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Abstract

This thesis investigates the feasibility of applying
linear statistical filtering theory to the solution of estimation
problems encountered in the operation of chemical plants. The

study is divided into two sections.

In the first part, the development of the theory is considered,
and a unified derivation is presented which yields both growing

and limited memory filtering algorithms.

In the second section, the application of filtering techniques
to typical chemical engineering systems is considered. The
sensitivity of the filter performance to errors in the statistical
assumptions made about the system is investigated using data
from a binary distillation column. The effects of system modelling
errors is studied using a simulated fixed-bed catalytic reactor.
For this example, a realistic industrial simulation is used, and
the ability of the filter to estimate non-observable system

parameters is demonstrated.
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CHAFTER 1

INTRODUCTION

Though there have been impressive advances over the last decade in
the theories of optimization and control, few of the new results have
been applied within the chemical process industries. This gap between
theory and application is caused by the fact that optimal control
techniques require an exact mathematical model of the system being
congldered, and also require the observation of the true state of the
system so that, using the model, its future behaviour can be predicted,

and any corrective action determined.

Even when reliable deterministic models are available to the
chemical engineer they are often too complex for repetitive optimization
calculations. In practical situations, this problem is compounded by
the fact that both the measuring devices and the system itself are
subject to random disturbances which prevent the error free observation
of the system state; indeed, the future evolution of the plant often
depends upon a variable such as catalyst activity which cannot, be
directly observed, and must be deduced from other observations. Thus
the problem becomes one of state estimation as well as stochastic

control.

These difficulties have appeared to be s0 serious that many chemical
engineers have dismissed optimal control theory as an academic exercise
of little practical use. This attitude is reflected in the operation of
many large industrial processes which are controlled by on-line computers
capable of optimization calculations, but programmed merely to log data

and simulate conventional amalogue control algorithms.
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In splte of the fact that the complexity of typical chemical
processes often precludes the application of modern control techniques
it would seem that, when a plant is installed with an on-line computer,
better use could be made of the information which is avallable about the
system. In a conventional plant, most operating declsions are made on
the basis of a small sub-set of the measured process varisbles. For
example, in the operation of a tubular reactor, control decisions are
usually based solely upon the outlet conditions of the process stream,
even though temperature measurements are likely to have been made at
several points along the length of the reactor. Furthermore, process
measurements are usually accepted as being completely correct, and no
allowance 1s made for instrument errors, or the past performance of the
measuring devices. Though it would be impossible for an operator to
absorb and utilize all of the available process information, it is not
unreasonable to propose that an on~line computer could be programmed to
analyze for trends in plant performance, or detect changes in the

reliability of the measuring devices.

The more efficient use of process information might, for instance,
allow the estimation of a stream composition using several temperature
measurements, and save the cost of ingtalling a composition analyzer.
Even when a complete mathematical model of the process is not available,
effective use of an on-line computer would allow utilization of any
system constraints that might be known. Thus when a process is in
steady operation, account could be taken of the fact that a total mass
balance must be satisfied, and this ¥nowledge considered in conjunction
with actual flow measurements might permit the detection of instrument
malfunctions or the detection of leaks in the system. By monitoring

successive sets of observations, it is possible that the computer could
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be used to estimate the relative reliability and accuracy of the various
process measurements. In brief, the ingtallation of an on-line computer
should allow better use of all information that is available about a
process, even though the knowledge of the system is inadequate for the

formal application of optimal control techniques.

In order to determine how more effective use can be made of the
varioﬁs sources of information in a chemical plant, it is uceful to view
the process as an information system, consistdug: of the physical units
and the meaguring and control devices, as well as any known system
constraints. The amount of information that can be obtained by
observing the system depends upon the speed with which the characteristics
of its components are changing in relation of the observation rate. The
extraction of any information from a system at a given observation rate
~ requires that the process must contain gome elements whose characteristics
remain constant in relation to the rate of observation, in much the same
way as navigation of the open sea relies upon the seeming immobility of
the reference stars. In many situations, only the statistics of the
observation noise can be assuted to be constant, and in these cases
effective utilization of system information requires an accurate
prediction of the dynamic behaviour.of the plant. However, many
industrial. chemical processes move very slowly in relation to the rate at
which they are observed, and under these circumstances not only can the
statistics of the instrument errors be considered constant over long
periods, but the plant state as well. In these cases, the assumption
that the plant moves through a succession of steady-states may be
Justified, and it is reasonable to base an estimate of the plant state

upon several sets of obgervations rather than the most recent one.
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There are several possible methods for analyzing the system
information in order to provide an improved estimate of the plant state.
In cases when steady-state operation can be assumed, the most direct
approach is to minimize some weighted function of the observation errors
subject to the known steady-state constraints, where the welghts reflect
the relative relizbility of the measuring devices. The actuai form of
the function to be minimized would depend upon the anticipated probability
distribution of the instrument errors, but is unlikely to be very
critical; a quadratic function can be shown to be adequate in most
situationss Though this approach has the advantage of conceptual
simplicity and does utilize all available information, it has some
limitations. The technique requires the storage of the relevant data
sets, and the performance of a new minimization as each new set of
observations is acquired; it is therefore likely to be impractical for
on-line computation. Furthermore, the performance of a minimization with

nonlinear constraints is in itself a difficult numerical problem.

When the rate of change of the plant state is of the same order as
the observation rate, the minimization approach is not applicable, since
the governing constraints relating the observations to the plant state
vary between data sets. A possible method of analysis under these
circumgstances is to interpret the plant records as stochastic time
series. Thus each instrument reading can be considered to be the sum of
the true reading and additive random observation errors. The estimation
of the true plant state requires the removal of the random element of the
measurements, and hence becomes a problem in statistical filtering. This
approach is attractive in the sense that it is possible to formilate
sequential filters, and thus eliminate the necessity of storing large

sets of data.



12.

Filtering techniques have been developed for the solution of the
following problem ¢ Given a set of observations of a system over the
interval (O, T}, it is desired to estimate the output of the system at
some time %, such that the estimate is optimal according to some
predetermined criterion. When t<T, the problem is one of smoothing;
when t = T; it is one of filtering and when t> T, it is one of
prediction., The selection of a criterion for optimality is subject to
the same considerations as those mentioned for the constrained

minimization.

But the application of statistical filtering techniques would seem
to be thwarted by the same limitation that prevents the calculation of
optimal controls for realistic chemical processes. In order to remove
the random observation noise, a deterministic model for the true value
of the observed variable must be postulated. In cases when the system
changes significantly between observations, this means that a dynamic

model must be proposed before the filtering techniques can be applied.

However, mathematical models suitable for filtering applications
are not as difficult to formulate as control models. A model uged for
the calculation of optimal controls must be valid for the entire period
for which a control policy is needed, while a filtering model need only
be locally valide It should be possible to evaluate instrument
performance and estimate non-observable systen parameters with a local
model, so long as the model errors remain relatively constant and small
in relation to the observation errors. If the local model approximates
the true system closely enough, the deterministic element of the
observations can be removed, and a constant frame of reference based upon
the characteristics of the instrument errors can be established in order

to allow valid analysis of the information system.
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Several of the arguments presented in the preceding paragraphs rust
be tested before filtering techniques can be applied to operating systems.
Specifically, the sensitivity of the filter performence to errors in the
estimate of the observation statistics or to local model errors must be
determined. In order to evaluate the performence in typical chemical
engineering applications, the filtering techniques have been applied to
some spimulated systems. Tn one example data from a distillation column
operating in a known steady-state is analyzed to evaluate the effect of
erroneocus statistical information being used in the filter. In another
simulation, the techniques are applied to a fixed bed tubular reactor
with catalyst decay in order to test the ability of the ﬁethod to
estimate the catalyst activity and its rate of decay from temperature
measurements only. In this case, the complete reactor model is too
complex for on~line computation, and a simplified, locally valid model

is used for the filtering calculations.

A review of the development of the theory of statistical filtering
and estimation is presented in Chapter 2. An effort is made to
reconcile the many different approaches that can be taken to establish
the results of the theory, and in the following chapter, a unified
derivation of the results ig presented, based upon the characteristics
of least-squares estimators. Chapter 4 describes previous applications
of on-line estimating-techniques in the process industries, and
discusses the particular problems faced in applying statistical
filtering theory to chemical engineering problems. The final chapters
are devoted to the analysis of the performance of the filtering
algorithms in the simulated situations mentioned above. Though the
similations are presented merely as examples of possible applications
in the process industries, it is felt that they are representative of
typical industrial systems, and will point the way towards more effective

utilization of process information.
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CHAPTER 2

THE DEVELOPMENT OF STATISTICAL FILTERING TECHNIQUES

2.1 Introduction

The modern theory of statistical filtering was originated by
Wienerl, who combined the techniques of time series analysis with the
classical theory of communication in order to provide solutions to the
pressing problems of communication signal analysis which arose during
World War II. Though Wiener's methods provided theoretical solutions
to many problems involving the removal of random noise from radio
signols, practical implementation of the new results was impossible in
all but the most simple cases. Extensive research provided methods to
solve a wider c¢lass of problems, but the Wiener theory was not widely
applied until the advent of the digital computer. This powerful new
tool for information analysis allowed the reformulation of the Wiener
techniques into a more convenient form. Kalman2 pregented a technique
which does not require a closed solution to the filtering problem, |
but rather allows its recursive solution with the aid of a computer.
Though the original Kalman solution was developed for linear systems
with gaussian disturbances, several modifications have been developed

to allow the solution of a wide class of problems.

Before these techniques and their modifications are described,
the question of a definition of optimality for filtering problems is
considered. The relationship between filtering theory and its
progenitors, the theories of estimation and communication, is also

discussed.
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202 A Criterion for Optimality

In all problems of filtering and estimation, it is desired to
produce a solubion that is "best" in some way. The form of the
solution depends intimately upon the definition of what is eonsidered
to be "best". In selecting a criterion for optimality, account must be
taken of the use to which the estimate will be put, and the types of
errors that are assumed to corrupt the system. The engineer has
traditionally turned to the criterion of least-squares to define
optimality, and it is reasonable to consider first the desirability of

this well known criterion.

The characteristics of the least-squares estimator were first
described in detail by GaussB, and the publication of his theory is
considered to have established estimation theory as a mathematical
technique4. Gauss described the characteristics of an estimator for
a linear system observed by measuring devices with uncorrelated errors,
and defined as optimal the estimate of the system that minimized the
sum of squared deviations of the true observations from the ones
preaicted by the fitted model, The principal advantage of the least-
squares estimator is that iks characteristics are independent of the
probabilitj distribution of the observation errors, as long as the

errors are uncorrelated,

Later developments in estimation theory do not share this
advantage, and this fact is reflected in the limited application of
the techniques to practical engineering problems. For example, a
large body of theory has been developed in order to rationalize the
comparison of alternative estimators of the parameters in probability

distribution functions. The qualities such as bias, consistency,
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sufficiency, and efficiency have been defined for this purpose5 .

Thus, in estimating the variance of a normcl pomlation on the basis

/
of a random sample ; in} y 1 = 1, «o n, the estimator;

L
sy = -ﬁ%-i:__{— (xi - 3?)2 (2.1)
is used in preference fo 1
s, = %—}; (xi - (2.2)

where x is the sample mean. 81 is selected because it can be shown
that its expected value is 62, the true population variance, and hence
the estimator is unbiased by definition. Since the use of these
comparative techniques for the evaluation of estimators requires a
knowledge of the governing distribution, the criteria have been applied
primarily in the life sciences where probabalistic models of error

phenomena can be reliably postulated.

The same disadvantage is encountered in applying maximum likelihood
tecmliques5 o In this case the joint prouvalility distribution of the
observed events is calculated as a function of the unknown parameters
in the governing probability distribution, and the optimal parameters
are defined as those which maximize the joint distribution function.
The use of this optimality criterion is therefore restricted to those

situations for which the joint probability distribution can be defined

analytically.

Though it has been suggested that the least-squares criterion is
applied to practical problems out of ignorance rather than insightG, a

lack of probabilistic information is not the only justification for



18,

its application to engineering problems. First of all, the estimator
which produces a least-squares estimate can be shown to be identical
to the maximume-likelihood estimator for linear systems subject to
normal random disturbances. More significantly, the least-squares
estimator can be considered to be optimal in a "wide sense! since it
minimizes the first two moments of the observation errors about the
predicted observations4. The neglecting of higher order moments is

fortunately reasonable in many practical situations.

A further justification for choosing a least~squares criterion
arises from the specification of electronic filters in communication
theory. Using the classical theory, the filter is designed to have
particular frequency response characteristics in order to remove the
undesired noise components from the signal. The filter is synthesised
so as, to minimize the ratio of the nolse signal power to the message
powers, Since power in electrical circuits depends quadratically upon
current, minimizing the sum of squared errors caused by the signal

fluctuations will minimize the power of the error component.

But the major advantage in employing a least-squares criterion
is that it provides an estimator whose characteristics are independent
of the stochastic characteristics of the system being observed. Though
it might be possible to propose a more desirable optimality criterion
for the solution of a particular problem, a filter which results in
a least-squares estimate is likely to be applicable to a variety of
practical problems. For this reason, any future reference to a best
or optimal estimate should be taken to imply optimality in a least-

squares sense.
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2.3 Wiener Filter Theory

Wienerl considers the solution in the time Jdomain of the

problem of linear filter design in communication engineering. Using a
minimum mean error power optimality criterdion, the specification of
the filter is made in terms of the first two moments of the signal
statistics. The main result of the solution is the Wiener-Hopf

equation which is an integral equation relating the cross-correlation
function of the filter input with its output, to the auto-correlation
function of the input. The solution of the eguation provides the

impulse response of the optimal linear filter.

Though the Wiener filter theory represents a major conceptual
advance in information analysis, it involves several practical
difficulties that limit its utility. A major limitation lies in the
fact that the optimal filter is specified by its impulse response. Even
vhen the Wiener~Hopf equation is soluble,y the construction of the filter
on the basis of its desired impulse response characteristics is a
difficult problem. Furthermore, Wiener considers 6nly simple systems
with stationary statistics. Though multivariate systems are dealt with
briefly, their solution requires the specification of auto- and cross—

correlation functions relating all inputs to all outputs.

