of dumping has 

occurred. 

Although it is quite clear that an increase in the orifice diameter 

leads to an increase in the rate of dumping, there is an upper limit 

to the orifice diameter for formation of stable bubbles, with a steady 

increase in the distortion of the bubble. It is most likely that for 

very large diameters, the mechanism of dumping (Chapter 6) is 

different, resulting in a continuous two-phase flow. Thus, to ensure 

a reasonable agreement with the proposed mechanism the largest 

orifice diameter used was 1/4 in. 

Similarly, it was found for the air-water system that dumping 

did not occur to any extent with 1/16 in. orifice. Reasonable dumping 

was first observed with 1/8 in. orifice, which was chosen as the 

small orifice diameter for the present investigation. 

Some typical photographs of the bubble formation in an air- 
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water system, for these two orifice diameters are given in figures 

5.1 - 5. 6. Throughout the different conditions it is possible to observe 

quite clearly the two different stages in the formation of the bubble, 

that is, the 'Growing Stage' and the 'Elongating Stage'. 

The trace observed on the left side of each photograph represents 

the relative pressure in the gas chamber, as was recorded simulta-

neously by the oscilloscope. 

In every case when a bubble detaches from the orifice, it leaves 

behind a small nucleus Which can form another bubble. Provided the 

pressure in the gas chamber is larger than the pressure in the liquid 

behind the bubble at detachment (equation 4. 32), another bubble starts 

to form and coalesce with the previous one. The secondary bubble 

might be very small compared to the first one (Figure 5.2, 5. 5, 5. 6) 

or slightly larger (Fig. 5. 3). Single bubble formation is seen clearly in 

figures 5. 1 and 5.4. 

The effect of pressure behind an accelerating bubble (equation 

4.43) might be seen in figure 5. 4. Although immediately after detach-

ment there is a tendency for the growing of the secondary bubble, the 

increase in liquid pressure tends to push back this small bubble, until 

it disappears from above the orifice. 

Some typical measurements of pressure fluctuations in the gas 

chamber as were recorded by the U. V. recorder, for both the systems 
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FIG 58  

a 	AIR-WATER 	ve 2250,c. GwEIP cc/sec 

b. AIR -WATER 	Vc 2250 cc. 	G • 24.3 cc/sec. 

C. AIR-WATER 
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d. AIR-ETHANOL NE.2250 cc. 	G-1.4 cc/scc.  

PRESSURE FLUCTUATIONS IN GAS CHAMBER BELOW A 
0.125 in. ORIFICE DIAMETER. 
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air-water and air-ethanol, are given in figures 5. 7 and 5. 8. 

5. 2. Effect of Gas Flow Rate and Geometrical Properties of the  

System (Air-Water System )  

The range of air flow rates investigated was 0.1 - 2. 0 liter/ 

min (i. e. 1. 7 - 33.3 cc/sec) for an 1/8 in. orifice and 0.4 - 8. 0 

liter/rain (i. e. 6. 7 - 133.3 cc/sec) for an 1/4 in. orifice. The 

corresponding linear gas velocities (- ) were 21 - 416 cm/sec for both o  

orifices. 

In each of the graphs shown in figures 5.9 - 5.12 the continuous 

lines represent the theoretical values as calculated from the equations 

derived in Chapter 4. 

The experimental results are represented by the respective 

points. Since the bubble frequency for different conditions was measured 

by three different methods as described in (3. 3. 3), the points represent 

usually an average of the values obtained. 

The dotted lines represent the distinction between single and 

double bubble formation as described by equation (4. 32). 

A steady increase in volume of the bubble with increase of gas 

flow rate and increase of gas chamber volume is observed, both for 

1/4 in. and 1/8  in. orifice diameters (Fig. 5. 9 - 5.10). As a general 

trend it agrees quite well with the previous work in this field. Referring 
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FIG. 5.11. 

EFFECT OF GAS FLOW RATE ON FREQUENCY  
OF BUBBLES. (D,=0.25 in.)  
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FIG. 512.  

EFFECT OF GAS FLOW RATE ON FREQUENCY  
OF BUBBLES. (D,=0.125 in.)  
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FIG. 5.13.  

EFFECT OF GAS FLOW RATE ON VOLUME OF  
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to (2. 11) the main part of the experiments were indeed carried out 

in the 'slowly increasing volume region'. Values of Reynolds Number 

given in the literature for this region, corresponds to 7. 5 - 37. 5 

cc/sec for 1/8 in. and 15 - 75 cc/sec for 1/4 in. 

For higher gas flow rates at a 1/4 in. orifice, the frequency 

is observed to increase asymptotically to a maximum value, which 

is again well in agreement with previous work, being mainly in the 

'constant frequency region' (Fig. 5. 11). 

5.2.1. Bubbling at a 1/4 in. Orifice  

For very low air flow rates (up to about 20 cc/sec)there is a 

very good agreement to the theoretical equations, shown by Fig. 5. 9 

and 5.11. Above this range it seems that the gas chamber volume 

has a more complex effect, than purely increasing the volume of the 

individual bubbles. 

It has been observed, either by photographs or by recorded 

pressure fluctuations (Fig. 5. 7a) that for moderate flow rates in the 

range of 30 - 70 cc/sec and for low gas chamber volumes up to about 

1500 cc, there is a periodical oscillation of bubble formation, resulting 

either in smaller bubbles with a higher frequency or larger bubbles 

with a lower frequency. Such type of behaviour has been observed 

also by Davidson and Amick (19). For larger gas chamber volumes 
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this effect has disappeared. A decrease in volume of the gas chamber 

decreases the volume of the individual bubble, that is increases the 

bubbling frequency. It might be possible that the frequency of the 

bubbles becomes so high that the assumption of the liquid in the 

vicinity of the orifice being at rest is invalid and the different states 

of liquid motion might cause the alternative behaviour, as stated also 

by Davidson and Amick (19). 

For a consistent representation of the experimental results, 

the values used are for the smaller bubbles with higher frequency. 

Thus for a low gas chamber volume of this range (500 cc), the agree-

ment with the theory becomes quite good, while a discrepancy exists 

with a higher volume (1500 cc), as seen in Fig. 5.11. 

It is worth observing the two experimental points A and B, re-

ferring to a gas chamber volume of 1500 cc (Fig. 5. 11). Calculating 

an average frequency due to the two possible frequencies of bubbling, 

the respective points A' and B' fit well with the theoretical line. 

The discrepancies observed for very large gas chamber volumes 

or for higher air flow rates (above 70 cc/sec), where the volume of 

the bubble is larger, is due either to the formation of a secondary 

bubble represented by the dotted line or to the limitation of the theory 

due to its initial assumptions, or to the both effects. The degree of 

the discrepancy depends on the magnitude of such a secondary bubble 



- 85 - 

or the rate of distortion of the bubble from a spherical shape. 

The extremely good agreement with the theory for certain 

conditions in the lower range of gas flow rate can be seen in the rate 

of growth of the bubble (Fig. 5. 14) and in the pressure change in the 

gas chamber (Fig. 5. 15a). As can be seen in Fig. 5. 1 which shows 

the bubble formation for the above conditions, the corresponding 

bubble is not completely spherical. To get a better value for the 

average radius during its growth (Fig. 5. 14) the bubble was treated 

as a spheroid, thus the diameter of an equi-volume sphere was cal-

culated from: 

Tr - 3 	Tr 2 — D 	= 
6 B 6 x x 

(5.1) 

Where a , b are the axis of the spheroid. x x 

The discrepancy in the values of the pressure in the gas chamber 

compared to the theory, for the 'waiting stage', as shown in fig. 5. 15a, 

can be due to the changes of chamber volume which are not considered 

in the theoretical equations. Immediately after the detachment of the 

bubble, the remaining small bubble which is attached to the orifice 

tends to grow, thus the system (bubble and chamber) tends to expand, 

resulting in a lower increase in pressure compared to the theory. 

Once the pressure behind the accelerating bubble is large enough to 

push this small bubble back through the orifice, with a possibility of 
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FIG. 5.14.  

RADIUS AND VERTICAL DISTANCE OF CENTRE  
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FIG. 5.17.  

GAS CHAMBER PRESSURE FOR A CYCLE  
OF BUBBLE FORMATION. ( D. =0.125in.)  
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dumping, the system tends to contract, resulting in a larger increase 

in pressure. When the next bubble starts forming, the system tends 

to expand, resulting again in a lower increase in pressure compared 

to the theory. 

The presence of a small secondary bubble can be seen in fig. 

5. 15b. Although for the initial stages there is quite a good agreement 

for the pressure change in the gas chamber, the pressure continues 

to decrease due to the secondary bubble. 

5.2.2. Bubbling at an 1/8  in. Orifice  

The general trend of behaviour is similar to bubbling at the 

1/4 in. orifice (Fig. 5. 10). 

Although no experiments were carried out for gas chamber vol-

umes lower than 2250 cc, using Davidson and Amick (19) results for 

this range, there is a good agreement with the present theory. Also 

the criterion between 'single' and 'pair' bubble formation is reasonably 

in agreement. This criterion is for much lower gas flow rates and 

gas chamber volumes, compared to bubbles at a. 1/4  in. orifice. 

Since the secondary bubble which might form is usually quite 

small and the bubbles have in general a lower volume, the discrepancy 

of the results for this range is in general lower than in the case of 

bubbling at a: 1/4  in. orifice. 
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Comparing the gas chamber volume effect on the volume of 

bubbles formed at an 1/8 in. orifice (Fig. 5. 10) to those formed at 

a 1/4 in. orifice (Fig. 5. 9) it can be seen that for very small chamber 

volumes (up to 500 cc. ) there is no difference between the bubbles 

volume, for the range of flow rates investigated (the range for 1/8 

in. orifice). The difference starts to be more significant for chamber 

volumes above 800 cc. , resulting in a larger volume for bubbles 

formed at a 1/4  in. orifice. 

Those results are quite well in agreement with Davidson and 

Solidler (17) theory for bubbling under 'constant flow rate' condition, 

for which the gas chamber volume effect is eliminated (one might 

postulate an infinite small gas chamber volume). Some experimental 

results which were carried out for 'constant flow rate' conditions, 

and the calculated values from Davidson and Schuler theory are shown 

in fig. 5.13. Comparison to fig. 5. 9 and 5.10 shows the agreement 

with the behaviour of the small chamber volumes. 

There is no considerable effect of gas chamber volumes above 

1500 cc. on bubble volume or frequency for bubbles formed at an 1/8 

in. orifice. An increase in gas flow rate has only a very slight 

effect of increasing the volume of the bubble, resulting in a steady 

increase in their frequency, probably to a maximum value of about 

17 bubbles sec, as has been observed by Calderbank (24). 
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The agreement with the theory can be seen also for the growth 

rate of a bubble (Fig. 5.16) using the same method as in (5.2. 1), 

or pressure change in the gas chamber (Fig. 5. 17). 

5. 3. Effect of Physical Properties of the System 

The air-ethanol system was investigated under the same condi-

tions as the air-water system, using the same range of gas flow rates. 

The experimental results compared to the theoretical ones are given 

in figures 5.18 and 5.19. 

In general it has been observed the same trend of behaviour 

as for the air-water system, with a similar degree of discrepancy 

between the theoretical and experimental results. 

The theoretical values of bubble volumes are shown in comparison 

to some of the air-water systems. It can be seen that all over the 

range investigated and under similar conditions the volume of the 

bubble is larger for the air-water system. 

The dotted line represents again the distinction between single 

and double bubble formation as described by equation (4. 32). Com-

paring to Fig. 5. 9 and 5.10, it can be seen that although the appearance 

of a secondary bubble for the air-ethanol system is for slightly higher 

gas flow rates or slightly larger chamber volumes, the volume of the 

bubble for these conditions is slightly lower than that for the air-water 

system. 
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FIG. 5.18.  

EFFECT OF GAS FLOW RATE ON VOLUME  
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FIG. 5.19.  

EFFECT OF GAS FLOW RATE ON VOLUME  
OF BUBBLE FOR AIR-ETHANOL SYSTEM.  
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5.4. Analysis of the Theoretical Equations  

Analysis of several equations derived in (4. 2. 3) and (4. 2. 5) 

can explain the general trend of behaviour of a bubbling system as 

observed in (5. 1), (5. 2) and (5. 3), by investigating the effects of 

each of the components involved in the pressure equations. Some 

examples of such an analysis for the volume of the bubbles is given 

below. 

5.4. 1. Effect of Gas Chamber Volume (Fig. 5. 20) 

Considering the three components of the pressure in the bubble 

(equation 4. 27) it can be seen that the effect of chamber volume on 

2cr — and pLgs is negligible compared to its effect on the inertia term a 
d2a 3 da 

P L La cTtr 	(c7)  

As the bubble starts growing the flow rate through the orifice 

is smaller compared to the mean gas flow rate in the chamber (accor-

ding to the assumption that tl.e initial growth rate is zero). Thus for 

a small chamber volume the pressure in the chamber will increase 

quicker than for a large chamber volume. So a slight increase in the 

flow rate through the orifice is expected for the small chamber volume, 

compared to the large one, resulting in a higher value for the inertia 

term. 

As soon as the flow rate through the orifice exceeds the value 
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of the mean flow rate in the chamber, the pressure in the small 

chamber decreases quicker than in the large chamber. So a decrease 

in flow rate through the orifice (pressure term KpGuoz ) is expected 

for the small chamber, resulting in a lower value of the inertia term. 

