A thesis presented for the Degreo of Doctor of Philosophy in the Faculty of Engineering University of London

by

Rafael Kandiyoti, B.S.

Department of Chemical Engineering and Chemical Technology,
Imperial College
of Science and Technology, London S.W. 7.

August. i.969.

Abstract

The transient hot wire cell technique has been used to build an apparatus for measuring the thermal conductivity of liquids, at pressures up to 7000 atmospheres, in the temperature range $25-100^{\circ} \mathrm{C}$. Measurements have been made in toluene with an catimated accuracy of 2 to 5% over the p:essure range. The analysis of the data has been developed by solving the heat conduction equation assuming variable pinsical properties for the test fluid. In the solution of this non-linear equation, the Kudryashev-Zhemhor trans. formations have been used.

The theory of Horrocks and McLaughlin, on the thermal conductivity of simple liquids has been extended to chain molecules and the model compared with data on the normal paraffin homologous series.

The Chapman-Enskog theory, on the transport coefficients for binary mixtures of dense systems has been combined with the Lebowitz radial distribution functions derived in the Percus-Yevick approximation. The kinetic, collisional and distortional contributions have been factorized and the model compared with real systems.

Acknowledgements

It is a pleasure to thank Professor A. R. Ubbelcicies: C.B.E., F.R.S., for his interest in this work.

I wish to thank Dr. E. MeLaughlin, for his supervision, help and advice.

I would also like to thank Mir. Russell Harris, Mi. John Oakley, Mr. Len Tyley and the seaff of tio Donrysmonial workshop for their constant help and cooperation.

Last but not least I wish to thank Miss. C. Thurim for her typing and help.

A paper based on Chapters 8 and 9 of this work has been accepted for publication by Molecular Physics.

CONTENTS

ABCIRACT
Acknowledgements
Contents Page
CEAPCER 1. INTRODUTION 1
CEEPIER 2. THEORY OF THE TRANSIENT HOT WIRE CELL 7
2.1 Introduction 7
2.2 The General Equations of Heat Transfer 8
2.3 Solution of the Heat Conduction Equation for the Eot iffeo Cell 11
2.4 Temperature Dependent Physical Properties 13
2.5 The Case of a Time Dependent Heat Source 17
2.6 Effect of the External Boundary 20
2.7 End Effects 22
2.8 Convection 24
2.9 Heat Transfer by Radiation 26
CHETER 3. APPARATUS, PROCEDURE AND DATA HANDLING 31
3.1 Intwoduction 31
3.2 The Thermal Conductivity Cell 32
3.3 The Cell Casing and Bellows 36
Pege
?. 4 The Blectronic System 37
3.5 The Voltmeter Integration Period 3
3.6 The Working Equation 16
3.7 The Pressure System ?
3.8 The Temperature Contral System 5
3.9 Procedure F
3.10 Processing of Data 6
$\because \mathrm{Gint}$ 4. DATA AND DISCUSSION 67
4.1 Introduction 69
4.2 Toluene Properties 69
4.3 The Wire 7
4.4 Toluene Thermal Contuctivities 管
4. 5 Sample Calculation 9
4.6 Sources of Error 81
Gituryp 5. THE HEAT TRANSFER EQUATION WITH VARIABLE FHYSICAL PROPERTIES 85
5.1 Introduction 25
5.2 He Infinite Slab 85
5.3 Solution of Equations (15), (17) and (18) $8:$
5.4 The Finite Iifference Approximation 3
5.5 Results and Conclusions 3
Page
CFIFTER 6. THE HARMONIC OSCILLATOR MODEL FOR LIQUIDS OF SPHERICAL AND CHAIN MOLBCOLES 9?
6.1 The Basic Equation 5
6.2 The Equation of the Call Lattice Modal 98
6.3 The Smearing Approdmation 97
6.4 The Harmonic Oscillator Approximation 100
6.5 Discussion of the ImJ.D Theory 201
6.6 The Cell Lattice Model for Pure Polymer Solutions 105
6.7 The Heat Capacity 108
CHAPTER 7. THE HARMONIC OSCILLATOR MODEL OF THERMAL CONDUCTIVITI 109
7.1 The Harmonic Oscillator Model of Thermal Conductivitios of simplo Luquide 109
7.2 Application to Chain Molecules 1.1
7.3 Comparison with Experiment 111
CULPAER 8. TRANSPORT COEFFICIENTS OF PURE HARD SPHERE FLUIDS 115
8.1 Introduction 11.
8.2 The Heat Flux Vector and the Pressure Tensor 116
8.3 Thermal Conductivity and Viscosity at Low Pressures $1: \%$
8.4 Thermal Conductivity and Viscosity for Dense Gases :
8.5 The Equations of Longuet-Higgins and Pople 12
CHAPTER 9. TRANSPORT COEFFICIENTS FOR DENSE BINARY HARD SPHERE MIXTURES 125
9.1 Introduction 125
9.2 Transport Coefficients for a Binary Dilute Gas Mixture 126
9.3 Equilibrium Properties of Dense Hard Sphere Fluids • 130
9.4 Reduotion of Equations (6) and (20) 130
9.5 The Collisional Approximation to Thermal Conductivity of Dense Mixtures 137
9.6 The Collisional and Kinetic Contributions in Equations (39) and (49) 138
9.7 Comparison with Experiment 144
CHAPTER 10. THERMAL DIFFUSION IN DENSE HARD SPHERE FLUIDS 149
10.1 Introduction 149
10.2 The Theoretical Expressions 149
10.3 Comparison with Experiment 154
APPENDIX 1.
A Evaluation of $T \alpha D P / D t$ 157
B Comparison of 5 vs. Kt. 159
APPENDIX 2 160
A Derivation of Equation 37 of Chapter 2 160
B Derivation of Equations (19) and (20) 169
APPENDIX 3
Programs 171

CEAPTER 1
INTRODUCTIOI

The thermal conductivity of liquids is a subject of interest both for the scientist and the engineer. Data is required for engineering design puxposes, and for testing the validity of statistical mechanical models of dense fluids. At present, thero is need in science and technology for more data as well as for more accurate data.

In the measurement of the thermal conductivity coefficient, there still seems to be problems that have not been solved or avoided satisfactorily. So far none of the various techniques utilized for measurements of thermal conductivity can be claimed to have completely isalated the conductive contribution to heat transfer from the radiative and convective contributions. Also In measurements on mixtures, there is the complicating effect of thormal diffusion.

On the other hand, theoretical prodictions of themal conductivity are far from perfect; agreement to 15% is considered reasonable. This does not mean however that the present levels of accuracy in thermal conductivity measurements are adequate so far as theory is concerned. A great doal of information can be obtained from compaxing calculated and axperimontal values of rates of change
of the conductivity with temperature and density; there available data is in many cases deficient.

A great deal of information on liquid structure can also be obtained by sxtending the data range to high pressuros, which affords the evaluation of structural models over wide ranges of donsity. In particular the change of sign from negativo to positive, of the temperature coefficient of thermal conductivity, at high donsitios is an importanic index of the success or failure of thermal conductivity theories.

The transient hot wire cell chosen here for thermal conductivity measurements at high prossure has soveral advantages over other techniques of measurement. While no attompt will be made here to compare in detail charachteristies of the various techniques, as relative merits havo been discussed extonsively by Ziebland (Ref. 1) and Pittman (Ref. 2), two advantages of the transient hot wire cell which have not been discussed before must be mentionod here. The first is tho adaptability of the hot wire cell to high prossure techniques. The physical sizo and limiting dimensions of tho hot wire coll are such that the one designed for this work was acommodated in
a conventional $1.5^{\circ 1} I D_{8} 6^{62}$ prossuee vessel with a range of up to 7000 atmospheres. Cosaxial cylinder and particularly flat plate . techniques require rather larger pressure vessols. This compiicates problems related to construction and soalingo

The second advantage of the technique is its suitability for measurements on mixtures. Approach to the state in the presence of a temperature gradient leads to the sotting up of concentration gradients because of thermal diffusione It is to be expected that the short duration of the experiments with the transient hot wire cell (20-30 seconds) will go a long way to prevent partial separation from affecting the measured thermal conductivity values.

In this work, the apparatus designed and constructed for high pressure measwements will be described and data on toluene for pressures up to 6250 atmospheres over a tomperaturo range of 30 to $90^{\circ} \mathrm{C}$ presented. The analysis of the data is based essentially on the work of Horrocks and McLaughlin (Rof, 5) and Pittman (Ref. 2). Here however, in analyzing the data, effects relating to the tomperature dependanco of the thermal conductivity coefficient, and the change in power supplied to the systen ex:e treated as part of the mathematical statoment describing tho
system. This implied solving a non-linear partial ditiferential equation. The method used for this particular application was slso examined ase tool for solving partial differential equations with temperature dependent physical properties.

While on the ono hand an apparatus has been dosigned, constructed and tosted for measuring thermal conductivities of pure and mixed liquids, and certain improvements made in the analysis of the data, attention has also been paid to the theory or transport properties ai liquids.

The hot wire technique can be used rox measuring tho thermal conductivity of nonmpolar, nonmconducting liquids. (The method has also been extended to gasos; that however is beyond the scope of this work.) The most important single group among these is the normal paraffin homologous series. Here the Horrocks and NcLaughlin model (Ref. 3) for the themal conductivity of simple liquids has beon extended to Iiapuids composed of chain molocilles by using Prigogine"s cell model. for pure polyners. (Ref. 4). As will be seen, tho thermal conductivity, in this approximation, is a function only of the molecular force constants and the density. Hence calculation of λ as a function of pressure follows from data on high
pressure densities for the homologous series. Results for atmospheric pressure calculations will be presented here, but not those for righ pressure, as data is not available for comparison. It must be said however that the temperaturo coefficiont of thermal conductivity does not go through a sign inversion for calculations up to 10,000 atmosphores.

As mentioned before, the fact that the hot wire method is a transient one makes it particularly useful for measuremont on liquid mixtures. This is because for a mixture in a nonmuniform temperature field, there oxists a volocity of diffusion in the direction of the temperature gradient. The mass illux is then given by

$$
J_{1 T}=D_{12} \frac{\sigma x_{1}}{\partial r}+D_{T} \frac{a \mathrm{I} T}{a}
$$

where x_{1} is the mole fraction of component 1
r is the position variable
D_{12} is the mutual diffusion coefficiento
and $\quad D_{T}$ is the thermal diffusion coefficient
The potential availability of a technique for satisfactory thermal conductivity neasurements on liquid mixtures raises the question of the staite of theories on the transport properties of dense fluid mixtures. The most general theory to date has been
that of Chapman and Enskog (Ref. 6). The dorived equations have been generalized to dense fluid mixtures by Thorne (Ref. 6a). The work is based on the xigid sphere interaction potential and as such, can be combined with the radial distribution functions of Lebowitz (Ref. 7) derived by using the Percus Yevick approximation (Ref. B).

This analysis was first used on mutual diffusion in binary mixtures by McLaughin (Ref. 9). Hore it is axtended to thermal conductivity, viscosity and theimal
diffusion. While the treatment, on the whole, does broadly reproduce charachteristics of liquid mixtures observed experimentally, better quantitative agreement must wait for the treatment to be applied to more realistic intormolecular interaction potentials.

The Lebowitz radial distribution functions were also used in recalculating results from tho theory of Longuet-lizgins, Pople and Valleau (Ref. 10), for isotopic mixtures. While for the mutual diffusion, thermal conductivity and viscosity coofficients, equations resulting from the two theories are at least partly related, for thermal diffusion there seems to be no correspondance. Furthermore neither one of the two theories gives satisfactory results when compared with experiment. This is to be expected as the thermal diffusion coerficient is particularly sensitive to the form of the intermolecular interaction potential.

CHAPTER 2

Theory of the Transient Eot Wire Coll

1 Introduction
The experimental technique is based on the measurement of the voltage change across a thin wire carrying a current and imersed in a test fluid. The wire is joinod to thick current leads, top and bottom, and at distances conveniently removed from its onds, welded to two voltage taps.

In order to determine the thermal conductivity of the test fluid from this system, the heat conduction equation appropriate to the system will be obtained, and solved for the temperature profiles in the thermal conductivity cell; the tomperature profiles will then be rolated to electrical measuromonts. In addition, any approximations made in the derivation of the heat transfer equation and the solution will be examined.

2. The General Equations of Heat Transfer

The equation of thermel enexgy (Ref 1) in the absence of radiative heat transfer is given by

$$
\begin{equation*}
\rho \frac{D U}{D t}=-(\nabla \cdot \underline{q})-P(\underline{\nabla} \cdot \underline{v})-(\tau: \nabla v), \tag{1}
\end{equation*}
$$

where the rate of gain of internal energy equals the sum of three terms which are successively:

1) .eat input by conduction
2) reversible onergy increase by compression and,
3) irreversible energy increase by viscous dissipation.

In order to reduce equation (1), to the desired form, the following ralationship, derived from the first and second laws of thermodynamics is used:

$$
\begin{equation*}
\rho \frac{D U}{D t}=\left[-P+T\left[\frac{\partial P}{\partial T}\right]_{V}\right] \rho \frac{D V}{D t}+\rho c_{V} \frac{D T}{D t} . \tag{2}
\end{equation*}
$$

Here the operator $D / D t$ is defined by

$$
\begin{equation*}
\frac{\mathrm{D}}{\mathrm{Dt}}=\frac{\partial}{\partial t}+v_{x} \frac{\partial}{\partial x}+v_{y} \frac{\partial}{\partial y}+v_{z} \frac{\partial}{\partial z} \tag{3}
\end{equation*}
$$

Combining eq. (2) with the Equation of Continuity

$$
\begin{equation*}
\frac{D \rho}{D t}=-\rho(\underline{\nabla} \cdot v) \tag{4}
\end{equation*}
$$

equation (1) can be writton in the form

$$
\begin{equation*}
\rho C_{V} \frac{D T}{D t}=-(\underline{\nabla} \cdot \underline{q})-T\left(\frac{\partial P}{\partial T}\right)_{v}(\underline{\nabla} \cdot \underline{v})-(\underline{T}: \mathbf{y}) \tag{5}
\end{equation*}
$$

which is turn can be rectuced by the substitution of Newtions and Fourrier's Lews to

$$
\begin{equation*}
\rho C_{v} \frac{D T}{D t}=\nabla \cdot(\lambda \nabla T)-T\left(\frac{\partial P}{\partial T}\right)(\underline{\nabla} \cdot \underline{v})+x \tag{6}
\end{equation*}
$$

where X is called the dissipation function (Ref 1). Equation (6) can be further reduced by using

$$
\left(\frac{\partial \mathbf{P}}{\partial T}\right)_{V}=\frac{\alpha}{C_{T}} \quad ; \quad c_{P}-C_{V}=\frac{\alpha^{2} T}{\rho \beta_{T}}
$$

and

$$
-d \rho=-\rho \cdot \beta_{T} d P+\rho \alpha d T
$$

where

$$
\alpha=+\frac{1}{V}\left(\frac{d V}{d T}\right)_{P} \quad, \quad B_{T}=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}
$$

to

$$
\begin{equation*}
\rho c_{p} \frac{D T}{D t}=\underline{\nabla} \cdot(\lambda \underline{\nabla} T)+T \alpha \frac{D \mathrm{P}}{\mathrm{Dt}}+X \tag{7}
\end{equation*}
$$

(Ref. 2)
Equation (7) describes the behaviour of the experimental system but is mathematically intractable. It is therefore further reduced by using physical argument:

As heat is supplied to the central wire, expansion of the liquid around the heated section gives rise to
radially symmetric free convection. Hence the operator D/Dt reduces to

$$
\frac{D}{D t}=\frac{\partial}{\partial t}+v_{z} \frac{\partial}{\partial z}
$$

where z is the axis along tho length of the wire.
Furthermore due to the extstance of a heating section below the bottom voltage tap, the rising liquid surrounds the midmsection of the heating wire, still retaining the temperature distribution that would have existed in the absence of convection, until cold liquid rising from below the heated section reaches the bottom tap. Hence before cold liquid reaches the bottom tap

$$
\frac{\partial T}{\partial z}=0 \text { and } \frac{D T}{D t}=\frac{\partial T}{\partial t}
$$

Clearly, this simplification japoses a time limit on the duration of tho experiment.

Using a set of assumptions fully discussed in a later section of this chapter, the velocity of the fluid along the zeraxis has been calculated (Ref. 3 and Ref. 4a). Using these results and toluene properties
it has been shown in Appendix IA that the term T α DP/Dt can be neglocted. It has also been found (Ref. 4b) that the viscous dissipation term X is negligible. under the rolovoni conditions. Equation (7) then reduces to

$$
\begin{equation*}
\rho r_{p} \frac{\partial T}{\partial t}=\underline{V} \cdot(\lambda \underline{V} T) \tag{8}
\end{equation*}
$$

3. Selution of the Heat Conduction Equation for the Hot Wire CiE.

In order to relate the temperature changes in the cell to the thermal conductivity that is being measured, it is necessary to solve the heat conduction equation. In the first approximation the following is assumed:
a) Free convection and viscous dissipation effects are negligible.
b) The heat source is of infinite length and zero diameter (line source). This assumption will to removed as more refined solutions to equation (8) are derived.
c) The fluid medium is externally unbounded, and the limiting value of the temperature, sufficiently far away from the heat source, is zero.
d) Fhysical propertios of the test fluid are temperature independent.
e) Power dissipation, q_{1}, per unit length of hoat source is constant. The last two assumptions will also be subsequently removed. Lastly
f) Radiative heat transfer is negligible.

The solution of eqn. (8) under these conditions is well known (Ref. 5a).

$$
\begin{equation*}
T(r, t)=-\frac{q_{1}}{L_{1} i \lambda} \quad E I\left[-\frac{r^{2}}{4 k t}\right] \tag{9}
\end{equation*}
$$

where - Ei $(-x)=\int_{x}^{i \omega}{\frac{e^{-u}}{-u}}_{i n}^{d u}$ and $K=\lambda_{i}, \ldots, ~ C l e a r l y, T(r, t)$ is roforred to the initial temperature. For large t, eqn. (9) reduces to

$$
\begin{equation*}
I^{\prime}(x, i)=-\frac{7}{4 \pi} \quad\left[\ln \frac{4 K i}{6 r^{2}}\right] \tag{10}
\end{equation*}
$$

where $C=\exp (\gamma)$ and γ is Euler's constant.

If the heat source is assumed to be a cylinder of infinite length, uniform diameter and infinite thermal conductivity the solution becomes (Ref. 5b)
$T(a, t)=\frac{q_{7}}{4 \pi \lambda}\left[\ln \frac{4 \tau}{C}+\frac{1}{2 \tau}+\left(\frac{\alpha-2}{\alpha}\right) \frac{1}{2 \tau} \ln \frac{4 \tau}{C}+\cdots\right]$
where $\alpha=2\left(\rho^{\gamma} C_{p}{ }^{1} / \rho C_{p}\right)$ and $T=\frac{K t}{r^{2}}$

In obtaining equation (11) surface resistance to heat conduction is assumed to be negligible.

4. Temperature Dependent Plysical Properties

We now remove assumption (d) as well as (b), and assume linear temperature dependences for thermal conductivity, donsity and specific heat.

$$
\begin{array}{ll}
\lambda=\lambda_{1}\left(1+\lambda_{2}^{\prime} T\right) \quad ; \quad \lambda_{2}^{:}=\frac{1}{\lambda_{1}} \frac{d \lambda}{d T} \\
\rho=\rho_{1}\left(1+\rho_{2}^{\prime} T\right) \quad ; \quad \rho_{\dot{2}}^{\prime}=\frac{1}{\rho_{1}} \frac{d \rho}{d T} \\
C_{p}=c_{p 1}\left(1+c_{p 2}^{\prime} T\right) ; & c_{p 2}^{\prime!}=\frac{1}{C_{p 1}} \quad \frac{d C_{p}}{d T} \tag{1zc}
\end{array}
$$

where the subscript 1 denotes the properties at the initial temperature. The problem can now be stated follows:

$$
\begin{equation*}
\rho \quad C_{p} \frac{\partial T}{\partial t}=\underline{F}^{-}(\lambda \underline{T} T) \tag{13}
\end{equation*}
$$

with initial conditions

$$
\left.\begin{array}{l}
T(x, 0)=0 \tag{14a}\\
\frac{d T}{d r}(r, 0)=0
\end{array}\right\} \quad r \geqslant a
$$

and boundary conditions (Ref. 6)

$$
2 \pi a \lambda \frac{\partial T(a, t)}{\partial r}+c_{l}=\pi a^{2} \rho^{0} C_{p}^{p} \frac{\partial T(a, t)}{\partial t} \text {, (15) }
$$

where p^{\prime} and C_{p}^{p} are the density and specific beat of the wire rospectively, and

$$
\begin{align*}
& T(a, t)=f(t) \tag{16a}\\
& \lim _{x \rightarrow \infty} T(x, t)=0 \text { for finite } t . \tag{16b}
\end{align*}
$$

$f(t)$ is ontained as data duriing the experiment. Given equations (12), the problem stated abore is nonlinear.

We will now use a set of linearization transformations (Ref. 7) to obtain the linear analog of the problem, the solution to which, of course, is similar to eqn. (11), and then invert the solution.

Consider the specific enthalpy, as referred to the initial temporature

$$
d h=C_{p} d T
$$

and define through h, the quantity of sucin that

$$
\phi=\int_{0}^{h} \frac{\lambda}{R C_{p}} d h
$$

Using the last two equations

$$
\begin{equation*}
\mathrm{d} \phi=\frac{\lambda}{c_{\mathrm{p}}} \quad \mathrm{dh}=\lambda \mathrm{dT} \tag{17}
\end{equation*}
$$

fron which it follows that

$$
\begin{equation*}
\frac{d \phi}{d r}=\frac{\lambda d T}{d r} \text { and } \square^{2} \phi=\underline{\nabla} \cdot(\lambda \nabla T) \tag{18}
\end{equation*}
$$

Furthermore, we define the quantity ξ, such that

$$
\begin{equation*}
\xi=\int_{0}^{t} \frac{\lambda}{\rho C_{p}} d t ; d \xi=\frac{\lambda}{\rho C_{p}} d t \tag{19}
\end{equation*}
$$

Through equations (17) - (19), equation (13) can be transformed to

$$
\begin{equation*}
\frac{\partial \phi}{\partial \xi}=\nabla^{2} \phi \tag{20}
\end{equation*}
$$

The initial and boundary conditions are also transformed:

$$
\begin{align*}
& \phi(r, 0)=0 ; \phi^{\prime}(r, 0)=0 \tag{21}\\
& \underset{r \rightarrow \infty}{\lim } \phi(r, g)=0 \tag{22}
\end{align*}
$$

and

$$
\begin{equation*}
2 \pi a \frac{d \phi}{d r}+q_{I}=\frac{2 \pi a^{2}}{\alpha} \frac{d \phi}{d \xi} ; r=a . \tag{23}
\end{equation*}
$$

Here α is assumed to be constant with temperature. This is further discussed in Appendix 2.

So far we have used a set of transformations to linearize the nonlinear system of equations (12) - (16). The linearized problem has been solved by the Laplace Transform technique (Ref. Sb):

$$
\begin{equation*}
\phi(r, \xi)=\frac{q_{I}}{4 \pi}\left[\ln \frac{4 T}{C}+\frac{1}{2 T}+\left(\frac{\alpha-2}{\alpha}\right) \frac{1}{2 T} \ln \frac{4 T}{C}+\ldots\right] \tag{24}
\end{equation*}
$$

where $\tau=\xi / r^{2}$. With the exception of T and absence of λ, this is identical to equation (11). We must now perform the back-transformation.

Combining equations (12a) and (18) we have

$$
\begin{equation*}
\frac{d \phi}{d r}=\lambda_{1} \frac{d T}{d r}+\lambda_{2} T \frac{d T}{d r} \tag{25}
\end{equation*}
$$

where

$$
\lambda_{2}=\lambda_{1} \lambda_{2}=\frac{d \lambda}{d T}
$$

Integrating both sides from: iv to ∞
$\phi(\infty, \xi) \omega(r, \xi)=\lambda_{1}\left[T\left(\infty_{8}, \dot{\xi}\right) T(r, i)\right]+\frac{\lambda_{2}}{2}\left[T^{2}(\infty, t)-T^{2}(r, t)\right]$

Using equations (15b) and (21)

$$
\begin{equation*}
\phi(r, g)=\lambda_{1} T(r, \dot{t})+\frac{\lambda_{2}}{2} T^{2}(r, t) \tag{27}
\end{equation*}
$$

where $\phi(r, \xi)$ is given by equation (23). In particular

$$
\begin{equation*}
\phi(a, \overline{5})=\lambda_{1} T(a, t)+\frac{\lambda_{2}}{2} \quad T^{2}(a, t) \tag{28}
\end{equation*}
$$

Throughout the treatment 5 is given by

$$
\xi=\int_{0}^{t} \frac{\lambda}{\rho C_{p}} \quad d t
$$

Using equations (12a) - (12c) and letting $r=a$

$$
\begin{equation*}
\xi=\frac{\lambda_{1}}{\rho_{1} c_{p 1}} t+\int_{0}^{t} \frac{\lambda_{2} T(a, t)}{\left[1+\rho_{2} T(a, t)\right]\left[1+c_{p 2} T(a, t)\right]} d t \tag{29}
\end{equation*}
$$

The second terms on the right hand side of equations (28) and (29) constitute the total correction for the case of variable physical properties, under the given set of assumptions. Neglect of these terms would reduce the set of equations (24), (28) and (29) to equation (11).

An upper Ilmit to the value of the integral in the rhs of equation (29) can be calculated by making use of the physical properties of toluene and the magnitude of the temperature rise in the cell. This calculation is presented
in Appendix 1.B, and shows thar neglect of the integral introauces an error of the o.der of .01\% into the thermal conducitivity measurement, For this application then

$$
\begin{equation*}
\xi=\left(\lambda_{1} / \rho_{1} c_{p 1}\right) t=\Omega t \tag{30}
\end{equation*}
$$

where $:$ is the thermal diffusivity. Combining equations (24), (28) and (30) we get

$$
\begin{gathered}
\frac{11}{4 \pi}\left[\ln \left(\frac{4 T}{C}\right)+\frac{1}{2 \tau}+\left(\frac{\alpha-2}{\alpha}\right) \frac{1}{2 T} \ln \left(\frac{4}{C} T\right)+\ldots .\right] \\
=\lambda_{1} T(a, t)+\frac{\lambda_{2}}{2} T^{2}(a, t),
\end{gathered}
$$

where

$$
\tau=\frac{\mathrm{K}_{\mathrm{t}}}{\mathrm{a}^{2}}
$$

5. The Case of a Time Dopendent Heat Source

In the previous section the heat conduction equation has been solved with the assumption that heat input into the system is constant throughout the experiment. As the current romains substantially the same, and the wire resistance changes by about . 01 to .02 ohns during a run, we know that $q 1\left(=I^{2} R / I\right)$ is a weak function of time. We will now assume this dependence to be of quadratic form,

$$
\begin{equation*}
q_{1}=q_{1}+q_{2} t+q_{3} t^{2} \tag{31}
\end{equation*}
$$

and solve the heat transfer problem of equations (12)-
with the altered boundary condition:

$$
\begin{equation*}
2 \pi \frac{\partial \phi}{\partial r}+\left(Q_{\underline{I}}+Q_{2} \xi+Q_{3} \xi^{2}\right)=\frac{2 \pi}{\alpha} \frac{d \phi}{d \xi} ; r=a \tag{32a}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{i}=\frac{q_{i}}{k^{i}} \tag{32b}
\end{equation*}
$$

It must be noted that in equations (32a) and (323) the approximation of equation (30) has been used.

The derivation of the temperature profiles under these conditions is rather lengthy and will be presented here only in outline form; the full treatment may be found in appendix 2.A.

After linearizing the problem as before, the Laplace-transform of the heat conduction equation and the boundary conditions are taken:

$$
\begin{align*}
& \frac{\partial^{2} \not \varnothing(r, \theta)}{\partial r^{2}}+\frac{1}{r} \frac{\partial \ddot{\phi}(r, s)}{\partial r}=r \nexists(r, s) \tag{33}\\
& 2 \pi a \frac{\partial \bar{\phi}\left(a_{2}, s\right)}{\partial r}+\frac{Q_{1}}{s}+\frac{Q_{2}}{s^{2}}+\frac{2 Q_{3}}{s^{3}}=\frac{2 \pi a^{2}}{\alpha} s \bar{\phi}(a, s) \tag{34}\\
& \lim \bar{\phi}(r, 0)=0 . \tag{35}\\
& r \rightarrow \infty
\end{align*}
$$

Here s is the complex variable of the transformation, $\bar{\phi}(r, s) i=$ the Laplace traistinnil of $\phi(r, t)$; and θ, is before, is assuilta to be constant. Soaring equations (33) (35) for $\ddot{\phi}$ wo obtain

$$
\begin{equation*}
\bar{\phi}(x, s)=\frac{\left(Q_{1}+Q_{2} / s+2 Q_{3} / s^{2}\right)}{2 \pi a s} \frac{K_{0}(r \theta)}{\left[\beta K_{1}(\beta a)+\frac{a s}{\alpha} K o(\beta a)\right]} \tag{36}
\end{equation*}
$$

By inverting equation (47) back into the real plane, using equations (28) and (30), dropping small terms in the second and third brackets, and rearranging, we have

$$
\begin{aligned}
& \lambda_{1} T(a, t)+\frac{\lambda_{2}}{2} T^{2}(a, t)= \\
& \left.\frac{q_{1}}{4 \pi} \ln \frac{4 \pi t}{C a^{2}}+\frac{a^{2}}{2} t+\frac{\alpha-2}{\alpha} \frac{a^{2}}{2-t} \ln \frac{4 \pi t}{c a^{2}}+\cdots\right] \\
& \therefore \quad \mathrm{q}_{2}\left[t\left[\ln \frac{2 \mathrm{Li} \dot{\mathrm{i}}}{\mathrm{Ca}}-1 \mathrm{j}+\ldots .\right]\right. \\
& +\frac{q_{3}}{4 \pi}\left[t^{2}\left[\ln \frac{4 \pi t}{\mathrm{Ca}^{2}}-3 / 2\right]+\ldots\right]
\end{aligned}
$$

Again by setting q_{2}, q_{3} and λ_{2} equal to zero, equation (11) can be obtained.

In deriving equation (37), some of the simplifying assumptions of section 3. have been dropped. We must now go on to examine the remaining ones.

6. Effoct of the Extornal Boundary

Eicisiion (37) has been dexived with the assumption that an infinite medium surrounds the central cylinder. The duration of the experiment, then is limited to times beyond which heat loss to the outer walls significantly distorts the temperature profile in the cell. The equation of heat conduction has been solved (Ref. 8) for a bounded medium, under the following conditions:
a) A nonmeonvecting medium is bounded internally and oxternally by two infinitaly long concentric cylinders, with radii a and b respectively.
b) Power is dissipated from the central cylinder, at the constant rate of $q_{1} / 2 \pi$ a for $t \geqslant 0$.
c) The external cylinder is held at the initial temperature.
d) Physical properties are assumed to be temperature independent over the temperature rise in question.

The solution of the heat conduction equation is then given by
$T(a, t)=\frac{q_{1}}{4 \pi}\left\{\ln \frac{b}{a}+\right.$
$\left.\sum_{n=1}^{\infty} \exp \left[-\left(\frac{\mathbb{F} x_{n}}{a}\right)^{2} t\right]_{J_{0}\left(x_{n}\right) Y_{1}\left(x_{n}\right)-Y_{0}\left(x_{n}\right) \cdot n_{1}\left(x_{n}\right)}^{x_{n}\left(\left[\frac{J_{1}\left(x_{n}\right)}{J_{0}\left(x_{n} \sigma\right)}\right]^{2}-1\right\}}\right)$
where $\sigma=\frac{b}{a}>1, n$ is the running index $n=1,2, \ldots$ and the x_{n} satisfy the equation

$$
\begin{equation*}
\left.J_{0} i \sigma X_{n}\right) Y_{1}\left(x_{n}\right)-Y_{0}\left(\sigma x_{n}\right) J_{1}\left(x_{n}\right)=0 \tag{39}
\end{equation*}
$$

where J_{k} and Y_{k} are Bessel functions of the first and second kinds, of onder k respectively. For large values of $t_{\text {, }}$ equation (38) reduces to
$T(a, t)=\frac{q_{1}}{2 \pi \lambda}\left\{\ln \frac{b}{a}-2 \sum_{n=1}^{\infty} \frac{\exp -\left(\pi x_{n} / a\right)^{2} t}{x_{n}\left[\left(\frac{J_{1}\left(x_{n}\right)}{J_{0}\left(x_{n} \sigma\right)}\right)^{2}-1\right]}\right\}$.
When $b \gg a$, using (Ref. 8 and Mef. 9).

$$
\begin{aligned}
& \lim _{z \rightarrow 0} J_{k}(z)^{\circ}\left(\frac{1}{2} z\right)^{k} / T(k+1) \\
& \lim _{z \rightarrow 0} Y_{k}(z)^{\circ}=-\left(\frac{1}{\pi}\right) \Gamma(k)\left(\frac{1}{2} z\right)^{-k}
\end{aligned}
$$

where for k an integer

$$
T(k)=(k-1)!
$$

along with equation (39) leads to

$$
\begin{equation*}
\frac{J_{0}\left(\sigma x_{n}\right)}{Y_{0}\left(\sigma x_{n}\right)}=-\frac{\pi}{4} x_{n}^{2} \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{1}\left(x_{n}\right) Y_{1}\left(x_{n}\right)=-\frac{1}{\pi} \tag{42}
\end{equation*}
$$

Combining equations (39) - (42) leads to

$$
\begin{equation*}
T(a, t)=2 \frac{q_{i}}{\pi}\left\{\ln \frac{b}{a}-2 \sum_{n=1}^{\infty} \frac{\exp -\left(K x_{n} / a\right)^{2} t}{\left[\frac{2}{\pi \Psi_{0}\left(\sigma x_{n}\right)}\right]^{2}-x_{n}^{2}}\right\} \tag{43}
\end{equation*}
$$

where in this approximation $x_{n} \sigma$ satisfy the transcendental equation

$$
J_{0}\left(x_{n} \sigma\right)=0 .
$$

(Ref.8).
Equation (43) will be referred to, when cell design requirements are considered.

