```
                    UNIVERSITY OF LONDON
IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY
Department of Electrical Engineering
A gENERAL STUDY OF THE TRANSIENT STABILITY
    OF SYNCHRONQUS MACHINES
    by
Ronald Gordon HARLEY, M.Sc.(Eng.)(Elec)(Dist.)
Thesis submitted for the degree of
Doctor of Philosophy in the
Faculty of Engineering
```


ABSTRACT

An investigation has been carried out into methods of representing synchronous machines in statility studies. Methods of improving the steady-state stability have also been studied.

Different types of large trensient disturbances are analysed and the methods of analyses are classified according to the assumptions made. Mathematicel models are developed to include some of the phenomena commonly neglected in digital computer studies. Damping is allowed for more accurately than by the simple method using a torque proportional to slip. An even more accurate solution also includes terms which depend on the rate of change of the flux linkages and it is used to assess in detail the "back-swing" after a three= phase fault. A comparative study is made of various numerical integration techniques suitable for a digital computer.

Steady-state stability studies of a machine with two field windings are carried out by linearising the system equations for small disturbances and using Nyquist's criterion. The excitation of the one winding is regulated by a rotor angle feedback signal and that of the other winding by a voltagefeedback signal. Various regulators are considered with different transfer functions.

Transient and steady-state stability calculations are compared with test results of a 30 flu turbo-alternator incorporating voltage regulators and a governor, as well as with test results obtained from micro-machine experiments. All the experimental and theoreticel results show reasonable agreement.

ACKHDULEDEEMENTS

The work presented in this thesis was carried out under the supervision of Dr. B. Adkins, f.A., D.Sc.(Eng.), F.I.E.E., of the Electrical Engineering Depariment, Imperial College of Science and Technology, London. I wish to thank Or. Adkins for his helpful guidance and constant encouragement.

I also wich to thank Messrs. B. Standley and J. Soper from the Central Electricity Generating Goard, South Eastern Region, Cockfosters, for valuable discussions.

Financial assistance from the Central Electricity Cenerating Board (London), the fletal Box Co. Ltd. (S.A.), The Council for Scientific and Industrial Research of South Africa and The Electricity Supply Commission of South Africas and temporary study leave from the University of Pretoria, Republic of South Africa, are gratefully acknowledged, I am also very gratoful for the use of the micronmachine equipment and the IBM-computers at Imperial College and the CDC-computer at the University of London.

Finally, I would like to thank my wife June for her most layal support, as well as all those individuals who have contributed, directly or indirectly, to the success of this venture.

INDEX

Abstract
Acknowledgements
List of symbols
PART ONE: GENERAL ASPECTS OF TRANSIENT STAEILITY
CHAPTER 1 INTRODUCTIUN 13
1.1 General 13
1.2 Verification of Theories 16
l. 3 New Formulations and Conclusions 17
1.4 Previously Published Material 18
CHAPTER 2 CLASSIFICATION OF TRANSIENT DISTURBANCES 19
2.1 Various Types of Disturbances 19
2.2 Basic System Assumptions and Equations 22
2.3 Analyses of Disturbances 27
2.3.1 Switching in additional tie-line reactance 27
2.3.2 A change in the excitation voltage 36
2.3.3 Change in prime mover output 40
2.3.4 A symmetrical short-circuit 43
2.3.4.1 The single transmission line 43
2.3.4.2 The twin transmission line 43
2.4 Comparison of Various Disturbances 50
CHAPTER 3 CLASSIFICATION OF METHODS OF SOLUTION 53
3.1 Methods using Torque-angle Characteristics 53
3.2 Methods using a Step-by-step Computation 53
3.3 Lyapunov's Method 56
3.4 Choice of Method of Representation 56
PART TWO: MORE ACCURAIE METHOOS OF SOLUTION AND
COMPARISONS YITH TEST RESULTS OF A THREE-PHASE FAULT
Chaptcr 4 theory df mure accurate methods 59
4.1 General 59
4.2 Alternator Equations and Methods of Solution 63
4.2.1 Standard method 64
4.2.2 Approximate method 65
4.2.3 Accurate method 68
CHAPTER 5 EQUIPPIENT USED FOR TESTS 71
5.1 General 71
5.2 A Large Practical System 71
5.2.1 The alternator 71
5.2.2 The voltage regulator 73
5.2.3 The governor and turbine 78
5.2.4 The tie-line impedance 80
5.3 A Micro-machine System 81
5.3.1 The alternator 81
5.3.2 The time constant regulator 86
5.3.3 The prime mover torque-speed characteristic 86
5.3.4 The tie-line impedance 88
CHAPTER 6 COMPARISON OF CALCULITED AND TEST RESULTS 90
6.1 Eeneral 90
6.2 Results of a Large System (Goldington) 90
6.2.1 Three-phase short-circuit at rated load 91
6.2.2 Three-phase short-circuit at various system conditions 93
6.2.3 Detailed assessment of the back swing 95
6. 3 Rosults for a Micro-machine System 96
CHAPTER 7 NUMERICAL INTEGRATIUN TECHNIQUES 112
7.1 General 112
7.2 Methods of solution for the Goldington System 113
7.2.1 The approximete method 113
7.2.2 The accurate mothod 114
7.3 The Micro-machine Gystem 117
7.3.1 The approximate method 117
7.3.2 The accurate method 118
7.4 Resume of integration methods and arrangements 123
PART THREE: STABILITY PROELEMS OF A SYNCHRDNOUS MACHINE WITH A OIVIDED WIMDING ROTOR
CHAPTER B calculations uf trinsient stauility 126
8.1 Introduction 126
3.2 Transformations for the Field Uindings 128
8.2.1 The current transformations 132
8.2.2 The voltege transformations 133
B. 3 Genersl Equations for the D.W.R. Machine 134
B.3.1 Basic equations 134
8.3.2 Equivalent circuits end operational impedences 135
8.3.3 Fundamental machine constants 137
8.4 Parameters of the Fictitious Field Windings 136
8.5 Equations for a Transient Disturbance 140
8.5.1 The approximate method 140
3.5.2 The accurate method 144
8. 6 Calculated Results of a Fault on a Large Systom 145
0.6.1 System details 146
0.6.2 Results for a three-phase short-circuit 152
CHAPTER 9 STEADY-STATE STABILITY THEORY OF D.U.R. REGULATION
9.1 General 159
9.2 System Equations 160
9.2.1 The machine equations 161
9.2.2 Expressions for the feedback quantities 166
9.2.3 The open-laop transfer function 170
9.3. Equilibrium Diagrams. 171
9.4 Steady-state Stability of a D.U.R. Micro-machine 175
9.4.1 Proportionate bus angle regulator only 177
9.4.1.1 Bus angle δ held at 33.75° 179
9.4.1.2 Bus angle δ held at 0° 180
9.4.1.3 Bus angle δ held at 66.25° 184
9.4.1.4 Bus angle δ held at 90° 185
9.4.2 Proportionate terminal angle rogulator only. 185
9.4.2.1 The effect of different values of δ_{t} 190
9.4.2.2 The effect of additional tie-line reactance 192
9.4.3 Comparison of d.w.r.- and q.a.r.-system results 192
9.4.4 Proportionate voltage regulator only. 192
9.4.5 Proportionato angle regulator and proportionate voltage regulator 197
9.4.6 Derivative angle regulator and proportionate voltage regulator 201
CHAPTER 10 THE D. U.R. MICRO-MACHINE EQUIPIENT 204
10.1 The Micra-alternator 204
10.1.1 Connection of field windings 205
10.1.2 Determination of parameters 209
10.1.3 Comparison with large machines 213
10.2 The Pime Mover 214
10. 3 Feedback Signals 214
10.3.1 The angle feedback signal 214
10.3.1.1 The angle device 21510.3.1.2 The filter units223
10.3.2 The voltage feedback signal 227
10.4 The Regulators and Associatod Circuitry 228
10.4.1 The anglo regulator 228
10.4.2 The voltage regulator 232
CHAPTER 11 COMPARISON OF MEASUREMENTS ANO COMPUTATIONS 234
11.1 General 234
11.2 The Stability Code 234
11. 3 The Rogulator Constants 236
11.3.1 The anglo regulator gain K_{t} 236
11.3.2 The voltage regulator gain K_{r} 236
11.4 Starting of the System 237
11.5 Steady-state Stability Limit Curves for Proportionate Bus Angle Regulator 238
11.6 Steady-state Stability Limit Curves for Proportionate Terminal Angle Regulator 239
11.7 Steady-state Stability Limit Curves for Proportionate Terminal Angle Regulator and Proportionate Voltage Reguiator 239
11. 8 Steady-state Stability Limit Curves for Derivative Terminal Angle Regulator and Proportionate Voltago Regulator 240
CHAPTER 12 CONCLUSIONS 247
APPENDICES 253
REFERENCES 265

LIST OF SYMBOLS

Unless otheruise steted, the axis quantities are represented by small letters, whereas thoir corresponding R.M. S. values are represented by capital letters. The symbols represent the per unit values in accordance with roference 22.

$v_{d}{ }^{\prime} v_{q}$: d- and q-axis components of voltage
$\mathrm{i}_{\mathrm{d}} \mathrm{g}^{\mathrm{i}} \mathrm{q}^{\text {a }}$: d- and q-axis components of current
$v_{t}{ }^{*} v_{r}$. t- and r-winding voltages
$v_{f d}, v_{\text {fq }}$: d- and q-axis field voltages
$v_{m t}\left(v_{m t}\right)$: machine terminal voltage
$v_{b}\left(v_{b}\right)$: infinite bus voltage
$r_{\text {a }}$; Srmoturr rocistonce
$I_{\text {fd }}{ }^{\text {P }} \mathrm{I}_{\text {fq }}$: d- and q-axis field resistances

T_{e} : electramagnetic tarque
$T_{1}:$ loss tarque
Tacc : accellorating torque
$T_{i n}, T_{m} \quad$: turbine output torque
$P_{s} \quad:$ steam input power to turbine
$P_{i n}:$ turbine output power
$P, Q \quad:$ active- and reactivo power at the generator
$P_{0} Q_{0} \quad:$ active- and reactive power at the infinite bus
J : polar moment of inertia
H : inertia constant
X_{2} : transmission line reactance
$X_{c}, X_{T} \quad$: total tie-line roactance
p
: operator $\frac{d}{d t}$
5 : slip

s	: Laplace operator
α	: Laplace sign
K_{t}, K_{r}	: angle- and voltage regulator gains
$H_{t}(p), H_{r}(p)$: angle- and voltage regulator transfer functions
${ }^{K} t_{\text {min }}{ }^{K} t_{\text {max }}$: minimum and maximum angle regulator gains
x_{a}	: armatise leakaga reactance
$x_{m d}=x_{m q}$: d- and q-axis magnetising reactence
x_{d}, x_{q}	: d- and q-axis synchronous reactance
$\mathrm{Xfd}^{\text {f }} \mathrm{Xfq}_{\mathrm{fq}}$: d- and q-axis field leakage raactance
$L_{\text {fo }} L^{L_{\text {fa }}}$: d- and q-axis field leakage inductanca
$L_{f f d}, L_{f f q}$: complete self-inductance of $d-$ and q-axis fiold winding
$X_{k q}, X_{k q}$: d- and q-axis damper leakage raactance
$L_{k d}, L_{k q}$: d- and q-axis damper leakage inductanco
$L_{k k d}, L_{k k g}$: compiete self-inductance of d - and q-axis damper winding
$L_{\text {dd }}=L_{q q}$: complate self-inductance of $d-$ and q maxis armature winding
$X_{d}(p), X_{q}(p)$: d-and q-axis operational reactancos
$\Psi_{f}, \Psi_{\text {fd }}$: d-axis field flux linkage
$\Psi^{\text {fq }}$: q-axis figld flux linkage
$\Psi_{k d}, \Psi_{k q}$: d- and q-axis demper flux linkage
Ψ_{d}, Ψ_{q}	: d- and q-axis armature flux linkege

Δt	: time step of integration
δ	: rotor angle with reference to the infinite bus
δ_{f}	: value of δ at the instant of fault removal
δ_{t}	: rotor angle with reference to the torminal voltage
$\not \phi_{t}$: angle between t-winding and the d-axis
$\not \square_{r}$: angle between r-winding and the d-axis
Ψ	: flux linkage
ω	: synchronous speed in rad/sec.
v	: rotor speed in rad/sec.
${ }^{\tau}{ }_{t}$: time delay of the angle regulator
${ }^{\tau}{ }_{r}$: time delay of the voltere regulator
w_{n}	: natural frequency of the closed loop system
w	: frequency of small oscillations
CR	: ratio of computer time to real time
DE	: differential equation
IV's	: integrable varicbles
NIV's	: non-integrable variables
IR	: integration routine
c.w.r. (C.U.A)	: convontionally wound rotor
d.w.r.(U.U.R.)	: divided winding rotor
q.a.r.	: quadraturo-axis regulated
t.c.r.	: time constant regulator
a.v.r.	: automatic volta:e regulator
\bigcirc	: subscript to denote steady-state value

PART ONE

general aspects of transient stability

CHAPTER 1

1. INTRODUCTIUN

1.1 General

The operation of a synchronous generator in a power system is severely limited by considerations of stability, particulerly at leading power factors. The problem has been more acute in recent years because of the charging current taken by high voltage transmission lines and becausc modern generators have higher reactances and lower inertia constants. On the other hand the range of stable operation can be oxtended by the use of continuously anting excitation rugulators. All these factors make it necessary to have more accurate nethods than hitherto for calculating where the limit of stability lies and how to improve it where possitle.

A power systom containing machines is an inherently non-linear systam. Its stability may be endangered by two types of distubances viz. a small disturbance or a large one. Studies concerned with tho firsi type deal with steady-state stability while the larger disturbances are studied as transient stability problems. This thesis is concerned with the transient stability of a synchronous machine with one field winding on the rotor d-axis, foferred to as a "conventionally wound rotor" (c.w.r.) machine, The steady-state and transient stability of a synchronous machino with two displaced field windings, . reforred to as a "divided winding rotor" (d.w.r.) machine, is also considered.

For steady-state stability the differential equations can be linearised for small disturbances and tostod for stability by established criteria. However, a system is regarded as transiently
stable if efter a large disturbance synchronism is not lost. This definition has been used by most authors although the limit of transient stability may differ for each type of disturbance. Conditions of poie slipuing and asynchronous operation are excluded from this definition The differential oquations aru solved by using step-by-step integration methods irvolving laborious and repetitive calulations which are ideally : uitud for a digital computer. In addition more compliceter and eccurete machine ropresentations are possible on modern computers and the number of machines that can be included in a system study is limited only by the capacity of tho computer. Comparativo results about the speed and accuracy of different numorical intogration methods are presented.

Methods of reprosenting a c.w.r. machine and soluing the equations, are classifibd according to tho asoumptione mede, and somo viows are presented about their application. In Ref. 1 Heavioide's theory is applied to a "simplified representation" and one type of disturbanco is studiod. In this thesis the Laplace transforms are apiliod to the same represcntation in order to investigate the same type of disturbance as woll as others. Expressions are found and com ared for the trensient electrical torques after difforent disturbances.

Two methods which are more accurate than the simplified represontation are developed for a c.w.r. - as well as a dow.r. machine. The "approximatc method" makes full allowance for damping and system resistance and subtransient saliency and variations in the spead, but neglects the changes in flux linkages represented by $p \Psi_{d}$ and $p \Psi_{q}$. The "accurate methoi", however, accounts for
P_{d} and P_{q} as well. The accurate method is used to study in dotail the angular back swing or retardation which can be causad by a three-phase short-circuit. Although not considored here, the accurate method is also essential to investigate the behaviour of a rectifier excitation system during any transient condition when the field current falls to zero.

The stoady-state stability limits of c.w.r. machines with different types of reoulstors, have born tested and calculated extonsively ${ }^{2,3}$ and it has beon shoun ${ }^{4}$ that under light load conditions there are stability limitations which cannot be overcome by any regulator on a c.w.r. machine. However, tho limitation can be ovorcome by using a second rotor winding whoso M.M.F. is controllod in a suitable mannor ${ }^{4: 5}$. Hence the dividad winding rotor machine hos a feedbock control to each field winding. Permitting certain assumptions, it is proved that a suitable choice of the d.w.r. foedback signals will enehlu the current in one field winding (the "torque winding") to control tho mechine's electrical torque, indepondant of the current in tho othor field winding (tho "roective winding") which can be usad to control the reactive powor only. Tho d.w.r. systom improves the stoady-state stability over the whole range from no-load to full-load by an amount which depends on tho transfor functions of the feedback regulators.

A "transformation matrix" is derived and used to replace, mathematically, torque- and reactivg windings (t and r-windings) which are not on the main magnetic axes, by fictitious field windings fd and $f q$ on the d and q - axes. Stability studies are made asif the machino hes two input ficld voltages $v_{\text {fd }}$ and $v_{\text {fa }}$ whilo the transformation matrix is regerded as part of the feedback ragu-
lators. The stocdy-state stability limit is found for different rogulator- and system paramoters to establish the influcnce of one feedhock loop upon the other.

PARTS ONE and TWO of the thesis describe the different transient disturbinces and mothods of representing the c. w. r machine with particular intorest in the three-phese fault. PART THREE investigates the steady-state and transient stability of a d.w.r. machine with particuler reforence to the reguletor feedbsck loops.

1.2 Verification of Theories

In the duvelopment of any machine theory it is nocessary to verify tho validity of the theory for practicol use, by comparison with practical tests carriod out on a numbor of machines of difforent size. It is difficult and sxpensivo to carry out tosts on full size nachinos to prove the eccuracy of the theory and it is therefore mecessery to rosort to model machines. fiicro-machines have been designes specifically for this purpose and althouch not porfect, bahave in a similar mannes to larqe machines. With the exception of a fow parameters, the per unit values are similar to those of full size commerical machincs. The field reeistance can be reduced as requirod by means of suitablo control equipment.

The steady-state anc transient stadilaty theorios were verified by measurements on a c.w.r. and a d.w.r. micro-machine. Transiont stability calculations were also compared with tost results and analoque computations ${ }^{6}$ for a 30 mw c.w.r. turbo-alternator as woll as with aneloque computations 5 for a hypothetical 30 Mu d.w.r. turbo-alternator。

1. 3 New Formulations and Conclusions

Some importont new formulatıons and conclusions, most of which have been conijrmed experimentally; are summarizid as follows.
(a) The expressions for the transient electricel torque show three familiar torque components which are common to the large disturbances analysed.
(b) The development of more general machine equations which allow for damping as well as for the $p_{d}{ }_{d}$ and $p_{q}{ }_{q}$ terms. The error due to neglect of the $p \Psi$ terms in the analysis of a three-phase fault is shown with particular reference to the braking tarque and iback swing" of the rotor.
(c) A novel arrangomant is shown of the system equations when they are solved by a fifth order integration routine on a digital computer.
(d) The theory of a d.w.r. machine is developed and a transform mation matrix is found so that the d.w.r. may mathematically be treated as a machine with a field winding on each axis.
(e) A complete transfer function for a dow.r. machine with a control loop to each field winding is developed and rearranged for ease of use of the Nyquist criterion.
(f) The control signels of a d.t.r. machine are studied in order to find a meximum steady-state operating region and to determine the effect of gains and time delays of the individual control loops.
(9) Fesults from a digital computer calculation are presented for a three-phase short-circuit when the pI_{d} and pI_{G} terms are retained in the equations of a d.w.I. turba-alternator uith a composite representation of the turbine and governor, the angle regulator feedback and the voltage requlator feedback.
1.4 Previously Published Material

During the last five years the euthor of this thesis has published several papers $7,8,9$ on the subject of symchronous machine stability. Reference 9 was based on the earlier part of the thesis.

CHAPTER 2

2. CLASSIFICATION OF TRANSIENT DISTURBANCES

Different types of largo disturbances have been considered by various authors who studied the transient stability of synchronous machines and used various methods of analysis. This Chapter presents a survey of various disturbances, and it analyses and compares the effects of some disturbances on the electrical torque of the machine.

2.1 Various Types of Disturbances

A literature survey showed that as early as 1929 Park and Banker ${ }^{10}$ reviewed the stability problem in 'the light of recent analytical and experimental studies' accounting for such factors as the short-circuit ratio, voltage regulators, excitation systems, neutral impedance, governors and damper windings, in a two machine as well as a multi-machine system. This paper was written very clearly and is a starting point for almost any study on power system stability. The disturbances considered included sudden application of load on the alternator, opening one of two parallel lines and a shortcircuit along a transmission line. Solutions for simple representations were obtained by means of the equal area criterion. When considering features such as saliency, flux decrement, damper windings and regulators, a step-by-step method of solution was used.

In 1932 Crary and Waring ${ }^{11}$ set out to establish general equations from which may be derived specific equations applying to a particular disturbance such as changes in excitation voltage, in external reactance and in system voltage. They provided a step-by-step method
for calculating the electrical torque at any time of a machine having any number of rotor circuits. Of particular importance was the recognition of unidirectional components of torque developed when a symmetrical three phase short circuit occurred.

Ching and Adkins ${ }^{12}$ considered disturbances incorporating the line-to-line, the line-to-neutral and the double line-to-neutral fault.

In 1959 Aldred and Shackshaft ${ }^{13}$ considered a sudden change in prime mover shaft torque and used an analogue computer to solve the non-lingar equations. Already an attempt was being made to find a relationship between the steady state stability limit and the transient limit, this being in the form of a new set of 'voltage-excitation' characteristics for predetermination of swing curves for a machine with a regulator. The papor also presented comprehensive results on the relationship between the regulator gain and time constant. For the first time then a signal from within the alternator was fed back, in this case the derivative of the field current, which improved the alternator response. The regulator feedback singnals gave a damping effect which might have outueighed the effect of any damper winding.

The performance of a regulator incorporating a voltage signal plus a rator angle signal was described in 1960 by Easton ${ }^{14}$ et. al. in which the transient consisted of a change in the regulator's reference setting. Although relatively small disturbances were used on linearised equations, the main feature of this paper was the useful practical regulator data presented.

Mehta and Adkins ${ }^{1}$ in 1960 succeeded mathematically in presenting
the various components of electrical torque, following a change in tie-line reactance, in e form which made it possible to relate the components physically to the machine behaviour. They also investigated the unidirectional torque after a three phase fault. Experimental results on micro-machines reasonably confirmed their predictions which made this paper one of the few in which predictions were corroborated by experimental results.

Shackshaft ${ }^{6}$ followed in 1963 with a composite mathematical representation of a typical large 30 mb alternator as well as the analogue computer prediction of full scale grid tests including a threr phase short circuit.

In 1968 the names of Surana and Hariharan ${ }^{15}$ appear in the literature where they show that some regulator parameters that give optimum steady state stability do not necessarily also provide optimum transient stability.

The authors mentioned and many others have considered one or more of the following large disturbances:change in the transmission line configuration ${ }^{1,10,11,13,16}$ increasing the load of a synchronous motor ${ }^{10}$ symmetrical short circuit along a
transmission line $1,6,10,11,13,16-21$. changing the excitation voltage $6,10,11,14$. unsymmetrical short circuits ${ }^{12,21}$ sudden change in electrical load $6,13,17,18$. sudden change in prime mover torque ${ }^{13,15}$

The rest of this chapter investigates different types of disturbances and compares the transient electrical torque after each
disturbance. The disturbance considered in detail in the rest of the thesis is a three-phase short-circuit.

2.2 Basic System, Assumptions and Equations

It is assumed that the system can berepresented by a single alternator connected through a transformer and a trensmission line (single or twin) to an infinite bus bar as in Fig. 2.l. This relativeIy simple model is used on order to keep the mathomaticsmanageable and the results understandable. The effects of saturation, edfy currents and hysteresis are neglocted throughout the thesis. The motoring sign convention of Adkins ${ }^{22}$ is followed.

Fig. 2.1 Basic system

According to the "generalized machine theory" ${ }^{22}$, the equations for the two-axis representation of the synchronous machine in Fig. 2.2, are (using Heaviside's notation)

Fig. 2.2 Two axis representation of a three phase synchrous machine

$$
\begin{align*}
& v_{d}=p \Psi_{d}+v_{q} \Psi_{q}+r_{a}^{i} d \tag{2.1}\\
& v_{q}=-v_{d}+p \Psi_{q}+r_{a}^{i} q \tag{2.2}\\
& 0=r_{k d^{i} k d}+p \Psi_{k d} \tag{2.3}\\
& 0=r_{k q} i_{k q}+p \Psi_{k q} \tag{2.4}\\
& v_{f}=I_{f} i_{f}+p \Psi_{f} \tag{2.5}
\end{align*}
$$

for voltages, and

$$
\begin{equation*}
\Psi_{d}=L_{d d}{ }_{d}+L_{m d^{i}}{ }_{k d}+L_{m d^{i}} f \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
\Psi_{q}=L_{q q}^{i} q+L_{m q} i_{k q} \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
\Psi_{k d}=L_{m d^{i} d}+L_{k k d} i_{k d}+L_{m d^{i} f} \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
\Psi_{k q}=L_{m q} i_{q}+L_{k k q} i_{k q} \tag{2.9}
\end{equation*}
$$

$$
\begin{equation*}
\Psi_{f}=L_{m d^{i} d}+L_{m d^{i} k d}+L_{f f d^{i} f} \tag{2.10}
\end{equation*}
$$

for the flux linkages, and
$T_{e}=\frac{\omega}{2}\left(\Psi_{d} i_{q}-\Psi_{q} i_{d}\right)$
for the electromagnetic torque.

Apart form additonal equations describing the behaviour of regulators, turbinos and governors, the equations for mechanical motion and for the transmission network also have to be solved.

During steady stete conditions, the generator voltages may be represented by the phasor diagram of Fig. 2.3.

Fig. 2.3 Phasor diagram for qenerator steady state conditions allowing for transient saliency

Now Eqns. (2.1),(2.2) and (2.11) are non-linear and can be solved only by means of a numerical method. However, in theso equations the speed may be replaced by the rotor angle δ and if δ were a known function of time, it would be possible to determine the
curronts i_{d}, i_{q} and the flux linkages Ψ_{d} and Ψ_{q} by solving a set of lincar equations in which the appliod voltagos depond on δ. However, δ is usurlly not known and a method for solving the machine equations consists of
(a) obtaining a gencral expression for the aletricsl torque T_{0} in terms of δ, thon
(b) writing the equations for mechanical motion and accelerating torque, with or without damping, while finally
(c) intograting the Eqn. in (b) by a step-by-stap process to obtain the variation of δ and T_{c} as functions of time. A fast computing aid is necessary.

Tho above method gives a result sonowhere between a strict analytical solution and a strict computor solution and thus pormits some insight into the physical bohaviour of the alternator. The various disturbances considered are compared only as regords their rolative electrical torques T_{0} obtained in (a). 月uch of tho foundation for this comparison was laid by Rofs. l and 11.

The position of a synchronously rotating axis with respect to a fixed reference point is taken as an angle ω t radians, and with varying speed tho position of tho alternator rotor with respect to the same reforence point is θ where $\theta=\omega$ t - δ from which the speed $\frac{d \theta}{d t}=v=p \theta=\omega-p \delta$. Thus δ is the angle botween the rotor and a synchronously rotating reference frame. For a sinusoidally applied terminal phase voltago
$v_{a}=-v_{m} \sin \omega t$, Eqns. (2.1) and (2.2) becomo
$v_{d}=V_{m} \sin \hat{0}=p \Psi_{d}+\omega_{q} \Psi_{q}+r_{a} i_{d}-\Psi_{q} p \delta$
$v_{q}=-v_{m} \cos \delta=-\omega \Psi_{d}+p \Psi_{q}+r_{q} i_{q}+\Psi_{d} p \delta$

It is assumed in the remainder of Chaper 2 ,
(i) that the transmission line and machine resistance voltage drops are negligible with respect to rotational voltages;
(ii) that during transient conditions the flux linkages change relatively slauly with respect to the supply frequency so that the $p \Psi_{d}$ and $p \Psi_{q}$ terms in Eqns. (2.12) and (2.13) may be neglected and
(iii) that the speed remains close to synchronous speed and changes slowly so that the $p \delta$ terms may be neglected as well.

From Eqns. (2.12) and (2.13) we then find
$V_{m} \sin \delta=\omega \Psi_{q}$
$V_{m} \cos \delta=\omega \Psi_{d}$ during a transient.
Therefore $\Psi_{q}=\frac{V_{m} \sin \delta}{\omega}=\frac{v_{d}}{\omega}$
and $\Psi_{d}=\frac{v_{m} \cos \delta}{\omega}=\frac{-v_{q}}{\omega}$

During steady operation, denoted by subscript o,

$$
\begin{aligned}
& \Psi_{q 0}=\frac{V_{m} \sin \delta}{\omega} \\
& \Psi_{d o}=\frac{V_{m} \cos \delta_{0}}{\omega}
\end{aligned}
$$

From the phasor diagram in Fig. 2.3 and using the relations ${ }^{22}$ between axis and phasor quantities it is seen that

$$
\begin{align*}
& i_{d o}=\frac{-\sqrt{2}}{X_{d}} \cdot\left(v_{0}-v \cos \delta_{0}\right) \tag{2,16}\\
& i_{q o}=\frac{\sqrt{2} v}{X_{q}} \sin \delta_{0} \tag{2.17}
\end{align*}
$$

2.3 Analyses'of Disturbances

2.3.1 Switching in additional tie-line reactance

Switching out one of two twin lines has an effect similar to a sudden increase of the tie-line reactance and this can be modelled analytically by having an external reactance X_{e} suddenly switched into the equivalent circuits of the direct and quadrature axis respectively. Inserting the reactance X_{e} may be treated as opening a normally closed switch $S l$ across an inductance L_{e} in the equivalent axis circuit of Fig. 2.4. By superposition, the effect of opening Sl may first be found and the resultant changes added to the steady state values.

The combination of the machine and the external reactance can be treated as a modified alternator having a leakage reactance $X_{a}+X_{e}=\omega\left(L_{a}+L_{e}\right)$. The Ψ_{d} and Ψ_{q} equations for such a modified alternator connected to a fixed supply V are found from Eqns. (2.6) and (2.7) as

Fig. 2.4 The d-axis circuit for changes only.

$$
\begin{align*}
& \Psi_{d e}=\left(L_{m d}+L_{a}+L_{e}\right) i_{d}+L_{m d} i_{k d}+L_{m d^{i} f} \\
& \Psi_{q e}=\left(L_{m q}+L_{a}+L_{e}\right) i_{q}+L_{m q} i_{k q} \tag{2.18}
\end{align*}
$$

while the voltage Eqns. (2.12) and (2.13) become

$$
\begin{align*}
& v_{d e}=v_{m} \sin \delta=p \Psi_{d e}+\omega \Psi_{q e}+r_{a} i_{d}-\Psi_{q e} p \delta \\
& u_{q e}=v_{m} \cos \delta=-\omega \Psi_{d e}+p \Psi_{q e}+r_{a}^{i} q+\Psi_{d e} p \delta \tag{2.19}
\end{align*}
$$

where V_{m} is the amplitude of the constant infinite bus voltage. The synchronous reactance of the modified alternator becomes

$$
\begin{align*}
& x_{d e}=\omega\left(L_{m d}+L_{a}+L_{e}\right) \\
& x_{q e}=\omega\left(L_{m q}+L_{a}+L_{e}\right) \tag{2,20}
\end{align*}
$$

and likewise for the modified transient and subtransient reactances. The equations (2.14) and (2.15) become

$$
\begin{align*}
& \omega \Psi_{q e}=v_{m} \sin \delta=v_{d e} \tag{2.21}\\
& \omega \Psi_{d e}=v_{m} \cos \delta=v_{q e} \tag{2.22}
\end{align*}
$$

for the modified flux linkages.

During steady operation the equations for the flux linkages and currents are

$$
\begin{align*}
& \omega \Psi_{q e o}=v_{m} \sin \delta_{o} \tag{2.23}\\
& \omega \Psi_{d e o}=v_{m} \cos \delta_{o} \tag{2.24}\\
& i_{d o}=\frac{-\sqrt{2}}{X_{d e}}\left(v_{o}-v \cos \delta_{o}\right) \tag{2.25}\\
& i_{q o}=\frac{\sqrt{2}}{X_{q e}} v \sin \delta_{o} \tag{2.26}
\end{align*}
$$

where $v_{d e} v_{q e} \Psi_{d e}$ and $\Psi_{q e}$ are associated with the voltage at the
infinite bus which has now become the terminal valtage of the modified alternator.

In Laplace notation 's' corresponds to 'p' in Heaviside's notation. By opening 51 , a current step - $i_{\text {do }}$ is injected throug $S I$. Since the value of v qe does not stay constant once δ starts changing, the input of Fig. 2.4 connot be regarded as short circuited for the analysis of changes only.

When L_{e} is switched in, the speed changes and δ increases causing $v_{q e}$ and $\Psi_{d e}$ to decrease and consequently i_{d}.

The change in $v_{q e}$ is (in Laplace transform)

$$
\begin{equation*}
\Delta v_{q e}(s)=-v_{m}\left(\left(\cos \delta-\cos \delta_{0}\right)\right. \tag{2.27}
\end{equation*}
$$

The current step becomes $\left(-\frac{i d o}{s}\right)$ in the Laplace domain and may be replaced by an equivalent voltage source in series with L_{e}. Fig. 2.4 then becomes Fig. 2.5

Fig. 2.5 The d-axis circuit for changes only

The operational input impedance in Fig. 2.5 is

$$
Z_{d e}(s)=\frac{s X_{d e}(s)}{\omega}
$$

The transform of the change in d-axis current is

$$
\Delta i_{d}(s)=\left(-V_{m<}\left(\cos \delta-\cos \delta_{0}\right)+\frac{i_{d 0^{X}} e}{s}\right) \cdot \frac{1}{X_{d e}(s)}
$$

After the change the transformed direct axis current becomes

$$
\begin{align*}
i_{d}(s) & =\frac{i_{d o}}{s}-\Delta i_{d}(s) \\
& =\frac{i_{d o}}{s}-\left(-v_{m}\left(\left(\cos \delta-\cos \delta_{0}\right)+\frac{i_{d o} x_{e}}{s}\right) \cdot \frac{1}{X_{d e}(s)}\right. \tag{2,28}
\end{align*}
$$

Likewise it can be chown that

$$
\begin{equation*}
i_{q}(s)=\frac{i_{q 0}}{s}+\left(v_{m o}\left(\left(\sin \delta-\sin \delta_{o}\right)-i_{q 0} \frac{x_{e}}{s}\right) \frac{1}{x_{q e}(s)}\right. \tag{2.29}
\end{equation*}
$$

Now $\Psi_{d e}$ and $\Psi_{q e}$ are simple functions (Eqns. (2.21) and (2.22)) of the δ, but the currents (Eqns. (2.28) and (2.29)) are in Laplace form and have to be inversely transformed into the time domain before T_{e} can be calculated.

$$
\text { Putting } 1 / X_{d e}(s) \text { and } 1 / X_{q e}(s) \text { into partial fractions. }
$$

Eqn. (2.28) becomes

$$
\begin{align*}
i_{d}(s) & =\frac{i_{d o}}{s}-\frac{A}{X^{\prime}} \\
& \left.+A\left(\frac{1}{X_{d e}^{\prime}}-\frac{1}{X_{d e}}\right) \cdot \frac{1}{\left(1+s T_{d e}^{\prime}\right.}\right) \tag{2.30}\\
& =A\left(\frac{1}{X_{d e}^{\prime \prime}}-\frac{1}{i_{d l}}(s)\right.
\end{align*}
$$

where $A=-\sqrt{2} \quad V \quad\left((\cos \delta)+\frac{\sqrt{2} V \cos \delta_{0}}{s}+\frac{i_{d o} X_{B}}{s}\right.$
and Eqn. (2.29) becomes

$$
\begin{align*}
& i_{q}(s)=\frac{i_{q 0}}{s} \quad \frac{B}{X_{q e}} \\
& +0 \\
& \left.+B\left(\frac{1}{X_{q e}^{\prime \prime}}-\frac{1}{X_{q e}}\right) \cdot \frac{s T_{q e}^{\prime \prime}}{\left(1+s T_{q e}^{\prime \prime}\right.}\right) \\
& \begin{array}{ll}
i_{q 1}(s) & \{ \\
i_{q 2}(s) & \{ \\
i_{q 3}(s) & \{
\end{array} \tag{2.31}\\
& \text { where } B=\sqrt{2} \cdot v \int_{\partial}(\sin \delta)-\frac{\sqrt{2} v \sin \delta_{0}}{s}-\frac{i_{q 0} x_{e}}{s}
\end{align*}
$$

The current components $i_{d l}, i_{d 2}, i_{d 3}$, etc can now be inversely transformed and, corresponding to each pair of currents ($i_{d l}, i_{q l}$), ($i_{d 2}, i_{q 2}$) etc. Eqn. (2.11) for the electrical torque yields corresponding torque components.

First torque component

Previous literature ${ }^{1,11}$ has used Heaviside's calculus which yields basically the same results although approached and solved in a somewhat different form.

Standard transforms may be used for the inverse Laplace transformations of $i_{d l}(s)$ and $i_{q l}(s)$. Therefore from Eqn. (2.30)

$$
\begin{equation*}
i_{d I}(t)=\frac{\sqrt{2} \cdot v \cos \delta}{x_{d e}^{\prime}}-\frac{\sqrt{2} v \cos \delta_{0}}{x_{d e}^{\prime}}+i_{d o} \cdot \frac{x_{d}^{\prime}}{x_{d e}^{\prime}} \tag{2.32}
\end{equation*}
$$

From the phasor diagram in Fig. 2.3

$$
\begin{equation*}
i_{d o} x_{d}^{\prime}=-\sqrt{2} \cdot v_{q 0}^{\prime}+\sqrt{2} \cdot V \cos \delta_{0} \tag{2.33}
\end{equation*}
$$

and after substituting this expression into equation (2.32) it is
found that

$$
\begin{equation*}
i_{d l}(t)=-\frac{\sqrt{2}}{x_{d o}^{1}}\left(v_{q 0}^{\prime}-v \cos \delta\right) \tag{2.34}
\end{equation*}
$$

Likewise $i_{q l}(t)=\frac{\sqrt{2 v}}{X_{q e}} \sin \delta$

The torque component corresponding to $i_{d l}$ and $i_{q l}$ is found from Eqns. (2.11),(2.21),(2.22),(2.34) and (2.35) as

$$
\begin{equation*}
T_{e l}=\frac{V V_{q 0}^{\prime}}{X_{d e}^{1}} \cdot \sin \delta-\frac{u^{2}}{2}\left(\frac{1}{X_{d e}^{1}}-\frac{1}{X_{q e}}\right) \cdot \sin 2 \delta \tag{2.36}
\end{equation*}
$$

Second torque component

Since $i_{q 2}=0$, the second torque component is a function of
$i_{d 2}$ only.

$$
\begin{equation*}
T_{e 2}=\frac{-V i_{\mathrm{d} 2}}{\sqrt{2}} \sin \delta \tag{2.37}
\end{equation*}
$$

Effectively $i_{d 2}$ introduces a torque term proportional to sino which suggests that the first term in Eqn. (2.36) does not have a constant cuefficient.

It has been shown that $i_{d 2}$ is due to variation of the fiald flux linkage and consequently of V go, while

$$
\begin{align*}
& T_{e 2}=\frac{V v_{q 2}^{\prime}}{X_{d e}^{\prime}} \cdot \sin \delta \\
& V_{q 2}^{1}=\frac{-x_{d e}^{\prime}}{\sqrt{2}} \cdot i_{d 2} \tag{2.3B}
\end{align*}
$$

After - substituting for $i_{d 2}$ from Eqn. (2.30) into Ean.(2.38)
it is found that

$$
\begin{aligned}
& -\left(\left(v_{q}^{\prime}\right)=\frac{x_{d e}^{\prime}}{\sqrt{2}}\left(-\sqrt{2} \cdot v \cdot\left((\cos \delta)+\frac{\sqrt{2} \cdot v}{s} \cos \delta_{0}+\frac{i_{d o} \cdot x_{e}}{s}\right)\right.\right. \\
& \left(\frac{1}{x_{d e}^{\prime}} \frac{1}{x_{d e}}\right)^{\prime} \frac{1}{\left(1+s t_{d e}^{\prime}\right)} \\
& =\left(-V \int_{\mathcal{L}}(\cos \delta)+\frac{V}{s} \cos \delta_{0}+\frac{i_{d o} X_{e}}{s \sqrt{2}}\right)\left(\frac{X_{d e}-X_{d e}^{\prime}}{X_{d e}}\right) \cdot \frac{1}{(1+s T}
\end{aligned}
$$

The phasor diagram relationship can be used to show that

$$
-\left(1+s T_{d e}^{\prime}\right) \cdot\left(\left(v_{q 2}^{\prime}\right)=-v^{\prime}(\cos \delta)\left(1-\frac{X_{d e}^{\prime}}{X_{d e}}\right)-\frac{1}{s}\left(v_{0} \frac{X_{d e}^{\prime}}{X_{d e}}-v_{q 0}^{\prime}\right)\right.
$$ or

$V_{q 2}^{\prime}+T_{d e}^{\prime} \frac{d}{d t}\left(v_{q 2}^{\prime}\right)=v \cos \delta\left(1-\frac{X_{d e}^{\prime}}{X_{d e}}\right)+v_{0} \frac{X_{d e}^{\prime}}{X_{d e}}-v_{q 0}^{\prime}$

Assuming constant taxis flux linkage, V go remains constant, but any variation in the flux linkage introduces the additional term $T_{e 2}$. Now $V_{q}{ }^{\prime}$ is the amount by which V_{q}^{\prime} changes from its steady state value of V_{q}, so that $V_{q}^{\prime}=, V_{q_{0}}+V_{q 2}^{\prime}$, and from Eqn. (2.39) we find

$$
\begin{equation*}
\frac{d v_{d}}{d t}=\frac{1}{T d e}\left(-v_{q}^{\prime}+\frac{X_{d e}^{\prime}}{X_{d e}} v_{0}+\left(1-\frac{X_{d e}^{\prime}}{X_{d e}}\right)\right) v \cos \delta \tag{2.40}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{e 2}=\frac{v}{x_{d e}^{\prime}}\left(v_{q}^{\prime}-v_{q 0}^{\prime}\right) \sin \delta \tag{2.41}
\end{equation*}
$$

where $v_{q}^{\prime}=v_{q 0}^{\prime} a t \quad t=0$. The value of v_{q}^{\prime} is calculated by a step-by-step method using Ear. (2.40) to find the new value at the end of each interval.

