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WTith recent developments in power systems the
demand on alternators to operate in the leading var
region at light loads is increasing. With these deve-
lopments in view, the effect of automatic direct and
quadrature axis excitation regulators on the gstability
of an alternator connected to an infinite bus through
a serieg reactance is investigated. The study is
limited to small oscillations, and the stability
analysis is done using conventional techniques, such
asy the root-locus, the Nyquist, the Routh, and some
consideration is also given to gtate variable methods.

A proportionate voltage regulator in conjunction
with the field current feedback for the direct-axis
excitation regulation is investigated. The limitations
and the usefulness of the scheme are discussed.

It is mathematically shown that at zero power
no direct-axis excitation regulation scheme can extend
the steady state reactive absorption beyond a limit de-
pending on the quadrature-axis synchronous reactance.
On the other hand the gquadrature-axis excitation regu-
lation can extend the steady state reactive absorption

limit.



Out of the various signals theoretically considered
for the gquadrature-axis execitatian regulation the rotor
angle signal proves to be the most effective.

A proportionate angle regulator on the gquadrature-axis
acts like a position control servo-system and ideally can
extend the steady state reactive absorption limit depending
on the transient reactance at all power levels, but the
gain range of such a regulator is poor. A proportionate
regulator with first and second derivative terms can
however increase the reactive absorption limit and the
gain range many times compared with a proportionate
regulator.

Experiments were performed on a model machine in
conjunction with simulated regulators to determine the
steady state stability 1limit curves as a function of
regulator gain. For some regulators the open-~loop fre-
quency response loci were determined from the closed~loop
frequency response test for small oscillations.

All the experimental and theoretical results show

reasonable agreerent.
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LIST OF SYMBOLS

The axis quantities are represented by small
letters, whereas their corresponding R.M.3. values
are repregsented by capital letters. The symbols re-
present the per unit values in accordance with reference
16, and a reagonable uniformity is also maintained with

reference 1.

Vd(vd)’ vq(Vq) Direct and quadrature axis

voltages
id(Id), i (1) : Direct and quadrature axis
e 9 currents
Vegr Ve ¢ Direct and quadrature axis
4 field voltages
Vt(vt> ¢ Machine terminal voltage
v : Infinite bus voltage
VO : Induced voltage in the machine
r, 3 Armature resigtance including
that of the line reaectance
Teq? Tr Direct and quadrature axis
4 field resistances
Xa : Machine leakage reactance
XC ¢ Transmission line reactance
Lha? qu : Direct amd quadrature axis
magnetising reactances
Xd(p), Yd(p) : Direct-axis operational reasctance
(admittance)
Xq(p), Yq(p) s Quadrature-axis operational

reactance (admittance)



Z3(Tg)s E1q(¥r ), X (¥m)
e t 1y tH
X (¥ ), T (), X (rm)

1 [ ] ¥
T d(T q), 7 d(T"q)

T'do qo

T T

2? °5

5o

t
S 0

f(w)
R(P): Rq(P)

L(P)’ Lq(P)

(Tt ), tho(gv

1
qo

)

a0

12.

Direct-axis synchronous,
transient and subtransient
reactances (admittances)

fuadrature-axis synchronous,
transient and subtransient
reactances (admittances)

Direct (quadrature) axis
short circuit transient
and subtransient time
constants

Direct (quadrature) axis
open circuit transient and
subtransient time constants

Time constants as in Ref. 16
Slope of Power-angle curve

Slope of transient Power-angle
curve

Rotor angle with respect to
infinite bus

Peak of the Power-angle curve

Peak of the transient Power-
angle curve

Power at the infinite bus
Moment of inertia

Turbine, electrical and
inertia torgues

Frequency cycles per sec.
radians/sec.)

Direct and quadrature axis
regulator transfer functions

Direct and quadrature axis
open-loop transfer functions



c(p)

M

Re

R{min), R{max)
Rq(min), Rq(max)

R.H.
L.H.

Wy

zi(pi)

(P)

13.

Closed-loop transfer
function

Direct and quadrature axis
regulator gains

Field current gain
Rectifier conversion constant

Minimum and maximum &1 rect-
axis regulator gains

Minimum and maximur quadra-
ture-axis regulator gains

Right half
TLeft half

Natural frequency of the
clogsed-loop systen

Prefix to denote differential

Substript to denote steady
state value

A zero (pole) in the complex
plane of the open-loop trans-
fer function

Number of zeros (poles) in
the right half complex plane.



CHAPTER 1 : 14.

1 - INTRODUCTION

1.1 General

With increasing grid voltages and growth of cable
network feeding large load centres the synchronous
generators supplying a power system are required to
operate at lightly loaded conditions with large re-

1-10 that increased

active obsorption. It is well known
reactive absorption is possible when continuously
acting regulators are used in the direct-axis ex-~
citation circuit. The common type of feedback signal
is one depending on the terminal voltagel’g. Other

8,10 and the currenta.

important signals are the load angle
It is proved mathematically in the present thesis that
the reactive absorption at zero power cannot be increased
by any type of regulator acting on the direct-axis field
winding. It can however be increased by using a regu-
lator acting on the quadrature-axis field winding.
Fig. 1.1 gives typical curves on a diagfam of active
power P (Watts) against reactive power Q (Vars).

This thesis is concerned with two main lines of
work.

1. An extension of the study of methods of

direct-axis regulation.
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2. An investigation of some methods of gquadrature-
axis regulation.

In each case experiments were carried ocut on the
micro-machine equipment, and methods of theoretical
anclysis were developed to obtain theore’'ical curves for

comparison with the experimental results .

1.2 Investigation of Direct-axis Regulation

The steady state operation range of an alternator
supplying a power gystem can be extended by using a
voltage regula:or}_g in which a signal depending on
the terminal voltage is fed through a suitable regulator

1 showed

to the field winding. An earliier 2nvestigation
how the range of steady state stability depends on the
type of regulator which may have proportionate or more
complicated feedbacks. The characteristics of the regu-
lator are expressed by its transfer function.

2 that it would be advantageous

It has been proposed
to use, in conjunction with a direct voltage feedback, an
auxiliary signal derived from the field current. Some
analogue computer studieSB, using derivative of the field
current as an auxiliary signal showed a marked effect

on the steady state stability of the system. This scheme

is investigated in some details in the following pages.
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One point of interest which emerges from the
analysis of direct-axis regulation is that the automatic
voltage regulator (a.v.r.) behaves as if it decreases the
direct-axis reactance Xd to transient reactance level

X.'y but it does not affect X . This explains why

d a
the steady state stability curve for the direct-axis

regulation converges at -V?Y_  at zero power (Fig. 1.1

q
point 'A') irrespective of the nature of the feedback.

The above explanation is rather simple, but a rigorous
proof for the convergence of the regulated steady state

stability curve at 'A%, is developed in Sect. 2.4.

In Fig. 1.2 is shown the schematic diagram of the
system in which a direct-axis regulator is used. The
alternator is connected through a reactance to a fixed
supplys and has a main regulating feedback in which the
regulator output depends on the terminal voltage Vt'

An auxiliary signal proportional to the derivative of
the field current If is added to the main signal and
the total actuates a regulator system with transfer
function R(p) . The output of the regulator affects

the eXcitation in the direct-axis.

1.3 Investigation of Quadrature-axis Regulator

To improve transient stability it has been propoSedll
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to excite a field winding in quadrature to the direct-axis
field winding. The original idea was to build up quadra-
ture excitation during any transient disturbance and
let the rotor advance, but to keep the magnetic-axis
within limits in order to pull in when the fault was

cleared. In a digital studyl2

of an integrated control
of a turbo-alternator for transient disturbances, a
signal related to the swing of the rotor during the
disturbance fed into the quadrature-axis field winding
has been shown to be useful in extending the transient
stability, thus in general supporiing Ref. 11. In a
C.E.G.B. reportl3 a divided winding scheme is suggested
in which the axes of the two parts of the winding are
separated by 60° instead of Dy 90°. In physical terms
the divided winding arrangement makes the quadrature
component of m.n.f. available without having to arrange
the field winding on the pole faces which would be
impracticable on a large turbo-alternator. The leading
winding supplies the excitation which determines the
torque and is actuated by a rotor angle feedback.
Reference 13 gives m.m.f. diagrams for increased reactive
absorption at steady state operation, but no limits are
defined and there is no analysis explaining why the

improved stability is obtained. Model tests demonstrated
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the practicability of the scheme.
A range of signals for controlling the quadrature-
axis are considered, namely, the voltage, the direct
and quadrature current and the rotor angle. Out of
these only the rotor angle effectively increases the
steady state reactive absorption limit at zero power as
well as under loaded conditions (see Fig. 1.1 curve 'CY).
The steady state stability limit of reactive absorption
depends upon the regulator gain and its transfer function.
In Pig. 1.3 is shown the schematic diagram of the
quadrature-axis angle regulator. The arrangement of
the alternaitor and the fixed supply is the same as in
the direct-axis regulation scheme, shown in Fig. 1.2.
In a practical installation the direct axis field
would have its own regulator, but for the purposes of
the present investigation it is adjustable but unregu-
lated. The quadrature-axis excitation is actuated
through a regulator system with transfer function
Rq(p) s fed from a device giving an output proportional
to the angle between the fixed supply treated as reference,
and the rotor direct-axis position. For a system with no
steady state error between the reference and the rotor
position the quadrature-axis excitation is proportional

to the power delivered.
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1.4 General Theoretical Methods

The problem of steady state stability analysis of
any control system is essentially the problem of small
perturbation equations about the point of equilibrium.
This technique is extensively used in the analysis of
regulator system. Whether it is the direct-axis or
the quadrature-axis regulation or both, the basic problem
is to develop small perturbation equations either as

differential equations relating the system variableslz’l4

or in the form of Laplace transformst? >0 For the
state variable methodsusing differential equations,
matrix algebra can readily be applied with the aid of
digital computers. This technique can usefully be
applied to large systems like a multi-machine problem14
or an integrated system of turbine, alternator and the
rest of the systemlz. The Laplace transform method on
the other hand yields transfer functions between input
and output quantities and allows for greater detail to
be included for a smaller system, which can be analysed
using the established literature of conventional control
theory. The Laplace approach can be reasonably extended
to a2 multi input-output system though it becomes cumber-

gome for a large system. This thesis uses the Laplace

approach, although, the state variable approach is



2%,

discussed.

With the system equations in the form of transfer
functions the steady state stability limits can be
determined by the application of conventional stability
criteria, e.g., the Routh-criteria, the Root-locus
technique, the Nyquist criterion. In the literature
on voltage regulators the Nyquist or Routh criteria
or both are used extens:‘wely.1:'3—9 The Root-locus
techniqu09’15 is cumbersome for detailed studies but
under simplifying assumptions can give insight invo
the system znd yield vseful results. For the direct-axis
regvulation stability provlem, the Root-locus technique
was used neglecting canping, resistance and filter
del>ys, thus keeping the order of roots low, but never-
theless obvaining reasonable results. Some resullts were
also obtained by applying the Routh criteria. However,
for the guadrature-nxis regulation iv was preferred o
apply the Nyquist criterion making use of the frequency
response plots, thus including without difficulty the
filtering and the regulator transfer function details.

Alternatively, if the system equations were ex-
pressed in terms of state variables the Lyapunov function

or Ldigen value approach could be used. It is of

interest to note that for linear systems the Lyapunov
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function gives the same condition of stability as the
Routh criteria and the eigen values are the poles of

the system's closed-loop transfer function. The

later point is denonstrated by taking the example of

a proportionase voltage regulator. The Lyapunov funciion
and Eigen value approach are briefly discussed.

Some important new formulations and conclusions,
most of which have been confirmed experimentally, are
summarized as follows.

a) The systen equations are arranged so that
a mathematical model of the sys tem could be set-up.
Any ‘type of feedback from within or outside the alter-
nator is formulated from the al ternator output
quantities.

b) The theoretical formulation of the field
current feedback 1s obtained in a general form.

The limitations of this method are demonstrated.

¢c) IV is proved that irrespective of the nature
of the feedback and the regulator transfer function
the steady state reactive absorption limit at zero
power reméins uitchanged for direct-axis excitation
regulation.

d) It is shown that the voltage feedback with

any regulator transfer function as a feedback into
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the quadrature-axis excitation has no useful effect in
altering the steady state reactive absorption limit at
zero power,

e) It is shown that a signal derived frem the
direct-axis current cannot meke any useful contribution
in improving the reactive absorption limit at zero
power.

f) A signal derived from the quadrature~axis
current is not of the right polarity for stabilisation
in the negative var region and moreover changes sign
from positive to negative vars. By itself it is not
a desirable signal but can be used in combination with
other signals.

g) The rotor angle is a positive gignal which
does hot change sign from positive to negative vars
and, depending on the regulator transfer function, can
be used to modify the steady state reactive absorption
limits.

h) It is shown that by proportional angle feedback
into the quadrature-axis winding the steady state 1limit
of reactive absorption can be increased from -Van
to a maximum of -Vqu' at all power levels.

i) It is shown that the steady state reactive

absorption 1imit can be increased beyond -Vqu by
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including a suitable proportion of first and second
derivative terms in the proportional regulator. The
optimum increase in reactive absorption and the per-
missible regulator gain depend on the regulator transfer

function.
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CHAPTER 2

2. Theory of the Direct-axis Regulator with Voltage and

PField Current Feedbacks

2.1 General

The System for the direct-axis excitation control
is shown in Fig, 1.2. It can be presented by the block
diagram for small oscillations in Fig. 2.1, where the
prefix A indicates that small variations are being
considered., Feedbacks are derived from Vi o the terminal
voltage and if y, the field current. For convenience vy
is taken as the value after the rectifier conversion.
All quantities are expressed in per unit. The linearized
system equations around the point of equilibrium give
the operational relations, i.e., the transfer function
between the input and output quantities. Using such
relations the multifeedbacks are reduced to an equivalent
single loop configuration and the system is analysed with

the aid of conventional control systems theory.



ADVegj

Nid

5P

s 2% e _é%‘g% Blrq

B4)

&fq

ALP)

AD)

AVZ‘

h
/

B,

AlD)

S
R

5

>’i@é’f
!

ouTPUT

FIG.2.1_ BLOCK DIAGRAM FOR DIRECT_AXIS EXCITATION CONTROL

8c



29.

2.2 System Bguations

2.241 The lMachine Equations

The machine equations are those derived in Ref. 1
and allow for armature resistance and damping. The
principal assumptions are: no saturation, sinusoidal air-
gap fluxes and no slot effects. Also, since the
frequency of oscillations in the system is quite low,
the frequency dependent terms xmpa,p(Pq and pd in
the machine voltage equations are justifiably neglected,
The parameters are thouse of an equivalent machine in
which the external reactance is combined with the

generator. There is no gquadrature field winding and it

does not vary
1,16

is assumed that the prime mover torque’ Tm

with the angle & . A summary of equations is given
in Appendix I from which the following small oscillation

equations are deduced.

G(p) DAveq ~X4(p) Yio r,
o bq . 2 1 . )
o = | =5V307,1d, -(QO+Jp ) “Vq0tTalqo | *
0 B d:ra qu _Xq(p) N

(2.1)

The suffix o denotes the steady state conditions, and
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% = 3V 0ta0 = Yaolqe) = Tgo Tao = Vgolqe +vevrr (2:2)
There are three out-put quantities Aid, As y Aiq

but only one input quantity zﬁvfd for the system
considered. Inversion of the matrix (2.1) gives operational
relations between the output and the input guantities. The
transfer functions of the alternator B1(p), Bz(p) and
133(p) which are indicated on Fig. 2.1, are given by the

following expressions

G(p) 'Yd(;))\

i
B,(p) = ﬁ'\’gd = [QO+Jp2+Vq02Yq(p)—ZrquOIquq(p)] s I )
As
B o —— =
2(®) = 7%,

G(p).Y4(p)
3LV oty (2T #7 (Y (2))=22,°T ¥ ()] ——Frroy

—

q a “qoTq
i G(p).¥4(p)
B4 (p) = %d = [—VqOVdOYq(p)—ra(2VdOIdO+QO+Jp2)]- Da(g)
(2.3) J
where

2 2 2
+V Yq(p)+VdO Yd(p)—Zra(V I Y (p)+

DH(p) = -LQg+Ip®+Vy, qo™goTq

s 2 2
VaoTao¥al®)) + 2, (Ve T o o=Voolgotd® )]l (2.4)
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and

X (1+7. . p)
_ md kd
G(p).Yd(p) - rfd(1+T'dp)(1+T"dp) Yd (2.5)

When substituting G(p)Yd(p) from Egn. (2.5) in Egn. (2.3)
forlater use of expressions Br(p) , (r=1,2,3)

1. the constant _%Q is ignored and is later
fa

considered to be merged with the regulator gain,
(see Sect. 5.2).

2. the denominator terms are merged, i.e.,

D(p) = D'(p) (1+T' 3p) (1+I" 3p)

3. the minus sign of D!'(p) is ignored and later
instead of assigning negative numerical values
in the sign convention to the regulator gain

R that is also taken as positive.

2.2.2 BExpressions for the Feedback Quantities

The feedback signals are definite functions of the
three alternator output quantities. The small changes
of terminal voltage and field current are related to the

output quantities as follows
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Avy = 4, (0) D1y + £,(p)D 6 + A5(p) D1y (2.4a)
Z'_\.if = oc1(p) A ig + Ocz(p)Aé + oc,j,(p)A iq (2.4b)
where
X R
A, (p) = (XCIdO+VqO) gte )
(@]
A,(p) /2 P St (
p) = - , (2.

5 To > 5)
() = (¥ ., X Ry

3\P) = = do—Iqo‘c) Vio /}

and

061(9) = W
v

%) = 5y P (2.6)
r |

(xa(p) = '(’}"1-8(‘57 J

In these equations

Pyo= Vglgo * quIqo (2.7)
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Re = rectifier constant.

The transfer functions Ar(p) , ar(p) (r=1,2,3)
and the expressions for G1(p) and Xd1(p) are
derived in Appendix II.

The voltage feedback is taken direct but the field
current feedback is operated on by a transfer function

M(p) before the two feedbacks are added. The feedback

from the field current is therefore

M(p) Ai_f = 41, (p) Aid + 41,(p) A s + A'B(p)Aiq (2.8)

where
A!r(p) = ar(p) z M(p) for r=1,2,3 (2.8a)

The transfer functions A‘r(p) , (r=1,2,3) are indicated
on Fig. 2.1.

Substituting the relations of Eqn. (2.3) in Egn.
(2.4a) and Eqn.(2.8) the following relations are obtained.



r,(p)

and
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> 4,.(p) B.(p)

e

=1

H

[ (Vo (p)+Tg0-r, ¥ (2)T ) (V2—2raPC+XCQO) +

go q
(147 dp)Y

TD° (Vg o2oT0 )42, (Vg =X, I )Y, (0)) ] 3;. o,
0

(2.9)

.2
[~ (@7 *Y, (2474, %Y g, () +307) Xy, (0) +

r, (2v I qo¥aq(P)+2Vy, I 0% (0)=VyoVao) T, (p)

(1+7, 5 p)Y
- a2 (Iqo do~VgotaotIPp %) ] _'('E)')') ""T%%T" 1 (2.10)
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The derivation of the expressions for F1(p) and Fz(p)
is given in Appendix III.

Egn. (2.9) and Egn. (2.10) are added to give the
operational relation for the feedback voltage vafbd

and the error signal [XVfd )

DvVipg

AV F,(p) + F5(p) (2.14)

The feedback voltage [vabd is operated on by the
regulator transfer function R(p) Dbefore being fed to
the direct-axis field winding. If the loop is considered
opened at A (see Fig.2.41), the open-loop transfer

function becomes

L(p) = =282 = R(p) [F,(p) + P,(p)] (2.12)
p) = A Veq = D q\P o\P .
2.2.3 The Closed-loop Transfer Function and the

Characteristic Eguation

For the system shown in Fig. 2.1, the synchronous
machine in between the field voltage ZSVfd and l&vt is
considered to form the forward-loop, i.e. Awq: is taken
as the output. The reference input is A Vegi which

is related to A'vfdo and B vy by
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Bvpgy = Bvpgo = Avfd (2.13)

Eliminating O Veqo from Egms, (2.12) and (2.13) we have

Av
fd
=1 + L(p) (2.14)
AVegs
AvJG
The closed-loop transfer function C(p)(= = ) is
AVeas

obtained by eliminating Avfd from Eqns. (2.9) and
Egn. (2.14), thus we have

F,(p)
_ 1 (2.15)
Clp) = 73173,
For the system represented by Eqn. (2.415) the characteristic

equation is:

Numerator of [1+L(p)] =0 (2.16)

To develop the characteristic equation (2.16) in the
polynomial form the functions R(p) and M(p) associated
with L(p) must be defined; till now these have been
treated in general as ratio of polynomials in !p', Since
we are interested to study a feedback regulator using

the derivative of the field current in conjunction with

a proportionate voltage signal, we take
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R(p) = R , and

tl

Il

M(p) = M p

where R and ! are adjustable constants, later
referred to as the regulator and field current gains
respectively, see Sect. 2.2.4. In the characteristic
equation (2.16) it is preferred to write the open-loop

transfer function L(p) in the form below:

-z o)
L(p) =R D(p)

thus, Eqn. (2.16) becomes

D(p) + R N(p) =0 (2.17)

This form of Egn. (2.417) is later referred to as the
original characteristic equation. In Appendix IV,

Bgn. (2.17) is expanded in the polynomial form as below

2
+ oy 03p3 + Cpp° + C,p + O = O (2.18)

C4P 1

where
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The expressions1’17 for SO and Slo are as follows

v Pu o 2
8, = QutV, o Y, +V

_ 2
g0 Yq*Vao ¥y = VVOchoséo+V (Yq—Yd)cos260

ay 2 2
Dty = QY JTY Y

2
= ! g
go “9*Vao Y’d VV OY‘dcoséo+V (Yq Y d)003260

(2.20)

So and S'O are the slopes of the power~angle and
transient power-angle curves respectively VO is the
voltage behind the synchronous reactance and V'O is
the g-axis component of the voltage behind the transient
reactance. The expressions on the extreme right of

Egqn. (2,20) are standard formulae. The left hand side
in each Ign. (2.20) can be shown to be equal to the
righ hand side by substituting for QO, v \ in

go?’ 'do

terms of V and & ,

In a theoretical study in Ref.4 the derivative of
the field current is incorporated by modifying the
expressions for G(p) and Xd(p) , using the deductions
made by the same authors in a paper Ref. 3 with simplifying
assumptions of no damping and resistance and making
approximations with time constants, The theoretical
formulaﬁioﬁs in the present treatment can allow for any

transfer function M(p) for the field current feedback



40,

and R(p) for the regulator transfer function. However,
the characteristic Lgn. (2.18) is a particular case
deduced from the general formulation represented by

Egn. (2.16).

