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ABSTRACT 

With recent developments in power systems the 

demand on alternators to operate in the leading var 

region at light loads is increasing. With these deve-

lopments in view, the effect of automatic direct and 

quadrature axis excitation regulators on the stability 

of an alternator connected to an infinite bus through 

a series reactance is investigated. The study is 

limited to small oscillations, and the stability 

analysis is done using conventional techniques, such 

as, the root-locus, the Nyquist, the Routh, and some 

consideration is also given to state variable methods. 

A proportionate voltage regulator in conjunction 

with the field current feedback for the direct-axis 

excitation regulation is investigated. The limitations 

and the usefulness of the scheme are discussed. 

It is mathematically shown that at zero power 

no direct-axis excitation regulation scheme can extend 

the steady state reactive absorption beyond a limit de-

pending on the quadrature-axis synchronous reactance. 

On the other hand the quadrature-axis excitation regu-

la'bion•can extend the steady state reactive absorption 

limit. 
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Out of the various signals theoretically considered 

for the quadrature-axis excitatinn regulation the rotor 

angle signal proves to be the most effective. 

A proportionate angle regulator on the quadrature-axis 

acts like a position control servo-system and ideally can 

extend the steady state reactive absorption limit depending 

on the transient reactance at all power levels, but the 

gain range of such a regulator is poor. A proportionate 

regulator with first and second derivative terms can 

however increase the reactive absorption limit and the 

gain range many times compared with a proportionate 

regulator. 

Experiments were performed on a model machine in 

conjunction with simulated regulators to determine the 

steady state stability limit curves as a function of 

regulator gain. For some regulators the open-loop fre-

quency response loci were determined from the closed-loop 

frequency response test for small oscillations. 

All the experimentaland theoretical results show 

reasonable agreement. 



10. 

ACKNOWLEGEMENT1 

The work presented in this thesis was carried 

out under the supervision of Dr. B. Adkins, M.A., D. Sc. 

(Eng), F.I.E.E., of the Electrical Engineering Department, 

Imperial College of Science and Technology. I wish to 

thank Dr. Adkins for his helpful guidance and constant 

encouragement. 

I also wish to thank Dr. P.F. Blackman, Senior 

Lecturer in Electrical Engineering, Imperial College, 

and the research team in the Central Electricity 

Generating Board, South Eastern Region, for helpful 

discussions. 

Finally I wish to express my gratitude to the 

British Council for a grant under the 'Colombo Plan' 

and to the Indian Institute of Technology, Delhi for 

sponsoring my candidature. 



11. 

LIST OF 9YMBOL9  

The axis quantities are represented by small 

letters whereas their corresponding R.M.. values 

are represented by capital letters. The symbols re-

present the per unit values in accordance with reference 

16, and a reasonable uniformity is also maintained with 

reference 1. 

vd(Vd), vg(Vq) 	Direct and quadrature axis 
voltages 

Direct and quadrature axis 
currents 

Direct and quadrature axis 
field voltages 

Machine terminal voltage 

V 	 Infinite bus voltage 

Vo 	 Induced voltage in the machine 

ra 	 Armature resistance including 
that of the line reactance 

rfd' rfq 	: Direct and quadrature axis 
field resistances 

Machine leakage reactance 

: Transmission line reactance 

: Direct and quadrature axis 
magnetising reactances 

: Direct-axis operational reactance 
(admittance) 

X (p), Y (P) Quadrature-axis operational 
reactance (admittance) 

id(Id)9 

vfd vfq 

vt( ft) 

x  
Xc 

Xmd' Xmq 

Xd(p), Yd(P) 
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Xd(Yd) X'd(Y!d) X" (Y” ) ' Direct-axis synchronous, 
transient and subtransient 
reactances (admittances) 

X 
q
(Y ), X1

q
(YI)y Xv4(Y'lci) 

T i
d 

 (Ti q 	q 
)y 	T tt  (T' g) 

Ttdo(T'qo), Tt%o(TI4o) 

T2' T5 

So 

Sto 

a 

• .• Quadrature-axis synchronous, 
transient and subtransient 
reactances (admittances) 

Direct (quadrature) axis 
short circuit transient 
and subtransient time 
constants 

Direct (quadrature) axis 
open circuit transient and 
subtransient time constants 

Time constants as in Ref. 16 

Slope of Power-angle curve 

Slope of transient Power-angle 
curve 

Rotor angle with respect to 
infinite bus 

Peak of the Power-angle curve 

Peak of the transient Power-
angle curve 

Power at the infinite bus 

Moment of inertia 

Turbine, electrical and 
inertia torques 

Frequency cycles per sec. 
(radians/sec.) 

Direct and quadrature axis 
regulator transfer functions 

Direct and quadrature axis 
open-loop transfer functions 

s 

P 

J 

T I T, T. m e I 

f(w) 

R(p), Rq(P) 

L(p), Lq(P) 
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0(p) 	 Closed-loop transfer 
function 

R
q  

Direct and quadrature axis 
regulator gains 

Field current gain 

Rectifier conversion constant 

Minimum and maximum direct-
axis regulator gains 

: Minimum and maximum quadra-
ture-axis regulator gains 

: Right half 

Left half 

Natural frequency of the 
closed-loop system 

Prefix to denote differential 

9tastript to denote steady 
state value 

A zero (pole) in the complex 
plane of the open-loop trans-
fer function 

Number of zeros (poles) in 
the right half complex plane. 

Re 

R(min), R(max) 

R (nin), R (max) 

R.H. 

L.H. 

COn 

0 

zi(pi) 
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1 • INTRODUCTION 

1.1 General  

With increasing grid voltages and growth of cable 

network feeding large load centres the synchronous 

generators supplying a power system are required to 

operate at lightly loaded conditions with large re-

active obsorption. It is well known1-10 that increased 

reactive absorption is possible when continuously 

acting regulators are used in the direct-axis ex-

citation circuit. The common type of feedback signal 

is one depending on the terminal voltage1-9. Other 

important signals are the load angle8,10 and the current8. 

It is proved mathematically in the present thesis that 

the reactive absorption at zero power cannot be increased 

by any type of regulator acting on the direct-axis field 

winding. It can however be increased by using a regu-

lator acting on the quadrature-axis field winding. 

Fig. 1.1 gives typical curves on a diagram of active 

power P (Watts) against reactive power Q (Vars). 

This thesis is concerned with two main lines of 

work. 

1. An extension of the study of methods of 

direct-axis regulation. 
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2. An investigation of some methods of quadrature-

axis regulation. 

In each case experiments were carried out on the 

micro-machine equipment, and methods of theoretical 

ancaysis were developed to obtain theore'ical curves for 

comparison with the experimental results . 

1.2 Investigation of Direct-axis Regulation 

The steady state operation range of an alternator 

supplying a power system can be extended by using a 

voltage regulaor1-9  in which a signal depending on 

the terminal voltage is fed through a suitable regulator 

to the field winding. An earlier favestigationl  showed 

how the range of steady state stability depends on the 

type of regulator which may have proportionate or more 

complicated feedbacks. The characteristics of the regu-

lator al..e expressed by its transfer function. 

It has been proposed2 that it would be advantageous 

to use, in conjunction with a direct voltage feedback, an 

auxiliary signal derived from the field current. Some 

analogue computer studies3, using derivative of the field 

current as an auxiliary signal showed a marked effect 

on the steady state stability of the system. This scheme 

is investigated in some details in the following pages. 
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One point of interest which emerges from the 

analysis of direct-axis regulation is that the automatic 

voltage regulator (a.v.r.) behaves as if it decreases the 

direct-axis reactance Xd to transient reactance level 

Xdt, but it does not affect Xci. This explains why 

the steady state stability curve for the direct-axis 

regulation converges at -V2Yq  at zero power (Fig. 1.1 

point 'Al) irrespective of the nature of the feedback. 

The above explanation is rather simple, but a rigorous 

proof for the convergence of the regulated steady state 

stability curve at 'A', is developed in Sect. 2.4. 

In Fig. 1.2 is shown the schematic diagram of the 

system in which a direct-axis regulator is used. The 

alternator is connected through a reactance to a fixed 

supply, and has a main regulating feedback in which the 

regulator output depends on the terminal voltage Vt. 

An auxiliary signal proportional to the derivative of 

the field current If is added to the main signal and 

the total actuates a regulator system with transfer 

function R(p) . The output of the regulator affects 

the excitation in the direct-axis. 

1.3 Investigation of Quadrature-axis Regulator 

To improve transient stability it has been proposed11 



ALTERNATOR 
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to excite a field winding in quadrature to the direct-axis 

field winding. The original idea was to build up quadra-

ture excitation during any transient disturbance and 

let the rotor advance, but to keep the magnetic-axis 

within limits in order to pull in when the fault was 

cleared. In a digital study12 of an integrated control 

of a turbo-alternator for transient disturbances, a 

signal related to the swing of the rotor during the 

disturbance fed into the quadrature-axis field winding 

has been shown to be useful in extending the transient 

stability, thus in general supporting Ref. 11. In a 

C.E.G.B. report13 a divided winding scheme is suggested 

in which the axes of the two parts of the winding are 

separated by 60°  instead of by 90°. In physical terms 

the divided windi?g arrangement makes the quadrature 

component of m.m.f. available without having to arrange 

the field winding on the pole faces which would be 

impracticable on a large turbo-alternator. The leading 

winding supplies the excitation which determines the 

torque and is actuated by a rotor angle feedback. 

Reference 13 gives m.m.f. diagrams for increased reactive 

absorption at steady state operation, but no limits are 

defined and there is no analysis explaining why the 

improved stability is obtained. Model tests demonstrated 
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the practicability of the scheme. 

A range of signals for controlling the quadrature- 

axis are considered, namely, the voltage, the direct 

and quadrature current and the rotor angle. Out of 

these only the rotor angle effectively increases the 

steady state reactive absorption limit at zero power as 

well as under loaded conditions (see Fig. 1.1 curve ICI). 

The steady state stability limit of reactive absorption 

depends upon the regulator gain and its transfer function. 

In Fig. 1.3 is shown the schematic diagram of the 

quadrature-axis angle regulator. The arrangement of 

the alternator and the fixed supply is the same as in 

the direct-axis regulation scheme, shown in Fig. 1.2. 

In a practical installation the direct axis field 

would have its own regulator, but for the purposes of 

the present investigation it is adjustable but unregu- 

lated. The quadrature-axis excitation is actuated 

through a regulator system with transfer function 

R (p) , fed from a device giving an output proportional 

to the angle between the fixed supply treated as reference, 

and the rotor direct-axis position. Fora system with no 

steady state error between the reference and the rotor 

position the quadrature-axis excitation is proportional 

to the power delivered. 
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1.4 General Theoretical Methods  

The problem of steady state stability analysis of 

any control system is essentially the problem of small 

perturbation equations about the point of equilibrium. 

This technique is extensively used in the analysis of 

regulator system. Whether it is the direct-axis or 

the quadrature-axis regulation or both, the basic problem 

is to develop small perturbation equations either as 

differential equations relating the system variables12,14 

1 or in the form of Laplace transforms.'3-10  For the 

state variable methods using differential equations, 

matrix algebra can readily be applied with the aid of 

digital computers. This technique can usefully be 

applied to large systems like a multi-machine problem14  

or an integrated system of turbine, alternator and the 

rest of the system12. The Laplace transform method on 

the other hand yields transfer functions between input 

and output quantities and allows for greater detail to 

be included for a smaller system, which can be analysed 

using the established literature of conventional control 

theory. The Laplace approach can be reasonably extended 

to a multi input-output system though it becomes cumber-

some for a large system. This thesis uses the Laplace 

approach, although, the state variable approach is 
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discussed. 

With the system equations in the form of transfer 

functions the steady state stability limits can be 

determined by the application of conventional stability 

criteria, e.g., the Routh-criteria, the Root-locus 

technique, the Nyquist criterion. In the literature 

on voltage regulators the Nyquist or Routh criteria 

or both are used extensively.1'3-9  The Root-locus 

technique9,15 is cumbersome for detailed studies but 

under simplifying assumptions can give insight into 

the system and yield useful results. For the direct-axis 

regulation stability problem, the Root-locus technique 

was used neglecting dsnping, resistance and filter 

del =Ts, thus keeping the order of roots low, but never-

theless obtaining reasonable results. Some results were 

also obtained by applying the Routh criteria. However, 

for the auadrature-xis regulation it was preferred to 

apply the Nyquist criterion making use of the frequency 

response plots, thus including without difficulty the 

filtering and the regulator transfer function details. 

Alternatively, if the system equations were ex-

pressed in terms of state variables the Lyapunov function 

or Ligen value approach could be used. It is of 

interest to note that for linear systems the Lyapunov 
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function gives the same condition of stability as the 

Routh criteria and the eigen values are the poles of 

the system's closed-loop transfer function. The 

later point is demonstrated by taking the example of 

a propartionwce voltage regulator. The Lyapunov function 

and Eigen value approach are briefly discussed. 

some important new formulations and conclusions, 

most of which have been confirmed experimentally, are 

summarized as follows. 

a) The system equations are arranged so that 

a mathematical model of the system could be set-up. 

Any type of feedback from within or outside the alter-

nator is formulated from the alternator output 

quantities. 

b) The theoretical formulation of the field 

current feedback is obtained in a general form. 

The limitations of this method are demonstrated. 

c) It is proved that irrespective of the nature 

of the feedback and the regulator transfer function 

the steady state reactive absorption limit at zero 

power remains unchanged for direct-axis excitation 

regulation. 

d) It is shown that the voltage feedback with 

any regulator transfer function as a feedback into 
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the quadrature-axis excitation has no useful effect in 

altering the steady state reactive absorption limit at 

zero power. 

e) It is shown that a signal derived from the 

direct-axis current cannot make any useful contribution 

in improving the reactive absorption limit at zero 

power. 

f) A signal derived from the quadrature-axis 

current is not of the right polarity for stabilisation 

in the negative var region and moreover changes sign 

from positive to negative vars. By itself it is not 

a desirable signal but can be used in combination with 

other signals. 

g) The rotor angle is a positive signal which 

does not change sign from positive to negative vars 

and, depending on the regulator transfer function, can 

be used to modify the steady state reactive absorption 

limits. 

h) It is shown that by proportional angle feedback 

into the quadrature-axis winding the steady state limit 

of reactive absorption can be increased from -V2Y q  

to a maximum of -V2Y ' at all power levels. 

i) It is shown that the steady state reactive 

absorption limit can be increased beyond -V2Y by 
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including a suitable proportion of first and second 

derivative terms in the proportional regulator. The 

optimum increase in reactive absorption and the per-

missible regulator gain depend on the regulator transfer 

function. 



27. 

CHAPTER 2 

2. Theory of the Direct-axis Regulator with Voltage and  

Field Current Feedbacks  

2.1 General  

The System for the direct-axis excitation control 

is shown in Fig. 1.2. It can be presented by the block 

diagram for small oscillations in Fig. 2.1, where the 

prefix A indicates that small variations are being 

considered. Feedbacks are derived from vt , the terminal 

voltage and if , the field current. For convenience vt 

is taken as the value after the rectifier conversion. 

All quantities are expressed in per unit. The linearized 

system equations around the point of equilibrium give 

the operational relations, i.e., the transfer function 

between the input and output quantities. Using such 

relations the multifeedbacksare reduced to an equivalent 

single loop configuration and the system is analysed with 

the aid of conventional control systems theory. 
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2.2 System Equations  

2.2.1 	The Uachine Equations  

The machine equations are those derived in Ref. 1 

and allow for armature resistance and damping. The 

principal assumptions are: no saturation, sinusoidal air-

gap fluxes and no slot effects. Also, since the 

frequency of oscillations in the system is quite low, 

the frequency dependent terms 	pyd,pcpci  and po in 

the machine voltage equations are justifiably neglected. 

The parameters are those of an equivalent machine in 

which the external reactance is combined with the 

generator. There is no quadrature field winding and it 

is assumed that the prime mover torque-  Tm  does not vary 

with the angle 5 . A summary of equations1,16  is given 

in Appendix I from which the following small oscillation 

equations are deduced. 

(2.1) 

The suffix o denotes the steady state conditions, and 
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Qo = Yvqoido vdoiqo)  = Vqo Ido VqoIqo 	 (2.2) 

There are three out-put quantities Aid, A6 , Aiq 

but only one input quantity Avsd  for the system 

considered. Inversion of the matrix (2.1) gives operational 

relations between the output and the input quantities. The 

transfer functions of the alternator B1(p), B2(p) and 

B3(p) which are indicated on Fig. 2.1, are given by the 

following expressions 

A id G(P).Yd(10) 
B1(p) 	A vfd 	

No+Jp2+Vqo
2Yq(p)-2raVq0IcloYq(p)J . 	Di(p)  

Li 
B2(p) = -- o 	= 

vfd 

iP 
7[-Vdo  +r a(21 

G(P).Yd(10) 
oYq(p))-2ra21qoYq(p)j 	Di(p) ( 

- 
G(P).Yd(P) 

B3(p) = 1d = [-VqoVdoYq(p)-ra(2VdoIdo+Qo+Jp)]• 	D1(p) 

(2.3)  

where 

D'(P) = -N0+42+Vqo2Yq (P)+Vdo2Yd(P)- 2ra(VqoIqoYq(p)+ 

VdoIdoYd(p)) + ra  2(Vo Iqo -Vqo Ido +Jp
2
)] 	(2.4) 
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Xmd  (1+Tkd  p) 
G(P)*Yd(P) = rfd(1+Tt dp)(1+T"dp) d (2.5) 

31. 

When substituting G(p)Yd(p) from Eqn. (2.5) in Eqn. (2.3) 

for later use of expressions Br(p) , (r=1,2,3) 

1. the constant 	and  is ignored and is later 
r
fd 

considered to be merged with the regulator gain, 

(see Sect. 5.2). 

2. the denominator terms are merged, i.e., 

D(p) = Dt(p)(1+Tf dp)(1+Tudp) 

3. the minus sign of Dl(p) is ignored and later 

instead of assigning negative numerical values 

in the sign convention to the regulator gain 

R that is also taken as positive. 

2.2.2 	-E...L2F9ssionsfor - acici cuantities 

The feedback signals are definite functions of the 

three alternator output quantities. The small changes 

of terminal voltage and field current are related to the 

output quantities as follows 
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Avt  = Ai  (p) id  + A2(p)t 8 + A3(p) A ig 	(2.4a) 

A if  = 	(p) t 	+ a2(p)  A b + a3(p) A ia 	(2.0) 

where 

A(p) 

A2(p) 

A3(P) 

XaRe  

,) 

_ 	(2.5) 

= (XaIda+Vga) —u 
"to 

X R 
p 	e = o Vto 

Xalla  
=-(Vdo-IgoXc)  —Ta— to 

and 

—Xd1(p) al(P) = 7777- 

vA  o  
a2(p) 	

u 
Gl(P) 

ra  
a3(p) = Gl(P) 

(2.6) 

In these equations 

Po = VdoIdo + VqoIqo 
	 (2.7) 
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Re  = rectifier constant. 

The transfer functions Ar(p) , ar(p) (r=1,213) 

and the expressions for G1  (p) and Xdl(p) are 

derived in Appendix II. 

The voltage feedback is taken direct but the field 

current feedback is operato on by a transfer function 

M(p) before the two feedbacks are added. The feedback 

from the field current is therefore 

N(p) Aif = A'1(p) Aid  + A'2(p)  A 5 + At3(p)Aiq  (2.8) 

where 

A!,(1)) = a_,(P) x M(P) for r=1,2,3 	(2.8a) 

The transfer functions A!r(p) 	(r=1,2,3) are indicated 

on Fig. 2.1. 

Substituting the re:1 F%tions of Eqn. (2.3) in Eqn. 

(2.4a) and Eqn.(2.8) the following relations are obtained. 



—r
a
2 (I

qo
V
do
—V

do
I
do

+Jp2) ] 
D(p) 	(2.10) 

.(14-Tkd P)Yd 
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l(P) = T7
vt  

fd 

3 

r=1 
Ar(p) Br(p) 

= C (vq0Yq(p)+Ido—rayq(p)iiao) • (v2-2ra2C+XCQ0) + 

X R
e 
 (1 T lo)Y 

p  Jp
2 ((v 

0 c
I
do

)+r
a
(V

do
—X
cqo

)Y
q
(p)) j 

V
to
' 	D(p) 

(2.9) 

and 

M(10).Aif 
F2(P)  = 

3 
= i Afr(p)Br(p) 

r=1 

= L— (c2+Vqo2Yq(p)+Vdo 2YalP JP 
( )+ 2\ 

Xd1 (P)  

r
a 

(2V
qo
I
qo
X
d1

(p)+2V
do
I
qo
Xq(p)—V

qo
V
do

) Y
q
(p) 

A vfd  
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The derivation of the expressions for F
1  (p) and F2(p) 

is given in Appendix III. 

Egn. (2.9) and Egn. (2.10) are added to give the 

operational relation for the feedback voltage 
	

Ivfbd 
and the error signal A vfd  

tivfbd =  F1 l(p) 	F2(p) A  vfd  (2.11) 

The feedback voltage 8vfbd is operated on by the 

regulator transfer function R(p) before being fed to 

the direct-axis field winding. If the loop is considered 

opened at A (see Fig.2.1), the open-loop transfer 

function becomes 

L(p) 	 vfdo  

vfd 
R(p) [Fi(p) + F2(p)] (2.12) 

2.2.3 	The Closed-loop Transfer Function and the  

Characteristic Equation 

For the system shown in Fig. 2.1, the synchronous 

machine in between the field voltage©vfd  and Avt  is 

considered to form the forward-loop, i.e. Avt  is taken 

as the output. The reference input is A vfdi  which 

is related to A v fdo  and L1 vfd by 
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- A vf do = A vfd 
	 (2.13) 

Eliminating LI vfdo  from Eqns. (2.12) and (2.13) we have 

Ivfd = 	L(p)  
A vfdi  (2.14) 

v+  
The closed-loop transfer function C(P)(=--e--)  is 

'fdi 
obtained by eliminating 6vfd  from Eqns. (2.9) and 

Eqn. (2.14), thus we have 

F 1 0(p) = 777
(P)
1-07  (2.15) 

For the system represented by Eqn. (2.15) the characteristic 

equation is: 

Numerator of [1+1,(p)] = 0 	(2.16) 

To develop the characteristic equation (2.16) in the 

polynomial form the functions R(p) and 14(p) associated 

with L(p) must be defined; till now these have been 

treated in general as ratio of polynomials in I P T . Since 

we are interested to study a feedback regulator using 

the derivative of the field current in conjunction with 

a proportionate voltage signal, we take 
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R(p) = R , and 

M(p) = 11 p 

where R and II are adjustable constants, later 

referred to as the regulator and field current gains 

respectively, see Sect. 2.2.4. In the characteristic 

equation (2.16) it is preferred to write the open—loop 

transfer function L(p) in the form below: 

L(p) = R 

thus, Eqn. (2.16) becomes 

D(p) + R N(p) = 0 
	 (2.17) 

This form of Eqn. (2.17) is later referred to as the 

original characteristic equation. In Appendix IV, 

alp.. (2.17) is expanded in the polynomial form as below 

C4p
4 + C3p

3 + C2p
2 + C1  p + Co = 0 
	(2.18) 

where 



(6va) a 
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The expressions1,17 for So and Sto are as follows 

So 	= Q o +Vgo 2Yq +Vdo 2Yd  = VVo Ydc°-  88o+ V2(Yq- Ya  )cos 28o 

SIo 
= n 4.17  2 	2v1  
'o 	vqo '

v 
 q do 	d = VV1 oY1 dcosSo+V

2(Yq -Y!d)cos2So 

(2.20) 

So and SIo are the slopes of the power-angle and 

transient power-angle curves respectively Vo  is the 

voltage behind the synchronous reactance and Vio  is 

the q-axis component of the voltage behind the transient 

reactance. The expressions on the extreme right of 

Eqn. (2.20) are standard formulae. The left hand side 

in each Eqn. (2.20) can be shown to be equal to the 

righ hand side by substituting for 0 V V -o' go' do in 

terms of V and S . 

