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ABSTRACT 

We discuss the propagation of wave packets of 

the form 

e
i(Wt kz) G(zst) 

in an infinite uniform plasma (in both the formal 

cold plasma s  and hot collision-free Vlasov plasma 

limit s  where G(zst) is a slowly varying function 

of space z and time t. One can derive the equation 

of change of G(zst) (in both the above stated tem-

perature limits) for the stable or unstable case. 

The terms in the equation are of physical interest 

and clearly defina the limitations of linear theory. 

In particular we show that by using the model of 

complete stirring developed by A. C. Das, changes 

in apparent frequency 	(0 = phase of disturbance) 
at 

can occur due to sharp changes in growth rate with 

respect to wave number. 

We then investigate the problem of Whistler 

mode wave propagation in a collisionless Vlasov 

plasma in a given non-uniform magnetic field. We 

choose the electric field to be of a W.K.B. form 

wad the particle distribution to be isOtropivo 



can express the perturbation in the particle distri-

bution in terms of an integration along the zero 

order particle orbits (an integration over time). 

These orbits can be found correct to a term linear 

in a smallness parameter E (when 	equals zero we 

arrive back at a uniform magnetic field). The charge 

and current density due to the perturbation are 

related through Maxwell's equations to the electric 

and magnetic field of the wave in the usual self 

consistent Boltzmann-Vlasov description. 

We show that the contribution to the current 

arises from recent events in the history of a given 

particle because of the finite temperature of the 

plasma. This result leads to an expansion of slowly 

varying parameters which in turn gives rise to the 

equation governing the motion of the wave-packet. 

In the final chapter the monochromatic wave case is 

also considered and cyclotron resonance is then in-

vestigated. It is shown that typically Fresnel 

integrals arise. Some light is also thrown on the 

magnetic beach configuration discussed by Stix. 

For completeness a paper on the modulation of 

cosmic rays, which was presented by the author at 

the Ninth International Conference on Cosmic Rays, 

is also included at the end of this thesis. 
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Chapter I  

INTRODUCTION 

The research presented here is concerned in the 

main with the problem of Whistler mode wave and wave 

packet propagation in hot, collision free, uniform 

and non—uniform plasmas. The motivation for such 

research coming from the associated magnetospheric 

phenomina of whistling atmospherics and stimulated 

V.L.F. emissions. (The magnetosphere being that region 

of the earth's environment lying above the ionosphere 

( r‘-'150 km) and below the magnetopause ( 1̂  8 earth 
radii) where the earth's magnetic field dominates 

the ambient plasma). 

Whistlers or whistling atmospherics are the restIlf 

of dispersion of energy derived from a lightning stroke 

which has travelled in a right hand polarized electro—

magnetic mode along the earth's magnetic field lines 

in the magnetosphere. The different frequency com—

ponents present in the initial impulse propagate at 

different velocities, and the disturbance transforms 

into a smoothly descending (and/or rising) audio fre—

quency signal (hence the term Whistler mode). For a 

review of such things as 'ducting', 'multiple hops', 

determination of electron densities and temperatures etc 



-8 - 

in the magnetosphere (see Helliwell (1965)). 

V.L.F. emissions are also audio-frequency Whistler 

mode signals. Their amplitude is comparable to Whist-

lers and they can be divided into two main groups. The 

first is 'hiss' which is a continuous wide band of 

noise and which may persist for periods of hours down 

to a few seconds. The second group are the discrete 

emissions. They exhibit a variety of sonogram traces 

such as hooks, rising tones, falling tones, etc. Their 

frequency range is short in comparison to hiss and 

their duration is from .1 to several seconds. For a 

discussion of "triggering" of these emissions and their 

characteristic sonogram traces (see also Helliwell (1965). 

The discussion and results presented in this 

introductory chapter are by and large well-known; how-

ever they are included in order that the work presented 

here should be as complete and self-contained as possible. 

Because of this the emphasis has been put on simplicity 

and understanding rather than rigour. Wherever possible 

references to the original work have been included for 

further reading. 

We briefly introduce, and discuss points arising 

from the Boltzmann Vlasov description of Whistler mode 

wave propagation in a hot collisionless plasma. We 

also investigate the physics of the wave particle 



gyroresonance interaction with particular reference 

to the stability or instability of wave propagation. 

The work presented is really salient both for direct 

understanding of the problems we have attempted and 

also to make clear the motivation for tackling such 

problems. 

1.1 The Boltzmann Vlasov Description of Whistler Mode  

Wave Propagation.  

We consider a hot, collisionless, infinite uniform 

plasma emersed in an infinite uniform magnetic field. 

Charge neutrality in the unperturbed state is ensured 

by the presence of a background ionic plasma whose 

motion can effectively be ignored in the description 

of Whistler propagation owing to the high frequency 

of this mode. We denote the number of electrons in 

the volume element d3r centred round the point with 

position vector r and whose velocities lie between 

v and v dv at the time t by 

do = f(r,v,t) d3r d3v 

where d3r = dx.dy.dz  

d3v = dv.dv .dv x y z 
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f(r,v,t) being the particle distribution function, 

which can be considered to be the number density of 

particles 	do 	in the six dimensional phase 
d3r d3v 

space whose coordinates are XIYIZ,V I V I V x y z 

We can find the equation of motion of the distri-4. 

bution function (equation of continuity in phase space) 

as follows, The distribution function changes with 

time because electrons constantly enter and leave a 

given 'volume' element dt 	d3r d3v in phase 

space. If no collisions occur then an electron with 

coordinates J. v at time t will haVe coordinates 

r 	v dt 	v -1-.-t_dt at the instant t 	dt, where JF 

is the external force acting on an electron. Thus 

all the electrons contained in the phase space element 

dt at r,v will be found in an element dt' at 

(rv dt, v 	dt) at the instant t 	dt. 

Hence 

f(rIv,t)dt = m t, t 	dt)dt' 

It can be shown (e.g. see Chapman and Cowling 

(1939) page 322) that the two volume elements dt and 

dtt will be equal for forces of the Lorentz type 

(i.e. F = m v B) or forces independent of v. Hence 

in the limit dt .> 0 we have 

of 	of 	F of 
at 	-I.  ar 	m. 8v 0 	 (1.1) 
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As we are in the collision free regime we have 

neglected the effect of short range coulomb collisions 

which make electrons jump into and out of the 'volume' 

element dt during the interval dt. 

Thus equation (1.1) states that f is constant 

following a particle trajectory in phase space which 

is of course Louville's theorem as applied to this 

dynamical system (see any standard text on Classical 

Mechanics). 

The forces acting on electrons in the plasma are 

assumed electromagnetic. Thus 

= 
m 

—1f r L E + v B] 
m 

a 

Equation (1.1) becomes 

   

af 	af L E + v B] 
at --K . ar 	m — 	• -ov 0 	(1.2) 

    

which is the well known Boltzmann equation describing 

the behaviour of the distribution f in the collision 

free regime in the presence of electromagnetic forces. 

The electric and magnetic fields in (1.2) obey 

the Maxwell equations 

7E = 1 aB 
6 at 

s71 E = L Tr e 

(1.3) 
= 1 aE + tor = 0 

c at 
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We assume the set of equations (1.2) and (1.3) to be 

self-consistent, that is, the electromagnetic field 

in equations (1.3) gives rise to force F on each 

electron to produce the distribution f in equation 

(1.2) which in turn is, responsible for that same electro- 

magnetic field. Thus the plasma appears through the 

current and charge density in equations (1.3) as 

f 3  d v V (f- f) 

d3v (f+- f) respectively, 

where the superscripts + and - refer to the ion and 

electron distribution functions respectively. 

We now use the set of equations (1.2), (1.3) and 

(1.4) to determine the characteristic features of dis-

turbances propagating in the Whistler mode. We per-

turb the variables f, E, B as follows. 

f
o
(v) + f(1)(r v t) 

Bo + b(r t) 
	(1.5) 

E = 0 + E(r t) 

where the unperturbed electric field is zero and the 

uniform ambient magnetic field is in the positive z 

J. 

and 
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direction i.e. B° 	A 
= z B°  . 

In the unperturbed state equation (1.2) reduces 

to 
[v B° 

 akv) 	 (1.6) 
av 

On transferring to cylindrical coordinates in velocity 

space i.e. 

Vx 	Cos 0 

V 	= Vs  Sin 0 

(V being the component of velocity perpendicular to 

the ambient magnetic field, and 0 being the azimuthal 

angle measured about B°) equation (1.6) becomes:- 

af°(v) = 0 

That is, the most general form possible for the ambient 

particle distribution is 

f°(v) = f(o)( v v ) z 
(1.7) 

To limit space we do not review the Landau solution 

(Landau (1946)) of the initial value problem, for a 

full discussion see Stix (1962), or Montgomery and 

Tidman (1964). The treatment is well known and we 

shall use some of the points which derive from the 
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above references. We simply assume the perturbed 

quantities are in the form of a plane wave propagating 

along the ambient magnetic ficld, thus the time and 

position coordinates of the first order "quantities in 

i(Wt kz) e equations (15) appear in the form 	(i.e. 

a function of z and t only). On putting (1.5) into 

(1.2) and linearizing (i.e. neglecting terms in the 

product of first order quantities) we arrive at the 

linearized Boltzmann equation 

'IC( r 	br
o 

a 
kvz f ' 	 • 

bv ro 

(1.8) 

where 	i t = 
MC 

We eliminate the wave magnetic field b from equation 

(1.8) by using the Maxwell equation 

E = 
	as 

C a.t 

That is b = — 	E 
emomi. A •onso• 

(where k = zk) . 

Hence equation (1.8) becomes 

i(w kvz)f' 	 E) af° af, 	1 E v  

Lic1 av 

(1.9) 

"E.  

!LIB° 



1 	V, 1 
1,ft.; 

	

E V 	E V 
( x X 4-  —X—)[(1 — 

V 

	

i 	V 

af° 	af°3-1-E of 

co av co avz  
S 

kv 

.- 15 -- 

On carrying out the triple vector product v (k E) - 	r1/4   

(remembering k = 1c) the right hand side of equation 

(1.9) (which we write as S) becomes!-- 

where we have also used the relations 

of° 	af° dvl 	dvl = 
v
x 	

ofo 
(and similarly for 	) 

aVx 	av dVN 	dvx 	 av 

On using the cylindrical coordinates V = V Cos 0, 
dVL 	 x 

V
Y 
 = V Sin 0,  Vz  we have 	Cos 0 	Sin O. 4- dVx 	

dV y  

S now contains the factor ExCos 0 + E Sin 0 which we 

separate into left and right hand components. Thus:- 

s(Ø) = 
	1 1E1[(Ex+ lEY)e-104. (Ex-  iEne-Fi0] 

m 	2 	2 

kvz afo kvi afo 
[(1 	

] 	1 W E  af° 

w av1 	w avz 	m zav
z 

(1.10) 

where the dependence on the azimuthal angle 0 has been 

made explicit in S. (This is important in solving 

equation (1.9) for f', since it contains the derivative 

aft ).  

00 
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Thus we rewrite equation (1.9) as 

i(w 	' af, 	kv )f  s(o) 
agi 

and solve for f' by the method of Bernstein (1958). 
-1(W kv ) 0 

That is we notice e 	Z  f dO" is an integrating 
0' 

factor and hence the solution of (1.9) can be written 

i(w 	kvz 	- 0) 0 
fl + d(6' S(OT) e 	151,{ 	(1.11) 

(To make this step trivial we differentiate equation 
(W kv) 

(1.11) with respect to 0. First put A 
W4 

and write equation (1.11) as 

f' 
e-iA0 fr°,a, _iA01  

ei
S(0 1 )) 

cry e 
 

Then:- 

n  
d01 eiA0 ' s(0,4 - iA e-iAT 	 e-iA e  -1-iAOSTO)  

which is precisely equation (1.9)). 

On putting (1.10) into equation (1.11) and carrying 

out the integration we find 

[
Ex+ lEy 

 e
-10 Ex 
	

YEy  
e-11-93] 

m 	2 	2 
f 

kv„o kv, of 
[(1 

W avL  w avz 
af° 

E tEl avz 

(1.12) 

    

i(0.) — kv 	 m i(w-kvz) 
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The currents associated with this perturbation can be 

written 

jz 	 1.1d-v z  5d0 fdY V [Vzfl] 

and 

jx+ y = — 	faviyi c(Vx  iVy)fij 

(1.13) 

Thus the left hand, right hand, and longitudinally 

polarized components are uncoupled in the linear 

approximation. The right hand polarized component, 

Ex + 1E rotates in the same sense as the electrons 

and is known as the Whistler mode. In what follows 

we shall consider the propagation characteristics of 

this mode only. 

On eliminating b from the two Maxwell equations 

lob 	1 0E 	Tr 
E 	— 	7 b 	— 

c at 	c at 

we have 

a2E 	1 a2E 	4 
az 	c a 	c2  

icoM fd31,r [vim  ei°  f 

(Since E and b are independent of the x and y coordin—

ates, i.e. a function of z and t only) 
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and hence 

2 2 	2 	w
2
WIT "4° 	kvzafo 	Ics,  afoj  

kc- 	= -x---1   dv _iv2dlE(1 
) 

n
z 

o 	W al/ W avz 

(W 	kvz - I 	) 

(1 .14 ) 

where co 2 
p 

4Trno tI 2  
and no = 5d3v f

o . 
n 

 

(The hot plasma dispersion relation for the Whistler 

mode was first derived by Vedenov, Velikhov and Sagdeev 

(1961)). 

There is no problem in principle in carrying out 

the integration over 	in (1.14). However a great 

deal of thought has been given to the remaining lute-

gration over vz which has a singularity at v
z
- k 

The prescription for integrating past this pole was 

first derived by Landau. We shall use this prescription 

and refer the 'interested reader to those refer-

ences already given to the Landau solution. 

Equation (1.14) defines a relationship between 

W and k and is known as the dispersion relation; many 

properties of the Whistler mode become apparent on 

investigating this relation. In what follows we shall 

assume the wave number to be real and find that the 
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frequency W7  as defined by .relation (1.14), will, in 

general, be complex, i.e. W = Wo 	The imaginary 

part of the frequency y then corresponds to waves 

growing or decaying exponentially in time. 

One can find the growth or damping decrement 

by one of several procedures. For example, one can 

follow the method of Sudan (1963) and expand about the 

point of marginal stability, i.e. assuming "i" << wo 

we may write equation (1.14) in the form 

D(w,k) = o = D[co o 7k] 	ap  [wo 1k] ow  
0 

and hence 	= _ 	 

al w0lk] 
aw0  

here we separate out the real and imaginary parts of 

(1.14) by using an expanded form of the Landau pre— 

scription first given by Jackson (1960). 

This method allows one to arrive neatly at the relation 

between both Wo 	11  and k together with - and k, the 

approximations made in the process are made clear. 

By inspection we may write the dispersion relation 

(1.14) in the form.. 

k2c2 — W2 = 

2 
W Tr .4-'34'dv Al  (v ) zz 

[(2. f 	 

no 	k — c4 v 	z 	— ex, V — Z 

+aldv
z  A2(vz) + f 

(1.15) 



After Jackson (1960) 

xA 

I(z) = 

 

I. 

n1 

we write this as 

+ iTrf(u)] 	(1.16) [pf f(x)  

X - u n=0 
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where 
ot? 2, ofo af A1(vz) 	v2 afo  f dv 

L 	
A2(v ) = 	dv v tv 	v 	) 

o s 	1 av ,t. 	 avz 	av 

and 

z = u + iv where u = = 1./k 

  

k 

In what follows we use the approximations 

w << 	<< W 

2 o 

where <vza> = 	no - ..;.  

Both integrals in equation (1.15) are of the form 

+trc 
f(X)dx 

-vo x-z 
1(z) where z = u + iv 

We introduce the first two terms of this expansion into 

(1.15) and use the following notation 

P s i z 
A,dv 	A1'dvZ - I1 ; P f 	 . 11 
Z — — z 	v — z z 	 z 

(1.17) 
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A_dv 
P 

z 
V - Z 

1
2 

c 
p f 

A 
 2 	
dv 

 z  

v — z 
1
2 

On using the approximations (a) it can be shown that 

Uo I o 11 	I 1  
Tru 	 u2 

(1.17a) 

12 •••• 

n
z o 

'Tr 2 2
' :a' 0 

(See Engle (Y965) 

On using (1.16) and (1.17). in (1.15) we have 

2 ,w -17-03 
k2c2—(wo+ i'')2  = 	

1 + iTIA
1
(u))+4I1 	iA2(u))] 

no 

[1
2+ iTrA2(u)3 + J1[12

'1- ffrA2'(u)] 

(1.18) 

we now equate the real and imaginary parts of equation 

(1.18). By inspection the.real part reduces to 

2 2 	2 k c — (4)  = 

2 W 

k I1  12  
n  

where we have neglected terms of order 	. 

On neglecting all effects due to finite temperature 

i.e. putting 12 	0 (see (1.17a) we have 

2 

k 2 c  2— wo 2 . 
wp W 

(1) a  
(1.19) 
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which is the cold plasma (maneto-ionic) Appleton 

Hartree dispersion relation for the Whistler mode 

(e.g. Helliwell (1965)). 

We nOw collect imaginary terms together neglecting 

terms of order T2  By inspection we have 

Ettii  0)0  - 	A(u) ÷ 4-w1' 	A(u ) 	"I t] o 1 2 	2 

	

n 	1 k  0 

Neglecting the term on the left-hand side, (see 

(a.2.)) we have collecting terms in '`together and using 

(1.17a) 

W -n ( 	 _ 0 
L 	A1  (u) + A2(u)] 

-Truk k2 Tru2 J 
= Tr 

Hence 

7.2 	_ 1,511) 2 c_2(.0 a_e 	(v 	v a fo 
) ] 

	

no 	av av 	z av 

(1.20) 

iCtf  where v 

We now examine equation (1.20) in some detail. 
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1.2 The Linear Theory of the Wave Particle Gyro-

resonance Interaction  

The growth or damping dedrement "`'emerged when we 

separated equation (1.14) into its real and imaginary 

parts by use of expansion (1.16). We show that the 

phenomena of growth or damping is explicable in physical 

terms. To this end we consider the wave-partiCle gyro 

resonance interaction between a Whistler mode wave and 

an electron. We shall consider the initial value pro-

blem using linearized equations. A resonance phenomenon 

will then be uncovered which is indicated by long term 

growth or decay in the oscillation amplitude of the 

electron. Since the total energy of the electromagnetic 

wave field and the plasma particles is conserved, the 

steady growth in oscillation amplitude of the resonant 

particles must result in the damping of the wave field 

(and vice versa). 

Consider a transverse wave whose electric and 

magnetic fields are given by 

E(z,t) = (3rc,e 	ye  ) ei(Wt - kz) 
	

(1.21) 

b(z1t) 	(x0 -I- Yip ) ei(wt - kz) respectively 

where ex ey  and b by 
 are constant amplitudes, pro- 

pagation is along theambient magnetic field Bo 	
^ 

= zB
o 
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(notice e = b = 0). z 	z 

We denote the motion of an electron in the absence 

of the wave by the unperturbed velocity vector 

vo 	A o 	o Ao 
= xvx + yv + zv (1.22) 

and the velocity of the electron in the presence of 

the wave by 

vo + vl 

where vl is the perturbation due to the presence of 

the wave. 

The linearized equation of motion of the electron 

is 
r a 	 vOr v°b 

+ VC) i'V 3V = 	CE + 	+ — 	1 (1.23) 
at — 

	

The Maxwell equation V E 
	1 ab relates 

c at 
the amplitudes in (1.21) by 

bx = 
	kd e 	 kc e

x 
	(1.24). 

The three components of equation (1.23) when written 

out making use of the relations (1.24) are 

kV
[ 

 
A- - ikv°jv + ICLI V 	- 	1471 [E (1 - 	] 
at 	z x 	y 	x  W 
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at 

kmo  

— ikvzivy — lSt v
x 	[E 	z (1 — ---)] (1.25) 

a — ikv
o
]v Cvo  E v°  E 

at m z z 	
I 

x x 	y y 

where 
I B° 

 

me 

We now separate out the right—hand polarized 

Whistler mode wave Ex • iE = E
+ 

by multiplying 

the second of equations (1.25) by i and adding to the 

first. 

Thus:— 

[2- - i(kv° 	IJII)]v+  = 
at 

kv 
(1 — 

ii 	w 

0 

We rewrite this as 

a 	+ —1(k4+ 10t3  = 
at 

 

kmz
)e 	e —ikz 	e  ( 

 

(1.26) 

where v ▪ = vx ivy 9  e ▪ = ex ie 

We consider the initial value problem such that at the 

instant t = 0 v ▪ = v0  = v0  • i 

	

x 	v o  

Hence from (1.26) we have 

km°  
v

-Fe 
= v0  ▪ e1011+ kvz 	El 

	

)t Igf 	zN6. 

	

_ 
in 	 U) 

i(w 	kvDt 
ei(Wt 	kz) 1 — 6  

4:.(w — 	kv:) 

(1.27) 



a r  Ly e -ikvZt — 
at m 

V°Eex  Cos (kLit + 0) 	
e Sin Wilt + 0)1 = 
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Since in the unperturbed state the electrons 

rotate in the right-hand sense about the ambient 

magnetic field with random phase 0 	at the gyro-

frequency Litwe have:- 

vx 
= Vo Cos ( 	; vo = V° 	• Sin (M(t 	0) . 

The third equation of the set can thus be written 

e 1(w - kv°z 	e)t k -ikz •  

On taking out the Whistler mode component and integrating 

using the initial value condition that at t = 0 vz = vz 

we find 

1E1 	V e o + 	-1- 0,040-kvz 1 ° ) t 
v = v0eikvzt - .ei(wt - kz)r1 - 

6 

m W 	2 	i(w-k0r,  kv°) 

.e 
	(1.28) 

(where we have put 0 = 0 for convenience). 

The first point to notice is that the perpendicular 

and parallel velocity components of most electrons 

oscillate in some simple manner with constant amplitude. 

However the oscillation amplitudes of those electrons 

which have an initial parallel velocity such that 



grow linearly with time 

i Cl 
	e

xt 
 2  

x 	 x 

ixt (ixt)2 

(since 

- 27 - 

+ ... for small x). 

The amplitude is of course bounded by non-linear effects 

which move the particle out of gyroresonance. The 

electrons and Whistler mode waves both rotate in the 

right-hand sense around the ambient field line; however 

the wave frequency w lies below the electron gyro- 

frequencyl,R) Thus the resonant con- 

dition W kvz = 	means that electrons travelling 

direction to the wave with velocity 

v0  = - 

frequency increased by the doppler effect to their 

own gyrofrequency. The wave vector and electron both 

rotate at exactly the same rates  and for these electrons 

the angle between the transverse velocity vector 111 

and the transverse component of the wave will be con-

stant. The resonant electrons will thus be embedded 

in a constant electric field and can interact strongly 

with the wave. It is the energy exchanged through 

this strong interaction between the resonant electrons 

and the wave which leads to the stability or instability 

of the waves. 

If the wave amplitude is sufficiently small one 

in the opposite 

(Lcd- 03) 
(a negative velocity) will see the wave 
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can expect that the linear treatment will be valid for all 

time for non-resonant particles. However, the above solu-

tions show that for those particles initially in cyclotron 

resonance, the non-linear terms. must rapidly become impor-

tant. At the end of this chapter, we discuss very briefly 

the interesting non-linear effect of particle trapping 

which then results, leading to "stirring" of the distribu-

tion in phase space. 

It is valuable to compare the associated changes in 

energy and pitch angle of electrons which interact with 

the wave. 