2.2.4 The Gain Constants

In Eqn. (2.12) the rectifier conversion factor Ry
and the field current gain M are associated with
F1(p) and F2(p) respectively. In the development of
the characteristic Eqn. (2.18) Re is merged with R
and the field current constant is modified to M/Re ,
although, when referring to the field current gain, only

1 is mentioned.

2.3 Application of the Anzlysis to debtermine Stability

2.3.1 The System and the Method of Analvysis

In Ref. 1 the study of a system using voltage
regulators of different types was carried out by means
of the Nyquist criterion. Calculations were made
alternatively allowing for alternator damping and
resistance and neglecting them., It was found that
although damping and resistance had a noticeable effect,
a useful approximation was obtained when they were
neglected and some important general deductions could be

made.,
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For the direct-axis excitation control this thesis
described an investigation of a system in which the
voltage feedback is supplemented by a feedback from the
field current. It was decided to make the calculations
with damping and resistance neglected. With the simpler
equations then obtained, the root-locus method proved
to lead to useful deductions, as explained below., Some
results using the Routh criteria were also obtained.

The root-locus method uses the characteristic
equation derived from the open-loop transfer function
as in Eqn. (2.17). Conventionally the loci of roots of
the characteristic equation (2.18) as the gain is varied
from zero to infinity, are obtained from the poles and
zeros of the open-loop transfer function L{p) . As
applied here the root-loci are obtained by computing
directly the roots of the polynomial characteristic
equation (2.418) for gains from zero upwards. The Routh
criterlia uses a function of coefficients of the
characteristic Bgn. (2.18) to predict the stability of
the system. It should be noted that the Hyquist method
is also in effect an indirect method of determining the
roots with positive real parts of the characteristic

18-20

equation. All three methods are discussed briefly

in Appendix V.
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The results given in this section relate to a

simple system in which the voltage feedback is proportional

without delay (i.e., R(p) = R), and the field current
feedback is a simple derivative (i.e., M(p) = M.p) .

The characteristic equation for such a system is given
by Egn. (2.18). When resistance and damping are
neglected Eqn. (2.18) is simplified, its order is reduced

from 4th to 3rd., With the coefficient

4=

the simplified characteristic equation becomes:

3 2 -
C3p” + Cop° + Cup + G = 0O (2.21)
where
Mo
C o= J[T' - R. = . ‘]
3 a R, "% 4
X .Y

_ ¢’ d
02 =dJd + d —v;;'“ (ng+XCIdO)'R

_ Rl .
Cy = TSy = 8, R'Re.de
¢ =5 4 ocd (V. ¥ +I.)(V34+X Q ).R
o~ To V go~q ~d co’"

to
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From the consideration of the feedbacks three alternative
cases arise:
1. the wiregulated system, i.e. when R = O,
2. the system with only the voltage feedback,
i.e. when R 1is an adjustable constant,
3. the system with the main voltage feedback and
the auxiliary field current feedback, i,e.
when R and M are both adjustable constants,
The characteristic equation for any of the above mentioned
systems can be derived from Egn, (2.21). With the above
classification the system study is carried out in the

following sections.

2.3.2 . The Unregulated System

As mentioned in Sect. 2.3.1 the unregulated system
corresponds to zero regulator gain and therefore both
of the feedbacks of the system are rendered inoperative.
The characteristic equation for the unregulated system
is obtaired by putting the regulator gain to zero in
the general characteristic equation (2.241) and is as

given below

2 a
D(p) = J 1,07 + Jp° + TS p + S, = 0 (2.23)
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Since the general characteristic equation (2.241) is
derived from Eqn. (4.17), Eqn. (2.23%) is simply D(p) = 0 ,
of which the roots are the poles of the open-loop transfer
function = %%%% . HN(p) = 0 gives the zeros of the
open-loop transfer function. The following sections
are concerned with root-loci of the characteristic equation,
on which the open-loop transfer function poles and zeros
are marked respectively by crosses and encircled dots.

In the following analysis power is considered
constant at 0.8 p.u. and the rotor angle is varied.
For every value of the rotor angle & , Eqn., (2.23) gives
a pair of complex conjugate roots in the left half (L.H.)
of the complex plane, referred to later as p-plane, and
a root on the real-axis. In Fig. 2.2 are shown the
roots of the characteristic Egn. (2.23) at various
rotor angles. Let & be the limiting rotor angle for
the steady state operation of the unregulated system
(84O for the machine considered). TFor the rotor angle
6 < 6, the real root of the characteristic Egn. (2.23)
is negative, whereas, for 6>6s it is positive. The
positive real root contributbtes to an exponent term with
a positive exponent in the time domain and causes
instability of the drifting type. The limiting condition

(6 = 68) arises when the real root is at the origin.
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This occurs when the {term SO in the characteristic
Eqn. (2.23) is zero, i.e., when the slope of the power-
angle curve is zero. For an unregulated machine this

is the well knoWn steady state limit. The full line of
Fig. 2.3 shows how SO varies with & . Tor the micro-

machine under study SO is zero when & is 84°,

2.3.3 The System With Voltage Feedback

When a voltage feedback is used, stable operation
is possible at angles greater than 6S because the
feedback modifies the characteristic equation (2.23) of
the unregulated system.

With no auxiliary field current feedback the gain
factor M is zero and the characteristic equation (2.21)
becomes

J Dt opo o+ J[1+R'XC°Yd(v +X I, ) Jp°+Dr St
d vto go “cTdo b a° of

X .Y
g 4 &4 2 4 =
+ [“o+ Vio (quyq+1do)(v +£CQO)'R] =0 (2.24)

Returning to the original form of the characteristic

equation

D(p) + R ¥(p) = 0 (2.17)
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D(p) has the values given by Eqn. (2.23) and

X .Y
(p) = [(Vq‘O+XCIdO)p2 + (Vq‘qu+Ido‘)(V2+XCQO)] —%;b—(:-‘i- (2.25)

D(p) = 0 and N(p) = O give the poles and zeros

respectively of the open-loop transfer function R g o

When R is zero the roots of the characteristic equation
(2.24) are the poles of the open-loop transfer function,
and when R 1s infinity the roots are the zeros, with
the remaining roots at infinity as explained in
Appendix V.1.3.3,

Consider the condition when & = 100° illustrated
by Fig. 2.4a and b, where the root loci are mapped on
different scales. Along the length of each root-locus
discrete gain vrlues are marked. When R = O +the
roots are the same as on Pig. 2.2, but as R increases
the position of the roots changes. The real root moves
into the L.H. p-plane at R = 2.2 while the complex
conjugate pair of roots move ‘towards the R.H. p-plane
and at R = 16 cross the jw-axis. Hence the systen
is stable for a limited range 2,2<R<16 .

The root-loci as plotted here and for all the
subsequent cases are computed from the characteristic

equation using a digital computer upto R = 20, Ior
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R>20 +the loci are plotted graphically using the open-
loop pole-zero configuration as explained in Appendix
V.1.3. Accordingly in Pig. 2.4b are plotted the complete
root-loci for & = 10¢° on a smaller scale. At R = o
the real root is at infinity and the complex conjugate
pair of roots close on the two zeros on the imaginary
axis given by N(p) = 0 ,

The algebraic expressions for R(min) , the minimum
gain R required to stabilise the system and R(max),
the maximuwn gain R  1imit for the stable operation are
derived below from the characteristic equation (2,24)
using the root~locus concepts., R(min) is the value at
which the real root crosses the (0,0) point and enters
the L.H. p-plane; this occurs when C_ in Egn. (2.24) is
zero, i.e.

XY

s o+ =22 (v v a1

2. v -
o Vi go~g do)(V +lcQo)'R =0

giving

-3 v
r(min) = Ly T §° (2.26)
(quYq+Ido)(V +XCQO) crd

R = R(max) when the complex conjugate pair of roots
are on the imaginary axis. For a third order characteristic

equation (2.24) to give two equal and opposite imaginary
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roots, the condition is (see Appendix V.2.1)

0300 = 0201

Using the above relation R(max) is given by

(81 -5 )V
o2 0 “to - (2.27)
[(vqqu+1do)(v +Q X )-8 o(vqo+XcIdo)]XCYd

R(maX) =

The point of intersection of the complex conjugate roots
with the jW-axis gives the natural frequency Wn of
the closed-loop. By substituting R{max) in the

auxiliary equation (see Appendix V.2.1)

1 2 { —_—
C2p + Co = 0

we have

0 C, Jﬁﬁ;’ |
n:\!a‘-;: -5 (2.28)

The instability for R<R(min) is of the drifting
type, because the real root is positive, whereas, at
RﬁR(maX) it is of an oscillatory nature, because
the complex conjugate rcots have positive real parts.

Fig. 2.5a shows the root-loci upto R = 20 for
§ = 1200, and‘Fig. 2.5b shows the complete root-loci.
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The pattern of the root-loci in Pig. 2.5a is very similar
to that of PFig. 2.4a (6 = 100° , showing the root-loci
upto R = 20) and so the description for Fig. 2.5a is
omitted. To explain the complete pattern of root-loci

in PFig. 2.5b the complex conjugate roots and the real
root are labelled 1, 2 and 3 respectively. All the
subsequent rootv~locl plots are similarly labelled as in
Fig. 2.5b. At R = 20 +the roots 1 and 2 are in the R.H,
p~plane and root % is in the L.H., p-plane. As R
increases the roots 1 and 2 follow an elliptical path

in the R.H. p-plane and converge at 'A'!' on the real-
axlis, later root 1 turns leftwards and root 2 right-
wards, Whenever the complex conjugate roots 1 and 2
close on the real-axis, one turning right and the .other
left the labelling is arbitrary and interchangeable.

This is applicable to all the subsequent root-loci plats
for a similar condition. Root 3 moves along the real-
axis in the L,H., p-plane. At R = o root 2 is at
infinity and the roots 1 and 3 close on the open-loop
transfer function zeros in the right and left half p-plane
respectively., The pattern in Fig. 2.5b differs from that
in Pig. 2.4b, because at & = 120°  the open-loop transfer
function zeros given by HN(p) = 0 [Eqn. (2.25)], are

real, wheras the zeros at & = 100° are imaginary. The
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zeros are real because the (VqO+IdOXC) term in the
expression for II(p) [Eqn. (2.25)] changes its sign

from positive to negative, This changes the right hand
side of Egn., (V.8) from m+2nA to O+2n\ , as explained

in Appendix V.1.2.5. For 120°>6>100° , when the term
(VqO+IdOXC) is zero, the three roots of the characteristic
equation approach infinity as BR=—>CC as explained in
Appendix V.1.2.3.

For & = 140° Tig. 2.6a shows the root-loci for the
important range of gain R and Pig. 2.6b shows the
complete root-loci on a smaller scale., The pattern of
the root-loci for & = 140° is very different from
those for & = 100° and 120° in Pigs. 2.4 and 2.5. At
R = 0 +the roots are the same as given on Fig. 2.2. As
R dncreases the complex conjugate roots 1 and 2 meet
at 'A' on the real-axis, root 1 turning left and root 2
turning right. The real root 3 moves towards the origin.
At R about 6.3 root 2 crosses from the L.H. into the
R.H. p-plane and meets roots 3 at !'B!, and for higher
values of R they break off and become complex conjugate.
Root 2 moves towards C and root 3 towards D, The root
labelling for the BC and BD part of the root-~loci is
interchangeable, although the movement of the roots 2

and 3 is specified above. Under similar conditions for
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the subsequent root-loci plotting the interchangeability
of the roots is understood, however not mentioned. Root
1 moves towards infinity in the L,H, p~-plane., As R
increases from zero root 3 remains in the R.H. p~plane
and never becomes negative, for that reason the systenm
is always unstable. Pig. 2.6b shows the complete root-
loci. As R increases the roots 2 and 3 follow an
elliptical path in the R.H, p-plane and converge at E ,
root 2 turns leftwards and root 3 rightwards. Root 4
continues moving in the L.H. p-plane. For R = o the
roots 1 and 2 close on the real open-loop transfer function
zeros given by Ign. (2.25) in the left and right half
p~plane respectively and root 3 is at infinity in the
R.H, p-plane,

This illustration demoustrates the limitation of the
proportionate regulator, which arises because T'dS'O
the coefficient of p in the characteristic Eqn. (2.24),
becomes negative with increasing & , and is not affected
by the feedback, Thus, the maximum steady state & limit,
for the proportionate regulator is given by S'O =0 ,
i.e. when the slope of the transient power angle curve
is zero., In Fig. 2.3 the broken line is the curve relating
5t', and & dindicating that & = &' = 134° is the limit
for the machine investigated. The 1imitd 6'S is known

in the literature on voltage regulators1.
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2.3.4 The System with Voltage and Filield Current TFeedbacks

With both the feedbacks in action, Egn, (2.21) is
the characteristic edquation. The coefficients 03 y
01 contain the field current feedback terms and 02, C
contain the voltage feedback terms.

o

Returning to the original characteristic equations

(2.147), D(p) 4is given by Egn. (2.23), and UW(p) by

JX Y
_ J11 3 c~d - 2 I
Re'xmd Vto go ¢~ do ReAmd o)
. 2ela (V. ¥ +I, )(V?+x Q) (2.29)
vto go~q ~do co *

The open-loop transfer function poles given by D(p)
reamin unchanged, but the zeros now depend on M. For
11 = C +the expression for N(p) becomes that of the
proportional voltage regulator given by Egqn. (2.25).

In Pig. 2.7 are shown the root-loci for & = 140°
and M = ,002 . For zerc R +the roots are the same
as on Figs. 2,2 and 2.6. As R increases the complex
conjugate roots 1 and 2 meet at A on the real axis
and follow exactly the same pattern as that of & = 140°
with only the voltage feedback in Fig., 2.6a. The points

A, B, C and D similar to those of Pig. 2.6a are shown
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and the various roots are labelled. The detailed root-
loci plotting is shown up to R = 16 . The system is
always unstable because for any gain R there is always
one or more roots in the R.H. p-plane. The complete
root-loci plotting is omitted, however, closing of the
root-loci at R = ¢ on the open-loop transfer function
zeros 1is shown and explained briefly here. As R
increases the roots 2 and 3 move on a large elliptical
path (not shown.in Fig. 2.7) in the R.H, p-plane and
eventually converge on a point very far from the origin,
after which root 2 moves towards the origin and root 3
towards infinity. At infinity root 3 is established in
the L,H. p-plane, from there it moves towards the origin
and meets Root 1 at a point, after which both break off
and become complex conjugate (partly shown in Fig. 2.7).
At R = o the roots 41 and 3 close on the complex
conjugate pair of the open-loop transfer function

zeros in the L.H. p-plane and root 2 closes on the

real zero in the R.H. p-plane, (see Fig. 2.7).

At higher values of M the open-loop transfer
functlon zeros cause g further modification of the
pattern of the root-loci, In Fig. 2.8 are shown the
root-loci for & = 140° and 1M = .004, All the three

zeros become real, two being in the L.H. p-plane and
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one in the R.H, p-plane., The real negative zero at A

is of great importance, because it assists in stabilising
the system as will be seen later. At R = 0O +the complex
conjugate roots 1 and 2 and the real root 3

are the same as in Pig. 2.2. As R dncreases the

roots 1 and 2 advance along the jo —-axis in the L.H.
p~plane and the real root 3 moves towards the L.H. p-plane,
which crosses the origin at R about 6.6 (that is @min)
and becomes negative. VWith all the roots in the L.H,
p-plane the system is stable, To obtain the upper

limit for R from Fig. 2.8 is difficult, because the
roots 1 and 2 move so rapidly that their mapping is a
problem, for this reason the inverse root-locus

technique is adopted which is dealt with in the following
paragraph. However, at R = o +the closing points for
the root-loci are shown in Fig. 2.8, the roots 3 and 1
close on the real open-loop transfer function zeros in
the L,H. p-plane and root 2 on the real zero in the
R.H. p-plane, How root 2 gets into the R.H. p-plane

is clearly seen from the inverse root-loci plot.

In the inverse root-locus technique the root-loci

are mapped in the W -plane using the transformation

W = % as explained in Appendix V.1.4. The main

advantage is that infinity is brought to the origin so



that the behaviour of roots with large magnitude can
be studied.
The characteristic eguation (2.21) in the V-plane

becomes

+ O+ CLUE 4 cow3 =0 (2.30)

Cz + Gy y

Using Eqn. (2.30) the root-loci in the W-plane are shown
in Pig. 2.9 for &6 = 14O<> and M = ,004 ., IEach root

in Fig. 2.9 is the inverse of the root in Fig. 2.8 for
the corresponding value of R . For R = 0 Egn. (2.30)
gives a pailr of complex conjugate roots 1 and 2 in the
L.H, W-plane and the real root 3 in the R,H. W-plane.
Vhen R is increased root 3 tends to infinity (which

in the p-plane means the origin) and is established in
the L.H. W-plane for R = Rf{min). From the characteristic
Ign, (2.30) this limiting value is obtained when Co = 0,
and is given by Eqn. (2.26). With R diacreasing the
roots 1 and 2 move on an elliptical path converging

on the real-axis at 'A' in the L.H. VW-plane, after which
root 1 turns leftwards and root 2 turns rightwards.

Root 2 croses the origin at R about 11.5 giving the
limiting value R(mag} . The characteristic equation

(2,30) gives one root at the origin when
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e e (2.31)
" e md
yielding,
R X
Rmax) = ¢ty R+ ™ (2.32)

Egn. (2.31) suggests that the derivative of the
field current has the effect of reducing the short-
circuit transient time constant Ta , and the system
becomes unstable, irrespective of the load angle § ,
at values of R and ! such that Eqn. (2.31) is
satlsfled., However, depending on & and M the
systenm R(max) may be less than the value given by
Egn., (2.32) if the complex conjugate pair of roots
1 and 2 in Fig. 2.9 cross over to the R.H. W-plane instead
of converging on the real-axis. In algebraic terms it

means that R(max is the value of R which satisfies

In Appendlx V.2 the graphical form of the Routh

criterion is discussed. The coefficients 05 , 02 )
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C, » C, of Ign, (2.21) are functions of the regulator
gain R +treating M as a constant. For the third
order system the necessary and sufficient condition
for stability are:

a >0, € >, C,0,=0

504 =650, >0 (2.33)

>0, G0 , C

3 1

The Routh coefficient 0201~0300 is referred to as 04 .

For plotting all the coefficients 04, 03, ......CO
are referred to as the !'Routh Coefficients!, In
Pig. 2.10 the Routh Coefficients are plotted against
the regulator gain R for & = 130° and M = .003,
The stable and unstable zones are demarcated on the
figure, R(min) is given by C, = 0 and R(max) by
C5 = O, However, depending upon & and H R(max)
may be given by 04 = 0 .

The Routh Coefficient plotting emphasises the
importance of the coefficients of the characteristic
equation and gives the precise limits, but cannot give

details like the oscillatory modes of the systemfét any

gain R .
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2.3.5 otability Idimit Curves

ig, 2.11 shows the theoretical curves for the
steady state stability limit of the rotor angle
against the regulator gain, These curves are marked
1, 2, 3, 4, 5 and correspond respectively to the field
current gain ¥ of 0,00, ,004, .002, ,003, ,004.

The curve for M = O applies to the condition with
voltage feedback only.

The bounded .region of these curves: corresponds to
stable operation. The distinct regions of the
stability curves are marked AB, BB, BC, etc. AB
is the common region for all the curves and correspond
to R(min) . BB is a small region for curves 4 and 5,
that is the small extension in stability beyond 6‘8 .
BC and CD are regions associated with R(max). The
CD region is at the greatest value R(max) can have
by virtue of the relation in Egn, (B.Bé)g

4 comparative study of the theoretical curves
indicate that

1. The BB region can be introduced at the cost

of limiting R(max)

2. Curve 2 for M = ,004 is an improvement on

curve 1 in the BC region, but cannot increase

the maximum steady state limit beyond 6'8.
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3. Curve 3 for M = ,002 can give greater
limiting & for the same gain than to
curves 1 and 2, but the gain range is
decreased. For IM>,002 +the gain range is

considerably reduced,

2.4 Convergence of the Direct-axis Regulated Power-var

Characteristic Curve at Zero Power

In Pig. 1.1 curve b shows the steady state stability
limit relation between Power and Vars for a direct-axis
regulated system in general. It is shown to converge
at point A at zero power, thus implying that the steady
state reactive absorption limit is -V2Yq irrespective
of the direct-axis excitation regulation. The proof‘
of this is given below.

Let R(p) be the general regulator transfer function
acting on any number of feedbacks originated in any
manner from the system. The basis Zor formulation of
the system in general terms is laid in Sect., 2.2.

Fig. 2.1 shows only two feedbacks, but using different
sets of Ar(p) , (r=1,2,3) transfer functions any

number of feedbacks can be represented on the same figure.
Using the transfer functiouns Br(p) and Ar(p), creesosy

(r=1,2,3), the characteristic Eqn. (2.16) in general
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terms becomes

5

Humerator of [1+R(p) ZEE (Ar(p)+A'r(p)+A“r(p)+---)Br(P) l=0

r="
(2.34)

Two typical sets of transfer functions Ar(p) and A'r(p)
for the voltage and field current feedbacks are given by
Egns. (2.5) and (2.8a) respectively. The alternator
transfer functions Br(p) are given by IEgn. (2.3).

Por zero power the steady state value of 60 ,
Iqo and Vdo are zZero and qu =V , In order to reach
a conclusion of practical significance resistance and

damping are neglected. The transfer functions Br(p)

given by Egn. (2.3) then reduce to:

’\
Y
B,(p) = (+V,, T +3p%) oy
By(p) =0 > - - — (2.35)
B3(P) =0

/

In general the coefficients of D(p) are given in Egn. (IV.5).
Under the simplified assumptions mentioned above and zero
power condition the coefficients d4, d3, dz, d1, do

associated with p4, p3, p2, p1, po respectively are:
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;=0 , Az=D'.J , dp=F , d, =T (Q+V .

