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3. 

Abstract 

This thesis investigates the feasibility of applying 

linear statistical filtering theory to the solution of estimation 

problems encountered in the operation of chemical plants. The 

study is divided into two sections. 

In the first part, the development of the theory is considered, 

and a unified derivation is presented which yields both growing 

and limited memory filtering algorithms. 

In the second section, the application of filtering techniques 

to typical chemical engineering systems is considered. The 

sensitivity of the filter performance to errors in the statistical 

assumptions made about the system is investigated using data 

from a binary distillation column. The effects of system modelling 

errors is studied using a simulated fixed-bed catalytic reactor. 

For this example, a realistic industrial simulation is used, and 

the ability of the filter to estimate non-observable system 

parameters is demonstrated. 
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CHAPTER 1 

INTRODUCTION  

Though there have been impressive advances over the last decade in 

the theories of optimization and control, few of the new results have 

been applied within the chemical process industries. This gap between 

theory and application is caused by the fact that optimal control 

techniques require an exact mathematical model of the system being 

considered, and also require the observation of the true state of the 

system so that, using the model, its future behaviour can be predicted, 

and any corrective action determined. 

Even when reliable deterministic models are available to the 

chemical engineer they are often too complex for repetitive optimization 

calculations. In practical situations, this problem is compounded by 

the fact that both the measuring devices and the system itself are 

subject to random disturbances which prevent the error free observation 

of the system state; indeed, the future evolution of the plant often 

depends upon a variable such as catalyst activity which cannot, be 

directly observed, and must be deduced from other observations. Thus 

the problem becomes one of state estimation as well as stochastic 

control. 

These difficulties have appeared to be so serious that many chemical 

engineers have dismissed optima,  control theory as an academic exercise 

of little practical use. This attitude is reflected in the operation of 

many large industrial processes which are controlled by on—line computers 

capable of optimization calculations, but programmed merely to log data 

and simulate conventional analogue control algorithms. 
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In spite of the fact that the complexity of typical chemical 

processes often precludes the application of modern control techniques 

it would seem that, when a plant is installed with an on-line computer, 

better use could be made of the information which is available about the 

system. In a conventional plant, most operating decisions are made on 

the basis of a smell sub-set of the measured process variables. For 

example, in the operation of a tubular reactor, control decisions are 

usually based solely upon the outlet conditions of the process stream, 

even though temperature measurements are likely to have been made at 

several points along the length of the reactor. Furthermore, process 

measurements are usually accepted as being completely correct, and no 

allowance is made for instrument errors, or the past performance of the 

measuring devices. Though it would be impossible for an operator to 

absorb and utilime all of the available process information, it is not 

unreasonable to propose that an on-line computer could be programmed to 

analyze for trends in plant performance, or detect changes in the 

reliability of the measuring devices. 

The more efficient use of process information might, for instance, 

allow the estimation of a stream composition using several temperature 

measurements, and save the cost of installing a composition analyzer. 

Even when a complete mathematical model of the process is not available, 

effective use of an on-line computer would allow utilization of any 

system constraints that might be known. Thus when a process is in 

steady operation, account could be taken of the fact that a total mass 

balance must be satisfied, and this knowledge considered in conjunction 

with actual flow measurements might permit the detection of instrument 

malfunctions or the detection of leaks in the system. By monitoring 

successive sets of observations, it is possible that the computer could 
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be used to estimate the relative reliability and accuracy of the various 

process measurements. In brief, the installation of an on—line computer 

should allow better use of all information that is available about a 

process, even though the knowledge of the system, is inadequate for the 

formal application of optimal control techniques. 

In order to determine bow more effective use can be made of the 

various sources of information in a chemical plant, it is useful to view 

the process as an information system, consist4ng. of the physical units 

and the meapuring and control devices, as well as any known system 

constraints. The amount of information that can be obtained by 

observing the system depends upon the speed with which the characteristics 

of its components are changing in relation of the observation rate. The 

extraction of any information from a system at a given observation rate 

requires that the process must contain some elements whose characteristics 

remain constant in relation toihe rate of observation, in much the same 

way as navigation of the open sea relies upon the seeming immobility of 

the reference stars. In many situations, only the statistics of the 

observation noise can be assumed to be constant, and in these cases 

effective utilization of system information requires an accurate 

prediction of the dynamic behaviour. of the plant. However, many 

industrial chemical processes move very slowly in relation to the rate at 

which they are observed, and under these circumstances not only can the 

statistics of the instrument errors be considered constant over long 

periods, but the plant state as well. In these cases, the assumption 

that the plant moves through a succession of steady—states may be 

justified, and it is reasonable to base an estimate of the plant state 

upon several sets of observations rather than the most recent one. 



11. 

There are several possible methods for analyzing the system 

information in order to provide an improved estimate .of the plant state. 

In. cases when steady-state operation can be assumed, the most direct 

approach is to minimize some weighted function of the observation errors 

subject to the known steady-state constraints, where the weights reflect 

the relative reliability of the measuring devices. The actual form of 

the function to be minimized would depend upon the anticipated probability 

distribution of the instrument errors, but is unlikely to be very 

critical; a quadratic function can be shown to be adequate in most 

situations. Though this approach has the advantage of conceptual 

simplicity and does utilize all available information, it has some 

limitations. The technique requires the storage of the relevant data 

sets, and the performance of a new minimization as each new set of 

observations is acquired; it is therefore likely to be impractical for 

on-line computation. Furthermore, the performance of a minini7ation with 

nonlinear constraints is in itself a difficult numerical problem. 

When the rate of change of the plant state is of the same order as 

the observation rate, the minimization approach is not applicable, since 

the governing constraints relating the observations to the plant state 

vary between data sets. A possible method of analysis under these 

circumstances is to interpret the plant records as stochastic time 

series. Thus each instrument reading can be considered to be the sum of 

the true reading and additive random observation errors. The estimation 

of the true plant state requires the removal of the random element of the 

measurements, and hence becomes a problem in statistical filtering. This 

approach is attractive in the sense that it is possible to formulate 

sequential filters, and thus eliminate the necessity of storing large 

sets of data. 
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Filtering techniques have been developed for the solution of the 

following problem : Given a set of observations of a system over the 

interval (0, T], it is desired to estimate the output of the system at 

some time t, such that the estimate is optimal according to some 

predetermined criterion. When t='-'T, the problem is one of smoothing; 

when t = T, it is one of filtering and when t? T, it is one of 

prediction. The selection of a criterion for optimality is subject to 

the same considerations as those mentioned for the constrained 

minimization. 

But the application of statistical filtering techniques would seem 

to be thwarted by the same limitation that prevents the calculation of 

optimal controls for realistic chemical processes. In order to remove 

the random observation noise, a deterministic model for the true value 

of the observed variable must be postulated. In cases when the system 

changes significantly between observations, this means that a dynamic 

model must be proposed before the filtering techniques can be applied. 

However, mathematical models suitable for filtering applications 

are not as difficult to formulate as control models. A model used for 

the calculation of optimal controls must be valid for the entire period 

for which a control policy is needed, while a filtering model need only 

be locally valid. It should be possible to evaluate instrument 

performance and estimate non-observable system parameters with a local 

model, so long as the model errors repair relatively constant and small 

in relation to the observation errors. If the local model approximates 

the true system closely enough, the deterministic element of the 

observations can be removed, and a constant frame of reference based upon 

the characteristics of the instrument errors can be established in order 

to allow valid analysis of the information system. 
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Several of the arguments presented in the preceding paragraphs must 

be tested before filtering techniques can be applied to operating systems. 

Specifically, the sensitivity of the filter performance to errors in the 

estimate of the observation statistics or to local model errors must be 

determined. In order to evaluate the performance in typical chemical 

engineering applications, the filtering techniques have been applied to 

some simulated systems. In one example data from a distillation column 

operating in a known steady-state is analyzed to evaluate the effect of 

erroneous statistical information being used in the filter. In another 

simulation, the techniques are applied to a fixed bed tubular reactor 

with catalyst decay in order to test the ability of the method to 

estimate the catalyst activity and its rate of decay from temperature 

measurements only. In this case, the complete reactor model is too 

complex for on-line computation, and a simplified, locally valid model 

is used for the filtering calculations. 

A review of the development of the theory of statistical filtering 

and estimation is presented in Chapter 2. An effort is made to 

reconcile the many different approaches that can be taken to establish 

the results of the theory, and in the following chapter, a unified 

derivation of the results is presented, based upon the characteristics 

of least-squares estimators. Chapter 4 describes previous applications 

of on-line estimating techniques in the process industries, and 

discusses the particular problems faced in applying statistical 

filtering theory to chemical engineering problems. The final chapters 

are devoted to the analysis of the performance of the filtering 

algorithms in the simulated situations mentioned above. Though the 

simulations are presented merely as examples of possible applications 

in the process industries, it is felt that they are representative of 

typical industrial systems, and will point the way towards more effective 

utilization of process information. 
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CHAPTER 2 

THE DEVELOPMENT OF STATISTICAL FILTERING TECHNIQUES  

2.1 Introduction 

The modern theory of statistical filtering was originated by 

Wiener1 who combined the techniques of time series analysis with the 

classical theory of communication in order to provide solutions to the 

pressing problems of communication signal analysis which arose during 

World War II. Though Wiener's methods provided theoretical solutions 

to many problems involving the removal of random noise from radio 

signnTs, practical implementation of the new results was impossible in 

all but the most simple cases. Extensive research provided methods to 

solve a wider class of problems, but the Wiener theory was not widely 

applied until the advent of the digital computer. This powerful new 

tool for information analysis allowed the reformulation of the Wiener 

techniques into a more convenient form. Kalman2 presented a technique 

which does not require a closed solution to the filtering problem, 

but rather allows its recursive solution with the aid of a computer. 

Though the original Kalman solution was developed for linear systems 

with gaussian disturbances, several modifications have been developed 

to allow the solution of a wide class of problems. 

Before these techniques and their modifications are described, 

the question of a definition of optimality for filtering problems is 

considered. The relationship between filtering theory and its 

progenitors, the theories of estimation and communication, is also 

discussed. 



2.2 A Criterion for Optimality 

In all problems of filtering and estimation, it is desired to 

produce a solution that is "best" in some way. The form of the 

solution depends intimately upon the definition of what is considered 

to be "best". In selecting a criterion for optimality, account must be 

taken of the use to which the estimate will be put, and the types of 

errors that are assumed to corrupt the system. The engineer has 

traditionally turned to the criterion of least-squares to define 

optimality, and it is reasonable to consider first the desirability of 

this well known criterion. 

The characteristics of the least-squares estimator were first 

described in detail by Gauss3, and the publication of his theory is 

considered to have established estimation theory as a mathematical 

technique4. Gauss described the characteristics of an estimator for 

a linear system observed by measuring devices with uncorrelated errors, 

and defined as optimal the estimate of the system that minimized the 

sum of squared deviations of the true observations from the ones 

predicted by the fitted model. The principal advantage of the least-

squares estimator is that its characteristics are independent of the 

probability distribution of the observation errors, as long as the 

errors are uncorrelated. 

Later developments in estimation theory do not share this 

advantage, and this fact is reflected in the limited application of 

the techniques to practical engineering problems. For example, a 

large body of theory has been developed in order to rationalize the 

comparison of alternative estimators of the parameters in probability 

distribution functions. The qualities such as bias, consistency, 

16. 



sufficiency, and efficiency have been defined for this purpose5• 

Thus, in estimating the variance of a norcol papalation on the basis 

of a random sample; (xii , i = 1, 	n, the estimator; 

17. 

(2.1) 

is used in preference to , 

s2 =x„, n (2.2) 

where x is the sample mean. s1 is selected because it can be shown 

that its expected value is d2, the true population variance, and hence 

the estimator is unbiased by definition. Since the use of these 

comparative techniques for the evaluation of estimators requires a 

knowledge of the governing distribution, the criteria have been applied 

primarily in the life sciences where.probabalistic models of error 

phenomena can be reliably postulated. 

The same disadvantage is encountered in applying maximum likelihood 

teohniquas5. ln this ca ,e the joint pze-',JJ,H1.1:1:1;y distribution o± the 
observed events is calculated as a function of the unknown parameters 

in the governing probability distribution, and the optimal  parameters 

are defined as those which maximize the joint distribution function. 

The use of this optimality criterion is therefore restricted to those 

situations for which the joint probability distribution can be defined 

analytically. 

Though it has been suggested that the least-squares criterion is 

applied to practical problems out of ignorance rather than insight6, a 

lack of probabilistic information is not the only justification for 
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its application to engineering problems. First of all, the estimator 

which prodaces a least-squares estimate can be shown to be identical 

to the mmcimum-likelihood estimator for linear systems subject to 

normal random disturbances. More significantly, the least-squares 

estimator can be considered to be optimal in a "wide sense" since it 

minimi7es the first two moments of the observation errors about the 

predicted observations4. The neglecting of higher order moments is 

fortunately reasonable in many practical situations. 

A further justification for choosing a least-squares criterion 

arises from the specification of electronic filters in communication 

theory. Using the classical theory, the filter is designed to have 

particular frequency response characteristics in order to remove the 

undesired noise components from the signal. The filter is synthesised 

so as, to minimize the ratio of the noise signal power to the message 

power. Since power in electrical circuits depends quadratically upon 

current, minimizing the sum of squared errors caused by the, signal 

fluctuations will minimize the power of the error component. 

But the major advantage in employing a least-squares criterion 

is that it provides an estimator whose characteristics are independent 

of the stochastic characteristics of the system being observed. Though 

it might be possible to propose a more desirable optimality criterion 

for the solution of a particillAr problem, a filter which results in 

a least-squares estimate is likely to be applicable to a variety of 

practical problems. For this reason, any future reference to a best 

or optimal estimate should be taken to imply optimality in a least-

squares sense. 
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2.3 Wiener Filter Theory  

Wiener1 considers the solution in the time domain of thfl 

problem of linear filter design in communication engineering. Using a 

minimum mean error power optimality criterion, the specification of 

the filter, is made in terms of the first two moments of the signal 

statistics. The Min  result of the solution is the Wiener-Hopf 

equation which is an integral equation relating the cross-correlation 

function of the filter input with its output, to the auto-correlation 

function of the input. The solution of the equation provides the 

impulse response of the optimal linear filter. 

Though the Wiener filter theory represents a major conceptual  

advance in information analysis, it involves several practical 

difficulties that limit its utility. A major limitation lies in the 

fact that the optimal filter is specified by its impulse response. Even 

when the Wiener-Hopf equation is soluble, the construction of the filter 

on the basis of its desired impulse response characteristics is a 

difficult problem. Furthermore, Wiener considers only simple systems 

with stationary statistics. Though multivariate systems are dealt with 

briefly, their solution requires the specification of auto- and cross-

correlation functions relating all inputs to all outputs. 

Nevertheless, a great deal of research has been inspired by the 

work of Wiener. Because the complexity of chemical engineering 

problems prevents the direct application of the theory, its developments 

and extensions will not be explored. Extensive references to studies 

based on the original Wiener theory are available in several 

sources718. 
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The most significant aspect of the work of Wiener is the way in 

which the combining of statistical time series analysis with the 

classical techniques of communication engineering allows the consideration 

of filtering problems in the time domain. Time domain analysis is far 

more useful in the solution of chemical engineering problems where 

frequency domain analysis  is unlikely to be physically meaningful, or 

is invalid due to system nonlinearities. 



