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ABSTRACT

We present a discussion of the S-matrix theory of massless
particles, |

Starting from the transformation properties, under the Lorentz-
gro@, of massless particle states, we progress to the derivation
of massless particle wave functions. The possible choices for the
representations of the I.orentz—gr.o.up to which these belong are seen |
to be restricted.

For the phoﬁon, the polarisation vector is an unsuitable wave
function, and in order to retain Lorentz-covariance of the S—-matrix,‘ the
gauge condition must be imposed on the M-function. We circumvent
this difficulty by using an antisymmetric tensor wave function., The
M—function analysis is then much simpler than usual, and we discuss
same examples to illustrate the method. A similar treatment may be
applied to the casé of the gravii;__on.

We then turn to the massless particle crossing matrix, rederiving
it in the covariant helicity foxmalism; We show that for consistency,
the elements of the crossing matrix and the scattering angle cosines
must be analytic at coincident channel-thresholds, such as occur in .
processes involving massless particles. |

F:i_naliy we derive sum-rules, both superconvergent and finite-
energy, for nucleon-Compton scattering. Integrais over total photo-
production’ cross-sections are related to the parameters of the cross-
channel Regge-poles, or to the electromagnetic parameters of the
nucle01_'1.. _

As additional material , We present a paper "A New Fomulation of
Quantum Electxodynaxniés;' in which we introduce antisymmetric tensor potentials.
~ The Weinberg programme for electrodynamics is here carried out with covariant,

local, causal fields. No unphysical particles are present, nor is there



any indefinite metric. However, the difficulties of an axiomatic
quantum field theory of electrodynémics are not campletely

resolved.



'PREFACE

The work embodied in this thesis was carried out in the
Department of Theoretical Physics, Imperial College of Science
and Technology, University of London, between October 1966

and August 1969, under the supervision of Professor P.T. Matthews,

The material presenteci is original except where otherwise
indicated in the text by clear implication. or specific reference,
and has not previously been submitted for any other degree in any
university. It is based largely on four original papers, listed
in the references, one of which is included at the end of the

. thesis as additional material.

I would like to thank Professor Matthews and many other menbers
of or visitors to this department, in particular Dr. H.F, Jones and
Professor G. Feldman, for numerous helpful discussios and suggestions,

and for their continued interest.

I am happy to acknowledge the support of a Cammonwealth Scholarship

during the last three years.



QONTENTS

INTRODUCTION

I. MASSIESS PARTICIE STATES AND WAVE FUNCTTONS.

Pomcare Group Generators and Representatlons.
Transformation Properties of Massless Particle States. '
Auxiliary Operators and Wave Functions.

Spin-One Wave Functions.

Spin-One Projection Operators.

IT. PHOTON M-FUNCTICNS,

Four-Vector M-Functions and the Gauge Condition.
Antisyrrmetric Tensor M-Functions.

ExamPles of Photonic Processes.

Perturbation Theory and Pole Diagrams.

Charge Conservation.

' Photon Propagators.

III, THE MASSIESS PARTICLE CROSSING MATRIX,

The Crossing Matrix for Helicity Amplitudes.
The Covariant Helicity Formalism. |

- Massless Particles,
The Crossing Matrix. ,
Determination of A(x,i,j)v, (mi= 0).
Appendix.

IV, SUM RULES IN NUCLECN COMPTON SCATTERING.

Amplitudes, the Crossing Matrix, and the Optical Theorem.

The Partial Wave Expansion and Regge Poles.
Superconvergence Relations.

Finite-Energy Sum Rules,

Using the Sum Rules.

REFERENCES,

ADDITIONAL MATERIAL,

"A New Formulation of Quantum Electrodynamics".

34,
36.
43.
45,
55,
62.
64.

66,

66.
70.
73.
75.
78.
88.

89.

89.
9.
94,
96.
99,

102,



INTRODUCTION

Over. the last ten yéars ; there has been considerable
development of a pure S-matrix theory of strong-interactions
fj:'om_basic postulates of Lorentz-invariance, analyticity, etc.‘
Although first intxodlloed to handle the strong-interactions,
the methods should have general application to all stréngths

of interaction.

With each of the non-strong forces, gravitational, weak
and electromagnetic, is associated a massless particle,

respectively the graviton, neutrino and photon.

In constructing an S—nﬁtrix theory incorporating massless
- particles, there are two basic problems. The first, which we.

do not discuss in this thesis, may be described as "the infrared
| problem", Each pole in the scattering amplitude sits at the
begimning of an infinite number of cuts due to an indeteminate
nurber of exchanged massless particles. The second is the
gauge problem, appearing oniy in gravitational and electromagnetic
processes, as usually formmulated. The difficutty is largely artificial,
as we shall show, and arises from the use of unsuitable photon and
graviton wave-functions, ‘The ‘gauge-candition an the M-functions is

necessary to ensure Lorentz invariance of the S-matrix.

We introduce antisymretric tensor wavé-functions for photons and
g:.;avit.ons, so that the corresponding M-functions are free of constraints
of the gauge-type. The analysis is much simpler than usual. In fact
‘conservation laws do impose some conditions on the Mefunctions, but

these are easily dealt with, as we shall see.



- Because the graviton gauge problem J;_S exactly analogous
ﬁo that for the photori, we make lj_ttle mention of the former
throughout our discussion. We do not mention the neutrino
specifically because it is conventionally described by a wave-
function which causes no tmljble, nor is there any conservation
law, analogous {:o‘ﬂ;at for charge, which imposes constraints on
neutrino M-functions. In this respect, the masslessness of the
neutrino is of no particular significance, and the oconstruction of

M-functions proceeds as in the case of massive particles.

The matters outlined above are treated in Chapter 2, which is
preceded by an introductory chapter on the transformation laws

for massless particle states and massless particle wave functions.

In the third chapter, we study another aspect of massless
particle S-matrix theory, fhe helicity amplitude crossing matrix.
This has previously been found by several workers, but we present
a _novel derivation in termms of the elegant covariant helicity
formalism., The analysis raises the question as to how certain.
kinenatic factors should be continued past charmel—threshold branch
points. This question being resolved as far as the preceding
analysis is concerned, it still remains to be answered in the case
of the elements of the crossing matrix itself. We show that for
consistency between -Ithe behaviour of helicity amplitudes in two
channels near the boundary of the physical region andA the elements
of the crossing matrix, the cosines ;)f the scattering angles and the
crossing angles must beanalytlc at the coinciaent thresholds that

occur in a massless particle scattering process.,



In the final chapter we make same slight ﬁse of the

crossing fnatrix analysis4 in a discussion of forward nﬁcleon—

Canpton scattering. Superconvergéht .and finite-energy sum
| rules are derived and, through the optical theorem, are
gxpressed in termms of total photoproduction cross-sections.
The assumptions are analyticity and t-channel Regge-pole
daminance of the amplitudes at high energy. The crossing
matrix is 'usea to relate the s-channel amplitudes, in tenms
of which the sum rules are written, with the t-chamnel
amplitudes, whose high—-energy behaviour, on the ‘Regge assumption,

is most easily seen,

The refewences. to all chapters concluda the thesis. Though
possibly not exhaustive, particularly in respect of the work of
Chapter 4, we believe them to be comprehensive and to include

the more important sources.

As additional matefial , we include the preprint "A New
Formulation of Quantum Electrodynamics", in which the Weinberg
programme for electrodynamics is carried out with covariant, _
local, causal fields. No unphysicai particles appear, nor is there
any indefinite metric. However, the difficulties of an axicmatic

theory of electxodynamics are not entirely resolved.



CHAPTER I

MASSIESS PARTICLE STATES AND WAVE FUNCTIONS.

We begin by deriving the Lorentz-transformation properties
of massless particle states. As these states are labelled by
eigenvalues of »the Poincaré group invariants, we preface our
treatment with a short discussion of this group and its

generators.

After deriving the transformation properties of the states,
we introduce the wave-functions and auxiliary operators (fieids) ’
showing that these operators for a massless particle of he1_101ty
3 transform covariantly only if they belong to the (O,])

representation of the Lorentz group. The wave—-functlons in such

cases are given.

We study in particular the antisymmetric tensor representation
(1,0) ® (0,1) for massless spin-1 particles of helicity +1, writing

‘down- some of the properties of the wave functions & /,fv (p) .

-Poincaré Group Generators and Representations.

The Poincaré group has- the ten generators Juv, P,,. , with

Juv= -Jyu , which satisfy the camutation relations

[J;“’ )J;’T] = "L( j/-'-f’ J—vﬂ' + jvr J_/“f’ - j/-w’ :Tv‘a "“3Vf J—/'-U')

m
~~
. .\-'C.
e
—
1
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The J wp are generators of rotations in 4-space. The
set J. = .l €.., J., have the commutation relations of angular

i~ 2 7ijk "k _
momentum operators, and the Ki=-_- JiO are generators of boosts
(rotations in the Oi plane). The P. have the camutation
relations of translation generators and are identified with the
canponents of the four-momentum.

The irreducible unitary representations of the groupl’ 2

" are labelled by eigenvalues of the invariants, of which there
are two; . h
r_ pH o W&
P'= PPP. , W = WAW,

where W, is the Pauli-Lubanski fourpseudbvector
== -4 ve p*
Wi = 4 tuwpe TP

One can verify that P2 and W2 camute with all the generators.

. We may write W, in the alternative fomm

H

We = J.P
(1.2)

w

RJ + PxK

with the J and K defined above..

The mass-zero representations are characterised by P_2=O. ‘
Then there are two kinds of bxepxesentatioﬁs. 'Ihosé w:Lth W =d# O,
and those with W = 0. In the latter case the repxeéentation.is
not campletely specified by P2 and w2 However, P‘W.=0 (élways) ,.
and P° = W = O in our representation ,A so that W, must be proportional

to B

W, '7'— AN P/.. - | (1.3)
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where W[,_ ,/\ and P

. are representations of operators. N\ s
in fact the helicity operator as may be seen by applying eq. (1.3)

to an eigenstate of momentum

W lps > = Npulpy |
| o (1.4)
and in particular, W, = Np. (1.5)
but W, = J. P
sotat A= J.p ;o e
Po

. the hélicity operator.

\The eigenvalues-'of A ,P2 and W2 now serve to characterise
the representation. -

"Iet the four-momentum of the massless particle be (Por©r0; Po )
in a suitable frame. Then W

3 =WO ' andWl anc}ilw2 commute.,

Def:ining
Ne = V_V_%_V:’_ = T =T, (L.7)
wt = WA W, = W™ — Wy = W= W,

i

_ P°L Ay N- (1.8)
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Also fram the camutation relation

[_ W/,.. ,Wy] = - (‘, E/.J.VPU‘ WP Pu. .‘ ’ (1.9)
we may Adeduoe that

IAAL] = £ A

[A.,A] = O (1.10)

...............

of no physical significance).

Now let us denote the eigenstates of W2 and N\ for

momentum p by |p ;%MD or simply J«,A}, since W, and P.

comute.

W e, = £ | AP
/\ »]p(,)\> = A Io(,)\> : (1.11)
A + are cleariy laddér operatoi:‘s, SO ;clié.t

/\/\il%k) = (H:IS/\H%U : v‘(1.12)

The spectrum of A is then of the form Xe+{, { any positive
or negative integer and 1>X.>0
Now <oGM AN > = A8an

and (CRINLTIERY; ‘-’—{O»i Sa, N+ (1.13)
' Aer S, N -1 '
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Therefore & = <°<,$\| W A = —=pa oM A Al ¢, )

~pE O A X1 K A=t AT X

= —poajax T (.19

In a wnitary representatién, W is hemmitian, so that
/\.,:r = A- and o = o3 ¥ . 'Therefore °(='Po1'l°~,\lp$0 .
Ifaf =ay=0forall A\ ,®=0 and Nx=0 !in the representation.
| | Consequently W)y =W, =0 and Wpn =AB.. Since in th_'LS case
A camutes with Ax , it is an invariant, and the representation
is therefore cne-dimensianal in the spin. - ‘The eigenvalue should be
integer or half-integer if the representation. functions are to be
single or double-valued. A particle with spin s may exist in the two
helicity 'sta‘ces corresponding to the eigenvalues + s of /\ ’
'but under propér Lorentz transformations, the representations corresponding

o the two states are separately irreducible.

 Transformation Properties of Massless Particle States.

Now let us see how the massless particle states with ®=0,
denoted by |k, \> , transform under the Iorentz Group3' 4,
‘There is a restricted group of transformations R™, , called the

"little-group" which leaves the four-momentum k' invariant.

R, k% =k

(1.15)
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This induces a unitary transformation of the states
UIR] [k, = % D, LRI IR, N> - (1.16)

- where the functions D/, [R] must satisfy the group-property

Y. Dyw[R]I Dy [R] = Din[RR.] — an
N/ ’ )

" We can see fram egs. (1.15) and (l.»l6),'that the little group
is generated by A, TI, and TI, , for these cammute with the

momentum operator. Alternatively, we may deduce the little-group
from eq. (1.15).

an infinite_simal R™, has the form
R, = 8§, +w=, (1.18)

with w#Y= —wY* since R is a Lorentz transformation. If

“k is (k,0,0,k), we deduce that the only non-zero camponents of

wmv are
W't = —w? - 6
w'® - —.'U’m = w'? = — w2,
W2 - — W - w?? - Wt =X;_ (1.19)

Recalling that the unitary operator corresponding to the

gereral infinitesimal Lorentz transformation is of the form



Ul +w] = 1 Lo Jpv (1.20)

we see that
U[R]) = | + 167, +'zx, (To+T0) + z%l(J;Oﬂ»Tm)
| I+ (0N

+ L X,TT, -+ LXJT,_ (1.21)
so that A, T, andTl,generate the little group.

But we are interested in one-dimensional representations
in which

(1.22)

so that a general R in the little group transforms |k, A\)
into

VIR IR, =

exp { £ OLR(0,%, L) A} 1R,))

= exp {L MA@k, (1.23)

whére the angle © is sare function of 6, X, and X, such that

e~ ¢

(1.24)

for infinitesimal R , by eq. (1.21).
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Furthermore, by eq. (1.17)

OIR] + B[R] = BR,A.]

(1.25)

We may now define the state of a particle of general mamentum

P, helicity A , in terms of the state with momentum k = (k,0,0,k)
We‘define

Upay = ULZLE) [k (1.26)

where U[Z(p)] is the unitary operator.corresponding to the Lorentz

transformation f ( P) which takes k, ~ into F/‘*'

We remove the amblgulty in defln_mg L(p) by requiring it to be
i of the form

L7, ) = R™, (£) B, (1p)) (1.27)
where B(lpl) is a boost along the =z —axis.taki_ng'k to (i1, 0,0 lpi)
and R(P) is the rotation ta};mg (1e), 0, OIPI)to P

. The non-zero
_canpcnents of B(pl) are

R', -

it

l
B* .
B .

i

"

B™.
B®, = coesh @Uip1)
B,

sinh pC1p) |
by = & (12V/R)

(1.28)



The states |p,\) have the normalisation

2,;lT S () <pr’, N l PyAD = (am)* 5“(?”[’})-- SA,A’

(1.29)

A 'geheral Lorentz transformation * L™, now transforms |p,\)

into

ULLY |p2)

ULL] ULZ(P] Tk, AD

ULLAH] ULE GALZP] 1R (1.30)

)

But Jﬁ“'(l.p) LZG)  leaves k invariant, so that it belongs to

the little ;‘group and by eq. (1.23) we may rewrite this
|

i

UIL]Ip.»> ULL(p))exp{iA @[:Z’"(LP)Li(p)]} 1;;) A

"

<Xp {ik@} IL.F))\> (1.31)

Auxiliary Operators and Wave Functions.,

We now introduce the creation operator - a¥(p,\) which,
when acting on the vacuum state, creates the state PaAy .
The Operators 0—_(P>>\) and Q—*( P>X) satisfy> the Bose or

Fermi camwutation relations
2t SO L alp), ()] 4 = Gm* S p-p) Sx

(1.32)

which is consistent with the normalisation of the states |p,Ad .

