(i)

ON-STREAM ANALYSIS OF

PARTICLE SIZE DISTRIBUTIONÃ

A thesis submitted for the degree of
Ph.D. in Engineering
in the University of London

Anthony Bertram Holland-Batt B.Sc.(Eng.) A.R.S.M.
Department of Mining and Mineral Technology, Royal School of Mines, London, S.W.7.

(ii)

ABSTRACT

This Thesis describes the development and calibration of an On-Stream Particle Size Distribution Analyser, which operates by applying a centrifugal force field to a suspension of the particles in a fluid medium. The results obtained during the first stage of a programme of research into the method of operation of the Size fnalyser are also described and analysed in detail. The progress made is reviewed and plans for future research are outlined.

CONTENTS

Item Page No:
PART A: DEVELOPMENT OF THE SIZING TECHNIQUE

1. IITIRODUCTION 1
2. PRELIMINARY TESTWORK
2.1 Introduction and basic principles 3
2.2 Mark 1 Cell 3
2.3 Mark 2 Cell 7
2.4 Summary and Conclusions 10
3. DEVELOPMENT OF FROTOTYPE SIZER
3.1 Measuring system 13
3.2 First Test Rig 18
3.3 Second Test Rig 21
3.4 Mark 3 Cell 24
3.5 Mark 4 Cell 29
3.6 Summery and Conclusions 38
4. CALIBRATION OF SIZER
4.1 Mark 5 Cell 44
4.2 Summary and Conclusions 62
PART B: INVESTIGATION INTO TIIE SIRIIG TECHIFIQUE
5. INTRODUCTION 65
6. FLUID BETAVIOUR
2.1 Fluid Flow Model 67
2.2 Axial Velocity Distribution 70
2.3 Secondary Fluid Flow 70
2.4 Behaviour within the Sizer helix 73
2.5 Summary and Conclusions 74
7. BEHAVIOUR OF SUSPEIVIOIVS IN UNBOUNDED
RADIIL FORCE FIELDS
3.1 Forces Operating on a Single Particle 75
3.2 Radial Motion of a Single Particle 85
3.3 Tangential Motion of a Single Particle 96
3.4 Particle Tracks through Radial Force Fields 100
3.5 Concentration Variation Resulting from Particle Motion 103
3.6 Summary and Conclusions 108
8. BEHAVIOUR OF SUSPENSIONS III ENCICSED HELICAL
CHINTIELS
4.1 Forces Operating on a Single Porticle 110
4.2 Motion of Single Particles 125
4.3 Motion of Particle Populations 125
4.4 Summary and Conclusions 130
9. TENTS CONDUCTED WITH GLESS SPHERES
5.1 Me:rk 6 and Niork 7 Cells 132
5.2 Anolysis of Results 139
5.3 Concentration Variation Near Inner and Outer Walls 168
5.4 Calibrations for Glass Spheres 198
5.5 Summary and Conclusions 212
10. REVIEM
6.1 Progress Achieved 215
6.2 Future Work 217

(v)

Item Page No:

ACKNOWLEDGEMENTS 219

REFERENCES 220

MPPENDIX 222

(vi)

IIST OF FIGUREN

Iupber	Caption Pa	Page No:
$f .2 .1$	Mark 1 Cell	4
A.2. 2	Test Circuit for Mark 1 Cell	6
A.2.3	Turbulence in Observation Zone	8
A.2. 4	Mark 2 Cell	9
A.2.5	Photograph of Sizing Effect	11
A.3.1	Geometry of Measuring System	14
A. 3.2	Outline Circuit Diagram	16
A. 3.3	First Tost Rig Head f.ssembly	19
$A .3 .4$	Photograph of Head Assembly	20
$i .3 .5$	First Test Rig: Suspension Flow Dingram	22
i. 3.6	Second Test Rig: Suspension Flow Diagram	23
A. 3.7	Mark 3 Cell	25
A. 3.8	Concentration Profiles (Mark 3 Cell)	28
A.3.9	Collimation Device	30
A.3.10-13	Size Distributions 1 - 12	34-37
A.3.14-17	Concentration Profiles (Merk 4 Cell)	39-42
A.4.1	Modified Test Rig	46
A.4.2-5	Concentration Profiles (Mark 5 Cell)	49
$\therefore 4.6$	Δ ט versus k (Mark 5 Cell)	51
A.4.7	Δ ä versus N (lark 5 Cell)	52
$\therefore .4 .8$	ΔS versus log if (lark 5 Cell)	53
4.4.9	Intercept versus k (liark 5 Cell)	55
A.4.10	Size Distribution Calibration (Mark 5 Cell)) 56
A.4.11	Intersection Colibration for Unknown Size Distributions (Mark 5 Cell)	61
B.2.I	Model of Fully Developed Curved Flow	69
B.2.2	Axial Velocity Distributions	71

LIST OF FIGURES (Continued)

Number	Caption	Page No:
B. 2.3	Lisplacement of Axial Velocity Frofile	71
B. 3.1	Accelerative Force	76
B. 3.2	Pressure Gradient Force	79
B. 3.3	Force on a Sphere	79
B. 3.4-6	Laminar Motion of a 45μ Glass Sphere	90,91,93
B.3.7-9	Turbulent Hotion of a 235μ Glass Sphere	97-99
B. 3.10	Prrticle tracks under Laminar Conditions	102
B. 3.11	Prorticle tracks under Turbulent Conditions	104
E.3.12	Concentration variation resulting from Laminar particle motion.	106
B.3.13	Concentration veriation resultine from Turbulent particle motion	107
B. 4.1	Particle shearing forcos	115
B. 4.2	Elemental volume	128
B. 5.1	Second Test Rig: Hend isssembly	134
B. 5.2	Photograph of Hend assermbly	135
B.5.3-21	Concentration Profiles (Mark 7 Cell)	140-158
B. 5.22	Effect of Feed Concentration ($\mathrm{r}=1.10 \mathrm{~cm}$)	162
B. 5.23	Effect of Feed Concentration ($\mathrm{r}=2.40 \mathrm{~cm}$)	163
B. 5.24	Lift Forces on particles	178
B.5.25	Approxinate liodel for region near outer wall	183
B. 5.26	Ratio of Inertinl particle shearing stress to purc fluid sherr stress	190
B.5.27	Size Distribution Calibration (itcrk 7 Cell)	199
B.5.28	Mean Size Calibration No.l ($\mathrm{r}=1.10 \mathrm{cn}$ 。)	202
B. 5.29	Correlation between \hat{D} and \widehat{D} Mean Sizes	204
B. 5.30	Mean Size Calibration Na. 2 ($\mathrm{r}=1.10 \mathrm{~cm}$ 。)	205

(viii)

IIST OF FIGURES (Continued)

Number	Caption	Page No:
B. 5.31	Mean Size Colibration ${ }^{\text {a }} 0.3$ ($r=2.40 \mathrm{cmo}$)	208
D. 5.32	Correlation between \bar{D} and \bar{D} Menn Sizes	210
E. 5.33	Mean Size Calibration 10.4 ($\mathrm{r}=2.40 \mathrm{~cm}$.)	211
B. 5.34	Comparison between Calibrations	213

a Area of an elemental surface
cmin^{2}
f. Projected area, a constant in equations

b Velocity gradient A constant in equations
C Drag Coefficient

C_{v}	Volume concentration of solids at (r, a)	-
$C_{\vartheta f}$	Volume concentration at inlet to helix	

C_{W} WGight concentration of solids at (r, a)
d Differential notation
D Diameter of a spherical particle; particle size
$\mathrm{D} \quad$ Mean size defincd by equation B. 5.29
$\hat{D} \quad$ Mean size defined by equation $B .5 .30$
Mean Size defined by equation B.5.38
Mean Size defined by equation B. 5.40
e Base of natural logarithms
$E_{a} \quad$ Tangential flux of particles $=V C_{V}$
$\varepsilon_{r} \quad$ Radiol flux of particles
$\sec .^{-1}$
E, E_{0}, E_{1} Constants
F_{A} Accelerative force dynes
F_{B} Shear(Bagnold)force dynes
F_{N} jet accelcrative force ($F_{f}-F_{p}$) dynes
F_{p} Pressure gradient (displacement) force dynes
$G_{L} \quad V i s c o u s$ drag force dynes
$G_{T} \quad$ Turbulent drag force
$h \quad$ Increment in radius (r)
H Total head in fluid/suspension cm 。
$i \quad$ Number of perticles of size D

Symbol	Suantity	Units
k	Maximum size, Size Modulus of GaudinSchuhmenn Distribution function	$\mathrm{cm} . / \mu$
K_{L}	Defined as equal to ($\sigma-\boldsymbol{P})^{6} D^{2} / 18(\sigma-1)^{5}$	sec
$\mathrm{K}_{\text {T }}$	Defined as equal to $[10(\sigma-\mathrm{P}) \mathrm{D} / 3 \mathrm{P}]^{\frac{1}{2}}$	$\mathrm{cm} .^{\frac{1}{2}}$
L	Distance between centres of adjacent spheres; and Cross-sectional area of pipe	cm 。
	Perimeter of cross-section -	cm
ra	Error multiple	-
M	Volume/weight proportion of size D in a. sample	-
M_{F}	Curulative vol./wt. proportion finer than size D	-
n	Viscosity of fluid/suspension	poise
\bar{n}	Exponent charcterising relationship between V and D in the transitional regime of motion	-
N	Distribution Modulus of the GaudinSchuhmann function.	-
p	Pressure in fluid/suspension	dynes/cm. ${ }^{2}$
P	Density of suspension at (r, a)	$\mathrm{gm} . / \mathrm{cmo}^{3}$
P_{0}	Density of suspension et inlet to helix	$\mathrm{gra} / \mathrm{cm}^{3}$
q	Ratio of particle diameter to radius of ration	-
Q	Exponent in velocity compensation equetion	-
r	Radius of motion of fluid or particle	cm.
r_{i}	Radius of inner wall of helical chennel	cri.
$r_{\text {m }}$	Radius of outer wall of helicol channel	cm .
$\overline{\mathrm{r}}$	Radius of curvature of axis of helical channel	cm.
R_{F}	Reynold's number for fluid in channel	-

Eymbol

cuantity

Units

$$
R_{p} \quad \begin{aligned}
& \text { Reynold } \boldsymbol{x}^{\prime} \text { Number for radial motion } \\
& \text { of particle }
\end{aligned}
$$

$R_{s} \quad$ Reynold X_{s}^{\prime} iumber for suspension in chenncl
S Density gaugo reading mV
t Time
T Square of the particle radiol velocity（ U^{2} ）
u Velocity of particle relative to fluid
$u_{T} \quad$ Tangential component of priticle velocity u． $\mathrm{cn} . / \mathrm{sec}$ ．
U
$\mathrm{U}_{\text {TER }}$
v
V Axial velocity of fluid／suspension ct $(r, a) \quad \mathrm{cmo}$ ）sec。
$\overline{\mathrm{V}} \quad$ Average axial velocity of fluid／ suspension calculcted fror volume throughput
V／Work done in sherring the suspension
x Distance between nearert points of adjecent sphercs
X Thickness of radiation absorber cra ． sec 。 cm 。／sec。
Terminal radial velocity component cra ／sec． Lxial velocity vatiation fluid／suspension near outer wall $\mathrm{cm} . / \mathrm{scc} . / \mathrm{rad}$ ．
 Rectenguler axis
y Rectenguler axis
Y Dumay vericble of integration
z Rectangular axis；＇apparent＇value of T
a f．nguler position within helix
$\beta \quad$ Distance between centres of adjecent layers of particles

$$
\mathrm{cm} .
$$

$\partial \quad$ Partial differential notation
δ Notation for infinitesimal increment

Symbol	Quantity	Ünits
5	Amplitude of shecr vclocity fluctuation	$\mathrm{cm} / \mathrm{sec}{ }^{\text {x }}$
θ	Angle of particle motion relative to radial direction	degrees
μ	Microns; mass absorption coefficient	$\mathrm{cm} .^{2} / \mathrm{gm}$.
八	Linear particle concentration $=\mathrm{D} /(\mathrm{L}-\mathrm{D})$	-
\%	Total instantaneous shear velocity	cm. $/ \mathrm{sec}$.
p	Density of fluid	$\mathrm{gm}. / \mathrm{cm.}^{3}$
σ	Density of solid particles	$\mathrm{Em} / \mathrm{cm}^{3}$
τ	Instantaneous shear stress within suspension	dynes/cril ${ }^{2}$
$\bar{\tau}$	Time-average sherr stress within suspension	dynes/cm. ${ }^{2}$
\varnothing	Dimensionless group cheracterising flow in curved pipes	-
\exp	Denotes 'o raised to the power of'.	-
1 n	Locrrithm to basc e	
log	Logarithm to base 10	

PART A

INTRODUCTION

The ideas forming the basis of this thesis were generated during the early stages of a grinding research project, when it was realised that the continuous analysis of a wet grinding circuit ${ }^{1,2}$ could not be undertaken satisfactorially without frequent and rapid measurenent of the size distribution of particles produced by the mill。

Various ways of obtaining this information were considered, ranging from turbidimitry, sedimentation, elutration or screening, conducted on intermittent batch samples, to continuous use of different sizes of D.S.M. screens, wet sieves or hydrocyclones in conjunction with flowrate and pulp density measurements.

The batch techniques, while capable of yielding full information concerning the size distribution of solid particles present, suffer from the disadvantages of being both intermittent in action and time consuming. Measurement and recording of the density and flowrate of the feed to and products from a wet screen or hydrocyclone can be made continuously, but the circuit is complex and considerable instrumentation is required.

A final disadvantare of the systens discussed above is that they involve physical interference with the pulp stream: either the removal of a portion or the division of the stream into subsidiary flows. Where the pulp is to undergo further treatment or analysis, this is a most undesirable feature.

The device subsequently described has been developed for the specific purpose of carrying out on-stream analysis of particle size distributions occuring as suspensions in fluid medio. It has eliminated some, but not all, of the disadvantages of the alternatives mentioned above。

However, one great virtue of the device is that, potentially, it can be improved, and it may well be that the planned programme of research which follows on from the work described in this thesis will succeed in eliminating many of the technical drawbacks which still limit its usefulness.

The thesis is presented in two main sections. Part A describes the development of both the sizer itself and of a suitable calibration technique. Part B gives a detailed analysis of the particle-fluid behaviour within the sizer, aimed at providing some kind of theoretical framework within which the performance of the sizer may be evaluated. It also describes further testwork conducted on a more sophisticated version of the device using ideal spherical particles. This work was designed to establish the extent to which the conclusions drawn earlier could usefully be applied and to establish if possible a fundamental basis for the empirical calibration developed in the first part of the thesis. Finally, the progress achieved is reviewed and an outline of the further research deemed necessary is given.

2. PRELIMINERY TESTMORIN.

2.1 Introduction and Basic Principles.

The purpose of the on-stream size analyser is to provide continuous information concerning the size distribution of particles present in suspensions of solids in fluid media.

The principle of the system is to apply a centrifugal force to the suspension so that particles of different masses attain different velocities in the direction of the force. When the force is applied at right angles to the direction of motion of a suspension flowing in an enclosed channel, the resulting concentration of particles -cross the channel is influenced by the size distribution of the solid particles. When the particles are of similar shape and density the pattern of concentration across the channel will be directly dependent on their size distribution. Hence, if the concentration profile can be measured and related to the size distribution causing it, the results may be used as the basis of a system of on-stream size analysis.
2.2 Kark 1 Cell

The first version of the sizer cell is shown in figure A.2.l. It consisted of half-inc' diameter piping which changed in shape progressively from circular to flat rectangular to circular while turning throwgh about 280°. Thin windows of Melinex were let into the sides of the channel at the midpoint of the turn to permit observation of any density effects created within the device.

The shape of the cell was determined by two requirements. The first was to allow centrifugal force to create a concentration gradient acrose the flow chamel. The second was the

FIGUPE A.2.1: Mark 1 Coll
necessity of dispersing the concentration spectrum over e. reasonable width of channel for purvoses of obscrvation and measurement.

The dimonsions of the rarlk 1 and all subsequent sizer cells were selected with a perticular application in mind. 1,2 The total supply of suspension was to be about l litre/nino of a pulp containing of the order of $70:$ by weicht of quartz particles. This pulp could be diluted, but the requircments of the systen restricted the permissible dilution to a certain range. Tue sizer feed had to be sufficiently dilute to permit a ueeful degree of radial notion for the individual perticles. It had also to be dense enough to allow changes in particle concontration to be measured in a thin layer of matorial. \therefore dilution to $20 ;$. solids by weight was chosen initially, eivinc a total flow of $90 \mathrm{c} . \mathrm{c} . / \mathrm{sec}$. Jith this feedrate, the intermal dimemsions of the Mark 1 cell gave an averoge flow velocity of $120 \mathrm{~cm} / \mathrm{Ecc}$. It was hoped that this woula be adequate.
2.2.1 Testworl Usine the Mart 1 Cell.

The first tasts vere designed to establish by means of visual obeervetion whether or not the chosen cell dimension and feod conditions gave any detectable density Eradient across the channel.

The circliit usec is shown in Figure $\therefore .2 .2$. It consists of a suall variable speed centrifugal pump equipped with a feed hopper, fecd and return lines for the coll, and a light source for illuminating the windows fron below.

Various size fractions of quartz sand were made up as suspensions containing 20% solids by weifht and pumped through the cell at several different flowrates.

FIGUTE A.2.?: Test Circuit for Mark 1 Cell

Moderate concentration gradients were observed with the coarser particle sizes when the pump was run at full speed. (Approximately $120 \mathrm{coco/sec}$)

No observable gradient was found for sizes finer than 72 mesh Bos. At all pump speeds, moreover, considerable flexing of the Melinex windows occurred, resulting in a high degree of local turbulence. The flow patterns observed within the window zone are shown in Figure A.2.3.

It was obvious that even if the design of the windows was altered the Mark 1 cell would be unable to create an effective concentration gradient at a flowrate of $90 \mathrm{c} . \mathrm{c} . / \mathrm{sec}$. unless the suspensions contained substantial amounts of material coarser than 72 mesh Bos. Since the size distributions which the instrument would be required to measure were unlikely to be of this ty-e, testwork using the Mark l cell was discontinued and a new cell was designed.

2.3 Mark 2 Cell

The second version of the cell is shown in Figure 4.2 .4. The cross-sectional area of the flow channel was reduced by apfrox, a third, so that for a feed rate of $90^{\circ} \mathrm{c} . \mathrm{c} / \mathrm{sec}$ the average flow velocity in the cell would be increased from $120 \mathrm{~cm} . / \mathrm{sec}$. to $200 \mathrm{~cm} . / \mathrm{sec}$. The 280° turn of changing radius used in the Mark l was replaced by a full helical turn. Other changes include the use of perspex as the constructional material for the entire cell and the provision of an extended leadout from the helix: these modifications were introduced to eliminate window flexure and to enable the action of the sizer to be observed both within and downstream of the helix.

> Solids: $-36+52$
> Flowrate: $1<0 \mathrm{c} \cdot \mathrm{c} \cdot / \mathrm{sec}$.
\because

Solids: $-52+72 \nRightarrow$
Flowrate: 80 c.c./sec.

EIGURE A.?.4: Mark 2 Cell

2.3.1 Testwork Using the Marle 2 Cell

The harl 2 cell was tested in the same circuit as that employed for the Rark 1 (Figure A.2.2) and a series of similar tests was carried out.

To make visual observation easier, the mixtures were made up from two differently coloured minerals; blue crysocolla was used for the coarser sizes and quartz for the finer sizes. The magnitude of the concentration gradient produced was estimated by observing the intensity of colouration at different positions across the helix. This work was qualitative and the effects observed were similar to those illustrated in Figure A.2.5. This is a colour photograph of the results obtained with a full size distribution of ground glass (Distribution No. 6, Table A.3.2. page 37) in which the material coarser than 72 mesh is green and the fine material yellow. The concentration gradient across the channel is clearly visible.

2.4 Summary and Conclusions

The results obtained with the Mark 1 cell showed that: a flow velocity of $120 \mathrm{~cm} / \mathrm{sec}$. was too small to create effective concentration profiles except with very coarse particles.

Funs conducted with the Mark 2 cell suggested that the radial motion created for particle sizes down to 100 mesh BoS. would be sufficient to supply a measurable concentration gradient. The concentration profile appeared to persist for some considerable distance downstream of the helix.

These findings were considered to be sufficiently

FIGURE A.2.5: Photograph of sizing effect.

- 12 -
encouraging to justify the construction of a test rig incorporating means for measuring the concentration of particles at different points within the flow channel.

3. DIVELOPRMT OF FROTCTYPE SIESR

3.1 Leasuring jystem

3.1.1 Introduction

The ideal measuring systen for the prototype sizer would have been capable of determinine the particle concentration at a variety of points within the helix itself. This proved to be impracticable for several reasons. Of the available measuring techniques, only a beta-radiation eauce of the tranemission variety possossed the necescary sensitivity to cope with the smell patis length and narrow range of concentrations lilely to be encountered. Unfortunately, a 'spot' source of specific ectivity high enough to ensure good statistical accuracy in the counting equipment would have been prohibitively expensive. Also, the radiation detector (an ionisation chamber) hed to be placed clear of the helix because of its size.

Fortunately, the concentration gradients procuced withis the helin were found to persist at considerable distences downstreac of the helix. It was thus poesible to use a chery 'linc' source of considerable area and low specific activity, and to site the source and detector on the leadout fron the helix.
3.1.2 Fieasuring System

The Strontium - 90 beta-radiation source and ionisation chamber were disposed on opposite sides of the flow chanel at a position just far encugh downstream to ensure that the helix did not interfere with the rediation path. (Figure A.3.1)

The source, one of a standard range mace by the

FIGURY: 4.3.1: Geometry of Feasurine System

Radiochemical Centre at Amersham, was supplied in the form of a metal foil having an active area of $114 \times 3 \mathrm{~m} . \mathrm{m}$. and a total activity of 20 millicuries. Jith a view to improving the resolution of the density measurements, the source width was reduced to $1.5 \mathrm{~m} . \mathrm{m}$. by altering the dimensions of the slit in the retaining plate of the source holder. Since the window of the ionisation chamber was 7.6 cm . in diameter, the effective source activity was only about 7 millicuries.

The remainder of the measuring system consisted of a standard 'Atomette' radiation gauge electronics unit (Baldwin Instrument Co.) and a potentiometric chart recorder. This system converted the current from the ionisation chamber to a voltage, which was subtracted from a preset reference voltage to provide a signal which increased as the concentration of particles in the measuring zone increased. This signal was then fed to the chart recorder. An outline circuit diagram is shown in Figure A.3.2.

Since this system of measurement was employed throughout the work, later versions of the equipment differing only in stability and sensitivity, the basic relationship between particle concentration and signal output to the chart recorder is developed and presented here.

The attemuation of beta-radiation by an absorber may be represented as follows:

$$
\left.\begin{array}{rllll}
-d I & =\mu P X I & \cdots & \cdots & \cdots
\end{array}\right)(3.1)
$$

where I is the intensity of radiation reaching the detector for an incident intensity of I_{o} on the absorber, μ is an average mass absorption coefficient for all absorbers

gIGURE A. 3.2: Outline Circuit Diagram
($\left.5.8 \mathrm{~cm}^{2} / \mathrm{gra}\right), P$ is the density $\left(\mathrm{gm} / \mathrm{cm}^{3}\right.$) and X is the thickness (cm) of the absorber.

In the equipment just described the current from the ionisation chamber , which is proportional to I, is converted to a voltage and subtracted from a preset reference voltage. Hence the signal reaching the chart recorder may be represented by

$$
S=E_{0}-E_{1} e^{-\mu P X} \ldots \quad \ldots \quad \ldots \quad \text { (3.3) }
$$

The radiation reaching the detector, through the measurement zone in the sizer outlet is attenuated not only by the suspension but also by the perspex walls of the channel, by the air in the gaps between the channel and the source and detector, and by the window of the detector. Equation (3.3) should therefore be replaced by an expression of the form

$$
S=E_{0}-E_{1} \exp \left[-\mu\left(P_{1} X_{1}+P_{2} X_{2}+\ldots\right)\right] \quad \ldots \text { (3.4) }
$$

However, since thesc additional attenuations are always present, and - with the exception of the air attenuation do not vary significantly even with changes in the ambient conditions, their effect may be incorporated into the constant ' E_{1} '

$$
\therefore s=E_{0}-E_{2} \exp [-\mu P \mathrm{PX}] \quad \ldots \quad \ldots \quad \text { (3.5) }
$$

where X represents the thickness and P the density of the suspension in the measurement zone. (Variations in the attenuation of the air are compensated for in the standardisation technique.)

It is convenient to replace P in equation (3.5) by the volume concentration of solids in the suspension (C_{v}), leading to the result

$$
S=E_{0}-E_{3} \exp \left[-\mu X(\sigma-1) C_{v}\right] \quad \ldots \quad \text { (3.6) }
$$

```
where \(\sigma=\) specific gravity of the solid particles
    \(E_{3}=E_{2} \exp [-\mu X]\)
```


3.2 First Test Rig

To enable measurements of particle concentration to be nade at positions corresponding to different radii within the helix, it was necessary to mount the beta-source and detector so that they could be traversed across the channel. Safety regulations also dictated that the source-detector assembly should be totally enclosed within e structure capable of providing an adequate radiation shield.

The layout adopted is shown in Figures i.3.3, A.3.4. It consisted of a rectangular cross-section metal frame with a totally enclosed box mounted on slides within it, the box being traversed by means of a hand crank. The frame and box were constructed of $\frac{1}{2}$ inch mild steel. Additional radiation screening was provided by external lead sheet as required. The sizer passed through slits in the outer frame walls and was clamped to these walls. Corresponding lateral slits in the walls of the box permitted the sizer helix and channel to pass through it, while at the same time the box could be traversed back and forth. The beta-source was mounted on the underside of the lid of the box and the detector clamped to one of the side walls by means of a bracket. The configuration of source, sizer and detector was shown previously in Figure A. ${ }^{\text {B. }}$.

Initially the sizer was fed from a constant head tank equipped with an agitator, situcted some fifteen feet above the sizer inlet. The discharge from the sizer was pumped back up to the head tank by means of a Monopump. The flowrate through the sizer was determined by taking timed samples

Elevation

FIGURE A. 3.3 First Test Rig (Head Assembly)

FIGURE A. 3.4: Photograph of Head Assembly.
of the discharge, the flow being regulated by means of a clamp attached to the feed line. (Figure A.3.5.)

Preliminary tests run with this circuit revealed that the suspension passing through the sizer contained sicnificantly higher proportions of solids than the prepared feed. This was clearly due to settling of the coarscr solids in the head tank. Efforts were made to overcome this, but evidence of settling persisted. The constant head circuit had to be discarded.

3.3 Becond Test Rig

The head assembly used in the first test rig was retained unchanced. The constant head tank was discerded, and a circuit with smaller volume was constructed in which the sizer was fed direct from a monopump equipped with a 'Bercotrol' power regulator (British Electrical Control Company) (Figure A.3.6). The size of monopump chosen was such that it had to run at about 80% of its maximum delivery rate in order to achieve the desired flow of $90 \mathrm{cc} . / \mathrm{sec}$. This was intended to avoid low-frequency pulsations in the feed flow that might have been created by a larger pump running more slowly.

This circuit immedictely gave far more satisfactory results and, in its basic form, was used for all the remaining work described in this thesis. Various additions were made to the instrumentation in the later stages and these will be described as they arise.
3.4 Mark 3 Cell

The liark 2 cell was fabricated to permit visual observations. The perspex used in its construction was nearly 3 mom. in thickness and it was therefore quite unsuitable for use with

$$
-22-
$$

FIGURE A. 3. 5: First Test Rig (Susnension riow)

$$
-23-
$$

FIGTRE A. 3.6: Second Test Rig (Suspension Flow)
low penetration beta radiation. Another factor affecting the choice of a new cell was that it was considered desirable to determine the extent of the influence exerted by the radius of the helical turn on the radial motion of the particles.

The third version of the cell is shown in Figure A.3.7. The cross-sectional area of the flow channel remains the sane, but the radius of the helix has been reduced by 0.5 cm . The meterial used was $1.6 \mathrm{~m} . \mathrm{m}$. perspex.

3.4.1 Testwork Using Mark 3 cell

The Mark 3 cell was assembled in the test circuit shown in Figure $A .3 .6$ with the pulp flow in the direction indicated for calibration of the beta-gauge. The Bercotrol Unit was calibrated against flowrate by taking timed samples of the suspension. The beta-gauge was then calibrated over a range of solids concentrations, using commercially supplied quartz sand of specific gravity 2.70. (This material was used for all the work described in Section A of this thesis.) The calibration technique was as follows:

The beta gauge was first standardised according to the manufacturers recommended procedure, which eliminated spurious signals within the equipment and compensated for source decay aid changes in ambient conditions. The deviation indicator was then set to give a selected reading on the chart recorder with the source and detector set at a particular reference position on the sizer, which contained water onlyo Feriodic readings at this reference positions were taken and used as a check on the calibration of the equipment.

The total supply of quartz sand was screened on a Russell machine into individual size fractions, from which particular size distributions were made up as required. For

$$
-25-
$$

FIGURE A. 3.7: Mark 3 Cell
the beta-gauge calibration ard sizing runs conducted with the Mark 3 cell, one particular size distribution was used throughout. This was an 'ideal' Gaudin-Gchuhmann distribution, ${ }^{4}$ having e. size modulus of 422 microns and a distribution nodulus of 0.738 .

