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ABSTRACT 

The transient hot wire cell technique has been used 

to build an apparatus for measuring the thermal conductivity 

of liquids, at pressures up to 7000 atmospheres, in the 

tomperature range 25.100°C. Measurements have been made 

cin toluene with an estimated accuracy of 2 to 5% over the 

wessure range. The analysis of the data has been developed 

by solving the heat conduction equation assuming variable 

p:nysical properties for the test fluid. In the solution of 

this nonlinear equation, the Kudryashev.ZheMhor trans-

formations have been used. 

The theory of Horrocks and McLaughlin, on the thermal 

conductivity of simple liquids has been extended to chain 

molecules and the model compared with data on the normal 

paraffin homologous series. 

The Chapman-Enskog theory, on the transport coefficients 

for binary mixtures of dense systems has been combined 

with the Lebowitz radial distribution functions derived in the 

Percus-Yevick approximation. The kinetic, collisional and 

distortional contributions have been factorized and the model 

compared with real systems. 
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1 
CHAPTER 1 

INTRODUCTION 

The thermal conductivity of liquids is a subject of 

interest both for the scientist and the engineer. Data is 

required for engineering design purposes, and for testing 

the validity of statistical mechanical models of dense fluids. 

At present, thero is need in science and technology for more 

data as well as for more accurate data. 

In the measurement of the thermal conductivity coefficient, 

there still seems to be problems that have not been solved or 

avoided satisfactorily. So far none of the various techniques 

utilized for measurements of thermal conductivity can be claimed 

to have completely isolated the conductive contribution to heat 

transfer from the radiative and convective contributions. Also 

in measurements on mixtures, there is the complicating effect of 

thermal diffusion. 

On the other hand, theoretical predictions of thermal conductivity 

are far from perfect; agreement to 15% is considered reasonable. 

This does not mean however that the present levels of accuracy 

in thermal conductivity measurements are adequate so far as 

theory is concerned. A great deal of information can be obtained 

from comparing calculated and experimental values of rates of.plariag, 
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of the conductivity with temperature and density; there 

available data is in many cases deficient. 

A. great deal of information on liquid structure can also 

be obtained by extending the data range to high pressures, 

which affords the evaluation of structural models over wide 

ranges of density. In particular the change of sign from 

negative to positive, of the temperature coefficient of thermal 

conductivity, at high densities is an important index of the 

success or failure of thermal conductivity theories. 

The transient hot wire cell chosen here for thermal 

conductivity measurements at high prossure has several 

advantages over other techniques of measurement. Mille no 

attempt will be made hero to compare in detail charachteristics 

of the various techniques, as relative merits have boon 

discussed extensively by Ziobland (Ref. 1) and Pittman (Ref. 2), 

two advantages of the transient hot wire cell which have not 

been discussed before must be mentioned here. The first is the 

adaptability of the hot wire cell to high pressure techniques. 

The physical size and limiting dimensions of the hot wire coil 

are such that the ono designed for this work was acommodated in 



a conventional 1.5' ID, 6n OD pressure vessel with a range of 

up to 7000 atmospheres. Co•.axi.al cylinder and particularly flat plate . 

techniques require rather larger pressure vessels. This 

complicates problems related to construction and sealing. 

The second advantage of the technique is its suitability 

for measurements on mixtures. Approach to the state in the 

presence of a temperature gradient leads to the setting up of 

concentration gradients because of thermal diffusion. It is to 

be expected that the short duration of the experiments with the 

transient hot wire cell (20 - 30 seconds) will go a long way to 

prevent partial separation from affecting the measured thermal 

conductivity values. 

In this work, the apparatus designed and constructed for 

high pressure measurements will be described and data on toluene 

for pressures up to 6250 atmospheres over a temperature range 

of 30 to 90°C 	presented. The analysis of the data is based 

essentially on the work of Horrocks and McLaughlin (Ref. 5) and 

Pittman (Ref. 2). Here however, in analyzing the data, effects 

relating to the temperature dependance of the thermal conductivity 

coefficient, and the change in power supplied to the system ale 

treated as part of the mathematical statement describing the 



system. This implied solving a non-linear partial differential 

equation. The method used for this particular application was 

also examined as a. tool for solving partial, differential 

equations with temperature dependent physical properties. 

While on the one hand an apparatus has been designed, 

constructed and tested for measuring thermal conductivities of 

pure and mixed liquids, and certain improvements made in the 

analysis of the data, attention has also been paid to the 

theory of tran.;:pert properties '4 

The hot wire technique can be used for measuring the 

thermal conductivity of non-polar, non-conducting liquids. 

(The method has also been extended to gases; that however is 

beyond the scope of this work.) The most important single group 

among those is the normal paraffin homologous series. Here the 

Horrocks and McLaughlin model (Ref.. 3) for the thermal 

conductivity of simple liquids has been extended to liquids 

composed of chain molecules by using Prigogize7s cell model 

for pure polymers. (Ref. 4). As will bo seen, the thermal 

conductivity, in this approximation, is a function only of the 

molecular force constants and the density. Hence calculation 

of 7, as A function of pressure follows from data on high 
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pressure densities for the homologous series. Results for 

atmospheric pressure calculationswill be presented here, but not 

those for high pressure, as data is not available for comparison. 

It must be said however that the temperature coefficient of 

thermal conductivity does not go through a sign inversion for 

calculations up to 10,000 atmospheres. 

As mentioned before, the fact that the hot wire method is a 

transient one makes it particularly useful for measurement on 

liquid mixtures. This is because for a mixture in a non-uniform 

temperature field, there exists a velocity of diffusion in the 

direction of the t(averature gradient. The mass flux is then 

given by 

J. = D 
n 	12 

xl D  a T 
T 8 r 	a.  

where x, is the mole fraction of component 1 

r is the position variable 

D
12 

is the mutual diffusion coefficient. 

and 	D is the thermal diffusion coefficient. 

The potential availability of a technique for satisfactory 

thermal conductivity measurements on liquid mixtures raises the 

question of the state of theories on the transport properties of 

dense fluid mixtures. Tho most general theory to date has been 
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that of Chapman and Enskog (Ref. 6). The derived equations 

have been generalized to dense fluid mixtures by Thorne (Ref.6a). 

The work is based on the rigid sphere interaction potential and 

as such, can be combined with the radial distribution functions 

of Lebowitz (Ref. 7) derived by using the Perms Yevick 

approximation (Ref. 8). 

This analysis was first used on mutual diffusion in 

binary mixtures by McLaughlin (Ref. 9). Here it is extended 
to thermal conductivity, viscosity and theimal 

diffusion. While the treatment, on the whole, does broadly 

reproduce charachteristics of liquid mixtures observed 

experimentally, better quantitative agreement must wait for the 

treatment to be applied to more realistic intermolecular 

interaction potentials. 

The Lebowitz radial distribution functions were also used 

in recalculating results from the theory of Longuet.Higgins, 

Pople and Valleau (Ref. 10), for isotopic mixtures. While for the 

mutual diffusion, thermal conductivity and viscosity coefficients, 

equations resulting from the two theories are at least partly 

related, for thermal diffusion there seems to be no correspondance. 

Furthermore neither one of the two theories gives satisfactory 

results when compared with experiment. This is to be expected 

as the thermal diffusion coefficient is particularly sensitive 

to the form of the intermolecular interaction potential. 



CHAPTER 2  

Tha.2a_2Ltbaffsansient Hot Wire Cell  

Introduction 

The experimental technique is based on the measurement 

of the voltage change across a thin wire carrying a current 

and immersed in a test fluid. The wire is joined to thick 

current leads, top and bottom, and at distances conveniently 

removed from its ends, welded to two voltage taps. 

In order to determine 'he thermal conductivity of 

the test fluid from this system, the heat conduction 

equation appropriate to the system will be obtained,and solved 

for the temperature profiles in the thermal conductivity cell; 

the temperature profiles will then be related to electrical 

measurements. In addition, any approximations made in the 

derivation of the heat transfer equation and the solution 

will be examined. 

7 



2. The General Equations of Heat Transfer 

The equation of thermal energy (Ref 1) in the absence 

of radiative heat transfer is given by 

DU = - (V q) - P(V • v) 	T : C7v) , 	(1) 
Dt 

where the rate of gain of internal energy equals the 

sum of three terms which are successively: 

1) .tat input by conduction 

2) reversible energy increase by compression and, 

3) irreversible energy increase by viscous dissipation. 

In order to reduce equation (1), to the desired form, 

the following relationship, derived from the first and 

second laws of thermodynamics is used: 

DU 	r 8P DV DT 
P 	 R. 	:2 1._ TE-ST3v P Dt CvliP P (2) 

Here the operator D/Dt is defined by 

a 	a 	a 	a 	(3) 
Dt 	at + vx .53-c+vy 

Combining eq.(2) with the Equation of Continuity 

Ra = 	p (v•v) 
	 (4) 

Dt 

equation (1) can be written in the form 

8 



	

DT 	ap p c 	(0•q)- T(--) 

	

vDt 	MEM 	 a T v (v-v)- (T :v) (5) 

9 

which in turn can be re0.uced by the substitution of 

Newtons and Fourrierus Laws to 

DT 	ap p c 	= V'(XVT) -T 	C7'v)+ aT 	x 	(6) v Dt 

where is called the dissipation function (Ref 1). 

Equation (6) can be further reduced by using 

and 

• cp v p f3 -c = cd2 
T 

-dp = - p ,BT  dP + p a dT 

where 

	

a ,dV, 	B 	(av)  

	

= 4. Vt—cily 	' 	T-  V aP T 

to 

	

DT 	DP p C 	= V. (XVT) + T a 	 +% • (7) 

	

P Dt 	Dt 

(Ref. 2) 

Equation (7) describes the behaviour of the experimental 

system but is mathematically intractable. It is therefore 

further reduced by using physical argument:.. 

As heat is supplied to the central wire, expansion 

of the liquid around the heated section gives rise to 
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radially symmetric free convection. Hence the operator 

D/Dt reduces to 
D 	3 	3 
Dt 	31 "z a z 

where z is the axis along the length of the wire. 

Furthermore due to the existonce of a heating section 

below the bottom voltage tap, the rising liquid 

surrounds the mid-section of the heating wire, still 

retaining the temperature distribution that would have 

existed in the absence of convection, until cold liquid 

rising from below the heated section reaches the bottom 

tap. Hence before cold liquid reaches the bottom tap 

BT 	DT 3 T 0 and 5.e = z 	cat 

Clearly, this simplification imposes a time limit on the 

duration of tho experiment. 

Using a set of assumptions fully discussed in a later 

section of this chapter, the velocity of the fluid along 

the z-axis has boon calculated (Ref. 3 and Ref. 4a). Using 

these results and 	toluene properties 

it has been shown in Appendix lk that the term 

T a DP/Dt can be neglected. It has also been found 

(Ref. 4b) that the viscous dissipation term X is negligible, 

under the rolevoni; conditions. Equation (7) then reduces to 



P C 	
= 

p 	at 	(x v T) 

3. Solution of  the Heat oilthie.4ationfo( z.11-0. 
Het Wire Cell. 

In order to relate the temperature changes in the 

cell to the thermal conductivity that is being measured, 

it is necessary to solve the heat conduction equation.' LI the 

first approximation the following is assumed: 

a) Free convection and viscous dissipation effects 

are negligible. 

b) The heat source is of infinite leneh and zero 

diameter (line source ). This assumption will "ca 

removed as more refined solutions to equation (8) are 

derived. 

0) The fluid medium is externally unbounded, and the 

limiting value of the temperature, sufficiently far 

away from the heat source, is zero. 

d) Physical properties of the test fluid aro temperature 

independent. 

e) Power dissipation, ql, per unit length of heat 

source is constant. The last two assumptions will also 

be subsequently removed. Lastly 

f) Radiative heat transfer is negligible. 

11 

(8) 



The solution of eqn. (8) under these conditions is 

well known (Ref. 5a). 

ql 
T(r,t) = 	El 44-0t 

-u 
where -tai (-x) =J 2 	du x u 

1 (9)  

and K = 	. Clnarly, T(r,t) is referred to the initial 

temperature. For large t. eqn. (9) reduces to 

qa T(r,t) 	— Loa L 21  ar2 

where C= exp ('y) and y is Euler's constant. 

If the heat source is assumed to be a cylinder of 

infinite length, uniform diameter and infinite thermal 

conductivity the solution becomes (Ref. 5b) 

va,t) 	[ 	1:_r 	
2 	

( ge ) 1r;  in  11,:r 	. .1 (10 
kra 	C 	T 

where a = 2(plepl/p Cp) and T = Kt 
r2  

In obtaining equation (11) surface resistance to heat 

conduction is assumed to be negligible. 

(10)  



Temperature Dependent Plagioal Properties  

We now remove assmption (11) as wall as (b), and assume 

linear temperature dependences for thermal conductivity, 

density and specific heat. 

X = Xi(1 +X2  T) 	; x:.1 	a 
(12a) 2 X1  dT 

p = p1(1 + pi,  T) 	; q = 
1 	dp 	

2,3) 

	

Pi dT 	
(1 

 
* C

P 
 = C

Pi 
 (1 + Cp2 	p T) ; C*2  - = 1Cp1 	(12o) 

dT 

whore the subscript / denotes the properties at the initial 

temperature. The problem can now be stated follows: 

p Cp  at  = Q  ' (1. V T) 	(13) 

with initial conditions 

T(r, 0) = 0 	2 	 (14a) 
r a 

dr (r 	, 0) =
n v 	 (114b) 

and boundary conditions (Ref. 6) 
aT(a,t) 	a2(a,t) 

' (15) 2naX 	+ 	= 7; a2 131  Ct 
ar 	at 

where p' and Cr: are the density and specific heat of the 

wire respectively, and 

T(art) = f(t), 	 (16a) 

lam 
r9 t) = 0 for finite t. (16b) 

13 
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f(t) is obtained as data during the experiment. Given equations 

(12), the problem stated above is nonlinear. 

We will now use a set of linearization transformations 

(Refo 7) to obtain the linear analog of the problem, the 

solution to which, of course, is similar to eqn. (11), 

and then invert the solution. 

Consider the specific enthalpy, as referred to the 

initial temperature 

dh = C dT 

and define through h, the quantity such that 

= 	- 
Jo X dh. 

tkCp  

Using the last two equations 

dO 	dh =XdT 

frau which it follows that 

= XdT and  v 2  15 = • (x T) 
dr dr 

Furthermore, we define the quantity g , such that 

= J. L-- dt ; ag = X  dt . 	(19) 
PCP 	pCp  

Through equations (17) - (19), equation (13) can be transformed to 

= 20 	 (20) a g 

(17)  

(18)  
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The initial and boundary conditions are also transformed: 

0 :r, 0) m 0 ; 	(r,0) = 0 
	

(21) 

4  ce  0 (r g ) = 0 
	

(22) 

and 

+ 	-
2 

al  r'" dr Il 	or al r = a (23) 

Here a is assumed to be constant with temperature. This is 

further discussed in Appendix 2. 

So far we have used a set of transformations to linearize 

the nonlinear system of equations (12) - (16). The 

linearized problem has been solved by the Laplace Transform 

technique (Ref. 5b): 

0(r, §) = 	[in 	 C +12T 	y + (54--g ) 2T  In 	+ 	(24) 
4n  

where T=t/r2. With the exception of T and absence of %, 

this is identical to equation (11). We must now perform 

the back-transformation. 

Combining equations (12a) and (18) we have 

Elk _ 	dT 	dT - X 	— + X T 	, 
dr 	i dr 	2 dr 

Where 

(25) 

X2 =Xi )12  = dX 
dT 
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Integrating both sides from j to co 

0(00, g)_gr, 	[12(c°!t)—T2(rtt)) 	(26) 

Using equations (150 and (21) 

0(r, g ) = xj(r,t) +2i2 T2  (r,t) 
	

(27) 

where gr, g ) is given by equation (23). In particular 

0(a, g ) = X1T(a,t) + 23. 	T2(a,t). 
	

(28) 

Throughout the treatment g is given by 

g = 0 	dt. 
Pp 

Using equations (12a) -(12c) and letting r = a 

I! 	X2 T (a,t) 

[1+ p2T(a•t))[1+ Cpl  T(a,t)] 

The second terms on the right hand side of equations (28) 

and (29) constitute the total correction for the case of 

variable physical properties, under the given set of 

assumptions. Neglect of these terms would reduce the set 

of equations-(24), (28). and (29) to equation (11). 

An upper limit to the value of the integral in the 

rhs of equation (29) can be calculated by making use of the 

physical properties of toluene and the magnitude of the 

temperature rise in the cell. This calculation is presented 

xi  = 	+ 
P1CP1 

dt (29) 



in Appendlx 10B, and shots Thai: neglect of the integral 

introduces an error of the older of .01% into the thermal 

conductivity measurement, For this application then 

g  = (X1/P1Ci)1) t  = Kt 
	

(30) 

where z: is 	the thermal diffusivity. Combining 

equations (24), (28) and (30) we get 

ql 
I In 	2T+ (5 	) 01  ln(46T  )+ ....] C  

= X1T(a,t)+ 22 T2 (a, t), 

where 

T = Kt 
a2  

5. Thiagagpstr a Time Dependent Heat Source 

In the previous section the heat conduction equation 

has been solved with the assumption that heat input into 

the system is constant throughout the experiment. As 

the current romains substantially the same, and the wire 

resistance changes by about .01 to .02 ohms during a 

run, we know that qi (=12  R/1 ) is a weak function of time. 

We will now assume this dependence to be of quadratic form, 

(11 = ql 4. (12 t 	c13 t2 

	
(31) 

and Polve the heat transfer problem of equations (12 )- (16) 

1? 



with the altered boundary condition: 

where 

/77 

qi 
- 

Q 	pe  2 ) = 27r do 
2 

+ 
-3 	dg r  = a 	(32a) 

(32b) 

It must be noted that in equations (32a) and 

(32b) the approximation of equation (30) has 

been used. 

The derivation of the temperature profiles 

under these conditions is rather lengthy and will 

be presented here only in outline form; the full 

treatment may be found in appendix 2.A. 