Third torque component

From En. (2.30)it is seen that $i_{d 3}(s)=-\left(-\sqrt{2} V \int_{-}(\cos \delta)+\frac{\sqrt{2} v}{s} \cos \delta_{0}+\frac{i_{d o} X_{e}}{s}\right)\left(\frac{1}{X_{d e}^{\prime \prime}}-\frac{1}{X_{d e}^{\prime}}\right) \frac{s T_{d e}^{\prime \prime}}{1+s T_{d e}^{\prime \prime}}$

$$
\begin{array}{ll}
& =\sqrt{2} \alpha v \frac{s T_{d e}^{\prime \prime}}{\left(1+s T_{d e}^{\prime \prime}\right)} \cdot \alpha(\cos \delta) \\
-\sqrt{2} \alpha v \cos \delta_{o} \cdot \frac{T_{d e}^{\prime \prime}}{1+s T_{d e}^{\prime \prime}} & \cdots \\
d_{1}(s) \\
-\alpha i_{d o} X_{e} \cdot \frac{T_{d e}^{\prime \prime}}{1+s T_{d e}^{\prime \prime}} & \ldots \\
d_{2}(s) \\
\text { where } \alpha=\frac{1}{X_{d e}^{\prime \prime}}-\frac{1}{X_{d e}^{\prime}} &
\end{array}
$$

Now $d_{2}(s)$ and $d_{3}(s)$ are readily transformable, but not $d_{1}(s)$ which contains the product of two Laplace functions, one of which is an unknown function of 's'

The expression

$$
d_{1}(s)=\frac{s}{l+s T_{d e}^{T I}} /(\cos \delta) \cdot \alpha \sqrt{2 v}
$$

is of the form

$$
L_{I}(s)=\frac{s}{s+a} \cdot L(\cos \delta)
$$

which can be solved by convolution integral when used (., conjunction with the indicial admittance ${ }^{23}$. Therefore if

$$
\begin{aligned}
& L_{1}(s)=s \int(A(t) f(t)) \text { then } \\
& L_{1}(t)=\left(\int_{0}^{t} A(t-\lambda) \cdot f^{\prime}(\lambda) \cdot d \lambda\right)+A(t) f(0)
\end{aligned}
$$

where $A(t)$ is the indicial admittance. For the purpose of this analysis

$$
A(s)=\frac{1}{\frac{1}{T_{d e}^{\prime \prime}}+s} \text { and } A(t)=e^{-t / T_{d e}^{\prime \prime}}
$$

while $f(\lambda)=\cos (\delta(\lambda))$ with $f^{\prime}(\lambda)=-\sin \delta \cdot \frac{d \delta}{d \lambda}$

So $L_{1}(t)=e^{-t / T_{d e}^{\prime \prime}} \cdot \cos \delta_{0}+\int_{0}^{t} e^{-(t-\lambda) / T_{d e}^{\prime \prime}} f^{\prime}(\lambda) \cdot d \lambda$

Since $T_{d e}^{\prime \prime}$ is a short time constant, and $f(\lambda)$ changes relatively slowly, the integral in Eqn. (2.42) may be evaluated approximately by giving $f^{\prime}(\lambda)$ its value at $\lambda=t$ and taking it outside the integral, resulting in

$$
\begin{equation*}
L_{1}(t)=e^{-t / T_{d e}^{\prime \prime}} \cdot \cos \delta_{o}+\sin \delta \cdot p \delta \cdot T_{d e}^{\prime \prime}\left(e^{-t / T_{d e}^{\prime \prime}}-1\right) \tag{2,43}
\end{equation*}
$$

So $d_{1}(t)=\sqrt{2} \alpha v\left[T_{d e}^{\prime \prime} \cdot \sin \delta \cdot p \delta\left(e^{-t / T_{d e}^{\prime \prime}}-1\right)+e^{-t / T_{d e}^{\prime \prime}} \cos \delta\right]$
while $d_{2}(t)=\sqrt{2} \alpha V \cos _{0} \cdot e^{-t / T_{d e}^{\prime \prime}}$

$$
d_{3}(t)=-\alpha i_{d o} x_{e}^{-t / T_{d e}^{\prime \prime}}
$$

The values of $d_{2}(t), d_{3}(t)$ and exponential terms in $d_{1}(t)$ decay rapidly and can be neglected with respect to the other terms of $d_{I}(t)$, and hence

$$
\begin{equation*}
i_{d 3}(t)=-\sqrt{2} \quad \alpha V T_{d e}^{\prime \prime} \sin \delta \cdot p \delta \tag{2.44}
\end{equation*}
$$

It can be shown in a simalar way that

$$
\begin{equation*}
i_{q 3}(t)=\sqrt{2} \beta V T_{q \mathrm{e}}^{\prime \prime} \cos \delta \cdot p \delta \tag{2.45}
\end{equation*}
$$

where $\beta=\frac{1}{x_{q e}^{\prime \prime}}-\frac{1}{x_{q e}}$

Eqns. (2.44) and (2.45) combined with Eqns. (2.21) and (2.22) render the torque as

$$
\begin{equation*}
T_{e 3}=\left(a \cdot \sin ^{2} \delta+b \cdot \cos ^{2} \delta\right) s \tag{2.46}
\end{equation*}
$$

where $a=\omega v^{2} T_{d e}^{\prime \prime} \alpha$; and $b=\omega v^{2} T_{q e}^{\prime \prime} \beta$
while $\omega S=\frac{d \delta}{d t}$ and S is the slip.

The total electrical torque produced by the machine is the sum of the individual components, so that

$$
\begin{array}{rlr}
T_{e} & =\frac{v v_{q 0}^{\prime}}{x_{d e}^{\prime}} \cdot \sin \delta \cdot-\frac{v^{2}}{2}\left[\frac{1}{x_{d e}^{1}}-\frac{1}{x_{q e}}\right] \sin 2 \delta & \left.\cdots \cdot T_{e 1}\right) \\
& +\frac{v v_{q 2}^{\prime}}{x_{d e}^{\prime}} \cdot \sin \delta & \left.\cdots \cdot T_{e 2}\right) \tag{2.47}\\
& +\left(a \cdot \sin ^{2} \delta+b \cdot \cos ^{2} \delta\right) s & \left.\ldots \cdot T_{e 3}\right)
\end{array}
$$

where $v_{q 2}^{\prime}=v_{q}^{\prime}-v_{q o}^{\prime}$ and at $t=0, v_{q 2}^{\prime}=0$, thereafter being found from Eqn. (2.40) at each interval of a step-by-step solution. Also $X_{d e}, X_{q e}$ etc. is the reactance of a modified alternator which has the external reactance X_{B} added to the alternator's leakage reactance X_{a} while the infinite bus voltage has become the terminal voltage of the modified alternatar.

In Eqn. (2.47) the component $T_{\text {el }}$ represents the synchronizing and transient saliency torques, $T_{e 2}$ allows for a change in field flux linkage while $T_{e 3}$ represents a damping torque proportional to slip.

2.3.2 A change in the excitation voltaqe

In the second type of transient disturbance, the voltage v_{f}, applied to the alternator field changes by an amount Δv_{f}. The equivalent two axis circuits are again employed (see Fig. 2.6) to
find the components of electrical torque.

Fig. 2.6 The d-axis circuit for changes in field voltage

The current i_{d} changes firstly by an amount $\Delta i_{d f}$ die to the change Δu_{f}, and secondly, by an amount $\Delta i_{d \delta}$ because of a change in the rotor angle δ. According to the generalized machine theory (in Laplace farm),

$$
\begin{equation*}
\Psi_{d}(s)=\frac{X_{d}(s)}{\omega} \cdot i_{d}(s)+\frac{G(s)}{\omega} \cdot v_{f}(s) \tag{2.40}
\end{equation*}
$$

fram which

$$
\begin{align*}
\Delta i_{d}(s) & =\frac{\omega \cdot \Delta \Psi_{d}(s)}{X_{d}(s)}-\frac{G(s)}{X_{d}(s)} \cdot \Delta u_{f}(s) \\
& =\Delta i_{d \delta}(s)+\Delta i_{d f}(s) \tag{2.49}
\end{align*}
$$

Eqn. (2.15) shows that

$$
\Delta \Psi_{d}(s)=\frac{\sqrt{2} V}{\omega} \int\left(\cos \delta-\cos \delta_{0}\right)
$$

therefore

$$
\begin{equation*}
\Delta i_{d \delta}(s)=\frac{\sqrt{2}}{X_{d}(s)} \quad v \cdot \int\left(\cos \delta-\cos \delta_{0}\right) \tag{2.50}
\end{equation*}
$$

and by putting $\frac{1}{X_{d}(s)}$ into partial fractions as before, $\Delta i_{d \delta}(s)$ may be readily transformed into the time domain. However, in the case of $\Delta i_{d f}(s)$ the term $G(s) / X_{d}(s)$ also needs partial fractioning. Now $\frac{G(s)}{X_{d}(s)}=\frac{\left(1+T_{k d} \cdot s\right) X_{m d}}{\left(1+T_{d}^{\prime} \cdot s\right)\left(1+T_{d}^{\prime \prime s}\right) r_{f} X_{d}}$

$$
=\frac{X_{m d}}{r_{f} X_{d}}\left(\frac{A}{1+s T_{d}^{\prime}}+\frac{B}{1+s T_{d}^{\prime \prime}}\right)
$$

where $A=\frac{\left(1-T_{k d} / T_{d}^{\prime}\right)}{\left(1-T_{d}^{\prime \prime} / T_{d}^{\prime}\right)} \approx 1$
and $B=\frac{T_{d}^{\prime \prime}-T_{k d}}{T_{d}^{\prime \prime}-T_{d}^{\prime}} \quad \approx 0$

Since in Fig. 2.6 the polarity of $\Delta v_{f}(s)$ is such as to reduce i_{d}, the total value of $i_{d}(s)$ after the change is

$$
\begin{aligned}
i_{d}(s) & =\frac{i_{d o}}{s}-\sqrt{2} v \int\left(\cos \delta-\cos \delta_{0}\right) \frac{1}{X_{d}^{1}} & \ldots \ldots i_{d 1}(s) \\
& +D\left(\frac{1}{X_{d}^{\prime}}-\frac{1}{X_{d}}\right) \cdot\left(\frac{1}{\left(1+s T_{d}^{\prime}\right.}\right) & \ldots \ldots i_{d 2}(s) \\
& -D\left(\frac{1}{X_{d}^{\prime \prime}}-\frac{1}{X_{d}^{\prime}}\right) \cdot\left(\frac{s T_{d}^{\prime \prime}}{\left(1+s T_{d}^{\prime \prime}\right)}\right. & \ldots i_{d 3}(s) \\
& \left.-\Delta v_{f}(s) \frac{X_{m d}}{r_{f} X_{d}} \cdot \frac{A}{\left(1+s T_{d}^{1}\right.}\right) & \ldots \ldots i_{d 4}(s) \\
& \left.-\Delta v_{f}(s) \frac{X_{m d}}{r_{f} X_{d}} \cdot \frac{B}{\left(1+s T_{d}^{\prime \prime}\right.}\right) & \ldots i_{d 5}(s)
\end{aligned}
$$

Likewise

$$
\begin{aligned}
i_{q}(s) & =\frac{i_{q 0}}{s}+\sqrt{2} v\left\{\left(\sin \delta-\sin \delta_{0}\right) \cdot \frac{1}{X_{q}}\right. \\
& +\sqrt{2} \cdot v \int\left(\sin \delta-\sin \delta_{o}\right)\left(\frac{1}{X_{q}^{\prime \prime}}-\frac{1}{X_{q}}\right) \cdot \frac{s T_{q}^{\prime \prime}}{\left(1+s T_{q}^{\prime \prime}\right)} \ldots i_{q 1}(s)
\end{aligned}
$$

The effect of the current components $i_{d 1}, i_{d 2}, i_{d 3}, i_{q 1}$ and $i_{q 3}$. upon the torque is the same as in sect. 2.3.1.

The effect of $i_{d 4}$ and $i_{d 5}$ due to $\Delta v_{f}(s)$ connote be assessed in the time domain unless the general disturbance Δv_{f} is assigned a specific value, which for the purpose of this study is chosen as a step decrease ΔV_{f} in the field voltage. The result is that

$$
i_{d 4}=\frac{A X_{m d} \Delta V_{f}}{r_{f} X_{d}}\left(1-e^{-t / T_{d}}\right)
$$

and $i_{d 5}=\frac{B X_{m d} \Delta V_{f}}{r_{f} X_{d}}\left(1-e^{-t / T_{d}^{\prime \prime}}\right)$

The corresponding torque terms are

$$
\begin{align*}
& T_{e 4}=-\frac{V A}{\sqrt{2}} \cdot \frac{X_{m d} \Delta V_{f}}{r_{f} X_{d}}\left(1-e^{-t / T_{d}^{\prime}}\right) \sin \delta \tag{2.53}\\
& T_{e 5}=-\frac{V_{0} B}{\sqrt{2}} \cdot \frac{X_{m d^{\prime}} V_{f}}{r_{f} X_{d}}\left(1-e^{-t / T_{d}^{\prime \prime}}\right) \sin \delta \tag{2.54}
\end{align*}
$$

With the approximate values for A and B from Ens. (2.51) and (2.52) substituted in Eqns. (2.53) and (2.54), the value of $T_{e 5}$ becomes zero and

$$
\begin{equation*}
T_{e 4}=\cdot \frac{-V}{\sqrt{2}} \cdot \frac{X_{m d} \Delta V_{f}}{\Sigma_{f} X_{d}}\left(1-e^{-t / T_{d}^{\prime}}\right) \sin \delta \tag{2.54}
\end{equation*}
$$

So, for a step decrease in the excitation the torque becomes

$$
\begin{align*}
T_{e} & =T_{e l}+T_{e 2}+T_{e 3} \\
& -\frac{V}{\sqrt{2}} \frac{X_{m d} \Delta V_{f}}{r_{f} X_{d}}\left(1-e^{-t / T_{d}^{\prime}}\right) \sin \delta \quad \cdots \cdots T_{e 4} \tag{2.56}
\end{align*}
$$

2.3.3 Change in prime mover output

When considering the effect of voltage regulators on the transient performance of the alternator, it has been assumed 13,15 that the disturbance may be a sudden change in the shaft torque or prime mover output. This eliminates some of the additional considerations such as fault type, duration and distance when considering a sud: on change on the stator side. In practica this type of prime mover .disturbance seems an unlikely one due to the relatively long time constants of the governor and turbine. However, to demonstrate the theoretical value of such investigations, this case has been included in the comparison of large disturbances.

Suppose the shaft torque T_{s} from the prime mover suddenly increases by an amount ΔT_{s} while the field voltage as well as transmission line configuration remain unchanged. The rotor angle δ changes and hence the voltage components v_{d} and v_{q}. If there is a constant external tie-line reactance X_{e} in the system, this can be added to the alternator's leakage reactance X_{a} as in Sect. 2.3.1

The change in v_{q} is

$$
\begin{equation*}
\Delta v_{q}(s)=-\sqrt{2 v} \int\left(\cos \delta-\cos \delta_{0}\right) \tag{2,57}
\end{equation*}
$$

as in Eqn. (2.27) while the input impedance (analogous to Fig. 2.5) is

$$
Z_{d e}(s)=\frac{s x_{d e}(s)}{\omega}
$$

The change in d-axis current is

$$
\Delta i_{d}(s)=-\sqrt{2} V \int\left(\cos \delta-\cos \delta_{0}\right) \frac{1}{X_{d e}^{(s)}}
$$

and after the change

$$
\begin{align*}
i_{d}(s) & =\frac{i_{d o}}{s}-\Delta i_{d}(s) \\
& =\frac{i_{d o}}{s}+\sqrt{2} V\left[\left(\cos \delta-\cos \delta_{o}\right) \cdot \frac{1}{x_{d B}(s)}\right. \tag{2.56}
\end{align*}
$$

Likewise it can be shown that
$i_{q}(s)=\frac{i_{q 0}}{s}+\sqrt{2} v\left(\sin \delta-\sin \delta_{o}\right) \cdot \frac{1}{X_{q e}(s)}$
When the partial fraction forms of $\frac{1}{X_{d e}(s)}$ and $\frac{1}{X_{q e}(s)}$ are used

$$
\begin{array}{rlr}
i_{d}(s) & =\frac{i_{d o}}{s}-\frac{A}{X_{d e}^{\prime}} & \left.\ldots i_{d 1}(s)\right) \\
& +A\left(\frac{1}{X_{d e}^{\prime}}-\frac{1}{X_{d e}}\right) \cdot \frac{1}{1+s T_{d e}^{\prime}} & \ldots \ldots i_{d 2}(s) \text {) } \\
& -A\left(\frac{1}{X_{d e}^{\prime \prime}}-\frac{1}{X_{d e}^{r}}\right) \cdot \frac{s T_{d}^{\prime \prime}}{\left(1+s T_{d e}^{\prime \prime}\right)} & \ldots . i_{d 3}(s)
\end{array}
$$

where $A=-\sqrt{2} V \int(\cos \delta)+\frac{\sqrt{2} V}{s} \cos \delta_{0}$

$$
\text { while } \begin{align*}
i_{q}(s) & =\frac{i_{q 0}}{s}+\frac{B}{X_{q e}} & \left.\ldots i_{q 1}(s)\right) \\
& +0 & \left.\ldots i_{q 2}(s)\right) \\
& +B\left(\frac{1}{X_{q e}^{\prime \prime}}-\frac{1}{X_{q e}}\right) \cdot\left(\frac{s T_{q}^{\prime \prime}}{\left(1+s T_{q e}^{\prime \prime}\right.}\right) & \left.\ldots i_{q 3}(s)\right)
\end{align*}
$$

where $B=-\sqrt{2} V(\sin \dot{C})-\frac{\sqrt{2} v}{s} \sin \varepsilon_{0}$

First torque component

$$
\begin{align*}
& \text { The inverse Laplace transformation of } i_{d l}(s) \text { becomes } \\
& i_{d 1}(t)=\frac{\sqrt{2} V \cos \delta}{X_{d e}^{\prime}}-\frac{\sqrt{2} V \cos \delta}{X_{d e}^{\prime}}+i_{d o} \tag{2.62}
\end{align*}
$$

but, from the phasor diagram in Fig. 2.3,

$$
i_{d o} X_{d e}^{\prime}=-\sqrt{2} V_{q \mathrm{do}}^{1}+\sqrt{2} \cdot v \cos \delta_{\mathrm{o}}
$$

so that

$$
\begin{equation*}
i_{d 1}(t)=-\frac{\sqrt{2}}{x_{d e}^{\prime}}\left(v_{q 0}^{\prime}-v \cos \delta\right) \tag{2.63}
\end{equation*}
$$

Likewise

$$
i_{q l}(t)=\frac{\sqrt{2} v}{x_{q e}} \sin \delta
$$

Hence

$$
\begin{equation*}
T_{e l}=\frac{V V_{q 0}^{\prime}}{x_{d e}^{\prime}} \cdot \sin \delta+\frac{v^{2}}{2}\left(\frac{1}{x_{d e}^{1}}-\frac{1}{x_{q e}}\right) \cdot \sin 2 \delta \tag{2,64}
\end{equation*}
$$

which is identical to $T_{\text {el }}$ due to switching in external reactance. It can likewise be shown that the second and the third torque components are also identical to those in Sect. 2.3.1

$$
\begin{align*}
T_{a c c} & =J p^{2} \delta=\left(T_{s} \pm \Delta T_{s}\right)-\left(T_{e l}+T_{e 2}+T_{e 3}\right) \tag{2.65}\\
& =T_{s}-\left(T_{e 1}+T_{e 2}+T_{e 3} \mp \Delta T_{s}\right)
\end{align*}
$$

so that $T= \pm \Delta T_{s}$

Thus the machine behaves as it an additional constant electrical torque has suddenly appeared.

2.3.4 A symmetrical short-circuit

2.3.4.1 The single transmission line

In the case of a single transmission line, as shoun in Fig. 2.7 the symmetrical three-phase fault isolates the machine from the infinite bus and since the resistances of the machine and transmission line have been neglected, the electromagnetic torque of the alternator becomes zero.

The d-axis equivalent circuit used to study this phenomena is seon in Fig. 2.8. When 51 is closed, the pre-fault

Fig. 2.7 Symmetrical fault on a single transmission line
voltage across the point 'ab' becomes zero and disturbs the current balance in the machine, while shorting any connection to the infinite bus.

Fig. 2.8 The d-axis circuit for changes only

The voltage

$$
V_{a b}(s)=\frac{s v_{m} \cos \delta_{0}}{\omega}-i_{d o} s L_{c}
$$

across 'ab' is made zero by applying a step voltage of opposite polarity in series with sl.

The transformed change in $i_{\text {do }}$ is

$$
\begin{equation*}
\Delta i_{d}(s)=\frac{-v_{m} \cos \delta+i_{d o} X_{c}}{s X_{d b}(s)} \tag{2.66}
\end{equation*}
$$

which, after insorting the partial fractions of $X_{d t}(s)$, becomes

$$
\begin{align*}
\Delta i_{d}(s)=\left(-\sqrt{2} v \cos \delta_{0}\right. & \left.+x_{0}^{i_{d o}}\right)\left[\frac{1}{x_{d b}}+\left(\frac{1}{x_{d b}^{\prime}}-\frac{1}{x_{d b}}\right) e^{-t / T_{d b}^{\prime}}\right. \\
& \left.+\left(\frac{1}{x_{d b}^{\prime \prime}}-\frac{1}{x_{d b}^{\prime}}\right) e^{-t / T_{d b}^{\prime \prime}}\right] \tag{2.67}
\end{align*}
$$

At no-load
$\Delta i_{d}(t)=-\sqrt{2} V_{q}\left[\frac{1}{x_{d b}}+\left(\frac{1}{x_{d b}^{\prime}}-\frac{1}{x_{d b}}\right) e^{-t / T_{d b}^{\prime}}+\left(\frac{1}{x_{d b}^{\prime \prime}}-\frac{1}{x_{d b}^{\prime}}\right) e^{-t / T_{d b}^{\prime \prime}}\right]$
which is the well known expression for the "alternating component" of the short-circuit current. The "asymmetrical component" is absent because $p \Psi_{d}$ and $p \Psi_{q}$ were neglected.

The total post-fault d-axis and q-axis currents are
$i_{d}(t)=i_{d o}+\frac{A}{x_{d b}}+A\left(\frac{1}{x_{d b}^{\prime}}-\frac{1}{x_{d b}}\right) e^{-t / T_{d b}^{\prime}}+A\left(\frac{1}{x_{d b}^{\prime \prime}}-\frac{1}{X_{d b}^{\prime}}\right) e^{-t / T_{d b}^{\prime \prime}}$
$i_{q}(t)=i_{q c}-\frac{B}{x_{q b}}-B\left(\frac{1}{x_{q b}^{\prime \prime}}-\frac{1}{x_{q b}}\right) e^{-t / T_{q b}^{\prime \prime}}$
where $A=-\sqrt{2} V \cos \delta_{0}+i_{d o} X_{C}$; and $B=\sqrt{2} V \sin \delta_{0}-i_{q O} X_{C}$;

The final steady values of these currents correspond to ${ }^{21}$
$i_{d}=\frac{-\sqrt{2} v_{q}^{\prime}}{X_{d b}^{1}}=\frac{-\sqrt{2} v_{o}}{X_{d b}}$ and $i_{q}=0$; (sce phasor diagram, Fig.2.3)

The pre-fault flux linkages at thopoints 'ab' of Fig. 2.8, are

$$
\begin{align*}
& \Psi_{d o}=\frac{1}{\omega}\left(\sqrt{2} V \cos \delta_{0}-i_{d o} x_{c}\right) \tag{2.71}\\
& \Psi_{q 0}=\frac{1}{\omega}\left(\sqrt{2} v \sin \delta_{o}-i_{q 0} x_{c}\right) \tag{2.72}
\end{align*}
$$

The changes in flux linkages when the fault is applied, are

$$
\begin{align*}
& \Delta \Psi_{d}(s)=\frac{X_{d b}(s)}{\omega} \cdot \Delta i_{d}(s) \tag{2.73}\\
& \Delta \Psi_{q}(s)=\frac{X_{q b}(s)}{\omega} \cdot \Delta i_{q}(s) \tag{2:74}
\end{align*}
$$

The total flux linkages after the change are found from Eqns. (2.66) and (2.71) to (2.74) as

$$
\begin{align*}
& \Psi_{\mathrm{d}}=\Psi_{\mathrm{do}}+\Delta \Psi_{\mathrm{d}}=0 \tag{2.75}\\
& \Psi_{\mathrm{q}}=\Psi_{\mathrm{qo}}+\Delta \Psi_{\mathrm{q}}=0 \tag{2.76}
\end{align*}
$$

which confirms that

$$
\begin{equation*}
T_{e}=T_{e 1}=T_{e 2}=T_{e 3}=0 \tag{2.77}
\end{equation*}
$$

2.3.4.2 The twin transmission line

In the case of a tuin transmission line as shown in fig. 2.9 , the healthy line may still be able to provide synchronizing torque, provided the fault is not at either extreme of the faulted line. The torque and current expression are different from Eqns. (2.67) to (2.77).

Fig. 2.9 Symmetrical fault on a twin transmission line

The d-axis equivalent circuit portraying these changes is shown in Fig. 2.10. The closing of 51 applies the fault and a delta-star transformationi can to made frim Fig. (2.10.) te (2.11). Mathometical simplification rasulta by taking $L_{b}+L_{c}=2 L$, without reducing the comparotivo significiance of the results.

Fig. 2.10 Twin transmission line and d-axis circuit.

Fig. 2.11 The d-axis circuit with two voltage sources for changes only

Now $v_{2}=\frac{1}{\omega}\left(v_{m} \cos \delta-i_{\text {do }} X_{c 2}\right)$, where $X_{c 2}=X_{c} / 2$
and $\Delta v_{\text {bus }}=\frac{s v_{m}}{\omega}\left(\cos 0-\cos \delta_{0}\right)$
and as shown in Fig. 2.11, the two voltage sources have opposite effects on i_{d}.

Millman's theorem on superposition yields
$i_{d}(s)=\frac{i_{d o}}{s}-\frac{k_{2}\left(V_{m} \cos \delta_{o}-i_{d o} x_{c 2}\right)-K_{1} s v_{m}\left(\cos \delta-\cos \delta_{o}\right)}{s X_{d 3}(s)}$
and
$i_{q}(s)=\frac{i_{q 0}}{s}-\frac{k_{2}\left(v_{m} \sin \delta_{0}-i_{q 0} x_{c 2}\right)-k_{1} s v_{m}\left(\left(\sin \delta-\sin \delta_{0}\right)\right.}{s X_{q 3}(s)}$
where: $\quad x_{3}=\frac{x_{2} x_{c 2}}{x_{c}+x_{c 2}}$;

$$
X_{d b} \text { includes } \frac{X_{b}}{2} \text { as additional leakage reactance; }
$$

$X_{d 3}$ includes X_{3} in $X_{d b}$ as additional leakage reactance and likewise for $X_{q 3}$; while

$$
k_{1}=\frac{x_{2}}{x_{2}+x_{c 2}} ; \quad k_{2}=\frac{x_{c 2}}{x_{2}+x_{c 2}} ; \quad k_{1}+k_{2}=1
$$

The flux linkages at the point 'ab', which are now not zero as for the single ling are (sec Fig. 2.10)

$$
\begin{align*}
& \Psi_{d}=\frac{K_{1}}{\omega}\left(v_{m} \cos \delta-i_{d o} X_{c 2}\right) \tag{2.78}\\
& \Psi_{q}=\frac{K_{1}}{\omega}\left(v_{m} \sin \delta-i_{q 0} X_{c 2}\right) \tag{2.79}
\end{align*}
$$

Gathering the corresponding current components and combining
them with Eqns. (2.78) and (2.79) yield the torque components as:

$$
\begin{aligned}
T_{e 1} & =\frac{k_{1} v v_{q 0}^{\prime} \cdot \sin \delta}{x_{d 3}^{\prime}}-\frac{k_{1}^{2} v^{2}}{2}\left(\frac{1}{x_{d 3}}-\frac{1}{x_{q 3}}\right) \sin 2 \delta \\
& +\frac{k_{1} v x_{c 2} \sin \delta\left(k_{1} v_{q 0}^{\prime}-v \cos \delta_{0}\right)}{x_{q 3}\left(x_{d b}^{\prime}+x_{c 2}\right)} \\
& +\frac{k_{1} v v_{q 0} x_{c 2} \sin \delta_{0}\left(k_{1} \sin \delta-1\right)}{x_{d 3}^{\prime}\left(x_{q b}+x_{c 2}\right)}
\end{aligned}
$$

$$
T_{e 2}=-k_{1} k_{2} \cdot m(\delta)\left(\frac{1}{x_{d 3}^{1}}-\frac{1}{x_{d 3}}\right) e^{-t / T_{d 3}^{\prime}}+\frac{k_{1} v v_{q 2}^{1} \cdot \sin \delta}{x_{d 3}^{\prime}}
$$

$$
\left(\text { where } M(\delta)=v^{2} \cdot \sin \delta \cdot \cos \delta_{0}-\frac{v}{\sqrt{2}} \cdot i_{d o} x_{c 2} \cdot \sin \delta+\frac{v}{\sqrt{2}}\left(i_{q 0} x_{02} \cdot \cos \delta_{0}\right)\right.
$$

$$
\begin{aligned}
& \left.+i_{q 0} i_{d o} x_{c 2}^{2}\right) \\
T_{e 3}= & k_{1}\left(a \cdot \sin ^{2} \delta+b \cdot \cos ^{2} \delta\right) s-k_{1} k_{2}^{m(}(\delta)\left(\frac{1}{x_{d 3}^{\prime \prime}}-\frac{1}{x_{d 3}^{\prime}}\right) e^{-t / T_{d 3}^{\prime \prime}}
\end{aligned}
$$

while $X_{d 3}^{\prime}=X_{d b}^{\prime}+x_{3}$

$$
\begin{aligned}
& x_{d 3}^{\prime}+x_{c 2} K_{2}=x_{d b}^{\prime}+x_{c 2} \\
& x_{q 3}+x_{c 2} K_{2}=x_{q b}+x_{c 2}
\end{aligned}
$$

Hence neglecting the exponontially decaying terms the complete expression for the torque is

$$
\begin{align*}
T_{e} & =\frac{k_{1} v v_{q 0}^{\prime}}{x_{d 3}^{\prime}} \cdot \sin \delta-\frac{k_{1}^{2} v^{2}}{2}\left[\frac{1}{x_{d 3}^{\prime}}-\frac{1}{x_{q 3}}\right] \sin 2 \delta \\
& +\frac{k_{1} v v^{\prime}}{x_{d 3}^{\prime}} \cdot \sin \delta+k_{1}\left(a \cdot \sin ^{2} \delta+b \cdot \cos ^{2} \delta\right) s \\
& +\frac{k_{1} v x_{c 2} \cdot \sin \delta\left(k_{1} v q_{0}^{\prime}-v \cos \delta_{o}\right)}{x_{q 3}\left(x_{d b}^{\prime}+x_{c 2}\right)} \\
& +\frac{k_{1} v v_{q 0} x_{c 2} \cdot \sin \delta_{o}\left(k_{1} \cdot \sin \delta-1\right)}{x_{d 3}^{\prime}\left(x_{q b}+x_{c 2}\right)} \tag{2.80}
\end{align*}
$$

the factor K_{1} varies betwean zaro and unity, depending upon the position of the fault along the twin line. It is zero because $X_{2}=0$ for a fault either at the machine terminals or at the bus and in both cases T_{e} is zaro with the assumptions made.

2.4 Comparison of Various Disturbances

The transient electrical torques for the various disturbances considered in Sect. 2.3 follow much the same pattern, permitting certain assumptions in the derived analytical results. The torque in each case has three main components as in Eqn. (2.47), viz:-

$$
\begin{aligned}
& T_{e l}= \frac{k_{1} V V_{q o}^{\prime}}{X_{d e}^{\prime}} \cdot \sin \delta-\frac{k_{1} v^{2}}{2}\left(\frac{1}{X_{d e}^{\prime}}-\frac{I}{X_{q e}}\right) \sin 2 \delta \\
& \text { (synchrunizing) } \quad \text { (saliency) } \\
& T_{\theta 2}=+\frac{k_{1} V V_{q 2}^{\prime}}{X_{d e}^{\prime}} \cdot \sin \delta \\
&(f i e l d \text { flux decay) } \\
& T_{e 3}=+k_{1}\left(a \cdot \sin ^{2} \delta+b \cdot \cos ^{2} \delta\right) s
\end{aligned}
$$

(damping)

The three components are common to all the disturbances considered, provided
(i) adjustments in $X_{d}, X_{d e}$, etc. are made when allowing for external reactance to be lumped with the alternator's own leakage reactance, and
(ii) adjustments aro made in the value of the coefficent K_{1}, which is equal to unity except in the case of a short circuit along a transmission line. For a twin line the value of K_{1} is between 0 and l, depending on the position of the fault, but for a single tranemission line tho value of K_{1} is always zero.

There are in addition the following components for each individual disturbance:

$$
T_{04}=-\frac{V}{\sqrt{2}} \frac{x_{m d} \Delta V_{f}}{I_{f} x_{d}}\left(1-e^{-t / T_{d}^{\prime}}\right) \sin \delta
$$

(step decrease ΔV_{f} in the alternator field voltage)

$$
T_{\mathrm{e} 5}= \pm \Delta T_{\mathrm{s}}
$$

(step change ΔT_{s} in prime mover output)

$$
\begin{aligned}
T_{e 6}= & +\frac{K_{1} v x_{c 2} \cdot \sin \delta\left(K_{1} v_{q 0}^{\prime}-v \cos \delta_{o}\right)}{x_{q 3}\left(x_{d b}^{\prime}+x_{c 2}\right)} \\
& +\frac{k_{1} v v_{q 0}^{\prime} x_{c 2} \cdot \sin \delta_{o}\left(k_{1} \sin \delta-1\right)}{x_{d 3}^{\prime}\left(x_{q b}+x_{c 2}\right)}
\end{aligned}
$$

```
(three phase fault along a twin transmission line: see note (ii)
    above for value ( }\mp@subsup{K}{1}{}\mathrm{ )

The synchronizing, saliency, varying field flux linkage and damping torque compononts are common to the most commonly accepted
disturbances. For eech individual disturbance other than the shorting of a reactance, some additional torquo torms appoar. Howovor for a three phase foult along one of two parallel transmission lines the value of the torque repends on the distance botwoen tho fault and tho alternator.

So although somo authors (soo sect. 2.1) hevo chosen a rather impractical step-change in primo mover torque as the trensient disturbanco, it does tost the system behaviour as regards the mochanical movement of the rotor in much the samo way as a change in altornator excitation (since the torm \(T_{\text {e4 }}\) decays fairly rapidly), or changing the tic-lino reactance.

As statad in Sect. 2.2 the three main torque components \(T_{\text {el }}\), \(T_{e 2}\) and \(T_{e 3}\) of Eqn. (2.81) correspond to a simplified mathemetical model. Although theory is approximate, the following significant conclusions can bo drawn.

Using only tho component \(T_{\text {al }}\) corresponds to noglecting damping and assuming that the field flux linkage remains constant and thereby regarding \(V_{q}\) qo as a constant valtago. Saliency is however allowed for in \(T_{\text {el }}\), and the two terms of \(T_{\text {el }}\) are rocugnizod as tho synchronizing and the transient salicncy torques respoctively.

A more accurate model which allows for changing field flux linkages but no damping, intraducos the additional component \(\mathrm{T}_{\mathrm{o}} 2^{\circ}\)

Damping is allowed for approximately by means of the terms \(T_{e 3}\). If there is zero subtransiont saliency \(T_{e 3}\) becomes a constant multiplied by the slip. This corresponds to crary's \({ }^{24}\) damping torque which has been used by many authors.

\section*{CHAPTER 3}

\section*{3. CLASSIFICATION OF METHODS OF SOLUTION}

The approximate expressions of Eqn. (2.81) in Sect. 2.4, based on the assumptions of Sect. 2.1, are acceptable for many purposes, but situations may arise where a more accurate representation of the machine is needed.

The literature survey not only showed that various types of disturbances have been considered by different authors, but also that various methods of solving the stability problem have been used, as below.

\subsection*{3.1 Methods using Torque-angle Characteristics}

Assuming that the voltage \(V_{q}^{\prime}(\) see Fig. 2.3) behind transient reactance is constant and that the torque is a function of the angle only, stability can be studied by means of the equal area criterion. This corresponds to assuming constant flux linkage and no damping.

\subsection*{3.2 Methods using a Step-by-step_Computation}

Most stability studies are based on the machine equations and use a step-by-step computation, but there are many variations depending on the assumptions made. The torque is calculated at each step and used to determine the changes in load angle. All the methods require a solution of the second order differential equation for rotor movement and the transient response is found in the form of a swing curve, i.e. a curve of load angle as a function of time.

Methods \(A\) to \(D\), in the following classification, neglect the terms \(P_{d} \Psi_{d} P \Psi_{q}\) and resistance \(r_{a}\) in Eqns. (2.1) and (2.2), while methods A to \(C\) also neglect any departure in speed from synchronous speed. A. The earliest methods \({ }^{24}\), commonly worked out by means of a network anelyser, assumed a constant voltage behind transient reactance ( \(V\) ' in Fig. 3.1) and zero transient saliency i.e. \(X_{q}=X_{d}^{\prime}\)


Fig. 3.1 Generator phasor diagram for steady state or for slow transients, assuming zero transient saliency

The assumptions are therefore similar to those in Sect. 3.1 but the method can readily be applied to a multi-machine system. With some extra complication saliency can be taken into account as in Fig. 2.3 from which it is seen that \(v_{q}^{\prime}=v_{g}^{\prime} v_{d}^{\prime}=0\) and \(X_{q} \neq x_{d}^{\prime}\).

For a single machine system the torque becomes the \(T_{\text {el }}\) component of Eqn. (2.47).
B. Although the closed circuit field winding reacts to maintain a constant field flux linkage, it does in practice decay slowly because of the losses in the field resistance. A change in the field flux linkage may also be caused by a varying excitation due to voltage regulator action. This effect is allowed for by means of the additional torque component \(T_{e 2}\) of Eqn. (2.81).
C. Damping can be allowed for approximately by means of a torque component proportional to slip as shown by the component \(T_{e 3}\) of Eqn. (2.81). The method, corresponds to the "standard method" of Sect. 4.2.l with the additional assumption that the alternator has zero sub-transient saliency.
D. Damping may be allowed for more accurately b/ solving directly the complete machine equations (2.1) to (2.l0), but still neglecting \({ }^{\Psi}{ }_{d}\) and \(p \Psi_{q}\). This corresponds to the "approximate method" of Sect. 4.2.2.
E. For the most accurate treatment the terms \(p \Psi_{d},{ }^{\Psi} \Psi_{q}\) and \(r_{a}\) are retained in the machine equations. The tie-line's resistance can also be included, as well as the inductive volt drop due to sudden changes in the amplitude of the armature and line current. This is referred to as the "accurate method" in Sect. 4.2.3.

\subsection*{3.3 Lyapunov's. Method}

This mothod, which has been applied to non-linear control systems, determines the boundary between a stable and an unstable operating region for a particular type of disturbance. The criterion depends on a performance figure icalculated from a "Lyapunov equation" When the performance figure exceeds a critical value it is possible to forecast \(25-27\). a loss of synchronism after a disturbance, without having to determine the swing curve. The method has the advantage that provided with the correct Lyapunov equation, a stability forcast can be made rapidly in the form of a "GO" or "NO GO" answer.

Lyapunov's method is claimed to be of general application to all systems, but it has hitherto tended to give pessimistic results for transient stability studies. Unfortunately also, the byapunov equation as used by various authors, differs from one to tne other, indicating that no general equation or any hard and fast rule for generating such an equation, has yet been established. Even these studies had to be confined to simplified systems and alternators without damping or subtransient effects, voltage regulators, or governors.

\subsection*{3.4 Choice of Method of Representation}

It is difficult to make any hard and fast rule regarding the choice of any one method of representing a particular system. Some general deductions may be made although each individual case should be treated on its merits.

A fixed excitation system can be studied by using a constant
voltage \(V_{a}^{\prime}\) behind transient reactance and a damping term proportional to slip.

To allow for the effect of voltage regulators, the variation of \(V_{q}^{\prime}\) must be included. Howevor, if tine flux changes slowly, it may still be permissible to assume that the \(\mathrm{p}^{\Psi}\) terms are negligible in Eqns. (2.1) and (2.2). If the machine equations allow for damping, the voltage behind subtransient ractance has to be adjusted similarly during a step-by-step solution. (see Sect. 4.2.2.)

In the case of a three phase short circuit the value of \(P^{\Psi}{ }_{d}\) or \({ } \Psi_{q}\) may rise to a value comparable with \(\omega \Psi_{d}\) and \(\omega_{q}\) 。 The terms \(p^{\Psi}{ }_{d}\) and \(P^{\Psi} q\) decay with time, but removal of the fault restarts a rapid variation of \(\Psi_{d}\) and \(\Psi_{q}\) 。

At the prsent time it seems doubtful whether the Lyapunov method can be applied successfully until it has been developed as a more readily applicable tool, especially to the more complete practical \({ }^{6}\) represontation as needed for transient studies.
```