The volume of the circuit was measured and the sample meights calculated to give sclids concentrations in the circuit ranging frcm 0 to 50% by weight. ($C_{v}=0$ to 0.27) Each sample was pumped through the circuit at about boc.c./sec. and measurements were recorded at 0.2 cm . intervals across the sizer channel, the source and detector being positioned by means of a dial gauge attached to one side of the head box. (Figure A.3.3.) For each neasuring position, the readings obtained on the chart recorder were plotted against volume concentration of solids. This completed the calibration of the beta-gauge and the flow direction in the circuit was then reversed.

The objects of the sizing runs which followed were twofold: first, to estimate visually whether decreasing the radius of the helix resulted in any murked increase in the radial motion of the particles, and second, to determine whether or not the visually observed concentration Eradients could be measured using a beta-gauge.

Four test runs were made, the details of which are given in Table 3.1 overleaf. They covered two levels each of solids concentration in the feed, and flowrate.

: Fatural quartz: $G-S$ Dist ${ }^{n}, N=0.738 k=422 \mu$

Visual observation of the behaviour in the helix suggested that there was little change in the radial motion of the particles. The measurements made with the beta gauge are shown in Figure $A .3 .8$, and it can be seen that quite steep concentration gradients were found. This confirmed that the profiles previously observed visually were of sufficient magnitude for measurement by beta-ray attenuation.

The measurements made were unsatisfactory in one important respect, however. A detailed examination of the geometry of the system revealed that the apparent concentration of solids recorded at a given position was, in fact, an average figure for a zone extending perhaps as far as 0.5 cm . on either side of the position.

At this point in the work the Marls 3 cell was badly

FIGURE A. 3.8 : Concentration Frofiles obtained with the Park 3 Celz
damaged in the course of an alignment check on the sourcedetector assembly. It was therefore decided that a new cell could conveniently be introduced at this stage, since certain desirable modifications to the equipment would necessitate recalibration of the cell in any event.

3.5 Viark 4 Cell

In view of the constructional difficulties encountered with the Fiarl 3 cell and the absence of any real gain resulting from the reduced radius of helix, it was decided to revert to the design adopted for the Mark 2 cell. The Mark 4 was therefore identical to the Fark 2 (Figure A.2.4) excopt that it was fabricated in $1.6 \mathrm{~m} . \mathrm{m}$. perspex.

3.5.1 Modifications to Test Rig

The poor resolution of the measuring system, leading to the recording of avcrage densities over a zone about 1 cu. in width, was considered unacceptable. It was therefore decided to collimate the radiation entering the ionisation chamber. This was achieved very simply by screwing two semi-circular brass plates to the rim of the chamber casing, the screws passing through slots in the plates. i collimation slit varying from zero up to 3 mom . could be obtained by loosening the screws and sliding the plates. (Figure A.3.9.)

The collimation slit was set to lo5mom. and aligned with the source. This was a simple operation to perform since even slight misalignments could be detected by marked reductions in the intensity of radiation reaching the ionisation chamber. The Mark 4 cell we then inserted into the head assembly and aligned with source and collimation slit.

With the modified system, the solids concentration

was measured over an area 1.5 mm . wide by 7.6 cm . long. The source was actually 11.4 cm . long, but the diameter of the window in the ionisation chamber was only 7.6 cm , hence the effective collimition aperture was of this length. (See Figure A.3.1.)

3.5.2 Testwork using Mark 4 Cell.

The beta-gauge was calibrated for the Mark 4 cell in the manner described prevjously. (section 3.4.1).

The testwork wiilch followed wes of considerable importance, since the main objective was to assess the ability of the proposed analysis system to distinguish between the various types of size distribution likely to be encountered in a grinding circuit. It was necessary at this stage to decide oil the feed conditions to be used, since these would be kept constent throughout. The results obtained with the Merk 3 cell (Figure A.3.8) revealed that satisfactory concentration profiles could be obtained with any of the combinations of feed conditions that were tried. However, the higher feed concentrations imposed a considerably greater strain on the pump and difficulties were experienced in keeping the solids in suspension at the lower flowrate. (60 cod $/$ sec.) It was therefore decided that a feed concentration of 20! solids by weigat ($\mathrm{C}_{\mathrm{V}}=0.085$) and a flowrete of $90 \mathrm{coc} . / \mathrm{sec}$. would be suitable. These conclusions were confirned by terts similar to those shown in Table 3.1, conducted while the hark 4 cell and test rig were being checked and calibrated.

In view of the widespread usage of the Gaudin-Schuhmann or log-log size distribution function, it was decided to use this type of distribution in all work relating to the testing or calibration of the size analyser. It will be apparent,
however, that the action of the size analyser is not in any way dependent on this form of presentation. Alternative calibration systems are in fact developed for the work conducted on glass spheres. (Section B.5.4).

Twelve different size distributions were used to test the size analyser. The properties of these distributions were carefully chosen to span a wide range of conditions. Ten were 'ideal' Gaudin-Schuhmann distributions: the remaining two were unusual types, one being completely deficient in a particular size fraction and the other having an unusually high proportion of the same size fraction. Full details of the distributions are given in Table A.3.2 and Figures A.3.10A.3.13. It can be seen that distributions 1 - 4 have the same distribution modulus but differing size moduli. On the other hand, distributions $2,5,6,7$ have the same size modulus but differing distribution moduli. Distributions 8,9 form other groups with 3,4 , while distribution 10 was designed to investigate the effect of having a small size modulus and an abnormally large distribution modulus. Distributions 2,8,9, 10 all contain the same proportion of minus 200 mesh material. Finally, distributions ll, 12 are the unusual types referred to previously.

TAELE A.3.2.

(see overleaf)

TABLE A.3.2.

The test amples were made up from the size fractions prepared on the Russell screen, the total weight of each sample being such as to give a suspension containing 20% solids by weight ($C_{v_{~}}=0.137$)when added to the circuit. Each sample was run througf the size analyser at a flowrate of approximately

FIGURE $1.3 .10:$ Size Distributions 1, 2, ${ }^{2}, 4$

FIGURE A. 3.11: Size Distributions 2,5,6,7

FIGURE A. 3.12: Size Distrihutions 2, \%, 9,10

IGWE A. Z.1?: Size Distributions 11, 12

90c.c./sec. and the particle concentration measured at selected intervals across the sizer channel. The results of these measurements are shown in Figures A.3.14 - A.3.17.

The concentration profiles shown in each group all vary in the correct sense and the differences between the profiles are clearly detectable. However, in nearly all cases the spacing of the concentration profiles was far more irregular than would have been expected from consideration of the size distributions causing them. Two factors contributing to this effect were discovered in the course of the tests. First, the sensitivity of the beta-gauge was poor, this being mainly due to the thick walls (1.6 mm .) of the Mark 4 cell. Second, the system of flowrate control, which consisted of calibrating the flowrate in the circuit against the Bercotrol setting, was found to be inadequate. Significant variations in flowrate were found for successive test runs conducted at the same Bercotrol setting. A third possible factor was discovered when check sieve analyses on some of the reclaimed samples revealed considerable deviations from the nominal or made-up distributions. The cause of these deviations was found to be in the size fractions obtained from the Russell screen, which in some instances contained as much as 20% by weight of oversize material.

3.6 Summary and Conclusions

In general the concentration profiles obtained with the Mark 4 cell varied sufficiently from one distribution to another to confirm the potential usefulness of the technique as a means of size distribution analysis. The next object therefore became the development of a suitable calibration technique.

FIGUiEA.3.14: Concentration Profiles Obtained with the Mark 4 Cell Size Distributions $1,2,3,4$

FISURE A. 3.15 : Concentration Profiles Chteined with the Nark 4 Cell Size Distributions 2,5,6,7

$-42-$

: Mr: A. 2.27: Goncontration Profiles Obtained with the Mark + Cell Sizonstributinns 21, 12

Certain modifications to both the equipment and the test techniques were clearly desirable. These were effected before commencing the next phase of the testwork. (See sections $4.1 .2,4.1 .3$).
4. CAIIERATION OF SIZER
4.1 Marik 5 Cell
4.1.1 Introduction

The work carried out with the Mark 1 - 4 cells was designed to establish whether or not the basic technique could be used to differentiato between various size distributions and was mostly qualitative in nature. The results obtained were encouraging and so the next stage of the work clearly involved finding some suitable calibration technique by means of which the qualitative differences observed earlier could be converted into measurements of one or more parameters of the size distributions concerned.

Certain weaknesses in the equipment and experimental techniques had come to light during the tests conducted with the liark 4 cell and these were dealt with before proceeding further.
4.1.2 Miark 5 Cell

The relatively low sensitivi y of the existing experimental rig was mainly caused by the thick walls of the Mark 4 cell. These were 0.15 cm . in thickness, giving a total wall absorption in the radiation path of 0.3 cm . of perspex. For a suspension containing 10% by volume of ground quartz ($O=2.70$) and a channel depth of 0.3 cm ., this meant that 89% of the absorption was contributed by the perspex and water and only 110 by the quertz particles.

The Mark 4 cell was therefore removed from the measuring head and the channel walls in the neasurement zonewere milled down to give a thickness of $14 / 1000$ inches. This boosted the proportion of the total absorption mass contributed by the quartz particlee from 11% to nearly 19%.

The overall improvement was somewhat less than indicated by these figures, due to the unchanged attenuation occurring in the air gaps and detector window. However, the change was important enough to require identification and so the modified Mark 4 cell weas redesignated as the Nark 5.
4.1.3 Modifications to Test Fig

One of the drawbacks attached to the existing equipment was that it was impossible to be certain that the desired flowrate was being maintained. Also, while calibrating the Mark 5 cell it becane apparent that the thin walls were sensitive to the pressure changes occurring in association with flowrate variations. Sone means of measuring and recording the flowrate of the suspension was therefore required.

Turbine flow:eters were tried, but the finer particles got into the bearings and caused the rotors to sieze up. Rotameter fiowmeters were also tried without success. Eventually an electromagnetic flowneter was obtained, which gave consistently reliable results throughout the remaining test programme. This was a $1 / 4$ inch diameter Kent 'Veriflux', which was installed some four feet downstream of the monopump outlet. The signal fron the Veriflux was led to a Honeywell-Brown six point chart recorder, on which density readines were also recorded. This density record was a duplicate of that made on the original Kent chart recorder. The modified test rig is shown in Figure A.4.I.
4.1.4 Testwork Using Mark 5 Cell

The flowmeter and beta-gauge were checked and calibrated. It was decided to use samples havine the sante size distributions as were used with the Mark 4 cell, since these gave good coverage of the desired range of sizes. Also, tris

$$
-46-
$$

IIGMEM.4.1: Modified Sncond West Ris
made it possible to check the results obtained with different cells against each other. However, the size distributions used in the Mark 4 cell tests were unsatisfactory in one important respect, for size analyses of the reclaimed samples revealed that the Russell screen fractions used in making up the samples deviated considerably from their nominal composition.

A new set of 8 inch British Standard Sieves was therefore obtained and all materials used subsequently were prepared and analysed using these sieves. (Check analyses of reclaimed samples revealed no significant errors in later testis.)

The twelve size distributions were run through the sizer under the feed conditions previously selected. i。e。 a suspension flowrate of $90 \mathrm{coc} / \mathrm{sec}$. and a concentration of solids equal to 20% by weight ($C_{v f}=0.137$). Some difficulty was encountered with all samples due to flexure of the channel walls, and to ensure that the readings obtained could be accurately compensated for this effect, two full scans were carried out on each sample. Quite narked temperature rises were recorded over the total duration of the scans, changes of the order of $15^{\circ} \mathrm{C}$ being not uncommon. The differences between the corrected observations were small in all cases and i.t was therefore concluded that temperature was not a significant variable. The mean of the two sets of readings was taken as the final result in each case. The results are presented and discussed in the next section.

```
4.1.5 Analysis of Data
```

The object of this stage of the work was to relate the measurements obtained with the liark 5 cell to the size distributions producing them. It was desirable to keep the
calibration technique as simple as possible and for this reason it was decided to use the density gouge output directly, instead of converting it into the corresponding particle concentration. The signal obtained from the density gauge (S) as it was scanned across the sizer outlet has been plotted in Figures $: .4 .2-2.4 .5$ for the four groups of size distributions shown earlier in Figures A.3.10-A.3.13.

Two techniques were employed in the attempt to devise a suitable calibration method. The first consisted of plotting the readings obtained at a particular position against the weight fractions of material (M_{F}) finer than various sizes in the feed and looking for the best correlation between the two. This system was not very successful: the failure is evident in the results already shown in Figure A.4.4. Distributions $2,8,9,10$ all contained 36.8% - 200 mesh material and if a satisfactory correlation existed, the minimum readings near $r=1.0$ should have been the same for all distributions. In fact, the curves for distributions 9 and 10 are virtually coincident in this regicn, but 2 and 8 fall a considerable distence away.

The second technique was based on one of the most striking features of the density gauge profiles, namely the chance in the difference between the maximur and minimum readings from one size distribution to another. This quantity, designated ΔS, is illustrated in Figure 8.4 .2 and the values of ΔS for the size distributions are given in Table A.4.1.

$$
\text { TABLE } \mathrm{A} .4 .1
$$

(see overleaf)

- 49 -

The Gaudin-Schukmann distributions (1 - 10) can be completely specified by means of two parameters, the size and distributicn moduli, and these provided an obvious starting point for the calibration attempt. ΔS was plotted against k for distributions $1-4$ and against N for distributions 2,5,6,7 (Figures A 4.6, A.4.7).

The shape of the \bar{N} vs. ΔS curve (Figure A.4.7) suggested a relationship of the type $\Delta S \propto \log N$ and so a plot of ΔS vs. \log if was constructed. (Figure A.4.8).

- 51 -

PIGURE A. $4.0: \triangle S$ vs. k for Mark 5 Cell

FIGURE A.4.7: \triangle S vs. N for Mark 5 Cell

$$
-53-
$$

FIGURE 4.4.\}: \triangle S vs. Log N for Nark 5 Cell

The results immediately suggested the family of straight lines shown, which all have the same slope but intercepts that vary with the size modulus in some manner. Therefore:

$$
S=A+A_{1} \log \pi \quad \ldots \quad \ldots \quad \ldots \quad(4.1)
$$

where A_{1} is the slope $\left[\frac{d \Delta S}{d O g N}\right]$ and A the intercept on the ΔS axis.

A further plot of \hat{A} versus k (Figure A.4.9)
suggested the relationship

$$
A=B+E_{1} \log (k-90) \quad \ldots \quad \ldots \quad(4.2)
$$

where B_{I} is the slope and B the intercept on the A axis.
This was confirmed on the same plot. Calculated values of the slopes A_{1}, B_{1} and the constant B were obtained.

$$
A_{1}=B_{1}=43 . ? \quad B=-43.4
$$

4.1.6 Final Calibration Technique

Combining equations $4.1,4.2$ leads to the result

$$
\Delta S=41.7 \log N(k-90)-43.4 \ldots \ldots(4.3)
$$

Values of $N(k-90)$ have been calculated for the 10 ideal Gaudin-Schuhmann distributions and plotted on a logarithmic scale against ΔS. (Figure A.4.10). Equation 4.3 has also been plotted on the same graph: it can be seen that it represents a satisfactory approximatioh to the results. The results for the two non-ideal distributions have also been included, plotted against estimated average values of $N(k-90)$ 。

In order to confirm the applicability of equation 4.3 two new size distributions (13, 14) were made up and run through the equipment. These were both ideal GaudinSchummann distributions and had values of $\mathrm{H}(\mathrm{k}-90)$ chosen to fill gaps in the coverage provided by distributions 1 - 10.

FIGUREA. \cdot : Intercent (A) vs. k for liark 5 Cell

- $56-$

FIfIVE A.4.10: Size Distribution Salibration for Nark 5 Cel:

Details are given in Table A.4.2.

The values of ΔS measured for distributions 13 and 14 were 78.0 and 31.2 respectively. These results have also been plotted on Figure $\mathbb{A} 4.10$ and it can be seen that distribution 14 conforms exactly with the calculated equation, but that distribution 13 falls a considerable distance away from it. The empirical equation (4.3) developed above therefore appears to break down at values of $N(k-90)$ much in excess of 400 , corresponding say to
distributions containing $30-40 \%$ or more of +52 mesh particles.
It is now possible to define the quantity $\overline{\mathrm{N}}(\mathrm{k}-90)$ for en unknown distribution by measuring ΔS under standard conditions. In practice, the size distributions resulting from a particular combination of feed material and size reduction machine tend to have a constant value of N, so wherever this condition occurs the size distribution of the product is adequately defined by a single measurement of ΔS.

In cases where nothing is known regarding the size distribution characteristics of the material or where is known to vary, the value of $N(k-90)$ found for the material may be used to discover a single point on the size distribution plot.

4.1.7 Calibration for Uncnown Size Distributions.

Any size distribution that can be approximately represented by a Gaudin-ichuhmann distribution function ${ }^{4}$ will exhibit a straight line over the greeter part of its leneth if plotted in the form of log wt. finer versus log size. In terms of the symbols used in this presentation, the Coudin-Schuhmann function may be represented as follows:

$$
M_{F}=\left[\frac{I}{k}\right]^{N i} \quad \ldots 0 \quad \ldots \quad \ldots \quad(4.4)
$$

or $\log M_{F}=N(\log D-\log k) \quad \ldots(4.5)$
A given value of $N(k-90)$ can arise from various combinations of N and k. Each of these possible combinations of values of N and k reprebents a different size distribution However, by defining a pair of limiting slopes ${ }^{i v}{ }^{\prime}, \tilde{N}_{2}$, within which the slope of the unknown distribution should nearly always lie, one point on the actual distribution
can be estimated closely from the intersection of the two limiting distributions. The procedure for this is as follows: the measured value of ΔB and the slopes N_{1}, N_{2} are substituted in equation 4.3 and the corresponding size moduli k_{1}, k_{2} are determined. The intersection of the two distributions at ($M_{F i}, D_{i}$) can then be found from

$$
\begin{aligned}
& \text { Di }=\left[\begin{array}{l}
\mathrm{N}_{1} \\
\frac{k_{1}}{\mathrm{~N}_{2}}
\end{array}\right] \frac{1}{\mathrm{k}_{2}-\mathrm{N}_{2}} \quad \begin{array}{lllll}
& \ldots & \ldots & \ldots & \text { (4.6) }
\end{array} \\
& M_{F i}=\left[\frac{D_{i}}{k_{1}}\right]^{M_{1}} 1=\left[\frac{D_{i}}{k_{2}}\right]^{N_{2}} \ldots \ldots(4.7)
\end{aligned}
$$

Over the range of size distributions normally encountered, the point of intersection ($\mathrm{F}_{\mathrm{Fi}}, \mathrm{D}_{\mathrm{i}}$) of the limiting lines is relatively insensitive to whatever values of the slopes N_{1}, N_{2} are chosen. This is illustrated in Table A.4.3, where the intersection point is calculated over the useful range of ΔS for two different sets of limiting slopes.

TABLE
(see overleaf)

The intersection calibration graph has been plotted in Figure A.4.ll for limiting slopes of 1.500 , 0.500 .
To illustrate the technique, the ΔS readine obtained for the ten distributions that have slopes falling between 0.500 and 1.500 has been used to read off an intersection point for each. In Table 4.404 these results are compared with the known composition of the distributions.

TABLE A. 4.4
(see overleaf)

FIGURE A.4.ll: Intersection calibration for unknown size listributions.

TABLE A. 4.4

Also included in Table 1.4 .4 above are the results obtained for two samples of quartz having unknown size distributions, which were ground for different lengths of time and then size analysed both by measuring $\Delta \hat{s}$ and by dry sieving.

It can be seen that the values of $M_{F i}$ estimated from the sizer measurements agree with the known or madeup vilues to within 2 or 3 percent for the most pert. Since the accuracy of size analyses conducted by dry sieving is probably not much better than this, the suggested method of calibration would appear to be satisfactory.

4.2 Summary and Conclusions

The Mark 5 cell provided a substantial improvement in sensitivity for the measurenent of particle concentration,
but this improvement was achieved at the cost of considerable flexure of the thin chennel walls．This was a most underir－ able effect，wilich necessitated careful and time consuming compensations for the errors introduced in all measure－ ments made with this cell。 Later versions of the cell were carefully checked to ensure that wall flexure was kept within acceptable limits．（Section B．5．1．2）．

An empirical calibration technique was developed for particle sise distributions of the Gaudin－Schuhmann type which related the difference botween the maximum and minimum density gauge outputs to the Size and Distribution moduli of the size distributions．The upper limit of validity for the calibration appeared to correspond to size distributions containing more then about 30% of +52 mesh particles．The lower limit for the calibration，in theory，can be calculated from equation 4.3 by putting $\Delta S=0$ ，giving $N(k-90)=11$ ．This corresponds to a size distribution containing about 80c：－200 mesh．

A further calibration was suggested for size distrib－ utions about which nothing was known before hand．This provided a single point on the size distribution plot． When this system was applied to the results already obtained， the agreement was generally satisfactory．Two＇unknown＇ samples of ground quartz，which were analysed both by dry sieving and using the size analyser，also gave reasonable agreement。

The empiricol calibrations available at the conclu－ sion of this phase of the work justified deccribing the device for the first time as an On－Stream Particle Size Distribution Analyser＇。 Fiowever，there were two important restrictions on its performance that seriously limited it＇s
usefulness. First, while in principle the device depended on the application of a centrifugal force to create radial motion of the particles in suspension, the exact form of the force field and the type of particle motion was unknown and hence any deviations from the calibration could not be explained or compenzated. wecond, the particles used so far were all of the same composition and specific gravity. While it was considered likely that some kind of calibration could be obtained for a heterogenous material of unvarying composition that consisted for the most part. of material of one specific gravity, this calibration would be less accurate than one obtained on a homogenous material. Materials containine appreciable proportions of constituents having different specific gravities or materials whose composition varied, clearly could not be dealt with under any empirical system of calibration.

The second major stage in the research programme was planned, therefore, in the hope that it would go some way towards lifting the first of the restrictions discussed above by providing a basic theory of operation of the device. (i ee Part B_{o}) . Any extension of the system to cover heterofenous materials seemed unlikely to be successful until a workable theory for homogenous ones had been developed, so this aspect of the problem was not considered during the remainder of the work described in this thesis.

PART B
INTRODUCTIUN
The second pert of this thesis which now follows describes work that was designed to supply a basic theory of operation for the device, justified where necessary by further testwork, and capable of simulating the results obtained during the first stace of the work. This objective was of paramount importance in determining both the style of analysis and the degree of refinement required. Simplifying assumptions were introduced wherever possible: indeed, at many stages the analysis could not have proceeded without them. For example, all the theoretical analysis and experinental work that is subsequently included is devoted to spherical particles, since irregular particles make the analysis too difficult and they can in any case be related to an equivalent sphere in terms of any particular aspect of their behaviour.

The behaviour of particulate suspensions in passing through enclosed helical channels at high flowrates is extremely complex, not the least of the difficulties being that the behaviour of pure fluids under these conditions has still not been adequately established. The factors that can play a sisnificant part in determining the suspensior behaviour may be divided into three groups:
(a) Fluid properties: density, viscosity, axial and radial flow velocity distributions, vorticity。
(b) Particle properties: density, shape, size and size distribution, surface charge, solubility.
(c) Suspension properties: volume flowrate, solid/ fluid ratio, temperature, gravity.

It wes established previously (Section A.4.1.4) that temper: ture changes did not exert a aignificant effect on the performance of the sizer. The effect of gravity has not been examined quantitictively, since tie treatment adopted corsiders only the overall or average effect over the full depth of the channel. The analysis which follows takes the remaning factors into account as they arise. It deals with the problem in three stages: first, the likely behaviour of a pure fluid within a helical channel, second, the behaviour of spherical particles in ideal or unbounded radial force fields and, finally, what happens when a suspensior of particles moves through an enclosed helical channel.

The simplified theory developed in the last part of the analysis is then applied to the results of further testwork, conducted on an improved version of the equipment using 5 ? e ss: spheres.

2.0 FLUID BEHAVIOUR

The behaviour of the fluid component of the suspension is important in the present application only insofar as it affects the behaviour of the solid particles. Therefore the analysis which follows is restricted to certain topics.

2.1 Fluid Flow Model

The flow behaviour in curved channels is characterised by a non-dimensional parameter ${ }^{5}(\varnothing)$ which is related to the Reynolds lumber. In terms of the symbols used in this analysis

$$
\phi=\left[\frac{4 L V \rho}{n}\right]\left[\frac{r_{m}-r_{i}}{r_{m}+r_{i}}\right]^{\frac{1}{2}}
$$

$\therefore \varnothing=R_{F}\left[\frac{r_{m}-r_{i}}{r_{m}+r_{i}}\right]^{\frac{1}{2}} \ldots \ldots$ (2.1)
The fluid flow is laminar at low values of \varnothing, and considerable theoretical ard practical work has been carried out on fluid behaviour uncier these conditions. At values of \varnothing in excess of 2000 the flow is turbulent and the theory becomes so difficult that little effective progress has been made.

Under the conditions enployed in the on-stream sizer, the value of \varnothing for the fluid (water) is a little over 15,000, placine the conditions well in the region of turbulent motion. A short description of the likely behaviour is therefore essential. The information available is limited, most of what follows being based on papers by

Hawthorne ${ }^{5}$ and Barua ${ }^{6}$.
On passing fron a straight pipe into a bend, a mass of fluid flowing under turbulent conditions hes a secondary flow induced within it which acts at right angles to the main or 'axial' flow. It seems probable that this secondary flow is initially oscillatory in nature, but as the fluid roves through the bend the oscillations are progressively damped. If the bend is long enough, the oscillations are completely damped out and a state of 'fully developed curved flow' is reached in which a steady axial velocity distribution existe.

The state of 'fully developed curged flow' has been represented ${ }^{6}$ at high values of \varnothing by an approximate flow model of the type shown in Figure (B.2.1.). It consists of a central core of fluid, in which the secondary flow is considered to act entirely in the plane of the bend, surrounded by a boundary layer in which the secondary flow from the core is returned around the walls of the pipe. Viscous effects are considered to be effective in the boundary layer only. The type of axial velocity distribution corresponding to this secondary flow is shown in the lower section of Figure (B.2.1).

Finally, on leaving the bend the axial velocity distribution again changes in an 'outlet transition region', which may extend downstream for a distance equivalent to 50 pipe diameters or more.

There are two aspects of the fluid behaviour outlined above which are of grat importance in determining the notion of any suspended particles. These are the axial velocity distribution of the fluid (or suspension) and the magnitude of the secondary fluid flow.

FIGURE Z.2.l: Noriel of fully doveloned curved flow for. hich values of ' ϕ ' in a circular pipe.

2.2 Axial Velocity Distribution

The tripe of axial velocity distribution occurring acrose the midsection of a straight pipe of circular crosssection for a pure fiuid at high Reynolds ilumbers is illustrated in Figure (B.2.2). Hnfortunty
 tine Where it has been necessery to simplefy such a distribution for purposes of calculation, past workers ${ }^{7,8}$ have used either aseries of straight line sections of varying slope or 2 suitable polynominal equation. A straight line approximation has been used in the present analysis where required. (Section B.5.3.1).

The axial velocity distribution occurring at the inlet to a bent pipe undergoes a progressive change until a new steady distribution is achieved under conditions, of fully developed curved flow。 (Figure B.2.3, curves 2,3,4). This change in the axial velocity profile is caused by the generation of a secondary fluid flow, which will now be discussed in more detail.

2.3 Secondary Fluid Flow

There are two types of secondary fluid flow which must be taken into account. The first kind is recirculatory in nature, arising fron pressures and forces that ore caused entirely by fluid behaviour. The second kind of flow involves a net transference of fluid from one zone of the channel to another and is caused by displacement as solid particles move through the fluid. This displacement flow is considered later in section 3.1 .2 (c)。

The recirculatory secondary flow results fror frictional effects at the walls of the channel, which cause a reduction

in the fluid velocity and set up pressure gradients within the fluid. This results in a movement of the high velocity core of the fluid towards the outer wall of the bend, while the low velocity fluid near the walls moves towards the inner wall of the bend.

For a given fluid and channel shape, the magnitude of the secondary flow is governed by four main factors; two of which relate to the fluid conditions and two to the geometry of the system. These are as follows:-
(a) The Reynolds Wumbers of the fluid $=R_{F}$
(b) The axial velocity distribution at the inlet to the bend;
(c) The Curvature Ratio $=\frac{\text { Mean radius of pipe curvature }}{\text { Width (diameter) of pipe }}$

$$
=\frac{\frac{1}{2}\left(r_{m}+r_{i}\right)}{\frac{1}{2}\left(r_{m}-r_{i}\right)}=\frac{r_{m}+r_{i}}{r_{m}-r_{i}}
$$

(d) The Aspect ratio for the given shape of pipe $=\frac{\text { Pipe dimension perpendiculer to plane of bend }}{\text { Pipe dimension in plane of bend }}$

The Reynolds Number for the fluid is incorporated in the parameter \varnothing (equation 2.1) which determines whether the fluid flow is laminar or turbulent.

