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ABSTRACT

The transient hot wire cell technique has been used
to build an apparatus for measuring the thermal conductivity
of liquids, at pressures up to 7000 atmospheres, in the
tomperature range 25-100°C. Measurements have been made
on toluene with an estimated accuracy of 2 to 5% over the
pressure range. The analysis of the data has been developed
by solving the heat conduction equation assuming variable
prysical properties for the test fluid. In the solution of
this non-linear equation, the Kudryashev-Zhemhov trans.

formations have been used.

The theory of Horrocks and McLaughlin, on the thermal
conductivity of simple liquids has been extended to chain
molecules and the model compared with data on the normal
paraffin homologous series.

The Chapman-Enskog theory, on the transport coefficients
for binary mixtures of dense systems has been combined
with the Lebowitz radial distribution functions derived in the
Percus-Yevick approximation. The Kinetic, collisional and
distortional contributions have been factorized and the model

compared with real systems.
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CHAPTER 1

e

INTRODUCTIOHN

The thermal conductivity of liquids is a subject of
interest both for the sclentist and the engineer. Data is
required for engineering design purposes, and for testing
the validity of statistical mechanical models of dense fluids.
At present, therc is need in science and technology for more

data as well as for more accurate data.

In the measurement of the thermal conductivity coefficient,
there still seems to be problems that have not been solved or
avolded satisfactorily. So far none of the various techniques
utilized for measurements of thermal conductivity can be claimed
to have completely isolated the conductive contribution to heat
transfor from the radiative and convective contributions. Also
in measurements on mixtures, there is the camplicating effect of
thormal diffusion.

On the othor hand, theoreotical predictions of thermal conductivity
are far from perfect; agroement to 15% is considered reasonable.
This does not mean however that the present levels of accuracy
in thermal conductivity measurements are adequate so far as
theory is concerned. A great deal of information can be obtained
from comparing calculated and experimental values of rates of change




of the conductivity with temperature and density; there
aveilable data is in many cases deficient.

A greoat deal of information on liquid structure can also
be obtained by axtending the data range to high pressuros,
which affords the evaluation of structural models over wide
ranges of density. In particular the change of sign from
negativo to positive, of the temperaturc coefficient of thermal
conductivity, at high donsities is an important index of the

success or failure of thermal conductivity theories.

The transient hot wire cell chosen here for thermal
conductivity measurements at high prossure has soveral
advantages over other techniques of measuremeont. While no
attempt will be made here to compare in detail charachteristics
of the various techniques, as relative merits have beon
discussed extensively by Ziebland (Ref. 1) and Pittman (Ref. 2),
two advantages of the transient hot wire ccll which have not
been discussed before must be mentioned heres The first is the
adaptability of the hot wire cell to high prossurs techniques.
The physical sizo and limiting dimensions of the hot wire coll

are such that the one designed for this work was acommodated in



a conventional 1.5° ID, 6% CD prossure vessel with a range of
up to 7000 atmospheres. Co.axial cylinder and particularly flat plate
techniques require rather larger pressure vessalse Thia

compilicates problems related to construction and scalinge

The second advantage of the technique is its suitability
for measurements on mixtures. .pproach to the state in the
presence of a temperature gradient leads to the setiing up of
concentration gradients because of thermal diffusion. It is to
be expected that the short dwration of the experiments with the
transient hot wire cell (20 -« 30 seconds) will go a long way to
prevent partial separation from affecting the measured thermal

conductivity valuss.

In this work, the apparatus designed and constructed for
high pressure measurements will be described and data on toluene
for pressurss up to 5250 atmospheres over a temperaturo range
of 30 to 9OOC presentede The analysis of the data is based
essentially on the work of Horrocks and McLaughlin (Rofs, 5) and
Pittman (Ref. 2). Here however, in analyzing the data, effects
relating to the temperature dependance of the thermal conductivity
coefficient, and the change in power supplied to the system sye

treated as part of the mathematical statement describing the



system. This implied solving a non-linear partial differential
equation. The method vsed foi this particular application was
slso exemined asa tool for solving partial, differential

equations with temperature dependent physical properties.

While on the one hand an apparatus has been designed,
constructed and tested for measuring thermal conductivities of
pure and mixed liquids, and certain improvements made in the
analysis of the data, attention has also been pald to the

theory of tranvpert propexrties af ligudds.

The hot wire technique can be used Tor measuring the
thermal conductivity of nonepolar, noneconducting liquids.
(The method has also beon extended to gases; that however is
beyond the scope of this work.) The most important single group
among those is the normal paraffin homologous series. Here the
Horrocks and McLsughlin model (Ref. 3) for the thormal
conductivity of simple liquids has beon extended to 1liquids
composed of chain molecules by using Prigogime®s cell model
for pure polymers. (Ref. 4). As will be seen,tho thermal
conductivity, in this approximation, is a function only of the
molecular force constants and the density. Hence calculation

of % as a function of pressure follows from data on high



prossure densities for the homologous series. Results for
atmospheric pressure caleculaticis will be presented here, but not
those for kigh pressure as data is not available for comparisone
It must be said however that the temperature coefficient of
thermal conductivity does not go through a sign inversion for

calculations up to 10,000 atmosphores.

As mentioned before, the fact that the hot wire method is a
transient one makes it particularly useful for measuremont on
liquid mixtures. This is because for a mixture in a non-uniform
temperature field, there exists a velocity of diffusion in the
direction of tho temperature gradient. The mass flux is then

given by

J_=D _ 5% 4p 2IuT
£ 12 3 T

where x 4 is the mole fraction of component 1

r is the position variable

D12 is the mutual diffusion coefficient.
and D,11 is the thermal diffusion cocfficient.

The potential availability of a technique for satisfactory
thermal conductivity measurements on liquid mixtures raises the
question of the state of theories on the transport propeoriies of

dense fluid mixtures. The most general theory to date has been



that of Chapman and Enskog (Ref. 6)s The derived equations
have been generalized to dense fluid mixtures by Thorne (Ref. 6a).
The work is based on the rigid sphere interaction potential and
as such, can be combined with the radial distribution functions
of Lebowitz (Ref. 7) derived by using the Percus Yevick

approximation (Ref. 8).
This analysis was first used on mutual diffusion in

binary mixtures by Mclaughlin (Ref. 9). Here it is extended
to tharmal conductivity, viscosity and theimal

diffusion. While the treatment, on the whole, does broadly
reproduce charachteristics of liquid mixtures observed
experimentally, better quantitative agreement must wait for the
treatment to be applied to more realistic intermclecular
interaction potentials.

The Lebowitz radial distribution functions were also used
in recalculating resulis from tho theory of Languet-Higgins,
Pople and Valleau (Ref. 10), for isotopic mixtures. While for the
nutual diffusion, thermal conductivity and viscosity coefficients,
equations resulting from the two theories are at least partly
related, for thermal diffusion there seems to be no correspondance.
Furthermore neither one of the two theories gives satisfactory
rosults when compared with experiment. This is to be expected
as the thermal diffusion coefficient is particularly sensitive

to the form of the intermolecular interaction potential.



CHAPTER 2

Thaory of the Transiont Hot Wire Cell

! Introduction

The experimental technique is based on the messurement
of the voltage change across a thin wire carrying a current
and irmersed in a test fluid. The wire is joined to thick
current leads, top and bottom, and at distances conveniently

removed from 1ts ends, welded to two voltage taps.

In order to determine *he thermal conductivity of
the test fluid firom this system, the heal conduction
equation appropriate to the system will be obtalned, gnd solved
for the temperature profiles in the thermal conductivity cell;
the temperature profiles. will then be rolated to electrical
measuroments. In addition, any approximations made in the
derivation of the heat transfer equation and the solution

will be examined.



2. The General Equations of Heat Transfer

The equation of thermel energy (Ref 1) in the absence
of radiative heat transfer is given by.

W ==(Yoaq)=-P(¥.v)=(T:9v), (1
P T% -

where the rate of gain of internal energy equals the

sum of three terms which are successively:

1)  reat input by conduction

2) reversible cnergy increase by compression and,

3) irreversible energy increase by viscous dj:ssipat.i.on.
In order to reduce equation (1), to the desired form,

the following ralationship, derived from the first and
second laws of thermodynamics is used:

DU apP DV DT

Here the operator D/Dt is defined by

D__3 8 . & .. 8
Pt 9t P Vx % Vy 9y '® Bz

(3)

Combining eq (2) with the Equation of Continuity

4
. .s @w ®

Dt

equation (1) can be written in the form
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ap .
P CHE = = D- Tiax), @¥)- (Tiy) (5)

which in turn can be reduced by the substitution of
Newtons and Fourrier's Laws to

POy BE = L0 -T @GP @ Wy (6)
where ¥ is called the dissipation function (Ref 1).
Equation (6) can be further reduced by using

2
L
and
-dp = - p B, dP + p @ dT
where
v=+ 3D, 4TF €9,
P
to
P Cp -E.'i. =V (AVT) + T ¢ -E—‘;#x * (7)
(Ref. 2)

Equation (7) describes the behaviour of the experimental
system but is mathematically intractable. It is therefore

further reduced by using physical arguments ,

As heat is supplied to the central wire, expansion

of the liquid around the heated section glves rise to
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radially symmetric free convection. Hence the operator

D/Dt reduces to
D_
Dt
vhere z is the axis along tho length of the wire.

a_
z 02z

=
Furthermore CGuc to the existonce of a hsating section
below the bottom voltage tap, the rising liguid
surrounds the midesection of the heating wire, still
retaining the temperature distribution that would have
existed in the absence of convection, until cold liquid
rising from below the heated section reaches the bottom

tap. Hence before cold liquid reaches the bottom tap

aT DT _ 3T
3z = % 2nd pE T ot

Clearly, this simplification jmposes a time limit on the

duration of tho experiment.

Using a set of assumptions fully discussed in a later
section of this chapter, the velocity of the fluid along
the z-axis has been calculated (Ref. 3 and Ref. 4a). Using
theso results and toluene properties

it has been shown in Appendix 14 that the term

T ¢ DP/Dt can be neglected.s It has also been found
(Ref. 4b) that the viscous dissipation term %X  is negligible,
under the rolovony conditions. Equation (7) then reduces to



3.

= 7 (Y 1) (8)

o
Q
ol
i3

Solution of the Haat Conduction Equation for the
Hot Wire Coil.

In order to relate the temperature changes in the

cell to the thermal conductivity that is being measured,

it is necessary to solve the heat conduction equation. In the

first approximation the following is assumed:

a) Free convection and viscous dissipation effects

are negligible.

b) The heat source is of infinite length and zero
diameter (line sowes )» This assumption will ta
removed as more refined solutions to equation (8) are
derived.

¢) The fluid medium is externally unbounded, and the
1imiting value of the temperature, sufficiently far
away from the heat source, is zero.

d) Physical properties of the test fluid are temperature
independent.

&) Power dissipation, dp» per unit length of heat
source is constant. The last two assumptions will also
bs subsequently removed. Lastly

f) Radiative heat transfer is negligible.



{~
D

The solution of eqn. {8) wnder these conditions is

well knowm (Ref. 5a)e

a3 . 2
Tet) =g B - )
) -u

Y (e = . 8
where -Bi (~x) Jx . du

and K = 2, Clrarly, T(r,t) is roforred to the initisl

G

temperature. For large t, eqn. (9) reduces to

211 i~ Kt .
Tl t) = oo HEL 5
T(rst) = = LB 3 J (303

where €= exp (y) and y 1s Euler's constant.

If the heat source is assumed to be a cylinder of

infinite length, wiform diameter and infinite thermal
conductivity the solution becomes (Refs 5b)

Ly

c o

T(a,t)=%‘a\ [1n-—- +§1;- +(1=3-)-1é-;- In 4t+.. ] (11)

where ¢ = 2(p'Cp’/p Cp) and T =Kt
2

In obtaining equation (11) surface resistance to heat

conduction is assumed to be negligible.



L. Temperature Deperdent Physical Properties

We now remove assimption (d) as well as (b), and assume
linear temperature dependences for thermal conductivity,
density and specific heat.

= i T . : =-1- - _d}\
A MA AT R, X, dT (12a)
_ . 1 a
p=p,(L+p:T) ;3 pz== 22 (12)
1 2v 2 Py ar
_ vy d
C=C.(1+C ;: c.= 4 z
= Cog{t +0, D) 2= by P (12¢)

where the subseript 1 denotes the propertles at the initial
temporature. The problem ¢an now bs stated follows:

3 ]

P 3 =ICOTD (13)
with initial conditions

T(rs 0) =0 } (14a)

j r> a

dT -

a-; (r !0) =0 (1%)
and boundary conditions (Ref. 6)

aT(a,t) - .2 3T(a, t)

where p° and Cp' are the density and specific heat of the
wire reospectively, and

(> t) = £(t), (162}

Lim (1) =0 for finite t. (16b)

T

13
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£(t) is obtained as data during “he experiment. Given equations

(12), the problem stated above is nonlinear.

Wo will now use a set of linearization transformations
(Ref. 7) to obtain the linear analog of the problem, the
solution to which, of course, is similar to egqn. (11},

ard then invert the solution.

Consider the specific enthalpy, as referred to the

initial temperature

dh = Cp dT
and de:{'inehthrough hy the quantity ® such that

¢ = Jo .—1._ dh.

Rp

Using the last two equations

ag =%P dh = AdT (17)
frou which it follows that

gﬁ = )‘g.l.r- 2 = *

o - ed 2°H=¥° QT (18)

Furthermore, wo define the quantity g , such that

g= J, L1 a4t ; az = } at . (19)
% pCp

Through equations (17) -~ (19), equation (13) can be transformed to

2 = v (20)



15

The initial and boundary conditions are also transformed:

p x,0)=0;4" (r,0) =0 (21)

a0 f(r, E) =0 (22)
ard 2

2xa %g"'ql = %ﬁ %9!; r=a. (23)

Here & is assumed to be constant with temperature. This is
further discussed in Apperdix 2.

So far we have used a sot of transformations to linearize
tho nonlinear system of equations (12) - (16). The
lineoarized problem has been solved by the laplace Transform
technique (Ref. 5b):

¢(r,§)=%1; [1n H’—%-*iz,r +(°';2)12.r 1n9-'rc—+---] (21)

where 'r=§/r2. With the excoption of 7T and absencs of A,
this is identical to equation (11). We must now perform

the back~transformation.

Combining equations (12a) and (18) we have

ap - 4ar a7 5
whoere
- \J -

dT



Integrating both sides from »» to o
Bl=s 2)epile, g)-‘-‘}\i[T(w"l;)-T(r,’t)]-l-Lzz [12(=,t)-1%(r,t)]  (26)

Using equations (15b) and (21)

¢(r’ g ) =11T(I's"5) "'%2 Tz (rst) (2?)
vhere B(r, £ ) is given by equation (23). In particular
Ba, £ ) =2 Tat) + 32 TX(art). (28)

Throughout the treatment £ is gliven by

t
- A
g - Jo pcp dt.
Using equations (12a) =(12¢c) and letting r = a
A
e <M ¢ [ A T (at) at (29)
P1Cp4

[1+ ppn(ast)][1+ €, T(ast)]

The second terms on the right hand side of equations (28)
and (29) constitute the total correction for the case of
variable physical properties, under the given set of
assumptions. Neglect of these terms would 'reduce the set
of equations -(24), (28) and (29) to equation (11).

An upper 1limit to the value of tﬁe integral in the
rhs of equation (29) can be calculated by making use of the
physical properties of toluene and the magnitude of the
temperature rise in the celle Thls calculation is presented



in Appondix 1.B, and shows thau nsglect of the integral
introauces an error of the o.der of .01% into the thormal
conduciivity measurement. For this application then
where % is the thermal diffusivity. Combining
equations (24), (28) and (30) we get

a [ 4 1 =2 1 T

T Lln G g ) o anlg v ]

2
= 4, T(a, £)+ 5= T2(a, 1),

where

-
}
oler

5« The Case of a Time Dependent Heat Source

In the previous section the heat conduction equation
has been solved with the assumption that heat input into
the system 1s constant throughout the experiment. As
the current romains substantially the same, and the wire
resistance changes by about .01 to .02 ohms during a
run, we know that q1 (<I® R/1 ) is a weak function of time.
We will now assume this dependence to be of quadratic form,

@ =q *tayt tay t° (31)

and colve the heat transfer problem of equations (12 )= (16)

17
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with the altered boundary condition:

Qg 2y _ 21 4, _
A vl (Ql +QyE+Qy 8 ) = = g’ T = a (32a)
where
Q.
o 5
Q;i = ——Ki (32b)

It must be noted that in equations (32a) and
(32b) the approximation of equation (30) has

been used.

The derivation of the temperature profiles
under these conditions is rather lengthy and will
be presented here only in outline form; the full

treatment may be found in appendix 2.A.