MORE ACCURATE IMETHODS OF SOLUTION AMO COMPARISONS
WITH TEST RESULTS OF A THREE-PHASE FAULT

```

\section*{CHAPTER 4}

\section*{4. THEORY OF PGRE ACCURATE METHODS}

\subsection*{4.1 General}

At an earlier stage stability calculations wore made for generators with fixed excitation, assuming the field flux linkagos to be constant \({ }^{24}\). Damping could be allowed for by means of a constant demping coefficient. Lator mothods havo beon cievoloped to allow for changing ficld flux linkege, taking account of the action of voltage regulators and governors 28,29 . Such methods involved, in the first place, an inaccurate aliowance for damping and, secandly, the assumption that the rate of change of stetor flux linkages
 tors can be included in a digital calculation.

Tho noed for a more accurate method than that shown in
Sect. 2.3.4 was clearly shown by tests made at tho Cliff Quay Station 1956 \({ }^{30}\). A throe phase short circuit tost, mado when the machine was loaded, gave a result illustrated by Fig. 4.1 , which dicl not agree with the calculated curve. The calculated curve shows an immediate rise of the load angle \(\delta\), whereas the test curve has a temporary dip, referred to as a "back swing", before an eventual rise. The phenomenon is in fact advantageous in a genorator because it ollows moro time to clear tho fault.

In Ref. I an acceptable approximate analytical solution of the machine equations wes derived for an initial period, retaining the pY torms but assuming constant speed. with the assumption of


Fig.4.1 Load angle after a short-circuit on a 56 1NA generator at Cliff duay.

\begin{abstract}
constant speod tho non-linear differontial Eqns. (4.1) and (4.2) become lincar. The predicted values agreed fairly closoly with micromachine test results and showed thet, whon a three phase short circuit occurs, therc is in addition to oscillating components, a transiont unidirectional torque which may, under cortain conditions, produce a back suing of the type shown in fig. 4.1. The study by the above authors highlighted the individual transient torque components and their effects.
\end{abstract}

An approximato physical picture of tho back swing phenomenon may be formed by rcalising that aftor a short circuit (isolating the machine from any external busbar) the 'flux wave represented by \(\Psi_{d}\) and \(\Psi_{q}\), remains as a flux wave stationary with respect to the armature \({ }^{22}\). Voltages are induced in the rotor circuits and the consequent currents cause power losses in the resistence of any closed circuits on the rotor. These losses together with the armature short circuit power losses produce a unidirectional retarding or braking torque which opposes the prime mover torque. Hence thore is less torque available to accelerate the rotor after a fault has been applicd.

The unidircctional torque decays rapidly and has hitherto been neglected in manystudies of transiant performanee. However the initial value may be considerably larger than the pre-fault prime mover torquo and thus be able to produce a retardation or back swing during the short period of its duration. There is evidently a need for a more accurate gencral method applicable for transient conditions whon the speed variation connot bo noglected. Such a method has been developed for analogue computation by Shackshaft \({ }^{6}\)
and a digital mothod has been published by Humpage and Saha \({ }^{17}\).

The development of an improved digital method in tho following sectians is made in two stages.
(a) The first stage allows more fully for tho action of the damper winding, but neglects \(p \Psi_{\mathrm{C}}\) and \(\mathrm{p} \mathrm{\Psi} \mathrm{q}_{\mathrm{q}}\). This is referred to bolow as the "approximate method," (see Sect. 3.2, method D).
(b) The second stage accounts for \(\mathcal{P I}_{\mathrm{G}}\) and \(\mathrm{Pq}_{q}\) as wall and is referred to as the "accurate method", (soc Sect. 3.2, method E).

The approximate mothod givos the results in the same form as earlier ones. The axis currents and the torque are slowly changing quantities, where the changes occurring during an a.c. cycle are small. Tho stator currents can be regarded as sinusoidal quantities at any instant and can re reprosented by slowly changing phasors. Thus the timo interval in a step-by-step calculation can be relatively long, since the system on the stator side can be treated as an a.c. network in which the complex values change slowly, and the axis quantitire in the machine calculations also change slowly.

The situation is quite different when \(p \Psi_{d}\) and \(p \Psi{ }_{q}\) are included in the equations for the accurate method. It is known that, in the calculation of the short circuit current of an unloaded alternator, omission of the \(p \Psi\) terms corresponds to neglect of the asymmetrinal component of the stator current and to the assumption of slowly changing axis quantities and phasors as explained atovo. Including the \(p \Psi_{d}\) and \(p \Psi_{q}\) terms therefore results in the axis quantities changing at about supply froquency ond it becomes difficult to interpret the oscillating components of a phasor. It also means that the time interval for a step-by-step calculation must be short
compared with the period of the a.c. cycle and honce ruquires a great increase in the computer time.

The first computations performed to obtain results with the "accurate method" made use of the standard Runge- Kutta method of intugration and roquired a vory long computer time. By using more officiont mothods 31,32 of integration it was possible to reduce the computer time dramatically. This matter is more fully discussed in Chapter 7.

There are several practical operating conditions where the earlier oquatinns do not give sufficiently accurate results. The condition considered in detail in this thesis is tho application and removal of a three phase short circuit to a loaded alternator wherg a back swing may occur. The back swing cen also occur in the case of synchronous and induction motors where the offect would be disadvantagoous. A further example, not considered here, is an altornator with rectifiers in the field circuit where the current may have sharp discontinuities.

\subsection*{4.2 Alternator Eguations and Methods of Solution}

The basic syston being considered is the single machine case shown in Fig. 2.l. The basic machine equations for such a system are Eqns. (2.1) to (2.10), repeated below as Eqns. (4.1) to (4.10) so that the subsoquent mathomatical dovelopment may be followed with greater case.

The equations are:
\[
\begin{align*}
& v_{d}=p \Psi_{d}+v \Psi_{q}+r_{a}^{i} d  \tag{4.1}\\
& v_{q}=-v \Psi_{d}+p \Psi_{q}+r_{a}^{i} q_{q}  \tag{4.2}\\
& 0=r_{k d} i_{k d}+p \Psi_{k d}  \tag{4.3}\\
& 0=r_{k c_{i}} i_{k q}+p \Psi_{k q}  \tag{4.4}\\
& v_{f}=r_{f} i_{f}+p \Psi_{f} \tag{4.5}
\end{align*}
\]
for voltages, and
\(\Psi_{d}=L_{d d^{i} d}+L_{m d^{i} k d}+L_{m d^{i} f}\)
\(\Psi_{q}=L_{q q_{q}}+L_{m q} i_{k q}\)
\(\Psi_{k d}=L_{m d} i_{d}+L_{k k d}{ }_{k d}+L_{m d} i_{f}\)
\(\Psi_{k q}=L_{m q} i_{q}+L_{k k q} i_{k q}\)
\(\Psi_{f}=L_{m d^{i}}+L_{m d^{i}}{ }_{k d}+L_{f f d^{i}}{ }_{f}\)
for the flux linkages, and
\(T_{\theta}=\frac{\omega}{2}\left(\Psi_{d} i_{q}-\Psi_{q} i_{d}\right)\)
for the electromegnetic torque.

\subsection*{4.2.1 Standard Method}

With the assumptions of the "standard method" in sect. 3.2, Eqn. (2.77) shows that the electromagnetic torque of the alternator immediately becomes zero when a three phaso short circut occurs, and the calculatod curve of \(\delta\) is incorrect. The standard method or variants of it has been commonly used in tho past, but under certain conditions, as described above, a more accurato solution of tho equations is meoded.

\subsection*{4.2.2 npproximatu Method}

The "approximate mothod" makes full allowance for damping and system rosistances and subtrensient saliency and for variations in the speed. However the changes in flux linkages represonted by \(\rho_{d} \Psi_{d}\) and are noglected.

Tho method was worked out by Alford \({ }^{33}\), who showed that Eqns. (4.1) to (4.10) can be roarranged as follows.
\[
\begin{align*}
& \omega \Psi_{d}=X_{d}^{\prime \prime} i_{d}+\omega\left(X_{d}^{\prime}-X_{d}\right)\left(\frac{\Psi_{f}}{X_{f d}}+\frac{\Psi_{k d}}{X_{k d}}\right)  \tag{4.12}\\
& \omega \Psi_{q}=X_{q}^{n i} q_{q}+\omega\left(X_{q}^{n}-X_{a}\right) \frac{\Psi_{k q}}{X_{k q}}  \tag{4.13}\\
& \nabla \Psi_{k d}=\left[\frac{\left(X_{d}-x_{a}\right)}{\omega} \cdot i_{d}+\frac{\left(x_{d}-x_{a}\right)}{X_{f d}} \cdot \Psi_{f}-\Psi_{k d}\right] / T_{d o}^{\prime \prime}  \tag{4.14}\\
& p_{k q}=\left[\frac{X_{m q^{i}}}{\omega}-\Psi_{k q}\right] / T_{q 0}^{\prime \prime}  \tag{4.15}\\
& p \Psi_{f}=v_{f}+\frac{1}{X_{d o}^{1}}\left[\frac{\left(x_{d}^{\prime \prime}-x_{a}\right)}{\left(X_{d}^{1}-x_{a}\right)} \cdot\left[\frac{X_{m d^{i} d}}{\omega}+\frac{X_{m d^{\Psi} k d}}{X_{k d}}\right]\right. \\
& \left.-\Psi_{f}\left[1+\frac{\left(x_{d}^{\prime \prime}-x_{a}\right) x_{m d}}{x_{k d} x_{f d}}\right]\right] \tag{4.16}
\end{align*}
\]
whon use is made of the following indentities
\[
\begin{array}{ll}
\omega\left(L_{d d}-\frac{L_{m d}^{2}}{L_{f f d}}\right)=X_{d}^{\prime} ; & \omega\left(L_{q q}-\frac{L_{m q}^{2}}{L_{k k q}}\right)=X_{q}^{\prime \prime} ; \\
\omega\left(L_{m d}-\frac{L_{m d}^{2}}{L_{f f d}}\right)=X_{d}^{\prime}-X_{a ;} & \frac{L_{m q}}{L_{k k q}}=\frac{\left(X_{q}^{\prime \prime}-X_{a}\right)}{X_{k q}} ; \\
\omega\left(L_{k k d}-\frac{L_{m d}^{2}}{L_{f f d}}\right)=\frac{\left(X_{d}^{\prime}-X_{a}\right)}{\left(X_{d j}^{\prime}-X_{a}\right)} \cdot X_{k d} ; \quad \frac{L_{m d}}{L_{f f d}}=\frac{X_{d}^{\prime}-X_{a}}{X_{f d}} ;
\end{array}
\]

The terminal voltere equations（4．1）and（4．2）can be written （noglecting \(p \Psi\) terms）as
\[
\begin{align*}
v_{\text {mid }} & =r_{a} i_{d}+X_{q}^{\prime \prime} i_{q}+v_{d}^{\prime \prime} \\
v_{\text {mt }} & =r_{a} i_{q}+x_{d}^{\prime \prime} i_{d}+v_{q}^{\prime \prime} \tag{4.17}
\end{align*}
\]

Hence，the alternator can be roprosonted b；a voltage behind sub－ transient reactance and the two axis components are
\[
\begin{align*}
& v_{d}^{\prime \prime}=-5 x_{q}^{\prime \prime} i_{q}+\omega\left(x_{q}^{\prime \prime}-x_{a}\right) \frac{\Psi}{X_{k d}}  \tag{4.18}\\
& v_{q q}^{\prime \prime}=5 x_{d}^{\prime \prime} i_{d}-\omega(1-5)\left(x_{d}^{\prime \prime}-x_{a}\right)\left(\frac{\Psi_{f}}{X_{f d}}+\frac{\Psi_{k d}}{X_{k d}}\right)
\end{align*}
\]

The method of representing the machine by a voltage behind －： explained in Ref． 33.

If the alternator is connected through a transformer and transmission line with a total resistance \(R\) and a total resistance \(x\) ，to an infinite bus having a romes．voltage \(Y_{\text {，}}\) ，then the voltage equations for the interconnection tie－lino are：
\[
\begin{align*}
& v_{m t d}=\sqrt{2} v_{b d}-R i_{d}-\frac{x}{\omega} \cdot v i_{q}  \tag{4.19}\\
& v_{m t q}=\sqrt{2} v_{b q}-R i_{q}+\frac{x}{\omega} \cdot v i_{d} \tag{4.20}
\end{align*}
\]
where \(V_{b d}=V_{b} \sin \delta\) and \(V_{b q}=V_{b} \cos \delta\)

The generator terminal voltage is given by
\[
\begin{equation*}
\sqrt{2} v_{m t}=v_{m t}=\sqrt{v_{m t d}^{2}+v_{m t q}^{2}} \tag{4.22}
\end{equation*}
\]

The equation for mechanical motion is
\[
\begin{equation*}
P^{2} \delta=\frac{\pi f_{D}}{H}\left(T_{i n}-T_{e}-T_{L}\right) \tag{4.23}
\end{equation*}
\]

In a step-by-stop solution the voltages givon by Eqn. (4.1B) is applied at time \(t_{n}\) to thetiemine impedence and infinitc bus voltage to find the curront components \(i_{d}\) and \(i_{q}\). The electrical torque and the change in the lad anglo are dotermined and hence the new value of load angle at \(t_{n+1^{\circ}}\). Equations (4.14) to (4.16) are used to compute the rate of change of the secondary flux linkages and honce \(\Psi_{f}, \Psi_{k d}\) and \(\Psi_{k q}\) may be found at \(t_{n+1}\). provided the values are known at time \(t_{n}\). The new values of the flux linkages are thon substituted into Eqn. 4.10 together with the currents (value at \(t_{n}\) ) in ordor to obtain \(v_{d}^{\prime \prime}\) and \(V_{q}^{\prime \prime}\) at \(t_{n+1}\).

By setting \(p \Psi_{f}=p \Psi_{k d}=P_{k q}=0\) before a disturbance is appliod, tho valuo of tho field voltage is found to be
\[
v_{f o}=\left[\Psi_{f 0}-i_{d o} \frac{\left(x_{d}^{\prime \prime}-x_{a}\right) x_{m d}}{\left(x_{d}^{\prime}-x_{a}\right) \omega}\left(I+\frac{\left(x_{d}^{\prime}-x_{a}\right)}{x_{k d}}\right)\right] / T_{q 0}
\]

The damping torque can no loneer be separated from the tatal electromagnetic torque but is automatically taken core of by the rate at which tho flux linkogos in Eqns. (4.14) to (4.16) aro allowod to change.

The calculated results of Chaptar 6 show that the improved mothod of accounting for damping, does not axplain tho back swing in load anglo after a three phase short circuit.

When zero subtransient salioncy is assumed \(\left(X_{d}^{\prime \prime}=X_{q}^{\prime \prime}\right)\) for the alternator, the subtransiont reactance can be added to the
tie-line reactance, and the axis components of voltege in Eqn. (4.18) can conveniently be transformed into a phasor, reprosenting the phase values, so that the altornator can bo trotod as a notwork component. The simplification is particularly usoful for doeling with a multi-machine system.

\subsection*{4.2.3 Accurate Mothod}

It has been shown that in the cuent of a threa phase fault a significant error is introducod by tho assumption that \(p \Psi_{d}\) and \({ }^{P} \Psi_{q}\) are negligible. Since the inclusion of \(p \Psi_{d}\) and \(p \Psi_{q}\) allows for stator transionts, tha voltano oquations (4.19) and (4.20) must also take into account the transmission line and transformer inductive volt cirop after a suddon change.

Hence
\[
\begin{align*}
& v_{m t d}=\sqrt{2} v_{b d}-\frac{X}{\omega} p i_{d}-R i_{d}-\frac{X}{\omega} v i_{q}  \tag{4.24}\\
& v_{m t q}=\sqrt{2} v_{b q}-\frac{x}{\omega} \cdot p i_{q}-R i_{q}+\frac{x}{\omega} v i_{d} \tag{4.25}
\end{align*}
\]

Expressions for \(P_{d}\) and \(P_{q} q_{q}\) can bo found by differentiating Eqns. (4.12) and (4.13) and used to obtain a set of first order differontial equations. In doing so, oither \(i_{d}, i_{q}\) can be eliminated and \(p_{d} \Psi_{d} p_{q}{ }_{q}\) retained or \(\Psi_{d}, \Psi_{q}\) can be oliminated and \(p i_{d}, p_{q}\) retained. The two methods are equivalent, but it was decided to use the scond altornative, becausc the currents and their derivatives are present in the extornal network equations.

It is shown in f fppendix I that the primary currents \(i_{d}, i_{q}\) and the secondary flux linkages \(\Psi_{f}, \Psi_{k d}\) and \(\Psi_{k q}\), can be found from
five simultancous first order differential oquations, given in Eqn. (4.26)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\left\lceil\mathrm{pi}_{d}\right]
\] & \[
a_{I}
\] & \(\mathrm{Va}_{2}\) & \(a_{3}\) & \({ }^{3} 4\) & \({ }^{v a} 5\) & \(a_{6} \mathrm{~V}_{\mathrm{bd}}\) & \(a_{7}\) & \(\left[i_{d}{ }^{-}\right.\) \\
\hline \[
\mathrm{pi}_{q}
\] & \[
v_{i}
\] & \(b_{2}\) & \[
\mathrm{vb}_{3}
\] & \[
\stackrel{v b}{4}_{4}
\] & \(b_{5}\) & \(b_{6} V_{b a}\) & 0 & \(\mathrm{i}_{\mathrm{q}}\) \\
\hline p f & \(=c_{1}\) & 0 & \(c_{3}\) & \(c_{4}\) & 0 & 0 & 1 & \(\Psi_{f}\) \\
\hline \(\mathrm{p} \Psi_{\mathrm{kd}}\) & \({ }^{\mathrm{Cl}} 1\) & 0 & \(d_{3}\) & \(\mathrm{d}_{4}\) & 0 & 0 & 0 & \(\Psi^{*} \mathrm{kd}\) \\
\hline \[
\left[p \Psi_{\mathrm{kq}}\right]
\] & 0 & \(e_{2}\) & 0 & 0 & \({ }^{\circ} 5\) & 0 & \(0]\) & \(\Psi_{k q}\) \\
\hline
\end{tabular}
(4.26)

A st:p of the computation uses tho equations to find values of the variables at \(t_{n+1}\) from known values at \(t_{n}\). First a numerical mothod of integration is appliod to tho ciffozential equations (4.26) and tho valuus of the integratle variablos (IV's) (see sect. 7.1) \(\dot{i}_{d}, \dot{i}_{q}, \Psi_{f}, \Psi_{k d}\) and \(\Psi_{k q}\) are found at time \(t_{n+1}\). These are usod in tho algobraic equations (4.12) and (4.13) to compute the non-integrablo variables (NIV's) (see. Soct. 7.I) \(\Psi_{q}\) and \(\Psi_{d}\) which together with \(i_{d}\) and \(i_{q}\) are used to compute algebraically the electromagnetic torque \(T_{0}\) from Eqne (4.Il). For a system with a governor, the differentiel equations are used to find the prime mover shaft torque \(T_{i n}\). The new value of the IV's speed and load angle \(\delta\), are found from tho differential equation (4.23) The non-integrablo variables \(V_{b d}, V_{b q}{ }^{\prime} v_{m t d}, V_{m t q}, V_{\text {int }}\) are calculated from tho algebraic equations (4.21), (4.24), (4.25) and (4.22). When an a.v.r. is present tho value of \(V_{\text {nt }}\) is substituted into an algebraic equation ansi the comparator output is used in the a.v.r.
differential equations (seu Sect. 5.2.2) to find the veluo of the intograble variable \(V_{f}\). Without an a. \(V . r_{\text {. }}\) the ficld valtage \(v_{f}\). roneinごconstant.

The computation describod above is an improvement on previous attompts to solve the non-linoar system equations by digital computer. Humpege and Saha \({ }^{17}\) retainod the pY torms but werc unsuccossful in oxtracting a sot of simultaneous differential equations end thercforo had to use the numerical method of finite differences to calculate at the end of the nth step the derivativos of variables to be used during the ( \(n+1\) ) th step. As a result the solution of the flux linkages was always one step behind tho solution of the currents or vice versa, and required shorter time steps in the inm togration process.

Expressions for tho volteses \(v_{d}^{\prime \prime}\) and \(v_{q}^{\prime \prime}\) behind subtronsiont roactance, like those in Eqn. (4.18) aro found as
\[
\begin{align*}
& v_{d}^{\prime \prime}=\frac{X_{d}^{\prime \prime p i}}{\omega}+\left(X_{d}^{\prime \prime}-X_{a}\right)\left[\frac{p^{\Psi}}{X_{f d}}+\frac{p \Psi_{k d}}{X_{k d}}\right]-5 X_{q}^{\prime \prime i_{q}}+\omega\left(X_{q}^{\prime \prime}-X_{a}\right) \frac{\Psi_{k q}}{X_{k q}}  \tag{4.27}\\
& v_{q}^{\prime \prime}=\frac{x_{q}^{\prime \prime p i}}{\omega}+\frac{\left(x_{q}^{\prime \prime}-x_{a}\right)}{x_{k q} T_{q 0}^{\prime \prime}}\left[\frac{x_{m q}}{\omega} \cdot p i_{q}-p \Psi_{k q}\right] \\
& +5 x_{d}^{\prime \prime i_{d}}-(1-5)\left[\omega\left(x_{d}^{\prime \prime}-x_{a}\right)\left(\frac{\Psi_{f}}{x_{f d}}+\frac{\Psi_{k d}}{x_{k d}}\right)\right] \tag{4.28}
\end{align*}
\]

However there is no advantage in using Eqns. (4.27) and (4.28) since Eqn. (4.26) gives all that is required.

\section*{CHAPTER 5}

\section*{5. EQUIPMENT USED FOR TESTS}
5.1 General

Test results anout the transient behaviour of a synchronous generator after a three-phase fault were obtained from results about a 30 ml turbo- alternator and also from experiments performed for the purpose fo this thesis on a micromachine system at Imperiel College. The parameters of the micro-machine system were chosen, where possible, to correspond on a per unit basis as closely as practically possible to the values of the large systen.

\subsection*{5.2 A Large Practical Systen}

Although the 30 Md system (see Fig. 5.1) at Goldington has been described in Ref. 6, it is necessary to repeat the description of some of the equipment which has a direct bearing on the studies and results in later chapters.

\subsection*{5.2.1 The Alternator}

The data used for the computed results of Chapter 6 appear in Table 5.1.

Table 5.1 Data of 30 mu turbo-generator
\begin{tabular}{|c|c|}
\hline Base stator voltage & 9.68× \(\sqrt{3} / \sqrt{2} \mathrm{kV}, \mathrm{ram.s}\). Line \\
\hline Ease stator current & \(2.59 \times \sqrt{3} / \sqrt{2} \mathrm{kA}\) r.m.s. \\
\hline Base power & 37.5 mVA \\
\hline Base stator impedance & 3.73 ohm. \\
\hline Ease field voltage & 153.5/ \(\sqrt{2} \mathrm{kV}\) \\
\hline Ease field current & 244/ \(\sqrt{2} \mathrm{~A}\) \\
\hline Base field impedance & 630 ohm. \\
\hline Mutual reactance, \(X_{\text {md }}{ }^{\text {a }} \mathrm{X}_{\mathrm{mq}}\) (unsat.) & \(1.86 \mathrm{p.U}\). \\
\hline Armature leakage reactance, \(X_{a}\) & 0.14 p.u. \\
\hline Armature resistance, \(I_{a}\) & 0.002 p.u. \\
\hline Field leakage reactance, \(K_{\text {rd }}\) & 0.14 p.u. \\
\hline Field resistance, \(\mathrm{r}_{\mathrm{f}}\) & \(0.00107 \mathrm{p.u}\). \\
\hline Damper leakage reactance, \(\mathrm{X}_{\mathrm{kd}}{ }^{\text {a }} \mathrm{X}_{\mathrm{kq}}\) & \(0.04 \mathrm{P.U}\). \\
\hline Damper resistance, \(\mathrm{r}_{\mathrm{kd}}\), \(\mathrm{r}_{\mathrm{kq}}\) & 0.00316 p.u. \\
\hline Inertia constant, \(H\) & \(5.3 \mathrm{klds} / \mathrm{kV} \mathrm{A}\) \\
\hline Calculated data & \\
\hline Suttransient reactance \(X_{d}^{\prime \prime}\) & 0.1706 p.U. \\
\hline \(x_{\text {¢ }}^{\prime \prime}\) & 0.1792 p.u. \\
\hline Transient reactance \(\quad X_{d}^{\prime}\) & \(0.2702 \mathrm{p.U}\). \\
\hline Time constants: T'do & 5.949 sec. \\
\hline T' & 0.8038 sec. \\
\hline T'd & 0.1076 sec. \\
\hline \(T_{q}^{\prime \prime}\) & 0.0978 \\
\hline
\end{tabular}

\subsection*{5.2.2 The automatic voltage requlator}

The physical operation has been described \({ }^{6}\) with reference to the block diagram representation of rig. 5.2. The equations and parameters in this section are in physical units and the values of a.v.r. parameters appear in Table 5.2

\section*{Voltage transformer and comperator}

Both roferences 6 and 17 quote a common gain \(G_{v s}\) for the reference level \(V_{r e}\) and the terminal voltage \(V_{m t}\), while in fact Fig. 5.2, which was first published in Ref. 6 and later used in Ref. l7, shows \(V_{m t}\) to pass through a voltage transformer before reaching the error sensing elemont or comparator stage. The comparator's output
\[
\begin{equation*}
v_{m l}=-G_{v s}\left(v_{m t}-v_{r_{t}}\right) \tag{5.1}
\end{equation*}
\]
therefore implies that the fictitious reference voltage \(V_{r}\) in Eqn. (5.1) is on the same side of the voltage transformer as \(V_{m t}\), and is thus of the order of 12,000 volts.

First magnetic amplifier
\(v_{m 2}=\frac{G_{m 1}}{I+\tau_{m I} p} \quad\left(v_{m l}+v_{x s}+v_{m s}\right)+K_{m l}\)
while \(V_{m 2 \text { min }} \leqslant V_{m 2} \leqslant V_{m 2} \max\)

Second magnetic amplifier
\(v_{x}=\frac{G_{m 2}}{1+\tau_{m 2} p} \quad v_{m 2}+K_{m 2}\)
while \(v_{x \min } \leqslant v_{x} \leqslant v_{x \max }\)

The a.c. .expiter and rectifiers
\(v_{f}=\frac{G x v_{x}}{1+\tau_{x} p}+K_{x}\)

\section*{Ampifier stabilizer}
\(v_{m s}=-\frac{G_{m s} \tau_{m s} p}{I+\tau_{m s} p} V_{x}\)

\section*{Exciter stabilizer}
\(V_{x s}=-\frac{G_{x s}{ }^{\tau} \times s^{P}}{1+\tau_{x s}{ }^{P}} \cdot V_{f}\)

\section*{Steady state initial conditions}

Before the disturbance is applied, the steady state values of some regulator variables are found from the values of activemand reactive power, and voltrge at the generator terminals.

The reforence voltage of the voltage regulator is given by
\[
V_{r e a}=G_{v s} V_{m t o}+\left(V_{\text {fo }}-K_{x}-G_{x} K_{m 2}-G_{x} G_{m 2} K_{m 1}\right) / G_{x} G_{m 1} G_{m 2}
\]
while
\[
\begin{align*}
& v_{x s 0}=v_{m s o}=0 \\
& v_{x o}=\left(v_{f o}-k_{x}\right) / G_{x}  \tag{5.7}\\
& v_{m 20}=\left(v_{x o}-k_{m 2}\right) / G_{m 2} \\
& v_{m l o}=\left(v_{m 20}-k_{m l}\right) / G_{m l}
\end{align*}
\]


Fig. 5.1 Diagram of the Goldington system.


Fig. 5.2 Block diagram of voltage regulator.


Tig. 5.3 Block diagram of governing system

Table 5.2 Voltage regulator data.


The value of \(G\) vs as listed above is applicable 34 to Eqn. (5.1) when \(V_{m t}\) and \(V_{r e}\) are in line volts romes. Ems and \(G_{x s}\) were printed incorrectly in Ref. 6 and corrected values appear in the above table. \(K_{m 2}\) has a negative value.

\subsection*{5.2.3 The governor and turbine}

The physical operation and assumptions for the mathematical model have been described \({ }^{6}\) with reference to the block diagram representation of Fig. 5.3, and the values of parameters appear in Table 3.

Centrifugal Watt governor
\[
\begin{equation*}
Y=Y_{0}-G_{1} p \delta \tag{5.8}
\end{equation*}
\]
while \(\quad 0 \leqslant Y \leqslant 1\)
\(Y\) is proportional to sieeve movement and is zoro when the woights are fully out and unity when thoy are fully in. \(Y_{0}\) is proportional to the speeder gear setting.

\section*{Relay and pilot valves}
\[
\begin{equation*}
Y_{1}=\frac{\sigma_{2} Y}{\left(1+\tau_{1} p\right)\left(1+\tau_{2} p\right)}+K_{2} \tag{5.9}
\end{equation*}
\]
while \(0 \leqslant Y_{1} \leqslant 1\)
\(Y_{1}\) is the governor steam valve position and is zero when the valve is rully closed and unity when fully open.

Governor stean valuo
\[
\begin{equation*}
P_{s}=G_{3} Y_{1} \tag{5.10}
\end{equation*}
\]
where \(p_{s}\) is the steam power

\section*{Turbine}

The turbine output powor is delayed by the entrained steam and appoars as
\[
\begin{equation*}
P_{i n}=\frac{p_{s}}{1+\tau_{3} p} \tag{5.11}
\end{equation*}
\]

The shaft torque transmitted to the alternator is
\[
\begin{equation*}
T_{i n}=\frac{P_{i n}}{\left(1+\frac{p \delta}{2 \pi f}\right)} \tag{5,12}
\end{equation*}
\]
or, since \(\frac{p \delta}{2 \pi f}\) is small compared to unity, Eqn. (5.12) can be rearranged by means of the Ginomial Expansion Theorem to
\[
\begin{equation*}
T_{i n}=p_{i n}\left(I-\frac{p \delta}{2 \pi f}\right) \tag{5.13}
\end{equation*}
\]
which is the form used in Ref. 6.

Steady state initial conditions
\[
\begin{gathered}
\text { At synchronous speed } p \delta=0, \text { so } \\
T_{\text {ino }}=P_{i n o}=T_{e}+T_{L}=P_{\text {so }}=G_{3} Y_{10} \\
\text { Also } Y=\left(Y_{l o}-K_{2}\right) / G_{2}=\left(\frac{P_{n o}}{G_{3}}-K_{2}\right) / G_{2}=N \\
\text { and the spegder gear setting } Y_{0}=N
\end{gathered}
\]

Table 5.3 Governor and turbine data
\[
\begin{array}{l|l}
\hline G_{1}=1.088 \times 10^{-3} & K_{2}=-0.267 \\
G_{2}=1.33 & G_{3}=1.42 \\
\tau_{1}=0.1 \mathrm{sec} . & \tau_{3}=0.49 \mathrm{sec} . \\
\tau_{2}=0.188 \mathrm{sec} . &
\end{array}
\]

\subsection*{5.2.4 The tie-line impedance}

The tie-line consists of the generator step-up transformer and the transmission line as in Fig. 5.l. The parameters are as follows:

100 MUA base
\(R_{1}\)
\(X_{1}\)
\(R_{2}\)
\(X_{2}\)
\(1.35 \%\)
\(35.4 \%\)
\(4.6 \%\)
\(12.65 \%\)
37.5 MUA base
\(0.506 \%\)
\(13.3 \%\)
\(1.73 \%\)
\(4.74 \%\)

\subsection*{5.3 A Micromachine System}

The micro-machine is connected to the fixeci supply, treated as an infinite bus, through series impe:once \(Z_{1}\) and \(Z_{2}\) as shown in Fig. 5.4. The machine is a small alternator specially designed to give a range of parameters on a per unit (p.u.) basis and values were selected, within limits, to correspond with the large system in Sect. 5.2. The equipment includes a time constant regulator (see Sect. 5.3.2) which controls the effective resistance of the excitation circuit. A governor and a.v.r. were not included in this particular system.

\subsection*{5.3.1 The alternator}

The micro-alternator \({ }^{35}\) (stator no. 334819, rotor no. 334828) has a laminated cylindrical rotor, although standard tast \({ }^{36}\) rem sults showed a saliency of about \(10 \%\). The machine parameters are given in Table 5.4.

A comparison of Tables 5.4 and 5.1 reveals that the parameters agree fairly well except for the high armature resistance and the small sub-transient time constants. In woth cases it was practically impossible to avoid these differences.

Ta0le 5.4 Data of micro-alternator
\begin{tabular}{|c|c|}
\hline Ease stator voltage & \(186 \mathrm{~V}, \mathrm{ram.s}\). \\
\hline Base stator current & 4.3 A r.fins. \\
\hline Bose armature power & 1385 VA \\
\hline Base stator impedance & 25.0 ohm \\
\hline Gase field voltage & 1410 V \\
\hline Base field current & 0.491 A \\
\hline Base ficld power & 692.5 VA \\
\hline Dase field impedance & 2870 ohm \\
\hline mutual reactance: \(X_{m d}\) (sat.) & 1.71 p.u. \\
\hline \(x_{m q}\) (sat.) & 1.51 p .4. \\
\hline Armature leakage reactancr, \(\mathrm{Xa}_{\text {a }}\) & \(0.127 \mathrm{p.U}\) \\
\hline Armeture rosistance, ra & \(0.0127 \mathrm{p.U}\). \\
\hline Field leakage reactance, \(\chi_{\text {fd }}\) & 0.095 p.u. \\
\hline Field resistance, \(\mathrm{I}_{\mathrm{f}}\) & \(0.00108 \mathrm{p.u}\). \\
\hline Transient reactance, \(X_{d}\) & 0.217 P.u. \\
\hline Subtransient reactance: \(X_{d}^{\prime \prime}\) & \(0.150 \mathrm{p.u}\). \\
\hline \(\mathrm{X}_{4}^{\prime \prime}\) & \(0.170 \mathrm{P.U}\). \\
\hline Time constants: T'do & 5.34 sec. \\
\hline T' \({ }^{\prime}\) & 0.630 sec. \\
\hline T \({ }_{\text {d }}\) & 0.013 sec . \\
\hline \[
T_{4_{i}^{\prime \prime}}^{\prime \prime}
\] & 0.013 sec. \\
\hline Inertia constant, \(H\) & \(5.7 \mathrm{kWs} / \mathrm{kVA}\) \\
\hline
\end{tabular}


Fig, 5.4 Dingram of the micro-machine system

Fig. 5.5 Diagram of tine const int regulating system


Fig. 5.6. Torque speed characteristics of the prime mover at Goldington

\subsection*{5.3.2 The time constant requlator}

The micro-machine has a much higher natural per unit field resistance than a largo generator. A time constant regulator (t.c.r.) which reduces the effective field resistance had been developed and used in earlier experiments \({ }^{33}\). The basic elements of such a t.c.r. appear in fig. 5.5. An auxiliary field winding with the same number of turns as the main field winding but of much smaller copper section has been wound in the same slots as the main field. With nearly perfect coupling between the two windings, the voltage appearing across the auxiliary field is equal to the induced voltage \(p \Psi_{f}\) in the mein field. This is added to a voltage \(i_{f} R_{f b}\) and the total fed back through a high gain d.c. amplifier to the control fields of a series exoiter. It can be shown that if the open loop gain of this control system is large enough the effective field resistance becomes \(R_{f b}\) which may thenbe set to a suitable value in order to obtain the required time constant.

\subsection*{5.3.3 The prime mover torgue-speed characteristic}

An important source of damping \({ }^{24}\) in a turbo-alternator is the turbine since the torque is a function of the spoed. The torque-speed characteristic of the turbine at Goldington can be found for slow changes in speod as shown below.

Eqns. (5.10), (5.11) and (5.12) can be combinod to show that
\[
\begin{equation*}
T_{\text {in }}=\frac{G_{3} Y_{1}}{M}=\frac{1.42 \mathrm{Y}_{1}}{M} \tag{5.15}
\end{equation*}
\]
\[
\begin{aligned}
M=\frac{v}{\omega} & =\text { per unit speed. } \\
& =\left(1+\frac{p \delta}{2 \pi f}\right)
\end{aligned}
\]

The torque/spoed relationship of Eqn. (5.15) is therefore a function of the steam valve position \(Y_{1}\) and \(F i g\). 5.6 shows this relationship for various values of \(Y_{1}\).

The slope of a torque/speed curve in Fig. 5.6 can bo found by differentiation of Eqn. (5.15) i.e.
\[
\begin{equation*}
\frac{d T_{i n}}{d m}=-\frac{G_{3} Y_{1}}{m^{2}}=K_{T M} \tag{5.16}
\end{equation*}
\]
and this dctermines the damping effect \({ }^{24}\).

At synchronous speed, \(M=1\) and the slope becomes
\[
\begin{equation*}
K_{T M}=-G_{3} Y_{1} \tag{5.17}
\end{equation*}
\]
but from Eqn. (5.15) it is seen that when \(M=1\),
\[
Y_{1}=T_{\text {in }} / G_{3}
\]
which, whon substitute into Eqns. (5.17), yields the slope as
\[
\begin{equation*}
K_{T M}=-T_{i n} \tag{5.18}
\end{equation*}
\]

According to Eqn. (5.18) the torque/speed slope at synchronous speed is 1 at 1 p.u. torque and speed, and the numarical value is less than 1 at reduced torques.

Tho micro-alternator is driven by a separately excited D,C. motor, the characteristics of which are different from those of a turbine and have an important effect on the machine behaviour under
transient operation. Equipment has been designed and tested to contral the \(D . C\) driving motor in such a way as to simulate a turbine drive. The control equipment was not fully operational however, at the time when the system stability tests described in Chapter 6, were carried out.

For tho purpose of the micro-machinc tosts, a constant value of the torque/speed slope therefore hed to be used. The natural torque/speed slope of the D. C. motor at 1 p.u. torque is in the order of -30 , but it is possible to reduce this value by adding resistance in series with the armaturo. An attempt was made to achieve the value of - 1 (also suggested in Ref. 24), but because of d.c. sypply voltage limitations it was not possible to reduce the slope further than - 2.68 .

\subsection*{5.3.4 The tie-line impedance}

Use was made of a three-phase transmission line simulating network which consists of resistrnce-, inductance-, conductenceand capacitance "units". Each unit consists of a number of fixed "elements" so that a range of values are possible.

The capacitance and conductance units of the simulator were not used since there are no dotails about these parameters in the practical system of sect. 5.2 and a series combination op only resistence and inductance was used. However, the exact tie-line parameters could not be modelled, because
(a) the simulator elements have fixed finite values. Furthermore, tho inductance elements have a finite \(q\) which varies from 10 to 30 and thus have appreciable resistance.
(b) the transmission line of the Goldington system has only \(4.74 \%\) reactance. Hence, the short circuit current from the infinite bus is about 20.0 p.u. On the micromachine systemg this corresponds to a current of approximately 90 A which exceeds the maximum rating of the transmission line elements and of the air circuit breaker. Moreover, the inductance elements have iron cores and at the higher fault currents there are errors due to saturetion.

To overcome the above limitations a vacuum breaker capable of clearing 200 A (a.c.) was purchased and a larger transmission line raactance was used. On the transmission line simulator, a choice had to made between a 4 ohm (16\%) and a 2 ohm reactanco. Due to saturation and consequently tho unknown upper limit of fault current, the 4 ohm reactance was used. This also allowed rapid repetition of the fault application without overheating of the low-Q reactance element or any other auxiliary equipment.

The transformor in Fig. 5.1 was simulated by a high-Q reactance which has an iron core with an air gap. The final values of the micro-machine transmission line parameters are listod below

Micro-machine system

\(X_{1}\)
\begin{tabular}{l}
\(\mathrm{R}_{2}\) \\
X \\
\hline
\end{tabular}
\({ }^{2}\)
\begin{tabular}{cc}
\(0.56 \%\) & \(0.506 \%\) \\
\(13.2 \%\) & \(13.3 \%\) \\
\(1.9 \%\) & \(1.73 \%\) \\
\(16 \%\) & \(4.74 \%\)
\end{tabular}

Tests were aiso made with \(X_{2}=0 \%\) but were not analysed becauso it was discovered that the \(t . c . r\). was not functioning satisfactorily (see Sect. 6.3)

\section*{CHAPTEF: 6}
6. COMPARISDN OF CALCULATED AND TEST RESULTS

\subsection*{6.1 General}

The results presented in this chapter are for the case of a three-phase short-circuit close to the alternator. Test results for a large system (Sect. 5.2) as well as for a micromachine system (see Sect. 5.3) are compared with computed results.

\subsection*{6.2 Results for a Large System (Goldington)}

The tests conducted by the C.E.G.B. on a 30 fll alternator at Goldington (see Sect. 5.2) included a short circuit test applied at the high voltago torminals of the transformer (see Fig. 5.1) with the generator operating at full load. In Ref. 6, the results of the test are recorded and calculations of the porformance are made by means of an analogue computer. The complete equations are Used with allowance for regulator and governor action and for the effoct of saturation.

In the present section, digital computations are used to verify the results, using the approximate and accurate methods described in Sect. 4.2. The calculations do notallow for saturation. Further computations are made for difierent conditions on the same system. Particular emphasis is placed on the initial period for a detailed study of the back suing phenomenon.

\subsection*{6.2.1 Three-phase short-circuit at rated load.}

Fig. 6.1 shows the suing curves determined by the site tests and by the approximate and accurate methods of calculation. The angle on the test curve does not swing back noticeably but is almost horisontal for the first 0.1 sec. showing that there are losses which neutralise the turbine torque, but are not sufficient to cause a back swing. The angle dotermined by the approximeto method commences to rise imaeriatoly, boceuse it does not allow for any losses, and the peak value of \(\delta\) is too high. The accurate method shows much better agroement with the test curve during the first swing, although there is somo discrepancy during later suings, probably because of uncertainty in the turbine and governor parametors and bocause saturation is neglectod.

Fig. 6.2 shows computod curves for the two flux linkages calculated by the two methods. The flux linkages \(\Psi_{d}\) and \(\Psi_{q}\) doterminod by the accurate mothod (Curves (a) and (c)) are decaying sinusoids at supply frequency and are \(90^{\circ}\) out of phase with each other. Uhen calculated by the approyimate method, on the other hand, each flux linkage has an initial step change (Curves (b) and (d)) followed by a oradual decay which agrees closely with the mean value of the corresponding sinusoid.

From Eqn. (4.1)
\[
p \Psi_{d}+\nu \Psi_{q}=v_{d}-r_{a}^{i} d
\]
or approximately \(v_{d}\), if \(r_{a} i_{d}\) is neglected. Curve ( \(g\) ) shows \({ }^{\prime}{ }_{d}\) as a slowly decaying curve. The quantity \(\mathrm{pq}_{\mathrm{d}}{ }^{\text {g (Curve (e) ) }}\) which is neglected in the approximete method, is seen to be of the
same order of magnitude as \(V_{q}{ }_{q}\). Curve ( \(h\) ) shows the quantity
\(-p \Psi_{q}+\nu \Psi_{d}=-v_{q}+r_{a} i_{q}\).

The value of \(v_{q}\) is nearly the same for both methods while again \(P \Psi_{q}\) is of the same order of magnitudo as \(V \Psi_{U^{\circ}}\). The curves for \(v_{d}\) and \(v_{q}\) show that, although the axis fluxos ascillate, the axis voltages are slowly changing unidirectional quantities.

Fig. 6.3 shows curves of \({ }^{\nu} \Psi_{d}\) for a time period longer than the fault time. After the fault is removed the accurate curve is again a decaying oscillation but now the approximate value is not the mean value of the accurate sinusoid as it was during the fault. This is because the two methocs yicld different results for the rotor angle at the instant of fault clearance and thus lead to different currents, torques and flux linkages when the generator is back on the system, Fig. 6.3 also shows the axis currents calculated by the two methods.

Figure 6.4 shows tho axis components of voltage, \(v_{d}\) and \(v_{q}\), and also the terminal voltage \(v_{m t}\). The 50 Hz oscillations in \(v_{d}\) and \(v_{q}\) initially after application and again initially after removal of the fault, are present when the numerical calculations take the \(r_{a}{ }^{i} d\) and \(r_{a} i_{q}\) terms into account. These terms are only appreciable for short periods when \(i_{d}\) and \(i_{q}\) are relatively large.

The variation of electrical torquc \(T_{e}\) according to Eqn. (4.11) appeas in fig. 6.5. The accurate method shows a 50 Hz oscillating torque with a first peak of about 4 p.u. while the approximate method shws \(T_{e}\) to decreace step-wise initially to about 0.15 p.u.

The mean value of the envelopes of the accurate solution, tends towards the value of the approximate curve after about 60 milli-secs. The semi-log plat of the envelope of \(T_{e}\) is a straight line and by extrapolating back to zero time, it is possille to find an initial value for the rapidly decaying unidirectional or mean torque Teu. The time constant of the decaying envelope is about 130 milli-seconds which agrees fairly well with the value of 125 milli-seconds which was calculated by using the expression \({ }^{1}\) for the armature time constant \(T_{a}\).

Fig. 6.6 shows the approximate value of \(T_{e}\), which has an initial step chance of \(0.7 \mathrm{p} . \mathrm{U}\). followed by a decay to a constant value 0.00 p.U., while the unidirectional torque \(T\) eu obtained by the accurate method has an initial value of about 0.68 p. U. Since \(T_{\text {eu }}\) is less than the shaft torque of 0.8 p.u. the machine is not retarded and no clear back suing is seen in Fig. 6.1.

\subsection*{6.2.2 Three-phase short-circuit at various systen conditions}

No site test results For a threemphase short circuit were available except those already given, but calculations were made for other conditions, and the results are shown below.

\section*{(a) Effect of Ieduced load}

Fig. 6.7(a) shows calculated curves similar to those of Fig. 6.1 butfor the case of 0.2 p. 4. active power and 0.6 p.u. reactive power. The back swing is now clearly visible. There is not only a significant difference in the amplitude of the first peak as calculated by the two methods, but also considerable phase shift during the
first few swings. The difference in the angle \(\delta_{f}\) when the fault is removed, is \(11^{\circ}\) on Fig. G.1 and \(12^{\circ}\) on Fig. 6.7(a).

The steady shaft torque of 0.2 p.u. is smaller than the unidirectional torque and the machine is temporarily retarded. The lower the steady pre-fault power level, the more severe is the back swing. At no load the angle swings only into the negative region.

\section*{(b) Effect of increased tie-Iine reactance}

Figure \(6.7(b)\) shows the effect of a transmission. Iine whoad reactance is ten times that of the Goldington system. In comparison with Fig. 6.7(a) the discrepancy between approximate and accurate calculations has increased and continues longer. With \(P=0.2\) p.u. and \(Q=0.6 \mathrm{p} . \mathrm{U}\). the larger tie-line reactance requires increased excitation and higher terminal volts. Hence the airgap flux, which is trapped when the short circuit occurs is larger and the initiol transient losses and the initial unidirectional torque are increased.

\section*{(c) Effect of reduced inertia}

The results of fige \(6.7(b)\) were recalculated for a roduced inertia constant of 3 sec. which is slightly lower than that of a modern 600 flw turbomalternator. The results are shoun in Fig. 6.7(c) The back swing lasts for the ontire fault period of 0.38 secs., the difference in \(\delta_{f}\) between the two methods in now about 22 degrees and the amplitude error is also larger. The phenomenon of lower inertia permitting a larger back swing supports the results shown in the next section.

\subsection*{6.2.3 Detailed assessment of the back swing}

The curves in Fig. 6.8 apply to the system condition of Sect. 6.2.2(c) and show the torque, the slip, and the load angle when the calculation is made with the accurate and aporoximate methods.

According to the approximate method the slip increases from zero when the fault is appliod because the prime move! torque is larger then the armature copper loss torque by itself. Upon removal of the faults the slip decreases again. Hence the load anglo \(\bar{b}\) increases initially and reaches a maximum when the slip is zero.

On the othor hand, the accurate method shows the first peak of the pulsating electromagetic torque \(T_{e}\) to rise to about 5.4 Pou. while the turbine output \(T_{\text {in }}\) is only about 0.2 pou. Figure 6.9 shows the variation of the unidirectional torque \(T_{\text {ew }}\) which has an initial value of about 0.68 p.u。 which is larger than the shaft torque of 0.2 p.u. and hence the reterdation or back swing occurs. It is significant that the initial value of \(T_{\mathrm{e}}\) for these system conditions is about the same as for the original conditions of the site test (5ect. 6.2.1). However the different effects of \(T_{\text {ou }}\) depend on the pre-fault shaft torque and the machine inortia. Fig. 6.9 also shows the step decrease in the approximately calculated value of \(T_{e}\). A semi-log plot of the tarque envelope of Fig. 6.6 is again a straight line with a time consiant of 135 mili-seconds. This value corresponds to that found in Sect. G.2.l since the armature and field circuits are the same for the two conditions while the fault is on.

The variation of \(T_{e}\) when the fault is removed is shown in Fig. 6.10 for various values of fault time. It is seen that after
fault removal, \(T_{e}\) invariably first goes neqative due to synchronising power from the infinite bus.

In addition to factors like pre-fault load, excitation level and inertia, the amount of back swing is increaser whon the feult is closer to the machine and thus permits a larger ermeture shortcircuit current and lossos. Tho duration of tho unidirectional torque is also affected by such quentities as armature resistance and the field and dampur winding time constants.

\subsection*{6.3 Results for a Micro-machine System}

Three-phase faults were applied to the c.w. r. micro-machino system of Fig. 5.4 on the transmission line side of the simulated transformer. No governor or a.v.r. is used in this section, digital computations are used to verify the rosults using the accureto method doscribed in Soct. 4.2 but not allowing for saturation.

Figure 6.11 shows the accurately calculated as woll as the measured suing curve for the micro-alternator when the field is cxciteci directly from a steady battery supply. The agrecment is good apart from some discrepancy during the first swing, which may be due to other losses not allowod for.

Figure 6.12 shows the accurately calculated swing curve for a reducod field rosistance and the measured curve when tho t.c.r. (see Sect. 5.3.2) was used. The eiscropancy between calculated and test results of Fig. 6.12 is too large to havo boen ceused by uncertainty of tho parameters. Closer investigation of the recordings of the alternator fiuld current and the toc.r. oxciter
output voltage \(V_{e}(s e e F i g .5 .5)\) showed that the exicting \(t, c . r\). was not responding fast enough when applying and removing the short circuit, especially when close to the altornator. In practice this meant that the effective field resistance was not being kept constant at the value \(R_{f b}\) as used in the calculations.

The exciter output voltage \(V_{0}\) should respond in such a way that under all conditions the power dissipation \(i_{f}^{2} R_{f}\) is supplied by the exciter set. However, due to the slow response of \(V_{0}\) after application of the fault, a certain amount of the \(i_{f}^{2} R_{f}\) loss is not supplied from the exciter but is draun from the kinetic energy of the alternator's rotating rotor. This effoctively decreases the available accelersting torque from the prime movor and makes the braking effect larger. A similar effect in the reverse direction occurs when the fault is subsequently removed. The test curve of Fig. 6.12 shows a larger and longer back suing and a highor peak value of \(\delta\) after the fault has been romoved, thus confirming tho above deductions.

Thet.c.r. had previously been used for less severe conditions than the short circuit. plans are in progress to replace the rotating machine type of to. r. by one using transistors.

It is interesting to note that the calculated curves of Figs. 6.11 and 6.12 show the difference between a typical small laboratory machino with a high ficld resistance (Fig. 6.ll) and a typical large alternator with a low field resistance (Fig. 6.12). The results indicate the type and magnitude of error invalved when conclusions draun from a small commerial machine are extended to
a large practical machine.

According to tho calculated curves of Fig. 6.13 the unidirectional torque is initially of similar magnitude for woth values of field resistance, but derays more rapidly with high ficld resistance.


Fig. 6.1 Lond angle after a short;-circuit on the Goldington system.
\(T=0.8\) p. u., \(\quad\) = 0.6 p. u., \(H=5.3 \mathrm{sec}\).
Curves: (a) Test, (b) Accurate method (c) Aprox. method.


Fig. 6.2 Flux linkages for the Goldington generator.
\[
P=0.8 \mathrm{p}_{.} u_{0}, \quad Q=0.6 \mathrm{p}_{0} u_{0}
\]
\begin{tabular}{|c|c|}
\hline Accurate method. Curve. & Approximate method, Curve. \\
\hline \[
7 \psi_{a}-p \psi_{q} \quad 1 h
\] & \\
\hline 才过 a & b \\
\hline \(\rightarrow \psi_{\mathrm{L}} \quad\) c & d. \\
\hline p d & . \\
\hline \(n \psi_{q} \quad f\) & \\
\hline \(\checkmark \psi_{\underline{a}}+p \varphi_{\alpha}{ }^{\prime} g\) & \\
\hline
\end{tabular}

(a) Accurate nethod; (b) Approximate method.


Fig. 6.4 Goldington system
Curves: (a) \(\mathrm{v}_{\mathrm{q}}\) (acc.), (b) \(\mathrm{v}_{\mathrm{d}}\) (acc.)



FHE. 6.6
Goldington system.
Curves:
(a) Steady shaft torque (b) \(T_{e u}\) (accurate method)
(c) \(T_{e}\) (apororimate method)

\(\mathrm{H}=5.3\)
Fig. 6.7 Galdington system for various conditions. \(P=0.2\) P.U., \(Q=0.6\) p.u.
Accurate;
Approximate.



Curves: (a) \(\mathbb{T}_{e}\) (b) slin (acc.) (c) \(\delta\) (acc.) (a) slip (app.) (e) \(\delta\) (app.)




Fig. 6.1I Load angle after a short circuit on the micro-machine operating without a t.c.r.
\(P=0.32\) p.u. and \(Q=-0.13\) p.u, at infinite bus;
- Test curve; - . - . Computed curve.



Fig. 6.13
Jiicro-machine calculations.
(a) Effective field resistance of 3 ohm (with t.c.r. )
(b) Effective field resistance of 27 ohm(without t.c.r.)

Curves: (A) \(\mathrm{T}_{\mathrm{e}}\) (acc.); (B) \(\operatorname{slip}(a c c\).
(C) Envelope of slip curve.
(D) Unidirectional torue (acc.)
(E) Unidirectional torque (app.)

\section*{CHAPTER 7}

\section*{7. NUPERICAL INTEGRATION TECHNIQUES}

\subsection*{7.1 General}

The transient response of a synchronous machine is described by non-linear equations which can be solved by using a numerical method and a fast computing aid. The time taken to solva the equations is therefore directly related to their complexity, the order of the numerical method and the speed of the computing device. This chapter presents the results of studies about the accuracy and overall digital computer time, when various integration routines are used to solve the machine and system equations.

The solution of an "integrable variable" (IV) is found by integrating the derivative of the variable, for which the expression is a differential equation in terms of other system variables. The solution of a "non-integrable variable" (NIV) is found by calculating its value from an algebraic expression in terms of other system variables.

The "approximate method" (see Sect. 4.2.2) uses algebraic equations (4.11) to (4.13) and (4.17) to (4.21) in conjunction with differential equations (4.14) to (4.16) and the dynamic equation of motion (4.23). \(\Psi_{k d} \Psi_{k q} \Psi_{f}\) and \(\delta\) are obtained from the differential equations by a relatively simple step-by-step method of integration.

The "accurate method" (see Sect. 4.2.3) uses algebreic equations (4.11) to (4.13), (4.21), (4.24) and (4.25) in conjunction with dif-
ferential equation (4.26) and the dynamic equation of motion (4.23). \(\Psi_{k d}, \Psi_{k q}, \Psi_{f}, \delta, i_{d}\) and \(i_{q}\) are obtained from the differential equations by a complicated numerical method of integration.

In the practical system at Goldington, the machine is equipped with an automatic voltage regulater and the prime mover has a governor. These regulating dovices have additional differcntial equations of both first and second ordor as explained in Sect. 5.2.

Soveral methods of solution were used for the Goldington system. Using the experience so gained, calculations for the cow.r. micromachine were workod out to reduce the computer time. The micro-machine had no regulator or govornor, but they could readily bo included.

\subsection*{7.2 Plethods of solution for the Goldington system}

\subsection*{7.2.1 Tho approximate method}

The socond order differential equation of motion can be rea ranged as suggosted by Crary \({ }^{24}\). Whon tho approximate method is used to represent the machine, the additional differential equations can also be rearangod in a form suitablo for the trapezoidal rule of integration. This rule consists of adding the product of \(\Delta t\) and \(Y_{n}\) (the slope of \(y\) at \(t_{n}\) ) to \(y_{n}\) in ordor to find \(y_{n+1}\). The approximate curve in Fig. G.l has beon calculated in this way, using a time stop of 0.001 soc . and the ratio of computer exocution time to real time of 3 seconds, is approximately 14.1 (the CR ratio) on an I日M 7090 digital computer. The meximum step length is limited by tho foedback circuits of the control mochanisms rathor than by the
machine equations. This is the simplest method of solving the approximate representation of such a single machine system.

\subsection*{7.2.2 The accurate method}

When the accurate method is used, it is possible to "arrange" the equations and the sequence of the solution in soveral ways to suit the particular numorical method of integration.

The terms "method of integration" or "integration routine" refer to Euler's trapozoidal method, the Runge-Kutta method, or the Kutta-Merson method. By "arrangement" is meant the arranging or grouping togethor of certain equations in a form most suitable for a particular method of integration. As an example, Fig. 7.l shows an arrangement where the machine's five differential equations (Eqn. 4.26) are grouped together in a "block" and solved by the method of .Runge-Kutta while the turbine, a.v.I., torque and load angle equations are arranged or grouped into threc other "blocks" and solved by the trap \(\quad z o i d a l\) method.

Only one arrangemont was us'd in tho study of the Goldington system but two methods of integrating the machine's differential equations wore investigated, viz. a fourth order Runge-kutta and a fifth order Kutta-Merson method. During the solution the fifth order method providos information which may be used to adjust the time step and hence decrease the CR-ratio even further. However, a fixed value of time step was used for both methods for comparative purposes.

The main feature of fig. 7.1 is that one of these higher order


Fig. 7.1 Flow chart for a short circuit calculation (accurate method).


Fig. 7. 2 Load angle curves for micro-machine system as computed by various fumerical techniques. (see Table 7.1)

Approximate method
(a) \(\Delta t\) of 0.0005 to
0.01 sec.
(d) \(\Delta t=0.035 \mathrm{sec}\).

Accurate method (Arrangement. . I)
(b) \(\Delta t=0.005\)
(c) \(\Delta t=0.0005\) to 0.001 sec.
integration routines is applied only to the block labelled 'PLANT'. At the end of each step, the solution transfers to the main program and the algebraic quantities (NIU's) are calculated while the differentiel equations of motion , and the equations of the turbine and governor and of the automatic voltage regulator are solved by the first order trapozoidal method.

The accurate curve of Fig. 6.1 was calculated according to the flow chart in Fig. 7.1 while using a Kutta-Merson routine with a time step of 0.0002 sec . The step length may be increased but accuracy would be lost. A Runge-Kutta routine required a time step of 0.0001 sec. to ronder the same accuracy. The CR-ratio using Kutta-Merson on the IBM 7090 was approximately 80 while it was 30 on an IEM \(7094-11\) computer. However this ratio may be improved significantly by using Predictor-Corrector methods (see Sect. 7.3) to solve the differential equations in 'PLANT' sinco tho major portion of computer timo is spent on this subprogram.

\subsection*{7.3 The Micro-machine System}

The micro-machino system of Sect. 5.3, which has no governor or automatic voltage regulator to add any additional differantial equations to those of tho machino, is used to examine the morits of different ways of arranging the computation.

\subsection*{7.3.1 The approximato method}

The oquation of motion can be rearranged and together with the othor algobraic equa ions of tho approximate method (sec Sect. 4.2.2) may then be solvod by tho trapezoidal method.

Curvo (a) in Fig. 7.2 has been calculated for the micro-machine with reduced fiold resistance, A comparison of tho CR-ratio, accuracy etce as a function of the stop length \(\Delta t\), appears in Table 7.1.

\subsection*{7.3.2 The accurate method}

As mentioned in Sect. 7.2.2 there are several possiblo ways in which the system equations may be arranged whon using the "accurate method" (sec Sect. 4.2.3). In this section the effect of various arrangoments is considered for the singlo micro-machine system having two types of equations viz, the differential equations for the IVis like \(i_{d}, i_{q}\) and the algebraic equations for the NIU's like torque and terminal voltage, as explained in Sect.4.2.3. The different arrangements are illustrated by the flow charts of figures 7.1 and 7.3.
(I) In Fig. 7.I the algebraic equations in the block named 'ALGEBRA' are kept separate from the differential equations in the block named 'PLANT'. The integrating routino (IR) solves the differential equatiuns in 'PLANT' after which the program transfers to 'ALGEBRA' where the NIV's are calculated. Some NIV's for examplo \(V_{b d}, V_{b q}\) and \(V_{\text {, }}\) appear on the right hand side of the IU equations in 'PLANT'. Since values for the NIV's are only calculated at the end of each step, the method assumes in effect that the values at the end of the ( \(n\) ) th step remain constant during the \((n+1)\) th step during which the \(I V\) equations in 'PLANT' are solved. Hence the solution of the NIV equations is always ore step behind that of the IV equations. In order to maintain accuracy,

Table 7.1 Ratios of computer time to real time.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Arrangement of equations} & \multirow[t]{2}{*}{Time step \(\Delta t\), secands} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { CR } \\
\text { ratio }
\end{gathered}
\]} & \multirow[t]{2}{*}{Accuracy within 1.09} & \multicolumn{2}{|l|}{Graphical display} \\
\hline & & & & Fig. & Curve \\
\hline \multirow[t]{5}{*}{Approximate Methad.} & 0.0005 & 2.710 & YES & 7.2 & a \\
\hline & 0.001 & 1.800 & YES & 7.2 & a \\
\hline & 0.005 & 1.055 & YES & 7.2 & a \\
\hline & 0.010 & 0.965 & YES & 7.2 & a \\
\hline & 0.035 & - & Mathm. Unstable & 7.2 & d \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
Accurate method. \\
Arrangement (1) \\
Figure 7.1
\end{tabular}} & 0.0005 & 8.312 & YES & 7.2; 7.4 & c \\
\hline & 0.001 & 4.712 & YES & 7.2, 7.4 & c \\
\hline & 0.005 & 1.828 & NO & 7.2, 7.4 & \(b\) \\
\hline & 0.010 & - & NO & 7.4 & a \\
\hline & 0.012 & - & Mathm. Unstable & 7.4 & d \\
\hline \multirow[t]{5}{*}{Arrangement (2) Figure 7.3} & 0.0005 & 13.758 & YES & 7.4 & c \\
\hline & 0.001 & 7.438 & YES & 7.4 & c \\
\hline & 0.005 & 2.360 & YES & 7.4 & c \\
\hline & 0.010 & 1.734 & NO(2\%) & 7.4 & c \\
\hline & 0.012 & - & Mathm。 Unstable & 7.4 & e \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Arrangement (3) \\
Figure 7.3 \\
with Predictor- \\
Carrectar method
\end{tabular}} & 0.0005 & 7.516 & YES & 7.4 & c \\
\hline & 0.001 & 4.322 & YES & 7.4 & c \\
\hline & 0.002 & 2.712 & YES & 7.4 & c \\
\hline & 0.005 & - & Mathm. Unstable & 7.4 & \(f\) \\
\hline
\end{tabular}
the solution has to use a ralatively small step length.
(2) An improvement on the arrangement of Fig.7.1 is that shown in Fig. 7.3 where the NIV and IV equations appear together in the 'PLANT' block. This moans that when the integrating routine solves the differentiel equetions at various intermediate stages within an interval \(\Delta t\), the algobraic calculations for new values of the NIV's are also performed.

In the execution of a digital computer program the Runge-Kutta routine transfers the execution through 'PLANT' four times during each intorval. Since tho major portion of computer time is spent by the integration routinc going through 'PLANT', a computation with the same time interval would generally increase the cR-ratio if the number of equations in 'PLANT' were increased. Howevor, in this particular example the results show that a longer interval may be used without forfeiting accuracy, since the NIV's and IV's are solved simultancously within each step.

In order to establish which arrangement required less overall computer time, the following computational test was performed using the Kutta-Merson routine. In Fig. 7.2 Curve (c) is the accurate numerical solution according to both arrangements. An appreciable error shown by Curve (b) is introduced when using the arrangement of Fig. 7.1 with a time step of 0.005 sec ., whereas the error is less than \(1 \%\) when the same time step is used in the arrangement of Fig. 7.3.

For \(\Delta t=0.005\) sec. the \(C R-r a t i o s\) are 1.828 and 2.36 respectively. However, the arrangement of Fig. 7.1 does not meat the requirement of \(1 \%\) \(-\)


Fig. 7.3 Flow chart for accurate solution when the algebraic and differential equations are solved simultaneously.


Fig. 7.4 Load angle curves for the micro-machine system as computed
by various numerical techniques (see Table 7.1)
\begin{tabular}{|c|c|c|c|}
\hline Arrangement & (1) & (2) & (3) \\
\hline & (a) \(t=0.01\) & (0) \(t=0.0005\) & (c) \(t=0.0005\) \\
\hline Gurves: & (b) \(t=0.005\) & to 0.01 & to 0.002 \\
\hline Ourves. & \(\left(\begin{array}{l}c) \\ \text { d) } \begin{array}{l}t=0.0005,0.001 \\ t=0.012\end{array}\end{array}\right.\) & \[
16
\] & \\
\hline
\end{tabular}
accuracy, and \(\Delta t\) must be reduced to 0.001 , for which the CR-ratio is 4.712. The results (see Table 7.1) of various computations show that the CR-ratio is not directly proportional to \(\Delta t\), because different parts of the program are differently related to \(\Delta t\).
(3) Whether Fig. 7.3 gives a smaller CR-ratio than Fig.7.I for the same eccuracy, depondis upon the number and complexity of the differential and algebraic equations. Depending upon the ratio of differential to algebraic equations, a lower CR-ratio may be achievod by the use of integrating routinos belonging to the Predictor-Corrector class. Such a routine would solve the oquations in 'PLANT' only once or twice during each stop, instead of four or five times.

The firth order Kutta-Merson method may be used as a starter for the fifth order Predictor-Corrector method of Hamming , When a discontinuity occors the solution is temporaril/ transferred back to Kutta-Merson for o fow steps after which Hamming takes over again。 Table 7.1 shows the comparative results of such an arrengement.

A \(4^{\text {th }}\) ordor Rungo-Kutta would not ive satisfactory as a starter for a higher order Predictor-Corrcctor miothod.

\subsection*{7.4 Resume of intogration methods and arrongements}

The results in Table 7.1 for the micromachine only are obtained from five basic differential oquations of the altornator plus two first order differential equations for the mechanical motion.

The CR-ratios do not includo compiłation time and therefore give some qualitative indication of the \(C R-r e t i o\) that could be expectod from an on-line computation assuming thet tho ontire program
is not compiled before every execution. For an accuracy of within \(1 \%\) the minimum CR-ratio is 0.965 when using the "approximato method" of sect. 7.3.1. The choice betwicen arrangements (2) and (3) deponds upon the equations of the particular system and has to be found by test runs. In the prosent study on the micromachine systum it is evident thet (2) is fastar when \(\Delta t=0.005 \mathrm{sec}\).

According to the approximato method the currents and flux linkages vary slowly in relation to the a.c. cycte while tho accurate method shows (see sect. 6.2) that these quantities contain a fundamental frequoncy component. This accounts for tho large difference in the time step required for the two methods.

Curve (d) in Fig. 7.2 and Curves (d), (e) and (f) in Fig. 7.4 show how rapidly mathematical instability occurs for the higher order integrating routines as \(\Delta t\) is incressed.

Further computations have shown that when arrangement (2) is used to solve the complete Goldington system, the ER-ratio is 3.5 when \(\Delta t=0.005\) sec.g while arrangement (3) produces a ch-ratio of 4.1 when \(\Delta t=0.002 \mathrm{sec}\). The fifth order Adems-Bashforth method was also used in arrangement (3) as a starter for the Hamming method but the CR-ratio was higher than when using kutta-llersori as a starter. Another possible way of reducing tho ch-ratio is to change the step length during the solution. However the step length of 0.005 sec. in arrangement (2) is already too largo to pormit the drawing of a smooth 50 Hz wave and stop length would have to bo decreased to 0.001 sec, for display purposes, in which case arrangement (3) becomes more useful.

\section*{PARTTHREE}
```

