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ABSTRACT

We discuss the propagation of wave packets of

the form

ei(wt - kz) a(z,t)

in an infinite uniform plasma (in both the formal
cold plasma, auznd hot collision-free Vliasov plasma
1imit), where G(z,t) is a slowly varying function
of space z and time t. One can derive the equation
of change of G(z,t) (in both the above stated tem-~
perature limits) for the stable or unstable case.
The terms in the equation are of physical interest
and clearly dzfine the 1imitgtions of linear theory;
In particular we show that by using the model of
complete stirring developed by A, C., Das, changes
'in apparent frequency'gg (#§ = phase of disturbance)
can occur due to sharpézhanges in growth rate with
respect to wave number.,

We then investigate the problem of Whistler
mode wave propagation in a collisionless Vliasov
plasma in a given non-uniform magnetic field. We
¢hoose the electric¢ field to be of a W.K.B. form

and the particle distribution to be isotropis. We
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can express the perturbation in the particle distri-
bution in terms of an integration along the zero
order particle orbits (an integration over time).
These orbits can be found correct to a term linear
in a smallness parameter & (when & equals zero we
arrive back at a uniform magnetic field). The charge
and current density due to the perturbation are
related through Maxwell's equations to the electric
and magnetic field of the wave in the usual self
consistent Boltzmann~Vlasov description.

We show that the contribution to the current
arises from recent events in the history of a given
particle because of the finite temperature of the
plasma. This result leads to an expansion of slowly
varying parameters which in turn gives rise to the
equation governing the motion of the wave-~packet.

In the final chapter the monochromatic wave case is
also considered and cyclotron résonance is then in-
vestigated. It is shown that typically Fresnel
integrals arise. Some light is also thrown on the
magnetic beach configuration discussed by Stix.

For completeness a paper on the modulation of
cosmic rays, which was presented by the author at
the Ninth International Conference on Cosmic Rays,

is also included at the end of this thesis.,
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Chapter I

INTRODUCTION

The research presented here is concerned in the
main with the problem of Whistler mode wave and wave
packet propagation in hot, collision free, uniform
and non-uniform plasmas. The motivation for such
;esearch coming from the associated magnetosphefic
phénomina of whistling atmospherics and stimulated
V.L.F, emissions. (The magnetosphere being that region
of the earth's environment lying above the ionosphere
( ~ 150 xm) and below the magnetopause (~ 8 earth
radii) where the earth's magnetic field dominates
the ambient plasma).

Whistlers or whistling étmospherics are the result
of dispersion of energy derived from a lightning stroke
which has travelled in a right hand polarized electro-
magnetic mode along the earth's magnetic field lines
in the magnetosphere. The different frequency com-
ponents present in the initial impulse propagate at
different velocities, and the disturbance transforms
into a smoothly descending (and/or rising) audio fre—
quency signal (hence tne term Whistler mode). For a
reviéﬁ of such things as 'ducting', 'multiple hopé',

determination of electron densities and temperatures gt¢
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in the magnetosphere (see Helliwell (1965)).

V.L.F. emissions are also audio-frequency Whistler
mode signals. Their amplitude is comparable to Whist-
lers and they can be divided into two main groups. The
first is 'hiss' which is a continuous wide band of
noise  and which may persist for periods of hours down
to a few seconds. The second group are the discrete
emissions. They exhibit a variety of sonogram traces
~such as hooks, rising tones, falling tones, etc. Their
frequency range is short in comparison to hiss and
their duration is from .1 to several seconds. For a
discussion of "triggering! of these emissions and their
characteristic sonogram traces (see also Helliwell (1965).

The discussion and results presented in this
introductory chapter are by and large well-known; how-
ever they are included in order that the work presented
here should be as complete and self-contained as possible.
Because of this the emphasis has been put on simplicity
and understanding rather than rigour. Wherever possible
references to the original work have been included for
further reading.

We briefly introduce, and discuss points arising
from the Boltzmann Vlasov description of Whistler mode
wave propagation in a hot collisionless plasma. We

also investigate the physics of the wave particle
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Q?rofesonance interaction with particular reférénqe
to the stability or instability of wave propagation.
The work presented is really salient both for direct
understanding of the problems we have attempted and
also to make clear the motivation for tackling such

problems.

1.1 The Boltzmann Vliasov Description of Whistler Mdéde

Wave Propagation

We consider a hot, collisionless, infinite uniform
plasma emersed in an infinite uniform hagnefic field.
Charge neutrality in the unperturbed state is ensured
by the presence of a background ionic plasma whose
motion can effectively be ignored in the description
of Whistler propagation owing to the high frequency
of this mode. We denote the number of electrons in
the volume element dsﬁ centred round the point with
position vector r and whose velocities lie between

v and v + dv at the time t by

an = f£(z,v,t) &’r ooy

3 dx.dy-dz .

where d'r

it

d’v = dv_.dv_,.dv -
— x y z
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f(zﬁx,t) being the particle distribution function,

which can be considered to be the number density of
dn
d%g dBE

particles in the six dimensional phase

space whose coordinates are X,Y,Z,Vx,vy,vz.

We can find the equation of motion of the distri=
bution function (equation of continuity in phase space)
as follows. The distribution function changes with

time because electrons constantly enter and leave a

given 'volume' element di = d?g a’v in phase

—

space. If no collisions occur then an electron with
coordinates x,v at time +t will have coordinates
r+yvdt, v +J5ﬂdt at the instant t + dt, where F
is the external force acting on an electron. Thus

all the clectrons contained in the phase space element
dt at xr,v will be found in an element d7' at

(r + v dt, v +.=_ dt) at the instant t + dt.

m
Hence

flr + v dt, v +%_ dt, t + dt)dzt!

f(r,v,t)dr

It can be shown (e.g. see Chapman and Cowling
(1939) page 322) that the two volume elements dt and
dt' will be egual for forces of the Lorentz type
(i.e. F = ~%lev§) or forces independent of v. Hence

in the limit dt —> O we have:i—

%? +'XD%£ +ﬁ%g%§ = 0 (1.1)



As we are in the collision free regime we have
neglected the effect of short range coulomb collisions
which make electrons jump into and out of the 'volume!
element dr during the interval dt.

Thius equation (1.1) states that f is constant
following a particle trajectory in phase space which
is of course Louville's theorem as applied to this
dynamical system (see any standard text on Classical
Mechanics).

The forces acting on electrons in the plasma are

assumed electromagmnetic. Thus

e

- &gy, ]
C.

Bz

Equation (1.1) becomes

~Elrs .y 1.

———del g

of
—a—_E- + _Y-' (1«2)

[w) )]

2l

1<l2
1l
Qo

Q

which is the well known Boltzmann equation describing

the behaviour of the distribution £ in the collision

free regime in the presence of electromagnetic forces.
The electric and magnetic fields in (1.2) obey

the Maxwell equations

1 0B -
VE = -—=-<— <GB o= LT
A e 3¢ ’ s TFP
| (1.3)
;&E. = ;,QE +.iE5', i]g. = 0

c gt c
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We assume the set of equatipns (1.2) and (1.3) to be
self-congistent, that is, the electromagnetic field

in equations (1.3) gives rise to force F on each

electron to produce the distribution £ in equation

(1.2) which in turn is responsible for that same electro-
magnetic field. Thus the plasma appears through the

current and charge density in equations (1.3) as

el v v (£7- )

it

i

(1.4)
- i~ 3 + - .
and p = i£{f a’v (£ - £7) respectively,
where the superscripts + and - refer to the ion and

electron distribution functions respecfively.

We now use the set of equations (1.2), (1.3) and
(1.4) to determine the characteristic features of dis-
turbances propagating in the Whistler mode. We per-

turb the variables f, E, B as follows.

£ o= £2v) + £ (z,v,t)
B = B° + blz,t) (1.5)
E = 0 + E(r,t)

where the unperturbed electric field is zero and the

uniform ambient magnetic field is in the positive =z
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. . . (e} A O
direction i.es B" = z B~ ,

In the unperturbed state equation (1.2) reduces

to

57:28) o (1.6)

v
-\ ax

On transferring to cylindrical coordinates in velocity

space i.c,

v
x

V, Cos @

\'

¥ V, Sin @

il

(V, being the component of velocity perpendicular to
the ambient magnetic field, and @ being the azimuthal

angle measured about E?) cquation (1.6) becomes:-—

3£ (v)
og

= 0

That is, the most general form possible for the ambient

particle distribution is
o (o)
£ (v) = £ (v, v) (1.7)

To limit space we do not review the Landgu solution
(Landau (1946)) of the initial value problem, for a
full discussion see Stix (1962), or Montgomery and
Tidman (1964). The treatment is well known and‘we

shall use some of the points which derive from the
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above references. We simply assume the perturbed
quantities are in the form of a plane wavé propagé;ing
along the ambient magnetic ficld, thus the time and
position coordinates of thdé first order ‘quantities in
equations (1:5) appear in the form ei(wt - kZ)(i;e;
a function of z and t only). On putting (1,5) into -
(1.2) and linearizing (i.e. neglecting terms in the

product of first order quantities) we arrive at the

lincarized Boltzmann equation

‘ - : ~0
UL 4 i(w = kv dE' = Jgh‘[ E + 34\2]52£
LY/ = m ry ov
(1.8)
o
where ’jll= lels

ne

We eliminate the wave magnetic field b from equation

(1.8) by using the Maxwell equation

WV E = -i?g
;B
c 3t
. c A
That is b = -;3,\_1_*3_ (where k = zk) .
w

Hence equation (1.8) becomes

ilw - kv )£ 21 (x E) )
Lk 3. —Z_ . A T [ Epaey, == 7.03£
3¢ e bl m w Oy

(1.9)
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On carrying out the triple vector product v A(E;\E)

A
(remembering k = zk) the right hand side of equation

(1.9) (which we write as S) becomes:—

‘ EV EV kv o kv o <
L;{ L (Cxx, DY yyp(q - 2227, 52 1+ 25
Ly m v, v, w v w Ov, V.,
where we have also used the relations
3£° 3£° av av; Ve d£°
—_— = ==k, - = —=  (and similarly for — )
av._ 3V, av_ av_ v, oV,
On using the cylindrical coordinates V_ =V, Cos #,
dV.L dV‘L
V_ =V, Sin g, Vv we have = Cos § , —— = Sin P,
¥ 2 av_ av,

S now contains the factor ExCos $ + E_ Sin @ which we

separate into left and right hand components. Thus:-

s(g) - L .l [(Ex+ - Vye~if, (-———-X) *if
’JL§ m 2 2
f - aye® 5% ey 2 €] oasf
W Bvi w ov i m Zav
. z z
(1.10)

where'the dependence on the azimuthal angle #@ has been
made explicit in S, (This is important in solving

equation (1.9) for f', since it contains the derivative
or
og
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Thus we rewrite equation (1.9) as

i(w - kv )f!
=+ —E = s(g)
g |\

and solve for f' by the method of Bermstein (1958).
—i(w - kvz) @
That is we notice e —_—— dg" is an integrating
Sl g
factor and hence the solution of (1.9) can be written

g ilw - kvz)(ﬁ' - @)
£1 = f+og¢' S(g') e X (1.11)

(To make this step trivial we differentiate equation
(v ~ kvz)
(1.11) with respect to @. First put ——B{I—— = A

and write equation (1.11) as

. ¢ o
£1 = o IAP {I+§g' elA¢ S(¢'i}

Then:~

. ' s oa s @ . ' . .
QZE - - iA 8_1A9 {I+d¢' elA¢ S(¢')} + e—lAg{e+lA¢%‘}

0@

which is precisely equation (1.9)).
On putting (1.10) into equation (1.11) and carrying

out the integration we find

E + iBE . E - iE .
£ = {€1 [—X Ty e-1¢ X v e+1¢]
m 2 2
(1.12)
kv o kv o
[(1 -~ —2)3E , % 07y 2£°
w ov w ov Ov
= ‘ Z + E L&l z

iw — kvz ;!jlb n i(w—kvz)
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The currents associated with this perturbation can be

written
i, = - \elfev, fag [av v [V £']
and
St iy, = = (€l fav, fag fav v TV x4V )E']

(1.13)
Thus the left hand, right hand, and longitudinally
polarized components are uncoupled in the linear
approximation. The right hand polarized component,
Ex + iEy, rotates in the same sense as the electrons
and is known as the Whistler mode., In what follows
we shall consider the propagation characteristics of

this mode only.

On eliminating b from the two Maxwell equations

1 3b 1 0E 4w
V,E = === , Qkh. = ==+ ]
c 0t c Ot c
we have
2 2 ‘o .
3°E 13°E , Wyv - e 3 i@ -1
= = = =g =l —1wf€:[,fdy_[\ﬁ_e £']
aZZ c 0t 02 (~ //

(8ince E and b are independent of the x and y coordin-

ates, i.e. a function of z and t only)



- 18 =

and hence

OOy ‘ kv o kv, o]
K22 w2 - B dwijyfdvg(l - —2)0f” 3 0f7,

n - e w OV w ov
° . Z

(v - kv - )
(1.1%)
2
o QTTnoiéf

where = and n_ = Id3v £°
1 o -

o)
(The hot plasma dispersion relation for the Whistler
mode was first derived by Vedenov, Velikhov and Sagdeev
(1961)).

There is no problem in principle in carrying out
the integration over v, in (1.14). However a great
deal of thought has been given to the remaining inte-

w — bl

gration over v, which has a singularity at V= N .
The prescription for integrating past this pole w;s
first derived by Landau., We shall use this prescription
and refer the 'interested ieader to those refer—
ences alrecady given to the Landau solution.

Equation (1.1L4) defines a relationship between
®w and k and is known as the dispersion relation; many
properties of the Whistler mode become apparent on

investigating this relation. In what follows we shall

assume the wave number to be real and find that the
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frequency ®w, as defined by relation (1.14), will, in
general, be complex, i.e. 0 = 0 + iY". The imaginary
part of the frequency"x then corresponds to waves
growing or decaying exponentially in time.,

One can find the growth or damping decrement
by one of several procedures. For example, one can
follow the method of Sudan (1963) and expand about the
point of marginal stability, i.e. assuming Q{ << wo
we may write equation (1.14) in the form

3p
ow

o

D(w,k) = 0 ¥ Dlw_,k] + i [w, »k]

%;wd,k]

anfu, k]

GIN)
Lo

and hence Qf =

here we separate out the real and imaginary parts of
(1.14) by using an expanded form of the Landau pre-
scription first given by Jackson (1960),

This method allows one to arrive neatly at the relation
between both ®_ and k together with Y and k, the
approximations made in the process are made clear.

By inspection we may write the dispersion relation

(1.14) in the form.

2 o
w_Sr +¥dav,, A (v,) +odv A (vz)
kzcz _ wz . _.P E@ 1 + I z 2
n k —00 v - 2z -8V - 7
o Z z

(1.15)
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where , .
o 2 9£° o 2, 9¢£°
Al(vz) - Io A 3 ! Az("z) = av, V-L(.L-a—- Tz
gn ) vy,
and
w - 1 ~
zZz = u+ iv where u = 2 ML s vV —'\'S/k

In what follows we use the approximations

w, << W) << o, (a.l1)
Y/w << 1 (a.2)
Yo
- lah2
(9__21_.._) >>  <v % (a.3)
z
Ic
) 2 0O
tdvg vy £
where <v 2> = I
z . n
— o]

Both integrals in equation (1.15) are of the form

'+L'0( ).

I(z) = J f——?‘—‘ﬁt’i where =z = u + iv
-0 X—Z

After Jackson (196C) ) we write this as

. x n n
= . . n
I(z) = ) )" pr £x) , syreq)] (1.16)

'n“;o nl X - u

We introduce the first two terms of this expansion into
(1L.15) and use the following notation

'
Aldv -Al dv, '

z . =Lz _
4 z

(L.17)
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I, &= — I 2~——2 : (L.17a)
Tu Tu
<v % n0
I, = - —= R I.' =0

(See Engle (1965)
On using (1.16) and (1.17) in (1.15) we have

i 27 .
,wﬁw‘wo+ i

I

[(Il+ i‘tT'Al(u))+23-{-(Il ' iAz(u) )]

n k k
O N\

2 2 . 2
k“c —(mo+ 1%)

[12+ iﬁAz(u)] +-%¥[Iz'+ iﬁAz'(u)]

4

(1.18)

we now equate the real and imaginary parts of equation

(1.18). By inspection the.real part reduces to

2
w W’
]_gzcz— 2 = ._—R.I—r—.[-.g_ T + I ]
% n k 1 2
[e]

where we have neglected terms of order " .
On neglecting all effects due to finite tempefature

i.e. putting I, ~ 0 (see (1L.17a) we have

2
w_ o w

T e iy (1.19)
= o
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which is the cold plasma {(magneto-ionic) Appleton
Hartree dispersion relation for the Whistler mode
(e.g: Helliwell (1965)).

We now collect imaginary terms foge’ther neglecting

terms of order "8‘2; By inspection we have
2

' w YL, .
23{'(» = -‘21[‘ 20 Al(u) + 1u)011'+TF'A2(u) +,£12']
° no k s k k

Neglecting the term on the left-hand side, (see

(a2)) we have collecting terms in i together and using

(1.172a)
oy s o @y
'X‘[‘T;u-; + -1:5 (_I';u—z-)] = Tr[? Al(u) + Az(u)J
Hence N
N = Trz(i*h"m“z[&’_ L-ESNS -E A Y
n Uu  0v, tav ZBV_L
o z
(1.20)

- !
where VZ = L‘_S.E_
Ik

We now examine equation (1.20) in some detail.
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1.2 The Linear Theory of the Wave Particle Gyro-

resonance Interaction

The growth or damping decrement X‘emerged when we
separated equation (l.l&) into its real and imaginary
parts by use of expansibn (1.16). We show that the
phenomena of growth or damping is explicable in physical
terms. To this end we consider the wave-particle gyro=
resonance interaction between a Whistler mode wave and
an electron. We shall consider the initial valﬁe pro-
blem using linearized equations.: A resonance phenomenon
will then be uncovered which is indicated by long term
growth or decay in the oscillation amplitude of the
electron. Since the total energy of the electromagnetic
wave field and the plasma particles is conserved, the
steady growth in oscillation amplitude of the resonant
particles must result in the damping of the wave field
(and vice versa).

Consider a transverse wave whose electric and

magnetic fields are givon by

i(wt - kz)

n ~ ;
E(z,t) = (xcx + ye&) e (1.21)

i(wt - kz)
e

A A :
bz,t) = (xbx + yby) respectively

where e e and bx, b__ are constant amplitudes, pro—

y
N
pagation is along theambient magnetic field Eo = zBo
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(notice e = b _= 0),.
b1 Z
We denote the motion of an electron in the absence

of the wave by the unperturbed velocity vector

o N oo N o A O
\'2 = xv + + Zv .
= < va z (1.22)

and the velocity of the electron in the presence of

the wave by

v = v + v'!

where v'! is the perturbation due to the presence of

the wave.

The linearized equation of motion of the electron

is
3 g v,B® vb
[— + v°.V Iy = === [E + ==+ == (1.23)
ot m c c
1 0b
The Maxwell equation Y E = — === relates
A= c Ot
the amplitudes in (1.21) by
b= = l‘f'-ex (1.24).
w ¥ ¥ w

The three components of equation (1.23) when written

out making use of the relations (1.24) are
o
i {f[ kv .
2 akv®lv, + v, = - &2 B - —3)]
3t z- X 2 m X W



o
DlL - ikvolv, —lsijv., = - lél.[E (1 - kYZ?] (1.25)
ot z Y X o om y ® e
EiL - ikvolv = - lgi v°e + v°E 1%
ot z z m x X R AN
where lJEi = Léilii .
rc

We now separate out the right-hand polarized
+
Whistler mode wave Ex + iEy = E , by multiplying

the second of equations (1.25) by i and adding to the

firsto
Thus: -
) o
- ) I(‘f kv +
o iev® + L) IvT 2 - (1 - —2)E
ot z mn W
We rewrite this as
3 o+ —ilkvo+ LRt lz K ks i (-l k)
— [v'e a7 v l] = = —=— (1 -—)e e + e :
ot m w
(1.26)
+ . + .
where v = v_ + iv_ 4, e = e_ + 1e_ .
x Yy X hA
We consider the initial value problem such that at the
instant t = O v+ = v2 = v® + iv? .
+ xX Yy

Hence from (1.26) we have

o
T o |< kv

v+ - vi eldﬂj+ kvz)t_ ‘af 1 - Z]g*
in . w

. . 7 o -
ei(wt - kz) 1 -'é‘l(w ~l - 1)t (1.27)

ilw - bll- ka)
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Since in the unperturbed state the electrons
rotate in the right-hand sense about the ambient
magnetic field with random phase ¢ at the gyro-

frequency le\we have:=-

vo = Vo Cos (Jsiit + @) ; v; = V. sin ([itft + @) .

The third equation of the set can thus be written

(o)
-i—[vze'ikvzt] = - ;—i—{- vole Cos (lilt + @) - e Sin (Ifft + #)7
Loi(w = kvDIt K —ikz
w

On taking out the Whistler mode component and integrating

using the initial value condition that at t = O v, = vz
we find
' : 3 110 ©

o ikvdt - £l ¥ o et  ilwt - kz) 1l - g (w-litl-lvz )t
v = v e —_— =V = .e L = ]
2 2 m 0. 2 i(w=li kv )

il (1.28)

(where we have put @ = O for convenience).

The first point to notice is that the perpendicular
and parallel velocity components of most electrons
oscillate in some simple manner with constant amplitude,
However the oscillation amplitudes of those electrons

which have an initial parallel velocity such that

w - ﬁl‘— kvg = 0
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grow linearly with time

. 2
. . ixt + (iﬁi)
1 - e 2
(since [ 1 = + ... for small x).
x x

The amplitude is of course bounded by non-linear effects
which move the particle out of gyroresonance. The
electrons and Whistler mode waves both rotate in the
right-hand sense around the ambient field line; however
the wave fregquency w lies below the electron gyro-
frequency(in, i.es W {lfl‘. Thus the resonant con-
dition ® - kvz = {J1| means that electrons travelling
in the opposite direction to the wave Wit£ velocity

+° (B~ )

s 5 ——f;- (a negative velocity) will see the wave
frequency £ncreased by the doppler effect to their

owvn gyrofrequency. The wave vector and electron both

. rotate at exactly the same rate, and for these electrors
the angle between the transverse velocity vector V.

and the transverse component of the wave will be con-
stant. The resonant electrons will thus be embedded

in a constant electric field and can interact strongly
with the wave, It is the energy exchanged through

this strong interaction between the resonant electrons
and the wave which leads‘to the stébility or instability

of the waves.