After linearizing the problem as before, the 

Laplace-transform of the heat conduction equation 

and the boundary conditions are taken: 

a2 0(r ye) 	4.  1 Oi(ro) 
(33) 

61-2  r 	or 

27Ca aj6 (a, 0) + + Q2 Q2 + 2Q3,  

ar s2 	d3 	a 
S 0  (a, s) (34) 

lim 0(r,$) = 0. 	 (35) 
r-9 00 
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Here s 5' the complex variable of the transforar.t101i, 

0(r,$) 	;he Laplace traAsn..,..m of 0 (r,t), mite, Ls before, 

i' asz'amed to be lonstant. 13017ing equations (33) - 

(35) for -95 vo obtain 

ig(r, 6) = (41 	Q.2  / + 2cs  /8  a ) 	i(0(r 5 ) 
27cas 	tgl(0a)+ as Ko(fla)] 

By inverting equation (47) back into the real plane, 

using equations (28) and (30), dropping small terms in the 

second and third brackets, and rearranging, we have 

X T(a,t) + 	T2(a,t) 

qi 	4Nt a2  rqs 0 a
2  44 

411.  Ca2  
a t-n  

(37) 

0 	0 

 

  

.• 	q2 
r 
 t tln 4a  -1 +1 	• • • • 1 

IC 	737 

▪ q3[ t2  E In 114 3/2  -j +• 
7t 

	

	
. 

Ca. 

Again by setting q2, q3  and N2  equal to zero, equation (11) 

can be obtained. 

In deriving equation (37), some of the simplifying 

assumptions of section 3. have been dropped. We must now go 

on to examine the remaining ones. 

( 36 ) 



ItE 	g a2)2tTio(xxl)l
i(xn)—YcAcn)100 

n 
( xnxna)).:2 

b 
T(a,t) = 1C 1 	+ 41c1 

20 

6. Effect of the External Bounder 

hci,lon (37) has been derived with the assumption 

that an infinite medium surrounds the central cylinder. The 

duration of the experiment, then is limited to times beyond which 

heat loss to the outer walls significantly distorts the 

temperature profile in the cell. The equation of heat 

conduction has been solved (Ref. 8) for a bounded medium, 

under the following conditions: 

a) A non..convecting medium is bounded internally and 

externally by two infinitely long concentric cylinders, with 

radii a and b respectively. 

b) Power is dissipated from the central cylinder, 

at the constant rate of qipita for t 0. •  

c) The external cylinder is held at the initial temperature. 

d) Physical properties are assumed to be temperature 

independent over the temperature rise in question. 

The solution of the heat conduction equation is then 

given by 



b — >1
'  

	

where a = a 	n is the running index n = 1, 2, . . . • 

and the xn  satisfy the equation. 

Joi:(7 )S1)11(xn)  - Yo (a  xn) J1 (xn)  = 0  

where Jk  and Yk  are Hassel functions of the first and second 

kinds, of order k respectively. For large values of t. 

equation (38) reduces to 

2  exp-aa)t 
T(a,t)-z 	in I) .. 2  ; 	

irxr15-   'r  

	

2  Ta 	zwl 	 .. 

	

t 	a  xn [( Jo 3-774 

When h>> a,  using (Ref. 8 and Ref. 9). 

Z4  0 
lira RIk(z)-4(1z)ki r (mil) 

1 
Ykcol. -(;) r (k)(1z)

-k 
lim 

z+ 0 

where for k an integer 

(k) = (k-1)! 	, 

along with equation (39) leads to 

Jo(axn) = . n 
Yo(  a xn) 

z 
xn 

and 

J (x ) Y (x ) = - 1 — 1 n 1 n 	n 

Combining equations (39) ... (42) leads to 

21 

(39)  

1 
	. 

• 

(40)  

OW 

(42) 



T (a, t)=2 ql 
7r7%. 

, 
b 	°° exp - (Kxd a)

2 
 t 

E 	 n — a - 2 
n 	21 F Li  ffo(m`n)  f - xn  

22 

(43) 

where in this approximation xyla satisfy the transcendental 

equation 

J(xncr ) = 0. 

(Ref.8). 

Equation (43) will be referred to, when cell design 

requirements are considered. 

7. End. Effects. 

The assumption of infinite wire length must now be 

examined. 	Heat generated in the small diameter, high 

resistance section of the wire is conducted away by the 

current and potential leads. Heat loss through the former may 

be rendered negligible by leaving a suitable length of heating 

wire between the ends of the section where voltage changes are 

monitored, and the thick leads leading out of the cell. 

The following method has been used to estimate this length. 

(Ref. 10a and. Ref. 5c). 

The two ends of the wire, of length 21,, are assumed to 

be kept at zero temperature, and also surrounded by an 
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enclosure at zero temperature. The temperature distribution, 

in the steady state, along the length, Ot5x ts2L, for 

constant power, qi, supplied to the wire is then given by 

T
f
(z)=.21_ 	1- 

2na H 
	cosh M(L 

	
z) 

	

cos ML 
	 (44) 

where H is the heat transfer coefficient given by (Ref. 4c) 

H = 2X /a in.1.4"-i—r 	T r= Kt/ a
2 	(45) 

and 

(2110w a 
)2 

(46) 

where X is the thermal conductivity of the wire. In 
w 

equation (45) the steady state temperature at the wall has 

been approximated by the "line source" solution of 

equation (10). The value of 6 for which 

Tf  CL) 	T (214 -8) 

is much less than .01% of Tf(L) has been calculated (Ref.10a) 

to be about 1 am; the error rises rapidly to .6% for 5= .2 am. 

(Ref. 4d). 

Heat conduction away from the potential leads had initially 

been treated (Ref. 12) as cooling fins and the error neglected. 

Pittman estimated the error in the thermal conductivity 

measurement due to these losses, on a scaled up model (Ref. 4e) 
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for an essentially stationary fluid. The resulting 

calculation shows that for toluene measurements, errors would 

be about .3 . .4% over the pressure range. This seems to 
be an underestimation, for reasons to be discussed in the 

next chapter. Still, however it is possible to 

minimize this error by extrapolating 'ors. t data to zero 

time, as the error due to end effects grows with time. 

8. Convection.  

While in the reduction of the equation of energy 

transfer, convective heat transfer and viscous dissipation 

were neglected, it is to be expected that the presence of a 

radial temperature gradient along only the middle part of the 

fluid, will give rise to free convection. 

By using steady state methods it was previously found 

(Ref. 10b and Ref. 13) that for the Rayleigh number, 

R < 1000, convective effects could be assumed negligible. 

R = g poiATd3/10: < 1000. 

Here g is the gravitational constant 

p,a , 114  K are the physical properties of the medium and 

d = b-a is the charachteristic dimension of the systom 



av 
t 

(47) 
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The velocity profiles of the convectinu fluid have 

subsequently been investigated, Pittman (Ref. 4a) numerically 

solved the equation for the velocity distribution (Ref. 3) 

within the cell, with the following assumptions: 

1) A cold front of fluid begins to rise from the lower 

edge of the heating section, as soon as heat is supplied to the 

central cylinder. 

2) The radial temperature distribution is assumed to be that 

of the stagnant fluid, and to give rise to density gradients which 

determine the velocity field. 

3) The velocity along the r.-axis is zero. 

14-) Heat conduction from the warm region into the cold front 

neglected. 

The equation describing this system has been solved 

numerically by Pittman (Ref. Lid) 

a2 
v 	1 av+,a  a T 	1 

+ — — 1- -  
ar2 	r a r 	--"Ir =  r 

with the initial condition 

v(r,0)=0 

and boundary conditions 

v(a,t) = 0 

r4 	(r ,t) = 0 
co 
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The calculated velocities are 10 to 1 lower than those 

observed (Ref. 14) by interferometric techniques (Ref. 4f). 

As mentioned in section 2., the viscous dissipation term, is 

calculated by using velocites obtained by this method. 

9. Heat Transfer by Radiation. 

So far, radiative heat transfer has been neglected. For 

systems where radiation effects are important equation (8) 

becomes 

	

p 	+ en  = 	7t, 
- 

8T  
 at 

where, e n  is called the net emission, 

	

e n 	bb (r. t)e 

and 

K is the absorptivity coefficient 

e bb is the black body emission function. 

s 	the absorption function. (Ref. 15) 

The difficulty in the analysis of radiative heat transfer 

is twofold: firstly the absorption function is a very complicated 

function of the geometry of the system, and has been constructed 

here only through use of simplifying asemptions; secondly even 

the simplified form of en  involves integrations over the 

(48) 

(L9) 
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temperature and equation (148) then becomes an intractable 

integro..differential equation, as will be presently shown. 

Approximations at various levels have been made to 

overcome these difficulties, a good survey of which will be 

found in Ref. 4g. In relation to the hot wire experiment 

it had been suggested (Ref. 10c) that the anission from a 

central cylinder into a black enclosure would yield a good 

estimate of the radiative heat losses from the central wire; 

the error calculated in this way had been found to be of negligible 

magnitude. Other estimates of these losses for measurements 

on toluene were as high as 2%. (Ref. 11, 16.48). 

It is assumed here, that since the central cylinder 

is of infinite length (see section 3) radiation 

emission from it and from concentric shells of surrounding 

fluid may legitimately be taken as having no component along 

the axis of the central cylinder. The equation for 

monochromatic radiation intensity, I. in cylindrical 

coordinates, is then given by (Ref. 15) 

	

dr 

+Ky.]; t) 	
(50) 

where 

	

Ey = EY(T)  = niCy Ibb,v  (T) 	(51) 

Kv= Kv(T) 

n = the index of refraction 



2 c2h 

I 	= bb,v 
vlexP ;KT -J 

and 

= speed of light. 

h=Plancles constant. 

v= wavelength of radiation. 

k = BOltzmannos coast., and finally 

T = the absolute temperature. 

Equation (50) can be solved by the integrating factor 

method: 

(r,t) = ulwro  Ev  (T) u(r)dr 	 (53) 

where the integrating factor u(r) is given by 

u(r) = exp 	(Iv+ Kv  ) dr° 	(54) 

ro 
Here ro is the radius of the central cylinder and r° is the 

variable of integration. All terms in equation (53) are 

functions of position, wavelength and temperature; the 

latter in turn is a function of position and time. An 

obvious simplification of equation (53) is to adopt a suitable 

average value of Ks., over the infra red region which is 

relevant for radiative heat transfer. We may then write 

I(r,t) = 	f E(T) u(r) dr 	(55) 
u(r) 

2.6 

(52) 
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Since radiative transfer has been assured to occur only 

radially, e= I(r,t). 

Also using the Stefan•aotzmann law 

(S. 	• 
ebb
(r
'
t) = 2 7n2a (A T)4; 	AT = 	(r,t) 	(56)  

dr 
Hence 

= K(T) E "aria T - 
u(r) 

fro E(T) u(r9) di-a] (57) 

where 

u(r) = exp[ fr  
ro 

(70+ K(T)) dr° J. (58)..  

Due to the form of equations (57) and (58), equation (48) 

is mathematically intractable. The difficulty could be 

removed by assuming K, the absorptivity coefficient to be 

temperature independent. This however would impose tine 

independence on the radiative transfer problem, which 

would in turn lead to lower levels of outward emission .:oin 

concentric fluid shells and hence to a smaller correction 

to the thermal conductivity. Pittman (Ref. 4g) solved the heat 

conduction equation with a heat sink term representing absorption 

of radiation by the liquid, with a constant absorptivity 

coefficient and the boundary condition, 

artaX air
= ql 	oq(t) ar 



where 

6q(t) = 87ra a e TA T(a,t) 

a = Stefan-Boltzmann const. 

e = emissivity coefficient 

TA = Absolute temperature 

T(a,t) = Temp rise in the wire, from the start 

of the experiment , 

with the conclusion that for toluene, the error involved is 

of the order of 1 to 2%. This would seem rather high. The 

boundary condition assumes a temperature gradient equal to 

T(a,t), which would lead to overestimating the error; 

neglecting absorption of radiation by concentric fluid 

shells would have the same effect. Though due to its 

approximative nature, this treatment, like previous ones 

cannot be used for actual corrections to thermal conductivity 

data, a practical aspect does emerge. The error decreases as 

time goes to zero; thus azero time extrapolation of data 

for each run would lead to a value less affected by 

radiation losses. (Fief. 4g) 



CHAPTER.  

Apparatus, Procedure and Data Handling 

1. Introduction 

The theory of the hot wire cell presented in Chapter 

2 was applied in designing a thermal conductivity cell 

adapted to high pressure measurements. Here a description 

of the cell, the pressure system and temperature control 

system will be given, along with the working equations 

used in analysing the data. The experimental procedure 

will also be described, and finally the method of 

handling and processing the data will be given. 

it 



2. The Thermal Conductivity Cell 

The coil (Fig. 1) was constructed of EMS stainless steel 

with dimensions of 1 cm I.D., .98 inch O.D. and 15.7 cm 

internal length. Four 26 SWG thermopuro platinum leads 

were connected from the sealed electrodes on the high 

pressure plug to the cell; the two current leads were 

spotwelded to needles at the top and bottom of the cell, 

which were insulated from the main body by baked pirophylite 

beads. The two potential leads which ran down the side of 

the cell were insulated from it by pyrex capillaries drawn to 

3/1660  OD. In the cell a spring (Pt + 10% Iridium) was 

placed between the top current lead and the heating wire 

in order to prevent the wire from sagging as the experimental 

temperature was raised. The spring was shunted on both sides 

with .001° 	1 thick, /16° wide platinum foil (aef la), as the 

spring material is of rather high resistanco. The heating 

wire, .00160  diameter, die drawn high alpha grade platinum 

wire supplied by Johnson Mathoy timitedowas then connected top 

and bottom to the spring and lower current lead respectively. 

The potential leads were then spot welded, about 1 cm away 

from the spring at the top, and 3 cm away from the current lead 

at the bottom. After completion, the welds and the heating 

32 
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wire were inspected by 	and found free of kinks or 

distortions. The potential lead weld regions were found to 

be partially flattened, up to a distance of 3 or 4 wire 

diameters. 

The design specifications arise from considerations 

fully discussed in references (1), (2) and (3). These 

arguments will now be briefly summarised. 

i) Effect of the External Boundary. 

It has been found (Ref. lb) that, comparing, in the 

first approximation, equations (9) and (43) of the previous 

chapter, agreement is within .01% for Kt/62  .4: .12. For 

toluene at 90°,K, the thermal diffusivity, is about .7 x 153. 

This implies that over 30 seconds are necessary for wall effects 

to become significant in a 1 an I.D. cell. 

ii) Distance Separating the Potential Taps from Ends of the 
Heating Wire. 

The distance between the top potential tap and the spring 

is determined by considering conduction away from the heating 

section by the current load (and spring). Here leaving 

approximately 1 am between the bottom of the spring and the 

potential tap was found sufficient (see section 2.7). 

Other considerations enter in determining the length 

of wire to be allowed between the voltage tap and the bottom 
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cuireent lead. Free convection starts as soon as the central wire 

begins to heat up. Shells of liquid, with the same 

temperature distribution as for the case of no convection00  

rise followed by the cold front described in section 2.8 (Ref 4). 

The experiment can be continued as long as the cold front 

remains .5 cm away from the bottom end of the heating wire. 

As mentioned in section 2.2, the duration of the experiment is 

limited by the length of wire allowed below the bottom potential 

lead. Clearly the velocity of the cold front also depends on 

the heating rate: low heat rates would allow longer experiments 

but lead to low voltage changes and hence loss accurate results, 

where as high heat input rates would necessitate short 

experiments due to convective and wall effects. It was found 

(ref 3a) that for a distance of 3-4 an below the bottom 

potential lead, heating rates corresponding to 17-25 milliamps 

cell current would allow the experiment to last up to about 

30 seconds. In fact all measurements were completed within the 

first 20 seconds. 

iii) Diameter of the wire - Analysis of initial specific heat 

effects, end effects and radiation losses, indicate the necessity 

of using heating wires with the smallest diameter with which 

it would be possible to build a cell. .001 inch diameter was 

found to be adequate for this purpose. 
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iv) Wire length. Two cathetometers, set at right angles 

relative to each other were used to measure the length of the 

heating section of the wire, while the cell was clamped dawn 

vertically. The wire length was found to be 8.100 + .002 cm. 

The measurement was repeated after the thermal conductivity 

runs and no significant change found. 

3. The Cell Casinq, and Bellows  

The case which envelopes the cell is made of three parts 

(Fig 2). The main body of the case screws into the pressure plug. 

The middle part, a short cylinder, is argon are welded to a 

bellows; this assembly screws into the main body of the case. 

The middle part has been designed as a separate piece from the 

main body for easier handling and replacomont) The lower end 

of the bellows was welded to a plug, with a tapped hole for 

filling. All parts were made of stainless steel and screwed 

joints were sealed with teflon flat rings. 

The bellows, made by Teddington Aircraft Controls Ltd., 

had + 1 inch axial movement. This corresponds to about 32% 

compression of the fluid confined in the cell agembi7  which is 

sufficient to raise most liquids to 7000 atmospheres, over the 

temperature range of 30-95°C. 

The assembly (Fig. 3) was filled with the test fluid, 

under its own vapor pressure, following a bulb to bulb 
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vacuum distillation, where liquid nitrogen was used as coolant. 

A glass system, Fig. 4, was designed for the purpose, and 

.Anohed to n standard vacuum system, including a bathing pump 

and an air cooled oil diffusion pump. 

4 The Electronic 

A system previously developed (Ref.3b) for 

atmospheric pressure determinations of thermal conductivity 

was used for the high pressure thermal conductivity measurements. 

(Fig. 5). 

Basic requirements in the high pressure experiments were  

simi)ar to those at atomospheric pressure: 

i) 20 mA current stable to 1-2 ppm, 

ii) Eight readings a second with 1 microvolt resolution in 

about 20 millivolts, 

iii) Stable backoff facility, 

iv) Automatic data logging. 

The major parts of the curcuit will now be briefly described. 

1) 	Power supply. D.C. voltage standard made by Cohn: 

Electronics, Kintel Division, U.S.A., with voltage range 0-1000'.% 

' 	provides currents up to 50 mA. This instrument was placed in 

series with a 10,000 ohm resistor, in a thermostatted oil 

bath, to provide the cell current. The latter was measured by 

monitoring the voltage drop across an NPL calibrated 10 ohm 
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Tinsley standard resistor. 

2) Backoff Circuit. A Model 735A D.C. Transfer standard 

made by Hewlitt-Paclard Co., U.S.A. provided the bachoff, 

through a voltage divider of 2500 ohm total resistance in 

steps of 50 ohms. 

3) Amplifier. Hewlitt-PacItard Model DY 2441A 

amplifier, with gain selection of 1,10, and by-pass, was 

used in series with the voltmeter. The gain is specified 

accurate to ± .007% with temperature coefficient of less than 
10 

.5 microvolts /
o
C. Input impedance was 10 ohms. 