In a theoretical study in Ref,4 the derivative of 

the field current is incorporated by modifying the 

expressions for G(p) and Yd(p) , using the deductions 

made by the same authors in a paper Ref. 3 with simplifying 

assumptions of no damping and resistance and making 

approximations with time constants. The theoretical 

formulations in the present treatment can allow for any 

transfer function M(p) for the field current feedback 
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and R(p) for the regulator transfer function. However, 

the characteristic Eqn. (2.18) is a particular case 

deduced from the general formulation represented by 

Eqn. (2.16). 

	

2.2.4 	The Gain Constants  

In Eqn. (2.12) the rectifier conversion factor Re  

and the field current gain M are associated with 

F1(p) and P2(p) respectively. In the development of 

the characteristic Eqn. (2.18) Re  is merged with R 

and the field current constant is modified to M/Re 

although, when referring to the field current gain, only 

M is mentioned. 

2.3 /...pp x_stodetermineS-Ilicationofthei tabilit 

	

2.3.1 	The System and the Method of Analysis 

In Ref. 1 the study of a system using voltage 

regulators of different types was carried out by means 

of the Nyquist criterion. Calculations were made 

alternatively allowing for alternator damping and 

resistance and neglecting them. It was found that 

although damping and resistance had a noticeable effect, 

a useful approximation was obtained when they were 

neglected and some important general deductions could be 

made. 
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For the direct-axis excitation control this thesis 

described an investigation of a system in which the 

voltage feedback is supplemented by a feedback from the 

field current. It was decided to make the calculations 

with damping and resistance neglected. With the simpler 

equations then obtained, the root-locus method proved 

to lead to useful deductions, as explained below. Some  

results using the Routh criteria were also obtained. 

The root-locus method uses the characteristic 

equation derived from the open-loop transfer function 

as in Eqn. (2.17). Conventionally the loci of roots of 

the characteristic equation (2.18) as the gain is varied 

from zero to infinity, are obtained from the poles and 

zeros of the open-loop transfer function L(p) . As 

applied here the root-loci are obtained by computing 

directly the roots of the polynomial characteristic 

equation (2.18) for gains from zero upwards. The Routh 

criteria uses a function of coefficients of the 

characteristic Eqn. (2.18) to predict the stability of 

the system. It should be noted that the Nyquist method 

is also in effect an indirect method of determining the 

roots with positive real parts of the characteristic 

equation. All three methods18-20 are discussed briefly 

in Appendix V. 
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The results given in this section relate to a 

simple system in which the voltage feedback is proportional 

without delay (i.e., R(p) = R), and the field current 

feedback is a simple derivative (i.e., M(p) = Map) . 

The characteristic equation for such a system is given 

by Eqn. (2.18). When resistance and damping are 

neglected Eqn. (2.18) is simplified, its order is reduced 

from 4th to 3rd. With the coefficient 

C 4 = 0 

the simplified characteristic equation becomes: 

c
3
p3 + C2p

2 + C1p + Co = 0 (2.21) 

where 

M C3  = j[Tid  - R. r 
e 	and 

C2 = J + J X
eYd (VqocIdo).R  Vto 

- (2.22) 
C = Tt St - S R 1 	d o o °Hemd 

Y, 
	 (V Y +I )(V2+X Q ) R Co  = So  + u 
to 	qo q d 	c o 
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From the consideration of the feedbacks three alternative 

cases arise: 

1. the unregulated system, i.e. when R = 0, 

2. the system with only the voltage feedback, 

i.e. when R is an adjustable constant, 

3. the system with the main voltage feedback and 

the auxiliary field current feedback, i.e. 

when R and N are both adjustable constants. 

The characteristic equation for any of the above mentioned 

systems can be derived from EIn. (2.21). With the above 

classification the system study is carried out in the 

following sections. 

2.3.2 	The Unregulated System  

As mentioned in Sect. 2.3.1 the unregulated system 

corresponds to zero regulator gain and therefore both 

of the feedbacks of the system are rendered inoperative. 

The characteristic equation for the unregulated system 

is obtained by putting the regulator gain to zero in 

the general characteristic equation (2.21) and is as 

given below 

D(p) = J T!dp
3 + Jp2  + dSIop + So = 0 

	
(2.23) 
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Since the general characteristic equation (2.21) is 

derived from Eqn. (4.17), Eqn. (2.23) is simply D(p) = 0 , 

of which the roots are the poles of the open-loop transfer 
N function R alp ' . 11-(p) = 0 gives the zeros of the 

open-loop transfer function. The following sections 

are concerned with root-loci of the characteristic equation, 

on which the open-loop transfer function poleS and zeros 

are marked respectively by crosses and encircled dots. 

In the following analysis power is considered 

constant at 0.8 p.u. and the rotor angle is varied. 

For every value of the rotor angle 5 , Eqn. (2.23) gives 

a pair of complex conjugate roots in the left half (L.H.) 

of the complex plane, referred to later as p-plane, and 

a root on the real-axis. In Fig. 2.2 are shown the 

roots of the characteristic Eqn. (2.23) at various 

rotor angles. Let Os  be the limiting rotor angle for 

the steady state operation of the unregulated system 

(84°  for the machine considered). For the rotor angle 

6 < 5s the real root of the characteristic Eqn. (2.23) 

is negative, whereas, for 5>5s  it is positive. The 

positive real root contributes to an exponent term with 

a positive exponent in the time domain and causes 

instability of the drifting type. The limiting condition 

(5 = 5s) arises when the real root is at the origin. 
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This occurs when the term So in the characteristic 

Eqn. (2.23) is zero, i.e., when the slope of the power-

angle curve is zero. For an unregulated machine this 

is the well known steady state limit. The full line of 

Fig. 2.3 shows how So  varies with 6 . For the micro-

machine under study So  is zero when 6 is 840. 

2.3.3 	The System With Voltage Feedback 

When a voltage feedback is used, stable operation 

is possible at angles greater than 6,
s 

because the 

feedback modifies the characteristic equation (2.23) of 

the unregulated system. 

With no auxiliary field current feedback the gain 

factor M is zero and the characteristic equation (2.21) 

becomes 

R.X 
J Tfdp3  + J[1+ .41(Vqo+XcIdo)]p2+Ti d  St o- D v to 

	

+ [So+ 	
c° dtv  
Vto 	qov'cl+Ido)(V2 +X o).R] = 0 (2.24) 

Returning to the original form of the characteristic 

equation 

	

D(p) 	N(p) = 0 	(2.17) 

X Y 
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D(p) has the values given by Eqn. (2.23) and 

X' Y %,  c 
vtod N(p) = E(Vq0+XcIdo)p2 + (Vq0Yg+Ido)(V2+X0Q0)J 	(2.25) 

D(p) = 0 and N(p) = 0 give the poles and zeros 

LEI respectively of the open-loop transfer function R 

When R is zero the roots of the characteristic equation 

(2.24) are the poles of the open-loop transfer function, 

and when R is infinity the roots are the zeros, with 

the remaining roots at infinity as explained in 

Appendix V.1.3.3. 

Consider the condition when 6 = 100°  illustrated 

by Fig. 2.4a and b, where the root loci are mapped on 

different scales. Along the length of each root-locus 

discrete gain vr,.lues are marked. When R = 0 the 

roots are the same as on Fig. 2.2, but as R increases 

the position of the roots changes. The real root moves 

into the L.H. p-plane at R = 2.2 while the complex 

conjugate pair of roots move towards the R.H. p-plane 

and at R = 16 cross.  the jU)-axis. Hence the system 

is stable for a limited range 2.2<R<16 . 

The root-loci as plotted here and for all the 

subsequent cases are computed from the characteristic 

equation using a digital computer upto R = 20. For 
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R>20 the loci are plotted graphically using the open-

loop pole-zero configuration as explained in Appendix 

V.1.3. Accordingly in Fig. 2.4b are plotted the complete 

root-loci for 5 = 10dJ, on a smaller scale. At R = OD 

the real root is at infinity and the complex conjugate 

pair of roots close on the two zeros on the imaginary 

axis given by N(p) = 0 . 

The algebraic expressions for R(min) , the minimum 

gain R required to stabilise the system and R(max), 

the maximum gain R limit for the stable operation are 

derived below from the characteristic equation (2.24) 

using the root-locus concepts. R(min) is the value at 

which the real root crosses the (0,0) point and enters 

the L.H. p-plane; this occurs when Co in Eqn. (2.24) is 

zero, i.e. 

X YA 	2 
V 

u (NT  y l-IT S
o .-"T"- 

CO 
qd0)(V -1-XOQ0).R  = 0 

to 

giving 

R(min) 
V
to 

°X
cYd 

(2.26) 

R = R(max) when the complex conjugate pair of roots 

are on the imaginary axis. For a third order characteristic 

equation (2.24) to give two equal and opposite imaginary 
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roots, the condition is (see Appendix V.2.1) 

C3C0 = 02C1 

Using the above relation R(max) is given by 

(SIo-So)Vto 	 R(max) - 

	

	 (2.27) 
[(Vq0YeIdo)(V2+Q0X0)-Sio(Vq0+XcIdo)]XcYd  

The point of intersection of the complex conjugate roots 

with the j03-axis gives the natural frequency Ln of 

the closed-loop. By substituting R(max) in the 

auxiliary equation (see Appendix V.2.1) 

02p
2 + Co = 0 

we have 

IC 

63 n 	 °2-  (2.28) 

The instability for R<R(min) is of the drifting 

type, because the real root is positive, whereas, at 

R>R(max) it is of an oscillatory nature, because 

the complex conjugate roots have positive real parts. 

Fig. 2.5a shows the root-loci upto R = 20 for 

8 = 120°, and Fig. 2.5b shows the complete root-loci. 
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The pattern of the root-loci in Fig. 2.5a is very similar 

to that of Fig. 2.4a (8 = 100°  , showing the root-loci 

upto R = 20) and so the description for Fig. 2.5a is 

omitted. To explain the complete pattern of root-loci 

in Pig. 2.5b the complex conjugate roots and the real 

root are labelled 1, 2 and 3 respectively. All the 

subsequent root-loci plots are similarly labelled as in 

Fig. 2.5b. At R = 20 the roots 1 and 2 are in the R.H. 

p-plane and root 3 is in the L.H. p-plane. As R 

increases the roots 1 and 2 follow an elliptical path 

in the R.H. p-plane and converge at 'A' on the real-

axis, later root 1 turns leftwards and root 2 right-

wards. Whenever the complex conjugate roots 1 and 2 

close on the real-axis, one turning right and the.other 

left the labelling is arbitrary and interchangeable. 

This is applicable to all the subsequent root-loci plOts 

for a similar condition. Root 3 moves along the real-

axis in the L.H. p-plane. At R = co root 2 is at 

infinity and the roots 1 and 3 close on the open-loop 

transfer function zeros in the right and left half p-plane 

respectively. The pattern in Fig. 2.5b differs from that 

in Fig. 2.4b, because at 8 = 120°  the open-loop transfer 

function zeros given by IT(p) = 0 [Eqn. (2.25)], are 

real, wheras the zeros. at 8 . 100°  are imaginary. The 
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zeros are real because the (Vqo+IdoXc) term in the 

expression for E(p) [Eqn. (2.25)) changes its sign 

from positive to negative. This changes the right hand 

side of Eqn. (V.8) from 7c+2mX to 0+270‘. , as explained 

in Appendix V.1.2.3. For 120°>6>1000  , when the term 

(Vqo+IdoXc) is zero, the three roots of the characteristic 

equation approach infinity as R--i>0.z."' as explained in 

Appendix V.1.2.3. 

For 6 = 140°  Pig. 2.6a shows the root-loci for the 

important range of gain R and Fig. 2.6b shows the 

complete root-loci on a smaller scale. The pattern of 

the root-loci for 6 = 140°  is very different from 

those for 6 = 100°  and 120°  in Figs. 2.4 and 2.5. At 

R = 0 the roots are the same as given on Fig. 2.2. As 

R increases the complex conjugate roots 1 and 2 meet 

at 'Al on the real-axis, root i turning left and root 2 

turning right. The real root 3 moves towards the origin. 

At R about 6.3 root 2 crosses from the L.H. into the 

R.H. p-plane and meets roots 3 at 113', and for higher 

values of R they break off and become complex conjugate. 

Root 2 moves towards C and root 3 towards D. The root 

labelling for the BC and BD part of the root-loci is 

interchangeable, although the movement of the roots 2 

and 3 is specified above. Under similar conditions for 
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the subsequent root-loci plotting the interchangeability 

of the roots is understood, however not mentioned. Root 

moves towards infinity in the L.H. p-plane. As R 

increases from zero root 3 remains in the R.H. p-plane 

and never becomes negative, for that reason the system 

is always unstable. Fig. 2.6b shows the complete root-

loci. As R increases the roots 2 and 3 follow an 

elliptical path in the R.H. p-plane and converge at E 

root 2 turns leftwards and root 3 rightwards. Root 

continues moving in the L.H. p-plane. For R = a's"; the 

roots I and 2 close on the real open-loop transfer function 

zeros given by Eqn. (2.25) in the left and right half 

p-plane respectively and root 3 is at infinity in the 

R.H. p-plane. 

This illustration demonstrates the limitation of the 

proportionate regulator, which arises because T1 dSIo 

the coefficient of p in the characteristic Eqn. (2.24), 

becomes negative with increasing 6 , and is not affected 

by the feedback. Thus, the maximum steady state 5 limit, 

for the proportionate regulator is given by Sto  = 0 , 

i.e. when the slope of the transient power angle curve 

is zero. In Fig. 2.3 the broken line is the curve relating 

St o and 6 indicating that 5 = 6's  = 134°  is the limit 

for the machine investigated. The limit 5's is known 

in the literature on voltage regulatorsI. 
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2.3.4 	The System with Voltage and Field Current Feedbacks 

With both the feedbacks in action, Eqn. (2.21) is 

the characteristic equation. The coefficients C3  , 

CI contain the field current feedback terms and C2' Co 

contain the voltage feedback terms. 

Returning to the original characteristic equations 

(2.17), D(p) is given by Eqn. (2.23), and N(p) by 

3 JXcYd JM 

' 
11(p) = 	7--

md p + 
	+X I-)p2 - M . S 1:3  vto  qo c ao 	Remd o e" 

X , 
cY" (V Y +I Vto 	qo q do)(V2+XcQo)  (2.29) 

The open-loop transfer function poles given by D(p) 

reamin unchanged, but the zeros now depend on M. For 

M = C the expression for N(p) becomes that of the 

proportional voltage regulator given by Eqn. (2.25). 

In Fig. 2.7 are shown the root-loci for 8 = 140°  

and M = .002 . For zero R the roots are the same 

as on Figs. 2.2 and 2.6. As R increases the complex 

conjugate roots I and 2 meet at A on the real axis 

and follow exactly the same pattern as that of 8 = 140°  

with only the voltage feedback in Fig. 2.6a. The points 

A, B, C and D similar to those of Fig. 2.6a are shown 
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and the various roots are labelled. The detailed root-

loci plotting is shown up to R = 16 . The system is 

always unstable because for any gain R there is always 

one or more roots in the R.H. p-plane. The complete 

root-loci plotting is omitted, however, closing of the 

root-loci at R = oo on the open-loop transfer function 

zeros is shown and explained briefly here. As R 

increases the roots 2 and 3 move on a large elliptical 

path (not shown.in Fig. 2.7) in the R.H. p-plane and 

eventually converge on a point very far from the origin, 

after which root 2 moves towards the origin and root 3 

towards infinity. At infinity root 3 is established in 

the L.H. p-plane, from there it moves towards the origin 

and meets Root 1 at a point, after which both break off 

and become complex conjugate (partly shown in Fig. 2.7). 

At R = 00 the roots 1 and 3 close on the complex 

conjugate pair of the open-loop transfer function 

zeros in the L.H. p-plane and root 2 closes on the 

real zero in the R.H. p-plane, (see Fig. 2.7). 

At higher values of M the open-loop transfer 

function zeros cause a further modification of the 

pattern of the root-loci, In Fig. 2.8 are shown the 

root-loci for 8 = 1400  and N = .004. All the three 

zeros become real, two being in the L.H. p-plane and 
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one in the R.H. p-plane. The real negative zero at A 

is of great importance, because it assists in stabilising 

the system as will be seen later. At R = 0 the complex 

conjugate roots 1 and 2 and the real root 3 

are the same as in Fig. 2.2. As R increases the 

roots 1 and 2 advance along the j(,)-axis in the L.H. 

p-plane and the real root 3 moves towards the L.H. p-plane, 

which crosses the origin at R about 6.6 (that is Rmin) 

and becomes negative. With all the roots in the L.H. 

p-plane the system is stable. To obtain the upper 

limit for R from Fig. 2.8 is difficult, because the 

roots 1 and 2 move so rapidly that their mapping is a 

problem, for this reason the inverse root-locus 

technique is adopted which is dealt with in the following 

paragraph. However, at R = co the closing points for 

the root-loci are shown in Fig. 2.8, the roots 3 and 1 

close on the real open-loop transfer function zeros in 

the L.H. p-plane and root 2 on the real zero in the 

R.H. p-plane. How root 2 gets into the R.H. p-plane 

is clearly seen from the inverse root-loci plot. 

In the inverse root-locus technique the root-loci 

are mapped in the W -plane using the transformation 

W = 1  as explained in Appendix V.1.4. The main 

advantage is that infinity is brought to the origin so 
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that the behaviour of roots with large magnitude can 

be studied. 

The characteristic equation (2.21) in the W-plane 

becomes 

03 + C2W + C1W
2 + cow3 =  0 
	

(2.30) 

Using Eqn. (2.30) the root-loci in the W-plane are shown 
0 

in Fig. 2.9 for 8 = 140 and N = .004 . Each root 

in Fig. 2.9 is the inverse of the root in Fig. 2.8 for 

the corresponding value of R . For R = 0 Eqn. (2.30) 

gives a pair of complex conjugate roots 1 and 2 in the 

L.H. W-plane and the real root 3 in the R.H. W-plane. 

When R is increased root 3 tends to infinity (which 

in the p-plane means the origin) and is established in 

the L.H. U-plane for R = R(min). From the characteristic 

Eqn. (2.30) this limiting value is obtained when Co  = 0, 

and is given by Eqn. (2.26). With R increasing the 

roots 1 and 2 move on an elliptical path converging 

on the real-axis at 'A' in the L.H. W-plane, after which 
root 1 turns leftwards and root 2 turns rightwards. 

Root 2 croses the origin at R about 11.5 giving the 

limiting value R(max) 	The characteristic equation 

(2.30) gives one root at the origin when 
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C3  = 0 	• e • 

yielding, 

mf 	R.M 	_ n  
d 	R X - - e md 

R(max) = Tt d e.Xmd 

(2.31) 

(2.32) 

Eqn. (2.31) suggests that the derivative of the 

field current has the effect of reducing the short- 

circuit transient time constant T' , and the system 

becomes unstable, irrespective of the load angle 5 

at values of R and M such that Eqn. (2.31) is 

satisfied. However, depending on 6 and N the 

system R(max) may be less than the value given by 

Eqn. (2.32) if the complex conjugate pair of roots 

1 and 2 in Fig. 2.9 cross over to the R.H. W-plane instead 

of converging on the real-axis. In algebraic terms it 

means that R(max) is the value of R which satisfies 

C2C1 = C3Co 

In Appendix V.2 the graphical form of the Routh 

criterion is discussed. The coefficients C3  , C2 ' 
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01 ' C 	of Eqn. (2.21) are functions of the regulator 

gain R treating PI as a constant. For the third 

order system the necessary and sufficient condition 

for stability are: 

C3 	, >0C2 	, >0C1 	, >0 	00  , 	>C2  C1  -03  C o>0 
	

(2.33) 

The Routh coefficient 02C1-03o is referred to as C
4 

For plotting all the coefficients C4, C
3' 
	Co 

are referred to as the 'Routh Coefficients', In 

Fig. 2.10 the Routh Coefficients are plotted against 

the regulator gain R. for 6 = 130°  and N = .003. 

The stable and unstable zones are demarcated on the 

figure. R(min) is given by Co 0 and R(max) by 

C3  = 0 . However, depending upon 6 and M R(max) 

may be given by C4  = 0 . 

The Routh Coefficient plotting emphasises the 

importance of the coefficients of the characteristic 

equation and gives the precise limits, but cannot give 

details like the oscillatory modes of the system:at any 

gain R 
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2.3.5 	Stability Limit Curves  

Fig. 2.11 shows the theoretical curves for the 

steady state stability limit of the rotor angle 

against the regulator gain. These curves are marked 

1, 2, 3, 4, 5 and correspond respectively to the field 

current gain N of 0.00, .001, .002, .003, .004. 

The curve for N = 0 applies to the condition with 

voltage feedback only. 

The bounded .region of.these curves corresponds to 

stable operation. The distinct regions of the 

stability curves are marked AB, BB, BC, etc. AB 

is the common region for all the curves and correspond 

to R(min) . BB is a small region for curves 4 and 5, 

that is the small extension in stability beyond Sts  . 

BC and CD are regions associated with R(max). The 

CD region is at the greatest value R(max) can have 

by virtue of the relation in Eqn, (3.32). 

A comparative study of the theoretical curves 

indicate that 

1. The BB region can be introduced at the cost 

of limiting R(max) 

2. Curve 2 for N = .001 is an improvement on 

curve 1 in the BC region, but cannot increase 

the maximum steady state limit beyond O's. 
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3. 	Curve 3 for M = .002 can give greater 

limiting 5 for the same gain than to 

curves 1 and 2, but the gain range is 

decreased. For M>.002 the gain range is 

considerably reduced. 

2.4 Convergence of the Direct-axis Regulated Power-var  

Characteristic Curve at Zero Power  

In Pig. 1.1 curve b shows the steady state stability 

limit relation between Power and Vars for a direct-axis 

regulated system in general. It is shown to converge 

at point A at zero power, thus implying that the steady 

state reactive absorption limit is -V2Yq  irrespective 

of the direct-axis excitation regulation. The proof 

of this is given below. 

Let R(p) be the general regulator transfer function 

acting on any number of feedbacks originated in any 

manner from the system. The basis for formulation of 

the system in general terms is laid in Sect. 2.2. 

Fig. 2.1 shows only two feedbacks, but using different 

sets of Ar(p) , (r=1,2,3) transfer functions any 

number of feedbacks can be represented on the same figure. 

Using the transfer functions Br(p) and Ar(p), 	 

(r=1,2,3), the characteristic Eqn. (2.16) in general 



70. 

terms becomes 

3 
iiumerator of [1-FR(p) 

	
(Ar(p)+101.(p)-1-Lnr(p)+---)Br(p) ] 

r=1 
(2.34) 

Two typical sets of transfer functions Ar(p) and A:r(p) 

for the voltage and field current feedbacks are given by 

Eqns. (2.5) and (2.8a) 	respectively. The alternator 

transfer functions Br(p) are given by Eqn. (2.3). 

For zero power the steady state value of 80 1  

Iqo and  Vdo are zero and Vqo = V . In order to reach 

a conclusion of practical significance resistance and 

damping are neglected. The transfer functions Br(p) 

given by Eqn. (2.3) then reduce to: 

0 Y p ,1 
(p) = (Q 4.-v-go _Le-vi, 	u ,0 	1757  

B2  (0) = 0 

Th 

 

  

-- (2.35) 

  

B3(p) = 0 

   

    

In general the coefficients of D(p) are given in Eqn. (IV.5) 

Under the simplified assumptions mentioned above and zero 

power condition the coefficients d4, d3, d2, d1 , d o 
associated with 4 3 2 1 13 ,P,1)/Py p

o respectively are: 
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d4=0 9 d3  =TId  J 	d2-'  -T 
	

d1 	' =Tv d  (0o +Vqo 
2Yq  ) and d o - =(00 +Vqo 

2Y 

(2.36) 

yielding, D(p) = d3p+d2p2+d1p+do  . Substituting the 

expressions for Br(p) , (r=1,2,5) , given by Eqn. (2.35) 

in Eqn. (2.34), the characteristic equation reduces to 

(Qo+V 	+42)*Yd. 