After linearizing the problem as before, the
Laplace-transform of the heat conduction equation

and the boundary conditions are taken:

R B(rre) 1 38 (r,s) _  rB(rys) (33)
— 33
dr? r or
2Ta aB (a, g) + EL + SE + 233 _ 2ma? B (ass) (34)
ar S 52 §3 o .
lim B(r.,s) = 0. (35)

r+ oo



Here s 33 the complex variable of the transform-iinu,

@(r .3} 1= the Laplace traustumn of ¢ (r,t); and'®, 2s before,

is assuned to bs sonstant. .Soliwing equations (33) -

(35) for § wo obtain

G(r,s) = /s + 20, 4°) Ko(r 8)
2nas (6K, (Ba)+ as Ko(Ba)]
[« 4

By inverting equation (47) back into the real plane,
using equations (28) and (30), dropping small terms in the
second ard third brackets, and rearranging, we have

Ay T(ast) +32 1%a,t) = (37)
2 2 Uit
qr Mgt B L %22 2 in + .
ULk AF e ]

e
-~ ,q,% + rln 334

"I Ca

q 2 N
+ I}%[‘b[lng;g-g’/z]i-... ]

..1]+....-|

Again by setting q,, q3 and )\2 equal to zero, equation (11)
can be obtained.

In deriving equation (37), some of the simplifying
assumptions of section 3. have been dropped. We must now go

on to examine the remaining onese.

(36)



6. Effoct of the External Boundary

Egizidion (37) has beern derived with the assumption
that an infinite medium surrounds the central cylinder. The
duration of the experiment, then is limited to times beyond which
heat loss to the outer walls significantly distorts the
temperature profile in the cell. The equation of heat
conduction has been solved (Ref. 8) for a bounded medium,
under the following conditions:
8) A non-convecting medium is bounded internally and
externa.'lly by two infinitely long concentric cylinders, with
radii a and b respectively.
b) Power is dissipated from the central cylinder,
at the constant rate of ql/Zﬂ: a for t2 0.
¢) The external cylinder is held at the imitial temperature.
d) Physical properties are assumed to be temperature
independent over the temperature rise in question.

The solution of the heat conduction equation is then

glven by

oﬂ

|
I

©

T(ayt) = i gln -

<F e [ é.’;)zt]ao(xnm(xn)-roe:n>.1<xn)

n= [’1 (xn) -1
o xn°

k‘-ﬂw ~~——
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P->1

where ¢ = a

s Nis the ruming index n =1, 2, ¢« ¢ « »
and the x, satisfy the equation

Jolo %) Yylx)) = T, (0 x,) 3, (x) =0 (39)

where Iy and Yk are Bessel functions of the first and second
kinds, of order k respectively. For large values of t,
equation (38) reduces to

) 2 \
q | b o exp=-(Kx,/a)"t {
M ek 3o Vo T )

When b>> &, using (Refs 8 and Ref. 9).

1im Jk(z)é(%z)k/ T (k#l)

v =)

LR -k
Lim Y (2)= -(3) T (k)(32)

z4. 0
where for k an integer
7 (k) = (k=1)} ,
along with equation (39) leads to

Jolox) _ w2

To(or) T ™ (41)
and

5 () T (x) = -3 : (42)

Combining equations (39) - (42) leads to
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2
. ® exp - (Kx fa)"t
T(a,t)=2%7\ in -Z-- 2 = - (43)

B 2
= el

where in this approximation x o satisfy the transcendental
equation
Jo(xnc) = 0,
(Ref.S).
Equation (43) will be referred to, when cell design

requirements are considered.

7. End Effects.

The assumption of infinite wire length must now be
examined. Heat generated in the small diameter, high
resistance section of the wire is conducted away by the
current and potential leads. Heat loss through the former may
be rendered negligible by leaving a suitable length of heating
wire between the ends of the section where voltage changes are

monitored, and the thick leads leading out of the cell.
The following method has been used to estimate this length.

(Ref. 102 and Ref. 5¢).

The two ends of the wire, of length 2L, are assumed to
be kept at zero temperature, and also surrounded by an
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enclosure at zero temperature. The temperature distribution,
in the steady stats, along the length, 0g x < 2L, for

constant power, 9;, supplied to the wire is then given by

cosh M{L » z) |
3 ()

=1 e
T (z)= 1.
f( ) Z2me Hi cos I,
where H is the heat transfer coefficient given by (Ref. Xc)
2
H=2\A/aln -LLET- : T = Kt/a (45)

and )

M= (28 %2) (46)
where kw is the thermal conductivity of the wire. In
equation (45) the steady state temperature ai the wall has
been approximated by the "line source® solution of
equation (10)s The value of § for which

T, €I) = Tf(ZL -8)
is much less than .01% of T (L) has been calcilated (Ref,10a)
to be about 1 cm; the error rises rapidly to .6% for §= .2 cm.

(Ref. u’d) .

Heat conduction away from the potential leads had initially
been treated (Ref. 12) as cooling fins and the error neglected.
Pittman estimated the error in the thermal conductivity

measurement due to these losses, on & scaled up model (Ref. 4e)



for an essentially staticnary fluid. The resulting
calculation shows that for toluene measurements, srrors would
be about «3 = 4% over the pressure range. This seems to

be an underestimation, for reasons to be discussed in the
next chapter. Still, however it is possible to

minimize this error by extrapolating Xxvs. t data to zero

time, as the error due to end effects grows with time.

8. Convection.

While in the reduction of the equation of energy
transfer, convective heat transfer and viscous dissipation
were neglected, it is to be expected that the presence of a
radial temperature gradient along only the middle part of the

fluid, will give rise to free convection.

By using steady state methods it was previously found
(Ref. 10b and Ref. 13) that for the Rayleigh number,
R < 1000, convective effects could be assumed negligible.

R = g pgAT®/pK < 1000,
Here g is the gravitational constant

Pse 5 1w K are the physical properties of the medium and

d = bea is the charachteristic dimension of the syStom
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The velocity profiles of the convecting fluid have
subsequently been investigated. Pittman (Ref. 4a) numerically
solved the equation for the velocity distribution (Ref. 3)
within the cell, with the following assumptions:

1) A cold front of fluid begins to rise from the lower

edge of the heating section, as soon as heat is supplied to the
central cylinder.

2) The radial temperature distribution is assumed to be that

of the stagnant fluid, and to give rise to density gradients which
determine the velocity field.

3) The velocity along the r-axis is zero.

4)  Heat conduction from the warm region into the cold front

15 neglected.

The equation describing this system has been solved
mmerically by Pittman (Ref. 4d)

2
0 v 184y g eT LW (7)
dp2 r jr | r 3t

with the initial condition
v(rs0)=0

and boundary conditions
v(ast) = 0

I%J.mm(r,’c,) =0



The calculated velocities are 10 to 155 lower than those
observed (Ref. 14) by interferometric techniques (Ref. 4f).
As mentioned in section 2., the viscous dissipation term, is

calculated by using velocites obtained by this method.

9. Heat Transfer by Radiation.

So far, radiative heat transfer has been neglected. TFor

systems where radiation effects are important equation (8)

becomes
P Cp == 4 =T (A7) ()

where, ¢ n is called the net emission,

en‘_‘K[ebb (r,t) -eq(r,t)] (49)

and
K is the absorptivity coefficient
€ 1b is the black body emission function.
¢’ the absorption fungion. (Ref. 15)

The difficulty in the analysis of radiative heat transfer
is twofold: firstly the absorption function is a very complicated
function of the geometry of the system, and has been constructed
here only through use of simplifying assumptions; secondly even

the simplified form uf ¢, involves integrations over the



temperature and equation (48) then becomes an intractable
integro-differential equation, as will be presently shown.
Approximations at various levels have been made to

overcome these difficulties, a good survey of which will be
found in Ref. 4g. In relation to the hot wire experiment
it had been suggested (Ref. 10¢) that the amission from a
central cylinder into a black enclosure would yield a good
estimate of the radiative heat losses from the central wire;
the error calculated in this way had been found to be of negligihle
magnitude. Other estimates of these losses for measurements

on toluene were as high as 2%. (Ref. 11, 16-i8).

It is assumed here, that since the central cylinder
is of infinite length (see section 3) radiation
emission from it and from concentric shells of surrounding
fluid may legitimately be taken as having no component along
the axis of the central cylinder. The equation for
monochromatic radiation intensity, I,,, in cylindrical
coordinates, is then given by (Ref. 15)

dI (r't’)+ +# I, (nt) =g
= [.. Ky ITy v (50)
where
E, = E\,(T) = nsz rbb’v () (51)
Ky K,(T)

n = the index of refraction



&
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I = s
bb,y { ch 1]
v JFr T 7

(52)

and

¢ = speed of light.

h = Planck®s constant.

v = wavelength of radiation.

k = Boltzmann®s canst., and finally

T = the absolute temperature.

Equation (50) ean be solved by the integrating factor
method:

1
I, (r,t) = ;;(-;)J‘:o‘ E, (1) u(r)d (53)

where the integrating factor u(r) is given by

r
1
u(r) = exp = J' (-1:0+ K, ) dre (54)
ro
Here r  is the radius of the central cylinder and »r° is the

variable of integration. All terms in equation (53) are
functions of position, wavelength and temperature; the

latter in turn is a funetion of position and time. An
obvious simplification of equation (53) is to adopt a suitable
average value of K, over the infra red region which is
relevant for radiative heat transfer. We may then write

r
I(r,t) = :1%';7 [ 2D ue) e (55)

ro



Since radiative transfer has been assumed to occur only
radially, e®= I(r,t).

Also using the Stefan-Botzmann lavr

an(r,t) = 2 znfe (A T)u: AT = %z* (zryt) o (56)
Hence
B 2 4 1 . .
en—K(T) [Znn cT - o) I:OE(T) u(r?) dr ] (57)
where
- 1 0
w(r) = exp[ - f:o o+ K(D) ar ] (58).

Due to the form of equations (57) and (58), equation (48)
is mathematically intractable. The difficulty could be
removed by assuming ¥, the absorptivity coefficient to be
temperature independent. This however would impose time
independence on the radiative transfer problem, which
would in turn lead to lower levels of outward emission fzom
concentric fluid shells and hencs to a smaller correction
to the thermal conductivity. Pittman (Ref. 4g) solved the heat
conduction equation with a heat sink term representing absorpition
of radiation by the liquid, with a constant absorptivity

coefficlent and the boundary condition,

aT
- 2Ta\ — _ 97
ar = 1 dq(t)



where
6q(t) = 8mag e ‘1‘13\ T(a,t)
0 = Stefan-Boltzmann const.
e = emissivity coefficlient
TA = Absolute temperature
T(a,t) = Temp rise in the wire, from the start
of the experiment |,
with the conclusion that for toluene, the error involved is
of the order of 1 to 2f. This would seem rather high. The
boundary condition assumes a temperature gradient equal to
T(a,t), which would lead to overestimating the error;
neglecting absorption of radiation by concentric fluid
shells would have the same effect. Though due to its
approximative nature, this treatment, like previous ones
cannot be used for actual corrections to thermal conductivity
data, a practical aspect does emerges The error decreasss as
time goes to zero; thus agero time extrapolation of data

for each run would lead to a value less affected by
radiation losses. (hef. Ug)



Apparatus, Procedure and Data Handling

1. Introduction

The theory of the hot wire cell presented in Chapter
2 was applied in designing a thermal conductivity cell
adapted to high pressure measurements. Here a description
of the cell, the pressure system and temperature control
system will be given, along with the working equations
used in analysing the data. The experimental procedure
will also be described, and finally the method of

handling and processing the data will be given.
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2. The Thermal Conductivity Cell

The cell (Fig. 1) was constructed of EMS stainless steel
with dimensions of 1 em I.De, «98 inch 0.D. and 15.7 cm
internal length. Four 25 SWG thermopure platinum leads
were connected from the sealed electrodes on the high
pressure plug to the cell; the two current leads were
spotwelded to needles at the top and bottom of the cell,
which were insulated from the main body by baked pirophylite
beads. The two potential leads which ran down the side of
tho cell were insulated from it by pyrex capillaries drawm to
3/16% OD. 1In the cell a spring (Pt + 10% Iridium) was
placed between the top current lead and the heating wire
in order to prevent the wire from sagging as the experimental
tomperature was raised. The spring was shunted on both sides
with 001" thick, 1/16" wide platinum foil (Ref la), as the
spring material is of rather high resistanco. The heating
wire, .001" diameter, dis drawn high alpha grade platinum
wire supplied by Johnson Mathey limited,was then connected top
and bottom to the spring and lower current lead respectively.
The potential leads wereo then spot welded, about 1 cm away
from the spring at the top, and 3 om away from the current lead

at the bottom. After completion, the welds and the heating
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wire were inspected by microscope and found free of kinks or
distortions. The potential lead weld regions were found to
be partially flattened, up to a distance of 3 or 4 wire
diameters.

The design specifications arise from considerations
fully discussed in references (1), (2) and (3). These
arguments will now be briefly summarised.

1) Effect of the External Boundary.

It has been found (Ref. 1b) that, comparing, in the
first approximation, oquations (9) and (43) of the previous
chapter, agreement is within .o1$ for K‘c./b2 < +12. For
toluene at 90°,K, the thermal diffusivity, is about .7 x 10°.
This implies that over 30 seconds are necessary for wall effects
to become significant in 2 1 cm I.D. cell.

ii) Distance Separating the Potential Taps from Ends of the
Heating Wire.

The distance between the top potential tap and the spring
is determined by considering conduction away from the heating
section by the current leoad (and spring). Here leaving
approximately 1 cm between the bottom of the spring and the
potential tap was found sufficient (see section 2.7).

Other considerations enter in determining the length
of wire to be allowed between the voltage tap and the bottom



curvent lead. Free convection starts as soon as the central wire
begins to heat ups Shells of liquid, with the same

temperature distribution as for the case of no convectiong,

rise followed by the cold front described in section 2.8 (Ref 4).
The experiment can be continued as long as the cold front
remains «5 cm away from the bottom end of the heating wire.

As mentioned in section 2.2, the duration of the experiment is
limited by the length of wire allowed below the bottom potential
lead. Clearly the velocity of the cold front also depends on
the heating rate: low heat rates would allow longer experiments
but lead to low voltage changes and hence less accurate roesults,
where as high heat input rates would necessitate short
experiments due to convective and wall effects. It was found
(ref 3a) that for a distance of 3= cm below the bottom
potentisl lead, heating rates corresponding to 17-~25 milliemps
cell current would allow the experiment to last up to about

30 seconds. In fact all measurements were completed within the
first 20 seconds.

1ii) Diameter of the wire ~ Analysis of initial specific heat
effects, end effects and radiation losses, indicate the necessity
of using heating wires with the smallest diameter with which

it would be possible to build a cell. 001 inch diameter was

found to be adequat> for this purposc.
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iv) Wire length. Two cathetometers, set at right angles
relative to each othor were used ito measure the length of the
heating section of the wire, while the cell was clamped dewn
vertically. The wire length was found to be 8.100 * .002 cm.
The measurement was repeated after the theormal conductivity
runs and no significant change found.

3. The Cell Casing and Bellows

The case which envelopes the cell 1s made of three parts
(Fig 2)« The main body of the case screws into the pressure plug.
The middle part, a short cylinder, is argon are welded to a
bellows; this assembly screws into the main body of the case.
The middle part has been designed as a separate piece from the
main body for easier handling and replaceuont. The lower end
of the bellows was welded to a plug, with a tapped hole for
£illing. All parts were made of stainless steel and screwed
joints were soaled with teflonflat rings.

The bellows, made by Teddington Aircraft Controls Ltd.,
had + 1 inch axial movement. This corresponds to about 32%
compression of the fluid confined in tho coli aseamdly which is
sufficient to raise most liquids to 7000 atmospheres, over the
temperature range of 30-95°C.

The assembly (Fige 3) was filled with the test fluid,

under its own vapor pressurs, following a “bulb to bulb¥
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vacuum distillation, where liquid nitrogen was used as coclant.
A glass system, Fig. 4, was designed for the purpose, and
~heched to o standard vacuum system, including a badiing pump
and an air cooled oil diffusion pump.

L The Electronic .System

A system previously developed (Ref.3b) for
atmospheric pressure determinations of thermal conductivity
was used for the high pressure thermal conductiviiy measurements.
(Fige 5).

Basic requirements in the high pressure experimonts were
similar to those at atomospheric pressure:
i) 20 mA current stable to 1-2 ppm,
ii) Eight readings a second with 1 microvolt resolution in
about 20 millivolts,
iij) Stable backoff facility,
iv) Automatic data logging.

The major parts of the curcuit will now be briefly described.
1) Power supply. D.C. voltage standard made by Cohu
Electronmics, Kintel Division, U.S.A., with voltage range 0-1000V,

provides currents up to 50 mA. This instrument was placed in

series with a 10,000 ochm resistor, in a thermostatted oil
bath, to provide the cell current. The latter was measured by

monitoring the voltage drop across an NPL calibrated 10 ohm
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Tinsley standard resisto.,

2) Backoff Circuit. A Model 735A D.Ce Transfer standard
made by Hewlitt-Packard Co., U.S.A. provided the bachoff,
through a voltage divider of 2500 ohm total resistance in

steps of 50 ohms,.

3) Amplifier. HewlittePackerd Model DY 2411A

amplifier, with gain selection of 1,10, and by-pass, was

used in series with the voltmeter. The gain is specified
accurate to + «007% with temperature coefficient of less than
«5 microvolts /OC. Input impedance was 1010 ohms.