If the wave amplitude is sufficiently small one
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can expect that the linear treatment will be valid for all
time for non-~resonant particles., However; the above solu=~
tions show that for those partiecles initially in cyclotron
resonance,; the non-linear terms must rapidly become impor-
tant. At the end of this chapter, we discuss very briefly
the interesting non-linear effect of particle trapping
which then regults, leading to "gtirring" of the distribu~
tion in phase space.

It is wvaluable fo compare the associated changes in
energy and pitch angle of electrons which interact with
the wave.

In the frame of the wave, the time rate of-change of
the magnetic field is'zero, w = 0, hence there is no
electric field (Equations (24)), thus in this frame the
energy of the electrons cannot change.

Since the velocity of the wave is w/k we have

m 2 m W, 2
5 Ve o+ E-(v - E) = constant (1.29)

z

Suppose the wave causes small changes 5%_ and

and Vé. Then

SVé in the two velocity components V,

to first order, the change in energy

m . .2 m 2
W = ) V.L <+ 5 V'Z
is &W = vaa\i + mvzsvz, which from (1.29) is equal to
m% dv also first order.
Z

6v (1.30)

i.€.

54
=
il
8

wie

]
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In the wave frame the pitch angle «a of an

electron is defined by either

Vecos o = v = %
oxr V sin o0 = v,
1
where Vv = [V’l?' + (vZ — %){-) 2]2 = constant,

thus a small change in v, will result in a change

in pitch angle O&a given by

-V sin o do = GVZ
&V,
ieee. SR (1.31)

After Dungey (1963), and Kenncl and Petschek (1966),
it is convenient to draw the following diagram in the

VJ. [} VZ pl ane.

m<\f

e T
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Equation (1.29) states that electrons will move on

circles Yf + (Yi - %02 = constanty centred on
v = & (e.g. smooth line). However, the limes of

z k
constant energy are circles centred on the origin

2 2

V, + V| = constant, (e.g. dotted lines).

L
By inspection of the diagram, we may draw the follow-

ing conclusions.

(1) For frequencies such that w<<1§l[the change effected

by the wave is going to be primarily in pitch angle, one

can see that this is going to become more pronounced

the greafer the inequality w<<lfl[. For example, to go

from the outer to the inner dotted line (corresponding to

a small change in energy), one must move all the way along

the continuous curve (a pitch angle change of ?%).

(Of course, an almost monochromatic wave of frequency centrc.a

on W only effects a small region such as the shaded

line xy which extends over all values of v, .

(2) We also note from the diagram that a décrease in energy

of a resonant electron is going to be associated with a

~decrease in pitch angle. It has been shown for example

by Brice (196%4), that the change in pitch angle 5o is

related approximately to the change in energy &W by

) sw
ba = + T - W

for L45° pitch angle electrons. (A result easily derived

from the above equations, essentially (30) and (31)).
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One can also draw the same conclusions (1) and (2) from
this relation.

The condition for the wave amplitude to grow is that
the energy of the resoﬁant electrons decreases, and hence
the associated (relatively large) decrease in pitch angle
means that a similarly large transfer of transverse to
iongitudinal energy has taken place for the resonant
electrons. One thus expects distributions with more trans-
verse than longitudinal energy (i.c¢. appropriately aniso-
tropic pitch angle diétributions), in the region of the
gyroresonant velocity, to be unstable. For examples of
such distributions we may take the anisotropic Maxwellian

in which the transverse temperature T is greater than

3
the longitudinal temperature T,y or an isotropic distri-
bution with a loss céne. Both these distributions have a
suitable imbalance of longitudinal to transverse energy
for instability. It was Bell and Buneman (1964) who first
showed (by studying the dispersion relation) that resonant
particles must have finite V, in order for wave growth
to be possible.

We now return to equation (1.20) and examine the
growth rate in the light of our investigation of the gyro-
resonance interaction. |

For easiest discussion, we put equation (1.20) in

the form given by Kennel and Petschek (1966) as follows.
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Replace
(w - }ﬁ,})z by (1 - ‘”/;Sk.ﬁ’iﬂl'z (i)
s o e _
deL yf 3£ by - 2f dg_g_fo (ii)
O a A o
S5 B
L by ——t— . ‘ @ (iii)
A\
k ALY k
w
and
o O O
[fav, vZ (v g _, 2 )] w =121
o o . av A av v = o
z K9 z k

which can be written as

20 o o
- L@i_:_& [fdﬁ‘ v (v 8L _ & of ) z;]
5 -

A z ._}
k avz ayL V. v = W Wil
z k
by
. o (o] .
.4.@_‘._':__“1 Ud‘i v AL ian o] (iv)

k o do

where we have used the transformation

v V Sin o

zZ

il

YL V Cos o .

Making replacerents (i), (ii), (iii), (iv) in

equation (1.20) we have by inspection
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The factor in the first square bracket may be
interpreted as the measure of the number of resonant
electrons (it is cof course a positive quantity).

The second square bracket determines the sign

of 4" , that is, it shows that if the distribution is
o
isotropic with regard to pitch angle, — = 0, at
do
the resonant velocity then.y”:>0 and only damping

can result. Thus all isotropic distributions give
rise to damping, this result is, of course, in
agreement with the Penrose criterion as applied to

the Whistler mode, Bell (1964). The first term in
o
this bracket becomes positive when —— becomes positive
do

and thus has the appropriate sign for growthj; if this
term dominates the second, the particle distribution will

be unstable.
o

Since 2t > 0 implies that at fixed energy the
da

number of particles increascs with increasing pitch

angle there will be more total energy in the distri-
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bution function at higher pitch angles. Since the
wave will become unstable if this term dominates,
the stability or instability of the Whistler mode
wave depends only on the pitch angle anisotropy (or
the unbalance of transverse longitudinal energy) in
the region of gyroresonance. The magnitude of the
growth or damping decrement depends on both the anisow=
tropy and the number of resonant electrons. Both
these results are in agreement with our previous
discussion of the test particle gyroresonant intere
actign,

In view of the above discussion one may expect
the following mechanism, Dungey (1963), for loss of
electrons from the radiation belts, The effect of
propagation of a Whistler mode wave paeket on an
electron is to cause its pitch angle to ehange, this
change may be positive or negative, (depending on the
phase of the wave field with respect to the peré
pendicular component of the partieles velocity Vo ),
Thus one expects the passage of a series of atmospheric
Whistlersx to cause the pitch angle of a given
electron to random walk (since there should be no
correlation in the above mentioned phase for these

atmospherics). The overall effect on the electron

*histlers whose energy is derived from a lightning
stroke on the carth's surface and which subsequently
propagates far out into the Magnetosphere along a

field line (e.g. sece Helliwell (1965)).
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population will thus appear as a diffusion in pitch
angle (frbm high to low particle density). Because
of the presence of a2 loss cone (i.e. a particle sink)
in the magnetosphere the overall effect of such pitch
angle diffusion will be a loss of particles from the
radiation belt. Dungey (1963) and Cornwall (1964)
have both obtained good guantitative agreement with
the observational evidence of such a loss.

In the light of the above discussion it is not
surprising to find that the effect of broad band
Whistler mode noise is to produce piteh angle diffusion
in the clectron distribution. Xennel and Petschek
(1965) have investigated guantitatively the effeoct
of such noise (generated by the presence of a loss
cone) on the radiation belts. The basic equations
they used in describing the effect of Whistler mode

noise were the quasilinear equations

ot Sin o 0Oa oo

where the diffusion coefficient D is given by

2
151 2 {{ bk}

i)
V Cos & B°

(1,34)

bk2 being the energy per unit wave number at resonance.
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They derived these equations in a rather simple
though not fully rigorous manner, A fully rigorous
treatment (within the limitations of quasilinear
theory) has been given by Engle (1965).

These equations tell us something about the
expected pitch angle distribution in the magnetospherec.
Since there is a loss cone present, the ambient plasma
will have an anisotropy with appropriate sign for in-
stability and can thus generate its own Whis£ler mode
wave amplitude noise. Kennel and Petschek pointed
out that although the rate at which particles diffusec
towards the loss cone depends on the magnitude of the
diffusion coefficient, and hence the wave energy,
equation (1.34), the shape of the steady state pitch
angle distribution outside the loss cone is esseﬁtially
independent of the diffusion coefficient (c.f. the
temperature profile for steady state heat conduction
with different materials but fixed boundary conditions),
Thus, since the pitch angle anisotropy is fixed in
the steady state the wave growth rate depends only
on the number of resonant varticles. This number
must just balance injection with precipitation so
that the growth rate Jjust replaces escaping wave ehergy.
Using this argumentthey were able to estimate an

upper limit on the magnitude of stably trapped particle
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fluxes and also to derive the expected pitch angle
profiles. Of course, although the pitch angle
distribution outside the loss cone does not depend
on the magnitude of the diffusion coefficient, the
distribution inside depends on, the diffusion time to
the time of loss to the atmosphere., Therefore the
measured loss cone profiles (0'Brien (1964)) estimate
a diffusion coefficient and a particle lifetime. (In
Kennel and Petschek's paper this comparison of pitch
angle profiles is made in Section 7, esscntially
Figs. (5) and (6)). However, a source of contention
is that in their paper they have assumed that all
particles are injected into the magnetosphere with
pitch angles of'ﬁ72.

We now briefly review a mechanism by which emissions
in the Whistler mode can be stimulated by the passage
of a wave packet (also in the Whistler mode), the
mechanism has been developed by A. C. Das (to be
published (1968)). This mechanism has some bearing
on the work presented in the next chapter. Essentially
he looked at the motion of electrons on the edge of
the loss cone at or near resonance with a Whistler
mode wave packet propogating along the ambient mage
netic field. He then invoked Liouville's theorem

to find the effect on the particle distribution and
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hence the ambient growth rate. A particle will
resonate with a particular frequency component of
the wave packet. If 4} is the angle between this
frequency component of the wave magnetic field b
and the component of wvelocity of the particle pere
pendicular to the ambient field V, , then:—

b, = 4,0 + f:dt' -‘jf‘i (1.35)
is this angle at the instant of their coincidence
t' = t, where 4/0 is the angle kV at t' = 0 and
gig-= 0 - kv"~{51{ for an unperturbed particle
3:ajectory.

From equatioh (1.35) it is easily shown that

the quantitative behaviour of 4}r is

¢r - \()o ~ vt (1.36)
The effect of the wave packet on a given particle is
taken to be cessentially a change in pitch angle which
is determined primarily by kPr and the amplitude of
the component of the wave field in resonance with
that particle (1.37).

Thus from the statements (1.36) and (1.37) we
can plot the figure‘below, which is a 'snap shot' of

the disturbance of thosge particles in the velocity
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distribution on the edge of the loss cone AB some

time after the wave packet has passed,

>y

z
That is from (1.37) the envelope in this figure is
essentially the amplitude frequency speetrum of the
wave packet (taken as gaussian) while the oscillating
phase iskpr (on replacing V, by vector V. the
diagram becomes a screw thread since 4/0 includes
#he phase of the eiectron about the ambient magnetic
field).

From (1.36) we see that as time t increases the
oscillations become more and more rapid and eventually
those particles on the edge AB become averaged over
the region represented by the two gaussians ABCD
(since the fine structure must smooth out owing to
the large gradients in velocity space and the sube

sequent operation of the Fokker Plank term), The
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distribution then becomes a S:i.n-"l y function (see
above figure) and is joined smoothly at the two
boundaries ACB and ADB., However at these boundaries
one expects the rate of change of the partiele
distribution with respect to pitch angle, 2£ s to be
particularly large. The result of this isago give
an enhanced growth rate in the region where the
boundary is mnear vertical, (i.e. AC and BD) sinee¢
the growth rate depends on the integrated effeet of
CES over the vertical v, coordinate, (see equation
?g.sz) above). This, in fact, shows up in the full

computation and is reproduced qualitatively below,

N
V.L

s

/,{ ’\~/ A.C.Das {1968)

)
N
N7
7



The orders of magnitude of ﬁfo, 6%‘ and 6vz
jabelled in this figure will be investigated and used
in the next chapter, where wave packet propagation

is examined carefully., However, before passing on

we notice that the presence of a loss cone is essential
to the mechanism and was taken as a step function in
the analysis (any variation can be built up out of

such step functions). The distribution was taken

as slowly varying outside the loss cone and zero inside,

(The edge was not really assumed sharp since then
ar
O

the boundary is essentially responsible for the

=20 ), However the rather sharp transition at

background noise (represented by the finite ambient
growth shown dotted on the above figure). We also
notice that non-linear effects on the particle tra-
jectory have been neglected in this model.

In a nonuniforw ambient magnetic field such an
enhancement of growth rate can generate frequencies
outside the wave number band located between A and
B by the resonant conditions (Dowden (1962)). The
mechanism could thus be responsible for the production

of discrete V,L.,F. emissions.
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1.3 Particle Trappiang and the Application of

Liguvillc's Theorem

Firstly we investigate briefly one of the more
important phenomina which arises when equations (1,25)
become non-linear, that is, we shall examine the
mechanism of particle trapping. In order to.see how
this phenomina arises we look at the last of equations

(1.25) which we shall write in the non-linearized

form.
av lal s3 {Egi o ) i
—= = -~ |Q} Sin kl,“ where lQ‘ = ;(_Y.L + .Y-_L)‘n \-]2-i
dt . r 4

and di is the angle between V, and
i

We know that for resonant electrons

& - g -w® -la] = o.
dt res
Suppose that v"° becomes v"O + v"' then we shall
have res res
J/
_Cl...x = - kv !
at "

Now consider resonant electrons in the vicinity

¢?= Tox ? where g is small, for these electrons
] ‘ b

dvz' (iJ

—_ = EQ! Sin ¥ (i) and ——S =-—kvz' (ii)

dat 3 dat
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(Notice 1Q} depends on the pertmbation wave field b).
These two equations are coupled and show clearly the
mechanism of particle trapping. Thus equation (i)

says that if I > O, then v, ' is increasing with res-
bl
pect to time, equation (ii) then says that ¥ is

decreasing and will go on decreasing until ¥ < 0;
)

however the direction of change of and VZ' are

\:\’”‘('G

then exactly reversed. Hence ¥ and vz‘ oscillate
about zero and form closed orbits in the phase space
of ﬁ and v, thesé particles are referred to as
trapped particles. Thus after Dungey (1963 )2 we may

draw the diagram below (very gualitatively)

'*-~m.;u- ) untrapped particle
orbits

The effect on the particle distribution f can be found
since Liouville's theorem states that f behaves like

an incompressible fluid in phase space.



Since f£° = f£o(v, VZ) , equation (1.7), the
lines of comnstant £ are horizontal in the diagram
prior to the disturbance. However the closed tra-—
jectory of a given particle will stir the distribution,
i.e. since £ is comnstant following the trajectory
of a particle in phase space,the dotted line Dbeing
a contour of constant £, will be wound up as shown.
(The Fokker—Plank term will obviously take effect
and result in a smoothing of the distribution). The
associated change in V, is very easily found from

equation (1.29)

m[YLZ + (VZ - w/k)zj = constant.
Hence
dv
2 = L < (VLZ) (see also Stix (1962))
dt w—kv" dt
dv o av
or —_—t L—l z where we have used the
dt kV dt

L

resonance condition.
An exact analytic solution for the trajectory
of an electron in the field of a Whistler mode wave

has been derived by Laird and Knox (1965).
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Contribution of the Present Work

The contribution of the work presented in the following
chapters is essentially that of deriving descriptions of
the eclectromagnetic wave field of narrow band wave packet
distrubances, with particular reference to the Whistler
mode.

In Chapter (II) we investigate a wave packet solution
of the formal cold plasma equations (essentially the cold
plasma wave equation). Although such solutions can
always by synthesised froﬁ their spectrum of plane wave
solutions it is found that by demanding the disturbance
satisfy the reclevant wave cquation, all the information
about its behaviour beconcs readily available, Surprisingly
(in this uniform linear treatment) some new and quite .
interesting results and iﬁsights can be obtained, in
particular when the chosen disturbance or wave packet is
unstable.

In Chapter (III) we go on to investigate the same
problem when the basic plasma eguations arc those of
hot plasma theory. Stix has pointed out that formal cold
plasma theory denics the very nature of hot collision
free plasmas in which of course the plasma particleé
are not fixed (in average position) in space (as in cold
plasma theory), but are almost completely unrestrained
by the forces which normally operate in a fluid (c.g.

collisions). That is, the particles within a given
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volume eiement at one instant can be found located over

a widce region of space only seconds later. In describing
rigourously wave-~like phenomena in such a media (especially
when it is non=uniform or time dependent) one must work
in terms of the distribution function, which of coursc
obeye Liouville's Theorem. However, one normally evadesgs
this issue (in the uniform case) by working in terms of
individual Fourier componcnts, The cold plasma theory
can then be made to emerge formally by taking the limit

of zoro thermal speecad in the particle distribution

(Stix (1962)). 1In this chapter (i.c. Chapter (III)) we
show how the cold plasma wave packet solution of Chapter
(II) also satisfies the hot Boltzmann Vliasov cquations.
The rather crucial point that emerges in this chapter is
that the "memory" of a given particle is finite and that
it does not really "remember! the electromagnetic field
in which it was located in the distant past. One can
also sce from the analysis that this dephasing of the past
history of a given particle is a characteristic featurc

of hot plasma theory.

In Chapter (IV), wec attempt a similar wave packet
problem when the ambient magnetic field is non-uniform,
The cold plasma theory is briefly discussecd, the situa-
tion being clear. Thec hot plasma wave equation is then
tackled in the light of Chapter (IIXI). The behaviour of

a choscnwave packet is determined on defining it to be
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a solution of the hot plasma wave equation. Unfortunately,
the analysis is plagued by the fact. that one is forced

to make approximations, which must of course be self
consistent,

In the final chapter (Chapter (V)), wc look for
monochromatic wave solutions of the hot plasma wave
equation. The treatment is rather casicr than that of
the wave packet. A brief rcview of gyroresomnant phenomena
is then included and suggestions for further work arc
rade,

In esscencey the contribution prescnted here is that
of showing how one nay use the finite memory of a chosen
particle to derive solutions of the wave equation and
hence arrive at a description of wave=like phenomena in
hot, collision frec, non-uniform and time dependent
plasmas.

Finally, for completicness, a paper on the modulation
of cosmic rays, written by the author during thec coursc
of his first year of rescarch in the field of space

physics, has beecn included at the cnd of this thesis.
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Chaptexr 11

THE LINEAR THEORY OF GROWTH AND DISPERSION OF WAVE,_PACKETS

Introduction

In this chapter we examine the fundamentals of
growth (or damping) and dispersion of wave;packets
propagating in the Whistler mode along a uniform
ambient magnetic field §? = 2 B°. That is, we examine
the effect on the electromagnetic field of a given
disturbance of both (a) the preferential growth Or
damping) of certain frequencies and (b) the fact that
the different frequency components do not travel with
the same velocity in a dispersive medium.

We shall take the point of view that the disper-—
sive effects are well described by the cold plasma
approximation and we use formal cold plasma theory
in the investigatioﬁ>of these effects. The growth
(or dampingj bf different frequencies is, of course,
by necessity a finite temperature phenomena depending
on the free streaming of those particles in cyclotron
resonance with that frequency component of the wave.
In the next chapter it will be seen how basically
the same equations evolve from the hot plasma theory.

It is well known that in the linear theory one
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may always use the techniques of Fourier transforms
(i.e. one may use the principle of superposition of
plane waves to build up any chosen disturbance). These
techniques are so well known that, although we shall
call freely on the dinsights which they give, we will
give only the briefest fossible review of them and
refer the reader to some of the standard works.
Basically we derive the equation of change of
both the phase and amplitude of the wave field of a
chosen disturbance. The method of deriving these
equations is novel but must, of course, have an
equivalent treatment in terms of Fourier integrals.
However, some new results are obtained and some
interesting points raised by a close investigation
of these equations. The work has been done with
particular reference to V.L.F. emissions, where the
instability which genéraﬁes the emissions is probably
due to wave-particle gyroresonance (Bell and Bunemann
(1964)). As noted, this type of instability becomes
operative under conditions of anisotropic particle
distribution with respect to pitch angle (for example,
anisotropy due to the bresence of a loss cone). A
typical suggestion is that the propagation of waves
(e.g. atmospheric Whistlers) causes changes in the

zero order distribution and this in turn gives rise
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to enhanced growth rates and hence emissions. The
dtailed structure of the emission would seem to depend
(at least in part) on the non-linear pitch angle dif;
fusion of electrons probably in the region of the loss
cone in velocity space, A. C. Das [1968].

The effect of pitch angle diffusion of particles
into the loss cone has been studied and agreement
achieved with some of the observational aspects of
the associated precipitation, Kennel and Petschek [1966].
However, a great deal of work remains to be carried
out on the details of the stimulation of emissions,
the mechanism involved being presumably this same
diffusion process. An ipvestigation of the linear
theory of wave-packets cannot produce a new mechanism
for the stimulation of the emissions but can describe
certain aspects of the causitive atmospheric and of
the emission itself omce it has been produced.

The concepts of wave-packets and group velocity
stem directly from applying the techniques of Fourier
Synthesis to the problem of finding the general solution
of a given wave equation (linear partial differential
equation). The solution can always be expressed in
terms of a spatial transform over the spectrum éf
plane waves. (This spectrum is given by the Fourier

transform of the initial disturbance). The plane waves
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are chosen in such a way as to be particular solutions
of the wave equation, i.e, their frequency and wave
number are related through the dispersion relatiom
Dlw,k]l = O.

Thus the general solution takes the form of a

Fourier integral

+ 50 )
d}(z,t) = [ax) el(w(k)t - kz) dk (1)
. 2 -

+ 00
i < . + i
where A(k) = a(k) e1H (i) = fi#(z,t=0) e ikz dz

—
(ak), H (k) being real), and w = w(k) is the dispersion
relation solved in terms of the frequency (assuming

only one mode present).