Horn the pLgs term it can be seen that the velocity of rise of 

the bubble is lower for a large chamber, thus the period of bubbling 

(for moving a distance equal to ao ) is longer. 

Both factors of longer bubbling time and higher flow rate through 

the orifice tend to increase the bubble volume formed above a large 

chamber. 

5.4.2. Effect of Gas Flow Rate (Fig. 5. 21)  

Considering again the components of the pressure (equation 

4.27) it can be seen that the effect of gas flow rate is also mainly on 

d2a. 	3 da 2 .1 
the inertia term p i,  ,*a--d—t-2 + 2 (c-1 ) • 

An increase in the gas flow rate in the chamber tends to increase 

the pressure in the chamber, thus a higher gas flow rate is expected 

through the orifice, resulting in a higher value for the inertia term. 

Since the bubbling time is nearly the same, this higher gas 

flow rate through the orifice causes the formation of a larger bubble 

volume for the high gas flow rate. 
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5.4.3. Effect of Physical Properties of the System (Fig. 5. 22) 

Using the system air-ethanol in comparison to the air-water 

system, and considering again the pressure components (equation 

4.27) it can be seen that the stronger effect is in the surface tension 

term(-). 

The difference in pLgs terms which is nearly constant, is mainly 

due to the density difference between water and ethanol. Thus the 

velocity of rise is nearly the same, resulting in nearly the same 

bubbling time. 

Considering the dimensionless equation for the radial expansion 

of the bubble (equation 4. 38), provided the only variable is the surface 

tension, the inertia term is inversely proportional to the Weber 

Number, i. e. it is proportional to the ratio of surface tension pressure 

2o- (—a ) and dynamic pressure (pu z ). Since the velocity of rise is 

2o- nearly the same, and since the — ratio is larger than pL uz ratio, a a 
1 

e higher value of Vtr — is expected for the air-water system, resulting 

in a higher value for the inertia term. 

A higher gas flow rate through the orifice is observed for the 

air-water system, resulting in a larger bubble volume. 
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5.5. Formation of Bubbles on a Sieve Tray 

5.5.1. Behaviour of a Sieve Tray 

As described in (2. 2) it is convenient to consider the bubble 

formation on a sieve tray as a similar process to the bubbling at 

a single orifice. Thus in addition to most of the factors which might 

affect bubble formation at an orifice, it is necessary to take into 

consideration also the plate geometry, for an accurate analysis of 

the bubble formation on a sieve tray. 

A limited number of experiments were carried out with two 

small sieve trays, 0. 25 in. and 0.125 in. diameter of perforations, 

for which the distance between each two neighbouring holes was large 

enough to eliminate to a certain extent the interaction of bubbles 

during formation. 

The general trend of behaviour of those trays, working in the 

'dumping range' agreequite well with the work published in this field. 

As stated by Chan and Prince (15) the pressure in the gas chamber 

underneath the tray fluctuates in a periodic manner. Since these pres-

sure fluctuations are responsible for the flow of liquid or gas through 

the holes, for a stable operation, their amplitude is the minimum 

required to obtain the overall fluid flow through the holes. Thus, an 

increase in gas flow rate or an increase in the number of holes both 

have the similar effect of decreasing the amplitude of the pressure 
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fluctuations. (Since the random formation of bubbles one may postu-

late for an infinite number of holes that at any instant the nett effect 

of pressure variations under the individual holes is zero. ) 

For the present investigation figure 5. 23 shows the effect of 

number of holes and figure 5. 24 shows the effect of gas flow rate 

on pressure fluctuations. A similar effect of the gas flow rate is 

reported also by Davies and Porter (44). 

For a limited number of holes, an increase in gas flow rate 

tends to increase the frequency of pressure fluctuations, as seen in 

figures 5.25 and 5.26. An increase in the number of holes has no 

appreciable effect for 1/8 in. holes (Fig. 5. 26), but tends to increase 

the pressure fluctuations for 1/4  in. holes (Fig. 5. 25), as reported 

also by Chan and Prince (15). Nevertheless the frequency reaches a 

constant value, already for a limited number of holes. 

For a constant volume of gas chamber it seems that there is 

almost no effect of the hole diameter on the maximum frequency, 

provided the gas flow rate is high enough to ensure bubbling through 

any of the perforations. 

However the volume of the gas chamber has an appreciable 

effect on the frequency. Although this effect has not been studied 

in the present investigation, Chan and Prince (15) have derived a 

-0.50 theoretical model for which the frequency is dependent upon Vc 	, 
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which is well in agreement with Brown's correlation (15) which shows 

a dependence of Vc
-0. 46 

5.5.2. Simplified Model for Bubble Formation 

Although there is a random distribution in the number of holes 

bubbling per unit time for a sieve tray working in the 'dumping range', 

there are several possible models for visualising such a behaviour, 

some of which have been described also by Prince and Chan (14, 15). 

The most useful theoretical model for determining the behaviour 

of such a sieve tray might be to isolate one arbitrary orifice in the 

tray and to study its behaviour in a similar way as for single orifice 

studies. The difference in this case, compared to a single orifice 

lies in the fact that the gas flow rate supplied to such an arbitrary 

orifice and the pressure under the orifice, both vary periodically, 

being affected by the overall behaviour of the other orifices in the tray. 

Because the complexity of the equations necessary to describe 

such a behaviour, this model has been abandoned for the present 

investigation. 

A much more simplified model is to assume an identical beha-

viour of the system for each cycle of the pressure fluctuations in the 

gas chamber. Thus, if n is the mean frequency of bubbles formed and 

f is the frequency of pressure fluctuations, a value 13 might be defined 
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as: 

13  = f 	 (5.2) 

(One might regard this value as the number of orifices bubbling for 

each cycle. ) 

Further postulating that the bubbles formed are identical and 

there is no interaction between neighbouring bubbles during their 

formation, it is possible to assume that the gas chamber is composed 
V 

of a series of p chambers; thus each chamber volume becomes T3  

and the gas flow rate in each of them is . 

Therefore it is assumed that the mean volume of the bubbles is 

identical to the volume of a bubble formed above a gas chamber of 
Vc volume — , while the gas flow rate is  

13  
Although such a simple model might represent the actual be- 

haviour of a sieve tray provided the number of the holes and the gas 

flow rate are large enough, a fair agreement with the theory for 

single orifice behaviour has been obtained even for the small number 

of holes in the present investigation. 

Figures 5.25 and 5.26 show the average number of bubbles formed 

per unit time, obtained experimentally. 

Tables 5.1 and 5.2 show the experimental average volume of 

bubbles (gas flow rate/frequency) compared to a theoretical average 



- 109 - 

TABLE 5. 1. Mean Volume of Bubbles Formed on a Sieve Tray 

(0. 125 in. perforations) 

Gas flow rate 
(cc/sec) 

Number of 
holes on tray P 

Theoretical 	Experimental 
Volume (cc) 	Volume (cc) 

5.0 1 1.0 2.0 	2.4 
5.0 4 1.1 1.9 2.1 
5.0 8 1.4 1.7 2.0 
5.0 12 1.4 	1.7 1.9 
5. 0 16 1. 3 	1. 7 1. 6 
5. 0 19 1. 6 	1, 6 1.2 

8.3 1 1.0 	2.1 2.2 
8.3 4 1.1 	2.0 2.6 
8.3 8 1.4 	1.8 1.9 
8.3 12 1.6 	1.7 1.7 
8.3 16 1.7 	1.6 1. 4 
8. 3 19 1. 6 1. 7 1. 6 

16.7 1 1.0 2.3 2.6 
16.7 4 1. 5 1. 9 1. 9 
16.7 8 2.1 1.6 1.3 
16.7 12 2. 0 1. 6 1. 5 
16.7 16 2. 9 1. 2 1. 1 
16.7 19 2. 4 1. 4 1. 3 

33.2 19 6. 4 0. 7 0. 7 
51.5 19 7.8 0.6 0.9 
86.7 19 8.0 0.8 1.4 
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TABLE 5. 2. Mean Volume of Bubbles Formed on a Sieve Tray 

(0.25. in. perforations) 

Gas flow rate 

(cc/sec) 

Number of 

holes on tray 

t 	Theoretical 
P 

I 	Volume 	(cc) 

Experimental 

Volume (cc) 

8.3 1 1.0 3.3 2.7 

8. 3 3 1. 0 3. 3 2. 1 

8.3 5 1.1 2.8 1.6 

8.3 7 2.0 1.3 0.7 

16.7 1 1.0 4.0 4.0 

16.7 3 1. 5 2. 5 2. 1 

16.7 5 1.9 2.0 1.7 

16.7 7 2.4 1.3 1.2 

33.3 1 1. 0 5. 1 6. 1 

33.3 3 1.8 2.7 3.0 

33.3 5 3.0 1.5 1.7 

33.3 7 4.8 0.9 1.0 

66.7 7 5.1 1.2 1.7 



volume calculat©d by the method described above. 

Since it is not possible to derive any simple method for a theo-

retical prediction of 13, it has been found rather difficult to extend 

this model for further investigation of sieve tray behaviour. 

5. 6. Mean Pressure in Gas Chamber  

The total plate pressure drop on a plate (liT ) can logically be  

split between that due to liquid on the plate (h1 ) and that due to passage 

of vapour through the plate (hv ): 

h
T 

= h
1 

 by 
	

(5. 3) 

If ZF,  is the foam height and pF,  its relative density, some workers 

(2, 3) have calculated hi  by assuming that it is equal to pFZr. How-

ever, others (6, 46) have found that usually h1  < ZFpr. Bernard (46) 

has suggested that the discrepancy may be due to a pressure drop 

in the foam equivalent to the change of momentum of the high velocity 

vapour emerging from the sieve tray perforations. 

Similarly, previous workers have assumed that hv  was simply 

equivalent to the pressure drop due to the flow of a same vapour rate 

through a dry plate (hdp), while others (1, 2, 3, 4) have found that the 

term h
v 

was always greater than the dry plate pressure drop by a 

small amount termed the 'residual head' (hr ) • 

hv = hdp + hr 
	 (5.4) 
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Those measurements were carried out for gas velocities above or 

at a critical value, which is the minimum gas flow rate to prevent 

any dun ping through the perforations. 

Mayfield et al. (1) have found that hr  was about 0. 1 - 0. 2 in. 

water and was considered to be within the accuracy of the measure-

ments. Arnold et al. (2) have found a larger value of 0. 1 - 0. 5 in. 

water which was about 100/0 of the total pressure drop. Hunt et al. 

(3) have found values of approximately 0. 3 - 0. 5 in. assuming that 

viscosity, surface tension, density and hydrostatic head have no 

appreciable effect on hr. McAllister et al. (4) have found that an 

increase in gas flow rate has no effect on the ratio of hr  for thin 
dp 

plates, whereas the ratio decreases for thick plates. 

Some of the discrepancies in the values of hr calculated by 

different workers may be due to the momentum effect, as stated 

above, which varies for the different conditions investigated and 

has been neglected by those workers. However, it seems that such 

a residual pressure drop is mainly a function of different bubbling 

conditions, as is shown in the present investigation. 

It is reasonable to assume for the present studies which are 

in the 'dumping range', that the gas flow rates used are low enough 

to neglect momentum effect s, thus hl  is identical to the hydrostatic 

pressure above the orifice. Referring to equation (5. 3) the value of 
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hv 
is therefore identical to the mean pressure in the gas chamber 

(P 	) as calculated by equation (4.30), thus the magnitude of h mean 	 r 

is given by the difference between Pmean and  hdp 
(equation 5. 4). 

Figures 5.27 and 5.28 show the theoretical values of Pmean 

(including respective experimental values) in comparison to the dry 

pressure drop for 1/4  in. and 1/8 in. orifice, whereas figure 5.29 

shows the same type of comparison for the sieve trays investigated 

(only experimental values). 

An increase in the gas flow rate tends to increase the mean 

pressure; however for a 1/4 in. orifice a minimum Pmean has been 

observed in the range of low gas flow rates. This minimum tends to 

disappear as the chamber volume increases. The mean pressure 

also increases with the increase in chamber volume; however for a 

1/4 in. orifice there is a 'critical' chamber volume for which a mini-

mum Pmean has been observed in the range of low gas flow rates. 

These conclusions can be explained by a similar analysis as in (5.4), 

by studying the effect of the various parameters on the value of pres-

sure in gas chamber at the moment of bubble detachment and the ratio 

between bubbling and waiting time, which are the main factors in 

determining the ultimate value of the mean pressure in the system 

(equation (4.30). 

For a 1/4 in. orifice, the mean value is observed to be lower 



5000 

2250 

500 

/Ethanol 
(2250) 

I 
100 	120 	140 

AIR FLOW RATE 
, 	(cc/sec) 

a 
a 
V 

-9- 

1 

-2 

-3 

-4 

0 

PR
E
S
S

U
R

E
 

- 114- 
FIG. 5.27.  