) Voltmeter. A Hewlitt-Packard Model DY 2401 C Integrating
Digital Voltmeter was used in series with the amplifier.
Maxdmum resolution of the instrument was 1 part in 300 000.
When used with a set sampling period of 1 second,resolution was
o1 mierovolt, and for a sampling period of .1 second, 1 microvoit.
Accuracy is better than + ,025% of the readinge Both the
amplifior and voltmeter are guarded and have high common modo
re Jection,

5) Data=Logging Equipment. HMonitored voltage changes across
the cell were logged by a HewlittePackard DY 2545 high spoed

tape punch set with a BRPE IT tape punch made by Teletypo Corpe.
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Bafore a run, the system was allowed to stabilize by
passing current through the ballaste This is a 100 ohm,
continuously variable resistanco introduced in order to avoid
transients in the power supply due to changes in the load,
when a2 run is triggered. This was done by a puzh button which
activated a mercury wetted relay. A Zenor dicde was provided
in parallel with tho 10K ohm resistor (See Fig. 5), so as
to avoid large voltages appearing at relay contacts. The
falling edge of the pulse generated across the relay triggers
the opening of tho gate to a counter circuit available in the
voltmeter with a 100 kilocycle signale. This signal provides
tho timing control for reset pulses externally generated and
fed back into the voltmoter. The first integrating period can
be delayed by up to 1/8 sec. aftor the opening of the gate; the
the delaying period is followed by a reset period of 9.7 millisezonds
which is the gap between the reset pulse and the beginning of an
integrating period. The integrating periods are 100 milliseconds
each separated by 25 milliseconds from each other, the start of cach

being triggered by an externszl reset pulse.

The sequence of operations and voltage measurements leading
up to a thermal conductivity run, will be described in a
late:r section of this chapter.
5. The Voltmeter Iitegration Poriod

Each voltmeter reading is an everage valuo cver a



100 millisecond integration period. Hence
=1 jtz T () dt (1)
— SR c
bty R

where TM tho measuraed temporature change is tho average value
over At (= tz-‘.:.,:) of Ty , the real temporaturo. Equstien (37)
of the previous chaptor must now bo modifiod to take this

intogration into account. Dofining from ogn. (37)
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As tho varisblo conductivity corroction is oxpectod to bo
loss than .5%,it is pormissible to calculate tho averagoe
valuo of T2 from tho lino sourco mothod. Thus by ogn. (10)

of the provious chaptor
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Hore At = .1 secord.

6. The Working Equation
For fixed a, Ap and o oquation (8) gives the moasurod

tomperature changes as a function of time, at tho wiro-fluid
boundal'yo
-1
For any interval, At, then
A = AF(t) / 4Ty (e).

For small temporature charges (Rof. 1)

oty =M R whoro  ar=8. ¥ a1,
dR 12
Thorefore aT AV Y

w = 4 I b ]

and

(13)

From oguation (8) it can bo seon that F(t) is a woak function
of Xy . Honce an itorative calculation is called for. The
computor program written to porform thesc caleculations will be

doscribed in a lator scetion.



7. 3Zhe Pressure System

The pressure systam was desigied to reach pressures up
to 7,000 atmospheres. The accompanying flow sheet, Fige 6,
illustrates the layout.
1) The pressure vessel was manufactured by Pressure Products
Ince (UK) Ltd.; design details may be found in Fige 7. The
vessel was made of EN 25 stainless steel, with 1%“ bore and
129 working length, from the tip cf the elscirode head to the
bottom of the vessel. The alectrode head was also made of
EN 25 steel with initially a beryllium copper-teflon half
Bridgnan main seal and four electrode seals. The latter consisted
of Hilumina insulators (Smith Industries, Ceramics Division) and

brass cones, successively lapped in.

It was found during the experiments, that beryllium-copper
work-hardened sufficiently to scratch the vessel bore when the
plug was being extracted from the vessel. Copper was tried and
found te flow too easlily and fill the gap between itself and the
plug (see Fige 7)e Phosphor bronze was then tried with a larger
angle, 6 degrees, between the ring and <the plug and found satisfacory,
rrovided a groove was turned off on the outside, as shown in
Fige 7. This groove prevents the 0O.De of the ring from flowing

flush to the vessal bore which would have increased surface
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contact and causwod leakings This design was found sufficlently
durable over the presswre ail tanpevature cycling that took
place during the experdments.

2) 10,000 atuosphere gauge, made by Budenberg Gauge Company,
rated to 1% accuracy of full scale deflection.

3) Letdown Valve, with nonrotating spindic, rated to 100,000 psi,
was made by Pressure Products Inc.

L) vVaive, with same specifications as (3).

5) Gauge, with same Specification as (2).

6) Intensifier, rated to 200,000 psi, with intensification

factor of 15; model AZ.5J mads by Harwood Engineering Coe, UeSode

77  Honerotating spindle valve, rated at 30,000 psi, made by Pe¥Pel.
8) Pump, stainless steel body, rated at 60,000 psi, made by
McCarney HManufacturing Cos; UeScAe

9)  Valwve, with some specifications as (3).

10) 40,000 psi gauge, made by Budeanberg Gauge Companys

11) Nonerotating spindle valve, rated at 60,000 psi, made by P,P.I.
12) Hand pump; same as (8).

13) Valve; same as (11).

The whole pressure system was enclosed in a steal frame and
shielded with §° thick mild steecl plate (Fig. 8).

The system is in®tially pumped up by (12) to about 2,0¢0
atmospheres. Valve (9) is closed off to isolate the low pressure

side, and the pressure further raised by pumping (8) on the low
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side of the intensifier (6) until the piston reaches the end of
the stroke. Valve (4) is then closed off, valve (7) opened and
the pressure between (!) snd (9) dropped to about 2,000 atmospheres.
Valve (9) is then opened and the intensifier piston pumped down by
(12); the pressure is raised again to 2,000 atmospheres, and
values (7) and (9) turned off. The pressure between (4) and

(9) can then be raised by (8) to the vessel pressﬁre, valve (4)
opened and pumping continued. Vessel pressure can normally be
raised to the designed maximum during the second stroke of the
intensifier. During experiments, (4) is shut to isolate the vessel
from the rest of the system.

The pressure calibrations wore carried out against an N.P.L.
calibrated “dead weight® standard pressure gauge over the range
0-5000 atmospheres. The zero=error of the two 10,000 atmosphere
gauges remained, as pressure was raised, and no error exceeding
the quoted accuracy (1% of full scale reading) of any of the three
gauges was found. The calibration was repeated by reducing the
pressure from 3,000 atmospheres, with the same result (Fig. 9).
The results were assumed to hold for pressures above 3,000
atmospheres.

8. The Temperature Control System

As the temperature rise of the central wire during the
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exporiment is «3 C, meximm allowable temperature drifts in the
cell are on the order of -05°C/hour. In order to achieve this
temperature stability the pressure vessel was placed in a
temperature controlled, stirred oil bath. (Fig. 10).

1)  Tubalox immersion heater, rated 230/50 volts, 3 kw, with no
heat dissipation above the surface of the oil. Power to this heater
was supplied through a 15 amp variac.

2) 19 thick blockboard case, housing vermicullite insulation.
3) 3% thick layer of vermicullite insulation around and beneath
the galvanized iron tank.

L) 1/30 HP induction motors made by Klaxon Ltd; 1425 rpm
slowed down by gearboxes and with shafts mounted with 129 long
vertical fins as well as 4 diameter brass propellors at the
tip.

5) & thick mild steel. plate supporting pressure vessel.

6) 1/ 8% thick duraluminium sheet cylindew, provided lagging by
trapping 1Y of oil between itself and the pressure vessel..

7)  Pressuvre vessel.

8) 10 geuge galvanized iron tank, 20" long, 14 wide, 357 deep
and with 4 flanged top.

9) Tubalox irmersion heater, rated 230/250 wvolts, 500 watts,
supplied through the temperature controller.
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The whole system was provided with a 1id made of 3* thick
syndanyo plate and 39 layer of vermicullitz, enclosed in cardboard.

The heat transfor fluid used was Shell Voluta Oil 45, a
mineral oil based fiuid, which can be used at temperatures up
to 300°C. The oil was pumped in and out of the thermostat bath,
using the oil handling system shown in Fig. 11, which was also

used for cooling the system.

A temperature controllier was designed and constructed in the
departmentzl electronic workshop for the purpose of providing the

required stability, and will be briefly dis-ussed here.

The sensing element, z Degussa, 100 ohm (nominal) resistance
tharmemeter, was used as one arm of the bridge with & PYE,
variable rosistance hox, ai& the pre-set arm. The bridge was
driven by an L& volt stsbilised pewer supply- The out-of-heiancs
voltage from the bridge is fed into a2 pre.amplifien and then into

2 3.term unit gain amplifier, the cutput of which is used .to determine

vhat propoirtioin of A second the heater will be turned on.

This signal drives a gate which allows the outpul of a
mains driven zeroc voltage pulss generator to reach the triac
controlling the heaters The latter shuts power off when voltage

across it passes throvgh zero, thus breaking circuit at each
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mains half eycle, and being reactivated by the zero voliage

roset pulse, as long as the gate remains open.

Temperature stability in the cell was fallowed over time
by measuring the cell resistance, and the system desorlbed above
was found to drift at rates of less than «05°C/hour after a
sottling down period of 12 {o 18 hours. Furthermore, the vertical
temperature distribution In the vessel bore was investigated by
vertically moving a resistance thormometer. In the absenco of the
bath 1id and the pressure plug, it was found that a vertical
gradient of about .05°C existed. It was assumed that the gradient
would be reduced to negligible propertions when the vessal
closure and bath 1lid were replaced.

Finally in oider to measure the experimentel “emnerature, an
NePeL. calibreted 25 cim (nominal) resistance thermameter, made
by HeTinsley and Co. Litd., was immersed in the bath betwe:: the
prossure vessel and tho cylindrical shell surrounding it.

(see Fig. 10). Thermomoter resistance was measured to 0001 ofm.
The constants of the calibration polynomial were used by a
computer program , in order to evaluate the tamperature.

(sco section 10). Experimental tamperatures will be quoted here
to the nearest tenth of a degroe centigrade.
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The thormal. conductivity of toluene was measured, at
each temperature, first at atmospheric pressure and then at

various elevated prassures.

As the pressure is raised by pumping, work is done on
the compression oil (DDT 585, Shell) and the test fluid;
consequently the temperature in the vessel and the cell rises
above the temperature at which the system is being controlled. .
More than three hours were allowed for this heat to be dissipated.
Experiments wers carried cut only afier temperature drifts due
to cooling were cbserved to be indistinguisheble from controller

drifts for aboui haly an hour.

The oritevicr ¢F adZFLiAtili%y for oxrors due to temperaiives
drifts v the 221l ic Dt dedifis should bo Lose than ¢ of o
temperature rise over the duration of the experiment. As
exporiments lasted approximately 20 seconds, and temperature
rises wore never larger than .300, this condition corresponds to
drifts of about .07°C/ hour. In fact no experiments were carried
out with observed drifts above .05°C/hour. These drifts were
followed by measuring the cell resistance at short intervals. If

before a run call resistance changes larger than those allowed for
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controller drifts were found, this was attributed to coolling due

to pressure leaks and the set of runs cancelled.

In theory, two factors must be taken into account in
identifying a pressure leak through cell resistance measurcments.
The first, as indicated above, is the changes of temperature
undergone by tho system, as the pressure is raised or lowered.
This must be distinguished from resistance changes that Pt wire

[¢]
will undergo due to changes of pressure. At 50 C, the pressure-
resistance relationship for platinum may be represented by the
empirical oquation (Ref. 5)
2
R =R (14aP +b P ) (18
P o
where
=5 =12
8= wls949 x 10 , b= 7.86 x 10 and Ro is the resistance

at atmospheric pressures.

While, cloarly, the two offects change the wire resistance in
opposite directlons, this in practice does notpose a serious
problem as the magnitude of the resistance change duo directly to
pressure changes, is much smaller than tho temperature change due

to work done on the liquid.

At oach setting of the temperature and prossure, the pressure
was raised to a slightly higher value than the desired one, in
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order to compensate fer drops due to heat dissipation. At each
pressure and temperature, three thermal conductivity measurements
woreo made. Ir addition a run was simulated where the voltage drop
across the 10 ohm standard resistor was measured in order to

calculate the curront change.

An experiment is set up as soon as temperature and pressure
stability criteria are satisfieds The power supply is allowed to
stabilize at 10 volts output, where the current drawn is about

1 milliamp. The following operations are then carried out.

1) Total cell resistance is measured and the ballast resistance
set to the same value.

2) Current is switched into the ccll and the voltage drop across
the +two potential leads measured. Heating due to the 1 milliamp
current is negligible.

3) With the current going through the ballast the potential
drip across the standard rosistor is measured. This allows the
calculation of the current flowing in the cdll in (2) and conse=

quently the calculation of the cell rosistance.

Output from the power supply is then raised to 200 volts,
drawing approximately 20 milliamps; tho system is allowed to
stabilize for five minutes.
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L)  Necessary backoff voltage is calculated on the basis of
allowing about 20 millivolts across the voltmoter; this is set on
the voltage divider.

5) With the current flowing through the ballast the potential
drop across the standard resistor is measured in order to
calculato the initial currente The volimeter 1s then set to the
«1 second sampling period, the tape punch activated and the
current switched into the cell. 50 minutes was allowed betwsen

NS
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Processing of Data

In order to calculate the thermal conductivity from

V veSe t data, it is necessary to know the temperature

coefficient of the cell wire resistance. To this end the cell

resistance was measured as a function of temperature at each

experimental pressure, over the range 30-9500.

A computer program was written to execute the following

operations:

1) Thermometer resistance data was converted to temperature
roadings. |

2) For each pressure the temperaturoc v.s. cell resistance data
was fitted to a straight line.

3) Using the T v.sS. Rc fits, pressurc v.s. cell resistance data
was cross-plotted and fitied to 2 quadratic.

4) These curves, in turn, are used for fitting straight lines to

T veSe R , for each experimental pressure. dR/dT values
c

relovant to the experimental. states were then computed.

The source program listing may be found in appendix 3B.

The least-squares polynomial fitting subroutine used, was a Program

Library deck written by C. Ho, Computatitn Laboratory G.P.D.,

I.B.M4., Rochester, Minnesota, U.S+A. Tho same subroutine was

used in the main data analysis program , which will now be

described.
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Data in the form of paper tape produced by the Teletype
punch in Atlas autocode was first loaded, without code translation
on to magnetic tape by the IEI 140i. The main programme written
in Fortran IV was then loaded on ihe IBi 7094 to perform
the following operations.

1)  BEach data batch consisting of several thermal conductivity
runs and a current run, were translated into BCD code*, assigned a
decimal point in units of volts and read into the memory.

2) The following information was fod in from data cards, for
each run:

= The temperature coefficient of thermal conductivity at the
initial temporature

- time dclay before the stari of the first integration period

-« wire and fluid densities and specific heats

- verimental temperature and prossure

« backoff volitage value

- temperature coefficient of wire resistance at the initial

* I am indebted to Mr. Richard Beckwith of CeCel., Imperial
College of Science and Technoiogy tor the translation routinc.
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temperature

- voltage drop across the 10 ohm standard resistor with curront
flowing through ballast snd power supply set at 10 V; this value is
detoted by SVi, and is used for calculating the current at the
10 volts setting.

- voltage drop across the heating section of the wire, wi-h
10 volts across the clreuit, this is denoted by RIVT, and is
used for calculating the cell resistance.

- voltage drop across the 10 olm standard resistor, with power
supply sot at 200 volts, SV2, used for calculating the initial
current in the ccll.

3) Calculation of ql' qz and qB. The heat dissipation per
unit length in tho active part of the cell is given by

q(t) = V(t) I(t) /=
where V(t) is the sum of Vg the backoff voltage (noeasured
accurate to 10 microvolts) and the voltmeter reading V.( t)

(accurate to 1 microvolt).

V(t) = Vv(t) + VB.

Tho current changes are measured by monitoring the voltage changos
across the standard resistor (the resistance of which is knowum)
during 2 simulated run. This data is fitted to a quadratiec,

2
() =1, +Iy b 1‘2 t (15}
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where io is the value rclative to the backed off voltage. The
initial current is then calculated from SV2 and the resistance

of the standard resistor. Ther

2
I(t) "Io'*“Ii t—i—Iz t
The power dissipation can can now be written as
1q(t) = I(t) Vv(t) + I (t) vy (16)

The upper limit of the total current change during the
exporiment is 4 ppm. Teking Vj =300 millivolts, 4 v = 500
microvolts, we see that the change in the second term on thé rhs
of the last equation is much smaller:

(Ip - I) Vg = .2
Aq
here I, = IO + AT. Hence measuring VB to 10 microvolts produces

negligihle error, in the calculation of dp and qj.

Combining equations (15) and (16), with voltage change data
as a function of time is sufficient to fit q(t) where the
first term CH is calculated from the measured initial current

and cell resistance. Hence

2
a (£) = g(t)A =q + q,b + q3t
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The time averaged power dissipation is given by

- 2
. +ag, b * t °
=7 qi B T T B Ypax
2 3

) Calculation of 2 .+ The string of valtage changes measured
as a function of time are smoothed Ly fitiiug to a quadratic in
1u t averaged over the integration period.
W)=t + Bg () + Cg (8)

whoere

glt,) =t an[ 1+ 2] + ™n (4, +8 %) .
v T, !
rt 1
Data takon during the first half second whero specific heat effects
are important is ignored. Tho first conductivity value is, found

by processing readings 5«15 and a conductivity is calculated through

an iterative procedurc by using 6 more readings each time.