Nevertheless, a great deal of research has been inspired by the
work of Wiener. Because the complexity of chemical engineering
problems prevents the direct application of the theory, its developments
and extensions will not be explored. Extensive references to studies
based on the original Wiener theory are avallable in several

8
sources7‘ o



20,

The most significant aspect of the work of Wiener is the way in
which the combining of statistical time series analysis with the
classical techniques of communication engineering allows the consideration
of filtering problems in the time domain, Time domain analysis is far
more useful in the solution of chemical engineering problems where
frequency domain analysis is unlikely to be physically meaningful, or

is invalid due to system nonlinearitiese
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2.4 Kalmsn Filter Theory

The difficulties associated with the solution of the Wiener-Hopf
equation were circumvented by Kalmanz. He considers the estimation
of the state of a linear dynamics system eubject to gaussian
disturbances and observed by measurements which are linearly related to
the state. Using state-vector notation to describe the evvolution of
the gystem as a diséretg function of time, and considering the geometric
properties of optimal estimators, a recursive formulation of the filter

was derived in a form ideally suited to digital computation.

2e4.1 State-Vector Nokation

State vector notation allows the reduction of the matrix
differential equation describing a linear multivariate dynamic system,
to a set of recursive equations relating the current state of the
system to the state at some interval of time later, where the state is
defined as the minimum amount of information required to describe the
future evolution of the system given the describing equations, and
asguming no further inputs are applied. The salient features of the

9

notation are presented below’.
Congider a fixed homogeneous linear dynamic system described by,
x = Ax (2.3)

where X is a n-dimensional state vector, A is a (n x n) matrix of
constant coefficients, and X denotes the time derivative of the state.

The solution of this equation is analogous to the scalar case.
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x(t) = exp[A (¢, - to)] x(t,) (2.4)

for tn 2 too
The exponentiation of a matrix is defined by the infinite series:
exp{At} = T 4 At + AZZ/28 + AOE/BL 4 veees  (2.5)

For the stationary system considered, the matrix exponential is defined
as the state transition matrix relating the state at time tn to the
state at some earlier time to. Since the elements of the matrix A are
time invariant, the state transition matrix depends only upon the
interval (tn- to) and not upon either time explicitly. Thus equation

(2.3) may be transformed into a recursive relationship,
) = B (b - ) x(ty) (2.6)

where § (tn - t5) is defined from equation (2.4).

For the time-varying, homogeneous case, the elements of matrix
A in equation (2.1) depend upon time, and the state transition matrix
cannot in general be described in closed form. However, the relationship
between x(t ) and x(t,) remains conceptually the same as described in
(246), though in this case the transition matrix will be written as

9 (tn’ to) to indicate the time dependence.

The addition of a forcing function to the system further complicates
the analysis. In the non-homogeneous case, the general linear system

becomes,

xt) =A%) x(t) + B(t) ult) (2.7)
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where both A and B may be time dependent, and u is an arbitrary forcing
function. The solution to (2.7) consists of a homogeneous portion, and

a contribution of the forcing term. Thus,

% _
x(t) = é(t, to) x(t,) + L (E (t, ).)B(to)g(x)dx
+ 0

cone (2.8)
assuming the interval (t - t;) is small enough to allow A and B to be
considered effectively constant. The integration in (2.8) may be
avoided if it can be assumed that the short time interval permits the
interpretation of _1_1_('[:) as an impulse input just prior to time t. Under
these conditions, the solution to (2.7) may be modified to describe the

stagewise evolution of x through time.

28) = Bk, =) x(t=2) + B(E) u(t) (2.9)

The state transition matrix has several properties that will be

utilized in the sequel.

1; Pty o) =1

e d;(tz' tl)@(tl’ to) = @(tzt t0>

These properties may be easily verified.

2e4.2 The Kalman Solution

Kalman considers the estimation of the linear dynamic system
described in the continuous form of equation (2.7) or discretely as

in (2.9), and assumes that B(t) = I for all t without loss of
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generality. To the dynmmic system is added an observation system

described in the continuous case by,

() = 6(t) x(t) + x(v) (2,10)

where x is an n-dimensional state vector, y is an m~dimensional
observation vector, and v is an m~dimensional vector of random
observation errors. If the observations are perfect, and thus _\_r.(t)

is zero for all t, the Kalman form of the solution of the filtering
problem requires that m £ n. The matrices A and G ére known

functions of time, and are of dimension (n x n) and (m x n) respectively.
The dynamic input vector, u, can be considered to be either normal
random noise, or the output of a linear system fed by independent
gaussian noises The following statistical characteristics are assumed

for the noise inputs:

Ez_q_(t)} = EE_Y_('I:)j = 0 forallt

Eez_'g_(t) B_T(t?'g = Q%)
£ (%) _gT(t)§ = R(t)

i

2

Eg_g(t) P_T(s)} Efy_(t) lT(s)?; =0 forallt £ s

O for all t and s.

E§ 3(+) g’”(s>}

The estimation problem is to determine the estimate X(t,) of x(t)
such that the expected loss funchion is a minimum., The loss function

is the least-squares criterion,

T
L = E { [_:’_2_(1:1) -E(tl)] {g(tﬁ - _:g(tl)_B (2.11)

(2% e
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Kalman shows that the theory applies for any convex loss function

symmetric about its meana.

It will be recalled that the general estimation problem can be
subdivided into ones of smoothing, filtering and prediction. The Kalman
theory applies only to the solution of the latter two; that is, the
state at time tl can only be estimated at time t if tl 2 t. Fortunately,
filtering and prediction are of particular interest in chemical
engineering applications. The smoothing problem will not be pursued
further; it is considered in detail by Meditchlo.

For convenience, the following notation convention is adopted. The
estimate %(t) at time tn based upon observations from tims tg to ‘va;1 will be
denoted as %n/ e Conditioning upon observations in the interval tp to
t with p < m will be indicated 'by X 0° The state transition matrix
i) (tn, t ) will be written @n o Any time dependent matrix such as

A(t) defined at time tn will be written as A .

The analysis by Kalman yields the following algorithm which defines -
the filter for the discrete case. The analogous continuous solu‘bionll

will not be considered.

Kalman al.gorithm

1
I\

~
1. L/n-1 = Wn n-l *n-1/n-1 En n-1 (2.12)
',T
2 Po/m1 = (.};' n,n-1 Fn-1/n-1 @n,n—l * (2.13)
- m -
3 Bam = Busma =B GnlGy Po/n-1 Cn * Ry 5, P/n-1
(2.14)
~ _on T ~1
bo x n/n = *n/n-1 + P n/n-1 %, LGnPn/n 1 Gn * Rn} '
[ L~ K J (2.15)
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In the particular problem first considered by Kalman, the known non-
random dynamic input (or control), Sy ne1 ? OVET the interval t_ , to %
is not considered, furthermore, perfect observations are assumed so that
R, = O. The information required to initialize the filter is %, /o and
PQ/Oi that is, an estimate of the initial state and the covariance matrix
of the error in that initial estimate. The assumption of knowledge of‘
gb/b and PO/D is shown11 to remove the requirement of stationarity of the
dynamic system, which is inherent in the Wiener solution. All other
elements of the algorithm are assumed to be known for all t 2 to.

Note that as the estimator evolves through time, the information from all

past observations starting from to is contained in the current estimate

§ /n and the error covariance matrix Pﬁ/n’

The work of Kalman represents a major advance in statistical
filtering theory. Beslides offering a practical solution to the problem
solved only in theory by Wiener, it demonstrates several significant
points. Kalman shows that a linear filter is optimal for linear systems
with gaussian inputs, and that the optimal estimate consists of a linear
function of the current state and observation vectors. Furthermore, it
is demonstrated that the results obtainable by a linear filter can be
improved upon by a nonlinear estimator only if non~gaussian inputs are
congidered, and even then only if third order probability distributions
are postulated to describe the error statistics. The Kalman theory is
algo applicable to non-stationary dynamic systems, and as such is more
general than the Wiener techniques.

The analysis of continuous linear systems by Kalman and Bucyl:L

contains a rigorous mathematical analysis of the properties of the

estimator, which is interpreted as an orthogonal projection in Hilbert
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space. Indeed both of the Kalman papers are elegant mathematical
expositions, but there is little to be gained by reviewing in detall the
Kalman derivation of the algorithm. The geometric approach taken is
likely to be unfamiliar to the engineer; fortunately, the results can

be obtained more easily by several alternative methods.
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2.5 Alternative Derivations of the Kalman Filter

The filtering problem considered by Kalman is open to several
interpretations, and each one allows a different method of solution.
Kalman views the problem as one of determining the conditional
expectation of the system state, where the estimate is conditional on all
past observations, and he exploits the geometric properties of conditional
estimates to derive the filter equations. However, the interpretation of
the filter output as a conditional expectation also suggests the possi-
bility of using the Bayesian theory of statistics to generate the
solution to the problem. Another approach is suggested by the fact that
the estimate of the system state is a function of time which minimizes
a quadratic cost related to the observations and the predicted dynamic
errors. Thus the problem can be couched in terms of a minimization in
function space, and analyzed through the use of classical variational
techniques. Alternatively, since the cost function considered is a
least-squares criterion, the solution could be sought using standard
least-squares theory. Indeed, all of these approaches have been
congidered by various authors, and each viewpoint has its advantages

and disadvantages.

Ho and Leela have derived the Kalman solution directly from Bayes
Rule. Thelr technique provides a method for calculating the evolution in
time ef the probability distribution of the system state conditional on
the observations of the system. The estimate is defined in terms of the
parameters of the distribution, and in the case of linear systems with
gaussian inputs the recursive equations defining the evolution of the
mean and Variance of the conditional distribution are the same as those

derived by Kalman. Though the theory allows the calculation of the
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distribution for any nonlinear system subject to inputs with known
statistics, there will in general be no way of defining the estimate
recursively in terms of the characteristics of the conditional
probability distribution. Thus while the Bayesian approach is satisfying
to the theorist, it is only useful to the pragmatist in the simplest

situationse.

A variational solution to the problem was first suggested by
Bellman et gl.lB, and is developed using the concepts of dynamic
programming. The general nonlinear estimation problem is considered and
a Hamilton-Jacobl equation is derived whose solution defines the trajectory
of the optimal estimate of the state from the time of initialization to
the current time. A recufsive solution to the equation is found using
the technique of invariant imbedding, which reduces the two-point boundary
value problem to an initial value one. Once again, this formulation
reduces to the Kalman solution for linear systems. Bellman and his co-
workers were among the first to show that unknown parameters in the
system model could be estimated along with the state without altering the
form of the filtering equations.

The solution of the problem from a least-~squares viewpoint is
verhaps the most obvious approach to the engineer. In 19%0, Plackettl4
proposed a method for combining least-squares estimates from two blocks of
data, and his equations can be shown to be equivalent to a Kalman filter.

Swerling15

considered the generation of sequential least-squares estimates
of the parameters of satellite orbits, and arrived at the same special
case of the Kalman solution. Rosenbrockl6 has recently demonstrated that
Kalman's results can be derived directly from a theorem by Gauss. While
the least-squares derivations are not as elegant as some others that have

been mentioned earlier, they are especially useful to engineers accustomed

to the technliques of least-squares analysis.
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2.6 Extensions to Kalman Theory

The class of problems soluble using linear Kalman theory can be
easily extended within the framework of the original formulation. The
application of a non-random foreing function to the dynamic system is
allowed for in the algorithm presented above, and can be seen to enter
only into equation (2,12) which describes the transition of gcn_];/n_l to
gh/n-l' Sorensonl7 has shown that systems with correlated dynamic:
inputs and measurement biases can be analyzed by increasing the
dimensionality of the filter without altering its form. MayneX® considers
the estimation of the elements of the state transition matrix of a linear

system with perfect measurements and shows that the problem can be

transformed to a standard linear problem of dimension n2.

However, the most serious limitation of the original Kalman theory
is its restriction to the analysis of linear dynamic systems. Denham and
Pines? have shown the detrimental effect small nonlinearities can have
upon the performance of a linear filter. Nevertheless, Smith et al.ao
have used the linear theory to estimate the orbital parameters of
satellites, whose behaviour is governed by highly nonlinear celestial
mechanical equations of motion. They assume that the perturbations of
the satellite from a given reference trajectory are governed by a set
of linear dynamic equations, and hence estimate the parameters using the
standard linear theory. This technique has been applied successfully to

many estimation problems encountered in aerospace applications, where

theoretical reference states can be accurately predicted.

The applicability of the Bayesian and variational approaches to
the syrthesis of nonlinear filters has already been mentioned. Sorenson

and Stubberud21 derive a filter for the analysis of slightly nonlinear
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systems using Bayesian techniques, relying upon the assumption that

the probability distribution of the state conditioned upon the measurements
remains geaussien in spite of the nonlinearities. The method can be
applied successfully if the nonlinear system is esgentially quadratic.
Pearson and Shridar22 derive identical results from a variational view-

point,

Though the Bayesian and variational approaches yield identical
results, there is a distinct philosophical difference between the methods.
A Bayesian analysis requires definite assumptions concerning the probability
23

distributions of the system inputs, while as Pearson observes, the
variational approach does not necessitate the synthesis of stochastic
input models, and as such is more likely to be useful for the analysis
of practical problems. It should be stressed that though a completely
general solution to the nonlinear, non-gaussian filtering problem can be
formulated in theory24, the practical specification of the filter can

only be determined for, at best, quadratic systems with normal inputs.

A further extension of the linear Kalman theory of special interest
in chemical engineering applications has been suggested by Seinfeldaso
He considers the synthesis of filters for systems described by linear
partial differential equations. The results follow from an extension of
the variational analysis, and it is interesting to note that the modified
filter differs in form from the standard continuous Kalman filterll only
in the evolution of the state egtimate, while the equation describing
the estimate covariance matrix remains unchanged. In this case, of
course, the difficult part of the estimation procedure lies in the
solution of the partial differential equations of the model, and not

in the actual updating of the filter.
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Further extensions of the Kalman theory have been made to improve
the performance of the filter in the analysis of real physical systems.
Schlee and his co-workers26 have demonstrated the adverse effects of
rounding errors and model deficiencies on the estimator when applied to
similated aerospace problems. Smith27 has made a similar analysis which
shows the effect of unknown instrument biases on the estimator performance.
In general, it seems that even in the unlikely situation when the system
dynamic equations are perfectly known, computational rounding errors can

still cause a degradation in the behaviour of the filter.