17.
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The transformation law for the of(p,N) may be deduced from eq. (1.31)

exp { IABIL L L)) af (Lp,R)

! _ (1.32a)

ULL] eF e,y UL

hence | v ,
ULL] () UT'IL] = expLid8[Z7(R) L (] oulip,n)
(1.32b)

The transformation phase factor exp {LA@_YR]} depends both

on the parémeters of the transformation I and tﬁe mamentum of the

state. We may define &n auxiliary operator4' >

_ Ao((P)

with « a Iorentz-grdup representation label such that

UL AU T = SLPW)Ap(Ly) |
B ' (1:33)

The transformation matrix depends only on the parameters of the.

transformation. The relation between Ay (P) ‘and  a(pyA) is

A.,((P) = Md(P,A)o,C‘P,)\) (1.34)

which-defines ay (P2} , the "wave 'f_unctionﬁ (the répresentation

rust contain the spin A ).
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Now <« ULLPY] ) alp,)

transforms under L as

U [L] <<l OTLRITINY a-(py3) U™ [ L]

= <=| U[f(r)] N V(W] U] UL p)] IA) o (Lp,N)

' (1.35)
- << U[L'] Ip><pl U LLLp)]]AY o (Lp, )\)
so we see that
g (PA) = L] U TS

(1.36)

= <« U [i(P)JPF><F’>\> |

Here <§|>\> is the constant spinor ALp (ks X)) where k is our

standard momentum, or, wore simply, 4p(A). Further
ag (Lp A) = <o) OLLEPTIp) 2p(y)

- <« VLD U@V @] ueT x
x U1 p)<pl ¥}

_ . : ‘ (1.37)
= <] UL Ig> <pl UTZRIIA %

- X exp {LX@[Z"'(P)L-'.Z(LP).J}

since R=Z ()L Z(Lp) is in the little group of k.

g (Lp,2) = Dyg [L] 4 (pyA) exp [ (A ©)

(1.38)
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In particular, if we choose p=k and L=J2(q) we see
that the wave function for general mamentunm g is defined in terms

of M-,,(()\) by
sy (Q,N) = Donp ["i(cj)] g o) (1.39)

If we insert this into eq. (1.38) on each side we see that

Do((s [i (LP)] A ()

= Dyalt] Dy [2(m] sy () exp {INBIR]]  (1.40)

. D“‘P [Z7¢) L' 7 (Lp)] Mg (Aj = exp fi A® L) L—'.Z(Lr)]} Al ()
| (1.41)
D TR e () :.'exP{EA@D[cR]} g (A
- ’ | (1.42)

for any' R in the little group of k.

This places a restriction on the possible representations

[<> of the Lorentz-group as we now show" .

For an infinitesimal R we have

D [&(911',11)] = .
a ' (1.43)

e <°<l [l -+ [9':]-3 -+ LXI (Kl_j‘l_) +iX2. (KL+I)],F>

Eq. (1.42) now requires, since @ ~ 0 for infinitesimal R ,
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K| T IE> () = Aagy O)

(1.43a)
<t [(K = T3) 1> ang () = O (L)
Ko+ T) 1y mg ) = o, (1.43c)

We now recall that we may rewrite J and XK in temms of
other operators M and N

M = £(T+iK) |
(1.44)
N = £(T—ikK)

vwhich have the decoupled canmutation relations

[Me,M] = Ceje Mo

[Ne, N = cejn M

(1.45)
IM,N] = ©

A representation of the Lorentz-group may then be labelled
by the two spin values. of these. sets, m and n.

A little rearrangement of egs. (1.43b) and (1.43c) gives us

€3 (Mu—iMJIF>MFC>\) =0

(1.46a)

-,'<°<I_CN|» + L NY|BY mp () =0 (1.46b)

while (1.43a) reads
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<°<[ (M3+N3Hﬁ>“~p()\) = )\Mo((,\) (1.46¢)

The cammutation relations of the Ms and Ns, together
with egs. (1.46a,b) then show that A)LF,(X) is an eigenvector
of M, and Nj, having the lowest eigenvalué of M; and the

highest of N

3

Myac(r) = —m ()

N3 u..()\) = noa (N) | (1.47)

Together with eq. (1.46c) this implies
A= n—-m ~(1.48)

so that (A ’-C)nly exists as defined when the representation
J> = |m,n) | is such that A=n-m.  We define a right—‘
handed (left-hénded) particlév.,ofspin.j to have helicity
A=+ J (— J) © . Possible representations for a right handed
particle are;t;he.r_efbre -
(O)j) ' 4’:‘:)‘}"*"22),' -
and for a left handed particle

(J) 0) ) (J‘+J.2:)JL—))

Notice that the vector representation (%,%) is not amongst
the possible representations for a spin-one particle. éonsequently
the wave functicn corresponding to this representation, the

polarisation veétor,- does not yield a covariant auxilia_ry operator.



23
We may now choose a suitable representation and within it

~ calculate the wave-functions for "spinors") ., (p,)).

If we label the states |«p> by the M; and N, eigenvalues a,b,

map (A) = Sa,-m Sb,n (1.49)

However if we use tensorial labels, for example [mw},

then ., (A\) is rather arbitrary.

We saw earlier that Z(P) could be written in the fom

L) = R(E)BUpY

(1.27)

where B(lpl) was the boost up the z-axis, and R(£) the rotation

that took the z-axis into the direction ﬁ

Now
ULZ®] = ULR (D] U[B( D] 150
s URp] ke
n = G (1P/R)
From egs. (1.44) " we see that
LKy = M3—N; |
(1.51)

and we know that

(M; - Ns) () = (—m—n) ax (A)
(1.52)



merefore <% | ULBUPN]Ip) sup (A

= ™

: (_[_.El_)'h+“ Ax(’\) -(1.53)

Also

| UIR(EY]IBY D [R (£)]

 (1.54)

an ordinary rotation matrix.

Therefore

(P = <4 UTZ@IpY sp0h)

m+n

= Dxp[R(ﬁ)] (LE') MF(,\) (1.55)

For the simplest representation for spin j, (0,3j) or (j,0) as

the case may be,

'.‘*'oc(P:)\)u Do(p[R(é)] (I—EI)JM{&O‘) .

@Jouby D,y p [R) (Lw:\_‘)ha,b. () (1.56)

In the representation (0,j) this may be shortened to

y , L1\
| >DJ"J[R]({_) SR 3-7)

o (PyN)

1"

sinoé j:hen
;"'o.i,()\) = S.o-,o Sb,]

(1.58)

24,
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The rotation matrix D is a spin j matrix and is well-known

so that all ane needs to calculate are the <=Ly o

Spin-One Wave Functions.

" As mentioned previously, if |«) is labelled by tensor
indices, these values are ﬁot clear and are in fact arbitrary.
This state of affairs occuré when we use,. for example, the anti-
symmetric tensor representation to describe a massless spin one

particle.

" In this case , a suitable convention may be extracted from

~ the following considerations.

Iet the particle be right-handed, that is A=] and m=o,n=1."
Furthermore, the eigenvalue of N; is +l. N, increases N, by 1

and corresponds in a sense with the state with Nj = +1.
Now

Ni =4 (Fy+iTyy = T + Tao)

(1.59)
so that we may associate the state
i-( [23) + i [31) — [.1 oy + I?.O>)
with the state [Ny=1) . Here |pm¥) = —lvpy .
In a similar way we associate L(/12) —¢ 130>) with [N3=0)
and L(]23) -il31> —iio)y ~126>)  with [N3= —1) .

We may then calculaté <mvljy .
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In the particular case that p=k, R(p) = 1, the wave

function  wuy (X) is just {mY[1) which may be written

Ay (A) ~ RpB (R) — RyEn ()
| R

(1.60)

where

Eft(k) = T'f(o)-i)—l)o)

(1.61)

with & and €, arbitrary but equal.. We set them equal to

zero for convenience, and this characterises the "radiation gauge".

& ){ (k) is the conventional standard polarisation vector for

. a right-handed spin-one particle.
A left handed particie has the polarisation vector
s_;_"(k) =% (o,-i,-1,0) .

" (1.62)

One may deduce from eq. (1.57) that the wave function Aluy (P,>.) for

‘general momentum ' p is of the form

Wy (PyA) ~ Py (p) — po el () |
Tk _ (1.63)

=
(DD-' .
@
m
>
&
It
™
>
r~
\-h;)
1

R, € (&)

= L)) (1.64)

since B(|] .P]) has no effect on ¢(k).. Clearly, any invariant multiple

of eq. (1.63) is an equally possibie choice for avuy(p}) . In particular
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we define €, (p) by

£ (P) = Prev(p) — Prele) |
. ' (1.65)

We now discuss the properties of the 8;\,, and x:/ﬂ, more fully.

Conventionally, £2(p) is defined to be such that

P eu(p) = © - (1.66)

This condition is ihsufficient to detemine 8/’: (p) , so we may
choose a particular gauge. In our case we choose the radiation gauge,
in which EQCP)EO . The polarisation vector is then unique. A
little thought shows, however, that it does not transfomm like a

fou::*-'vec:rl:or6 '7

; in_particular.one-can-perform-a sequence-of .Lorentz
»transfonnat-ions—~ﬁ10se~~productris -unity under which- the polarisation
megtbpfis..notfinvariant»(—ﬂqere~is--a~dqange -of gauge). In fact,

E‘.f). (p)  transforms with one of the infinite-dimensional representations
7,8,9 :

of the Lorentz group

AT e p)

(L (AN Z7'(N) A L) 22 ()]

(g R e*w)],. (1.67)

where R is in the little group of k and has the general form'7

Ry = [+ oz, -]
X‘m@ﬁ‘xf'n@, cos® ’.Su'n@ , X cot@-Ays5in @
“xlSir\@*’xlc_Ds@, —Sin{® , ca) ‘V 'X.|Sin@ —Xlto:@

2 1.68
1% I N S

Xy

4 )

2




Cwhere . XP =X+ XS
Then
(R,Q’ eF (ﬁ) = exp (2i06) a;(k) + X ke (1.69A)
where

xt = ﬂ:i.X; "‘X;_-
JZ R
Eq. (1.67) then becames:

"

A/»v £2 (p) L)Y [exp (x (@)} (k) + Xakyl

H

exp (:tt@) Eﬁ(AP) + X4 (/\?),* (1.70)

Setting m=o, we find

il
> -
M
~
>
T
o

ARENO) (1.71a)

Xy < AN

(1.71b)
| Ap] |

(A - Q/LI%{&_?,J)E&@ = xp(£i6)ck (Ap) .72
Ap

which incidentally shows that & does not depend on |gl .
+ . . . s :
E/_,. (Ap) is still in the radiatica gauge.

“The auxiliary operator £/f(|>) 6.(p,+) then transforms as an

infinite dimensional repr.eséntation of the Lorentz group, and not as

. a four vector.
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Sane of the properties of the Eff (p) are:

prex(p) =0 ' | (1.73)

gf () =0 - | (1.74)
E£7(p) = §,T (p) o | (1.75)
XN ) = | | o (1.76)
ta(p)EG) = © (.77

| 2;‘@&3‘*(%) = ~Lguv + PPAPPE nie L, P F-ﬁ (:1.785

higl* Ligl-

where ]'SP = gff |>f3 (unsunmed)

Consequently,
P* e ()= © - (1.79)
&5 () = £5 ) . (1.80)

8/\.\) Pr £?¢ ('P)

i

F20E5() (1.81)

fi’»(""@) = affﬁ, (e) a(f;—r*(P) = %TTM‘,Q(r) =LA e (P)  (1.82)
where]‘O
Tl oe ®) = [-peprgve =~ PP Jup + PP §vp tPofr gonr ]
' (1.83)



and

/\/,.v,(’r (P) =L [‘ BFe €97 = PoPeBupp + BB Evpics + PoboEponce ] P PP

- (1.84)

A detailed inspection of /\,w,fw (p) shows that is is actually
covariant for p*=o . Those terms in py Av,pe(P)  which are
non-zero are actually proportional to P.  or p° , which equals

POL' if P":O . In fact

/\/l&v)fd‘ (P) = P‘*[Fp»zvt\)fq" -+ Ppglu.o:‘pq - FFS/U._V,(U— —F""af"‘vf’“]
| (2.85)

which is covariant for p'#0 as well.

An exactly similar analysis gpplies to the case of gravitons,
massless particles of spin 2. The wave functions corresponding to
the (2,0) ® (0,2) representation are

+
£, pr (P) = e2,(p) €3 (p)
The usual symmetric tensor representation (1,1) is excluded.

Spin-One Projection Operators.

We note that

/~v fucr(F) = Z;)-,_ TT:\),PT (P) (1.86)

are orthogonal projection operators

T‘-:L ‘Oq'(P) n—i‘w'm\(ﬂ = /-«v KX (F) (1.87)
_'_:r/w Pq-(F)TT” "KA (P) = 0 : (1.88)



Another projection operator. is

- ﬁﬁwf"’ P = _I Tf V»F’(P)

Other relations are, with

—

.l/\/av,(ao' (P) E %}1}; /\/wv)eu'(f))'

"

— —_/nv,Kx (F)

Py, 6= P N o (B
/-—\/u.v) pv (P) ﬁpmx)\ <P) = —/\/AV,K/\ (P)

ﬁf*";(’"'(f’) A% (p) = 7\/'*V;KA (p)

My @) TTE0 () = FLT )

etc.

It is easy to show that

DT () = 8%
2—;0*(})) ﬁj\iv,ev (p) = ©
U T B = Q)

"

8’:: *(P) /_\./u.v, P (P) F i 8—%"‘*(}))‘

(1.89)

(1.90)
(1.91)
(1.92)
(1.93)

(1.94)

(1.95)
(1.96)
(1.97)

(1.98)
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We may rev:rlte eqs (l 95) and (1.96) by re-expressing
/\/AV,PU'(P) through eq. (1.93)

a’*"*(P) 1 v,(,r(r) xi ﬂ:w,,q P)/\ boa ()] = a* "(p) (1.99)

32.

E—;vx(}))_ll:[ " " " ] = © (l°lm)
that is,
euy *(F)TT/W,K). (F)(:.f? P?>¢ + L /\KA’P"(P.)) = af:’tr*(F)
(1.101)
I ")
o O @aom)
| But
' ”VX(F)—IT/KV)PG- (F) = £% e (P)
(1.103)
| so that

£;V*(F) * (9/'1"3»’0- * (.'X/*V,?U'(F)) = 3:‘150—*([5)

: : (1.104)
¥ ' " . _
e () 4 ( e )= o
| (1.105)
In other words, against the photon wave function,-
| - 2_ 3/“{’3\’0‘ + L /\ v, £¢ (F) ] (1.106)

are equivalent to 11 v, P (p)
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Furthemore, by virtue of eg. (1.81),

and v 'ZL,_ (3,«-,0 Ive _jfk(rﬁ))‘o F ﬂ/wvlocr) ‘ (1.107b)

B, + .
are also equivalent to -,T,«w,fcr(f’) against the wave functions.
These operators project outgoing photon helicity +1 respectively. |
A1l these results have been deduced from the forms for

TT(p) ana /\(P) given above., However, let us write eg. (1.95)

say with T1*(p) given by its definition €5 @)ehr(p) .

Then
—| oMV¥ + + % )_ + ¥
L e5770) (5 &) = e (B
P | (1.108)
‘But |
=L e ek, =1+ PO P

P (1.109)

f .

- where p.e*(p)= p- s**p)= o ani p-=o for free photons.

For consisténcy'beme'én egs. (1.95) and (1.108) we must take the
p-£3(p) p-£:*(p)

pT to be zéro

indeterminate expression

(as‘it would be for p2_ #0 ).
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CHAPTER 2.

PHOTON M-FUNCTICNS.

Iet us consider the scattering amplitude for some process
which for the sake of definiteness we take to be two-particle
to two-particle. The s,t, and u channels are defined by

s: A+tB —=C+D

t: D*+B —=C+A

M.:_A'*‘B”'*C"'—B-

where A ~ is the antiparticle of A, ete.

Iet the particles have mamenta p: and helicities M.

Then, for example, the s—~channel aplitude

TP} = <Roodel Posdol T1Eadad 1 Peded

2.1)

where T is the scattering amplitude operator in the space of.

states.

The s—channel helicity amplitudell is defined in temms of the.
two—-particle helicity states | Pa)Pe, AasAg and | Pe,Pp, )c,)‘p>

subject to

P st =0 2

Pa+ pg = F¢'+ po (2.3)



35.
Tt is written

T re o Ane (869 = Kpepo Ao | T papsdare)
(2.4)

where we have indicated explicitly that the amplitude is a

function of the invariants s, t and u.

Now we may also write the amplitude as the contraction
of a function? M%F¥S {pe} with the wave functions:
Mo (PA, M) etc., vhere « ,p,¥,§ are auxiliary growp |
indices.