An jteration is initiated by calculating the first
approximetion to the thermal conductivity by the line source
method. This value is used for calculating, through equation (13)
a new value, which is fed back into oquation (13). The process is
acutinzned until the change is successive iterations is less than

+01% of the waluo of A R

A scries of apparent conductivities as a funetion of

experimental time are thus calculated, along with corresponding
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standard deviations, and differcnces from the line source mothod
arising from finite wire diametor, variable power and temporaturoc

dependent thermal conductivity.

A listing of tho sourco program may be found in appendix 34,
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CHAPTER 4
DATA AND DISCUSSION

{. Intreduetion

The thermal conductivity of toluene has been measured
at three temperatures between 30 and 90 degrees coentigrade
over a pressure range of up to 6250 atmospheres. In all,a
series of approximately 50 measurements has been made. No
data sould be found for comparison with the high pressure
thermal conductivity measurements of this work. Atmospheric
pressure measurments were within about 0.5% of previous work

by Pittman (Rof.5).

In this chapter, the data will be presented along with
results of hot wire dR/dT calculations. A sample calculation

for the conductivity will also be given.

2. Toluene Properties

Analar grade tolusne (Hopkin and Williams Ltd.) was re-
fluxed over sodium wire for about six hours and distilled.
A middle cut was separated and it's refractive index
measured. This was found to be L.4942 + .0002 at 25 + .18C.
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Mo high pressure cats on the heat capacity and density
oftohene are 2t present available. Thse heat capacity
values at high pressure were taken to be those at the
corresponding temperature at 1 atmosphere (Ref.l). Sincgc,
in the calculation of the ¢onductivity the heat capacity
appears in terms which are rather small, the error arising

from this approximation is negligible (see Chapter 3).

Density data for toluene had to be estimated in order
to relate the pressure to the compression of sample volume.
Results of this calculation were used to compute the thermal
diffusivity at high pressures The method for estimating
high pressure densities (Ref.2) from atmospheric data on
p Vese T, is based on the assumptions that isochors
(constant volume lines) are straight, i.e. that (dP/dT)y
is constant and that the (dP/dT)y v.s. P relationship is
linear.

P, - P
[Tz-Ti]v [dTV +B | (1)

By using the few available data points (Ref.3)
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PRESS . (41M) Vrel
1810 .885
2930 853
L4400 824
where Vygy is the ratio of ‘{’/‘%’-I-\t and the density

temperature relationship from the International Critical

Tables ,

AT) = 88448 - 9159 x 10°3 T +.368 x 100 12 (2)
(0< T° C< 110)

the density can be estimated over the relevant temperature

and  and prossure range (Fige 1) .

The method was checked by calculating n-hexane densities
and comparing with previously measured values (Ref.4); it was
found to be within 1% up to 2000 atmospheres, deteriorating
to about 5% around 6500 atmospheres, over the 0-1000C

temperature range.



5 | | | | | |

o I 2 3 4 5 G 7
PrE3SSURE 5 P 1000 ATS

Fir. 1. TOLUENME DeENSITIES AT HIGH PRESSURE (ESTIMATED)
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3 + The Wii‘e

The length of the wire between the two potential
taps was measured before the toluene runs. The catheto-
meter measurements, which were described in the previous
chapter yielded

8.103
8,100
8.099 Mean : 8.100 cm.
The measurement was repeated after the conductivity
determinations.
8.098
8+105
8.102 Mean :8 ,102 cm.

This change of less than .02% is within the accuracy

of the measuring instruments, and in any case negligible.

The calculation of the temperature coefficient of wire
resistance has been described in the last chapter. At each
pressure, dR/dT was taken to be constant over the experi-

mental temperature range, as the latter was rather small.



PRESS . (ATH}

1
1560
2250
3250
4850
6250

h

dR/dT( ohm/°C)
059875
059734
:0596C3
2059565
055407
059264

L4, Tolyens Thormal Conductivities

Results obtained in the experiments are given

below:



TABLE T
il ARTE R A
1 28,2 1,297
1,300 1.298 el
1.297
30.8 1.282
1.268 1.285 0.2
1,285
1500 30.8 1.633
1.631
1.630 1.633 0.12
1.636
61,4 1.589
1.598 1,595 0.25
1.598
91.5 1.537
1. 543 1.538 0.5

1.540

75
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PRESSTRE THP,

(ATM)

(°C)

A

mw [/ en="C

A (Ifleap)

i/ em=0C

Av. % Deviation
from the mean

2250

30.8

61.4

91.5

1,824
1.814
1.808

1.822
1.776

1,780

1.770
1.800
1.803

1.815

1.793

1.791

o34

1.1

0.8

3250

30.8

61.3

91.6

1.917
1.911
1.937
1.943
1.935
1.940
1.935
1.939

1.914

1.938

1.938

0.1

0.1

0.1
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SRESSRE TR®. Mmean) g % Deviation
(ATH) (°C) i/ em~0C  mw/em=OC from the mean
2.125 2,118 0.35
2.123
61.3 2,170
2.183 2.173 0.3
2.170
916  2.183
2.187 2.186 ol
2.189
6250 30.8  2.27
2,295 2.252 L
2.2'75
1.8 2.9°59
2,10k 2.383 .6
2.375

These results are plotted in Fig. 2
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5. Sample Calculation.

Run 23. Date: 1/8/196
Temperature = 30.8°C; Pressure = 4850 Ats.
Temperature Drift = .01 'C/hr

Measurements Before Rus.

DC supply : 10V

Voltage Drop Across Cell: 27.5970 mV
w @ w Bsllast: 27.5971 mV
“ @ w Standard Resistor: 9.8302 mV
@ @ " Heating Section of Wire: 16.9312 mV

Back off Setting: 314.04 mV
DC Supply: 200 V.

Voltage Drop Across Standard Resistor: 196,494 mV



Sum from Computer Oubtputb.

Operating Current: 19.6478 milli Amp

Initial Resistance: 17.2250 olms.

dR/4T (approx. value used}: .058954 ohm/ °c.

No. Tts A

Included n
15 21323 x 1077
33 021145 x 10~
51 .21126 x 1077
69 .21123 x 10
87 21165 x 10
105 21154 x 1072

Linear fit exirapolated to zero time glves

A= 2.110 mw/cm. °C
Smoothed dR/AT = .59407 ohm/oc.
Corrected A = 2,125 mw/cm.OC.

Standard
Deviation

-6
.60107 x 10
75573 x 107

« 76917 x 10~

« 74863 x 10“6

6

« 81744 x 10-'6

80



6. Sources of Error

During the experiments. temperature drifts in the

cell were Toilosed by measw-ing the eell reslstance at short

intervals, As sach sst of deicrminations wes comploted
within the span of abcut two hours and the accepted drift
rate was O. 03°C/h1~ the measuremonts can be sveraged with
a maximum error of .1%, over the prassure renge. On tho
othor hand, as menticned in ths previous chapter, ths
exporimental temperatvre is meastrsd in tha oil bath
between a hollow cylinder surrouwnding the vesseol, and the
pressure vossel itself., While this arrangement somewhat
shields the thermometer from temperature fluctuations in
tho oil bath (* .1°C), the temperature sean by the
thermometer 1s expected to be less stable than that in
the cell, vhich is swrrounded by the thermal mass of the
prossure vessel. As the time lag between the exterior of
the vessel and the ceil is about 3 to U4 howrs, the

temperature differenc~ (assuming continuous drift in one

81

direction) could be as much as 0.3 to 0.4 dogreeos centigrade.

This gives rise to two types of error.
1) Tho moasured thermal condvctivity, depending on the
magnitude of g /dT at the glven pressure, would be in

error: by 0.2 to 0.5%
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2) In the evaluation of dR/AT, the cell resistance would be
matched to a temperature different than that in the cell.
The resistance value would be in error by about 0.2%. The
error in dR/AT with an upper limit of asbout 0,5% due to this,
night be expocted to decrease through the double smoothing
procedure of R ves, T data outlined in the previous chapter.
Furthermore, the shortness of the temperature range would be
expected to affect the accuracy of the temperature
coefficient. Thls error could be estimated to be in the
range 1.0 to 3.0f. and closer to the larger value at the
orxds of theo temperature range.

Errors in the thermal conductivity measurement due to
convective effects are due to two types of mechanisms. The
first is dus to heating of the central part of the wire with
tho result that at the extremities vertical temperature
gradients are set up. It has been assumed that the
radial temperature field remains unchanged wntil the ®cold
front® approaches the bottom potential tap. To this must be
added heat losses from tho potential lead into the convecting
fluid; this clearly ties in with and apgravates the problem
of heat loss from the central wire by conduction into the
potential leads, with the result that the radial temperature

field is distorted. These errors; however, may be
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minimised by extrapolating the data to zero time, provided
that the fluid is assumed to be inltially stagnant. This
brings us to the second type: froe convectlion at the start
of the experiment due to vertical temperature gradients.
The observed fall in apparent conductivity with time
obsorved in many runs is consistent with hot fluid rising
from bolow the heating wire in the cell. It is difficult
to ostimate the error arising from these initial vertical
temperaturo gradients in the cell, since those would
depend on the magnitude of the gradient. This effoct 1s
somewhat smaller at higher pressures, as would be

expoocted, and the error arising from it would be estimated
in the range 0.2 to 0.5% after extrapolation to zero time.
This initial free convection would also imply that
potential tep losses are not completely eliminated by
extrapolation to zero time. The resulting error could be as
high as 0.5%. Errors dus to radiation losses may be ignored
with 1ittle error when the data is extrapolated to zero
time. Finally, as can be seen from percent deviations from
the moan en error of 0.1 to 1.0% must be accepted from
random factors, such as electrical noise, and scatter in

the extraplated lines.

Surmarizing, the error due to averaging the results of

each run should give rise to 0.1%, uncertainty in the



tempersture measwement to 0.4 to 1%, the initiael conveoction
offoct to 0.2 to 0.5%, uncertainty in dR/dT to 1 to 3%,
ond offects to 0.1 to 0.5%, and random errors to 0.1 to 1%.

8L
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CHAPTER 5

THE HEAT TRANSFER EQUATION WITH VARTAELE
PHYSICAL PROPERTIES

i. Introduction

In Chapter 2 a set of linearization transformations,
proposed by Kudryashev and Zhemkov, were applied to a problem
where the inversion procedure was rather straightforward due
to £ reducing to Kt without significant error. Here the
evaluation of these transformations as a tool for solving
certain types of partial differential equations will be
attempted. For a chosen simple gecmetry, the solution obtained
by this method will be compared with two other ways of solving
the problems It will be seen that while all three methods
agree for small nonlinearities, the differences for large
values of the temperature coefficient of the thermal conduc-

tivity are significant.

2. The Infinite Slab

For purposes of comparison, a problem solved with a

variational technique (Ref.l) has been chosen.
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An infinite slab of thickness 2L is held at wniform
temperature Ts » and the boundaries ~L and L subjected
to T(-L,t) = T(L,t) =0, for t> 0. The temperature
profiles are symmetric with :respect to the plane x =0 .
The density and the heat capacity ar~ assumed constant and the
thermal conductivity is given by

M) =Ag (1421 ) vhero "2=%1%2\'1"" (1)
The problem can now be stated as

T(x,0) =Ty 3 -Lgx<l

T(-L,t) =T(L,t) =0 ; t>0

with the partial differential equation

Pe,ar . 3 [amoaz] . (2)
ot 9x ot

In arder to simplify handling, the problem is put in dimensionless
form. The new variables are defined as :
A
x 2 % T
=3 157 ; 8 =g i o =Tgry (3)
=% Fc, 12 T, s M2
and the problem can be re-stated in dimensinless form as follows:

8(p,0) =1 ; “< P g1 (4)
8 «lyr ) =0(1,7)=0;7>0 (5)
30 _3_ [(1+00) 2017, (6)

3t 9B )
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For this particular problem, the Kudryashev and Zhemkov
transformations (ref. 2) can be re~cast as follows.

The enthalpy/mass, referred to the initial temperatire

is defined as -

dh = 40 (7)
and the quantity § as

g = f A a . (8)
Differentiating (8) and using (7)

dp =1 ae (9)
which immediately leads to

gg=ké‘-§ and , VP = V(A Vo), (10)
Furthermore, we define the quantity

g =‘]‘TA as ;A =Xdr . (11)
Using equations (9)-(11) we get

7% =2 . (12)

3g
and by (7) and (8)
#(5,0) =0 . (13)
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In order to obtain the boundary conditlons,

2 9
h=fdh° = Ide°= 6 -1

At 6 =0, h =1, Therefore
7l 9 9 o) (1)
§-1,) = (1) =[ [rroln™n) Jan'=-(1+§) .
The solution to the problem stated in equations(12)-(ik) is
woll known (Ref. 3) .

(o) =Bag (A em[-x_z%ﬂﬁzﬂ o5 (nst)p (15)

% n=o0 (2n+l

v 3 _ o] — o]
where x—¢+(1+-§).and xo-(i'l‘—z).
The transformation must now be inverted in order to get

6(B,T) » If equation (10) is integrated with respect to B

9 8
T‘; %‘gods = { K%"god3° . (16)

By using (5) ard(14)
B(.8) + (149) = oe,r) +§ 6%(p,m)
from which it immediately follows that

x(8,8) = €(8,7) +3 62(8,7) . (17)

This equation, coupled with egne (11)

g =I (1+00 ) ar (18)

o

will bo used to obtain 6(B,T) .
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3. Solution of Equations (15),(17) and (18).

In order to sclve the system of equations (15),(17) and
(18), it is necessary to resort to numerical procedures. §
is taken to be the polyncmial of the form

g=r+ I A exp(-*(:.L T) (19}
where each pair of constants Ay and Yj are computed from
successive approximations. For any given pair of g8 and 7,
we first integrate under the curve o(B,r) by setting E=r
Then .

§=-r+cr‘[‘9d'r'= v+ Aie:qa(-yi'r) . (20)
Clearly, in the first approximation

A ol 1) = ] edrt . (21)
o]

Taking the natural logaritim of both sides and differentiating

with respect to T, we get

_ 81(t)
"1 ) l'r 8 ar°® (22)

Substituting this result in (21) and solving for A4
T
A= [exp(yi )] ‘([ edr® . (23)

The second pair is obtained similarly; € now is given by

g=71+ A'l exp(-Yi'r) .
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A new value for the integral IO dr’ can now be calculated

: - = 0o,
Ai e'xp(-‘(iT) + Ly exp ( Yzfr) c I 8 dr
where A1 and Y, are knowmn. Proceceding as before

T
Yz ::""Yi"' O(T)/L ed:l;' and
A = [-Al exp(-—'vi'r) +o -.[o @ dr’ ] em(Yz ™) .
It can ea.gily be shown that the n-th palr of coefficients

isgiven by

n=1 ]
Y, == & Y +T—m_ (24)
n [ k=t 'k T o dr! ]

and o
A = [o I 0 dr' - ;g A, oxp(-y) -r)]exp(vn-r). (25)
[o]

The iteration was stopped when the last two calculated
values of 8(r) were less than 10=5 apart. The calculation
was repeated for each given pair of B and T . A 16 point
Gauss-Legendre quadrature was used for performing the inte-

grations.

L, The Finlte Difference Approximation

For the purpose of comparison, the problem of equations
(4) = (6) was solved using the finite difference technique
(Ref.4); as only a general outline of the way to deal with
the problem was found in the literature, the essentials of
the solution will be given here.
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If wo divide the one-dimensional space~time plane into
a grid where the space variable incrment is h, and time in-
crament X, the first derivative of u [=u(x,t) ] is

approximated by
du x4 [ uGxr/2) - u(xn/2) ] - (26)
Then

80 8w & [3 (xth/2)u? (xf 20 (xeb/ 2! (xb/2) | (22)

where u'is given by (26). Denoting the central grid element

by 0,y rather than u(x,t) we have
3 1
VOt [agulny o) =g @ -w D)d2 (g

and the time derivative of u

oue 1
t k ( ui.j+'i U,3 ) . (29)
By defining p= %2 , o =rh and A= 1+ou,
and using the Crank-iicholson method (Ref.5),
= (2p42) + JX (30)

Vs o4
l’J+.L

2ro
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where

- (2 or 2 -
A=(2p42) -w.ro'[mz' U '}:'L.i +1+-2' Uy 4 + rui_i*ﬂbi] . (31)

Here 21l u°s are understood to denote the grid point j + 1.
In equation (31)

bi= 4 "%[0’1_'% (\11_'_1 -\11) - &Yi_% (ui-ui_i) ] ) (32)

vhere u’s are understood to denote the grid point j.
Using Gauss=Seidel iterations (Ref.5), the n + 1°th approx-

imation i‘orui 34 is given by
?