The integral (I) can seldom be carried out in
practice and it is approximations arising out of attempts
to evaluate it which give rise to the ideas of wave-
packets and wave-trains. (The former from the method
of unresolved waves and the latter from the method
of stationary phase). For a full review of these
approximations, see, for example, C. Eckart [1948]
or J. Jackson [1963],

Since any spatially bounded disturbance %/(z,t)

G.e. one for which ?J(z,t) > 0 as z -> =% ) may be

formed by superposing many real wave numbers in the
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form (I), one may ask what happens when some of these
real wave numbers give rise to complex frequencies.

The criterion for stability used by most authors is

whether the dispersion relation D[w,k] = O has solutions

for which real k give rise to complex frequencies w(k)
- ' +urt
such that (z,t) contains terms of the form e .
where wy = Im (w). If individual Fourier components
of the wave-packet q}(z,t) grow without limit (with
time) the wave-packet as a whole may still not become

infinite at a fixed point in space (basically because

4J(z,t) becomes for large t

ta
<
Bt Alk) e

- 8

wp(k)t i(or(k)t - kz)

e+wIt le(k)t becomes

and as t —->o¢ ->oL , However e

a rapidly oscillating function of k so that %b(z,t)

is an indeterminate quantity of the type 0 x =),

Twiss first pointed out that two types of instability

are in fact possible, di.e. a spatial pulse may grow

in two distinct ways as shown in (i) and (ii) below.

44z,t) (i) 4ﬂz,t)

ey

where tl<t2<t3 where tl(t2<t3
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Thus the wave-packet initially finite in z may
grow without iimit at every point in z (see (i)) or
it may "propagate along' so thé amplitude 4J(z,t)
eventually decreases at any fixed point in space (see
(11)). (The labelling is obviously not frame invariant,
i.¢., (i) becomes of the form (ii) on transforming to
a frame moving in the negative z direction with uniform
velocity). A physical interpretation of the difference
between (i) and (ii) is that (i) has an "internal
feedback" mechanism~while (11i) has not. An instability
of the type (i) is known as an absolute or non-—convecting
instability while type (ii) is called a convective in-
stability.

A closely related problem is the interpretation
of roots of the dispersion relation where W is real
and k is complex. That is, what is the sinusoidal
steady state response of a system at given real fre—
quency w (if, in fact, this is possible for the system)
when there are '"mormal modes" (i.e. solutions of the
dispersion relation for k at ®ame chosen w, or vice
versa) which have k complex. For example, in a
passive system such as an empty wave guide the imaginary
part of k must imply evanescence in, say, the positive
z direction rather than amplification in the opposite

(negative) z direction. In more complicated systems
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when there is a '"pool" of energy available the situation
is often not at all clear. (Notice that the terms
amplifying and evanescent always refer to the casec in
which w is real while k is complex). Sturrock[l958]
first showed that a convective instability is the sane
thing as an amplifying wave, the only difference being
in the form of excitation of the system being considered
(i.e. pulse or sinusoidal in time repectively).

The best method of determining the physical
meaning of the roots of the dispersion relation
Dlw,kl = 0 (see Briggs [1964]) is to consider the
excitation of these waves in the infinitely long
medium by é source that is of finite spatial extent
(i.e. from z = —-d to =z = +d) and which is zero for
t < 0, The response outside the source is then a
linear superposition of '"mormal modes!" of the system.
If the asymptotic response at fixed z is exponentially
increasing with time there is an absolute instability
present or if the asynmptotic response for sinusoidal
excitation is an oscillation at this frequency spatially
increasing away from the source one ‘has an amplifying
wave (or convective instability, Sturrock [19581).
One can write the response of a one dimensional lineaxr
system in terms of its Green's function K and source

function, i.e.
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q/(z,t) = faz' [at' K[t - f', z-z'] g(z') £(¢')

where £(t) = O for t < O and for convenience the source
function is taken to be of the form g(z) £(t). One

can always perform a Fourier transformation (for a
spatially finite wave—packet) with respect to space

for all times (because of the finite speed of propa-
gation of the wave;packet) and a Laplace transformation
wvith respect to time., For illustration the form taken
by the transformations for the source functions g(z)

and £(t) arec

R ' + O

o ~il il
glz) = & g() e %, g(k) = Jdz g(z) ™% ;
2T
+O02 g g - . N V t .
—iwt
£(t) = f L8 ey M, £@) = Jat £(8) T
—tled g ! o

where the integration ower frequency W is below all
the singularitics in f(w) so that £(t) = O for t < O.

Thus the response of the system can then be written

as
teo  +8 e ig ,
Vb(z,t) - j%% :%%: G(w,k) £(w) g(k) JLlwt=Iz) (1o

-2 -0 i

G(w,k) being the transform of the Green's function.
The character of the asymptotic limit of the responsc

in time can be determined by investigating this
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expression and.in the process the physical meaning
of the roots of the dispersion relation are determinod.
As the method of treatment of the problem is rather
outside the scope of this thesis we shall simply dis;
cuss the propagation of a spatial pulse a little
further, state the criteria (for distinguishing be-—
tween convective and absolute instabilities) and
discuss the physical interpretation that may be put
on these criteria. The interested reader is referred
to the outstanding publication by Briggs [1961,].

The usual definition of stability is whether
real k gives rise to complex . ®w such that waves growing
exponentially in time result. Any system which is
unstable by this definition will "blow up' in amplitude
even though it may appear to decrease in time at a
fixed point, this is because it could convect along
as it blows up. It can be shown that by letting both
z and t tend to infinity in (II) at a fixed ratio
(i.e. z = z, * Vt) then a velocity V = V_ can always
be found for which the wave-~packet appears to increase
exponentially with time at the maximum growth rate of
the unstable waves (i.e. maximum imaginary ® for real k).
Thus, if the plot of Im (w) v Re(k) is as below, then
it can be .shown that an observer moving with velocity

3 :

Vo = 3% (wR) wiill see a disturbance growing

k=k
o
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Mot + Im(w)

Briggs [1964] proposes V0 as the "propagation velocity"
of a pulse in such an unstable medium.

The statement of the criteria is as follows:—
(1) To decide whether an unstable wave (i.e. one
for which real k gives rise to negative imaginary w)
is unstable in the absolute or convective sense one

RELATION

maps the dispersion,from the W plane into the k plane
(usually it is most convenient to map lines of constant
real w). An absolute instability is present whenever
there .is a double root of k for some ® in the lower
half W plane for which the two merging roots have
come from different halves of the k plane (upper and
lower). Only merging of roots from the upper and lower
halves indicate an absolute instability, otherwise
the instability is convective.

In passing we also state the criterion for the

related problem of evanescent and amplifying waves,

Briggs [1964].
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(2) "To decide whether a given wave with complex k
for real frequency  is amplifying or evanescent,
determine whether oxr not imaginary k has a different
sign when the freguency takes on a large negative
imaginary part, if it does then the wave is amplifying
otherwise it is an cvamnescent wave."

One may interpret physically the merging of the
two roots of k from the upper and lower half k plane,
stated in (1) as follows:—

Consider an infinite system excited .at z = C, if
the source has complex ® with imaginary ® larger than
any growth rate of the unstable system then the waves
must all decrease in amplitude (e.g. decay in ampliQ
tude implying that imaginary k > O for the response
when z > 0) as onc moves away from the source (this
is demanded physically by causality). Suppose now that
k+ and k- are the wave numbers which appear for z > 0O
and z < O respectively. For example, for z > d omne
can close the Fourier integral in (II) in the lower
half k plane; this closure allows the integral to be
expressed as a sum over appropriate normal modes by
the theory of residues (i.c. since the Green's function
G(w,k) has poles in the complex k planc, for some
fixed compiex w on the Laplace contour, at just the

"normal mode" wave numbers. These are roots of the
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dispersion relation D[w,k] = O which have k in the
lower half Xk plane and where W is some frequency on

the Laplace contour. For the full trecatment of the

analytic continuation of the Fourier integral as one
attempts to move the Laplace contour upwards in the

®w plane in order to investigate the asymptotic res-—

ponse in the usual way, sce Briggs [1964])., If we

now imagine the growth rate of the source to decrease

then for some frequency W Whpg — io0g (say) one might

RS

have k+ and k- equal. The source causes.a discontinuity

in the response at =z 0 except when k+ = k-, in

Z_Oo

which case the response is continuous across

Briggs refers to this as '‘spatial resonance'" of the
because the

infinite system at the frequency Wg

o

presence of this responsc does mot require a source.

The situation is shown diagramatically below (after

response 4/

Briggs [19641).

response ‘!}fat fixed time at fixed time where
t A N it
| where k _ # It r =k
; - + -
; ’ (W= ~ic.) S
e . RS S /’
N A7 ™~
: . . N /
o " \\ 5 Nz et : . / I N Z 3 -
\,, v \"\-/J ~ “\.......—‘/ A \\ /.' “
. \‘\‘~ /,‘
{ ~ik = . —ilk o ; -
Uiomw e (;‘: s @ i
z<0 [ 2>0
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2:1 The Equation of Change of Wave-Packets

In this section we will not write the electric
field in the form of a Fourier Integral (as in

equation (I)), but choose it to be of the form

E(z,t) = Rele_ o1 (wt=kz) G(z,t) (2.1)

Y
)

-

where Ré stands for the real part, and e.= (§9x+ ;iey),
e, and ey being constant amplitudes.

In this equation G(z,t) is an unspecified envelope

slowly varying in space z and time.t, and is in general
a complex quantity. The description slowly varying
will Decome clear below. If we choose e, = ey in the
expression for g, above, E(z,t) represents a plane
(%; = %; = 0) circularly polarized (in the right handed
sense) wave—packet propagating in the z direction.
This choice for the electric field gives a description
of most reasonable Whistler mode disturbances over a
limited range of space and time. One can study the
polarization properties of a more general disturbance
by introducing a separate envelope for the x and ¥y
components of E(z,t).

The equation of change of the 'envelope' G(z,t)

is determined as follows. On determining the dispersion

relation for plane waves the electric field behaves as

ei(wt - kz)



§
so that we may replace %F by iw, and e by —ik (2.2)
0

in the relevant wave equation, D[—i%g, iz=1 = 0,

giving rise to the dispersion relation
Dlw,k] = 0 (2.3a) or w = F(k) (2.3b)

assuming only one mode.

However from equation (2.1) we notice that

g— = iw + T and g— = ik + 0 (2.4)
ot Bz_

iwt O —-iwt
where T = elw — e'lw

0t
(2.5)
and o Elkz g_ elkZ
0=

That is, T and £ represent operators which if
used on E(z,t) determine the rate of change of G(z,t)
in time and space respectively. The relations (2.4)
when put in the same wave equation will give rise to

the 'dispersion relation'

Dlw - ity k + i%] = O (2.6a)

or w -~ it = Flk + 3ix] (2.6b)

For example, considey the cold plasma dispersion

relatione.
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The linearized equation of motion for electrons

using formal cold plasma theory is

dv' ..Y.,\_B.o
m= = - |&£|(E + ) (2.7)
dat c

(using familiar notation) and hence

2
- - i1y = Jél- n°E (2.8)
dt m
where the current density j = ~iginoz', the perturbations
A
are functions of z and t only andlgo = zB°.

Hence

I£1 n°E

i = —3 . (2.9)
mﬂag - @d]
The Maxwell equations
db
VAE = ..l'-—: and
c 0t
(2.10)
0E v
v.}l = .:.l‘...:.:.;-é...
A c 0t c
give
..Efg = lﬁ.y.lg.rg& (2.11)
P 2 3t2 o2 Bt

Equation (2.9) combined with (2.11) becomes
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2 2 2 n° 2

D=E 1 2B g lel2 m 5%

azz 02 atz 02 EQ— - iLﬁg
at =

On using the relations (2.2) we arrive at the Appleton
Hartree dispersion relation for Whistler propogation
along the field line, i.c.
2 5 2 0o ®
WS - k% = —E (2.13)
(w =1
(see also equation (19 ) Chapter I ).

However, on using the relations (2.4) equation (2.12)

becomes
w 2 .
(@0 = i7)2 = (k + i%)2c2 = »p [w-irl (2.14)

[ - it] - Ul,j

We now treat k + i% as a complex variable and
Taylor expand F about the point k in equation (2.6b).
(It is slightly simpler to use (2.6a) rather than

(2.6b), the latter is, however, in the same form as

(2.14)).

Hence
"4 2 ,2 (
w - it = Fx) + ipdE), G2L)7 d g k),
' dk 21 dk
(2,15)
or
36(z,t)  _ _ dw 8G(z,t) _ i_ a%w 2%a(z,t) (2.16)

2

ot dk 0z 2! dk 622
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where we have used the identity (2.3b).
The condition that G(z,t) be slowly varying is taken
to mean that the expansion (2.15) is a good approxi-
mation for F[k + i7Z].

Equation (2.16) allows for the possibility of growth
or damping. That is, in eqguation (2.3b) F(k) may be
complex (though k will be assumed real throughout).

If we choose to represent the electric field in this

case by
E(z,t) = g0yt = kz) G, (z,t) (2.17)
: ¥t
where = o - 1%‘ and G; = e G (2.18)

and wo,fx are both real and positive, then equation

(2.16) becomes

96y W _ 4w e _ i a®e 3%a (2.19)
= A% - T T TS -19
at dik 0z 2! dk~ 0=z

Equation (2.19) becomes equation (2.16) on differenti-

ating the product

S [e¥tG] on the left hand side and dividing through
ot .
by et gince g”is not a function of z.

The two 'envelopes' G and Gl will not be labelled

specifically in the work that follows since it will

be obvious which envelope we are referring to from
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relevant equation of motion,

Obviously the method we have used here will not
work for non-linear wave equations, and is equivalént
to the Fourier integral treatment of the problem. This
point will become clear when we solve (2.16) formally.
However omne can always write down the electric field
in a form most suitable for the problem in hand and
then use an analogous procedure to the expansion
technique we have used. This may well have some
advantages over starting the investigation from the
Fourier integral, depending rather on the information

which is being sought.

2.2 Process Determining Phase and Amplitude Changes

In this section we shall use equations (2.16)
and (2.19) to acquire some useful physical insight
into the processes governing wave~packet propagation.
The discussion presented is likely to be helpful
when one goes on to consider the same type of problem
in non-uniform or time-varying plasmas; the former
problem being attempted in detail in a later chapter.

Thus far we have chosen to work purely in terms
of the electric field. However it is fairly obvious
that we could derive a similar equation describing

the behaviour of the associated magnetic field.
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Thus the magnetic field b(z,t) associated with the

electric field

Bz,6) = e ot(0F = ¥2) g5 ) (2.1)
is

bz, ) = b o'W =¥ g (4,1) (2.1a)
where Eo = (%’bx+ ? i by)’ a constant amplitude, and

Gb(z,t) the wave 'envelope'.
It is almest self—evident and will now be verified
that the envelope Gb(z,t) will obey an equation of the

form (2.16) or (2.19), i.e.

2 2
; 3%aG

86y _ VG _2@.5_610_&__%2_%__510 (2.19a)
ot dk 0=z 21" dk” 0z

Rather than going back to the beginning and reworking
the treatment already given, this time eliminating
E(z,t) rather than b(z,t), it is more instructive to

use the relations (2.1) and (2.1la) and the Maxwell

equation
b
V.E -1 2 46 show that:-
c 0t
kce kce
= - =ZFY - —_— X d
Px . Py o an (2.2.0)



_ “w’ _i(wt - kz)
where Q = e —i%. ©

is a differential operator.

Thus equation (2.19) may be written

3 A A~ dw 9 i a% 8%
—[aa 1 - 4[Q ]+-—-—-—[QG]+—-——~———-—[Q 1l =0,
ot Gb Gb dk 0=z 21! dk2 6z2 Gb

It is a simple exercise in differentiation to show
o "3 2% A
that the operators — , — y Tg all commute with Q

ot 0z 0z

in this equation, thus

aGb Yo + 4036 3;_££32 9> ey L o
% dk 0z 91 dk2 93z2 (2'2'1)
N

from which we derive equation (2.19a) since Q?E O.
Equation (2.16), together with G(z,t=0), fully

specifies G(z,t) within the limits of the above approxi-
mation. The first and second terms in (2.16) show that
G propggates at the group velocity, while the third
term shows the effect of a  spread in group velocity
at each point in the disturbance. In the frame in
which the group velocity is zero and provided there
is mno instability or damping (more precisely
%“— - 4 X\— 0 (2.20) equation (2.16) reduces to
dl

the Schrodlnger equation for a free particle. A dis-

cussion of the free particle wave-packet is given in
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any standard work on Quantum Mechanics .e.g. R. Sillitto
[1960], and the picture of the diffusing envelope is

familiar. On writing

G(z,t) = A(z,t) eﬁ(z’t) (222)

one may also show

4. [ av a?® - o

dt A"
in the same manner as conservation of probability current
is established, i.e. multiply equation (2.16) by the
complex corjugate of G (i.e. Gx), write down the com~
plex conjugate equation and multiply it by G, add the

two resulting equations to find

8A2 | aw 0A°2 i a2w | x 9%a 326>
La L d Oa = ...-—-———sz —5 - G —5 (2.232)
5t dk 0z ot ar® L 8z bz

On using the identity
2 2
x V% - yVx = V. (xVy - yTx)

on the left hand side of (2.21) and integrating over

a volume V bounded by a surface s, we have

. 2 b d
S fava? = L g0 jds{ﬁ*-@—@— gy (2.2.4)
dt V 2! dk S 0z 0z
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where we have used Green's theorem to go from a volume
to a surface integral. By letting the volume go to
infinity the surface integral vanishes and the stated
identity results, which now implies that the energy
of the wave field is counserved.
The presence of growth terms (i.e. terms containing
%r, Sﬁf, sz; ) give fise to some interesting effects,
dk dk
particularly interesting in view of the results of
Das [1967]. Thus we now find the equations governing
the behaviour of the amplitude A and phase @ of the
wave packet since the effect of these growth terms is
not best understood from equation (2.19) as it stands.
The relation (2.19) is really two separate equations,
one real and one imaginary. Thus, on separating it
into its real and imaginary parts by use of equation

(2.22) and rearranging the terms for more convenient

discussion we find:-

2 2 - 2
L=_299A+9__<;z2@.%+m,ﬁﬁg“igﬁ(g@) A
o0t dk 0z dx“ 0z 0=z dk dz 2 dk Oz

248 A2 2 2
S1a% 0%, 1 et 2%, (2.250)
2 dx“ 0z 2 dk“ 0z
2
g dw 0g 1 aw a¢2A+§I.a_é_ﬂ.gg.ié
A== = — = A+ = =5 (=) dk 0 ax® 9z d
ot dk 0z 2 dk 0z Z Z az
2 2., . 2 2
_1af0e, 14w (2.25b)

2 2

2 dk 622 2 dk 622
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(These equations (2.25a) and (2.25b) were derived from
consideration of cold plasma theory. In the next chapé
ter we shall discuss explicitely the same problem in
terms of rigorous hot plasma theory).

The two equations (2.25a) and €.25b) are, of course,
coupled. However, each term in these equations can
tell us something new about the propagation of the
wave—packet, the propagation characteristics of the
disturbance in a given situation, depending on which
terms are dominant. Thus we shall take each term and
investigate its physical significance. Consider
(2.25a) first.

The first, second and third terms show tha{ there

exists an effective wave number k £ given by

ef
1{—-9—@ i.e.
0z
k =9 phase of the disturbance (2.1) (2.26)
eff: 3z

and the amplitude (at each point) is propagated at the
group velocity which corresponds to this wave number,

i.e. the effective group velocity is

aw (1) ]
dk

k = I phase of (2.1)
0z

Similarly the fourth, fifth and sixth terms ghow that
the effective growth rate is also that corresponding tc
k i.c.

eff Y(k)‘ -

0
Pk = = { phase of (2.1)}
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The seventh term is quite interesting; it shows that
the amplitude diffuses at a rate determined by the
second derivative of the growth rate with respect to
wave number. At a maximum of the growth rate (with
a2y

= 0 and T2 < 0. Thus,
T2

respect to wave number) i
~

will be

if the growth rate is sharply peaked 2
large and negative and as time progresggs the spectrum
of the disturbance will also become progressively more
sharply peaked, This sharpening of the spectrum implies
a widening of the disturbance. (This result stems from
the well known Fourier Transform 'uncertainty relation'
Ak Ax > 1). Thus the continuous sharpening of the
spectrum will result in a progressive broadening of
the disturbance which appears in the forg of positive

¥

ak>

(implying damping), the opposite is true; one then has

diffusion in amplitude, Of course, if is positive
an effective broadening of the spectrum and hence a
narrowing in spatial extent of the wave—packet. This
case of negative diffusion results in bumps and irregué
larities sharpening with time, rather than smoothing
out, as is the case when the "diffusion coefficient"

is positive,

The eighth and final term in equation (2.25a) is
of the same type as a growth or damping term. We now
show that the effective growth or damping decrement,
;gf@_azﬂi

5 T 5 9 has fairly clear physical origins.
2 dx” 0z
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Since

a2 a )
— = = group velocity(
dk dlc 1
and from (2.26)
2 -
e . 9—-{3 L s the product
2 eff
0z 0z |
2 2 ]
Q_%.ng. is of the form - 2—- group velocityl .
dk” 0=z 0z J

It is natural that such a term should lead to growth
or decay in amplitude. Consider some point on a waveé
packet propagating in the positive z direction, where
the group veloéity is decreasing with respect to =z,
then in that region the wave will "concertina" on
itself, and the amplitude must build up. The argument
is reversed for points where the group velocity is ine
creasing with respect to z. The sharper the gradient
in group velocity, the more rapid the corresponding
changes in amplitude. (This term has the same nature
as the final equation in (2.25b), see below).

The energy We contained in the electromagnetic

field of the wave is given by

)

(E(z,t)1% + |b(z,t)] 2
8T

W
e

(2.27),
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the equation of motion for this quantity is going to
be essentially the same as that for A2, That is
4 2 2 2
W= {‘eaa A% + {bol? ap 1{
e
81T
L ")

 where we have also replaced G, in equation (2.19a) by
i 2 2
Abel¢b, ifo‘ ’ iEo; are constants,., The equations of

motion (2.19) and (2.19a) for A and A respectively

2 kzc2 2
are identical. (Since ibot ™ = “5"?30} we may often
W

neglect the energy stored in the electric field). We
may find the equation of motion for A2 in the same manner
as we derived equation (2.21). However, it is simpler

to multiply equation (2.25a) by A.