The s—channel helicity amplitude is then given by
TS ‘ (s,t M) -
AeyApjAa,Ap 20T =

= ‘UC'X (Pc,, kc.) ALg (FD)AD) MdPXS{PiiM—,{(PA,AA)M{_;(P[}:XQ) (2.5)

LB Y S
with the conditions (2.2), (2.3). M P {P(} is called
the M-function and is assumed to be free of kinematic zeros or

singularities (KZF and KSF).

In this chapter, we investigate the M-functions for processes’
involving massless particlés ’ dévotjng'mst of our attention to the
case of photonic processes.

This is because of the traditional use of a four-vector M-function

13-18,24 We have already

to describe a scat{:éring involving a photon.
seen, however, that a four—vector wave-function is not suitable for

: .desc?:ibing the photon. It turns out that cne can use such a
description if gauge—-invariance is imposed7 , and it is tﬁis matter that
we discuss first. Similar remarks apply to the use of symmetric tensor

 wave functions to describe gravitons,
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We then introduce antisymmetric tensor wave- and M—fun'ctionslg.

Such M~functions do not need to satisfy a gauge condition and so are
far simpler to construct. From these we are able to derive conventional
M-functions satisfying the gauge—conaition , and these are free of
kinematic zéros and singularities. In fact this method of constructing

four-vector M-functions is simpler than the usual ore.

We treat some photonid processes to illustrate the power of the

tensor method.

We then show the connection bétween this analysis énd the anti-
symn‘etrié tensor form of perturbation theory recently proposed by the
authorlo, finding a condition on the M-functions which follows from
charge conservation. Finally we write down the photon propagator in-

the antisymmetric tensor fommulation.

Four-Vector M-Functions and t’né ééuge Condition. |

Before studying the M-function in detail, let us derive the gauge
condition for photonic processes when the photon is described by a
four-vector wave function. 'Ihe M function correspondingly carries a four-

vector index, or several such if more than cne photon is involved.

However, we shall consider the case of one photon with marentum

k and helicity A = + 1. We denote the amplitude by

TA (k) P)

where p refers to the mamenta and helicities of the other particles in

the process. From the transformation law of helicity states eq. (1.31),

and eq. (2.1) we find 1:hat7
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'_—r;(h, P) = exp {:i: L@(k;/\)} T—J:-( Ak ‘AF) .(2.6)

Now

Tz (bp) = £25(k) M”(k,p)
| | 2.7)

where we have suppressed ‘the massive particle wave-functions
. and M-function indices, and assumed the photon to be outgoing.

M'“(k,P) is a trwe four-vector

/\I&v_ M (k, p) = M* (Ak, Ap) o (2.9)

but 18:/%.*(&) is not, for |
N, 5 "(8) = exp {2iBRN][eL* W) — ‘lf_\k'if/\,"a;*(f\k)]
, _ T (2.9)

These two equatibns in cénjunction with egn. (2.7) show

that T transforms as
Ti (Rp) = exp{i@] [agg*(/\k)'-_(A}x)*“/\,,‘zi*mh)] M. (Ak, Ag)
= exp {ii@} Tx (AR AP —
- ' - (2.10)

—exp {2 L@} (ARA, ° £ 47 (AR) My (A, Np)

which gives the oorre.ct'transfonnation law eq. (2.6) only if
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‘ ©(2.11)

L
the gauge condition. ("Gauge", because this is equivalent to
requiring that the amplitude be invariant under the gauge

transformation 8; (k) — £5(k) + xE k,« ) .

(In the spin-2 case (gravitons), symmetric tensor wave
functions are not "permissible" (see Chap.l). However, they
may be used if the symmetric tensor M-function satisfies the gauge—' V
7

candition k* kY Muv =© , in exact analogy with the

photonic case).

The M-function may be expanded in terms of a spinor-tensor

' basis Kj: transformming as four-vectors, with invariant (émplitude)
coefficients. It is pbssible to c*hoosé the K}‘: so that the invariant
awplitudes are, 1J'_ke'~ the M-function, free of kinematic zeros and

singularities.
M"‘(S,t,,u) = z K": Ai (S,t,ﬂ) (2.12) |
i

Such K{ are polynomials in the four-mamenta and other objects,

such as ¥/, ¢ ,&27f7 which carry four-vector indices.

Two. such bases Kf and J are equivale.nt14 (definition) if

K = jZan- T (2.13)

- where the ai; are kinematic functions and det(aij) -is KSF and KZF.
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abasis Ki' is defined to be minimal'? if the deteminant
 of the transformation matrix (o j) from any other basis has no

‘zeros (for momenta on their mass shells , but possibly complex).

A minimal basis is clearly unique up to equivalence.

Now if the M-function is KSF and KZF, the invariant amplitudes

associated with a minimal basis are KSF and KZF.

They are clearly KZF, for a polynomial basis is, by construction,
KSF.. That is, no invariant-amplitude need have a zero to cancel a

singularity of a K’: as there are no such singularities.

Now. let an invariant amplitude, say A, have a kinematic
singularity. 'Then KfJh has a kinematic zero, since the M-function is

KSF. Iet the singularity in A be of the form

;Al: .._@____

}(‘s,t,u) (2.14)

whére B is KSF and KZF and ]C(S,t,M) is KSF but has a zero.

We may define an‘other, basis Ji by

~ _ K
l £0s,t,4) ’
2.15
]_l."k = K:« ) L= l)3o ( )
Then
e M
Ki = EJ: O”‘Jj] (2.16)
- and

det (Q.JL) = f(S;t,M,) | . (2.17)



which has a zero, so that K is not a minimal basis.

Therefore Al cannot have a kinematic singularity.
e existence of such a minimal basis has been proved by Hepp2.

and Williamle. For processes involving only massive particles,

such a basis is usually fairly easy to write down by inSpectionzz.
When a photon is present, however, such a basis will not in
general, yield an M-function satisfying the gauge-condition.

One then prooceeds as followsls’lG. Find a minimal basis
K’f' with corresponding invariant amplitudes Ai . Now take _

a projedtion operator
’g - —_ kv | »
v = Y P (2.18)
P =3 e |

b

‘vhere k is the photon momentum and p some other momentum in the

problem, then‘ K: M Eﬁ/.w K,‘_V . is a gauge—invariant basis ‘
R, K=o (2.19)
but the function
M~ Z K'7* A; | ' (2.20)
is not KSF,_»be‘cause of 'the' kinematic singularity in §,~v , unless

some of the Ai are related or have zeros so that these singularities

canogl.



The constraints so placed on the Ai are a direct
coné:equé.noe of gauge-invariance or, equivalently, charge

conservation.
"~

We now form a new set of covariants K’: by taking
linear canbinations of the K" , with kinematic cosfficients,
so that the new set is KSF., A minimal basis Rff satisfying
the gauge condition will then be associated with a KSF and KZF
- set of invariant alnplitudes by pievious arguments. In practice,

Card

a minimal basis K" is obtained in the following manner.

1. Find a minimal basis K% not necessarily

satisfying the gauge-condition.

2.  Form the new basis K'{~=€Mv K{ . then
k/u. K'/,:i =0 . If KT already satisfies
the .gauge condition, K'f = K? . Note
that there may be fewer K'f& ~ than KT .
In particular, terms proportional to P’“ or R*

vanish,

3. Teke limear combinations of the K'Y in as
many ways as poss:;tble , with KSF coefficié.nts ,‘
to yield KSF covariants Rfk . There will be a
limited nurber of these. Multiply the remaining
oovériants K":' by R. p to yield KSF covariants

(7 m~
K.'. -

We could have formed the basis K "“ simply by multiplying

41,
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: ’
each K':‘L by R.p , but examination of the transformation
matrix between the bases obtained in these two ways shows

that this other method does not yield a minimal basis.

We do not offer a proof that the basis obtained by the
rules 1,2,3 is minimal, but in practice it may be seen to be

SO.

Iet us now consider a process with two photons, with

momenta k.and ky . The M-function M”” must then satisfy

ko M*Y = Ry MAY -0 (2.21)

. T Y v
The procedure for finding a minimal basis KiM is similar

to that already outlined., At stage 3, we tske linear cawbinations
of the

KE’N = SAf 39¢Kifw , (2.22)

which now ha;vé second order singularities. ﬁ,w is most convenientlyb
chosen o be  Juv 'l;z‘:_%_’ . After taking linear combinations and
multiplying by k.k' to remove second order singularities, we take
further linear cambinations and multiplications by k.k' to remove |
first order singularities. This process can beocme quite time- |

consuming,
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Antisymmetric Tensor M-Functions.

An alternative and more satisfactory way of describing a

photon is by means of the anti-symmetric tensor wave-function

E/:\v (k)  derived in the last c:hapte:cl9 23. It transforms
- .

A /\,, e (k) = exp{xi@kN] &5 (AK) (2.23)

so that - Tz (k,p) = a/ﬁf(k) M*(k, P) (2.24)

transforms in the correct mamer eq.(2.6) if M’”v(k p) is a
tensor. No gauge condition is necessary for covariance. As
8/3‘9 (k) is antisymmetric in m,v we may take M’“ to be

antisymmetric in these indices too (it cannot be symmetric).

M+ may now be expanded in tems of a minimal basis
and invariant anplltudes A., . As soon as such a basis is found
our work is finished, for we do not have the tedious labour
of oonvertlng it to a gauge—lnvarlant one. In fact we may ea511y

find a minimal gauge-invariant four-vector basis KT by the

following method>. Define K% by

e5WKY = e2WKT [ @)

Then

K% =kv(K‘f{“—_K’{“’) | (2.26)
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Clearly k/,b K"f——: © , so that K’: is gauge-invariant. Further

it is KSF because K%' is, and KZF as we shall see in a moment.

K’?v is antisymretric-in m and ¥ and has the form

B*¢Y — B C™ : (2;27&) '

or

e~Ve7 BoCo | (2.27b)

where B and C are independent four-vectors. If either B or C is k '
then Euv(k) K*'-0, so that we do not admit k as a candidate for |
.B and'C. | |
1F K has the fom (2.27a), h,wKN' and Kk, K are
non-zero and indépen_dent four—véctors ; free of comman kinematic zeros, since

K*Y is kzr. Therefore K* is xzF.

1 K*’ has the fom (2.27b), K™ =—287"P"RyB.Co  yhich
- 1is KZF because B and C cannot contain kinematic zeros if
K™Y = gmvew B(o Co | is to be KZF as required.

This method of constructing conventional gauge-invariant vector-
covariants is much faster than that outlinéd earlier,. particutarly i€
more thar} one photen is involwved, as we shall see in same éxamples.
Admittedly the minimal basis takes a littlé lbnger to writé down,
involving as it does two indices for each photon instead of one ,‘ but

| the rest of the. work cansists merely in partially contracting théé.e
covariants with the photon momenta, as in eq (2.26). We shall see
in the examples that bases éoﬁstructed in this- way are equivalént to

the usual ones as we must expect (both being KSF and KZF, and by virtue
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of the definition of equivalence).

To ‘construct the minimal basis K{w , we construct all anti-
symmetric forms (2.27a) and (2.27b) in independent 4-vectors B and
C {(not k) without any scalar kinematic factors such as k.P, &, TQLP_
etc. This set may be restricted by cons:i_derations22 of invariance
under the discrete transfommations P,C,T but we shall not discpss
this matter in generél. |

.We again offer no proof that such a procedure does yield a

minimal basis, but in practice it may be seen to do so.

Examples of Photonic Processes.

We now cane to a consideration of same examples of photonic
processes, all with an ingoing photon and some with an cutgoing
‘one as well. Let the ingoing photon have mamentum k, and ifs wave
function carry indices m and v . The other ingoing particle has
] rrbmentum p. The outgoing boson has momentum k' and indices, if any,
e and ¢ . The other outgoing particle, a baryon, or in the case

of pion Campton scattering, the pion, has momentum p’.
Also

Pot(prp) , Qui(ker), A=h-K
| - (2.28)

Pion Photoproduction .13-15 119,24,

The M-function carries two indices m-and v . The covariants

are in the space of Dirac matrices and are pseudotenSors because the
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plon is pseudoscalar. This is most easily arranged by a
factor XS in each covariant.
Now, since
m Vet
£/v:»t9(h> = kZ/A)’(h):O ) |
‘ : (2.29)
2Q+ A

is equivalent to zero, and we do not use this vector in consti‘ucting
covariants. It is in fact barred by our rules. We can use Q Say
‘and omit A .

Then, possible independent polynamial covariants are
KL/&V = Xg—\‘_Y/‘-Yv"va/w] I Xg‘[P,uQv"Pva.],

Ip%-RY) , wleX-avn], o

M/M’-: ?Z; K/:,w A,: (Sif)"*) . ' %(2.31)
We were able to find only four independent covariants according
to our rules, corresponding to the four indepéndent anplitudes of
| thé prooéss. However, ¢ YgI'P,J’p -P,;B}J _ for é#anplé appears
to be a fifth independent covariant. It is barred by our rules and
is in fact is found to be dépéndent when ccntraqtédwith the nuclecn
spinors and the pﬁ'oton wave functlon “This is an éxa:rplé of an

"equivalence theorem”. 22

Correspanding to these K':v we may find the four-vector

covariants K’: through eq. (2.26)..

'Ihéy are
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R//‘& = ZI.X{}(X/A— A-k'“ s

equivéleﬁt to 46’;}(5”* by eq. (1.73), .
Re o 2% (hPQ*— RQP™)

K;& = 13’;‘(“”” - KP/K)

(2.32)

!

R = 2% (RQY*— K@)

.which are equivalent to the set M, Msy MC and MD of Chew,
Goldberger, Low and Nambul3. ‘e relation is, ..

Ri=—tMy, K= £Mg , Ry =Mp+2My , Ry=Me
. .. (2.33)

A third equivalent set is given in ref. 15.

The conventional derivation of these gauge-invariant vector
covariants is displayed in refs. 13-15.

13-15, 25, 26, both the t-channel

As in the: usual analysis,
pion pole and the s- and u-channel nucleon poles appear in the same
invariant amplitude ,} A,. This double dynamical pole structure is a
'cohsequénoe of the fact that photons interact with a conserved
quantity, charge. The independent amplitudes correspond to the various

different ‘charge and mament couplings of the photon to the NNw current.

Rho mesoh Ehotopmdﬁé'trildnv.lf’ 119

We describe the produoéd rho méson by the polarisation vector
E(}; *'(k’) , with R'P ep Y(k') = © . Therefore 2Q-A =2k' s
-equivalent to zero agajhst thé rho wave function, so that @ and A
are not indépendent.when they bear an index p . As in pion-photoproduction

R and A are not indepéndent whén~théy bear an index > or vV either. '
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We therefore cmit AN in constructing covariants.

" Fram a comt of helicity amplitudes we find that there are
"bﬂelve independent ones, so there should be twelve independent
covariants and invariant ainplifudes. In fact there are fifteen
possible polynomial covariants, three of which are dependent

when cantracted with the nucleon and photon wave functions.
The fifteen covariants Ki mvp are
(1),2),3) G (PG, %),
W), ), ¢)  (BB-P &Y (P, Q%)
1), 8),@) (%P -%B.) (P., Q(:Xr) ,
W), 1),02) (%R0 (Fo) &%),

C3), Gu), Us) jvf(e‘*)Q/‘"X/*)'—jf*(’(P") Q%) . (2.30)
The corxespondiﬁg invariant amplitudes Al cee .A15 are KSF and
KZF.

Against the photon wave function we find the equivalence

2Ks = RQ Kz —RPK,

(2.35)

Between thé'pho’cbn'and nucleo'n wave functions we have two
: * o o
equivalence theorems 22 (and here we assume neutral rho for

simplicity):

. mK, =K, —Kg ~mK1 —Kjo=-mKpy = PL(K.’.—KK)

(2.36)

*There is in fact a third theorem involving covariants which we

have not written down because they contain, for example, a 535



2m K” =Y ( K| "mK3 ""Kq “K\}"'Klq."‘mKlS-)

+k-Q(l<lLle3 +Kl¢) +""—_(/‘*'L+t) K, , - (2.37)

" where Y=PQ = -S—f'_—'“—L , W is the nucleon mass, and M is

the rho meson mass.

We now have three superfluous covariants and we would like
to remove them. Equations (2.35) and (2.37) enable us to remove
K5 and Kll' while eq. (2.36) allows any one of the covariants

‘appearing on the LHS to be eliminated. Iet us choose K.

Em

6
Then
s /;w - .
Me = 20 KEEA, (2.38) - -

t=q !
[F

o Z K4"e B; (2.39)
i:i:r,e,u

v_where -
BI = A|+MA‘ +_2)_)’_Y\A"
B, = A, + 22t A, | ' (2.40)

etc.

