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2. 

ABSTRACT 

In this thesis, contributions are made to the solution of the 

filtering and prediction problems for nonlinear, stochastic, discrete- 

time processes. The new feature of the approach presented is that 

a combination of analytic and numerical methods yields a statistical 

solution to evaluate parameter estimates with reduced sampling 

variance. 

Our Monte Carlo applications are concerned with the evaluation 

of integrals. A new multi-stage control variate estimation procedure 

is developed in which the control variate function parameters are 

iteratively improved, approximating a minimum variance estimator. Both 

first and second order stochastic approximation procedures to update 

the parameters are described. 

For the prediction problem, a direct evaluation of the Chapman- 

Kolmogorov equation may be avoided if the Monte Carlo approach is 

adopted. The system is simulated and relevant data collected in order 

to evaluate some estimates describing the probability density an arbi- 

trary number of steps ahead. The conjecture of inefficiency inherent 

in Monte Carlo methods is invalidated because it is shown that judiciously 

designed variance reduction techniques improve the accuracy of the 

estimates. Various modifications of two variance reduction methods - 

the antithetic variate method and the control variate method - are 

introduced. The resulting predictor algorithms are tested by appli- 

cation to scalar and multivariable systems. 
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The nonlinear filtering problem is discussed within the frame-

work of the Bayesian approach. It is not possible to express the 

posterior density in a closed-form in most cases, so the usual 

recursion of Bayes' theorem is replaced by an expression which is 

amenable to Monte Carlo integration. For systems where the plant 

and measurement noise is assumed to be additive and Gaussian, variance 

reduction techniques are introduced to improve the sampling procedures. 

In connection with the single-stage case, the properties of importance 

sampling densities are examined. The control variate method, however, 

is found to be better suited for the multi-stage filtering problem. 

The statistical linearization procedure przwides a good starting point 

for the introduction of an efficient Monte Carlo filtering algorithm. 

It yields a zero sampling variance estimator when applied to a linear 

Gaussian system. A second control variate method shows that the 

Monte Carlo approach can successfully be adapted to estimate the approxi-

mation error of existing nonlinear filter equations. A number of 

examples is computed to demonstrate the relative effectiveness of the 

algorithms. 
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PRINCIPAL SYMBOLS AND NOTATION  

In general, capital letters refer to matrices, while lower-

case letters denote vectors when underlined and scalars otherwise. 

Other notations are given as 

n -dimensional state vector 

7-k 	m -dimensional observation vector 

-k 
	 p-dimensional noise vector acting upon the plant (la) 

Ik 	r -dimensional noise vector acting upon the observation 

system (1.4). 

time argwnezt 

function that relates past and current states; eqn.(1.1) 

a 
	 function that relates measurement and state; eqn.(1.4) 

expected value of initial state; eqn.(1.10) 

Ex 	 covariance matrix of the initial condition P.D.F.; 

eqn.(1.10) 

w 	 covariance matrix of the plant noise. P.D.F.; eqn.(1.7) 

Iv 	 covariance matrix of the measurement noise P.D.F.; 

eqn.(1.8) 

p(x) 	probability density function of x 

P(x) 	probability distribution of x 

0 	value of scalar integral (2.1) 

A 	 transformation matrix; eqn.(2.23) 

0(x),Y(x) 	control variate function, eqns0(2.24) and (2.56) 

parameter vector; eqns.(2.31) and (3.88) 

F(m) 	cost function in a, eqn.(2.33) 
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p 	correlation coefficient; eqns.(2.40, (3.53) and (3.54) 

'qv 	variance reduction factor; eqn.(2.71) 

L 	labour ratio; eqn.(2.72) 

efficiency gain; eqn.(2.73) 

c 	auxiliary constant; eqn.(2.64) 

N sample size 

mean of p(4k); eqn.(3.27) 

Mk 	matrix of second order moments of p(Ek); eqn.(3.28) 

covariance matrix of p(ak); eqn.(5.29) 

Pa(4) 	P.D.F. of model state 2to eqn.(3.64) 

ke Pk 	mean and covariance matrix of pa(3); eqnc(3.73) 

Bk 	parameter of linear control variate model of plant; 

eqn.(5.72) 

matrix of second order moments defined for linear 

control variate model; eqn.(3.84) 

random vector; eqn.(3.90) 

mean and covariance matrix of p(k); eqn.(3.102) 

ak 	parameter matrix of linear weighting sequence model; 

eqn.(3.118) 

p(x1x) 	conditional P.D.F.; eqn.(4.2) 

ELK ] 	conditional mean; eqn.(4.2) 

0-nl 0d 	numerator and denominator of conditional mean 4x11]; 

eqn.(4.8) 

E t• ] 	expectation w.r.t. an unconditional P.D.F. while Lis 

kept constant ; eqns.(4.10) and (4.11) 



p(kiik)  

Erkizk]  

0 	0 -n410 dAt 

&Lk 

Vk  

(2) 
el4k 

Pa(  0 )  

Act Bk 
Act Dk 

pa (4ic, zk•-I ) 

12. 

Monte Carlo estimate of conditional mean E[xlz]; 

eqn.(4.15) 

approximate bias of x
7 
 ; eqn.(4.17) 

sampling covariance matrix of ; eqn.(4.19) 

auxiliary P.D.F. for importance sampling; eqn.(4.23) 

optimal Gaussian sampling density for linear case; eqn. (4.34 

mean a  (eqn.(4.38)) and covariance matrix E (eqn. 

(4.39)) for h°(a); mean II (eqn.(4.58)) and variance 

E(eqn.(4.59)) for h(x) in nonlinear case. 

conditional P.D.F. at time k; eqn.(5.6) 

conditional mean; eqn.(5.11) 

numerator and denominator of conditional mean; 

eqn.(5.11) 

Monte Carlo estimate of conditional mean E[Ek12ch 

eqn.(5.18) 

sampling covariance matrix of kik ; eqn.(5.20) 

numerator of conditional second order moment M., : Alk - 
eqn.(5.22) 

approximate Gaussian posterior P.D.F. with mean 40, 
and covariance matrix 

Ekt 
. 
l eqn.(5.24) and eqn.(5.66) 

parameters of control variate model of plant; eqn.(5.25) 

parameters of control variate model of observation 

system; eqn.(5.26) 

approximate Gaussian P.D.F. prior 

observation zk. The mean is_ 

matrix 14_1  ; eqn.(5.27) 

to the occurrence of 

1and the covariance 
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-ansk' a e dsk 	numerator and denominator of conditional mean defined 

for linear control variate model; eqns.(5.42) and. (5.43) 

*gull* 	
m-variate normal P.D.F. (eqns.(5.47) and (5.76)) with 

mean mk  and covariance matrix Rk  defined by eqns. 

(5.55) and (5.77) 

k° Pkik  mean and covariance matrix of posterior P.D.F.   

defined for control variate model (5.71) where all 

parameters are found by statistical linearization 

w.r.t. paW) of eqn.(5.66) 

AT transpose of A 

IA I 	determinant of 

A71 	inverse of A 

11E1i
2 Euclidean norm x

T 
x 

x(i) 	i:th component of x 

a1 	j:th realization of random vector x 

(x lj 	random sample of size N 

antithetic variate to x1  

Lcij 	control variate of El  

statistical estimate of 

var(a) 	sampling covariance matrix of a. 

E[x] 	expected value of x 

var(x) 	covariance matrix of x 

summation operator with an implied lower limit of one 

k 	product operator; affects only term immediately 
lor aibc 
i= 1 	following it, i.e. g alb 4 (ala2  ak)bc 
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The following abbreviations are used in the text: 

31:(x; g,E) 	normal P.D.F. with mean and covariance matrixE 

probability density function 

L.H.S. 	left hand side 

R.H.S. 	right hand side 

eqn. 	equation 

with respect to 

Further notational details are described in the text, when 

required. 
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CHAPTER ONE 

GENERAL DISCUSSION AND PROBLEM STATEMENT 

1.1 Introduction  

The estimation of the states of an arbitrary n-dimensional 

nonlinear system subject to stochastic disturbances is called the 

nonlinear prediction problem. The nonlinear filtering problem per-

tains to the state estimation from M a n noisy observable outputs, 

given as nonlinear functions of the n state variables. 

Modern estimation theory has passed through three cxxwecutive 

periods. Period I started with the Wiener-Kolmogorov theory(1'2) of 

steady-state filtering for stationary stochastic processes with known 

statistical characteristics. 	The solution obtained in the frequency 

domain yields a linear time-invariant physically realizable filter. 

Transformation techniques are required as the solution is given by the 

Wiener-Hopf equation, an integral equation. An extensive bibliography 

of the papers which have generalized, modified, interpreted and extended 

the original Wiener-Kolmogorov theory is given by Zadeh(3) 

The work of period II is based on the Kalman-Bucy theory(4,5) 

It deals with linear, finite-time filtering problems for nonstationary 

processes and results in a set of five differential or difference 

equations using the concept of state variables. The main advantages 

of this approach are a complete and successful resolution of the problem 

of synthesis of the optimal filter and an effective error analysis of 
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the filter performance by the determination of the error covariance 

matrix. This theory has found wide application and heuristic 

techniques have been developed to apply it in certain nonlinear 

situations. A summary of such applications is given by Sorenson(6). 

Finally, in period III the research work is directed toward a 

nonlinear estimation theory. The primary impetus for the current 

activity in nonlinear estimation stems from the work of Stratonovitch(7) 

Wonham(8)  • and Kushner(  to mention but a few of the early contributors 

in this field. As truly optimal nonlinear filters are of infinite 

dimensionality, see Kushner(60)  , finite dimensional approximations 

have been proposed by Wonham(64)  Bass et al.(12)  Kushner(10)  and 

Fisher(11). But as Buoy(13)  points out, examples of nonlinear filter-

ing problems for which the performance could be established are non-

existent. Indeed, the comparison of two estimators for a given set 

of data is not necessarily meaningful since one estimator may be much 

more sensitive to the particular parameter configuration than the other. 

Because a general nonlinear estimation theory is yet unknown, one has no 

alternative but to resort to simulation techniques. This is one of 

the motivations for the research work contained in this thesis. 

The significance of the estimation problem for engineering 

applications is suggested by the variety of applications concerned with 

aerospace guidance(62) design of state-vector control(65), plant 

identification(66), etc. Indeed, fundamental to the implementation 

of optimal and adaptive feedback control is the necessity of determining, 

or estimating, present and future values of the system state variables 

and/or parameters. 

Optimal stochastic controllers for linear systems with a quadratic 
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error criterion and subject to Gaussian white noise inputs are syn-

thesized by cascading an optimal estimator with a deterministic 

optimal control. This result is known as the separation principle 

which was originally formulated by Gunckel(14)  

No analogous result can be anticipated for nonlinear stochastic 

system optimization. Indeed, the problem of joint estimation and 

optimization for a nonlinear system belongs to a class of extremely 

difficult unsolved statistical optimization problems. From the view-

point of applications one has therefore no alternative but to use 

estimates of state variables. Here, a second comment on the motivation 

for the present work is appropriate. Instead of concentrating on 

approximations, the nonlinear estimation problem as a whole is put into 

a statistical framework and Monte Carlo methods are designed for an 

effective resolution of the problems of filtering and prediction of 

nonlinear stochastic processes. No claim is made that this approach 

leads to a rigorous mathematical nonlinear estimation theory but it is 

felt that it offers a meaningful alternative to and improvement on 

existing approximation techniques based on analytic manipulations. Our 

prime interest centers around specific quantities associated with the 

posterior probability density function (P.D.F.) which can be more easily 

calculated than the entire P.D.F. and which may have some potential 

use to generate control strategies. 
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1.2 The mathematical model  

The object of this section is to specify a mathematical model; 

the choice must be made carefully since the whole analysis depends 

upon the characteristics of the model. The problem considered in 

this thesis is the estimation of the state variables of a k-stages  

discrete-time nonlinear system which is excited by a sequence of 

independent random vectors. The state variables 3k  of the dynamical 

stochastic system are continuous and are defined in some subset of a 

Euclidean space. They are assumed to evolve according to the 

stochastic nonlinear difference equation 

ack,1 = 	mks k) 
	 (la) 

where the state vector k  is n-dimensional. At each time k the system 

is disturbed by the random noise wk, a p 0-n-dimensional vector. 

The meaning of 'stochastic' as it is used for eqn. (1.1) implies 

not only the probabilistic nature of such a system but also the com-

plete knowledge of the prior P.D.F. of all random quantities involved 

in the system description. That is$  we assume we know the P.D.F. 

p(wk) of the sequence Wk  defined by 

k 4  
- 	11.21 • • • W • (1.2) 

The independence of wk  from one sampling time to the next is an additional 

assumption which implies 

k 

p(Yels me' • •• $ 	i=1 
1)41 	 (1.3) 

NUrthermore, the statistical properties of the state k  at time k=1, 
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the initial condition, are also completely specified as the P.D.F. 

p(xl) is assumed to be known. The random vector x1  is assumed to 

be independent of the noise sequences mk  in eqn. (1.1) and mk  in 

eqn. (1.4). 

The vector valued function f(.,.,.) is considered to be known 

and is referred to as the plant. Any known forcing functions, such 

as test signals or control inputs, are accounted for by the explicit 

dependence of the plant on the time parameter k. 

The behaviour of the plant (1.1) is generally observed imperfectly 

through the m 6  n-dimensional vector 	which is functionally related 

to the state variables and which contains random errors. These 

observations are assumed to be subject to the following known relation-

ship 

= ii(ks 1k'  k). 	 (1.4) 

The measurement noise v--  is an r m-dimensional vector and is a member 

of a white noise sequence with known P.D.F. p(2k). It is independent 

of x1  and wk. A schematic diagram of the general stochastic process 

to be considered is shown in fig. 1.1. 

An unnecessary but often useful assumption is to state that wk 

and vIc  are white Gaussian sequences. In this case we use the notation 

p(istic) = n(Ific; 	E wk) 	 (1.5) 

p(k) = n(lic; Q,  Ev  ) 	 (1.6) 

to indicate that 141, and !lc  possess normal P.D.F. with zero means and 
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OBSERVATION 

Pk' k)  
Ek+1 

PLANT 

f(xk' wk' k)  

DELAY 
UNIT 

Fig. la, Schematic diagram of the stochastic process considered. 

covariance matrices E l  and E ko  respectively defined by 

	

[bli As
] 
	E  wk  81k 
	 (1.7) 

E 	Irk 	4 Z v  8ik 	 (1.8) 

for all integers i and k. E(.] is the expectation operator and bik  

is the Kronecker delta (=1 if i=k, and =0 if ilk). The independence 

between w 	" "k and vk  implies 

	

k ] 	= 0. 

If the initial condition P.D.F. p(x1) is Gaussian we use the notation 

p(s1) = n(111; (1.10) 

to indicate that p(x1) has the mean Ex  and the covariance matrix Ex. 
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The special case Ex  . 0 corresponds to a deterministically specified 
initial condition. 

Problems such as the following then arise and are considered 

in this thesis: 

(1) Given that the states Eic  of the plant (1.1) are all accessible, 

estimate for a particular time k some relevant parameters 

belonging to the P.D.F. p(k) of the state ak. This is the 

state prediction problem. 

(2)  Given a set of observations related to the states k  by 

eqn. (1.4), estimate for a particular time k some relevant 

parameters of the posterior P.D.F. p(35,k12c). This is the 

state filtering problem. 

(3) If the time argument k is considered to be varying the previous 

two problems become the trajectory prediction problem and the 

trajectory filtering problem respectively. 

1.3 	Previous results 

In the Kalman-Bucy theory(4'5) the distinction between continuous-

time and discrete-time systems is not fundamental. Unfortunately this 

is not true for nonlinear estimation theory. Since physical systems 

are usvpily described by differential equations the mathematical des-

cription to be considered could have reasonably well be stated as a 

continuous-time system where stochastic differential equations replace 

eqn. (1.1). Likewise eqn. (1.4) would be stated as a continuous-time 
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measurement process. From the mathematical point of view this approach 

allows rigorous derivations of approximations. Recent results have 

been published, among others, by Buoy(15), Bass et al.(12), Kushner(1o) 

• and Sunahara(16)  . Fisher(11) studied the nonlinear filtering problem 

from the point of view of approximating the posterior P.D.F. Schwarb,(17) 

considered the rigorous validation of approximate filter equations. 

Jazwinski (18)  investigated the estimation problem for continuous-time 

plant dynamics where the states were observed at discrete-time intervals. 

The mathematical model to be used in our work assumes a discrete- 

time formulation. Such systems originate in various ways. 	If the 

state variables of a continuous-time system are allowed t^ change only 

at discrete-times the system is described by a vector difference equa-

tion of the type of eqn.(1.1). But this formulation may also arise 

from other considerations where a continuous-time dynamic system is 

not involved, see Brown(67). It is quite a difficult problem to reduce 

a continuous-time system to the form of eqn. (1.1). However, it is 

believed that the present discrete-time formulation provides a realistic 

basis for several reasons: 

(1) 	For minimal variance filtering, which is a probabilistic criterion 

of optimality, the manipulations leading to the nonlinear filter equa-

tions are simplified by assuming that the random processes are white 

noises. 	But this assumption complicates the interpretation of the 

mathematical results in the light of reality as such noise is physically 

unrealizable. As a white noise sequence differs considerably from a 

white noise process this complication does not arise in our formulation. 
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(2) The general solution of the continuous-time nonlinear estimation 

problem yields systems of complicated partial differential-integral 

equations that must be solved. The difficulties inherent in obtain-

ing numerical solutions to practical problems using this formulation 

appear to be excessive. 

(3) Finally, measurement data are usually available only at discrete-

time intervals. Also, the control signals based on estimates are 

usually applied at discrete-time instants. 

However, we would like to point out that the solutions presented 

in this thesis are applicable to continuous-time stochastic processes 

provided the disturbances acting on the plant eqn. (1.1) and the 

observation system (1.4) can be modelled as a discrete-time white noise 

sequence. The plant is then given by an ordinary differential equa- 

tion which is integrated in the usual way. 	The noise affects the 

integration only at discrete intervals. Thus, from the simulation 

point of view the only difference between the discrete-time formulation 

adopted in this thesis and a continuous-time system of the type just 

mentioned is given by the fact that we do not directly proceed from 

time k to 	but have to integrate over the unit interval with a 

suitable step length h such that 1/h is an integer. 

The important problem of optimal control and estimation given 

noisy measurements y is best solved 125ing the P.D.F. of the state Eic  

where this function is conditioned (in the technical sense of probabil- 

ity theory) on the knowledge of all available observations 	The 

reasons for that are twofold. Firstly, this conditional or posterior 
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P.D.F. sums up all available knowledge about the state of the plant. 

Secondly, it can - at least in principle - be calculated. The general 

concept of dealing with the conditional P.D.F. is referred to as the 

Bayesian approach to estimation and control. Ho and Lee(19)  elaborated 

on the difficulties in the steps leading to the computation of the 

posterior P.D.F. p(akl2c). Cox(2O)  and Larson and Peschon(61)  de-

veloped a recursive equation for the trajectory filtering problem and 

then applying a dynamic programming technique to this equation they 

deduced the modal trajectory by a series of minimizations. Sage and 

Masters(21)  extended the work of Detchmendy and Sridhar(22) to discrete-

time systems without requiring detailed stAtistical information concer-

ning system disturbances. Aoki(23) considered both the estimation and 

control problem. Sorenson(24) suggested methods that allow the exten-

sion of the range of applicability of the linear Kalman-Bucy theory and 

derived a procedure to approximate the posterior P.D.F. by a truncated 

Edgeworth series expansion that included the fourth central moments. 

Our approach(68'69)  differs from these analytically oriented methods; 

the new feature of the solutions presented is the introduction of Monte 

Carlo techniques to obtain efficient solutions of the nonlinear filter-

ing and prediction problem; that is we are primarily concerned with the 

design of sampling methods which make direct use of the nonlinear system 

formulation. 
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1.4 Outline and contributions of this thesis  

In order to list the main topics of our thesis this section 

presents the outline of, and some reflections on, the more interesting 

of the points discussed hereafter. In this way we state the original-

ity of the ideas presented and point out which topics are considered 

to be of greatest interest. 

As already indicated the main emphasis in this thesis is put on 

the statistical formulation of the nonlinear estimation problem and 

not on the development of analytic approximations. There are four 

distinct reasons for this approach: 

(I) There is no theory available to establish what filter configura-

tion yields the 'best' results and hence it is believed that a solution 

based on the actual nonlinear system is more realistic. 

(2) As a consequence of the previous remark the nonlinear estimation 

problem has to be tackled from a statistical point of view. This, 

however, allows us to estimate any order moments of the P.D.F. in 

question. The accuracy of these estimators is known and depends on 

the effort put into the sampling procedure. No dimensionality restric-

tion limits this approach. 

(3) Monte Carlo techniques provide powerful methods to compare various 

approximate filtering equations. 

(4) Finally, Monte Carlo techniques may be used to carry out a study 

of trade-off between truncation and accuracy with possible applications 

to stability theory. 

Chapter two deals with those aspects of sampling procedures from 
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given P.D.F. which will be used to develop Monte Carlo techniques 

for the nonlinear prediction and filtering problem. Tao fundamental 

theorems provide the mathematical foundation of these methods. The 

necessity of variance reduction techniques becomes apparent from a 

first investigation of crude Monte Carlo methods; section 2.2. 

Sampling from a known P.D.F. is shown to be feasible under fairly 

general conditions for both the scalar and the multivariate case; sec-

tion 2.3. Several variance reduction to bniques have been used in 

the past. The concept of multi-stage sampling procedures (section 

2.4) is applied to the control variate method. The first order algor-

ithm is an extension based on some results previously derived for 

importance sampling. The second order method is new and has very 

interesting properties compared with ordinary linear regression. In 

_order to avoid the problem of combining correlated estimates a new 

two-stage estimator is proposed. A standard example is used to illus-

trate the potential power of the new procedure; section 2.5. 

The state and trajectory prediction problem is dealt with in 

chapter three. The observation process (1.4) is not considered; we 

only refer to the plant eqn. (1.1). The system is assumed to start at 

time k=1. The random initial condition x possesses a known P.D.F. 

1 
p(x ). Some of the difficulties we are faced with in attempting an 

analytic solution are discussed in section 3.1. The crude Monte Carlo 

predictor of section 3.2 is based on the concept of sample moments. 

The application of the antithetic varlets method to the prediction 

problem may reduce the sampling error considerably. The extension 
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to several antithetic estimators is new in the context of the n-

variate Gaussian P.D.F. and yields a further improvement of the sampl-

ing procedure. The control variate method, section 3.4, is a combina-

tion of analytic and sampling techniques. It leads to three versatile 

Monte Carlo methods for predicting the states xc. Although the stat-

istical linearization procedure itself is well known its incorporation 

in a Monte Carlo method is new. A two-stage adaptive control variate 

method using a gradient technique is derived for the scalar and multi-

variable state prediction. problem. Numerical examples are contained 

in section 3.5. They illustrate the feasibility of the proposed 

methods. A comparison between the various techniques allows us to 

draw a number of conclusions. 

The evaluation of conditional expectation parameter estimates for 

one observation (static case) is contained in chapter four.  A crude 

Monte Carlo solution is presented in section 4.2 for the evaluation of 

Bayes' theorem. The investigation of the resulting ratio estimator 

leads to some interesting conclusions for the successful solution of 

nonlinear filtering via Monte Carlo techniques. The concept of import-

ance sampling is developed in section 4.3 for improving the crude 

estimator. The properties of the new estimators are examined in 

section 4.3.1 and it is shown that there always exist - at least in 

principle - functions such that the sampling error is zero. 	The 

optimal zero sampling variance estimator is derived in sections 4.3.2 
and 4.3.3 for the linear Gaussian problem. For nonlinear observation 

systems one possible approximation for the sampling P.D.F. of the 
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denominator in Bayes' theorem is obtained in section 4.5.4. Possible 

disadvantages of importance sampling are also indicated. In order to 

compare our new methods in connection with conditional P.D.F. section 

4.4 contains a concise comparison between our work and the original 
conditional Monte Carlo. 

The multi-stage, nonlinear filtering problem is discussed in 

chapter five. Using the Bayesian approach, section 5.2, a general 

Monte Carlo procedure is obtained for the nonlinear filtering problem; 

section 5.3. The necessity of variance reduction techniques is again 

underlined by the low accuracy of the crude procedure. Statistical 

linearization has been used to obtain approximate nonlinear filtering 

equations. It is used in a new manner to implement the control variate 

method, section 5.4, and found extremely useful in improving not only 
the crude Monte Carlo method but also the analytic approximation. The 

optimal but infinite dimensional nonlinear filter is often replaced by 

a set of expressions for the mean and the covariance matrix of an 

approximate posterior P.D.F. It is shown in section 5.5 that such a 

set could be used to design an alternative control variate method. 

This application is important because it shows that our improved Monte 

Carlo procedures are versatile enough to compare various structures 

of approximate filter equations. 

Chapter six contains the numerical results for nonlinear filter-

ing techniques. As there is no fundamental difference between the 

single- and multi-stage filtering problem, this chapter contains 

examples for chapters four and five. A variety of scalar observation 
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systems for the static case is studied in section 6.2. A comparison 

between different methods reveals the superiority of the control 

variate method over importance sampling. The transition to multi-

stage filtering proceeds via the example reported in section 6.3. 

The results are compared with those previously obtained by analytic 

approximation techniques. The nonlinear scalar example of section 

6.4 allows us to draw a variety of conclusions and the multidimensional 

example of section 6.5 shows how our method may be used for the combined 

state and parameter estimation problem. 

Conclusions based on the experience with Monte Carlo techniques 

for filtering and prediction of nonlinear stochastic proceasee and 

suggestions for further research work are given in chapter seven. 
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CHAPTER TWO 

MONTE CARLO METHODS 

2.1 Introduction 

The object of this chapter is to discuss those aspects of Monte 

Carlo methods which will be used in this thesis for the filtering and 

prediction of nonlinear stochastic processes. Monte Carlo methods 

are concerned with the application of random sampling to problems of 

applied mathematics. Table 2.1 shows one possible Glasoi:ication of 

different numerical methods(25) 	Monte Carlo techniques are shown to 

be stochastic solutions to exactly formUlated problems. 

PRORUM FORMULATION 

exact stochastic 

METHOD 

OF 

SOLUTION 

exact 
Numerical ana- 

lysis 

Probability 

theory 

stochastic 
Monte Carlo 

methods 

Simulation 

methods 

Table 2.1 Classification of different numerical methods. 

The use of variance reduction techniques as well as simulation 

is implicit in the definition of Monte Carlo methods. Thus, they 



generally include the following three topics: 

(1) Choice or definition of the probability process; see section 

2.2. 

(2) Generation of sample values of the random variables; see 

section 2.3. 

(3) Design and use of variance reduction techniques; see section 

2.4. 

For a more detailed discussion of the principles of Monte Carlo 

techniques we refer to the books by Kahn(26) Shreider(27) and 

Hammersley and Handscomb(36) 

The application of Monte Carlo methods in nuclear phyrics, 

statistical menhanics and operational research is certainly well 

established to-day. It is equally true that the specific advantages 

of Monte Carlo methods have not yet been fully exploited for designing 

optimal estimation and control policies in nonlinear static and dynamic 

systems. It is believed that an extension towards such applications 

would provide a useful alternative to existiag analytic approximations. 

Indeed, some applications in this field have already shown promising 

results. They can be put into three classes: Kwakernaak(28) and 

Mayne(29) use sampling techniques to solve optimal stochastic control 

problems. Little(3°), Handler(31)  and (32)  propose general 

procedures to solve parabolic partial differential equations using 

Monte Carlo methods. Finally, there are a number of papers where 

crude Monte Carlo methods are used to measure the relative accuracy 

and computational efficiency of various estimators; e.g. Carney and 
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Goldwyn(33) or LeMay et al.(56) 

The study of partial differential equations is motivated by the 

filtering and prediction problem for continuous-time systems. Here, 

the main difficulties in the application of Monte Carlo techniques 

arise from the modelling of the system dynamics as a continuous Markov 

process; i.e. as the solution of a stochastic differential equation. 

The important field of modelling has been treated in many contributions; 

see Clark(54  and Kailath and Ftost(55) to mention but two among many 

others. 

Only Mayne(29) uses variance reduction techniques in his approach 

to nonlinear stochastic control problems whereas in the remaining appli-

cations mentioned above these techniques are left out. However, we 

feel that the opinion that Monte Carlo is a last resort solution stems 

from the omission of variance reduction techniques. This thesis is 

devoted to the design of Monte Carlo methods for filtering and prediction 

of nonlinear stochastic processes. In our approach we discuss all of 

the three topics mentioned above. Since we are concerned with system 

dynamics represented in discrete-time formulation we can avoid the 

admittedly important but fairly developed field of stochastic modelling 

of continuous-time systems and concentrate on designing and applying 

efficient Monte Carlo procedures. 
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2.2 Fundamental principles of the Monte Carlo method  

2.2.1 Evaluation of a scalar integral  

A Monte Carlo technique starts with the specification of a 

sampling procedure for the estimation of some characteristic of a 

stochastic process. As pointed out by Hammersley and Handscomb(36)  

almost every Monte Carlo computation may be regarded as estimating 

the value of an integral 

0 = 	f(x) p(x) dx 	 (2.1) 

where f(x) is some known function of x and p(x) is a known P.D.F. 

defined over the space X. It is desired to specify a sampling 

procedure which results in an unbiased estimate 0 of e. 
Using the definition of the expectation operator E we can inter-

pret e in eqn. (2.1) as 

0 = E [f(x)] 	 (2.2) 

where the expectation E is w.r.t. p(x). The mean 0 in eqn. (2.2) is 

estimated by the sampling mean 0,u, defined by 

7eN 	A N-1  27, f(x j). 	 (2.3) 

Let us use the notation ixij  A [xj; j=1,2, 	to denote a random 

sample of size N drawn from the P.D.F. p(x). The generation of such 

a random sample is essential for all Monte Carlo work and is discussed 

in section 2.3. The subscript of @N  in eqn. (2.3) indicates that this 

estimate is based on a finite sample of size N. The random variable 01,1  

is one stochastic solution to the exactly formulated integral of 

egn. (2.1). 
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2.2.2 Two fundamental theorems  

The mathematical foundation of Monte Carlo methods is provided 

by the following two theorems. For the sake of completeness they 

are both stated here.For their proofs we refer to the literature; 

e.g. Wilks(34)  

1. The strong law of large numbers 

Let {x} denote a random sample of size N drawn from the P.D.F. 

p(x) to compute the random variable 6N using eqn. (2.3). If the 

independent variates (f(x ); j'1,2,...N) have a common distribution 

bad if the integral of eqn. (2.1) exists in, the ordinary sense, then 

converges with probability one to 0 as N tends to infinity. 

2. The central limit theorem  

On the premises that the second order moment 0(2)  A E[f2(x)], 

defined by 

E[f2(x)) 4 	ff(X) p(x) dx, 	(2.4) 
X 

exists and that the sample size N is large, the probability that the 

event E, defined by E: 04 4 9N  4 e+s, occurs is asymptotically 

independent of the exact nature of f(x) or p(x). Indeed the 

probability depends only on N and the variance of f(x), defined by 

var(f(x)) -4  E[(f(x) - 0)21 - J(f(x)-0)2p(x) dx. 	(2.5) 
X 

Combining these two theorems, an estimate of the amount that au 
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deviates from 8 for a certain N is approximately given by 

8 Yr 

(ver(f(x))Pl2  2 
Prob N 6  8}S) * 	jr 	exp(- 2 x )dx. 	(2.6) 

The probability that the deviation of as  from 0 will exceed 

+ X (var(f(x))/N11/2  is given in the following abbreviated table 2.2 
2 

of 1/ 2/it 	7 exp(- 	dx. 

7' 

X 0.6745 1.0 2.0 3.0 4.0 

P 0.5 0.3173 0.0455 0.0027 0.0001 

Table 2.2 Multiples 1, of standard deviations to determine 

= 100 P % confidence limits of k. 

The sampling variance of the estimate Bus  var(aN), is given by 

var(9N) var(f(x))  
N (2.7) 

Taking the square root on both sides of eqn.(2.7) yields the standard 

deviation or sampling error of ale  Using table 2.2 it is now possible 

to state that the probability of the event E, e.g. defined by 

10 - 2[varaid] 1/2 6  at 6  e + 2[var(6m)] 1/21 , is about 0.95; or 

in other words, we can say with 95°4 confidence that 8N  is within twice 

(var(y)1/2  around the mean 0. But we cannot assume to know 6 and 

hence our statement implies that the repeated application of the Monte 
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Carlo experiment yields in the long run estimates @N  of which 95°h 

lie within the interval 761/  ± 2 Evar(eti)] 1/2. 

The results of the central limit theorem depend on N being large 

and the variance var(f(x)) being finite and known. However, since 

eqn.(2.5) implies the knowledge of e, var(f(x)) is usually unknown 

too and is estimated by 

var(f(x))11  = 
N 

N-1  Z (f(x ) 	0
N

2  
) • (2.8) 

In general, whenever it is desired to estimate values of formulas in 

which e(2) or e are involved the expected values can be replaced by 

6N(2) and 614  respectively, where 

iiN(2)  A tr1 	f2(Xj) • 	(2.9) 

While the estimates will almost always be biased, the amount of the 

bias is usually proportional to N-1  and can be ignored if N is 

reasonably large, i.e. N > 30. 

2.2.3 The crude Monte Carlo estimator  

An estimator for 0 as defined by eqn.(2.3) will be referred to as 

a crude Monte Carlo estimator. Its accuracy is proportional to 

[var(f(x))/N)1/2  and an improvement is only achieved by increasing 

the sample size N. However, a useful Monte Carlo method should be 

based on the general principle that if, at any point of the sampling 
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procedure, an estimate can be replaced by an exact value, the sampling 

error in the final result will be reduced(36). A new variance 

reduction technique is introduced in section 2.4. 

The following remarks are intended to complement the discussion 

of the crude Monte Carlo estimator. 

(1) As N -- 00 	, the sampling distribution of the estimate 6N  tends 

asymptotically towards a normal P.D.F. whose mean and variance are 

given by 

E[8N] = D=E[f(x)) 	var(6N) = N-1  var(f(X))_ 	(2.10) 

(2) Similarly as N 	the sampling distribution of, the estimated 

variance vgr(f(x))N  tends asymptotically towards a normal P.D.F. As 

shown by Wilks(34) if the fourth central moment 9c(4) defined by 

(4) a 	[(f(x)-9)4] , 
	 (2.11) 

is finite, mean and variance of the sampling distribution are given by 

E [var(f(x))N] = 	N 	 var(f(x)) 
	

(2.12) 

and 

var(var(f(x))N) = 	[0c(4)- 	var2(f(x))1 	(2.12 a.) 

respectively. 

(3) For the sake of simplicity the discussion so far has been 

restricted to a scalar integral. While in actual practice it is 

rarely useful or efficient to apply crude Monte Carlo methods unless 

the integral is rather highly dimensional the results obtained for the 



scalar case can readily be extended if the variable of integration 

x is considered to represent an n-dimensional vector x. 

(4) The reason that sampling is useful in evaluating multiple 

integrals is that neither of the theorems presented in section 2.2.2 

depends on the dimensionality of the integral. The number of points 

required to evaluate a multidimensional integral to a fixed level of 

accuracy depends only oa(war(f(x)Y2  once there are enough samples so 

that the central limit theorem is reliable. By contrast, in almost 

all standard integration techniques the number of points required to 

avaluate an integral goes up in geometrical progression with its 

dimensionality. This exponential increase does not occur if the 

integration is done by Monte Carlo methods. 

(5) Frequently, the characteristic of the problem that makes Monte 

Carlo integration preferable to numerical analysis is the complexity 

of the P.D.F. p(x). Often it is not possible or convenient to write 

down p(x) in a closed-form but one is able to sample from it. 

2.3 Sampling from a given probability distribution  

The problems discussed in this section are concerned with 

generating a random sample {x}j  of size N from a given P.D.F. p(x). 