2 . =

qO
(2.36)

yielding, D(p) = d3p3+d2p2+d1p+do . Substituting the
expressions for Br(p) , (r=1,2,3) , given by Iqn. (2.35)

in Egqn. (2.34), the characteristic equation reduces to

2
(Q +v_ Y +Jdp ).Y
Humerator of [1+R(p) (== qg(g) d'(A1(P)+A'1(p)+A"1(p)+

veeena)) 1 (2.37)

In Egn., (2.37) let

1 n~-1 .2
anp +€Ln“1 p Teoeae oa2}f +a1 p+ao
1

BUpY Ly ()4t (R)4h 4 (R) . JYg = =iie
I m~1

2
= +loo-onb2_p +b

1p+bo

(2.38)

where m and n are integers.
This formulation could cover any transfer function of
R(p) and any feedback transfer functions A1(p), A'1(p) ,

£ (p) ...... Thus the characteristic equation (2.37)

becomes
3 2 m m—1 )
[azp7+dop +a, prd Il p™+b 40" T+a i b ptd ]+
. 2 2 n -1 _
[Q#7 Y +ap 1lapra, 0" iiiiagpta ] = 0 (2.39)
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substituting the values of the coefficients d2 , d1 , do

from Eqn. (2.36) in Egn. (2.39), the three lowest order

terms are

Ly 2 2
——— [J(bo+ao)+(b1T'd+b2na2)(QO+V Yq)JP +

go

2 2 -
(0o gDy +ay ) (Q VYo + (ay+b ) (Q,+7, “¥)) = 0

qo
(2.40)
Egn. (2.40) reveals that the reactive absorption term

(QO+V 2Yq) appears in product form with the coefficients

qo
o o} N .
of p and p . This factor changes sign from +ve %o

-ve when the reactive absorption (QO) is increased,

thus, making the characteristic equation (2.40) unstable

at the limiting value of QO+Vq02Yq = 0, 1.e. at the
reactive absorption limit of _VqOQYq (which is the same
as _VZYq because qu = V). The above deduction can be

generalised as follows.

The steady state limit of reactive absorption camnnot

be increased beyond -VZYq (Nd

direct—axis regulation whatever the regulator transfer

OZYq) at zero power by

function, or the nature of the feedback or feedbacks

used,
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CHAPTER 3

3. THEORY OF QUADRATURE-AXIS REGULATION

3.1 General

In Sect., 2.4 it is shown that at zero power the
direct-axis regulation cannot extend the steady state
reactive absorption limit beyond ~V2Yq irrespective
of the regulator transfer function. The direct-axis
regulator effectively reduces the direct-axis synchronous
reactance, and the question arises whether the guadrature-~
axis regulation can similarly reduce the effective
guadrature-axis synchronous reactance and provide
reactive absorption beyond ~V2Yq at zero power. A
theoretical investigation using various signals to regulate
the quadrature-axis excitation, is explained in the

present chapter.

3,2 The System Equations

3.2.1 The lMgchine Equations

The addition of a quadrature-~axis field winding
does not alter the bhasic structure of the machine
equations (see Appendix I), but only the expression for

the quadrature-axis flux linkages qu is modified by
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addirg a term with qu.

X (p) G (p)
- _
Yq o ta T Viq (I-6)
where
¢ (p) = ,(1+qu p)" . ng
q (1+T q0 p) (1+T go P) 7 Teq

and corresponds to G(p) in Egqn. (I~5) for the direct-
axis field winding. Due to the extra rotor circuit on
the quadrature-axis the operational impedance is

modified by introducing extra time coustants m!qo and

Tt . Hence
g

(0) (1+T'q p)(l+’l‘"g p)
X . \p) = T = . X
q (L+T7 ) (1417 p) q

Making the same assumptions as for the direct-axis field
winding machine in sSect. 2.2.1. but allowing for variations
of the quadrature-axis field voltage the following small
oscillation equations are deduced. The direct axis

field voltage is constant and ‘Avfd = 0 .
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—Ad(p) Vo r, ! &id
}
= l i i } A
0 =" aotTalao  ~(QrIRT)  -vgorrgig i) A8
: |
i - - I AA
Gq(p)Ldqu r, V4o X (@) | fig
(3.1)
For the one input Zlqu considered there are three
outputs Aid , L6 and Aiq . Inversion of the matrix

(3.1) gives the following operational relations between

the input and output quantities.

_81g _
¢, (p)Y,(p)
T - VaoVqotPa (Qo+ID +2VaoIqo)Yd(p)]
_Bs
G, (p)Y, (p)
5T Lt (VgomTa(2Tg0=VgoYa(R)+214,Y4(0)))]
Ad
Bq3(p) = T‘%q- = *
¢,(p)Y, (p)
ey [Qy+ D747, Y () =20, Iy Vo Yo (0)]

Fw-(BPQ)

-/



6.

where
DI(p) = =[Q +Ip2+V_ °Y (p)+V, °¥.(p)=-2r (V. I_ Y (p) +
bJ = oTYP go g p do *a‘\P a* qo qo g b
2 2
VdoIdoYd(p))+ra (VdoIqo'quIdo+Jp )] (2.4)
and

¢ (p)Y_ (p) = imq (1_*_;;“-1‘1{()11:4)1_,_1\" )
q q £q qop qop

When the expression of Gq(p)Yq is substituted in Eqn.
(3.2) for later use of the expression qu(p) , (r =1,2,3),

X
1. the constant term ;Eﬂ is i1gnored and is later
fq
treated merged with the regulator gain.

2. the denominator terms are merged, i.e.

Dq(p) = D'(p)(1+T'qp)(1+T"qp) (3.33)

3. the negative sign associated with D'(p) is
omitted and later, instead of assigning
negative numerical values because of the sign
convention to the regulator gain R_ , that is

a
also taken positive, (See also Sect. 2.2).
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The operational relations qu(p), (r=1,2,3) , are
referred to as the alternator transfer functions and

are indicated on the block diagram in Fig. 3.1.

3.2.2 Feedback Quantities

Any feedback from within the system has a definite
relation with the alternator output quantities. Any
feedback signal &vqu for small changes in the
gquadrature-axis is given by the following relation, which

has the same form as in Iqn. (2.4a) or (2.4b) for the

direct-axis.
Avfb 2.
—-———vaq = Fyqlp) = > B.(p).2.(p) (3.4)
r=1

The transfer functions Ar(p) , (r =1,2,3) , are
indicated on Fig. 3.1. Egn. (3.4) indicates only one
feedback quantity, but to maintain generality any number

of feedbacks are included in the following equation

LVey, . ¢
z‘_’;c_;g = Fq1(p) + l'qg(p) + eus (3.5)



y,  —Ep—Lk >4 o
Ay, Av.+ ¥ Ay . | ] OUTPUT
> L R(p) >4 Ay $3q2a>)[L Ad >4, () 1 > o
T A Aj !
{5 (o) }— 43 (p)
t

FIG. 3.1. BLOCK DIAGRAM FOR QUADRATURE—AXIS EXCITATION CONTROL

8/
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323, The Open~Loop Transfer Function and the

Characteristic Eguation

The total feedback signal Ava is operated on

q
by the regulator function Rq(p) before being fed to
the quadrature-axis field winding. If the loop were
open at A (see TFig. 3.1), then open-loop transfer
function Lq(p) would be

A

12 = e = B[y () ¢ Bp(®) ¢ o] (5.6)

For the system represented by Eqn.(3.6) the characteristic

equation is

Wumerator of [1 + Lq(p)] = 0 (3.7)

3.3 Quadrature-axis Regulation with Various Signals

The idea here is to try various signals for regu-
lating the quadrature excitation and theoretically
examine whether they help in increasing the steady state
limit of reactive absorption at light load. The usefulness
of any signal can most easily be examined at zero load,
since the system equations are simplified because the

steady state values of the variables 60 , Iqo ’ Vdo



80.

become zero and qu =V , In order to get simplified
conclusions of practical significance the equations are
further simplified by neglecting resistance and damping.
The conclusion as to the usefulness of a signal is
reached by studying the contribution of the feedback to

the coefficients of the characteristic equation.

3.3.1 The Unregulated System

For the unregulated system Rq(p) = 0 and the
characteristic equation (3.7) for zero power condition

in the expanded form becomes:

2
Y =0
qo ¢

(3.8)

- 3 2 2
Dq(p) =113 p” + Jp° + T'q(QO+V TR+ QT

go

When the reactive absorption is increased the fterm

QO+Vq02Yq in BEqn. (3.8) will eventually become negative
and will establish the unstable mode. Thus Egn. (3.8)
gives Q, = —VqOZYq = -VZYq) as the limiting value of

negative vars. This is a well known condition. Tor the
experimental machine this limit of negative vars is

0.517 p.u.
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3.%3.2 Terminal Voltage Feedback at Zero Power

The terminal voltage feedback in conjunction with
the regulator of general transfer function Rq(p) is
considered. The transfer functions ‘Ar(p), (r=1,2,3) ,
for the small changes of terminal voltage are given by

Eqn. (2.5). TFor the zero power condition they becomes

- o B )
Ay(p) =K Iq, qu) Voo
ay(p) = O > (3.9
AB(p) =0
/

The alternator transfer function Bq1(p) , qu(p) and
Bq3(p) given by Egn.(3.2) becone:

qu(p) =0 “?
Voo ¥ .
2
QO + Jp Yd JJ
Bq3(0) = =515

Using LEgns. (3.4), (3.6) and (3.7) the characteristic

equation in the expanded form becomes
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Numerator of [1+Rq(p) (Bq1(p).A1(P) + BQQ(P)AZ(P) +

Bys(p)45(2)) 1 =0 (3.11)

Substituting the expressions of qu(p) and Ar(p) ,
(r=1,2,3), from Equs. (3.9) and (3.10), the characteristic

Egqn. (3.11) yields
D = 0
ne

which is the characteristic equation (3.8) for the
unregulated system, whatever the regulator transfer
function may be. Thus the terminal voltage feedback
cannot increase the steady state reactive absorption
limit beyond that of the unregulated system, irrespective

of the regulator transfer function.

%.3.3 Resolved Component Feedback at Zero Power

Instead of making composite feedback quantities
out of the fundamental alternator output guantities,
which are the resolved components in the two axis theory,
the effect of individual component feedback in conjunction
with a general regulator function Rq(p) is investigated

in the following sections.
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3.%3.3.1. TFeedback of Id

Prom the substitution of Egns. (3.9) and (3.10) in
Bgn. (3.11) one can deduce that an effective signal must
be such that Ag(p) and AB(p) are not both zero. Tor
a straight feedback of signal Id the transfer functions

AI(P) 9 (r=17233) y are:

A,(p) =1 W
Ay(p) = 0 \ (3.12)
A3(P) = 0 (
S
Hence a signal Id is ineffective. -
3.3.%3.2 Feedback of Iq
If the feedback depends on Iq the transfer
function Ar(p), (r=1,2,3) , are
"\
A,(p) =0
A,(p) = 0 > (3.13)
AB(p) = 1
4

Substituting the transfer functions Ar(p) and Br(p) )
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(r=1,2,3) from Egns. (3.413) and (3.10) in the characteristic

Egn. (3.11) we have

D, (p) + By (p)[(Q,+3p®)T,] = 0 (5.14)

Depending on the regulator transfer function Rq(p) Aiq
feedback causes the characteristic equation to differ
from the unregulated value, Dq(p) . However, since the
term QOYq is negative when the vars are negative it

is not a stabilising signal, and also it changes sign
from positive to negative vars, which makes it
undesirable. However it could be mixed with other

feedbacks for special purposes.

3.%.3.3 Rotor Angle Feedback

For the rotor angle feedback the transfer function

Ar(p), (r=1,2,3), are as follows

A,(p) =0 \7
Ay(p) =1 (3.15)
Ag(P) = 0

Substituting Ar(p) and qu(p) , (r=1,2,3) , from
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Eqn. (3.15) and Bqn. (3.10) respectively in Eqn. (3.11)
the characteristic equation for the rotor angle feedback
is

Dy(p) + By (p). (5 ¥y, T) = O (3.16)

q

This is the most effective feedback signal because
qu Yq is always positive and, depending on the
design of Rq(p) , the feedback term Rq(P) J%'quyq
can stabilise the system by modifying the various
coefficients of Dq(p) . It can be concluded that the
system represented by Dq(p) = 0 which is, unstable for
reactive absorption greater than ~V2Yq when there is
no regulator, can now be stabilised by‘the feedback

term Rq(p) J% quYq . The detailed investigation is
carried out in the subsequent sections.

3.4 ILguilibrium Diagram With the Angle Regulator for

the OQuadrature Winding

For any possible operating condition, that is, any
point on the Power-Var chart of Pig. 1.1, a vector
diagram referred to as an 'equilibrium diagram' can be

drawn but the system may or may not be stable., With a
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fixed direct-axis field the system is stable at lagging
power factor but is unstable at negative values of Q
beyond the steady state limit line 'a{ or 'a2¥ on Fig. 1.1.
Stable operation beyond the limit line 'a' can however be
obtained by using a signal derived from the rotor angle
for regulating the quadrature field winding, see

Sect. 3.3.3.3.

Fig. 3.2a shows the equilibrium diagram of a
conventional synchronous machine with direct-axis field
and connected to a fixed supply. To maintain equili-
brium the rotor angle & swings round to an appropriate
value. When a quadrature field winding is used as in
Fig. 3.2b, the angle can be held at zero if a suitable
control is used, because the quadrature field winding
can provide the component of excitation required for
equilibrium. PFig. 3.2b indicates a condition at leading
power factor,

The salient features of the equilibrium condition
shown in Pig. 3.2b are:

1. the rotor angle &6 is zero

2, the infinite bus (reference) voltage is

always in the quadrature-axis, and from

Egqns. (I-1) and (I-2) we have
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FIG.3.2b. ‘
FIG. 32EQUILIBRIUM DIAGRAMS FOR A SYNCHRONOUS MACHINE.

a with conventional Direct-axis excitation
" b with Direct and quadrature excitations.
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Vdo = 0 &
) (3.17)
qu =V
3. Using Eqn. (I-1) and Eqn. (I-6) we have
Kmq Ve
Tookq = E;g,. ~7% (3.18)
4, PO = qulqo = VIqO
(3.19)
Qo = quIdo = VIdo
5. Using Egns. (3.718) and (3.19) we have
Vo
Ve -
P =24 o oy (3.20)

3.5 Theoretical Determination of Stability for the

Quadrature Angle Regulator

In this section a detailed analysis is carried out
to determine the steady state reactive absorption limits
for different types of regulators. The steady state
stability limits are determined by application of the
Myquist criterion using the frequency response values of
the system open-loop transfer function calculated by an
IBM computer. DFor detailed analysis the Nyquist criterion
is preferred to the root-locus technique as used in

Sect, 2 for reasons given in Sect. 1.1, however, the
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coefficients of simplified characteristic equations

are used at times to make some general deductions., It

was found that a regulator using first and second deri-
vatives along with the proportionate term can be used to
xtend considerably the steady state reactive absorption
limit as well as to extend the range of regulator gain.
The question of the effect of damping and resistance on

the steady state limits is also given some consideration.

3.5.1 The Proportionate Regulator

This section gives the analysis of the system with
a proportionate regulator, the transfer function of which

is an adjustable constant R Throughout the analysis

q °
Rq is referred to as the regulator gain, although some
constant terms of the open-loop transfer function are

considered merged with R Sect. 6.4.

q ’
The filter circuits used with the angle signal
introduce some delay but this is ignored in the first
instance. The proportionate regulator analysis is first
made with the angle device transfer function as a constant
in order to make some simple deductions. ILater the
complete angle device transfer function is used in a

detailed analysis. The angle device with a constant

transfer function 'k1’ is referred to as an !'ideal
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angle device' and with its proper transfer function as
a 'practical angle device!. The constant k, is merged

with Rq as explained in Sect. 6.4.

3.5.1.1 Vith Tdeal Angle Device

Under the ideal condition considered the open-

loop transfer function of the system (see Fig. 1.3) is

Lq(p) = Rq(p) -qu(p)

1
= Ry 42 Vgo¥g
' ' 2ye 2
JT qu + Jp2 + T q(Qo+qu Y q)p+Qo+qu Ty

(3.21)

For a given wvalue of QO the transfer function given by
Bgn. (3.21) remains unchanged for any power, because it

does not contain any terms dependent on I (see Eqn.

qo
(3.19)) or B, . Therefore, the steady state stability
1limit curves obtained in +the following sections are valid

for any power level.

3.5.1.1.1 Application of the Nvaguist Criterion for a

Qualitative Assessment

In Fig. 3.3 are shown diagramatic Nyquist plots
for Lq(jtd) given by Bgn. (3.21) with p replaced by
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Jws, plotted as explained in Appendix V.3. Figs. 3.3a,
3.3b, 3.3¢ are for -0.4, -1.0, -1.8 p.u. vars
respectively. Iig. 3.3a1 for Rq = 41 1indicates no-net
encirclement around (0,0) , since there is no zero of
Lq(p) in the R.H. p~plane. At =0.4 p.u. vars it is

true because Q_ + V. °Y > O . However, if the gain

~0 qo g

Rq is increased as in Fig. 3.3%a2 the Hyquist plot
encircles the (0,-1) point twice clockwise indicating
two roots of the characteristic equation in the R.H.
p-plane. Thus at high gains the system is rendered

unstable when it would be stable without regulation.

Vars = -0.4 p.u. is a typical case such that
2
Qy + qu Yq >0
Fig., 3.3b1 for vars = -1.0 p.u. shows one net

encirclement of (0,0) indicating one pole of Lq(p)
2

g0 Yq <0,

in this respect Fig. 3.3b1 is representative of cases
2 . . . .

-V : :
o $= Vg0 ¥g « The gain Ry in Fig. 3.3 is
such that (0,-1) is also enclosed once anticlockwise,

in the R.H. p~plane. This is because QO+V

where Q

thus representing a stable system according to the
Nyquist criterion (\ppendix V.3). In Fig. %.3b2 the
regulator gain is iarge and the Nyquist plot encircles the
(0,~1) point once clockwise disclosing the existence of

two roots of the characteristic equation in the R.H,
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p-plane. There are two roots in the R.H. p-plane for

one net clockwise encirclement of (0,-1) because there

igs already a pole of Lq(p) in the R.H. p-plane.
According to the Nyquist criterion the system is
unstable., The regulator, therefore, stabilises the
system over a finite range of gain., For vars = -1.8,

Rq = 1 Pig. 3.5¢1 shows one net anticlockwise encircle-
ment around (0,0) as expected because of Q, < "ququ .
In Fig. 3.3cZ when Rq is sufficiently increased to
enclose the (0,-1) point, the plot encloses the (0,-1)
point once, the system according to the Nyquist criterion
is unstable and the adjustment of gain cannot make the
plot encircle (0,-1) anticlockwise once to stabilise

it. The diagram shows the limitation of proportionate

regulation.

3.5.1.1.2 Application of the Nyquist Criterion for

Quantitative Assessment

The Nyquist plots for La(juJ) obtained from
Eon. (3.21) with unity regula%or gain for -0.4, -1.0,
-1.6, ~1.8 p.u. vars are shown in Tig. 3.4. The plots
show only the curves for positive frequencies. The
zero frequency point is marked 'A' and the point where

the Hyquist plot cuts the negative real axis is marked
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'B!., The zero frequency point for -0.4 p.u. vars is
off the diagram in the R.H. p-plane.

2
g0 Yq the
minimum regulator gain Rq(min) required to stabilise

For reactive absorption greater than V

the system is given when the zero frequency point 'A!
just crosses the (0,-1) point (see Sect. 3.5.1.1.).

Substituting these conditions in Eqn. (3.21) we have

1

Nl qu Rq(min)
T 2
Qo + qu Yq
2
Q +V Y
or Rq(min) = - 3 90 9d (3.22)

2 Vg0%q

2

For Qg > - qu Yq, Rq(min) = 0 , because the system is
stable without feedback.

The maximum permissible regulator gain Rq(max)
limit is reached when point B just crosses the (0,-1)
point, see Sect. 3.5.1.1.1. To satisfy this condition
the imaginary part of the denominator of Lq(jog)

(Bqn., (3.21)) should be zero and amplitude equal to 1.
Equating the imaginary part to zero also yields the

natural mode of oscillation (see also Appendix V., 2.1).

Using the above condition and Eqn. (3.21) we have
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3

s . . 2 _
J& T oy 4 J(%nT'q(QO+VqO ) =0
or
ﬁ~+V 2yt
- Lo 9o g

Substituting jw, (=p) in Egn. (3.21) and satisfying
the amplitude condition we have
1
7% Voo X' 4=Y,)

Rq(max) = T (3.24)

-

Bgn. (3.24) indicates that Rq(max) is independent of
vars and that is why all the Nyquist plots in Pig. 3.4
cross over the negative real-axis at the same point.

If R, < Rq(min) the unstable mode iz of zero
frequency resulting in drifting instability and for
Rq > Rq(max) the unstable mode has complex frequency,
and the instability is oscillatory at the natural fre-
quency (s, - This statement is generally wvalid for any
Rq(p).

The maximum steady state reactive absorption limit

is reached when
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R (min) =
q(mln) Rq(max)
Using Egqn. (3.22) and Eqn. (3.24) we have

o 'y (3.25)

Qo(max) = =V

This limiting point is illustrated in Pig. 3.4 for
vars = -=1,6 at which the points A and B almost
converge into each other. The maximum steady state
reactive absorption limit calculated for the practical
system is -~1.625 p.u. which is an ideal limit. The
Nyquist plot at vars = -1.8 p.u. is always unstable,
because QO>QO(maX)9(see also Sect. 3.5.1.1.1).

I'ig. 3.5 curve is a steady state limit curve showing
the reactive absorption against the regulator gain.
The system is stable within the bounded region of the
curve and is unstable outcide it. A similar curve is
obtained with any regulator transfer function Rq(p) .
The curve has two distinct regions marked AB and BC.
The region AB 1is associated with the zero frequency
point 'A' and BC with the Nyquist plot cross over
point 'B! (see Fig. 3.4). The BC region is a

vertical straight line because the point B on the
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Nyquist plot does not change its position with vars
(see also Zgn. 3.24). If a linear scale was used for
Rq the region AB would be a straight line because of

the linear relation of Rq(min) and O, in Dgn. (%3.22).