This new set of twelve amplitudes B; is clearly KSF and
KZF. However, had we chosen to eliminate X, say, rather than

K5 , by eq. 109', By would not have been KSF for then

.Bs’ = AS’ +4E2.EG_2 A|3
(2.41)
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which has a kinematic singularity. If the B; are to be KSF and
KZF we can eliminate via any particular equivalence theorem cnly a
‘covariant which appears in that theorem with a constant coefficient

(the theorem to be in such a form that none of the coefficients
has a singularity)ls.

It is simple to derive a conventional KSF and KZF set of
covariants K{"f . partial contraction of the K€ yields
) = 2§¥ (P Qf ¥r)
(R, Ko R) = 2 (kPQ—kQP*)(PF, QF, ¥°)
) ; 2 (P~ —kPY¥) (P QE ¥F)
%) = 2 (Her —kQ¥) (Phaf¥)
Ko, Koy, Re) = 2(kog e~ kg, ) (P, Q7 Y). .

The equivélenoe theorems still hold when K. is replaced

P

by K:. our set K¢, with K¢ eliminated, is equivalent to the

set given in ref.l5.

We now turn our attention to two-photon processes, where -

the power of this method. is even more marked.

Pion Compton Scattering. 14 r15,l7,19,25,27. :

A
‘We describe the outgoing photon by the wave function €& g' e (k) .
The covariants carry four tensor indices uv,pr. Because k,;: (Q+ %)/.,\

“and k%-—- (Q"AT)P , and by virtuwe of

kel () = KPetfk) = 0
: (2.43)
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Q and A are not independent when they bear a M or VvV index, nor
when they bear a ¢ or ¢ index either. We therefore amit A in

~canstructing covariants.
The process is supposed invariant under the discrete transformations
P,C and T.

Invariance under PT places on the covariants the :cesw':.‘ciction22

- -y, T
Ki/&v,Pr(P:Q) = B Ki fm-,/,..v(P)Q)B

(2.44)
and C invariance (mthe t channel) the restriction
. T -
Ki/u),f:(r (P)Q) = C YK.‘ PV ("P;—Q) C '
(2.45)
where ‘
B'¥.B=-C¥%C"' =¥
(2.46)

and transposition of K refers to its Dirac matrix character.

Furthemore, .it ‘turns out that against the photon wave
functions, covariants containing Q are dépéndéht on those without,‘
. S0 we do not use @ in constructing covarlants ‘The reason for
this dependence is due basically to the fact that the photon
-polarisation .vector has only one independént ‘camponent in the
threé—space defined by the écatter_ing, so that it "sees" only
ane independent four-morentum. In the t-channel cent:ce of mass

frame, this independent momentum is P. , for both photons.
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For pion Compton scattering, then, the only two covariants

are,

N ot L i 1
~ and 9/‘*FP"P¢ +9po PuFo — gucRB — 9o o (2.47)

The corresponding invariant amplitudes are KSF and KZF, and are

equal in number to the independent helicity amplitudes.

We shall now find conventional covariants K {,#’f by
- the prescription
A N X AV, pT A A X v MP

(2.48)

1l

R"*’f 4(k.k’3/~|°__k'/*kf’) = —2t3’f~f’

RL™F = 4 (kK Popr+kPRPgre —KIPPUR ~k PRSPP)

= —2tP7 Pt 4+uyg'rr (2.49)
. ' Rk ’ L ]
where Ghmp = pp — kht.hf’ , t=-2kk
and. P/L = 3}».1; P\)

These two covariants are equivalént to the usual ones, and are minus

~ "’” B . . . .
twice the ?"f,, and d1; respectively of reference 15.
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. -Nucleon Campton Scattering.l4-19,28-30.

Again, because of PT and C invariance, not both Q and A can

appear in the covariants. We therefore amit A . Again, those covariants

containing Q are found to be dependent on those without, and cannot
fom part of a minimal set. There should be six independent covariants

and in fact only six can be found. 1In the conventional analysis there

are eight, two of which are dependent through the spinor equivalence

theorems mentioned earlier.
The six covariants K; N are

Ga), ), 3) &) 3/A(,qu— 43,,0_)(/._(9 —j/ngr -—j,(,x/“g-

with X/M) = j/‘“’ V)ABA,P,) , B«.yu+PgB;A , [‘:u,xu]_ resp.

€$) AT
7 (2.50)
@) BJ?’ e +P,,Pv0;~(> "BR-O‘,,(, ~BE Gur

The associated invariant amplitudes A; are KSF and KZF. The

~

corresponding  K; /..;,r are found to be

K, = —4t 9., K, = -2tp! B +4v7g,l
Ky = —at (BI%/ < R'y) + v g/,
Ry = 8mfgl, —8vgl —t %% (2.51)
Rs = Xv[X,J,Xr'] + 8m (3 52?&;,’-—2(‘,’@{3}{) +4t3/:f |
| —1¢ (R gy« ¥ R
K, = lv"[\’/,\’f’] + 8m BJP‘,’QQ

— b (B +EL @R ~amy (g +B/Y)
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These are not in the most convenient form for calculation

but are exhibited in this way for camparison with earlier workl4’16.

A more convenient form would be in termms of wnprimed quantities

‘but in either case a certain amount of labour is involved reducing, for

example, [ K, K'] to AmQ —LY  (between spinors). This sort of

operation is not necessary in the conventional approach, but is by no

means so arduous that the conventional analysis is preferable.

‘The relationship between the K; and the equivalent sets &; of

ref.16 and Of.‘, of ref.14 is

K. = —4&, _ n

K, = —2%, -P%, = 4P, +8Z¢
Ky = —2%, = 8, <82,
R, = & I

AR ARTE A R 4

R, = 2m#, v H ~Lt s = byl +4P Ly + 30T, _(2.52)

Consequently the relationship between our invariant amplitudes
A; and those of ref.,16, A;, is

A‘ = -] /K| +.P_A1-—'Y_'A.‘I'—B%A("

im e (2.53)
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We shall be making use of this analysis when we consider

sun-rules for nucleon-Compton scattering in a later chapter.

Perturbation theory and pole diagrams.,

One aspect of the electramagnetic processes we have been
considering has not yet been touched upon. This is charge i
conservation. Weinberg7 has shown that charge conservation 1n
any process follows from the gauge—oendition on the M-function
~ for that preoess with one extra .soft pﬁoten, assuming that the |
S-matrix has the same pole structure as in perturbation theory, in the

~soft photon ln’mit3l.

In so far as this is a valid S-matrix assumption, the proof is
S-matrix theoretic. Remember that the gauge condition was a

cansequence of Lorentz-covariance.,

When we express the S-matrix in temms of antisymmetric tensor
photon wave- and M-functions, no subsidiary conditien on the Wﬁmction
-is necessary to ensure ILorentz covariance., How, then, is charge
conservation expressed in temms of such M-functions? 'Ihe. partially
_ xeduoed'M—fuﬁctions, obtained from the antisymretric tensor ones, -
satisfy the gauge condition,r SO we must conclude that the tensor
M-functions already satisfy a charge censervation condition. To see how
they might not, we must turn to perturbation theory, expressed in

terms of antisymmetric tensor fields.

We have recently develOpele a formulation of quantum electrodynamics

in terms of "tensor potentials" X/fu (x) which are related to the
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field strengths I;Tj (=) by
X v(’») F5 69 | ©(2.54)

+
The fields F/._,.v (R) are proportional to the wave functions
s : ' *
Eﬁv (R) , while 0‘) are proportional to &4V (k)
hL
which we denote by § /“,(h)
_The conventional aInplledes in the Landau gauge are cobtained

" if the coupling of these fields at a vertex takes the form

% E/“v(k) (kﬁc_v — k")
' (2.55) .

or. | e & (k (k'“ kVC’“)
a ‘ 2k*

(2.56)

~as the case may be. Here (" is the conventional coupling,

-for example 8 at a pllotm-ffennion—fennion vertex. The wave functions
vmay be part of a photon propagator or they may be external. In the
latter case, there is a termm in the oouéling which is not present in

the conventional theory.

© The expressions (2.55) and (2.56) reduce to

e & (k) (e — 5‘_{% k™)

(2.57)

campared with the conventional €&.(R)C™ |
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If one can overlock for a mament the fact that K2 =

( c* = % k™ ) is clearly gauge invariant. Furthermore,
R.e (=0 for any k2, so the second term of (2.57) is -

zero for any K'# 0 , and may, if so desired, be defined to be

ze:;o'at R'=0 where it is formally infeterminate (c.f. eqg. 1.109

et. seq). Nevertheless, such a tem is not very desirable.

Iet us re—express the problem. Using the external photon
wave function &u.y (k) , the form of the M—-function obtained in

| perturbation theory is

V= 2 (ke —RCE) AL
L ZK_L
' (2.58)

' where A{ are mvarlant ampl:.tudes and C conventional four-
- vector oovarlants, such as X/" P » etc. These covariants are
not those we used in the last section.

When this M is contracted with Epv (R), there are terms

proportional to ’5—%@ in addition to the usual ones,

Now in conventional perturbation theory, we would have cbtained

the M-function

- T A
t
(2.59)
with exactly the same A lO"' and this must satisfy
k M* = o (2.60)

that is, Z (k.CHAL = ) : (2.61)
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Contracting the k factors in &.y(®) with M*” , we cbtain the

partially contracted M-function M'A
v !
(MY = guty M7

= LW (; CoA; - gk-C;A; %’—:)  (2.62)

= L2 CTA; by eq. (2.61)
L

The coefficient of -%g in M'" vanishes if the conventional

four-vector M-function satisfies the gauge condition, that is, if charge
is conserved. So we coﬁclude that Acharge—conservation imposes. on the
M'-function M/ the condition that no tems in _'E‘—': appear. It
may therefore be possible, if this condition is satisfied, to re-

express M*Y in terms of covariants which are free of # texms.

To find such covariants, we consider the partially reduced

forms
CH — kC R .
y e
(2.64)
Clearly _
k.o, (e - k.cL%) S N (Zary XY= (2.65)
is f;ee of terms in Ti;: ,- being-just
(R.Cycs —.oye™
. (2.66)

Possibly multiplication by a suitable factor will remove such a term,

For example,
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.- -,}{(b”‘ Mg(_;if) = ,Kb’f“ — k* (2.67)
S

. But

e () ((RC ¢ —kCC)

ond £ (k) (KY* —R™) (2.68)
can be expressed in the foms
Le (0 (Cf ) — et
(2.69)

ond L&,y (k) (¥7¥% =¥ ¥

. and we recognise these new covariants as the ones introduced
earlier. They do not involwve k.

The process described here for deriving covariants free

of -L terms from pe}:mrbation theoretic covariants is very similar

i
to that used in the conventional énalysism’ls. There the covariants
C}: are multiplied by gauge-projection operators Guv — hk.ﬁl’—;

‘and then linear cawbinations of the resulting covariants C%4° are
taken to renove TlLF terms‘. '
In oﬁr wofk,‘ it is as thougih we had used a gauge—érojectian
operator Yuv — 5":&2‘_—" on the Cf to get the forms (2.64) then taken
1

linear carbinations to remove T terms.

Iet us now see what we have done in terms of the unreduced

covariants R Cy ~ kyCp that appear in eq. (2.58).
‘ _ 2k* ,



The linear combination that we tock in (2.65) is
now :

K™ = k., (R -KC) — k€ (RAC2 - RCL)

2k 2k " (2.70)
and this is not free of temms in -i;_ . We notice, however,
that |

K,uv = :ﬁ,u.v,f:c{(h) (C'FC:_C:’—C:?)
' - (2.71)
Cwith Thav,ps (R) defined in eq. (1.89).
Therefore
e K = erw (e —ceg)
i (2.72) . -
by eq. (1.97) so that the covariant
(g - ) (2.73)

is equivalent to K™ , and is clearly free of = tems.

In a siI_riilar fashion, the unreduced fomm of the IHS of (2.67)

K (R =KX o (2.74)
T Zk | '

which may be rewritten

- —ﬁ'_”v,fr(h) (Ykar" be/r) . - (2.7)

z

Yy _YvEs

- by virtue of (1.97)

This is équivalent to

and is free of —;:,_ texms ‘
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Notice that we can simply construct helicity convariants

such that when the wave-function is contracted with them, only

one helicity state gives a non-zero result. For example,

. — .
.ggv (k) —,T;V,‘or(‘\) Kf’r . &;V* K™

)

— V '
we call (IT*K)" 2 helicity covariant.

Now (in obvious matrix notation),

TTYK = TTL(1 +iA)K
by egs. (1.82) and (1.93), which is equivalent to
. > myV ' . AV
(L +iRK)™ = L(g%ege + iA™pa) KCT
(see eqn. 1.106). Another equivalent form is
. v FU’
A (39 —L e er) K
(see eq. 1.1073a) .,. for example
v - ' .
$(BC - 8°C") - L e (BECT-BTCS)
The perturbation theoretic covariants

er’ o (RSB — K7BF)
T 2kS

(2.76)

(2.77)

(2.78)

(2.79)

(2.80)

(2.81a)
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and

2k 7 (2.81b)

give rise naturally to the covariant

e oo (BEC” - B7CP) . (2.82)

k"'C-;"’ — kVCE

in the same way as the
- Y T

give rise to

~cY Vs
the &G ; ¢ ¢ (2.73).

Charge Conservation.

For Lorentz—covariance of the S-matrix a conventional
M-function nmust satisfy k.M = O. Charge is then conserved. If
the invariant amplitudes are to be unconstrained by the gauge-condition,

the corresponding covariants should each satisfy this condition,

if the conventional M—-function is gauge—invariant, then

charge is conserved and the antisymmetric tensor M-fimction can have

no —L-i terms. If the invariant amplitudes are to be unconstrained,

the corresponding covariants must each be free of -;;;. tems, as were those

introduced at the beginning of the chapter.

The proof of the equivalence of charge-conservation and freedam
of the M-function from —',;L terms has rested upon results for four-
_vector M-functions. 'Wé shall present a direct proof of this equivalence
for ariy- scattering proces‘s with a s_of_i;. extra photon, butl as it follows |

closely that given by Weinberg7

to show that k.M = O implies charge

conservation, we present this latter argument first.
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Iet the S-matrix for the basic sdattering process be S{,.. .

The ingoing particles have mamenta P+ charges €; and the

out'goi.ncj particles have momenta p;, charges e; . The soft éhoton has.
-nomentmn R , helicity X\ , and is outgoing (say) . For simplicity
 let the charged particles be scalar. Then the M~function for the
process with emission of the soft extra photon is proportional

to (and this inoorporatéé the pole structurel assumption referred to

earlier) 31 .

M* ~ Sfi[ ,.S—" i “Zf—i_Pi‘].

I R-P; LN (2.83)
Then R.M=0 implies

Ze;_ = > e; , C(2.84)
t J '
that is, the total ingoing charge equals the total outgoing
charge. The basic scattering S;i may be any process at all,
so charge is conserved in any process, when charge is defined as
the soft-photon coupling constant.
Now in an antisymmetric tensor formulation, the S-matrix
A ) s
S fi (k) for the process with an extra soft photon is

proporticnal to

(k)[Z hh E’i_f_:_"_t’.“) -2, ei (kp KK}

kP 2k~

(2.85)

- **ck)[ZeJ (py - 2bi) — Zf—‘—.(}’f‘—“';’;"ﬂ

k.pc

.

N
It is easy to see that the —k% termms have the coefficient
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el — 2
t J -

 which vanishes if and only if charge is conserved.

Aithough this shows that the absence of -i—.-_ terms- in the M-function

inplies charge conservation in any process, we cannot directly conclude

that charge conservation implies the absence of -2—5 terms in the

© M-function when the photon is hard, for the form given above was

derived in the soft-photon limit, A similar remark applies to
Weinberg's demonstration that charge conservation implies the gauge

condition on the photonic four-vector M-functioni

How‘eveir‘, if the M-function is supposedﬁ to deécribe quallj véll
-both hard and soft photon scattering, the gauge condition or absence
of —,i—,—_ terms must hold for all photon energies, as the M-function
is expanded in temms of cbvariahts which separately satisfy the
appropriate condition at any energy.

,(Sﬁnilar argurents for the case of g'ravitons7 show that
| univexsality' of the graviton coupling constant and conservation of
momentum J’eriy that the four—i;;dex M-functions are free of O-};)—l terms ’
as appear in the perfuxbat:_i.cn thebretic ooupl:i_ngslo. Graviton four-
index covariants will therefore be of the form K™ K™  vhere

K™Y is an anti-symmetric tensor covariant such as (2.77), KSF and KZF)

Photon Propagators.