7. End Effects.

The assumption of infinite wire length must now be examined. Heat generated in the small diameter, high resistance section of the wire is conducted away by the current and potential leads. Heat loss through the former may be rendered negligible by leaving a suitable length of heating wire between the ends of the section where voltage changes are monitored, and the thick leads leading out of the cell. The following method has been used to estimate this length. (Ref. 10a and Ref. 5c).

The two ends of the wire, of length 2 L , are assumed to be kept at zero temperature, and also surrounded by an
enclosure at zero temperature. The temperature distribution, in the steady state, along the length, $0 \leqslant x \leqslant 2 L$, for constant power, q_{1}, supplied to the wire is then given by $T_{f}(z)=\frac{q_{D}}{2 \pi \pi^{2}}\left\{1-\frac{\cosh M(L \cdot z)}{\cos M L}\right\}$
where H is the heat transfer coefficient given by (Ref. 4c)

$$
\begin{equation*}
H=2 \lambda / a \ln \frac{4 \tau}{C} ; \quad \tau=K t / a^{2} \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
M=\left(2 H / \lambda_{W}{ }^{a}\right)^{\frac{1}{2}} \tag{46}
\end{equation*}
$$

where λ_{W} is the thermal conductivity of the wire. In equation (45) the steady state temperature ait the wall has been approximated by the "line source solution of equation (10). The value of δ for which

$$
T_{f}(L)-T_{f}\left(2 T_{t}-8\right)
$$

is much less than $.01 \%$ of $T_{f}(L)$ has been calculated (Ref. 10a) to be about 1 cm ; the error rises rapidly to $.6 \%$ for $\delta=.2 \mathrm{~cm}$. (Ref. 4d).

Heat conduction away from the potential leads had initially been treated (Ref. 12) as cooling fins and the error neglected. Pitmen estimated the error in the thermal conductivity measurement due to these losises, on a scaled up model (Ref. 4e)
for an essentially stationary fluid. The resulting calculation shows that for toluene measurements, grrors would be about $\cdot 3.4 \%$ over the pressure range. This seens to be an underestimation, for reasons to be discussed in the next chapter. Still, however it is possible to minimize this error by extrapolating גvs. t data to zero time, as the error due to end effects grows with time.

8. Convection.

While in the reduction of the equation of energy transfer, convective heat transfer and viscous dissipation were neglected, it is to be expected that the presence of a radial temperature gradient along only the middle part of the fluid, will give rise to free convection.

By using steady state methods it was previously found (Ref. 10b and Ref. 13) that for the Rayleigh number, $R<1000$, convective effects could be assumed negligible. $R=g \rho \alpha \Delta T d^{3} / \mu \pi<1000$.
Here g is the gravitational constant
ρ, α, L, K are the physical properties of the medium and
$d=b-a$ is the charachteristic dimension of the systom

The velocity profiles of the convecting fluid have subsequently been investigatod. Pittman (Ref. 4a) numerically solved the equation for the velocity distribution (Ref. 3) within the cell, wi.th the following assumptions:

1) A cold front of fluid begins to rise from the lower edge of the heating section, as soon as heat is supplied to the central cylinder.
2) The radial temperature distribution is assumed to be that of the stagnant fluid, and to give rise to density gradients which determine the velocity field.
3) The velocity along the ruxis is zero.
4) Heat conduction from the warm region into the cold front is neglected.

The equation describing this system has been solved numerically by Pittman (ReI. 4d)

$$
\begin{equation*}
\frac{\partial^{2} v}{\partial r^{2}}+\frac{1}{r} \frac{\partial v}{\partial r}+\rho g \frac{\alpha T}{\mu}=\frac{1}{r} \frac{\partial v}{\partial t} \tag{47}
\end{equation*}
$$

with the initial condition

$$
v(r, 0)=0
$$

and boundary conditions

$$
\begin{gathered}
v(a \cdot t)=0 \\
\lim _{r-\infty}(r, t)=0
\end{gathered}
$$

The calculated velocities are 10 to 15% lower than those observed (Ref. 14) by interferometric techniques (Ref. 4f). As mentioned in section 2., the viscous dissipation term, is calculated by using velocites obtained by this method.

9. Heat Transfer by Radiation.

So far, radiative heet transfer has been neglected. For systems where radiation effects are important equation (8) becomes

$$
\begin{equation*}
\rho c_{p} \frac{\partial T}{\partial t}+\epsilon_{n}=\nabla^{\cdot}(\lambda \cdot \nabla T) \tag{48}
\end{equation*}
$$

where, ε_{n} is called the net emission,

$$
\begin{equation*}
e_{n}=\mathbb{E}\left[\varepsilon_{b b}(r, t)-\varepsilon^{g}(x, t)\right] \tag{49}
\end{equation*}
$$

and
K is the absorptivity coefficient
${ }^{e}{ }_{b b}$ is the black body emission function.
$\varepsilon{ }^{\circ}$ the absorption funcion. (Ref. 15)

The difficulty in the analysis of radiative heat transfer is twofold: firstly the absorption function is a very complicated function of the geometry of the system, and has been constructed here only through use of simplifying assumptions; secondly even the simplified form of ε_{n} involves integrations over the
temperature and equation (48) then becomes an intractable integromdifferential equation, as will be presently shown. Approximations at various levels have been made to overcome these difficulties, a good survey of which will be found in Ref. 4g. In relation to the hot wire experiment it had beon suggested (Ref. 10c) that the enission from a central cylinder into a black enclosure would yield a good estimate of the radiative heat losses from the central wire; the error calculated in this way had been found to be of negligible magnitude. Other estimates of these losses for measurements on toluene were as high as 2 . (Ref. 11, 16-i8).

It is assumed here, that since the central cylinder is of infinite length (see section 3) radiation emission from it and from concentric shells of surrounding fluid may legitimately be taken as having no component along the axis of the central cylinder. The equation for monochromatic radiation intensity, I_{ν} in cylindrical coordinates, is then given by (Ref. 15)

$$
\begin{equation*}
\frac{d I_{\nu}(r, t)}{d r}+\left[\frac{1}{r}+K_{v}\right] I_{v}(n, t)=E_{v} \tag{50}
\end{equation*}
$$

where

$$
\begin{align*}
& E_{\nu}=E_{\nu}(T)=n^{2} K_{\nu} I_{b b, v}(T) \tag{51}\\
& K_{V}=K_{\nu}(T) \\
& n=\text { the index of refraction }
\end{align*}
$$

$$
\begin{equation*}
I_{\mathrm{bb}, v}=\frac{2 \mathrm{c}^{2} \mathrm{~h}}{v^{5}\left[\exp \frac{c h}{v \bar{K} T}-1\right]} \tag{52}
\end{equation*}
$$

and

$$
\begin{aligned}
& c=\text { speed of light. } \\
& h=\text { Planck }{ }^{\circ} s \text { constant. } \\
& v=\text { wavalength of radiation. } \\
& k=\text { Boltanann's const. }, \text { and finally } \\
& T=\text { the absolute temperature. }
\end{aligned}
$$

Equation (50) can be solved by the integrating factor
method:

$$
\begin{equation*}
I_{v}(r, t)=\frac{1}{u(r)} \int_{r o}^{r} E_{v}(T) u(r) d r \tag{53}
\end{equation*}
$$

where the integrating factor $u(r)$ is given by

$$
\begin{equation*}
u(r)=\exp -\int_{r o}^{r}\left(\frac{1}{r} t+K_{v}\right) d r^{0} \tag{54}
\end{equation*}
$$

Here r_{o} is the radius of the central cylinder and r^{0} is the variable of integration. All terms in equation (53) are functions of position, wavelength and temperature; the latter in turn is a function of position and time. An obvious simplification of equation (53) is to adopt a suitable average value of \mathbb{R}_{V} over the infra red region which is relevant for rediative heat transfer. We may then write

$$
\begin{equation*}
I(r, t)=\frac{1}{u(r)} \int^{r} E(T) u(r) d r \tag{55}
\end{equation*}
$$

Since radiative transfer has been assumed to occur only radially, $e^{e}=I(r, t)$.

Also using the StefanmBotzmann lav

$$
\begin{equation*}
\varepsilon_{\mathrm{bb}}(r, t)=2 \pi n^{2} \sigma(\Delta T)^{4} ; \quad \Delta T=\frac{d T}{d r}(r, t) \tag{56}
\end{equation*}
$$

Hence

$$
\begin{equation*}
e_{n}=K(T)\left[2 \pi_{n}^{2} \sigma T^{4}-\frac{1}{u(r)} \int_{r o}^{r} E(T) u\left(r^{0}\right) d r^{0}\right] \tag{57}
\end{equation*}
$$

where

$$
\begin{equation*}
u(r)=\exp \left[-\int_{r_{0}}^{r}\left(\frac{1}{r_{0}}+K(T)\right) d r^{0}\right] \tag{58}
\end{equation*}
$$

Due to the form of equations (57) and (58), equation (48) is mathematically intractable. The difficulty could be removed by assuming K , the absorptivity coefficient to be temperature independent. This however would impose time independence on the radiative transfer problex, which would in turn lead to lower levels of outward emission fyom concentric fluid shells and hence to a smaller correction to the thermal conductivity. Pittman (Ref. 4 g) solved the heat conduction equation with a heat sink term representing absorption of radiation by the liquid, with a constant absorptivity coofficient and the boundary condition,

$$
-2 \pi a \lambda \frac{\partial T}{\partial r}=q_{1}-\delta_{q}(t)
$$

where

$$
\begin{aligned}
& \delta q(t)=8 \pi a \sigma \in T_{A}^{3} T(a, t) \\
& \sigma=\text { StefanmBoltrmann const. } \\
& e=\text { emissivity coefficient } \\
& T_{A}=\text { Absolute temperature } \\
& T(a, t)=\text { Temp rise in the wire, from the start } \\
& \text { of the experiment },
\end{aligned}
$$

with the conclusion that for toluene, the error involved is of the order of 1 to 2%. This would seem rather high. The boundary condition assumes a temperature gradient equal to $T(a, t)$, which would lead to overestimating the error; neglecting absorption of radiation by concentric fluid shells would have the same effect. Though due to its approximative nature, this treatment, like previous ones cannot be used for actual oorrections to thermal conductivity data, a practical aspect does emerge. The error decreases as time goes to zero; thus azero time extrapolation of data for each run would lead to a value less affected by radiation losses. (Fef. 4g)

Apparatus, Procedure and Data Handling

1. Introduction

The theory of the hot wire cell presented in Chapter
2 was applied in designtng a thermal conductivity cell adapted to high pressure measurements. Here a description of the cell, the pressure system and temperature control system will be given, along with the working equations used in analysing the data. The experimental procedure will also be described, and finally the method of handling and processing the data will be given.

2. The Thermal Conductivity Cell

The cell (Fig. 1) was constructed of EMS stainless steel with dimensions of 1 cm I.D., . 98 inch O.D. and 15.7 cm internal length. Four 26 SWG thermopure platinum leads wero connected from the sealed electrodes on the high pressure plug to the cell; the two current leads were spotwelded to needles at the top and bottom of the cell, which were insulated from the main body by baked pirophylite beads. The two potential leads which ran down the side of the cell were insulated from it by pyrex capillaries drawn to 3/160 OD. In the coll a spring ($\mathrm{Pt}+10 \mathrm{\phi}$ Iridium) was placed between the top current lead and the heating wire in order to provent the wire from sagging as the experimental temperature was raised. The spring was shunted on both sides with . 001 ${ }^{19}$ thick, ${ }^{1} / 16^{\circ 1}$ wide platinum foil (Ref la), as the spring material is of rather high resistanco. The heating wire, .001'i diameter, die drawn high alpha grade platinum wire supplied by Johnson Mathey Limited, was then connected top and bottom to the spring and lower current lead respectively. The potential leads were then spot welded, about 1 cm away from the spring at the top, and 3 cm away from the current lead at the bottom. After completion, the welds and the heating

F/G. /
THERMAL CONDUCTIVITY CELL

SECTION CC (ENLARGED)
.75" ID ON UPPER RING

SCALE $\quad 1^{\prime \prime}=2 "$
wire were inspected by microscope and found free of kinks or distortions. The potential lead weld regions were found to be partially flattened, up to a distance of 3 or 4 wire diameters.

The design specifications arise from considerations fully discussed in references (1). (2) and (3). These arguments will now be briefly summarised.
i) Effect of the External Boundary.

It has been found (Ref. 1b) that, comparing, in the first approximation, equations (9) and (43) of the previous chapter, agreement is within . 01% for $\mathrm{Kt} / \mathrm{b}^{2}<.12$. For toluene at $90^{\circ}, \mathrm{K}$, the thermal diffusivity, is about $\cdot 7 \times 10^{-3}$. This implies that over 30 seconds are necessary for wall effects to become significant in a 1 cm I.D. cell.
ii) Distance Separating the Potential Taps from Ends of the Heating Wire.

The distance between the top potential tap and the spring is determined by considering conduction away from the heating section by the current load (and spring). Here leaving approximately 1 cm between the bottom of the spring and the potential tap was found sufficient (see section 2.7).

Other considerations enter in determining the length of wire to be allowed between the voltage tap and the bottom
curient lead. Free convection starts as soon as the central wire begins to heat up. Shells of liquid, with the same temperature distribution as for the case of no convectiongo rise followed by the cold front described in section 2.8 (Ref 4). The experiment can be continued as long as the cold front remains .5 cm away from the bottom end of the heating wire. As mentioned in section 2.2, the duration of the experiment is limited by the length of wire allowed below the bottom potential lead. Clearly the velocity of the cold front also depends on the heating rate: low heat rates would allow longer experiments but lead to low voltage changes and hence loss accurate results. where as high heat input rates would necessitate short experiments due to convective and wall effects. It was found (ref 33) that for a distance of 3.4 an below the bottom potential lead, heating rates corresponding to $17-25$ milliernps cell current would allow the experiment to last up to about 30 seconds. In fact all measurements were completed within the first 20 seconds.
iii) Diameter of the wire m Analysis of initial specific heat effects, end effects and radiation losses, indicate the necessity of using heating wires with the smallest diameter with which it would be possible to build a cell. . 001 inch diameter was found to be adequat? for this purposo.
iv) Wire longth. Two cainetometors, set at right anglos relative to each othor were used to measure the length of the heating section of the wire, while the cell was clamped down vertically. The wire length was found to be $8.100 \pm .002 \mathrm{~cm}$. The measurement was repeated after the thermal conductivity runs and no significant change found.
3. The Cell Casing and Bellows

The case which envelopes the cell is made of three parts (Fig 2). The main body of the case screws into the pressure plug. The middle part, a short cylinder, is argon are welded to a bellows; this assembly screws into the main body of the case. The middle part has been designed as a separate pieco from the main body for easior handling and replacemont, The lowor end of the bellows was welded to a plug, with a tapped hole for filling, All parts were made of stainless steel and screwed joints were soaled with teflonflat rings.

The bellows, made by Teddington Aircraft Controls Ltd., had ± 1 inch axial movement. This corresponds to about 32% compression of the fluid confined in tho coll aseanbly which is sufficient to raise most liquids to 7000 atmospheres, over the temperature range of $30-95^{\circ} \mathrm{C}$.

The assembly (Fig. 3) was filled with the test fluid, under its own vapor prossure, following a "bulb to bulb ${ }^{\text {pe }}$

FIG. 2 BELLOWS AND CASING

Mat. EMS Stainless unless specified MOVEMENT AXIAL $\pm 1^{\prime \prime}$ FREE LENGTH 3.47' 30 CONVOLUTIONS

vacuum distillation, where liquid nitrogen was used as coolant. A glass system, Fig. 4, was designed for the purpose, and \therefore-ituched to \therefore strindard vacuum system, inclioding a backing pump and an air cooled oil diffusion pump.

4 The Flectronic System

A system previously developed (Ref.3b) for
atmospheric pressure determinations of thermal conductivity was used for the high pressure thermal conductivity measurements. (Fig. 5).

Basic requirements in the high pressure experimonts were similar to those a.t atomospheric pressure:
i) 20 mA current stable to $1-2 \mathrm{ppm}$.
ii) Eight readings a second with 1 microvolt resolution in about 20 millivolts,
iij.) Stable backoff facility,
iv) Automatic data logging.

The major parts of the curcuit will now bo briefly described,

1) Power supply. D.C. voltage standard made by Cohv.

Mectronics, Kintel Division, U.S.A., with voltage range $0.1000{ }^{\mathrm{V}}$, provides currents up to 50 mA . This instrument was placed in series with a 10,000 ohm resistor, in a thermostatted oil bath, to provide the cell. current. The latter was measured by monitoring the voltage drop acrose an NPL calibrated 10 ohm

FIG. $Q_{\text {? }}$ VACUUM DISTILLATION AND FILLING APPARATUS

FIG. 5 CURRENT SUPPLY AND VOLTAGE MONITORING SYSTEMS

Tinsley standard resisto: .
2) Backoff Circuit. A Model 735A D.C. Transfer standard made by Hewlitt-Packard Co., U.S.A. provided the bachoff, through a voltage divider of 2500 ohm total resistance in steps of 50 ohms.
3) Amplifier. Hewlitt-Packord Model DY 2411A amplifier, with gain selection of 1,10 , and by-pass, was used in series with the voltmetor. The gain is specified accurate to $\pm .007 \%$ with temperature coefficient of less than .5 microvolts $/{ }^{\circ} \mathrm{C}$. Input impodance was 10^{10} ohns.
4) Voltmeter. A Hewlitt-Packard Model DY 2401 C Integrating Digital Voltmeter was used in series with the amplifier. Maxdmum resolution of the instrument was 1 part in 300000. When used with a set sampling period of 1 second,resolution was .1 microvolt, and for a sampling period of .1 socond, 1 microvolt. Accuracy is better than $\pm .025 \%$ of the reading. Both the amplifior and voltmeter are guarded and have high cormon modo rejection.
5) Data-Logging Equipment. Ilonitored voltago changes across the cell were logged by a Hewlitt-Packard DY 2545 high spoed tape punch set with a BPE II tape punch made by Teletypo Corp.

Before a run, the systom was allowed to stabilizo by passing current through the bellast. This is a 100 ohm. continuously variable resistanno introduced in order to avoid transients in the power supply due to changes in the load, when a run is triggered. This was done by a puah button which activated a mercury wetted relyy. A Zenor dicde was provided in parallel with tho 10 K ohm resistor (See Fig. 5), so as to avoid large voltages appearing at relay contacts. The falling odge of the pulse generated across the relay triggers the opening of the gate to a counter circuit available in the Voltmeter with a 100 kilocycle signal. This signal. provides tho timing control for reset pulses externally generated and fod back into the voltmeter. The first integrating period can be delayed by up to $1 / 8$ sec. aftor the opening of the gato; the the delaying period is followed by a reset, period of 9.7 millisesonds which is the gap between the reset pulse and the beginning of an integrating period. The integrating periods are 100 milliseconds each separated by 25 milliseconds from each other, the start of each being triggered by an external reset pulse.

The sequence of operations and vol tage measurements leading up to a thermal conductivity run, will be described in a latei section of this chapter.
5. The Voltmetor Ir togration Poniod

Each voltmeter reading is an everage value cver a

100
millisecond integration period. Honce

$$
\begin{equation*}
T_{M}=\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}} T_{R}(t) d t \tag{1}
\end{equation*}
$$

where T_{M} the measured temperature change is the average value over $\Delta t\left(=t_{2}-t_{i}\right)$ of T_{R}, the real temporaturo. Equetion (37) of tho previous chaptor must now bo modifiod to take this intogration into account. Dofining from oqn. (37)

$$
\begin{align*}
& \varphi_{1}=\frac{g_{1}}{4 \pi}\left[\ln \frac{4 K t}{C a^{2}}+\frac{a^{2}}{2 K t}+\frac{\alpha-2}{\alpha} \frac{a^{2}}{2 K t} \ln \frac{4 K t}{C_{a}^{2}}+\ldots\right] \tag{2}\\
& \varphi_{2}=\frac{q_{2}}{4 \pi}\left[\ln \frac{4 K t}{C_{a}^{2}}-1\right] t+\ldots \tag{3}\\
& \varphi_{3}=\frac{q_{3}}{4 \pi}\left[\ln \frac{4 K t}{C^{2}}-\frac{3}{2}\right] t^{2}+\ldots \tag{4}
\end{align*}
$$

wo may writo

$$
\begin{equation*}
\lambda_{1} \mathrm{~T}_{R}+\lambda_{2} \mathrm{~T}_{R}^{2} / 2=\varphi_{1}+\varphi_{2}+\varphi_{3} \tag{5}
\end{equation*}
$$

Intograting equation (5) with rospoct to t botwoon t_{1} and t_{2} and dividing by Δt, wo got

$$
\frac{\lambda_{1}}{\Delta t} \int_{t_{1}^{:}}^{t_{2}} T_{R} d t+\frac{\lambda_{2}}{2 \Delta t} \int_{t_{1}}^{t_{2}} T_{R}^{2} d t=\frac{1}{\Delta t} \int_{t_{1}}^{t_{2}}\left(\varphi_{1}+\varphi_{2}+\varphi_{3}\right) d t
$$

and honco

$$
\begin{equation*}
\mathrm{T}_{\mathrm{M}}=\frac{1}{\lambda_{1} \Delta t} \int_{\mathrm{t}_{1}}^{t_{2}}\left[\varphi_{1}+\varphi_{2}+\varphi_{3}-\frac{\lambda_{2}}{2} \mathrm{~T}_{\mathrm{R}}^{2}\right] \mathrm{dt} \tag{6}
\end{equation*}
$$

As tho variablo conductivity corroction is oxpoctod to bo loss than $.5 \%$, it is pomissibio to calculato tho avorago valuo of T^{2} from tho lino sourco mothod. Thus by oqno (10) of the provious chaptor

$$
\begin{equation*}
T_{R}^{2} \doteq\left[\frac{q_{1}}{4 \pi \lambda} \ln \frac{4 K t}{C a^{2}}\right]^{2} \tag{7}
\end{equation*}
$$

Intograting oquations (2)-(4) and (7) with rospoct to it wo got

$$
\begin{equation*}
\mathrm{T}_{\mathrm{M}}=\frac{1}{\lambda_{1}}\left[\bar{\varphi}_{1}+\bar{\varphi}_{2}+\bar{\varphi}_{3}-\frac{\lambda_{2}}{2} \overline{\mathrm{~T}}_{\mathrm{R}}^{2}\right] \tag{8}
\end{equation*}
$$

whore aftor dropping torms containig $(\Delta t)^{2},(\Delta t)^{3}$ otc. ,

$$
\begin{align*}
& \bar{\varphi}_{1}=\frac{q_{1}}{4 \pi}\left\{\left[\frac{t_{1}}{\Delta t}+\frac{a^{2}}{2 K \Delta t}\right] \ln \left[1+\frac{\Delta t}{t_{1}}\right]+\ln \frac{4 K\left(t_{1}+\Delta t\right)}{C a^{2}}-1\right. \\
& \left.+\left[\frac{\alpha-2}{\alpha} \frac{a^{2}}{4 K}\right] \frac{1}{\Delta t}\left[\left[\ln \frac{4 K\left(t_{1}+\Delta t\right)}{\mathrm{Ca}^{2}}\right]^{2}-\left[\ln \frac{4 \mathrm{Kt}_{1}}{\mathrm{Ca}^{2}}\right]^{2}\right]\right\} \tag{9}\\
& \bar{\varphi}_{2}=\frac{1}{\Delta t} \frac{q_{2}}{8 \pi}\left[t_{1}^{2} \ln \left[1+\frac{\Delta t}{t_{1}}\right]+2 t_{1} \Delta t \ln \frac{4 K\left(t_{1}+\Delta t\right)}{C a_{a}^{2}}-3 t_{1} \Delta t \div \cdot\right], \tag{10}\\
& \bar{\omega}_{3}=\frac{1}{\Delta t} \frac{q_{3}}{12 \pi}\left[t_{1}^{3} \ln \left(1+\frac{\Delta t}{t_{1}}\right)+3 t_{1}^{2} \Delta t \ln \frac{4 k\left(t_{1}+\Delta t\right)}{\mathrm{Ca}^{2}}-\frac{1 i_{2}^{2}}{2} \hat{1}_{1}^{2} \Delta t+. .\right] \tag{11}
\end{align*}
$$

and

$$
\begin{align*}
& \bar{T}^{2}=\left[\frac{q_{1}}{4 \pi \lambda_{1}}\right]^{2} \frac{1}{\Delta t}\left\{\left(t_{1}+\Delta t\right)\left[\ln \frac{4 K\left(t_{1}+\Delta t\right)}{C a^{2}}\right]^{2}-t_{1}\left[\ln \frac{4 K t_{1}}{C a^{2}}\right]^{2}\right. \\
&\left.-2 t_{1} \ln \left(1+\frac{\Delta t}{t_{1}}\right)-2 \Delta t \ln \frac{4 K\left(t_{1}+\Delta t\right)}{C a^{2}}+2 \Delta t\right\} . \tag{12}
\end{align*}
$$

Horo $\Delta t=.1$ socond.

6. The Working Equation

For fixed a, λ_{2} and α equation (8) givos the moasurod tomporaturo changes as a function of timo, at tho wiro-fluid boundary.

$$
T_{M}(t)=\frac{1}{\lambda_{1}} F(t)
$$

For any interval, Δt, thon

$$
\lambda_{1}=\Delta F(t) / \Delta T_{M}(\dot{\mathrm{c}}) .
$$

For small terporature charges (Rof. 1)

$$
\Delta T_{M}=\frac{d T_{M}}{d R} \Delta R \quad \text { whoro } \quad \Delta R=\frac{\Delta V}{I}=\frac{V}{I^{2}} \quad \Delta I
$$

Thoreforo

$$
\Delta T_{Y I}=\frac{d T M}{d R}\left[\frac{\Delta V}{I} \cdot \frac{V}{I^{2}} \Delta I\right]
$$

and

$$
\begin{equation*}
\lambda_{1}=\frac{\mathrm{dR}}{\mathrm{dT}_{M}}\left[\frac{1}{\mathrm{I}} \frac{\Delta \mathrm{~V}}{\Delta F}-\frac{\mathrm{V}}{\mathrm{I}^{2}} \frac{\Delta \mathrm{I}}{\Delta \mathrm{~F}}\right]^{-1} \tag{13}
\end{equation*}
$$

From oquation (8) it can bo soon that $F(t)$ is a woak function of λ_{1}. Honce an itorative calculation is callod for. Tho computor program wsitton to porform thoso calculations will be doscribod in a lator soction.

7. The Pressure System

The pressure system wain desigred to reaoh pressures up to 7,000 atmospheres. The accompanying flow sheet, Fig. 6. i illustrates the layout.

1) The pressure vessel was manufactured by Pressure Products Inc. (UK) Itd, ; design dotails may be found in Fig. 7. The vessel. was made of EN 25 stainl.ess steel, with $1 \frac{1}{2}{ }^{70}$ bore and $12^{\text {ne }}$ working length, from the tip of the elscirode head to the bottom of the vessel. The electrode head was also made of EN 25 steal with initially a beryllium copper-teflon hali Bridgran main seal and four electrode seals. The latter consisted of Hilumina insulators (Smith Industries, Ceramies Division) and brass cones, successivoly lapped in.

It was found during the experiments, that beryliiumecopper work-haraened sufficiently to scratch the vessel bore when the plug was being extracted from the vessel. Copper was tried and found to flow too easily and fill the gap between itself and the plug (see Fige 7). Phosphor bronze was then tried with a larger angle, 6 degreos, betreen the ring and the plug and found satisracsory, provided a groove was turned off on the outside, as shown in Fig. 'i, This groove prevents the O.D. of the ring from flowing flush to the vessel bore which would have increased surface

fig 6.
flowsheet of the pressure system

FIG. 7

PRESSURE VESSE AND PLUG

PHOSPHOR BRONZE MAIN SEAL

oontact and caussd leaking. This design was found sufficientily durable orere the pressure ain temperature cycling that took place during the experiments.
2) 10,000 atnosphere gauge, made by Budenberg Gauge Company, rated to 19 accuracy of full scaie deflection.
3) Letdown Valve, with nonrotating spindio, rated to $100,000 \mathrm{psi}$, was made by Iressure Products Inc.
4) Vai.vo, with same speciflcations as (3).
5) Gauge, with same specification as (2).
6) Intensifier, rated to $200,000 \mathrm{psi}$, with intensification factor of 15; model A2.5J made by Harwood Engineering Co., U.S゙oAo 7) Ilon-rotating spindle valive, rated at $30,000 \mathrm{psi}$, made by P.E.Io
8) Pump, stainless steel body, rated at 60,000 psi, made by MeCarney Manufacturing Co.: U.S.A.
9) Valve, with some specifivations as (3).
10) $40,000 \mathrm{psi}$ gauge, made by Budeaberg Gauge Company.
11) Non-rotating spindle valve, rated at $60,000 \mathrm{psi}$, made by P.P.I.,
12) Hand pump; same as (8).
13) Valve; same as (11).

The whole pressure system was enclosed in a steal frame and shielded with $\frac{14 i}{4}$ thiok mild steel plate (Fig. 8).

The system is in: tially pumped up by (12) to about 2,000 aumospheres. Valve (9) is closed off to isolate the low pressuro side, and the pressure further raised by pumping (8) on the low

FIG. 8
side of the intensifier (6) until the piston reaches the ond of the stroke. Valve (4) is then closed off, valve (7) opened and the pressure between ('4) and (9) drupped to about $2_{8} 000$ atmospheres. Volve (9) is then opened and the intensifier piston pumped down by (12); the pressure is raised again to 2,000 atmospheres, and values (7) and (9) turned off. The pressure betwoen (4) and (9) can then be raised by (8) to the vessel pressure, valvo (4) opened and pumping continued. Vessel pressure can normally be raised to the designed maximum during the second stroke of the intensifier. During experiments, (4) is shut to isolate the vessel from the rest of the syster.

The pressure calibrations were carried out against an N.P.L. celibrated "dead weight" standard pressure gauge over the range 0 0,y000 atmospheres. The zeromerror of the two 10,000 atmosphere gauges remained, as pressure was raised, and no error exceeding the quoted accuracy (1% of full scale reading) of any of the three gauges was found. The calibration was repeated by reducing the pressure from 3,000 atmospheres, with the same result (Fig. 9). The results were assumed to hold for pressures above 3,000 atnospheres.
8. The Temperature Control System

As the temperature rise of the contral wire during the

fig. 9 Pressure Gauge calibration curve
experinent is $\cdot 3^{\circ} \mathrm{C}$, maximum allowable temperature drifts in the cell are on the order of, $05^{\circ} \mathrm{C} /$ hour. In order to achieve this temperature stability the pressure vessel was placed in a temperature controlled, stirred oil bath. (Fig. 10).

1) Tubalox inmersion heater, rated $230 / 50$ volts, 3 kw , with no heat dissipation above the surface of the oil. Power to this heater was supplied through a 15 amp variac.
2) 1^{10} thick blockboard case, housing vermicullite insulation.
3) 3^{10} thick layer of vomicullite insulation around and beneath the galvanized iron tank.
4) $1 / 30 \mathrm{HP}$ induction motors made by Maxon Ltd; 1425 rpm slowed down by gearboxes and with shafts mounted with 12^{20} long vertical fins as well as 40 diameter brass propellors at the tip.
5) $\frac{1 m}{h}$ thick mild streel plate supporting pressure vessel.
6) $1 / 8^{i a}$ thicls duraluminium sheet cylinder, provided lageing by trapping 1^{10} of oil between itself and the pressure vessel.. 7) Pressure vessel.
7) 10 gauge galvanized iron tank, $20^{\circ \mathrm{m}}$ long, 14^{10} wide, 35° deep and with 4^{7} flanged top.
8) Tubalox irmersion heater, rated 230/250 volts, 500 watts, supplied through the temperature controller.

fig 10 Thermosiat Bath plan view

The whole system was provided with a lid made of $\frac{1}{2}$ n thick syndanyo plato and $3^{r 0}$ layer oì rormicullitz, enciosed in cardboard.

The heat transfor fluid used was Sholl Voluta Oil 45, a mineral oil based fluid, which can be used at temperatures up to $300^{\circ} \mathrm{C}$. The oil was pumped in and out of the thermostat bath, using the oil handling system shown in Fig. 11, which was also used for cooling the system.

A temperature controlier was designed and constructod in the departmental electronic workshop for the purpose of providing the required siability, and will be briefly disnussed here.

The sensing element, \approx Degussa, 100 ohm (nominal) resistance themmeter, was used as one amm of the bridge with a PYE, variable rosistance box, as tine preasei axm. The bridge ais driven by an le folit stobilised power fupply. the outmosmbaternce voltage from the bridge is fed into a prewemplifien, and then into a 3oterm unit gain anplifier, the output of which is used. to determine what proporitioi of a second the heater will be turned on.