3.5.1.2 ¥With a Practical Angle Device

In the previous section the angle device considered
was an ideal one transmitting the signal without
attenuation or delay. 1In this section a practical angle
device defined by a transfer function is taken. The
transfer function of the angle device used is

I&Q&#pa

(Ap2+Bp+C)(TBp2+4Tp+l)

Numerical values of coefficients A,B,C,T are given in
Sect. 4.3.2.4. For later use of the above expression
the constant K, 1is ignored, since it is taken care of
by Rq as stated in Sect. 3.5.1 (see also Sect. 6.4).
The open-~loop transfer function Lq(p) in Bgn. (3.21)
becomes

1
R(zV Y )
L,(p) = .9 le 909 .

§ 3 2 [ 2 [} 2
[g 1t o7+ap%+0r (@ +V V' )p+(Qg+V Y )]

q q

(147 ) (3.26
(Arf +Bp+0) (T2 p2+4Tp+1)
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In Pig. 3.6 curvesd and 2 are typical Wygquist plots for
varé = -1,0 p.u. and Lq(ja}) given by LBgn. (3.21)

and Egn. (3.26). The inclusion of the angle device
transfer function modifies the Hygquist plot of IL(p)
from 1 to 2. The zero frequency point 4L remains
unchanged because at zero frequency the angle device
transfer function is unity. However, attenuvation and
lag is introduced at higher frequencies and the negative
axis cross over point B 1is shifted to B' ., In IMig.
3.5 curve 2 shows the steady state stability limit curve
along with curve 1 for the regulator with the ideal
angle device. The portion AB is common to curves 1
and 2 because the point A on the Hyquist plots does
not change. The line BC of curve 2 1s no longer
vertical and is shifted so that Rq(max) is reduced
because point B on the Nygquist plots 1s shifted to

B! (See Fig. 3.6). The maximum permissible limit is
reduced because of the delays of the angle device ftransfer
function and for the system considered the reduced limit

Qo(max) = ~1.5% p.u.
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3.5.2 Regulator with Derivative Feedback

In the previous section the proportionate regulator
is shown to increase the steady state reactive absorption
to about 1.5 p.u. but the regulator gain margin is poor
and leaves a great scope for improvement, The first and
secona derivative compeunsations are used in the following
sections to increase the steady state limit of reactive

absorption further and increase the gain range.

3.5.2.1 Proportionate Regulator with First Derivative

The idea of lead compensation cain better be under-
stood by studying the coefficients of the characteristic
equation for the proportionate regulator with an ideal
angle device. The simplified characteristic equation

corresponding to Eqn. (3.21) is
Humerator of [1 + Lq(p)} =0

or

2

Mt Jp3 + Jp2 + T'q(QO+Vq02Y‘q)p+ Qo+qu

1 _
. YR (oY) = O

qo g

(3.27)
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. 1 .
As Rq varies the term Q0+qu ,fququ) is

kept >0 g0 that all the roots of the characteristic

2
+R
T, q(

Egqn. (3.27) are in the L.H. p-plane, but when

(QO+V OaY'q) < 0 the system is unstable regardless of

q

R, end the limit is set at ,quZY*q . However, by

including a flirst derivative term (QO+quZ Y'q) in
Eqn; (3.27) can be compensated and the system can be
stabilizged.

The transfer function of the practical regulator

congsidered is:

— .1 p
Rq(p) - Rq (2 + TI+.01p)(1+.01p) ] (3.28)

The open-loop transfer functim in Zgn. (3.26) is modified

to:
1
L (p) = RQ (Jﬁvgqu) , )
a t 13 2.1 (o Sy 5 >
J Tgp? + Jpo+T q(wo+qu Y q)p+(.,O+Vqo )
22
(1 +7 D ) X [1 . dp
(21 +47p+1) (Ap2+Bp+C) (1+.01p)(1+.01p)

(3.29)

In Fig. 3.7 are shown some typical Nyquist plots for

Lq(jUJ) given by Eqn. (3.29) and a corresponding curve

]
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showing the steady state limiting value of reactive
absorption against the regulator gain is plotted in

FPig, 3.8. A study of the liyquist plots reveals that

the first derivative term of the regulator transfer
function Rq(p) tries to generate a portion of the
curve in between points A and B , for example

vars = -1.6, such that for a range of regulator gain

it could enclose the (0,~1) point anticlockwise once
(see Sect. 3.5.1.1.1.) and thus represent a stable
operation; the range of operation is narrow and for the
example considered is 2,85 £ Rq £ 3.55 . At vars =
-1.8 p.u., the points A and B on the Hyquist plot
almost converge and represent g case near the maximun
reactive absorption limit for +this first derivative
regulator. In Fig. (3.8) (dotted line) for comparison
the steady state reactive absorption limit curve is
plotted against the regulator gain for the proportionate
regulator with the practical angle device, The maximum
reactive absorption limit is raised from -1.52 p.u. to
-1.82 p.u., and the maximum permissible gain Rq(max)

is raised from 2.65 to 3.6. The line marked BC slopes
inwards and hence there is very little increase in the
gain margin at values of reactive absorption numerically

greater than -1.0 p.u.
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3.5.2.2 Proporticnate Regulator with Pirst and Second

Derivative - !'Derivative Regulator!

A regulator with first and second derivative
elements is referred to as a 'derivative regulator! in
this thesis.

It has been shown in Sect. 3,5.2.1 that the first
derivative term helps to improve stability and it would
be expected that the inclusion of second derivative would
improve it further. The way in which the second deri-
vative increases the stability range can be seen by
studying the coefficients of the simplified characteristic
equation. In obtaining the simplified characteristic
equation for the first derivative only the angle device
is assumed to be ideal and Rq(p) of Egn. (3.8) is taken

as Rq(1+.1p), thus we have

3 2 0 2 1
J T'qp + Jp° + [D!q(QO+VqO Yrq) + .1(J§quYq)°Rq] p +
2 1 _
Qoo g + (VoY Rq = © (3.30)

For stability in addition to the requirement that all
coefficients of Egqn. (3.30) must be >0 +the following

product inequality must be satisfied (see Appendix V.2)
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2 1y 2
I L2 @V Y1) + (g TR >

2v v ( dy 2
g ot Lagvg, Yoty (Vg Ty) ] (3.312)

Rq(max) is established as the limiting value of Rq
in the above ineguality.

A simplified second derivative term T1p2 in the
regulator transfer function changes its simplified transfer

function considered above to:
R (p) =R (1 + .1p + = p2)
4 0! 1
2

Consequently the coefficient J associated with p

in the characteristic equation (3.30) is modified to
.1
J + Ry 71(¢§quYq) ’
and the new product inequality becomes

-1
[J+Rq71(J§V Y )]l T (Q+V

2y 1. 2
. R
qo¥q Yq) + 1(J§qu Yq) q] >

go

2 1
7ot L v TR (VY0 ] (3.310)
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In the inequality Egn. (3.31b) the L.H.S, is modified

compared to inequality Equn. (3.31a) while the R.H.S.

qOYq)
in the L.H.S. of inequality equation (3.31b) helps to

remains unchanged. The additional term Rqr1(J%V

maintain inequality for a longer R range and for

q
increased reactive absorption than permissible by the
inequality Eqn. (3.31a).

The practical regulator transfer function considered

for detailed analysis is as follows

- Q.1 D
Re(p) = Ry [+ rrorpycieomny

2

.02r
(4+=01p)(1+.O1p?(1+.ozp}(1+.oqp) ] (3.32)

In the derivative regulator transfer function above, the
second derivative is achieved from the first derivative
term and the denominator terms are intentionally provided
to keep the high freguency noise associated with the angle
device output * o a reasonable level (see Sect.
4.4.2). The open-loop transfer function allowing for

the practical angle device becomes:
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1
L (p) = g :/Z/q0%q x
4 Lo 2 pd+dp2+Tt (0 +V 27y Yp+(n +V_ 27 )]
g "0 g0 T g/ P 0T g0 g
2
(1+7212) x R[1 + 0.1p

e— +
[22p% +4tp+1 ][ Ap 2+Bp+C] q (1+.01p){1+.01lp)

2
(l+.01p5?§g.01p)(1+.02p)(1+.Olp)] (5.33)

In Fig. 3.9 some typical Nyquist plots for Lq(j&))
given by Ean. (3.33) are shown and Fig. 3.10 shows the
steady state reactive absorption 1limit curve againgst the
regulator gain. Three distinct regions in Fig. 3.10 are
labelled AB, BC and CD . On the same figure are also
shown the stability limit curves for the proportionate
regulator and first derivative regulator with broken lines
with and without crosses. . . All these curves
allow for the practical angle device. The region AB
on these curves is common and corresponds to the zero
frequency point A 1in Pigs. 3.4 and 3.7. The zero
frequency point A for all the Nyquist plots in Fig. 3.9
is off the scale.

In Fig. 3.9 the Nyquiet plot for -1.4 p.u. vars is
a typical representative of conditions iﬁ the region AB. -

The curve for vars = -0.4 p.u. is a representative of
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cases for which Rq(min) = 0, but Rq(max) depends
on the point B (see Sect. 3.5.1.1.1). In Fig. 3.410
the newly created region BC corresponds to Rq(min)
and point A' in Fig. 3.9. The frequency of A!' and
its location depends on the vars. ITwo typical lyquist
plots for the region BC corresponding to -2.4 and
-3.4 p.u. vars are shown. The curve from A to A' is
partly shown (since A is off the scale), however, it
represents the unstable part, because it could only
encircle the (0,~1) point clockwise (see Sect.3.5.1.1.1).
In Pig. 3.10 the region CD corresponds to Rq(max and
point B on the Hyquist plots in PFig. 3.9. In fact
the broken lines with and without crosses also correspond
to the point B on the respective Hyquist plots for
simpler regulators, but with the derivative regulator
the point B is so shifted that Rq(max) is considerably
increased to give the region CD,

The following chart gives the comparative

theoretical figures for the three regulators.
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Type of Regulator Maximum Maztimum Mazximum
permissible | permissible | Gain limit
steady state gain at at

reactive any var vars =
absorption level -1.0 p.u.
p.u.
Proportionate

(with practical

angle device) ~1.52 3.0 2.78

Pirst derivative

only -1.82 3.6 3.15
'Derivative!? -4.0 34,2 22.8
5.5.3 hffect of Alternator Damping

If the damping is included the altermnator transfer

function qu(p) becomes

il
B ,(p) = /2 Tg07q =
q2'P) =Ty g e T X T
T qu +Jp +(QO+VqO Y'q)T‘qp+(Qo+qu Yq) g
(3.34)

The term associated with damping in Egun. (3.34) is

1+Tk p

1+T“qp } , its effect is equivalent to a lag term in

1 = 1
the total transfer function Bq2(p) , because T'q>qu .
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How much the modified altermator transfer function
affects the Nyquist plots of the open-loop transfer
function Lq(p) depends on the magnitude of Tk and

q
™ . Their order is usually so low that it does not

q
affect the WNyquist plot to any appreciable extent around
point B (see Figs. 3.4, 3.6, 3.7), where the freguency
is .7 - 2.5¢/s. The above argument supports the
conclusions in Ref,1 that the damping has little effect
on the steady state stability limits. However, it can

be added that the little effect it has, is equivalent

to a small lag term in the open-loop transfer function.

%3.5.4 Effect of Resistance

With resistance and without damping the alternator

transfer function Bq2(p) is

1
oty [V -er (I +e T4 Y(p))]

Bq2(P) =

e
o 2/ 1.2
2+V2Yq(p)—cr I,oYq(p)+r, “(gp-I4.)] (1+T* p)

Lag+o a~qo’q q

(3.35)

Using the above alternator transfer function in the
expression for Lq(p) given by Egn. (3.33), the steady
state limit points are plotted in Fig. 3.10. A comparison

with the steady state limit curve for the derivative
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regulator shows that the resistance has a stabilising
effect, because 1t slightly increases the reactive
absorption limit for the same regulator gain.

In the alternator transfer function given by
Eqn. (3.35), Iqo terms are present which makes it a
funectiovn of power. There should be a slight increase
in the stability limit with increase in power. The

effect of resistance is in any case quite small.
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CHAPTER 4

4.  EXPIRIMENTAL DQUIPMENT

The experiments were conducted on the three phage
micro-machine equipment arranged as shown Fig. 4.1
and Fig. 4.2 for the direct and quadrature axes re-—
gulation schemes respectively. In both cases the micro-
alternator is connected to the fixed supply treated
as an infinite bus through a series reactance Xc .

The micro-machine is a small alternator specially de-
signed to give a large range of parameters on a per
unit (p.u.) basis. The equipment includes a time
constant regulator which controls the constants of
the excitation circuit and the feedback regulator
simulated by an analogue computer using conventional
circuitry.

In Fig. 4.1, the main voltage feedback circuit
consists of a rectifier and filter followed by the
regulator. There is also an auxiliary feedback circuit
which consists of an air-gap transformer with its
primary winding in series with the field circuit and
the secondary winding feeding the regulator through a
filter and an adjustable amplifier. The steady state

excitation level of the alternator can be changed by
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adjusting Vref’
In Fig. 4.2, the gquadrature-axis angle feedback
circuit conselsts of an angle measuring device followed
by the regulator. The direct-axis field is supplied
from an adjustable d.c. source. The quadrature-axis

steady state excitation is automatically controlled by

the angle feedback circuit.

4,1 The Micro-machine and its Parameters

The experimental micro-machine had different
rotors for the direct and quadrature axes regulation
schemes but the same stator was used. The rotor for the
direct-axis regulation scheme had a conventional direct-
axis field winding and a demper circuit. The stator-rotor
combination and the parameters were the same as for the
machine used in Ref. 1 (see table I). The rotor for
the quadrature-axis regulation scheme had a direct-axis
winding and a winding in quadrature but without damper
circuits. The parameters are dealt with in the following

gsections.

4,1,1 The (uadrature-gxis Regulation Machine Parameters

The parameters of the micro-machine were chosen

to represent a large symchronous machine on a p.u. basis.
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The p.u. voltage and the voltamperes are the same as
for the direct-axis regulation scheme. A relatively
low voltage was chosen in order to reduce the effect
of saturation. The range of operation congidered for
this scheme is from no-load to full-load and it is
difficult to find a set of parameters compatible with
the full operating range because of saturation. The
parameters also vary from positive to negative vars
even at a particular power. However, the parameters
used were determined at 0.2 p.u. power averaged over
a range of vars.

For calculagtions the series reactance Xc was
treated as part of the machine leskage reactance. The
operational impedances Xd(p) and Xq(p) were de-
termined by the variable frequency response static

t21’22 and the conventional23 short circuit

impedance tes
and open-circuit test. The direct and quadrature axes
synchronous reactances were determined from the steady

state equilibrium diagrams (see Sect. 3.4).

4.1.1.1. Determination of Xd and Xq

In order to determine Xd and Xq from a steady
state test, using the equilibrium diagram given in

Fig. 3.2b , the alternator was synchronized with the
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fixed supply. The power generated was adjusted to

0.2 p.u. The steady state m.m.f in the quadrature-axigs
was adjusted until the zero angle equilibrium was
established. The supply voltage, vars at the fixed
supply terminals, the line current were noted. From
the open-circuit voltage characteristic for the direct
and quadrature axes, and the steady state relations
(Equs. 3.17 to 3.20) for the equilibrium diagrem,

Fig. 3.2b , X; &nd Xq were determined. The open-
cilrcuit characteristics for the direct and quadrature
axes are approximated straight lines through the origin
and the 1 p.u. voltage point. The values of Xd and
Xq given in table II are the average values from

a number of tests for .2 p.u. power averaged over a range

of vars.

4.,1.1.2 Variable Prqguency Response Static Impedance Test

The transient reactances for the direct and quadrature
axes are determined by fitting curves to the experimental
points from the frequency response static impedance test
as briefly described below. The curve fitting is done
with the Imowledge of the traagient reactance from the standard
short-circuit test which is similarly extended to the

quadrature-axis here.
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The test consisted of connectiﬁé the two phases
of the machine in series with an external resistance
while the rotor was locked in the direct-axis position.
The external resistance was first used for measuring
current in conjunction with a transfer function analyser
(T.7.4) equipment and later to provide one volt-eter
reading when the test was repeated with the three volt-
meter method. The T.F.A equipment consists of three
interconnected units, an ascillator, an angle resolver
and an anplitude measuring unit. A variable frequency
reference signal from the oscillator is given to a
system or a circuilt the frequency response of which is
to be measured, the output is connected to the amplitude
unit which in conjunction with the angle r-solver gives
the magnitude and angle of the output with respect to
the reference signal.

The T.F.A., reference signal was fed to an amplifior
and exciter arrangement of an auxiliary time constant
regulator (see Fig. 4.5), to circulate a current signal
at reference signal frequency of approximately 250 mA
through the machine circuit described above. With
respéct to the T.F.A. reference signal, the voltage Vr
across the resistance and VC across the coil (i.e., two

machine phases in series) were measured, giving the
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impedance 2z of two machine phases at the operational

.V.!C
('V’r/R)

tance (equal to 1 ohm). Thus, the operational impedance

frequency f = 3 R being the external resis-

\ = 5 a

50
o [ tE
qu)/

For the quadrature-axis the rotor was locked in
the quadrature-axis position and the test was repeated
with the quadrature-axis time constant regulator in
operation to control the effective quadrature field
winding resistance (see Sect. 4.2.2.). A steady state
field current of 750 maA was circulated to keep the
operation of the quadrature-axis time constant regulator
in the linear region (see Sect. 4.2.3). This experiment
was repeated for both the axes;, by using a motor generator
set and the three voltmeter method for measurement
(using an oscilloscope for low frequencies). The averaged
experimental points were plotted for direct and quadrature
axes operational admittances in Fig. 4.3 and Fig. 4.4
respectively. Though the experiment was done on the
machine alone, the points on the above figures include
the transmission line reactance Xy - Thé points Yd

(i.e.Yd(o)) and Yq ce.eo.. continued
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(i.e. Yq(o)) were established from the equilibrium
diagram in Sect.4.1.1.1., the points Ydﬁm) and

Yq(oo) (i.e. 7'y end Y') established by the standard
short-circuit test gsisted in fitting a suitable curve
through the experimental points. A close fit was attempted
in the lower frequency region due to the importance of
this reglion in the present investigation. The discrepancy
at very low frequency points could be attributed to the
resigtance measurement error which is more pronounced

at low frequencies. There are no damper windings on

the rotor, however the experimental points indicate

some damping effect which may be due to the iron (though

laminated) in the rotor.

4.2 Time Constant Regulator - T.C.R.

The field resistance (rfd or rfq) of the small
micro-machine is larger than it should be for a correct
simulation of a large synchronous machine and the time
constant regulator is used to reduce its value. The
circuit employed uses & winding mutually coupled to the

24525 is discussed

field winding, this convential gcheme
briefly in Sect. 4.2.1. The quadrature field winding
of the second rotor is however not provided with a

mutually coupled winding on the rotor, and an alternative
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circult to achieve the desired time constants is

developed in Sect. 4.2.2.

4.2.1 Conventional Time Constant Regulator

In Fig. 4.5 is shown the {ime constant regulator24,

which consist of a d.c. exciter supplying the alternator
field, a high gain d.c. amplifier supplying the exciter
field and a suitable feedback circuit. The feedback
circuit controls the rate of rise or decay of the

field winding flux linkages. To achieve this the
feedback term should consist of the change of field
flux linkages term and the resistive drop term. Since
the gain of the d.c. amplifier is very large a ‘'Virtual
Larth! is always established at the input of the ampli-

fier.
Thus, e - efb = 0 (401)

where, e 1s the input voltage and epy 1S the feedback

voltage.
e, = By * Rpple (4.2)

and

16
Y Lpip + Mipg + Mig (4.3)

H)f the flux-linkages for the field winding are also
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the flux-linkages for the mutually couplzd feedback
winding, because the coupling is ideal and their
windings are identical (i.e. their mutual inductance
is also their self inductance). From Bgqns. (4.1)
and (4.2) we have

i

Ei = (Rfi ¥ pq)f) (4.4)

For the open circuit transient behaviour of the alternator

p{r = pLeiy , for this condition Lqa .(4.4) beconmes

i—i-. — l
s (Rep, + BLg) (4.5)
thus the resulting time constant T'do of the system is

L

ﬁ;; . By changing be ,T'do can be adjusted to a

desired value. Under the steady state conditions pQ')f
e

is zero and if = EE; . Thus looking at the input of
the high gain d.c. amplifier the field circuit behaves
as 1f it has the adjustable resistance be and not
the actual field resistance Rf .
In the scheme shown in Fig. 4.5 the two parts of
the feedback, namely pLPf and beif are picked up indepen-
dently. pQPf is derived from the mutually coupled winding
with the field circuit. In the absence of the mutually

coupled winding as is the cage with the quadrature-axis field
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winding rotor the feedback eircuit is modified to
achieve the same fecdback quantities, see Zgn. (4.2).
The modified scheme is dealt with in Sect.4.2.2.

In this simplified analysis the exciter is treated
as part of the high gain d.c. amplifier considered to be
ideal without delay. The controlled excitatinn effect
of the ex¢iter is boosted by a series winding which is
on the same magnetic axis as the control winding. To
counter the interaction between the series winding and
the control field winding a feedback from a winding
mutually coupled to the series winding is used, the
details for which are given in Ref. 24. In the following
modified scheme the amplifier and exciter are left un-

changed and treated as ideal high gain d.c. amplifier.

4.2.2 Modified Time Congtant Regulator

The modified time constant regulator is shown in
Fig. 4.6. The amplifier and the exciter is shown
simplified, but in rractice is the same as in Pig. 4.5,
only the feedback circuit is altered. An adjustable
registance be s which is small compared.with the
field resistance Rr,is inserted in series with the field

winding and the end farther from the field winding is
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earthed, instead of the field side end, see Pig. 4.5,
This is done because of a change of polarities as will
be clear later. The voltage picked up by the field
coil end Fl with respect to the earth constitutes

a part €rp1 of the feedback Crp - The expression

for erp1 iss
e.fbl = [(Rf + be)lf + p({.)f.l (4-6)

In Bqn. (4.6) Py 1is the useful part but (Rf + Rpp)isp
is very large and must somehow be cancelled. This is
achieved by countering it by the other part of the
feedback Crpo * which comes from be amplified by

K times and inverted in its polarity. The expressisn

for €ppo is
erpp = (Rpp X 1)F-K = -KRoio (4.7)

The two feedback voltages given by Zgqns. (4.6) and (4.7)
are summed up in an operational amplifier thus the re-
sultant feedback ot at the out put of the summer

unit is:

erp = ~Lepp1 *+ Cppol (4.8)

Substituting epq and ep, in Eqn. (4.8) the

final expression for the feedback quantity is
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= - [ R, - bex(K-l) + pg)f]

or

= - [Ref + pkf)f] (4‘9)

where R_. = Rf - (K—l)be

Thus an adjustable Ref is achileved depending on the
amplifier gain K, wkich can easily be adjusted from 1
to 40 with one operational amplifier.