In writing down the amplitude corresponding to a diagram involving
internal photon exchangé, we need to know the fom of the propagator,
This is well known in the four-vector description, and we now give it

when the photon is described by an anti-symretric tensor wave function.

A .
If Epv (k) is used, the propagator for helicity + 1 photons
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. 10
is
\
Ev (R) £5% () (2.86)
k*+ig
JE—— - B
= Tl ee® (2.87)
Y St E
o .
T (ki) L wpr (R) 2 LA %(Jr“‘)] . (2.88)
o e

either end of the internal line, the tem in A/w)(ur (k)  vanishes.
With the Pauli-type couplings Oumvy at each end, the two helicity

- states give camplex conjugate contributions to the amplitude.

Wej_nberg4 has giVen thé générél expressions for massless
particle propagators in temms of the spin matrices in (y,°) e(o,j)‘
bases, They are not manifestly covariant however, and for particles
of Sp:Ln one or more are more awkward to use than those bearing tensor

indices.



_CHAPTER 3 66.

THE MASSLESS PARTICLE CROSSING MATRTX,

The Crossing Matrix for Helicity Amplitudes.

The helicity amplitudes for a given scattering process are
defined in a specific channel, The sets of helicity amplitudes
for different channels are related and between them 'exist orthogonal
t_ransfonnatioﬁs, the crossing matrices. These have been derived
by Trueman and Wick for processes where all partij:cies are

| nassiVe32_35 and by Trueman and Mueller for processes with one or

--Tore massless particles36’ 37.

We indicate {he general idea of these derivations. The S-chamnel

helicity amplitude is defined, up to a phase, to be

s ‘
TAC:AD;A‘\'Xs (S,":,M) E <F§)>\LI<PL)XDI Tl rA)XA>|PB)AS> 7
| | (3.1)
where RetPo = Pa+Ps , the centre of mass condition.
s
The generalised s-channel helicity amplitude -T:\;ko;kaka{])"-]
~ is defined in the same way32, but without the c.m. condition. Under

a Lorentz transformation A , the state [P, Aid transfoms,

as we saw in Chapter 1, as

VNIPLS = .3; D3y [RGOAT | Ape, 25

(3.2)

where = §; is the spin of particle i, and R (pi, /\) is the Wigner rotation.
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Because the T-matrix is lorentz-invariant, we see that -

_rt\sc.k»nnks{’)"} =
= 2 Al Ae (R°) DA * (Rs) X | (3.3)
X Tatadioans £00:] Digan (R) D ()
A similéfc expression holds for the t—~channel generalized

I . t
hellclty amplitude T/w < AR AP MB ( P<— »=Pas ~Poo PB) where
“we will still be in the s—channel physical region:

t
| T/“/‘x)'/*s/‘s(’"fp’“ “Po s Pe)

= g Dk, [RGA D, [R(—pA,A)]x

—l;""/“‘ /"b/“'B (AP°) APM APD)APB) X

X Dyt s [REPAT By ey LRGN

(3.4)

. | x
Now the factors DLR(-ps,A)] anda D[R (- PA;I\ﬂ
are detemined by analytic cantinuation from positive timelike values
£ ~Po s —FA on the respective mass shells., The values will

depend on the path of continuation. One determinaticn is>2

D:;/“[R('PA,/\)] cn)"/‘D [RLFA,/\)] o (3.5)

Dpl&EnA] - 7 b [ A]

3.6)
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Then | ’ T:QXD)AAAB(PLJPOZ‘PA,P&)

an.d T;‘-‘_’ XA'I AD )\B (P"—)—rﬂ;—FDJ PB) ‘

transform in the same way, so that if there is any connection between
them, they are equal up to a factor.
We then let the momenta satisfy the t-channel c.m. condition,

- so that (up to a numerical factor)

T'\f—"‘b ano (Pertosbnie) = Tog . ISPTRWSTLAS ) (3.7

Now let A in ed. (3.3) be such that AFi satisfy the s~channel

c.m. condition. Then
s :
T&n Xi’ikﬂks {P‘} =
. " -
= % D/\"-_X‘(Kc‘) DA;AQ (Rp) X
x T, Git0) Dygypy (Be) Dgng (Re) . ¥
x AN > 12 Ll Na Ma

Ad g
Inserting this into eq. (3.7) we obtain
S

—rf\d«z ;AT A8 (S’t'f’“)

Z 1y LRGOA] Dsys LR (o, X
- (3.9) -
X T;Af AL XS Gt ) D'\ AR [R(PA)A)] D)\ ! Xa [R(FBJA)]
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and it remains only to calculate the D factors on the right

hand side. Because A takes the t channel cn frame into the

s channel am frame, it will in general be camplex. The arguments

38

of the D functions are the crossing angles and Leader™ gives

expressions for their sines and cosines.

In continuing this expression frdm say the s—physi.cal region
to the t-physical région* ,v the momenta p; and the transfomatim
A will all change. The final form will depend on the path of
continuation, as did the relation between s and t dlannel.generalized
helicity amplitudes. |
For a massive particle, there are two possible ways of continuing
P fram positive-timelike to negative-timelike values32. lFl has
| ~ branch points at po=#£m and these should be avoided. P. can then
continue from a value > mto a valee < -m by going into the
ocomplex plane,  crossing the real axis inside or outside the interval

(-m,m), and the two types of path yield different relations between

DIRMPA] ond DIRp,A)] .

F“ should cross the real axis in the continuation so that we end up
on the t-physical sheet,

For a massless particlé, there is only one type of path and36

DRG] = Do [KC-4)] G

* We assume that such a path of continuatiacn, évoidjng the branch
points at the channel thresholds, exists, For massive particle processes,
the existence has been proved Aby S. Bros, H. Epstein and V. Glaser,

Camun.Math.Phys. 1, 240 (1965).
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~ Using this relation in egs. (3.3) and (3.4) we see that fhe
s- and t—dlannel generalized helicity amplitudes with opposite
values of the massless particle he.licity transform m thé same
way. Furthemore, since a Lorentz transformation canmnot change
the helicity of a massless particle, the corresponding D-function

in eq. (3.9) is proportional to &y\’ (sée also éq. l".3l>)

The result is that the hélicity of a massless particle is
reversed in crossing from one channel to the other if and only
if it is outgoing in one channel and ingoing in the other.

A rather more transparent way to derive the crossing matrix

is through the covariant helicity formalism of Feldwan and Matthews>>.

For massive particles this has been done by Feldman and Ki.ng35. We
present here the derivation for massless particles which has certain
features of interest. 40

We start by discussing the covariant helicity (felicity) formalism
with reference to the scattering prooéss defined as at the beginning of

Chapter 2 with no restriction on the particle masses. |

The Covariant Helicity Formalism,

We recall that the Pauli-Lubanski four-vector operator Wu(i) for

particle ¢ is defined by
W () = =L eppe 7D Py (3.11)
where for each {, J%) and P7(i) cbey the comutation relations of a

Poincare algebra, P« (€) is the four-mamentum operator for particle ¢ ,

and J;f (i) its rotation and boost operators, which we rewrite in. the



fom

T

l

(IS, Il J:T-ll)

K= (T, T, T

Il

(3.12)

As we shall always be concemed with eigenstates of the mamentum

operators P (4}, we replace the latter by their eigenvalues /:J,;(L)
in what follows.

The s-channel felicity operators for particles A and B are
39

- defined™™ by
Fi(a) = T A 2 W (#) Pf*(e) -Z—Wr(AB[r#(B)+p*(A)] - (3.13)
Fs( 3 = AG, A ®) W.. &) P (A) -;S—-V\//A(s) [Pf‘(A) +Pf*(8)] . (3:14)
Using egs. (3.11) and (3.12) we may write eq. (3.13) as
FoA) =

A(S’A o) [T(A) ( pe(8) 1;g(l*.) p°(A)){>(e)) .
- K@) - (,e(s)‘x_P(A)) ] )

and similarly for eq.

F'®) =

(3.14) :

i (S 5 [T(B) (P"(A)FCB) P (3)720\))

— K®). (p)xpw) ] (3.16)

where ]QCC) is the space part of Pﬁ(i) and

A“(s,AB) = s +mf +my — 2smy — 2smp ~ Zmymy

71.
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We may rewrite egs. (3.15) and (3.16) by introducing right-
~ handed sets of unit three-vectors ﬁ , m and n for each of

pafticles A and B.

Here m(A) is the unit vector in the direction of {?(B)XF(A) ; n(A)
is the unit vector in the direction of  R(A) X m(A) and

similarly for m(8) and n(8) . In terms of these vectors,

F2() = A(iA‘B) VE.J._(A)-;I_; R (1 @] po(8) - ro(é)pce)-ﬁ(/\)) —

——I?(A)x]g(e)l(I(A).g(A)_ﬁggﬁ)_l + K(A)-m(l\)) J (3.17)
: | p(A)

FS(B); <o - (AoB) (3.18)
Further', the t—chamel felicities of A and B are defined by
T 2
Fo(R) = Alt,A Q) W.. (R) p(e) (3.19)
t 2 e
F (&= NG W..(8) p~(B) . (3.20)

Now, since the felicity operator is Lorentz invariant, it may be
calculated in any convenient frame. In the s-channel c.m. frame,

, .F(A):——-.F (8) , so that
F) = famg Wol® (p ) +pe®)

- 25 T, pa (3.21)
Als,A,B) ‘_() P

| = TWMW. 1{‘3(1\)
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and

CF® - Tmpe

(3.22)

which are respectively the s—-chanmnel c.m. helicities of particles A
and B.

Similariy, calculating F t(ﬁ), and F(B) in the t-chamel c.m. frame,
we find that they are respectively the t-chamel c.m. helicities of

particles A and B.

Massless Particles.

Iet us now take particle B to be massless. Its eigenstates are
[P, s> where the helicity As is fixed, and is the eigenvalue of the
helicity operator A (B), the genérator of rotations in the little group
E(2) of )D(B) . The two translation generators are Ilm and Tln , which
have zero eigenvalues in the one-dimensional réprésentations of E(2)
to which massless particles rbelong. In terms of the vectors m(8)and n(8)

introduced earlier,

Tlen J@®).m(&) — KE®)-n(B

. (3.23)
T = J@®).n @ + KB .m@E

For F(é) physical (ieal, with pe(8)> © ), A®)is given by J®.£(8) , and

its matrix elements, for all p(8) , are

where we have anitted the mcma_ntmn delta functiaon.
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Now F*(B) acts in the space of twb—particle states of A and B,

but if P (A) is replaced by its eigenvalue p(A) in F (8) , we may think
of it as a single-particle operator in the space of states of B. '
With this :in mind, we see from eg. (3.18) that F*(B) is a linear
ccmbmatlon of J(®- ﬁ(B) and TTn (since pe(®)= 13(8)1) , and conclude that
1ts eigenstates are jUSt the hellca_ty elgenstates of B, at least for
p(B) physical.

We find _

P ® = el PO P ued = STz &,

BB A A ;A,B) BJ/‘*S - )

for p(B) physical, so if S§>my , E\i)ﬂa(e)=/\1\3:/*e(8)' We may now fix

p(B) and continue in p(A) so that s-mp becomes negative. In this

case, /\A,/JB) is clearly unaffected, but F:\s, /,_(B) may change sign 7

wless AGAR) is taken to continue as S-mp . With this choice,
- 7

_ v 7
F:)/“ (8) and 'AA,#(B) are identical for all s, and p(B) phySJ.cal .
: -/

Now AN/' (B) is by definition invariant under any camplex Torentz

transfomation (which may take p(B) to an unphysicai value), and F:,/.,.(B) .

s
is invariant by construction, so that Fip® and As, (8  are

#e could have made the other choice. The felicity and helicity
would then have been of opposite sign for $<ms , and the felicity
amplitudes and crossing matrix would be different from, though simply
‘related to, the helicity anplitﬁdes and crossing matrix. Our impending
calculation of the helicity crossing matrix would be altered in detail,
but not in its result. '
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_identical for all p(B) and s, and the eigenstates of the two

operators are identical (in our representation).

. As F:\sm (8) and I\A,,&(B) are identical in this representation we

may find an explicit form for A (B) from eq. (3.18):

AA’I“ (B = F:‘# (8)

J(B). s (BY ™
<@l e [ TR (rwpe - EQ, p o)) —

=
S—mp

— | p(AYx p(8)] TF,\] [ P(B)J/’"B> (3.26)

= <posl LE-ED | py, o

Therefore g-_-_?-— is the correct form for the massless particle-

helicity operator, which agrees with the argument of Chapter 1. IfA is

7.
(

expressed in the form %k

, the sign of the square root is uniquely
determined.

It is interesting’.to‘note that in those representations in which A\(®
and F*() are not identical, namely those with WO in which the massless
parl:icJ:e has continuous spin and T, Th are non-zero, the helicity
is not Lorentz-invariant, as it differs from the invariant felicity by
the non-invariant Tl term.

The Crossing Matrix.

Wé now consider the béhaviour of particle B under crossing. We
calaulate F*(®) and F'(8) in the same frame, so that the mamenta p(B)
appearing in the two expressions are the same. ‘A convenient choice

is an é—dqannel c.m. frame such that the écattexing is in the yz-plane and

p® = (p.0,0.p) .
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Fram eq. (3.22) we find

Fee) = L@ | - (3.27)

From eq. (3.20), expanded in the manner of egs. (3.15) and (3.16)

we find

Fie) = —2— [T® ( rocs)—pscﬁ))F ~ T, (&) p.(5) P

t B
M'_ b (3.28)
= J3(B) ,
in the representation, with our choice of sign of AWBD) for
t<my . Therefore |
F5(B) = Ft() , (3.29)

.and the eigenstates are related, up to a phase by

| PCEY, AsD> = [p@®), Ae=As)  (3.30)

where As and A¢ are the s- and t- channel c.m. helicities of particle v
B (for a massless particle, the helicity is the same in any frame,

and so is the same as the c.m. helicity).

From eq. (3.30) we see that the crossing relation between the s- and
t~ channel helicity amplitudes, in the spin space of particle B, is,

apart from a possiblé phase

.T.s- J " AB(SJtl“') = T.t. )' . A,B (S-’t"u') s, (3-3]-)
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since the general-frame t-channel helicity amplitude is the same as the

c.m., frame helicity amplitude as far as the massless particle label is

concerned.

Now let particle A, rather than B, be massless and let us calculate
S5 ) -
F7(A) ana F t(A) in an s—channel c.m. frame, with the scattering

in the yz-plane and .F,L(A)z—ﬁ.h(ﬁ) = (9,0,0,‘1) .

From eqg. (3.21)

F S(AY = T (A)
(3.32)

From eqg. (3.19), expanded in the manner of egs. (3.15) and (3.16)

FE(R)

OIS (P -p0)g +1Tn(A)qu(w]

(3.33)
Js (R)

in our representation.

The spin operators dJ (A) and J(A) of particle and antiparticle are
related by ‘

J A = T(R) . | C(3.30)

Hence Jz (A = -T3(A) , as the répresentation is one-dimensional

- (and in any case, diagonal for Jj). " Therefore

Fo(M = —F*(R) 3.3

and the eigenstates are related wp to a phase by

| pOAY,XsD> = | p(R)=—p(A), Ae = =Xs) . (3.36)
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Therefore the s-chamnel c.m. helicity cf A is opposite to the
‘t-channel c.m. helicity of A and the crossing relation, in the

Spln spéce of particle A is, up to a phase
T (sctw) = TEp;. . (560 O @a
. .)‘/\A. ) . —-AA) . . L e . R

Egs. (3.31) and (3.36) show that the c.m. helicity of the
massless particle changes if and only if the particle is crossed'
in going from one channel to the other; This statement is independent
of the particle marentum or the values of s,t, and u, because the
>helcities are., In other words, the crossing angle is either O orm,

and is constant in the entire (s,t,u) plane.

The extension of this analysis to processes involving more than ane
massless particle is trivial, as the réasoning applies. to each particle
independently., The crossing-matrix in the product space of the (rémairting)

massive particles has been given by Trueman and Wick32.

Determination of A(x,i,j),{(m; = 0).

