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Abstract  

An exact solution of Lighthill's equation is found 

when an infinite half plane is introduced into an other-

wise unbounded fluid, a finite region of which is turbulent. 

The two special cases of the turbulent region well within 

a typical acoustic wavelength of, and many wavelengths 

from, the edge are discussed in some detail. It is shown 

that in the first case there is a considerably enhanced 

acoustic output with the far field intensity depending upon 

the fifth power of a typical flow Mach number. When the 

sound producing region is far from the edge it is shown 

that the resulting sound field has the same features which 

would be predicted by geometrical acoustics. 

The half plane is first supposed to be perfectly rigid 

but it is then shown that essentially the same results are 

obtained by allowing the half plane to be a pressure 

release surface. 

In the second part of the thesis an investigation is 

made into the sound produced by a bubbly flow past an 

obstacle. The equation of motion of a bubble in such a 

flow is obtained and it is integrated numerically for the 

case of an obstacle in the shape of a circular cylinder. 
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It is found that the bubble's path is considerably 

different from a fluid streamline. At first the bubble is 

deflected outwards from the cylinder but later moves within 

the streamline along which it was originally moving and 

may appear to strike the cylinder. It is shown that such 

a bubble suffers a considerable retardation as it nears the 

cylinder and, may disintegrate and so produce appreciable 

levels of sound. It is shown that bubbles which do not 

appear to strike the cylinder produce sound levels compara-

ble to those obtained by using the Strasberg hypothesis 

that the bubble remains on a fluid streamline. It is 

suggested that sound at the bubble resonance frequency 

might be excited by means of turbulent fluctuation in the 

wake and boundary layer associated with the relative motion 

of the bubble and its surrounding fluid. 

It is shown that there is a point upstream of the 

cylinder on the stagnation streamline where a bubble will 

come to rest but that bubble oscillations about this point 

are not possible. 

Finally, there is a brief mention of possible changes 

in the overall sound levels due to changes in the bubble 

density near the cylinder. 
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Preface  

This thesis consists of a theoretical investigation 

into two distinct aspects of a flow past a body. 

In the first part a small beginning is made to the 

answer of the question of what effect a surface con-

taining an edge and immersed in a turbulent fluid has on 

the sound radiated to large distances. This is done by 

examining in some detail the sou.nd produced by an infinite 

half plane, a surface chosen not only because it is the 

composite of a very simple edge (plane and linear) and a 

surface whose acoustic effects on a turbulent fluid are 

well understood, but more prosaically, because it has the 

simplest Green's function appropriate to Helmholtz's 

equation of all surfaces which have edges. 

At the end of the necessarily rather tedious 

mathematical analysis the applicability and relevance of 

the conclusions drawn from this highly idealised su2face 

to surfaces of dimensions encountered in the real world 

must, unhappily, remain an open question. Optimistically, 

we might hope that the sound from surfaces such as hydro-

planes or marine propellor blades might have features in 

common with that of the infinite half plane. 

The sound from near a marine propellor is the subject 
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of the second part of this thesis but now it is not the 

turbulence of the surrounding water which is the ultimate 

origin of the sound but rather the presence in this water 

of air bubbles. For a surface vessel these bubbles may 

have arisen from an upstream cavitating region or simply 

from the entrainment of the bow wave tumbling ahead of the 

ship. In a modern submarine bubbles are often released in 

an effort to reduce the overall radiated sound levels. 

In any event the situation where we have a bubbly flow 

past an obstacle (such as a propellor blade) frequently 

occurs in underwater situations and so there is some 

interest in assessing the possible acoustic consequences. 

Again a grossly oversimplified model must be adopted and 

here we replace our finite body from the real world with 

an infinite circular cylinder and perform our hypo-

thetical experiments in that yet undiscovered part of the 

globe where gravity does not act. 
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PART I  
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1.0 Historical Background and Introduction  

Modern theories on the production and estimation of 

the noise radiated by a turbulent fluid date from Light-

hill's two papers1'2 "On Sound Generated Aerodynamically". 

The effect of material surfaces within the fluid was not 

considered beyond a brief footnote in the second paper 

which indicated that the forces acting et such surfaces 

could produce dipole sound fields. This deficiency was 

made good by Curle3  in 1955 who used the Kirchoff solution 

of the inhomogeneous wave eouation to show that when 

boundaries are present the volume quadrupole sources are 

augmented by surface distributions of dipoles and mono- 

poles, the dipole 

stress exerted on 

greater radiative 

strength density being eoual to the 

the fluid by the boundary. Given the 

efficiency of dipole sources compared 

was able to quadrupoles in low Mach number flows, Curie 

to explain the observed directionality of Aeolian sound. 

However, it soon became apparent that care was needed in 

the application of Curie's result to surfaces whose 

dimensions were not much less than a typical acoustic 

wavelength - that is, to surfaces no longer "acoustically 

compact". tint Phillips
4

1  in an argument later criticised 

by Lighthill5, showed that the dipole strengths should 
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vanish for a plane turbulent boundary layer flow which was 

homogeneous in layers parallel to the surface. Then, in 

1960, Powell6  showed that on a plane rigid boundary support-

ing an inviscid flow the pressure dipole terms simply 

account for the reflection in the surface of the quadrupole 

sources in the basic flow. About the same time as Powell's 

paper Doak7 showed how Lighthill's equation could be solved 

formally by the method of Green's functions, Curie's 

formula appearing if a certain choice of Green's function 

is made. By choosing different Green's functions different 

solutions which emphasise different sources can be obtained 

solutions which though differing in form are nevertheless 

equivalent. Doak concluded that dipole radiation is pre-

dominant for low Mach number flows from a flat plate but 

that perfectly rigid or perfectly soft surfaces of arbitrary 

shape produce only quadrupole sound. None of these con-

clusions still stands. In 1964 Ffowcs Williams8 developed 

Powell's idea of using a null solution of the wave equation 

to show that an infinite plane unsupported homogeneous 

surface of arbitrary surface impedance supporting a tur-

bulent boundary layer produces radiation entirely of a 

quadrupole nature, simple surface supports later9  being 

shown to produce dipole sound. In 1966 Leppington10 showed 
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that the diffracted field of a longitudinal quadrupole 

oriented radially towards a rigid sphere has a farfield 

strength comparable to that of a dipole provided the sphere 

is well within the nearfield of the quadrupole. Lepping-

ton's result has importance for it provides a theoretical - 

as opposed to experimental - demonstration that Curie's 

dipole has non-vanishing integrated strength for at least 

one shape of an acoustically compact body. 

Now a distinguishing feature of those surfaces which 

have, unambiguously, been shown to produce dipole sound 

and those which produce quadrupole sound is that when a 

sound wave is incident on the former surfaces a diffracted 

sound field is produced, but not when the surface is of 

the second sort. It is possible that the enhanced 

acoustic output is somehow associated with this diffracted 

field. Any diffracted field depends of course on the 

geometry of the diffracting object and in particular on 

the edges of the body. An investigation into the effect 

of variously shaped edges would therefore be of consider-

able interest and it is the purpose of this work to dis-

cuss in some detail the simplest of all possible edges, 

namely, that of a semi-infinite plane. 

The procedure which is followed is to obtain a 
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solution of the Fourier transform of Lighthill's 

equation by means of a Green's function obtained by 

Macdonald11 which is exact for points in the farfield. 

The half plane is supposed to be vanishingly thin but 

perfectly rigid. This is done in Section 1.1. In 

Section 1.2 the case of an eddy very near the edge is 

discussed and it is shown using a dimensional analysis 

that the acoustic output from such an eddy depends upon 

the fifth power of some typical flow velocity. In 

Section 1.3 the turbulent region is supposed to be far 

from the edge and it is found that the sound field is 

that which would have been predicted by geometrical 

acoustics. In the next section (1.4) the condition that 

the half plane be rigid is changed so that the half plane 

is taken to be a perfect pressure release surface. 

Sensibly the same results are obtained as for the rigid 

case. In Section 1.5 the effect of viscosity is briefly 

discussed and it is concluded that any effect is 

negligible. Finally, in Section 1.6, some implications 

are drawn from the preceding theory. In particular it is 

shown that for any surface likely to be encountered in 

underwater applications the noise from an edge region 

will always be dominant. 
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1.1 The Solution of Lighthill's Eauation  

The basic equation which describes aerodynamic noise 

generation and propagation and which is taken as the 

starting point of this analysis is due to Lighthill (1952) 

000,••• 
• ••• 

wherefis the fluid density, ( l,1,  1,11)-3)  the velocity 

vector, C the sound speed in the undisturbed fluid and +.  

the compressive stress tensor. We shall initially assume 

that viscous effects are negligible so that we set 
K.) 

equal t t.),ci..5 , where 1) is the isotropic pressure in the 

fluid. If we further suppose that changes in > are 

exactly balanced by changes in 0,0 then Lighthill's 

equation can be written 

)t2, 

We seek a solution of this equation when there is 
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a rigid, vanishingly thin, half-plane immersed in an 

otherwise unbounded fluid. 

If we define the generalised Fourier transform of 

the function RO as 

then Lighthill's equation can be written as the 

inhomogeneous Helmholtz equation 

(I) 

where 
111.1•10 

The presence of the rigid half plane gives the 

boundary condition that the normal velocity vanishes at 

the surface. The solution of (3) with this boundary 

condition can be written down at once in terms of a Green's 

function, 	, whose normal derivative vanishes on the half- 

plane. It is 

(-1  )L4) 141r 
4/aliLv14. v6)4-  4 tr ko 

c
."1-4(CIGIS  44) )el 

half-plane. 