Thus
aa2 o dw ! A2 a2y . a2%a . a2%w 3%g .2
—— = zyfA - - 5 A 5 + > 5 A
ot g ak | 9z dk®  9z°  dk” 0z
o= b
k keff L-keff
(2.28)

This equation is really an improved version of that
derived by Kadomstev (1965). The discussion of the
first three and the finalvterm is not changed from
our previous discussion of equation (2.25a). However
we can see that the fourth term cannot be put in an

appropriate form. It may be replaced by

a2y L 8%A _ (0Ay%y
dic 2 0z 0z
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the first term in this bracket also corresponds to dif-
fusion (in wave energy). However the second does not
appear to describe a simple physical process in terms
of wave energy. Since the whole term derives from
diffusion in amplitude we see that for cases in which
growth rate derivatives are significant it is simpler
to think in terms of wave amplitude rather than wave
energy.

The discussion of (2.25b) is in some ways analogous
to that of (2.25a); the discussion can also be in terms
of changes in frequency, W + %% s, of the wave packet
(see below). The first, second and third terms show
that the points at which the phase modulating function
#(z,t) is constant also propagates at the group velocity
defined by the local wave number k_.. (2.26). Similarly
the fourth and fifth terms show that the derivative of

the growth rate is evaluated at the wave number keff’

i.e.

A

alj 2a 1
¥

dk| 8z A
1
I ze=x

eff

This term has a clear physical origin. However, before
investigating its roots it is worth thinking in terms
of individual Fourier (or plane wave) components, in

the more conventional manner, rather than total phase
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and amplitude. Individual wave-—number components will
grow at different rates, i.e. Y =7(k); the effect of
this growth on the amplitude is to introduce the term
'}([keff]A. It is interesting to see that the integrated
effect of growth of these wave-—number components on

the disturbance is to produce a growth term evaluated

at the local wave number keff' Thus these two descrip-—
tions of the same process are interrelated in a rather
simple but not obvious way. (The appearance of }gtkeff]
presumably stems from the fact that over a differential
element of space 6z and time 6t a given particle will

tsense' that it is in a plane wave of the form

%%]6t - [k - %gjﬁz) )

el([w +
The effect of the preferential growth of different
wave;number components on the phase of the wave~packet

is less obvious and appears through the above term

4% 2A 1L

dk| 0z A
¥

kéff

A
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Thus if the local wave number ke,

°f corresponds to a

region in which the growth rate is an increasing

A
a o

% +ve as in the figure) we

function of wave number (
expect the wave number components in the spectrum
which lie slightly to the right of keff: to dominate
those to the left as time wnrogresses, leading to a
progressive change in phase. This process will stop
once the wave number keff coincides with that wave

number corresponding to a local maximum in growth rate,

The sixth term in (2.25b) is directly analogous

to the seventh term in (2.25a). Thus as the spectrum
5 ;

2

1
sharpens (as it will when -
dk
see alsc above) the phase modulating factor diffuses,

is large and negative,

i.e. becomes more constant over a wider range of position

z. This correspoinds to a more constant effective fre-—

quency, W + %% (or wave number, k -~ %g) over a wider

range of position. That is, the phase variation of the
wave becomes more like that of a monochrometic wave
as the spectrum sharpens. This process also appears
in the form of positive diffusion when the growth rate
is positively peaked, the effect being reversed in the
case of damping.

The final term is closely related to the last

term in equation (2.25a), its origin is also clear.
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Thus it states that the phase of the wave packet in some
given region will change rapidly if the group velocity
corregponding toc I is changing sharply with respect to
wave number, this is best understood from the figure
below. (It is reasonable to assume that on including

higher order terms in (2.25b) this term would become

2 2
- %_Q_%z Q_%.i though this is not essential to the’
l 0z A
% argument) .,
'k=keff

ug (k) ﬂ\

In the (rather exaggerated) situation depicted those
wave number components tc the right of keff will propa-—
gate out of the considered region faster than those
components to the left. The phase or e¢ffective wave
number must change rapidly as a result, rather in the
same way as it must when new wave number components

are 'introduced! as a result of growth.
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The above discussion of these undeflying processes
makes equation (2.16) casier to comprehend. On the
other hand these same processes would be rather difficult
to forsee without the help of equation (2.16).

In the equations (2.25a), (2.25b) we notice that
all the terms may be divided into two types, i.e. those
closely related to the concept of group velocity, and
those connected with the growth constant‘X‘. All the
terms in these equations have a reasonably clear physical
origin in relation to these two ideas.

There are recally three reasons which justify an
investigation of the sort we have just made. The first
is that it has given some simple physical insight into
the mode of propagation wave packets in uniform media
when the regime is lincar, and in the process it has
obviously made clear what the linear thecory cannot do.

The second reason is that we have discussed fully
all the implications inherent in the inclusion of a
slowly varying envelopc in éome chosen disturbance when
requiring that it must satisfy the uniform cold plasma
wave equation. It will become clear later that such an
investigation is helpful in understanding the nature
of solutions (which also contain slowly varying envel-—
opes) which we derive in a later chapter when the plasna

is both hot and non-uniform.



Thirdly it is hoped that the basic equations (2.25a),
(2.25b) and their discussion will be of value in the
study of sonogram traces. In this respect one needs to
know how the sonogram traces are related to the rate
of change of phase and amplitude of the electric or
magnetic field of the input signal.

A sonogram trace usually consists of the output
response of a series of narrow band resonators as a
function of time, the gquantities plotted in two dim-
ensional cartesian coordinates (time being the abscissa).
The response of a tuned resonator to a frequency modu-
lated or gliding tone is well established [e.g. Barber
and Ursell (1948)]. Roughly the responsc of the
resonator will become maximum when the frequency
wlt) (=.%F [ phase of input signall]) coincides with
its own resonant frequency. The resolution in time
and frequency is determined by the band width of the
resonators, (the narrower the band width the longer
the resolution time, i.e. the wider the trace). This
relation is essentially in the nature of & Fourier
Transform, i.e. AW At < p, where y depends on the
characteristics of the resonators used. To the author's
knowledge no detailed investigation has ever been made
of the response of a tuned resonator to a frequency

and amplitude modulated signal. One expects the
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darkness of the trace to be closely related to the
amplitude A, and theinteresting effects are likely to
be connected with equation (2.25b) (though it is very
tentatively suggested that amplitude modulation could
give rise to fine structure in the observed traces by
analogy with side bands). Thus one expects the signal,
equation (2.1), to appear on a somnogram as a trace of
small slope in a region near the freguency w, the
deviations from this frequency being due to the terms
in equation (2.25b). (This is best understood by
writing the phase variation of the electric field in

equation (2.1) as

t £
Jifetenaer | ifle + 22 1ae

ot!' ).

In the introduction we reviewed the model of come~
plete stirring as developed by A. C.-Das {19671 and we
have seen how sharp pcaks in the growth rate result
from the interaction of a narrow band wave packet with
the ambient particle distribution. Typically we may
thus expect the growth rate derivatives to be large when
considering this type of magnetospheric phenonmina,

These large_derivatﬂﬁ not only lead to changes in
frequency, (w + %%), but also to a positive feedback

mechanism via "diffusion'" in amplitude (due to the
Sar

d 3)
2 .

diffusion coefficient ~ %
ak

Thus if one has a
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situation in which energy is supplied to the wave by the
particle distribution it will normally be propagated cut

of that region at the appropriate group velocity. How-

azy
ax

become sufficiently large the amplitude would diffuse

over, should the "diffusion" coefficient =— %

back and the disturbance amplitude would then grow
indefinitely in that region. Under thesc conditions one
would then presumably expect a "hiss!" or non-convective
type of instability.

It is not really the objective of the work pre-—
sented here to make a detailed investigation of the
appearance of various sonogran traces in an attempt to
identify which pfocesses are in fact dominant, nor to
suggest V.L.F, generation mechanisms. However omne
hopefully expects the discussion of the equations (2.25a)
‘and (2.25b) to be of value to workers attempting to find
answers to such problems. (Wotice in the magnetosphere
one rust also take into accqunt the inhomogeniety in
the ambient field; for example, the detailed appearance
of hooks is only explicabie in terms of both enhanced
growth rates and also the inhomégeniety of the ambient
field, e.g. Dowden (1962)).

In conclusion of this section it is worth briefly
investigating typical orders of magnitude of quantities

appearing in equation (2.16). In order to do this we
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use the model developed by A. C. Das (1967).

Starting from the well known cold plasma Whistler

mode dispersion relatiom

2 2 W
k ; - 1 +-h2 /w
w Wi

(1) > 22 - ay
dk. i3 P
2 A

(i) &L~ .B
dk hid

Thus taking typically & ~~ 10 km—l, W/ ””105 km sec'-1

(c.g. see Das (1967) we have

2
(iii) 2L 107 wm sec“l, 2—% ~o10% xm> sec T
dk dk

From Figure @ Chapter (I), page (L0D) we take typically

1"

for the labelled quantities 6% , 6v,, the orders of

magnitude
6@ o~ 1 sec—l

-1
6V'r»'10 kim sec
1

L -
We also take v ~+ 10° km sec 1 (e.g. Dag (1967)).
res
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. -3
From the resonant condition v = @ i ‘ we have
1} k
6l = K ov
dw
- V"
dk res:

and hence for the above orders of magnitude Bk r\JlO3
Hence roughly we may put

.ﬁr\iﬁ
dic ok

|

fs
O

W

2}
2
4]

(0]

0O

{

(iv)

ﬂl\)-—‘b—-— -
ax? (pk)?

]
i_.L
o
2y
8
1]
@
0

(v)

Comparing (iii) with (iv) and (v) we can sce that thesec

rough calculations alone are sufficient to show that the

derivatives of the growth rate can give rise to terms

which can dominate the propagation characteristics of

the disturbance. (Of course, if they become too big

the whole expansion procedure will break down).



2.3 The Formal Sclution

The formal solution of (2.16) can be found by a
Fourier Transformation technique. For reasons that

will become clear below we transform with respect to

ki = ﬁ - X , That is:;
1 il
SQe, ,t) = === fG(z,£) o™+ 1% az (2.29)
A2TIT =00
1 e ik
G(z,t) = == [S(k,t) e’ 1% dk, (2.30)
N2AT a0

Thus (2.16) becomes

1 n
85(k; ,t) [(=ik o' - (ik )2 2277 s(x ,t) (2.31)
3t 1 1 1
2 P
2,
where W' = 0} y w" = Qﬁﬁi
dktk dk \k
So:-
- 1 1 -J;.—au)-" < 2
Sy ,t) = S(k,) o FELOTE T ky ot (2.32)
+30 .
where S(k,) = g(z) 3+°1% g4z (2.33)
1 -3
Hence
+or  + o0 . o Ve ! iwhty, 2
G(z,t) = X jdkl fdz' g(z') elkl(z P AR t)+(—jg—)xl

277 = w0 -

(2.34)
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This equation represents an integration over the spectrum
of plane waves where the fregquency as a function of
wave number has been approximated. This will becone
clear if we consider a simple example.

Suppose we consider an initial envelope which is
a simple gaussian centred on the origin, i.e.

: .2
G(z,%=0) = g(z) = | —eE

. e (2.35)

A=}

and normalized so

+ o

jg(z) dz = 1

- .
Putting (2.35) in (2.34) and integrating over =z' first

we have
. 1 . 2., . '
1 + e -3 (a—1m"t)k1+1kl(z—w t)
G(z,t) = —=— [dik. e (2.36)
2“-—-:}(}-‘-
1
where a = Sa "

On putting the expression in (2.1) we recognise
(2.36) as the integral over the spectrum

2
NG /P (2.37)

e

1
2717

of plane waves where the frequency as a function of
wave number has been approximated. This type of
integral has been discussed rather fully by Feix (1963)
and also Kadomtzgevy (1965). On carrying out the inte-

gration in (2.36) by completing the square we find:-—
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Mz - w'tﬁ. 3

}
CexXp =) la - inmt]
G(z,t) = x (2.38)

1
[a — i0"t]1Z

It can, of course, be confirmed by direct substitution
that (2.38) is a solution of (2.16). However the
particular conditions of validity are discussed by
Feix and as expccted (2.38) is good in the vicinity
of its maximum...

If we put w = w_ ~ i}(o and use relation (2.1)

we sce that

L (zewe )y
E = Eo exp [i(mot -k z) + bot - - 2 j
2(a - iwo"t)

1
[a ~ iw"t]12
(2.39)

On assuming that the wave~packet has had suffiecient
time to distort so that the dominant wave number in

the spectrum is such that

S = ls) - ~ o = n it4
30 and Bo a positive

quantity.

Equation (2.39) bccomes

(z = 0_"t)%a - g;"t)z
R

E0 exp {(yot -

25

i
s

(z ~ 't)zw "t
2 2 + #(t)] (2.20)

exp i [wot -k z -
25
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2 2
where S = (av~ Y;”t) + (wo"t)

Cn w_ "t (2.41)
g(t) tan [ = ]
(a = gyme)

1

condition (2.40) becomes reasonable after large time
intervals we may then presumably neglect a in (2.41).

We then arrive at the situation discussed by Feix (1963).
-That is, the amplitude is given by

B " *: }
oL

[o)

2!
¥y s

( w | |
exp | Vot - (2 = w 't i i
’30 ‘2((1)0”2 + Bonz)t«- J

(o)

1
[[30"2+ (oo"ZJE At

The centre of the disturbance propggates at the group
1 .
velocity while the width increases as t2 as in a_dif= _
w”.,l_BH"
"o

. - 2 w0
fusion process. For group velocities wo' <2 Eo

BI!

o
the amplitude of the wave-packet will increase without

limit at a given peoint, i.e. in those frames the in-

stability is non-convective.



- 88 -

Chapter I1I

WAVE PACKETS IN A HOT UNIFORM VLASOV PLASMA

Introduction

In the previous chapter we investigated some
fundamental aspects arising from wave packet pro-
pagation in uniform media, The esgsential point
being that the medium.was described in terms of
cold plasma equations, That is the integrodiffer-
ential 'wave equation' of hot plasma theoxry was
replaced by a partial differential wave equation.

In this chapter we shall show how these same equations,
derived in the previous chapter, can also be derived
from a consideration of the full hot plasma 'wave
equation',

Suppose we consider for example the problem
of V,L,F, emissions, Then if at least some V.L.F.
emissions are due to wave particle gyroresonances
(as is generally believed (e,g. Bell and Bunenann,
1964)) then there are many processes which can com;
plicate the interaction and subsequent wave propagation,
The most obvious complication is that the ambient
magnetic field is not uniform. This fact has more
than one feature, not only do the varying plasma

parameters change the dispersion of the propagating
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disturbance (e.g. the gyrofrequency and wave number
will not be independent of position) but also particles
with the same v, will resonate with a particular
wave at some instant, but because these particles
will have a large range of V| they will subsequently
behave differently in the non-uniform ambient mag-
netic field. Other complications are not difficult
to imagine, any or all of the ambient plasma para;
neters could be functions of space and time, due,
for example, to the presence of other waves. (e.g.
It is well known that compression of the magnetospheric
boundary increases the pitch angle anisotropy of the
particle distribution and makes the plasma more
unstable). This . type of mechanism is really a wave~
wave interaction. The crucial effects on the emission
probably come via the resonant particles. All these
processes mentioned are likely to change the fre-
quency of the emission and some of them may weil
give rise to the characteristic sonogram traces of
particular emissions (e.g; Dowden (1962)}).

The problem of devising a mathematical description
of the propggating disturbance (i.e. finding solutions
of the appropriate integro differential wave equation)

in the presence of processes of this type seems a
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formidable task, In this section we show that the
method of charécteristics is a suitable technigque

for solving the Boltzmann—~Vlasov equations in this

type of work. That is, we solve the linearised
collisionless Boltzmann equation in the Lagrangian
system of coordinates. This method of solution in-—
volves integration over the zZero order particle
trajectories, in other words over their past histories.
The fact that emerges from this section is that one
does not have to go far back in time in evaluating

the trajectory integration owing to the finite tempera-
ture of the plasma. This result seens useful since

it means there is great scope for making approximations
in the type of problem discussed, and since it would

be impossible, in practice, to know the distant past.
In order to make this point clear we consider the
problem of wave-packet propagation as in the last
section. We show that the equation governing its
behaviour can be derived in a perfectly natural way
from approximations which are seen to be typical for

the type of problems we wish eventually to solve.
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3.1 Wave Packet Solution of the Vlasov Equations by

the Method of Characteristics

A discussion of the method of characteristics
is given in most advanced plasma physics texts (for
example, Stix (1962)). For the reasons we have already
mentioned we shall not assume plane wave propagation
in the treatment that follows.

Assuming the unperturbed distribution fq(x) to
be independent of space and time the zero order Boltz-
mann equation becomes:i~

- -—‘-iml (v,8) Y, £°) = o (3.1)
On transforming to cylindrical coordinates in velocity
space one can see that this relation is equivalent to

the statement
£2(v) = 27, v.) (3.2)

where v, and v, are the components of velocity,

perpendicular and parallel to the hniform ambient
ic fi B B 7 (3.3)

magnetic field B, = oZ ' 3.3) &

Assuming the zero order electric field to be zero

and using the usual perturbation technique, i.e.

2
flz,v,t) = fo(m,,v") + £'(z,v,t)
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s
]

B, + b(z,t)

E 0 + E(z,t)

(The perturbations being as in the introduction, and
their spatial dependence is on z only).

On linearizing the Boltzmann equation we arrive

at:—
of! 7 e {E‘j o ; _ (E‘l Y o
g: + X-fo - _ (zkg ).tzzf' = _;_ QE +‘XAb ).\]Vf
c

The left hand side of this equation represents
the time derivative of f' along zero order particle

trajectories (e.g. sce Stix (1962)).

Thus
- t o
£rz,v,t) = -\-g—j at' [E(z',t") + LaR(zr,60)7.88
m -0 c Ov!

(3.6) .
Here, as in the derivation of equation (2.16), we are
not considering the initial value problem.
Thus in equation_(3.6) we choose the electric

and magnetic fields to vary as :-

E(z,t) = (% e + 9 e.) ei(mt ~ kz) G(z,t)
(3.7)
bl(z,t) = (& b+ ¥ by) oilwt - kz) G, (z,t)
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where e_, e., b_, b are constant amplitudes as in
X v X Y

the previous chapter.

(We  assume EZ to be zero as it has already been ghown in

the introduction that the perpendicular and parallel

motions are decoupled in the linear approximation).

We use the same notation as in the previous chapteri-

G and Gb are slowly varying envelopes related to the

electric and magnetic fields respectively, where from

the Maxwell equation

VE = - L 42 we can show that:=
A—-
c 0t
b = .....k_c_ e H b = :-l-{.?- e 3 b = O (3'8)
X w Y Yy x Z

and

oil0t ~ k2) oo, 4y (L« iz:lk) Glz,t) el (0t = k2)
(1 - iT/m)

(3.9)
Hence putting the relations (3.7) in equation (3.6)

we have:—

1¥~

AR N
£'(z,v,t) = —‘-‘-—i—f dt'[G(z',t')[fc‘ex+yey]+eb(z',t')y_'/\

g

— ey

3’ ilwt' - kz')

A
[Xb_+yb_17-
X Y dv?

(3.10)

The integration im (3.10) is along the =zero
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order particle trajectory. The equation of motion

for electrons in the ambient magnetic field B = Bo%

is:—
1 [ O
oy = =|aly 2 (3.11) where Lﬂl = lélB (3.12) .
dt?t A mc

The sclution of equation (3.11) satisfying the
criterion that at t'= t, then v'= v and z'= z (3.13)

is:-—

V.' = V. Cos (6 - )
v,' = V, sin (8 - U (3.14)
VZ' = VZ
and hence z'=s z -~ VQT, where T = t - t' time measured

backwards from the point t, so:-

V., =V, Cos 8, Vy = V., Sin 6 (3.15).

From the relations (3.2) and (3.14) we find easily:—

o] [¢] '
oL = CES Cos (0 - UU'T)
ov! av;

o o
v ov

Yy 4
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It is a short step using (3.8), (3.14) and (3.16)
to transform (3.10) to the unprimed coordinates and
on separating out the right hand circularly polerized

mode we easily arrive at

i 3 o i o
£'(z,v,t) = - el 4 e i8¢ ar | 2L G[(z-v T), (t=-T) ]
i oL + o ‘{ 0v, "
. o o . —
B 35 3G [(a, ), (6-m) ] | G Vet IR 0
) "3 * v " J
£ " :
(3.17)
where A A -
B = f’fEE:—ZiEZ [ ilot - k2) (3.18)
-0\ 3 i
L2 J
and we have written t'= t-~T in the two envelopes G

and Gb’ also dt' has become —-dT. Hence:-

gl 2+ tee i
ilz,t) = - L)dﬁ% av V, [ av [e v £'(z,v,t)]
111 -
5 + 20 (o] { ~
[£1° j K
E J av [ ar{ gal(z-v T),(t-T)1- =[v g-hlG_[(z-v T), (t-T).
m —O'L-a.». 1+w i on w 1" b !
. - k»»
_el(kv” w + )T (3.19)
+ o0 e} ) 40
where g(v ) = [ ay g? k-1 Zﬂffoﬂ_dﬁ‘
o ov, o

(3.20)

- 3
and h(v") = e fdg»'gw £
o
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The remainder of this section will be spent in
what is essentially a discussion of (3:19): of course,
if we discuss the plane wave case (i.e. put G:Gb=l)

equation (3.19) becomes:—

jlzyt) = + & ZE f;: Ideg[w-—kv,,hhk} i (kv —0+ |SU)T
%k man i | w

(3.21)

On using (3.21) in conjunction with the two Curl Maxwell
equations, as in the introduction, and integrating

over T, (assuming the contribution from T = +¢@ is

zero, see below) we arrive at the familiar dispersion
relation valid for growing waves., That is, on elimi-
nating the magnetic field b from the two Curl Maxwell
equations and substituting (3.21) for the current

density we f£ind

2
W it + o }
(a) kzcz—w2 = - —E——~Idv JdT%Flﬁkv") kh} 1(kv —w+ lsithT
ng —co "+ o0 (uj

On carrying out the time integration in this equation,
assuming that the contribution from T = + & is zero

(see below), we .arrive at the familiar result

kv
(b) k202 g2 o, j+°0 (- —")g lca)}‘l
b k% =0 = ke |dv

) O (A kv" -{5)

where Im {(w) < 0.
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This equation is valid for growing waves Im (w) < O,
Compare this equation with equation ( .14) of the
introductory chapter.