EFFECT OF GAS FLOW RATE ON MEAN PRESSURE  

IN THE GAS CHAMBER. (Dc =0.25in.)  
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than the hydrostatic pressure, for low enough gas flow rates. This 

behaviour might be analysed as follows: 

As the bubble starts growing its initial internal pressure is 

2a- ••••• (4. 2. 3). Comparing the different pressure terms affecting the ao 

(-plags) decrease gradually as the bubble expands, whereas 

dza .1.  3 
ide
da l y usually increases, reaches a maximum and PL a ---d72 	'  

ultimately decreases. This general type of behaviour can be seen 

in Fig. 5. 20 - 5, 22. Thus, although an overall increase in the pres-

sure in the bubble is expected at the first stages of the growing bubble, 

an overall decrease in its pressure (compared to the initial conditions) 

is expected before its detachment. This decrease might be quite 

o- sharp, resulting in a value considerably below 2 — . In case of 1/4 a 
0 

in. orifice this value might be even below zero (i. e. below hydro- 

static pressure) . Since the pressure in the gas chamber is related 

to the pressure in the bubble (by equation 4. 22) and since the pressure 

drop in the orifice is comparatively small at the last stages of bubble 

growth, the ultimate pressure in the gas chamber might also be quite 

low, that is below zero ti. e. below hydrostatic pressure for a 1/4 

in. orifice. After the detachment of the bubble, the pressure in the 

gas chamber increases gradually, according to equation (4.29). 

Typical examples of change of pressure in gas chamber for the complete 

2 a- pressure in the bubble (equation 4.26) it can be seen that (—) and a 



- 118 - 

'bubbling and waiting' cycle can be seen in Figures 5.15 and 5.17. 

Evaluating the mean pressure in the chamber for such a cycle, it is 

2 cr obvious that its value is much lower than — and might be even below ao 
zero. 

Since hdp is higher than the hydrostatic pressure, the 'residual 

head' might have negative values, as observed both for a 1/4 in. single 

orifice and sieve tray, for relative low gas flow rates (Fig. 5. 27, 

5.29). However the difference between Pmean and  hdp decreases 

gradually with the increase in gas flow rate, till the value of hr  

becomes positive, corresponding to the observations of other workers 

for higher gas flow rates. For an 1/8 in. single orifice or sieve tray, 

hr has a positive value from very low flow rates (Fig. 5.28, 5. 29). 

It is clear that the magnitude of the mean pressure is an impor-

tant variable which must be taken into account in the dumping studies. 
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CHAPTER 6 

MECHANISM OF DUMPING 

Since the dumping through performations of a sieve tray is only 

a stage in the whole process of the tray performance, it is clear 

that some of the factors which affect bubble formation also affect the 

dumping, but in quite different ways. Although the pressure effects 

involved in the system, mainly the pressure in the gas chamber and 

pressure in the liquid behind a rising bubble, are the main factors 

responsible for dumping, there are some other factors which may 

increase the rate of dumping considerably, but are not accounted for 

the present invectigation. 

One of those factors which equally apply to dumping through a 

single orifice or through a sieve tray is the 'Induced Dumping'. In 

a normal distillation process, the vapour ascending to a higher plate 

is at a higher temperature than the liquid on the plate. Since the 

plate temperature is assumed to be equal to that of the liquid on it, 

some of the vapour might c ondense and weep back through the perfor-

ations (47). Obviously this phenomenon cannot be observed when 

dealing with an air-water simulating system, operating at room 

temperature. 

Other factors neglected which apply mainly to a sieve tray are 



- 120 - 

due to the profile of the hydrostatic head across the tray. Oscillations 

in the liquid on the tray, which change the hydrostatic head in a wavy 

way, cause a periodic dumping of the liquid in the same side of the 

tray as the crest of the wave (4, 14). 

Even when the oscillations are not large the hydrostatic pressure 

drop profile on a tray indicates a higher pressure drop near the column 

wall than at the column centre, resulting in a continuous dumping 

through some of the perforations near the wall and known as the 'wall 

effect' (3, 4, 44). 

In addition to those assumptions, also all the assumptions 

which have been described in Chapter 4, still hold for the analysis 

presented below. 

No theoretical attempt has been made in this investigation at 

explaining the mechanism of dumping through very large orifice dia-

meters, for which a continuous two phase flow is expected in the 

'dumping region'. 

6. 1. Mechanism of Dumping through a Single Orifice  

6.1. 1. The Idealised Stages for the Dumping Process  

The 'Waiting Stage' described in (4. 2. 1) might be divided into 

three sub-stages which determine the dumping process (Figure 6. 1): 

a. 'Drop Formation Stage': (A) is a 'stable bridging' situation 
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obtained as the bubble is detached from the orifice. Provided the 

pressure in the liquid above the orifice exceeds the pressure in the 

gas chamber, the liquid tends to be pushed through the orifice, forming 

an 'unstable bridging' condition (B), which might develop in the forma-

tion of a pendant drop (C). 

b. 'Dumping Stage': The pendant drop (C) increases in size, 

reaching a condition (D) from which the drop tends to elongate, resul-

ting in a thin stream of liquid dumping through the orifice (E). Once 

the liquid starts dumping, it continues to do so till the increasing 

pressure in the gas chamber exceeds the liquid pressure. Another 

bridging condition is obtained (F). 

c. 'Recovery Stage': The pressure in the gas chamber continues 

to increase till another bubble starts forming (G). Condition (G) 

is equivalent to the initiation of the 'Growing Stage' as described in 

(4.2.1). 

6.2.1. Criterion for Dumping through an Orifice  

It is most convenient to derive a criterion for dumping emerging 

from a drop formation equation. 

The fundamental equation for a pendant drop shape is (Adamson 

14 	, p. 14): 

(6. 1) 
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atm 

Fig, 6. 2: Schematic Model of 

Drop Formation  

where R
1 
 and R2 are the principal radii of curvature of the drop. 

From a balance of pressures acting on such a drop (Fig. 6. 2), 

it is obvious that it tends to grow provided: 

1 	1 (Patm + pLgh) + 	gd + p gy > P + cr(— + 	) v RI  R2.  (6. 2) 

For the present situation in which formation of the drop is 

followed by the detachment of the bubble from the orifice, there is 

an additional pressure gradient ( 6 P) due to the acceleration of the 

bubble (equation 4. 43). The effect of the inertia of the liquid pushed 

through the orifice is neglected for the present criterion. Following 

the same treatment as in (4. 2. 3) that is relating the pressures to 

(Patm + pL gh) , the criterion for a drop formation becomes: 

4 P + p gd + p gy > P + cr(— + —) v R R 
1 	2 

(6. 3) 
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The shape of a drop (i. e. values of R1, R?  and y) can be deter-

mined by a numerical solution of equation (6. 1), assuming that its 

radius of curvature at the vertex is equal to the radius of the orifice 

(48). However, Zelfel (49) has shown that for pressure calculations 

it is much more convenient to assume a hemispherical final shape 

for the drop (radius equal to that of the orifice), thus the deviation 

from this shape can be taken into account using a correction factor 

k which depends on orifice diameter and physical properties of the 

liquid. 

Using the same assumptions the final values for equation (6. 3) 

are: 
2 	3 
3 Trap 	2 

pL
gy=kpL  g— Tr  r- - 3  a  o  kpL  g 

ao 
 

(6.4) 
1 	1 	2v 

) = 
R1 R ao 2 

From equation (6. 3) the criterion for dumping through an orifice 

is: 

2cr 
P 	pLg (d 	aok) > Pv  + —a

0  
(6.5) 

6. 2. Behaviour of a Single Orifice System-Theoretical Analysis  

The parameters investigated in present studies might affect the 

complex periodic behaviour of any system, in particular the implem-

entation of all or a part of the conditions described in (6. 1. 1. ). An 
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analysis based on some of the equations derived in Chapter 4 and the 

criterion derived in (6. 1. 2) is given below. 

The initial conditions for such an analysis are the conditions 

at the termination of the 'Elongating Stage' as derived in Chapter 4, 

that is the relative magnitude of the gas chamber pressure (Pv.) and 

the liquid pressure behind the bubble (PL) at the moment of bubble 

detachment. 

I. PL  > P 

The gas-liquid interface tends to be pushed downw through the 

orifice (B). The gas chamber pressure increases due to nett inflow 

of gas (equation 4.29). The liquid pressure at the interface increases 

due to the both effects of the accelerating bubble (equation 4.43) and 

drop formation (equation 6. 2). It is assumed that the 'drop formation' 

period, that is the time necessary for the interface to move from 

condition (A) to (C), is equal to tr. 

a. Provided after a time t = t the relative pressure changes 

do not invert the conditions (i. e. PL > PV), a pendant drop (C) is 

formed. At this stage there are two possibilities: 

la. If equation (6. 5) can be satisfied, the pendant drop increases 

in size (D) and the process of dumping continues as described in 

(6. 1. 1), resulting in a 'liquid stream' dumping. This condition. is 

represented by Fig. 6. 3 which includes a typical series of photographs 
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taken from the 'two dimensional' apparatus, showing the different 

stages involved in a complete 'bubbling + dumping' cycle. 

2a. If equation (6. 5) cannot be satisfied, the pendant drop 

remains somewhere between conditions (C) and (D) till the gas chamber 

pressure increases to such an extent that the gas-liquid interface is 

pushed up through the orifice. However, in this period the neck 

which connects the pendant drop to the orifice collapses !radius of 

curvature increases to infinity, thus no surface tension effect) , re-

sulting in 'single drop' dumping. This conditions is represented by 

Fig. 6.4 which includes again a typical series of photographs taken 

from the 'two dimensional' apparatus. 

b. Provided after a short enough time the relative pressure 

changes invert the conditions (i. e. PV 
 > PL, thus a pendant drop 

could not have been formed) the gas-liquid interface which has been 

meanwhile pushed downwards somewhere between (B) and (C) is imme-

diately pushed upwards to a condition similar to (A), resulting in the 

formation of another bubble, with no dumping through the orifice. 

II. P > P V L 

Another bubble starts forming immediately after the detachment 

of the previous one, as described in (4.2.4). Although no theoretical 

equations have been derived for the estimation of the pressures P, 



- 129 - 

and P
L 

at the moment of detachment of such a bubble, there are again 

several possibilities, according to their relative magnitude at this 

stage. 

c. Provided still Pv> PL, the process of coalescence might 

repeat, resulting in a formation of a group of three bubbles, as 

described in (2.1.1.d). 

d. Provided PL  > PST, the gas-liquid interface tends to be 

pushed down through the orifice (B). One of the stages described 

above as a. or b. might occur. 

6.3. Application of the Theoretical Analysis - Comparison to  

Experimental Results  

As has been shown in (6. 2), for any dumping prediction it is 

necessary to assess the 'drop formation' time (tF). This might be 

regarded as an instability problem, of calcuating the necessary time 

for the gas-liquid interface to move from condition (A) to (C), under 

various external conditions applied. No attempt has been made at 

such a treatment in the present investigation. However, some appro-

ximate estimations are possible for relative magnitude of the dumping 

rates under various conditions studied in the present investigation. 
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6.3.1. Effect of Orifice Diameter  

For the present investigation, studying the performance of 

1/4 in. and 1/8 in. orifice diameters, drilled in a plate 1. 6 mm. 

thick, and using values of k as given by Zelfel (49), the values of the 

pressure terms in equation (6. 5) for air-water system are: 

j.  2 	.61, 	2o- 
k 	Lg (d  1-  3 a ' (rnmH2  0) ao  (mm H2

0) 

1/8 in. orifice 1. 05 2.  7 9.2 

1/4 in. orifice 1. 08 3.  9 4. 6 

From equation (6. 5), dumping occurs provided: 

1/8 in. orif ice: Pv - /IP < - 6. 5 (mm H20) 

1/4 in. orifice: Pv ,- 	< -O. 7 ( mm. H20) 

For a large gas chamber volume, rate of change in PV  is small, 

so the time for 'drop formation' affects only the value of P. For a 

small gas chamber volume, rate of change in P is large, so tF V 
becomes more important in estimating the minimum conditions to 

assure dumping. 

Figure 6. 5 shows the change in pressures PV and A P for the 

beginning of the 'Waiting Stage' (i. e. after bubble detachment) for 

1/4 in. and 1/8 in. orifice, under similar operating conditions. 

For 1/4  in. orifice P << - 0. 7 mm H20, thus a large dumping 
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rate is expected even without considering the AP effect. This might 

be regarded as a condition described as (la) in (6. 2). Experimentally, 

it has been found (Fig. 6. 6) : L = 172 cc/min. 

For 1/8 in. orifice Pv  > -6. 5 mm H20. Adding the AP effect 

it can be seen that (Pv  - t P) < -6.5 mm H20, provided t < 12 m sec. 

Since the curve for AP tends to subside rather more rapidly, as 

stated in (4. 3), t must be even smaller. Although the value of t 

has not been calculated, it is most likely that the estimated time t 

is too short for initiation of a 'stream' dumping. It is more likely 

to regard this case as the condition (2a) described in (6. 2), resulting 

in 'single drops' dumping. Experimentally it has been found (Fig. 

6. 6 : L = 27 cc/min. 

Following similar type of analysis it can be observed that a 

decrease in orifice diameter has a sharp effect in decreasing the 

dumping rate. In terms of linear gas velocity through the orifice 

G (— ) it can be seen (Fig. 6. 6) that for low gas velocities an increase 
Ao  

in the diameter of the orifice has a sharp effect of increasing the 

dumping rate, however this effect tends to become gradually less 

significant as the gas velocity increases. These observations are in 

agreement with Pozin et al. (50), who have studied the dumping rate 

through openings of a grid plate. 
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FIG. 6.5.  
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FIG.6.6.  