2.4 Kalman Filter Theory  

The difficulties associated with,the solution of the Wiener-Hopf 

equation were circumvented by Kalman
2. He considers the estimation 

of the state of a linear dynamics system subject to gaussian 

disturbances and observed by measurements which are linearly related to 

the state. Using state-vector notation to describe the evolution of 

the system as a discrete function of time, and considering the geometric 

properties of optimal estimators, a recursive formulation of the filter 

was derived in a form ideally suited to digital computation. 

2.4.1 State-Vector Notation  

State vector notation allows the reduction of the matrix 

differential equation describing a linear multivariate dynamic system, 

to a set of recursive equations relating the current state of the 

system to the state at some interval of time later, where the state is 

defined as the minimum amount of information required to describe the 

future evolution of the system given the describing equations, and 

assuming no further inputs are applied. The salient features of the 

notation are presented below9. 

Consider a fixed homogeneous linear dynamic system described by, 

A x 	 (2.3) 

where x is a n-dimensional state vector, A is a (n x n) matrix of 

constant coefficients, and ;:denotes the time derivative of the state. 

The solution of this equation is analogous to the scsla.r. case. 

21. 
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x(tn) = exp [A (tn  - to)1 x(to) 	(2.4) 

for tn 	t0. 

The exponentiation of a matrix is defined by the infinite series: 

explAt] 	= I + At + A2t/21 + A3 t3  /31 4-  	(2.5) 

For the stationary system considered, the matrix exponential is defined 

as the state transition matrix relating the state at time to  to the 

state at some earlier time to. Since the elements of the matrix A are 

time invariant, the state transition matrix depends only upon the 

interval (tn t0) and not upon either time explicitly. Thus equation 

(2.3) may be transformed into a recursive relationship, 

x(tn) = (tn t0) 	 (2.6) 

where 6 (tn  t0) is defined from equation (2.4). 

For the time-varying, homogeneous case, the elements of matrix 

A in equation (2.1) depend upon time, and the state transition matrix 

cannot in general be described in closed form. However, the relationship 

between x(tn) and x(t0) remains conceptually the same as described in 

(2.6), though in this case the transition matrix will be written as 

(tn t
0
) to indicate the time dependence. 

The addition of a forcing function to the system further complicates 

the analysis. In the non-homogeneous case, the general linear system 

becomes, 

(t) 	A(t) x(t) 	B(t) u(t) 	(2.7) 
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where both A and B may be time dependent, and u is an arbitrary forcing 

function. The solution to (2.7) consists of a homogeneous portion, and 

a contribution of the forcing term. Thus, 

't 
x(t) 	= 	t, t0) x(t0) 	(t, 4)B(t0)u(7.)dil. 

to  

.... (2.8) 

assuming the interval (t — t0) is small enough to allow A and B to be 

considered effectively constant. The integration in (2.8) may be 

avoided if it can be assumed that the short time interval permits the 

interpretation of u(t) as an impulse input just prior to time t. Under 

these conditions, the solution to (2.7) may be modified to describe the 

stagewise evolution of x through time. 

x(t) 	(t, t-Q) 	B(t) u(t) 	(2.9) 

The state transition matrix has several properties that will be 

utilived in the sequel. 

1. t) = 

2. ..(t2'  t1  )(i)(tl'  t0) = 45(t2'  t0) 

3. C(t2, t1) = 	(ti, t2) 

These properties may be easily verified. 

2.4.2 The Kalman Solution  

Kalman considers the estimation of the linear dynamic system 

described in the continuous form of equation (2.7) or discretely as 

in (2.9), and assumes that B(t) = T for all t without loss of 



generality. To the dynnmic system is added an observation system 

described in the continuous case by, 

= G(t) x(t) 	v(t) 	(2.10) 

where x is an n-dimensional state vector, zis an m-dimensional 

observation vectoro  and v is an m-dimensional vector of random 

observation errors. If the observations are perfect, and thus v(t) 

is zero for all t, the Kalman form of the solution of the filtering 

problem requires that m 	n. The matrices A and G are known 

functions of time, and are of dimension (n x n) and (m x n) respectively. 

The dynamic input vector, u, can be considered to be either normal 

random noise, or the output of a linear system fed by independent 

gaussian noise. The following statistical characteristics are assumed 

for the noise inputs: 

92(t)1 = Ertz(t)i = 

E u(t) 	= Q(t) 

• v(t) v (t)t = R(t) 

for all t 

117(s)/ = Ei v(t) vT(s)II = 0 for all t i  s 

• v(t) uT(s)1 = 0 for all t and s. 

The estimation problem is to determine the etimate 	) of x(ti) 

such that the expected loss function is a minimum. The loss function 

is the least-squares criterion, 

24. 
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Kalman shows that the theory applies for any convex loss function 

symmetric about its mean2. 

It will be recalled that the general estimation problem can be 

subdivided into ones of smoothing, filtering and prediction. The Kalman 

theory applies only to the solution of the latter two; that is, the 

state at time t1  can only be estimated at time t if tl t?! t. Fortunately, 

filtering and prediction are of particular interest in chemical 

engineering applicatd-ons. The smoothing problem will not be pursued 

further; it is considered in detail by Meditch10  . 

For convenience, the following notation convention is adopted. The 

estimate x(t) at time to based upon observations from timb t6 to 	
will be 

denoted as x m. Conditioning upon observations in the interval t to -m/ 

tm  with p 	m will be indicated by x 	p. The state transition matrix -n/m- 

T(tn, tm) will be written 4nlm . Any time dependent matrix such as 
A(t) defined at time to  will be written as An. 

The analysis by Kalman yields the following algorithm which defines 

the filter for the discrete case. The Analogous continuous solution11 

will not be considered. 

1.  

2.  

3.  

4.  

Kalman algorithm 

r i.Gn  

11,n-1 

iGnPn/n..1 

22-1  

4.  Qn-1 

GTn  + R 1-1G n 

_ Gn T + R 1-1 

(2.12) 

(2.13) 

P n n/n-1 

(2.14) 

. 

(2.15) 

x -min-1 

Pn/n_i  

Pn/fl 

IN x 

= 

= 

= 

= 

.1.2.2122-1 n-1/n-1 --n1  

T 
non-1 Pn -1/n -1 

pGT 21/n..1 - Pn/n..1. 	 n  

T Xxvn...1  + Pnin_i  Gn  

A  [4'1 	41/13$.1 
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In the particular problem first considered by Kalman, the known non-

random dynamic input (or control), ea,n-1 1  over the interval tn1 to to  

is not considered; furthermore, perfect observations are assumed so that 

R
n 

= 0. The information required to initialize the filter is '44/0  and 

P0/0i that is, an estimate of the initial state and the covariance matrix 

of the error in that initial estimate. The assumption of knowledge of 

30/0 and P%  is shownli  to remove the requirement of stationarity of the 

dynamic system, which is inherent in the Wiener solution. All other 

elements of the algorithm are assumed to be known for all t 	t0. 

Note that as the estimator evolves through time, the information from all 

past observations starting from t0  is contained in the current estimate 

n and the error covariance matrix P. . 

The work of Kalman represents a major advance in statistical 

filtering theory. Besides offering a practical solution to the problem 

solved only in theory by Wiener, it demonstrates several significant 

points. Kalman shows that a linear filter is optimal for linear systems 

with gaussian inputs, and that the optimal estimate consists of a linear 

function of the current state and observation vectors. Furthermore, it 

is demonstrated that the results obtainable by a linear filter can be 

improved upon by a nonlinear estimator only if non-gaussian inputs are 

considered, and even then only if third order probability distributions 

are postulated to describe the error statistics. The Kalman theory is 

also applicable to non-stationary dynamic systems, and as such is more 

general than the Wiener techniques. 

The analysis of continuous linear systems by Kalman and Buoy11 

contains a rigorous mathematical analysis of the properties of the 

estimator, which is interpreted as an orthogonal projection in Hilbert 
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space. Indeed both of the Kalman papers are elegant mathematical 

expositions, but there is little to be gained by reviewing in detail the 

Kalman derivation of the algorithm. The geometric approach taken is 

likely to be unfamiliar to the engineer; fortunately, the results can 

be obtained more easily by several alternative methods. 



2.5 Alternative Derivations of the Kalman Filter  

The filtering problem considered by Kalman is open to several 

interpretations, and each one allows a different method of solution. 

Kalman views the problem as one of determining the conditional 

expectation of the system state, where the estimate is conditional on all 

past observations, and he exploits the geometric properties of conditional 

estimates to derive the filter equations. However, the interpretation of 

the filter output as a conditional expectation also suggests the possi-

bility of using the Bayesian theory of statistics to generate the 

solution to the problem. Another approach is suggested by the fact that 

the estimate of the system state is a function of time which minimizes 

a quadratic cost related to the observations and the predicted dynamic 

errors. Thus the problem can be couched in terms of a minimization in 

function space, and analyzed through the use of classical variational 

techniques. Alternatively, since the cost function considered is a 

least-squares criterion, the solution could be sought using standard 

least-squares theory. Indeed, all of these approaches have been 

considered by various authors, and each viewpoint has its advantages 

and disadvantages. 

Ho and Lee12 have derived the Kalman solution directly from Bayes 

Rule. Their technique provides a method for calculating the evolution in 

time of the probability distribution of the system state conditional on 

the observations of the system. The estimate is defined in terms of the 

parameters of the distribution, and in the case of linear systems with 

gaussian inputs the recursive equations defining the evolution of the 

mean and variance of the conditional distribution are the same as those 

derived by Kalman. Though the theory allows the calculation of the 

28. 
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distribution for any nonlinear system subject to inputs with known 

statistics, there will in general be no way of defining the estimate 

recursively in terms of the characteristics of the conditional 

probability distribution. Thus while the Bayesian approach is satisfying 

to the theorist, it is only useful to the pragmatist in the simplest 

situations. 

A variational solution to the problem was first suggested by 

Heilman et a1.151  and is developed using the concepts of dynamic 

programming. The general nonlinear estimation problem is considered and 

a Hamilton-Jacobi equation is derived whose solution defines the trajectory 

of the optimal estimate of the state from the time of initialization to 

the current time. A recursive solution to the equation is found using 

the technique of invariant imbedding, which reduces the two-point boundary 

value problem to an initial value one. Once again, this formulation 

reduces to the Kalman solution for linear systems. Hellman and his co-

workers were among the first to show that unknown parameters in the 

system model could be estimated along with the state without altering the 

form of the filtering equations. 

The solution of the problem from a least-squares viewpoint is 

perhaps the most obvious approach to the engineer. In 1950, Plackett14 

proposed a method for combining least-squares estimates from two blocks of 

data, and his equations can be shown to be equivalent to a Kalman filter. 

Swerling15  considered the generation of sequential least-squares estimates 

of the parameters of satellite orbits, and arrived at the same special 

case of the Kalman solution. Rosenbrock16 has recently demonstrated that 

Kalman's results can be derived directly from a theorem by Gauss. While 

the least-squares derivations are not as elegant as some others that have 

been mentioned earlier, they are especially useful to engineers accustomed 

to the techniques of least-squares analysis. 
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2.6 Extensions to Kalman Theory  

The class of problems soluble using linear Kalman theory can be 

easily extended within the framework of the original formulation. The 

application of a non-random forcing function to the dynamic system is 

allowed for in the algorithm presented above, and can be seen to enter 

only into equation (2412) which describes the transition of R 	to 

-En/Ss n -1' Sorenson
17 has shown that systems with correlated dynamic: 

inputs and measurement biases can be analyzed by increasing the 

dimensionality of the filter without altering its form. Maynel8 considers 

the estimation of the elements of the state transition matrix of a linear 

system with perfect measurements and shows that the problem can be 

transformed to a standard linear problem of dimension n2. 

However, the most serious limitation of the original Kalman theory 

is its restriction to the analysis of linear dynamic systems. Denham and 

Pines19  have shown the detrimental effect small nonlinearities can have 

upon the performance of a linear filter. Nevertheless, Smith et al.2°  

have used the linear theory to estimate the orbital parameters of 

satellites, whose behaviour is, governed by highly nonlinear celestial 

mechanical equations of motion. They assume that the perturbations of 

the satellite from a given reference trajectory are governed by a set 

of linear dynamic equations, and hence estimate the parameters using the 

standard linear theory. This technique has been applied successfully to 

many estimation problems encountered in aerospace applications, where 

theoretical reference states can be accurately predicted. 

The applicability of the Bayesian and variational approaches to 

the synthesis of nonlinear filters has already been mentioned. Sorenson 

and Stubberud21  derive a filter for the analysis of slightly nonlinear 



31. 

systems using Bayesian techniques, relying upon the assumption that 

the probability distribution of the state conditioned upon the measurements 

remains gaussian in spite of the nonlinearities. The method can be 

applied successfully if the nonlinear system is essentially quadratic. 

Pearson and Shridar22  derive identical results from a variational view-

point. 

Though the Bayesian and variational approaches yield identical 

results, there is a distinct philosophical difference between the methods. 

A Bayesian analysis requires definite assumptions concerning the probability 

distributions of the system inputs, while as Pearson23 observes, the 

variational approach does not necessitate the -synthesis of stochastic 

input models, and as such is more likely to be useful for the analysis 

of practical problems. It should be stressed that though a completely 

general solution to the nonlinear, non-gaussian filtering problem can be 

formulated in theory24 the practical specification of the filter can 

only be determined for, at best, quadratic systems with normal inputs. 

A further extension of the linear Kalman  theory of special interest 

in chemical engineering applications has been suggested by Seinfeld25. 

He considers the synthesis of filters for systems described by linear 

partial differential equations. The results follow from an extension of 

the variational analysis, and it is interesting to note that the modified 

filter differs in form from the standard continuous Kalman filteril  only 

in the evolution of the state estimate, while the equation describing 

the estimate covariance matrix remains unchanged. In this case, of 

course, the difficult part of the estimation procedure lies in the 

solution of the partial differential.  equations of the model, and not 

in the actual, updating of the filter. 
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Further extensions of the Kalman theory have been made to improve 

the performance of the filter in the analysis of real physical systems. 

Schlee and his co-workers
26 have demonstrated the adverse effects of 

rounding errors and model deficiencies on the estimator when applied to 

simulated aerospace problems. Smith27 has made a similar analysis which 

shows the effect of unknown instrument biases on the estimator performance. 

In general, it seems that even in the unlikely situation when the system 

dynamic equations are perfectly known, computational round5rg errors can 

still cause a degradation in the behaviour of the filter. 

Several attempts have been made to modify the Kalman algorithm to 

counteract these affects, primarily by limiting the memory of the filter, 

thus allowing the estimates to be based upon the most recent observations 

of the system. An early attempt to synthesize a limited memory filter was 

made by Blum28, but his technique requires the storage of all of the 

observations within the memory span. Jazwinski
29 has deduced a filtering 

algorithm whose memory oscillates between n and 2n sets, and requires 

twice the storage of the standard growing memory filter. The choice of 

the memory parameter n depends upon the nature of the system being 

observed. The filter output is characterized by a discrete shift in the 

estimate as the memory basis shifts from 2n to n records, and the 

detection of a pattern in successive shifts can often be used to suggest 

the form of the model deficiency. An alternative technique for reducing 

the influence of early data sets has been suggested by raging, who 

applies an exponentiAlly decaying weighting factor to the memory, and 

specifies a filter requiring no more storage than the Kalman algorithm. 

