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.ABSTRACT  

The covariant approach to Regge poles is extended to provide 

a unique prescription for reggeizing processes involving photons. The 

Regge contributions to the invariant amplitudes for the processes : 

N --• ITN, IIN, VN; T T1 —4 	; VN 	ITN; V1 	ra are cal- 

culated and tabulated. 

2 
We conclude that the pion reggeizes at t =A in 

UN the . 
rho reggeizes at t .).1e 	eN and that the Pomeron 

reggeizes in elastic Compton scattering in such a way that no fixed 

poles are necessary in strong or electromagnetic processes. 

Class III pion conspiracy is considered in each process and 

we conclude that it is consistent with the data for YN 	ITN, 1IN , 

VN, IS'N provided the formalism is properly interpreted. Other conspir-

acies are considered as well as evasion. 

The fundamental problem of gauge invariance is handled through-

out by means of a gauge projection operator and the effect of gauge 

invariance on kinematic singularities and zeros is critically examined. 

The covariant approach is related to helicity formalism through- 

out and especially for VN --•14N, ICN 	"ITN where gauge invariance 

and kinematic factors in the helicity amplitudes are carefully consid-

ered. 

A covariant technique for calculating Regge contributions to 

differential cross sections is developed and the results tabulated. 

The covariant formalism itself is expounded with special emphasis on 

the differential technique and is applied to example processes. 
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INTRODUCTION 

1. The Problems  

The recent high energy data for the photonic processes(1'2) 

1rN --0(3)1 1TN*(4) pN(5) along with speculation on the role of 

the Pomeron in nucleon Compton scattering-(6)  has forced searching 

examination of the conventionali models of high energy physics and 

realization that the kinematic behaviour of photonic helicity ampl-

itudes differs from that of massive ones. 

All of the conventional models for inelastic scattering are 

essentially peripheral, assuming that the process is dominated by 

the pole nearest the physical region in the cross channel (t), and 

all stem from elementary one particle exchange (OPE). The Pomeron 

permits the description of diffractive scattering in the Regge model. 

The first difficulty arises with pion exchange in Yp 

where the process exhibits a sharp forward peak in the differential 

cross section (dT/dt) which, because of its slope, (da'/dt)/6 

is strongly suggestive of pion exchange dominance. Turning to the 

models however, one finds that the one amplitude to which the pion 

contributes (f01  ) behaves as t/(t-j4) and clearly vanishes at t = 0, 

just outside the physical region, and requires that the cross section 

dip rather than peak in the forward direction. A way around this is 

to write the amplitude as (7)  

4.1:1x 
2 

1 
2 	2 

t-p.m  

and to discard the second term which, of course, is isotropic and the 

resulting prescription is equivalent to total S-wave absorption. 
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However, Boyarski et al.(3) and Fincham et ali
(8) 

have noted that their 

attempts to fit the 	lien data with a Gottfried-Jackson(9)  peri-

pheral absorption model have not been entirely successful. Along with 

the OPE and absorption models the Regge model also predicts a vanish-

ing cross section at t = 0, and a forward dip.(10,11,12,13,14) 

A similar problem arises in 	sr—N*4-4-(1236) where the 

data exhibits a sharp near forward peak which falls off rapidly as 

ItI 	tmin2.0. Here the pion contributes to more than one amplitude 

and various mechanisms have been suggested(2) to explain the marked 

difference between the forward t behaviour of dVdt for Vp 	11+n 

and 16pN*41.. 

The second problem is peculiar to the Regge model and also 

concerns the pion. A question has arisen as to whether the reggeized 

pion contribution to the differential cross section gives rise to a 

dynamical pion pole at p(= 0'16);  in other words, does the pion 

reggeize at the pole? A particle exchange is said 'not to reggeize' 

if its Regge amplitude 

a) does not give rise to a pole in the differential cross 

section at the quantum numbers of the particle (a right 

signature point) 

b) gives rise to a vanishing contribution at a wrong signa- 

ture point. The question of the pion reggeizing at t 	
2 st 

 in 15N-4 Tr N, ItN is identical to that of the rho reggeizing at 

i t .,kte  n 'KA—. eN. A somewhat more physical question is whether 
the Pomeron reggeizes at t = 0 (awrong signature point) in nucleon 

Compton scattering
(6). The consequence of its failure so to do is 

that the forward (t = 0) cross section will fall off as energy 



increases rather than remain constant. 

Intimately related to the previous problem is that of gauge 

invariance. Independent of model considerations it has been noted that 

some kinematic factors for t-channel helicity amplitudes change by 

factors of kt, the photon momentum, for processes involving massive 

and massless photons.(17,18,19,20) Further, gauge invariance has been 

used to introduce poles into invariant amplitudes at least in 

YN 	10(11 ,21). Such a pole, required essentially by kinematic 

considerations, is anomolous in a world of physics governed by dyna-

mical poles. 

By no means the least problem of photonic processes is that of 

fixed poles in the J-plane.(1,2,11,22,23,24) Fixed poles are forbidden 

in pure hadronic processes by unitarity, however, thay are not forbidden 

in photoproduction which is considered only to first order in the elec-

tromagnetic coupling. The question is, of course, are they necessary? 

2. The Approach 

In considering these problems we will confine ourselves to a 

Regge context and examine invariant rather than helicity amplitudes. 

Since the inception of Regge theory(25) ten years ago the tendency has 

been to reggeize helicity amplitudes because of their amenability to 

partial wave decomposition and the consequent ease of including spin 

effects. As well, helicity amplitudes contribute coherently to the 

differential cross section(26). They are however subject to constraint 

equations at thresholds, pseudothresholds and t = 0, imposed by analy-

ticity. A further problem arises in the Regge description of unequal 

mass(27) processes where singularities arise in the partial wave de-

composition and have to be cancelled by the exchange of daughter 
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trajectories(28)  to preserve the analyticity of the amplitude. 

Constraint equations involve two or more helicity amplitudes 

and when each amplitude individually satisfies the particular constr-

aint (in a given model) such a solution is termed 'evasive'. The 

alternative solution involving collusion between the amplitudes is 

termed a 'conspiracy'.(29)  

Conspiracy, evasion and daughters were developed mainly in 

nucleon-nucleon scattering after Volkov and Gribov
(3o) 

introduced a 

conspiring triplet of Regge trajectories to give a finite contribut-

ion to the differential cross section at t = 0. Helicity formalism 

was used to describe the process and Leader(31) classified the solutions 

to the constraint equations obeyed by the amplitudes in terms of evasion, 

conspiracy and daughter exchange. Toller
(32) 

and Freedman and Wang(33) 

have examined these problems from a group theoretical point of view 

and have, for equal mass scattering, classified the possible conspir-

acies at t = 0. Comprehensive reviews are given by Bertocchi(29)  and 

ref.(26). 

The need for conspiracy arose historically because of the sharp 

forward peak apparently due to pion exchange in the differential cross 

section for 10 scattering, pn charge exchange and VI) —*'en. In each 

case the reggeized pion exchange vanished at t = 0 and, in the absence 

of cuts, implied a forward dip which of course was not seen. 

In order to get a forward pion peak a trajectory with the same 

quantum numbers as the pion, but with opposite parity, the; is intro-

duced with 0411(0) = 0(110(0) and the residues conspire at t = 0 to give 

a non vanishing forward contribution to the differential cross section. 
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Using this.  approach Phillips(7)  and Arbab and Dash
(34) 

are able to 

fit pn charge exchange provided they use a pion residue,with a linear 

t-dependence. The Ilc  residue is assumed constant and the trajectory 

to be very flat - to avoid predicting a 0
+ low mass particle. They 

point out that the conspiring pion in this process belongs to an M = 1 

Toiler pole, or to a Class III
(29)  conspiracy. 

Ball, Frazer and Jacob(35) (BFJ) take the same Tr, 1X con-

spiracy as Arbab and Dash and, using it to leading order only, fit the 

forward peak in 15/p ---, 13
+
n. They do not examine daughter exchange or 

the third member of the Class III pion conspiracy, a trajectory with 

the same quantum numbers as the Al  but with oeitc(0)= 0<40)-1. 
1 

Conspiracy is not without its drawbacks as Le Bellac 	has has 

shown. Combining factorization and Class III pion conspiracy at the 

NR vertex, he shows that the differential cross section for 

0 +
p 	eN

*++  vanishes at t = 0, and this forward dip is not observ-

ed.
(2127) A way around this problem is to abandon conspiracy altogeth-

er and to consider the cut contribution to the amplitude which is then 

no longer factorizable. Some success
(38) has been had by this approach. 

However as our purpose is to examine pion (and other) conspiracies in 

photonic processes we shall not-dwell on it. Also, without leaving 

the fold of conspiracy, Arbab and Brower(39)  have successfully avoid-

ed the Le Bellac forward dip by considering interference between an Al  

trajectory and the conspiring pion. 

The desire to effect our study of conspiracy, evasion and the 

peculiarities of photonic processes by examining.the invariant, rather 

than helicity amplitudes is motivated by their simple crossing and 

analyticity properties. There are no constraint equations and the only 

11 



rule is that the invariant amplitudes be non singular except, of course, 

where they have dynamical poles. Once the Regge contributions to the 

invariant amplitudes have been tabulated, conspiracy analysis simply 

becomes the study of singularity cancellation in the Regge couplings 

and is straight forward to carry out
(4o). 

There is the point that invariant amplitudes are neither 

obvious nor, in all cases, unique
(41) however minimal sets of am-

plitudes which are both ffi-ee of kinematic singularities (KSF) and of 

kinematic zeros (KZF) have been enumerated for the processes which 

we propose to study by Bardeen and Tung
(42) 

and by Jones and Scadron
(43) 

The latter authors have also furnished equivalence theorems(41) which 

relate any additional covariants to those in the minimal set. 

20)19 18, 	, 
Recent investigations (17, 	into the asymptotic behav-

iour of helicity amplitudes for these processes has revealed that extra 

kinematical threshold factors have beef necessary to get the correct 

KSF behaviour. Henyey(12) has shown that this extra power of photon 

momentum is essentially a multipole radiation effect due to the mass-

lessness of the photon. The extra momentum power is exactly what allows 

an additional unit of helicity flip to be transferred to the Reggeori 

without violating angular momentum conservation. When going over to the 

cross channel however, the kinematic zero due to the momentum factor 

becomes absorbed in the high energy asymptotic behaviour. Consequently, 

a non zero "nonsense" amplitude is allowed in spite of the, apparent 

angular momentum restrictions. 

Such subtle crossing arguements of helicity formalism appear in 

the covariant approach as gauge invariance effects. Our analysis is 

based on the latter approach as we feel that gauge invariance, handled 
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in both ref (42) and ref (43) by means of a gauge projection operator, 

is a more straight forward way of treating zero mass complications. 

The difficulties of performing a partial wave decomposition 

for invariant amplitudes have been studied by several authors
(44) 

and 

we shall follow the approach adopted by Scadron(45) which paves the 

way for reggeization
(46'47). 

Once the formalism is set up for photonic processes we find 

that the question of whether the pion reggeizes in YN 	irN, the 

rho in YN --041N or the Pomeron in YN 	YN is clearly answered 

in the affirmative. We make the usual Regge pole assumption that the 

Pomeron does dominate the behaviour of high energy elastic processes 

with 0C(0) = 1, so as to imply spin independent (constant) cross 

sections even in photonic processes. No fixed poles will be necess-

ary for this result. 



II FORMALISM 

1. General  

We first review the essential points of the method in the 

case of massive particle reactions. The basic remark is that the 

projection operator (pa 	(6) can be used to select out 

the Jth partial wave of the general t-channel (t = a2) partial wave 
expansion (J is integer). Because this projection operator is also 

the numerator of a spin J propagator of mass /E, we can think of the 

Pl-function's Jth partial wave as being the sum over "Reggeon" exchange 

of mass 111 weighted by arbitrary coefficients. Each Reggeon exchange 

is of the form(45'46) 

PIL = C(P) : 9J  (6) : c(Q) 

( 1 ) 

e.R(p) : P 
J (P ,Q ;  A) CR(Q,) 

where e(P) and C:R(P) are the covariant and "reduced" vertex coupl-

ings respectively at the final vertex (see Appendix I for details 

and Figs 1, 2 for kinematics).0j(P,41;&) is the contracted or part-

ially ( 
 contracted projection operator.)45) 

J  0 , 9J. , 0 
i
s• • • etc., 

given in Appendix I where the covariant formalism with explicit emph-

asis on the differential technique is expounded. In Appendix II it is 

applied to two example processes (VN --,11N, VIS --10  WC. As the con-

tracted projection operators are simply combinations of solid Legendre 

polynomials, threshold and also factorization properties are built 

into the Regge poles from the outset. 



The couplings listed in ref(45) and Appendix I differ accord-7 

ing to the 'normality' of the vertex and we denote normal (+) and 

abnormal (-) couplings by e-. A normal (abnormal) particle has parity 

(-)j  ( (-)j+1) and the normality of a vertex is the product of the 

normalities of the particles at the vertex. Abnormal boson vertices 

involve contractions of momenta and the anti-symmetric Levi.avita 

tensor which, when taken between Dirac bispinors, give rise to reduc-

tion formulae termed "abnormal reductions"
(41). We present several 

abnormal reductions in a completely general form and also list expan-

sions of the reductions in terms of the kinematic covariants of the 

calculated processes (Appendix III). 

As we make frequent use of the Regge form of the differential 

cross section in the covariant formalism we carry out in detail the 

original scheme for calculating spin sums 

all T 
IT( 	triAfi9 ii,PrIftiapf 

suggested by Scadron
(45) (Appendix IV) and tabulate the results. 

The KSF decomposition of -Lie covariant VI-function can be 

written in general as(41) 

A.(s,t)Ki 	 (2) 

where the kinematic covariants 	carry the covariant spin indices of 

the 1-function and the invariant amplitudes A1(s,t) are both KSF and 

KZ?. By extracting the covariants 1,,(1  out of the contracted projection 

operators, we can compare eqn(1) with eqn(2) and thus obtain the partial 

wave (Regge) expansion of the invariant amplitudes A(s,t). 
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In the spinless, equal mass case On It) we have 

A(s,t) 	 cj  Aj  (t) (-pq)J  Pj(coset) 

along with the Froissart-Gribov continuation through the equation 

(-PQ)j  A 	
(2J+1) 

(t) - 	jrdZs  A s  (s 	QJ (Zs) cj  

= idZ s A s s,t) Z-0+1 2  
2
F
1
(1-(1+J)11-(2+J).' +J- 2  ) • 2 'z 

 

As this hypergeometric function is regular at both positive and negative 

integer J, Aj  cannot have fixed "kinematic" poles at these J values. For 

a given trajectory (with no confluence points) A = g
2 where g is the 

spinless coupling on spin J (we shall delete the dependence of g on J). 

2. Nonsense Zeros and Regge Prescription 

Given that the residue functions gi  (ft) in the normal (abnormal) 

vertex functions contain no kinematic poles in J we can pin. down their 

(nonsense) zeros in J which arise when a coupling cannot exist. For 

example the normal (NRJ) reduced coupling is (Appendix I) 

L+  J) [g 	+ g 	} 
2 132 

which holds so long as J 1. However when J = 0 the Vir3  coupling can-

not exist(47) and g2 
must vanish. Comparing with the spinless case 

A = g2 cJ  0j 	 zeros(48)  where the g's do not have kinematic 	at J = 0)  

we conclude that g2  ^- J (not N(J) at J = 0. 

If we calculate 11N ---,TN scattering in the t-channel, we 

find 

16 



= 	[g1 PA 	g2 	: CP j :[g] 

= gg1G3J 	gg2 YAG3j1; 

gg1cJi)J 	gg2 cJ 
„in'  
J (K 	g

2 A-% 
m u" J-1)  =  

cJ(PI 	) -  ( ggicA gg2m 	 -1 	gg2 j- J 

and the B amplitude ( Pt= A + 0) behaves as 

cJ  
B = -gg2 	6 (3) 

B, however, does not contain a fixed pole for finite s as g2.--- J, 

J 	0. 

Thus for each free index, the appropriate pole in J due to the 

factors cJ'  cJ  /J
2 
' cJ 

 /(J-1) etc. occuring in, for example, eqn (3) 

will always be exactly cancelled in the related couplings. This "sense 

choosing" mechanism is quite natural in the covariant approach provided 

we explicitly keep track of the 1/J factors. Our couplings then, can 

be taken to be analytic in J with no kinematic poles and containing 

nonsense zeros at the values of J where the coupling is unattainable. 

In the calculations which follow we specifically require g2, 

f2 	
J in e± (ii J) and g2,3, f2,3 	j, g4, f 	J(J-1) in 

C (i 
2 
 J). The gauge invariant photonic vertices will be treated as 

they arise. 
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The Regge prescription is then (Appendix I) 

—ip 
cJ 63J (-V 

+ iiTc4 ) e 	• /VW 
2 sinim 

For unequal masses 

so the question of 

v--+V(6) =J= P•4'°-.A  t 

singular daughters(28) at t = 0, or dispersed Regge 

terms(49) coupled with background
(26) calculation arises. 

For any reggeized exchange of a particle with mass)1, spin J 

we insist that(50) 

(i) 2 
there be a pole at t =p. in the Regge amplitude 

(ii) the differential cross section behave as 

(t -)
2 

dq/dt ti s
2J-2 

at the pole 

(iii) the Regge contribution be identical to the elementary 

one pole exchange contribution at the pole. 

3. Covariant Evasion(47)  and t = 0  

Since we have insisted that A 119,13j; = 913;404f..AoL = 0 to 

preserve the 2J + 1 multiplicity of the spin J Reggeon we will encoun- 

ter 1/t singularities in high spin (and unequal mass) reactions due to 

terms like g Ex (A) = gAcx. - 461B 	. In the sense that the 1/t 

problem of unequal mass and high spin are both due to the boost prescr- 

iption from the rest (c.m.) frame of the Reggeon, the covariant forma-

lism treats both unequal mass and high spin on the same footing. 