The feedback expression given by Egn. (4.9) is
similar to the expression given by Bam. (4.2). Assuming
there is no phase shift introduced by the operational
amplifi;;; of the modified scheme in PFig. 4.6 and Ref
is the same as be of the conventional T.C.R., then
the two circults will behave identically. If e is

the input voltage then from the 'Virtual Earth' ceoncept
established in Sec. 4.2.1, using Bqn. (4.1) and Eqn. (4.9)

we have
i
£ 1
e - LRe_f + pLI)f-‘ (4-10)

Under the open-circuit transient conditions p{;)f = poif

and Ban. (4.10) yields the open-circuit transient time

L
congtant T'do = ﬁzw (4.11)
ef
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Under the steady state condition pkpf =0 and Eqn. (4.10)
yields ip = g (4.12)
ef
Equations (4.11) and (4.12) establish the identity.
of the modified T.C.R. with the conventional T.C.R.

The modified T.C.R. ¥s used in conjunction with the
quadrature-axis field winding. Some important parameters
measured (average measurement) with 1 amp current in the
field circuit are mentioned here. The current range is
mentioned because of certain nonlinearities in the circuit
discussed in the next section. The quadrature-axis field
winding resistance is 14.86 ohms and its inductance 2.22
Henrys , thus giving an open-circuit transient time con-

stant T'q of about .15 sec., whereas, when Ref is

0
modified to 2.02 ohms, T'qo = 1.1 sec. The measured
(average) value of be is 1.435 ohms and the operational
amplifier gain K is 9.95. This circuit gave rise to
certain difficulties which are dealt with in the following

section.

4.2.3 Difficulties with the Modified T.C.R.

The parameters of the modified T.C.R. are not inde-
pendent of the operating conditions and this is not a

desirable feature. Change in the inductance of the field
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coil at differont flux levels makes both the conventional
and modified T.C.R. vulnerable +to saturation effects.}
Besides saturation this circuit is affected .by changes
in Ref s which is dependent on be ’ Rf and the
operational amplifier gain X , see Eqa. (4.9). It
is reasonable to assume that the operational amplifier
gain remains constant for the range of frequencies of
interest to us, leaving Ref dependent on the variations
in be and Ry . The feedback resistance be is
made of very low temperature coefficient material and
so does not appreciably change for the range of temperature
variations encountered, thus leaving Ref entirely de-~
pendent on the varigtions in Rf .

The field winding resistance Rf changes with
temperature variation and also with the current level
in the circuit because of the carbon brush contact
resistance. In Pig. 4.7 is plotted the quadrature-axis
field resistance against the current when the machine
was warm. The field resistance is reasonsgbly constant
for currents greater than 500 mA , but at lower currents
the carbon brush resistance increases sharply. For this
reason the circuit is considered reliable only for

current levels above 500 mA.
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R also changes with temperature. This variation

hif
was kept under control by always running the set under
full-load conditions for about % hr. to achieve a reason-
ably steady temperature before taking any measurcment.
Other difficulties with the circuit stem from fhe

fact that R contributes to the feedback voltage.

£
The conventional T.C.R. circuit is not affected in this
way because Rf does not contribute to the feedback
voltage. In spite of these variations the scheme is

workable within limits.

4.3 Feedback Circuits

For the direct-axis regulation the feedback circuits
consisted of the main voltage feedback and the auxiliary
derivative of field current feedback, see Fig. 4.1. The
gquadrature axis feedback consisted of the rotbr angle
feedback, see Fig. 4.2. These circuits are described

in the following sections.

4,%3.1 Direct-axis Teedback circuits

4.3.1.1 The Vrltese Peedback Circuit

The voltage feedback circuit (Pig. 4.1) is.the same
ag that used in Ref. 1. 8ix silicon diodes are used

for the rectifier bridge circuit. In between the bridge
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rectifier circuit and the mains are three single phase
transformers, connected in delta on the mains side and
star for six phase connection on the rectifier side.

The most dominant harmonic frequency because of the
rectifier bridge circuit is 300 c¢/s; it is attenuated by

a tuned double - T filter section. Higher noise frequencies
are attenuated by low-pass R-C filter sections in cascade
with the double-T bridge filter. Fox low frequencies
relevant to our purpose, it is fair %o assume that the
rectifier and the filter do not introduce any appreciable

phase shift.

4.3.1.2 The Field Current Feedback Circuit

To obtain derivative of the field current an air-gap
transformer is inserted in series with the field circuit.
The transformer is specially designed with a large
air-gap (12 mm) to give a straight line flux-~-MMF curve
in the working range. The mutual inductance between
the primary and the secondary winding of the transformer
is .725 Henrys. For any a.c. variation in the field
current the voltage induced in the secondary winding
of the transformer is to a fair approximation 90° out
of phase with respect %o the current in the field circuit.

The induced voltage in the sccondary winding of the
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transformer is thus used as a derivative signal of the
field current variations. The field current feedback
circuit 1s shown in Fig. 4.8. The derivative signal of
the field current containsa large noise at 50¢/s because
of the stray pick-up in the field circuit. A4 R.L.C.
T-bridge filter circuit tuned to 50c/s is used fo cut
out the 50¢/s noise. The transfer function of the
filter is as below.

1+2% Tp+1°p®

where

¢ = =
a = .25 and T = G

The frequenoy.response curve of the filter is given in
Fig. 4.9. Under ideal c-nditions the total transfer func-
tion of the transformer and the filter and the subsequent
amplification stage is:

1+ p”
1+2%¢ Tp+1°p®

Mp |

For low frequencies the signal transmission through the
filter can be assumed to be without attenuation and
delay since the input impedance to the filter is very
low. For low frequencies the field current feedback

transfer function then is approximated to Mp. In
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Fig. 4.8 the transformer is directly coupled to the
filter section. The output impedance of the transformer
cauges mismatch at the filter input and so thereis bound
to be some delay introduced in the transmission of the
signal even at low frequencies. However, in the theory

it has not been taken into &ccount.

4.3.2 Quadrature-axis Feedback Circuit

A signal proportional to the angle of the rotor
with respect to the infinite bus (fixed supply) is
developed. An a.c. tachogenerator which generates
the frequency of the gystem when coupled to the rotor
of the micro-alternator will give a waveform that will
change in phase with respect to the infinite bus wave-
form in accordance with the rotor position. Thus the
rovor angle gignal problem is converted into the phase
detection and generation of a signal proportionate to
phase variaticn. In the following sections a conventional
phase detection circuit is discussed briefly and based

on it a modified circuit is developed.

4.3.2.1 A conventional Phase Detection Circuit

Out of various conventional phase detecting

26,27

circuits considered the one described below was
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adopted in principle becuase it can indicate by sign
inversion whether the incoming signal is lagging or
leading with respect to the reference (all sine waves),
a characteristic necessary for our purpose. The phase
detection circuit27 using phase splitting, rectification
and filtering is shown in Fig. 4.10a. The various

voltages labelled on the figure are as follows

e; = T sinWt (4.1%)
¢, = 3 qin(&;’t+ ;a’) (4.14)
e . = Maximum of (T sin&t + E sin®t + Z)  (4.15)

o
it

op = Meximum of (B sinwt - & sinwT + ) (4.16)

In BEgne. (4.15) and (4.16) it is assumed that the condenser
C holds the maximum value to which it is charged during
the period the diode dl/dQ conducts. In other words

the R.C time constant is very large compared to the time
constant of the rectified waveform impressed upon the R.C.
combination. Egns. (4.15) and (4.16) give the output

voltage

v, = egs = 25(cos % - sin %) (4.17)

The output voltage Vo is a function of the phase angle

ﬂ between the two waveforms. The curve relating the

output voltage V_ and the phase angle 4 (Pig. 4.10b)
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is a cosine curve giving zero output at 90° phase
angle. The region of 90 + 30 is practically a straight
line and can be used as a proportionate signal with
sign inversion at 90° phase angle. This circuit has
its drawbacks. The output of the circuit is not earthed
at either end and therefore, the circuit cannot be con-~
nected into the system with a comnon earth. The R.C
combination is only a crude form of filtering. Tzoms-~
formers should be avoided if possible, because they

are not ideal in thelir performence as is often assumed.
/ith these points in view the modified d rcuit in the

following sectlon is developed.

4.3.2.2 The Angle Device

The circuit for the angle device (Fig. 4.11) is a
modified cfrcuit based on the phase detecting circuit
in Yect. 4.3%.2.1 and with improved filtering. It consists
of a phase detecting unit and a filtering unit. In the
phase detecting unit the diode action of transmitting
the signal in a controlled way in Fig. 4.10a is replaced

by a complementary pair28

of switching tiansistors Tl
and T2 . The switching action of the complementary
palir of transistors is in accordance with the reference

signal given to the common junction of the base
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resistances (Rba) of T, and T, . The phase split-
ting ty the centre tapped transformer of Fig. 4.10a

is replaced by two centre tapped equal resistors R.

The resistances Ra(Ral/Rag) and R, (R ;/R,,) provide
a suitable potential divider arrangement so that the
voltage at A(Al/AQ) does not exceed the permissible
collector emitter value. The output of the circuit is
with respect to the common earth E and the fundamental
harmonic of the chopped output waveform has twice the
aignal frequency, that is because of the complementary
switching action of tramsistors Tl and T2 . This
feature is of added advantage in filtering. The R.C
filtering in Fig. 4.10a is replaced by a more sophisticated
operational amplifier summation and filtering unit. The
output characteristic curve is the same as that shown

in Fig. 4.10b. The measured characteristic curve of the
angle device is given in Sect. 6.2. The operation of the

device is described in the following section.

4.3.2.3 The Angle Device Operation

The waveform of tachogenerator, of constant ampli-
tude and variable phase is applied to the input terminals
1-2, see Fig. 4.11. The reference waveform from one

phase of the infinite bus, reduced in amplitude by a
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potential divider arrangement (not shown in Fig. 4.11),
is applied to the junction of the bhase resistance Rba
of Tl and T2 in complementary connection. The
transistor Tl is a PNP transistor and T, a NPN
transiator. A negative input signal forward biases Tl
and causes it to conduct, thus bringing point Ay to
practically earth potential. A positive input signal
forward biases T2 and causes it to conduct, thus
bringing A2 to carth potential. Vhen one transistor
conducts, the other is non conducting, because the signal
that forward biases one transistor, reverse blases the
other transistor. In Fig. 4.12 are shown the voltage
waveforms at various stages of the circuit. The voltage
waveforms at the various stages correspond to the re-
ference and tachogenerator waveforms shown in T'igs.

4.12: enlb with a phase difference ¢ . In Fig. 4.12b
the vachogenerator input waveform is marked 1-2 and the
wvaveforms at terminals 1 and 2 with respect to the centre
tapped point (which is at ecarth potential) are respeec-
tively marked 1 and 2. In PFigs. 4.12c and d are shown
the waveforms at Al and A2 . TMg. 4.12e shows Al
and A2 superimposed. In Fig. 4.11 the phase detecting
unit is followed by the filter unit, the details of which

are dealt with in Sect. 4.3.2.4, The filter unit receives
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the s;i.gnal (see Fig. 4.11) from 1 or 2, depending on
whether A2 or Al is at earth potential. Thus the
signal getting through the filter unit is, in shape
the waveform Ay and A2 superimposed, see Fig. 4.12e,
and in magnitude the waveforms 1 and 2 of Fig. 4.12b
gimilarly c‘hopped as Al and A2 and superimposed.
If the filter units are designed to absorb all the
a.c. component of the chopped input wave, the output
will be only a d.c. component. If the tachogenerator
input is 2% 9in(Wt-4) +then by Fourier analysis the
d.c. component of the filter output

< )

= ,% [j’ D sin(Wi-d)awt + / E 3in(Wt- ¢ )d wt]
(0] "

= ,;-% B cos # (4.18)

The output characteristic given by Egn. (4.18) is a

cosine curve as shown in Fig. 4.10b. The calibration

of the circuit shown in Fig. 4.11 is done in Sect. 6.2.
During the switching operation the resistances

Rbl and sz are earthed at Al and A2 alternatively,

depending on whether the tramsistor T; or T, is

conducting. Consequently the filter unit always finds

the resistance Rb(Rbl/sz) at B connected to earth,

sce Fig. 4.11. This assumes the switching in and
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switching out operation of transistors Tl and T2
instantaneous. The earthing of the resistance Ry
and B affects the following filter unit. Its effect
has been incorporated in designing the filter unit in

the following section.

£.3.2.4 The Filter Unit

The filter unit is an integral part of the anzle de-
vice. It allows the superimposed chopped waves in and
gives out the d.c. component of the chopped wave with
very much suppréessed a.c. component of the input wave.

It is designed to allow the low frequency variations

of the d.c. component to pass with minimum possible
attenuation and delay. However, in the theoretical
formulation for the quadraturce axis regulation exact
transfer function £ the angle devicé is considered.’ As

a consequence of chopping and superimposing, sce Fig. 4.12e,
100c/s chopped waveforms are generated from 50c¢/s input
waveforms. Thus the dominant frequency to be suppressed

is 100 c¢/s. However, because of slight asymmetry in
components 50c¢/s is also present in practiee.

The filter unit is designed in two sections. Tha.
first is the active generation of a second order poly-

29

nomial in the denominator with a general transfer
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function

KY (4.19)
Ap® + Bp + C

The second section is the passive generation of
imaginary zeros O to suppress 100¢/s in particular
with the transfer function

1+ T°p° (4.20)
T°p° +47T p+l

In Fig. 4.11 the two filter gsections are shown.
The various resistance and capacitance are labelled
and their numerical valucs are given. For the first
filter section if the resistance R, 1is not taken

in parallel with €, +then the coefficients in Bax. (4.19)
1

are
'/RB
K'=§‘]’:‘ ] R1=R +R~b 9
numericglly KXK' =1

A = RQR30102

R, R
2
(

B )

bl
— R, + R5)C,p

c =1

But when Rb is taken parallel with Cl the coefficicnt

B is modified and is:
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3

- + Ry + R3)62

The numerical values of these cocfficients are chosen
so to get an attenuation of 12db from 1l0c/s onwards.

For thc second filter section 03R4) in Zgn. (4.20)
chosen is 1.59 x 1077 sy 1.e. to give a notched attenuation
characteristic at 100¢/s. The second filter section
is preceded by a c athode follower. The parameters of
this stage are chosen that its impedance at 100¢/s is
greater than the minimum load impedance for minispace
analogue computer which is 4K, this is to avoid overload.
Actual circuit impedance chosen at 100c¢/s is 5.3K () .

The frequency response test of the angle device is given

in Sect.6.3.

4.4 The Regulator and Associated Circuitry

The simulation .of the dircect and quadrature axis
regulators was done on a small analogue computer. In
the following sections the regulators and the associated

circuitry are described.

4.4.1 Direct«axis Regulator

The analoguc simulation of the proportionate
regulator used for the direct-axis regulation is shown

in Fig. 4.13. An adder is ugsed to sum up the two
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feedback signals. V is to adjust the steady state

ref
excitation of the system. A precision decade potentio-
meter is used before the last stage of amplification
to adjust the gain R.

The limiter is simply two back to back Zener diodes

to cut off if the output signal exceeds 16 volts level.

4.4.2 Quadraturc-axis Regulator

Two types of quadrature-axis regulators were usecd,
namely, the proportionate angle regulator and the re-
gulator with proportionate and derivatives signals. The
proportionate regulator can be treated as a special case
when “he derivatives of the signal are omitted. In
fig. 4.14 is shown the derivative regulator with the

following transfer function

.1p + .02p° )
(1+.01p){1+.01p) (1+.01p)(1+.01p)(1+.02p) (1+.0Ip)

R (1 +
q(

In the circuit diagram convemtional differcential circuitsBl

are used. These circuits work as differentiators at low
frequencices but cut off high frequencies or noise and are
suitable for our purpose because we deal with freguencies
Q- 5 cycles. However, in theoretical computaticns the
effect of delays is also considerecd. The numerical values

of the parameters used for the differcntial circuits are
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given on the figure. PFor sign inverters and summing
units the standard rcprescantation is used. The angle
signal comes at a poin?t marked 'IN'. The circuit marked
'1' carries the signal straight o the su 'ming amplifier,
the circuit marked '2' brings the first derivative signal
and the circuit markced '3Y the sccond derivative signal.
The total signal is auplified and its level adjusted by
a preccision decade potentiometer. The signal is carried
through a buffer amplifier to the time constant regu-
lator. The limiter circuit at the output of the bulfer
amplifier is for the protection as described in Secct, 4.4.1.
The frequency responsc of the circuit is given in
Sect. 6.10.2.

The circuit descr.iped above reprcsents the pro-
portionatc regulator when the first and second derivative

feedback circulits narked '2' and '3! are omitted.
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CHAPTER 5

5. DIRECT~AXIS STEADY STATE STABILIZY EXPERIMENTAL

RESULTS AND COMPARISON

5.1 The Stability

For the experimental investigation of the steady
state stability of the system shown in PFig, 4.1 the
question was, which system quantities to observe for
small variations and from those observations when to
declare the system unstable? Out of the various quanti-
ties considered, namely, the field current, the vars,
the line current, the rotor angle, the last quantity
was chosen for observation and declaration .of stability
primarily because it:

1. is associated with the conventional concept

of the stability with the rotor angle,
2. maintained continuity with an earlier investi-

gation1.

5.1.1 The Stability Code

To maintain reasonable uniformity for the experi-
mental investigations the following code was observed

for declaring a condition of equilibrium unstable.
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If under any condition of equilibrium the rotor:

1. drifted by 2° from its equilibrium position
and subsequently did not settle back within
two minutes but continued to drift,

2. drifted and got into a limit cycle of 2° about
the mean position,

3. got into an oscillation of 2° which increased

in magnitude after a time.

5.1.2 Precautions Against Erratic Judgement

The spurious small variations of the system quantities
could lead to an erratic stability judgement while
observing the above code. The major spurious variations
originated in the system from small variations in the
fixed supply and the field current.

To minimise the possibility of erratic judgement
because of the small variations of the fixed supply,
the stability experiments were conducted in the evenings
under the steadier load conditions in the laboratory.

Some spurious small oscillations of about 1 c¢/s
in the field circuit were traced to the oscillatiouns
about the mean speed of the induction motor driving
the excitor (see Fig. 4.5). The drive motor was a two

pole induction motor., No detailed investigations were
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carried out into the origin of these small oscillations
around the mean running speed of the drive motor, but |
it was felt that these oscillations could possibly be due
to the stator-rotor asymmetry. To avoid these oscil-
lations, which were particularly important when taking

a feedback from the field circuit, the drive induction
motor was replaced by a synchronous motor with reasomnable

satisfaction.

5.2 The Regulator Constants

5.2.1 The Regulator Gain R

The regulator gain depends on several factors,

namely,

de/rfd: a constant merged with R, (see Sect. 2.2),
numerically equal to 1.89/,001425, (see Table I),

R ¢ the rectifier constant; the rectified output
is treated as the terminal voltage, (see

Sect., 2.1), numerically

- flectifier Conversion factor x P.U. System Voltage
e P.U, Field Voltage

R

Il

0.193 x _186/i/3 _
555 = ,02418

the adjustable gain constant, (see Fig. 4.13),

L

K
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Ay : the fixed attenuation, (see Fig. 4.13),
numerically equal to .1925.
Thus R = f{md/rfd x B, x A& x K
=189 % 02418 x .1925 x K
,00_1 42 (] oL 'Y 3
= 5,485 K
5.2.2 The Current Teedback Gain Ii

The constituents of the current feedback are the
mutual inductance of the air-gap transformer in p.u.
and the adjustable amplifier gain p , (see IMg. 4.8).

Thus M = 22 x p = ,000516 p
1405

5.3 The Steady State Stability Curves with the

Direct-axis Regulator

5.3.1 With the Voltage Feedback Regulator

The micro-glternator of the system shown in Fig. 4.1
was synchronised with the fixed supply through the series
reactance XC . The power at the fixed supply was
adjusted to 0.8 p.u. The voltage feedback circuit was
closed. The regulator gain R was adjusted to 1.097,
i.e. corresponding to K = .2 , (see Pig. 4.13). To

get the steady state stability limit of the rotor angle

for the given regulator gain already adjusted, the
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excitation level was decreased in small steps by
adjusting Vref , see Fig. 4.2, The small steps were
used to avoid large disturbances. For every small
decrease in the excitation the rotor advanced to a new
equilibrium position. The new rotor angle was watched
on the stroboscope (see Sect. 6.2), and the systen
declared stable or unstable in accordance with the code

of Sect., 5.1.1. If the system was stable V was

ref
further adjusted by a small step and the process was
repeated until the steady state stability limit was
reached. The process was repeated for a wide range of
regulator gains. The experimental curve for the steady
state stability limit of the rotor angle against the
regulator gain was plotted in Fig. 5.1, Curve 1. The
stability in the region marked AB was of a drifting
nature and the region marked BC was of an oscillatory
nature. The drifting rotor was found to get into a

limit cycle oscillation, because when it started drifting
the electrical power increased and the mechanical power

decreased, but the rotor continued slowly drifting because

of the basic instability.
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5.%.,2 Vith the Regulator haviing both Voltage and

Field Current I'eedbacks

The auxiliary field current feedback was used in
combination with the voltage feedback in the following
set of experimeuts. The gain of the field current
feedback was adjusted to .001, .002, .003% and .C04 p.u.
by a precision decade potential divider as shown in PFig.
4,8, and the whole set of experiment in Sect. 5.2.1 was
repeated for each field current gain level. The
experimental steady state stability curves were plotted
in Fig. 5.1 and marked 2,3,4,5 for the field current

gains .001, ,002, ,003, .004 respectively.

5.4 A Comparison of the Theoretical and the lIxperimental

Curves

The theoretical steady state limit curves for the
various field current feedback gains labelled 2,3,4,5
are shown in PFig, 2.411 and corresponding experimental
curves are shown in Fig., 5.1.