A practical analysis of the performance of these limited memory 

techniques has not yet been reported. 



2.7 Concluding Remarks  

No effort has been made to include all of the contributions that 

have been made to the development of the linear filtering theories of 

Wiener and Kalman. Rather, an attempt has been made to reconcile the 

varioup approaches that have been taken to derive the results of the 

theory. The particular viewpoint taken in analyzing the filtering 

problem is clearly a matter of persona; preference, and in practice, 

all methods yield identical algorithms. 

In order to provide a sound basis for the application of the 

filtering techniques to chemical engineering problems, a unified 

derivation of both the growing memory (Kalman) and limited memory filters 

is presented in the following chapter. The least-squares approach is 

taken, since in most practical engineering applications, stochastic 

models for input and measurement disturbances are not available. 

33. 
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CHAPTER 3 

DERIVATION OF THE FILTER EQUATIONS  

3.1 Introduction 

The discussion in Chapter 2 has indicated the variety of techniques 

which can be used to derive the recursive equations of the optimal 

filter. The approach taken here is inspired by Rosenbrock16, who has 

shown that the Kalman filtering equations can be deduced directly from a 

theorem by Gauss on the characteristics of least-squares estimators. 

However, the present derivation differs from earlier efforts because it 

yields the recursive relationships describing not only the standard 

growing memory filter of Kalman2, but also the limited memory filters 

derived usire different methods by Jazwinski29 and Fagin30. In order to 

allow this more general derivation, the dynamic input vector is 

restricted to be a deterministic function of time; hence the emphasis of 

the estimation problem is shifted to the determination of the system 

state from a set of noisy instrument readings, rather than estimation in 

the face of random input disturbances. It will become evident in the 

course of the analysis that random dynamic inputs preclude the use of 

certain types of limited memory filters unless every data set within the 

memory is stored. 



3.2 The General Non-linear Problem 

The filtering theory derived by Kalman2  applies to a class of 

systems described by linear dynamic equations and observed by error free 

measurements. The linear theory can be applied to a more general class 

of problems by linearizing the system about the current best estimate 

of its state. Consider the following dynamic model: 

Xli(t) = f [At), a(t), u(t), 

x(t) = Ipit(t), a(t), v(t), 

a(t) = 0. 

 

(3.1) 

t 

 

(3.2) 

 

 

(3.3) 

where x 	 K  an n-dimensional state vector, 	is an m-vector of 

observations, u and v are random disturbance vectors, a is a vector of 

unknown, constant parameters, and f and E are known functions. Any 

deterministic inputs to (3.1) and (3.2) can be accounted for by the time 

dependency. 

For this analysis, the general problem is modified by assuming 

that the observation errors are additive, and by considering only 

deterministic dynamic inputs. The significance of excluding random 

inputs to the dynamic system will be discussed later. The problem is 

further simplified by adjoining the parameter vector to the state 

vector, so that xat(t) is, redefined to allow estimation of any unknown 

parameters in the system. The modified system description is : 

35. 

2(t) = fr xm(t), tJ (3.4) 

js, [ 224( t) , tj  v(t) (3.5) 
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where the random observation error, v(t), has zero mean and known 

covariance matrix R(t). 

The equations can be expanded in a Taylor series expansion about the 

current optimal estimate 2c(t) to yield, to the first order : 

ktV(t), 

7(t) 

(t) = zpew, 	aaV(t),  

j 	axN(t) 
[x(t) —'. (t 	v(t) 

  

.... (3.7) 

The nonlinear system of equations describing the state and 

observations can therefore be converted into a linear sot describing the 

evolution of the errors in the estimation of the reference state. 

Defining 

x(t) = •" 	• X (t) 	Xii  (t) 

(3.8) 
z(t) f(t) — Epr(t), ti l 

the converted problem can be written, 

X(t) 	= 	F(t) x(t) (3.9) 

= G(t) x(t) 	v(t) (3.10) 

. where F and G are the Jacobian matrices in the series expansions (3.6) 

and (3.7) respectively. 

XN(t) = f Vi(t) t] 
8x(t) 

[xK(t) Tc*(t).] (3.6) 
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The equation describing the error propagation with respect to time 

can now be converted to discrete state-vector notation according to the 

assumptions of section 2.4.1. Recalling the notation convention 

described in that section, it follows that : 

Ai+ 

)s,j 

°It.4s + 

where ticsi  is the appropriate state-transition matrix. 

It should be stressed that this method of analysis of a nonlinear 

system assumes that the deviations from the reference state can be 

described by a set of linear dynamic equations. However, the reference 

state itself remains nonlinear. 



(3.13) 
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3.3 The Filtering Equations  

3.3.1 The basis in Least-S9uares Theory 

The derivation is based on the following theorem on the properties 

of least-squares estimators, which is shown by Plackett14 and by 

Kendnli and Stuart5 to follow directly from work by Gauss. 

Least-squares theorem  

Given a set of observations z related to a state vector x by the 

equations : 

2: 	= 	Cx 4- v 

where 	R = El- v vT  and E 
c 
 v 	= 0. 
(—) 

^ 	PCT R-1  then the estimate x = ruT n-1  .E 

4". 	T E (z - 20(i - 	= where 

has the following properties : 

(a) It minimizes (y Cx)T  R-1(z - Cx). 

(b) It minimizes r , 	• I, E,  e,A - x) c.4tx x) for any positive semi-definite Q. 

(c) It minimizes all elements of P. 

3.3.2 The Derivation of the Algorithm  

The state of the dynamic system described in (3.11) and (3.12) can 

be estimated using the theorem, by writing .y_k  in terms of xj, the unknown 

state at time tj. Thus, 

= 	Gk  Tklj  2.1ij  +vk 	 (3.17) 



In general, an entire set of measurements can be related to this 

unknown state. That is, 

r- 
vl  

O 
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(3.18) zic G
k.  

GN rtNlj v 

r 

or Y = Gc x +V — (3.18a) 

Note that the observation vector zi  at time ti  can have an arbitrary 

number of components, as long as Gi  is appropriately dimensioned. 

Equation (3.18) is in the form of (3.13) and the best estimate ' 

xy  .A, of x.1  based upon N sets of data is thus given by equation (3.15). —ri  

= 	T GT R-1  Y 

where P= E 	x 	)T  1/N 	Lj/N d xi/N 

r- 

C)
3 
 T GT R-1 G  j-1  

- 

(3.19) 

(3.20) 

and unsubscripted R is the covariance matrix of V. The corresponding 

best estimate 	 N  of .4c  is predicted by the system model (3.11), 

4/N j xj/N (3.21) 

 

Using the definition of P from (3.16) and the prediction of (3.21), it 

follows that : 

X/N 	= 	k j 1/N-. k,j • P (3.22) 
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If the observation errors, vk, are uncorrelated between samples, R 

is block diagonal, with blocks : 

Rk 	E 124c   

Under these circumstances, (3.19) can 
- 	-T 

1 

• 

GN 

  

RN 

     

(3.23) 

be rewritten : 
-T 	-1 

R1 vl 

(3.24) 

vN 

or 
j. 

N T 	 .10  GT -1 
k,j k (3.24a) 

Also, from equation (3.20) : 

-1 
p j/N 

-/L 
 

AT 	
Gk 

 1D-1  a  = 
• k , 4̀1,c kk,j (3.25) 

Note that no restriction has been placed upon the relationship between 

tk and tj in the above equations, so the results apply for smoothing, 

filtering, and prediction. However, if there had been a random dynamic 

input to the system, this would not be the case. Under those circum- 

stances, both 	and 	would be random variables, and in equation (3.18), 

the vectors zi  for i r j would be correlated with x.. This means that 

for i j, the observation error, v., has extra components which 

complicate the analysis. Though it is possible to generalize this 

analysis to allow for random dynamic inputs, this will not be done, since 

this study is intended to provide techniques for interpretiLg noisy 

process observations, and is not directly concerned with the effects 

of random input disturbances. 
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A recursive relationship, for combining two blocks of data sets can 

be deduced from (3.24) and (3..25). The summations can be segmented so 

that : 

-1 ^ 	-1 /. 	 1 P 	=P x P 
YN— 

x  YN 	YM 	21j/N-M 
-1 	-1 	-1 and P. j/ = 
	P 

N 	P j/M 	j/N-M 

where N is the union of sets M and N -M. 

(3.26) 

(3.27) 

Note that the set M can be any subset of the set N, and then the 

subset N-M will be its complement. In general, however, the formulae 

will be used for a limited memory filter, and will involve consecutive 

sequences within each block. 

When the subset M is a single observation vector, say .41  then the 
equations (3.24a) and (3.25) reduce to the following : 

-I A% T 	T -1 
Pj/1 2c-j/1 = (*. rij Gr Rr (3.28) 

and -1 	iT GT R-1 G  
1/1 	r t j r r r"fr,j (3.29) 

where the dependency la implies estimation on the basis of one data set. 

These results can be used in conjunction with (3.26) and (3.27) for 

adding or dropping a single data set, or as an initial estimate. However, 

the removal of data from the filter memory one set at a time requires the 

storage of the right-hand sides of (3.28) and (3.29), or equivalently, the 

storage of the appropriate data sets for the duration of their retention 

in the filter memory. 
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Equations (3.26) and (3.27) form the basis of the limited memory 

filtering scheme derived by Jazwinski29  using Bayesian techniques. 

-1 	-1 ^ 	-1 	-1 P3/M, PJ/m  icvm, Pya, and Pilu  xj/N  are generated by recursion, 

adding one set at a time through N sample intervals, and then the 

information in the first M sets is dropped by obtaining 	and 

Pliu_m   j/g..44  from (3.26) and (3.27). In practice N is chosen as a 

multiple of M to make the storage requirements reasonable, for if 

- N 	01  it is necessary to store q sets of P-1  and P.
3
1  x. at any oone 
 

time. 

In most applications, the current state is likely to be of more 

interest than some fixed previous state, and the relevant formulae may 

be obtained from the above. From (3.24a), letting j = N : 

.41/N 'N/N 1  k N Gk 
 T T 

10lc
-1 
' 4 

and from (3.25), 

-177-1:T 	 T v-1 	+, N 
= Gk -k Gk i'k,N 

Equation (3.22) can be modified using property (3) of the 

state transition matrix (see Section 2.4.1) which states that 

k j 	jlk. Thus : 

	

7,  T 	-1 
Pk 

	

= 1 . 	- k/N 	P 	• t ik d/N 	sk 

(3.30) 

(3.31) 

(3.32) 

By combining (3.32) and (3.27) a method is provided to drop the 

earliest M sets of data from the filter memory, assuming that P 	and 

PMT
1   4/ 	haye been stored, and that the data sets have been acquired 

sequentially. Hence, 

-12 1 	
v-1 

N/N 	1:1,N P1.4 4)MIN +  -N/N-M (3.33) 



Similarly, using (3.26) with (3.32) 

P1 _ ,T) T 
.1.  P-1 	' N/N 41/N = 	M,N '- M IN 	1/M N/N-M 41/N-M 

_ p-1 	pra 
M/M -11./F/ 	N/N-M •41/N-14 

1+3, 

(3.34) 

When the filter is being operated in real time, a single data set 

is more likely to be added than a block of sets. Earlier results can be 

simplified by setting j = r = N and M = N-1, noting that tNN = I from 

(3.11). 

From (3.29) and (3.33), it follows that : 

P-1 	- ,t 

	

--1 	
rt 

N/N N-1/N-115N-1 N 	RN GN 

Also, from (3.26) and (3.27), 

P 	 . n."1  = 1) — N/N=tvri 	(Nor 	N/1
) 
 41/11-1 	11,/1 41/1 

The desired recursion is found by substituting the definitions of 

m-1 	, -1 ..,,, in (3.36). Thus, 4'N/1 and L-N/1 41/1  

(3.35) 

(3.36) 

-1 ". 	T -1 
1II/N ZN/N = PN/N 41/N-1 GN RN (IN GN 4I/N-1)  

or 
	

41/N = 41/N-1 PN/N GN RN1 (IN GN 2N/N-1) (3°37)  

It is sometimes reasonable to assume that current data sets are 

more relevant for state estimation than sets acquired early in the 

operation of the system, especially in cases when the reference model 

is only locally valid. In these situations it is possible to apply 

exponentially decreasing weights to the old data sets as new ones are 



) 	 N 

1 - T -1 2) P-t; p N/N-1 't N-1 ,N N-1/N-1 N-1 ,N 

from (3.11) 

from (3.32) 
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acquired. The weighting factor can be interpreted as an increase in 

the uncertainty in the measurement vector as it becomes older. If at 

time tk, the covariance matrix of jyk  is Rk, at time tkia, the elements 

of the matrix can be assumed to have increased so that every element, 

r..a.3, obeys the relationship : 

where 

and 

ri tk+1 	) tk  

0 	o 	1. 

Equations (3.24a) and (3.25) become 

1\1-k 
rsi/v.t2SWN 

1 

: 

IthT 
	
Gk  k,j 	'k 

p
ST 	GT 10 -1 G 
rk,j k -k 	k 

1 
t 

YkIL 

(3.38) 

(3.39) 

(3.40) 

It=1 

p.l 

The derivation of the recursive relationships for the exponentially 

weighted filter follows as before from (3.39) and (3.40). 

An algorithm can thus be constructed to update the estimate of the 

system state given the current best estimate, 	the current 

estimate of the inverse of the estimation error covariance matrix, 

N- 
1 
1/N-1' and the new observation 4, assuming the dynamic model of the 

system is known. 

Least-squares algorithm 
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) 	ap-1 	
GN 

0-1 (i  
3' -N/N = --N/N-1 'AN '11 'N from (3.32) and (3.35) 

T - 
4) 2B/N = 4/N-1 RN/N GN RN1 (EN GN 2N/N-1) from (3.37)  

An a priori estimate of the state error and its coNariance matrix, 

L0/0  and P010, is required to start the filtering procedure, and can, 

for example, be obtained from (3.28) and (3.29) when the initial 

measurement vector, y; provides at least a minimal data set. 

Note that step 3 includes the exponential weighting factor. Thus, 

this algorithm is suitable for both growing memory, and exponentially 

weighted memory filters. 

The same algorithm is used as the basis of the oscillating memory 

filter proposed by Jazwinski29. The following procedure is used for the 

case when N = 2M. 

Oscillating memory algorithm 

1) Operate the least squares algorithm normally during the acquisition 

-1 of the first M data sets, and store PO4  and x. , where x at time ti  

is being estimated. 

2) Update the estimate using the least-squares algorithm for M 

-1 -1 additional data sets to generate Pi/2m andz 2m, which are 	and 

x. 	by definition. 

3) Using (3.33) calculate f.1 	invert to obtain vri_m  and 	Pi/NM. 

4) Using (3.34), calculate :41/N...m. 