EFFECT OF GAS FLOW RATE ON DUMPING RATE  
FOR VARIOUS ORIFICE DIAMETERS.(AIR-WATER SYSTEM). 
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6. 3. 2. Effects of Gas Flow Rate and Chamber Volume  

Although no theoretical equation has been derived in the present 

investigation for the dumping rate through an orifice, a fair approxi-

mation might be to use a sizri lar equation to that for the gas flow rate 

through an orifice (equation 4. 2. 1), as suggested also by Prince and 

Chan (14), thus: 

PL -PST  a 2 
PL 	uL (6. 6) 

Since the dumping rate is proportional to the liquid velocity 

through the orifice, the overall amount of dumping for one cycle is 

roughly proportional to the average square root of the pressure 

i (PL - PV)ave  1/2  difference , 
1 	

. 
PL 

Since -- D  - is the partial time allowed for dumping in a cycle, the 
J- 

dumping rate for a unit time is proportional to 

. 1 /2 t 	(P - P ) D 	L V ave L a T PL 
(6. 7) 

Figure 6. 7 shows a comparison between the experimental 

dumping rate and the equivalent approximate values 
( of_pP    L-P  V)avel 1  

T PL 
calculated from the theoretical equations for a 1/4 in. orifice. 

The approximate values of tD and (PL - P ) ave  have been calculated V  

as follows: 
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From (4.2.1) and (6. 1. 1) it is obvious that: 

t = T tB = tF + tD + tR 
	 (6. 8) 

Since for a 1/4 in. orifice, equation (6.5) is satisfied for 

almost all conditions investigated and an appreciable amount of dumping 

has been observed, it is possible to assume that tF  << tD, thus the 

approximate 'dumping' time is: 

tD = T - (tB + tR) 	 (6. 9) 

Neglecting the liquid inertia, (1'D PAdavecan  be assumed to 

be approximately an average between the values of the pressure in 

the gas chamber at the beginning and end of the 'dumping' period. 

From Figure 6. 7 it can be observed that despite all previous 

aszumptions both types of curves show the same trend of behaviour, 

that is a maximum in the range of low chamber volumes, and an 

appreciable decrease in the range of high gas flow rates. Since for 

high gas flow rates tD decreases quite appreciably, the error in 

neglecting tv  increases gradually, resulting in higher values of 
tD — than expected. Thus the theoretical curves subside rather more 

rapidly compared to the experimental ones. 

Considering the experimental results in Figures 6. 6 and 6. 7, 

the general behaviour of a. 1/4 in. orifice can be summarized as . 

follows: 
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Effect of Gas Chamber Volume 

As has already been shown in (5. 2), for a constant gas flow rate, 

an increase in gas chamber volume (V c )results in a steady increase 

in bubble volume (V). Such an increase in gas chamber volume 

affects all terms in equation (6. 8) in a rather complex way. Due to 

increase in V, an increase in T is expected. Due to increase in Vc 

an increase in tB and tR is expected. Although the overall effects 
t 

tend to increase the value of tD, the ratio — seems to increase gra-

dually in the range of small chamber volumes and remains almost 

constant in the range of large chamber volume. 

Similarly, an increase in gas chamber volume has two opposite 

effects on change in chamber pressure (P - PVd).  Due to increase 
Vo 

in V an increase in (PV  - PVd) is expected, whereas due to increase 
o  

in Vt
c 
 a decrease in (P 	- IF ' )is expected. In the range of small 

o 
chamber volume it seems that the overall change in (P

V 
 - P ) 
o Vd 

is mostly affected by an increase in V, thus overall increase in 

(PV  - PVd
) is expected, whereas above a certain chamber volume an 

overall decrease is expected. 

Since (PL - PV)ave is proportional to (P - P ), an increase 

tD 	1 (P P - ) 1/2 Vo 
 Pd 

in the product of— and 	L V avei (equation 6. 7) is expected 
, 	L T 	p 	, , 

with an increase in chamber volume till a 'critical' volume, above 
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which the product gradually decreases. Thus a maximum dumping 

rate is expected in this 'critical' region (experimentally, the region 

is about 800 cc. ). 

Effect of Gas Flow Rate 

A similar analysis to the above is possible for investigating the 

gas flow rate effect. As has been shown in (5. 2), for a constant gas 

chamber volume, an increase in gas flow rate (G) results in a steady 

increase in bubble volume (V). 

Such an increase in gas flow rate has two opposite effects on 
tD 
T 	Due to increase in G, a decrease in T and tR is expected, whereas 

tD expected. Nevertheless, a gradual decrease in— has been observed. 

Similarly, an increase in gas flow rate has two opposite effects 

on (Pv  - PVd 
 ). Due to increase in G, a decrease in(P - P ) is 

o 
- 	 .0- 

'o   Pd 

expected, whereas due to increase in V, an increase in (P - P ) 
Vo Vd 

is expected. Nevertheless, it seems that the effect of V is dominant, 

resulting in an overall increase in (P 	P ), for most of the range 
Vo Vd 

of gas flow rates investigated. 
tD Since the increase in gas flow rate has an opposite effect on — 

compared to (P
V 
 - P ), their product (equation 6. 7) might reach a 
o Vd 

maximum around a 'critical' gas flow rate, which value is most affected 

by the gas chamber volume. Experimentally, such 'critical' gas flow 

tB is almost constant. Due to increase in V, an increase in T is 



PL 
the overall effect results in higher values for the air-water system. 

however, due to increase in pia, a decrease in 
(P - P ) L 	ave 

is expected. Nevertheless, comparing the two systems 

- 139 - 

rate which is about 65 cc/sec for a 200 cc. chamber volume, is not 

observed any more for a 5000 cc. chamber volume, resulting in a 

continuous decrease in dumping rate (Fig. 6. 6). 

Comparing values of mean pressure in the gas chamber (Fig. 

5.27) the gas flaw rate for max mum dumping rate corresponds quite 

well with that for minimum mean pressure. 

6.3. 3. Effect of Physical Properties of the System 

As has been shown in (5. 3) for constant gas flow rate and gas 

chamber volume, larger bubble volumes (V) are observed for the 

air-water system. Since for water both surface tension (cr) and 

density (pL) are higher than for ethanol, the expected effects are as 

follows: 

Due to increase in V, an increase in T is expected. Due to 

increase in cr, an increase in tR is expected. Since tB is almost 

to increase for small chamber volumes, whereas the ratio decreases 

for large chamber volumes. 

Due to increase in V, an increase in (PV  - PVd) is expected, 
o 

 

tD constant, an increase in tD is expected. However, the ratio—T, seems 
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Thus, it seems that for the air-water system the product of 
t
D 	

(PL Py)ave 
1/2 

— and 	 is higher for small chamber volumes, and 
PL 

is lower for large chamber volumes (for low gas flow rates only), 

resulting in larger dumping rate for small volumes (500 cc. ) and 

lower dumping rate for large volumes (5000 cc. ). (Fig. 6. 8). 

6.3.4. Effect of Hydrostatic Head  

As has been shown in (4.2. 2), the theory derived in the present 

investigation neglects the effects of a limited depth of liquid on bubble 

formation. However, from visual observations it has been found that 

bubbles vary in size with an increase in liquid depth (from 0 to 15 

cm), having a maximum size in the region of 5 - 10 cm, depending on 

gas flow rate and chamber volume. 

For a constant gas flow rate and chamber volume, due to an 

increase in V, an increase in T is expected. Since tB  might also 
tD increase, the ratio — might 1.,e c lightly affected. 

However, it seems that for small chamber volumes the impor-

tant factor is (P - P
Vd 

 ) which may increase quite significantly, 

resulting in a larger dumping rate. 

Thus having a maximum bubble diameter, a maximum dumping 

rate is expected. However for large enough chamber volumes this 

maximum is assumed to disappear. 
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FIG. 6.8.  

EFFECT OF GAS FLOW RATE ON DUMPING RATE  
FOR VARIOUS SYSTEMS (Do=0.25in).  
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Figure 6. 9 shows the experimental results for an 800 cc. 

chamber volumes. 

More experiments on hydrostatic head effects have been carried 

out with the 'Two Dimensional' Apparatus (6. 4). 

Pozin et al. (50) have air.° observed a similar maximum dumping 

rate (at about 20 cm. foam height for a grid plate). 

6. 4. Dumping in the 'Two Dimensional' Apparatus - Experimental 

Results  

A large number of experiments have been carried out for measure-

ments of rate of dumping under various conditions, for an air-water 

system in the 'Two Dimensional' Apparatus, but since no theory has 

been derived, only the main conclusions are described below. 

Although the absolute magnitude of the dumping rate might vary 

compared to a 'Three Dimensional' Apparatus operating under similar 

conditions (also different size of bubbles are formed), a general 

similar trend of behaviour is expected. 

Most of the experiments have been carried out for a gas chamber 

volume of 200 cc. only, and a limited number of experiments have 

been carried out for a 5000 cc. volume. Thus the importance of these 

experiments is mainly in a qualitative explanation of the effect of 

various parameters on the dumping rate, especially those parameters 
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EFFECT OF HYDROSTATIC HEAD ON DUMPING RATE  
FOR VARIOUS ORIFICE CROSS SECTIONS.  
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which have not been investigated with the 'Three Dimensional' Appa-

ratus. 

Effect of Gas Flow Rate (Fig. 6.10 - 6. 13) 

A similar trend of behaviour has been observed compared to 

the 'Three Dimensional' Apparatus (6.3.2), that is a sharp increase 

in the dumping rate with the decrease in gas flow rate, and a possibi-

lity of a maximum in the range of the low flow rates, which depends 

on gas chamber volume, orifice size and hydrostatic head. 

Effect of Gas Chamber Volume (Fig. 6. 10) 

Since only two chamber volumes have been investigated, no 

'critical' volume has been detected, compared to the 'Three Dimen-

sional' Apparatus (6. 3. 2). However the effect of large chamber 

volumes is similar, that is, a decrease in dumping rate with an in-

crease in chamber volume. 

Effect of Hydrostatic Head  (Fig. 6.10 - 6. 11) 

For very low gas chamber volume (200 cc) and small orifice 

size (0. 25 x 0.125 in ), there is a sharp increase in the dumping 

rate for an increase in liquid depth till about 5 cm, above which there 

is a sharp decrease in the dumping rate with further increase in 

liquid depth. However this maximum tends to become less significant 

with the increase of orifice size, resulting in almost a steady increase 
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in dumping rate with the increase in liquid depth for large orifice 

size (0. 25 x 0. 5 in ). (Fig. 6. 11.). 

For large gas chamber volume (5000 cc), there is only a slight 

steady increase in dumping rate with the increase in liquid depth. 

Effect of Orifice Size (Fig. 6. 11 - 6. 13) 

An increase in the dumping rate has been observed for an in-

crease in the orifice size, that is, in agreement with the observations 

for the 'Three Dimensional' Apparatus (6. 3. 1). 

In terms of linear gas velocity, provided the liquid depth is 

large enough (15 cm), there is a steady increase in dumping rate with 

the increase of orifice size for the sarre gas velocity (Fig. 6. 12), 

the effect becoming less significant as the gas velocity increases. 

However, for a smaller liquid depth (5 cm), since this is the region 

of the 'critical' depth, mainly for 0. 125 in. and 0. 25 in. orifices, 

no reasonable difference has been observed between these two; never-

theless the effect becomes more significant in comparison to the 

larger orifice (0. 5 in. ) (Fig. 6. 13). 

Effect of Orifice Thickness (Fig. 6. 12 - 6. 13) 

Since this parameter has not been investigated with the 'Three 

Dimensional' Apparatus, a similar type of analysis as described in 

(6. 3) might be applied for .this parameter. 
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According to Hughes et al. (20) and Hayes et al. (18) the orifice 

thickness has no effect on bubble size, provided the 

orifice thickness 

	

	
tD 

= —< 100. Thus no effect on  orifice diameter Do 
An increase in the orifice thickness increases the term pLgd 

in equation (6. 5); thus, provided a drop forms, it facilitates the 

initiation of dumping, resulting in an increase in dumping rate. This 

effect of orifice thickness is shown in Fig. 6.12. However, for the 

larger orifice (0. 25 x 0.5 in ) a maximum of the dumping rate has 

been observed for the 0.25 in. thickness. Comparing the effect of 

the orifice thickness for a lower liquid depth (5 cm), the effect is 

less significant, and no specific trend is observed. (Fig. 6. 13). 

Posin et al. (50) have found a maximum dumping rate for 

0.6 <D < 1.5. 
o 

6.5. Mechanism of Dumping in a Sieve Tray 

A simplified criterion for dumping in a sieve tray may be derived 

using the same assumptions as those for a single orifice (6.1.2). 

For the normal operation of a sieve tray in the 'dumping region' it 

is assumed that for a certain instant a part of the holes is bubbling, 

anothey part is dumping and the rest •is bridging. As has already 

been stated for these conditions the pressure in gas chamber fluc-

tuates periodically, the amplitude tends to decrease with the increase 

ratio 

is expected. 
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in number of holes and gas flow rate. 