The influence of the inlet axial velocity profile on the secondary flow is likely to be complex, but under the constant conditions employed within the on-stream sizer it should not vary significantly. In any case it seems reasonable to suppose that with lerge bend deflections the fully developed curved flow which ultirately results will be substantially independent of any moderate changes in the inlet velocity distribution.

Reducing the curvature ratio tends to increase the secondory flow, since the pressure gradients become larger. However, if the axial flow velocity is high enough, separation of the boundary layer probably occurs at the inner wall of the bend and a diminished or even reversed secondary flow may result. This effect has only been obeerved at large aspect ratios ${ }^{9}$, however, and since the aspect ratio of the present device is very small it is difficult to say whether or not separation of the boundary leyer is likely to occur.

The effect of aspect ratio has only been considered under laminar conditions ${ }^{10}$, where it appears that very large or very small aspect ratios cause a substantial reduction in the secondary flow.

2.4 Behaviour Within the Sizer Helix

In the case of the present device, the Reynolds Number is high, the axial velocity distribution is unknown and both the qurvature ratio and the aspect ratio are very small. The magnitude of the secondary flow occurring under these conditions is difficult to assess. On the whole, it seems lfaely to be small and may be oscillatory over the greater part of tie berd. The possibility of boundary layer separation at the inner wall cannot be excluded.

In view of the complex nature of the flow behaviour and the theoretical difficulties that arise when considering the behaviour of a pure.fluid, it is obvious that, when the additional complication of quite nigh concentrations of suspended particles is introduced, the problems become formidable.

2.5 Summary and Conclusions

No attempt has been made in the present work to resolve these difficulties. There were two reasons for this. First, it would have involved a separate research programme much of which would have been devoted to pure hydrodynamics. Second, as described in Part A of this thesis, the experinental measurements available were restricted for practical reasons to the outlet from the helix, and changes occurring at different positions through the helix could at best only be observed visually.

The exact nature of the axial velocity profile of the suspension at the inlet to the helix and the progressive changes in this profile caused by secondary flow were unknown. The behaviour of the suspension was therefore analysed in terms of its average motion over the full depth of the channel. Mean velocity profiles were assumed by analogy with the expected behaviour of pure fluids under similar conditions.

In the next section, which deals with the behaviour of suspensions in unbounded radial force fields, a number of simple axial velocity distributions are assumed merely for illustrative purposes.
3. BEEAVIOUR CF SUSFEISIOTAS IN UMBOUNDED RADIAL FORCE FIELDS.

3.1 Forces operating on a Bingle Particle.

3.1.1. Acce?erative Force

Consider a spherical particle of diameter D, situated at a radius r within a body of fluid that is moving in 2 circular path with a steady velocity V. (Figure B.3.1.a) The centrifugal force acting on the particle creates a. relative velocity U between the particle and the fluid, and if there are no shearing effects within the fluid the relative velocity will be in a radial direction. In most cases there will be a velocity gradient within the fluid, however, and this gradient acts on the particle causing it to rotate about an axis perpendicular to the direction of the velocity gradient. As the particle moves relative to the fluid in the radial direction, the superimposed rotation creates a lift force known as the Magnus Effect ${ }^{20}$ which acts perpendicular to the plane in which the direction of motion and the rotational axis lie. The effect is illustrated (Figure B.3.l.b) for a fluid velocity gradient in the radial direction.

The particle velocity relative to the fluid is therefore in a direction making an angle θ with the radius of motion, and the tangential (u_{T}) and radial (\bar{U}) velocity components are

$$
\begin{array}{rlllll}
u_{T} & =u \operatorname{Sin} \theta & \ldots & \ldots & \ldots & (3.1) a \\
U & =u \operatorname{Cos} \theta & \ldots & \ldots & \ldots & (3.1) b
\end{array}
$$

The magnitude of θ will depend on the fluid velocity gradient $\left[\frac{d V}{d r}\right]$.

The accelerative force acting on the particle to

FIGURE P. ${ }^{2}$. (a) : Forces Acting on G Shericel Particlo Tanmential Fluid Velocity the same of all Points

F1:1id

> PIGUPE E. ${ }^{2}$ (b): Forces Actine on a Soherical Partic?: Tanerntial Fliad Velocity Increasine:
produce the velocity u relative to the fluid is therefore

$$
F_{\mathrm{A}}=\frac{\pi D^{3} \sigma}{6} \cdot \frac{\left(V-u_{T}\right)^{2}}{r} \quad \ldots \quad \ldots \quad(3.2)
$$

or if u_{T} is substituted for, from equation (3.1) a

$$
\mathrm{F}_{\mathrm{A}}=\frac{\pi D^{3} \sigma \cdot\left(\frac{(V-u \operatorname{Sin} \theta)^{2}}{6}\right.}{r} \quad \cdots \quad \text { (3.3) }
$$

3.1.2 Retarding Forces

There are three factors to be considered here: a pressure gradient force analagous to the displacement force encountered by particles.fallino undor fryvity in a fluid, a drag force which depends on a number of factors, and certain interference effects caused by neighbouring particles.
(a) Pressure Gradient Force (F_{p})

It is first necessary to derive an expression for the pressure gradient within the fluid. Consider a cylinder of fluid disposed between radii of motion \mathbf{r} and $\mathbf{r}+\delta r$, the fluid velocities at these radii being V and $V+\delta V$ respectively (Figure B.3.2.) If the area of the cids of the cylinder is a and the pressures corresponding to radii r, $r+\delta r$ are p and $p+\delta p$, then the mean centrifugal acceleration is

$$
{\left.\frac{\left(V+\frac{1}{3}\right.}{} \delta V\right)^{2}}_{r+\frac{1}{2} \delta r}
$$

Nean centrifugal force on cylinder $=\frac{p a \delta r\left(v+\frac{1}{2} \delta V\right)^{2}}{r+\frac{1}{2} \delta r}$
Pressure force acting on cylinder $=a \delta p$
For equilibrium $a \delta p=\frac{p a \delta r\left(V+\frac{1}{2} \delta V\right)^{2}}{r+\frac{1}{2} \delta r}$

Rearranging and taking the limits as $\delta r \rightarrow 0$ gives

$$
\frac{d p}{d r}=\frac{\rho V^{2}}{r} \ldots \quad \ldots \quad \ldots \quad \text { (3.4) }
$$

The tangential velocity of the particle and fluid (V) will vary with the radius r in a manner presently indeterminate. It may be shown, however, that the final expression for the displacement force, to a close approximation, is indcpendent of the type of tangential velocity distribution.

By way of illustration, two types of tangential velocity distribution will be considered: an ideal 'free vortex' distribution ($V=\frac{\Lambda}{r}$) and a constant tangential velocity. Consider a spherical particle of diameter D, travelling at a radius of motion r within the fluid. Let the local rectangular axes be y, z with origin at. the centre of the sphere. Now consider a small element on the surface of the sphere (Figure F.3.3.)

In terms of the given set of co-ordinates, we have

$$
\begin{aligned}
& y^{2}+z^{2}=\left(\frac{D}{2}\right)^{2} \\
& \text { or } z^{2}=\left(\frac{D}{2}\right)^{2}-y^{2} \\
& \therefore-d z=\frac{y}{z} d y
\end{aligned}
$$

We have $d A=-2 \pi z d z=2 \pi y \cdot d y$
The component of pressure forcc in the y direction, acting on the elemental surface srea, is given by the product of the pressure at radius ($r+y$) and the projected area of the element in the y direction (αA).

The net component pressure force relative to the central plane of the sphere is given by the product of the pressure difference Δp between r and $(r+y)$ and the

FIGIPE R. ?.?: Pressure sradient force

FIGMEP.3.3: Force on a sohere
projected area dA.

$$
\text { i.e. } \quad d F_{p}=\Delta p \cdot d A
$$

Δp may be calculated for a free vortex tangential velocity distribution using equation (3.2)

$$
\Delta p=\rho \Lambda^{2} \int_{r}^{\frac{r+y}{d r}} \frac{r^{3}}{}
$$

Integrating:

$$
\begin{equation*}
\therefore \Delta p=\frac{\rho A^{2}}{2} \cdot \frac{y(2 r+y)}{r^{2}(r+y)^{2}} \quad \cdots \quad \cdots \tag{3.5}
\end{equation*}
$$

The net component pressure force $d F{ }_{p}=\Delta p . d A$
$\therefore d F_{p}=2 \pi y \cdot \frac{\rho A^{2}}{2} \cdot \frac{y(2 r+y)}{r^{2}(r+y)^{2}} d y=\frac{\pi p A^{2}}{r^{2}} \cdot \frac{y^{2}(2 r+y)}{(r+y)^{2}} d y$
Hence the totaliforce on the sphere due to the pressure gradient

$$
F_{p}=\frac{\pi \rho f^{2}}{r^{2}} \int_{-\frac{D}{2}}^{\frac{y^{2}(2 r+y)}{(r+y)^{2}}} d y
$$

$\therefore \quad \dot{F}_{p}=\pi \rho \Lambda^{2}\left[\frac{4 r D}{4 r^{2}-D^{2}}-\ln \left(\frac{2 r+D}{2 r-D}\right)\right]$
Let the ratio of particle diameter to radius of motion $\left(\frac{D}{r}\right)=q$
$\therefore \quad F_{p}=\pi p A^{2}\left[\frac{4 q}{4-q^{2}}-\ln \left(\frac{1+\frac{1}{3} q}{1-\frac{1}{2} q}\right)\right]$
The expressions in (3.8) containing q may be expanded as a series:
$\because F_{p}=\pi p A^{2} \cdot \frac{q}{}^{3}\left[1+\frac{3 q^{2}}{10}+\frac{9 q^{4}}{112}+\ldots . .+\frac{3}{2^{r+1}}\left(\frac{r+2}{r+3}\right) q^{r}+\ldots\right]$

Since $\frac{3 q^{2}}{10}<10^{-3}$ for in ll cases of interest in the present analysis, the force F_{p} is given with sufficient accuracy by

$$
\begin{equation*}
F_{p}=\pi p A^{2} \cdot \frac{q^{3}}{6}=\frac{\pi D^{3}}{6} \cdot \frac{O A^{2}}{r^{3}} \tag{3.10}
\end{equation*}
$$

since $\frac{\Lambda}{r}=V$, then

$$
\begin{equation*}
F_{p}=\frac{\pi D^{3} \rho}{6} \cdot \frac{V^{2}}{r} \tag{3.11}
\end{equation*}
$$

A. similar analysis for $V=$ constant $=\bar{V}$ gives

$$
\begin{equation*}
F_{p}=\frac{\pi p \bar{V}^{2} r^{2}\left(4-q^{2}\right)}{4}\left[\frac{4 q}{4-q^{2}}-\ln \left(\frac{1+\frac{1}{3} q}{1-\frac{1}{2} q}\right)\right] \ldots \tag{3.12}
\end{equation*}
$$

Hence

$$
\begin{equation*}
F_{p}=\pi \rho \bar{V}^{2} r^{2} \frac{q^{3}}{6}\left[1+\frac{q^{2}}{20}+\frac{6 q^{4}}{1120}+\ldots .\right] \tag{3.13}
\end{equation*}
$$

which, for the present conditions, may again be taken as

$$
\begin{equation*}
F_{p}=-\frac{\pi D^{3} \rho}{6} \cdot \frac{\frac{2}{V}}{r} \tag{3.14}
\end{equation*}
$$

As a rough guide to the magnitude of the error involved, for a particle of $\neq \mathrm{mm}$ diameter moving at a radius of lcm. the pressure gradient force is about 0.3% larger than the 'displacement' calculation indicates.

For present purposes, the pressure gradient force cen therefore be represented with sufficient accuracy by \therefore force equal in magnitude but opposite in sense to the centrifugal force generated by the tangential velocity acting at the centre of the mass of fluid displaced by the particle.

(b) Drag Force

It is assumed in this section of the analysis that the flow behaviour of the pure fluid (which is travelling
along a circular path with velocity V) does not interfere with the motion of the particles relative to the fluid, ie. the particles may be considered to encounter ideal forms of fluid drag. This assumption is questionable and it is considered at greater length in the later sections dealing with the behaviour in enclosed channels.

The fluid drag force opposing relative motion between the particle and fluid is a function of the velocity . It has only been explicitly defined under physical conditions corresponding to low (< 3) and high (>160) Reynolds lumbers (F_{p}), the so called 'laminar' and 'turbulent' regimes. At Reynolds numbers between 3 and 160, the 'transitional' regime, the magnitude of the dreg force cannot be given explicitly. A number of techniques have been developed for calculating the drag force in this region $11,12,21$ mostly based on dimensional analysis. However, these are only capable of providing the terminal velocity of the particle.

The baric expression for the drag force (G) is $G=C \cdot \frac{1}{2} \rho u^{2} \cdot \frac{\pi D^{2}}{4}=\frac{\pi D^{2} \rho \cdot C . u^{2} \quad \ldots \quad \ldots \text { (3.15) }}{8}$
in which! the dreg coefficient takes values which vary with the Reynolds number.

Equation (3.15) is strictly valid only when the relative velocity between particle and fluid (u) is constant. Where it is varying with time, the drag force should be described ${ }^{18}$ by an equation of the form

$$
G=\frac{\pi D^{3} \rho}{12} \cdot \frac{d u}{d t}+\frac{\pi D^{2} \rho \cdot C_{0}^{2}}{8}+\frac{3}{16}(\pi n)^{\frac{1}{?}} D^{3} \int_{0}^{t} \frac{d u}{d Y} \frac{0}{(t-Y)^{\frac{1}{2}}}
$$

in which the first term represents the 'added mass' effect, the second term gives the 'ste: dy state' drag, and the third term is a function of the previous history of the particle.

The full equation for the drag force hes not been used in the subsequent analysis. There are two reasons for this: first, its introduction leads to equations that are not amenable to analytic treatment, and second the precision of the remainder of the analysis is not high enough to warrant such detailed treatment of one particular aspect. For illustrative purposes, therefore, the equilibrium drag force given in equation (3.15) has been assumed to hold under conditions of changing velocity.

İiminar regime: $R_{p}=\frac{4 I p}{n}<3 . C=\frac{24}{R_{p}}$
Substituting t is value in (3.15) gives the laminar drag force as

$$
3 \pi D n u=3 \pi D n U S e c \theta
$$

and to obtain the radial component of the dreg force this must be multiplied by $\operatorname{Cos} \theta$, giving

$$
G_{L}=3 \pi D n U \quad \cdots \quad \cdots \quad \cdots \quad \text { (3.16) }
$$

Turbulent regime: $R_{p}>160, C=0.4$
Substituting this value in (3.15) gives for the turbulent drag force:

$$
\frac{\pi B^{2} \rho u^{2}}{20}=\frac{\pi D^{2} \rho U^{2} S \in c^{2} \theta}{20}
$$

and for the radial component

$$
\begin{equation*}
G=\frac{\pi D^{2} \rho U^{2} \operatorname{Sec} \theta}{20} \tag{3.17}
\end{equation*}
$$

The value of $\operatorname{Sec} \theta$ depends on the relative magnitudes of u_{T} and U and hence on thc fluid velocity gradient $\frac{d V}{d r}$. It will only equal unity when V is the same at all radii of motion.
(c) Intcrference iffects from Meighbouring particles.

The presence of other particles in the suspension affects the motion of an individual particle in two ways. First, since all the particles are suspended in the fluid, the inertial effoct at any point wituin the suspension must increase in proportion to the increased mass of meterial present per unit voluate second, neighbouring perticles will influence and alter the fluid flow behaviour, so thet a particle moving in the presence of other particles will exhibit different behaviour from one in isolation.

The inertial effect is resdily compensatod by replacing the fluid density (p) in equations (3.11) and (3.14) by the suspensior density (P). The effect of neighbouring perticles on thc fluid flow behaviour has been investigated by 2 number of workers $13,14,15,19$, the results being quotcd in convenient summary form by Orr ${ }^{16}$. The actucl velocity (u) of a perticle relative to the fluid in which it and neigibouring particles are suspended can be relcted to the velocity (u_{r}) which that particle would attain in the absence of any other particles by the equation

$$
\begin{equation*}
u=u_{T}\left(1-C_{V}\right)^{Q}=u_{T}\left[\frac{\sigma-P}{\sigma-1}\right]^{Q} \tag{3.18}
\end{equation*}
$$

whore C_{V} is the volune concentration of particles in the suspension and Q an exponent which veries with the Reynolds number for the perticle.

$$
\frac{\text { TAELE B. } 3.1}{(\text { see over page })}
$$

- 85 -

This correction factor has been rounded off in the illustrations of laminar and turbulent motion which follow, the value of \cap being taken as 5 for laminar conditions and 2 for turbulent conditions. i.t volume concentrations of 0.15 or less the errors introduced are not appreciable。

When using equetion 3.18 to correct perticle velocites falling in the transitional regire, however, the Reynolds Number (R_{p}) must be calculited and the appropriate value of Q employed.

3.2 Radial Motion of a Single Forticle.

The motion of an individual particle may now be detormined by equating the net force to the product of
the particle mess and the resultent acceleration
Not force $=F_{A}-F_{P}-G$
Mass x acceleration $=\frac{\pi D^{3} \sigma}{6} \times \frac{d^{2} r}{d t^{2}}$
Equating these and rearranging gives

$$
\frac{d^{2} r}{d t^{2}}+\frac{6 G}{\pi D^{3} \sigma}=\left(\frac{\sigma-P}{\sigma}\right) \frac{(V-u \sin \theta)^{2}}{r} \ldots
$$

Equation (3.19) is unsetisfactory in its present form, since the drag force G is unspecified. This is because there is, as yet, no means of determining the type of drag force thet is operative for ε given $s \in t$ of conditions.

The limits within which the dreqg forces given in equations (3.16) and (3.17) are operative may be estimated for the actuol sizing conditions described in Fart \therefore by calcul tine the sizes of particles that just fall within the limiting Reynolds Ilumbers at terainal velocity. It is necessary to assume a special type of fluid velocity distribution for this purpose.
3.2.1 Laminar Conditions

Ignoring for the moment interference effects produced by other particles, combining equations (3.16) and (3.18) yields

$$
\frac{d^{2} r}{d t^{2}}+\frac{I 8 n}{D^{2} \sigma} \cdot \frac{d r}{d t}=\frac{(\sigma-P)}{\sigma} \frac{(V-2 \operatorname{Sin} \theta)^{2}}{r}
$$

Writing U for $\frac{d r}{d t}$, this becomes
$\frac{d U}{d t}+\frac{18 n}{D^{2} \sigma} \cdot U=\left(\frac{\sigma-P}{\sigma}\right) \frac{(V-u \operatorname{Sin} \theta)^{2}}{r} \ldots \ldots(3.20)$
In order to obtain an estimate of the limiting particle size for which laminar motion can occur, two simplifying assumptions are mede. First, θ is put equal
to zero, (implying thet there is no relative tongential motion between particle and fluid) so that u Sin θ disappears. This is necessary because u Sin $\theta\left(={ }^{n} T\right)$ is a complicated function of the fluid velocity gradient $\frac{d V}{d r}$, the particle size and a number of other factors. Second, it is assumed that a terminal velocity ($U_{T G R}$) is reached at which $\frac{d J}{d t}=0$. This assumption places \approx constriction on V, since

$$
\begin{aligned}
\frac{d V}{d t}=0, & \because U=\text { constant } \\
& \because \frac{(V-u \operatorname{Sin} \theta)^{2}}{r}=\frac{V^{2}}{r}=\operatorname{constan}(B, \text { say })
\end{aligned}
$$

$$
\therefore V=B r^{\frac{1}{2}} \quad \ldots \quad \ldots \quad \text { (3.21) }
$$

But the first assumption of $\theta=0$ implied $\frac{d V}{d r}=0$, or $V=$ constant, sc the two assumptions are mutually contradictory and it would appear that there is no set of conditions under which a true terminel velocity cen be ettained by a prrticle.

However, the apparent terminal velocity obtained by putting $\frac{d U}{d t}=0, \theta=0$ and $V=$ constant may be used to estimate the limiting particle size:

$$
U_{T E R}=\frac{(\sigma-P) D^{2} V^{2}}{18 \mathrm{nr}} \quad \cdots \quad \ldots \quad \ldots \quad \ldots \text { (3.22) }
$$

The condition defining the limiting particle size for laminar motion $\left(D_{\text {LIM }}\right)$ is

$$
\frac{\mathrm{U}_{\mathrm{TER}} \mathrm{D}_{\mathrm{LIFI}} \mathrm{P}}{\mathrm{n}}=3
$$

and combining this with (3.22) and rearranging

$$
D_{\operatorname{LIm}}=\left[\frac{54 n^{2} r}{P(\sigma-P) V^{2}}\right]^{1 / 3} \ldots \ldots \ldots \text { (3.23) } \ldots \ldots
$$

For glass spheres of density 2.44 , suspended in water $\left(n=10^{-2}\right.$ poise) at a volume concentration of 0.10 ,
and travelling at a tangenticl velocity of $200 \mathrm{~cm} / \mathrm{sec}$ at c. rodius of 1.0 cm :

$$
D_{\mathrm{LII}}=45 \mu
$$

If the other conditions are kept constant and the radius of motion is increased to 2.5 cm. , the limiting size becomes 61 .

Equation (3.22) gives the apperent terminel velocity of the perticle but provides no indication of how rapidly this velocity is reached. This must be found by solving equetions (3.19) or (3.20). Unfortunately, the form of these equations is such that an explicit solution is unobtainable. Also, V is some unknown function of r. An indicaticn of the type of beheviour to be expected may be obtained by assuming (from equetion 3.21) the.t $V=B r^{\frac{1}{2}}$ and that $\theta=0$.

When these values cre substituted in (3.20), the accelerative forcc at all radii of motion becomes the some and hence

$$
\frac{d U}{d t}+\frac{18}{D^{2} \sigma} U=\left(\frac{\sigma-}{\sigma}-\frac{P}{\sigma}\right) B^{2} \ldots \ldots \quad \text { (3.24) }
$$

Equation (3.24) mey be solved explicitly to give

$$
\begin{equation*}
U=\frac{(\sigma-P) D^{2} B^{2}}{18 n}\left(1-e^{-\frac{18 n}{D^{2} \sigma} t}\right) \tag{3.25}
\end{equation*}
$$

Integrating again to find the distenco travellod:

$$
r=r_{0}+\frac{(\sigma-P) D^{2} B^{2}}{18 n}\left[t-\frac{D^{2} \sigma}{18 n}\left(1-e^{-\frac{18 n_{1}}{D^{2} \sigma}}\right)\right] \ldots(3.26)
$$

The velocities and distances given by equations (3.25)
and (3.26) have been calculated for a 45μ gless sphere under the same conditions used for the errlier limiting siza example. The approach to the apparent terminal
velocity is excecdingly ropid, s 9 9 9^{\prime} of terminal velocity is reached within a distance of about one particle diameter when accelercting from rest. (Figures B.3.4, B.3.5).

In vicw of this, it is not unreasonable to essume that the radisl motion of particles under laminer conditions is adequetely described by their terminal velocities, which arc considered to be achieved instenteneously from rest.

An indication of the error introduced by this assumption has been given by plotting on Figure B. 3.5 both the actual distances moved and the distences moved essuming instantaneous terminal velocity. The latter results are griater than the truc distances by about 12 microns. This result may also be calculated from equetions (3.25) and (3.26). If $E(r)$ is the difference butween the distances calculated by the two methods, then

$$
\begin{equation*}
E(r)=\frac{(\sigma-P) D^{2} B^{2}}{18 n}\left[\left(t+\frac{D^{2} \sigma}{18 n}\right)\left(I-e^{-\frac{I Q_{n} n}{D^{2} \sigma} \cdot t}\right)-t\right] \tag{3.27}
\end{equation*}
$$

This reduces when t is large to the simple result

$$
\begin{equation*}
E(r)=\frac{\sigma(\sigma-P) D^{4} S^{2}}{324 n^{2}} \quad \ldots \ldots \tag{3.28}
\end{equation*}
$$

The calculated value corrcsponding to the conditions used is therefore $\mathrm{E}(\mathrm{r})=12.05 \mu$.

With the type of tangential velocity distribution assumed in equation (3.23) the accelerative force is the same c.t all radii of motion. The particle motion has been calculated for a slightly more realistic case where V is constant and the accelerative force therefore varies with the radius of motion. The resulting variation in apparent

EIGURER.3.4: Laminar motion of a 45il iass sphere

FIGURE B. 3.5: Laminar motion of a 45 u olass sphere
terainal velocity with radius of motion is shown in Figure B.3.6.

If the apparent teminal velocity is usea it is possible to apply a correction for the intcrfurence effects crused by the presence of other prrticles. This merely involves multiplying the terminal velocity by the factor (1-CV) ${ }^{\text {Q }}$ 。 Equation (3.22) may then be corrected as follows, taking a as ipproximetely equel to 5:

$$
\begin{aligned}
C_{V} & =\frac{P-I}{\sigma^{-}-I} \quad \cdots\left(I-C_{V}\right)^{5}=\left(\frac{\sigma-P}{\sigma-1}\right)^{5} \\
U_{T_{L K}} & =\frac{(\sigma-P)^{6} D^{2} B^{2}}{(\sigma-I)^{5} I 8_{n}} \ldots \ldots \quad \ldots \quad(3.22) a
\end{aligned}
$$

The anended value of U_{T} colculated from equation (3.22) a hes also been shown on Figure (B.3.6).
3.2.2 Turbulent Conditions

Combining equations (3.17) and (3.18) gives
$\frac{d^{2} r}{d t^{2}}+\frac{3 \operatorname{PSec} \theta}{10 I \sigma} \cdot\left(\frac{d r}{d t}\right)^{2}=\left(\frac{\sigma-P}{\sigma}\right) \frac{(V-1 \operatorname{Sin} \theta)^{2}}{r} \ldots$
Writing U for $\frac{d r}{d t}$, and assuming $\theta=0$

$$
\begin{equation*}
\frac{d U}{d t}+\frac{3 P}{1 O D \sigma^{-}} U^{2}=\left(\frac{\sigma-P}{\sigma^{-}}\right) \frac{V^{2}}{r} \ldots \tag{3.30}
\end{equation*}
$$

The epporent terminal velocity $\left(\frac{d U}{d t}=0\right)$ is given by

$$
U_{T: R}=\left[\frac{10}{3}\left(\frac{\sigma-P}{\sigma}\right) L \frac{V^{2}}{r}\right]^{\frac{1}{2}} \quad \ldots \quad \ldots \quad \ldots(3.31)
$$

To estimnte the smallest praticle size for which turbulent motion can take place, the condition $R_{P}=160$ con be combined with equntion (3.3I), yielding

- 93 -

FIGURE B. 3.6: Laminar motion of a 45 flass snhere

$$
\begin{equation*}
D_{L I I:}=\left[\frac{7680 \mathrm{n}^{2} \mathrm{r}}{\mathrm{P}(\sigma-\mathrm{P}) \mathrm{V}^{2}}\right]^{1 / 3} \tag{3.32}
\end{equation*}
$$

For gless spheres of density 2.44 suspended in water at a volune concontration of 0.10 and travelling at atengential velocity of $200 \mathrm{~cm} / \mathrm{sec}$.ct a. radius of lcm .

$$
D_{\text {IIII }}=235 \mu
$$

If the other conditions are kept constant and the rodius of motion is incronsed to 2.5 cr ., the limiting sizo increnses to 319μ.
squation 3.31 cen be redepted to give the apperent terrinni vulocity of a perticle under turbulent conditions for c : cc elcrative force that is constent cet ell radii of motion. The reisidy with which this apparent terminal velocity is achieved miny be colculnted by solving equation 3.30 for the same conditions ($\theta=0, V=B r^{\frac{1}{2}}$)

$$
\frac{d U}{d t}+\frac{3 P}{10 I \sigma} \cdot U^{2}=\left(\frac{0-P}{\sigma}\right) B^{2}
$$

But $\quad \frac{d U}{d t}=\frac{d U}{d r} \cdot \frac{d r}{d t}=U \frac{d U}{d r}$
Substituting this value and nultiplying by 2 gives
$2 U \cdot \frac{d U}{d r}+\frac{6 P}{10 D \sigma} \cdot U^{2}=2\left(\frac{\sigma^{-}-P}{\sigma}\right) B^{2}$
This equation mey be converted to a form crpoble of direct solution by a chane of vriable:

$$
\begin{equation*}
\text { Let } U^{2}=T \tag{3.33}
\end{equation*}
$$

$\therefore \frac{d T}{d r}+\frac{6 P}{10 D \sigma} \cdot T=2 B^{2}\left(\frac{\sigma-P}{\sigma}\right) \quad \ldots \quad \ldots \quad \ldots$
Solving 3.33 and applying the condition $U=0$. et $r=r_{0}$
$\mathrm{U}=\left[\frac{10}{3}\left(\frac{\sigma-P}{\mathrm{P}}\right)^{D B^{2}}\left(1-e^{-\frac{6 P\left(r-r_{0}\right)}{10 D \sigma}}\right)\right]^{1 / 2} \ldots$

To find the distance travelled before reaching 99:' of termincl velocity;

$$
\begin{equation*}
\left[1-e^{-\frac{6 p}{10 D \sigma}\left(r-r_{0}\right)}\right]^{1 / 2}=0.99 \tag{3.35}
\end{equation*}
$$

For glass spheres of density 2.44 suspended in water at a volume concentration of 0.10 , this can be rearranged to give

$$
\begin{equation*}
(\underbrace{r-r_{0}}_{D})=13.9 \tag{3.36}
\end{equation*}
$$

so that a particle must travel a distance equivalent to 14 diameters before reaching 99 ; of the terminal velocity. The errors introduced by assuning that a prrticle achieves an instantaneous terminal velocity from rost aro therefore much larger than those incurred in the case of laminar motion.