The term 'random sample' implies that the joint P.D.F. 

p(E1, E2, 	4) can be written as 
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N 

••• 	ZN) = lor p(3.1) 	(2.13) 

i.e. x and x., for 3 j, are independent. 

a.3.1 A method of generating random samples from arbitrary P.D.F.  
It is the object of this section to show that it is sufficient 

to employ a random number generator which produces variates uniformly 

distributed in the interval (0,1) in order to produce a scalar random 

sample (xli  with an arbitrary probability distribution F(x). 

We recall the general definition of a probability distribution 

P(x) as 

dP(x) 4  p(x) dx 	 (2.14) 

where p(x) is the P.D.F. of x. 

The space of the experiment, using a uniform random number 

generator, consists of all points in the unit interval (0,1). All 

intervals are events with probability equal to their length 

Prob (0 
	

E j 	E • 	 (2.15) 

Because F(x) is assumed to be a probability distribution it must be a 

continuous, monotone increasing function t = F(x) such that 

F( - 00 ) = 0 and F(+ 00 ) = 1. With x = F1( t ) its inverse, we 

have F[F-1( t )] = t 	for any t in the interval (0,1). A variate xi  

is so defined that 

xi 	= F-1  (t j) 
	

(2.16) 
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where Li  is an outcome of the preceding experiment. We now have 

to show that the distribution P(x) of x equals F(x). 

By definition, the distribution function of the variate xj  is 

given by P(x) = Prob {xj  =xi defined for any number -00 = x = +00. 

Ifwereplacexj from eqn.(2.16) we have P(x) = Prob[F1(E ) = x] 

The inequality may be replaced by tj  6  F(x) and therefore 

P(x) = Prob 	6 3(X)14, 	 (2.17) 

But 	is uniformly distributed over the interval (0,1.) and hence from 

eqno.(2.14) and (2.15) 

F(x) 	F(x) 
P(x) = f 	p( ) d 	f 	dE = F(x). 	(2.18) 

- 00 

This Completes the proof that x possesses the distribution P(x) = F(x) 

and shows that there always existsa procedure such that for an arbitrary 

realization tj  there is a xj  whose distribution is P(x). 

We shall be mainly concerned with random samples from the normal 

P.D.F. denoted by 

p(x) = n(x; 14E). 	 (2.19) 

The mean µ and the variance E specify the normal P.D.F. entirely. 

The uniformly distributed variate t is transformed to xt using an 

approximation to the inverse normal integral, see eqn. (2.16). A 

subroutine, called GMIST(K), is used in the available computer system 

(IBM 7090) to perform this transformation. Advantage of the symmetry 

of the normal distribution is taken such that only the inverse normal 

integral curve need be fitted in the range 0.5 = E = 1 . To get a 

uniform accuracy the interval [0.5 	14] is subdivided into three 
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1  
segments, [0.5 	0.75], [0.75 	1. - 2 0j and 

[1 	- 2-1°  ... 1.-2-27] , and different interpolation methods are 

used in each of these sub-intervals. Finally we set = 	I".. 1/  xt 
3 

implying that [x]i  is drawn from p(x) of eqn.(2.19). 

The' particular form of p(x) may allow a more efficient procedure 

to generate [x}i  than the general method we mentioned. Butler(39)  

elaborates on this subject. 

2.3.2 Generation of an n-variate normal random sample4xli. 

An important topic to be discussed here and used in subsequent 

chapters is the generation of a vector random sample [x]j  where xj  is 

an n-dimensional random vector from the n-variate normal P.D.F. p(x) = 

n(x; a, I ). 
First, we consider the random vector g whose P.D.F. is 

p( 	= 31( E ; Op I) 	 (2.20) 

where I is the identity matrix. The components of the random vector 

E . are obtained by the n-fold use of GMIST(K). Then, the random 

vector x is found through the following transformation 

x= a +AE
j  . 
	 (2.21) 

Because of the symmetry property of the covariance matrix E the elements 

of A above the main diagonal are set equal to zero. The rempining 

2 1 n(n+1) elements are determined from E as follows. Using eqn.(2.21) 

in the defining equation of the covariance matrix E 
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E 	E Eac. a.c.
T 	

E [ E. 	E 12E 
	 (2.22) 

yields 

E= A AT. 	 (2.23) 

I From eqn.(2.23) ensues a system of F(el) quadratic equations for the 

unknown, nonzero elements of A. 

Supplementary to remark (4) of section 2.2.3 the evaluation of 

a multidimensional integral using Monte Carlo techniques does not 

involve any additional difficulties compared with the scalar case as 

far as the generation of a vector random sample {x}i  is concerned. 

2.4 	Multi-stage Monte Carlo techniques using adaptive control  

variate estimators  

An important step in the design of the sampling experiment is 

concerned with variance reduction techniques. They are usually 

classified within the following six groups: 

(1) Stratified sampling 

(2) Importance sampling 

(3) Control variate methods 

(4) Antithetic variate methods 

(5) Regression methods 

(6) Methods using orthonormal functions. 

A description of how each one is used by itself in connection 
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with the evaluation of a scalar integral of the form of eqn. (2.1) 

is contained in references (26), (2?) and (36) 	Becausethese 

methods are quite general the greatest gains in variance reduction 

are only obtained after a careful adaptation of these techniques to 

the specific properties of the problem considered. That is, these 

methods cannot be applied in a routine manner. 

Here, anew multi-stage control variate estimator is developed 

for the evaluation of a scalar integral. The concept of a multi-stage 

sampling scheme was originally proposed by Kahn(37). MardhAll(38) took 

up this idea in the context of importance sampling. More recently 

- Clark(41) and Pugh(42) kursuBd this work again in connection with 

importance sampling. The limited scope for applying importance sampl-

ing in our work with nonlinear stochastic processes as well as some open 

questions such as the combination of various estimates, the determination 

of sample sizes, accuracy problems and convergence properties, motivated 

our own work in this field. 

The following section 2.4.1 serves as a brief introduction into 

the control variate method. The first order method of section 2.4.2 

is an extension of reference(42). The problem of combining several 

correlated estimates is contained in section 2.4.3. A new second order 

method for finding the optimal values of the parameters in the control 

variate function is introduced in section 2.4.4. The computational 

procedures for implementing both methods are summarized in section 

2.4.5. Finally, a two-stage estimator is discussed in section 2 4 6 
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2.4.1 The control variate method  

The problem to be discussed is again the estimation of 8 as 

explained in connection with eqn. (2.1). Rather than estimating 

OK  with eqn. (2.3) the concept of the control variate method is to 

break eqn. (2.1) into two parts such that 

I [f(x) - 0(x)] p(x) dx + 
	

0(x) p(x) dx • 
	(2.24) 

The' first integral is estimated by the crude Monte Carlo method while 

the second one is found by analytical integration. For a successful 

variance reduction of the new estimate 0N see eqn. (2.26), the control 

variate function 0(x) must satisfy the following two conditions: 

(C1) 0(x) must be a close approximation to f(x). 

(C2) 0(x) must be amenable to exact integration such that 

Oa = .1 0(x) p(x) dx 	 (2.25) 

is known analytically. 

The control variate estimator based on eqn. (2.24) now takes 

the form 
N 

N-1 	[f(x) - 0(xj) eN a (2.26) 

The random sample {x}j  is drawn from the P.D.F. p(x). The middle term 

in eqn. (2.26), 0(xj), is referred to as control variate of f(xj). If 

condition (C1) is satisfied the difference to be estimated by crude 

Monte Carlo is small and hence the sampling variance of the new 

estimate ON, var(60, is reduced compared with eqn. (2.7). Indeed, 

the reduced sampling variance is found from eqn. (2.26) to be 
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= var(ell t b ) 4-781*(e2$. 	- 2 cov(611 	e2  ) 
	

(2.27) 

where we use the definitions 
N 

	

3N 	11-  1  > f(x3 ) 

N 

	

6'
2 11 	

A(xj  ) ,' 
3 

(2.28) 

(2.29) 

For a successful variance reduction the following condition derived 

from eqn. (2.27), must be satisfied 

2 cov(A 	a ) > *yard; lN° 2,11 	2N 
(2.30) 

Ideally, condition (Cl) leads to f(x3) 7-5  0(x3). This implies zero 

sampling variance for the estimator (2.26). Since none of the terms 

in eqn. (2.27) is known we have to replace them by their estimates as 

explained in connection with eggs. (2.7) and (2.8) in order to calculate 

confidence limits for the improved estimate eN  based on eqn. (2.26). 

2.4.2 A first order gradient method of adaptive Monte Carlo  

using control variates  

The difficulty inherent in the control variate method discussed 

so far is that one is often not able to specify a priori what a good 

control variate function 0(x) is, or even if a good choice can be made 

with regard to a specific class of functions to be used, the best para- 

meter values are difficult to determine. In this situation an adaptive 
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sampling procedure may significantly improve the control variate 

method. We use the specification 'adaptive' to express that use is 

made of the information contained in the sample as it is collected to 

sequentially improve the efficiency of the sampling procedure itself. 

The smaller the sampling variance of @N  for a given sample. size N the 

better the procedure. 

The technique presented in this section is a multi-stage sampling 

procedure. Instead of the fixed control variate function 0(x) used in 

eqn. (2.24) we now consider a sequence of p control variate functions 

0(x,
-13

), (p =1 ,2,...), of some parametric family of functions. The 

sam:Yling procedure starts at p = 1 where we choose an arbitrary value 

for the m-dimensional parameter vector 91. 

At each stage p we have to solve the following three problems: 

(1) Estimate the value 0 of the integral (2.1) by 

ap = N 1  [f(xj) - 0(x j, sip)] 	p(x) dx 	(2.31) 

with a random sample lx}i  of size N drawn from p(x). 

(For notational convenience we omit the subscript N and use 

Eip  instead of 8,0.) 

(2) Find a new valuep+1  such that the sampling variance of 

... 	... 	. 
!oil s  var(q.110.0), is less than var(0

P 
 ). 

(3) 	Determine a suitable weighting sequence ais(i=1,2,...s p), in 
- 

order to obtain the combined estimate Op  = i ai 0i such that 

var(0 ) is minimal. The discussion of this topic is contained 
p 

in section 2.4.3. 
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According to our criterion of an efficient sampling procedure the 

optimal value of a., denoted by a s  minimizes the sampling variance 

var(0 ) of the estimate p• that is ao minimi9es the expression , 

var(Q) = N-I  [var(f(x)-0(xsap))] 

Omitting the terms in eqn. (2.32) which are independent of aP the 

following functional P(o. ) has to be minimized w.r.t. 2t : 
-P 

Vat) a  E [02(x, Sp)] - (E[0(x, p ) ] )2 
	

(2.33) 

-2E[0(xsa ) f(x)] + 2E[0(xs  -13  asp  )1 E [f(x)] . 

A close examination of F(1) shows that the computation of a°  based on 

minimizing eqn. (2.33) presupposes the knowledge of 0 which is to be 

estimated. To avoid an arbitrary guess of asp, the proposed sequential 

estimation procedure based on estimating the gradient of F(a.) follows 

the path of steepest descent. This steepest descent is the direction 

of the negative of the gradient vector F of nap), defined by 'ap 

aF(so) 	aF(a.,) 
F 	A [ 	am (1) 	' ". ' 	(M) -mp  (2.34) 

Now, in eqn. (2.33) app  isassumed to be known and we seek the a.p.0  

which reduces the value of /(2b4.1) compared with P(as). Hence the 

direction to proceed from the known point av  in the m-dimensional para-

meter space is the direction -4ap  at that point. Assuming regularity 

conditions the r:th component of the gradient F-o.p 	`"P 
s  denoted by Fp. (r), 

(2.32) 
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agxpaloo) 
Pm 	= 2 Elgx,SY 	aap(r) / 

a0Cx,im 
2E [0(x.sp)] EE ackp(r  I 

80(xsa0 	80(xpalo) 
dap(r - 2 E [f(x) 	 ] 	2 E [f(x)] E 1 	aap(r) I  • 

(2.35) 

As the integrals in eqn. (2.35) not involving f(x) are amenable to 

analytic integration it is reasonable to estimate only the remAining 

terms by a sample [xli  of size N. The estimator for the gradient 

F takes the form 

856(x 	agx 
1101.  (r) = 2E[0(x,$) al  r  - 2E [0(xpa. )] E 

p,  

(2.36) 

N a 	 4393(xaj gx.:410) 	
x 	r2 	f (x )1 E4 	am  (r5 ] f( )J 41 2, 4 

2 [7 r 
N L amL (r) 	N J j 	P 

A close estimate of the optimal vector a° can be found by applying the 

stochastic approximation algorithm 

a = 	E F . 
'1+1P 	P ":‘ 

(2.37) 

The convergence conditions for this algorithm are given by Dvoretzky(43) 

The important condition for convergence with probability one is that 

the step size ep  should progressively decrease in such a way that the 

stochastic variation in the correction term dies out. 
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If in actual practice it is not possible to verify whether the 

necessary and sufficient conditions for convergence with probability 

one of algorithm (2.37) are met it seems to be necessary to resort 

to the following updating procedure, proposed by Pugh(42)  . 

F 
= a, - 

-Pl" 1 	-P 	41
, pi  

(2.38) 

where 	
114, II a E Ea (r)211/2 

	
(2.39) 

P r P 

and X is a suitable constant length of step in the parameter space. 

A very important problem is the selection of the step size X. More-

over, as in any gradient technique, we may only achieve a relative 

minimum with algorithm (2.38). Indeed, we may only 'probably' achieve 

any minimum since the gradient is not known exactly but only estimated 

at each stage p . 

No result is available to prove that the stochastic approximation 

procedure (2.38) converges. 	However, by the strong law of large 

numbers we have 

Prob 	 -Fes)lim  	= 0 } 	1 p oe  (2.40) 

if in each stage p the gradient Ea.  is estimated with a sample fx:lisp  

of increasing size N =pN. Eicin244Q61AgelotIoliirs=beizattge Also 

var(Fm  ) 	 (2.41) , 

for p-- 	In section 2.4.4 we introduce a new second order algorithm 
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where convergence with probability one follows from eqn.(2.40). 

The estimator (2.36) for ,the gradient Eva  may be improved by 
means of the antithetic variate method. A detailed discussion of 

this method follows in chapter three in the context of the nnplinear 

state prediction problem. The basic idea of this method is to use 

instead of the random sample {x}3, a linear combination of two nega-

tively correlated samples such that the expectation remains unchanged. 

If x
+ 
is a variate from a symmetric P.D.F. p(x) with mean R then the 

Oa 

antithetic variate x. is given by 

(x—  — R) = 	— 	 (2.42) 

and the new estimator for the r:th component of Eci,  is given by 
P 

	

agx,a,  ) 	ay (x,m ) 
(r) = 240(xsa ) am  (r3  ] — 2E[0(x,sp)] E[ am  0  ] Q 	 no  

P 	P 	P 

N 	agx+pm ) 	agx7pa ) • 	, 
-N 1 	[  am  L530  f(xs) 	.73.13--f(xj)] 

P  

+N
-1  ags(x,o. ) 

[f(x+) 	f(x7)1 E t  ao,  (:3  • (2.43) 

This estimator (2.43) is to be preferred to eqn.(2.36) if the terms 

to be estimated are predominantly odd in x. 
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2.4.3 Averaging several correlated estimates  

The multi-stage control vaaate procedure introduced in 

section 2.4.2 yields a sequence of p scalar estimates 01, 82, ... Op. 

Lindley(58) proves the theorem that the combined, minimum variance 

estimate a is given by 

-P 
w
i 

ai 
	(2.44) 

wi 

where w-1 = var(ei), provided 

(1) the P.D.F. of the random sample feili  used to estimate 
A 
0 is normal with known variance, and 

(2) a and 	(144j) are uncorrelated. 63,  

This result is now extended in two steps. First we drop 

condition 2 and show that the combined, minimum variance estimate 0 

is given by 

 

A zT-1 
0 	-13  

zT-1 z 
-p P -p 

 

aT 
-P -P 

(2.45) 

where 

 

(1) -PT 
	[61, 22., p ] (2.46) 
 

is a p-dimensional row vector whose components are the p scalar 

estimates 0 (i=162,...p); 

T r 4 (2) z A  L iip is•••*1 

is considered here as a p-dimensional identity vector; 
A 

(3) the sampaing covariance matrix V A var(0-P 
 ) is assumed to be 

(2.47) 



and hence from eqn.(2.51) follows 

V-1 z 
P a = -p zT V z 

710  P 710  

(2.54) 
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known. If ar  and Bp  (ri(p) are uncorrelated; i.e. if the correla-

tion factor pre  defined by 

Prp 
4 

cov( r p) 
	

(2.48) 
Ne.r(ir)var(e )11/2  

is equal to zero then (2.45) is equivalent to eqn.(2.44). 

In order to prove that the weighting vector 21)-[ a1  ,...,p] 

is given by eqn.(2.45) we have to minimize var(  ) w.r.t. a
7P 
 Since 

each 6i,(i=1,21...,p), is an unbiased estimate of 8 the solution has 

to satisfy the condition 

zT a = 1 
7P 7P 

Thus, we have to minimize  the function gap), defined by 

J(a ) a a
T V a - X(zT a -1 ), 

7/0 	7P P 7P 	710 7P 

(2.49) 

(2.50) 

w.r.t. a7  . The differentiation of eqn. (2.50) w.r.t. as  yields 71) 

P 
V 
7  
a1) =Xz

P
. 	 (2.51) 

Premultiplying both sides with zT 
P  
V-1 yields 

7P  

zT a = X zP 	z = 1 
7P 7P 	7P P 710  

where the last equality follows from eqn.(2.49). 	Therefore 

= (zT-1  z )-1 
710  P 713  

(2.52) 

(2.53) 
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as postulated in eqn.(2.45). It is easy to show that the sampling 
A 

variance of the combined estimate 910  is given by 

P 
var(0 ) = (zT  V-1 

-
z
P  )
-1  

-P  (2.55) 

The computation of gp  with eqn.(2.45) requires the assumption that 

V is known. Since V is usually unknown the weighting vector a P 

based on eqn.(2.54) only yields meaningful results if we can estimate 

the elements of V in the usual way (see eqns.(2.7) and (2.8) for the 

scalar case), replace V by its estimate V and ignore distributional 

changes that might result. This however is only likely to be satis-

factory if tLe sample size N of each iteration is large enough so that 

the error in replacing V
P 
 by V

P 
 is small. This requirement may help 

to decide upon the sample size N in the multi-stage sampling procedure 

introduced in section 2.4.2. 

2.4.4 A second order gradient method of adaptive Monte Carlo using  

control variates  

To the conditions introduced in section 2.4.1 for the control 

variate function 0(x, a), we now add a third one restricting 0(x, m) 

to depend linearly on the components m(r) of sj  as in eqn.(2.56). 
yr(x) are appropriate basis functions. 

(C3) 	gx, a.) = 	a(r) rr(x). 	 (2.56) 

Substituting eqn.(2.56) into eqn. (2.33), the cost functional F(m) 

becomes a quadratic expression in m. Hence, the displacement between 
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an arbitrary point a and the optimtm m°  where F(a), and the sampling 

variance var(6), takes its minimum w.r.t. ss  is given by 

ao - a = - F F aa -a (2.57) 

F is again the m-dimensional gradient defined by eqn.(2.34). Using 

eqn.(2.56) its r:th component is given by 

Fm(r) = 2E[0(x,a) yr(x)] - 2E(O(x,m)] I[yr(x)] 

- 2E[f(x) Yr(x)] 	2E[f(x)] E[Yr(x)] 	(2.58)  

'cm is the matrix of second order derivatives of F(a) w.r.t. a. The 

(r,p):th element is obtained after differentiating eqn.(2.58) w.r.t. 

a(p) as 

F.(r,p) = 2E[Tp(x) yr(x)] - 2E[rp(x)] Etyr(x)] 	(2.59) 

The determination of F-a  requires the integration of f(x). In

general, this can be done by Monte Carlo methods; i.e. F has to be 

replaced by its estimate Fm  which is obtained by an estimator similar 

to eqn.(2.36) or (2.43). Thus, the one step convergence indicated by 

eqn.(2.57) can no longer be maintained and has to be replaced by the 
A 

following multi-stage updating procedure for a 

1 ^ 
a -C• 

a, - 	F 	. 
-P+1 

= p 	a 
P P 	P 

(2.60) 

The subscript p refers again to the number of iterations performed. 

The novel feature of eqn.(2.60) is the deterministic property of 

the matrix Fa. a. given by eqn.(2.59). Since its elements are 
P P 
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independent of 	and do not involve f(x) they can be determined 

analytically before the sampling procedure starts. 

An estimate of a°  can also be found by linear regression. Unlike 

our procedure this approach requires the inversion of a matrix which 

is itself composed of random variables. 

Let us denote the estimate of F. for the time being by (Ela.)N. 

By the strong law of large numbers, discussed in section 2.2.2, the 

estimate (F )N  tends with probability one to Fa as N-- 03 ; that is -a  

Prob { lim 
N-00 

[(a)N - 	0] . 1 • (2.61) 

In order to keep the sample size N of the first iteration finite eqn. 

(2.61) is not very practical. Choosing a basic sample size N the 

gradient F is estimated in an iterative manner. Using a series of 

p random samples [x) 
isP 

 of increasing size Np  = p N implies, after a 
A 

sufficient number of iterations, that (44  )N  is arbitrarily close to 
P P 

Fa  and hence using eqns.(2.57) and (2.61) - 

Prob { lim [ a° - a = F- 1 	) ] = 	1 = 1 . 	(2.62) 
7P 	a a -a N 

P-.00 	P P P P 
A 

Thus the series of estimates a1  se' 	21/1  converges with probability 

one to ao if p co 

For computational reasons the concept of an increasing sample 

space N is not very attractive. We therefore propose an alternative 

method where each iteration is based on a sample of constant size N. 

Here, convergence is obtained through the introduction of an auxiliary, 
A 

m-dimensional vector c. In the p:th iteration we estimate c
71) 

 and then 
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A A 	A 
combine it with all previous estimates c, 22,..., 27.1  to get .a 

A 	 A 

weighted average c-p 
A 
 such that var(c

P 
 ) ---• 0 as p --"°'"  - 

Solving eqn.(2.60) for f yields 
P 

= F 	F ). a, "" P( 
-13 -1341 

The vector c is defined by 
-P 

-cp o F 	
."
a

71-  I 	M 
= F M  a -

-a  • 
PP 	PPS  

(2.63) 

( 2 . 64 ) 

As c is invariant w.r.t. a (see fig. 2.1) it is feasible to combine the 

p estimates a (i=1,21...0) to ensure convergence of the weighted 

estimate c 
-P 

Fig. 2.1  Definition of the auxiliary constant 

c in the scalrir case. 

Let us denote the estimated sampling covariance matrix of the 
A 	 A A 

estimated gradient F-a  by var(Ect  ). Neglecting the correlation P 	P 
between c and c,, (r/p), allows us to use eqn.(2.44). -r The combined 
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estimate c is computed by 
7P 

= (2.65) 

Where the matrix W is defined by 

Wil  = 	) 
	 (2.66) 

The sample size N in each stage p is constant but it has to be 

chosen sufficiently large such that the replacement of var(i ) by 
.1211 

A A 

its estimate var(F ) is admissible. 

The increase in computing time due to the evaluation of eqn.(2.65) 

may be avoided if we use a deterministic weighting sequence. Denoting 

the r:th component of cc by c (r) the combined estimate c (r) is 

computed by 

c (r) 
P 

ai Gi 	r =1,2,...,m. (2.67) 

The weighting sequence a l, a2, ... must satisfy eqn.(2.49). An 

admissible choice is 

ai 	p2i 	i=1,2,...,p. 
	(2.68) 

Using the weighted estimate 8 the updated parameter m-p+1 
 is found with 

eqn.(2.64) to be 

a, = -/ . 	 (2.69) -p+1 	m 
P  m  P 

 -p 

The combination of the sequence 810  i2, 	by means of eqn.(2.65) or 

(2.67) implies that var(6
7P 

 )--• 0 as 	00, because c
7P 

 is estimated 

with a sample of increasing size N = pN. Therefore, by the strong law 



58. 
of large numbers we have 

2 
Prob { lim (c - c) = 0 } = 1 • 	(2.70) -p  

p.o0 

Since the sequence P1, a2, ... converges with probability one to c and 
-1 the matrix am  is a deterministic multiplier we conclude that the 

A 

sequence al, s2, 	obtained from eqn.(2.69) converges with probability 

one to e. 

2.4.5 Computational procedures  

The object of this section is to summarize the various implementa- 

tions of the multi-stage, adaptive control variate method. 

Algorithm 1: First order method; section 2.4.2 

(1) Choose a suitable class of control variate functions satisfying 

(C1) and (C2) of section 2.4.1. Set 1  to an arbitrary value. 

(2) In the p:th iteration, generate a random sample (11 	of 
isP 

size N from the given P.D.F. p(x). 

(3) Estimate 0 using eqn.(2.31) and its sampling variance, 

var(0 ), using eqn.(2.32). 

(4) Increase the sample size to N = pN, estimate the gradient 

P 	with eqn.(2.36) or (2.43) and update a
-P 

 using eqn.(2.38)0 
P 

(5) Combine 	with the previous p-1 estimates a 0 12 2, 

as described in section 2.4.3 to compute 0 by eqn.(2.45) and 

var (p) by eqn.(2.55). 

(6) Increase p to p+1 and repeat steps (2) ...(5) until the confidence 
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interval for 0 is less than a preset accuracy level. 

The second order method of section 2.4.4 is summarized in algorithm 2. 

Since we found various methods to ensure convergence of eqn.(2.60) 

we shall refer to them as algorithms 2a, 2b, and 2c respectively. 

Algorithm 2a 

(1) Choose a suitable class of control variate functions satisfying 

(Cl), (C2) of section 2.4.1 and (C3) of section 2.4.4.   A Set a 

to an arbitrary value and compute F-1  analytically using 

eqn.(2.59). 

(2) In the p:th iteration, generate a sample {ac}isP  from the 

given p(x) of fixed size N. 

(3) Estimate 9p  using eqn.(2.31) and its sampling variance, 

var0p), using eqn.(2.32). 

(4) Increase the sample size to N = pN, estimate the gradient 

by Monte Carlo integration of eqn.(2.58) and update -a. 	 a
-11  

by eqn.(2.60). 

(5)  Combine 0 with the previous p-1 estimates e il 	p_1, 

as 	

iv •2s... *  

as described in section 2.4.3, and compute 
P  
e by eqn.(2.45) 

and var(0 ) by eqn.(2.55). 

(6) Increase p to p +1 and repeat steps (2) ...(5) until the 

confidence interval for 0 is less than a preset value. 

The increasing sample size N of step (4) is necessary to guarantee 

convergence of algorithm 2a. But it can be avoided if we use the 

auxiliary constant c. Algorithms 2b and 20 differ from algorithm 2a 



to estimate 

and combine 

eqn.(2.65). 

F 	and var(-Fa.  ). 

it with the p-1 previous 

The updated value 

11 v var(5)Method 2 

va_r(19Method 1 
; 
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only in step (4). Different methods for this combination of the 

estimates c1 
	6 are employed in each and we state these in the 

- 	-p 

sequel. 

Algorithm 2b  

(4) Use the sample of step (2) 

Compute c with eqn.(2.64) 

estimates to find 	using 

ip+1 is given by eqn.(2.69). 

Algorithm 2o  

(4) 	Use the sample of step (2) to estimate 	Compute gp  with 

eqn.(2.64) and combine it with the p-1 previous estimates 

a
P- 1 	- 

to find a
P 
 using eqn.(2.67); i.e. a fixed -ls *00 	-  

a 
weighting sequence. The updated value 	1 m 	is given by -71- 

eqn.(2.69). 

In order to compare the relative efficiency of two Monte Carlo 

methods let us introduce the following measures. The variance ratio 

is defined by 

(2.71) 

that is, the ratio of the sampling variances of the estimate 0 using 

methods 1 and 2 respectively. The labour ratio 11 L  is defined by 

11 = t
1 

t2 

thus expressing that method 1 calls for t1  and method 2 for t2  units 

of computing time. The efficiency gain 1 , defined by 

= 11 v  1L 
	 (2.73) 

(2.72) 
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measures the overall improvement of method 2 compared with method 1. 

The variance ratio depends on the problem and the Monte Carlo procedure 

used. In numerical examples 11 .7  is usually easy to assess. The 

labour ratio depends not only on the Monte Carlo method but also on 

the computing machinery available. It is not necessarily meaningful 

to take t1 and t2 to be the respective numbers of times that the 

integral (2.1) has to be evaluated in each method. This is wilily 

due to the fact that the generation of random sample {x}1  may call for 

considerably more computing time than basic operations like addition 

and multiplication. In particular, the generation of one variate x, 

using GMISTOO, see section 203.10  takes on the IBM 7090 856 psec 

compared with a multiplication requiring 20 psec. 

2.4.6 A two-stage control variate method  

The problem of combining several estimates 1101,...., bp  requires 

the estimation of the sampling covariance matrix V between these 

variates;see section 2.4.3. This can be avoided by separating the 

'learning' phase from the 'estimating' phase. Indeed, an arbitrary 

value of m in the control variate function 0(xim
P 
 ) yields an estimate 

with a large sampling variance vas( p) compared with the value 

we obtain with the optimal m°. Hence, the first few iterations will 
a 

usually give small contributions to the final weighted average 0 and 

may therefore be neglected altogether. This observation leads quite 

naturally to a two-stage estimator. In the first stage, the learning 
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phase, we use the second order method of section 2.4.4 for p1  

iterations to find an estimate m of mo using eqn.(2.69). This 

value is subsequently used in stage two, the estimating phase, to 

determine e with eqn.(2.31) using m -14  in the control variate function 

0(x4p). Thus, the second stage consists of one iteration only. The 

loss of information during the first stage with respect to estimating 

8 is offset by the reduced computing task. 

2.5 A numerical example  

Let us consider the following example used by Hammersley and 

Handscomb(36). 	It deals with the evaluation of the scalar integral 

1 

  

- p(x) dx = 0.418023 - (2.74) 
0 

 

where p(x) is the uniform P.D.F. defined in the interval (0,1). If 

we choose the fixed control variate function in eqn.(2.26) to be 

0(x) s x 	 (2.75) 

the variance reduction 	see eqn.(2.71), compared with the crude 

Monte Carlo estimator (2.3) is found to be 

v  = 	60.4 
	 (2.'76 ) 

An admissible parameterized control variate function of the form 

(2.56) is 
0(x) = 0.(1) x + m(2)x2 	 (2.77) 
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It is easily verified that conditions (C1), (C2) and (C3) of section 

2.4 are satisfied by eqn.(2.77). The optimal values a°(1) and a°(2) 

are analytically found to be 

e(1 ) = 0.5 
	e(2) = 0.485 4. 	 (2.78) 

For the first order method of section 2.4.2 a suitable value of 

the convergence factor X is found by trial and error to be X = 0.08. 

The matrix Fr=  of eqn.(2.59) for the second order method of section 

2.4.4 is 

as 

	

0.1667 	0.1667 

	

0.1667 	0.1778 
(2.79) 

   

For the first iteration we set the components of a as 

a(1) = 1.0 	m(2) = 1.0 . 	(2.80) 

In the Monte Carlo computation each iteration is based on a sample of 

size N = 50. Starting at P =1 , iterations up to p=10 are performed 

and the sampling variances of e10 compared. The gradient F is 

computed with eqn.(2.43) because the integrand to be evaluated is pre-

dominantly odd. Unless otherwise stated the exhibited results are 

averages over ten ensembles. Thus, 
.13  
6 denotes the average over ten 

values of 0 	Similarly var( ) denotes the ensemble average of the 

sampling variances of Op. The labour ratios stated have to be under-

stood as approximate values. They are based on our numerical work 

executed on an IBM 7090. The numerator of the variance reduction 

factor (2.71) is always given by the sampling variance of the crude 

Monte Carlo estimator. 	In table 2.3 we compare the different 
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estimators for 0 defined in eqn.(2.74). 

._. 
11110 'Iv 11L 11  v6(110)  

Crude Monte 

Carlo; sec.2.2.3 0.412003 1.601.10 - - - 

First order method 

sec.2.4.2 0.417863 1.737.107  920 0.1 92 

Second order 

method; algorithm 

2a;sec.2.4.4 0.418046 2.560.10-8  6250 0.1 625 

Algorithm 2b 0.418010 3.029.10 5300 0.2 1060 

Algorithm 2c 0.418036 4.037.10 4000 0.4 1600 

' Table 2.3  Comparison of the multistage control variate estimators 

with the crude Monte Carlo method. 

The stochastic convergence behaviour of the parameter G(1) in 

egiu(2.77) is shown in fig. 2.2 for algorithm 1 and 2 for one particular 

experiment. Thesamesample(x. )3  is used for all four evaluations 

of a (1). 

In fig. 2.3 we plot the p ensemble estimates of the sampling 

variances, var(ap), for the individual estimates al, 52,...,8p  after 

each iteration. The evaluation is based on eqn.(2.32). 	It can be 
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1.4 

1.2 - 

1.00 	 

0.8- 

0.6 

0(0) - -rte. - 
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0.2- 

p 
2 	 4 6 	 8 	 10 

Fig.2.2  Convergence behaviour of the control variate function 
parameter a (1) vs. the iteration number p of the multi-stage 
Monte Carlo estimation procedure. 
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Pig.2.3  Ensemble values of the estimated sampling variance var(G ) 

P 

2 	4 

vs. the iteration number p of the 

tion procedure. 

1 crude Monte Carlo 	X 	x 

2 algorithm 1 	0 	0 

3 algorithm 2a 	0 	B 

4 algorithm 2b 	A 	A 

5 algorithm 2c 

multi-stage Monte Carlo estima- 

10 

first order method 

second order method 
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seen that the second order method yields the minimum variance 

estimator after 3 to 4 iterations. This fast variance reduction 

makes it quite ofrordoit6-• to use the two-stage estimator of section 

2.4.6. 

In order to compare the relative efficiency of the proposed 

algorithms we plot in fig. 2.4 a lcostl  function defined as product 

of computing time required per iteration times the ensemble value of 
2 

the sampling variance of the combined estimate 0 var(0 ), versus p. 

This graph allows us to establish the relative merits of the three 

modifications for the second order method. Increasing the sample 

space for estimating gm  is preferable only as long a& the number of 

iterations is small. The same remark is true for algorithm 2b where 

the extra computing time to estimate var(t ) cannot offset the smaller 

accuracy of a constant weighting sequence used in algorithm 2c. 

In fig. 2.5 we plot the sampling variance var(F (1)) of the esti-

mated gradient component i'm(1). It is sharply dependent on the 

optimal value of m(1). This behaviour explains the better performance 

of algorithm 2b for small p because the optimal weighting to obtain 
2 
c differs considerably from the fixed weighting sequence (2.68). 

Finally, the two-stage estimator of section 2.4.6 is applied to 

example (2.74). Based on the results of fig. 2.4 we use algorithm 

2a where the first p1=3 iterations of stage one with samples of size 

N = pN (where N = 50) are used to compute F with eqn.(2.45). 

Updating the parameter m
-P 

 is based on eqn.(2.60). Thus, a total 
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Fig.2.4  Efficiency comparison: 'Cost' 	computing time per iteration p 

^ 	 
times var(G ) vs. iteration number p of the multi-stage Monte 
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Fig.2.5  Sampling variance of the first component of the estimated 

gradient vector F a , var(F
a 
(1)), vs. the first component a(1) 

of the parameter vector a . The estimated values 0 are ensemble 
averages over ten Monte Carlo computations of var(F

a 
(1)) using 

samples of size N = 50; a(2) is kept constant and set equal to a°(2). 
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of Nt = 300 samples are used to estimateapproximating a
o. In 

-131 
the second stages  a sample of size N2  = 500 is generated to estimate B. 

Table 2.4 exhibits the results which are again ensemble averages. The 

parameter m is initially set equal to one. 