It is most convenient to define a minimum instantaneous pressure 

in the gas chamber (Pvmin) necessary to ensure stable operating 

conditions for this 'dumping region'. Thus in order to prevent 'rain-

ing' (that is an instantaneous 'stream' dumping throughout all of the 

holes) the necessary condition: 

(6.10) 
V 	

2a- 

m . 	ao 

For a certain hole the formation of a drop, and consequently 

'single drop' dumping, might occur provided: 

1 	 - 20- - 	
2 

	

R 	) 	PL g (d+Y )  > Pv
mm > a o 

To ensure stable bridging condition for a hole: 

PTA 	> - cr(--R  
1 	

R 1 + --) + pL  g(d+y) 

	

min 	1 	2  

(6. 11) 

(6. 12) 

Suppose that a bubble 1-as been detached from a certain hole 

leaving a pressure gradient L P in the liquid. Under these condi-

tions such a hole starts dumping, provided: 

2a- 	 2cr zA3  - 	+ p g(d +-2  a k) >P 	> - 	p g(d + 2 — a k) 
o a 	3 o 	 a 	3 o 

min 
(6.13) 

Thus comparing this criterion to that for a single orifice (equation 
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6.5), it seems that the criterion for dumping from a hole in a sieve 

tray is mainly affected by the pressure change in the liquid above the 

particular hole ( 1.P), whereas for a single orifice the pressure in the 

gas chamber (P ) is often the dominating factor !As has been seen mainly V 
for a. 1/4  in. orifice in (6. 3.1)7 . 

Since it is much more convenient for practical purposes to 

derive a criterion similar to equation (6.13) as a function of the mean 

pressure in the gas chamber (P mean),  and since for a fluctuating 

pressure Pmean  > V "Jr) 
mm  

. i  the r. h. s. of the inequality (6. 13) still 

holds by substituting Pmean instead of PVmin.  However the 1. h. s. 

of the inequality might be violated, thus an approximate limit for Pmean 

might be derived above which dumping is impossible: 

> 	- o-( 	+ 	 ) + p g(d+y) mean 	RI 

R1 

2 L (6. 14) 

Since c.N P, R1, R2  and y are all functions of time, it is under-

stood that an accurate analysis of dumping in a sieve tray is rather 

complicated, and more investigation is necessary in this field. How-

ever, as stated in (5. 5.2) the main difficulty is in a theoretical predic-

tion of mean pressure in the system. 

Nevertheless, limited experimental results obtained for the rate 

of dumping for the two sieve trays investigated are given in figure 

(6. 14). Comparing to Figure 5. 29 it is quite clear that the mean 
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pressure is an important factor in determining the dumping rate, 

having an increase in the dumping rate for a decrease in the mean 

pressure. 

The effect of gas flow rate on the dumping rate seems to be 

similar to a single orifice, tha'z is a maximum in the range of low 

gas flow rates and a sharp decrease for higher flow rates. Such a 

sharp decrease has been observed also by Hunt et al. (3). 
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CHAPTER 7 

GENERAL CONCLUSIONS 

The present investigation can be considered as a step forward 

in the studies of the complex behaviour of a sieve tray in the 'dumping 

region'. Since bubble size and frequency are two of the main factors 

which determine the occurrence of dumping and since no general 

theoretical equations for growing bubbles were available so far, the 

equations derived in this investigation, despite their limitations, 

might be regarded as a basis for further studies in this field. Although 

a large part of the research has been devoted to these studies, which 

nevertheless have ultimately enabled a fair qualitative explanation 

of the dumping phenomenon, it has also been shown that the liquid 

pressure behind a rising bubble in the vicinity of the plate and the mean 

gas pressure in the chamber below the plate are important factors 

in the dumping studies. 

1. 	The model which has been used and the equations which have 

been derived for the radial expansion of a growing bubble above an 

orifice are strictly applicable to spherical bubbles formed individually 

in an inviscid irrotational liquid. A simplified criterion for the limit 

of single bubble formation, that is the initiation of coalescence, has 

been established. 
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Since the bubbles formed under the conditions investigated in 

the present studies were not completely spherical, a discrepancy 

between experimental results and the theory is expected, which is 

mainly affected by the size of the bubble. (Increase in bubble size 

under the conditions investigated increases the distortion of the bubble). 

Provided a bubble is not spherical, the nett effect of surface tension 

force is no longer zero, and it must be taken into consideration in 

the balance of forces acting on a bubble. Walters and Davidson (27) 

have calculated the shape of a distorted bubble assuming that the 

pressure inside the bubble is invariant across its surface, although 

practically there might be some differences in pressure magnitudes. 

In addition a resistance of the interface to any change in its shape 

due to application of a pressure gradient must be taken into account 

in an accurate theoretical investigation. Thus any theoretical equations 

which take into consideration the true bubble shape are expected to 

be far too complicated. 

Another limitation of the theory is in the case of a high bubble 

frequency, for which the assumption that the liquid in the vicinity of 

the orifice is at rest when the bubble starts forming becomes invalid. 

The bubble formation is bound to be affected by an additional liquid 

inertia effect. 
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2. Despite some discrepancies compared to the experimental 

results, the general trend of the theoretical results agrees quite well 

with most of the previous work which has been done in similar regions 

of 'Slowly increasing bubble volume' or 'Constant bubble frequency'. 

An important contribution of the theory derived is the possibility 

of estimating the relative magnitudes of different pressure components 

involved in the system and their effect on bubble size under various 

conditions investigated. 

3. An attempt at evaluating bubbles size formed above a sieve tray 

has been described. However any basic theory in this field must be 

followed by a theoretical prediction of the frequency of pressure fluctu-

ations under such a tray, which needs much more study. 

4. An approximate magnitude of the pressure in the bubble wake, 

which has an appreciable effectin dumping studies, has been calculated. 

Since there is a gradual decrease in the acceleration of the bubble 

while it rises through the liquid, changing its shape to a stable spheri-

cal cap shape and attaining a terminal constant velocity, this pressure 

field tends to diminish quicker than predicted by the theory. 

5. The mean pressure in the gas chamber has been investigated, 

and it has been shown that its magnitude is also important in dumping 

studies. However a main contribution of these studies is in the 

explanation and evaluation of the 'residual head', which many other 
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workers have so far only estimated experimentally. 

Another important conclusion is that a 1/4 in. single orifice 

or sieve tray may operate in the 'dumping region' while the mean 

pressure in the gas chamber is lower than the hydrostatic pressure 

on the plate. 

6. 	A simple criterion for initiation of dumping has been established. 

Although this criterion is based on many assumptions, its applica-

bility has been shown together with the theory of bubble formation, 

thereby obtaining a fair qualitative analysis of the various possibili-

ties of the behaviour of a system,that is: form ation of single or group 

bubbles, followed by 'stream' dumping, 'single drop' dumping or no 

dumping at all. 

No theoretical equation for calculating the dumping rate has 

been derived so far, but the relative magnitude of this value under 

different conditions investigated has been estimated qualitatively. 

An accurate theoretical prediction of the dumping rate seems rather 

complicated and much more preliminary work is necessary, mainly 

for the region in which the meniscus of liquid starts forming below 

the orifice, prior to the dumping itself. 
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APPENDIX A: Application of 'I+./lethod of Images' for the Plate Effect  

on a Growing Sphere  

A-1. 'Method of Images'  

It is most convenient to regard the motion of the liquid as being 

initiated from points or singularities in the field of flow. If the 

motion of a liquid consists of symmetrical radial flow in all directions 

proceeding from a point, the point is called a source. Similarly, if 

the radial flow is inward towards a point, the point is called a sink. 

The strength of a source (or a sink) is regarded as the volume of the 

liquid emitted in unit time. A dipole is regarded as a combination of 

a source and a sink of equal strength. 

Thus, considering the flow of liquid around a translating sphere 

1 3 
(equation 4. 8), the flow can be described by a dipole of strength z a u, 

whose axis passes through the centre of the sphere. Similarly, con-

sidering the flow of liquid arcund a pulsating sphere (equation 4. 9), 

da the flow can be described by a source of strength a 2  —dt  , at the centre 

of the sphere. 

The usefulness of those concepts lies in the fact that restrictions 

on the flow of fluid imposed by geometrical boundaries can be satisfied 

by superimposing the flow from suitable combinations of these sources 

placed at points inaccessible t.o the fluid. Such a combination of 
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sources on both sides of the boundary can be regarded as a system 

of images. The presence of a rigid boundary in the vicinity of the 

sphere violates the two boundary conditions which are imposed for 

solving the Laplace's Equation. By introducing successive images 

of a suitable combination of sources with decreasing strengths, a 

remedy for the boundary condition is obtained. 

A-2. Effect of a Plate on the Velocity Potential for a Translating  

Sphere 

The 'method of images' used for estimating the effect of a plate 

on the velocity potential for the flow around a translating sphere is 

described in detail. by Lamb (40), p. 130. 

Figure A-1 shows the schematic diagram for this method. 

A1, A2  are the successive images of point A (which is the centre of 

the real sphere) 

Bi , B2  are the successive images of point B (which is the centre of 

the imaginary sphere). 

For any arbitrary point P, it has been shown (Lamb !40) , p. 

115) that the velocity potential due to a dipole of unit strength which 

axis passes through the centre of the sphere, at a distance f from the 

centre is: 
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Fig. A-1: Schematic Diagram for the 'Method of Images'  

	

11 	 2 
For r <f: = —2  Z - + P 	+ 3P 	+ 

	

f 	1 f3 	2 
r. 

 f 

For r > f: rtS = P1 r  —2- + 2 P2 	+ 

Where Pn are Legendre's coefficients. (Zonal Harmonics) 

Since the flow of the liquid around the translating sphere is 

described by a dipole whose axis passes through the centre of the 

sphere A, the image of such a dipole of unit strength is another 
3 

-b dipole of strength —3 at the inverse point Al along the axis which 
(AB) 

passes through the centre of the imaginary sphere. Similarly, the 
3 -3 i image of the dipole at Al  is another dipole of strength -b 
	

►  
3 	

-a 

centre of the real sphere. 

• (AB) - (AA., 
at the inverse point A2, along the axis which passes through the 	4.  
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It can be seen that the velocity potential includes an infinite 

series of zonal harmonics of ascending orders. However, any two 

zonal harmonics of different orders which are finite over a unit 

sphere are orthogonal, thus in virtue of the orthogonal property 

these harmonics will disappear after being included in a surface 

integration. Since the subsequent calculations (equation 4. 18) include 

in fact a surface integration for determining the nett upward force 

on the bubble, all the zonal harmonics which will disappear might 

be omitted. 

Using this property and calculating a series of successive 

images, it has been shown that the velocity potential near the surface 

of the sphere A, when sphere A moves with unit velocity towards B 

while sphere B is at rest, is given by: 

111 cos 0 + 	) r cos (110 +112 + P.4 4.  " ) 	
f3

3 f l  

where I.Ln are the strengths of the successive images and fn their 

distances from A. 

Similarly, the velocity potential near the surface of the sphere 

A, when sphere B moves with unit velocity towards A while sphere A 

is at rest, is given by 

142 r  

)r cos = (u, 4,„„ 	aa,L2.  2 	 114  
' 1 	'3

+
r'5 r • • 	 ( 	+ 	 

(c-f2')3  (c-f4')3  
r c

3 
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where1.1.'
n 

are the strengths of the successive images and c - n 

their distances from A. 

Evaluation of and 	
-1 

, neglecting powers of c higher than 

the sixth, gives: 

	

a3 	a6  b3 3
br

3 
+ 	6 +a 

	cos 0 
4r 2r 2c 

3  3 
9s, 	b r a b 

3 
- 	 ) cos 

c3 
2c

3
rz 

Since the overall velocity potential is given by: 

9S
T 

= 93u+ ut 

where u is the velocity of A towards B and u' that of B towards A, 

and since u = le, and a = b: 

a
3 

a
3
r a

6 
a6r a 

6 

9 
fr T = u 	+ 	3 	 cos 	 (4.11) ; Zr c3 2c r2 c6 2rac• 

A-3. Effect of a Plate on the Velocity Potential for a Pulsatinft Sphere  

The method used is similar to that for the translating sphere, 

based on Lamb (40), p. 130. 

For any arbitrary point P (Fig. A-1) it has been shown (Lamb, 

F401 , p. 115) that the velocity potential due to a source of unit strength, 

at a distance f from the centre of a sphere, is: 
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, 1 	 r2  
For r < f: 	

=f 	
r 

P 	+ P 	+ 
1 f 	2 f

3 

For r >f: ,i= + P1 r —f 	
P2

f2
3 + r r  

where Pn are Legendre's coefficients. 