4) Voltmeter. A Hewlitt-Packard Model DY 2401 C Integrating 
Digital. Voltmeter was used in series with the amplifier. 

Maximum resolution of the instrument was 1 part in 300 000. 

When used with a set sampling period of 1 second,resolution was 

.1 microvolt, and for a sampling period of .1 second, 1 microvolt. 

Accuracy is better than + .025% of the reading. Both the 

amplifier and voltmeter are guarded and have high common modo 

re jection. 

5) Data-Logging Equipment. Monitored voltage changes across 

the cell were logged by a Hewlitt-Packard DY 2545 high speed 

tape punch set with a ERPE II tape punch made by Teletype Corp. 
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Before a run, the system was allowed to stabilize by 

passing current through the ballast. This is a 100 ohm, 

continuously variable resistance introduced in order to avoid 

transients in the power suppl-s-  due to changes in the load, 

when a run is triggered. This was done by a push button which 

activated a mercury wetted relsy. A Zenor diode was provided 

in parallel with the 10K ohm resistor (See Fig. 5), so as 

to avoid large voltages appearing at relay contacts. The 

falling edge of the pulse generated across the relay triggers 

the opening of the gate to a counter circuit available in the 

voltmeter with a 100 kilocycle signal. This signal provides 

the timing control for reset pulses externally generated and 

fed back into the voltmeter. The first integrating period can 

be delayed by up to 1/8  sec. after the opening of the gate; the 

the delaying period is followed by a reset period of 9.7 milliseconds 

which is the gap between the reset pulse and the beginning of an 

integrating period. The integrating periods are 100 milliseconds 

each separated by 25 milliseconds from each other, the start of each 

being triggered by an external reset pulse. 

The sequence of operations and voltage measurements loading 

up to a thermal conductivity run, will be described in a 

late• section of this chapter. 

5. The Voltmeter Ii.tegration Period 

Each voltmeter reading is an average value cvor a 



100 millisecond integration period. Hence 

t  T 	= 	 f 2  TR  (t) dt t2-ti   

where TM  tho measurml temperature change is tho average value 

over At (= t2-t.;) of TR 0  the real tomporaturo. Equation (37) 

of tho previous chaptor must now bo modifiod to take this 

integration into account. Dofining from oqn. (37) 

4Kt 2 2  2 , g  Kt  L.A.n 	o -a72 + 2-: + 	-cy  wt• 	-a02 +....     
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( 1 ) 

c02 4n ln  Cat   - 1] t + 

cp3=4 [ Inca  - 	t2+... 
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tit j  
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and dividing by 
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2 	X2  
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1
ti 

-t + t, TR  d 2At 
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and 

T2. fiL-1 2 	,t  4.At [in  iti±g1]2 - 
I-4%X J 1 	

At 	1 	' 	Ag Ca.2 	iL 
t  rl n  tatil2 

1 
-2t1 in(1t) - 2At In 14g!rl'At)  + 2At 

	
(is) 

Hero At = .1 second. 

6. Tho Working Equation  
For fixed a, A2  and a equation (8) givos the measured 

temperature changes as a function of timo, at tho wire-fluid 

boundary 

T1(t) - _ 
l 
F(t) 	. 

For any interval, At. thon 

Al  = AF(t) / ATM(t). 

For small 

ATM  
temperature 

AR 	whoro 

changes (Rof. 1) 
AV 	V = 	AI . I 	12 dR  

Thoroforo 

and 

AT, 	 -;ri2 	Al  ] 

dR 
Al - dTm  

r1 AV 	V 	Al 1-1 
L IAF -12 AF J  (13) 

From equation (8) it can be soon that F(t) is a weak function 

of Al . Hence an itorativo calculation is called for. Tho 

computor program written to porform thoso calculations will bo 

doscribod in a lator suction. 
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The pressure system wss designed to reach pressures up 

to 7,000 atmospheres. The accompanying flow sheet, Fig. 6, 

illustrates the layout. 

1) The pressure vessel was manufactured by Pressure Products 

Inc. (UK) Ltd.,; design details may be found in Fig. 7. The 

vessel was made of EN 25 stainless steel, with le bore and 

12° working length, fram the tip of the electrode head to the 

bottom of the vessel. The electrode head was also made of 

EN 25 steel with initially a beryllium copper-teflon half 

Bridgman main seal and four electrode seals. The latter consisted 

of Hilumina insulators (Smith Industries, Ceramics Division) and 

brass canes, successively lapped in. 

It was found during the experiments, that beryllium-copper 

work-hardened sufficiently to scratch the vessel bore when the 

plug was being extracted from the vessel. Copper was tried and 

found to flow too easily and fill the gap between itself and the 

plug (see Fig. 7). Phosphor bronze was then tried with a larger 

angle, 6 degrees, between the ring and the plug and found satisfactory, 

provided a groove was turned off on the outside, as shown in 

Fig. 7, This groove prevents the 0.D. of the ring from flouring 

flush to the vessel, bore which would have increased surface 
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contact and causA. leaking. This design was found sufficiently 

durable over the pressure al.d. tempeeature cycling that took 

place during the experiments. 

2) 10,000 ataosphere gauge, made by Budenberg Gauge Company, 

rated to 1f accuracy of full scale deflection. 

3) Letdown Valve, with nonrotating spindle, rated to 100,000 psi, 

was made by Pressure Products Inc. 

4) Valve, with same specifications as (3). 

5) Gauge, with same specification as (2). 

6) Intensifier, rated to 200,000 psi, with intensification 

factor of 15; model 112.5) made by Harwood. Engineering Co., J.S.A. 

7) Non-rotating spindle valve, rated at 30,000 psi, made by P.U.I. 

8) Pump, stainless steel body, rated at 60,000 psi, made by 

MoCarnay Manufacturing Co., J.S.A. 

9) Valve, with some specifications as (3). 

JO) 40,000 psi gauge, made by Budenberg Gauge Company. 

11) Non-rotating spindle valve, rated at 60,000 psi, made by 

12) Hand pump; same as (8). 

13) Valve; same as (11). 

The whole pressure system was enclosed in a steal frame and 

shielded with -t° thick mild steel plate (Fig. 8). 

The system is betiaily pumped up by (12) to about 2,G00 

atmospheres. Valve (9) is closed off to isolate the low pressure 

side, and the pressure fUrther raised by pumping (8) on the low 
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FIG. 8 
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side of the intensifier (6) until the piston reaches the end of 

the stroke. Valve (4) is then closed off, valve (7) opened and 

the pressure between (4) and (9) dropped to about 2,000 atmospheres. 

Valve (9) is then opened and the intensifier piston pumped down by 

(12); the pressure is raised again to 2,000 atmospheres, and 

values (7) and (9) turned off. The pressure between (4) and 

(9) can then be raised by (8) to the vessel pressure, valve (4) 

opened and pumping continued. Vessel pressure can normally be 

raised to the designed maximum during the second stroke of the 

intensifier. During experiments, (4) is shut to isolate the vessel 

from the rest of the system. 

The pressure calibrations were carried out against an N.P.L. 

calibrated 'dead weight?,  standard pressure gauge over the range 

0-5000 atmospheres. The zero-error of the two 10,000 atmosphere 

gauges remained, as pressure was raised, and no error exceeding 

the quoted accuracy (1% of fUll scale reading) of any of the three 

gauges was found. The calibration was repeated by reducing the 

pressure from 3,000 atmospheres, with the same result (Fig. 9). 

The results were assumed to hold for pressures above 3,000 

atmospheres. 

8. The Temperature Control S stem 

As the temperature rise of the central wire during the 
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experiment is .3 C, maximum allowable temperature drifts in the 

cell are on the order of .,05°C/hour. In order to achieve this 

temperature stability the pressure vessel was placed in a 

temperature controlled, stirred oil bath. (Fig. 10). 

1) Tubalox immersion heater, rated 230/50 volts, 3 kw, with no 

heat dissipation above the surface of the oil. Power to this heater 

was supplied through a 15 amp variac. 

2) 1" thick blockboard case, housing vermicullite insulation. 

3) 3° thick layer of vermicullita insulation around and beneath 

the galvanized iron tank. 

4.) 	1/30 HP induction motors made by Klaxon Ltd; 1425 rpm 

slowed down by gearboxes and with shafts mounted with 1209  long 

vertical fins as well as 4P diameter brass propellors at the 

tip. 

5) i" thick 2.11-11d si:eel plate, supporting pressure vessel. 
1 

6) /8" thick duraluminium sheet oylindev!, provided. lagging by 

trapping 1" of oil between itself and the pressure vessel.. 

7) Pressure vessel. 

8) 10 gauge galvanized iron tank, 20" long, VP wide, 35 9  deep 

and with 4P flanged top. 

9) Tubalox immersion heater, rated 230/250 volts, 500 watts, 

supplied through the temperature controller. 
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The whole system was provided with a lid made of -14' thick 

syndanyo plate and 3n layer of vermicullitz, enclosed in cardboard,. 

The heat transfer avid used was Shell Voluta Oil 45, a 

mineral oil based fluid, which can be used at temperatures up 

to 300°C. The oil was pumped in and out of the thermostat bath, 

using the oil handling system shown in Fig. 11, which was also 

used for cooling the system. 

A temperature controller was designed and constructed in the 

departmental electronic workshop for the purpose of providing the 

required stability, and will be briefly diseussed here. 

The sensing element, Degussa, 100 ohm (nominal) resistance 

themaneter, was used as one arm of the bridge with a PYE, 

variable resistance box, av the pre-set arm. The bridge was 

driven by an 18 -felt stabilised pcuer. 	The out-e-ba5.anc3 

voltage from the bridge is fed into a pre-amplifier, and then into 

a 3-term unit gain amplifier, the output of which is used .to determine 

what proport&oi of a second the heater will be turned on. 

This signal drives a gate which allows the output of a 

mains driven zero voltage pulse generator to reach the triau 

controlling the heater. The latter shuts power off when voltage 

across it passes through zero, thus breaking circuit at each 



1 Reservoir 
2 Heat Exchanger 
3 By Pass 
4 Pump  

5 Temperature Gauge 
6 Draining Line 
7 Filling Line 
8 Thermostat Bath 

fig 11 	 Flowsheet of Oil Handling System 
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mains half cycle, and being reactivated by the zero voltage 

reset pulse, as long as the gate remains open. 

Temperature stabtlity in the cell was followed over time 

by measuring the cell resistance, and the system described above 

was found to drift at rates of less than .05°C/hour after a 

settling down period of 12 to 18 hours. Furthermore, the vertical 

temperature distribution in the vessel bore was investigated by 

vertically moving a resistance thermometer. In the absence of the 

bath lid and the pressure plug, it was found that a vertical 

gradient of about .05°C existed. It was assumed that the gradient 

would be reduced to negligible proportions when the vessel 

closure and bath lid were replaced 

Finally in older to measure the axperimenUl temporaturo, an 

N.P.L. calibrated 25 olza (nmainal) resistance thermometer, made 

by H.Tinsley and Co. Ltd., was immersed in the bath between the 

pressure vessel and the cylindrical shell surrounding it. 

(see Fig. 10). Thermometer resistance was measured to .0001 ohm. 

The constants of the calibration polynomial were used by a 

computer program , in order to evaluate the temperature. 

(see section 10). Ekperimental temperatures will be quoted here 

to the nearest tenth of a degree centigrade. 



9. Procedure  
The thermal conductivity of toluene was measured, at 

each temperature, first at atmospheric pressure and then at 

various elevated pressures. 

As the pressure is raised by pumping, work is dano on 

the compression oil (DDT 585, Shell) and the test fluid; 

consequently the temperature in the vessel and the coal rises 

above the temperature at which the system is being controlled. 

More than three hours were allowed for this heat to be dissipated. 

Experiments were carried cut only after temperature drifts due 

to cooling :sere observed to be indIstiriguishable from controller 

drifts for about half an hour, 

The fl.AtevA:-r; 	-,v),7-17,111t7-  for erz,ors due to tee7e7re 

drifts in Nto cD31 is thr:-.E. drifts shou 	lass thsn .1% 	-;_ho 

temperature rise over the duration of the experiment. As 

experiments lasted approximately 20 seconds, and temperature 

rises wore never larger than .3°C, this condition corresponds to 
drifts of about .07°C/hour. In fact no experiments were carried 

out with observed drifts above .05°C/hour. These drifts were 

followed by measuring the cell resistance at short intervals. If 

before a run cell resistance changes larger than those allowed for 

59 
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controller drifts were found, this was attributed to cooling due 

to pressure leaks and the set of runs cancelled. 

In theory, two factors must be taken into account in 

identifying a pressure leak through cell resistance measurements. 

The first, as indicated above, is the changes of temperature 

undergone by the system, as the pressure is raised or lowered. 

This must be distinguished from resistance changes that Pt wire 
0 

will undergo due to changes of pressure. At 50 C, the pressure-

resistance relationship for platinum may be represented by the 

empirical equation (Ref. 5) 

R = R (1+a P + b P
2
) 

p 
 

0 

whore 
-12 

a = .1.949 x 10
-6
, b = 7.86 x 10 	and R0 is the resistance 

at atmospheric pressures. 

While, clearly, the two effects change the wire resistance in 

opposite directions, this in practice does not pose a serious 

problem as the magnitude of the resistance change duo directly to 

pressure changes, is much smaller than the temperature change due 

to work done on the liquid. 

At each setting of the temperature and pressure, the pressure 

was raised to a slightly higher value than the desired one, in 

(14) 
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order to compensate for drops duo to heat dissipation. At each 

pressure and temperature, three thermal conductivity measurements 

wore made. In addition a run was simulated where the voltage drop 

across the 10 ohm standard resistor was measured in order to 

calculate tho current change. 

An experiment is set up as soon as temperature and pressure 

stability criteria are satisfied. The power supply is allowed to 

stabilize at 10 volts output, where the current drawn is about 

/ milliamp. The following operations are then carried out. 

1) Total cell resistance is measured and the ballast resistance 

set to the same value. 

2) Current is switched into the cell and the voltage drop across 

the two potential leads measured. Heating due to the 1 milliamp 

current is negligible. 

3) With the current going through the ballast the potential 

drip across the standard resistor is measured. This allows the 

calculation of the current flowing in the call in (2) and conse-

quently the calculation of the cell resistance. 

Output from the power supply is then raised to 200 volts, 

drawing approximately 20 milliamps; the system is allowed to 

stabilize for five minutes. 
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4) Necessary backoff voltage is calculated on the basis of 

allowing about 20 millivolts across the voltmeter; this is set on 

the voltage divider. 

5) With the current flowing through the ballast the potential 

drop across the standard resistor is measured in order to 

calcUlato the initial current. Tho voltmeter is then set to the 

.1  second sampling period, the tape punch activated and the 

current switched into the cell. 50 minutes was allowed between 

runs. 
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10. Processing of Data  

In order to calculate the thermal conductivity from 

V v.s. t data, it is necessary to know the temperature 

coefficient of the cell wire resistance. To this end the cell 

resistance was measured as a function of temperature at each 

experimental pressure, over the range 30..95°C. 

A computer program was written to execute the following 

operations: 

1) Thermometer resistance data was converted to temperature 

readings. 

2) For each pressure the temperature v.s. cell resistance data 

was fitted to a straight line. 

3) Using the T v.s. Re  fits, pressure v.s. cell resistance data 

was cross-plotted and fitted to a quadratic. 

4) These curves, in turn, are used for fitting straight lines to 

T v.s. R , for each experimental pressure. dR/dT values 

relevant to the experimental states wore then computed. 

The source program listing may be found in appendix 3B. 

The least-squares polynomial fitting subroutine used, was a Program 

Library deck written by C. Ho, Computatitn Laboratory G.P.D., 

Rochester, hinnosota, 	The same subroutine was 

used in the main data analysis program , which will noNrbe 

described. 
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Data in the form of paper tape produced by the Teletype 

punch in Atlas autocode was first loaded, without code translation 

on to magnetic tape by the IBM 1401. The main programme written 

in Fortran IV was then loaded on the IBLI 7094 to perform 

the following operations. 

1) Eaeh data batch consisting of several thermal conductivity 

runs and a current run, were translated into BCD code*, assigned a 

decimal point in units of volts and read into the neiory. 

2) The following information was fed in from data cards, for 

each run: 

- the temperature coefficient of thermal condu-ttivity at the 

initial temperature 

- time delay before the start of the first integration period 

- mire and fluid densities and specific heats 

• ex,Jerimental temperature and pressure 

- backoff voltage value 

- temperature coefficient of wire resistance at the initial 

-.11 -ra...••••32.111c..1:••••41,- 

* I am indebted to Mr. Richard Beckwith of C.C.A., Imperial. 
College of Science and Technology for the translation routine. 

am.inrAci 
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temperature 

- voltage drop across the 10 ohm standard resistor with current 

flowing through ballast and power supply set at 10 V; this value is 

denoted by SV1, and is used for calculating the current at the 

10 volts setting. 

- voltage drop across the heating section of the wire, 

10 volts across the circuit, this is denoted by RIVT, and is 

used for calculating the cell resistance. 

- voltage drop across the 10 ohm standard resistor, with power 

supply set at 200 volts, SV2, used for calculating the initial 

current in the coll. 

3) 	Calculation of 01, q
z 

and q3. The heat dissipation per 

unit length in the active part of the cell is given by 

q(t) = V(t) I(t) 

where V(t) is the sum of VB  the backoff voltage (measured 

accurate to 10 microvolts) and the voltmeter reading Vv(t) 

(accurate to 1 microvolt). 

V(t) = V (t) + V . 
v 	B 

The current changes are measured by monitoring the voltage changes 

across the standard resistor (the resistance of which is known) 

during a simulated run. This data is fitted to a quadratic, 

I(t) 	= io + 	t-l- I 
2
t
2 

(15) 
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where i
o 
is the value relative to the backed off voltage. The 

initial current is then calculated from SV2 and the resistance 

of the standard resistor. Then 

I(t) = I0  + 	t + 12 
 t 2 

The power dissipation can can now be written as 

Iq(t) = I(t) V (t) + I (t) v 	 (16) 

The upper limit of the total current change during the 

experiment is 4,  ppm. Taking VB  300 millivolts, A V
; 

= 500 

microvolts, we see that the change in .he second term on the rhs 

of the last equation is much smaller: 
• 

) V 

A q 

here If  = I0  + A I. Hence measuring VB  to 10 microvolts produces 

negligible error, in the calculation of q2  and q3. 