In Eqn. (2.37) let 

numerator of [1+R(p) 	D(p (p)-140 1(p)+Au 1(p)+ 

	 )) 	(2.37) 

alap
n
+an- p

i1-1  + 	a2p2+a/ p+ao  

bmpm+bm_ipm-1+......b2p2+bip+bo 
R(p)[111 (p)+Al l (p)+An i (p)-1-...]Yd  

(2.38) 

where m and n are integers. 

This formulation could cover any transfer function of 

R(p) and any feedback transfer functions Al  (p),  A'1  (p), 

A"(p) 	 Thus the characteristic equation (2.37) 

becomes 

[d3p3+d2p2+d1 p+do][bmpm+bm_i pm-1+ 	 bi p+bo] + 

[0 o  +V  qo  2Yq  +Jp2][apill-an-4n-l+ 	aip+ao] = 0 	(2.39) -  
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substituting the values of the coefficients d2  , di  , do  

from Eqn. (2.36) in Eqn. (2.39), the three lowest order 

terms are 

+ EJ(bo+a0)+(bi Ttd+b2+a2)(Q0+V(102Y01)]p2  + 

(bo  TId  +b1  +a1 	- )(0o +Vqo 2Yq  )p + (ao+bo)(Qo+Vgo2Yq) = 0 

(2.40) 

Eqn. (2.40) reveals that the reactive absorption term 

(0 o +Vqo 
2Yq  ) appears in product form with the coefficients -  

of p°  and p . This factor changes sign from -Fve to 

-ve when the reactive absorption (Q0) is increased, 

thus, making the characteristic equation (2.40) unstable 

at the limiting value of 0o  +V 
2Yq  = 0 , i.e. at the -  

as _V2Y
q  

2:r 
qo v 

 2 
"  q  

because Vqo = V). The above deduction can be 

reactive absorption limit of (which is the same 

generalised as follows. 

The steady state limit of reactive absorption cannot 

be increased beyond _V2Yqqo
2Yq)  at zero power by 

direct-axis regulation whatever the regulator transfer 

function, or the nature of the feedback or feedbacks 

used. 
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CHAPTER 3 

3. THEORY OF G.UADRATURE-AXIS REGULATION 

3.1 General 

In Sect. 2.4 it is shown that at zero power the 

direct-axis regulation cannot extend the steady state 

reactive absorption limit beyond _V2Yq  irrespective 

of the regulator transfer function. The direct-axis 

regulator effectively reduces the direct-axis synchronous 

reactance, and the question arises whether the quadrature-

axis regulation can similarly reduce the effective 

quadrature-axis synchronous reactance and provide 

reactive absorption beyond -112Yq  at zero power. A 

theoretical investigation using various signals to regulate 

the quadrature-axis excitation, is explained in the 

present chapter. 

3.2  2492:tgilLa 

3.2.1 	The Machine Equations  

The addition of a quadrature-axis field winding 

does not alter the basic structure of the machine 

equations (see Appendix I), but only the expression for 

the quadrature-axis flux linkages (0
q 
 is modified by 
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adding a term with vfq. 

X (p) 	G (p) 
- v  

q 	q 	fq ( 1— 6 ) 

where 

(l+Tkio  p) G. 
— (1-1-Tiqo  p)(1-1-Tti qo  p) • rfq  

and corresponds to G(p) in Eqn. (1-5) for the direct—

axis field winding. Due to the extra rotor circuit on 

the quadrature—axis the operational impedance is 

modified by introducing extra time constants TI
qo 
 and 

T1 q . Hence 

(1+T' p)(1+T" p) 
xq(P) 	(1+TIqop)(1+T"qop) • q 

Making the same assumptions as for the direct—axis field 

winding machine in Sect. 2.2.1. but allowing for variations 

of the quadrature—axis field voltage the following small 

oscillation equations are deduced. The direct axis 

fieldvoltageisoonstantand„.--0 "A".1d 
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-Xd(p) 	vdo 	ra 

v +r i 2 do a do 	-(Qo+42) 	-vqo-fraiq Ls 

- ra 	-vqo 	X
q 
 (p) ,/_'.‘i 

q ! 

 

 

0 

I G (p 
q E

) of 

(3.1) 

For the one input fq considered there are three 

outputs /Aid  , AS and Ai4  . Inversioi of the matrix 

(3.1) gives the following operational relations between 

the input and output quantities. 

id 
B (13) = 

A 
Tv77; = ql 

Gq  (P)Yq  (p) 

D'(10) 

Bq2(p) = A vfq  

oVqo+ra(Qo+Jp2+2V,ao  Iqo  )Yd  (p)] 

A 

Gq(011 (P) F  

Dt ?p) 	 1.17 	cio-ra(2Ig o-VdoYd(P) +2IdoYd(p)))] 

Li 
B
q3 	v (p) = -a- = 

fq 
4 

G (P)/-  (P) 
Dt4) 	 LQ0+Jp2+Vdo2Yd(p)-2raIdoVdoYd(p)] 

-(3.2) 
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where 

Dt(P) = -No+Jp2+V(402Yq 	2ra(VgoIcloYcl(p) + (P)+Vdo21d(P)- 

+ra2(V 	D VdoidoYd(P)) 	doI qo-V qoI do+J -2)] 	(2.4) 

and 

X 	(1+Tk p) 
G (P)Y (P) = -122 	 q 	q 	rfq (1+T'gop~(1+T"qoP)  

When the expression of G (p)Yq is substituted in Eqn. 

(3.2) for later use of the expression B
qr(p) 	(r = 1,2,3), 

X , 
1. the constant term 

	

	is ignored and is later rfq 
treated merged with the regulator gain. 

2. the denominator terms are merged, i.e. 

D 	(p) = Dt(p)(1+TI
q. 
p)(1+T" p) 
	

(3.33) 

3. the negative sign associated with Di(p) is 

omitted and later, instead of assigning 

negative numerical values because of the sign 

convention to the regulator gain R , that is 

also taken positive, (See also Sect. 2.2). 
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The operational relations Bqr(p), (r=1,2,3) , are 

referred to as the alternator transfer functions and 

are indicated on the block diagram in Fig. 3.1. 

3.2.2 	Feedback Quantities  

Any feedback from within the system has a definite 

relation with the alternator output quantities. Any 

feedback signal Lvfbq  for small changes in the 

quadrature-axis is given by the following relation, which 

has the same form as in Eqn. (2.4a) or (2.4b) for the 

direct-axis. 

3 
Avflocl  = F

ql(Pi) = Lvfq  
r=1 

 qr(P).Ar(P) (3.4) 

The transfer functions Ar(p) , (r = 1,2,3) , are 

indicated on Fig. 3.1. Eqn, (3.4) indicates only one 

feedback quantity, but to maintain generality any number 

of feedbacks are included in the following equation 

2112a =
ql
(p)

q2
(p) 	(3.5) Avfq  



Avfcp  	► eq,(p) 
AV +4 Av  

-*15-'-2) fq>---wIL3q2(P) 
A 

-0113,43(p) I 	 

AV fbq Rq(p) 

* A (p) 

O. 

Aid 

L5 OUTPUT 
1* 	a 	VIP 

Ai, 

1 

FIG. 3.1. BLOCK DIAGRAM FOR QUADRATURE-AXIS EXCITATION CONTROL 
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3.2.3. 	2h2212pEzIa21, Transfer Function and the  

Characteristic Equation  

The total feedback signal Avrbq  is operated on 

by the regulator function R (P) before being fed to 

the quadrature-axis field winding. If the loop were 

open at A (see Fig. 3.1), then open-loop transfer 

function 	(p) would be 

Av 
L (P) = = R (10)EPql(P) + P 2(P) + ...] 	(3.6) Avfq  

For the system represented by Eqn.(3.6) the characteristic 

equation is 

Numerator of [1 + Lq  (p)] = 0 
	

(3.7) 

3.3 Quadrature-axis Regulation with Various Signals  

The idea here is to try various signals for regu-

lating the quadrature excitation and theoretically 

examine whether they help in increasing the steady state 

limit of reactive absorption at light load. The usefulness 

of any signal can most easily be examined at zero load, 

since the system equations are simplified because the 

steady state values of the variables 80 , Iqo ' Vdo 
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become zero and Vqo  = V . In order to get simplified 

conclusions of practical significance the equations are 

further simplified by neglecting resistance and damping. 

The conclusion as to the usefulness of a signal is 

reached by studying the contribution of the feedback to 

the coefficients of the characteristic equation. 

3.3.1 	The Unregulated Sstem.  

For the unregulated system R (p) = 0 and the 

characteristic equation (3.7) for zero power condition 

in the expanded form becomes: 

D (p) = T? J p3  + Jp2  + T1q(Qo+Vqo2Y?q)p+ Qo+Vqo2Yq 
= 0 

(3.8) 

When the reactive absorption is increased the term 

Qo+Vgo2Yq. in Eqn. (3.8) will eventually become negative 

and will establish the unstable mode. Thus Eqn. (3.8) 

gives 0 .o = -Vqo
2Yq (= -V

2Y ) as the limiting value of 

negative vars. This is a well known condition. For the 

experimental machine this limit of negative vars is 

0.517 p.u. 



Bg1(p) = 0 Th 

Y 

D ) 

2 
Qo 	

, 
 B

q3(P) = 	D (P) 

Bq2(p) 
0 

81 . 

3.3.2 	Terminal Voltage Feedback at Zero Power  

The terminal voltage feedback in conjunction with 

the regulator of general transfer function R (p) is 

considered. The transfer functions Ar(p), (r=1,2,3) , 

for the small changes of terminal voltage are given by 

Eqn. 	(2.5). 

Al  (p) 

A2(p) 

A
3
(p) 

= 

= 

= 

For the zero 

o + Vqo) 

0 

0 

power condition they 

A. 	R 
c 	e 

become: 

(3.9) 

Vto 

The alternator transfer function Bql(p) 	Bq2(p) and 

B
q3
(p) given by Eqn.(3.2) become: 

(3,10) 

Using Eqns. (3.4), (3.6) and (3.7) the characteristic 

equation in the expanded form becomes 
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Numerator of [1+Rci(p) (Bq1(p).A1(p) + Bq2(p)A (p) + 

Bo(p).A3(p)) ] = 0 	(3.11) 

Substituting the expressions of Bqr(p) and Ar(p) , 

(r=1,2,3), from Eqns. (3.9) and (3.10), the characteristic 

Eqn. (3.11) yields 

D (p) = 0 

which is the characteristic equation (3.8) for the 

unregulated system, whatever the regulator transfer 

function may be. Thus the terminal voltage feedback 

cannot increase the steady state reactive absorption 

limit beyond that of the unregulated system, irrespective 

of the regulator transfer function. 

3.3.3 	Resolved Com onent  Feedback at Zero Power 

Instead of making composite feedback quantities 

out of the fundamental alternator output quantities, 

which are the resolved components in the two axis theory, 

the effect of individual component feedback in conjunction 

with a general regulator function Rq J.  (D) is investigated 

in the following sections. 
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3.3.3.1. Feedback of Id 

From the substitution of Eqns. (3.9) and (3.10) in 

Eqn. (3.11) one can deduce that an effective signal must 

be such that A2(p) and A3
(p) are not both zero. For 

a straight feedback of signal 	Id 	the transfer 

Ar(p) 	(r=1,2,3) 	, 	are: 

A1  (p) = 1 

A2(p) = 0 

functions 

(3.12) 

A
3
(p) = 0 

Hence a signal Id  is ineffective. 

3.3.3.2 	Feedback of I 

If the feedback depends on I the transfer 

function Ar(p), (r=1,2,3) , are 

Al  (p)= 0 

A2(p) = 0 

A
3
(p) = 1 

(3.13) 

Substituting the transfer functions Ar(p) and Br(p) 9 
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(r=1,213) from Eqns. (3.13) and (3.10) in the characteristic 

Eqn. (3.11) we have 

Dq(p) + Rca(p)[(Q0+Jp2)Yq] = 0 	(3.14) 

Depending on the regulator transfer function R (p) Ai q  

feedback causes the characteristic equation to differ 

from the unregulated value, D (p) . However, since the 

term QoYq is negative when the vars are negative it 

is not a stabilisinasignal, and also it changes sign 

from positive to negative vars, which makes it 

undesirable. However it could be mixed with other 

feedbacks for special purposes. 

3.3.3.3 1102LABELegeedbqpls  

For the rotor angle feedback the transfer function 

Ar(p), 	(r=1,2,3), are as follows 

A1(p) = 0 

A2(p) = 1 (3.15) 

A
3
(p) = 0 

Substituting Ar(p) and Bqr(p) , (r=1,2,3) , from 
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Eqn. (3.15) and Eqn. (3.10) respectively in Eqn. (3.11) 

the characteristic equation for the rotor angle feedback 

is 

Dq(p) + Rcl 
 (p).(k  2r Vag Yq  ) 	0 1  (3.16) 

This is the most effective feedback signal because 

Vqo Yq is always positive and, depending on the 

design of Rq(p) , the feedback term Ra(p) 1  trf ga  -V Yq  

can stabilise the system by modifying the various 

coefficients of Dq  (p) . It can be concluded that the 

system represented by Dq(p) = 0 which is, unstable for 

reactive absorption greater than -V2Y when there is 
g. 

no regulator, can now be stabilised by the feedback 

1 term Rq 	kr- (p) 	Vqo  Yq  . The detailed investigation is 2  

carried out in the subsequent sections. 

3.4 Equilibrium Diagram With the Angle Regulator for 

the Quadrature Winding  

For any possible operating condition, that is, any 

point on the Power-Var chart of Fig. 1.1, a vector 

diagram referred to as an 'equilibrium diagram' can be 

drawn but the system may or may not be stable. With a 
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fixed direct-axis field the system is stable at lagging 

power factor but is unstable at negative values of Q 

beyond the steady state limit line tall or fa2! on Fig. 1.1. 

Stable operation beyond the limit line tat can however be 

obtained by using a signal derived from the rotor angle 

for regulating the quadrature field winding, see 

Sect. 3.3.3.3. 

Fig. 3.2a shows the equilibrium diagram of a 

conventional synchronous machine with direct-axis field 

and connected to a fixed supply. To maintain equili-

brium the rotor angle 6,  swings round to an appropriate 

value. When a quadrature field winding is used as in 

Fig. 3.2b, the angle can be held at zero if a suitable 

control is used, because the quadrature field winding 

can provide the component of excitation required for 

equilibrium. Fig. 3.2b indicates a condition at leading 

power factor. 

The salient features of the equilibrium condition 

shown in Fig. 3.2b are: 

1. ithe rotor angle i5 is zero 

2. the infinite bus (reference) voltage is 

always in the quadrature-axis, and from 

Eqns. (I-1) and (I-2) we have 
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Vdo = 0 

Vqo = V 

3. Using Eqn. (I-1) and Eqn. (I-6) we have 

.. 
Iqo 

= 	v44  

4. 	Po  = VqoIqo = VIqo 

0 	= Vgp Ido = VIdo Qo  

5. Using Eqna. (3.18) and (3.19) we have 

(3.17) 

PIfq rfq  (3.20) 

3.5 Theoretical Determination of Stabilit  for the  

Quadrature Angle Regulator 

In this section a detailed analysis is carried out 

to determine the steady state reactive absorption limits 

for different types of regulators. The steady state 

stability limits are determined by application of the 

Hyquist criterion using the frequency response values of 

the system open-loop transfer function calculated by an 

IBM computer. For detailed analysis the Nyquist criterion 

is preferred to the root-locus technique as used in 

Sect. 2 for reasons given in Sect. 1.1, however, the 
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coefficients of simplified characteristic equations 

are used at times to make some general deductions. It 

was found that a regulator using first and second deri-

vatives along with the proportionate term can be used to 

extend considerably the steady state reactive absorption 

limit as well as to extend the range of regulator gain. 

The question of the effect of damping and resistance on 

the steady state limits is also given some consideration. 

3.5.1 	The Proportionate Regulator  

This section gives the analysis of the system with 

a proportionate regulator, the transfer function of which 

is an adjustable constant R . Throughout the analysis 
q. 

Rq  is referred to as the regulator gain, although some 

constant terms of the open-loop transfer function are 

considered merged with Rq  , Sect. 6.4. 

The filter circuits used with the angle signal 

introduce some delay but this is ignored in the first 

instance. The proportionate regulator analysis is first 

made with the angle device transfer function as a constant 

in order to make some simple deductions. Later the 

complete angle device transfer function is used in a 

detailed analysis. The angle device with a constant 

transfer function 1k1  ' is referred to as an 'ideal 
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angle device' and with its proper transfer function as 

a 'practical angle device'. The constant k1  is merged 

with R 	as explained in fleet. 6.4. 

3.5.1.1 With Ideal Angle Device  

Under the ideal condition considered the open- 

loop transfer function of the system (see Fig. 1.3) is 

L 
q 
 (p) = R 

q 
 (p).B

q2 
 (p) 

1 R_
q i

l.57 VcioYcl  
(3.21) 

JTV3 +42 +TIg(Q0+VgjaYyp+Q0+VgdaYg  

For a given value of Q0  the transfer function given by 

Eqn. (3.21) remains unchanged for any power, because it 

does not contain any terms dependent on Igo  (see Eqn. 

(3.19)) or Po  . Therefore, the steady state stability 

limit curves obtained in the following sections are valid 

for any power level. 

3.5.1.1.1 Application of the Nyquist Criterion for a 

Qualitative Assessment  

In Fig. 3.3 are shown diagramatic Nyquist plots 

for L (jW) given by Eqn. (3.21) with p replaced by 
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jw, plotted as explained in Appendix V.3. Figs. 3.3a, 

3.3b, 3.3c are for -0.4, -1.0, -1.6 p.u. vars 

respectively. Fig. 3.3a1 for Rq  = 1 indicates no-net 

encirclement around (0,0) , since there is no zero of 

L (p) in the R.H. p-plane. At -0.4 p.u. vars it is 

true because Quo  + Vq0
2Yq  > 0 . However, if the gain 

R
q 
 is increased as in Fig. 3.3a2 the Nyquist plot 

encircles the (0,-1) point twice clockwise indicating 

two roots of the characteristic equation in the R.H. 

p-plane. Thus at high gains the system is rendered 

unstable when it would be stable without regulation. 

Vars = -0.4 p.u. is a typical case such that 

Qo Vqo 
2Yq  > 0 . 

Fig. 3.3b1 for vars = -1.0 p.u. shows one net 

encirclement of (0,0) indicating one pole of L (p) 

in the R.H. p-plane. This is because Qo +Vqo  2Yq  < 0 

in this respect Fig. 3.3b1 is representative of cases 

where Qo  < - Vqo2Yq ° The gain Rq  in Fig. 3.3b is 

such that (0,-1) is also enclosed once anticlockwise, 

thus representing a stable system according to the 

Nyquist criterion (lppendix V.3). In Pig. 3.3b2 the 

regulator gain is large and the Nyquist plot encircles the 

(0,-1) point once clockwise disclosing the existence of 

two roots of the characteristic equation in the R.H. 
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p-plane, There are two roots in the R.H. p-plane for 

one net clockwise encirclement of (0,-1) because there 

is already a pole of L (p) in the R.H. p-plane. 

According to the Nyquist criterion the system is 

unstable. The regulator, therefore, stabilises the 

system over a finite range of gain. For vars = -1.8, 

R = 1 Fig. 3.3c1 shows one net anticlockwise encircle-

went around (0,0) as expected because of Qo < -Vqo
2Yq 

In Fig. 3.3c2 when R is sufficiently increased to 

enclose the (0,-1) point, the plot encloses the (0,-1) 

point once, the system according to the Nyquist criterion 

is unstable and the adjustment of gain cannot make the 

plot encircle (0,-1) anticlockwise once to stabilise 

it. The diagram shows the limitation of proportionate 

regulation. 

3.5.1 .1 .2 ap22492L- 

Quantitative Assessment 

The Nyquist plots for La(j(A)) obtained from 

Eqn. (3.21) with unity regulator gain for -0.4, -1.0, 

-1.6, -1.8 p.u. vars are shown in Fig. 3.4. The plots 

show only the curves for positive frequencies. The 

zero frequency point is marked 'A' and the point where 

the Nyquist plot cuts the negative real axis is marked 
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1BI. The zero frequency point for -0.4 p.u. vars is 

off the diagram in the R.H. p-plane. 

For reactive absorption greater than V
qo  2

Y
q 
 the 

minimum regulator gain Rq(min) required to stabilise 

the system is given when the zero frequency point 1 A 1  

just crosses the (0,-1) point (see Sect. 3.5.1.1.). 

Substituting these conditions in Eqn. (3.21) we have 

-1 = 
fe7  vcio  Rq(min) 
Qo + Vqò Yq 

2 

or R  (irin) 	Qo  + 	 Yq  
q‘ 	

1 47 V  qoY  q 
(3.22) 

For Qo  > - Vqo
2
Yq' Rq(min) = 0 , because the system is 

stable without feedback. 

The maximum permissible regulator gain R (max) 

limit is reached when point B just crosses the (0,-1) 

point, see Sect. 3.5.1.1.1. To satisfy this condition 

the imaginary part of the denominator of L (j6)) 

(Eqn. (3.21)) should be zero and amplitude equal to 1.  

Equating the imaginary part to zero also yields the 

natural mode of oscillation (see also Appendix V. 2.1). 

Using the above condition and Eqn. (3.21) we have 
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-jJ Tl Lon3  + j uLT'q  (0 +Vqo  2Y'q  ) = 0 -11  

or 

Gi n  = (3.23) 

Substituting jOon.  (=p) in Eqn. (3.21) and satisfying 

the amplitude condition we have 

R (max) . ALL1a:Ial Y
q  

(3.24) 

Eqn. (3.24) indicates that Rq(max) is independent of 

vars and that is why all the Nyquist plots in Fig. 3.4 

cross over the negative real-axis at the same point. 

If 	R < R 
q
(min) the unstable mode is of zero 

frequency resulting in drifting instability and for 

R
q 
 > Rq(max) the unstable mode has complex frequency, 

and the instability is oscillatory at the natural fre- 

quency 	n 
	This statement is generally valid for any 

R (p). 

The maximum steady state reactive absorption limit 

is reached when 
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Rq(min) = Rq(max) 

Using Eqn. (3.22) and Eqn. (3.24) we have 

Q0(max) = -V(4021-1(1 	(3.25) 

This limiting point is illustrated in Fig. 3.4 for 

vars = -1.6 at which the points A and B almost 

converge into each other. The maximum steady state 

reactive absorption limit calculated for the practical 

system is -1.625 p.u. which is an ideal limit. The 

Nyquist plot at vars = -1.8 p.u. is always unstable, 

because Q0>Q0(max),(see also Sect. 3.5.1.1.1). 

Pig. 3.5 curve is a steady state limit curve showing 

the reactive absorption against the regulator gain. 

The system is stable within the bounded region of the 

curve and is unstable outside it. A similar curve is 

obtained with any regulator transfer function R (p) . 

The curve has two distinct regions marked AB and BC. 

The region AB is associated with the zero frequency 

point lAt and BC with the Nyquist plot cross over 

point 'B1  (see Fig. 3.4). The BC region is a 

vertical straight line because the point B on the 
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Nyquist plot does not change its position with vars 

(see also 1-;qn. 3.24). If a linear scale was used for 

Rq  the region AB would be a straight line becauee of 

the linear relation of R (min) and 0 in Eqn. (3.22). 