Since the flow of the liquid around the pulsating sphere is des- 

cribed by a source situated at the centre A, the image of such a source 

of unit strength is another source of strength AB 
 situated at A

l 
and 

a line sink of strength - 1 — per unit length from B to Al , as shown by 

Basset (41), p. 249, or Ramsey (42), p. 48. Following their analysis, 

the image of this combination of source and line sink is another source 

AAof strength AB  . AA1  situated at A2  and a line sink of strength 

1 	a ( 	) per unit length from A2  to 131. 
2 1 

Using successive images and applying the properties of zonal 

harmonics as described in (A-2), it can be shown that the velocity 

potential near the surface of the sphere A, when sphere A pulsates, 

while sphere B is at rest, is given by: 

	

110 	1 

	

31 	 1E 

	

r 	.112 (12  f 2  ) + 114  0.4  - f4X 	p. 	...f ) +. .. 	cos = 
6 6 6 	 1 —172—  

(  
/ 

-r". 	) + 3 
	

- 
f 3f 3 	5 	ff 

	

x 
)+ µ5(.J 	

x 
- -)+. rcos 0 

f l 	f f x 	f 3 I 1 	 5 
where µn  are the strengths of the successive images. 
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f
n 

and I
nx 

 are the distances of the two extremities of the line 

sink images, from A. 

fn, f: and p.
o 

are given by: 

a 

13
x  = c - b2 	x f ix  = c 	

f 
2 

fl
x  c - f2x 	4 	f3 3E  

b2 	a 2 	 b 2 	 aa  f
1 =c c =  f2 	f 	f 3 = c - 	 f =  c f2 	4 f

3 1 

}J. = 
2 da 

= 
a dt 110 

112 = a 113 b 

1/1  1 p.2 c - f2 

114 a 115 b 
113 13 

p.
4 

c - f4 

Similarly, the velocity potential near the surface of the sphere 

Al when sphere B pulsates, while sphere A is at rest, is given by: 

cos c s 
= 	I111 12}E +113' (f4K 	f2) 	1/51(f6x 	f4)  + • • 

1 	1 	1 	1 	1 
x2 + 2r(  x2 	x )+µ41  ( 	- 	) + • • . 1  r cos 0 

1 	 f3 	f3 f1 f
5 	f5 f 3 

where: p.n' are the strengths of the successive images. 

fn and f: are the distances of the two extremities of the line sink 

images, from A. 
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f
n 

and f: are the same as above, while ILni are given by: 

t 

	

2 db 	' 1 	a =b 	 r 

	

dt 	o1  f1 
p.2 I 	b 	

113V a 
= 

14 1 t 	c - f211 	1121  - f ax 

s IAA' 	b 	k- u, 5. , a- 7  f 
144 	x 143

r 	
c - f nx 
	

5 

Evaluation of FS and 0 , neglecting powers of c-1  higher than the 

sixth, gives: 

d 	1 	bar 	a3 b3 = az  _a ' 	(— 
dt r 5 c 	2c r2 ) cos AJ 

2 db r 	a3  = b 	+j cos 
dt l.c 2c r 

Since the overall velocity potential is given by: 

9Sp  = 	+ sts' 

da db And since a = b and — = — • dt dt • 

f‘p  
da fa2 	a2r 	a5 	 4.  a5r 4.  a8 

dt r (72-  2c2r2  c5 2c5r 2 ) cos Al 	(4.11) 
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APPENDIX B: Solution of the Dynamic Equations for the Bubbling 

System  

B-1. Method of Solution 

The dynamic equations have been solved on the computer type 

IBM 7090, which uses FORTRAN IV language. 

The numerical method applied for solving the equations has been 

the Modified Euler Method, using iterative approximations. 

d2y Any second order differential equation ---7 - f(x, y) can be dx 

reduced to a set of two first order equations: ill = z dx 

dz Tx  = f(x, y) 

If the values zn, yn at the beginning of an interval of length o x 

are known, the values at the end of the interval, for a first approxi-

mation can be found as follows: 

Evaluate (dz— ) dx n 

(1 ) 	dz 	.e,x Z 	= Z + — ave 	n ( ) dx n 2 

(1) 	dz Z 	= Z + (—) 	e.X n+l 	n dx n 

(1) 	_ (1) 
Y n+1 = Yn + L ave 

For a second approximation: 

dz Evaluate (—) dx n+1 

Z1X 
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dz 7:1  (dz) ( )dz 
(dx )ave 2 'dx'n 

Z (2)  = Z 
ave 	n 

Z (2) = Z 
n+1 	n 

(
dz

) 	OX 
dx ave 2 

et X 
idz I  
`dx'ave 

(2) 
Y n+1 

v 
'n 

+ Z (2)  ave ass 

Further approximations with the same procedure. 

In the case for which two second order differential e•quations 

need to be solved simultaneously, the procedure is similar, by simul- 

taneous iterative calculations for both equations. 

Usually this Modified Euler Method requires comparatively 

small intervals and many iterative approximations to improve the 

accuracy of the solution, which results in a longer running time on 

the computer. 

For the interval chosen (0. 001 sec), it has been found that there 

is almost no difference between the results using a second approximation. 

A very short computing time also results using this method, mainly 

because of the •zomparz,tive simplicity of tile equations, so i has been 

decided to use this method all along the investigation. 

B-2. General Properties of the System Investigated 

Calculations have been carried out for two syst ems: air-water 

and air-ethanol. A constant temperature of 20°C has been assumed for 
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all the physical properties used. 

a. Physical properties of the air  (1 atm): 

Density = 0. 0012 8213 cm 

Velocity of sound = 3. 4 x 104 cm/sec 

b. Physical properties of the livid  

Water 	Ethanol  

Density (- 3) 	 1. 0 	0. 79 
CM 

 

Surface Tension(d1-1e.) cm 72.8 	22. 5 

c. Orifice constant (K)  

 

    

The relation between the orifice constant K(equation 4. 21) and 

the orifice discharge coefficient cd is given by: 

K 1 —2- 2cd 

Because cd depends slightly on the system properties for Re < 104 

it is more convenient to determine the value of K experimentally, 

by measuring the dry pressure drop across the orifice for the range 

of flow rates investigated. Although the flow of gas through the 

orifice for a bubbling system is pulsating, the difference in the value 

of for an average pulsating flow compared with a continuous flow can 

be neglected, as shown also by Davies and Porter (44). 



- 170 - 

The average values of K which have been obtained: 

Orifice diameter 1/4  in. : K = 1. 20 

Orifice diameter 1/8  in. : K = 1. 13 

B-3. Computing Program Example  

A written computing program example is given below. 
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C CALCULATION FOR SYSTEM AIR—WATER (TEMP=20CT) 

C 
INTEGER 	. C,ZoW 
DIMENSION T(200),RD(200),D(200),E(200),RDRD(200),RDS(200),RDROS 

1(200),V(200),DO(200),DAVE(5).A(20),VC(20),G(20),S(200),Y(200),  

2X(200)4SS(200),XX(200),RS(200)4XAVE(200),PH(200),OK(5),  

3 	F1(200),FB(200),PV(200),P5(200),PVL(200),POR(200),  
4PST(200).PIN(200).PT(200)•AS(10)'PL(200) 

READ (5.1001) (A(K),K=1,1) 
READ (5,1002) (VC(L),L=1,8) 
READ (5,1003) (G(M),M=146) 

1001 FORMAT (5X,F5o3) 
1002 FORMAT (4(4X9F7o1)/4(4X,F74.1)) 
1003 FORMAT (6(5X,F5oI)) 

C NOTATION D=DRD/DT,E=DD/DTIPH=DT,X=DS/DT,Y=DX/DT 
DO 50 K=1.1 
DO 50 L=1.8 
DO 50 M=1.6 
T(1) = Oe 
RD(1) = A(K) 
RDS(1) = A(K)*A(K) 
D(1) = Oo 
V(1) = 4.19*A(K)**3. 
PV(1) = 0,147/A(K) 

P6(1) = (:),.147/A(K) 
PST(I) = 0.147/A(K) 
PVL(1) = 0. 
POR(1) = 0. 

PIN(1) = 0. 
PT(I) = 0. 
OK(1) = 1.20 

H = 0.001 
J = I 
AR = 3o14*A(K)*A(K) 
ARS = AR*AR 
VOL = 4.19*A(K)**36 
WRITE (6,1110) A(K),VC(L)+G(M) 
WRITE (6.1101) 

C 
C CALCULATION FOR GROWING STAGE 

DO 30 1=14199 
C CALCULATION OF RADIUS OF THE BUBBLE (RD) 
C FIRST APPROXIMATION 

RDS(I) = RD(I)*RD(I) 
E(I) = 	14506*(RD(I)—A(K))/(RDS(I)*A(K))(04.19*OK(1)*RD(I)**30/ 
1ARS+1.5/RD(I))*D(I)*D(I) — 5.93E6*(RDS(I)—A(K)A'*3•/RD(I))/VC(L) 
2+ 1o415E6*G(M)*T(I)/(VC(L)*RD(I)) + 981. 
DAVE(1) = D(1) + H*E(I)/2. 
DD(I+1) = DU) + H*E(I) 
RDRD(I+1) = RD(I) + H*DAVE(1) 

C SECOND APPROXIMATION 
RORDS(I+1) = RDRD(I+1)*RDRD(I+1) 
T(I+I) = T(I) + H 

E(I+1) = 	14566*(RDRD(1+1)—A(K))/(RDRDS(I+1)*A(K))—(0,19*OK(1)* 
1RDRO(I+1)**3.0/ARS+105/RORD(I+1))*DD(I+1)*DD(I+1) — 5o93E6*(RDRDS 
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2(/+1)—A(K)**3o/RDRD(I+1))/VC(L) + 1o415E6*G(M)*T(I+1)/(VC(L)*RDRD 
3(I+1)) + 9810 
EAVE = (E(I)+E(I+1))/2o 
DAVE(2) = D(I) + H*EAVE/2o 
D(I+1) = D(I) + H*EAVE 
RD(I+1) = RD(I) + H*DAVE(2) 
RDS(I+1) = RD(I+1)*RD(I+1) 
V(I+1) = 4o19*RD(I+I)**36, 

C CALCULATION OF PRESSURE IN THE VESSEL (PV) 
PVL(I+1) = 	14450*(V(I+1)—VOL—G(M)*T(I+1))/VC(L) 
PV(I+1) = PV(1) — PVL(I+1) 

C CALCULATION OF PRESSURE IN THE BUBBLE (PB) 
POR(I+1)= 1994E-4*OK(1)*D(1+1)*D(I+1)*RDS(I+1)*RDS(I+1)/ARS 
PST(/+1) = 0.147/RD(I+1) 
P1N(I+1) = 1.02E-3*(RD(1+1)*E(I+1)+14•5*D(1+1)*D(I+1)) 
PH(I+1) = RD(I+l) 
PB(I+1) = PV(I+1) 	POR(I+1) 

C CALCULATION OF MEAN INTEGRATED PRESSURE 
PAVE = (PV(I)+PV(I+1))/2. 
PT(1+1) = PT(I) + PAVE*H 

C CALCULATION OF INERTIA FORCE (FI) AND BUOYANCY FORCE (FB) 
FB(I+1) = 981o*RD(I+1) 
FI(I+1) = 1o13*RD(I+1)*E(I+1) + 2.13*D(I+1)*D(I+1) 

C WRITE EACH FIFTH ITERATION 
IF ((I+1) — J) 20.10,10 

10 CONTINUE 
C IN THIS PART FI AND FB APPEAR INSTEAD OF X AND Y 

WRITE (691112). T(J),RD(J),RDRD(J),D(J),FI(J)+E(J),FB(J)4 V(J)* 
1PV(J),PB(J),POR(J),PVL(J),PIN(J),PST(J),PH(J) 
J = j + 5 

20 CONTINUE 
IF (FB(I+1).GE.FI(I+1)) GO TO 40 

30 CONTINUE 
40 CONTINUE 

C = I + 1 
WRITE (6,1112)'T(C),RD(C),RDRD(C)oD(C)IFI(C),E(C)oFB(C)0V(C)o 
IPV(C),PB(C),POR(C),PVL(C),PIN(C),PST(C),PH(C) 

C 
C CALCULATIONS FOR ELONGATING STAGE 

S(C) = RD(C) 
X(C) = D(C) 
W = C 
DO 80 N=Co199 

C CALCULATION OF RADIUS OF THE BUBBLE (RD) 
C FIRST APPROXIMATION 

RDS(N) = RD(N)*RD(N) 
AS(1) = RD(N)/S(N) 
AS(2) = (RD(N)/S(N))**2o 
AS(3) = (RD(N)/S(N))**30 
AS(4) = (RD(N)/S(N))**4o 
AS(5) = (RD(N)/S(N))**5o 
A5(6) = (RD(N)/S(N))**60 
AS(7) = (RD(N)/S(N))**70 
Y(N) 	= (981. — (0o375*AS(2)+0o047*AS(5))*E(N) 	(1.125*AS(2)+ 
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10,11.282*AS(5))* D(N) * D(N) / RD(N) 	+ (0.563*AS(4)+0•141*AS(7)) 

2* X(N) * X(N) / RD(N) 	— (105-00070*AS(6))* DIN) * X(N) / 

3 RDIN) )/ (0•5+0,1,188*AS(3)+0•023*AS(6)) 
XAVE(1) = X(N) + H*Y(N)/2. 

XX(N+1) = X(N) + H*Y(N) 

SS(N+I) = SIN) + H*XAVE(1) 
E(N) = .14506*(RD(N)—A(K))/(RDS(N)*A(K))—(0019*OK( 1)*RD( N)**3./ 

1APS+1.5/RD(N))*D(N)*D(N) 	5.93E6*(RDS(N)—A(K)**3./RD(N))/VC(L) 

2+ 1.415E6*G(M)*T(N)/(VC(L)*RD(N)) + 981e*S(N)/RD(N) 

DAVE(1) = DIN) + H*E(N)/2o 

DD(N+1) = DIN) + H*E(N) 
RDRD(N+1) = RD(N) + H*DAVE(1) 

C SECOND APPROXIMATION 
RDRDS(N+1) = RDRD(N+1)*RDRD(N+1) 

AS(1) = 
AS(2) = 
AS(3) = 
AS(4) = 
AS(S) = 

AS(6) = 

AS(7) = 

RDRD(N+1)/SS(N+I) 
(RDRD(N+1)/SS(N+1))**20 
(RDRD(N+1)/SS(N+1))**3, 

(RDRD(N+1)/SSIN+1))**44. 
(PDRD(N+1)/SS(N+q))**541 
(RDRD(N+1)/SS(N+1))**6. 