STABILITY PROBLEMS OF A SYNCHRONOUS MACHINE
WITH A DIVIDED UINDING ROTOR.

```

\section*{CHAPTER 8}

\section*{B. CALCULAIDONS OF TRANSIENT STAEILITY}

\subsection*{8.1 Instroduction}

Developments in electrical-supply systems have brought about a change in the conditions under which generators have to operate. During lightly loaded conditions, the gener: tor often hos a leading power factor because of increased charging currents in the modern high-voltege transmission networks, and may have to operate beyond the normal stability limit of the conventional synchronous machine. Moreover, the modern economic lerge turbo-generator sets have higher reactances and less inertia so that normal stable operation in the leading rejion is reduced.

The normal range of stable oneration of a generator with fixed excitation is sevorely linited at leading current if a reasonable margin is allowed, but it is well known that the range can be extended, by means of an automatic voltare rerulator (a.v.r.) acting on the single direct-axis field winding \({ }^{3}\) of a machise with a conventionally wound rotor (c.w.r.). Tho limitations of all such systems at light load however, has been uroved elsewhere \({ }^{4}\).

The use of a second field winding on the quadrature-axis of the rotor, was first suggested as a meens of improving the transient performance \({ }^{39}\). The idea of a quadrature axis requlated (q.a.r.) machine was pursued \({ }^{4}\) for steady operating conditions and a dramatic improvement in the steedy-state stability margin wes obtained when a suitable continuous feedback control signal (the rotor anole) was used to excite the q-axis winding. Another scheme to extend the range of steady-state stability and also to improve the transient stability,
has beon developed by the C.E.G.B. . In this scheme, the gonerator has a 'divided winding rotor' (d.wor.), that is, the rotor winding is divided into tuo soctions, one displaced from the other. One section which is called a "torque uinding" and parforms a similar function to the quedrature winding of Ref. 5, is excited by a feedback signal derived from the generator terminal load angle. The other section, called tho var-winding or reactive-winding, is excited by a voltage rogulator. In the light of the stability Jimitations of the c.w.r. machine, and the recent above mentioned developments of tho d.w.r. machineg it was decided not to pursue the statility studies of the former (see pART TWO) any further but rather to investigate the stability problems of the latter.

PART THREE of this thesis deals with tho stability problems, steady-state and transient, of such a dividec winding rotor machine. The equations are developed, following the generalized mechine theory, for the case of a ficld winding on the d-axis as well as on tho q-axis. The field windings of the d.w.r. machine are not neces-
 replace the physical field windings by two fictitious windings, one on each axis. Tho transient and steady-state performace of the d.w.r. machine is then studied by treating it as a fictitious G.a.r. machine. Steady-state stcbility computations arearroborated by test results on a new \(3 \mathrm{~kW} d . \mathrm{w} . \mathrm{r}\). micromachine (see Chapter 10) at Imperial College。

\subsection*{8.2 Transformations for the Field Uindings}

The divided winding arrangement can be accommodated in the conventional turbogenerator-rotor slots by using, instoad of the single conventional concontric typo winding, two double layer lapwindings. Fig. 3.1 is a winding diagram the 3 ku d.w.r. micromachine which wes designed to simulate a large d.w.r. turbo-alternator. The T-winding in Fig. B.1 is used as the torque-winding and \(R\) as the reactive-winding; the windings are identicol and symmetrical and the angle between their axes is 67.5 degrees.

A schemetic layout of the d. wor. machine appears in Fig. B. 2. Windings a,b,c, are the conventional three-phase stator windings while \(t\) and represent the torque- and reactive windings respectively. The damping effect is represented by the conventional kd- and kq-windings.

Fig. 8.3(a) shows the oquivalont generalized machine representation of the actual fiold coils \(r\) and \(t\). Fig. 8.3(c) shows two fictitious field coils fd, fa which are used in the follouing sections to replace mathematically coils \(r\) and \(t\). In a general case where \(N_{r} \neq N_{t}\), it is possible to use the same base quantities for the various field coils by reducing them to equivalent coils with equal numbers of turns. In a per unit system where
\[
\begin{equation*}
N_{f d}=N_{f q}=N_{t} \tag{8.1}
\end{equation*}
\]
only the r-coil need be replaced
by en equivalent coil \(r_{\text {eq }}\) as shown in Fig. 8.3(b), such that
\[
i_{r e q}=i_{r} N
\]
where
\[
\begin{equation*}
N=N_{r} / N_{t} \tag{8.2}
\end{equation*}
\]


Fig. 8.1 Divided rotor winding of the micromschine.


Fig. 8.2 Schematic layout of divided winding rotor generator.


Fig, 8.3 Equivalent diagram of the d.w.r. field windings with rotating armature and stationary field.
(a) Actual field windings \(r\) and \(t\).
(b) Actual winding \(t\) and equivalent winding \(r_{e q}\).
(c) Fictitious field windings fd and fa.

The effert of saturation is neglected in the following transformations. The sign convention is according to that of Ref. 22 whore positive applied voltage causes positive current to flow which produces positive M.f.F. and flux linkage outwerds along the coil axis in Fig. 8.3.

\subsection*{8.2.1 The current trensformetion}

The axis ficle currents \(i_{f d}\) and \(i_{\text {fq }}\) are defined as the currents in fictitious coils, located on the ayes, which would set up the same rotor M.fi.r. wave as the actual field currents \(i_{t}\) and \(i_{r}{ }^{\circ}\)

The maximum of the sinusoidal M.M.F. wave duc to the current \(i_{t}\) in coil \(t\) of Fig. 8.3 is proportional to \(i_{t}\) and occurs at the axis of the coil; that is at the angular position \(\varnothing_{t}\). The inal.F. wave due to \(i_{t}\) may be resolved into two components, one along each of the direct and quadrature axes. The amplitude of the direct-axis component is \(i_{t} \cos \emptyset_{t}\) and the amplitude of the quedratureaxis component is \(-i_{t} \sin \emptyset_{t}\).

The direct-axis component of the resultant rotor M. \(\mathrm{H} . \mathrm{F}\), wave due to the combined action of the \(r\) and t-coil currents, is equal to the amplitude of the M.M.F. wave due to the current \(i_{\text {fd }}\) in the direct-axis field coil. Henco \(i_{f d}\) is given by
\[
\begin{equation*}
i_{f d}=i_{t} \cos \emptyset_{t}+N i_{r} \cos \emptyset_{r} \tag{8.3}
\end{equation*}
\]

Similarly the quadrature-axis field current \(i_{f q}\) is given by
\[
\begin{equation*}
i_{f Q}=-i_{t} \sin \nmid=N i_{r} \sin \phi_{r} \tag{8.4}
\end{equation*}
\]

The "transformation" equations giving the fictitious currents in terms of the actual currents are therefore oxpressed by the
following matrix equations;

\(=\)\begin{tabular}{|c|c|}
\hline \(\cos \phi_{t}\) & \(N \cos \phi_{I}\) \\
\hline\(-\sin \phi_{t}\) & \(N \sin \phi_{r}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline\(i_{t}\) \\
\hline\(i_{r}\) \\
\hline
\end{tabular}

The aquetions of the "inverse transformation", giving the actual currents \(i_{t}, i_{r}\) in terms of the fictitious currents \(i_{f d}\), \(i_{\text {fq }}\), are obtained by solving the above equations.

where \(\lambda=\sin \left(\not \emptyset_{t}+\not \emptyset_{r}\right)\)

\subsection*{8.2.2 The voltage transformations}

In the units choson, the pouer dissipation of the fictitious coils is the same as for the actual coils. Hence
\[
\begin{equation*}
v_{r}^{i} r+v_{t}^{i} t=v_{f d^{i}} f_{d}+v_{f q^{i}} \tag{8.8}
\end{equation*}
\]

By substituting the expressions for tho currents given by Eqns. ( 8.5 ) and (0.6), it can be shown that the voltage transformation equations are


The oquations of the inverse trensformation are:

\begin{tabular}{|c|}
\hline\(v_{f d}\) \\
\hline\(v_{f q}\) \\
\hline
\end{tabular}

\subsection*{9.3 Goneral Equations for the D.W.R. machine}

The dew.r. machine is studied by using the gencralized mechine theory \({ }^{22}\) and taking account of the additional field winding on the \(q\)-axis. It is assumed that there is no saturetion. Speed changes are allowed for in tho voltege equations as woll as tho \(p^{\Psi} d\) and \(P^{\Psi} q\) terms.

\subsection*{8.3.1 Basic equations}

The fundemental equations for the machine only are as follows:
\[
\begin{align*}
& v_{d}=p \Psi_{d}+v_{q}+r_{a} i_{d}  \tag{8.11}\\
& v_{q}=v \Psi_{d}+p \Psi_{q}+r_{a}^{i}  \tag{8.12}\\
& v_{f d}=\left(r_{f d}+\left(L_{m d}+L_{f d}\right) p\right) i_{f d}+L_{m d} p i_{d}+L_{m d} p i_{k d}  \tag{8.13}\\
& v_{f q}=\left(r_{f q}+\left(L_{m q}+L_{f q}\right) p\right) i_{f q}+L_{m q} \cdot p i_{q}+L_{m q} \cdot p i_{k q}  \tag{8.14}\\
& v_{k q}=0=L_{m q} \cdot p i_{f d}+\left(r_{k d}+p\left(L_{m d}+L_{k q}\right)\right) i_{k d}+L_{m q} p i_{d}  \tag{8.15}\\
& v_{k q}=0=\left(r_{k q}+\left(L_{m q}+L_{f q}\right) p\right) i_{k q}+L_{m q} \cdot p i_{q}+L_{m q} \cdot p i_{f q} \tag{8.16}
\end{align*}
\]
for the voltages, and
\[
\begin{align*}
& \Psi_{d}=L_{m d^{i}} f d+L_{m d^{i}}{ }_{k d^{+}}+L_{d d^{i} d}  \tag{8.17}\\
& \Psi_{q}=L_{m q} i_{f q}+L_{m q} i_{k q}+L_{q q} i_{q}  \tag{8.18}\\
& \Psi_{k d}=L_{k k d} i_{k d}+L_{m d} i_{f d}+L_{m d} i_{d}  \tag{8.19}\\
& \Psi_{k q}=L_{k k q} i_{k q}+L_{m q} i_{f q}+L_{m q} i_{q}  \tag{8.20}\\
& \Psi_{f d}=L_{f f d^{i} f d}+L_{m d_{d}}+L_{m d} i_{k d}  \tag{0.21}\\
& \Psi_{f q}=L_{f f q}{ }^{i} f q+L_{m q}{ }^{i} q+L_{m q} i_{k q} \tag{8.22}
\end{align*}
\]
for the flux linkages,
while the electramagnetic torquo is given by Eqn. (4.11),

If during a step of the calculation, \(i_{f d}\) etc. are obtained using the axis equations, they are readily transformed to \(i_{I_{r}} i_{t}\) ect. by the transformation equations and used in tho regulator equations: or vice versa.

\subsection*{8.3.2 Equivalont circuits and operational impedances.}

Figure 8.4 shows two quivalent circuits, one for each axis, wh. ch con be used to assist in the analysis of the d.u.r. synchronous machinc. The quantities in the network of fig. 8.4(a) satisfy Eqns. (8.13), (8.15) and (8.17), and the quentities in the network of fig. 8.4(b) satisfy Eqns. (8.14), (8.16) and (8.18).

The expressions for \(\Psi_{d}\) and \(\Psi_{q}\) can be written as
\[
\begin{align*}
& \Psi_{d}=\frac{x_{d}(p)}{\omega} i_{d}+\frac{G_{d}(p)}{\omega} v_{f d}  \tag{8.23}\\
& \Psi_{q}=\frac{X_{q}(p)}{\omega} i_{q}+\frac{G_{q}(p)}{\omega} v_{f q} \tag{8.24}
\end{align*}
\]

(b) Quadrature axis

Fig. 8.4 Equivalent circuits of a d.w.r. synchronous machine.
where
\[
\begin{align*}
& x_{d}(p)=\frac{\left(1+T_{d}^{\prime} p\right)\left(1+T_{d}^{\prime \prime} p\right) x_{d}}{\left(1+T_{d o}^{\prime} p\right)\left(1+T_{d o}^{\prime \prime} p\right)}  \tag{8.25}\\
& x_{q}(p)=\frac{\left(1+T_{q}^{\prime} p\right)\left(1+T_{q}^{\prime \prime p}\right) x_{q}}{\left(1+T_{q o}^{\prime} p\right)\left(1+T_{q o}^{\prime \prime} p\right)}  \tag{8.26}\\
& G_{d}(p)=\frac{\left(1+T_{k d^{p}} p\right)}{\left(1+T_{d o}^{\prime} p\right)\left(1+T_{d o}^{\prime \prime} p\right)} \cdot \frac{x_{m d}}{r_{f d}}  \tag{8.27}\\
& G_{q}(p)=\frac{\left(1+T_{k q^{p}}^{p}\right)}{\left(1+T_{q o}^{\prime} p\right)\left(1+T_{q o}^{\prime \prime} p\right)} \cdot \frac{x_{m q}}{r_{f q}} \tag{8.28}
\end{align*}
\]

\subsection*{8.3.3 Fundamontal machine constants}

Listed below are some of the generalized machine theory quaxis constants which differ from the values given in Ref. 22.
\[
\begin{aligned}
& T_{q 0}^{\prime}=\frac{1}{\omega \Gamma_{f q}}\left(X_{f q}+x_{m q}\right) \\
& \text { = quadrature-axis transient open-circuit time constant. } \\
& T_{q}^{\prime}=\frac{1}{\omega r_{f q}}\left(X_{p_{q}}+\frac{x_{m q} x_{a}}{x_{m q}+x_{a}}\right) \\
& =\text { quadrature-axis transient short-circuit time constant. } \\
& T_{q 0}^{i 1}=\frac{1}{\omega r_{k q}}\left(x_{k q}+\frac{x_{m q} X_{f q}}{x_{m q}+x_{f q}}\right) \\
& \text { = quadrature-axis subtransiont open-circuit time constant. } \\
& T_{q}^{\prime \prime}=\frac{1}{\omega r_{k q}}\left(x_{k q}+\frac{x_{m q} x_{f q} x_{a}}{x_{m q} x_{a}+x_{m q} x_{f q}+x_{a} x_{f q}}\right) \\
& =\text { quadraturo-axis subtransient short-circuit time constant. }
\end{aligned}
\]
\[
\begin{aligned}
& T_{k q}=\frac{x_{k q}}{\omega r_{k q}} \\
& \text { = quadrature-axis damper leakage time constant. } \\
& x_{q}^{\prime}=\frac{x_{q}^{\prime} q_{q}^{\prime}}{T_{q 0}^{\prime}}=x_{a}+\frac{x_{m q} x_{f q}}{x_{m q}+x_{f q}} \\
& \text { = quadrature-axis transient reactence } \\
& x_{q}^{\prime \prime}=\frac{x_{q}^{\top} q^{\prime \prime}}{T_{q 0}^{\prime} T_{q 0}^{\prime \prime}}=x_{a}+\frac{x_{m q} x_{f q} x_{k q}}{x_{m q} x_{f q}+x_{m q} x_{k q}+X_{f q} X_{k q}} \\
& =\text { quadrature-axis subtransient reactance. }
\end{aligned}
\]

\subsection*{8.4 Parameters of the fictitious Field Windings}

During a step of tho computation, the excitation voltages \(v_{r}\) and \(v_{t}\) are transformed to \(v_{f d}\) and \(v_{f q}\) which are substituted in the basic machine equetions. It is therefore necessary to know the numorical values of the following fd, fa parameters which can bo celculated either by transforming known \(r, t\) parameters, or from experiments described in Sect. l0.1.2;
\[
I_{f d^{\prime}} L_{f f d}{ }^{I_{f q}}, L_{f f q} \text { in Eqns }(8.13),(8.14),(8.21) \text { and }(8.22) .
\]

The "parameter trarsformation" can be found by transforming the following \(r, t\) voltago expressions into fd, fq quantities:
\[
\begin{align*}
& v_{I}=\left(r_{I}+L_{I I} p\right) i_{I}+N L_{m t \Gamma}{ }^{p i_{t}} \quad \text { ) }  \tag{8.29}\\
& \left.v_{t}=\left(r_{t}+L_{t t^{p}}\right) i_{t}+N L_{m t r}^{p i_{I}} \quad\right)
\end{align*}
\]
where \(L_{r y}, L_{t t}\) is the complote \({ }^{22}\) inductance of windings \(r, t\) and \(L_{m t r}\) is the mutual inductance between windings \(r_{e q}\) and \(t\).

Eqns. (3.29) can be rewritten as
\[
[v]_{r, t}=[z]_{r, t}[i]_{r, t}
\]
where the r,t-impedance matrix is


The current and voltage transformation Ens. (8.6) and (8.9) are used to find the fd, fo -impedance m trix (8.30)
\([z]_{f d, f q}=\)\begin{tabular}{|c|c|}
\(f d\) & \(f q\) \\
\hline\(r_{f d}+L_{f f d} p\) & 0 \\
\hline 0 & \(r_{f q}+L_{f f q}\) \\
\hline
\end{tabular}
where
\[
\begin{align*}
& r_{f d}=\left(r_{r e q} \sin ^{2} \emptyset_{t}+r_{t} \sin ^{2} \emptyset_{r}\right) / \lambda^{2} \\
& r_{f q}=\left(r_{r e q} \cos ^{2} \varnothing_{t}+r_{t} \cos ^{2} \varnothing_{r}\right) / \lambda^{2} \\
& L_{f f d}=\left(L_{r r e q} \sin ^{2} \phi_{t}+L_{t t} \sin ^{2} \not \phi_{I}+L_{m t r} \sin \left(\phi_{I}+\not \phi_{t}\right)\right) / \lambda^{2} \\
& L_{f f q}=\left(L_{r r e q} \cos ^{2} \not \phi_{t}+L_{t t} \cos ^{2} \not \phi_{r}-L_{m t r} \cos \left(\phi_{r}-\not \phi_{t}\right)\right) / \lambda^{2}  \tag{8.31}\\
& r_{r e q}=r_{I} / N^{2} \\
& L_{\text {req }}=L_{r r} / N^{2}
\end{align*}
\]

\subsection*{8.5 Equations for a Transiont Disturbence}

Tho basic syotem being considered is the single machine case shown in Fige 2.1 except that the alternator is a dow.r. machine. As in the analysis of the cow.r. machine of sect. 4.2 , there is a "standard method", an "appro:imate method" and an "accurate method" of solution. Only tho "approximate" and "accurate" muthods aro studiod hore in deteil.

\subsection*{8.5.1 The approximate method}

The assumptions of Sect. 4.2 .2 are veiid and the \(p \Psi{ }_{d}\) and \(p \Psi_{q}\) terms are neglected.

It may bo seen from Appendix II that when the secondary currents \(i_{f d}\) and \(i_{k d}\) aro eliminated from Eqns. (8.17), (8.19) and (3.21), the flux linkage is obtained as
\[
\begin{equation*}
\omega \Psi_{d}=X_{d}^{\prime \prime} i_{d}+\omega\left(X_{d}^{\prime \prime}-X_{a}\right)\left(\frac{\Psi_{f d}}{X_{f d}}+\frac{\Psi_{k d}}{X_{k d}}\right) \tag{8.32}
\end{equation*}
\]
(comparo Eqn. (4.12)).

Similarly, if \(i_{f q}\) and \(i_{k q}\) are eliminated from Eqns \((B .13),(8.20)\) and (8.22)
\[
\begin{equation*}
\omega \Psi_{q}=X_{q}^{\prime \prime i_{q}}+\omega\left(X_{q}^{\prime \prime}-X_{a}\right)\left(\frac{\Psi_{f q}}{X_{f q}}+\frac{\Psi_{k q}}{X_{k q}}\right) \tag{8.33}
\end{equation*}
\]
(comparo Eqn. (4.13))

When tho "approximate mothod" is used, the damping torque can not be separated from the total electromagnetic torque but is automatically teken care of by the rate at which the secondery flux linkages \(\Psi_{f d}, \Psi_{f q}, \Psi_{k d}\) and \(\Psi_{k q}\) are allowed to change. When the four secondery currents \(i_{k d}, i_{k q}, i_{\text {fd }}\) and \(i_{f q}\) are eliminated from the basıc equations (see Appendix II), the oxpressions for the rates
of change bocome:-
\[
\begin{align*}
P_{f d}=v_{f d} & +\frac{1}{T_{d o}^{\prime}}\left[\frac{\left(x_{d}^{\prime \prime}-x_{a}\right)}{\left(x_{d}^{\prime}-x_{a}\right)}\left[\frac{x_{m d^{i} d}}{\omega}+\frac{x_{m d^{\Psi}} \Psi_{d d}}{x_{k d}}\right]\right. \\
& -\Psi_{f d}\left(1+\frac{\left(x_{d}^{\prime \prime}-x_{a}\right) x_{m d}}{x_{k d} x_{f d}}\right] \tag{8.34}
\end{align*}
\]
(compare Eqn. (4.16))
\[
\begin{align*}
p_{f q}= & v_{f q}+\frac{1}{T_{q q}^{\prime}}\left[\frac{\left(x_{q}^{\prime \prime}-x_{a}\right)}{\left(x_{q}^{\prime}-x_{a}\right)}\left[\frac{x_{m q}^{i}}{\omega}+\frac{x_{m q} \Psi_{k q}}{x_{k q}}\right]\right. \\
& \left.-\Psi_{f q}\left[1+\frac{\left(x_{q}^{\prime \prime}-x_{a}\right) x_{m q}}{x_{k q} x_{f q}}\right]\right]  \tag{8.35}\\
p_{k d}= & \frac{1}{T_{d o}^{\prime \prime}}\left[\frac{\left(x_{d}^{\prime}-x_{a}\right) i_{d}}{\omega}+\frac{\left(x_{d}^{\prime}-x_{a}\right) \Psi_{f d}}{x_{f d}}-\Psi_{k d}\right] \tag{8.36}
\end{align*}
\]
(compare Eqn. (4.14))
\[
\begin{equation*}
p \Psi_{k q}=\frac{1}{T_{q 0}^{\prime \prime}}\left[\frac{\left(x_{q}^{\prime}-x_{a}\right) i_{q}}{\omega}+\frac{\left(x_{q}^{\prime}-x_{a}\right) \Psi_{f q}}{x_{f q}}-\Psi_{k q}\right] \tag{8.37}
\end{equation*}
\]
(compare Eqп. (4.15))

The ralationship betweon the voltage behind subtransiont reactance and tho machine terminal voltege is (seo sect. 4.2.2)
\[
\left.\begin{array}{l}
u_{m t d}=r_{a}^{i} d+x_{q}^{\prime \prime i_{q}}+v_{d}^{\prime}  \tag{8.38}\\
u_{m t q}=r_{a} i_{q}+x_{d}^{\prime \prime i_{d}}+v_{q}^{\prime \prime}
\end{array}\right\}
\]
where \(v_{d}^{\prime \prime}\) and \(v_{q}^{\prime \prime}\) for a d.u.r. machine are given by:
\[
\begin{align*}
& v_{d}^{\prime \prime}=-5 x_{q}^{\prime \prime i}+\left(x_{q}^{\prime \prime}-x_{a}\right) \omega(1-5)\left[\frac{\Psi_{f q}}{x_{f q}}+\frac{\Psi_{k q}}{x_{k q}}\right]\{\text { ) } \\
& v_{q}^{\prime \prime}=5 x_{c 1}^{\prime \prime i_{d}}-\omega(1-5)\left(x_{d}^{\prime \prime}-x_{a}\right)\left[\frac{\Psi_{f d}}{X_{f d}}+\frac{\Psi_{k q}}{x_{k d}}\right] \quad\{ \tag{8.39}
\end{align*}
\]
(compare Eqn. (4.18))

The relationship between tho terminal voltage and tho infinite bus voltage \(v_{b}\) is given by Eqns. (4.19) and (4.20) as
\[
\begin{align*}
& v_{m t d}=\sqrt{2} v_{b d}-R i_{d}-\frac{x}{\omega} v i_{q}  \tag{4.19}\\
& v_{m t q}=\sqrt{2} v_{b q}-R i_{q}+\frac{x}{\omega} v i_{d} \tag{4.20}
\end{align*}
\]

The step-by-step solution of a transient disturbance can be computed as follows:-

\section*{Steady-State Conditions}

From a knowledge of the active and reactive power at the machino terminils, it is possible to find the bus power factor, -laad angle and voltage. Tho values of \(i_{d}, i_{q}, v_{q}^{\prime \prime}, v_{d}^{\prime \prime}\) are found from Eqns. (4.19), (4.20) and (8.38). Under steady-state conditions, \(p \Psi_{f d}=p \Psi_{f q}=p \Psi_{k d}=p \Psi_{k q}=0\). Using Eqns. (8.34) to (8.37), the steady-state values of the secondary flux linkages are:-
\[
\begin{align*}
& \Psi_{f d o}=T_{d o}^{\prime} v_{f d o}+\frac{x_{f d}\left(x_{d}^{\prime \prime}-x_{a}\right)}{\omega}\left[\frac{1}{\left(x_{d}^{\prime}-x_{a}\right)}+\frac{1}{x_{k d}}\right]^{i_{d o}}  \tag{8.40}\\
& \Psi_{f q o}=T_{q o v_{f q o}^{\prime}}+\frac{x_{f q}\left(x_{q}^{\prime \prime}-x_{a}\right)}{\omega}\left[\frac{1}{\left(x_{q}^{\prime}-x_{a}\right)}+\frac{1}{x_{k q}}\right] i_{q o} \tag{8.41}
\end{align*}
\]
\[
\begin{align*}
\Psi_{k d o} & =\left(\frac{x_{d}^{\prime}-x_{a}}{\omega}\right) i_{d o}+\left(\frac{x_{d}^{\prime}-x_{a}}{x_{f d}}\right) \Psi_{f d o}  \tag{8.42}\\
\Psi_{k q o} & =\left(\frac{x_{q}^{\prime}-x_{a}}{\omega}\right) i_{q 0}+\left(\frac{x_{q}^{\prime}-x_{a}}{x_{f q}}\right) \Psi_{f q 0} \tag{8.43}
\end{align*}
\]

In Eqn. (8.39), \(\Psi_{k d}\) and \(\Psi_{k q}\) are replaced by their valucs from Eqns. (8.42) and (8.43). \(v_{q}^{\prime \prime}\) and \(v_{q}^{\prime \prime}\) known and the slip is zoro before the disturbence. This loaves \(\Psi_{\text {fdo }}\) and \(\Psi_{\text {fqo }}\) as:.
\[
\begin{align*}
& \Psi_{f d o}=-\frac{x_{f d}\left[u_{q}^{\prime \prime}+\frac{\left(x_{d}^{: i}-x_{a}\right)\left(x_{d}^{\prime}-x_{a}\right) i_{d}}{x_{k_{d}}}\right]}{\omega\left(x_{d}^{\prime \prime}-x_{a}\right)\left[1+\frac{\left(x_{d}^{\prime}-x_{a}\right)}{x_{k d}}\right]}  \tag{8.44}\\
& \Psi_{f q 0}=  \tag{8.45}\\
& \omega_{f_{q}\left[x_{q}^{\prime \prime}-x_{a}^{\prime \prime}\right)\left[1+\frac{\left(x_{q}^{\prime \prime}-x_{a}\right)\left(x_{q}^{\prime}-x_{a}\right) i_{q}}{x_{k q}}\right]}^{\left(\frac{\left.x_{q}-x_{a}\right)}{x_{k q}}\right]}
\end{align*}
\]

The values of \(\Psi_{\text {do }}\) and \(\Psi_{q o}\) are found from Eqns. (8.31) and (8.32) and Eqn. (4.11) is used to compute the eloctrical torque.

The steady-statc values of \(v_{f d}\) and \(v_{f q}\) are found from Eqns. (8.40) and (8.41):
\[
\begin{align*}
& u_{f d o}=\Psi_{f d o}-i_{d o}\left[\frac{\left(x_{d}-x_{a}\right) x_{m d}}{\left(x_{d}-x_{a}\right) \omega}\left(1+\frac{\left(x_{d}-x_{a}\right)}{x_{k d}}\right) / T_{d o}^{\prime}\right]  \tag{8.46}\\
& u_{f q o}=\Psi_{f q o}-i_{q 0}\left[\frac{\left(x_{q}^{0}-x_{a}\right) x_{m q}}{\left(x_{q}^{\prime}-x_{a}\right) \omega}\left(1+\frac{\left(x_{q}^{\prime}-x_{a}\right)}{x_{k q}}\right) / T_{q o}^{\prime}\right] \tag{8.47}
\end{align*}
\]

The transformation Eqns. (8.10) are used to find \(v_{\text {to }}\) and \(v_{\text {ro }}\).

\section*{Transient conditions}

After a disturbance to the systom, the flux linkages \(\Psi_{f d}{ }^{2} \Psi_{k d}\), \(\Psi_{f q}\) and \(\Psi_{k q}\) " voltages \(v_{d}^{\prime \prime}\) and \(v_{q}^{\prime \prime}\) and the speed \(v\) are
all assumed constant for the first step of the calculation. The change in transmission line impertance is introduced into Eqns. (4.19) and (4.20) which, togother with Fqn. (8.36), are used to find the new velues of \(i_{d}\) and \(i_{q}\). Now values for \(\Psi_{d}\) and \(\Psi_{q}\) are found and used with \(i_{d}\) and \(i_{q}\) to compute the electricel torque.

The accoloretion anc changein load angle are computed for the period \(\Delta t\) while the time rates of change of secondary flux linkagos given by Egns. ( 8.34 ) to ( 8.37 ) aro used to find the new values of \(\Psi_{f d}, \Psi_{k d}, \Psi_{f q}\) and \(\Psi_{k q}\) after a time \(\Delta t\). These new flux linkagos are then used in Eqn. (8.39) to find the new \(v_{d}^{\prime \prime}\) and \(v_{q}^{\prime \prime}\) and the whole prociss is repeated for the next interval.

This method of stepmby-step computation agreis with that described in Ref. 33 except for the additional equations of the fqcoil.

\section*{B.5.2 The accurato mothod}

As in Sect. 4.2.3, this method includes the pW and \(\mathrm{p} \Psi_{\mathrm{q}}\) terms and the tarms which allow for the transmisoion line and transformer inductive volt drop aftur a sudden change.

Expressions for \(\mathrm{pI}_{\mathrm{d}}\) and \(\mathrm{PI}_{\mathrm{q}}^{\mathrm{Y}}\) are found by differentiating Eqns. (8.32) and (8.33) and usod to obtain first order differential equations ( 8.48 ) for the primary currents \(i_{d}, i_{q}\) and socondary flux linkages \(\Psi_{f d}, \Psi_{k d}, \Psi_{f q}\) and \(\Psi_{k q}\) as shown in Appendix III.
\[
\left[\begin{array}{c}
p i_{d}  \tag{8.48}\\
p i_{q} \\
p \Psi_{f d} \\
p \Psi_{f q} \\
p \Psi_{k d} \\
p \Psi_{k q}
\end{array}\right]=\left[\begin{array}{cccccccc}
a_{1} & v a_{2} & a_{3} & v a_{4} a_{5} & v a_{6} & a_{7} v_{b d} & a_{8} & 0 \\
v b_{1} & b_{2} & v b_{3} & b_{4} b_{5} & b_{6} & b_{7} v_{b q} & 0 & b_{9} \\
c_{1} & 0 & c_{3} & 0 & c_{5} & 0 & 0 & 1 \\
0 & d_{2} & 0 & d_{4} & 0 & d_{6} & 0 & 0 \\
e_{1} & 0 & a_{3} & 0 & e_{5} & 0 & 0 & 0 \\
0 & f_{2} & 0 & f_{4} & 0 & f_{6} & 0 & 0 \\
0
\end{array}\right]\left[\begin{array}{c}
i_{d} \\
i_{q} \\
\Psi_{f d} \\
\Psi_{f q} \\
\Psi_{k d} \\
\Psi_{k q} \\
1 \\
v_{f d} \\
v_{f q}
\end{array}\right]
\]

The voltage expressions for the interconnection tie-line are:
\[
\begin{align*}
& v_{m t d}=\sqrt{2} v_{b q}-\frac{x}{\omega} p i_{d}-R i_{d}-\frac{x}{\omega} v i_{q}  \tag{4.24}\\
& v_{m t q}=-\sqrt{2} v_{b q}-\frac{x}{\omega} p i_{q}+\frac{x}{\omega} v i_{d} \tag{4.25}
\end{align*}
\]
where \(v_{b d}=V_{b} \sin \delta\) and \(V_{b q}=V_{b} \cos \delta\)

A step-by-step computation which uses the above equations is described in Sect. 4.2.3.

\subsection*{8.6 Calculated Results of a Fault on a Large Systen}

In order to verify the validity of the theory and transforma.. tions derived in the earlier parts of this chapter, it was neecessary to compare the calculations with test results. However, no test results on a large practical dowor. machine were available. A micro-machine with a divided winding, described in Chapter 10, was
available but could not be used for the present purpose because the existing t.c.r. was too slow in its action (see sect.6.3). The verification had to be done by using the anelogue computer results \({ }^{5}\) of a hypothetical 30 MW d.w. I. system shown in Fig. 8.5.

\subsection*{8.6.1 System details}

The hypothetical 30 Mw system includes a governor and turbine, transformer and transmission line similar to the 30 Mw c.w.r. system in Sect. 5.2. Table 8.1 shows the physical parameters together with the fictitious machine parameters calculated from the transformation in Sect. B. 4 and expressions in Sect. 3.3.3.

The main feature of the d.w.r. control is that the torque winding hes a closed-loop rotor angle control, adjusted so that the reactive winding generates no torque ideally. The angle control is an essential part of the scheme and all the other features depend on it.

In Fig. 8.6 the terminal rotor angle \(\delta_{t}\) is derived from a phase-sensitive detector which measures the phase relationship of the generator terminal voltage to the output of a tacho-generator on the turbo-generator shaft. The form of the rotor angle control after the error-sensing or comparator stage is similar to that of the conventional voltage regulator of Sect. 5.2.2.

The angle regulator equations are as follows in degrees, volts and seconds:

Power-bias filter
\[
\begin{equation*}
P_{f}=\frac{p_{m}}{1+\tau_{p} p} \tag{8.49}
\end{equation*}
\]


Fig. 8.5 Block dingrem of 30 M d.w.r. system.


Fig. 8.6 Block diagram of rotor-angle control.

Table 8.1 Generator and system data
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{For base armature values ser Table 5.1} \\
\hline Base r- and t-current & \(422.6 \% \sqrt{2} \mathrm{~A}\) \\
\hline Base r- and t-voltage & \(88.63 / \sqrt{2} \mathrm{kV}\) \\
\hline Base r - and t-impedance & 209.7 ohm \\
\hline \multicolumn{2}{|l|}{Putual reactance} \\
\hline re t-axis \(X_{m r}, X_{m t}\) & 1.79 p.u. \\
\hline Reactive-torque winding \(X_{\text {trm }}\) & \(1.00 \mathrm{p.U}\). \\
\hline \multicolumn{2}{|l|}{Leakaqe reactance} \\
\hline \(\mathrm{X}_{\mathrm{a}}\) & 0.14 p.u. \\
\hline \(x_{T}, x_{t}\) & \(0.21 \mathrm{p.u}\). \\
\hline \(\mathrm{X}_{\mathrm{kd}}, \mathrm{X}_{\mathrm{kq}}\) & 0.04 peu. \\
\hline \multicolumn{2}{|l|}{Transformer} \\
\hline Reactance \(X_{1}\) & 0.1154 p.u. \\
\hline Resistance \(R_{1}\) & 0.0044 p.L. \\
\hline \multicolumn{2}{|l|}{Transinission line} \\
\hline Reactance \(X_{2}\) & \(0.333 \mathrm{p.u}\). \\
\hline Resistance \(\mathrm{R}_{2}\) & 0.1215 p.u. \\
\hline Governor gain \(G_{1}\) & 0.000472 \\
\hline \multicolumn{2}{|l|}{Calculated fictitious values} \\
\hline \({ }^{\prime \prime}\) & 0.171 p.u. \\
\hline \(x^{1}\) & 0.270 p.u. \\
\hline T' \({ }_{\text {do }}\) & 6.58 sec. \\
\hline T'd & 0.889 sec . \\
\hline T" & 0.027 sec. \\
\hline \(\times^{11}\) & 0.1757 p.u. \\
\hline \(\times 1\) & 0.472 P.U. \\
\hline \(T\) & 2.6 sec . \\
\hline T0 & 0.69 sec . \\
\hline \({ }_{9}\) & 0.69 Sec. \\
\hline T \({ }_{\text {¢ }}\) & 0.035 sec . \\
\hline \(\mathrm{Xfo}_{\mathrm{fa}}\) & 0.42 pou . \\
\hline \(\chi_{\text {fd }}\) & 0.14 p.u. \\
\hline \(\mathrm{r}_{\mathrm{fq}}\) & \(0.00245 \mathrm{p.u}\). \\
\hline \(\mathrm{r}_{\mathrm{fd}}\) & \(0.000975 \mathrm{p.U}\) \\
\hline
\end{tabular}

Table 8.2 Control system data


\section*{Comparator}
\(E_{1}=G_{d}\left(\delta_{t}-\delta_{\text {ref }}\right)+G_{b} P_{f}\)

First megnotic omplifior
\(E_{2}=\frac{G_{m l}}{1+\tau_{m l} P}\left(E_{1}+E_{Q S}+E_{e S}\right)\)
\(E_{2 \min } \leqslant E_{2} \leqslant E_{2 \text { max }}\)

Second magnetic amplifier
\(E_{e}=\frac{G_{m 2}}{I+\tau_{m 2} P} \quad E_{2}\)
\(E_{e \min } \leqslant E_{e} \leqslant E_{e \max }\)

Exciter and Rectifiors
\(v_{t}=\frac{G_{x}}{1+\tau_{x} p} E_{e}\)

Amplifier stabilizer
\(E_{a s}=\frac{-G_{a s} \tau_{a s} p}{1+\tau_{a s} P} E_{e}\)

Exciter stabilizer
\(E_{o s}=\frac{-E_{e s} \tau_{e s} P}{1+\tau_{e s} p} \quad V_{t}\)

Steady-stete initial conditions

The steady-state values of the regulator variables are found from the following expressions:
\(\delta_{r e f}=\left(\delta_{t}+F_{m} \frac{G_{b}}{G_{e}}-v_{t o} /\left(G_{e} G_{x d} G_{m 1} G_{m 2}\right)\right) \quad\) )
\(E_{\text {eso }}=E_{\text {aso }}=0\)
\(E_{e o}=v_{t o} / G_{x}\)
\(E_{20}=E_{e 0} / G_{m 2}\)
\(E_{10}=E_{20} / G_{m 1}\)
\(V_{\text {fdo }}\) and \(V_{\text {fqo }}\) are found from Eqns. (8.46) and (8.47) and used in the transformation Eqn. (8.10) to calculate \(V_{\text {to }}\) for the angle regulator and \(V_{r o}\) for the voltage regulator.

The same automatic voltage regulator of Sect. 5.2 is used, but the amplifier limits are different so that excitation current can flow in either direction. The values of voltage - and angle regulator parameters appear in Tables 5.2 and 8.2

\subsection*{8.6.2 Results for a threc-phase short-circuit}

In this section digital computations are made and compared for a three-phase fault, using the "approximate method" and the "accurate method" described in Section B.5. The calculations do not allow for saturation. Further computations are made for different conditions on the same system. Particular emphasisisplaced on the initial period to determine the effect of a "back swing" in the rotor angle (Sect. 6.2.3)

The initial conditions for the results in Fig. 8.7, eppear in Table 3.3.

Table 8.3 Steady state initial conditions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& F_{t} \\
& p_{0} .
\end{aligned}
\] & \[
\begin{gathered}
Q_{t} \\
\text { p.u. }
\end{gathered}
\] &  & \[
\begin{gathered}
I \\
\text { P.U. }
\end{gathered}
\] & \begin{tabular}{l}
\[
v_{b}
\] \\
p.u.
\end{tabular} & \[
\begin{gathered}
\delta_{t} \\
\text { deg. }
\end{gathered}
\] & \[
\delta
\] dag. & \[
\begin{aligned}
& I_{I} \\
& A
\end{aligned}
\] & \(I_{t}\)
- \(A\) \\
\hline 0.8 & -. 225 & 0.963 & 0.863 & 1.044 & 30 & 52.65 & -90.3 & 421.4 \\
\hline 0.2 & --. 225 & 0.963 & 0.313 & 1.049 & 30 & 36.7 & 75.9 & 91.4 \\
\hline
\end{tabular}

In 「ig. 8.7 (a) the results calculated by the approximate- and accurate methods agree closely enouch for a single curve to be drewn except where the accurate method gives 50 Hz oscillations. However, sime of the results are repeeted in Figs.8.7(b) and (c) which clearly show the error introduced by the ap roximate method. The results are similar to that shoun in sect. 6.2 for a c.w.r. machine. There is no clear back swing, although the rotor angle remains constant for about 50 milli-seconds. Moreover the effect seems less severe on the rest of the system perhaps because the rotor angle is being controlled. In general the results of Fig. 8.7 agree with those of Ref. 5, the main source of error being the meglect in saturation.

The curves for the two field currents \(I_{t}\) and \(I_{r}\) (see Fig. 8.7(c)) show a phase difference of \(60^{\circ}\) which is also the angle between the axes of the two field windings on the rotor. This supports the statement in Sect. 4.l, that "after a short-circuit the flux wave represented by \(\Psi_{d}\) and \(\Psi_{q}\) remains as a flux wave stationary with respect to the armature". The voltages induced in the field windings and the consequent currents are therefore of fundamental frequency.