Mo o(art2) + /0T (33)

1 or

where

nH - g 2 gr 2
A (ars2)tiro L 5wy | obeug g ot 55 00 i T i 0]

(34)
where b; is given by (32) with the u's denoting the n + 1°th

approximation. For faster convergence the iteratlons were
carried out with successive over relaxation (SOR).
Defining A= uli"*’i - 2 . in SCR

N+ - on

U S + L A
where the SOR -coefficient wy is defined by
wb=2/(1+J1-u.z) ard u.=-1%005§-
(Ref.5)0



93

5. Rosults and Conclusions

Temperature profiles were calculated by the two methods.
Figure 1 shows that for 0 = .1 agreement is quite good. On
Figure 2 results of the salution of the problem by the variae
tional technique (Ref.l) are plotted as well as the two
previous methods for o = 1. Assuming that the finite
difference solution is the "correct® one, it will be seen
that for o =1
a) the variational technique is inaccurate for small times,

and gets progressivaly better for longer times, and that
b) the method resulting from the Kudryashev-Zhemkov trans-
formations shows that better agreement for short times but

.rapidly deterdorates as v gets large.

That the error should grow with time is probably ine
dicative of instability in the integration procedure, as the
sot of equations (15), (17) and (18) is exact.

The results for ¢ = ,1 can be taken as justification
for the use of this method in the analysis of the experiment
presented in earlier chapters,since the corresponding o is

less than .01, Thus in the present form this method is
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applicable to a large numbher of problems. It also lends
itself to a suraighifurward evaluation of the errors due
to temperature dependence of the physical properties, by

ostimating the vpper Limit of thointogral

ta
as illustrated in appendix 1.

Computer programs for the above calculations will be
found in appendices 3C and 3D.



CHAPTER 6 77

The Harmo.ac Oscillator Model
for Liquids of Spherical and

Chain Molecules

A short account of the cvdil medel ;ov‘ simpile 1liguids,

and its extension to the harmonic oscillator approximation
will be glven, followed by the application of these models
to chain molecules. The assumptions involved in each case
will be briefly discussed.

i. The Basic Equations

The Helmholtz free energy, A, of a system is defined
by the equation
A=-XxT 1n 2 (1)
where k is the Boltzmann constant, T is the absolute —
temperature and Z is the partitic'm function of the system,
defined as the sum over all states of the Boltzmann factor.’
exp ( = By/¥T), By denoting the energy of state i.

In the classical approximation, the translational

partition function can be expressed as an integral
7= NIhBN J‘ 0..0\[ exp['H(zl,)Oo!z{ ’ _1:13 ooo,m)}cmioodP dx‘toodﬁq

where H, the Hamiltonian is given by , (2)
. H 2 21 + ¢ (rl .o-nooooo_‘l) (3)
Here _131 = m dr and X3 is the position

vector of molecule i, which has the mass n.
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On the assumption that the P; and ri are independent of
each other, the two sets of integrations, over thePj and xz;
can be performed separately and the partition function wiilten
as a product of the two. The set of integrations over the
momenta ylelds:

3n/2
[‘21: mKT7 .
he !

The integral over the positions of the molecules is called
the classical configuprational integral defined as,

L.
QDY) =W feveere [ expla U/KD) dmy eeve dryy (W) 7

where U is the total configurational energy, (potential
energy) of the system. If one assumes this energy to be
pairwise additive, then

U = j_z . u(Rij)’ (5)
>J
vhere Ry j, denotes the intermolecular separation, and u(Rjj )
the intermolecular potential. The translational partition

. =[21!ka'

function for thg N7¥st.em 1s then wiitten as,
he J Q(,T,v) . (6)

2. The Equations of the Cell Lattice Model

For dense systems, composed of molecules with attractive

forces, the potential energy is approximated by
' N

U=U, + Z [o{ry) - e(0)] (7)
i=1
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under the foliowlng assumptions:
a) That the volume of the system be subdivided into cells
of equel. volume,
b) that each of these cells contain one molecule, and
¢) that each molecule move in its cell independently
of molecules in neighbouring cells. Ref (1a).

In equation (7)s Uyis the pof;ntial energy of the
system when all molecules are positioned in the centers
of their respective cells, ry ir the displacement of
molecule 1 fpom the eenter of its cell and X("i) - (0)
is the potentlial energy change involved in this displacement.
Equation (4) then takes the form

i s
A TY) = e (+ T /KD X (8)
where
x=[ o[- [() - @] | av (9)

the integration being performed over the volume of each cell.

e The Smearing Approximation

In order to calculate the mean displacement energy,
glven by equation (9), (Ref (2) and (3))we take a molecule,
A fi*ed while the sscond, B, is allowed to move about a

sphere of radius r. The center of the sphere i3 a distance £,
from molecwle A. The distancs bstween molecule A and moleoule

noleoule B is given by
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1
4 = [a-grz-z ar cos 0]5

where © i: tnu angls Lobasn "7 and %, The aveorage mutual
potential over the surfacs of ine sphere can be weilten as
2n r?c
’

e(r) = (10)

fz"f sin 0 40 ap

If e(r) is taken as the Lenna.rd—J ones 12-6 potential

e(r) ={ o) -2( )} (11)

where ¢ 1s the potential minimum, and r, the intermolecular
separation corresponding to that minimm, and if we donote the

nearest number of neighbours by z, the average potential
per cell is thon given by:

e(r) = bz {[T:.j * ] - [%O]Z[m(y)ﬂ]} (12)

where
3 = 2
(o}
.Y- = ro and a = J—zv—; y- = —I:é [
73 z a

1(y) = (1M2p+25.2 y2+ 12 y3+.7%) (19)-10 - ¢,  (13)

aly) = UHy)ey)™® = 1, (14)
Using equation (12) to derive ¢(0), we get
- ot .
e(r) - e(0) = ”tez{;-'f?'] 1(y) - [%o_'z m(y)g' . (15)

o The Harmonie Os3illator Approximation
By oxpanding equation (15) as a Taylor series about

the center of the cell, in terms of y, we obtain an
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exprés;sio;l forA sma.ll osci]lations of the molecule
T9)-3 (0)=y3(0)-3“ g0+ « o o
by truncetivg the mxpsnsion afier the Tirst term, wo obiwin the
harmonic approximation to the wsan cell potential acting on a2
molecule which parforms small oscillations about the center of
its lattice cell. Ref, (4a).
F(r)-5 (0= e [ 220 - 10 [ 217 ]2 (16)
€ [v ] - v a’
Thus, the configurational integral can be expressed in the
harmonic oscillator approximation as in equation (8), with
2
L 2 ] ]
‘= fv o ;%[22 Byt - 0] | B ev. a7
By making use¢ of the expression for the restoring force constant
for small vibrations, k=¢&n2‘v2m, the moan frequency of

oscillation can be given by

1 2z e vo U v 2 3
v = - m.i?—[zz () -10 (3) ]& (18)

5. Discussion of tho L-J~D Theory:

A. Kirkwood’s Treatment . (Ref.5)

In an attempt to establish a firm theoretical basis for cell
lattice theories, Kirkwood shows how the assumptions mentioned
in paragraph two of this chapter, arise in the mathematical
treatment. The classlical configurational integral is written as

v

v
Q=I e o o J. (S S ("'TJ/kT) d.vi o o e odVN (19)
(o] 2
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vhere v 1s the total volume. By assuming N lattices each of
volume A, and expressing the integrals over V of each molecule
as a su 97 iutegrdls o—i the individual cells, (assumption (a)

in paragrevh 2.) @ can be ieWIT iar as

N e
Q= ¢ ¢ o o} ‘[ s e J. exp(-U/kT)dvi e o @ dVNo (20)
11=1 1N=1 .

The N integrals of equation (20) can also be written in terms of

integrals ZN(ml' e mN) where the m; are the number of

molecules occupying each cell i
N

( ® L ] L ] L ] ) ’
Q= x N Z " o (21)
ml. .0 mN=o _ﬁ (m !)
Iy s= °

Here there is one integral ZN correspording to the case of single

occupancy of each cell, Z(l'l’ cre '1). We can now define

the parameter ¢ by the relation
N

N - (m ¢ o o 0 )
¢ = T z\™ 'l
mye e o Y0 ﬁ("‘s” g Leeoot) (22)
Im =N 8
and
Q =0N Z(lgi o ® o o @ 1) N! (23)

At high densitles where the singlo occupancy assumption is
roasonable, ¢ approaches unity, wheore as, as the density tends
to zoro ¢ will terd to the value e« The entropy calculated
on “heo single occupai-- assumption is low as ¢ is assumed to be

equal to vnity. The fast that more of the
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total volume than j4.ust one cell is available to each moleculse,
and heﬁce that ¢ lies betweon unity :nde, gives rise to the
concept of communal entgdpy.

-

Kirkwood cantinues his treatment by considering only the
single occupancy integral. In order to write the free emergy
explicitly the thifd major assumption is introduced: the
relative probability density in configuration space 1s written
in the form of the i:roduct of probability densities of eacl.il B
cell, assumed to be indspendent. of esch -other.

P = (.) (24)
N ;E!; O\Fy

where, r; » the displacement of molecule s from the origin in
its cell ,

" The subsequent minimisation of the free energy by Kirkwood,
seems to yleld lower energles than those of the L~J=D theory.
However there is no’ theoretical justification for expecting the
lowest calculated free energ.to be closest to the real value.
@It is much nearer to the truth to regard the variational theory
as justified insofar as it approximates the LeJ-D theory“

(Ref. 1b)

B. Barker's Critique

i) The spwearing approximation: For rigid spheres, free
volumes calculated by using the smearing approximation are about
thirty per cent lower than those calculated by detailed analysis
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of the volume distribution. The pressures calculated by this
approximation are not very different from those calculated from
the "correct® free volumes, but the entropy is considerably lower.
Similar behaviour is observed for potentials with attraective
forces, the error passing through a maximum in the vieinity of
the ceritical density. As the density approaches the triple point,
and further increases to that of the solid, the error tends to
zero. (Ref 1¢).

ii) Correlation effects.

Caloculations assuming that only first peighbour motion is
significant has ylelded good results about the critical density,
and this result should bes valid at higher densities as well.

Most of the error due to assumption (c¢) of paragraph (2) can be
accounted for by taking into account binary and ternary correlations.
(Ref 1d).

ii1) Multiple occupancy of cells: This remains as an
essentially unsolved problems Attempts have been made to modify"
the simgle occupancy configurational integral, in order to take

multiple occupancy in to account, such as:

| Q(mi’ . oo .mH)._. [-Z\" (mms)_} Q(i o e e o 1) s
where c;(i"""i :)Ls multiplied by a factor v, given by eqn.(25)

for each cell that 15 occuplied by 1 molecules; various ways to
calculate the Wy 3 hive also been put forward, Refs. (6),(7),(8).

These médels however have so far failed to take into account
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the altered correlations that arise from having multiple
occupancy. (Ref le)

iv) The Harmonic Approximation. The approach is similar
to the Einstein model of the solid and is a2 justifiable
approximation only at high densitiess The error arising from
the assumption that the molecule vibrates in a cell where all
neighbouring molecules are fixed, can be dealt with by taking into
account short range correlations, as in paragraph (1i). A
comprehensive treatment of these correlations will be found in
Ref (1), Chapter 6.

The second major departure of this model from reality is
the assumed constancy of the vibrational frequencies throughout
the system. Clearly one expects to -observe a whole spectrum of
frequencies; the Debyo model is relevant for the analogous problem
in the solid, -

6. Tho Coll Lattice Model for Pure Polymer Solutions. (Ref Ub)
This treatment consists of a cell model approach applied

to long chain molecules, for the calculation of the configurational
partition function in a manner that 1s essentially independent of
chain length. The liquid is chgraehterised by three parameters,e
the attractive enorgy minimum, r° the intersegm:i:: separation
corresponding to the energy minimum and the 3¢, external degrees
of freedom. The latit.y are independent of valency forces:
intramolecular frequencies are at least one order of magnitude

larger than the external frequencies, and the influence of external
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factors on thoso frequencies (and there-by tho internal degrees
of freedom) need not be considered in the first approximation..

The 3¢ external degrees of freedom are determined ompir:ically
through a corresponding state treatment of a homologous series,
in this case normal alkanes (Ref 4c). Here only odd numbered
chains are considered sinece from x-ray data, the volume of a
CHp =-CHp segment is known to have about the same volume as the
menemer of the series, CHye Thus the segment number R is defined by

"R =4(n¥1)
where n is the number of carbon atoms in the chain.

The major assumptions involved in the model are the following:
The chain molecule is treated as a set of point centers, sach of
which moves in a spheriecally mlg.rié'foroe field. The potential
energy betweon two point centers of different r-mers (chains) is
taken as a two parameter law

| e(r) = o)
where pr is the point center separation, and (-E,) is most
commonly taken as the LennardeJones 12-6 potential.

The eriterion for the existence of lattice is that the mean
distance between point centers be equal, whether the point centers
belong to the same r-mer or not; i.e. that

a=d=r,
where “a" is the mean distance between two neighbouring chain
segments, belonging to two different chains, and d is the distance
between two successive elements of the same chain, At absolute

zero, a = r  and ther-mers aro perfectly ordered on a regular
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lattice. As the temperature is allowed to increase, the lattice
will be distorted by the expansion of the liquid, and the model
will progressively cease to represent the liquid structure.. The
treatinent assumes that the distortions can be ignored if the
volume expansion is less than a few per coent. Then the volums per
segment is

v = %ﬂ.; = y"'iz 3.3 (263.)

whore for an f.ce.c. lattice Y=\f§ » and the reduced volume per
molecule is given by

r=v = 1[3113 (25b)

It then follows that, assuming the Lennard-Jones 12-6 potential
between two point centers of different chains, in the smearing

approximation yields an expression analogous to equation (15):

- b ° (27)

» . L alE ¥0)2-

) - 50 = - 2@ 1) - E ) |

whore only the exteornal number of contacts éﬁ is differont

from the analogous expression for the monomer. Here 2z is the
coordination number of the f.c.c. lattice as before and (2q /R),
defined as:

92 = 4.2 +(2/R), (28)
is seen 1o be a weak function of chain length (Rei 4d).

In the harmonic approximation, the mean frequency of oscillation

can be derived analczously:

vege [ 285 (2@ -0 @21 - P
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7» The Heat Capacity

The partition function for this model can new be giveén

Z =10, P (an /KT) XNG/R (30)

For sphe¥ical, harmonic oscillators, there exlsts three
translational ( kinetic energy ) and three configurational
( potontisl energy ) degrees of freedom. The translational
degrees of freedom remain unchanged for R.mer sogments;
however,the configurational degrees of freedom have to be
modified to take into account the additional limitations
imposed upon the segment by the intramolecular contacts.
The surface around a segment is only partly free for
intermolesular interactions, the remaining part beling
blocked by the adjacent segments in the same molecule
(Ref. 9). Honce the number of configurational degrees of
freodom per segment is 30/R ; the coofficient 3 is absorbed
into % since the latter is a volume integration :
hence the oxponent Ne/R  in eqn. (29).

The derivation of the heat capacity at constant volume
from eqn. (29) is straightforward and yields

CV=%k(1+c/R) . (31)
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CHAPTER 7

The Harmonic Oscillator Model

of Thermai Conductivity

In this chapter the theory of Horrocks and }clLaughlin
will be briofly discussed and then extended to pure liquids composed
of R-mer molecules. Results of calculations will be presented and
compared with exporimental data for normal alkanes.
1. The Harmonic Oscillator Model of Thermal

Conductivities of Simple Liquids (Ref 1a)

Heat transfer down a temperature gradient occurs by two

molecular mochanisms: a) vibrational, b) convective.

a) Vibrational mechanism: The rate of heat flow can be written as -

C 40 )
%g-” -w'vlg—g . - (1)

where n = number of molecules per unit area of the liquid
guasi lattice.
v = mean vibrational frequency of the molecule given by

equation (18) of the previous chapter.

g -]
]

tho probability that heat transfer occurs when two
vibrating‘ molecules collide.

1 du = tho onergy difference between successive layers
dx
of the liquid quasi lattice.

The expression is multiplied by 2 since the molecule crosses
a plane perpendicular to the *‘emperaturo gradient twice for each

complete vibration. Using
au - du dr 4T

dx © @ ax ~ °vax
and the one dimensional Fourrier equation, we get
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Avib = 2PVl Cy, (2)
where C, is taken as 3k. Assuming the virtual absence
of holes n = 1/a? ; also 1 = /—2_a/2 arnd P-"= 1 . Hence
2
lvib = ng v . (3)
b) Convective Contribution.- In the absence of a temperature

gradient, the frequency of movement J of molecules from
one adjaecent layer in the liquid to the next is given by

PRI L, om0

where vg is the free volume of the liquid, o, the energy
barrier to be ovorcome for molescular convectlon, and nyj
is tho ratio of the number of holes to the total number of

moleculese Then

- dU
Moonve = 2091 7« )

Without going into further detail it can be said that

A= Aysp T reony (5)
and that for simple ligquids, up to their boiling points, Ayip
is by far the dominant term in equation (5), and that the .
convoctive torm can be dropped as a good approximation (Ref. 1b).
Thus

A= ./.-2:.va (6)
a
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2+ Application to Chain Molecules

As intorcellular convection for indlvidual chain segments
1s less likely than for spherical molecules, the assumption that

A = hrib
is retained. Thus as before

7\=‘Q Cy v (7)

a
whero a is the length of a side of the cell, confining a chain
segment, Cy is the vibrational specific heat of the same, and

V the mean vibrational . frequency as defined by eqne (29)
of the previous chapter. Using equation (28), (29) and (31),
the thermal conductivity of liquids composed of chain molecules
can be written as

1
v=25 0+ ﬁ [(w2t §) el22 (-‘fi)b 10 7] T
(8)
« Comparison with eriment
The above extension of the theory of Horrocks and
McLaughlin to pure R-mers was compared with experimental dataon
normal alkanes. The values of r, and € used throughout the
homologous sories are those of tho monomer, mothane, (Ref. 2)
as was indicated in paragraph 6 of the previous chapter. Density
versus temperature data were obtained from Ref. 3, and the

thermal conductivity data
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for tho same temporature intervals from Ref. 4 in tho form

of corrclations of oxisting data. Calculations were executed

on a computer; the relevant program for these calculations

will bo found in appendix 3.