In the frame of the wave, the time rate of change of 

the magnetic field is zero, w a  0, hence there is no 

electric field (Equations (24)), thus in this frame the 

energy of the electrons cannot change. 

Since the velocity of the wave is w/k we have 

Vi + 	(v - (22)2 = constant 	(1.29) 
z k 

Suppose the wave causes small changes by and 

5V 	in the two velocity components NI and V. Then 

to first order, the change in energy 

m 2 m 2 
W = — V + 2 — v 2 L 	z 

is 	5W = mVL  6V + mv2 z  6v , which from (1.29) is equal to 

Svz 
	also first order. 

i.e. k 
SW = M ""• uv k z 

(1.30) 



i.e. 6a = - Vi  

-V sin a 6a = 6Ar
z  
6Vz  

(1.31) 

In the wave frame the pitch angle a of an 

electron is defined by either 

V cos a = V ONO 

or 	V sin M = V 

whore 

1 

V = r,2 + ,z % 
/ 	(1))2Z j = constant, k 

thus a small change in v will result in a change 

in pitch angle ba given by 

After Dungey (1963), and Kennel and Petschek (1966)1 

it is convenient to draw the following diagram in the 

V , V 	plane. 

v 	-(01  -0)) 	 V 

k 
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Equation (1.29) states that electrons will move on 

circles V2 + (v z 
AMP constant, centred on 

= — (e.g. smooth line). However, the lines of 

constant energy are circles centred on the origin 

V2 + V2 = constant, (e.g. dotted lines). 

By inspection of the diagram, we may draw the follow- 

ing conclusions. 

(1) For frequencies such that W<< 151.1  the change effected 

by the wave is going to be primarily in pitch angle, one 

can see that this is going to become more pronounced 

the greater the inequality w<< 	. For example, to go 

from the outer to the inner dotted line (corresponding to 

a small change in energy), one must move all the way along 

the continuous curve (a pitch angle change of 1r 5). 

(Of course, an almost monochromatic wave of frequency centre,. 

on w only effects a small region such as the shaded 

line xy which extends over all values of vjL . 

(2) We also note from the diagram that a decrease in energy 

of a resonant electron is going to be associated with a 

decrease in pitch angle. It has been shown for example 

by Brice (1964), that the change in pitch angle 8a is 

related approximately to the change in energy 6W by 

6cc = isti 5W 
co • W 

for 450  pitch angle electrons. (A result easily derived 

from the above equations, essentially (30) and (31)). 
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One can also draw the same conclusions (1) and (2) from 

this relation. 

The condition for the wave amplitude to grow is that 

the energy of the resonant electrons decreases, and hence 

the associated (relatively large) decrease in pitch angle 

means that a similarly large transfer of transverse to 

longitudinal energy has taken place for the resonant 

electrons. One thus expects distributions with more trans-

verse than longitudinal energy (i.e. appropriately aniso-

tropic pitch angle distributions), in the region of the 

gyroresonant velocity, to be unstable. For examples of 

such distributions we may take the anisotropic Maxwellian 

in which the transverse temperature T1  is greater than 

the longitudinal temperature Tn, or an isotropic distri-

bution with a loss cone. Both these distributions have a 

suitable imbalance of longitudinal to transverse energy 

for instability. It was Bell and Buneman (1964) who first 

showed (by studying the dispersion relation) that resonant 

particles must have finite V in order for wave growth 

to be possible. 

We now return to equation (1.20) and examine the 

growth rate in the light of our investigation of the gyro-

resonance interaction. 

For easiest discussion, we put equation (1.20) in 

the form given by Kennel and Petschek (1966) as follows. 



(0) — 1..C11 )2  by (1 
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(iv) 

Replace 

63 	1SP1 --w  — 	by 
k 	al 	

. 

 
--- — l 	k 

W 

which can be written as 

	— 

	

( af° 	Of°, 1)% 
W  [fciV V V 	— V — *-] 

k 	o 

	

I 1 
avz 	Z av  vz W —  vz 	k 

 

where we have used the transformation 

Vz = V Sin 

= V Cos a . 

Making replacethents (i), (ii), (iii), (iv) in 

equation (1.20) we have by inspection 
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n 
	1 "'W/mj[21r011— O 

rd v e] 

,00 	afo 
idv v om  tan a) 1 	ji  

21dv v1 f
o 1 	! v 

The factor in the first square bracket may be 

interpreted as the measure of the number of resonant 

electrons (it is of course a positive quantity). 

The second square bracket determines the sign 

of 't , that is, it shows that if the distribution is 

af° isotropic with regard to pitch angle, — = 0, at 
as 

the resonant velocity then y 50 and only damping 

can result. Thus all isotropic distributions give 

rise to damping, this result is, of course, in 

agreement with the Penrose criterion as applied to 

the Whistler mode, Bell (1964). The first term in 

of becomes this bracket becomes positive when — becomes positive 
as 

and thus has the appropriate sign for growth; if this 

term dominates the second, the particle distribution will 

be unstable. 

afo  Since — > 0 implies that at fixed energy the 
as 

number of particles increases with increasing pitch 

angle there will be more total energy in the distri— 
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bution function at higher pitch angles. Since the 

wave will become unstable if this term dominates, 

the stability or instability of the Whistler mode 

wave depends only on the pitch angle anisotropy (or 

the unbalance of transverse longitudinal energy) in 

the region of gyroresonance. The magnitude of the 

growth or damping decrement depends on both the aniso—

tropy and the number of resonant electrons. Both 

these results are in agreement with our previous 

discussion of 

action. 

In view of the above  

gyroresonant inter— 

discussion one may expect 

the test particle 

the following mechanism, Dungey (1963), for loss of 

electrons from the radiation belts. The effect of 

propagation of a Whistler mode wave packet on an 

electron is to cause its pitch angle to change, this 

change may be positive or negative, (depending on the 

phase of the wave field with respect to the per—

pendicular component of the particles velocity VL ). 

Thus one expects the passage of a series of atmospheric 

Whistlers* to cause the pitch angle of a given 

electron to random walk (since there should be no 

correlation in the above mentioned phase for these 

atmospherics). The overall effect on the electron 

. 	• 	• 
	 . 	0 	. 

*Whistlers whose energy is derived from a lightning 

stroke on the earth's surface and which subsequently 

propagates far out into the Magnetosphere along a 

field line (e.g. see Helliwell (1965)). 



:- 35 - 

population will thus appear as a diffusion in pitch 

angle (from high to low particle density). Because 

of the presence of a loss cone (i.e. a particle sink) 

in the magnetosphere the overall effect of such pitch 

angle diffusion will be a loss of particles from the 

radiation belt. Dungey (1963) and Cornwall (1964) 

have both obtained good quantitative agreement with 

the observational evidence of such a loss. 

In the light of the above discussion it is not 

surprising to find that the effect of broad band 

Whistler mode noise is to produce pitch angle diffusion 

in the electron distribution. Kennel and Petschek 

(1965) have investigated quantitatively the effect 

of such noise (generated by the presence of a loss 

cone) on the radiation belts. The basic equations 

they used in describing the effect of Whistler mode 

noise were the quasilinear equations 

of = 	1 	(D Sin a M-) 
	

(1.33) 
8t 	Sin m am 	am 

where the diffusion coefficient D is given by 

2 Lal2 ( bit \ 

jV Cos a 1.  B 

b
k
2 being the energy per unit wave number at resonance. 

D (1.34) 
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They derived these equations in a rather simple 

though not fully rigorous manner. A fully rigorous 

treatment (within the limitations of quasilinear 

theory) has been given by Engle (1965). 

These equations tell us something about the 

expected pitch angle distribution in the magnetosphere. 

Since there is a loss cone present, the ambient plasma 

will have an anisotropy with appropriate sign for in—

stability and can thus generate its own Whistler mode 

wave amplitude 	noise. Kennel and Petsehek pointed 

out that although the rate at which particles diffuse 

towards the loss cone depends on the magnitude of the 

diffusion coefficient, and hence the wave energy, 

equation (1.34), the shape of the steady state pitch 

angle distribution outside the loss cone is essentially 

independent of the diffusion coefficient (c.f. the 

temperature profile for steady state heat conduction 

with different materials but fixed boundary conditions).  

Thus, since the pitch angle anisotropy is fixed in 

the steady state the wave growth rate depends only 

on the number of resonant particles. This number 

must just balance injection with precipitation so 

that the growth rate just replaces escaping wave energy. 

Using this argumentthey were able to estimate an 

upper limit on the magnitude of stably trapped particle 
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fluxes and also to derive the expected pitch angle 

profiles. Of course, although the pitch angle 

distribution outside the loss cone does not depend 

on the magnitude of the diffusion coefficient, the 

distribution inside depends on, the diffusion time to 

the time of loss to the atmosphere. Therefore the 

measured loss cone profiles (O'Brien (1964)) estimate 

a diffusion coefficient and a particle lifetime. (In 

Kennel and Petschek's paper this comparison of pitch 

angle profiles is made in Section 7, essentially 

Figs. (5) and (6)). However, a source of contention 

is that in their paper they have assumed that all 

particles are injected into the magnetosphere with 

pitch angles of -N-2. 

We now briefly review a mechanism by which emissions 

in the Whistler mode can be stimulated by the passage 

of a wave packet (also in the Whistler mode), the 

mechanism has been developed by A. C. Des (to be 

published (1968)). This mechanism has some bearing 

on the work presented in the next chapter. Essentially 

he looked at the motion of electrons on the edge of 

the loss cone at or near resonance with a Whistler 

mode wave packet propogating along the ambient mag- 

netic field. He then invoked Liouville's theorem 

to find the effect on the particle distribution and 



S-11 
dt' 
trajectory. 

ti = tr  where Lio is the angle 1  

W 	kv"-1511 for an unperturbed particle 

at t' = 0 and 
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hence the ambient growth rate. A particle will 

resonate with a particular frequency component of 

the wave packet. If 45 is the angle between this 

frequency component of the wave magnetic field b 

and the component of velocity of the particle per—

pendicular to the ambient field Vi then:- 

r 	q)0 

t 	d dt' --- 
o 	dt' 

 

(1.35) 

 

is this angle at the instant of their coincidence 

From equation (1.35) it is easily shown that 

the quantitative behaviour of is r 

 

r 	o 
	v,,t 
	(1.36) 

The effect of the wave packet on a given particle is 

taken to be essentially a change in pitch angle which 

is determined primarily by 	and the amplitude of 

the component of the wave field in resonance with 

that particle (1.37). 

Thus from the statements (1.36) and (1.37) we 

can plot the figure below, which is a 'snap shot' of 

the disturbance of those particles in the velocity 
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distribution on the edge of the loss cone AB some 

time after the wave packet has passed. 

X 

That is from (1.37) the envelope in this figure is 

essentially the amplitude frequency spectrum of the 

wave packet (taken as gaussian) while the oscillating 

phase is r (on replacing VL  by vector VI the 

diagram becomes a screw thread since o includes 

the phase of the electron about the ambient magnetic 

field). 

From (1.36) we see that as time t increases the 

oscillations become more and more rapid and eventually 

those particles on the edge AB become averaged over 

the region represented by the two gaussians AND 

(since the fine structure must smooth out owing to 

the large gradients in velocity space and the subr. 

sequent operation of the Fokker Plank term). The 
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distribution then becomes a Sin-1  y function (see 

above figure) and is joined smoothly at the two 

boundaries ACB and ADB. However at these boundaries 

one expects the rate of change of the particle 

af 
distribution with respect to pitch angle, 	, to be 

8a 
particularly large. The result of this is to give 

an enhanced growth rate in the region where the 

boundary is near vertical, (i.e. AC and BD) since 

the growth rate depends on the integrated effect of 

of over the vertical v coordinate, (see equation 
am 
(1.32) above). This, in fact, shows up in the full 

computation and is reproduced qualitatively below. 

(a) 
V /\ J. 

v.. 
z 

A.C.Das (1968) 

• 
V 

6v 
z 
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The orders of magnitude of o,  b? and by 
z 

labelled in this figure will be investigated and used 

in the next chapter, where wave packet propagation 

is examined carefully. However, before passing on 

we notice that the presence of a loss cone is essential 

to the mechanism and was taken as a step function in 

the analysis (any variation can be built up out of 

such step functions). The distribution was taken 

as slowly varying outside the loss cone and zero inside. 

(The edge was not really assumed sharp since then 

of 

ac. 
the boundary is essentially responsible for the 

background noise (represented by the finite ambient 

growth shown dotted on the above figure). We also 

notice that non—linear effects on the particle tra—

jectory have been neglected in this model. 

In a nonuniform ambient magnetic field such an 

enhancement of growth rate can generate frequencies 

outside the wave number band located between A and 

B by the resonant conditions (Dowden (1962)). The 

mechanism could thus be responsible for the production 

of discrete V.L.F. emissions. 

= 	). However the rather sharp transition at 
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1.3 Particle Trap_piag ana the Application of 

Liouvillc's Theorem 

Firstly we investigate briefly one of the more 

important phenomina which arises when equations (1!25) 

become non-=linear, that is, we shall examine the 

mechanism of particle trapping. In order to see how 

this phenomina arises we look at the last of equations 

(1.25) which we shall write in the non—linearized 

form. 

dvz = 	IQ Sin 4/ 	where IQ! = 

 

v' b 
dt 

 

and 4i is the angle between VL auld 

We know that for resonant electrons 

w kvfl 	= 0. 
dt res 

— icy ' 
dt 
	I 

Now consider resonant electrons in the vicinity 

where r is small, for these electrons 

dvz ' 
= IQ! Sin 	(i) 	and =—kvz 	(ii) 

dt 	 dt 



untrapped particle 
orbits 

	>4i 

V z 
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(Notice NI depends on the periurbation wave field b). 

These two equations are coupled and show clearly the 

mechanism of particle trapping. Thus equation (1) 

says that if t > 0, then vz' is increasing with res—i)- 
pect to time, equation (ii) then says that 	is 

decreasing and will go on decreasing until < 0; 

however the direction of change of -re and v' are z  

then exactly reversed. Hence 	and vz' oscillate 

about zero and form closed orbits in the phase space 

of 	and vz1  these particles are referred to as 

trapped particles. Thus after Dungey (1963)a we may 

draw the diagram below (very qualitatively) 

The effect on the particle distribution f can be found 

since Liouville's theorem states that f behaves like 

an incompressible fluid in phase space. 
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Since fo 
	

e(vi v ) 9  equation (1.7), the 
lines of constant f are horizontal in the diagram 

prior to the disturbance. However the closed tra-

jectory of a given particle will stir the distribution, 

i • e since f is constant following the trajectory 

of a particle in phase space the dotted line being 

a contour of constant is, will be wound up as shown. 

(The Fokker-Plank term will obviously take effect 

and result in a smoothing of the distribution). The 

associated change in Vi is very easily found from 

equation (1.29) 

m[V 2  + (V - w&)2] 
	

constant. 

Hence 

dv
z (V12) (see also Stix (1962)) 

dt w-kv dt 

dv, 	1-Q1 dv z or 
dt kV1  dt 

where we have used the 

resonance condition. 

An exact analytic solution for the trajectory 

of an electron in the field of a Whistler mode wave 

has been derived by Laird and Knox (1965). 
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Contribution of the Present Work  

The contribution of the work presented in the following 

chapters is essentially that of deriving descriptions of 

the electromagnetic wave field of narrow band wave packet 

distrubances, with particular reference to the Whistler 

mode. 

In Chapter (II) we investigate a wave packet solution 

of the formal cold plasma equations (essentially the cold 

plasma wave equation). Although such solutions can 

always by synthesised from their spectrum of plane wave 

solutions it is found that by demanding the disturbance 

satisfy the relevant wave equation, all the information 

about its behaviour becomes readily available. Surprisingly 

(in this uniform linear treatment) some new and quite 

interesting results and insights can be obtained, in 

particular when the chosen disturbance or wave packet is 

unstable. 

In Chapter (III) we go on to investigate the same 

problem when the basic plasma equations are those of 

hot plasma theory. Stix has pointed out that formal cold 

plasma theory denies the very nature of hot collision 

free plasmas in which of course the plasma particles 

are not fixed (in average position) in space (as in cold 

plasma theory), but are almost completely unrestrained 

by the forces which normally operate in a fluid (e.g. 

collisions). That is, the particles within a given 
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volume element at one instant can be found located over 

a wide region of space only seconds later. In describing 

rigourously wave—like phenomena in such a media (especially 

when it is non—uniform or time dependent) one must work 

in terms of the distribution function, which of course 

obeys Liouvillets Theorem. However, one normally evades 

this issue (in the uniform case) by working in terms of 

individual Fourier components. The cold plasma theory 

can then be made to emerge formally by taking the limit 

of zero thermal speead in the particle distribution 

(Stix (1962)). In this chapter (i.e. Chapter (III)) we 

show how the cold plasma wave packet solution of Chapter 

(II) also satisfies the hot Boltzmann Vlasov equations. 

The rather crucial point that emerges in this chapter is 

that the "memory" of a given particle is finite and that 

it does not really "remember" the electromagnetic field 

in which it was located in the distant past. One can 

also see from the analysis that this dephasing of the past 

history of a given particle is a characteristic feature 

of hot plasma theory. 

In Chapter (IV), we attempt a similar wave packet 

problem when the ambient magnetic field is non—uniform. 

The cold plasma theory is briefly discussed, the situa— 

tion being clear. The hot plasma wave equation is then 

tackled in the light of Chapter (III). The behaviour of 

a chosenwavo - packet is determined on defining it to be 
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a solution of the hot plasma wave equation. Unfortunately, 

the analysis is plagued by the fact that one is forced 

to make approximations, which must of course be self 

consistent. 

In the final chapter (Chapter (V)), we look for 

monochromatic wave solutions of the hot plasma wave 

equation. The treatment is rather easier than that of 

the wave packet. A brief review of gyroresonant phenomena 

is then included and suggestions for further work are 

made. 

In essence, the contribution presented here is that 

of showing how one may use the finite memory of a chosen 

particle to derive solutions of the wave equation and 

hence arrive at a description of wave-like phenomena in 

hot, collision free, non-uniform and time dependent 

plasmas. 

Finally, for completeness, a paper on the modulation 

of cosmic rays, written by the author during the course 

of his first year of research in the field of space 

physics, has been included at the end of this thesis. 



- 48 - 

Chapter II 

THE LINEAR THEORY OF GROWTH AND DISPERSION OF WAVE,..PACKETS  

Introduction  

In this chapter we examine the fundamentals of 

growth (or damping) and dispersion of wave-packets 

propagating in the Whistler mode along a uniform 

ambient magnetic field B°  = z B°. That is, we examine 

the effect on the electromagnetic field of a given 

disturbance of both (a) the preferential growth br 

damping) of certain frequencies and (b) the fact that 

the different frequency components do not travel with 

the same velocity in a dispersive medium. 

We shall take, the point of view that the disper-

sive effects are well described by the cold plasma 

approximation and we use formal cold plasma theory 

in the investigation of these effects. The growth 

(or damping) of different frequencies is, of course, 

by necessity a finite temperature phenomena depending 

on the free streaming of those particles in cyclotron 

resonance with that frequency component of the wave. 

In the next chapter it will be seen how basically 

the same equations evolve from the hot plasma theory. 

It is well known that in the linear theory one 
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may always use the techniques of Fourier transforms 

(i.e. one may use the principle of superposition of 

plane waves to build up any chosen disturbance). These 

techniques are so well known that, although we shall 

call freely on the insights which they give, we will 

give only the briefest possible review of them and 

refer the reader to some of the standard works. 

Basically we derive the equation of change of 

both the phase and amplitude of the wave field of a 

chosen disturbance. The method of deriving these 

equations is novel but must, of course, have an 

equivalent treatment in terms of Fourier integrals. 

However, some new results are obtained and some 

interesting points raised by a close investigation 

of these equations. The work has been done with 

particular reference to V.L.F. emissionsl  where the 

instability which generates the emissions is probably 

due to wave—particle gyroresonance (Bell and Bunemann 

(1964)). As noted, this type of instability becomes 

operative under conditions of anisotropic particle 

distribution with respect to pitch angle (for example, 

anisotropy due to the presence of a loss cone). A 

typical suggestion is that the propagation of waves 

(e.g. atmospheric Whistlers) causes changes in the 

zero order distribution and this in turn gives rise 
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to enhanced growth rates and hence emissions. The 

dtailed structure of the emission would seem to depend 

(at least in part) on the non—linear pitch angle dif—

fusion of electrons probably in the region of the loss 

cone in velocity space, A. C. Das [1968]. 

The effect of pitch angle diffusion of particles 

into the loss cone has been studied and agreement 

achieved with some of the observational aspects of 

the associated precipitation, Kennel and Petschek [1966]. 

However, a great deal of work remains to be carried 

out on the details of the stimulation of emissions, 

the mechanism involved being presumably this same 

diffusion process. An investigation of the linear 

theory of wave—packets cannot produce a new mechanism 

for the stimulation of the emissions but can describe 

certain aspects of the causative atmospheric and of 

the emission itself once it has been produced. 

The concepts of wave—packets and group velocity 

stem directly from applying the techniques of Fourier 

Synthesis to the problem of finding the general solution 

of a given wave equation (linear partial differential 

equation). The solution can always be expressed in 

terms of a spatial transform over the spectrum of 

plane waves. (This spectrum is given by the Fourier 

transform of the initial disturbance). The plane waves 



- 51 -- 

are chosen in such a way as to be particular solutions 

of the wave equation, i.e. their frequency and wave 

number are related through the dispersion relation 

D[wlk] = 0. 

Thus the general solution takes the form of a 

Fourier integral 

0 	. i(w(k)t — kz) dk 
'1,-/(z,t) = fA(k) e (I) 

where A(k) = a(k) eiH  (k) 	
.4-c0 

= Oz,t=0) e ikz dz 

(a(k), H (k).being real), and W = W(k) is the dispersion 

relation solved in terms of the frequency (assuming 

only one mode present). 

The integral (I) can seldom be carried out in 

practice and it is approximations arising out of attempts 

to evaluate it which give rise to the ideas of wave— 

packets and wave—trains. (The former from the method 

of unresolved waves and the latter from the method 

of stationary phase). For a full review of these 

approximations, see, for example, C. Eckert [1948] 

or J. Jackson [1963]. 

Since any spatially bounded disturbance 4)(z,t) 

(i.e. one for which tl(z,t) —> 0 as z —> e•0  ) may be 

formed by superposing many real wave numbers in the 
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form (I), one may ask what happens when some of these 

real wave numbers give rise to complex frequencies. 

The criterion for stability used by most authors is 

whether the dispersion relation D[colk] = 0 has solutions 

for which real k give rise to complex frequencies W(k) 

(z,t) contains terms of the form e+Wit 

where WI  = Im (W). If individual Fourier components 

of the wave—packet (z,t) grow without limit (with 

  

time) the wave—packet as a whole may still not become 

infinite at a fixed point in space (basically because 

4
)(z1t) becomes for large t 

• 

I e A(k) ewi(k)t i(wR k)t 
21c 

 

and as t 	e+Wit—> 	However eiwil(k)t 	0 becomes 

a rapidly oscillating function of k so that Oz,t) 

is an indeterminate quantity of the type 0 x 

Twiss first pointed out that two types of instability 

are in fact possible, i.e. a spatial pulse may grow 

in two distinct ways as shown in (i) and (ii) below. 

z tt) (ii) 	(z,t) 

where t1<t2<t3 	where t
1
<t2<t3 

such that 

kz) 
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Thus the wave-packet initially finite in z may 

grow without limit at every point in z (see (1)) or 

it may "propagate along" so the amplitudeqi (z,t) 

eventually decreases at any fixed point in space (see 

(ii)). (The labelling is obviously not frame invariant, 

i.e. (i) becomes of the form (ii) on transforming to 

a frame moving in the negative z direction with uniform 

velocity). A physical interpretation of the difference 

between (i) and (ii) is that (i) has an "internal 

feedback" mechanism while (ii) has not. An instability 

of the type (i) is known as an absolute or non-convecting 

instability while type (ii) is called a convective in-

stability. 