5) Since the estimates are now conditioned on the last M data sets 

(N-M=M), redefine P;1* and 'X. from the results of steps 3 and 4, and 

return to step 2. 
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Note that these algorithms provide optimal estimates for the error 

in the state, which must be added to the reference trajectory to 

determine the actual state at any time. The method of calculation of the 

reference trajectory depends upon the system being considered, but 

usually consists of numerical integration of a set of nonlinear differential 

equations with initial conditions and unknown parameters provided by the 

estimator. The effects of any deterministic inputs, such as, control, are 

accounted for in the calculation of the reference trajectory. 

3.3.3 The Relationship with the Kalman Solution 

The least-squares algorithm presented above reduces to the one 

derived by Deutsch4 for the sequential estimation of unknown constants, 

where 1.'N ,N-1 = I. The equivalence is not surprising, since his method 

was derived originally by Swerling15  using the, characteristics of the 

stationary point of a quadratic cost criterion. However, the relationship 

between the Kalman2 algorithm and the least-squares one is not as obv.A.ous. 

The two algorithms can indeed be shown to be equivalent through the 

use of a matrix inversion lemma cited by Sorenson171  and generalized here 

for use when exponential weighting is considered. 

Matrix inversion lemma  

If A-1  = c B-1 HT R 

where A and B are (n x n) matrices, R is (m x m) and H is (m x n) with 

c scalar, 
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Using the lemma, step 3 of the least-squares algorithm becomes : 

1 	1 0 0 	all [1 
GN 
	

GN
T  P = P N/N 	c N/N-1 —2 WN-1 ̀-'N 7  'N/N-1 +  "NI *- 

c 

-GN PN/N-1 
	 (3.41) 

Therefore it follows that the third steps of the two algorithms 

are equivalent (see equation 2.14), for c = 1.0. The algorithms are 

identical if the equivalence of their final steps can be demonstrated. 

Thus it must be shown that : 

- 1 T   
EN/N GN 1 = P GN  1G P G N/N-1 	N N/N-1 N + 	

- 
(3.42) 

Denoting the right hand side of the preceding equation as Kul  

KN P 	P 	GN  .; N/N PN/N N/N-1 N R  

-1 

PN/N-1 14 ` 
0
"N 

aT -1 

(3.43) 

Using, the definition of P-  from the least-squares algorithm, with 

= 1.0, 	
KN 	

=EN/N 
rN/N.4.  Gii! RN  GN1 P/N-1 GN RN

1  - 

T -1 
N/11-.1 *RN1

-1  

= 	P" FT 4- G; RN-GN  
17 

PN/14_;714 , -1 
[!NPN/N-1

,
N 11N 4.  

aT 0-
N
1 

PN/N ' (3.44) 

Note that random dynamic inputs have not been considered, so QN..1  

of step 2 in the Kalman algorithm is a null matrix, and the algorithms 

are identical. 

ION 



3.3.4 Convergence of the Least-Squares Filter  

Kalman and Buoy11 present an elegant proof of the stability and 

convergent' of the Kalman filter in its continuous form. They demonstrate 

that the optimal estimate generated is unbiased, and furthermore that the 

filter is uniformly asymptotically stable31  and that Pio  approaches 13' 
. 

as N 	for any non-negative P0/0  as long as ?s /0  = zo, the true state 

at time to. 'Pis the covariance matrix of the optimal error based on an 
arbitrarily long record of past measurements, and generated assuming 

perfect knowledge of the initial state. The proof requires that the 

linear system is controllable and observable, and that the norms of Q, 

R, and N/N-1  are bounded. Controllability implies that all of the 

states can be excited by permissible dynamic inputs while observability 

means that all statesfcan be estimated by a finite number of perfect 

measurements. Since the only difference between the Kalman and least-

squares algorithms lies in the fact that in the latter case 9, is a null 

matrix :(and therefore bounded), the proof still applies if all other 

conditions are met. 

Deutsch4 demonstrates that corrections to the estimate made by the 

unweighted least-squares filter will approach zero as the number of 

observations increase. However, this is not so for the exponentially 

weighted case, even in the simplest situation when RN  and GN  are constant 

for all N, and tININ.4 = I. In that case, 

v-I 	v-1 	GN  RN  
-10 	""N 'N 
	(3.45) 

from steps 2 and 3 of the leastt,squares slgorithm. Rewriting this as : 

-1 c -1 4- A
T  A (3.46) 

where A = 	GN  and RN  is assumed positive definite, it follows that, 

48. 
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by premultiplying (3.46) by Pk and post-multiplying by P N-1 AT, 

.-1 -1 

PN A
T 	% = 	-1 AT  IA Pk-1 AT  + cII 1 

Successive substitutions for NiP- A
T in terms of Pu-i-1 A

T yields 

(3.47) 

,-1-1 
11u  AT = P AT 1-0N-1 I + (1 + c + c2+ ...cM-2)AP1  A-

(1
I 1    

(3.48) 

i 1 Since lim ci  = 0 and > c = 1.-70- for 0 	1, it follows that 
i=0 

lim Pk A
T = (1-0 P1 	1 (3.49) 

N 

for 0 	c 	1. 

It can be seen from step 4 of the least-squares algorithm that, 

Lii/N x /N-1 	PN A 
	

(3.50) 

The correction to the estimate becomes zero in the limit only if 

= 1. Therefore, the exponentially weighted filter will not converge to 

a constant estimate, and care must be exercised in its use to assure that 

the chosen weighting factor c does not cause instability. 

The preceding discussion is not intended.to be a complete analysis 

of the convergence properties of the least-squares filter. Indeed, even 

the rigorous analysis by Kalman and Buoy11  applies only to linear systems, 

and cannot be extended to apply to linearized systems. The performance 

of the filter in the analysis of practical nonlinear problems cannot be 

predicted in theory, but must be evaluated by experimentation. 

0 • 0 
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3.4 Comments on the Filtering Algorithms  

A recursive filter has been derived for application to linear 

dynamic systems, and a technique has been suggested which, under certain 

circumstances, will permit the analysis of nonlinear systems. Before 

the practical application of the filtering techniques can be investigated, 

the assumptions which have been made in deriving the equations should be 

analysed to determine any limitations of the theory. Any practical 

problem can then be analysed in the light of these limitations. 

The algorithms derived apply only to the analysis of linear dynamic 

systems. The linearization of the genexal problem can be justified if 

it is reasonable to assume that the perturbations from a given reference 

trajectory are small, and can be described by a set of linear dynamic 

equations* Of course, it is assumed that it is possible to,postulate a 

reasonable reference state suitable for on-line computation. 

The theory presented requires that the random observations errors 

have zero mean. This is not restrictive, since the system can have 

deterministic elements, and therefore instrument bias or drift can 

also be postulated. These effects, in addition to the random errors, 

should be adequate to describe any anticipated measurement errors. 

The restriction to non-random dynamic inputs has been made to permit 

specification of limited memory filters. It can be seen, by comparing 

the Kalman and least-squares algorithm, that the random inputs only 

affectthecalculationaPivma 	11fromP..,..The extra term, however, -w14-1* 
-1 prevents the expression of PJ/N  as a simple summation in equation (3.25), 

and thus prevents the specification of an oscillating memory filter. 

The exponential weighting technique could still be applied, but the 

interpretation of the weighting factor would be modified. If there were 



51. 

random dynamic Inputs the uncertainty in old inputs as well as of old 

observations would increase in time. 

Limited memory filtering is desirable in situations when the exact 

mathematical model of the system being observed is not perfectly known, 

and the model used can only be considered accurate for part of the 

operating period. In those cases, estimation on the basis of a recent 

subset of observations is preferrdd, and either the oscillating memory 

filter (OMF) or the exponentially weighted filter (EWF) could be used. 

Both forms require the specification of memory parameters, in the case of 

the OMF, the parameter M defines the record length, while cl  the weighting 

factor, determines the rate of memory decay of the EWF. The values 

chosen for M and c depend upon the accuracy of the reference model, and 

should reflect the number of sample intervals for which the model can be 

assumed valid. The EWF is easier to apply than the OMF, since the latter 

requires an extra matrix inversion after every M
th 

observation, as shown 

in step 3 of the OMF algorithm. However, the OMF is characterized by 

discrete changes in the estimate after modification of the memory basis, 

and thus can sometimes be used to indicate model deficiencies. The 

relative desirability of the form chosen depends updn the application. 

A final comment should be made on the equivalence of the Kalman and 

least-squares filters. Though the algorithms have been shown to be 

identical in theoryi.one form may be more convenient for use in a 

particular situation. This can be seen by comparing the final steps in 
/, 

the algorithms, which update 4/N..1.  to 4/N. The Kalman form requires 

the inversion of a matrix of the same dimension as the observation 

vector, while the least-squares algorithm requires an n-dimensional 

-1 inversion of PN/N during each cycle. It follows that the least-squares 
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formulation is more convenient if there are more measuring devices than 

state variables. However, in most cases the instrument errors are 

uncorrelated within a set and Rk  is diagonal for all k. In those 

situations the Kalman form should be used, since each element of the 

observation vector can be incorporated independently into the estimate, 

and the inversion in (2.15) is scalar. 

It should be noted that the least-squares formulation does not 

allow any perfect observations, for then Rk  would be singular. However, 

in that situation, the Kalman derivation is still valid, if all 

observations are linearly independent and thuaGN  is full rank. This 

assures that BN PN/N-1 GN remains non-singular. 

No matter what form of the estimator is used, a certain minimum 

amount of statistical information is required to initialize the filter, 

and update the estimate as new observations are made. This information 

includes not only the initial estimate of the state system, which is 

likely to be known, but also an estimate of the covariance matrix of 

the error in that state, which is often difficult to specify. In 

addition, a covariance matrix must be postulated for the instrument 

errors at every sampling instant. The sensitivity of the filter 

performance to errors in this input information as well as to modelling 

errors must be determined in order to assess its usefulness in practice. 
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CHAPTER 4 

INTRODUCTORY COMMENTS ON CHEMICAL ENGINEERING APPLICATIONS  

4.1 Systems Modelling and Parameter Estimation  

The estimation techniques presented in Part I have been applied 

successfully to several aerospace problems32. The systems dealt with 

have certain characteristics which make them ideal for the application 

of the theory. The dynamic equations governing the motion of space 

vehicles are perfectly known, and the effects of any control inputs 

to the system can be exactly calculated. Furthermore, the vehicles 

are not subject to random dynamic disturbances, and are observed by 

tracking stations whose statistical characteristics are well known. 

Thus all of the information required for the operation of the optimal 

filter is available. 

The systems encountered in chemical engineering are less well 

defined, and the application of estimation theory is more difficult. 

Dynamic models of large industrial processes are rarely known to any 

degree of accuracy; even when theoretical models can be proposed, they 

often consist of sets of partial differential equations which are 

impractical for repetitive on-line calculations. Moreover, these 

distributed parameter systems can only be described in infinite 

dimensional state-space. The situation is further complicated by 

the fact that the input disturbances to the plant are rarely known, 

either in stochastic or deterministic terms. 

However, the advantages of modern control techniques have been 

appreciated, and a great deal of effort has been directed towards 

the determination of reliable models for process elements. In several 
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papers, Eykhoff33'34'35has reviewed recent advances in modelling 

techniques. Cuneod and Sage36 and Balakrishnan and Peterka37 have 

also described several alternative methods for determining process 

characteristics. There are two major approaches to the problem, one 

based upon the physical laws governing the process, and the other 

seeking to fit local models of specific mathematical form which may 

be unrelated to the actual physics of the system. Into this second 

class fall the well known techniques of linear analysis requiring 

the input of known distrubances to the process being identified. No 

attempt will be made to evaluate the relative desirability of the 

approaches, except to note that it is generally advisable to take 

advantage of any physical information that is available about the process. 

A distinction must be made between the problems of determining 

the form of a model to describe a plant, and that of actually estimating 

the parameters of the model once its form is specified. It is the on-

line solution of the latter problem that is considered here; the form 

of the mathematical model describing the plant will be assumed known. 

The theory developed in Part I can be used to determine parameters for 

any type of system description of known form whether it is physically 

based or merely a regression model. 
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4.2 Previous Applications of Estimation Theory in Chemical Engineering ' 

When the describing equations of a chemical process are perfectly 

known, the theory developed by Kalman is directly applicable to chemical 

engineering problems. Seinfeld25 has applied the theory to a very 

simple heat conduction problem, where the system is governed by a 

known linear partial differential equation, and the initial temperature 

profile is being estimated. More recently, he has shown with Gavalas
38 

that the filtering technique can be applied to a reactor with catalyst 

decay to monitor the change in catalyst activity. A concurrent study 

of a similar application to a more realistic problem is reported in 

Chapter 6. 

Coggan and Noton39 have recently applied Kalman filtering methods 

to a simulated mixing system and a simulated furnace to demonstrate their 

applicability to typical chemical engineering processes. The applications 

are based directly upon the ordinary differential equations describing 

the system. In order to generate a state transition matrix from the 

linearized estimation error equations, the Jacobian matrix, F, as in 

equation (3.9) is assumed constant over the sample interval; thus the 

transition matrix is obtained from the exponentiation of F. Though this 

is quite reasonable in theory, the practical problem of calculating 

repetitively a matrix exponential in a realistic situation is likely to 

be prohibitive. 

Off-line estimation techniques have been appliedtp many chemical 

engineering problems, primarily to discriminate between alternative 

kinetic models, and to fit parameters for those models. The extensive 

body of research that has emanated from the University of Wisconsin due 

to Box, Hunter, Draper, Mezaki and many others will not be reviewed. 
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The techniques deal in general with the design of sequential laboratory 

experiments to determine the best least-squares parameters with a 

minimum of effort. 

An off-line technique more closely related mathematically to 

the filtering methods has recently been proposed by Lee40 in the 

chemical engineering literature. The technique is called quasilinearization, 

and is based upon the theory of dynamic programming and invariant imbedding 

due to Bellman. It is a very powerful method for fitting parameters in 

ordinary or partial differential equations. 

Because of the difficulty of modelling chemical plants, there have 

been few applications of on-line estimation techniques. Bray and his 

co-workers41 have used a sequential least-squares filter to update the 

regression model of a water-gas shift reactor. The filter used can be 

shown to be identical to the exponentially weighted filter developed in 

Part I. Their results seem quite encouraging, though not enough information 

was presented to fully evaluate the filter performance. Furthermore, 

as presented, the filter seems to be restricted to use in regression 

type models, though this has been shown in Part I not to be the case. 

Several other investigators have considered the use of linear 

regression models for on-line control, though the model parameters are 

usually not adjusted after initial selection. Astrom and Bohlin42  

present a method for the off-line fitting of parameters for general 

linear models, though it is intimated that the least-squares minimization 

proposed could be performed sequentially. Their technique has been 

applied successfully to the description of a paper-making plant43. An 

alternative approach is suggested by Dahlin44, who determines the poles 

and zeros of the linear transfer functions of the same type of process. 
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He uses a standard filter, as well as one operating on the integrated 

process output. The integration has the effect of removing high frequency 

noise, and for linear processes could be effected by prefiltering of 

input and output data. The approach of Astrom and Bohlin is in fact 

equivalent in theory to the one of Dahlin, since Dahlin deals with the 

frequency domain representation of the linear difference model. 

The same type of linear model is proposed by Box and Jenkins45  , 

and has been used in the optimization of a water-gas shift reactor by 

Price and Rippin46, as well as by Wise47. The model remained fixed 

after off-line specification, and was used in conjunction with an 

extremum seeking controller. 