In the lower gain region AB the curves 2,3,4 and
5 coincide with curve 1. The current feedback seems to
have no effect in the region AB., The agreement between
the theoretical and the experimental curves in the

region AB 1is good. In the optimum stability region
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around the point B +the experimental curves tend to
give lower limits though only by about 5%. The
discrepancy in this region may be attributed to the lag
introduced by the field current feedback circuit because
of the impedance mismatch at the input of the filter
section, (see Fig. 4.8).

In the high gain region BC the experimental
curves 1,2,3 are on the optimistic side, i.e. they give
slighfly higher limits than the theoretical ones. It
1s shown in Ref., 1 that with damping and resistance taken
into account the drooping part BC is slightly lifted
upwards for the voltage feedback only (curve 1). If
we then extend the argument to the voltage and field
current feedback case the experimental curves 2,3 show
the right trend. It should be remembered that the
filter lag effect in the fieid current would pull the
stability curves slightly down, whereas the resistance
and damping would 1ift it upwards. However, the latter
effect seems to dominate the BC zregion. The theoretical
curves show a sharp cut off region represented by CD
in the theoretical curves Pig., 2.11. The experimental
curves show a quick droop in later parts of the region
BC , suggesting a trend similar to the region CD part

of the theoretical cuxrves. On the whole there is a
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reasonahle agreement between the experimental and

the theoretical stability limit curves.
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CHAPTER 6

6. QUADRATURE-AXTS REGULATION AND ASSOCIATED EXPERIMENTS,

RESULTS ANID COMPARISON

The experiments in this section relate to the
guadrature-axis excitation regulation by signals derived
from the terminal voltage and the rotor angle.

Two types of quadraﬁure;axis voltage regulators
were used, namely, the one with only a derivative term
and the other with proportionate and derivative terus,
but both did not give any improvement in the steady
state stability limit of reactive absorption at zecro
power,

Some uscful results were obtained for the scheme
showin in Fig. 4.2 using a signal derived from the rotor
angle. The following set of cxperiments were conducted.
The system shown in Pig. 4.2 was synchroanised with the
rixed supply treated as the infinite bus. The angular
position of the tachogenerator stator was adjusted to
give the correct zcro for the angle measuring device.
The angle device output characteristic was determined
to establish the feedback loon gain. With the quadrature-

axis regulating loop in operation the steady state
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stability limit tests were carried out for different
gain levels of the proportionate regulator at 0.2, 0.5,
0.8 p.u. power., Tor the derivative regulator the same
test was repeated at 0.2 p.u. power. The freguency
response test of the fecedback loop components, namely,
the angle device and the regulator was carried out,
followed by the closed-loop frequency respounse test of
the system in Fig. 4.2 and from it was established the

open-loop frequency response curve,

6.1 Voltage Feadback into the Quadraturc-—axis Execitation

The system shown in Tig. 4.2 was synchronized on
the direct-axis excitation with the fixed supply. The
voltage Ifeedback arrangement as shovn in Pig. 4.1 for
the direct-axis was now used for the quadrature-axis
excitation and the direct-axis excitation was left as
shown in PFig. 4.2. The power at the fixed supply was
adjusted to zcro. TFor the voltage feedback circuit the

regulator transfer funcition used was

2D n
[(1+.02p)(‘1+.01p) JR

The direct-axis excitation was decrcased in small steps

to avoid a large disturbance., The new equilibrium was
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watched for instability in accordance with the stability

code or Sect. 5.1. The above process was repcated till

the steady state reactive absorption limit was established.
The experimental curve 1 in Fig. 6.1 shows the

limiting negative vars for a range of regulator gain.

The numerical figures mentioned in the figure for the

regulator gain are only the loop constant terms including

the rectifier conversion factor, the adjustable gain K

and the fixed attenuation At o The numerical value

is = .19 x 10,0 K x .,192 = 3,72K . Thus it has no

relation with the direct-axis regulator gain R or

. However, curve 1

q
suggests that the limiting value of reactive absorption

the quadrature-axis regulator gain R

for a wide range of regulator gain is about_.51 which

qoqu limit, thus supporting the

theoretical deduction in Sect. 3.3.2.

is wvery close to _V

In the next experiment the regulator transfer
function was altered as follows to include a proportionate

term

2
[+ orross ooy B

The experimental result is shown in curve 2 of PFig. 6.1.

It is similar to curve 1 and suggests
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1. the reactive absorption is nearly constant for

a wide range of the regulator gain though its

value tends to be slightly lower than ~qu2Yq .
2. at higher gains the curve droops and the
reactive absorption 1limit tends towards —qung

It seems that the proporticnate term in the transfer
function is ineffective in increasing the reactive
absorption. With the terminal voltage decreasing the
flux is pushed into the quadrature-axis and the system
appears to settle for a reactive absorption limit of
R

go
new me.m,f, axis created by the proportionate term.

Y where Y is an admittance in gquadrature to the

The two cexperiments indicate that the reactive

absorption limit of —VqOZYq at zZero power cannot be

increased by a voltage feedback into the quadrature-axis,

6.2 The anegle Device Output characteristic and Zero Setting

The device described in Sect. 4.3.2.2 provides a
signal proportional to cos(é-éo) , where & is the
mechanical load angle and 50 depends on the angular
position of the tachogenerator stator. Since it is
desired to obtain a signal proportional to & the
tachogenerator is set so that 60 = 90° and hence the

signal varies as siné or approximately as & over
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the range + 30°,

Tor calibration of the angle device the system
in Pig. 4.2 was synchronised and the aligned angle device was
switched on., The output of the angle device through a
buffer amplifier was connected to a centre-zero volt-~
meter. The buffer amplifier was provided to prevent
the voltmeter from loading the éecond section of the
filtef unit (see Fig. 4.11). To calibrate the angle
device for motoring and generating action of the machine
the tachogenerator stator was manually rocked on both
sides of the aligned position. The tachogenerator
stator position was read on a graduvated annular ring
with respect to the reference arrow on a disc coupled
to the rotor and moving inside the annular ring, but
visually made standstill because of synchronism with .a
stroboflash. The angle device output for the corresponding
tachogenerator position was noted from the centre-zero
voltmeter.

Fig. 6.2 shows the calibrated output characteristic
of the angel device, giving the output voltage as a
function of the rotor angle (in the experiment the
tachogenerator stator was rocked)., As expected the
calibrated curve is a straight line in the region + 300

of rotor angle and has a gradient of 570 nV per degree.



174

20
16 /
12.
2 g
w
~
~J
e /
~
D
&
D
o
3(0 20 1 0 2l0 30 4|0
BACK WARDS FORWARDS
- RO/TO | £ (DEGREES) ——>
-4
| @/ ,
i 12
-16
7.’1
f/ GRADIENT 570 mv/degree
-20 _

Fi1G. 6.2, ANGLE DEVICE OUTPUT CHARACTERISTIC.



175.

6.3 Angle Device I'requency Response Test

Strictly the frequency response test of the angle
device shewn in Fig. 4,11 means applying the reference
signal of 50 ¢/s at the junction of the base resistances

(Rba) of T, and T, , and modulating the phase of the

1
constant amplitude of the incoming signal at the required
frequency. However, if we assume instantaneous switching
and switching off of the complementary pair of transistors
T1 and T2 , Tthe phase detecting unit of the angle

device presents to the subsequent stages a chopped wave-
form with different harmonic contents and a d.c. content
which would change with the modulating frequency, see
Sect, 4.3.2.3, Our interest is centred on how the
variation of the d.g. content is transmitted through the
angle device, i.e. equivalent to studying the attenuation
and transmission lag of a signal with the transistors

T and T2 representing a set operational condition

1
of one shorted and the other open. The switching
operation of T1 and T2 does effect the configuration
of the following circuitry bit interchange of switching
does not, that is why a set operational condition of T1
and T2 is mentioned above.

In Tig, 6.3 is shown the experimental set up., A4

variable frequency signal from the oscillator of the
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transfer function Analyser (T,F.4,) equipment was
applied at terminal 1., To represent the operational
states of transistors T1 and T2 , transistor T1 was
opened at A1 and T2 was shorted by earthing A2 .
The output of the angle device was connected to the
T.F.A. (amplitude resolver). Using the T.F.A. the
frequency response was determined up to 30 c¢/s.

Fig. 6.4 shows the experimental points for the
phase shift and the amplitude output to input ratio for
various frequencies. The full and broken lines in
Pig. 6.3 are the computed curves respectively for the
amplitude and phase angle for the circuit in Fig. 6.2.
The experimental points show a good agreement with

the computed curves.

6.4 The Regulator Gain

The regulator gain Rq depends on several factors,

namely,
At ¢ the fixed attenuation,

numerically egual to .1927, (see also Sect. 5.2.1.),
K1 ¢ the angle decice constant, numerically

= angle device output characteristic slope

1
p.u. I'ield voltage

volts o ) o
degree) x degrees per radian X

— z o 1 _ p.u. voltage
= .57 x 57,3 x ZIT LT , (see Sect. 6.2

and Table II),
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Xm
Enﬂ + a constant merged with Rq s numerically
fq
1.5
equal to ~56957 (see Table II),
K ¢ the adjustable amplifier gain constant.
Thus,

=
-
i

X
= A, x K ){“23 x K
t 1 rfq

1927 x .57 x 57.3 x 5—};6- x K

li

3.04 K

6.5 Starting of the System

In all the following stability experiments the
system shown in Fig. 4.2 was synchronised with the fixed
supply on the direct-axis excitation. The quadrature-
axis time constant regulator was introduced but no
steady state quadreture-axis excitation was established.
The angle device was made operative by switching on its
reference supply. The simulated regulator was brought
into the circuit by closing the patch panel of the last
adjustable gain stage, (sce Sect. 4.4.2). Keeping the
regulator gain below the limiting level the quadrature-
axis feedback circuit was closed., Before any experiments
were conducted the system was loaded to 0.8 p.u. power

and was run for half an hour to establish a reasonably
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steady temperature to ensure that the temperature of
the guadrature-axis field winding resistance conformed
to that of the measurement and was the same for every

experiment, (see Sect. 4.2.3).

6.6 Zero Angle Bguilibrium

In the theoretical study it is assumed that the
angle regulator establishes the zero angle equilibrium
conforming to the equilibrium diagram in Fig. 3.2b.

In practice to establish an appropriate excitation in
the quadrature-axis there has to be some deviation of
the rotor from the reference. The magnitude of this
rotor deviation from the reference depends on the load
and the regulator gain. TFor experiments in the following
sections a condition of equilibrium upto 1° of rotor
deviation from the reference was taken practically as
the zero angle equilibrium. All the experiments to
determine the steady state reactive absorption limit at
any load and regulator gain setting were carried out at
a condition of practically zero angle equilibrium, which

if necessary was secured by adjusting V see Fig,

refqg ’?
4,2, In practice, however, a small deviation from the

zero angle equilibrium would not cause concern.
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6.7 Steady State Stabilitv Limit Curves for Proportionate

Regulator

After the starting and warming of the set (sce
Sect. 6.5), the power at the fixed supply was adjusted
to 0.2 p.u., The rcgulator gain was adjusted by a decade
potentiometer, see Sect. 4.4.2. Tor low regulator gains
for example R. = .304 (see Sect., 6.4) the zero angle

q

equilibrium was assisted by adjusting Vrefq

Sect. 6.6 and I'ig. 4.2, but for the later stability

, See

experiment the system was left unadjusted. To make the

system deliver negative vars the positive excitation of

the direct-axis was decreased in small steps to zero and
then increased in the negative direction.

After every small change in the excitation the
system was left for about 5 minutes to settle down
particularly in the critical stages near to the stability
limit. During the disturbance the rotor was visually
watched on the stroboscope in order to assess stability.

The system was considered to be stable, if after
the disturbance the rotor settled down asymptotically
to zero equilibrium otherwise it was unstable. It was
difficult to ascertain the start of instability particularly
the drifting type, however, a reasonable uniformity in

assessment of stability limits was achieved by
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observing the procedure for declaring the system stable
or unstable as well as the precautions against erratic
Judgement as mentioned in Sect. 5.1.

The decision for the loss of stability for the
drifting type of instability is demonstrated in the
following example.

Power =-.0.2 p.u.

Regulator gain Rq = 1,52
For positive direct-axis exzcitation the system showed
no sign of drift or oscillations. In the negative direct-axis
excitation region the final stages of the loss of stability

is demonstrated by the following chart.

Direct-axis Negative Remarks on the
Excitation
Step Yars pD.u. System Behaviour
Negative excitation .966 The rotor deviated by 2° put
increased by a small settled dowir to zero angle
amount from the equilibrium, Every now
previous level and then the rotor wandered

by 1°,  After observing for
5 mins. the system was
declared stable.

1 97 The rotor deviated in the

following manner



Direct-axis
Excitation
Step

egative

Vars pn.u.
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Remarks on the

System Behaviour

11

( mean value

over the

(mean value

over the

0/2°%/1°/0°/1°/0°/1°/0. Over

5 minutes the rotor showed
tendencies of deviation
but settled down within 1°.
The system was declared

stable.

The rotor deviated as

follows

0°/2°/0°/3°/0/4°/0°/4°/0/4°

and then went into the limit
¢cycle with a very slow
drift. The system was
declared unstable. However,
within 5 mins. it did not

slip.

The rotor behaviour summarized

over five minutes:
2°9/6°/2°/8°/2°/8° ana
continued drifting slowly

but did not slip.

The rotor behaviour summarized

over five minutes

29/9°/2°/10°%/3°/10°/3°
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After further steps the synchronism was lost at -1.1
vars (mean value over the swing), however, the system
was declared unstable at vars =-.985 p.u. ., (see the above chart)
The regulator gain Rq was increased in steps
and the above procedure was repeated to locate the
steady state stability limit. In PFig. 6.5 the experimental
points are marked as dots for the corresponding regulator
gains. It can be seen that the steady state reactive
absorption limit increases with the regulator gain upto
about Rq = 3 , and the system then becomes unstable at
a sharply sloping stability limit curve,
After making some trials of the sloping region a
more precise assessment was attempted. It was found
easier to fix the reactive absorption and increase the

regulator gain R in small steps., After every small

q
step increase in the regulator gain Rq the system was
observed for about 5 minutes for any instability as in
the previous case. Since the instability in this region
was an oscillatory nature, it was easier to judge. In
the following example the final stages of the loss of
stablility are recorded.

Power = -0,2 p.u.

vars = -1.16 p.u.
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Remarks on the Svyvstem Behaviour

The rotor oscillated by 1° about
zero angle equilibrium and
settled down. The system was
observed for 5 mins. and declared
stable.,

The system behaviour was the
same as above and the system
was declared stable.

The system oscillated more
frequently by less than 2° pbut
settled down. The system was
declared stable.

The rotor oscillated freely as
below

0°/2°/0/-2°/0/3/0/~3°/ and the
oscillations slowly kept
increasing. The system was

declared unstable.

Arter further steps the system grew violently unstable

at Rq = 3,04,

The whole range of points on the sloping region of

the steady state stability curve were found in a similar

way and plotted in Fig., 6.5. The theoretical curve was
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also plotted on the same figure.
oimilar thecretical and experimental curves for

0,5 and 0.8 p.u, power are given in Figs., 6.6 and 6.7.

6.7.1 A Comparison of the Theoretical and Experimental
Curves

For comparison the theoretical and experimental 'curves
in Fig. 6.5, 6.6 and 6.7 are divided into regions marked
AB and BC ., The region AB corresponds to drifting
instability and BC +to oscillatory instability.

The determination of the experimental curves in
Figs. 6.5, 6,6 and 6.7 depends on the procedure described
in Sect, 5.1 for determining the system stability. The
experimental curves in the region AB and BC wouid be
shifted somewhat if the procedure was modified. For
example if a variation of 4° was adopted instead of 2©
the experimental curves in Figs. 6.5, 6.6 and 6.7 would
shift slightly outwards and would agree better with the
theoretical curves.

In the BC region the theoretical and experimental
curves agree well for power 0.2 p.u. in Fig. 6.5, but the
agreenent is less good at higher power levels. This is
probably because the parameters correspond better to

the conditions in the first case. In particular saturation
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in the quadrature-axis causes Yq and Y'q to increase,
Hence the slight increase in reactive absorption and

the gain, (see Egns. 3.2b and 3.24) with increasing
power., The experimental curves in Pigs. 6.6 and 6.7
show slight increase in Qo(max) and Rq(max) compared
to Fig, 6.5. Tig. 6.7 shows a similar trend compared to
Tig. 6.5. Thus, the discrepancies in the BC region

at various power levels are probably due to parameter

variation in Yq and Y’q .

6.8 The Steadv State Stability Limit Curve for the

Derivative Regulator

The following transfer function Rq(p) for the
regulator was simulated on the analogue computer, (sec

Sect. 4.4.2).

- R 0.1p
Ro(p) =Ry 1 + rroppiCeromy

2

.02
CFE OO (- 010) (7702 (07 | (3+32)

Rq was adjusted on the decade potenticmeter as was done
for the proportionate angle regulator. The power at the
fixed supply was adjusted to 0.2 p.u.

Fig. 6.8 shows the curve: obtained with the derivative
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regulator. Compared with Pig. 6.5 the same limit curve
is obtained at low regulator gain but the reactive
absorption is greatly increased at higher gains. The
~very high current at QO = -3.,5 p.u, causes difficulty
with the measurements, and for this reason the curve was
only measured at P = 0.2. Tests were however made to
show that the system was stable at equally high values
of Q@ at higher powers.

The procedure for determining the steady state
reactive absorption limit in the region AB and BC
(see Fig. 6.8) was the same as for the proportionate
regulator.

Like the proportionate regulator the derivative
regulator also eshibited the sudden loss of stability
for regulator gains above the point € , (see Fig. 6.8).
By trial it was observed that though the system was stable
for higher recactive absorption but was unstable for
decreased absorption. The instability in this region
marked CD was of oscillatory nature. To locate the
experimental steady state limit points in this region,
the following procedure was adopted.

The system was brought to the maximum absoxption
limit., In very small steps the negative excitation was

decreased. The disturhed system was observed for new
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decreased reactive absorption. The system in this region had
a very sharp definition of oscillations., If for 2-3 minutes
no oscillations developed the negative excitation was further
decreased by a small step. The above process was repeated
ti11 2° oscillations of the rotor were noticed. After noting
the limiting - vars, the reactive absorption was again
increased to stabilise the system. The regulator gain was
slightly decreased and the above process was repeated. The
experimental points in the region CD were plotted, see
Pig. 6.8, From such points in the regions AB , BC and
CD an experimental stability limit curve was plotted in
Fig. 6.8.

5.8.71 A Conmparison of the IExperimental and Theoretical Curve

Pig. 6.8 shows the theoretical and experimental curves,
the variouvs regions are labelled as AB , BC , and CD,

For the experimental curve AB region is the same as
in Pig. 6.5. A discussion provided in Sect. 6.7.1 is equally
valid for the region AB lhere,

The theoretical and experimental curves show a great
discrepancy in the region BC., ©Since the steady state reac-
tive absorption increases in this region ;ery much, coise-
quently the current loading goes upto 4 p.u., therefore, it
was expected that the resistance of the series reactance XC
and the machine could be having stabilising effect. For this
reason a theoretical curve allowing for resistance was plotted

as shown in Fig. 6.8. Allowing for resistance decreases the
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discrepancy in the region BC +{o some extent. However, the
overall effect ol resistance is not very appreciable.

The region CD shows good agreement., This region gets
affected by the traunsfer fuactions of various components
and the parameter Y'q, The reason for the good agreement
may be because the parameters better correspond to this
power level and the various feedback circuits give close
agreement with the designed traunsfer functions in the
frequency region associated with CD , i.e. about 2.5 c¢/s.
The trend of the slopes of the experimental and theoretical
curves is similar, though the experimental curve in the
lower reactive absorption region tends to be less inward
slanting than the theoretical. This trend shows that the
system at high gains is unstable even in the region which
is otherwise stable without the regulation.

Looking at the overall experimental and theoretical

curve the agreement could be said to be reasonable.

6.9 A Comparison between the Proportionate and the

Derivative Regulator

1. The maximum permissible regulator gain foxr the
derivative regulator is about ten times that of the
proportionate regulator.

2, The maximum permissible reactive absorption

achieved for the derivatvive regulator is about -%%5 p.u.
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compared to about 4.4 p.u. with the proportionate
regulatoxr.

3. The derivative regulator maintains zero angle
equilibrium for a wide range of regulator gain, whereas,
the proportionate regulator requires a separate adjustment

of V

refqg *

4, Though no guantitative results werc obtained,
it is worthy of record that the derivative regulator
acted faster to establish the zero equilibrium than the

proportionate regulator for any load variations under

the same initial load conditions with any gain setting.

6.10 Frequency Response of the Quadrature-axis Regulator

6.10,1 The Proportionate Regulator

The proportionate regulator only involves d.c.
amplifiers and a decade potentiometer, and the circuit
arrangement is the samc as for the direct-axis proportionate
regulator shown in Fig. 4.13. A frequency response test
using the Transfer Function Analyser (T.F.A.) showed
preactically no phase shift and attenuation, as one
would expect with analogue computer d.c. amplifiers.

Thus, the transfer function of the proportionate
quadrature regulator was taken simply as an adjustable

constant.



196,

6.10,2 The Derivative Regulator

The transfer function of the derivative regulator
is given in Egn. 3.32, (also sec Sect. 6.8) and its
simulation is shown in Fig., 4.14. A frequency response
test was done on the simulated derivative regulator
circuit of Fig. 4.14 using the T.F.A. equipment, In
Pig. 6.9 is a polar diagram showing the computed and the
experimental points, Fig. 6.9a shows the computed curve
and the experimental points for the important range of
frequencies (0 to 2.2 ¢/s). Fig. 6.9b shows the complete
computed curve and the experimental points up to 100 c/s
oit a reduced scale., The cxperimental points are very
close to the corresponding points on the computed curve
upto 5 ¢/s and for higher frequencies also the agreement

is reasonably good.

6.11 Open-loop Frequency Response Test of the System

In order to measurc the open-loop frequency responsec
of a servo system, the closed-loop is broken at a suitable
point and the frequency response is measured, If however
the loop cannot be broken for stability rcasons as is the
case here, the open-loop frequency response can be
obtained from a closed-loop frequency responsc test.