A closely related problem is the interpretation 

of roots of the dispersion relation where w is real 

and k is complex. That is, what is the sinusoidal 

steady state response of a system at given real fre-

quency w (if, in fact, this is possible for the system) 

when there are "normal modes" (i.e. solutions of the 

dispersion relation for k at lame chosen WI  or vice 

versa) which have k complex. For example, in a 

passive system such as an empty wave guide the imaginary 

part of k must imply evanescence in, say, the positive 

z direction rather than amplification in the opposite 

(negative) z direction. In more complicated systems 
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when there is a "pool" of energy available the situation 

is often not at all clear. (Notice that the terms 

amplifying and evanescent always refer to the case in 

which w is real while k is complex). Sturrock[1958] 

first showed that a convective instability is the same 

thing es on amplifying wave, the only difference being 

in the form of excitation of the system being considered 

(i.e. pulse or sinusoidal in time repectively). 

The best method of determining the physical 

meaning of the roots of the dispersion relation 

D[W lk] = 0 (see Briggs [1964]) is to consider the 

excitation of these waves in the infinitely long 

medium by a source that is of finite spatial extent 

(i.e. from z = —d to z = -1-d) and which is zero for 

t < O. The response outside the source is then a 

linear superposition of "normal modes" of the system. 

If the asymptotic response at fixed z is exponentially 

increasing with time there is an absolute instability 

present or if the asymptotic response for sinusoidal 

excitation is an oscillation at this frequency spatially 

increasing away from the source one 'has an amplifying 

wave (or convective instability, Sturrock E195aJ). 

One can write the response of a one dimensional linear 

system in terms of its Green's function K and source 

function, i.e. 
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(z,t) = fdz' fdt' K[t - V, z—z'] g(z') f(t') 

where f(t) = 0 for t < 0 and for convenience the source 

function is taken to be of the form g(z) f(t). One 

can always perform a Fourier transformation (for a 

spatially finite wave-packet) with respect to space 

for all times (because of the finite speed of propa-

gation of the wave-packet) and a Laplace transformation 

with respect to time. For illustration the form taken 

by the transformationS for the source functions g(z) 

and f(t) are 

g(z) = f2 - cr(lr) -j-kz 
g(k) 

+00 
ikz fdz g(z) e 

- 

t 
f(t) = f 	dw f(w)  eiwt 	f(w) = fdt f(t) 

0 

where the integration over frequency w is below all 

the singularities in f(W) so that f(t) = 0 for t < O. 

Thus the response of the system can then be written 

as 

( z , t ) 	= 

4-c.6 
dk fdW 
arr .27r.  

— 

i(wt-kz) G(w,k) f(W) g(k) e 	(II) 

G(colk) being the transform of the Green's function. 

The character of the asymptotic limit of the response 

in time can be determined by investigating this 

-F "2-id  
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expression and in the process the physical meaning 

of the roots of the dispersion relation are determin,e4.. 

As the method of treatment of the problem is rather 

outside the scope of this thesis we shall simply dis, 

cuss the propagation of a spatial pulse a little 

further, state the criteria (for distinguishing he- 

tween convective and 

discuss the physical 

on these criteria. 

absolute instabilities) and 

interpretation that may be put 

The interested reader is referred 

to the outstanding publication by Briggs [1964]. 

The usual definition of stability is whether 

real k gives rise to complex.w such that waves growing 

exponentially in time result. Any system which is 

unstable by this definition will "blow up" in amplitude 

even though it may appear to decrease in time at a 

fixed point, this is because it could convect along 

as it blows up. It can be shown that by letting both 

z and t tend to infinity in (II) at a fixed ratio 

(i.e. z = Zo 	
Vt) then a velocity V = Vo  can always 

be found for which the wave—packet appears to increase 

exponentially with time at the maximum growth rate of 

the unstable waves (i.e. maximum imaginary 0) for real h). 

Thus, if the plot of Im (w) v Re(k) is as below, then 

it can be...shown that an observer moving with velocity 

vo 	ah (WR) 	will see a disturbance growing 

k=k 
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1m(w) 
like e  

1 	

\ 	7 , 
41.,  

1.  i 	 • 	; . 	ae(7, -,) 

‘ ' i 
1"__..., , „L._  \ . i _ ll. 

'- 

Briggs [1964.] proposes V
o as the "propagation velocity" 

of a pulse in such an unstable medium. 

The statement of the criteria is as follows:— 

(I) To decide whether an unstable wave (i.e. one 

for which real k gives rise to negative imaginary w) 

is unstable in the absolute or convective sense one 
RE /n-i(og 

maps the dispersion from the w plane into the k plane 

(usually it is most convenient to map lines of constant 

real w). An absolute instability is present whenever 

there is a dduble root of k for some W in the lower 

half W plane for which the two merging roots have 

come from different halves of the k plane (upper and 

lower). Only merging of roots from the upper and lower 

halves indicate an absOlute instability, otherwise 

the instability is convective. 

In passing we also state the criterion for the 

related problem of evanescent and amplifying waves, 

Briggs [1964]. 
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(2) "To decide whether a given wave with complex k 

for real frequency w is amplifying or evanescent, 

determine whether or not imaginary k has a different 

sign when the frequency takes on a large negative 

imaginary part, if it does then the wave is amplifying 

otherwise it is an evanescent wave." 

One may interpret physically the merging of the 

two roots of k from the upper and lower half k plane, 

stated in (1) as follows:— 

Consider an infinite system excited_at z = 0, if 

the source has complex w with imaginary w larger than 

any growth rate of the unstable system then the waves 

must all decrease in amplitude (e.g. decay in 

tude implying that imaginary k > 0 for the response 

when z > 0) as one moves away from the source (this 

is demanded physically by causality). Suppose now that 

k-I- and k— are the wave numbers which appear for z > 0 

and z < 0 respectively. For example, for z > d one 

can close the Fourier iAtegral in (II) in the lower 

half k plane; this closure allows the integral to be 

expressed as a sum over appropriate normal modes by 

the theory of residues (i.e. since the Green's function 

G(w,k) has poles in the complex k plane, for some 

fixed complex w on the Laplace contour, at just the 

"normal mode" wave numbers. These are roots of the 
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dispersion relation D[w,k] = Q which have k in the 

lower half k plane and where W is some frequency on 

the Laplace contour. For the full treatment of the 

analytic continuation of the Fourier integral as one 

attempts to move the Laplace contour upwards in the 

w plane in order to investigate the asymptotic res—

ponse in the usual way, see Briggs [1964]). If we 

now imagine the growth rate of the source to decrease 

then for some frequency ws  = wRS — S  (say) one might 

have k+ and k— equal. The source causes a discontinuity 

in the response at z = 0 except when. k+ = k—, in 

which case the response is continuous across z = 0. 

Briggs refers to this as 'bpatial resonance" of the 

infinite system at the frequency Ws  because the 

presence of this response does not require a source. 

The situation is shown diagramatically below (after 

Briggs [1964]). 

response 4, at fixed time 
where k • / 

response tat fixed time where 

k ▪ = k 

W=W 	) RS S 

e —ik 	
1 	—ik 

1 z<0 
	

f z>0 
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241 The Equation of Change of Wave-Packets  

In this section we will not write the electric 

field in the form of a Fourier Integral (as in 

equation (I)), but choose it to be of the form 

E(z,t) 	Re e 	G(z,t),- 	(2.1) 
\ 

A 	A 
where Re stands for the real part, and e o= (xex yie ) — 

ex and e being constant amplitudes. 

In this equation G(z,t) is an unspecified envelope 

slowly varying in space z and time t, and is in general 

a complex quantity. The description slowly varying 

will become clear below. If we choose ex = e in the y 

expression for e above, E(z1t) represents a plane 

(8x = jy  0) circularly polarized (in the right handed 

sense) wave-packet propagating in the z direction. 

This choice for the electric field gives a description 

of most reasonable Whistler mode disturbances over a 

limited range of space and time. One can study the 

polarization properties of a more general disturbance 

by introducing a separate envelope for the x and y 

components of E(z,t). 

The equation of change of the 'envelope' G(z,t) 

is determined as follows. On determining the dispersion 

relation for plane waves the electric field behaves as 

el(wt kz) 



- 61 - 

a 	a 
so that we may replace 	by 	and 77 by —ik (2.2) 

at 
a 

in the relevant wave equation, D[—Fyr, 4,] = 0, 
giving rise to the dispersion relation 

D[w lk] = 0 
	

(2.3a) or w = F(k) 	(2.3b) 

assuming only one mode. 

However from equation (2.1) we notice that 

a 	a 
iW 	T and 	—ik + 

at 	Dz 
(2.4) 

where T 	= eiwt a e—iwt 

at 

(2.5) 

and —ikz a ikz e 
az 

That is, T and'>:; represent operators which if 

used on E(z,t) determine the rate of change of G(z,t) 

in time and space respectively. The relations (2.4) 

when put in the same wave equation will give rise to 

the 'dispersion relation' 

D[W 	iT, k 	= 0 	(2.6a) 

or w 	iT = F[k 	 (2.6b) 

For example, consider the cold plasma dispersion 

relation. 
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The linearized equation of motion for electrons 

using formal cold plasma theory is 

v B°  dv' 
(E 	) 	 (2.7) 

dt 

(using familiar notation) and hence 

Ed 	013.1. 	IM 2 nor 	 (2.8) 
dt 

where the current density 	1,Sin°v'l  the perturbations 

are functions of z and t only and B° = z 
A Bo . 

Hence 

1 1-1E.  

in*c 
(2.9) 

The Maxwell equations 

9AE  = 
1 ab 

at 
and 

(2.10) 

	

aE 	41-r . a.  

	

c at 	c 

give 

a2E 	a2E  

az2 	= 
1 
2 at2 	c2 at 

(2.11) 

Equation (2.9) combined with (2.11) becomes 



W 
W2 - k2c2 W 

along the field line, i.e. 

2 

(2.13) 
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o 8E 
82E 	1 e..1 411- 	at  
DZ
2 2 	

2 n 

E" --- c at c m [1-t  iptp 
(2.12) 

On using the relations (2.2) we arrive at the Appleton 

Hartree dispersion relation for Whistler propogation 

(co —Lc1() 

(see also equation (19 ) Chapter I ). 

However, on using the relations (2.4) equation (2.12) 

becomes 

(to 	 )2 (k 	 )2c2 = 

2 w
p [W - it] (2.14) 

   

	

Cw — its 	t5LI 

We now treat k 	as a complex variable and 

Taylor expand F about the point k in equation (2.6b). 

(It is slightly simpler to use (2.6a) rather than 

(2.6b), the latter is, however, in the same form as 

(2.14)). 

Hence 

W - it = F(k) 	dF(k)±  (i)2  d2F(k) 

dk 	2! dk 

(2.15) 

or 

8G(z,t) 	dW aG(z,t) _ 2w a2G(z1t) 
at 	dk az 	2! dk2 az2 

(2.16) 
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where we have used the identity (2.3b). 

The condition that G(z,t) be slowly varying is taken 

to mean that the expansion (2.15) is a good approxi— 

mation for F[k 	l';t]. 

Equation (2.16) allows for the possibility of growth 

or damping. That is, in equation (2.3b) F(k) may be 

complex (though k will be assumed real throughout). 

If we choose to represent the electric field in this 

case by 

E(z,t) = e4) ei((Aot 	kz) G
1(z/t) — (2.17) 

where w = wo 
	and G1 

= e/tG 	(2.18) 

and coo I A.!' are both real and positive, then equation 

(2.16) becomes 

aGi  

at 

i
tj 
vsG 
1 

dw aG1  _ i d2w a2G 

dk az 	2! dk2 az
2 (2.19) 

Equation (2.19) becomes equation (2.16) on differenti—

ating the product 

a [e/  G] on the left hand side and dividing through 
at 

by e 	since '}e` is not a function of z. 

The two 'envelopes' G and G1 
will not be labelled 

specifically in the work that follows since it will 

be obvious which envelope we are referring to from 
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relevant equation of motion. 

Obviously the method we have used here will not 

work for non—linear wave equations, and is equivalent 

to the Fourier integral treatment of the problem. This 

point will become clear when we solve (2.16) formally. 

However one can always write down the electric field 

in a form most suitable for the problem in hand and 

then use an analogous procedure to the expansion 

technique we have used. This may well have some 

advantages over starting the investigation from the 

Fourier integral, depending rather on the information 

which is being sought. 

2.2 Process Determining Phase and Amplitude Changes  

In this section we shall use equations (2.16) 

and (2.19) to acquire some useful physical insight 

into the processes governing wave—packet propagation. 

The discussion presented is likely to be helpful 

when one goes on to consider the same type of problem 

in non—uniform or time—varying plasmas; the former 

problem being attempted in detail in a later chapter. 

Thus far we have chosen to work purely in terms 

of the electric field. However it is fairly obvious 

that we could derive a similar equation describing 

the behaviour of the associated magnetic field. 



is 

b(z,t) = b el(wt — kz)  
—0 (2.1a) 
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Thus the magnetic field b(z,t) associated with the 

electric field 

E(z,t) = e ei(Wt 	kz) G(z,t) 
—o ( 2 .1) 

where b
o 
 = (x bx

+ y i by), a constant amplitude, and 

Gb(z,t) the wave 'envelope'. 

It is almost self—evident and will now be verified 

that the envelope Gb(z,t) will obey an equation of the 

Form (2.16) or (2.19), i.e. 

aGb 
at 

dW aGb 	i d2w a2Gb 

(IR az 	21.  dk2 az2 
(2.19a) 

Rather than going back to the beginning and reworking 

the treatment already given, this time eliminating 

E(z,t) rather than b(z,t), it is more instructive to 

use the relations (2.1) and (2.1a) and the Maxwell 

equation 

F 7l 

A - 
lab 

at 
to show that:— 

b
x 

key 

(A) 

ktex  and 

G(z1t) =QGb(z,t) 
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where a = e-i(Wt 	kz) (1 -  

+ 

iT
) W  ei(Wt kz) 

is a differential operator. 

Thus equation (2.19) may be written 

A 	 2 	a  2 	A A 
Li  [QC)) - 	[6.Gb] 	

do) a 
[Clab..] 	

i d 
— 2 —2E4%3  - 

at 	dk az 	- 	21 dk az 

It is a simple exercise in differentiation to show 
a2 

that the operators a —
a 

1 2 all commute with Q 
at az az  

in this equation, thus 

a0-210_ y'Gb 	.sL9. .1210 	d22 ,2 GI)] = 
at 	dk az 	21 dk az 

 (2.11) 

from which we derive equation (2.19a) since Q 0. 

Equation (2.16)1  together with G(z1t0), fully 

specifies G(z1t) within the limits of the above approxi- 

mation. The first and second terms in (2.16) show that 

G propagates at the group velocity, while the third 

term shows the effect of a. spread in group velocity 

at each point in the disturbance. In the frame in 

which the group velocity is zero and provided there 

is no instability or damping (more precisely 

= d2 	0 (2.20) equation (2.16) reduces to 
dk dk 2  

the Schrodinger equation for a free particle. A dis- 

cussion of the free particle wave-packet is given in 
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any standard work on Quantum Mechanics .e.g. R. Sillitto 

[1960], and the picture of the diffusing envelope is 

familiar.- On writing 

G(z,t) = A(z,t) e0(z/ 
 t) 
	

(Z.2 2.) 
one may also show 

I dV A2  = 0 
dt V 

in the same manner as conservation of probability current 

is established, i.e. multiply equation (2.16) by the 

complex conjugate of G (i.e. G*), write down the com- 

plex conjugate equation and multiply it by GI  add the 

two resulting equations to find 

aA2 + dw aA2 = - . 

	

d2CU 	G G± a2G 	a
2G7)  --- 	(2.23) -  

at 	dk az 	2: dk2 	az2 az2  

On using the identity 

x rj2y y 	= cr• (xCy - yqx) 

on the left hand side of (2.21) and integrating over 

a volume V bounded by a surface sl  we have 

d IdV  A2 = 	. -1.2(11 	aG Ids (G 	- G °Gi lt  (1.2.4-) 
dt 	V 	2: dk 2  s 	az 	az 



The presence 

ditc 	d2  

dk 	dk 2 
particularly 

of growth terms terms containing 

interesting effects, 

of the results of 

) give rise to some 

interesting in view 
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where we have used Green's theorem to go from a volume 

to a surface integral. By letting the volume go to 

infinity the surface integral vanishes and the stated 

identity results, which now implies that the energy 

of the wave field is conserved. 

Das [1967]. Thus we now find the equations governing 

the behaviour of the amplitude A and phase 0 of the 

wave packet since the effect of these growth terms is 

not best understood from equation (2.19) as it stands.  

The relation (2.19) is really two separate equations, 

one real and one imaginary. Thus, on separating it 

into its real and imaginary parts by use of equation 

(2.22) and rearranging the terms for more convenient 

discussion we find:— 

%) -, aA 	dw aA 	d2w 2sis_ aA 4.At A 	dAta0 . 	1 d2. 	2 
d /OW% A — 	 ----- 	k-J 

at 	dk az 	dk2  az az 	dk az 	2 dk2  az 

— 1 d2't a2A 1 d2w a20 A  
2 dk2 az2 	2 dk2 az2 

 

(2.25a) 

60 = 
"(a0)2 A  	aA 
A w of/5 A + 1 d2w (a0)2 —_ _ d 

at 	dk az 2 dk2 az 	dk az 

dA 

dk2  az dz 

 

1 d2lf a20 A 	1 d20) a2A 

2 dk2  az2 	2 dk2  az
2 
 

(2.25b) 
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(These equations (2.25a) and (2.25b) were derived from 

consideration of cold plasma theory. In the next chap—

ter we shall discuss explicitely the same problem in 

terms of rigorous hot plasma theory). 

The two equations (2.25a) and (2.25b) are, of course-s  

coupled. However, each term in these equations can 

tell us something new about the propagation of the 

wave—packet, the propagation characteristics of the 

disturbance in a given situation, depending on which 

terms are dominant. Thus we shall take each term and 

investigate its physical significance. Consider 

(2.25a) first. 

The first, second and third terms show that there 

exists an effective wave number keff: given by 

k — of6 	i.e. 
az 

keff: 	
a 	phase of the disturbance (2.1) 	(2.26) 
3z 

and the amplitude (at each point) is propagated at the 

group velocity which corresponds to this wave number, 

i.e. the effective group velocity is 

dW(k)i 

dk 

k = 	phase of (2.1) 
az 

Similarly the fourth, fifth and sixth terms zhow that 

the effective growth rate is also that corresponding to 

keff i.e. 

lk) 	a 
k = az 1.  phase of (2.1 

J 
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The seventh term is quite interesting; it shows that 

the amplitude diffuses at a rate determined by the 

second derivative of the growth rate with respect to 

wave number. At a maximum of the growth rate (with 

d2  
fah  respect to wave number) 	= 0 and clic  < O. Thus, 

of the disturbance will also become progressively more 

sharply peaked. This sharpening of the spectrum implies 

a widening of the disturbance. (This result stems from 

the well known Fourier Transform 'uncertainty relation,  

Ak Ax 1). Thus the continuous sharpening of the 

spectrum will result in a progressive broadening of 

the disturbance which appears in the form of positive 

d
2 

diffusion in amplitude. Of course, if 	is positive 
dk 

(implying damping), the opposite is true; one then has 

an effective broadening of the spectrum and hence a 

narrowing, in spatial extent of the wave-packet. This 

case of negative diffusion results in bumps and irregu-

larities sharpening with time, rather than smoothing 

out, as is the case when the "diffusion coefficient" 

is positive. 

The eighth and final term in equation (2.25a) is 

of the same type as a growth or damping term. We now 

show-that the effective growth or damping decrement, 

1 d2w a20 
has fairly clear physical origins. 

2 if the growth rate is sharply peaked d r  will be 
dk2 

large and negative and as time progresses the spectrum 

2 dk2  az2 
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Since 

group velocity( 

and from (2.26) 

a
2
0 =  a 17  

az2 	az effi 
the product 

d2w a
2
0 

dk
2 

az
2 is of the form 

_ a 

az 
group velocity . 

It is natural that such a term should lead to growth 

or decay in amplitude. Consider some• point on a wave— 

packet propagating in the positive z direction, where 

the group velocity is decreasing with respect to z, 

then in that region the wave will "concertina" on 

itself, and the amplitude must build up. The argument 

is reversed for points where the group velocity is in— 

creasing with respect to z. The sharper the gradient 

in group velocity, the more rapid the corresponding 

changes in amplitude. (This term has the same nature 

as the final equation in (2.25b), see below). 

The energy We  contained in the electromagnetic 

field of the wave is given by 

d
2W 
	

d 

dk2 
	

dk 

W
e  

E(z,t)1 2  + lb(z,t)1 2  

8 -rr 
(2.27), 
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the equation of motion for this quantity is going to 

be essentially the same as that for A2. That is 

We = 

 

\2 A2 	b,012  

811 

Ab2  I 

   

where we have also replaced Gb  in equation (2.19a) by 

Abe 1911 , 110(
2  i b 

2 
 are constants. The equations of 

motion (2.19) and (2.19a) for A and Ab  respectively 

2 2

c 1-4* 

2 e  2 are identical. (Since NI - 2 	we may often (.0 	1  

neglect the energy stored in the electric field). We 

may fjnd the equation of motion for A2  in the same manner 

as we derived equation (2.21). However, it is simpler 

to multiply equation (2.25a) by A. 

Thus 

aA2= 2 ),'A2 	dto aA2 	(12Y-  	a 2A 	d203 a20 A2 )it A 
 at 	 dk az 	dk2 	az2 	dk

2  az2  
k=keff 	k=keff 

(2.28) 

This equation is really an improved version of that 

derived by Kadomutev (1965). The discussion of the 

first three and the final term is not changed from 

our previous discussion of equation (2.25a). However 

we can see that the fourth term cannot be put in an 

appropriate form. It may be replaced by 

d2Vrl a2A 2 
J 

aZ dk2  2 az- 
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the first term in this bracket also corresponds to dif—

fusion (in wave energy). However the second does not 

appear to describe a simple physical process in terms 

of wave energy. Since the whole term derives from 

diffusion in amplitude we see that for cases in which 

growth rate derivatives are significant it is simpler 

to think in terms.of wave amplitude rather than wave 

energy. 