This signal drives a gate which allows tine output of a mains driven zero voltage pulse generator to roach the trias controlling the heater. The latter shuts power off ithen voltage across it passes throigh zero, thus breaking circuit at each

1 Reservoir
2 Heat Exchanger
3 By Pass
4 Pump

5 Temperature Gauge
6 Draining Line
7 Filling Line
8 Thermostat Bath
fig 11
Flowsheet of Oil Handling System
mains half cycle, and being reactivated by the zero voltage reset pulso, as long as the gate remains open.

Temperature stability in the cell was followed over time by measuring the cell resistance, and the system desoribed above was found to drift at ratos of less than $.05^{\circ} \mathrm{C} /$ hour after a settiling down period of 12 to 18 hours. Furthermore, the vertical temperature distribution in the vessel bore was investigated by vertically moving a resistance thermaneter. In the absenco of the bath iid and the pressure plug, it was found that a vertical gradient of about $.05^{\circ} \mathrm{C}$ existed. It was assumed that the gradient would be reduced to negligible propertions when the vessel closure and bath lid were replaced.

Finally in oider to measuane the experjmentel semporaturo, an N.P.I. cailbreted 25 cim (ncninai) zesistance thermometer, made by H.Tinsley and Co. Ltdo, was irmersed in the bath betwec: the pressure vessel and the cyitindrical sholl surrounding it. (see Fig. 10). Thermonetor resistance was measured to . 0001 ohm. The constants of the callibration polynomial were used by a computer program , in order to evaluate the temperature. (see section 10). Experimental temperatures will be quoted here to the nearest tenth of a degroe centigrade.

Abstract

9. Procedure

The thermal conductivity of toluene was measured, at each temperature, first at atmospheric pressure and then at various elevated pressures.

As the pressure is raised by pumping, work is done on the compression oil (DDT 585, Shell) and the test flutd; consequently the temperature in the vessel and the cell rises above the temperature at which the system is being controlled. . More than three hours were allowed for this heat to be dissipated. Experiments were carriec cut only afier itmperature drifts due to cooling were observed to be indistinguishable from controller drifts for about halis an hour,

 temperature rise over the duration of the experiment. As oxporiments lastec approximatoly 20 seconds, and temperature rises were never larger than $.3^{\circ} \mathrm{C}$, this oondition corresponds to drifts of about $.07^{\circ} \mathrm{C} / \mathrm{hour}$. In fact no experiments were carried out with observed drifts above $.05^{\circ} \mathrm{C} /$ hour. These drifts were followed by measuring the cell resistance at short intervals. If before a run cell resistance changes larger than those allowed for
controller drifte were found, this was attributed to cooling due to pressure leaks and the set of runs cancelled.

In theory, two factors must be taken into account in identifying a pressure leak through cell resistance measurements. The first, as indicated above, is the changes of tomperature undergone by the system, as the pressure is raised or lowered. This must be distinguished from resistance changes that Pt wire will undergo due to changes of pressure. At $50^{\circ} \mathrm{C}$, the pressureresistance relationship for platinum may be represented by the empirical oquation (Ref. 5)

$$
\begin{equation*}
R_{p}=R_{0}\left(1+a P+b P^{2}\right) \tag{14}
\end{equation*}
$$

where

$$
a=-1.949 \times 10^{-6}, b=7.86 \times 10^{-12} \text { and } R_{0} \text { is the resistance }
$$ at atmospheric pressures.

While, cloarly, the two offocts change the wire resistance in opposite directions, this in practice does not pose a serious problem as the magnitude of the resistance change due directly to pressure changes, is much smaller than tho temperature change due to work done on the liquid.

At oach setting of the temperature and prossure, the pressure was raised to a slightly higher value than the desired one, in
order to compensate for drops due to heat dissipation. At each pressure and temperature, three thermal conductivity measurements were made. In addition a run was simulated where the voltage drop across the 10 ohm standard resistor was measured in order to calculate tho curront change.

An experiment is set up as soon as temperature and pressuro stability critoria are satisfiod. The power supply is allowed to stabilize at 10 volts output, where the current drawn is about 1 milliamp. The following operations are then carried out.

1) Total cell resistance is measured and the ballast resistance set to the same value.
2) Current is switched into the coll and tho voltage drop across the two potential leads measured. Heating due to the 1 milliamp current is negligible.
3) With tho current going through the ballast the potential drip across the standard rosistor is measured. This allows the calculation of the current flowing in the call in (2) and consem quently the calculation of the cell resistance.

Output from the powor supply is then raised to 200 volts, drawing approximately 20 millilamps; the system is allowed to stabilize for five minutes.
4) Necessary backoff vol.tage is calculated on tine basils of allowing about $20 \mathrm{millivol} t \mathrm{~s}$ across the voltmoter; this is set on tile voltage divider.
5) With the curvent flowing through the ballast the potential drop across the standard resistor is measured in order to calculato the initial current. The voltmeter is then set to the . 1 second sampling period, the tape punch activatod and the current switched into the cell. 50 minutes was allowed between runs.

10. Processing of Data

In order to calculate the thermal conductivity from V v.s. t data, it is necessary to know the temperature coefficient of the cell wire resistance. To this end the ceil. resistance was measured as a function of temperature at each experimental pressure, over the range $30-95^{\circ} \mathrm{C}$.

A computer program was written to executo the following operations:

1) Thermometer resistance data was converted to temperature readings.
2) For each pressure the temperature ves. cell resistance data was fitted to a straight line.
3) Using the T v.s. R_{c} fits, pressuro v.s. cell resistance data was cross-plotted and fitted to a quadratic.
4) These curves, in turn, are used for fitting straight lines to T v.s. R_{c}, for each experimental pressure. $d R / d T$ values relevant to the experimental states were then computed. The source program listing may be found in appendix 3B. The least-squares polynomial fitting subroutine used, was a Program Library deck written by C. Ho, Computatitn Laboratory G.P.D., I. B.K., Rochester, Minnesota, U.S.A. The same subroutine was used in the main data analysis prograns, which will now be described.

Data in the form of paper tape produced by the Teletype punch in Atlas autocode was first loaded, without code translation ori to magnetic tape by the IEM 1401. The main programme wri.tten in Fortran IV was then loaded or the IBS 7094 to perform the following operations.

1) Each data batch consisting of several themal conduntivity runs and a current run, were translated into PCD codo*, assigned a decimal point in units of volits and read into the menory.
2) The following information was fod in from data cards, for each run:

- the temperature coefficiont of themal condurtivity at the initial temporaturo
- time dolay bofore the starit of the first integration period
- wire and fluid densities and specific heats
- oxperimental temperature and prossure
- backoff voltage value
- temporature coofficient of wire resistance at the initial

[^0]temperature

- voltage drop across the 10 ohm standard resistor with curront flowing through ballast and fower supply set at 10 V ; this value is deroted by SV1, and is used for cenculating the current at the 10 volts setting.
- voltage drop across the heating section of the wiro, wi. ih 10 volts across the circuit, this is denoted by RIVT, and is used for calculating the coll resistance.
- voltage drop across the 10 ohm standard resistor, with power supply sot at 200 volts, SV2, used for calculating the initial current in the coll.

3) Calculation of q_{1}, q_{2} and q_{3}. The heat dissipation per unit Iength in the active part of the cell is given by

$$
q(t)=V(t) I(t) / I
$$

where $V(t)$ is the sum of V_{B} tho backorf voltage (neasured accurate to 10 microvolts) and the voltmetor reading $V_{V}(t)$ (accurate to 1 microvolt).

$$
V(t)=V_{V}(t)+V_{B}
$$

The current changes are measured by monitoring the voltage changos across the standard resistor (the resistance of which is knom) during a simulated run. This data is fitted to a quadratic,

$$
\begin{equation*}
I(\dot{\Delta})=i_{0}+I_{1} t+I_{2} t^{2} \tag{15}
\end{equation*}
$$

where i_{0} is the value rolative to the backed off voltage. The initial current is then calcuiated from SV2 and the resistance of the standard resistor. Thec

$$
I(t)=I_{0}+I_{1} t+I_{2} t^{2}
$$

The powor dissipation can can now be mitten as

$$
\begin{equation*}
1 q(t)=I(t) V_{V}(t)+I(t) V_{B} \tag{16}
\end{equation*}
$$

The upper limit of the total current change during the experiment is 4 ppm. Taking $V_{B} \stackrel{\oplus}{=} 300$ millivolts, $\Delta V_{V} \stackrel{\bullet}{=} 500$ microvolts, we see that the change in the second term on the rhs of the last equation is much smaller:

$$
\frac{\left(I_{f}-I_{\Omega}\right) V_{B}}{\Delta q} \stackrel{\bullet}{\Delta q}
$$

here $I_{f}=I_{0}+\Delta I$. Hence measuring V_{B} to 10 microvolts produces negligible error, in the calculation of q_{2} and q_{3}.

Combining equations (15) and (16), with voltage change data as a function of time is sufficient to fit $q(t)$ where the first term q_{1} is calculated from the measured initial current and cell resistance. Hence

$$
q_{1}(t)=q(t) / 1=q_{1}+q_{2} t+q_{3} t^{2}
$$

The time averaged power dissipation is given by

$$
\bar{q}_{1}=q_{i}+\frac{q_{2}}{2} \frac{i_{\operatorname{man}}}{2}+\frac{q_{3}}{3} t_{\max }^{2}
$$

4) Calculation of λ_{1}. The string of voltage changes moasured as a function of tine aro sanothed by fitting to a quadratic in $l_{\text {iI }} t$ averaged over the integration period.

$$
V(t)=A+B g\left(t_{1}\right)+C g^{2}\left(t_{1}\right)
$$

where

$$
g\left(t_{1}\right)=\frac{t_{1}}{\Delta t} \ln \left[1+\frac{\Delta t}{t_{1}}\right]+\ln \left(t_{1}+\Delta t\right)
$$

Date takon during the first half second where spocific heat effects are important is ignored. The first conductivity value is, found by processing readings $5-15$ and a conductivity is calculated through an iterative proceduro by using 6 moro roadings each time.

An itaration is initiatod by calculating the firsi approximetion to the thermal conductivity by the lime source method. This value is used for calculating, through equation (13) a new value, which is fed back into oquation (13). The process is acntinuod until the change is successive iterations is less than $.01 \%$ of the valuo of λ_{1}

A sories of apparent conductivities as a function of experimental time are thus calculated, along with corresponding
standard deviations, and differonces from the line source mothod arising from finito wire diametor, variable power and temporaturo depondent thomal conductivity.

A listing of the sourco progran may be found in appendix 3A.

CHAPTER 4

DATA AND DISCUSSIOR

1. Intren enction

The thermal conductivity of toluene has been measured at three temperatures between 30 and 90 degrees centigrade over a pressure range of up to 6250 atmospheres. In all, a series of approximately 50 measurements has been made. No data sould be found for comparison with the high pressure thermal conductivity measur.emonts of this work. Atmospheric pressure measurments were within about 0.5% of previous work by Pittman (Ref.5).

In this chapter, the data will be presented along with results of hot wire $d R / d T$ calculations. A sample calculation for the conductivity will also be given.

2. Toluene Properties

Analar grade toluene (Hopkin and williams Ltd.) was rem fluxed over sodium wire for about six hours and distilled. A middle cut was separated and it's refractive index measured. This was found to be $1.4942 \pm .0002$ at $25 \pm .1^{\circ} \mathrm{C}$.

No bigh pressure date on the heat capacity and density oftolume are at present available. The heat capacity values at high pressure were taken to be those at the corresponding temperature at 1 atmosphere (Ref.1). Sinco, in the calculation of the conductivity the heat capacity appears in terms which are rather small, the error arising from this approximation is negligible (see Chapter 3).

Density data for toluene had to be estimated in order to relate the pressure to the compression of smple volume. Results of this calculation were used to compute the thermal diffusivity at high pressure. The method for estimating high pressure densities (Ref.2) from atmospheric data on ρ V.s. T, is based on the assumptions that isochors (constant volume lines) are straight, i.e. that $(d P / d T) V$ is constant and that the $(\mathrm{dP} / \mathrm{dT})_{V}$ v.s. P relationship is Iinear.

$$
\begin{equation*}
\left[\frac{P_{2}-P_{1}}{T_{2}-T_{1}}\right]_{V}=\left[\frac{d P}{d T}\right]_{V}=A P+B \tag{1}
\end{equation*}
$$

By using the fer available data points (Ref.3)

PRESS. (AMM)	$\mathrm{V}_{\text {ral }}$
1810	.885
2930	.853
4400	.824

where $V_{r e l}$ is the ratio of $V_{P} / V_{P=1 a t ~ a n d ~ t h e ~ d e n s i t y ~}$ temperature relationship from the International Critical Tables ,

$$
\begin{array}{r}
\rho(T)=.88448-.9159 \times 10^{-3} T+.368 \times 10^{-6} T^{2} \tag{2}\\
\left(0<T^{\circ} \ll 110\right)
\end{array}
$$

the density can be estimated over the relevant temperature and and prossure range (Fig. 1) .

The method was checked by calculating n-hexane densities and comparing with previously measured values (Ref.4); it was found to be within 1\% up to 2000 atmospheres, deteriorating to about 5% around 6500 atmospheres, over the $0-100^{\circ} \mathrm{C}$ temperature range.

FIC.1. TOLUENE DENSITIES AT HIGH PRESSURE (ESTIMATED)

3. The Wirte

Abstract

The length of the wire between the two potential taps was measured betore the toluene ruis. The catheto meter measurements, which were described in the previous chapter yielded

8.103
8.100
8.099 Mean : 8.100 cm .

The measurement was repeated after the conductivity determinations.
8.098
8.105
8.102 hean : 8.102 cm .

This change of less than . 02% is within the accuracy of the measuring instruments, and in any case negligible.

The calculation of the temperature coefficient of wire resistance has been described in the last chapter. At each pressure, dR/dI was taken to be constant over the experimental temperature range, as the latter was rather small.

PRESSS. (ATMS)	$\mathrm{dR} / \mathrm{dT}\left(\mathrm{ohm} / \mathrm{O}^{\circ}\right)$
1	.059875
2500	.059734
2250	.059663
3250	.059565
4850	.059407
6250	.059264

4. Tolqene Thermal Conductivitios.

Results obtained in the experiments are given
belotv:

TABTE I

PRESSURE (ATM)	$\frac{\text { qTap }}{(O C)}$	$\frac{\lambda}{\operatorname{mv} / \mathrm{cmin}^{\circ} \mathrm{C}}$	$\begin{gathered} \lambda \text { (moan) } \\ \text { mv/ } / \mathrm{cm}-{ }^{\circ} \mathrm{C} \end{gathered}$	Av. \% Deviation from the mean
1	28.2	I. 297		
		1.300	1.298	0.1
		1.297		
	30.8	1.282		
		1.288	1.285	0.2
		1.286		
1500	30.8	1.633		
		1.631		
		1.630	1.633	0.12
		1.636		
	61.4	1.589		
		1.598	1.595	0.25
		1.598		
	91.5	1. 527		
		1.543	3.538	0.5
		1.544		

TABLE I Cont. .

$\underset{(\text { ATM) }}{\text { PRESSTRE }}$	$\begin{aligned} & \mathrm{TPTP} \cdot \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\mathrm{mw} / \mathrm{cma}^{\mathrm{O}} \mathrm{C}$	$\begin{aligned} & \lambda \text { (mean) } \\ & \mathrm{ms} / \mathrm{cm}=\mathrm{O} \mathrm{C} \end{aligned}$	Av. \% Deviation from the mean
2250	30.8	1.8224		
		1.814	1.815	. 34
		1.808		
	61.4	1.822		
		1.776	1.793	1.1
		1. 780		
	91.5	1.770		
		1.800	1.791	0.8
		1.803		

$3250 \quad 30.8 \quad 1.917$
$1.911 \quad 1.914 \quad 0.1$
$61.3^{*} 1.937$
$1.943 \quad 1.938 \quad 0.1$
1.935
$91.6 \quad 1.940$

\therefore	1.935	1.938	0.1
	1.939		

TATE I Contin

$\begin{aligned} & \text { PRESSURE } \\ & (\text { ATI }) \end{aligned}$	$\begin{aligned} & \text { THD } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} \lambda \\ \mathrm{miv} / \mathrm{cm}=0 \end{gathered}$	$\begin{gathered} \lambda(\operatorname{meg}) \\ \mathrm{mw} / \mathrm{m} \mathrm{~m}^{\circ} \mathrm{C} \end{gathered}$	Are 忍 Deviation from the mean
44650	30.8	2.108		
		2.125	2.113	0.35
		2.123		
	61.3	2.170		
		2.183	2.173	0.3
		2.170		
	91.6	2.183		
		2.187	2.186	. 1
		2,189		
6350	30.3	2.276		
	.	2.2 .95	2.332	. 4
		2.275		
	91.6	2.369		
		2.404	2.383	.6
		2.375		

These results are plotted in Fig. 2.

Fig. 2 Thermal conductivity of toluene

5. Sample Calculation.

$$
\text { Run 23. Date: } 1 / 8 / 196
$$

Temperature $=30.8^{\circ} \mathrm{C} ;$ Fressure $=4850$ Ats.
Temperature Drift $=.01{ }^{\circ} \mathrm{C} / \mathrm{hr}$
Measurements Before Rurr.
DC supply : 10V
Voltage Drop Across Cell: 27.5970 mV
\cdots a \quad Bellast: 27.5971 my
" n. 9 Standard Resistor: 9.8302 mV
" " " Heating Section of Wire: 16.9312 mV
Back off Setting: 314.04 mV
DC Supply: 200 V.
Voltage Drop Across Standard Resistor: 196.494 mV

Summary from Computer Output.

Operating Current: 19.6478 mali Amp
Initial Resistance: 17.2250 ohms.
$\mathrm{dR} / \mathrm{dT}$ (approx. value used): $.058954 \mathrm{ohm} /{ }^{\circ} \mathrm{C}$.

No. Ers Included	λ	Standard Deviation
15	-24123×10^{-2}	$.64358 \times 10^{-6}$
33	$.21145 \times 10^{-2}$	$.60107 \times 10^{-6}$
51	$.21125 \times 10^{-2}$	$.75573 \times 10^{-6}$
69	$.21123 \times 10^{-2}$	$.76917 \times 10^{-6}$
87	$.21165 \times 10^{-2}$	$.74863 \times 10^{-6}$
105	$.21154 \times 10^{-2}$	$.81744 \times 10^{-6}$

Linear fit extrapolated to zero tine gives

$$
\lambda=2.110 \mathrm{mw} / \mathrm{cm} \cdot{ }^{\circ} \mathrm{C}
$$

Smoothed $\mathrm{dR} / \mathrm{dT}=.59407 \mathrm{ohm} /{ }^{\circ} \mathrm{C}$.
Corrected $\lambda=2.125 \mathrm{mw} / \mathrm{cm} .{ }^{\circ} \mathrm{C}$.

6. Sources of Error

During the expsrinems. tcrposature drifts in the cell wore followed ky wrosuring the cell resistance at short intervals, As each sэi cif totominations was compioted within the span of abcut two hours and the accepted drift rate was $0.03^{\circ} \mathrm{C} / \mathrm{hr}$ the measuremonts can be averaged with a maximum error of oi置, nper the nressure range. On the othor hand, as mentionee in the peevious chapter, the exporimental temperature is measursd in the oil bath between a hollow cylinder surrounding the vessol, and the pressure vessal itself. While this arrangement somewhat shields the thernometer from temporature fluctuations in the ofl bath ($\pm .1^{\circ} \mathrm{C}$), the temperature eose by the thermomoter is expected to be loss stable than that in the cell, which is surrounded by the thermal mass of the pressure vossel. As the time lag between the exterior of the vessel and the coil is about 3 to 4 hours, the temperature differenco (assuming continuous drift in one direction) could bo as much as 0.3 to 0.4 degrees centigrede. This gives rise to two types of error.

1) The moasured themmal conductivity, depending on tho magnitude of $\mathrm{d} \lambda / \mathrm{dT}$ at the given prossuro, would bo in error: by 0.2 to 0.5%
2) In the evaluation of $d R / d T$, the cell resistance would be matched to a temperature different than that in the cell. The resistance value would be in error by about 0.2%. The error in $d R / d T$ with an upper limit of about 0.5% due to this, might be exprected to decrease through the double smoothing procedure of R v.s. T data outilined in the provious chapter. Furthermore, the shortness of the temperature range would be expected to affect the accuracy of the temperature coeffloient. This error could be eatimated to be in the range 1.0 to 3.0% and closer to the larger value at the ende of the temperature range.

Errors in the thermal conductivity measurement due to convective effects are due to two types of mechanisms. The first is due to heating of the central part of the wire with tho result that at the oxtromities vertical temperature gradients are set up. It has been assumed that tho radial temperature field remains unchanged until the "cold front* approaches the bottom potential tap. To this must bo added heat losses from tho potential lead into the convecting fluid; this clearly ties in with and aggravates the problem of heat loss from the central wire by conduction into the potential leads, with the result that the radial temperature field is distortod. These errors, however, may be
minimised by extrapolating the data to zero time, provided that the fluid is assumed to be initially stagnant. This brings us to the second type: free convection at the start of the experiment due to vertical temperature gradients. Tho obsorved fall in apparent conductivity with time observed in many runs is consistent with hot fluid rising from bolow the heating wire in the cell. It is difficult to estimate the error arising from these initial vertical temperaturo gradients in the cell, since these would depend on the magnitude of the gradient. This effoct is somewhat smaller at higher pressures, as would be expooted, and the orror arising from it would be estimated in the range 0.2 to 0.5% after extrapolation to zero time. This initial free convection would also imply that potential tap losses are not completaly eliminated by extrapolation to zero time. The resulting erfor could be as high as 0.5%. Errors due to radiation losses may be ignored with little exror when the data is extrapolated to zero time. Finally, as can be seen from percent deviations from the moan an orror of 0.1 to 1.0% must be accepted from random factors, such as electrical noise, and scattor in the extraplatod lines.

Surmarizing, the exror due to averaging the results of each run should give rise to 0.1%, uncortainty in the
temperature measurement to 0.4 to 1%, the initial convoction offect to 0.2 to 0.5%, uncertainty in $d R / d T$ to 1 to 3%, end effects to 0.1 to 0.5%, and random errors to 0.1 to 1%.

CHAPTER 5

THE HEAT TRANSFER EQUATION WITH VARTABLE
PHYSICAL PROPERTTES

1. Introduction

In Chapter 2 a set of linearization transformations, proposed by Kudryashev and Zhemkov, were applied to a problem where the inversion procedure was rather straightforward due to ξ reducing to $K t$ without significant error. Here the evaluation of these transformations as a tool for solving certain types of partial differential equations will be attempted. For a chosen simple geometry, the solution obtained by this method will be compared with two other ways of solving the problem. It will be seen that while all three methods agree for small nonlinearities, the differences for large values of the temperature coefficient of the thermal conductivity are significant.

2. The Infinito Slab

For purposes of comparison, a problem solved with a variational technique (Ref.1) has been chosen.

An infinite slab of thickness 2L is held at uniform temperature T_{S}, and the boundaries $-I$ and I subjected to $T(-L, t)=T(L, t)=0$, for $t>0$. The temperature profiles are symetric with respect to the plane $x=0$. The density ard the heat capacity arn assumed constant and the thermal conductivity is given by

$$
\begin{equation*}
\lambda(T)=\lambda_{1}\left(1+\lambda_{2} T\right) \text { where } \lambda_{2}=\frac{1}{\lambda_{1}} \frac{d \lambda}{d T} \tag{1}
\end{equation*}
$$

The problem can now be stated as

$$
\begin{array}{ll}
T(x, 0)=T_{3} ; & -L \leqslant x \leqslant \mathbf{L} \\
T(-L, t)=T(L, t)=0 & ; \quad t>0
\end{array}
$$

with the partial differential equation

$$
\begin{equation*}
P C_{p} \frac{\partial T}{\partial t}=\frac{\partial}{\partial x}\left[\lambda(T) \frac{\partial T}{\partial t}\right] \tag{2}
\end{equation*}
$$

In ocder to simplify handling, the problem is put in dimensionless form. The new variables are defined as :

$$
\begin{equation*}
\beta=\frac{\mathrm{x}}{\mathrm{~L}} ; \quad \tau=\frac{\lambda_{2}}{\overline{\mathrm{P}} \mathrm{C}_{\mathrm{p}}} \frac{\mathrm{t}}{\mathrm{~L}^{2}} \quad ; \quad \theta=\frac{T}{T_{s}} \quad ; \quad \sigma=T_{s} \lambda_{2} \tag{3}
\end{equation*}
$$

and the problem can be remstated in dimensinless form as follows:

$$
\begin{align*}
& \hat{\theta}(\beta, 0)=1 \quad ; \quad-1 \leqslant p \leqslant 1 \tag{4}\\
& \theta(\alpha 1, \tau)=\theta(1, \tau)=0 ; \tau>0 \tag{5}\\
& \frac{\partial \theta}{\partial \tau}=\frac{\partial}{\partial \beta}\left[(1+\sigma \theta) \frac{\partial \theta}{\partial \beta}\right] . \tag{6}
\end{align*}
$$

For this particular problem, the Kudryashev and Zhemkov transformations (ref. 2) can be remeast as follows.

The enthalpy/mass, referred to the initial temperature is defined as

$$
\begin{equation*}
\mathrm{dh}=\mathrm{d} 0 \tag{7}
\end{equation*}
$$

and the quantity ϕ as

$$
\begin{equation*}
\phi=\int_{0}^{h} \lambda d H \tag{8}
\end{equation*}
$$

Differentiating (8) and using (7)

$$
\begin{equation*}
\mathrm{d} \phi=\lambda \mathrm{d} \theta \tag{9}
\end{equation*}
$$

which immediately leads to

$$
\begin{equation*}
\frac{d \phi}{d p}=\lambda \frac{d \theta}{d \rho} \text { and }, \nabla^{2} \phi=\nabla \cdot(\lambda \nabla \theta) \text {. } \tag{10}
\end{equation*}
$$

Furthermore, we define the quantity

$$
\begin{equation*}
\xi=\int_{0}^{T} \lambda d \tau^{\varepsilon} \quad ; \quad d \xi=\lambda d \tau \tag{11}
\end{equation*}
$$

Using equations (9)-(11) we get

$$
\begin{equation*}
\nabla^{2} \phi=\frac{\partial \phi}{\partial \xi}, \tag{12}
\end{equation*}
$$

and by (7) and (8)

$$
\begin{equation*}
\phi(0,0)=0 . \tag{13}
\end{equation*}
$$

In order to obtain the boundary conditions,

$$
h=\int_{0}^{h} d h^{0}=\int_{1}^{\theta} d \theta^{\theta} r \theta-1
$$

At $\theta=0, \mathrm{~h}=-1$. Therefore

$$
\begin{equation*}
\phi(-L, \xi)=\phi(I, \xi)=\int_{0}^{-1}\left[1+\sigma\left(h^{0} H\right)\right] d h^{0}=-\left(1+\frac{\sigma}{2}\right) \tag{14}
\end{equation*}
$$

The solution to the problem stated in equations(12)-(1.4) is well known (Ref. 3).

$$
\begin{equation*}
x(x, 5)=\frac{4 x_{0}}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)} \exp \left[-\frac{(2 n+1)^{2} \pi^{2}}{4} \xi\right] \cos \frac{(2 n+1) \pi 3}{2} \tag{15}
\end{equation*}
$$

where $x=\emptyset+\left(1+\frac{\sigma}{2}\right)$, and $x_{0}=\left(1+\frac{\sigma}{2}\right)$.
Tho transformation must now be inverted in order to get $\theta(\beta, \tau)$. If equation (10) is integrated with respect to β

$$
\begin{equation*}
\sum_{L}^{Q} \frac{d \phi}{d \beta^{\circ}} d \beta^{0}=\int_{L}^{\beta} \lambda \frac{d \theta}{d \beta} d \beta^{\circ} \tag{16}
\end{equation*}
$$

By using (5) and (14)

$$
\phi(\beta, \xi)+\left(1+\frac{\sigma}{2}\right)=\theta(\beta, \tau)+\frac{\sigma}{2} \theta^{2}(\beta, \tau)
$$

from which it immediately follows that

$$
\begin{equation*}
x(\beta, \xi)=\theta(\beta, \tau)+\frac{\sigma}{2} \theta^{2}(\beta, \tau) \tag{17}
\end{equation*}
$$

This equation, coupled with eqn. (11)

$$
\begin{equation*}
\xi=\int_{0}^{T}(1+\sigma \theta) d \tau^{0} \tag{18}
\end{equation*}
$$

will be used to obtain $\theta(B, \tau)$.
3. Solution of Equations (15), (17) and (18).

In order to solve the system of equations (15),(17) and (18), it is necessary to resort to numerical procedures. $\mathbf{5}$ is taken to be the polynomial of the form

$$
\begin{equation*}
\xi=\tau+\sum_{i} A_{i} \exp \left(-\gamma_{i} \tau\right) \tag{19}
\end{equation*}
$$

where each pair of constants A_{i} and Y_{i} are computed from successive approximations. For any given pair of β and τ, we first integrate under the curve $\theta(\beta, \tau)$ by setting $\bar{\xi}=\tau$ Then

$$
\begin{equation*}
\xi=\tau+\sigma \int_{0}^{T} \theta d \tau^{0}=\tau+A_{1} \exp \left(-\gamma_{1} \tau\right) . \tag{20}
\end{equation*}
$$

Clearly, in the first approximation

$$
\begin{equation*}
A_{1} \exp \left(-\gamma_{1} \tau\right)=\sigma \int_{0}^{T} \theta d \tau^{0} \tag{21}
\end{equation*}
$$

Taking the natural logarithm of both sides and differentiating with respect to τ, we get

$$
\begin{equation*}
\gamma_{1}=-\frac{\theta_{1}(\tau)}{\int_{0}^{\tau} \theta d \tau^{\theta}} \tag{22}
\end{equation*}
$$

Substituting this result in (21) and solving for A_{1}

$$
\begin{equation*}
A_{1}=\sigma\left[\exp \left(\gamma_{1} \tau\right)\right] \int_{0}^{T} \theta d \tau^{\theta} \tag{23}
\end{equation*}
$$

The second pair is obtained similarly; $\bar{\xi}$ now is given by

$$
\xi=\tau+A_{1} \operatorname{\theta ix}\left(-Y_{1} \tau\right) .
$$

A new value for the integral $\int_{0}^{T} 0 d \tau^{9}$ can now be calculated

$$
A_{i} \exp \left(-\gamma_{1} T\right)+i_{2} \exp \left(-\gamma_{2} \tau\right)=\sigma \int_{0}^{T} \theta d \tau^{0}
$$

where A_{1} and γ_{1} are known. Proceeding as before

$$
\begin{aligned}
& \gamma_{2}=-\gamma_{1}-\theta(\tau) / \int_{0}^{T} \theta d \tau^{\theta} \text { and } \\
& A_{2}=\left[-A_{1} \exp \left(-\gamma_{1} \tau\right)+\theta \int_{0}^{T} \theta d \tau^{\top}\right] \exp \left(\gamma_{2} \tau\right)
\end{aligned}
$$

It can easily be shown that the n-th pair of coefficients isgiven by
and

$$
\begin{equation*}
\gamma_{n}=-\left[\sum_{k=1}^{n=1} \gamma_{k}+\frac{\theta(\tau)}{\int_{0}^{T} \theta d \tau^{i}}\right] \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
A_{n}=\left[\sigma \int_{0}^{T} \theta d \tau^{\prime}-\frac{n=1}{k=1} A_{k} \exp \left(-\gamma_{k} \tau\right)\right] \exp \left(\gamma_{n} \tau\right) \tag{25}
\end{equation*}
$$

The iteration was stopped when the last two calculated values of $\theta(T)$ were less than 10-5 apart. The calculation was repeated for each given pair of β and T. A 16 point Gauss-Legendre quadrature was used for performing the intem grations.

4. The Finite Difference Approximation

For the purpose of comparison, the problem of equations (4) - (6) was solved using the finite difference technique (Ref.4); as only a general outline of the way to deal with the problem was found in the literature, the essentials of the solution will be given here.

If we divide the onemdimensional space-time plane into a grid where the space variable incrment is h, and time increment k, the first derivative of $u[=u(x ; t)]$ is approxinated by

$$
\begin{equation*}
b u \geq \frac{1}{h}[u(x+h / 2)-u(x-h / 2)] \text {. } \tag{26}
\end{equation*}
$$

Then

$$
\begin{equation*}
\delta(\lambda \delta u)=\frac{1}{h}\left[\lambda(x+h / 2) u^{\prime}(x+h / 2)-\lambda(x-h / 2) u^{\prime}(x-h / 2)\right] \tag{27}
\end{equation*}
$$

where uis given by (26). Denoting the central grid alement by $u_{i, j}$ rather than $u(x, t)$ we have
$\nabla \cdot(\lambda \nabla u)=\left[\lambda_{i+\frac{1}{2}}\left(u_{i+1}-u_{i}\right)-\lambda_{i-\frac{1}{2}}\left(u_{i}-u_{i-1}\right)\right] \frac{1}{h^{2}}$
and the time derivative of u

$$
\begin{equation*}
\frac{\partial u}{\partial t} \doteq \frac{1}{k}\left(u_{i, j+1} u_{i, j}\right) \tag{29}
\end{equation*}
$$

Ey defining $r=\frac{k}{h_{2}}, \alpha_{n}=r \lambda_{n}$ and $\lambda=1+\sigma u_{1}$
and using the Crank-Nicholson method (Ref.5),

$$
\begin{equation*}
v_{i, j+i}=\frac{-(2 x+2)+\sqrt{A}}{2 r \sigma} \tag{30}
\end{equation*}
$$

Where
$A=(2 r+2)^{2}+4 r \sigma\left[\frac{\sigma r}{2} u_{i+1}^{2}+u_{i+1}+\frac{\sigma r}{2} u_{i-1}^{2}+r u_{i-1}^{+2 b_{i}}\right]$.