(RDRD(N+1)/SS(N+1))**7. 

Y(N+1) = (9810 •••• (0.375*AS(2)+0.047*AS(5))*E(N) 	(10125*AS(2)+ 

104,282*AS(5))*DD(N+1)*DD(N+1)/RDRD( N+1) + (04,563*AS(4)+0•141*AS(7)) 

	

2*XX(N+1)*XX(N+1)/RDRD(N+1) 	(1.5-00070*AS(6))*DD(N+1)*XX(N+1)/ 

3RDRD(N+1))/ (005+0•188*AS(3)+0•023*AS(6)) 
YAVE = (Y(N)+Y(N+1))/2. 
XAVE(2) = X(N) + H*YAVE/2. 

X(1\1+1) = X(N) + H*YAVE 
S(N+1) = SIN) + H*XAVE(2) 

T(N+1) = TIN) + H 
E(1\4+1) = 	145.6*(RDRD(N+I)—A(K))/(RDRDS(N+1)*A(K))—(0411.9*OK( 1)* 

1RDRD(N+1)**341/ARS+loS/RDRD(N+1))*DD(N+1)*DDIN+1) — 5.93E6*(RDRDS 
2(1\4+1)—A(K)**3./RORD(N+1))/VC(L) + 1.415E6*G(M)*T(N+1)/(VC(L)*RDRD 

3(N+1)) + 981.*S(N+1)/RDRD(N+1) 
EAVE = (E(N)+E(N+1))/2. 
DAVE(2) = D(N) + H*EAVE/2. 
D(N+1) = DIN) + H*EAVE 
RD(N+1) = RD(N) + H*DAVE(2) 
RDS(N+1) = RD(N+1)*RD(N+1) 
V(N+1) = 41,19*RD(N+1)**340 

C CALCULATION OF PRESSURE IN THE VESSEL (PV) 

PVL(N+1) = 	1445**(V(N+1)—.VOL*G(M)*T(N+1))/VC(L) 

PV(N+1) = PV(1) 	PVL(N+1) 

C CALCULATION OF PRESSURE IN THE BUBBLE (PB) 
POR(N+1)= 1094E-4*OK(1)*D(N+1)*D(N+1)*RDS(N+1)*RDS(N+1)/ARS 

PST(N+1) = 00147/RD(N+1) 
PIN(N+1) = 1 •02E--3*(RD(N+1)*E(N+1)+1•5*D(N+1)*D(N+1)) 

PH(N+1) = S(N+1) 

PB(N+1) = PV(N+1) 	POR(N+1) 

C CALCULATION OF MEAN INTEGRATED PRESSURE 
PAVE = (PV(N)+PV(N+1))/2. 
PT(N+I) = PT(N) + PAVE*H 

C CALCULATION OF DIFFERENCE BETWEEN SUM OF RADIUS AND DISTANCE (RS) 

RS(N+I) = ACK) + RD(N+1) — S(N+1) 
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C WRITE EACH FIFTH ITERATION 
IF ((N+1) 	W) 70.60.60 

60 CONTINUE 
WRITE (6.1102) T(W).RD(W).REDRD(W),S(W).D(W).X(W).E(W).Y(W).V(W). 

IPV(W),PB(W).POR(W).PVL(W),PIN(W).PST(W).PH(W) 
W = W + 5 

70 CONTINUE 
IF (PS(N+1).LE.0.) GO TO 90 

80 CONTINUE 
90 CONTINUE 

Z = N+1 
WRITE (6.1102) T(Z).RD(Z).RDRD(Z).S(Z),D(Z).X(Z)+E(Z).Y(Z)*V(Z). 

1PV(Z).Pet(Z).POR(Z)0PVL(Z)oPIN(Z).PST(Z).PH(Z) 
C 
C CALCULATION OF PRESSURE IN LIQUID AT DETACHMENT 

PL(Z) = ((10-0.375*AS(2)-0.047*AS(5))*RD(Z)*E(Z) — (0.5+0.188* 
1AS(3)+0.023*AS(6))*RD(Z)*Y(Z) + (1.5-1.125*AS(2)^0.282*AS(5))*D(Z) 
2*D(Z) + (005+0.563*AS(4)+0.141*AS(7))*X(Z)*X(Z) 	(1.5-0.070*AS(6) 
3)*D(Z)*X(Z))/981. 	S(Z) + RD(Z) 

C 
C CALCULATION OF WAITING TIME 

TW = (PV(1)—PV(Z))*VC(L)/(1445.*G(M)) 
C CALCULATION OF MEAN INTEGRATED PRESSURE FOR WAITING STAGE 

PTW = (PV(1)+PV(Z))*TW/2. 
C CALCULATION OF PERIOD TIME 

TP = T(Z) + TW 
C CALCULATION OF MEAN PRESSURE 

PMEAN = (PT(Z)+PTW)/TP 
WRITE (6.1120) TP.TW,PMEAN.PL(Z) 

50 CONTINUE 
C 
1110 FORMAT(/20)013HA =•F6.3.4H(CM),5X,4HVC =•F7.1.4H(CC)+5X+3HG =,F6.2, 

18H(CC/SEC)/) 
1101 FORMAT (1Xt6HT(SEC),1X,6HRD(CM),1X.4HRDRD 	,1X,  5HS(CM),1X. 

19HD(CM/SEC).1Xv9HX(CM/SEC).1X.13HE(CM/SEC/SEC).1X.13HY(CM/SEC/SEC) 
2.1X.5HV(CC).1X+12HPV(GR/CM/CM).1X4,2HPB,4X+3HPOR.4X.3HPVL.4X.3HPIN. 
34X.3HPST.3X.2HPH) 

1112 FORMAT (1X.F503.2X.F5.301X0F503. 8X. 	F7.2,3X.F7.2.4X,F8.2. 
16X,E8.2.3X,F6.3.3X.F7.3.2X.F7.3.F6.3,F7.3.F7.3eF6.3,F603) 

1102 FORMAT (1X.F5.3.2X.F5.3,1X.F5.3,1X.F5.3.2X.F7.2.3X,F7.2,4X.F8.2. 
16X.F8.24,3X*F6.3.3X,F7.3.2X,F7.31,F6.3,F7.311F7.3,F6.3,F6.3) 

1120 FORMAT (/1X.4HTP =,F6.3,5H(SEC)•5X,4HTW =,F603,5H(SEC).5X, 
17HPMEAN =oF7.3.I0H(GR/CM/CM).5X,4HPL =,F7.3,10H(GR/CM/CM)//)•  
STOP 
END 

$DATA 
.318 
200. 	500. 	800o 	1500. 
2250. 	3000. 	5000. 	1.0000. 

8.3 	16.7 	33.3 	66.7 	100. 	133.3 
$EOF 
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NOMENCLATURE 

Ao 	Orifice cross section area 

a 	Radius of bubble (a = dimensionless radius) 

ao 	Radius of orifice (ao 
= dimensionless radius) 

ax 	Major axis of a spheroid 

b 	Radius of imaginary sphere 

b
x 	Minor axis of a spheroid 

c 	Distance between centres of two spheres moving in their line 
of centres 

co 	Velocity of sound 

D 	Drag coefficient 

cd 	Crifice discharge coefficient 

DB 	Diameter of bubble 

15B 	Average diameter of bubble 

Do 	Diameter of orifice 

d 	Thickness of plate 

F Force 

F 	Buoyancy force 

FI 	
Inertia force 

F(t) External force 

FAr 	Froude number (equation 4. 33) 

f 	Frequency 
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fn 	Distance of successive images from centre of a sphere 

G Gas flow rate (G. = dimensionless flow rate) 

g 	Acceleration of gravity 

h.„, Hydrostatic head 

hdi.)  Dry plate pressure drop 

hl 	Pressure drop due to liquid on a plate 

hr 	'Residual' head (equation 5.4) 

hT 	Total plate pressure drop 

by 	Pressure drop due to passage of vapour through a plate 

K, k Experimental constants 

L Dumping rate 

M 	Constant (equation 4. 6) 

Nc 	'Capacitance Number' (equation 2. 7) 

n 	Number of bubbles 

P Pressure 	= dimensionless pressure) 

J. atm Surrounding atmospheric pressure 

PB 	Pressure in bubble 

P
LD 

Pressure in liquid behind a bubble at detachment 

Per 	Pressure in gas chamber 

Pressure in gas chamber at detachment of a bubble 

Pam. 	Minimum pressure in gas chamber m 

P Mean pressure in gas chamber mean 
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P Pressure at a rest point in absence of motion co 

P Pressure change at a rest point due to motion 

Pn Legendre coefficients 

q 	Velocity in space 

R 	Radius of a drop 

Re 	Reynolds Number based on gas properties (Dou0pG  
1-L G 
gaup 

ReL Reynolds Number based on liquid properties ( 	 
1-L L 

r 	Distance of centre of a moving sphere from a point fixed 
in space 

s 	Vertical distance of centre of a bubble from the plate (g,g = 
dimensionless distances) 

T 	Time of a cycle 

t 	Time (i = dimensionless time) 

tB 	'Bubbling time 

tD 	'Dumping' time 

tF 	'Drop Formation' time 

tR 	'Recovery' time 

t 	'Waiting time co  

u 	Vertical velocity of the bubble 

ud 	Velocity of bubble at detachment 

uL 	Velocity of liquid through orifice 

uo 	Velocity of gas through orifice 
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V 	Volume of bubble 

Vc 	Volume of gas chamber 
2apLu 2 

We 	Weber Number ( 
	
) 0 

IA7e Weber Number (equation 4. 33) 

y 	Vertical coordinate 

Z
F 	

Foam height 

Ratio between frequency of bubbles and pressure fluctuations 
in a sieve tray 

y 	Ratio of heat capacities 

0 	Angle 

1-L, 	Gas viscosity 

P-L 	Liquid viscosity 

n 	Strengths of successive images 

Kinematic viscosity 

pG 	
Gas density 

PL 	Liquid density 

PF 	Foam density 

cr 	Surface tension 

Velocity potential 

Velocity potential for flow around a pulsating sphere 

° 	
Velocity potential for flow around a translating sphere 

157 

Ratio of cross axis to parallel axis for an oblate spheroid 
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Shorter Communications 

Pressure behind a bubble accelerating from rest: Simple theory and applications 

(Received 2 December 1966; in revised form 21 January 1967) 

WHEN A gas bubble is formed at a point in a relatively 
inviscid liquid, its initial motion is determined by the 
balance between buoyancy and inertia. The bubble breaks 
off when its base reaches the gas supply point and accelerates 
away from the source. 

In this note, it is shown that in its wake, the bubble leaves 
a distinct pressure field. It is suggested that this pressure, 
whose approximate magnitude can be calculated by potential 
flow theory, is responsible for the phenomenon of dumping 
or weeping on sieve trays. It may also have important 
effects in other situations involving accelerating bubbles 
such as in fluidized beds and in nucleate boiling. 

THEORY 
It is assumed that the bubble starts from rest after having 

been formed at a single orifice in a flat plate. The depth of 
liquid on the plate is large compared with the bubble dia-
meter. The effect of viscosity on the motion of the bubble is 
assumed negligible. This is reasonable, for since the bubble 
begins from rest, the motion is initially irrotational. Actually 
the bubble does have a small initial velocity, because its 
centre is moving upward while it is being formed. But it 
may be easily shown (following the work of DAVIDSON and 
SCHULER [6]) that this initial velocity is very small compared 
with the velocities reached after the bubble leaves the orifice. 

The effect of the flat orifice plate on the motion of the 
bubble is ignored in this simple theory. Thus the problem 
is reduced to investigating the pressure field around a 
spherical bubble moving from rest under the action of the 
buoyancy force in a liquid of infinite extent. 

We describe the motion with the velocity potential function 

q5 
3 Ua cos 0 	 ( 1 ) 2r2  

where (r, 0) are polar coordinates fixed at the centre of the 
moving bubble, U is the upward velocity and a is the radius 
of the bubble. The pressure around the bubble is given by 
Bernoulli's equation (LAME [1], p.124) 

P 0 	 P 0 p 	2 — 
 at 
	— g(s+r cos 0)+ (2) 

s=a+1 Udt 

is the distance between the centre of the bubble and the 
original rest point, i.e. the point (a, 7C) at t=0. The density 
of the liquid is p and P. is the pressure at the rest point in 
the absence of motion. The absolute velocity is given by 

	

q2=1142 	 \2 

	

(3f - 	00 ) 

Substituting into (2) and remembering that (r, 0) are time-
dependent since the origin is in motion, we obtain: 

p —_ dU[ _ _ 
p 	dt 

+U  

a3  —cos 
2r 2  
23[ a 
r3 2 

0 

— 1-3sin20 3 — a  --cos2  0 
2r3  

— —a 3 sin2  0 
8r 3  

P — g(s +r cos0)+ —22 	 (4) 
P 

The nett upward force on the bubble is found by integrating 
the vertical component of p over its surface (i.e. at r=a) 

F 
 =f

(2nr 2  p sin0 cos0)„_ ad0 
0 

and if we ignore the mass of the bubble, the equation of 
motion is obtained by putting F=0. In this way we find 

zPV —
dU = pVg 	 (6) 
dt 

where V is the volume of the bubble. Solving (6), 

dU _ 2  
dt g  

The validity of this expression for spherical bubbles accele-
rating from rest has been shown by WALTERS and DAVIDSON 
[3]. 