As the invariant amplitudes cannot be singular except at dyn-

amical poles these 1/t factors must be cancelled by zeros in individual, 

or combinations of, Regge residues. If we are considering each Regge 

exchange separately, the covariant evasion machanism which causes the 



necessary zeros in the coulaings is the spin reduction to only two 

spin states corresponding to the exchange of a Reggeon with mass 

qrE = 0. Quantitatively this is brought about by the 'internal' gauge 

invariance condition at each vertex 

Acs.,.(Q) = 0 , 	QA(P) = 0 , t = 0 

Questions arise as to the correct interpretation of the 12. LS condition% 

To take an example, consider   J) and write out the full 

(not reduced) coupling 

(2* 	= e;s1 	J) Pp2 	Pit 

PP1 	f2 'P  1] Pp2 	PPJ 

A 91  Cyi 	f1  P.t 	20 I P92  ... Ppj  

c 2m f
2
IP 

4. 	5 f1  m- 	Pyv  

So long as m / 0 the t...Q condition unambiguously requires that 

f
1 
m
- 	

f
2 

= 0 , t = 0 

However we shall observe that explicit 1/t singularities in leading 

order terms occur only for Al  type exchange in processes (1(N-47NleN) 

where m =0, and where this fact has allowed us to involve charge 

conjugation invariance to split up the abnormal coupling (Section 111,1) 

to permit the Al  to couple via f2 
only. 
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Keeping this in mind we establish the following rule to govern 

the e-b. constraint when m = CL: it applies only to the reduced 

coupling and only to those couplings which are not pure momentum coupl-

ings (f1' g1 ). 
Stated in this form it parallels exactly the nonsense 

zero discussion in the previous section. 

Returning then to C(NRJ) the condition is now f2  = 0, t = 0 

and from 
NN(47) and IN --4,1NN scattering it is apparent that f2 4— t, 

t-s,  O. Applying t.L = 0, t = 0 to other fermion vertices we find 

e+ (2 J) : g1  m+  g2  = 0 (no restriction if m = 0) 

(--21 3 J ) 	mm- (gim+ 	g2)  - (g3m4. 	g4) 
	= 0 

IL-  ( 	J) : mm- (f1m- - f2
) - (f3m- - 

f4) = 0 

Boson vertex functions, providekm_ / 0, present no difficul-

ties and.  the prescription requires 

(!..4.  (10 J) 	
12 

), 
	gi 	g2  = 0 

(1 (10 J) 	No restriction 

Vertices involving photons,"however require careful consideration 

in order to avoid placing excessively strong constraints on the Regge 

couplings at t O. One must keep in mind that we are dealing with 

on-shell couplings
(45) and the presence of an external massless photon 

along with a massless Reggeon requires that we treat the vertex according 
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to our equal mass rule. Of the photon vertices which we use C.A = 0, 

t = 0 imposes no restriction on et (X 0J), + ( )( 	(D. 	1r1J) 

and requires that ri:'2  = 0, t = 0 in e (Y 1J). 

It is interesting to note that once gauge invariance is imposed 

upon e2„.  (10 J), internal gauge invariance is automatically satified 

for e 	 g w4 0.(f0J). The same principle applies to 	11J), fe10,,P(1J) 
1%,  

and twr..( Z0‘ J) and we say that external gauge invariance implies 

internal gauge invariance at t = O. 

4. Covariant Conspiracy  

If two or more trajectories cross at t = 0, the resulting 

confluence destroys the KSF property of the factorized residues and 

allows certain residues to conspire together in a singular fashion so 

as to keep the total reggeized invariant amplitudes finite. Conspira-

torial exchanges which couple to the NN vertex are termed(29) Class II 

(M = 0 ) or Class III (M = 1) conspiracies (Class I, M = 0 is evasion). 

Such conspiratorial solutions (but not always) allow the cross 

sections to be non-vanishing at t = 0, hence predictions differing 

from those of the evasive solution can be made. From the covariant 

point of view, couplings which cause a 1/t factor to appear in a lead-

ing order contribution to an invariant amplitude, also give a non-

vanishing contribution to the cross section at t = 0 - unless evasion 

is chosen. Whereas, if they do not give rise to a lA factor in the 

invariant amplitude, they will not contribute to the cross section at 

t = 0 - unless conspiracy is chosen. 

5. Gauge Invariance, Kinematic Zeros and Singularities 

Covariant decomposition of photonic processes involving invari- 

ant amplitudes free of kinematic singularities and zeros are now 
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understood
(42
'43'51). The till-function expansions are of the form 

Ai 

ti 
where k M = 1A,,,.= 0. To guarantee gauge invariance 	can be 

written as ak  =yob where, is the gauge projection operator(42'43) 

= 	 k.Q 

Removal of kinematic zeros of the amplitudes is insured if ,,contains 

no singular terms; hence linear combinations and finally multiplication 

by k.Q will be necessary to cancel such terms induced by the gauge 

invariance requirement(42'
43)
. 

In a manner similar to that of the previous sections covariant 

Regge poles in processes involving a photon arise from 

= 	(p) 	(P) : rei,t  (Q) 

where the photon vertex is gauge invariant, e,,,(Q ) k, = 0 if 

= (;44 (0/4,44'/A. 

We take Q = 1(k k') to be the relative momenta at the photon-boson 

vertex (k'2  = y:2). 

We can choose the vertex functions to be KSF (and KZF) in 

t =A2 from the start thus ensuring a KSF (and KZF) development 

analagous to that of eqn(4), with the possible exception of 1/t factors. 

22 



Significant advantage is gained by factoring out the gauge 

projection operator from the coupling, because the identities 

= SJAiwp. = 

= 0 

greatly simplify the structure of the contracted projection operator 

J 
vrpL; (P1'1  ; 	) = (P„,j; (P,Q ; a )1 Ay. • 
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III PHOTOPRODUCTION 

1. YN 	11N  

A. Photon-Pion. Vertex  

The abnormal VAJ vertex Z.;,(YOJ) corresponding to normal 

exchange, 0+, 1-1  2+, ... is 

	

(Y 0J) 	=7(t)E ci<1  (Q6.) c*2 	Qaj  

since 

	 G41/4 [g 	- k itA 	(QA) = E.oe  (us) . 	
k.Q 

The gauge invariant normal vertex is 

where 

g g 2 du. 04 	g2 81-k0C 

     

g2 g2 
Q1 

 

• 

   

      

Removing the singularity(52)  

Ci.A.(( 0J) = g(t)k.Q gAtoci  - goicigitd gc<2 ". Qc4j 
k. Q 

= 	g(t)k.Q g ./.4.0t i  Q0c2  .• • Q (X j 

where 	g
2 

= 21(t) k.Q 	 • 

A more pedestrian way of arriving at this is to require explicitly 

194., c. ((0J) = 0, which establishes the relation g2  = -k.Qg1. The 

residue vg(t) is now KSF in t (at least at k.Q = -4(t - 	2) ). 
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. B. Pion Reggeization 
• 

The Vito( vertex in conjunction with the pion trajectory near 

the pole, c4.(t) --b0, as t --•AA2  (k.Q —, 0 and we have dropped the 

prime °n it.), ) causes concern as its gauge invariant structure appears 

to vanish there and to consequently require a nonsense zero in the 

residue at t =,AA, oL = 0 in order to preserve gauge invariance. Were 

this the case, the cross section which is proportional to t2(t)2 Ig 12  
(Appendix IV) would not have a pole at 0.C. = 0 and the pion exchange 

would be said not to reggeize(15,16).  That this is not the case can 

be seen by noting that the coupling is indeed gauge invariant at the  

pole and the residue is not obliged to vanish. This is to be expected 

as the elementary pion pole amplitude is gauge invariant, on its own, 

at the pole and we expect the reggeized pion exchange to coincide with 

the pion pole exchange at the pole. To show this we demonstrate that the 

Regge vertex '*:et)[k.Q, g, v4  - QiA.Q04 

vertex - 4eQ imply 

egct.e) = 4e 

and the elementary pion exchange 

 

Assuming the nucleons to have equal masses, G - parity conser-

vation at the NR vertex demands that
(45) 

(NRJ) G  
kfV1I PP [ g1 Ppl  ÷ g  2 	2  P

51,3- 

C 	(NNJ) --9-. 	I [ f1 S 
o  

1 5.L pi  ... Pp 

which we rewrite as(4o)  



t+  (0,1) =. 	(1 + . Cn (-)j) g 	P 	+ g P 
1 	91 	2 	u  ,2 	7 j 

(NRJ) = + 	(1 - Cn  (-)j)f2\615N‘y
1 

[(1 	Cn  (-)J) f1Y5P
p1

lP 

2 

where Cn = G (-)I  is the charge conjugation parity of the neutral 

member of the exchange multiplet. We are also led to define C-normality 

(Cn(-)j  = 1) and C-abnormality (Cn(-)j  = -1), which are meaningful when 

either G or C (I = 0) are conserved; in the same way that P-normality is 

meaningful when parity is conserved. 

Now we calculate the general case of abnormal and normal exchange 

in YN ---flIN and later extract the specific case of pion exchange which 

couples via f1, the C-normal, P-abnormal coupling. The Regge form of the 

covariant VI-function is(53)  

: (9-  : 	(wcv) 

k.Q Z(t) Y.5  [ (1 + Cn(-)J) fl(t)r(Kt (1-Cn(-)J)f2(t)11Wk  I 

Using the contracted projection operators of Appendix I, we can 

drop cimband L 	so that 

'0%' j;)-1 /4  = 
cJ t 

P 6? J )4. J 

= 
J2 

Jr 

gPA 	tj 	A) 1;44  
2 	,D1  rot' + 	A) 1-91- tA- N-Y -1 • 
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=k.Q 
5 	IP'. 

Thus, we can isolate the Regge contributions to the isospin 

invariantamplitudes.0+'°'-)  where 	• 

I 

and we use the traditional isospin decomposition(55) 

= 	x(+).8003 	 ) x(  -) i[toc 1:0(3 I 	auoitoc  . 

In the t-channel, 2:(+)  corresponds to I = 0 exchange and 7:(43'-)  to 

I = 1 exchange. Our kinematic covariants are essentially those of 

CGIN(43'55)  

•,&., 	= y 
"5 = 	YAk 

2 
= 5 frk 	

k.Q P
/4 

= y 
5 (k.Q 	- k.1$4.) 

4 
5 (k.P 6 — AD' ) =‘‘ (k.PX 	P" ). itA 	5 	As•  

For normal exchange, 

" - = C+  (NEU) : o(S)J  ; e (Y0J) 

nt) (1 + cn(-)j  ) [g1  G?0(  €c<A.  Q4) g2)(999j;c4EculgA)1 
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The abnormal decompositions are given in Appendix III, and the extraction 

of Regge contributions to the invariant amplitudes parallels that in 

Appendix II. The Regge contributions to the invariant amplitudes for 

both normal and abnormal exchange are given in Table I. 

Returning to. pion exchange, the trajectory contributes only to 

A 2  , giving 

( 
2
) - 	 04((t) -1 A 	(Nr, t) 	(t) 	 (1 	_400  • f1(t) (- 0  

In the limit 0((t) --b0, t --tAA , 

. II 0,1 	(t — p.2)-1  

ry ( - ) 	-4 	2 
A 	gcokx ) f1  (/A) 2 

Now compare this with the elementary pion pole contribution 

4e g1TNN  

(t - AA) 	
at 

which is not in general gauge invariant. At the pole (k.0 = 0) however, 

the gauge invariant covariant lk.dtA  .becomes 	and 

^'(-) pole 	ke 'IYNN  
A 2 2 (t 	) 

where sf = (s - ) /2 at the pole. Comparing the elementary pole contr-

ibution to the Regge contribution, at the pole, of the pion exchange and 
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identifying fi(g) with glImi  we extract the desired relation 

g(),e) = 4e. The reggeized pion contributes to the cross section at 

2 t = 	and is identical to the elementary pole term there, as required 

in section II. 

P. Now we examine the kinematic singularity at t = 2   in A2  due 

to gauge invariance as suggested by Ball(21) and show that it does 

not in fact exist: It led a life of peaceful obscurity for eight years 

before the current interest in kinematic singularities and zeros in 

scattering amplitudes resulted in its removal by Ebata and Lassila(56) 

and Henyey(12) In the covariant treatment of /(N —. 1(N such a singu-

larity in .Z2  would have appeared in other amplitudes as well; it was  

this difficulty which forced us, in collaboration with Scadron(4o) to 

remove if at about the same time. 

Consider the eight invariant amplitudes Bi  for the process 

N/N 	TM (Appendix III) which Ball(21) showed to be KSF. Two of these 

amplitudes, B
3
, B
7 

vanish under the subsidiary condition E,k).k = 0. 

When gauge invariance is imposed in the form k 	= 0, two relations 

emerge 

k.P B
1  + k.Q B2 

= 0 

k.P B5  + k.Q B6  + B4  = 

and the first one, related to 'N —.ITN gives 

B1 
	

B
2 

= k.Q - 	k?? 
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where B1 
 and B2 

are KSF. If we are to preserve A2  as KSF and KZF we 

are forced to assume that B1 
 has a kinematic zero at t = µ

22 and not 

that 72 has a kinematic singularity as was assumed by Ball. A similar 

arguement requires such a zero in B2 
at k.P = 0 = (s u) /4. In the 

covariant formalism a kinematic pole in A2  would have to reside in 

the coupling 7(t) and would appear also in a-3  and; (see Table I). 
It was this unexpected requirement which first drew our attention to • 

the problem. 

As a final comment on the amplitudes for abnormal exchange 

we note that they all remain finite at 0( = 0 and with the assist-

ance of the nonsense zero in f2
(t) at e4 = 0 (f2  o(), the term 

f2 t+ 
is never singular at 0( = 0, regardless of 'signature. The 

one exception to this of course is A(2)which contains the dynamical 

pion pole. 

The result, that the pion reggeizes, is independent of the 

masses and spins at the fermion vertex. When we examine the covariant 

Regge expansion of IN —.TM (Section 	2) we again find that 

the invariant amplitudes to which the pion contributes become pole 

like near t =1,0k21  and all others do not as they develop extra zeros. 

In a similar fashion the rho trajectory reggeizes at the )e J vertex 
(Section III, 3) and in general the Jo  particle trajectory reggeizes 

when coupled to the normal ("1,10J) vertex at t = m2 ,J = Jo. 
o 

C. Conspiracy  

Unfortunately the contributing of the pion to the differential 

cross section at t =ikk2 does not solve the problem of charged pion 

photoproduction in the near forward direction (t = o). A sharp forward 

peak has been noted in 1p 	it+n data up to 16Gev(3) which because of 
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its width and energy dependence is strongly suggestive of pion dominance. 

However, the Regge differential cross section for single Reggeon exch-

ange (Table IV),
(85) 

2 
dt --N t f [ 

(mg1  + g2)2 
	2 
, 4 gi V

20C-1: 

 

t2 042 f  2 
5 \ 0 + 

	

t 2 2 	2 	20C: 

	

t f2 	I .r 

where 0‹+ (c(-) corresponds to the P(C) normality of the trajectories, 

clearly vanishes at t = 0 for finite couplings and is inconsistent with 

pion dominance. 

In order to prevent the cross section from vanishing at t = 0 

without abandoning the simple model of single trajectory exchanges we 

are led to consider singular residue functions. Specifically, if the 

pion couplings of 'gfl  behave like t
-1 near t = 0, then the pion indeed 

contributes to the differential cross section. There are however far 

reaching consequences of this approach. 

In order to preserve the analyticity of the invariant ampli-

tudes we are obliged to exchange a trajectory ( 11c) with opposite 

parity but otherwise identical quantum numbers as the pion and a third 

trajectory (A,c1) with quantum numbers identical to those of the Al 
and 

Al 1 
along with all of the daughter trajectories is precisely a Class III 
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conspiracy (M = 1 Toiler pole) and we shall see that having made the 

demand 'that the reggeized pion contribute to the differential cross 

section at t = 0' the enforcement of the basic requirement of analyt-

icity of the invariant amplitudes yields the necessary conspirators. 

Consider Table I. and the amplitude A2. If we are to keep 7'2  

finite to leading order ( NJ'
01f1 

 ), then the normal ly
c 
exchange must 

be involved to give 

01 + 2f g1  = finite, t = 0, 

The 1/t singularity in Zfl  is cancelled by a 1/t singularity in fg1  

which leads immediately to the requirement 

[mg1 	g
2 	

= finite, t = 0 

Alto keep A finite. However we have now introduced a 1/t into 1.'"g
2 

and 

in order to keep A
3 

finite a trajectory with C<.(0) = 0(1c(0) -1 has 

to be involved along with the relation. 

2 
f2 	(J -1)7g = finite, t = 0, 

2 	J 2  
• 

Once we have reggeized, the 1/64, will be cancelled by the nonsense zero 

in  g2 (g2 	 0). 

To pursue this examination to order Ve(1." 	we must consider 

daughter trajectories which, because of the unequal mass (1SIT) vertex 

will have residues singular in t. Daughters in this context arise from 
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the expansion 

c 	6; = J V(A)J-1  - J (j  -1)(j 	p 
(6)2  g(t)2  v (A)J  -3  J J 	1 ! 2(2J-1) 

+ 	P(&) Q(&)V(A)j-5  - (1113(&)
6
Q(&)6\F.( &.)`'-7  

(J-5) 2: 4(2J-1)(2J-3) 	(J-7)1 3! 8(2J-1)(2J-3)(2J-5) 

• • • 

where P.A =0, \r (p) = 	, P(i) = P 

and because of the one equal mass vertex the daughter trajectories are 

each two units of angular momentum apart and have the same signature as 

the parent. 