Several attempts have been made to modify the Kalman algorithm to
counteract these affects, primarily by limiting the memory of the filter,
thus allowing the estimates to be based gpon the most recent observations
of the system. An early attempt to synthesize a limited memory filter was
made by Blumas, but his technique requires the storage of all of the
observations within the memory span. Jazwinsk129 has deduced a filtering
algorithm whose memory oscillates between n and 2n sets, and requires
twice the storage of the standard growing memory filter. The choice of
the memory parameter n depends upon the nature of the system being
observed. The filter output is characterized by a discrete shift in the
estimate as the memory basis shifts from 2n to n records, and the
detection of a pattern in successive shifts can often be used to suggest
the form of the model deficiency. An alternative technique for reducing
the influence of early data sets has been suggested by'Eaginzo, who
applies an exponentially decaying weighting factor to the memory, and
specifies a filter requiring no more storage than the Kalman algorithm.

A practical analysis of the performance of these limited memory

techniques has not yet been reported.
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2.7 Concluding Remarks

No effort has been made to include all of the contributions that
have been made to the development of the linear filtering theories of
Wiener and Kalman. Rather, an attempt has been made to reconcile the
varioug approaches that have been taken to derive the results of the
theory. The particular viewpoint taken in anajyzing the filtering
problem is clearly a matter of personal preference, and in practice,

all methods yield identical algorithms.

In order to provide a sound bagis for the application of the
filtering techniques to chemical enginerring problems, a unified
derivation of both the growing memory (Kalman) and limited memory filters
is presented in the following chapter. The least-squares apﬁroach is |
taken, since in most practical engineering applications, stochastic

models for input and measurement disturbances are not available.
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CHAPTER 3

DERIVATION OF THE FILTER EQUATIONS

3.1 Introduction

The discussion in Chapter 2 has indicated the variety of techniques
which can be used to derive the recursive equations of the optimal
filter. The approach taken here is inspired by Rosenbrocle, who has
shown that the Kalman filtering equations can be deduced directly from a
theorem by Gauss on the characteristics of least-squares estimators.
However, the present derivation differs from earlier efforts because it
yields the recursive relationships describing not only the standard
growing memory filter of Kalmanz, but also the limited memory filters
derived using different methods by Jazwinski29 and Faginso. In order to
allow this more general derivation, the dynami.c input vector is
restricted to be a deterministic function of time; hence the emphasis of
the estimation problem is shifted to the determination of the system
state from a set of noisy instrument readings, rather than estimation in
the face of random input disturbances. It will become evident in the
course of the analysis that random dynamic inputs preclude the use of
certain types of limited memory filters unless every data set within the

memory is stored.
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3.2 The General Non~linear Problem

The filtering theory derived by Kalman2 applies to a class of
systems described by linear dynamic equations and observed by error free
measurements. The linear theory can be applied to a more general class
of problems by linearizing the system about the current best estimate

of its state. Congider the following dynamic model:

) = j_[_}gx(t),g(t),_g(t), t (3.1)
*® * '

) = 5_[_}_:_ (t), a(t), ¥(t), t] (3.2)
alt) = o. (3.3)

where 5? is an n-dimensional state vector,_x# is an mevector of
observations, u and v are random disturbance vectors, & is a vector of
unknown, constant parameters, and f and g are known functions. Any
deterministic inputs to (3.1) and (3.2) can be accounted for by the time

dependency.

For this analysis, the general problem is modified by assuming
that the observation errors are additive, and by considering only
deterministic dynamic inputs. The significance of excluding random
inputs to the dynamic system will be discussed later. The problem is
further simplified by adjoining the parameter wector to the state
vector, so that 3f(t) is redefined to allow estimation of any unknown

parameters in the system. The modified system description is :

EHORERFIF SORN (3.4)
yt) = 5[5"(1:), t] + v(t) (3.5)
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where the random obseryation error, v(t), has zero mean and known

covariance matrix R(t).

The equations can be expanded in a Taylor series expansion about the

current optimal estimate gf(t) to yield, to the first order :

. (%),
=) = I *(6), t] + afL‘(:) 4] L_:g“(t)-’g‘c_"(t)] (3.6)
x(e)
. )
Fe) = s_[:‘:g“(t), q + -?E'[Ex-———i—z—;—,—j ,[:f‘(t) - f(tg + v(t)
- ox
()

ecos (3e7)

The nonlinear system of equations describing the state and
obgervations can therefore be converted into a linear set describing the

evolution of the errors in the estimation of the reference state.

Defining
x(8) = L) =X a
(3.8)
) =y - [x (), tJ
the converted problem can be written,
x(t) = F(e) x(t) (3.9)
(e = alt) x() + y(t) (3.120)

- where F and G are the Jacobian matrices in the series expansions (3.6)

and (3.7) respectively.
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The equation describing the error propagation with respect to time
can now be converted to discrete state-vector notation according to the
assumptions of section 2.4.1l. Recalling the notation convention

described in that section, it follows that :

5 - Doy (3411)
e = G X + ¥ ' (3.12)

where (tk i is the appropriate state~transition matrix.
4

It should be stressed that this method of analysis of a nonlinear
system assumes that the deviations from the reference state can be

described by a set of linear dynamic equations. However, the reference

state itself remains nonlinear.



3.3 The Filtering Equations

3e3.1l The basis in Least-Squares Theory

The derivatinon is based on the following theorem on the properties
of least-~squares estimators, which is shown by Plackett14 and by

Kendall and Stuart5 to follow directly from work by Gauss.

" Least-sguares theorem

Given a set of observations X related to a state vector x by the

equations ¢

¥y = GCx+x (3413)
G D
where R = E z_\g_w_r_ 5 and E i_y_ S = 0. (3.14)
. ~ T =1
then the estimate x = PCT R ~ y (3.15)
¢ n A ATy O e e
where P = Ezg-yg-z)g=[0R c] (3.16)

has the following properties @
.o T -1
(a) It minimizes (y - Cx)” R (¥ = Cx)e
(b) It minimizes E {(_fg - _JE)TQ(_:E - 5)—‘% for any positive semi-~definite Q.
: /

(¢) It minimizes all elements of P.

3.3+2 The Derivation of the Algorithm

The state of the dynamic system described in (3.11l) and (3.12) can
be estimated using the theorem, by writing Xy in terms of gc_j, the unknown

state at time tj' Thus,

L = Gy @k,j X5+ 0 (3.17)
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In general, an entire set of measurements can be related to this

unknown state. That is,

~ - i —,« _1 B T
l]_ i r G]_ ; ‘-ffl,j V.
. i -1
: SRR :
I | o= G T ] &Y % (3.28)
1k,
Iy Gy ’tN,j N
or Y = G {fj Ej +V (3.182)

Note that the observation vector 34 at time ti can have an arbitrary
number of components, as long as Gi is appropriately dimensioned.

Equation (3.18) is in the form of (3.13) and the best estimate °*
”~\

_:gj /N of l{-j based upon N sets of data is thus given by equation (3.15).

-~

.7 _-1
By = mm by et Ex (3-29)
T ~ T)
where By = B lEgm - 2P0y - 2y

[ijT et Rt g @j]-l (3.20)

and unsubscripted R is the covariance matrix of V. The corresponding

best estimate gk/N of x 1is predicted by the system model (3.11),

N\

BN T @k,j o (3.21)

Using the definition of P from (3.16) and the prediction of (3.21), it
follows that :

T
P = (I;k,j pw_fl)k,j (3.22)
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If the observation errors, v, , are uncorrelated between samples, R

is block diagonal, with blocks @

R, = E{_Y_k -Y-i)' ‘ (3.23)
A
Under these circumstances, (3.19) can be rewritten : o
o $T —Gt T 7~1]
T1,3 1 R, L
/\’ ° - L L ]
E = Pj/N . + . - .’ ° (3-24)
TN, N By Xy
PIUE l (3.242)
o ZXyy = j/Ng—;il‘k,ijklk -ane

Also, from equation (3.20) :
N
Pam = 2—-] ¥, G B Gy (bk,j (3.25)

Note that no restriction has been placed upon the relationship between
tk and tj in the above equations, so the results apply for smoothing,
filtering, and prediction. However, if there had been a random dynamic
input to the system, this would not be the case. Under those circum-
stances, both y, and x would be random variables, and in equation (3.18),
the vectors y. for 13 J would be correlated with X5 This means that
for i 2 j, the observation error, Y has extra components which
complicate the analysis. Though it is possible to generalize this
analysis to allow for random dynamic inputs, this will not be done, since
this study is intended to provide techniques for interpretixz noisy

process observations, and is not directly concerned with the effects

of random input disturbances.
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A recursive relationship for combining two blocks of data sets can

be deduced from (3.24) and (3.25). The summatians can be segmented so

that ¢
-l 2 iy VN -1 ~ ‘
~1 -1 -1
and Pj/N = Pj/M + Pj/NdH (3.27)

where N is the union of sets M and N-M,

Note that the set M can be any subset of the set N, and then the
subset N-M will be its complement. In general, however, the formulae
will be used for a limited memory filter, and will involve consecutive

sequences within each block.

When the subset M is a single observation vector, say Y. then the

equations (3.24a) and (3.25) reduce to the following @

-]l o~ 's', T Tl
Pyidn =GR L (3.28)

T T -1, F
I4 3 IR}
’i’r,j G, R, Gr?{r,j

and P}}l (3.29)
where the dependency j/1 implies estimation on the basis of one data set.
These results can be used in conjunction with (3.26) and (3.27) for
adding or dropping a single data set, or as an initial estimate. However,
the removal of data from the filter memory one set at & time requires the
storage of the right-hand sides of (3.28) and (3.29), or equivalently, the
storage of the appropriate data sets for the duration of their retention

in the filter memory.
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Equations (3.26) and (3.27) form the basis of the limited memory

filtering scheme derived by Jazwinski®’ using Bayesian techniques.
P . P, and P, are generated by recursion

i Fijn Eywe Pifer @m0 Py &y exe gonerated by '
adding one set at a time through N gample intervals, and then the
informatlon in the first M sets is dropped by obtaining Pl/N-M and

;j/N-M -}Ej/N-M from (3.26) and (3.27). In practice N is chosen as a
multiple of M to make the storage requirements reasonable, for if

1 -L A

N = gM, it is necessary to store q sets of PE and Pj 3% at any one

time.

In most applications, the current state is likely to be of more
interest than some fixed previous state, and the relevant formulae may

be obtained from the above. From (3.24a), letting j =

A RIS I .} (3.30)
Zyn = By =tk G R & 330
and from (3.25),
N
-1 SRT G ol A
By = 23"’ kN % B G P (3.31)

Equation (3.22) can be modified using property (3) of the

state transition matrix (see Section 2.4.1) which states that

L AT 1
E 7B ER R (3:32)

By combining (3.32) and (3.27) a method is provided to drop the
earliest M sets of data from the filter memory, assuming that P}'Z}M and
-1
PM M 3’;‘1‘4 M haye been stored, and that the data sets have been acquired

sequentially. Hence,

1l _ T =1 4 -1
B = Y B Puw * B (3.33)
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Similarly, using (3.26) with (3.32) :

T . - -1 ~
;\M N M/M I M,N M+ B/na B/N-p

i

-l A
Fy/n &N =

HE ol
Bae, B B+ B/ By (3.34)

When the filter is being operated in real time, a single data set
is more likely to be added than a block of sets. Earlier results can be
simplified by setting j = r = N and M = N-1, noting that ’PN y = I from

. - ?

(3.11).
From (3.29) and (3.33), it follows that :

-1 + T p-l ~ T -\
B = tnan BemaPnant Oy Ry Gy G639

Also, from (3.26) and (3.27),
-] A _1 A
o Eyn = PN/N - N/l) By/ne1t By 21 (3.36)

The desired recursion ig found by substituting the definitions of

-1 A -l A T -1 o
PN En < Pw Zuwea * G By Gy - Gy Bywed)
~ T . <1 ~
or B = Zyma *t Puw Oy Ry ¥y = Gy -’-CN/N-I) (3.37)

It is sometimes reasonable to assume that current data sets are
more relevant for state estimation than sets acquired early in the
operation of the system, especially in cases when the reference model
is only locally valid, In these situations it is possible to apply

exponentially decreasing weights to the 0ld data sets as new ones are
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acquired. The weighting factor can be interpreted as an increase in
the uncertainty in the measurement vector as it becomes older. If at
time tk’ the covariance matrix of b is Rk’ at time tk&l’ the elements
of the matrix can be assumed to have increased so that every element,

rij’ obeys the relationship @

{rij § = {rij 2 » %‘ (3.38)

where O < o =< 1.

Equations (3.24a) and (3.25) become

- N
P&/u-’-‘-j/N = %}; g x ‘@T'J e By lk] (3.39)
and N b
-1 I -k T T =1 !
Py = 1‘::__1 &N [(ij G, Rt Gy ({)k,j_;ﬁ (3.40)

The derivation of the recursive relationships for the exponentially

weighted filter follows as before from (3.39) and (3.40).

An algorithm can thus be constructgd to update the estimate of the
system state given the current best estimate, g&—l/N—l’ the current
estimate of thehinverse of the estimation error covariance matrix,
Béil/N-l’ and the new observation.zﬁ, assuming the dynamic model of the

system is known.

Least=squares algorithm

D e = f N, N-1 EN-1/N-1 from (3.11)

-.1 & P
N/N~1 N1 N

2
) -1/1\1-1 Ne1,N

from (3.32)
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3) P§}N = GPﬁ}N_l + G§ R{Il Gy from (3.32) and (3.35)

3

A A T -1
4) Eow = Eywert Py Gy Ry (xy ~ Gy zi\I/N-l) from (3.37)

An a priori estimate of the state error and its covariance matrix,
_5_50 /0 and Po /0? is required to start the filtering procedure, and can,
for example, be obtained from (3.28) and (3.29) when the initial

measurement vector, y:: provides at least a minimal data set.