The discussion of (2.25b) is in some ways analogous 

to that of (2.25a); the discussion can also be in terms 

of changes in frequency, 	at of the wave packet 

(see below). The first, second and third terms show 

that the points at which the phase modulating function 

0(z1t) is constant also propagates at the group velocity 

defined by the local wave number keff  (2.26). Similarly 

the fourth and fifth terms show that the derivative of 

the growth rate is evaluated at the wave number keff/ 

i.e. 

d 	aA 

dk az A 

Ir=k eff 

This term has a clear physical origin. However, before 

investigating its roots it is worth thinking in terms 

of individual Fourier (or plane wave) components, in 

the more conventional manner, rather than total phase 



-75 - 

and amplitude. Individual wave—number components will 

grow at different rates, i.e. %'•=1(k); the effect of 

this growth on the amplitude is to introduce the term 

[keff]A. It is interesting to see that the integrated 

effect of growth of these wave—number components on 

the disturbance is to produce a growth term evaluated 

at the local wave number kefts' Thus these two descrip—

tions of the same process are interrelated in a rather 

simple but not obvious way. (The appearance of eff,  

presumably stems from the fact that over a differential 

element of space oz and time at a given particle will 

'sense' that it is in a plane wave of the form 

ei([w +a fg],t 	ck 	 3,z) - 7 	 "8-- 

The effect of the preferential growth of different 

wave—number components on the phase of the wave—packet 

is less obvious and appears through the above term 

d/c' 'DA 1 

dk az A 

keff 
y(k) 

off km 
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Thus if the local wave number keff corresponds to a 

region in which the growth rate is an increasing 
\ 

function of wave number k  +ve as in the figure) we 

expect the wave number components in the spectrum 

which lie slightly to the right of keff:  to dominate 

those to the left as time progresses, leading to a 

progressive change in phase. This process will stop 

once the wave number keff coincides with that wave 

number corresponding to a local maximum in growth rate, 

i.e. k 

The sixth term in (2.25b) is directly analogous 

to the seventh term in (2.25a). Thus as the spectrum 
d2 

sharpens (as it will when 	is large and negative, 
dk2 

see also above) the phase modulating factor diffuses, 

i.e. becomes more constant over a wider range of position 

z. This _corresponds to a more constant effective 

4 	 a 

fre— 

quency, w + -77 (or wave number, k — 	over a wider az 

range of position. That is, the phase variation of the 

wave becomes more like that of a monochrometic wave 

as the spectrum sharpens. This process also appears 

in the form of positive diffusion when the growth rate 

is positively peaked, the effect being reversed in the 

case of damping. 

The final term is closely related to the last 

term in equation (2.25a), its origin is also clear. 
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Thus it states that the phase of the wave packet in some 

given region will change rapidly if the group velocity 

corresponding to k is changing sharply with respect to 

wave number, this is best understood from the figure 

below. (It is reasonable to assume that on including 

higher-order terms in (2.25b) this term would become 

1 d2(.0, a 2A 
though this is not essential to the 

2 dk21 az2  A 
argument). 

Ik=koff 

u (h) g 

eff 

In the (rather exaggerated) situation depicted those 

wave number components to the right of keff will propa-

gate out of the considered region faster than those 

components to the left. The phase or effective wave 

number must change rapidly as a result, rather in the 

same way as it must when new wave number components 

are 'introduced' as a result of growth. 
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The above discussion of these underlying processes 

makes equation (2.16) easier to comprehend. On the 

other hand these same processes would be rather difficult 

to forsee without the help of equation (2.16). 

In the equations (2.25a), (2.25b) we notice that 

all the terms may be divided into two types, i.e. those 

closely related to the concept of group velocity, and 

those connected with the growth constant''~  . All the 

terms in these equations have a reasonably clear physical 

origin in relation to these two ideas. 

There are really three reasons which justify an 

investigation of the sort we have just made. The first 

is that it has given some simple physical insight into 

the mode of propagation wave packets in uniform media 

when the regime is linear, and in the process it has 

obviously made clear what the linear theory cannot do. 

The second reason is that we have discussed fully 

all the implications inherent in the inclusion of a 

slowly varying envelope in some chosen disturbance when 

requiring that it must satisfy the uniform cold plasma 

wave equation. It will become clear later that such an 

investigation is helpful in understanding the nature 

of solutions (which also contain slowly varying envel—

opes) which we derive in a later chapter when the plasma 

is both hot and non—uniform. 



resonator will become 

w(t) (= 0t 	phase of a 

maximum when the frequency 

input signal]) coincides with 
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Thirdly it is hoped that the basic equations (2.25a), 

(2.25b) and their discussion will be of value in the 

study of sonogram traces. In this respect one needs to 

know how the sonogram traces are related to the rate 

of change of phase and amplitude of the electric or 

magnetic field of the input signal. 

A sonogram trace usually consists of the output 

response of a series of narrow band resonators as a 

function of time, the quantities plotted in two dim—

ensional cartesian coordinates (time being the abscissa).  

The response of a tuned resonator to a frequency modu—

lated or gliding tone is well established [e.g. Barber 

and TJrsell (1948)]. Roughly the response of the 

its own resonant frequency. The resolution in time 

and frequency is determined by the band width of the 

resonators, (the narrower the band width the longer 

the resolution time, i.e. the wider the trace). This 

relation is essentially in the nature of a Fourier 

TranSform, i.e. Lw At < 4, where 11, depends on the 

characteristics of the resonators used. To the author's 

knowledge no detailed investigation has ever been made 

of the response of a tuned resonator to a frequency 

and amplitude modulated signal. One expects the 
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darkness of the trace to be closely related -to the 

amplitude A, and theinteresting effects are likely to 

be connected with equation (2.25b) (though it is very 

tentatively suggested that amplitude modulation could 

give rise to fine structure in the observed traces by 

analogy with side bands). Thus one expects the signal, 

equation (2.1), to appear on a sonogram as a trace of 

small slope in a region near the frequency W, the 

deviations from this frequency being due to the terms 

in equation (2.25b). (This is best understood by 

writing the phase variation of the electric field in 

equation (2.1) as 

a 
eif w(t')dt' 	ij[w + 	]dt,  e 	'DV 	). 

In the introduction we reviewed the model of com—

plete stirring as developed by A. C.-Das [1967] and we 

have seen how sharp peaks in the growth rate result 

from the interaction of a narrow band wave packet with 

the ambient particle distribution. Typically we may 

thus expect the growth rate derivatives to be large when 

considering this type of magnetospheric phenomina. 

These large. .derivatlkws not only lead to changes in 

a0) 
at" 

mechanism via "diffusion" in amplitude (due to the 

diffusion coefficient 

  

Thus if one has a 2 dk2 

frequency, C(.0 but also to a positive feedback 



situation in which energy is supplied to the wave by the 

particle distribution it will normally be propagated out 

of that region at the appropriate group velocity. How- 

2 dk2 
become sufficiently large the amplitude would diffuse 

back and the disturbance amnlitude would then grow 

indefinitely in that region. Under these conditions one 

would then presumably expect a "hiss" or non-convective 

type of instability. 

It is not really the objective of the work pre-

sented here to make a detailed investigation of the 

appearance of various sonogram traces in an attempt to 

identify which processes are in fact dominant, nor to 

suggest V.L.F. generation mechanisms. However one 

hopefully expects the discUssion of the equations (2.25a) 

and (2.25h) to be of value to workers attempting to find 

answers to such problems. (Notice in the magnetosphere 

one must also take into account the inhomogeniety in 

the ambient field; for example, the detailed appearance 

of hooks is only explicable in terms of both enhanced 

growth rates and also the inhomogeniety of the ambient 

field, e.g. Dowden (1962)). 

In conclusion of this section it is worth briefly 

investigating typical orders of magnitude of quantities 

appearing in equation (2.16). In order to do this we 

1 d2T ever, should the "diffusion" coefficient 
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use the model developed by A. C. Das (1967). 

Starting from the well known cold plasma Whistler 

mode dispersion relatior_ 

2 
k2c2 1 	wip 1(15  
W
2 

V4— W 

and assuming w << 	one can easily show that 

	

(i) 
	dw rs, 2w = 2V 

dk 	k 
	p 

d w 

dk2 

Thus taking typically 1  e-1 10 km-1, W/k "..105 km sec
-1  

(e.g. see Das (1967) we have 

	

(iii) 	dw c,,105 km sec-1 	
14 

1.--J104 km2 sec-1  
dk 	dk 

From Figure d Chapter (I), page (40) we take typically 

for the labelled quantities W 5vt, the orders of 

magnitude 

1 sec-1  

—1 
ov ,---, 10 km sec 

We also take v 	10' km sec-1  (e.g. Das (1967)). 
res 
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From the resonant condition v we have 

bk = k bvu  
dw v 
dk 	it 

res: 

and hence for the above orders of magnitude bk r*-0 103 km-1. 

Hence roughly we may put 

di  P e , b 	= 103 km sec-1 

dk 	bk 

d21'  s 0-` - 	= 106  km2  sec
-1  

dk-  (bk)*-  

Comparing (iii) with (iv) and (v) we can see that these 

rough calculations alone are sufficient to show that the 

derivatives of the growth rate can give rise to terms 

which can dominate the propagation characteristics of 

the disturbance. (Of courses  if they become too big 

the whole expansion procedure will break down). 
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2.3 The Formal Solution 

The formal solut:Lon of (2.16) can be found by a 

Fourier Transformation technique. For reasons that 

will become clear below we transform with respect to 

= k - k • That is :- 

.00 
IG(zIt) -ik  

S(k1 ) = 	
iz dz 

421T 

+')  
G(z1t) 

 
1 	fs(k1  t) elklz  dk 

(2.29) 

(2.30) 

Thus (2.16) becomes 

as(kl,t) 

at 
= [(-ik )W' - (ik )2 iw" s(k1,t) (2.31) 1 	1 2  

where W' d4) 

dkk:  
co II dto2' 

dk21k 

So:— 

1W" 
S(ki,t) = S(k1) e-ihlW't +  2 (2.32) 

where S(ki) = f g(z) e 	dz 
	(2.33) 

Hence 

+ oc 

G(slt) = 1  fdk1 
21T -do  

fdz
co
' g(z') eiki(z-z'-W't)+(

iwnt----)k - 1
2 

 
iao 

(2.34) 
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This equation represents an integration over the spectrum 

of plane waves where the frequency as a function of 

wave number has been approximated. This will become 

clear if we consider a simple example. 

Suppose we consider an initial envelope which is 

a simple gaussian centred on the origin, i.e. 

G(z1 0) = g(z) 

and normalized so 

• e ;a 	—az 2  (2.35) 

.Foo 
fez) dz = 1 

Putting (2.35) in (2.34) and integrating over z' first 

we have 

1(+'4 	Wu (a—it)k2 	(z—w't) 
j G(z,t) = 	dk_ e 2 	1 1 (2.36) 

2 rr ,o I  

" 
1 
7a. 

On putting the expression in (2.1) we recognise 

(2.36) as the integral over the spectrum 
2 

—(13- /LL cc) 	 (2.37) 1 

2TT 

of plane waves where the frequency as a function of 

wave number has been approximated. This type of 

integral has been discussed rather fully by Feix (1963) 

and also Kademtc27 (1965). On carrying out the inte—

gration in (2.36) by completing the square we find:— 

where 



(z 	co ,A)2  
of 

2(a - iWut) 
E = E exp i(w t - k z) 

—0 	0 
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,(z 
	, 

C exp -t 2[a 	itollt]=1 
G(z,t) - 	1 	(2.38)  

[a  - iw"tIT 

It cane  of courses  be confirmed by direct substitution 

that (2.38) is a solution of (2.16). However the 

particular conditions of validity are discussed by 

Feix and as expected (2.38) is good in the vicinity 

of its maximum._ 

If we put W = wo 	and use relation (2.1) 

we see that 

1 
[a - iWnt]'7  

(2.39) 

On assuming that the wave-packet has had sufficient 

time to distort so that the dominant wave number in 

the spectrum is such that 

= 0 	and- 'a" = p 	a positive 

quantity. 

Equation (2.39) becomes 

(z wo
't)2(a  ro'ut)) 

Eo exp )ot  

1 
S. 

2S 

exp i Not k z 
wo't)

2wo"t 0(t)] (2.40) 
2S 



w 2 	R ft2yC 
o 2 j 
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'1 
where S 	wt)`' + (wont)2  

wo"t 	(2.41) 
0(t) = tang̀ [ ] 

(a - 
00 

condition (2.40) becomes reasonable after large time 

intervals we may then presumably neglect a in (2.41). 

We then arrive at the situation discussed by Feix (1963). 

That is, the amplitude is given by 
R 
r0 

exp 
	

yot - c. - wit 
rm  "2+ w  "217.17Art  LF0 	o 

The centre of the disturbance propagates at the group 
1 

velocity while the width increases as -C71 as in a dif-,  
w "2+ P 2 - 

• 2 fusion process. For group velocities wo' <2 o
0 

A " 
'o 

the amplitude of the wave-packet will increase without 

limit at a given point, i.e. in those frames the in-

stability is non-convective. 
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Chapter III 

WAVE PACKETS IN A HOT UNIFORM VLASOV PLASMA  

Introduction  

In the previous chapter we investigated some 

fundamental aspects arising from wave packet pro—

pagation in uniform media. The essential point 

being that the medium.was described in terms of 

cold plasma equations. That is the integrodiffer.-

ential 'wave equation' of hot plasma theory was 

replaced by a partial differential wave equation. 

In this chapter we shall show how these same equations, 

derived in the previous chapter, can also be derived 

from a consideration of the full hot plasma 'wave 

equation'. 

Suppose we consider for example the problem 

of V.L.F. emissions. Then if at least some V.L.F. 

emissions are due to wave particle gyroresonances 

(as is generally believed (e.g. Bell and Bunenann, 

1964)) then there are many processes which can com—

plicate the interaction and subsequent wave propagation. 

The most obvious compliCation is that the ambient 

magnetic field is not uniform. This fact has more 

than one feature s  not only do the varying plasma 

parameters change the dispersion of the propagating 
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disturbance (e.g. the gyrofrequency and wave number 

will not be independent of position) but also particles 

with the same vtt  will resonate with a particular 

wave at some instant, but because these particles 

will have a large range of Vi  they will subsequently 

behave differently in the non—uniform ambient mag—

netic field. Other complications are not difficult 

to imagine, any or all of the ambient plasma para—

meters could be functions of space and time, due, 

for example, to the presence of other waves. (e.g. 

It is well known that compression of the magnetospheric 

boundary increases the pitch angle anisotropy of the 

particle distribution and makes the plasma more 

unstable). This.type of mechanism is really a wave—

wave interaction. The crucial effects on the emission 

probably come via the resonant particles. All these 

processes mentioned are likely to change the fre—

quency of the emission and some of them may well 

give rise to the characteristic sonogram traces of 

particular emissions (e.g. Dowden (1962)). 

The problem of devising a mathematical description 

of the propagating disturbance (i.e. finding solutions 

of the appropriate integro differential wave equation) 

in the presence of processes of this type seems 
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formidable task. In this section we show that the 

method of characteristics is a suitable technique 

for solving the Boltzmann—Vlasov equations in this 

type of work. That is, we solve the linearised 

collisionless Boltzmann equation in the Lagrangian 

system of coordinates. This method of solution in—

volves integration over the zero order particle 

trajectories, in other words over their past histories. 

The fact that emerges from this section is that one 

does not have to go far back in time in evaluating 

the trajectory integration owing to the finite tempera—

ture of the plasma. This result seems useful since 

it means there is great scope for making approximations 

in the type of problem discussed, and since it 1,-oulo 

be impossible, in practice, to know the distant past. 

In order to make this point clear we consider the 

problem of wave—packet propagation as in the last 

section. We show that the equation governing its 

behaviour can be derived in a perfectly natural way 

from approximations which are seen to be typical for 

the type of problems we wish eventually to solve. 
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3.1 Wave Packet Solution of the Vlasov Equations by  

the Method of Characteristics  

A discussion of the method of characteristics 

is given in most advanced plasma physics texts (for 

example, Stix (1962)). For the reasons we have already 

mentioned we shall not assume plane wave propagation 

in the treatment that follows. 

Assuming the unperturbed distribution fQ(v) to 

be independent of space and time the zero order Boltz—

mann equation becomes:- 

(y_40)-7, f°(27.1) = 0 	(3.1) 

On transforming to cylindrical coordinates in velocity 

space one can see that this relation is equivalent to 

the statement 

e(V) = 10(v2  v ) 
It 

(3.2) 

where v, and v are the components of velocity, 

perpendicular and parallel to the uniform ambient 
A 

magnetic field B= Boz 	(3.3) • 

Assuming the zero order electric field to be zero 

and using the usual perturbation technique, i.e. 

0 2 
f(z,v,t) = f (Art ivn) 	f1(zIvIt) 

1E I 
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B = Bo  + b(z,t) — — 

E = 0 E(z,t) 

(The perturbation*  being as in the introduction, and 

their spatial dependence is on z only). 

On linearizing the Boltzmann equation we arrive 

at: 

v.Vf' - 	(v B°).77v  fl at 	 m  

(-11 (E 	v b ) • Vvf°  — 
m 

   

The left hand side of this equation represents 

the time derivative of f' along zero order particle 

trajectories (e.g. see Stix (1962)). 

Thus 

f'(z,v,t) 
	Ei f dt' [E(z'It') + v' b 	

ofo 

m 	 av' 

(3.6) 

Here, as in the derivation of equation (2.16), we are 

not considering the initial value problem. 

Thus in equation (3.6)  we choose the electric 

and magnetic fields to vary as :- 

. 	e
x 	

y e  ) ei(Wt 	kz) E(z,t) 	 G(z,t) 

(3.7) 

ei(wt kz) b(z7t) = (x bx 	y by) 	 G1(z' 
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where ex, e 
5  bx, b

y  are constant amplitudes as in 

the previous chapter. 

(We.assume Ez to be zero as it has already been shown 
 in  

the introduction that the perpendicular and parallel 

motions are decoupled in the linear approximation). 

We use the same notation as in the previous chapteri- 

G and Gb  are slowly varying envelopes related to the 

electric and magnetic fields respectively, where from 

the Maxwell equation 

= 
1 ab 

c at 
we can show that 

bx = - 
Ice 	ko e ; 	ex ; bz = 0 

	(3.8) 

and ' 

e1(wt 	kz) 	(z,t) = (1 	it  /k)  G(z,t)-ei(wt kz) 

(1 - i`/w) 

(3.9) 

Hence putting the relations (3.7) in equation (3.6) 

we have:- 

f"(z,v,t) - 
t 
5 dt'EG(z e lt')Ekexy]+Gb(zI lt')v i  

m - 

[x 
A 
b 	4.

A
yb ]] af

o 
e  i(cot,  — kz') . —  x y av' 

(3.10) 

The integration is (3.10) is along the zero 
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order particle trajectory. The equation of motion 

for electrons in the ambient magnetic field B = BoZ 

is:— 

A
Z 
A 	 e (3.11) where ijd = 	(3.12) 

The solution of equation (3.11) satistring the 

criterion that at t'= t, then v'= v and 	z (3.13) 

is:— 

Vx = Vt.  Cos (0 — IPIT) 

17- 	= V Sin ( e — 156T) 	(3.14) 

V ' = V z 	z 

and hence z'= z v T, where T = t — t' time measured 
z. 

backwards from the point t, so:— 

vx 	cos e, v = NI Sin 0 	(3.15). 

From the relations (3.2) and (3.14) we find easily:— 

af0 	af Cos (0 — 1314 T) 
ayx 	air,  

af af° sin (e — WT) 	(3.16) 
av, 	av 

ofo 	af° = 
av, 	avz 

dv' 

dt MC 
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It is a short step using (3.8), (3.14) and (3.16) 

to transform (3.10) to the unprimed coordinates and 

on separating out the right hand circularly polerized 

mode we easily arrive at 

11 	-io ° 	of f'(z,v,t) 	e 	f dT J — G[(z-v T),(t-T)] 
+0Q.. 

k 	af° 	af°, 	 ickv +1511— OT — — (v 	v, — )C.A. [(z-vnT),(t-T)] e 
av 	av 

rr 

(3.17) 

where 

E --oj_ 
TA 	

A 
xe
x 

yie 
Y 	ei(wt - kz) 

2 
(3.18) 

and we have written t'= t-T in the two envelopes G 

and Gio, also dt' has become -dT. Hence:- 

2r 	+.c4. 
j(z1t) 	clefo I  v dv 	dv A 	It [e

ie
v f'(z1vIt)] 

- 

-1.!v 	° 

2E f E f dv 	 k dT 	gGE(z-v T),(t-T)]- --cvg-h)G [(z-v T)/  (t-T). ” 	n 	
TT  

i(kv 	w + 	)T 	(3.19) 

+.00 
2 af

o 	400 
where 	g(vm) 	Trf 	= - 2Trff°v dv 

(3.20) 

and h(v ) 
1 I 

I dv 
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The remainder of this section will be spent in 

what is essentially a disbUSsion of (3:19): Of course, 

if we discuss the plane wave case (i.e. put G=Gb=1) 

equation (3.19) 	

0 

becomes:- 

4.0") 	( r 
j(z,t) = + L1 2E fdv fdT) gLW-kV,13-1-hklei(kv -w+ tt , 	t 

o!, 	'r t•O 

(3.21) 

On using (3.21) in conjunction with the two Curl Kaxwell 

equations, as in the introduction, and integrating 

over T, (assuming the contribution from T = i.c.0 is  

zero, see below) we arrive at the familiar dispersion 

relation valid for growing waves. That is, on elimi-

nating the magnetic field b from the two Curl Maxwell 

equations and substituting (3.21) for the current 

density we find 

W 2 w 	o 
(a)

) i(kv 0J+ !SLI)T k2c2-W2 = - -2---f dv f dT 	kV LL) g kh  e 	“-  
n -c,o ft+oo w wi 0 - 

On carrying out the time integration in this equation, 

assuming that the contribution from T = + 00 is zero 

(see below), we_arrive at the familiar result 
kV 

+00 	
' 

N g  
(b) k2c2-w2 = w 

2

w fdv (1 
	w

" 
 

where Im (w) < 0. 

It 	(0) - kv 	) 



CO 2CO 	+00  
= 	Pfdv 

no 

(1  !IL
L) 
 kh 
g  

(W kv - ) 
(d) k22-W2 
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This equation is valid for growing waves Im (w) < 0. 

Compare this equation with equation ( .14) of the 

introductory chapter. 

We shall show in what follows that, written in 

the form (a), this equation is valid for both growing 

and damped waves. Of course, written in the form (b), 

analytically continue the equation into the upper half 

plane using the_Landau prescription, i.e. 

	

kv 	kh 
2 	2 	2 	Oip 

20). +00 	 co 	co  
11)„,. 	.-- 

k c -W = 	)dv 
n 	- -" (W - kv tt 

+ 21TiC(1 k V - u)g 

, , 
kh /3

2w 
 

W , no 
_ (al - (0)  

    

where Im 	> 0, and as in the introductory chapter 

we may write this equation in the form valid for both 

growing and damped.waves, i.e. 

(C) 

"je 

--) , ! 03 20.) 
liV„ \ 	kii 1 p  .... 	ig +  

0) 	0) i n 

v -0611i- - W)  t; 
k 
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3.2 Cut Off in the Orbit Intezration due to Finite  

Temperature  

We now look a little more closely at (3.21), 

thus by reversing the order of integration we notice 

that it has the form 

 

E fdT ei(12(  H 
fdv F(v )eivu

tlo 

(kT) (3;22) 

  

where F(v ) is a function of v whose width depends 

on the temperature of the plasma. We notice that the 

integration over v" is of the form of a Fourier 

Transform, i.e. 

(.4-°0  

rr 

. iv (14-T) jdv F(v )e 	= 3(kT) (3.23) 

The wider the thermal spread in F(v ) the more 
rr 

sharply peaked its "Fourier Transform" 'c- (kT) will 

be. The integration over time which follows (3.23) 

will be "cut off" at some point because 1;t(kT) will 

be effectively zero. The cold plasma in which F(v") 

is a delta function and 	(kT) finite even as T ->oo 

is, of course, fictitious. However, any sharp peak 

or gradient in the function F(v ) due for example to 
rr 

particle beams, the greater the value of T which is 

important in that region of v . (This is analogous 



-v t t 
(D) 

= vtl 
res. 

v, = -(w - 

T 
(a) 

t 
i 

(e.g. F(vIt)Ne-1(vit-a)2 see equ. (29) )1 
F(vit ) 
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to the presence of more "frequency components" in the 

"spectrum" 1(kT) of F(v ). 