In Fig. 6.10 is shown a conventional servo-system. For
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a disturbance U wc have the error signal %5\ and the

loop output Y which are related as below

E=Tf—? (6.1)

The open-loop transfer function is

-1 (6.2)

oL =1

grsll<i

Thus for any signal U injected into the system if T
and %3 are megsured the openl-oop frequency response
can be obtaincd.

The experimental arrangemenf using the above technigque
1s shown in Fig. 6.411. The various items of equipment
and quantities such as U , Eﬁ , Y are labelled in
the figure. The T.TF.A. was used for injecting a signal
T and for the measurecment of Y and €, . Altcrnatively
an oscilloscope arrangement described later was used
for the measurement. OSwitches 4 and B were used
in appropriate positions for connecting ¥ and %& to
the T.I',A., for measurements or to the oscilloscope
arrangement.

After starting and warming the set as in Sect. 6.5,

the power at the fixed supply was adjusted to 0.5 p.u.
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The proportionate regulator gain Rq was adjusted to
1.52 (K = 0.5) and the rcactive absorption to 0.8 p.u.
A veriable frequency signal from the T.F.A, of magni-
tude small cnough to make the rotor oscillate by about
2% was used. The anglce and the magnitude of the error
vector %s and the output vector ¥ with respect to
the input vector T were measurcd using the angle
resolver and the magnitude measuring equipment of +the
T.F.A., This arrangement was uscd for frequencies of
.5 ¢/s upwards. Below that the measurements with
oscilloscope arrangecment were preferred because for low
frequencices the amplitude measuring unit of the T.F.A.
oscillated about the mean value causing difficulty in
reading, whereas, on the oscilloscope a trace was easily
taken., The vector Y was taken to onc beam of the
oscilloscope with the time base cut off and the vector
-QQ through the angle resolver of the T.F.A. to the
sccond beam of oscilloscope. The angle resolver was used
to shift the phase of the vector %; until the two beams
were scen to be in phase., The angle resolver gave the
angle of vector Y with respeet to %; . Their
magnitudes werce measurcd on the oscilloscope using tracing
paper. There was noise superimposed on the traces of

vectors Y and ¥, which made the observations
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susceptible to errors, particularly the angle. The
frcegquenecy responsc of a non-lincar dynamic system running
at a stcady state condition cannot be measured accurately
becausc for a good measurement the magnitude of the
output quantitics should be of measurable level, which
means that the equilibrium must be disturbed sufficiently
and so docs not conform to the theory.

Flg, 6.12 shows the experimental and theoretical
curves for the system frequency rcesponse. The cxperimental
points indicate that the maximum gain in the oscillatory
instability region is actually more +than that given by
the theorctical curve as was also observed in the
stability limit oxpcriment, (sece Fig. 6.6). All low
frequency points tend to be outside the theoretical curve
which probably is due to the effecct of resistance which
nas becn ignored, At very low Irequencies the error is
greater and could be attributed to measurement crror.

Fig, 6.13 shows the cxperimental and thcoretical
curves for the derivative regulator. Thé frequency
response was only measurcd in the region where the noisec
did not affect the accuracy of mcasuremcnt, this rcgion
for the derivative regulator happcns to be the important
onc. The test was done at 0.2 p.u. power,-1.4 p.u.

reactive absorption and with a regulator gain Rq of
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12,16 (X = 4) . The frequency of oscillations for

Rq(max) theoretically had the samec value as detcrmined

by the frequency rcsponsc test. HNumerically as indicated
on the figure it is 2.4 c¢/s. The frequency response
curve also indicates that Rq(max) experimentally
obtained is lcss than the theoretical value and this

was also confirmed by thce stability test, (sce Fig., 6.8).
The test was only made upto 4 ¢/s becausc a large input
slgnal was necded to make the rotor oscillate sufficiently
for good measurements at higher frequencies,

The general conclusion is that for a dynamic non-
lincar systcm with the complex regulator the frequency
regponse cxperimental points obtained in the high
frequency region are rcasonably correct and confirm the

stability tests.,
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CHAPTER 7

7. EXTINSTION OF THE TAPLACE APPROACH AND STATE VARTABLE

METHODS

The systems considered in Sect. 2 and 3 were
eventually reduced to a single loop configuration shown
in Fig. 7.1, that of a plant and a controller- The
plant consisted of the machine connected to an infinite
bus through a transmission line, and the controller was
:the regulator. A good many problems in practice can be
reduced to a single loop configuration because of the
large time constant difference in the main and the auxil-
iary controller circuits. For example it would be
reasonable to ignore the governor controller circuit
compared with the excitation controller circuit (say a
voltage regulator) when considering the stability of the
system ®for small changes and thus, reducing the system
configuration to that of Fig. 7.1. However, the most
general configurationm is of a plant with 'r' dinputs
and 'p' outputs ('r' and 'p?! being arbitrary integers),
where outputs and inputs are interconnected through a
controller. Such a multivariable configuration is shown

in Fig. 7.2.
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7.1 Ixtension of the Laplace Approach to Muldivariable
System

The Laplace approach for a very large mudvariable

system is cumbersome for application, because it is not
possible to solve the operational matrices straight on
a computer. Howzver, for a limited multivariable case
the extension of the Laplace transform approach ig
reasonable. The following extension is for a two
input-output system, and may be applied to a two
regulator system, one using the voltage signal and the
other the angle signal, both acting through their
respective controller circuits on the direct and
quadrature axis field windings. However, Fig. 7.3
shows in general the U9 input-output schematic transfer

function diagram, where

Ulp) = Ul(p)— input matri
P = U2(p)_ input matrix
T(p) = 3 (o) tput matri
1Y = ;YQ(P)_ output matrix
G’(P) = —Gll(p) G]_Q(p)—]

the transfer function

matrix of the system
Go1()  Gpplp)
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K = Kl o} the gain constants
shown on Fig. 7.3 as
potentiometers

0 K2

the controller transfer
funetion matrix

From Fig. 7.3
Yoy = &) & (o)
where %i(p) - E;Jﬁp)
E; (p)
2
Also - -

ﬁg(p)

Let ¢(p) Tbe the input-output transfer matrix then

K(U(p) ~ H(p).¥(p))

¥(p) c(p) U(p)
Solving C(p) we have

c(p) = [1+xa(p).H(p)]™t xalp) (7.1)
Thus, the stability of the above system can be studied by

applying the Routh criteria to the polynomial character-

istic equation derived from the following determinant
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'I + K 6(p) H(p)| =0 (7.2)

The root-locus technique can also be applied to
Eqn.(7.2)by keeping K, or K, fixed and varying

the other from zero to infinity. In Ref. 15 the two
inputs, namely, the governor and the voltage regulator

are considered but "nly one output, namely, the rotor

angle is taken. The system equations are linearized by

a statistical technique for large ogscillations the root-
locus technique is used for analysis. Although the linear-
ization is doubtful, the analysis is a particular case

of the above generalisation.

7.2 State Varisble Methods 224

Alternative to the conventional Laplace Transform
approach to stability problems are the state variable
methods, where the system equations are expressed as

the first order differential equations like

X, =Y
él = X2
étc.
Xqs Fpy eeee. Bre referred to as the gtates of the gsystenm

which define a state vector X , for example with n
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atateqs.
-
X
1
P
X = .
Xn

The short hand techniques of matrix theory are used in
writing the whole set of gystem equations in a concise
form. For an nth order system shown in Fig. 7.2 with

r inputs and p outputs, the equations in general are:

)

X = AX + BU (7.3)

Y = CX + DU (7.4)

where:

X 1s a state vector as defined above.

A ig a nxn matrix defined ag the system matrix.

B 1is the input matrix with n rows and r columns.

U is the input vector with r elements.

Y dis the output vector with p elements.

C 1s the output matrix with p rows and n columms.

D ig the transmission matrix with p rows and r columns.

Taking the Laplace transforms of Egns. (7.3) and (7.4)

we have

x(p) = (pI - &)~% B U(p) (7.5)
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I is the nxm unit matrix
Y{p) = ¢ x(p) + D U(p) (7.6)

Pig. 7.4 shows the flow diagram for Egns. (7.5) and (7.6)
relating input and output matrix through operational
matrices.

The stability of the system can be studied by either

an Eigen value approach or a Lyapunov Function v(x)

T.2.1 -Eigen Value Approach

7.2.1.1 Eigen Values

For stability assessment the input vector U is

taken as zero.Eqns. (7.3) and (7.4) reduce to

-

X = AX

it

and Y = CX

For the system matrix A the characterisitc matrix is
(4-7T), where N is a parameter and I +the nxn unit

matrix. The characteristic equation of the system

matrix A is
A-2I =0 (7.7)

The roots of the polynomial Egn. (7.7) are the values

of N , namely, Kl’ hz, hs «cee. called the eigen values
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of the characteristic matric A.

The sy«tem is considered asymptotically stable,
if all the eigen values of the system matrix A have
~ve real parts. These eigen values are the poles of
the system transfer function. This point is illustrated
by taking an example of the simple voltage regulator

system of Sect. 2.3.3.

7.2.1.2 IDigen Values for the Voltage regulator of Sect,

2.3.3.
To formulate the system equations (7.3)and(7.4),

there is no definite procedure for choosing the various
state (Xl, X, 5 ...) as state variables. If one has
to start from scratch one could write these equations
from the system dynamiecs, choosing the states by trial
and error to get the most desirable form. However, if
the systems transfer functions are kmown then by the

5% Bgns. (7.3) and

direct analogue programming technique
(7.4) can also be formulated. For the voltage feedback
ease with all the simplifications as in Sect. 2.3.3 the

forward loop transfer function

2
_ a,p? + a
Fl(p) = 23 02 y where a,,ag
d3p + d2p + dlp + do

are given by Ban.(IV.3) and dzy Ay, 4y, 4 DY
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Egn. (FV,5). The regulator transfer function is simply
an adjustable constant R. Using the direct analogue
computer technique the system is represented in Fig. 7.5.

The three states chosen, labelled as s Xpy x are

related by
j o, )
X, = &
.2 ?d a R 4 (dz + aB ) {( )
X, = =(=— 4 w=)X, = == X, =~ \———e X + U 7.8
Y o= ag%; +a ¥ (7.9)

In the matrix form Eqn. (7.8) and Tgn. (7.9) become

' 0 1 0 - 0~
X =10 0 1 X+ |0fu (7.10)
d +a R d d,+a,i
(=) - ) B
3 3 3 -
and
y = la, 0 a,]X : (7.11)

From Egn. (7.10) the characteristtc matrix is

0= 1 0 ]
A-ZI = 0 0= 1 1 (7.12)
I d+a R d data i
‘ g ) "(ai) ‘( 2d 2 + h)
L K -
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Using Eqn.(7.7)the characteristic equation of matrix A

giving the eigen values N 1is
3 5 . —
dBA + (d2+agR)k + dlm + do + aOR =0 (7.13)

Eqn. (7.13) is the same as Bqn.(2.24), if the values of
coefficients 'd' and 'a' are substituted in Den. (7.13)
and A 1s replaced by 'p'! . This shows that the €igen
values are the same as the roots of the equation for the
closed-loop system (given by Zgn. 2.24), i.e, also the

poles of the closed-loop system.

7.2.2 Lyapunov Technigue

T.2.2.1 Lyapunov Stability Criterion

The Lyapunov stability criterion stems from the
concept of energy associated with the system in a given
state. Vhen a gsystem is in equilibrium, its energy
is a minimum and is a positive quantity. If the system
is disturbed from its equilibrium and if the rate of
change of energy is negative, then the system will settle
down to its equilibrium. The concept of minimum energy
associated with an equilibrium state of the system was
developed by Lyapunov in his famous stability criterion:

If a system can be represented by i = £(x,t) ,

where X 1s a state vector and if there exists a function
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V(x) such that

i) v(0) =0, ii) V(x) >0 when x £0 , i.e. V(x)
is always positive definite, iii) V(x) is continuocus

in x , iv) V(x) —> o when x — © V) ﬁ(x) <0
when x # O +then the system is said to be asymptotically
stable. Dverything hinges on the choice of the Lyapunov
function V(x) . Usually the stability is tested around
the origin. There is no loss of generality in actually

doing so, because the origin itself can be shifted.

7.2.2.2 ILyapunov Function

No general way has been found to determine whether
a suitable V(x) exists for a system or if any given
choice of V(x) is the best. V(x) = constant, represents
closed surfaces around the origin and if V(x) is -ve
then all the trajectories move inwards, closing in on the
origin. Thus, we seek functions V(x) which are +ve
definite and which have a -ve definite derivative.

For a linear system it is usual to choose V(x)
to be a quadratic in x, since there are simple methods
to check +ve definiteness of these functions. This point
is dealt with later. There is an important theorem by
Lyapunov which states:

A necessary and sufficient condition for X; = 0
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(i=1, ... n) to be an asymptotically stable solution
of the matrix equation X = AX (A Dbeing a real constant
matrix) is that X'PX be a +ve definite quadratic form

where P 1s a symmetric matrix satisfying the equation
PA + A'P = -Q (7.14)

X'GX Dbeing any positive definite quadratic form and (
being a real symmetric matrix.

This shows that we may choose any O + ve definite
(usually a unit matrix is chosen) which will surely give
V(x) = -X'0X as -ve definite. By solving Iqu. (7.14)
P can be found. P Dbeing another symmetric matrix,

Baqn. (7.14) yields 3n(n+l) 1linearly independent re-
lations for %(n+l) unknown elements of P matrix.

Consequently the Lyapunow function:
v(x) = X'PX (7.15)

Note: P dis +ve definite if, and only if, all the principal

minors
Py v P11 Ppo P17 Pio Fis
s
P10 Fop Pio Poo  Pozl, .. aet(p)
Piz Poz Pz

(7.16)

are positive.
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The solution of Eqn.(7.14>is quite cumbersone.
For P +to be +ve definite the principal minors given
by relation (7.16) must be positive. This eventually
leads to the Routh-Hupwitz stability conditions, a
result which is rigorously proved in Ref. 35. Thus,
we see that Iyapunov technique is cumbersom and does
not give any more than the Routh - Hurwitz stability
criteria for linear systems. However, its main use lies
in solving nonlinear problems where other techniques
become useless. .
Finding a suitable Lyapunov function is difficult.
In Ref. 36 a variable gradient method is used to generate
a Lyapunov function for the transient study of synchronous
machines. For a similar study in Ref. 37 and 38 Lyapunov
functions related to the total energy of the system are
generated, However, there seems to be no paper dealing
with the transient stability with regulators of synchronous

machines using the Lyarunov function method.
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CHAPTLER 8

8. CONCLUSTOS

The conclusions derived in this section are based
onn the theoretical and experimental investigations into
some aspects of the direct and gquadrature axes excitation
regulation. The system equations are derived so that any
feedback from within or outside the alternator is formu-
lated from the alternator output gquantities; subsequently
they are arranged on a model diagram shown in figs, 2.1
and 3,1 which is of great assistance in

1. developing the open-loop transfer functions
with any number of feedbacks,

2. understanding the effect of individual alternator
output quantities.

3. programming the problem in the sequence as
indicated on a digital computer, and or
alternatively an analogue computer.

Por stability analysis the conventional criteria of
the Routh, the Nyquist, the root-locus method are used.
oome useful deductions are made for the direct-axis
regulation using the root-locus method and the Routh

criteria, The root-~locus method gives a graphical picture
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of the system's modes i.e., the roots of the characteristic
equation, but if all the details are included it becomes
cumbersome because of the increased order. The same is
true for the Routh criteria, but the algebraic relations
can yield some useful information in regard to the
principal effects for simplified cases.

Tor the quadrature-axis regulation the Hyquist
criterion is mainly used because the details can be
considered with relative ease. For the Nyquist criterion
the increase is the order is just like another arithmetical
operation on a digital computer. The effect of an individual
detail can be studied by comparing the Nyquist plots with
and without the detail., It also provides a direct
comparison of the theoretical and experimental frequency
response plots of the whole system or part of it. Iach
method has its own advantage and their application is a
matter of convenience to obtain the best results.

For the analysis of a large system the use of
techniques readily adaptable on digital computers is
inevitable, In this respect state variable methods have
an edge over the conventional Laplace approach because
of the direct application of matrix algebra in conjunction
with digital computbters. For linear systems the eigenvalue

approach which is the equivalent of the root-locus

-
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method is being increasingly applied. For noan-linear
systems Lyapunov is a powerful method, although
establishing a suitable Lyapunov function is not easy.

For the direct-axis regulation it has been
established that a proportionate voltage regulator extends
the steady state stability from the peak of the steady
state load angle o to the peak of the transient load

s
angle &!'_ , but the gain range of such a regulator is

s
poor, When derivative of the field current is incorporated,
the stability limit pattern changes depending on the gain
of the field current feedback, The ultimate stability
limit is reached when the short circuit transient time
constant T'd is swamped by the field current feedback
effect, see Eqn. (2.32), which indicates that the product

of R and M is constant, TFor the lower values of M

R(max) is increased but is comparable with the proportionate

]

regulator, see Fig. 2.141. TFor M =.001; increase beyond
é's is very little, however, in the upper gain region
BC the ultimate stable angle & is slightly increased
for the same gain 1R compared with the proportionate
regulator. TIFor higher gains of I though the steady
state stability is extended beyond B'S but the gain

range is decreased, see PFig. 2.11 for M =.004, This is

a limitation from practical point of view, where increase
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in the gain range with the increase in the steady state
stability is a desired feature. It may be possible to
improve the condition by using a derivative voltage
regulator, However, if it is not required of the
regulator to extend the stability range beyond & = 6'S
for practical reasons, a small amount of field current
feedback (of the range M =.001) would prove useful (see
Tig. 2.11 curves 1 and 2),

The experimental and theoretical curves show good
agreement in the lower gain region and some departure in
the higher gain region but the trend is the same, and
the general agreement can be described as reasonable.
Particularly considering that the theoretical curves are
conputed neglecting resistance and damping.

In the literature for the direc-axis regulation
various schemes have been investigated for the full-load
conditions and its limitations at the zero power are in
most cases ignored., Some papers mention the steady state
limit QO = —V2Yq for a simple regulator transfer function,
However, the rigorous proof provided in Sect. 2.8
confirms this limit for any direct-axis regulation scheme.

The limitation of the direct-axis regulation schene

at zero power appears reasonable in the physical sense,

because it cannot affect the parameters in the quadrature-axis
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onn which the limit depends. Thus the quadrature
rezulation scheme is a logical development,

The theoretical investigation for the quadrature-
axis regulaetion at zero power shows that

1. the voltage -feedback modified by the regulator
transfer functlon Rq(p) cannot affect the steady state
reactive absorption limit.

2. the signal derived from Id is not effective.

3. the signal derived from Iq is not of the
right polarity for stabilisation at negative vars,
lioreover it changes sign from positive to negative vars,
and therefore by itself 1s not a desirable feedback.

4. the signal derived from the rotor angle is the
most effective because it is always a positive quantity
and in conjunction with Rq(p) cen modify the charac-
teristic equation sultably to extend the reactive
absorption limit beyond «VZYq

The experimental investigation with the &oltage
feedback confirms the theoretical deduction. The rotor
angle signal experimentally proves useful as theoretically
expected and afifects the steady state limits depending on
the regulator transfer function.

The system with the angle controller on the

guadrature-axis behaves like a position control servo-system
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oir the quadrature-axis. Vhen the system is delivering
power at the fixed supply the rotor can remain in the
zero angle equilibrium with its stability taken care
of by the angle controller, because the quadrature
Tield winding can supply the necessary mmf for the
equilibrium. The system bhehaves in the same way over
the whole range of power, Under ideal condition at any
power the rotor angle is zero, therefore, the conventional
meaning of the load angle is not applicable, consequently
the steady state stability limits are defined in terms
of reactive power.
The proportionate angle regulator with an ideal angle
device increases the steady state reactive absorption from
2 2+ry

»qu Yq to ~qu Yq

with the difect—axis proportionate voltage regulator

, a result which has its parallel

scheme, However, with a practical angle device this
limit is reduced because of the delays associated with
the practical angle device. The regulator gain range
RO is poor, because of the sharp slope of the stability
limit curve (see Pig. 3.5).

The inclusion of the first derivative only improves
the situation marginally (see Fig. 3.8) over the pro-

portionate regulator and cannot be considered of practical

advantage.
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The derivative regulator (see Sect. 3.5.2.2) increases
the reactive absorption 1imit and the gain range Rq many
times compared to the above two quadrature-axis regulators,
therefore, it can be considered of practical value. The
following comparison based on the experimental investi-
gations (see Pigs. 6.5 and 6.8) proves the merit of the
derivate regulator over the proportionate regulator.

1, The maximum permissible reactive absorption
obtained with the derivative regulator is about
~3.5 p.,u. compared to about -1.4 p.u. for the proportionate
regulator,

2. The maximum regulator gain R depends on the

g
vars. At vars = -1.0 p.u. Rq(maz) is increased from
about 2.8 for the proportionate regulator to about 21 for
the derivative regulator, an increase of about 7.5 times.
3. The proportionate regulator for reascons of poor
gain needs adjustment of the gquadrature-axis field current
for zero equilibrium when power is changed from one level
to another, whereas, the derivative regulator in the
high gain region maintains practically the zero equili-
brium by itself under changing conditions.
The damping is equivalent to a small lag term in

the open~loop transfer function and has little effect

on the steady state stability limit curves. The
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resistance has little stabilising effect but tends to
improve the stability with increasing power,

The increase in the permissible reactive absorption
limit with the derivative regulator is very much
more than required for steady state operation; however,
it is expected that it would contribute in extending
the transient stability.

From experimental evidence it can be recorded that
under any transient disturbance if the quadrature-axis
regulation system slips it tries to restablise at the
next equilibrium point after slipping one pole pitch
(=1800). With the excitation then reversed the system
moves over into lagging region if it was in the leading
region to start with, and vice versa.