Stage Iterations a(1) a(2) B var(a) 

1 1 1.0 1.0 

2 0.7598 0.1120 

3 0.4754 0.5119 

2 1 0.4979 0.4909 0.418025 1.928 - 10-8  

Table 2.4, Two-stage estimator to evaluate integral (2.7 4) 

Comparing these results with the crude Monte Carlo estimator shown 

in table 2.3 we have to take the different sample sizes into considera-

tion. Thuss  the variance reduction 1 v.s  defined by eqn.(2.71), is 

found to be 

500 	1.601.10"4  
v = 	 5200 . 

800 	1.928 .10-43  
(2.81) 

Working with a labour ratio of "'I L  = 0.5 the final  efficiency gain of 

the two-stage estimator is found to be 1 = 2600. 
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2.6 Summary and discussion  

The multi-stage adaptive control variate method is found to 

yield a significant improvement compared with the fixed control variate 

and the crude Monte Carlo method. The additional computational effort 

required to minimize the cost functional F(a) in the parameter space 

is more than compensated by the accuracy gain of the new estimator. 

The second order method is always to be preferred to the first order 

method provided the additional condition (C3) does not conflict with 

(C1). The problem of deciding upon the structure of the control 

variate function gx,a) can only be treated for a given function f(x). 

That is, in order to get a good procedure the specific properties of the 

problem considered have to be fully exploited. This attitude seems to 

be necessary in all types of Monte Carlo work and confirms that it is 

more rewarding than trying to apply some standard techniques. 

If the parameter a of the control variate function 95(x,m) is 

found by linear regression technique then such a procedure corresponds 

to a two-stage estimator. However, our solution presented does not 

include a random matrix to be inverted but a deterministic matrix which 

can be computed before the sampling experiment starts. 

As far as the efficiency gain is concerned the two-stage estimator 

of section 2.4.6 gives the best result for the example considered. 

This is largely due to the fact that 

(1) the matrix aim  is almost singular and 

(2) the problem of combining estimates can be avoided. 

Although the derivations in section 2.4 and the example of section 
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2.5 are based on a scalar case there is no reason why the same method 

should not be applicable in cases where x is an n-dimensional vector. 

The adaptive control variate method will be taken up in the following 

chapter when we consider the state variable prediction in systems 

where all states are accessible. There, the discussion will be 

extended to the n-dimensional case in the context of the state 

prediction problem. 
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CHAPTER THREE 

STATE VARIABLE PREDICTION 

3.1 Introduction 

3.1.1 Stochastic difference equations  

A discrete-time stochastic process is represented by the follow- 

ing vector difference equation*  

k+1 
x 	k " * w * k) , 
-- 	•- lc (3.1) 

where x is the n-dimensional state vector•  w is the p n dimensional 

random disturbance and k denotes the time. 

Using the notation 

k A 	
* • • s wk 
	 (3.2) 

to designate the collection of random vectors k. w we make the assumption 

that w kis a white random sequence for which the conditional P.D.F. 

satisfies 

P6414? = p(4)*  for i > k 	(3.3) 

Moreover, if all w are jointly normally distributed we assume that wrk  

is a white Gaussian vector sequence. It is completely specified by the 

mean vector 

0 	for all k 	(3.4) 
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and the covariance matrix 	I w
k 

17:c 	wk  8ile 	(3.5) 

A white Gaussian random sequence is a good model for the noise in a 

discrete-time dynamical system where the noise is due to the super-

position of a large number of small, completely random (independent) 

effects. Finally, it is emphasized that a white noise sequence must 

not be confused with a white noise process which has a considerably 

different character. 

For the Monte Carlo approach the assumption that w is a white 

Gaussian noise sequence is not restrictive. Indeed in section 2.3.1 

we discussed the problem of sampling from an arbitrary P.D.F. and 

showed that in this respect there is no fundamental difference between 

the normal and any arbitrary P.D.F. However, due to the computing 

facilities available it is convenient to draw samples from the normal 

P.D.F. 

Our object in this chapter is to study those stochastic processes 

which arise as solutions of eqn.(3.1). The evolution in time of 

such a process is properly described, not by the system state vector 

Irk, but by the time varying P.D.F. p(k,k). To economize on our 

notation we shall drop the time argument kin all future expressions 

involving p(ask). 

A solution of eqn.(3.1) can be found provided: 

(1) the random initial condition is given in terms of a known 

P.D.F. p(x 1) (we assume the system starts at time k =1). 

(2) the P.D.F. of the disturbance Lik, p(wk..), is known for all 
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times k. 

All the states k  of system (3.1) are assumed to be accessible. We 

call the estimation of some parameters of p(xk) the state or trajectory 

prediction problem according to whether the time k is considered to be 

fixed or varying. 

3.1.2 Markov sequences 

In this and the following section we &pal discuss some analytic 

aspects of the prediction problem in order to show the advantages of 

Monte Carlo methods. A detailed discussion of Markov sequences is 

given by Papoulis(35) and Doob(44) 

Considering eqn.(3.1), it is clear that given a sample value of 

40 the value taken by 0.1  depends only on the value taken by 4c0 

But w
k 
 is completely random, (it comes from a white sequence), and is, 

"" 
by assumption, independent of Irn  and thus also independent of 

k,...,1c20 It therefore follows that 

13(xk+1140**"E1)  = P41:411Eid* for any k. 	(3.6) 

That is,the sequence xk generated by eqn.(3.1) is a Markov sequence. 

The transitional P.D.F. p(xk+i k) of eqn.(3.6) is an important 

expression for the prediction problem. The F.D.F. p(xkillxk) can be 

expressed in terms of pw -- Cwk  ) using the fundamental transformation 

theorem for P.D.F.(35). Suppose that eqn.(3.1) can be solved for we  

That iss  for fixed 3rk  and 	f(k, , k) has an inverse, say f*  such 
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that 

w = f * (xx 	 (3.7) 
- 	-k+1 

Then, we haVe from the theory of derived P.D.P. 

Elso,k)  
P(aaid.04L)  = Pw 	Eiwf k))  ax -,k+1 

(3.8) 

  

For eqn.(3.8) to hold, we must at least have n=p, though this by itself 

is not sufficient, 

Before proceeding with the prediction problem, we will make a 

small digression and prove the following result: 

If the dimension p < n or if p=n but f does not have an 

inverse f*,a suitable partitioning of f (perhaps with a 

change of variables) such that the dimention of f
(1) 

is 

equal or less than p yields an expression for the trans- 

itional P.D.P. p(k4.11F1) which requires the inverse of 

only a lower dimensional function f 	say f*(1) 

Pi-oofr We rewrite eqn.(3.1) in the form 

  

(1) 
k+1 = 

(1)
(Ek 
(1) 

• 
x(2) 
-6k * k) 

(3.9) 
x(2)  = 
k+1 

(2) (1) 
(Ek I  x(k2) s  k) - 

( such that .14c1)  and wk  are of the same dimension p' Ap and 

.,.(1)f  (1) 	(2) 	k) .4 	qlk 	. 	has an inverse, say 
f*(1).  Then the trans- 

itional P.D.F. p(x Ix ) takes the form 
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( (1) 	() 	) 
13•1k+i ► Eac

2
+1 1 Ek P(?-c-k+11Q 6  

	

(2) 	I 211  . 1) 	 4 	( ..'(1)1 .*.  

	

p(-k+1 	- P 	-k)  (3.10) 

where the last equality follows from the usual rules of manipulating 

	

conditional P.D.F. 	Using eqn.(3.9) we now have 

2 )sic.(l+)1  so) (t1) I ask) 	pw (f  *( 1)641) /4 	k  p6ri+1  

and 

pcx(2)1x(1) x ) = 8(x(2)  - f(2)(x(1) 	x(2) 

	

-k+1 -k+1 	 k+1- 	-k 

as in eqn.(3.8) 

df *( 1) 

(3.11) 

(3.12) 

(1)  
k+1 

' k ) 

where 8(.) denotes the dirac delta function,defined byj(x) dx = 1 and 

for x:# 0 : 8(x) = 0 . 

This completes the proof of the above result. 	We have determined 

the transitional P.D.F. p(x 	) of the Markov sequence (3.1) for 
-k41 

a special case in eqn. (3.8) and under more general conditions in 

eqns.(3.11) and (3.12). 

We now develop a difference equation for the transition P.D.F. 

p(x0i) for k>i+1 . The marginal P.D.F. p(xiclxic_2) is obtained in 

the usual way as 

p(x I x 
"nriz I P(  I:siv.ii.sk-2) 	cb-r-k (3.13) 

With eqa (3.6) we obtain from eqn.(3.13) the Chapman-Kolmogorov 

equation as 

P(asit0s,k-2)  = f P(c-ki Ek-1) P(k_itk 
	dx 
	(3.14) 
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We may replace 3:34....2  in eqn.(3.14) by ai, where i 1c-2 and write 

p(Ekl2c4) = f P(3-sklEk-1) p( -11 
	

(3.15) 

Via eqn.(3.15), we can determine all other transition P.D.F. of the 

Markov sequence (3.1). 

Finally, it is easy to see that the 	p(as), given only 

p(x 11), also satisfies eqn.(3.15); that is, 

p(ask) 
	

f P(.3;k1 Ek.-1) p(k7-1) 	k-1 
	(3.16) 

is valid for k=2,3,... The integrals appearing above are shorthand 

for the n-fold integral with respect to the vector 251c..1 	Equation 

(3.16) represents a recursive solution of the nonlinear prediction 

problem and is directly derived from the Chapman-Kolmogorov equation 

(3.14). In actual practice the evaluation of eqn.(3.16) may involve 

the following difficulties: 

(1) As the discussion of eqn.(3.8) has shown, the evaluation of the 

conditional P.D.F. 11(k1  Ek 1) may cause considerable difficulties. In 

particular, the computation of the inverse function f*  and the 

Jabobian af474k+11  are serious obstacles which can prevent a 

practical solution. 

(2) Even if the integrand in eqn.(3.16) can be found the evaluation 

of the n-dimensional integral by means of analytic methods may be 

prohibitive. 

As already mentioned in chapter two, one of the main advantages 

of Monte Carlo techniques is their suitability to evaluate high 
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dimensional integrals* Before such techniques can be applied the 

recursion (3.16) has to be replaced by an equivalent expression which 

involves only prior information about the system. 	Indeed due to 

the Markov property, eqn.(3.16) can be rewritten as 

13(xk)  = f P(k 1  Eic-1) P(EiP " ;S- 1) 

	
(3.17) 

where the integral to be evaluated is n(k1)-fold. 

Although eqn.(3.17) is amenable to a Monte Carlo solution this 

problem formulation based on the Chapman-Kolmogorov equation (3.14) is 

not efficient because sampling techniques are not suited to evaluating 

the entire P.D.F. However:  they are very useful to estimate some 

parameters of p(xk). In section 3.2 the prediction problem will be 

re-examined and starting from first principles a solution is sought 

which 

(1) is based on the specific properties of a Monte Carlo 

computation; 

(2) avoids the difficulties encountered when the solution 

is derived via the Chapman-Kolmogorov equation.. 

3.1.3 Linear and nonlinear predictors 

It is well known that for a linear system of the form 

x 	= A x + w 11+ 1 	k 	-k (3.18) 

with a Gaussian P.D.F. p(x1) specifying the initial conditions and a 

white Gaussian sequence wk the P.D.F. p(x1) of the state xicis 
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(3.19) 13()  = n(1 ; ak 	k 

has the mean 8k  and variance Ek obtainable from eqn.(3018) as 

it = A 
k+1 	

at 
 

Ek+1= Ak Ek 
	

wk 

These recursive equations start at timekg1 with 

(3.20) 

PIA and 	1 = 	x:
(3.21) 

where m and 5:x denote mean and covariance matrix of p(x ) respectively. 

Although eqn.(3.20) can be computed directly from eqn.(3.18) it also 

follows from eqn.(3.16). 

To emphasize the difficulties arising from nonlinear transformations 

f let us now consider a nonlinear difference equation of the following 

form 

2Ek+1 = I-(xx1kt k) 11(1° k) kir k 
) 

with h(x s k) / 0 and Wit  a white random vector sequence. Based on --,k  e 

results of section 3.1.2, the transition P.D.F. is found by means of 

eqn.(3.7). If p(wk) is normal with zero mean and variance E we 
wk 

find the mean ak  and the covariance E k  of p(xk) as 

ak.+1 

k+1 

= E [f(xle  10] 

= E [f(k,k) fT(xis  It)] — E[f(xiek)] ET[f(xlie lE)]  

T +E [h(xks k Ek  tkc 	Xkt 	0 (3.23) 
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Now, eqn.(3.23) is a nonlinear predictor which reduces to eqn.(3.20) 

if f is linear and h a constant. We notice that eqn.(3.23) is not 

a difference equation because the knowledge of p(25) is required for 

its evaluation. Approximate equations for ak  and Ek  maybe 
obtained if we make the assumptions that p(k) is symmetric and 

close to the mean; that is, if 	and E k  describe p(F,k) with 

sufficient accuracy we might expand the functions appearing on the 

R.H.S. of eqn.(3.23) in Taylor series about j. The disadvantage 

of such an approximation procedure is the absence of an error analysis. 

In conclusion, the discussion in this section 3.1 has shown that 

the success of the analrtic approach to linear systems with additive 

white Gaussian noise is due entirely to the fact that the mean and 

covariance matrix of eqn.(3.20) describe the P.D.F. p(xk) completely.. 

On the other hand, in the nonlinear case, eqn.(3.23) indicates that its 

exact solution leads to a set of infinitely many equations. We do 

not attempt to solve the Chapman-Kolmogorov equation (3.14) directly* 

In the remainder of this chapter we rather concentrate on the design 

of Monte Carlo procedures to obtain statistical solutions for predicting 

the states based on the nonlinear system itself where error bounds are 

directly obtained as part of the solution. 
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3.2 A crude Monte Carlo predictor  

3.2.1 The method of moments  

Let us consider again the stochastic difference eqn.(3.1) with 

an arbitrary but known P.D.F. p(x1) and a white random sequence wk  

whose P.D.F. p(wk) is also known for all k. 	It is desired to find 

the P.D.F. p(xk) over a time sequence or at some fixed time k. Since 

Monte Carlo methods are not suited to determining entire functions, 

we are interested in estimating some parameters describing p(xk) 

rather than in evaluating p(x2 itself. We have to resort to the 

method of moments, see Deutsch(45) because the nonlinearity of the 

relations between the observables and the system parameters are in 

general such that most methods of estimation become too complicated 

to manipulate. The r:th order moment of the system (3.1) is defined 

by 

(c1, 02,1 4,0o ten  
E[G(xk)) = f G(x —k dk,  (3.24) 

where 

G(xk) e x k  4t1) x 
2(2) .. 	(3.25) 

xk(i) denotes the i:th component of the state vector xk  and the 

exponents ci  in eqn.(3.25) satisfy the condition 

c = r 	r = 1,2,... 
	(3.26) 

In particular, the first order moments, where ci  = 1 , define the mean 



x p(x ) dx -k k 

The matrix Mk  of second order moments, where ci = 2 or ci = c 

ak= E [ Ek 

vector pk  by 
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is given by 
mk 	E  [ xk 	a

J  
 xk xTk p(x cbse 	 (3.28) 

Finally, the covariance matrix Ek  is given by the second order central 

moments and defined by 

= E [(Eic - 4k) (x/c - Lik)T] 
	(3.29) 

While a particular moment or a few of the moments give some 

information about the P.D.F., only the infinite set of all moments 

(3.24) 	(3.26) will determine the P.D.F. exactly. Yet, in practical 

applications only the first two moments are of great importance because 

it often is unnecessary to know the actual shape of the P.D.F. On the 

other hand, it is usually necessary to know at least the location of the 

P.D.F. and to have some estimate of its dispersion. In the following 

section 3.2.2 it will be shown how these characteristics can be estimated 

by examining a random sample drawn from a set of values known to have 

the P.D.F. in question. 

3.2.2 The sample moments  

The Monte Carlo evaluation of the integrals defined in the previous 

section yields the sample moments. By the strong law of large numbers, 
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(see section 2.2.2), these sample moments converge with probability one 

to the true 

N 

moments if the moments are finite and if the sample size 

The sample mean akis computed by 

= N-1 
N 

(x k 	 (3.30) 

Similarly the matrix Mk of the sample second order moments is given by 

Mk  = N 1 	
(2-Cidj (E,k) 

 
• 
	 (3.31) 

a 

The sample covariance matrix Ek  is obtained as 

fk  r  N  ± 1(ask)3  - 	E (Lrk) - A  f . 	 (3.32) 

Except in eqn.(3.30) the sample moments will be biased estimates of the 

population moments. This bias is negligible, however, for large N. 

The quantity (xk)j  appearing in the above expressions denotes 

the random vector selected by the j:th drawing from the P.D.F. p(xk). 

It is generated by a direct simulation of eqn.(3.1) and is a function 

of krandom vectors; (x ,t). is drawn from the P.D.F. p(x 1) and (wk-1)j  

is drawn from p(w 12. The N-fold repetition of the direct simulation 

of eqn.(3.1) yields the random sample takli  required to evaluate 

eqns.(3.30)...(3.32). This procedure is a typical illustration of 

remark (5) in section 2.2.3. Although it is not possible to give an 

analytic solution for p(4k), direct simulation provides a powerful 

method for sampling from p(Eg ). 

From the above discussion it is obvious that, unlike theoretical 



85. 

statistical moments which are computed from given P.D.F. and are 

therefore known functions of the distribution parameters, sample 

moments will themselves be random variables and are associated with 

P.D.F. This point has already been emphasized in section 2.2.3. 

In our application of statistical methods we are interested in 

relatively simple statistics such as averages, sums of squares, 

ratios and covariances. 	Due to the central limit theorem we are 

able to give at least approximate confidence intervals for the sample 

moments. 

First, let us consider the moments of the sampling P.D.F. of 

akintroduced in eqn.(3.30). The following useful theorem is proven 

by Wilks(34): 

Let (40j  be a random sample of size N drawn from the population whose 

P.D.F. is p(xk). Denoting the mean of the population by 14:, then 

= ale  We also assume that p(x17) has a finite covariance matrix 

Ek 	The sampling variance of iao  denoted as var(i42, is defined by 

(3033) 

N 
- Elk) = N-1  > [4.423  - HI) • 	(3.34) 

Bence, using eqn.(3.29), var(k) is found to be 

var(k) = N-1  k= N-1  var(k). 	(3.35) 

Thus, the covariance matrix of the sample mean is equal to the popula-

tion covariance matrix Ek divided by the sample size N. Since Ek 

var(Ilk) E 1(ak E [4])(ik E[aki )2  

where 
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is unknown it has to be replaced by Ek  of eqn.(3.32); that is*  

var(k) has to be replaced by its estimate var(k). 

While it is relatively easy to derive the mean and variance of 

the sampling distribution of 	the complexity of the multivariate 

statistical analysis for the second order sample moment is much greater. 

Anderson(46) gives a full account of the sampling distribution of the 

sample covariance matrix /it 	As a simplification we shall use 

eqn.(2.10) to estimate the mean and sampling variance of the second 

order central moments where the scalar function f(x) is to be replaced 

by (1/2.-  212 4k- 
 22a This procedure yields exact values pro-

vided the raidom sample is draws from a population with a normal P.D.F. 

The exact derivation for mean and variance of the second order 

central moment is given by eqn.(2.11) for the scalar case. In a 

similar manner*  means and variances of higher order sample moments 

could be carried out. But even in the scalar case the tediousness of 

the process increases rapidly. In agreement with our previous remarks 

in section 3.2.1 we do not pursue the topic of higher order moments. 

For further details concerning this aspect of sampling theory we refer 

to KendA31  and Stuart(59) 

Equations (3.30)...(3.32) define crude Monte Carlo predictors. 

The only way of improving the accuracy of these estimators is to in- 

crease the sample size N. As can be immediately seen in the case of 

the sample mean 
ale 

 this is not a very rewarding procedure because the 

sampling error*  defined as the square root of the sampling variance 
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eqn.(3.35), is only proportional to N-112' 

The significance of variance reduction techniques has already 

been shown in chapter two. In the present context we found that the 

efficiency of Monte Carlo predictors can be considerably improved if 

we use correlated sampling methods: 

(1) Negative correlation between the samples leads to the 

antithetic variate method, as described in section 3.3. 

(2) Positive correlation between the samples leads to the 

control variate method; see section 3.4. 

3o3 The antithetic variate method 

The concept and name of the antithetic variate method was in-

troduced by Hammersley and Morton(47) for the evaluation of scalar and 

multidimensional integrals using samples drawn from the uniform P.D.F. 

The general theoretical structure of the antithetic variate method in 

connection with the uniform P.D.F. is contained in a paper by Hammersley 

and Mauldon(48) 	Mayne(29) applied the concept of antithetic variates 

to normal P.D.F. for a gradient technique to find the optimal control 

for a stochastic nonlinear system.. 

Suppose that le is a Monte Carlo estimate of an unknown parameter 

0. The basic idea of the antithetic variate method is to seek a 

statistic iwhich 

(1) has a strong negative correlation with 64, and 

(2) is an unbiased estimate of 0; i.e. E[6-1 LT 0. 
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If both these conditions are satisfied then r and r will mutwI1y 
compensate each other's variations. After sampling a and 0 

simultaneously we employ 

= (8 ) 2 (3.36) 

as the estimator of e. 
We sbiall elaborate on this concept in section 3.3.1, where a 

nonlinear predictor for the mean kis presented. The discussion in 

section 3.3.2 of the special case of a linear Gaussian system leads 

to an interesting result. Finally, the topic of a generalized anti-

thetic variate method is discussed in section 3.3.3. 

3.3.1 A nonlinear.  _predictor using 2N antithetic variates  

Let us consider a nonlinear system of the form of eqn.(3.1). In 

addition to the assumption of independence of xl  and 	the corres-

ponding P.D.F. must be symmetric and unimodal. In order to carry the 

development of nonlinear predictors beyond general statements the 

special form of normal multivariate P.D.F. will be assumed for p(x1) 

and p(wk); that is 

P(xl) = 33.(x1; px, E x) 
	

(3.37) 

p( ti) = nqt.k; 	$ E ) 	(3.38) 

Let us denote by Isk!; the original sample as it has been used 

in connection with eqn.(3.30). In addition to this sample we generate 
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a negatively correlated sample ix I-j  as N solutions of eqn.(3.1) 

using the antithetic initial condition variates 

((x j  - mX 	 j ) 	((X )1.  - M ) 

	

(3.39) 

and the antithetic noise sequences 

k 221,02,•••0 (3.40) 

for j =1,2,...,N. 

Because of eqn.(5.37)...(3.40) we have p(xl) = p(x1) and p(4) = p(E:)* 

These two conditions are essential for the antithetic variate method 

since they ensure that the new estimator for the mean 4k, based on 

eqn.(3.36) and given by 

11 ,4 
ak 	E [(EA + 442; = 2 

1
ak

4. 
 

where 

j 

is unbiased. As ilk  is the sum of two correlated estimates its 

sampling variance, var(ild, is given by 

7ar(k) = var(i'i2 	varq? 	cov(a:, 	(3.43) 

It can be made smaller than varkalc!, the sampling covariance matrix 

(3.35) of the crude Monte Carlo estimator, provided 

.- cov(a2k) < 0. (3.44) 

In actual practice, none of the terms of eqn.(3.43) is known and all 

therefore have to be replaced by their estimates* 

N 
ak A 	E (Eli); 

• (3.41) 

(3.42) 
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To illustrate the antithetic variate method let us consider the 

simplified problem of estimating the value 0 of the scalar integral 

f f(x) p(x) dx 	 (3.45) 
as 

N 
11-1 	f(x )• (3. 46 ) 

The random sample (xli  is drawn from p(x), e.g. a scalar normal P.D.F. 

In fig. 3.1 we plot a few variates f(x.) as generated by a crude Monte 

Carlo procedure and the resulting sampling P.D.F. of 8. 

4 roc ) 

Fig. 3.1  Sampling distribution of the crude estimate 0 based on 

eqn. (3.46). 
N 71 

In fig. 3.2 we plot the sampling P.D.F. of 0 = N-1  using the 

antithetic variates g 
Jr

defined by 

Ej 	2 	3 	j = 	[ f(xt) 	f(x7) 
	

j = 1,2kA40,114 
	 (3.47) 
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x 	x. 

FiR. 3.2  Sampling distribution of thep(  estimate e using antithetic 
variates g as defined by eqn4(3.47). 

The dispersion of the sampling P.D.F. p(e) of fig. 3.2 is much smaller 

than that of fig. 3.1 because the antithetic variates defined by eqn. 

(3.47), mutually compensate each others fluctuations around the mean 

mx of p(x). 

3.3.2 A linear system with additive Gaussian noise  

A useful property of a Monte Carlo method is to have zero sampl- 

ing variance in those cases where analytic methods yield accurate results. 

Such a situation arises for linear systems of the form of eqn.(3.18). 

We shall prove the following result: 

The antithetic variate predictor of eqn.(3.41) yields an 

estimate Hit  of the mean 	with zero sampling variance 

when applied to a linear Gaussian system (3.18). 

For the proof of this result let us consider one antithetic pair 



92. 

(x s 	1)-  • Applied to eqn.(3.18) we find 1434 	j • 

4- h-1 	+ W 41  
A (x )- + 	

7 
A (w. ).1  • (xk) 

..
2.-J j  = 	i - j 	r -1 j . i r=itl 

Using eqn.(3.39) and (3.40) to substitute for (x1)j  and k-1); 

in terms of (x i)j  and (w k-1 )3 yields for eqn.(3.41) 
k-1 

i=1 
(3.48) 

4k (3.49) 

This is an exact result and the sampling error, independent of the 

sample size N, is always equal to zero. 

Of course, the importance of this result lies not in the fact that 

it provides a solution for the linear Gaussian system. Indeed, an 

analytic recursive solution for the mean ask  has been directly derived 

in eqn.(3.20). But due to our result it is plausible to expect a large 

variance reduction compared with the crude Monte Carlo predictor for a 

nearly linear system. 

It follows from the proof of our result that the antithetic variate 

method applied to a linear Gaussian system does not give a zero sampling 

variance for the estimates of the second order moments and hence for the 

estimates of the covariance matrix Ek  

3.3.3 The antithetic variate method using several estimators  

The symmetry between the two estimators 	and akin eqn.(3.42) 

used to compute mk with eqn.(3.41), suggests the extension to use 2p 

estimators k i p 	u, 	 u and to form a set of p estimators „ 
-561P 	 -11-40 
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such that 

Efksp] = 	for p=1,2,.. 	(3.50) 

Where F: is a suitable matrix with known elements, see eqn4.(3.59). 

This problem was originally posed by HamMersley and Morton(47) 

for the evaluation of integrals by:drawing - random samples from the 

uniform P.D.F. It is the object of this section to extend their 

solution to the case of a normal, nvariate.P.D.F. 

The symmetry and unimodality conditions are suliicjeot to. ensure 

the existence of a pair of antithetic variates, arbitrarily denoted 

by t;, belonging to p(E), such that 

p( +) = p(E) 
	 (3.51) 

Hence, for p(E) being a univariate normal P.D.F. there exists only one 

antithetic variateCi" for a given g's  which satisfies eqn.(3.51). 
In order to simplify our explanations we shall  start with a 

bivariate normal P.D.F. p(wk) for the plant noise lek  and show how ... 
negatively correlated samples can be found. From there it will be 

possible to derive the results pertinent to the n-variate P.D.F. As 

pointed out by Tukey(49) the final result is obtained by linear re-

gression. 

Let us now start with the discussion of antithetic variates in 

connection with the bivariate normal. P.D.F. 	In fig. 3.3 we 
plot an elliptic contour of p(k) = const. 

Let us assume the j:th realization of the sampling procedure 
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Fig. 3.3 Generation of antithetic variates for a given kwii! 	• 

from P(1412 yields (14)isi. By means of eqn.(3.40) we determine 

-i:)j$1- 
. These two variates are symmetric to each other w.r.t. the 

origin. Symmetric w.r.t. the main axis of the ellipse in fig. 3.3 we 

find (wkj ff,2* Under the assumption that the elements along the main 

diagonal of the covariance matrix E are equal the main axis of 
vis 

the ellipse, given by p(wk) = constant, coincides with the 4e-line. 

Thus, the components of (1.61c)6,2 are obtainable from (wk)j~1 by 

permuting the components of (w4 as follows 

(wk (1»+ 	= (wit(2))3s1 

(wk (2))+ 	= (wk(1))+it1 • „2 

(3.52) 

As usual the arguments in brackets denote the coordinates of wk. 

Finally, (wk);,2 is found via eqn.(3•40) from (lEk);s2. Denoting the 

correlation between wk(l) and wk(2) as 1)12 we find the following 



for r=122 	(3.53) 

(3.5k) 
Pi 2 

"Pt2 

cor((w-r, (wkr  ) -) = - 

cor((w.qc1  )4.°  (w )2
) 
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correlation matrices for the above defined variates: 

The comparison between eqns.(3.53) and (3.54) shows the strict 

functional interdependence between the various (Id
k  r 
	p=1,2. The 

- 
derivation of additional variates with eqn.(3.52) effectively corres-

ponds to increasing the random sample. It is therefore plausible to 

expect that the generalized antithetic variate method will lead to at 

least the same precision in the final estimate as if the sample size of 

the antithetic variate method, introduced in section 3.3.1 were in-

creased to the equivalent size by conventional random number generation. 

We make the conjecture that the negative correlation between 

the variates leads to a sampling variance reduction. We have not 

succeeded in proving or disproving this conjecture because in the 

prediction problem we have to deal with the variates (E6):
,P 

 which are 
J 

arbitrary nonlinear functions of (x
1 
 1 and (Wk-1)-  . However, we 
LP 	/P 

have already shown in section 3.3.2 that in the linear case the 

wk-1'; dependence between the variates (x1); and ( 	leads to a zero 

sampling variance predictor. This result still holds if we use the 
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- generalized random sample {x
1 
 * k -1 j$P } 	p p=1*2 because two anti- 

thetic variates at a time compensate each others random error exactly. 

We now proceed with the extension to the n-variate P.D.F. 

Betpining the above mentioned assumption for c we find n1 variates 
k 

by permuting the components of the original (wk )Ll. Each of these 

ni variates has an antithetic variate obtainable from eqn.(3.40). 

With a similar procedure based on permuting the components of the 

, 1 j random vector kx 0- *1 which is obtained by sampling from p(x1) it is - 

possible to determine ni variates*  and nl additional variates are 

subsequently obtained from eqn.(3.39). 

The 2n1 random samples 	dap  , pre1,21...n1*  each of size 

N, are obtained by solving eqn.(3.1) anUltimes. They are then used 

to form the following set of ni estimates k,p, (p=1 22,...n1), of 

N 

Ilk$P 	r
1  
	i(EldiaP 	(Ik)i$P 

N 
E (E )

i$P 
 for p (3.55) 

where we define the variate (.4)lip  by 

(
k

). 
- JsP 

A 2 	[.(c).4.i (x kria • (3.56) 

We now define the (n-n1)-dimensional vector kby 

AT A  
Ek 

F,T ako  AT 
• •• 8konl (3.57) 

whose elements are given by eqn.(3 •55). Because all ni estimators 
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(3.55) are unbiased we have 

E 	= F 1:1/2s  

where F is an (nn!,n)-matrix of the following structure 

F1 

F2 
F = 

FP 

• 
F
ni 

(3.58) 

(3.59) 

Each matrix F p=1,2,...,a, is an (n,n)-dimensional identity matrix. 

Finally, the minimum variance unbiased linear estimate Ek  of Hic  

is found from eqn.(2.45) to be given by 

FP  Vk-1  T -1 - 
F  (3.60) 

Since the sampling covariance matrix Vic  = var(ik) is unknown it has to 

be replaced by its estimate Vk. The matrix Vk  can be partitioned into 

(n,n)-dimensional submatrices denoted by Vktpq  (p4=1,2,...,221). The 

estimate V 	is computed by kspg 

=N
V ( k Jo 	E( 	) 	mkpc, k0pq 	) 	p 	-k jog (3.61) 

where (E k3 ).,p is given by eqn.(3.56) and n- p  is given by eqn.(3.55). - 	m o  

The substitution of Vk  for V introduces little bias if any and, 

provided Vk  is a good approximation to Vic, eqn.(3.60) yields an almost 

minimum variance estimator. 

The sampling covariance matrix of Hk, var( is given by 



k 
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(3.62) var(k) 	(FT V-1  Frei  

where the matrix F is defined by eqn.(3.59). If we set pals  then 

all these results reduce to the case of two antithetic variates as 

discussed in section 3.3.1. 

3.4 	Nonlinear predictors using the control variate method  

The fundamental concepts of the control variate method have been 

discussed in section 2.4.1. They will now be applied to the state 

variable prediction problem. In doing this we are required to solve 

the following two problems: 

(1) find a linear model for the given nonlinear transformation 

(3.1) such that conditions (C1) and (C2) of section 2.4.1 

are satisfied; 

(2) use this model in a modified sampling procedure in order to 

improve the accuracy of the crude Monte Carlo estimator. 

The new feature of the solutions presented is that a combination 

of analytic and statistical methods yields a predictor whose accuracy 

is determined by the sampling error. Unlike an entirely analytic 

approximation with its inherent approximation error the sampling error 

depends on the sample size of the Monte Carlo experiment and can some-

times be made smaller than the error belonging to the analytic solution. 

We shAll  discuss several methods to establish a control variate 
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model. First, in section 3.4.1 a statistical linearization 

procedure is used to derive an analytic approximation similar to 

that one which we could derive from eqn.(3.23). In section 3.4.2 

the linear regression technique is used to find a linear weighting 

sequence model. A two-stage control variate method using a gradient 

technique is contained in sections 3.4.3 and 3.4.4. 

3.4.1 Statistical linearization  

The method of statistical linearization to deal with nonlinear 

stochastic processes is similar to the describing function technique 

used for the analysis of deterministic nonlinear systems. 

Pervozvanskii(63) applies this method to nonlinear transformations 

of stochastic processes with stationary and non-stationary states. 

The underlying idea of this method is to assume that it is necessary 

to preserve only that term which is proportional to the covariance matrix 

of the input signal w in the expression for the covariance matrix 
wk 	k 

Z k  of the output signal 4c. This assumption considerably simplifies 

the analytic part and involves only the mean and the covariance matrix. 

In the present context statistical linearization represents the 

first step toward a Monte Carlo solution. 	Indeed, the linearization 

procedure yields a model which makes an analytic approximation to the 

nonlinear prediction problem convenient. However, for our purposes 

this model only serves as a reference to the original nonlinear system 

and is used in the control variate method to improve the crude Monte 
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Carlo estimator of section 3.2.2 and possibly, as well, the analytic 

approximation based on statistical linearization alone. 

Let us consider a nonlinear stochastic process of the form 

ak+i = 	kJ Mk 	 (3.63) 

The notation is the same as in eqn.(3.1) and we assume that p(xl) and 

p(mic) are specified by eqn.(3.37) and (3.38). This implies that the 

P.D.F. pa(i) is Gaussian provided ic  denotes the state of a linear 

model with the same initial condition P.D.F. p(x1) and noise P.D.F. 

p(Lik) as is used in eqn.(3.63). Let us specify this new P.D.F. pa( Z) 

as 

PA) = n(; k$ Fk). 	(3.64) 

The problems to be solved are: 

(1) to determine the parameters of the linear model whose 

states are 4; 

(2) to find the mean mk  and the covariance matrix Pk  of eqn.(3.64) 

in terms of the model parameters. 

A linear model of eqn.(3.63) is obtained by expanding the non-

linear function f in a Taylor series around the mean m: 

1(k, k) = 	+ Bk(k - 	+ 	 (3.65) 

Where E denotes the collection of error terms. We shall follow 

Smahara's procedure(16) and determine 4k  and Bk  in such a way that 

the expectation of the norm of ek, defined by 

E
P 
 [ IIE 
	

E [ ET  E 
a 	pa •.* 

in Er [11 g4 , k)-4 -Bk(41k)11)  (3.66) 
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is minimal w.r.t. ak  and Bk. The expectation E 	.1 is defined 
Pa 

w.r.t. pa(..) of eqn.(3.64). Hence, the necessary and sufficient 

conditions to minimize eqn.(3.66) are directly obtainable as 

= Epa 	k)) 	(3.67) 

Bk 	Hp  [(f(4, k) - k)(k*c  - 5k)T1 Pk- 1 	(3.68) a   

where 

Pk = pa [ 	- k)(kst 
	 (3.69) 

is the covariance matrix of pa(ek) as mentioned before. It is worth- 

while pointing out that both aft  and Bk  depend on it, the mean 	and 

the covariance matrix Pk. 