3.5.1.2 With a Practical Angle Device  

In the previous section the angle device considered 

was an ideal one transmitting the signal without 

attenuation or delay. In this section a practical angle 

device defined by a transfer function is taken. The 

transfer function of the angle device used is 

K (-1-4p.2) 1 

(Ap2+Bp+C) 2p2+4`cp+1 ) 

Numerical values of coefficients AIBIC,T are given in 

sect. 4.3.2.4. For later use of the above expression 

the constant K1 is ignored, since it is taken care of 

by Rg  as stated in sect. 3.5.1 (see also Sect. 6.4). 

The open-loop transfer function L (p) in Eqn. (3.21) 

becomes 

L (p) = 
R ( 1  V Y ) q 	qo q  

 

[J T1  p3+Jp2+TI q  (Qo  +V qo2  Y'q  )p+(0 +Vqo  2Y q)] 

(1+'2 p2)  (3.26 
(Ai+Bp+C)(T2p2+4Tp+1) 
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In Fig. 3.6 curves 1 and 2 are typical Nyquist plots for 

vars = -1.0 p.u. and Lq 	) given by Eqn. (3.21) 

and Eqn. (3.26). The inclusion of the angle device 

transfer function modifies the Nyquist plot of L(p) 

from 1 to 2. The zero frequency point A remains 

unchanged because at zero frequency the angle device 

transfer function is unity. However, attenuation and 

lag is introduced at higher frequencies and the negative 

axis cross over point B is shifted to BT . In Fig. 

3.5 curve 2 shows the steady state stability limit curve 

along with curve i for the regulator with the ideal 

angle device. The portion AB is common to curves 

and 2 because the point A on the Nyquist plots does 

not change. The line BC of curve 2 is no longer 

vertical and is shifted so that R (max) is reduced 

because point B on the Nyquist plots is shifted to 

Bt. (See Fig. 3.6). The maximum permissible limit is 

reduced because of the delays of the angle device transfer 

function and for the system considered the reduced limit 

0o  (max) = -1.53 p.u. - 
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3.5.2 	Regulator with Derivative Feedback  

In the previous section the proportionate regulator 

is shown to increase the steady state reactive absorption 

to about 1.5 p.u. but the regulator gain margin is poor 

and leaves agreat scope for improvement. The first and 

second derivative compensations are used in the following 

sections to increase the steady state limit of reactive 

absorption further and increase the gain range. 

3.5.2.1 	Proportionate Regulator with First Derivative  

The idea of lead compensation can better be under-

stood by studying the coefficients of the characteristic 

equation for the proportionate regulator with an ideal 

angle device. The simplified characteristic equation 

corresponding to Eqn. (3.21) is 

I4umerator of [1 + Lq  (0] = 0 

or 

1 T 1 qJp
3 	Jp2 + T1q(Qo+Vgo

2YIq)p+ Qo +Vgo  2Yq  +Rq  (f-qqo  Yq  ) = 0 

(3.27) 
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As 	R varies the term Qo +Vqo  2Yq  +Rq  ( t Vqo  Yq  ) is rif 	' 
kept >0 go that all the roots of the characteristic 

Eqn. (3.27) are in the L.H. p-plane, but when 

(0o  +V qo2 Y' q) < 0 the system is unstable regardless of .  
R 	and the limit is set at _ V(lc>aYtq . However, by 

including a first derivative term (Qo +Vqo2 Yt ) in 

Eqn. (3.27) can be compensated and the system can be 

stabilized. 

The transfer function of the practical regulator 

considered is: 

.1 p  R (p) = R [1 	(1+.01p)(1+.°111) (3.28) 

The open-loop transfer function in Eqn. (3.26) is modified 

to: 

L (P) = 
J Tt p3  + Jp2+T1q - (0  +Vqo2  Ytq 0 )p+ +Vqo2  Yq  ) o -   

(1 + 2p2  

(T2e+4rp+1)(Ap2+Bp+C)x 	(1+.01p)(1+.01p)] 

(3.29) 

In Fig. 3.7 are shown some typical Nyquist plots for 

L (jW) given by Eqpt. (3.29) and a corresponding curve 

Rq 	(1Vgo  Yq  ) 
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showing the steady state limiting value of reactive 

absorption against the regulator gain is plotted in 

Fig. 3.8. A study of the Nyquist plots reveals that 

the first derivative term of the regulator transfer 

function R (p) tries to generate a portion of the 

curve in between points A and B , for example 

vars = -1.6, such that for a range of regulator gain 

it could enclose the (0,-1) point anticlockwise once 

(see Sect. 3.5.1.1.1.) and thus represent a stable 

operation; the range of operation is narrow and for the 

example considered is 2.85 < R
q 
 < 3.55 . At vars = 

-1.8 p.u., the points A and B on the Nyquist plot 

almost converge and represent a case near the maximum 

reactive absorption limit for this first derivative 

regulator. In Fig. (3.8) (dotted line) for comparison 

the steady state reactive absorption limit curve is 

plotted against the regulator gain for the proportionate 

regulator with the practical angle device. The maximum 

reactive absorption limit is raised from -1.52 p.u. to 

-1.82 p.u. and the maximum permissible gain Rq(max) 

is raised from 2.65 to 3.6. The line marked BC slopes 

inwards and hence there is very little increase in the 

gain margin at values of reactive absorption numerically 

greater than -1.0 p.u. 
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3.5.2.2 Pro orticnate Re ulator with First and Second  

Derivative - 'Derivative Regulator'  

A regulator with first and second derivative 

elements is referred to as a 'derivative regulator' in 

this thesis. 

It has been shown in. Sect. 3.5.2.1 that the first 

derivative term helps to improve stability and it would 

be expected that the inclusion of second derivative would 

improve it further. The way in which the second deri-

vative increases the stability range can be seen by 

studying the coefficients of the simplified characteristic 

equation. In obtaining the simplified characteristic 

equation for the first derivative only the angle device 

is assumed to be ideal and R (p) of Eqn. (3.8) is taken 

as R (1+.1p), thus we have 

J TI p3  + Jp2 + [T1 q(Qo+Vqo
2Y'q)  + . (

k 2 E1Vqo Yq  ).Rq  1 p + 

Qo +Vqo  2Yq  + (J1.Vqo  Yq  )Rq  = 0 
	

(3.30) 

For stability in addition to the requirement that all 

coefficients of Eqn. (3.30) must be >0 the following 

product inequality must be satisfied (see Appendix V.2) 
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J. LTyQ0+Vq02Y1 q) + .1(hVq02YORq] > 

Jq 	- Coo +vqo 2yq  +Rg  ( f Vqo  2Y q)] 	(3.31a) rff  

R (max) is established as the limiting value of Rq  

in the above inequality. 

A simplified second derivative term T
1
p2 in the 

regulator transfer function changes its simplified transfer 

function considered above to: 

. R (p) 	R (1 + .1p + Ti p2  ) 

Consequently the coefficient J associated with p2 

in the characteristic equation (3.30) is modified to 

J + Rq  Ti(hVq0Yq) 

and the new product inequality becomes 

[J+Rq  'V1 i Vgo Yq  )][ Tt q - (0o +Vqoq 2Yt) + .1 (tre IVqo 2Yq  )Rq  ] > n'  

J 	[0o +Vgo  2Yq  +Rq ("qeVqo  Yq  )I (3.31b) q -  
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In. the inequality Eqn. (3.31b) the L.H.S. is modified 

compared to inequality Eqn. (3.31a) while the R.H.S. 

remains unchanged. The additional term Rq T12 (fVqo Yq  ) 

in the L.H.S. of inequality equation (3.31b) helps to 

maintain inequality for a longer Rq  range and for 

increased reactive absorption than permissible by the 

inequality Eqn. (3.31a). 

The practical regulator transfer function considered 

for detailed analysis is as follows 

0.1 
R (P) = R El+ 1-.01p 	+.01p) 

.02o2 

1131-1+*°-'

F.01p 	(3.32) 

In the derivative regulator transfer function above, the 

second derivative is achieved from the first derivative 

term and the denominator terms are intentionally provided 

to keep the high frequency noise associated with the angle 

device 	output 	to a reasonable level (see Sect. 

4.4.2). The open-loop transfer function allowing for 

the practical angle device becomes: 



(1+.01p)(1+.01p)(1+.02p)l1+.01p) (3.33) .02p2  
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1 Rq VqoYq  L (p) = 
[J.  T1  qp3+Jp2+T1 q  (n +Vqo 	q 2Yt )p+(0 +Vqo  2Y )] 

x 

(1+-c2p2) 
r 2 LT P2 +4Tp+1][Ap2+Bp+C]  

0.1p  
Rq[i 	(1+.01p)(1+.01p) 

In Fig. 3.9 some typical Nyquist plots for Lq(jw) 

given by Eqn. (3.33) are shown and Fig. 3.10 shows the 

steady state reactive absorption limit curve against the 

regulator gain. Three distinct regions in Fig. 3.10 are 

labelled AB, BC and CD . On the same figure are also 

shown the stability limit curves for the proportionate 

regulator and first derivative regulator with broken lines 

with and without crosses. 	All these curves 

allow for the practical angle device. The region AB 

on these curves is common and corresponds to the zero 

frequency point A in Figs. 3.4 and 3.7. The zero 

frequency point A for all the Nyquist plots in Fig. 3.9 

is off the scale. 

In Fig. 3.9 the Nyquist plot for -1.4 p.u. vars is 

a typical representative of conditions in the region AB. 

The curve for vars = -0.4 p.u. is a representative of 
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cases for which Rq(min) = 0 , but Rq(max) depends 

on the point B (see Sect. 3.5.1.1.1). In Fig. 3.10 

the newly created region BC corresponds to Rq(min) 

and point Al in Fig. 3.9. The frequency of At and 

its location depends on the vars. Two typical 1Tyquist 

plots for the region BC corresponding to -2.4 and 

-3.4 p.u. vars are shown. The curve from A to At is 

partly shown (since A is off the scale), however, it 

represents the unstable part, because it could only 

encircle the (0,-1) point clockwise (see Sect.3.5.1.1.1). 

In Fig. 3.10 the region CD corresponds to Rq(max) and 

point B on the Nyquist plots in Fig. 3.9. In fact 

the broken lines with and without crosses also correspond 

to the point B on the respective Nyquist plots for 

simpler regulators, but with the derivative regulator 

the point B is so shifted that Rq(max) is considerably 

increased to give the region CD. 

The following chart gives the comparative 

theoretical figures for the three regulators. 



T1  Jp3+Jp2+(Qo+Vqo2Y!q)T!qp+No+Vqo Yq) 
77 
 He 

(P) = Bc12  
1+T - p 

x d2  
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..Lypu 	ya. 	.L.I.c6u-i-ctuu.L. rica.A.J.wutuu 

permissible 
steady state 
reactive 
absorption 

p.u. 

rictilutil 

permissible 
gain at 
any var 
level 

rlaas—Lwuni 

Gain limit 
at 

vacs = 
-1.0 p.u. 

Proportionate 

(with practical 

angle device) -1.52 3.0 2.78 

First derivative 

only -1.82 3.6 3.15 

'Derivative' -4.0 34.2 22.8 

3.5.3 	Effect of Alternator Damping 

If the damping is included the alternnator transfer 

function Bq2(p) becomes 

(3.34) 

The term associated with clamping in Eqn. (3.34) is 

1+Tkcip 

(1+T" p ) 

the total transfer function Bc12(p) 1  because T"(1 >Ticq  

its effect is equivalent to a lag term in 
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How much the modified alternator transfer function 

agfects the Nyquist plots of the open-loop transfer 

function Lol(p) depends on the magnitude of Tkq  and 

T" . Their order is usually so low that it does not 

affect the hyquist plot to any appreciable extent around 

point B (see Figs. 3.4, 3.6, 3.7), where the frequency 
is .7 	2.5c/s. The above argument supports the 

conclusions in Ref.1 that the damping has little effect 

on the steady state stability limits. However, it can 

be added that the little effect it has, is equivalent 

to a small lag term in the open-loop transfer function. 

3.5.4 Effect of Resistance 

  

With resistance and without damping the alternator 

transfer function Bq2(p) is 

B (p) Y EVco-2ra(Igo+r.a,IdoYd(p))] 

q2 	No+Jp2+V2Y (p)-2raIqoYq(p)+ra
2(Jp2-Ido)] (1+TI p) q 

(3.35) 

Using the above alternator transfer function in the 

expression for L (p) given by Eqn. (3.33), the steady 

state limit points are plotted in Pig. 3.10. A comparison 

with the steady state limit curve for the derivative 
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regulator shows that the resistance has a stabilising 

effect, because it slightly increases the reactive 

absorption limit for the same regulator gain. 

In the alternator transfer function given by 

Eqn. (3.35), Igo  terms are present which makes it a 

function of power. There should be a slight increase 

in the stability limit with increase in power. The 

effect of resistance is in any case quite small. 
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CHAPTER 4 

4. EXPERIMENTAL EQUIPMENT  

The experiments were conducted on the three phase 

micro-machine equipment arranged as shown Fig. 4.1 

and Pig. 4.2 for the direct and quadrature axes re-

gulation schemes respectively. In both cases the micro-

alternator is connected to the fixed supply treated 

as an infinite bus through a series reactance lac  . 

The micro-machine is a small alternator specially de-

signed to give a large range of parameters on a per 

unit (p.u.) basis. The equipment includes a time 

constant regulator which controls the constants of 

the excitation circuit and the feedback regulator 

simulated by an analogue computer using conventional 

circuitry. 

In Fig. 4.1, the main voltage feedback circuit 

consists of a rectifier and filter followed by the 

regulator. There is also an auxiliary feedback circuit 

which consists of an air-gap transformer with its 

primary winding in series with the field circuit and 

the secondary winding feeding the regulator through a 

filter and an adjustable amplifier. The steady state 

excitation level of the alternator can be changed by 
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adjusting Vref. 

In Fig. 4.2, the quadrature-axis angle feedback 

circuit consists of an angle measuring device followed 

by the regulator. The direct-axis field is supplied 

from an adjustable d.c. source. The quadrature-axis 

steady state excitation is automatically controlled by 

the angle feedback circuit. 

4.1 The Micro-machine and its Parameters  

The experimental micro-machine had different 

rotors for the direct and quadrature axes regulation 

schemes but the same stator was used. The rotor for the 

direct-axis regulation scheme had a conventional direct-

axis field winding and a damper circuit. The stator-rotor 

combination and the parameters were the same as for the 

machine used in Ref. 1 (see table I). The rotor for 

the quadrature-axis regulation scheme had a direct-axis 

winding and a winding in quadrature but without damper 

circuits. The parameters are dealt with in the following 

sections. 

4.1.1 The Quadrature-axis Regulation Machine Parameters  

The parameters of the micro-machine were chosen 

to represent a large synchronous machine on a p.u. basis. 
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The p.u. voltage and the voltamperes are the same as 

for the direct-axis regulation scheme. A relatively 

low voltage was chosen in order to reduce the effect 

of saturation. The range of operation considered for 

this scheme is from no-load to full-load and it is 

difficult to find a set of parameters compatible with 

the full operating range because of saturation. The 

parameters also vary from positive to negative vars 

even at a particular power. However, the parameters 

used were determined at 0.2 p.u. power averaged over 

a range of vars. 

For calculations the series reactance Xc was 

treated as part of the machine leakage reactance. The 

operational impedances Xd(p) and Xcl(p) were de-

termined by the variable frequency response static 

impedance test21/ 22  and the conventional23 short circuit 

and open-circuit test. The direct and quadrature axes 

synchronous reactances were determined from the steady 

state equilibrium diagrams (see $ect. 3.4). 

4.1.1.1. Determination of Xd and X 

In order to determine Xd and Xq  from a steady 

state test, using the equilibrium diagram given in 

Fig. 3.2b the alternator was synchronized with the 
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fixed supply. The power generated was adjusted to 

0.2 p.u. The steady state m.m.f in the quadrature-axis 

was adjusted until the zero angle equilibrium was 

established. The supply voltage, vars at the fixed 

supply terminals, the line current were noted. From 

the open-circuit voltage characteristic for the direct 

and quadrature axes, and the steady state relations 

(Eqns. 3.17 to 3.20) for the equilibrium diagram, 

Fig. 3.2b 1  Xd and Xq were determined. The open-

circuit characteristics for the direct and quadrature 

axes are approximated straight lines through the origin 

and the 1 p.u. voltage point. The values of Xd and 

X 	given in table II are the average values from 

a number of tests for .2 p.u. power averaged over a range 

of vars. 

4.1.1.2 Variable Frquency  Response Static Impedance Test 

The transient reactances for the direct and quadrature 

axes are determined by fitting curves to the experimental 

points from the frequency response static impedance test 

as briefly described below. The curve fitting is done 

with the knowledge of the tra44ient reactance from the standaid 

short-circuit test which is similarly extended to the 

quadrature-axis here. 
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The test consisted of connecting the two phases 

of the machine in series with an external resistance 

while the rotor was locked in the direct-axis position. 

The external resistance was first used for measuring 

current in conjunction with a transfer function analyser 

(T.F.A) equipment and later to provide one voltmeter 

reading when the test was repeated with the three volt-

meter method. The T.F.A equipment consists of three 

interconnected units, an ascillator, an angle resolver 

and an pnplitude measuring unit. A variable frequency 

reference signal from the oscillator is given to a 

system or a circuit the frequency response of which is 

to be measured, the output is connected to the amplitude 

unit which in conjunction with the angle r-solver gives 

the magnitude and angle of the output with respect to 

the reference signal. 

The T.F.A. reference signal was fed to an amplifior 

and exciter arrangement of an auxiliary time constant 

regulator (see Fig. 4.5), to circulate a current signal 

at reference signal frequency of approximately 250 mA 

through the machine circuit described above. With 

respect to the T.F.A. reference signal, the voltage Vr  

across the resistance and Vc across the coil (i.e.,two 

machine phases in series) were measured, giving the 
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impedance z of two machine phases at the operational 

V.0 

(71./R) 

tance (equal to 1 ohm). Thus, the operational impedance 

X (p)-) d = z-2ra 50 

X (p) 	
2 

For the quadrature-axis the rotor was locked in 

the quadrature-axis position and the test was repeated 

with the quadrature-axis time constant regulator in 

operation to control the effective quadrature field 

winding resistance (see Sect. 4.2.2.). A steady state 

field current of 750 mA, was circulated to keep the 

operation of the quadrature-axis time constant regulator 

in the linear region (see sect. 4.2.3). This experiment 

was repeated for both the axes, by using a motor generator 

set and the three voltmeter method for measurement 

(using an oscilloscope for low frequencies). The averaged 

experimental points were plotted for direct and quadrature 

axes operational admittances in Fig. 4.3 and Fig. 4.4 

respectively. Though the experiment was done on the 

machine alone, the points on the above figures include 

the transmission line reactance Xc  . The points Yd  

(i.e.Yd(o)) and Yq.  ....... continued 

frequency f = R being the external resis- 
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(i.e. Y (o)) were established from the equilibrium 

diagram in 9ect.4.1.1.1., the points Yd(00) and 

Y (0c) (i.e. Y'd aad q) established by the standard 

short-circuit test 1.ssisted in fitting a suitable curve 

through the experimental'points. A close fit was attempted 

in the lower frequency region due to the importance of 

this region in the present investigation. The discrepancy 

at very low frequency points could be attributed to the 

resistance measurement error which is more pronounced 

at low frequencies. There are no damper windings on 

the rotor, however the experimental points indicate 

some damping effect which may be due to the iron (though 

laminated) in the rotor. 

4.2 	Time Constant Regulator - T.C.R. 

The field resistance (rfd or rfq) of the small 

micro-machine is larger than it should be for a correct 

simulation of a large synchronous machine and the time 

constant regulator is used to reduce its value. The 

circuit employed uses a winding mutually coupled to the 

field winding, this convential scheme24,25 is discussed 

briefly in Sect. 4.2.1. The quadrature field winding 

of the second rotor is however not provided with a 

mutually coupled winding on the rotor, and an alternative 
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circuit to achieve the desired time constants is 

developed in Sect. 4.2.2. 

4.2.1 Conventional Time Constant Regulator 

In Fig. 4.5 is shown the time constant regulator24, 

which consist of a d.c. exciter supplying the alternator 

field, a high gain d.c. amplifier supplying the exciter 

field and a suitable feedback circuit. The feedback 

circuit controls the rate of rise or decay of the 

field winding flux linkages. To achieve this the 

feedback term should consist of the change of field 

flux linkages term and the resistive drop term. Since 

the gain of the d.c. amplifier is very large a 'Virtual 

Earth' is always established at the input of the ampli-

fier. 

Thus, 	e - efb  = 0 	(4.1) 

where, e is the input voltage and efb is the feedback 

voltage. 

efb = PYf -1-  Rfbif 	(4.2) 

and 

36 
yf 	= Lfif  + Mikd  + Mid 	(4.3) 

Yf the flux-linkages for the field winding are also 
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the flux-linkages for the mutually coupled feedback 

winding, because the coupling is ideal and their 

windings are identical (i.e. their mutual inductance 

is also their self inductance). From Eqns. (4.1) 

and (4.2) we have 

if 	1  
e (Rfb P(Of) 

F or the open circuit transient behaviour of the alternator 

yf = pLifif 	for this condition Eq:1 .(4.4) becomes 

if 	1  
(Rfb + pLf) 	 (4.5) 

thus the resulting time constant Ttdo of the system is 

L
f . By changing Rfb  ,T'do  can be adjusted to a 

"fb 

desired value. Under the steady state conditions pyf  

is zero and i, -. Thus looking at the input of 
"fb 

the high gain d.c. amplif:.er the field circuit behaves 

as if it has the adjustable resistance Rfb and not 

the actual field resistance Rf  . 

In the scheme shown in Fig. 4.5 the two parts of 

the feedback, namely pLpf  and Rfbif  are picked up indepen- 

dently. pU f  is derived from the mutually coupled winding 

with the field circuit. In the absence of the mutually 

coupled winding as is the case with the quadrature-axis field 

(4.4) 
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winding rotor the feedback circuit is modified to 

achieve the same feedback quantities, see Lqn. (4.2). 

The modified scheme is dealt with in lect.4.2.2. 

In this simplified analysis the exciter is treated 

as part of the high gain d.c. amplifier considered to be 

ideal without delay. The controlled excitatir.An effect 

of the exciter is boosted by a series winding which is 

on the same magnetic axis as the control winding. To 

counter the interaction between the series winding and 

the control field winding a feedback from a winding 

mutually coupled to the series winding is used, the 

details for which are given in Ref. 24. In the following 

modified scheme the amplifier and e.lciter are left un-

changed and treated as ideal high gain d.c. amplifier. 

4.2.2 Modified Time Constant Regulator  

The modified time constant regulator is shown in 

Fig. 4,6. The amplifier and the exciter is shown 

simplified, but in practice is the same as in Fig. 4.5, 

only the feedback circuit is altered. An adjustable 

resistance fb which is small compared with the 

field resistance Rf,is inserted in series with the field 

winding and the and farther from the field winding is 
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earthed, instead of the field side end, see Fig. 4.5. 

This is done because of a change of polarities as will 

be clear later. The voltage picked up by the field 

coil end r1 with respect to the earth constitutes 

a part efbl of the feedback efb  . The expression 

for efbl is; 

efbl = E(Rf Rfb)if 	PYfJ 
	

(4.6) 

In Eqn. (4.6) pyf  is the useful part but (Rf  + Rfb)if  

is very large and must somehow be cancelled. This is 

achieved by countering it by the other part of the 

feedback efb2  , which comes from Rfb  amplified by 

K times and inverted in its polarity. The expression 

for efb2 in 

efb2 = (Rfb x f)x-K = -KRfbif 	(4.7) 

The two feedback voltages given by Eqns. (4.6) and (4.7) 

are summed up in an operational amplifier thus the re-

sultant feedback efb at the out put of the summer 

unit is; 

efb = -[ efbl 	efb23 
	

(4.8) 

substituting efbl  and efb2  in Eqn. (4.8) the 

final expression for the feedback quantity is 
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efb = - [ Rf - Rfbx(K-1) + pyf] 

or 

= 	[Ret, + pyf] 
	

(4.9) 

where Ref = Rf - (X-1)Rfb 

Thus an adjustable Ref  is achieved depending on the 

amplifier gain K, which can easily be adjusted from 1 

to 40 with one operational amplifier. 