Here all $u^{\circ} s$ are understood to denote the grid point $j+1$. In equation (31)

$$
\begin{equation*}
b_{1}=u_{1}+\frac{1}{2}\left[\alpha_{1+\frac{1}{2}}\left(u_{1+1}-u_{1}\right)-\alpha_{i-\frac{1}{2}}\left(u_{1}-u_{1-1}\right)\right] \tag{32}
\end{equation*}
$$

where u^{0} s are understood to denote the grid point 3 .
Using Gauss-Seidel iterations (Hef.5), the $n+I^{0}$ th approximation for $u_{i, j+1}$ is given by
$u_{i}^{n+1}=\frac{-(2 r+2)+\sqrt{A^{n+1}}}{2 \pi r}$
where
$A^{n+1}=(2 r+2)+4 r \sigma\left[\frac{r \sigma}{2} u_{i+1, n}^{2}+r u_{i+1, n}+\frac{\sigma r}{2} u_{i-1, n+1}^{2}+r u_{i-1, n+1}+2 b_{i}\right]$
where b_{i} is given by (32) with the $u^{9} s$ denoting the $n+I^{10}$ th approximation. For faster convergence the iterations were carried out with successive over relaxation (SOR).
Defining $A=u_{i}^{n+1}-u_{i}^{n} \quad$ in $S O R$

$$
u_{i}^{n+1}=u_{i}^{n}+v_{b} \Delta
$$

where the SOR coefficient w_{b} is defined by
$w_{b}=2 /\left(1+\sqrt{1-\mu^{2}}\right) \quad$ and $\quad \mu=\frac{r}{1+r} \cos \frac{\pi}{N}$.
(Reft).

5. Results and Conclusions

Temperature profiles were calculatod by the two methods. Figure 1 shows that for $\sigma=.1$ agreement is quite good. On Figure 2 results of the salution of the problem by the variam tional technique (Ref.1) are plotted as well as the two previous methods for $\sigma=1$. Assuming that the finite difference solution is the "correct" one, it will be seen that for $\sigma=1$
a) the variational technique is inaccurate for snall times, and gets progressivaly better for longer times, and that b) the method resulting from the Kudryashev-Zhemkov transformations shows that better agreement for short times but .rapidly deterioratos as T gets large.

That the error should grow with time is probably in dicative of instability in the integration procedure, as the set of equations (15), (17) and (18) is exact.

The results for $\sigma=.1$ can be taken as justification for the use of this method in the analysis of the experiment presented in earlier chapters, since the corresponding σ is less than .01. Thus in the present form this method is

FIG.I. COMPARISON OF SOLUTIONS FOR $\sigma=.1$

FIG 2 COMPARISON OF THE THREE METHODS. $\sigma=11$
applicable to a large number of problems. It also lends itself to a straightfurward evaluation of the errors due to temperature dependence of the physical properties, by estimating the appor limit of tho intogral

$$
\xi^{\prime}=\int_{0}^{t} \frac{\lambda}{\rho \mathcal{C}_{p}} d t
$$

as illustrated in appendix 1.
Computer programs for the above calculations will be found in appendices 3C and 3D.

CHAPTER 6
 The Harmonic Oscillator Model
 for Liquids of Spherical and
 Chain Molecules

A short accomi of the ont model. for simple liquids, and its extension to the harmonic oscillator approximation will be given, followed by the application of these models to chain molecules. The assumptions involved in each case will be briefly discussed.

1. The Basic Equations

The Helmholtz free energy, A_{1} of a system is defined by the equation

$$
\begin{equation*}
A=-k T \quad \ln Z \tag{1}
\end{equation*}
$$

where k is the Boltzmann constant, T is the absolute temperature and Z is the partition function of the system, defined as the sum over all states of the Boltzmann factor. $\exp \left(-E_{i} / k T\right), E_{i}$ denoting the energy of state i.

In the classical approximation, the translational partition function can be expressed as an integral
where H, the Hamiltonian is given by

$$
\begin{equation*}
H=\sum_{1}^{M} \frac{p_{i}^{2}}{2 \pi}+\phi\left(\underline{x}_{1} \ldots \ldots \ldots \underline{n}_{1}\right) \tag{3}
\end{equation*}
$$

Here $\quad \underline{P}_{i}=m \underset{d r_{i}}{d t} \quad$ and \underline{r}_{i} is the position vector of molecule i, which has the mass m.

On the assumption that the \underline{P}_{i} and r_{i} are independent of each other, the two sets of integrations, over the P_{i} and r_{i} can be periormed separdialy and tine paritition function wistiten as a product of the two. The set of integrations over the momenta yields:
$3 N / 2$

$$
\left[\frac{2 \pi-m k I}{h^{2}}\right]
$$

The integral over the positions of the molecules is called the olassical configurational integral defined as,
where U is the total configurational energy, (potential energy) of the system. If one assumes this energy to be pairwise additive, then

$$
\begin{equation*}
U=\sum_{i>j} u\left(R_{i j}\right) \tag{5}
\end{equation*}
$$

where $R_{j j}$, denotes the intermolecular separation, and $u\left(R_{j j}\right)$
the intermolecular potential. The translational partition function for thenspstem is then wititton as,

$$
\begin{equation*}
Z=\left[\frac{2 \pi m k T}{h^{2}}\right] Q(N, T ; V) \tag{6}
\end{equation*}
$$

2. The Equations of the Cell Lattice Model

For dense systems, composed of molecules with attractive forces, the potential energy is approximated by

$$
\begin{equation*}
U=U_{0}+\sum_{i=1}^{N}\left[\Omega\left(r_{i}\right)-\varepsilon(0)\right] \tag{7}
\end{equation*}
$$

under the foliowing assumptions:
a) That the volume of the system be subdivided into cells of eque: volume
b) that each of these cells contain one molecule, and
c) that each molecule move in its cell independently of molecules in neighbouring cells. Ref (1a).

In equation (7), U_{0} is the potential energy of the system when $2 l l$ molecules are positioned in the centers of their respective cells, r_{1} is the displacement of moleoule 1 fyom the conter of its cell and $x\left(r_{j}\right)-x(0)$ is the potential energy change invoived in this displacement. Equation (4) then takes the form

$$
\begin{equation*}
Q(N, T, V)=\frac{1}{N T} \quad \exp (-0 d / K T) x^{H} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
x=\int_{r} \exp [-[r(r)-e(0)] / k T] d v \tag{9}
\end{equation*}
$$

the integration being performed over the volume of each cell.

3. The Smearing Approximation

In order to calculate the mean displacement energy, given by equation (9), (Ref (2) and (3))we take a molecule, Asiized while the sgcond, $B_{\text {, }}$ is allowed to move about a sphere of radius r. The center of the sphere is a distance an from moleoule A. The distance betmeen nolecule A and moleoule moleoule B is given by

$$
d=\left[a^{2} r^{2}-2 \text { ar } \cos 0\right]^{\frac{1}{2}}
$$

 potential over the suriace of tine spiere can be writiten as

$$
\begin{equation*}
\bar{c}(r)=\frac{\int_{0}^{2 \pi} \int_{0}^{\pi}=(\sin \theta \sin \theta}{\int_{c}^{2 \pi} \int_{0}^{\pi} \sin \theta d \theta d \phi} \tag{10}
\end{equation*}
$$

If $\epsilon(x)$ is taken as the Lennard-Jones 12-6 potential

$$
\begin{equation*}
\epsilon(r)=\left\{\left(\frac{r_{0}}{r}\right)^{12}-2\left(\frac{r_{0}}{r}\right)^{6}\right\} \tag{11}
\end{equation*}
$$

where e is the potential minimum, and r_{0} the intermoleculer separation corresponding to that minimum, and if we donote the nearest number of neighbours by z, the average potential per cell is thea given by:

$$
\begin{equation*}
\bar{\varepsilon}(r)=4 z_{\epsilon}\left\{\left[\frac{v^{0}}{v}\right]^{4}[I(y)+1]-\left[\frac{v^{0}}{v}\right]^{2}[m(y)+1]\right\} \tag{12}
\end{equation*}
$$

where

$$
\begin{align*}
\frac{v^{0}}{v} & =\frac{r_{0}^{3}}{a^{3}} \text { and } a=\frac{\sqrt{2 v}}{N} ; y=\frac{r^{2}}{a^{2}} \\
1(y) & =\left(1+12 y+25 \cdot 2 y^{2}+12 y^{3}+y^{4}\right)(1-y)^{-10}-1 \tag{13}\\
m(y) & =(1+y)(1-y)^{-4}-1 \tag{14}
\end{align*}
$$

Using equation (12) to derive $\bar{\epsilon}(0)$, we get

$$
\begin{equation*}
\left.\bar{\epsilon}(x)-\bar{\epsilon}(0)=l_{e} z\left\{\frac{r_{0}}{\frac{0}{v}}\right]^{4} I(y)-\left[\frac{v^{0}}{v}\right]^{2} m(y)\right] \tag{15}
\end{equation*}
$$

4. The Harmonic Os?illator Approximation

By expanding equation (15) as a Taylor sories about the center of the ce11, in terms of y, we obtain an
expression for small oscillations of the molecule

$$
a(y)-\bar{B}(0)=y \vec{e}^{r}(0) \ldots y^{2} \varepsilon^{-}(0)+\ldots
$$

 harmonic approximation to üle iisan cell potential acting on a molecule which parforms small oscillations about the center of its lattice cell. Ref. (4a).

$$
\begin{equation*}
\bar{\varepsilon}(r)-\bar{\varepsilon}(0)=z \varepsilon\left[22\left[\frac{v^{0}}{\nabla}\right]^{4}-10\left[\frac{r^{0}}{\nabla}\right]^{2}\right] \frac{r^{2}}{a^{2}} \tag{16}
\end{equation*}
$$

Thus, the configurational integral can be expressed in the harmonic oscillator approxdmation as in equation (8), with

$$
\begin{equation*}
x=\int_{v} \exp -\frac{z s}{k T}\left[22\left[\frac{z^{0}}{v}\right]^{4}-10\left[\frac{x^{0}}{v}\right]^{2}\right]\left[\frac{x}{a}\right]^{2} d v \tag{17}
\end{equation*}
$$

By making use of the expression for the restoring force constant for small wibrations, $k=4 \pi^{2} v^{2} m$, the moan frequency of oscillation can be given by

$$
\begin{equation*}
v=\frac{1}{2 \pi / m} \cdot\left\{\frac{2 z_{e}}{a^{2}}\left[22\left(\frac{v^{0}}{v}\right)^{4}-10\left(\frac{v^{0}}{v}\right)^{2}\right]\right]^{\frac{1}{2}} \tag{18}
\end{equation*}
$$

5. Discussion of the L-J-D Theory:
A. Kirkwood's Treatment - (Ref.5)

In an attempt to establish a firm theoretical basis for cell lattice theories, Kirkwood shows how the assumptions mentioned in paragraph two of this chapter, arise in the mathematical treatment. The classical configurational integral is written as

$$
\begin{equation*}
Q=\int_{0}^{\nabla} \ldots \cdot \int_{=}^{V} \theta x,(n T / k T) d v_{1} \ldots \cdot v_{i N} \tag{19}
\end{equation*}
$$

where v is the total volume. By assuming N lattices each of volume Δ, and expressing the integrals over V of each molecule as a suri: Di intograls orir. the individual cells, (assumption (a)
in paragy aph $20 j$ ù sa:n bà iewrovela $a=$

$$
\begin{equation*}
Q=\sum_{I_{1}=1}^{N} \ldots \sum_{I_{N}-1}^{N} \int_{1}^{\frac{\Delta I_{1}}{N}} \cdot \int^{N 1} \operatorname{dxp}(-v / k T) d v_{1} \ldots . . d v_{N} . \tag{20}
\end{equation*}
$$

The \mathbb{N}^{N} integrals of equation (20) can also be written in terms of integrals $Z_{N}\left(m_{1} \cdot \ldots m_{N}\right)$ where the m_{1} are the number of molecules occupying each cell 1:

$$
\begin{equation*}
Q=\sum_{i}^{N} m_{1} \cdot m_{2 N}=0 \sum_{s=1}^{N}\left(m_{s} \ell\right) \quad z_{N}^{N}\left(m_{1} \cdot \cdots m_{N}\right) \tag{22}
\end{equation*}
$$

Here there is one intogral Z_{N} corresponding to the case of single occupancy of each cell, $z^{(1,1, \ldots . .1)}$. We can now define the parameter σ by the relation
and

$$
\begin{equation*}
\left.Q=\sigma^{N} z^{(1,1} \cdots \cdots 1\right) N! \tag{23}
\end{equation*}
$$

At high densities where the singlo occupancy assumption is reasonable, σ approaches unity, whore as, as the density tends to zero o will tend to the value e. The entropy calculated on tho single occupare assumption is low as σ is assumed to bo equal to unity. The fizst that more of the
total volume than gurist one cell is available to each molecule, and hence that a lies between unity ando, gives rise to the conoopt of communal onterpy.

Kirkwood continues his treatmont by considering only the single occupancy integral. In oxder to write the free energy explioitlif the thifd major assumption is introduced: the relative probability density in conflguration space is written in the form of the product of probability deneatios of each cell, assumed to be independent of esch other.

$$
\begin{equation*}
p_{N}=\prod_{s=1}^{N} \quad \omega\left(r_{s}\right) \tag{24}
\end{equation*}
$$

where, r_{s}. the displacement of moleoule s from the origin in its cell

The subsequent minimisation of the free energy by Kirkwood, seems to yield lower energies than those of the ImJ-D theory. However there is no theoretical justification for expecting the lowest calculated free energy to be closest to the real value. "It is much nearer to the truth to regard the variational theory as justified insofar as it approximates the ImJD theoryin (Ref. 1b)
B. Barker"s Critique
i) The s nearing approximation: For rigid spheres, free volumes calculated by using the smearing approximation are about thirty per cent lower than those calculated by detailed analysis
of the volume distribution. The pressures calculated by this approxdmation are not very different from those calculated from the "correcti free volumes, but the entropy is considerably lower. Similar behaviour is observed for potentials with attractive forces, the error passing through a maximum in the vicinity of the critical density. As the density approaches the triple point, and further increases to that of the solid, the error tends to zero. (Ref 10).
ii) Correlation effects.

Calculations assuming that only flrst neighbour motion is signiflicant has yielded good results about the critical density, and this result should be valid at higher densities as well. Most of the error due to assumption (c) of paragraph (2) can be accounted for by taking into account binary and ternary correlations. (Ref 1d).
iii) Multiple occupancy of cells: This remains as an essentially unsolved problem. Attempts have been made to modify the simgle occupancy configurational integral, in order to take multiple occupancy in to account, such as:

$$
\left.Q^{\left(m_{1}\right.} \cdots \cdot m_{T}\right)=\left[\begin{array}{ll}
\pi & \left(w_{m_{s}}\right) \tag{25}
\end{array}\right] Q(1 \cdots \cdots 1)
$$

where $Q^{(1,0: 1)}$ is multiplied by a factor ω_{1} given by eqn. (25) for each cell that is occupied by 1 molecules; various ways to calculate the $\omega_{i} 3$ híve also been put forward, Refs. (6), (7),(8).' These models however have so far failed to take into account
the altered correlations that arise from having multiple occupancy. (Ref 1e)
iv) The Hamonic Approximation. The approach is similar to the Einstein model of the solid and is a justifiable approximation only at high donsities. The orror arising from the assumption that the molecule vibrates in a cell where all neighbouring molecules are fixed, can be dealt with by taking into account short range correlations, as in paragraph (ii). A. comprehensive treatment of these correlations will be found in Ref (1), Chaptor 6.

The second major departure of this model from reality is the assumed constancy of the vibrational frequencies throughout the system. Clearly one expects to observe a whole spectrum of frequencies; the Debje model is relevant for the analogous problem in the solid.

6. Tho Cell Inttice Model for Pure Polvmer Solutions. (Ref 4b)

This treatment consists of a cell model approach applied to long chain molecules, for the calculation of the configurational partition function in a manner that is essentially independent of chain length. The liquid is charachterised by three parameters,e the attractive energy minimum, xo the interserume \because separation corresponding to the energy minimum and the 3c, external degrees of freedom. The lattris are independent of valency forces: intryolecular irequencies are at least one order of magnitude larger than the external frequencies, and the influence of external
factors on these frequencies (and theremb the internal degrees of freedom) need not be considered in the flrst approximation. .

The 3c external degrees of freedon are determined ampiricelly through a corresponding state treatment of a honologous series, in this case normal alkanes (Ref.40). Here only odd numbered chains are considered since from x-ray data, the volume of a $\mathrm{CH}_{2} \ldots \mathrm{CH}_{2}$ segment is known to have about the same volume as the menomer of the series, CH_{4}. Thus the segment number R is defined by

$$
R=\frac{1}{2}(n+1)
$$

where n is the number of carbon atoms in the chain.
The major assumptions involved in the model are the following: The chain molecule is treated as a set of point centers, each of which moves in a spherically symetric foroe field. The potential energy between two point centers of different r-mers (chains) is taken as a two parameter law

$$
e(r)=e \varphi\left(\frac{\Gamma}{r_{0}}\right)
$$

where r is the point center separation, and $\varphi\left(\frac{r}{T_{0}}\right)$ is most commonly taken as the Lennard-Jones 12-6 potential.

The criterion for the existence of lattice is that the mean distance between point centers be equal, whether the point centers belong to the same r-mer or not; i.e. that

$$
a=d=r_{0}
$$

where "a in is the mean distance between two neighbouring chain segments, belonging to two different chains, and α is the distance between two successive elements of the same chain. At absolute zero, $a=r_{0}$ and ther-mers are perfectly ordered on a regular
lattice. As the temperature is allowed to increase, the lattice will be distorted by the expansion of the liquid, and the model will progressively cease to represent the liquid structure. . The treatment assumes that the distortions can be ignored if the volume expansion is less than a few per cont, Then the volume per segment is

$$
\begin{equation*}
v=\frac{V}{W i}=\gamma^{-1} a^{3} \tag{26a}
\end{equation*}
$$

whore for an f.c.c. lattice $Y=\sqrt{2}$, and the reduced volume per molecule is given by

$$
\begin{equation*}
v=\frac{v}{r^{3}}=\frac{1}{y}\left[\frac{a}{r_{0}}\right]^{3} \tag{26b}
\end{equation*}
$$

It then follows that, assuming the Lennard-Jones $12-6$ potential between two point centers of different chains, in the smearing approximation yields an expression analogous to equation (15):

$$
\begin{equation*}
\tilde{\mathbb{B}}(x)-\bar{e}(0)=-\frac{z \eta}{R}\left[\left(\frac{v}{v}\right)^{4} L(y)-\left(\frac{v^{0}}{v}\right)^{2} n(y)\right] \tag{27}
\end{equation*}
$$

where only the extornal number of contacts $\frac{8}{R}$ is different from the analogous expression for the monomer. Here z is the coordination number of the f.c.c. lattice as before and ($3 \mathrm{~g} / \mathrm{R}$), defined as:

$$
\begin{equation*}
\frac{g Z}{R}=z-2+(2 / R) \tag{28}
\end{equation*}
$$

is seen to be a weak function of chain length (Rei 4d).
In the harmonic approximation, the mean frequency of oscillation can be derived analofously:

$$
\begin{equation*}
\nu=\frac{1}{2 \pi / m}\left[2\left(\frac{q z}{R}\right) \frac{\varepsilon_{2}}{e^{2}}\left[22\left(\frac{v^{0}}{v}\right)^{4}-10\left(\frac{v^{0}}{v^{2}}\right)^{2}\right]\right]^{\frac{1}{2}} \tag{9}
\end{equation*}
$$

7. The Heat Capacity

The partition function for this model can now be given by

For spherical, harmonic oscillators, there exists three translational (kinetic energy) and three configurational (potantial energy) degrees of freedom. The translational degrees of freedom remain unchanged for R-mer sogments; however, the configurational degrees of freedom have to be modified to take into account the additional limitations imposed upon the segment by the intramolecular contacts. The surface around a segment is only partly free for intermoleeriar interactions, the remaining part being blocked by the adjacent segraents in the same molecule (Ref. 9). Hence the number of configurational degrees of freodom per segment is $3 \mathrm{c} / \mathrm{R}$; the coofficient 3 is absorbod into x since the latter is a volume integration : hence the exponent $N c / R$ in eqn. (29).

The derivation of the heat capacity at constant volune from eqn. (29) is straightforward and yields

$$
\begin{equation*}
c_{v}=\frac{3}{2} k(1+c / R) \tag{31}
\end{equation*}
$$

CHAPTER ?

The Harmonic Oscillator Hodel Of Thermai Conductivity

In this chapter the theory of Horrocks and HoLaughlin will be briofly discussed and then extended to pure liquids composed of R-mer molecules. Results of calculations will be presented and compared with exporimental data for normal alknes.

1. The Harmonic Oscillator Model of Thermal Conductivities of Simple Liquids (Ref 1a)

Heat transfer down a temperature gradient occurs by two molecular mechanisms: a) vibeational, b) convective.
a) Vibrational mechanism: The rato of heat flow can be written as

$$
\begin{equation*}
\frac{d a}{d t}=-2 n v v i \frac{d U}{d x} \tag{1}
\end{equation*}
$$

where $n=$ number of molecules per unit area of the liquid quasi lattice.
$\nu=$ mean vibrational frequency of the molecule given by equation (18) of the previous chapter.
$\mathbf{P}=$ the probability that heat transfer occurs when two vibrating molecules collide.
$1 \frac{d u}{d x}=$ the onergy difference betwoen successive layers of the liquid quasi lattice.

The expression is multiplied by 2 since the molecule crosses a plane perpendicular to the temporaturo gradient twice for each complete vibration. Using

$$
\frac{d U}{d x}=\frac{d U}{d T} \frac{d T}{d x}=C_{v} \frac{d T}{d x}
$$

and the one dimensional Eourrier equation, we get

$$
\begin{equation*}
\lambda_{v i b}=2 n P \vee I C_{v} \tag{2}
\end{equation*}
$$

where C_{v} is taken as 3 k . Assuming the virtual absence of holes $n \doteq 1 / a^{2}$; also $1=\sqrt{2} a / 2$ and $P=1$. Hence

$$
\begin{equation*}
\lambda_{v i b}=\frac{\sqrt{2}}{a} c_{v} \nu \tag{3}
\end{equation*}
$$

b) Convective Contribution.- In the absence of a temperature gradient, the frequency of movement J of molecules from one adjaeent layer in the liquid to the next is given by

$$
J=\frac{n_{h}}{N}\left[\frac{k T}{2 \pi m}\right]^{\frac{1}{2}} \frac{1}{v_{f}} \quad \exp \left(-e_{0} / k T\right)
$$

where v_{f} is the free volume of the liquid, ρ_{0} the energy barrier to be ovorcome for molecular convection, and n_{h} is the ratio of the number of holes to the total number of molecules. Then

$$
\begin{equation*}
\lambda_{\text {conv. }}=2 n J I \frac{d U}{d T} \tag{4}
\end{equation*}
$$

Without going into further detail it can be said that

$$
\begin{equation*}
\lambda=\lambda_{\text {vib }}+\lambda_{\text {conv }} \tag{5}
\end{equation*}
$$

and that for simple liquids, up to their boiling points, $\lambda_{\text {vib }}$ is by far the dominant term in equation (5), and that the convoctive torm can be dropped as a good approximation (Ref. 1b). Thus

$$
\begin{equation*}
\lambda=\frac{\sqrt{2}}{a} c_{v} \nu \tag{6}
\end{equation*}
$$

2. Application to Chain Molecules

As intorcellular convection for individual chain segments is less likely than for spherical molecules, the assumption that

$$
\lambda \stackrel{\circ}{=} \lambda_{v i b}
$$

is retained. Thus as before

$$
\begin{equation*}
\lambda=\frac{\sqrt{2}}{a} c_{v} \nu \tag{7}
\end{equation*}
$$

whero a is the length of a side of the cell, confining a chain segment, C_{V} is the vibrational specific heat of the same, and
\checkmark the mean vibrational : frequency as defined by eqn. (29) of the provious chaptor. Using equation (28), (29) and (31), the thermal conductivity of liquids composed of chain molecules can be written as

$$
\begin{equation*}
\lambda=\frac{3}{2} \frac{k}{a^{2}}\left(1+\frac{c}{R}\right) \frac{1}{\pi / m}\left[\left(z-2+\frac{2}{H}\right) \varepsilon\left[22\left(\frac{v^{0}}{v}\right)^{4}-10\left(\frac{v^{0}}{v}\right)^{2}\right]\right]^{\frac{1}{2}} \tag{8}
\end{equation*}
$$

2. Comparison with Experiment

The above extension of the theory of Horrocks and McLaughlin to pure R-mers was compared with experimental data on normal alkanes. The values of r_{o} and ε usod throughout the homologous sories are those of tho monomer, mothane, (Ref. 2) as was indicated in paragraph 6 of the previous chapter. Donsity versus tomporature data were obtainod from Ref. 3, and the thermal conductivity data
for tho same temporature intervals from Ref. 4 in tho form of comelations of oxisting data. Calculations were executed on a computer; the relevant program for these calculations will be found in appendix 3.

A summary of the calculated results is given in Table 1 , along with the experimental data. It will be seen that the calculated and experimental slopes of the λ vs. T curves are in good agreoment, certainly within experimental error, but that the absolute values differ by an amount which does not seem to change significantly over the homologous series.

Carbon Number	$\mathrm{Cemp}_{\mathrm{C}} \text { Range }$	$\begin{gathered} \mathrm{A} \\ \mathrm{mw} / \mathrm{cm} k \end{gathered}$	$\begin{aligned} & \text { SLOPE(DATA) } \\ & \text { m/ } \mathrm{cm}^{2} 2 \end{aligned}$	$\begin{aligned} & \text { SLOPE(DATA) } \\ & \mathrm{mw} / \mathrm{cm}^{C K} \end{aligned}$	$\% \mathrm{DIFF}$	$\Delta \bar{A}$
5	-80to+40	.649	. 0033	. 0037	9.5	
7	-120to+20	. 633	. 0039	.0041	3.2	. .016
9	-40to+120	. 591	. 0023	. 0028	16.5	-.042
11	-30 to 130	. 633	. 0022	. 0026	13	+. 042
13	+40 to 200 .	. 697	. 0023	. 0025	6.5	+.064
15	60 to220	. 734	. 0022	. 0023	3.9	+.037
17	60 to220	. 758	. 0020	. 0023	9.7	$+.024$
19	60 to220	. 771	. 0020	. 0022	8.2	$+.013$
TABLE I. \vec{A} is the difference between				$\lambda \text { exp } \text { and } \lambda$	c.	raged

over the temperature interval.

It has been shown by Harrocks and McLaughlin (Ref 5) that the principal factor controlling the temperature dependence of thermal conductivity is the coefficient of thermal expansion. This remains unchanged for chain molecules, where the equation

$$
\lambda=\frac{\sqrt{2}}{\mathrm{a}} \mathrm{c}_{v} v
$$

again leads to

$$
\begin{equation*}
\frac{1}{\lambda}\left[\frac{d \lambda}{d T}\right]_{p}=-\alpha\left[\frac{1}{3}-\frac{d \ln v}{d \ln v}\right] \tag{9}
\end{equation*}
$$

the expressions for ∇ and v boing modified as in section 6 of the previous chapter. That this prodicitin is a good one is reflected in table 1. The results indicate however that a second term, which would be additive and of the magnitude of about $0.65 \times 10^{-3} \mathrm{mw} / \mathrm{cm}^{\circ} \mathrm{K}$ is missing. In the absence of further evidence two reasons may be put forward as contributing to this second term.
a) Heat transfer down the chain: Relative independence of chain length could be expected as the averago length of ohain parallel to the path of heat flow need not increase with the number of carbons in the chain.
b) Degrees of freedon associated with the hydrogen atoms attached to the carbons: As the average number of hydrogen atoms per sement can be baken as constant, this contribution would be independent of chain length. Further as the heat capacity arising from this vibrational contribution is expected to bo insensitive to
the temperatuic changэs, this 'erm would be independent of temperature as well.

$=2 x y=$
 Transport Coefficionts of Pure Hard Sphore Fluids

1. Introduction

In this chapter the dorivations leading up to the thermal conductivity and viscosity of pure hard sphere fluids for low pressures and dense gases will be summarised. These formulae will be used in the following chapter in the analysis of dense mixed fluid transport coefficients. As the latter have been derived only for the case of hard elastic spherical molecules, no other intermolecular interaction potential will be considered.

While the thermal conductivity coefflcient is of primary concern here, the viscosity coefflcient has also been considered, as the two derivations are very similar. Also, because thermal conductivity data for binary liquid mixtures of spherical molecules is lacking, corresponding viscosity data has been considered for comparing the model with experiment.

A word on notation should bo added. Vector quantities in this and the next chapter will be written with a bar under the letter, and tensor quantitites with two bars. For the stress tensor, the Chapman and Cowling notation has been retained:

$$
\frac{0}{\frac{0}{d r} 0_{0}}
$$

2. The Heat Flux Vector and the Pressure Tensor

It can be shown (Ref 1a) that if X is any molecular property which is a function of nolecular velocity, the value of X averaged over all the nolecules within a small volume element dr, during a short time interval $d t$, is

$$
\begin{equation*}
\bar{X}=\frac{1}{n} \int X f(\underline{c}, \underline{r}, t) d \underline{c} \tag{1}
\end{equation*}
$$

where n is the number density in the defined region, c is the molecular velocity vector and $f(\underline{c}, \underline{s}, t$) is the velocity distribution function; here $f(\underline{c}, \underline{r}, t)$ de $d \underline{\underline{x}}$ defines the probable number of molecules with velocity in the interval \mathfrak{c} to $\underline{c}+$ ds in a region of space bounded by the volume element dr. In equation (1), the integration is carried out over the whole of velocity space.

If, in particular, the relevant molecular property is heat, the heat flux vector can bo written as (Ref ib).

$$
\underline{q}=\frac{1}{2} m \int c^{2} \underline{C} f d \underline{c}
$$

here $m=$ mass of the molecule

$$
\underline{\mathrm{C}}=\underline{\mathrm{c}}-\underline{\mathrm{c}}_{0}, \quad \underline{\underline{B}_{0}} \text { denoting the mean mass velocity of }
$$

the gas which can be obtained from equation (1), and $C=$ the magnitude of C .

Clearly, if f is known, \underline{q} can be derived explicitly and then combined with Fourrier?s Law of heat conduction.

$$
\underline{q}=-\lambda \frac{d T}{\underline{d r}}
$$

to yield the thermal conductivity.
For the case where X denotes molecular momentum mc, the pressure
tensor can be written as

$$
\begin{equation*}
\underline{\underline{P}}=\mathbf{p} \int \underline{\operatorname{CC}} \mathrm{f} \mathrm{~d} \underline{\mathbf{c}} \tag{3}
\end{equation*}
$$

where $\quad \rho=n m$. The pressure tensor is the sum of the hydrostatic pressure and a second term composed of the stress tensor multiplied by the coofficient of viscosity, μ_{0}

30 Thormal Conductivity and Viscosity at Low Pressures
Boltmann's Equation for a non-uniform gas is

$$
\begin{equation*}
\frac{\partial f}{\partial t}+c \cdot \frac{\partial f}{\partial \underline{I}}+E \cdot \frac{\partial f}{\partial \underline{c}}=\left[\frac{\partial f}{\partial t}\right]_{\mathrm{coll}} \tag{4}
\end{equation*}
$$

where in addition to previously defined quantities, mF is the external force acting on the particle, and ($\partial \mathrm{f} / \partial \mathrm{t}$) coll is the time rate of change of f due to collisions. Eqn. (4) can be writton as

$$
\begin{equation*}
\beta(f)=0 \tag{5}
\end{equation*}
$$

where β operates on f. It is assumed that
a) $f=f^{0}+f^{1}+f^{2}+\ldots$ where f^{0} tiurns out to be the Maxwellian volocity distribution function (i.e. that for a uniform gas) and $\mathrm{f}^{\dot{j}}$ (i>0) are succossive correction torms, and that
b) the operator β can be broken down such that

$$
\begin{equation*}
\beta(f)=\beta^{\circ}\left(f^{0}\right)+\beta^{1}\left(f^{1}\right)+\beta^{2}\left(f^{2}\right)+\ldots . \tag{6}
\end{equation*}
$$

where the $\beta^{\perp}\left(f^{i}\right)$ satisfy the separate equations
$\beta^{0}\left(f^{0}\right)=0 ; \quad \rho^{1}\left(f^{0}, f^{1}\right)=0 ; \quad f^{2}\left(f^{0}, f^{1}, f^{2}\right)=0$, otc.
The quantitios ϕ^{r} can now be defined (REf. 1c) as
$f^{\mathbf{r}}=\mathrm{f}^{\circ} \phi^{\mathrm{r}}$
such that the rth correction term to the average value of property X now becomes

$$
\begin{equation*}
\bar{X}^{r}=\frac{1}{n} \int X f^{r} d s=\frac{1}{n} \int X f^{0} \phi r d c \tag{B}
\end{equation*}
$$

where the Maxwillian velocity distribution function f° is explicitly given by:

$$
\begin{equation*}
f^{0}=n\left(\frac{m}{2 x^{1}, T}\right)^{3 / 2} \operatorname{axp}\left(-m C^{2} /(2 z T)\right. \tag{9}
\end{equation*}
$$

In this and the next chapter, we will work with only the first and second terms of equation (6) as, duo to the increasing comploxity of the successive approximations: the formular: for mixtures, with which we are ultimatily concerned, have not been developed beyond ϕ^{1}. Thus, we will take

$$
\begin{equation*}
\bar{X}=\bar{X}^{0}+\bar{X}^{1}=\frac{1}{n} \int X f^{0} d c+\frac{1}{n} \int X f^{\circ} \not \phi^{1} d c \tag{10}
\end{equation*}
$$

Since the first integral makes no contribution to the heat flux vector.

$$
\begin{equation*}
g=g^{1}=\frac{1}{2} m \int c^{2} C f^{0} \phi^{1} d c \tag{11}
\end{equation*}
$$

The solution of the Boltzmann equation, leads to an expression for $\dot{\mathfrak{g}}^{1}$, which can then bo evaluated for hard sphores. The dorived dilute gas thermal conductivity coefficient for a fluid of hard olastic spheres, λ_{0}, can then be written (Ref 1d) as:

$$
\begin{equation*}
\lambda_{0}=\frac{75}{64} \frac{1}{z^{2}}\left(\frac{\mathrm{k}^{3} \mathrm{~T}}{\pi \mathrm{~m}}\right)^{\frac{1}{2}} \tag{12}
\end{equation*}
$$

where k is the Bcltamann constant and σ the molecular diameter. The viscosity is obtained in a similar manner from the difference between the pressure tensor and the hydrostatic pressure:

$$
\begin{equation*}
u_{0}=\frac{5}{16} \frac{1}{\theta^{2}}\left(\frac{m T}{\pi}\right)^{\frac{4}{2}} \tag{12}
\end{equation*}
$$

4. Thermal Conductivity and Viscosity for Dense Gases.

In the above discussion, the transport coefficients have been derived by assuming that both momentum and energy transfer take place by the motion of molecules, betweon collisions, through the available volume. As the density is increased and the mean fivo path becones comparable in magnitude to tho molecular dinexter, collisional transfor takes on incroasing importanco. The collision frequency is increased by a factor $g(o)$, the contact radial distribution function. The details of $g(\sigma)$ are best considered outside the mainstream of the discussion of the transport coofficients; it will be used implicitly and defined in a later section.