Combining equations (15) and (16), with voltage change data 

as a function of time is sufficient to fit q(t) where the 

first term Ali  is calculated from the measured initial current 

and cell resistance. Hence 

q1 (t) = q(t)/L = qi  + q2t4-q3j 



q.  + q, 

2 

CI. =- LI 
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The time averaged power dissipation is given by 
2 

raix.rz jr  1̀3 t max 
3 

') Calculation of X I. The string of voltage changes measured 

as a function of time are smoothed Ly fitting to a quadratic in 

in t averaged over the integration period. 

V(t):A + Bg (t1) + Cg(ti) * 

where 

g(t i ) = t1 ' [1+ nt h  + 	(t1  + 6 
ti  

t 

Data taken during the first half second where specific heat effects 

are important is ignored. The first conductivity value is, found 

by processing readings 5-15 and a conductivity is calculated through 

an iterative procedure by using 6 more readings each time. 

An iteration is initiated by calculating the first 

approximation to the thermal conductivity by the lino source 

method. This value is used for calculating, through equation (13) 

a new value, which is fed back into equation (13). The process is 

(=tinned until the change is successive iterations is less than 

.01% of the value of X . 
1 

A series of apparent conductivities as a function of 

experimental time are thus calculated, along with corresponding 
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standard deviations, and differonces from the line source method 

arising from finite mire diameter, variable power and temperature 

dependent thermal conductivity. 

A listing of the source program may be found in appendix 3A. 
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CHAPTER 4 

DATA AND DISCUSSION 

Intrn:4,1ction 

The thermal conductivity of toluene has been measured 

at three temperatures between 30 and 90 degrees centigrade 

over a pressure range of up to 6250 atmospheres. In dIl,a 

series of approximately 50 measurements has been made. No 

data could be found for comparison with the high pressure 

thermal conductivity measurements of this work. Atmospheric 

pressure measurments were within about 0.5% of previous work 

by Pittman (Ref.5). 

In this chapter, the data will be presented along with 

results of hot wire dR/dT calculations. A sample calculation 

for the conductivity will also be given. 

2. Toluene Properties  

Analar grade toluene (Hopkin and Williams Ltd.) was re-

fluxed over sodium wire for about six hours and distilled. 

A middle cut was separated and it°s refractive index 

measured. This was found to be 1.4942 + .0002 at 25 ± .1thC. 
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No high pressure eLata on the heat capacity and density 

ofttausine are at present available. The heat capacity 

values at high pressure were taken to be those at the 

corresponding temperature at i atmosphere (Rea). Sinco, 

in the calculation of the conductivity the heat capacity 

appears in terms which are rather amail, the error arising 

from this approximation is negligible (see Chapter 3). 

Density data for toluene had to be estimated in order 

to relate the pressure to the compression of sample volume. 

Results of this calculation were used to compute the thermal 

diffusivity at high pressure, The method for estimating 

high pressure densities (Ref.2) from atmospheric data on 

P 
v.s. T , is based on the assumptions that isochors 

(constant volume lines) are straight, i.e. that (dP/dT)v 

is constant and that the (dP/dT)v v.s. P relationship is 

linear. 

r P2 P1 1 	[LP] = Ap + B 
dT V L T2  - Ti Jv 

By using the few available data points (Ref.3) 

(1) 
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PRES8.(ATK) V
rel. 

1810 .885 

2930 .853 

4400 .824 

where Vrei is the ratio of/ 	and the density 

temperature relationship from the International Critical 

Tables , 

p(T) = .88448 - .9159 x 10-3  T + .368 x 10-6  T2 	(2) 
(0< To C‹ 110) 

the density can be estimated over the relevant temperature 

and 	and pressure range (Fig. 1) • 

The method was checked by calculating n-hexane densities 

and comparing with previously measured values (Ref.4); it was 

found to be within 1% up to 2000 atmospheres, deteriorating 

to about 5% around 6500 atmospheres, over the 0-1000C 

temperature range. 
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The lake 

The length of the wire between the two potential 

taps was measured before the toluene runs. The catheto. 

meter measurements, which were described in the previous 

chapter yielded 

8.103 

8.100 

	

8.099 	Haan : 8.100 am. 

The measurement was repeated after the conductivity 

determinations. 

8.098 

8.105 

	

8.102 	Lean :8 .102 cm. 

This change of less than .02% is .within the accuracy 

of the measuring instruments, and in any case negligible. 

The calculation of the temperature coefficient of wire 

resistance has been described in the last chapter. At each 

pressure, dR/dT was taken to be constant over the experi-

mental temperature range, as the latter was rather small. 
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PRESS. WK) dR/dT(ohm/°C) 

1 .059875 

1:500 .059734 

2250 059663 

3250 ,059565 

4850 .059407 

6250 .059264 

4. Col ene Thermal Conductivities 

Results obtained in the experiments are given 

below: 
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PRESSURE 
(A911) 

MP, 
(°C) 

mw /
. X(moan) 

mw/cm.0C 
Av. % Deviation 
from the mean 

28.2 1.297 

1.300 1.298 0.1 

1.297 

30.8 1.282 

1.266 1.285 0.2 

1.286 

1500 30.8 1.633 

1.631 

1.630 1.633 0.12 

1.636 

61.4,  1.589 

1.598 1.595 0.25 

1.598 

91.5 1.537 

1.543 1.538 0.5 

1.544 



TABLE I Cont.. 

PRESStRE 
(ATM) 

TEMP. 
(0C) 

X 	X (mean) 
mw  / cra_oc  

mw/em-°C 
Av. % Deviation 
from the mean 

2250 30.8 1.824 

1.814 1.815 .34 
1.808 

61.4 1.822 

1.776 1.793 1.1 

1.780 

91.5 1.770 

1.800 1.791 0.8 

1.803 

3250 30.8 1.917 

1.911 1.914 0.1 

61.3 1.937 

1.943 1.938 0.1 

1.935 

91.6 1.940 

1.935 1.938 0.1 

10939 
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TAME I Cont..  

X 	X(moan) 
FRESSURE 	 . • 	A-re % Deviation 
(ATH) 	(oc) 	mw/cm.0C 	from the mean 

77 

.1A50 q 2408 

2.125 20110 0.35 

2,123 

61.3 2.170 
2.183 2.173 0.3 

2.170 

91.6 2.183 

2.187 2.186 .1 

2.189 

pler,1•1•Me,A.M. 

30.8 2276 

2.295 2,202. .4 

2.276 

91.6 2:,369 

2.404 2.383 .6 

2.375 

6250 

These results are plotted in Fig. 2. 
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5. Samele Calculation. 

Run 23. 	Date: 1/8/196 

Temperature = 30.8°C; Pressure = 4850 Ats. 

Temperature Drift = .01 °C/hr 

Measurements Before Rim. 

DC supply : 10V 

Voltage Drop Across Cell: 	27.5970 mV 

ca 	ca 	co 	 Ballast: 	27.5971 ml! 

S2 	 St 	 C? 
	

Standard Resistor: 	9.8302 mV 

CI 	 SI 
	

Heating Section of Wire: 16.9312 mV 

Back off Setting: 314.04. mV 

DC Supply: 200 V. 

Voltage Drop Across Standard. Resistor: 196.494 mV 
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Summary from Computer Output. 

Operating Current: 19.6478 milli Amp 

Initial Resistance: 17.2250 ohms. 

dR/dT (approx. value used): .058954 ohm/°C. 

No. Pts 
Included -. 

Standard 
Deviation 

15 •2 - 23-x 10
.2 

.64358 x 10-6  

33 .21145 x 10
2  

.60107 x 10
-6 
 

51 .21126 x 10
-2 

.755
73 

x 10
-6  

69 .21123 x 10
-2 

.76917 x i0
-6 

87 .21165 x 10
2 

 .74863 x 10-6  

105 .21154 x 10
.2 

 .81744 x 10-6  

Linear fit extrapolated to zero time gives 

X= 2.110 mw/cm.°C 

Smoothed dR/dT = .59407 ohmeC. 

Corrected% = 2.125 mw/cm. C. 
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6. Sources of Error 

During the experiments. temperature drifts in the 

cell were foilgxal by ru-.3slit,ing the cell resistance at short 

intervals. As each set of determinations was completed 

within the span of about two hours and the accepted drift 

rate was 0.03 C/hr thti measurements can be averaged with 

a maximum error of .1%, over the pressure range. On the 

other hand, as mentiond in the pl-evious chapter, the 

experimental temperatoro is neasursd in the oil bath 

between a hollow cylinder surrounding the vessel, and the 

pressure vessel itself. While this arrangement somewhat 

shields the thermometer from temperature fluctuations in 

the oil bath (4- .1°C), the temperature smem by the 

thermometer is expected to be loss stable than that in 

the cell, which is surrounded by the thermal mass of the 

pressure vessel. As the time lag between the exterior of 

the vessel and the cell is about 3 to 4 hours. the 

temperature differenon (assuming continuous drift in one 

direction) could be as much as 0.3 to 0.4 degrees centigrade. 

This gives rise to two types of error. 

1) The measured thermal conductivity, depending on the 

magnitude of dx /dT at the given pressure, would be in 

error, by 0.2 to 0.5% 
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2) In the evaluation of dR/dT, the cell resistance would be 

matched to a temperature different than that in the cell. 

The resistance value would be in error by about 0.2%. The 

error in dR/dT with an upper limit of about 0.5% due to this, 

might be expected to decrease through the double smoothing 

procedure of R v.s. T data outlined in the previous chapter. 

Furthermore, the shortness of the temperature range would be 

expected to affect the accuracy of the temperature 

coefficient. This error could be estimated to be in the 

range 1.0 to 3.0%. and closer to the larger value at the 

ends of the temperature range. 

Errors in the thermal conductivity measurement due to 

convective effects are due to two types of mechanisms. The 

first is due to heating of the central part of the wire with 

the result that at the extremities vertical temperature 

gradients aro set up. It has been assumed that the 

radial temperature field remains unchanged until the `cold 

front approaches the bottom potential tap. To this must be 

added heat losses from the potential lead into the convecting 

fluid; this clearly ties in with and aggravates the problem 

of heat loss from the central wire by conduction into the 

potential loads, with the result that the radial temperature 

field is distorted. These errors, however, may be 
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minimised by extrapolating the data to zero time, provided 

that the fluid is assumed to be initially stagnant. This 

brings us to the second type: free convection at the start 

of the experiment due to vertical temperature gradients. 

The observed fall in apparent conductivity with time 

observed in many runs is consistent with hot fluid rising 

from below the heating wire in the cell. It is difficult 

to estimate the error arising from these initial vertical 

temperature gradients in the cal, since these would 

depend on the magnitude of the gradient. This effect is 

somewhat smaller at higher pressures, as would be 

expected, and the error arising from it would be estimated 

in the range 0.2 to 0.5% after extrapolation to zero time. 

This initial free convection would also imply that 

potential tap losses are not completely eliminated by 

extrapolation to zero time. The resulting error could be as 

high as 0.5%. Errors due to radiation losses may be ignored 

with little error when the data is extrapolated to zero 

time. Finally, as can be seen from percent deviations from 

the moan an error of 0.1 to 1.0% must be accepted from 

random factors, such as electrical noise, and scatter in 

the extraplated lines. 

Summarizing, the error duo to averaging the results of 

each run should give rise to 0.0, uncertainty in the 



temperature measurement to 0.4 to 1%, the initial convection 

effect to 0.2 to 0.5%, uncertainty in dR/dT to 1 to 3%, 

end effects to 0.1 to 0.5%, and random errors to 0.1 to 1%. 
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' CHAPTER 5  

THE BEAT TRANSYPIt EQUATION WITH VARIABLE 

PHYSICAL PROPERTIES 

1. Introduction 

In Chapter 2 a set of linearization transformations, 

proposed by Kudryashev and Zhemkov, were applied to a problem 

where the inversion procedure was rather straightforward due 

to g reducing to Kt without significant error. Here the 

evaluation of those transformations as a tool for solving 

certain types of partial differential equations will be 

attempted. For a chosen simple geometry, the solution obtained 

by this method will be compared with two other ways of solving 

the problem. It will be seen that while all three methods 

agree for small nonlinearities, the differences for large 

values of the temperature coefficient of the thermal conduc-

tivity are significant. 

2. The Infinite Slab  

For purposes of comparison, a problem solved with a 

variational technique (Ref.l) has been chosen. 
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An infinite slab of thickness 2L is held at uniform 

temperature Ts  , and the boundaries -L and I subjected 

to T(-L,t) = T(L,t) = 0 , for t > 0 . The temperature 

profiles are symmetric with .respect to the plane x = 0 . 

The density and the heat capacity arq assumed constant and the 

thermal conductivity is given by 

X(T) = Al ( 1 + X2T ) where A2 X  =1i dT •c-11 	(1) 

The problem can now be stated as 

T(x,0) =Ts  ; 	-L x I 

T(-L,t) = T(L,t) = 0 	; 	t > 0 

with the partial differential equation 

PC aT _ a 	[ x(T) aT ] . 	(2) 

	

1-  at 	ax 	at 
In order to simplify handling, the problem is put in dimensionless 

form. The new variables are defined as : 

	

X2 t 	_ T 
; 	=p7-1,2 	; e - y 

s 	
• 6 = Ts X2 (3) 

and the problem can bo re-stated in dimensinless form as follows: 

6(p,0) = 	p < 1 	(4) 

e( 	) = e( 1.er ) = 0 ; T > 0 	 (5) 

ae — a 	[ ( +me ) ae] 	(6) 
aT  a$ 	a$ 
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For this particular problem. the Kudryashev and Zhemkov 

transformations (ref. 2) can be re-cast as follows. 

The enthalpy/mass, referred to the initial temperature 

is defined as 

dh = dO 
and the quantity 0 as 

0 =111 X d2 

Differentiating (8) and using (7) 

d0 = X 0 

which immediately leads to 

=a  de 
d1 	dP and , V20 = v (X VG) 

Furthermore, we define the quantity 

= 	• dg = x dT 
'o 

Using equations (9)-(11) we get 

V20 = 
ag 

and by (7) and (8) 

0(1,0) = 0 . 
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In order to obtain the boundary conditions, 

0 
h = rdh, 	de'- e 

At 0 = 0 	h = -1. Therefore 
-1 

0(-1,,§) = 0(1„g) = f [1+ a( 11' 41 ) 	dh'-= -( 1+ ;3 ) . (14)  

The solution to the problem stated in equations(12)-(14) is 

well known (Ref. 3) • 

‘ 22 
x(x,g) = 11-2.0. 	,(-011  exP[-(2n+1) 	] cos (2n+1, 1n3 (15) 

	

nomk2n+1) 	4 	2 

`where x=0 +(1 +i),and x0 =(1 

The transformation must now be inverted in order to got 

e(13,T) • If equation (10) is integrated with respect to 13 

R.: 	di, 
°
dre 	x  g2200  • B 

By using (5) and(14) 

0(01g) + (11) = 0(5,T) +i 02(e•T) • 

from which it immediately follows that 

X(O•g) = e(o,T) 	e2(a,1) . 

This equation, coupled with eqn. (11) 

g 	( 1+ ae ) ci,r 9  
0 

will be used to obtain 0(0,T) . 

(16)  

(17)  

(18)  
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Solution of Equations (1,(17) and (18).  

In order to solve the system of equations (15),(17) and 

(18), it is necessary to resort to numerical procedures. g 

is taken to be the polynomial of the form 

g = T 	f Ai  eXP(-Yi  T) 	(19) 

where each pair of constants Ai and yi are computed from 

successive approximations. For any given pair of p and T 

we first integrate under the curve e(p,T) by setting g=r 

Then 

g—r+alecPre = 
	

+ Ai AXIA.-Y1  T) • 	(20) 

Clearly, in the first approximation 

Al exp(-yi T) = aledT° 
	

(21) 

Taking the natural logarithm of both sides and differentiating 

with respect to T we get 

9l (T) 
I  = 	T  Yi 	 (22) 

0 dT° 

Substituting this result in (21) and solving for Al  

A
l = a [exp(Nti  T)] J e 	. 

0 
	(23) 

The second pair is obtained similarly;g now is given by 

g = T + 	exp(-YiT) . 



A new value for the integral 0 dT' 

Ai  exp(-yiT) +12  exp(-Y2T)= o j 0 aTo 
0 

where Ai  and yi  are known. Proceeding as before 
r 

Y2 =-4Yi  - 0(T) / jo
r 
 e dT°  and 

Az  = 	exP('111T)  + 1: dro exp(v2 T) 

It can easily be shown that the n-th pair of coefficients 

is given by 
-1 r n E 	0(Y)  1 

Tn 	L k=1 Tk 	0 die J  
and 

(24) 

ng[a j 0 de 	Ak  exp(-yk  T)]exp(yni). 
0 

The iteration was stopped when the last two calculated 

values of 0(T) were less than 10-5 apart. The calculation 

was repeated for each given pair of 0 and T 	A 16 point 

Gauss-Legendre quadrature was used for performing the inte-

grations. 

4. The Finite Difference Approximation  

For the purpose of comparison, the problem of equations 

(4) - (6) was solved using the finite difference technique 

(Ref.4); as only a general outline of the way to deal with 

the problem was found in the literature, the essentials of 

the solution will be given here. 
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can now be calculated 

An  (25) 



If we divide the one-dimensional space-time plane into 

a grid whore the space variable incrment is h, and time in- 

crement k, the first derivative of u [i(xlt) 	is 

apprcozimated by 

6u & [ u(x4h/2) u(x.h/2) 

Then 

o(x 6u)& t [A (x+h/2)u•  (xih/2)-k(x.h/ 2)u•  (x-h/2)] (2?) 

where utia given by (26). Denoting the central grid element 

by ujo  rather than u(x,t) we have 

v.(xvu)g-- {1/44(ui4i-ui) - X 	(u - u )] -2 1 
14 	i-1 h 	(28) 

and the time derivative of u 

au L 	( u 	_ u4 	) 
8t • k i.j+1 -0 

By defining r= h2 , an= rAn  and X= 1+ au, 

and using the Crank-Nicholson method (Ref.5), 

u. 	a = -(2r+2) +  
2ra 
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• 	 (26) 

(29)  

(30)  



where 
rar 2 	ar 2 AL-2(2r+2)2  44rar7 uifi  4:rui41.4E u3,-1 +rui_1+2bi]. 	(31) 

Here all les are understood to denote the grid point j +1. 

In equation (31) 

be ui 	(ui41  -ui) - 	(urui_i) 
	

(32) 

where Ws are understood to denote the grid point j. 