The feedback expression given by Eqn. (4.9) is 

similar to the expression given by E. (4.2). Assuming 

there is no phase shift introduced by the operational 

amplifiers of the modified scheme in Fig. 4.6 and Ref  

is the same as Rfb of the conventional T.C.R., then 

the two circuits will behave identically. If e is 

the input voltage then from the 'Virtual Eartht concept 

established in sec. 4.2.11  using Eqn. (4.1) and Eqn. (4.9) 

we have 

if __1 
etRef  + pyfj 

Under the open-circuit transient conditions pyf  = pifif  

and Eqn. (4.10) yields the open-circuit transient time 
f constant T' = 	 (4.11) do Ref 

(4.10) 
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Under the steady state condition p 	= 0 and Eqn. (4.10) 

yields 	if  = R
ef 	

(4.12) 

Equations (4.11) and (4.12) establish the identity 

of the modified T.C.R. with the conventional T.C.R. 

The modified T.C.R. .4.:s used in conjunction with the 

quadrature-axis field winding. some important parameters 

measured (average measurement) with 1 amp current in the 

field circuit are mentioned here. The current range is 

mentioned because of certain nonlinearities in the circuit 

discussed in the next section. The quadrature-axis field 

winding resistance is 14.86 ohms and its inductance 2.22 

Henrys , thus giving an open-circuit transient time con-

stant TIgo  of about .15 sec., whereas, when Ref is 

modified to 2.02 ohms, TIqo  = 1.1 sec. The measured 

(average) value of Rfb  is 1.435 ohms and the operational 

amplifier gain 	is 9.95. This circuit gave rise to 

certain difficulties which are dealt with in the following 

section. 

4.2.3 Difficulties with the Modified T.C.R. 

The parameters of the modified T.C.R. are not inde-

pendent of the operating conditions and this is not a 

desirable feature. Change in the inductance of the field 
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coil at different flux levels makes both the conventional 

and modified T.C.R. vulnerable to saturation effects. 

Besides saturation this circuit is affected .by changes 

in Ref , which is dependent on Rfb  , Rf  and the 

operational amplifier gain K 	see Eqn. (4.9). It 

is reasonable to assume that the operational amplifier 

gain remains constant for the range of frequencies of 

interest to us, leaving Ref  dependent on the variations 

in Rfb and Rf . The feedback resistance Rfb is  
made of very low temperature coefficient material and 

so does not appreciably change for the range of temperature 

variations encountered, thus leaving Ref  entirely de- 

pendent on the variations in Rf  . 

The field winding resistance Rf  changes with 

temperature variation and also with the current level 

in the circuit because of the carbon brush contact 

resistance. In Fig. 4.7 is plotted the quadrature-axis 

field resistance against the current when the machine 

was warm. The field resistance is reasonably constant 

for currents greater than 500 mA , but at lower currents 

the carbon brush resistance increases sharply. For this 

reason the circuit is considered reliable only for 

current levels above 500 mA. 
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Rf also changes with temperature. This variation 

was kept under control by always running the set under 

full-load conditions for about -12 hr. to achieve a reason-

ably steady temperature before taking any measurement. 

Other difficulties with the circuit stem from the 

fact that Rf contributes to the feedback voltage. 

The conventional T.C.R. circuit is not affected in this 

way because Rf  does not contribute to the feedback 

voltage. In spite of these variations the scheme is 

workable within limits. 

4.3 Feedback Circuits 

For the direct-axis regulation the feedback circuits 

consisted of the main voltage feedback and the auxiliary 

derivative of field current feedback, see Fig. 4.1. The 

quadrature axis feedback consisted of the rotor angle 

feedback, see Fig. 4.2. These circuits are described 

in the following sections. 

4.3.1 Direct-axis Feedback circuits 

4.3.1.1 Tile Vltdrze Feedback Circuit  

The voltage feedback circuit (Fig. 4.1) is_the same 

as that used in Ref. 1. fix silicon diodes are used 

for the rectifier bridge circuit. In between the bridge 
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rectifier circuit and the mains are three single phase 

transformers, connected in delta on the mains side and 

star for six phase connection on the rectifier side. 

The most dominant harmonic frequency because of the 

rectifier bridge circuit is 300 c/s; it is attenuated by 

a tuned double -T filter section. Higher noise frequencies 

are attenuated by low-pass R-C filter sections in cascade 

with the double-T bridge filter. Poi low frequencies 

relevant to our purpose, it is fair to assume that the 

rectifier and the filter do not introduce any appreciable 

phase shift. 

4.3.1.2 The Field Current Feedback Circuit  

To obtain derivative of the field current an air-gap 

transformer is inserted in series with the field circuit. 

The transformer is specially designed with a large 

air-gap (12 mm) to give a straight line flux-MMF curve 

in the working range. The mutual inductance 	between 

the primary and the secondary winding of the transformer 

is .725 Henrys. For any a.c. variation in the field 

current the voltage induced in the secondary winding 

of the transformer is to a fair approximation 90°  out 

of phase with respect to the current in the field circuit. 

The induced voltage in the secondary winding of the 
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transformer is thus used as a derivative signal of the 

field current variations. The field current feedback 

circuit is shown in Fig. 4.8. The derivative signal of 

the field current contains a large noise at 50c/s because 

of the stray pick-up in the field circuit. A R.L.C. 

T-bridge filter circuit tuned to 50c/s is used to cut 

out the 50c/s noise. The transfer function of the 

filter is as below. 

1+T2p2  

1+2Tp+T2p2  

where 

= .25  and ti = 314 314 

The frequency response curve of the filter is given in 

Fig. 4.9. Under ideal c,nditions the total transfer func- 

tion of the transformer and the filter and the subsequent 

amplification stage is: 

Mp (  1+T2p2  ) 

1+2+T2p2  

For low frequencies the signal transmission through the 

filter can be assumed to be without attenuation and 

delay since the input impedance to the filter is very 

low. For low frequencies the field current feedback 

transfer function then is approximated to Mp. In 
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Fig. 4.8 the transformer is directly coupled to the 

filter section. The output impedance of the transformer 

causes mismatch at the filter input and so thereis bound 

to be some delay introduced in the transmission of the 

signal even at low frequencies. However, in the theory 

it has not been taken into account. 

4.3.2 Ouadrature-axis Feedback Circuit  

A signal proportional to the angle of the rotor 

with respect to the infinite bus (fixed supply) is 

developed. An a.c. tachogenerator which generates 

the frequency of the system when coupled to the rotor 

of the micro-alternator will give a waveform that will 

change in phase with respect to the infinite bus wave-

form in accordance with the rotor position. Thus the 

rotor angle signal problem is converted into the phase 

detection and generation of a signal proportionate to 

phase variatim. In the following sections a conventional 

phase detection circuit is discussed briefly and based 

on it a modified circuit is developed. 

4.3.2.1 A conventional Phase Detection Circuit  

Out of various conventional phase detecting 

circuits2627 considered the one described below was 
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adopted in principle becuase it can indicate by sign 

inversion whether the incoming signal is lagging or 

leading with respect to the reference (all sine waves), 

a characteristic necessary for our purpose. The phase 

detection circuit27 using phase splitting, rectification 

and filtering is shown in Fig. 4.10a. The various 

voltages labelled on the figure are as follows 

el 
	sin LJt 
	

(4.13) 

2 = 
	sin(6:;t+ 0') 
	

(4.14) 
eoA = Maximum of (1E siri Git + E sin cot + 	(4.15) 

oB = Maximum of (E since t - E sincut + 54) 
	

(4.16) 

In Eqns. (4.15) and (4.16) it is assumed that the condenser 

C holds the maximum value to which it is charged during 

the period the diode di/d2  conducts. In other words 

the R.0 time constant is very large compared to the time 

constant of the rectified waveform impressed upon the R.C. 

combination. Eqns. (4.15) and (4.16) give the output 

voltage 

Vo = eBA = 2,(co, 	sin .) 	 (4.17) 

The output voltage V is a function of the phase angle 

i between the two waveforms. The curve relating the 

output voltage Vo  and the phase angle j (Fig. 4.10b) 
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is a cosine curve giving zero output at 90°  phase 

angle. The region of 90 + 30 is practically a straight 

line and can be used as a proportionate signal with 

sign inversion at 90°  phase angle. This circuit has 

its drawbacks. The output of the circuit is not earthed 

at either end and therefore, the circuit cannot be con-

nected into the system with a common earth. The R.0 

combination is only a crude form of filtering. T.:7.,ns-

formers should be avoided if possible, because they 

are not ideal in their performance as is often assumed. 

'fith these points in view the modified circuit in the 

following section is developed. 

4.3.2.2 The Angle Device 

The circuit for the angle device (Fig. 4.11) is a 

modified c!-?cuit based on the phase detecting circuit 

in qect. 4.3.2.1 and with improved filtering. It consists 

of a phase detecting unit and a filtering unit. In the 

phase detecting unit the diode action of transmitting 

the signal in a controlled way in Fig. 4.10a is replaced 

by a complementary pair28  of switching tl-ansistors T/  

and T2 . The switching action of the complementary 

pair of transistors is in accordance with the reference 

signal given to the common junction of the base 
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resistances (Rba)  of T1  and T2 ° The phase split-

ting by the centre tapped transformer of Fig. 4.10a 

is replaced by two centre tapped equal resistors R. 

The resistances and R R(Ral/Ra2) 	b R(  b1/%2) provide  

a suitable potential divider arrangement so that the 

voltage at A(A1/A2) does not exceed the permissible 

collector emitter value. The output of the circuit is 

with respect to the common earth E and the fundamental 

harmonic of the chopped output waveform has twice the 

signal frequency, that is because of the complementary 

switching action of transistors T1  and T2  . This 

feature is of added advantage in filtering. The R.0 

filtering in Fig. 4.10a is replaced by a more sophisticated 

operational amplifier summation and filtering unit. The 

output characteristic curve is the same as that shown 

in Fig. 4.10b. The measured characteristic curve of the 

angle device is given in sect. 6.2. The operation of the 

device is described in the following section. 

4.3.2.3 The Angle Device Operation  

The waveform of tachogenerator, of constant ampli-

tude and variable phase is applied to the input terminals 

1-2, see Fig. 4.11. The reference waveform from one 

phase of the infinite bus, reduced in amplitude by a 
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potential divider arrangement (not shown in Fig. 4.11), 

is applied to the junction of the base resistance Rba  

of T1 and T2 in complementary connection. The 

transistor T1 is a PNP transistor and T2 a NPN 

transistor. A negative input signal forward biases Ti  

and causes it to conduct, thus bringing point Al  to 

practically earth potential. A positive input signal 

forward biases T2 and causes it to conduct, thus 

bringing A2  to earth potential. When one transistor 

conducts, the other is non conducting, because the signal 

that forward biases one transistor, reverse biases the 

other transistor. In Fig. 4.12 are shown the voltage 

waveforms at various stages of the circuit. The voltage 

waveforms at the various stages co rrespond to the re-

ference and tachogen.erator waveforms shown in Figs. 

4.124. 4.r.1.1b with a phase difference 0'  . In Fig. 4.12b 

the tachogenerator input waveform is marked 1-2 and the 

waveforms at terminals 1 and 2 with respect to the centre 

tapped point (which is at earth potential) are respec-

tively marked 1 and 2. In Figs. 4.12c and d are shown 

the waveforms at Al  and A2  . Fig. 4.12e shows Al  

and A2 superimposed. In Fig. 4.11 the phase detecting 

unit is followed by the filter unit, the details of which 

are dealt with in Sect. 4.3.2.4. The filter unit receives 
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the signal (see Fig. 4.11) from 1 or 2, depending on 

whether A2 or Al is at earth potential. Thus the 

signal getting through the filter unit is, in shape 

the waveform Al and A2  superimposed, see Fig. 4.12e, 

and in magnitude the waveforms 1 and 2 of Fig. 4.12b 

similarly chopped as Al and A2 and superimposed. 

If the filter units are designed to absorb all the 

a.c. component of the chopped input wave, the output 

will be only a d.c. component. If the tachogenerator 

input is 2E Sin((4t-9.) then by Fourier analysis the 

d.c. component of the filter output 

2 	

0 

 lin(cut- )d(Ait + 
2')z 

- 
Sin( w t- )d (Lit] 

2 = — E cos rd 	 (4.18) 

The output characteristic given by Eqn. (4.18) is a 

cosine curve as shown in Fig. 4.10b. The calibration 

of the circuit shown in Fig. 4.11 is done in sect. 6.2. 

During the switching operation the resistances 

Rbl and  Rb2 are earthed at Al and A2 alternatively, 

depending on whether the transistor T1 or T2 is 

conducting. Consequently the filter unit always finds 

the resistance 	 ( -R  R,13bl/Rb2) at B connected to earth, 

see Fig. 4.11. This assumes the switching in and 
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switching out operation of transistors T1  and T2  

instantaneous. The earthing of the resistance Rb  

and B affects the following filter unit. Its effect 

has been incorporated in designing the filter unit in 

the following section. 

4.3.2.4 The Filter Unit  

The filter unit is an integral part of the angle de—

vice. It allows the superimposed chopped waves in and 

gives out the d.c. component of the chopped wave with 

very much suppressed a.c. component of the input wave. 

It is designed to allow the low frequency variations 

of the d.c. component to pass with minimum possible 

attenuation and delay. However, in the theoretical 

formulation for the quadrature axis regulation exact 

transfer function ,f the angle device is considered.' As 

a consequence of chopping and superimposing, see Fig. 4.12e, 

100c/s chopped waveforms are generated from 50c/s input 

waveforms. Thus the dominant frequency to be suppressed 

is 100 c/s. However, because of slight asymmetry in 

components 50c/s is also present in practioo. 

The filter unit is designed in two sections. ThO. 

first is the active generation of a second order poly—

nomial29  in the denominator with a general transfer 
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function 

	

K' 	 (4.19) 
+ Bp + C 

The second section is the passive generation of 

imaginary zeros30 to suppress 100c/s in particular 

with the transfer function 

	

1+ lay 
	

(4.20) 
T-p-+4T p+1 

In Fig. 4.11 the two filter sections are shown. 

The various resistance and capacitance are labelled 

and their numerical values are given. For the first 

filter section if the resistance Rb is not taken 

in parallel with Cl  then the coefficients in Eqn. (4.19) 

are 

	

K' = IT" 
	R1 Ra + Rb 9 

numerically K' = 1 

A = R2R3C102 
R2  R3  

B 	( 	+ R2  + R3)02 Ri  

C = 1 

But when Rb  is taken parallel with C1  the coefficient 

B is modified and is: 
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2 R2 B = 	RR 

R3  R3 	R2 + R3)C2 b 	R1 

The numerical values of these coefficients are chosen 

so to get an attenuation of 12db from 10c/s onwards. 

For the second filter section T( C
3  R4 

 ) in Eqn. (4.20) 

chosen is 1.59 x 10-3  , i.e. to give a notched attenuation 

characteristic at 100c/s. The second filter section 

is preceded by a aathode follower. The parameters of 

this stage are chosen that its impedance at 100c/s is 

greater than the:minimum load impedance for minispace 

analogue computer which is 4K CI., this is to avoid overload. 

Actual circuit impedance chosen at 100c/s is 5•31Cn. • 

The frequency response test of the angle device is given 

in lect.6.3. 

4.4 The Regulator and Associated Circuitry  

The simulation of the direct and quadrature axis 

regulators was done on a small analogue computer. In 

the following sections the regulators and the associated 

circuitry are described. 

4.4.1 Direct-axis Regulator 

The analogue simulation of the proportionate 

regulator used for the direct-axis regulation is shown 

in Fig. 4.13. An adder is used to sum up the two 
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feedback signals. Vref  is to adjust the steady state 

excitation of the system. A precision decade potentio-

meter is used before the last stage of amplification 

to adjust the gain R. 

The limiter is simply two back to back Zener diodes 

to cut off if the output signal exceeds 16 volts level. 

4.4.2 Quadrature-axis Regulator 

Two types of quadrature-axis regulators were used, 

namely, the proportionate angle regulator mid the re-

gulator with proportionate and derivatives signals. The 

proportionate regulator can be treated as a special case 

when Me derivatives of the signal are omitted. In 

Fig. 4.14 is shown the derivative regulator with the 

following transfer function 

.1p 	.02p2  
Rq(1 	(1+.01p)(1+.01p) 	(1+.01p)(1+.01p)(1+.02p)ll+.0410)  

In the circuit diagram conventional differential circuits31 

are used. These circuits work as differentiators at low 

frequencies but cut off high frequencies or noise and are 

suitable for our purpose because we deal with frequencies 

0-3 cycles. However, in theoretical computaticns the 

effect of delays is also considered. The numerical values 

of the parameters used for the differential circuits are 
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given on the figure. For sign inverters and summing 

units the standard representation is used. The angle 

signal comes at a point marked 'IN'. The circuit marked 

'1' carries the signal straight to the su-ming amplifier, 
the circuit marked v2' brings the first derivative signal 

and the circuit marked '3' the second derivative signal. 

The total signal is amplified and its level adjusted by 
a precision decade potentiometer. The signal is carried 

through a buffer amplifier to the time constant regu-

lator. The limiter circuit at the output of the buffer 

amplifier is for the protection as described in sect,4.4.1. 

The frequency response of the circuit is given 

r-Tect.6.10.2. 

The circuit described above represents the pro-

portionate regulator when the first and second derivative 

feedback circuits marked '2' and '3' are omitted. 
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CHAPTER 5 

5. DIRECT-AXIS STEADY STATE STABILITY EXPERIMENTAL 

RESULTS AND COMPARISON 

5.1 The_ Stability  

For the experimental investigation of the steady 

state stability of the system shown in Fig. 4.1 the 

question was, which system quantities to observe for 

small variations and from those observations when to 

declare the system unstable? Out of the various quanti-

ties considered, namely, the field current, the vars, 

the line current, the rotor angle, the last quantity 

was chosen for observation and declaration .of stability 

primarily because it: 

1. is associated with the conventional concept 

of the stability with the rotor angle, 

2. maintained continuity with an earlier investi-

gationi. 

5.1.1 	The Stability Code  

To maintain reasonable uniformity for the experi-

mental investigations the following code was observed 

for declaring a condition of equilibrium unstable. 
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If under any condition of equilibriuM the rotor: 

1. drifted by 2°  from its equilibrium position 

and subsequently did not settle back within 

two minutes but continued to drift, 

2. drifted and got into a limit cycle of 2°  about 

the mean position, 

3. got into an oscillation of 2°  which increased 

in magnitude after a time. 

5.1.2 	Precautions Against Erratic Jud ement 

The spurious small variations of the system quantities 

could lead to an erratic stability judgement while 

observing the above code. The major spurious variations 

originated in the system from small variations in the 

fixed supply and the field current. 

To minimise the possibility of erratic judgement 

because of the small variations of the fixed supply, 

the stability experiments were conducted in the evenings 

under the steadier load conditions in the laboratory. 

Some spurious small oscillations of about 1 c/s 

in the field circuit were traced to the oscillations 

about the mean speed of the induction motor driving 

the excitor (see Pig. 4.5). The drive motor was a two 

pole induction motor. No detailed investigations were 
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carried out into the origin of these small oscillations 

around the mean running speed of the drive motor, but 

it was felt that these oscillations could possibly be due 

to the stator—rotor asymmetry. To avoid these oscil—

lations, which were particularly important when taking 

a feedback from the field circuit, the drive induction 

motor was replaced by a synchronous motor with reasonable 

satisfaction. 

5.2 The Regulator Constants  

5.2.1 	The Regulator Gain R  

The regulator gain depends on several factors, 

namely, 

Xmd/rfd: a constant merged with R, (see Sect. 2.2), 

numerically equal to 1.89/.001425, (see Table I), 

Re 	the rectifier constant; the rectified output 

is treated as the terminal voltage, (see 

Sect. 2.1), numerically 
R  = Rectifier_ 	Conversion factor x P.U. System Voltage 
e 	 P.U. Field Voltage 

0.193 x 186P3 = .02418 ----  965  

• the adjustable gain constant, (see Fig. 4.13), 
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At 	: the fixed attenuation, (see Fig. 4.13), 

numerically equal to .1925. 

Thus 	R= Xrad/rfd  x to  x At  x 

89 . 1  _ . 	.x .02418 x .1925 x K .001425 

= 5.485 K 

5.2.2 	The Current Feedback Gain 

The constituents of the current feedback are the 

mutual inductance of the air-gap transformer in p.u. 

and the adjustable amplifier gain p.  , (see Pig. 4.8). 
. Thus N = 705 x 	. .000516 1), 

5.3 The Steady State Stability Curves with the  

Direct-axis Regulator  

5.3.1 	With the Voltage Feedback Regulator  

The micro-alternator of the system shown in Fig. 4.1 

was synchronised with the fixed supply through the series 

reactance X . The power at the fixed supply was 

adjusted to 0.8 p.u. The voltage feedback circuit was 

closed. The regulator gain R was adjusted to 1.097, 

i.e. corresponding to K = .2 , (see Fig. 4.13). To 

get the steady state stability limit of the rotor angle 

for the given regulator gain already adjusted, the 
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excitation level was decreased in small steps by 

adjusting Vref , see Fig. 4.2. The small steps were 

used to avoid large disturbances. For every small 

decrease in the excitation the rotor advanced to a new 

eqtlilibrium position. The new rotor angle was watched 

on the stroboscope (see Sect. 6.2), and the system 

declared stable or unstable in accordance with the code 

of Sect. 5.1.1. If the system was stable Vref was 

further adjusted by a small step and the process was 

repeated until the steady state stability limit was 

reached. The process was repeated for a wide range of 

regulator gains. The experimental curve for the steady 

state stability limit of the rotor angle against the 

regulator gain was plotted in Fig. 5.1, Curve 1. The 

stability in the region marked AB was of a drifting 

nature and the region marked BC was of an oscillatory 

nature. The drifting rotor was found to get into a 

limit cycle oscillation, because when it started drifting 

the electrical power increased and the mechanical power 

decreased, but the rotor continued slowly drifting because 

of the basic instability. 
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5.3.2 	With the Re,ulator having both Volta',e and 

Field Current Feedbacks 

The auxiliary field current feedback was used in 

combination with the voltage feedback in the following 

set of experiments. The gain of the field current 

feedback was adjusted to .001, .002, .003 and .004 p.u. 

by a precision decade potential divider as shown in Fig. 

4.8, and the whole set of experiment in Sect. 5.2.1 was 

repeated for each field current gain level. The 

experimental steady state stability curves were plotted 

in Fig. 5.1 and marked 2,3,4,5 for the field current 

gains .001, .002, .003, .004 respectively. 

5.4 A Com arison of the Theoretical and the Ex- erimental 

Curves  

The theoretical steady state limit curves for the 

various field current feedback gains labelled 2,3,4,5 

are shown in Fig. 2.11 and corresponding experimental 

curves are shown in Fig. 5.1. 

In the lower gain region AB the curves 2,3,4 and 

5 coincide with curve 1. The current feedback seems to 

have no effect in the region AB. The agreement between 

the theoretical and the experimental curves in the 

region AB is good. In the optimum stability region 
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around the point B the experimental curves tend to 

give lower limits though only by about 5%. The 

discrepancy in this region may be attributed to the lag 

introduced by the field current feedback circuit because 

of the impedance mismatch at the input of the filter 

section, (see Fig. 4.8). 