(s.  
0 

-‘3 

on the half-plane 

where 

with 

(1 	.)+* )ro  tAo. c),90 	Ck>   
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The volume integral in (4) is strictly over all space 
f .176 vz-11 

but as k is considered non zero only within 

the turbulence the volume integral need be evaluated only 

over that region. If we now complete the divergences in 

(4) , and convert the volume divergence integrals into 

surface integrals by the use of Gauss' theorem we find 

that the surface integrals vanish because of the condition 

that there is no normal velocity on the half-plane and we 

are left with 

k 	 3t-v) apodei1 	

rt ATJ 	
CV1  V( ) 	-- 

In cylindrical polars this is 

4-rr (riGt 
	

-L 	
70v, 

1' -1 	 - 0 
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Plr r 	\ 1"70 	0 	• ••k. 0 	--5-7970) 
( .1) 

.1_ 
' 	r I  ICI ro  

-Cal) 

where cAvo  ro olf-,d6o 0(„ 
The particular cylindrical coordinate system which we 

use is illustrated in figure 1. 

We restrict our attention to field points which are 

many wavelengths both from the turbulent region and from 

the edge of the half-plane. That is, we suppose 

and 	k r >> I 	n d 	r 

Macdonald
12 

(1915) has shown that the solution of 

(5) takes, 

I ir 

in the far field, the form: 

R LtK  

t4 

     

where 

( k r , 	_1k  

	

Up, -. 	 co,
' 
 ... ----.4 

) 	.J, 

	

and 	D 1 

1 	k " if 1,-  ;,, )t. 	& -A -t?r, 	
+ Lk()—  R93 = 2 ( c.o.s. ::"--7.-- 

R is the separation of the source point (trp,)451.0)..e.0 
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and the field point 

  

i.e. R = r ro  
3- 

t 

R' is the separation of the specular image source point 

in the plane containing the half plane:  
- 19.° 

and the field point. 

= 	(N I-  4- 1- 	r r 	s (6,  -I- 	 f- (4- - 0  

It can be shown that D is the shortest distance 

between the source and field points travelling via the 

edge. 

G is similar to the Green's function for an infinite 

rigid plane with the difference that now each term is 

weighted by a Freshel integral whose magnitude can vary 

between 0 and 1 (approximately). Any enhancement of the 

sound field from that produced by turbulence in free space 

or near a rigid plane can only arise from the derivatives 

of these integrals, and in particular, from the derivatives 

of L,kk  and (Ant  . 
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The limits of integration a and (A tmay be 

simplified by noting that any derivative of the factors 

+ R)-1  or (D + R1 )-1  does not appear in the farfield 

representation of a° when G is substituted into (8) . 
We may therefore use at once the farfield approximations 

+-R ---,-., 	r + 

and 

to write 

(2 krt, 	(f) ).(0.5 

where Stn4J 

 

r 

   

      

   

(e -?(,)' 
The independence in the farfield of Lin  and 	ft 

on the coordinateis4  excludes the possibility that the 

term c(f in (8) might have a .magnitude 

much greater than if G were just that of a rigid plane. 



1t9k 	the Green's function for an unbounded 
ck 

fluid. 

r------ 
e-ct/11  e  -t=kRi 2 	2 

r- 	i• 0 _ 644.  i 	At . /.7r.R.  Sin 4 

e 4 41  
— s... .1. 

1•L. — 

c
--k( 

 

of )t 3 1  4  2 
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Accordingly, we can conclude immediately that the edge 

does not result in any significant enhancement of the 

sound produced by longitudinal quadrupoles aligned parallel 

with.the edge. 

Also, another deduction can be made from the general 

form of G, namely, that the sound field at points on the 

plane 	Tr has exactly the same features as sound from 

free turbulence. This may be seen as follows. On the 

plane & rr (which is the half plane complementary to 

the material half plane) the field point is equidistant' 

from the real and image source points. That is, R = R' 

and so 

R e 

k r r tv  )2 	► 
2-k 	R 	51" )  7i 

    

D4 R ) 	irt 
fie 
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We are now ready to substitute the expression for G 

given by (9) into the equation for 	tA.) ). We 

shall consider separately the two cases of turbulence 

well within a typical acoustic wavelength of the edge and 

many wavelengths away from the edge. 



- 23 - 

1.2 The Noise from Eddies very near the Edge  

We first consider the case of eddies (that is, 

regions of the turbulence over which fluctuations of 

velocity are highly correlated) which are well within a 

wavelength of the edge. By this we mean that every part 

of the eddy satisfies the inequality 

ri, < 	I 
The Freshelintegral 

e  _ tvg  
••••••00,••••,..01.00111..  

has the series expansion 

   

-17177-r  )( 
+ OCX  46)),  

-34). 

(see, for example, the introduction to Pearcey's (1956) 

Tables13). 

Hence we can write 

14( 	 1. 
(1.  +0 0:4 

L Y4 

(.c 	r 	)tca.s, 621131(f 4-0( k c,))) irr 
Or, noting that 

kW= kR 	krc, s 44), 
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we can replace R' by R 

e s (2  0 's TT 

 

Et, co s 	C.0S 7), 	k )3>-?• 

When this expression for G is fed with equation 8 we 
obtain terms containing 

	2 k r 0 )-34 	k r )-z 
 
or positive 

powers of 	. Under the condition . kro.e,‹ I the 

dominant terms are those containing ( 2 14 	1:4 and it is 

these terms we retain when we write 

51)  

li 10--kfr`cos 	— v; 2Los 6/.4  -4- :Irv:, Ifit)  s 
k.R 

ei2  
where the volume integral is evaluated over those eddies 

which satisfy 4.2kr < I 

This equation is the basic result of this section. It 
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is exactly the same result as is obtained by performing the 

differentiations on the Green's function in the form (9) 

and then picking out the dominant terms under the condi-

tion 2,1crp44..1. It should be compared with the corres-

ponding equation which is applicable to an unbounded 

turbulent fluid: 

+fa-ui,zsin'(0-0„) +-2ev-r vi; cos(e-9,)s yi(9-ft 

+ similar terms involving each of the remaining 

-cka 

d V 0 WaommIN•a•IMaNOIMPNIII.  

The first point to notice is that the integrand of 

(11) contains the large factor (2 k r, :kt 	This has the 

consequence that the farfield acoustic pressure levels 

when there is an edge in the turbulent region may be 

considerably greater than when there is none. "May be", 

because the pressure field has a different directionality 

to that of the radiation field of an eddy in free turbu-

lence. This feature is not entirely novel. Leppington 

has shown that the diffracted farfield component of a 

Reynold stresses 
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point harmonic source near a rigid sphere has the form 

k r os-rt, 
/1 11( 

where C _S 	o  = (.o5 0.: (7,..S, ea 4*--1In 	i 	404 ( 4 -50;) 

r 9)  40) and 	(t ,̀) 644„ t 	e spherical polar co- 

ordinates of the field point and source point respectively, 

relative to an origin at the centre of the sphere, which 

has radius 

is a spherical Bessel function of the third kind. 

cA ( 
.
kt(1-)) 

then 

If this is now used as part of the Green's function 

for the formal solution of equation (3) in the presence 

of a rigid sphere, one of the terms obtained under the 

condition kr ‹e.,. 	(arising from 

v 
—57- 0 

is 
- r 

V`rr 

  

  

   

I-, 

If 

means 
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corresponding to an enhancement by the factor 

3  (kict) 
yips 	kr 	on the free turbulence value. 

A further point to notice is that the different 

Reynolds stresses are differently affected by the half- 

plane. The stresses f)1(;, .1(1.1;,z  and 	I- 1.r produce fp 

pressure fields which are greater by a factor of order 

1c2/2' on the free turbulence values; the stresses 

r-sc.1.0.4.. and tawi; LVwhich are not shown in (11)) are in- 

creased by the smaller factor Oki' 0 	while the stress 

(2011as just the pressure field we would expect if the 

half-plane was an infinite plane (i.e., had no edge). 

Following Lighthill, we regard the turbulence as 

divided into regions within which each of the products 

(7)-1r -r'')* 	
Laand pi., 1_, is perfectly correlated, 

the size of each region being very much less than an 

acoustic wavelength. For the sound pressure from such a 

region we can write 

e 	 k R 
tt) 

iT7T- 
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)(1  L 

4- 

 

C! ) 

where the volume integrals are now to be evaluated over 

the region of perfect correlation. If such a region is 

supposed to occupy the space 

and 4 	<2. then a good approximation to these volume 

integrals is where the cos :toy\ 	) 

or sin is to be taken if the original integral contained a 

& t z cos or a sin, 	is the volume of the eddy and 13 

and Fr. 	r4 "*.r7. 	7 p may be regarded as the .--, 
tr 	 *43 	 J 

o  
1.-.. 

coordinates of the centre of the eddy. It is  

assumed that 	Sol 6.7,,0, -------- 	
. -- 6; -'6; 1, 

The volume integrals may also be evaluated if it is 

supposed that the eddy is a cylinder centred on the edge 

of the half-plane. The integrals containing cos 72  

vanish but 
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Vic/ -34 
Vc, 

1T 

v 
where 2 is the diameter of the cylinder. This result 

indicates that a lower bound for 	r should be 1.3 	or, 

roughly, S 

If we write 	t) -4- Lrt 40, 	r 'Nrey 	#.1419,  and 

where the flow near the edge is regarded as 

of a steady, time independent part 

) and a fluctuating part 0.4 )6L8; 	) then, 

for example, 

6e' V" 
Y 

	

2 Ur 	U.. rL  

Ur  

where ft' has been set equal to /2 , the density of the 

undisturbed fluid. IL/el  because it is independent of time, 

makes no contribution and the term L  c e  is neglected 

because it is smaller than the term 1) L4i. by the factor 

V/z  + LL 

being composed 

CUB3  L/  , (/a  
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of 	the turbulence intensity. That is 	, is of order 

oc times a typical flow velocity (t/ say 

Instead of (13) we may now write the approximate 

relation 

LOT.  ? 	14-  (7,2 - 	9/2  S i r, )' 
_ 

e • 

& 	 • where Cl is the angle the mean flow makes with the edge 

of the half-plane. From this we can obtain an approximate 

formula for the farfield acoustic intensity that neglects 

any effects of cross correlation between individual terms 

of (13) . It is 

•••• 

- 9 ,w).__* 	Cit3esitlb 
I 	

154 
TT  3 	R  z k  

 

(isa  

  

Setting 	equal to the correlation radius 

we find 
	

has a maximum value of 

4%4. is 
• 

'••••••••. 
4 14  U V 

it 3  R 5; 
The typical frequency of the turbulent source is of 

Tr L) ii 
order ...— 	so that k 	is of order .--C.  r) 	Thus 

2, 

the scattered intensity increases in proportion to the  
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fifth power of the fluid velocity, U  . 	This is a new 

result which should be compared to the eighth power low 

obtained from free turbulence or turbulence supported by 

an infinite plane and the sixth power law obtained from 

the usual estimations of Curie's (1956) surface dipole 

term. Curle's solution of Lighthill's equation in the 

presence of surfaces has been examined by numerous workers 

and is undoubtedly correct. However, the difficulty with 

his result is that it is not possible to estimate quantita-

tively the consequences of the "dipole" term for surfaces 

which are not small compared with an acoustic wavelength. 