We can increase our insight further by examining 

this result diagramatically. The diagrams (a) and 

(b) below are "maps in relief" of equation (3.21) 

in the v ,T plane. 

i 	VII 

v„=a 
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In diagram (a) we have plotted lines of constant 

phase of the integrand of equation (3.21) in the v „T 

plane, these are rectangular hyperbola centered on 

In diagram (b) we have plotted F(v") against 
u
res 

v", which is constant for all T (at least in the linear 

approximation - for example, c.f. quasi-linear approxi-

mation). We see that the further back in time we go, 

the faster the cosine of the phase oscillates. Even-

tually the oscillations are so rapid that the envelope 

F(v") can be considered constant over one period of 

oscillation, the contribution to the integral (3.21) 

becomes zero in the same way as:- 

Lim fF(v ) Cos 
(vu/a) 

 dv 	(3.25) 
11 

a->0 

(F(v ) must, of course, satisfy Dirichlet's conditions, 

which we know on physical grounds any particle distri-

bution will). We can again see from these diagrams 

why any sharp peak or kink in F(v ) results in a 

contribution to the current j(z,t) in equation (3.21) 

coming from larger values of T. 

A particularly good distribution for discussion 

is that of the anisotropic Maxwell Boltzmann shifted 

in v", i.e. 
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f
o(v 2 v ) / 	tt 

NNor°VA. 2 - q(vii 	a)2  (3:26) 

i.3/2 

where 5 = 

  

K = Boltzmann's constant. 
= T, T are the perpendicular 
2KT

11 	

11 L.ad parallel temperatures 2KT,. 

f
27r 

and  =de 	fdv f°  
0 	0 	-cc,  

This distribution is unstable when a > E) (i.e. TL> Tu). 

Thus 

2 
h(v Ti) 	- Ni e- a(v- a) 

r--- 
b

a) 2 where N1 = Ni
a/ ir 1 N e- a(vtt 

Equation (3.21) can then be put in the form: 

(z t) = + 

	

	

- 

s,:t  2 
E 
 iBi+ k[a + 2a aa  1.1   (3.28) 

where 

B
1 = [co - ha 11  , 	]B2 

 = Cal5— 1] 
5 

and 

f
0 	e  i(pi  o jdv  eT 

ti
- a)2+ i(kT)v dT  

tt 
Eso 	 —ty) 

(3.29) 

On putting u = (v - a), (3.29) becomes 



Typically k e•J10 km 

vT 
 •'J  103  km sec -1 
rt 

so 	T ^J 10-2 see. 

(Gnthart(1964)) 
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(19-1- 	ka )T (
4. ce,:' 

an 24-  i(kT)u fdT ei  jdu e 
A-o0 	- 

(3.30) 

On completing the square in this section we have 

2 

fdT ei  " 	co ka)T / 	
_ 41511 j-"Q 	Cudu e au 4a 

-00 

i(kT)-

2a 

(3.30a) 

Written in this form we can see immediately that this 

double integration will converge rapidly for large 

values of u and T, for both growing and damped waves. 

For example, taking magnetospheric numbers, since 

a = - 1--
2  where vT = parallel thermal velocity, we 

vT 	
li 

can say that the integration over time T effectively 

cuts off when 

(kT)2 
	

100 i .e. T"' 10  
kvT St 

—1 

In the magnetosphere we have a situation in which 

particles are bouncing between mirror points and 

drifting in longitude, if the integration over time 

really had to be taken back into the infinite past, 

T = +=.10, the problem would surely become intractable. 



103 — 

If we formally take the limit T —> '>0 in equation 

(3.30) the integration over_u gives rise to a delta 

function, i.e. 'kT) = 	6(T), see equation (3.23). 

The contribution to the current then comes exclusively 

from the region T —> + 0. 

3.3 Application of 3.2 to the Wave Packet Problem 

In order to limit the material in this section, 

we will not discuss equations (3.26) through to (3.30) 

further, but simply state that the integration (3.30) 

can be evaluated. The resulting current (equation 

(3.28)) is a complex quantity, and on applying 

Maxwell's equations we can derive an expression for 

the growth rate (see Appendix A). 

We now show that the rapid convergence of the 

integration over time can be put to use in the solution 

of real problems. We return to equation (3.19) and 

derive the equation of motion of the wave packet 

envelope G as follows:— 

We eliminate the magnetic field from the two 

relations (3.7) by use of the two Curl Maxwell 

equations. 

Thus:— 



a2E(z1t) = 
az2 

a
2
E(z,t) 	4Tral 

c2 at2 	c2 at 

Since we have 

a 	a iW 	T and 	= ik 	, this equation 
at 	az 

becomes:- 

r 	2 	1 r  2 	411-  L-k G-2ikG z +G  zz ] = -7L-W G+2iwGt+Gtt
] + 

c- 	c2 at 

(3.31) 
where subscripts denote differentiation, e.g. 

G (z,t) •••• zz 
a2G 

az
2  etc • 

FI-om equation (3.19) we have 

ic i 2 	+6o 
E iw[1-iX]fdv f — L[v u  

at 	—0( 	_co -+x
g—h]Cibs) 

CO 

and since 

•el(kv -- CO +1,11.1)T rr (3.32) 

ei(Wt-kz)n  
lb 

[1. + 11:/k] 
ei(Wt-kz)G(z,t) 

[1 — iT/w] 
( 3 .9 ) 

equation (3.32) becomes(1). 

21
+  

2 	+co o 
1  kr 

L 	
r, 

= + 	

1 .LL  m  --oE fdv idT fg[iW+TJ---v"g-h]iW[14-i'70 
at 	l — co II. 	, L 	 r _L 	00 	 w 	 j 

.Gei(lcv -W+LJ)T 	(3.33) 
(1) 

To see that we can use eeuation (3.9) in (3.32) 

imagine Gb  also expanded as in (3.34). 
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Since the major contribution to the current comes 

from the region T ->4.0 we Taylor expand 

G[(z-V T),(t-T)] in equation (3.33) about the 
11 

point T = 0 i.e. 

T) 7 (+-T)] = G.(z 7t)-T[v.11Z(z,-E)+Gt(z,t)] 

2  
T121  [v 2G (z9t)+2v G (zt)+G (z t)]+ 

(3.34) 

On putting (3.34) into (3.33) we find:- 

at 

fri 2  
	 E (jwah+G A +G A +G A +G A +G A 
rr t 1 z 2 zz 3 zt 4 tt 5J 

(3.35) 

where 

+0, o 
A = -fdv fdTig 11 

e1(kv11 -034- (-1/1)T 
+ ( 

and after some laborious rearrangement we recognise 

Al = A + w 

A 	aA 
2 

= —(1) 
ak 

A3  = 

A4  = 

iw a2A 
2 alit 
a2A-  aA, icw--- --) 
akaw ak 

(3.36) 

A 	aA 	a A -2- (a-- + 
5 	0032 8w 

11 ZZ 	 zt 	tt 

aA 
ao.) 
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On putting (3.35) into (3.31) and solving for OG(z,t) 
at 

we have:- 

2 2 , 	W 	
03  2 w iA 1A  2 w 

noc 	t 	2  + 	Aiw]G+[2k + 
no 	n c2 7 

2 	2. W A, 	W 	W 2A 
+ El + P  2-)]Gzz-FE 	V  2'3Gzt+ i[- 12 

_B--2]G 
n c 	 c n 0 	nc2 tt 

O 	 O 
 

2 
41Th IC I2 

where w - 	 
p 

m 

(3.37) 

no appearing through the 

i.e. D. particle distribution 1O 9 	 o  = fd3vf°  

Equation (3.37) is the equation governing the 

behaviour of the envelope G. We.can convert it into 

a more familiar form as follows:- 

The frequency and wave number in equation (3.3'r 

are related through the hot plasma dispersion relation. 

That is, on putting G = 1 in this equation w and k are 

related through .. 

2 Co 2 -k 	
W2 
1c2 	iwA = 0, thus we put 

c n 

. w 2 :LwA 
k2 w2/c2 + P 	2 	= J[colk] 

n c 
0 

(3.38) 

Using relations (3.36) and (3.38) equation (3.37) 

becomes:- 
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- J wGt = (2k-J1 )Gz 	 (2-Jkk)Gzz 2  %.7wwGtt+ iJkwGzt 2 

(3.39 ) 
2J.. 

whereJkw = 
akaW 

etc. 

From equation (3.38) we also have:- 

2k - J dw 	k 
dk 	Jw 

and 

2 2-J - d2W 	kk 23IcwWk-J  WwWk  
dk2 = Jw 

where Wk
= dW 

dk 

Hence from (3.39) and (3.40) 

Gzt 	- WGzz 

(3.40) 

(3.41) 

(3.42) 

and 

2 Gtt 
= w G 

zz (3.43 ) 

On putting (3.42) and (3.43) into (3.39) we have:- 

f2k7J0 	22-J- -2J W -J w 21 	 G 3- Lr_k kw k wW k  
t J 2' 	Jw  

which from (3.40) and (3.41) we recognise as the 

equation 

aG= 	_ dw aG i d2w a2G 
at 	dk az .2 dk2 az2 

(equation (2.16) 

Gt  G zz 
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Discussion 

In this chapter we have shown how one may use the 

integro—differential "wave equation" of hot plasma 

theory to derive the equation of motion of a chosen 

wave packet. In particular we have shown that only 

limited regions of v IT space are important, and the 

solution of many problems may well boil down to decid—

ing which regions (diagrams of the type (a) and (b) 

should be particularly useful in this respect). 

Typical approximations will involve some sort of 

expansion of slowly varying parameters about the import—

ant regions in the v"IT plane (the Taylor expansion 

seems an obvious choice as it has just the properties 

we are looking for). A typical problem has been solved 

and the usefulness of the technique seems established. 

Eventually we wish to know how the equation of motion 

of a wave packet is modified by the presence of the 

various mechanisms discussed earlier. However in 

this respect one should remember that in a hot 

collision free plasma the particles are not confined 

essentially within a given volume element by collisional 

effects, as is the case for most fluids, but travel 

almost freely through the plasma. Therefore any 

perturbation induced in a given volume element will 
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be carried by this free streaming of the plasma 

particles to different localities at later times. 

As pointed out by Stix (Stix (1962)) one avoids this 

difficulty in a uniform plasma by Fourier analysing 

in space and time. Thus, hopefully, when the plasma 

is non-uniform or time-varying, the method we have 

used will become especially valuable. In the next 

chapter where we attempt the same problem in a non-

uniform ambient magnetic field, the above points will 

be reiterated. 

In the above context we discuss the basis of the 

method a little further before proceeding to the next 

chapter. The fact that we knew the integration over 

time in equation (3.19) or (3.32) converged rapidly 

for large values of T suggested that we should Taylor 

expand the slowly varying quantities about the point 

T = 0. However, having once carried out this pro-

cedure we then discovered [through the relations 

(3.36)] that the square brackets [involving integrations 

over time T] appearing in equation (3.37) were related 

in a simple way to the plane wave dispersion relation, 

[essentially equation (3.38)]. Thus the series of 

terms in equation (3.37) became successively smaller 

through the increasing order of the derivatives of the 

slowly varying quantity G. 
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In the next chapter we carry this procedure 

through into the case in which the ambient magnetic 

field io non-uniform. 

In conclusion it is worth pointing out that the 

dephasing of the past history of particles revealed 

in this chapter, and the discussion of equation (2.16)  

in Chapter II (see also the discussion of equations 

(2.25a) and (2..25b) in Chapter II) clearly defines 

the limitations of the linear theory and in particular 

shows that particles will not come into phase at a 

later time. Thus, from these discussions (in both 

Chapter II and Chapter III) one cannot expect the 

linear theory of a given wave packet to generate 

emissions far removed in space and time from itself, 

(only a spread in size can be expected), also fre-

quencies outside its own spectrum cannot be generated 

by linear processes. For the generation of new fre-

quencies one needs non-linear effects, e.g. Das (1967), 

or wave-wave interactions. It is not difficult to 

cite cases in the literature where this point has not 

been fully appreciated. 



Chapter IV 

Wave Packets in Hot non-uniform Vlasov Plasmas  

Introduction  

7e now investigate the problem of wave, and 

wave-packet propagation in a hot Vlasov plasma 

when the ambient magnetic field is not uniform. 

Before we attempt this problem it is worth dis-

cussing, without too much justification, how one 

might approach the same problem in the cold plasma 

limit. One could proceed essentially in the manner 

of Stix (1962) as follows 

"Te could write down the relevant uniform cold 

plasma wave equation but allow the various plasma 

parameters which appear in it to be given functions 

of position; (one should really examine the approxi-

mations involVed in making this step). One then has 

a linear partial differential equation (wave-equation) 

with variable coefficients. We can write this for-

mally as 

DE1 at 0 
	 (z)3 = 0 (4.1) where -kri.(z) 

are the said coefficients (the dependence is assumed 



2 c(z) 
8z 	b(z) 

(4-.5) 
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to be only on the z coordinate). One might then 

look for a solution of (4.1) which takes the form 

of a propagating wave of constant frequency i.e. 

f( 	k(z)) eilcot —5.z  1(z" )dz" 

where the function f , the wave number k and 

freauencybo are to be determined such that (4.2) 

put into (4-.i) will give rise to the dispersion 

relation 

D[ca, k(z), VO] = 0 	(4-.3) 

i.e. the uniform plasma dispersion relation in which 

local values of the plasma parameters "X have been 

inserted (again some investigation of the approximations 

involved, in arriving at (4-.3), would have to be made). 

A classical example is the familiar 1.f.K.B solution 

= constant eiPt 	k(zw)dz" ) 
	

(4.4) 
Wk(z) 

of the differential equation 

(i.e. second order in z). 
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The dispersion relation being 

k2(z) + Lai= o 
b(z) 

1 d2k provided we neglect — 	and 
k3 dz' 

1 dk — 
k dz 

(4.6) 

with 

respect to unity. The original equation (4.5) may 

contain derivatives with respect to time, 4sT , on 

looking for a solution of the form (4.4) these 

derivatives can be replaced by iGoi  , ico can then 

  

be absorbed into c(z) (and/or b(z) ) in equation 

(4.5). Cold plasma equations of the form (4.5) 

have been discussed previously by Stix and a brief 

review of his work will be given in the next chapter 

where we examine gyroresonance phenomena in the mag-

netic beach configuration. 

We could now look for a solution of (4.1) which 

takes the form of a wave packet such as:- 

= eiM - 	dz" k(z")) G(z,t,k(z)) 	(4.7) 

where G is of the form A e 	The dependence 

of the function G on z and t in equation (4.7) 

is assumed weak and expresses the fact that the 

local amplitude, frequency and wave number are not 



given strictly by fl k(z),W, 	respectively 
as in equation (4.2) but are allowed to deviate in 

some manner throughout the disturbance. By analogy 

with the uniform media case one expects the wave-
packet (47) to be Me result of superposition of 

waves of the form (4.2) who-se 2w,"usncy spectrum  is  
sharply peaked around 	. 

On putting (4.7) in (4.1) one can presumably 

arrive at the relation:- 

DP - 	k(z) + 	7\.4z)] = 0 	(4.8) 

3 -(J where T= eiQt 	i t e 	9 

and e-iS kdz" 	e 	kdz" 2  
az 

are operators, 

provided one makes sufficient approximations. For 

example the cold plasma IThistler mode dispersion 

relation is 

2 2 	top2 z k c 
= 1  C-4 2 	((1 l63--.S.1Az)) 

(where the plasma parameters now depend on z 

or in operator form 
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(4-.9) = 1 •ossmaw.a. 

(-It - -Q-(z)}(- at 
2 

i et 

for a disturbance of the form (4.7) equation (4.9) 

becomes 

[(k  ix2 iaG]c2  = 1 
60132( z ) 

((k) + iT)(4D+ ±T--.1L(z)) (4) -1- iln2  

in order to write this in the form (4.8) we have to 

dk 
dz ° 

justify this appro::imation here. 

Using relation (4-.8) one can easily arrive at 

the equation 

aG  21.? 22 
a 	( t — 	akOz lz 

(4.10) 

(see Chapter (II) section (I)) where the subscript z 

-
a7 indicates that the derivative is evaluated 

at constant z • On using the relations 

neglect the term We shall not investigate or 

dG 
dz 

(G1 (22
dk
) dk 

‘17-11 	z  .077  and aCJ 	
az k 	ak 	dz = o = (.214) 	060)  dk 

equation (4.10) becomes 

dG 	00\  taG\ 
• (-a,c4,E)) k  (4) zrt 	— %ak,z ‘az,k 
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Equation (4.10) is essentially the equation derived 

by Kadontsev from energy balance considerations (see 

equation (1,74) and its subsequent discussion at the 

end of this ehapter). As pointed out by Stix, the 

inclusion of finite temperature corrections in the 

cold plasma wave equation necessarily involves a loss 

of rigour since the refractive index and dispersion 

relation for a hot collisionless plasma is not a 

local quantity. The free streaming of particles 

causes the effect of a perturbation at one locality 

to be transported to different points at later times. 

(Both Guthart (1964) and Das (1967>lhave investigated 

the effect of finite temperature on the dispersion of 

Vhistlers in the Magnetosphere and found that typically 

the effect is rather small). In order to attempt a 

description of wave and wave-packet propagation in 

a hot non uniform collisionless plasma one must em-

ploy the full rigour of the BoltzmannVlasov equations. 

In this ehapter we attempt to derive the equation of 

motion of a whistler mode wave-packet in the stated 

regime examining carefully the approximations and 

assumptions which have to be applied in order to 

arrive at a result. 

In the next chapter we discuss an attempted 
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investigation of gyrcresonance phenomena. In par-

ticular we discuss the absorption of cyclotron waves. 

in the "magnetic beach" configuaration as discussed 

by Sth (1962) in which he attacked the problem by 

fitting finite temperature effects onto the cold 

plasma wave equation for non-uniform media. 

Finally in this introduction we sketch our method 

of approach to the hot plasma problem before proceeding 

in detail° We consider the ambient particle distri-

bution -(0) to be a function of the magnetic moment 

invariant µ and energy W 	ice. f(0) =f(°)(por). 

Iqow consider the effect of a wave or wave--packet which 

has been present since sometime in the past (say 

• = - a)). The presence of the wave will change the 

magnetic moment and energy of a given. --rticle i.e. 

u and W at time to = 	a) (say) wi.L1 became 

W 6W, p. 	61). at some later time t' = t (say), 

where 6µ and 6W are pertithations caused by the 

wave. 

Thus by Liouville's theorem, had there been no 

wave present 

f(o)(p.,W t' = --co) = f
(0)(u,1.J t' = t) 

Because of the wave the distribution at time t is 
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perturbed i.e. f(0)(1),,W), at -0 = - co, becomes 

f(°)(1).+81.1,, W+8W), at t'=t , by Liouville's theorem. 

Thus writing f -(G)(ik+,5V, 111+6W) = f(0)  (l1,W) + f(1)  

we have 

af(°)afw (0) Sit 	ow 
a ( 1)  

On considering the associated perturbations to V1 and 

V 	(i.e. 8V1  , 8V z
) we should arrive at 

(1) 	Of(°) 	af(o) 
f 	= -ay-- 8V1  ± lv--- 6V.z  

I 	z 
( 2)  

by the same application of Liouville's theorem. Notice 

that the derivatives of the'distribution f(0)  are 

evaluated at time t' = t. However the perturbations 

8p,8W (or 811,8Vz) are due to the interaction ofthe 

wave with a particular particle and are given by an 

integration over the past history of this interaction. 

We know (from Chapter (III)) that only events in the 

recent past contribute to the current associated With 

those changes owing to the finite temperature of the 

plasma, i.e. the charge and current density due to 

f(1) are related through Maxwell's equations to the 

electric and magnetic field of the wave in the usual 

self-consistent Boltzmann, Vlasov description (it is 

this final requirement of self-consistency coupled 
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with the validity of making an expansion of slowly vilRy4 

parameters which enables us to derive the equation 

of motion of the wave-packet, the procedure being 

similar to that in Chapter (III). Having discussed 

the underlying approach we proceed in detail . 

SECTION (I)  

Application of the Method of Characteristics to the 

case of Non-uniform Ambient Magnetic Fields. 

If a trajectory in the ambient magnetic field 

parametric in t is given by r = r(t), then the 

rate of change of the particle distribution f(r,V,t) 

as we move along this trajectory is given by:- 

dr Df - 	
a 
	 (443) Dt 	at ' 	° ar e  dt '  

dr 
where 	= V . 

If we put 	
dV 
dt = 	

v  B(r) 	
into equation (4.13) 

(where  B(r) = ambient field, 	= charge on the 

particle) 14 becomes the rate of change 

of the particle distribution as one follows a particle 

trajectory in the ambient field. Louivillefs theorem 

states that this rate of change is zero for a collision- 
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less plasma, i.e. 

( D (0) ‘, lt 	) 	= 0 	 (444) 
(0) 

where f(°)  is the particle distribution in the 

ambient field. To ensure condition (4.14) we choose 
f (o) to be a function of the constants of motionKi  . 

in the ambient field, i.e. f(o) 	f (o) (Ki) 

Equation (4.14) becoming 

(ac(°)(Ici))    af (0) DICi  
Dt 	 aK.

1  

( 
Dt 

(0)  (o) 

( DK. 
since 171.1 

(o) 

We now use the familiar perturbation technique on the 

Vlasov equations, i e. put f = f (o) 	f (1) 

E E(l) (there being no ambient electric field)(  

445) 

B = B(r) 	b 

f (1) , E, b being perturbations which are specified to 

take the form of a propagating wave or wave packet. 

An electron trajectory in the total field (ambient 'plus 

perturbed) is defined by 

dv 
	

[B(r) 
	

b] + 
dt 

= 0 

0 by definition of Ki  



ipf(1)1 (0) 
= 

(0) 	 (1) 

.\222(o) (DKi  
rr 

(1) 
• (4 :17) 
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dr 
at = 1 ° 
Thus equation (443) 

ialf(o4f(1)]  %,1  
‘Dt 

!.(0) 

becomes:- 

(ELf(04f(1)] 
7-  Dt = 0 

where 

(
D 1 - m (E 
Dt  

Kl) 

 

(4.16) 

on linearizing i.e. dropping term 
(

Df(1).) 

Thri--  1(1) 
which 

is second order in the perturbed quantities and using 

(4.14) we have:- 

This is the familiar linearized Boltzmann equation 

where the ambient field has not been assumed uniform. 

We can solve (447) by the method of characteristics 

i.e. 

1 (1) 

where the integration is taken atang 4-1- zero order 

particle trajectory and t is the instant of time 

-0 at which the pertmbation is evaluated. We can 

f(1) af(0) ct  
city aILi  (448) 

Dt' 
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rewrite (418) as 

 

af(o) 
8K1  where 	. = 

aKi 8K1 

(t t DKi  
dt' 

-op )(1) 
(449) 

  

We assume adiabatic theory to apply and take the con-

stants of motion to be the energy W = 112  + Vz
2 

2 
and magnetic moment µ = Vi /D (putting 112-1  = 1). 