Note that step 3 includes the exponential weighting factor. Thus,
this algorithm is suitable for both growing memory, and exponentially

weighted memory filters.

The same algorithm is used as the basis of the oscillating memory
filter proposed by Jazwinskiag. The following procedure is used for the

case when N = 2M,

Oscillating memory algorithm

1) Operate the least squares algorithm normally during the acquisition
of the first M data sets, and store P;.L'}'M and %, l,u, where 2 at time ti

is being estimated,

2) Update the estimate using the least-squares algorithm for M

additional data sets to generate P;}ZM and 3-{:5./2}4’ which are P;;’LN and

Ay

::_gi/N by definition.

3) Using (3.33) caloulate B, and invert to obtain By .

4) USing (3934) M calculate %/N—M.

5) Since the estimates are now conditioned on the last M data sets

(N-M=M), redefine P;}” and X, py from the results of steps 3 and 4, and

return to step 2.
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Note that these algorithms provide optimal estimates for the error
in the state, which must be added to the reference trajectory to
determine the actual state at any time. The method of calculation of the
reference trajectory depends upon the system being considered, but
usually consists of numerical integration of a set of nonlinear differential
equations with initial conditions and unknown parameters provided by the
estimator. The effects of any deterministic inputs, such as control, are

accounted for in the calculation of the reference trajectoryo

30303 The Relationship with the Kalman Solution

The least~squares algorithm presented above reduces to the one
derived by Deutsch4 for the sequential estimation of unknown constants,
vhere ;iN,N-l = I. The equivalence is not surprising, since his method
was derived originally by Swerling15 using the characteristics of the

stationary point of a quadratic cost criterion. However, the relationsghip

between the K’alman2 algorithm and the least-squares one is not as obvious.

The two algorithms can indeed be shown to be equivalent through the
use of a matrix inversion lemma cited by Sorenson17, and generalized here

for use when exponential weighting is considered.

Matrix inversion lemma

1 -l T

1f 4™t = o 371 4 oF g2t

H

where A and B are (n x n) matrices, R is (m x m) and H is (m x n) with
¢ scalar,
1. 1 rf1..» 1L
thenA:-;B-—-BH[—HBH + R HB

c2 ¢
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Using the lemma, step 3 of the least-squares algorithm becomes :

— e -1
1 1 of1 T
Py = S Ay T 2 Py Oy Lc Gy Bymar Oyt Ry

Gy Py/ne1 (3.41)

Therefore it follows that the third steps of the two algorithms
are equivalent (see equation 2.14), for ¢ = 1.0. The algorithms are
identical if the equivalence of their final steps can be demonstrated.

Thus it must be shown that

-=1
T -1 oF
Pom Oy By = Py © NrGN Py /N1 N+RNJ (3.42)

Denoting the right hand side of the preceding equation as KN’
_ -1
3 -1 T =11 T =1
% = Pww B/v Bwwe1 O By |Gy Bwmer Oy By ﬂ
LEX X ) (3043)

Using the definition of P /N from the least-squares algorithm, with
c = 1.0,

-1
R

gé; Fﬁ/N~1 + f]-l

= PN/N[I * G»g; RN‘lGN Fy/ne1 Gg R§1 E"‘NPN/N-IGI"E B I]

T -1Gl

~1
P/ [_PN/N-]. * Gy Ry

£

it

e

-1

- T -1
= Py Gy Ry - - (3.44)
QeE.D.
Note that random dynamic inputs have not been considered, so QN—l

of step 2 in the Kalman algorithm is a null matrix, and the algorithms

are identicale.



3.3.4 Convergence of the Least-Squares Filter

1L present an elegant proof of the stability and

Kalman and Bucy
convergence of the Kalman filter in its continuous form. They demonstrate
that the optimal estimate generated is unbiased, and furthermore that the
filter is wniformly asymptotically stab1e31 and that PN/N approaches'§
as N - > for any non~negative Ib/o as long as gb/o = X5 the true state
at time to. P is the covariance matrix of the optimal error based on an
arYitrarily long record of past measurements, and generated assuming
perfect knowledge of the initial state. The proof requires that the
linear system is controllable and observable, and that the norms of Q,

R, and g?N/N—l are bounded. Controllability implies that all of the
states can be excited by permissible dynamic inputs while observability
means that all statesrcan be estimated by a finite number of perfect
measurements., Since the only difference between the Kalman and least-
squares algorithms lies in the fact that in the latter case Q is a null
matrix . (and therefore bounded), the proof still applies if all other

conditions are met,

Deutsch4 demonstrates that corrections to the estimate made by the
unwelghted least-squares filter will approach zero as the number of
observations increase. However, this is not so for the exponentially
weighted case, even in the simplest situation when RN and GN are constant

for all N, and n

E'NN-L T I. In that case,

-1 -1 T -1
B = © Pya/wen + Oy By Gy (3.45)

from steps 2 and 3 of the leastesquares algorithm. Rewriting this as @

-] -
BEY o= o PNil + A%A | (3.46)

where A = RN GN and RN is assumed positive definite, it follows that,
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T
by premiltiplying (3.46) by Py and post-miltiplying by Py ; 4 ,

- -1
T T T
PyA” = Py, A ‘_A Pyg A+ cIj! (3447)
Successive substitutions for PN-i AT in terms of BN-i—l AT yields
) N2 Tj‘l
P A? = P AT lcN'l I+(1+c+ =N eceC JAP,A l
N 17 ik
ow o (3-4‘8)
: 41
Since 1im ¢* =0 and » ¢ === for O + ¢ < 1, it follows that
.. l-c
) i=0
T T 7=t
Lim P A" = (I-c) Py A {A Py A } (3.49)
N=>o . .

It can be seen from step 4 of the least-squares algorithm that,

N\ o . T
n - ymeil o 0 e h (3.50)
The correction to the estimate becomes zero in the limit only if
¢ = 1ls Therefore, the exponentially weighted filter will not converge to
a constant estimate, and care must be exercised in its use to assure that

the chosen weighting factor ¢ does not cause instability.

The preceding discussion is not intended ‘to be a complete analysis
of the convergence properties of the least-squares filter. Indeed, even
the rigorous analysis by Kalman and Bucyll applies only to linear systems,
and cannot be extended to apply to linearized systems. The performance
of the filter in the analysis of practical nonlinear problems cannot be

predicted in theory, but must be evaluated by experimentation.



50.

3.4 Comments on the Filterin orithms

A recursive filter has been derived for application to linear
dynamic systems, and a technique has been suggested which, under certain
circumstances, will permit the analysis of nonlinear systems. Before
the practical application of the filtering technigues can be investigated,
the assumptions which have been made in deriving the equations should be
analysed to determine any limitations of the theory. Any practical

problem can then be analysed in the light of these limitations.

The algorithms derived apply only to the analysis of linear dynamic
gystems. The linearization of the general problem can be justified if
it is reasonable to assume that the perturbations from a given reference
trajectory are small, and can be described by a get of linear dynamic
equations. Of course, it is assumed that it is possible to postulate a

reasonable reference state suitable for on-line computation.

The theory presented requires that the random observations errors
have zero mean. This is not restrictive, since the system can have
deterministic elements, and therefore instrument bias or drift can
also be postulated. These effects, in addition to the random errors,

should be adequate to describe any anticipated measurement errors.

The restriction to non~random dynamic inputs has been made to ﬁermit
specification of limited memory filters. It can be seen, by comparing
the Kalman and least-squares algorithm, that the random inputs only
affect the calculation of PN/N-l from PN-l/N—l' The extra term, however,
prevents the expression of PE}N as a simple summation in equation (3.25),
and thus prevents the specification of an oscillating memory filter.

The exponential weighting technique could still be applied, but the

interpretation of the weighting factor would be modified. If there were
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random dynamic inputs the uncertainty in old inputs as well as of old

observations would increase in time.

Limited memory filtering is desirable in situations when the exact
mathematical model of the system being obgerved is not perfectly known,
and the model used can only be considered accurate for part of the
operating period. In those cases, estimation on the basis of a recent
subset of observations is preferréd, and either the oscillating memory
filter (OMF) or the exponentially weighted filter (EWF) could be used.
Both forms require the specification of memory parameters, in the case of
the OMF, the parameter M defines the record length, while ¢, the weighting
factor, determines the rate of memory decay of the EWF. The values
chogen for M and ¢ depend upon the accuracy of the reference model, and
should reflect the number of sample intervals for which the model can be
assumed valid. The EWF is easier to apply than the OMF, since the latter
requires an extra matrix inversion after every Mth obgervation, as shown
in step 3 of the OMF algorithm. However, the OMF is characterized by
discrete changes in the estimate after modification of the memory basis,
and thus can sometimes be used to indicate model deficiencies. The

relative desirability of the form chosen depends upon the application.

A final comment should be made on the equivalence of the Kalman and
least-squares filters. Though the algorithms have been shown to be
identical in theory, one form may be more convenient for use in a
particular situation. This can be seen by comparing the final steps in
the algorithms, which update /_:_(\:N /N1 to -;-EN /N The Kalman form requires
the inversion of a matrix of the same dimension as the observation

‘vector, while the least-squares algorithm requires an n-dimensional

inversion of Pﬁ}N during each cycle. It follows that the least~squares
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formulation is more convenient if there are more measuring devices than
state variables. However, in most cases the instrument errors are
uncorrelated within a set and R, is diagonal for all k. In those
situations the Kalman form should be used, since each element of the
observation vector can be incorporated independently into the estimate,

and the inversion in (2.15) is scalar,

It should be noted that the least-squares formulation does not
allow any perfect observations, for then Rk would be singular. However,
in that situation, the Kalman derivation is still valid, if all
observations are linearly independent and thus.GN is full rank. This

assures that G£ PN/N—l GN remains non-singular.

No matter what form of the estimator is used, a certain minimum
amount of statistical information is raquired to initialize the filter,
and update the estimate as new observations are made. This information
includes not only the initial estimate of the state system, which is
1ikely>to be known, but also an estimate of the covariance matrix of
the error in that state, which is often difficult to specify. In
addition, a covariance matrix must be postulated for the instrument
errors at every sampling instant. The sensitivity of the filter
performance to errors in this input information as well as to modelling

errors must be determined in order to assess its usefulness in practice.
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CHEMICAL ENGINEERING APPLICATIONS
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CHAPTER L4

INTRODUCTORY COMMENTS ON CHEMICAL ENGINEERING APPLICATIONS

L,1 Systems Modelling and Parameter Estimation

The estimation techniques presented in Part I have been applied
successfully to several aerospace problems32. The systems dealt with
have certain characteristics which make them ideal for the application
of the theory. The dynamic equations governing the motion of space
vehicles are perfectly known, and the effects of any control inputs
to the system can be exactly calculated. Furthermore, the vehicles
are not subject to random dynamic disturbances, and are observed by
tracking stations whose statistical characteristics are well known.

Thus all of the information required for the operation of the optimal

filter is available,

The systems encountered in chemical engineering are less well
defined, and the application of estimation theory is more difficult.
Dynamic nodels of large industrial processes are rarely known to any
degree of accuracy; even when theoretical models can be proposed, they
.often consist of sets of partial differential equations which are
impractical for repetitive on~line calculations. Moreover, these
distributed parameter systems can only be described in infinite
dimensional state~space. The situation is further complicated by
the fact that the input disturbances to the plant are rarely known,

either in stochastic or deterministic terms.

However, the advantages of modern control techniques have been
appreciated, and a great deal of effort has been directed towards

the determination of reliable models for process elements. In several
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papers, Eykhoff33’34’35has revicwed recent advances in modelling
techniques. Cuneod and Sage36 and Balakrishnan and Peterka37 have
also described several alternative methods for determining process
characteristics. There are two major approaches to the problem, one
based upon the physical laws governing the process, and the other
seeking to fit local models of specific mathematical form which may
be unrelated to the actual physics of the system. Into this second
class fall the well known techniques of linear analysis requiring
the input of known distrubances to the process being identified. No
attempt will be made to evaluate the relative desirability of the
approaches, except to note that it is generally advisable to take

advantage of any physical information that is available about the process.

A distinction must be made between the problems of determining
the form of a model to describe a plant, and that of actually estimating
the parameters of the model once its form is specified. It is the on-~
line solution of the latter problem that ism considered here; the form
of the mathematical model describing the plant will be assumed known.
The theory developed in Part I can be used to determine parameters for
any type of system description of known form whether it is physically

based or merely a regression model.
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4.2 Previous Applications of Estimation Theory in Chemical Engineering

When the describing equations of a chemical process are perfectly
known, the theory developed by Kalman is directly applicable to chemical
engineering problems, Seinfeld25 has applied the theory to a very
simple heat conduction problem, where the system is governed by a
known linear partial differential equation, and the initial temperature
profile is being estimated. More recently, he has shown with Gava38838
that the filtering technique can be applied to a reactor with catalyst
decay to monitor the change in catalyst activity. A concurrent study

of a similar application to a more realistic problem is reported in

Chapter 6.

Coggan and Noton39

have recently applied Kalman filtering methods
to a simulated mixing system and a simulated furnace to demonstrate their
applicability to typical chemical engineering processes. The applications
are based directly upon the ordinary differential equations describing
the systems In order to generate a state transition matrix from the
linearized estimation error cquations, the Jacobian matrix, F, as in
equation (3.9) is assumed constant over the sample interval; thus the
transition matrix is obtained from the exponentiation of F. Though this
is quite reasonable in theory, the practical problem of calculating

repetitively a matrix exponential in a realistic situation is likely to

be prohibitive.

Off-line estimation techniques have been applied io many chemical
engineering problems, primarily to discriminate between alternative
kinetic models, and to fit parameters for those models. The extensive
body of research that has emanated from the University of Wisconsin due

to Box, Hunter, Draper, Mezaki and many others will not be reviewed.
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The techniques dcal in general with the design of sequential laboratory
experiments to determine the best least-squares parameters with a

minimum of effort,.

An off-line technique more closely related mathematically to
the filtering methods has recently been proposed by Leeho in the

chemical engineering literature. The technique is called quasilinearization,
and is based upon the theory of dynamic programming and invariant imbedding
due to Bellman. It is a very powerful method for fitting parameters in

ordinary or partial differential equations.