We would like to camrent oﬁ the determination of A(xij) below the
pseudo-threshold 2= (mi —"‘j)L to be used in the expressions for
the centre-of-mass scattering 'angles‘; and the crossing angles of the
massive particles in the reaction. Leader's expressions>® for the cosines

~of the crossing angles may be used for the it\assivé particlés: with the
appropriate masses set equal to zéro‘,. because the masslessness of other
particles makes no essential difference to the reasoning used to dbotain
these expressions. However, there is an ambiguity in the interpretation
of A(%¢,j) | | |

In ea_flier sections of ﬁnis paper we used the analytic determination

of A(yq, J) when m; or mj was zero, but this choice was not essential



to our result; it merely enabled us to arrive at this result more
easily. Consequently, we must decide all over again how we are

to interpret A  in the cosine expressions.

We show that, when a massless pafticle is present, we are
féroed by consistency considerations to choose A(X,(,j),(m;=0),
to be analytic in the x-plane. With this determmination of A ,
Leader's expressions for the crossing angles are valﬂi.d for the

massless particles as well,

The boundary of the physical region has si}i asymptotic portions, ,

| on each of which (with the péssible exception of the lines s =0, t =0, u = 0)
the crossing and c.m. scattering angles are constant aﬁd separately equal

to O oxrTr. We label these portions s+, s-, t+, t-, ut, u-, where s+ is

that portion of the boundary of the s-physical region on which cos6s=+! ,

s |, ete,

Near such a portion, to within a phase,

s ' t |
Taergianig (S = Torpe e (S64)  + 3 (3.38)
where the set {A'] is determined in temms of the set {A} by the crossing
angles, and > goes to zero an the boundary, and at least as fast as
T{A'} (s,t.4)  if this anplttude vanishes there. Because 2, is a
“linear cambination of independent t-chamnel .hélicity' amplitudes, 2. and |
t .
T{.\'] (s4)  cannot in general 'conspire' to make the right-hand side
Of eq. (3.38) vanish faster than Tjp; on the bomdary.
Furthénmré, néar--ﬂﬁs portion of the bOL_mdaIyll

) ,/\c"‘)‘b :F/\A"E'ABI

7—:\3 (s,t) o (sinbs

eAb; MadE (3.39)

)
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according as cos Bs==l , and

| AL =25 # X5 +4g]

t .
Tagag; x50 Grtmd 0 (sinbe )
according as cosfy =+1 , so that in view of our previous remarks,
the exponents in the right-hand sides of egs. (3.39) and (3.40) must
be equal. This implies an intimate connection between the crossing

and scattering angles.

Iet us take particle A as massless, and consider the crossing
- from s~ to t-channel. ILet us order the masses of the particles:
my>my > M, > m, = O. Then, with the definitions (consistent with

,our previous.definitions of s and t channels)

S{t-a) + mg (md—mr)

cos 63 = }
~AGsAB) . Als,c,D)
(3.41)
cos b, = L (s-a) + mg (m;}'—mg‘) ,
A({_'B)D) A (t) Al (')
cos b, a(s=t) +my (m=mg) ’

A (,8,¢) A (0, A D)

‘which are unambiquous above the relevant channel thresholds, we

. *
see that along

*We refer the reader to Figs. 1 and 2.



FIGURE T

The boundary of the physical region.

Mg + M Mg Mg M Ty = O
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\

FIGURE 2.

The boundary of the physical region.

mD>mB+mC>'mB>mC>mA = 0,
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S+, § > +o0 't-—-)o——) “w -~

$—, §—>+e0 , T -0, > O,
_{;4, § 50—, tis +00 , > —o0

t-, So-w, toto, aO-, (3.42)
e §-> o+ t > —~ow, a—*D,

- §— - t— O+ Ax—> +00

This information enables us to detemmine easily the sign of

the cosines on any of the six portions of the boundary.

From Leader, we have the expressions for the cosines of the

massive particle crossing angles:

(s+md)(t+my-m3) —2mg (ME+mg~mi)

cos =
Xs AGAB) A (t,B,D)
X (S+mE-mp)(t+ m>) = 2mE(mE+mg—my)
cos fe = 3.43
< A (SJ c’) D) A (tJ Alc‘) ( )
(s+mE-mE)(t+mF-m)) +2mF(mE+mE -m})
cCos XD =

A (s,,b) A (+,8,D)

Now we can choose particular determinations for the N and see if they
are consistent. We find cesbs and cosly on each of the six portions
of the boundary. The equality of the exponents in egs. (3.39) and (3.40)

with the appropriate signs gives us A} in terms of {2} and



Values of the cosines of the crossing angles on the different

TABLE I

portions of the boundary.

84.

s+ sS- t+ - w ue
Cost + - + n n +
Cos 0, + + + - + 7
Gos)(A - - - - - -

from egs. (3.39) - CosXy + + - + ¥ + |
and (3.40),see Oos)(c - + + + + T
text Cos X, + ¥ + ¥ + +
CosXy - - + F ¥ %
fram eq. (3.43) CosK~ + + - - * I
CosX, - + - + + +
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therefore cosXg , cosXe  and cosXp (because cos Xp = =1).
We can then camwpare these Vaiues of the cosines of the crossing

angles with the values cbtained from eq. (3.43).

The result.é are presented in table 1, which assumes the conventional
detemmination of A(x,,,j) for mimj#o , that is, the one which" glves |
A>e for x< (mL—mJ-)L . The two detenrd.nétions of A(x¢,j) ,(m;=0) ,V
are presented together; Wheﬁ there is ﬁxore than one entry, the upper
corresponds to A= |x-mf| , the lower to A=X-M}' . ('Ihé entries are

all +1 or -1; we give only the signs.)

;Iit may be seen in table 1 that the lowér entries, but not the upper, are
consistent between lines 4-6 and lines 7-9. This means that, for consistency,
A, t,j) ,(m;=0), must be taken as J‘—*Mj’ , the analytic form of A in
this case. Therefore, A(S,A,B) = s—-mg~ = Q_P(A).F(B) always; -
AEAC) = t-m> = -—ZP(A).P(C) .

Had we used the other (analytic) determination of A(%i,j), (m;m;=0),
- our conclusion about the mi=0 case would have been unaltered. 'This is a
reflection of the fact that there are two ways of continuing, in momentum,

massive particle c.m. helicity states 2’30,

*Here, x is taken to Vaﬁ along paths which connect the upper side

of the right-hand cut of the S-matrix in the x-plane with the lower
side bf the left-hand cut. Thus if A(’L;i.j)-, {mi,mj =+ 0) is greater
than zéro for x below pseudothreshold, it is analytic in the x-plane
cut from —ow to (ma-mj)" and (m.:+mj)"fo +oo (rathér than from

pseudothreshold to threshold).
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The oonci_usions are unaltered when the analysis is extended
to the remaining, finite portions of the physical region boundary
(on each of which it is still true that the cosines are constant

and separately equal to +1).

With the above detemminations of the functions A , all the
crossing angle cosines are correctly given by leader's expressions;

that for cos¥y reducing to -1 identically.

Analogous conclusions are cbtained fram a,consideration of s—u

and t-u crossing, and when more than one massless particle is present.

It is of some interest to examine more closely the finite
portions of the physical region boundary referred to above. This is
 because the cosines of the scattering angles and the cosines of the

crossing angles do not change sign at the same points.

There are two cases to be considered (a) mg+me > mp> mg>meymy=o
and (b) mp >mg+mc > My > me >mp=0  when there is a fourth
- physical region corresponding to the decay of D into B+A+C. These
situations are depicted in Figs. 1 and 2. |

The boundary of the physical region has as tangents the highest

and laﬂést thresholds in each channe‘l4

l. 'Furthermore,. if in each
channel both ingoing thresholds lie lower than both outgoing
thrésholds or vice versa,v then the fourth finite xégion exists and has
- as tangents the séoond highest and séoond iowest th.résholds in each

' channél. - (See also the Appendix to this Chapter).

In general (except possibly along s=o, _L——o,; u=0) the scattering
'angle cosines are +1 along the boundary. Moving alang the boundary
the i channel scattering angle cosine changes sign at the points where
the i channel thresholds are tangent to the boundary. In Fig., 1 for

exanple, cosf changes sign at points A and F, cose,C at C and D,
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cosf, at B and E. The numerators of the e«pressions for the cosines
vchange sign at these p'oints.' The dencminators also vanish-but do not
change sign. The same applies to the crossing angle cosines: _cbs XB
changes sign at C and D, cos X, at A and F, cos’ X, at A,F,C,D.

It is simple to verify that as one moves along the boundary, the sign
changes at each point occur in just the right e><pressioﬁs to maintain

consistency.

The second case is ratﬁer different, for now the boundary has
as tangents tﬁe thresholds involving the massless particle, and
it crosses these instead of coming away on the same side. In Fig.2
this happens at point G. Moving along u- through G towards K or
along u+ through G towards H, the cosines do not change sign.. At
 all other points A,B,C,H,J,K the behaviour is as previously stated.
Once again we obtain consistency on the finite portions AB,GH,HJ,

JK, KG, but only because of the analytic determination of Afk,i,}), (m; =o).

For any given process, the crossing matrix may also be calculated
| by contracting the M-function with particle spinors satisfying the
chamnel conditions. The helicity amplitudes in two chamnels can then
be related through the invariant aaplitudes, but this is a tedious

procedure.

' 'Ihé impiication of the result derived above for phofons is

ax
EL(P) = €X7C-P) = €2 (-p) ’ (3.44)
But by eq. (1.64)
a,{ (ﬁ) = —z,t(-;é)_ for p>0 (3.45)

so that o‘.‘)‘ is a function of c. /\ = I .
” Fro (ef =8
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APPENDTX,

‘ The channel thresholds are tangents to the boundary of
the physical region in the s-t plane, as has been remarked in ref.41.
- However, we have not seen a proof of this, so givé a simple one here.
The boundary of the physical region is the curve @(S.t) =0

where one form of @ is
P(sit) = m A" (s, A,B)A™(s,¢,D) sin*6g

The tangent to this curve is parallel to lines of constant s, such

as the s channel thresholds, when 98(.t) - o

ot
" But '
28,0 = —A(s,A,B)A(S,C,D) cosbs
ot
"]:ﬁerefore S-?F :?__i = © implies that
- M '

A (s,A,B)A(s,C,D) = o

since not both cosf and sinf_ can be zero. Therefore the tangent is
one of the s-chamnel thresholds, and all channel-thresholds are

- tangents (but not néoéssarily at points in the real s-t plane).

A similar argument holds for thé other channels.
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CHAPTER 4

SUM RULES IN NUCLEON COMPTON SCATTERING.

We came now to an application of some of the preceding work.
It is the derivation of sum rules for nucleon-Campton scattering
amplitudes on the assuﬁption that these satisfy fixed -t dispersion
relations and are dominated at high-energies by the contributions
fran Regge-pole exchange in the crossed (t) channel.

It is easy to.deduoe42 the high -s behaviour of t-channel

helicity amplitudes on the Regge-assumption. The sum-rules
however involve s—charmel-amplitudes, and we cansequently need

to know the crossing-matrix between the two sets of amplitudes.

Altermatively we may express the s-channel helicity amplitudes
in terms of the invariant amplitudes, and the high -s behaviour

of the latter inurediatély becanes cléar. ‘

We ooﬁsider fowaxd nucleon-Campton scattering, relating the
amplitudes, via the optical theorem; to photoproduction cross-— .
sections. The sumr-rules equate integrals over these cross—sections
to Born-term parameteer , or the parameters of the leading Regge-pole

in the cross-~chanrnel,

Amplitudes, the Crossing Matrix, and the Optical Theorem.

At t=0 there are two independent s-channel (¥N—-YN) helicity

atlplitudés43—46

s .
Ti,%;l,% (s,t,u) and 'Tl ’_%;l’_%(s,t,u) which we
denote by T, and Tp respectively, and two independent t-channel
] . s s S t .
Y
(NN—=YY) helicity amplitudes Tl'_l;%'%(s,t,u) and Tl’_l;%'_%(s,t,u)

which we denote by

T2,O and T2,1 in the usual way.
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32,38

Near t=C, the crossing matrix gives

Tro = Tme + O(t%) = £ (T+T,) +O(t)

: y { A
Ta, = ~ Ly +00% = + (T -Ta) +0(t") |
(4.1)

An examination of the relation between the helicity amplitudes

and the invariant anplitudeslS' 16

shows that
Tro(s:0m) ~ v mA (5,00 +2A,(50,4))

(4.2)
Tl,‘ (S,OIM) bt vLmA‘(S,O,A}.—)

In fact, T and T are related to the usual forward Compton

| 2,0 2,1
am;g:'litudes43 £,(?) and £, (v) by

"

.-T;”o (SJO)”“>
T;.,l (s,0,%)

. 8TTm f, (v)

]

- mevﬁ_(\’) (4.3)

where V= .sz';‘;—" ', equal at t=0 to the photon lab. energy, and m is

the nucleon mass.

’ P
The kinematic-singularity-free amplitudes _T;,/.«. (s,t,) are

giventTr48 1
2 _ R |+ ze\ A g e\
Top Gem) = 17 (mam) ™ (L325) 77 () 7T X
' ) (4.4)
X Toplstm) |
where Z; = cosf, = —S=% _ .
. ¢ ¢ D)

This may also be seen from the invariant amplitude expansioan.

. Under crossing Se3»s , in which the two photons are interchangéd,

the process remains ¥N—¥N  and



/\ . A ' A A
Toyo 0t = Ty o), Ty o) = T ()

We fom the new amplitudes
A A A~

_ T+(S,t,m) = -—r.;,,o + T-l,o

T— (S;t)”*) = T;L,) + T,

) ’

which are respectively even and odd under crossing.

At LT—O_

Tr(,t20) = @) 2 [T o (v,0) + Ty o ,0)]

T ) = @ [T 049 ~ Ty, (00]
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(4.5)

(4.6)

(4.7)

. A
The crossing properties of [ (v,0) are also clear from the

"behaviour of A2’ Ay Ag wder Seam (Ver-y,at f=°). They are

respectively evenl, even and odd} since K

o1 K3 and K¢ are respectively

even, even and odd under the interchange of initial and final photon

indices.

A :
The definitions show that T+ (v, 0) are parity-conserving amplitudes

and their asymptotic dependence on VvV is two powers lower than that of

the T;,,,& in temms of which they are defined.

The optical theorem for the s—-channel amplitudés_ reads

Im TP)P\ (V|°) = QMV G-P;P\ (V) J

(4.8)

 where Jp(¥) and Q) are the photoproduction cross sections defined in

ref. 49. By egs. (4.1), (4.7) and (4.8) we deduce

11
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Im ﬂ(v o) Y™ (T (v) = GG W) (4.9)

Finally, we require the t-channel isospin amplitudes in terms
of the s-channel XP and ¥n amplitudes. The amplitudes TXP +Tyn

correspond to isospin O and 1 respectively in the t-channel,

The Partial-Wave Expansion and Reqgge Poles.

The t-chamnel amplitudes have the partial-wave expansion

Top Gt = 4 2 G T @] e + €0 o(20) +

;T/'; ) ( ot,fr(ze) —edy (_Ze))] '~ (4.10)

where T,\a,—;lfﬁ<FﬁX¢Ap{T(t3IUMAAXB> ,J even (0dd), with A ~Ay, = A,
The symnetryll of ol,\:,—,,(zt) and T,\;U') may be used to show the

 equivalence of (4.10) with the familiar form
T 5,6 = sz CREDN NINT darn(ze) . (4.11)

We now Reggeise the amplitudes Ty by performing the Sommerfeld-

 Watson transform on the partial-wave expansion (4.10) and cbtain’*’>"

the representation,

. T;,r(slf,}&) = Z M—ﬂ t'lTP(.,(t)P ()( “ ()(zt) 4 (.|)f‘d KL )(__Zt))

oles (Tl (E
P le Sin ) (4 12)

+Z 24O+ eivdj“)ﬁ.‘(t)( J”(zf)—(—) d ja)("Zt))

N Po'es St ﬂTrdj (e) —AJ/’-

+ background integral.
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o¢; (t) .
At high v, 0(',\:/». ) ~ v | 1t follows fram eq. (4.4) that
. A ) —
the amplitudes  Tix (V,8) have asymptotic behaviour v°"“() = .
where  ofm(t) is the greatest of the o (t) . Alternatively

- we could have made a partlal wave expansion in the t-chamnel of the
inva;:iant amplitudes and deduced the ¥  —~dependence of iy + Via

(4.7). We assume that this behaviour persists at t=0 where,—in
fact, th is infinite. The o(i(f) appearing in eq. (4.12) for any
given process depend oh the relevant selection rules.