It follows from the Gaussian property of pa( s) that the elements 

of Bk  are obtained as 

Bk  = 	 (3.70) 

Indeed, using eqn.(3.64) in eqn.(3.67) yields 

= 	irf(x! k) 	 exp{- 	d a 	 V(27t)n 'Pk' 	2 t-ij4  

f 1:(4*„ k)( 4'c  QT Pc1pa(4*c) 

= Bk  

Thus, a linear model is obtained in the form 

= Bk(‘ 	ek • 
	(3.72) 

Recalling the analytic solution (3.20) it follows from eqn.(3.72) that 

aaiL  

(3.71) 
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the mean 	and covariance matrix 	are given by 

40'1 

P 	=.pa 	E w k+ 1 	k 	• 
( 3 . 73 ) 

These recursive equations start at time k=1 with 

= 132 -1 -x 

(3.74) 
P = EX1   

that is, pa(4 = p(E1). 

.Having completed the analytic approximation we now derive a Monte 

Carlo predictor for the mean 4k  using control variates. 	To this 

end we break the integral in eqn.(3.27) into two parts such that 

14c
c E[x ] =f'-`k P(k) 	f Pa(4) ci-4 k • 

	(3.75) 
* 	1 ;n: 

where of course Ek  fx. p -Is -al* 
 
/ 

The first two integrals are solved by crude Monte Carlo. Hence the 

new estimator for 14k  takes the form 

ik  = 14'1 [(2ck) j 	(Lci:)j ] (3.76) 

where (25k)j  denotes the state ask  obtained by simulation of eqn.(3.63); 

(2si)j  is drawn from p(E1), k -1)j  is drawn from p(wk) and (lr)j  is 

obtained as the solution of eqn.(3.63). In order to obtain the re-

quired positive correlation between (ask)j  and (x j  „). the same random 

k-1 sample lal, IL 1jj  of size N is used to generate 141j  as the N 

solutions of the linear stochastic difference eqn.(3.72). This is 

equivalent to drawing (as)j  from pa(:). 
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Equation (3.76) shows that (1)j  acts as a control variate of 

(4k)1. A reduced sampling covariance matrix var(k) is obtained 

provided that the linear model (3.72) giving rise to the control 

variate is a close approximation to the original nonlinear system and 

absorbs most of the variations in the sampling procedure. This, , 

however, is ensured by the more elaborate statistical linearization 

procedure of eqns.(3.67) and (3.68) rather than, for example linear-

ization along a reference trajectory obtained by solving eqn.(3.63) with 

wk  = 0, for all k. - 

The sampling covariance matrix of the new predictor (3.76) is given 

by 

var(k) = N-1  E [ (lk 	Ek 14 )T 
	

(3.77) 
where E k  is defined by 

(3.78) 
As Ek  is unknown var(ik) has to be estimated by 

var(k) = N-2 	((tk)s  - il)((Ek)j  - ik)T. 	(3.79) 

In order to elaborate on the accuracy improvement on the crude 

Monte Carlo predictor (3.30) let us assume that all quantities in 

eqns0(3.77) and (3.78) are scalars and furthermore let us rewrite eqn. 

(3.78) with a scaling factor X 4  1 5Ck(Xk  as 

Ek 	xk mk • 
	 (3.80) 

We make the assumption that X is constant but in actual practice it 

depends on k and xk. Using eqn.(3.80) in (3.77) yields 
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var(iik) = N 1  var( k) 

N 1  {E {Oak  + mk)2) - (E [Ixk  + mk) )2  ) 	(3.81) 

-1 2  N X var(xk). 

Using eqn.(3.35), the variance reduction 71 v, see eqn.(2.71)0  from 

crude Monte Carlo to the control variate method presented is 

v = 1/7t2 . 	 (3.82) 

Fig. 3.4 exhibits the quadratic nature of -q v as a function of X. 

liv 
5. 

4. 

3. 

2. 

1. 

.5 
	1. 	2. 	3. 

Fig. 3.4  Variance reduction 11 v  for the control variate method. 

The case X=1 corresponds to (9:)s=0, i.e. crude Monte Carlo. On 

the other hands  1=0 implies (Ii)s  5  (xk)s  which corresponds to an 

estimator with zero sampling variance. But for X > 1 the control 

variate method does not yield any variance reduction. 

Next, we consider the matrix Mk  of second order moments which is 

defined is eqn.(3.28). Again we break the integral into two parts and 
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obtain the following estimator for Mk 

= 	[(k)i  (4c)1 - (k*)i(k*  )P + 

j 
(3.83) 

(2) The matrix 9 	of second order moments defined for the linear model 

(3.72) is found from eqn.(3.73) to be 

(2) r *T 	* 	D  ek jlek PEL%ki`A,c  k 	k 

Finally, an estimate 1:k of the population covariance matrix 

Ek A var(k) is obtained from eqn.(3.76) and (3.83) by 

k = 	 Ilk • 

(3.84) 

(3.85) 

As already mentioned in section 3.3.2 a useful requirement for 

a Monte Carlo procedure is that it gives zero sampling variance when 

applied to a linear Gaussian system. We have the following result: 

For a linear Gaussian system of the form (3.18) the control 

variate estimator (3.76) for the mean 	and (3.83) for the 

second order moment Mk  has samplirig variances equal to zero. 

To prove this result we first show that the statistical linearization 

procedure of eqns.(3.67) and (3.68) yields a model (3.72) which is 

identical to the original system (3.18). Indeed, it follows from eqn. 

(3.67) that mk  = AkEk  and using eqn.(3.70) we have Bk  = Ak. Thus, 

eqn.(3.72) becomes 

+1 = 	al: .11k 	 (3.86) 

which is identical to eqn.(3.18). This, however, implies p(4k)a pa(2) 

and therefore (?..cli )i  E (zi )j  for any j provided we use the same random 
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sequence (x1  w 1)j  both in eqn.(3.18) and in (3.86). In fig.3.4 

this corresponds to the case X = O. Thus, there is no randomness in 

the estimators (3.76) and (3.83) and the proof of the above result 

is complete. 

It is interesting to compare this result with that obtained in 

section 3.3.2. The control variate method yields zero sampling 

variance for both the first and second order moment estimates when 

applied to a linear system with Gaussian noise. By contrast, the 

antithetic variate method has this property only for the first order 

moment. While this comparison does not indicate which method is 

superior in a particular nonlinear system for predicting the mean 

it shows that the control variate method is to be preferred for 

estimating the second order moment Mk. 

A final remark is concerned with the evaluation of eqns.(3.67) 

and (3.68). On the assumption that f4k, k) can be expressed as a 

polynomial in 31k  (possibly with time-varying coefficients) the right 

hand side of eqns.(3.67) and (3.68) can be evaluated analytically. For 

higher order terms, Price's theorem, see Papoulis(35) page 226, is 

helpful to compute the r:th joint moment. For arbitrary functions 

f(Ek,k) the integration can always be performed by Monte Carlo techni-

ques with a random sample {34}j  drawn from pa(4) if the dimensionality 

of 	excludes standard numerical integration routines. 
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3.4.2 The control variate method ueng linear regression  

Statistical linearization is by no means the only way to establish 

a linear model. In this section we shall  be concerned with the linear 

regression technique(57)  in order to find a control variate model. We 

confine ourselves to a scalar stochastic process of the form 

xkl.1 = f(xk' wk," 
	 (3.87) 

It exhibits all the features we are interested in without undue 

ramifications appropriate in the multivariate case. 

No explicit use so far has been made of the specific property of 

Monte Carlo methods that we know the random sample {xis  wk-1}1  used 

to simulate a process of the form of eqn.(3.87). Thuss  an obvious 

proposition is to approximate xk  by x4k1  which itself is obtained from 

a linear scalar weighting sequence of the form 
k-1 

,* 	
wi °lc xl 	(3088) 

Combining the parameters mi  in the vector a2ks  defined by 

%T,c  1.1  [ a1, aizs  • • • sak 	, 	 (3.89) 

and the independent variates w
k-1  and x1 in the vector go defined by 

T 	r 
1  WI w2,...,1-1 ,xii• 

'eqn.(3.88) can be written as 

E IZ 	= 	Etk- 

(3.90) 

(3.91) 

It is desired to estimate the vector elc  such that the difference 

between the system statexk  and the model state xk  is small. To this 

end we have to simulate eqn.(3.87) with a random sample {22k}i  of size Ni. 
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The components of the random vector (cI)i  are defined by eqn.(3.90): 

(wi)j  is drawn from p(ori), (i=1,2,..4k-1), and (xl)i  is drawn from 

p(x1 ). Then {24c}i  is stored in the (N1,k)-dimensional matrix Wk, 

defined by 

W
k 

A (3.92) 

   

The resulting N1  solutions of eqn.(3.87) are stored in the N1  

dimensional random vector ticT  A [(2id1  ,...(x,)m  ]. Since the linear 
" '1 

model (3.91) holds for any random vector (.4c)3  we have 

= Wk-k 
	 (3.93 

where ricT  A [(x.]:)1 	. The least squares linear unbiased 

estimate of ek  is defined as the vector il:  which minimizes the quadratic 

risk function E(k) w.r.t. 20 14(9k) is defined by 

R(k) 	Wick) 	Wk). 
	(3.94) 

Differentiating eqn.(3.94) w.r.t. 2k  and equating the result to zero 

yields 

c 	(k= 	wiTc %.• 
	(3.95) 

For (Wk Wk) to be nonsingular it is necessary to have N1 	k. 

Eaturning to the control variate method we replace ek  in eqn.(3.91) 
by ado  of eqn*(3.95). That is, the control variate model takes the form 

oT 
k • 
	 (3.96) 
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Referring to eqn.(3.75) the estimator for the sample mean ilk  is now 

defined by 
. 	-1 

= N2 

where mx  denotes the mean of p(x1). The Monte Carlo procedure to 

evaluate eqn.(3.97) is based on the random sample 121, wk-1 of size 

N2. 	Solving eqns.(3.87) and (3.96) with the j:th realization of this 

random sample yields (xk)j  and 	j respectively. The last term in 

eqn.(3.97) is given by the analytic evaluation of the mean E[x11]= a: mx  

based on eqn.(3.96). 

The sampling variance of 	is directly obtainable from eqn.(3.97): 

var(k) = N.2.1  [ var(xk) var(xk) - 2 cov(xe  x;) I 	(3.98) 

where in actual practice all terms on the R.H.S. have to be replaced by 

their estimates. 

Referring to eqn.(3.83), the second order moment Mk  is estimated 

by 
k-1 o--- 	 . 65,1- 	click x  mx)

4. 
 E [ Ewi]. (3.99) 

The meaning of (xk)j  and (xlidi  is explained in the context of eqn.(3.97). 

The last two terms in eqn.(3.99) represent the analytic solution for 

the second order moment based on the control variate model (3.96). 

The parameters mx, Ex  and Ewi, (i=1,2,...,k-1) are given by p(x1) and 

p(wi). 

In the following section we shall develop a method similar to the 

one just presented. Indeed, at first sight the difference between the 

[(xk )j  - 	Ens  (3.97) 
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two approaches may seem rather superficial. There is, however, a 

fundamental difference in estimating e 
0
.  

3.4.3 A two-stage control variate predictor using a gradient  
technique 

The concept of a multi-stage control variate method has been 

introduced in section 2.4. The object of this section is to derive 

a predictor for the mean pk using a two-stage control variate method* 

For the sake of clarity we restrict ourselves again to the scalar 

nonlinear system (3.87). The extension to the multidimensional case 

is contained in the section 3.4.4. 

The first stage of the control variate estimator is concerned 

with the determination of the parameter ek  in the linear weighting 

sequence model (3.91) in order to make the model state xKk  a close 

approximation to the nonlinear system state xic. The random vector 

Lok  is again defined by eqn.(3.90). 

The assumptions 

(1) xi is normally distributed and uncorrelated with wk; 

(2) wk  is a Gaussian white noise sequence imply that the P.D.F. 

p(k), defined by 

p(k) g 	p(wi) p(x1), 
i=1 	

(3.100) 

is a k-variate normal F.D.F. 

p(4k) = 44c ;a, E co) . 	 (3.101) 



The mean as and the covariance matrix 	are given by 

a 	:2  [ Op Os •• • 	00  Mx 3 

(3.102) 
• 

• 

E 
03 

Ewk 
0 

where mx, Ex  and Z, 	are scp1A-ress  see eqns.(3.37) and (3.38). 

The parameter k  is said to be optimm1s  denoted by sks  if the 

variance of the error ele  defined as the difference between system and 

model states  i.e. 

ek 	xk 	x;sc  (3.103) 

is mi  Thus, the functional to be minimized is 

y(sk) = var(ek) = var(sk) + var(x;) - 2 cov(xe  x:). 	(3.104) 

Since var(x;) is quadratic and cav(xks  x;) linear in k  F(sk) is a 

quadratic form in ask. Therefore the difference between 	and an 

arbitrary value gds  is given by 

0 

akak - 	
(3.105) 

ak 

where F
mk 

 is the gradient andak F 	is the matrix of second order 
ak 

derivatives of F(sk) w.r.t. sk. 

Using eqns.(3.91), (3.101) and (3.104) the gradient Fmk is given by 

• 
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q(11.0%P(Lckhik 2./ 12(13k)NJV(k)cillk 

-2 f xk  v, c  p(ck,k)cbck% + 2fxkp(xk)xk  f (k )4k 

= 2 E w 	- 2E [xk  ski + 2E[gic] E [xk] . 	(3.106) 

The matrix F
kak 

 is obtained by differentiating (3.106) w.r.t. sk: 
u  

= 2 	Z to  . 
akalk 	

(3.107) 

Since the P.D.F. p(xk) and p(xk, gk) are unknown in eqn.(3.106) the 

gradient F has to be found by Monte Carlo integration with a random 
"uk 

sample Isk)3  of size N1  . The estimate i'i,„ 
k 
is given by 

	

11" 	 1 N 
F 	= 2 E w k  — 2111A  El uxkws]+ 21. N-1  E (ck)3  (3.108) 
"ak 

where (xk)j  denotes the solution of eqn.(3.87) obtained with the j:th 

random sequence realization (CAL).* 
-K 3 

As mentioned in section 2.4 the Monte Carlo integration of those 

terms in eqn.(3.108) which are predominantly odd in 	may be improved 

by means of the antithetic variate method. Using a random sample of 

size NI  we have 

N, 
=2 Sto is  — 1 1 	 E I R )++( [ (X.k) (k) +(lck)j(k)31+ a 	xk  	xk  

—ak 

(3.109) 

where ((sk)3 	= - ((9oic)3  - a) and (xk)i denotes the j:th solution 

of eqn.(3.87) using (ca )j. 

As the gradient F has to be replaced by"ak 
	

eqn.(3.105) has 
"ak  

3 

3 
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to be replaced by a stochastic approximation procedure of the form 

.61c4°4-/ 	ik 	

-1 
akak 

iak  p 
	(3.110) 

Here k is the time argument as in eqn.(3.87) and p denotes the itera-

tion number of the algorithm. For recursion (3.110) to converge we 

compute the auxiliary constant 14_ $130  defined by 

k$13  

p 	 2 covariance matrix of the combined estimate c ep decreases with in- 
-m 

creasing p. Feasible weighting procedures to compute ikop  from 

cksi  • ck#2,...$  Eico  are discussed in section 2.4.4. The updating 

procedure (3.110) is replaced by 

r-1  
9k0+1 = -akak  =kop (3.112) 

Because the sequence c„, $ sc g„, ..0 converges with probability one to 

Sic  	F 	g, and F-1 is a deterministic multiplier the sequence 
akak 	akak 

gico, s $2,... based on eqn.(3.112) converges with probability one to 

The comparison of eqns.(3.95) and (3.112) shows the main differ-

ence between our adaptive control variate method using a gradient 

technique and the linear regression method: the deterministic matrix 

F kak is computed analytically before the sampling procedure for 
a   
estimating 9 ok  starts whereas Wk of eqn.(3.95) is a matrix of random 

samples. 

After a sufficient number of iterations of eqn.(3.112 we replace 

4 	 , 	- F 	. 	(3.111) akak 
-K$13 	-akop 

Although F 	is estimated with a sample of fixed size N 1  the sampling --ak$  
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k  in the control variate model (3.91) by sksp. Drawing a random 
sample 	Wic-11 j  of size N2  the mean 	of p(xk) is estimated, as 

in section 3.4.2, by 
-1 N2 

= N2 	[(xk)j (x:)j] 	Cpp a . 	(3.113) 

The mennitIg of (xk)j  and (ri:)j  is explained in the context of eqn. 

(3.97) and the vector a is defined by eqn.(3.102). 

The computing routine of the adaptive control variate method is 

summarized as follows: 

At p=1, set the parameter k  to an arbitrary value aka  and 

compute the matrix F 1  with eqns.(3.102) and (3.107). 
akslk 

(2) Draw a random sample faijj  of fixed size N1  and estimate the 

gradient L 	with eqns.(3.108) or (3.109). 
- ,p 

(3) Estimate the vector ksp  with eqn.(3.111), determine the 

combined estimate 2ksp  with a suitable weighting sequence and 

compute skspo  with eqn.(3.112). 

(4) Set p=p+ . If the sampling error of sksp  is sufficiently 

small, go to (5); otherwise return to (2). 

(5) Draw a random sample {sk}j  of size N2  and estimate the mean pk  

with eqn.(3.113). The sampling variance of pk  is given by 

eqn.(3.98). 

( ) 
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3.4.4 Extension to the n-dimensional case  

The two-stage control variate method introduced in the previous 

section is now extended to the n-dimensional case. Let 41, denote 

the mean of p(31k) where .1k  evolves according to the stochastic differ-

ence equation (3.1). It is desired to develop the two-stage control 

variate method to estimate the mean mk. For the sake of simplicity 

we assume zit  and mk  to be of the same dimension. 

In the linear control variate model of the form 

	

* 
	k-1 	

+ Ak 	 (3.u4) 

it is desired to determine the (nk,n)-dimensional matrix Ole  defined 

by a A 1,such that for a fixed time k the model 

state Lck  is a close approximation to 2sk, the state of the nonlinear 

process (3.1). Under the assumption that 

(1) x1  is normally distributed (see eqn.(3,37)) and is un-

correlated with w 

(2) w
k 

is a Gaussian white noise sequence (see eqn.(3.38)), 

T T 

	

the vector 4 	T E
2
T 
 ,...,wk_11E1] possesses a normal (nk)- 

variate P.D.F.p(k) given by 

p(k) = n(9.30 a, 	(3.115) 

where the mean a is given by 

(3.116) 



Wk-1 
0 	Ex  

and the covariance matrix I
w 

is given by 

W 

L16. 

• 	 (3.117) Et° 

The linear model (3.114) is a close approximation to the nonlinear 

process (3.1) if some measure of the covariance matrix var(tk  )4  var(ackiE) 

is minimized w.r.t. ak. With eqn.(3.114) rewritten as 

al*c = a: glc 	 (3.118) 

the covariance matrix var(tk) is given by 

T T var(k) = E[a k 	ak]- 	E 4Tc ak] 

-2E[k ak] 2EW E[ ak]ak] 

+ terms independent of ae 	(3.119) 

Let us define the optimal value of ak, 	 k denoted by a°'  such that 
Gt° 

minimizes the trace of var(tk). The i:th column of the matrix alit  is 

denoted by sit. Then, the functional F(a k) to be minimized can be 

written as 

F(ak)= ± E[ (Q- c)Tt At E[(4-)T 	[4T, 

-2.E[xk(i) T i - 2E [xic(±)] E 	(3.120) 

11 
=Fi  (k). 
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As the n terms in eqn.(3.120)are uncoupled the optimal values of 

ek, (i=1,2,...,n), denoted by e:i, are given by i 

arc 
 oi 	.1 

=aft 	F ii Fi • 
akak ak 

Using eqn.(3.120) the gradients F i  are given by 

ak 

F i • 2  Xe) 	2E [xk(i) 	+ 2Eixk(i)) Ek) 	(3.122) 

for i=1,2,...,n. The matrices F .

li 

 of second order derivatives are 

akak given by 

ak 

= 	r , for i=1„2„...A. 

iak 
i (3.123) 

where F.:(0  is given by eqn.(3.117). 

As the evaluation of F i  involves the unknown P.D.F. p(k) and 

E) we have to replacea ek qu.(3.121) by the stochastic approxima- 

tion procedure 

	

F-1  I" 	(3.124) kop+i = k#P 	i — 
al& ak 

Here k denotes the time argument as in. eqn.(3.1), p denotes the itera- 

tion number of the algorithm and i denotes the column of the matrix 

aik  (that is, the component of the vector Eic). 

In the p:th iteration the n gradients F i  are estimated by means 

of a random sample kicji  of fixed size N1  . 	The simOntion of 

eqn.(3.1) with (1)k)i  yields (4c)j. The crude estimator of the gradient, 

(3.121) 

P(k# 
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defined by 

=2F i  	coak, p  
akort 

[( (i)) 	j+ 2a N1 	(xk(i))j  , 

(5.125) 
may be improved by the antithetic variate estimator, defined by 

alto

') = 2 E uActp  - -1 
	

[(xk(i));(k); 	(xk(i)); (); I 

Ni + a 	E r(xkun; (xkum; 
j 

(3.126) 

if the terms to be estimated are predominantly odd in sic. As before 

we have ((k)3 - a)= - ((co); - a) and (xk(i))j  denotes the i:th com- 

ponent of the j:th solution (Eic)i  of eqn.(3.1) using (sg2)-j. 

In analogy to the scalar case we estimate the auxiliary vectors 

-'1* Eksp,(i=1,2,...0n), in each iteration p by 

.i 	el. 	". 

VIC 	aka 	

(3.127) gka = F  i i 9k,p - E i 	. 

•;:i 
The combined estimates Eicsp  are obtained by applying suitable weighting 

;,i, 
sequences to C p.1 ' kp 2P .0  " 1/4p• Since #1  s 1/42 ,... converge 
with probability one to Et 4 F iis: and F i i  are deterministic 

akak 	
ekak ...3- 1. multipliers the sequence of parameter estimateas k 	o , ak,2,.... , 

obtained from 

^i - 
1 F
kak * 

ksp+1 	i k p 
a  

(3.128) 

converge with probability one to koi  

After the completion of a sufficient number of iterations p the 
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Q . estimatesa% 
ni 
 form the matrix akip a close approximation to (Lk. -msp 

Using Ciklp  in eqn.(3.118) the control variate estimator for the mean 

gk  using a sample Igicls  of size N2  becomes 

_1  

gk = N2 , E
112 

i(k)i  - (4)J1+ 

where a is given by eqn.(3.116). The solutions of eqns.(3.1) and 

(3.118) based on (9)j  are denoted by (x)3  and (Ick)j  respectively. 

Using the abbreviation (
j$ 

defined by 

(E k)(k) j  - (4*)s  4- a k,p  a , 	(3.130) 

the sampling covariance matrix of the sample mean ks  var(Lk), is 

estimated by 

vi;r(li) = N:2  E2  [ ( g k) j 141%] [ ( g k)i- 	T. (3.131) 
j 

3.5 Numerical examples  

It is the object of this section to apply and compare several 

Monte Carlo methods to predict some parameters belonging to the P.D.F. 

p(Ek). This allows us to establish the efficiency gain of the proposed 

variance reduction techniques over crude Monte Carlo methods. Further-

more we show that sampling techniques may sometimes improve analytic 

approximations such as the statistical linearization procedure. To 

this end we consider a scalar example in section 3.5.1 and a three-

dimensional stochastic process in section 3.5.2. 

A 

A 

T 
LA-ksp a 	(3.129) 
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3.5.1 Example I  

Let us consider the following discrete-time system specified 

by the scalar difference equation 

'rk+i 
	rk  - 0.2 x3k  + wk 	(3.132) 

together with the initial condition P.D.F. p(x1) specified by 

p(x1) = n(x1; 1.0 , 	 (3.133) 

The noise sequence wk is assumed to possess the P.D.F. p(wk) given by 

p(wk) = n(wk; 0. 	5.10-2). 	(3.134) 

The simulation part of the Monte Carlo solution requires the 

generation of the random sample fx." w j of size N in order to 

obtain the sample {xk lj  for k =1,2,... 	In our example we choose 

N = 500. The reported results are ensemble values; that is, the 

basic experiment is repeated several times, usually ten times, and the 

results are averaged over all ensemble runs. Thus*  pk  denotes the 

ensemble average of ten estimates pk. Each pk  is obtained from the 

appropriate predictor; e.g. from eqn. (3.30) for the crude Monte 

Carlo method, from (3.41) for the antithetic variate method and from 

(3.76) for the control variate method. 

In order to estimate the sampling variance of pic  we may use 

either of the two alternatives: 

(1) we perform a statistical analysis of the ten estimates ilk. As 

the sample considered is small this analysis requires exact sampling 

theory in order to obtain menningful results; 

(2) we estimate the sampling variance var(k) with the equations 
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derived in this chapter for the different Monte Carlo methods: 

eqn.(3.35) for crude Monte Carlo, (3.43) for the antithetic variate 

method and (3.77) for the control variate methods. 

We adopt the second approach. In each Monte Carlo experiment 

we estimate vir(lk) with a sample of size N = 500. The ensemble 
A 

average of ten estimates is denoted by var(pk). 

Table 3.1 exhibits the trajectory prediction problem for the 

mean 	of the P.D.F. p(xk). The accuracy of the estimated mean ilk  

is given by the sampling variance var(k). We compare the following 

methods: 

Method A : :,rude Monte Carlo; see section 3.2.2 

Method B : antithetic variate method; see section 3.3.1 

Method C : control variate method using statistical linearization; 

see section 3.4.1 

Method D : control variate method with an arbitrary linear weighting 

model; that is al  in eqn.(3.88) are arbitrarily chosen 

and set equal to 0.4 for all i. 

The system (3.132) starts at time k=1 and the predicted trajectory 

extends to k=10. 

In order to compare these methods we show in table 3.2 the 

variance ratios Tiv  and efficiency gains 	of the improved sampling 

techniques compared with the crude Monte Carlo predictor of the mean 

Pk' The labour ratio TIL  is required to compute the efficiency gain 

11 	The three variance reduction techniques involve twice as many 

simulations as the crude Monte Carlo method. This would indicate 

1 L  = 0.5. However, as we mentioned in section 2.3 the generation 



Time Method A Method B Method C Method D 

k Ilk  Pk Pk 
4k  

var(k)  var(k)  var(k) var(k) 

1 1.00037 2.008.106 1.0 0. 1.0 0. 1.00022 7.280.107  

2 0.80216 1.002.10-4  0.79937 6.403.10 9  0.79937 6.381.10'9  0.80096 30601.10-5  

3 0.67844 1.372.104  0.67344 2.241.106  0.67336 2.358.10-6  0.67585 4.203.10-5  

.4 0.58903 1.70.104  0.58555 4.548.10-6  0.58557 4.465.10-6  0.58646 4.9444,10-5  

5  0.52576 2.036.10-4  0.51667 7.315.106  0.51659 7.934.10-6  0.52055 5.685.10-5  

6 0.46640 2.371.10-4  0.45962 1.045.10-5  0.46019 1.153.10-5  0.46158 6.642.105  

7 0.41602 2.767.104  0.41044 1.338.105  0.41139 1.498.105  0.41136 7.865.101 

8 0.37223 3.032.10-4  0.36674 1.599.10 5̀  0.36813 1.844.10-5  0.36745 8.535.10-5  

9 0.33350 3.246.10-4  0.32870 1.809.10-5  0.32978 2.152.10-5  0.32861 9.271.10-5  

10 0.30046 3.469.104  0.29530 1.937.10-5  0.29655 2.353.10-5  0.29528 1.000.10 

Table 3.1, Trajectory prediction of the mean µk  of p(xic) describing the 

state of system (3.132). 



123. 

of one random number is much more time consuming than additions 

and multiplications. Based on our computing experience with the 

present example we use 11,  = 0.8 for all variance reduction techni-

ques compared with the crude Monte Carlo method. 

Time Method B Method C Method D 

k 
11  v 1 1 v 1 -11v 1 

5 

10 

27.8 

17.8 

22.2 

14.8 

25.9 

14.8 

20.8 

11.9 

3.6 

3.4 

2.9 

2.7 

Table 3.2  Variance reductions 'q v  and efficiency gains 1 
A 

for predicting the mean pit  at time k=5 and k=10. 

This table 3.2 shows that an arbitrary weighting sequence model 

(method D) gives little improvement whereas the antithetic variate 

method B gives a slightly better estimator than the control variate 

method C using statistical linearization. The variance reduction 

factors and hence the efficiency gains decrease as we increase the 

length of the prediction interval. 

In fig. 3.5 we plot the ensemble values of the sampling errors, 
	 1/2 A A 

defined as [var(lic)] 	for the four listed Monte Carlo methods 

as function of the prediction time k. As expected, there is only a 

small difference between method B and method C. Method D decreases 

the sampling error compared with the crude Monte Carlo method only 

by a moderate amount. 



-2 
10 

-3 

-4 
10 10 6 2 
Fig. 3.5  Sampling errors [ var(µ k )] of predicted mean p. k  

vs. time k. 
1 	crude Monte Carlo method A 	- -0- - -o- - 
2 	antithetic variate method B 	- -9- - 
3 	control variate method C 	- 	- - 
Li 	control variate method D 	- 	-  
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A 

Table 3.3 exhibits the ensemble estimates Mk  of the second 

order moment Mk, defined by eqn.(3.28). The previously mentioned 

methods A, B and C are applied to find M. Method D is not in-

cluded because it gives unsatisfactory results. Indeed, the 

results of table 3.2 indicate that the use of an arbitrarily chosen 

control variate model does not necessarily improve the sampling accur-

acy. The estimated sampling variances of Mk, var(Mk), are only 

approximately valid and rely on N being large. 

In table 3.4 we summarize some variance reduction factors and 

efficiency gains for methods B and C compared with A in connection 

with the second order moment Mk. 

Time Method B Method C 

k 
71  V Ti 11  V 1 

5 

10 

4.6 

2.9 

3.7 

2.4 

18.7 

9,8 

15.0 

7.9 

Table 3.4  Variance reduction 1.7  and efficiency gains 71 for 

predicting the second order moment Mk  at k=5 and k=10. 

In agreement with our previous remark in section 3.4.1, the anti-

thetic variate method is not suitable for estimating the second order 

moments whereas the control variate method using statistical lineariza-

tion yields significantly improved estimates for both the mean Ilk  and 

the second order moment Mk  over the prediction interval considered. 



Time Method A. Method B Method C 

k Mk  Mk  
--x- 
Ilk v;r(k) var(M) vL.(k) 

1 1.00179 8.323.10 1.00103 1.323.10 1.00100 0. 	• 

2 0.69303 1.715.10-4  0.68857 9.558.10-6  0.68917 8.921.10-9  

3 0.52740 1.738.104  0.52087 1.889.10-5  0.52167 0 

4 0.43175 1.90.10-4  0.42784 3.473.10-5  0.42769 ::::::::: 

5 0.37749 1.936.10-4  0.36941 4.208.10-5  0.36685 8.034.10-5  

6 0.33659 2.018.10.4  ' 0.33120 5.081.10-5  0.32886 1.015.10-5 

7 0.31176 2.163.10-4  0.30701 6.373.10-5  0.30321 1.510.105  

8 0.29093 2.438.104  0.28743 7.295.105  0.28331 1.830.1e-5  

9 0.27363 2.539.10-4 	• 0.27158 7.767.1675  0.26921 2.167.10-5  

10 0.26344 2.665.104  0.26168 9.055.10-5 0.26063 2.409.105  

Table 3.3  Trajectory prediction of the second order moment Mk  of p(x1) 

describing the state of system (3.132). 
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To conclude the discussion of the trajectory prediction problem 

fig. 3.6 displays the variations with time of the ensemble estimates 

r ^ 	% 1/2 of the sampling errors of the second order moments$ ivar(VJ 	for 

methods A$  B and C. 

The control variate methods of sections 3.4.2 and 3 are particularly 

suitable for the state prediction problem. The control variate method 

using a linear weighting sequence model requires the estimation of 

the parameter vector k  in eqn.(3.91). This can be done by a linear 

regression technique as described in section 3.4.2. An initial sample 

of size N1  =200 is used to estimate i: with eqn.(3.95)0 This estimate 

is subsequently used in eqn.(3.97) to estimate Ilk  with a sample of size 

N2=500. Table 3.5 contains the ensemble averages of this procedure 

for the mean pt k̂ o  , predicted nine intervals ahead.. The notation  

indicates the ensemble averages over ten estimates . 

„,.--- 0.176 	0.263 	0.365 	0.436 	0.500 
k 0.613 	0.728 	0.838 	0.993 	0.296 

...... 
vio  = 0.29560 iar(µ10) 	= 2.321.10-5  il v  = 10.6 

Table 3.5  Control variate method for state variable prediction 

using a linear regression technique. 

The main advantage of the second order two-stage adaptive control 

variate method of section 3.4.3 has already been described as the fact 

that the matrixmks F-1 	defined by eqn.(3.107), can be evaluated before 
mk 



-2 
10 

-3 
10 

2 

time k 
10 

-4 
10 

n 	 2 
Fig. 3.6  Sampling errors [var(Mk)) 	of predicted second order 

moment Mk  vs. time k. 

crude Monte Carlo method A ----.--o-- 

2 antithetic variate method B 

3 	control variate method C 	--9- — 
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the sampling procedure of stage one starts. The stodhastic approx-

imation algorithm (3.110) requires p iterations before the parameter 

estimate a, can be assumed to be a good approximation to e:. 
• 

Table 3.6 shows the convergence of the first four components of the 

vector eta  for p=102,...,8. The time k is fixed as 1=10. In each 

iteration p we estimate the gradient F 	by means of eqn.(3.109) 

using a sample of size N1=50. Starting at p=1, the initial values 

of al, are chosen as %co  = 8.o and ekao  is computed with eqn.(3.112). 

Iterations 

P 
akip(1) ka(2) ak 117(3) aktp(4) 

1 8.0 8.0 8.o 8.o 

2 0.076 0.232 0.419 0.407 

3 0.119 0.203 0.350 0.409 

4 0.143 0.218 0.364 0.397 

5 0.139 0.225 0.346 0.426 

6 0.145 0.215 0.350 0.423 

7 0.140 0.218 0.355 0.424 

8 _ 0.143 0.221 0.365 0.427 

Table 3.6  Stochastic approximation of the parameter skip  • 

The results of table 3.6 indicate that after three iterations (p=4) 

a sufficiently accurate estimate p") a, 	of k  is obtained. 
-la 

In the second stage of the control variate method, the parameter 

estimate sk,4  is kept constant to estimate the mean sio. With a 
random sample of size N2=500 the evaluation of eqns.(3.113), (3.98) 
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and (2.71) yields the following ensemble averages for the mean 1110 

predicted nine intervals ahead: 

L10 = 0.29585 ; var(P10) = 2.377.10 	= 11.2 (30136) 

The comparison between the linear regression technique, see 

table 3.5, and the two-stage adaptive control variate method using a 

gradient technique shows that both methods yield nearly the same 

variance reduction 11 v. Compared with the previously discussed 

antithetic variate method A and the control variate method B using 

statistical linearization the present variance reduction 114  of eqn. 

(3.136) is lower than in table 3.2. This may be explained by the lack 
A 

of a zero sampltcg variance estimator for the mean plc  when either of 

the two methods discussed in sections 3.4.2 and 3 is applied to a 
linear Gaussian system. 