Dimensional arguments are altogether too crude: for 

infinite planes they overestimate the sound and for semi-

infinite planes they under estimate it. 



G = 

where 

Li k,  ,,..,,,i, 
..t-rk. 

and 

(p 	C I )1  
c 2 	 - 1902.  

( 1r2  

JO? 1 

kR 
01V, 1_ 

ro  
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1.3 The Noise from Eddies remote from the Edge  

We now consider the effect of the half-plane on the 

noise from those eddies which 

for the inequalityCkr4>?. 

distance of the centre of the 

are far enough from the edge 

to hold. 17; is again the 

eddy from the edge. 

We write G in Macdonald's form: 

G is substituted into equation (8) for p 

le abstracted from each term, three dis- 

of terms are obtained; those containing the 

or 	those containin g the factor (krii?:"  

and, finally, those with the factor (k0-34  

When 

and the the factor 

tinct sets 

factor K  7, 

For example, 
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t---7,z 7601 4-  ro 71k, 

k ) 	I 	:11 rz e- 14R 

k-4 	) Vo  e 

-4- r,, 
)Trz  

) 

Derivatives of ( have been omitted because they do not 

appear in the farfield. Neither does the term containing 

r-Q 

re:2.  

Now 	..4.1oq 	= e -ckR 
OD  

k e‘'.14 c,-‘0 

	

0'-'1 	0 

	

.1. 	 cf,) 
0.) 	5

I 
/1 

I so thati e 	... tic R 1  )1, 1.7  le E7 /4e" b0:. r.)-3/ic  rns 4)14  0  ro t;t 	c r-- ovir 

Also 
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Figure 2 shows a sketch 

as a function of Qg 	L{R1). 

is very large and U 
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••••r 

Combining these results, we have instead of 

   

Lk(Z, 
IPt Vo  a  

0 r 

 

 

   

= 	1<,2_ 
k R 

a. 9  Krkr&') 	—t-  r 

-1-  I 1  (1)  
(ra  cos— -Inc() 

The remaining terms on the right hand side of equation (8) 

can be dealt with similarly. 

of the behaviour of IA  (r,,) 
It is apparent that if 

(l.4 	is not large and 

negative then the terms cont 

larger than those containing ainingT

R  (2 .)are much 

QC(' ri and (,1 ĉ, ) 	The 3  

upon the signs of c....OL 
"-ay 

signs of t4R and 	a# depend 

E? c, and C-ca 

and cos  e 7 0  o  are positive - 
respectively. If' both cos 0 -0,, 

and this will be the case 
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if 0 is acute and 	_ 	- e then 

iLicrz 
R  R‘R 	04V 

Rd 	ti 

where 

ev-r. -v-  ) ;:t• 

(- j_  

(k)  
r 	 )R' 

/ 	?fro 	rt.? TiTo ) 
If 60  is just a little greater than 	8 so that 

and 

CI 	although negative, 
L 

much greater than 01-0) 

priate expression for p .  

still has 	with magnitude 

then (20) is still the appro- 

For larger values of Ott 	but 

still less than tr+61 	IR/ has magnitude comparable 

to (kr() ) 	and so is negligible compared to 	which 

is, at least, greater than -. When 9, is in this range 

the expression for p is 

if IT r(ri,&,i,w) .1(P v: v:3 R. R. e 	dy 
Yz 	R 

i) 
Again, if elo  is a little greater than 	-t- 15.) .); is 

still much greater than (n)\-11 and (21) is still 
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applicable. For larger rj7 however, both k.  and. RI 

are comparable to 	r 	The expression for 

would now have to include not only the terms containing 

IR  and 1: al 	but also those containing the factor 

(kro) 	
We shall not write this expression down but 

merely note that the value of p which it would predict 

is much smaller, by the factor (kro) 2 	from the values 

given by (20) or (21). 

Now (see Pearcey) 

4,1( 
11/ 4 

1717  j 	 I 
CA, 

so that, except near 	1  we can write (20) as 

.k X '--..**41)  

) 

n 

 

and equation (21) as 

except near 
/90 = 	E) 

The position for eddies far from the edge is 

summarised schematically in Figure 3. Where equation 23 



with the edge having a negligible effect of order 

Where 24 holds, the sound is just that of an eddy in free 
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holds, the half-plane behaves like an infinite rigid plane 

turbulence, the edge again having a negligible effect of 

order (ki"o A 	Finally, an eddy in the geometrical .  

shadow of the field point produces sound pressures lower 

than those from free turbulence by the factor Qp-0) 	• 

Between each of these three regions there is a region 

where the sound pressures are intermediate between those 

of the neighbouring regions. There is no sharp dis-

continuity between, say, the regions from where reflected 

and direct sound is heard and that from where only direct 

sound is heard. However, the angular (6.) extent of 

these transition regions decreases with increasing dis-

tance of the eddy from the edge. The narrower this 

transition region, the sharper does the contrast between 

the sound heard from one region become with that from 

another. 

If an eddy is supported by the half-plane and is on 

the same side of it as the field point, then there is a 

fourfold increase in the sound intensity at the field 

point: if the eddy is on the opposite side of the half-

plane, then the intensity is reduced by the large factor 



and may be taken as zero. Lastly, if the eddy is far 

from both the edge and the half-plane (but not in the 

shadow region) then the intensity is the same as if the 

turbulence was unbounded. This is true even when there is 

reflected sound for then the travel time of the reflected 

sound is many eddy lifetimes longer than the travel time 

of the direct sound. 

The essential point is that, except when the eddy 

lies in the geometrical shadow of the field point, a 

turbulent eddy far from the edge produces a sound of 

intensity comparable to that of an eddy in free turbulence. 
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1.4 The Effect of Motion of the Half Plane  

Until now the half plane has been supposed perfectly 

rigid. However, it is possible to discuss the case of a 

half plane which is sufficiently limp that it cannot 

support any normal stress. 

The Fourier transformed version of Lighthill's 

equation, our equation (3) now has to be solved subject 

to the condition that 	0 on the half plane. 

A formal solution of equation (3) is now 

where 	Hr 	) 6 	-14ir 

and S 0 on the half plane. 

Macdonald has shown that 

where the symbols have their previous significance. The 

only difference between G and G is the change of sign of 

the "image" part of G. 

If the divergences are completed in (25) then 
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The surface integral is to be evaluated over the mean 

position of the half plane. We may omit it from further 

discussion by observing that because only one differentia-

tion of G is involved the integral will'contain the 

factor (2- kro) -5 which means that when 2 k 	) it is 

negligible compared to the terms containing C 2 k 

arising from the double differentiations of the volume 

integrals. On the other hand when 	the 

surface integral is negligible compared to the terms 

retained on the volume integral. The subsequent analysis 

is almost identical for that given for a rigid half plane. 

For turbulence very near the edge we find 

-) 41  
617.' 

(26) 
This should be compared with equation (11) 	The only 

significant difference is the replacement of the 
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directional factorc_05 ---- in (11) by 2 	sin 

Again, when the turbulence is far from the edge, 

the only difference from the rigid case is that any 

reflected sound has a change of phase of 11  . 

With both the rigid and the pressure release half 

planes having essentially the same effect on the turbulence 

produced noise, it seems reasonable to conjecture that 

homogeneous half planes of intermediate properties also 

do so. 
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1.5 The Effect of Viscosity  

The momentum equation for a viscous compressible 

fluid is 

and ") are the first and second coefficients of 

viscosity (assumed constant throughout fluid). 

" 
Eliminating the term ')le 

	
between this and the 

;!st 
continuity equation we have 

?.11! 4  t, c 	= 	( p r) .3-1.).9 ) 	 .v(v.li:) -1:t 

or, if j = 4:to and we take the generalised Fourier trans-

form of both sides 

'N.X") f(-- 

Thus the right hand side of our basic equation 3 is 

augmented with the term 	
4 	) 	O 	. 

Proceeding as before with the half plane taken to be 

rigid we find 
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The right hand side of equation 6 is now augmented by two 

further terms. 