We shall show in what follows that, written in
the form (a), this equation is valid for both growing
and damped waves. Of course, written in the form (b), .
analytically continue the equation into the upper halif @

pPlane using the Landau prescription, i.e.

2 kv kh
w “w + (1L .- —L)g + —

(c) kzcz—-w2 = B Idv W @
n - (0 - kv =i00)

o] [H

' 1w zw
+ ZWiS(l - kv")g + }c—b-l -

{ W wl n

o

(15U - w)

where Im (w) > 0, and as in the introductory chapter
we may write this equation in the form wvalid for both

growing and damped waves, l.e.
kv kh

2
w “w  +v0 (1.-_—u)g + —
(d) k2eZ0? - B P[av @ ?
n - " (0 - kv =15
o] 17
. ey 2
w_ “w
+ﬁ‘il(l ,_,LVH)g +.1_{£L.{.._L_
) coj n
. o

S dnl - w)

<

17
k
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3.2 Cut Off in the Orbit Integration due to Finite

Temperature

We now look a little more closely at (3.21),
thus by reversing the order of integration we notice

that it has the form

2 ) , + o0 . ] -
1l E_ [ar A "‘*’)Tjdv"F(v")e”u(kT) (3:22)
m bt - a0

where F(v“) is a function of v whose width depends
on the temperature of the plasma. We notice that the
integration over Vo is of the form of a Fourier

Transform, i.e,

) + O . (I(T)
.de"F(V‘ )elvn - = ‘;‘(kT) (3‘23)
- aa 1" d/

The wider the thermal spread in F(v") the more
sharply peaked its "Fourier Transform" 'g(kT) will
be. The integration over time which follows (3.23)
will be "cut off" at some point because L(kT) will
be effectively zero. The cold plasma in which F(v )
is a delta function and E(kT) finite even as T -> oo
is, of course, fictitious. However, any sharp peak
or gradient in the function F(v") due for example to

particle beams, the greater the value of T which is

important in that region of v . (This is analogous
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to the presence of more "frequency components" in the
"spectrum! ‘g(kT) of F(v”)..

We can increase our insight further by examining
this result diagramatically. The diagrams (a) and
(b) below are '"maps in relief" of equation (3.21)

in the ’V'”,T plane.

S T
(a) ! |\‘
t'\
il
[/
j {
o
[
; f
// '
e u
. // s : K‘
™ e '
£ !
Vi Vyy = —(w - !521) .
(v) k l’res.
2 F
{(e,g, F(Vn)&’e_a(v“‘a) see equ. (29) )} N (vy 1)
,-/"‘“‘"L\
T i
|
.
il }
—
{ v,
a

=
T
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In diagram (a) we have plotted lines of constant
phase of the integrand of equation (3.21) in the v ,T
plane, these are rectangular hyperbola centered on

v . In diagram (b) we have plotted F(v ) against

i
res

v,y which is constant for all T (at least in the linear
approximation ~ for example, c.f. quasi~linear approxi-
mation). We see that the further back in time we go,
the faster the cosine of the phase oscillates. Evene
tually the oscillations are so rapid that the envelope
F(v") can be considered constant over one period of
oscillation, the contribution to the integral (3.21)

becomes zero in the same way as:-—-

Lim [F(v ) Cos (v ) av (3.25)
1 u/a 1

a—>0

(F(v ) must, of course, satisfy Dirichlet's conditions,
which we know on physical grounds any particle distri-
bution will). We can again see from these diagrams
why any sharp peak or kink in F(v") results in a
contribution to the current j(z,t) in equation (3.21)
coming from larger values of T.

A particularly good distribution for discussion
is that of the anisotropic Maxwell Boltzmann shifted

in v,, i.e.



2 2 -
v 2.v ) = NoJo o~ W - q(vﬁ - a) (3:26)
L P 3/
T2
o . K = Boltzmann's constant.
where & = —— , A = e T, ,T are the perpendicular
2KT, 2KT" and ﬁarallel temperatures.
2w T« + oG
and N = [ae deLYL Idv £
o ) - "

This distribution is unstable when o > 6 (i.e. T, > T“).

Thus
' 2
hiv ) = = N e~ alv - a)
1" l
2 _ a"'-/-’-r.
g(v") = _.% Nle— a(V”~ a) where Nl = N[-TF

Equation (3.21) can then be put in the form:—

. 1 8- ]
-~ 2 B_+ 1{[& + - '—]
jlz,t) = + (21 E 4 1 2e._Oa I (3.28)
n MOJ-L W
where
- - 1en & - e
B, = [w-kagl, B,= [ /& 1]
and
o} N 'If‘ +‘\’) _ 2 .
I = far el(LJ - )T fdv” o a(v"— a)<+ i(kT)v,
+ o )

(3.29)

On putting u = (v"- aly (3.29) becomes
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o | - + o _ 2 .
I = Jfar 61051, W + ka)T fdu oo outE i(kT)u
+ ol -—

(3.30)

On completing the square in this section we have

o .
I far oL UM = @ + Ea)T - he Jdu e

¥ oo Z o0 20

(3.30a)
Written in this form we can see immediately that this
double integration will converge rapidly for large
values of u and T, for both growing and damped waves.
For example, taking magnctospheric numbers, since

o ==, where Vp = parallel thermal velocity, we
v 11

can say that the integration over time T effectively

cuts off when

2
(1cT) ~s 100 i.c. T/\‘—Jél— .
ba, va

Typically k ~;10 km-l

vT”mlO3 km sec T (Guthart (1964))
50 T ~u 10--2 sec.
In the magnetosphere we have a situation in which
particles are bouncing between mirror points and
drifting in longitude, if the integration over time

really had tc be taken back into the infinite past,

T = +a242, the problem would surely become intractable.

2 o c
4+ & 3 (1 -
(kT)“ - lu - 1(:TzJ
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If we formally take the limit T”.—> 3 in equation

(3.30) the integration over.u gives rise to a delta

function, i.e. ’§(kT) S S 5(T), see equation (3.23).
Iz

The contribution to the current then comes exclusively

from the region T => + O,

3.3 Application of 3.2 to the Wave Packet Problem

In order to limit the material in this section,
we will mnot discuss equations (3.26) through to (3.30)
further, but simply state that the integration (3.30)
can be evaluated. The resulting current (equation
(3.28)) is a complex guantity, and on applying
Maxwell's egquations we can derive an expression for
the growth rate (sece Appendix A).

We now show that the rapid convergence of the
integration over time can be put to use in the solution
of real problems. We return to equation (3.19) and
derive the equation of motion of the wave packet
envelope G as follows:~—

We eliminate the magnetic field from the two
relations (3.7) by use ;f the two Curl Maxwell
equations,

Thus:-—



0°E(z,t) 1 0 E(e,t) 4w
8z 2 c? 8¢ c” 0t

Since we have

— = diw + T and 2 = ik +% , this equation
ot , 0z

becomes : ~

2. .. o leo2 4 03
[~k G—-21kGZ+GZZ] = 5[~ G+21th+Gtt] = ==
c c” ot

(3.31)

where subscripts denote differentiation, e.g.

' 2
G (z,t) = E—% etc.
zz = s

F:rom equation (3.19) we have:-—

: 2
P Y 1(»[1-1 /(1)]de J (gG - -EV g-hlej

0t m o ¥ o

ei(kv"- w + Nt)T (3.32)
and sipce
i (1 + 1”? .
el(wt-kZ)GB(z,t) _ el(mt“kZ)G(z,t)
[1 - i /m]
(3.9)
equation (3.32) becomes(l),
. 2 +%0 o ) o
El =+ Léi.E fdv de [g[im+r]_ E{V g—h]iw[l+14/k]l
0t m st - o j
el (kv —w+ LSU)T' (3.33)

(1)

To see that we can use ecuation (3.9) in (3.32)

imagine G also expanded as in (3.34).
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Since the major contribution to the current comes

from the region T ->+0 we Taylor expand

G[(z—V”T),(t;T)] in equation (3.33) about the

point T = 0 i.e,

al(=—v T),(+-T)] = G(z71:)--T[v'|Gz(z7-!:)+Gt(z,-t)]

2
T 2
+ /a2t [v %6, (z,t)+2v G (z,t)+6, (z,£)]+ ...
(3.3L4)
On putting (3.3%4) into (3.33) we find:—
R 2 N
—%=-£ fl(x)GA+GA+GA+G GAatG A G A\,
(3.35)
where
+o7 o .
A = -fav Ide ¢ By g7 o3 0o, m0v b2DT

Caie U W "

and after some laborious rearrangement we recognise

0A
A = A + @ =——
1 tw
_ DA
Az-——-(DT
a
2
- - iw 27A
37 2 8K (3.36)
2,..
Ay = (AT 4 04
0kow 0k
. 2
i 0A 0”A
A5 = -3 (2?— + 2)
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Qn putting (3:35) into {(3.31) and solving for ;f(z’t)
we have:—..
2. 2 2.
w TiA 2 w w Tihs
- [ s R byg =iy & 4 P gigler[ox + B 20c
2 2 t 2 2
c n c c n n c
. O - [o] L. [e)
mnzAB w_2:i4, ® 2A5
o2 E —— - — + E
[+ 5=16,  tI=omle v il = 516t
n _c < [od I cC
o o o
2 (3.37)
5 Litn {€]”
where wp = i B appearing through the
m ' v
particle distribution fo, ie.e. n, = Id3vfo .

Equation (3.37) is the equation governing the
behaviour of the envelope G. We can convert it into
a more familiar form as follows:;

The freguency and wave number in equation (3.37.
are related through the hot plasma dispersion relation.
That is, on putting G = 1 in this equation ®w and k arc

related through ..
_— w3 w12 '
e —%—»»— 1WA
cn,

fn

0, thus we put

k< = Cl3/0?_ +-——1L-2-—- Jlw,k] (3.38)

Using relations (3.36) and (3.38) equation (3:37)

becomes:—

N
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(2k-J. )G + E=(2-J

— G = — i + 4
I8¢ k' 72" sk ) B ;waﬁtt 1wzt
(3.39)
; 2. -
where Jhw :-QJl etc.
- 0kdw
From equation (3.38) we also have:-—
2k - J
L. ek (3.40)
dk J
w
and
a2 zlJ e Tt me k2
dk J
w
where 0, = =0}
Ik
dk
Hence from (3.39) and (3.40)
G o = - CHICS (3.42)
and
G,, = w 2G (3.43)
tt L Tzm *

On putting (3.42) and (3.43) inte (3.39) we have:-

- 21
fZR”J _jz e T T s

t z zZ
La, J 3,

G

which from (3.40) and (3.41) we recognise as the

equation
. 2 2
0G dw
26 _ _do 986G i d7w 087G (equation (2.16)

2

ot dt 0z .2 g4k azz
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Discussion

In this chapter we have shown how one may use the
integro-differential "wave equation!" of hot plasma
theory to derive the equation of motion of a chosen
wave packet. In particular we have shown that only
limited regions of v“,T space are important, and the
solution of many problems may well boil down to decid-
ing which regions (diagrams of the type (a) and (b)
should be particularly useful in this respect).

Typical approximaticns will involve some sort of
expansion of slowly varying parameters about the import-
ant rggions in the v”,T plane (the Taylor expansion
seems an ocbvious choice as it has just the properties

we are looking for). A typical problem has been solved
and the usefulness of the technique secems established.
BEventually we wish to Iknow how the equation of motion
of a wave packet is modified by the presence of the
various mechanisms discussed carlier. However in

this respect one should remember that in a hot

collision free plasma the particles are not confined
essentially within a given volume element by collisional
effects, as is the case for most fluids, but travel
almost freely through the plasma. Therefore any

perturbation induced in a given volume element will
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be carried by this free streaming of the plasma
particles to different localities at later times.

As pointed out by Stix (Stix (1962)) one avoids this
difficuity in a uniform plasma by Fourier analysing
in space and time. Thus, hopefully, when the plasma
is non—uniform or time—varying, the method we have
used will become especially valuable. In the next
chapter where we attempt the same problem in a non-
uniform ambient magnetic field, the above points will
be reiterated.

In the above context we discuss the basis of the
method a little further before proceeding to the next
chapter. The fact that we knew the integration over
time iﬁ equation (3.19) or (3.32) converged rapidly
for large values of T suggested that we should Tayloxr
expand the slowly varying quantities about the point
T = 0. However, having once carried out this pro-
cedure we then discovered [through the relations
(3.36)] that the square brackets [involving integrations
over time T} appearing in equation (3.37) were related
in a simple way to the plane wave dispersion relation,
(essentially equation (3.38)]. Thus the series of
terms in equation (3.37) becane successively smaller
through the increasing order of the derivatives of the

slowly varying quantity G.
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In the next chapter we carry this procedure
through into the case in which the ambient magnetic
field ig non-uniform.

In conclusion it is worth pointing out that the
dephasing of the past history of particles revealed
in this chapter, and the discussion of cquation (2.16)
in Chapter II (see also the discussion of equations
(2.25a) and (2.25b) in Chapter II) clearly defines
the limitations of the linear theory and in particular
shows that particles will not come into phase at a
later time. Thus, from these discussions (in both
Chapter II and Chapter III) one cannot expect the
linear theory of a given wave packet to generate
emissions far removed in space and time from itself,
(only a spread in size can be expected), also fre-
guencies outside its own spectrum cannot be generated
by linear processes. For the generation of new fre—
quencies onc necds non-linear effects, e.g. Das (1967),
or wave-wave interactions. It is not difficult to
cite cases in the literature where this point has not

been fully appreciated.
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Chapter IV

Wiave Packets in Hot non-uniform Vlasov Plasmas

Introduction

Ve now investigate fhe problem of wave, and

wave-packet propagation in a hot Vliasov plasma
ﬁhen the ambient magnetic field is not uniform.
Before we attempt this problem it is worth dis-
cussing, without tOd much justification, how one
might approach the same problem in the cold plasma
limit, 'One could proceed essentially in the manner
of Stix (1962) as follows

| fe could write down the relevant uniform cold
plasma wave equation but allow the various plasma
parameters which appear in it to be given functions
of position; . (one should really examine the approxi-
mations invoiﬁed in making this step). One then has
a linear partial differential equation (wave-equation)

with variable coefficients. Ve can write this for-

mally as

g - 1 3 - _. N
D[% 3% 0 OT 3% niﬁz)] =0 (4.1) where gh(z)

are the said coefficients (the dependence is assumed
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to be only on the =z coordinate). One might then
look for a solution of (4.1) which takes the form

of a propagating wave of constant frequency i.e.

= f( k(z))ei(wt ‘"f kiz' Jaz" (4.2)

&

where the function £ , the wave number k and
frequency &  are to be determined such that (4.2)
put into (4.1) will give rise to the dispersion

relation
e, x(z), 7"&2)] =0 (4.3)

i.e. the uniform plasma dispersion relation in which
local values of the plasma parameters KII have been
inserted (again some investigation of the approximations
involved, in arriving at (4.3), would have to be made).
A classical example is the familiar 7.K.B solution
yb _ constant ei@dt —jf k(z®)dz" ) (4.4)
Nk(z) v

of the differential equation

2y _ e (#:5)

oz blz) |

(i.e. second order in z).
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The dispersion relation being

K2(z) + &2l - o (4.6)
b(z)
provided we neglect L QE% and 1. dk with
. ~ k3 4.z £§ dz

respect to unity. The original equation (4.5) may
contain derivatives with respect to time, g% y ON
looking for a solution of the form (4.4) these
derivatives can be replaced by iooqf, ity can then
be absorbed into cl(z) (and/or ©b(z) ) in equation
(4.5). Cold plasma equations of the form (4.5)
have been discussed previously by Stix and a brief
review of his work will be given in the next chapter
where we examine gyroresonance phenomena in the mag-
netic beach configuration.

e could now look for a solution of (4.1) which

takes the form of a wave packet such as:-

= ot (Wt "fz 4z% k4z")) g (2, 6,%(z2)) (4.7)

where G is of the form A ei¢ . The dependence
of the function G on =z eamd t in equation (4.7)
is assumed weak and expresses the fact that the

local amplitude, frequency and wave number are not
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given strictly by f£, k(z),w, respectively
as in equation (4.2) but are allowed to deviate in
some mannesr throughout the disturbance. By analogy
with the uniform media case one expects the wave-
packet (4.7) to be tha result of superposition of
waves of the form (4.2) whose fwamuency spectrum is
sharply peaked around W .

On putting (4.7) in (4.1) one can presumably

arrive at the relation:-

D[W - 1T, k(2) +i&,kﬁzﬂ==0 (4-.8)
where T = R e-ﬂbt ’
ot
Z zZ
3 3 |
and 7 e'lS kdz' 3 e{j kdz" e operators,

0z
provided one makes sufficient approximations. For
example the cold plasma Yhistler mode dispersion

relation is

5 .
k?c2 _ o ()

=1 -
w? QW -NLz))

(where the plasma parameters now depend on =z )

or in operator form
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2 Lo
IQ)
-
e}
o

2
[ (2)
( =1 - Wp 7 (4.9)

(1%) (1 & - )2 &)

for a disturbance of the form (4.7) equation (4.9)

becomes
[(x + 1292 + i%%]cz ., : Cdp2(z)
W+ iv)° (W+ 1Y) + iT-LUz))

in order to write this in the form (4.8) we have to
neglect the term %% . We shall not investigate or
justify this approzimation here.

Using relation (4.8) one can easily arrive at

the equation

26 _ | [2wW
3t = T {3k |,

(see Chapter (II) section (I)) where the subscript =z

(4.10)

sl

on %§ indicates that the derivative is evaluated

at constant = . On using the relations

%= (>+(> W _ o2y, (&

0
oz 9z k

ke

and

equation (4.10) becomes

g (ay) <-g-g>k+<g <)
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Equation (4.10) is essentially the equation derived
by Kadomtsev from enerzy balance considerations (see
equation (4.74) and its subsequent discussion at the
end of this chapter). As pointed out by Stix, the
inclusion of finite temperature corrections in the
cold plasma wave equation necessarily involves a loss
of rigour since the refractive index and dispersion
relation for a hot collisionless plasma- is not a
local quantity. The free streaming of particles
causes the effect of a pertwbation at 6ne locality

to be transported to different points at later times.
v(Both Guthart (1964) and Das (1967) have investigated
the effect of finite temperature on the dispersion of
Yhistlers in the llagnetosphere and fouund that typically
the effect is rather small). In order to attempt a
description of wave and wave-packet propagation in

a hot noun uniform collisionless plasma one nust em-
ploy the full rigour of the Boltzmann-Vlasov equations.
In this chapter We attempt to derive the equation of
motion of a whistler mode wave--packet in the stated
regime examining carefully the approximations and
assumptions which have to be applied in order +to
arrive at a result.

In the next chapter we discuss an attempted
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investigation of gyrcresonance phenomena. In par-
ticular we discuss the absorption of cyclotron waves.
in the "' magnetic beach' configusration as discussed
by Stix (1962) in which he attacked the problem by
fitting finlte temperature effects onto the colad
plasma wave equation for non-uniform media.

Finally in this introduction we sketch our method
of approach to the hot plasma problenm before proceeding
in detail. Ve consider the anmbient particle distri-.
bution f(o) to be a function of the magnetic moment
invariant @ and emergy W . i.e. f(o) = f(o)(u,\f-!)°
Now consider the effectof a wave or wave--packet which
has been present since sometime in the past (say
t! = .. ). The presence of the wave will change the
magnetic moment and energy of a given vorticle i.e.

m oand ¥ at time +¢ = - o (say) wi.l become
Vo4 8W, p o+ Sy at someé latér time ' =t (say),
where Op and 8W are pertwbations caused by the
wave.

Thus by Liouville'!'s theorem, had there been no

wave present
f(O)(}-{yw = “CD) = f(o)(p,w tr = t) .

Because of the wave the digtribution at time +t 1is
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perturbed i.e. £ (u,W), at

- ® , becomes

f(o)(u+6p, W+8W), at +t'=t , by Liouville's theoren.

Thus writing f(c)(u+6u, W+OW) = f(o)(p,W) + f(1)

we have

(o)
f(l) = Q%E—n S+

On considering the associated pertuthations to

v, (i.e. &V, 87)
(1) _ orlo) )
£ = EVI—~ 6Vl -4

by the same application
that the derivatives of
evaluated at time +t' =

81,8W (or sz,évz) are

we should arrive at

gz (0)

GVZ

5V,

of Tdouville's theorem,
the distribution f(o)
t.

(

v

(

1)

L and

2)

Notice

are

However the pertutbations

due to the interaction of the

wave with a particular particle and are given by an

integration over the past history of this interaction.

Ve know (from Chapter (III)) that only events in the

recent past contribute to the current associated With

those changes owing to the finite temperature of the

plasma, i.e. the charge and current density due to

£ (1)

are related through Maxwell's equations to the

electric and magnetic field of the wave in the usual

self-consistent Boltzmann, Vlasov description (it is

this final requirement of self-consistency coupled
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with the validity of making an eXpansion of slowly Varyw¢
parameters which enables us to derive the equation

of motion of the wave-packet, the procedure being
similar to that in Chapter (III). Having discussed

the underlying approach we proceed in detail .

SECTION (I)

Application of the Method of Characteristics to the

case of Non-uniform Ambient Magnetic Fields.

If a trajectory in the ambient magnetic field
parametric in t is given by z = r(t), then the
rate of change of the particle distribution £(x,V,%t)

as we move along this trajectory is given by:-

pf L, =  of =  of
DE TP T T vz  d% L (413)
dz
where =r =1V .
If dy"__""ti! . o
we put 5T = E%— v . B(r) into equation (4.J13)

(where B(r) = ambient field, ~|£l = charge on the

particle) %% becomes (%%)( ) the rate of change
0

of the particle distribution as one follows a particle
trajectory in the ambient field, Louiville's theorem

states that this rate of change is zero for a collision-
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less plasma, i.e.

s |
(—%&i—-} =0 (404)
(o)

where f(o) is the particle distribution in the
ambient field. To ensure condition (4J4) we choose

f(o) to be a function of the constants of motion K

i
in the ambient field, i.e. f(o) = f(o)(Ki)
Equation (4 J4) becouing
pe(0) (. ) (o) | DK,
i = of i =0
Dt aKi Dt -
(o) i (o)
DK,
since D?é = 0 by definition of X,
(o)
e now use the familiar pertwbation technigue on the
Vlasov equations, i e. put £ = £(°) 4 ¢(1)
L = Q(l) (there being no ambient electric field)
(4.15)

B=3B(r) +b

f(l), E, b being pertwbations which are gpecified to
take the form of a propagating wave or wave packet.