3.5.2 Example II  

Let us consider a three dimensional system. Using the notation 

of eqn.(3.63) we set 

xk(1) - 0.5 xk(2)xk(3) 

f(4c,k) = 	xk(2) + 0.3 xk(1) xk(3) 	(3.137) 

xk(3) - 001 xk(1) xk(2) 

The arguments in brackets on the R.H.S. denote the components of the 

vector Fie  The initial condition is assumed to be given as a constant 
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= [0.9 0.5 0.11 	(3.138) 

The covariance matrix E w of the zero mean additive noise vector 
k 

 

E wk 

0.05 

0.005 

0.0025 

0.005 

0.05 

0.005 

0.0025 
0.005 

0.05 

(3.139) 

     

r 	1 In order to generate the three dimensional random sample i k-1  13 

of size N with the specified covariance matrix E , see eqn.(3.139)*  
wk 

the transformation matrix A of eqn.(2.21) is computed via eqn.(2.23) 

to be 

A 

0.2236 0. 	0. 

0.0224 0.2225 0. 

0.0112 0.0213 0.2223 

(3.140) 

   

First*  let us consider the antithetic variate method as described 

in section 3.3. In order to compare it with the crude Monte Carlo 

method we perform the following experiment. A random sample fwk11
+ 

of size N is used to generate fkila: by simulating eqn.(3.63) and 

(3.137). In particular*  we are interested in predicting the mean Mk 

of the P.D.F. p(Ek) at times k=4 and k=6. In table 3.7 we compare the 

following methods: 

Method A : Crude Monte Carlo technique. The sample mean ik  is 

obtained from eqn.(3.30)*  its sampling variance is 

given by eqn.(3.35). Sample size N=1000 
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Method B Antithetic variate method using 2N variates; see 

section 3.3.1. The antithetic random sample lEkl; 0  

is obtained by simulating eqn.(3.63) with 

I 	see eqn.(3.40). The sample mean Eic  is 

obtained from eqn.(3.41); the sampling variance, 

var(ik) is obtained from eqn.(3.43). Sample size N=100. 

Method C : Generalized antithetic variate method; see section 3.3.3. 

Starting with a random sample 	 Jj {1,?-114-.$1  of size N=50 

five additional samples Ivi -1 14: 0  p=2$  ...$6 are 
3,13  

obtained by permuting the components of ()so  as 

indicated by eqn.(3452). For each sample tjc-114: 
3,1) 

an antithetic sample 
i 	

is obtained via eqn. 
ja 

(3.40). The sample mean k  is obtained from eqn.(3.60), 

the sampling variance, var(j) from eqn..(3. 62). 

The results exhibited in table 3.7 are again averages over ten ensemble 

values. 

The variance reduction il v  from method A to B can readily be 

computed from table 3.7 as the ratio of the two corresponding sampling 

variances. However$  in order to obtain the correct variance reduction 

of method C we have to bear in mind that the generalized antithetic 

variate method C starts with a basic sample size N=50. Since it 

involves the computation of five additional samples the corresponding 

total size is Nc=300. Thus, the ratio of the sampling variances of 

method A and C has to be multiplied by 1/3. For the labour ratio, we 

recall that for the antithetic variate methods the system (3.63) has 

to be simulated twice as many times as in the crude Monte Carlo method. 
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Time Method A Method B Method C 

k i ii(i) il(i) Pk(i) v.ir(li(i)) var(ilk(i)) var(li(i)) 

4 1 0.84953 1.689.10-3  0.84715 4.641.10-5  0.84919 1.446-103  

2 0.53618 1.585-10-3  0.54152 1.618.10-5  0.54058 4.563.106  

3 -0.03792 1.443.10-3  -0.03882 1.972.10-6  -0.03804 5.740.107  

6 1 0.84410 3.840.10-3  0.82062 5.449-10-4  0.83744 1.232.10.4  

2 0.45902 3.288.10-3  0.47083 1.818.10-4  0.49413 4.472.16.4  

3 -.0.12556 2.544.10-3  -0.12381 2.937.10-5  -0.12845 5.072-10-6  

Table 3.7 state prediction of the mean ak  using a crude Mete Carlo 

method A and two antithetic variate methods B and C. 

.411- However, as the antithetic samples VE Ijsp  P for p=1 or p= 

are generated by analytic methods it is realistic to work with a labour 

ratio Il i,  = 0.8. 

In table 3.8 we compare the variance ratios 11 v and efficiency 

gains 	of methods B and C over A. 

Next we apply the control variate method using statistical linear-

ization to solve the trajectory prediction problem. The mathematical 

relationships are derived in section 3.4.1. Due to the structure of f 

in eqn.(3.137) it is possible to compute the coefficients ak  and Bk  

of the linear model (3.72) analytically. They are given by eqn..  
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Time Components Method B Method C 

k i 11y II 11V 11 

4 1 36.4 29.1 39.0 31.2 

2 98.0 78.4 115.9 92.7 

3 730.2 586.1 837.1 669.2 

6 1 7.0 5.6 10.4 8.3 

2 18.1 14.5 24.5 19.6 

3 84.1 67.3 168.1 133.9 

Table 3.8 Variance ratios and efficiency gains of the 

antithetic variate methods. 

(3.67) as 

ak(1) = mk(1) - 0.5 [1(2,3) + mk(2) mk(3) 
ak(2) = ink(2) 0.3 [1(1,3) + mk(3) mk(1) 

	
(3.141) 

Ak(3) = mk(3). - 0.1 [1(1,2) + mk(1) mk(2) 

where mk  and Pk  are defined by eqns.(3.64) and (3.73). 

Using eqn.(3.70) the matrix 

1 .0 

0.3 mk(3) 

-0.1 mk(2) 

Bk  is obtainable 

-0.5 mk(3) 

1.0 

-0.1 mk(1)  

from eqn.(5.141) as 

-0.5 mk(2) 

0.3 9c(1) 

to 
(34142) 

The results shown in table 3.9 are also averages over ten ensemble 

values of Ilk  and v;r(ilk). Each experiment is based on a random sample 
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Time Compo- 

nents 
Crude Monte Carlo Method Control Variate Method 

Using Statainearization 
k i µ(i) var(k(i)) j(i) vLq(i)) 

2 1 0.87539 5.017 lo -5  0.87500 1.967 109  
2 0.52081 5.103 10-5  0.52699 3.092 16-10  

3 0.05275 4.831 165  0.05500 7.334 1.0711  

3 1 0.85927 1.037 164  0.85966 6.223 107  

2 0.53388 1.036 164  0.54152 2.321 10 7 

3 0.01093 9.594 105  0.00879 2.518 10-8  

4 1 0.84953 1.689 164  0.85274 4.243 10-6  

2 0.53618 1.585 104  0.54009 1.602 10-6 

3 -0.03792 1.443 10"4  -0.03751 1,888 107  

5 1 0.84847 2.594 164  0.850019 1.619 165  

2 0.51035 2.331 104  0,51804 6.634 l06  

3 -0008179 1,983 164  -0408241 8.249 10'7  

. 	6 1 0,84410 3.840 104  0.84452 4.772 10-5  
2 0.45902 3.288 104  0.47093 2.085 105  

3 -0.12556 2.544 104  -0.12308 2.971 lo-6 

7 1 0.82949 5.362 104  0.82853 8.325 10-5  
2 0438449 4.x54710-4  0.39627 5.561 165  

3 -0.15966 3.060 164  -0.15564 8.918 lo-6 

8 1 0.79250 7.282 104  0.79248 1.205 164  

2 0.28324 5.949 164  0.29452 1.201 104  

3 -0.18027 3.568 10-4  -0.17650 2.285 165  

9 1 0.73100 9.691 164  0.73319 1.692 10-4  
2 0.15309 7.600 104  0.17050 1.582 164  

3 -0.18509 4.144 10-4  0.18462 4.782 165  

10 1 0.64686 1.214 165  0.64842 2.255 164  

2 0.01645 9.485 164  0.03184 1.926 104  

3  -0.17527 4.816 164  -0.18129 8.27o 165  

Table 3.9  Trajectory prediction of the mean mk  of p(x) describing 

the state of system (3.137). 
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r k.-11 ve 	ij  of size N = 1000. 	k-11 The same random sample { w j is used 

for the crude Monte Carlo method (eqns.(3.30) and (3.35))and the 

control variate method (eqns.(3.76) and (3.77)). The mean mk  is 

predicted up to time k=10. 

The sampling variance ratios and the efficiency gains compared 

with the crude. Monte Carlo predictor are shown in table 3.10 for 

k=4 and k=6. Again, a labour ratio 11 1,  = 0.8 has been found adequate. 

Time Compo- 

nent 

Control variate method using 

statistical linearization 

k i 11 v 11 

4 1 39.8 31.8 

2 9901 79.4 

3 766.1 613.5 

6 1 8.1 605 

2 15.7 12.5 

3 85.7 68.5 

Table 3.10  Variance ratios 	and efficiency gains 1 of the 

control variate method for estimating the mean me  

It is interesting to compare these results with those of table 3.8. 

As in the scalar case there is little difference between the antithetic 

variate method and the control variate method but the generalized anti-

thetic variate method gives firn11  although consistently better estimates 

compared with the other two methods mentioned. 
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As the statistical linearization procedure provides an analytic 

approximation to the nonlinear prediction problem it is interesting 

to compare the approximation error Ek, whose ensemble estimate is 

defined by 

-k 
	

I  
	 (3.143) 

with the sampling error [v.Z:r(iik)] 112  of the Monte Carlo solutions. In.  

fig. 3.7 we plot the error ek(1) together with the sampling errors 

Evar(lik(1))] 1/2  of the crude estimator and the control variate method 

versus the time k. The sampling error of the control variate method 
••• 

is seen to be less than the approximation error estimate e
k(1).. But 

this of course is obtained only at the expense of generating the random 

sample of size N=1000 and simulating the nonlinear system together 

with the linear model. 

FSTIAlly, we implement the two-stage control variate method 

discussed in section 3.4.4. Because the initial condition xi  of the 

system considered is a constant the last term in eqn.(3.114) is absent. 

In the first stage, starting at p=10  we set all elements of the (3,3)-

dimensional matrices Ai  equal to 0.4. The gradients F i, (111,2,3), 

are estimated with eqn.(3.126) using a random sample ofak  fixed size 

N1=104" The auxiliary vectors asp  are estimated with eqn.(3.127) 
Ai 

and the combined estimates Ip p, 	are used to compute a. 	with eqn. -kc 

(3.128). After three iterations (p=4) we terminate the first stage 

and use ak,p in the control variate model (3.118). The second stage 

of the control variate method is concerned with estimating Lk  using 
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eqn.(3.129) and var(k) using eqn.(3.131) based on a sample of size 

N2=1000. The results in tables 3.11 and 3.12 for the second stage 

are ensemble values averaged over ten realizations of the sampling 

experiment to estimate Ilk  and var(). Table 3.11 contains the 

estimates of At  and var(4k) at time k=4 and table 3.12 those at k=6. 

In both tables we include a selection of parameter estimates of the 

matrix czkip. 
Stage Iteration p Aiop(181) i2,13(121) A

3, 
p(1 1) 

1 3. 0.4 0.4 0.4 

2 1.0363 1.0132 0,9426 

3 1.0065 0.9995 1.0016 

4 1.0070 0.9999 0.9994 

Component i "kW 1 v var(Pk(i)) 

10 6  

II 1 0.85113 4.883 24.7 

2 0.54158 1.705 66.3 

3 -0.03872 0.431 238.1 

Table 3.11 Two-stage predictor of 	at time k=4. 
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Stage Iteration p 1414)(1,1) A24)(1,1) 134)(1,1) 1,41p(1,1) A54)(1,1) 

I 1 0.4 0.4 0.4 0.4 0.4 

2 1.0606 0.9925 0.9580 0.8144 0.9604 

3 1.0296 0.9855 0.9970 1.0210 0.9897 

4 1.0155 0.9943 0.9994 0.9921 0.9963 

Component i 1  v  ilk(i) var(Elk(i)) 
-5 

10 

II 1 0.84475 5.685 4.8 

2 0.47089 1.973 11.9 

3 -0.12451 0.417 43.7 

.Table 3.12 Two-stage predictor of 41, at time k=6. 

In order to compute the variance reductions '1 v  from the crude 

Monte Carlo method we have to take the different sample sizes into 

consideration. The present two-stage control variate method is 

based on a sample of total size Nt=(4. N1 + N2) = 1400 whereas the 

crude Monte Carlo results in table 3.9 are based on a sample of size 
N = 1000. 

The present values of 11 v  are less favourable than the variance 

reductions shown in tables 3.8 and 3.10. However, the potentialities 

of the two-stage procedure cannot be entirely judged by the present 

example because its loss in accuracy has to be weighed against the 

more restrictive assumptions required for the antithetic variate method 
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and the control variate method using the statistical linearization 

procedure. 

3.5.3 Summary of results  
Several conclusions can be drawn from the numerical results of 

the preceding sections. Comparing the relative behaviour of the Monte 

Carlo procedures presented the following statements regarding the merits 

and defects of the different solutions can be made. 

(1) The crude Monte Carlo predictor for an arbitrary moment of p(k) 

is very simple and not restricted by any further assumptions than those 

laid down in section 1.2. No difference arises whether the state or 

trajectory prediction problem is solved by the crude Monte Carlo method. 

(2) The most serious deficiency of the crude Monte Carlo method is 

the lack of precision. Usually, the sample sizes required to reduce 

the sampling errors of the desired estimates are too high to provide 

conclusive results. 

(3) A variety of variance reduction methods has been investigated. 

The antithetic variate method requires the additional condition that 

the P.D.F. from which samples are to be drawn must be symmetric and 

unioadal. An interesting and new extension derived for the Gaussian 

multivariate case gives a variance reduction beyond that of the better 

known method, using only 2N variates. 

(4) The combination of an analytic approximation with sampling 

techniques results in a new control variate method. The sampling 
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error can be reduced below the approximation error at the expense 

of generating a random sample and simulating both the original system 

and the linear model. The successful solution requires the special 

system formulation of eqn.(3.63) with additive Gaussian white noise. 

(5) The adaptive two-stage control variate method is less restrictive 

as far as the basic assumptions are concerned. However, in the examples 

considered the sampling errors are always bigger than those of the anti-

thetic variate method or the control variate method using the statisti-

cal linearization procedure. 
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CHAPTER FOUR 

SINGLE-STAGE NONLINEAR FILTERING 

4.]. Introduction  

4.1.1 Problem statement  

In this and the following chapter we consider the computation of 

conditional expectation parameter estimates for nonlinear stochastic 

processes. 	In this chapter attention is confined to the single-stage 

(memoryless)filtering problem. Since dynamic nonlinearities are not 

considered here, it will be sufficient to assume a static system. As 

the time is fixed we omit the index k in this chapter. Thus, the 

observation system (1.4) takes the form 

x = 	y.) 	 (4.1) 

where in general the dimensionality of zwill differ from that of x. 

The problem to be solved is then to find the conditional mean E[xII] 

by evaluating the integral 

Ebc 	x p(xlx) dx 	 (4.2) 

for a given observation 1.. 

4.1.2 The posterior P.D.F. p(xlz) 

The evaluation of eqn.(4.2) requires the knowledge of the posterior 
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P.D.F. p(x(x). Assume the joint P.D.F. p(E, v) is given. This 

will be the case, for example, if p(x) and p(v) are given and x and 

v are independent. Then p(z) and p(xlx) are obtainable from eqn. 

(4.1) and the posterior P.D.F. p(xlz) is given by Bayes' theorem as 

p(x lz) 
p(x) p(xlx) (4.3) 

 

P(z) 

 

The P.D.F. p(z) in the denominator is a normalizing scalar constant 

defined by 

p(x) qp(x) p(zjx) dx. 	(4.4) 

The prior P.D.F. p(x) is assumed to be known; e.g. Gausslaa 

p(x).  = n(x; 
	

I x )• 
	 (4.5) 

The conditional P.D.F. p(zlx) is referred to as the likelihood function. 

If p(v) is a Gaussian P.D.F. and, for the sake of simplicity, eqn.(4.1) 

is replaced by 

= 620 	 (4.6) 

then p(xlx) is given by 

.1 p(xlx) = const. expl- 	[z7g.kx,J T 	-1 [y-g(x) ] 	• 	(4.7) v  

If in eqn.(4.6) v is not an additive term the P.D.F. p(ex) is obtained 

with a procedure similar to that discussed in section 3.1.2 using the 

Jacobian of g. 

Using eqn.(4.3) the conditional mean Brxlz) of eqn.(4.2) can be 
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expressed as 

E[201.] 
fx p(1.1x) p(x)dx 	0 
	 A -n 

fla(Ilx) p(x)cbc
d 

(4.8) 

Unless the dimensionality of x is not more than two, it probably is 

not practical to attempt a direct numerical evaluation of 2in  and Od  

because the number of points in a net used for straightforward numerical 

integration must grow exponentially with the dimensionality of x. A 

less direct approach to the calculation of 2. and Od  is therefore 

generally required. 

4.1.3 Sampling techniques  

Conditional expectation parameter estimates, as defined by eqns. 

(4.2) and (4.8), are known to be statistically optimal when the loss 

incurred due to incorrect estimation is a quadratic function of the 

estimation error (Kalman(4)). However, except in the case of a linear 

system with additive Gaussian noise, i.e. 

= C x + 	 (4.9) 

the difficulty of obtaining such estimates has to a large extent 

prevented their use in either theoretical or practical estimation 

problems (Cox(20)).  Ho and Lee(19)  pinpoint the difficulties associ-

ated with the evaluation of the posterior P.D.F. p(xly). It is the 

object of this chapter to introduce Monte Carlo methods in order to 

overcome the computational problems inherent in the evaluation of eqn. 
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(4.8). This approach differs entirely from the usual linearized 

perturbation analysis based on results derived in linear estimation 

theory. The Monte Carlo solutions offer two distinct advantages: 

(1) It is possible to work with the nonlinear system directly. 

(2) The error analysis is part of the sampling experiment. 

Although there is no basic difference between the single-stage 

and the multi-stage filtering problems, the latter has the additional 

complication that the state x is changing from stage to stage according 

to the dynamic relationship (1.1). Multi-stage nonlinear filtering 

is discussed in chapter five. In order to avoid duplication we include 

only those resultb in this chapter which are specifically suited for 

the single-stage case. 

In section 4.2 a crude Monte Carlo procedure is introduced to 

estimate -0 and 01  as defined by eqn.(4.8). The resulting ratio n   

estimator for the conditional mean E[xlz] is discussed in section 

4.2.2 and reference will be made in chapter five to this part. The 

discussion in section 4.3 is concerned with a variance reduction 

technique known as importance sampling. Finally, in section 4.4 

we comment briefly on the difference between our Monte Carlo approach 

to the computation of conditional expectation parameter estimates and 

the conditional Monte Carlo scheme originally proposed by Trotter and 

%Lukey(4°). 
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4.2 The crude Monte Carlo estimator 

4.2.1 Sampling from the prior density p(x)  

As the evaluation of 0-n  and Od  defined by eqn.(4.8) requires 

that the prior P.D.F. p(x) be given and that the effects of measure- 

ment noise on the observation z be known precisely, we may interpret 

the integrals appearing in eqn.(4.8) as expectation operations such that 

A E [xI(LI.x)] 	 (4.10) 

and 

Od a Ey [p(Z(x)] 	 (4.11) 

The expectation operations are w.r.t. p(x) and the notation E [.] 

indicates that the observation z is kept constant. Referring to the 

theory contained in chapter 2, crude Monte Carlo estimates for 6-n  and 

0d are given by 

N 
0 	= N 1 E[ x.

J 	g p(zIx.)] 	(4.12) -n 	-"  

and 

;c1  = N-12] 13(z ) • (4.13) 

A 

By the strong law of large numbers, these estimates 223.  and Od  converge 

with probability one to 9.,32  and Od  respectively, provided the integrals 

(4.10) and (4.11) exist in the ordinary sense and the size N of the 

random sample (x ) drawn from p(x) tends to infinity. Therefore the 

ratio -6n  / 0d  tends with probability one to E 	; that is 



E [xlz] = lira N-.00 
-n 

 

An estimate of E[xli] denoted by 27, can be obtained by limiting N 

to an acceptable finite value and is then given by 

e n 
• (4.15) 

0d 

This result for x implies that in the Monte Carlo approach the evalua-

tion of p(x1x) over a finite net in a space of n-dimensions is replaced 

by the evaluation of p(,Elx) on randomly selected points in the same 

space. 

4.2.2 The ratio estimator  

Because the numerator e and denominator 	have to be replaced by -d 

estimates, expression (4.15) for the conditional mean is a ratio of two 

random variables. An important problem is concerned with the effect 

of finite N on the estimate x7 	In this section we show that eqn.(4.15) 

is a first order approximation and that the bias resulting from this 

approximation is negligible compared with the sampling error of x
—y 
 for 

large N. 

Let us denote the r:th component of the n-dimensional vector 2,21  by 

0n(r). Expanding the ratio function (4.15) into a two-dimensional 

Taylor series around the respective means en(r) = E [E;n 
 (r)] and 
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d = Eyed] and neglecting terms of order higher than two yields 

O(r) 	1 

0  0 (r)  x (r) = 	[ en(r) - en(r)1.- n2 	[ad - 0d  
ad 

 

e  1 	 (r)  n(r) - en(r) [ d  eda 02 	 03 	d - 
e i2  
d 

(4.16) 

The given observation z is regarded as a constant. Truncating eqn.. 

(4.16) after the first term yields eqn.(4.15). 

Including terms in eqn.(4.16) up to second Order and taking ex- 

pectations on both sides with respect to p(x) while xis held constant 

yields an approximation -t x.ias to the true bias. 	The r:th component 

of 
 4bias is defined by 

xbias(r)  & EY [ ;‘cy(r)]  

0n(r) 

0d 

e (r) 	var(ed) 	cov(Sn(r), ed)  1. 	(4.17) 
2 0d ea(r) ed  
0d 

The estimate Xbias(r) is obtained after replacing the true but unknown 

values var(8d) and cov(en(r), ea) by their respective estimates. 

The covariance matrix Vo associated with the random vector x- 
 is 

defined by 

vo 	E a 	((;%c - E ['dm]) 	y - E [ xlIPT ] • y -y 	-  (4.18) 

Including terms in eqn.(4.16) up to second order and taking the variance 

on both sides with respect to p(x), keeping z constant, yields an 

approximation V to the sampling covariance matrix Vo. The (r,p):th 
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element of V is 

e (r)ey,(p) 	vara ) 	cov6n(r),(0) V(r,p) 	n 	2  - 	2d 

	

e 	n (r) e (p) 6a 	6a 	n  

cov( n(r), ad) 
	

cov(en(p), (id) 
• 
	 (4.19) 

en(r) d 
	

0n(P)  6d 

Since all the terms in eqn.(4.19) are unknown, they are replaced by their 

estimates to yield an estimate V of V; e.g. we use in eqn.(4.19) 

-2 N  valr6d) = N 	 x
J
) - ,;d]2 	(4.20) 

where the random sample [xlj  of size N is drawn from p(x). 

The following conclusions can be drawn from the analysis of the 

ratio estimator: 

(1) The elements of the standard error matrix are computed from V 

as [ i ]1/2, where V is defined by eqn.(4.19). 

(2) Since this error matrix determines the confidence region of the 

statistical estimate xy y, the accuracy of the Monte Carlo estimator (4.15) 

is proportional to N-1/2. 

(3) Equation (4.17) indicates that the estimator (4.15) is biased. 

However, this bias is negligible for large N since it is proportional to 

N-1 and therefore much smaller than  the sampling error, which is pro-

portional to N-1/2  

(4) The bias term defined by eqn0(4.17) disappears if a sampling 

procedure is found for which var(0d) = 0. That is, a variance reduction 

technique with zero sampling variance for the denominator 0.1  yields 
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Ebias = 0. 

(5) In order to improve the accuracy of the Monte Carlo estimator 

(4.15), variance reduction techniques have to be found for the estima- 

tion of the numerator 0 and the denominator 0d. 

Finally, an interesting question is whether one should use the 

same random sample {x}s  for estimating 	and ed, or two independent 

samples. 	In the former case, the two estimates will be correlated 

so that the last two terms of eqn.(4.19) are nonzero. It seems likely 

(at least if the posterior P.D.F. p(xlz) differs substantially from 

zero only in the neighbourhood of the posterior mean E[xl0that this 

covariance between 0 and 0d leads to an improved sampling covariance -n 

matrix V. 

4.3 Importance sampling  

4.3.1 New estimators for e and ed -n 

Importance sampling is mentioned in section 2.4 as one of the 

standard variance reduction techniques. The underlying concepts of 

this method are described by Kahn(26). 	In our discussion we only 

deal with those aspects relevant to the problem at hand. 
A 	A 

The crude Monte Carlo estimators (4.12) for 	and (4.13) for ed  

may suffer from the deficiency that only a fraction of the realizations 

Es  belonging to the random sample {x}s  lies inside the region where the 
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functions W1  (x) and - 

and 

412(x), defined by 

x p(x1x) 

2(x) 	4 p(x)x) , 

(4.21) 

(4.22) 

are effectively different from zero. In other words, the terms that 

make large contributions to 	and ad  are encountered only rarely. 

This situation can be improved if we are able to choose judiciously a 

new P.D.F. from which the sample Ixli  is to be drawn. Indeed, if the 

numeratorf.in  of eqn.(4.8) is multiplied and divided by the function h(x)*  

O becomes -n x p(x(x) p(x) 
„O 	f 	 h(x) dx 	(4.23) 
n 	 h(x) 

Similarly the denominator Od  of eqn.(4.8) is rewritten with h(x) as 

p(x(x) p(x) 

h(x) 

Thus, the integrands remain unchanged but the functions 1g (x) and 11/2(x), 

defined by eqns.(4.21) and (4.22), become 

x p(ljx) p(x) 
4'(x) = 

	

	 (4.25) 
h(x) 

and 
10(Ilx) p(x) 

t14(Z) 	 (4.26) 
h(x) 

Thus, the crude Monte Carlo estimators (4.12) and (4.13) may be replaced by 

ed f h(x) dx 	(4.24) 



N 
= N-1  Z 

x
1  
. p(zIx.

n
) p(x.) 

h(x.) 
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(4.27) 

and 
N p(zix.) p(x.) 

0 = N  E  	 (4.28) d 	h(x ) 

where the random sample {x}j  of size N is drawn from h(x). Finally, 

the Monte Carlo estimate x of the conditional mean E[xlz] is obtained 

from eqns.(4.15), (4.27) and (4.28). 

As h(x) is assumed to be a P.D.F. it has to satisfy the condition 
+00 

jr h(x) dx = I . (4.29) 
-00 

 

Moreover, h(x) is subject to the constraints that it may not be equal 

to zero unless 

x = 0 or p(z1x) = 0 or p(x) = 0. 	(4.30) 

In order to reduce the sampling variances var(O-n  ) and var(ed) 

the P.D.F. h(x) has to be chosen such that the functions 410 and 

1P 2(x)of eqns.(4.25) and (4.26) respectively stay almost constant for 

arbitrary values of x. 

It can be shown that there always exist an optimal function h(x)i  

denoted by h°(x),such that the sampling variance of the scalar estimate 

d is equal to zero. Indeed, it follows from the definition of var(9d) 

as 

var(0d) = N-1   	- 	12  h(x) dx 	(4.31) 

that h°(x) is given by 

h°(x) = 	p(xlx) p(x) . 	(4.32) 



154. 

As h°(x) has to satisfy eqn.(4.29) the constant parameter a is found 

from the definition of 0d in eqn.(4.8) to be 

 

a = 1 /0d  

 

(4.33) 

(4.34) 

and hence 

 

P(xlx) p(x) 

 

 

fp(z1x) p(x) dx 
• 

The substitution of eqn.(4.34) in (4.31) shows the zero sampling 

variance property. 

However, eqn.(4.33) indicates that for the determination of h°(x) 

one has to know 8d, the quantity to be estimated. 	Hence, eqn.(4.34) 

merely proves the existence of h°(x). The significance of this result 

lies not in the possibility of actually constructing the best function 

h°(x) but in demonstrating that there is a very efficient sampling 

scheme within the infinite number of available techniques. A logical 

consequence of the above result for h°(x) is the multi-stage sampling 

procedure originally proposed by Kahn(37) in the context of importance 

sampling. 

In section 4.3.2 we determine h°(x) for a linear Gaussian system 

and in section 4.3.3 we discuss a zero sampling variance estimator for 
using h°(x). The derivation of an approximate sampling function 

li(x) for a nonlinear system of the form (4.6) is contained in section 

4.3.4. 
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4.3.2 Determination of h°(x) for the linear case 

Let us consider a linear observation system of the form 

= c + Dx + v 	 (4.35) 

where c denotes a constant, x the state and v the measurement noise. 

It follows from the relationship 

p(x) = 13(25) 1) = p(xjy) P(Z) 	(4.36) 

that the posterior P.D.F. p(xlz) is Gaussian if the observation system 

is linear, p(x) being given by eqn.(4.5) and p(v) by eqn.(1.6). 

We have the following result: 

If the state x is observed through the linear system (4.35), 

the optimal P.D.F. h°(x) to estimate the denominator Od  

with zero sampling variance is given by 

h°(x) = n(x; 	, E ) 	(4.37) 

where 

a= E[DTE; I  (y- c) + E:1  ex) 
	

(4.38 ) 

= (D
T
E
-1  D + E-1)

-1 	(4.39) 

The proof of this result starts from eqn.(4.56). As p(y) is only a 

normalizing constant, the posterior P.D.F. is given by 

p(aily) = const.-  p(yjx) p(x) = const. exp(- 	(4.40) 

where 

E = (x-c-Dx)T  E v  (rc-Dx) + (x m )T  - - 	- -x - m 	(4.41) -x 
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Completing the squares in x allows us to rewrite E as 

E =. (x- K-1 a)T K (x - K
-1 

a) 
	

(4.42) 

where 
- 

a = D
T  E v1 	- c) + E

-1 
m 	 (4.43) X 'IC 

DT -1 	-1 K = 	I
v 

	+Ex 	 (4.44) 

Setting h°(x) = p(xlm), that is a= K-la and E = K
1 we obtain 

eqns.(4.37) to (4.39). Recalling that the estimator for Ad  of eqn. 

(4.24) is 

ed 
P(z1x) p(x) 

[ 	 
h(x) 

(4.45) 

where E [.] is w.r.t. h(x) we see that Eid  is constant if we replace h(x) 

in eqn.(4.45) by h°(x) of eqn.(4.37) and hence var(ad) = 0. 

4.3.3 Zero sampling variance estimator for 0 

Maintaining the linearity and normality conditions of the previous 

section, we are now concerned with a zero sampling variance estimator 

for ems. We prove the following result: 

If the state x is observed through the linear system (4.35) 

the combination of importance sampling using h°(x) of eqn. 

(4.37) and the antithetic variate method using two random 

samples1C 	of sizes N drawn from h°(x) yields a zero 1-. 
sampling variance estimator for 

To prove this result we rewrite estimator (4.23) for 2n  as 



e-n 	Ey  x 
p(xlx) p(x) 
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(4.46) 
h°(x) 

where E [.] is w.r.t. h°(x). It follows from the previous result 

that the function %4J (x) is constant if in eqn.(4.26) h(x) is replaced 

by h°(x). Thus eqn.(4.46) becomes 

0n  = const Eix 	 (4.47) 

where the expectation is w.r.t. h°(x). The sampling covariance matrix 

of the estimate ems, when Q is given by 
N 

e
n 
 = const (2N)-1  E [Xi'. 	x

a  
+ - 

- 	 . ], 	(4.48) 
3 	" 

+ 
is zero if xj  denotes a pair of antithetic variates. The variate x. ...j  

is drawn from h°(x) and J x is computed as 

(x. - a) = -(x - m) -J (4.49) 

where a is given by eqn.(4.38). Using eqn.(4.49) in (4.48) yields 

= const a= ed  

The combination of this result with that of the previous section 

shows that the Monte Carlo estimator using importance sampling and the 

antithetic variate method together yields a zero sampling variance 

estimate x for the conditional mean E[xli], if the system is linear 

and the random signals involved possess Gaussian P.D.F. 

This result on its own is not important as there are exact solu-

tions which do not require sampling techniques. It does, however, 

render plausible the argument that in almost linear situations the new 

Monte Carlo procedure may considerably improve the accuracy of the 

crude estimator. 
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4.3.4 Approximation of h°(x) for the nonlinear case 

Retaining the assumption of normality for p(x) and p(v) we 

return to the non]inear observation system (4.6). In order to deter-

mine a suitable sampling P.D.F. h(x) which approximates h°(x), we may 

pursue one of the following methods: 

(1) A linear model of the form (4.35) is obtained by statistical 

linearization of eqn.(4.6) w.r.t. p(x). Setting k =1 , the coeffic-

ients c and D are obtained from eqn.(5.33). They are then used to 

determine a and E in eqn.(4.37) to approximate h°(x) by 

h°(x) 	n(x; 	, E 	(4.50) 

See eqn.(4.38) and (4.39) for the evaluation of a and E  . This 

approach will be further developed in chapter five in the context of 

multi-stage nonlinear filtering using the control variate method. 

(2) If the likelihood function p(xix) does not differ toomuch from a 

Gaussian P.D.F., denoted by pa(mix), the covariance matrix of the latter, 

can be determined such that it minimizes the deviation of pa(xjx) from 

P(Xlx) in a least-squares sense. This approach is due to McGhee and 

Walford(50) 

(3) Finally, the expansion of the exponent of p(x1x) up to second order 

terms yields a Gaussian approximation pa(xlx) which is used to compute 

pa(Ely). This approximate posterior P.D.F. pa(Ely) is set equal to 

h(x) and used to improve the estimators for ,Ala  and ed. Here we follow 

this method for the case of a scalar nonlinear observation of the form 

(4.6). The multi-variable case is discussed in chapter five in 
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connection with the control variate method. It makes use of some 

results obtained by Sorenson(24)  . 

The scalar likelihood function is obtained from eqn.(4.7) as 

1 [v - g(x)]2  
2 	

Ev 

To approximate p(xly) by a Gaussian P.D.F. pa(xly), we expand the 

exponent of eqn.(4.51) into a Taylor series around the mean mx of p(x). 

Neglecting terms of order higher than two yields: 

[y-g(x)] 2 i [y-g(m.)]2  - 2[y-g(m.)] g' (mx)(x-mx) 

+ tgl(m,)2  [y-g(mx)] gu(mx)] (x- X)2 
	

(4.52) 

where g'(x) denotes the first and g"(x) the second order derivative of 

g(x) w.r.t. x. As the observation y is kept constant, an approximate 

pa(xly) is obtained by using eqn.(4.52) in (4.51) and multiplying the 

resulting pa(y1x) by the Gaussian P.D.F. p(x). This yields 

pa(xly) = coast. exp(- 2) 	(4.53) 

where 

E = al  - a2  (x - mx) + a3(x - )2 
	

(4.54) 
and 

= [Y - g(mx))2/Ev  

a2  = 2 [ y-g(mx) ] g' (mx),/ I. v  

[ya3   = g"x)  	g(mx)]  gll(mx)) Ev +1  / Ex* 
Completing the squares in (4.54) yields 

(4.55) 

E = a
3 
[x - (mx  + [a2/2a3 )] 2 	const. 	(4.56) 

p(ylx) = const. exp( - ). 	(4.51) 



p(ylx+.)p(x+.) 	p(y1x)13(x-.) 
1 	x. 	3 	3 	(4.61) 

it(x+) 	h(x7) 	J 

estimate the numerator ea  as 

en = (2N)-1 	[ xj  
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Substituting eqn.(4.56) in (4.53) yields 

pa(xly) = n(x; 	E ) 
	

(4.57) 

where 

p = mx  ( I ) [57  - g(mx)]  gqmx) 
	

(4.58) 

and 

=1  / E  x [ gt(mx)2- [ y-g(mx)i g"(mx)]/E v' 
	(4.59) 

It is easily verified that eqns.(4.58) and (4.59) reduce to eqns.(4.38) 

and (4.39) if g(x) is a linear function of the form (4.35). 

The approximate posterior P.D.F. pa(x(y) of eqn.(4.57) is used as 

sampling density h(x); that is 

h(x) = n(x; µ, E ) 	(4.60) 

where 11 and E are given by eqns.(4.58) and (4.59). In order to obtain 

a feasible sampling procedure which makes use of eqn.(4.60) the ex-

pression (4.59) for the variance I must be positive and g(x) must be 

at least twice differentiable. 