Dimensional reasoning allows us to state that the 

magnitudes of the three terms on the right of 27 are in 

the ratio 

cf '7o  

PP Re  

where Re is a Reynolds number for a sound producing 

eddy, M equal to 	is a typical Mach number. associated 

with the eddy. 64, is always much greater than unity and 

so we conclude that viscous effects are negligible. 
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1.6 General Implications of the Theory  

We have seen that eddies close to the edge of a half 

plane are much more powerful sources of sound than eddies 

far from the edge. The intensity at a farfield point of 

the sound from a single eddy near the edge is given 

approximately by the formula (15) which, if the direc-

tional factors are suppressed, can be written 

-00 
The corresponding formula for an eddy far from the edge 

(not in the shadow region) is equivalent to that of an 

eddy in free space 

(0,  L.)  4 it  
V -4  

We are now in a position to estimate the scales of 

a surface in the critical case when the surface sound has 

an intensity comparable to that arising from the eddies 

near the edge. Larger surfaces than this critical size 

will be essentially unaffected by the edges while smaller 

surfaces will be dominated by the edge noise. 

Comparing (28) and (29) we see that an eddy near 

I 

 

V  
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the edge radiates an acoustic intensity equivalent to that 

of, 
 r e 	y-,--;)-3 eddies in free space or a quarter this 

number of eddies in the boundary layer far from the edge. 

A minimum estimate of c is the correlation radius 

of the eddy, corresponding to an eddy centred on the edge. 

An eddy further from the edge will give rise to an 

intensity appreciably lower than this closest eddy 

because of the dependence of the intensity on the third 

power of the distance from the edge. For instance, a 

doubling of the effective distance of an eddy from the 

edge results in a 9db lowering of the intensity. Taking, 

however, S as our estimate for f, the edge region is 

equivalent, in sound generating ability, to the area within 

Q, 	„ s 	of the edge. Since 	S is of order 11M 

the surfaces must have dimension normal to the edge in 

IG lors 
excess of 3T% m 	, or, equivalently, 	M 	acoustic 

11" 

wavelengths if the edge effect is to be other than 

dominant. This is necessarily a minimum estimate, for no 

account has been taken of the eddies farther from the 

edge than the closest eddy but still well within a wave-

length of the edge, but it does show that if the fluid is 

water when M is seldom above IV ' then to all intents and 

purposes the flow noise from a surface with an edge comes 
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large enough for surface noise to be important. 

A further consideration of some practical importance 

can be deduced from 
, 

(28). The factor sin 	reduces the 

scattered noise from flows which pass obliquely over the 

edge. It is difficult to justify the transfer of results 

obtained for such an ideal surface all an infinitely thin, 

rigid half plane to surfaces which are encountered in the 

real world, but this does suggest that the noise from a 

hydroplane can be considerably reduced by giving it a 

swept wing profile. Marine propellers with greater curva-

ture in the span-wise direction might be expected to 

generate less noise than those which have the span-wise 

direction more or less radial. The effect would be 

slight, however. 
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1.7 Summary and Conclusions  

The presence of the edge of a half plane in a 

turbulent fluid results in a large increase in the noise 

generated by that fluid. The parameter which is important 

is the product A k  u, where F: is the distance of the 

centre of the eddy from the edge. Eddies which satisfy 

the inequality 2 1C f; 44, 	have the sound output of the 

quadrupoles associated with the fluid motion in a plane 

normal to the edge increased by the factor 	3  

There is no enhancement of the sound from the longitudinal 

quadrupoles with axes parallel to the edge: the vr , ee 

and 199 quadrupoles are the dominant sound sources. The 

sound intensity in the farfield from these sources depends 

upon the fifth power of a typical fluid velocity. The 

in tensity has a directional dependence on 4: 5"972: if 
the half plane is rigid and sink 4'/ if it is a pressure i^  

release surface. 

If the eddies are far from the edge so that( 

	I. 

then the farfield sound has the same features 

as would be predicted by geometrical acoustics. The 

edge does not produce any significant sound amplification. 
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PART II 
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2.0 Introduction 

Gas bubbles have for a long time been recognised as 

sources of sound in liquids. The frequency of volume 

pulsations of a bubble was first calculated by Minnaert
18 

and it was recognised that in these pulsations the bubble 

behaved like a simple oscillatory system with damping. In 

1956 Strasberg19  indicated the factors influencing the 

amplitude of the resulting sound pressures and described 

how they could be calculated for several excitation 

mechanisms, including the flow of a liquid containing 

entrained bubbles past an obstacle. In this part of the 

thesis this latter form of excitation will be re-examined. 

Unlike Strasberg, it is not assumed here that the bubble 

follows a fluid streamline. 

In section 2.1 the equation of motion of a bubble is 

established first for a bubble in an arbitrary flow and 

then in a potential flow past a circular cylinder, with 

due account taken both of the acceleration drag and the 

viscous drag. It is assumed that the motion of the bubble 

is precisely equivalent to that of a weightless rigid 

sphere of the same volume and that the drag coefficient 

for bubble Reynold's numbers greater than unity is given 

by an empirical formula obtained by Zahm16. 
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In section 2.2 the ecivations of motion are integrated 

numerically for various values of the parameters involved 

and it is shown that the larger the bubble radius for a 

fixed value for the cylinder radius the greater is the 

departure of the path from the fluid streamline along which 

the bubble was originally moving. 

In section 2.3 the particular case of a bubble on 

the upstream fluid stagnation streamline is discussed. 

It is shown that for any given incoming bubble there 

exists a point on this streamline where the bubble will 

come to rest, but that oscillations about this point are 

not possible. 

In section 2.4 the acoustic response of a bubble is 

obtained in terms of the fluctuating external pressure 

field felt by the bubble and in the next section this is 

used to obtain the sound pressures produced by a bubble 

flowing past a circular cylinder. For a bubble which 

does not appear to strike the cylinder the sound spectrum 

and waveform are similar to those found using Strasberg's 

assumption of motion along a streamline, 

In section 2.6 the consequences of bubble dis-

integration and motion relative to the adjoining liquid 

are discussed. Large pressures are shown to occur on the 
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disintegration of a bubble into small fragments compared 

to the original bubble. Fluctuations in the wake and 

boundary layer of a bubble are suggested as possible means 

of exciting resonance frequency sound. 
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The equation of Motion of a Bubble  

(a) General Considerations  

Consider a small rigid body free to move within a 

fluid which is in some arbitrary steady motion. We 

suppose that the body is much smaller than any length 

scale associated with the fluid motion and no account 

will be taken of the effect of gravity. If, to begin 

with, we also ignore the disturbance to the fluid due to 

the body, then we may assume that every fluid particle in 

the neighbourhood of the body experiences the same 

acceleration, 'S say, corresponding to a uniform fall of 

pressure in the direction of 	given by 	1  

where r is the density of the fluid. The body, subject 

to this uniform fall of pressure, experiences a force 

analagous to the buoyancy force of Archimedes' principle 

equal tory 	where V is the volume of the body. How- 

ever, because the densities of the fluid, 	, and the 

body, differ, the acceleration of the body, St  

will not be the same as that of the fluid. The motion of 

the body relative to the fluid causes the fluid to acquire 

some additional motion. There will now be two further 

forces acting on the body: an acceleration drag equal to 

, „ 
the product of the added mass, ry say, of the body and 
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the relative acceleration of the body and a viscous drag 

due to the formation of a boundary layer on,and a wake 

behind)the body. If we now equate the resultant of these 

forces acting on the body to the product of the mass of 

the body and its acceleration then we have 

v1 0,  -.0 -2 

That is 

S i 
M 

(v 	c 

 

 

We now make the assumption that the motion of a 

bubble in a liquid is the same as that of a rigid weight- 

less sphere of equal volume. 	It has been known for some 

time (see Peebles and Garbor 	for references) that 

unless special efforts are made to have pure water the drag 

coefficient for bubbles rising under gravity in water 

closely approximates that of a rigid sphere of the same 

volume, at least for Reynold's numbers (based on velocity 

of rise and equivalent spherical diameter) up to about 200. 

This rather surprising effect is usually attributed to a 

monomolecular layer of surfactants surrounding the bubble 
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which resist changes in bubble shape. Even though a 

bubble may have the same drag as a rigid sphere at up to 

quite high Reynold's numbers, a bubble is noticeably non-

spherical at Reynold's numbers of order one. The added 

mass of the bubble depends on the bubble shape but under 

our basic assumption we do not take this into account. A 

further complication associated with the added mass is 

that even for a sphere the added mass equals 1-t) V only 

in the absence of any other bodies in the flow. An 

alternative approach to that which led to equation 30  

and which does not suffer from this last difficulty and 

which, in principle, allows an estimate to be made of how 

close asphere may approach another body before departures 

of the added mass from --1-rN become significant, is 

provided by the Landweber and Yih 15 	formula for the 

force on an immersed body in the presence of other bodies. 

In practice, however, even for the case of one sphere in 

the presence of another, this formula quickly becomes 

unworkable. If, in the two sphere problem, only the terms 

which contain the radius of the smaller sphere to the 

third power are retained, the Landweber and Yih formula 

reduces to equation 30 with 
v 
 set equal to 

and 0 put equal to zero. It can be shown that if a is 
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the radius of the moving sphere, b the radius of the 

fixed sphere and c the distance between the centres of 

the spheres, then the ratio of the largest term neglected 
a31 

to the smallest retained is 	• If n a is 

closest the centre of the moving sphere approaches the 

surface of the fixedsphere, and m a is the smallest value 

of c attained then the largest value of this ratio is 

I irle) It • For example, if m = 500, n = 5 this ratio has 

the value 0.05. We might expect similar results for a 

sphere nearing other bodies so that equation 30 should 

hold for bubbles farther than a few (say five) bubble 

„( 
radii from any surface with V set equal to 1)/ • 

The remaining question to be settled before 

equation 30 is applied to a bubble is the dependence 

of 	on the flow parameters. We write 

— LA CD  

where (A a are the velocities of the liquid and bubble 
) 

respectively, a is the equivalent spherical radius of the 

bubble and CD is the drag coefficient. 