Using Gauss-Seidel iterations (Ref.5), the n+ 1°th approx-

imation forixi,141  is given by 

n+1_ -(2r+2) +MIT 	 (33) ui 	
27r 

where 

.n+1  . 	ra 2 
A 	= k2r+2)44ra[ -T-= u 	-Fru 	u2  2 i+1,n i+1,n+  2 i-101+1

+ rui_i 0141+2bi] 

(34) 
where bi  is given by (32) with the uos denoting the n + loth 

approximation. For faster convergence the iterations were 

carried out with successive over relaxation (SOR). 
-14 	n n Defining A= ui 	u. 	, in SOR 

n+i _ n 
wb A  

where the SOR coefficientwb is defined by 

wb  = 2/(14' 4t) 
	

andµ= l;cosh.  
(Ref.5). 
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5. Results and Conclusions 

Temperature profiles were calculated by the two methods. 

Figure 1 shows that fora = .1 agreement is quite good. On 

Figure 2 results of the solution of the problem by the varia. 

tional technique (Ref.l) are plotted as well as the two 

previous methods for or = 1. Assuming that the finite 

difference solution is the °° correct one, it will be seen 

that for a = 1 

a) the variational technique is inaccurate for small times, 

and gets progressively better for longer tomes, and that 

b) the method resulting from the Kudryashev-Zhemkav trans-

formations shows that better agreement for short times but 

.'rapidly deteriorates as,' gets large. 

That the error should grow with time is probably in. 

dicative of instahlitt7 in the integration procedure, as the 

set of equations (15), (17) and (18) is exact. 

The results for a = .1 can be taken as justification 

for the use of .this method in the analysis of the experiment 

presented in earlier chapters,since the corresponding a is 

less than .01. Thus in the present form this method is 
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applicable to a large number of problems. It also lends 

itself to a straightforward evaluation of the errors due 

to temperature dependence of the physical properties, by 

estimating tho'uppor.Umit of the'intogral 

A  , =•1t p 	t cp a  

as illustrated in appendix 1. 

Computer programs for the above calculations will be 

found in appendices 3C and 3D. 
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CHAPTER 6 
	 97 

The Harmo.ac Oscillator Model 

for  Liquids of Spherical and 

Chain Molecules 

La short account of the ocill model for simple 1LcralcIs, 

and its extension to the harmonic oscillator approximation 

will be given, followed by the application of these models 

to chain molecules. The assumptions involved in each case 

will be briefly discussed. 

1. The Basic Equations 

The Helmholtz free energy, A, of a system is defined 

by the equation 

A = - kT In 

where k is the Boltznsnn constant, T is the absolute 

temperature and Z is the partition function of the system, 

defined as the sum over all states of the Boltzmann factor. 

exp ( Ei/RT), Ei denoting the energy of state i. 

In the classical approximation, the translational 

partition function can be expressed as an integral 

= NION 	exP[-H42,1,...1244, 1 r - , ...,s0]dp/..4541..dsg 

where H, the Hamiltonian is given by 	(2) 
N 2mi 

H = 	+ 0 ( r 	ILINT)* 	.(3) 

Pi = m dr  
vector of molecule i, which has the mass m. 

Here and Si 	is the position 



On the assumption that the Pi  and ri are independent of 

each other, the two sets of integrations, over the.?.j and r-

oan be performed separately and the partition function wi'llten 

as a product of the two. The set of integrations over the 

momenta yields: 
3N/2 [32_111ell  

h2  

The integral over the positions of the molecules is called 

the classical configurational integral defined as, 
1 	. 

ci(N.Tonr.T 	 exp(— uNT) 4E1  .... 41:6 	(4) 

where U is the total configurational energy, (potential 

energy) of the system. If one assumes this energy to be 

pairwise additive, then 

U = 	u(Rii), 	(5) 
i,.j 

where Rij, denotes the intermolecular separation, and u(Eij ) 

the intermolecular potential. The translational partition 

function for thQ system is then wiitten as, 

z =L h2 1 	Q(N.T.V) . 

F27,,,ilert-o/4 	
(6) 

2. 	The Equations of the Cell Lattice Model 

For dense systems, composed of molecules with attractive 

forces, the potential energy is approximated by 
N 

U = Ua  + L [0(ri) e(0)i 	(7) 
i=1 
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under the following assumptions; 

a) That the volume of the system be subdivided into cells 

of equi-.1 volume, 

b) that each of these cells contain one molecule, and 

o) that each molecule move in its cell independently 

of molecules in neighbouring cells. Ref (la). 

In equation (7), Bois the potential energy of the 

system when ail molecules are positioned in the centers 

of their respective cells, ri in the displacement of 

molecule i from the center of its cell and x(ri) 	x(0) 

is the potential energy change involved in this displacement. 

Equation (4) then takes the form 
1 

Q(NiT•10 = NI exp 	OAT) X 	(8) 
• 

where 

7 

	exp [- t- (r) - '(0)3 /kT) dv 	(9) 

the integration being performed over the volume of each cell. 

3, 	The Smearing Approximation 

In order to calculate the mean displacement energy, 

given by equation (9), (Ref (2) and (3))we take a molecule. 

A4fixed while the second, B. is allowed to move about a 

sphere of radius r. The center of the sphere is a distanc% 4(ip 

from molecule A. The distance between molecule A and molecule 

molecule B is given by 
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r 2 d 	LeFr 
2  -2 ar cos OP 

where 9 i:, 	angl 	p20. 3r:f.', The avorago mutual 

potential over the surf ace. of -one sphere can be written as 
2n r 

e.Q.,51mea...ay 
oo 

f2n Lo sin 0 dO dO 

If e(r) is taken as the Lennard-Jones 12-6 potential 

e (r) =1(-17-2) 	—2(-°) 
12 	6 

where e is the potential minimum, and 1.0  the intermolecular 

separation corresponding to that minimum, and if we donote the 

nearest number of neighbours by z, the average potential 

per cell is thon given by: 

4 	rv°12  ;(r) = 4ze 1.1
i-
3] rl(y)+1] 1; J  [m(Y)+1]) 	(12) 

where 

vc) r 
 

= 0 and a 12V .Y - r2 •
a 

	

1(y) = (1412Y425.2 Y2+ 12 Y3+.Y1-4 ) (1-y) 1°  1 
	

(13) 

m(y) = (14y)(1-y)-4  - 1 . 	 (14) 

Using equation (12) to derive 'e.(0), we get 

r.„  
e(r) — e (0) - 	

0 z 	1(Y) — [irrf  2  m(y)i ' 	(15) 

4. 1s....._11T:ElamlatallEalllaiall:421:0)dinatio_______ 

By expanding equation (15) as a Taylor series about 

the center of the cell, in terms of y, we obtain an 

(r)  (10) 
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expression for small oscillations of the molecule 

F3r)-7(0)=7"eq0)--3 4"0(0)+ . • • • 
by trunc.---,,;_,11,;.; 	relf; ; S113 i 	afte-t 	tr.31.7), 	the 

harmonic approximation to tae 	cell potential acting on a 

molecule which performs small oscillations about the center of 

its lattice cell. Ref. (4a). 

	

(r)-; (0)= ze [ 22n4  - 10 	12 	 (16) 

Thus, the configurational integral can be expressed in the 

harmonic oscillator approximation as in equation (8), with 

X 
r , 	[22 	101-4j2  [V dv • 	(17) 
J v  

By making use of the expression for the restoring force constant 
for small vibrations, it=-4n2v 2n, the neon frequency of 

oscillation can be given by 

	

1 	2z e 	v° 4 	v° 2  
v = 	, r 22 (-3r  ) -10 (7; ) 	 (18) 

2n f; 	a' L 

5. Discussion of the L-J-D Theory: 

A. Kirkwood's Treatment . (Ref.5) 
In an attempt to establish a firm theoretical basis for cell 

lattice theories, Kirkwood shows how the assumptions mentioned 
in paragraph two of this chapter, arise in the mathematical 

treatment. The classical configurational integral is written as 

	

Q=S. • • . 	at,,  (-L/kT) dv1 	. . .dv 	(19) 
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where v is the total volume. By assuming N lattices each of 

volume A, and expressing tho integrals over V of each molecule 

as a sun: .pf 	073" the toalvidual cells, (assumption (a) 

in paragraph 2.1 C4 ca.:1 	ilewl-A.1 

Id 	N 611 
(4= E . . . .E 	. 	exp(-UAT)dvi  . . . dvg. 	(20) 
lid 1N=1 

The NN  integrals of equation (20) can also be written in terms of 

integrals 21/(41 	 mN) where the m are the number of 

molecules occupying each cell i: 

Q = 	E 	Ng 

	

ZN 

1. . . . mN) 	(21) 
N mi.

a941 
147:°  (Ins!) 

. . m  

s=1 

Here there is one integral ZN  corresponding to the case of single 

occupancy of each cell, Z(1'1' 	1). we  can now define 

the parameter a by the relation 

a
N 

= 	 z(mi  • • • mN) 

mi. . 	li(ms!) 	z  (1 . . . . 1) 

and 
.,N 

Z
(1
'
I 	

 
1) N: 	 (23) 

At high densities where the single occupancy assumption is 

reasonable, a approaches unity, whore as, as the density tends 

to zero a will tend to the value e. The entropy calculated 

on t'tie single occupa::.-.7 assumption is low as a is assumed to be 

equal to unity. Tho fact that more of the 

(22) 

rat N 
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total volume than javet one cell is available to each molecule, 

and hence that a lies between unity Inde, gives rise to the 

concept of communal entopy. 

Kirkwood continues his treatment by considering only the 

single occupancy integral. In order to write the free energy . 

esplicitlk the thitd major assumption is introduced: the 

relative probability density in configuration space is written 

in the form of the product of probability densities of each... 

cell, assumed,to be independent of 444i-other. 

PN 	m(rs) 	(24) 
s=1 

where. rs , the displacement of molecule s from the origin in 

its cell . 

The subsequent minimisation of the free energy by Kirkwood, 

seems to yield lower energies than those of the L-J-D theory. 

However there is no"theoretical justification for expecting the 

lowest calculated free energy to be closest to the real value. 

"It is much nearer to the truth to regard the variational theory 

as justified insofar as it approximates the L-J-D theory" 

(Ref. ib) 

B. Barker's Critique 

i) The smearing approximation: For rigid spheres, free 

volumes calculated by using the smearing approximation are about 

thirty per cent lower than those calculated by detailed analysis 
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of the volume distribution. The pressures calculated by this 

approximation are not very different from those calculated from 

the "correct' free volumes, but the entropy is considerably lower. 

Similar behaviour is observed for potentials with attractive 

forces, the error passing through a maximum in the vicinity of 

the critical density. As the density approaches the triple point, 

and further increases to that of the solid, the error tends to 

zero. (Ref 10). 

ii) Correlation effects. 

Calculations assuming that only first neighbour motion is 

significant has yielded good results about the critical density, 

and this result should be valid at higher densities as 

Most of the error due to assumption (c) of paragraph (2) can be 

accounted for by taking into account binary and ternary correlations. 

(Ref 1d). 

iii) Multiple occupancy of cells: This remains as an 

essentially unsolved problem: Attempts have been made to modify 

the simple occupancy configurational integral, in order to take 

multiple occupancy in to account, such as: 

Q  (tti1 	
(uin )1(i . . . . i) 

(25) 

where 	multiplied by a factor <Di  given by eqn.(25) 

for each cell that is occupied by i molecules; various ways to 

calculate the W1  3 have also been put forward, Refs. (6),(7),(8). 

These models however have so far failed to take into account 
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the altered correlations that arise from having multiple 

occupancy. (Ref 10) 

iv) The Harmonic Approximation. The approach is similar 

to the. Einstein model of the solid and is a justifiable 

approximation only at high densities. The error arising from 

the assumption that the-molecule vibrates in a cell where,, all 

neighbouring molecules are fixed*  can be dealt with by taking into 

account short range correlations, as in paragraph (ii). 

comprehensive treatment of these correlations will be found in 

Ref (1), Chapter 6. 
The second major departure of this model from reality is 

the assumed constancy of the vibrational frequencies throughout 

the system. Clearly one expects to:observe - a whole spectrum of 

frequencies; the Debye model is relevant for the analogous problem 

in the solid. • 

6. The Cell  Lattice Model for Pure Polymer Solutions. (Ref 4b) 

This treatment consists of a cell model approach applied 

to long chain molecules, for the calculation of the configurational 

partition function in a manner that is essentially independent of 

chain length. The liquid is charachterised by three parameters,e 

the attractive energy minimum, r° the intersegat separation 

corresponding to the energy minimum and the 30, external degrees 

of freedom. The latter are independent of valency forces: 

intrtmolecUlar frequencies are at least one order of magnitude 

larger than the external frequencies, and the influence of external 
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factors on these frequencies (and there-by the internal degrees 

of freedom) need not be considered in the first approximation.. 

The 3c external degrees of freedom are determined altplrally 

through a corresponding state treatment of a homologous series, 

in this case normal alkanes (Ref.4c). Here only odd numbered 

chains are considered since from x-ray data, the volume of a 

CH2 -.CH2 segment is known to have about the same volume as the 

monomer of the series, CH4, 'Thus the segment number R is defined by 

R = 2(n+1) 

where n is the number of carbon atoms in the chain. 

The major assumptions involved in the model are the following: 

The chain molecule is treated as a set of point centers, each of 

which moves in a sphericallymmabtrie force field. The potential 

energy between two point centers of different r-mers (chains) is 

taken as a two parameter law 

e(r) = e m(r.) 

where r is the point center separation, and p 	is most 

commonly taken as the Lennard-Jones 12-6 potential. 

The criterion for the existence of lattice is that the mean 

distance between point centers be equal, whether the point centers 

belong to the same r-mar or not; i.e. that 

a= d 6  r e  

where °aP is the mean distance between two neighbouring chain 

segments, belonging to two different chains, and d is the distance 

between two successive elements of the same chain. At absolute 

zero, a = r and the r--marsaro perfectly ordered on a regular 
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lattice. As the temperature is allowed to increase, the lattice 

will be distorted by the expansion of the liquid, and the model 

will progressively cease to represent the liquid structure.. The 

treatment assumes that the distortions can be ignored if the 

volume expansion is less than a few per cent.., Then the volume per 

segment is 

v  = L; 3 y 	a3 (26a) 

whore for an f.c.c. lattice Y=tri , and the reduced volume per 

molecule is given by 

v = 	14 [A )3  
33 y 1.0  ( 26b ) 

It then follows that, assuming the Lennard-Jones 12-6 potential 

between two point centers of different chains, in the smearing 

approximation yields an expression analogous to equation (15): 

i(r) - Z(0) = r 	1(y) 	(f)2  02(y) 

whore only the external number of contacts St 	is different 
R' 

from the analogous expression for the monomer. Hero z is the 

coordination number of tho f.c.c. lattice as before and (7q /R), 

defined as: 

R 
= 7,2 +(2/11). 	 (28) 

is seen to be a weak function of chain length (Rei 4d). 

In the harmonic approximation, the mean frequency of oscillation 

can be derived andlezously: 

v = 217c_ n  [ 2( 	) 	[ 22(r)4 10 6r)2  ] 	,*-9) 

(27) 
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7. The Heat Capacity 

The partition function for this model can now be given 

by 

Z = 	exp (oallo  /kT) xNc/R 	(30) 

For spherical, harmonic oscillators, there exists three 

translational ( kinetic energy ) and three configurational 

(potential energy ) degrees of freedom. The translational 

degrees of freedom remain unchanged for R-mer segments; 

however,the configurational degrees of freedom have to be 

modified to take into account the additional limitations 

imposed upon the segment by the intramolecular contacts. 

The surface around a segment is only partly free for 

intermoledular interactions, the remaining part tieing 

blocked by the adjacent segments in the same molecule 

(Ref. 9). Hence the number of configurational degrees of 

freedom per segment is 3c/R ; the coefficient 3 is absorbed 

into x since the latter is a volume integration 

hence the exponent Nc/R in eqn. (29). 

The derivation of the heat capacity at constant volume 

from eqn. (29) is straightforward and yields 

Cv = 1 k(1+ c/R ) • 2  (31) 
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CHAPTER 7 

The Harmonic Oscillator Model  

of Thermal Conductivity 

In this chapter the theory of Horrocks and McLaughlin 

will be briefly discussed and then extended to pure liquids composed 

of R-mer molecules. Results of calculations will be presented and 

compared with experimental data for normal allanes. 

1. The  Harmonic Oscillator Model of Thermal.  
Conductivities of Simple Liquids (Ref la) 

Heat transfer down a temperature gradient occurs by two 

molecular mechanisms: a) vibrational, b) convective. 

a) Vibrational mechanism: The rate of heat flow can be written as 

	

-2n. . vi ALI 	 (1) dt. 	dx 

where n = number of molecules per unit area of the liquid 

quasi lattice. 

v 	= mean vibrational frequency of the molecule given by 

equation (18) of the previous chapter. 

P = the probability that heat transfer occurs when two 

vibrating molecules collide. 

1 du = the energy difference between successive layers 
dx 
of the liquid quasi lattice. 

The expression is multiplied by 2 since the molecule crosses 

a plane perpendicular to the temperature gradient twice for each 

complete vibration. Using 

dU = dU dT c  d_r 
six dTdx vdx 

and the one dimensional Eourrier equation, we get 
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Avib = 2nPvl Cv 	 (2) 

where Cv  is taken as 3k. Assuming the virtual absence 

of holes n 1/a2  ; also 1 = /ra/2 and P= 1 . Hence 

Avib = a `'.17  v 	• 	 (3) 

b) Convective Contribution.- In the absence of a temperature 

gradient, the frequency of movement J of molecules from 

one adjaeent layer in the liquid. to the next is given by 

nh 	1 J= 	 exp(-e0/ kT) 1. 	vf  

where of is the free volume of the liquid, eo  the energy 

barrier to be overcome for molecular convection, and nh  

is tho ratio of the number of holes to the total number of 

molecules. Then 

Xconv. = 21.01 frii • 

Without going into further detail it can be said that 

X Xvib Xcony ' 

and that for simple liquids, up to their boiling points. Xvib 

is by far the dominant term in equation (5), and that the . 

convective term can be dropped as a good approximation (Ref. lb). 