An electron trajectory in the total field (ambient ‘plus
perturbed) is defined by

av. “fE! L___J\[B(I’) + b] -+ D]
- =

ok
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d—a

® - L

Thus equation (4.]3) becomes:-

(pre(0) e (1) i pre(0) ey

!-ﬁg v ] l + kﬁ% * ] =0

\ F (o) (1)

vhere

' - I,k .

(%?)’( - dEl (g . =454 (4.06)
\ AL

e . Df(l).\, -
on linearizing i.e. dro»ping term ~5%--k ) which
1

is second order in the perturbed quantities and using

(414) we haves-

foa(1) ) (o) | - (o) | DK,
‘2%’5_“} - {%?3_) o Z_gio {Dtl - (adn)
(o) : (1) it \ (1)

This is the familiar linearized Boltzmann equation
where the ambient field has not been assumed uniform.

We can solve (4.J]7) by the method of characteristics

i.e,
(o) /T DK..
(1) _ E (e ( agt [ =2 (418}
. i 1 } -D‘t (l)
J s

where the integration is taken 818R& +wao zero order
particle trajectory and + is the instant of time

t+' at which the pertutbation is evaluated. Ve can
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rewrite (448) as

G
zij (o) ([ DR,
f(l) = oL 8K. where OK, = — at!
6Ki i i Dt !t
i -~ (1)

(4.19)

We assume adiabatic theory to apply and take the con-

stants of motion to be the energy V = Vl2 + VZQ

2
and magnetic moment p = vy /B (putting % =1).

'Bquation (4.J9) is thus :-

(o) (
(1) - UL top + M L6 (4.00)
t évlévl
- ¢ | Dy - .
where 6&u = j’ at ,lnnT} = e (1) (4-.20)
-0 Dt (l)

.t

1.7 'Pli — T 3 -

and OV -~j att ' ) = 2¥l6V1 + sz 6Vz (ii)
~®© (1)

On making the transformations:-

ozo) o oxlo)

voy-1 |[EV i s

02(0) 1 el e0) [ 1(6,1 SR
oW T 2V, BV,  Ton T \'B v,

v _LISV 1
8W = 2viévl + QVZ'évz- and 4 =

equation (4.1) becomes:~

(0) .0(0)
£(1) - g%r ov, + ¥ oy (4.2)
VA
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In the next section we find the pertwbationuns
ESVl and 6Vé in terms of an integration over
the past history of a given particle, We can do
this when we have specified the problem a little
more}in particular when we have chosen the foxrm

of the ambient and disturbance field.

SUCTION IT

Derivation of the Perturbation in the Particle Distri-

bution.
We particularise the problem by choosing the

ambient magnetic field to be of the form

Bz) =5, |- S x+FnEE L +EP(z))’£}(4.22)

where € 1is a smallness parameter. (If we put & = O
then B = BOQ and we return to a uniform field).

In (4.22) =x,y,2z form a right-handed cartesian
coordinate system §,§,2 are the respective unit vec-
tors. P(z) is some monotonically ing¢reasing or
decreasing function of 2z , in this chapter we shall
choose the former case.

We are going to look for solutions of the hot
plasma wave equation in the ambient magnetic fiekd

(4.22) which are of two types. The first is that
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of a monochromatic wave, the second is that of a
wave packet i.e. a disturbance containing a spread
or spectrum of frequencies.

We shall look for monochromatic wave solutions

whose electric and magnetic fields take the form:-

2
ei@ot —S k(z Ydzt)

E(Z)t) = EO S(Z) ( .a)
” (4.23)
b(z,t) = EoeiGQt —g k(z")dztr)sl(z) ( .b)

where k(z) and S(z) are slowly varying functions
of position z , and E ,b, are constant vector
amplitudes.

We also look for wave packet solutions whose

electric and magnetic fields take the form:-

Z

L(z ) = ;Oeiaot —S k(z")dz'f)G(z,t) ( .1)
: ¢ 1 " (4.13)

E(Z,t) = Eoelaﬂt —S k(Z )dZ )Gl(z,t)( ,ii)

where the functions G and Gl are now dependent on

both position 2z and time +t , we shall examine the

form of the envelope G more closely in Section (IV).
In the developement of the next two sections

we shall discuss primarily the solution (4.23%i, ii)

since we may return to the solution (4.23a, b) by
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making the transformations
G(z,t) - S(z)

and
Gl(z,t) - Sl(z) .

The constant vector amplitudes in the equations (4.23)

are given by

= (ﬁzox + §Koy) and b, = (& ox gboy) (4.24)

where are constants. S(z), G(z,t)

on’loy ; box’ boy
and Sl(z), Gl(z,t) are slowly varying *envelopes'
related to the electric and magnetic fields respec—
tively.

Hear the centre of the flux tube (4.22) the wave
fields (4.23) correspond approximately to propagation
along the field lines. {

In looking for solutions of the form (4.23) we
assume that the inhomogeneity and wavelength (i.e.

G and k ) are such that % %}ﬁ-ﬂ% %N% %—2-"'% g—g’-4<< k.

From the Maxwell Iguation

1 0k
VAE = - £ 3¢ we have:i-
, A A
b = “(% ¢ T, and by = %‘)— ¢ B (4.25)
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wheres -

k= [(z) + 121,80 = W~ 1Y)
Z _ —igzk(z")dz" 0 +ifzk(zn)dzn
and = e = e

T = eﬂnt %% e~ .re differential operators.

The amplitudes (4.24) are related by

- ~k§z!
bx" (»\)on’

0

_k(z -
boy = _%Gl'lox (4.26)

The equations (4.25) and (426) are really equivalent
to the statement

% eiGUt - jk(z")dz"
o .G(z,%)
e fr(zmyazm) by (srt) 42D

Equation (4.27) is a simplifyirg transformation

enabling us to work only in the wave electric field,
this makes the working considerably easier to follow.
Notice that on putting G(z,t) = S(z) a function of

A
only & reduces to @ (or on putting G(z,t) = constant

z
A A
k and W reduce to k(z) and @ respectively).

We can now find the change in Vl and vz caused

by the wave field as follows:-
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' DV DV
n L Vo aoy L o
(ifi} = (?iv;sg AR . “(D’“ )‘1‘)‘ Vy(ﬁl)m
vl e (1) Vi
(4.28)
From (4.J6) we have
DV ”
% -1g] KN .
(W) (l) = T (l - VZ G-LAS))EX (l)
f
v '
ﬁl) NG 2 D -NENEES (4.29)
(1) A

]

A
”l%L (v +vp) (iii)
i v X

T XX vy Xy

v «-.L‘
(-I-)—-) =-‘1:1,T-(va--Vb)
(1) -
¥Where we have used the relation (4.25) to put the
final result in terms of the wave electric field.
Putting the two equations (4,29i), (4.29ii) into

equation (4.18) we have:-

v A : \
1 VIE + V_E
(TE“) = " L ks (4.30)
D 1 o L

Hence we can solve equation (4.20i) for 6VL arriving

at
v /b
&L AVt (VB + VB V)
o, = & . Aty T (4.31)
L D _ V.L'
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where all functions of the dummy variable +' have
been primed.
In a similar manner from equation (4.30) equation

(4.291ii) and equation (4.20ii) we have:-

5 B DVZ'
i Ie) t e —
¢4 }; V Dt' + 2% L =
(1) (1)
+ .
= 2 at! v tE ot ' t 32
Sﬁ {j B f Vy Ey (4.32)
-0

Solving (4.22) and (4,31) for 6Vé we arrive at:-

oVl - 2V16Vl

Z 2Vz

IE_ 4 {l e k'/h'V;

= .,__L.:“:... + . 23] R ™o

= n T g ety 1 - %;Ex'erLy )
00

2
Vl'

(4.33)
The inteszration in equations (4.31) and (4.33) are
along the particle trajectory in the ambient field
(4.22).
The equation of motion of an electron in this

field is
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where B(x!') = Bo[- %—(}?x‘%-f}y')g-?é—g—-'rl + 2(1-& P(z1))]
i.e.

%;‘ ~N v, 1 2(21)) + € yrv 0 ap(z')

dz?

dv._! '
b = Yl e 2(z)) + o SR (4

dv' Y

_ B
—r —%ﬂo[vy'::'-vx'y'] L) (unere Y, = 12\

]

The solution of these equations to terms linear

in & aret-~

A 1/2 T 11 1]
Vel =V, {1+ E[P(z-—Vz T)-—P(z)]} Cos{ - Sﬂ[z(l‘ ) Jam }

( .1)
1 T _
vy* = V_L{l+€[P(z-Vz T)-—P(z)]}/QSin{O— ﬂ_[z(m")]dmﬂ
( .i1)
(4.35)
vt =T, - % vlz/v {P(Z—VZ T)-—P(z)} ( .iii)
z . _

Hence:?:~

LT |
R R A ‘”"{P‘z"vz o) - 2(2)
z ( 7iv)
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where T =+t - t! +time measured positive in the
backward direction from the point +.
The solution for x!', y' are not required in

what follows.
The solutions (4.35) will satisfy the equations

(4.34) provided terms of order 62 are neglected and

they have been gn0sen such that at time +' = %

VX' = Vl Cos® = Vx
! = Shi = (4—,26)
V& Vl oind YY
[ —
Vz - Vz
zV =g ,

A A
where E_ = (xf . + yloy)
we may writet-

]
E(z!,t!) = _Igoei("”G . o-i@r +f k2" gyt 4em)

where we have replaced t' by +t-T .
~ Thus the term (EX*VX'+Ey'Vy') which occurs in
both (4.31) and (4.33) becomes:=
1/2
v J={1+E[1>(z-4rz T)—p(z)]}T {;(’OXCOS(Q- f ar 1)

+ Loy Sin(g—f d‘l‘"ﬂ)}. i@ dz"k)G(z',t—T) (437)
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We take out the left hand polarized (Whistler mode)

as in the previous chapter and arrive at

E
1 . ) 1 .
(EX'VX‘+Ey'Vy') = ——;—- . 18 . elwt {R /2.91'6*.(}(2','{:—1‘&
(1)
where R= 1+ Ele(z-v, 1)\ - 2(2)] (11) (4.38)
T 4
g = S arng) - Lt -52 dz" k(z! ) (iii)

A
(and By = (:?,(X + yi[y) is a constant amplitude (where
i will give rise to the Whistler mode polarization)

Thus equations (4.31) and (4.33) become:-

. 0 A . '
- v i '

8V, = -e 10 ‘QEOJ_,elCdt S ar (1-v,* %,— ) E—'j_— G' (4.391)

™m +00 L4 /2

A
o L (1~ k', ")
o o /2
(4.29i1)

where we have used Vl'2 = VJ_2R' .
Hence

(0) _ agl®) (o) _ 220
where fl = 3% d f“_ = ==
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A .
t i !

Using relation (4.27) we may replace %T elﬁ G*' by
Eifil elﬁ’ G;', 1in equation (4.40) giving:--

0

(1) _ -0 gl o It (o) k! 1

£ = - 7O Kl e ar § £,/ [a1v 155 @ 1] /R}/Z +
+00

'
(Gt_k /(A)VZ’GI')

17 Jeif! (4.41)

1
+ 5, .(0)[1?.’/2(;* -

Thus having‘chosen the form of the disturbance field,
equations (4.23), we have derived the associated per-
tubation in the particle distribution to terms linear in
the #mallness parameter & by using the method of
characteristics. The restriction to terms linear in ¢
derives from the imperfect solution for the particle
orbits in the 2hosen ambient field. There are of course
still terms in equation (4.41) which are of order €°
(i.e. product terms). These terms will be neglected
consistently as we proceed.

The current is given essentially by an integration
of a first moment of equation (4.41) over velocity
space (see equ. (4.48) below). Ve expand the slowly
varying quantities in this equation about the point
T = 0, since we know that only small values of T con-
tribute to the current. This really follows from our

previous discussion, however we shall amplify this
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point a little further in +the next section.

Section (III)

Small time Bxpansion of Slowly Varving Quantities

We now make an expansion of equation (4.41) which
will be valid for small values of +the time wvariable T.
That is we Taylor expand the slowly varying quantities
about the point T = O , However before carrying out
this procedure we notice that particles with v, >0
in the given ambient field will not have mirrored.
However particles with VZ < 0 will have mirrored at

the point defined by T = TB where:-

2
vy

—0=v - & - - i
v,'=0=%, 5 -Tz; {:P(z VZTB) P(zi} defines Ty.
As a first step in expansion procedure we expand

V,!', and z' in equations (4.35) about the point T = O,

Thus -~
2

V.
eV1
v =7, +» & fron (4.35111)

2
= vy aP(z) T2/2 from (4.35iv)
z?' =g -« VT ~ = dz *
A 2
where we have neglected second order derivatives of the
function P,

Similarly
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1/, oy
277 = § B v

-1
R /2 = [1 + %’ggégl VZT] where we have also used

the Binomial expansion.

We expand k(z') about the point T = 0 neglecting
2
terms of order Q%éﬁl . g Q%é&l and d

W

i.e.

%

K(z') = k(z) ~ v,r Sklz)

We do not expand G(z!',t-T) or G (z',t—T) at present.

?
We expand the various terms in 4’ {;6 dT“ -+ gz kdz")
eq (4.3Biii)}. as follows:-

T T
deu SLla(ere)]l = | aref) {1+ Q}P(Z—VZT)} =
= Mo {[l»%EP(z)JT - €8z v, /2}

where we have expanded P(zuva) to first derivatives
of P(z) only.
Similarly:-

€ 2 2
z! 2~ (V,1- % =524 V] 17 /5)

Z
= dztk(zn )-(VZT— -‘53——(--Z vy 2 pe 2)k( z)

dz

~ 2
' , + (VZT) dk(z)
‘ 2 dz
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where terms of order have

ak(z) € ar2(z) dzk(z
dz dz ’ dzz

been neglected.

Thus:-
Z

At ,;,g az' x(z") + (L1 €P(z)]-w+k(z)V, )T~

(ﬁoeﬁ%ﬁl J?-i-‘"-)-v + 2 el v, k(z))T/Q\Z

The first term in this expansion is not a primed
guantity (i.e. it is independent of tt) and can thus
come outside the integration over 7. Bguation (4.41)

can now be written in the form:-

Z
£ (a,y,) = F -.--e";g p , tW* “Sdz"k(z" )

4 ki\z
hgo dT. {;[flG’ + (Vlf - Yzﬁ;)jéyl Gl']
+00

. ap 2 ()' v £, -V T
Plz kiz 2 2 z dk(z ’
~ 13 -—L-ldz (2v,6! - "('"')'w (V)G + 641l

Z

(1 [14€2(2) -0+ ()V,)D-
“i(nogdgzz VzldgzZ v22+§2- dgzz Vlzk(z))T;Z

(4.42)
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Hence the scheme of approximation adopted thus far
is as follows:-

Bguation (4.41) is correct to terms linear in the
smallness parameter € , while to arrive at equation

(4.42) we have consistently neglected terms of order

and

2 € a’p(z) 4a%k(s)
3 >

dk(z) € 4P(z)
92° T ig dzz 2 dzz (4.42a)

€
~ We label these approximations (4.42a) since they are
associated with equation (4.42).

In the previous chapter we established that the
integration over the time variable T ocuis off owing
to the finite temperature of the plasma. That is an
inserting equation (4.42) into the expression for
the current density (essentially a first moment in
velocity space) each term in the resulting eguation

has +the characteristic form

o +00
-(_ ar S(T)-g av, F(VZ )elkTVz (see equation (3.22)
+oo =00 chapter (III))

where F(Vz,) is a function of V,, whose width is
determined essentially by the temperature of the plasma,
hence (as in chapter (III)) the integration over time,
T, !cuts off! justifying the expansion we have already

made.
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-Section (IV)

Wave Packet Propagation with an Isotropic Particle

Distribution

In this section we investigate the problem of
wave packet propégation in the hot non~uniform plasma.
In the next chapter we investigate the monochromatic
wave solution and 3discuss the problem of gyroresonant
phenomena in the non-uniform ambient magnetic field
with particular reference to the magnetic beach con-
figuration discussed by Stix (1962). The treatment
of the mounochromatic wave solution is slightly the
simpler of the two problems however the discussion of
the wave particle gyroresonance is not compiete and
is thus included in the final chapter. For convenience
this section and chapter (V) can be read independently.
Thus we attempt to find what relationships oy, k(z)
and G(z,%) must obey in order that (4.231) should
be a solution of the hot plasma wave equation, paying
careful attention to the approximations made, the pro-
cedure is rather <imilar to that in the previous chapter.
The case in which the particle distribution is
isotropic is simpler to deal with., All terms involving

the factor f£,V, - §,.-V, venish and equation (4.42)
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reduces tot-

- 0

A _Jgl i E(5:b) ¢

T(V,z,t) = J—l-é,;-* et TETY ar 1lob[z','t—-T]
+00

ei(.ﬂo[l—rGP(z)]uﬂ#k(z)Vé)Tmi(ﬂoeigé-ﬁvz + -@%ﬁ JE+

+ -: —QJ‘ Z V 1;.(”))!'3 (4°43)

where E(Z,'t) - ei@t ‘-S k(z" )dzn )OG(Z,t)

T _ (A A,
and o) T (“Xox + yl{oy) ¢
We can simplify the working by first introducing

some notation. We put:-

(Jlb[l+EP(z)]-&Hk(z)VZ) ==¥/ and notice thatb

- N C48a) | dla)y  4q %—;{lj: v, (4.45)

Ye also put

€ 4P(z) 2. ¢y

On eliminating b  from the two Haxwell Bquations

ob 3E
VI\E = %‘--é-_-t- 3 ‘7/\1;). = %— -A-%- 411: and inserting

E(z,t) (equation (4.44)) into the resulting equation we
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arrive at:-

[uL“( ) - RiG, (=, t)G - 1ggiﬁl + Gzz(z,t)/G]E =

ad
1 2 . 4
= S~ +210G, (z,1) + G (z,%) /o JB + 4m = . (4.46)
o2 t /G 2“2/ /G /02 0%

Where subscripts on the envelope G(z,t) denote

differentiation
2G(z, % 2°6(z,t
€8, Gt(zst) = 'at -3 sz( t) 5 ) etc. (404‘7)

The current in equation (4.46) is given by:-

i +@@ 00 (0)
. - : iy (0
I(z,t) = »E!I ao E av, S av, . v, [e v, £ 1 (4.48)
N o] ~= 0 o
in the usual self-consistent Boltzmann-Vliasov description.
Hence
ke 4
0 (z,t) o
= Bz, )T 2
5% = &z, [lc‘)"ﬂm/m“
+00 o e é&k 5 )
i -. ‘ 3 < [}
‘g av J ar S av,.v,? f(o)nG(z',t—T)el\pT HazV, P2
A LL 1 !
-0 +Q0 o)

/
(4.49) )

The presence and operation ofrlf has been discussed and

clarified in the previous chapter..
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Ve find the equation of motion of G(z,t) by
proceeding as follows. Ve first Taylor expand G(z',t-T)

in equation (4.49) about the point T = O i.e.

G(zt,t-1) == 6([z-v, T + & delz) vj_2 Z%/Z],th)

- z az
‘ (4.50)
2:G(z9t)wT[VZGZ(z9t)+Gt(z,t)]+Té/2! [v,¢, (2,6)+2V G, (z,%)+
+Gtt(z’t)] = 6(z,t) +R ’ (4.51)

where we have introduced R as a short hand notation
for that part of the expansion which depends on deri-
vatives of G(z,t). In this expansion we have neglected

the product terms in the derivatives of G(z,t) and

Efigéél 3 Tor example the term Gz(z,t) %.Q%é&l V_L2 T2/2

This really means we have replaced the right hand side
of equation (4.50) by G((é‘V T),t- T)

v, )72

Next we expand the exponential e 1(dz /2 to terms

linear in Eﬁ%?;il and dg7z i.e. we replace it by
[1~1(—£% )72 /2 .

dz 2

EBquation ( 4.46) now becomes:—

- G (z,t)
2¢. A . dk(z G (z,%) _
[‘-k (5).—21 8 Z,’t’ - i --d—é—l + Tz /G(Z,t)] =

L 2 ; 5t ;
= 62[ L r(.lmct(zpt)/a_(zpt) a Gtt(‘é’t%}(z,t)] )
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Cdpgﬂ ' +00 -0 ( A0
+ {10+ T ] av \ ap dV.VZfO(G(z,t)+R)
n c°G -1 . L1l
o] Q0 v oo 0

i im-1 7 % i v 0?21 . (4.52)

We shall find it unnecessary to introduce any new
approiximations, but in order to be consistent it is
helpful to review briefly and label carefully the
appro«imations we have made thus far. DBasically we

have made and justified an expansion in the slowly varying
quantities %(z),B(z). In this expansion we have only

gone to first derivatives i.e. we have assumed

d2k Z 2
";Z‘S‘)' ~ ERL2) o (4.53)

az*“
Ve have also neglected terms in the products of mL_l_dg?Z

and % %5’-2- i.e. we assumes-

. 2 “
dele) €d(z) ~ (dla)y" . (e 4Bzl o (4.54)

The approximations (4.53) and (4.54) were used in the
derivation of the expression (4.42) for the pertwbation
in the particle distribution. (¥We have of course also
neglected terms of order &€ 2 in solving the orbit
equations (4.34)). These approximations (i.e. 53 and 54)
are identical with (42a) but have been relabelled in this

section simply for convenience.
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We next assumed an isotropic particle distri--
bution and could thus put terms involving flvz mq!_VL
identieally equal to zero. This gave rise to equatioﬁ
(4.43). The other slowly varying quantity in egquation
(4.43) is CG(z,%t), +o arrive at the expansion G(z,t)+R
equation (4 51) we neglected terms like

26 € 4P

v L E;? ¢ € gP (4.55) but not second derivatives of
¢ i.e. we assumed -8 >> gg &€ 3L (4.56) which will be

0z
valld provided the wave packet is not too dlspefsed .
We shall also neglect terms like %% ‘%% , 8°¢ e'dP (4.57)
in the same manner. o
Having reviewed the approximations we have made
thus far (i.e. (53) to (57)) we can continue by apnlying

them to simplify equation (4.52).