It has been shown (Ref 1e) that the velocity distribution function for a non-uniform dense gas can be solved for, in a manner analazous to the dilute gas; f° again turns out to be the Maxwellian distribution function, and makes no contribution to the heat fiux vectoi. Three contributions to the latter arise (Ref 2), (Rer 1f):

1) from heat transfor by molecular motion botwoen
collisions, i.e. the kinotic contribution
$\frac{1}{2} \rho \overline{C^{2} C}=-\frac{1}{g}\left(1+\frac{12}{5} b^{*} g\right)$
$\lambda_{k}=\frac{\lambda_{o}}{g}\left(1+\frac{12}{5} \quad b^{*} g\right)$
where $\mathrm{b}^{*}=(\pi / 5) \mathrm{n} \mathrm{c}^{3}$.
2) from that part of collisional transform which can be looked at as taking place with a locally Maxwilliam velocity distribution:

$$
\begin{align*}
& -C_{v} \bar{\omega} \frac{\partial_{T}}{\frac{\partial r}{}}=-\frac{512}{25 \pi} b^{*} g \dot{\lambda}_{o} \frac{d T}{d r} \\
& \lambda_{M a x w}=\frac{512}{25 \pi} \quad b^{* 2} g \lambda_{0} \tag{15}
\end{align*}
$$

where $C_{V}=(3 k / 2 m)$ and ω is tho bulk viscosity given by

$$
\bar{n}=(4 / 9)_{g} n^{2} \sigma^{4}(\pi m k T)^{\frac{1}{2}}
$$

3) and finally from tho distortion of the locally Maxwellian velocity distribution function.

$$
\begin{gathered}
\frac{6}{5} b^{*} g \rho \overline{c^{2} \underline{C}}=-\frac{12}{5} b^{*} \lambda_{o}\left(1+\frac{12}{5} b^{*} g\right) \frac{d T}{d r} \\
\lambda_{\text {Dist. }}=\frac{12}{5} b^{*} \lambda_{o}\left(1+\frac{12}{5} b^{*} g\right) .
\end{gathered}
$$

In the first approximation then, tho thermal conductivity of a dense fluid of hard spheres is given by

$$
\begin{equation*}
\lambda=4 \lambda_{0} b^{*} \quad\left\{\frac{1}{4 b^{*} g}+\frac{6}{5}+4\left(\frac{9}{25}+\frac{32}{25 \pi}\right) b^{*} g\right\} \tag{16}
\end{equation*}
$$

Clearly, λ_{0} is the thermal conductivity of tho dilute gas at tho same temperature.

The viscosity of the dense gas is made up of contributions of the same origin (Ref ?):

1) Tho stress tensor arising from molecular motion botwoon

$$
\begin{aligned}
& \text { Lisions is } \\
& \rho \underline{C} \underline{C}=-\frac{\mu_{0}}{g}\left(1+\frac{0}{5}=\right.
\end{aligned}
$$

collisions is
which gives rise to

$$
\begin{equation*}
\mu_{k}=\frac{\mu_{0}}{g}\left(1+\frac{8}{5} b^{*} g\right) \tag{17}
\end{equation*}
$$

2) The stress tensor arising from the locally Maxwellian velocity distribution function is

$$
-\frac{2}{3} g n^{2} \sigma^{4}(\pi m k T)^{\frac{1}{2}} \frac{4}{5} \frac{0}{\frac{\bar{\partial}}{\partial x} c_{0}}
$$

which leads to

$$
\begin{equation*}
\mu_{\mathrm{Viaxw}}=\frac{768}{25 \pi} \mathrm{~g} \mathrm{~b}^{\mathrm{*}^{2}} \mu_{0} \tag{18}
\end{equation*}
$$

3) Finally the stress tensor arising from the locally Maxwellian velocity distribution function

$$
\frac{2}{5} b \rho^{2} g \overline{\mathbb{C}}
$$

gives rise to

$$
\begin{equation*}
\mu_{\text {Dist. }}=\frac{8}{5} b^{*} g \mu_{k} \tag{19}
\end{equation*}
$$

The first approximation to the viscosity the is:

$$
\begin{equation*}
\mu=4 \mu_{0} b^{*}\left[\frac{1}{4 b}+\frac{4}{5}+4\left(\frac{4}{25}+\frac{48}{25 \pi}\right) b^{*} g\right] \tag{20}
\end{equation*}
$$

(Ref. 1g)

5 The Equations of Lnguet-Higsins and Pople (Ref 3)

It has been shown that the purely collisional contribution to the transport coefficients can be derived via the assumptions:
a) that the spatial pair distribution function depends only on the tomporaturo and drnsity and not on the tomporature gradiont or rato of strain, and b) that the velocity distribution function is Maxwellian with a mean equal to the local hydrodynamic velocity, and a spread determined by the local temperature. The resulting equations, in our notation can be written as

$$
\begin{equation*}
\lambda=\frac{512}{25 \pi} \lambda_{\circ} b^{2} \mathrm{~g} \tag{21}
\end{equation*}
$$

and

$$
\mu=\frac{768}{25 \pi} \mu_{\circ} \mathrm{b}^{2} \mathrm{~g}
$$

These equations are identical with the locally Maxwellian contributions to the expressions derived through the Chapman Enskog theory, equations (15) and (18) respectively. (Ref 2).

As indicated by Dahler, the corrections to the collisionsl terms arising from the distortion of the velocity distribution function are not negligible; the contribution of the distortion term to the thermal conductivity is quoted at over 50% of the collisional term, and the corresponding correction to the viscosity is reported to be above 20% and increasing with density. (Ref 2).

6. The Contact Radial Distribution Function

The radial distribution function $g(r)$ is defined as

$$
\begin{equation*}
g(r)=n^{(2)}\left(\underline{\underline{r}}_{1}, \underline{r}_{2}\right) / n^{2} \tag{23}
\end{equation*}
$$

where n is the number density and ${ }_{0}(2)\left(\underline{r}_{1}, \underline{x}_{2}\right)$ der dr 2 is the probability that meiecule 1 is in volume element dr_{1} about the point r_{1} and that molocule 2 is in the volumo element $\frac{d r_{2}}{}$ ait x_{2} imultaneously. We now define the correletion function

$$
h(r)=g(x)-1 .
$$

Tho liniting vilue of $g(r)$ is $\exp [-u(r) / k T]$ where $u(r)$ is the .
 for low donsitios, $h(r)^{\prime}$ tends to zoro. Tho latter is "a measure of the total influence of molecule 1 on another, molecule 2, at a distance $\mathbf{r}_{12}{ }^{(1)}$ (Ref 4).
$h(r)$ can be split into two terms (Ref 5):

$$
\begin{equation*}
h\left(x_{12}\right)=c\left(r_{12}\right)+n \int c\left(r_{13}\right) h\left(r_{23}\right) d d_{3} \tag{24}
\end{equation*}
$$

where the first term on the right hand side is a direct correlation function representing short range interactions, and the second is the long range interactions propagated from molecule it molecule 3, which in turn exerts its total influence on 2. Defining two further functions

$$
\begin{align*}
& F(r)= {[\exp (-U(r) / k T)]-1 } \tag{25}\\
& \text { and } \\
& y(r)=g(r) \exp [U(r) / k T] \tag{26}
\end{align*}
$$

and making the Percus-Yovick approximation (Ref 6) that

$$
\begin{equation*}
C(r)=F(r) y(r), \tag{27}
\end{equation*}
$$

we can derive the equation ,

$$
\begin{equation*}
y_{12}=1+n \int F_{13} y_{13} \dot{n}_{23} d_{3} \tag{28}
\end{equation*}
$$

irom equacicas (24) - (27).
This equation hes been solved, (Ref 7), for the hard sphere potential, to obtain $y_{1<}$ at contact, i.e. when the intermolecular senaration is σ. (the molecular diameter) where $g(\sigma)=y(\sigma)$. The result is:

$$
\begin{equation*}
g(\sigma)=\frac{2+b^{*}}{2\left(1-b^{*}\right)^{2}} \tag{29}
\end{equation*}
$$

As before $b^{*}=\frac{\pi}{6} n \sigma^{3}$. This then is the expression for the contact radial distribution function for hard spheres, in the PercusTericl: approximation, which can be used in the evaluation of the transport coofficients.

The equation of state of a dense fluid can be derived in two ways, leading to the pressure equation, through the virial theorem,

$$
\begin{equation*}
P=n k T-\frac{n^{2}}{6} \int_{r} \frac{d u(r)}{d r} g(r) d r \tag{30}
\end{equation*}
$$

and the compressibility equation

$$
\begin{equation*}
k T \frac{\partial n}{\partial p}=1+n \int[g(i)-i] d x \tag{31}
\end{equation*}
$$

derived from fluctuation theory. In the Percus-Yovick approximation, these two equations can bo reduced, by using equation (29): to

$$
\begin{equation*}
P=n k T\left[\left(1+2 b^{*}+3 b^{* 2}\right) /\left(1-b^{*}\right)^{2}\right] \tag{32}
\end{equation*}
$$ and

$$
\begin{equation*}
P=n k T \quad\left[\left(1+b^{*}+b^{*} 2\right) /\left(1-b^{*}\right)^{3}\right] \tag{33}
\end{equation*}
$$

respectively. (Ref 7).

CHAPTER 9
 Transport Coofficients for Donse Binaxy

 Hard Sphere Mixtures

 Hard Sphere Mixtures}

1. Introduction

In this chapter, the equations for the transport coefficients of dense hard sphere inixciures will be given, and combined with the corresponding radial distribution functions, (Ref 14) derived through the Percus-Yevick approximation. In order to compare with experiment these equations will be reduced to ratios: the mixture transport coofficient divided by that for pure species 1. The equations will also be factorized into the purely kinetic, distortional, and locally Maxwellian collisional terms, and the Enskog minimum will be shown to exist. Comparison will be made with experimental data.

2. Transport Coofficionts for a Binary Diluto Gas Mixture (Ref la)

The meinod is analogous to that for pure systems. The Boltzmann's equation foi the first gas is

$$
\begin{equation*}
\frac{\partial f_{1}}{\partial t}+c_{1} \cdot \frac{\partial f_{1}}{\partial r}+F_{1} \cdot \frac{\partial f_{1}}{\partial e_{1}}=\left[\frac{\partial_{0} f_{1}}{\partial t}\right]_{c o i l} \tag{1}
\end{equation*}
$$

and a similar equation can bo writton for the second gas; by changing the subscripts to 2. For the non-equilibrium case, the equations for I_{1} and f_{2} are solved, as before, by a method of successive approximations. Again the flrst approximation is a Maxwellian function, and again the $i^{?} s$ can be written in the second approximation as

$$
\begin{align*}
& f_{1}=f_{1}^{0} \quad\left(1+\phi_{1}^{1}\right) \\
& f_{2}=f_{2}^{0} \quad\left(1+\phi_{2}^{1}\right) \tag{2}
\end{align*}
$$

Here, however, the ϕ 's contain cross torms of the properties anc velocities of the two species,

The heat flux vector is now writton as,

$$
\begin{equation*}
q=\frac{1}{2} \min _{1} \int f_{1} C_{i}^{2} \underline{C}_{1} d c_{1}+\frac{1}{2} m_{2} \int_{2} C_{2}^{2} C_{2} d c_{2} \tag{3}
\end{equation*}
$$

where all quantities have been defined in the previous chapter. The Maxwellian part of the distribution function makes no co\%tibution to the hent flur vector. Of tho terms arising from the integration over the $f_{i}^{0} \phi_{i}^{1}$, the one reprosenting tine heat flow due to the
temperature gradiont is simply

$$
\begin{equation*}
\underline{q}=-\lambda_{\text {mix }_{0} 0} \quad \frac{d T}{d r} \tag{4.}
\end{equation*}
$$

where $\lambda_{\text {mix, } 0}$ is the binary gas mixieure thermal conductivity for low pressures. The expression is cumbersome and as it will not be made direct use of, will not be reproduced here (Ref 1 b).

The coofficient of viscosity is derived along similar lines. (Ref 1c). We need only deal with the first correction term, as the Maxwellian part gives rise to a contribution to the pressure tensor that reduces to the hydrostatic pressure.

Then,

$$
\begin{equation*}
\underline{\underline{p}}^{(1)}=m_{1} \int \tilde{f}_{1}^{0} \phi_{1}^{1} \underline{c}_{1} \underline{C}_{1} \mathrm{~d}_{1}+m_{2} \int \hat{r}_{2}^{0} \phi_{2}^{1} \underline{\underline{c}}_{2} \underline{c}_{2} \mathrm{de}_{2} . \tag{5}
\end{equation*}
$$

which is equivalent to

Solving the Boltamann equations to obtain the rhs of equation (5) leads to the viscosity coefficient.

These methods for tho derivation of the transport coefficients of mixed fluids have been extended by H. H. Thorno to the caso of dence binary mixtures, (Ref 1d). In the first approximation, the thermal conductivity is found to bo

$$
\begin{equation*}
\lambda_{\text {mix }}=\frac{75}{8} \frac{k^{2} T}{g_{12}}\left(A_{\lambda} X_{\lambda}^{2}+g_{\lambda} X_{\lambda} Y_{\lambda}+C_{\lambda} Y_{\lambda}^{2}+D_{\lambda}\right) \tag{6}
\end{equation*}
$$

where

$$
\begin{align*}
& X_{\lambda}=1+2 \pi m_{1} \sigma_{1}{ }^{3} g_{1} / 5+8 \pi M_{1} M_{2} n_{2} \sigma_{12}{ }^{3} g_{12} / 5 \tag{7}\\
& Y_{\lambda}=1+2 \pi n_{2} \sigma_{2}{ }^{3} g_{2} / 5+8 \pi M_{1} M_{2} n_{1} \sigma_{12}{ }^{3} g_{12} / 5 \tag{8}
\end{align*}
$$

$$
\begin{align*}
& H_{1}=n_{1} /\left(m_{1}+m_{2}\right) ; n_{2}=m_{2} /\left(m_{1}+m_{2}\right) ; m_{0}=m_{1} \mu_{2} \tag{9}\\
& A_{\lambda}=\frac{a}{m_{1}-1} \frac{x_{1}}{m_{2}}\left(a_{11} a_{-1-1}-a_{1-1}\right)^{-1} \tag{10}\\
& B_{\lambda}=\frac{-2 a_{1-1-1}}{\left(m_{1} m_{2}\right)^{\frac{1}{2}}} \quad\left(a_{11} a_{-1-1}-a_{1-1}^{2}\right)^{-1} \tag{11}
\end{align*}
$$

$$
\begin{equation*}
c_{\lambda}=\frac{a_{11}}{m_{2}} \quad \frac{x_{2}}{x_{1}}\left(a_{11} a_{-1-1}-a_{1-1}^{2}\right)^{-1} \tag{12}
\end{equation*}
$$

$$
\begin{gathered}
\mathrm{D}_{\lambda}=(2 / 3) \mathrm{n}^{2}\left(\pi \mathrm{k}^{3} \mathrm{~T}\right)^{\frac{1}{2}}\left\{x_{1}^{2} g_{1} \sigma_{1}^{4} m^{-\frac{1}{2}}+2\left(8 \mathrm{H}_{1} \mathrm{M}_{2} / \mathrm{x}_{0}\right)^{\frac{1}{2}} \mathrm{x}_{1} x_{2} g_{12} \mathrm{q}_{2}^{4}+(13)\right. \\
\left.m_{2}^{-\frac{1}{2}} x_{2}^{2} g_{2} \sigma_{2}^{4}\right\}
\end{gathered}
$$

where x_{1} and x_{2} are mole fractions of species 1 and 2 respectively,

$$
\begin{align*}
& a_{11}=a_{11}^{s}+\frac{x_{1}}{x_{2}}{\underset{g}{12}}^{g_{12}} a_{11}^{n} \tag{14}\\
& a_{11}=5 x T\left[\frac{1}{4}\left(6 M_{1}^{2}+5 M_{2}^{2}\right)-\frac{3}{5} M_{2}^{2}+\frac{4}{5} M_{1} M_{2}\right] \quad M_{1} E \tag{15}\\
& E=\left(\frac{2 K K_{1}}{\pi M_{1} M_{2}}\right)^{\frac{1}{2}} \frac{1}{8 \sigma_{12}} ; \quad \sigma_{12}=\frac{1}{2}\left(\sigma_{1} \sigma_{2}\right) \tag{16}\\
& a_{11}^{n}=5 \mathrm{kT} / 2_{10} \tag{17}
\end{align*}
$$

where ψ_{10} is the dilute gas viscosity coefficient for species 1.

$$
\begin{equation*}
a_{-1-1}=a_{-1-1}^{0}+\frac{x_{2}}{x_{1}} \frac{g_{2}}{g_{12}} a_{-1-1}^{n} \tag{18}
\end{equation*}
$$

where a_{-1-1}^{0} corresponds to equation (15) with species numbers
interchanged and a_{-1-1}^{n} to equetion (17) with H_{10} roplaced by ψ_{20} Finally

$$
\begin{equation*}
\cdot a_{1-1}=-27 \mathrm{kiN}\left(\mathrm{M}_{1} \mathrm{M}_{2}\right)^{\frac{1}{2}} / 4 \mathrm{~S} \tag{19}
\end{equation*}
$$

and the radial distribution functions g_{12}, g_{1} and g_{2} will be
defined in the next section.

The first Approximation to the viscosity of a mixed dense hard sphere fluid is given by (Ref 1d)

$$
\psi_{m i x}=\frac{\operatorname{sx} T}{2 g_{12}}\left[A_{\mu} X_{\mu}^{2}+B_{H \mu} X Y_{\mu}+c_{\mu} Y_{\mu}^{2}+D_{\mu}\right]
$$

where

$$
\begin{align*}
& X_{12}=1+4 \pi n_{1} \sigma_{1}{ }^{3} g_{1} / 15+8 \pi M_{2} n_{2} \sigma_{12}{ }^{3} E_{12} / 15 \tag{21}\\
& Y_{\mu}=1+4 \pi n_{2} \sigma_{2}{ }^{3} g_{2} / 15+8 \pi M_{1} n_{1} \sigma_{12}{ }^{3} \mathrm{~g}_{12} / 15 \tag{22}\\
& A_{u}=b_{-1-1} \frac{x}{\bar{x}_{2}^{1}} \quad\left(b_{-1-1} b_{11}-b_{1-1}^{2}\right)^{-1} \tag{23}\\
& B_{H}=-2 b_{1-1}\left(b_{-1-1} b_{11}-b_{1-1}^{2}\right)^{-1} \tag{24}\\
& c_{\mu}=b_{11} \underset{x_{1}}{X_{i}^{2}}\left(b_{-1-1} b_{11}-b_{1-1}^{2}\right)^{-1} \tag{25}\\
& D_{i}=(4 / 15) n^{2}(\pi k 2)^{\frac{1}{2}}\left[m_{1}^{\frac{1}{2}} x_{1}^{2} g_{1} \sigma_{1}^{4}+2\left(2 m_{0} M_{1} M_{2}\right)^{\frac{1}{2}} x_{1} x_{2} g_{12} \sigma_{1}{ }^{4}\right. \\
& \left.t_{2}{ }^{\frac{1}{2}} x_{2}{ }^{2} g_{2} \sigma_{2}^{4}\right] \tag{26}
\end{align*}
$$

and
$b_{11}=b_{11}^{0}+\frac{x_{1}}{x_{2}} \underset{\varepsilon_{12}}{g_{11}} b_{11}^{1}$
with $b_{11}^{p}=5 \operatorname{kT}\left(\frac{2}{3}+\frac{2 M_{2}}{5 M_{1}} 2\right) i \sin$
and $b_{11}^{p e}=a_{11}^{\gamma_{1}}$. Further,
$b_{-1-1}=b_{-1-1}^{0}+\frac{x_{2}}{x_{1}}{\underset{g}{g_{12}}}_{g_{-1-1}}^{b_{n}^{n}}$
where
$\therefore \quad b_{-1-1}=5 \operatorname{kT}\left(\frac{2}{3}+\frac{24 i}{5 H_{2}} i\right) / E$
and $b_{-1-1}^{\infty}=a_{-1-1}^{\infty}$ Finally
$: \quad b_{1-1}=-4 k T / 35$.

The radial distribution functions g_{12}, g_{1} and g_{2} will now be defined.

3 Equilibrium Properties of Dense Hard Sphere Fluids. (Ref 3)

The methods for the treatment of pure and mixed dense hard sphere fluids are analogous. The compressibility equation assumes the form
$1-\sum_{i} n_{i} C_{i j}(\underline{r}) d r=\frac{1}{k T} \frac{\partial P}{\partial r_{i}}$
and the direct correlation functions $C_{i j}$ for an m component
liquid can be writton as
$\left[g_{i j}(\underline{r})-1\right]=C_{i j}(\underline{r})+\sum_{I=1}^{m} n_{z j} \int\left[g_{i j}(\underline{r}-y)-1\right] c_{i j}(y) d y$
where $g_{i j}$ is tho radial distribution function. In order to obtain the $g_{i j}{ }^{9}$ se need another equation relating the two sets of functions:

$$
\begin{equation*}
g_{i j}(\underline{r}) \quad \exp \left[-u_{i j}(\mathrm{i}) / \mathrm{kT}\right]-1=\exp \left[-u_{i j}(r) / k T\right] c_{i j}(r) \tag{33}
\end{equation*}
$$

This is the Percus-Yevick approximation for mixed dense fluids. The essontial implication, as bafore, is that the direct correlation function is of the sainc range as the intermolecular interaction potential. Thus, assurning a binary mixture and the hard sphere potential, it can be shown that

$$
\begin{equation*}
g_{12}=:\left(\sigma_{2} \mathrm{~g}_{1} \cdot i \sigma_{1} \mathrm{~g}_{2}\right) / 2 \sigma_{12} \tag{34}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{1}=\left[1+\frac{5}{2}+\frac{3}{2} \frac{\pi}{6} n \sigma_{2}^{2}\left(\sigma_{1}-\sigma_{2}\right)\right](1-\xi)^{-2} \tag{35}
\end{equation*}
$$

\because and
$g_{2}=\left[i+\frac{\xi_{2}}{2}+\frac{2}{2} \frac{\pi}{6} n \sigma_{1}^{2}\left(\sigma_{2}-\sigma_{1}\right)\right](1-\xi)^{2}$
Hore,

$$
\begin{align*}
& E=\frac{\pi}{6}\left(n_{1} \sigma_{1}^{3}+n_{2} \sigma_{2}^{3}\right)= \tag{36}\\
& v_{1}^{*}=\pi \sigma_{1}^{3} / 6 ; r=\sigma_{2} / \sigma_{1} ; v=1 / n \tag{37}
\end{align*}
$$

where n is the number density. Using the expression for the radial distribution function, the comprossibility equation for a binary mixture can be writton as (Ref 5)

$$
\begin{equation*}
{\frac{p^{c} \psi}{k T}}^{*}=\frac{\xi\left(1+\xi+\xi^{2}\right)}{(1-\xi)^{3}\left(x_{1}+x_{2} r^{3}\right)}-\frac{3 x_{1} x_{2}(1-r)^{2}{ }^{2}}{\left(x_{1}+x_{2} r^{3}\right)^{2}} . \tag{38}
\end{equation*}
$$

The pressure equation, the pure analogue of which was given in
equation (30) of the pruvious chapter, can be treated in the same manner and shouid yield identisal rosuilts with equation (38) if tho distribution function were exact. Though this clearly is not so, results from both expressions are sufficiently close (Ref 5) for us to work with only one of these expressions. The information obtained through the compressibility equation will not be substantially different from that of the pressure equation. 4 Reduotion of Equations (6) and (20)

Equations (6) and (20) have been dorived for mixtures of hard sphere fluids. One expects the error due to this simplification to be reduced if the ratios $\lambda_{\text {mix }} / \lambda_{1}$ and $\mu_{\text {mix }} / \mu$, are considered rathor than the absolute values.

The donominators λ, and μ, denote the transport coofficients of pure dense species 1. Thus by (6) and oquation (16) of the pr-rious chapter.

$$
\begin{equation*}
\because \quad \frac{\lambda_{m i x}}{\lambda_{1}}=\frac{1}{F_{\lambda}}\left[\dot{B}_{\lambda}^{\prime}{x_{\lambda}^{2}}^{2}+B_{\lambda}^{0} x_{\lambda}^{0} \bar{x}_{\lambda}+G_{\lambda}^{0} \ddot{\lambda}_{\lambda}^{2}+D_{\lambda}^{0}\right] \tag{39}
\end{equation*}
$$

where

$$
\begin{align*}
& \left.X_{\lambda}=1+12 g_{1} X_{1} \rho / 5+6 M_{1} M_{2} g_{12} 2^{(1+r}\right)^{3} \varphi / 5 ; \varphi=\frac{V *}{V} \tag{40}\\
\therefore \quad & \quad Y_{\lambda}=1+12 g_{2}=-r^{2} r_{\varphi} / 5+6 M_{1} M_{2} g_{12} X_{1}(1+r)^{3} / 5, \tag{41}\\
\therefore \quad & f_{\lambda}=4 \varphi_{p}\left[\frac{1}{4 g \varphi_{p}}+\frac{6}{5}+4\left(\frac{9}{25}+\frac{32}{25 \pi}\right) \mathrm{g} \varphi_{p}\right], \tag{42}
\end{align*}
$$

and

$$
\begin{align*}
& B_{\lambda}^{0}=-\frac{16}{g_{12}}\left(\frac{\dot{q}_{1}}{r^{+1}}\right)^{2}\left(\frac{1}{N_{2}}\right)^{\frac{1}{2}} \frac{q}{1-1} /\left(q_{-1-1} q_{11}-q_{1-1}^{2}\right) \tag{44}
\end{align*}
$$

$$
\begin{align*}
& g_{\lambda}^{n}=\frac{512}{25 \pi} \varphi^{2}\left[x_{1}^{2} g_{1}+\left(\frac{\text { 些 }}{2 M} 2\right)^{\frac{1}{2}} x_{1} x_{2} g_{12}(1 \cdot r)^{4}\right. \tag{46}\\
& \left.+\left(\frac{\mathrm{m}}{1}\right)^{\frac{1}{2}} x^{2} \mathrm{r}^{4} \mathrm{~g} \cdot\right]
\end{align*}
$$

and

$$
\begin{equation*}
q_{-1-1}=o_{\lambda}+\frac{8 x_{1}}{x_{2}} g_{12}^{g_{2}}\left(\frac{2 r}{1+r}\right)^{2}\left(\frac{1}{x_{2}}\right)^{\frac{1}{2}} \tag{47}
\end{equation*}
$$

whera

$$
\begin{equation*}
o_{r}=\frac{40}{M_{2}}\left(\frac{M_{i}}{?} M_{2}\right)^{\frac{1}{2}}\left[\frac{1}{4}\left(6 M_{2}^{2}+5 M_{1}^{2}\right)-\frac{3}{5} M_{1}^{2}+\frac{4}{5} M_{2} M_{2}\right] \tag{48}
\end{equation*}
$$

G_{11} can bo obtained by intorchanging subscripts 1 and 2 in oquations (47) and (48). Finally ${ }_{1 \ldots 1}^{q}=-(54 / \sqrt{2}){ }_{1}^{M M}$

Iikewise, the $=\frac{i_{\text {mix }}}{} / 4$, can be obtained by equation (20) and oquation (20 : of the previous chapter.
where

$$
\begin{align*}
& x_{\mu}=1+8 \varphi x_{1} \mathrm{E}_{1} / 5+2 \varphi M_{2} \mathrm{E}_{12} x_{2}(1+)^{3} / 5 \tag{50}\\
& Y_{i k}=1+8_{\varphi} x_{2} r^{3} E_{2}+2 \cos _{1} \mathrm{E}_{12} x_{1}(1+r)^{3} / 5 \tag{51}\\
& A_{\mu}^{0}=\frac{B_{1}}{x_{2}}\left(-\frac{2}{z_{i+1}} ;^{2}\left(\frac{1}{i_{1}}\right)^{\frac{1}{2}} P_{-1-1} /\left(P_{-1-1} P_{11}-P_{1-1}^{2}\right)\right. \tag{52}\\
& \therefore \quad B_{\mu}^{0}=-16\left(\frac{1}{H_{1}}\right)^{\frac{1}{2}}\left(\frac{2}{r+1}\right)^{2} P_{1-1} /\left(P_{-1-1} P_{11}-P_{1-1}^{2}\right) \tag{53}\\
& G_{j}=8 \frac{x}{x_{1}}\left(\frac{1}{x_{1}}\right)^{\frac{1}{2}}\left(\frac{2}{r+1}\right)^{2} P_{11} /\left(P_{-1-1} P_{11}-P_{1-1}^{2}\right) \tag{54}\\
& \text { Di }_{\psi}=\frac{768}{25 \pi} \varphi^{2}\left[x_{1}{ }^{2} \mathrm{~g}_{1}+\left(\frac{2 M 2}{8}\right)^{\frac{1}{2}} \mathrm{E}_{12} x_{1} x_{2}(1+r)^{4}+\left(\frac{\underline{M}_{2}}{\mathrm{M}_{1}}\right)^{\frac{1}{2}} \mathrm{~g}_{2} x^{4} x_{2}^{2}\right] \tag{55}\\
& \text { and. } \\
& -P_{-1-1}=: p_{\mu}+8 \frac{x_{2}}{x_{1}} \quad \frac{g_{2}}{g_{12}}\left(\frac{1}{M_{2}}\right)^{\frac{1}{2}}\left(\frac{2 r}{1+r}\right)^{2}
\end{align*}
$$

where

$$
\begin{equation*}
P_{u}=40\left(\frac{2}{3}+\frac{2}{5} \frac{M_{1}}{M_{2}}\right) \quad\left(\frac{M_{1} M_{2}}{2}\right)^{\frac{1}{2}} \tag{57}
\end{equation*}
$$

P_{11} can be obtained by interchanging subscripts 1 and 2 in
equations (56) and (57). Finally ${ }_{1-1}=-(32 / 3)\left(\frac{M_{1} i_{2}}{2}\right)^{\frac{1}{2}}$, and
$\therefore f_{\mu}=4 \varphi_{\mathrm{p}}\left[\frac{1}{4 \mathrm{~g} \varphi_{\mathrm{p}}}+\frac{4}{5}+4\left(\frac{4}{25}+\frac{48}{25 \pi}\right) \varphi_{\mathrm{p}}\right]$.
In both equations (42) and (58) φ_{p} is the value of v_{i}^{*} / σ
for pure species 1. This value has been computed from equation (38) by setting $x_{1}=1$.