An industrial use of on-line estimation techniques has been 

reported by Noton and Choquette°. They have applied the Kalman theory 

directly to an operating plant described in terms of a twelve dimensional 

state-vector. Their report is unfortunately quite sketchy, since most 

of the process details are priority information. 
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4.3 Estimation using Steady-state Models  

Though it is seldom possible to derive reliable dynamic models 

for industrial processes, very good steady-state models are often 

available. It is proposed that these static models can be used for 

on-line estimation, since the characteristics of many industrial processes 

vary so slowly that the plant can be considered to move through a 

succession of steady-states. In these situations, the process measurements 

are related at any time by the known steady-state constraints of the 

system, and can be used to monitor the slowly varying process elements, 

whether they are model parameters, or characteristics of the measuring 

devices. 

In terms of the theory presented in Part I, the steady-state model 

provides the functionality, g, in (3.2), which relates the observation 

vector to the state vector. The Jacobian matrix G can be computed either 

numerically or analytically by perturbing or differentiating the steady-

state model with respect to the state vector elements. In typical 

situations, the steady state model is a set of differential equations, as 

for a plug flow reactor, whose solution provides the temperature and 

composition profile of any time. The state in this case will consist of 

the set of initial conditions at any time, as well as the values for 

slowly varying parameters such as catalyst activity. 

The dynamic model describing the evolution of the state will 

often be easy to postulate. In the absence of random dynamic input 

disturbances, most problems can be converted so that a set of constant 

initial conditions for the differential equations describing the evolution 

4, 
of the state can be estimated, andLIJN ,N_, = I for all N. The true state 

at any time is obtained by numerical integration. If there are random 

inputs the state vector must be updated one step at a time, and this 
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simplification is not possible. In these cases, the matrix exponentiation 

used, for instance, by Coggan and Noten
48 is required. 

Whether random dynamic inputs present a serious problem in chemical 

process systems is a debatable point which can only be resolved by on-

line application of the filtering techniques. However, it is felt that 

any small random distrubances would be damped out by the system, and any 

large disturbances, such as the effects of changes in ambient temperature, 

could probably be accounted for by a deterministic model. Indeed, the 

most serious plant disturbances, which could not be accounted for by 

a stochastic model, are likely to be due to operator errors or equipment 

malfunctions. For these reasons, random dynamic inputs are not considered 

in the examples presented, and the estimation problems can be solved by 

the determination of constant state variables. 

The type of sequential steady-state analysis suggested above 

offers distinct advantages over regression modelling for multi-variate 

systems, especially when it is desired to make full use of process 

measurements. Since every instrument reading is a system output, a 

regression model requires a term relating every input to every measurement, 

and is therefore very difficult to apply to heavily instrumented systems. 

On the other hand, a steady-state model will provide all likely 

observations of the system, and changes in the measurement scheme 

require only the modification of the observation matrix, G, in the 

formulation of the filter. 
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4.4 The Filter Program  

A Fortran subroutine has been written to implement the algorithms 

described in Part I. The routine requires two problem dependent 

routines which must be supplied by the user. These two routines predict 

the next set of observations on the basis of the current state vector, 

and calculate the current value of G, the Jacobian matrix of the 

observations with respect to the state variables. 

The prediction routine actually performs two tasks in the examples 

presented. Since the systems dealt with are not subject to random 

dynamic inputs, the state vector consists of the system state at time 

zero. Thus the routine, PREDCT, first calculates the state at the 

current time; if x1 is a flowrate, and x2 
is the drift in that rate, 

the predicted value of the flow rate at time to  is xi  x2  • tn., 

In more complex situations, this calculation is performed by numerical 

integration. Given the state at the current time, the routine next 

calculates a set of predicted observations, using the steady-state model. 

The gradient routine, CALCG, must define G using the current 

state-vector calculated in PREDCT. This requires the differentiation 

of the steady-state equations with respect to the current state. In 

many cases, the differentiation can be performed analytically, but 

numerical differentiation can be used if necessary. 

Note that no particular form of system description has been 

specified. The user must merely provide a predicted observation vector, 

and a gradient matrix. An alternative form of the routine can be used 

if there are random dynamic inputs to the system. In these cases, the 

state transition matrix would have to be defined at each step, but the 

updating of the state vector to current time would be done internally, 

and not in PREDCT. 
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In the simulations the filtering subprogram is called from a 

main routine, which increments the time and supplies new observation 

vectors. An initial estimate of the plant state and the covariance 

matrix of the instrument errors at the time of initialization must be 

provided before the first call of the sub-routine. The initial estimation 

error covariance matrix, P0,0  is calculated within the routine using 

a modification of equation (3.29), which allows a measure of the 

uncertainty of the initial state to be incorporated in the initial 

coveriance matrix. The selection and significance of this extra term 

is discussed in Chapter 5. 

Note that the filter is initialized with an estimate of the actual 

state, rather than the estimate of a deviation from a reference state. 

This causes the filter output to be the actual state at all times, and 

is permitted because the corrections to the initial estimate are 

proportional to the difference between the actual and predicted observations. 

This difference is unaffected by the inclusion of the reference state 

in the estimate. 

A flow chart of the filter is presented in Figure 4.1; a table of 

nomenclature is given in Table 4.1. For convenience, the instrument 

statistics are assumed constant in time, and R(t) = R for all t. The 

flow chart branches to allow the consideration of both uncorrelated 

(R diagonal) and correlated instruments (R full). Since no random 

,,

dynamics are considered, all examples are converted to a form in which 

N,N-1 = for% I 	 all N, so Ahl,..1= 1N-1/N-1*  Therfcre the notation in /r1  

the flow chart has been simplified accordingly. 
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Table 4.1 Nomenclature for Filter Flow chart  

	,a1•1111••••••••=1.11Yr 

Symbol Description Dimension 

   

1 

1G
I  
G. Jacobian matrix of observations with 	i 

'respect  to state variables at time ti  

frt 14  Y1 

T 
G.(j) 
1 

I 

ljth column of G.
T 

 
i 	

1 nxl 

P. 
1 

. 

I 
!Covariance matrix of estimation error 
; 
lat time t. 	 j 

1 
i 

nxn 

R !Covariance matrix of instrument errors 1 
1 

mxm 

R R, 
jj 

1 
!Diagonal element r 	of R 
1 

scalar 

WP. .-4.. 

I 
i 1 !Predicted observation 

 
!Predicted observation vector at time t.

I  
1 

mxl 

.: 

1 	 i 
t 
iBest estimate at time ti of the system 

i 
state at time zero 	; 

t 
i ,._ i 

nxl 

21.1. 

, 	 - 

!Observation vector at time t. 	t 
1 	1 

mxl 

XP. --a. 

1 	
, 

fl Bestestimateattimet.1  of the system 
istate  at current time 
1 

nxl 

1 

)(:) 

1 

'Diagonal matrix which is a measure of 

'the uncertainty in xo  mai 

Superscript T iMatrix transpose - 

Superscript -1 ;Matrix inverse - 
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Figure 4.1: Flowchart for Filtering Subroutine  
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CHAPTER 5 

FILTERING APPLIED TO A BINARY DISTILLATION COLUMN  

The monitoring of an ammonia-water distillation column operating 

in steady-state is the first chemical engineering application of 

filtering techniques which is considered. The system simulated is 

representative of process elements which, after attaining a given 

operating conditin2  are maintained in that state for an extended 

period. In these situations2  the filter can be used to monitor the 

performance of plant instrumentation as well as detect any unplanned 

changes in the system state. 

Two series of experiments have been performed using a digital 

simulation of the column. In the first, the affects of errors in 

the statistical information input to the filter are examined by 

determining the average performance of the estimator over an ensemble 

of one hundred simulated plant records containing fifty sets of 

observations per record. In the second, the ability of the estimator 

to detect instrument biases and drifts in system inputs is studied using 

individual plant records of fifty observations. 
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5.1 System Description 

5.1.1 Column Model  

The steady-state operation of the column is described by three 

equations: an overall material balance, a component balance, and an 

enthalpy balance. There are nine unknown variables in the system, 

consisting of the flowrates, compositions, and enthalpies of the feed, 

bottoms and product streams. Thus; 

F
F 

= F
B 

F
P 
	 (5.1) 

F
F 
H
F 

= F
B 
H
B 

4- F
P 
H
P 
	(5.2) 

FF cF = FB cB 4,  FP cP 
	(5.3) 

where F, H, and c refer to molar flowrate, enthalpy, and composition 

respectively. The subscripts F, B, and P denote the three access 

streams. Using the steady-state balance equations, three of the unknown 

variables can be calculated in terms of the other six. Solving for 

the product stream components; 

F
P 

= F
F 
- F

B 

Hp = FF  HF  FB HB  

F
F 
- F

B 

c
P 
= FF cF - FB cB 

F
F 
- F

B 

(5.4) 

(5.5) 

(5.6) 

The stream enthaplies cannot be directly observed, but it is assumed that 

they can be deduced from temperature measurements. 

The column is operated with a total condenser, and the bottoms 

stream is taken from the reboiler, so the bottoms and product streams 
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are saturated liquids. Using data from an ammonia-water enthalpy-

concentration diagram at 10 atm .49, a third order polynomial has been 

fitted to describe the saturated liquid enthalpy as a function of 

temperature, yielding; 

Hs(T) = 3504.31 - 17799.62 T' - 22169.67 T'2  - 16919.18 T'3 	(5.7) 

where T' is a normalized temperature, such that; 

T' = T/182.22 

with T in degrees centigrade. 

The feed to the column is assumed to be a subcooled liquid whose 

enthalpy is specified by; 

HF (TF) = H (TB) - 32.2575 (TB - TF) 
	 (5.8) 

where TB is the bubble point of the feed stread with composition cp. 

The constant in (5.8) is determined from the enthalpy-concentration 

diagram cited above, and implies constant specific heat of the liquid 

feed over the range considered. 

The bubble point of an ammonia-water mixture at 10 atm. can be 

determined if the equilibrium constants of ammonia and water are known 

functions of temperature. Third order polynomials in temperature have 

been fitted using published data50. Hence; 

A (T) = 0.427799 4.420266 T' - 2.144682 T'2  + 3.400508 T'3  (5.9) 

K
w (T) = -0.046666 0.223197 T' - 0.692144 T'2 + 1.344717 T'3 (5.10) 

where T' = T/170 with T in degrees centigrade. These definitions 

apply for 30 T 170 in the case of KA  and 70 T 170 for Kw. 
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Simple exponential functions define the constants for values outside of 

these ranges. 

KA  (T) = exp i(T - 25.3)/ 31.7 1 	for T .30 

Kw (T) = 0.22 exp 	(T - 70.0)/25.0 Ifor T w . 70 
	

(5.11) 

KA (T) = 5.5875 exp (T - 170.0) 	for T :170 

Kw (T) = exp (T - 182.22)/62.8 
	

for T 170 

The exponential extensions at the ends of the range are required to 

allow use of a Newton-Raphson search in the bubble point calculation. 

This calculation determines the temperature such that; 

cNH  KA  (T) 	cH 0  Kw  (T) = 1.0 	 (5.12) 
3 	2 

where the compositions refer to the overall mole fractions of water 

and ammonia in the liquid. 

Note that at this stags arelationship has been provided which 

relates TB  to c•B  and Tp to Op, and the dimensionality of the problem 

could be reduced. However, in practice equilibrium data may not be 

reliable, and it is assumed for this problem that the bubble point 

relationship cannot be used. The feed enthalpy is thus considered to 

be a known function of TF  and cp. The following algorithm is used to 

specify the product stream components given values for the components 

of the other streams. 

Steady-State Column Model  

1. Given TB, calculate the enthalpy of the bottoms stream 

from equation (5.7). 

2. Given F and TF, calculate the feed enthalpy. (In 

practice, this was performed using equations (5.8) 

to (5.12)). 
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3. Calculate Fp, Hp  and cp  using (5.4) to (5.6). 

4. Calculate T by solving for the root of (5.7) using a 

Newton -Raphson search. 

5.1.2 Simulated Data 

Plant data was simulated by perturbing the outputs calculp  ted 

using the steady-state model with various types of artificially 

generated instrument noise. All three components of the access streams 

were assumed to be observed every five minutes during the operation of 

the plant. Though this measurement scheme is probably unrealistic for 

a simple binary distillation column, the filter will in practice be 

applied to key process elements that are likely to be heavily instrumented, 

and it is desired to evalute the filter preformance with systems having 

redundant measurements. 

The instrument noise was generated using package routines for 

the calculation of random normal and rectangular number sequences on 

an IBM 709451. In some cases, the random noise was modified to simulate 

correlation between sample intervals. In all cases, the instrument noise 

was independent within an observation set, so R(t) was a diagonal matrix. 

The observation errors were scaled in all but one example so that the 

95% confidence interval of the normal noise, and the range of the 

rectangular noise corresponded to ± a% accuracy for temperature and 

flowrate measurements, and - 3% for composition measurements. In one 

example all accuracies were set to be 59%. 

Three general situations were simulated: constant steady-state, 

a slowly drifting steady-state, and a system with instrument biases. 

In all cases, the unperturbed measurements satisfy the steady-state 
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equations instantaneously. For the constant state simulation, the 

system is subject to random instrument errors only, and all inputs and 

outputs are theoretically constant. For the drifting system, a slow 

linearly time dependent drift in one of the access stream flowrates 

is superimposed. In the third situation, constant zero-point off-sets 

are present in some of the instruments. 

5.1.3 Filtering Model.  

Since the system is not subject to random dynamic inputs, the 

filtering problem can be converted to one of estimating constants. 

The state variables estimated depend upon the situation considered. 

For the constant steady-state column, a six dimensional state-vector 

is required, since the bubble point relationship is not used. Hence; 

T = LFB,TB, cB, FF, TF, Gel T 
	

(5.13) 

Since the elements are unknown constants, N1N-1= I for all N. 

When there is a drift in one of the independent variables, with constant 

unknown time derivative m, a seventh state variable is adjoined to x 

to estimate the constant m. Further variables can be added to allow 

the estimation of biases. ()remains an identify matrix of NfN-1  

appropriate dimension. Thus the state vector itself provides the best 

estimate of the constant steady-state, and contains all the information 

necessary for the prediction of the state and measurements in the other 

cases. For instance, if there is a drift in the feed flowrate, the 

value of the flowrate at time t is predicted by; 

(t) = 	(to) 4.  m • (t - to) 	(5.14) 

where F (to) is element four of the state vector. Of course, a 

more complex time dependency can be proposed, and the constants in 
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the drift model estimated in the same way. 

Routines for the prediction of the current instrument readings 

and the calculation of the Jacobian matrix G must be provided for the 

filter program. Consider the case when there is a bias in the measurement 

of the feed flowrate as well as a drift in the flowrate. The relevant 

elements in the state vector are FF' 
the flowrate at time zero; m, 

the drift rate; and 3, the measurement bias. The best estimate of 

the true flowrate at time tn41 based upon the state vector at time 

to  is determined from (5.14). The predicted measurement at to 

includes the bias term. Thus; 

FF = FF  + a. (th 4. 1  - to) ÷ p 	 (5.15) 

where the prime indicates a predicted measurement. 