A sumary of the calculated results is given in

Table 1 , along with the exporimental data. It will be

seen that the calculated and experimental slopes of the

) vse T curves are in good agreement, cortainly within

experimental error, but that the absolute values differ

by an amount which does not seem to change significantly

over the homologous series.

_over the temperature interval.

i

T T e T o | orelpien) Sore BT ones o 3 |
5 ‘ -80to+s0 | 619 .0033 .0037 9.5 i
7 E-120t0+20 . 633 | L0039 o0m | 3.2 ’...0162
9 ‘ -40to+120, 591 ! .0023 .0028  ,16.5 5_.042?
1 -30to+130 633 | L0022 0026 |13 g+.ou2!
13 +140to+200: 697 | 0023 .0025 8.5 E+.061+§
15 60t0220 | 734 | .0022 .0023 3.9 4037 i
17 60to220 | 758 | 0020 .0023 9.7 osz
19 60t0220 | 771 .0020 .0022 8.2 ’+ o13*

TAELE I. A is the difference between A  and A . averaged

exp

calece.
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It has been shown by Harrocks and McLaughlin (Ref 5) that
the principal factor controlling the temperature dependence of
thermal conductivity 1is the coefficient of thermal expansion.

This remains unchanged for chain molecules, where the equation

A =‘ECV v

a
again leads to

iraany o 1 _dliny
) dTP“"“[3 el
(9)

the expressions for v andv boing modified as in section 6

of the previous chapter. That this predicitin is a good one is
reflected in table 1. The results indicate however that a second
term, which would be additive and of the magnitude of about

0.65 x 1.0"3 mw/cn’K is missing. In the absence of further evidence
two reasons may be put forward as contributing to this second

term.

a) Heat transfer down the chain: Relative iudependence of
chain length could be cxpected as the average length of chain
parallel to the path of heat flow need not increase with the number
of carbons in the chain.

b) Degrees of freedom associated with the hydrogen atoms
attached to the carbons: As the average number of hydrogen atoms
per segrent can be baken as constant, this contribution would be
independent of chain lengthes Further as the heoat capacity arising
from this vibrational contribution is expected to bo insensitive to
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the temperaturc changos, this term would be independent of

temperature as well.
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CHAPTER 8
p= = e — ]
Transport Coefficients of Pure Hard Sphere Fluids

1. Introduction

In this chapter the dorivations leading up to the thermal
conductivity and viscosity of pure hard sphere fluids for low pressures
and dense gases will be summarised. These formulae will be used in
the following chapter in the analysis of dense mixed fluid transport
coefficients. As the latter have been derived only for the case
of hard elastic spherical molecules, no other intermolecular
interaction potential will be considered.

While the thermal conductivity coefficient is of primary concern
here, the viscosity coefficient has also been considered, as the
two derivations are very similar. Also, because thermal conductivity
data for binary liquid mixtures of spherical molecules is lacking,
corresponding viscoslty data has been considered for comparing the
model with experiment.

A word on notation should be addeds Vector quantities in this
and the next chapter will be wrlitten with a bar under the letter,
and tensor quantitites with two bars. For the stress tensor, the

Chapman and Cowling notation has been retained:
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2. The Heat Flux Vector and the Pressure Tensor

It can be shown (Ref 1a) that if X is any molecular property
which is a function of molecular velocity, the value of X averaged
over all the molecules within a emall volume element dr, during
a short time intervel dt, is

X ='x'11| % e, ry, ) dg (1)

where n is the number density in the defined region, ¢ is the
molecular velocity vector and f£(g, r, t) is the velocity distribution
function; here f(g, r, t) dc dr defines the probable number of
molecules with velocity in the interval ¢ to ¢ + d¢c in a region of
space bounded by the volume clement dr. In equation (1), the
integration is carried out over the whole of velocity space.

If, in particular, the relevant molecular property is heat, the
heat flux vector can be written as (Ref 1ib).
=% m‘[ ¢ fade

{.a

here m = mass of the molscule
C=gc~=c5 3, donoting the mean mass velocity of
the gas which can be obtained from equation (1), and C = the
magnitude of C.
Clearly, if £ is known, 4 can be derived explicitly ' and then
combined with Fourrier?’s Law of heat conduction.

g = =) dr
- dr

to yield the thermal conductivity.

For the case where X denotes molecular momentum mc, the pressure
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tensor can be written as

B =p [ G fac (3)
vhere P =nm . The pressure tensor is the sum of the
hydrostatic pressure and a second term composed of the stress
tensor multiplised by the coefficient of viscosity,

3s__Thermal Conductivity and Viscosity at Low Pressures

Boltzmann®s Equation for a non-uniform gas is

af + C o af + o af 8
3t 3 L3 ﬂcoll (%)

vwhere in addition to previously defined quantities, mF is
the external force acting on the particle, and (3£/3t),,3q
is the time rate of change of f due to collisions. Eqn. (&)
can be wrltten as

B(£) =0 (5)
whore B operates on f « It is assumed that
a) f=f° + o+ 2+ ..., where f° turns out to be the
Maxwellian veloeity distribution function ( i.e. that for a
uniform gas) and £l ($50) are succossive correction terms,
and that
b) the operator B can be broken down such that

B(£) = Bo(£0) +pl(sl)+ p2(£2) +....e (6)
where the pi(sd) satisfy the separate equations

no(ee) =0 ;  el(eo,el) =05 p2(£,£1,£2) = 0 ,ete.
The quantities #¥ can now be defined (REf. 1c) as -

5 = £0 §¥ (7)
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such that the rth correction term to the average value of

property X now becomes

1 1
I-Ir=anfrdg=anf°¢rd_c_, (8)
whore the Maxwillian velocity distribution function £ is
explicltly given by:

3 ,
PP=nlm ) & oxp( - mC2/ZxT) o (9)

o o —

e, T
In this and the next chapter, we will work with only the first
and sccond terms of equation (6) as, duc to the increasing
comploxity of the successive approximations, the formulac Ffor
mixtures, with which wo are ultimatdy concerned, have not been

developed beyond pt. Thus, we will take

X =Y +'i1=;};ij°d2+%J.Xf°¢1dg_ (10)
Since the first integral makes no contribution to the heat flux

voctor.

4=q =4n j c? c° ¢t ac (11)

The solution of the Boltzmann equation, leads to an expression
for 31, vhich can then be evaluated for hard sphores. The
dorived dilute gas thermal conductivity coeffilcient for a fluid
of hard elastic spheres,lo , can then be written (Ref 1d) as:

i
1, (¥r)?
Ay = 53-2 (um (12)
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where k is the Bcltzmann constant and ¢ the molecular diameter.
The viscosity is obtained in a similar mamner from the difference
between the pressure tensor and the hydrostatic pressure:
875 i fkat)®
R { :?' n i (12)

X

4, Thormal Conductivity and Viscosity for Dense Gases.

In the above discussion, the transport coefficients have
been derived by assuming that both momentum and energy transfer
take place by the motion of molecules, betwsen collisions, through
the available volume. As the density is increased and thc mean
froo path becomes comparable in magnitude to tho molecular
diwmeter, collisional transfor takes on incroasing importance.

The collision frequency is increased by a factor g( o), the contact
radial distribution function. The details of g(@) arc best
considered outside the mainstream of the discussion of the
transport coefficients; it will be used implicitly and defined

in a later section.

It has been shown (Ref 1le) that the velocity distribution function
for a non-uniform dense gas can be solved for, in a manner analozous
to the dilute gas; £O again tyrns out to be the Maxwellian
distribution function, and makes no contribution to the heat fiux
vectors Three contributions to the latter arise (Ref 2), (Ref 1f):

1) from heat transfor by mclecular motion between

collisions, i.e. the kinotic contribution

e

pC2C= =1 (1+120b*¢g)
g 5

Me=to 1r 2 o) (1)
g
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where b* = (&/8) n&’.
2) from that part of collisional transfor which can be looked
at as taking place with a locally Maxwilliam velocity distribution:

=Gy ® JT=-512 b*xgh, 4T
v ﬁ- 251‘ o] g

L:Maxw=g-;—-12;‘ 22 g, (15)

where C, = (3k/2m) and y is tho bulk viseosity given by
. & = (*9) g ? o (mﬂc’l‘)%:
3) and finally from the distortion of the locally Maxwellian
velocity distribution function.

6 b*gp 029_ "‘}-%b*}‘o(i'*'l% b* g) 4T
5 5 5 dr

In the first approximation thon, tho thermal conductivity of
a dense fluid of hard spheores is given by

A= L A b* { 1 +6 +1+(__2+12__)b*g§ (16)

To*e 3 25 25%

Clearly, M | is the thermal conductivity of tho dilute gas at tho
same temperature. |

The viscosity of the dense gas is mado up of contributions of
the same origin (Ref 2):

1) Tho stress tensor arising from molecular motion botwoen
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collisions is °

which gives rise to
me=Yo( 1 +8v* g ) . (17)
g 5

2) The stress tensor arising from the locally Maxwellian

velocity distribution function is
(o]

1
--%-gnzd’l" (nka)a% .g._.!.'.-%
which leads to
_ 768 %2
Wi -%—ngb Ho o (18)

3) Finally the stress tensor arising from the locally
Maxwellian velocity distribution function

_8
VDist, 5P 8 Wk o (19)

The first approximation to the viscosity the is:

= * 1 +B’- .L"_."'.L.k':. * b}

(Ref. 1g)
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5 The Equaticns of Longuet-Higgins and Pople
(Ref 3)

It has been shown that ths purely collisional contribution to
the transport coefficients can be derived via the assumptions:
a) that the spatial pair distribution function depends only on the
tanpuraturo an! density and not on the tomporature gradient or rate of strain,
b) +that the velocity distribution function is Maxwellian with
a mean equal to the local hydrodynamic voloeclty, and a spread
determined by the local temperature. The resulting equations, in
our notation can be written as
A= %z;‘ AN, bR g (21)
po=728 w e g .
25n
These squations are identical with the locally Maxwellian contributions
to the expressions derived through the Chapman-Enskog thsory,
equations (15) and (18) respectively. (Ref 2).
As indicated by Dahler, the corrections to the collisionsi
terms arising from the distortion of the velocity distribution
function ars not negligible; the contribution of the distortion term
to the thermal conductivity is quoted at over 50% of the collisional
term, and the corresponding correction to the viscosity is

reported to be above 20% and increasing with density. (Ref 2).

6. The Contact Radial Distribution Function
The radial distribution function g(r) is definsd as
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g(r) = nf?) (z,, r,) / n , (23)

where n is the number density and of2) (ry, ) dry dro is the
probability that mclecule 1 is in volume element dry about the
point 4 and that molocule Z is in the volumo element dr, at r,
imultancously. We now define the correletion funetion

hr) =g(r) -1, ,
Tho limiting value of g(r) 1s exp[-u(r)/KT) where u(r) is the .
intormolecilar potentlal. Honee es g{r) tends t~ The valw. wiily
for low donsitios, h(r)' tends to zoro. The
latter is "a measure of the total influence of molecule i on

ahother, molecule 2, at a distance ryo" (Ref 4).
n(z) can be split into two terms (Ref 5):
h(ryp) = Clryp) + n [ Clryq) hiryy) dry (2%)

whore the first term on the right hand side is a direct .correlation
function representing short range interactions, and the second is
the long range interactions propagated from molecule i to molecule
3, which in turn exerts its total influence on 2. Defining two
further functions

F(r) =[exp (~U(r)/xT)]-1 (25)
and
y(r) = g(r) exp [U(r)/kT] (26)

and making the Percus-Yovick approximation (Ref 6) that
C(r) = F(r) y(r), (27)

we ocan derive the equation ,
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yi2=1+n th,_3 Yq3 3 dzy (28)
frem equaticas (24 - (27).

This equation hes been solved, (Ref 7), for the hard sphere
potential, to obtain y,, at contact, i.e. when the intermolecular
semaration is¢ , (the molecular diameter) where g(c) = y(o). The
result is:

) =2+b%
lo 2(1-b%)2 (29)

As bofore b* = ’_% no’. This then is the expression for the
contact radial distribution function for hard spheres, in the Percus-
Yotvicl: approximation, which can be used in the evaluation of the
transport coefficients.

The equation of state of a dense fluid can be derived in two

ways, leading to the zpressure equation, through the virial theorem,

n
P= nkT - 6 .[r du(r) g(r) dr (30)
dr
and the compressibility equation
KT én =1+n..‘.[g(r)-i]d_1_-_ (31)
9p

derived from fluctuation theory., In the Percus~levick zpproximation,

these two equations can be reduced, by using equation (29), to

P = nkT [ (1 + 2b* + 3H*R) / (1-b*)z {32)
and
P = nkT [ (1 + b* + b*z) / (1-b*}3 ] (33)

rospectively. (Ref 7).
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CHAPTER

Transport Coefficients for Donse Binary
Hard Sphere Mixtures
1. Introduction
In this chapter, the equations for the transport coefficients of
dense hard sphere mixtures will be given, and combined with the
corresponding radial distribution functions, (Ref 14) derived
through the Percus-Yevick approximation. In order to compare
with experiment these equations will be reduced tc ratios: the
mixture transport coefficient divided by that for pure species 1.
The equations will also be factorized into the purely kinetic, dis-
tortional, and locally Maxwellian collisional terms, and the
Enskog minimmm will be shown to exist. Comparison will be made

with experimental data.
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2. Transport Coefficionts for a Binary Dilute
Gas Mixture (Ref ia)

The meched is analogous to that for pure systems. The

Boltzmann®s equation for the first gas is

% T 3 2%

= [ ]co_ﬂ_ (1)

and a similar equation can bo written for ths second gas, by changing
the subscripts to 2, For the non-equilibrimm case, the equations for
i‘1 and fz are solved, as before, by a method of successive
approximations. Again the first approximaticn is a Maxwellian

function, and again the £°s can be written in tho second approximaticn

£, =15 (1 +ED

f 2)
=0 7 + i *
f,=1y (1+4)
Here, howaver. the ¢5°s contain cross terms of the properties and
velocities of the two spccies.
The heat flux vector is now writton as,

a=%my ffc ¢, de, jrzczzgz de, (3)

"1 =1 2
where all quantities have been defined in the previous chapter.
The Maxwellian part of the distribution funection makes no contribution
to the heat flux vector. Of the terms arising from the integration

over the i‘g ¢51 » the one representing the heat flow due to the
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temperature gradient is simply

mix,o de
where )‘mix,o is the binary gas mixbure thermal conductivity for low
pressures. The expression is cumbersome and as it will not be made
direct use of, will not be reproduced here (Ref 1b).
The coefficient of viscosity is derived along similar lines.
(Ref 1c)e Wo need only deal with the first correction term, as the
Maxwellian part glves rise to a contribution to the pressure tensor

that reduces to the hydrostatic pressure.

Then. )
(1) - |01 zj Lol
B = m1Jf1¢19~191d-91 +myl £,0,0,C, dep (5)
which 1s equivalént to
(1) _ T o
P nymy §i€y *+ nmCC,

Solving the Boltzmann equations to obtain the rhs of equation (5)
leads to the viscosity coefficient.

These methods for tho derivation of the transport coefficients of
mixed fluids have been extended by H. H., Thorne to the case of denso
binary mixtures, (Ref 1d). In the first approximation, the thormal
conduetivity is found to be

2
SI8 KT 4
i 5 gy AR FARR FGR YD) (6
where ’ 3 3
B =1t 2oy e /5 + 8t lng, /5 )

Y, =1 2mp)lg)/5 + 8uMin o, Jk, /5 ()
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Hy =m g/ @etmg) 5 Np =my/ Gyfmy) 3 mo = myFa (9)
_a -1
=2o1ot Xy (agy agog a®yy)
R e (10)
il 4 2 .
By = e (811 2-1 "271u) ' (
(rgm, ¥ 11)
= @ 2 -1
Cy 7;121 i:_;_?_ (a1 2y -ofq) (12)
D, = (2/3) n® (31 {xf €1 GL{ W+ 2(8""1}12/%)% X X3 B3 ‘ig + (13)

i 2 L
-2 k
my, = X2 822

where x4 and x, are mole fractions of specles 1 and 2 respectively,

ag =2yt 3 e a1y (14)

ap, =t H(aiZen)) 3 M2 iy | Mg (15)
i

E = (Z—K%;;) ’ 8-%2 i oy, =% (oghy) (16)

ayy = SKT/240 (17)

where 4 is the dilute gas viscosity coefficient for species 1.