By conservation of B, ¥, Q, I, C and P at each vertex, the Regge
trajectory must have quantum nurber assignments B =Y = Q =0, I=0 or
— 1, C even. The amplitudes _ﬁ; (v,0) are parity-conserving and have
-contributions only from normal and abnormal trajectories respectively
(a normal trajéctdxy has the same parity as signature, while the parity
~ and signature of an abnormal trajectory are opposite. This is a
natural extension of the concept of nommal and abnormal particles,

respectively).

Thus we find that trajectories contributing to 'T]. (v,0). are
neutral bosons with zero hypercharge, isospin O or 1, C even, and
: * :
nomnal parity. The most important are the two vacuum trajectories p,P',

and the A, trajectory.

*There has been some discussion as to whether the P trajectory couples
to two photons at t=0. The explicit factor spW)-1 in the amplitude
would appear to decouple the trajectory at this point 52. More recently,
Rbarbanel et, al. >3 have pointed out that a fzxed pole in the angular
monent plane at J=1 can restore the Paneranchtﬂ{ contrlbutlon. We

therefore include it in our analysis.
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. A
Trajectories contributing to .. (¥,0) differ only in having
abnomal parity. The T and N are forbidden in this amplitude
by C conservation at the NN-pole vertex, so that only the D and p

~may be exchanged.

SUPERCONVERGENCE RELATIONS.

By the definition of ¥ and “’l\;(v,t) the amplitudes v‘f”""t (v,t)
and y 2N (»¢) , with integral Ny o , are odd under crossing sos, |
Furthermore for t<0, they are bounded at large v by [v]"8, >0 .
This follows from (4.4) and (4.12) .;:md the fact that for _ll-\-—f (v, t),

() €1 and for T- (V,t) , ¥m(t)<l, t<o (see

preceding section) .

Therefore we are able to write the superoonvergence relations

vof oLy vf?f‘"l[{t (v,t)
' (4.13)

-~

+TT X sun of Born term residues.

and correspondingly for v~V T_ (v,t) .

At t=0 we may use the optical theorem, eq. (4.9) and write eq. (4.13)

!

ol
) f dy v (G3v) +9{(W) = mTX Born tem residues,

(4.14)

Ml x Borm term residues.

, /otv 2= (0500) 0, (%))

. A
The most familiar of these relations is for the amplitude T. (¥,0).
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Expressed in the form (4.14) , and using egs. (4.1), (4.3), (4.6)

and (4.7) , it is?

00 - .
2 (o - gm) = —pmtflo) = BTEk @s)

where o'<,=;3i-.; and K is the ancmalous magnétic moment of the nucleon.
This is the Drell-Hearn sum rule derived in the manner suggested by

(}101.1dhu3cy46 .

. A
The next most familiar relation is for v~'1,(,©9) , and in the

form (4.14) is

. | | o |
'vf dv 72 (90 + G = =2 £(0) = 2 (ote + o)

(4.16)

which is the original Gell-Mamn, Goldberger and Thirring™ subtracted
dispersion relation for f.(V)_, taken at =0 ., and where og and
Y are the electric and magnetic polarizébilities of the

riuc:lec»mf.’4 73

In general, the superconvergsnce relations (4.14) yield

dy yN"2 () Gw)) = o4 ()
%f » ( P(). ) i) fo 0, (4.17)
T -.L (1;4)
—2N-1 - — =41
‘v.,f‘ dy vy ((FP(V) O;\(v)) = N (o) ,

the values of the right hand sides being dependent on the detailed

structure of the nucleon.
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Finite-Energy Sum Rules.

A A
The amplitudes V"' T, (,t) and Y™ T_(4), N30, are also odd
wnder crossing §«»AL | They are not superconvergent but have asymptotic

ol (£) +2N—1 and v om (£) + 2N respectively.

“behaviour in Vv of V¥
‘ AN+ g2 -
However we may form the superconvergent amplitudes VY ('ﬁ- "71&) ‘
Ntz A A ~ ' ' A

and VY (- "T—R) where [xr is that (analytic) part of Tx

which is ot bounded by v~ 2'"*7°%  ang v pespectively.

In the Regge-pole model, Tip is the sum of the (analytic) contributions
fram all allowed poles with o« (&) > =2N and -2N-1 respectively.

- We therefore write56’ 57

of dv V_ZNH I [ﬁ (»,t) — —T_*PR (v't)—] =0 R
: (4.18)

.. N+ ' .
and similarly for vy T. (v,t) . There are no Borm temms in these
amplitudes, excepting Y T4 . Since the integrand in (4.18) is

O(V"'"S) , by construction, we have

f dv vZ'**'Immvt f o v [ Tem 01) + O(AF)

(4.19)

and similarly for I_Mt) ,

R | |
Making the approximation Ty (t)= (const) VP2 ynere oo (¢
R

corresponds to the leading trajectory, éq. (4.19) beoare557’58

j)

A ~
: AN+ A ,
Sanv =% f%i VST L) = InRa A8 (4 ons))

K (£) + 2N

(4.20)

A 2N+2. A
' _ TTr(Az -
Saen = 4 [0 (" o0 - Ihald) (o)
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At =0, and large A, we find finally

) ; o
2mA Sy = 7:;]‘) dy (’A*) (¢P(v)+0‘,\(v)) Op(A) + TA(A)
’ L (©) + 2N
(4.21)
=Ll (E) (Go-qw) = P A
ZMA.S)N"-‘ - A Lo i (A) ( P ) A( ) dm(o)'FlN—l"
.A similar expression for TN scattering was derived by Gattosg.

A slight modification to (4.18) must be made when the plus signs
‘are taken and N=O. 'IhlS is because VT (v;©)  has a Bom temm
(414 ) (FOV/v)  which contributes to the right-hand sides of
egs. (4.18)-(4.21). In (4.21) this oontrnbutlon appears as 4T JC|(°)/q
Since %% (V) + 7, ~(\’) has asymptotlc behaviour V“'"(o) , and is
presunzbly dominated by the P and 2, trajectorles vhich have «(0) >0 ,

the Bom term will be in comparison,. of no 51gnlflcanoe at high energles.

Our result (4.21) is therefore correct for any Nz O,

The nost interesting of the relations (4.21) are those with small N in
which the higher-energy cross sections are not heavily weighted. In
particular, the sum rules

A _.
'/{vao dy (qp0) +04 (v)) = T?(P:+(G§CA)»
m (o
A ' |
A _ Gp(RA)+Taln)
L@ (0 am) . a0

(4.22)

may possibly be evaluated with some accuracy. We discuss these matters

further in the next section.
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In concluding this section we point out that superconvergence
relations may be cast into the finite energy sum rule form. We

illustrate this with an example.

A
The amplitude I- (%,0) is superconvergent and

A N o0 A 1
fvo dv T T_(v,0) +_[\a(v»1—mT_(V,°) = DX g+

(4.23)

A
In the second integral, we approximate 1-(V,0) by the Regge form as
before. In the integration the contribution from the infinite‘upper

limit vanlshes, since folv Im T (v"o) O(»®) , and we cbtain

A : o
& (eoy-am)  + TP (A) —Ta (R) 2T et
fyo ¥ ( P(V) A( )) ) i

(4.24)

We may therefore evaluate the Drell-Hearn sum-rule with dai;,a up
to a finite energy only, since the tem [Jp(A) ~0h (Aﬂ/ [1-otm(o)]
provides the necessary correction once ®m(® is known. For the
I=0 chamel, the leading trajectory is D, and for the I=1 channel, A
The corresponding quantities in (4.24) are (WP-U‘A)zrp’-"— Cr~9a)yn )

Lp(e) &, (o) and KpLi ’(n". . For the mixed isospin channels
of pure ¥p or pure Yn scattering',. the leading trajectory is the
Al - (4.24) therefore applles to el’cher protons oxr neutrons with
X (0) = Xp (0) = . We oonclude therefore that the reasonable
_ agreement of thé two sides of (4.15) cbtained in ref. 49 with data up
to QOOIVEV is not likely to be upset by higluer—énérgy data.,4 since

at this enérgy the correction temm is alxéady small.
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"~ Using the Suzﬁ Rules.,

Sum rules of the form (4.21) and (4.24) provide a very
physical means of either checking analyticity (from which they
follow) orfdetenn:i_njng the Regge parameters om(9).

58

Dolen, Hom and Schmid™~ propose finding om(t) from the ratio

S S

N PoN+2m T

with S, ., where the S, are to be calculated from low-energy data.

At t=0, this is particularly simple by virtue of the optical theorem

(X0 (8) +2N+2M) ¢ (oo (8) +2N) or similarly

(see eq. (4.21)). We think, however, that more accurate results

. might be obtained (at t=0) using the single sum rule Son? since
higher moment rules, which are necessarily introduced by the ratio’
method, weight preferentially the higher energy data which is less
precise. The only advantage of the ratio method is that Op(A)+Ux(A)
need not be accufately known insofar as it appears in the right-hand
side of (4.21) , but since it must be known if the left-hand side is
to be evaluated, the advantage is minimal, at any rate in the

asymptotic energy region.

At lower energies, where Op(A) +dp (A) is.show:i_ng sane direct-
channel resonance fluctuations, it may still be possible to use the
ratio me'thod,. but not a single sumrule unless a modified value of

Tp(A) = U;\ (A) is used on the right-hand side. This modified
value may be dbtained by drawing a smoth curve of the fom vt
through the experimental curves, The reason for this procedure may
. be seen by examining (4.18). This says that Im »" —T.ig (v,0) <_ |
is in a sense the smoothed-out :absorrptive part of pn —T_i (v,0)
(see ref 58 for caments on this and réla{;éa points) and eq. (4.19)

says that the (Regge) form 9“"' drawn to fit the experimental
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curves may be expected to be a good approximation to ¥ Im :I\_tg (V; o)
which is the quantity appearing on the right of (4.20) and which is to
be found. The conditions that‘ (4.20) be good do not necessarily -
xequ:Lre that A be above the resonance region, whereas eq. (4.21) as
it stands is valid only in the asymptotic region of the cross

~ sections.

As we remarked earlier, the most lntexesh_ng sum rules are SO
and Syv in addition to the two supercdﬁergence sun rules (4.15) and
(4.16) . 'There is some hope of evaluéting them with reasonable

accuracy over the resonance region, if not now, in the forseeable

future.

In order to determine Regge parameters ofm(s) we mzke the isospin

decampositions of SO and Sl:

(G-IB(A)"’U'A(A))XP*-Y'\ ) I-= O,
o(p(o) :

A o |
71\_ '(vo dv (Tp0) + ) ¥p+¥m

- A . . '

! (o3 (A)+0'(f\))x ~¥n _
—_ dy (T () + Ta (V) y, _ = P A P T=1
A Lo ( P ) A )XP n AL(O) ) )

. A - | ~ /
'P,_\_ fvo dv (_X—) (5 ~G3() Spt¥n = w"ﬂ% , I=o,

O(D(O) -+ 1
. ( ) (4.25)
L (A v — _ () -va(A)) o -
o - e T,
| odp, ) + !
where () yp + ¥n means o¥P+ ¥ | The appropriate trajectories

were determined in a previous section.
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An evaluation of‘ these four sum rules should provide values
for “p(oj r Kp 0 Xp(2) andl XA, () ; S5 should be easier to
calculate than Sy because it involves unpolarised cross sections .
enly. Neither the I=0 or I=l parts of a sum rule S; will be easy to
evaluate separately because of the grave lack of ¥n photoproduction
data. At present we can hope only to evaluate the sum rules (4.22)
corresponding to the mixed isospin process B’P - total and in
Wthh °<m(°) will be ®Kp(o) and op, () respectlvely, since Xplc) >xA,(0
and  ola,(0) > Xp (o) (if these latter two trajectories are

parallel),

Total photoproduction6 data up to 5 GeV photon lab. energy yleld,

via eq. (4.22) a value of &p(0) oOf approximately .85 . As the total

cross section appears to be more or less constant from 2 GeV upwards '
we can expect the value of «p(®) obta_med to approach 1 as higher and

hlgher energy data are taken into account.

We see the_refore that the easiest sum rule to use provides

the least interesting information viz. the valae pfo) , and with
less accuracy than other methods. The data are not good enough to
calculate ™4 (o) . The sum rules are therefore at- the moment more
interesting as a check on the postulate of analyticity',. using

known values of the Regge parameters, than as a means of calculating
 these parameters, which are more readily found from phenomenological fitsA
to hadron-hadron scattering amplitudes.
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We formulate quantized electromagnetic field theory in terms
of "tensor potentials". None of the usual difficulties, such as
. indefinite metric or unphysical particles arises. Gauge considerations

do not enter. The compatibility with axiomatic field theory is discussed.

Our fields interact locally with the electromagnetic current
and the resultant quantum electrodynamics reproduces exactly the usual

results.

A similar solution to the problems of spin-2 graviton theory

is indicated.



‘I. INTRODUCTION

It has long been recognised that the usual formulation of
quéntized_electromagnetié theory in terms of the potentials AH(X) suffers
from theoretical difficulties (not least that of possibly not existing
‘Wifhin the framework of sxiomatic field theoryl’e) due basically to the
fact that a four-vector wave-function is unsuitable for the description

3,4 exposes this

of a massless spin-1 particlé3. The work of Weinberg
fact and shows how, in the ﬁéual treatment, Lorentz-covariance bf the
S-matrix is ensured by the;imposition of the géuge condition on the M-
functions, equivalent to the conservation of charge. In spite of the
elegance of this analysis, it unfortunately remains true that such a

%
non-trivial theory is incompatible with axiomatic field theory .

Similar remarks apply to the usual theory of spin-2 gravitons.

We learn from Weinberg that we can avoid these difficulties
if we describe the photon in its two helicity states by means of fields
transforming with (a,at+l) @ (a+l,a) represéntations of the Lorentz group.
"The simplest and obviousvchoice is (1,0)€§(Chl) and this correspoﬁds to
fields antisymmetric in two indices, such as the.electromagnetic field
tensor Fuv(x)' In spin-2 graviton theory, the corresponding choice is the

vpo(x) with suitable covariant subsidiary conditions.

Riemann tensor Ru
" In Bection IT we discuss briefly the tensor Fuv(x)’ concluding
as usual that it is unsuitable, as the interaction Lagrangian is non-

locél.

In section III we introduce the "tensor potentials", showing
that the usual minimal coupling is local in terms of these. Their

properties are deduced and, in section IV, the classical theory discussed.

R e et S e o [ B P A e B S e e o G e e e e et e A e it s At 3 e e FAS et WS ae A S e ¢ P e P S et e o S e o S " o+ o P o

¥*» .
See Footnote. 9, reference 2.



The tensor potentials are quantized, in the manner of WeinbergB,
in section V. The commutation relations and the momentum~space
propagatoré are written down, and the positive definiteness of thé
Hamiltonian and the metric of the space of states of the theory is demon-

‘strated.

In section VI we discuss the compatibility with axiomatic field
theory, concluding that our theory may almost be ecast into this form. We
show that arguments similar to those in ref. (1) which might be expected
to imply triviality do not'actuaily do. so because the two-point functions
are not Green's functions and-do no£ satisfy the equations of motion. An
- outline of a rigorous theory, with comments on this last point;_is given

in the Appendix.

- We further discuss in section VI the derivation of our theory

from a Lagrangian formalism.

In section VII we modify the Feynman rules, but find that the

matrix elements of the conventional theory are reproduced exactly.

Section VIII deals with certain indeterminate terms in the
matrix.elements, arising from the external photon wave functions. The
absence of these terms ics shown to be equivalent to the gauge-invariance

of the conventional theory.
Section IX deals with charge conservation.

Finally, in section X, the extension of the precéding work

' to higher-spin massless fields is indicated.



II. THE ELECTROMAGNETIC FIELD TENSOR.

A theory formulated in terms of Fuv(x) suffers from none of
the drawbacks mentioned above, and if suitable couplings with other fields
are chosen, ylelds exactly the usual results. The use of the corresponding

¥L,5

tensor wave-function

in S-matrix theory simplifies considerébly the usual M-function analysis,
as we shall see in a subsequent paper, because gauge considerations no

longer enter.
The crux of the matter is the choice of coupling. The usual
interaction Lagrangian is

éifint = jP(k)Au(k) | | - (1)

and this is reproduced by the form, in ‘cerms'ozf"Fu\)(k)_s

| y |
Z .= M) () | (2)

v
int K u
since

an(k) = kuAv(k) - kvAu(g) and kuju(k) = 0.