The results obtained above for a special type of axial velocity distribution hevo been checked for a slightly more realistic caso where V is constant and the accelerative form therefore varies from one radius of motion to another. In this case θ is genuinely equel to zero. i.e.

$$
\frac{d U}{d t}+\frac{3 P}{10 Q \sigma} \cdot U^{2}=\left(\frac{\sigma-P}{\sigma}\right) \frac{v^{2}}{r}
$$

Iutting, $U^{2}=T$ es before, this reduces to

$$
\frac{d \mathrm{~T}}{\mathrm{dr}}+\frac{6 \mathrm{P}}{10 v \sigma^{\prime}} T=\frac{2 \mathrm{~V}^{2}}{\mathrm{r}}\left(\frac{\sigma-\mathrm{P}}{\sigma}\right)
$$

Equation (3.37) cannot be solved explicibly, but certcin numerical solutions have been obtained by a method involving finite differences (Appendix 1.)

The velocity as a function of redial distance and the velocity and radial distince as ? function of time

Wero determined for the limiting particle size conditions ($D=235 \mu, \quad \sigma=2.44, \quad C_{V}=0.10, \quad V=200 \mathrm{~cm} / \mathrm{sec}, \quad r_{0}=1.0 \mathrm{~cm}$) 。 The results are shown in Figures D.3.7, 2.3.8.

The absence of . true terminal velocity is readily apparent, since the actual velocity is continuously changing. The apparent terminal volocity obt:ined by putting $\frac{d U}{d t}=0$ in equation 3.30 hes been included for purposes of comparison and it can be seen that it represents a close approximation to the actual velocity once the initial period of acceleration over.

If the apparent terminal velocity is taleen as the basis for predicting particle behaviour and is assumed to be achieved instantaneously from rest, the minimal positional error incurred during the time the particle actually took to reach this volocity would be nearly one millinctre for a 235μ particle. For particles larger than this the error would be correspondingly larger.

The behaviour of prrticles starting st other radii is shown in Figure (B .3 .9) for the tengentic.l velocity $V=$ constent $=200 \mathrm{~cm} / \mathrm{scc}$.

It is apprent that particles starting froin different radii all accelerate at about the same rate, and all ultimately exhibit the seme viriation in velocity with radial distence。

The velocities shown in Figures E.3.7-3.3.9 mey be corrected for the presence of other particles by multiplying by the factor $\left(1-C_{V}\right)^{2}$, which in this instance is equel to 0.31.

3.3 Tangential Motion of A Single Farticle

If it is assumed that there is no relative motion

$$
-97-
$$

FIGURE B. $3.7:^{\circ}$ Turbulent motion of a 235 u glass sphere
$-96-$

FIGURE B. $3 . \varepsilon$: Turbulent motion of a 235μ glass sphere
-99-

FIGURE B.3.9: Turbulent motion of 235 . Flass soheres starting from different positions.
botween the particle and fluid in tho tangentiol direction, the tancontial velocity of tho porticle is equal to the fluic. tangenticul velocity (V). This is most conveniently expressed in terms of the angular velocity

$$
\frac{d a}{d t}=\frac{V}{r} \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad(3.35)
$$

But

$$
\begin{aligned}
& \frac{d a}{d t}=\frac{d r}{d t} \cdot \frac{d a}{d r}=U \cdot \frac{d a}{d r} \\
& \frac{d a}{d r}=\frac{V}{U}\left(\frac{1}{r}\right) \quad \ldots \quad \ldots \quad \ldots \quad(3.36)
\end{aligned}
$$

Since both V and U are functions of the radius of motion (r), if the form of these functions is known, equation (3.36) may be intograted to find a_{a}

For example, if V is assumed constant at all rodii of motion and U is taken as the apparent terminal velocity: 3.3.1 Iminar Flow Conditions

$$
\begin{aligned}
& U=\frac{K_{T} V^{2}}{r}, \quad K_{L}=\frac{(\sigma-p)^{6} D^{2}}{18 n(\sigma-1)^{5}} ; \quad \frac{d a}{d t}=\frac{1}{K_{L} V} \\
& a=\frac{1}{\mathrm{~K}_{\mathrm{L}} \mathrm{~V}}\left(\mathrm{r}-\mathrm{r}_{0}\right) \quad \ldots \quad \ldots \quad \ldots \quad \text { (3.37) }
\end{aligned}
$$

3.3.2 Turbulent Flow Conditions

$$
\begin{array}{r}
U=\frac{K_{\Gamma} V}{r_{2}^{2}}, \quad{ }_{I_{T}}=\left[\frac{10}{3}\left(\frac{\sigma-P}{\sigma}\right) D\right]^{\frac{1}{2}}, \frac{d \alpha}{d t}=\frac{1}{K_{T} r^{\frac{1}{2}}} \\
\alpha=\frac{2}{K_{t}}\left(r^{\frac{1}{2}}-r_{0}^{\frac{1}{2}}\right) \ldots, \ldots \tag{3.38}
\end{array}
$$

3.4 Particle Tracks through Radial Force Fields

The tracks of single particles through unbounded radicl force fields may now be calculated for conditions where the drgg forces are determinate. This is mast
conveniently done in terms of the polnr co-ordinates (r, a). 3.4.1 Laminer Flow Gonditions

The tracks have been colculated for $45 \mu \mathrm{gla} 5 \mathrm{~s}$ soheres starting at different initial radii. Tho conditions assumed are $2 . s$ for the calculation of the limiting size itself: i.e. $\sigma=2.44, C_{V}=0.10, V=$ constont $=200 \mathrm{~cm} / \mathrm{sec}$, $n=10^{-2}$ poise.

$$
\begin{aligned}
& \text { since } \frac{d r}{d t}=K_{L} \cdot \frac{V^{2}}{r} \text { where } K_{L}=\frac{(\sigma-p)^{6} D^{2}}{18 n(\sigma-1)^{5}} \\
& r=\left[\mathrm{r}_{\mathrm{O}}{ }^{2}+2 \mathrm{~K}_{\mathrm{L}} \mathrm{~V}^{2} \mathrm{t}\right]^{\frac{1}{2}} \ldots \ldots \quad \text { (3.39) } \\
& \text { and } \quad \frac{d a}{d r}=\frac{1}{K_{L}} \\
& \therefore \alpha=\frac{\left(r-r_{0}\right)}{K_{L}} \ldots \ldots \quad \ldots \quad(3.40)
\end{aligned}
$$

The various values of (r, a) obtained from equation (3.40) heve been plotted in Figure (B.3.10) Also merleed are the relative positions of particles at a given time t. The equation governing these positions is:

$$
\begin{equation*}
a=\frac{r_{0}}{\bar{V} K_{L}}\left[\left(1+\frac{2 \mathrm{~V}^{2} K_{L} t^{\frac{1}{2}}}{r_{0}^{2}}-1\right] \ldots\right. \tag{3.41}
\end{equation*}
$$

3.4.2 Turbulant Flow Conditions

The tracks have been calculated for the limitine size (235μ) strrting fron verious initinl radii. The conditions ascumed are again the same as those used for the celculation of the liniting size i.e. $\sigma=2.440$, $P=1.144, V=$ constant $=200 \mathrm{cin} / \mathrm{sec}, \mathrm{n}=10^{-2}$ poise. We heve $\frac{d r}{d t}=K_{T} \frac{V}{r^{\frac{1}{2}}}$ where $K_{T}=\left[\frac{10}{3}\left(\frac{\sigma-P}{P}\right) D\right]^{\frac{1}{2}}$

FI'ruRE B. 3.10: Particle tracks under laminar conditions

$$
r=\left[r_{0}^{3 / 2}+\frac{3}{2} K_{T} V_{0} t\right]^{2 / 3} \ldots 0 \quad \ldots \quad \text { (3.42) }
$$

$\operatorname{Anc} \quad \frac{d a}{d r}=\frac{1}{\mathrm{~F}_{\mathrm{T}} \mathrm{r}^{?}}$

The various values of (r, a) obtcined from equation (3.43) heve been plotted in Figure (5.3.11). ilso marked are the relative positions of particles at time t, obtained fron the following equetion:
$a=\frac{2 r_{0}}{\mathrm{~K}_{\mathrm{T}}}\left[\left(1+\frac{3}{2} \frac{\mathrm{~K}_{\mathrm{m}} V \mathrm{t}}{r_{0} 3 / 2}\right)^{1 / 3}-1\right] \ldots(3.4 .4)$
The errors present in the data presented in Figures B.3.10, B.3.11 aro confined to one source, namely the replacenont of the true velocity by the apparent terminal velocity. No error is involved in talring $\theta=0$ since the necessary condition for this is fulfilled (i.e. $V=$ constent)

3.5 Concentration Variation resultine from Earticle iotion

The changes in suspension concentration causcd by the radial motion of the particles shown in figures (B.3.7, B.3.8) may be calculeted from $:$ lenowledge of the rolative positions of particles obtrined from equations (3.40) and (3.43) .
3.5.1 Concentration Varintion for Lominar Perticle Moticn
issuming c continuing supply of perticles fed at the intervals shom i: Figure 3.7, and applying equetion (3.36),

$$
\frac{d a}{d r}=\frac{1}{E_{L} V} \quad \ldots \quad \ldots \quad \ldots \quad \text { (3.45) }
$$

FIGURE B. 3.11: Particle tracks under turbulent conditions

Equetion (3.45) indicates that if V is constent, the enguls progress of a perticle for a given incremont in radius is indopendent of the rodius of motion of the perticle. \therefore bend of particles starting together at the inlet to the helix (Figure B.3.10) will therefore all move radially at the ane rate, and the concentration necsured alone cny radius at an ancle a to the inlet will be unchanged witain the band of particles, although the band will have noved sonc distance radially. This effect is illustrated in ligure (B.3.12) for $a=315^{\circ}$.
3.5.2 Concentration Variation for Turbulent Porticle Iotion

Applying equetion (3.36) to turbulent flow concitions:-

$$
\frac{d a}{d r}=\frac{1}{\overline{\mathrm{~T}}_{\mathrm{T}} \mathrm{r}^{\frac{1}{2}}} \cdots \quad \cdots \quad \ldots \quad \ldots \quad \text { (3.46) }
$$

Equation (3.45) incicates that the particles startinc at larger radii of motion will make less aneular profress for a given increnent in redius then those sterting at smell radii of motion. Hence to traverse a given angle a, particles starting at successively lerecr radii will heve to move through succossively larger radiel distances. Consequently, the concentrotion measured along the radius a. an angle a to the inlet will incroase progreseively as the measuring point is moved outwords within the benc of particles. The offect is illustretce in Figure (3.3.13) for $\alpha=31.5^{\circ}$.
since V does not eppear in equation 3.46, the bchaviour discussed above should be independent of the tangential velocity distribution.

- 106 -

FIGURE B. 3.12 : Concentration variation for laminar motion

FIGURE B. 3.13 : Concentration variation for turbulent motion

3.6 Sumary ard Conclusions

Purticles in suspensions that are subjected to unbounded racial force fields are acted upon by o number of forces which cauce the prrticles to ave relative to the fluid. jone of the forces can be calculated with reasonable accuracy for all conditions: exomoles of this type are the acceleration, pressure gradicnt ind interference effects. Others, such as the fluic drag and the Magnus forces, can only be calculated over a limited range of conditions.

Complete solutions to the equation of motion for single perticlus cannot be obtained explicitly, and would be difficult to obtain using numerical tochniques even supposing that all the required date were evailable even when the liagnus forces are neglected, the equation of motion can only be solved explicitly for one special oxial velocity profilc thet gives a. constant cocelerntive force and hence true terninal velocities for the perticles. floreover, the terninal drof forces con only be specified at low and high Reynold's numbers, corresponcing to the lrminnr and turbulent regines of notion. Under the conditions of interest to the prosent invostigetion, laminar drag forces apperr to be operative at proticle sizes smaller than 45 , while full turbulent dre ε^{-}does not occur until a particle size of 235μ is reached. These estinates are probobly not accurate but serve to illustrete the situntion.

In the later sections of this analysis it is frequently necescory to express the porticle radinl velocity in terms of a sinple explicit function. This has been achioved by using the apparont terninal velocity, which is obtainec by putting $\frac{d^{2} r}{d t^{2}}=0$ in the equa.tion of notion
(equation 3.19) and ignoring any reletive tangential motion between particle and fluid (i.e. neglecting the lirgnus effect). It must be born in mind that this introduces errors into colculations of both the velocity and the position of perticles, the errors apparently being smaller for laminer motion than for turbulent wotion.

It is worth notine that V has so far been assumed a function of r only, so that velocity gradients in the radial direction have been denoted by $\frac{d V}{d r}$. In the next section, changes in V with a (or t) must be taken into account as well. The notation for velocity gradients therefore becones $\frac{\partial V}{\partial r}, \frac{3 V}{\partial a}$ etc.
4. BEREVIOUR OF SUSFENSIORS IN ETCLOSED IEPICAL

Chimplis

4.1 Forces operating on a Single Farticle.

The introduction of boundaries to the simple radial force field considered in section 3 results in number of important changes in the behaviour of both the fluid and the suspension s a whole.

Frictional and boundary leyer effects arising at the channel wolls result in a complex and changing exicl velocity distribution and set up a secondary fluid flow as described earlier. Also, the outer wall constitutes a barrier to any further radial motion of the suspended particles, resulting in an accumulation of particles near the wall. Finally, containing the suspension within a channel of finite dimonsions means that the radial motion of tho particles must displace an equivalent volune of fluid, giving rise to 2 furthor seconcery fluid flow.

The particle accumalation nerr the outer woll results in certain forces not previously considered, which must be excmined since they con exert an appreciable influence on the perticle motion.
4.1.1. Accelerative Force

Due to the complexity and chenging nature of the axial velocity distribution, it is impossible to determine the forces acting on a particle at a given instant. (Sections B.2.2-4) Also, the equations Eoverning the radial motion of particles (3.20, 3.30) cannot be solved explicitly in the great mejority of coses, even when simple anc invarient axial velocity distributions are assumed.

Consequantly, in much of the subsequent analysis it hes been neceascry to meke certain simplifying assumptions concerning the fluid and perticle velocities. In particular, the velocity colculated for either fluid or porticles at any given position (r, ∞) is in all cases an averafe velocity taken over the full depth of the channel. Other assumptions or limitetions are discussed as they arise。

The Magmus effect discussed in section 3.1 .1 was not taken into account in the earlier parts of this enalysis, since its introduction would have resulted in considerably more complicated equations and the labour involved in solving these for purely illustrative purposes seemed unjustified. In the present instence it cennot be included, partly due to lack of informstion concerning fluid behaviour, but also because of the formideble difficulties involved in atterpting to set up any kind of nodel capable of predicting the interactions between apprcciable concentrations of particles that ore noving radially cs well as tangeiitially and a fluid whose cxicl velocity dictribution is changing and which may :lso be exhibiting two different types of racial flowo ilot the least of the difficulties is the fi.ct that neither the fluid behaviour ${ }^{5}$ nor tile vognus effect ${ }^{20}$ have been adequately defined under these conditions.

The effect of tho nagnus or lift force is to decrease the retention tine of particles in regions where the fluid axial velocity increases with the radius of notion and to increase the retention tine in regions where the axinl velocity decreases with the radius of motion. The appercnt ridial velocities of the particles in these regions will correspondingly be increased and decreased respectivcly.

The accelerative force exerted at any position
(r,a) within the helix may be expressed as follows $F_{n}=\frac{\pi D^{3} \sigma}{6} \cdot \frac{V^{2}}{r} \ldots \ldots \quad \ldots$ (4.1)

In order to meke us: of equation (4.1) the variation in V with both r and a must be known or assumed.

4.1.2 Reterding Forces

(a) Pressure Gradient Force

The pressurc gradient force may be expressed is follows:
$F=\frac{\pi D^{3} P}{6} \cdot \frac{V^{2}}{r} \ldots \ldots \quad \ldots \quad(4.2)$
There may also be a contributjon to the oressure gradient fron the particle shearing pressure (see joction 4.1.2.d) though only if the velocity grodient ($\frac{\partial V}{\lambda r}$) is snall. If the prossure gradient force is to be colculated the dependence of V on r and a must again be known.

(b) Drag Force.

In the case of an unbounded radisl force ficld, it was assuncd that particles moving radially could undergo ideal forms of fluid dree, irrespective of the type of behaviour exhibited by the fluid in its tangential flow. This assumption was probebly at least partially incorrect, since while it is conceivable thrt a perticle could move radially under the influence of ideal forns of drce if located within a mess of fluid undergoing liminar tangential flow, it is difficult to incgine how the particle could experience viscous drog if the surrounding fluid is turbulent and exhibiting vorticity.

Also, from the approximate celculations of the limiting particle sizes for which idenl laninar and turbulent
drag should occur (made in jection B.3) it can be seen that the bulk of the particles of interest from a sizing point of view fall in the transitional regine of particle-fluid notion, whore the drag forces cemot be precisely defined in any case.

It can bc seen fron the foregcing that none of the forcos responsible for the perticle notion tiat have been conisidered so far can be defincd accuratcly. The consequences of this lact of information are discussed in section 4.2.
(c) Becondary Pluid Flow

In addition to the 'displacement' seconcery fluid flow (bection B. 3.1.2.c), there ney be a recirculatory type of secondcry flow created by the pressure gradients within the chennel (jection D.2.3). In the casc of a pure fluid, this flow is probably small and oscillatory in nature, and is progressively danped out in passage through the helix. (Section B.2.4) It is possible that the presence of sclid perticles would modify this behaviour, however. If the perticles erc uniforlily cistributod throughout the full ecpth of the channel, a recirculi.tory flow of this type should tend to cencel out any effect it may have on the notion or concentration of the perticles, sinco while one half of tile flow augrents the radial notion of the particles, the cther half reduces it by the same order of magnitude. Where the particle radial velocity is lerge in comprison with the seconcary fluid flow, the averege proticle concebtration'ever the full depth of the channel should therefore be little rifected. In crses where these velocitics re of the same order of menitude, the secondrry
flow could give rise to sone unusual behaviour. Where the fluid velocity is much in excess of the particle velocity, effective radial inotion of the particles will only become possible when the oscillations have been damped out. Results quoted by Hawthorne ${ }^{5}$ suggest that it is unlikely thet this condition would be reached for a pure fluid travelling through the helix under the chosen conditions.

(d) Farticle Shearing Forces

The accumulation of particles noar the outer wall introduces new forces in eddition to those already discussed (3ection B. 3.1.). The mechanism creating these new forccs depends on the magnitude of the fluid velocity gradient $\left(\frac{d V}{d r}\right)$, und upon whether particle inertia or fluid viscosity effects predominate. Throughout this section, the variation in V with a that is known to occur in pure fluids (aection B.2.2) is not talien into account, on the grounds that the shearing forces under discussion will oppose and minimise the offect. V is therefore considered to be a function of r only, and the notation has been modified accordingly. 'hile this assumption simplifics the analysis, it also introduces a corresponding error into the results, wish must be regarded only as approximations to the correct solution. The problem wes first considered by Eagnold ${ }^{17}$, but the present treatment, although besed on and identical to his in form, leads to slightly different relationships.

Consider two adjacent layers of particles, of diameter D, moving at a velocity of V relative to each other. (Figure B.4.1.) Let the distance between the centres of neighbouring particles be L, and between adjacent layers β L.

Clow irection

EIGURE B. 4.1: Particle shearing forces.

Let the 'linear particle concentration' (λ) be defined as follows:-

$$
\lambda=\frac{D}{x}=\frac{D}{I-D} \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad \text { (4.3) }
$$

The two possible mechanisms whereby particle shearing forces may be created will now be considered separately:
(i) Fluid viscosity dominant ($\frac{d V}{d r}$ smell)

The passage of each A particle over a $\%$ particle is considered to invlove a temporary reduction in the shear velocity from its mean value $\delta \overline{\mathrm{V}}$ during approach, followed by an increase during recession.

Suppose that the amplitude of the sher velocity fluctuation (3) bears some ratio $f(\lambda)$ to the mean shear velocity $\delta \overline{\mathrm{V}}$ 。

Then $\}=f(\lambda) . \delta V$
Supposing further the the fluctuation is approximately harmonic, then if ξ is the instantaneous sher velocity and t represents time.

$$
\bar{\xi}=\delta V+j \operatorname{in} t=\delta V(1+f(\lambda) \sin t) \quad \ldots \quad(4.5)
$$

Hence the instantaneous shear stress (τ) is given by

$$
\tau=n \cdot \frac{\hat{F}}{\beta L}=\frac{n}{\beta L} \cdot \delta V(1+f(\lambda) \operatorname{in} t) \quad \ldots \quad \ldots \quad(4.6)
$$

The work done per unit area of shear plane (!!) in one complete velocity fluctur.tion is

$$
\because=\int_{0}^{2 \pi} \tau \xi d t
$$

$$
W=\frac{n \delta V^{2}}{\beta L} \int_{0}^{2 \pi}(1+f(\lambda) \sin t)^{2} d t \quad \ldots \quad \ldots \quad(4.7)
$$

The distance moved in one complete velocity fluctualion ($\delta \mathrm{x}$) is given by

$$
\delta x=\delta V \int_{0}^{2 \pi}(1+f(\lambda) \sin t) d t \quad \ldots \quad \ldots \quad(4.8)
$$

$\therefore \delta \mathrm{x}=2 \pi . \delta \mathrm{V}$
Hence the mean shear stress ($\bar{\tau}$) within the suspension is

$$
\bar{\tau}=\frac{W}{\delta x}=\frac{n . \delta V}{2 \pi \beta L} \int_{0}^{2 \pi}(1+f(\lambda) \sin t)^{2} d t
$$

On integrating,

$$
\bar{\tau}=n_{0} \frac{\delta V}{\beta L}\left[1+\frac{f(\lambda)^{2}}{2}\right] \quad \ldots \quad \ldots \quad \ldots \text { (4.10) }
$$

But $\delta V=\beta L \cdot \frac{d V}{d r}$

$$
\begin{equation*}
\therefore \bar{\tau}=n\left[1+\frac{f(\lambda)^{2}}{2}\right] \frac{d V}{d r} \tag{4.11}
\end{equation*}
$$

When λ, and hence $f(\lambda)$ is equal to zero, equation (4.11) reduces to the correct pure fluid relationship. The result quoted by Bagnold omits the squared power of $f(\lambda)$. The reason for this is not clear.

To obtain the transverse pressure corresponding to the mean shear stress, use may be made of the relationship between these forces and the angle of the resultant:

$$
\begin{equation*}
\text { ias. } \frac{\bar{\tau}}{p_{b}}=\tan y \tag{4.12}
\end{equation*}
$$

Hence

$$
p_{b}=n\left[1+\frac{f(\lambda)^{2}}{2}\right] \frac{d V}{d r} \cdot \cot x \quad \ldots \quad \ldots \quad \text { (4.13) }
$$

Bagnold found for his experiments with spherical particles of the same density as the fluid that

$$
\begin{equation*}
\bar{\tau}=(1+\lambda)\left(1+\frac{1}{1} \lambda\right) n \frac{d V}{d r} \quad \ldots \quad \ldots \quad \ldots \tag{4.14}
\end{equation*}
$$

and Heth $\operatorname{Tan} \gamma=0.75$.

$$
\begin{equation*}
\therefore p_{b}=1.33(1+\lambda)\left(1+\frac{1}{2} \lambda\right) n \frac{d V}{d r} \quad \ldots \quad \ldots \tag{4.15}
\end{equation*}
$$

Thus the presence of particles modifies the viscous forces in such a way that a transverse pressure is set up, in addition to that already present in the suspension.

This pressure acts on fluid and particles alike, and can therefore be regarded as an addition to the pressure gradient considered in Section 4.1.2.

To determine whether or not the shearing pressure makes a significant contribution to the pressure gradient, a likely order of magnitude may be calculated for it in the regions where the velocity gradient will be greatest, i.e. near the walls of the channel.

From Figure B.2.2 it is apparent that the velocity gradient in these regions could be very large, reaching perhaps $500 \mathrm{sec}^{-1}$ in close proximity to the walls. The densities recorded in these zones for the particle sizes of interest in the present analysis ranged from 1.10 up to about 1.4 , depending on the feed concentration. (See Section B.5.2)

The shearing pressure (p_{b}) has been calculated for particle sizes of 45μ and 235μ at several concentrations for each wall position. The corresponding fluid pressure gradient force on the particle (F_{p}) has been calculated and converted to a pressure (p) per unit projected area of the particle to provide a basis for comparison. The ratio (p_{b} / p) is presented below in Table B.4.1 for the following assumed conditions

$$
\begin{array}{rlrl}
\sigma & =2.44 & \\
V & =200 \mathrm{~cm} / \mathrm{sec} . & D & =4.5 \times 10^{-3}, 23.5 \times 10^{-3} \mathrm{~cm} \\
\cdot \frac{d V}{d r} & =500 \mathrm{sec}^{-1} & P & =1.10-1.40 \\
n & & =10^{-2} \text { poise }
\end{array}
$$

$$
\begin{aligned}
& \text { From egn. 4.15: } \quad p_{b}=1.33(1+\lambda)\left(1+\frac{1}{2} \lambda\right) n \frac{d V}{d r} \\
& \text { Also } p=F_{p} \div \frac{\pi D^{2}}{4}=\frac{\pi D^{3}}{6} \cdot P \cdot \frac{V^{2}}{r} \div \frac{\pi D^{2}}{4}=\frac{2}{3} D P \frac{v^{2}}{r}
\end{aligned}
$$

$$
\text { TABLi' } 3.4 .1
$$

Ratio OF	VISCOUS	FiRTICLE	SIEARIMG
PRESSURE	FLUID	PRESSURE	In minls,
	GGIO1:S	CHATHEL	

PULF Dungity P	VOLUH: CONC ${ }^{\text {Ph }}$ OF SOLIDSc_{v}	$\begin{gathered} \text { LINDAR } \\ \text { FARTICIE } \\ \text { CONC } \\ \lambda \end{gathered}$	$\left(\frac{p_{b}}{p}\right) \quad \therefore$ T \quad ALI POSITICN:			
			$D=45 \mu$		D $=235 \mu$	
			$\mathrm{r}=1.0 \mathrm{~cm}$	$\mathrm{r}=3.5 \mathrm{~cm}$	$\mathrm{r}=1.0 \mathrm{~cm}$	$\mathrm{r}=2.5 \mathrm{~cm}$
1.10	0.069	1.040	0.156	0.391	0.030	0.075
1.20	0.139	1.797	0.245	0.613	0.047	0.117
1. 30	0.208	2.781	0.385	0.960	0.074	0.184
1.40	0.278	4.249	0.650	1.620	0.124	0.311

Depending on the particle size, the shearing pressure developed ronges from 3 to 16 ; of the fluid pressure for low concentrations at the inner well up to $>100 ;$ for high concentrations a.t the outer wall. These represent the maxima for the inner and outer zones respectively, since the shearing effect will progressively diminish as the point under consideration moves into the main body of the channel.

However, in view of the large velocity gradient that must occur within the sizer, and which has been used in the above calculations $\left(\frac{d V}{d r}=500 \mathrm{sec}^{-1}\right)$, it is most unlikely
that the fluid viscosity determines the shearing behaviour. The mechanism outlined in the next section is therefore considered to be the only one of interest as far as the performance of the sizer is concerned.
(ii) Particle Inertia dominant ($\frac{d V}{d r}$ large)

Any forces set in operation between adjacent layers of particles are considered to be duc to interparticle collisions. The particles are assumed to be oscillating in all three dimensions, the oscillations being the result of collisions between particles.

Referring to Figure B.4.I, each particle in layer A will suffer a number of glancing collisions, the average angle of impact (α) being deternined by the collision conditions. At each collision, the particle experiences a change of monenturi in the ' r ' direction equal to

$$
\begin{equation*}
\frac{2 \pi D^{3} \sigma}{6} \cdot 8 V \cdot \operatorname{Cos} a \tag{4.16}
\end{equation*}
$$

Due to the random motion of the particles in both layers and the existance of more than one possible packing configuration, ench A particle will only encounter a proportion of the B particles. This proportion will be a function of the linear particle concentration.

Denotine the proportion of effective collisions by $f_{1}(\lambda)$, the frequency of collisions ($\delta \mathbb{N}$) is given by

$$
\delta N=\frac{f_{I}(\lambda) \delta \mathrm{V}}{\mathrm{~L}} \quad \ldots \quad \ldots \quad \ldots \quad \ldots(4.17)
$$

Begnold assumes in his treatment thet the frequency of collisions is inversely proportional to the distance (x) between the nearest points of adjacent spheres. Iis reason for this is not clear, and since the collisions are considered to be caused by the paswage of particles in adjacent layers over each other, it would seem thet the
frequency of collisions must rather depend on the distance (L) between the centres of adiacent particles.