For this example, most of the elements of the Jacobian matrix, 

G, are constants. Figure 5.1 shows the matrix for the case with nine 

measurements when the state vector has eight elements, consisting of 

the six independent stream components, a drift rate for the feed flowrate 

and a bias for the feed flowmeter. The only variable elements of the 

matrix are the gradients of the dependent stream components with 

respect to the state variables. All of these elements can be determined 

analytically, except for the fifth and sixth ones in the eighth colwirm)  

which required the knowledge of aHF/aTF  and aFfacF. These derivatives 

are determined numerically using a quadratic approximator52. 
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Figure 5.1 	Elements of the Jacobian Matrix: GT  
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5.2 Studies of Filter Performance  

5.2.1 Ensemble Results.  

The algorithm derived in Chapter 3 requires knowledge of several 
statistical characteristics of the observed system; the first two 

moments of the initial estimate error must be provided, as well as the 

covariance matrix of the instrument errors at every sample interval. 

It is assumed, in effect, that the initial estimate error, Zo/o,  is 

described by a multivariate normal probability distribution with zero 

mean and covariance matrix 00, and that the observation errors are 

governed by a distribution with zero mean and covariance matrix R(t). 

It is further assumed that the instrument errors are uncorrelated between 

data sets. 

The sensitivity of the filter performance to errors in these 

assumptions has been examined by analysing ensembles of one hundred 

runs rather than single simulated plant records. The data used for the 

ensemble results is based on a drifting system with a i% per hour drift 
dri.gt 

in the feed flowrate, whicNis assumed initially to be zero. The initial 

covariance matrix of the estimation error is determined from a 

modification of equation (3.35) which permits the specification of the 

uncertainty in the initial state. Thus; 

Po/0  
-1 	NI 1.! -1  Ra. 	G1  + 0 0  I (5.16) 

Note that when the initial estimate, x 0/0, is very uncertain, its 

variance will be very large, and W0  -1 becomes a null matrix. In that 

case, equation (5.16) reverts to the original form of (3.29). 

Four matrices have been defined for use in the ensemble studies: 

1 
 rt I ,o 71  and 4F, where the superscript T denotes the true variance 

matrix used to scale the random numbers generated as instrument or 
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initial state errors, and F denotes the matrix used in the filter 

algorithm. In all of the studies with t 2% and ± 3% instrument 

accuracies, RT  is a diagonal matrix, with diagonal elements; 

rii 	\0.457, 3.14, 0.39 x 10-62  1.05, 0.0276, 0.277 x 104, 0.116 

0.0755, 0.238 x 1033 	 (5.17) 

In this example, the first six elements of the state vector are 

observed directly, and thus the first six diagonal elements of 610 are 

defined in (5.17). The seventh diagonal element, defining the uncertainty 

in the initial value chosen for the drift is set to be 0.25 x 10 4. This 

small number implies that the expected drift will be very slight. The 

covariance matrices are chosen to be diagonal, which indicates that 

there is no correlation between instrument errors within a data set. 

This is a reasonable assumption for chemical process systems; correlation 

between successive readings on a given instrument is more likely, and 

its effect is considered below. 

The following program scheme was used to generate the ensemble results. 

1. Read in RT, 	RF  and &F.  

2. Set NTRIAL to zero. 

3. Increment NTRIAL by 1. 

4. Set NSET to zero. 

5. Select x ,o  using random numbers scaled according to 
Yo T. 

6. Increment NSET by 1. 

7. Select a set of observations by perturbing the true 

measurements for the current time with random numbers scaled 

according to RT. 

8. If NSET is 1, calculate P0/0  using (5.17) with YOF. 
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9. Update the filtering algorithm using Z. 

10. Update the average filter output for the current value of 

NSET. 

11. If less than 50 sets have been analysed, go to 6. 

12. If less than 100 trials have been made, go to 3. 

13. Print out the ensemble results for 50 observation sets 

based on 100 trials. 

Table 5.2 presents a summary of the ensemble tests performed. 

The situations considered are the effects of errors in the magnitude 

of R and toF  in relation to the true values, as well as the effects 

. 
of non-normal and correlated noise. In all cases but the last, R

T  Is 

described by (5.17); in the final test, all readings are generated 

to be t 5% accurate, so that; 

I
rlil = 12.8561  19.625, 0.108 x 10 5, 6.562, 0.172, 0.769 x 10 4, 

0.725, 0.472, 0.661 x 10-3  	(5.18) 



Table 5.2  Ensemble Results 
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I RUN i Q m  QRN 
Comments 

El 	i 1 1 Normal random noise 

E2 	f 104 1 Normal random noise 

E3 1020 Normal random noise 

Et+ 0.1 1 Normal random noise 

E5 2.0 1 Normal random noise 

E6 1 4 Normal random noise 

E7 1 0.25 Normal random noise 

E8 1 0.04 Normal random noise 

E9 1 1 Rectangular random noise 

El0 104 1 Rectangular random noise 

me 
Ell 1 1 Normal correlated noise 

me 
E12 104 1 Normal correlated noise 

E13 104 

i1

mmx  Normal random noise 

li k 

k T. 12. 

MH Correlation coeff. = 0.2 

ex R
T defined by (5.18). 

Figures 5.2 to 5.6 illustrate the effect of variations of )..( oF  

on the output of the filter. It can be seen that the assumption of 

high uncertainty in the value of the initial state improves the 

convergence of the algorithm, especially in the case of the dependent 
F 

product stream components. However, increasing the magnitude of o 
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will not improve the performance after a certain point. This is to be 

expected, for it is the point at which the second term in the brackets 

in (5.16) becomes insignificant in relation to the first. No instability 

due to a large value of of  has occurred in this example, and it is 

safe to assume that an infinite variance of the initial state can be 

used in most applications. Note, however, that the variance of the 

initial estimate error, P0/01  remains finite. 

The estimation of the dependent, product stream variables can be 

seen to be most indicative of the filter performance. The ensemble 

results for the independent variables are essentially those which could 

have been obtained by simple averaging over the 100 trials. Thus, for 

convenience, the remaining ensemble results will be illustrated by 

observing the estimation of the product temperature and the drift 

parameter only. 

The effect of varying 17 in relation to the true instrument error 

variance is shown in Figure 5.7i the filter performance improves as smaller 

and smaller variances are assumed. This result was not expected, since 

the small variance implies a high degree of certainty in the instrument 

readings, and would be expected to cause oscillations in the filter 

output if the values selected for the elements of R
F are unrealistically 

optimistic. However, it can be seen by inspecting the LS algorithm that 

a decrease in the magnitude of RF has two effects; it will cause Pio  

to be artificially small and RN-1 to be artificially large. The filter 

gain is a function of the product of these two matrices, and it is 

evident that in this example, the decrease in PN/N  overshadows the 

increase in RN
-1
. Note that the variation in PN/N  is also a function 

of the Jacobian matrix which is problem dependent; thus the effect of 

(text continues on Page 87) 
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FIGURE 5.2  
ENSEMBLE RESULTS: THE EFFECT OF THE ASSUMED VARIANCE 

OF THE INITIAL STATE 
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FIGURE 5.3 

ENSEMBLE RESULTS; /HE EFFECT OF THE ASSUMED VARIANCE 

OF THE INITIAL STATE 
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FIGURE 5.4 

ENSEMBLE RESULTS: THE EFFECT OF THE ASSUMED VARIANCE 

OF Ti INITIAL STATE 
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ENSEMBLE RESULTS: THE EFFECT OF THE ASSUMED VARIANCE 
OF THE INITIAL STATE 
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FIGURE  5.7 
ENSEMBLE RESULTS: THE EFFECT Of ThE ASSUMED VARIANCE 

OF TEE MEASURING DEVICES 

ER
F  too small by a factor of 4 

ORF  too small by a factor of 25 

Note: True drift is 0.5% per hour 



P
r
o
du
c
t  
T
e
m
p
er
a
tu
re

  
(
ce
n
ti
gr
ad
e
)
 

D
r
i
ft
 i
n  
F
e
ed
 Fl
o
w
r
at
e  
(
%
/ h
r
)
  

84. 

FIGURE 5.8  

ENSEMBLE RESULTS: THE EFFECT OF NON-NORMAL NOISE 
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FIGURE .? 

ENSEMBLE RESULTS: THE EFFECT OF CORRELATED NOISE 
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using erroneous values for the elements of R
F 

must be examined for each 

particular case. 

Figure 5.8 illustrates the effect of the presence of rectangular rather 

than normal instrument noise. It can be seen that there is essentially no 

change in the filter performance. A similar result is obtained when the 

noise is correlated between successive sample intervals, as is shown in 

Figure 5.9. The correlated errors were generated in the following manner: 

ERRN = 0.8 RNN  0.2 ERR— 	 (5.19) 

where ERRN is the instrument error at time tN  and RNN  is the random 

number generated by the computer at time t.a. 

The effect of larger instrument noise is illustrated in Figure 5.10. 

Though the estimate bias is increased slightly due to the increased 

instrument errors, the effect can be seen to be negligible. 

5.2.2 Studies of Individual Plant Records 

The ensemble results presented above are based on a column in a 

drifting steady-state. The filter used to analyse the effects of errors 

in statistical inputs was designed to estimate the drift in the feedrate; 

thus the form of the system model was specified, and only the parameters in 

the model were not known. In a practical situation, it is unlikely that 

all of the types of system disturbances will be known. The following studies 

explore the effects of model deficiencies which ignore some of the 

characteristics of the observed system. 

The examples presented are based on the analysis of individual plant 

records, usually consisting of a set of fifty observations made at five 

minute intervals. Since the independent variables in the model are all 

directly observed, the initial state vector is defined from the first data 

set. Any biases or drifts which are estimated are initially set to zero. 
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It is assumed that the instrument error variances can be deduced from 

past operating records or can be based on the manufacturer's specification, 

and R(t) is known. R(t) is defined in this example by equation (5.17) 

for all t. Biases and drifts are assumed to be within 1% or 1% per hour 

of the nominal instrument reading, and their variances are defined 

accordingly. In all of the studies, the nine measurements of the access 

stream components are made every five minutes, but the dimension of the 

state vector is varied depending upon which biases and drifts are estimated. 

Data sets for constant, drifting and biased steady-state systems 

were generated on a digital computer and punched on to data cards. The 

sets were analysed by filters assuming various types of models, using 

both growing memory and oscillating memory filters. For instance, constant 

steady-state data was analysed with a filter designed to detect a bias in 

the product flowmeter to determine if a zero bias can be accurately 

estimated. In several tests a general 18 dimensional model was used to 

detect biases in all instruments as well as drifts in the feed stream 

components. Table 5.3 lists the symbols used to describe the situations 

considered; Table 5.4 describes the various studies performed on the 

simulated data. 

Table 5., 	List of Symbols 

SYMBOL MEANING 

CSS 

BSS 

DSS 

BDSS 

LS 

OMF 

Constant steady-state 

Biased steady-state 

Drifting steady-state 

Drifting steady-state with bias 

Least-squares filter 

Oscillating memory filter 



89. 

For a system in a constant steady-state, the instrument readings 

should in theory be constant in time. If the instrument errors are 

independent and normally distributed, it can be shown that the best 

estimate of the true instrument reading based upon a series of 

measurements is merely the mean of the series. Under the assumptions 

of normality and independence, it is furthermore possible to show 

that the sample mean is the minimum variance unbiased estimator of 

the true reading. Thus the optimal estimate of the constant steady- 

state model could be determined by simple recursive averaging. 

Figure 5.11 shows the results of test 81 and demonstrates that the 

filter and sequential averaging provide essentially identical results 

for the constant system with independent noise. One independent 

variable and one dependent variable are taken to be representative 

of the results of the test. The large oscillation in the filter 

estimate of the product temperature at sample 2 is due to the fact that 

the dependent variables are forced to satisfy the system constraints; the 

averaged results are only consistent with the constraints in the limit. 

Table 5.4 Simulated Experiments Performed 

RUN FILTER TYPE 
DIMEN-
SION MODEL DATA COMMENTS 

S1 LS 6 CSS CSS 

S2 LS 7 BSS CSS Model assumed bias in bottoms flowmeter 

S3 LS 7 DSS CSS Model assumes drift in bottoms flowrate 

S4 LS 7 BSS BSS Model assumes bias in bottoms flowmeter 

S5 LS 6 CSS DSS Drift in bottoms flawrate 

S6 OMF 6 CSS DSS Drift in bottoms flowrate 

87 LS 18 BDSS BDSS Drift in feed flowrate, bias in product 
flowmeter 

S8 LS 18 BDSS BDSS Bias set to zero if less than 0.1% 

S9 OMF 18 BDSS BDSS Memory oscillates between 20 and 40 sets 
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The ability of the filter to estimate zero biases and drifts is 

investigated in runs S2 and S3, and representative results are shown in 

Figures 5.12 and 5.13. It can be seen that the absence of biases and 

drifts in the constant data is clearly indicated. 

The estimation of instrument bias is investigated in run Sk. 

The bias is assumed to be in the bottoms flowmeter, and thus this test 

is similar to the ensemble studies in that the form of the system error 

is known, and only its magnitude must be determined. Figure 5.14 

shows that the bias has been detected; however, note that the convergence 

to the true value of the bias is slower than the convergence experienced 

in estimating drifts. This is due to the fact that the bias is independent 

of all other measurements, so that the information provided by the steady- 

state model does not give a direct indication of the instrument error. 

Nevertheless, the presence of some bias is clearly indicated; this 

information could not have been determined by independent analysis of 

the bottoms flowmeter record. 

The effects of model deficiencies on the filter performance 

is illustrated by the analysis of drifting data with a filter designed 

for a constant steady-state. Figures 5.15 to 5.19 show the complete 

results of runs S5 and S6, and the diagrams include the true states 

and simulated data as well as the output of the filters. It can be 

seen that serious estimation errors are caused by ignoring the drift in 

the bottoms flowrate, and the errors are especially pronounced in the 

estimation of tree dependent variables. Note that the filter based on 

the steady-state model predicts the average value of the drifting variable 

rather than the true value. The discrete change in the prediction of 

the OMF provides a clear indication of the presence of a linear drift; 

this is particularly noticeable in the estimation of the product 

temperature. 



91. 

It can be seen from the preceding results that model deficiencies 

can seriously degrade the performance of the estimator. The safest 

procedure to use which avoids these deficiencies would seem to be to allow 

for as many contingencies as possible. The eighteen-dimensional studies 

were made to test this procedure. Though the data generated contained 

only one bias and one drift, the filtering model was designed to estimate 

biases in all instruments and drifts in the feed stream components. 

In run S7 a standard LS filter was used to estimate the biases 

and drifts in the system on the basis of 100 observations. The drifts 

were correctly estimated, but Figure 5.20 shows that the biases were 

less well determined. This is again due to the fact that the system 

contains no information about the biases which can be cross-checked 

using the steady-state model. The filter is unable to cope with so 

many independent instrument errors. In run S8, the same filter was 

used, but every 20 sets the biases were tested, and set to zero if 

they were less than 0.1%; the appropriate row of the Jacobian matrix 

was also made null. This in effect reduces the dimensionality of the 

system, and slightly improves the performance of the estimator by 

eliminating erroneous bias indications. However, in both cases, the 

convergence to the true value of 1% in the product flowmeter is slow. 