Because of the difficulty of modelling chemical plants, there have
been few applications of on-line estimation techniques. Bray and his
<>c-workersL+l have used a sequential least-squares filter to update the
regression model of a water-gas shift reactor. The filter used can be
shown to be identical to the exponentially weighted filter developed in
Part I. Their results seem quite encouraging, though not enough informatiaon
was presented to fully evaluate the filter performance. Furthermore,
as presented, the filter seems to be restricted to use in regression

type models, though this has been shown in Part I not to be the case.

Several other investigators have considered the use of linear

regression models for on-line control, though the model parameters are

L2

usually not adjusted after initial selection. Astrom and Bohlin
present a method for the off-line fitting of parameters for general
linear models, though it is intimated that the least-squares minimization

proposed could be performed sequentially. Their technique has been

applied successfully to the description of a paper-making plantqs. An

Ll

alternative approach is suggested by Dahlin' ', who determines the poles

and zeros of the linear transfer functions of the same type of process.
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He uses a standard filter, as well as one operating on the integrated
process output. The integration has the effect of removing high frequency
noise, and for linear processes could be effected by prefiltering of
input and output data. The approach of Astrom and Bohlin is in fact
equivalent in theory to the one of Dahlin, since Dahlin deals with the

frequency domain representation of the linear difference model.

The same type of linear model is proposed by Box and Jenkinsqs,

and has been used in the optimization of a water-gas shift reactor by
Price and Rippin46, as well as by Wise47. The model remained fixed

after off-line specification, and was used in conjunction with an

extremum seeking controller.

An industrial use of on-line estimation techniques has been
reported by Noton and Choquetteh8. They have applied the Kalman theory
directly to an operating plant described in terms of a twelve dimensional

state-vector. Their report is unfortunately quite sketchy, since most

of the process details are priority information,



9.

4.3 Estimation using Steady-state Models

Though it is seldom possible to derive reliable dynamic models
for industrial processes, very good steady-state models are often
available. It is proposed that these static models can be used for
on-line estimation, since the characteristics of many industrial processes
vary so slowly that the plant can be considered to move through a
succession of steady-states. In these situations, the process measurements
are related at any time by the known steady-state constraints of the
system, and can be used to monitor the slowly varying process elements,
whether they are model parameters, or characteristics of the measuring

devices.

In terms of the theory presented in Part I, the steady-state model
provides the functionality, g, in (3.2), which relates the observation
vector to the state vector. The Jacobian matrix G can be computed either
numerically or analytically by perturbing or differentiating the steady-
state model with respect to the state vector elements. In typical
situations, the steady state model is a set of differential equations, as
for a plug flow reactor, whose solution provides the temperature and
composition profile of any time. The state in this case will consist of
the set of initial conditions at any time, as well as the values for

slowly varying parameters such as catalyst activity.

The dynamic model describing the evolution of the state will
often be easy to postulate. In the absence of random dynamic input
disturbances, most problems can be converted so that a set of constant
initial conditions for the differential equations describing the evolution
of the state can be estimated, and‘:j?N,’N—l = I for all N. The true sfate
at any time is obtained by numerical integration. If there are random

inputs the state vector must be updated one step at a time, and this
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simplification is not possible. In these cases, the matrix exponentiation

used, for instance, by Coggan and NotonL}8 is required.

Whether random dynamic inputs present a serious problem in chemical
process systems is a debatable point which can only be resolved by on-
line ppplication of the filtering techniques. However, it is felt that
any small random distrubances would be damped out by the system, and any
large disturbances, such as the effects of changes in ambient temperature,
could probably be accounted for by a deterministic model. Indeed, the
most serious plant disturbances, which could not be accounted for by
a stochastic model, are likely to be due to operator errors or equipment
malfunctions. For these reasons, random dynamic inputs arc not considered
in the examples presented, and the estimation problems can be solved by

the determination of constant state variables.

The type of sequential steady-state analysis suggested above
offers distinct advantages over regression modelling for multi-variate
systems, especially when it is desired to make full use of process
measurements. Since every instrument reading is a system output, a
regression model requires a term relating every input to every measurement,
and is therefore very difficult to apply to heavily instrumented systems.
On the other hand, a steady-state model will provide all likely
observations of the system, and changes in the measurement scheme
require only the modification of the observation matrix, G, in the

formulation of the filter.
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4.4 The Filter Program

A Fortran subroutine has been written to implement the algorithms
described in Part I. The routine requires two problem dependent
routines which must be supplied by the user. These two routines predict
the next set of observations on the basis of the current state vector,
and calculate the current value of G, the Jacobian matrix of the

observations with respect to the state variables.

The prediction routine actually performs two tasks in the examples
presented. Since the systems dealt with are not subject to random
dynamic inputs, the state vector consists of the system state at time
zero. Thus the routine, PREDCT, first calculates the state at the
current time; if Xy is a flowrate, and X, is the drift in that rate,
the predicted value of the flow rate at time tn is Xt Xy tnu
In more complex situations, this calculation is performed by numerical

integration. Given the state at the current time, the routine next

calculates a set of predicted observations, using the steady-state model.

The gradient routine, CALCG, must define G using the current
state-vector calculated in PREDCT, This requires the differentiation
of the steady-state ecquations with respect to the current state. 1In
many cases, the differentiation can be performed analytically, but

numerical differentiation can be used if necessary.

Note that no particular form of system description has been
specifieds The user must merely provide a predicted observation vector,
and a gradient matrix. An alternative form of the routine can be used
if there are random dynamic inputs to the system. In these cases, the
state transition matrix would have to be defined at each step, but the
updating of the state vector to current time would be done internally,

and not in PREDCT.
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In the simulations the filtering subprogram is called from a
main routine, which increments the time and supplies new observation
vectors. An initial estimate of the plant state and the covariance
matrix of the instrument errors at the time of injtialization must be
provided before the first call of the sub-routine. The initial estimation
error covariance matrix, Po/o is calculated within the routine using
a modification of equation (3.29), which allows a measure of the
uncertainty of the initial state to be incorporated in the initial
coveriance matrix. The selection and significance of this extra term

is discussed in Chapter 5.

Note that the filter is initialized with an estimate of the actual
state, rather than the estimate of a deviation from a reference state.
This causes the filter oubtput to be the actual state at all times, and
is permitted because the corrections to the initial estimate are
proportional to the difference between the actual and predicted observations.
This difference is unaffected by the inclusion of the reference state
in the estimate.

A flow chart of the filter is presented in Figure L.1l; a table of
nomenclature is given in Table 4,1. For convenience, the instrument
statistics are assumed constant in time, and R(t) = R for all t. The
flow chart branches to allow the consideration of both uncorrelated
(R diagonal) and correlated instruments (R full). Since no random
dynamics are considered, all examples are converted to a form in which
@N,N-l =TI for all N, so By /N-15 PN—l /N-1° Therfore the notation in

the flow chart has been simplified accordingly.
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Figure 4.1l Flowchart for Filtering Subroutine
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CHAPTER 5

FILTERING APPLIED TO A BINARY DISTILLATION COLUMN

The monitoring of an ammonia-water distillation column operating
in steady-state is the first chemical engineering application of
filtering techniques which is considered. The system simulated is
representative of process elements which, after attaining a given
operating conditién, are maintained in that state for an extended
period. In these situations, the filter can be used to monitor the
performance of plant instrumentation as well as detect any unplanned

changes in the system state.

Two series of experiments have been performed using a digital
similation of the column. In the first, the affects of errors in
the statiétical information input to the filter are examined by
determining the average performance of the estimator over an ensemble
of one hundred simulated plant records containing fifty sets of
observations per record., In the second, the ability of the estimator
to detect instrument biases and drifts in system inputs is studied using

individual plant records of fifty observations.
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5.1 System Description

5e¢ls1 Column Model

The steady-state operation of the column is described by three
equations: an overall material balance, a component balance, and an
enthalpy balance. There are nine unknown variables in the system,
consisting of the flowrates, compositions, and enthalpies of the feed,

bottams and product streams. Thus;

Fp = Fy + T (5.1)
Fp Hp = Fg Hy + Fp Hp (5.2)
FF CF = FB CB + FP CP (5.3)

where F, H, and ¢ refer to melar flowrate, enthalpy, and composition
respectively., The subscripts F, B, and P denote the three access
streams. Using the steady-state balance equations, three of the unknown
variables can be calculated in terms of the other six. Solving for

the product stream components;

Fp = Fp - Fy (5.4)

By = Fp By - Fp Hy (5.5)
Fp - Ty

cP = FF CF - FB CB (506)
Fp - Fy

The stream enthaplies cannot be directly observed, but it is assumed that

they can be deduced from temperature measurements.

The column is operated with a total condenser, and the bottoms

stream is taken from the reboiler, so the bottoms and product streams
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are saturated liquids. Using data from an ammonia~water enthalpy-

concentration diagram at 10 atw .49

; a third order polynomial has been
fitted to describe the saturated liquid enthalpy as a function of

temperature, yielding;
HS(T) = 3504,3L - 17799.62 T' - 22169,67 ™2 - 16919.18 e 3 (5.7)
where T' is a normalized temperature, such that;

T = T/182.22

with T in degrees centigrade.

The feed to the column is assumed to be a subcooled liguid whose

enthalpy is specified by;

Hp (TF) = HS(TB) - 32.2575 (TB - TF) (5.8)

where TB is the bubble point of the feed stread with composition Cpe
The constant in (5.8) is determined from the enthalpy-concentration
diagram cited above, and implies constant specific heat of the liquid

feed over the range considered.

The bubble point of an ammonia-water mixture at 10 atm. can be
determined if the equilibrium constants of ammonia and water are known
functions of temperature, Third order polynomials in temperature have
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been fitted using published data’ . Hence;

K, () = 0.427799 + 4.420266 T' = 2.144682 T'% + 3,400508 T'~ (5.9)
K, (T) = -0.046666 + 0,223197 T' - 0.692L44 T2 + 1,344717 T'>  (5,10)
where T' = T/170 with T in degrees centigrade. These definitions

apply for 30 =« T £ 170 in the case of KA and 70 £ T 4 170 for Kw.
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Simple exponential functions define the constants for values outside of

these ranges.

K, () = exp {(T - 25.3)/ 31.7 } for T « 30

Kw (T) = 0.22 exp i;(m -~ 70.0)/25.0 §for T 2 70 (5.11)
K, (T) = 5.5875 exp (T - 170.0) for T > 170

Ku (T) = exp g(T - 182.22)/62.8.5 for T = 170

The exponential extensions at the ends of the range are required to
allow use of a Newton-Raphson search in the bubble point calculation.

This calculation determines the temperature such that;

cNH3 K, (T) «+ CHEO K, (T) = 1.0 (5.12)

where the compositions refer to the overall mole fractions of water

and ammonia in the liquid.

Note that at this stags arelationship has been provided which
relates TB to °n and ?P to Ops and the dimensionality of the problem
could be reduced. However, in practice equilibrium data may not be
reliable, and it is assumed for this problem that the bubble point
relationship cannot be used. The feed enthalpy is thus considered to
be a known function of TF and Cpe The following algorithm is used to
specify the product stream components given values for the components

of the other streams.

Steady-State Column Model

1. Given TB' calculate the enthalpy of the bottoms streaum
from equation (5.7).
2, Given cp and Ty, calculate the feed enthalpy. (In

practice, this was performed using equations (5.8)

to (5.121).
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3. Calculate Fp, Hj and c, using (5.4) to (5.6).
Lo Calculate T, by solving for the root of (5.7) using a

Newton-Raphson search.

5.1.2 Simulated Data

Plant data was simulated by perturbing the outputs calculated
using the steady-state model with various types of artificially
generated instrument noise. All three components of the access streams
were assumed to be observed every five minutes during the operation of
the plant. Though this measurement scheme is probably unrealistic for
a simple binary distillation column, the filter will in practice be
applied to key process elements that are likely to be heavily instrumented,
and it is desired to evalute the filter preformance with systems having

redundant measurements.

The instrument noise was generated using package routines for
the calculation of random normal and rectangular number sequences on
an IBM 709451. In some cases, the random noise was modified to simulate
correlation between sample intervals. In all cases, the instrument noise
was independent within an observation set, so R(t) was a diagonal matrix.
The observation errors were scaled in all but one example so that the
95% confidence interval of the normal noise, and thc range of the
rectangular noise corresponded to z 2% accuracy for temperature and
flowrate measurements, and z 3% for composition measurements. In one

_ .
example all accuracies were set to be -~ .

Three general situations were simulated: constant steady-state,
a slowly drifting steady-state, and a system with instrument biases.

In 2ll cases, the unperturbed measurements satisfy the steady-state



70,

equations instantaneously. For the constant state simulation, the
system is subject to random instrument errors only, and all inputs and
outputs are theoretically constant, For the drifting system, a slow
linearly time dependent drift in one of the access stream flowrates

is superimposed. In the third situatidn, constant zero-point off-sets

are present in some of the instruments.

5¢1l.3 Filtering Model

Since the system is not subject to random dynamic inputs, the
filtering problem can be converted to one of estimating constants.
The state variables estimated depend upon the situation considered.
For the constant steady-state column, a six dimensional state-vector

is required, since the bubble point relationship is not used. Hence;
T - 1 7
X = LFB'TB’ ®gr Fps Tpo cF_l (5.13)

Since the elements are unknown constants,ti)N’N_l= I for all N.

When there is a drift in one of the independent variables, with constant
unknown time derivative a, a seventh state variable is adjoined to x

to estimate the constant a. Further variables can be added to allow
the estimation of biases. @N,N—-l remains an identify matrix of
appropriate dimension. Thus the state vector itself provides the best
estimate of the constant steady-state, and contains all the information
necessary for the prediction of the state and measgrements in the other

cases. For instance, if there is a drift in the feed flowraté, the

value of the flowrate at time t is predicted by;
Fp (8) = T (£ ) + o v (£ = 1t) (5.14)

where FF (to) is element four of the state vector. Of course, a

more complex time dependency can be proposed, and the constants in
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the drift model estimated in the same way.