For Reynold's numbers (defined by Re = 11.4  

less than about 2 the Stokes-Oseen relation for Cb  for 
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solid sphere agrees well with the experimentally determined 

values but for much larger Reynold's numbers there is no 

theoretical formula for (...t> 

We shall take 

- Re  

and 

Ct, 	(-) v fr',S" 
	0-1,g 	K/ 

	
I 

The first expression is due to Stokes and Oseen and 

the second is an empirical formula found by Zahm 16 	to 

give reasonable agreement with experiment within the range 

Re 	2,00 000 
We are now in a position to write down the equation 

of motion of a bubble under the assumptions that it is the 

same as that for a rigid weightless sphere, that the bubble 

is not too near any surface and that the viscous drag on 

the bubble is the same as that for a rigid sphere. It is 

4: 	CI) 

t4 	(A --(A' 1 ( tAl --A 
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I 
tr 

0°L.4.01- I 	I Y.t. 	I 	15.4. d (r. ‘.t ) 

t4 	 —611) 
(b) The Equation of Motion of a Bubble in a Flow Part of  

a Circular Cylinder 

We now apply this last equation to a bubble entrained 

in a steady uniform irrotational flow about a circular 

cylinder of radius R. Choosing a cartesian set of axes 

with 	axis along the axis of the cylinder and )4 axis 

in the direction of the uniform stream, it can be readily 

shown that the fluid at the point ( A)Cji4d) has acceleration 

„ 1) 	C x(x -:V - 	(3-bt-4 1q)} 

and velocity 

ki I IA' 1) 

Here U is the velocity of the fluid far from the cylinder. 
If now 
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where 

ci 

while if 
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Changing to dimensionless variables by setting r= RA I  I  
i ta  ...-: is 4  and t = -- kand then dropping the dashes we have 1.1 
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The Bubble Path 

Equations 32 were integrated numerically for 

various values of the parameters Rick and 4-3. and for 

different initial conditions. The fourth order Runge-

Kutta method was employed and the actual computations 

carried out on Imperial College's IBM 1794 computer. 

It will be recalled that at each integration step 

the Runge-Kutta method advances the solution of a differen-

tial equation from its previously given or calculated 

values to values found by calculating the sum of the first 

five terms of the Taylor series which represents the 

solution. It is necessary, of course, that the sum of the 

first five terms be a good approximation to the sum of the 

complete series and this can always be ensured by choosing 

a suitably small step length. 

Now for a given step length the error inherent in 

this method of integration will be greatest when 
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is sufficiently large for equations 32c or 32d 

to be effectively of the form 

for some constants 

Such an equation has the solution 

'7( 	5C0 	;Li  Ltri ( 	-41) 

when, at 	C) 	q rl 	 L.4,0  

Clearly, when equations 32c or 32 d are in 

this form the step length, 64:7 , must be such that 

— )e k 

In the actual integration of equations 32 

the step length was continually changed so that 

l q.1-4 	- Sh 	v'e 	"E 	was always less than 0.1. 

With this step length control the error at each step in 

the integration should be less than one thousandth of the 

magnitude of the second term of the Taylor series repre-

senting the solution at the beginning of each integration 

step. The largest value of A-6- employed was 0.1 which, 

in the absence of the drag terms, would cause an error at 

each step step of order lb 
- 

• 

Appendix A contains a typical programme listing. 

Fig. 4 is a computer "Calcomp" plot of the bubble 
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trajectories obtained by integrating equations 32 

for bubbles initially moving with the liquid (taken here 

and in all further computations to be water) when 20 

cylinder radii upstream and at various distances from the 

fluid stagnation streamline. The bubble and cylinder 

radii were 0.1 and 10 cms respectively and the uniform 

stream velocity was taken to be 5 metres per second. The 

broken curves show the fluid streamlines along which the 

bubbles were originally moving. These streamlines were 

computed by integrating equations 32 when the 

multiplier '6' on the right hand side of each equation was 

replaced by '2' and the viscous drag terms set equal to 

zero. 

It can be seen that upstream of the cylinder the 

bubbles are displaced off the streamlines on which they 

were originally moving in a direction away from the 

cylinder but that near the cylinder, the bubbles r.,.ove with-

in the original streamlines, some of them actually 

striking the cylinder.* However, as our basic equation 

of motion no longer holds for bubbles very near the 

cylinder this cannot be taken as evidence of actual 

collisions with the cylinder. We can show though that 

when a bubble is close enough to the cylinder for the 

The short lines within the cylinder indicate where the 
solutions of 32 intersect the cylinder. 
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cylinder to appear locally plane (equations 32 

will now not hold) then, ignoring viscous forces, the 

bubble will experience a force directed towards the 

cylinder. Thus, provided again that the bubble is not too 

near the surface, the kinetic energy of a system consisting 

of a rigid weightless spherical bubble moving in a fluid 

bounded by a fixed rigid wall is given by 

T 	at e 9 	). 

where () L  ) are the coordinates of the centre of the )  

sphere referred cartesian axes 0 	perpendicular to 

the wall and 01 parallel to the wall, and where 

3 „re  q ( 

(see Milne Thompson 17 
	

section 12.61, for proof) 

In the absence of any external forces 	Lagrange's 

equations now lead to the following equations of motion 

for the bubble 

(1-1- 3's 3/4') 

L 	+. A ,41)i 
From the first of these we see that 

that is, is if the angle of incidence of the bubble on the 

0 
and 
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surface (0°  equals normal incidence) is greater than about 

55
0 	

then in the region where equation 33 holds, the 

bubble will be urged towards the cylinder. We might expect 

the viscous drag on the bubble would tend to give high 

angles of incidence. This does not of course prove that 

a bubble will hit the cylinder and only suggests that in 

a certain region near the surface where our basic equation 

of motion is no longer valid the bubble can still be 

moving towards the surface. 

Whether or not some bubbles do in fact hit the sur-

face, their subsequent fate is likely to be just the 

same - namely, disintegration into smaller bubbles. For 

example, in Figure 4 the bubble originally on the stream-

line 0.2 cylinder radii off the stagnation streamline has 

a normal velocity of approach to the cylinder of approxi-

mat ely 0.5 U when seven bubble radii from the cylinder, 

i.e., in a region where our basic equation is valid. 

Either way, if the bubble hits the cylinder or is repelled 

befor.e actually coming into contact the bubble must 

experience a deceleration of at least 2.25g. If the 

region of deceleration is much less than seven bubble 

radii the deceleration is correspondingly the greater. 

Bubble disintegration would be expected if the inertia 
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(density times acceleration) of the fluid at the bubble 

wall greatly exceeded the surface tension pressure within 

the bubble. The acoustical consequences of a bubble 

disintegration will be considered in a later section. 

Figure 5 is a plot of some bubble trajectories for 

a case which is at the limits of the validity of the 

basic equation of motion. Here ct = 10 and ri = 105 

and now it is no longer true to regard the pressure field 

around the bubble as being constant over the surface of 

the bubble although this is in fact done. 

The bubble paths, as might have been expected, show 

larger departures from the fluid streamlines than those 

of Figure 4 when Rd4k, was equal to 100. Perhaps the most 

interesting feature of Figure 5 is the very large 

divergence of some of the paths downstream of the cylinder. 

This will have an important effect on the bubble density 

downstream of the cylinder and this will be discussed in 

section 

(In the figure, the fluid streamlines are truncated 

at the points where, under the assumption that the bubble 

was constrained to move along the streamline, the bubble 

would strike the cylinder.) 

Figure 6 shows the bubble paths for a bubble 
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initially 0.05 bubble radii off the stagnation streamline 

and again initially moving with the fluid. c was held 

constant (at 104) but ct allowed to vary. When Rig.  

= 1000 there is little departure from the fluid stream-

line but what there is is enough for the bubble to "hit" 

the cylinder. The bubble path obtained when there is 

assumed to be no viscous drag emphasised the leading role 

played by the drag force. This is further demonstrated 

in Figure 7 which shows more paths in an inviscid fluid. 

It would be difficult to imagine a greater discrepancy 

from the fluid streamlines. 

The qualitative features of this diagram may be under-

stood if the bubble is regarded as a smooth sphere rolling 

under the influence of gravity on a smooth surface with 

height contours proportional to three times the pressure 

contours around the cylinder. The motion of such a 

sphere depends on its initial velocity: the greater the 

initial velocity the higher up the hill it ascends before 

rolling back. Similarly the motion of a bubble in an 

inviscid fluid likewise depends critically on the initial 

velocity: if the bubble is placed at rest near the 

stagnation streamline it will move in (roughly) the 

opposite direction to the fluid: if it is initially 
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projected along a fluid streamline with 5 times the 
velocity of the fluid at its initial position it will 

remain on the streamline but its velocity will always be 

-CY times that of the fluid. 

(This last because, using the previous notation, the 

equations of motion of the bubble are 

3 and 

Make the substitution 

Then and 

But these are just the equations of motion of a fluid 

particle in a potential flow about the cylinder. An 

integral of these equations is then 

and 

 

ctt 

t6 
That is, 	Cin = 

	Lit, 	
di 

and RT
I  r3 ;CT 

and this will be the first integral of the equations of 

motion of the bubble if the bubble is initially moving 

with I3 times the local velocity of the fluid.) 
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If the fluid is viscous, however, the motion of a 

bubble is effectively independent of its initial velocity. 

Thus if the bubble is initially projected with velocity 

1/,, where the fluid has velocity V the initial motion 

of the bubble is governed by an equation of the form 

Y 2 

which has the integral 

Qe is of order /a. 	so that unless Ora  -V ) is very 

large (when the bubble is certain to disintegrate), the 

velocity of the bubble is very rapidly that of the fluid. 