In the high gain region BC the experimental 

curves 1,2,3 are on the optimistic side, i.e. they give 

slightly higher limits than the theoretical ones. It 

is shown in Ref. 1 that with damping and resistance taken 

into account the drooping part BC is slightly lifted 

upwards for the voltage feedback only (curve 1). If 

we then extend the argument to the voltage and field 

current feedback case the experimental curves 2,3 show 

the right trend. It should be remembered that the 

filter lag effect in the field current would pull the 

stability curves slightly down, whereas the resistance 

and damping would lift it upwards. However, the latter 

effect seems to dominate the BC region. The theoretical 

curves show a sharp cut off region represented by CD 

in the theoretical curves Fig. 2.11. The experimental 

curves show a quick droop in later parts of the region 

BC suggesting a trend similar to the region CD part 

of the theoretical curves. On the whole there is a 
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reasonable agreement between the experimental and 

the theoretical stability limit curves. 
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CHAPTER 6 

6. QUADRATURE-AXIS REGULATION AND ASSOCIATED EXPERIMENTS, 

RESULTS AND COMPARISON 

The experiments in this section relate to the 

quadrature-axis excitation regulation by signals derived 

from the terminal voltage and the rotor angle. 

Two types of quadrature-axis voltage regulators 

were used, namely, the one with only a derivative term 

and the other with proportionate and derivative terms, 

but both did not give any improvement in the steady 

state stability limit of reactive absorption at zero 

power. 

Some useful results were obtained for the scheme 

shown in Fig. 4.2 using a signal derived from the rotor 

angle. The following set of experiments were conducted. 

The system shown in Fig. 4.2 was synchronised with the 

fixed supply treated as the infinite bus. The angular 

position of the tachogenerator stator was adjusted to 

give the correct zero for the angle measuring device. 

The angle device output characteristic was determined 

to establish the feedback loop gain. With the quadrature- 

axis regulating loop in operation the steady state 
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stability limit tests were carried out for different 

gain levels of the proportionate regulator at 0.2, 0.5, 

0.8 p.u. power. For the derivative regulator the same 

test was repeated at 0.2 p.u. power. The frequency 

response test of the feedback loop components, namely, 

the angle device and the regulator was carried out, 

followed by the closed-loop frequency response test of 

the system in Fig. 4.2 and from it was established the 

open-loop frequency response curve. 

6.1 Voltage Feedback into the Quadrature-axis Excitation 

The system shown in Fig. 4.2 was synchronized on 

the direct-axis excitation with the fixed supply. The 

voltage feedback arrangement as shown in Fig. 4.1 for 

the direct-axis was now used for the quadrature-axis 

excitation and the direct-axis excitation was left as 

shown in Fig. 4.2. The power at the fixed supply was 

adjusted to zero. For the voltage feedback circuit the 

regulator transfer function used was 

. 2' 
(1±.02P) 	Jr' 

The direct-axis excitation was decreased in small steps 

to avoid a large disturbance. The new equilibrium was 
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watched for instability in accordance with the stability 

code of Sect. 5.1. The above process was repeated till 

the steady state reactive absorption limit was established. 

The experimental curve 1 in Fig. 6.1 shows the 

limiting negative vars for a range of regulator gain. 

The numerical figures mentioned in the figure for the 

regulator gain are only the loop constant terms including 

the rectifier conversion factor, the adjustable gain K 

and the fixed attenuation A
t ° The numerical value 

is = .193 x 10.0 K x .192 = 3.72K . Thus it has no 

relation with the direct-axis regulator gain R or 

the quadrature-axis regulator gain Hg  . However, curve 1 

suggests that the limiting value of reactive absorption 

for a wide range of regulator gain is about_.51 which 

is very close to _V
qo  2

Y
q 
 limit, thus supporting the 

theoretical deduction in Sect. 3.3.2. 

In the next experiment the regulator transfer 

function was altered as follows to include a proportionate 

term 

2p  
El + (1+.02p)(1+.01p)] R  

The experimental result is shown in curve 2 of Fig. 6.1. 

It is similar to curve 1 and suggests 
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1. the reactive absorption is nearly constant for 

a wide range of the regulator gain though its 

value tends to be slightly lower than -V,402Yq  . 

2. at higher gains the curve droops and the 

reactive absorption limit tends towards -Vq0
2Yd 

It seems that the proportionate term in the transfer 

function is ineffective in increasing the reactive 

absorption. With the terminal voltage decreasing the 

flux is pushed into the quadrature-axis and the system 

appears to settle for a reactive absorption limit of 

-Vqo
2Y where Y is an...admittance in quadrature to the 

new m.m.f. axis created by the proportionate term. 

The two experiments indicate that the reactive 

absorption limit of -Vqo
2
Yq at zero power cannot be 

increased by a voltage feedback into the quadrature-axis. 

6.2 The angle Device Output characteristic and Zero Setting 

The device described in Sect. 4.3.2.2 provides a 

signal proportional to cos(5-5o) , where S is the 

mechanical load angle and 50  depends on the angular 

position of the tachogenerator stator. Since it is 

desired to obtain a signal proportional to 5 the 

tachogenerator is set so that 5o = 90°  and hence the 

signal varies as sin5 or approximately as 5 over 
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the range + 30°. 

For calibration of the angle device the system 

in Fig. 4.2 was synchronised and the aligned angle device was 

switched on. The output of the angle device through a 

buffer amplifier was connected to a centre-zero volt- 

meter. The buffer amplifier was provided to prevent 

the voltmeter from loading the second section of the 

filter unit (see Fig. 4.11). To calibrate the angle 

device for motoring and generating action of the machine 

the tachogenerator stator was manually rocked on both 

sides of the aligned position. The tachogenerator 

stator position was read on a graduated annular ring 

with respect to the reference arrow on a disc coupled 

to the rotor and moving inside the annular ring, but 

visually made standstill because of synchronism wit/1.a 

stroboflash. The angle device output for the corresponding 

tachogenerator position was noted from the centre-zero 

voltmeter. 

Fig. 6.2 shows the calibrated output characteristic 

of the angel device, giving the output voltage as a 

function of the rotor angle (in the experiment the 

tachogenerator stator was rocked). As expected the 

calibrated curve is a straight line in the region + 30°  

of rotor angle and has a gradient of 570 mV per degree. 
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6.3 Angle Device Frequency Response Test, 

Strictly the frequency response test of the angle 

device shown in Fig. 4.11 means applying the reference 

signal of 50 c/s at the junction of the base resistances 

(R.ba) of T1 and T2 ' and modulating the phase of the 

constant amplitude of the incoming signal at the required 

frequency. However, if we assume instantaneous switching 

and switching off of the complementary pair of transistors 

Ti  and T2  , the phase detecting unit of the angle 

device presents to the subsequent stages a chopped wave-

form with different harmonic contents and a d.c. content 

which would change with the modulating frequency, see 

Sect. 4.3.2.3. Our interest is centred on how the 

variation of the d.D. content is transmitted through the 

angle device, i.e. equivalent to studying the attenuation 

and transmission lag of a signal with the transistors 

T1  and T2 representing a set operational condition 

of one shorted and the other open. The switching 

operation of Ti  and T2  does effect the configuration 

of the following circuitry bl.t interchange of switching 

does not, that is why a set operational condition of Ti  

and T2 is mentioned above. 

In Fig. 6.3 is shown the experimental set up. A 

variable frequency signal from the oscillator of the 
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transfer function Analyser (T.F.A.) equipment was 

applied at 	terminal 1. To represent the operational 

states of transistors T1  and T2  , transistor T1 was 

opened at Al  and T2  was shorted by earthing A2  

The output of the angle device was connected to the 

T.F.A. (amplitude resolver). Using the T.F.A. the 

frequency response was determined up to 30 c/s. 

Fig. 6.4 shows the experimental points for the 

phase shift and the amplitude output to input ratio for 

various frequencies. The full and broken lines in 

Fig. 6.3 are the computed curves respectively for the 

amplitude and phase angle for the circuit in Fig. 6.2. 

The experimental points show a good agreement with 

the computed curves. 

6.4 The Regulator Gain  

The regulator gain R depends on several factors, 
q. 

namely, 

At 	the fixed attenuation, 

numerically equal to .1927, (see also Sect. 5.2.1.), 

K1 	• the angle decice constant, numerically 

= angle device output characteristic slope 

(volts)   x degrees per radian x - 	 degree 	 p.0 Field voltage 

= .57 x 57;3 - -1- 646 p.u. voltae  radian (see Sect. 6.2 

and Table II), 
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—191 .1  
rfq 

• a constant merged with Pq  , numerically 

equal to. 00482  , (see Table II), 

K• • the adjustable amplifier gain constant. 

Thus, 

R =A xK x-12-axK q 	t 	rfq 

- .1927 x .57 x 57.3 x 	x K 

= 3.04 K 

6.5 Starting: of the System  

In all the following stability experiments the 

system shown in Fig. 4.2 was synchronised with the fixed 

supply on the direct-axis excitation. The quadrature-

axis time constant regulator was introduced but no 

steady state quadrature-axis excitation was established. 

The angle device was made operative by switching on its 

reference supply. The simulated regulator was brought 

into the circuit by closing the patch panel of the last 

adjustable gain stage, (see Sect. 4.4.2). Keeping the 

regulator gain below the limiting level the quadrature-

axis feedback circuit was closed. Before any experiments 

were conducted the system was loaded to 0.8 p.u. power 

and was run for half an hour to establish a reasonably 
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steady temperature to ensure that the temperature of 

the quadrature—axis field winding resistance conformed 

to that of the measurement and was the same for every 

experiment, (see Sect. 4.2.3). 

6.6 Zero Angle Equilibrium  

In the theoretical study it is assumed that the 

angle regulator establishes the zero angle equilibrium 

conforming to the equilibrium diagram in Fig. 3.2b. 

In practice to establish an appropriate excitation in 

the quadrature—axis there has to be some deviation of 

the rotor from the reference. The magnitude of this 

rotor deviation from the reference depends on the load 

and the regulator gain. For experiments in the following 

sections a condition of equilibrium upto 10 of rotor 

deviation from the reference was taken practically as 

the zero angle equilibrium. All the experiments to 

determine the steady state reactive absorption limit at 

any load and regulator gain setting were carried out at 

a condition of practically zero angle equilibrium, which 

if necessary was secured by adjusting 'Arrefq  , see Fig. 

4.2. In practice, however, a small deviation from the 

zero angle equilibrium would not cause concern. 
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6.7 Steady State Stability Limit Curves for Pro ortionate 

Regulator  

After the starting and warming of the set (see 

Sect. 6.5), the power at the fixed supply was adjusted 

to 0.2 p.u. The regulator gain was adjusted by a decade 

potentiometer, see Sect. 4.4.2. For low regulator gains 

for example Rq  = .304 (see Sect. 6.4) the zero angle 

equilibrium was assisted by adjusting Vrefq  , see 

Sect. 6.6 and Fig. 4.2, but for the later stability 

experiment the system was left unadjusted. To make the 

system deliver negative vars the positive excitation of 

the direct-axis was decreased in small steps to zero and 

then increased in the negative direction. 

After every small change in the excitation the 

system was left for about 5 minutes to settle down 

particularly in the critical stages near to the stability 

limit. During the disturbance the rotor was visually 

watched on the stroboscope in order to assess stability. 

The system was considered to be stable, if after 

the disturbance the rotor settled down asymptotically 

to zero equilibrium otherwise it was unstable. It was 

difficult to ascertain the start of instability particularly 

the drifting type, however, a reasonable uniformity in 

assessment of stability limits was achieved by 
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observing the procedure for declaring the system stable 

or unstable as well as the precautions against erratic 

judgement as mentioned in Sect. 5.1. 

The decision for the loss of stability for the 

drifting type of instability is demonstrated in the 

following example. 

Power =-0.2 p.u. 

Regulator gain Rq  = 1.52 

For positive direct-axis excitation the system showed 

no sign of drift or oscillations. In the negative direct-axis 

excitation region the final stages of-the loss of stability 

is demonstrated by the following chart.. 

Direct-axis 	Negative 	Remarks on the 
Excitation 
Step 	ears p.u. 	System Behaviour 

Negative excitation 

increeMed by a small 

amount from the 

previous level 

'I 

.966 The rotor deviated by 2° but 

settled down to zero angle 

equilibrium. Every now 

and then the rotor wandered 

by 1°. After observing for 

5 mins, the system was 

declared stable. 

..97 	The rotor deviated in the 

following manner 
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Direct-axis 	Negative 	Remarks on the 
Excitation 
Step 	Vars p.u. 	System Behaviour  

0/20/1°/0°/10/00/1°/0. Over 

5 minutes the rotor showed 

tendencies of deviation 

but settled down within 1°. 

The system was declared 

stable. 

.98> The rotor deviated as 

follows 

00/20/00/30/0/40/00/40/0/4°  

and then went into the limit 

cycle with a very slow 

drift. The system was 

declared unstable. However, 

within 5 mins. it did not 

slip. 

It 
	

1.02 	The rotor behaviour summarized 

(mean value over five minutes: 

over the 20/60/2P/80/20/8°  and 

swing) 	continued drifting slowly 

but did not slip. 

I? 
	

1.04 	The rotor behaviour summarized 

(mean value over five minutes 

over the 20/9920/100/30/100/30  

swing) 
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After further steps the synchronism was lost at -1.1 

vars (mean value over the swing), however, the system 

was declared unstable at vars =-.985 p.u., (see the above chart) 

The regulator gain R was increased in steps 

and the above procedure was repeated to locate the 

steady state stability limit. In Fig. 6.5 the experimental 

points are marked as dots for the corresponding regulator 

gains. It can be seen that the steady state reactive 

absorption limit increases with the regulator gain upto 

about R = 3 , and the system then becomes unstable at 

a sharply sloping stability limit curve, 

After making some trials of the sloping region a 

more precise assessment was attempted. It was found 

easier to fix the reactive absorption and increase the 

regulator gain R in small steps. After every small 

step increase in the regulator gain R the system was q. 
observed for about 5 minutes for any instability as in 

the previous case. Since the instability in this region 

was an oscillatory nature, it was easier to judge. In 

the following example the final stages of the loss of 

stability are recorded. 

Power = -0,2 p.u. 

vars = -1.16 p.u. 
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Regulator Gain 	Remarks on the~System Behaviour 

	

2.83 	The rotor oscillated by i° about 

zero angle equilibrium and 

settled down. The system was 

observed for 5 mins. and declared 

stable. 

	

2.86 	The system behaviour was the 

same as above and the system 

was declared stable. 

	

2.89 	The system oscillated more 

frequently by less than 2° but 

settled down. The system was 

declared stable. 

	

2.92 	The rotor oscillated freely as 

below 

0°/290/-290/3/0/-3°/ and the 

oscillations slowly kept 

increasing. The system was 

declared unstable. 

After further steps the system grew violently unstable 

at Rq = 3.04. 

The whole range of points on the sloping region of 

the steady state stability curve were found in a similar 

way and plotted in Fig. 6.5. The theoretical curve was 
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also plotted on the same figure. 

Similar theoretical and experimental curves for 

0.5 and 0.8 p.u, power are given in Figs. 6.6 and 6.7. 

6.7.1 	A Com arison of the Theoretical and Ex erimental 

Curves 

For comparison the theoretical and experimental curves 

in Fig. 6.5, 6.6 and 6.7 are divided into regions marked 

AB and BC . The region AB corresponds to drifting 

instability and BC to oscillatory instability. 

The determination of the experimental curves in 

Figs. 6.5, 6.6 and 6.7 depends on the procedure described 

in Sect. 5.1 for determining the system stability. The 

experimental curves in the region AB and BC would be 

shifted somewhat if the procedure was modified. For 

example if a variation of 4°  was adopted instead of 2o 

the experimental curves in Figs. 6.5, 6.6 and 6.7 would 

shift slightly outwards and would agree better with the 

theoretical curves. 

In the BC region the theoretical and experimental 

curves agree well for power 0.2 p.u. in Fig. 6.5, but the 

agreement is less good at higher power levels. This is 

probably because the parameters correspond better to 

the conditions in the first case. In particular saturation 
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in the quadrature-axis causes Y and Ytq  to increase. 

Hence the slight increase in reactive absorption and 

the gain, (see Eqns. 3.2b and 3.24) with increasing 

power. The experimental curves in Figs. 6.6 and 6.7 

show slight increase in 0o  (max) and R (max) compared - 

to Fig. 6.5. Fig. 6.7 shows a similar trend compared to 

Fig. 6.5. Thus, the discrepancies in the BC region 

at various power levels are probably due to parameter 

variation in Y
q 
 and Y1 q  . 

6.8 The Steady State Stability Limit Curve for the  

Derivative Regulator 

The following transfer function R (p) for the 

regulator was simulated on the analogue computer, (see 

Sect. 4.4.2). 

R (P) = 1tq 	+ 	 (1+.01p)(1+.01p) 

02.2  
] (3.32) +.01p +.01p 1+.02p +.01p 

Rq  was adjusted on the decade potentiometer as was done 

for the proportionate angle regulator. The power at the 

fixed supply was adjusted to 0.2 p.u. 

Fig. 6.8 shows the curve; obtained with the derivative 

0 .1 p 
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regulator. Compared with Fig. 6.5 the same limit curve 

is obtained at low regulator gain but the reactive 

absorption is greatly increased at higher gains. The 

very high current at Q0  = -3.5 p.u. causes difficulty 

with the measurements, and for this reason the curve was 

only measured at P = 0.2. Tests were however made to 

show that the system was stable at equally high values 

of Q at higher powers. 

The procedure for determining the steady state 

reactive absorption limit in the region AB and BC 

(see Fig. 6.8) was the same as for the proportionate 

regulator. 

Like the proportionate regulator the derivative 

regulator also eshibited the sudden loss of stability 

for regulator gains above the point C , (see Fig. 6.8). 

By trial it was observed that though the system was stable 

for higher reactive absorption but was unstable for 

decreased absorption. The instability in this region 

marked CD was of oscillatory nature.• To locate the 

experimental steady state limit points in this region, 

the following procedure was adopted. 

The system was brought to the maximum absorption 

limit. In very small steps the negative excitation was 

decreased. The disturbed system was observed for new 
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decreased reactive absorption. The system in this region had 

a very sharp definition of oscillations. If for 2-3 minutes 

no oscillations developed the negative excitation was further 

decreased by a small step. The above process was repeated 

till 2°  oscillations of the rotor were noticed. After noting 

the limiting - vars, the reactive absorption was again 

increased to stabilise the system. The regulator gain was 

slightly decreased and the above process was repeated. The 

experimental points in the region CD were plotted, see 

Fig. 6.8. From such points in the regions AB , BC and 

CD an experimental stability limit curve was plotted in 

Fig. 6.8. 

6.8.1 	A Comparison. of the Experimental and Theoretical Curve 

Fig. 6.8 shows the theoretical and experimental curves, 

the various regions are labelled as AB , BC , and CD. 

For the experimental curve AB region is the same as 

in Fig. 6.5. A discussion provided in Sect. 6.7.1 is equally 

valid for the region AB here. 

The theoretical and experimental curves show a great 

discrepancy in the region BC. Since the steady state reac- 
+ 

tive absorption increases in this region very much, conse- 

quently the current loading goes upto 4 p.u., therefore, it 

was expected that the resistance of the series reactance Xo 

and the machine could be having stabilising effect. For this 

reason a theoretical curve allowing for resistance was plotted 

as shown in Fig. 6.8. Allowing for resistance decreases the 
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discrepancy in the region BC to some extent. However, the 

overall effect of resistance is not very appreciable. 

The region CD shows good agreement. This region gets 

affected by the transfer functions of various components 

and the parameter Ylq. The reason for the good agreement 

may be because the parameters better correspond to this 

power level and the various feedback circuits give close 

agreement with the designed transfer functions in the 

frequency region associated with CD , i.e. about 2.5 c/s. 

The trend of the slopes of the experimental and theoretical 

curves is similar, though the experimental curve in the 

lower reactive absorption region tends to be less inward 

slanting than the theoretical. This trend shows that the 

system at high gains is unstable even in the region which 

is otherwise stable without the regulation. 

Looking at the overall experimental and theoretical 

curve the agreement could be said to be reasonable. 

6.9 A Corm arison between the Pro ortionate and the 

Derivative Re ulator 

1. The maximum permissible regulator gain for the 

derivative regulator is about ten times that of the 

proportionate regulator. 

2. The maximum permissible reactive absorption 

achieved for the derivative regulator is about -3!".5 p.u. 
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compared to about 1.4 p.u. with the proportionate 

regulator. 

3. The derivative regulator maintains zero angle 

equilibrium for a wide range of regulator gain, whereas, 

the proportionate regulator requires a separate adjustment 

of Vrefq • 

4. Though no quantitative results were obtained, 

it is worthy of record that the derivative regulator 

acted faster to establish the zero equilibrium than the 

proportionate regulator for any load variations under 

the same initial load conditions with any gain setting. 

6.10 Frequency Response of the Quadrature-axis Regulator  

6.10.1 	The Proportionate Regulator  

The proportionate regulator only involves d.c. 

amplifiers and a decade potentiometer, and the circuit 

arrangement is the same as for the direct-axis proportionate 

regulator shown in Pig. 4.13. A frequency response test 

using the Transfer Function Analyser (T.F.A.) showed 

preactically no phase shift and attenuation, as one 

would expect with analogue computer d.c. amplifiers. 

Thus, the transfer function of the proportionate 

quadrature regulator was taken simply as an adjustable 

constant. 
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6.10.2 	The Derivative Regulator  

The transfer function of the derivative regulator. 

is given in Eqn. 3.32, (also see Sect. 6.8) and its 

simulation is shown in Fig. 4.14. A frequency response 

test was done on the simulated derivative regulator 

circuit of Fig. 4.14 using the T.F.A. equipment. In 

Fig. 6.9 is a polar diagram showing the computed and the 

experimental points. Fig. 6.9a shows the computed curve 

and the experimental points for the important range of 

frequencies (0 to 2.2 c/s). Fig. 6.9b shows the complete 

computed curve and the experimental points up to 100 c/s 

on a reduced scale. The experimental points are very 

close to the corresponding points on the computed curve 

upto 5 c/s and for higher frequencies also the agreement 

is reasonably good. 

6.11 122212712222zaaaericResseTestoftheSstemz_ 

In order to measure the open-loop frequency response 

of a servo system, the closed-loop is broken at a suitable 

point and the frequency response is measured. If however 

the loop cannot be broken for stability reasons as is the 

case here, the open-loop frequency response can be 

obtained from a closed-loop frequency response test. 

In Fig. 6.10 is shown a conventional servo-system. For 
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a disturbance U we have the error signal 
	

and the 

loop output Y which are related as below 

= 	- Y 	 (6.1) 

The open-loop transfer function is 

= 7 
	

(6 .2) 

Thus for any signal U injected into the system if Y 

and 	are measured the openl-oop frequency response 

can be obtained. 

The experimental arrangement using the above technique 

is shown in Pig. 6.11. The various items of equipment 

and quantities such as if , 	, Y are labelled in 

the figure. The T.F.A. was used for injecting a signal 

TT and for the measurement of Y and 	Alternatively 

an oscilloscope arrangement described later was used 

for the measurement. Switches A and B were used 

in appropriate positions for connecting 7 and 	to 

the T.F.A. for measurements or to the oscilloscope 

arrangement. 

After starting and warming the set as in Sect. 6.5, 

the power at the fixed supply was adjusted to 0.5 p.u. 
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The proportionate regulator gain Rq  was adjusted to 

1.52 (K = 0.5) and the reactive absorption to 0.8 p.u. 