The force exerted on each A particle (F_{B}) is equivalent to the total rate of chance of momentura:

$$
\begin{aligned}
& F_{B}=\frac{\pi D^{3} \sigma}{3 I} \cdot \delta V^{2} f_{1}(\lambda) \cos \alpha \quad \ldots \quad \ldots \quad \ldots
\end{aligned}
$$ motion, then

$$
\begin{align*}
& \text { Substituting for } I \text { from equation (4.7): } \\
& F_{b}=\frac{\pi \beta^{2} \operatorname{Cos} \alpha \cdot \sigma D^{4} f_{1}(\lambda) \cdot(1+\lambda)}{3 \lambda}\left(\frac{d V}{d r}\right)^{2} \ldots \tag{4.21}
\end{align*}
$$

To make use of the results quoted by Bagnold, equation (4.21) :must be converted to pive the pressure (p) created between layers A and B. This nay be obtaired by multiplying the force on a single particle by the number of particles present in a unit area of a layer:

$$
\begin{align*}
& p=F_{B}\left(\frac{1}{L^{2}}\right)=F_{D} \cdot \frac{\lambda^{2}}{D^{2}\left(J+\lambda^{2}\right)} \\
& p=\frac{\pi \beta^{2} \operatorname{Cos} \alpha \cdot o D^{2} f_{1}(\lambda)}{3(1+\lambda)}\left(\frac{d V}{d r}\right)^{2} \quad \cdots \quad \cdots \tag{4.22}
\end{align*}
$$

For high shear rates and conditions such that particle inertia effects were predorinant, Bagnold's results indicated the following relationship with spheres of density 1.0 suspended in water $(\lambda<12)$

$$
p=0.042 \operatorname{Cos} \alpha \cdot D^{2} \lambda^{2}\left(\frac{d V}{d r}\right)^{2} \quad \ldots \quad \ldots \quad \text { (4.23) }
$$

with $\tan \alpha=0.32$ (average). $\quad . \operatorname{Cos} \alpha=0.95$

$$
\begin{align*}
& \text { Comparing equations (4.22) and (4.23) it is found that } \\
& f_{1}(\lambda)=\frac{0.126(1+\lambda) \lambda}{\pi \beta^{2}} \quad \ldots \quad \ldots \quad \text { (4.24) } \tag{4.24}
\end{align*}
$$

substituting this result in equation (4.12)

$$
F_{i}=0.042 \sigma D^{4}(1+\lambda)^{2} \operatorname{Cosi}\left(\frac{d V}{d r}\right)^{2} \ldots \quad \ldots \quad(4.25)
$$

Taking Cos a (everage) $=0.95$

$$
F_{E}=0.040 \sigma D^{4}(1+\lambda)^{2}\left(\frac{d V}{d r}\right)^{2} \quad \ldots \quad \ldots \quad(4.26)
$$

To determine whether or not this force is of significance in relation to the accelerative and drag forces, it is necessery to colculate a likely ortor of manitur. for F_{B}.

The velocity and velocity gradient are assumed to have the same values as those employed for the 'viscosity dominent'example previously considered. The densities rocorded in the wall regions for particles of interest in the present analysis ranged from 1.0 up to about 1.4 , depending on the feed concentration.

Force (F_{B}) has been calculated for particle sizes of 45μ end 235μ at several concentrations for each well position. Tho net accelerative force $\left(F_{N}\right)$ has been calculated, and the ratio ($F_{B} / F_{I I}$) is presented overleaf in Table B. 4.2 fron the following assumed conditions:-

$$
\begin{array}{rlrl}
\sigma & =2.44 & D=45 \mu, 235 \mu \\
V & =200 \mathrm{~cm} / \mathrm{sec} & P=1.0-1.4 \\
\frac{d V}{d r} & =500 \mathrm{sec}^{-1} &
\end{array}
$$

$$
\bar{F}_{i V}=F_{A}-F_{P}=\frac{\pi D^{3}}{6}(\sigma-P) \frac{V^{2}}{r}
$$

$$
F_{E}=0.040 \sigma D^{4}(1+\lambda)^{2}\left(\frac{d V}{d r}\right)^{2}
$$

For the conditions quoted, the ratio F_{B} / F_{A} reducos to

$$
\frac{F_{B}}{F_{\text {IN }}}=0.81 r D\left[\frac{(1+\lambda)^{5}}{(1+\lambda)^{3}-0.524 \lambda^{3}}\right] \ldots \quad \ldots \quad(4.27)
$$

TABLE B. 4.1

RATIG UF INGRIAL P:RTICLE BHERIIG FORCL TO ECCDLBRTIVE

PULP DEH:SITY P	VCIUME COIC ${ }^{11}$ OF SOLIDSC_{V}	$\begin{gathered} \text { LIMEER } \\ \text { PARTCL } \\ \text { COHC } \end{gathered}$	$\frac{F_{B}}{F_{M}}$;T FALI PGSITIONS			
			$D=45 \mu$		$D=235 \mu$	
			$\mathrm{r}=1.0 \mathrm{~cm}$	$\mathrm{r}=2.5 \mathrm{~cm}$	$\mathrm{r}=1.0 \mathrm{~cm}$	$\mathrm{r}=2.5 \mathrm{~cm}$
1.05	0.035	0.680	0.011	0.02 .7	0.056	0.139
1.10	0.069	1.040	0.016	0.041	0.085	0.213
1.15	0.104	1.402	0.023	0.059	0.122	0.306
1.20	0.139	1.797	0.033	0.083	0.173	0.432
1.25	0.174	2.248	0.047	0.116	0.243	0.606
1.30	0.203	2.781	0.066	0.164	0.343	0.858
1.35	0.243	3.429	0.094	0.236	0.492	1.231
1.40	0.278	4.249	0.139	0.347	0.725	1.813

Depending on particle size the shearing force ranges from about $6 ;$ of the net accelerative force for low densities at the inner wall of the channel up to an apparent 180 , for high densities at the outcr wall. It will therefore have little effect on the prrticle motion in thc inner and central zones, since in there zones either the density or the velocity gradient is low.

In the region near tho outer wall, however, the shearing force may have a considerable effect on the particle motion, especially for the larger sizes. Where the ratio $F_{B} / F_{\text {If }}$ is
less then unity the outrrad redirl motion of tho perticles will be reduced, and wiere the retio exceeds unity the perticle motion must be reversed. The leyers of particles will then dilate inwards until the forces are in equili-brium:-

$$
\begin{equation*}
0.040 i^{4} \sigma(1+\lambda)^{2}\left(\frac{d V}{d r}\right)^{2}=\frac{\pi D^{3}}{6}(\sigma-P) \frac{V^{2}}{r} \ldots \tag{4.28}
\end{equation*}
$$

Under the conditions essumed in colculating Table 4.2 , this equality is reached at $\lambda=3.05$ for 235μ glass spheres. For particles of this size which are moving at en rial velocity of $200 \mathrm{~cm} / \mathrm{sec}$ and in a velocity eradient of $500 \mathrm{sec}^{-1}$, the maximum pormissible volume concentration of particles at a radius of 2.5 cm is 0.224 . If the specific gravity of the particles is 2.44 , this corresponds to a liniting pulp density of $1.32 \mathrm{gn} / \mathrm{c} . \mathrm{c}$. is the retjo $\mathrm{F}_{\mathrm{B}} / \mathrm{F}_{\mathrm{i}}$ is directly proportional to both prrticle size and radius of motion (equation 4.27), the equality shown in equation 4.28 will not normelly be reached with porticles smaller then 235μ.

To sumcicisc, the 'viscosity dominant' shocring force acts so is to incresse the fluid pressure Eradient, but it eeons unlikcly that this type of forco con arise with the high velocity gradients expected in the sizer. The 'inertial' shcering force siay be expected to exert an epprecicble influence on the motion of all sizes of particle in the rugion near the outer wall of the channel, and for th lorerr particles it can be lrage enough to arrest end reverse the motion if the volune concentration of preticles is high.

In the rogion ncar the inner wall of the channel the velocity gradient may be quite large but the shearing force should be small for all sizes of perticle, since the force
is small at all densities for fine particles ond for coarse perticles, the density in this region is low.

4.2 Hotion of inglo Porticles

The various forces acting on single particles were discussed in detail in Sections 4.1.1, 4.1.2. The accelerative force could not be described accurately as a function of time and position, due to the lack of information about the cxial velocity profile. For the same reason, the Nagnus forces cnd secondiry fluid flow effects acting on the particles could not be spocificd. The fluic drig forces resulting from the motion of the perticles could only bc described accurately when the motion was steady arid the conditions fell in either the laminer or the turbulent flow regions. If the motion wes unstiody, the equations beceme too complicated for analytic trertmont, and if the behaviour foll in the transitional region between leminar and turbulent behavicur the dre.g forces could not be specificd. In view of this leck of information, the analytic treetment adopted in vection 3 cannct be used in the present instence, and instead of prodicting the concentration veriation likely to rosult fron the aotion of individual marticles it is now necessary to device nothode for inferring the notion of a populction of particles fron mensuruments of the resulting prrticle concentrations.

4.3 Fiotion of Farticle vopuletions

4.3.1 Introduction

Before commencing tie final and perhe o the nost important portirn of the analysis, it is desireble to review the main veriables and to discuss the menner in which
they affect ench othor.
Tho exial or tengenticl velocity of e particle (v) dctormines the accelerative and pressure gradiert forces acting on it, while the velocity gradient within the fluid surrounding the particle governs the shearing force and Magnus force which may also act on the particle. separatcly or in combination, these foress det raine the net accularative force tending to produce motion of the particle relative to the fluid. Tho megnitude of the Reynolds Number for this notion determincs the type of fluid drag force tending tc oppose the motion. If the shearing and lagnus forces are neglected, the axial velocity of the particle can bc put cqual to thet of the fluid and the particle motion relative to the fluid can then be considered to take place in c. radial direction. The axial velocity profile of the fluid chonges during its passage through the helix, resulting in a secondary flow of fluid in a radial dircction. This secondary flow is recirculatory in nature and its effect on the motion of the particles should therefore be small when averaged out over the full depth of the channel.

The radial velocity (i) e.ttaincd by a given size of particle is affected by the voluate concontration of surrounding particles in addition to the forces already meritioned. since the axial velocity profile ad the concentration of particles change progressively througin the helix, the radicl velocity of the particles must in general also be changing continuously. Undor cortain conditions this chenge can be shall, however, and the perticle motion may then be approxinctely described by deriving an apparent terminal velocity which neglects the accoleration terms in the equations of motion.

The volume concentrotion of particlus (C_{V}) controls the magnitude of the shearing forces developed in regions Where the fluid velocity gradient is high. It also affects the radial velocity of the perticles directly by increcsing the inertis of the suspension mediun and by influcncing the fluid flow round the moving perticlus. However, within ony given region, the motion of tho particlos chonges their volume concentration, so U and C_{V} irust normally be regarded as mutually dependent quentities.

At present a good decl of the informetion required for the construction of a complete model of the behaviour of the suspension at various depths anc cross-sections within the holix is laclinge Ficnce, wherevor the values of U, V, and C_{V} at any porition (r, a) are undor consideration in the analysis which follows, thene quantiotios represent averages taken over the full depth of the channel at that position. 4.3.2 Enalysis of Concentration Variation

Consider a swall annular scenent of suepension situated within the helix at position (r, a) and of the dimensions shown in Figure 2.4 .2 . The scgment is considered to be stretionery and perticles aro therefore trevelling through it with i. tingential volocity V and r. radial velocity U.

If the fecd to the helix is constent, there will be steady state conditions within the helix and the quentities \mathbb{U}, V, and C_{V} will romain constont at any point (r, ∞)。 Consequently, the net influx of particles to the segment under consideration must bo zero. If the preticle flux (E) is defined is the product of the voluice concentration and the velocity of the particles, then the radial (ε_{r}) and tangential (ξ_{α}) particle fluxes are given by

FIGURE E.4.2: Elemental volume.

$\varepsilon_{r}=U C_{V}$	\ldots	\ldots	\ldots	\ldots	\ldots	$(4.29 a)$
$\varepsilon_{a}=V C_{V}$	\ldots	\ldots	\ldots	\ldots	\ldots	$(4.29 b)$

Equating the fluxes of particles entering and lecving the segment ane taking the limits $n s \delta r, \delta a, \rightarrow 0$ gives the continuity equation for the point (r, a)

$$
\frac{\partial}{\partial r}\left(r \Xi_{r}\right)+\frac{\partial \varepsilon_{a}}{\partial a}=0 \quad \ldots \quad(4.30)
$$

On substituting for ε_{r}, ε_{a} fron $\in q u a t i o n s ~ 4.29$

$$
\frac{\partial}{\partial r}\left(r U C_{V}\right)+\frac{\partial}{\partial a}\left(V C_{V}\right)=0 \quad \ldots \quad(4.31)
$$

Therc/three conditions that must be satisfied by any full solution to equation 4.31: the volume concentration must be constant c.cross the inlet to the helix, the radial flux must be zero at the walls of the helix ($r=1.0 \mathrm{~cm}$, $r=2.5 \mathrm{~cm}$) for all values of a, and the total tangenticl flux of perticlos must be constant at all crossmsections within tio helix. i.e.

$$
\begin{array}{llll}
a=0 & C_{V}=C_{V f}(\text { constint }) & \ldots & \text { (4.32) } \\
r=1.1,2.5: \quad U C_{V}=0 & \ldots & (4.33) \\
\frac{\partial}{\partial a}\left[\int_{r=1}^{r=2.5} V C_{V} \text { dir }\right]=0 & \ldots & (4.34)
\end{array}
$$

The full solution to equation 4.31 , whoreby C_{V} nay be expressed as a function of r and a, can only be obtioined when U and V are known functions of r and $a_{\text {. }}$ At present, this inforiation is for the nost part not available Solutions to simplificd versions of equation 4.31 may be found for the regions of interest in the present investigation by making certain assumptions concerning the behrviour of the suspension, basing the assumptions eitior on the experimentel evidence
or the results of the theoreticnl study prerent d in section 3.

The calibration technique described in jection 4 of Part A was besed on observations made in the vicinity of the channel walls and it is therefore desirable to find solutions for these regions. This werk is described in Sections 5.3.1, 5.3.2.
4.4 Min ryd Eonclusions

The particles in a suspension flowing through nn enclosed helical chennel are supported and acted on by a fluid that is moving in an unsteady manner in both the tragential and radial diructions. The complex and varying cxial velocity profile of the fluid is caused by frictional nind boundary layer offcets arising at the walls of the chennel.

The fluid behaviour anc the channcl wills are responsible for the introduction of two additional factors affecting the sotion of the particles: c seconcrry flow of fluid in a radial dircction, and a shearing force orising neer the outer wall of the channcl when high perticle concuntraticns and high fluid velocity gradients occur sirault:neously. The seccndary fluid flow probsbly consists of two cemponents: a displacenurt flow caused by the transference of preticles tow rels the outer mall and a possibly oscillating flow caused by the ror.sure eridio to ast we within the fluid. The shearing force (Begnold effect) varies in both nature and magnitude according to whether particle inertia or fluid viscosity offects are dominant.

Lack of information concerning the flow behaviour of the suspension during its passage through the helix
macke it impossible to calculntu the assolute magnitudes of ciny of the forces acting on the pirticles. The likely megnitude of the two types of shaering force werc conpored with tho accelerative force on a relative basis, moking use of cssumed values of 7 tir xial vilocity and velocity gredient.

It was not possible to predict the changes in perticle concentration which would result frow the notion of individusl perticles beceuse of the incdequacy of the existing theory and the almost total lack of data relating to many aspects of fluid and suspension beheviour. Instend, a continuity equation $w^{\circ} s$ derived for the priticles in terns of their concentration at any point and the radinl and tangential volocities at thrit position. If suitable solutions of the continuity equetion can be found, it should be possible to infer the velocities of particles fron $:$ knowledge of the initinl and final concentrations occurring within the helix.

5.1 iart 6 and Wark 7 Colls

5.1.1 Introduction

The main objective of the wort carried out using glass spheres was to provide reliable data for the development and verification of a theoretic.l model of the sizer performance. Tho experimental worl was carried out during the same period as the detailed theoretical examination of particle behaviour set out in the preceeding four sections. In the absence of this information, the experimental programme was designed to cover a wider range of conditicns then proved necessary. On the other hand, this broad test programe resultcd in the acquisition of considerable information that could usefully have been applied to the theoretical study had it been available.
A. new and improved experimental ric was constructed before commencing the actual tost work. This incorporated a new cell, a redesigned measuring head assembly and a new set of density gauging equipmont. The modifications will now be described in more detail.

5.1.2 Mark 6 and lark 7 Cells

During the course of the test runs made with the Mark 5 coll, it was discovered that the channel walls were flexing to an extent that made it nocessary to compensate all the readines obtained. A. new cell (the llark 6 cell) was theroforc constructed, identical in dinensions with the cells lark 2, 4, 5 (Figure a.2.4) but with the channel walls in the neasuring zons ailled down to $30 / 1000$ inches. Then the Nari 6 cell was irstelled and calibrated howover, it was discovered that appreciable flexure of the walls was
still occurring. Careful examination of the cell revealed that, while most of the channel walls had been reduced to the correct thickness of $30 /$ loooinches, the regions edjacent to the side racubers of the channel were as thin as 10/1000 inches in places.

The lark 6 cell wes therefore discarded, and \equiv new cell of the same dimensions was mede. (licrk 7). In this case the chennel walls were hand filed and polished to give a thickness of $40 / 1000$ inches. Ihis ereater wall thickness reduced the scnsitivity of the density gauge, but no further problens connectsd withwall flexure were encountered.

5.1.3. Riodificetions to Test Rig

\therefore new neasuring head assembly wes dusigncd and constructcd. (Figures B.5.1, E.5.2). The sizer coll passed through and was cleaped to a rectangular brass frane, wich acted as the support and guides for the traversing head mechanism. The original strontium-90 source wos one of 2 standard range (section A.3.2) and the dimensions wure not well suited to the axisting measurenent requirements. A special source was thereforc ordered for the new messuring head. This was again a strontiun-90 source of 20 millicuries totel activity, but the active arce wes 40 x 3m. compared with 114 x 3mal. for the earlier source. Althourh the new source and ionisation chamer were collimated ss before to 7.5 mm o to inprove the resolution, the fect that the whole length of the new source was used in the measurements resultid in en effective sourcc activity of 10 millicuries compared with 7 millicuries for the old rig. The $2 e a s u r e m e n t$ positions relative to the helix were the saie as those employed with the onalicr version of the equipment. (Figure A.3.1) The source was incunted in an \quad luminiun hvad plate above the sizer cell

Flow of suspension

FIGUPE E. .1 : Second test rig: Neasuring Head.

FIGURE B. 5.2: Photograph of Head Assembly.
and the ionisation chamber in a cylindrical aluminium container a.ttached to e plate below the cell. The whole head asseribly could be traversed by a hand screw, the traverse position being indicated by a dial geuge as on the earlier rig. A narrow brass plate was attached to the brass frame, next to and running parallel with the sizer cell, so that the sourco could be blanked off from the ionisation chamber for standardisation purposes.

The 'Atomette' radiation gauge electronic unit used on the earlior rig was ruplaced by en 'Atorat' Series B Type U, which was very kindly supplied on loan by the Baldwin Instrunent Corpany for a period of twelve months. The 'ftomat' unit, though identical to the'Atonette' in principlo, was temperaturc stabilized end possassed greater flexibility in operation.

Two additions were made to the instruacntation eaployed in the flow circuit. The temporature of the suspension in the circuit wes monitored by reans of a thermistor inserted into the focd hoppor of the ronopump, the signal fron the theristor circuit boing displayed on the six-point chert recorder. - norcury manoteter was tapped into the suspension flow at the discharge froat the sizer measuring channel, so thet the pressurc exerted on the chennel walls could be ionitored and lept constant with a view to eliminetine uncontrollid flyur: of the walle. The final test rig wes otherwice as shown earlier in Figure A.4.1.

The density gauge was calibrated with the new test materials in the sane manner 2.5 before. (Section A.3.6).

5.1.4 Testwork Using Mark 7 Cell

A supply of glass balls was obtained which ranged in sizc from 35 to 325 mesh (Tyler). This aterial was scroened on the set of 8 inch reference scrcens which was used in the earlier work (fjection A.4.4) to provide individual size fractions. The test nethod was restricted by the fact thet only 2 igo of gless balle were avale.ble and the programe was planned in three sti.ges:
(1) Test runs conducted on single size fractions $a t$ a number of different feed concentrations. These wero intended to establish how the radial motion of a particle varied with size and with the concentration of similar particles nearby. The size fractions and feed concentrations were as follows:

$$
\begin{gathered}
\text { wize Frections } \\
(\text { B. } 5 . \operatorname{licosh})
\end{gathered}
$$

$-52+72$
$-72+100$
$-100+150$
$-150+200$
$-200+325$

Foed Concentrations

$$
\left(c_{V f}\right)
$$

0.011
0.022
0.047
0.065
0.100

Ench size fraction was run at the five different feed concentrations, giving a total of 25 tosts in the first stage of the work.
(2) Test runs conducted on prirs of size fractions, mixed togethor in varying proportions, at the constent feed concentretion sclected carlier for the sizing calibretion。 $\left(C_{V_{f}}=0.100\right)$. These were intended to usteblish how the presence of different concentrations of particles of other sizes affected the behnviour of a given size. Each pair of size fractions was combined in three difforent
ratios, $25: 75,50: 50,75: 25$, giving a total of 30 tests for the 5 size fractions available.
(3) Tests conducted using full size distributions, which wor intended to verify any conclusions drawn fron the results of steges (a) and (b)。 The 12 idual Goudin-schumann distributions uscd throughout the errlier work with quartz were again used (See sections A.3.9 Table A.3.2, A.4.6 Table it.4.2.)

The full prograrne cillcd for a totel of 67 samples, and since the supply of gliss bolls was only sufficient to prepare about 8 semples, all test materials had to be r reclaimed, dried and re-sized before a further sories of tests could be started.

The procedure adopted for each test run was as follows: the required amount of water was measured into the circuit and the flowrate set to $90 \mathrm{c} \cdot \mathrm{c} \cdot / \mathrm{sec}$. The sample wes then added to the nonopunp feed hopper and the return flow pipe positioned so ns to provicic sufficient agitation in the hopper to lacep the solids in sucpension. The back pressure exerted on the sizer 'rindows' was then adjusted to 6 cm o of morcury by neens of a clanp on the discherge flowline. The thermistor was placed in tho hopper, the chart recorders were started and the particle concentrotion rasuremento made. The flowrate and back pressuru were readjusted as required during operition. it the conclusion of oech run, the circuit was repestedly flushod with fresh wetor until no more solide could be recleimed. Although tho oversill sample recovery from the circuit was cxcellont for c.ll test runs, tho material lost froin each sample due to temporary suttling out in various dead zones within the circuit was apprecioble, and the actual density in the circuit was nearly
always a good deal lower than the apparent or 'made-up' value. All feed densities quoted below have therefore been calculated from the nensured concentration profile.
5.2 Analvsis of icsults

The concentration profiles obtained for single size fractions are shown in Figures B .5 .3 . - B. 5.7 , for pairs of sizu fractions in Figurus B.5.8- F. 5.17 and for size distributions in Eigures B.5.18-B.5.2l. The most important limitetion in interpreting thesc profilus is the fact that the measurements wore conducted downstream of the helix rathur than within it. The leading edge of the collimatod source and detection assernbly was some 5 cm . ciownstream of the wit from tho helix, e distancu equivalont to a little over four channel diameters for a circular chennel having the sanc wettuc perimetur. The influence of binds on the flow behaviour of pure fluids may extend as far as 50 pipe diancturs downstrean of the bond (Bection 2.1), so if a sinilar effect occurs in the cese of a susponsion, thi remixing caused by the persistancc of a recirculatory fluid flow could result in the loss of a significent proportion of the concontration eradient befor the suspension reaches the measurcment zone。

5.2.1 Single isize Frections

The shepes of the cencertretion profiles obtaincd with single sizu fractions of Eless balls ari in guncral similar to those rccorded for ground quartz particles (Figures $4.3 .14-\therefore .3 .17$) although some of the foatures arc accentuated. Considering the curves for various focd concuntrations of $-52+72$ glass balls, it can bu seen that the region noar the inner wall contains small concontrations of solids and a. comparetively shallow concentration gradiont,

FIGURE P. 5. 3: Curicentration profiles obtained with the Mark ? cell using class spheres: size fraction $-52+72$ B.S.

FIGURE B. 5.4 : Concentration nrofiles obtained with the Mark 7 cell using flass spheres: size fraction $-72+10 C$ E.S.

FIGURE P.5.7: Concentration orofiles obtained with the Mark 7 cell using elass spheres: size fraction $-200+325$ E.S.

FIGURE B.5.8: Concentration profiles obtained with the Mark 7 cell using zlass spheres: size fractions $-52+72 /-7 \leq+i 00$

FIGURE B. 5.9: Concentration profiles obtained with the Mark; cell using glass spheres: size iractions $-52+72 /-100+150$

FIGURE B. 5.11: Concentration profiles obtained with the Mark 7 cell using rlass spheres: size fractions $-52+72 /-200+325$

FIGURE B. 5.12: Concentration profiles obtained with the Mark 7 cell using glass spheres: size fractions $-72+100 /-100+150$

FIGURE B. 5.12: Concentration nrofiles obtained with the Mark 7 cell using glass spheres: size fractions $-72+100 /-150+200$

FIGURE B. 5.14: Concentration profiles obtained with the Mark 7 cell usirg glass spheres: size fractions $-72+100 /-200+325$

FIGURE B. 5.15: Concentration profiles obtained with the Mark 7 cell
using glass spheres: size fractions $-100+150 /-150+200$

FIGURE B.5.16: Concentration profiles obtained with the Mark 7 cell using glass spheres: size fractions $-100+150 /-200+325$

FIGURE B. 5.17: Concentration profiles obtained with the Mark 7 cell using flass spheres: size fractions $-150+200 /-200+325$

FIGURE B. 5.18: Concentration profiles obtained with the Mark 7 sell using glass spheres: size distributions $1,2,3,4$.

FIGURE B. 5.19: Concentration profiles obtained with the Mark 7 cell using glass spheres: size distributions 2, $5,6,7$.

IIGUPE F.r. EC : Concentration nrofiles obtained with the Mark 2 ull using plass stheres: size distributions $2, ~ \%, 4$, dO.

FIGURE B.5.21: Conceniration profiles obtained with the Mark 7 cell using glass spheres: size distributions 13,14 .
while near tho outcr wall both the concontrations and the concontration gradionts are high. In view of tho high radial velocitics obtainable with such coarse particles, the uxistence of any particles at all in the inncr rugion is surprising, and their prosence cen only be accounted for in torms of scondary fluid flow, onhanced fluid dreg, or boundery layor separation. The socondary fluid flow could act both within and downstrean of the holix; in the first instonce by reducing or cven revirsing the perticle radial volocitios in the zonc whero the fluid flow is towerds tho inner wall and, in the sucond instence, by dustroyine the concentration gradient when it hes passed out of the helix. A reduction or reversal of tho particle notion within the holix could only occur if the bulk of the particlos was distributed within one of the laycrs in which the sccondery fluid flow wes towards the inner well; the mosi likcly onc being that next to the botton face of the channcl, sinco gravitestionel forces would tund to concontratc tho coarser particles within this layer. snhancud fluid clras due to turbulence within the fluid is quite likely to occur. (section $4.1 .2 b$) though the vffects should be less noticesble for the cosrain particlus. Doundery laycr suparation would create a rugion of high turbulence nend the innor vell coucine a disruption of the tongunticil flow and a ruduction in the particlu radial volociticso Vith the rusulte in their prusunt foria, it is not possible to anclyse the extent to which these mechenisns might be responsible for the obscrved effects. This task is porformud in Scetion 3.5.3.1。

Anothor intoresting fuature of the profilcs, obtained at the higher fued concentrations with both $-52+72$ and
$-72+100$ nesin glass balls, is the peak particle concentration recordcd at an equivalint radius of motion of 2.4 cm . Thi.- could be the risult of a high concentration layer et the outer wall, originally created within tho helix and subsequently dispersine and noving back towerds the cuntre of the channel. If t'is is the explanation, however, the profiles cbtained at lower focd concentrations should exhibit similer maxina ch a rucuced sccle。 Since they do not, it appeors nuch more likely that the mechanisn responsible is the particle shearing prossure discussed in Section 4.1.2.c. For a particle size of 235μ trevelling at $200 \mathrm{~cm} / \mathrm{sec}$ in a velocity gradient of $500 \mathrm{sec}^{-1}$, it was cstimated that the turbulent particle sheering force could equel the contrifugal force $-t=$ radius of motion of 2.5 cn if the volume concontration of solids rase to about 0.22 . In the present instancc, the puaks are obtained at a radius of motion of 2.4 cr for the two coarsest size fractions whose nesn sizos are 1814 and 253, the corresponding volume concuntrations beine 0.22 and 0.19 . Theso results agrec sufficiently well with thu cstinetid conditions to sugger, that this is indecd the mochonisw giving rise to the concentration maxima and thu lowur concontrations between the naxima and the outer wall of the channel are the rusult of the shecring force equalline the centrifugal force at thee lowir concentrations by virtuc of the higher velocity gradient near the channel wall.

The profiles obtained for the three fincr size fractions show progressively less evidence of radial perticle motion until, at $-200+325$ mesh E, j, the particle concentration is virtually the sanc at all points across the channcl.