'Equation (449)  is thus :- 

,(1) = af(°) 	8f(0)  1  	77—.8y + -177-- .sw (4. 11) 
t 	2Vi5Vi  

where 84 = 	dt'. 2a- 	=  	(i) 	(4.20) B 
-co 	Dt' (1)  

t 
and 	81•1 = 5 dt' 2-1  

Dt' 	
= 2V 15V1  + 2Vz  oVz 	(ii) 

-OD (1) 

On making the transformations:- 

af(o) 	of(o) af(0) (2Vi  

n 	3Vz 	ap, 	B 
(

a
f(0) 

IT 777 z 

 

a„(0) 

 

   

  

Vz. 

  

211  57 1 
51/1 = 2V15V1  + 2Vz  8Vz 	and 51.), = 

equation (4J1) becomes:- 

(1) _ af(°) 	af(o) 
f 	+ 	ayz (4.12) 
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In the next section we find the pertmbationns 

6V1 and 6V, 	in terms of an integration over 

the past history of a given particle. We can do 

this when we have specified the problem e. little 

mores  in particular when we have chosen the form 

of the ambient and disturbance field. 

SECTION II  

Derivation  of the Perturbation in the Particle Distri- 

bution. 

We particularise the problem by choosing the 

ambient magnetic field to be of the form 

B(r) = Bo  .5.6c x 	i 
JI  „:\dP(z) + (1 +EP(z))t (4.22) dz 

  

where 6 is a smallness parameter. (If we put e = 0 
then B = Boz

A  
and we return to a uniform field). 

In (4.22) x,y,z form a right-handed °artesian 

coordinate system x,y,z are the respective unit vec-

tors. P(z) is some monotonically increasing or 

decreasing function of z , in this chapter we shall 

choose the former case. 

Vie are going to look for solutions of the hot 

plasma wave equation in the ambient magnetic field 

(4.22) which are of two types. The first is that 
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of a monochromatic wave, the second is that of a 

wave packet i.e. a disturbance containing a spread 

or spectrum of frequencies. 

We shall look for monochromatic wave solutions 

whose electric and magnetic fields take the form:- 
z 

E  eiPt 	k(z" )dzit ) E(z,t) 
=S(z) 

( .a) 

z 	 (4.23) 

ei(4dt -1 k(zi
,  )dztl ) b(z,t) 	b 	 ( .b) S1(z) 

where k(z) and S(z) are slowly varying functions 

of position z , and Eo  ,b are constant vector 

amplitudes. 

We also look for wave packet solutions whose 

electric and magnetic fields take the form:- 

z 
D..(z t) = E eiPt 

z b(z,t) = 	_s  k(z„ 

)dz st )
G(z,t) ( .1) 

(4.23) 
)dz )

G1 ' (z t)( .ii) 

where the functions G and G1 are now dependent on 

both position z and time t , we shall examine the 

form of the envelope G more closely in Section (IV). 

In the developement of the next two sections 

we shall discuss primarily the solution (4.23i, ii) 

since we may return to the solution (4.23a, b) by 



ab 
A 	c t E = 	we have:- a 
A 

bx = -k c E and b ^ ( 4.25) 
A 

= A +k - c Ex  
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making the transformations 

G(z,t) > S(z) 

and 

G1(z,t) 	S1(z) • 

The constant vector amplitudes in the equations (4.23) 

are given by 

E 	= (XX ox + yf y) and 1.20 = 	ox 913_oy  ) (4.24) o 
	A 

wherefox'foy ; box' boy are constants. S(z), G(z,t) 

and S1(z), Gi(z,t) are slowly varying 'envelopes' 

related to the electric and magnetic fields respec- 

tively. 

Near the centre of the flux tube (4.22) the wave 

fields (4.23) correspond approximately to propagation 

along the field lines. 

In looking for solutions of the form (4.23) we 

assume that the inhomogeneity and wavelength (i.e. 
1 dB 1 dk 1 dS I dG " k" E and k ) are such that 
	n-TE  

Prom the Maxwell Equation 
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where:- 

= [Ic(z) 	i:!/]'6)  = ECU  - 

and 

	

= e-iS k(zu)dzu 	e 3 	+if k(z")dz" 27,  az 

= 
eicot a 	—icot 

at e 	are differential operators. 

The amplitudes (4.24) are related by 

b 	
, 'j 	

k(Z)  

ox 	
Co  Au 	oy 	

eti A  OX (4.26) 

The equations (4.2.5) and (4.26) are really equivalent 

to the statement 

A 
k 	e

iPt Sk(z" )dz"  
X 

C43 	 .G(z,t) 
_ LULI 

° e
i(tItt Sk(z" )dz" (4.2.7 ) G1(z,t)  

Equation (4.27) is a simplifying transformation 

enabling us to work only in the wave electric field, 

this makes the working considerably easier to follow. 

Notice that on putting G(z,t) = S(z) a function of 
A 

z only (.0 reduces to CO (or on putting G(z,t) = constant 
A 	A 
k and U) reduce to k(z) and (.0 respectively). 

We can now find the change in V and Vz caused 

by the wave field as follows:- 
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DV 
Dt 	(1) 

    

    

    

 

Dt (1) 	Dt 

  

(4.16) 

From (4.16) we have 

( DV-7 	A 

-JAL (1 	h)E IT"I 	Z (1) 	Co ' 
(±) 

(DV ) 
— (1 - V k ) E 	(ii) 	(4.29) 0-- 

(1) 	Ccl 

( A DDVtz 	
b 	

-10_ k • (V E + V E.,) (iii) 
(1) • 

m 	xx V b yy) = m co  x y 	y 

Where we have used the relation (4.15) to put the 

final result in terms of the wave electric field. 

Putting the two equations (4./9i), (4.29ii) into 

equation (4.18) we have:- 

DIT1 . _ 1 i:1 	 v 
( 

	

	

11„.. 
 VZ 

)(1T-.Jx+  VyE7) 
CO m ‘ 

Co 	I 	
(4:30) 

Hence we can solve equation (4.20i) for 8V1  arriving 

at 

8V 1  = dt' (1 
— co 

A — V I k l , z 

t..)1  

(V 'E ' + V tE 1) Y  

1
/ 

( 4 :31 ) 
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where all functions of the dummy variable t' have 

been primed. 

In a similar manner from equation (4.710) equation 

(4.29iii) and equation (4.20ii) we have 

= 	11 at' 

a) 
2V11( 

 DV1 	(DILI 

4-  DV 

 

2V 
Dt t  

(1) 	 = 

t 

= 2 1.c:t 'E' +V 'E '  
Y Y 

(4..32) 

Solving (4.32) and (4.31) for we arrive at:- 8Vz  

&W - 2V18V1 
(SIT. 

 

= 

 

r
t 

dt rn Vz co 

(1 - k}/Wt 
v112 

 

7!ExtATIE I) 
Y Y 

(4 .33) 

The integration in equations (4.31) and (4.33) are 

along the particle trajectory in the ambient field 

(4.22) 

The equation of motion of an electron in this 

field is 

dVI 	1E1 V t h B(r') 
dt' 
	m 
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where B(r') = B 	olLccti_il \dP( 1) 	A 
0 	YY ) dzz 

	z(l 1)(z'))] 

i.e. 

' 
dVat 
x I)) ' - 

; 	dPczt)  
dts 	) 	2 ' V  z dzr 	]- 	(4°34)  

dvz 	 10 Bo Fr_ tx,_, ,,1 1 	P(z1 	) = - 	yx  sy 	d 
dz'  ) 
	(where a o = 

The solution of these equations to terms linear 

in E are:- 

1  T)-P(z)]:1/200i7- SA[z(TiffldTt:j v =v,(1+G[P(z-v 

( 

v t = v (1+ G 	vz T)-P(z)] 
1/
2 ciltz(Tft 

( .ii) 

(4.35) 

2 Vz  = Vz 
E - Vi  /17. 	P(z-Vz  T)-P(z)} 

z . 
Hence:- 

Z t  = Z VT - V 2/ z 	• v dTll _Vz  Tit ) 	P(z) 
( .iv) 
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where T = t t' time measured positive in the 

backward direction from the point t. 

The solution for .4., 	 y' are not required in 

what follows. 

The solutions (4.35) will satisfy the equations 

(4.34) provided terms of order E,2 are neglected and 

they have been lelosen such that at time t' = t 

Vx' =V1 Cosig = vx 

V ' = V1 Sine = V 
	 (4.36) 

V 	= Vz 	z 

= Z 

Since E(z,t) = E ei(Wt 	kdz 11 )G(z,t) (4.23) 

where E o = ("(ox 	'i loy)  

we may write:- 

B(zi,ti) = EoejAlt . e 	kdz") G(z',t-T) 

where we have replaced t' by t-T . 

Thus the term (Ex  11r.,1+EyyI) which occurs in 

both (4.3l) and (41.33) becomes:- 

V.111+ETP(z-Vz  T)-P(z)1 
I/IL 	

cos 0- dT 11,n,) ox 

+ fox Sin(0- dT 1/. .ft) I 	(CdTtrz dz" k)G(zi ,t-T) (43'1) 
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We take out the left hand polarized (Whistler mode) 

as in the previous chapter and arrive at 
Eol 	

el 	( '1/2  i,of (Ex  IVx  i+Ey  tVy  1) = 	• e-1° 	e 	R 	.e 
(1) 

where 	= 	1 + E[P(z-V` 	- 2(z)] 	(ii) (438) 

zi 
iSt  = S dTitS1-CoT -S dz it  k(z") (iii) 

(and Eo1 = a(x  Yity) is a constant amplitude (where 
i will give rise to the Whistler mode polarization) 

Thus equations (4.31) and (4.33) become: - 
o k't 	e1/1 	f  5V = -e-i0  1 	0Eol°e

Ifit _c dT (1 -Vz' -0- ) -772  G (4.391) 
-rn. 	+co 

(1 - ktVzT) 

5Vz  = -e 19. 	E ict -o .e1°'t  fP  dT.1 1/2  
Ra/2  

	

f 	' . Gi  - 

TIT 	-1+co 
(4.3911 

where we have used VI.
2 = V 211i

' 

Hence 

f(1) = 	e-iG 
so 

dT 
+co 

(o)[1 -V Z / 40/A  ]1/ 1/2  + 
cot  

fry (0)[P2 	(1..v 40 	)1/ z /6j  . k 	/2-' 

(o) — af 	and (°) 	f(0) 	
af(o) 

where fl  - ;Tv i 	H _ 	avz ov 

(4.40) 
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k' Using relation (4.27) we may replace 7T e 
GO k(zI) 	G1 ' in equation (4.40) giving:- 

63 

by 

f (i) 
0 

e -ig 111 E el‘°t 	dT . m  _oi  G (0)r 	fic.1 	4. 
1 	L

at_v 
z 00 1 ' / 

+co 
1 	(Gt-k  Vrz'Git) ]eust , 	( o ) 	/2G t  

. 	LI 	
Ii1/2 

(4.41) 

Thus having chosen the form of the disturbance field, 

equations (4.13), we have derived the associated per-

twbation in the particle distribution to terms linear in 

the amallness parameter E by using the method of 

characteristics. The restriction to terms linear in E 

derives from the imperfect solution for the particle 

orbits in the 3hosen ambient field. There are of course 

still terms in equation (4.41) which are of order e2 

(i.e. product terms). These terms will be neglected 

consistently as we proceed. 

The current is given essentially by an integration 

of a first moment of equation (4.4.1) over velocity 

space (see equ. ( 4.48) below). We expand the slowly 

varying quantities in this equation about the point 

T = 0, since we know that only small values of T con-

tribute to the current. This really follows from our 

previous discussion, however we shall amplify this 
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point a little further in the next section. 

Section (III 

Small time Expansion of Slowly Varying Quantities  

We now make an expansion of equation (4.41) which 

will be valid for small values of the time variable T. 

That is we Taylor expand the slowly varying quantities 

about the point T = 0 . However before carrying out 

this procedure we notice that particles with vz  > 0 

in the given ambient field will not have mirrored. 

However particles with Vz  < 0 will have mirrored at 

the point defined by T = TB  where:- 
2 

As a first step in expansion procedure we expand 

Vz' ' and z' in equations (4.35) about the point T = 0. 

Thus:- 
2 V 
I  dP(z)  

z' = Vz 

	

	from (4.35iii) dz 

V1
2 
dP(z) 	T2/2  from (4:35iv) 

z= 	z VzT - 7 	dz 

where we have neglected second order derivatives of the 

function P. 

Similarly 

Vl  
vzt = 0 = VZ 	P(z-VzTB) - P(z) 	defines TB. 



We do 

We 

eq 

dT tt  

where we have expanded 

of P(z) only. 

Similarly:- 

not expand G(zi vt-T) or Gi(zf ot-T) at present. 

expand the various terms in //.(1S1= T4f1,,dT It -to+ z kdz") 

(4 361i1) 	as follows:- 

...IL[z(T" )] = 
rT  

dT tin 0(1 + EP(z-VzT) = 

+ ep(z)]T 	E di)(dzz)  V zT2  / 

P(z-VzT) to first derivatives 
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1, 
R/ 
	

[1 -2 421dz ' E-'42. vz  T3 

R
-1/2  

[1 + cj-P zT 	where we have also used z  
the Binomial expansion. 

We expand k(z1) about the point T = 0 neglecting 

ILL/ 	
2  terms of order 	dz 	° 	dz 	and 	i.e. 
dz 

k(z 1 ) = k(z) - V T dk z  dz 

zt z-(V T 	dP(z)  V2 f z 2 dz V1 
dz it k(z" ) = 	dzilk(z I 0 

T2/2) 

d tf.k( 
2 )_(VET 	d 

_ E IL
z
L V12 T2/2)11,
'

11- 
 

(VET)2 dktz)  

  



-135 = 

d2  I 
 where terms of order 	E  	 \ have 

dz 	dz ' dz2 

been neglected. 

Thus:- 

do" .k(z") + (.110[1+GP(o)]-(z+k(z)V
z)T- 

- 

Ed13(z) dkSo)v  2 _i_figiz1 v 1
2k(3))0 

	

dz 	do z 2 dz  

The first term in this expansion is not a primed 

quantity (i.e. it is independent of t') and can thus 

come outside the integration over T. Equation (4.41) 

can now be written in the form:- 

	

(1)Vt) = 	e- 	E iQ  • e
iWt -Jaz" k(z" )) 

f 	(z,, 	of 
 

dT. 

+co 

+ (Vif 11*  P 

1 

)hRl 0

n. 

1] 

Ve. 62  

2 	- V1;1 .-Vzf  
Alr "7. 

mre d2cZ) 	
hiZ1(172+17-2),..(t) , 	 -1 

'L2 dz 	
(2VzG' 	60 vl v o x̀l 1  _to do 	1 	Vz 

e
i(J1[1+P(o)3-6J+k(z)Vz)T- 

n GALLElv dk z V  2_,LE glaIT 
2krzN\T2  

l'JLo dz 	2 dz 1 	" /2  

(4.42) 

z 

)4' 
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Hence the scheme of approximation adopted thus far 

is as follows:- 

Equation (4.41) is correct to terms linear in the 

smallness parameter E , while to arrive at equation 

(4.42) we have consistently neglected terms of order 

E
2 E d2P. 
7 

dz 	dz 

dk(z) C dPCz)  
and dz 2 dz (4.42a) 

We label these approximations (4.42a) since they are 

associated with equation (4.42). 

In the previous chapter we established that the 

integration over the time variable T cuts off owing 

to the finite temperature of the plasma. That is an 

inserting equation (4.42) into the expression for 

the current density (essentially a first moment in 

velocity space) each term in the resulting equation 

has the characteristic form 

o 	 fco 
JT S(T) 

±co 	-co 
dVz  p(vz )eikTVz (see equation (3.22) 

chapter (III)) 

where F(Vz,) is a function of Vz, whose width is 

determined essentially by the temperature of the plasma, 

hence (as in chapter (III)) the integration over time, 

T, 'cuts off' justifying the expansion we have already 

made. 
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Section (IV)  

Wave Packet Propagation with an Isotropic Particle 

Distribution 

In this section we investigate the problem of 

wave packet propagation in the hot non-uniform plasma. 

In the next chapter we investigate the monochromatic 

wave solution and discuss the problem of gyroresonant 

phenomena in the non-uniform ambient magnetic field 

with particular reference to the magnetic beach con-

figuration discussed by Stix (1962). The treatment 

of the monochromatic wave solution is slightly the 

simpler of the two problems however the discussion of 

the wave particle gyroresonance is not complete and 

is thus included in the final chapter. For convenience 

this section and chapter (V) can be read independently. 

Thus we attempt to find what relationships40, k(z) 

and G(z1 t) must obey in order that (4.2.3i) should 

be a solution of the hot plasma wave equation, paying 

careful attention to the approximations made, the pro-

cedure is rather tlimilar to that in the previous chapter. 

The case in which the particle distribution is 

isotropic is simpler to deal with. All terms involving 

the factor filr 	1.111 vanish and equation (4.42) 
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reduces to 

f(Vt,z,t) = - 	e  
E(z,t) 	° 
G(z,t) 	dT fq[zt,t-T] 

± CO 

ei01.0[1+EP(z)k(z)VdT-i(.5/o dz
zv dk 
z dz z 

ELI21. (z)v  2 

E d:21z" 2 	T2 + 2 dz Vi k(z)) (4.43) 

where E(z,t) = E k (z " )dz" ) .G(z,t) 	(4.44) 

and 
A 

= ox 	oy)  

We can simplify the working by first introducing 

some notation. We put:- 

016[1+P(z)].jtt.n-k(z)Vz) = 	and notice that 

z 	
jlo  E 1AL1 + did?)V,  and dh 

We also put 

€ dP(z)  V12k(z) = 2 dz 

(4.45) 

On eliminating b from the two HaJ[well Equations 

1. E :LE 7a7 -1- 0 J and inserting 

B(z,t) (equation (4.44)) into the resulting equation we 
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arrive at:- 

2iGz(z,tyG  - 1  dz 	 + Gzz(z,t)/G  

= 1 [..,..1i1Gt(z,t)/G. 

o' 

of 
Gtt(z,t)/eJL + 4n/ 7.6- 

c 
(4.46) 

Where subscripts on the envelope G(z,t) denote 

differentiation 

@CTC:z t e.. Gt(z,t) = 	at  
2 

Gzz(z,t) = LaW.1 
az 	

etc. (4.47) 

The current in equation (4.46) is given by:- 

27c 	+CO 	+CO 
f 	

o 
(Z,t) = 'AEI  dO 	dVz 	dVi.VI  [eiQV1f(°)] (4.4-8) 

o 

in the usual self-consistent Boltzmann-Vlasov description. 

Hence 

a)(z,t) 
at 	z, 

{-CO 
ditz 	dT 

--co 	+co 

Lick) enE12/in  TC 

.5-+OD n 
4 	4 

dV1°
v
i
2 f(o).G(zi,t-T)e*-- dz"z -1-13)T /21  

(4.49) 	- 

The presence and operation of %) has been discussed and 

clarified in the previous chapter. 
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We find the equation of motion of G(z,t) by 

proceeding as follows. We first Taylor expand G(zt,t-T) 

in equation (4,49) about the point T = 0 i.e. 

LW. IT
1
2 2  G(zt,t-T) 	a Gz-Vz.T , 	

72-1't-T) 4 dz " 

(4,7 ) +2V  

+G tt(  z,t)] ; G(z,t) + R 
	( 4 S ) 

where we have introduced R. as a short hand notation 

for that part of the expansion which depends on deri-

vatives of G(z,t). In this expansion we have neglected 

the product terms in the derivatives of G(z,t) and 

Ed.1)() . 
dz 

E P(  for example the term Gz(z,t) 2 d  dzz)  VI2  T2/2  

This really means we have replaced the right hand side 

of equation (4.50) by G((z-Vz  T),t-T). 
d 	2 

Next we expand the exponential 
e_1 ( Vz)T /2 to terms 

dz 
alai linear in 	dz and 	i.e. we replace it by 

[l-i(4Vz )T2/2 ] 

Equation (4.46) now becomes:-- 

G,(z,t) r 2 	. dk(z)  L-k (z) 2i 	" G(z,t) 1  dz 
G z(z,t) 
z 	"/G(z,t)] 

= 1  L-01-2i6JGt(z,t)/G(z,t) 	Gtt(z't)G(z,t)]  + 
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CA),2n 
+--r—, [i•O+ 

no 

ro 

dV 
+co 

-4-co 
dV1 I 1 Ve 	' (G(z t)+R) 

ei-ii3V)11-3. -Vz T
P  j2] dz 

r . 14/  (4.52) 

We shall find it unnecessary to introduce any new 

approximations, but in order to be consistent it is 

helpful to review briefly and label carefully the 

approximations we have made thus far. Basically we 

have made and justified an expansion in the slowly varying 

quantities k(z),B(z). In this expansion we have only 

gone to first derivatives i.e. we have assumed 

d2k(z)  
d2P(z)  ( 4 .4".  3 ) dz dz 

We have also neglected terms in the products of alai dz 

and 1 dB(z) —  - D dz i e. we assume: 

EdP(z) 	(:117id44)
2 	dr( z))f-_,./  

dz 	dz 	dz / 0 	( 4 . 54 ) 

The approximations (4.53) and (4.54) were used in the 

derivation of the expression (4.42) for the perturbation 

in the particle distribution. (We have of course also 

neglected terms of order E 2  in solving the orbit 

equations (4:34)). These approximations (i.e. S3 and .6-4) 

are identical with (42a) but have been relabelled in this 

section simply for convenience. 



i i 	V 	T2  /2j by dz z 

d) V dz z 
rp2 
j- /2j where we 
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We next assumed an isotropic particle distri-

bution and could thus put terms involving fiVz  -11 _V, 

identically equal to zero. This gave rise to equation 

(4.43). The other slowly varying quantity in equation 

(4.43) is G(z,t), to arrive at the expansion G(z,t)+R 

equation (4.52.) we neglected terms like 

OG E 	a2G E dP 
az dz' (4.55) but not second derivatives of 

z7 dz 

valid provided the wave packet is not too dispersed. 

aG,dk 2,  
We EdP (4 t..7)  We shall also neglect terms like az dz 

, 	dz ''''" 

in the same manner. 

Having reviewed the approximations we have made 

thus far (i.e. (53) to (S7)) we can continue by applying 

them to simplify equation (4052). 

First we replace 

a2G G- 
-- 	

OG dl (4 . 56) i.e. we assumed 	
" 	dz 	which will be 

az 

(G-(z,t)-1-11)e —d- P T2 / /2 [1 

(G(z,t)- FR)[ePT—iPT2  /2 — egliT 

have used approximation (4.54). This term can be simpli-

fied further by use of approximations (4.56), (4.57). 

[G(z,t)eilkT-i(3T2/2 	eq/ T idz Vz  T2/2) + ReitI)T] 

i.e. the term of order R 	t",-/ 0 by (4.5-6) and (4.57) 
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and 
0 

ROPT-iPT'/2 	110/T. by (4.56).  