A variable frequency signal from the T.F.A. of magni-

tude small enough to make the rotor oscillate by about 

,o was used. The angle and the magnitude of the error 

vector 	and the output vector Y with respect to 

the input vector 17 were measured using the angle 

resolver and the magnitude measuring equipment of the 

T.F.A. This arrangement was used for frequencies of 

.5 c/s upwards. Below that the measurements with 

oscilloscope arrangement were preferred because for low 

frequencies the amplitude measuring unit of the T.F.A. 

oscillated about the mean value causing difficulty in 

reading, whereas, on the oscilloscope a trace was easily 

taken. The vector 7 was taken to one beam of the 

oscilloscope with the time base cut off and the vector 

through the angle resolver of the T.F.A. to the 

second beam of oscilloscope. The angle resolver was used 

to shift the phase of the vector 	until the two beams 

were seen to be in phase. The angle resolver gave the 

angle of vector Y with respect to 	. Their 

magnitudes were measured on the oscilloscope using tracing 

paper. There was noise superimposed on the traces of 

vectors 7 and 7, which made the observations 
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susceptible to errors, particularly the angle. The 

frequency response of a non—linear dynamic system running 

at a steady state condition cannot be measured accurately 

because for a good measurement the magnitude of the 

output quantities should be of measurable level, which 

means that the equilibrium must be disturbed sufficiently 

and so does not conform to the theory. 

Fig. 6.12 shows the experimental and theoretical 

curves for the system frequency response. The experimental 

points indicate that the maximum gain in the oscillatory 

instability region is actually more than that given by 

the theoretical curve as was also observed in the 

stability limit experiment, (see Fig. 6.6). All low 

frequency points tend to be outside the theoretical curve 

which probably is due to the effect of resistance which 

has been ignored. At very low frequencies the error is 

greater and could be attributed to measurement error. 

Fig. 6.13 shows the experimental and theoretical 

curves for the derivative regulator. The frequency 

response was only measured in the region where the noise 

did not affect the accuracy of measurement, this region 

for the derivative regulator happens to be the important 

ono. The test was done at 0.2 p.u. power,-1.4 p.u. 

reactive absorption and with a regulator gain R of 



1.6 1.4 1-2 

-8 

FIG. 6.12. THE SYSTEM FREQUENCY RESPONSE WITH THE PROPORTIONATE REGULATOR . 

'0 5 

1.0 

—0.8 pU 

THEORETICAL 
CURVE 

o EXPERIMENTAL 
CURVE 

• 0 INDICATES c/s 

0.1 



2 

1 
-04 3 • 6 

4 

3-6 	4 
3 

2.8 
0 

C. 3.2C)  32 

a -07 -•06 -.05 ®2.6 2.6 
_ •03 -.02 -.01 

2.4 
2. 4 

2.2 

02.2 
2  2.0 
0 

1'8 
1.8 

1.6 

1.4 

VARS.-1.4 pU 
CURVE THEORETICAL 

CI  EXPERIMENTAL CURVE 
° INTYCATFS I-A 

01 

'02 

03 

FIG. 6.13. THE SYSTEM FREQUENCY RESPONSE TEST WITH DERIVATIVE REGULATOR. 



205. 

12.16 (K = 4) . The frequency of oscillations for 

R (max) theoretically had the same value as determined 

by the frequency response test. Numerically as indicated 

on the figure it is 2.4 c/s. The frequency response 

curve also indicates that R (max) experimentally 

obtained is less than the theoretical value and this 

was also confirmed by the stability test, (see Fig. 6.8). 

The test was only made upto 4 c/s because a large input 

signal was needed to make the rotor oscillate sufficiently 

for good measurements at higher frequencies. 

The general conclusion is that for a dynamic non-

linear system with the complex regulator the frequency 

response experimental points obtained in the high 

frequency region are reasonably correct and confirm the 

stability tests. 
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CHAPTER 7 

7. EXTENSION OF THE LAPLACE APPROACH AND STATE VARIABLE 

JiETHODS 

The systems considered in Sect. 2 and 3 were 

eventually reduced to a single loop configuration shown 

in Fig. 7.1, that of a plant and a controller-. The 

plant consisted of the machine connected to an infinite 

bus through a transmission line, and the controller was 

the regulator. A good many problems in practice can be 

reduced to a single loop configuration because of the 

large time constant difference in the main and the auxil-

iary controller circuits. For example it would be 

reasonable to ignore the governor controller circuit 

compared with the excitation controller circuit (say a 

voltage regulator) when considering the stability of the 

system for small changes and thus, reducing the system 

configuration to that of Fig. 7.1. However, the most 

general configuration is of a plant with 'r' inputs 

and 'p' outputs ('r' and 1 p' being arbitrary integers), 

where outputs and inputs are interconnected through a 

controller. Such a multivariable configuration is shown 

in Fig. 7.2. 
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7.1 Extension of the Laplace Approach to MuIlivariable 
System  

The Laplace approach for a very large mv,:lvariable 

system is cumbersome for application, because it is not 

possible to solve the operational matrices straight on 

a computer. HOWtWE..2, for a limited multivariable case 

the extension of the Laplace transform approach is 

reasonable. The following extension is for a two 

input-output system, and may be applied to a two 

regulator system, one using the voltage signal and the 

other the angle signal, both acting through their 

respective controller circuits on the direct and 

quadrature axis field windings. However, Fig. 7.3 

shows in general the to input-output schematic transfer 

function diagram, 

U(p) 	= 

Y(p) 	= 

G(p) 	= 

where 

U1(p) 

U2(p) 

r1(p)  
Y2(p) 

G11(p) 

G21(p) 

input matrix 

output matrix 

G12(p)1 

G22(p) 

the transfer function 
matrix of the system 
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the gain constants 
shown on Fig. 7.3 as 
potentiometers 

K1 	0 

0 	 2 -J 

H(p)  = H1(p) 

0 H2(p) 

the controller transfer 
function matrix 

From Fig. 7.3 

Y (p) 

where 

  

Also 
	2(p) J 

(p) = K(U(p) H(p).Y(p)) 

Let C(p) be the input-output transfer matrix then 

Y(p) 	= 0(p) U(p) 

Solving 0(p) we have 

0(p) 	[1 + KG(p).H(p)]-1  KG(p) 	(7.1) 

Thus, the stability of the above system can be studied by 

applying the Routh criteria to the polynomial character-

istic equation derived from the following determinant 
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+ K G(p) H(P) = 0 	(7.2) 

  

The root-locus technique can also be applied to 

Eqn.(7.2)by keeping K1  or K2 fixed and varying 

the other from zero to infinity. In Ref. 15 the two 

inputs, namely, the governor and the voltage regulator 

are considered but .1nly one output, namely, the rotor 

angle is taken. The system equations are linearized by 

a statistical technique for large oscillations the root- 

locus technique is used for analysis. Although the linear- 

ization is doubtful, the analysis is a particular case 

of the above generalisation. 

7.2 state Variable Methods32-34 

Alternative to the conventional Laplace Transform 

approach to stability problems are the state variable 

methods, where the system equations are expressed as 

the first order differential equations like 

X = y 

xl x2 

= x3 

etc. 

x1' 2' 	 are referred to as the states of the system 

which define a state vector X , for example with n 
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states. 

• 

xn 

The short hand techniques of matrix theory are used in 

writing the whole set of system equations in_ a concise 

form. For an nth order system shown in Fig. 7.2 with 

r inputs and p outputs, the equations in general are: 

	

= AX + BU 	 (7.3) 

	

Y = CX + DU 	 (7.4) 

where: 

X is a state vector as defined above. 

A is a nxn matrix defined as the system matrix. 

B is the input matrix with n rows and r columns. 

U is the input vector with r elementl. 

Y is the output vector with p elements. 

C is the output matrix with p rows and n columns. 

D is the transmission matrix with p rows and r columns.  

Taking the Laplace transforms of Eqns. (7.3) and (7.4) 

we have 

X(p) = (pI - A)-1  B U(p) (7.5) 
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I is the nxn unit matrix 

Y(p) = C X(p) + D U(p) 	(7.6) 

Fig. 7.4 shows the flow diagram for Eqns. (7.5) and (7.6) 

relating Input and output matrix through operational 

matrices. 

The stability of the system can be studied by either 

an Eigen value approach or a Lyapunov Function V(x) 

7.2.1 Eigen Value Approach 

7.2.1.1 Eigen  Values  

For stability assessment the input vector U is 

taken as zero.Eqns. (7.3) and (7.4) reduce to 

X = AX 

and Y = QX 

For the system matrix A the characterisitc matrix is 

(A.-?\.I), where X is a parameter and I the nxn unit 

matrix. The characteristic equation of the system 

matrix A is 
A - 	=0 
	(7.7) 

The roots of the polynomial Eqn. (7.7) are the values 

of T. , namely, Xi, X2, X3  .... called the eigen values 
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of the characteristic matric A. 

The system is considered asymptotically stable, 

if all the eigen values of the system matrix A have 

-ve real parts. These eigen values are the poles of 

the system transfer function. This point is illustrated 

by taking an example of the simple voltage regulator 

system of Sect. 2.3.3. 

7.2.1.2 Eigen Values  for the Voltage regulator of  sect. 

2.3.3. 

To formulate the system equations(7.3)and(7.4), 

there is no definite procedure for choosing the various 

	

state (x1, x2 	...) as state variables. If one has 

to start from scratch one could write these equations 

from the system dynamics, choosing the states by trial 

and error to get the most desirable form. However, if 

the systems transfer functions are known then by the 

direct analogue programming technique33  Eqns.(7.3)and 

(7.4)cen also be formulated. For the voltage feedback 

ease with all the simplifications as in sect.2.3.3 the 

forward loop 'transfer function 

a2p
2 ao  

	

F1(p) - 	 where a2'ao d
3
p3 + d

2p2+ d1p + do  

are given by Eqn.(D3) and d3, d2, dl, d by 1 o 



X = 0 

( 

d

0 

 +a R 

) d3 

0 

(7.9) 

(7.8) 

d1 

and Eqn. 

1 

(d2+a2R) 

(7.9) 

X + 

become 

0-
0 

1 

u 

d3 d3  

(7.10) 
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Eqn. (IV.5). The regulator transfer function is simply 

an adjustable constant R. Using the direct analogue 

computer technique the system is represented in Fig. 7.5. 

The three states chosen, labelled as 	xe_, x3, are 

related by 

X1  = X.2  

x2 = x 2 	3d 	a R 	(d2  + a2R x - _f_a 	
d1 

3 -d3 + d3 
x2 	)x3  -(7-1°--)x1 	d3 3 

Y 	= aoX1 + a 2
X, 

In the matrix form Eqn. 

0 	1 

and 

y = [ao 
	0 	a2]X 
	

(7.11) 

From Eqn. (7.10) the characteristic matrix is 

   

A-7J = 

0-k 	1 	0 

0 	1 

d+a R 	d, 	d2+a2R 

d 0  ) 	-,(e) 	d3 	
+ 

3 3 

(7.12) 

   

   



R 

U 

1 
T =INTEGRATION WITHOUT SIGN CHANGE. 

FIG. Z5. DIREC T ANALOGUE PROGRAMME REPRESENTATION. 
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Using Eqn.(7.7)the characteristic equation of matrix A 

giving the eigen values 	is 

d
3
%3  + (d2+a2R)X: 1  +do  +a0R= 0 	(7.13) 

Eqn. (7.13) is the same as Eqn.(2.24),if the values of 

coefficients 'd' and 'a' are substituted in Eqn. (7.13) 

and A. is replaced by 'p' . This shows that the igen 

values are the same as the roots of the equation for the 

closed-loop system (given by Eqn, 2.24), i.e. also the 

poles of the closed-loop system. 

7.2.2 Lyapunov Technique  

7.2.2.1 Lyapunov Stability Criterion  

The Lyapunov stability criterion stems from the 

concept of energy associated with the system in a given 

state. 'Then a system is in equilibrium, its energy 

is a minimum and is a positive quantity. If the system 

is disturbed from its equilibrium and if the rate of 

change of energy is negative, then the system will settle 

down to its equilibrium. The concept of minimum energy 

associated with an equilibrium state of the system was 

developed by Lyapunov in his famous stability criterion: 

If a system can be represented by X = £(x,t) 

where X is a state vector and if there exists a function 
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V(x) such that 

i) V(0) = 0 	ii) V(x) > 0 when x 	0 , i.e. V(x) 

is always positive definite, iii) V(x) is continuous 

in x 	iv) V(x) 	oo when x 	co v) V(x) < 0 

when x / 0 then the system is said to be asymptotically 

stable. Everything hinges on the choice of the Lyapunov 

function V(x) . Usually the stability is tested around 

the origin. There is no loss of generality in actually 

doing so, because the origin itself can be shifted. 

7.2.2.2 Lyapunov Function 

No general way has been found to determine whether 

a suitable V(x) exists for a system or if any given 

choice of V(x) is the best. V(x) = constant, represents 

closed surfaces around the origin and if V(x) is ..ve 

then all the trajectories move inwards, closing in on the 

origin. Thus, we seek functions V(x) which are +ve 

definite and which have a -ve definite derivative. 

For a linear system it is usual to choose V(x) 

to be a quadratic in x, since there are simple methods 

to check +ve definiteness of these functions. This point 

is dealt with later. There is an important theorem by 

Lyapunov which states: 

A necessary and sufficient condition for xi 
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(1=1, 	n) to be an asymptotically stable solution 

of the matrix equation X = AX (A being a real constant 

matrix) is that X'PX be a +ve definite quadratic form 

where P is a symmetric matrix satisfying the equation 

PA + ATP = -Q 	 (7.14) 

X'QX being any positive definite quadratic form and 

being a real symmetric matrix. 

This shows that we may choose any Q + ve definite 

(usually a unit matrix is chosen) which will surely give 

V(x) = -X'QX as -ve definite. By solving Eqn. (7.14) 

P can be found. P being another symmetric matrix, 

Eqn. (7.14) yields -1.n(n+1) linearly independent re- 

nt lations for fk.n+1) unknown elements of P matrix. 

Consequently the Lyapunov function: 

V(x) = X'PX (7.15) 

Note: 

minors 

P is +ve definite if, and only if, all the principal 

P11 ' P11 	P12 P11 	P12 P13 

P12 	P22 P12 	P22 P23 ,...det(P) 
P13 	P23 P33 

(7.16) 

are positive. 



220. 

The solution of Eqn.y7.14)is quite cumbersome. 

For P to be +ve definite the principal minors given 

by relation (7.16) must be positive. This eventually 

leads to the Routh-Hurwitz stability conditions, a 

result which is rigorously proved in Ref. 35. Thus, 

we see that Lyapunov technique is cumbersom and does 

not give any. more than the Routh - Hurwitz stability 

criteria for linear systems. However, its main use lies 

In solving nonlinear problems where other techniques 

become useless. 

Finding a suitable Lyapunov function is difficult. 

In Ref. 36 a variable gradient method is used to generate 

a Lyapunov function for the transient study of synchronous 

machines. For a similar study in Ref. 37 and 38 Lyapunov 

functions related to the total energy of the system are 

generated. However, there seems to be no paper dealing 

with the transient stability with regulators of synchronous 

machines using the Lyapunov function method. 
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CHAPTER 

8. 	CUCLUSIOIIS 

The conclusions derived in this section are based 

on the theoretical and experimental investigations into 

some aspects of the direct and quadrature axes excitation 

regulation. The system equations are derived so that any 

feedback from within or outside the alternator is formu-

lated from the alternator output quantities; subsequently 

they are arranged on a model diagram shown in Figs. 2.1 

and 3.1 which is of great assistance in 

1. developing the open-loop transfer functions 

with any number of feedbacks. 

2. understanding the effect of individual alternator 

output quantities. 

3. programming the problem in the sequence as 

indicated on a digital computer, and or 

alternatively an analogue computer. 

For stability analysis the conventional criteria of 

the Routh, the Hyquist, the root-locus method are used. 

Some useful deductions are made for the direct-axis 

regulation using the root-locus method and the Routh 

criteria. The root-locus method gives a graphical picture 
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of the system's modes i.e., the roots of the characteristic 

equation, but if all the details are included it becomes 

cumbersome because of the increased order. The same is 

true for the Routh criteria, but the algebraic relations 

can yield some useful information in regard to the 

principal effects for simplified cases. 

For the quadrature-axis regulation the Nyquist 

criterion is mainly used because the details can be 

considered with relative ease. For the Nyquist criterion 

the increase is the order is just like another arithmetical 

operation on a digital computer. The effect of an individual 

detail can be studied by comparing the Nyquist plots with 

and without the detail. It also provides a direct 

comparison of the theoretical and experimental frequency 

response plots of the whole system or part of it. Each 

method has its own advantage and their application is a 

matter of convenience to obtain the best results. 

For the analysis of a large system the use of 

techniques readily adaptable on digital computers is 

inevitable. In this respect state variable methods have 

an edge over the conventional Laplace approach because 

of the direct application of matrix algebra in conjunction 

with digital computers. For linear systems the eigenvalue 

approach which is the equivalent of the root-locus 
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method is being increasingly applied. For non-linear 

systems Lyapunov is a powerful method, although 

establishing a suitable Lyapunov function is not easy. 

For the direct-axis regulation it has been 

established that a proportionate voltage regulator extends 

the steady state stability from the peak of the steady 

state load angle 6s  to the peak of the transient load 

angle 6's  , but the gain range of such a regulator is 

poor. When derivative of the field current is incorporated, 

the stability limit pattern changes depending on the gain 

of the field current feedback. The ultimate stability 

limit is reached when the short circuit transient time 

constant T 2 d is swamped by the field current feedback 

effect, see &In. (2.32), which indicates that the product 

of R and M is constant. For the lower values of N 

R(max) is increased but is comparable with the proportionate 

regulator, see Fig. 2.11. For N ..001; increase beyond 

Sy
s is very little, however, in the upper gain region 

BC the ultimate stable angle 6 is slightly increased 

for the same gain R compared with the proportionate 

regulator. For higher gains of N though the steady 

state stability is extended beyond 6is  but the gain 

range is decreased, see Fig. 2.11 for N .-.004. This is 

a limitation from practical point of view, where increase 
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in the gain range with the increase in the steady state 

stability is a desired feature. It may be possible to 

improve the condition by using a derivative voltage 

regulator. However, if it is not required of the 

regulator to extend the stability range beyond 8. = 5' 

for practical reasons, a small amount of field current 

feedback (of the range M =.001) would prove useful (see 

Fig. 2.11 curves 	and 2). 

The experimental and theoretical curves show good 

agreement in the lower gain region and some departure in 

the higher gain region but the trend is the same, and 

the general agreement can be described as reasonable. 

Particularly considering that the theoretical curves are 

computed neglecting resistance and damping. 

In the literature for the direc-axis regulation 

various schemes have been investigated for the full-load 

conditions and its limitations at the zero power are in 

most cases ignored. Some papers mention the steady state 

limit Qo = -V
2Yq  for a simple regulator transfer function. 

However, the rigorous proof provided in Sect. 2.8 

confirms this limit for any direct-axis regulation scheme. 

The limitation of the direct-axis regulation scheme 

at zero power appears reasonable in the physical sense, 

because it cannot affect the parameters in the quadrature-axis 
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on which the limit depends. Thus the quadrature 

regulation scheme is a logical development. 

The theoretical investigation for the quadrature-

axis regulation at zero power shows that 

1. the voltage -feedback modified by the regulator 

transfer function Rq  (p) cannot affect the steady state 

reactive absorption limit. 

2. the signal derived from Id  is not effective. 

3. the signal derived from I is not of the 

right polarity for stabilisation at negative vars. 

Moreover it changes sign from positive to negative vars, 

and therefore by itself is not a desirable feedback. 

4. the signal derived from the rotor angle is the 

most effective because it is always a positive quantity 

and in conjunction with R
q 
 (p) can modify the charac-

teristic equation suitably to extend the reactive 

absorption limit beyond -V2Y
q 
 . 

The experimental investigation with the voltage 

feedback confirms the theoretical deduction. The rotor 

angle signal experimentally proves useful as theoretically 

expected and affects the steady state limits depending on 

the regulator transfer function. 

The system with the angle controller on the 

quadrature-axis behaves like a position control servo-system 
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on the quadrature-axis. When the system is delivering 

power at the fixed supply the rotor can remain in the 

zero angle equilibrium with its stability taken care 

of by the angle controller, because the quadrature 

field winding can supply the necessary mmf for the 

equilibrium. The system behaves in the same way over 

the whole range of power. Under ideal condition at any 

power the rotor angle is zero, therefore, the conventional 

meaning of the load angle is not applicable, consequently 

the steady state stability limits are defined in terms 

of reactive power. 

The proportionate angle regulator with an ideal angle 

device increases the steady state reactive absorption from 

-Vqo
2Yq to -Vqo q 

2Y/ ' a result which has its parallel 

with the direct-axis proportionate voltage regulator 

scheme. However, with a practical angle device this 

limit is reduced because of the delays associated with 

the practical angle device. The regulator gain range 

Ro  is poor, because of the sharp slope of the stability 

limit curve (see Pig. 3.5). 

The inclusion of the first derivative only improves 

the situation marginally (see Fig. 3.8) over the pro-

portionate regulator and cannot be considered of practical 

advantage. 
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The derivative regulator (see Sect. 3.5.2.2) increases 

the reactive absorption limit and the gain range Rq  many 

times compared to the above two quadrature-axis regulators, 

therefore, it can be considered of practical value. The 

following comparison based on the experimental investi-

gations (see Figs. 6.5 and 6.8) proves the merit of the 

derivate regulator over the proportionate regulator. 

1. The maximum permissible reactive absorption 

obtained with the derivative regulator is about 

-3.5 p.u. compared to abbut -1.4 p.u. for the proportionate 

regulator. 

2. The maximum regulator gain Rq  depends on the 

vars. At vars = -1.0 p.u. R (max) is increased from 

about 2.8 for the proportionate regulator to about 21 for 

the derivative regulator, an increase of about 7.5 times. 

3. The proportionate regulator for reasons of poor 

gain needs adjustment of the quadrature-axis field current 

for zero equilibrium when power is changed from one level 

to another, whereas, the derivative regulator in the 

high gain region maintains practically the zero equili- 

brium by itself under changing conditions. 

The damping is equivalent to a small lag term in 

the open-loop transfer function and has little effect 

on the steady state stability limit curves. The 
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resistance has little stabilising effect but tends to 

improve the stability with increasing power. 

The increase in the permissible reactive absorption 

limit with the 	derivative regulator is very much 

more than required for steady state operation; however, 

it is expected that it would contribute in extending 

the transient stability. 

From experimental evidence it can be recorded that 

under any transient disturbance if the quadrature-axis 

regulation system slips it tries to restablise at the 

next equilibrium point after slipping one pole pitch 

(=1800). With the excitation then reversed the system 

moves over into lagging region if it was in the leading 

region to start with, and vice versa. 

The derivative regulator constructed for the 

practical investigations is by HO means an optimum design. 