The concentration profiles mey also be used to check
whether the effect of the concontration of surrounding particlus on the radial vclocity of a given particle is in agreenent with the risults obtained by previous workers (acction 3.I.2c). foccrding to the equation quotid, i.e.

$$
U=U_{T}\left(I-C_{V}\right)^{G}
$$

if the concontration of particlss in the foed to the helix is increased, the radial velocit: of the particles should be rcducca by e fector $\left(1-C_{V}\right)^{C_{i}}$, where G_{F} is the Iocel concentration of particles and a is a function of the Reynolds number for the particle for a given incroaso in the feed concentration of particles, the concentration observed at any particular radius after a radius of motion should therefore comprise a larger fraction of the original feed concentration in regions where C_{V} decriases with a 。

In Figures B.5.22, B.5.23, the results obtained in the regions of maximun concentration change beve been examincd by plotting the concentrations rucordud at $r=I \operatorname{lcm}$, $r=2.4 c i n$ against the feed concontration for the fine size fractions tested. In the zone near the inner wall ($r=1.1 c m$, $C_{V}<C_{V f}$), it can be seen that changes in feed concentration do not produce any significant change in the radial velocities, as the recorded concentrations for each particle size increase linearly with feed concentration. In the zone ne:r the outer wall ($r=2.4 \mathrm{~cm}, C_{V}>C_{V f}$), the expected type of behaviour does maturialise. Increases in fecd concentration reduce the radial velocities apprciably for all particlo sizes coarser than 150 mesh B os, as evidencud by the curved plets obtained for these particles.

FIGURE B. 5.22: Effect of feed concentration ($\mathrm{r}=1.1 \mathrm{cr}$. .)

FIGURE B. 5.23: Effect of feed concentration ($r=2.4 \mathrm{~cm}$)

5.2 .2 Two Size Fractions

Detectably different concentrition profiles were obtained for all pairs of size fractions, and tho relative positioning of the curvis was correct in all cases. The coarsest sauple of ach pair of size fractions having -52 +72 mesh material as a component displayod e pear concentration sirilar to thet found for these perticles in the single size frection. (icction 5.2.1)

In the previous scction, the influence of the volune concentration of particlus present on the radial velocities attained by the particlus wae examined for single size fractions. The main purpose in obtaining the rusults for pairs of size fractions wes to find out whether or not particles of different size interacted with each other whon present in varying proportions but at a conctant total volume concontretion in the feed and, if so, the monner in which the interaction varice with particle size。

The measurements made at $r=1.10 n$ fad $r=2.4 \mathrm{~cm}$. hevo again been usud as the crituris in assessing the dogrue of interaction. The expectud values of ${ }^{C}{ }_{V}$ for these two positions heve been calculated for all samples at the mocsured foed concuntretion - sssuming no interaction - by rosding off the proportionite contributions fro. Figures B.5.22, B.5.23. The results ar. given in Table D. 5.1 toguther with the mensured veluce of C_{V}. ilso shew is the of difference in the calculsted (no interaction) and rassured concentrations, calculated r s

$$
\text { ; Differonco }=100\left(\frac{\text { ilossured - calculated }}{\text { colculcted }}\right)
$$

TABLE B.5.1.									
Interaction between Size Frictions of Glass Spheres									
Vairs of Reliotive Size Fropor- Fractions tions (Wosoliesh) Coarse/		$\mathrm{C}_{\mathrm{V} \text { f }}$	$\mathrm{CV}_{1.1}$			$\mathrm{CV}_{2.4}$		$\begin{gathered} \% \\ \text { DIFF } \end{gathered}$	
		C.LC.	Пmins.	LIFF	CaLC.	MEAS			
$\begin{aligned} & -52+72 \\ & -72+1.00 \end{aligned}$	$\begin{aligned} & 25,75 \\ & 50 / 50 \\ & 75 / 25 \end{aligned}$		$\begin{aligned} & 0.0830 \\ & 0.0819 \\ & 0.0317 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.020 \\ & 0.017 \end{aligned}$	$\begin{aligned} & 0.025 \\ & 0.020 \\ & 0.019 \end{aligned}$	$\begin{gathered} +4.2 \\ \varnothing \\ +11.8 \end{gathered}$	$\begin{aligned} & 0.227 \\ & 0.236 \\ & 0.246 \end{aligned}$		$\begin{gathered} +0.9 \\ +1.7 \\ \varnothing \end{gathered}$
$\begin{gathered} -52+72 \\ -100+150 \end{gathered}$		$\begin{aligned} & 0.0813 \\ & 0.0791 \\ & 0.081 .5 \end{aligned}$	$\begin{aligned} & 0.035 \\ & 0.027 \\ & 0.020 \end{aligned}$	$\begin{aligned} & 0.039 \\ & 0.030 \\ & 0.023 \end{aligned}$	$\left\lvert\, \begin{aligned} & +11.4 \\ & +11.1 \\ & +15.0 \end{aligned}\right.$	$\begin{aligned} & 0.184 \\ & 0.205 \\ & 0.233 \end{aligned}$	$\begin{aligned} & 0.132 \\ & 0.216 \\ & 0.248 \end{aligned}$	$\begin{aligned} & -1.1 \\ & +5.4 \\ & +6.4 \end{aligned}$	
$\begin{gathered} -52+72 \\ -1.50+2.00 \end{gathered}$		$\begin{aligned} & 0.0817 \\ & 0.0813 \\ & 0.0775 \end{aligned}$	$\begin{aligned} & 0.051 \\ & 0.038 \\ & 0.024 \end{aligned}$	$\begin{aligned} & 0.056 \\ & 0.04 .4 \\ & 0.025 \end{aligned}$	$\begin{array}{r} +9.8 \\ +15.8 \\ +4.2 \end{array}$	$\begin{aligned} & 0.1 .48 \\ & 0.1 .84 \\ & 0.229 \end{aligned}$	0.158 0.216 0.240	$\begin{aligned} & +6.3 \\ & +17.4 \\ & +4.8 \end{aligned}$	
$\begin{gathered} -52+72 \\ -200+325 \end{gathered}$	$\begin{aligned} & 25 / 75 \\ & 50 / 50 \\ & 75 / 25 \end{aligned}$	$\begin{aligned} & 0.0897 \\ & 0.0754 \\ & 0.0734 \end{aligned}$	$\begin{aligned} & 0.069 \\ & 0.043 \\ & 0.027 \end{aligned}$	$\begin{aligned} & 0.077 \\ & 0.052 \\ & 0.030 \end{aligned}$	$\left\lvert\, \begin{aligned} & +11.6 \\ & +20.9 \\ & +11.1 \end{aligned}\right.$	$\begin{aligned} & 0.138 \\ & c .163 \\ & 0.201 \end{aligned}$	$\begin{aligned} & 0.145 \\ & 0.180 \\ & 0.236 \end{aligned}$	$\begin{aligned} & +5.1 \\ & +10.4 \\ & +17.4 \end{aligned}$	
$\begin{array}{r} -72+100 \\ -100+150 \end{array}$	25/75 50/50 $75 / 25$	$\begin{aligned} & 0.0821 \\ & 0.0796 \\ & 0.0806 \end{aligned}$	0.038 0.034 0.030	$\begin{aligned} & 0.039 \\ & 0.034 \\ & 0.033 \end{aligned}$	+2.6 $\not 0$ +10.0	$\begin{aligned} & 0.173 \\ & 0.183 \\ & 0.198 \end{aligned}$	$\begin{aligned} & 0.168 \\ & 0.176 \\ & 0.186 \end{aligned}$	$\begin{aligned} & -2.9 \\ & -3.8 \\ & -6.1 \end{aligned}$	
$\begin{array}{r} -72+100 \\ -150+200 \end{array}$	$\begin{aligned} & 25 / 75 \\ & 50 / 50 \\ & 75 / 25 \end{aligned}$	$\begin{aligned} & 0.0853 \\ & 0.0797 \\ & 0.0781 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.044 \\ & 0.035 \end{aligned}$	$\begin{aligned} & 0.061 \\ & 0.049 \\ & 0.036 \end{aligned}$	$\begin{array}{r} +7.6 \\ +1.1 .4 \\ +2.9 \end{array}$	$\begin{aligned} & 0.141 \\ & 0.1 .59 \\ & 0.181 \end{aligned}$	0.141 0.159 0.180	$\begin{gathered} \not \emptyset \\ \emptyset \\ -0.6 \end{gathered}$	
$\begin{array}{r} -72+1.00 \\ -200+325 \end{array}$		$\begin{aligned} & 0.0893 \\ & 0.0833 \\ & 0.0783 \end{aligned}$	$\begin{aligned} & 0.073 \\ & 0.054 \\ & 0.039 \end{aligned}$	$\begin{aligned} & 0.077 \\ & 0.059 \\ & 0.039 \end{aligned}$	$\begin{gathered} +5.5 \\ +9.3 \\ \varnothing \end{gathered}$	$\begin{aligned} & 0.127 \\ & 0.152 \\ & 0.176 \end{aligned}$	$\begin{aligned} & 0.1 .31 \\ & 0.150 \\ & 0.178 \end{aligned}$	$\begin{aligned} & +3.2 \\ & +4.6 \\ & +1.1 \end{aligned}$	
$\begin{aligned} & -100+150 \\ & -150+200 \end{aligned}$		$\begin{aligned} & 0.0858 \\ & 0.0825 \\ & 0.0805 \end{aligned}$	$\begin{aligned} & 0.061 \\ & 0.054 \\ & 0.047 \end{aligned}$	$\begin{aligned} & 0.063 \\ & 0.054 \\ & 0.046 \end{aligned}$	$\begin{gathered} +4.9 \\ \not \varnothing \\ -2.1 \end{gathered}$	$\begin{aligned} & 0.127 \\ & 0.136 \\ & 0.1 .39 \end{aligned}$	$\begin{aligned} & 0.129 \\ & 0.140 \\ & 0.146 \end{aligned}$	$\begin{aligned} & +1.6 \\ & +2.9 \\ & +5.0 \end{aligned}$	
$\begin{aligned} & -100+150 \\ & -200 \div 325 \end{aligned}$	$\begin{aligned} & 25 / 75 \\ & 50 / 50 \\ & 75 / 25 \end{aligned}$	$\begin{aligned} & 0.0868 \\ & 0.0844 \\ & 0.0793 \end{aligned}$	$\begin{aligned} & 0.074 \\ & 0.063 \\ & 0.050 \end{aligned}$	$\begin{aligned} & 0.077 \\ & 0.064 \\ & 0.050 \end{aligned}$	$\begin{gathered} +4.1 \\ +1.6 \\ \emptyset \end{gathered}$	$\begin{aligned} & 0.109 \\ & 0.126 \\ & 0.139 \end{aligned}$	$\begin{aligned} & 0.116 \\ & 0.134 \\ & 0.1 .43 \end{aligned}$	$\begin{aligned} & +6.4 \\ & +6.3 \\ & +2.9 \end{aligned}$	
$\begin{aligned} & -150+200 \\ & -200+325 \end{aligned}$		$\begin{aligned} & 0.0949 \\ & 0.0937 \\ & 0.0698 \end{aligned}$	$\begin{aligned} & 0.088 \\ & 0.082 \\ & 0.074 \end{aligned}$	$\begin{aligned} & 0.087 \\ & 0.081 \\ & 0.071 \end{aligned}$	$\begin{aligned} & -1.1 \\ & -1.2 \\ & -4.1 \end{aligned}$	$\begin{aligned} & 0.106 \\ & 0.1 .11 \\ & 0.114 \end{aligned}$	$\begin{aligned} & 0.110 \\ & 0.115 \\ & 0.118 \end{aligned}$	$\begin{aligned} & +3.8 \\ & +3.6 \\ & +3.5 \end{aligned}$	

The differences recorded between the calculated and neasured concentrations are generally srall, the moasured values being on average about $4-5$ higher then the calculatedo The $\%$ differcnces are sraller in the outer region, where the absolutc concontrations ore highor。 This is contrary to expectation since, regardless of the nature of the interaction effects between different particle sizc eroups, it is reasonable to expect $:$ proportionetely lirger effect in rogions of high particle concentration. This by itsclf throws doubt on the validity of the recorded differences, but the overiding argunent in favour of discarding then is the fact that the recorded differences are, on average, positive in both the innor anc outer regions. This apparent effect is readily refuted on simple nass transfcr consicerations since if the particle concentrotion is lower then predicted in the inner zonc it rust be highor than predicted in the outer zone. The greater part of the observed differences must therofore be attributed to experimental crror, the likeliest cause beine innccurate estinates of the effective feed density (C_{V}) 。

Thercfore it must be concluded that, within tho linits of accuracy of the obstrvetions, no significent interaction takes place botween different size fractionso

5.2 .3 Size Distributions

The results obtaincd with size distributions of Elass spheres are notable for the constancy of the pirticle concentrations across the inner region of tho chranel. If these curves are conpared with the ones obtained for the same size distributions of quartz sand (Figures A.3.14-A.3.17), it can be seen thet a measurable concentration gredient was recorded in the inner zone for the latter acterial. The results obtained for the quartz sand must be troated with
reserve, however, since the concentration moasurenents were less reliable, the flowrote control was unsatisfactory and the made-up size distributions differed considerably from their nominal composition in several cases. (Section i. 3.5.2)

The results obtained with two size fractions sugecsted that no significant intoractions occurred between different size fractions, within the linits of detection of tho present equipaent. This conclusion was checked for the size distribution results by calculating the expected values of C_{V} for positions $r=1.1, r=2.4 \mathrm{cr}$. in the some menner employed earlier. The results are given in Table B.5.2.

TABLE B.5.2.							
Interaction within Size Distributions of Glass Sphores							
$\begin{gathered} \text { SIZE } \\ \text { DIWTRIBUTMAN } \end{gathered}$	$\mathrm{C}_{\mathrm{V} f}$	$\mathrm{C}_{V_{1.1}}$			${ }^{C_{V_{2.4}}}$		
		CSIC.	MEAS.	$\begin{aligned} & \text { \% } \\ & \text { DTFE } \end{aligned}$	CALC.	at.	DIFF
1	0.0733	0.043	0.041	- 4.7	0.203	0.190	-3.4
2	0.0793	0.050	0.052	$+4.0$	0.183	0.176	-3.8
3	0.0841	0.063	0.063	\varnothing	0.147	0.145	-1.4
4	0.0394	0.085	0.076	-10.6	0.124	0.124	\varnothing
5	0.0828	0.059	0.063	$+6.8$	0.165	0.152	-7.9
6	0.0743	0.038	0.039	$+2.6$	0.204	0.194	-4.9
7	0.0711	0.030	0.030	\emptyset	0.215	0.209	-2.8
8	0.0792	0.056	0.057	$+1.8$	0.150	0.145	-3.3
9	0.0829	0.063	0.060	-4.8	0.135	0.134	-0.7
10	0.0870	0.075	0.072	-4.0	0.108	0.115	± 6.5
13	0.0703	0.025	0.020	-20.0	0.230	0.216	- 6.1
14	0.0867	0.070	0.070	\varnothing	0.129	0.126	-2.3

Although the rusults for $r=2.4 \mathrm{cn}$ show a more concirt nt tendency than those found with two size fractions, one observation markedly contracicts the general tendoncy, and, in any case, the results at $r=1 . l \mathrm{cn}$ display a completely rondon varintion. The conclusion that these is no aensureble intercction between different particle sizos, therefore, remins unchanecd.
5.3 Concontration Variation iver the Innor and Cutir Valls

A generin cnalysis of the relationship between tho volume concentration and the velocities of the perticlos in a suspension noving through a helical turn was given in Section 4.3.2, where the continuity equition for the particles was derived. For steady state conditions within the belix, it was shown that

$$
\frac{\partial\left(r U C_{V}\right)}{\partial r}+\frac{\partial\left(V C_{V}\right)}{\partial a}=0 \quad \ldots \quad \text { (4.30) }
$$

In order to obtain som kind of quantitutive model as $:$ besis for assessing the particle bohaviour in the resions of intercst - the zoncs noar the channcl wallo it is nocessory to simplify equation 4.30 by naloing suitable assurretions that cen be justified by the experinental evidoncこ.
5.3.1. Concontrotion Variation nocr the Inner voll

Cost of the concentretion profiles notained with Eless spheres display low or even ann-existant radicl concentration gradients in the zone nerr the innor wall, a tendency thet is particulerly noticeable in all the results obtained with full size distributions. (Figuros 3.5.18E.5.21). Since the volume concentration of perticles is constant e: all positions across the inlet to the helix
and appears to have remained independent of \mathbf{r} (or nearly so) in the region adjacent to the inner wall, the most obvious simplification to equetion 4.30 is to consider C_{V} as a function of a only.

If the benaviour exhibited by pure fluids (Figure B.2.3) is taken as a guide to what might occur with a susponsion, it woula appear that the tangential velocity V does not vary to any great extent with a. Also, it should be possible to aprroximate the velocity distribution by a simple linear model for the region of interest. i.e.

$$
\begin{equation*}
V=V_{1}+b r \quad \ldots \quad \ldots \quad \ldots \tag{5.1}
\end{equation*}
$$

where V_{l} is the velocity at the inner wall and b is the velocity gradient normal to the wall.

The two najor factors deteruining U are the tangential velocity V and the volume concentration C_{V} since V is considered independent of a and C_{V} starts at the f eed concentration ($C_{V f}$) and decrcases, it should bc possible to treat U as being independent of a and C_{V} without introducing major errors (Also, sec section 5.2.l.)

Taking C_{V} as a function of a and U as \therefore function of r, equations 4.30 and 5.1 may be corbincd to give

$$
\begin{equation*}
C_{V} \cdot \frac{d(r U)}{d r}+\left(V_{I}+b r\right) \frac{d C_{V}}{d a}=0 \ldots \tag{5.2}
\end{equation*}
$$

Integrating with respect to a between the linits $C_{V f}$ at $a=0$ and C_{V} at a gives

$$
\ln \left(\frac{C_{V \hat{I}}}{C_{V}}\right)=\frac{a}{\left(V_{1}+b r\right)} \frac{d(r U)}{d r} \ldots \quad \ldots \quad \text { (5.3) }
$$

which may be integrated with respect to r between U_{I} at r_{1} and U_{2} at r_{2} to give
$U_{2} r_{2}-U_{1} r_{1}=\frac{1}{\alpha} \ln \left(\frac{C_{V f}}{C_{V}}\right)\left[V_{1}\left(r_{2}-r_{1}\right)+\frac{b}{2}\left(r_{2}{ }^{2}-r_{1}{ }^{2}\right)\right] \ldots$ (5.4)
is equation 5.4 is only intenced to represent the behaviour in one region of the helix, it only has to satisfy the conditions for thet region. These were discussed in Section 4.3 .2 and the relevent conditions werc given in equations $4.32,4.33:$ i.e. $C_{V}=C_{V f}$ (constant) for all values of r at $a=0$ and $U C_{V}=0$ for all values of a at $r=1.0 c r n$. The first condition was applied when integrating equation (5.2), while the second may be applied by putting $r_{1}=1.0 \mathrm{~cm}$, $U_{1}=0$ in equation 5.4

$$
\begin{equation*}
U_{2}=\frac{1}{a} \ln \left(\frac{C_{V f}}{C_{V}}\right) \quad\left[V_{1}\left(1-\frac{I}{r_{2}}+\frac{b}{2}\left(r_{2}-\frac{1}{r_{2}}\right)\right]\right. \tag{5.5}
\end{equation*}
$$

The calibration measurements wore mede with the centre line of the source at a position on the leadout from the helix equivalent to $r_{2}=1.10 n$. From Figure B. 2.3. , reasonable values for the tangential velocity equation are estinated as $V_{1}=100 \mathrm{cn} / \mathrm{sec}$ and $b=66.7 \mathrm{suc}^{-1}$ for $\overline{\mathrm{V}}=200 \mathrm{~cm} / \mathrm{sec}$. Putting these values in equation 5.5 gives for the velocity at $r=$ l.lcm:

$$
\begin{equation*}
U_{1.1} \simeq 2.5 \ln \left(\frac{C_{V f}}{C_{V}}\right) \tag{5.6}
\end{equation*}
$$

The radiel velocity hes been cilculated for eech size fraction of glass bells using equation (5.6). A feed concentration of $C_{V_{f}}=0.085$ was chosen and the appropriate values of C_{V} were interpolated from Figure B.5.22.

These 'reasured values of U have been compared with a set of 'apparent terninal velocities' calculated for the scaic conditions. Unfortunately, the rotion of all the sizes conccrned fell within the transitional regime,
so the equations developed earlier for the laminar and turbulont regimes (Seftions 3.2.1 - 2) could not be used. The velocities were therefore calculated according to the nethod of Heywood ${ }^{l l}$ using the prithnetic mean size of each fraction and then corrected for interference effects using equation 3.18 and the drte given in Table B. 3.1 . The neasured and calculsted velocities are compared in Table B.5.3.

TABLE B.5.3.			
Radial Velocities of Sizc Fractions of Glass Balls at $\mathbf{r}=1.1 \mathrm{~cm}$.			
SILS FR:CTICN:		$\begin{aligned} & \text { CALCULATED } \\ & \mathrm{U}_{\mathrm{TLR}} \\ & (\mathrm{~cm} / \mathrm{scc}) \end{aligned}$	MEASURED U ($\mathrm{cr} / \mathrm{sec}$)
B.Somesh	He:n Aperturo (μ)		
- $52+72$	253	11.1	4.5
- 72+100	181	7.4	2.8
$-100+150$	129	4.7	1.6
$-150+200$	89	2.8	0.63
$-200+325$	61	1.5	0.06

The neasured values of U are substantially lower than the calculated values. There are a number of factors that could be responsiblc: they ere liated below and then discussed in more detail.
(a) Use of the arithnetic mean size in calculaticns;
(b) Use of apparent terninal velocity in calculations;
(c) Incorrect assumptions regarding the axial velocity profile;
(d) Degeneration of the concentration profile;
(e) Reduction of the measured velocities by secondary fluid flows;
(f) Disruption of the particle motion by boundary layer separation;
(g) Incccurate concentration moasurements due to solids settling out in the circuit during the test runs;
(h) Lift forcos or 'Magnus' Effects;
(i) snhanced fluid drag due to the turbulant axial flow of fluid.
(a) Use of the arithmetic mean size during the calculetions was dictated by the lack of knowledge about the behaviour of particles in the transitional regime. What is really required is a nean velocity for the range of sizes prosent in the size fraction concerned, but this can only be obtained where the dependence of velocity on size is fully identified. The rulationsinips holding within the various $r \in g i n e s$ ere as follows:

Larincr: $\quad \mathrm{U}$ a D^{2}
Transitional U a $\mathrm{D}^{\mathrm{n}} \quad\left(\bar{n}=\frac{1}{2} \rightarrow 2\right)$
Turbulent: U a $\mathrm{D}^{\frac{1}{2}}$
The sizes correspondine to the mean velocity for the size fraction $-D_{1}+D_{2}$ would therefore be calculated as

Laminar: $\quad \bar{D}=\frac{\Sigma i D^{2}}{\Sigma i}$
Transitional $\overline{\mathrm{D}}=\frac{\Sigma i D^{n}}{\overline{\Sigma i}}$ where $\mathrm{i}=$ number

Turbulent $\quad \bar{D}=\frac{\sum i D^{\frac{1}{2}}}{\sum i}$ of particles of sizc D.

Since the value of $\overline{\mathrm{n}}$ is unknown, the arithnetic mean based on $\bar{n}=i$ was used in the calculctions. The order of error introduced by this assumptirn can be calculated: assuming size fractions spaced at $\sqrt{2}$ intervals
and a uniform distribution of sizes within each size fraction, the maximuia error introduced by adopting the arithmetic rean size for the fraction $-\sqrt{2} D+D$ is $\pm 0.5 \%$

$$
\begin{equation*}
\text { i.e. } \quad \frac{\bar{D}}{\bar{D}}=1.206 \pm 0.006 \ldots \tag{5.7}
\end{equation*}
$$

The man size of 253μ calculated for the $-52+72$ nesh arterial could thercfore be in error by $\pm 1.3 \mu$. Since tho screens used in sizing the material were probably only accurate to within 5μ and other sourcos of ineccuracy contributed much larger errors, this effect can be neglected.
(b) The 'apperent terninal velocity' is obtained by neglecting any relative tangentiel velocity between particle and fluid and arbitrarily putting $\frac{d U}{d t}=0$ in the equations of motion (3.15a,3.19). The errors introduced in calculating perticle tracks are likely to be small for particles exhibiting laminar motion (Section 3.2.1) but may be large for those cxhibitine turbulent motion (Section 3.2.2). Since the apperent terminal velocity neglects the initial acceleration period, it must represent an overestinate of the actual velocity. Another consideration relevant to this point was discussod ecrlior (soction 4.l.2b), nanely whether particles could experience ideal forms of fluid drag when moving radially in a fluid medium that is exhibiting turbulent flow in a tangential direction. It seens most unlikely thet the fincr perticles could experience viscous drag in a turbulent fluid, though the coarser particles might concievably encounter an enhanced form of turbulent dreg. In general, the vortices preisent in the fluid must result in an incresised resistance to notion for all particle sizes, possibly to the extent of almost totally preventing motion of the smaller particles. It would appear, therefore,
that the apprrent terninal velocity represents a considerable overestimate of the actual velocity, since it not only neglects the accoleration period but also fails to take fluid turbulence into account. A further effect - the 'Magnus' or lift force - is also ignored in obtaining the apparcat torminal velocity, but this is considered separately.
(c) The valucs assuned for the axial velocities were used in determining both the calculated and measured particle radial vclocities. In tho transitional region, the apparent terminal velocity, $\mathrm{U}_{\mathrm{T}: \mathrm{R}}$, varies with V^{2} at low Reynolds numbers, changing progrcssively to V i.t high Reynolds numbers as turbulent behaviour is approached. is the masared volocity U varies (approximetaly)with V, inaccuracies in the assumed values of V will only affect the finer sizes. The relative differences recorded are largest for the finer sizos, so over estimates of V could be partially responsible for these. However, they do not explain the difforencos recorded at the corrser sizes.
(d) Degeneration of the concentration profile in the interval between the slurry leaving the belix and entering the mecsurement zone was discussed in jection 5.5. It was concluded that a sjgnificant proportion of the concentration gradiunt rieht be lost in lhis way, and this could contribute noticeably to the difference batween the calculated and observod porticle velocities, especially for the finer sizos. This has been investigated as follows: the centre of the nensuring zone was some five equivalent channel diameters downstrean of the exit frow the helix and, by analogy with pure fluid behaviour, the helix may be considured to exert an influence as far as 50 equivalent
diameters downstrean. Assuning a linear rate of remixing of the concontration gradient, this suggosts that about 10% of the actuel concentration could heve been lost by remixing. Applying this correction to equation 5.6:-

$$
\begin{align*}
& U=2.5 \ln \left(\frac{1 . I^{C_{V f}}}{C_{V}}\right) \tag{5.8}\\
& U \approx 2.5 \ln \left(\frac{C_{V f}}{C_{V}}\right)+0.24 \tag{5.9}
\end{align*}
$$

so thet a 10% increase in C_{V} could reduce the mocsured value of U by about $0.24 \mathrm{~cm} / \mathrm{sec}$. This would account for only c smell proportion of the difference recorded for the $-200+325$ mesh particles and would heve no effect on the large differencus recorded for the coarse sizes. To account for all the difference a.t $-200+325$ mesh, 75 ; of the concentration reduction would have to be lost by remixing, while the differonces recorded at $-150+200$ mesh and above would require correction factors suggesting thet >100 of the concentri.tion reduction had been lost. This effect cen therefore not be held responsible for the differences recorded in Table E.5.3.
(c) The probeble effects of socondery fluid flow of the recirculetory type wore discussed in section 4.1 .2 c and 5.2.1. It seems unlikely that this type of flow would affect the overall motion of the particles unloss they were preferentially concentrated in the botton layer of the channel by gravitational forces. If this effect did occur, however, the velocities of all sizes of perticles should be reduced by about the sane absolute amount. In fact, the discrepancios vary fron $6.6 \mathrm{ca} / \mathrm{sec}$. at 253μ down to about $1.5 \mathrm{cra} / \mathrm{sec}$ 。 at 61μ, which sugeests that secondery fluid flow is not a significant factor.