Examining first Xi we note that only 11 c  exchange contributes 

and consequently the form 

j 
2f 7

J  
[p2ei 	mg2} 

-1 0C must be finite to leading order ('1 	) and all daughter exchanges 

must exactly cancel the singular residues of the lower order terms. 

This fixes the form of the first daughter residues as 

P2  Pg1jD1 	m  Pg21 D1 

(J -1)(J -2) P2 q(6, [P2 fg1  + m7g2] 

Turning to the normal contribution to 74 and rewriting it as 

2(2J-1) 
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c =L i 1  (P2g1  + mg2)J10; + 
4m gl  JP; J2 m 

t 	
( 
	)2 AO I I  

g2 v̀  
n
4"4 	F̀J-1 

we see that the first term poses no problem. If however we expand the 

above and include the abnormal contribution and the first daughter, 

5 (P2g1 	mg2) voJ-1 

t s- 
+ m 81 \*/ 

,.. 	
) 

	

J-1 	(J-1)(J-2)  p2q(A)2 v J-3 + 	) . 	/ 	2(2J-1 

t - fg2  c2( p )2 	(J--1)(J-2)  
( 2J-1 ) 	\r 	•.. 

4.  I [11 	r  
4m gl D1 ‘' 

(t -AA) 	f 	(J-2) 	J-3 
2 777) 	

+ 

we determine the form of [41]D1' 

J [I:  

	

81 D1 	
(J-
2(2J
1) 
)(j-S2) Q(A )2  

2 (J-2) t - )4.4. ) 

which in turn determines 	g2  D1 

2 

CP + 2 

f 
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[2g2 	D1 = (j4J-;(21:7:1)2 	.P2  q(4)2  

P 	
2. 2 	lt- AA  I 

2t 
(J-2) 	[..d.F. I 
TT:TY 	g  '2 

and from the contribution to 

[i'f2 D1 
2 .2 (J-3) [6-2)(J-3)  

= P Qk&) 07.77 	2 (2J-1) 

Returning to A2 
we see that the problem, thanks to the m/t in 

the abnormal contribution (Ac1) is identical to that already solved in 

54, with the exception of the pion daughters which must cancel all of 

the singular pion terms exactly and conspire with no other, terms. 

This straight forward technique of cancelling singularities 

can easily be continued to all lower orders and we are left with non 

singular Regge contributions to the invariant amplitudes with leading 

order terms 

Al  N 4. 27 [m(mgi  + g2) - g1 (- r̀)  § CC 
tiTc 	Uc. 

i,
2 	

_Agf  (_v) eCt 	€,Eiy ce.g - 2 figl  (-Nr) cc ii 

()Clic-1 
714", - 2f (mg/  + g2) (-\r) 	 r 11oe 

"c 

which contributes to the leading order differential cross section 
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2 
V 
2 
dg7 	.. 

^J 	kgf dt 

2 2 	2 
V2°411  + (4) (2fg1) 

2 2° 
Ti
c 

  

   

2 

[21 (mg1  + g2)] 
2 c(A1 

The presence of the 	
eV 

l/t in the Regge contribution to A2 
allows 

as well a Class II conspiracy between Cn(-) = -1 and C (-)j  = 1 

abnormal trajectories. For example, a conspiracy is clearly possible 

e 	I between an A and that from a Tr-like (B-like) trajectory c (B) 

with C( (0) = 04.11' (0) + 1. The defining relation is 

(J-1) mkt2  
g f2 J 	t 	e'6f2 = finite, 

I  " where g f2 	
cst, 7,;f1  e. l/t. 

An Al  - 11 conspiracy will not produce the sharp forward peak and is 

not considered in phenomenological fits(10 '
12 35). It is however of 

academic interest as the singular pion-like couplings cancel the .1/t 

in rk2  and allow the Al 
couplings to be non vanishing and to consequ-

ently contribute to dtr/dt through Ak. Were the 1/'t not cancelled the 

resulting g f
2 

eJ t behaviour would prevent any t = 0 contribution. 

D. Evasion 

In the process Y13 	TI p no forward peak is observed(10)  

which is consistent with the absence of pion exchange (forbidden by 

C-invariance) and evasivecaand B amplitudes are used to effect a good 

fit(10,57).  From Table I we see that B and C.0 amplitudes are non singular 



to leading order and it is easily shown that daughter exchange removes 

the lower order singular terms. No evasive constraints are required. 

The dip in the 63-contribution(1o) occurs in the covariant formalism 

through the vanishing of the 6-(X0 c4) coupling for 0(.. = 0. 

For charged photoproduction it is possible to exchange an A
1 

and the apparently singular contribution to X2 is rendered finite by 

imposing the C.CS. condition on the nucleon vertex which forces 

f2 
 n.  t, t 	0. 

E. Helicity Formalism.  

As IN --+110 is the most commonly considered photonic process 

and as most authors prefer to use helicity amplitudes and the constraint 

equations imposed upon them by analyticity as the context in which to 

discuss evasion and conspiracy, we here connect their approach with 

ours. 

Following the -standard procedure of Gell-Mann et 
al(58) 

we write 

1- IX +/A 
7; 	= [604)-ti 

t  where fx,(4  = l  a3; '`2 	(s,t) 

E9t is the t -channel scattering angle and f2,1 2,3; 7,2  ',4  (s,t) is 

defined by Jacob and Wick(59)  . The 72,„,„4.  are KSF in s. 

It is traditional to define the asymptotically parity conserv-

ing helicity amplitudes 

3? 



- _ 	+ 
fA = 	- f-)04. 

Actually 

f - ol 
sin e  t 
2 fol ; f 	= 	+ cos (E)  

.11 	11 	t 11 

and we see that f
ol is parity conserving at all energies and only 

+ 
f11 contains an opposite (+) parity contribution one order below 

leading order. This point is not emphasized in the literature and it 

came to our attention when we calculated the Regge contributions to 
+ 

the 	Table II). It is also made by Henyey(12). 

Expressing the 7.70j, in terms of the invariant amplitudes,' 

p? 	= 	k LA' - 	+ m A4  t t 	1 	2 

ir
0 
 = korT 

	

1 	Al 

f11 = - ptkT A3 

P.+  = k [in 	- p 	] 

	

11 	t 	t 

enables us to calculate the Regge contributions given in Table II. 

The kinematic notation is given in Appendix I. 

If these equations are inverted we see that the following 

constraints are necessary if A
2 and I'1.1- are to be KSF 
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i 701  + 7 11 	o ( J-E) 4" (5) 

7
11 

+ ol  N 0 (m2  - t/4), t -4 4m2  

2 

	

+ 2m 	o(t 	$ 11 	/4-k 	01 

o1 	(t 	(t-du) t--11,  41112  • 

The first constraint relating positive and negative parity exchanges 

at t = 0 is the traditional IN 	ITN conspiracy relation
(10

/
60) 

It can alternately be satisfied by each amplitude behaving like 

near t = 0 (evasion) or by the combination behaving like 47E 

(conspiracy). 

In the case of pion conspiracy the CV contributes to T 
01 

the Kic  and the A
c 

contribute to f + (see Table II). It is readily 

seen from Table II that eqn (5) requires to leading order that 

	

F
rrigfi  + 2Fg2] 	ft , t 

which is just 

igf1  + 2Fe1 	cst 

t —0 0 

mgt g2 ft 

and the conspiracy analysis proceeds exactly as in the previous 

section. If gfi  and fg1  are non singular, the solution is evasive 

if 
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and-if they each behave like 1/t it is conspiratorial. 

(10 11) .x  Although the f m.  have been reggeized' 	, they still 

contain kinematic zeros at pseudothresholds t = 4m
21  t =p1..2 and 

kinematic singularities at t = 0. Wang(61) has shown how to remove 

the t singularity by writing 

^4_ 	- f x).4.  = K70". 

where the fxjAare KSF in s and t and are the proper helicity ampl- 
+ 

itudes to reggeize. Because the 	are not KZF in t a constraint 

equation is still required to preserve analyticity at t = 0. 

The problem now arises of the proper form for K-  (t). Looking 
01 

attheexpressicnofthefxkL intermsoftheAiand keeping in mind 

that A
2 

does not contain a kinematic singularity at t = ite due to 

gauge invariance(21)  the proper K factors are 

-1 4 2 Ko  - = (t - µ2 ) 	(t - 4m2) t K
11 
- = (t - 	) (t - 4m2)-7  l 

-1 

K+ = (t - A
2
) 	K +  11 = t7(t-,u.

2
) 
-1 

ol  

We are in accord. with Henyey and differ from BFJ(35) by a factor of 

2 kt which is just necessary to cancel the pole due to gauge invariance 

(BFJ use K01  = (t - km
2
) 	NrE). 

The t = 0 constraint equation is 

2m fCa  - f11 	0(t) 	t 	. 
	 (5) 



And we note agreement with a recent paper by Daboul
(20)p BFJ use the 

constraint 

ev— 	2 0%-• + 
2m foi  + 	f11  e.) 0(t) , t ---• o . (6) 

Even with pion conspiracy it is necessary to introduce a linear 

variation of the pion residue with t in order to reconcile the height 

of the forward peak with the known value of the pion nucleon coupling 

constant(12'35).  Such a parameterization leads to a zero in the pion 

residue function which Arbab and Dash
(34) suggest is to be expected 

from 0 (3,1) considerations. One has complete freedom in such a para-

meterization provided that the pion pole term is recovered at t =
2 

 

(i) Pion Reggeization 

The arguement that the pion reggeizes which we have constructed 

for A2 applies identically to fo1
since, for pion exchange 

t 3/2  "'(-) f
01 

= - 71.6 	A2 

This particular sense-nonsense amplitude, for pion exchange, does not 

vanish for Ocri  = 0, it does in fact reproduce the elementary pion 

exchange at the pole t =)btil. Had we used the K01  of BFJ it would 

not have been pole like at OC = 0, and would not have reproduced 

the elementary exchange. We stress again that this remarkable situat-

ion occurs when the exchanged particle is identical to an external 

particle. 

Next consider f
o1 

 for pion exchange 
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2 
sin 9  — fo1 - fo1   

sine  t "4-) 
ptkt 2 " 	A2 

Now, from Appendix I and ref (10) 

N (s,t)2 = t(p kt sinet)
2 

 

=icOtu - m2"  (m2  - u) - m2u4  

So, 	fo1 	 2  = 	N(s,t) 1(-) 
2 Does N(s,t) = 0, t = AA. ? No, since 

mf  2N  2 , 	2x 
LI\SIJA J 	[s(-S -I- 2m ) 	m 

2 2 
= 	(s - m

2) 	0 , s 4  m
2 

2 2 4 - du. Nr 

2 2 	ef (m) 	. 2 
-1 =  	4 	I 	= _ IPJA- 	f 

1 
()A? and fo

) 
•ssor 

 
(t—Jul) 	7.(t •—pf)  

the pion pole as expected. 

The amplitude fo1 
does not exhibit pole like behaviour, how- 

ever the differential cross section 

  

2 

 

   

2  
dt 'Tsk2 fo1 sin el 

   

  

2 2 

sk2  fo1 

  



does, provided that f
01 
 does not vanish at C( = 0 - which it does.  

not. 

(ii) Gauge Invariance  

We note that for massive photons (Appendix II, Table III) there 

are two additional amplitudes foo 
f
10 

which must vanish as AAv-4 0. • 

This is effected by requiring, 

g 
2 

it-"2 
4= 0 (gi  7. hi  in Table III) 

which is just the external gauge condition which we previously derived 

by requiring that kAA. CI, (10J)= 0. 

F. Superconvergence  

An amplitude Of) which satifies a disperSion relation 

+ ea 

A(!) = 	d kr 
- 00 

and is subject to the bound. 

I A(Nr) I 	E 
	

E < - 1, 	large 

satifies the superconvergence relation 

10 OP 

1111 AN.  = 0 

-c4 

If A(V) is even under crossing s 	u 	-\,-) the superconvergence 
relation. is trivially satisfied. Consider then only amplitudes odd under 

crossing. 
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. 	Using CGLN's isospin decomposition and crossing relations we 

A3+'°)  have A 1,2,4 an"
A '
3A3+'°)

o)  odd and the rest even under crossing. The 

.̂(0) amplitudes A(-), A 	correspond to I = 1 exchange in the t-channel 

and 1<+)  corresponds to I = 0 exchange. Treating 1(+), IC-)  as due 

•" 
to the e  -like part of the photon (isovector) and A(0)  due to the 

tx.) -like part (isoscalor) we deduce that in the t-channel B, e  con-

0.() tribute to A , 11, Tic, All  A2  to A 	and La contributes to A(+). 

Looking at the asymptotic behaviour of the 711s in Table I 

it is clear that there is a superconvergence relation on A
3 

tu(o) which will be dominated by Ca-exchange. For A , there is a relation 

for  A3  ) 	
,̂(0) 	^.(-) 3 	dominated by e  and a trivial relation for A2  . For A 

there is no immediately obvious relation. If however we take the com- 

bination 

t ^'(-) A1 	+ m 	- .4 A2  

only the pion contributes and the combination is superconvergent at 

t = 0, 	OCT/  < O. 

In summary, we get relations for 

"-(1- A
3 
' 	(V ) 

c< -2 

;w e 

"(-) 	•-•(-) 	t ^'(-) 	 c( 
-1 

Al  + trIA4  - 	A2  

all of which have been noted(14'62'63'64'
65). However only ref (64) 

includes all three. Our point in this discussion is that given the 

asymptotic behaviour of the invariant amplitudes, the superconvergence 

relations are obvious. 



2. Reggeization in 	.1)..N 	14,4. 

A. Kinematic Covariants : Calculation 

The 11_ function is 

= Coy- 
+ 	

( .2" 
13 

J) : PJ (i ar) 

r°,, ( 	J) 1/4- 	6Dj  : 	(X0J) 

which we decompose in terms of the kinematic covariants(43) 

i:e'  

4"/J4. 
= Pv,  ,Cje 5 	 ' = Qv, (k.P L 

01-.11-v• 

6 
crt= Q v 	- Pv. Pl,, - /Am. 

k.Q Pv. Piw - 

k.Q 

= Pv. (k. P X 

= k.Q gd„.v. X 

ch7 = 	1CO" 	PA,, 	g;,. vs  X  

8 = k.Q 
‘4 %.).)..st 

where the equivalence theorems of Scadron and Jones(41,43) remove the 

last two (we drop itl y- labels) 
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- m+  X '. 9 + 	 •••• 6 (m+  + m_) - R1  + Rif 	- --4 (t - km2) 
Av-= 	 + 

mIc10   
+v. = _ (\r- -M') i1 _ 

21  (t - 4m2 )2 

7  + m 

6 	7 + • + 	[..1\ 

- 4 	5 + m_ cm+  + 	118] 

we also require 

3 	3,6 	4,7 9 ,z7. X 	= 
Jx, 

‘), 

where we recall that )‘vU1(N) = 0 (Appendix I) and conse- 

quently 	= 0. 

Proceeding with normal exchange the it-function is, 

tq ▪ = )( [f pp  P + f2 	P  9 2 Pv+ f3g9lv P  2 + fl+g91 v49 2] 

	

,vuy 5 1 	7  ft 2 

Al-c<1 (QA) 7(t) 

= „J f1 	5 Pv lY ;0(1 L-Aka1(n-'' 6')  f 2 	PAPP15c(1(LIL°C1 (q h)  

f3+ 	(P 	 +  u 5 ')( 

	

92 15492; ''41 	(Q61)]7(t)  5 Nrj; E&) 1-0(1 

c f(t){ 
-j(J-1) f VPN (9 - 0--1) f 2  [N‘5  P_ T e. 

1 5 ” 	 Nr 
J
2 	
(J-1) 
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- T \TV' ; 

- 5((4 ) 	Q(4)2  Y(4.) 0J-11) pv. Nip 

5  [— G, ,„,(QA) P:3- 4. Qv ( A) N" PJ  

Q(A)2  Pv. (A) 15, 

E,..1/4,t(QA) P j"  + Q(A)2(YE,,.(QA) + NpAv.(( ) 

+ (J-1) 

fk )(5 

 

g(a ) 	 J- 1 g j.' 

 

and using 

0.(6) Nµ = + 	2Q.4 ) 	N" 

m - 	• 5 #'(A) Disp 	5 t ,= 0 	4m+
2  N 

A‘ 

`L(.5  Qv.(4) 	= 	Qv  NA.1/4 	21t--6"c Pv, 

ft 

	

-I 	5  Pr. Pv  (IN) 	_ 	 

Je..,(n) = 	Qv, 	) 	
Py 

Wq; - 
[ 2 	 Q( A )2 [t  (n-1)] 

m+m-"QJ-1 

along with the abnormal VN --• 71 N* decompositions in Appendix III 

we extract the normal contributions to the invariant amplitudes given 
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in Table V. 

Abnormal exchange proceeds in a similar manner. 