Thus 

x = 1-11 cv  v 	 (6) 
a 



2. Application to Chain Molecules  

As intercellular convection for individual chain segments 

is less likely than for spherical molecules, the assumption that 

° X Avlb 

is retained. Thus as before 

A = 	Cy v a (7) 

where a is the length of a side of the cal, confining a chain 

segment, Cv  is the vibrational specific heat of the same, and 

v the mean vibrational 	frequency as defined by eqn. (29) 

of the previous chapter. Using equation (28), (29) and (31), 

the thermal conductivity of liquids composed of chain molecules 

can be 'written as 

X 	2  1'2 (1 +i) 	[(2,--2+ 12) e[22 (1174)4  -10 (v)2  

3. Comparison with Experiment 

The above extension of the theory of Horrocks and 

McLaughlin to pure R-mors was compared with experimental data on 

normal alkanes. The values of ro  and € used throughout the 

homologous sories are those of tho monomer, mothane, (Ref. 2) 

as was indicated in paragraph 6 of the previous chapter. Density 

versus temperature data were obtained from Ref. 3, and the 

thermal conductivity data 
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for the same temperature intervals from Ref. 4 in the form 

of correlations of existing data. Calculations were executed 

on a computer; the relevant program for these calculations 

will be found in appendix 3. 

A summary of the calculated results is given in 

Table 1 , along with the experimental data. It win be 

seen that the calculated and experimental slopes of the 

/. vs. T curves are in good agreement, certainly within 

experimental error, but that the absolute values differ 

by an amount which does not seem to change significantly 

over the homologous series. 

TCarbonTTemR Rangel 
Number  'C Imw/cml 

5 -80t0+40 .649 

7 -120to+20 .633 

9 -40to+120 .591 

11 -30to+130 .633 

13 +40to+200 .697 

15 60to220 .734 

17 	60to220 r .758 

19 	60to220 1 .771 

! 

SLOPE(DATA31  
cm/ eita 2  

SLOPE(DATA) 
mw/ cmcli2  /'DIFF  ' A 

.0033 .0037 9.5 - 

.0039 .0041 3.2 -.016 

.0023 .0028 	16.5 -,042 

.0022 .0026 	13 !  
+.042 

.0023 .0025 	6.5 +.064 

.0022 .0023 3.9 +.037 

.0020 .0023 9.7 +.024 

.0020 .0022 8.2 +.013 

TABLE I. A is the difference between X 	and X 	averaged 
exp 	calc• 

over the temperature interval. 
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It has been shown by Harrocks and McLaughlin (Ref 5) that 

the principal factor controlling the temperature dependence of 

thermal conductivity is the coefficient of thermal expansion. 

This remains unchanged for chain molecules, where the equation 

X = a • Cv  v 

again leads to 

(9) 

the expressions for v and v being modified as in section 6 

of the previous chapter. That this predicitin is a good one is 

reflected in table 1. The results indicate however that a second 

term, which would be additive and of the magnitude of about 

0.65 x 10'3  mw/cm
oK is missing. In the absence of further evidenoe 

two reasons may be put forward as contributing to thiS second 

term. 

a) Heat transfer down the chain: Relative independence of 

chain length could be expected as the average length of chain 

parallel to the path of heat flow need not increase with the number 

of carbons in the chain. 

b) Degrees of freedom associated with the hydrogen atoms 

attached to the carbons: As the average number of hydrogen atoms 

per segrent can be taken as constant, this contribution would be 

independent of chain length. Further as the heat capacity arising 

from this vibrational contribution is expected to be insensitive to 

v 
X LdTJp 	L 3 d ln v 



the tomperatwo changas, this term would be independent of 

temperature as well. 

114 
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CHAPTER 8 

Trans•ort Coefficients of Pure Hard Shore Fluids 
	al•••••••••••..... 

1. Introduction 

In this chapter the dorivations leading up to the thermal 

conductivity and viscosity of pure hard sphere fluids for low pressures 

and dense gases will be summarised. These formulae will be used in 

the following chapter in the analysis of dense mixed fluid transport 

coefficients. As the latter have been derived only for the case 

of hard elastic spherical molecules, no other intermolecular 

interaction potential will be considered. 

While the thermal conductivity coefficient is of primary concern 

here, the viscosity coefficient has also been considered, as the 

two derivations are very similar. Also, because thermal conductivity 

data for binary liquid mixtures of spherical molecules is lacking, 

corresponding viscosity data has been considered for comparing the 

model with experiment. 

A word on notation should be added. Vector quantities in this 

and the next chapter will be written with a bar under the letter, 

and tensor quantitites with two bars. For the stress tensor, the 

Chapman and Cowling notation has been retained: 

A 
ZO . 
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2. The Heat Flux Vector and the Pressure  Tensor 

It can be shown (Ref la) that if X is any molecular property 

which is a function of molecular velocity, the value of X averaged 

over all the molecules within a small volume element dr, during 

a short time interval dt, is 
1 

=n1Xf(c, r, t) dc 	(1) 

where n is the number density in the defined region, c is the 

molecular velocity vector and f (c, r, t) is the velocity distribution 

function; here f(c, r, t) do dr defines the probable number of 

molecules with velocity in the interval c to c + de in a region of 

space bounded by the volume element dr. In equation (1), the 

integration is carried out over the whole of velocity space. 

If, in particular, the relevant molecular property is heat, the 

heat flux vector can be written as (Ref lb). 

q = m$ C2  C f dc 

here m = mass of the molecule 

C = 	- 	 20  denoting the mean mass velocity of 

the gai which can be obtained from equation (1), and C = the 

magnitude of C. 

Clearly, if f is known, q can be derived explicitly . and then 

combined with Fourrier's Law of heat conduction. 

q = - X dT 
dr 

to yield the thermal conductivity. 

For the case where X denotes molecular momentum mc, the pressure 
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tensor can be written as 

E =p J CC f dc 	 (3) 

where p = n 	The pressure tensor is the sum of the 

hydrostatic pressure and a second term composed of the stress 

tensor multiplied by the coefficient of viscosity, vs. 

Thermal Conductivity and Viscosity at Low Pressures  

Boltzmann's Equation for a non-uniform gas is 

	

+ c • 	+ F 
at — Or — 8c LatJcoll 

Where in addition to previously defined quantities, mF is 

the external force acting on the particle, and (Wat)coll 

is the time rate of change of f due to collisions. Eqn. (4) 

can be written as 

( 

	

= 0 	 5)  

where 0 operates on f . It is assumed that 

a) f= 	+ f2  +.... where f°  turns out to be the 

MaxwbIlian velocity distribution function ( i.e. that for a 

uniform gas) and fi (i>0) are successive correction terms, 

and that 

b) the operator 9 can be broken down such that 

0(f) = o°(e) +01(1.1)+ 02(f2) + 	 (6) 

Where the Di(fi) satisfy the separate equations 

Do(fo) = 0  ; 	Etl(fo,f1) = 0  ; p2(fo,fi,-2% r ) = 0 ,etc. 
The quantities Or  can now be defined (REf. ic) as • 
fr = fo Ar 

(4) 

(7) 



such that the rth correction term to the average value of 

property X now becomes 

1 r 	r 
TEr =1 j Xfr do = n j Xf°  Or  do, 

Where the Maxwillian velocity distribution function f°  is 

eXplieitly given by: 

fo = ni m  oxp( metakT)'. 

In this and the next chapter, we will work with only the first 

and second terms of equation (6) as, duo to the increasing 

complexity of the successive approximations,, the formula: 'or 

mixtures, with which we are ultimatalY concerned, have not been 

developed beyond 01. Thus, we will take 

1 = 10 + X1  = 	xedc + nxf°01dc 	 (10) 

Since the first integral makes no contribution to the heat flux 

vector. . 

= al = ZmSC2  cfo 01  dc 	 (11) 

The solution of the Boltzmann equation, leads to an expression 

for Al, which can then be evaluated for hard spheres. The 

derived dilute gas thermal conductivity coefficient for a fluid 

of hard elastic spheres, X0  , can then be written (Ref 1d) as: 

25 1 ( k5T) 2  
o = 	atr:2 	 (12) 

113 

(8)  

(9)  
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where .k is the Boltzmann constant and 	the molecular diameter. 

The viscosity is obtained in a similar manner from the difference 

between the pressure tgnsor and the hydrostatic pressure: 
S.L. = 	1  
0:- 16 	 (12) 

4. Thermal Conductivity and Viscosity for Dense Gases. 
In the above discussion, the transport coefficients have 

been derived by assuming that both momentum and energy transfer 

take place by the motion of molecules, between collisions, through 

the available volume. As the density is increased and the mean 

fru°  path becomes comparable in magnitude to the molecular 

dilny-tere collisional transfer takes on increasing importance. 

The collision frequency is increased by a factor g(cO, the contact 

radial distribution function. The details of g(a) are best 

considered outside the mainstream of the discussion of the 

transport coefficients; it will be used implicitly and defined 

in a later section. 

It has been shown (Ref le) that the velocity distribution function 

for a non-uniform dense gas can be solved for, in a manner analoa.ous 

to the dilute gas; f° again turns out to be the Maxwellian 

distribution function, and makes no contribution to the heat flux 

vector.'. Three contributions to the latter arise (Ref 2), (Ref lf): 

1) 	from heat tt ansfor by molecular motion between 

collisions, i.e. the kinetic contribution 

1 P C-17 = 	1 (1 + 12b* g) 
g 	5 

X 
k = 

x
° (1  + 12  b*  g) 

.5 
(14) 
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where b* = (c/6) na3. 

2) from that part of collisional transfor which can be looked 

at as taking place with a locally Maxwilliam velocity distribution: 

-Cy  (7) a T = 	 b* b* g 
2,511 

kmalor  =5.1.1 b*2  g X 0  
257a 

(15) 

where Cy  = (3k/2m) and.; is tho bulk viscosity given by 

; = (4/9) g n2  (74  (nmkT)i; 

3) and finally from the distortion of the locailyMaxwellian 

velocity distribution function. 

6 b* gP  C2  C 	- 12 b* X 0  (1 + 12 b* g) dT -- 
3 	5 	5 	dr 

	

Dist. = 12 b* X 0  (1+12 	g). 
5 	5 

In the first approximation then, the thermal conductivity of 

a dense fluid of hard spheres is given by 

X=4X0  b* 
1E 	3 

+ 6 + 	+ 22_ ) b* g 
-4D7 	25 25n 

(16) 

Cloarly,A 0  is the thermal conductivity of tho dilute gas at the 

same temperature. 

The viscosity of tho dense gas is mado up of contributions of 

the same origin (Ref 2): 

1) Tho stress tensor arising from molecular motion botweon 



collisions is 0 
MMOI.WWW1041W 
VIII1101.100.010 
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p C C 
$.4o 	8 * 	a 
( 	g) 2— co  5 	ar  

which gives rise to 

=( 1  + b#  g) . 
5 

2) The stress tensor arising from the locally Maxwellian 

velocity distribution function is 
0 

•••••••Masalam. 

2 ..5 
 g n2 cr4  (itmler)i ar co 

which leads to 

.21_6 *2 . li'Maxw 25% g  Ib 

3) Finally the stress tensor arising from the locally 

Maxwell/an velocity distribution function 

3  5 	b  p 20CC -- 
gives rise to 

ftist. = 5 b*  g wk • 

The first approximation to the viscosity the is: 

0 = 4 06  b*  1+37 152  +4(1k +  483n ) b*g ]  

(Ref. ig) 

(17)  

(18)  

(19)  

(20)  
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5 The uations of Lonyuet-Higgins and Pea's) 
7Refr3 

It has been shown that the purely collisional contribution to 

the transport coefficients can be derived via the assumptions: 

a) that the spatial pair distribution function depends only on the 

temporlture 	Arnsitz* and not on the temperature gradient or rate of strain, 

and b) that the velocity distribution function is Maxwellian with 

a mean equal to the local hydrodynamic velocity, and a spread 

determined by the local temperature. The resulting equations, in 

our notation can be written as 

A = 5.2 0  b*2  
25 n 

and 

µ 	=z6§µ o  b*2  g• 
25n 

These equations are identical with the locally Maxwellian contributions 

to the expressions derived through the Chapman-Enskog theory, 

equations (15) and (18) respectively. (Ref 2). 

As indicated by Dahler, the corrections to the collisional 

terms arising from the distortion of the velocity distribution 

function are not negligible; the contribution of the distortion term 

to the thermal conductivity is quoted at over 50% of the collisional 

term, and the corresponding correction to the viscosity is 

reported to be above 20% and increasing with density. (Ref 2). 

6. The Contact Radial Distribution Function 

The radial distribution function g(r) is defined as 

g 
	(21) 



g(r) n(2) (rt. z2) / n2  (23) 

where n is the number density and o(2) 	z:) dri dry is the 

probability that molecule 1 is in volume element dri  about the 

point ri and that molecule 2 is in tho volume element dr2  at r2 

imultaneously. Are now define the correlation function 

h(r) g (r) - 1 	. 
Tho limiting value of g(r-) is expl-u(r)/kT1 where u(r) is the . 

4intermolectlarpotential. Hence es g(i) tends t :.7.11A) viluy 

-for low•denaitios, h(r) tends to zero. The 
latter is °a measure of the total influence of molecule 1 on 

another, molecule 2, at a-distance rd. (Ref 4). 

h(t) can be split into two terms (Ref S): 

h(ri.2) =4,C(r12) + n C(r13) h(r23) 41/3  

where the first term on the tight hand side is a direct correlation 

function representing short range interactions, and the second is 

the long range interactions propagated from molecule 1 to molecule 

3, which in turn exerts its total influence on 2. Defining two 

further functions 

F(r) =[exp ( -U(r)/kT)) -1 	(25) 

and 

y(r) = g(r) exp [U(r)/kT] 	(26) 

and making the Percus-Yovick approximation (Ref 6) that 

C(r) = F(r) y(r), 	 (27) 

we can derive the equation , 

123 

(21 ) 
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Y12 = 1 nIF ` 13 Y13 h23 3 	
(28) 

from equations (24) - (27). 

This equation has been solved, (Ref 7), for the hard sphere 

potential, to obtain y12  at contact, i.e. when the intermolecular 

senaration isa ,(the molecular diameter) where g(a) = y(cr). The 

result is: 

g(a) =  
71:1X)2 	 (29) 

As before b* = 	na3. This then is the expression for the 

contact radial distribution function for hard spheres, in the Perms-

Yactek approximation, which can be used in the evaluation of the 

transport coefficients. 

The equation of state of a denso fluid can be derived in two 

ways, leading to the
2 
 pressure equation, through the virial theorem, 

r  
1,1, 

P= nkT - 6 	Jr du r) g(r) dr 	(30) 
dr 

and the compressibility equation 

kTon = 1 + n.1 [ dr) - 1 ] dr 	 (31) 
ap 

derived from fluctuation theory. In the Percus.devick approximation, 

these two equations
( 
 can be reduced, by using equation (29), to 

P = nkT E (1 + 2b* + 3b*2) / (1-b*)2  

and 

P = nkT [ (1 + b* + b*2) / (1-b*)3  

respectively. (Ref 7). 

(32)  

(33)  
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CHAPTER 9 

Tranwr Coefficients for Dense Binarj 

1111 1P1191.72-----121"1-.11 

1. Introduction 

In this chapter, the equations for the transport coefficients of 

dense hard sphere mixtures will be given, and combined with the 

corresponding radial distribution functions, (Ref 10 derived 

through the Percus-Yevick approximation. In order to compare 

with experiment these equations will be reduced to ratios: the 

mixture transport coefficient divided by that for pure species 1. 

The equations will also be factorized into the purely kinetic, dis- 

tortional, and locally Maxwellian collisional terms, and the 

Enskog minimum will be shown to exist. Comparison will be made 

with experimental data. 



2. Transport Coefficients for a Binary Dilute 
Gas Mixture TRef la) 

The method is analogous to that for pure systems. The 

Boltzmann's equation for the first gas is 

aft 	01 	a f + F1 	afl r eefi 
at 	— 	a r- 	L at Jcoll 

and a similar equation can be written for the second gas, by changing 

the subscripts to 2. For the non-equilibrium case, the equations for 

f
1 

and f2 are solved, as before, by a method of successive 

approximations. Again the first approximation is a Maxwellian 

function, and again the f's can be written in the second approximation 

= 

f  = f0 
2 2 

(2) 

Here, however, the Drs contain cross terms of the properties and 

velocities of the taro species, 

The heat flux vector is now written as, 

= i mif 	1 + i m 2J f 2C 22C2  d.22 	(3) 

where ail quantities have been defined in the previous chapter. 

The Xaxwellian part of the distribution function makes no contribution 

to the heat flux vector. Of tho terms arising from the integration 

over the )7 01  , the ono representing the heat flow duo to the i i 

126 

(1) 
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temperature gradient is simply 

q  = 	dT  
mixo 510 

where X ,o  is the binary gas mix'eure thermal conductivity for low 

pressures. The expression is cumbersome and as it will not bo made 

direct use of, will not be reproduced here (Ref ib). 

The coefficient of viscosity is derived along similar lines. 

(Ref lc). We need only deal with the first correction term, as the 

baxwellian part gives rise to a contribution to the pressure tensor 

that reduces to the hydrostatic pressure. 

Than,  

041 (i) 

	

- _ mlj fiP121qicisi 171 .. 1°242222 c1.9.2 • 	(5) 

which is equivalent to 

(1) 
= 111111 9121 ne2224 

Solving the Boltzmann equations to obtain the rhs of equation (5) 

leads to the viscosity coefficient. 

These methods for the derivation of the transport coefficients of 

mixed fluids have been extended by H. H. Thorne to the case of denro 

binary mixtures, (Ref 1d). In the first approximation, the thermal 

conductivity is found to bo 
2 

mix 8 12 (AXXX 2+  lixxxYx cxYx 	Dx 	(6) 
where 

X 	= 1 + 2 7m1613g1/5  81iM1l12Y12g12(.5 	(7) 

(8) Yx.  = 1 + 2nn2c1;3g2/5 + BuMp2n10123gi2(5 



141 =LIA/('141312)  ; M2 =D1 2/(T7'14112) mo = m1442  
a
-1-1 )1.1 (a11 a_l_i -a21_1)-1  
mi 	x2  

(n1m2)I  

Ax = 

Bx (a11 a-1-1 -a21-1)
-1  

cx = 
2. 	(all a_i_i  -ai_i) -1  
7i 

(12) 

= (2/3) n2  (nOT)1  tx1 gi 	+ 2(8K1vivi xi x2 g1 2  924. 4. (13)  

2 m4 
m2 	g2 "2 

where xi and x2  are mole fractions of species 1 and 2 respectively, 

ali  = a;i  + 
3 

2a £1 ail 
x2 g12 

(iA) 

aii  = 5k1![ *(64+912) 	*24.ii1912] /M1E 	(15) 

E 	(ItTA 4  6142  ; '712 = 	(c7141/2) 	(16) 

aii m 5kT/2'10 	 (17) 

where 010  is the dilute gas viscosity coefficient for species 1. 

a_i_i  = a°1_ + 2C2  Z2 alt 
1 x1  gi2  -1-1 

(18) 

where 04_1  corresponds to equation (1s) with species numbers 
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interchanged and 01_1  to equation (17) with pio  replaced by 11.20 

Finally 

ai_i  = -27 kT (y12)2/4E0 
	 (19) 

and the radial distribution functions g12' gi  and g2  will be 

defined in the next section. 