Fig. 8.7(a) The hypothetical d.w.r. system after a
three-phase short-circuit.
\(P=0.8\) p.u., \(\quad Q=-0.225\) p.u.


Fig. 8.7(b) Rotor angles of the hypothetical 30 w d.w.r. turbo-alternator after a short-circuit.
\(P=0.8 \mathrm{p} . \mathrm{u}_{\mathrm{o}}\),
\(0=-0.225\) p.u.

Curves: (a),(c) accurate method; (b),(d) approximate method.



The torque winding quantities are ahead in time because the torque winding axis is ahead of the reactive winding axis (see Fig. 8.2), in the direction of rotation. During the fault the approximate method gives values or field current which agree very closely with the mean value of the field current envelope.

Figure 8.8 shows calculated curves similar to those of 「ine 8.7 but for the case of 0.2 p.u. active power. The initial conditions are listed in Table 8.3. The clear back suing for \(\equiv\) lower active power confirms the earlier results of the c.w.r, system.

The results of this section show that the transient response of a d.u.r. system can be studied by replacing the two actual coils \(r\), \(t\) by two fictitious coils fd, fq. It also shows that the discrepancies which arise between the accurate method and approxinate method are similar to those of a cowor. system.

\section*{CHAPTCR 9}
9. STEARY-STATE STABILITY THEORY DF D.W.R. REGULATION
9.1 General

Reference 4 showed that the steady-state stability of an alternator can be improved by using a suitable feedback signal to control the excitation of a fiald winding on the q-axis when the excitation of the d-axis field winding is adjustable but unregulated. It also showed that the q-axis field controls the active power and the d-axis field controls the reactive power. The equations for a machine with a field winding on each axis were linearized for small disturbances and the Nyquist criterion was used to calculate stability limits which were verified by experimental results. Different feedback signals and regulators were used. The calculated results showed the effect of neglecting saturation and armature resistance.

This Chapter uses the field transformation equations of Sect. 8.2 in conjunction with the linearized equ:tions in Ref. 4 to develop the open loop transfer function of a d.w.r. machine with a voltage regulator controlling the reactive winding excitation and an angle regulator controlling the torque winding excitation. The Nyquist criterion is used to study the steady state stability of such a d.w.r. system. However, as an intermediate stage the stability is investigated firstly for an angle regulator on the torque winding whilo the reactive winding excitation is adjustable but uncerulated, and this is referred to as an "ande reSulator only"; and secondly, a voltace regulator on the reactive winding while the torque winding excitation is adjustable but
unregulated, and this is referred to as a "voltage regulator only". The angle feedback tries to keep the rotor at a fixod angle, refer~ red to as the "reference angle" with reference to the infinite bus or the terminal voltage. The value of the "reference angle" can be changed by the angle regulator. Stability calculations are made to show the effect of different values of reference angle as well as different values of tie-line reactance. The combined operation of an angle- and a voltage requlator is then investigated with particular intorest - in the influence of the regulators upon one another.

The d.w.r. excitation contral system shown in Fig. 9.1 can be represented by the block diagram for small oscillations in Fig.9.2. The input quantities in Fig. 9.2 are the torque and reactive winding excitation voltages and the transformed output quantities are torminal voltage \(u_{m t}\) and rotor angle \(\delta_{t}\). Feedback derived from \(v_{m t}\) and \(\delta_{t}\) arc uscd to rogulate the excitation. For convonienco \(v_{m t}\) is takon as the value aftor the rectifier conversion. Tho system in Fig. 9.2 can howcver be reerrangod in a moro suitablo form as shoun in Fig. 9.3 whore the input quantities are \(v_{\text {fd }}\) and \(v_{\text {fq }}\) while the physical excitation voltages and field transformations are troatod as part of the feedback loops.

\subsection*{9.2 System Equations}

All quantitics are cxprossed in por unit. Tho linearisod system equations around the point of equilibrium give the operational relations, i.o., tho transfer functions between the input and output quantitios. Using such relations the multifeedbacks are roducod to en equivalent single loop configuration and the system is analysed with tho aid of convontional control systems theory.

\subsection*{9.2.1 The machino equations}

The principle assumptions in the mathomatical development are: no saturation, sinusoidal airgap fiuxus and no slot effects. Also, since tho frequency of oscillations in the system is quitc low, the frequency dupundant terms \(p \Psi_{d}, ~ p \Psi_{q}\) and \(p \delta\) in the armaturo voltage oquations are justifiably neglected. For the purpose of the analyses and subscquent calculation, the external tic-line reactance \(X_{c}\) is lumpod with the machine's amature leakage reactance and the modified alternator is studiod. The input transformation equation (9.1) for small. periurbations is obtained from the linoarized machine equations. (see Appendix IV.).
\begin{tabular}{|c|}
\hline\(G_{d}(p) \cdot \Delta v_{f d}\) \\
\hline\(\Delta T_{m}\) \\
\hline\(G_{q}(p) \cdot \Delta v_{f q}\) \\
\hline
\end{tabular}\(=[\Omega(p)]\)\begin{tabular}{|c|}
\(\Delta i_{d}\) \\
\hline\(\Delta \delta\) \\
\hline\(\Delta i_{q}\) \\
\hline
\end{tabular}
and
\([C(p)]=\)\begin{tabular}{|l|c|c|}
\hline\(-x_{d}(p)\) & \(v_{b d o}\) & \(r_{a}\) \\
\hline\(-\frac{1}{2} v_{b d o}+r_{a} i_{d 0}\) & \(-\left(Q_{0}+J p^{2}\right)\) & \(-\frac{1}{2} v_{b q o}+r_{a} i_{q 0}\) \\
\hline\(-r_{a}\) & \(v_{b q o}\) & \(-x_{q}(p)\) \\
\hline
\end{tabular}
where the suffix o denotes the steady state conditions, and
\[
\begin{equation*}
Q_{o}=V_{b d o} I_{q o}-V_{b q o} I_{d o} \tag{9.3}
\end{equation*}
\]
which is the reactive power at the infinite bus.


Fig. 9.1 Schematic diagram of d.w. r. micro-machine system.


Fig. 9.2 Single line block diagram for divided winding excitation control.


Fig. 9.3 Rearranged block diagram of divided winding excitation control.

There are three basic output quantities \(\Delta i_{d}, \Delta \delta\) and \(\Delta i_{q}\) and in general, three input quantitios \(\Delta v_{f d} \Delta T_{m}\) and \(\Delta v_{f q}\). Inversion of the matrix (9.2) gives operational relations from Eqn. (9.1) batween the output and the input quantities as
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\Delta i_{d}\) & \(\mathrm{B}_{\mathrm{d} 1}(\mathrm{p})\) & \(B_{t 1}(p)\) & \(\mathrm{B}_{\mathrm{ql}}(\mathrm{p})\) & \(\Delta v_{\text {fod }}\) & \multirow[t]{3}{*}{} & \(\Delta v_{\text {fd }}\) \\
\hline \(\Delta \delta\) & \(\mathrm{B}_{\mathrm{d} 2}(\mathrm{p})\) & \(\mathrm{B}_{\mathrm{t} 2}(\mathrm{p})\) & \(\mathrm{B}_{\mathrm{q} 2}(\mathrm{p})\) & \(\Delta T_{m}\) & & \(\Delta T_{m}\) \\
\hline \(\Delta i_{9}\) & \(\mathrm{B}_{\mathrm{d} 3}(\mathrm{p})\) & \(B_{t 3}(p)\) & \(B_{q 3}(p)\) & \(\Delta v_{f q}\) & & \(\Delta v_{\text {fig }}\) \\
\hline
\end{tabular}
where
\[
\begin{equation*}
[B(p)]=[C(p)]^{-1} \tag{9.5}
\end{equation*}
\]
\begin{tabular}{|l|c|c|}
\hline\(G_{d}(p)\) & 0 & 0 \\
\hline 0 & 1 & 0 \\
\hline 0 & 0 & \(G_{q}(p)\) \\
\hline
\end{tabular}

The elements of the input transformation matrix (9.5) are given by the following expressions
\[
\begin{aligned}
& B_{d I}(p)=\left(X_{q}(p)\left(Q_{o}+J_{p}^{2}\right)+v_{b q o}^{2}-2 r_{a} V_{b q o} I_{q o}\right) G_{d}(p) / D(p) \\
& B_{d 2}(p)=\left(-X_{q}(p) V_{b d o}+r_{a}\left(2 X_{q}(p) I_{d o}-V_{b q o}\right)+r_{a}^{2} 2 I_{q o}\right) G_{d}(p) / D(p) \sqrt{2} \\
& B_{d 3}(p)=\left(V_{b d i o} V_{b q o}-r_{a}{ }^{\left.\left(2 V V_{b q o} I_{d o}+q_{o}+J p^{2}\right)\right) G_{d}(p) / D(p), ~}\right. \\
& B_{t 1}(p)=\left(X_{q}(p) V_{b d o}-r_{a} V_{b q o}\right) / \sqrt{2 D}(p) \\
& B_{t 2}(p)=\left(X_{d}(p) X_{q}(p)+r_{a}^{2}\right) / D(p) \\
& B_{t 3}(p)=\left(-X_{d}(p) V_{\text {bqo }}-r_{\text {a }} V_{\text {bdo }}\right) / \sqrt{2 D(p)} \\
& B_{q I}(p)=\left(V_{b d o} V_{b q o}+r_{a}\left(Q_{0}+J p^{2}-2 V_{b d o} I_{q o}\right)\right) G_{q}(p) / D(p) \\
& B_{q 2}(p)=\left(X_{d}(p) V_{b q o}-r_{a}\left(2 X_{d}(p) I_{q o}+V_{b d o}\right)+r_{a}^{2} 2 I_{d o}\right) G_{q}(p) / D(p) \sqrt{2} \\
& B_{q 3}(p)=\left(X_{d}(p)\left(Q_{o}+J p^{2}\right)+v_{b d o}^{2}-2 r_{a} V_{b d o} I_{d o}\right) G_{q}(p) / D(p)
\end{aligned}
\]
where
\[
\begin{align*}
& D(p)=-X_{d}(p) X_{q}(p)\left[Q_{0}+J p^{2}+v_{b q a_{q}}^{2} Y_{q}(p)+v_{b d a}^{2} Y_{d}(p)\right. \\
& -2 r_{a}\left(V_{b q o} I_{q o} Y_{q}(p)+V_{\text {bcio }} I_{d o} Y_{d}(p)\right) \\
& \left.-r_{a}^{2}\left(V_{b d o} I_{q o}-V_{b q O} I_{d o}-J p^{2}\right) Y_{d}(p) Y_{q}(p)\right] \\
& =X_{d}(p) X_{q}(p) D^{\prime}(p) \tag{9.7}
\end{align*}
\]
while \(G_{d}(p)\) and \(G_{q}(p)\) are given by Eqns. (8.27) and (8.28)

If it is assumed that \(T_{m}\) is constant, the general input transformation equation (9.4) reduces to
\begin{tabular}{|c|}
\hline\(\Delta i_{d}\) \\
\hline\(\Delta 0\) \\
\hline\(\Delta i_{q}\) \\
\hline
\end{tabular}\(=\)\begin{tabular}{|c|c|}
\hline\(B_{d l}\) & \(B_{q 1}\) \\
\hline\(B_{d 2}\) & \(B_{q 2}\) \\
\hline\(B_{d 3}\) & \(B_{q 3}\) \\
\hline\(\Delta v_{f q}\) \\
\hline
\end{tabular}
which is the input tronsformation relation for the system in Fig.9.3.

\subsection*{9.2.2 Expressions for the feedback quantities}

The feedback signals or transformed output quantities are definite functions of the three basic alternator output quantities. The small changes of terminal volta and rotor angle are related to the basic output quantities as follows
\[
\begin{align*}
& \Delta v_{m t}=A_{1}(p) \cdot \Delta i_{d}+A_{2}(p) \cdot \Delta \sigma+A_{3}(p) \cdot \Delta i_{q}  \tag{9.9}\\
& \Delta \sigma_{t}=A_{i}^{\prime}(p) \cdot \Delta i_{d}+A_{2}^{\prime}(p) \cdot \Delta \delta+A_{3}^{\prime}(p) \cdot \Delta i_{q} \tag{9.10}
\end{align*}
\]

The following expressions for \(A(p)\) are the same as for a c. f . F system with voltage feedback beceuse they are not affected by the
angle feedback signal in the d.w.r. system;
\[
\begin{align*}
& A_{1}(p)=\left(I_{\text {do }} X_{c}-V_{\text {bqo }}\right) x_{c} R_{e} / V_{\text {mto }} \\
& A_{2}(p)=-\sqrt{2} p_{o} X_{c} R_{e} / V_{\text {mto }}  \tag{9.11}\\
& A_{3}(p)=-\left(U_{\text {bdo }}+I_{\text {qo }} X_{c}\right) x_{c} R_{e} / V_{\text {mto }}
\end{align*}
\]
\[
\left\{\begin{array}{l}
\{ \\
\{ \\
\{
\end{array}\right.
\]

The expressions of \(A^{\prime}(p)\) derived in Appendix \(V\) are
\[
\begin{align*}
& A_{1}^{\prime}(p)=\frac{-x_{c}^{v} v_{m t d o}}{\sqrt{2} v_{m t o}^{2}} \\
& A_{2}^{\prime}(p)=\frac{v_{b q o} V_{m t g o}+v_{b d o} v_{m t d o}}{v_{m t o}^{2}}=\frac{v_{b}^{2}+Q_{o} x_{c}}{v_{m \text { to }}^{2}}  \tag{9.12}\\
& A_{3}^{\prime}(p)=\frac{x_{c} v_{m t q o}}{\sqrt{2} v_{m t o}^{2}}
\end{align*}
\]

In these equations
\[
\begin{align*}
& P_{o}=V_{m d o} I_{d o}+V_{b q o} I_{q o} \\
& V_{m t d o}=V_{b d o}+I_{q o} x_{c} \\
& V_{m \text { tqo }}=V_{b q o}-I_{d o} X_{c}  \tag{9.13}\\
& V_{b d o}=V_{b} \sin \delta_{o} \\
& V_{b q o}=V_{b} \cos \delta_{o} \\
& R_{e}=\text { rectifier canstant. }
\end{align*}
\]

The values of \(\Delta v_{f d}\) and \(\Delta v_{f q}\) in Eqn. (9.8) are found from the voltages \(\Delta v_{r}\) and \(\Delta v_{t}\) and the field voltage transformation (8.9) as
\begin{tabular}{|c|}
\hline\(\Delta v_{f d}\) \\
\hline\(\Delta v_{f q}\) \\
\hline\(M_{d t}\) \\
\(M_{q t}\)
\end{tabular}\(M_{q r}\)\begin{tabular}{|c|c|}
\hline\(M_{q}\) \\
\hline\(\Delta v_{t}\) \\
\hline\(\Delta v_{r}\) \\
\hline
\end{tabular}
where
\[
\begin{align*}
& M_{d t}=\frac{\sin \phi}{\lambda N} r \\
& M_{d r}=\frac{\sin \phi_{t}}{\lambda N} \\
& M_{q t}=\frac{-\cos \phi_{r}}{\lambda}  \tag{9.15}\\
& M_{q r}=\frac{\cos \phi}{\lambda N}
\end{align*}
\]

From Eqns. (9.8), (9.9), (9.10) and (9.14), it can be shoun that if the armature and tie-line resistances are neglected,
\begin{tabular}{|c|c|}
\hline\(\Delta v_{m t}\) \\
\hline\(\Delta \delta_{t}\) \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{|c|c|}
\hline\(E_{11}(p)\) & \(E_{12}(p)\) \\
\hline\(E_{21}(p)\) & \(E_{22}(p)\) \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{|c|}
\(\Delta v_{r}\) \\
\hline\(\Delta v_{t}\) \\
\hline
\end{tabular}
where
\[
\begin{align*}
& E_{11}(p)=M_{d x} \sum_{n=1}^{3} A_{n}(p) B_{d n}(p)+M_{q \Sigma} \sum_{n=1}^{3} A_{n}(p) B_{q n}(p) \\
& =\frac{R_{e} X_{c}}{V_{m t o}^{D(p)}}\left[\left[-\left(\left(Q_{D}+J p^{2}\right) x_{q}(p)+v_{b q o}^{2}\right) U_{m t q o}\right.\right. \\
& \left.+p_{0} V_{b d o} X_{q}(p)-V_{b d o} V_{b q o} V_{m t d o}\right] G_{d}(p) m_{d r} \\
& +\left[\left(-V_{b q o} V_{b c o} V_{m t q o}-p_{o} V_{b q o} X_{d}(p)\right.\right. \\
& \left.\left.-v_{m t d o}\left(\left(a_{0}+J p^{2}\right) x_{d}(p)+v_{b d o}\right)\right] \quad G_{q}(p) M_{q I}\right]  \tag{9.17}\\
& E_{12}(p)=m_{d t} \sum_{n=1}^{3} A_{n}(p) B_{d n}(p)+M_{q t} \sum_{n=1}^{3} A_{n}(p) B_{q n}(p) \tag{9.18}
\end{align*}
\]
\[
\begin{align*}
& E_{2 I}(p)=M_{d r} \sum_{n=1}^{3} A_{n}^{\prime}(p) \theta_{d n}(p)+r_{q r} \sum_{n=1}^{3} A_{n}^{\prime}(p) B_{q \Pi}(p) \\
& \frac{=X_{c}}{\sqrt{2} v_{m t o}^{2} D(p)}\left[\left[\left(-\left(Q_{0}+J p^{2}\right) x_{q}(p)+v_{b q o}^{2}\right) v_{\text {mtdo }}\right.\right. \\
& -v_{b d o} X_{q}(p)\left(Q_{0}+\frac{v_{b}^{2}}{X_{c}}\right) \\
& \left.+V_{b d o} V_{b q o} V_{m t q 0}\right] G_{d}(p) M_{d r} \\
& +\left[-v_{b d o} v_{b q o} v_{m t d o}+v_{b q o} x_{d}(p)\left(0_{0}+\frac{v_{b}^{2}}{x_{c}}\right)\right. \\
& \left.\left.+\left(\left(Q_{0}+J p^{2}\right) x_{d}(p)+v_{\text {bdo }}^{2}\right) v_{\text {mtqo }}\right] G_{q}(p) M\right]  \tag{9.19}\\
& E_{22}(p)=M_{d t} \sum_{n=1}^{3} A_{n}^{\prime}(p) B_{d n}(p)+M_{q t} \sum_{n=1}^{3} A_{n}^{\prime}(p) B_{q n}(p) \tag{9.20}
\end{align*}
\]

The two regulator output voltages are
\[
\begin{align*}
& \Delta v_{r o}=H_{r}(p) \cdot \Delta v_{m t}  \tag{9.21}\\
& \Delta v_{t o}=H_{t}(p) \cdot \Delta \delta_{t} \quad\{
\end{align*}
\]
which can bo combined with equation (9.16) to show that
\begin{tabular}{|l|l|}
\hline\(\Delta v_{r 0}\) \\
\hline\(\Delta v_{t 0}\) \\
\hline\(H_{r}(p) E_{11}(p)\) & \(H_{r}(p) E_{12}(p)\) \\
\hline\(H_{t}(p) E_{21}(p)\) & \(H_{t}(p) E_{22}(p)\) \\
\hline
\end{tabular} \begin{tabular}{|c|}
\hline\(\Delta v_{r}\) \\
\hline\(\Delta v_{t}\) \\
\hline
\end{tabular}
which can be used to find the stable operating region of the system in Fig. 9.3.

During the rest of this chapterit is assumed that the armature and tie-line resistance effect can be noglected.

\subsection*{9.2.3 The open-loop transfer function}

The stability of the d.w.r. system in Fig. 9.3 can be studied by means of the Nyquist criterion when one of the feedback-loops is regarded as open while the other is left closed and regarded as part of the forward-loop. During steady-state operstion at the point of equilibrium the reference voltages \(v_{t i}\) and \(v_{r i}\) do not change, so that
\[
\begin{aligned}
& \Delta u_{t i}=\Delta u_{r i}=0 \\
& \text { If the angle feedback-loop is considered open at 'A' (see }
\end{aligned}
\] Fig. 9.3) while the voltage feedback-loop remains closed, then
\[
\begin{equation*}
\Delta V_{\Gamma O}=-\Delta V_{I} \tag{9.23}
\end{equation*}
\]
and if this valus for \(\Delta u_{\text {ro }}\) is roplaced in Eqn. (9.22), it is found that
\[
\begin{equation*}
\Delta v_{I}=-\frac{E_{12}(p) H_{I}(p)}{1+E_{11}(p) H_{I}(p)} \cdot \Delta v_{t} \tag{9.24}
\end{equation*}
\]

Hence the opon-loop transfer function is
\[
\begin{equation*}
\frac{\Delta v_{t o}}{\Delta v_{t}}=F_{t}(p)=H_{t}(p)\left[E_{22}(p)-\frac{E_{21}(p) E_{12}(p) H_{I}(p)}{1+E_{11}(p) H_{I}(p)}\right] \tag{9.25}
\end{equation*}
\]

Similarly, the voltage feedback loop can be considered open at 'b' (see Fig. U.3) while the angle feedback loop remains closed. Now \(\Delta v_{\text {to }_{0}}=\Delta v_{t}\) and
\[
\begin{equation*}
\frac{\Delta v_{I O}}{\Delta v_{r}}=F_{\Gamma}(p)=H_{\Gamma}(p)\left[E_{11}(p)+\frac{E_{21}(p) E_{12}(p) H_{t}(p)}{1-E_{22}(p) H_{t}(p)}\right] \tag{9.26}
\end{equation*}
\]

The regulator transfer functions are
\[
\left.\begin{array}{l}
H_{r}(p)=k_{r} \cdot(a \text { ratio of polynomials in } p)  \tag{9.27}\\
H_{t}(p)=K_{t} \cdot(a \text { ratio of polynomials in } p)
\end{array}\right)
\]
where \(K_{r}\) is the voltage regulator gain and \(K_{t}\) is the angle regulator gain (see Figs.10.9 and 10.10).

\subsection*{9.3 The Equilibrium Diagrams}

For any possible operating condition, that is, any point on the active-pouer/reactive-power chart ( \(P-Q\) chart) in Fig. 9.11 , a phasor diagram, referred to as an 'equilibrium diagran', can be drawn, but the system may or may not be stable. The distinction between equilibrium and stability is important in any control system. The phasor diagram tells nothing about the stability, which must be determined by one of the stability criteria of controi-system theory. If, howevar, the system is in fact stable, the equilibrium diagram is useful in indicating relations between variables as the operating condition changes.

Figure 9.4(a) is the conventional phasor diagrem for a c.w.r. generator opereting at a lagging powor factor, with oxcitation on the direct axis. For equilibrium, the rotor angle \(\delta\) must be such that tho diagram can close, and \(\delta\) therefore varies as the current phasor chenges. With fixed excitation, the system becomes unstable If \(\delta\) exceeds about \(90^{\circ}\), but phasar dirgrams can still be drawn for larger angles, and stability can often be maintained by using an appropriate regulator.

Figure \(9.4(\mathrm{~b})\) shows the phasor diagram for the same operating condition when the machine has a torque winding control which holds 0


Fig. 9.4 Lagging current condition with bus angle control
(a) Axis diagram of normal machine (conventional machine)
(b) Axis diagram of d.w.r. machine with engle control on torque winding. (c),(d) Armature-current phasor diagram.
at a constant value with reforenco to the infinite bus valtage. Figure 9.4(c) shows the resultant armature curront \(I_{\text {g }}\) the power component \(I_{p}\) in phase with \(U_{b}\), and the reactive component \(I_{v}\) at right angles to \(V_{b}\).
\[
\begin{align*}
& \text { From Fig. 5.4(b) } \\
& v_{o d}=v_{b} \sin \delta-I_{q} x_{q}  \tag{9.28}\\
& v_{o q}=v_{b} \cos \delta+I_{d} x_{d} \tag{9.29}
\end{align*}
\]
where \(X_{d}\) and \(X_{q}\) include the tie-line reactance.

The voltage \(V_{0}\) in a d.w.r. machino, consists of two components, namely \(V_{\text {oq }}\) which dopends on the fictitious direct-axis field current \(I_{f d}\), and \(V_{\text {od }}\) which depends on the fictitious quadrature axis field current \(I_{\text {fq }}\) as follows:
\[
\begin{aligned}
u_{o q} & =\frac{x_{m d}}{\sqrt{2}} I_{\mathrm{fd}} \\
v_{\text {od }} & =\frac{x_{m q}}{\sqrt{2}} I_{\mathrm{fq}}
\end{aligned}
\]

The field transformation Eqn. (8.5) is used to find that \(V\) od and \(V_{o q}\) depond on the physical field currents as follows:
\[
\begin{align*}
& v_{o q}=\frac{x_{m L}}{\sqrt{2}}\left(I_{t} \cos \emptyset_{t}+N I_{r} \cos \emptyset_{r}\right)  \tag{9.30}\\
& v_{o d}=\frac{x_{m q}}{\sqrt{2}}\left(I_{t} \sin \emptyset_{t}+N I_{r} \sin \varnothing_{r}\right) \tag{9.31}
\end{align*}
\]

If armature and tie-line loss.cs are neglected, tho machine's electrical torque is equal to the power \(P_{o}\) at the infinite bus,

Now
\[
P_{o}=V_{b} I_{p}
\]
and \(Q_{0}=V_{b} I_{v}\)
also \(I_{p}=I_{d} \sin \delta+I_{q} \cos \delta\)
\(-I_{v}=-I_{d} \cos \delta+I_{q} \sin \delta\)

The expressions for \(I_{d} \sin \delta, I_{d} \cos \delta, I_{q} \sin \delta\) and \(I_{q} \cos \delta\), in terms of the actual fiold currents can be found from Eqns. (9.28) to (9.31) and substituted in Eqns. (9.32) and (9.33) to show that
\[
\begin{align*}
I_{p}=I_{t}\left(k_{d} \sin \delta \cos \phi_{t}\right. & \left.+K_{q} \cos \delta \sin \emptyset_{t}\right)+M I_{I}\left(K_{d} \sin \delta \cos \emptyset_{r}\right. \\
& \left.-K_{q} \cos \delta \sin \emptyset_{r}\right)-\frac{V_{b}}{2} \sin 2 \delta\left(\gamma_{d}-Y_{q}\right) \tag{9,34}
\end{align*}
\]
\[
\text { and } \begin{align*}
I_{v}= & -I_{t}\left(k_{q} \sin \delta \sin \emptyset_{t}-K_{d} \cos \delta \cos \emptyset_{t}\right) \\
& +N I_{r}\left(K_{q} \sin \delta \sin \emptyset_{r}+K_{d} \cos \delta \cos \emptyset_{r}\right) \\
& -V_{b}\left(Y_{q} \sin ^{2} \delta+Y_{d} \cos ^{2} \delta\right) \tag{9.35}
\end{align*}
\]
where
\[
\begin{aligned}
& k_{d}=\frac{x_{m d}}{\sqrt{2} x_{d}} \\
& k_{q}=\frac{x_{m q}}{\sqrt{2} x_{q}}
\end{aligned}
\]

Assuming that \(\delta\) is held constant at a roference value equal to the angle \(\emptyset_{r}\) between the r-winding and the d-axis, and that the machine has zero saliency, so that \(K_{d}=K_{q}=K\), and \(Y_{d}=Y_{q}=Y_{\text {, Eqns, }}(9.34)\) and (9.35) become
\[
\begin{align*}
& I_{p}=I_{t} K \sin \left(\emptyset_{r}+\emptyset_{t}\right)  \tag{9.36}\\
& I_{v}=K I_{t} \cos \left(\phi_{r}+\emptyset_{t}\right)+N K I_{I}-v_{b} \gamma \tag{9.37}
\end{align*}
\]

Hence, the active power \(\rho_{0}=V_{b} I_{p}\) is controlled only by the curront \(I_{t}\) in the 'torque winding', while the reactive power \(Q_{0}=-V_{b} I_{V}\) is controlled by both field cursents. With zero excitation in both field windings \(Q_{0}=-v_{b}^{2} \gamma_{0}\) These results are only obtained because there is an indopendent control holding \(\delta\) equal to \(\varnothing_{r}\) and also becauso thero is zero saliency

Fig. 9.4(d) shows the rolationship between ficld currents and the components of armature current. Now
\[
\begin{aligned}
& L R=I_{P}, \\
& O L=K I_{t}, \\
& O R=I_{t} \sin \left(\not \emptyset_{r}+\not \emptyset_{t}\right), \\
& M N=K\left(I_{r} N+I_{t} \sin \left(\not \emptyset_{I}+\not \emptyset_{t}\right)\right) .
\end{aligned}
\]

At any operating condition therefore, \(K I_{t}=O L\)
\[
\text { NK } I_{r}=M N-O R \text {. }
\]

The conditions are somewhat modiried when the gencrator angle Ot is used as a fecdiack signal, since \(\delta\) is not held exactly equal to the reference value \(A_{I}\), although it is still approximately true that only the torque winding controls the active power.

\subsection*{9.4 Steady-state Stability of a D.W.R. Micro-machine}

The stability of the d.w.r. micromachine system in Fig. 9.3 (sec also Fig. 10.1) is studied by applying Myquist's criterion to the open-loop frequency response to determine the stability of the closod-loop. The closed-loop system is stable if its open-loop responso locus encloses the ( \(-1,0\) ) point in the complex plane
counter clockwise a number of times equal to the unstable poles of the open-loop transfer function.

The open-loop response locus depends on the gains of the two regulacors and on the steady state operating candition determined by the machine torminal voltege. Eqn. (9.25) can be used to find the limiting \(K_{t}\) for a given valuo of \(K_{r}\), activo power \(P_{p}\) and reactive power \(Q_{0}\), and curves relating \(K_{t}\) to \(Q_{a}\) at the stability limit can be obtained for different values of \(P_{D}\) and \(K_{r}\). Eqn. (9.26) can likewise be used to find the limiting \(K_{I}\) for a givon value of \(K_{t}\) and similar sets of stability limit curves are obtained. However, the two groups of curves give the same information and for the purposi of this thesis it was decided to use Eqn. (9.25).

The micro machine has two idendical field windings \(r\) and \(t\), and
\[
\begin{aligned}
& N_{t}=N_{r} ; \quad N=1 ; \\
& \phi_{t}=\emptyset_{I}=\not \phi_{i} ; \quad \lambda=2 \sin \not \varnothing \cos \not \phi_{;}
\end{aligned}
\]
so that the elements in the voltage transformation matrix (9.14) reduce to
\[
\begin{align*}
M_{d t} & =m_{d r}=\frac{1}{2 \cos \emptyset}  \tag{9.38}\\
-m_{q t} & =m_{q r}=\frac{1}{2 \sin \emptyset}
\end{align*}
\]


This section is devoted to a steady-state stability study of the following combinations of reculators and some useful analytical expressions are derived where possible:
1. A proportionate bus "angle regulator only". Computations are made to show that the maximum negative reactive absorption dependson the value of the "roference angle" (see Sect. 9.1).
2. A proportionate terminal ariglo regulator only. Computations are made, as in (1) above, to show the effoct of different values ror the reference angle, and also that the stability limit is least sensitive to chenges in \(P_{0}\) when the reference anglo is equal to the angle \(\varnothing_{I}\).
3. A proportionate "voltage regulator only" to show that, although tho torque winding has a fixed excitatior, the systom is controlled in the same way as a volt \(\because\) a regulator controls a cow. machine. 4. A proportionate angle requlator and a proportionate voltage regulator.
5. A derivative angle regulator, with proportionate terms plus first- and second derivative terms, and a proportionate voltage rogulator. The importance of time delays in the regulators are examined.

\subsection*{9.4.1 Proportionate bus angle requlator only}

Consider the case of the dividod winding control system in Fig. 9.2 with the torque wincing excitation regulated by a bus angle signal while the reactive winding excitation is adjustable but unregulated, \(i\).e., bus "angle feedback only" (see Sect.9.1). The voltage regulator transfer function \(H_{r}(p)\) is zero and


Hence, tho transfer function bocomes
\[
\begin{align*}
F_{t}(p) & =\frac{\left(-x_{q}(p) V_{b d o}^{G}(p) m_{d t}+X_{d}(p) V_{b q o} G_{q}(p) m_{q t}\right) H_{t}(p)}{-x_{d}(p) x_{q}(p)\left[Q_{o}+J p^{2}+V_{b q o}^{2} Y_{q}(p)+V_{b d o}^{2} Y_{d}(p)\right]}  \tag{9.40}\\
& =\frac{-V_{b d o} \eta_{d t} X_{m d} Y_{d}\left(1+p T_{k d}\right) H_{t}(p)}{\sqrt{2} r_{f d}\left(1+p T_{d}\right) D^{\prime}(p)} \\
& +\frac{V_{b q} M_{q t} X_{m q} Y_{q}\left(1+p T_{k q}\right) H_{t}(p)}{\sqrt{2} r_{f q}\left(1+p T_{q}^{\prime}\right)\left(1+p T_{q}^{\prime \prime}\right) D^{\prime}(p)} \tag{9.41}
\end{align*}
\]

For a given value of \(Q_{0}\) the transfer function given by Eqn. (9.40) does not contain the active power \(P_{0}\), hence the same result is obtained at any power levol.

A Nyquist plot of \(F_{t}(j w)\) where \(w\) is the small oscillation frequency, is used to determine the maximum and mirimum stable values of the gain \(K_{t}\) as a function of \(Q_{o}\). The value of \(K_{t}\) min roquired to stabilize the otherwise unstable system is given when the zero frequency point of \(F_{t}(j w)\) orasses tho ( \(0,-1\) ) point in the complex plane.

Therefore, \(Q_{0}\) at \(K_{t}\) min can be obtained from Eqn. (9.41) by putting
\[
\begin{gathered}
P=j w=0 \\
\text { and } \operatorname{Real}\left(F_{t}(0)\right)=-1
\end{gathered}
\]

So that
\[
\begin{align*}
Q_{0} & =\left[\frac{X_{m q} Y_{q}{ }^{M} q t}{\sqrt{2} v_{b q o}}-\frac{X_{m d} Y_{d} v_{t d o}{ }^{V_{d t}}}{\sqrt{2} r_{f d}}\right] K_{t \min } \\
& -v_{b q o}^{2} Y_{q}-v_{b d o}^{2} Y_{d} \tag{9.42}
\end{align*}
\]
or

Thus the minimum gain is proportional to the amount by which the reactive compensation \(\left(-Q_{0}\right)\) exceeds- \(\left(V_{b q \mathrm{o}}^{2} Y_{q}+V_{\text {bdo }}^{2} Y_{d}\right)\)

The maximum gain \(K_{t \text { max }}\) is reached when the Nyquist locus of \(F_{t}(j w)\) reaches the \((0,-1)\) point. To satisfy this condition the imaginary part of \(F_{t}(j w)\) must be zero and the real part equal to -1. Equating the imaginary part to zero also yields the natural mode of oscillation at a froquency \(w_{n}\). However, the expression con.. taining \(w_{n}\) is of sixth order and is cumbersome to solve.

Eqn. ( 9.42 ) shows that the relation between \(a_{0}\) and \(k_{t}\) min dopends on \(V_{b d o}\) and \(V_{b q o}\) which are functions of the reference angle \(\delta\). Results of calculations to find the value of \(\delta\) for maximum negative reactive absorption, are given in the rost of this section. It is seen that this value does not equal \(\not \varnothing_{r}\) (see Sect. 9.3) and that the reactive winding current affects the active power.
9.4.1.1 Bus angle o held at \(33.75^{\circ}\)

If the "reference angle" is chosen as \(33.75^{\circ}\) it means that the axis of the \(r\) winding coincides with the resultant air-gap M.M.F. Tho M.M.F. determinos the flux and hence corresponds to the infinite bus voltage if leakane reactance and tie-line imperlance are neglectod (seefigs. 9.7(a) and 9.4(d)).

The numerical values of the system parameters are substituted in Eqn. (9.40) and the Nyquist loci of \(F_{t}(j w)\) arc calculated by a
digital computer. The valuos of \(K_{t}\) min and \(K_{t}\) max are obtained for various values of \(Q_{0}\) and fig. 9.5 shows the stakility limit curves for the system described by Eqn. (9.40).

The region \(A B\) is defineri by \(K_{t \text { min }}\) in Eqn. (9.43) and corresponds to the zero frequency point on the Nyquist plot. The rigion BC for the ideal angle device and no damping is defined by \(K_{t \text { max }}\), obtained when \(F_{t}\left(j w_{n}^{\prime}\right)\) goos through the ( 0,1 ) point on the Nyquist plot. If a linear scale was used for \(K_{t}\) the rogion AB would be a straight line. For \(K_{t} \leqslant K_{t}\) min instability is of the drifting type bocause it is ascociated with zero frequency; whereas at a gain \(k_{t}>K_{t \text { max }}\) instability is oscillatory with a natural frequency \(\omega_{n}\).

When tho practical angle device with filter time delays is considerod as part of the transfor function, tho high gain limiting curve \(B C\) without damping in Fig. 9.5 , is shifted to \(D C\) because the delays add to tho total syster phase shift and at a particular frequency the gain margin is reduced.

The curve DE was celculated with damping while FG allows for an extarnal timo delay \(\tau_{t}\) of 0.5 socunds (seo Sect. 10.4.1).

\subsection*{9.4.1.2 Bus anqle \(\delta\) held at \(0^{\circ}\)}

If the "reforence angle" is chosen so that the d-axis (the mid-point between \(r\) and \(t\) windings) coincides with the resultant air-gap M.M.Fo, (see Fig. 9.7(b)), then \(\delta=0, V_{b d o}=0\) and \(V_{b q o}=V_{b}\). Under these conditions for the ideal angle device, Eqn. (9.43) becomes


Fig. 9.5 Steady-state stability limit curves.


Fig. 9.6 Steady- \(\mathrm{s}^{\text {jonte }}\) stability limit curves for various control angles \(\delta\).


Fig. 9.7 Schematic diagrams showing various reference angles.
\[
\begin{equation*}
K_{t \min }=\frac{\sqrt{2}\left(Q_{o}+V_{b q o}^{2} Y_{q}\right) r_{f q}}{X_{m q} V_{0 q 0} Y_{q} q_{q t}} \tag{9.44}
\end{equation*}
\]
when damping is noglected and the time delay is zero. Furthermore. the natural frequency is
\[
\begin{equation*}
w_{n}=\sqrt{\frac{Q_{0}+v_{b}^{2} Y_{G}}{J}} \tag{9.45}
\end{equation*}
\]
and
\[
\begin{equation*}
K_{t \text { max }}=-\frac{\sqrt{2} v_{b}\left(Y_{q}^{\prime}-Y_{q}\right) r_{f q}}{Y_{q}{ }_{q q} X_{m q}} \tag{9.46}
\end{equation*}
\]

Eqn. (9.46) there ore shows that, subject to the assumptions made, the maximum gain is a constent value at all valuos of active and reactive power.

The maximum stoady state reactive absorption limit is reached when \(K_{t \min }=K_{t \text { max }}\), and Eqns. (9.44) and (9.46) yield
\[
Q_{a \max }=-V_{b}^{2} Y_{Q}^{1}
\]

This liniting point on Curve (1) in Fig. 9.6 is marked at \(Q_{0}=-1.48\) p.u. However, the effoct of damping and the delays of thopractical angle device decrease this maximum to - 1.4 p.u.

\subsection*{9.4.1.3 Bus angle 5 neld at \(66.25^{\circ}\)}

If the referance angle is \(66.25^{\circ}\), the resultent airgap M. \(\%\). is displacod by about \(90^{\circ}\) from the axis of the torque winuing as seon in fig. 9.7(d). The stability limit for this condition is found fron Eqn. (9.41) ond shown by Curve (3) in Fig. 9.6.

\subsection*{9.4.1.4 Bus angle \(\delta\) held at \(90^{\circ}\)}

The reforence angle can also be held at \(90^{\circ}\) as infig. 9.7(c). The transfer function is given by Eqn. (9.41) while the minimum gain is
\[
\begin{equation*}
k_{t \text { min }}=-\frac{\sqrt{2}\left(a_{o}+V_{b}^{2} Y_{d}\right) r_{f d}}{X_{m d} Y_{d} V_{b}^{M} d t} \tag{9.47}
\end{equation*}
\]
and the maximum gain is
\[
\begin{equation*}