In order to evaluate the ratios of equations (39) and (48), the $\varphi^{\prime} s$ corresponding to each pressure, composition and diameter ratio must be known, This was done by solving equation (38), by fixing ($P V_{1}^{*} / k T$), r, and x. The solution of (38) for φ at $x=1$ was used to evaluate the contact radial distribution function and the transport coefficients of pure species 1 , in the compressed state. Calculations of $\nabla{ }_{1}^{*} / v$ and the $\lambda_{m i x} / \lambda_{1}$ and $\mu_{\text {mix }} / \mu_{1}$ wore made for the following sets of values:

$$
\left(P-\frac{*}{1} / T\right)=1,2,4,8,20,30 ; r=\frac{1}{2}, \frac{2}{3}, 1, \frac{3}{2} \text { and }
$$

$R\left(=\mathrm{M}_{2} / \mathrm{MH}_{1}\right)=\frac{1}{2}, 1,2$, ovgr the ir L omposition range. Three Fortran IV prograrmes were mitten for the execution of these computations, the texts of which will be found in the appendixes 3F, 3G , and 3H for $\left(\nabla_{1} * / V\right)$, $\lambda_{\text {mix }} / \lambda_{1}$ and $\mu_{\text {mix }} / \mu_{1}$ respectively. A sample set of curves, from those computed have been presented in Fig. 1. for the case $R=\frac{1}{2},\left(\mathrm{Pr}_{1} * / K T\right)=4$ over the composition range, for four values of 2 . Pesults for both $\lambda_{\text {mix }} / \lambda_{1}$ (greater than 1) and $\mu_{\text {mix }} h_{1}$ (less than 1) reproduce the quadratic type dependence on composition that is observed in simple liquid mixtures.

At this stage it would be desirable to split equations (39) and (48) into their respective kinetic and collisional terms. In connection with this, it is relevant, first, to look at a purely collisional model of the thermal conductivity of mixtures.

5 The Collisional Approximation to Thermal

Conductivity_ of Dense_Mixtures_(Ref Ra)

By assuming that the two particle density function can be taken as that of the fluid in equilibrium and that the velocity distribution function for each species can be taken as a

Maxwellian function, the heat flow vector due to the temperature gradient can be written for the case of equal diameters, for the two species as (Ref tb)

$$
\begin{equation*}
J_{0}=-\frac{20 k y}{n} \sum_{A} \Sigma_{B} \sum_{A}^{n_{A} n_{B}}\left(\frac{2 s_{A B}}{\pi}\right)^{\frac{1}{2}} \tag{59}
\end{equation*}
$$

and hence the thermal conductivity of the binary mixture as
$\lambda_{m i x}$ in this approximation is purely collisional since the kinetic term vanishes for a Maxwallian velocity distribution, and clearly there is no distortion term involved. Equation (57) can be written 38

$$
\begin{equation*}
\therefore \quad \lambda_{m i x} \lambda_{10}=x_{1}^{2}+2 x_{1} x_{2}\left(\frac{8 R}{(1+\lambda) 3}\right)^{\frac{1}{2}}+x_{2}^{2} R^{-\frac{1}{2}} \tag{6a}
\end{equation*}
$$

whore λ_{10} is the thermal conductivity of pure component 1, for low pressures.
6. The Collisional and Kinotic Contributions in Equations
(39) and (49).

It can easily be shown that if D_{λ}, given in equation (13), is divided by $\lambda_{\text {rifaxw }}$, given in equation (15) of the previous chapter, and $\sigma_{1}=\sigma_{2}$, one obtains equation (60). The origin of the term suggests that equation (13) arises from . collisional heat transfer due to the locally Maxwellian velocity distribution. The obvious step then is to write the locally Maxsellian collisional torm for $\sigma_{1} \neq \sigma_{2}$.

where $v_{i}{ }^{0}$ is the molar volume of pure species $1, v$ is that of the mixturo, and g is given by oqn. (29) of the provious chapter. Thou gil Ionguetmiggins; Popio and Valleau did not oxtend their treatment to the viscosity coefficient, analogous expressions can be written for the viscosity, using (26) of this chapter and eqn. (18) of the previous chapter.

$$
\begin{equation*}
\therefore \mu_{\operatorname{mix}} j \mu_{1}=\left(\frac{V_{v}}{0}\right)^{2} \frac{1}{g}\left(x_{1}{ }^{2} g_{1}+\frac{1}{8} x_{1} x_{2} g_{12}(1+r)^{4}\left(\frac{\dot{2 R}}{1+R}\right)^{\frac{1}{2}}+R^{\frac{1}{2}} x_{2}^{2} r^{4} g_{2}\right) \tag{62}
\end{equation*}
$$

$$
\text { and for } \sigma_{1}=\sigma_{2}
$$

$$
\begin{equation*}
\mu_{m i x} / \mu_{1}=x_{1}^{2}+\left(\frac{2 R}{1+R}\right)^{\frac{1}{2}} 2 x_{1} x_{2}+x_{2}^{2} R^{\frac{1}{2}} \tag{63}
\end{equation*}
$$

This analysis can be extended to the tree initial terms of equation (6). The kinotic contributionto the heat flux vector for dense fluid mixiures is dofined similarly to that of mixtures at low pressures, i.o. eqn. (3) which immediately leads, by definition, to

$$
\underline{q}=\frac{1}{2} \quad p_{1} \overline{c_{1}^{2} \underline{c}_{1}}+\frac{1}{2} p_{2} \overline{c_{2}^{2} \frac{c}{2}}
$$

The total flow of heat (Ref ie) is given by

$$
\begin{align*}
\underline{q}= & \frac{1}{2} \rho_{1} C_{1}^{2} \underline{C}_{1}+\left(X_{\lambda}-1\right) \frac{1}{2} p_{1}{\overline{C_{1}}}_{2}^{C_{1}} \tag{64}\\
& +\frac{1}{2} \rho_{2} \overline{c_{2}^{2} C_{2}}+\left(Y_{\lambda}-1\right) \frac{1}{2} \rho_{2} \overline{c_{2}^{2} C_{2}}-g_{\lambda} \frac{\partial T}{\partial T}
\end{align*}
$$

where X_{λ}, Y_{λ} and I_{λ} are given by equations (7), (8) and (13) respectively. While a rigorous factorization to separate the kinetic contribution from the distortional one ($1, e$, the term arising from the distortion of the locally Maxwellian velocity distribution) is called for, it would be oxtremely laborious. Hence the following method has boen used:

Consider the first three terms of equation (6), and assume the existence of two unknorm kinetic contribution terms, U, and U_{2}, such that, by dropping the subscripts,

$$
\begin{equation*}
A X^{2}+B X Y+C Y^{2}=X D_{1}+Y U_{2} \tag{65}
\end{equation*}
$$

where $U_{1}+U_{2}=\lambda_{k}$
and λ_{k} is defined as the purely kinetic contribution to the thermal conductivity of the mixed dense fluid. The form of equation
(65) necessitates

$$
\begin{align*}
& U_{1}=A X+G I \\
& U_{2}=C Y+F X \tag{66}
\end{align*}
$$

where A and C are those of equation (65) and G and F are as yet unknown. Hence

$$
\begin{equation*}
U_{1} X+U_{2} Y=A X^{2}+(G+F) X Y+C X^{2} \tag{67}
\end{equation*}
$$

Clearly $B=G+\mathbb{F}$. The symmetry of equation (64) suggests that it would be reasonable to assumo $G=F=F / 2$. This assumption has been chocked by calculating the kinotic; distortional and locally Maxwallian collisional contributions separately and comparing the sum against the unfactorod equation, over the full range given in paragraph 4.

The identical argument applies to the viscosity and for tooth transport coefficionts the kinetic part, in the brackets of either one of equations (6) and (20), has the form

$$
\begin{equation*}
A X+(B / 2)(X+Y)+C Y \tag{68}
\end{equation*}
$$

and the distortion term

$$
\begin{equation*}
(X-1)[A X+(B / 2) Y]+(Y-1)[C I+(B / 2) X] . \tag{69}
\end{equation*}
$$

Computations, of the various contributions, have been carried out and tho sums ($\lambda_{V} / \lambda_{10} \nabla_{1}{ }^{*}$) and ($\omega v / \mu_{10}{ }^{\nabla}{ }_{1}{ }^{*}$) plotted against the dimentionless pressure $y=(P / n k T)-1$.

Figs (2) and (3) show a set of zepresentative results for the thermal conductivity and viscosity respectively. These have beon calculated for constant composition $X_{1}=.5$, and $r=1.5, R=2$. On both of these graphs curve 1 gives the kinetic contribution, curve 2 the sum of the distortional and locally kaswellion collisional, and curve 3 gives the arm of the two curves. These rosults aro similar to thoso obtained for a pure substance (Rex 6). As the density is incroased, at the same tomperature and constant composition, the influence of heat transfer through molecular flux decroases (as molecular convection decrease for increasing density) and heat, transfor through collisions incroases. Also both graphs show that the transport coofficients of mixod fluids also go through the Enskog minimum as the pressure is increased and the collisional contribution takes over linearly.

In these calculations, ($\lambda_{V} / \lambda_{10} \nabla_{1}^{*}$) and ($\mu v / \mu_{10} \nabla_{1}^{*}$) have been obtained from programs identical to those of paragraph 4. of this chapter simply by letting $f=\nabla_{1} * / v$ in equations (42) and (58). The splitting of the collisional and kinetic contributions introduces minor differences, and henco these programs will not be reprocuced here.

"Fig.2. Thermal conductivity ratio v.s.y; relative CONTRIBUTIONS OF THE KINETIC AND COLLISIONAL MECHANISMS
$\frac{\mu_{n} v^{\prime}}{\mu_{10} v_{i}^{H}}$

Fig3 viscosity Ratio v.s yirelative contributions of Kinetic and collisional meichanisms

7 Ccmparison with Exreriment

Equations (6) and (20) have beon derived for hard sphero fluids, and whils one could obtain values of the transport coefficients, directly, by combining these equations with (34) and (35), one would not expect good agreement with experimental data. Ths effect of intermolecular forces should be reduced however if ratios of the transport coefficients wore taken as in equations (39) and (49). Clearly the most suitable systems for comparison are mixtures of simple liquified gases. No data on the thermal conductivitios of the latter were found and hence data on the system carbon tetrachloride + benzene (Ref 7) was used for comparison with theoretical calculations of both ratios, while data on the viscosity or the system argon + methane (Ref 8) was used for comparison with theory.
i) The system carbon tetrachloride + benzene. Donsity data on the system (Ref 9) at $30^{\circ} \mathrm{C}$ and the molar volume of carbon tetrachioride at absolute zero (Ref 10) were used for the calculation of ($v_{1} * / v$) over the composition range.

$$
\begin{aligned}
\mathrm{N}_{\mathrm{A}} \mathrm{v}_{1} * & =55.24 \mathrm{cc} / \mathrm{mole} \\
\mathrm{~N}_{\mathrm{A}}^{\mathrm{V}} & =\left(\sigma_{1} \mathrm{w}_{1}+\ddot{\sigma}_{2} \mathrm{w}_{2}\right) / \bar{o}_{\mathrm{mix}}
\end{aligned}
$$

where x denotes the ricie frection, $P_{m i n}$ density of the mixture and N_{A} Avogadro's constant. r was taken as

$$
r=\frac{v_{2}^{0}}{v_{1}^{0}}
$$

where ∇_{i}^{0} denotes the molar volume of pure species i at the given temperature, and $R=.5077$ from the molecular weights. The values of the ratios of eqn.s (39) and (49) were computed using this information. Also, similar calculations were executed on equations (60) through (63) and the results plotted in fig. 4, along with experimental data.

For the thomal conductivity, all three theoretical curves conform to the general behaviour of the experimental data. Agreenent between calculated and experimental values is whithen 10\%, and gets oven better for equation (39). A similar situation is observed for the viscosity ratios. Equations (62) and (49) give practically identical results.
ii) The systim argon + methane.

Caiculated results were compared with data (Ref 8) taken at $90.91^{\circ} \mathrm{K}$. Density data for the pure components (Ref 11) and excess volume data (Ref 12) were used to compute the molar volumes over the composition rango, r was taken as

FIG.4. Callculated and experimetal vis cosities and thermal CONDUCTIVITIES FOR THE SVSTEM CARBON TETRACHLORIDE(I) +

FIG. 5. CALCULATED AND EXPERIMENTAL VISCOSITIES FOR THE SYSTEM ARGON(1) + METHANE (2) AT $90.91^{\circ} \mathrm{K}$

$$
-\left(\frac{v_{2}^{0}}{v_{1}^{0}}\right)^{\frac{1}{3}}=1.067
$$

and v_{1}^{*} from the moler woinm of solid argon (Rof 13) at $0^{\circ} \mathrm{K}$. Fig. (5) shows that agreenont of experiment with any of the threo theoretical surves is not as good as that of the previous systam.

Thermal Diffusion in Dense Haxd Sphere Fluids

1. Introduction

A treatment sirijay in that of the previous two chapters, has boen applied to themmal diffusion. Using the Iebowitz radial distributfor functions, theoretical calculations have been executed with both the Chapman-Enskog and the Ionguetmiggins, Pople and Valleau theories. Results from these two theories were compared with experimental thermal diffusion ratios as a function of composition and pressure.

2. The Theoretical Excressions

Diffusion of one component relative to the other takes place if the maan velooities of the two sets of molecules in a binary mixture are not the same. Then in a small volume about \underline{y}, between time t and $t+\Delta t$.

$$
\begin{equation*}
\overline{\underline{c}}_{1}-\overline{\underline{\dot{E}}}_{2}=\frac{1}{n_{1}} \int f_{1} \dot{w}_{1} \dot{q}_{1}-\frac{1}{1_{2}} \int f_{2} \underline{c}_{2} d{\underline{q_{2}}}_{2} \neq 0 \tag{1}
\end{equation*}
$$

where the second approximation to f_{1} and f_{2} are taken as

$$
\begin{equation*}
f_{1}=f_{1}^{\circ}\left[1+:_{1}^{(1)}\right] ; f_{2}=f_{2}^{\circ}\left[1+\phi_{2}^{(1)}\right] \tag{2}
\end{equation*}
$$

and the quantities \varnothing have been defined previously (Ref.ia).
Substituting for $\phi^{(1)}$ in eqn. (1) explicitily leads to an expression which indicates that diffusion takes place
a) in the direction tending to reduce inhonogeneity in the mixture,
b) when accelerative of rects of forces acting on molecuies of the two gases are nonwmiform,
c) when pressure is non-uniform;
d) the velocity of diffusion posesses a component in the direction of the temperature gradient. This thermal diffusion produces a non-uniform steady state in a gas parts of which are maintained at different steady tomperatures. (Ref. 1a).

If the absercs of external forces and pressure gradients is assumed

$$
\overline{\underline{C}}_{1}-\overline{\bar{C}}_{2}=-\frac{n^{2}}{n_{1} n_{2}}\left\{\begin{array}{ll}
D_{12} & \frac{\partial n_{1}}{\partial \underline{\underline{r}}}+D_{T} \frac{\partial \ln T}{\partial \underline{r}} \tag{3}
\end{array}\right\}
$$

where n is the number density of the mixture

$$
\begin{aligned}
& n_{1}=1_{1}^{n} \\
& D_{12}=\text { mutual diffusicri coofficient. } \\
& D_{T}=\text { thormal diffusion coofficient. }
\end{aligned}
$$

Equation (3) can be rewritten as

$$
\begin{equation*}
\underline{\underline{c}}_{1}-\overline{\underline{c}}_{2}=-\frac{n^{2}}{n_{1} n_{2}} \quad D_{12}\left\{\frac{1}{n} \frac{\partial n_{1}}{\partial \underline{\underline{r}}}+k \quad \frac{\partial \ln T}{\partial r}\right\} \tag{4}
\end{equation*}
$$

where $\mathrm{k}_{\mathrm{T}}\left(=\mathrm{D}_{\mathrm{T}} / \mathrm{D}_{12}\right)$ is cailed the thormal diffusion ratio, or using $n_{i}=x_{i} n$

$$
\underline{\underline{c}}_{1}-\ddot{\underline{c}}_{2}=-\dot{E}_{12}\left\{\frac{1}{x_{1} x_{2}} \quad \frac{\partial x_{1}}{\partial r}+\ddot{\partial \ln T} \partial_{r}\right\}
$$

where $\alpha\left(=\mathrm{kT} / \mathrm{x}_{-} \mathrm{x}_{2}\right)$ is called the thermal diffusion factor. (Ref, ib)

The Chapman Enskog derivation of k_{I} for dilute gas mixtures has been extended by Thorne to dense fluid mixtures. In the first approximation, the thermal diffusion ratio of dense hard sphere fluid mixtures is given by (Ref.ic)
$L_{I_{I}}=(A X+B Y) / C$
where

$$
\begin{align*}
& A=-10 x_{1}\left[\left(\frac{M_{2}}{2 M_{1}}\right)^{\frac{1}{2}} \mathrm{~F}+\frac{M_{1}}{\sqrt{2}} \gamma_{i}\right] \tag{6}\\
& B=10 \pi_{2}\left[\left(\frac{\left.\left.M_{1}{ }^{3}\right)_{2}^{\frac{1}{2}} G+y \cdot{ }_{2} / \sqrt{2}\right]}{}\right.\right. \tag{7}\\
& C=E_{12}\left[G F-\gamma^{2}\right] \tag{8}\\
& G=B+8 \frac{X_{2}}{X_{1}} \quad \frac{g_{2}}{g_{12}}\left(\frac{2 x}{1+r}\right)^{2}\left(\frac{1}{M_{2}}\right)^{\frac{1}{2}} \tag{9}
\end{align*}
$$

$$
\begin{align*}
& x=1+\frac{12}{5} g_{1} x_{1} \omega+\frac{6}{5} M_{1} M_{2} g_{12} x_{2}(1+r)^{3} \dot{\varphi} \text {. } \tag{11}
\end{align*}
$$

Y can be obtained by interchanging subscripts in oquation (II). Finally $\alpha, ?$ and φ have been given in the previous chapter, and the quantities g_{1}, g_{2} and g_{12}, as before are
the radia' discribution functions arising in the Porcuse Yevick approximation (Ref. 2 and 3).

With the assumption that the velosity distroftution function is locally Maxrellian, and that the pair distribution function is that at local equilibrium, Longuet-Higgins, Pople and Valleau (Ref. 4) have derived an expression forkr , for an isotopic binary mixture. In the absence of pressure gradients and external forces

$$
\begin{equation*}
k_{I}=x_{1} x_{2}\left(M_{2}-M_{1}\right) \frac{v_{1}^{*}}{v} g \tag{12}
\end{equation*}
$$

where all quantities have beon defined in the two previous chaptors.

Fig. 1 compares values caloulated from the Longuot-Higgins, Pople and Valleau theory (HPV) and from Thome's extonsion of the Chapmanmeuskog theory (CE). It can be seon that for both low and high values of the reduced. pressure $p^{*}\left(=p_{1}{ }^{*} / \mathbb{R}\right)$, results of $B P V$ rise more sharply than those of CE, towards the middle of the composition range. It is also seen, though not very clearly on the graph, that while HPV predicts symetric behaviour of k_{T} about $x_{1}=.5$, this is not the case for CE. For $m_{2} / m_{1}=0.5, \sigma_{2} / \sigma_{1}=1$, and $p^{*}=1$

FIG. 1 COMPARISON OF K_{T} FROM THE CHAPMAN-ENSKOG THEORY WITH THAT OF L-higGins et. AL.

$\frac{1}{1}$	$\frac{k_{T}(C E)}{0.030917}$	$\frac{k_{T}(H P V)}{0.072832}$
0.2	0.052982	0.12948
0.3	0.067168	0.16994
0.4	0.074298	0.19422
0.5	0.075064	0.20231
0.6	0.070040	0.19422
0.7	0.059696	0.16994
0.8	0.044403	0.12948
0.9	0.024442	0.072832

Fig. ? showe Uss iensity dependence on these two thoories it is seen that for $r=.5 \&$ falls monotonically, that for $i=1$, er goos through a shallow minimum

.0	$\alpha(C E)$
.04	.27454
.07	.27433
.1	.27455
.2	.27676

and that for $r=2, \alpha$ rises slowly. In contrast HPV ($r=1$) predicts the rather sharp rise of α with density.

FIG. 2. α V.S. PRESSURE $m_{2} / m_{l}=-5 ; k=.5$

3. Ccmparison with Experiment

Results obtained from the CE and HPV theories wore conpared with experimental data. The composition dependences of the calculated $\alpha{ }^{9} s$ were compared with data for the system CCH_{4}-Cyclohexane (Ref.6) and the pressure dependence with the systan $\mathrm{ZO}=\mathrm{CH}_{4}$ (Ref. 5). Calculations were similar to those of the previous chapter. The Fortram IV program written for this purpose will not be presented in the appondix as it is very sinilar to the thermal conduotivity program.
a) The system CCl_{4} (1) + Cyolohoxane (2). As can be seen from fig. 3, there are considerable differences regarding values of α, between measuroments of difforent oxperimenters. While results of Horne and Bearman (Ref. 6) go through a minimum around $x_{1}=.5$ those of Thomaes (Ref. 7) exhibit quasi linear behaviour over the composition range. Furthernore agreenent of both theories with experiment is poor. Thed calculated from $\mathcal{H P V}$ rises with the mole fraction of CCl_{4}; all values are about 100% higher than the moasured ones. α calculated from $C E$, on the other hand seems rolatively insensitive to composition changes.

FIG 3. COMPOSITION DEPENDENCE OF \propto FOR MIXTURES OF $\mathrm{CCl}_{4}(1)+\mathrm{CYCLOHEXANE}$ (2) AT $25^{\circ} \mathrm{C}$

Density data used in these calculations were takon from Wood and Gray (Rof. 8) and the $N \nabla_{1} *$ from Blitz and Sapper (Ref. 9)
b) The system $X_{\theta}(1)+\mathrm{CL}_{4}$ (2). ${ }^{2}$ has beon moasured for $x_{1}=.0015$, at $25^{\circ} \mathrm{C}$, as a function of pressure, the latter going up to about 100 atmospheres. Two differont ways (Ref. 10 and i1) of analyring the same sot of data give widely differing results. Those resulting from the method of Drickamer, Tung and Mollow seom intornally more consistent as seen in fig. 4. There, it can also be soen that HPV theory is very sensitive to pressure changes and risos rapidly to values much higher than the ones likely to be the correct values. This behaviour could be expectod from results plotted on fig. 2.

Although not apparent on Fig 4, the CE results go through a shallow mindmon around $\rho=.01$

$$
\begin{array}{cc}
\rho & \alpha^{\circ} \\
.002 & .74471 \\
.006 & .74455 \\
.008 & .74454 \\
.01 & .74458 \\
.015 & .74488
\end{array}
$$

FIG. 4 PRESSURE DEPENDENCE OF \propto FOR THE SYSTEM $x a(1)+\mathrm{CH}_{4}(2)$ AT $25^{\circ} \mathrm{c}, x_{1}=.0015$

If the Drickamer et. al. treatment of the data is accepted, CE does qualitativoly predict the behaviour of α as a function of pressure.

Here density data for the dalcultations was obtained from Ref. 5, and $\mathrm{Ny}_{1}{ }^{*}$ from Ref. 12.

APPENDIX 1

AL Eyaduation of $T \propto D P / D t$
For the case of axial motion only, DP/Dt reduces to

$$
\begin{equation*}
\frac{D P}{D t}=\frac{\partial P}{\partial t}+v_{z} \frac{\partial P}{\partial z} \tag{A1}
\end{equation*}
$$

Ihe pressure at the bottom of the cell is given by

$$
\begin{equation*}
P=P_{E}+\rho g h \tag{A2}
\end{equation*}
$$

wivere
P_{E} is the equilibrium vapor pressure of the
liquid at the given temperature
ρ is the density
g is the acceleration of gravity, and
h is the helght of the cell.
(A2) then becomes

$$
\begin{equation*}
\frac{D P}{D t}=\frac{\partial P_{F}}{\partial t}+v_{z} \rho g \tag{A3}
\end{equation*}
$$

Here has been assumed constant. Also

$$
\begin{equation*}
\frac{\partial P_{E}}{\partial t}=\frac{\partial P_{E}}{\partial T} \quad \frac{\partial T}{\partial t} ; \tag{A4}
\end{equation*}
$$

hence

$$
\begin{equation*}
\frac{D P}{D t}=\frac{\partial P}{\partial T} E \quad \frac{\partial T}{\partial t}+v_{z} \quad \rho g \text {. } \tag{A5}
\end{equation*}
$$

Foin toluene at $90^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \frac{d P_{\mathrm{S}}}{\mathrm{dT}} \doteq 1.3 \times 10^{4} \mathrm{gm} / \mathrm{cm}-\mathrm{sec}^{2}-{ }^{\circ} \mathrm{C}, \\
& \frac{\partial T}{\partial t} \doteq 10^{-3}{ }^{\circ} \mathrm{C} / \mathrm{sec} \quad \text { at } \mathrm{t}=10 \mathrm{sec}
\end{aligned}
$$

assuming the uniform distribution of temperature; also

$$
v_{z} \rho g \doteq 98 \quad \mathrm{gm} / \mathrm{cm}_{\mathrm{z}} \mathrm{sec}^{3}
$$

?afore

$$
\frac{D P}{D t} \doteq 110 \mathrm{gm} / \mathrm{cm}-\mathrm{sec}^{3}
$$

and

$$
\mathrm{T} \propto \frac{\mathrm{DP}}{\mathrm{Dt}} \doteq 40 \text { orgs } / \mathrm{cm}^{3}-\mathrm{sec}
$$

which is much smaller than

$$
\rho c_{\rho} \frac{\partial T}{\partial t} \doteq 10^{4} \quad \mathrm{ergs} / \mathrm{cm}^{3}-\mathrm{sec}
$$

B. Comparison of E Vs. Kt

We assume at $90^{\circ} \mathrm{C}$, a temperature rise of $.5^{\circ} \mathrm{C}$ in 15 seconds. Choosing the maximum s as $K\left(90.5^{\circ} \mathrm{C}\right) \mathrm{t}$, we insure that the calculation overestimates the error.

$$
\begin{aligned}
& \mathrm{K}\left(90^{\circ} \mathrm{C}\right)=.76498 \times 10^{-3} \\
& \mathrm{~K}\left(90.5^{\circ} \mathrm{C}\right)=.76376 \times 10^{-3}
\end{aligned}
$$

Using
$i_{1} T(a, t)+\frac{\lambda}{2} r^{2}(a, t)=\frac{\square}{4 \pi}\left[\ln \frac{45}{C a^{2}}+\frac{a^{2}}{2 \xi}+\frac{\alpha-2}{20 \xi} a^{2} \ln \frac{4 E}{C a^{2}}+\ldots\right]$
and comparing values of λ_{1} obtained from the calculations with $\mathrm{K}\left(90^{\circ} \mathrm{C}\right)$ and $\mathrm{K}\left(90.5^{\circ} \mathrm{C}\right)$, the error is . 015%. For $t=1$ sec. the error is less than $.01 \%$.

APPENDIX 2

Derivation of Equation 37 of Chapter 2.
A. Solution of Fourrier's Equation in Cylindrical Coordinates with Time Dependent Heat Input and Temperature Dependent Physical Properties.

Fourrier ${ }^{\circ}$ s equation can be written as

$$
\begin{equation*}
\rho C_{p} \frac{\partial T}{\partial t}=\frac{1}{r} \frac{\partial}{\partial r}\left[r \lambda \frac{\partial T}{\partial r}\right] \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \lambda=\lambda_{1}+\lambda_{2} T \\
& \rho=\rho_{1}+\rho_{2} T \\
& C_{p}=C_{p 1}+C_{p 2} T
\end{aligned}
$$

are the thermal conductivity, density and heat capacity respectively, of the medium surrounding the central cylinder. The initial and boundary conditions are:

$$
\begin{align*}
& T(r, 0)=0 \tag{2}\\
& \frac{d T}{d r}(r, 0)=0 \tag{3}\\
& T(a, t)=f(t) \tag{4}
\end{align*}
$$

where $f(t)$ is obtained in digital form as the data. Further,

$$
\begin{equation*}
2 \pi a \lambda \frac{\partial T(a, t)}{\partial r}+\left(q_{1}+q_{2} t+q_{3} t^{2}\right)=\pi a^{2} \rho^{0} c_{p}^{0} \frac{\partial T(a, t)}{\partial t} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{r \rightarrow \infty} T(r, t)=0 \tag{6}
\end{equation*}
$$

Equations (1)-(s) are linearized by making use of the transformations listed in chapter 2.

$$
\begin{align*}
& 7^{2} \phi=\frac{\partial \phi}{\partial \xi} \tag{7}\\
& \phi(r, 0)=0 \quad ; \quad x>a \tag{8}\\
& \lim ^{2} \phi(x, \xi)=0 \tag{9}\\
& 2 \pi a \frac{d \phi}{d r}+a_{1}+Q_{2} \xi^{5} Q_{3} \xi^{2}=\frac{2 \pi a^{2}}{\sigma} \frac{d \phi}{d \xi} ; r=a \tag{10}
\end{align*}
$$

Vi: ore $Q_{i}=q_{i} / K^{i}$, and K is the thermal diffusivity. Transformation
of $\quad q=q_{1}+q_{2} t+q_{3} t^{2}$
to $\quad q=Q_{1}+Q_{2}{ }^{5}+Q_{3} \xi^{2}$
is straightforward because $\bar{\xi}=\mathbb{K} t$ as in chapter 2.
Using the initial condition, the Laplace transform of the boundary value problem is taken:

$$
\begin{aligned}
& \frac{\partial^{2} \bar{\phi}(r, s)}{\partial r^{2}}+\frac{1}{r} \frac{\partial \bar{\phi}(r i s)}{\partial r}=s \bar{\phi}(r, s) \\
& 2 \pi a \frac{\partial \bar{\phi}}{\partial r}+\frac{Q_{1}}{s}+\frac{Q_{2}}{s^{2}}+\frac{Q_{j}}{\beta}=\frac{2 x a}{\alpha} s \bar{\phi} \quad r= \\
& \lim _{x \rightarrow \infty} \bar{\phi}(r, s)=0
\end{aligned}
$$

where $\bar{\phi}$ is the Laplace transform of ϕ and s is the complex raxiable of the transformation.

Here $=2 \mathcal{C N}_{\mathrm{p}} / P C_{p} \quad$ where ρ and C_{p} are the density and specific hoat of the fluid medium respectively and ρ^{0} and C_{p}^{\prime} are the corresponding properties of the central cylinder. As mentioned in Chapter 2, α ie aszumed conetint; $\%$ justification of this assumption is given below.

The solution of the heat transfer equation where in eddition to the assumptions listod in Chapter 2, the physical properties are accepted to be temperature indopendent, and the power input constant is

$$
\begin{equation*}
T(r, t)=\frac{Q_{1}}{4 \pi \lambda}\left[\ln \frac{4 \pi}{C}+\frac{1}{2 \tau}+\frac{\alpha-2}{\alpha} \frac{1}{2 T} \ln \frac{4 \tau}{C}+\ldots\right] \tag{13}
\end{equation*}
$$

where $\tau=\frac{\mathrm{K}_{t}}{\mathrm{r}^{2}}, C=\exp (y)$ and y is EuIer ${ }^{\circ} \mathrm{s}$ constant. For times longer than .5 seo in the thermal conductivity experic ment, both the second and the third terms become negligible i.e. (<.IF) in comparison to the first. Hence the depenaence $T(a, t)$ on α is confined to the early part of the curvo, which in the experiment is discarded. While it does not seem possible at this stage to show rigorously that the temperature dependence of does not sensibly (i.e.> .1\%) alter the solution of equations (7) to (10) of this section it is reasonable to assume $\alpha=$ is constant as the term containing α, itself is rathor small.

Equation (11) is now an oxdinary differential equation, the general solution of which is well known:

$$
\begin{equation*}
\ddot{\phi}(r, s)=C_{1} I_{0}(\beta r)+C_{2} K_{0}(\beta r) \tag{14}
\end{equation*}
$$

wher: I_{1} and C_{2} are arbitrary constants, $\beta=\frac{\dot{5}}{5}$ and I_{0} and Eo are modified. Bessel functions, of zero order, of the irst and second kinds respectively.