The derivative regulator constructed for the
practical investigations is by 210 means an optimum desigi,
Trom consideration of the steady state performance alone
it could be redesigned to give still further increase in
the gain range Rq with or without increasing the
reactive absorption any further. The optimum design
must be related to the required performance, and in this

field there is a great scope for furthexr research.
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APPENDIX IT

II.41 Expressions For Transfer Functions Ar(p)

The terminal voltage Vi is given by the followilng

the equation

2 2. /2
vy = b(vg= quc) + (v +x,15) ]
Therefore,
Avy = 8,(p) Big + 4(p) A6 + 45(p) Biy (II.1)

The expressions for Ar(p) are given in Egqn. (2,5)

II1.2 Expressions for Transfer Functions A'r(p)

The transfer functions A'r(p) are associated with

the field current feedback. The basic equations16 ares

Ya = Lugts * Tug fra * (Ppaafalia

O = Ipg piy + [rpg+(Ipg o Liq)P] iygq + Tyg Pig (11.2)

Eliminating i, 4 f£rom the above set of Equ. (Iz.2) we

have:
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Yo =~ ¢+ i 5 - La (11.3)
where
o ( ) _ 1+dep
18P = T Tmd
(II.4)
1+T-p
_ 5
Xa4(2) = 7m 5 %a
In Eqn. (II.4)
Iy = o X patya)
T1g
T = e (X, & II.5
5 Wrpe T4 L1k
Xra
T = i
kd UJrkd

oOde from Egn. (I-2) after neglecting pQ)q and pbd

terms is

Wy = - Vg * Ty iq (II.6)

/

Eliminating wiy, £from Egn. (IT.3) and Eqn. (II.6) we

have
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.'..vcll = (}“(:;.))j,f + Xd‘l(p)iﬂ - I‘aiq (IIB'?)

From Egqni, (II.7T) the small oscillation eguation for

if is
Aig = o, (p) Aid +u,(p)As + cx3(p) Aiq (11.8)

The expressions for ar{p) r=1,2,3 are given in Bgn,
(2,6) and the relation bstween A‘r(p) and ar(p) s
¢ =4,2,3) in Eqn. 2.8,
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APPENDIX ITI

Expressions for F1(p) and Fz(p)

F1(p) and Fz(p) are the transfer functions
between the feedback signals (Avt end M(p) Aif) and
the input voltage to the field winding (AVfd) . The
expressions F1(p) and Fz(p) are the sums of product
terms derived from Ar(p)/A'r(p) and Br(p) , (r=1,2,3).
The expressions for Br(p) and Ar(p)/A'r(p) are given
in Eqn. (2.3) and Egn. (2.5)/(2.8a). Using these

expressions F1(p) and Fz(p) are obtained below

3
Fo(p) = > B(p).hp(p) = By(p).4,(p) + By(p)hy(p)+B5(p).25(p)
r=A
(14Tq0)Yg 2
= =3(p) [(Qgrap™+7 Y (p)-22, Vo T 074 (R)) x

X
hts C o 1
(ACIdO+VqO) x V;; + (—Vdo+ra(ZIdo+quYq(p)—21quq(p)rq)) x

P X

n 0" 2 .
( - 2. v ) - (quYq(p)VdO+ra(Qo+Jp 2quIdo)Yq(p)) x

X

Iqo c)Vt

_(Vdo

(IIT.1) contd.
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) (1+dep).Yd

=y [(VqOYq(p)+Ido—ran(p).Iqo) x (V2—2rapo+xCQo)
2 Xc
+Jp ((qu+X&Ido)+ra<vdo‘Xcho)Yq(P))] Ve (I1I.4)
And
3
Fo(p) = > Br(p)at_(p) = B, (p)a', (p) + By(p).ar,(p) +
r=

Bz(p).4'5(p)

_ (1+dep).Yd

2
D(p) [(QO+JP

2 =
Vo Yq(p)—ZrquOIquq(p)) X

xa,(0) o .
a1 M(p) i, ’
( G0 "R, Vo (STt (2T +V o Y (p)-21 Y (p)r,)) x

(sz . VdO.M(‘p>

G1(p) Re ) - (VqOVdOYq(p) + ra(Qo+Jp

2

- M(p)
(G?(ﬁ) R )]

(II1.2) contd.
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(14T, , p).Y
= 2 1 [=(Qu#V 7Y ()47, Yy, (0)+307) x4, (0) +

xg (2V00Tg0%aq (P)+2Vq0 T 0% (R) =V Vy,) Y (p) -
2
r, (Iqovdo VdOIdo+Jp )] A (III.2)

Hote that the rectified constant term Re is omitted in
(III.1) but appears in Eqn. (III.2), modifying the
field current gain M +to M/Re , (see Sect. 2.2.4).
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APPENDIX IV

To obtain the characteristic equation (2.18) from
Eqn. (2.16), first we develop the expression for
L(p) ( =R g > ) as a ratio of polynomials in *pi

Using Eqn. (2.42) we have
_ = Nlp) _ ‘ .
L(p) = R 5{-5% =R F,(p) + R P (p) | (IV.1)

The expressions for R F1(p) and R Fz(p) are obtained
as ratio of polynomiels separately and later combined to
give ILp). ‘

Using the relation for F1(p) in Eqn. (III.41) and

expanding in the form of polynomial we have

3 2
axp”~ + a,p~ + a,p + a
- D 2 1 o
B Fylp) = B(5)
where
J.T. ..¥Y X
_ kd®~d*
83 = Vio [(qu+XcIdo) * ra(vdo c qo)Y IR
J. Ych
a, = ——r— [(V ot ¥ Ig )+ ra(vdo o qo)Y }J. R (IV.3) contd,

to
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I ¢
_ Tkattacte
a, = T, [(v o¥qtTao " a ¥y qo)(V -2rP +X Q)] .R
o = —alo (VoY Ta0=Ta Yo Tgo) X (V-2rP +x Q) . R
o Vio q atqtgo’ * merE ey .

(IV.3)

and

D(p) = D'(p)(A+T140) (14T 1p) = 4,pY+d;p7+a,p7 40, prd
(IV.4)

In BEgn., (IV.4) the coefficients are as given below:

a, = J(T 0! +r SY. Y D
4= aTtatrs Ya¥ T a0)
2
dg = J(L! g +I" o4 (T'dO+T"dO)YdYq)
= t t
d, J+(QO+V °y )T'd "4t V40 2y gL' g™ 42T, (VqOIqOYqT a™Mat
2
VaotaoTaT doT ) Ty YdY [(Vdo go qu:[qo)T do do +J ]
— » 2 ' 2 bl
Gy = T8 o+ QT XM g+ YT g0 = 2x (Voo T ¥ 1y +
quIquqT aVaotaora a0 Vaotaoat" do)
2 !
Ta YdYq [(Vdolqo quIdo)T do * (vdo go quIdo)T do ]
— 2
d, = S ~2r, (qu quq‘Vdo dOYd)+r Y,Y (Vdo g0 quIdo)

(IV.5)
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The expressions for SO and S'O , 1.e., the
slopes of the power and transient power angle curves
respectively are given in Egqn. (2.20).

To obtain R F2(p) in the polynomial form substi-
tuting Xa1(p) and G1(p) from Equ. (II.4) in Eqn. (III.2)

we have
4 3
b,p +bp +o,p+b, +Db
4 3 2 1" "0
R T = _
2(p) D(D) (Iv.6)
where
2 R H
b, = ~J(Te+T,r Y .Y,) =—
4 5'727a “q°*-d R.X g
Y..RII
2 a’
by = ~J(X_+r_ Y ). s
3 d ~a g Re°de
_ ; o 2 2 ‘
b, = ¥y L= ((q AP DL IS e .59 X‘d+2ran(vququd15
. L2 _ MR
+vdoIdoqu2)—ranVdovquQ"fa T2Yq(Iquo vqudo)] R.X 4
b, = ['Son"L?ran(qulqoxd”doldoxq)'ranquVao
M,Y
- 2 i
- r, Yq‘(Iquqo—'quIdo)] s o
b =0 (IV.7)

D(p) is given by Lgn. (IV.4).
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Adding Egn. (IV.2) and Egn. (IV.6) gives

R N(p) = byp +(agz+bs)p+(ag+b,)p +(a, b, )p+(agtb,)  (IV.8)

Substituting for D(p) and R ii(p) from IEgn. (IV.4)
and Egn. (IV.8) respectively in Egn.(2.17) we have the

characteristic Egn. as below

(d4+b4)p4+(d3+a3+b3)p’+(d2+a2+b2)p2 + (d,+a,+b,)p

+ (do+ao+bo)p =0

or in more compact form as

4 . 2 P
Cyb + 03ﬁ5+ Cob + Cyp + Cy = 0

The expressions for 04,03,02,01 and c, are given in

Egn. (2.19).
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APPENDIX V

V. STABILITY CRITERIA!8-20

V.1 Root=Locus ilethod

V.1.1 General

The Root~Locus technique is used for the explanations
and stability determination for the direct-axis excitation
control analysis. The technique is explained briefly in
this appen ix. The idea underlying the technique is to
find the roots of the characteristic equation of the
system from the open-loop transfer function pole zero
configuration, with the loop gain varied from zero to
infinity. DBeside giving the loci of the roots, this
method indicates vhat modifications are needed in order

to stabilise an unstable systen.

V.l.2 The Principle

Consider az simple linear control system shown in
Mg. V.1. The closed-loop transfer function C(p) of

the system is given by

G, (p)

C(p) = T + R L(p) (V-1)
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RH(p)

FIG. V. 1. _ cLOSED_LOOP SYSTEM BLOCK DIAGRAM.

J&

Re

arg(S_p,)

x

P

FIG.V.2._ VECTOR DIAGRAM FOR GRAPHICAL
MEASUREMENT OF ANGLE’ AND ‘MAGNITUDE'
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where:
G(p) is the forward loop transfer funcition

H(p) is the backward loop transfer function

R is the variable loop gain
L(p) = &(p) . H(p) (v.2)
H(p) igs the open~loop transfer function.

L(p) in general is a ratio of polynomials in 'p! and

can be expressed as %%%% . Thus the roots of
N(p) = 0 (VaB)

are the zeros of the open-loop transfer function and

the roots of
D(p) = 0 (V.4)

are the poles of the open-loop transfer function. The
characteristic equation of the system is a polynomial

equation in p given by
D(p) + R N(p) = 0 (V.5)

Let there be n zeros, namely, ZysZoseeeseyZy and

m poles, namely, PysPpsreccesPy of the open-loop transfer



243,

function. L(p) . The open~loop transfer function in

factorised form is given by

i _ N ) _ (P“Z1)(P-Zz)......(p-zn)
te) = Dgp5 ~ To=p, ) (o=, ) (p-py) (v.6)

In Egn., (V.6) N(p) and D(p) are polynomials in p

of the nth, and mth., order. In these polynomials the
highest power coefficient is taken positive and unity,
however, the coastants can be merged with the loop gain
R as desired. The case where the highest power coeffi-
cient in N(p) or D(p) has the negative sign is dealt
with in Sect. V.1.3.5. In PFig. V.2 the poles and zeros
of the open-loop transfer function are marked on the
complex p-plane, Ior simplicity three poles and one
zero, all in the left half p-plane are shown. This by
implication means that all the coefficients of the
polynomials I(p) and D(p) are taken positive for
illustration, this however is not necessary. If a point
t5!' in the complex p-plane is a root of the characteristic

equation (V.,5) then:
D(S) + R N(S) = 0

which leads’ to the following conditions in general
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Im'és;i _ 1

D(8)] "R

or
[S=24] + (S=zpleeeal|Bom ]y 1)
|5—p1f . 'o-pz ,.....‘S»pml R

And

Arg T(S) - Arg D(S) = 7 + 27A

(where A is an integer) or
Arg(S-z1) + Arg(szz)..,... + Arg(S-zn) - Arg(S«p1)
- Arg(S—pz) Ceeene = Arg(S-pm) = 7 + 27\ (v.8)

The conditions represented by Egns., (V.7) and (V.8) are
called the !'Magnitude! and 'Angle' conditions respectively.
In Fig., V.2 the vectors (S—z1) , (S-p1) , (S—pz) and
(S-p~) are shown. The magnitude of each is represented
by the length and the angle by the inclination to the
real axis.

The root-locus is defined from the angle condition

as the locus of points S +that satisfy LEgn. (V.8). The
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magnitude condition given by Bqu. (V.7) enables one to
obtain R at each point S of the locus. The root-loci
can be constructed using the above mentioned conditions
graphically, but much labour can in practice be saved

by using a digital computer to find the roots of the
characteristic equation for gains from zero to a reasonably
large gain, However, the following rules are of great

assistance in general when using the root-locus technique,

V.1.3 Rules
V.1.3.1 General

If the characteristic equation is of the mth order,
it has m roots, which may be real or complex., The
order of the characteristic equation is determined by
the polynomial D(p) %because its order is higher than
or equal to that of the polynomial N(p)., Since the
characteristic equation has m roots, the root-locus
has m branches, each of which corresponds to one root
of the characteristic equation., The real roots are
represented by points lying on the real axis, so that
the branches which correspond to real roots consist of
portions of the real axis. The branches which correspond
to complex roots may be more or less complicated. Since

the coefficients of the characteristic equation (V.5)
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are real, the complex roots are complex conjugates
and hence the branches of the root-loci which correspond
to the complex roots are symmetrical in pairs with

respect to the real-axis.

V.1.3.2 Starting point

The root-loci of the characteristic equation are
plotted from zero gain to infinity. At zero gain the

characteristic equation (V.5) reduces to:

D(p) = O

which gives the starting point of the root-loci.

D(p) = 0 gives the open-loop transfer function poles of
the system. Therefore, each branch of the root-locus
starts from the open-loop transfer function pole

position.

V.1.%.3 Termination of Roots

Each root-locus terminates when the gain R 1s
infinity. The characteristic Equn. (V.5) of the system

can be divided by R and written as

2(e) 4 5(p) = 0 (V.9)
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When R +tends to infinity Eqn. (V.9) reduces to:

u(p) =0

W(p) = 0 gives the open-loop transfer function zeros of
the systen, which are n in number, whereas, the
system has m roots. Irom Eqn. (V.9) it is clear

that with the increase in the gain R +the highest

power coefficients, for m greater than n , approach
to zero, As a result wum-n roots of the characteristic
equation approach to infinity. The other n roots of
the characteristic equation terminatc at the open-loop

transfer function zero positions.

V.1.3.4 Branches on the Real Axis

The complex conjugate poles and zeros do not affect
the existence of any branches of root loci on the real
axis. The real branch of the root loci exists wherever
the angle condition given by Egn., (V.8) is satisfied
by the real open-loop transfer function poles and zeros,
In Fig. V.3a the branches of a typical root locus on
the real axis are shown in accordance with the above

rule. The pole-zero confizuration is arbitrarily chosen.



248.

) N « Re. Axis
. -1 -~

7

REAL BRANCHES

/ ' X\@ @\? Re. Axis

FIG V.3._REAL BRANCHES OF ROOT_LOCUS
Q. FOR R.HS. OF EQN.V. &8

b. FORR.H.S.0F E&N.V. 8

=04+2TN

Im. Axis

Joa

fo'e) Re. Axis

-
e

_.jm L

FIG.V.4. _ NYRUIST CONTOUR .



249.

V.1.3.5 Zero Angle Conditionn

In general the angle condition is given by Ign,
(V.8). If R is negative the right hand side of
Eqn. (V.8) becomes O + 27A . R could be negative
under positive feedback conditions or when the highest
coefficient of N(p) or D(p) becomes negative. The
rule in Sect., V.1.3.4 correspondingly stands modified
(because of the change in Bgun. V.8), and is demonstrated
by an illustration in Fig. V.3b, showing the branches
of a typical root-locus on the real-axis for the same

pole-zero configuration as in Fig. V.3a.

V.1.3.6. Intersection With the Jjuo -axis

The intersections of the root-locus with the
jW-axis establish pure oscillatory roots of the
characteristic equation, and determine the natural
frequency of the closed-loop system, The conditions
for obtaining purely imaginary roots of the characteristic

equation are discussed in Sect. V.2.1.

V.1.3.7 Asvmptotes

In Sect, V.1.3.3 it is mentioned that m-n roots
approach to infinity. These roots approach to infinity

asymptotically. For a point remote from the open-loop
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poles and zeros, the effecct is the samc as if they were
all located at the centre of gravity determined from

the arithmetic mean

Py = m-1

All the roots approaching infinity to asymptotically
converge 1ii extended backwards to the centre of gravity

determined in this way.

V.1.4 Inverse Root-Locus

The root-locus in the inverse form can be of great
use when the roots of the characteristic equation increase
in magnitude very rapidly and change over from the L.H.
plane to the R.H. plane. Such a change causes difficulty
in assessing the limit of stability. It can be overcome
by plotting the inverse root-locus. The inversion
brings the points at infinity to the origin and the
convergence of locl at infinity can be more readily
verified. The 'Angle! and 'Magnitude! conditions and
other rules mentioned in Sect. V.1.3 are unchanged. The
inversion is carried out as follows:

Take a general transier function
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3 2
azp +asb +a,pra

4 3 2
d4p +d3p +d2p +d1p+dO

Using the transformation W o= %

the transfer function in the VW-plane becomes:

23
a3W+a2W +a1W +aOU

, e 79 4
d4+d3W+d2U +d1w +doh

Instead of dealing with the system in the p-plane it can
now be dealt with in the W-plane. ZEach root of the p-plane
appears as its inverse in the W-plane, This technique

is used in Sect. 2.3.4 (see Fig. 2.9).

V.2 Routh Criterion

The RotWerilorien in algebraic and graphical

form is discussed below.

V.2.1 Alsebraic form

The characteristic equation of the system can be

written in the following form

c,p® + ¢ 0"+ it ¢, = 0 (v.10)
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Fer all the roots of the characteristic equation to be
in the I.H, p-plane, it is necessary that all the
coefficients Cn , Cn~1 ceeese Co must be positive.
But this condition is not sufficient. To meet the
necessary and sufficient conditions the coefficients of

the characteristic eguation are arranged in the

following array.

n n~2 011~4- e e 0 e e

C 2 6 o @ s % & 8 v

The coefficients of the third row are obtained by cross

multiplication as follows:

n=~2 Cn—1.on~2"cnon—3 On—1.0n—4‘0n.cn—5
p C_ C_ .
n-1 n=-1

The coefficients of the fourth row are obtained again
by cross multiplication, using the second and third row
and so forth until n+1 rows are obtained.

The number of changes in sign of the coefficients
in the first column of the above array is ecqual to the
roots of the characteristic equation in the R.H. p-plane,

i,e., the roots with positive real parts. For a third
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order system the Routh array becomes:

p- 03 01
2 -
P 02 CO
I (Vv.11)
' (}2CJl C3CO
p ¢ o) 0
2
O L 2
P e CO 0

This leads to the conditions of Ign. (2.33).

If in the Routh array all the coefficients in a
row are zero, this indicates that there are two equal
and opposite roots, in particulaxr, two imaginary
conjugate roots. PFor a third order system to have
purely imaginary conjugate roots coefficients in the
p1 row of array (V.441) must be zero. This leads to

the following condition
C,C, = C,C_ =0 (V.12)

The imaginary conjugate roots determine the natural
frequency of the closed-loop system. The oscillatory
mode is determined from an auxiliary equation established

from the coefficients of a row just above the zero
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coefficient row. TIor a third order system the

auxiliary cquation is

2
02p + CO = 0 (V.13)

This technique is uscd in Sect. 2.3.3 for finding the

natural frequency of the closed-loop system.

V.2.2 Graphical form

In the characteristic equation (V.10) some of the
coefficients Cn s Cn—1 , contain the gain constant term
R . This makes the Routh stability coefficients
dependent on the gain R . For stability at any gain
level R all the Routh stability coefficients must be
positive, If the Routh stability coefficients are
plotted against the gain R , the stable and unstable

zones can casily be demarcated. Fig. 2.10 shows such

plots, see Sect. 2.3.4.

V.3 Nyguist Criterion

The Nyquist criterion uses an open~loop freguency
response plot to determine the stability of the close-
locp. It states that the closed-loop system is stable,

if its open-loop frequency response locus encloses the
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(-1,0) point countcr clockwise a number of times equal
tc the unstable poles of the open-loop transfer function.
The above criterion stems from the consideration
that if a closed curve C in Pig. V.4 which consists
of: (a) a line parallel to the jw -axis and at
infinitesimal distance to the right of it, (b) a
semicircle of infinite radius in the right hand plane
is traced clockwise and a corresponding locus plotted
on a complex plane of a function P(p) , the F(jw )
locus can be shown to encircle the (0,0) point as
many number of times clockwise as therc are ro@ts of _
P(p) = O in the R.H. p-plane. This concept is extended
'tb a general transfer function %%E% . If it has Z

p
zeros and P poles in the R.H. p-plane then the locus

N('CJ) will encircle the (0,0) point counter clockwise
D(jeo )
(P~z) times. This concept when extended to 1 + Hige)

D(jw )
lecads to the closed-loop stability criterion mentioned

above,
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The Direct-axis Regulation Machine Parmnetersl

The michro-machine stator NO .... 334818
The michro-machine rotor NO .... 334828
Machine Rating 2KVA

Unit Voltampere 1825VA

Unit Voltage
Unit Current

Parameter

Xq

X

q

1
T do
X'd

b §
Ty

186V  (Line to line)

5.664

Parameter value

2.321 p.u.
1.91 p.u.
4.75 sec.

0.544 p.u.
1.11 sec.

%321 p.u.
431 p.u.
0.0384 »n.u.

0.001425 p.u.
0.0318 p.u.

Remarks

A11 the machine
parameters include

X
c

Since damping is neglected in the computations, therefore,

2ll such parameters as a consequence of damping are not

included in the table above.
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Table No., II

The Cuadrature-axis Resulation Machine Parameters

The micro-machine stator NO .... 334818

The micro-machine rotor NO .... 334835
Machine Rating 2KVA

Unit Voltampere 1825VA

Unit Voltage 186V (Line to line)
Unit Current 5.66A

P.U. Quadrature field voltage - 646 volts
P.U. OQuadrature field impedance -~ 418 ohms

Paramaeter Parameter value Remarks
Xd 2.471 p.u. *\ feasured from equilibrium
diagrams at 0,2 p.u. power -
Xq 1.93 p.u. over a range: of vars
Xt 0.91 p.u. ) measured from variable
» frequency response static
Xt 0.615 p.u J impedance test
a
T‘do 1.2 sec. measured from sudden short
: circuit of the field winding,
T'qo L1.1 sec. with alternator open-circuited
5w . ) ]
T‘d 442 sec. calculated 1r9m T do andixq
T'Q .35 sec. calculated from T{qo and X'é
rfq .00482 p.u. d.c. measurement

A1l the machine parameters include XC.

X Xa’ r, are the same as in table 1.

C’
The system inertia J 1is also the same as in table

1, because the major part of inertia is contributed
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by the flywheel and interchange of similar mtors is

considered not to affect it.
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