K_{t \text { max }}=-\frac{\sqrt{2} V_{b}\left(Y_{d}-Y_{d}\right) r_{f d}}{Y_{d} M_{d t} X_{\text {md }}} \tag{9.48}
\end{equation*}
\]

Equations (9.47) and (9.48) yiold the maximum roactive absorption as
\[
Q_{0 \text { max }}=-V_{b}^{2} Y_{d}^{\prime}
\]

This limiting point is shoun on Curve (4) in Fig. 9.6 as . 2.07 p.u., but the damping effect and practical angle device reduce it to -1.96 p.u.

Tho rolos of the \(d\) and \(q\)-axes are therefore reversed compared with a reference angle of zero as in Sect. 9.4.1.2.
9.4.2 Proportionato terminal angle regulator only

For the case of terminal "angle fesdback only" the value of \(A_{\Pi}^{\prime}(p)\) is given by Eqn. (9.12) and the expression for \(E_{22}(p)\) is given by Eqn. (9.20). The open-loop transfer function given by Eqn. (9.28) becomes
\[
\begin{align*}
& F_{t}(p)=\frac{x_{c} H_{t}(p)}{\sqrt{2} v_{m t^{\prime}}^{2}(p)} \quad\left(-Q_{0} v_{m t d o}-v_{b d o}\left(Q_{0}+u_{b}^{2} Y_{c}\right)\right. \\
& \left.-X_{c} Y_{q}(p) v_{b q o} P_{o}\right) \frac{X_{m d} Y_{d}(p) M_{d t}}{r_{f d}} \\
& +\left(Q_{0} V_{m t q o}+V_{b q o}\left(Q_{0}+V_{b}^{2} Y_{c}\right)\right. \\
& \left.+X_{c} Y_{d}(p) v_{b d o} P_{o}\right) \frac{X_{m q} Y_{q}^{M} q t}{r_{f q}}  \tag{9.49}\\
& k_{t \min }=\sqrt{2}\left(Q_{0}+v_{b q o}^{2} Y_{q}+v_{b d o}^{2} Y_{d}\right) / \beta \\
& \text { where } \beta=\frac{X_{c} X_{m d} Y_{d}\left(-Q_{D} V_{m t d o}-V_{b d o}\left(Q_{0}+v_{b}^{2} Y_{c}\right)-X_{c} Y_{q}{ }^{\left.V_{b q o}{ }^{p}{ }_{0}\right) X_{m d}{ }^{Y}{ }_{d}{ }^{[7]}{ }_{d t}}\right.}{} \\
& r_{f d} V_{m t}^{2}
\end{align*}
\]

Hence when \(\delta_{t}\) is used as the angle feedback signal, it is no longer true that \(F_{t}(p)\), and hence the limiting gain, is independent of \(P_{0}\). At zero load the function \(F_{t}(p)\) in Eqn. (9.49) is similar to that of Eqn. (9.40) but contains additional factors;
\(K_{t \text { min }}\) is given by Eqn. (9.41), so that the curve \(A B\) in Fig. 9.5 is also valid for the terminal angle feedback at zero load. Furthermore, \(K_{t}\) min also depends on the reference anglo \(\delta_{t}\) and the tie-line reactance \(X_{c}\). Calculations were made to determine the influence of \(\delta_{t}\) and \(X_{c}\).

Fig. 9.8 shows the calculated stability limit cirves when damping is allowed for. The high gain limit is more sonsitive to load then tho low gain limit and at no load the maximum reactive absorption is equal to the value obtained for the bus angle regulator


Fig. 9.8 Steady-state stability limit curves for various load conditions.


Fig. 9.9(a) Steady-state stability linit curves for various terminal load angles.


Fig. 9.9 (b) Steady-state stability linit curves for various terminal load angles.
only, at about the sone valuo of gin (suofig. 9.5), The rotar.. angle is \(33.75^{\circ}\) at zero load but as the load indreases, 6 increascs slightly because the torminal voltage changes due to the drop in the 10.186 p. 4 . oxternal tie-line reactance. The steady-state stability limit curve thercfore changes as the load varies. The two curves in fig. 9.8 have been calculated for zoro- and \(0.8^{\circ}\) p.u. load respectivoly. The difference tetween thom is quite small in this case, but would be greater for a larger tie-line reactance.
9.4.2.1 The effect of different values of \(\delta_{t}\)

Figs. 9.9(a) and (b) show curves similar to those of Fig. 9.6 but for terminal anglo control, whon \(\delta_{t}\) is hold at various valuos. The low gain limit curve at \(p_{0}=0\) is identical with that for bus angle feedtack. There is a small difference in the maximum reactivo absorption though, because the high gain limits are functions of \(Q_{0}\).

The electrical torque of the d.w.r. machine is proportional to the component \(F_{\text {tgn }}\) of the torque winding M. M.F. \(F_{t}\) in Fig. 9.10, and to the component \(F_{\text {rgn }}\) of the reactive winding Mofi,F. After a small incroase \(\Delta \delta_{t}\) in the anglo, the regulator increases \(F_{t}\) by an amount \(\Delta F_{t}=K_{t} \cdot \Delta \delta_{t}\). The ability of tho d.w. \(I_{\text {. }}\) machine to remain stable depends on the increase
\[
\Delta F_{t g n}=K_{t} \cdot \Delta \delta_{t} \cdot \sin \varnothing_{2}
\]

For a given \(\Delta \delta_{t}, \Delta F_{\text {tgn }}\) is a maximum when \(\phi_{2}\) is \(90^{\circ}\left(\delta=90^{\circ}-\emptyset_{2}\right)\). In other words, for the same \(\Delta F_{\text {tgn }}, K_{t}\) is a minimum when \(\emptyset=90^{\circ}\), which is confirmed by the results for zero power in figs. 9.6 and 9.9. These show that for a given \(Q_{D}\) the values of \(K_{t}\) min and \(k_{t}\) max aro a minimum when \(\delta\) or \(\delta_{t}\) is \(66.25^{\circ}\left(\not \subset=90^{\circ}\right)\).

Now \(V_{b}^{2} V_{d}^{\prime}=V_{b}^{2} Y_{q}^{\prime}\) if there is no transient saliency and the maximurn reactive absorption should also be obtained when \(\delta=66.25^{\circ}\) which means that a \(\delta\) or \(\delta_{t}\) equal to \(\phi_{r}=33.75^{\circ}\) does not yiold the meximum value for the maximum reactive absorption.


Fig. 9.10 Phasor diaqram of d.w.r. M. M.F.'s

For the four cases shown in Fig. 9.9, Curve (2) for \(\delta_{t}=33.75^{\circ}\) shows the least variation when \(P_{0}\) varies from 0 to \(0 . B\) p.u. but it does not have the highest reactive absorption. Furthermore, when \(P_{0}\) is increascd, the low gain regions for Curves(1) and (2) move in a direction ppoosite to that of Curves (3) and (4) and correspond to voltage réulator action on a c.w.r. machine, where, for a given \(\mathrm{K}_{\mathrm{t}}\) min, the reactive absorption incroases as \(P_{0}\) increases (seefig. 9.11).

Therefore, holding \(\delta_{t}=\varnothing_{r}\) does not necessarily give the largest stable operating range in the negative current region, although the limit of stabla operation is relatively insensitivo to load variations.

\subsection*{9.4.2.2 The effect of additional tie-line reactanco}

The effect of increasing the tie-line reactance \(X_{1}\) (see Fig. 10.1) can be seen from the calculatod reeults in Fig. 9.12. The lower value of \(X_{1}\) represents a typical tie-line while the larger value is an extreme cese to illustrate the reduction in reactive aborption whon \(P_{o}\) increases for a fixed value of \(k_{t}\) min \({ }^{\text {. }}\)

\subsection*{9.4.3 Comparison of d.w.r.- and q.a.r.- system results}

The results of sect. 9.4 .1 and 9.4 .2 for a d.w.r. system agree in general with those of Ref. 4 for a q.a.r. system. The common points are:
(a) A sharp cut-off of tho high-gain limit for bus angle feedback when damping is neglected.
(b) The low gain limit of \(\delta_{t}=66.25^{\circ}\) moves to the right (Fig. 9.9) whon \(P_{0}\) increases. For both systems the P.Q relation is similar to Curve (c) in Fig. 9.11.
(c) For torminal angle feeciback the high gain limit flattens out someuhat.
(d) The expressions for \(K_{t}\) min \({ }^{\prime} Q_{o} \max\) and \(u_{n}\) are similar.

\subsection*{9.4.4 Proportionate voltage regulator only}

A d.w.r. machine with a "voltage regulator only" gives results which aro similar to thoso of a conventionel machine. The transfer fuction is obtained from Eqn. (9.26) as
\[
\begin{equation*}
F_{I}(p)=H_{\Gamma}(p) E_{11}(p) \tag{9.51}
\end{equation*}
\]
where
\[
\begin{align*}
E_{I I}(p) & =\frac{R_{e} X_{c}}{V_{m t o}{ }^{\prime}(p)}\left[\left[-\left(Q_{0}+J p^{2}+V_{b q o}^{2}(p)\right) V_{m t q o}\right.\right. \\
& \left.+p_{o V_{b d o}}-V_{b d o} V_{b q o} V_{m t d o} Y_{q}(p)\right] G_{d}(p) Y_{d}(p) M_{d r} \\
& +\left[-V_{b q o} V_{b d a} V_{m t q 0} Y_{d}(p)-p_{0} V_{b q a}\right. \\
& \left.\left.-V_{m t d o}\left(Q_{0}+J p^{2}+V_{b d o} Y_{d}(p)\right)\right]\right] G_{q}(p) Y_{q}(p) M_{q r} \tag{9.52}
\end{align*}
\]

Now
\[
\begin{align*}
& \beta_{d}=X_{m d} Y_{d} M_{d r} R_{e} X_{d} / r_{f q} \\
& \beta_{q}=X_{m q} Y_{q} M_{q r} R_{e} X_{d} / r_{f q} \\
& K_{r}=\text { the voltage rogulator gain } \\
& K_{v d}=\beta_{d} K_{r} \quad\{  \tag{9.53}\\
& \text { and } \\
& K_{v q}=\beta_{q} K_{r} \quad\left\{\begin{array}{l}
\text {, }
\end{array}\right.
\end{align*}
\]

The low gain stability limit occurs whero the
\[
\operatorname{Real}\left(F_{I}(j 0)\right)=-1
\]
and the relation between reactive absorption \(Q_{o}\) and \(K_{r}\) min is given
\[
\begin{align*}
Q_{0}= & -K_{v d \min }\left(-V_{b q o}^{2} Y_{q} V_{m t q o}+P_{o} V_{b d o}-V_{b d a} V_{b q o} V_{m t d o} Y_{q}\right) / a V_{m t o} \\
& -K_{v q \min }\left(-V_{b d a}^{2} Y_{d} V_{m t d o}-P_{o} V_{b q o}-V_{b q o} V_{b d o} V_{m t q o} Y_{d}\right) / \alpha V_{m t o} \\
& -\left(V_{b q a}^{2} Y_{q}+V_{b d}^{2} Y_{d}\right) / a \tag{9.54}
\end{align*}
\]


Fig. 9.11 Power-var chart showing stability limit curves.


Fig. 9. 12 Steady-state stability limit curves for various tie-line reactances.
where
\[
\begin{align*}
& k_{v d \min }=\beta_{d} k_{r \min }  \tag{9.55}\\
& k_{v q \min }=\beta_{q} k_{r \min } \\
& \alpha=1-k_{v d} \cos \delta_{t}-k_{v q} \sin \delta_{t}\{
\end{align*}\left\{\begin{array}{l}
\{
\end{array}\right.
\]

At zero active load, \(P_{0}=0\) and the resultant airgap M.M.F. coincides with the axis of the reactive winding and not with the d-axis, so that \(\delta_{t}=33.75\). The reactive absorption is given by
\[
Q_{0}=K_{v d \min }\left(v_{b q o}^{2} Y_{q} v_{m t q o}+v_{\text {bdo }} v_{\text {bqo }} v_{m t d o} Y_{q}\right) / \alpha v_{m t o} \quad \ldots Q_{o l}
\]
\[
+K_{v q \min }\left(v_{b d o}^{2} Y_{d} v_{m t d o}+v_{b q o} v_{b d o} v_{m t q o} Y_{d}\right) / \alpha v_{m t o} \quad \ldots Q_{o 2}
\]
\[
\begin{equation*}
-\left(v_{\text {bqo }}^{2} Y_{q}+v_{\text {bdo }}^{2} Y_{d}\right) / \alpha \quad \ldots Q_{03} \tag{0.55}
\end{equation*}
\]

For an unreguletad system, \(K_{v d \min }=K_{r \min }=K_{v q \min }=0\)
\[
\alpha=1,
\]
and the reactive absorption is
\[
\begin{equation*}
Q_{o u}=-v_{b q o}^{2} Y_{q}-v_{b d o}^{2} \gamma_{d} \tag{9.57}
\end{equation*}
\]

For a regulated system, howevor,
\[
\begin{equation*}
Q_{0}=Q_{1}+Q_{2}+Q_{o u} / \alpha \tag{9.58}
\end{equation*}
\]
which shows that tho excitation regulation of the reactive winding affects the reactive absorption at zero load because of saliency. With zero saliency \(\left(Y_{d}=Y_{q}=Y\right.\) ) the d-axis of the moctino can be chosen to coincide with the r-axis, and at no load
\[
\begin{aligned}
& v_{\text {bdo }}=v_{m t d}=\delta_{t}=0, \quad \alpha=1-k_{v d \min }, \\
& v_{\text {bqo }}=v_{m t q o}=v_{m t}
\end{aligned}
\]

Eqn. (9.57) simplifies to
\[
\begin{equation*}
Q_{0}=-v_{b}^{2} Y \tag{9.59}
\end{equation*}
\]
which agrees with results for a c.w.r. machine, i.e. the reactive absorption at zero load cen not be increased beyond - \(V_{b}^{2} y\) irrespective of the type of regulator on the d-axis.

Fig. 9.13 shows calculated stability limit curves for a "valtage regulator only". The low gain region AB is associated with a drifting type of instability and the high gein rcgion bC with an oscillatory type of instability.

\subsection*{9.4.5 Proportionate anole requlator and proportionate voltago requiator}

The complete oxcitation control scheme of the d.w.r. system shown in Fig. 9.2 consists of both an angle and a voltage feadback circuit. In practice the more convonient terminal angle \(\delta_{t}\), rather than the infinite bus angle \(\delta\), is used for the angle feedback. The transfer function for small disturbances to such a system, is given by equation (9.25) or (9.26).

Consider a system which has a proportionate voltage regulator with the following transfer fuctions:
\[
\begin{align*}
& H_{t}(p)=K_{t} /\left(1+\tau_{t} p\right)  \tag{9.60}\\
& H_{I}(p)=K_{r} /\left(1+\tau_{r} p\right) \tag{9.61}
\end{align*}
\]
where \(\tau_{t}\) and \(\tau_{r}\) represcnt deleys in the excitation system (see


Fig. 9.13 Steady-state stability limit curves.


Fig. 9.14 Steady-state stability limit curves.

Sect. 10.4.l). The stcady state stability limit curves can be found when the Nyquist critorion is applied to the frequency rosponse loci of Eqns. (9.25), (9.60) and (9.61). The results in Fig. 9.14 have been calculated for difforent values of \(K_{r}{ } \tau_{t}\) and \(\tau_{r}\).

A comparison of the results in Fige. 9.3 and 9.14 show that the addition of a voltage rogulator to control the reactive winding excitation allows slightly more reactive absorption in the \(K_{t}\) min region and little or no change in the \(K_{t}\) max region. The changee are less significant with low values of \(K_{r}\) than with high values and are also proportional to the value of \(P_{0}\). The voltage rogulator (a.v.r.) response whon used in conjunction with an angle renulator therefore depends in the same way on \(P_{0}\) as without an angle regulator. Howover, an a.v.r. gain of lo, which is beyond the steady state stability limit of the a.v.r. without angle regulator (see Fig. 9.13), does not cause instability because the angle regulator stabilises the otherwise unstable voltago regulator system.

From the point of view of steady-state stability, the design consideration for tho voltage regulator axe similar to those for a c.w.r. generator. Although the results in Fig. 9.14 indicate that \(K_{r}\) can be varied over an extremely wide range, the value should be chosen with due regard to terminal voltage recovery requirements on the one hand, and on the other hand guarding against voltage regulator high gain instability in case of angle regulator failure.
9.4.6 Derivative angle regulator and proportionate voltace regulator

A voltage regulator only, with 0.5 sec . delay, can increase \(Q_{0 \max }\) to about -1.25 p.u. at \(K_{I}=K_{I m}\) and \(P_{O}=0.8\) p.u. (see fig. j.13), In the previous section the 0.5 sec. delay a.v.r. togother with the 0.5 sce. delay proportionato ango regulator increased \(Q_{0} \max\) at \(K_{t}=K_{\text {tmp }}\) to a valuc of -1.1 p.u. (see Fig. 9.14) which is olmost insensitive to changes in \(P_{o}\) and \(K_{r}\). In an actual system the values of \(K_{I}\) and \(K_{t}\) are fixed and not adjustable to suit each particular operating condition. Honce, if the criterion is maximum negative reactive absorption, the fixed values should bo
\[
\begin{aligned}
& k_{r}=k_{I m} \\
& k_{t}=k_{t m p}
\end{aligned}
\]
when
\[
\tau_{t}=\tau_{r}=0.5 \mathrm{sec}
\]

Thase results, however, rely upon the fact that \(\delta_{t}\) is axactly \(33.75^{\circ}\), i.e. that the r-axis always coincides with the airgap M.M.F., irrespective of \(P_{o}\). However, any inite value of \(K_{t}\) causes an error in \(\delta_{t}\). Moreover a large \(K_{t}\) would tend to cause oscillatory instability.

Tho value of \(k_{\text {tmp }}\) in fig. 9.14 can be improved by using first and second derivative angle compensotions to increase the gain margin and consequently the reactive absorption. The transfex function of the practical derivativo angle regulacor considered (see Sect. 10.4.1) is


Fig. 9.15 Steady-state stability limit curves.
\[
\begin{align*}
H_{t}(p) & =\left[1+\frac{.1 p}{(1+.01 p)(1+.01 p)} \cdot\right. \\
& \left.+\frac{.02 p^{2}}{(1+.01 p)(1+.01 p)(1+.01 p)(1+.02 p)}\right]\left(1 \frac{K_{t}}{\left(1+\tau_{t} p\right)}\right.
\end{align*}
\]

The abovo transfer function gives significant compensation whon \(\tau_{t}=0\) for a system with an angle regulator only。

Equations \((9.25),(9.60)\) and (9.62) havo beon used to find the stability limit curves in Fig. 9.15 for the derivative angle regulator and proportionatc voltage rogulator. It is soon that the derivative angle regulator allows a significant increases in \(K_{t \text { max }}\) and \(Q_{0 \text { max }}\) when \(\tau_{t}=\tau_{r}=0\). Although a practicol delay of 0.5 sac. in each regulator almost eliminates the compensation of the derivative signals, it does allow an incroesc in \(K_{t}\) max , depending on the required \(Q_{o}\) max. For a minimum \(W_{o}\) max of - I p.U., \(K_{t}\) max is about tuice tho value of tho maximum gain without compensotion. The amount gained in \(K_{t \text { max }}\) and \(Q_{o}\) max dopends very much on the regulator delays and especially on \(\tau_{t}\) since a change in \(\tau_{r}\) from 0.25 to 0.5 makes littie difference to Curve (3) or to Curve (2) while a change in \(\tau_{t}\) from 0.25 to 0.5 changes Curve (3) to curve (2).

The results of the present and the previous section show that the degree of averall d.w.I. systom steady-state stability corresponds to the degree of stability of a d.w.r. systom with only an angle regulator.
\(\qquad\)
CHAPTER 10

\section*{10. THE D.W.R. MICRO-MACHINE EQUIPMENT}

At Imperial College tho "old" micromachine (see Sect. 5.2) has only one winding on the rotor d-axis and can therefore only be used as a c.i., r. alternator. The "new" micra-machine has two symmetrical field windings \(t\) and \(r\), which can be used in series far the purpose of a ow.r. alternator, or separately for the purpose of a d.w.r. alternator. The electrical angle between a field winding axis and the d-axis is the same for both windings i.e. \(\not \emptyset_{t}=\not \emptyset_{I}=\not \emptyset=33.75^{\circ}\) (see Fig. 8.1). For a divided winding connection the angle between the two winding axes is \(67.5^{\circ}\).

Tost results about the steady-state stability limits of a dividod wirding rutor (d.w.r.) synchronous generetor wore obtained from the "new" micro-machine system (see Fig. l0.1) No parameters were available for a practical large d.w.r. alternator although parameters have been published \({ }^{5}\) for a "hypothetical" 30 mu d.w.r. turbo-alternator. The choice of per unit values for the micromachine systom parametors was basod on discussions with the C.E.G.B.s South Eastern Rogion.

\subsection*{10.1 The Micro-alternator}

The new micro-alternator has a Mawdsley's 40 stator. The divided rotor winding has auxiliary field windings for time constant regulation (see Sect. 5.3.2) and a squirrel cage damper winding. The cylindrical rotor is laminated an mon-uniformly slotted.

The design of the micrommachine was influenced by the following factors:
(1) A fixed airgap diameter and a fixed stator design for a 4-ppole machine.
(2) Although the number of rotor slots per pole could not be greater than 6, the spacing and dimensions of the slots were chosen so that the machine simulated a large alternator as far as posible.

\subsection*{10.1.1 Connection of the field windings}

Each one of the divided field windings in Fig. 8.1 consists of two portions which can either be connected in parallel or in series. For the purpose of this thesis the series connection was used beeause it presents a higher resist: nce which limits the effect of brush contact fluctuations at the alternator sliprings and exciter commutator.

For c.w.I. operation the two field uindings can be connected in series in two ways viz. so that the resultant fif. F. coincides with the d-axis (cumulatively), or so that it coincides with the q-axis (differentially). These connections are shown in Fig.l0. 2 together with the vector diagrams of the fundamental M.M.F.'s The machine parameters are measured by connecting the windings cumuztively as well as differentially and performing the standard 36 d-axis tests for both connections.

From the vector diagrams it is seen that
\[
\begin{equation*}
F_{d}=2 F_{t} \cos \varnothing \tag{10.1}
\end{equation*}
\]
and \(F_{q}=2 F_{t} \sin \phi\)
if \(F_{r}=F_{t}\). as in the cese of identical symmetrical uindings.


Fig. 10.1 Schematic diagram of d.v.r. micro-machine system.

(a) Cumulatively


Fig. 10.2 Connections of the field windings.


Fig. 10.3 Open-circuit and short-circuit characteristics for the d.w.r. micro-machine.

Curves: ( \(A, a\) ) one winding, \(r\) or \(t\) only
( \(B, b\) ) windings \(t\) and \(r\) cumulatively
( \(\mathrm{C}, \mathrm{c}\) ) windings t and r differentially

\subsection*{10.1.2 Determination of parameters}

\section*{Magnetisation and short-circuit charactoristics}

The magnetisation characteristics for the new micromachine are different from those of a Inrge turbo-alternator because the degree of saturation in the tecth is much larger. The open..circuit and short-circuit characteristics for one winding only and for the two windings in series cumulatively as well as differentially, appear in Fig. 10.3. Points on the three airgap lines satisfy Eqns.(10.1) and (10.2) to yield a value of \(\varnothing\) which is very close to \(33.75^{\circ}\). The results of Fig. 10.3 are used to find the unsaturated values of \(X_{m d}, X_{m q}\) and \(X_{m t}=X_{m r}\).

\section*{Effective field mesistance}

As in the case of the existing c.u.r. micro-machine (see Sect. 5.3.2) the per unit field resistence of tho d.w.r. micromachine is too large and one time constant regulotor (t. \(0 . r\). ) per field winding is used to control the effective resistance when the machine operates in the d.w.r. mode. Howevar, during the parameter tests when the two fields are in series, i.e. in the cow.r. mode, only one t.c.r. is used as the souree of excitation. The existing t.c.r.'s function satisforalily at the frequencies of the small oscillations.

The feedback resistance \(R_{\text {fb }}(\) see Fig. 5.5) is adjusted until T'do (when the fields are cumulatively) corresponds to that of a large machine. For this connection the effective number of turns of the two windings is \(2 \mathrm{Ncos} \varnothing\) (see also Sect. 8.2). If however, the two diviced windings were excited separabely (d.w.r. mode) but carrying the same current in the cumulative sonse che
some M. M. F. as for c.w.r. operstion would result on the d-axis. The latter effect can be represented by a fictitious fd-winding of \(N\) turns (see Sect. 8.2.1).

Therefore if \(R_{\text {fb2 }}\) is the feedback resistince in ohms for the \(2 N \cos \not \mathrm{D}-\mathrm{turn}\) winding of the cumulativo c.w. I. connection, then the feedback resistance for a fictitious \(N\)-turn winding for on the d-axis is
\[
R_{f b N}=\frac{R_{f b 2}}{4 \cos ^{2} \emptyset}
\]

In order to maintain the above-mesured value of \(T_{\text {do }}^{\prime}\) in the d.w.r. mode, the resistance \(R_{\text {fbN }}\) must remain unchanged. Use of the parameter transformation Eqn. (8.31)shows that the feedback resistence \(R_{\text {fert }}\) of a single winding in d.w.r. mode becomes
\[
\begin{equation*}
R_{\text {fbrt }}=\frac{R_{f b N}}{2} \text { ohm } \tag{10.3}
\end{equation*}
\]

The value of \(T_{\text {do }}^{\prime}\) measured from tests for the c.w.r. connedtion has a maximum value of 4.17 sec . which connot be exceeded because of limitations in the t.c.r. Furthermore the low lop gain of the t.c.r. permits the residual voltege of the exciter to circulate an alternator field current without any aprliod field voltage 'e' (see fig. 5.5). Hencg the relationship between field voltage and field current becomes non-linear at low values of e. To off-set this, a Lias in series with e, but of opposite polarity, is uscd to reduce \(i_{f}\) to zero when \(e\) is zero.

When a t.c.r. supplies one field winding only, the natural field resistance is less than tho criticel resistance 41 for the seriesexciter in fig. 5.5. Only the feedback signal to the exciter
control fields limits the exciter output below an acceptable level when e (seefig. 5.5) is zero. Howevor, when a transient causes \(i_{f}\) to increase, the electronic amplifier feeding the control field soon reaches its output li it in the proces of counteracting the series field effect. For higher values of \(i_{f}\) the effective field resistance is therefore no longer Rfb. Since there are no taps on the exciter series field the problem was overcome by deliberately adding externel resistance into the exciter load circuit.

\section*{Inertia constant}

The inertia of the micro-alternator and d.c. driving motor was altered by adding a flywheel to the rotating system in order to have an inertia constant typical of a large alternator. Values of inertia constants for large turbo-alternators appear in Table lo.l.

Table 10. 1 Inertia constants
\begin{tabular}{|c|c|}
\hline Fiachine rating, mu & H, sec. \\
\hline 660 & 3.84 \\
660 & 3.47 \\
500 & 4.1 \\
500 & 3.6 \\
500 & 2.8 \\
\hline
\end{tabular}

The parameters for thed.w.r. micromachine with two time constant regulators appear in Table 10.2

Table 10.2 D. W.R. micro-machine and system data
\begin{tabular}{|c|c|}
\hline Base stator voltage & 220 v, r.mos. line \\
\hline Base stator current & 7.87 A \\
\hline Base armature power & 3000 VA \\
\hline Base stator impedance & 16.14 ohm \\
\hline Base field valtage & 683.4 V \\
\hline Base fiold current & 2.19 A \\
\hline Base field.power & 1500VA \\
\hline Basẽ field impedance & 311.4 ohm \\
\hline Mutual reactance \(X_{\text {md }}\) (unsat.) & 2.22 P.U. \\
\hline \(x_{m q}\) (unsat.) & \(1.97 \mathrm{P} . \mathrm{U}\). \\
\hline Armature leakage reactance, \(X_{a}\) & 0.1 p.u. \\
\hline Armature resistance, ra & \(0.0061 \mathrm{p.u}\). \\
\hline Field leakage readtances \(X_{\text {fd }}\) & 0.217 P.U. \\
\hline \(\mathrm{Xfq}_{\text {f }}\) & \(0.436 \mathrm{p.U}\). \\
\hline \(X_{t},{ }_{\text {r }}\) & \(0.300 \mathrm{p.U}\). \\
\hline Field resistances, Ifd' & \(0.00186 \mathrm{p.u}\). \\
\hline \({ }^{\mathrm{F}} \mathrm{fq}\) & \(0.00416 \mathrm{p.u}\) \\
\hline \(r_{t}, r_{r}\) & \(0.00257 \mathrm{p} . \mathrm{U}\). \\
\hline Transient reactance, \(X_{d}^{\prime}\) & 0.298 P.u. \\
\hline & 0.490 P.U. \\
\hline Subtransient reactance, \(X_{d}^{\prime \prime}\) & 0.172 p.u. \\
\hline \(\mathrm{XC}_{\mathrm{Q}}^{\prime \prime}\) & \(0.203 \mathrm{p.u}\) \\
\hline Time constant: T'do & 4.17 sec. \\
\hline & 0.536 sec . \\
\hline T"d & 0.029 sec . \\
\hline T' & 1. 88 sec. \\
\hline T' \({ }_{\text {q }}\) & 0.447 sec . \\
\hline T \({ }_{\text {q }}\) & 0.035 sec . \\
\hline Inertia constant : H & 3.48 sec . \\
\hline Divided winding angle & \(67.5{ }^{\circ}\) \\
\hline Transmission line: & \\
\hline Resistance \(\mathrm{R}_{1}\) & 0.0086 p .4. \\
\hline Reactance \(\mathrm{X}_{1}\) & \(0.186 \mathrm{p.u}\). \\
\hline
\end{tabular}
10.1.3 Comparison with large hypothetical machine

A comparison between the main parameters in Tables 8.1 and 10. 2 reveals important points summerized in Table 10.3

Table 10.3 Comparative data for a d.w.r. micro-machineg a d. W.r. 30 mw machine and two larae c.w.r. turbo-
\begin{tabular}{|c|c|c|c|c|}
\hline Parametor & \begin{tabular}{l}
d.u.r. \\
micro-machine
\end{tabular} & \[
\begin{aligned}
& \text { d.u.r. } \\
& 30
\end{aligned}
\] & \[
\begin{aligned}
& c \cdot \omega \cdot \Gamma \cdot \\
& 275 \mathrm{mu}
\end{aligned}
\] & \[
\begin{aligned}
& c . w . r . \\
& 500 \mathrm{mbi}
\end{aligned}
\] \\
\hline S.C.I & 0.43 & 0.5 & 0.45-0.55 & 0.40-0.48 \\
\hline H & 3.48 & 5.3 & 3.5-4.75 & 3.5-4.65 \\
\hline \(x^{\prime}\) & 0.298 & 0.27 & 0.2-0.3 & 0.23-0.33 \\
\hline \(x^{\prime \prime}\) & 0.172 & 0.172 & 0.17-0.21 & \(0.17-0.23\) \\
\hline X' & 0.490 & 0.472 & & \\
\hline \({ }^{\times 11}\) & 0.203 & 0.176 & & \\
\hline T'do & 4.17 & 6.59 & & \\
\hline T' & 1.88 & 2.60 & & \\
\hline ra & 0.0061 & 0.002 & & \\
\hline T \({ }_{\text {d }}\) & 0.029 & 0.027 & & \\
\hline T' \({ }_{\text {q }}\) & 0.035 & 0.035 & & \\
\hline
\end{tabular}

The only significant difference of parmameters in Table lo. 3 is still the high value of micromachine armature resistance, although it is about three times smaller than the resistance of the "old" c.w.r. micro-machine. A significant improvement on the damping performace of the old micro-machine is seen in the close agreement between the subtransient time constants of the "now" micro- machine and the 30 mu machine. The results of Table 10.3
indicate that the d.w.r. micro-machine parameters as a whole agree closely with the hypothetical. 30 Mul d.u.r. parametors and in some respects even better with the c.w.r. 500 Mus turbo-generator parameters. Hence the test results of the new micromachine in either the d.w.r. or cou.r. mode should be closer to the results of a large machine than hitherto.

\subsection*{10.2 The Prime Mover}

The new micro-alternator is driven by a \(4.94 \mathrm{~h} . \mathrm{p} .220 \mathrm{~V}\), compound wound d.c. motor. The torque speed characteristic was not changed (see Sect. 5.3.3) because tests were confined to steady state stability only. Provision was made in the wiring of the d.c. motor supply for the turbine sinulator mentioned in Sect.5.2.2 to be suintched in easily. However, although the simulator was operetional, it was not ready for goneril uso at the time of the tests.

\subsection*{10.3 Feedback Signals}

For a d.wor. machine to oper:te successfully as explained in Sect. 8.1 , tho excitation for the torque winding is controlled by a feedback signal proportional to the rotor angle while the reactive winding excitation is regulated either by tho terminal voltage or manually for test purposes.

\subsection*{10.3.1 The angle feedback circuit}

A signal proportional totie angle of the rotor with reforence to either the infinit: bus (fixed supply) or the terminal voltage (seofig. 10.1), is developed. A shaft driven a.c. tachougenerator
which generates the frequency of the system gives a weve form whose phase with respect to the reference wave changes in accordance with the rotor position. Thus the rotor angle probion is convorted into phase detection and generation of a voltage proportional to phase variation. A specially constructed phase detection circuit is described below.

\subsection*{10.3.1.1 The ande device}

The angle device measures the angle between tho rotating rotor body and a rotating reference axis i.e. the "rotor angle". The "load angle" is defined as the angle betueen the rotating resultant rotor M.M.F. Fo and a rotating reference axis. In a c.w.r. machine \(F_{0}\) is produced by a single field winding and is stationary with respect to the rotor body so that the "load angle" and "rotor angle" are equal. However, in ad.w.r. machine \(F_{o}\) is produced by two field windings and can therefore bo moved around the rotor body so that the "load angle" and "rotor angle" are not necessarily equal. In fact, a suitable control system will keep the rotor angle almost constant for variations in load and load angle.

In the closed loop angle control of a d.w.r. generator, tho loop gain depends on the slope of the angle device output characteristic (see fig. 10.7) and the sinewavg output of the "old" angle device \({ }^{4}\) therefore introduces a variablo gain which complicates the stability study. The "new" angle device described in this section has a linear output giving constant gain and the zoro- output point on tine calibration curve in Fig. 10.7 can be adjusted by the level control in Fig. 10.5(b) The output of tho "new" circuit in contrast to the "old" one, doos not detect a change of up to \(70 \%\) in
the amplitude of the signal voltage. This is particularly useful when moasuring rotor angle to the terminals while the terminal voltane changes as a iunction of load ancl excitation.

There are various ways \({ }^{7}\), of determining the rotor angle deponding upon the method used to obtain a signal indicative of the rotor's foosition. The available 4-pole, two-phase sino wave tacho-generator was found most conveniont.

The tacha-gonerator output is connected to any one input of the block diagram shown in Fig. 10.4 and the reference voltage to the other input. Tho reference voltage can be taken eithor from the generator terminals or the fixed supply, depending on tho type of control required and an isolating transformer is used in both cases so that the transmission line is not earthed by the angle device.

The circuit in Fig. 10.4 consists of two identical channels which each produce a pulse every time its incoming signal crosses through zero. The pulsos trigger a bistable circuit whose output has a mark-to-space ratio proportional to the phase angle. Suitable filtering follows at the output stages. A detailed circuit diagram appears in Fig. 10.5 and its oporation is described below.

The incoming signal is zoneres by Dl to limit the inverse basememitter voltage of the transistor amplifior stago Tl. Capacitor Cl acceloratas the switching of T2 between the "ON" and "aFF" state. The maximum amplitude of the incoming signal is determined by the power dissipation capability of \(D 1\) which can be incroased if necessary. The minimum signal amplitude should cause a nogligiblo time lapso betweon zero-crossover of the signal and the output of


Fig. 10.4 Block diagram of angle device.


Fig. 10.5 (a)



Fig. 10.5(c)

Fig. 10.5 The angle device.

Table 10. 4 List of components in ig. 10.5 Resistances: \(\frac{1}{4}\) watt
```