As I_{0} increases with r, using equation (13) $C_{1}=0_{0}$ Then

$$
\begin{equation*}
\bar{\phi}(r, s)=C_{2} K_{1}(\beta r), \frac{d \bar{\beta}(r, s)}{d r}=-C_{2} \beta K_{1}(\beta r) ; \tag{15}
\end{equation*}
$$

clearly

$$
\begin{equation*}
\frac{d \bar{\phi}(a, s)}{d r}=-C_{2} \beta K_{1}(\beta a) \tag{16}
\end{equation*}
$$

and using oquations (12) and (16)

$$
\begin{equation*}
\frac{\partial \beta(a, s)}{\partial r}=\frac{-q}{2 \operatorname{tas}}+\frac{a s C_{2} K_{0}(B a)=-C_{2} \beta K_{1}(B a) .}{} \tag{17}
\end{equation*}
$$

Solving (17) for C_{7} and substituting in (15)

$$
\begin{equation*}
\bar{\phi}(x, s)=\frac{1}{2 \pi a s} \frac{Q_{1}}{s}+\frac{Q_{2}}{s^{2}}+\frac{2 Q_{3}}{s^{3}} \frac{K_{a}(\beta x)}{\left[\beta K_{1}(\beta a)+\frac{2 s K_{0}}{\alpha}(\beta a)\right]} \tag{18}
\end{equation*}
$$

We will now use two identities which will be drived in the last paragraph of this Appendix.

$$
\begin{equation*}
K_{0}\left(\theta_{r}\right)=-\left[\ln \left(\frac{1}{2} C \beta r\right)+\frac{1}{4} B_{r}^{2}\left[\ln \left(\frac{1}{2} C B r\right)-1\right]+\ldots\right] \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta K_{1}(\beta a)=\frac{1}{a}\left[1+\frac{1}{2} \beta^{2} a^{2}\left[\ln \left(\frac{1}{2} C B a\right)-\frac{1}{2}\right]+\ldots\right] \tag{20}
\end{equation*}
$$

and by long division

$$
\begin{align*}
& \begin{array}{l}
\text { long division } \\
\phi(r, s)=-\left[\frac{Q_{1}}{2 \pi s}+\frac{Q_{2}}{2 \pi s^{2}}+Q_{3}\right]=\left\{\ln \left(\frac{1}{2} C \beta r\right)+\frac{1}{2} B^{2} r^{2} \ln \left(\frac{1}{2} C \beta_{r}\right)\right.
\end{array} \tag{21}\\
& -\frac{1}{2} \rho^{2} a^{2}\left[\ln \left(\frac{1}{2} C B r\right)\right]^{2}-\frac{\rho^{2}}{2} a^{2} \ln \left(\frac{1}{2} C B r\right)\left[\ln A-\frac{1}{2}\right] \\
& +\frac{a^{2} s}{\alpha}\left[\ln \left(\frac{1}{2} C \beta r\right)\right]^{2}+\frac{a^{2} q \ln \left(\frac{1}{2} C \beta r\right) \cdot \ln \frac{3}{\alpha}-\frac{1}{4} \beta^{2} r^{2} .}{} \\
& \left.+\frac{\alpha}{44^{2} \alpha^{2}}\left[\ln \left(\frac{1}{2} C \beta r\right)\right]^{2}+\frac{\alpha}{4 \alpha} s^{2} \ln \left(\frac{1}{2} C \beta r\right)\left[\ln \frac{\alpha}{r}-1\right]+\ldots\right\}
\end{align*}
$$

All that remains to be done now is to invert equation (21) from the complex to the real plane. In doing so, we till make use of the theorem that,* in the class of problem under consideration
when y is real, and $i=\sqrt{-1}$. Hence we can make use of **

$$
\begin{equation*}
L^{-1}[\operatorname{In}(k s)]=-1 / t \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
L^{-1}\left[s^{n} \ln (k s)\right]=(-1)^{n+1}(n!) /\left(t^{n+1}\right) \tag{24}
\end{equation*}
$$

where k is any constant, and L^{-1} is denotes the inverse Laplace transform operator,

$$
\begin{equation*}
I^{-1}[\bar{\phi}(s)]=\frac{1}{2 \pi i} \int e^{s t} \cdot \bar{\phi}(s) d s=\phi(t) \tag{25}
\end{equation*}
$$

We also med the following inverse transformations***:
*
Carslaw, H.S. and Jaqer, J.C., "Conduction of Heat in Solids ${ }^{\text {to }}$, p 370 . Oxford University Press, 1959.
**
ibd d, p. 341

Erdelyi, An, Editor, "Tables of Integral Transforms", MoGraw-Hill Book Company, New York, 1954, p. 25

$$
\begin{equation*}
L^{-1}\left[s^{-1}(\ln k s)^{2}\right]=\left[\ln \frac{C t}{k}\right]^{2}-\frac{\pi^{2}}{6} \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
L^{-1}\left[s^{-2}(\ln k s)^{2}\right]=t\left[\left(1-\ln \frac{c t}{k}\right)^{2}+1-\frac{\pi^{2}}{6}\right] \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
L^{-1}\left[s^{-n-1} \ln k s\right]=\left[1+\frac{1}{2}+\frac{1}{3}+\ldots .+\frac{1}{n}-\ln \frac{c t}{k}\right] \frac{t^{n}}{n_{!}} \tag{28}
\end{equation*}
$$

The inversion of equation (21) follows directly from (22) - (28). By dropping terms containing $1 / t^{2}$ or higher powers of ($1 / t$) we obtain

$$
\begin{align*}
& \phi(a, \xi)=\frac{a_{1}}{4 \pi}\left[\ln \frac{4 \xi_{2}}{C a} 2+\frac{a^{2}}{2 \xi}+\frac{\alpha-2}{\alpha} \frac{a^{2}}{2 \xi} \ln \frac{45}{C a} 2+\ldots\right] \tag{29}\\
& +\frac{Q_{2}}{4 \pi}\left[-\xi+\ln \frac{45}{C a^{2}}\left(\frac{5+\frac{a}{2}}{2}\right)+\left(\frac{(\ln }{2} \frac{4}{C a}\right)^{2}\right)^{2} \frac{\alpha-2}{\alpha} \\
& \left.+\frac{a^{2}}{2}-\frac{a^{2} \pi^{2}}{24} \quad \frac{\alpha-2}{\alpha}+\ldots\right] \\
& +\frac{Q_{3}}{2 \pi}\left[-\frac{35^{2}}{4}+\frac{5 a^{2}}{2} \frac{\alpha-2}{\alpha}\left(1-\frac{\pi^{2}}{12}\right)+\varepsilon \ln \frac{4 E}{C a}\left(\frac{\xi}{2}+\frac{a^{2}}{\alpha}\right)\right. \\
& \left.+E\left[\ln \frac{4 E}{C a} 2\right]^{2} \frac{e^{4}}{4} \frac{\alpha-2}{\alpha}+\ldots \cdot\right]
\end{align*}
$$

where $\xi=K$. The time dependence of power is weak and the sum of the second and third brackets of equation (29) is less than 1% of the first. Thus, without introducing any sensible error into the analysis of the experimental data, terms that contribute less than 1% of their respective brackets in the second and third brackets can be ignored. For the second bracket taking toluene at $90^{\circ} \mathrm{C}$,

$$
K=7.6 \times 10^{-4} \mathrm{~cm}^{2} / \mathrm{sec}, a=1.27 \times 10^{-3} \mathrm{~cm}, \alpha=3.67
$$

at 1 sec.
$\frac{a^{2} \ln \frac{4 K t}{C a^{2}}}{}=5.3 \times 10^{-3}$
$K t=7.6 \times 10^{-4}$
Kt $\ln \left(\frac{4 \pi}{C a}\right)=5.3 \times 10^{-3}$
$\frac{\alpha-2}{\alpha} \frac{a}{4}\left[\ln \frac{4 K t}{6 \Omega^{2}}\right]^{2}=10^{-5}$
$\frac{a^{2}}{2}=8 \times 10^{-7}$
$\frac{a^{2} \pi^{2}}{24} \frac{\alpha-2}{\alpha}=5 \times 10^{-7}$
at 10 see

$$
E t=7.6 \times 10^{-3}
$$

$$
\text { it } \ln \frac{4 \mathrm{~K} t}{\mathrm{Ca}^{2}}=.07
$$

$$
\frac{a^{2}}{2} \ln \frac{4 K t}{C_{a}}=7 \times 10^{-6}
$$

$\left[\ln \frac{4 \mathrm{Kt}}{\mathrm{Ca}^{2}}{ }^{2} \frac{\alpha-2}{\alpha} \frac{\mathrm{a}^{2}}{4}=3 \times 10^{-5}\right.$

So the major terms in the second bracket of equation (29) are $-K t+K t \ln \left(\frac{4 K t}{C a^{2}}\right)$.

The same comparison of the relative magnitudes of terms can be carried out for the third bracket of equation (29). After 1 sec.

$$
\begin{aligned}
& \frac{3}{4}(K t)^{2}=4.4 \times 10^{-7} \\
& K t \frac{a^{2}}{2} \frac{\alpha-2}{\alpha}\left[1-\frac{\pi^{2}}{12}\right]=1.3 \times 10^{-10} \\
& \frac{(K t)^{2}}{2} \ln \frac{4 K t}{\mathrm{Ca}^{2}}=2.04 \times 10^{-6} \\
& K t \frac{a}{}^{2} \ln \frac{4 K t}{C_{a}^{2}}=8 \times 10^{-9} \\
& K t\left[\ln \frac{4 K t}{C a^{2}}\right]^{2} \frac{\alpha-2}{\alpha} \frac{a^{2}}{4}=2.5 \times 10^{-8}
\end{aligned}
$$

After 10 sec.

$\frac{3}{4}(K t)^{2}=4.3 \times 10^{-4}$
Kt $\frac{\mathrm{a}^{2}}{2} \frac{\alpha-2}{\alpha} \quad\left(1-\frac{\pi^{2}}{12}\right)=1.33 \times 10^{-9}$
$\frac{(K t)}{2}^{2} \ln \frac{4 K t}{C \mathrm{a}^{2}}=2.7 \times 10^{-4}$
$K t \frac{a^{2}}{\alpha} \ln \frac{4 K t}{\mathrm{Ca}^{2}}=1.2 \times 10^{-7}$
$K t \ln \frac{4 K t}{C_{a}^{2}} \frac{\alpha-2}{\alpha} \frac{a^{2}}{4}=2.2 \times 10^{-7}$.

The terms that are large in the tifrd bracket thon are

$$
\begin{equation*}
-\frac{3}{4}(K t)^{2}+\frac{K^{2} t^{2}}{2} \ln \frac{4 K t}{C a^{2}} \tag{31}
\end{equation*}
$$

Combining equations (29), (30) and (31), with $i=Q_{A} / K^{i}$,
we get

$$
\begin{align*}
\phi(a, t)= & \left.\frac{q_{1}}{4 \pi}\left[\ln \frac{4 K t}{C a^{2}}+\frac{a^{2}}{2 K t}+\frac{c-2}{\sigma!} \frac{a^{2}}{2 K t} \ln \frac{4 K t}{C a^{2}}+\ldots\right]\right] \\
& +\frac{q_{2}}{4 \pi}\left[t\left(\ln \frac{4 K t}{C a}-1\right)+\cdots\right] \tag{32}\\
& +\frac{q_{3}}{4 \pi}\left[t^{2}\left(\ln \frac{4 K t}{C a^{2}}-\frac{3}{2}\right)+\cdots\right],
\end{align*}
$$

Where \varnothing is now related to T by equation (39) of Chaptor 2.

$$
\phi(a, t)=\lambda_{1} T(a, t)+\lambda_{2} T(a, t)
$$

B. Derivation of Equations (19) and (20)*

The modified Bessel equation

$$
\frac{d^{2} y}{d z^{2}}+\frac{1}{z} \frac{d y}{d z}-\left[1+\frac{v^{2}}{z^{2}}\right] y=0
$$

where z is the independent variable, $y=y(z)$ and v any specified constant, is satisfied by

$$
I_{v}(z)=r_{r=0}^{\infty} \frac{\left(\frac{1}{2} z\right)^{v+2 r}}{r T(v+r+1)}
$$

where for v an integer
$T(n)=(n-1) I$
Clearly for $v=0$, and $z=f r$
$I_{0}\left(\rho_{r}\right)=1+\left(\frac{1}{2} \beta r\right)^{2}+\frac{\left(\frac{1}{2} \theta r\right)^{4}}{(2 I)^{2}}+\ldots \ldots \quad$.
$K_{v}(\mathrm{pr})$ is now defined as

$$
\begin{equation*}
K_{v}\left(\rho_{r}\right)=\frac{\pi}{2} \frac{I_{-v}\left(f_{r}\right)-I_{v}\left(\rho_{r}\right)}{\sin v \pi} \tag{35}
\end{equation*}
$$

then

$$
\begin{align*}
& K_{0}\left(\beta_{r}\right)=-\left[\ln \frac{\beta_{r}}{2}+Y\right] I_{0}\left(R_{r}\right)+\frac{\left(\beta_{r}\right)^{2}}{2}+\ldots, \text { and } \\
& K_{0}\left(O_{r}\right)=-\left[\ln \left(\frac{1}{2} C \cdot r\right)+\frac{1}{4} \beta^{2} r^{2}\left(\ln \frac{1}{2} C F_{r}-1\right)+\ldots\right] \tag{36}
\end{align*}
$$

Also by making use of the expression

$$
z K_{v}^{0}(z)-v K_{v}(z)=-2 K_{v+1}(z)
$$

for $v=0$, we have

$$
\begin{equation*}
K_{0}^{0}(\rho r)=-K_{1}(\theta r) \tag{37}
\end{equation*}
$$

*

Hence

$$
\begin{aligned}
& 9 K_{1}(\rho a)=-\varepsilon \frac{d}{d(\beta a)}\left[K_{0}(\cap a)\right] \quad \text { leads to } \\
& \beta K_{1}(\rho a)=\frac{1}{a}\left[1+\frac{1}{2} 0^{2} a^{2}\left(\ln \frac{1}{2} C^{\infty} a-\frac{1}{2}\right)+\ldots\right]
\end{aligned}
$$

APPENDIX 111A
PROGRAM WRHFEN FOR PROCESSING THERMAE CONOUCTIVITYDAFAE
SUEROUFINE POEYFT FROM IMPERFAE COEEEGE PROGRAM EIBRARF ROUTINE FOR CODE TRANSLATION IN MACHINE CODE IS OMITTEO

C C

NMMEO
COMMONGMAGESAAMXG100月NX
CALL ATLAST
SIANRE100008
PIE\#2.*1.570796326795
PERIT10
WIREL=8. 100
REAOHSTMOUMBAFEH
100 FORMAT (12)
NOBATIE:
999 READ (5.101)NOTAPE
101: FORMATEIE
IMAXINOTAPE-1
C TAPE MNPUTESECTHON
1800-00 800 $1=1$ NOTAPE
MMMEMMMtI
MM $=$ NMX (MMM)

$K 1=1$
$K 5$
$1801 \mathrm{DO} 801 \mathrm{NE} 1 . \mathrm{MM}$


```
    103=FOm|ATH:5A/7-1X)
    1802 00 802 J=KI,K5

```

 Kl=KL+5
 K5%<5+5
 801 CONTINUE
 800=CONFINUE
 C
C
READ(5.105)TD.DLAMDA

```

```

 1304 DO 304 In 12IMAX
    ```

```

 106 FORMAT(AE13,6)
    ```

```

C. TEXP IN DEG C
107=10RMAGBHEEB=6%
C NRUN IS RUN NUMBER

```

```

 108 FORMATG14&E13.6.E13.6:E13.6)
 304= contm|OE
 C
CHOOSINGEJMaX
JMAX=MMAX (1)
DO 399 i= 2-बNOFAPE
IE{NMAXI:1)-JMAXI39B.399.399

```

```

 399 CONTINUE
 HFIJNMX=GT:230960=T0=402
 JMAX=250
 402-JNN: \M/X=-5
 C
C
C CALCULATING=THMES
1400 DO 400 J=5: JMAX

```

```

 ADJTIM(N-4)=TIM(N)
    ```

```

 CALCULATING CURRENT VARIATION
 C
C
I=NOTAPE
DO=303=五星要AX
CVAR(J)=V(L:J)/STANR
CURREN\Jन堷CVARIJ
303 CONTINUE
N\mp@code{mandaX=S+1}
KOR=2
MOUTE-1
WRITE（6424）IMAX

```

    CALL POLYFT (ADJT IM © CURREN•NJ, KOR,C, CO A A NOUT, STDV SMOTHI © CURRES)
    CVRIECEI
    FORMING IGEOOR

CVR2=C(2)

\section*{}

SETCUR=SV2 \(11 /\) STANR
\(1401=00\) 車 01 Ins.3MAX
CUR(J) \(=\) SETCUR + (CVRI*TIM \((J))+(C V R 2 *((T I M(J)) *\) \# 2\())\)
P(J)
POWER \((1-4)=P(N)\)
40 F CONTINUE
\(N W=1 \operatorname{MAX}-5+1\)
KORI2
NOUT \(=-1\)

01:c(1)
aznelz
PSDIVESTDV

C
C CAECULATIAG AVERAGE PONEK
COE(SETCUR**2)* (CELLR/MIREL)
Niming
TMAX \(=\) TIM(N)

DRDT=DRT(1)
c
c
MAME GAECUEAFIRONS
\(J J=10\)
13.10

1699 GO TO 699
697 1.
698 N \(2 J j+3\)
699 JETS
LLe( \(2 * \sqrt{*}\) ) -5
च"F
\(\mathrm{NN}=\mathrm{n}-4\)
\(\mathrm{E}=\mathrm{F}\)
\(700 \times \times(1)\) 美 \(L\) INE \((J)\)

\(J=J+1\)
IF (L LE NN) GO TO 700
NOUFEII
KOR=2
Nind
C

STANDV (1J)

VOLT(JU) 2 BOVOLT \((1)+V(1, J J)\)

SLPLINEDV (JJ)/DFLINE

BRAL \(1 N \equiv(S L P L I N / C U R(J \jmath))-(V O L T(J J) /(C U R(J J) * * 2)) *(D C U R(J J) / D F L I N E)\)
M플
\(\operatorname{CON}(M)=((\) POWAV \(/(4, * P I E))\) \#DRDT \() /\) BRALIN
HECONGME 530.530 .531
```

 530-K\/(Jj=359)/33)+1
 CONSD(X)=1,0
 CRRFE\K)=3%0
 CRR3(KI=1.0
 CRR4(K)=1:0
 NTR(K)=1.0
    ```

```

 w(k):1-0
 60-70=535
    ```
    174
c
C COTNE INTO MAINESOEN TRIAES
    531 BO \(000 /(4, * P I E)\)

    BI \(001 /(8,4 P I E)\)

    日3: ( \(100 /(4-* P I E)) * * 2) *(D L A M D A /(2 * * P E R))\)

    ALEA(2,*84)/PROPT(1) HCPPT(1)

C
C EAMDA ITERAFIOAS
508 DIFF=CON \((M) / B 4\)

    TAUETIMSJF:

    IF (ABS (RAT) GT. 100.) GO TO 697
    VOA1F FOAFZERO
    V1(1) \(=81\) *FONE
    F2GBing
    V3(1) 1 B3*FTHRI/(CON \((M) * * 2)\)

    \(F U N 1=V O(1)+V 1(1)+V 2(1)+V 3(1)\)

    CALI BRAI (TAU\&DIFF A AKK ALRAT \&FZERO \&RAT \&FONE FFTWO FTHRI)
    VO(2) WBOKEZERO
    V1s2)=B1*FONE

    V3(2) \(\mathrm{mB} 3 * F \operatorname{THR1/(CON}(M) * * 2)\)
    V4EREVOTEXFAT
    FUN2 \(=V_{O}(2)+V_{1}(2)+V_{2}(2)+V_{3}(2)\)
    DFUNEFUNZ-FUNI
    \(\mathrm{MzM}+1\)
    SEPEQNVIOVFJDDEUN
    BRAFUN=(SLPFUN/CUR \((\omega))-(V O L T(\omega) / / C U R(J \mu) * * 2)) *(D C U R(J J) / D F U N)\)
    CON(M) = BREF/BRAFUN
    CHANGE \(=(A B S(\operatorname{CON}(M)-\operatorname{CON}(M-12)) \angle C O N(M)\)
    FFICHANGE GT:000: 60=70-508
    \(K=(1) J=-\lambda J)<3 x+1\)
    FHCONDERI:CONTM)
    CONSD \((K)=5 T A N O V(J J)\)

    SUB1=ABS(V1(2)-V1(1))

    SUB3ㅍABS(V3(2)-V3(1))


```175
```

CRR3 (K) =SUB3/SUBO
2KKIEEOAEBJ
日(K) mFLOAT(J)
S3ラ-1F!

```
 NFINEJN
 GRR4|KI=SUB47/50B0
 NTR(K)=M
THCOND EIT REGINS
```

$1=0$
EMAXXI
519 L펴 +1
KORIT
NOUT $=-1$

```

```

CALL POLYFTEZ.THCOND N NKOR,C.CO.A NOUT.STDV.SMOTHA OFITRES)
STuTVEPiSTOV
TCONOLLI =CO
1510 IFIt EF EMAXFGO=10 519
OUTPUT SECTIOAT

```

\section*{}
```

200 FORMAT( $1 H 1: 35 \times$, 7HRUN NO : 14)

```


``` IPRESSY EIBT6E4HEATMA
WRITE (G1202)SETCURICELLR•BOVOLTII)
```



``` 10HM *** BACKOFE = E13.6.6H VOLTS)
```



```
203 FORMAT ( \(6 \times 17 \mathrm{HPOWER}(1 / \mathrm{CM} / S E C)=\) E13.6.11H+T(SEC) * E \(13.6 .19 \mathrm{H}+\)
```



```
WRITE (6.204)DRDT
```



```
WRITE(6*205)RO(1):CP(1) DDLAMDA
```



``` \(1 \mathrm{~J} / G / \mathrm{D}_{2} \mathrm{H}^{*} *\) DLAMDA \(=\) E \(13.6: 17 \mathrm{H}\) J/CM/SEC/DEG**2)
WFHEFG 206 OROPFIFICPPTAEEAEFA
206 FORMAT \(6 \times 1\) 7HWIRE
ROPT: E13.6.12H **** CPPT \(=\) E13. 6.19 H J/G
```



```
WRITE 6.207 ) JJJ.JJFIN
```



``` WRITE \((6,208)\)
```



``` WRITE(6.209)
```



```
1601 DO 601 LEIILMAX
```



```
210 FORMAT ( \(8 \times, 12,5 \times, E 13.6,5 X: E 13,6)\)
601 CONTINDE
WRITE(6:211)LMAX
```


WRITEG6.2I2TCO
212 EORMAT $6 \times 6 H_{H} A M O$ E E13.6)
DO=602:K=inEMX
WRITE (6-213)K G (K)

6O2 CONTINUE

$1603-\mathrm{DO}=603 \mathrm{~K} \mathrm{Kinh} A S 7$
 1

451 CONTINUE

IF (NOEAT-NBATCH)999.999.1000
1000 SFEP
END

```
IBFTEDDEGK?
    SUBROUTINE BRAI (SEC`DIFF,AOK:ALRAT &FZERO,RAT:FONE&FTWO:FTHRI:
```



```
    LOG(T/AOK) CALLED RLTIM
```



```
    BETA IS LINE SOURCE PART OF FZERO
    GAMMAA IS SEEOND PART Of F2EFRO
    PER=1
```



```
    RLTDT*ALOG(14.*(SEC+PER))/(AOK*EULER):
```



```
    RLD=ALOG(1.t(PER/SEC))
    BEFAEISECFPERFHREOFFAEOGHSECFPERIB
    GAMMAR(1AOK/(2.*PER))*RLD)+ALRAT*(AOK/(4-*PER))*((RLTDT**2)-(RLTIM
I**2F
    RAT=GAMMA/BETA
    FZARROTBETAFGAMMM
    FONE=(1SEC**2)*(RLD/PER) ) +(2**SEC*RLTDT)-(3**SEC)
```



```
    FTHRI=((SEC+PER)*(RLTOT**2))-(SEC*(PLTIM**2))-(2.*SEC*RLD)-(2**PER
M*RETOTF*2%*FER
RETURN
END
```

SIBFTC DECK3

C DMEASTON FORAARGUHEATS
CIMENSION $X(250) * Y(250), A(400), C(200)$ SMOOTH (250) :RES(250)
c
C
DIMENSION FOR SELF-GENERATED VALUES
DIMENSIEN SUMXEZOOFSNYXGLOOEAMEANXG100\%
PTS: N
NT: NOUT
$K T O R=2 * K O R$
c
C INITIALIZATION
DO FB
SMYX(1)= 0.0
I AMEAKXXEE 0.0
DO $2 \quad \mathrm{I}=1 \mathrm{KTOR}$
ZSUMXEIE=0.0
SUMY $=0.0$
C
NORMALIZATION WITH RESPECT TO XMAX
XMAX \times 任
DO $100 \quad I=2 \mathrm{NN}$

101 XMAX= X 111
100 CONETEVE
$00 \quad 102 \quad 121 . N$
102 XGIB XIEEFXMAX

FORMULATION OF NORMAL EQUATIONS
DO 3 TVITKTOR
DO $3 \quad 1=10 \mathrm{~N}$


```
DO 4 H－IN
4 SUMY：SUMYt Y（1）
APEANY：SUMF7PTS
\(00-6\) Jas KOR
AMEANXTJI＝SUMX IJFATTS
DO \(61=1: N\)
```



```
DO \(B\) I \(\# 1\) KKOR
```



```
DO \(8 \mathrm{~J}=1 \cdot K O R\)
```



```
\(1 J=(J-1) * K O R+1\)
8EAEDE
\(C\)
C CROUTES REDUCTION METIOO
DO 11 I \(2=2\) KOR
HinGITBKOR
11 A（111）A（111）／A（1）
DO 12 与Ir2IKOR
\(K M=1-1\)
DOETA IMJKOR
\(A P I=0.0\)
DOET和
\(1 \mathrm{~K}=(K-1) *\) KOR +1
K Vindx）Fizkort
\(114 \mathrm{AP}=A P_{1}+A(1 K) * A(K J)\)
```



```
\(14 A(1 J)=A(1 J)-A P 1\)
JR를
IF（NP－KOR）444．444． 445
444 DO 16 In－JEROR
\(A P_{1}=0.0\)
DO1F6 KEGEKM
\(J K=(K-1) * K O R+J\)
KI＝ \(\mathrm{K}=1\) I＊KOR＋
116 AP \(1=A P 1+A(J K) \# A(K 1)\)
JIE EI－IEKKOR
\(1 J=(J-1) * K O R+J\)
```



```
445 DUMMY \(=0.0\)
-12 cONFINUE
C（1）EC（1）／A11）
DO 1RE FEzEKOR
\(A P 1=0.0\)
\(14 \times 1\)
DO \(118 \mathrm{~K}=1.1 \mathrm{M}\)
```



```
118 AP1 \(=A P 1+A(I K) * C(K)\)
```



```
\(18 C(1)=(C(1)-A P 1) /\) A（11）
KORR量：KORE
IF（KORM）122．123．122
```



```
\(A P 1=0.0\)
M M K K
```

```
    MP=M=1
    DO 121 KIMPIKOR
    MK IEN-1# KKOREMM
    121.AP1 =AP1 + A(MK)* C(K)
    21 C(A) (G|A) APP1
    123 AP1= 0.0
        DO=24 1-7ROR
    24-AP1 =AP1 +AMEANX(I) WC(I)
    CO AMIEANA -API
C ENOWOPPOCXIT
        SRES:O.O
        DO=77:=1直N
        SMOOTH(1)=CO
        0027 D|E|KOR
    27 SMOOTH(1)=SMOOTH(1)+C(1)*X(1)**)
```



```
        SRESMSRES+RES(1)**2
        C
C DENORMALIZATION WITH RESPECT TO XMAX
    XfT1=XEITHXNIDX
    77 CONTINUE
    STDV复SARTBRES/ATS
    DO 28 1#1.KOR
```



```
    RETURN
    END
APPENOFX \(=1\) IIB
PROGRAM WRITTEN FOR SMOOTHING DR/DT DATA
THE POCYNOMIAI FITING ROUTINE IS THE SAME ONE THAT WAS USED IN THE PROGRAM FOR PROCESSING VOLTAGE VS TIME DATA AND WILL NOT BE REPRODUCED AGAIN:
```



``` DIMENSION CC(20),TT(20) \&PO(10):PP(10.5) \&R(10) RRO (10) \&R1 (10) :R2(10)
```



```
NORMAX \(=3\)
\(R O=243970\)
ALFA \(=0.00392669\)
BETA=0 1003
DELTAI 1.4936
STANRR 10.0009
555 FEAD (5:100)NP
100 FORMAEEB3
1300 DO 300 I \(=10 \mathrm{NP}\)
READESETOHPRESSIH
101 FORMAT (F9.2)
READ 5 -102AACEII
```

```
OL=FORMAFFESF
    NNC:NG&-1
```



```
    103-FORMAT 13EI2-5)
    K=1
```



```
    400-T(K+1)-1TTHERMR(1:J)-RO)/(ALFA*RO)+DELTA*((TEK)/100.)-1*)*(TGK)/100
```



```
    STEPEABS(T(k+1)-T(k))
    K=1K+1
1401 IFISTEP.6E. 000001,G0. T0-400
    TEMP(fojwl(k)
    CELLR(1,J)=(CELVT(L.J)*STANRI/SVOLT(1.J)
    301 CONFINUE
    300 CONTINUE
    TCROSS30.
    11MAX=7
```



```
1304 DO 304 lal.NP
    NNCTNCEIS
1305 DO 305 J=1 LNNC
```



```
    TT(J)=TEMP(1,J)
    305 CONTINUE
    N=NNC
    KOR=1
    NouT=-1
```


$\mathrm{PO}(1)=\mathrm{CO}$
$1306=00=308$ Kanket
PP(IQK) =C(K)
306 CONTINUE
304 CONTINUE
1320 DO 320 If=1+11MAX
$132100321 \quad I=1$ INP
R(t)
$1307 \mathrm{DO} \quad 307 \mathrm{~K}=1 . \mathrm{LL}$

307. CONTINUE
321-CONTINUE
N=NP
KOR2
NOUTE-1

$R O(11)=C O$

$R 2(11)=C(2)$
TEROSSTERRSS+10.
320 CONTINUE
$1308=00308$ I 1 ENP
TCRCRS (1) $=30$.
130900309 liel in max
RR(11) = RO(11) +R1111)*PRESS(1)+R2(11)*(PRESS(1)**2)
TGRCRSI

```
    309 CONTMNE
    N=1IMAX
    kOR既
    181
    NOUT=6
    CALL POLFFAITERERS*RGNOKORGECOMANOUTI
    WRITE(6.200)PRESS(1):LL
```



```
    IPOLYNOM ORDERE2X,121
        WRITEGBT201!
    201 FORMATI//12X,4HTEMP. 11X:4HORDT. 11X.6HCELL R)
        Navernet!
        NCC=NNC+3
        MANACC-2
        MB=NCC-1
    MCINCE
1310 00 310 J.l.NCC
    TEMPITGMAP 30.
    TEMP(1:MB)=60.
    TEMP\ITMC)=90.
    RESEIT=CO
    131FDO-311 KmidtL
    RESFITMRESFIT+C(K)*(TEMP(1:J)**K)
    3H1-GONFINUE
    DRDT=C(1)
    IFIt:GE.1)60 10 401
131200 312 K=2.LL
    KK素-1
    DRDT=DRDT+(FLOAT(K) )*C(K)*(TEMP(1, |)**KK)
    3F2 conm|{##E
    401 WRITELG:2021TEMPIM,J),DRDTITRESEIT
```


310 CONTINUE
308 GONTINUE
302 CONTINUE
6.0 Fo. 555
END
APPENDIX ILIC
PROGRAM WRIITENEGREAECUIAATING TEMPERATUREPROEIEES IN
INFINITE SLAB.
THE ERANK NICHOESON METHOD WAS BEEN USED WITH SUCCESSIVE
OVER RELAXATION.

DIMENSION TIME(5)
$C * W H O H E$ N NEAR SEAB EDS
Sm. 1
55isf2
B8: 1.1
NIF
ل $ل$
TMMED $=0.06$


```
    THME43)亚-6
    PTE=3:14159255338
    NMAX=50
    NK
    NH=40
```



```
    NH2=NH***2
```



```
    R5=R/2.
```



```
    KR:R/(2.#RP1)
    8|2F|R+2%
    RMUE(R/RPI)*SCOS(PIE/IFLOAT(NHI))I)
    MIEFAI-SORIEI-IRNUEYE)ES
1300 DO 300 N=1-NMAX
```



```
    300 CONTINUE
    NNandm:%
1301 DO 301 I=1,NH1
    FIH=150
    301 CONTINUE
    555 N-1
    NTT=NTT&1
    F(NHIFFIE=E|NFE-1)
1302 DO 302 1=2.NH1
```