_ 

ulitkv = fr1P91Pp2P,r g21591139213,e g3gp1. Pp2 g4gP1v,P2] :9 :2Wk.Q.gpx41 

k.Q2(t) 1 P 9; OL 94a:1 g2 10910 91;041 g)u"4-1 1 

J 

	

g3 @Nr;o(1 g,04.X1 	
AN

P2;0c1 g.,-"41 I 

ri(t)Cj 	 t 	f 
-  	J(J-1) g 	Pv 	(yj 
J2(J-1) 	1  

‘ 	I 
- (J-1) g2k.Q p„,.[\44.' G - Pi,,L(0,,(A)(Pj + Q(4)2Y(b..)(3);_i ) 

1 	1 	t 

	

+ (J-1) g3 k.(4- gi.ky &j. + Q„.pj„ 	t, )2p,,( 

+ g k.Qkg 
it 
J + Q(&)2 

	
" 

(Ygg 
1 	%. + P 
14" 

_It 
(A))Q9j_i 

- Yx. j63' y. ;  
t j it 

+Pju~ (pv; 

" I + Q( )2 Pp. J-1 v; 

where we use 

m r 
) = 	+ 20..66 	; 	Q v.( 0) = Cay. 	2gt. 	 Pv. 

y(6.) -it ft - 4m2 
Py r 

Y.6)  ( 	= 	Lt + km+m...] 
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I 	) - 

and decompositions 

k. 	+ k.Q 6 + 

k.Crei:k. Qv. = 	 4 + k.g 	+ 

k.g ju.  Pv. 	= NrX4 	k.Q 9 

57
•••• k.g PiL 	= 	- k.g 	+ k. Q, 	+ vx10  

k.g 

 Pew 
 Q  ( 	_ 4  	4".(14 k.c.aR5 	Nik.Q  

.7. -2k.Q 	9  t 	vl.c.  

k.Q1ciA  Qv.(6,) = 	k +. k.Qx7  + 

k.q Pp. g, (A) = -4 ktQ S\3  + k.( (,6 + 

to get the contributions to the abnormal invariant amplitudes given 

in Table V% 
+ o 

B. Pion Reggeization in 14 	Tf N*4-+  

The pion, as in the analysis of 1.1\1--. 11N, can only be. 

exchanged when the external pion is charged. Examining the abnormal 

amplitudes -in Table V and recalling that g2,3,4  = ocg2,3,4  
--0 0 we find that pion pole terms appear in A3  and A8  

t 
	P 
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C- 
A
3 	

gg1  (-V)
04. 	

b Tto( 	; A 	- gg3  (o( -1)(-‘1' )
04 	lioc  

- 
oC 	 it 

and for 	oo t 	1.12  

"A
3
- 

eg( )....e) 01( ),..e) 

- p, 2  ) 
'-g'(m2 ) g3( 2 ) 

(t - 

and as g(p2) is not constrained to vanish by our arguements in section 

(III.1.A) the pion again reggeizes at't =ile in.'N --olIN*. However, 

once again the presence of the (/50J) vertex gives rise to a differen-

tial cross section for single Reggeon exchange proportional to t 

(Table IV) which vanishes at t = 0 and does not appear to predict the 

behaviour of the dVdt data of ref (4) which rises from small t to a 

maximum near -t 	2, then falls as e
12t out to -t 	0.2 Gev2, after 

which it becomes roughly equal in slope and magnitude to the ''p 

cross section (e3t). 

C. Conspiracy in 'p --v. 	N* 

Because the process involves four unequal masses the daughter 

trajectories are spaced by one unit of angular momentum. Their residues, 

as in YN 	are singular in t and are required to cancel the singu-

lar terms in the expansion 

c/.01  = J\r(Li)J..1 	J(J-1)(J-2)  p(ti)2 sq(a)  Nr (la)J-3 J''j 	1. 2(2J-1) 	+ 

„TN/J.-1  - J(J-1)Nr J-2 (P.6.Q.&) 	- J(J -1
2
)(J -2)(P•P.Q.p, )2\r „1. -3 

J(J-1)(J-2)  
P(A)

2  Q(d)2 \I J-3 
1. 2( J-1) 
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The first and all other odd daughters have signature opposite to the 

parents', even daughters have the same signature as the parent. Remov-

ing all of the singular contributions below leading order by daughter 

exchange and ignoring the rest, we reggeize and arrive at the amplitudes 

in Table VI. This permits a simplified conspiracy analysis. 

Considering Class III pion conspiracy we let Zgl p-,  1/t in A3  

and cancel the singularity with the 1(c contribution to A
3 

2f f1  + g g1  na finite, t 0, 

which implies the following relations 

g4 
g 	+ 2 7' [m+  (f im_ - f2) - 3 	finite, t--, 0, ;1617  

gg3 	ot. 
( 	-1) 	[ - 	f m-  - f 2 

	
finite, t --• 0, rt; 

t2 g4 25f4171_ P., finite, t ---• 0, 
• A2,5 

"gg2 - 2f [m+  f1  + (f1m- - f2)]N finite, 
	--) 0, ALF  

The singularities cancel consistently at t = 0 and permit a non 

vanishing cross section there. The M = 1 pion conspiracy along with t-

dependent pion residues, should be able to account for the sharp peak. 

As for the rapid rise of da-/dt between t
min 

 and -t N ill
2 which appears 

to suggest a vanishing cross section at t = 0 the question arises 'how 

can a pion conspiracy predict both a'sharp forward peak, and a 



vanishing dq/dt at t = 0.? To speculate on this consider the consp-

iracy relations for A3  and A8  and note the couplings g;g" and g3g 

which appear in the pion pole terms are connected through ffi  , and 

could themselves conspire at t = 0 to effect the rapid t behaviour.(86)  

Such behaviour can only happen in a process where the pion contributes 

to more than one amplitude. In the 'KID 	Tr+n 
s
ituation once one 

accepts pion conspiracy one has a non vanishing cross section which 

could only be gotten rid of (should a turn over ever be found in the 

forward peak) with difficulty. 

Finally we note the similarity between the conspiracy constr-

aints and the internal gauge constraint on e..-(1-?  — 3 Ji\ . 2 

D. Evasion in 1(14---NIN*  

No 1/t terms appear in leading order contributions to the 

amplitudes and lower order 1/t occurrences can be dealt with by daughter 

exchange. At t = 0 the internal gauge condition will impose constraints 

on the fermion couplings but not on the boson couplings. 

Pion exchange is forbidden (C-parity) in lip 	TVo*+ and we 

expect the process to behave like %p --4 11ep (c.) exchange). 

E. Fits to Data(87)  

For a discussion of attempts to fit )4 --41X N*44 see Harari 

in Ref (1) and the recent paper by Gotsman(66). Gotsman using a vector 

dominance - Regge model produces a good fit to the data up to 8 Gev 

and in doing so uses four independent residues for each of normal and 

abnormal exchange. In the covariant formalism the number of independent 

residues is given immediately by the vertex function. 
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. 3. 	N 	VN 

A. Photon-Vector Particle-Vertex 

Consider the normal ois 1 J) vertex. A spin count reveals(45) 

x 2 x 3 = 3 normal (or abnormal) couplings because the photon has 

only two spin states. The vector-vector vertex has five couplings, 

but application of gauge invariance removes two since Q = 0, leav- 
1 

ing the covariants gv0(1,  gxkoce  gm0 41, q v  Q0c2  and g.,(4..v. Q0(1  goc2. 

Then, cancellation of the singular parts(42,43) leaves us with the 

KSF form(40) 

) k.Q Qo(v. 2  

+ g2(t) ( 2 gd.„4. 	v, 	vs  Q oc 1) Qoc 2  

+ g3(t) k.Q 44.0(1  goo(2  Q0<3 	Qocj  

where kv o 2Q‘r, , and k ck —o. Q oc  since A Pr'  - 0 
- DC ; 	0. 

Similarly, the abnormal vertex can be written in the KSF form 

E (Y1 	= [ 	Eit.k.r(QA) goc1gc42 72(t)ElumcK1(k)Q0e2 Aws 

+ f3(t) k.Q (g cg  Eve<  (QA) glociEp.oc 2(Q-A)1 Q0c 3  --Q"J  

We do not need the covariant ep,1TC 1(k ) as 

Eikk\F°̀ 1(k)  =6/8j̀ r°C 1(k  )- 	• 1 
	

k /-k g 
	

1(k k) k .k 
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I  
k .k) 

(QA) qoc i  — 	 ) 

from the identity A2 of ref (41). 

B. Reggeization in N 	VN  

The covariant `l-function is 

12 

= 1 

where(43)  

= p v 

= 	Q v. g 

k.Q Pv  

= k.(1( OvPµ  - P  

c.v. = Pv.(k.P 
- O 	) 

	

8 	r  
ck.p 

R9  v, = [1g 	= 	- 

20 

	

)4\. 	
= 20 PM 

k.Q( yPe.  = 2Q sr  •-• gijo,p 

4.„ 6 12 
= k.Q( 	- ‘(,L4‘6 )9 

	= k.Q g /4"r  

and also 

••••• 13 	
(k.P Xixt 
	

P 	) 

14 
k.0 	X 5,or  
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where the equivalence theorems(41,43) remove the last two ( 

A,or labels) 
-1 	-8 	- 9 

1 2 n 1‹. 
-M K ▪ 4: -I- -2-MK -I- 

we drop 

.14 	-8 -9 -12 
k.13(--X 314( 	2m}{+ K ) m 

6 	,10 	11 
K 	m x. + K 

We also require, 

2 .0 2 - t 	) 

adi R
11 

Y Y -L 5 

4.7, 10 11 

y 

Proceeding with normal exchange the a-function is 

 

J fr •,"." + 
(If 1 ,T) +g2.Y.9 

  

= ' g1 g1 k.017 ▪ g2(2W.aC1g~►~.aG Q 
J 

- E? gh, 

J 
+g3 k. 	;v04 2 

3 
g2 	9 5T=5.) 1 

gat  

and we are deliberately emphasizing the differential technique. 

The first term (g1 coupling) also gives the 	for 
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the'process 	-'V'II which we pause to consider. The only covariants 
3 ,10 _12 

available are X , 	, y, and we write the V/L-function expansion as 

= g1  1=3,10,12 

and with the help of Appendix I 

g1 
'53 

g1 1710 

= 

• 
= 

 

• 
g3 9  

[- (J-1) R'2  
(t+A

2) p2  

g1 7.37737.1) 

g1 J(J-1) v Po. + 3  k.Q 2t 

	

6? 	4k .Q r2 
g1 D12 1 12 = g1 UTS:1) 	" 	j 	62 t 	J-1 

- e( t+ AA2) " 

- P 
•  .3 	9 J-1 - 	2t 	J-1  )  

where also 

(t-PA4) 
Qv (A) 	 t 	 

1 	2 	
; 4(k n)  Q(A)

2 
= 4t (t Aiv

)- 4 
t 

and m = m. 

C. Normal Exchange in 	; Pomeron and Rho Re3geization  

The (11 TT J) vertex permits only normal exchange and eliminates 

any possibility of conspiracy. The 1/t terms in 1510, 1512  are two or more 

orders below leading order and are cancelled by daughter exchanges which 

in this process (one equal mass vertex) differ by two units of angular 

momentum and the internal gauge condition imposes no restrictions. 

Now we write out the full (151J) coupling in order to discuss 



nonsense zeros. 

CJ) 	g (t)(k.Qg 	- 2Q 
^v. 	1 	Amt. 	)4  "" .1 °"2 

g2(t)(2g1.:41Q,,r  - qm.v. Qui) Qoc2 

g3(t)(k.Q g/Aoci  — Qi,„Q.041) gvocd Qc(3 	Qc41  

At j = 0, 

E +  
v
000) =frii(to)k.ggi 	- Pg2(to),5„,,,dQoki 	gekj 

1-k 

to preserve gauge invariance Z2(to) = 0, J = 0 and 73(to) = 0 as the 

coupling does not exist at J = 0. 

At J = 1, 

04 

(•A\r
! 	(1r11) 

' 
= fr 1(t1  ) k.Q gitk r 	get 1g0(2 N 

+ k(t1  ) (2940c 1  Qv. - gluv Q0(1)  Qc< 2  

;(t1) (— 9A,Qc(
1 
gsr oL 2)] Qc43 	Q°4J 

where, to preserve gauge invariance 

3 (t) k.Q = 0, t = t1 

which implies that if k.Q = 0, t = t1  

required in g3(t) at t = t1, J = 1. • 

a nonsense zero is not 
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Next consider the reggeized differential cross section 

(Table IV) 

[ 	][ 	( 	yg 	.2 + 	 (2.a. 	)2 
62)tg1g3 , 2 	2 

g 
 3 dt 	6"tt 	v 61 

For e-  exchange in V.11-4 e 1R°  at t 	 T 3 
..2 	( 

't) 	O. Since t, 
"-A   

", g2, gi  / 0 also, the cross section develops a rho pole at t = Al2  , ,--r 

as expected. For Pomeron exchange in 15 ---6 	CO , 4) ) IT , 

g
3
(0) = 0, t = 0 and only the first term in the cross section, 

2 (-).A g
1 
+ 4g2)2, remains. Since the internal gauge condition imposes 

no constraints on these couplings, the Pomeron contribution is non 

vanishing, in other words, the Pomeron reggeizes at t = 0 in 
	

ec  
(e°,(0, t  )11. 

The arguement that e-  reggeizes in 	e  p and the 

Pomeron reggeizes in Yp 
	( c°, W , 4 )p is essentially the same as 

above. Since t = 0 is just outside the physical region for )Cp --• e°  p 

we would expect dG7,/dt 	\I2°(p(t) -2 to fall off slowly with increas-

ing energy in the intermediate energy region and less slowly as energy 

increases and t = 0 becomes very close to the physical region and DC. 

(tfoward)--' 1. Harari in ref (1) points out that for %p 	e°p 

the cross section approaches a constant for high energies and this 

would appear to confirm Pomeron reggeization at the ( 	J) vertex(67). 

D. Normal Exchange in 'tN 	VN  

Once the differentiation by )9--6  is carried out we require 
9 

the following decompositions 

5 
as 	- 	+ k.P(Y\ - 	) 
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10 	N 11 
0 	= k.P 4r•. 	2 Y. 

N 1 	N 4 	F8 	 9 	-11 
= 2m 	- 2 1<,, 	m 	- pc- "K + 

„12 
101.1( = 

.,8 	... 9 	12 
= k.P(-1(. + 2 	+ 	+ 	) 

ti  6 	011 
+ k.Q(4)A, + 	- m 	) 

.-2 
- 4(t + AV) X 

A.13,14 
where m = 0 and the 	, 	decompoition are taken from ref (43). 

.3 Performing the 	differentiation and denoting 	4,5i  

cJ  
g1 J2(J-1) 

ti 12 ... 3 
D12 	+ D3 

3
lc + 1510 

 

 

  

11 
1)10 I< + 

Ni5 
12  

eS7, 3 	/- 
of 

+ IS3 A. + D10 

and using 

   

0(  (3(n-1) + mg(A)2 	(n-1) 
‘FJ 	j-1 I  =0 
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.we find that 

1 	•-• M Q(46, )2 D3 
 

D10 = 	-mQ(IS' )2 

CP
J-1 

 g3 	- 

- (J-1) Z2  9J-1  

J g3 

g3k.Q. 
t+A fit 

J-2 2t 

ft+ )..tv2  1 9" 
+ 2m g3k.Q 	 2t 	J-1 

  

2 t+ pti v 	pc_ 0)
III 

2t 	J-1 

 

- 	[ - (J-1) g2Pj 

  

+ gzk. 

 

 

    

D12 
= -mq(A)2 (p

J-1 - 	 2 t 
4k.Q  p2 

J-2 

53 

- 2m 

- 

-(t+)A
2
) (9 	\r 	v 

P 

2 

J-2 

" 
) 

J-1 

J-2 	2t 

(t+A2) v 
k J-1 	2t 

[.(J)(J -1)Z, 9j  - (J-1 t 

+ (J-1); L1hP3):1-1 

(P p2 
 J-1 

ft 	(t+ M2) 	,it 	rt 

P2  2 ( ( 2t v (v  - 	9,3-  ) ) g3 	% J-1 	J 1 

• 

Using the gSk decompositions we can extract the contributions to 

the invariant amplitudes for normal exchange (Table VII). The dis- 

cussion of Pomeron reggeization is identical to that for 	e 
as is the arguement that the e exchange reggeizes at t =p for 

1p--t -en, lin—. e-p. 

F. Abnormal Exchange in 	VN  

The 11-function for abnormal exchange is 

6o 



(Q6.)  Qat1'2 0(2 

6i-kv 041  (k) Q0( 2  

73  k.0(gl  1-"c1 E vo(2°- 6)  gvt,4 16/1.113(2(Q6e) 

where the (NNJ) coupling is split into G.,.normal (f1) and C-abnormal (f2) 

parts; the latter to be derived from the former by differentiation as 

in the previous section. Proceeding then with C-normal (i.e. pion 

exchange) coupling. 

F' 
5f 1 	 + 

.1-k.0 	2( 3 	• v°4  2 du•°1  

and, using Appendix I, 

J(J 
5f1

-1) J(J -1) 	f r  v,( A) - (J-1)7 J 1 f-'-‘r (Pk) 

 

t-)Gt2  2 	v C 
	(Ok) 

 

+ 

 

   

+ 73  k.Q 	E \rkx.(Q.6.) P2  6),1_1  + Pp_ N wS30."  

+ o 	(&) NV.P2 6) 
J-1 
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+ 11"
3 
 k.Q [- 

6 	
(0

A
)p2 9J —1 + 	(PIJ  

11 

\P + 	(6)2 6) 
J-1 	NV QM. - f3 

+ q‘t(1%) 11/4 P2 

where we have used 

(t-)4) 
Qoc 	= Q.(  t  1. v(0.,&) = 2 c\r(Qk) ; m  = 0. 

Finally, 

„, 
- 	

f  c 5 1 J  
J(J -1) [AA\f(kg) + F2  y.(kP) F3 	/A k.Q P- N. 

+ F4  P N 	+ 14- 

where 

i F1 	= - (J-1)(271JPJ 	f2 p2 4k .q 9 J-1 ) 

' (J-1)(f2  9 j  ) 

11 

G)0. F
3 	f3  

11 

k.Q f3  9 
J 

5 P2 	
(t+ kkv2) 911 

F
5 	3 k.0 	"t 	J-1 
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Using the abnormal decompositions and related relations in Appendix 

III we get the contributions to the invariant amplitudes given in 

Table VII. 

V Differentiating the C-normal result by ukysTp- 

following Vt-function for C-abnormal exchange. 

gives us the 
• 

y5  f2 cJ 	 yy  
F 	.(05) + F k.0 	N 
2 /.0..r 	3 	/A \r 

J
2(J-1) 

+ F k.Q P T + F 
3 	v• 	4 v tu. 