It is evident that the estimation of a large number of independent 

variables will tend to swamp the estimator. 

An oscillating memory filter was used in S9 to analyse the same 

data. It was hoped that the discrete changes in memory length would 

produce random changes in the biases of the correct instruments, and 

produce some non-random indication of the true biases. However, it 

was found that the updating of the P matrix (c.f. equation (3.33)) 

resulted in a singular matrix. This is further indication that the 

observations of the plant did not contain enough information to estimate 

nine independent biases. 

(text continues on Page 102) 
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FIGURE 5.11  

INDIVIDUAL RESULTS: A COMPARISON (F AVERAGING AND 

FILTERING OF LTEADY-STATE DATA 
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FIGURE 5.12  

INDIVIDUAL RESULTS: TEE ANALYSIS OF STEADY-STATE DATA 
FOR BIAS IN BOTTOMS FLOWMETER 
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INDIVIDUAL RESULTS: THE ANALYSIS OF STEADY-STATE DATA 

FOR DRIFT IN BOTTOMS FLOWRATE 
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INDIVIDUAL RESULTS: 74E ANALYSIS OF BIASED DATA FOR 
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INDIVIDUAL RESULTS: THE ANALYSIS OF DATA WITH A DRIFT 
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,FIGURE 5.18 

INDIVIDUAL RESULTS: THE ANALYSIS OF DATA WITH A DRIFT 

IN THE BOTTOMS FLOWRATE 
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5.3 Discussion of Results 

This distillation column example has been chosen to be representative 

of typical chemical engineering systems. It should be noted that although 

the describing equations of the system seem to be nonlinear, the 

response to the disturbances considered is nearly linear. This can 

be seen by observing that a linear drift in the bottoms flowrate 

causes nearby linear responses in the produce temperature and composition. 

However, this has occurred because the perturbations are small; the 

linearity of the response is not a requirement of the application 

of the filter theory. 

The sequential least-squares filter has been shown to be applicable 

to practical problems when accurate statistical data is not available. 

The ensemble results indicate that the convergence of the estimator is 

improved if an infinite variance is assumed for the initial error 

estimate. The effects of errors in the assumed instrument statistics 

are more difficult to predict, since they are problem dependent. 

However, some information concerning instrument reliability is usually 

available. In any event, erroneous statistical inputs merely alter 

the rate of convergence of the estimator, but do not affect its stability. 

The presence of non-normal and correlated noise does not degrade 

the filter performance in this application. This is especially 

encouraging for chemical engineering applications where the nature of 

error statistics will rarely be known. Though it is possible to 

allow for correlation by altering the dimension of the filter, as is 

shown by Smith27, it is preferable to be able to ignore all but the 

most pronounced relationships between instrument errors at successive 

readings. Most reasonable measurement errors can be allowed for by 

a bias with normal or rectangular fluctuations superimposed. 
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The estimation of independent biases has been shown to be 

possible, though they are more difficult to detect than effects which 

are coupled through the system model. There is unfortunately no set 

method for determining how many independent errors can be determined; 

however, the updating step with an CHF will yield a singular matrix 

if not enough information has been extracted by the measurements. It 

is clearly desirable to minimize the number of biases which must be 

detected, and to take advantage of any physical relationships between 

measurements. 

The filter performs most poorly when there are errors in the model 

used to describe the plant. This is the most serious limitation of 

the theory in terms of practical chemical engineering applications, since 

exact process models are not often available. Though a limited memory 

filter has been shown to be useful for detecting model deficiencies in 

this example, the effects of model errors on the filter performance 

warrants further investigation. The problem is studied in Chapter 6 

in an application of the filtering techniques to a chemical reaction 

system. 
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CHAPTER 6 

FILTERING APPTJED TO A FIXED-BED CATALYTIC REACTOR.  

In the preceding chapter, the application of the filtering 

algorithm to a system whose mathematical model is perfectly known 

has been considered. It has been demonstrated that the filter 

performance is not inordinately sensitive to errors in the statistical 

descriptions postulated for the process disturbances. However, the 

situation considered is rather unrealistic since the process model 

is rarely known to any degree of accuracy and even if an accurate 

simulation is available, it is likely to be too complex for on-line 

calculations. Thus errors in the system model, or simplifications 

made to allow on-line use of the model are likely to be a more 

serious source of errors in the filter output than poor assumptions 

of the statistical characteristics of the process disturbances. 

This chapter describes the application of the filtering techniques 

to an industrial reactor for which a model has been provided by 

Imperial Chemical Industries, Ltd. The filter is used to estimate 

the parameters in a catalyst decay law which is required for a 

control optimization calculation. The techniques are tested using 

the complete ICI model, and these results are compared with those 

obtained using a greatly simplified model based upon the general 

physical characteristics of the system. 
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6.1 System Description. 

6.1.1 The Complete Model  

The reaction considered is multi-phase, and occurs at high 

pressure in a fixed-bed catalytic reactor with recycle. The reaction 

scheme is effectively A -• B 	D where the last product is formed 

by thermal degradation of C. Th:. first two reactions are not first 

order, and proceed nearly to ,;ompletion. There is a phase separator 

at the exit from the reactor, and the gas phase is recycled. The 

recycle composition is a function of the separation temperature, and 

the amount of unreacted A in the reactor outlet stream. 

A mathematical model of the system has been developed by ICI, 

and consists of a series of adiabatic stirred tanks for which heat 

and material balances as well as equilibrium relationships are 

provided. The model is completely specified by the following 

information: 

1. Feed flowrates 

2. Reactor input temperature 

3. Separator temperature 

4. Recycle flowrate 

5. Catalyst activity profile along the bed. 

The model is solved by direct iteration on the amount of reactant A 

in the outlet stream, since knowledge of this concentration is 

required for the calculation of the recycle composition. However, 

it has been found that this composition is always nearly zero,and 

when the value is set to zero for calculation of the recycle 

composition the model is reported to predict the sixteen equidistant 

temperature measurements along the length of the reactor and the 

outlet compositions to within 2%. 
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When the catalyst decay law is specified, the model can be 

used in the calculation of optimal controls for the entire operating 

period. It is intended to test the feasibility of using statistical 

filtering techniques for the on-line estimation of the parameters 

in the decay law. 

The specific details of the ICI model cannot be revealed 

here; however, the proprietary nature of the information is actually 

an advantage for this study. The complete model is used to generate 

"real" plant data by perturbing its output with random measurement 

noise, but for the purposes of filtering, it is assumed that the 

plant model is either unknown, or too complex for on-line computation. 

Therefore, a simplified model based upon the general physical 

characteristics of the reactor is postulated for use in the filtering 

algorithm. This is clearly a more realistic situation than one which 

assumes perfect knowledge of the mathematical model of the plant. 

6.1.2 The Simplified Model  

The simplified model chosen is an A -03 	reaction with first 

order kinetics occurring in an adiabatic plug flow reactor. It has 

been assumed by ICI that the small amount of D formed by degradation 

can be predicted from the outlet conditions, and this reaction is 

ignored in the sequel. Thus; 

da = - kl  x (x, t)exp 

= - k 	(x t) exp 
2 	' 

da 	k  
= - 3 dx 	4 

dT k  

L7EA/R(T 

L-EB(R(T 

da 	db 

273-21. 

273/-6 

a 

Aa 

(6.1) 

(6.2) 

(6.3) 

dx 

db 
dx 

dx 

d x 

47 
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where X (x,t) is a function describing the evolution of the catalyst 

profile, and a and b are extents of reaction; T is the temperature 

in degrees centigrade and R is the universal gas constant. EA  and 

EB, the activation energies, are assumed known, while ki 	are 

determined by off-line minimization of the sum of squares deviations 

of the temperature profile predicted by the simplified model from 

the profile of the "real" reactor. A minimization which allowed 

EA and EB 
to vary as well as the k's failed to converge; the poor 

performance of the six parameter search is probably due to the 

sensitivity of the objective function of the exponential in the 

Arrenhius dependencies, and to the fact that the model becomes too 

general. Powell's method for minimizing a sum of squares without 

derivatives was used for the search53. 

Table 6.1 lists the deviations of the output predicted by 

the simplified model from that predicted by the complete one for 

various values of catalyst activity, assuming no variation of 

activity with distance along the reactor. Table 6.2 lists the 

optimal parameter values when both EA  and EB  are 17,000 cal/g.mole. 

The modelling errors indicated in Table 6.1 must be accounted for 

when using the simplified model to predict the reactor profile, 

and the values of the prediction biases are added to the output of 

the simplified model to correct for these errors. Methods of 

updating the model bias corrections are considered later. 
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Table 6.1 Deviation of the Best Fit Plug Flow Reactor 

from the True Profile  

X=3000 x=289? x=2500 x=2000 

2 
a 

1 -0.78C°  -0.7600  -0.590°  -0.52Co 

2 -1.30 
. 

-1.28 -1.05 
. 

-0.96 

3 -1.46 -1.45 -1.24 -1.23 

4 -1.31 -1.34 -1.23 -1.37 

5 -0.93 -0.99 -1.03 -1.38 

6 -0.36 -0.47 -0.68 -1.28 

7 +0.29 +0.17 -0.23 -1.08 

8 +0.91 +0.79 +0.28 -0.8o 
0 
la 
M 

9 +1.26 +1.22 +0.76 -0.47 

m
10 +1.18 +1.28

-  
+1.12 -0.09 

A ril 11 +0.73 +0.92 +1.20 +0.27 
"IIIMINIONI. 

9 12 +0.20 +0.36 +1.03 +0.57 

13 -0.17 -0.11 +0.41 +0.72 

14 -0.36 '-0.38 -0.18 +0.68 

15 -0.44  -0.50 -0.62 +0.44 

16 -0.46 -0.55 -0.89 +0.06 

Output 
Conc. 
of A 

+1.91% +1.086 +1.08% +0.03% 

Activity after 8 hours assuming decay over 150 hours. 

'17Vpirakkplet. 
= 
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Table 6.2 Parameters for the Best Fit Plug Flow Reactor 

r 
in ki  In 	k2  ! 

k
3  

k
4 

3000  23.91 24.09 -0.59 30.44 

2893 23.88 24.06 -0.60 30.34 

2500 23.72 23.90 +0.30 29.06 

I 	2000 23.45 23.63 +0.49 30.69 
. 

= kvx 

6.1.3 The Simulated Data 

Plant data was generated by perturbing the measured variables 

generated by the complete model with normal random noise. The 

instrument errors had zero means, and were scaled so that the 95% 

confidence intervals of nll temperature sensors is t 100  and that 

of all flowmeters is - 5%. Only temperature and flowrate measurements 

were generated, as it was assumed that compositions at the exit 

from the reactor could not be conveniently measured. 

Various sets of data were generated; all had the same feed and 

recycle flowrates and input and separation temperatures. Several 

different catalyst decay laws were considered, as is shown in 

Table 6.3. 
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Table 6.3 Data Sets for Reactor Study 

Set Catalyst Activity Measurements 

S1 Constant; X (x,t) = 3000 for R11 Feed flowrates, recycle 

and purge flowrate, in-

put and separation temp-

eratures, and 16 temp-

eratures along the 

length of the reactor. 

x and t 	I  

S2 Constant with respect to 

distance at any time. 	Decay 

over 150 hours proportional 

to the inlet temperature. 

X(o) = 3000, 	X(150) = 1000. 
. , 

 16 temperatures along 

reactor and input temp- 

erature. 	Made every 

5 minutes during first 

eight hours. 

S3 As S2, but decay dependent 

upon local temperature. 

X(x,o) = 3000 for all x. 

16 temperatures and 

inlet temperature measured 

every 5 minutes from 

hour 16 to hour 24. 

The data for set S3 was generated by defining a separate 

catalyst activity, ki), for each of the stirred tanks in the model. 

Thus at time tawthe activity in tank i is calculated by: 

Xi)N+3.= X (i)N - a TN 
	 (6.4) 

where TN  is the temperature in the tank at time tx. The data in 

set S3 was taken from hour 16, by which time the catalyst profile 

varied from 2785 at the inlet to 2720 at the outlet. 



6.1.4 The Filtering Models 

The only dynamic effect considered in the system is the catalyst 

decay. The dimension of the state vector of the estimator varies 

depending upon the form of decay that is proposed, but in each case 

the problem is formulated so that only constants are being estimated, 

andf N".1=I for all N. Table 6.4 describes the various models 

used in the studies. 

Table 6.4 Models Used for Filtering of Reactor Data 

  

Model 	Catalyst Decay Law State Variables 

Ml A (x,t) = 0 

A (olo) =A 0  

A, feed flowrates, o 
recycle flowratel  input 

and separation temp-

eratures.(ICI Model) 

M2 

6- 

Xx,t) = 0 

A (o,o) = 	AID  
A o 

M3 A (x,t) = -m T1  

A (x,o) = A0  for all x. 

Thus A (x,t) = X0(x,o) -4mTit 

where TI is input temperature 

X oI input temperature, 

m (decay rate) 

M4 A (x, t) = -,a, T(x) 

A (x,o) = xo  for all x. 

Approximated by: 

A (x,t) = X0-mT1et-px 

where x is the normalized 

reactor length. 
_ 	 - 

xo' TI' m' p 
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Note that model M4, the case where the catalyst activity is 

a function of local temperature, is in fact a distributed parameter 

system that requires an infinite dimensional state vector to describe 

the activity at every point along the length of the reactor. The 

situation is made tractable by postulating a low order polynomial in 

x (distance along the reactor) to describe the profile at any time. 

For this particular example, simulations showed that the catalyst 

profile could be accurately described by a linear function of 

distance. However, a higher order polynomial could easily be 

postulated, and would require only the estimation of a few more 

coefficients. Note that the first three variables in the state vector 

were truly constant during the data generation, or a known function 

of time in the case of T1. However, the value of a and p in the 

simplified dynamic description would be expected to vary slowly in time. 

It should also be noted that in models M2 to M4, the flowrates 

are assumed perfectly known, and only temperatures are measured. This 

simplification was made for convenience, since it will be shown that 

uncertain flow measurements do not alter the stability of the filter, 

but only slow its rate of convergence. Using this simplified measurement 

scheme it is possible to ignore the recycle stream, and interpret 

the system as a one-pass reactor. 

Given the elements of the state vector, the catalyst activity 

as a function of distance can be calculated at any time. Once the 

catalyst profile is known, the steady-state model (either simplified 

or complete) can be used to predict the temperature profile and output 

compositions. 

The Jacobian matrix, G, required for the filtering algorithm 

is calculated using a 0.1% perturbation of the state variable. Thus 
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the steady-state profile is generated using the current value of the 

state-vector, and then the profile is recalculated n times, perturbing 

a different element of the state-vector each time. Whenever possible, 

a solution of the reactor model is avoided by using the chain rule 

for differentiation. For instance, in the case where the catalyst 

decay depends upon inlet temperature (model M3); 

= A0  m Tit 	(6.5) 

at any time t. dyi/d.), is calculated by perturbation for each 

measuring device yi, and then; 

dy. = dy. . 

dx dA dx0  0 

i = 1 ... M (6.6) 

where m is the number of instruments. The other rows of G follow 

similarly using (6.5) and (6.6). The size of the perturbation has 

been selected rather arbitrarily on the basis of off-line studies. 