It is obvious from Figure 7 that the velocity of 

bubbles in an inviscid fluid cannot in general be derived 

from a simple velocity potential. If the oncoming fluid 

stream at large distances from the cylinder contains a 

uniform density of bubbles then this will mean that near 

the cylinder this bubble density will cease to be constant. 

The motion of a bubble in a viscous fluid is forced by the 

same pressure field as a bubble in an inviscid fluid with 
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viscous drag having the essentially negative role of 

resisting relative motion between the bubble and the fluid. 

Accordingly we would not expect the velocity of a bubble 

in a viscous flow to be solenoidal. 

Bubble on the Stagnation Streamline  

On the stagnation streamline the net force on a 

bubble due to the pressure field around the cylinder is 

collinear with the viscous drag. We now investigate the 

possibility that there be e point upstream of the cylinder 

where a bubble initially at rest will remain at rest 

because the two forces are equal and opposite. 

The equation of motion of a bubble on the stagnation 

streamline is 

6t-E 	)(-1- 	-f• 	k 

1 

if 
	

ro 	/ —
dx  

) 

and , 
d2-x. 

617"" 
 k ocx 	4 
i a gt 0 524 	x-4,7 

y  
e L s 

1- 0  4 	4.6a (/ 	411) 
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depending on whether 

than unity. 

That is, if 
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if ( I 
szix where it has been assumed that 	< zL77  „ l 10. which will 

certainly be the case if the bubble was once moving with 

the fluid. A bubble placed at rest at the point 7C=X„, 

will remain there if either 

O 

3A CV 
1.774: reolt.rk1  1-1  ) 

x I _ tot ) 
is or is not smaller 

— 
0 = 

or 	0 = 	I 

)1.-C  

cLR (41 4-  76 ( t)) Zo9 

_1 	(-I-  4 A r";( 	÷°'4 7(i Ii1.%Q) 

It is clear that for each of these equations there is 

a finite real root less than -1. 
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The question now arises: if the bubble is given a 

small displacement from Xo 	along the streamline, will 

the bubble oscillate about 1, ? Were it to do so there 

would be the possibility of sound both from the coupling 

of the radial oscillations of the bubble with the lateral 

oscillations of the bubble and from the bubble, now regar-

ded as a rigid sphere, radiating as a dipole source. 

Nd)  
We consider the two cases of 	C 1- 21- .,.. very much 'Ey  

smaller and much greater than unity. 

The equation of motion is 

a 	(XI"— ) /- R jf: \ I — 	- t" 

is the the solution of 

q r 
where we require 

rz. 

Writing )t. = IL. 1- X 

•-•"'" 
re 

to be greater than 1. 

in the equation of motion and 

0 = 1 + 

expanding the righthand side we have 

- t 3-x.01- 	R 3 b 1.. 	2.1 
7.7 re )4  

+ higher powers of 2(/ and az  which we discard. 
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after a little manipulation. This is the equation of a 

damped S.H.M. oscillator but it will not have an 

oscillatory solution because  
re( 3  

is necessarily positive, 

4 

17e ( 	 I )4, 

 

The equation of motion is 

 

and x,5, is the solution of 

6- 	-4-  0 • 3 t 	0 ( )1, — ) 	0 
Setting x 	4 )(: 	the equation of motion becomes, 

after a little manipulation 

z -4- 

Again there will be no oscillatory solution because 

is 

necessarily positive. 

Thus in both cases the bubble returns to )(„, in a 

manner typical of an "over-damped" oscillator. An 

incoming bubble will become trapped by this system and 
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ultimately come to rest at 

For intermediate values of e 	sto 	it can be 

shown using the same approach as above that the same 

conclusions still hold. The working is necessarily more 

clumsy and will not be given here. 

In a computer experiment a bubble initially 10 

cylinder radii upstream and for which lz4,_ = 100 and 

re  = 104 approached monotonically the value of 

(-1.0656) calculated separately as the root of 

equation 34d. In 15 dimensionless time intervals after 

being at the point (10, 0) the bubble was at the point 

-1.0670 and moving with a velocity of less than 0.003. 

By comparison, the same bubble constrained to move with 

the fluid and came within one bubble radii of the 

cylinder after 11.5 time intervals. 
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Acoustic Response of a Spherical Bubble to an Applied  

Pressure Field. 

Consider a spherical bubble of internal pressure P 

and radius a within a liquid which exerts on it the pressure 

Pa, assumed to have no spatial variation over regions 

comparable to the bubble. A change in this ambient 

pressure causes both a change in the internal pressure of 

the bubble and a change in its radius. The liquid 

surrounding the bubble is set in motion creating a 

pressure field within the liquid which is propagated out 

from the bubble at the speed of sound. At the distance 

from the centre of the bubble this pressure is of the form 
(-4 ) 

r 

where q(0 is the (as yet unknown) acoustic strength 

of the bubble and c is the speed of sound in the liquid. 

Near the bubble the momentum equation for the liquid 

(assumed inviscid) is 

0 

where Ar is the (radial) velocity of the liquid and 

is its density. 
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That is, }›6-„-E-;(4) 

  

   

?ct 

At the bubble surface the acceleration of a liquid 

cil-r4 
i particle s 	 -% so on setting r" equal to a this 

last equation becomes 

.6%  	t> 	3/4 	) 	f 	.).1- (4 	cl/) 
r ate': 

	

	 c  ou. 

If we now assume that the bubble radius is very much 

less than a typical wavelength of the sound produced by 

the bubble we may write this 

41c, 

  

The equation of state for the gas within the bubble 

is Pa38 = const, where 	is equal to the ratio of 

the specific heats of the gas if the pressure changes 

within the bubble are sufficiently rapid for there to be 

negligible heat flow across the surface of the bubble and 

is equal to unity if the gas remains in thermal equilibrium 

with the surrounding fluid. 

Logarithmic time differentiation of the equation of 

state yields 
rA P 	?  4 ck. 0 P 	0. 77„r; 
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which on further differentiation gives the equation 

012 ,  4_ 32f. AP 	3e  p 	p (rAct y 
(%, act cAT: 	u. 	ct'€'1 	°le 

Omitting the non-linear terms we have 

at 1P P 

 

0 	c') 

    

Finally, equating the normal stresses at the surface of 

the bubble, 

P _ 

 

 

    

where 
	is the surface tension pressure. Differentia-

ting twice with respect to time and again omitting the 

non-linear terms, we have 

cl t  P 	 (<1 t ) 	26-  dic-1  

A3P 	04.  
Eliminating 	and between equations 3s )  *Z---e 

3,6 and 	we find 

4 11 	30°  -s- { 4  ) 	G 	Ij 	— 	 
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For a water/air interface 6 	80 dynes/cm, and P 

is at least one atmosphere, or 10
6 dynes/cm2, so that 

	

except for very small bubbles (a 	l0 4 cm) the terms 

involving Cr may be omitted. We shall suppose this is 

always possiblen Thus 

3• /tt 3“,  
w pc& t- 

an equation connecting the acoustic pressure at the 

bubble surface to changes in the ambient pressure. 

04. -C4 	V.ci) 

For brevity we set L.1.) 

For an air bubble in water with an internal pressure of 

one atmosphere and radius 0.1 cm, 

2 13 -.11. 	›r 0 Scc 	4.-2‹fo .5eC 

14 ) 
The sound pressure at a distance r from the bubble 

is related to )>Cci)  4-) by 

— 40) 
Defining the Fourier transform of the acoustic wall 

pressure as 
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then, taking the Fourier transform of eouation 

we have 

t. 	10 It  

If LJ 41‘ (a) 

and if EA) 

(-4 

z 

   

    

;CT (42) 

The Sound Produced by a Bubble in a Flow Past a Cylinder  

A knowledge of the position of a bubble as a function 

of time as the bubble moves past a cylinder obviously 

enables the determination of the external pressure 

experienced by bubble as a function of time. The acoustic 

response depends, however, not on this pressure directly 

but on its second time derivative, which may be found as 

follows: 
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cd,k, 

 

d cx-E. 

  

and so d 
ckt- 	(.11.  

F 4 	4 
÷ 2 

)0, or 

Numerical integration of the equations of motion gives :(in.1  

) dA and TE  and so at any instant „  

   

61 — 
may be calculated. 

Figure 8 shows the results of plotting ;CT: 
as a function of time. Both diagrams refer to a bubble 

with /4 -2- 1\7 and re  = 104 but the upper diagram applies 

to a bubble initially at (-20, 0.5) and the lower to a 

bubble initially at (-20, 0.3). In each case the higher 

d'et, 
peaked curve shows a plot of 7777_ for a bubble constrained 

to move along its original streamline. There is an arbitrary 

time origin (the same for all curves) but it may be approxi- 

ci 
mately located by noting that the maximum of .17;  for a 
bubble on a streamline occurs when the bubble is on the 

line 	-.7- (2 

The most noticeable feature of these plots is the 

reduction in the height of the maxima for the bubbles whose 
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motion is determined by equation 32. Also the positive 

pulse is broadened and occurs at a later time. Because a 

bubble near the cylinder is deflected further from the 

cylinder than the corresponding fluid particle we would 

expect the bubble to be moving in a pressure field which 

changes more gradually spacewise: because the bubble has 

a basic acceleration ignoring the drag of three times that 

of the fluid it was at least possible that the bubble 

might traverse the pressure trough at right angles to the 

flow at a fast enough rate to more than compensate this 

slower space variation. Figure 8 shows that this does not 

in fact happen. 