First we replace
e o2
~ipT . a 2
(6(z,)+Rr) T 1? /2 [1 -1 %Vz 0] by
e o2 .
(G(z,t)-rR)[enPT“lBT /2 - YT 5 dd’ v, T /2] vhere we

have used approximation (4.54). This term can be simpli--

fied further by use of approximations (4.56), (4.57).

. . ame
[6(z,) (WI-1PT7/p _ AW T 5 Wy o °/p) + Re* )

i.e., the term of order R %%' ~ 0 by (4.56) and (4.57)
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r.1 pn? .
ana ReWT-1PT"/p ReiPT. by (4.56).

Thus the final term in equation (4.52) becomes:-

-0 O +C0
.__,_;;__[1@ +‘t’] g ar j av, v, %¢ (0
n coG

-0 +00 o]
{e@l}”i‘ﬂﬁ’f /o — ST i %-(‘ZQVZ T2/2) + Rel'/}T} .

Since the operator [, operates on G(z,t) and its
derivatives (i.e. G and 1R din the above ex nression)
the term

e eﬂ#TmiﬁT?/z becomes Gt eﬂ#T where we have used
approximation (4.56). Similarly T e ¢T —Q'V T /2
beoomesC lpﬂ —-Sé-’ v, T2/2 ~ 0 by (4.56) and (4.57)

Thus equation (4.52) vecomes:-

2 . .dk oL 2 mpa ]
[~k (Z)w?lG-Z/Gr-l-a-Z*-FGZZ/G] = 2‘["('3 +21®G'b/G+G'bt/G']

C
1(.4) z o] o] FCO _
; ““‘EB“S av, S dTg av, v,° (0) if-ipn /2
¢ nO +00 . +C0 (o]

T +Q0 O +a0 .
Lop ” Lo+ T ]J av, g dTJ av, V12 ffl(o)ﬁelw}
(6]

1

(4.58)
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This equation describes the motion of the dis-
turbance " envelope!t G(z,t) , it only remains to
reduce it to a more intelligible form. VWe shall do
this in stages by proceeding as follows.

We choose %k(z) +to satisfy the relation
K(2) = &) 5 - -—m-———iwwpzn Fmodv i ar w;v v.2f

¢ 2 5 2-5. JA L L {
- o

CIlO

fl(o) ei‘!JTmiBTz/z} | (4.59)

Notice that it is only when the term [ 1is neglected
that equation (4.59) becomes the dispersion relation
for an infinite uniform plasma in which local values of

the plasma parameters have been inserted i.e.

k“(z) =W/ 2 C__Qp dVZ JO ar g(v, )

nge - +00
ei(JL [l+eP(z)]~(d+k(Z)VZ)T (4.60)
where g(v +G3V vV, f (o)
czj 11
The term lPT /2 arises in the above equations
because we have retained all terms linear in the smallness
parameter € , though f is of order % %% .

Equation (4.58) now becomes:-
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. . Ak 1 roar .
[wEle ~ 163> + Gzz] = ?—[auet r Gtt]

+m e ]
+ 1——-—-9--—— g & dT‘( av Vlg{-fl(o)eiSJTl -—\QV T /}
o) T

L
2, +00 0 +00 _
+(‘)—P-—2- [ +’tj]S av, J amj dV.LVJ_Q fl(O)R e“!/T (4.61)
nOC - 00 +00 0

We recognise the second term on the right hand side of
d d 2

this equation as being - iG o k™ , by differentiation
of equation (4.59).
We are thus finally left with
2 00 0
. R
[-2iG_+6_ ] = ;—5[2:@(; Gy ] + = [1£J+‘E’JJ av, j aT
0 00 +00

f .
{g(vz )Relw} (4.62)

It is here that the treatment becomes very similar to
that of the previous chapter. Thus on solving for

%%(z,t) we can put equation (4.62) into the form:-

2. 2 2
c n ¢ c fo) n c
0 (o]

2 2. 2
A iA A
+ [1 +<QE—§2]GZZ + [ékLTTAi]Gzt + i[—l/CZ +CQB—§2]Gtt (4.63)
n, c n o n_c

0
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where if we choose to define:-

+00 o : ¢
- i
A= “S av, S an g(v, ).e
- +00
Thens-
= wah
Al = A + 3
ALY
Ag = - E%QA (4.64)
370 ° ax °
A, = i(CzJa2A + Qé)
4 okoty = ok
Ap = - (2840 62A)
57 2 0l a,? .
We now put:-
X 27E +00 0 0] ) 5 1
k°(z) -0/ 2 + -1%33-—j av, J dTJdvlvlz £ %t T-1BT°/2{
chy, Jim +0 j
= TS\(z), K(2), (§ L2l ()] (4.65)

(see also equation (4.59)) where S1(z) =510[1+EP(Z)]

and where (% Qgé&l k(z)) appears through the presence of
B (although it can be neglected in most of what follows).
From the equations (4.64) and equation (4.65) the

equation of motion (4.63) becomes:-
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(D% ieo _ i .
=g, Gy = ~(2k~3 )6, + 5(2-0, )G = 5 I,y Gpy + T G 4

* (4.66)

where the subscripts on J denote differentiation

0°g

_ 3 N N : )
e.g. JK._ =T IK“) = ST etc. and we notice that

the factor e“iBTQ/2 which appears in the definition of
J is replaced by unity in equation (4.66) because each
term contains a derivative of G(z,t) (i.e. we use
approximation (4.55)).

We simplify equation (4.66) further as follows:-~

From equation (4.65) we haves:-—

2
(ak )z E;igg and (%Eéi)z = Q_Jkk_ngﬁi%_Jm“dJ&Jk (4.67)
where &) (%éﬁ)z
Thus to lowest order equation (4.66) is:-
(atd) %ﬁ and hence:=-
-@-—2-?— -2 & —(—a—‘i"-fz@ (4.68)
5z0% 0z 0K 'z 0z Ok 95,2

2
s/
From equation (4.65) (with e = 1) one has

W = Wikz), SL(z)] (of course %ﬁi = 0) ,

Hence:~
2 2
3 (0l ¢t dk Lo dPg )
sl ), = 2 dz © ""k'a' TWz) f,€ =~
since Jl(z) = flo[l +€ P(z)]
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Thus the term %Z (%E i %E 1s neglected in equation

(4.68) by approximation (4.56) and (4.57).

Thus:-
2 2 2 2.2
3°@ -G -G Q"0 G
= ~(=2) and similarl = |
920+t o0k’ 5,2 : Va5l ok )zaz2
. ) . ) . (4.70)
On using relations (4.70) in (4.66) and identities (4.67)
we find
. 2 2
G (&b) oG i 3l 0°G
0 ok g 0% 2% ak2 5 622
Discussion ‘D
-182° /,

Since the factor e in equation (4.71) is
replaced by unity (approx. (4.55)) the frequency ¢) and
wave number k(z) in this equation can be considered
related through the dispersion relation for an infinite
uniform plasma in which local values of the plasma para-—
meters have been inserted (i.e. equation (4.60)).

We have derived the equation of motion of the wave
packet envelope in a non-uniform ambient magnetic field
using the approximations listed (i.e. (4.53) +to (4.857)).
We see that the final equation is similar to equation
(2.16) chapter (II). The effort involved in trying to
eliminate one or more of the listed approximations does

not seem warrented, however it is of some interest to

have pinpointed them clearly and to have seen how the
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equation of motion emerges from consideration of the
hot plasma equations in the non-uniform ambient field.
We can relate eguation (4nW1)\to the equations
derived by Kadombtsev and others for wave-packet propa-
gation in non-uniform media. To do this we examine the
form of the teunvelope! G(z,t) more closely. Since
G(z,t) contains both a position and time dependence,
then for a chosen disturbance, the central frequency and
wave number are not defined precisely but may be chosen
within a narrow range. Thus the disturbance E(z,t)

may be written as either

: i, 5~ jk (zr )ag) - 1i(W,5- Yk, (zMdzh)
EOle 1 1 Gl(Z,t) or gole 2 \S 2 GZ(Z,‘b)

(4.772)
provided &)l,kl are not much different from G)z,kz).

This implies that

Z
B(z,) = By, 8 - §EEE 60 ) 0)

where the dependence of G on k(z) and ¢J is such
that the identity (4.72) is satisfied. (This dependence
was not made explicit in the equations of chapter (II)
and (III) though it was obviously true (see below).

The derivative of G(z,t,k(z),l) in the second term of

equation (4.71) when written out in full becomes:-
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3G _ (090G dk
S-@ & & (4.773)

In the 1limit of cold uniform plasma we know that
G can be represented by an integration over a sharply

peaked spectrum of plane waves i.e.
ei(G)t-kz)G(Z,t) _ J‘dk,A(k,)ei(w(k')t-k'z)
(see chapter (II) section (II))

since A(k') is sharply peaked at k' =k
g [ K !'t b Zl(i"‘k)
¢(z,8) o~ AK) 5 ax!

hence %% (“’%%) will tend to be a very large derivative

Thus we expect

(gG) gg ”“( ) in equation (4.73)

We can now proceed as in the introduction to derive the

equation
8- & @ & (4.74) '
T 0k’ 0z’ 0z’ ‘0K’ y

On including all three terms of equation (4.71) we

should arrive at

ol ,8Gy . (9 ,0G A, 2

2
P ICS B, (4.775)
0kodoz z,k
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2
where the terms in E_Eéﬁl and (%-k-)2 must be
dz Z

neglected in order to be consistent in cur approximations.
It is at this point that the treatment of equation
(2.16) in chapter (II) becomes particularly helpful.
However we need not pursue the discussion presented in
chapter (II) again in this section. One may simply

state that on neglecting the terms of order % %%

throughout the treatment (i.e. putting e—iBT%/Z =1
in equation (4.59)) then essentially the whole discussion
of equation (2,16) chapter (II) is relevant to equation
(4.71) provided one notes the reiation (4.73) and keeps
the discussion fully consistent with the approximations
(4.53) through to (4.57) (and ap?roximation % %% ~0).

As an example it is interssting to derive equation
(1.43) of Kadomtsev (1965) from the first three terms of
equation (4.75) as follows:- |

Ve first assume the frequency has a small imaginary

part vy

iee. wlk(2),5Uz2)T = Qlr(2),(2)] - 1v[x(2), U=)]

(where %éjz 0)

We define G!' = eYtG then the first three terms of

equation (4.75) become:-
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o
oG! 0 oG ! 0 oG!
a:E - YG' = (aiz )z(az )k + (az )k(ak' 2

(where terms in %% have been neglected,

see chapter (II))

On multiplying this by the complex conjugate of G!
i.e. G'™ ang writing down the complex conjugate
equation multiplied by G!' and adding the two result-~

ing equations ene finds

B - s gD 0D - @ D)
of

see (1.43) Kadowbsev (1965) (c.f. equation (2.28) chapter II))
where G! G'¥ = 4 @
Similarly by putting G = Aeid one can discuss the
changes in phase and amplitude in equation (4.75) by
simple comparison with equations (2..25a) and (2..25b)
chapter (II). To the authors knowledge the discussion
presented here (and in section (II) chapter (II)) give
a more generalized and easily understood treatment of
wave packet propagation than previously (e.g. it contains
(1.43) as a particular case) although unfortunately the

detailed derivation of (4.71) was rather laborious.
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Chapter V

The Propagation of Monochromatic Waves in Non uniform

Plasnas
o =

Section I Solution of the Wave Eguation

In this chapter we attempt to find monochromatic
wave solutions of the hot plasma 'wave equation! in the
non-uniform ambient magnetic field (The problem is now
fairly straightforward in the light of our treatment of
wave packets in chapter (IV))

B%(z) = B°[- %(§x+§y)%zl + (1+€P(z))z]
(chapter (IV) equation (4.22))

That is we look for solutions which aré of the form:-

2z
Bz ) = (Rldady)et @] Ke a2t ) (5.1)

where S(z) is now a slowly varying function of 2z only,
and Ix’l& are constant amplitudes.
Solution (5.1) represents a monochromatic wave
of frequency &) . Thus it remains to determine
L, k(z) and S(z) , with the minimum (sélfconsistent)
approximation possible, such that equation (§.1) re-

presents a solution of the 'wave eguation!.
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In the previous chapter we found that for an
isotropic particle distribution and a disturbance of

the form:-
Z
E(z, ) = (30, + $if,)et @= §5(2" 182" )g (5 1)

the pertwbation in the particle distribution £' re-

duced to:-

, E(z,%
£1(z,7,%) = -e 2% ’nf' ggztif ar (-‘lf—G[z',(t-T)]}

i(k(2)v, - S [1+€p(2)] )T
e

-1 Q. ear(s di(z) 2 , € 4B(z)y 2 2
. 3o el el PR R ran MIELC) RE

2

see equation ( 4.43) Chapter (IV).

For the monochromatic wave {(equation (5.1)) we must
of course replace G(z,t) and G[z',(t~T)] appearing
in this equation by S(z) and $S[z'] respectively, i.e.

£1(z,V,%) = -—e_ig—%-'- E—-é-?—;?f {%.-E S[z']}
+00

i(k(z)v, -0+ [ [1+€2(2)] )T

e
e ey, L daly ® g By A,

(5.2)

e
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On eliminating the magnetic field b{z,t) associated
with the electric field E(z,t) (equation (5.1)) using

the two Curl Maxwell equations in the usual way we

find
2 2
08 (2,9) 1 0% (a0) 4y 0 5
822 c? ot Iy

which on inserting equation (5.1) becomes:-—

2
[-x%(2) - 2ik(z) %—j—é—(z) - aflad o 3la) ity -
a?(z %) /5(2)

-0 E(z,t
= '7"(2 )+%""’6‘&"'—' (5.4)

c

wheres:—~
) 27 +00 +00 .
j(z,'t) = -»]5_]& ae g av, [ dvlvl[elngf'(z,y_,t)]
- o} -0 0

(5.5)

Hence using equation (5.2) in (5.5) and substituting

the resulting current density in (5.4) we have:-

< 2
[-k2(2)-2ik(z)322) - akla) | 88(a) 1g(s,t) =

/5(z) dz a2° /5 5)
- ‘P i
= E(z,t) +
2 EE®) 5= B
+® 0 + i(kv. -l f] [1+€P(2)] )T
ar . b oar (v v.2 2 s[g1].e 2 oR1TERRE

z o 1°1 GVJ_

-® +Q0

. - dP(z) dk 2
—1(520 € —-a-é-z-vz + --d-ég-lv 5 % %—Z-lvl2k(z))1‘2/2 (5.6)

e
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2
4m |£ | n
m

2
where &% =

Before developing this equation with the minimum
approximation possible, paying careful attention to
the question of self consistency, it is instructive to
proceed in the following manner.

Neglect the terms

2
o 48(z) dk(z) -d—-%-zl (a) with respect to
dz dz dz

k(z)o(z) ° ki(Z) k2(z)S(Z)

unity, on the left hand side of equation (5.6).

On the right hand side we neglect terms of order
aB
% I (b)

The equation then reduces to:-

+® -

2. Fa ©
22 2 g Hm 291° ,1
kK eCet§ = _%.5757 S av, g ar f dvly:5 --—avl Slz ]j
=00

+Q0 (e]
i(k(z)VZ. AT ﬂ0[1+ép(z)] )T
. ,

. dP(z) ak(z 2
-1(J2 € et A amAPRIENZ
e

(5.7)
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We now expand the exponential
o v 2
() 6 )y dkla)y 2 1° oo pong Jinear in
0 dz Z dz 2
e
€ and Q%é&l i.e. we replace it by:-

2
vV, T
[1-1(D, €8e) , &lad y 2,

Thus ¢ -

0.
o0 o W 1W
k7e"~(g = *ﬁf§rg)\g

@ O
=0 +Q0

av, ar  g(v, )

2
v, T
5(2) (110 € 8Fad « Sfaly. ) 5 ]
i(k(2)V, ~@ JL [1+€P(2)] )T (5.8)

e

+Q0 o

where g(VZ) =7 5' dVlVlg-%g- .
o .

It now only remains to expand S(z!) about the point
T = 0 in this equation and simplify, bearing in mind

the approximation (b). Thus:-

_ _ € dP(z) 2n2 —~
S(z') = S|z V, T+ VL T /2]

———

2
as(z) + (Vz T) dQS(z)
dz 2 dz2
dB(z)

where we have again neglected terms of order B =3z . see (b)

S(z) - v, T
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We shall also neglect the second derivative of S(z)

i.e
2
g__s_éz—l ~ o . (C)
dz

Thus ¢ -

2
[ B 1(J2 édP(Z) + dk(Z).v . 2 T ]S(Z')

ds

~S(z) - 1y, 2(Q, € 4Ela) - akla)y Tzl -V, I 5le)

where we have neglected the product terms

as(z) dk(z) dS(z)SZ € ad2(z)
dz ° dz V7o dz

t(a) (a)

Thus equation (5.8) becomes

o +Co O
02 2 " iw ; .
kcﬂ—%—mgavzgdﬂ? b(vz)
"CD +C0

{S(z) - iV, (8, édP(z) dgézl)m Séz)

ST agczzl ei(k(z)VZ.—®+ jzo[1+eP(z)] )T (5.9)
Z

For clarity we introduce some pimple notation. Put

-+ QD (o] +C0 (0]
i(k(z)v -G+ JU [1+€R(2)] )T
av, )are(v, ) e 4 =\ dy_ | 4T L
~00 +00 =00 +00

(5.10)
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and then notice the following identitiess:-

~£00 0

(5{11‘,1)5 ar g(v, ) iv, T ei(k(z)vz o JLoheer(a)] e
- +00 +@ o
=2 av ar T .
ok(z) z
- +o0
+Q0 (0]
(5'5:11.ii)g av, S aT g(v, )( -V, (8, eié_(.&l + %t_‘ﬁz_z_l)m}
-0 +Q0 .
i(k(z)VZ ~w+ JI [1+€2(z)] )1
e
+@ o]
5° .
-0 +®
A (k(2)-@+ S [1+€2(2)]
> i(k(z)- -
C(Em.ii) | av, j ar g(v, ){V 1 S T )3
-0 +00
82 +Q0 fO
= - d a7 L
k% (z) g Vz _S
o) +00

On using (§.10) in (5.9) we have:-

. pal 4 D) 0 .
—r1 Sicy z
k202§ =-9s?m - g dvzg ar L.)8(z)-1v, o(f) E4Ele) . dklaly,
0
o)

2

S8z _ v, T i’-if-)-} (§.12)
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We can choose k(z) so that

> 5 2 +Q0 o)
Wy 102 o
n2(z) - E__(;%g.)_&. = l - —-—3—0—— g dv-z. dTe.b (-bolB)
-0 +Q0

Where we recognise n(z) as the refractive index of a
uniform plasma in which local values (at the position z)
of the plasma paramixiainhave been inserted, (see for
example equation (a)ﬁsec%ion (I), Chapter (III), re-
membering of course that the ambient particle distribution
£° is now isotropic).

On using the identities (§.11i) and (§.11ii) we can
see that the remaining temms in equation (§.12) reduce
‘ot~ |

o

) +Q0 O

s(z)  8° }Cdpi@
1 =% azak(z)LnO av, \ aT.Lj} +

- +0
5 + @ fa)
. as(z) 0 r&J pied 4
+ 1 =53 ak(z)tl o de 4TI =0 ,
Lo Foo

Which by equation (5.13) can be written in the form

2 .
SEZ) Ggak(i) [nQ(z)] + dgézj ag(z) [nz(z)] =0 . (5.14)
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The solution of This equation is

S(z) = constant . , (5.15)

{%E%ET [HQ(Z)y

Thus, to the degree of approximation we have adopted

(that is approximations (a), (b), (c¢) and (d)), the

solution becomes s~

z
ei@ﬂt -ﬂ k(z" )dz™)

1,
/2
| {iﬁ&i@%ﬂ } (5.16)

B(z,t) = GU7ily)

where k(z) satisfies the uniform hot plasma dispersion
relation in which local values (at the position z) of
the plasma parameters have been inserted i.e. equation
(5.13).°

We shall return to discuss this solution (and its
relation to standard W.KB) at a later stage in this
chapter.

le now return to equation (5.6) and reduce it
without use of the approximations (a), (b) and (c),

(we shall however retain (d)). i

Ve put € db(z) Vv 2k(z) = B (5.17)
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and write equation (5.6) in full, thus:-

4s(z)

2 (2)-2ik(z) 05/5(z) - 1 la) , 4B W o
dz
/5(z)
2. +00
Q.1 i(k(z)V, -LorSl[1+€P(z)] )T
gig?gz;; ~_afvz \dm{ig;v v, —%— sfzt].e QD

_i("Qo S ngZz v, * dgzz Ve, .2 + B){["2/2}

s 8
(5.18)

Ve proceed in a similar manner to the previous treatment.

That is we expand the exponential

Loy, L e o,
e 2 to terms linear in &

and ilg.é.él , and we expand S[z'] about the point T=0 ,

as before, thus . >
. dP(z) k(z) 2
"'1(9»06 dz V'z YT v'z )T .
e . Slzt]

> §(a)-1v, p(QELEE) 4 dk(z)yp 502) _ v o 88Lz)
v 1)% 2
. 22*) 4°5(z) (5.19)
dz

In this expansion we have neglected the product terms

'd#gzz uQ € dP(Z) dgéz) dgéz) , and higher order terms

(5.20)
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(essentially approximation (d)).