Routines for the prediction of the current instrument readings
and the calculation of the Jacobian matrix G must be provided for the
filter program. Consider the case when there is a bias in the measurement
of the feed flowrate as well as a drift in the flowrate. The relevant
elements in the state vector are FF,

the drift rate; and B, the measurement bias. The best estimate of

the flowrate at time zero; a,

the true flowrate at time tn*‘ based upon the state vector at time
t, is determined from (5.14). The predicted measurement at &, . g

includes the bias term. Thus;

Fro=Fpo+ae (4 g - t,) + B (5.15)

where the prime indicates a predicted measurement.

For this example, most of the elements of the Jacobian matrix,
G, are constants. Figure 5.1 shows the matrix for the case with nine
measurements when the state vectér has eight elements, consisting of
the six independént stream components, a drift rate for the feed flowrate
and a bias for the feed flowmeter, The only variable elements of the
matrix are the gradients of the dependent stream components with
respect to the state variables. All of these elements can be determined
analytically, except for the fifth and sixth ones in the eighth column,
which required the knowledge of aHF/aTF and aHF/acF' These derivatives

52

are determined numerically using a quadratic approximator” .
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Figure 5.1 Elements of the Jacobian Matrix : G
Py Tg % Fp Ty ey T T °p
Fy 1 0 0 0 0 0 -1 oTp acp
aFB aFB
Ty 0 1 0 0 o) 0 0 oTp 0
7T,
oy 0 0 1 0 0 0 0 0 2°p
2ty
Fp 0 0 0 1 0 0 1 oTp 3Cp
aFF aFF
T 0 0 0 0 1 0 o | ?Tp 0
oty
op 0 0 0 0 0 1 ol 2T 3Cp
acl.. aCF
« 0 0 0 b 0 0 g | et | O
ory
B 0 0 0 1 0 0 0 ) 0
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5.2 Studies of Filter Performonce

S5e2.1 Ensemble Results

The algorithm derived in Chapter 3 rcquires knowledge of several
statistical characteristics of the observed system; the first two
moments of the initial estimate error must be provided, as well as the
covariance matrix of the instrument errors at every sample interval,

It is assumed, in effect, that the initial estimate error, X ,/q is
described by a multivariate normal probability distribution with zero
mean and covariance matrixvﬁg, and that the observation errors are
governed by a distribution with zero mean and covariance matrix R(%).

It is further assumed that the instrument errors are uncorrelated hetween

data setse.

The sensitivity of the filter performance to errors in these
assumptions has been examined by analysing ensembles of one hundred
runs rather than single simulated plant records. The data used for the
ensemble resulis is based on a drifting system with a %% per hour drift
in the feed flowrate, whichfgitassumed initially to be zero., The initial
covariance matrix of the estimation error is determined from a

modification of equation (3.35) which permits the specification of the

uncertainty in the initial state. Thus;

. % -1
f, T =1 -1
Pofo = (01 K Gy .Zfo | (5.16)
Note that when the initial estimate, X o/o? is very uncertain, its
variance will be very large, and Xo-l becomes a null matrix. In that

case, equation (5.16) reverts to the original form of (3.29).

Four matrices have been defined for use in the ensemble studies:
ﬁr, RF,'jaT and ng, where the superscript T denotes the true variance

matrix used to scale the random numbers generated as instrument or
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initial state errors, and F denotes the matrix used in the filter
algorithm. In 21l of the studies with : 2% and : 3% instrument

accuracies, Ri is a diagonal matrix, with dingonal elements;

6

\riig = \0.457, 3,1k, 0.39 x 107°, 1.05, 0.0276, 0.277 x 10°F, 0,116

0.0755, 0.238 x 10‘3§ (5.17)

In this example, the first six elements of the state vector are

cbserved directly, and thus the first six diagonal elements of {o are
defined in (5.17). The seventh diagonal clement, defining the uncertainty
in the initial value chosen for the drift is set to be 0.25 x 107%, This
small number implies that the expected drift will be very slight. The
covariance matrices are chosen to be diagonal, which indicates that

there is no correlation between instrument errors within a data set.

This is a reasonable assumption for chemical process systems; correlation
between successive readings on a given instrument is more likely, and

its effect is considered below.
The following program scheme was used to generate the ensemble results.

1. Read in RT, XBT, RF and KOF.

2. Set NTRIAL to zero.

3. Increment NTRIAL by L.

4e Set NSET to zero.

5 Select z;q/ousing random numbers scaled according to XET.

6. Increment NSET by l.

7. Select a set of observations by perturbing the true
measurements for the current time with random numbers scaled

T

according to R,

8. If NSET is 1, calculate PQ/O using (5.17) with X;F.
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9. Update the filtering algorithm using RF.
10, Update the average filter output for the current value of
NSET.
11. If less than 50 sets have been analysed, go to 6.
12, If less than 100 trials have been made, go to 3.
13, Print out the ensemble results for 50 observation sets

based on 100 trials.

Table 5.2 presents a summary of the ensemble tests performed.
The situations considered are the effects of errors in the magnitude
of RF and XbF in relation to the true values, as well as the effects
of non-normal and correlated noise. In all cases but the last, R? is

described by (5.17); in the final test, all readings are generated

to be = 5% acourate, so that;

ir-ii} = %2.856, 19.625, 0.108 x 1072, 6.562, 0.172, 0.769 x 107,
0.725, 0.472, 0,661 x 1072 ? (5.18)
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Table 5.2 Ensemble Results
| RUN Q \S’E QRR Comments
[+
El 1 1 Normal random noise
E2 104 1 Normal random noise
E3 | lO20 1 Normal random noise
B4 0.1 1 Normal random noise
ES 2.0 1 Normal random noise
E6 1 L Normal random noise
E7 1 0.25 Normal random noise
E8 1 0,04 Normal random noise
E9 1 1 Rectangular random noise
E10 104 1 Rectangular random noise
E11l 1 1 Normal correlated noise =
E12 | 10% 1 Normal correlated noise =
E1l3 101‘L i Normal random noise
1
L i
F
3 QK = k ii
K T
ii

st Correlation coeff. = 0.2

swee RE defined by (5.18).

Figures 5.2 to 5.6 illustrate the effect of variations of X;F
on the output of the filter. It can be seen that the assumption of
high uncertainty in the value of the initial state improves the
convergence of the algorithm, especially in the case of the dependent

F
product stream components. However, increasing the magnitude of 50
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will not improve the performance after a certain point. is is to be
expected, for it is the point at which the second term in the brackets

in (5.16) becomes insigaificant in relation to the first. No instability
due to a large value of ‘L{OF has occurred in this example, and it is

safe to assume that an infinite variance of the initial state can be
used in most applications, Note, however, that the variance of the

initial estimate error, Po/o’ remains finite,

The estimation of the dependent! product stream variables can be
seen to be most indicative of the filter performance. The ensemble
results for the independent variables are essentially those which could
have been obtained by simple averaging over the 100 trials. Thus, for
convenience, the remaining ensemble results will be illustrated by
observing the estimation of the product temperature and the drift

parameter only.

The effect of varying RF in relation to the true instrument error
variance is shown in Figure 5.7;the filter performance improves as smaller
and smaller variances are assumed. This result was not expected, since
the small variance implies a high degree of certainty in the instrument
readings, and would be expected to cause oscillations in the filter
output if the values selected for the elements of RF are unrealistically
optimistic, However, it can be seen by inspecting the LS algorithm that
a decrease in the magnitude of RF has two effects; it will cause PN/N
to be artificially suall and R to be artificially large. The filter
gain is a function of the product of these two matrices, and it is
evident that in this example, the decrease in PN/N overshadows the
increase in RN-l. Note that the variation in PN/N is also a function

of the Jacobian matrix which is problem dependent; thus the effect of

(text continues on Page 87)



A
H

e
H

{ihemolelh

“lowrate

Botboms

Bottoms ’Composi tion (mole %}

FIGURE 5,2

78.

ENSEMBLE RESULTS: THE EFFECT OF THE ASSUMED VARIANCE
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using erroneous values for the elements of RF must be examined for each

particular case.

Pigure 5.8 illustrates the effect of the presence of rectangular rather
than normal instrument noise, It can be seen that there is essentially no
change in the filter performance. A similar result is obtained when the
noise is correlated between successive sample intervals, as is shown in

Figure 5.9. The correlated errors were generated in the following menner:

ERR; = 0.8 RNy + 0.2 ERRy . (5.19)

where ERRN is the instrument error at time tN and RNN is the random

number generated by the computer at time tN'

The effect of larger instrument noise is illustrated in Figure 5.10,
Though the estimate bias is increased slightly due to the increased

instrument errors, the effect can be seen to be negligible.

5.242 Studies of Individual Plant Records

The ensemble results presented above are based on & column in a
drifting steady~state., The filter used to analyse the effects of errors
in statistical inputs was designed to estimate the drift in the feedrate;
thus the form of the system model was specified, and only the parameters in
the model were no%t known. In a practical situation, it is unlikely that
all of the types of system disturbances will be known., The following studies
explore the effects of model deficiencies which ignore some of the

characteristics of the observed system.

The examples presented are based on the analysis of individual plant
records, usually consisting of a set of fifty observations made at five
minute intervals. Since the independent variables in the model are all
directly observed, the initial state vector is defined from the first data

set. Any biases or drifts which are estimated are initially set to zero.
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It is assumed that the instrument error variances can be deduced from

past operating records or can be based on the manufacturer's specification,
and R(t) is known. R(%) is defined in this example by equation (5.17)

for all t. Biases and drifts are assumed to be within 1% or 1% per hour
of the nominal instrument reading, and their variances are defined
accordingly. In all of the studies, the nine measurements of the access
stream components are made every five minutes, but the dimension of the

state vector is varied depending upon which biases and drifts are estimated.

Data sets for constant, drifting and biased steady-state systems
were generated on a digital computer and punched on to data cards. The
sets were analysed by filters assuming various types of models, using
both growing memory and oscillating memory filters. For instance, constant
steady-state data was analysed with a filter designed to detect a bias in
the product flowmeter to determine if a zero bias can be accurately
estimated. In several tests a general 18 dimensional model was used to
detect biases in all instruments as well as drifts in the feed stream
components., Table 5.3 lists the symbols used to describe the situations
considered; Table 5.4 describes the various studies performed on the

simulated datae.

Table 5.3 List of Symbols

SYMBOL MEANING

Css Constant steady-state

BSS Biased steady-state

DSS Drifting steady-state

BDSS Drifting steady~state with bias
LS Least-squares filter

OMF Oscillating memory filter
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For o system in a constant steady-state, the instrument readings

should in theory be constant in time. If the instrument errors are

independent and normally distributed, it can be shown that the best

estimate of the true instrument reading based upon a series of

measurements is merely the mean of the series. Under the assumptions

of normality and independence, it is furthermore possible to show

that the sample mean is the minimum variance unbiased estimator of

the true reading.

Thus the optimal estimate of the constant steady-

state model could be determined by simple recursive averaging.

Figure 5.11 shows the results of test S1 and demonstrates that the

filter and sequential averaging provide essentially identical results

for the constant system with independent noisce. One independent

variable and one dependent variable are taken to be representative

of the results of the test. The large oscillation in the filter

estimate of the product temperature at sample 2 is due to the fact that

the dependent variazbles are forced to satisfy the system constraints; the

averaged results are only consistent with the constraints in the limit.

Table 5.4 Simulated Experiments Performed

ru| et | PHN | wopen| pama COMMENTS

si} LS 6 Css CSsS

s2 IS 7 BSS CSS | Model assumed bias in bottoms flowmeter
S3 § LS 7 DSS CSS | Model assumes drift in bottoms flowrate
S4 1 LS 7 BSS BSS | Model assumes bias in bottoms flowmeter
S5 1 Ls 6 Ccss DSS | Drift in bottoms flowrate

S6 | OMF 6 CSS DSS | Drift in bottoms flowrate

S7 1 LS 18 BDSS | BDSS| Drift in feed flowrate, bias in product

flowmeter
s8 | Ls 18 BDSS | BDSS| Bias set to zero if less than 0.1%
59 [OMF 18 BDSS | BDSS| Memory oscillates between 20 and 4O sets
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The ability of the filter to estimate zero biases and drifts is
investigated in runs S2 and S3, and representative results are shown in
Figures 5,12 and 5.13. It can be seen that the absence of biases and

drifts in the constant data is clearly indicated.

The estimation of instrument bias is investigated in run Sh.
The bias is assumed to be in the bottoms flowmeter, and thus this test
is similar to the ensemble studies in that the form of the system error
is known, and only its magnitude must be determined. Figure 5.14
shows that the bias has been detected; however, note thaf the convergence
to the true value of the bias is slower than the convergence experienced
in estimating drifts. This is due to the fact that the bias is independent
of all other measurements, so that the information provided by the steady-
state model does not give a direct indication of the instrument error.
Nevertheless, the presence of some bias is clearly indicated; this
information could not have been determined by independent analysis of

the bottoms flowmeter record.

The effects of model deficiencies on the filter performance
is illustrated by the analysis of drifting data with a filter designed
for a constant steady-state. Figures 5,15 to 5.19 show the complete
results of runs S5 and S6, and the diagrams include the true states
and simulated data as well as the output of the filterse It can be
seen that serious estimation errors are caused by ignoring the drift in
the bottoms flowrate, and the errors are especially pronounced in the
estimation of thne dependent variables. Note that the filter based on
the steady~state model predicts the average value of the drifting variable
rather than the true value. The discrete change in the prediction of
the OMF provides a clear indication of the presence of a linear drifti;
this is particularly noticeable in the estimation of the product

temperature.
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It can be seen from the preceding results that model deficiencies
can seriously degrade the performance of the estimator. The safest
procedure to use which avoids these deficienciss would seem to be to allow
for as many contingencies as possible., The eighteen-dimensional studies
were made to test this procedure., Though the data generated contained
only one bias and one drift, the filtering model was designed to estimate

biases in all instruments and drifts in the fecd stream components.