It is probable that eecondary flow provides the main acency for remixing the solids in the region immediately downstrean of the helix, but this effect has already been considered.
(f) Separation of the boundary layer would lead to en increase in turbulence near the inner wall and a reduction in the axial or tangential velocity. The consequencos of over estimating V have already been discussed and.it was concluded that this could only be responsible for differences found with fine particles whose behaviour approachod lmmar conditions. However, the likelihood of boundary layer separation is difficult to assess even for a pure fluid, since it depends on the aspect ratio of the channel. (Section B.2.3). Vith appreciable concentrations of perticles present, it is at prescnt not possible to estimete whether sep:ration is likcly ot occur or how great an effect separation uight produce if it did take place.
(g) Substantial losses of meterial werc recorded during nost runs conducted using size fractions coarser than 200 nesh Bos. It was inferrod that the losses all occurred when the miaterial was initially placed in suspension, sinco no consistent reduction in the readings at any given position was recorded during the runs and sequential scans conducted on the sane samples showed little change. (Gection 1.4 .1 .4.) In any case a reduction in the anount of solids in suspension would lead to a lower valuc of C_{V} and hence an over estimate of the moasured value of U, so this effect cannot be held responsible for the observed effects.
(h) The lift force was discussed in jecti'n B.3.1.1. It was not telsen into account in the analysis which followed or in the equetion used to calculate the (theoretical) apperont termincl velocity. since the concentration
 the channcl wall, it is likely that a high radial velocity gradient existed within the fluid. The lift force created as a result of this would tend to increase the axiol velocity of the particle in question, as illustrated in Figure B.5.24(a), and this would lad in turn to an increase in the radial velocity of the particle. Neglect of the lift force in the calculated velues of U shown in Table B. 5.3 will, therefore, have led to under cstinates of U. \therefore is the differences recorded are in the cpposite sense, this cannot heve contributed to then.
(i) Calculntions of the apparent torminal velocitics for larinar or turbulent conditions assume that the corrosponding ideal types of fluid drag are operative. It is assuned in the derivation of these dree forces that any fluid flow or turbulcnce prescnt is associated entircly with the relative aotion betwecn particlcs and fluid. In the sizcr helix, however, the suspension is flowing exially at a high Reynolds number and must in consequence exhibit a considcrable anount of turbulence in addition to and independent of that generatud by the perticle motion. This inherent fluid turbulence must enhence the drag forces opposing particle notion, possibly, in the cose of fine particlus the.t would normelly be subject only to viscous dre.g, to the extent of preventing any effective radial motion. 'Enhanced' drag of this typc could well be a major cause of the low recordcd vclocities.

(a) Lift force on particles near the inner wall.

Wall
(b) Lift force on particles near the outer wall.
5.3.2 Concentration Variation Near the Outer Wall

The prrticlc concontrations risc above the feed concentration in the zone adjacent to the outer wall of the channel, so thet the assumption employed in the treetment of the zonc near the inner well - naicily that the perticlo redicl velocity u could be considered jndependent of C_{V} - becomes unteneble. Nlso, the tengential velocity V ney be expected to chenge noticeably with a (Figure B.2.3) in the region norr th. outer wall. since C_{V} and V are the factors which determine U, it is obvious that any realistic analysis of the bchaviour near the outer wall must take account of the fact that U will vary with C_{V} and V and, therefore, with r and a also.

For steady state conditions within the helix, the continuity equation which must be satisfied has been derived:

$$
\frac{\partial\left(r U C_{V}\right)}{\because r}+\frac{y\left(V C_{V}\right)}{O a}=0 \quad \ldots \quad(4.30)
$$

In order to attempt a formal solution of equation 4.30, the relationships between V, V, C_{V}, r and a must be known in full. This informetion is not available as yet, and, iin any crase, the nature of the functions is likely to be such that numerical methods of solution would be required。

The most urgent requirement for practicel purposes is some means of estimatine the particle velocities under the conditions doscribed above。 If it is accepted that the radial motion of particlos in a pure fluid environment $\left(C_{V}=0\right)$ is represented with sufficient accuracy by the apparent terminal velocity (iection 3.3 .2 .3), then the main ways in which this velocity is affected by particle
concontration are through interference effects (bection B3.1.2.c) and particle shearing forces (Section B. $4.1 .2 . d$). In combination, these factors are likely to result in marked reductions in the radial velocity of the particles in the zonc immediately adjacent to the outcr wall where both the concentration of perticles and the fluid velocity gradient are high. Over a restricted performance range, it socms reasoneble to suppose thet the oxpected beheviour could bc described by a simpler reletionship then would be apparent from examinetion of the individual equations. (3.18, 3.29, 4.15, 4.26).

For example, if the radial flux of perticles is considered to be constant in this region:

$$
\begin{equation*}
U C_{V}=F_{k}(\text { Constant } \quad \ldots \quad \ldots \quad \text { (5.10) } \tag{5.11}
\end{equation*}
$$

or $U=\frac{\varepsilon_{k}}{C_{V}} \quad \ldots \ldots$
Equation 5.11 implios that any inorease in C_{V} causus a direct and proportionate reduction in U. The form of this equation is such thet it can only hold over a limited rengo, since it implies thet U becomes infinitely large as C_{V} epproches zerc. Also it assumos that U is independent of V and varies only with r and a becouse C_{V} varies with thom. This lest assumption is not unreasonakla, however, since the cxamples of perticle motion calculated earlior (Section $B .3$) for the casc $V=$ constant showed that the dependence of U on r becomes much less maried for $r>2 c m$. (Figures B. 3. C, B.3.9.) In practice V is likoly to increasc with r (Figure B.2.3) and the verietion in U mey well be almost non-exiztant or even in the opposite sense to that shown.) The over-riding argument in this cose, however, is that other factors such as the 'interference' and 'Bagnold'
effocts are likely to control U to such an extent that the dependency of U on r and V is negligable ir comparison.

If the continuity oquation (4.30) is rederived on the besis thet the radial flux (ε_{r}) is constant (ioeo indepencient of r or a) it states

$$
\begin{equation*}
\frac{\partial \varepsilon_{a}}{\partial z}=\varepsilon_{r} \tag{5.12}
\end{equation*}
$$

On intogration and resubstitution for ε_{a} and ε_{r} equation 5.12 gives

$$
\begin{equation*}
U=\frac{1}{a}\left(V-V_{f} \cdot \frac{C_{V f}}{C_{V}}\right) \tag{5.13}
\end{equation*}
$$

The quantities $V_{f}, C_{V f}$, refor to the inlet and V, C_{V} to the outlet conditions in the helix.

To be acceptable, equation 5.13 must satisfy the corditions st., ted in equation $4.32,4.33$, i.e. $C_{V}=C_{V f}$ (constant for all r) at $a=0$, and $\varepsilon_{r}=0$ ot $r=2.5 \mathrm{cml}$. for all a_{0}. It meets the first but not the second of these conditions: ε_{r} cannot be zero at $r=2.5 \mathrm{~cm}$. as it has been defined as constent for all values of r. In prosent form, thorefore, vquation 5.13 would over estinate the radial velocity U ct any givon radius.

It is possible to doviso an apmoxinate model that will satisfy both conditions. The approach is based on dividing the region into two parts: one immodiately adjacont to the channel wall which acts as a rescrvoir and in which the concoatration of particlus is considored to be constant and on innor part, in which the motion of the particlus is governed by the constant flux behaviour already describcdo The trensfer of particlus from the constant flux recion into the wall rescrvoir is considerud to take plece at ε
velocity dictated by the constant flux oc,ution and the concentration within the reservoir. This model is illustrated in Figure E .5 .25 .

Consider the flux of particles entering and leaving the reservoir:

Let $\varepsilon^{\prime}{ }_{r}=$ Redial flux of particles crossing shaded interface along radius at a_{0} ($E^{\prime}{ }_{r}=U C_{V}{ }^{\prime}$, independent of r and a).

$$
\begin{aligned}
& C_{V}^{\prime}{ }^{\prime}=\text { Concentration within reservoir alone radius } \\
& \text { at a. } \\
& V^{\prime}=\text { Tangential velocity within reservoir, assumed } \\
& \text { independent of } r \text { in this region . (i. } \in \cdot V^{\prime} \text { is a } \\
& \text { function of a only. This assumption is not unreason- } \\
& \text { able, as the tangential component of the Eegnold } \\
& \text { sheer force rust tend to reduce the velocity gradient } \\
& \text { (} \frac{\grave{V} V}{u r} \text {) in this region) } \\
& \Xi_{\alpha}^{\prime}=\text { Tangential flux of particles entering reservoir } \\
& \left(\varepsilon_{a}^{\prime}=V^{\prime} C_{V} \text {, a function of } \alpha\right. \text {). }
\end{aligned}
$$

For steady state conditions within the reservoir:

$$
\varepsilon_{r}^{\prime} r_{1} \delta_{a}+\varepsilon_{a}^{\prime}\left(r_{2}-r_{1}\right)=\left(\varepsilon_{a}^{\prime}+\delta \varepsilon_{a}^{\prime}\right)\left(r_{2}-r_{1}\right)
$$

$$
\therefore\left(\frac{r_{1}}{r_{2}-r_{I}}\right) \varepsilon_{r}^{\prime}=\frac{\delta \varepsilon_{1}^{\prime}}{\delta a}
$$

Tailing limits as $\delta x \rightarrow 0$

$$
\begin{equation*}
\frac{d E_{a}^{\prime}}{d a}=\left(\frac{r_{1}}{r_{2}-r_{I}}\right) \varepsilon_{r}^{\prime} \quad \ldots \quad \ldots \ldots \tag{5.14}
\end{equation*}
$$

Integrating between 0 and a and substituting for $\varepsilon^{\prime}{ }_{x}$, E_{r}^{\prime} :

FIGURE B. 2.2E: Approximate model for resion near o:ter wall.

$$
\begin{align*}
& V^{\prime} C_{V}^{\prime} \\
& -V_{f}^{\prime} C_{V f}=\left(\frac{r_{1}}{r_{2}-r_{l}}\right) a U C_{V^{\prime}}^{\prime} \tag{5.15}\\
\therefore \quad & U=\frac{r_{2}{ }^{-r_{1}}}{r_{1}}\left(V^{\prime}-V_{f}^{\prime} \frac{C_{V f}}{C_{V}}\right)
\end{align*}
$$

Equation 5.15 is similer in forll to equation 5.13, but can be mede to satisfy both the required conditions.

It was assumed in doriving the medel that ${\underset{r}{r}}=0$ e.t r_{2}, which satisfies one condition. Rearranging 5.15 in the form

$$
\begin{equation*}
C_{V}^{\prime}=C_{V f^{\prime}}\left[\frac{V_{f}^{\prime}}{V^{\prime}-\frac{V r_{1} a}{r_{2}-r_{1}}}\right] \cdots \cdots \tag{5.16}
\end{equation*}
$$

and putting $V^{\prime}=V_{f}^{\prime}$ at $x=0$ gives $C_{V}{ }^{\prime}=C_{V f}$, which is the othor required condition.

The calibration measurcmants wero mede at a position corrosponding to $r=2.4 \mathrm{~cm}$., so the velocity $\mathrm{U}_{2.4}$ will bo cilculatcd from equetion 5.15 by putting $r_{I}=2.4 \mathrm{~cm}$, $r_{2}=2.5 \mathrm{~cm}$. The exact mannor in which V^{\prime} is likely to change with a is not lrnown, but if the behaviour observcd to hold with pure fluids (Figure B.2.3) is used as a guidc, it appears tho. V^{\prime} will initially ($a=0$) be less than \bar{V} by a factor of, say, $0.7-0.8$ and will increase progressively as the susponsion passcs through the helix, reading perhaps l.l - I. $2 \bar{V}$ if fully devcloped curved flow is attained. Thase values relate to the behaviour at the micisection of the channel, however, and when the velocity profile is averaged over the full depth of the channel (Section 4.3.1) they are likely to be roduced somewhat. In any case, it seems improbable thet fully developed curved flow is re: ched
under the consitions employcd in the present helix. In view of those considerations, it is assuned thot V ' will chongo from $0.7 \bar{V}$ at $x=0$ to \bar{V}-t $x=2 \pi$. If the suspension is considered to eccolerate \therefore a constent rate of $\mathrm{v} \mathrm{cm} / \mathrm{suc} / \mathrm{d}$ rod., then V^{\prime} mry bo expressed es

$$
V^{\prime}=V_{f}^{\prime}+v_{a}
$$

when $V_{f}^{\prime}=0.7 \times 200=140 \mathrm{~cm} / \mathrm{sec}, \quad v=\frac{000}{2 \pi}=9.55 \mathrm{~cm} / \mathrm{sec} / \mathrm{rad}$.
Alternetivily, the tre tnent usec when considering the Bagnold shocr forces (Section B.4.l.2.d) could be adoptid: nainely, to essume that the tangential component of the shoar force will minimise the alterations in the sxiol velocity profile thot would otherwise be expected, so thrt V^{\prime} mity be considered independent of a. fowever, equation 5.17 is thought to roprosent a more racistic appronch.

Combining equantions 5.15 and 5.17 givis

$$
\begin{equation*}
U_{2.4}=1.13-0.93 \frac{C_{V_{I}}}{C_{V}} \ldots \ldots \tag{5.18}
\end{equation*}
$$

The volucs of $\mathrm{C}_{\mathrm{V}_{2}^{\prime}, 4}$ corresponcing to $\mathrm{C}_{\mathrm{Vf}}=0.085$ hive been interpoli.ted from Figure B. 5.23 and ueed with equetion 5.18 to calculste U. These results have been compared with the apperent timminal velocitics, calculi ted as before by the mothoc of Heywood ${ }^{l l}$ using, in this cosc, a mes.n velue for V^{\prime} of $0.85 \ddot{\mathrm{~V}}=1,0 \mathrm{~cm} / \mathrm{suc}$. end a correction for interfercnce effects bused on the interpoletud values of $\mathrm{C}_{\mathrm{V}_{2.4}}$. Thu results are given in Table E.5.4 (overlerf)

TEBLE B. 5.4			
Rediel Velocities of Size Fractions ofglass Sphores at r=2.4cm.			
$\mathrm{iSLS}^{\text {S }}$	FR'CiPLCN	CaLCulated $\mathrm{U}_{\text {TER }}$	'HESSURD' U
Boboricsh	Mean Aperture (1)	(cno/sec.)	(cre./sec)
$-52+72$	253	4.8	1.03
$-72+100$	181	4.0	0.97
$-100+150$	129	3.7	0.85
$-150+200$	89	2.7	0.64
$-200+325$	61	1.7	0.45

The nessured valocities obtained from the two zone constont-fluk moccl arc all substantinlly lown tran the appercent terainal velocities, though the proportional vari:tion fron size to size is nlmost the sanic for both sets of figures. Fossible rensons for the differences are listed below and then discussed at greater lengthe Factors alrcady considered in detail when analysing the results for the zone near the inner wall are only included in sumnery forn.
(a) Use of the arithmetic moan size in colculctions;
(b) Usc of the apperent terminal velocity in calculations;
(c) Incorrect essumptions regraing the asial velocity profile;
(d) Degeneration of the concentration profile;
(e) Reduction of the mensured velocities by secondery fluid flows;
(f) Inaccurate concentration measurements due to solids sotting out during the test runs;
(g) Lift forcos or 'Magnus' effects;
(h) Inadequacy of the 'twomzone flux' model as a representation of the intorferenco and shearing force retardations.
(a) The use of the erithmetic mean size wes shown earlier to have a negligible effect on the colculations.
(b) The apparent torminal velocity was previcusly shown to be an overestimate of the nctual velocity, since anong othor things, it failcd to toke into account the period during which the particles are undergoing initial accleration, and noglectod the turbulence present in the fluid due to it's exial flow behaviour. These argunents are still relevant, but it is possible that the moderate to high concentrations of perticles present ncar the outer wall (particularly with the coarser sizes) tend to nodify the fluid behi.viour either by enhancing or diminishing the turbulonce. A recuction in the overall turbulonce seems the likelier alternetive so - on these grounds elone - it might eppecr that the apparent termincl vclocity represents a better estimate of the sctual velocities achieved by the coorscr perticles near the outcr wrll then it did for the sane pryicles nour the inner wall. fowever this efrect is likely to be smali in comprisor with that crising from the vein dyewbeck of the roparent twrune.l velocity nodelnemely that it completely noglects the Begnold effect. The Erefncld effect cxerts an influence on the radial motion of the porticlis in two ways: first, the redial component of the sherring force scts in dircct opposition to the force tending to accelcrate the particlos and second, the tingential component of the shearing force must modify the axial velocity profile of the suspension which, in turn, will affect the accelaretive force acting on the prrticles. The latter effect is considered in more detail in the next
section, but it seans likely that the greater part of the differences found in Toble B. 5.4 is due to the inadequacy of the apparent terminal velocity model in failing to take the radial component of the Bagnold shear force into acocunt.
(c) It wes shown in the earlier discussion of the values assumed for V that overestimetes of V could lead to values of the apparent terminal velocity that werc too large for the finer sizes, but that there should be little or no difference at the coorse sizes. ns consistent relative differences were found at all sizes, incorrect assumed values for V'cannot be held responsible for these, although the absolute values of both the calculatod and moasured particle velocitics could well be in error.

The probable axial behaviour of tine suspension was deduced by analogy with the date avoilable for pure fluids. Unfortunately, as mentioned in Section (b) above, this approach does not mike any overall allownce for the tangential component of the Bagnold shearing force, although one consequence of the forct is allowed for in the definition of V^{\prime}. It has already been shown (nection 4.1.2d) that the 'inertial' type of shearing force is more likely to occur with the high radial velocity gradients existing within the sizer helix. The shearing stress ($\bar{\tau}$) between adjecont layors of pirticles in the suspension mey therefore be obtained from equation 4.23 i.e.

$$
p=0.042 \operatorname{Cos} \alpha D^{2} \lambda^{2}\left(\frac{d V}{d r}\right)^{2} \quad \ldots \quad \ldots . \quad \ldots
$$

The relationship between $p, \bar{\tau}$ and the angle of the resultant (a) is given by

$$
\frac{\bar{T}}{p}=\begin{array}{ccccc}
\operatorname{Ton} a & \ldots & \cdots & \ldots & \ldots \tag{5.19}
\end{array}
$$

Combining 4.23, 5.19 gives

$$
\begin{equation*}
\bar{\tau}=0.042 \sin \alpha D^{2} \lambda^{2}\left(\frac{d V}{d r}\right)^{2} \tag{5.2e}
\end{equation*}
$$

For spherical particles, Begncld found an average value of $\tan \alpha=0.32$, or $\alpha=17.7^{\circ}$. Substituting this average value in equation 5.20 gives

$$
\begin{equation*}
\bar{\tau}=0.0128 D^{2} \lambda^{2}\left(\frac{d V}{d r}\right)^{2} \tag{5.21}
\end{equation*}
$$

The 'lincar particle concentration' (λ) may be related to the more fanilicr volume concentration of particles $\left(\mathrm{C}_{\mathrm{V}}\right)$ by means of the exprossion

$$
\begin{equation*}
c_{v}=\frac{\pi}{6}\left(\frac{\lambda}{1+\lambda}\right)^{3} \quad \ldots \quad \ldots \quad \ldots \tag{5.22}
\end{equation*}
$$

The stress given in equation 5.21 nay be compared with the viscous stress generated in water clone with the seme velocity gradient i.e.

$$
\begin{equation*}
\tau_{\mathrm{H}_{2} \mathrm{O}}=n \cdot \frac{\mathrm{dV}}{\mathrm{dr}} \tag{5.23}
\end{equation*}
$$

Tho ratio $\bar{\tau} / \tau_{H_{2} O}$ has been calcul-ted for all five size fractions over a range of volume concentrations, taking $\frac{d V}{d r}=500 \mathrm{sec} .^{-1}$ and $n=10^{-2}$ poise. The results are presented. in Figure B.5.26. It is apparent thet for the conditions assumed, the inertial shenr stross can risc to nearly six tincs the equivalent pure fluid shear stress for the coarsest size fraction, with proportionetcly smallor increases for the finer size fractions.

The concentrations rocorded at an equivalent radius of motion $r=2.40 \mathrm{~cm}$. with $C_{V_{f}}=0.085$ were extractcd from Figure B. 5.23 and used carlier in the compilation of Table B.5.4. These sanc values may be used to estiante the
$-1 ; 0-$

magnitude of the ratic $\bar{\tau} / \tau_{\mathrm{H}_{2} \mathrm{O}}$ from Figure B.5.26. The results are given in Trable B.5.5.

Th.BLE B. 5.5

SIzE FRACTION		$\begin{aligned} & C_{V_{2} .4} H_{E E_{1} S U R E D} \\ & \text { FOR } C_{V f}=0.085 \end{aligned}$	$\begin{gathered} \text { STRESS RITIO } \\ \bar{\tau} / \tau_{\mathrm{H}_{2}} \end{gathered}$
B.S. Mesh	Mean Aperture		
$-52+72$	253	0.263	5.90
$-72+100$	181	0.219	1.90
$-100+150$	129	0.162	0.45
$-150+200$	89	0.114	0.10
$-200+325$	61	0.090	0.04

The increased shenring stress prescnt rust rosult in an ovorall reduction in the :xial velocity of the suspension throughout the region near the outer wall. Peasuronents of the ipperent visccsity of suspensions of $-200+325$ mesh glass spheres $(\sigma=2.36)$ mace by Clarke ${ }^{22}$ with a modified Ferranti viscometor showed that, at a shear rate of $328 \mathrm{sec}^{-1}$, the epprrent viscosity of the suspensions incressed rt far higher rate then would be expected from consideration of the Bagnold effect aIone. In this work, however, the perticles in contect with the outer cylindrical wall of the viscometer were prevented from moving relative to the wall by a system of vertical chennels cut into the surface, wherens no such slip-limiting device was enployed by Bagnoldl?.

Since the radial accelerative force acting on the
particles is a function of the axial vilocity, the radial velocities of all sizes of particles must also be reduced. This reduction will be very sinall for the finest size fraction, but could be quite large for the coarsest size fraction. For this rcason, the valucs of V^{\prime} used in the calculations probably represent over-estimatcs of the actucl velocities, the degree of over-estimation increasing with particle size。
(d) The nost likely consequence of degeneration of the concentration profile due to remixing downstreem of the helix would be the transfer of some of the high coneentration material from the outer wall back towards the centre of the channcl. This effect was discussed previously in connection with the behaviour near the inner wall of the channel, where it was conclucded that as much as 10 , of the concentration differonco created within the helix might be lost by romixing. If a correction of $+10^{\prime}$ is appliud to the values of $\mathrm{C}_{V_{2.4}}$ used in Table B.5.4, the new valucs of the measured radial velocity (${ }^{\text {CORR }}$) are given by

$$
\begin{equation*}
\mathrm{U}_{\mathrm{CORR}}=\mathrm{U}+\frac{0.0081}{\mathrm{C}_{\mathrm{V}_{2.4}}} \tag{5.24}
\end{equation*}
$$

Equation 5.24 results in corrections to the measured velocities for the five size fractions 61, $89,129,181,253 \mu$ of $+0.09,+0.07,+0.05,+0.04,+0.03 \mathrm{~cm} . / s e c$. These corrections are so small in relation to the existing differences that degencration of the concentration profile is obviously not a significant factor.
(e) Secondary fluid flow cffects were discussed previously in sections 4.1.2.c, 5.3.1.e. It was concluded thet secondary
flow might heve interfered with the radial motion of the finer sizes in the region near the innor wall, as these perticles displayed proportionately smallur volocities compared with the apparent terminal velocitics.

In the prosent instance, the neasured volocities represent an almost constant fraction of the apparent terminal velocities anc as the coarser sizcs should be little affectod by soconcary flow in any casc, it secms unlikely the:t this car be a major contributory fector. This conclusion does not preclude the existance of secondary fluid flow or the possibility of it having an effect in the region near the inner well, however, since the rolativoly high concuntratin ns of particles near the outer wall may well interfere with the sccondary flow itself - possibly to the extent of causing it to recycle at a smaller radius of motion than would otherwisc be the crse.
(f) IIthough losses of moteriel due to settling out during the test runs could ceusc artificially low neasurce. velocitics in the region near the outer wall this is not considered to bo r. likely explenation, for the reesons outlined earlier. (nection 5.3.1.g)
(g) The lift force was discusscd orginally in Section 3.1.1 and alsc in relation to the behevicur near the inncr well. (Section 5.3.1.h). The anticipetci dircction of the lift force in the region near the outcr wall is illustrated in Figure $\operatorname{Br} .5 .24 . b$. It can be sean thet the force will act in a manner colculatud to decrease the axial velocity of the particle and,hence, its radial velocity. Since the necsurel radial velocities ere in fact too high, the lift
force could well have contributec to this effect.
(h) The constant flux model is intonded to take account of two types of retardation: the so-called interference' effects (Soction 3.1.2.c) end the 'incrtial' shoaring force (Scetion 4.1.2.d). If any rolative motion bctweon particlus and fluid in the tangintial diruction is ifnored, the Equation describine the inturference effects may be written as

$$
\mathrm{U}=\mathrm{U}_{\mathrm{T}}\left(1-\mathrm{C}_{\mathrm{V}}\right)^{\mathrm{Q}_{\mathrm{i}}} \quad \ldots \quad \ldots \quad \ldots \quad \text { (5.25) }
$$

in which the exponent \therefore is a function of the Reynoles inumber for the particle。 The 'inertial' sharing force was colculated in Table 3.4 .2 as a propertion of the accelcrative force for perticle sizes corresponding to the limiting conditions for laminer and turbulent notion. The equivalent chengee in the apparont terrinel velocitios may be calculated from this date by making uee of equations $3.20,3.29$ (putting $\frac{d^{2} r}{d t^{2}}$ and θ oqual to 0 in osch cosco).

If the reductions in porticle velocity causcd by thuse two factors are considurca to be additive in effect, the total reduction calculated from uquition 4.53 and the date in Table B. 4.2 may be cnmpered with thet predicted by the c nstint flux model, which sugessted

$$
\begin{equation*}
\mathrm{U}=E_{\mathrm{k}} \cdot \mathrm{C}_{\mathrm{V}}^{-1} \tag{5.11}
\end{equation*}
$$

Taking $U=1$ a.t $C_{V}=0.10$, this conparison has been mide for the limiting sizes for lominer (45: end turbulert (235μ) motion. The rusults eri given in Table B.5.6. (ijee overleaf)。

Tisili B ${ }^{\text {a }}$.6.							
Comperison between 'Incrial and Intorforince' velocity ruduction and that predicted by Constant Flux Model							
VOLURE $\mathrm{COHC}^{\mathrm{N}}$ C_{V}	$\begin{gathered} \text { CONGTLI } \\ \text { FLUX } \\ \text { VELOCITY } \end{gathered}$				TUREULiHIT MCTICIT (235μ)		
		$\left\{\begin{array}{l} \text { Iner } \\ \text { tial } \\ \text { Redn } \\ (\% \end{array}\right.$	Interfir. Redn. (\%)	$\left\{\begin{array}{c} \text { net } \\ \text { velocity } \\ \text { U } \end{array}\right.$	Incr- tial Redn. (\ddots^{\prime})	$\begin{aligned} & \text { Inter- } \\ & \text { fer. } \\ & \text { Redn. } \\ & (\because) \end{aligned}$	$\begin{gathered} \text { ivet } \\ \text { Velocity } \\ u \end{gathered}$
c. 100	1	0	0	1	0	0	1
0.125	0.80	2	10	0.88	6	5	- 0.89
0.150	0.67	4	21	0.75	14	11	0.75
0.175	0.57	6	32	0.62	26	18	0.56
0.200	0.50	10	40	0.50	45	23	0.32

On the basis of thesi estirantes, it would appenr that the constant flux inodel provides a riesonable approxination to the beheviour ixpected fron particiss oxhibitine laniner or ncar-laminar motion (i.ce matorial < 200 mesh) over tho concentration range $C_{V}=0.10$ to $C_{V}=0.20$ and for particles exhibiting turbulcnt or ncer-turbulent notion (i.e. maturial > 235μ) over the conccntration range $C_{V}=0.10$ to $C_{V}=0.175$. For turbulent motion, the reductirn in velocity causua by the incrtial shear force incruases so rapidly when $C_{V}>0.175$ that the constant flux model is no longer applicable.

Iith this exception the constant fiux nodel eppears to give an adoquate fit at the two extremes of the transitional reginc of particle motion and it follows that it should give as good or noarly a g good a fit within the
transitional regime itself, since the inertial and interference reductions vary to a large extent in a manner that is compensatory.

The above discussion is necessarily tentative, since most of the calculations deiend largely on the values assuned for the axial velocity aird velocity eradient, end these are obtained by analogy fron pure fluid behaviour without making any allowance for the effect of particles present. (bection 5.3.2.c)

In brief, it seens reasonable to consider the constant flux model adequate for all conditions except those involving higl concentrations of large particles. In the latter case, the constant flux ovorestimates the measured velocity by making insufficient allowance for the inerticl shearing force. However, as all the differences recorded in Table B. 5.4 show meesured velocities which are low, the errors introduced by using the constant flux model are clearly small compered with other effects within the system.

5.3.3 Summery and Conclusions

The motion ef particle populations in the $r \in g i o n s$ adjacent to the wells of the sizer helix has been analysed in terns of simple models derived from the continuity equation given in Section 4.3. Fear the inner will the experimental evidence indicated thet C_{V} was independent of r, and U wos considered to be independent of x and C_{V} ioe. a function only of r. The axial velocity distribution was cunsidered indopendent of x and treatod as a linear function of r, these assumptions being brsed on the evicence available for pure fluids. The continuity equetion wes solved for these conditions, the form of the solution being
such that the radial velocity of the perticlis at a given radius of motion (l.lc.m.) could be calculated fron a knowledge of the initial and final volume concentration of particles recorded at that radius. The 'measured' velocitios calculeted in this way were all considerably sinaller than the apparent terminal velocities obtained using Heywoode method, ranging from about 40% of the terminal velocity $\therefore \dot{t} 253 \mu$ down to 49^{\prime} at 61μ. It seens probable that the epparent terminel velocity is mainly in error, since it assumes thet particles cen undereo ideal types of drag when moving radially in a fluid undergoing turbulent axial flow and, also, neglocts the initial acceloretion of the perticles and the consequences of boundary leyer separation, secondery fluid flow and lift forces. The extent to which tharc incividuel effects are responsible for the overall discrepancy is at present a metter of conjectire, but it seeras unlikely thet secondery fluid flow pleys a mejur rule.