= af + X2 B2 "
2.1-1 211 X Bip 8 4.1 (18)

where 311-1 corresponds to equation (15) with species numbers
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interchanged and afl-l %o equetion (17) with kyo Teplaced by g
Finally
L
ag_q = =27 kT (MM,)?/LE, (19)

and the radial distribution functions gio, &1 and g, will be
defined in the next section.

The first Approximation to the viscosity of a mixed dense
hard sphere fluid is given by (Ref 1d)

&L [px2+8XY +C T2+ D | (20)
2245 W LAVRY oW LR
N\
where
Y=1'1'*l|-1tno'3g/15+81:i{ 0'3g /15 i
L 194 81 2712 B2 (21)
I, =1 + Ly n2023g2/15 + B M1n1q123g12/15 (22)
iy X 2 -1
ATPa (b_g_g Pyq =Py ) (23)
= . ~p, 231
By= -2y (o gy Pyym by g ) (2)
= 2 2 y-1
¢ =1 % (bgq Pyg = Pry) (25)
i 1 L L
D, = @/15) o (D" [ m® x,® g0y 2ongiyh)nxg )10
L2
o xo €505 (26)

and



ot Ty, T E giz g @)
with bf, = 5;@(% + %f)/m
and bii fi' Further,
by =P 3;12 Eep L] (28)
where
b_1_1 = 5KT (3 5111)/E (29)
and b"_’_‘i_i = afi—i' Finally
By = -BKT/3E. (30)

The radial distribution functions 81208 and g will now be defined.

3 Equilibrium Properties of Dense Hard Sphere Fluids., (Ref 3)
The mothods for the treatment of pure and mixed demnse hard

sphere fluids are analogous. The compressibllity equation assumes

the form
P =4 9P
1- EnlJcij(.I.') dr = 17 n . (31)

and the direct correlation functions C:'Lj for an m component

liquid can be written as

[gin(r)-ﬂ =C; (_) + '_2_1 nl).f[gij(r-y) 1]0 (y)dy (32)
where g 3 is tho radial distribution function. In order to obtain
the g.."s we need another equation relating the two sets of

EN]
functions:
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gij(}‘_) ‘ex;:;‘[-uij{;;)lﬁc.'f] -1 = exp[—uij(z‘.)/kT]Cij(r) (33)
This is the Percus-Yevick approximation for mixed dense fluids. The
essential implication, as bofore, is that the direct correlation
function is of the saue range as the intermolecular interaction
potential. Thus, asswiing a binary mixtuwre and the hard sphere
potential, it can be shown that

g1p = OogioyE)) /2y, (34)
where
2 )
= [4+E . 3nnc ] -2
g, |13 +3E 2 (og-0p) | (1-8)
and (35)

' : 2
82 © [_1 +§ * ‘% 3 miz("z"’l)J (1-8)

e =% (n,o, 0+ no,]) = T

§ (o, 0oy = (x +xp+3) (36)
vt = m13/6 i =0y, 5 V=1/n (37)
where n is the number density. Using the expression for the

radial distribution function, the compressibility equation for a

binary mixtwre can be written as (Ref 5)

p°v, " = _g(isese?) - X0 . . (3)
kT (1-8)3(x, +xpr2) (g hepr) 2
2
(X +xor )
G )
3
(1-%)

The pressure equation, the pure analogue of which was given in
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equation (30) of the pruvious chapter, can be treated in the same
manner and should yield identisal results with equation (38) if

tho distribution function were exact. Though this clearly is not

so, reosults from both oxpressions are sufficiently close (Ref 5)

for us to work with only one of these expressions. The information
obtained through the compressibility equation will not be substantially
different from that of tho pressure equation.

L Reduction of Equations (6) and (20)

Equations (6) and (20) have been derived for mixtures of hard
sphore fluids. One expects the error due to this simplification to be
reduced if the ratlos 7Lmix/ Aq{ and “mix/u » are considered rathor than
tho absolute values.

The denominators A, and u, denote the transport coofficients

of pure dense spacies 1. Thus by (6) and equation (16) of the pr~rious

chapter. .
.- )", =F .(."2 R owq ?
3 ITR £, I:_:.}‘Jz)\ﬂa)zxw)L AR EARAES | ] (39)
where
3 K|
X =1+ 12gxe/5 + Mg, , () e/5: 0= T+ (40)
i T =1+ 12 g rPels + 6, Mg, X, (14)%/ 5, (81)

-

= B S -1 2 432
A L"Pp[hgcpp sHME ) e, | 2)



133

and
g’_ 1 \—:- r z 2% X 2
..\_? = %1? i19 p - "‘:("_‘TE '—}{1 q ..1 .'./ (Q ’LqL -L"qi_'.\ (L"B)
67 . 282 ¢ LyE 2y
P = L a2 () —) 2
5 g, =T’ ( Mz) USRS T %1 ) ()

- g M1y3 2 12, 1% , 2
o = X2 oy (Myz (EPehE 960y 19 ) ¢
AT X g My TR T TUSTIE TRl WIRANC)

A MM _ 4
R Y. L )

and
= §__X1 & _2_1‘_ 2, 1y3 r
t -1 o * % gfz (1+r) T 2) (47)
where (48)

=20 ,;«;..;gz% 1 2. 2y 3n2.4 MH
\-;)’ ) LL" (6M2+:)‘1L ) -5}11 5 - 2_] o

'0
H
4-

94 can bo obtained by intorchanging subseripts 1 and 2 3n

equations (47) and (48). I?ina]lyq1“1= ~(s4/ J2) B
Likewise, the ¥ 45/ 1 can bo obtained by equatiocn (20)

and equation {20f the previous chapter.

)= =.1.-. ] + r XX ¢ 2-:»])0—! (49)
f I-A Bp. . V'-‘C Y\:’: W

where
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3, =1 Bpxe 5 * 2l g, %, (1)) 5 (50)

T, = 1+ 8¢")czr3g2+ 9901'11g12x1(1+r)3/5 (51)

AT 3 ¢ 5 (‘Ei R PN (52)

B, = -16(%11)3 (Z02p, /@y By F P, %) (53)
&L_};f(}')%("z‘)zp fCygPiy i) (54)

p’ —-7— 8 o% [ x %t G2 ) oy ) ("2)%82" %2 ] » (55)
.

SRS AL <ﬁ§)a =? (56)

where

p=w&+2Hy dR)? (57)

Pii can be obtained by interchanging subscripts 1 and 2 in

equations (56) and (57). Finally @, 4 =- 3%/3) (ﬂ;?_ yz» and
= lg, L__— +§.+u( 251:) o8 J ‘(58)
Tn both equations (42) and (58) o, is the value of v;/v
for pure species 1. This value has been computed from equation (38)

by setting X = 1.
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In order to evaluate the ratios of equations (39) amd (48),

the ¢'s corresponding to each pressure, composition and diameter
ratio mist be known, This was done by solving equation (38), by
fixing (P V'i“/kT}. r, and x. The solution of (38) for ¢ atx =1
was used to evaluate the contact radial distribution function anmd
the transport coefficients of pure species 1, in the compressed
state. Calculations of v}/v and the X, /A, and B, /4, were
made for the following sets of values:
(P’T{/ T)=1, 2, 4, 8, 20, 30; » =‘12‘- '%. 1.% and

R (= MZ/Ml) =%, 1,2, ovor the fuili composition range. Three
Fortran IV prograrmes wore written for the execution of these
computations, the texts of which will be found in the appendixes

F 436 o+ and3H for "4V ), A, /g oand W /81
respectively. A sample set of curves, from those computed have
been presented in Fig. 1. for the case R =%, (Pv 1*/KT) =l over
the composition range, for four valuss of ». Results for both
}‘mixl)‘i (groater than 1) and L ‘:/!.‘:1 (1ess than 1) reproduce
the quadratic type dependence on composition that 1s observed
in simple liquid mixtures.

At this stage it would be desirable to split equations (39)

and (48) into their respective kinetic and collisional terms. In
comection with this, it is relevant, first, to look at a purely

collisional model of the thermal conductivity of mixtures.
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FOR A DENSE HARD SPHERE FLUID MIXTURE
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5 The Collisionsl Avproximation to Thermal

Sonductivity of Denge Mixtures (Ref 2a)

By assuming that the two particle density function can be
taken as that of the fluld in equilibrium end that the veloocity
distribution function for sach species can be taken as a
Maxwellian function, the heat flow veoctor due to the temperature
gradient can be written for the case of equal diamsters, for the
two specios as (Ref 2b) '

Jo =-Zyvrt T Ml (BTt

n A Bnm ®

TN:
and hence the thermal conductivity of the binary mixture as
‘2

=2 py myog (35 . )
b R € (“EE) R (55
ihors 7‘%&"- =1 and 8,5 = mpup/(m + mp)
. in this approximation is purcly collisional since the kinetic
term vanishes for a Maxwellian veloclity distribution, and clearly
there is no distortion term involved. Equation (57) can be written

a8
-t
"m::”‘m”‘iz""-’&"z (Ti%ﬂ')i +x, 2 K (60)

vhore 110 1s the thermal conductivity of pure component 1, for

low pressures.
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6. The Collisionsl and Kinetic Contributions in Equations
(39) and (49).

Tt can easily bo shown that if Dy» glven in equation (13),
is divided by Mg+ €ivon in equation (15) of the previous
chapter, and o, = ,, one obtains equation (60). The origin
of the term suggests that equation (13) arises from . collisional
heat transfer due to the locally Maxwellian velocity distribution.
The obvious step then is to write the locally Maxwellian
collisional term for cif T e

0 1 1
)‘m:lxlxi =& ) ‘é‘ [Hzgf*' [811111153" Fﬁngiz(“")u*ﬁqxggz’u] (61)

where vio is the molar volume of pure specles 1, v is that of the
mixture, and g is given by eqn. (29) of the previous chapters.

Thou g Longuet~Higgins, Pople and Valleau did not extend their
treatment to the viscosity coefficient, analogous expressions can

be written for the viscosity, using (26) of this chapter ard egqn. (18) of

the previous chapter.
o n L 1
: =(¥1 )2 2 +1 bR _yzp7,2 0
WAL G é( X, gyt § XF B (1) P Rexr e, ) (62)
and for oy =0,

honod B4 = %% G 2xpny 4 xR (@)
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This analysis can be extended to the tvee initial terms

of equation (6). The kinetic contributionto +the heat flux
vector for dense fluid mixtures is defined similarly to that
of mixtures at low prossures, i.c. eqn. (3) which immediately
leads, by definition, to

=1 2 1 2 ) .
27 A 0G *2PGE

The total flow of heat (Ref le) 4s given by
a=3zP 1658 *+ (5 - 1) £p, T gy (61)

19 1 2 - _62
*3 2°2292+<Yx'1)?°2°292 D, 3T

where X, » ¥, and DJ\ are given by equations (7), (8) and (13)
rospectively. While a rigorous factorization to separate the
kinetic contrﬁbu;tion from the distortional one (i,e, the term
arising from the distortion of the locally Maxwollian velocity
distribution) 4is called for, it would be extremely laborious.
Hence the following method has been used:

Consider the first three terms of equation (6), and assume
the existence of two wnknowm kinetic contribution terms, U, and
U2, such that, by dropping the subseripts,

AXZ + BXY + CY2 =30 +YU, (65)

1
vhere U1 + U2 =M
and Ay is defined as the purely kinetie contribution to the

thermal conductivity of the mixed dense fluid. The form of equation
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(65) nocessitates
U, = AX +CY
(66)

Uz’—‘CI'l‘FX

where A and C are those of equation (65) and G and F
are as yet unknown: Hence

UK+ UY = AX° + (G+F) XY +Cy? (67)
Clearly B = G+F. The symmetry of oquation (64) suggests
that it would be reasonable to assumo G=F = I/2, This
assunption has been checked by ealeulating the kinetic;
distortional ard locally Maxwellian collisional contributions
separately armd comparing the sum against the unfactored

equation, over the full range given in paragraph 4.

The ideptical argument applies to the viscosity and
for both transport coefficients the kinetic part, in the
brackets of oither one of equations (6) and (20), has the
form

AX + (Bf2) (X +Y) +C¥ (63)
ard the distortion term

(x-1) [ax+(B/2)T] + (¥-1) [cY + (B/2) x).  (69)

Computations, of the various contributions, have been
carried out and tho sums (A v /)‘10 v 1‘) and (uv /pmv 1*)
plotted against tho dimentionless pressure y = (P/nkT) ~i.



Figs (2) and (3) show a set of vepresentative results for
the thermal conductivity and viscosity respectively. These
have becn calculated for constant composition X1 = o5y and
r = 1,5, R = 2, On both of these graphs curve 1 gives the
kinetic eontribution, curve 2 the sum of the distortional
and loecally liaxwellian collisional, and curve 3 gives the
sun of the two curvese These rosults are similar to thoso
obtained for a pure substance (Ref 6)s As tho density is
inercased, at the same tomperature and constant composition,
the influence of heat transfer through molecular flux
decroases (as molecular convection decreases for increasing
density) and heat transfer through collisions increases.
Also both graphs show that the transport coefficients of
mixed flulds also go through the Enskog minimum as the
prossure is increased anxd the collisional contribution takes
over linearly.

In these calculations, (Av /Ay, vi*) and (v /uiovi”‘)
have been obtained from programs  Identical to those of
paragraph 4. of this chapter simply by letting f = Vi"‘/ v

1

in oquations (42) and (58). The splitting of the collisional

and kinetic contributions intreduces minor differences, and

hence these programs will not be reprocuced here.
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7 Ccrmpardson with Fxreriment

Equations (6) and (20) have beon derived for hard
sphere fluids, and while one could obtain values of the
transport coefficients, directly, by combining these
oquations with (34) and (35), one would not expect
good agreement with experimental data. The effect of
intermolecular forces should bs reduced however if ratios of
the transport coefficients were taken as in oquations (39)
ard (49). Cloarly the most suitable systems for comparison
are mixtures of simple liquified gases. No data on the
thermal corductivities of the latter were found and hence
data on the system carbon tetrachloride + benzene (Ref 7)
was used for comparison with theoretical calculatlions of
both ratios, while data on the viscosity of the system

argon + methane (Ref 8) was used for comparison with theory.

i) The system carbon tetrachloride + benzsne. Density
data on the system (Ref 9) at 30°C and the molar volumo of
carbon tetrachloride at absoclute zoro (Ref 10) were used for
the calculation of ( *»’1*/" ) over the composition range.

l\TA Vl* = 55,24 cc/mole

NAV ) = (-.”1W1+ '-ZTJZ)/OHE'LX



where x denotes tho mcle fraction, p,;.. density of the

mixture and NA Avogadro’s constant. r was taken as

31
3

e}
i
' 4
lmo

4
=0

where vg denotes the molar volume of pure species 1

at the given temperature, and R = ,5077 from the molecular
wolghts. The values of the ratios of eqn.s (39) and (49)
wore computed using this information. Also, similar
calculations were oxecuted on equations (60) through (63)
and tho results plotted in fig. 4, along with experimental
data.

For the thormal conductivity, all three theoretical
curves conform to the general behaviour of the experimental
data. Agreement between calculated and experimental values
is within 108, and gots even better for equation (39). A
similar situation is observed for the viscosity ratios.
Equations (62) and (49) give practically identical results.

31) The system argon + methane.

Calculated results were compared with data (Ref 8) taken

at 90,91%°K. Densily data for the pure components (Ref 11)
and excess volume data (Rof 12) were used to compute the

molar volumes over the composition range, r was taken as
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Wik

= 1,067

R
[

t‘ A

o ©
N

and v} from tho molar woloma of solid argon (Ref 13) at
0°K. Fig. (5) shows that agresment of experiment with
any of the threo theoretical owrves is not as good as that

of the previous sustzsm.
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Thoymal Diffusion in Dsnse Hard Sphere Fluids

1. Introduction

A treatment sinilaw t» that of the previous two chapters,
has been applled to thermal diffu’sion. Using the lebowitz
radial distributior functions, theoretical caleculations
have been exocuted with both the Chapman-Enskog and the
Lonmet-Higgins, Pople and Valleau theories. Results
from these- two thoories were compared wlth experimental
thermal diffusicn ratlos as a function of composition and

pressures

2. Ihe Thooretical Fxprossions

Diffusion of one component relative to the other
takes placo if the mean velooities of the two sets of
molecules in a binary mixture are not the same. Then
in & small volume about r, botween time t and t + at.

6 =~ =1 . 1
G -85 = qui-\"*l dgy - ”zj:fz‘iz dg, O (1)
where the socond approximation to fiand fz are taken as

=22 (14T e, =0 [144W], @

and the quantities @ have been defined previously (Ref.ia).

Substituting for # ) 4 aqne (1) explicitly leads to

an expression which indicates that diffusion takes place



a) in ‘the direction {;ending to raduce inhomogeneity
in the mixture,

b) when acecdlerative effocts of forces acting on
molecuies of the two gases are non-wniform,

e) when pressare 1is non-uniform;

d) the velocity of diffusion posesses a component
in the direction of the temperature gradients This thermal
diffusion produces a non-uniform steady state in a gas parts
of which are maintained at different steady tomperatures.
(Refs 12).