+F
4 
 P T 	+ F

5 
 Q T 

v  

+ F 	(kg) + F' 1 iAv 	2 (kP) + F/
3 
 k.Q P N /4- 

+ F4  Pv, N 
	

5 Q"' 
N I 

where again, with the decompositions in Appendix III we get the contr-

ibutions to the amplitudes in Table VII. To compress the table we 

define F., P.a.  such that 2. 

The asymptotic behaviour of either F, F is one below that of F since 

15w., 	6„j) v 	 (1) 	n-1) 
GD

n- 	
LFX 	(i)(  5 t J 

 

giving, 
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P1  = + (J-1)(2f1J 1  + 141- 2.132  1 	) 
2 J-1 

P
1 

= - m —k.Q(J-1)(211,16) J 

It 
+ 41-15-1P2F 2J-1" \ • 

t  

It 

F2 
 (J_-.0r.2 63J 

ttt 

P
3 

- 9 
3 

It 

P
2 = (J-1)f2 

 t k.Q E?„). 

t 	F3  = 73 t  41  k. 

• 

P
k  = - 73k. 

tit 

P4 3 	
(c.0)2 

2\ 2)"

2. 

5 

(t+j-t 
- 	.Q  p2 

(t+)Ltv16 	= 	4M (k 0)2  P2 	 t 	 -1 ' 	5 	3 t 	

v) 

63J-1 ' 

Examination of the nonsense zeros in Ci,....,(Y1J) reveals that 

for J = 0, 72, 7.3  vanish while 71  remains and for J = 1, f1, 7'2  remain while 

f3  vanishes provided that k.Q t  0, J = 1. As there are no known ab- 

normal particles with mass and spin identical to that of C, (-43, (13  we 

consider f',3  to have a nonsense zero at J = 1. 

Pion reggeization presents no problem in /cN 	VN as 71 is 

non vanishing at O( = 0, t = ii.).11  and the pion pole appears in the 

differential cross section (Table IV), 

2
IC 
dt [-2tf i2  ][((t- A2v)71+4?.2) (412 

_(t 	2CCIA) I2 

which vanishes (along with all other abnormal exchange contributions) 

at t = O. 

Pion exchange does not play the dominant role in )(N 	(f 	)N 
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that it does in XN 	11N, TTN nor are its difficulties the same. 

As *0 	V°N is a 'pseudoelastic' process
(1) the diffraction mech- 

anism (Pomeron exchange in a Regge model) takes over in the near 

forward direction and pion exchange, although possible, becomes less 

important. For example, the behaviour of the 15P -'-b ep data is al-

most entirely consistent with diffraction(1'68). However, the explan- 

ation of %p 	Lop data requires both diffraction and pion exchange
(1,68) 

Maor and Yock
(69) suggest that this can be explained by the conserva-

tion of Bronzan and Low's
(70) A-quantum number which forbids the vertex 

oc-Ke) while allowing (161U.0). Authors(71'72'73)  who do Regge fits 

to the -6p --4EPp, VI) 	oap data, although their approaches vary, 

treat the former process as diffractive and the latter as a combination 

of diffraction and pion exchange. 

As we are examining a formalism and not dynamics we offer no 

solution to the 1:1)--, 	p problem. Harari(68)  points out that the 

dominance of a diffraction mechanism is consistent with the data on 

e  , t.x3 production but predicts a 0 production rate too large by an 

order of magnitude. He also comments that no version of the diffrac- 

tion picture is capable of predicting the correct value for both 4re-06, 

and Cie ; zi-4  and that a combination of diffraction and pion exchange 

does not help. 

F. Conspiracy in 2C11 —• VN  

Conspiracy at t = 0 has not been invoked to fit YN---) VN data(88)  

as the reggeized pion exchange in conjunction with Pomeron exchange has 

proved adequate(72173). We show that a Class III pion conspiracy is possible 

at t =.0 (that id, it gives a non vanishing contribution to dVdt at t = 0), 

consistent with factorization which requires that if the pion conspires 

at the NN vertex in ESN 	so must 
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A
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, 110 

.g - 2) 	0( ft) , t-o 1 I11 

it also in 1iN 	V°N. The absence of the pion peak in l‘p 	ep can.  

be explained by the dominance of the Pomeron exchange or perhaps by 

evasion at the (-df°11) vertex. That is, the couplings at the ("15e"vc) 

vertex would eliminate any singularities introduced by the conspiring 

(01) vertex and the conspiracy, like evasion would result in a vanish-

ing dq/dt at t = 0. This suggestion is prompted by the discovery in 

section IV.3 that the conspiring pion cannot give dtVdt / 0, t = 0 in 

IN. For l(pp we would expect a fit similar to that result-

ing from a non conspiring, reggeized pion. 

The equal mass (NRJ) vertex gives rise to daughter terms separ-

ated by two units of angular momentum and adjusting the singular daughter 

residues gives us freedom to cancel all singular contributions to the 

invariant amplitudes two orders below the leading order contributions. 

This done, we reggeize and present the results in Table VIII. 

From our study of N 	ITN we know that the abnormal nucleon 

couplings f1, f
2 ••••• t 2  for pion conspiracy. The relations required to 

keep the invariant amplitudes finite at t = 0 are 

(mg1  +g2) 	0( ft) , 	, 	Al2 
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2 
g13 cst 	t-• 0 

The residue of A7  and part,(2(0,4 -1) g
22 

 - 0(g2g3  ), of the; residue 

remain uncancelled, however the introduction of an A!, effects the 

cancellation as it did in 1CDT 	TIN and the Class III conspiracy is 

complete. 

It is interesting to note that the normal (TY,c) contribution 

to da/dt vanishes at t = 0 because of the constraint on A
11. Were we 

to carry this further and impose our suggestion of evasion at the 

(cv"1) vertex the following conditions would be required 

'61 271 + 	 , 	;89 , , 

2 

+ A1V t-40 1'
2,6 2 2 3 

g2 
	 , 

T314,5 

10 

G. Evasion in YN 	VN  

For any '(N --> VN process there is a 1/t in the leading order - 

contribution to 
A3 

resulting from A
l exchange which can be removed by 

imposing internal gauge invariance on the nucleon vertex as in 

-̀4  

As we have already pointed out the data for l(N 	VN can be 

fitted with evasive amplitudes(72'73)  the only draw back being that a 

consistent fit for all of the processes involved ( tp 	eop,  
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p ,Acp 	0 p) has not been achieved(68). 

Evasive solutions fit the data, (72'73)  but not all the data 

consistently( 68). 
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IV COMPTON SCATTERING 

1. Photon-Photon Vertex
(40) 

For the 2S 	J vertex there are two couplings for normal or 

abnormal exchanges. C-parity further divides these vertices into 

J-even or J-odd classes. That is, from the point of view of analytic 

continuation to complex J, an even J coupling implies a factor 

i(1 + (-)j  ) and an odd coupling implies a factor i(1 - (-)j  ). 

Hence, together with a positive signature trajectory, i(1 + (-)j  ),  

for integer J we have i(1 + (-)j  ) 2(1 + (-)j  ) = i(1 + (-)j 
	

-4 

i(1 + ;i1114  ) and (1 + (-)j  )(1 	(-)j  ) = O. 

Normal exchanges lead to the covariants gw„ and 4,60‘ig,re„.2  

where 

= g)..1  
k k ggc• 

k .k 

gp.v. = 	g wsr  

kt,„, k.sr. 

k .k 

and t =-2k .k. Cancellation of the 1/t2 and 1/t terms leads to a -form 

of vertex which does not induce kinematic singularities into the Regge 

contributions to the invariant amplitudes. 

= i(1 	(-) j  ) {t" (t) 9A`r" Qoo1Qo 2 

+g2(t) (tgi4 	ec 2  - 24 v. Qc(1gc(2)  es; QC4J 
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For abnormal exchanges the couplings split, one for J even 

and one for J odd. The final abnormal vertices are 

_ 
(yy 	(_)J ) f1(t) 

for J even, and 

tx_ 
(= 	(Y)( j) = 1(1 - (-)J  )If2(t) gvoc1 Epoc_2(QA) 

gp 0L 	a 2(Q A) J  Qa3  W  QceJ 

for J odd. For the J odd case we need not add a Epor0( (Q) term as 

epv.„(,) = ep.v.oci(,) 	 kyl 

by identity A2 of ref (41). Further, no factor of t in f2(t) is necessary 

because of the above equation. 

We note in passing that the structure of these normal and 

'abnormal couplings forbids the decays ofal-  particle into two photons., 

a well known selection rule. 

2. Pomeron Reggeization : Pion Compton Scattering  

In the same manner that the pion contributes to the differ- 

ential cross section at t =).t,2  in one photon processes, so also 

does the Pomeron contribute at t = 0 in two photon processes. 

Consider Compton scattering bff a spinless target, y + 0-4Y 	0 
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. It is well known that Xi  and A2  are KSF 4Nr2  and P12 = P2 + 
t 

(e.g. pion cornpton scattering). The 4,-function for this process can 

be written as
(74) 

na 

11,4v, = A1 
tg/Av"  + A2t (P 	P'  Y 

i D'2,' 
) 

2k 
/A 

k  r  
where gfr = 	t 	, P v. - Pv  + 	 

in both v.  and t. 

Since only normal exchanges in the t-channel are allowed in 

this process, we have 

rs 	J 
= 	e (ow ; P) : 	: cfrk  of J ; Q) 

= -(1(-)j  ) g(t) [ tgi(t)g/v, 9ty 

Z2
(t) (t ewor - 2gio.v-s? ) 

I 	I 

using Q1  = QM  = (2y=iSr= 0 in the above along with the recur- 

sion relations in Appendix I, it is easy to show that 

A J t J 

41Ar 
' tO 	

- 2gPor 

e‘ 
= P/4. Pse - 7 P'2 	)c 	j  

ywr  

and consequently 

= g(t) Zl(t) cj(ipj  i(i 	(—)J ) 
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g(t).-  2  
(t) 

N 
2 	J(J-1) 	

c
J 	(-)j  ) 

where the C-parity factor 2(1 + (-)J  ) serves to select only the 

positive signature Regge trajectories. It is clear that a KSF r12 

leads to a KSF 71,2(Nr'
0 (in t). As the (1V J) vertex precludes 

Class II and III conspiracies, and the (Vr J) vertex is gauge invari-

ant we expect to see no lit terms in the Regge decomposition of A1,2 

(Note that there were l/t terms in the en 	eliT calculation in 

Appendix II, however covariant evasion or internal gauge invariance 

could be applied to remove them). As external and internal gauge invar-

iance are equivalent for co(vir) at t = 0 we expect any conspiracy 

(or lit) complication in Compton scattering to be associated with the 

other vertex. 
e•I 

The form of A12 
is consistent with the fact that they corres-

pond exactly to the spin nonflip and spin flip helicity amplitudes in 

the t-channel; that is Al 	dj0 	PJ  and 2 	2 e•-• dj0 
	P. As for the 

0 e.j   

J-factors in A2  the nonsense zero in72(t)-- 	, 	0, cancels the 

1/J term and the C-parity factor 1(1 + (-)j  ) cancels (J-1)-1. 

In order to complete the arguement that the Pomeron reggeizes 

at t = 0, J = 1 we must show that there is not a nonsense zero in F2
(t) 

at J = 1. Of course were there such a zero, both A2 and 'X1 would vanish 

at 0C = 1 and the Pomeron would not reggeize. We proceed by writing the 

g2  coupling out in full 

g2(t) (tg/x0C--ig Nt" °C-2 	gg1Q°42 ) 

ri2(t)  [ t gli-c‘lg°L2 	2(kfr`g°41 	68-"e". 	°4  

Q. 041Q {42  
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At J = 0, t = to, the only remaining coupling term is Z2(to)(-2g,,,..,dg.oc1goc2  

which can satisfy gauge invariance if and only if 1;":2(to) = 0 at J(to) = 0. 

At J = 1, t = 0 the coupling becomes 

2'4(0) [kik  gv.04.1  + 	-v- gi.A00 	oc2 	Q04.1  

which is indeed gauge invariant at t = 0 and consequently g2(0) is not 

required to vanish(75)  at t = 0 in the same way that g() / 0 for 

11'N ---,ITN. 

Upon reggeizing, J 	404, \r --4 00 we get 

(-v ) 	rri 0C. 

A2  
°C -2 

gg (-Nr) 	0‹.  2 

and the cross section (Table IV) is 

2 
NI dcr  dt 2g2  ft2V2  + 44 I 2 °C  I Id 2  

and because g(o), r4(o) and g (0) are not zero at oC(o) = 1, the 
Pomeron reggeizes in pion Compton scattering. Factorization of the 

residues ensures that the Pomeron regge-i_zes for any Compton target 

and within the framework of the model as discussed in Section I the 

constancy of total photo absorption cross sections at high energies 

is guaranteed. The arguement for the Pomeron reggeizing is logically 

equivalent to that for the pion and rho; if the one holds, the other 

surely must. 
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In terms of helicity amplitudes the t-channel helicity flip 

amplitudes is 

2 	2 	e' 	2 2 	2 
t pt  sin et  A2  = 4ktpt  sin E)t  A2  f1, -1;o,o ^J  

and again, the angular momentum factor k
2 = t/4 is absorbed in the 

high energy (cross channel) limit of sin et and the asymptotic behaviour 

0C-2 	 o r•-• 	04 of I 2„,\I- 	is converted to f 11;o, 	
and no nonsense zero 

,-  

at t = 0 is required in the amplitude. 

In the more academic case of isovector photons, the I = 1 , odd 

2 
signature, e  trajectory does not reggeize at J =.1 	=il.A.c  in the ' 

same way the Pomeron does at J = 1, t = 0. The spin flip helicity am-

plitude is obliged to vanish at t ..-/L4 in order to conserve angular 

Momentum and there is no way for this to happen unless "A2  contains a 

nonsense zero at t 1P. In the covariant language this means that 

the rg'2  coupling cannotbe gauge invariant at J = 1, t =t..t,e  unless 

g2( ae ) = 0. 
Thus, in accordance with the analysis of refs (23) and (24) 

the Fubini weak amplitude, App(r, t, k2  = kt2  =0) = tA2(Nr,t) must 

contain a fixed pole at J = 1 if the Fubini weak sum rule
(76) 

is to 

have any meaning in the Regge sense. 

3.Nucleon Compton Scattering 

Factorization allows the Pomeron to contribute to the double 

photon vertex, and consequently to the forward cross section in the same 

manner for 	+ N 	N as Yii,A.+11 	Isr + rit . However we 

consider the process in detail both to demonstrate that the method 

works for higher spin reactions and to analyse possible conspiracies. 
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First we enumerate the six covariants
(43) 

.1•;1 
/Ay' 

= tgp‘sr  

,•-• 2 	1 	t 
1,( 	= 

3  = tiP 	
t 

4Vg,%  
iuv AMP 

..c>4 	I 
= 4P P + 	[2 t 	2 

/AAP 

I I} 
P 

"-k‘r 
) + =j-t g /AN, 

' 

= 	t [ 
I 
 X 	

I 
 !+in 5 Q, A ) 

My 

where f P 
t 	( 

Y f 	= P 
MV, 

t 	I 	t 
Xfr%.  Psr  and Y Ne = Yµ  %v. - 

Ame 

. That this set does indeed lead to invariant amplitudes 

A.(i = 1, ... 6) which are KSF and KZF in s and t is shown in great 

detail ref (41). Other choices are given by Yamamoto(51)  and Bardeen 

and Tun
g(42). Two other seemingly independent covariants exist, one of 

which is related to this set by 

4%5  
2m2tg X = 2mNrY, 	+ :4mtak •r 	l'""rs 	 flOr 

A,6 
- 

and another useful relation is given by 

4t 	P. - 7 P 
	' 
	 A 4 

= 2\r (Ivor  
• ,„ 1 	 -d+ 	5 

m Rfrmr 	) t(Y. - 4 ifit 	 .Av. 	). 
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Next we reggeize the corresponding invariant amplitudes. For 

normal exchanges 

= 	• P) 	(&) 	 ("YV,T; Q) 

AJ 
= 2(1 + (-)J ) g

2
e 

P.v• 4. 81°29; ivor 

J 
+ tg2Z1  'il9G) 9   gmv. 	

g12 - 	WOr 

.N1.7 
where is defined above, so that 

;My"' 

\I 

	

	
3 (', 	 it 

0 pm,  - - T o 7 	tt ( P, Pv. - 2P 2g,, 	) 90. 

Then using 

P„ = g 
-91J, 	

P'2 = 2 P
P 	

2 - ' 8P, 	 I op  
2 

= 

= 

 

2 P2 = m - 

 

we get 

es. J 

P 129 vANT 
= 4c  ft YI P 

tt 

- t(m 4v. 	f 9 
-04)  

+ t (Pp. Pte, i  '2 
P gAssr )\(,,J  635  ; 

1 

1 
Cj  1.7, 3 

- M  X I@J  J

rr 

4K1AV• 

1 	1 	 ' 	
[ 

	111 	 111 

P - P'2 - g 	) 	j  + 0.2Y 	J-11 ow 
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)J J- .."-*Ar 
3 cj 	[tj\e- ,uv.  

Using this result and Appendix I it is straight forward to find the 

Regge contributions to Ai  for normal exchange. They are listed in 

Table IX. 