Thus the final term in equation (4.52) becomes:- 

[G(e*-1PT2/2  -- . 	
e4T  i EkVz  T2/2) + Rei0 

Since the operator (t operates on G(z,t) and its 

derivatives (i.e. G and 11 in the above expression) 

the term 

i(PT 
ei  T-iPT

2
/2 	G e becomes 	where we have used ll  

approximation (4.56). Similarly ,2 
/2G  dz 

becomes G e z Tc-/2 	0 by (4.5-6) and (4S7) 

Thus equation (4.52) becomes:- 

2 	Gzz/G ' 1 	
1 	. L-k (z)-2iGZ/G--dz -dk F 	= --1-L-G3+22.OG/G Gtt,/G] 

F 
 

i CO 2 0 
+ 	 P— .._\ dVg 	f 	

+ 00 
dT dV1Vi2 i(o)e 

c n 
— ( 

	

o 	+oo 	+ CO 

- it, 	i d 	2 

2 	
e  dz z T /2  

, . 	oi --Ft--14--1 7' [i(A+ er,' 	dVz 	dT 	dV 	2 if 
1 
 (o)11e4T). +co 	+co 

	

02Gno 	t co  -. +CO 	
.4 V 
, 
1 1 	 i 

(4.g8) 

2,c 	+ CO 	o 	+co 
	 it) + eti] I dV dT 

s  
dV V. 2f (o) 

noc G ._ co 	+ CO 	o 

pT2/2 



k2(z) =6.12,/ 2  - iLL163P
2 

 
noc2 

+00 
dVz 
	dT g (Vz  ) 

—co 	+co 
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This equation describes the motion of the dis-

turbance " envelope" G(z,t) , it only remains to 

reduce it to a more intelligible form. We shall do 

this in stages by proceeding as follows. 

We choose k(z) to satisfy the relation 

/ 	2 k 2  kz) = Co/c2  
2 ,*co 	o +co 

	

ito Op 	k dVz  dT dV1  

	

c 2no 	‘i-oo 	+on, 	0 

f  (o) 4T-ipT2/2 	 (4.59) 
1 

Notice that it is only when the term p is neglected 

that equation (4.59) becomes the dispersion relation 

for an infinite uniform plasma in which local values of 

the plasma parameters have been inserted i.e. 

ei(jto[l+ET(z)]—(J+k(z)Vz )T 	 (4.6o) 
+co 

= it dV1 V12 

o 2 - The term e-ipT  fe arises in the above equations 

because we have retained all terms linear in the smallness 

parameter E , though p is of order 	dB

Equation (4.58) now becomes:- 

where P.:(v f  (0) 
1 
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1 	., [-2iGz  - iGa + G dz 	zz] . -7[23JjGt -1- Gtt]  

2 ,
TcLT 	

+co 	o 	+co 	i 
Lt 

43(,) 	..- + 	'J 	dVz „c dT 	dV1VI
2
\ I f ( ° ) ei0i i 	 VG  T

2:2_} dz no  c
2 

co- 	+co 	o 	 ( j:  

+co 	o 	+co 

n  
+
44)p2; 

[i(4) 	dVz 	dTS dV1V12 	 1(0)R ei  
o 	-co 	+co o 

4.61) 

We recognise the second term on the right hand side of 

this equation as being - iG A d k2 , by differentiation dz dk 

of equation (4.59). 

We are thus finally left with 
2 	+00 	0 

[-2iG z  +G ] 	
1 

zz 	-n[2i0 	(.0Gt+Gtt  ] + — 2  [±(4)+V] 	dVz c` 	c 	
f dT 

no 	--co +co 
( 
g(Vz  )Rei

ff 4.62) 

It is here that the treatment becomes very similar to 

that of the previous chapter. Thus on solving for 
8G 77(z,t) we can put equation (4.62) into the form:-

2iA 	 21A  
424?-1.g.2.--11,,

t 	
r 2 (+41_2...J 2  /1  

JLT 	= iL-k 	n  Ai,,,,]G + [2k +6) 	 -2 1.7z 
c 	noc 0 

2A 	2. 	2A  
(4) -`'-3 	 A4z 
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+ [1  + P 	2 3Gzz + [gyp   2 ]G t 4. i[-1/c2  + 	2 3(rtt 	(4-63)  c 	noc 	n c no 	 o 



VA) a2A 
7- Dk 

,,a2A 	aA) A4 = ituiTinr) + aki 

A3 =- (4.64) 
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where if we choose to define:- 
-Fm 

A=-dV
z-I-

imdT g(Vz  ).e10 
-co 

Then:- 

A = A +6)2.-A  1 	8,4) 

= -W24  A 2 	ao 

	

A = 1/28A 	82A 
5 	- 2 DO 

We now put:- 

k2(z) -632/c2 + 
0 	r09 

1,10AT-ipT2/21 [IV
z 	dT dViVi2  

+co 

jKolS1(z) k(z)4 dg(z)k(z))] 	(4.65) 

(see also equation (4.59))  where  -Q(z) =S2,0[1+6P(z)] 

and where (E dP.(z) .„(z,)
) 

appears through the presence of ‘2 dz 
f3 (although it can be neglected in most of what follows). 

From the equations (4.64) and equation (4.65) the 

equation of motion (4.63) becomes:- 
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-J(4) Gt = -(2k-Jk)Gz 	2(2—Jkk)Gzz — 2:21  Jwto.Gtt 	1Jk6oGzt 

(4.C6) 
where the subscripts on J denote differentiation 

e.g. Jk = 
aJ a2J 
ak' 	= akaw etc. and we notice that 

. 
the factor e-ipT

2/2 which appears in the definition of 

J is replaced by unity in equation (4.66) because each 

term contains a derivative of G(z,t) (i.e. we use 

approximation (4.S5)). 

We simplify equation (4.66) further as follows:-

From equation (4.65) we have:- 
2 2k-J, 	2., 2- -2 - 4J (a6o) 	 jkk Jim) k JuoLo" k  and 	Jo \ak /z ak z 

(4.4,7) 

where f4)k  = (4rc2)z 

Thus to lowest order equation (4.66) is:- 

aG _ 	a aG  and hence:- 7-7 	ax z az 

a2G 	= 	
az' 	az 
a (a to)aG ‘ 

	
2 

azat 	ak iz 	ok az2 
(4.68) 

T2/2 
From equation (4.65) (with e-113 

	
= 1) one has 

act) 
Gd = 	[k(z) R(z)] (of course 17- 	. 
Hence:- 

a (1u)  _ a2CO dk 	a2  CO 	dP(z)  
az'akz ak 	dz + aka st(z) 	o 	dz 

since 11(z) = f1-0[1 	P(z)] • 



a2G 
azat -( 

On using relations (4.70) in (4.66) and identities 

,a6).2a2G 
)z 2 az 

(4.67) (4.70) 

a2G 
z az 

and similarly a2G 
ate  
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a (..alt 	aG 
az ‘ak/z az 18  

(4.68) by approximation (4..56) 

Thus:- 

Thus the term neglected in equation 

and (4.5-7). 

we find 

aG 
at — 

(gON aG i (a2(a)  a2G 
—%akiz az — 	` 21 --7 

ak z az 
(4.71) 

. -ip 2T /2 
  Since the factor e 	' 	in equation (4.71) is 

replaced by unity (approx. (4.55)) the frequency c and 

wave number k(z) in this equation can be considered 

related through the dispersion relation for an infinite 

uniform plasma in which local values of the plasma para-

meters have been inserted (i.e. equation (4.60)). 

We have derived the equation of motion of the wave 

packet envelope in a non-uniform ambient magnetic field 

using the approximations listed (i.e. (4.53) to (4.57)). 

We see that the final equation is similar to equation 

(2.16) chapter (II). The effort involved in trying to 

eliminate one or more of the listed approximations does 

not seem warrented, however it is of some interest to 

have pinpointed them clearly and to have seen how the 

Discussion 
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equation of motion emerges from consideration of the 

hot plasma equations in the non-uniform ambient field. 

We can relate equation (4.111) to the equations 

derived by Kadomt8ev and others for wave-packet propa- 

gation in non-uniform media. To do this we examine the 

form of the 'envelope' G(z,t) more closely. Since 

G(z,t) contains both a position and time dependence, 

then for a chosen disturbance, the central frequency and 

wave number are not defined precisely but may be chosen 

within a narrow range. Thus the disturbance E(z,t) 

may be written as either 

ei(Q2t-, k2(ziOdzu) u  u(z't) or E —01' 	 ol 	G2(z,t) 

( 4.72) 
provided (,j 1,k1  are not much different from (02,k2). 

This implies that 

E(z,t) = Eol ei(t-ot 
	c z 

k(z" )dz" )G(z,t,k(z) ,(0) 

where the dependence of G on k(z) and G3 is such 

that the identity (4.'72) is satisfied. (This dependence 

was not made explicit in the equations of chapter (II) 

and (III) though it was obviously true (see below). 

The derivative of G(z,t,k(z),C)) in the second term of 

equation (4.'71) when written out in full becomes:- 
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aG( az'aG\ 	( 
akir
22N  dk 

az = ' k 	' c  dz (4.73) 

In the limit of cold uniform plasma we know that 

G can be represented by an integration over a sharply 

peaked spectrum of plane waves i.e. 

ei(ct-kz)G(z,t) = fdktA(kt)ei(L)(10)t-kfz) 

(see chapter (II) section (EII)) 

since A(k') is sharply peaked at k' = k 

i[dk 
d(k) t z](k'—k) i G(z,t) 1^-1  A(k) 	e 

aG LL hence 	) will tend to be a very large derivative ak te,,ak 

Thus we expect 

(P2\ AL "..,(22) 
%6k/z dz 	'az' in equation (4.73) 

We can now proceed as in the introduction to derive the 

equation 

at 
(aco\ (aG

) 
	( co\ 

(a at - -kakizk 	‘eaz/kz 

On including all three terms of equation (4.71) we 

should arrive at 

i a2co [(a2G aG 	 (21.q\  (aG)  
azik  'ak z  - at 	ak z 	k 	2:(7)z 	 7)k 

2(a -) 	] 
akaz z,k 

(4.75) 

(4.'74) 
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where the terms in d2k(z)  
dz2 

and (dk)2 
dz 

must be 

neglected in order to be consistent in our approximations.  

It is at this point that the treatment of equation 

(2-16) in chapter (II) becomes particularly helpful. 

However we need not pursue the discussion presented in 

chapter (II) again in this section. One may simply 

state that on neglecting the terms of order 1  m. dB dz 
4pm2  

throughout the treatment (i.e. putting e-'" /2 = 1 

in equation (4.59)) then essentially the whole discussion 

of equation (2,16) chapter (II) is relevant to equation 

(4.in) provided one notes the relation (4.'73) and keeps 

the discussion fully consistent with the approximations 

(4.53) through to (4.57) (and approximation -I- 14 "10). 

As an example it is interesting to derive equation 

(1.43) of Kadomtsev (1965) from the first three terms of 

equation (4.75) as follows:- 

We first assume the frequency has a small imaginary 

part y 

i.e. 60[k(z),J1(z)] = 4[k(z),St(z)] - iY[k(z),J1(z)] 

(where #. 0) 

We define G' = e(tG then the first three terms of 

equation (4./5) become:- 
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DCA) 	a6) 	ant ) Ctl) 	( 0
) 
 (uu -

) 
 

Z 61°  k 	‘3z k‘ak z 

(where terms in a dk 
see chapter (II)) 

On multiplying this by the complex conjugate of G' 

i.e. G134  and writing down the complex conjugate 

equation multiplied by Gt and adding the two result-

ing equations one finds 

22 a A 	. 	2 - ,DCJN (a A 	...DI) 0 
D
A 2  . 	2y A 

z 	az •
) + k 	k  az 	k /z  

of 
see (1.43),Kadomtsev (1965) (c.f. equation (2.28) oblaper II)) 

where GI G' ' = A 2 

Similarly by putting G Ae 	one can discuss the 

changes in phase and amplitude in equation (4.'75) by 

simple comparison with equations (2..25a) and (9,...2.5b) 

chapter (II). To the authors knowledge the discussion 

presented here (and in section (II) chapter (II)) give 

a more generalized and easily understood treatment of 

wave packet propagation than previously (e.g. it contains 

(1.43) as a particular case) although unfortunately the 

detailed derivation of (4.71) was rather laborious. 

yGe 

have been neglected, 
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Chapter 7. 

The Propagation of Monochromatic Waves in Non uniform  

Plasmas 

Section I Solution of the Wave Equation  

In this chapter we attempt to find monochromatic 

wave solutions of the hot plasma twave equations in the 

non-uniform ambient magnetic field (The problem is now 

fairly straightforward in the light of our treatment of 

wave packets in chapter (IV)) 

Bo(r)B°[-  $.(5kuosrs.)dgy) 	(1+EP(z))Z) 

(chapter (IV) equation 4.12)) 

That is we look for solutions which are of the form:-

gz,t) = ( x4rity)ei(Cat-S k(z" 	) )dzss 'S(z) 	(5.1) 

where S(z) is now a slowly varying function of z only, 

and fxy  are constant amplitudes. 

Solution (7.1) represents a monochromatic wave 

of frequency f,) . Thus it remains to determine 

co, k(z) and S(z) , with the minimum (selfconsistent) 

approximation possible, such that equation (5.1) re- 

presents a solution of the 'wave equations. 
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In the previous chapter we found that for an 

isotropic particle distribution and a disturbance of 

the form:- 
z 

E(z,t) = (lfx 	i1/47.ify)ei(6)t- S k(ztt )dzu )G(z,t)  

the perttbation in the particle distribution f' re- 

duced to:- 

-i9 £I E(z,t)jr°  rafo 
fl(z,V,t) = -e -E- 	dT 00  loVI  

	

,e i(k(z)Vz 
	31.0[1+EP(z)] )T 

	

e 
—tf_SLo E

dz . dP(z)  v
z. . + dz 	z 	+ 6-7 (1PdzWV.L. 2k(z)) T212  

see equation ( 4-.43) Chapter (IV). 

For the monochromatic wave (equation (S.1)) we must 

of course replace G(z,t) and G[z?,(t-T)] appearing 

in this equation by S(z) and S[z'] respectively, i.e. 

ft ,V,t) 	-e-io10 E(z,t) m s(z) 
SEzi4+oo 

 

 

i(k(z)Vz  
e 

-4)÷ Ro[1-1-EP(z)1 )1% 

—i (12G dP z 	Alualu  2 E d.2(z)v  2He2 
dz w z 	dz Y z 	' 2 dz 	"`" /2 e 
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On eliminating the magnetic field b(z,t) associated 

with the electric field E(z,t) (equation (S.1)) using 

the two Curl Maxwell equations in the usual way we 

find 

02E (z,t) 	, 	D2E (z,t) 
-2- c bt 

4m  31 

c at 

which on inserting equation (5..1) becomes:- 

2 	_ 	2Siz)  [-k(z) 	2i 	dz/s(z) 	, dz k(z) 	4. 	 ]1.(z,t) 
dz /S(z) 

_6) E(z,t) 	4n 	(z,t) 77  

where:- 
2n 	+co +

w 1(z,t) = -•1 	dd9dVz  1dV
I  VI 

 [ei44V1  fl(z,V,t)] -  
o 	-co 	0 

(6.5) 

Hence using equation (5.2) in (5.5) and substituting 

the resulting current density in (5.4) we have:- 

2 	0S(z) 	idkSz) 2S(z)  ]E(z,t) [-k(z)-2ik(z Jdz/s(z) 	u dz 	, 2 z is(z)  
(02 	Ca 

= 	—7  E(z1t) + 
2 
 "7" 

no c'S(z) 

+a) 	5,0 +OD 	2 n-P° 	i(kV
zo

[l+EP(z)] )T 
dV . 	dT 	dV±  V1 av s[z1].e 

+OD 	
. 	.,. 

0 

_4(.2 	AFIElv 	dk(z),T2 	E dP(z)v  2k(z\Nrn2 	(5.6)  
-"` o' dz 	z 	dz 	z + 	dz 	II-4  /2 
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where LAI 
, 2 - 4Th V I 2n0  

P 

Before developing this equation with the minimum 

approximation possible, paying careful attention to 

the question of self consistency, it is instructive to 

proceed in the following manner. 

Neglect the terms 

2 dS(z) 	dk(z)  
dz  	dz 

k 
	dz  

(a) with respect to 

k(z)Sr(z) 	' 
k2(z)S(z) 

unity, on the left hand side of equation (5.6). 

On the right hand side we neglect terms of order 

1 dB 
B 17 	(b) 

The equation then reduces to:- 

 

D
21 n 

+03 o r-HD 

dirz 	dT 

, 

s[zi] 
0 0„ 

--co 	+0,0 	0 

2 2 k c -co = 

  

i(k(z)V -Of 31[14-4LP(z)] )T 
e 

4 dP(0  + 	 /2  dkW vii. T2 
O dz 	dz /'

e  

   

(5.7) 
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We now expand the exponential 
dP(z) 	d 	Vz T2 n 	

z dz 	) r— to terms linear in 
e 

F and dk 	i.e. we replace it by:- dz
(Z)  

[3. - i(j10  €11z)  + dk(z)  Vz. 
Vz

) --t-- 
T2  

Thus:- 

2 2 2 k c -(41 

_-co 

dVz dT g(Vz  ) 

+co 

s(z, )[1_i(ji..€ dcPl!z) 	...414z/v.z  V z T
2 

 

e 
i(k(z)Vz 	j/0[1+GP(z)] )T 

	(5.8) 

+CO 
where 	g( Vz  ) 

S 	

2 Of°  . n 	dV V1  --- I 	OV 
o 	-% 

It now only remains to expand S(zt) about the point 

T = 0 in this equation and simplify, bearing in mind 

the approximation (b). Thus:- 

S(zt) = Sz-Vz  T +C 2  . ELdz  / v1 
 2T2

/2
]  _..... 

2  (Vz  T) 	d2S(z)  dS(z)  S(z) - V T 	+ 	 z 	dz 	2 dz 

l dB(z) 
where we have again neglected terms of order old  v.- '77--• see (b) 



2 
2 2 2 	-4  iC4.) k c -to - z dV 

no 7E7 

+co 

dT g(Vz  ) 

f
'dTg(Vz  

+OD 

i(k(z)Vz e 

+CO 	0 

dvz . dT L 

-oo +CO 

dVz  
J10[1+EP(z)] )T 

-158 - 

We shall also neglect the second derivative of S(z) 

i.e. 

d2S(z) 	0 	(c) 
dz 2 — 

Thus:- 

T2 t 	6aP(z)  + 	
' 

v..2 , 	 ]s(zt) 
-1-"no 	dz 	dz . z  

• 

C dP(z) 	)TS(z)  S(z) - iV T(S2 z 	o 	dz 	dz 	z ' 2 	V T d8(z)  z. 	dz 

where we have neglected the product terms 

Azial dk(z) dS(z) 	dP(z)  
dz ° dz ' dz o dz (a) 

Thus equation 6.8) becomes 

+co 

T(J/ z 	
dP(z)  + aial\T  21Q S(z) - iV  

o dz 	dz / 2 

T  dS(z)-?  -Vz dz j 
i(k(z)Vz .-60+ 1/0[1+GP(z)] )T (s-.9) 

 

For clarity we introduce some pimple notation. Put 

(Tao) 
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and then notice the following identities:- 

+OD 

( Ell 1'4) dVz  _ 	dT g(Vz  ) iVz  T e 
i(k(z)vz 	SL0[1+GP(z)] )T 

-aD 	+co 	 +CO 

= 0  
ak(i 

dVz dT L . 

+CO 

+CO 	o 

S,11. 	dVz 	dT g(V )./ -V T(Slso 	dz 
diD(z) + dk(z))T  

z 	z 	dz / 

i(k(z)Vz -W+ o[1+6P(z)] )T e 

a2 

azak(z) 

+03 	0 

dVz 	dT L 

-co 	+co 

(.cii.iii dVz 	dT g(Vz  )  Vz 
T12 e  

- 	+co 

i(k(z) -Ca+ J1[14-a(z)] )T 

a
2 

= 8k2(z) 

+CO 

dVz 	dT L 

oD 	+co 

On using (5.1o) in (5.9) we have:- 

+CO 

+co 	0 	r. 

dVz 	dT LiS(z)-iVz 
T( GdP(z) + dk(z)1T  

o dz 	dz 
+op 

• EILI. 	-12j.z. 2 	- Vz_T  dz 	(E.12) 

k 2c  2 2 
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We can choose k(z) so that 

n2(z) - k2(z)c2  
cJ2  

- 1 
2. ,c°  

COD  1(43 	, 
z uV. - no 

-co 

dT.L (3.13) 

+CO 

Where we recognise n(z) as the refractive index of a 

uniform plasma in which 1ocal values (at the position z) 

of the plasma parameters.have been inserted, (see for 
PAGE b ,  

example equation (a),, section (I), Chapter (III), re-

membering of course that the ambient particle distribution 

f°  is now isotropic). 

On using the identities (E.111) and 	we can 

see that the remaining terms in equation (5.12) reduce 

to:- 

. 	S(z) 	a2 
+CO 2 

Co 1.31(.3 
dT.L 

+OD 

402 

_o  

+co 

dVz  

in 

[n2(z)] 

+co 

dn 

— 

the 

= o 

= 0 	. 

form 

(3-.14) 

2 	azak(z) 

Which by equation 

S(z) 	a2 

dVz no 
—CO 

4 	dS(z) 	a 
dz 	ak 

(S.13) can 

L'" 	J 	dz 
r,2(z)1 	dS(z) 

no 

be written 

a 
2 	azakz) 7777 
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The solution of This equation is 

S(z) - constant (S.15) 

 

[n2(z)11 

Thus, to the degree of approximation we have adopted 

(that  is approximations (a), (b), (e) and (d)), the 

solution becomes:- 

E(z,t) 
z  = ac y  IAK) ei(6)t  -S k(z" )dz(1) 

7 1/2  dLn2(z)]   
dz (7.16) 

where k(z) satisfies the uniform hot plasma dispersion 

relation in which local values (at the position z) of 

the plasma parameters have been inserted i.e. equation 

(5.13); 

We shall return to discuss this solution (and its 

relation to standard W.1011) at a later stage in this 

chapter. 

We now return to equation (.5.6) and reduce it 

without use of the approximations (a), (b) and (c), 

(we shall however retain (d)). 

We put 	2 - 
dP(
dz
z)  v 2k(z) = 
	 (5.17) 
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and write equation (5.6) in full, thus:- 

-k2(z)-2ik(z) 
8.S(z)  
dz/s(z)  dk(z)  

dz 
d2S(z) 	-(t.1 / + 
dz/s(z)  

2. 	c3+co 
(On  143 	

(0 
d•V 

noc
2S(z) -00  .eamo  

+co 

c

oaf 	i(k(z)Vz  —a-,Qt[1+GP(z)] )11 
rc dVi  VI  --.S[2fLe OVi  

e 

_i( 	dP(z)v 	dk(z)v  2 
o + p)T2/21 dz 	z 	dz 	z . 

We proceed in a similar manner to the previous treatment. 

That is we expand the exponential 

	

dP(z) 	dk(z)v  2)T2 
e
-i(S1 o dz 	z z 	z 	dz z 	/2 to terms linear in 

and d 	and we expand S[z'] about the point T=0 dzz) ,  
as before, thus 

_it n  E ciP(z)v. 4.  alAiv.  
`J(Jo dz 	z 	dz 	z 

2 
T
2 

) 
 

e 	 . S[zi] 

C' S(z)-iV-z T(S?
GdP(z) ,_ dk(z))T  S(z)  o dz ' d 	

- V T APLL z 	dz 	+ 

(Vz T)
2 

d2S(z)  d2 
..1.. -_-7....-  

	

	(5.19) 
dz2 

In this expansion we have neglected the product terms 

dSW  n  dP(z) dS(z) dk(z)  

	

dz °"o dz 	' dz 	dz 	and higher order terms ° 	' 

CS.20) 
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(essentially approximation (d)). 

Thus equation (S.18) becomes:- 

dS(z)  dk(z)  [-k2(z)-2ik(z) dz/S(z) 	-11z + --(A)2/ 2  + c 

Ca)
2 
 pl(A)  

noc
2S(z) 

+CO 

dVz 	dT 
J -CO 	J+ OD  

2 af° d.V V --- 1 l avi  

i(k(z)Vz -W .20[1+1)(z)])T-iPT./2 

z 	o dz 	+ dz 1' 2z 	
17. T  dS(z) 
z. dz 

CdP(z) 	dk(z))m  SC )  S(z)-iV T(S? 