In the region near the outer wall of the helix, the notion of the particles is Eoverned to a laree extent by interference effects and Bagnold shearine forces. i. constant flux model was proposed to describe this behaviour, but in order to setisfy the boundary conditions it was nccessary to modify the medel by dividing the region into two purts: one adjoining the wall which acts as a reservoir and an inncy part feeding the reservoir with n constant flux of pirticles. The concentration and tangential velocity of the picticles in the reservoir were considered to be indepencent of the radius and the tangential velocity was treated as a linear function of a. i. new continuity equation was derived and solved for these conditions, mekine use of tho initial and final volune concentrations of perticles recorded
a.t $r=2.4 \mathrm{~cm}$. as the 'reservoir' concentrations and estimating the tangential velocities from the evidence available for pure fluids. These calculations provided 'measured' values of U corresponding to the final particle concentrations recorded e.t $r=2.4 \mathrm{~cm}$. end the figures were compared with the apparent terminal velocities obtained using Heywoods method and a mean value for the tengential velocity. In all cases the 'measured' values were lower, amounting to some 20 - 25% of the apparent terminal velocities. Most of the differences must be due to the fnilure of the apparent terminal velocity model in not taking the radial component of the Bagnold shear force into account. Both the measured and terminal velocities quoted are probably inaccurate, since the assumed values of the tangential velocity could be in error by a significant amount due to the effects of the tandential component of the Bognold forces.

Neither of the proposed models cen be mede to setisfy all the requirements set out in equations 4.32-4.34, since each model is only valid for a given set of conditions that appears to hold for a p-rticuler region.

5.4 Celibrations for Glass Spheres

The calibration technique evolved previously for ground quertz (section $\therefore .4 .1 .6$) wes ontirely empirical in origin and wes only suitable for samples whose size distributions could be described in terms of Gaudin - Schuhmann functions. ${ }^{4}$ a further disadvantage wes that two readings hed to be telken for ecch sample, the calibration plot being besed on the difference between the readings. (Figure A.4.10).

The results obtained with size distributions of glass spheres can be presented in the same way (Figure B.5.27),

FIGURE B.5.27: Size distribution calibration for Mark 7 cell.
though the correlation is not as good es thet obtained with ground quartz. (Figure $\therefore .4 .10$). This type of calibre.tion is limited in scope and it seemed desirable to develop a more general method based, if possible, on onc rather then two readines. Jith this objective in vicw, the mersurements made norr the inner and outer walls of the helix were considered scperately.
5.4.1 Calibrations bssed on Messurementsmede at $r=1.1 \mathrm{cn}$.

The analysis conducted earlicr showed thet the velocities of individual size fractions could be related to the measured perticle concentrations in a simple menner. (Equetion 5.5). Mcking reasonable assumptions cbout the cxicl velocity profile, the equetions reduced to give

$$
\begin{equation*}
U_{I . I} \simeq 2.5 \ln \left(\frac{C_{V f}}{C_{V}}\right) \quad \ldots \quad \ldots \tag{5.5}
\end{equation*}
$$

Fron equations 5.4 and 5.5 the velccity of single size fractions ($U_{1} . l_{\text {}}$) is directly proportional to the logarithm of the ratio $\left(\frac{C_{V f}}{C_{V}}\right)$, so this quantity may be used
c.s a direct representetion of the velocity. If the logarithm (to besc 10) of the ratio $\left(\frac{C_{V f}}{C_{\nabla}}\right)$ is plotted against the
(arithmetic mocn) perticle size (D) for single size froctions, the result is a straight line (Figure B. 5.28 , circled points), giving the relationship

$$
\begin{equation*}
\frac{C_{V f}}{C_{V}}=0.571 \times 10^{0.00405 D} \quad \ldots \ldots \tag{5.26}
\end{equation*}
$$

If this result is combined with equetion 5.5 , the
velocity of the particles is given by

$$
\left.U_{1.1}=0.0233 D-1.4 \quad \ldots \quad \ldots \quad \text {.... } 5.27\right)
$$

When the concentration is measured for a mixture of sizo frections or e size distribution, the volue obtained is an avcrage one and it may be related to an average size. Since no interaction was found between perticles of the same or of different size (Figure B.5.22, Tables B.5.1, F.5.2), the total concentration obteined with a mixture of particles of different sizes con bo computed by suming the portial concentration contributed by ench size eccording to equr.tion 5.26.

Denoting the weight proportion of size D by the symbol F , the total observed concentration is given by

$$
\begin{equation*}
\frac{C_{V f}}{C_{V}}=\Sigma\left(1.0 .571 \times 10^{0.00405 D}\right) \tag{5.28}
\end{equation*}
$$

If the total obscrved concentration is to be plotted against a mean size, tho mean must bo calculated fram equation 5.28. Deroting this mean by $\stackrel{V^{-}}{D}$:

$$
\begin{align*}
& 0.571 \times 10^{0.00405 \mathrm{D}}=\Sigma\left(\mathrm{ii} 0.571 \times 10^{0.00405 \mathrm{D}}\right) \\
& \stackrel{D}{\mathrm{D}}=\frac{\log [\Sigma \mathrm{E}+\mathrm{ntilog}(0.00405 \mathrm{D})]}{0.00405} \ldots \ldots \tag{5.29}
\end{align*}
$$

The mean size defined by equation 5.29 hes been calculated for all samples thet contained more then one size fraction. The recsured concentrotions heve been plotted against this meen size or: the some graph as that employed for single size frictions. (Figure b.5.28). Slightly nore of the points fall below the original line than foll above it, but the agrocment is Gencraly good and confirms the cpplicability of equetions $5.26,5.29$ and the ecrlier conclusions regarding the lrak of interection botween perticles in this region.

$$
\text { FIGURE B. } 5.28: \text { Mean size calibration No. } 1
$$ Inner zone, $r=1.1 \mathrm{~cm}$.

The mean size defined in equation 5.29 is unusual in forin and does not lend itself to colculation by integratinn in the case of the Gaudin-Schuhamn or any other convonient size distribution function. However, the form of this aean, which is the logrithn of the sum of weighted antilogarithins, sugeested thet the coometric mean (the antilogerithin of the sum of woighted logarithne) might provice \therefore useful approximetion. The poometric men, besides being more frailinr, can be colcul-ted without difficulty for nost size distribution functions. Denoting the geonetric nean by \hat{D}, anc using the sare symbols is before:

The geometric mean sizes have been colculated for all the mixed side fraction and size distribution samples used in the testwork. To illustrate the correlation betweon the two mean sizes defined by equations 5.29 , 5.30 , they heve been plotted against each other in Figure B.5.29. It con be seen that the correlation is extromely good for all samples up to a mean size of 135μ, end for cosrsor samples only one point diverees fron the line by more than sout low. In view of this generally goocl agrement, the use of the Eeometric men size (\hat{D}) in place of the mean defined by equation 5.29 should lead to an anost identical colibration, with a slightly greater scotter and possibly more of a bias towards the cosraer sizes, since in all cases $\hat{D} \geq \hat{L}$.

The data used in obtaining Figurc 3.5 .28 have been replotted against the geometric nern size in Figure B.5.30. The scatter is greater, as anticipatca, but a moan calibration Iine con be drawn which will give the geonetric meen size, corresponding to a given concentration measurement, to within $\pm 10 \mu$ for $D<100 \mu$ and $\pm 20 \mu$ for $\mathrm{J}>100 \mu$. These

FIGURE B. 5.29: Correlation between mean sizes \hat{D} and \hat{D}

FIGURE B. 5. 30: Mean size calibration No. 2 Inner zone, $r=1.1 \mathrm{~cm}$.
linits ere considorably smaller than the normal sieve eperture specings and should be quite satisfactory for the control of most size reduction processes.

The calibration equation is thercfore given by

$$
\begin{equation*}
\frac{C_{V f}}{C_{V}}=0.571 \times 10^{0.00405 \hat{D}} \tag{5.31}
\end{equation*}
$$

Since no intoraction was found betwoen pirticles, C_{V} increases linearly with $C_{V f}$ and equation 5.31 is, therefore, valid for foed concentrations ranging from $C_{V f}=0$ to $G_{V f} \simeq 0.10$.
5.4.2 Calibrations bescd on Nee.surements made at $r=2.4 \mathrm{~cm}$. The model developed for the outer recion suggested a simple rclutionship between the concentration of tho proticles and their vilocity. (Equetion 5.15). Making reasoncble assumptions concerning the behaviour of the rxial velocity profile, the equation reduced to give

$$
\begin{equation*}
\mathrm{U}_{2.4}=1.13-0.93 \frac{C_{V f}}{C_{V}} \quad \ldots . \quad \ldots \tag{5.18}
\end{equation*}
$$

The velocity of the particles is thercfore lincarly rolated to the rotio $\frac{C_{V f}}{C_{V}}$. If this quantity is crlculated for $C_{V f}=0.085$ and plotted against the size (D) for single size fractions, each to a lognrithmic scalc, the points fall approximately on ε straight line. (Figure B.5.31, circlad points). The equation of this straicht line is

$$
\frac{C_{V f}}{C_{V}^{1}}=\frac{29.5}{D^{0.834}} \quad \ldots \quad \ldots
$$

Combining equations 5.18 and 5.32 gives the velocity in terms of particle size:

$$
\begin{gather*}
-207- \\
U_{2.4}=1.13-\frac{27.4}{D^{0.834}} \quad \ldots \quad \ldots \tag{5.33}
\end{gather*}
$$

The concentrations recorded fer mixtures of size frections or size distributions are aver-ge volues, and they may be relcted to ziverage sizes. Unfortunately, although no interceticn wes found between different sizes of perticle in the outer region, e cortein amount of self intersction was found e.t the coarser sizes. (Figures E.5.23) This self interiction crected a non-linear relationship between C_{V}^{\prime} and $C_{V f}$, such that a two-fold increase in $C_{V f}$ produced a less than two fold increase in C_{V} '。 Strictly speaking, this non-linearity neans thet the total concentrotion obtaincd with $:$ mixture of size fractions cannot be accurately computed by summing the psrtial concentretions contributed by individual sizes according to eque.tion 5.32 , because this equetion is only volid at one concentration ($C_{V f}=0.085$) and, when $a_{i p l i e d ~ p r o ~ r a t e ~ t o ~ l o w e r ~ v a l u e s ~ o f ~}^{C_{V f}}$, it undercstimetes the total villue of C_{V} by a sienificmit amount.

The mean size against which the total concentration should be plutted riry be criculated from equation 5.32. Denoting this mean by (B), it follows thret

$$
\begin{equation*}
\mathrm{D}=\left(2 \mathrm{ND}^{0.834}\right)^{\frac{1}{0.834}} \tag{5.34}
\end{equation*}
$$

The correlstion betwecn 8 and the concentrition cricule.ted by summation of equation 5.32 (ignoring the nonlinearity) is also illustroted in Figuro B.5.3]. It is spparent thet more points foll below the originel line then above it, \therefore tendency coused by the non-linecrity discussed above. The correlation is not bad and could provide the basis for a calibration, were it not for the unfamiliar form of the mon definer by equation 5.34 and the difficulties

FIGURE B.5.31: Mean size calibration No. 3
Outer zone, $r=2.4 \mathrm{~cm}$.
associated with mecessary calculations. However, trial celculetions revealed the.t the latter mean differed very little from the arithmetic-weight mean (\bar{D}) which in dofined e.s

$$
\begin{equation*}
\bar{D}=\Sigma \operatorname{liD} \quad \ldots \quad \cdots \quad \cdots \quad \cdots \tag{5.35}
\end{equation*}
$$

The two mean sizes heve been compared in Figure 3.5 .32 for all the mixed sizo fraction and size distribution samples used in the testwork. The agrecmunt is good, the arithnetic-weight being in all cases the larger, but never cxceeding $\stackrel{\circ}{\mathrm{D}}$ by more than 5μ.

The dato used in constructing Figure B. 5.31 have been replotted against the arithetic-weight mean in Figure B.5.33. It is apparent thet the arighmetic-weight mean gives a better fit, as the scotter is reduced and the points Sre distributed nore or loss equelly about the line. The explanation for this rathor unexpected result lies in the fact thrt the arithmetic - weight mean consistently ovorestimatss tho man sizo colculatod from equation 5.34 and therefore, when substituted in equetion 5.32 it tends to compensate for the non-lincir relstionship between C_{V} ' and C_{Vf} 。

The colibretion line in Figure 5.5 .33 may bo used to deteraine the rrithmetic weight mean to within $\pm 5 \mu$ for $\overline{\mathrm{D}}$ $<100 \mu$ and $\pm 20 \mu$ for $100<D<200 \mu$. Gove 200μ the scatter of the printe is such thet $\overline{\mathrm{D}}$ may lic within $\pm 30 \mu$ of the line. These limits ire comparable with those found for the inner zone colibrotion。

The calibration equation is its final form becones:

$$
\begin{equation*}
\frac{C_{V f}}{C_{V}}=\frac{29.5}{(\bar{E}) 0.834} \quad \cdots \quad \ldots \ldots \tag{5.36}
\end{equation*}
$$

FIGURE B. 5. 32: Correlation between mean sizes \bar{D} and $\stackrel{\circ}{D}$

FIGURE B. 5.33: Mean size calibration No. 4 Outer zone, $r=2.4 \mathrm{~cm}$.

1. Ithough a substantial degree of intcraction between particles wes found at higher fecd densities, this effect is compenscted by using the arithnetic-weight mean size, e.s expleined above. Equation $5.36 \mathrm{~m} y$ y be considered valid, therefore, over the range $C_{V f}=0$ to $C_{V f}=0.10$ 。

5.4.3 Comprison between Old and New Colibration Srstems

The neasurements conducted on size distributions of glass spheics may be used to obtain on empirical calibration of the type developed origincily for ground qunrtz, as has alrcady bean dononstr:tec in Figure B.5.27. The sopari.te calibrations developed for each nessuring position are preferable to the earlier calibration because, in zddition to heving a more fundanental basis, they can clso be applied to any kind of iderl or non-ideal sizc distribution. However, it is interesting to compore the difforent colibraticn techniques with $=$ view to deterrining the extent to which they agree with one another.

The ecrlier empirical calibration, which was baced on the difference between the wall zone readings, connot bo brokon down to give individuel calibretions for onch zoné However, the individucl colibretions con be uscd to prodict the differcace resding ($\Delta \sim$) for ench of the twolvo GrudinSchuhmenn distributions that were test.d. These values of ΔS ney thon be plotted rgainst log $\mathrm{H}(\mathrm{k}-\mathrm{O})$ and, if the calibration systons are equivelent to uach other, a straieht line should result. This hes been done in Figure B.5.34 nad it can bo scen thre, rithough r. menn streight line can be dram, tho correlation is an approximete one only.

5.5 Sumnery and Conclusions

A comprehensive series of tests was carried out on a new and improved version of the experinental rig.

$$
-213-
$$

FIGURE B. 5.34 : Comparison between caliorations

Conccintrati, n profiles were deternined for singlo size frections of gless spheres over e range of fued concentrations, for pairs of size fractions mixed in varying proporticns, and for the Geudin-Schuhmann size distributions employed in the carlier work on ground quertzo

Separate solutions to the continuity equetion were developed for the two regions near the walls of the chennel, the eppronch adopted in ench case boing besed on the cheracteristics of the concentrotion profiles. Where necessory, reason-ble essumptions were made regardine the axial velocity profile and in other instances where experinental data was lacking. The solutions wore in the form of equations relating the initirl and finsl concentrations to the racirl velcoitics of the perticles. jear the inner woll, the rodinl velocities were assumed indepondent of concentration and so the results obtaincd wore valid for the ontire retention time in the helix. The velocitics nerr the outor well were merkedy dependent on the concontration and so the results obtained ware valid only et the mersured final concentrations.

The diete obtained for glass spleres wero usod to obtrin individunl sizo crlibrations besed on concontretin moasuruncats we de in crest of the well regions. These colibrations were gencral in noturc, sinco - unliko tho enrlier onpirical crilibraticn - thoy could bo rpplied to ary kind of ideal or non-ideol size groupings and were valid for a renec of feed concentrations. t. comparison was mide between the cilibr-tion systems anci it wes shown thet, for Gaudinむchuhmenn type size distributions only, the originnl colibretion system could be reproduced with reascnable agreement by corbining the results of the new indjvidual calibrotions.

6. Rivion

6.1 Prosrcss Achievod

The work described in cach of the two major parts of this thosis was intended to satisfy a separate and entirely different set of objectives. It secns best, therefore, to review each part separatcly.

6.1.1 Part $A:$ Develoment of the Sizing Technigue.

The airl of this work was to devclop a syster capable of performing rapid and frequent measurements of the size distribution of particles in a suspension.

Visual assessment of carly test runs, conducted with mixtures of differently coloured size fractions, suggested that the proposed centrifugal systen could provicio a means of sizing homogeneous materials over a size range which is of considerable intorest in the mincral and chomical industries. Neasurenents of particle concentration carried out on suspensions of ground quartz using a beta-transmission density gauge confirmed this. An erpirical calibration based on the Gaudin-íchuhmann function was developed for sizo distributions of quartz。

When this stage of the worli was rached, the basic ain had beon realised. However, there were two inportant restrictions on the performance of the sizer that seriously limited its uscfulncss. First, the exact form of the forcc ficld within the helix and the type of particle motion was unknown, so that doviations fron the eripirical calibration could not be explained or componsated. Second, the sizer had oniy been tested on honogeneous meterials and these were forsceable difficulties in applying it to materials containing a range of specific gravities. in new stage in
the research was planned, therefore, in the hope that it would go some way towards lifting the first of these restrictions.

6.1.2 Part B: Investigation into the Sizing Technique

The ain of this work was to gain an insight into the behaviour of particles within the helix, to determine the forces acting on the particles and, if possible, to construct a theoretical model.

A theoretical and experimental investigation into the behaviour of ideal (spherical) particlos within the sizer was carried out. The theoretical study was limited in many instances by the inadequacy of existing models and the lack of experimental evidence regarding the flow behaviour of fluids and suspensions at high Reynold's numbers. The behaviour of particles moving in unbounded radial force fields under conditions of laminar and turbulent motion was calculated approximately, the results being used as a guide in makine certain assumptions in the later stages of the analysis. It was found that,in the present stage of developnent of hydrodynamic theory, the motion of particles within enclosed helical channels could not be predicted fron first principles. A continuity equation was derived for the particles, which if solved would permit the calculation of the average velocity of the particles over the full depth of the channel from known or measured values of the particle concentration.

A programme of experimental work was carried out with glass sphercs. The results of the theoretical and experimental investifations were used to obtain limited solutions to the continuity equation for the regions adjacent to the inner and outer walls of the helix. The radial
velocities of the particles calculated from the solutions to the continuity equation were compared with theoretical estinates of the apparent terminal velocities of the particles and were found to be considerably smaller in all cases.

On the basis of this work, it was concluded that the main factors opposing particle notion were probably enhanced or non-idcal fluid drag forces in the zone near the inner wall and a combination of shear forces and interference effects in the zone near the outer wall. It was thought that lift forces might play a significant role in the outer zone but not in the inner zonc and that the type of secondary fluid flow likely to occur in the helix would probably not have contributed significantly to the observed effccts. The likelihood of boundery layer separation taking place at the inner wall could not be assessed.

To sumnarise, the work carried out so far has shed some light on the nature of the forces at work within the sizer helix and has given an indication as to which forces are the more important. The investigation could have been taken further if wore information had been available concerning the axial and radial velocity profiles created within helical channels by fluids and suspensions flowing at medium to high Reynold's numbers.

6.2 Future hork

The most innediate objective of future work will be to obtain some of the missing information concerning the flow behaviour of the fluids and suspensions within helical channels. Since the existing helix is far too small to permit deteraination of the velocity profiles by any of the known techniques, it will be necessary to construct a scaled-up
version of the helix and investigate its performances under hydrodynamically similar conditions. Once the changes in the velocity profiles have been determined for various volumetric throughputs, it should be possible to predict the three-dimensional trajectories of individual particles and by suming a large number of trajectories the concentration changes may be predicted. The equations involved are likely to be extremely complicated and difficult to solve, so considerable use of computers is contemplated.

Other interesting but less imediately urgent aspects of the work would include investigations into the effects of changes in the aspect ratio of the channel, the radius of the helix, and the number of turns employed.

The Science Research Council hes sponsored a further programe of research along these lines which is currently being carried out. The patents ${ }^{23}$ taken out on the sizer havc becn assignod to the Netional Research Developrent. Corporation, who have issued a license to manufecture to the firr of Hilger and Watts Ltd.

ACKNOWLEDGEMENTS
The author would like to thank Professor M. G. Flening in his capacity of both Supervisor and Head of Department for his unfailing support and encourngenent throughout the duration of the research. He also wishes to thank his colleagues in the Departinent of Mining and Mineral Technology: in particular, Mr C. Ho J。 Beaven and Mr E. Thompson for many helpful discussions and suggestions, and Dr. J. V. Bray for his kindness in finding time to discuss and advise on some of the mathematical aspects of the work.

The support of the Department of scientific and Industrial Research during the first two years of the rosoarch is Gratefully acknowledged. Thanks are also due to the Baldwin Instrunent Company for lending sone of the equipnent necessary for the construction and testing of the laboratory prototype and to the National Resccrch Development Corporation for their assistance and encouragement in applying the results of the research to industrial problens.

REFERENCES

1．Holland－Bi．tt A．B．，Cohen E．
Unit proccss Investigations． 1 ．Grinding，Prelininary Frograme．Min．Tech Depto，Ro心̈。M．，August， 1963.

2．Holland－Batt A．B．，Cohen E．
＇The Analysis of a Grinding System as a Unit Frocess＇． Progress Reports 19，20，2l．Min Tech．Dept．，Ros．${ }^{2}$ ． 1963－64．

3．Rhodes JoRe＇Some Applications of Radioisotopes in Instrument Engineering＇．Instrument Practice，May 1962 559－567。

4．Bolde，B．＇Principles of Cominution＇．Chapter 1， 1964.
5．Fiawthorne N．R．＇Flow in Bent Pipes＇，Proc．Sem．Aero． Sci．1961。

6．Barua sof＇On Secondary Flow in Stationary Curved Pipes＇ Quart．Jour．Niech．and App．Maths Vol．16．Part 1， 1963 pp61－77。

7．Detre Roli．Nitt．a．d．Inst of Aerodyn．1953，No． 20 E．T．E．Switzorland。

8．Squire Ho Bo and IIinter K．G．J．Aero．Sci。 18 ， 1951.
9．Weske，JoR．HoA．CoA．Tech．Iote 1471，1948．
10．Cuming H． C. ＇The Secondary Flow in Curved Pipes＇， A．RoCoRo and ito，No．2880， 7955.

11．Heywood， H ．＇Calculation of Fnrticle Torninal Velocities＇ J．Imp．Coll．Chem．EnE．Soc．，4，1948，17．

12．Castleman。 Nat A，Com．Comer Aeron．（U．S．A．）Tech Note 231.
13．Steinour，HoH．＇Rate of Sedimentation＇．Ind．Chen．Eng．， Vol．36， 1944.

14．Richardson，LoF。and Zaki，＇The Sedinentation of a Suspension of Uniforn Spheres under Conditions of Viscous Flow＇．Chem。 Eng．sci．Vol． 31954.

15．Burgers，Joi\％＇Influcince of the Concentration of a Suspension on the sedimentotion Velocity＇．Proc．Acad． sici．Ansterdan，Vol．45，1942．

16．Orr，C．＇Particulatc Technology＇，Iiamillan（1966）， 7，301．

17．Bagnold，Roif＇Experiments on a Free Dispersion of Large Solid Snheres in a Newtonian Fluid Under Shear＇．Proc． Roy．Soc．Series $\{$ ，Vol．225， 1954.

18．Lord Rayleigh，＇On the Motion of Solid Bodies through Viscous Liquid＇。 Phil．Mag．2l，pp697－711．（1911）

19．Moude，A．D．，Whitmore，R．L．＇A Generalised Theory of Sedimentation＇．Brit．J．App．Whys．9，481，（1958）

20．Swanson，Holfo The magnus Effect：A Sumary of Investi－ Gations to Date＇。 J．Basic EnE．，Trans．AoSulyod．Vol 83 （1961），461－470．

21．Swanson，V．F．＇The Ievelopaent of Formula for Diroct Deteri．ination of Frec Settlin6 Velocity of Any isizc Particle＇Trans A．Iolus．${ }^{\prime}$ ，Soc．Min。Eng．，June 1967， 160－166．

22．Clorke，Bo＇Rhenlogy of Coorse Settling Suspensions＇。 Trans Inst．Chem．Engrs．，Vol．45，251－256，1967．

23．British Patent Application No．16376／65．

APPENDIX
Finite Difference Solution for Turbulent Redial Motion
of a Spherical Particle in a Uniform Tangential Velocity field in the absence of Secondary Fluid Flow

The basic equation to be solved is of the form

$$
\begin{equation*}
\frac{\mathrm{dT}}{\mathrm{dr}}+\mathrm{aT}=\frac{\mathrm{b}}{\mathrm{r}} \tag{1}
\end{equation*}
$$

where $a=\frac{6 P}{10 D \sigma}$ and $\left.\quad b=\frac{2^{(} \sigma}{-}-P\right) V^{2}$
Consider a series of successive values of r spaced at equal intervals of h, where in is small. Lot T_{n-1}, T_{n}, T_{n+1}. be the values of T corresponding to r_{n-1}, r_{n}, r_{n+1} etc

Wy definition, $T=f(r)$. expanding this as a Taylor series in the region of r_{n} gives:

$$
\begin{align*}
& \left.T_{n+1}=f\left(r_{n+1}\right)=f\left(r_{n}+n\right)=f\left(r_{n}\right)+h f^{\prime}\left(r_{n}\right)+\frac{h^{2}}{2} f^{\prime \prime} r_{n}\right)+\& t c \\
& \therefore r_{n+1}=T_{n}+h\left(\frac{d T}{d r}\right)_{n}+\frac{n^{2}}{2!}\left(\frac{d^{2} T}{d r^{2}}\right)_{n}+\ldots \ldots \tag{2}\\
& 150 I_{n-1}=T_{n}-h\left(\frac{d T}{d r}\right)_{n}+\frac{n^{2}}{2!}\left(\frac{d^{2} T}{d r^{2}}\right)_{n}-\ldots \ldots \tag{3}
\end{align*}
$$

$\therefore T_{n+1}-T_{n-1}=2 h\left(\frac{d T}{d r}\right)_{n}+$ terms in h^{3} and above

$$
\begin{equation*}
\therefore\left(\frac{d T}{d r}\right)_{n}=\frac{1}{2 h}\left(T_{n+1}-T_{n-1}\right) \quad \cdots \quad \cdots \tag{4}
\end{equation*}
$$

But from equation (I):

$$
\begin{equation*}
\left(\frac{d T}{d r}\right)_{n}=\frac{b}{r_{n}}-a T_{n} \tag{5}
\end{equation*}
$$

Combining equations (4) and (5) gives

$$
T_{n+I}=\frac{2 b h}{r_{n}}-2 a h T_{n}+T_{n-I}
$$

In the most general form the value of T_{n} is given as

$$
\begin{equation*}
T_{n}=\frac{2 b h}{r_{n-1}}-2 a h T_{n-1}+T_{n-2} \quad \cdots \quad \cdots \tag{6}
\end{equation*}
$$

Equation (6) shows that once a solution has been initiated, succession values of T may bo calculated from those already found.

In order to commence the solution, one boundery value is required; say $T=T_{0}$ at $r=r_{0}$. The value of T at r_{1} is then guessed (T_{1}) and equation (6) applied repentedly to find T_{2}, T_{3}, T_{4} etc.

The intial guessed value of T_{1} contains an unknown error, known multiples (n) of which are present in the later values of T. The significant point is that from equntion (6) thesc incrensingly large error multiples are of alternating sign.

The 'error pettern' thet is Eenerated as the solution progresses can casily be determined, and by interpoletion between successive pairs of large positive and large negntive error multiples, the original error in T_{\perp} nay be estimated.

A second solution may then be obtained very rapidly indeed, by applying the known 'multiple orror' corrections to the first iet of values of T. The second solution so obtained is normally of sufficient accurncy.

The error pattern produccd by repeated applications of equation (6) is shown overleaf:

$\Psi_{z}=$ Apparent value of T.
If $T \pm{ }^{\text {E }}$ are chosen as the interpolation values, then $\left(T-m_{8}{ }^{T}\right)=z_{8}$ is known directly $\left(T+m_{8} E\right)$ is found by linear interpolation, which is accurate enough for present purposes.

The required formula are

$$
\begin{aligned}
& T+m_{8} E=\left(\frac{m_{8}-m_{7}}{m_{9}-r_{7}}\right)\left(z_{9}-z_{7}\right)+z_{7} \\
& T-m_{8} E=z_{8}
\end{aligned}
$$

- 225 -

Hence:

$$
E=\frac{1}{2 m_{8}}\left[\left(\frac{m_{8}-m_{7}}{m_{9}-m_{7}}\right)\left(z_{9}-z_{7}\right)+z_{7}-z_{8}\right]
$$

The error E is then applied to the first set of values of T using the known table of error multiples given above.