For present purposes we are interested in the pressure 
behind the bubble along the line of motion, i.e. along the 
vertical path followed by the centre of the bubble. Thus, in 
(4), we put 0=7C, dU/dt=2g and U=2gt and r=s, giving 

Op = a2 4021113 a6 

pg a s2 	 3 2s6J a s 

where Ap=p—P,,, and is the pressure change at the rest 
point due to the motion. 

A dimensionless distance inlay be defined: 
gt 2  

a 	a 

where 

(3) 

( 5 ) 

(7)  

(8)  

(9)  
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Substituting in (8) 

Ap 	3 — 4 — 2 2 
pga 	3

_ 

AP 
p ga  

FIG. 1. Pressure at the rest point behind a sphere 
or cylinder accelerating from rest. 

This equation is plotted in Fig. 1. It is seen that initially 
the pressure behind the bubble is less than the ambient, but 
that after it has moved a short distance, Ap becomes positive. 
This indicates that the point from which the bubble departed 
(the rest point) is acted upon by a short pressure decrement 
and then by a much longer excess, compared with the pressure 
at a distance from the bubble. The maximum pressure excess 
occurs at S." =2.15. 

When is the expression for Ap likely to be correct? 
There are two main sources of error. First, viscosity will 
begin to be important as U increases so the bubble will tend 
to stop accelerating. Secondly, the bubble will deform from 
the spherical shape, so that the assumed form of cfi will be in 
error. Now, WALTERS and DAVIDSON [3] investigated the 
motion of spherical bubbles accelerating from rest and 
found that Eq. (7) was valid up to e =1.65 approx. They 
also found (theoretically) that a tongue of liquid began to 
penetrate the rear of the bubble at s =1.36, although their 
photographs showed that the bubble was still approximately 
spherical for a slightly greater distance than this. 

Thus it appears likely that in the region of N. =1.65 the 
assumptions made in this work begin to break down. 
Nevertheless, by the time this value is reached, Ap has almost 
reached its maximum. The shape of the curve beyond 
3 =1.65 is in doubt, but Ap/pga probably subsides to zero 
rather more rapidly than shown in Fig. 1. 

By an identical process, the pressure behind a cylindrical 
bubble may be calculated. The result is: 

APPLICATIONS 
1. Leakage of liquid from sieve trays 

This investigation was originally begun to try to explain 
why leakage of liquid occurs in sieve tray distillation columns. 
This liquid leakage, variously known as "weeping" or 
"dumping", occurs most seriously at low gas flow rates 
when the gas flow is apparently unable to stop liquid from 
draining through the holes. 

An apparatus was constructed in which two-dimensional 
(i.e. cylindrical) bubbles could be formed in liquids of 
varying depths. Air was blown into a water layer through 
the gap between two pieces of brass held between two large 
flat Perspex sheets 0.25 in. apart. The gap between the 
brass plates was variable up to 0.5 in. so that the orifice 
could be varied up to 025 x 0.5 in. The thickness of the 
brass plate near the orifice was 0.25 in. A tine camera was 
used to take photographs of bubble formation at 64 frames/ 
sec. 

It was soon found that in the region where dumping 
occurred, large discrete bubbles were formed in the liquid. 
(Indeed, it has been shown that bubbles are formed at single 
orifice even at extremely high gas rates [3]). Photographs 
of bubble growth and departure are shown in Fig. 2. In these 
the gap width was in., air rate 42 cm3/sec, liquid depth 2 in. 
It is seen that the bubble's shape is roughly cylindrical, 
although as it moves further from the the plate it rapidly 
deforms in the way described by WALTERS and DAVIDSON [2]. 

But the most interesting part of these figures is the behaviour 
of the region near the orifice, in particular the gas—liquid 
interface. For just after the bubble detaches from the plate 
it is seen that the interface is pushed down the hole and 
eventually leads to weeping in the form of a thin stream of 
liquid as shown in Fig. 2(d). 

The general outline of this behaviour can be explained with 
reference to the above theory. Just as the liquid begins to 
lift away from the orifice, but is still connected to the gas 
source by a small tube or tail [Fig. 2(b)], the theory predicts 
that there is a strong deficit in the liquid surrounding the 
tail. Since the pressure in the gas inside the small tube is 
approximately the same as that at the bottom of the liquid 
on the sieve plate some distance from the hole, it will 
therefore be greater than the pressure in the surrounding 
liquid and hence the tail will tend to stay open. This is of 
course an unstable situation and the tail will collapse under 
the action of surface tension in the same way as a liquid jet 
breaks up into droplets. Once the tail has severed, the bubble 
accelerates rapidly away from the plate and it is obvious 
from the photographs that there is a pressure gradient 
tending to push liquid down the orifice. Such a pressure is 
predicted by the theory as shown in Fig. 1. There appears 
to be some discrepancy between this prediction and the 

Ap _1 2 1 2 1 1 
(10) 	-3  pga ss ss 

This equation is also plotted in Fig. 1. 
In passing, it is interesting to note that the pressure surge 

behind an accelerating body can easily be seen in a large 
vessel of water. If one holds one's hand horizontal and just 
beneath the surface of the water and then accelerates it 
rapidly downward, a large symmetrical bulge occurs on the 
surface behind the hand which can reach a height of 2 or 
3 in. 
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(a) Frame I. (b) Frame 4. 

(c) Frame 5. 	 (d) Frame 6. 

FIG. 2. (a-d) A cylindrical bubble forming at an orifice. Toward the top of each frame can be seen the surface of the 
liquid layer and the remains of the previous bubble. From a cine film at 64 frames/sec. 
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actual behaviour, for Fig. 2(d) shows that flow of liquid 
down the hole is well under way at =2 approx., while the 
theory predicts that Op is negative up to 3 =225. However, 
it is likely that the curves in Fig. 1, calculated for a bubble in 
an infinite body of fluid, are affected by the presence of the 
flat plate. Initial calculations have been done for the sphere, 
using the method of images (LAMB [1], p.131) and there is a 
significant difference from the theory for the infinite liquid, 
at least for small values of 3 . The minimum value of Aphoga 
is —1.406, but the pressure rises rather more rapidly, being 
zero at 3 =1.35 (compared with 1.45 for the infinite case) and 
reaches a maximum of 0306 pga at 3 =2.04 (compared with 
a maximum of 0224 pga at 3,  =245). Thus it is possible that 
the curve for the cylinder is affected in a similar way, being 
shifted generally to the left. Another factor as yet unexa-
mined is the effect of the distortion of the bubble. 

This seems a plausible way of explaining how pressure 
variations are caused in the liquid near a bubbling orifice. 
However, it must not be overlooked that the volume of the 
gas space beneath the hole could also play an important 
role [6, 7]. This aspect of the dynamics of the system is 
being investigated further. 

2. Other applications 
There are several fields involving accelerating bubbles in 

which the pressure behaviour in the wake may be important. 
The well-known analogy between the fluidized bed and 
inviscid fluids may lead to an explanation of particle 
dumping at the support plate. Thus when a bubble forms and 
rises from a hole in a gas distributor in a fluidized bed, it may 
lead to pressure gradients which force particles downward 
through the hole in the same way as liquid weeps, Fig. 2. 
However, the pressure gradients in unsteady flow in a 
fluidized bed are not well understood and it is possible that 
effects other than Bernoulli-equation pressures may pre-
dominate. 

In nucleate boiling, a phenomenon known as hysterisis 
exists, in which the heat flux from a heated flat plate is 
dependent on whether the flux is increasing or decreasing [4]. 
Thus when a pool of liquid is heated on a flat plate, there is  

initially a relation between heat flux and temperature 
difference such as one would find for normal free convection 
without boiling. When the liquid is considerably superheated, 
it suddenly starts boiling vigorously and the same boiling rate 
(or heat flux) can be maintained even with much reduced 
temperature difference. Thus existing bubbles may assist 
more bubbles to form. This phenomenon can perhaps be 
explained with reference to Fig. 1, in that just as a bubble 
lifts off the flat plate, the pressure deficit may increase the 
pressure drop across the interface enclosing the nucleation 
cavity, making it easier for another bubble to begin to grow. 
This effect may also be connected with the instability observed 
in boiling liquid metals [5]. 

CONCLUSION 
The simple theory presented here is strictly applicable only 

to rigid spheres (or cylinders) accelerating from rest in an 
inviscid fluid of infinite extent. It predicts that at the point 
at which the sphere was originally resting the pressure 
suffers a sharp decrease below the ambient. But after a short 
time the pressure becomes an excess over the ambient and 
remains so until the object has moved to infinity. 

Clearly this analysis must be modified for specific appli-
cations. With bubbles the constant pressure condition in the 
gas will lead to departure from the spherical shape assumed. 
With very small bubbles, viscosity and surface tension must 
be taken into account. And of course geometrical aspects 
(e.g. motion near a flat plate) will have to be considered. 

Nevertheless, it is likely that the pressure behaviour 
described above does exist in practice and may be important 
in the study of sieve tray dynamics, in nucleate boiling 
phenomena, in bubbling fluidized beds and wherever 
accelerating bubbles occur. 

G. J. JAMESON 
A. KUPFERBERG 

Department of Chemical Engineering and Chemical 
Technology 
Imperial College 
London S.W.7 
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Some observations on pulsed flow past a cylinder 
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MANY previous workers have found that vibration or 
pulsation has a favourable effect on heat and mass transfer 
rates [1]. For example, if a cylinder is rapidly vibrated 
transversely in a stagnant fluid, an oscillating boundary 
layer is formed and a steady circulation (acoustic streaming) 
occurs. JAMESON [2] has obtained a theoretical expression 
for heat and mass transfer in these circumstances and the 
theory has been confirmed experimentally [2, 3]. However, 
the theory [2] is confined to laminar flow conditions and 
amplitudes much smaller than the cylinder radius. A 
different model can be used for vibration or pulsation at 
extremely low frequencies when the flow pattern is assumed 
to be fully developed at any instant with respect to the 
velocity at that instant. Thus the average heat or mass 
transfer coefficient may be found simply by integrating the 
steady-state relation between transfer coefficient and 
velocity. This quasi-steady-state model has been used to 
predict heat transfer in pulsed flow in a tube [4-6]. It is 
necessary to know the flow conditions in any given situation 
before deciding whether the quasi-steady-state model or 
the boundary-layer model is more suitable. Such information 
is available for oscillations of liquid in a U-tube as a result 
of observations of decrement rates [7-9]. The important 
parameter affecting the transition from quasi-steady to 
unsteady behaviour is given by: 

=R20.)/v 	 (1) 

In laminar conditions, Poiseuille flow is found at values of 
a below 20, while if a exceeds 70 the bulk of the liquid 
oscillates in plug flow, with a boundary layer near the 
tube wall. STOKES [10] has shown that the oscillating laminar 
boundary-layer thickness is of the order of (v/w)i, so the 
parameter a represents the square of the ratio of tube radius 
to boundary-layer thickness. The transition from laminar to 
turbulent conditions in an oscillating liquid occurs at Reynolds 
numbers well above the steady-state value of 2000 if a exceeds 
20 [9]. 

The present investigation is intended to provide some 
qualitative information on flow conditions around a rigid 
cylinder fixed in a liquid which oscillates transversely with 
respect to the cylinder axis. Relatively low frequencies 
and high amplitudes have been used as these are typical of 
the pulsators which are available for large scale industrial 
application. Brass cylinders of -1 in. and 1 in. dia. were 
used; each cylinder was in. long and was mounted in a 
perspex test section 4 in. wide and Ii  in. thick internally. 
The liquids used were water (v=0.010 Stokes) and mixtures 
of toluene and liquid paraffin (v=0.081 and 0.54 Stokes). 
Liquid pulsations were generated by an air-driven pulsator 
[11] which gave frequencies within the range 1-2.5 c/s and 
amplitudes up to 4 cm. In this work, amplitude is defined 
as one-half of the distance between the extreme positions  

of the liquid. The flow patterns were observed using fine 
aluminium powder as a tracer, with back-illumination of 
the test section. 

The oscillations were characterized by the value of a 
and by the maximum Reynolds number with respect to the 
cylinder. Although the wave-form produced by the pulsator 
[11] was not strictly sinusoidal, the maximum velocity of 
oscillation was taken for simplicity to be coA. Therefore in 
the absence of a net flow past the cylinder, the maximum 
Reynolds number during the cycle was given by: 

Re =2RmAlv 	 (2) 

At very low Reynolds numbers, the liquid was seen to 
oscillate in a laminar fashion about the cylinder, with the 
tracer particles traversing the same path during successive 
cycles. No streaming motion could be detected by eye. At 
higher Reynolds numbers, separation occurred for part of 
the cycle and vortex pairs were seen to detach from either 
side of the cylinder in the direction of the oscillations. 
Simultaneously, fresh liquid was drawn in towards the 
cylinder at right-angles to the direction of the oscillations. 
This process is shown in Fig. 1(a) in which a vortex pair is 
being formed at the top of the cylinder, while the remains 
of the pair shed in the previous cycle can be seen about three 
diameters above the cylinder. Figure 1(b) shows that at 
very high Reynolds numbers the vortex shedding becomes 
asymmetrical and turbulence extends for a considerable 
distance around the cylinder. 

FIG. 2. Effect of a upon separation Reynolds number. 

1056 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187