The sampling density h(x) given by eqn.(4.60) is used in eqn. 

(4.28) to compute Od. The antithetic variate method is used to 

r I+ where the random sample txj j  is drawn from h(x). The antithetic 
- 	+ 

randomvariablesx.arefoundfromx.as  
J 	J 

(x.-11) = - (x. - 11) 
	

(4.62) 

Where µ is given by eqn.(4.58). 
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4.3.5 Concluding remarks  

The variance reduction technique known as importance sampling 

has been developed to improve the accuracy of the estimate x for the 

conditional mean E[xlm] . The central problem is to find a suitable 

sampling P.D.F. h(x) as a close approximation to the optimal density 

b°(x) such that the sampling error of Od  based on eqn.(4.28) is less 

than the crude Monte Carlo sampling error. If this requirement is not 

mets  importance sampling may deteriorate the performance of the estimator 

(4.28) compared with (4.13). Based on the results derived for the 

linear case, we propose that the use of antithetic variates together 

with h(x) offers a feasible method for improving the accuracy of the 

estimator of 8 6 

Although the importance sampling method discussed in this section 

seems to indicate a considerable variance reduction effects  there is one 

serious difficulty which usually limits the applicability of this con-

cept to rather special cases. If the product glix)xp(x) does not 

tend to zero at the same rate as h(x) the resulting ratio YL(x) of eqn. 

(4.26) may exhibit unbounded variations outside a region of possibly 

good fit. These variations may reduce the variance reduction effect 

considerably. Indeed, it is possible that such variations can increase 

the sampling error. This point will be illustrated by means of some 

examples in chapter six. 

This deficiency is overcome by the control variate method. As 

the major part of the next chapter will be devoted to this technique in 

connection with the multi-stage filtering problems  we shall leave till 

chapter five the derivation of the control variate estimator for the 
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single-stage case. 

4.4 Conditional Monte Carlo  

The object of this section is to comment on conditional Monte 

Carlo, originally invented by Trotter and Tukey(4o), and contrast it 

with the Monte Carlo approach for the evaluation of conditional ex-

pectation parameter estimates. An analytical explanation of condi-

tional Monte Carlo is given by Hammersley(51)  whereas Wende1(52)  

discusses the same technique from a group theoretic aspect. Apart 

from two specific examples contained in these papers there ere .no other 

contributions in this field. It is worthwhile to compare our own work 

on conditional P.D.F. with those original techniques in order to obtain 

a better understanding for the similarities of the two approaches. 

The basic concept of the original conditional Monte Carlo work 

has its roots in importance sampling. Indeed, the integral 

o = f f(x) p(x) dx 

can be rewritten as 

o = E
P 
 [f(x)] 	Eq  [f(x) w(x)] • — 	— — 

(4.63) 

(4.64) 

The first expectation is with respect to p(x) whereas the second is with 

respect to q(x). This latter expression requires an additional weight-

ing function w(x) = p(x)/q(x) in order to compensate for the different 

P.D.F. q(x). The essential point of eqn.(4.64) is that any sample can 
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come from any P.D.P. if we use the correct weight w(x). 

Conditional Monte Carlo differs from importance sampling in 

the sense that a P.D.F. q(z) is defined in the product space Z = XxY 

and not (as in importance sampling) in the same space X in which p(x) 

is defined. The auxiliary space Y is to be chosen such that p(x) is 

the conditional P.D.F. of the joint density q(E, z). If there exist 

a (1,1)-transformation between Z and X,Y of the form 

x = t(z) and y = u(z) 	(4.65) 

we have 

p(x) = p(x12) = coast. q(asix). 	(4.66) 

As it may be difficult to draw samples from p(x), eqn. (4.66) allows us 

to replace p(x) by q(m.lz). The samples are thus drawn from the Z space. 

The main difference between state variable estimation using Bayes' 

theorem and conditional Monte Carlo is the fact that the observation 

is part of the problem formulation itself and is not introduced to 

improve the sampling procedure. 

We may cast the two approaches in a unified problem formulation as 

follows. It is desired to estimate the conditional expectation 

E[f(x)lx] 4, In particular, we set f(x) = x if we want to estimate 

the conditional mean E[xix) 	Using Bayes' theorem (4.3) we can avoid 

sampling from the posterior P.D.F. p(x12) required to find the Monte 

Carlo estimate X of E[xly) . After introducing a suitably modified 
-7 

weighting function w(x)p  it is possible to draw the random sample (xli  

from the unconditional P.D.F. p(x). That is, the L.H.S. in eqn.(4.67) 
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is replaced by the R.H.S. for evaluating the conditional expectation 

Eq 	p  [f(x)l x] = E [f(x) w(x)) • 
	(4.67) 

while the P.D.F. q(2, z) is defined in the Z space the R.H.S. of eqn. 

(4.72) involves the X space only. 

On the other hand, the conditional Monte Carlo proposed by Trotter 

and Tukey(40)  starts with an unconditional expectation operation which 

is replaced by a conditional expectation. In other words, the L.H.S. 

of eqn.(4.68) is sought to be replaced by the R.H.S. as 

Ep[Vas)] = Eq[1.(20 w(101m]. 	 (4.68) 

The main difficulty for the implementation of conditional Monte Carlo 

is the definition of a suitable observation Lin order to define the 

new space Z. 	It is not apparent whether this is in general possible. 

It is felt that for this reason the work of conditional Monte Carlo has 

not been pursued very much since its invention in 1956. 

In conclusion, our approach of estimation of parameters belonging 

to conditional P.D.F. could be termed as the inverse problem of con-

ditional Monte Carlo. As the observation m is part of the problem 

formulation, a Monte Carlo procedure can always be found such that 

sampling from conditional P.D.F. can be replaced by sampling from un-

conditional P.D.F. 
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CHAPTER FIVE 

MULTI-STAGE NONLINEAR FILTERING 

5.1 Introduction  

In this chapter we are concerned with the statistical estimation 

of the state variables of a noisy nonlinear dynamic system. The 

mathematical description of the process to be considered is explained 

in section 1.2. For ease of reference we recall that the dynamics are 

given by the vector difference equation 

40'1 = LS40 Ek' " 
	 (5.1) 

The states ask  are observed through the nonlinear transformation 

Zis = 	Yks k). 	 (5.2) 

The statistical properties of the initial condition x
1 
 and the random 

signals wk 	- and 	are assumed to be given. Having observed a sequence 

, defined by 

k a xi, 7.2$ ••• Ik 
	 (5.3) 

one may seek an estimate of an entire sequence of states Xlc+m 	This 

formulation includes as special cases the filtering problem where an 

estimate of the current state ask  is sought:  the smoothing problem where 

an estimate of the sequence xk is required and the prediction problem 

where an estimate of a future state ki.m  is desired. 

In this chapter our interest is confined to the filtering problem • 
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The smoothing problem is not discussed in this thesis. The prediction 

problem has been discussed in chapter three under the assumption that 

all states ak  are accessible. If previous observations 	have to 

be taken into consideration, the initial condition P.D.F. p(x1) which 

is used in chapter three has to be interpreted as p(ski2c). 	The 

solutions developed in chapter three are still valid but the initial 

random sample {q v  originally drawn from p(x1), has now to be drawn 

from p(kl zk)• 

In the present formulation one can easily include as state 

variables unknown parameters, either constant or randomly varying. 

The estimation of such parameters constitutes a form of tho identifi-

cation problem. In one of the examples presented in chapter six this 

aspect will be further discussed. 

Bayes' theorem gives a recursive equation for the posterior 

P.D.F. p(klzi.c) which plays a central role for the solution of the 

minimum mean-square estimation problem (section 5.2). For a success-

ful application of a Monte Carlo method the recursive structure of Bayes' 

theorem has to be replaced by an expression which only contains prior 

information about the system. The crude Monte Carlo filtering 

procedure is contained in section 5.3 and makes extensive use of the 

results obtained in section 4.2.2. Variance reduction techniques are 

introduced in sections 5.4 and 5. In the former a statistical linear-

ization procedure is found to be very suitable for the control variate 

method. Approximate nonlinear filter equations for the conditional 

mean and covariance matrix are used in section 5.5 to improve the crude 
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Monte Carlo procedure as well as to improve the accuracy of the 

analytic approximation. 

5.2 The Bayesian approach 

5.2.1 The minimum mean-square estimation problem  

In the Bayesian approach to the estimation problem for stochastic 

systems, one is concerned first of all with the posterior P.D.F. 

P(Ek1 2c). The mathematical foundation for this approach is given by 

the following lemma, due to Doob(44): 

Suppose that a random variable 2Eic  is to be estimated from the known 

variables x when ack  and x have the joint P.D.F. p(alc, ). Suppose 

the estimate kik  is to be chosen as a function of x so that the 

criterion Co  defined by 

a 6 E [(kik-  4)T (kik - :11c)] 
	

(5.4) 

QT(kik" ak)P(4c, 2c)thspi d2c  

is minimum. Then the mean square estimate of aoc is 

kik n 
 E [4c1 2c] 
	

(5.5) 

that is, the mean of the posterior P.D.F. p(klyi.c 	Other cost functions 

than (5.4) have been suggested by Ho and Lee(19). These lead to 

estimates not the same as eqn.(5.5) but the posterior P.D.F. p(akl2t) 

still provides all the information required to solve the filtering 

problem. 



p(l y. ) 	

-1 k 
k 	fP(k-111, )P(1  k-1)P(k14c) dk-1  

k 
P(IkIX -1  

(5.6) 
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k 5.2.2 The posterior conditional P.D.F. p(klz ) 

For the system (5.1) and (5.2), the posterior P.D.F. p( 

evolves according to Bayest theorem(19123) as 

1 - where the denominator t 	1 ply. k  yk 	is a scaling factor defined by 

P(zklx') =If P(k-ilzk-1)P(k1  kc-1)13(xkl k)(bActh4- 1 • 
Equation (5.6) is only true if wk  and xic  are statistically independent. 

The initial condition of this integral recurrence relation is given by 

eqn0(4.3) when x and x are interpreted as xi  and mi. Because of 

the nonlinearities involved, the task of determining the mean of eqn. 

(5.6) is overwhelming. We therefore propose a statistical solution to 

estimate the conditional mean rather than approximate it with an analytic 

nonlinear filter equation. 

To this end, the recursive structure of eqn.(5.6) has to be re-

placed such that a new expression for p(kiz ) is obtained which only 

makes use of prior information about the system. For the sake of 

simplicity, we assume additive Gaussian noise in eqn.(5.1) and (5.2). 

That is, we consider the system 

Ick+1 = f(1, k) 
	

(5.7) 

Ik 	= g.(k' k)  Xk 	(5.8) 

in order to simplify the P.D.F. p(klask_i) and p(licik). If non-

additive noise were assumed it would be necessary to introduce the 



(5.1o) 

allows us to rewrite eqn.(5.6) as 

k 
p(kla..)p(3.ek)d k-1 

1=1 

p(zilai)p(xk)dxk  
i= 

. 
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Jacobians of f and Ewith the concomitant complications mentioned in 

section 3.1.2. 

i The repeated substitution of p(4c_ily, ) in eqn.(5.6) for 

i=1,2,...k-2 and the use of eqn.(4.3) for k=1 0  together with the 

Markov property 

k-2 

1=0 	ks-1-i)P(I1)  = P(M1' *** 
	(5.9) 

The parameter we are interested in is, from eqn.(5.5), the conditional 

kl mean E[ Ix j 	It is defined by 

k f...f k  Tor p(kiai)p(k)d.k 
Ek 121 a 	

1=1  
k 

J.....1 	yr p(kik )p(xk)dxk 
1.1 

A 

0 
-"ask 

dsk 

(5.11) 

Compared with eqn.(5.6) the new relationship (5.11) has the 

advantage of being an expression which only contains prior information 

about the system. Since it no longer exhibits a recursive character, 

it is directly amenable to Monte Carlo integration. 



k 

dsk 	
E 
y I r P(xilk)] • 1=1 

(5.13) 
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5.3 A crude Monte Carlo filtering procedure  

Equation (5.11) shows that the numerator ,0 k  0 	and the de- n, 

nominator ea 
k are given as (nk)-fold integrals. Using the defini- 

tion of the expectation operator, we can interpret 0' and 0 	as 4k 	do
k 

 

= E pcklic_in -nsk 	
i=1 	

(5.12) 

and 

The expectation Ey e'] is performed w.r.t. the joint P.D.F. p(x) and 

the observations yk  are assumed to be fixed. 

Referring to the results obtained in section 2.2.2, the random 

vector 

(5.14) 

j 

converges, under fairly general conditions, with probability one to 

0 	as the sample size N tends to infinity. Similarly, the random -nsk 

variable 
N k 

04.k = N-1 > [ 	-m  p(k1(x. ) ) 	(5.15) 
i=1 

converges with probability one to e, , as N 00 
UpIC 

The evaluation of eqn.(5.14) and (5.15) involves the likelihood 

functions p(yilI.1), i=1,2,...sk. Restricting our discussion to eqn. 

(5.8) and using the statistical description of eqn.(1.6) for the 

observation noise vk, we can rewrite the estimators (5.14) and (5.15) as 



and 
N 1 k [y2-g.((k)i,i)]T  

[ xi-1( (2,ci  

0d k = const. N-1 	[exp 
vi 

J.)] )] 

(5.17) 

171. 

-n  ,k const. N-1 E [(1),  
- 

exp(- 	7 [ yi-g.((x. ) .,i) T  E v• 
1 

3 71: 

[xi  -E((k) j,i)))] 
(5.16) 

The random sequence (xk) denotes the values Xk  obtained by simulation 

of the nonlinear system (5.1) or (5.7). The initial condition (xl)i  

is drawn from the known p(x1). The random noise sequence (wk -1  )is 

drawn from p(ilk), see eqn.(1.3). Finally, the trajectory (Xic)j  is 

obtained as the solution of eqn.(5.1) or (5.7). This procedure is 

repeated N times to generate the random sample 1229i  of size N required 

to evaluate either eqns.(5.14), (5.15) or eqns.(5.16), (5.17). It 

corresponds todrauringtherandom samplefrk . 13 from p(xk). 

The Monte Carlo estimate of the conditional mean 

denoted kile  that will be used is 

kik _ 	•
(Ilk 

	 (5.18) 

This ratio estimator has been discussed in section 4.2.2. The main 

result was that eqn.(5.18) is a first order approximation. The result-

ing bias is negligible compared with the sampling error as N-.00 . 

The covariance matrix Vosks  associated with the random vector 

Eiki zit), 



Vk(r,p) 	2 
ed.k 62d k 	n e 	

k  (r)  enok  (p) l 	o   

611,k(r)6n,k(p) var(6d k 	cov(klek(r),ecl.k(p)) 

172. 

kiie  is defined by 

Vook  A E [(&ik 	E[Ici2c]) (14 k- Ekly.ki)T) 	(5.19) 

An approximation Vk  to the sampling covariance matrix (5.19) is found 

by expanding eqn.(5.18) into a Taylor series up to second order terms 

and taking the variance on both sides with respect to p(xk), keeping 

x constant. This yields for the (r,p):th element of Irk  

A 	 A 

	

cov(011.k(r), ed,k)  cov(6  k(p)d k) 
	

(5.20) 

	

ensk(r)Odsk 	ensk(p)edsk 

Since all the terms in eqn.(5.20) are unknown they are replaced by their 

estimates to yield an estimate Vic  of Vk; e.g. we use in eqn.(5.20) 

	

N 	k 

	

) = N-2  E 	kisk 

The method of sample moments, introduced in section 3.2.1, can be 

applied by extending the result (5.18) for the first order conditional 

moment E[xkI x  ] . Indeed, the matrix of conditional second order 
A 

sample moments Mick  is obtained again as a ratio estimator of the form 

(5.18) where the numerator itnsk  of eqn.(5Z1) has to be replaced by the 

matrx (2)k 
4 Ey [ Fk 	p(yi,12si)]. It is estimated by no -k 

en(2sk = N-1 E [( c) (k) 
	

p(zi  I(xi)j)]. 	(5.22) 

v r d  (5.21) 
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This result follows directly from the definition of the second order 

k conditional moment of the posterior P.D.F. 	) as Mkik4 E[LcickT . 

The normalizing denominator edsk  remains unchanged and the Monte Carlo 
_ estimator for Mktkis 	

.(2)/
d 

1; 
oe 

5.4 	Variance reduction techniques  

In order to improve the accuracy of the crude Monte Carlo estimator 

derived in section 5.3, it is desirable to replace sampling techniques 

as much as possible by analytic methods. A linear model is amenable 

to deterministic analysis and can be used as a reference to the non-

linear plant provided it approximates the original system closely enough. 

This is the central idea of the control variate method which has been 

introduced in section 2.4 and used in section 3.4 for the trajectory 

prediction problem.. 

Instead of estimating the numerator 	and denominator 0
d; k 

of eqn.(5.11) directly, we first establish a linear model and estimate 

then the errors between the model and system numerators and denominators 

respectively. Finlay, these estimates are added to the analytically 

obtained values of the model numerators and denominators respectively. 

Thus, the linear model controls the fluctuations of the nonlinear system 

and thereby reduces the sampling error of the estimate 

As the derivation of a suitable linear model yields a set of 

approximate nonlinear filter equations, the proposed Monte Carlo 
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procedure may improve the results of approximate nonlinear filtering 

solutions. 

5.4.1 Statistical linearization  

Sunahara(16)  describes one feasible method for nonlinear continuous- 

time filtering which yields simultaneously a linear model. 	This model 

depends of course on the particular sequence of observations 	We 

assume the initial condition of the nonlinear system (5.7) is given as 

an n-variate normal P.D.F. p 1 I  )• that is 

p(xi ) = n(x • 	E x . 17 
m ) 	 (5.23) 

The P.D.F. p(w) and p(yk) are assumed to be Gaussian and specified by 

eqns.(1e5) and (1.6). 

Now, let 

Pa(ki 
	

n( ; kik  , 	Eick 
	 (5.24) 

denote the n-variate Gaussian posterior P.D.F. of the state Lck  of a 

linear model which is intended to approximate the original system (5.7) 

and which is defined by 

k+1 =  8 	-k( 	kik)  + w-4s 
	(5.25) 

Similarly a model of the nonlinear observation system (5.8) is assumed 

to be given by 

= 	Dk( t 	Pkik-1 ) irk 
	(5.26) 

where MkIk -I is the mean of the conditional P.D.F. of Ick  prior to the 
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occurrence of observation 	that is 

pa(41,k- 1)  = n( s;  12kik-1 ' Ikik-1 )* 
	(5.27) 

The parameters 2k, Bp 2k  and I are found by statistical linear-

ization of the nonlinear transformations f and g such that in the 

expansions 

and 

f(x4, k) = 	Bk(k 

Skie k)  = 2k Dic(ak Lksk-1 4. 
8 -10 

(5.28) 

(5.29) 

the conditional expectations 

E 	EiTt  Eic  k E [ II f(, k )—at— Elc(4-12kik  ) II 21/1.c 	(5.30) 

w.r.t. pa(412,c) and 

k -1 E [§154s  zk -‘1] = E [114(4,k) -4c- Dk(4-mkik  _ Al2  IL I (5.31) 

w.r.t. Pa(412c -I  ) are minimal w.r.t. the model parameters 2k, Bic, 94  
and Dk. The necessary and sufficient conditions for minimizing eqn. 

(5.30) w.r.t. ak  and Bk  are that 

E[L(ic, k) I zk 	
(5.32) 

Bk 	41(4' k)  ak)(4: Milk)T12c] E;4'1 • 
The expectation B[ .] is w.r.t. pa(412c) of eqn.(5.24). Similarly, 

the conditions for minimizing eqn.(5.31) w.r.t. 2k  and Dk  are that 
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E [4(4, k)I Zic-1 3 	
(5.33) 

Dk 	= E[(a(4, k) - 2.k )( 11  - kik  -1 )s. 1 2E-1 3 ricik1 _ 1.  

Thee  xpectation E[ • 3 is w.r.t. 	 As pa(4.I Ic." 1  ) of eqn. (5.27). 	 we 

assumed the Gaussian property in (5.24) and (5.27), we have 

Bk (5.34) 

and 
a-ke  

Dk 	°kik -1 • 	 (5.35) 

The proof of these two results has been given in section 3.4.1. in. 

connection with eqn.(3.70). They are useful for the analytic evalua- 

tion of Bk  and Dk  when f(k, k) and 	k) are expressed as poly-

nomials in k. 
The parameters Atik  and 	Ekik of eqn.(5.24) and Li_ alcik-1and  

kik-1 of eqn.(5.27) are found by applying linear filtering and 

prediction theory(4'5)  to the model (5.25) and (5.26). The parameters 

of pa(41xk- 1 ) are found from eqn..(3.25) for k > 1 as 

ilkik -1 4c-1 

Bk-1 k 1 1k-1 Bk- 1 + Z  wk 

(5.36) 

Due to eqn. (3.36), it is possible to determine gis and Dk  from eqn. 

(5.33) which then specify kik  and Zkik  of eqn.(5.24) for k = 1 as 

1114k =  Jaklk-1 	Kk(Y-k 4)  
(5.37) 

El* 	E  kik -1 Kk Dk Iklk - 1 
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where 

DT (D I 	DT  E 
Kk 	= kl k-1 k k kik-1 k 	vk 	(5.38) 

The recursion (5.36) starts at time k =1 with 

allo = Ex 

F 
	 (5.39) 

i.e. pa(el IZ) p(x1) is used to determine Cl  and D1. This completes 

the linearization procedure since pic  and Bk  are obtainable from eqn. 

(5.32) using eqns.(5.37) and (5.38). 

5.4.2 The multi-stage filtering problem using control variates  

Applying Bayes' theorem of eqn.(5.6) to the linear model (5.25) 

and (5.26), a similar expression to eqn.(5.11) is obtained. We now 

combine these two relationships in order to rewrite 211,k  of eqn.(5.11) 

as 

= J.4 k. "lii P( I ) 	k  
1 	al 	) 

	

1.4 	pa(x3.14)pa(x*k )  

and 0d,n of eqn.(5.11) as 

x 
k) cbjc 

	

= f..f 	P  

	

1'4 	

k 
Pa(Yilei)  Pa(x *k) dx* k  

i=1 

-risk dxk 

dx k 

edsk 

0rn k 	(5.40) 

0ad,k 0 (5.41) 
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In order that 	 1c 0-51 and 9d k' defined by eqns.(5.40) and (5.41), are , 

the same as those values defined in eqn.(5.11) we have to set 

0 n,k = 	2', r pa(kia.cppa(xk) 011(*k 
	

(5.42) 

and 

eadsk = j Jr LI,  Pa(IiI4)Pa(xk) dX*k  • 
	(5.43) 

We recall that pa(.) denotes P.D.F. of variables occurring in the 

linear model (5.25) and (5.26). Because of the linearity of the model 

and the Gaussian properties of the random disturbances involved, the 

(nk)-fold integrals of eqns.(5.42) and (5.43) can be evaluated analyti-

cally. Tho Monte Carlo estimators to be used for the evaluation of 

eqns.(5.40) and (5.41) are defined by 

k = N 1  E 	(4) 	pcz. (x. 	 a(;)(3,1 )i)j+e sk  
i=1 	1 '1 3 

i=1 

(5.44) 
and 
	

N k 
	

k 

A I 0 = 
N-1 	r -"T p(xiIcad  

j 	i=1 	i= Pa(k (x* )j + eadsk*  dok 	Z., 	y— 

(5.45) 

Again, as explained in connection with the crude Monte Carlo estimator 

(5.14) and (5.15), (ak)i  denotes the value of 	obtained as the solu-

tion of eqn.(5.7) using (xi)i  drawn from p(x1) and the random sequence 

(wk-1) drawn from p(itk). Similarly( )j  denotes the value of 

obtained by simulation of the linear model (5.25). The same random 

sequence (xi, 	 j  
wk-1)% previously used to obtain (k)j  is used again to 

obtain (z)j  as the solution of eqn.(5.25)0 
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The middle terms in eqns.(5.44) and (5.45) are known as the 

control variates for the first terms. A reduction in var(0 k) and 

var(a k) is obtained provided the linear model giving rise to the 

control variates is a close approximation to the original nonlinear 

problem and absorbs most of its variations in the sampling procedure; 

i.e.(:4)s  must be a good approximation to (asdie 

In view of this remark, it does not seem feasible to use a more 

general linearization procedure which would be concerned with the 

dynamics and the observation system independently of the particular 

sequence z 	The advantage of such a model would be its applicability 

without referring to one specific sequence 	Such a procedure, 

however, will be excluded because the approximation accuracy which can 

be achieved does not satisfy the above mentioned condition. 

To complete the control variate estimators (5.44) and (5.45), we 
finally have to carry out the analytic evaluation of eqns.(5.42) and 

(5.43). The denominator of eqn.(5.6) defined for the linear model 

(5.25) and (5.26) is denoted by *aci,jc  and is given by 

•ad,k = If pa(41_11xk-ipa(Y.ki4:)Pa(4:1 4-1)G14: (14:-1 • (5.46) 

It is related to the denomina
torad,k of eqn.(5.43) by 

 

 

j
r .../ III pa( zilap pa( x*k)*k 

i=1 

  

0 adsk 

     

ead,k-1 
r  k-1 

J. U pa(„1,4)paupk...1),k,, 
ipi 

(5.47) 
This result follows directly from the substitution carried out in 

adsk 
• 
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section 5.2.2. The posterior P.D.F. pa(a;l2c) of the linear model 

is given by eqn.(5.24). Therefore the numerator ,0 
k  0 	is given by ans  

0 -ansk 	ad,k 9clk 

where, from eqn.(5.47), 

k 
All eadok i=1  ad,i 

(5.48) 

(5.49) 

Thus, the analytic part of the control variate method is reduced to 

the evaluation of eqn.(5.46). We shall prove the following result: 

For the linear model (5.25) and (5.26) with Gaussian 

independent random disturbances al, 
!it  and xk  

.bacisk 	k = sk  exp(- 	) 

where for k = 1 

sk  = [(2 70m  iRki] 

Ek = (Ik 2k)TETs1  ( 4)e 

The matrix Rk  is given for k > 1 as 

Ilk =  E  v 	E w EL 4.  R 	
laT 

Dk 1C-1-  k-11k-1 -k-i-k 

and for k = 1 as 

R1 = E v D1 F x DT  1 • 
1 

(5.50) 

(5.51) 
(5.52) 

(5.53) 

(5.54) 

Proof: The likelihood function pa(xkl4) is Gaussian as the observa-

tion model (5.26) is linear and p(v) is normal. Similarly, both 

pa(41.41:1) and pa(.c.,1:112t-1) are Gaussian. Therefore the integration 



of eqn.(5.46) yields, with eqn.(5.7) and (5.26), 

- 
.°a_dsk = Pa(YitIZ

k-1 
 ) = sk exPi 

1
- (Z1c-k)T Rk

1 (
Zk-Mk))* 
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(5.55) 

The mean Ek  of this normal P.D.F. is found from eqn.(5.26) and (5.27) 

to be 

• 
	 (5.56) 

To calculate the covariance matrix Rk  we rewrite eqn.(5.26) using (5.25) 

as 

(5.57) 1(k—fikcik— )+Yklkik—i )+ik• 
Therefore 

Bk = Evk Dk Ewk  Dk kAk-1B 
DT 

k-1 le 

From eqn.(5.39), recursion (5.58) starts at time k=1 with 

R1 = Ey +D1 E DT  E
x 1 • 1 

k Finally, as zic  is an m-dimensional vector and pa  zic  z 1  

Gaussian P.D.F., the constant sk  is given by 

sk = 	(2 Tom 	r-112  . 

(5.58) 

is a 

(5.59) 

The Monte Carlo estimate ikkof the conditional mean E[ zit] 
el•• 

is given by the ratio (5.18). The numerator 0 k  is computed with -n$  

eqn.(5.44) and the denominator 0d k  with eqn.(5.45). 

A Monte Carlo estimate Mkik of the matrix of second order moments 

is given by 

A 

(5.60) 



and 

uu Pa(Iir(4).)] 	0(2) 
i=1 	3 	ansk 
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where 

= N-1  721 4)j(k)j 	P(zil(k J) 
ipi 

0nsk 
(2) 	= ( kik 4. jaidk akik )ead. a 

The denominatorgdsOs given by eqn.(5.45). The meaning of (2sidj  and 

(4)j  is explained in the context of eqns.(5.44) and (5.45). 

5.4.3 The computational procedure  
1. Basic assumptions 

In order to apply the Monte Carlo solution for estimating the 

conditional mean the following assumptions must be satisfied: 

(Al) The statistical properties of the random signals describing 

the initial condition x1'  the input noise w and the 

observation noise v must be known. For unknown system 

parameters the prior P.D.F. must be known. 

(A2) The plant and observation equations are assumed to be 

given in the form of (5.7) and (5.8). The structure of 

these equations must be known but they may contain unknown 

parameters. 

The discussion of a control variate estimator for the conditional mean 



183. 

leads to the following computational procedure. 

2. Observation sequence  • 
Generate an artificial observation sequence z by solving eqn. 

(5.7) for one particular random initial condition (iEl)i  and noise 

sequence (Wk-1).. Add the observation noise vv to the ideal system 

response 14.(.1k, k) as indicated by eqn.(5.8). 

3. Analytic approximation  

(1) Set the time argument k=1 and compute the constants c 

and D1  of the linear observation model (5.26) by means 

of eqn.(5.33). 

At time k, compute the conditional mean 2 /  and the co-

variance matrix E k  by means of eqn.(5.37) and the para-

meters 2.k  and Bk  of the linear dynamic model (5.25) by 

means of eqn.(5.52). 

Set k=k+1. If the end of the observation sequence is 

reached - stop. Otherwise compute u 	d I 	by 
-kik-1 	kik -1 

means of eqn.(5.36). Compute 2k  and Dk  by means of eqn. 

(5.33) and return to step (2). 

4. Sampling procedure  

(1) 	Draw the j:th initial variate (x
1  )j 

 from p(x1 
 ) and the 

j:th random sequence (wk-)j  from p(11k). Using these 

random variables in eqn.(5.7) the resulting j:th solution 

is (xk)i. 

(2)  

(3)  
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(2) Use the j:th realization (x
1  w

ic.1 )
j 
 of step (1) to 

simulate the linear model (5.25) in order to obtain (x k).. 

(3) Repeat steps (1) and (2) N times and estimate the numerator 

k by means of eqn.(5.44) and the denominator 0dk by 

means of eqn.(5.45). 

(4) Compute the conditional mean estimate lidk using eqn.(5.18). 

Its sampling covariance matrix can be obtained from eqn.(5.20) 

when all quantities are replaced by their estimates, as 

indicated in eqn.(5.21). 

5.4.4 Linear multi-stage filtering  

As mentioned before, a useful requirement for a Monte Carlo 

procedure is that it should give zero sampling variance when applied 

to linear systems. Although this property is not important in view 

of the solution of the linear filtering problem, it makes it plausible 

to expect small sampling variances when such a procedure is applied to 

nearly linear systems. We have the following result: 

For a linear system 

Ak 	14c 

xic 	 Xit 

(5.61) 

the control variate method based on eqn.(5.44) and (5.45) 

yields a zero sampling variance for the estimate asio:of the 

conditional mean E [Eiclzc] 
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For the proof of this result we first apply the statistical linear-

ization procedure of section 5.4.1 to eqn.(5.61). Using eqp.(5.32) 

Where the expectation is w.r.t. p (25:i2c) of eqA.(5.24) we find 

• k = Ak vkik 
	 (5.62) 

and froth eqp.(5.34), 

Bk = Ak • 
	

(5.63) 

Similarly, from eqn.(5.33) where the expectation is w.r.t. pa 
f *

ki 
I k... 1 

kz 	) 

of eqn.(5.27), we find 

= 	C k k -1 ' 
	 (5.64) 

and from eqn.(5.35), 

D 	= 	Ck . 
	 (5.65) 

The substitution of the values from eqns.(5.62) ... (5.65) in eqns. 

(5.25) and (5.26) yields a linear model which is identical to the 

original system (5.61). That is, p(xilk) E pa(yi14) for 

i=1,2,...lk. Also because of this property the simulation procedure 

yields two identical random samples fxk lj  and lx*Ic lj  if the same 

initial variate (x1  )j  and the same random sequence (W
k-1 ) is used 

for the original system (5.61) and the model (5.25) and (5.26). 

Therefore, the differences in eqns.(5.44) and (5.45) are identically 

equal to zero. This implies that the random part of these estimators 

is entirely removed, yielding zero sampling variance for ,@ k 
	k 0 	and edsso 

and therefore also for Mr =ilk • 
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5.5 Approximate nonlinear filtering equations  

The statistical linearization procedure used in the previous 

section yields as part of the nonlinear filtering solution a linear 

model. This is a very attractive feature when we come to use the 

control variate method to estimate the conditional mean. There are, 

however, other approaches to approximate nonlinear filtering. They 

yield sets of equations for the mean and the covariance matrix of the 

conditional distribution for Lic  - given the sequence of observations 

X * It is the object of this section to establish a Monte Carlo 

sampling procedure which: 

(1) makes use of such nonlinear filtering equations in order to obtain 

an estimator with a reduced sampling covariance matrix compared with 

crude Monte Carlo methods; 

(2) can be used to establish the performance of the approximate non-

linear filtering equations e.g. with respect to accuracy without an 

inordinate large number of simulations. 

5.5.1 Nonlinear filtering equations for the conditional mean and  

covariance matrix  

As already mentioned in chapter one, the research into the non-

linear estimation problem has quite naturally taken two avenues of 

approach. Much research effort has been expended in the area of 

continuous-time systems(13) 
	

Under the white noise assumption, a 

rigorous development of approximate filter equations is possible(11) • 
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On the other hand, however, this assumption complicates the inter-

pretation of the mathematical results in the light of reality. We 

therefore restrict our discussion to discrete-time systems. 

In this field there are two distinct contributions. 	Cox(2o)  

developes a dynamic programming formulation of the estimation problem 

using the assumption that only an estimate of the present state is 

of interest. Indeed, it should be noted that the mode of the joint 

P.D.F. for a sequence of states does not correspond to the mode of 

the marginal P.D.F. for the state at a particular time k unless the 

system (5.1) and (5.2) is linear and is disturbed by additive Gaussian 

white noise. The solution developed by Cox leads to a discrete-times  

nonlinear two-point-boundary value problem which is solved by the 

technique of discrete invariant imbedding. A similar approach is 

proposed by Detchmendy and Sridhar(22) for the continuous-time case. 

Their results are extended to discrete-time systems by Sage and 

Masters(21).  Although the solution does not require detailed 

statistical information concerning system disturbances, it is very 

similar to the solution of COx. 

The more recent work by Aoki(23) and Sorenson(24) is a general-

ization of linear Kalman-Bucy filtering theory(4'5). The central 

k idea is to approximate the posterior P.D.F. p(kiz ) by a Gaussian 

pa(412t). We shall follow this second approach in some detail 

as it offers a feasible alternative control variate method to that one 

derived in the previous section. 

Throughout this section 5.5 the notation is to be interpreted in 
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the same way as that of section 5.4 but all the mathematical definitions 

are distinct. 