As a concomitant of the more gradual variation of 
dtP0  
616t% with time we would expect the frequency spectrum 

v7C
,t  of 	to fall off at a faster rate than that for a 

7--  
bubble constrained to move along a streamline. Figure 9 

shows the Fourier transform of for a bubble TT 7  
originally at (-20, 0.5) and, on the same graph, the 

corresponding transforms for bubbles remaining on the 

streamlines through (-20, 0.5) and (-20, 0.05). The two 

curves corresponding to bubbles through the same point 

show very little difference although the expected lower 

values at higher frequencies are in evidence. All three 



29 

3 O.1 

0 rewto. ip• sia 

cihn Stre_clowft 11 WI 

-20 

L30 0•05 

F 6 u rt. E 9. 

En 	1 0411er Troleit 0 vvt 04 

ruk.mbeis 0 •4" 0 0 ,0r 41si 1061 	ajj kale etZ43.44  

6mAu re1444.1164€ g 	 t 
• 



- 90 - 
U 

curves have a maximum at a frequency less than T and 

L.' 
fall off very rapidly for frequencies greater than R 

The modulus of the Fourier transform i:NA jtA.).) will 

be much less than pv(c4w) if 	(..; 4  4, vO , 

tO , 

2.(3 	a, t t 	 L. u .z .,,A,,,, 	 w 

This is immediate from equations 41 and 42 

That is, if 

`'1 	 ) 	1 	 -  A" 

For a bubble with one atmosphere internal pressure 

20 (...420( 	":1./. 37.5. From Figure 9 we can now conclude 

that if uva  is greater than about 2 VM the sound at the 

resonance frequency will be negligible compared to the 

sound from the frequencies near 0.4 U/R 
	

In practice, 

Loo  is very much greater than tilk and as there is no 

reason why should not continue ,its rapid 

decrease with increasing frequency we conclude that the 

sound produced near the resonance frequency is a negligible 

fraction of the total sound. 

This being so, we may write the total acoustic bubble 

wall pressure to a high approximation as 

)(
_C-

L)  
1) 	

7_ 
LAD CD 1 	

c,2  rc, 
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The plot of -7- 
FYI  

o(t4  
form of the radiated sound enlarged by the constant 

factor - LOD  - . Figure 10 is a plot of 	QC P..,  

for bubbles with re  = 104, 	= 50 which were originally 

at different distances from the fluid stagnation stream-

line. The actual distances are shown on the plots. It 

can be seen that certain curves end abruptly. The end 

points are within 0.05 dimensionless time units of impact 

with the cylinder. 

The ordinates may be converted into absolute sound 

levels by multiplication by ;I p C./4-1 . If a = 0.1 1,00  

ems, R = 5 ems, L). 5 metres/sec. then the level 10 of 

the ordinates corresponds to an acoustic wall pressure of 

30 microbars. 

Finally, if we revert to Figure 8 we see that the 

peak sound pressures obtained from the use of our 

equation of motion are less than those obtained by 

Strasberg's assumptions of streamline motion. We may 

conclude that bubbles which do not strike the cylinder 

can have a reduction in the peaks of up to about 5 otlo 

For bubbles larger than 1:4/,'0 we cannot make any deduc-

tions and the fact that our bubbles appear to strike the 

versus time is thus just the wave- 
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cylinder if they are originally near the stagnation 

streamline raises doubts about the relevance of Stras-

berg's results obtained for a bubble actually moving on 

the cylinder surface. 
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Additional sources of sound from a Bubbly Flow Past an 

Obstacle  

We have seen that for a wide range of the flow para-

meters bubbles originally near the stagnation streamline 

of a cylinder move towards the cylinder and, whether they 

actually strike the cylinder or not, are so fiercely de-

celerated that the larger bubbles are likely to disinte-

grate. The resulting bubble fragments would continue to 

move downstream around the cylinder and there meet incoming 

bubbles which were once originally further off the stagna-

tion streamline. The rearward surface of the cylinder is 

thus likely to be the scene of both bubble disintegrations 

and coalescences, two processes which, as Strasberg first 

pointed out, provide a decaying sinusoidal pulse of sound 

each time they occur. 

For example, suppose a bubble of radius a splits into two 

bubbles, the smaller 	t(hWia having radius 	. At any 

instant a balance of the normal stresses across the wall 

of this bubble requires 

where the symbols have their previous meanings but where 

the variation of the ambient pressure with time is 
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omitted so that 

Lef 
where 

At the moment of formation, t = o , say, of the bubble 

the internal pressure within this bubble is just the 

internal pressure of the parent bubble. We then have 

Making the simplest possible assumption we set 	G'tct JO) 

to o 	and find that the acoustic wall pressure 

varies as 

which has a maximum amplitude of ct. 	— 734 ) If 

0.1 ems, C = 80 dynes/cm and ze_ 	fE this has the 

value 1.4 x 104  microbars, and so bubble disintegration 

must be regarded as a significant source of sound energy. 
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Sound which, moreover, is at the resonant frequency of 

the daughter bubbles. 

The sound from a bubble coalescence is treated in a 

similar manner, and again more sound is produced if there 

is a large disparity in the sizes of the bubbles involved. 

A second possible source of sound which will now be 

investigated is the excitation of the bubbles by the 

fluctuating pressures which occur in the wake of the 

obstacle. A typical frequency in the turbulence behind a 

cylinder is of order VA which is always very much less 

than the resonance frequency of the bubbles for flows and 

bubble sizes of practical importance. The acoustic 

pressure at the bubble wall is then given by 

3+ ) P 
(Adz 	-z. 

The turbulence pressure fluctuations have amplitude of 

order rtilc.('" where 	is now the turbulence 

intensity. Taking 	= 0.1, R = 10 cm, U = 5 metres/ 

sec and a  = 0.1 cms, then 

0 - 0 

- a decidecty low level of sound. 

However, there is a completely different situation 
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if we look at the wake behind a bubble caused by the 

relative motion of the bubble and the liquid. Near the 

cylinder a bubble which is assumed to obey our basic 

equation of motion (equation 32) has a slip velocity 

relative to the liquid of the same order as the stream 

velocity, (I . A typical frequency in the wake behind a 

bubble can therefore be as high as 	which can be 

comparable, greater even, than the resonance frequency of 

the bubble. The two will be comparable if L) is of 
2 

(---3>(?  
order 	, or 20 meters/ 1 sec if I 	is one 

atmosphere, and when this happens we can expect significant 

amounts of sound at the resonance frequency. 

It is not necessary, however, that the slip velocity 

be of order U before the flow about a bubble has 

frequencies in it comparable to W 	
21 

9 	Levich 	has 

pointed out that a bubble moving at high Reynold's number 

Re (defined as before) has a stress boundary layer of 
thickness G Ke 	, within which the fluid velocity is of 

the same order as the slip velocity. Any instability 

within this layer will accordingly have a characteristic 

frequency 	
Re 	. This is possibly the explanation 

of the sound produced by bubbles of radii greater than 

about 0.1 cms ascending under gravity, with smaller 
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bubbles giving scarcely measurable sound levels. Not only 

do the larger bubbles have a higher velocity but, because 

the Reynold's numbers are larger there is a greater 

likelihood of instability within the wakes and boundary 

layers. 

Strasberg attributes the sound from rising bubbles to 

the erratic paths followed by the larger bubbles. It has 

not been definitely confirmed, however, that such bubbles 

do, in fact, move in paths which have abrupt changes of 

direction. Dr D. Moore of Imperial College has told the 

author that his observations would suggest that the 

bubbles in fact move along regular spirals. Certainly, if 

irregularity is confirmed, the mechanism which causes it 

is unknown. 

If we refer back to Figure 5, we can demonstrate that 

if the fluid contained a constant density of bubbles 

upstream of the cylinder there will not be a constant 

density of the bubbles downstream of the cylinder. For 

consider the bubble path furthest from the stagnation 

streamline. Downstream of the cylinder this path is 

diverging from the original streamline and will ultimately 

lie along another streamline when the bubble velocity will 

be tending towards the constant velocity U. This is 
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because, far from the cylinder, the force due to the 

pressure field around the cylinder becomes much less than 

the viscous drag force which will always be constraining 

the bubble to move with the fluid. None of the bubble 

paths shown in Figure 5 intersect: were they to do so then, 

necessarily, the bubble density would not remain con-

stant. If no paths at all intersect, then because the 

bubbles at large distances upstream and downstream of 

the cylinder are moving with essentially the stream 

velocity and because the bubble path discussed before does 

not return to its original streamline, conservation of 

total bubble volume necessarily requires that the bubble 

density far downstream of the cylinder is less than that 

upstream. 

Now the velocity of sound in a liquid decreases with 

increasing bubble density, so we may conclude that far 

downstream the cylinder's wake will have a higher speed of 

sound than the adjacent fluid. Consequently, a polar plot 

of the sound intensity produced by a bubbly flow will 

have a minimum in the direction corresponding to the 

wake - the sound waves travelling initially in the down-

stream direction will be refracted outwards. 



- 100 - 

Appendix A 

A listing of the programme which produced Figure 4 

is given in this appendix. 

In the programme, BUBRAD and CYLRAD are the loca- 

tions of the bubble and cylinder radii respectively. 