From consideration of the steady state performance alone 

it could be redesigned to give still further increase in 

the gain range R with or without increasing the 

reactive absorption any further. The optimum design 

must be related to the required performance, and in this 

field there is a great scope for further research. 
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APPENDIX 

Following is a summary1'16 of equations which lead 

to matrix 2.1. and matrix 3.1. 

vd  = Vm  sin5 = pyd  + Wyg  raid  yeo 

vq  = Vm  cos5 = -wyd  + pyq  + raiq  + ydpo 	(I-2) 

(Ai T = 	r) e 2 1-d yqid) ( I - 3 ) 

Ti  =Tm  -Te  =Jp
2((ot-5) 

x cp) 	G = d 	.d  
1

iEl v  

	

Yd cu 	fd 

yip) 
= ffaLl iq 	 vfq q 	63 

(1-4) 
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APPENDIX  II 

TIM Expressions For Transfer Functions Ar(p) 

The terminal voltage vt  is given by the following 

the equation 

1/2  
vt  = [(vdqxc )2 + (vq +xcd)2 ] 

Therefore, 

Avt = Al (p) A id + A2( p ) A S + A
3
(p) Lig 
	(11,1) 

The expressions for Ar(p) are given in Eqn. (2.5) 

11.2 Expressions for Transfer Functions Atr(p) 

The transfer functions Alr(p) are associated with 

the field current feedback. The basic equations16 are: 

(1)(1 	Lmdif 	Lmd ikd 	(Lmd+ra )id 

0  = Lmd Pif 	[rke(Lmd + Lic.d )P] ikd Lmd Pid (11.2) 

Eliminating ikd from the above set of Eqn. (11.2) we 

have: 



where 

G1(p) 
X
di
(p) 

CF)d = 	uo . i1 +  co 	• id 

1+2ke  
G1 (P)  = 1+Tp 2 	X md 

(11.4) 
1+T5-  X (p) = 	X di 	1+T2p d 

In Eqn. (11.4) 

T = 1  (X 	) 2 Wrkd  md kd 

1 	x 	
XmdXa ) ---- T5 	GJrid 

( d 
	Xmda' 

(I1.5) 

Xkd 
(-A) rkd 

Tkd 

wy d  from Eqn. (I..2) after neglecting p(pq  and po 
terms is 

wYcl 	vq ra lq 
	(11.6) 

Eliminating bolC40), d  from Eqn, (II.3) and Eqn. (II.6) we 

have 
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= G1(p)if + dl(p)i - raiq 
	(11i7) 

Prom Dan: (11.7) the shall oscillation equation for 

is 

Alf  = a1  (p)+ a2(p)8 S + a3(p) /lig 	(ILO 

The expressions for ar(10 r ft 1,2,3 are given in Egli, 

(2.6) and the relation between Alr(P)  and  ar(P) 

= 1,2,3) in Eqn, 2.8. 
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APPEI4DIX III  

Expressions for Fl(p) and F2(p) 

F1(p) and F2(p) are the transfer functions 

between the feedback signals ( Avt and M(p) AIf) and 

the input voltage to the field winding ( vfd  ) . The 

expressions F1(p) and F2(p) are the sums of product 

terms derived from Ar(P)/A l r(P) and Br(p) , (r=1,2,3). 

The expressions for Br(p) and Ar(p)/AIr(p) are given 

in Eqn. (2.3) and Eqn. (2.5)/(2.8a). Using these 

expressions Fi(p) and F2(13) are obtained below 

3 
F1(p) 	B 

r(p).Ar(p) = B1(p).A1(p) + B2(p)A2(p)+B3(p)•A3(p) 
r=1 

(1+Tkdp)Yd  
	D(p) 	[(Qo+JP2 +Vqo

2 Y
q(P)-2raVqoIqoYq(13)) x  

X 

	

(X c Ido +V  qo  ) x -a- + 	(-V, o  +r  a (21do +Vqo Yq  (p)-2IqoYq(p)rq)) x Vto 	a  

P .X 
( 	) - (VqoYq(p)Vdo+ra(Qo+Jp2-2VqoIdo)Yq(p)) to 

X 
-(V -I X )-2- do 	qo c Vt  

0 

(III.1) contd. 
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(1+Tkd
p).Y

d r/ 
LAVgjci(10)+Ido-raYq(P),I(10 ) X (V2-2rapo+xcQ0 ) D(p) 

X, 
+Jp2  ((V +XiI )+r (V -X I )Y (p))] qp 	do 	a do c go q 	V

to 
(111.1) 

And 

3 

F2(p) = 	Br(p)Alr(p) = B1 (p)A'1 (p) + B2(p)..0 2(p) + 

r=1 
B
3
(p).A 1

3
(p) 

(1+TkdP)*Y  d [No_i_jp2i_v(102 
D(P) 	

yq(p 
)-2raVoloIcloYcl(p)) x 

x 
dl (P) M(p) 	1, 

` 	G
1 
(p) • R

e 	VY (-vdo+ra (2Ido+V(10Yq (p)-2I(10Yq (p)ra )) x 

(in .  Vdo_JI(P)  ) 
Gl(p) 	(V V Y (p) + ra(Q0+Jp

2 
 -2VcioIdo)Yq(p)) x 

e 	go do g 

(

r
a  M(  

1
p)N1  

Gi(p) Re  -1  

(111.2) contd. 
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(1+Tkd P)'Yd 	F 1.- fQ0+V(402Yq(P)+Vdo2Ydi(P)-1-42) Xdi(P)  D(p) 

ra  (2VcloIcloxd1(p)+2VdoIcioN(p)-Vq0Vdo) Yq(P) 

rat (I V -V I 1-J102 )jaa4-, qo do do do - 	ReG1 kpj 

Note that the rectified constant term Re is omitted in 

Eqn. (III.1) but appears in Eqn. (III.2), modifying the 

field current gain N to N/Re  , (see Sect. 2.2.4). 
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APPENDIX IV 

To obtain the characteristic equation (2.18) from 

Eqn. (2.16), first we develop the expression for 

L(p) ( = R DAB ) as a ratio of polynomials in tp, 

Using Eqn. (2.12) we have 

L(p) = R 

 

= R F1  (P) + R F2(p) D p) 

The expressions for R F1(p) and R F2(p) are obtained 

as ratio of polynomials separately and later combined to 

give L(p). 

Using the relation for F1(p) in Eqn. (III.1) and 

expanding in the form of polynomial we have 

where 

T̀kd'Yd.X 
Vto 	% [CIT qo +Xc Ido ) 	ra(Vdo-Xc-T  qo)y  q R  

J."Yi3X 
a2 = 	Vtp 

E(Vqo +Xc Ido )+ raa  (V,o  -Xc Iqo  )Yq  J. R 	(IV.3) contd. 
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.YX c  
Vto 	

[(VcloYcl+Ido-raygo)(V2-2r20+XcQ0)] .R 

YdXc ao = 	(Vq0YeIdo-raygo) x (V2-2r20+xcQ0) . R 
to 

and 

D(p) = DI(p)(1+Tldp)(1+Tudp) = d4p4+d3p3+d2p2+dIp+do 

(IV. 4) 

In Eqn. (IV.4) the coefficients are as given below: 

d4  = J(T d  TId  +r a
2Yd  Yq T 2 do  ) 

d3 = J(T'd+V'd+ra
2(T'do+T"do)YdYq)  

d2  = J+(Q0+Vq02Y_q)T TdT"d+Vdo2YtdTtdTtldo-2ra (VgoIcloyldT"d+ 

Vdo Ido Yd T'do T"do ) + ra  2Yd  Yq [(Vdo Iqo -V  qo I(10 )T1dod T".o  + J] 

d = T1d.SI0+(Q0+Vq02;IT"a+Vdo2YdT"do) 	2ra(Vq0Icloyud + 

oY qT td+VdoidoldTudo+VdoIdoldTido) 

+ ra2YdYq [(Vdoqo-VqoIdo)T"do 	(Vdoiqo- Vq0Ido)T1 0.0  

d0  = S0  -2ra  ( oqoYq +Vdo-IdoYd' - )+ra2Yd Y cis (vdogo-vgo-do ) --- ' 

(IV.5) 
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The expressions for So  and Sao  , i.e., the 

slopes of the power and transient power angle curves 

respectively are given in Eqn. (2.20). 

To obta:l.la R F2(p) in the polynomial form substi- 

tuting A'dl (p) and G(p) from Eqn. (II.4) in Eqn. (III.2) 

we have 

2 	

b4p4+b3p3+b,p+b +b 0 
R F(P) 

 
D(p) 

where 

b4 = 
-J(T5+m 	M .,2.,  a2vv) o R v  

"e'md 

b
3 -J(Xd+ra  Ye* Re.Xmd 

2 
	Yd.RTT  

b2 = Yd 	((Q +V 2Y )T +V 2Y T ) X+2rYci(Vgo qo  d 5  IXT 
0  (10 	

d a  
5 do d 2/ 

+V, I X T )-r Y V V T 	2T Y (I V -V I )] ao do q 	aqdo qo 2 a 2q qdo qo do RY e'md 

b1 	[-S0Xd+2raYq(Vq0IcjoXd+ VdoldoXq)-raYqVqoVdo 

M.Yd r 2Y (I V -V 	)j a q qo qo qo do 	Re..kmd  

bo = 0 
	

(IV.7) 

D(p) is given by Eqn. (IV.4). 
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Adding Eqn. (IV.2) and Eqn. (IV.6) gives 

R N(p) = b4p4+(a3+b3  )p3+(a2  +b2  )p
2+(a1  +b1  )p+(ao  +bo  ) 	(IV.8) 

Substituting for D(p) and R N(p) from Eqn. (IV.4) 

and Eqn. (IV.8) respectively in Eqn.(2.17) we have the 

characteristic Eqn. as below 

(d4+b4)p4+(d3+a3+b3)p3+(d2+a2+b2)p2 + (d1+a1+b1)p 

+ (do+ao+bo)p = 0 

or in more compact form as 

c4p
4 + 	+ c2p

2+ c1  p + co 	0 

The expressions for c4,c3,c2,c1  and co are given in 

Eqn. (2.19). 
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APPENDIX V 

V. 	STABILITY CRITERIA18-20 

V.1 Root-Locus Hethod 

V.1.1 	General  

The Root-Locus technique is used for the explanations 

and stability determination for the direct-axis excitation 

control analysis. The technique is explained briefly in 

this appen -ix. The idea underlying the technique is to 

find the roots of the characteristic equation of the 

system from the open-loop transfer function pole zero 

configuration, with the loop gain varied from zero to 

infinity. Beside giving the loci of the roots, this 

method indicates i:!hat modifications are needed in order 

to stabilise an unstable system. 

V.1.2 	The Principle 

Consider a simple linear control system shown in 

Pig. V.1. The closed-loop transfer function C(p) of 

the system is given by 

G1  (p) 
0(p) 7-7-ff-757 (v. ) 



G(P) 
INPUT 
	

OUTPUT 
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FIG . V.1. _ CL OSED_ LOOP SYSTEM BLOCK DIAGRAM. 

FIG. V.2. _ VECTOR DIAGRAM FOR GRAPHICAL 
WEASUREMENT OF 'ANGLE' AND tMAGNITUDE 
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where: 

G(p) is the forward loop transfer function 

H(p) is the backward loop transfer function 

R 	is the variable loop gain 

L(p) = G(p) . H(p) 	 (V.2) 

H(p) 	is the open-loop transfer function. 

L(p) in general is a ratio of polynomials in 'p' and 

can be expressed as D 	Thus the roots of 

N(p) = 0 
	 (v.3) 

are the zeros of the open-loop transfer function and 

the roots of 

D(p) = 0 
	 (v.4) 

are the poles of the open-loop transfer function. The 

characteristic equation of the system is a polynomial 

equation in p given by 

D(p) + R N(p) = 0 	 (V.5) 

Let there be n zeros, namely, z1 ,z2, 	 ,zn and 

m poles, namely, pl ,p2,....,pm  of the open-loop transfer 
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function. L(p) 	The open-loop transfer function in 

factorised form is given by 

L(p) 
(p-z1)(p-z2) 	(p-zn) 

(13-Pi  )(P-P2).. • • • (P-Pm) 
(v.6) 

In Eqn. (V.6) N(p) and D(p) are polynomials in p 

of the nth. and mth. order. III these polynomials the 

highest power coefficient is taken positive and unity, 

however, the constants can be merged with the loop gain 

R as desired. The case where the highest power coeffi-

cient in N(p) or D(p) has the negative sign is dealt 

with in Sect, V.1.3.5. In Pig. V.2 the poles and zeros 

of the open-loop transfer function are marked on the 

complex p-plane. For simplicity three poles and one 

zero, all in the left half p-plane are shown. This by 

implication means that all the coefficients of the 

polynomials 11(p) and D(p) are taken positive for 

illustration, this however is not necessary. If a point 

tSt in the complex p-plane is a root of the characteristic 

equation (V.5) then: 

D(S) + R N(S) = 0 

which leads. to the following conditions in general 
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(V.7) 

And 

Arg IT(S) - Arg D(S) = n 	2nh 

(where h is an integer) or 

Arg(S-z1) + Arg(S-z2)...... + Arg(S-zn) 	Arg(S-p1) 

- Arg(S-p2) 	 - Arg(S-pm) = it 	2nh 	(V.8) 

The conditions represented by Eqns. (V.7) and (V.8) are 

called the 'Magnitude' and 'Angle' conditions respectively. 

In Fig. V.2 the vectors (S-z1) , (S-pi) , (S-p2) and 

(S-p,) are shown. The magnitude of each is represented 

by the length and the angle by the inclination to the 

real axis. 

The root-locus is defined from the angle condition 

as the locus of points S that satisfy Eqn. (V.8). The 
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magnitude condition given by Eqn. (V.7) enables one to 

obtain R at each point S of the locus. The root-loci 

can be constructed using the above mentioned conditions 

graphically, but much labour can in practice be saved 

by using, a digital computer to find the roots of the 

characteristic equation for gains from zero to a reasonably 

large gain. However, the following rules are of great 

assistance in general when using the root-locus technique. 

V.1.3 	Rules 

V.1.3.1 General 

If the characteristic equation is of the mth order, 

it has m roots, which may be real or complex. The 

order of the characteristic equation is determined by 

the polynomial D(p) because its order is higher than 

or equal to that of the polynomial N(p). Since the 

characteristic equation has m roots, the root-locus 

has m branches, each of which corresponds to one root 

of the characteristic equation. The real roots are 

represented by points lying on the real axis, so that 

the branches which correspond to real roots consist of 

portions of the real axis. The branches which correspond 

to complex roots may be more or less complicated. Since 

the coefficients of the characteristic equation (V.5) 
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are real, the complex roots are complex conjugates 

and hence the branches of the root-loci which correspond 

to the complex roots are symmetrical in pairs with 

respect to the real-axis. 

V.1.3.2 	Starting point  

The root-loci of the characteristic equation are 

plotted from zero gain to infinity. At zero gain the 

characteristic equation (V.5) reduces to: 

D(p) = 0 

which gives the starting point of the root-loci. 

D(p) = 0 gives the open-loop transfer function poles of 

the system. Therefore, each branch of the root-locus 

starts from the open-loop transfer function pole 

position. 

V.1.3.3 	Termination of Roots  

Each root-locus terminates when the gain R is 

infinity. The characteristic Eqn. (V.5) of the system 

can be divided by R and written as 

D(p) 	T1(p) = 0  R 
(V.9) 
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When R tends to infinity Eqn. (V.9) reduces to: 

11(p) = 0 

N(p) = 0 gives the open-loop transfer function zeros of 

the system, which are n in number, whereas, the 

system has m roots. From Eqn. (V.9) it is clear 

that with the increase in the gain R the highest 

power coefficients, for m greater than n , approach 

to zero. As a result rn-n roots of the characteristic 

equation approach to infinity. The other n roots of 

the characteristic equation terminate at the open-loop 

transfer function zero positions. 

V.1.3.4 Branches on the Real Axis 

The complex conjugate poles and zeros do not affect 

the existence of any branches of root loci on the real 

axis. The real branch of the root loci exists wherever 

the angle condition given by Eqn. (V.6) is satisfied 

by the real open-loop transfer function poles and zeros. 

In Fig. V.3a the branches of a typical root locus on 

the real axis are shown in accordance with the above 

rule. The pole-zero configuration is arbitrarily chosen. 
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Re. Axis a. 

REAL BRANCHES 

b. 

   

Re. Axis 

     

     

FIG. V. 3._ REAL BRANCHES OF ROOT_ LOCUS 
a. FOR R.H.S. OF EQN.V. 8 = TT t. 27TX 
b. FOR R.H.S. OF E aN.V. 8 = 0 i_ 277' 

M.Axis 

FIG. V. 4. _ NYQUIST CONTOUR . 
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V.1.3.5 	Zero Angle Conditionn 

In general the angle condition is given by Eqn. 

(V.8). If R is negative the right hand side of 

Eqn. (V.8) becomes 0 + 27EX . R could be negative 

under positive feedback conditions or when the highest 

coefficient of N(p) or D(p) becomes negative. The 

rule in Sect. V.1.3.4 correspondingly stands modified 

(because of the change in Eqn. V.8), and is demonstrated 

by an illustration in Fig. V.3b, showing the branches 

of a typical root-locus on the real-axis for the same 

pole-zero configuration as in Fig. V.34. 

V.1.3.6. Intersection With the 1G0 -axis  

The intersections of the root-locus with the 

j(0-axis establish pure oscillatory roots of the 

characteristic equation, and determine the natural 

frequency of the closed-loop system. The conditions 

for obtaining purely imaginary roots of the characteristic 

equation are discussed in Sect. V.2.1. 

Y.1.3.7 Asymptotes  

In Sect. V.1.3.3 it is mentioned that m-n roots 

approach to infinity. These roots approach to infinity 

asymptotically. For a point remote from the open-loop 
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poles and zeros, the effect is the same as if they were 

all located at the centre of gravity determined from 

the arithmetic mean 

(P
1 
+p2  ...pm)-(zi+z2...zn) p  =  

m-n 

All the roots approaching infinity to asymptotically 

converge if extended backwards to the centre of gravity 

determined in this way. 

V.1.4 	Inverse Root-Locus  

The root-locus in the inverse form can be of great 

use when the roots of the characteristic equation increase 

in magnitude very rapidly and change over from the L.H. 

plane to the R.H. plane. Such a change causes difficulty 

in assessing the limit of stability. It can be overcome 

by plotting the inverse root-locus. The inversion 

brings the points at infinity to the origin and the 

convergence of loci at infinity can be more readily 

verified. The 'Angle' and 'Magnitude' conditions and 

other rules mentioned in Sect. V.1.3 are unchanged. The 

inversion is carried out as follows: 

Take a general transfer function 
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_ 	2 a3p3  +a2p +alp+ao  

d4p4+d3p3+d2p2+d1p+do  

Using the transformation 	W 

the transfer function in the W-plane becomes: 

a3W+a 2W2+a1W3+a0W4  

d 4 +d3 	2 W+d W 	1'2+d  W3+d 

Instead of dealing with the system in the p-plane it can 

now be dealt with in the W-plane. Each root of the p-plane 

appears as its inverse in the 1--plane. This technique 

is used in Sect. 2.3.4 (see Pig. 2.9). 

V.2 Routh Criterion 

The Rort"1:crityr4.en in algebraic and graphical 

form is discussed below. 

V.2.1 	Algebraic form 

The characteristic equation of the system can be 

written in the following form 

Cnpn + Cn-1P
n-1 + 
	+ Co = 0 
	

(v.lo) 



252. 

For all the roots of the characteristic equation to be 

in the I.N. p-plane, it is necessary that all the 

coefficients Cn 	...... Co  must be positive. 

But this condition is not sufficient. To meet the 

necessary and sufficient conditions the coefficients of 

the characteristic equation are arranged in the 

following array. 

n 
p 	Cn 	Cn-2 n-4 

pn- Cn-i 

	

n-3 	Cn-5 

• • 	0 	 •• • • 

• • • • 	 • ••• 

The coefficients of the third row are obtained by cross 

multiplication as follows: 

1
3n-2 

 

CnCn.-3  
600 Cn-1 	Cn-1 

 

 

The coefficients of the fourth row are obtained again 

by cross multiplication, using the second and third row 

and so forth until n+1 rows are obtained. 

The number of changes in sign of the coefficients 

in the first column of the above array is equal to the 

roots of the characteristic equation in the H.H. p-plane, 

i.e., the roots with positive real parts. For a third 
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order system the Routh array becomes: 

3 p : C3 	C,1  

p2 : C2 	Co 

C2C1-C3co  p : C
2 	

0 

po : Co 	0 

(v.11) 

This leads to the conditions of Eqn. (2.33). 

If in the Routh array all the coefficients in a 

row are zero, this indicates that there are two equal 

and opposite roots, in particular, two imaginary 

conjugate roots. For a third order system to have 

purely imaginary conjugate roots coefficients in the 

p1 row of array (V.11) must be zero. This loads to 

the following condition 

C2C1 - C3Co = 0 
	 (V.12) 

The imaginary conjugate roots determine the natural 

frequency of the closed-loop system. The oscillatory 

mode is determined from an auxiliary equation established 

from the coefficients of a row just above the zero 
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coefficient row. For a third order system the 

auxiliary equation is 

C2p
2  + Co 	0 
	

(v.13) 

This technique is used in Sect. 2.3.3 for finding the 

natural frequency of the closed-loop system. 

V.2.2 	Graphical form  

In the characteristic equation (V.10) some of the 

coefficients Cn ' Cn-1 ' contain the gain constant term 

R . This makes the Routh stability coefficients 

dependent on the gain R . For stability at any gain 

level R all the Routh stability coefficients must be 

positive. If the Routh stability coefficients are 

plotted against the gain R , the stable and unstable 

zones can easily be demarcated. Fig. 2.10 shows such 

plots, see Sect. 2.3.4. 

V.3 Nyquist Criterion 

The Nyquist criterion uses an open-loop frequency 

response plot to determine the stability of the close-

loop. It states that the closed-loop system is stable, 

if its open-loop frequency response locus encloses the 
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(-1 20) 	point counter clockwise a number of times equal 

to the unstable poles of the open-loop transfer function. 

The above criterion stems from the consideration 

that if a closed curve C in Pig. V.4 which consists 

of: (a) a line parallel to the j0J-axis and at 

infinitesimal distance to the right of it, (b) a 

semicircle of infinite radius in the right hand plane 

is traced clockwise and a corresponding locus plotted 

on a complex plane of a function F(p) , the F(jW) 

locus can be shown to encircle the (0,0) point as 

many number of times clockwise as there are roots of 

F,(p) = 0 in the R.H. p-plane. This concept is ektehaed 

to a general transfer functionD p 	If it has Z 

zeros and P poles in the R.H. p-plane then the locus 

NOW)  
will encircle the (0,0) point counter clockwise 

D(jco) 

(P-z) times. This concept when extended to 1 + 11(1cAi)  
D(jW) 

leads to the closed-loop stability criterion mentioned 

above. 
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Table No.1 

The Direct-axis Regulation Machine Parameters' 

The michro-machine stator NO .... 334818 

The michro-machine rotor NO .... 334828 

Machine Rating 	2KVA 

Unit Voltampere 	1825VA 

Unit Voltage 	186V (Line to line) 

Unit Current 	5.66A 

Parameter 	Parameter value 	Remarks 

X 	 2.321 p.u. 	All the machine 
parameters include 

Xq 	1.91 p.u. 	Xc 
T'do 	4.75 sec. 

X'd 	0.544 p.u. 

T'd 	1.11 sec. 

Xc 	.321 p.u. 

Xa 	.431 p.u. 

ra 	
0.0384 p.u. 

rfd 	0.001425 p.u. 

J 	 0.0318 p.u. 

Since damping is neglected in the computations, therefore, 

all such parameters as a consequence of damping are not 

included in the table above. 
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Table No. II 

The Quadrature-axis Regulation Machine Parameters  

The micro-machine stator NO .... 334818 

The micro-machine rotor NO .... 334835 

Machine Rating 	2KVA 

Unit Voltampere 	1825VA 

Unit Vt'ltage 	186V (Line to line) 

Unit Current 	5.66A 

P.U. (luadrature field voltage - 646 volts 

P.U. Quadrature field impedance - 418 ohms 

Remarks Parameter 	Parameter value 
. 

Xd 	2.471 p.u. 	, measured from equilibrium 
aiagrams at 0,2 p.u. power - 

Xq 	1.93 p.u. 	over a rangeof ',rare 

X' - a 	0.91 p.u. Th..e.  measured from variable 
frequency response static 

A f 	0.615 p.0 	i 	impedance test Tr 

q 

T'do 	1.2 sec. 

T'qo 	,1.1 sec. 

Tid 	.442 sec. 	calculated £rom T'do and X' d 
T'n 	 - .35 	sec. 	calculated from T' _q0 	X'q CIO  

rfq 	.00482 p.u. 	d.c. measurement 

All the machine parameters include Xo. 

Xc y Xa, ra are the same as in table 1. 

The system inertia J is also the same as in table 

1, because the major part of inertia is contributed 

measured from sudden short 
circuit of the field winding, 
with alternator open-circuited 
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by the flywheel and interchange of similar rotors is 

considered not to affect it. 
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