We. now choose 	k(z) 

2 	2 	i0 

to satisfy 

+CO 	o 

a vz 	dT 
-OD 	+00 

)T—ipT2/2  

the 

f 71 

(Vz  T)2  d2s(z)  
2 

relation 

+co c  
2 aVV1 

df°  

dz2 

(5.21) 

(5,22) 

k 	(z)o 	 r,)  not 
 

i(k(z)Vz  —1%]4- .31.0 [1+CP(z)] 
e 

77-- 
1 

We use the identities (5-.11) i, ii and iii, together with 
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the approximations (6.20) to simplify the terms remaining 

in equation (5.23.). 

Thus using equation (c.22) and approximations (c.20) in 

equation (5.21) we have:- 

	

dS(z) 	dk(z) 4
2
8(z)  

[-2ik(z) dz/s(z) - 1  dz 	dz2/s(z) 3 = 

(.4) ICJ 	
a) 01. r  (+co 	 , 

2 Ofo i(k(z)V 	2o -q [1P(z)i 
	 cdv 	dT 	d 	e 	z 
noc2S(z) z 	

V.V, uvi 
co 	oo ( 	0 

-iV. T(S\6 (11)(z) dk(z)m  )"" 2 
S(z),  V T dS(z)  

	

zo dz 	dz 
(Vz  T)2 	

z 	dz 

-ipT2/2  
Notice that the factor e 	/ 	has been replaced by 

unity by use of approximations (-6.20). 

Hence we may now use the three identities (5%11) to 

rewrite equation (E.23) as:- 

	

-21k(z) dS(z) 
	i  dk(z)  	d2S(z)  1 - 

	

dz 	dz 
(2) 	dz2 s(2) 

i 	( 
. S(z)  	 dVz dT.LI + ids(z)i a  a2 	1 	 1 

2 dzok(z) 
_ 

dz 	,Ok(z) - z dV 	dT.Li 
L  

	

..) 	J 

	

e- 	e- 

- i 
2/ 	 dVz dTL 	(6-.24) 

d 	ak kz) 
a 

a- 2 

(5-.23) 2 dz 

CO 2i CJ

noc2S(z) 



i dS(z) 
 1 

dz 

(5.25) 

-165 — 

We use the relation (7-.13), (i.e. equation (5.22) in 

2  which e-i0T /2 is replaced by unity) to rewrite 

equation (5.24) as:- 

. dk(z) 	d2qz)  -2ik(z) dS(z)  azis(z) 	dz 1 	
clz/S(z) 

77-z7 	2 t_azdk 
1 

This relation is independent of S(z) , however S(z) 

must be sufficiently slowly varying that approximation 

(5.20) is valid. In retrospect we can see that we derived 

the particular value 

S(z) 

	

	essentially because we used the 
opraTET 

approximation (a) (see equation (5,30) below) and which 

we can now see is not a fully self consistent approximation. 

Thus we have derived the solution 
z 

E(z,t) = (xix+yiAy)e i(Wt- 	k(z")dz" ) 
	

(5.26) 

Where the wave number k(z) is related to the frequency 

through the "dispersion relation" (S.22). It is 

only when one chooses to neglect terms of order 
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dB (i.e. p) that equation (5.22) becomes the local dz 

uniform plasma dispersion relation. Thus we see that 

typically Presmal integrals are going to arise in a 

discussion of wave propagation in a non-uniform ambient 

magnetic field and a discussion of resonant particle 

effects by means of equations (5.20) and (5.26) should 

prove fruitful. At this stage we review as briefly as 

possible some work done by Stix (1962) on the propagation 

of waves in inhomogeneous plasma since it bears some 

relation to what we have so far achieved. In particular 

we discuss his treatment of Whistler mode wave propagation 

in the magnetic beach configuration. Stix considered the 

problem of wave propagation in non-uniform plasmas in 

the region where the local cold plasma refractive index 

goes either to zero or infinity. It is the latter case 

which we are concerned with here. Of particular interest 

to us he considered the cyclotron damping mechanism 

in the region of the local (cold plasma) Whistler mode 

refractive index infinity. 

Stix searched for cold lossless plasma dispersion 

relations which could be written: in the form:-

bk2 + c = 0 (4-.27) for the homogeneous case, where 

b and c are constants depending on the plasma density 

(e.g. plasma frequency) or magnetic field strength 
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(e.g. cyclotron frequency) etc.: He then inNibetigated 

the inhcmogeneous case (assuming a one dimensional 

z dependence only). He assumed that in the inhomo-

geneous case, if the variation in plasma parameters 

is sufficiently slow, one may replace equation (S.27) 

by:- 

b(z) k2(z) + c(z) = 0 	 {5'.28) 

where the constants b, c and wave number k are now 

slowly varying functions of z . 

He assumed that the dispersion relation (5.28) 

corresponds to the differential equation 

a`-E(z,t) 	k2(z)E(z,t) = 0 
7 oz 

where k2(z) - b z 

(6%29) 

(One may assume the time dependence is given by ei  ((it 

i.e. investigate solutions which are in the form of 

monochromatic waves). Provided c(z) and b(z) are 

sufficiently slowly varying the solution of (%29) is 

given by the well known W.K.B approximation i.e. 

z 
E(z,t)  A, constant  e 	+ S k(zet)dzu ) - dk(z) 

which is valid provided 

(6-030) 
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1 d2k 	1 dk and —7 n  
k dz 

(5.31) 

are neglected with respect to unity on the left hand 

side (essentially approximation (a) used in deriving 

solution (5.16)). 

It is interesting to contrast the solution (6.30) 

derived via approximation (5.31) with our solution (5.16) 

of the hot plasma dispersion relation which we derived 

essentially by use of approximation ( a). (The actual 

quantities neglected in the two approximations (a) and 

(E.31) are the same when 

s(z) constant ) 
ilk (z) 

The two cases where b(z) --> 0 and 0(z) 	0 

where investigated, we shall consider only the former 

case corresponding to k(z) 	a)(i.e. the local 

refractive index tending to become infinite). 

In the vicinity b(z) --> 0 equation (5.29) was 

replaced by 

a2E 	
ELF  

—7 + zy-zo2 az 
3 2 ) 

where pl.  is a positive constant and 2  is a small P 

real constant, p2  is introduced as a trick to ensure 

that E will be single-valued and finite, but has the 
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physical significance of growth or damping. The sign 

of R is chosen to correspond to damping. (The 
2 

introduction of the (z-zo) linear dependence of b(z) 

in the region zo  is well established in quantum 

mechanics, the innovation is the introduction of ip2). 

The solutions of equation (5.32) can be found and its 

asymptotic form (i.e. for large z--zo ) is the same 

solution (5.30). Thus one may join the solution of 

('5.32) valid in the region zo  to the solution of (?-.29) 

vaiid in the region far from zo  , (i.e. solution (6-.30)). 

(There may of course exist an intermediate region in 

which neither the solution of (x'.32) nor the solution 

of (5-.29) is very good). However by joining these two 

solutions Stix could investigate the complete result 

thus obtained. This complete solution helps to deter-

mine whether or not reflection or absorption has taken 

place, (one has to impose some physics on the problem 

to determine this e.g. boundedness of the solution 

beyond the turning point zo  ). He then attempted to 

fit the treatment discussed above to the problem of 

Whistler mode wave propagation in an ambient magnetic 

field which grows progressively weaker. Physically we 

can argue as follows. One knows from the cold plasma 

Appleton Hartree dispersion relation that the local 



.2 
k2c2-6? = 

no 

kV 	A  0 	i 0 1 kV 
Of t )4 

k co 	 co  ovz  

( Cc3 - kVz 	) 

+co 

CO 
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refractive index 

2 	k2c2 n = 	= 1 

2 
_,_ 	p e•-k) 

1.511
- L)  

will become infinite in the region ci '2,49:.(z)1 . That 
60 is the phase velocity /k  will decrease to zero. Of 

course one also knows thht the wave will be in cyclotron 
I 	-CJ  

resonance with electrons for which V 	k 	) res: 

and as CA) approaches MI the wave will resonate with 

electrons deep within the body of the distribution; 

rather than a tenuous stream in its high energy tail 

as was previously considered to be the case 

(i.e. VPhase >> VThermal)* One thus expects the wave 

to be rapidly damped out (probably before it ever 

reaches the region for which 60 ti  Lap. 

One may use the solutions of equation (5.29) and 

(5.32) to get at least a rough analytic treatment of 

the problem of Whistler mode waves propagating into a 

region for whichCo,  jl. Essentially we determine the 

constants p.1  and It2  which appear in the solution of 

(5.32) as follows:- 

Using the hot plasma dispersion relation 



Yz
.2 2 
	

2 
0F0(a) 

2 

where Po (a)  = - 77 -77-- 
i 	dz 

, 
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valid for ImM < 0 

(see equation (a)A section (I) chapter (III)). 

One chooses the ambient particle distribution f o 

to be the isotropic Maxwell Boltzmann i.e. 

no 	
(Vz  2  -I- V12) 

/ 2 	2 	VT 
V
T 

where VT is the characteristic thermal 

velocity. 

Then on integrating over V one has 

( 
co 	 -V2 no 	z Av. 2 
dv V 2

o 
/ T i 	avi  

.10 	3/2 VT 

On putting z f  = V z /YT  and a(z) Co -  
kVT 

the above dispersion relation maybe written in the 

form 

f°(y) 

Fo(a) is the well known plasma dispersion function 

valid for growing Waves i.e. 	< 0 . 

Equation (5.34) must of course be analytically continued 

into the upper half frequency plane using the Landau 

prescription in the usual way. Thus:- 



below. 

a 

where a is real 
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Po(a)  = 	P  

+CO ' / -z2 	2 d e + krTc e-a  z-a 
(5.35) 

-co 
(where P stands for principle value) is valid over 

the whole complex frequency plane. The plasma dis-

persion function has been tabulated by Fried and Conte 

and a plot is given by Stix (1962), which is reproduced 

.We may proceed in the same manner as Stix with 

only aslight change in his notation. Since we chose 

the ambient magnetic field to be 

= BE-(xx+yy) 	+ (1+P(z))1Z‘j (see eqa (4.22) 
Chapter (IV)) 

we have ,11(z)1 .11E121°1 
MC - 1-21122-0.+Q(Z)1 to MC 

terms linear in E 

z0(r ) e A A 7.  dz 
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We choose P(z) to be a linear function of z i.e. 

replace 	P(z) by 	e(z-zo) and also choose the gyro- 

frequency (al equal to the wave frequency (..4) at the 

point zo  ; thus:- 

— a2 a2E 	- 	[1 	L22- F (a(z))]E 	(5.36) 
r12 

az
2 i.e. 	— 	2 — 	kVT LO 0  az 

and rewrite equation (5.32) as 

4z-zo) 	4'11'2  a2E 	 
2 E 	2-  az 	(z1-zo)  "2 	(z-zo)2+112 

(6%37) 

The above diagram may now be interpreted as essentially 

a plot of the real and imaginary part of the right hand 

side of equation (5%36) against z in the vicinity 

z = zo  . We see that it has qualitatively the same 

dependence on z z0  as the right hand side of equation 

(5%37). To arrive at an expression for 111  and 112 

Stix equated, (i) the imaginary parts at z = zo and, 

(ii) the real parts at large (z - z0). 

Thus (i) requires 
2 

= E-22.21  F0(0) 
"2 	c kVT 

and (ii) requires 

a 	
CAL) 

(z) = 	(z-zo) 

We replace k2 on the left hand side of (5.33) by 
2 



2 
"4 C°2  [  (A))  P  
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where in deriving this result only the first term of 

the imaginary part of the asymptotic expansion (valid 

for a>>1) of Po(a) is used 

1  --7 	) i.e. Fo(a) = fin e-a2 + 
	(1 + 	+ a 	2a 

hence In[Fo(a)] 
f.. 	, (a>>1) 	(see Stix (1962)). - a 

Thus from (i) and (ii)  

2 
C3 

pa  = , and p2  
c' 

Cue cannot do better than to quote Stix directly 

on this procedure. 

"This computation of the absorption of cyclotron 

waves in a magnetic beach illustrates the lack of 

rigour mentioned in the introduction to this chapter. 

We have tried to write an appropriate hot--plasma 

wave equation in differential form. In doing so, we 

have had to fit the function Fo(a) onto the algebraic 

form (z1-zo+ip.2) • 

a hot plasma is not a local quantity. The function 

Fo(a) which we use here is in fact a transendental 

function of the fourier wave number k, and k should 

have been replaced in some fashion by d wherever it 
dz 

occurs. A rigorous mathematical solution of the 

ka  . 
Fo(0)&)€* 

However, the refractive index for 
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problem is clearly a very difficult task. Nevertheless 

the physical argument that cyclotron damping is a very 

strong process and will dominate the kinematics of the 

plasma in the&) InAregion suggests that essentially 

complete absorption will occur for longitudinally 

propogated cyclotron waves". 

Thus in this treatment of the problem one is 

really attempting to force cold plasma theory beyond 

its limits of validity to describe what are essentially 

hot plasma phenomena. The method we have developed 

in this and preceding chapters for dealing with the 

hot plasma "wave equation" shows that one may 

approach the problem afresh by means of the rigorous 

hot plasma theory. We have found solutions of the 

hot plasma wave equation; these solutions wore not 

chosen especially for their validity in the region 

1,5L (z) 	. However one may obviously look for 

solutions appropriate for this (and possibly an inter-

mediate) region. On matching the asymptotic forms of 

these solutions one would then have a complete solution 

of the wave equation valid over all values of z. The 

question of reflection and absorption could then be 

investigated in a manner directly analogous to the 

method adopted by Stix. 
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Even now the problem of gyroresonance phenomena 

in the chosen non-uniform ambient magnetic field can 

be investigated by means of equations (5.26) and (5.22), 

this investigation would presumably require some modi- 

fication in the region Co 	1St(z) , (though possibly 

the more difficult part of the task as stated by Stix 

has been carried out). 

Section (II) Conclusions and Suggestions for further Work. 

The above discussion really suggests a great deal of 

further work that could be attempted in non-uniform 

ambient magnetic fields. The problem of wave and wave 

packet propagation in time varying media (as say in 

wave-wave interactions) would also appear amenable to 

the sort of procedure we have adopted here. The basic 

conclusion that one may draw is that by using the method 

of characteristics to solve the Boltzmann Vlasov set 

of equations (the constants of the particle motion are 

useful in achieving this step) and by establishing that 

only recent events in the history of a given particle 

is important one may find solutions of the hot plasma 

integro-differential wave equation in non-uniform and 

time dependent plasmas (this step is achieved by means 

of the Taylor expansion). The free streaming of the 

plasma particles is of course rigourously accounted for 

in this treatment. 



+ 
I = - i fdv rr 

e
-a(v, 

(kirIt 

a )2 
(A.2) 
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APPENDIX A 

On carrying out the integration in equation 

C3.30a) in the order indicated (where, of course 

WI can be greater than, equal to or less than zero) 

i•i ;2 1 	1 0.12 i  
(ka - W + iJci  	

(ka - W +  

J 1 k 	117  -ml k 	I 
I = k•e 	- 2i—k  •e 

ka 	w 'Si] I 

x2 
dx.e 

 

(A.1) 

  

(Stix (1962)). 

This equation being valid in both the upper and 

lower half of the complex frequency plane. 

On carrying out the integration over time first 

(see equation (3.29) one finds 

we find 

This equation being valid only if WI  < 0 (i.e. growing 

waves) but may be analytically continued into the 

lower half frequency plane using the usual Landau 

prescription (provided the numerator of the intergrand 

of equation (A.2) is an entire function of v in the 
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complex vn  plane, see Montgomery and Tidman (1964) 

page 56). The growth or damping decrement can then 

be calculated (e.g. see Chapter I). 

However using equation (A.1) it is obvious that 

one may similarly calculate the imaginary part of W 

for both growing and damped waves without using the 

familiar analytic continuation and hence without having 

to stipulate that f(°)  must be an entire function of 

v (a rather non-physical requirement). 
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simple contribution to the theory of the anisotropy 
cosmic rays 

-Igo- 
M. J. HOUGHTON 
Imperial College of Science and Technology, London, England 

Abstract. Simplicity is obtained by assuming that the first invariant is preserved, that the magnetic field is 
spiral in the ecliptic and the solar wind radial and that E = —V x B. A cosmic ray particle mirroring near the 
Sun has gradient and curvature drifts normal to the ecliptic. The displacement of the guiding centre between 
inward and outward crossings of the Earth's orbit is of the order of two gyroradii and is in the opposite direc-
tion to the electric field for positive particles. The day to day variations of this drift have not yet been fully 
investigated; an assumption is needed about the gradient of the incoming cosmic rays normal to the ecliptic. 
Computations of the drift are presented for a typical field. 

is been shown by Ahluwalia and Dessler (1962) that by, 
zming Parker's idealized model of the spiral interplanetary 
;netic field one expects to find an anisotropy in the cosmic 
intensity. Ahluwalia and Dessler describe this by the con-
,ion of the whole of the cosmic ray distribution with the 
ion of the field lines. The same result can be obtained in 
"is of the electric field which is perpendicular to the eclip- 
The particle motion normal to the ecliptic is oscillatory 
so the particle energy oscillates with the gyroperiod. 
ig Liouville's theorem it is then seen that the anisotropy 
tits unless the incoming distribution has a particular form 
en 1964) requiring a gradient. This is further discussed 

pssible anisotropy caused by gradient and curvature drifts 
Le game electric field has been suggested by Dungey* and 
ansidered here. It is found that the displacement resulting 

these drifts is of the order of a gyroradius (for certain 
icles) and could thus give rise to an anisotropy comparable 
Ahluwalia and Dessler's. 
first assumption is that the magnetic moment invariant 
EJIB of the cosmic ray particle is preserved. The second 
the solar wind is radial and of constant speed, the stream 
5 in the rotating frame of the Sun thus forming spirals in 
cliptic plane. After Parker (1963) and assuming axial 

metry 

Br  = 	= 	Bo = 0 
r 2 	-r 	ur 

wA 

A ( 1 	w2
2 + 	

1/2 	
(1) iBi 	r r2 +  u2 — 

e ^w is the angular velocity of the Sun, u is the solar wind 
. The third assumption is that E = — u x B, E having a 
tial. We assume that the three familiar electric field, 
'ent and curvature drifts are dominant. The electric field 
cE x B/B2  lies in the plane of the ecliptic, does not change 
nergy, and is not considered here. Thus 

vd — 
pn 

+ 	 
v i, 2  v12v1B 

252B 
	

(2) 

e vd is the drift velocity normal to the ecliptic plane due 
rvature and gradients in the magnetic field, 

(u2/w2 r2)3/2 
2u2/w2 

r2 

adius of curvature, of a line of force calculated from 

is believed that K. G. McCracken reported on this effect 
the meeting of the American Physical Society at Houston 
xas 1963. 

equation (1). The gyrofrequency is given by 
eB 

C./  = me ' 
The velocity of the guiding centre along the line of force is 

v„= v cos = V(L. — 174  B )1/2  

Similarly 

v sin a = v (B \1/2 	
(5) 

v B 1 J_ = 
(6) B p 

where V B is the gradient of the magnetic field perpendicular 
to a line of force. 
Because Be  = 0 the lines of force lie on cones of constant 0. 
The rate of change of heliocentric latitude 6 therefore involves 
only vd and c19/dt = vd/r. The change in 6 in time ds/v ji  is 
dO = (vd/r) (ds/v11 ), therefore the angular displacement of the 
guiding centre is 

rra  vdds 
L10 = 2 j 

rm 	TV u 	 (7) 

for the total inward and return journey. Substituting (2) in (7) 
and (3), (4), (5) and (6) in the resulting equation we obtain 

AO 
= 2vmc 

	

e 	
ds (non-relativistic). J rM 

	

rr 	1  — B/2 B. 
prB(1 — BA4-01/2  

Hence using the latter of equations (1) we get 

2 vmc r12 
riA0 = I 

e 	A 

with 

	

f 1.1 	
1—B/BM 

1'5  p(1 — B/Bm )1/2 (0.2 + w2/m2)1/2 r1  
ds 

Taking r1  1 astronomical unit, A/r2  is Br at the Earth's 
orbit, I is dimensionless and was computed for mirror points 
ranging from 0.1 to 0.9 A.U. in steps of 0.1 A.U. 
u/w was taken as 1 A.U. and then the angle between the inter-
planetary field and the Sun-Earth line is 45° at the Earth, 
hence Br = B/'2. Thus it can be seen that 2,12 I represents 
the displacement of the guiding centre in units of 90° pitch 
angle gyroradii (v1  replaced by v). These displacements are 
shown plotted against the corresponding mirror points in the 

(3)  

(4)  
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10 
MIRROR POINT rm  IN ASTRONOMICAL UNITS 

PARTICLE DISPLACEMENT IN UNITS OF GYRO RADII 

figure. It is seen that the effect is as large as Ahluwalia and 
Dessler's for particles of small pitch angles. The change in 
energy can be got from this displacement and alternatively 
fvdEdt leads to the same result. 

For the case of relativistic particles, provided the electric 
field is sufficiently small, one can multiply I by the corres-
ponding radius of gyration, i.e. movc/(1 — v2/c2)1/2  e. Alter-
natively one can follow the factor (1 v2/c2)-1/2  through from 
equation (2) with m replaced by mo/(1 — v2/c2)1/2  which again 
is a valid substitution provided the electric field is not too 
large. For a relativistic particle we have initial energy 
E = (m — mo)c2. For a given rM  the change in energy is pro-
portional to the gyroradius, i.e. proportional to v/(1—v2/0)1/2,  
The fractional change in energy 

LE 	v[i — (1 — v2/0)1/2] 
cc 

Thus as v increases so does the fractional change in energy, 
for fixed mirror point. 

It is seen that the energy change for our anisotropy is 
same order for small pitch angles as Ahluwalia and De 
for 90° pitch angles. This suggests approximately equa 
tributions from each assuming an isotropic distribution 
hence an 1800 hr phase, though the details are still to b 
culated. 

The anisotropy does depend on the incoming distributio 
total energy of a particle, including potential energy, is 
stant of the motion and Stern (1964) pointed out that if t 
distribution function f were a function of energy only th 
would be no anisotropy though there would be a gradien 
Another simple possibility is that the incoming distribu 
has no gradient across the ecliptic plane and there mu: 
be an anisotropy compounded of Ahluwalia and Dessler 
sotropy and that described here which is probably comi 
in magnitude. 

The Ahluwalia and Dessler anisotropy has a maximum 
the particle is moving normal to the magnetic field and 
from the Sun, typically at 1500 hr local time, while our: 
its maximum when the particle is moving parallel to th 
towards the Sun, typically at 2100 hr. The direction of 
interplanetary magnetic field does vary in practice and 
curvature and gradient of the field involved in (2) also 
Consequently the local time of maximum for each conti 
and the relative importance of the contributions all var 
Since this is not in accord with experimental results it 
possible that some other effect is dominant for exampl 
non-conservative fields were present. Alternatively va 
tions in I with wind speed may be such as to make the 
insensitive to the wind speed. This possibility and a mi 
accurate estimate of the magnitude of the anisotropy 0 
here are being investigated. It seems certain that if a 
in the particle distribution does not exist Ahluwalia an( 
Dessler's anisotropy occurs together with the anisotro 
cussed here. 
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