For abnormal exchanges, the contributions again separate 

according to C-normality. For the C-normal case (Tr-exchange), we have 

r- - 0- 	 J 	b,J4 
= C C-P2-  J ; P) : 	(A) 	(yy 

f1
f1 0 5 ejAv, (QA) 

f 

= 1.771 	t

6 
ykAAr 

In the C-abnormal case A exchange) 

  

f22 \615 )4.  V- 2 ;0(10(2 g 0C 1 

    

e gv oc Ed,u_oc 2 (NQ) 

N 

J 

f2 f2 5Yy 	 (0..) 99;vcc2E,...0420,6>i 

Using 

  

cJ  

= 7(J-1) I 
2 pI in 

J 	gl" °Z.  2 J-1 

P2Q0.42 
	

J-1 
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r-J 	 c J  
CP;i4c.c26 \r°c-2")  - 7771) 

11 

 - P2 Ev." 	) 9J-1 

 

 

 

   

we see that 

J 	r0  j 

;':4 2€ \
f'  OC 2 

NA) + 9 ;‘r.  042 6)-4-042( QA )  -  J Tj  ,J-1) 

  

P , N 

 

and consequently 

I•4 = f f 
2 2 J20-1  P N 

I 1/AV' 

where we need 

Y5  

	

11 	11 

	

[J 	J 	6 N  kk'r 

11 e 	f 1)1 /c24

} J  

111 

P 	0 50N 

and Appendix III, to - get 

rQ 4 	5 
- f ?  f!T., 11), 	= 	-2(1( J 

1 	2 
+ (imp- y + my g2

-v 3 

4 	5 
\rX - -a-m\r‘g. 
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dAT ^, 2 [(mgi  + g
2
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d 
2 - t 	2 

g Rtg 
4 	1 

«2] 40- 
'2 

" 
+ 

2 

Now we are prepared to investigate possible conspiracies. 

From Table IX we see that IV exchange contributes only to 7'6  whereas 

Al 
exchange does not. This precludes any Class II conspiracy from 

giving a finite contribution to the cross section at t = 0. Moreover 

we see that no invariant amplitude has a singular lit factor in its 

Regge decomposition and consequently, although Class III conspirators 

can be exchanged, they cannot give rise to a non vanishing cross 

section at t = 0. That is, if we let the pion couplings become singu- 

lar as f1 
r- t 2  f

1 	
t-2  then the normal pion conspirator, IIc 

must have 	
mg1 g2 

t2  as in NN scattering
(47) 

g1 2 	t 	
and 

1 	1 
t2  and no correlation with an Z{N --*IVN, along with gi 	t, 

A1- type conspirator. In other words from the covariant form of the 

cross section (Table IV), 

3 2-2 	2qC,+ 
2 

+ 	t f1 
 f
1 
V - I § 	+ 2 f2f

2 
2 
v2°4  K+'  I 

2 

we see that the existence of a Class II or Class III conspiracy In 

NN 	NN, or YN --e' N, , 11N , e N does not give rise to a non vanish- 
ing forward cross section for VN--,  WN. This is certainly consistent 

with the elastic nature of the process. 

In the helicity analysis, the t-channel conspiracy relation(77)  

at t = 0 can be expressed in terms of our invariant amplitudes
(43) as 

fo,o  _ \rforl = kt  A6 --.0(t) 
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where 

+ -1 
( 	f fo;1 1 	+ f11;- yz 11 ) = t  

fo;o  = t-2  ( f 44  11 + 
	

) 

r-• 
This leads to the obvious condition that A6 remains finite. Moreover, 

because the normalities of the parity conserving combinations are 

opposite a Class II conspiracy is ruled out. Finally charge conjugation 

on fo;o 
 prevents A

1
-type trajectories from contributing to this Class III 

conspiracy condition. Thus the conclusions drawn are exactly the same as 

in the covariant approach. 

Actually, the absence of Vt terms in both 	and 

/CN --4YN could have been inferred from the .tcVJ coupling. That is, 

Vt terms arise from either unequal mass vertices or from higher spin 

vertices and they are removed in evasive cases by imposing internal 

gauge invariance.  at t = 0 which constrains the couplings there. As 

internal and external gauge invariance are equivalent at t = 0 no 

restrictions can be imposed upon g12  or f
1,2 

 which implies that no 

Vt terms can be associated with the ( 10(J) vertex. This is cons-

istent with the presence of a Vt due to higher spin in fNI --, 

and its absence in I;V"--0.16\\ ..In "I‘N 	IN a singular term would 

have to be associated with f
2 
in e (2J) in order to be removed by 

e .A = 0, t = 0, the only available constraint and it is interest- 
* 

ing that no singular term develops. In IN 	however, 1/t con- 

tributions would appear associated with the unequal mass (NV J) vertex. 
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V CONCLUSIONS 

Starting with the covariant formalism of Scadron(45) and 

Jones
(46'47) we have combined it with the gauge projection operator  

and established a formalism for reggeizing invariant amplitudes in 

photonic processes(4°). We then calculated the Regge contributions to 

the invariant amplitudes for the processes : N 	TTN, IIN , VN, 

N; ((TI 	VIC ,%4 IT ; VN T N; V IT 	VII and tabulated them for 

conspiracy analyses and for possible-sum rule calculations(43). To 

facilitate our examination of conspiracy and evasion we have developed 

the method, suggested by Scadron(45)1  for calculating Regge contribut-

ions to dWdt and tabulated the results. 

We conclude that the pion reggeizes at t = iitAn2  in every 

process in which it can be exchanged as does the rho at t ...p e2  and 

that the Pomeron reggeizes at t = 0, 0( = 1 in Compton scattering and 

in the pseudoelastic processes )114 --4NPN, 101 	V011. The condition 

of internal gauge invariance, part of the prescription for covariant 

evasion, must be carefully defined for the (1c1J) vertex, however no 

fixed poles in J had to be introduced to ensure these results. 

Examining Class III pion conspiracy in the covariant formalism 

we noted that it implied singular residue functions for the amplitudes 

of the conspirators if a forward peak was to be effected and that in 

the process XIT--.0cN conspiracy did not give rise to a non vanishing 

differential cross section at t = 0. We introduced the possibility of 

one vertex evading while the other conspires in an attempt to solve 

the difficulties of )5,N --1 11N
* 
 , V

0 
 N. The success of such an approach 

of course can only be determined by a fit to the data for the processes 



involved and those related to them through factorization. 

We examined the prescription for covariant evasion
(47)

and 

presented the internal gauge invariance constraints on the externally 

gauge invariant photonic vertices e(‘'0,1), 	Is )5J). 

In general however, we conclude that, in the absence of cuts, 

pion conspiracy is more consistent with the data than evasion. Whether 

the pion really is a member of an M = 1 Toiler pole or whether the 

neglected cut contributions are significant - as recent papers would 

have us believe, or whether absorptive corrections are the answer can 

only be resolved in time by the best fit of the most processes with 

the least parameters. 

Careful examination of gauge invariance and kinematic zeros 

in the processes VN --• 	XN showed that no kinematic singu-

larity at t = "IT  due to gauge invariance is contained in the amplitude 

A2 for 'N Till in agreement with recent papers(12 '
56) 

 . 

For the processes VU 	25N 	TrN we related the helicity 

and covariant forMalisms and examined the problems of gauge invariance 

as 14v-4 0. We also examined constraint equations imposed by analyt-

icity as well as kinematic zeros and singularities and critically comp-

ared our results with the literature. 

For both our own work and for future reference we have provided 

unequal mass abnormal decompositions. 

We critically examined the literature from the covariant point 

of view for N 	NrN superconvergence relations and conclude that they 

appear more readily in the covariant approach. 

-Generally, we regard the covariant formalism as a convenient 

method of obtaining reggeized invariant amplitudes for both photonic 



and massive processes. Once the asymptotic crossing behaviour is known, 

sum rules can be derived. The simple analyticity requirements on invar-

iant amplitudes carry over to the Regge residues and studies of conspir-

acy and evasion become straight forward when compared with similar 

problems in helicity formalism. No fixed poles in the J plane have to 

be added to the formalism to ensure the proper asymptotic behaviour of 

differential cross sections even though they are permitted by unitarity 

in photonic process. 
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APPENDIX •I  

Covariant Formalism 

1. Kinematic Notation 

For an s-channel process, A(p) + B(k) 	C(p ) + D(k ), 

involving fermions with momenta p, p and bosons with momenta k, k and 
1 	f 	 1 

withp+k=p +k, we define P = -(p +p),Q= i(k +. k ), 
t 	 t A = (p - p) = (k - k ) and NS.= P. C.! = 4(s - u ), t = 02, Nim. = Ef,(PQI1), 

Q Ti,, well, p2 = m2, k2 = ,....eT = Er( IS IN ) . As 	 and for unequal mass cases 

m+  = 2(m‘  ± m), AA,
T 
 = i(i4.A' -±ii.t.). In photonic processes juk = 0 and 

i 
p!=i1-1 B  where B represents the photo-produced boson and frequently 

. 

The square of the Kibble boundary curve is - N2  so that 

N2 = -t(ptkt sin()t)
2  in the t-channel c.m. frame. When boosted to the 

general frame it can be written as N2  = t(1i(4)2  - P(A)2q(A)2  ) where 

V(A) = 	(P.A Q.4), P(A )2  = (P2  - t (P.A )2  ), 

Q(A )2  = Q2  - t (Q.A )2 -and ptkt  = - P(6.)q( A). 

The boosted four momentum(45) written explicitly is 

P14- (6) = PP,,_ - t (P. ),6./.4. . The following relations are useful in 

calculation : 

P = Pf - z  0 = p + zA ; 2 = 	+ 2Q = k -2 L1 

4P + Q,2  = 2(m2 + m '2) = 4(m2 + m2) + 

2 = 	'2 ) = 	2 + 	2  ) 

P( Q)2  )
2 	1 r 

4m2 	[ t - km2 	= 	 2 - D 
t 



7k 
a< 1 ... o<J (k) = 	... A Aj 	J 

A 	A 
E cyk) 	0<j(k) 

• Q(A)2  = _ kt 4j.k+  [t 4)2-k2  -  

; Q. P. b. 	= 2mm- 

A,4 m 

	

( A ) = 	÷ 	  

	

= 	IP ilc?, I cos et  . 

We define the s-channel variables as A = i(p k), 
= i(p - k), K = (p k) and s 	t channel crossing by p 	- k . 

This gives A.-. Q, At m-. P, K A and A(K) 	- q(e), 

/\'(K).-4 P(A), 	^t(K) 	- v(20. (See Figs 1,2) 

2. High Spin Wave Function  

Following Scadr
0n(45) we represent the free boson of spin J, 

helicity 7 and mass 	by a covariant tensor wave function 6 xi... °Ci(k )  
where 

and(78 79) 

A 
j;› 	= [2J- 	(J-0)1 (J- "A)!  r 010  

(2J): 	2EA (7 2% 

 

 

rA 
The 	C:ac  (k) ((X = 0,1,2,3, A  is helicity) are spin one covariant 

polarization vectors
(80) subject 

A 
to the subsidiary condition k oc   

c
(k)= 0. 

The covariant spin J wave function obeys the following constraints 

86. 



(k2 	2
) E 	••• 0(,). (k) = 0 

	

krxi 	oC (k) = 0 

	

gc4ioc 2 
	c<1 	ocj  (k) = 0 . 

I A For a high spin fermion with s = J i we use Lk 0(1 ... gJ(p) 

where 

o(j  (p) = 	/.11- 
(1  in,a-  I J 	

C: 
0(1  
 

...0(j(p)W(10) 

i Or 
and 1....t(p)  is a dirac spin z  bispinor. The subsidiary conditions are

(81) 

. 1 21 
(i - m) 	c<j(p) = 0 

t t;k  
1 041  UoCi  ... oCj(p) = 0 

P  C4 UOC1 .. . OKJ(p) = 0 1 

We use the following normalization; 

0, 	(k) 1 ... 
cC 

J 
(k) = 

I ;1/4  
0<1 	40‘,1 (p) 	oc1 ... o<J (p) = 



t-m -1E t-m2 

4. Projection Operators  

The traceless, symmetric projection operator on 0(3) helicity 

labels is 

91 ... pj; De l ... ot 	(6 ) = Qs 	 P1 
) 7, 

••• 	'reel ••• oc j( 

where 	9,1 is either 	91 
	po. or 1.4, ... 'LT and 

1 ... ce is either J 	%,... 0?1 ... ocj or 1,6< ... oci according 

to whether bosons or fermions are considered. This spin sum we take as 

the numerator of the high spin propagator,. 'on-shell'. That is, we 

identify it with the second term on the r.h.s. of the following equation 

isI 	(t -m2) 6) 

The projection operator has the following properties for spin 

J bosons(82) 

.,.c&J is symmetric and traceless in the oCand 

labels. 

6va 
'1 - 3'1 ••• ,J;c41 ••• 4<J = ~oC1 e,1 "• 	; all •••e<J = 

Ojyi . • • %.; 041 . • • «J
rs J . • • o! J; eel • • • c43- = (--)j Oil • • • Ai; c(1 • • • °C3- 

ss)J g 04 1 1 	'6 • 
(2J+1) 6)J-1 

1 	(2J-1) v'2 • • • 	LT; ce2 • • • °.T ' 
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and for spin s = J 	fermions 

s 
••• 	• 	

04 	(6) 	(J+1) 	
-m) 	

s+1 

kr9-1 	 (2J+3) 	A 	2q1• • • 9j; °k •i • • . b< (6) 

- 	?i —• 9J; °( 1 ••• (4 J is symmetric and traceless in the o< and 	lables. 

y Os91 00* .A0( 	 S 	oc J ,J; c:<1 s"c(J 	. 1
P91 —• 	J; C(1 ... 	

= 0 

s 

9J; 	11): 	 cin 
P ~1 ... " 	J 	1 	

of 
	ceJ 	2m(-) U " 	.'e.(c .t 1 	J 1" °C J 

g 	91 q) 	9 J ;°41" . c'(‘J 	J 	P2 ". 9J; c'&2 ....oc J 

-m)P 31 • • • t3 ,T 0<1 ••• of t)-(6.) =e;-, ••• 9j; gi••• e<0-(A) (4—m) = 0 

4-.3s 

1 91639s1 ••• 9J; 	•••‘"(J =U-91 ••• PJ; c41 ••• e4J 	0 

5. Contracted Projection Operators  

Contracting the projection operator with initial (Q0c ) and final 

) t-channel momenta, we get 

'Q; b ) = P 91 .... P 9JU-71.•• 9J ; 4̀1.•*`'CI Q6( 1 .•• Q4c't1 

where(45)  

	

Qj 	) = cj P J (P( A ).q,( ) ) 

and 
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cJ  
j J1J! 
2 -c

2
-3-y1  = 

	

417 	T(J+1)  

	

2
J 	1p(J-14) 

9,1  is the solid Legendre polynomial with arguernent v(a) = p(il).Q(11) 

P (\r(4) ) = IP(A)IJ 1(.1(4)1J pj(coset) 

and 

= IP(L)Ik(&)I cose c  

rvi We prefer to use kr.  (P,-Q1 is ) = 	 J cJ  (i) (-)E/x) ) to facilitate regg- 

eization. 

A spin J, on-shell, propagator (numerator) coupled to spin zero 

particles is completely specified by e (13,-c1; t)
(45,83). However, when 

the external particles have spin the covariant projection operator must 

carry covariant labels which are 'freed' by a differential technique 

due to Scadron
(45) which we consider in detail to establish notation 

and to present some new results. 

To recover the initial and final labels
(45) 

(p. 	- 	(p,_Q; A) = - -[ P (IN) 9 + Pc El)
2
Q,„t( ) 6)j_i  j- 

; 0( 	J 	J 

cj  ED (ts)(? 	Q(L)2  P (a)9 6) J 	1 w  9 (P,- ;ii) = u 5;  = 	5-5 	 J-1 

where J
-1 arises from the J possible ways of performing the differen-

tiation 

5o 



P i ••• P PLT P91 ••• 	J; 1 • •• c<J Q441 —• go( ) 

J = J I3 2  ... P9 j  9.•• 17j;  oc 1 ••• J  Qo(1 ••• Qc4
J  

J 
= J 	; 

- continuing 

. (s_i) 6' y 2 7 z 	1),f? 1 

'1 
J 	nJ 

= J I 1/4.7 	••• 51 ; 

where we required 

5) 	Plc (A) = g(A) = g 	
Qv 

sts' 

07, P(6)2 = 2P (Q) 	• 

The recursion relations for 	(-1-(A) ) are 

I 
J e. -\F(L1) (9' J 	- 	P(A)2  Q( 

Q)2 to 
J 	' J-1 

(J-1)0; = 	0,‘, - p(& )2  Q(&)2ej_i  

(J+i)ej  = Nr(6.) 6; 	Pj+1  

(J+2) 6):1  = v(ti) e j" 	J+1 

(2J-1)V = J-1 
r.‘  

J P(L)2Q(L)2  J-2 

9n 



where one must recall that 

D-c:-Ar(a)  ) 9j  (-V(A) ) 	+ @j(-Q-(&) ) 

ar-V(&) ) \i(A)  = 	1  

For actual calculation we define 

(n) 	(n-1) 	(n-1) 
,(n) 

tr@5;  ; 	- [Q.,(A)ej 	+Q(6)2  PP  (-S)9 J.:1  

J 
(n) 

and similarly for 6) az  where (n) refers to then  th derivative with ; P  
respect to the arguement of the solid Legendre polynomial. As an 

'NJ 	 /7.1 example we take IT
9; 

and derivekx 9;ot 

= 3 P
J  

9;d„ 	J 	5); — 	[g.c., (A)0,, 2loc(6) P9  (A) 3,3_1  

+ Q 9  (a) J
e ot 	Q(6,)2p3  ( i%)J-19;c4  

c, 
J2 	, - 	(6)153  - 2Q,x(A) ID)  (A.) @j_.; 00  

11 11 

+ Q)  (d) 	ej  + P((A)2Q,4  (Is.) ej_i  

	