5.5.2 An approximate Gaussian posterior P.D.P. Pa(4I2c) 

Let us again consider a system of the form of eqns.(5.7) and 

(5.8) and assume that IL, the plant eqn.(5.7) has at least continuous 

first derivatives and EL, the observation eqn.(5.8), has first and 

second order derivatives w.r.to aie  An approximate posterior P.D.F. 

pa(412c) is postulated to be Gaussian and defined by 

Pa(41;1 I2 	= n(4+1 ;  401 Ik+ 1' 	4E+1 ). 
	 (5.66) 

Based on eqns.(5.7) and (5.8), the mean !Ave, ik+i  and the covariance 

matrix Eloi 1101  are given by the following result, obtained by 

Sorenson(24): 

11/2011k4-1  k+1 
-1 

Ik+1 Ik+1 Clk+ 1 E vk 
r 

 lk+1 a(  +1 k+ 1)] 

= f(11/2clk k)  

E k+111c+122 [(I v/ 	FkIki 

m 

GITrei 	 k+  

(i) uk+  1  (i) J - I  

(5.67) 

where u (i) are the components of the vector gkil  , defined by 

4c4i 
—1 

° vk [ zic+i —ekfi k+1) I • 	 (5668) 

In addition to the notation introduced in chapter one we define the 



following abbreviations for the first partial derivatives 
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Fk 

a f(40 k) 

 

Gk+1 

a is(k+i  2  k+ 1 ) 

a  

 

a k  

 

44-1 =L(Eklic ,k) 

      

      

Let us denote the i:th component of the observation equation g, at time 

The second partials of the i:th component 

a  km a  4c4-1 
k+1 1114k k)  

k+1 by g 	k+1 )4). 

of &are denoted by 

a2g((ko, 	i) 
J k+ 1(i) = 

The recursive eqns.(5.67) start at time k =1 with 

mx  E G1 	"9 
E 	- dee  1 )) - 	1f1 	VI  

ip 	1 GiT  E1 G. - 	Ji  (i) 	(i)] -1  

where 

1 

(5.69) 

- 	, 1 )). 	(5.70) 

The proof of this result is given by Sorenson( 24). It is based 

on the expansion of the exponents of p(xklk) and p(isialk_i ) into a 

second order multidimensional Taylor series. The function f is 

expanded around 410: whereas g. is expanded around f(pkik ,k). 	The 

scalar version of this procedure has been used in section 4.3.4 in 

connection with importance sampling. 

Commenting on eqns.(5.67), we see that, in contrast to linear 
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Kalman-Bucy filtering theory(45)s  the covariance matrix 	14k.  depends 

upon the measurement data. Because the plant equation f is expanded 

about the conditional mean 4cile  all second order terms from the plant 

equation are eliminated in the relation for kik. 

The recursive eqns.(5.67) for the mean 4c4c and covariance matrix 

Eitik:  of the approximate posterior P.D.F. provide a first step towards 

a control variate method. We now have to find a linear control 

variate model which must be a close approximation to the nonlinear 

plant (5.7) and observation equation (5.8). Unfortunately it is not 

possible to proceed directly from the conditional mean 4 :  and co-

variance matrix 1:41:of eqyl.(5.67) to a corresponding linear re-

presentation of the form 

(5.71) 
Pic(; 	2k1k )  • 

The coefficients Acs  Be  pic  and ric  have to be evaluated by means of 

eqn.(5.32) and (5.33). In all four expressions the expectation 

B[•] is now performed w.r.t. the approximate Gaussian posterior 

P.D.F., defined by eqns.(5.66) and (5.67). This yields 

= E 	k) Ek 	Bk = aakik 
	(5.72) 

and 

a=2k = 	k) 	; Pk 
	(5.73) 

As a consequence of eqn.(5.72) and (5.73), the mean kik  and co-

variance matrix Pkik  of the posterior P.D.F. belonging to eqn.(5.71) 



= .14 tr pack  mi  i=1 
(x41c ) dx.k.  

adok (5.75) 
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will differ from (5.67). This point emphasizes the suitability of 

the statistical linearization procedure of section 5.4 where the 
coefficients Ek, Bk, 2k  and Dk  are obtained as part of the approximate 

filtering equation. In the present approach, however, they are 

introduced only for the development of the control variate method and 

are not part of the nonlinear filter approximation. 

5.5.3 An alternative control variate method  
As the linear model (5.71) and (5.72) is obtained in a different 

,way to that used in section 5.4, we have to modify the amelytic solu-
tion for 2ansk  and 0ad,k, defined by eqns.(5.42) and (5.43), to 

P  

_
a( 
 * *k *k  

i= 1 Y-3-1 k) Pa4  ) dx  
and 

0 --ensk (5.74) 

The evaluation of these integrals proceeds again in a similar way to 

that considered in section 5.4. The denominator 
'aad,k of Bayes' 

theorem (5.6) applied to the linear system (5.71) is an m-variate 

Gaussian P.D.F. of the form 

	

ad,k4.1 	Pa(lk+ 1)21)  = sk+1 ems(-  2 Elk+1) 
	(5.76) 

where the exponent E 1  is no longer given by eqn.(5.52) but found from 

eqn.(5.71) as 

Elcvl 
	( 
	

- 40-1)T  'all (ziel 
and . 

sk1 
	= 	(21t)ni  I 	F112  . 
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The mean 2k4.1  and the covariance matrix lik41  are directly obtainable 

from eqn.(5.71) and (5.76) as 

40.1 k+1 Dk+1 (kr Bk(4k 	) 12101 Ik+1)  

(5.77) 
T T Rk+i  = Dk+1  Bk  Pkik  Bk  Dk+1  + Dk+i  T Dk+1   

+ 
 v k. 

These recursive equations start at time k=1 with 

c 	+ D (m - a  ) -1 	-ax 
P1  1 Ex D1  + E

;91 

(5.78) 

As already mentioned, the mean kik  and the covariance matrix 

Pkik of the posterior P.D.F. of the model (5.71) differ from the non-

linear filter approximations 40  and E kik. This is the main differ-

ence to the control variate method proposed in section 5.4. Applying 

linear filtering theory to eqn.(5.71) yields for kik and PkIk 

	

41 Ik+1 	Bk (kik kik) Pktk Dk Ivk (Lic—qs)  
(5.79) 

	

P1E41 Ik+1 	(( C 	Bk  P BT)- 1  nT 	
- 1 

k 	k • k  

These recursive equations start in the usual way at time k-1 from 

m =mPD -1 + E 	(E . - m ) -111 -x 111 1 vi  1 	 1 

P111 = I I-  
r„ 

X  
-I 

+ DI 
T 	

V 
-1 	] - 1. 
1 

. 
1 

(5.8o) 

This excursion into linear filtering theory is entirely dictated 

by the requirement for the control variate method that eqns.(5.74) and 
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(5.75) have to be evaluated analytically. As eqns.(5.79) and (5.77) 

define the solution for 	ad;' we have, as in section 5.4, 

0adsk i=2 
Pa(Zilt-1  )13a(Z1)  = Tr 	adsi 	(5.81) 

i=1 

for eqn.(5.75) and finally 

-ansk a:  kik eadpk 
	 (5.82) 

for eqn.(5.74). 

The estimators for 8 k  and 9d k are again given by eqns.(5.44) -no  

and (5.45) but 0 dsk 
 and 0 	are now given by eqns.(5.81) and (5.82) a 	-an,k 

respectively. 

5.5.4 The computational procedure  

Compared with section 5.4.3, we have to change the basic assump- 

tions and the analytic approximations as follows. 

1. 	Basic assumptions 

In addition to the requirements laid down in section 5.4.3 we 

need the conditions: 

(1) The plant equation f must have at least continuous first 

derivatives and the observation equation Eat least continuous first 

and second order derivatives. 

(2) As the defining equation for the approximate conditional co-

variance matrix Z kik  contains negative terms, the present control 

variate method is only feasible if this matrix is positive definite. 
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3. Analytic approximation  

(1) Evaluate the approximate conditional mean 	and covariance 

matrix Eklk  usingeqn.(5.67). 

(2) Compute the parameters 2k, B, 2k  and Dk  of the linear model 

(5.71) with eqns.(5.72) and (5.73). 

(3) Compute the mean 	and covariance matrix 114k0  eqns.(5.79), 

specifying the posterior P.D.F. of the model (5.71) in order to compute 

08.tisk with eqn.(5.81) andanok  with eqn.(5.82)0 This requires the 

evaluation of 2k  and Rk  of the m-variate Gaussian P.D.F. '5adok Of  

eqn.(5.76) using eqn.(5.77)0 

The remaining operations 'observation sequence' and 'sampling 

procedure' are the same as in section 5.4.3. 2 and 4. 
In chapter six which follows the nonlinear filtering techniques 

of this chapter for the multi-stage case and of chapter four for the 

single-stage case are applied to a variety of examples. The numerical 

study produces a number of interesting results. 
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CHAPTER SIX 

NUMERICAL EXAMPLES OF NONLINEAR FILTERING TECHNIQUES 

6.1 Introduction  

The purpose of this chapter is to demonstrate how the Monte 

Carlo techniques developed in the previous two chapters can be 

employed for practical solutions of nonlinear single-stage and multi-

stage filtering problems. 

Section: 6.2 is devoted to the memoryless case where we are given 

only one observation z. In order to avoid duplication we discussed 

the control variate methods in chapter five only. But these techni-

ques can of course also be applied to the single-stage case. We 

will do this in order to compare them with importance sampling. 

In subsequent examples contained in sections 6.3 and 6.4, we 

consider the problem of scalar multi-stage filtering. There are two 

justifications for this study: 

(1) It provides an illustration of how variance reduction techniques 

improve a crude Monte Carlo estimator. 

(2) The Monte Carlo approach can also be viewed as a method for 

improving approximate nonlinear filtering equations. 

Finally, the multi-stage filtering problem is solved for a multivariate 

system in section 6.5. This application shows how our methods can 

be used for the state variable estimation problem when some of the 

states are system parameters. 
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6.2 Single-stage nonlinear filtering  

6.2.1 Purpose and procedure  

In this section we consider several scalar observation systems 

of the form of eqn.(4.6). In order to compare various solution 

procedures, we make the following assumptions with respect to the 

statistical properties of the prior P.D.F. p(x) and the observation 

noise P.D.F. p(v): 

p(x) = n(x; 1.0, 0.5) and p(v) = n(v; 0.0, 0.2). 	(6.1) 

The observation y is assumed throughout section 6.2 to be given as 

= 1.3. 

Our first aim is to obtain results from the crude Monte Carlo 

estimator and then, subsequently, to improve these estimates by means 

of variance reduction techniques. Although the two procedures, 

importance sampling and the control variate method, are based on a 

similar concept they yield considerably different results. The numeri-

cal investigation reveals the reasons why this discrepancy arises. 

The notation used in this section is compatible with that of 

chapter four. The Monte Carlo estimate of the conditional mean 

E[xly] , denoted by xy, is computed with a random sample Ix of 

size N =100. 	The sampling variance var(Xy) has to be replaced by 

its estimate var(X ) as discussed in the context of eqn.(4.19). The 

approximate bias, denoted by xbiass  is defined by eqn.(4.17). An 
A A 

estimate XDias  is obtained if var(0d) and cov(ens d) are replaced 

by their estimates. 

All the reported results are ensemble values. That is, the 
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Monte Carlo procedures for estimating 
XY 	Y 

$ var(X 	o ) and 	
are 

repeated twenty times and x $ ver(x ) and X.D 	denote the ensemble 
ias 

averages of the outcomes of the Monte Carlo computations. 

The comparison with the crude Monte Carlo estimator is based on 

the variance ratio 	defined by eqn.(2.71). In addition, we 

introduce a bias ratio 'ti bias  which is defined in a similAr way by 

 

(Bias)method 1 (6.2) bias (Bias)method 2 

nrthermore$  for the comparison with approximate analytic solutions, 

we define the approximation error e by 

e = I E[x1Y] 	 (6.3) 

where µ is the analytic approximation of the conditional mean given by 

eqn.(4.58) for importance sampling and by eqn.(5.37) for the control 

variate method with k=1. Since E(xly] is unknown we replace it by 

the ensemble estimate x of the Monte Carlo solution. Thus, the 

ensemble value e of the error e is given by 

IX 	P le 
	 (6.4) 

In order that the error estimates e based on eqn.(6.4) are meaningful 
ob. 

the sample size N must be big enough such that x is a close approxi-

mation
A 

 to E[xly] where the bias term xuas  can be neglected and the 

sampling error of x is small compared with e. 
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6.2.2 The linear case  

We start with a linear observation system of the form 

(6.5) 

The conditional mean and variance of the posterior P.D.F. can easily 

be derived analytically as mentioned in section 4.3.2. Indeed, the 

optimal sampling P.D.F. h°(x) is found to be 

h°(x) = p(xly) a  n(x; 	) 	 (6.6) 

where, from eqn.(4.38) and (4.39), the mean µ and the variance E are 

given by 

µ = 	1.21429 	E = 0.14286. 	(6.7) 

The crude Monte Carlo estimator (4.15) using (4.12) and (4.13) yields 

the estimate X for the conditional mean E[xly]. The sampling 

variance var(Xy) and the bias xbias  are computed by means of eqns. 

(4.19) and (4.17) respectively. Using a sample of size N=100 the 

repeated application of the Monte Carlo procedure yields the following 

ensemble estimates: 

IMO 

xy  = 1.21285; v.i.s1r(Xy) = 1.2909.103; xbias=  - 1.068.103  (6.8) 
^ 

Thus, the difference between x and µ is less than one standard 

deviation fvar(X ) 112. Assuming x is a close approximation to 

E[xly] we have from eqns.(4.17), (6.7) and (6.8) xbias  = -1.44.10-3. 

Furthermore, the sampling variance of the conditional mean is given 

by var(Xy) = N 1E where I is the conditional variance of p(xly). 
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Then, from eqn.(6.7) we have var( ) = 1.429.103 as compared with 

v;tr(X ) = 1.291.1e3  of eqn.(6.8). This comparison shows that the 

evaluation of egn.(4.17) for estimating the bias xbias  and the evalua- 

tion of eqn.(4.19) for estimating the sampling variance 	) yield 

values which are consistent with the true values. 

Using eqn.(4.28) together with the antithetic variate method for 

the numerator Eia  in eqn.(4.48) yields a zero sampling variance estimator 

fortheconditionameanx. 7' see sections 4.3.2 and 3. 

6.2.3 Nonlinear observation system I  

Next, we consider the observation system 

y = 2 Tanh(x) +.v 	 (6.9) 

and begin with the-evaluation of the parameters µ and E for the 

approximate importance function h(x). Using the results of section 

4.3.4 we have, from eqns.(4.58) to (4.60), 

h(x) = n(x; µ, E ) 	 (6.10) 

where 	p = 0.7714 

E = 0.2439. 

Table 6.1, which follows, contains the ensemble estimates 
Y  
x of 

the conditional mean E[xiy], of eqn.(4.8), the ensemble estimates xbias  

of the bias xbias  of eqn.(4.17) and the ensemble estimates var(xy) of 

the sampling variance var(Xy) of eqn.(4.19). 	We set N=100 and use 

Method A : crude Monte Carlo method based on eqns.(4.12) and (4.13). 
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Method B : importance sampling for the denominator 0d  using eqns.(4.60) 

in (4.28) together with the antithetic variate method for 

the numerator On  using eqn.(4.60) in (4.61). 

Method C : control variate method based on eqns.(5.44) and (5.45) with 

k= 1 	The exponent of the approximate likelihood function 

pa(ylx) is given by eqn.(4.52) and pa(xly) is set equal to 

h(x) of eqn.(6.10). 

Method 
A 
x 
Y xbias 

A 	A 	. 
var(x 

Y
1  

A 1.0577 1.941.10-3  1.976-10-3  

B 1.0243 5.975.103  5.536-10-3  

C . 1.0613 2.049-1.04  3,834-104  

Table 6.1  Sampling estimates for the conditional mean B[xly =1i3) 

These results show that method B does not improve the accuracy 

of the estimates for the conditional mean as the sampling variance of xy  

is increased - compared with method A. On the other hand*  the control 

variate method yields for the variance ratio 11 v and the bias ratio 

bias'  respectively 

v = 9.5 	Ti bias = 5.1 
	 (6.32) 

To explain this result we plot in fig.6.i the nonlinear function 

g(x) = 2 Tanh(x) together with the difference d*  defined by 

d = p(ylx) - pa(Yix) 	(6.12) 



1.5 " 

1.0 

.5 

-.5 -1.0 
.0 1.5 	2.0 

Fig. 6.1  Ratio r, and difference d 
between true and approximate likelihood 

P.D.F. for g(x)= 2 Tanh(x) vs. x. 

1 	nonlinear function g(x) 

2 	ratio rx 4.0 

3 	difference dx 0.4 
N O 	0 0 
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where 

p(ylx) = const. exp 1 [3,  - g(x)12  ) 
2 	E 

• (6.13) 

For the P.D.F. pa(y(x) we use the second order expansion (4.52) as 

exponent in eqn.(4.51). Finally, we plot the ratio r defined by 

r 
214&111°.  Meg 

	( lx 
 

. (6.14) 

We recall that the fixed observation is y=1.3. 

The following observations and conclusions can be drawn from 

fig.6.1. 

(1) Near the origin x=0, the function g(x) is almost linear but the 

majorityavariatesx.drawa from p(x), eqn.(6.1),or h(x), eqn.(6.10), 

falls into the nonlinear part of the function g(x). 

(2) The ratio r of eqn.(6.14) used for importance sampling method B 

stays close to unity around xF1.0 but differs considerably outside the 

interval 0.5 44 x 4; 1.5. 

(3) The variations of the difference d used for the control variate 

method C remain close to zero and do not exhibit the unbounded variations 

of the ratio r. 

(4) As a consequence of this behaviour, it is plausible to expect 

better estimates from the control variate method than from importance 

sampling (see table 6.1). 
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6.2.4 Nonlinear observation system II  

The second nonlinear example is intended to show the difference 

between the statistical linearization procedure of section 5.4.1 

(with k= 1) and the linearization of the exponent of the likelihood 

function p(ylx) of section 4.3.4 in order to design two control variate 

estimators. Let us assume that the nonlinear transformation g(x) 

of eqn.(4.6) is given by 

	

y = 1.3 (x - 1) - 0.2 	- 1)3  + v 

= 0.7x + 0.6x2  - 0.2x3  - 1.1 + v. 	(6.15)  

The linearization of the exponent of p(ylx), described in section 

4.3.4, to obtain an approximation h(x) to the optimal importance sampl-

ing P.D.F. h°(x) yields with eqns.(4.58)....(4.60) 

h2(x) = n(x; p, E ) 
	(6.16) 

where 

µ = 1.8086 and 	E . 0.0957. 

As mentioned in section 4.3.4, the function h(x) is set to be equal to 

the approximate posterior P.D.F. pa(xly). 

The statistical linearization procedure described in section 

5.4.1 can of course also be applied to the system (6.15) if we set k=1 

The linear model (5.26) is found from eqn.(5.33) to be 

y = 	1.9(Xc  - 1.) + v. 	(6.17) 

Using this model to compute the approximate posterior P.D.F. pa(xly) 

of eqn.(5.24) yields for the mean p and variance E (obtainable from 
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eqn.(5.37) with k =1 ) the values 

µ = 1.6159 	and 	E = 0.0498 . 	(6.18) 

In order to establish the accuracy of the two approximations of eqns. 

(6.16) and (6.18) for µ, we apply the following Monte Carlo methods: 

Method A : crude Monte Carlos  section 4.2. 

Method B importance sampling using eqn.(6.16) in eqn.(4.28) for 

the denominator ad  and using (6.16) in eqn.(4.61) for the 

numerator an. 

Method C : control variate method of section 5.4 for k=1 using eqn. 

(5.44) for An  and (5.45) for 6d.. The model (6.17) is used 

for pa(y1x). 

The results shown in table 6.2 are ensemble averages over twenty Monte 

Carlo experiments each based on a sample of size N = 100. The ensemble 
••••• 

values var(x ) and x. .°las  are computed as discussed in section 6.2.3. 

Method 
... 
A 

x 
7 

xbias  1 v 1 
bias 

A 	A 

var(x7) 

A 1.9051 5.331 10-.3  1.117 10-2  - - 

B 1.9032 2.058 10-3  5.017 10-3  2.6 2.2 

C 1.8974 1.903 10-4  4.839 10.4  28.0 23.7 

Table 6.2 Estimation of conditional mean for nonlinear system II 

using three different Monte Carlo methods. 

In fig. 6.2 we plot the estimates of method A and C together with 

their 950/0  confidence intervals which are approximately given by two 
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v=1.6159 

eqn.(6.18) 

Method C 

1,6 

µ =1.8086 

eqn.(6.16) 

Method B 

1.7 
	

1.8 

95 % confidence interval 

#/of xy  using method A 

	

6 	1  
110,  

	

C5 	2.0 	 2.1 

95 % confidence interval 

of x using method C 

Fig. 6.2  Comparison of Monte Carlo estimates with analytic 

approximations. 

A 
standard deviations around the estimated mean x 1  i.e. x var(x /I 

— 21  
The conclusions to be drawn from this example are: 

(1) The control variate method again gives results superior to those 

obtained from the importance sampling method B and the crude Monte Carlo 

method A. Indeed, the accuracy of method B compared with method A is 

only moderately improved because the ratio r, defined by eqn.(6.14), 

shows unbounded variations as already indicated in fig. 6.1 for system 

(6.9). 

(2) The 95% confidence limit of the crude Monte Carlo estimate x 

excludes the approximate mean µ of eqn.(6.18) but it is not possible to 

estimate the approximation error em 1E[xly] - µI when µ = 1.8086 (see 

eqn.(6.16)) because var(xy) of method A is too large. 

(3) The sample size N of the crude Monte Carlo method A has to be 

increased considerably before we obtain a reliable estimate of the 

approximation error es  defined by eqn.(6.3). On the other hands  the 

control variate method C yields a sampling error which is significantly 

0. less than the estimateilapproximation error e of eqn.(6.4). As the 95 /0 
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confidence interval of x
'

computed by means of method C, excludes 

both approximations of eqns.(6.16) and (6.18) we are able to decide 

which approximation is better suited for the problem at hand. Since 

the error estimate ec (using eqn.(6.18) for µ) is larger than the 
WEI 

error eB (using eqn.(6.16) for µ), we conclude that eqn.(6.16) yields 

a better approximation to the conditional mean than eqn.(6.18). 

(4) A comparison between the Monte Carlo estimates derived for the 
two observation systems (6.9) and (6.15) shows that the accuracy im-

provement of the proposed control variate method depends on the type 

of nonlinear function g(x). In the case of eqn.(6.15) all the 

derivatives of g(x) of order higher than three are equal to ze:ro 

whereas in eqn.(6.9) this is not the case. As the proposed control 

variate method C is a second order approximation, (the mean ti depends 

on the variance II), it is plausible that the results for system (6.15) 

are more accurate than those for system (6.9). 

6.3 Linear plant with a nonlinear observation system  

6.3.1 Purpose and procedure  

In order to proceed to the nonlinear multi-stage filtering 

problem, let us now consider the following scalar system 

	

3c1cf 1 = xlc we 
	 (6.19) 

The state is to be estimated from measurement data Yk  that are related 

to the state by 

	

+ vk . 
	 (6.20) 
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The initial state xi  and the plant and measurement noise sequences 

wk  and v
k are Gaussian variates possessing known P.D.F. specified by 

p(x1) = n(xi  ; 1.0, 10 3) 

p(wk) = n(wk; 0. 	, 10-2) (6.21) 

p(vk) = n(vk; 0. 	, 10 1). 

The present example can be interpreted as a parameter estimation problem 

and has originally been studied by Denham and Pines(55) and later by 

Sorenson(24) to obtain approximate nonlirlear filtering equations. They 

developed digital computer programs using crude Monte Carlo techniques 

to compare several different estimation policies. The main object of 

this section is to show that variance reduction techniques provide 

powerful simulation procedures for which it is no longer true that in 

order to compute meaningful sample means and variances the number of 

runs must be inordinately high. 

The results summarized in tables 6.3 	6.5 are ensemble averages 

over ten realizations of the basic sampling experiment each of which 

is based on a sample of size N=500. Computing the estimates of the 

conditional mean B[xkly:k]I the sampling variance var(xkik) and the bias 

we compare the following methods. 39Diassk 
Method A : crude Monte Carlo method as described in section 5.3; 

see table 6.3. 

Method B :-. control variate method using statistical linearization as 

described in section 5.4. The analytic approximation 

yielding µkik  and Ekik  is based on eqns.(5.37) and 

(5.38); see table 6.4. 
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Method C : control variate method using the set of approximate 

nonlinear filtering equations (5.66)...(5.70); see 

table 6.5. 

The observation sequence y k  is assumed to be given by 700.95 

for k =1,2....;t0. The variance reduction factor 11 v  measures the 

accuracy improvement of methods B and C over A. The sample size N 

is chosen as N=500 such that the control variate methods B and C yield 

estimates xkik  whose sampling error is less than the approximation error 

of the analytic solutions. Similar  to eqn.(6.3) we define the approxima- 

tion error ek by 

ek 	= IE xkl yk 	- 	I 	(6.22) 

Assuming the ensemble value xklk of the Monte Carlo estimate3xoc is a 

close approximation to EixklYk) the ensemble estimate ek of the error 

ek is given by 

= I xkIk
Pkik • 
	 (6.23) 

We use the notation ek B and ek ,C  to indicate whether 114:is the 

analytic approximation of method B or C. 

In order to verify the expression for the sampling variance 

var(xlk ) of eqn.(5020) we compare the values based on the evaluation 

of eqn.(5.20) with those obtained from the statistical analysis of the 

Monte Carlo estimates xkik 	Since the Monte Carlo computation to 

evaluate xoc is repeated ten times in order to obtain the ensemble value 

zkik  we can estimate the range s between the largest and smallest value 

of kik 	Assuming the estimates ;kik  are normally distributed, the 
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Time Obser- 

vation 
Condition- 
al mean 

Bias Sampling 
variance 

k 
- 

xklk 

- 

xbiasIk v';r(xki 	) 

r4  A
i  $

1
 d

-  U
1

 
1/40

 Cs-
 c0

 a1
  0

  
ri  

10..5  10-5  

.95 .99914 0.188 0.182 

.95 .98920 1.101 1.234 

.95 .97610 ' 1.029 1.729 

.95 .97085 0.464 2.099 

.95 .96805 -0.523 2.518 

.95 .96638 -1.033 3.082 

.95 .96111 -1.715 3.599 

.95 .96007 -2.849 4.357 

.95 .95874 -2.109 5.116 

.95 .95818 -2.601 6.415 

Table 6.3 Crude Monte Carlo method A to estimate the conditional 

mean E[xic[yk] 4 

Time Obser- 
vation 

Control Variate Method B Analytic Approximation B 

k 
5rk 

7.
xklk xbias,k TI  v Ilklk 1

14k ek,B 1";r;k)  

10-7  10-7  -2 
10 

-3 
10 

1 .95 .99899 0.001 0.001 10000 .99902 0.0962 0.033 
2 .95 .98834 0.627 0.512 2412 .99003 0.7625 1.692 
3 .95 .97681 2.235 1.363 127 .98017 1.0423 3.361 

4 .95 .96892 3.049 2.001 105 .97318 1.1442 4.251 

5 .95 .96439 2.752 2.453 103 .96892 1.1832 4.530 
6 .95 .96165 1.996 3.095 100 .96644 1.1997 4.793 
7 .95 .96017 2.263 3.839 94 .96504 1.2074 4.875 
8 .95 .95970 2.411 4.647 94 .96425 1.2113 4.554 

9 .95 .95926 4.309 6.104 84 .96381 1.2134 4.546 
10 .95 .95861 3.524 8.128 80 .96356 1.2145 4.946 

Table 6.4  Control variate method B to estimate the conditional mean 

E[xk  I y
k

] 
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Time Obser- 
vation 

Control Variate Method C Analytic Approximation C 

k Yk 

- .. 
xklk 

- 

Ccbiastk 11  v Pk! k I  kik 

- ... 
ek,C vil*I' (kik)  

r
-I

 N
 t41

 
.4.  

UN 	
t%.
 

C
O

 0
1
  0

 

107 10-7  10-2 102  
.95 .99899 0.0003 0.002 10000 .99904 0.0960 0.005 
.95 .98834 0.295 0.571 2161 .99177 0.7569 0.342 
.95 .97682 2.314 1.556 ill .98489 1.0316 0.807 
.95 .96889 3.780 2.405 87 .98043 1.1309 1.154 
495 .96456 5.061 3.036 83 .97786 1.1682 1.329 
.95 .96173 5.815 4.190 74 .97642 1.1835 1.469 
.95 .96041 6.770 5.199 69 .97563 1.1905 1.522 
.95 .95972 7.561 6.767 64 .97519 1.1938 1.548 
.95 .95914 8.382 9.065 56 .97496 1.1956 1.582 
.95 .95865 9.770 9.997 55 .97483 1.1965 1.618 

Table 6.5  Control variate method C to estimate the conditional mean 

E[xklYk] • 

range ; multiplied by an appropriate factor X (given in statistical 

tables) is a good measure of the standard error of xkle 

In table 6..6 we compare the sampling variances of method A and 

B based on equ.(5.20) with those values of the sampling variances 

obtained from the ten Monte Carlo estimates 	. Denote the range 

by 8A for  method A and ;.B  for method B. Then the alternative values 

of the sampling variances are given by (sAX)2  and (Q )2 where 

X = 0.3259 
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Time k (A 	)2  (aBX)2  var6104 v;r(ii41:)B  

105 10-5 10
-7  

10-7  

1 0.24 0.182 0.0005 0.0002 

2 0.582 1.234 0.923 0.512 

3 1.378 1.729 0.942 1.363 

4 1.244 2.099  1.801 2.001 

5 0.950 2.518 3.762 2.453 

6 1.141 3.082 2.450 3.095 
7 1.757 3.599 4.928 3.839 
8 3.526 4.357 3.610 4.647 
9 5.984 5.116 5.251 6.104 

10 5.512 6.415 6.914 8.128 

Table 6.6  Sampling variances for 	obtained from statistical 

analysis and from the evaluation of eqn.(5.20). 

The results in table 6.6 show that the evaluation of eqn.(5.20) gives 

estimates of the sampling variance of X44:  which are consistent with 

those based on the statistical analysis of the Monte Carlo estimates 

ioc and hence it is plausible to rely on eqn.(5.20). 

In fig. 6.3 we plot the sampling errors [v;a*r(xki) ] 1,/2  of methods 

A, B and C together with the approximation errors eklB  and ekoc  

defined by eqn.(6.23), over the time interval considered. 

Finally, in table 6.7 we summarize the Monte Carlo estimates of 

the second order conditional moment Micik  using the control variate 
11, 

(2) changed whereas the estimator for the numerator 021,1c  is given by eqn. 

The main purpose of estimating the second order moment is to 

method B. The estimator (5.45) for the denominator 0c13 remains un- , 

(5.60). 
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Sampling errors using: 

1 	crude Monte Carlo method A 

2 	control variate method B 

3 	control variate method C 

Approximation errors of nonlinear filter equations using the analyti 
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4 	method B 	- -e3- — - 
c 	method C 

- --X- - 
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31 k ; 
MkIk Mkik 

(2) 
k var(Mkik ) 

10-6 10-2  

1 .95 .99893 .0001 .99708 0.185 
2 .95 .98444 .1858 .97254 1.190 
3 .95 .96469 .4571 .95031 1.438 
4 .95 .95055 	. .6486 .93564 1.491 
5 .95  .94223 .7956 .92696 1.527 
6 .95 .93716 1.0188 .92202 1.514 
7 .95 .93434 1.2953 .91923 1.511 
8 .95 .93349 1.5754 .91767 1.582 
9 .95 .93263 2.0696 .91679 1.584 
10 .95 .93146 2.7986 .91630 1.516 

Table 6.7, Control variate usthod B to estimate the conditional 

21 k second order moment Etxk(y J. 

establish whether there exists an accuracy improvement for our Monte 

Carlo approach compared to the approximate analytic nonlinear filter-

ing method. The descriptions of the P.D.F. involved and the sample 

size are the same as those previously used for estimating the con-

ditional mean. The linear model allows us to compute the conditional 

2 second order moment, denoted by Us  as M lt = E kik 
.„

PI* 	The  
77( ensemble average of the approximation error ek2)  shown in table 6.7 is 

defined as the difference between the Monte Carlo estimate Mkik of the 

second order moment and the analytic approximation Mk1k. 
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6.3.2 Observations and discussion  

Several conclusions can be drawn from the numerical results of 

section 6.3.1. 

(1) The crude Monte Carlo method provides a simple sampling technique 

for the nonlinear multi-stage filtering procedure. The result of 

eqn.(5.20) is verified in that the magnitude of the sampling variance 

based on eqn.(5.20) is consistent with the value we obtain from a 

statistical analysis of ten Monte Carlo estimates 3cidic . The size 

of the approximate bias xbiaspic  obtained from evaluating eqn.(4.17) 

at each time k, is comparable with the sampling variance var(&lk  ). 

We can therefore neglect the bias compared with the sampling error for 

the sample size chosen. 

(2) Both control variate methods considered improve the crude sampling 

method significantly. Although the variance reduction factor 11 v  

decreases as the time k increases, the rate of change in 11 v is large 

only for the first two iterations. 

(3) From fig. 6.3 it becomes apparent that method B yields a smaller 

sampling error than method C for estimating the conditional mean. This 

behaviour can be explained from the approximation error, also shown in 

fig. 6.3, this being considerably larger for method C than B. But the 

difference between the sampling errors of methods B and C is much 

smaller than the difference between the two approximation errors. 

(4) Moreover, it can be seen from fig. 6.3 that the combination of 

sampling techniques and analytic approximations yields a procedure which 

improves the accuracy of the previously derived nonlinear filtering 
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solutions. Without an excessively large sample size N it is possible 

to decide that approximation B is better suited than method C for 

the problem at hand. 

(5) Based on the numerical evidence of tables 6.3...6.5 and fig.6.3, 

it is clear that method B is well suited to solve the problem posed in 

section 6.3.1. This conclusion is supported by the results of table 

6.7. Again the Monte Carlo solution for the estimation of the 

conditional second order moment is about an order of magnitude more 

accurate than the analytic approximation. 

6.4 Nonlinear dynamics and nonlinear observation system  

6.4.1 Purpose and procedure  

While the example of the previous section 6.3 is a constant 

parameter estimation problem:  the following scalar example represents 

a true multi-stage filtering problem. Let us consider the system 

xk+i  = xk  - 0.2 xk + 
wk 
	(6.24) 

where the states are observed by 

Yk = Tanh(xk) vie 	 (6.25) 

The statistical information is assumed to be given by 

p(x1) = n(xl; 1.0 10-2) 

P(wk) 	n(wk; 0. , 10 )  

13(7k) = n(v • 0. , 10-1) 

(6.26) 

(6.27) 

(6.28) 
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In table 6.8 we compare the analytic approximations of methods B and 

Co  specified in section 6.3.1. The objects of this example are to 

establish which set of nonlinear filtering equations yields smaller 

approximation errors and whether method B or C is to be preferred for 

the Monte Carlo solution. 

Time Obser- 
vation 

Method B Method C 

k Yit Ijklk 1  kik P•kik Ilkik 
10-2 2  10 - 

1 1.1 1.01410 0.9827 1.01367 0.9622 
2 0.79 0.80757 1.1005 0.81281 1.0918 

3 0.68 0.70390 1.3238 0.71140 1.3145 
4 0.58 0.63162 1.5205 0.64100 1,5190 
5 0.5 0.57394 1.6911 0.58480 1.7045 
6 0.44 0.52497 1.8398 0.53681 1.8725 

7 0.4 0.48300 1.9693 0.49533 2.0214 
8 0.36 0.45072 2.0799 0.45728 2.1532 
9 0.33 0.41874 2.1742' 0.42271 2.2670 
10 0.28 0.38501 2.2535 0.38613 2.3718 

Table 6.8  Analytic approximation of nonlinear filtering equations. 

In order to establish the accuracy of these results, we now 

perform a Monte Carlo experiment. We first apply the crude Monte 

Carlo method A which yields the ensemble estimates 2 k  of the con-

ditional mean ED9c 1 ylI using eqn.(5.18). The control variate 

method makes either, use of statistical linearization of the plant and 

observation system(method B, section 5.4),or the linearization of the 

exponent of the likelihood function (method C, section 5.5). 	Table 
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6.9 contains the results of the three Monte Carlo experiments. The 

notation indicates that the results are ensemble averages over ten 

experiments each of size 11=500. 