The velocity of the fluid far from the cylinder is stored 

at VEL and its kinematic viscosity at ANV. The initial 

y coordinates of the bubble are stored in the array YIN, 
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C . 	PROGIZAM—TO -SFIOW---13IIBBL-13 -PATIIS—VOR—DIFFERENT INITIAL 

- 	- •• 	 POSITIONS. - 
-C 	- • 	

. 	_ 

. DIMENSION SX( 161. )/SY(161) iXSP(161) ,YSP(161) 7YINI6 - 
- 	 - 	COMMON LHI,LH2ILH32LH4,LH5IBUBRADI CYLRAD4HOLD v I 

	

C 
	- 1 t AKIX,Y 7 11X,VY 

VYDIE( VY7X2Y)=VY—(-2.*X*Y/1X*X÷Y*Y)-**2) 

	

C. 
	 • VSLIN VX2VY / X7Y =SORT( VXDIF (VX,X,Y)*:2-1-VYDTF1VY1X-,YP;'*2) 

AC X VX:,VY7X 7 Y)=FAC*2.*X*1 X*X-3.*Y*Y-1. ) /1 X*X-:-•Y*Y) es--443 
1 	—DRAG( VS1. IPI VXIVY 7 X,Y)7 VXDIF (VX 7 X,Y),,,C ,COR,RE3 

V)(vVY7X 2 Y)=FAC*2.*Y*13.*X*X—Y*Y-1.3/1X*X-z-Y*Y)**3 
1 - —DRAG( VSL 1131 VX9VY2X t Y) 2 VYDIF( VY/X2Y),C1C082RE) 	---• 	 
CALL START 
READ C5,1003) YIN -- 

,-- 1003 FORMAT 16F4.2) 
FA C=3. 
BUBRAD=0.1 
CY1. RAD=10.0 
VEL=500. 

- • - • 	ANU=0.01 
CCB=CYLRAD/BUBRAD 

	 -RN IN2— (1.+BUBRAD/CYLRAD )**2 
- 	- 	RE —2.*VEL*BUBRAD/ANU 

ER=1./RE 
00 100 JJ=1,2 

	 00 3.01 J=176 

	

C 	- - Y=YIN1J) 
	----- IF 1JJ.E0.2) FAC=1. 

AK =1. 
LH1=0 
LH2=0 
LR3-0 

	

C 	 LH4=0 
	 LH5=0 

X= — 20. 

	

C 	- T=0 
T=0. 
TA=0 

.—C X*X— Y*Y ) / IX*X-:-Y*Y) *4-'2 
VY=-2.*X*Y/1X*X+Y*Y)**2 

8 _ CONTINUE 
IF. ( I .E0.0) GO TO 204 
HT—BUBRAD/CYLRA0/3. 6/VSLIPIVX /VYvX1 Y) 

—CALL HFIND( HT,H 'HOLD) 
--GO TO 205 

------ 204 CONT !NUE 
H=1.0E-06 
CONTINUE 

C 



(-) 
IF (LH5.EQ.1) GO TO 101 

IF (VSLIP(VX,VY,X,Y)-ER), 1,2,2 
C=14 

- GO TO3 
2 - C=2. 

IF .(VSLIP(VX,VY,X,Y).EQ.0.) C=3. 
(jJE0.2) C=3. 

- IF (VX.LT.O.O.AND.X.tE.-5.0) GO TO.  101 
X1=X 
Y1=Y 
VX1=VX 
VY1=VY 

O 

•X2=X+0.5*H*VX 
Y2=Y+0.5*H*VY 
VX2=VX-1-0.5*H*ACX(VX1,VYI,X11Y1) 
VY2=VY+0.5*H*ACY(VX1,VY1,XI,Y1) -  
X3=X+0.5*H#VX2 
Y3=Y+0.5*WiVY2 

- VX3=VX-1-0.5*H*ACX(VX2,VY2,X2,Y2) - 
- VY3=VY-1-0.-5*HACY(VX21VY2,X2,Y2) 	 

X4=i+H*VX3 
-Y4=Y+H*VY3 

VX4=VX+H*ACX(VX3,VY3,X3-,Y3) 
- VY4=VY-FH*ACYIVX3,VY3,X3,Y3) • 

X=X+H*(VX1-2.*VX21.-2.*VX-I-VX4)/6. 
Y=Y+H*(VY-1-2.*VY2+2.*VY3-+VY4)/6. -  - 
VX=VX+H*(ACX(VXUVY1,X1,Y1)+2.*ACX(VX2,VY2,X2)Y2) 

1 	.4.2.*ACX(VX3,VY3,X3,Y3)+;CX(VX4,VY4,X4,Y4))/6. 
-:-VY=VY+H*(ACY(VX1,VY1,X1,Y1) -4-2.*ACY(VX2,VY27X2Y2) 
1 	+2.*ACYAVX3,VY3,X39Y3)+ACY(VX4,VY4,X4,Y4)1/6. 
IF(X.GT.4.)- GO TO 101 

-I=I+1 
IF(X.LT.-5.) GO TO 8 
iF (X*X+Y*Y-RMIN2) 210,210,211- 

210 -CONTINUE. 
XX=4.-Y1 

-YY=15.-XI 
200 -- WRITE (6,201) X,Y,T,H 
-201 -FORMAT (IH ,3F20.3,E10.2) 

-CALL PLOT (XXIYY,2):- 
- -XX=XX-1-0.1 .  

'105 -CALL PLOT(XXIYY,2) 
-GO TO 101 

211:Lr-CONTINUE 
T=T+H 
IT=T*1.0E05+0.3 

-T=TT 
'T=T/1.0E05 

(ABS(T70.05*AK).GE.1.0E7-05) 'GO To-  8- - 

- K=AK- 

XX=4.-Y 
-YY=15.-X 
IF- (XX.LT.0.) GO 0 90 
IF (ABS(Y).GT.5.) GO TO 93 

- 	(K.EQ1)-  GO TO 212 	- 



IF (JJ.EQ.2.AND.MOD(K,2).EQ.0) GO TO 212 
48 	CALL PLOT (XX,YY,2) 

GO TO 8 
CALL PLOT (XXIYY,3) 
GO TO 3 

- 90: WRITE(6,92) J 
92_ FORMAT(1H 25HBUBBLE MOVING UPSTREAM j=1T1) 

GO TO 101 
93. WRITE(6,94) J 

_94-FORMAT(1H ,44HBUBBLECROSSSTREAN DISPLACEMENT 
GO TO 101, 

101 CONTINUE 
100 	CONTINUE 

CALL SPHERE 
	

(J) .  
STOP 
FND 

EXCESSIVE 
II) 

FUNCTION DRAG(A,B,C,CO3,RE) 
(C-2.) 4,5,6 	• • 

-ZRAG=COB*(18./RE+3,375*A)*B. 
RETURN  
DRAG=0.75*C084,(28./RE**0.85*A*440.15-3-0.48*A)*P 
RETURN 
DRAG=0. 
RETURN 
END 



rn  
L. 

0 

SUBROUTINE NEMO (HT /  HsHOLD) 
	COMMON LH1 / LH2 /  LH3I LH4 /  LH59 BUBRADICYLRAD, HOLD, 
1 'AK /X7Y-0/X lVY 
IF ( HT.GE.0.05) GO TO 21 
TF 	 HT T.0.05. AND.HT.GE. 0.01) GO TO 22 
IF ( HT.LT.0.01.AND.HT.GE. 0.001) GO TO 23 
IF (HT.LT.0.001 . AND .HT.GE  .0.0001) GO TO 24__ 
IF (HT.LT.0.0001 .AND. HT.GE. 0.00001 ) GO TO 	 --
IF I HT .LT.0.00001) GO TO 26 

	-21— H=0.05 

C) 

C) 

0  - IF ( H.GT.HOLD .AND.LH-1.NE. 0) 
--- IF ( H.GT.HOLD.AND.L1-12.NE. 0 ) 

- -IF ( H.GT.HOLD.AND.LH3 .NE.0) 
IF ( H.GT .HOLD .AND.LH4 .NE. 0 ) 
GO TO 20 

	

 	22 	 H=0.01 

	

- 	-IF 1 H.GT.HOLD.AND.LH2.NE. 0) GO TO 23 - 
	 IF ( H.GT .HOLD.AND.LH3 .NE.0) GO TO 24 

IF 	( 1-1.(1T .1101.0.AND.LH4.NE. 0) GO --TO. -25 
LH 1=LH1+ I 
GO TO 76 

IF ( H.GT .HOLD .AND.LH3.NE. 0) GO. TO 24 
IF ( H.GT .HOLD.AND.LH4.NE. 0) GO TO 25 
LH 2=LH2+1 

 	GO TO 75- 
24 H=0.0001 

	

 

	

	— IF- ( H.GT .HOLD.AND.LH4.NE. 0) GO TO 25 
LH3=1...H3+1 

	

- 	GO TO 74 
H=0.0000I 

- LH4=LH4+1 
- 	 - 	IF 	LH4-10) 2017C/ 20 
	70 	LH 4=0 

LH3=LH3+ 1 
74-- IF ( LH3-10 ) 201  71120 
71 _ LH3=0 

LH 2=LH2+1 
IF ( LH2-10) 20 72 / 20 

----LH2=0 
LH1=LH1+ 1 
IF ( LH1-10) 20,73,20 
LH1=0 	_ 

—GO TO 20 
'TRITE  ( 6 /  27) HOLD/ X /  Y 

27 - FORMAT ( 1H ,27 HINCREASE IN 
tH5=1. 
RETURN 

GO 
GO 
GO 
GO 

TO 
TO 
TO 
TO 

2? 
23 
24 
25 

7-.7771- 

H TOO SMALL H z--,E10.2,2F10.4) 



,-T-HOLD=H - 
-- RETURN 

END 

SUBROUTINE SPHERE (J) 
DIMENSION SX(161),SY(161),XSP(161),YSP11611,YIN(24) 
IF (J.EQ.1) RETURN 
CALL PLOT (3.'15.0) 
I=1 	- 

.32--XSP(I)=-1.+FLOAT(T-1)'0.025 
YSP(I)=SORT(1.-XSP(I)**2) 
I=I+I 
IF (T-81) 32,32,33 
XSP(I)=1.-FLOAT(I-81)*0.025_:: 
YSP(T)=-YSP(I-80) 
I=I+1 
IF (1-162) 33,34,34 

34- DO 17 1=1,161 
SX(I)=4.+XSP(I) 

-SY(T)=15.÷YSP(T) 
CALL- PLOT (SX(I),SY(I),2) 

__HCONTINUE 
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