Thus equation (5.18) becomes:-

dS(z 2
2 . as8(z) Cak(z) | d%8(z) 1. _,2
[uk (z)-2ik(z) dZ/S(z) S 37 d > ] = ’*C\)/ 5+
z c

5 + o +

140 . o]
CO..._E....._2 av ar )« av,v,* %~
n,cS(z) 2 1

-0 +00 o

1(k(2)V, ~r S [1+€2(2)1)1-1p7°/

e

S(z)-1V, T(SZ gdP(z) dgéz)),ﬂ szgz) -V, T dgngQ

T
o )" a%5(s)

d22

(5.21)

We. now choose k(z) +to satisfy the relation

w2 . -+00 O +Q0

0, \ o p W IW [ o 2 ar®

k“(g8)c=¢5= Kggﬁ)g dvzj ar nj av,v, i
-0 +00 L o)

™

1 (k(2)V, -+ S [1+€P(2)] )T-iﬁ’l‘z/z} (5.22)

e

We use the identities (§.11) i, ii and iii, together with
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the approximations (5,20) to simplify the terms remaining
in equation (§.21).
Thus using equation (5.22) and approximations (§.20) in

equation (§.21) we have:-

2
ds (=) . a4°5(=)
[-Zik(z) dZ/S(Z) - 1 g—g—é—zl + d"’z ]=
“ /s(z)

0. (s0] -0 T r+oo . '\
.16 f o i(k(z)V_ -w+ JI[1+€P(2)] )T
2o~ \ay larinilav v 2 8- ¢ z ° /
n CZS(Z) l Z 1 L0l oV )

o o) oo 0 J
. dP(z) dk(z) S(z) as(z)
.(“Wtz MR S5 v ST R - v, SR
(V. m)° .2
g 45(z) (£.23)
dz
« Ame
~-1pT /2
Notice that the factor e has been replaced by
unity by use of approximations (%.20),
Hence we may now use the three identities (¥.11) to
rewrite equation (5.23%) as:-
2
~2ix(z) $la) | ; dle) 4 ng).SiU:
S2) dz “
(“Jpziw A S(z)‘- 5° r “i 'idS(z)r 3 |
: 1 av, tdT.Li + = ! av_ lar.I
nOCZS(Z) 2 j)Z@k(Z) 2 dz L@k(Z) i

a%s()|_ 92 e 1
- v_|ar .
' dz° akg(z), Wz . 5.24)

3
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We use the relation (5.13), (i.e. equation (5.22) in

s Ame
which e 1PT /2 is replaced by unity) to rewrite
equation (5,24) as:-

2,
ik(z) $8la) oy dk(e) . 475(g) _
/S(Z) 2 dZL/S(Z)

| " 22 ( 2( 2 2
s:(Lz) 1 Séz)t—‘ﬁ(’(z))agak zj} + QS s ;a"ék 'z-} 3 "“S’ZH 2 3 {“‘—E‘L‘Hai = 3{

4

(5.25)

This relation is independent of S(z) , however S(z)
must be sufficiently slowly varying that approximation
(5.20) is valid. 1In retrospect we can see that we derived

the particular value

2
Ch2k(z)

approximation (a) (see equation (§,30) below) and which

S(z) =

essentially because we used the

we can now see is not a fully selfconsistent approximation.

Thus we have derived the solution
Z
i - 13 11}
E(z,%) = (K/(’X+yi1y)el(wt jk(z Jaz' ) (§.26)

Where the wave number k(z) is related to the frequency
through the ! dispersion relation™ (5.22). It is

only when one chooses to neglect termg of order
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% %% (i.e. B) that equation (5.22) becomes the local
uniform plasma dispersion relation. Thus we see that
typically Fresnhal integrals are going to arise in a
discussion of wave propagation in a non-uniform ambient
magnetic field and a discussion of resonant particle
effects by means of equations (5.20) and (5.26) should
prove fruitful. At this stage we review as briefly as
possible some work done by Stix (1962) on the prOpagatioﬁ
of waves in inhomogeneous plasﬁa since it bears sonme
relation to what we have so far achieved. In particular
we discuss his treatment of WVhistler mode wave propagation
in the magnetic beach configuration. Stix considered the
problem of wave propagation in non-uniform plasmas in
the region where the local cold plasma refractive index
goes either to zero or infinity. It is the latter case
which we are concerned with here. Uf particular interest
to us he considered the cyclotron damping mechanism
in the region of the local (cold plasma) Whistler mode
refractive index infinity.

9tix searched for cold lossless plasma dispersion
relations which could be written in the form:-
Pk® + ¢ = 0 (5.27) for the homogenecous case, where

b and c¢ are constants depending on the plasma density

(e.g. plasma frequency) or magnetic field strength
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(e.g,qyclotron freguency) etc.. He then investigated
the inhcmogeneous case (assuming a one dimensional
z dependence only). He assumed that in the inhomo-
geneous case, 1f the variation in plasma parameters
is sufficiently slow, one may replace equation (5.27)

by~

b(z) k°(z) + c(z) = O (5.28)

where the constants b, ¢ and wave number k are now
slowly varying functions of =z .
He assumed that the dispersion relation (§.28)

corresponds to the differential equation

A
Q_%(Z,t) + k°(2)E(z,%) = O (§.29)
0z

where kg(z) = -~ g 2 .

(One may assume the time dependence is given by e:"@t

i.e, investigate solutions which are in the form of
monochromatic waves). Provided c¢(z) and b(z) are
sufficiently slowly varying the solution of (%.29) is

given by the well known W.K.,B approximation i.e.

z
B(z,t) o?is;ant ei@bt + S k(z? )dz" ) (5.30)

which is valid provided
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2
al .
.];3.-6-'_% and -];?-a-zc- . (5--31)
k- dz k

are neglected with respect to unity on the left hand
side (essentially approximation (a) used in deriving
solution (5.16)).

It is interesting to contrast the solution (5.30)
derived via approximation (45.31) with our solution (5.16)
of the hot plasma dispersion relation which we derived
essentially by use of approximation ( a). (The actual
guantities neglected in the two approximations (a) and

(§.31) are the same when

S(z) = 002sZant ) .

The two cases where b(z) ~> 0 and C(z) — O
where investigated, we shall consider only the former
case corresponding to k(z) ~> o (i.e. the local
refractive index tending to become infinite).

In the vicinity b(z) —> 0 equation (5.29) was
replaced by

2°n W

(g + ' Q \
azz Z "Zo+1“2

(5.32)

where | is a positive constant and ., is a small
real constant, Vo is introduced as a trick to ensure

that E will be single-valued and finite, but has the



_169;

physical significance of growth or damping. The sign
of 1 1is chosen to correspond to damping. (The
intrgduction of the (z-zo) linear dependence of b(z)
in the region g, is well established in gquantum
mechanics, the innovation is the introduction of iuz).
The solutions of equation (5.32) can be found and its
asymptotic form (i.e. for large z2=2 ) is the same
solution (§.30). Thus one may join the solution of
(§.32) valid in the region z, to the solution of (§7.29)
varid in the region far from sz , (i.e. solution (5.39)).
(There may of course exist an intermediate region in
which neither the solution of (¥.32) nor the solution
of (5.29) is very good). However by joining these two
solutions Stix could investigate the complete result
thus obtained. This complete solution helps to deter-
mine whether or not reflection or absorption has taken
place, (one has to impose some physics on the problem
to determine this e.g. boundedness of the solution
beyond the turning point gz ). He then attempted to
fit the treatment discussed above to the problem of
Whistler mode wave propagation in an ambient magnetic
field which grows progressiveiy weaker. Physically we

can argue as follows. One knows from the cold plasma

Appleton Hartree dispersion relation that the local
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refractive index

2 k2?2 C!)z'pw
no o= = 1 +
w? U -
will become infinite in the region ?ﬂ&(zﬂ . That

is the phase velocitycd/k will decrease to zero. Of
course one also knows thht the wave will be in cyclotron

15

resonance with electrons for which V.. = ”("—~§7"_-)
res:

and as (J approaches ‘51\ the wave will resonate with
electrons deep within the body of the distribution;
rather than a tenuous stream in its high energy tail
as was previously considered to be the case

(i.e. vPhase >> vThermal)‘ One thus expects the wave

to be rapidly damped out (probably before it ever
reaches the region for which ¢o ~ {N]).

One may use the solutions of equation (5.29) and
(5.32) to get at least a rough analytic treatment of
the problem of Whistler mode waves propagating into a
region for which (o ~ 52. Lssentially we determine the
constants lq and Po which appear in the solution of
(5.32) as follows:-

Using the hot plasma dispersion relation

2 A0 Fo0 kv, ')
2 2 2 Gt z
- = 2R a - —_—
k“c~G - v, av, v, (1 )—é— = avz J&
=0 ~00

(&3 - kv “(31‘)
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valid for Im{)) < O
‘ pacE 4b, ,
(see equation (a) section (I) chapter (III)).
One chooses the ambient particle distribution £9

to be the isotropic Maxwell Boltzmann i.e.
I 2
°(x) o, [- (vz ¢+ V19
() = g >
/2y 2 Vo
i VT

where VT is the characteristic thermal

velocity.
Then on integrating over Vl one has
2
+00 -V
av 7. ¢ e = - 2 ¢ T
J Ll 3/2
0 T VT
¥
o -
On putting z'= 7V and  «fz) = vhﬂ(zj
i all
T

the above dispersion relation may:be written in the

form
2 2 i ’
k=c™ _ R ‘
-1 --E]%T-ZDI‘O(OL) (5.3%)
R S ,
where Fo(a) = - %E 5 g%ga—— ' (5.34)

Fo(a) is the well known plasma dispersion function

- valid for growing waves i.e. Im(w) < O .

Bquation (5.34) must of course be analytically continued
into the upper half frequency plane using the Landau

prescription in the usual way. Thus:-
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+00
12

. z 2
F (o) = - %E P‘S g%r%-~ + N e (6.35)
~00

(where P stands for principle value) is valid over
the whole complex frequency plane. The plasma dis-
persion function has been tabulated by Fried and Conte

and a plot is given by Stix (1962), which is reproduced

&

below.
F (a)
o .
: /‘“\<..-__ Real (F_(a))
"5 t /(__w,“ <em—=e Imaginary (F (a))
,/'/ S
- -
-3 =2 - ',/u T 2 2 > ¢
ce T mes where o is real

‘We may proceed in the same manner as Stix with
only aslight change in his notation. Since we chose

the ambient magnetic field to be

B (r) = B[~ —(xx+yy)-2£§l + (1+EP(z))z] (see eqn ( 4.22)
Chapter (IV))

|£18° ()
“mc

B
we have ‘jl(z)‘ = 1J§%39—(1+GP(2)) to

terms linear in €
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We choose P(z) +to be a linear function of 2z 1i.e.
replace P(z) by é;(z—zo) and also choose the gyro~
frequency |JL| equal to the wave freguency & at the

point z . 3 thus:-

)

a(z) = é(zz).

f
We replace 12 on the left hand side of (5.33) by
. 2

2 2 1 2 i

-5 . 3B W W ,
;;5 i.e. ;;5 = - :§ [1 + E§E%3 F (a(z))]E (5.36)

and rewrite equation (5.32) as

0
= - 1B (£.37)
dz (z'—zo)2+u22 (z-zo) +Hep

2E [@42-20) 1p1 >
2

The above diagram may now be interpreted as essentially
a plot of the real and imaginary part of the right hand
side of equation (§.36) against 2z in the vicinity
z =z, . We see that it has qualitatively the same

dependence on 2z - Zq as the right hand side of equation

(5.37). To arrive at an expression for woand po

Stix equated, (i) the imaginary parts at 2z = z_ and,

o
(ii) the real parts at large (z - zo).
Thus (i) requires
2
- ¥ __ﬁ.___ P, (0) ( .i)
/vy ¢k Vp

and (ii) requires



1 2
T Y7 Feta ¢

where in deriving this result only the first fterm of
the imaginary part of the asymptotic expansion (valiad
for ad>1) of Fo(a) is used

—af +

(1 + ~ig +oeee )
200

8 L

i.e. Fo(a) = W e
hence Im[Fé(a)] c/% , (ad>>1) (see Stix (1962)).

Thus from (i) and (ii)
2

o ka .
-gg-— and Vo = me.,

by =

Cne cannot do better than to quote Stix directly
on this procedure.

t* This computation of the absorption of cyclotron
waves in a magnetic beach illustrates the lack of
rigour mentioned in the introduction to this chapter.
We have tried to write an appropriate hot-plasma

wave equation in differential form. In doing so, we

have had to fit the function Fo(a) onto the algebraic
%

(z'-zo+iu2) *

a hot plasma is not a local quantity. The function

However, the refractive index for

form

Fo(a) which we use here is in fact a transendental
function of the fourier wave number k, and k should
have been replaced in some fashion by 4 wherever it

ocours. A rigorous mathematical solution of the
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problem is clearly a very difficult task. Nevertheless
the physical argument that cyclotron damping is a very
strong process and will dominate the kinematics of the
plasma in the {J g‘jllregion suggests that essentially
complete absorption will occur for longitudinally
propogated cyclotron waves!'y,

Thus in this treatment of the problem one is
really attempting to force cold plasma theory beyond
its limits of validity to describe what are essentially
hot plasma phenomena. The method we have developed
in this and preceding chapters for dealing with the
hot plasma " wave equation!''! shows that one may
approach the problem afresh by means of the rigorous
hot plasma theory. Ve have found solutions of the.
hot plasma wave equation; these solutions were not
chosen especially for their validity in the region
o~ LIL(Z)& . However one may obviously look for
solutions appropriate for this (and possibly an inter-—
mediate) region. On matohing the asymptotic forms of
these solutions one would then have a complete solution
of the wave equation valid over all values of z. The
guestion of reflection and absorption could then be
investigated in a mann®r directly analogous to the

method adopted by Stix.
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Even now the problem of gyroresonance phenomena
in the chosen non-~uniform ambient magnetic field can
be investigated by means of equations (§.26) and (5.22),
this investigation would presumably require some modi-
fication in the region (J E,lfl(z)i , (though possibly
the more difficult part of the task as stated by Stix

has been carried out).

Section (II) Conclusions and Suggestions for further Work.

The above discussion really suggests a great deal of
further work that could be attempted in non-uniform
ambient magnetic fields. The problem of wave and wave
packet propagation in time varying media (as say in
wave-wave interaetions) would also appear amenable to
the sort of procedure we have adopted here. The basic
conclusion that one may draw is that by using the method
of characteristics to solve the Boltzmann Vlasov set
of equations (the constants of the particle motion are
useful in achieving this step) and by establishing that
only recent events in the history of a given particle
is important one may find solutions of the hot plasma
integro—differential wave equation in non-uniform and
time dgpendent plasmas (this step is achisved by means
of the Taylor expansion). The free streaming of the
plasma particles is of course rigourously accounted for

in this treatment.
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APPENDIX A

On carrying out the integration in eqguation
(3.30a) in the order indicated (where, of course
Wy can be greater than, equal to or less than zero)

we find

- R 2 N
127 1 ‘ka - w + (M2
{1{ - + Jul ! i
i — | f wF —al k S
I = kee o I Ziﬁ e
a - w + 8l
pre !
. -2
" l dx.e™ (A.1)
o

(stix (1962)).

This equation being valid in both the upper and
lower half of the complex fregquency plane.

On carrying out the integration over time first

(see equation (3.29) one finds

4o e—a(v" - a)2
I = -4 fav, (A.2)
-— i (kV" - + {_Q_!;

This equation being valid iny if wp <0 (i.e. growing
waves) but may be analytically continued into the
lower half frequency plane using the usual Landau
prescription (provided the numerator of the intergrand

of equation (A.2) is an entire function of v in the
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complex v, plane, see Montgomery and Tidman (1964),
page 56). The growth or damping decrement can then
be calculated (e.g. sec Chapter I).

However using equation (A.1) it is obvious that
one may similarly calculate the imaginary part of ®
for both growing and damped waves without using the
familiar analytic continuation and hence without having

~(0)

to stipulate that £ mast be an entire function of

v, (a rather non-physical requirement).
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ISimple contribution to the theory of the anisotropy

| cosmic rays

M. J. HOUGHTON
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Imperial College of Science and Technology, London, England

Abstract, Simplicity is obtained by assuming that the first invariant is preserved, that the magnetic field is
spiral in the ecliptic and the solar wind radial and that E = —V X B. A cosmic ray particle mirroring near the
| : Sun has gradient and curvature drifts normal to the ecliptic. The displacement of the guiding centre between

inward and outward crossings of the Earth's orbit is of the order of two gyroradii and is in the opposite direc-
tion to the electric field for positive particles. The day to day variations of this drift have not yet been fully
investigated; an assumption is needed about the gradient of the incoming cosmic rays normal to the ecliptic,
Computations of the drift are presented for a typical field.

i

15 been shown by Ahluwalia and Dessler (1962) that by
1ming Parker's idealized model of the spiral interplanetary

eguation (1), The gyrotrequency is given by

" M. The third assumption is that E = —u X B,E having a

i eB
metic field one expects to find an anisotropy in the cosmic = mec” (3)
Jinténsity. Ahluwalia and Dessler describe this by the con- . o N
Jdon of the whole of the cosmic ray distribution with the The velocity of the guiding centre along the line of force is
ion of the field lines. The same result can be obtained in 172
ps of the electric field which is perpendicular to the eclip- v,=veosa= V(l _B ) @)
The particle motion normal to the ecliptic is oscillatory , By
'so the particle energy oscillates with the gyroperiod. Similarly .
ig Liouville's theorem it is then seen that the anisotropy o B \1/2
ilts unless the incoming distribution has a particular form v,=vsina=v B, (5)
rn 1964) requiring a gradient. This is further discussed

s v,B 1
)ssible anisotropy caused by gradient and curvature drifts B ; (6)

e Same electric field has been suggested by Dungey* and
onsidered here. It is found that the displacement resulting
a these drifts is of the order of a gyroradius (for certain
icles) and could thus give rise to'an anisotropy comparable
; Ahluwalia and Dessler's,

where V| B is the gradient of the magnetic field perpendicular
to a line of force.

Because By = 0 the lines of force lie on cones of constant 4.
The rate of change of heliocentric latitude § therefore involves
only vq and dg/dt = vg4/r. The change in ¢ in time ds/v) is

d6 = (vg/r) (ds/v)), therefore the angular displacement of the
guiding centre is

first assumption is that the magnetic moment invariant

E, /B of the cosmic ray particle is preserved. The second
ithe solar wind is radial and of constant speed, the stream
5 in the rotating frame of the Sun thus forming spirals in

bcliptic plane, After Parker (1963) and assuming axial r; vqds
iy po—p i1 T
metly Ty TV (M
B,=& B, =¥ g _o . . _— in (7
r=_, Bep =13 Be= for the total inward and return journey. Substituting (2) in (7)
r 2N 12 and (3), (4), (5) and (6) in the resulting equation we obtain
Afl W
‘B|=—<“+_> (W) 2vme 1-B/2
. TAr? 29 = frl'- /2 By 12 ds (non-relativistic).
e Iy prB(1 — B/By)

e‘w is the angular velocity of the Sun, u is the solar wind
Hence using the latter of equations (1) we get
Etial. We assume that the three familiar electric field,

ient and curvature drifts are dominant. The electric field 2 vme r12

cE X B/B? lies in the plane of the ecliptic, does not change riaf = e A I
nergy, and is not considered here. Thus
: with
= i 2 vy, 2v,B
d=—+——— —B/
PR 20B (2) 1= f Ty 1 By ds

r, p(1— B/B)V/2 (1/r2 + w2/u2)i/z Ty’
e vq4 is the drift velocity normal to the ecliptic plane due

rvature and gradients.in the magnetic field, Taking ry = 1 astronomical unit, A/r? is Br at the Earth's

orbit, I is dimensionless and was computed for mirror points
ranging from 0.1 to 0,9 A.U.in stepsof 0.1 A.U.

u/w was taken as 1 A.U. and then the angle between the inter-
planetary field and the Sun-Earth line is 45° at the Earth,

|, _ (w2/w? + r2)3/2
¢ 2u2/w? +r2

adius of curvature of a line of force calculated from

hence Br = B/+v2. Thus it can be seen that 2v2 I represents

is believed that K. G. McCracken reported on this effect

the meeting of the American Physical Society at Houston
xas 1963.

the displacement of the guiding centre in units of 90° pitch
angle gyroradii (v, replaced by v). These displacements are
shown plotted against the corresponding mirror points in the



PARTICLE DISPLACEMENT IN UNITS OF GYRO RADII

—

08
0.8|

0-4

B

1 . 1 - 1 1 n i 1 Y
02 04 0.6 0.8 10
MIRROR POINT r,, IN ASTRONOMICAL UNITS

figure. It is seen that the effect is as large as Ahluwalia and

Dessler's for particles of small pitch angles. The change in

energy can be got from this displacement and alternatively
vgEdt leads to the same result.

For the case of relativistic particles, provided the electric
field is sufficiently small, one can multiply I by the corres-
ponding radius of gyratlon i.e. myve/(1 — v2/c2)1/2 e. Alter-
natively one can follow the factor (1 — v2/c2)~1/2 through from

equation (2) with m replaced by mg/(1 — v2/¢2)1/2 which again
is a valid substitution provided the electric field is not too
large For a relativistic particle we have initial energy

= (m —mg)e2. For a given ry the change in energy is pro-

portmnal tothe gyroradius, i.e. proportional to v/(1—v2/c2)1/2,
The fractional change in energy

AE  v[1 — (1 —v2/c2)1/2]
E T (1-v2/e2)i/2

Thus as v increases so does the fractional change in energy,
for fixed mirror point.

It is seen that the energy change for our anisotropy is {
same order for small pitch angles as Ahluwalia and De
for 90° pitch angles, This suggests approximately equaI
tributions from each assuming an isotropic distribution
hence an 1800 hr phase, though the details are still to bﬁ
culated.

The anisotropy does depend on the incoming dlstributloa

total energy of a particle, including potential energy, is b

stant of the motion and Stern (1964) pointed out that if ti
distribution function f were a function of energy only th:
would be no anisotropy though there would be a gradien
Another simple possibility is that the incoming distribu
has no gradient across the ecliptic plane and there mus

be an anisotropy compounded of Ahluwalia and Dessler!

sotropy and that described here which is probably com;
in magnitude,

The Ahluwalia and Dessler an1sotropy has a maximum |
the particle is moving normal to the magnetic field and
from the Sun, typically at 1500 hr local time, while ours
its maximum when the particle is moving parallel to th
towards the Sun, typically at 2100 hr. The direction of {
interplanetary magnetic field does vary in practlce and
curvature and gradient of the field involved in (2) also
Consequently the local time of maximum for each cont:
and the relative importance of the coniributions all var
Since this is not in accord with experimental results it
possible that some other effect is dominant for exampl
non-conservative fields were present. Alternatively va
tions in I with wind speed may be such as to make the 1
insensitive to the wind speed. This possibility and a m|
accurate estimate of the magnitude of the anisotropy st
here are being investigated. It seems certain that if a |
in the particle distribution does not exist Ahluwalia am
Dessler's anisotropy occurs together with the an1sotro'
cussed here. |

|
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