In run S7 a standard LS filter was used to estimate the biases
and drifts in the system on the basis of 100 observations. The drifts
were correctly estimated, but Figure 5.20 shows that the biases were
less well determined. This is again due to the fact that the system
contains no information about the biases which can be cross-checked
using the steady-state model, The filter is unable to cope with so
many independent instrument errors. In run S8, the same filter was
used, but every 20 sets the biases were tested, and set to zero if
they were less than 0,1%; the appropriate row of the Jzcobian matrix
was also made null. This in effect reduces the dimensionality of the
system, and slightly improves the performance of the estimator by
eliminating erroneous bias indications. However, in both cases, the
convergence to the true value of 1% in the product flowmeter is slow.
It is evident that the estimation of a large number of independent

variables will tend to swamp the estimator.

An oscillating memory filter was used in S9 to analyse the same
data. It was hoped that the discrete changes in memory length would
produce random changes in the biases of the correct instruments, and
produce some non-random indication of the true biases. However, it
was found that the updating of the P matrix (c.f. equation (3.33))
resulted in a singular matrix, This is further indication that the
observations of the plant did not contain enough information to estimate

nine independent biases.

(text continues on Page 102)
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5.3 Discussion of Results

This distillation column example has been chosen to be representative
of typical chemical engineering systems. It should be noted that although
the describing equations of the system seem to be nonlinear, the
response to the disturbances considered is nearly linear. This can
be seen by observing that a linear drift in the bottoms flowrate
causes nearby linear responses in thé produce temperature and composition.
However, this has occurred because the perturbations are small; the
linearity of the response is not a requirement of the application

of the filter theory.

The sequential least~squares filter has been shown to be applicable
to practical problems when accurate statistical data is not available.
The ensemble results indicate that the convergence of the estimator is
improved if an infinite variance is assumed for the initial error
estimates The effects of errors in the assumed instrument statistics
are more difficult to predict, since they are problem dependent.

However, some information concerning instrument reliability is usually
available. In any event, erroneous statistical inputs merely alter

the rate of convergence of the estimator, but do not affect its stability.

The presence of non~normal and correlated noise does not degrade
the filter performance in this application. This is especiallyv
encouraging for chemical engineering applications where the nature of
error statistics will rarely be known. Though it is possible to
allow for correlation by altering the dimension of the filter, as is

shown by Smith27

s it is preferable to be able to ignore all but the
nost pronounced relationships between instrument errors at successive
readings. Most reasonable measurement errors can be allowed for by

a bias with normal or rectangular fluctuations superimposed.
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The estimation of independent biases has been shown to be
possible, though they are more difficult to detect than effects which
are coupled through the system model. There is unfortunately no set
method for determining how many independent errors can be determined;
however, the updating step with an OMF will yield a singular matrix
if not enough information has been extracted by the measurements. 1t
is clearly desirable to minimize the number of biases which must be
detccted, and to take advantage of any physical relationships between

measurementse.

The filter performs most poorly when there are errors in the model
used to describe the plant. This is the most serious limitation of
the theory in terms of practical chemical engineering applications, since
exact process models are not often available,  Though a limited memory
filter has been shown to be useful for detecting model deficiencies in
this example, the effects of model errors on the filter performance
warrants further investigation. The problem is studied in Chapter 6
in an application of the filtering techniques to a chemical reaction

systen.
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CHAPTER 6

FILTERING APPLIED TO A FIXED-BED CATALYTIC REACTOR.

In the preceding chapter, the application of the filtering
algorithm to a system whose mathematical model is perfectly known
has been considered. It has been demonstrated that the filter
verformance is not inordinately sensitive to errors in the statistical
descriptions postulated for the process disturbances. However, the
situation considered is rather unrealistic since the process model
is rarely known to any degree of accuracy and even if an accurate
simulation is available, it is likely to be too complex for on-line
calculations. Thus errors in the system model, or simplifications
made to allow on-line use of the model are likely to be a more
serious source of errors in the filter output than poor assumptions

of the statistical characteristics of the process disturbances.

This chapter describes the application of the filtering techniques
to an industrial reactor for which a model has been provided by
Imperial Chemical Industries, Ltd. The filter is used to estimate
the parameters in a catalyst decay law which is required for a
control optimization calculation. The techniques arc tested using
the complete ICI model, and these results are compared with those
obtained using a greatly simplified model based upon the general

physical characteristics of the system.
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6.1 System Description.,

6.1.1 The Complete Model

The reaction considered is multi~phase, and occurs at high
pressure in a fixed-bed catalytic reactor with recycle. The reaction
scheme is effectively A -« B ~+C + D where the last product is formed
by thermal degradation of C, Th: first two reactions are not first
order, and proceed nearly to completion. There is a phase separator
at the exit from the reactor, and the gas phase is recycled. The
recycle composition is a function of the separation temperature, and

the amount of unreacted A in the reactor outlet stream.

A mathematical model of the system has been developed by ICI,
and consists of a series of adiabatic stirred tanks for which heat
and material balances as well as equilibrium relationships are
provided. The model is completely specified by the following

information:

1, Feed flowrates

2. Reactor input temperature

3. Separator temperature

4. Recycle flowrate

5¢ Catalyst activity profile along the bed.
The model is solved by direct iteration on the amount of reactant A
in the outlet stream, since knowledge of this concentration is
required for the calculation of the recycle composition. However,
it has been found that this composition is always nearly zerocyand
when the value is set to zero for calculation of the recycle
composition the model is reported to predict the sixteen equidistant
temperature measurements along the length of the reactor and the

outlet compositions to within 2%.
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When the catalyst decay law is specified, the model can be
used in.the calculation of optimel controls for the entire operating
periods It is intended to test the feasibility of using statistical
filtering techniques for the on-line estimation of the parameters

in the decay law.

The specific details of the ICI model cannot be revealed
here; however, the propriectary nature of the information is actually
an advantage for this study. The complete model is used to generate
Yreal' plant data by perturbing its output with random measurement
noise, but for the purposes of filtering, it is assumed that the
plant model is either unknown, or too complex for on-line computation.
Therefore, a simplified model based upon the general physical
characteristics of the reactor is postulated for use in the filtering
algorithm, This is clearly a more realistic situation than one which

assumes perfoct knowledge of the mathematical model of the plant.

6.1.2 The Simplified Model

The simplified model chosen is an A 9B - C reaction with first
order kinetics occurring in an adiabatic plug flow reactor. It has
been assumed by ICI that the small amount of D formed by degradation
can be predicted from the outlet conditions, and this reaction is

ignored in the sequel. Thus;

da . _ = oz}

£ - ey A (e t) exp | B /R(T 273_)_‘ a (6.1)
4 == Ky (x,t) exp [-B/R(T 273)]«5 - da (6.2)
dax » dx

dx dx  dx (6.3)

dT da d db
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where ) (x,t) is a function describing the evolution of the catalyst
profile, and a and b are extents of reaction; T is the temperature
in degrees centigrade and R is the universal gas constant. EA and

BE., the activation energies, are assumed known, while k1 oo k,+ are

Bl
determined by off-line minimization of the sum of squares deviations
of the temperature profile predicted by the simplified model from
the profile of the "real' reactor. A minimization which allowed

EA and EB to vary as well as the k's failed to converge; the poor
performance of the six parameter search is probably due to the
sensitivity of the objective function of the exponential in the
Arrenhius dependencies, and to the fact that the model becomes too

_ general., Powell's method for minimizing a sum of squares without

derivatives was used for the search53.

Table 6.1 lists the deviations of the output predicted by
the simplified model from that predicted by the complete one for
various values of catalyst activity, assuming no variation of
activity with distance along the reactor. Table 6.2 lists the
optimal parameter values when both EA and EB are 17,000 cal/g.mole.
The modelling errors indicated in Table 6.1 must be accounted for
when using the simplified model to predict the reactor profile,
and the values of the prediction biases are added to the output of

the simplified model to correct for these errors. Methods of

updating the model bias corrections are considered later.



108.

Table 6.1 Deviation of the Best Fit Plug Flow Reactor

from the True Profile

A =3000 A =2893" A =2500 3 =2000
1| -0.78¢° -0.76¢° -0.59¢° -0.52¢°
21 -1.30 -1.28 -1.05 -0,96
31 -1.46 ~1.45 ~1.24 -1.23
b -1.31 ~1.3k4 ~1.23 -1.37
51 -0.93 -0.99 -1.03 -1.38
6| -0.36 ~0.47 -0.68 -1.28
7] +0.29 +0,17 -0.23 -1.08.
§ 8 +0.91 +0.79 +0.28 -0.80
3
g_ 9] +1.26 +1.22 +0,76 -0.47
g 10 +1.18 +1.28 +1.12 -0,09
E 11 | +0.73 +0.92 +1.20 +0.27
% 12| +0.20 +0.36 41,03 1 +0.57
13| -0.17 -0.11 +0.41 +0,72
14 | -0.36 -0.38 -0.18 +0.68
15§  -0.4k ~ =0,50 -0.62 +0. L4
16 -0.46 ~0.55 -0.89 +0,06
Output
ggnz . +1.91% +1.08% +1.08% +0,03%

Activity after 8 hours assuming decay over 150 hours.

e At . o e R
e F i e THTET RN g

v

ARRIETERY -«'..’ T 'V". Tij;.lf: vty g r‘;“.:‘r o
e by pital olt 1€t Enperature
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Table 6.2 Parameters for the Best Fit Plug Flow Reactor

I In k; In k; k3 k),
3000 23.91 24.09 ~0.59 30,4k
2893 23.88 24 .06 -0,60 30.34
2500 23.72 23.90 +0.30 29.06
2000 23,45 23.63 +0.49 30,69

6.1.3 The Simulated Datu

Plant data was generated by perturbing the measured variables
generated by the complete model with normal random noise. The
instrument errors had zero means, and were scaled so that the 95%
confidence intervals of all temperature sensors is I 1¢° ang that
of all flowmeters is ha S%. Only temperature and flowrate measurements
were generated, as it was assumed that compositions at the exit

from the reactor could not be conveniently measured.

Various sets of data were generated; ail had the same feed and
recycle flowrates and input and separation temperatures. Several
different catalyst decay laws were considered, as is shown in

Table 6.3,



Table 6.3 Data Sets for Reactor Study
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upon local temperature.
Mx,0) = 3000 for all x.

Set Catalyst Activity Measurements
S1 Constant; A (x,t) = 3000 for all} Feed flowrates, recycle
x and t and purge flowrate, in-
put and separation temp-
eratures, and 16 temp-
eratures along the
length of the reactor.
s2 Constant with respect to 16 temperatures along
distance at any time. Decay reactor and input temp-
over 150 hours proportional erature. Made every
to the inlet temperature. 5 minutes during first
alo) = 3000, A(150) = 1000, eight hours.
83 As 82, but decay dependent 16 temperatures and

inlet temperature measured
every 5 minutes from
hour 16 to hour 2k,

The data for set S3 was generated by defining a separate

catalyst activity, Mi), for each of the stirred tanks in the model.

Thus at time tNﬁl’the activity in tank i is calculated by:

A= 1@y - e Ty

(6.4)

where ?N is the temperature in the tank at time tN' The data in

set S3 was taken from hour 16, by which time the catalyst profile

varied from 2785 at the inlet to 2720 at the outlet.
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6.1t The Filtering Models

The only dynamic effect considered in the system is the catalyst
decaye The dimension of the state vector of the estimator varies
depending upon the form of decay that is proposed, but in each case
the problem is formulated so that only constants are being estimated,
and @ N /N-1=I for all N, Table 6.4 describes the various models

used in the studies.

Table 6.4 Models Used for Filtering of Reactor Data
Model Catalyst Decay Law State Variables
MLl A(x,t) =0 A;s feed flowrates,
A (0,0) =2 o recycle flowrate, input

and separation temp~
eratures. (ICI Model)

M2 Kx,t) =0 A o
A (o,0) = &
M3t A(x,t) == T, A o input temperature,
A (xy0) = A, for all x. o (decay rate)
Thus A (x,t) = Ao(x,o) ~aTrt
where TI is input temperature
My p A (x,t) = —a T(x) Agr Tpy @ B
A (x,0) = A, for all x.

Approximated by:
A (x’t) = AO-aTI.t-Bx

where x is the normalized

reactor length.
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Note that model ML, the case where the catalyst activity is
a function of local temperature, is in fact a distributed parameter
system that reguires an infinite dimensional state vector to describe
the activity at every point along the length of the reactor. The
situation is made tractable by postulating a low order polynomial in
x (distance along the reactor) to describe the profile at any time.
For this particular example, simulations showed that the catalyst
profile could be accurately described by a linear function of
distance. However, a higher order polynomial could easily be
postulated, and would require only the estimation of a few more
cvefficients. Note that the first three variables in the state vector
were truly constant during the data generation, or a known function
of time in the case of TI' However, the value of @ and B in the

simplified dynamic description would be expected to vary slowly in time.

It should also be noted that in models M2 to M4, the flowrates
are assumed perfectly known, and only temperatures are measured. This
simplification was made for convenience, since it will be shown that
uncertain flow measurements do not alter the stability of the filter,
but only slow its rate of convergence. Using this simplified measurement
scheme it is possible to ignore the recycle stream, and interpret

the system as a one-pass reactor.

Given the elements of the state vector, the catalyst activity
as a function of distance can be calculated at any time. Once the
catalyst profile is known, the steady-state model (either simplified
or complete) can be used to predict the temperature profile and output

compositions.,

The Jacobian matrix, G, requircd for the filtering algorithm

is calculated using a 0.1% perturbation of the state variable. Thus
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the steady-state profile is generated using the current value of the
state-vector, and then the profile is recalculated n times, perturbing
a different element of the state-vector each time. Whenever possible,
a solution of the reactor model is avoided by using the chain rule
for differentiation. For instance, in the case where the catalyst

decay depends upon inlet temperature (model M3);

A ) = A - a Tyt (6.5)
at any time t. dyfﬁix is calculated by perturbation for cach

measuring device I and then;

By o Wy, gy i=1.em (6.6)
dxo dx dJ\o
where m is the number of instruments, The other rows of G follow
similarly using (6.5) and (6.6). The size of the perturbation has
been selected rather arbitrarily on the basis of off-line studies,
In most cases it should be relatively easy to select a reasonable

step length for each state variable, No difficulties were encountered

in this example.
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6.2 Studies of the Filter Performance

The ability of the filter to determine catalyst activity was
tested in the simplest situation, where the activity is constant in
both time and distance along the reactor. Data set S1 was analysed
using the full recycle model (ML) in the filter, and in PREDCT, the
prediction routine. Various initial estimates, Ao, of the catalyst
activity were chosen, and the convergence to the true value was
observed. All other elements of the state vector were correctly
specified initially, and the outlet composition of reactant A was
fixed when calculating the recycle composition, so that the prediction
of the reactor profile did not require iterative calculation of the
model. As was noted, this simplification is also employed by ICIL
when using the complete recycle model for optimization, and does

not degrade its performance.