 R1, R14 - 10 K ohm (K) R24 - 7.5 K
 R2, R4 - 5.6 K
 R3, - 120 K
 R5, R10 - 4.7 K
 RG, R23, R25 - 20 K
 R7 - 2.7 K
R8 - 27 K
R9 - 100 K
R11, R16, R19, - 5.6 k
R12-47K
R13, R15 - 82 K
RI7 - 2.2 K
R18 -- 33 K
R20, R21 - 12 ohm
R22 - 7.93 K

```

\section*{Capacitors}
```

Cl, CB, C10 - 25 micro farad(mf)
C2 - 2000 pf
c3 - 0.01 mf
C4-47 pf
C5 - 50 mf
C6, C7 - 0.25 mf
c9 - 1500 pf
Cll, C12, C13, C14 - 0.1 mf

```
Transinstors
T1, to T7 - 2N2926 (NPN)
T8, T9 - 2 N 2925 (NPN)
T10 - \(\quad\) EFYS1 (NPN)
T11 - 2N3702 (PNP)

0/A - Intograted circuit operational amplifier, PLESSEY TYPE SL702B.

T1 needed to change the state of T2. Trensistors T1 and T2 form tho pulse shaper and squarer stage. \(T 3\) and \(T 4\) are emitter follower buffer stages, and cach supplies a differentiating stage. Capacitor \(C 2\) and resistance R6 form the difierentiator while C 3 blocks back any d.c. and the diodes D2, D3, D4 and D5 allow only one polarity of pulse to pass. The independent buffering of the pulses by \(T 3\) and \(T 4\) prevents any interaction botween the two channels 'A' and 'B'.

Having prevented any interaction of the channels on one another, the pulses are then combined at the iistable vibrating stage, T5 and TG; and the frequency of vibration is doubled (see Fig. 10.6) because both the positive-going and negative-going zeromerossovers of each wave are used. Transistors T7 and TB form a cascaded buffer to decouple the next filter section. Ballast capacitors \(C 5\) and the combination of \(R 20\) and C 8 stabilize the rail voltare and eliminate high frequency oscillations.

The operational amplifier \(0 / A\) is an integrated circuit. The zener diode DG allows the output from \(0 / A\) to swing both positive and negative while R12, Rl6, R1日, C7 and \(C 6\) form a low-pass filter (see Sect. 10.3.1.2). An adjustable d.c. bias controls the level of the signal and provides the necessary small off-set required by the internal circuitry of the \(0 / A\). Since \(\mathrm{R} 18=33 \mathrm{~K}\) and R12 \(=47 \mathrm{~K}\), the d.c. gain of the \(0 / A\) is \(33 / 47\) and the incoming siganl which swings between - \(7 V\) and \(+7 V\) is attenuated to values within the unsymmetrical +60 and \(-7 V\) cepability of the integrated circuit.

Transistor \(T 9\) forms a buffer to the 100 Hz Twin-T filter and Tl0 is a buffer to the 300 Hz Twin-T filter while Tll buffers the external load.

The relationship betweon the output voltage \(\mathbf{V}_{0}\) (Fig. 10.5) and the rotor anglo, appoars as a saw- tooth wave in the calibration curve of Fig. 10.7. Good linearity isachicuod over the range from \(-90^{\circ}\) to \(+90^{\circ}\) with a sensitivity of \(4.22 \mathrm{mV} / \mathrm{deg}\) which can be increased by further amplification.

The circuit has been found reliable, robust and has the advantage of being linear. The bistable stage ( Fig .10 .5 ) can be triggered by \(A 2\) and \(B 2\) only, to provide a linear output over a range from 0 to 360 degrees although the filtering becomes more difficult.

\subsection*{10.3.1.2 The filtor unit}

The filter unit accepts the superimposed square waves at H3(see Fig. 10.6) and gives out the d.c. component with a very much reducod a.c. component. It is designed in three stages.
(1) to allow the low frequency variations of the d.c. component to pass with minimum possible attenuation anr delay. The theoretical transfor function of the practicel angla device can however allow for the filter characteristics,
(2) to give a notched attenuation at 100 Hz because this harmonic and multiples of it are genorated as a consequence of the bistable switching action.
(3) to givo a notched attonuation at 300 Hz for the stho reason.

The low-pass filter of stage (l), consisting of'the operational amplifier and Rl2, Rl6, Rl8, C7 and. C6, generates a transfer func.tion with a second order polynomial \({ }^{43}\) in the denominator.


Fig. 10.6 Output voltages in Figs. 10.3 and 10.4 at different points with respect to earth for the case of 60 degrees phase angle.


Fig. 10.7 Calibration of the angle device.

\[
\begin{equation*}
\frac{K}{A p^{2}+B p+1} \tag{10.4}
\end{equation*}
\]
where \(K=-R 18 / R 12\)
\[
\begin{aligned}
& A=\mathrm{Rl} 16 \times \mathrm{Rl8} \times \mathrm{C} 6 \times \mathrm{C} 7 \\
& E=\mathrm{Rl} 16 \times \mathrm{R} 18\left(\frac{1}{\mathrm{R} 12}+\frac{1}{\mathrm{R} 16}+\frac{1}{\mathrm{R} 18}\right) \mathrm{C7}
\end{aligned}
\]

The numerical values of these coefficients were chosen to obtain an attenuation of 12 db per octave from about 12 Hz onwards. The Twin-T filters \({ }^{44}\) generete imeginary zeros to suppress 100 Hz , 300 Hz with two transfer functions each of the form
\[
\begin{equation*}
\frac{1+\tau^{2} p^{2}}{\tau^{2} p^{2}+4 \tau p+1} \tag{10.5}
\end{equation*}
\]
when the filter is balanced. The numerical values of all filter components appear in Tible 10.4.

A transfer Function Analyser was used to determine the frequency response of the operational amplifier and filters. It was assumed that the transistor circuits before the \(0 / A\) (see Fig. l0.5) produced negligibible timo dolay. Tho test results appear in fig. 10.8 together with results calculatid from Eqns. (10.4) and (10.5) for the three filter stages.
10.3.2 The voltaga feedback signal

A d.c. signal proportional to the terminal voltage is obtained by using the same circuit as in Ref. 3. Six silicon diodes are usod in a rectifier bridge circuit. Three single phase tronsformers with centre-tapped secondary uindings isolato the bridge from the three phase terminal voltage and are connected in delta or the primary and six phase star on the secondary side. The dominant
harmonic frequency tocause of the rectifier oridge circuit is 300 Hz : it is attenuated by a Twin-T filter section. Higher noise frequencies are attenuated by low-pass R-C filtor sections jn cascade. For low frequencies rolevant to this study, it is fair to assume that the rectifier and filters do not introduce any appreciatle phase shift.

\subsection*{10.4 The Fogulators and Associated Circuitry}

The simulation of the angle and voltage rogulators was done on a small analogue conputer. In the following sections the regulators and associated circuitry are doscribed.

\subsection*{10.4.1 The anqla requlator}

Two alternative types of torque winding regulators were used, namely, a proportionate angle regulator and a regulator with proportionate and dorivative signels. Tho proportionate regulator can bo treated as a special case when the derivatives are omitted. In Fig. 10.9 is shown the derivative regulator with the following transfer function.
\[
\begin{align*}
(1 & +\left(\frac{.1 p}{(1+.01 p)(1+.01 p}\right) \\
& \left.+\frac{.02 p^{2}}{(1+.01 p)(1+.01 p)(1+.02 p)(1+.01 p)}\right) \frac{k_{t}}{1+\tau_{t}{ }^{p}} \tag{10.6}
\end{align*}
\]

The frequency response curves in Fig. 10.10 are for different values of \(\tau_{t}\) in expression (10.6). The value of \(\tau_{t}\) can be made zero to represont a thyristor excitation system, or it can have a finite value to represent the short-circuit field time constant of the conventional d.c, exciter of a large alternator.


Fig. 10.9 The angle regulator.




Fig. 10.10 Frequency response curves for the derivative angle angle regulatc:.
\(x \times \circ\) calculated; \(\quad \odot\) © measured


Fig. 10.11 The voltage regulator.

In the circuit of rig. 10.9 conventional differentiating circuits \({ }^{45}\) aro us.d to differentiate at low frequencies but to cut off high froquencies or noise, since the frequency range in this study is \(0-4 \mathrm{~Hz}\). However, in thooretical computations the effect of dolays is also considered, apart from the singlo main time delay \(\tau_{t}\).

The angle signal from the angle device in Fig. 10.5 is applied to the point marked 'IN' on Fig. 10.9. The circuit marked 'l' carries the signal straight to the summing anplifier, tho circuit marked '2' brings the first derivative and the circuit '3' the second derivative signal. The total signal passes through an amplifier with a time delay and the levol is then adjusted by a precision decade potentiometer which controls the gain \(K_{t}\). The signal is carried through a buffer amplifier and a limiter to the input of the time constant regulator. Tho limitcr circuit consists of two back to back Zener diodes which conduct if the signal excoeds \(\pm 16\) volts and is used to protect tho subsequent time constent regulator cirm cuitry. This protiction is of particular importance when the feedback signal contains a first or socond derivative component which may increasos rapidly to a large value during transient disturbances. The circuit described above represents the proportionato angle regulator when the fist and second derivative feedback circuits marked '2' and '3' a:e omitted.

\subsection*{10.4.2 The voltage requlator}

The analogue sinulation of a single delay proportionate voltage regulator is shoun in Fig. 10.11. An adder is used to sum up the feedtack signal and the reference \(V_{\text {refr }}\) which is
usad to adjust the steady-state excitation of the systom. A procision docade potentiometer is used to adjust the gain \(K_{r}\) while the next stage introduces the single time dolay \(\tau_{r}\). The signal is finally passed through a limiter (see sect. 10.4.1) before it reachos the time constant regulator input. The transfer function is
\[
\begin{equation*}
\frac{K_{r}}{1+\tau_{r} p} \tag{10.7}
\end{equation*}
\]

Equations (10.6) and (10.7) are used to calculate the results in Chapter ll.

\section*{CHAPTER 11}

\section*{11. Comparison of Measurements and Computations}

\subsection*{11.1 General}

The micromachine system shown in Fig. 10.1 was connected to the fixed sypply, referred to as an infinite bus. Stability limit studies were carried out to determine the reactive power \(Q_{0}\) at which stability was lost, for a given active power \(p_{o}\) and given gains for a voltage regulator and an angle regulator when used as follows:
1. a proportionate bus "angle regulator only" (see Sect. 9.1)
2. a proportionate terminal "angle regulator only"
3. a proportionate terminal angle regulator and a proportionate voltage regulator
4. a derivative terminal angle regulator which har proportionate-, first derivative andseond derivative terms, and a proportionate voltage rogulator.

The angle regulator and voltage regulator each had a single time delay \(\tau\) and tests were done for different values of \(\tau_{t}\) and \(\tau_{r}\). Results were obtained for a reference angle of \(33.75^{\circ}\) only.

In the present chapter the experimental results are presented together with computed values which neglect the effects of armature and line resistance as well as saturation.

\subsection*{11.2 The Stability Code}

In stability uas most clearly indicated by the rotor angle variation \(\Delta \delta\), relative to the equilibrium condition and it was decided to consider the condition of equilibriun unstable if the

\section*{rotor anglo}
1. drifted by \(2^{0}\) from equilibrium, and subsequently did not settle back within two minutes,
2. built up an oscillation of \(2^{\circ}\) about the mean, either as a limit cycl: or as an increasing oscillation.

It was not easy to find a precise point at which this occurred, particularly because of erratic variati ns of the a.c. and d.c. supplies and the alternator field currents. To minimise tho possibility of erratic judgenent because of erratic variations in the supplies, the stebility experiments were conducted during periods of steacier load conditions in the laboratory. The erratic variations in the alternator field currents were causod by alternator brush contact fluctuations in a low resistance circuit but this was improved by adding resistance into the field cirvuit (see sect.l0.1.2).

For bus angle feedback, the equilibrium is maintained at \(\delta=33.75^{\circ}\) for any power level, but with generator terminal angle feedback it is only true at zero power. At any power level, the rotor deviation is determincd by the angle ( \(\delta-\delta_{t}\) ) which increases with the increase in negative reactive absorption. Within the stability limit the rotor adjusts itself to the new condition. Hence for assessmont of the stability limit the stability code was applied at each new equilibrium condition.

\subsection*{11.3 The Requlator Constants}

\subsection*{11.3.1 The angle regulator gain \(K_{t}\)}

The angle rogulator (see Fig. 10.9) gain \(K_{t}\) dopends on several factors, namely
\(A_{t}\); tho fixed attenuation of the limiter and time constant sequlator, numerically equal to 0.1925
\(K_{\delta}\) : the angle device constant, numerically
\(=\) angle device sensitivity ( \(\left.\frac{\text { volts }}{\text { radian }}\right) \times \frac{1}{\text { base field voltage }}\)
\(=0.422 \times 57.3 \times \frac{1}{683.4}\) (seo Fig. 10.7 and Table 10.2)
\(=0.0353 \frac{\text { p.u. voltage }}{\text { radian }}\)
\(K\) : the ar justable amplifier gain constant (see Fig. 10.9).

Thus \(K_{t}=A_{t} \times K_{\delta} \times K\)
\(=0.1925 \times 0.0353 \times \mathrm{K}\)
\(=6.8 \times 10^{-3} \mathrm{~K}\)
11.3.2 The voltace regulator gain \(\mathrm{K}_{\mathrm{I}}\)

The voltaile regulator (sue Fig. 10.11) gain K depends on several factors, namely,
\(A_{t}\) : the fixed attenuation of the limiter and t.c.r. (see Sect. 11.3.1)
\(R_{e}\) : the rectifier constent; the rectified output is treated as the terminal voltage, (see Sect. 9.1), numerically

\(=0.1575\left(\frac{d . c . v o l t s}{a_{0} c \cdot l i n e v o l t s r_{0} m . s_{0}}\right) \times \frac{220\left(a_{0} c_{0}\right.}{683.4} \frac{\left.1 i n e v o l t s, r_{0} m_{0} s_{0}\right)}{(d . c \cdot v o l t s)}\)
\(=0.0507\)
\(K\) : the adjustable amplifier gain constant (see Fig. 10.11)

Thus \(K_{r}=A_{t} \times R_{e} \times K\)
\(=0.1925 \times 0.0507 \times \mathrm{K}\)
\(=9.76 \times 10^{-3} \mathrm{~K}\)

\subsection*{11.4 Star£ing of the System}

In the stability experiments including a voltage regulator the system shown in Fig. l0.l was synchronized withost any current in the torque winding. The prime mover control was adjusted to give zcro active power \(P_{0}\) at the infinite bus. The reactive power \(Q_{0}\) at the infinite bus was brought to zero by adjusting \(V_{r e f r}\) (see Fig. 10.11). The t-winding was then onergised and the d.c. off-set bias (see Sect. 10.1.2) used to adjust the steady torque winding current to zero. The input signals to the angle device (see fig. 10.5) were switched on and the circuit to the angle requlator (see fig. 10.9) closed. The output from the angle divico and regulatar was adjusted to zero by means of the angle regulator reference voltage \(V_{r e f t}\) in Fig. 10.9. A preaision decade potentiometer was used to adjust the regulator gain \(K_{t}\) below the limiting levol and the torque winding feedback circuit was closed. Before any experiments were conducted the system was loaded to \(P_{0}=0.8\) p.U. and \(Q_{0}=0.6 \mathrm{p} . \mathrm{u}\). and was run for about half an hour to establish a reasonable steady temperature in all tho windings.

The above procedure was folower! for most of the stability tests except for the cases without a valtage regulator, when the reactive winding excit. tion was adjusted manually. when there were derivative components in the angle feedbeck, the various derivative circuits in the regulator (see Fig. 10.9) were the last to be closed after synchronization and the first to be opened before synchronism was lost.

\subsection*{11.5 Steady-state Stability Limit Curves for Proportionate Bus Angle Fequlator}

After startirg and warming of the sot (soe Sect. 11.4) the acti e power at the infinite bus was adjusted to say 0.2 pou. and the regulator gain \({ }^{k} t\) was adjusted by the potentionetur to a stable value (see 5ect. 10.4.1). To make the micro-machine system deliver negative vars the positive excitation of the reactive winding was decreased in small steps to zero and then increased in the negative direction. After every small change in the excitation the rotor angle was observed with the aid of a stroboscope for about five minutes. The rotor was considered to bo stables if after the disturbance it settled down to equilibrium according to the stability code, otherwisc it was unstable.

The regulator gain \(K_{t}\) was increseded in steps and the above procedure wes repected to loocte the steady-state stability limit. Tho active power \(P_{0}\) was adjusted to a new value and the entire process repeated to obtain a new set of steady-state stability limit points.

The experimental and computed results shoun in Fig. 11.1 agree well in the low gain region \(A B\) but the agreement is less good at
higher gains in the \(B C\) rogion. The discrepancy may be bocause the instability in the \(\bar{f} C\) region is of the oscillating type and computed results are sensitive to small errors in the measured transient-and subtransient parameters. However, in general, Fig. 11.1 shows that the active power \(P_{0}\) does not significantly influence the results.

\subsection*{11.6 Steady-State Stability Limit Curves for Proportionate}

Iorminal Angla Requlator
The experimentel stead-state stability limits for the proportionate terminal ansle regulator were obtained in a manner similar to that described in Sect. 11.5 .

Fig. 11.2 shows fairly good agrecment between experimental and theoretical results in the low gain region but, as in fig. ll.l, the agreement in the high gain region is less goud for the same reasons as stated in Sect. ll.5. Houever, an increase in the active load \(P_{0}\) has the semo effect on both experimont l and theoretical results.

\subsection*{11.7 Stoady-state Stability Limit Curves for_Proportionate Terminal} Angle Requlator and Proportionate Voltage Reculator

The experimental steady-state stability limits for a system with an angle regulator and a voltage regulator (a.v.r.) were obtained by using a value of \(K_{F}\) within the stablo region before testing for the stability limit in the same manner (sec Sect. ll.5) as for an angle regulator only. The active power \(P_{0}\) was changed and the procedure repeated to obtain a curve for each value of \(P_{0}\), and the results are shown in Fig. Il.3(a). The entire process was repeated for a different value of \(K_{r}\) and the results apperr in Fig. 11.3(b).

Theorectically as woll as experimentally, an increase in power incressos the maximum reactive absorption \(\mathrm{c}_{\mathrm{o}}\) in Fig. 11.3 at any value of \(K_{t}\), irrespective of whothor \(K_{r}\) is high or low. Although there is fair agreement between comuuted and measured points in the low gain region \(A B\), it is not at as good in the hioh gain BC region, for reasons discussed in sect. 11.5 , On the whole, the agreoment in Fig. 11.3(b) is less favourable than in Fig. 1l.3(a) possibly because of the higher voltage regulator gain.

Tho results in fig. 11.3 also illustrate that a combination of two simple dolay type regulator systems is capabla of increasing the maximum negative reactive absorption to a useful value greater than l.p.u. for all values of power if \(k_{t}\) is less than about \(9 \times 10^{-3}\) 。
11.8 Stoady-state Statility Limit Curves for Derivative Terminal Angle Regulator and Proportionate Voltage Regulator

Tho transfer function, including first and socond derivative angle terms, (see Eqn. 10.6) was simulated on the analogue cotputer (see Fig. 10.9 ) and \(K_{t}\) was adjusted on the potentiometer as for the proportionato angle regulator. The stability limit tosts were carried out for different values of angle regulator gain \(K_{t}\), active powir \(P_{0}\), and voltage regulator gain \(K_{I}\) in the same way as described in Sect. 11.7

Fig. 11.4 shows some of the experimental computed limits for a time dolay of 0.5 seconds in each regulatar. The overall agreomont between computod and measured values is fairly good except for the very high gain region \(C D\). In this region, the natural frequency of oscillatory instability is relatively low and difficult to distin~ guish from a drift due to fluctuations in the supply.

Honce, thore is greater uncortainty asaociated with measurements in this region. Compared with Fig. 11.3, Fig. 11.4 shows that the maximum value of \(Q_{0}\) is about the same (- 1.2 p.u.) at the same value of \(K_{t}=3 \times 10^{-3}\). However for a minimum \(Q_{o}\) max of -1 p.u. \(K_{t \max }\) is about twice the value without derivative compensation (also see Sect. 9.4.6).

The derivative angle terms give little increose in negative reactivo absorption when \(\tau_{t}=\tau_{I}=0.5\) compared to \(\tau_{t}=\tau_{r}=0.0\). Large d.w.r generators with conventional d.c. excitation systems will therefore only have a marginal increase in \(Q_{0} \max\) and little gain in \(K_{t \text { max }}\) when derivative compensation is added in the form suggested by Eqn. (10.6).


Fig. 11.1 Steady-state stability limit curves


Fig. 11.2 Steady-state stability limit curves.


Fig. 11.3(a) Steady-state stability limit curves.


Fig. 11.3(b) Steady-state stabiltity limit curves.


Fig. 11.4 Steady-state stability limit curves.

\section*{12. CONCLUSIONS}

The purpose of tho work doscribod in this thesis has been to investigate methods of representing machinos in ordor to study tho steady-state and transient stability of a synchronous genorator connectod through a transmission lino to a fixed supply.

Two types of machines have been studied viz. a synchronous generetor with a conventional single field winding on the rotor d-axis, referred to as a conventionally wound rotor (c.w.r.) machine; and a synchronous generator with tuo soparate ficld windings on tho rotor, referred to as a divided uinding rotor (d.w.r.) machine. In the case of tho c.w.I. machine, the umphasis has been on the transient bohaviour after a symmetrical three-phese short-circuit. In tho case of the d.w.r. machine the main investigation has boen concorned with steady-stato stebility during small disturbances, although calculations were also mado for the transiont stability aftur a threephese fault.

Difforent types of transient disturbances havo becn analyscd and compared by using the equivalont two-axis circuits end the Laplacc approach to find the difforent exprossions for the electromagnetic torquo of the c.w.r. machine. It was found that the transient torquc after different disturbances consistod of an individual component for each disturbance in addition to three mein common components. viz. the synchronizing- and saliency torquo, the torque due to field flux decrement and the damping torque.

Difforont methods of analysing the synchronous machine transiont responso havo boen compared, including a new accurato method which
does not naglect the rate of change of the armaturo flux linkages \(\Psi_{d}\) and \(\Psi_{q}\). It has benn shown that an angular "back swing" in the rotor can occur whon a three-phaso fault is apulied. The back swing is caused by high transient losses which cause a unidiroctional braking torque during the initial period of the fault. The
 not neglected in tho exprossions for the armature axis voltages. The accurate method also allows more fully for the action of the demper winding than simply by means of a constant damping coefficient. An approximate method which ailows for damoing but not for py has also been used for calculetions and comparisons have been drawn between the approximate and accurate results.

For the accurate method a new set of first order differontial equetions have been developed in a form particularly suitable for a step-by-step solution on a digital computer. The axis flux linkages und curronts which change at about supply frequency, are solved simultaneously. The time interval for a stepmby-step calculation must be short compared with the poriod of the a.c. cycle and hence requires a large amount of digital computer time. Efforts were made to reruce the time by using more powerful methods of intagration and by rearranging the order in which equations were being solved. The best achievement permitted a 5 milli-second step lengeh when the fifth order kutta-Merson method was used.

Tests and calculations of the back swing phonomenon have been made for a c.w.r. micro-machine system while calculations have also been made for a 30 MU c.w.r. turbo-alternator.

A detailed study has revealed the effect of the short-circuit
braking torque when
1. the machine is at a reduced load,
2. the tie-line reactance is increased,
3. the inertia constant is small.

The conclusion can be drawn that in countries where the load centres are not far apert and transmission lines are relatively short, as in England, a short-circuit anywhere along a transmission line may be close enough to the alternators to cause back swing. If the load is remote from the generating centre, as in the case of systems with hydro-stations, a back swing may occur alter a fault if the generator was relatively over-excited in order to maintain voltage stabiltity at the receiving end. For such conditions an accurate result is not obtained unless the pצ terms are included. When genorators have rectifier excitation, the accurate mothod must be used for any transient condition during which the field current falls to zero. Induction motor recovery studies are also affected by the p \(\Psi\) terms since the short-circuit braking torque increases the deceleration.

It is well known that the stable operating range of a cow.r. generator can ie extenced under leading current conditions, by means of an a.v.r. acting on the single direct axis field, but such a system has limitatirns at light load conditiors. The use of a second field winding on the quaorature axis of the rotor, excited by a conti.. nuous feedback rotor angle signal, showed \({ }^{4}\) a dramatic improvement in the stable operating range for all values of load. Another scheme \({ }^{5}\) showed that : mechine with two divided windings on the rotor (d.w.r.) could be controlled to operate stably beyond the normal cowore range
during steady-state conditions and that it also had an improvod transient response. In the light of the c.w.re machire stability limitations, and the promise held out by tho dow.r. machire, it was decided to investigate mrae closely tho stability problems of the latter.

The non-linear equations have been developed, following the generalized machine theory, for a machine with a field winding on the d-axis as well as on the q-axis. As the field windings of a d.w.r. machine are not necessarily on the d- and q-axis, a new transformation matrix has been established to replace, mathomatically, the two physicel field windings by two fictitious field windings, ono on each axis. The equations were then used to calculeted the transient response after a three-pahse fault on a hypothetical. \({ }^{5}\) 30 Mw d.w.r. turbo-alternator and also to study the steady -state stability of a micro-machine with a divided winding rotor.

The transient stability calculations have used the approximate method as woll as the accurate method. A new set of first order differential equations have becn derelopod in the same way as for the c.w.r. machine with the difference that the field winding on the q-axis introduces an additional equation. The results cor. roborate the earlier deductions about the back swing phenomenon, although the effoct seems less severe perhaps because the rotor movement of the d.w.r. machine is more constrained by the feedback control signals.

Steady-state stability tests and calculations of the d.w.r. micro-machine have shown fairly good agreement ani it can be concluded that:
1. The torque winding currant of a d.llor. machinc controls the active power althounh it also affects the reactive power. The reactive winding current controls the reactivo power orily, and a suitable feedback can therefore regulate the reactive without affecting the ective power. However, all this is iessel on the asm sumptisn of zero saliency and that, by means of afeedback signal to the torque winding, tho rotor is held at a constant angle \(\not \varnothing_{r}\) with reference to a fixed supply.

When the feedback signal is taken with reference to the terminal voltage, the above conclusions are only approximately true because the rotor is not held at a fixed angle.
2. The angle feedtack to the torque winding acts as a stabilising circuit for the terminal voltage feedbrck to the reactive winding. This means that the a.v.I. can have a gain so high that the system would be unstable if the stabilizing angle regulator were removed. Furthermore, a considerable change in tho time delay of the a.v.r. has negligible effect on the steady-state stability although it may affect the transient response of tho system. Convorsely, the only effect from the \(a, V . I_{\text {. }}\) seems to be a small improvement in the steady \(=\) state stability limit of a system with an angle regulator only. These canclusions lead to the following salient deductions:
(a) The a.v.r. design seems to be almost independent of the angle regulator and it is believed that the a.v.r. of a present large c.w.r. maching will most probably be equally suitable for a large d.w.r. machine in future.
(b) The stable operating rance of a d.w.r. system with an angle regulator and a voltage reguletor, is almost the same as a d.w.r. systen with an angle regulator onlye
```