The first Approximation to the viscosity of a mixed dense 

hard sphere fluid is given by (Ref id) 

=-51I 	 y, 2
+ 	+CY2  +Di 	

(20) 
Unix 2g12  	V;  µ 	11 0 	0 -I 

where 

= 1 	4% n1ai3g1/15 + 8n M2n2cr123g12/15 

Yp = 1 + 4% n2a23g2(15 + 8% Minia123g12/15 

x 	 2 .-1 = 	;O. , 	bii  - bi_i  
,v2  

B 11= -2  b1-1 (b_
1_1 	)-1  

	

b 	b 2  ri  C = b11 	-1-1 11 	1-1 

i 2 	 4 
= (4/15) n2  (7;k1)2 	4 +2(2MoillyidiXiX2g12Cfli 

2 	4 ]+m2  x2 g 2a2 
	 (26) 

and 

(21)  

(22)  

(23)  

(24)  

(25)  



1   131.1 = by + b„ i  
11 	2 E12 

with bY11 = 51GTrq + 5-20 
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(27) 

and b" 11 	i - a . Further, 

= b:1-1  +2C2x1  £4.2  

where 

by 	= 5kT 	+fil)/E 
--1 	2 

and b" 	= a_
0  i_1. 

b1-1 = -4%T/3E. 

The radial distribution functions givgl  and g2  will now be defined. 

3 Equilibrium Properties of Dense Hard Sphere Fluids42212) 

The methods for the treatment of pure and mixed dense hard 

sphere fluids are analogous. The compressibility equation assumes 

the form 
ap 

1— i niPii(r) kT ari 	(31) 

and the direct correlation functions C.. for an m component ij 

liquid can be written as 

[gij(E)-1] = Cii(E) iE nbi[gij(r-y)-1]Cij(y)dy 	(32) 

where gij  is the radial distribution function. In order to obtain 

the gij's we need another equation relating the two sets of 

functions: 

(28)  

(29)  

(30)  
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gij() eXpr-u. (00] -1 	= exp[-uij(t)/kT]Cij(0 (33) ij - 
This is the Percus-Yevick approximation for mixed dense fluids. The 

essential implication, as before, is that the direct correlation 

function is of the sauG range as the intermolecular interaction 

potential. 

potential, 

0 	= 
Q12 

where 

= gi 	L 

and 

g2 

Here, 

= 

vt 	= 

Thus, assuming a binary mixture and the hard sphere 

it can be shown that 

:(a2g4ag2)/2 12  

2 

	

+ .1  n nag (o1-a2)J 	(1-g)-2 2 2 	.g 

	

na12(a2-a  ) 	
(1_0  2 

(niai3+ n2c723) = - 

	

17 	(x1  + x2  r3 ) 

ne13/6  ; r = a2/a1 • 	v= 1/n  

(34)  

(35)  

(36)  

(37)  

whore n is the number density. Using the expression for the 

radial distribution function, the compressibility equation for a 

binary mixture can be written as (Ref 5) 

c * p v 1 =  g 14.g+e) 	- ....224x2(1-r)2e 	(38) 
T 	(1 -g)3(xl+x2r3) 	(xitx2r3)2  

+x r2  (14-0-Frg (111g75  ) 

(1-0
3 

• 

The pressure equation, the pure analogue of which was given in 
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equation (30) of the previous chapter, can be treated in the same 

manner and should yield identical results with equation (38) if 

the distribution function were exact. Though this clearly is not 

so, results from both expressions are sufficiently close (Ref 5) 

for us to work with only one of these expressions. The information 

obtained through the compressibility equation will not be substantially 

different from that of the pressure equation. 

4 Reduction of Equations (6) and (20)  

Equations (6) and (20) have been derived for mixtures of hard 

sphere fluids. One expects the error due to this simplification to be 

reduced if the ratios Xi/Xi and vindx/il , are considered rather than 

the absolute values. 

The denominators X, and 119 denote the transport coefficients 

of pure dense species 1. Thus by (6) and equation (16) of the pr-yious 

chapter. 

• - 	Arnix 	= fX [ fc 	+ B2G` 	
X - 

'‘.
A 	

+ Dx 1 	(39) 
Xi   

where 

2r1 Xx  = 1 + 12g1710/5 +6111M2g12  2(14r)39/5 ; co = v 	P (40) 

Yx  = 1 + 12 g2=c2r2y/5 4.61y129.2X1(1+r)3T/5, 	(41) 

ffX = 1411p [4g± + 5  + 4(i  + ild g 9P ] , 	 (42) 



and equation 

— 	= 1  mix 
U41. 	

f 

(20)of the previous chapter. 

F A 7  X 2 + Bo X •X 4Coy 2  Do 1 
(49) 
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and 

X 

B° 
X 

C; 

k 	.11-  • • 1 • 	r 	i 	/kg - icii 	
2 
•• 

• 
"12 	2 

1 
142) 	cif-1/(9 	q1-1 ) 

(i" 	q -q 	) 
r41 M2 	' 	-1 11 1-1 

[ 	N.all 
T2 • xi

2 g
l (8-2)2 xix2612(14r)4  

A -4-- 	2 h 
(1K)2 	rLfa;, 1 
2 	

n 

and 

= 	., 	)2r4.1- 

	

1-1 	
4 x2 g12 '14T1  '1%2/  

where 

	

.0  = 	tli),1121t 	(614 2+ 5% 2) - M 
2+ 	14 

' 	4 2 - 	5 i 	5 i 2 I. 2  

can be obtained by interchanging subscripts 1 and 2 in 

equations (47) and (48). Firm -1-1Y (3 1_1= -(54/ 	1112 
Likewise. the =nix/t4 can be obtained by equation (20) 

g12 --i.r1;1)2  

L k ( g1)4  
g12 "2 

2 

512 
25,t 

(43)  

(44)  

(45)  

(46 ) 

(47)  

(48)  

where 



P 	/(P P -P 2 ') 
-1-1 -1-/ 11 1-1 

P /(P P 	 2  
1-1 	-1-1 11 

-P1-1 

= 8Txigil5 2P142612x2(147)315  

t y 	= 1 + 	2 r
3g2  + Pcp11 .1. 

g,
4 1. 

kl4r1, 3/e 
 

3Z1 (_+i'2 (1. )1-  
x2   

= -16(11)1  ( 72+37)2  

e,2 	= 82s2 P /(P 	P P 2.  ) 
r+1 	11 -1-/ 11 1-1 
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(50 

(51)  

(52)  

) 	(53) 

(54) 

Do = 2§§ [ x1.2gi+ (12  figi2x1x2(14r)4+ Vgex22] 
25n 

and 

P 	= p + 8x1 g2 M2 (-L2)2 	 (6) 
-1-1 	 gi2 	l+r 

where 

fou  = 40(3. 5 
	

(N,112 A 
3 	M' 2  (57) 

P11 
can be obtained by interchanging subscripts 1 and 2 in 

equations (56) and (57). Finally 1-1  
= (32/3) ( .111":2  At and 

, (55) 

f = 4, [--i-  + 11  + 4(1-1.25 25 + 1-18- ) to g ] 
• 	"(58) 

V,  P 4get)P  5 	
7: P , 

In both equations (42) and (58) cep  is the value of vtiv 

for pure species 1. This value has been computed from equation (38) 

by setting xj.  = 1. 
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In order to evaluate the ratios of equations (39) and (48), 

the ces corresponding to each pressure, composition and diameter 

ratio must be known, This was done by solving equation (38), by 

fixing (P wi/kr), r, and x. The solution of (38) for cp at x = 1 

was used to evaluate the contact radial distribution function and 

the transport coefficients of pure species 1, in the compressed 

state. Calculations ofvt/v and the Xna.21/il and OndA were 

made for the fallowing sets of values: 

	

(Pi 	T) = 1, 2, 4, 8, 20, 301 r 	1, 	and 

R (= NA) =4, 1,2, over the Pall composition range. Three 

Fortran IV- programmes were written for the execution of these 

computations, the texts of which will be found in the appendixes 

	

3F , 3G 	, and 3H for (71*/v  ), XnixAki. and 0 /01 

respectively. A sample set of curves, from those computed have 

been presented in Fig. 1. for the case R 	(Pv 1*/KT) = 4 over 

the composition range, for four values of a-. Results for both 

Xudixi  (greater than 1) and 0 4'1 (less than 1) reproduce 

the quadratic type dependence on composition that is observed 

in simple liquid mixtures. 

At this stage it mould be desirable to split equations (39) 

and (48) into their respective kinetic and collisional terms. In 

connection with this, it is relevant, first, to look at a purely 

collisional model of the thermal conductivity of mixtures. 
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5 The  C0111.11214LATT0ximation  to Thermal 

gStrfibigtiXi1X..d-421120=31=(Rer 
By assuming that the two particle density function can be 

taken as that of the fluid in equilibrium and that the velocity 

distribution function for each species can be taken as a 

Maxwellian function, the heat flow vector due to the temperature 

gradient can be written for the case of equal diameters. for the 

two species as (Ref 2b) 

= - 	 riTE E n  AnB 	, 23,ABIer  A nom. 
	A B memB 	% • 

and hence the thermal conductivity of the binary mixture as 

	

_.25/cv 	E nA  nB (2,3,ABILI\ a 
Alslx 	k 	 (55) 

. • . 	 ig 	1 	. • 

*here 742 P 	I and SAB  mimBNA+ 
ger : 

X 	in this approximation is purely collisions." since the kinetic mix 

term vanishes for a Mixmellian velocity distribution. and clearly 

there is no distortion term involved. Equation (57) can be written 

as 

X 	2 mlxi 	(  8R  A 	2 .1 
10

= nx2 (iiR)3 	+ x2  R a (60) 

where k10 is the thermal conductivity of pure component 1, for 

low pressures. 
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6. The Collisions' and Kinetic Contributions in Equations  
(39) and9E2). 

It can easily be shown that if 107t 1 given in equation (13), 

is divided tyr 1/2 	• given in equation (15) of the previous 

chapter, and al  = a2, one obtains equation (60). The origin 

of the term suggests that equation (13) arises from . eollisional 

heat transfer duo to the locOly Maxwellian velocity distribution. 

The obvious step then is to write the locally MSImellian 

collisional term for alt 

'mix- 	)2  l. [xi[g1+  

  

[ 8  ( 1%)3  ] ixix2g12(i+r)14+R.442r4 (61) 

 

where vio is the molar volume of pure species 1, v is that of the 

mixture, and g is given by oqn. (29) of the previous chapter. 

Thou 6-11  Languet-Higgins, Ppple and VS1leau did not extend their 

treatment to the viscosity coefficient, analogous expressions can 

be written for the viscosity, using (26) of this chapter and eqn. (18) of 

the previous chapter. 
o n  

41;11.4 	) j ( X1281+  16.  X1X2g  1 2( l+r)14: (-1.2.4 )14R+414g  2 ) 	(62) 
g 

and for a1 = a2 

mix
/ 

1 = x12  + (NI 2 X1x2 x221/-11-  • 
	 (63) 
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This analysis can be extended to the ti-,-ee initial terms 

of equation (6). The kinetic contributionto the heat flux 
vector for dense fluid mixtures is defined similarly to that 

of mixtures at low pressures, i.e. eqn. (3) which immediately 

leads, by definition, to 

	

2
2 	2 - 	pi  CI 	+ x P2  C2  92  

The total flow of heat (Ref le) is given by 

q IP 	+ (7x  - 1) i P1 C127; 

+ P 2 CC-2 	(TX 1)  * 2 C:C2 	"X aT 

where IX, Yx.  and D are given by equations (7), (8) and (13) 

respectively. While a rigorous factorization to separate the 

kinetic contribution from the distortional one (i,e, the term 

arising from the distortion of the locally Maxwollian velocity 

distribution) is called for, it would be extremely laborious. 

Hence the following method has been used: 

Consider the first three terms of equation (6), and assume 

the existence of two unknown kinetic contribution terms, U, and 

U2, such that, by dropping the subscripts, 

AX2 + BXY + ce = xu1 
+YU2 	(65) 

where U1 + U2 
=7,

k 

and. Xk  is defined as tho purely kinetic contribution to the 

thermal conductivity of the mixed dense fluid. The form of equation 

• 

(64) 



Imo 

(65) necessitates 

U = AX 

U2 = CY + FR 
	 (66) 

where A and C are those of equation (65) and G and F 

are as yet unknown: Hence 

U
1X + U2Y = AX

2  +( G + F) XY +CY2 	(67) 

Clearly B =G+F. The symmetry of equation (64) suggests 

that it would be reasonable to assumo G = F = B/2. This 

assuTption has been checked by calculating the kinetic; 

distortional and locally Maxwellian collisional contributiond 

separately and comparing the sum against the unfactored 

equation, over the full range given in paragraph 4. 

The identical argument applies to the viscosity and 

for both transport coefficients the kinetic part, in the 

brackets of either ono of equations (6) and (20), has the 

form 

AX + (B/2) (X + 	+ CY 
	

(68) 

and the distortion term 

(Z-1) [AX+(B/2)Y] + (Y-1) [CY + (B/2) X]. 
	(69) 

Computations, of the various contributions, have been 

carried out and the sums v /X 10 v 14') and ( vAr /ploy 1*) 

plotted against the dimentionless pressure y = (P/nkT) .1. 



Figs (2) and (3) show a set of representative results for 

the thermal conductivity and viscosity respectively. These 

have been calculated for constant composition Xi = .5, and 

r = 1.5, R = 2. On both of these graphs curve 1 gives the 

kinetic contribution, curve 2 the sum of the distortional 

and locally ha. Tian collisional. and curve 3 gives the 

sum of the two curves. These results are similar to those 

obtained for a pure substance (Ref 6). As the density is 

increased, at the same temperature and constant composition, 

the influence of heat transfer through molecular flux 

decreases (as molecular convection decrease, for increasing 

density) and heat transfer through collisions increases. 

Also both graphs show that the transport coefficients of 

mixed fluids also go through the Enskog minimum as the 

pressure is increased and the collisional contribution takes 

over linearly. 

In these calculations, (7°7  A10 vi*) and (Pv  10v1*)  

have been obtained from programs identical to those of 

paragraph 4. of this chapter simply by letting f = viqv 

in equations (42) and (58). The splitting of the collisional 

and kinetic contributions introduces minor differences, and 

hence these programs will not be reproduced here. 
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7 Comparison witheriment 

Equations (6) and (20) have been derived for hard 

sphere fluids, and while one could obtain values of the 

transport coefficients, directly, by combining these 

equations with (34) and (35), one would not expect 

good agreement with experimental data. The effect of 

intermolecular forces should be reduced however if ratios of 

the transport coefficients wore taken as in equations (39) 

and (49). Clearly the most suitable systems for comparison 

are mixtures of simple liquified gases. No data on the 

thermal conductivities of the latter were found and hence 

data on the system carbon tetrachloride + benzene (Ref 7) 

was used for comparison with theoretical calculations of 

both ratios, while data on the viscosity of the system 

argon + methane (Ref 8) was used for comparison with theory. 

i) The system carbon tetrachloride + benzene. Density 

data on the system (Ref 9) at 30°C and the molar volume of 

carbon tetrachloride at absolute zero (Ref 10) were used for 

the calculation of ( vi*/v ) over the composition range. 

NA v* = 55.24 cc/mole 

NAv 	= 	:-2-0.2)finax 
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where 7  denotes the mole fraction, gnix  density of the 

mixture and NA Avogadro7s constant. r was taken as 

r = 
vo 2 

3" 

v°  
1 

 

where ve denotes the molar volume of pure species i 

at the given temperature, and R = .5077 from the molecular 

weights. The values of the ratios of eqn.s (39) and (49) 

were computed using this information. Also, similar 

calculations were executed on equations (60) through (63) 

and the results plotted in fig. 4, along with experimental 

data. 

For the thermal conductivity, all three theoretical 

curves conform to the general behaviour of the experimental 

data. Agreement between calculated and experimental values 

is within 10%, and gets even bettor for equation (39). A 

similar situation is observed for the viscosity ratios. 

Equations (62) and (49) give practically identical results. 

ii) The system argon + methane. 

Calculated results were compared with data (Ref 8) taken 

at 90.91°K. Density data for the puie components (Ref 11) 

and excess volume data (Ref 12) were used to compute the 

molar volumes over the composition range, r was taken as 
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=1.067 

1)4c 

and 	v*1  from the 
no? ^Y vol mq cf solid argon (Ref 13) at 

0°K. Fig. (5) shows that agreement of experiment with 

any of the three theoretical curves is not as good as that 

of the previous system. 
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Thermal Diffusion in Dense Hard Sphere Fluids  

1. Introduction 

•••• • 

	 A treatment 	that of the previous trap chapters, 

has been applied to thermal diffusion. Using the Lebowitz 

radial distribution functions, theoretical calculations 

have been executed with both the Chapman-Enakog and the 

Lonsuet.Higgins, Pople and Valleau theories. Results 

from these two theories were compared with experimental 

thermal diffusion ratios as a function of composition and 

pressure. 

2. ailMo rdtglss 

Diffusion of one component relative to the other 

takes place if the mean velooities of the two sets of 

molecules in a binary mixture are not the same. Then 

in a small volume about r, between time t and t +at. 

- it2  = .71i 	, 421  . TT:a  f29.2  d 22  # 0 
	

(i)  

where the second approximation to f1and f2 are taken as 

fi = fl° [1 
 ;61(1)] fg = f2°  [ 1(O]. 

	(2) 

and the quantities 0 have been defined previously (Ref.la). 

Substituting for 0 (1)  in eqn. (1) explicitly leads to 

an expression which indicates that diffusion takes place 



a) in ,ho direction tending to reduce inhomogeneity 

in the mixture, 

b) when accelerative effects of forces acting on 

molecules of the two gases are non-uniforms 

c) when pressure is non-uniform; 

d) the velocity of diffusion posesses a component 

in the direction of the temperature gradient. This thermal 

diffusion produces a non-uniform steady state in a gas parts 

of which are maintained at different steady temperatures. 