```
    Qu(5)=T(H)+(.5)MBRA
```



```
    302 CONTINUE
    42O NEOONDET
1303 DO 303 I=2.NH
```



```
    BRA3=(R*S5)*(U(I-1.N+1)**2)+R*U(1-1:N+1)+2.*BJ(1)
    BRA23I4%HSMR*IBRARIBRA3;
    ROOT=SQRT((B**2)+8RA23)
```


DO=WHDELTA

$0=A B S I D D / U(1, N+1)$

NLOOP $=2$
303 GOMTINUE
$I=N H 1$

BRA $=(R * S 5) *(U(I+1 * N) * * 2)+R * U(1+1 * N)$

BRA23*4.*S*R* (BRA2 $+8 R A 3$)

$D E L T A=((R O O T-B) /(2 * * S * R))-U(1, N)$
DOEWKDEIEA
$U(1, N+1)=U(1, N)+D D$
asABSfuofurantin
$1,-G U=E$
$M-O O P=2$
501 CONTANE

IESNLOOP LT. 216O TO 1304
400 NINHEI
60 TO 420
BO4 00 -304 F EENA
$T(1)=U(I-N+1)$
304 CONFINDE
IF (NTT $-30,15554190,402$
402 IFINT $150.555-198 / 403$
403_1FINTT-300,555:198.198
$198=31$ miJ4t
WRITE $6: 2001 T$ IME (JN)

WRITE(6.201)
20: Fommant
1306 DO $306 \quad 1=1, N H I$ NN
BR EB: 1
WRITE (6.202)BE.TEI)N

306 CONTINUE

IFINTT LT. 300160 TO 555
SFop
END

APPENDIX $111 D$
PROGRAM RWIITEA FOR GALEGUAIING TEMPERATURE PROFIEES IN AN INFINITE SLAB, USING THE KUDRYASHEV-ZHEMKOV TRANSFORMATIO

COMMON/F1/BB,SIGMA
cOMMON TF2/KEGSOEAFSO:
SIGMA $=1$
XSIEETO:O
TAU(1) $=0.0$
FAUE2E:06
$T A \cup(3)=3$
TAU $447=6$
$\theta(1)=0.0$
日(2)
$B(3)=.3$
$8(4)=4$
$B(5)=.5$
$B(6)=6$
$B(7)=-7$
B(8)
$\theta(9)=9$
BE10I= 95
$1300-00 \quad 300 \quad 1=1.10$
BE=EBEI
$130100 \quad 301 \quad J=214$
$K=2$

V(1) = TEMP (T)

ZMETAU青気
400 CAEL BFGSUMFZ,ZMTS
TINETAU(J)+(SIGMAMS)-TAUS (-1$)+X S I(J-1)$
VKSETEMPTIN
WRITE(6.2OS)K,V(K)

$D V=A B S(V(K)-V(K-1))$
IFIDV = $0000160=70=401$
$k=k+1$
Nipe8
IFIK GT 30, GO TO 40:
Na.
DUMG $=-V(K) / S$
DUMAEESFGMAES
IF(K LT. 3) 60 TO 399
EENR-1
130200302 LIE 2 LL
DUMGIOUMG-GES
DUMA: DUMA- $(A(L) *(E X P(-G(L) * T A \cup(J))))$
302 CONIANOT
399 G(K) EDUMG

$60 \quad 70 \quad 400$
40I GOMEMVE
XSICJIETIN
WRHEAGF20IEBE
2O1 FORMAT $/ 1 \times$ © SHBETAEQF9.5)
WRITEG2025FAUfय
$2 \mathrm{O}_{2}$ FORMAT ($2 \times 4 \mathrm{HTAU}=0.59 .5$)
IFMP GI - 2160 fo= 402
WRITE $6: 203$)K,V(K):TIN

60 TO 403

204 FORMAT ($7 \mathrm{X}, 12,7 \mathrm{HTH}$ APRX: $2(E 15,8,3 \mathrm{X}): 3 \mathrm{X} \cdot 3 \mathrm{H} * * *)$
403 continue
301 CONTINUE
300 CONTINUE
STOP
ENIO
SUEROUTINE BIGSUM (T \& TMOS)

COMMON /F2/K•G(50):A(50)

$U(2)=-94457502$
U(3) = 86563120
$U(4)=-.75540441$
U(5) $=61797624$
U(6) $=-45801678$
U7) =28960355
U(8) $=-09501251$
(G) = (6)

पtas=077
$U(11)=-U(6)$
U(E2):
$U(13)=-U(4)$
UE14) =ut3:
$U(15)=-U(2)$

$R(1)=.02715246$
$\mathrm{F}(2)=06225352$
$R(3)=09515851$

$R(5)=14959599$
RE6) F6975652
$R(7)=18260341$
$R(8)=18945067$
$R(9)=R(8)$
स10) स स
$R(1)=R(6)$
REE2 I =RES
$R(13)=R(4)$
$R(14)=R(3)$
$R(15)=R(2)$
R(IGFERF!

DUMMY $=0.0$	
	0inlaming
$1300 \quad 00 \quad 300 \mathrm{~L}=1.16$	
Grovurinermpo	
XSI=0	
1301 00-301 Mr27K	
XS IEASM)* (EXP(-G1M)*O) $1+\times S$ I	
301 CONTEMU	
$T T(L)=T E M P(X S I)$	
\qquad \qquad CONTINUE	
SxDrDUnM	
RETURN	
END	
EUNCTION TEMP(T)	
DIMENSTONAE20)nBtzorattzof	
COMMON /F1/BB, SIGMA	
PIEW3-14593265358	
$A 0=2.46740110$	
B0xplifitis	
$A(1)=22.20660990$	
AtEEE61:88502751	
$A(3)=120.90265391$	
Al4] 499.85948912	
$A(5)=298.55553313$	
At61 4 E6.99078594	
$A(7)=555.16524755$	
AT81 713.07891797	
$A(9)=890.73179719$	
B41F 4.712388980	
$B(2)=7.853981634$	
	日 3 I

```
    BF47% =4-73716694
    8(5)=17.278759595
    B(6)=20-420352278
    B(7)-23.561944902
    8(8) 26-703537555
    B(9)=29.845130209
    CFHF=334333333
    C(2)=+200
    C(37)=-5428357143
    C(4) =t+11111111111
    C(5)=000000007
    C(6)=t*07.6923077
    C(77)=06885686668
    C(8) x+.058823524
    C(9)=0.0526315:79
    SUM=(EXPS-(AOHT)))*(COS(日O#BB))
170:1=00=70!=kE|
    SUM=SUM+(C(K))*(EXP(-(A(K)*T)))*(COS(B(K)*BB))
    70F-CONFINGE
    Sa(4-/PIE)#SUMM(1+4(SIGMA/2-))
    IFISTGMA GF 0.07G0-10=800
    TEMP=S
    60-70:80%
    600 TEMP=(-1.+SORT(1.+12.#SIGMA*S))\/SSIGMA
    601= RETUGN
    END
```

 APPENDIX IIIE
 PROGRANE WRIETEN FORSGEGUEAFING-FHERMAK CONDUCTIVIIIES
OF CHAIN MOLECULES FROM THE CELL MODEL FOR PURE POLYMERS

INTEGER PRESS
 DIMENSLON TEMP（10．15．15）

N\＆$=5$

c

NK DEPENDS ON PRESSURE
RO IN ECZMOEE IN SFERIK WiNWGMCC INEGHAIN
CV IN J \angle IDEGK＊MOLE）
IESU日STANE： 3 PRRESS：ERIEMM：
INPUTS 100．OUTPUTS 200．DOS 300．IFS 600．ARIT 700 NI ETCNO OF SUBSFANEESE TEMAE PRESS

DO 30t 1 mind
READ（5．102）EPS（1）：W（1）：KIND（1）：VSTAR（1）：MJ（1）

$600 \operatorname{READ}(5 \cdot 104) \mathrm{N}(1)$
104 FORMATEIRI
NJ＝MJ（I）

READ（5．110）NK（12．1） 1 PRESS（I（1）
HO FORHATE12日5！
MKENK $11, J)$
DO 30）KIEMK

READ 5 : IOBROL (
103 FORMAT(E12.5:E12.5)
301 CONTINUE
DO 304 IalioNI
ENEEEPSTi]
WMOLEW(1)
NOSEGENTII
c

* DEERO * ENE=EPS * WMOGEW * NOSEG\#N * VOLUM =VSTAR

NowMal
DO 302 JIL.NJ
MK (TNAEII
D0 $302 \mathrm{~K}=1 . \mathrm{MK}$
DEEROTITDAK
$V O L U M=V S T A R(I)$

250 FORMAT $1 H O+2 X * 2 H I=013.5 X \cdot 2 H J=13,5 X, 2 H K=131$
CAEL CHATMDE ENE VGLUM: WMO NOSEGTHCON
TCOND (IUJOK) $=$ THCON
30 CONMINE
304 CONTINUE
DO 305 FIEN|

650 WRITE(6:202)I KIND(1),N(I)OERSII)
 1=. EE12.5)
NJMul!
DO 305 J=1.NJ

204 FORMAT $\left(1 H 0,2 X_{1} 13 H * * * * P R E S S U R E=15,1 X \cdot 2 X, 3\right.$ HBAR $10 X, 12,1 X, 5$ HTEMPS)
WRITETE 20.51
 HK
WRITE 6,206)

MK $=$ NK $(1, J)$
DO 305 K IIMK

305 CONTINUE
WRITE(6izl7)
217 FORMAT (1 HO.2X. 15 HTHATS ALL FOLKS:
CAEE EXIT
END
SUBROUTINE GHAINTOE ENE VOUM WMOE NOSEGFHCONI
$A=1.3800 \mathrm{E}-23$
Fe. 5
$C V=3 . * B * F$

AVO $=6.02252 E+23$
PIE $=3.14159265$
WSEG\# WMOL/ (AVOFFLOAT (NOSEG))
VAVE WMOLADEKAVOWFLOATMOSEGDE
ACUB $=V A V$ SR?
$C=A L F$ IS LOG OF A
$A L E=$ (ALOG (ACUB) $1 / 3$.
A EXPGALE
$x=22.1$
$y=-10.56$
$\mathrm{Z}=12$
VEVOLUMAYAV

$E R A 2=(2, * E N E *(Z-2+12 / F L O A T(N O S E G))) /(A * 2)$
Biz= BRAF*BRAR
ERA $12=5$ ORTCOL2
USO =SORATUSEG
BRA3= (SRR苜CV/A)/(2.*PIE*WSO)
THCON = BRAETEBRAS
WRITE 6,207 INOSEG,WSEG:VAV,SR2, ACUB ALFEA V V WMOL
 1.E12.5:3X:E12.5!

RETURN
END
APPENDIX IHF
PROGRAM WRITTEN FOR CALCULATING $\times S I$ AND VIH $\angle V$
THESE RESUTS WERE USED IN CALCULATING VISCOSITIES AND TRERMAE CONDUCTIVITIES OE BENSE HARD SPAERE FEUIO MEXTURES

```
    DIMENSION P(20):R(20)*X1(20):X2(20)
```



```
    P(1)=.04
    P(E2)=07
    P(3)=01
    P(4)#-72
    P(5)=.3
    P(6)=14
    P(7)=.5
    P(8)=7.6
    P(9)=.7
    P(10)==0
    P(12)=.9
    R!#y=S
    R(2)=.66667
    F(3)=1:0
    R(4)=1.5
```



```
    X1(1)=0,0
    1300 00 300 FFEMI
    XI}(1)=\mp@subsup{x}{1}{\prime}(1-1)+-
    XETDIET-XI隹
    300 CONTINUE
C EOOP NVIGI
C J LOOP R
C K=00P COMP
    N1=11
    NW34
    NK=11

WRATEFG200日P品

WIPHEI
\(1302 \mathrm{DO} 302 \mathrm{~J}=1 \mathrm{~N} \mathrm{~J}\)
VRTIEEG620日E
201 FORMAT \(/ 13 X, 1 H X, 9 X, 3 H X S 1 \cdot 11 X, 3 H P H 1,12 X, 1 H A \cdot 13 X, 1 H B \cdot 13 X, 1 H C, 13 X, 1 H D\)


WRITE（64202）R（J）

\(130300 \quad 303 \mathrm{~K}=1 \mathrm{HN}\)

\(G G=x 1(K)+(X 2(K) * G R(J) * 2)\)

\(Z 2=(1++R(J) 1\)



\(D=-w\)（G量美2）

IFIDISC LT．O．） 60 TO 499
ABCIEA
\(B B=-B\)
CCiz
\(D D=-D\)



FRL \(=X 1(K)\)

RATER（J）
NGO屋
IFIFI GT．O．AND．FI LT．I．IGOTO 400
NGO
N2GOE2
 NGO＝NGO +1
N2GOE
401 IF（NGO－1）404＊403．4O2
CiYe ROUEEI
402 NRE 1
aEse3
Q2：32
\(\mathrm{HN}=\mathrm{Z}\)
CALL TRIALSCOLIQR•IN\＆XXQPHIENTRI
6O TOX99
C
CNET ROUTEEB
C
499 ＝18 88
\(01=3\)
ary 32
\(I N=1\)

60 TO 999
\(C\)
```

C*** ROUTE2
C
403-NR\#2
IFGN2GO GT IHGO TO 40S
FDEFF:
FED=A*(FI**H)+B*(F1**2)+C*FI t D
60=70=408
405 FDmFR

```

```

 406 CONTINUE
 ##FFD=,GF=0FGO=10=407
 IN=2
 00=10-408
 407. 1 N=1
 40g CONFINGE
 FD2#FD+IDELTA/A.)
    ```

            IFIXX GT O AND \(X X\).LT. 1. 160 TO 409
            FOCFOM-DEETAFAF
            CALL TRLALSIFD.FDR:IN:XX:PHI NTRI
    409=60 10=999
C
CHA为雷 ROUTE 3
c
    4074 COAIEINGE
        FFI:A* F \(_{1}: * * 3\) ) \(+B *(F 1 * * 2)+C * F 1+0\)

        FFFEFF2*FF1

\(c\)

C.
    NRF3
    IN: 1
    CAE TRIAESAFIFROMNXXIPHISNIR
    GO TO 999
c
C*** ROUTE 32
C
420 CONTINUE
    N2:32
    IF(FFI GT. O.) G0 TO 421
    A2:1AA
    B2:8B
    INTI
    \(60 \quad 10422\)
    421 A2\%A
    B2m
    An:
    422 CONTINUE

    D2FOT2 \(=(6 . * A 2 * F 2)+(2 * * B 2)\)
    V
    IFID2FDTE LT. O.160 TO 423
    IFIE: GTE F2760-10 424
```

 V핑․
 424 F3=F1t(V*(DELTA/A.))
F4:
60 TO 425

```

```

 \(V=-1\).
    ```

```

 F4 =F2
 $425=$ CONTINDE
CALL TRIALS(FA:F3.IN:XX:PHI NTR)
$60=10299$
999 CONTINUE

```

```

203 FORMAT (11X*F6.3:6(2XeE12.5):3(2X,13))
303. CONTINUE
302 CONTINUE
30: CONFINDE
STOP
END

```
    SUBROUTINE TRLALS (PLQPR INEXX,PHI ONTR)

    IFIIN LTE-2)GO TO-450
    \(A 2=A\)
    B2=-B
    Cza=C
    D2- - D
    \(60=70=451\)
    450 A2 \({ }^{\text {an A }}\)
    82표
    C2=C
    D2" 0
    451 CONTINUE
    XPD 0.0
    NTR=1

    \(Y_{1}=A 2 *\left(P_{1} * * 3\right)+B 2 *\left(P_{1} * * 2\right)+C 2 * P 1+D 2\)

    \(X X=P 1-(Y 1 / S)\)
    DELEREABSIXXPD-XXIf \(X X I\)
    IFSDEL LT. 00001 )GO TO 452
    NIRENTR 1
    XPD=XX
    PIup2
    P2=XX
    \(Y\) Kinz
    \(Y 2=A 2 *(P 2 * * 3)+B 2 *(P 2 * * 2)+C 2 * P 2+D 2\)

    IF (XX GT. O. AND. \(X X\).LT. 1.) GO TO 453
    \(x \times 1=\)
    PHIE1.
    REIURN
    452 CONTINUE
    Pillaxytc
    RETURN
    FND

APPENDIX 1HE
PROGRAM WRITTEN POR CAECOEATING=VISCOSIFES=OF OENSE
HARD SPHERE FLUID MIXTURES, EROM THE THORNE EXTENSIOA
FOEFRE-GHAPMAN-ENSKOG=FHEORV:

C
C*WHEVISEOSITY
C

```

FIE피․ 141592654

```

```

$P(1)=1$
P(2) $=2$.
$P(3)=4$.
F(4) $=$ B 6
$P(5)=20$.
PF6F130
RM(1) $=-5$
RMEZ
$R M(3)=2$.
$R(1)=-5$
$R(2)=066667$
R(3) ${ }^{(1)} 0$
$R(4)=1.5$
XIEFFB:0
$x 2(1)=1.0$
$1300=00=300=1$ 2n
$x(1)=x(1)-1)+a 1$

```

```

300 CONTINUE

C****	J LOOP RM MASS RATIO
C****	KEOOP R = RAOTUS RAAIO
C***	L LOOP XI MOLE FRACTION
	N1-48
	$N J=3$
-	NKE4 4 O
	NL $=11$
1301	DO $=301$ tminN
	PP\#P(1)
1304	

```


```

101 FORMATESEXXE1RED
READ (5;102)PHI(K_11)
102 FORMAREERES
304 CONTINUE
1302-00 302 IIFINJ
RRM=RM(J)
BMI E/CCIE+RRM!
$B M 2=R R M /(1 .+R R M)$

```


```

ZM15索 SORT(1e/日M1)

```

```

ZMU3=m-(32./3.)*(SORT((BM1*BM2)/2*))
23s=-zmu3**2
WRITE(6.200)P(I),RMM/J)

```

```

1303-DO 303 K=LeNK

```

```

 WRITE(6.201)RR
    ```

```

 14HCOL(112X.1HY)
    ```

```

 G*(2**PHIP)/(2.*(1).-PHIP)**2))
 Z2=G*PNIP
 RI=((2.*RR)/(1.+RR))**2
    ```

```

 NNL 2NOL-1
 1305=00 305=t.16t1
 RX=X2(L)/X1(L)
    ```

```

 OMR=1.-RR
    ```

```

 2XR= Xl (L)+ZR3
 TMPHIGRITMEXR
 F=T
    ```

```

 61:(1.t(.5*T*ZXR)+(1.5*ZR3*T*(OMR/RR)))/2D
 OPR=RR2+1
 G2*(1.+(.5*T*ZXR)+(1.5**1(L)*T*OPRR)}//2
    ```

```

 GG1=G1/G12
 GG2:G2ZGF
 BRAX#1.*(1.6*X1(L)*T*G1)+(.4*BM2*G12*X2(L)*T*(1(10+RR)**3))
    ```

```

 CA=ZMU1+(B**RX*GG2*ZM25*R1)
    ```

```

 CAB=CA*CB
 DENOMEGI2#(GAB-23S)
 A=(8.*RXR*R2*ZM15*CA)/DENOM
 B#(-160*ZMISHR2HZMUSHZOENOM
 C=(B.*RX*ZM15*R2*CB)/DENOM
    ```

```

 F1RST=G1*(XI(L)**2)
    ```

```

 THIRD= (SCRT(BM2/BM1))*G2*(RR**4)*(X2(L)**2)
 DECOEF UIEINST +SECONDITHIROS
 COLL=D/F
    ```

```

 YY=(PP/T)-1.
    ```

```

 XDIST=BRAX-1.
 YDISTEBRAY/:
 D1 #XDIST*((A*BRAX)+((B/20)*BRAY))
    ```


Distiontolozif
DCOLEDISTHCOLL
TOTALE CRNFDISTHCOEE
WRITE \(6,2021 \times 1(L)\) VRAT．TOTAL CIN：DCOL．YY

305 CONTINUE
303 confliver
302 CONTINUE
30 ＝CONFINUE
STOP
END

\section*{Arpigxorx finf}

PROGRAM WRITTEN FOR CALCULATING THERMAL CONDUCTIVITY OF DENSF HARO SPRERE FWOIO MIXTQRES FROH THE THORNE EXTENSION TO THE CHAPMAN－ENSKOG THEORY．
\(C\)
C＊＊＊＊THERMAL CONDUCTIVITY
C
DIMENSION P（20） 1 RM \((20), R(20): \times 1(20): \times 2(20) * P H I(20.20)\)

\(P(1)=10\)
2R）？
\(P(3)=4\) ．
\(P(4)=8\)
\(P(5)=20\).
PG6） 30
\(R M(1)=-5\)
RHIEF＝6
\(R M(3)=2\)
组列
\(\mathrm{F}(2)=.666667\)
\(\mathrm{R}(3)=1 \mathrm{~F}^{0}\)
\(R(4)=1.5\)
XIE1＝0．0
\(\times 2(1)=1=0\)
\(130000=300\) 132－2
\(X_{1}(1)=X_{1}(1-1)+1\)
xzal x
300 CONTINUE
\begin{tabular}{|c|c|c|}
\hline C＊＊＊＊ & 」 LOOP RM & MASS RATIO \\
\hline W＊\({ }^{\text {When }}\) & KEOOPR & FADIUS年AT10 \\
\hline C＊＊＊＊ & 1 LOOP X1 & MOLE FRACTIO \\
\hline
\end{tabular}

N1吾6
NJ＝3
NKI 4
\(\mathrm{NL}=11\)
1301 OOE 301 CIENI
PP＝P（1）
1304 000304 Kink

100 FORMAT \((5(2 X, E 12.5)\) )

101 FORMAT(5(2X+EI2e5))

102 FORMAT (E12.5)
304 CONFINU:
\(130200302 \mathrm{~J}=1 \cdot \mathrm{NJ}\)
RRM FMAD
BMI \(=1 / /(10+\) RRM)

ZM15*SQRT (1./BM1)

Z12=40. 4 (SORT ( \((B M 1 * B M 2) / 2 \cdot)\) )
GMIS AIBMETH2

BM25maM2为2
SR2=SERT(2.)
\(A L F A=(212 / B M 1) *(1,25 *(6, * B M 1 S+5 * * B M 2 S))-6 * B M 2 S+8 * B M 1 * B M 2)\)

GAM \(=-(54 . / S R 2)\) HEMLHEM2
GS"EAm!
WRITE (6•200)P(I) RRM (J)
200-FORMAT 1 HAE \(5 \times 3\) Fip
\(1303 \mathrm{DO} 303 \mathrm{KE} 1, \mathrm{NK}\)
PRFREGK
WRITE 6.201 )RR
 14HCOLLESEIHY)

PHIPaPHI(KO11)
GIE2
Z2EGAPHIP

R2*(2./(1-tRR))**2
NHEENE:
\(1305-D 0 \quad 305 \quad 4=1111\)

RXR=X1(L)/X2(L)
OHR=1E=RP
ZR3* \(\times 2\) (L) * (RR**3)
ZXRIXMIE)
T=PHISKOLI/ZXR
51
ZD=(10-(T*ZXR) ) **2

OPR \(=R R-1\).

\(G 12=(1 / /(1,+R R)) *((R R * G 1)+G 2)\)
GEIFGFEE2
GG2:G2/G12
BMFZ五BNEMBR
BRAX \(\left.=1 *+12 * 4 * G 1 * X_{1}(L) * T\right)+\left(1 * 2 * E M 12 * G 12 * X_{2}(L) * T *(11 *+R R) * * 31\right)\)



```

DEMOM年EA*CEIFGST*GIE
ZM125= ZM25/ZM15

```

```

B=(-16.*R2*ZM2S*GAM)/DENOM
C=(0.*ZMIRS*R2*ZM2S*CB*RX/7DENOM
COEFF:(T**2)*(512*/(25,*PIE)
FIRSFEGE:BXINE||*2%
SECONO=X1 (L)*X2(L)*G12*BM1*(SORT(BM2LB.))*(L(1-+RR)**4)

```

```

D=COEFFH(FIRST+SECOND+THIRD)
coy=|0z
CRAT={(A\#(BRAX**2))+(B\#BRAX*BRAY)+(C*(GRAY**2))+D)/F

```

```

CIN=((A*BRAX)+((B/2-)*(BRAX+BRAY))+(C*BRAY))/F
XDISTEBRAX绍:
YDIST\#ERAY-1.

```

\(D 2=Y D 1 S T *((C * B R A Y)+((B / 2 \cdot)\) \#BRAX) \()\)

CCOL =DIST+COLL
TOTAL CINFDBSEFOE
WRITE 6.202 )XI(L) ICRAT, TOTAL C CIN•DCOL YYY

305 CONTINUE
303 EONBINO
302 CONTINUE
30 F continde
STOP
END


\section*{CHAPTER 1}
1) Ziebland, H. "Thermail Conductivity, \(^{\text {P }}\) Editod by R.P.Tye, Academic Press, Iondon, 1969. p.65.
2) Pittman,J.F.T., Ph.D. Thesis, University of London, 1968.
3) Horrocks,J.K. and Mcโaughlin, E., Trans.Far.Soc., 56, p.206, 1960.
4) Prigogine, Ie, "The Molecular Theory of Solutions," N.Holland Publishing Coa, Amstordam, 1957, Chaptor 16.
5) Horrocks,J.K. and MicLaughlin, E., Proc.Roy.Soc., 273A, p.259,1963.
6) Chapman,S. and Coviling,T.G., "The Mathomatical Theory of Nonmuniform Gases, \({ }^{\text {T }}\) Cambridge University Press, 1953. a) p.292.
7) Lebowitz,J.I., Phys.Rev., 133, pA895, 1964.
8) Percus,J.K. and Yevick, GeJ., Phys.Rev. , 100, p1, 1958.
9) McLaughlin, E., Jour.Chem.Phys., 50, p1254, 1.969.
10) Longuetmiggins,H.C., Pople,J.A. and Valleau,J.Pe, \({ }^{19}\) Transport Processes in Statistical Mechanics, \({ }^{\text {P }}\) Interscience Publishers Inc., London,1958, p. 73.
(1) Bird, \(R_{0} B_{0}\), Stewart \(t_{9} W_{0}\) He \(_{0}\) and Lightfoot, W.L., MTransport Prenomena, \({ }^{\text {w }} \mathrm{J}_{2} \mathrm{Wil}\) ey Inc.: (1960)
(2) McLaughlin, Eo, ChemoRevon 64. 389, 1964.
(3) Goldstoin \(\mathrm{E}_{\mathrm{F}} \mathrm{F}\). and Briggs, D.G., Trans.ASME (HJat Transfer), 86, p 490, 1964.
(4) Pittman,J.F.T., Ph.D. Thesis, University of London, 1968.
a) 232
b) 80
c) 99
d) 135
e) 290
g) 111
(5) Carslaw, H.S. and Jaeger, J.C., "Conduction of Heat in Solids \({ }^{\text {f }}\), 2nd Edition, Oxford University Press.
a) 261
b) 345
c) 152
(6) Jaeger, J.C., Jour. and Proc. of Roy.Soc. N.S.W., 14. 1940. p 342。
(7) Kudryashev, \(I_{0} I_{0}\) and Zhemisov, \(I_{0} N_{0}\), Izv. Vyssh. UChhebn.Zav. Priborostr, 6, p 100, 1958.
(8) Fischer, J., Ann.Phys., Lpz., 34, p 669, 1939.

CHAFTEF 2 (continued)
(9) Abramovit:, Mi and Stegun I., Editors, "Handbook of Mathematical Functions, \({ }^{\text {N }}\) N. B. S. , Washingion, D.C. U.S.A., iŠi4; : p350.
(10) Horrocks,J.K. and MoZaughlin, E., Proc.Roy.Soc., A 273, 196\%.
a) \(26 \%\)
c) 269
b) 259,
(11) Leidenfrost, Wo, Paper presented to the Thermal Conductivity Conference, Gatlinburg, Tennessee, 1963.
(12) Briggs,D.G., Ph.D. Thesis, University of Kinnesota, Univ. Microfilms Inc., Ann Arbor, Michigan.
(13) Van der Held, E.F.M. and Van Drunen, F.G., Physica, 15, 865, 1949.
(14) Gebhart and Dring, Trans.ASME, (c), p 274, 1967.
(15) Viskanta,R., Ph.D. Thesis, University of Illinois, 1959.
(16) Poltz,H., Int.J.Heat and Mass Transf., 8, p 609, 1965.
(17) Ibid, 2, p 315, 1960
(18.) Poltz, H. and Jugei,R., Int.J.Ht.M.Transfe, V10, p 1075, 1967.

\section*{CHAPTER 3}
(1) Horrocks, J. K and Molaughlin,E., Proc.Roy.Soc., 1963, A273: a) i 259.
b) p 26 I .
(2) Fischor, \({ }^{\top}\). , Ann. Phys., Lpz., 34, p 669, 1939.
(3) Pittman,J.F.T., Ph.D. Thosis, Univorsity of London, 1968.
a) Chaptor 3
b) \(p 140\)
(4) Goldstoin,R.J. and Briggs, D.G., Trans.ASME (Heat Transfer), 86, 490, 1964.
(5) Intornational Critical Tables, V6, p 137.

\section*{CIAPTER 4}
1) International foiticeit Tables, 泡; p115.
2) Francis, A, Wo, Chim, Reng.Sci., 10, P37, 1959.
3) Toohey, \(\mathrm{Ac}_{\mathrm{c}} \mathrm{C}_{\mathrm{g}}\) PhoiD. Thesis, Imperial Colloge of Scienco and Technology, 1961, p208.
4) Bridgman, P.W., The Physics of High Prossure", p129, G.Bell and Sons, London, 1949.
5) Pittman,J.F.T., Ph.D. Thesis, University of London, 1968, p185.

\section*{CHAPTER 5}
(1) Hays, Do F : Won.Equilibrium Theimodynanics Variational Techniques and Stabilityp, p.17: Universitw 21 Chichago Press: 1966.
 Jehhein. Zav. Priborostr, 6, p.100, 1958.
(3) Carslaw: HeS. and Jeeger, J.Cp, "Conduction of Heat in Solids', p.97, Oxford Triversity Press, 2nd Elition.
(4) Richtmyer, R.D. : Difference Mothods for Initial Valine Problems", Interscience Puiv, Co., N.Y., 1957: p.101
(5) Smith, G.D. Fingerical Solution of Partial Differential Pquations \({ }^{62}\), Oxford Universityr Press, London, 1965.

CHAPTER 6.
(1) Barkor,J.A., "Lakitice Thoories of tho Liquid Stato," Porgamon Pross, 1963.
a) \(p 48\)
d) p 80
b) p 66
○) p 84
c) \(p\)
78
(2) Ionnard-Jonos,J.E. and Devonshiro,A.F., Proc.Roy.Soc., A 16
(3) Ibid, A 165, p 1, 1938.
(4) Prigogino, I., "The Molocular Thoory of Solutions," N. Holland Pub.Co., Amstordam, 1957.
a) p 130
c) \(p 337\)
b) Ch .16
d) p 331
(5) Kirkwood,J.G., J.Chom.Phys., 18, p 380, 1950.
(6) Barkor,J.A. Proc.Roy.Soc., A 237. p 63, 1956.
(7) Poplo, J.A., Phil.Mag., 42, p 459, 1951.
(8) Janssons, P. and Pelgogino, I., Physica, 16, p 895, 1950.
(9) Hijumans,J., Physica, 27, p 433, 1961.

\section*{Chapter \\ 7}

1 Horrocks: J. To and MoLaugnlin, E., Trans, Farad, Soca, 56 : 1960 .
a) 206
b) 209

2 Prigogine, I., "The Molecular Theory of Solutions", N. Holland Pub. Co., Amsterdam, 1957, p 339.

3 International Critical Tables, V3. pp 29-33.
4 I. Chem. E., Physical Data and Reaction Kinetics Committee, 1967.

5 Horrocks, J.K. and McLaughlin, E, Trans. Farad. Soc., 52,p 1709, 1963.

\section*{CHAPTER 8}
1) Chapman, S. and Cowing, TrG*, "The Mathematical Theory of Nonmunisorm Gasesx : Cembendge Üiversity Press, Second Edition, 1952, London.
a) P. 28
b) \(P .112\)
c) P. 111
d) P. 169
e) \(\mathrm{Ch}_{\mathrm{H}} 16\)
f) P. 287
g) \(P \cdot 286\)
2) Dahler, J.Sn, Journ.ChemoPhys, 2 (2, Po 1428, 1957.
3) Louguet-Higgins, H.C., and Pople, J.A., Jour.Chem.Phys, 25, P. 884, 1955.
4) Rowlinson, J.S., Rep. Prog. Phys., 28, Po 174, 1965.
5) Ornstoin, L.S. and Zennike, F., Proc.Acad.Sci. Amsterdam, 17. Po 93.1914,
6) Percus, JoKo, and Yevick GoJ., Phys.Rovo, 110, P. 1, 1958.
7) Thiele, En, Joun, (Giatinws. 39, Po474, 1963.

\section*{CHAPTER 2}
(1) Chapman,s. and Cowiling,T.G, "The Mathematical Theory of Non-Uniform Gases," Cambridge University Press, Second Edition, 1952, London.
a) Chapters 8 and 9 .
b) p 166
c) \(p 167\)
d) pp 292.294
e) p 293
(2) Longuet-Higgins,H.C., Pople,J.A. and Valleau, J.P., 1958, "Transport Processes in Statistical Mochanics." (London, Intersoience Publishers)
a) p 80
b) p 83
(3) Lebowitz,J.L., Phys.Rev., 133, p A895, 1964.
(4) Lebowitz,J.L. and Rowlinson,J.S., Jour.Chem.Phys., 41, p 133, 1964.
(5) McConalogue, D.J. and McLaughlin, E., Mol.Phys., 1969 to be published.
(6) McLaughlin, E., Chem.Rev., 64, p 403, 1964.
(7) Bearman,R.J. and Vaidhyanathan, V.S., Jour.Chem.Phys., 34. p 264: 1961.
(8) Boon, J.P. and Thomaes, G., Physica, 22, p 123, 1963.
(9) Wood,S.E. and Brusie, J.P., Journ.Amer.Chem.Soc., 65, p 1891, 1943.
(10) Blitz,W. and Sapper, At, Z .Anorg.Allgem.Chemo, 203, p 277, 1932.
(11) Rowlinson, J.S., "Liquids and Liquid Mixturess" p 50 and 56, Butterworths, London, 1959.
(12) Lambert, M. and Simion, M., Physica, 28, p 1191, 1962.
(13) Dobbs, E.R., and Jones,G.O., Rep.Prog.Phys., 20, p 560, 1957.
(14) MicLaughlin,E., Jour.Chem.Phys., 50, p 1254, 1969.

1

Chapman, So wis Ccoline Tg, whe Mathematical
Theory of Non-Uniform Gases, T Cambridge University

\section*{Press, Second Edition, 1964.}
a) \(\mathrm{p} \cdot 142\)
b) p. 144
c) \(\mathrm{p} \cdot 293\)

Lebowit.z, J.I. , Phys.iov., 133, A895, 1964.
McLaughlin, E., J.Chem. Phys., 50, 1254, 1969.
4 Lenguetmitiggins, H.C., Pople,J.A. and Valleau,J.P. .
Wransport Processes in Statistical Moohorics," p. 80.
Interscience Pub.Itd., Iondon, 1958.
Tung, 工. H. and Drickamor, H. G., J.Chem. Phys. I 18,
p 1031, 1950.
Home, F. F. and Bearman,R.J., J.Chem.Phys., 37, p 2842, 1962.

Thomaes,G•, PMrsica, 17, 885: 1951.
 24, 3729: 1952

Blitz,W, and Sappeir,A., Z.Anorg.Allgern.Chome, 203,
p.277, 1932.

Furivy,W.E., Jones,R.C. and Onsager, Phys.Rev., 55,
p 1083, 1939.
Drickamer, \(H_{0} G_{0}\), Mellow, E.W. and Tung, 工. H. , J.Chem. Phys.s
18. P 945, 1950.

Dobbs,E.R., and Jones,G.D., Rep. Prog. Phys., 20,
p \(516,1957\).```


[^0]:    * I am indebted to Mr. Richard Beckrith of C.C.A., Imperial College of Science and Technology for the translation routine.