In fig. 6.4 we plot the sampling errors of the crude estimator 

(var(xicik )A]l/2  and of the two control variate methods [var(;Ckik )B] 1/2  

and [var(xkik)c] 1/2  respectively, and compare them with the approxima-

tion error ekB  defined by s   

ek,B 
= I; ,k  - 	

kI 
	

(6.29) 

where xkikis the Monte Carlo estimate using control variate method B and 

poc is obtained from eqn.(5.37); see also table 6.a. Similarly, the 

error ekC  in the case of the nonlinear approximation of the posterior 

P.D.F. p(xklyk) by a Gaussian P.D.F. is defined by 

= k,C 	I  xklk 	Pick , (6.3o) 

but here xkik  is the Monte Carlo estimate using method C and pkilt is 

obtained from eqn.(5.67). 

6.4.2 Observations and discussion  

The scol=r multi-stage filtering problem presented in the previous 

section 6.4.1 allows us to draw the following conclusions. 

(1) 	Both control variate methods B and C reduce the sampling variance 

of the crude Monte Carlo estimator; e.g. at time k=5 by a factor 

'q v = 135 and at time k=10 by v = 58. 



Time Obser- 
nation 

Crude Monte 
Carlo Method A.. 

Control Variate 
Method B 

Control Variate 
Method C 

k 3rk xkIk xklk xkik vr(;%cklk ) v;,r(x 	) v;r(kik ) 

10-5  10-7  10-7  
1 1.1 1.01126 1.934 1.01413 0.169 1.01418 0.198 
2 0.79 0.80662 2.146 0.80823 1.604 0.80832 1.630 
3 0.68 0.70567 2.578 0.70545 1.639 0.70533 1.877 
4 0.58 0.63420 2.883 0.63433 1.976 0.63416 2.064 
5 0.5 0.57918 3.158 0.57826 2.353 0.57804 2.509 
6 0.44 0.53390 3.321 0.53102 3.138 0.53060 3.153 
7 0.4 0.49461 3.634 0.49075 4.218 0.49(43 4.303 
8 0.36 0.45797 3.854 0.45419 5.346 0.45417 5.408 

9 0.33 0.42600 4.208 0.42150 6.704 0.42136 6.881 
10 0.28 0.39110 4.606 0.38706 7.952 0.38737 8.041 

Table 6.9 Monte Carlo estimates xkik of the conditional mean exkly19 for the 

nonlinear system (6.24), (6.25) usins three different sampling procedures. 
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(2) As shown in fig. 6.4, the statistical linearization procedure 

of section 5.4 and the linearization procedure to obtain an approximate 

conditional P.D.F. of section 5.5 yield the same sampling errors for 

the estimate Xkik. 

(3) The approximation error of the analytic part of method B is 

smaller for low values of k but for k > 6 the analytic solution based 

on method C gives a better approximation. As the two approximations 

of method B and C yield the results of linear filtering theory, when 

applied to a linear system, the approximation errors decrease in both 

cases for increasing k. Indeed as xk  tends to zero for increasing k, 

the system considered tends more and more to be a linear system with 

additive Gaussian noise. 

(4) Using the theoretical results derived for the linear system in 

section 5.4.4, it is plausible to expect that the sampling error of the 

control variate methods will decrease as the time argument k increases. 

This inferences  however, is only supported by analytic reflections and 

not by fig. 6.4 as the length of the time interval considered is not 

long enough. 

(5) Both control variate methods require the computation of the para-

meters belonging to the linear model ; see (5.25), (5.26) or (5.71). 

This step involves the evaluation of integrals which, in the case of the 

observation eqn.(6.25), cannot be obtained by analytical methods. As 

numerical integration methods are required this remark is important in 

view of establishing a realistic labour ratio. 
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6.5 Nonlinear state and parameter estimation  

6.5.1 Purpose and procedure  

The object of this section is to investigate the applicability of 

Monte Carlo techniques to an essentially nonlinear multivariable problem. 

In particular, it is desired to estimate the states of a second order 

system. As some of the parameters of the system are considered to be 

unknowns  we have to increase the dimensionality of the state vector and 

perform the filtering procedure for the new state vector. 

Let us consider the second order nonlinear system 

xk(1) + T xk(2) 

xk(2) - T(2xk(1) + 4(1) ak  

3xk(2) - 10.) + wk  . 

(6.31) 

(6.32) 

As usual the arguments in brackets denote the components of the vector 

4.k. The quantity ak  is an unknown, time-varying parameter satisfying 

the relationship 

akt1 "k Tak 	 (6.33) 

where Ak  is a constant specifying the rate of change of ak. Thus, 

its dynamics are simply 

Pic+i 	Pk • 
	 (6.34) 

The output of the plant considered is given by the scalar observation 

equation 

3rk = xk(1) 
	

Pk 
	 (6.35) 
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For a specific sequence of observations 511c  it is desired to estimate 

the two state variables xk(1) and xk(2) as well as the parameters ak  

and plc. 
 To this end we define the new augmented state vector 

= 	[ xk  (1) xk(2) ak  pk  I . 	(6.36) 

In order to complete the specification of the problem we assume the 

initial condition to be a known four-variate Gaussian P.D.F. 

p(x1) = n(x1; m s  I x) 

with the mean mx  given by 

m
T 

= 2. 	2. 0.1] -x 

(6.37) 

(6.38) 

and the covariance matrix Ex given by 

- 	-4 0. 9.10 2  5.10-3 1.10 

5.103 9.10 	 5.10
-3  

E = 	
1.10-4 

x 1.10-4 	: 5.10-2  5.10-3  

0.1.10- 	5 -3 

	

.10 	1.10-2  

 

• (6• 39) 

  

This choice indicates that the prior information about xk(1) and xk(2) 

is less precise than that about the parameters ak  and pk. The disturb-

ance acting on the plant is also assumed to be a four-variate Gaussian 

P.D.F. 

p(114T c) = n(iik; 0 s 	
wk

) 
	

(6.40) 

but the only non-zero element of the covariance matrix I is w
Jk 

E w  (2,2) = 5.10-2  
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The variance E of the scalar Gaussian disturbance v acting on vk 

the observation channel (6.35) is assumed to be 

vk = 	* 
	 (6.41) 

Finally, the factor T, being a measure of the nonlinearity of the system, 

is assumed to be T = 0.15. 

In this section we only state the results of the statistical 

linearization procedure as this method seems to be particularly suited 

in view of the type of nonlinearity appearing in the system considered* 

Since the observation system (6.35) is linear, the model (5.26) is 

identical with eqn.(6.35). That is 

% = 	1) and Dk  = [ 1 0 
	o l 	(6.42) 

where is the mean of the P.D.F. paC4 lylc- pkik _i 	 1) of eqn.(5.27). As 

the knowledge of ck  and Dk allows us to compute mkik and Elik  of 

eq4.(5.24), we can evaluate the vector Ltk  from eqn.(5.32) as 

2k(1)  = 	(1) T  Pkik (2) 	(6.43) 

ak(2)  = likik(2) - T [2pkik (1)  + 3  Eklk (1'3){lkik (1,1)+ k(1)} 

µk (3) 13tikik(1)  Eklk(1'1 )+jk(1)1 +3pkik  (2)-10.] 

(6.44) 

a.k(3)  = Pick (3) T 	kik (3'4) 	(3) µkik  (4)1 	(6.45) 

ak(4) = vick  (4) . 	 (6.46) 

The elements of Bic  are obtained from eqn.(5.34) and (6.43)...(6.46). 
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The analytic part of the control variate method is completed by 

computing the correction terms 0--anlk  and  0ads]k using eqn.(5.48) and 
(5.49). 

In table 6.10 we compare the ensemble estimates of the conditional 

mean xidic  obtained via the crude Monte Carlo method (method Al  section 

5.3) with those obtained from the control variate method (method B, 

section 5.4). The ensemble values are based on ten repetitions of 

the sampling experiment. The accuracy of the estimated conditional 

mean is given by the estimates of the sampling covariance matrix, 

viir(kik  ),k  and var(ioc)B  respectively‘. Sample size N is set N=500. 

In fig. 6.5 we compare the sampling errors of the conditional mean 

estimates using the two Monte Carlo methods mentioned above with the 

analytic approximation error. This error is defined by eqn.(6.29). 
=MI 

The graph displays the errors in the first component of . In 

fig. 6.6 we plot the corresponding values for the second component of 
OM§ 

kht. It becomes apparent from these two figures that the approxima-

tion errors are larger than the sampling errors of the control variate 

method. This is also true for the third component which behaves 

similarly. As the observation system 6.35 is linear var(xidk) is 

equal to zero for k=1. The crude Monte Carlo method, however, yields 

a finite sampling error at k=1. 

The variance reduction factors 11 v for the first three components 

of kik  are contained in table 6.10. In order to compute the efficiency 

gains of the proposed variance reduction technique, we have to specify 

a labour ratio. This factor depends on the problem considered because 



Time Obser- 
vation 

Compo- 
nent 

Crude 
Carlo 

Monte 
Method 

Control 
Method 

Variate Statistical Lineariz-
ation Approximation 

k Yic  i 
- 
xklic(i) 

- 
xicpc(i) picOi) /11#(1,i) 

A 
var( kOi)) var(:Wi)) 

10-4  

1 2.0 1 1.99447 1.303 2.0 O. 2. 0.0763 
2 0.00109 1.798 O. O. O. 0.0899 
3 1.99945 1.014 2.0 O. 2. 0.0500 
4 0.09927 0.206 0.1 0. 0.1 0.0100 

2 1.8 1 1.96849 1.119 1.97254 0. 1.97254 0.0686 
2 -1.49835 18.656 -1.51657 5.943.10-5  -1.53511 1.1827 

3 1.96822 0.975 1.96900 0. 1.96897 0.0465 

4 0.09925 0.212 0.10000 0. 0.10000 0.0100 

3 1.6 1 1.73916 0.348 1.74028 1.211.10-6  1.73720 0.0179 
2 -2.25090 41.874 -2.26812 1.567.10 -2.28325 2.5852 
3 1.94113 0.951 1.94186 1.036.10-7  1.94122 0.0447 

4 0.09957 0.214 0.10031 0. 0.10031 0.0099 

4 1.05 1 1.38515 0.607 1.38167 6.343.106 1.37339 0.0309 
2 -1.87740 26.716 -1.90122 1.993.10-5  -1.92527 1.4747 
3 1.92354 0.940 1.92385 5.678.10-7  1.92509 0.0441 
4 0.10041 0.215 0.10142 0. 0.10142 0.0099 

5 0.79 1 1.06810 1.729 1.06092 5.211.10-6  1.03161 0.0899 
2 -0.78694 5.860 -0.78141 5.253.10-5  -0.79382 0.2713 
3 1.90703 1.009 1.90640 1.541.10-4  1.90914 0.0448 

4 0.10062 0.227 0.10219 0. 0.10219 0.0099 



k Yk i 

.I. 

xi*  (i) 
..N. 

xiclic  (i) pkik  ( ) 1: idic(isi) var(Nli)) 
A 	A 

var(xkik  (i)) 

6 0.914 1 0.95901 1.806 •10-4  0.95214 3.964.106  0.91283 0.0991 

2 0.32822 3.230 0.33138 9.868.10-6  0.37092 0.1367 

3 1.87987 1.147 1.87884 2.079.10-6  1.88086 0.0473 
4 0.10033 0.242 0.10217 0. 0.10217 0.0099 

7 1.26 1 1.05663 1.301 1.05116 3.099.10-6  1.01259 04757 

2 1.02321 5.069 1.02829 1.408.10-5  1.09238 0.2303 

3 1.84460 1.299 1.84421 2.494.106  1.84527 0.0516 

4 0.10059 0.252 0.10225 0. 0.10225 0.0099 

8 1.67 1 1.25719 0.812 1.25324 3.217.106 1.22374 0.0479 
2 1.27398 7.116 1.28047 2.785.10-5  1.36021 0.3250 

3 1.80612 1.483 1.80685 3.253.106  1.80769 0.0572 

4 0.10209 0.263 0.10326 0. 0.10326 0.0099 

9 1.99 1 1.47490 0.508 1.47208 4.168.106  1.45659 0.0256 

2 1.18200 8.441 1.19050 3.512.10-5  1.26507 0.4037 
3 1.76767 1.736 1.76953 4.544.10-6  1.77107 0.0640 

4 0.10484 0.281 0.10543 0. 0.10543 04099 

10 2.06 1 1.66388 0.401 1.66220 4.770.10' 1.65730 0.0133 

2 0.82709 8.576 0.83660 3.912.105  0.89220 0.4223 

3 1.73319 2.024 1.73553 6.184.106  1.73778 0.01715 

4 0.10740 0.296 0.10778 0. 0.10778 0.0099 

Table 6.10 	Estimates k  of the conditional mean E [xic l)c] for the nonlinear system (6.31)... 
(6.35) using two different Monte Carlo methods. 



A errors 

2- 

/ 

 

I 

1 02 	
/ / 

_2 4-- 	
/ 

2 

227. 

-3 

I 10 - 

I i  

I1 
5 -  

II 
1 1  
il  

1  li i 	 time k 
2 - 

2 	
i i 	I 	I 	I 	I 	* hip. 

4  6 	8 	1 0 
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i component of conditional mean Erxklyk  jfor system (6.31)...(6.35) 

vs. time k. 

Sampling errors using 

1 	crude Monte Carlo method A 

2 	control variate method B 	- -0- - -0-- - 

Approximation error of nonlinear filter equations using the 

analytic part of 

3 	method B 	- 	- - 
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Fig. 6.6  Multi-stage nonlinear filtering errors of second 

component of conditional Mean E[xklyk] for system (6.31)...(6.35) 

vs. time k. 

Sampling errors using 

1 	crude Monte Carlo method A 	-If- - 4+. - 

2 	control variate method B 	- -o- — -o-- 

Approximation error of nonlinear filter equations using the 

analytic part of 

3 	method B 	- - -CI- - 
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the evaluation of the linear model parameters Rk, Bk, gk  and Dk  may 

require a numerical evaluation of the integrals (5.32) and (5.33). In 

our example,howevers  this computation can be done analytically and 

therefore the extra work to establish the linear model is Mall  

compared with the simulation time. A labour ratio of 	= 0.8 is 

found to be adequate for our example; this factor is used in table 

6.10 to obtain the efficiency gains 11 4, The arguments in brackets 
OMR A 

refer to the component of mi -icac* 

k 11,(1) 1(1) .1,7(2) ,i(2) -11 v(3) q (3) 

1 .0 .0 00 00 00 00 

2 00 00 31.4 25.2 oo 00 

3 28,7 22.2 26.8 21.4 918.1 735.5 

4 9.6 7.7 134.1 1007.3 166.3 133.0 

5 33.0 26.4 26.1 20.9 65.4 52.3 

6 45.6 36.6 32.8 26.2 55.2 44.2 

7 43.3 34.7 36.o 28.8 52.1 41.7 

8 25.3 20.2 25.6 2075 45.5 36.4 

9 12.2 9.8 24.1 19.3 38.2 30.6 

10 8.5 6.8 21.9 17.5 32.7 26.2 

Table 6.11  Variance reduction and efficiency gains of the 

control variate method over the crude Monte Carlo 

method, 
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Finally, in fig.6.7 we plot the sampling error of the estimated 
SOO 

•••• 

conditional mean xx.dk  for the first and second 

ivi-sar(XkO))) 4=1,2, vs. the noise variance 

component 

Em (2,2). These k  

sampling errors obtained from the control variate method B are compared 

with the approximation errors .%(i) i=1,2. 

6.5.2 Observations and discussion  

The multivariable example supports the observations for scalar 

cases which were made previously. Indeed, the following points are 

verified: 

(1) The control variate method yields a significant improvement over 

the crude Monte Carlo method. The variance reduction depends on the 

components of E[4c13Irk] 	In particular, as the relationship (6.11) 

for the parameter Pk  is linear, the sampling variance var(x01:(4)) 

of the last component xklk(4) is zero. 

(2) The analytic approximation error can be reduced by means of 

sampling techniques. This error reduction is, however, realized at 

{ac w-1 t_12 	,j  

and simulating the given system N times. 

(3) If the approximation error sic  depends on /: w  then the same 
k 

is true of the sampling error [var(4)] 112. The largest accuracy 

improvements of the proposed Monte Carlo methods are achieved for low 

values of Z . This observation verifies Sorensonls(24) comment that wk 

the additional expense of generating a random sample 
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Fig. 6.7  Filtering errors at time k=6 for the conditional mean 
E[xklyk] of system (6.31)...(6.35) vs. the variance I 	(2,2) of 

the plant noise wk. 
k 

First component of E[xiciyk]: 

1 	Sampling error using control variate method B 

2 	approximation error using analytic part of method B 

Second component of E[xk  I yk]: 

3 	sampling error using control variate method B 

4 	approximation error using analytic part of method B 
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the approximation errors of nonlinear filtering equations are more 

sensitive w.r.t. changes in E if the plant noise is small. 
wk 

Fig. 6.7 indicates that for the second component of E[FicIA this 

remark is true for w (2,2) d 0.05. For larger noise variances 

/ wk(2,2), the approximation error decreases whereas the sampling 

error increases. If the accuracy of nonlinear filtering equations 

is studied for low noise covariance matrices, the computer simulation 

using the control variate method has to be performed with double 

precision operations in order to obtain meaningful results. 
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CHAPTER SEVEN 

SUMMARY AND CONCLUDING REMARKS 

We first review in section 7.1 the main results of the present 

work. Suggestions for further research work are contained in section 

7.2. 

7.1 Summary and main conclusions  

Chapter 1: The states :s of nonlinear, discrete-time systems subject 

to stochastic disturbances evolve according to stochastic difference 

equations. Under the assumption that the P.D.F. of all random distur-

bances acting on the system are known, it is desired to predict the 

P.D.F. of the state of the system an arbitrary number of stages ahead. 

This is called the prediction problem. It is subdivided into the 

state prediction and trajectory prediction problem according to whether 

the time argument k is fixed or variable. 

In general, however, the states isk  are not directly accessible 

but related to the output vector 	through a nonlinear stochastic 

transformation. For a given sequence of observations z it is desired 

t k to obtain the posterior P.D.F. p(kiz ) as this function contains all 

the information about the system. This is called the filtering 
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problem with the additional qualification 'state' or 'trajectory' 

according to whether k is fixed or varying. Prediction and filter-

ing are sometimes in this thesis collectively referred to as the 

estimation problem. It is always possible to design a crude Monte 

Carlo procedure to estimate one or more sample moments of p(k) and 

111(02c) under the following assumptions: 

(Al) the structures of the plant f and of the observation system 

are known; 

(A2) the statistical properties of the random sequences involved are 

completely specified; 

(A)) the random variables al, wk  and !Lc  are statistically independent 

with respect to each other and with respect to time k. 

As the general nonlinear estimation theory still belongs very 

much to the future, the first objective of our thesis is the promotion 

of sampling techniques as a true alternative to, and useful improvement 

on, existing analytic approximations to optimal nonlinear predictors 

and filters. Our second intention is the development of solutions 

which enable us to compare different approximate nonlinear estimation 

methods. 

Chapter 2: As our endeavour to obtain practical solutions to the non- 

linear estimation problem is entirely based upon Monte Carlo methods, 

a brief discussion of some of the main features of these techniques 

is appropriate° A Monte Carlo solution consists of three distinct 

steps: the first two, choosing or specifying the probability process 
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and generating sample values of the random variables, are relatively 

straightforward problems. In particular, we show that they are not 

complicated by the dimensionality of the state k  to be estimated. 

As a matter of convenience, all our numerical examples are based either 

on the uniform or on the Gaussian P.D.F. As far as the crude Monte 

Carlo procedure is concerned, the type of P.D.F. may be completely 

arbitrary. However, the form of the underlying P.D.F. becomes rele-

vant for the design of variance reduction techniques. 

Increases in the sample size of a crude technique yield but 

moderate improvements in the accuracy of Monte Carlo estimates. From 

this observation often follows the 'general conclusion' that Monte 

Carlo methods should be looked at only as last resort techniques. 

large portion of our thesis is devoted to the third step mentioned 

above: the design of variance reduction techniques to dispel the 

belief that Monte Carlo methods are inaccurate for solving nonlinear 

estimation problems. 

We refrain from discussing different variance reduction techniques 

for two reasons, these being that their basic concepts are well docu-

mented in various textbooks, and that their general formulation is of 

little use for our present problems. Indeed, we believe that the 

greatest variance reductions are made by exploiting specific details 

of the problem rather than by routine application of general principles. 

As a result of this attitude we develop a new multi-stage control 

variate method. The first order algorithm proposed in section 2.4.2 
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is an extension of a similar procedure derived in the context of 

importance sampling(37). No rigorous result is available to prove 

convergence. But this disadvantage is effectively removed by the 

second order algorithm of section 2.4.4. where rapid convergence 

results from all three modifications. As the estimates of a multi-

stage estimation procedure are correlated it is necessary to derive 

an optimal weighting sequence to obtain a combined estimate with a 

minimum sampling variance. This topic is dealt with in section 2.4.3. 

Because this leads to an increased computing requirement, a two-stage 

estimator is proposed in section 2.4.6. In the first phase a good 

control variate function is iteratively determined and$  in the second 

phases  it is held constant during the estimation procedure. Although 

the control variate function could be found by linear regression, the 

novel feature of our approach is the deterministic property of the 

matrix of second order derivatives which has to be inverted. 	The 

standard example of estimating a scalar integral serves as a numerical 

illustration (section 2.5) and confirms the fundamental conjecture that 

the sampling error in the final result is reduced if we can partially 

replace an estimate by an exact (deterministic) value. 

Chapter 3: For nonlinear prediction we start with the problem formula-

tion laid down in chapter one and consider systems where all the states 

k  are accessible* In the discussion of sections 3.1.1 and 2 we 
elaborate on the difficulties inherent in the analytic approach to 

nonlinear prediction. If a solution is to be successfully based on 
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the Chapman-Kolmogorov equation, the P.D.F. involved have to have the 

self-reproducing property; that is, their structure must not change 

with time. 	If it does, the recursive relation of the Chapman-

Kolmogorov equation is of little advantage and indeed the problems 

arising from the evaluation of p(4k174.4), or of the multidimensional 

integrals may prevent a direct solution. 	It is the object of section 

3.1.3 to show that the exact nonlinear predictor requires the solution 

of an infinite set of nonlinear difference equations whereas in the 

linear Gaussian case the optimal predictor consists of two difference 

equations. 

The nonlinearities between the states k  and the system parameters 

exclude most standard estimation methods because of manipulative prob-

lems. The method of moments is presented in section 3.2.1 as a useful 

concept for the development of a Monte Carlo procedure. The sample 

moments of the P.D.F. p(xk) are estimated in section 3.2.2 by simulating 

the nonlinear system, collecting the appropriate data and performing a 

statistical analysis. As this procedure does not include variance 

reduction techniques, it is termed crude Monte Carlo. The discussion 

shows that Monte Carlo methods are, generally speaking, ill suited to 

evaluate entire P.D.F. On the other hand, it may not be necessary to 

know the actual shape of the P.D.F. but one would like to be able, for 

example, to estimate its location and dispersion. It is this latter 

aspect which promotes the use of Monte Carlo methods for estimating 

sample moments. 
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At the expense of additional assumptions, the crude sampling 

procedure can be refined by variance reduction techniques. 	In 

section 3.3 the antithetic variate method is applied to the nonlinear 

prediction problem. To the original sample lackfia: of size N a 
- 

negatively correlated sample qsk] j  can be generated via algebraic 

operations and not by sampling techniques if the following assumption 

is satisfied: 

(A4) The P.D.F. specifying the initial condition x i  and the random 

disturbance wk  must be unimodal and symmetric w.r.t. the mode. 

It is not possible to state analytically how much the antithetic 

variate method will decrease the sampling variance in an arbitrary 

nonlinear system. Nonetheless, in section 3.3.2 we prove that it 

gives zero sampling variance for the mean when applied to a linear 

system with additive Gaussian noise. This result makes it plausible 

to expect large variance reductions when the antithetic variate method 

is applied to nearly linear systems. 

Anew extension of the antithetic variate method in connection 

with the n-variate Gaussian P.D.F. is derived in section 3.3.3. Under 

the assumption that 

(A5) the P.D.F. involved are Gaussian and possess covariance matrices 

with all diagonal elements equal, 

rearranged random vectors are obtained by permuting the components of 

the original variate. The resulting estimator remains unbiased while 

its variance comes close to the smallest value that can be attained 

with these variables. 
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A possible disadvantage of the antithetic variate method is 

its failure to improve significantly the estimators of higher order even 

sample moments. This deficiency is overcome by the control variate 

method, introduced in section 3.4, for the nonlinear prediction 

problem. Instead of increasing the sample size by the algebraic 

operations mentioned above, the control variate method requires a 

reference model which is amenable to sampling and analytic techniques. 

In other words, the number of simulations has to be increased. Stat-

istical linearization is used in section 3.4.1 to set up a linear model 

of the original nonlinear system. We then obtain an improved sampling 

procedure if we make the assumption that 

(A6) the noise wk  acting on the plant is additive and possesses a 

Gaussian P.D.F. 

We prove that zero sampling estimators are obtained for first and se-

cond order moments when this method is applied to a linear system. 

If assumptions (A4) to (A6) are not realistic, a Monte Carlo 

method is proposed in section 3.4.2 where the control variate model is 

derived by a linear regression technique. For the case where the 

P.D.F. involved are Gaussian, we introduce in section 3.4.3 a two 

stage adaptive control variate method for the scalar prediction problem. 

In section 3.4.4 we show that the n-dimensional case can be reduced to 

n scalar problems. Compared with linear regression, our new control 

variate method using a gradient technique has the advantage that the 

matrix of second order derivatives is deterministic and can be inverted 

before the sampling procedure starts. As a consequence, the computing 
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expenditure compared with the linear regression approach is reduced. 

In order to illustrate the different Monte Carlo methods a scalar 

and a multidimensional example are considered in sections 3.5.1 and 2. 

The conclusions we can derive from this numerical investigation are 

discussed in section 3.5.3 and are not restated here. 

Chanter 4:  To obtain a better grasp of the issues involved in nonlinear 

filtering problems we consider first the single-stage case; that is, 

we are given only one observation x. It is desired to estimate some 

parameters of the posterior P.D.F. p(x1z). The advantage of this 

problem formulation is that the nonlinear dynamics do not have to be 

taken into consideration, The Bayesian approach to nonlinear filtering 

is adopted in this thesis and provides the starting point in section 

4.2.1 for deriving a crude Monte Carlo method. The conditional mean 

E(x[y.] of the posterior P.D.F. has to be estimated as the ratio of 

two random variables. This gives rise to a number of problems which 

are discussed in section 4.2.2. It is shown that a finite sample size 

N makes the chosen Monte Carlo estimator biased. This bias cans  how-

evers  be neglected for large N as it is much smaller than the sampling 

error. 

It is understood that the single-stage case is but a sub-problem 

of the multi-stage filtering problem. 	We include therefore only one 

possible variance reduction technique in section 4.3, importance sampling. 
The discussion of other sampling improvements is deferred to chapter 

five. 
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The basic justification for importance sampling is that any 

sample can come from any distribution provided the correct weighting 

factors are used. In section 4.3.1 it is shown how a pair of new 

estimators for the numerator e and denominator ea  of Bayes' theorem 

is obtained. In section 4.3.2 we prove that there always exist an 

auxiliary P.D.F. 2(x) such that the sampling variance of ed  is zero. 

But this proof does not allow us to derive the optimal sampling P.D.F. 

0(x) in a general nonlinear situation. Considering a linear Gaussian 

system, however, we derive an optimal sampling P.D.F. for the denomin- 

ator of Bayes' theorem such that the sampling error is zero. 	Using 

this result together with the antithetic variate method (see section 

3.3), we obtain a zero sampling variance estimator for the numerator 8n, 
section 4.3.3. The application of importance sampling to nonlinear 

systems requires the choice of an approximate auxiliary sampling function 

h(x). We mention several possibilities in section 4.3.4 and develop 

one of them in some detail. The usefulness of importance sampling 

for improving the Monte Carlo method is limited  because the weighting 

factor, being a ratio of two P.D.F., may exhibit unbounded variations 

outside a region of relative good fit. 

The name conditional Monte Carlo would be very suitable for the 

type of work described in chapters four and five. This name has, 

however, been used in the past to denote a special variance reduction 

technique. In section 4.4 we attempt to find a unifying problem 
formulation for our work and the original conditional Monte Carlo method. 
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Chapter 5: The problem formulation and the solution of multi—

stage nonlinear filtering are similar to the single-stage case of 

chapter four. But an additional complication is that the state Icic  

now changes from stage to stage according to the non-linear dynamic 

plant equation. 	Bayes' theorem provides in section 5.2 a recursive 

relationship for the posterior P.D.F. 	Using the Markov property 

of the stochastic processes considered, an expression is sought suit-

able for a Monte Carlo approach in the sense that the recursive equa-

tion must be replaced by an equivalent relationship containing only 

prior information about the system. 

A crude Monte Carlo procedure for multi-stage filtering is 

proposed in section 5.3.. Monte Carlo methods can be applied to a 

wide class of problems but until now have been cursed with low accuracy. 

In order to increase the sampling efficiency of the crude Monte Carlo 

filtering procedure, it is desired to derive a suitable variance 

reduction technique. In addition to (A1)-(A3) we assume that 

(A7) the noise wk  acting on the plant and the noise Eic  acting on 

the observation system are additive and possess Gaussian 

P.D.F. 

We adapt a statistical linearization procedure, derived by 

Sunahara(1A) for the continuous-time case, to the nonlinear discrete-

time filtering problem. The resulting approximate nonlinear filtering 

equations are especially suited to the development of a control variate 

method because, as part of the analytic approximation, we obtain, a linear 
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model. This model may be interpreted as a control variate model 

because it is a close approximation to the original nonlinear system 

for the particular sequence of observations considered. The combina-

tion of analytic and sampling techniques leads to a new and improved 

Monte Carlo filtering procedure; sections 5.4.1-3. 	It is shown 
in section 5.4.4 that our Monte Carlo method yields a zero sampling 
variance estimator for the conditional mean when applied to a linear 

system with an additive Gaussian white noise sequence. This result 

makes it plausible to expect a significant variance reduction when our 

procedure is applied to a nearly linear system. 

An alternative control variate method for multi-stage nonlinear 

filtering is presented in section 5.5. The viewpoint is adopted that 

it is desirable to investigate a given nonlinear filter approximation. 

In proposing a suitable solution we have to take into consideration that 

the usual approximations consist of a set of equations for the condition-

al mean and covariance matrix. The result of Sorenson(24) serves as 

a starting point in the derivation of a sampling procedure which will 

allow us to establish the accuracy of the approximation without an 

inordinately large sample size N. Admittedly, the resulting solution 

is less elegant than that of section 5.4. Nevertheless, it shows that 

the Monte Carlo approach adopted in this thesis is versatile enough to 

cope with a variety of existing nonlinear filter approximations. 

Chapter 6:  The sampling procedures developed in chapters four and five 

are applied to a series of examples to illustrate features of our Monte 
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Carlo algorithms for estimating the conditional mean in both the 

static and dynamic cases. A number of conclusions is obtained from 

each example. They are not restated here except for the following 

four main objectives which are believed to be novel and which have 

been successfully achieved. 

(1) Monte Carlo methods permit direct solutions to nonlinear filter- 

ing problems without resorting to linearized expressions for the 

plant or the measurement system. 

(2) The approach adopted in this thesis enables accuracy limits to 

be directly obtained as part of the solution. 

(3) The combination of analytic and sampling techniques improves the 

efficiency of Monte Carlo solutions significantly. The control variate 

method is to be preferred to importance sampling because the differ-

ences involved are less sensitive to inadequate matches than the ratios. 

The actual efficiency gain over the crude Monte Carlo solution depends 

on the nonlinear system considered, on its parameter values and on the 

length of the observation sequence E. It is shown that the variance 

reduction is infinite if the system in question is linear and disturbed 

by an additive Gaussian white noise sequence. 

(4) Previously derived analytic approximations do not indicate how 

accurate they are. Crude Monte Carlo methods have been used to estimate 

the approximation errors but, due to their low precision, the sample 

sizes have to be quite large in order to obtain useful approximation 

error estimates. A significant sample size reduction is made possible 
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by using the control variate method. It is shown that at the 

additional expense of simulating the system and model N times, the 

sampling errors can be made smaller than the approximation errors. 

7.2 Suggestions for future research  

In the remaining paragraphs, some general questions relating 

to the application of the theory and the method of approach are dis-

cussed. Topics that require additional investigation and areas for 

future research are included throughout the discussion. 

(1) The study of the adaptive control variate method in section 2.4 

has shown that such a procedure may improve the variance reduction 

significantly compared with an arbitrarily chosen control variate 

function. On the other hand suchan adaptive procedure requires a 

careful study of its convergence properties. In section 2.4.4 we 

showed that the proposed second order algorithm converges with 

probability one. A possible extension would be to apply the adaptive 

sampling concept to the nonlinear state estimation problem. Suppose 

the original control variate model is obtained by statistical linear-

ization. After the first Monte Carlo computation (using control 

variates) is completed, a new and improved control variate model could 

be obtained by lineariziag the system along the estimated trajectory 

which - as our numerical examples have shown - is more accurate than 

the original analytic approximation. This idea leads again to a 

stochastic approximation procedure with the concomitant problems of 
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convergence, combination of correlated estimates, etc. Aa we 

assume a linear control variate model with Gaussian disturbances, 

such an application requires the estimation of the mean and co-

variance matrix for the nonlinear prediction problem and the estima-

tion of the conditional mean and covariance matrix for the nonlinear 

filtering problem. 

(2) The main reason why we use a linear model with additive Gaussian 

noise is the existence of a well developed linear estimation theory. 

However, it is understood that our choice may unnecessarily limit the 

obtainable sampling accuracy. It may be more advantageous to study 

P.D.F. from a class of functions which differ from the Gaussian P.D.F. 

but which are still specified by a finite number of parameters. As 

an example we mention the n-distribution which would allow us to in-

clude the effects of the third order moments (i.e. the skewness of the 

P.D.F.) and which may therefore approximate p(Lcklz) to greater accuracy. 

(3) The Monte Carlo methods for predicting and filtering of nonlinear 

stochastic processes are based, in this thesis, on discrete-time systems. 

Some of the reasons for the use of this formulation are discussed in 

chapter one. A major difficulty created by the use of a discrete-time 

theory for continuous-time systems is that discrete-time models have 

first to be determined. 

The statistical linearization procedure of section 5.4. was 

originally derived for continuous-time systems. It seems quite plaus-

ible that a control variate method can be derived for a continuous-time 

system, thus improving the crude Monte Carlo procedure and, possibly, 
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the analytic approximation provided the disturbances wk  and 	can 	be 

modelled as discrete-time noise sequences. Such an investigation is 

well suited to be carried out on a hybrid computer installation. The 

simulation of the nonlinear dynamic equations would be carried out on 

the analog equipment and the statistical analysis together with further 

algebraic operations would be performed on the digital part. 

CO 	Some of the basic assumptions of chapter one may be relaxed. 

Allowing correlation between the plant noise wk  and the observation 

noise 	affects &gest theorem (5.6). Instead of p(lcil(zic) and 

p(kixic), one must deal with p(x10.1(xk) and p(k(x). Correlation 

therefore may complicate some expressions but does not affect the 

basic solution procedure. 

The restriction of assumption (A5) on the generalized antithetic 

variate method in the formulation of section 3.3.3 may be relaxed by a 
suitable transformation. 

(5) 	The reasons why estimation problems are interesting in their 

own right have been discussed in chapter one. Very often, however, 

they are considered to be part of an optimization problem. No con-

sideration has been given in this thesis to establishing control 

policies in noisy nonlinear systems. An important extension of the 

present work would be the study of the combined estimation and optimiza-

tion problem. Monte Carlo methods have already been successfully used 

by Mayne(29) for determining optimal  control of nonlinear stochastic 

systems when all states are accessible. It is hoped that Monte Carlo 

methods can be developed for the optimization of nonlinear stochastic 



248. 

systems when the observations are nonlinear, noise disturbed, 

functions of the states. Such a procedure may either result in 

a solution of the optimal control problem or serve as a method to 

test and compare several analytic approximations. 
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