Q(.6, 	p, (A) [pe, 	( A)@j_1 	P( )20.e, 	) 
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The recursion relations convert this expression to that found in ref(45) 

and we note that Tor J = 1 this is the conventional spin 1 propagator 

= - g l  .4  (A) = - kvo(  

"J „J 
As well, P➢  (itj

9;c4 
= ky;_, 

Pulling off more labels we get 

cJ  
0C1q2 = tTrJ-1) f 6141°<2 (A) P(11.)2 Q(T-1 

• 	Pai  (6.) [Pa2(0) 	
+ P(A)2 	(4) t) ,;_1  

+ Q0(1(6) P(A)
2[Pc,42(

Q)E?J-1  + P(A)2qc.c.2(6)(9" 11 J-2 

cJ 	 _, a  (&)0 1 ke). 	
11 

= 
51291;  i 	0.2(j_i)  • yi 2 	0< 	y fl  i rgp,  2-(1(a) ) 9  

+ 0( )2[P 91-92c<1( )̀ 	P 4̀1g  9192(), 
it 

2l°t 1 
	113  p, 7,1_1  

g91(41  

	

(iS)j9927  • - (2J+1) g 	9 2( L) 0.9.(1‘3-rn 
J-1 

Je," 
+ (I3  3) l g 	+ gl> 1 P a(  1) j?2;  

• (g( A )2  P9 p 	P( L.)2 	1 CI 
)J-142;  

Ae.c  

- (2J+1) P 91  Qci 
J-1 
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NJ 	 cj  
9.2 P1;  c<1 1:42 = 	2 	2 (g  91 92( 6)g d-1°4 2( 	g  916 2( 6.)g  92°4,1(  IS'  

J (J-1) 

+ 2(0 2[P 91 g  92 '41(a) + Pc4i  g9ip2(° )  

 

 

[Q 
	

gc<291(h) 	91 g 	41(11)1  ) 63J-1 

I 	 I 

" Jtip• 
- g  91 °CV 	- 92; c142 	(2J+1)  g  91 82(11) g ("(1°e 2( 6)63J-1 

II 

(P  91gc't1 °C2( 11') 	g  91°C2( A) P0<1) 	92;  

t9 t  - (2J+1) P 91 g oc.1oc2, 
	••• 92; 

(2Q0(21) 91P cC1 	P‘"
(A)2r
" 	goc 2 71 ( 11)Qc4 	v1got1oc2(A ) 

	
9t); 

2+ (g  91 P2( h) Qck1 	Q ,1 g  92 041(  IS" ) ' 	•°4  

+ 011)2  [P 91g  92 041(A)  + P°k1g  V1 y 2(6] + 2Q0(1Q, 911' 9 	v- J-11(-1 
;°<2 

(2J+1)- 	g,2(A)  

(P  91Qc41 

-0 Q.0(1 

9113'41) J 31 2; 04 2 

J-1(s) 
;0 2 

II 

II 

• (Q('6' )2P 9 113 -e 	P(  6)
2
QV1Q°41) J-1 Go 92;c4  2 
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+ 'il 	SI' )1-(04 	v3) [(e<1°42 )( 92(3)- -ice3 )( 22'4'1 )  

+ 2( t7)2  t, 3) [(cyx2)( 	it(3 )+(oef(3 )( 9?‹2 )44(2.(3)( 91.(1 ) 

9 2°12 )  ( P3(3 )+(  9143)(  P2be1 )( 1).3 è2 )+(  9'1D(2 )(  2ce3)( 9311 )  

1t'(2 )(  3642 )+( 5143)( 52(2 )( D'2'43)±(  512)(  241(1 )( ( 2 )  

] 

]1 

(2J+1) P 
	J-1 	

2;  P2 

For reference, the spin 2 and 3 propagators derived by this 

method are 

e,22  ,1 ;04 cC2 
	

1 
4 3  [( $1 c( a)(  ‘)2c)e  ) + ( 91 4̀1)( 92 ° 2 )  I 

- 2 [ ( 9 19 2 )( (X i  0(2 ) 

1 
0 En3 92 91;d12w 	3 3 = 	2( 91 10 2 )  [(°(1q2 )(  "3 3)4-(441°43)( 93q2).°42q3)( P3b11 )  

where the labels (o(, ) represents got  (CO. 

Fermion Propagators are listed in ref(45). 

6. Reduced Regge Couplings(45)  

.(i) Boson-Boson-Boson 

C+(oar) = g 

C(oo,J) = 0 
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iu.b. -i- 
(01J) = g 	Q + g g 

/414- 	1 ix AA 	2 C9-1- 

(01J) = f E (Q A) 

L  
0.004- 

(ti) = g2  
14-"r 	 ("41 Qa2 

▪ g3gc41vQ°(2Q1,1/4  el+go(1t-kg c<2Q v g5g9<114 g  a 2 ‘r 

( 11J )= {f1  e 	(QA) 	v 	(R) Rote  

▪ f36/.,-V°<1( 	Q042 f l+Ect1PL(Q&) ga2Nr 

(ii) Fermion-Fermion-Boson 

e(11-J) = 	g2Ntry 

(DP) = p5  [filD 	+ f 2 

,T) 	[c  P P 	)1/ 	P 	P 
ilk 2 	1>1 92P g,1A 	+ -2 91 92 At,  

P 	+ gi+g,1 	'2/1-L g3g V-k 2 
• 

2 J) =u5 if i P 91 P 92 Piu, 	f2 Vp1 P92 Phk,  

+ f 3  g 91/4-A. P.92 + 	92] 

In all cases couplings are for massive particles. 
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APPENDIX II  

Example Calculation : VN --4 II N, VII 	VII  

N 	Tr N  

Tune reversal invariance makes this process equivalent to 

Tr N 	VN where V represents (3  , 6) , 14? . We calculate VN 	1IN as 

it readily converts to ISN 	II N. 

The 1-1 -function expanded in terms of kinematic covariants is 

where 

PM  = 	Pp, 

5  g 
2 

 

.11  3 	 7 
ykit, = •(.5 	 = N(C 	ki,, 

v 	 8 
4\P- =  15\c- 	 = 1( 5 )06,4 

The subsidiary condition k 	(1) = 0 is applied to eliminate B
3 

and 

Noting that the vertices of VN 	11N are of oinosite norm-

ality we write the contribution to the V1-function as 

e+(=214J) : 	: 	(10J) 

 

 

„ 
4-(71 	

J no+ 
 ze(L1J) : 	: 	10J) 
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f E1. (Qt 

 

  

15P1Fif + f2;  

 

eJ:[ho gc4 + h g 2 A-.1-tc 

 

 

  

= f [g1 GIU 
;ee g2 x,(6;04 	(QA) )1A 

Then, considering normal exchange ( 11 ) and abnormal exchange (t1- ) 

separately, we get 

A; 
cj 

ft - Jg N + g [-T 	(P + 	)N (a) J 1 P• 	2 	J 	-1-`• J
2 

+ Q(.6. )2 yr(6.) 

Using 

Yr( 	= 	P( = 	- 4m2 

kgp) 	V + 	[1 	 

   

   

{i 
144.44. A4_ 

t 

 

 

and Appendix III, 

cJ 
J2 

r 
g1 J~Jg2 TLt pJ 

+ 	Q(Q)2[t - 4m2] 9" ) J-1 	TEA 

g2X "A,. 	J 
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B
5  

= 

B6 = 

B
7

= 

B8  = 

2f 
c
-.7 
J' 

2 2f 2_ 
J  

0 

2f 
cJ

c  J 

-m+XJ + g2J 
k.P g2 j  

+ m X J 
2 + (k.Q 	N ick g2  

(t-4m.2) Xj 	g2  pJ 

where we retain unequal nucleon mass terms in order to observe the 

appearance of l/t factors associated with unequal fermion and boson 

masses. From the abnormal reductions in Appendix III, we can write 

down the contribution to the invariant amplitudes arising from normal 

particle exchange. 

B+ 2f ---(- (k.Q - /A2) X - iu2m_g2  1 J2  

B+2 	
2 2f - t - k.P X lu‘ m+ g2 J2 

tl 

B
3  

pJ 

B4  = 2f --1-A [m+k.P - m (k.Q - X J 

- k.P g2  j  

A
2  

+ [(k.P)2  - (k.Q - 2 	) )  + 4 	2) 
(p it 

m k.P - m 	-/u.2) 
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.where X 
m 	II 

g
2 t

- (t + 4 p0,13 ej  

+ 	Q( )2 [t - iim21 e 

	

- 	J-1 

and k.P = = Q.P m+m_ 

For abnormal exchange, 

= 
c..r
7 

 
- 	6 5  {J2f 1h1 J • Jf h 1 2(P,'(6̀  ) 9J t P( )2gi-‘( h)  J-1 

Jf2h1 (x.(A) P 	Q( a)2y(Q) 9J-1) Q  /k- 

f2h2 	e j  - Q ( )is( 	e J-1 

tt 
+ X(&){1)  (&) 	 A)2Qp.( ) 

	

Q,( 	)2Y( ) F/A. 	)
nn 	 rr 

 20/(..( ) 	j_21)1 • 

Using 
i+m m- 	- 	) 

	

5 	( A ) 

2 LEA+  
15  Qic1/4 ( t6. ) = t  [t 

4 	4m 	2 	3 

	

X5 	= 	- t+  (Y.p. 	) 

QL 

• i(6) 	- 4m21 
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m+  
Y5 0(6.) = ‘ 5  

  

- '14+1k- 

 

 

  

we have 

B1  

	

m 	 tr 
 -fh 	+fht - 1 1 	J 	2 2 t 	+ 	J 

- Q(0)2  t t - km+2  Q J-1 

B2  = c2 
4m m 1 	{t-4/4+  	I  

- f1h2 J 1. - 	 9 + pc to2 	 

	

t 	J-1 

+ f2  h1  J [ 	( t-4z  AA+. 14. ) pJ  + Q(A)2 - (t-4m+)P - t 	 J-1 

[+ f2h2 + 
4m+ p 

+ 	 [ 

	

PJ-1 

4m rq 
[ t-4 	- 	 P 

) 2 9  
Avit - 	t J-1 

• 
TTI I 	[t 	 + ittl 	2 	" 1 

- t - {t-4m21 Q(L)'{ 	+  	 P( A) V tJ 	t 	J-2- 

cJ  
B 4 	- 2 f2h2 c)'J 

cJ  B- 5 	2 f2h2 PJ 

B8 
	

0 
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f11  f
11 

= 

In order to discuss gauge invariance in the limit /47* 0 in 

section III.1.E.(ii) we relate the invariant amplitudes to the asymp- 
- 

totically parity conserving amplitudes fAad  and present the Regge 

contributions to them in Table III. Our amplitudes are essentially 

H those of Hogassen and Salin(6o) 

fol 	pt 2 [ —B1 -mko-  B5  -ko  Bo o 

I 
f • 	= k 	B8 t 2 8 

f11• = - kt t  
[p2

5 
 m 13 

   

ocosE) 

oo 	
t  fo1 

+ 	\r B8 4 - 1 B2  -mB 

 

+ m k — B o 2 	6 

   

2p, 2 ?10 	= 	- k 
o  (Bf. + kjr13,5  ) 

	kt t2 B6 

   

   

   

where ko2  = kt2  + j.kv, k.g 	2 = - --- ko, m_ = 0. 

The Wang 1(t) factors for writing the KSFUJI s ard t amplitude 

= K(t) f2  

are 

Ko1 	
-1 2- 

= Pt t 	K11 = Pt 
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c g J  
J(J-1) 

k-1 11 

-1 1  
Koo = tkt 	K10 = Pt t2 

2. V 11 	V 11: Ak  

As before we keep the four masses unequal until the end 

4 
- E B. X tjt AA, 	i=1  

1 
stk.M " 	' 

= P- P A- vs CA3  2 [P 

 

 

  

.K2 = 

tA.`e Q Q v- 

As e.:(00J) = 0, only normal exchange is permitted and 

J 
(! (00J) : 	

\r 
(11J) 

-"A   

=gtY [ ( gig/v. Qv 	g2 gAmr ) 
J 

g3 	+ -4 	Qv. +g5 vxv. 

+ g 	• ) J(J-1) PJ  

- (J-1)2M  (L)Q,. + Pv. (h.)0 
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— g 	(A) P(A)2  9 AANr 	J-1 

It 11 
(&) Qj  + P(E)20 4-(Q) 

 

 

   

rt 	 n 
+P(a)20 (64) IP (A) e 	P( )2Q 7tk 	J-1 	(4 )Y  j_2 

fa  + 
where C.,A,Nr. = L"‘,..;4A 	. Using the following relations 

km m 
P 	= P + 	— 

- t c2,4.k  

r 	Ltda.+  AA. _1 
( p) = 	11 + 

and the subsidiary conditions 

k . = 0 	kt  E v- (lc') = 0 

we get 

= 737"J-1) gn g5 

= 	gm 	giJ(J -1) ?J - g3(J.-1)1)(A)
2  w-  C.N 

J-1 

g5< 
	p( x
"  )

2 
J-1 

km m [ 4m m + —  
t 	t. 

Prr 

J t 
P( LS. )2 

   

It4-4A.1.4At 

  

J-1 
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P(66) 
2 	km m c 

\ ' 
	p(to2  

[t+4A+,1„t 	+t -j-1 

P C 	1'  

Jg:T) - (J 1)g
3
G1,1 

P( )2 
c-)5 	t 

" 
[t+41A+,11...  @ 

c g 
J(J-1) g

2
9
J 	

P( B4 J(J-1) 	
g5 O 

Setting 	0, ,4_= 0 we note that the 1A in the first 

term of the g
5 
 bracket of B

2 
remains(46). It arises from the consid-

eration of spin. 
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APPENDIX .III  

Abnormal Reductions  

1.  V— Matrices 

Our metricis goo = g.. = -1 and the Ig matrices are defined 
xi 

by 	I.  .$0411 = 2g,,,v. so that )c = -1. 

As the literature is written both in the above convention and 

in that adopted by CGLN(55) we use the following conversions (c denotes 

CGLN) : 	co  
= 	= 	' 	= -is(

5
. The 4-vector is 

and ac. be  = -a.b, 	= i, Yyc  = 

2.Covariant Identities  

The Levi-Civita tensor is 

6ociu.v8 = —Y5  [ 	g ckjuAC ‘r• G gvs 

- ge,8Y?..tr • - 

sc 	= (ia 
o
, a.) 

g,,s. Y, + 6 i g ‘-).:t 	 .st 	— g 	g et V.  1-4 

g sr cS 

and we use the abbreviation E(ABCD) = 6.0y4v8 A 0(  B, C D 

EvalUating various E products between spinors 11(p'),11.(p) 
we find 

= 
 2[

m 	— k ) k.PV 
1 	4- 	1"" 	/^ 
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ir 
,(PQ.6.) 	15 - (t m+) 

+ (m k.P + m (k.Q, -ikk 2  ) ) Ctp. 

• (k.Q ,12)P Tm + Pik 

- k.P Qp. 	X 

+ Mt - 4m2  ) + k.P) k 

+ m Xk - - A- + 

v5 	t; 
riV 	

(PQ is 	2 [ 5  [Av. 	4(t - t+m+2) (X 	- 	) 

m
04A• 

p 	m 	— ki, ) 
•'• 

, - (m k.P + m+ (k.Q 	2 
) ) 

v 
+ — + 

- (k.P(0.,e, - 	- 	13, )1 

- (P,r 	Q.. 	) ( — (n1+—M..) (g N‘j, 	kdiA  ) 

+ k P VA), ) 

+ ) X - (k.Q - isk2)%(,,, 
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(PC1 A
4-4 	

6 
1 

= 2 [ 51[+k.P)2  -(k.Q 	2)2 	, +4.(t...4m:)  

+ (m k.P m 	-iue) ) X); 

m itA
23, - k.P X Pe.  

2 
T 	(k.Q -1.4.

2
) g 

- m_)(k.P - (k.Q -,)Le) 	J.A.2) 

- ( (k.Q. - p_2) + Z.(t-1im2) ) X'51, I 

+ 
..A.(PQ CI) = - m+ 

{-65 ] 	l,,̀ ( PQ L\)  

5i
N E (P;,) Jr 

  

2m E (PQL) /4 

   

also 

E 	( pc) A ) 	 Q a) l" 

For photons 1.4 = 0 and terms involving kit., vanish - provided the photon 

carries the h,4, label. 

3. E: - Products  
Contracting momenta with the determinant(41) 
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N-9 	giu. I 	So- 

g 
	

g  9'1 	g 9' c' 

g if   5  J.  g ?r.,9 	g y t 	g if   I 8  

g iA 
 8 81 	g 

we find the following relations of use in Appendix IV 

t, (A) 6).4,1(B) = 

(g g A.B g 
'lc( 

- g,
N. 