Any improvement in the steady-state stability limit
can probably anly bo achiovod by an inherent improve-
ment of the angle regulator stability.

```
3. It has been shown that the stability of the system with an angle- and a voltago regulator can e improved if the gain margin of the angle regulator is improved by including first- and second den rivativa compensating terms. Although the compensation provided a dramatic increase in negati:e reective aborption when the regulators had negligible delay, it was less erfective when both regulators had a delay of 0.5 seconds which corresponds to the shortmoircuit field time constant of a large d.c. excitor. Hawever, the derivative ande regulator used, was by no means an optimum design and could be redesigned to give improved compensationata given value of time delay.

\section*{APPENDIX I}

\section*{THE ACCURATE METHOD OF MNALYSIFG A C.W.R. AACHINE}

From Eqns. (40.2) and (4.13) the derivatives of the flux linkages \(\Psi_{d}\) and \(\Psi_{q}\) are found as
\[
\begin{align*}
p \Psi_{d} & =\frac{x_{d}^{\prime \prime}}{\omega} \cdot p i_{d}+\left(x_{d}^{\prime \prime}-x_{a}\right)\left[\frac{p_{f}^{\Psi}}{X_{f d}}+\frac{\Psi^{\Psi}}{X_{k d}}\right]  \tag{A1.1}\\
p_{q} \Psi_{q} & =\frac{x_{q}^{\prime \prime}}{\omega} \cdot p i_{d}+\left(x_{q}^{\prime \prime}-x_{a}\right) \frac{p \Psi_{k q}}{X_{k q}} \tag{A1.2}
\end{align*}
\]

Equating the right hand sides of Eqns. (4.1) and (4.24) yields
\(p \Psi_{d}+\nu \Psi_{q}+r_{a}^{i_{d}}=\sqrt{2} V_{b d}-\frac{X}{\omega} \cdot p i_{d}-R i_{d}-\frac{X}{\omega} \cdot v i_{q}\)

The values of \(p \Psi_{\mathrm{o}}\) from Eqn. (Al.1) and of \(\Psi_{q}\) from Eqn. (4.13) are substituted into Eqn. (A1.3) which then contains the terms \({ }^{\prime \Psi} \Psi_{d}\) and \(p \Psi_{f}\). The expressions for these, given by Eqns. (4.14) and (4.16), are substituted into the modified Eqn. (Al.3).

After re-arranging the terms, an exprassion gor pid is found as
\[
p i_{d}=a_{1} i_{d}+a_{2}^{v i_{q}}+a_{3} \Psi_{f}+a_{4} \Psi_{k d}+a_{5} v \Psi_{k q}+a_{6} V_{b d}+a_{7} v_{f}
\]
and likewise for \(\mathrm{pi}_{\mathrm{q}}\). The values of the constants \(\mathrm{a}_{1} ; \mathrm{a}_{2}\) etc.) see Eqn. (4.26)) are:-

\(a_{2}=-\frac{x+x_{q}^{\prime \prime}}{x+x_{d}^{\prime \prime}}\)
\[
\begin{aligned}
& a_{4}=\left(-T_{d o}^{\prime \prime} \frac{9_{1}}{X_{k d}}-\frac{9_{1}^{2} x_{m d}}{9_{3} x_{k d} x_{f d}^{T}}\right) \cdot\left(\frac{\omega}{\left.X+X_{d}^{\prime \prime}\right)} ;\right. \\
& a_{5}=-\frac{9_{2} \omega}{x_{k q}\left(x+x_{d}^{\prime \prime}\right)} ; \quad a_{6}=\frac{\sqrt{2} \omega}{x+x_{d}^{\prime \prime}} \quad ; \quad a_{7}=-\frac{9_{1} \cdot \omega}{x_{f d}\left(x+x_{d}^{\prime \prime}\right)}:
\end{aligned}
\]
where \(\quad g_{1}=x_{d}^{\prime \prime}-x_{a} ; \quad g_{2}=x_{q}^{\prime \prime}-x_{a} ; \quad g_{3}=x_{d}-x_{a} ;\)
\[
\begin{aligned}
& b_{1}=\left(x+x_{d}^{\prime \prime}\right) /\left(x+x_{q}^{\prime \prime}\right) ; \\
& b_{2}=-\left(r_{a}+R \frac{q_{2} X_{m q}}{\omega T_{k q} T_{q o}^{\prime \prime}}\right) \cdot \frac{\omega}{\left(X+X_{q}^{\prime \prime}\right)} ; \\
& b_{3}=\frac{\omega_{1}}{x_{f d}\left(x+x_{q}^{\prime \prime}\right)} ; \\
& b_{4}=\frac{\omega_{g_{1}}}{X_{k c^{\prime}}\left(x+x_{q}^{\prime \prime}\right)} ; \\
& b_{5}=\frac{\omega_{2}}{X_{k q_{q 0}}^{\prime \prime \prime}\left(x+X_{q}^{\prime \prime}\right)} ; \quad B_{6}=-\frac{\sqrt{2} \cdot \omega}{x+X_{q}^{\prime \prime}} ; \quad b_{7}=0.0 ;
\end{aligned}
\]

From En. (4.16) for \(\mathrm{p}^{\Psi_{f}:-}\)
\[
\begin{array}{ll}
c_{1}=\frac{g_{1} x_{m d}}{\omega g_{3}^{T} T_{d o}^{\prime}} ; & c_{3}=-\left(1+\frac{9_{1} x_{m d}}{X_{k d} x_{f d}}\right) ; \\
c_{4}=\frac{g_{1} x_{m d}}{x_{k d} T_{d o}^{\prime} g_{3}} ; & c_{2}=c_{5}=c_{6}=0.0 ;
\end{array}
\]
\(\underline{\text { From Eqn. (4.14) for }} \underline{\mathrm{KI}}_{\mathrm{kd}}\) :-
\[
\begin{aligned}
& d_{1}=\frac{9_{3}}{T_{d o}^{\prime \prime}} ; \quad d_{3}=\frac{9_{3}}{X_{f d^{T o}}^{\prime \prime}} ; \quad d_{4}=-\frac{1}{T_{d o}^{\prime \prime}} ; \\
& d_{5}=0.0 ; \quad d_{2}=d_{6}=d_{7}=0.0 ;
\end{aligned}
\]

From Eqn. (4.15) for \({ }^{\left(4 \Psi_{k g}:-\right.}\)
\[
\begin{aligned}
& e_{1}=e_{3}=e_{4}=e_{6}=e_{7}=0.0 \quad e_{2}=\frac{x_{m a}}{\omega T_{q 0}^{\prime \prime}} \\
& e_{5}=\frac{-1}{T_{q 0}^{\prime \prime}}
\end{aligned}
\]

\section*{APPENDIX II}

THE APPROXIMATE METHOD OF ANALYSIGG A D.W.R. MACHINE

If \(i_{f d}\) and \(i_{k d}\) are eleminated from Ens. (3.17),(8.19)
and (B.2l), the following expression is obtained for \(\Psi_{d}\) :
\[
\begin{align*}
\Psi_{d}=\left(L_{d d}-\frac{L_{m d}^{2}}{L_{f f d}}\right) i_{d}+\Psi_{f d} \frac{L_{m d}}{L_{f f d}} & +\left[\begin{array}{c}
L_{m d}-L_{m d}^{2} \\
\frac{L_{k k d}-\frac{L_{m d}^{2}}{L_{f f d}}}{L_{f f d}}
\end{array}\right]\left[\Psi_{k d}-\Psi_{f d} \frac{L_{m d}}{L_{f f d}}\right. \\
& \left.-\left(L_{m d}-\frac{L_{m d}^{2}}{L_{f f d}}\right) i_{d}\right] \tag{A2.1}
\end{align*}
\]

If \(i_{f q}\) and \(i_{k q}\) are eliminated from Eqns. (8.18), (8.20) and (8.22) a similar expression is found for \(\Psi_{q}\) :
\[
\begin{align*}
\Psi_{q}= & \left(L_{q q}-\frac{L_{m q}^{2}}{L_{f f q}}\right) i_{q}+\Psi_{f q} \frac{L_{m q}}{L_{f f q}}+\left[\frac{L_{m q}-\frac{L_{m q}^{2}}{L_{f f q}}}{\left.L_{k k q}-\frac{L_{m q}^{2}}{L_{f f q}}\right]\left[\Psi_{k q}-\Psi_{f q} \frac{L_{m q}}{L_{f f q}}\right.}\left[\begin{array}{l}
-\left(L_{m q}-\frac{L_{m q}^{2}}{L_{f f q}}\right) i_{q}
\end{array}\right] \quad(A 2.2)\right.
\end{align*}
\]

The combinations of inductance terms in Eqns. (A2.1) and (A2.2) can be expressed in terms of the transient and subtransient reactances of the machine when the following identities are used:-
\(\omega\left(L_{d d}-\frac{L_{m d}^{2}}{L_{f f d}}\right)=X_{d}^{\prime} ; \quad \omega\left(L_{q q}-\frac{L_{m q}^{2}}{L_{f f q}}\right)=X_{q}^{\%} ;\)
\(\left.\omega\left(L_{m d}-\frac{L_{m d}^{2}}{L_{f f d}}\right)=\left(X_{d}^{\prime}-X_{a}\right) ; \omega\left(L_{m q}-\frac{L_{m q}^{2}}{L_{f f q}}\right)=X_{q}^{\prime}-X_{a}\right) ;\)
\(\omega\left(L_{k k d}-\frac{L_{m d}^{2}}{L_{f f d}}\right)=\left[\begin{array}{c}x_{d}^{\prime}-x_{a} \\ x_{d}^{\prime \prime}-x_{a}\end{array}\right] x_{k d} ; \quad \omega\left(L_{k k q}-\frac{L_{m q}^{2}}{L_{f f q}}\right)=\left[\begin{array}{l}x_{1}^{\prime}-x_{a} \\ x_{q}^{\prime \prime}-x_{a}\end{array}\right] x_{k q} ;\)
\[
\begin{aligned}
& \frac{L_{m d}}{L_{f f d}}=\frac{x_{d}^{\prime}-x_{a}}{x_{f d}} ; \quad \frac{L_{m q}}{L_{f f q}}=\frac{x_{q}^{\prime}-x_{a}}{x_{f q}} \\
& \frac{x_{d}^{\prime} x_{k d}}{x_{d}^{\prime}+x_{k d}}=x_{d}^{\prime \prime} ; \quad \frac{x_{q}^{\prime} x_{k q}}{x_{q}^{\prime}+x_{k q}}=x_{q}^{\prime \prime} ;
\end{aligned}
\]
where \(X_{a,} X_{f d}, X_{f q}, X_{k d}\) and \(X_{k q}\) are leakage reactances

When the abovementioned identities are used in the equations for \(\Psi_{d}\) and \(\Psi_{q}\), it is found that:
the coefficient of \(i_{d}\) is
\[
x_{d}^{\prime}-\frac{\left(x_{d}^{\prime \prime}-x_{a}\right)\left(x_{d}^{\prime}-x_{a}\right)}{x_{k d}}=x_{d}^{\prime \prime}
\]
the coefficient of \(\Psi^{f}\) is
\[
\frac{x_{d}^{\prime}-x_{a}}{x_{f d}}-\frac{\left(x_{d}^{\prime}-x_{a}\right)\left(x_{d}^{\prime \prime}-x_{a}\right)}{x_{f d} x_{k d}}=\frac{x_{d}^{\prime \prime}-x_{a}}{x_{f d}}
\]
the coefficient of \(i_{q}\) is
\[
x_{q}^{\prime}-\frac{\left(x_{a}^{\prime \prime}-x_{a}\right)\left(x_{q}^{\prime}-x_{a}\right)}{x_{k q}}=x_{q}^{\prime \prime}
\]
the coefficient of \(\Psi\) fa is
\[
\frac{x_{q}^{\prime}-x_{a}}{x_{f q}}-\frac{\left(x_{q}^{\prime}-x_{a}\right)\left(x_{q}^{\prime \prime}-x_{a}\right)}{x_{f q} x_{k q}}=\frac{x_{q}^{\prime \prime}-x_{a}}{x_{f q}}
\]
and the explosions (A2.1) and (A2.2) are simplified to Eq ns. (8.32) and ( 8.33 ).

The rates of change of secondary flux linkages are found by eliminating the secondary currents from the voltage Eqns. (8.13) to
(8.16).
\[
\begin{align*}
& \text { From Eqns. }(8.13) \text { and }(8.21) \\
& p \Psi_{f d}=\cdot v_{f d}-r_{f d} i_{f d} \tag{A2.3}
\end{align*}
\]

An expression for \(i_{f d}\) is obtained by eliminating \(i_{k d}\) from Eqns. \((8.19)\) and \((8.21)\), as
\[
\begin{align*}
i_{f d}=-\frac{\left(x_{d}^{:}-x_{a}\right) \omega}{\left(x_{d}^{\prime}-x_{a}\right) x_{k d} x_{f f d}} & {\left[\left(\Psi_{k d} x_{m d}-\Psi_{f d} x_{k k d}\right)\right.} \\
& \left.-x_{m d} L_{k d} i_{d}\right] \tag{A2.4}
\end{align*}
\]
while rfd can be written as
\[
\begin{equation*}
r_{f d}=\left(X_{f d}+X_{m d}\right) / \omega T_{d o}^{\prime} \tag{A2.5}
\end{equation*}
\]

The expressions in Eqns. (A2.4) and (A2.5) are substituted in Eqn. (A2.3) to yield Eqn. (8.34) as the final exprassion for \(\mathrm{p}_{\mathrm{f}} \mathrm{fd}^{\circ}\) The expression for \(p^{\Psi} f_{q}\) in Eqn. ( 8.35 ) is found in a similer way. The secondary current \(i_{f d}\) is eliminated from Eqns (0.19) and (0.20) to find
\[
\begin{equation*}
i_{k d}=\frac{\left(x_{d}^{\prime \prime}-x_{a}\right)}{x_{k d}\left(x_{d}-x_{a}\right)}\left[\omega \Psi_{k d}-\frac{\left(x_{d}^{\prime}-x_{a}\right)}{x_{f d}} \omega \Psi_{f d}-\left(x_{d}-x_{a}\right) i_{d}\right] \tag{A2.6}
\end{equation*}
\]
\(r_{k d}\) can be written as
\[
\begin{equation*}
r_{k d}=\left(x_{k d}+x_{d}^{\prime}-x_{a}\right) / \omega T_{d o}^{\prime \prime} \tag{A2.7}
\end{equation*}
\]

The expressions in Eqns. (A2.6) and ( 12.7 ) are substituted in the the follouing expression to find Eqn. (8.36): \(\mathrm{p}_{\mathrm{kd}}=-\mathrm{I}_{\mathrm{kd}} \mathrm{j}_{\mathrm{kd}}\) The exprssion for \(p \Psi_{k q}\) in Eqn. (0.37) is found in a similar way. --.0000-...

\section*{APPENDIX III}

\section*{THE ACCURATE METHOD or ANALYSIUG A D.U.R. MACHINE}

From Eqns. (8.32) and (8.33), the derivatives of the flux linkages \(\Psi_{d}\) and \(\Psi_{q}\) are found as
\[
\begin{align*}
& p \Psi_{d}=\frac{X_{d}^{\prime \prime}}{\omega} p i_{d}+\left(X_{d}^{\prime \prime}-X_{a}\right)\left[\frac{p \Psi_{f d}}{X_{f d}}+\frac{p \Psi_{k d}}{X_{k d}}\right]  \tag{A3.1}\\
& p \Psi_{q}=\frac{X_{q}^{\prime \prime}}{\omega} p i_{q}+\left(X_{q}^{\prime \prime}-X_{a}\right)\left[\frac{p \Psi_{f q}}{X_{f q}}+\frac{p \Psi_{k q}}{X_{k q}}\right] \tag{A3.2}
\end{align*}
\]

Equating the right hand sides of Eqns. (8.11) and (4.24) yields
\[
\begin{equation*}
P_{d}^{\Psi}+v_{q}+r_{a} i_{d}=\sqrt{2} v_{b d}-\frac{X}{\omega} p i_{d}-R i_{d}-\frac{X}{\omega} v i_{q} \tag{A3.3}
\end{equation*}
\]

The values of \(p \Psi_{d}\) from Eqn. (A3.1) and \(\Psi_{q}\) from Eqn. (3.33) are substituted into Eqn. ( 1.3 .3 ) which then contains the terms \({ }^{W} \Psi_{f d}\) and \(p \Psi_{k d}\). The expressions for these, given by Eqne. (8.34) and (8.36), are substituted into tine modified Eqn. (A3.3).

After rearranging the terms, an exprassior for \(\mathrm{pi}_{\mathrm{d}}\) is found as
\[
p i_{d}=a_{1} i_{d}+a_{2} \nu i_{q}+a_{3} \Psi_{f d}+a_{4} \nu \Psi_{f q}+a_{5} \Psi_{k d}+a_{6} v \Psi_{k q}+a_{7} v_{b d}+a_{8} v_{f d}
\]
where
\[
\begin{aligned}
& a_{1}=-\left[r_{a}+R+\frac{g_{1}^{2} X_{g d}}{g_{3}^{T} d_{d o} \omega X_{f d}}+\frac{9_{1} 9_{3}}{T_{d o}^{\prime \prime} X_{k d}{ }^{\omega}}\right] \frac{\omega}{\left(X_{d j}^{\prime}+X\right)} ; \\
& a_{2}=-\frac{x_{q}^{\prime \prime}+x}{x_{d}^{\prime i}+x} ; \\
& a_{3}=\left[\frac{9_{1}}{X_{f d}^{T d o}}\left(1+\frac{9_{1} X_{m d}}{X_{k d} X_{f d}}\right)-\frac{9_{1} 9_{3}}{X_{k d} X_{f d}^{T \prime \prime}}\right] \frac{\omega}{\left(X_{d}^{\prime \prime}+X\right)} ;
\end{aligned}
\]
\[
\begin{aligned}
& a_{4}=\frac{-9_{2}}{X_{f q}}\left[\frac{\omega}{X_{d}^{\prime \prime}+x}\right] ; \quad a_{5}=\left[\frac{9_{1}}{X_{k d} T_{d o}^{\prime \prime}}-\frac{9_{1}^{2} x_{m d}}{a_{3}^{\top} d_{d o}^{\prime} X_{f d} X_{k d}}\right] \frac{\omega}{\left(X_{d}^{\prime \prime}+X\right)} \\
& \left.a_{6}=-\frac{9_{2} \omega}{X_{k q}\left(X_{d}^{\prime \prime}+X\right)} ; \quad a_{7}=\frac{\sqrt{2} \omega}{\left(X_{d}^{\prime \prime}+X\right)} ; \quad a_{8}=-\frac{g_{1} \omega}{X_{f d}\left(X_{d}^{\prime \prime}\right.}+\bar{x}\right)
\end{aligned}
\]
\[
\text { where } \begin{array}{rll}
g_{1} & =x_{d}^{\prime \prime}-x_{a} ; & g_{2}=x_{q}^{\prime \prime}-x_{a} ; \\
g_{3} & =x_{d}^{\prime}-x_{q} ; & g_{4}=x_{q}^{\prime}-x_{a} ;
\end{array}
\]

\section*{Similarly}
\[
\begin{aligned}
& p i_{q}=b_{1} v i_{d}+b_{2} i_{q}+b_{3} \nu \Psi_{f d}+b_{4} \Psi_{f q}+v b_{5} \Psi_{k q}+b_{6} \Psi_{k q}+b_{7} v_{b q}+b_{9} v_{f q} \\
& b_{1}=\frac{x_{d}^{\prime \prime}+x}{x_{q}^{\prime \prime}+x} \text {; } \\
& b_{2}=-\left[r_{a}+R+\frac{9_{2}^{2} X_{m q}}{9_{4}^{\top}{ }_{q 0} X_{f q}{ }^{\omega}}+\frac{9_{2} 9_{4}}{X_{k_{q}{ }_{q 0}{ }^{\omega}}{ }^{\omega}}\right] \frac{\omega}{\left(X_{q}^{H}+X\right)} ; \\
& b_{3}=\frac{9_{1}^{\omega}}{x_{f d}\left(x_{q}^{\prime \prime}+x\right)} ; \\
& b_{4}=\left[\frac{g_{2}}{T_{q 0}^{\prime} X_{f q}}\left[1+\frac{g_{2} X_{m q}}{X_{k q} X_{f q}}\right]-\frac{g_{2} g_{4}}{X_{k q} X_{f q} T_{q 0}^{\prime \prime}}\right] \frac{\omega}{\left(X_{q}^{\prime \prime}+X\right)} ; \\
& b_{5}=\frac{9_{1}^{(0)}}{x_{k d}\left(X_{q}^{\prime \prime}+x\right)} ; \quad b_{6}=-\left[\frac{9_{2}^{2} x_{m q}}{9_{4}^{T_{q 0}^{\prime} X_{f q} X_{k q}}}-\frac{9_{2}}{X_{k q}^{T_{q 0}^{\prime \prime}}}\right]\left(\frac{\omega}{\left(\overline{x_{q}^{\prime \prime}}+\bar{x}\right)} ;\right. \\
& b_{9}=-\frac{g_{2} \omega}{x_{f q}\left(x_{q}^{\prime \prime}+x\right)} ; \quad b_{7}=\frac{-\sqrt{2} \omega}{\left(x_{q}^{\prime \prime}+x\right)} ; b_{8}=0.0 . \\
& \text { Also } \mathrm{pH}_{\mathrm{fd}}=\mathrm{c}_{1} i_{d}+\mathrm{c}_{2} i_{q}+c_{3} \Psi_{f d}+c_{4} \Psi_{f q}+c_{5} \Psi_{k d}+c_{6} \Psi_{k q}+c_{7} v_{f d} \\
& c_{1}=\frac{9_{1} x_{m d}}{g_{3} T_{d o}^{\prime} \omega} ; c_{3}=-\left[1+\frac{g_{1} x_{m d}}{X_{k d} x_{f d}}\right] \frac{1}{T_{d o}^{\prime}} ; \\
& c_{5}=\frac{9_{1} X_{m d}}{9_{3} T_{d 0}^{\prime} X_{k d}} ; \quad c_{2}=c_{4}=c_{6}=0 ; \quad c_{7}=1 ;
\end{aligned}
\]
and \(p \Psi_{f q}=d_{2} i_{d}+d_{2} i_{q}+d_{3} \Psi_{f d}+d_{4} \Psi_{f q}+d_{5} \Psi_{k d}+d_{6} \Psi_{k q}+d_{7}{ }^{{ }^{f} q}\)
\[
\begin{aligned}
& d_{2}=\frac{9_{2} X_{m q}}{9_{4}^{T}{ }_{q 0}^{(i)}} ; \quad d_{4}=\frac{-1}{T_{q 0}^{\prime}}\left[1+\frac{g_{2} x_{m q}}{X_{k q} X_{f q}}\right] ; \\
& d_{6}=\frac{9_{2} X_{m q}}{9_{4}^{T}{ }_{q 0}^{\prime} x_{k q}} ; \quad d_{1}=d_{3}=d_{5}=0 ; \sigma_{7}=1.0 ;
\end{aligned}
\]
and \(p \Psi_{k d}=e_{1} i_{d}+e_{3} \Psi_{f d}+e_{5} \Psi_{k d}\)
\[
\begin{aligned}
& e_{1}=\frac{g_{3}}{T_{d o}^{\prime \prime}} ; \quad e_{3}=\frac{g_{3}}{T_{d o}^{\prime \prime} X_{f d}} ; \quad e_{5}=-\frac{1}{T_{d o}^{\prime \prime}} ; \\
& e_{2}=e_{4}=e_{6}=e_{7}=0.0
\end{aligned}
\]
and \(p \Psi_{k q}=f_{2} i_{q}+f_{4} \Psi_{f q}+f_{6} \Psi_{k q}\)
\[
\begin{aligned}
& f_{2}=\frac{9_{4}}{T_{q 0}^{\prime \prime} \omega} ; \quad f_{4}=\frac{9_{4}}{T_{q 0}^{n x_{q}}} ; \quad f_{6}=-\frac{1}{T_{q 0}^{\prime \prime}} ; \\
& f_{1}=f_{3}=f_{5}=f_{7}=0.0 ;
\end{aligned}
\]

\section*{APPENDIK IV}

\section*{LINEARISING THE EQUATIOR'S FOR SMALL FERTURBATIUNS}

When the external tie-line reactance is lumped with the alternator's armature leakage reactance, the axis components of terminal voltage as given by Eqns. (8.11) and (8.12) become the axis components of iniinite bus voltage so that
\[
\begin{align*}
& v_{b d}=p \Psi_{d}+v \Psi_{q}+r_{a}^{i}{ }_{d}  \tag{A4.1}\\
& v_{b q}=-v \Psi_{d}+p \Psi_{q}+r_{a}^{i} \dot{q}_{q} \tag{A4.2}
\end{align*}
\]
where \(\Psi_{d}, \Psi_{q}\) are modified flux linkages associated with the infinite bus voltage.

The above equations are simplified if it is assumed that the transient changes are slow in relation to theac. cycle. This implies that the frequency of small oscillations superimposed on the variables is much lower than the system frequency of 50 Hz . In fact, for steady-state stability studies the highest frequency of interest is about 2 Hz and hence the assumption is justified.

Weglecting the \(P_{d} \Psi_{d}\) and \(\Psi_{G}\) terms and assuming that \(\nu=\omega=\) constant, the above equations can be reduced toj
\[
\begin{align*}
& v_{b d}=\omega_{q}+r_{a}^{i}{ }_{d}  \tag{A4.3}\\
& v_{b q}=-\omega_{d}=r_{a}^{i} q_{q} \tag{A4.4}
\end{align*}
\]
and the expression for the electrical torque becomes
\[
\begin{equation*}
T_{e}=-\frac{1}{2}\left(v_{b q} i_{q}-r_{a}^{i}{ }_{q}^{2}+v_{b d_{d}}-I_{a} i_{d}^{2}\right) \tag{A4.5}
\end{equation*}
\]

If the machine position is \(\theta=\omega t-\delta\) and \(\omega\) is the position of the synchronously rotating reference axis, then it can be : shown \(3,4,22\) that
\[
\begin{align*}
& v_{b d}=v_{b} \sin \delta=x_{q}(p) i_{q}+r_{a} i_{d}+G_{q}(p) v_{f q}  \tag{A4.6}\\
& v_{b q}=v_{b} \cos \delta=x_{d}(p) i_{d}+r_{a} i_{q}-G_{d}(p) v_{f d}  \tag{A4.7}\\
& T_{e}=-\frac{1}{2}\left(\left(v_{b} \cos \delta-r_{a} i_{q}\right) i_{q}+\left(v_{b} \sin \delta-r_{a} i_{d}\right) i_{d}\right) \tag{A4.8}
\end{align*}
\]

Ens. (A4.6) to (A4.8) are linearized for small perturbations around a steady equilibrium point, denoted by a subscript g to
\[
\begin{align*}
& v_{b} \cos \delta_{0} \cdot \Delta \delta=X_{q}(p) \cdot \Delta i_{q}+r_{a} \cdot \Delta i_{d}+G_{q}(p) \cdot \Delta v_{f q}  \tag{A4.9}\\
& -v_{b} \sin \delta_{a} \cdot \Delta \delta=-x_{d}(p) \cdot \Delta i_{d}+r_{a} \cdot \Delta i_{q}-G_{d}(p) \cdot \Delta v_{f d}  \tag{A4.10}\\
& \Delta T_{b}=-\frac{1}{2}\left(\left(v_{b} \cos \delta_{0}-r_{a} i_{q 0}\right) \Delta i_{q}-\left(v_{b} \sin \delta_{0} \cdot \Delta \delta+r_{a} \cdot \Delta i_{q}\right) i_{q 0}\right. \\
& \left.\quad+\left(v_{b} \sin \delta_{0}-r_{a} i_{d o}\right) \Delta i_{d}+\left(v_{b} \cos \delta_{0} \cdot \Delta \delta-r_{a} \cdot \Delta i_{d}\right) i_{d o}\right) \tag{A4.11}
\end{align*}
\]

The expression for mechanical motion is
\[
T_{m}-T_{e}=J p^{2}(\omega t-\delta)=T_{i}
\]
which can be reduced for small perturbations, to
\[
\begin{align*}
& \Delta T_{i}=-3 p^{2} \cdot \Delta \delta \\
& \text { and } \Delta T_{m}=\Delta T_{i}+\Delta T_{e}  \tag{A4.12}\\
& \text { The "input transformation" equation (9.1) is obtained }
\end{align*}
\]
by combining Eqns. (A4.9) to (A4.12), and putting
\[
\begin{aligned}
& v_{b d o}=v_{b d} \sin \delta_{0} \\
& v_{b q o}=v_{b q} \cos \delta_{0}
\end{aligned}
\]

\section*{APPENOIX \(V\)}
\(\underline{\text { VALUES OF } A_{I}(P) \text { FOR GENERATOR ANGLE } \delta_{t}}\)

A small change \(i n i_{d}, \delta, i_{q}\) causes a change \(\Delta \delta_{t}\) in the terminal load angle, where
\[
\begin{equation*}
\Delta \sigma_{t}=A_{1}^{\prime}(p) \cdot \Delta i_{d}+A_{2}^{\prime}(p) \cdot \Delta \delta+A_{3}^{\prime}(p) \cdot \Delta i_{q} \tag{9.10}
\end{equation*}
\]

The relationship between \(\delta_{t}\) and quantities \(i_{d}{ }^{\circ} \hat{o}^{\prime} i_{q}\) is found from the fact that
\[
\begin{align*}
\tan \delta_{t} & =V_{m t d} / V_{m i q} \\
& =V_{b d}+I_{q} X_{c}  \tag{A5.1}\\
& =\frac{V_{b q}-I_{d} X_{c}}{}
\end{align*}
\]

Partial differentiation of \(\delta_{t}\) (see Eqn.(A5.l)) with respect to \(i_{d}, \delta\) and \(i_{q}\) gives
\[
\begin{equation*}
\Delta \delta_{t}=\frac{\partial\left(\delta_{t}\right)}{\partial i_{d}} \cdot \Delta i_{d}+\frac{\partial\left(\delta_{t}\right)}{\partial \delta} \cdot \Delta \delta+\frac{\partial\left(\delta_{t}\right)}{\partial i_{q}} \cdot \Delta i_{q} \tag{A5.2}
\end{equation*}
\]

If the right hand side of Eqn. (A5.1) is partially differentiated and compared with Eqns. (A5.2) and (9.10) it is found that
\[
\begin{align*}
& A_{1}^{\prime}(p)=-x_{c} v_{m t d o} / \sqrt{2} v_{m t o}^{2} \\
& A_{2}^{\prime}(p)=\left(v_{b}^{2}+Q_{o} x_{c}\right) / v_{m t o}^{2}  \tag{A5.3}\\
& A_{3}^{\prime}(p)=x_{c} v_{m t q o} / \sqrt{2} v_{m t o}^{2}
\end{align*}
\]

\section*{REFERENCES}
1. MEHTA, D.B. and AUKIMS, B. - - Tranoient torque and locd angle of a synchronous gencrator following several types of system disturbance', Proc. IEE, vol lo7, pert A, p. 61, 1960
2. MESSERLE, H.K. and BRUCK, R.U. :- 'Steady-state Stability of synchronous generators as effected by regulators and governors', Monograph no. 134, IEE. June 1955.
3. JACOVIDES, L.J. and ADKINS 日.: Effect of Excitation Regulation on Synchronous Machine Stability, Proc. IEE, 1966, 113, (6), pp. 1021 - 1034.
4. KAPOOR, S.C., KALSI, S.S. and AOKINS, B.: Improvement of alternator stability by controlled quadreture excitation', Proc. IEE, 1969, 116, (5), pp. 771-780.
5. SOPER, J.A, and FAGG, \(A, F\), : Divided-winding-rotor synchronous generetor' Proc. IEE, 1969, 116 (1), pp. 113-126.
6. SHACKSHAFT, G.: 'General-purpose turbo-alternator model'? ibids vol 110, p. 703, 1963.
7. HARLEY, R.G. : 'Recording the Lad Anglo of a Synchronous Machine', Int. J. Elec. Engng. Educ., vol. 4,1966, Pp. 397 - 404.
8. HARLEY, R.G. : 'Kraghook en:Draaimoment Eienskappe van ' \(n\) Sinchrone Masjien', Trans. S.A.I.E.E., vol. 57, prt. 12, Dot. 1966, , pp. 254 - 277.
9. HARLEY, R.G. : 'System Transiont Stability' Elec. Timoss val. 154, Dec. 1968, No. 25, pp. 962-866, No. 26, pp. 392-894.
10. PARK, R.H. and EANKER, E.H. 'System stability as a design problem', Trans. AIEE, vol 48, P.170, 1929.
ll. CRARY, S.E. and WARING, il. L. 'Torque angle characteristics of synchronous machines following system disturbancos', ibid, vol. 51, p. 764, no. 3, Septomber, 1932.
12. CHING, Y,K. and ADKI:S, B. : Transient theory of synchronous genorators under unbalanced conditionst, proc. IE[, vol lol, p. 166, no. 4, 1954.
13. ALDRED, A.S. and SHACKSHAFT, G.: The effect of a voltage rogulator on the steadymstate and transiont stability of \(:=\) synchronous gonerator', ibid, 105A, P. 420, 1958.
14. EASTON, Vo, FITZPATAICK, J.A. and PAFITON, K.C. : The performance of continuously acting volta e regulators with additional rotor englo control', CIGRE, no. 309. June, 1960.
15. SURANA, S.L. and HARIHARAN, M.V. :'Transient response and transiont stability of power systems', Prioc. IEE, lif, no 1 p. 114, January, 1968.
16. PRABHASHANKAR, K. and JA:ISCHEWSYJ, W, : Digital simulation of multi-machino pouer systems for stability studios: Trans IEEE, PAS-87, no. \(1, \mathrm{P} .73\), January, 1968.
17. HUPPAGE, W.D. and SAHA, T.N. : 'Digital computer methods in dynamic-response anelyses of turbogenerator units' Proc. IEE, vol 114, no. B, p. lll5, August, 1967.
18. NICHOLSON, \(H\). : Integrated control of a nonlinear turbo-alternator model under feult conditions', Proc. IEE, Vol. 114 , no. 6, P. 834, June, 1967.
19. DHARMA RAO and RAMACHAPCRA RAD: 'Solution of transientstability problems through the number series appoach', ibid, vol. lll, no. 4, p. 775, April, 1964.

20．YUHKU：＇Transiont analysis of \(A C\) machinery＇，Trans．AIEE， vol．48，P．707，July， 1959.

21．LOKAY，H．E．and \({ }^{2}\) OLGER，R．L．：＇Effoct of tubine－gonerator represontation in systom stability studios＇，Trans．IEEE， PAS．84，no．10，p．933，October， 1965.

22．ADKINS，B．：The genexal theory of elctrical machines＇， Chapmen and Hall， 1959.

23．WYLIE，C．R．（Jr．）：＇Advanced Engineoring Mathomatios＇， VicGraw Hill，2nd ed． 1960.

24．CRARY，S．日．：＇Power system stability＇，vol II，1947， Chapman and Hall，London．

25．EL－ABIAD，A．H，and NAGAPPAN，\(K\) ：：Transient stability regions of multi－machine power systems＇，Trans．IEEE，PAS．－85，no．20， February， 1966.

26．FALLSIDE，F．and PATEL，f．R．：＇On the application of the Lyapunov method to synchronous machine stability＇，Internat． Journ．Control，vol．4，p．501，1966．

27．CLESS，G．E．：ibirect mothod of Lyapunov applied to transient power system stability＂，Trans．IEEE，vol．58，1960，pt 3， p 159 ．

28．CORCORDIA，C．：＇Sta天dy－state Stability of Synchronous Machines as affocted by Voltage Regulator Characteristics＇，Trens． AIEC．1944，63，pp．215－220．

29．MILES，J．G．：Analysis of Gvorall Stability of Multi－mechine Power Systens＇，Proc．IEE，1962，109A，pp．203－211．

30．BUSEMANN，F．and CASSON，W．：Results of full scale stability tests on the Gritish 132 kV grid systom＇，Proc．IEEs vol．105，prt．A，no．22，p．347，August，195日．
31. RALSTON, \(A\). and UILF, H.S. : 'fathematical Methods for Digital Computers' Now York: Wilay, 1962 .
32. LANCE, G.N.: 'Humerical Methods for High Speod Computors' Ilffo and Sons, London, 1960, p. 56.
33. ALFORD, R.J. : The statility of a synchronous gencrator asociatod with an induction motor load', Ph. D . Thesis, , ondon University, 1964.
34. SHICKSH:FT, E. : Private communication,
35. ADKINS, B. : 'Micro-machine studies at Imperial Colioge', Elect. Times, 7th July, 1960, 130 pp. 3-8.
36. IEC Technical Committee No. 2: Recommendations on Methods for Determining Synchronous Machine Quantities from Tests, Augusts 1964.
37. GRAHAN: A. C. : 'Mirco-machine Turbine Simulation', DIC Dissertation, Imperial Colloge, London 1968.
38. HUFPGGE, W. U. and Stott, E. : Predictor-corecetor methods of numerical intogration in digital-computer analyses af pouersystem trensient stability', Proc. IEE., 1965, 112, (8) pp. 1557-1565.
39. HAMOI-SEPEN, \(C\) : 'Process for increasing the transient stability power limits on a.c.transmission systems' CIGRE, Paper 305, 1962.

4G. PARSONS A.J. and HAmmons T.J. : The Design of a Micro-Alternotor for Pouer Systom Starility Investigations', Proc. 2nd S.R.C. Powor System Conf. pp. 624-656, Glasgow, Jan. 1967.
41. CLAYTON, A.E, and HANCOCK \(\because\). N. . The Porformance and Dosign of Direct Current Machines' (3rd odition, Fitman, London)
42. C.E.G.B. : Modern Power Stetion Practice', Scct. D, Corrospondence Tuition, Appendix.
43. BLACKMAN P.F. 'The Pole-Zoro Approech to Systems Analysis', (Morgan Brothers Ltd) London.
44. SmITH, D.H. : 'The Charactoristics of Parallel -T RC Networks', Electronic Engng., Fob. 1957, pp. 71-77.
45. KORN and KORN: 'Electronic Analogue and Hybrid Camputers', (McGrau-Hill, N.Y., 1964).
46. FITZGERALD, A.E. and KINGSLEY, C. (Jr.) : 'Electric machinery', 2nd ed. FcGraw Hill.```