The same data set was analysed in a similar study for which
model M2 was used in the filter. In this case, all flowrates were
assumed to be measured accurately, and only temperature measurements
along the length of the bed were considered; the outlet composition
of reactant A was fixed as before for use in calculation of the
recycle composition. This test was performed to determine whether
the characteristics of the estimator could be evaluated using a

one~pass model which ignores the uncertainty in the system flowrates,

It can be seen from Table 6.5 that the one-dimensional model
yields results that are comparable with those obtained from the full
model, The convergence of the filter using the simpler model is
faster because there is no uncertainty in the flowrate measurements,
but the filter is stable in both cases. Since the one-dimensional
model is faster computationally, it was used in the remainder of the

Smdy-



Table 6.5 Convergence of the Estimate to the Trus
Catalyst Activity of 5000
“Fime | ¥Fuil Full | Simplified (Fime | Fail Full |Simplified

| (min) | reoyclel one-paas| one-pass (min) | recycle lone=-pass| one-pass
0o | 2500 2500 2500 0 2900 2900 2900

0 | 2721 2780 2783 10 2960 2954 2954
20 2782 2852 2854 20 2974 2972 2972
30 2801 2887 2890 30 2958 2982 2983
ko | 2839 2914 2917 ko 2973 2992 2994
50 2664 2927 2930 50 2985 2993 2995
60 2887 2936 2939 60 3001 2994 2996
70 | 2895 2947 2950 70 2996 2998 3000
80 | 2901 2954 2956 8o 2996 2998 3002
90 2907 2956 2959 90 2996 2997 3000
100 2916 2960 2962 100 3002 2999 2999
110 | 2917 296k 2966 110 3000 2999 3001
120 | 2921 | 2967 2968 120 | 2999 | 2999 3001

a) ).o = 2500 b) X, = 2900
Time Full Full |[Simplified [Time Full Full s:i.mpl:'n?:ied1

(min) ! recycle] one=pass| cne-pass (min) {recycle lone-pass| cne-pass
o | 300 3100 3100 0 3500 3500 3500
10 | 3026 3019 3019 10 3121 | 3117 3118
20 | 3014 3011 3010 20 3028 3061 3061
30 2984 3010 3011 30 2975 3043 3045
40 | 2991 3015 2016 40 2973 3040 3042
50 3001 3012 3013 50 | 2983 3031 3033
60 | 3005 3010 3012 60 2998 3026 3028

. 70 | 3006 3013 3014 70 2988 3026 3029
8o 3006 3013 3014 80 2990 3024 3027
90 | 3005 | 3009 3010 90 | 2990 | 3019 3022
100 | 3011 3008 3009 100 2998 3018 3019
110 | 3007 3009 3010 110 2995 3017 3019
120 | 3007 %08 3009 120 2997 3015 3017

¢} N\, = 3100 d) X, = 3500



116.

Table 6.5 also illustrates the effect of using the simplified
model in the predictor. The biases listed in Table 6.1 for an
activity of 3000 were added to the predictions of the model. In
practice, values for these biases would be detcrmined by performing
an off-line minimization based on operating plant data. The optimal
parameters would be determined as before, and the biases chosen to
compensate for the difference between the predicted and measured
temperature profiles. As is noted in Table 6.2, the minimization
calculates ki and ké which are overall reaction constants. The
activity level of 3000 was defined arbitrarily for a fresh catalyst
bed, and therefore k; = ki/}OOO and k, = ké/}OOO. 0f course, any

other factor for the catalyst activity could be chosen.

A comparison of the second and third colums of the results
shown in Table 6.5 indicates that the simplified and full models yield
essentially identical results for the situation with constant catelyst
activity. The table also shows that the convergence of the estimator
is sensitive to the initial value assumed for the catalyst activity.

A poor initial estimate, however, is clearly indicated by a large

change in the estimate after the first observation. It should be
further noted that the convergence is not symmetric; that is convergence
curves from estimates initiating at points below the true value of

the activity are not mirror images of those initiating the same

amount above the true value. This is a reflection of the dependence

of the Jacobian on both time and position in state-space.

It is ultimately intended to use the filter to provide an
estimate of the catalyst decay law for an optimization calculation.
Since the objective function of the optimization is likely to depend
upon the output concentration of reactants from the system, the true
test of the filter performance lies in its ability to predict reactor

(text continues on Page 124)
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FIGURE 6.3
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output at some later time. In this example the outlet conditions
can be predicted if the concentration of reactant A in the outlet
stream is accurately estimated. Thus in the sequel, the filter
performance in a given situation will be evaluated by comparing

the output concentration of reactant A predicted using the estimated
activity with the true output concentration generated by the complete

ICI model with recycle.

Figure 6.1 illustrates the adverse effects model deficiencies
can have on the performance of the filter. The data generated
with decaying catalyst in set 52 was analysed using the complete
model in the steady-state predictor, but assuming the catalyst
activity was actually constant (model M2). The three curves compare
the output of the standard growing memory (Kalman) filter with that
of the limited memory filters. The figure illustrates the danger
of retaining data that is inaccurately described by the process model.
Note that a comparison of the output of the growing memory filter
with that of a limited memory filter provides a method for detecting
the presence of modelling errors. When the model used in the filter
is valid, the estimates resulting from the two different types of

filters should be essentially the same.

When the form of the catalyst decay law is correctly postulated,
a growing memory filter using either the complete or simplified
model provides accurate predictions of future activity. Figures
6.2 and 6.3 show the activity predicted up to the eighth hour,
based on the analysis of data set S2 using model M3. A certain
amount of time is required for the filter %o build up information,
but the predictions are quite accurate after the second hour. Figures
6.); and 6.5 show the composition predictions based upon the filter

using the simplified model are very close to those based on the
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complete model. 'The large deviations during the initial period
are due to errors in the prediction of the catalyst decay law,

and are not caused by the use of the simplified model.

In all of the preceding studies, the biases and parameters
of the simplified model have been assumed to be constant and
equal to the values determined by off-line minimization and listed
in Tables 6.1 and 6.2 for ) = 300, Table 6.6 shows the error
in prediction of the output concentration A that results when the

biases in the temperature predictions of the simple model are ignored.

Table 6.6 The Effect of Ignoring Biases in the Simple Model

Time % Deviation of Predicted A

(min) Model M2 Model M2
with Bias without Bias

5 11.59 26.83
10 8.2 28.32
15 . 6.59 28.89
20 597 29.70
25 L5l 29.07
30 3.53 28.60
40 0.1h 25.30
50 0.62 26.59
60 0,70 27.20
75 0.81 25,70
90 0.23 27.33
105 0.32 27.60
120 O.43 27.82

Ao = 3000 for both trials.
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In practice, the model parameters and biases would vary
slowly, and would have to be updated periodically as the local,
simplified model becomes invalid. It would be preferable
to update them automatically using the on-line filter. To test
the feasibility of this technique, a model was constructed to
estimate the biases and parameters in the simplified model;
nineteen state variables were adjoined to system description M2,
consisting of sixteen temperature bisses as well as k3, kg and the
ratio ka/kl (see equations (6.1) to (6.3)). Figure 6.6 shows the
error in the prediction of the output composition of component A
made by a standard Kalman filter as well as by some exponentially
weighted filters. Though the latter type does, in some cases,
reduce the estimation error, it can be seen that the filter
becomes unstable, as predicted in Part I. The instability is
indicated by the fact that the elements of the P matrix, which is
a measure of the uncertainty in the estimate, increase as new
observations are made. This implies that further observations
actually decrease the amount of information available about the
system. One explanation for this is that the filter is being
used to estimate too many independent variables about which the
steady-state model provides no coupled information. Furthermore, by
allowing all of the parameters in the simplified model to vary, the
system description becomes too general and in effect forces the
estimator to operate on a multi-nodal least~squares surface. Even
when only selected parameters were allowed to vary, the model was
still too general, and the filter was unstable, In this application,

therefore, the biases and parameters must be updated off-line.

The assumption that the catalyst activity depends upon
inlet temperature only is intuitively unreasonable, and data set

S3 was generated for the evaluation of the estimator when the decay
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rate is a function of local temperaturec. Figure 6.7 compares the
results of filtering the data assuming a constant activity along
the bed at any time (M3), with those obtained assuming a linear
profile (M4), An exponentially weighted filter was also used,
since it would be responsive to the slow variation in the slope
of the linear profile. It can bhe seen that for this example, the
dependence of the decay on local temperature does not significantly
alter the characteristics of the reactor. This, of course, may
not be true in other applications, and a more complex profile
could easily be accommodated by estimating a further one or

two parameters to describe the catalyst profile as a quadratic

or cubic function of distance along the reactor.
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6.3 Discussion of Results

The feasibility of using a simplified process description
for filtering purposes has been demonstrated in a realistic
example. The simplified model used was based on engineering
judgement rather than detailed analysis, and it is likely that
computationally attractive models could be proposed which would

allow the solution of a variety of practical estimation problems.

It has been found that the prediction biases due to model
deficiencies must be accounted for in using the simplified models.
Prials performed when these biases are ignored have been shown to
result in errors of about 25% in the prediction of the output
concentrations of reactants. In the example presented, it has
been necessary io update the model biases off-line, though in
theory the updating could be performed by the filter, Whether
this is possible depends upon how many independent variables are
being estimated, and would have to be investigated for any

particular application,

The sensitivity of the filter performance to the initial
estimate of the state vector would be expected from the theory.
Kalman and Bucyll show that the convergence of the estimator to
the true state is guaranteed only if the initial estimate, zb/o’
is correct. Otherwise some bias would be expected. However,
the amount of bias resulting from an incorrect initial estimate
is problem dependent, and‘it is likely that experience in a given
situation will indicate the more critical state variables. It
has also been noted that when the initial state estimate is not

good, the filter will takc a large step after the first observation.
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In these cases, the filter should be re-initialized at the new

estimate,

This example also demonstrates the utility of limited
memory filters for detecting the presence of model deficiencies.
When analysis of a set of data by both limited and growing
memory filters yields significantly different estimates, a model
error is indicated. However, the danger of filter instability
when the memory is limited has been demonstrated, and it must
be concluded that these filters are most useful as diagnostic
tools, Their behaviour is highly unpredictable, since it

depends so strongly on the values chosen for the memory parameters.

The major significance of this example is that it dcmonstrates
that realistic dynamic estimation problems can be solved using
very simple dynamic models in conjunction with simplified steady-
state models, even when the systemy in theory, requires a distributed
parameter description. The problem of dynamic modelling is greatly
simplified, and most of the chemical engineering information

available about the system can be utilized in the steady-state model.
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CHAPTER 7

CONCLUSIONS

The theory of statistical filtering described in Part I
has been developed in many different ways since the presentation
of Kalman's classic papera. The unified derivation presented
here has the advantage of being inherently simple, and is based
on the well known results of least~squares theory. The derivation
is unique in that it specifies not only the standard growing
memory filter of Kalman, but also the limited memory filters
which have been shown to be useful as diagnostic tools for
indicating model deficiencies. However, it should be noted that
the exponentially weighted filter is not convergent; this fact

has been overlooked by several authors.

The theory, however, has been presented merely as a method
for solving practical chemical engineering problems, There
have been few applications previous to this study, for three

major reasons:

1., Stochastic models for chemical process system
disturbances are rarely available;

2. Dynamic models for process elements are
rarely known;

3. Even vwhen models are known, they typically consist
of sets of partial differential equations, too complex

for on~line use.

This study has shown that these problems are not
insurmountable, The analysis of the distillation columm data

has shown that the filter performance is not very sensitive to
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either the form of the measurement error distribution or to errors
in the initial uncertainty assumed for the elements of the state
vector. The column example also illustrates the serious effect

that model deficiencies can have on the performance of the filter.

The effects of modelling errors has been examined in detail
in the reactor simulation., The filter has been shown to yield
accurate predictions of output composition when based on a
simplified steady-state model. Furthermore, the measurement
scheme was very simple, and the filter did not require observation
of the compositions at the outlet, but predicted them and the
non-observable catalyst activity on the basis of temperature

measurements only.

The reactor example also demonstrates that it is possible
to deal with distributed parameter systems without greatly increasing
the dimension of the state-vector of the model., Though the particular
example is not highly sensitive to the change in decay dependence
from inlet to local temperature, the technique used to approximate
the distributed parameter system can be used in a variety of

situations.

In both examples, the reliance on detailed steady-state
models coupled with simplified dynamic models represents a basic
change in the approach to estimation problems. It has been shown
that complex dynamic models are not required for the analysis of the
situations considered, but simple models could be used to describe
the dynamic behaviour, while detailed chemical engineering information
is utilized in the steady-state model relating the state vector
to the observations. This technique could be used to analyze many

chemical systems characterized by two major time constants with one
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very small in relation to the other, Thus the linear theory

developed is applicable to a large class of practical problems.

The studies have been performed under the assumption that
there are no random dynamic inputs to the systems considered.
It has been noted that this is a moot point. However, if it is
felt that random dynamic inputs or random disturbances generated
internally do present a serious problem, the theory can be
modified to allow for them, except in the case of the oscillating
memory filter. The real question is whether these disturbances,
consisting in effect of normally distributed perturbations about
a mean value, do indeed pose a serious problem in the applications
envisageds It is felt that most random (that is, unpredictable)
process disturbances could not be described by a model which
postulates additive normal random noise. However, this point cannot
be resolved by simulations, but requires the application of the

techniques to operating plants.

It must be stressed that the results presented are mere
examples of possible applications of statisticel filtering theory.
Though they are representative of realistic chemical engineering
problems, the successful application of the techniques cammot be
guaranteed in any particular situation. The theory is complete
as presented, and future work should be directed toward practical

application of the techniques to operating plants.
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