In most cases it should be relatively easy to select a reasonable 

step length for each state variable. No difficulties were encountered 

in this example. 
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6.2 Studies of the Filter Performance  

The ability of the filter to determine catalyst activity was 

tested in the simplest situation, where the activity is constant in 

both time and distance along the reactor. Data set Si was analysed 

using the full recycle model (Ni) in the filter, and in PREDCT, the 

prediction routine. Various initial estimates, Xol  of the catalyst 

activity were chosen, and the convergence to the true value was 

observed. All other elements of the state vector were correctly 

specified initially, and the outlet composition of reactant A was 

fixed when calculating the recycle composition, so that the prediction 

of the reactor profile did not require iterative calculation of the 

model. As was noted, this simplification is also employed by ICI 

when using the complete recycle model for optimization, and does 

not degrade its performance. 

The same data set was analysed in a similar study for which 

model M2 was used in the filter. In this case, all flowrates were 

assumed to be measured accurately, and only temperature measurements 

along the length of the b.ed were considered; the outlet composition 

of reactant A was fixed as before for use in calculation of the 

recycle composition. This test was performed to determine whether 

the characteristics of the estimator could be evaluated using a 

one-pass model which ignores the uncertainty in the system flowrates. 

It can be seen from Table 6.5 that the one-dimensional model 

yields results that are comparable with those obtained from the full 

model. The convergence of the filter using the simpler model is 

faster because there is no uncertainty in the flowrate measurements, 

but the filter is stable in both cases. Since the one-dimensional 

model is faster computationally, it was used in the remainder of the 

study. 



Table 6.5 (;onversence of the Est:Imate to the True 

Catalyst 91J91)2.  

Time 
(min) 

Full 
recycle 

Full 
one-pass 

Simplified 
one-pass 
2500 0 2500 2500 

10 2721 2780 2783 

20 2782 2852 2854 

30 . 2801 , 2887 2890  

40 2839 2914 2917 

50 2864 2927 2930 

60 2887 2936 2939 

70 2895 2947 2950 

80 2901 2954 2956 

90 2907 2956 2959 

loo 2916 2960 2962 

110 2917 2964 2966 

120  2921 296? 2968 

a) )4.0  = 2500 

Time 
(min) 

Full 
reczcle 
2900 

Full 
voile-pass 

2900 

Simplified) 
one-pass, 

2900 0 

10 2960 2954 
4 

2954 

20 2974 2972 2972 

30 2958 2982  2983 

40 2973 2992 2994 

50 2985 2993 2995 

6o 3001 2994 2996 

70 2996 2998 3000 

8o  2996 2998 3002 

90 2996  2997 3000 

3.00 3002 2999 2999 

110 3000 2999 3001 

120 
I, 

2999 2999 3001 

b) A.0  = 2900 

Time 
(min) 

- 	Full 
recycle 

Full 
one-pass 

Simplified 
one-pass 

0 3100 3100 3100 

10 3026 3019 3019 

20 3014 3011 3010 
. 

30 2984 3010 3011 

40 2991 3015 3016 

50 3001 3012 3013 

60 3005 3010 3012 

70 3006 3013 3014 

8o 3006 3013 3014 

90 3005 3009 3010 

100 3011 3008 3009 

110 3007 3009 3010 

120 3007 3008 3009 

c) X = 3100 

TiMe ! 
(min) ' 

Full 
recycle 

Full 
one-pass, 

Simplified 
one-pass 

0 3500 3500 3500 

10 3121  3117 3118 

20 3028 3061 3061 

30  2975 3043 3045 

40 2973 3040 3042 

50 2983 3031 3033 

60 2998 3026 3028 

7o 2988 3026 3029 

8o 2990 3024 3027 

90 2990 3019 3022 

100 2998 3018 3019 

110 . 2995 3017 3019 

120 2997 3015 3017 

d) ).(1  = 3500 
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Table 6.5 also illustrates the effect of using the simplified 

model in the predictor. The biases listed in Table 6.1 for an 

activity of 3000 were added to the predictions of the model. In 

practice, values for these biases would be determined by performing 

an off-line minimization based on operating plant data. The optimal 

parameters would be determined as before, and the biases chosen to 

compensate for the difference between the predicted and measured 

temperature profiles. As is noted in Table 6.2, the minimization 
1 

calculates ki  and k2  which are overall reaction constants. The 

activity level of 3000 was defined arbitrarily for a fresh catalyst 

bed, and therefore kl  = k1/3000 and k2  = k2/3000. Of course, any 

other factor for the catalyst activity could be chosen. 

A comparison of the second and third colums of the results 

shown in Table 6.5 indicates that the simplified and full models yield 

essentially identical results for the situation with constant catalyst 

activity. The table also shows that the convergence of the estimator 

is sensitive to the initial value assumed for the catalyst activity. 

A poor initial estimate, however, is clearly indicated by a large 

change in the estimate after the first observation. It should be 

further noted that the convergence is not symmetric; that is convergence 

curves from estimates initiating at points below the true value of 

the activity are not mirror images of those initiating the same 

amount above the true value. This is a reflection of the dependence 

of the Jacobian on both time and position in state-space. 

It is ultimately intended to use the filter to provide an 

estimate of the catalyst decay law for an optimization calculation. 

Since the objective function of the optimization is likely to depend 

upon the output concentration of reactants from the system, the true 

test of the filter performance lies in its ability to predict reactor 

(text continues on Page 124) 
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output at some later time. In this example the outlet conditions 

can be predicted if the concentration of reactant A in the outlet 

stream is accurately estimated. Thus in the sequel, the filter 

performance in a given situation will be evaluated by comparing 

the output concentration of reactant A predicted using the estimated 

activity with the true output concentration generated by the complete 

ICI model with recycle. 

Figure 6.1 illustrates the adverse effects model deficiencies 

can have on the performance of the filter. The data generated 

with decaying catalyst in set S2 was analysed using the complete 

model in the steady-state predictor, but assuming the catalyst 

activity was actually constant (model Ma). The three curves compare 

the output of the standard growing memory (Kalman) filter with that 

of the limited memory filters. The figure illustrates the danger 

of retaining data that is inaccurately described by the process model. 

Note that a comparison of the output of the growing memory filter 

with that of a limited memory filter provides a method for detecting 

the presence of modelling errors. When the model used in the filter 

is valid, the estimates resulting from the two different types of 

filters should be essentially the same. 

When the form of the catalyst decay law is correctly postulated, 

a growing memory filter using either the complete or simplified 

model provides accurate predictions of future activity. Figures 

6.2 and 6.3 shoe the activity predicted up to the eighth hour, 

based on the analysis of data set S2 using model M3. A certain 

amount of time is required for the filter to build up information, 

but the predictions are quite accurate after the second hour. Figures 

6.4 and 6.5 show the composition predictions based upon the filter 

using the simplified model are very close to those based on the 
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complete model. The large deviations during the initial period 

are due to errors in the prediction of the catalyst decay law, 

and are not caused by the use of the simplified model. 

In all of the preceding studies, the biases and parameters 

of the simplified model have been assumed to be constant and 

equal to the values determined by off-line minimization and listed 

in Tables 6.1 and 6.2 for A= 3000. Table 6.6 shows the error 

in prediction of the output concentration A that results when the 

biases in the temperature predictions of the simple model are ignored. 

Table 6.6  The Effect of Ignoring Biases in the Simple Model  

Time % Deviation of Predicted A 
1 

Model M2 
with Bias 

Model M2 
without Bias 

5 11.59 26.83 

10 8.24 28.32 

15 6.59 28.89 

20 5.97 29.70 

25 4.54 29.07 

30 3.53 28.60 

40 0.14 25.30 

50 0.62 26.59 

60 0.70 27.20 

75 0.81 25.70 

90 0.23 27.33 

105 0.32 27.60 

120 0.43 27.82 

xo = 3000 for both trials. 
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In practice, the model parameters and biases would vary 

slowly, and would have to be updated periodically as the local, 

simplified model becomes invalid. It would be preferable 

to update them automatically using the on-line filter. To test 

the feasibility of this technique, a model was constructed to 

estimate the biases and parameters in the simplified model; 

nineteen state variables were adjoined to system description M2, 

consisting of sixteen temperature biases as well as k3, I% and the 

ratio k2/ki  (see equations (6.1) to (6.3)). Figure 6.6 shows the 

error in the prediction of the output composition of component A 

made by a standard Kalman filter as well as by some exponentially 

weighted filters. Though the latter type does, in some cases, 

reduce the estimation error, it can be seen that the filter 

becomes unstable, as predicted in Part I. The instability is 

indicated by the fact that the elements of the P matrix, which is 

a measure of the uncertainty in the estimate, increase as new 

observations are made. This implies that further observations 

actually decrease the amount of information available about the 

system. One explanation for this is that the filter is being 

used to estimate too many independent variables about which the 

steady-state model provides no coupled information. Furthermore, by 

allowing all of the parameters in the simplified model to vary, the 

system description becomes too general and in effect forces the 

estimator to operate on a multi-nodal least-squares surface. Even 

when only selected parameters were allowed to vary, the model was 

still too general, and the filter was unstable. In this application, 

therefore, the biases and parameters must be updated off-line. 

The assumption that the catalyst activity depends upon 

inlet temperature only is intuitively unreasonable, and data set 

S3 was generated for the evaluation of the estimator when the decay 
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rate is a function of local temperature. Figure 6.7 compares the 

results of filtering the data assuming a constant activity along 

the bed at any time (M3), with those obtained assuming a linear 

profile (MO. An exponentially weighted filter was also used, 

since it would be responsive to the slow variation in the slope 

of the linear profile. It can be seen that for this example, the 

dependence of the decay on local temperature does not significantly 

alter the characteristics of the reactor. This, of course, may 

not be true in other applications, and a more complex profile 

could easily be accommodated by estimating a further one or 

two parameters to describe the catalyst profile as a quadratic 

or cubic function of distance along the reactor. 
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6.3 Discussion of Results  

The feasibility of using a simplified process description 

for filtering purposes has been demonstrated in a realistic 

example. The simplified model used was based on engineering 

judgement rather than detailed analysis, and it is likely that 

computationally attractive models could be proposed which would 

allow the solution of a variety of practical estimation problems. 

It has been found that the prediction biases due to model 

deficiencies must be accounted for in using the simplified models. 

Trials performed when these biases are ignored have been shown to 

result in errors of about 2576 in the prediction of the output 

concentrations of reactants. In the example presented, it has 

been necessary to update the model biases off-line, though in 

theory the updating could be performed by the filter. Whether 

this is possible depends upon how many independent variables are 

being estimated, and would have to be investigated for any 

particular application. 

The sensitivity of the filter performance to the initial 

estimate of the state vector would be expected from the theory. 

Kalman and Buoy11  show that the convergence of the estimator to 

the true state is guaranteed only if the initial estimate, x /0, 

is correct. Otherwise some bias would be expected. However, 

the amount of bias resulting from an incorrect initial estimate 

is problem dependent, and it is likely that experience in a given 

situation will indicate the more critical state variables. It 

has also been noted that when the initial state estimate is not 

good, the filter will take a large step after the first observation. 
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In these cases, the filter should be re-initialized at the new 

estimate. 

This example also demonstrates the utility of limited 

memory filters for detecting the presence of model deficiencies. 

When analysis of a set of data by both limited and growing 

memory filters yields significantly different estimates, a model 

error is indicated. However, the danger of filter instability 

when the memory is limited has been demonstrated, and it must 

be concluded that these filters are most useful as diagnostic 

tools. Their behaviour is highly unpredictable, since it 

depends so strongly on the values chosen for the memory parameters. 

The major significance of this example is that it demonstrates 

that realistic dynamic estimation problems can be solved using 

very simple dynamic models in conjunction with simplified steady-

state models, even when the system, in theory, requires a distributed 

parameter description. The problem of dynamic modelling is greatly 

simplified, and most of the chemical engineering information 

available about the system can be utilized in the steady-state model. 
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CHAPTER 7  

CONCLUSIONS  

The theory of statistical filtering described in Part I 

has been developed in many different ways since the presentation 

of Kalman's classic paper2. The unified derivation presented 

here has the advantage of being inherently simple, and is based 

on the well known results of least-squares theory. The derivation 

is unique in that it specifies not only the standard growing 

memory filter of Kalman, but also the limited memory filters 

which have been shown to be useful as diagnostic tools for 

indicating model deficiencies. However, it should be noted that 

the exponentially weighted filter is not convergent; this fact 

has been overlooked by several authors. 

The theory, however, has been presented merely as a method 

for solving practical chemical engineering problems. There 

have been few applications previous to this study, for three 

major reasons: 

1. Stochastic models for chemical process system 

disturbances are rarely available; 

2. Dynamic models for process elements are 

rarely known; 

3. Even when models are known, they typically consist 

of sets of partial differential equations, too complex 

for on-line use. 

This study has shown that these problems are not 

insurmountable. The analysis of the distillation column data 

has shown that the filter performance is not very sensitive to 
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either the form of the measurement error distribution or to errors 

in the initial uncertainty assumed for the elements of the state 

vector. The column example also illustrates the serious effect 

that model deficiencies can have on the performance of the filter. 

The effects of modelling errors has been examined in detail 

in the reactor simulation. The filter has been shown to yield 

accurate predictions of output composition when based on a 

simplified steady-state model. Furthermore, the measurement 

scheme was very simple, and the filter did not require observation 

of the compositions at the outlet, but predicted them and the 

non-observable catalyst activity on the basis of temperature 

measurements only. 

The reactor example also demonstrates that it is possible 

to deal with distributed parameter systems without greatly increasing 

the dimension of the state-vector of the model. Though the particular 

example is not highly sensitive to the change in decay dependence 

from inlet to local temperature, the technique used to approximate 

the distributed parameter system can be used in a variety of 

situations. 

In both examples, the reliance on detailed steady-state 

models coupled with simplified dynamic models represents a basic 

change in the approach to estimation problems. It has been shown 

that complex dynamic models are not required for the analysis of the 

situations considered, but simple models could be used to describe 

the dynamic behaviour, while detailed chemical engineering information 

is utilized in the steady-state model relating the state vector 

to the observations. This technique could be used to analyze many 

chemical systems characterized by two major time constants with one 
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very small in relation to the other. Thus the linear theory 

developed is applicable to a large class of practical problems. 

The studies have been performed under the assumption that 

there are no random dynamic inputs to the systems considered. 

It has been noted that this is a moot point. However, if it is 

felt that random dynamic inputs or random disturbances generated 

internally do present a serious problem, the theory can be 

modified to allow for them, except in the case of the oscillating 

memory filter. The real question is whether these disturbances, 

consisting in effect of normally distributed perturbations about 

a mean value, do indeed pose a serious problem in the applications 

envisaged. It is felt that most random (that is, unpredictable) 

process disturbances could not be described by a model which 

postulates additive normal random noise. However, this point cannot 

be resolved by simulations, but requires the application of the 

techniques to operating plants. 

It must be stressed that the results presented are mere 

examples of possible applications of statistical filtering theory. 

Though they are representative of realistic chemical engineering 

problems, the successful application of the techniques cannot be 

guaranteed in any particular situation. The theory is complete 

as presented, and future work should be directed toward practical 

application of the techniques to operating plants. 
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