(Ref. la). 

If the abseroa of external forces and pressure gradients 

is assumed 
- 	- 

+ DT aln 	(3) C C - 2 -1 -2 n n
D12 

12 n 	ar 	az 

where n is the number density of the mixture 

ni  = 

D12 = mutual diffusion coeffloiimt. 

DT  = thermal diffusion coefficient. 

Equation (3) can be rewritten as 
2 n 

-1 -2 nin2  
D 	-- c i an1  
12 1n ar a In T 	(4) 

ar 

where kT ( = VD112) is called the thermal diffusion ratio, 
or using Ili = x.n 
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a 1xi T 
ar 
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where a ( = kT/x x2) is called the thermal diffusion factor. 

(Ref. 1b) 

The Chapman-Enskog derivation of 1c1  for dilute gas 

mixtures has been extended by Thorne to donse fluid mixtures, 

In the first approximation, the thermal diffusion ratio of 

dense hard sphere fluid mixtures is given by (Ref.1c) 

= (Ax + Br)/c 
	

(5) 

where 
i 

A = -10 x1  [ ( 	
3 

) F+ 3:11 	-, (6)  

m4   
B =10 2 	[ (

3  
711 )a G +y 

2 
(7) • 2  /14121  

C = 	g12  [G F- y (8)  

G = e + 8 X., 12  (itr-) 2  ( 	) (9)  
g 1 	12 2  

2r 2 	A.. 
F = a + 8x1 ) 	(it.; 	)2 (10)  

2 	g 

X = 1 +le gi  xi  w5  2 g12  x2  (1403  N . (1i) 

Y can be obtained by interchanging subscripts in equation 

(n.). Finally a , and y have been given in the previous 

chapter, and tho quantities gi, g2  and g12, as before are 



the radto7_ distribution functions arising in the Perms-

Yeviek approximation (Ref. 2 and 3). 

With ;the assumption that the velocity distributicvn 

function is locally MaxweIlian. and that the pair 

distribution function is that at local equilibriums, 

Longuet-Higgins, Pople And Vaileau (Ref. 4.) have derived 

an expression forkT for an isotopic binary mixture. In 

the absence of pressure gradients and external forces 
yr i* 

kT  = x1 '2 (a2  — H1) 	g, 	(12) 

where all quantities have been defined in the two previous 

chapters. 

Fig, 1 compares values calculated from the 

Longuot-Higgins, Pople and Valleau theory (HPV) and from 

Thorne's extension of the Chapman-Euskog theory (CE). It 

can be soon that for both low and high values of the reduced 

pressure p* (= prrista), results of HPV rise more sharply 

than those of CE, towards the middle of the composition range. 

It is also seen, though not very clearly on the graph. that 

While HPV predicts symmetric behaviour of IcT  about x1=.5, 

this is not the case for CE. For m2/m1  = 0.5, 0"2/'44;  = 1, 

and p* = 1 
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k 	(CE) k, (HPV) 
0.1 0.030917 0,072832 

0,2 0.052982 0.12948 

0.3 0.067168 0.16994 

0.4 0.074298 0.19422 

0.5 0.075064 0.20231 

oc6 0.070040 0.19422 

0,7 0.059696 0.16994 

0.8 0.074/411.03 0.12948 

0.9 0.02W:2 0.072832 

Fig. :;:! shows 	:density dependence on these two 

theories, It is seen that for r = .5 a falls monotonically, 

that for r = 1, -c1 goes through a shallow minimum 

ce(cE) 

.04 .27454 

.07 .27433 

.1 .27455 

.2 .27676 

and that for r = 2, a rises slowly. In contrast HPV (r = 1) 

predicts the rather sharp rise of a with density. 
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3. Comegrison vitt} F. 	ment 

Results obtained from the CE and HPV theories were 

compared with experimental data. The composition 

dependences of the calculated a os were compared with data for 

the system CC41,.0yelohexane (Rof.6) and the pressure dependence 

with the system X0 - CH4  (Ref. 5). Calculations were similar 

to those of the previous chapter. The Fortram IV program 

written for this purpose will not be presented in the 

appendix as it is very similar to the thermal conductivity 

program. 

a) The system CC14(1) + Cyelohexane (2). As can be seen 

from fig. 3, there are considerable differences regarding 

values of ce, between measurements of different experimenters. 

While results of Horne and Beaman (Ref. 6) go through a 

minimum around xi= .5 those of Thomaos (Ref. 7) exhibit 

quasi linear behaviour over the composition range. 

Furthermore agreement of both theories with experiment is 

poor. The* calculated from HPV rises with the mole fraction 

of CC14; all values are about 100% higher than the 

measured ones. a calculated from CE, on the other hand seems 

relatively insensitive to composition changes. 
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Density data used in these calculations wore taken from 

Wood and Gray (Ref. 8) and the N vi* from Blitz and Sapper 

(Ref. 9) 

b) The system Xe (1) +CH4 (2)..0 has been measured for 

xi  = .0015, at 25°C, as a function of pressuro, the latter 

going up to about 100 atmospheres. Two different ways (Ref. 10 

and 11) of analyzing the same sot of data give widely differing 

results. Those resulting from the method of Drickamer, Tung and 

Mellow seem internally more consistent as seen in fig. 4. 

There, it can also be seen that HPV theory is very sensitive 

to pressure changes and rises rapidly to values much higher 

than the ones likely to be the correct values. This behaviour 

could be expected from results plotted on fig. 2. 

Although not apparent on Fig 4, the CE results go 

through a shallow minim= around 10= 

p 

.01 

a 

.002 .74471 

.006 .74455 

.008 •74454 

.01 .74458 

.015 .74488 
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If the Drickamer et. al. treatment of the data is accepted, 

CE does qualitatively predict the behaviour of a' as a function of 

pressure. 

Here density data for the caleatations was obtained 

from Ref. 5, and N7 1* from Ref. 1.2. 



APPENDIX I 

E3rauattoliSt—  —Tg_TCP,a)t,  

For the case of axial motion only, DP/Dt reduces to 

DP = op 	aP 
nt 	at 	vz az 

Ihe pressure at the bottom of the cal is given by 

P = PE + p gh 

-*ere 
PE 

g 

h 

p 

is the equilibrium vapor pressure of the 

liquid at the given temperature 

is the density 

is the acceleration of gravity, and 

is tho height of the cal. 

(A2) then becomes 

43 1- + vz  pg • 
Here 	has been assumed constant. 	Also 

p_prz  2zE  aT 
at dT at 

hence 

Bt aT at 'z pg 
DP = 2EE  aT 	

(A5) 

157 

(A3) 



For toluene at 90°  C 

-4P2,  1  1.3 x 104 
dT 	gm / cm-sect - °C , 

fl  t: 1 le °C / sec 	at t=10 sec 

assuming the uniform distribution of temperature; also 

vz  pg = 98 gm/cm-sec% 

r,7')9efore 

]P t 110 gm/cm-sec3  

and 
DP • 

T art  — 40 orgs/cm3 - sec 

which is much smaller than 

P CP at - 
aT 	10  ergs/cm3- see • 
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B. Comparison of 	vs. Kt  

We assume at 90 °C, a temperature rise of .5 °C in 15 seconds. 

Choosing the maximum C as K(90.5 00t, we insure that the 

calculation overestimates the error. 

K(90 °C) = .76498 x 10-3  
K(90.5 °C) = .76376 x 10-.3  

Using 

X/  T(a,t) ii2r2(a,t) = .T.• r 
"Th L g2 	a2 Cam 

and comparing values of Al  obtained from the calculations 

with K(90 °C) and K(90.5 °C) , the error is .015% . For 

t=1 sec. the error is less than .01% , 
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APPENDIX 2 

Derivation of Equation 37 of Chapter 2e 

A. Solution of Fourriees Equation in Cylindrical Coordinates 

w!_th Time Dependent Heat Input and Temperature Dependent 

Physical Properties. 

Fourrier's equation can be written as 

pcy, aT 	[ et aT 	 (i) 
.r at - r ar 	ar 

tti=. ire 

Al + A2  T 
P =P 1  2 T   

CP  = Cpi  + Cp2  T 

are the thermal conductivity, density and heat capacity respec- 

tively, of the medium surrounding the central cylinder. The 

initial and boundary conditions are: 

T(r,0) = 0 	 (2) 

dT(r,0) = 0 	 (3) 
dr 

T(a,t)= f(t) 	 (4) 

where f(t) is obtained in digital form as the data. Further, 

2xaX aT(act.)  (q1+ q2  t + q3  t
2)=Ica2PC°P  aT(a,t)  ar 	 at 

lim T(r,t) = 0 	 (6) 
r49- co 

(5) 
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Equations (1)-(6) are linearized by making use of the 

transformations listed in chapter 2. 

72 0. it 	 (7) 

gr,0)= 0 ; r>a 	 (8) 

Bin gr,g) = 	 (9) r- 0 
2ma 	+ c1/2 4Q2g4Q3t2  = 	2 	; r=s 	(10) 

dr 	a dg 

vLare Qi = qi/Ki  , and K is the thermal diffusivity. Transformation 

of 	q c114.  q2t 4' q3 t2  
to 	q Qii. (/2 4'  °I3 g2  
is straightforward because g#Kt as in chapter 2. 

Using the initial condition, the Laplace transform of the 

boundary value problem is taken: 

a2  i(r.$)  
ar2  

i  sailli2-la 	a kr99) r r (u) 

ata  a 4. cii+ Q2+ 	= 2sa a 
ar 8 7 	a 

lim "kris) = 0 
r+ co 

where 0  is the Laplace transform of 

variable of the transformation. 

r =a 	(12) 

0 and s is the complex 
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Here .2ed APC P P 
where p and 9p are the density 

mad specific heat of the fluid medium respectively and cY 

and C' are the corresponding proper+ies of the central 
12$ 

cylinder. As mentioned in Chapter 2, a is assumed cmetknt; 

justifiaatton of this assumption is given below. 

The solution of the heat transfer equation where in 

addition to the assumptions listed in Chapter 2, the physical 

properties are accepted to be temperature independent, and 

::he power input constant is 

T(r,t) = Qi Fin 	+ 	+ 	In 	+ (13) L 	C 	2T 	Ci 2T 	C 	• • • 

Kt 
whore T=;:f , C = exp(y) andy is Eulees constant. For 

times longer than .5 sec in the thermal conductivity experi-
went, both the second and the third terms become negligible 

i.e. (<.1%) in comparison to the first. Hence the dependence 

T(a,t) on a is confined to the early part of the curve, which 

in the experiment is discarded. While it does not seem possible 

at this stage to show rigorously that the temperature dependence 

of 	does not sensibly (i.e.> .1%) alter the solution of 

equations (7) to (10) of this section it is reasonable -co 

assume a= is constant as the term containing a, itself is 

rather small. 
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Equation (11) is now an ordinary differential equation, 

the general solution of which is well known: 

kr,S) = C1/0(00 + yo(Or) 	 14) 

Iihen 	and C2  are arbitrary constants, 13= /t and Io  and 

E0  are modified. Bessel functions, of zero order, of the 

first and second kinds respectively. 

As Io  increases with r, using equation (13) C1 = O. Then 

(r,$) = C2  Ki(130 	dtz.$)=  -C2f3K1(13r); 	(15) 

clearly.  
d6(a,$)=  -C20E1(0a) 
dr 	 (16) 

and wiry equations (12) and (i6) 
at(a,$) 	+ 21,C21C0(ea) = -C20K1(0a) . 
ar 2nas a 	 (17) 

Solving. (17) for Cp and substituting in (15) 
0(r.8) 	Sir + .92 .1:223. 	p(er)  

2zas s 	82 s) [OKI (0a ktgo  Oa)] ( is) 
He will now use two identitieq which mil be :rived in the 

last paragraph of this Appendix. 

Ko(er) = ..[1n(03r) 4'04[1:10CW-1] ...] (19) 
and 

BKi (Oa) =1 [1+ -102a2  [121((C0a).4] +... 
a 

and by long division 	+ 
ii(res)= L2  c k.2 kicar)+182r2in(lcor) (21) 

442a2[1n(ICOr)]2  -12a21n(1041r)tln# 
2 

+a% [ln(.  Cor)]2+ 9111n(l‘qq.r)•ln!- 4132r2  
a 	 a 

41-14.1n(i0Or)]2+1,Ls21n(03r)Elnii -1]+... 
4a 

(20) 
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All that remains to be done now is to invert equation (21) 

from the complex to the real plane. In doing so, we till make 

WO of the theorem that,
* in the Class of problem under con- 

sideration 	
P011. 

(0= 	
et  0(S)(15 

1  r,  0(s) ds 121-21 	 (22) 2ni v60 to 	
j. 

 
when y is real, and i = -1 Hence we can make use of ** 

L'1 [lii(ks)] = 	 (23) 

and 
ri con in(ks)] = (.1)n+1  cri p / (tn+1) 	(24) 

where k is any constant, 

and ri  is denotes the inverse Laplace transform operator, 

riq 16(8)] ail  fest - i(es) ds = 0(t) 	(25) 
We also need the following inverse transformations***: 

* 
Caralaw, H.S. and Jager, J.C. "Conduction of Heat 
in Solids°, p 370 Oxford University Press. 1959. 

** 
ibid, p.341 

*** 
Erdelyi, A., Editor, Tables of Integral Transforms°, 
MCGrawmHill Book Company, New York, 1954, p.251 



L 1̀  [s"1 	ks)2  ] = 1.n Ct ]2  -n2  

[ 5-2  (ln ks)2  ] = t[ (1.'.n it)2  + i - ,2] 	(27) 

and 

/7,[s-n" inks] = 	 11120 	(28) 
k 

The inversion of equation (21) follows directly from 

(22) - (28). By dropping terms containing 1/t2  or higher 

powers of (1/t) we obtain 
2 

3(alg)= 	[ 	Zg 2 + 	
in 

4n 	a  n a n CC 

[-g+in a5 (§1112) +(sin A.5 )2  a ..2  
itsn 	Ca2  2 2 Ca2  a 

f,2 	2 2 
lag.. a 2 +. • • 

4  24 a 

(43 	2 	2 
I. Nag

2  + 	-2  (l-3_ )+ 	a2) 
4 	2 a 	12 	Ca 2 a  

g[ln 	]2 -2 +....1 
Ca2  -4 a 

1.65 

(26) 

( 29 ) 
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where g = Kt. The time dependence of power is weak and the 

sum of the second and third brackets of equation (29) is less 

than 1% of the first. Thus, without introducing any sensible 

error into the analysis of the experimental data, terms that 

contribute less than 1% of their respective brackets in the 

second and third brackets can be ignored. For the second bracket 
taking toluene at 900C, 

K = 7.6 x 10'4  orn/sec, a = 1.27 x 1or3cm ,ah 3.67 
at 1 sec. 
2„ Lit = 5.3 x 0-3  
an Ca 
Kt = 7.6 x 10-4  

Kt In(Z) = 5.3 x lfr3  
Ca" 

a..2 a [111 Mt? & 10-5  
a "4 	ae 
a2_ 8 x 10-7  _ 2 
2 2 az-2  = 5 x 10-7 

a 

.21-12E22 

Et= 7.6 x 10-3  

in 4Kt - -572,  - .07 

a2 lnict 
- 

) 	7x 10-6 
-2.  Ca 

[ In Kt] 
C 

2 
= 3 x 10'5 
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So the major terms in the second bracket of equation (29) aro 

-Kt + Kt ln(-41Ct  ) . 
Cat  

(30) 

The same comparison of the relative magnitudes of terms 

can be carried out for the third bracket of equation (29). 

After 1 sec. 

(Kt)2  = 4.4 x 1077  
4 

Kt a2a,-2 [1- 12  3 = 
2 a 	12 

a 2  t) 1n 4Kt = 2.04 x 10-6  
2 	UP 

Kt 1.2 In Ea. = 8 x ir9  
ce 	a.4 

Kt [lnIASI 32  cx-2 a2  = 2.5 x 10-8  
Cit. 	a 

1.3 x 10710 



After 10 sec. 

(Kt)2  = 4.3 x 10 -4  
4 
Kt a20L2 (1-n2) = 1.33 x 10-9  

2 a 	12 

t 2 (Kt) in LACI = 2.7 x 10-4 
2 	Ca' 

Kt a2  In 1 t = 1.2 x 10-7  
a 	Ca 

Kt inLai a-2 a2  = 2.2 x 10-7  
Ca" a 

The terms that are large in the third bracket then are 

hft . ..2 (K02 4.  et2 in  
4 	2 	-67.2  

Combining equations (29),(30) and (31), with 

we get 

4

0(ait) 
., :11 	+ ..a +c 	a2  In 	+.... = 	

L Ca' 2Kt 1c72   2Kt 	Ca' 

4g Ft ( in 
'

1) + 
4% L 	Ca 
q3  p(14Kt 3)4.  .... ] 
4n 	"EP 2 

where0 is now related to T by equation (39) of Chaptor 2. 
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(31)  

= Ql/Ki, 

(32)  

gait) = X1  T(a,t) + X2 T(a,t) 



K(Pr) =2E I—‘)(Pr) - Iv(Pr) v  
2 	sin vit 

(35) 

B. Derivation of Equations (V) and (201*  

The modified Bessel equation 

+ cly 	i +  v2 	. 0 
dzz 	z dz 

where z is the independent variable, y = y(z) 

specified constant, is satisfied by 
(z)v+2r 

( ) 	46  471(vir+1) Iv  z = r 

where for v an integer 
r(n) = (n-1) I 

Clearly for v = Q, and z= Pr 
Io(Or) = 1+ (3Dr)2  + 

(24)2 + 

	
• 

Kv(r3r) is now defined as 
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and v any 

(34) 

then 

Ko(r3r) = -fln 	+ Y Io(Sr) + 	) 	041, 	111 and 

Ko(r_kr) = -c ln((ar) + S2r2(3.n tar -1) +....] 	(36) 

Also by making use of the expression 

24(z) -.%ffv(z) = -6C\141(z) 
for v = 0, we have 

400= - K100 	 (37) 

* 
Carslaw, H.S. andJitegor  J.C., "Conduction of heat in 
Solids." p.448 Oxford University Press, London, 1959. (2nd Ed.) 



Hence 

OKI(Pa) = - d 	K (ra.) 
UM: 

leads to 
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01C1  (Pa) 
1 	1+ C2a2 	icna  
a 

) 
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2050 FORMATAIK0,2X12Ht1e • 13 • 5)(.2H.P• • 13 • 5X s_amokiALL31______„ 	  
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