A B, - g 
9

,
9 
 A 

+ gy ,,  

B1r' 	A.B g 

g 	A B+ g vx 	+ B,,A x  g_ts , A1  - g/u- 	').A 	6 X 

g
Y

,
% 

AA B
Y 
 - g, B

V
A N  - A.B g 	g9,1r ) 

+ g 	g 	g 	A.B+g 	B 	+B A 
/1 /41,1‘ 	5 	-1S 	 "9 	IS l‘k 	2, g 	dti 

- BiA 	g1, 43 	+ g v,3>  g_151N  Aµ 	g g , Y  g.vim  

- g 	g 	A-g 	g 	A-g 	gA X 1.v 	9 'F. • g 	9'9 	-aim 	11 
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(Ac) ) E 	(B) "33, 	)t-kri 

-1[g
9' 
 (A.BCx 	C.B1115 	9 ) + g 	(C.BA v)  - A.BC, ) 

+ C 

(Ac) "9  B 

CA.B)(C.D) - (C.B)(A.D) ) + D 
I  
(C.BA. - A.BC. . ) 

+ (A.D) Cf 	9, B 	- C.D A 

Specific examples are 

ottp(QA) E)„, (QQ) = 

- [(J r)  p, tQ(t)2  + Q26, 1, g, - tQ p 

(QA.) [ Q 9  

99' (Ps) 6 90t, 0.4) 

t \r(6) - 	A 	A g , 	 9 

+ (Q.& A00  2 + P.p 	,Q,4/  ) t P9, Q v  

• 
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4.Decomoositions in terms of Kinematic Covariants  

A. IcN 	"ITN 

Tiu• 
4 

+ 2X 

2  ou 
NA,4  = 2 P- 	+ + 2m 

1 	 w 3 	«4 

	

= .2k.Pm 1,, - 2k. Q lc.„ 	+ 2k.P 

B. L,6  N 

2  [ 

,.,1 	«3 	« 4 
[t+4m m_ l< + 	`KMAr 

6 
m-(t-4m2) 	1112 + m+  m— og•Ar

+ 7— 14. 	 — 

.42 	.4.„,1 	-3 
- 15  Qv. NA  = 2 [ (r- 4 ) tKimr  + 	- m+  + m 

4 
A<J„,sr•  \rX„ 

	

(\rm 	m it42) , 

	

i,7 	 8 
1/4  + 	- 	v.+ (k.Q-m2 -m+m)U 

	

1 	 N 4 	6 
- 5 Pv_ g NM  = 2 [ra (\f- k.Q) 	(V'- k.Q ) 	m v- 

	

+ 	Av. + 

N7 	,8 
- 4 

2 2 	 2 1 	 2 
- 5 Q̀ r X N = m+ 

[k.c),( 	4 -)* 	AY - (m+m-v-  + k,Q(m+  + m- 
2 - t/4) )1c, 

N 4  
- k.c(m + m)+ (m \jk - k m 
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— 	E 	0.6) = 2 [ In+ PA: 4. ..,t< 
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APPENDIX IV 

Reggeized Cross Sections 

1. Introduction 

The spin averaged differential cross section in the asymptotic 

region is written as(45)  

2 do- 
71-E ti I 

where 

= 	tr fi 9 i. M flit 	if,  

and 

tri = (:( )  f, B 	j3;04 itx  (A) 

ff' are the projection operators for the incoming and out 

going particles respectively, A, B, represent the spins at the vertices 

and 04, p refer to all of the internal labels on the vertex functions. 

If the tit-function is split into normal (+) and abnormal (-) 

exchange parts 

= vt+  

the cross section becomes 

2 d
t
(Y• 	++-++ 	 -+;-+ • V 	I '-- + 	+ I '+- + I +- d 

where, 
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;.7); I
++;++ 	tr fi 	% 	f'i' 9ff' 

= trC+0(B)4;  1.04 	.. . (A)9 e+  f'  
(B)  J 	(A)  1) . .(!.. .,—,9ff, 2,;a: voc 

The double normality subscripts allow for the possibilty of identical 

or opposite normality at the vertices. Factoring the above equation gives 

++-++ 
I 	= tr 

," 
(B) @file f+1 9, (B)  trOeviW trei

O4  (A)Vii,C..7,0.1  (A) 

++ 
= tr (B) 

	
9j  9j„ tr (A) ,1  

2;ct 	; 	°C. CK0 

Since 

	

J-4z 
	0 

P 9j. 	' CP 	= 7 	5 ;..e 	
= p ;04 	;04Q. 4. 	 3 

only terms of the form 

P p , vr • 	@j  Q 	= (c 9 '; ce 	 j  e j )2  ti  vaT  

will contribute to leading order in the differential cross section. 

This requires that traces which give leading order contributions are 

of the form 

tr (A) oCt = 

 

Q 

]
P

9 
P
9' 

 

 

(6) 
tr (B)

P
, = 

V 
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We now show that traces which contain vertices of the same 

normality will contribute to leading order, whereas those which mix 

normality contribute terms which are, at best, one order below lead-

ing order and can be ignored in asymptopia. 

2. Traces Involving Same Normality  

For FFB (F=fermion, B=boson) traces of either normality, 

inspection of the vertex functions in Appendix 2 reveals that there 

is always one pure momentum coupling (g1 , f1) capable of giving a 

trace in the form of eqn(6). The
5 

present in the abnormal vertex 

function appears twice in the trace and consequently gives rise only 

to sign problems. For example consider the trace. 

••••••••• 

tr(N-J)--  = tr(: (114J)(i + m)e- m,  ) 

= tr 	(f2.% 	)(i 14)Y.,(- f2()1 	m,) 

8P P f
2 	m - 

f
1 	- 
)
2 	

f
2 

4 

  

  

+ 8g 7 7, [4-- - m2 

The first term clearly contributes to leading order, however 

the second term, assuming that the 0,4, ocT labels have been contracted 

away, gives 

g 	

' ‘r 
nJ (-3J 

9 Wj-  
j (A) 	+ Q,(A)2 F 	(6) J 	 J-1 

(cj)2  
Q(A)c- ( 9'j  )2 	 p(is, ) (olj,)2  

nr(a) 9'j  e'j_i) • 
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Q)2 

g c4 

The best asymptotic behaviour of the previous is two orders below 

leading order, consequently we shall ignore metric tensor contributions. 

For normal BBB traces the arguement is the same as that for the 

FFB case. However, for abnormal calculations the coupling depends on 

the anti-symmetric tensor € 	 and the trace will be a product of c.c yrIt 

anti-symmetric tensors and momenta as in the following example 

 

k,,k„, 
	 e_ 	1  , (10J) ,M2 1,4 tr(1oti)--  = 	(10J) 

 

2 
= f oe. 	Eitk 

(Q A) 

t 	oc , 

r[t f2J  

Other products of tensors and momenta which occur in traces of more 

complicated vertex functions do not contribute to leading order. 

3. Traces Involving Mixed Normality 

The mixed normality FFB traces contain a )(5  term from the 

abnormal vertex which gives rise to an anti-symmetric tensor. The 

corresponding BBB traces also contain an anti-symmetric tensor which 

comes explicitly from the abnormal. vertex. This is illustrated in the 

folloWing two examples 

tr(HLT)+—  = tr P+  7 	22,1)(Z + m) 	(,--21.j) (it 4. 	) 

	

tr [g
22 y + g1 	(zS m) X5 

 {-f
2 	

f P 
	

(it + m') 
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g
2
f
2 

r 

= - 4g2f2 	(P P t  ) 

= 4g2f2  E 	(PA) 

    

tr(10J) 	= Cocius(10J) Esdki4jc  
k k 

ik
2 

  

  

    

= E (0A){f ociA 	2 
+f1QDe IQ !AA.  

 

   

	

= 	
2 E cc, (0a) 

.Any mixed normality contribution to the differential cross 

section, then, is of the form 

€ c;)  (PA) VT. c3„ E 1  (gil) 

	

p 	0( ot 

which behaves, at best, as t\T2J-1. We shall ignore mixed normality 

contributions. 

4. Prescription for Reggeized Cross Sections  

The traces which contribute to leading order only have been 

calculated and are listed in Table.  IV. For the exchange of a given 

trajectory, the differential cross section is simply the product of 

the required traces. Thus, 

da- 

	

dt 
	[ 	 112 0((t) I 	I 2  
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Minor complications arise if the couplings at a vertex are split 

up by selection rules. As an example, consider Yp 	+ n with equal 

proton and neutron masses. As a result of G-parity invariance the pion 

exchange contribution to the cross section is 

v2.d d%-• 	
- 

I 	t 	2 II t 
g  I 
	2 OC,A(t) 	

I t 

and rho exchange gives 

e 
dt7 	8  [ (s2  nvi)2 	

g1
2 [t  72]v2o(e(t) Ign I2 

dt 
	

) 
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TABLE VI : 1tN 	N REGGEI ZED INVARIANT AIVLITUDES (LEADING ORDER )  . 
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TABLE VII ( Cont d. ) `6*N --• VN , REGGE CONTRIBUTIONS TO THE INVARIANT AMPLITUDES. 
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TABLE VII (Cont'd.) : 2iN 	VN, REGGE CONTRIBUTIONS TO THE INVARIANT AMPLITUDES. 
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INVARIANT 
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TABLE VIII : 	 REGGEIZED INVARIANT Alsn3LITUDES (LEADING ORDER  
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TABLE VIII :  N VN, REGGEIZED INVARIANT AMPLITUDES (LEADING ORDER)  . 
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TABLE IX (Confect.) ; NUCLEON COMPTON SCATTERING, REGGE CONTRIBUTIONS TO INVARIANT AMPLITUDES. 
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FIGURE 	CAPTIONS 

Fig. 1 : 	Kinematics, s-channel 

Fig. 2 : 	Kinematics, t-channel 
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Pion-Nucleon Backward Scattering 
and a Modification to the Peripheral Absorption Model ('). 

F. D. GAULT, B. J. HARTLEY, J. H. R. MIGNERON and K. J. M. MORIARTY 
Physics Department Imperial College - London • 

(ricevuto it 14 Febbraio 1969) 

Summary. The peripheral absorption model with Um  symmetry imposed 
at the vertices and a recently proposed modification to the model are 
applied to backward nfp scattering and the results compared. 

In this note we apply the peripheral absorption model with Um  symmetry 
imposed at the vertices, and a recently proposed modification (') of the model 
to 7z+-p backward scattering. 

The absorption model with the addition of U„ symmetry to relate coupling 
constants has been successful in fitting processes dominated by 0-  exchange (2); 
however, for processes dominated by higher spin exchange such as 1-  in 
7-Cp ---4-70n the model has predicted neither the right order of magnitude for 
the differential cross-section nor the momentum-transfer dependence. TINCHAM 
et at. (1 ) (FMM) have attempted to improve upon this by explicitly relating 
the dominant inelastic channels to each other through the overlap matrix (3) 

(*) The research reported in this document has been sponsored in part by the Air 
Force Office of Scientific Research OAR through the European Office of Aerospace 
Research, United States Air Force. 

(') D. G. FINCIIAM, J. H. R..AIIGNERON and K. J. MORIARTY: Artiovo Cimento, 57 A, 
588 (1963). 	 • 

(2) J. D. JACKSON: Rev. Mod. Phys., 37, 484 (1965). Other references to the absorp-
tion model can be found in this paper. 

(3) A. BIALAS and L. VAN Hovx: Nnoz•o Cimento, 33, 1385 (1965); A. 13int.,6 and 
K. ZALEWSKI: NUOVO Cimento, 46 A, 425 41906). 
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and parametrizing the remaining background channels in terms of the initial-
state elastic scattering. 

We examine 7z-i--p backward scattering because of the limited number of 
inelastic channels and the variation in structure in the differential cross-sections. 
The peripheral absorption model has had little success (4) in fitting the rapid 
fall-off with increased momentum transfer (n) and subsequent recovery of the 

+p pn+ differential cross-section and the relatively flat behaviour of the 
Tc-p 	cross-section. As well, peripheral absorption calculations. based on 
nucleon and ,V*(1.236) exchange predict cross-sections too large by several 
orders of magnitude. 

The modified amplitude from the .absorption model in the Sopkovich (5) 
form is 

(1) V,.§„7vfaVsfia , 

where a., b are channel labels, At 8,,J, are elastic-scattering matrix elements 
and Vol. is the inelastic Born amplitude. The usual parametrization of the -
elastic scattering is used for both models: 

(2) (Sol.)+4, ----- 1— C exp [-1(1+1)1R21!12], 

with J= l +1. 
• In FlIDI the S-matrix is 

(3) :S7L, = g[ (1 + ii7j)/(1 — iKI)lab 

where g is a complex number in channel space and a bar on a matrix indicates 
that it has elements only between « significant channels * (1). The modified 
amplitude is then 

(4)  i[(1  m i-P)/( 1  —alga 
 kl
cy, 

an 	
[(1  ig')/(1 — ajno. aa 

where g has been eliminated by dividing eq. (3) by ga"., an operation permitted 
only when [(1-1-irc)/(1 —i/7,):16. is not zero. The diagonal K elements are 
taken to be zero and 

(5) 2.,„11"12.1, ,,,> • 

(') J. S. TREFIL: Phys. Rev., 148, 1452 (1966). 
(5) N. J. Soncovica: Nuevo Ciniento, 26, 186 (1962). 
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Considering meson-baryon scattei;ing, eq. (4) is treated as a 2 X 2 matrix 
equation in channel space to get 

(6) T:1= 1-iSa1—  i .17:1]-1  • 

Then, including spin effects by taking V:, as a 2 ><2 matrix in spin space, 

(7)  
(27211)++ =-[( V2/1)-i-+X.f+ — (Vii)+- X.f.-] (Sii)++ • 

(171)++7̀+-] (44+ 

  

where the matrix X" = [1--V]'. We note that eq. (6) d)es not hold for 

We consider the intermediate energy region, 
beyond that of direct-channel interference, and 
evaluate only the u-channel graph (Fig. 1) for 
nucleon and X* exchange. For 7C+p pe . neu-
tron and X" are exchanged whereas only .N"*++ 
is exchanged in n-p 

To determine the Born amplitude we use 	 P, 	v. P,  
' the (To , currents to fix the couplings (6). For Pig. 1. - Pole graph for baryon  

nucleon exchange, 	 exchange.  

(8)  
2m\ 1)13127 	

U — 	 Ul (Pi) $ — S [g 	 A' P3 	.11/je 4nt 

where A= (p, p1 ); P= (2p,—p,); P' (2p3 —p3 ) and S is a combination 
of F/D and SU, coupling factors equal to 2a)2 for 7c±p prc±. The coup- 
ling constant, g, is given in terms of the known 	constant 

2 	• 
Grt.V.V g2  (5\2( 212  — = 14.9 . 47‘ 	4a k3) 	/4  

For the U5,6 masses we take m=0.939 GeV, .,u=0.417 GeV and Mx=0.939 GeV. 
For X* exchange (6 ), 

(9)  vq1,4 =—VYsi-g-(1+-2--)12UA,(P3) P2/I 	VPITV  U ( ) 
Lnt 	itz 	u— 	1, P1  

(6) A. SALMI, R.. DELBOURGO and T. STRATIIDEE: Proc. Roy. Soc., A 284, 146 (1965); 
M. A. BEG -and A. Pais: Phys. Rev. Lett., 14, 267 (1965); B. SANITA and K. C..W.ArA: 

'Phys. Rev. Lett., 14, 404 (1965); Phys. Rev., 139, B 1355 (1965); B. DELBOURGO., et al.: • 
Seminar on High-Energy Physics and Elementary Particles, Trieste (Vienna, 1965), p. 455. 
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• 

Pig. 2. - tr+p backward scattering: diffe-
rential cross-section data (7) and predic-
tions of i) the peripheral absorption mod- 
el (---) and ii) the PIM model ( 	). 
at a) 5.9 GeVic (0=0.81, R=0.27 (Ge17)-1), 
c) 9.9 GeV/c (C = 0.76, 11 = 0.27 (GeV)-1), 
I)) 13.7 GeV/c (C=0.745, R=0.27 (GeV)-9. 

• - 

	

	(7) D. P. OWEN, P. C. PETERSON, J. OREAR,.A. L. READ, D. G. RYAN, D. H. WHITE, 
A. ASILMORE, DAMERELL, W. R. FRISKEN and R. RUI3INSTEIN: Plays. Rea. 
(to he published). 
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3.31.2v.  kYi,  Lir d,)  71F 	+  

2 
	Mx.) Yr,  7'.] 

and S is 1/1/3-  for X** and 1 for X*++. 
Primed amplitudes are related to unprimed ones by a density of states 

factor e= 187r Ars, where k is the centre-of-mass momentum in initial and 
final channels, such that 

1— iT" , 	el" . 

Fig. 3. - tv--p backward scattering: diffe-
rential cross-section data (7) and predic-
tions of i) the peripheral absorption mod- • 
el (— --) and ii) the F.M.N1 model ( 	) 
at a) 5.9 GeVic (G=0.79, R=0.26 (GO1,7)-7), 
b) 9.9 GeVJc (0 = 0.74, R = 0.26 (GeV)-'). 
c) 13.7 GcYle 	0.715, R,=--0.26 (GeV)-7). 
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The spin averaged differential cross-section is 

do 1  
du— hZ 	 v,i) 2 04+12  + 1Z-121. 

The Jesuits of eqs. (1) and (6), applied to the 77±p p7;± data of OWEN 
et al. (7) at 5.9, 9.9, 13.7 GeV/c are presented in Fig. 2, and 3. The conven-
tional absorpCon model results are poor, as expected (4). The FMM model 
gives improved predictions for rcfp --)- pe data with the exception of the 
13.7 GeV/c fit. This results from an unphysical singularity in the approxima-
tion which is usually innocuous, but for 1= 4, at this energy, it approaches 
the physical region. 

As cgs. (1), (6) contain no free parameters we .are denied the freedom of 
an adjustable residue open to Regge fits which permits a several order of 
magnitude variation between forward and backward predictions. We take 
the improved but by no means good fit of the F.11131 model as a further indica-
tion of the efficacy of explicit consideration of inelastic channels in the context 
of the peripheral absorption model. 

* * * 

We wish to thank Prof. P. T. MATTHEWS for encouragement in this work 
and for reading the manuscript, Prof. A. ASHMORE for giving, us unpublished 
data, and R. C. BECKWITH for assistance in computing. One of us (B. J. H.) 
Wishes to thank the University of London for a Postgraduate Studentship 
and two of us (J. H. R. M., K. J. M. M.) thank the National Research Council 
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RIASSUNTO 

Si applicano allo scattering all'indietro rr±p it modello di assorbimento periferico, 
con la simmetria U6 6  imposta ai vertici, ed una modifica al modello proposta recen-
temente e si confrontano i risultati. 

(') Traduzione a cura della Redazione. 

rInon-nyicammee paccesume na3axi 
moiuulmNanun neputlocpunecKoii aficopgnuommii monerm. 

Pe3mte ('). — Ilep4cpwlecicaa a6cop6monnag moaenb C U,, cummeTpnerf, Rano-
Ncelmoil IIa nepunumr, H ne,a,aano npeunoNceunoe IIII40113MCILCMIC mo,ne.an npumensnoTcg 
X n±p paccemuo na.3aix, n nonrienuble pe3y.oh.ramt cpanummlown. 

(*) flepeeedeno pedatalueii. 
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