If tho absercs of external forces and pressure gradlents

is assumed
5_5:-;&. D dn, + D ann'rl(a)
- =2 nln2 12 1 T oS
0 ]
{ L z

where n is the number density of the mixture

ny TN

Dy, = mutual diffusicn coeffiocitnt.

DT = thermal diffusion coefficient.

Equation (3) can be rewpitten as

e -.C. = n? D (1 2my 4x dIn T (%)
= < 22 n 124 n 3r
2 or

where kn ( = Dp/D, ) is called the thormal diffusion ratio,

or using n = xn
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SR O | o . . 21n T%
=2 - Y42 jlxlxz ar - oy
where @ { =kT/x xz} is called the thermal diffusion factor.

(Ref. 1b)

The Chapman-Enskog derivation of kg for dilute gas
mixtures has been extended by Thorne to donse fluid mixtures.
In the first approximation, the thermgl diffusion ratio of
dense hard sphere fluid mixtures 1s given by (Ref.1c)

= (AX + BY)/C (5)
where
r31
a=-tox, [ (Eyzrp+ M (6)
R AR
34 .
B=10x%, [(%I}I)?Gw =.2/»/§"} 7)
c= glerF-y] (8)
c=08+8% g, (&) (ﬁ)% (%)
1 812 2
2r 2
F:o:-i-gz-gi g4 (1«_5.- ) (ﬁ )% (10)
2 g 1
g =1 +.1.% (1) e. (11)

gixi‘“s 1 M5 845 %5

Y can be obtained by interchanging subscripts in oquation
(i1)s Finallyw, 3 andyhave been given in the previous

chaptor, and the quantities 240 By and Byp® 28 before are
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the radis? distribution funetions arising in the Percus-
Yevick approximation (Ref. 2 and 3).

With the assumption that the velooity distmitultion
function is loeally Maxwellian, and that the pair
distribution function 1s that at local equilibrium,
Longuet-Higgins, Pople and Valleau (Ref. %) have derived
an expression forkp s for an isotoplc binary mixture. In
the absence of pressure gradignts and external forces

kp = X, ¥y (M2 - Mi) %1 g, (12)
where 2ll quantitlies have been defined in the two previous

chaptorse.

Fig. 1 compares values caleulated from the
Longuct-Higgins, Pople and Valleau theory (HPV) and from
Thorne'’s extension of the Chapman-Euskog theory (CE). Tt
can ba sasn that for both low and high values of the reduced
pressure p* (= P*fi"/.c '), results of HPV rise more sharply
than those of CE, towards the middle of the composition range.
It is also seen, though not very clearly on the graph. that
vhile HPV predicts symmetric behaviour of k; about Xy 5 5
thls is not the case for CE. For mz/mi = 0.5, 0‘2/6.1. =1,
ard p¥ = 1
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N kr (GB) fp (D)
0. 0.030917 0,072832
0.2 0.052082 0.12048
0.3 0.067168 0.16994
0ok 0.074298 0.19422
0.5 0.075061 0.20231
0.6 0. 070040 0,19422
0.7 0059696 0.16994
0.8 0.044403 0.12948
0.9 0.02442 0,072832

Fig. ? shows lix density dependence on these two
thoories: Tt 4s seen that for r = .5 « falls monotonically,

that for » = 1, '@ goos through a shallow minimum

P «(CE)
SOl o 27154
.07 « 27433
o1 « 27155
2 « 27676

and that for » = 2, « rises slowly. In contrast HPV (r = 1)
prodicts the rather sharp rise of @ with density.
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3+ Comparison with Experiment
Results obtained from the CE and HPV theories were

compared with experimental datas The composition
dependences of the calculated & s wero compared with data for
the system CCl, ~Cyclohexane (Ref.6) and the pressurs dependence
with the systan ¥o = CH, (Ref. 5)s Calculations were similap
to tnose of the previous chapters The Fortram IV program
uwritten for thls purpose will not be presented in the
appendix as it is very similar to the thermal canductivity
program,
a) Tho system CC1;, (1) + Cyolohexane (2)e As ean be seen
from fig., 3, there are considerable differences regarding
values of ¢ betwoen measuroments of different experimenters.
While results of Horne and Bearman (Ref, 6) go through a
minimm arowd x;= 5 those of Thomaes (Ref. 7) exhibit
quasi linear behaviour over the composition range.
Furthermore agreement of both theories with experiment is
poor. Thea caleculated from HPV rises with the mole fraction
of CCLy; a1l values are about 100% higher than tho
moasured ones. & caloulated from CE, on the other hand seems
relatively insensitive to composition changes.
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Donsity data used in these caloulations were taken from
Wood and Gray (Ref. 8) and the N vy* from Blitz and Sapper
(Ref. 9)
b) The system Xe (1) + CHy, (2). ® has been measured for
x; = +0015, at 25°C, as a functioh of pressuwre, the latter
going up to about 100 atmospheres. Two different ways (Rof. 10
and i1) of analyzing the same sot of data give widely differing
rosultse Thoso resulting from tho method of Drickamer, Tung and
Yellow seem internally more eonsistent as seen in fig. 4.
There, it can also be seen that HPV theory is very sensitive
to pressure changes and rises rapidly to values much higher
than the ones likely to be the correct values. This behaviour
could be expected from results plotted on fig. 2.

Al though not apparent on Fig 4, the CE results go
through a shallow minimm around = .01

-

p o

002 7471
006 US55
.008 o7hhsh
.01 7458

«015 o744838



LA
8 7"‘
/
o A /a |
/ A
e — &ANALYS\S OF ONSAGER ET.AL. / .
14 © ANALYSIS OF DRICKAMER ET AL. /
4 CHAPMANM-ENSKOC THEORY /
T : —_—
2 —— — L~ HIGGING POPLE AND
o VALLEAU THEORY / ;
: -
Lol 2/} -/ _
4 /
3 /
ios / ]
E / A
/7 (3
-2 — : ) —
S L
5 2778
| . —_
- A -
78
o / °
C.00 o0l 0-02 0-0O% 0. 04 0-0% 006 0-0O7
p

DENSITY g mfcc

FIG - 4 PRESSURE DEPENDENCE OF of FOR THE SYSTEM Xe (i +Ch,(2)

AT 25%¢,x= Q0I5



156

If the Drickamer et. al. treatment of the data is accepted,
CE doos qualitatively predict the behaviowr of & as a function of

Prossures

Hore density data for the daleultations was obtained
from Refe 5, and Nv 1"' from Ref. 12,



APPENDIX 1
of T o DP/Dt

For the case of axial motion only, DP/Dt reduces

1
E

P _ 9P , . OP

e ~ %t  Vzdz °
Tho pressure at the bottom of the cell is given by
P=Pgp + pgh .
WHOre
Pg 3is the equilibrium vapor pressure of the
liquid at the glven temperature
p 1s the density
g 1s the acceleration of gravity, and
h is the height of the cell.
(A2) then becomes

_.0
B=se" * va pe -

Hereo has besen assumed constant. Also
3Py . 3 3T
ot 4T ot °
hence
P . 3P 2T
2 T 5t T Vz P8
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(a1)

(a2)

(a3)

(A%)

(45)
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For toluene at 90° C

<5,
dT

1.3 x 10* gn / om-sec? - °C ,

.g_% = 403 °C / sec at t=10 sec

~ssuming the uniform distribution of temperatwre; also
v, P8 = 98 gm/em-secd.

Tengfore
%P-é = 110 gm/m—sec3

and

T 40  orgs/fem3 - sec

=

which is much smaller than
P c, g—% 1ot ergs/ami~ ssc
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B, Comparison of & vs. Kt

Ve assume at 90 °C, a temperature rise of .5 °C in 15 seconds.
Choosing the maximum & as K(90.5 °C)t, we insure that the
calculation overeostimates the error.

K(90 °C) = 76498 x 10~
K(90.5 °C) = 76376 x 10~
Using

;\1 T(a.t) +%zr2(8!t) = [1!1 +-—- +ﬁ 2 ln&sz +oee ]

and comparing values of 14 obtained from the caloulations
with K(90 °C) and K(90.5 °C) , the error is .015% . For
t=1 sece the error is less than .01%



160
AFFENDIX 2

Dorivation of Equation 37 of Chapter 2.

A. Solution of Fourrier’s Equation in Cylindrical Coordinates
with Time Dependent Heat Input and Temperature Dependent
Physical Properties.

Fourrier’s equation can be written as

PC, 3T .13 | mar (1)
pat r Or ar
wWhire
A= N +)‘2T
P =p P
1+ T

= + G
Cp Cp1 p2 T
are the thermal conductivity, density and heat capaeity respec-
tively, of the medium surrowding the central cylinder. The

initial and boundary corditions are:

T(r,0) =0 (2)

dT(»,0) =0 (3)

dr

T(a,t)= £(t) %)
where £(t) is obtained in digital form as the data. Further,

mah 3Last) + (ag* azt * a5t°)=-xa2p C3 a,t) (5)

lim T(r,t) =0 6)

re
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Equations (1)~(5) are linearized by making use of the
transformations listed in chapter 2.

5%
#(r,0)=0 ; ra (8)
2im g(r,g) =0 (9)
2ne df + 0, 4Q,64Q. 5% = 2ra® df ;  r=a (10)
T oS S a§
w.ove Qy = q/K} , and K is the thermal diffusivity, Transformation
of q= q1+ qzt + q3 tz
- 2

is straightforward because £=Xt as in chapter 2.
Using the initial condition, the Laplace transform of the
bourdary value problem is taken:

2 r Y
L—g&ﬁ +-1-'-a—£a£=l£)- =g a(r.,) (11)
ar b o r
28 + %4924 Y - é .
ana.a.g .a.._'.z% %tgaﬁ { rTa (12)

1im B(r.s) =0
™y @

where § 1s the Laplace transform of $ and s 4s the complex
rariable of the transformation.
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Here =2p'c'p/PCp where P and Cp are the density
and specific hoat of the fluid mediwp respectively and P
and CI; are the corresponding properties of the central
cylincier. As mentiened in Chapter 2, ¢ ie aszumed corziints
the justificatdon of this assumption is given below.

The solution of the heat transfer equation where in
cddition to the assumptions listed in Chapter 2, the physical
properties are accepted to be temperature independent, and

vhe power input constant is

ey =0ilnkr, 1,021 In
T(r,t) u?%[ e L2zl ‘E’I+J (13)

K¢
vhore T= .2, C = exp(y) andy is Euler’s constant. For

times longer than <5 seo in the thermal conductivity experi-
ment, both the second and the third terms become negligible

ie8e (<+1¥) in comparison to the first. Honce the dependence
?(a,t) on ¢ is confined to the early part of the curve, which
in the experiment is discarded. wWhile it does not seem possible
at this stage to show rigorously that the temperature dependence
of does not sensitly (i.o. > .1%) alter the solution of
equations (7) to (10) of this section it is reasonable to

assume « = 1s constant as the term containing o, itself is

rather small.
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Equation (11) is now an ordinary differential equation,
the general sclution of which is well known:

Blrss) = C,To(8r) + C K, (Br) (14)
wher: 34 and Cp are arbitrary constants, g= /s and I o and

Ey are modified. Bessal funoctions, of zero or&er, of the
“irst and second kinds respectively.
As I, increases with r, using equation (13) Cq = 0. Then

B(rss) = c, Ky (Br) .gg_(r;-_._gk —CBK, (Br); (15)
clearly .
iﬂ{g,s!: ..CZSKi(ﬂa) (16)

and using equations (12) and (16)
azzg, !

= --C [
o) gy raeg B om0

Solvin%((:'ia)) for _01?_ e.ndg:ubsatimung in (15)
* = +2 45 ﬁ%‘@m (18)
e will now use two :ldentities which w:..!.l be drived in the
last paragraph of this Appendix.
Ko (er) = -[ In(4Cr) + %.62?2[1n(%68r)-1] + ] (19)

and
BK,_(BG) =1 [1"' 3p2a2 [h(%caa)-%] +oes ]

and by long diﬂsjﬁ n+
Blrs)= - [ 7 2, u;]{mgcar)&s r2n(acpr) (21)

229 1n(4 224n(4 -4
48 {ln(-"CBr)] 4 n(3Cer)[ing 4]

(20)

4% [1nGoer )]2+ a2dln(3Ger) 1ng- fp%®
o

o
%‘;_siln(%car)]z%’g%(%car) [ing -11+... }



A1l that remains to be done now is to invert equation (21)

from the complex to the real planes In doing so, we ¥ill make

use of the theorem that,* in the class of problem undor cone

slderation - ot
pt)= jﬂf f(s) s =-l-f B(s)ds (22)
Yo o0
vhen yis real, and i =/"=1 . Hence we can make use of **
! [in(ks)] =-1/t (23)
and
rt " 1)) = ™ @ D 7 @) (24)

where k is any constant,
and 1~! 1s denotes the inverse Laplace transform operator,

14 (o)) = iy [o°F - Bls) a5 = §Cx) (25)
We also need the following inverse transformations™ ™

*

Carslaw, H«S. and Jaqur, “Conduction of Heat
in Solids%, p 370 » Oxford University Press, 1950,

xR
ibid, Pe 3"’1

sKokk

Erdelyl, A., Editor, “Tables of Integral Transforms®,
McGraw=Hill Book Company, Wew York, 1954, pe.25L
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st mke)? ] = [1n_k_t_] %2 (26)
1! [ 62 (n xs)% ] = t[ (1In %;)2 +1 - léz] (27)
and
[s"'n"1 1n ks) = [1"'%"‘3""---"'%1' in %‘:] 2 (28)
n

3
1
]

The inversion of equation (21) foilows directly from
(22) - (28). By dropping terms containing l/'t,z or higher

powers of (1/t) we obtain

Bare)= [1"852“‘ 2 g s ] (g
& [_g+1n!_+_§ (§+a2) +(gln_l}_§)2 ?u2

2 22
2 24 o ]
Q3 2 2 .2
-32°, Ea“e -2 (leg” )+ €ln L (g . 2%
b [ M 12 T2 3w
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vhere g = Kt. The timo dependence of power is weak and the
sum of the second and third brackets of equation (29) is less
than 1% of the first. Thus, without introducing any sensihle
oerror into the analysis of the experimental data, terms that
contribute less than 1% of their vespective brackots in the
socond and third brackets can be ignored. For the second bracket
taking toluene at 90°C,

K =76 x 10°% on?fsec, a =127 x 10~3cm , o® 3.67

at 1 sec.

- -3
%zln %%:'% 5.3 x 10
Kt = 7.6 x 107
Kt h(é.‘i‘.}) = 5,3 x 10~3
a

@=2 a [In 35%]2 s 10°0
a

Ca? -07
a? 14Ky _ 7x 107
2 Ca
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So the major terms in the second bracket of equation (29) are

Kt + Kt 1n( )
Ca

(30)

The same comparison of the relative magnitudos of terms

can be carried out for the third bracket of equation (29).

After 1 sec.

% (k)% = bl x 1077

2 o
(Kt)z In 4Kt = 2,04 x 10"6
2 Ca<
Kt a° 1n M - 8x 109
154 Ca
0! 4

Kt a%=2 [1- 5° ] = 1.3 x 10"
17

x 10

10

-8
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Aftor 10 sec.
3 (&t)% = 1.3 x 10 ¥
L

@2 (1-x?) = 1.33 x 10°7

N
Q
»

Kt_gzlngc_zt = 1.2 x 1077

o Ca

Kt 1n 4Kt =2 a° = 2.2 x 1077 .
Cac o 4

The terms that are large in the ttfrd bracket thon are

3 (Kt)? 4 K262 1n LKt .
I 2 Ca (31)

Combining equations (29),(30) and (31), with ; = Q/xt,

we get
2 2
n Kt + a +C$_-_g_§.__ In 4Kt + eoes
s 1M EE Tk T e T G ]
(32)

92 [t (In LKL _ 1) + eee

2 [t )

q3 2(1nl-}Kt _3_)+ esese

43;; E Ca? 2 ] !

where § is now related to T by equation (39) of Chapter 2.

Part) =1, T(ast) + Ap (a,t) .
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B, Derivation of Equations (19) and (20 *
The modified Bessel equation

2 2
dy,iar _[1,3x]y=0
dz+zdz "";2

where z 1s the independent variable, y = y(z) andv any

spocified constant, is satisfied by
o (% z)\)’lﬁ‘

I\o(z') = % vk T (vir+)

where for v an integer
T (n) = (1) I
Clearly for v =0, and z=fr
I(Br) = 1+ @or)% + Gep)* + e o
(2p)? (34)

K,(or) is now defined as

K,(6r) = g I,(fr) - Iy(pr) (35)
2 sin vn

then

K (8r) = ~Ongr +y ] To(er) + @)% + .. 4 and
2
K (ar) = -[ n@crr) +3 #%2(n fcor 1) +...] (36)

Ads o by making use of the expression

zK:,(z) -.va(z) = "sz-l-j_(Z)

for , = 0, we have

K (or)= - K (Br) . (37)

*

Carslaw, H.S. andJaegor . J+Ce, “Conduction of heat in
Solidsd® p. 48, Oxford University Press, London, 1959.(2nd Ed.)
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Hence
oK) (Pa) = - d [K (ra) ] . = leads to
: d(Fa) °
2
o, o) = & [ 14 80%° Gnoa ) %o ]
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