With this form of coupling we are able to describe soft-photon processes

and long range forces, contrary to the usual statementsz’s, but in

configuration space this interaction is non-local, being

% .
This form is a consequence of Lorentz covarianceB’h, and not of the known
“relation between Au(k) and Fhék). Because of this relation, however, we

may identify auh(k) with the usual polarisation vector.



x )
Z ot (x) = —i,,J x) EFU\) (x) ) | - (3)

. It would therefore appear that we have merely exchanged one problem

for another, albeit a more tractable one, by using the electromagnetic fields.



I1I. THE TENSOR POTENTIALS

Although forced to abandon Fuv(x)? we would still like to
formulate our theory in terms of an antisymmetric tensor field. We
notice that if we define a new field Xuv(x)’ the "electromagnetic tensor

potential", by

- 1 ' '
Xuv(x) = EjFUV(X) | _ .(h)

*
the interaction Lagrangian (3) takes the local (and minimal) form

:{im = -3 ju(x)avx‘“’(x) o . (5)

Notice that current conservation is not necessary for the invariance of
this interaction.
We now elaborate on the definition of Xuv(x)' By (4) we mean

precisely
X G0 = [ at Blax) F(xh) | (6)

The Green's function D(x) is half the sum of the advanced and retarded
functions, and we indicate the reason for this choice when we consider field
commutation relations in the quantized theory.

Clgarly
O X‘w(x) = Fuv(x) . (1)

so that Maxwell's equations read

¥
We wish to stress this point. The interaction is local in terms of our

fundamental fields Xuv(x)'



O e 2 ¥ =0 | (9)

Furthermore, bxuﬁ may be split up5 into its self-dual and anti-self dual
+ . ' .. . .
parts X;v(x) which correspond to the two helicity or polarization states

of the field.

X, (x) = X:v(x) + X (x)

and (7), (8) énd.(9) become

0 va(x) = F;v(x) | (7")

fl
o

g =0 (81, (9")

T3V



Iv. THE CLASSICAL LAGRANGIAN THEORY

In #erms of the classical fields Xﬁv(x) we may write the free

Lagrangian

= _ 3 + 2T T e
= - 15 @x XMV & A=Hefox®
(10)
p + +
s - 2(F F*V + 1 a7H 3°F )
nv + up
Fuv +1

. + . .
since F;vF = 0. A~ are Lagrange multipliers.
The Euler-Lagrange equations of motion derived from this Lagrangian

by variation with respect to Xﬁv(x) and Aﬁ are
+ - TR _ ' '
OO %G =007 x =0 R e

the second of these being just Maxwell's equations (8') and (9'). The
Lagrangian eq. (lQ);reduces to the usual form when Maxwell's equations
are satisfied.

There are twenty-four independent cancnical fields Xﬁv(x)

+ . s - .
BOX;v(x) and their corresponding canonically conjugate momenta

+ =1 *
Huv(x) = 3 BOFU\)(X)

(12)
(o)t - _1 ot
I uv(X) = -2 Fuv(x)
which satisfy the usual Poisson bracket conditions. A typical one is
+ + , '
= ] - : 1
[Xuv(x)’ Hpc(x)] i(g g g ) (13)

upgyc no®vp

The Hamiltonian density'?tis given (when equations (8') and (9')

are satisfied) by : ..

1 + ' +uv 2% +uv. 1t _Euv
[_ 1 _ I 1k
g(BOFu )9 X 2(80 X- )F gF- F (1h)



V. THE QUANTIZED THEORY

+ .
We deflne the local quantlzed Welnberg fields X;v(x) in the
k5

usual way

X () = - ' ST A [ g ) at + HEF e e |
(15)

where

d"kg™ (6%) = (em)™™ s (P)e(k),

* .y e . -
a~(k) are the annihilation operators for fhotons of momentum k and helicity
+1, and g;v(k) are the corresponding wave functions which are in this case

K (k) kvs+ (k)  e= (k)

o u MV _
g-, (k) = z T2 o (16)

The factor of Iy is introduced to ensure the correct relation

2
between Xuv(x) and F (x) as usually defined. However, because of this
2
+ . .
factor, X;v(x) 1s not perhaps well defined by eq. 15 as we have ‘§LE§l
k
in the integral. We therefore take the lg outside the integral as the
, k
operator E%‘; so that we interpret eq. (15) as
+ - 4 ~ikex! “ + ikx' ¥¥. . Ft, .
X;v(x) = - fdhx'D(x—x'){ghk§ (ke)[; Hhex si\)(k)a“(k)ﬂ-elkX s:vkk)a T(ki]

(15")

We remark that these fields are true teﬁsorss. The particular
Green's fupctioh D(x) is chosen so as to yield causal commutators between
the fields Xuv' These we now discuss.

The commutators of the fields Xﬁv(x) follow simply from the

basie relations

[A ”* ]6+(k2) h(k—k')a)‘)" (17)



and the propertiesh of the polarisation vectors reﬁ(k). These satisfy

' : 3%
kee(k) = 0, ceh(k) = &) (k)
: (18)
+* + 1 ' i
- (k)e” (k) =1 - (k) = 30 k) + = A k
€ )Epc( ) wv,poE) = 2 uv,po( ) 3 wv,po )
where
k) = | -kk -k k + k k +k k ] 1
uv,pc( ) [ up8vo vioSup i aSvp vipbo (19)
and
A (k) =+ |k ke +kk e -k k€
Hv,po ok 2 | v p voaB v o upaB W o vpaB
o . :
o=B
- kvkpewaak k (20)
+ ,
where P = gBBkB (unsummed).
We notice that Apv pc(k) is covariant if k2=0, as expected, and may be
. sp0
rewritten, after detailed analysis,
A (k) = - x™(k ¢ +k e -k e -ke ) (21)
UV ,po H avpa Vv uopa p HVHO o HVpo

This form provides a covariant extension of A(k) to off-shell momentum values.

The commutation relations are, then,

UV, p0

* .
Our metric 1is 8o = 1, g.. = -1.
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' B )Blyy') 1 (-49) D(x'y") (23)

= ifdhx'd
Notice that the result is the same whether we use the definition eq. (15')

for the fields, or instead manipulate formally with the forms eq. (15),

L

finally interpreting a factor lﬂ in the k-integration as fdhx'd y'DD ...,

k
We write down a further commutation relation, that between the

. . : . : oy _ T
fields Xuv(x) which are self-conjugate since Xuv(x) = Xuv(x)'

'[xuv(x), xpc(yi]~= i‘fdhx'dhy' 5(x-x')5(y-y') My, odi8)D(x"=y")
| (2k)
If is straightforward to show that all these commutators vanish for x-y
spacelike, but they would not (necessarily) do so if we replaced D(x) by
'LDret(x), say. |

The propagators in momentum space are

PP
£, K)es (k) _ Bivyoe®®)

. kh.

(k%+ic) (k%+ie)

or, summed over helicity states,
I k
]J\),QU( )

i (2sic)

Finaliy we show that the Hamiltonian of the free fields has a
positive definite expéctation value, and that the states of the theory,
oﬁtained from the vacuum by applying polynomials in the smeared free
fields, have a positive-definite metrici

With our fields defined aé in (15) or (15') we ére able to

derive all the guantities appearing in the expression (1k4) for the
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Hamiltonian density. After some calculation, its vacuum expectation value

is found to be positive definite :

<O|1K(x)|0> =12 .(‘ g3k w(k) : (25)
k>0
o
where

w(k) = k_ = [k|.

fo)
The smeared field Xﬁv(f) is defined by

X (0) = fa'x ¥ 6 1) (26)

where f(x) is some test function. The one photon state Xﬁv(f)|0> has

- the (norm)2 (see also the Appendix)

4

<O|Xﬁ:(f) Xﬁv(f)|0> = fghk éii%i)[g(k)|2 va,uv(k) (27)
where |
Fx) = fa'x 1K ¥e(x) - (28)
Now ‘
nﬁv’ﬁv(k) = - guuki - gvvkﬁ + 2guvkukv |
30 ‘ | (29)

equality only holding if m,v and k are such that eﬁv(k) = 0 . The metric
is then clearly positive-definite. It is straightforward to extend the

analysis to the multi-photon states

covne X7 (£.) el |O> L
S|
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In fact we shall find in the next section and in the appendix
- that these states do not lie in the Hilbert space, this being spanned by
. states obtained by applying polynomials in t]Xuv to the vacuum. However
the metric is still positive-definite as may be seen by appropriately

modifying egs. (26) and (27).
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VI. AXTOMATIC FIELD THEORY

i . + . . . .
The fields X;v(x) appear at first sight to be consistent with

8,9,%

an axiomatic formulation, for they have causal commutators, transform

covafiantly, and the two point functions

+
W= X-
u\),DO( y)

AlvE +
<o|xuv(x)xpo(y)|0> (30)

are the boundary values of the functions, analytic in the extended tube,

L
UV p0

*

uv;po(éiB)D*(x'—y') - (31)

(6) = ifa'x'a"y" Ble-x")B(ry') T
This form is obtained using the translational invariance of (30).

Recently Strocchi has shownl’2 that in any theory of electrodynamics
‘based on vector potentials, whether covariant or not, the condition that
the two point functions be boundary values of functions analytic in the

extended tube and satisfy the same equations of motion as the potehtials

leads to a trivial theory,
<0|F. (x)F 0> =0 (32
Py F )] )

We will extend Strocchi's analysis to our two point functions

+ . . .
W;v po(x—y) and show that if they satisfy Maxwell's equations
3 -

[]"5“W§v,po(x#y) =0 | (33)

we bbtain a trivial theory.
| +
UV, p0

then by the Araki-Hepp theorem® and some extra reasoning outlined in ref. 1,

Ifr g&) is analytic in the extended tube, and covariant,

*
See also the Appendix.



1k,

it can be expressed in the form

We () = dm  (d0) pE(e) &

N -
1v,p0 1v,po Ay pot-100Dy(E) (34)

z

2 KBV,

where 1(-i3) and A(-id) are defined in eqs. 18-20 and the functions
+ ) ) .
D;(g) and Di(g) are invariant, Di(Aﬁ) = Di(g). In fact this is not

the most general form of W(E), but we consider only those covariants
. - . e . + <.
n(-i3) and A(-i3) arising from photon fields. Wﬂv po(x-y) “is given by
b
the boundary value of eq. (34).

"Now if
0" (xy) = 0 - ' (35)

. BV P00

00 [0,6,,-2,6,,) DE) +5 2%, ) pE)] =0 e

!
™

)

<

©

Q
o
=1

by eq. (34).

Further, if

1

+ B+ ++ ‘ :
W-_(x-y) = <0|3 x;v(x)a"x;(j(y)lm , (37)

. os . . +
satisfies the same equation of motion as ' (x),

§v
ice. »[].W€o(x—y) =‘O , - . (38)
then, since from eq. (34)
W (x) = 1 (Je. - 2.2 )OID~ (x) (39)
Vo vo vo T _

we find that

(Ugvé,—.avao)nubi(x)‘ =0. A (uo)‘
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This implies, by a lemma proved in ref. 1,

g Di(x) = constant : (hl)

so that eq. (36) now reads

2% DUD;—:(X) =0 . - (42)

avpo

Now, from the definition of Xﬁv(x),

1

F f\,,pc (x-y) <OlF§v(x)F-§Z(y)lO> =DﬂW§v,pO(x—y) (43)

end it is clear from egs. (34), (41) and (42) that

I (x-y)=0 (k)

HV,pd
. . . - : . . n .
which implies a trivial theory. However,with the fields X;V(x) defined
in egs. (15) and (15'), the two-point functions eg. (30) do not satisfy
Maxwell's equations nor do they satisfy the Klein-Gordon equation

HV,pO

Ogw,  (xy)=o0 | o ()

even though the fiélds themselves appear to satisfy both these equations as
operator identities (but see the Appendix).

This is not -perhaps su?prising in some respeéts, as the Green's
functions are not the W's but

Gv,pox) = <Ol GO Hr) fo- (46)

and these satisfy the two equations.

‘We conclude that the Strocchi-style analysis given above does not
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apply to our theory, as egs. (35), (36), (38), (40)-(42), and (L)) are

not cocrrect.

Nevertheless, there remains the apparent contradiction that

; £ vwtt ey,
O D<°|Xuv(")xpo(y)|°’ £0,
' ‘ (37)
8”[]<O|X5v(x)X§:(y)|O> # 0

whereas our fields as defined in eq. (15)satisfy [][]Xiv(x)= wile Xiv(x) = 0.
We discuss this at greafer length in the Appendii. The explanation is that
none of the equations (11) can hoid as operator identities on states formed
by applying polynomia;s in the fields Xuv to the vacuum state. But since
these equations are operator identities on the vacuum state, (47) shows that
- Xuv|0> cannot even be a state in the Hilbert space (its scalar product with
the zero vector being non-zero). For the physical states we must take those
obtained by applying to the vacuum.polynomials in [J Xuv’ and no contra-
dictions then arise. Egs. (ll) hold as operator identities on such states.

A11 this shows that the fields va(x) are nof realiy of much
interest in anbaxiomatic approach. Their chief virtue is that they allcw
the Weinberg programme to be carried through with covariant field; satisfying
causal commutation relations, and a local interaction Lagrangian.

Finally we would like to point out that our theory should in
principle be derivable from a Lagrangian formalism such as that outlined in
Section IV. The field-commutétion relations should then follow from the
equal—time-cénonical commutation relations together with a number of assumption:
abdgt the form of the fields in momentum spaée. The S-matrix could then be )
caléulated by the usual techniques. OFf course this would do nothing to

avold the above criticisms.
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VII. THE FEYNMAN RULES

The S-matrix is given in terms of the interaction Hamiltonian as

s = [erp (-3 fa'x %, (x))] | (48)

In Weinberg field theory this is an assumption.

Wé are then able to derive a set of Feynman rules for calculating
the scattering amplitudes and these of course differ slightly from those
which one uses in the conventional theory of electrodynamics. We give the

necessary modifications

...{a) For an external incoming (outgoing) photon we must now use the
. A A%
wave function Euv(k) (Euv(k))' ‘ ‘ A
(b) For each ﬁhotonic vertex, we now put g(kucv_kvcu)’ where before
‘'we had simply eC (C = Yy for example).

H H

(e) TFor each internal photon line, we now insert the propagator

(k)

I
UV, p0
ku(k2+ie)

(We could write down the separate contributions of

the two helicity states, but they turn out to be equal with the
couplings given in (b). With Pauli-type couplings Mo, at the
vertices, the two helicity states give complex-conjugate

contributions).

Using these modified rules, it is not hard to see that we obtain

exactly the same expressions as in the conventional theory with the Landau

. k k
propagator guv— u2v » Wwith the sole exception that at an external
k
k2+is

photon vertex, the coupling reduces to

% u -_ k"
eu(k)(c -k 0;5) : _ (49)
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vhich differs from the usual ¢:C by the term k*C Eé& .
, . k
Now -for k2=0,.£—£ is indeterminate, but for other values of

) k2 5 .

k™ it is zero. We may therefore argue that it vanishes for k=0 also,
as a limit from ke#o. However, we cannot altogether ignore thié second
term as it becomes non-zero under Lorentz~transformation (eu(k) is
not a four—vectorh), cancelling an equal and opposite term which appears
when €-C is transformed. In other words, €°C is not a scalar, but
S KR . . L

eu(C -k-C —EJ is, to within a phase, and in another frame, obtained by

k. : .
the Lorentz transformation A, has the value

+ 16(A,k)

eX(Ak)(AC) = o7 e (x)cH (50)
b b .

so that the matrix elements of the usual theory are exactly reproduced

terms give no contribution).

* (providing always that the ke
' 2

k
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CVIiT FURTHER CONSIDERATIONS

. H
Even though the 55 parts of the couplings, or covariants
k

as we shall'gall then fronm now-on, need not contribute to the matrix
eleﬁenté, we may still trj to remove them in some way.

To 'do so, we may form new covariants, free of such parts, by
taking suitable combinations of the original ones, in fact the same
combinations as are necessary, in the usual analysis, to give gauge-
invariant covariants. We see this in the following way:

Let the complete set of coﬁventional non-gauge-invariant
covariants for a given process be KU...KE with corresponding invariant

1

amplitudes A such that the M-function is given by

1 ..An

M =7 k! oA, .. (BL) ..
1 1 - !

1

Following our rules, we find an M-function

By _ g TIRVEEY ' « :
MU= 3 ) (KK -KKOA (52)

i

. _ .
the'Ai and KE being the same as before. We define M * £o be such that

A W oA Hv _
ep(k)M = éuv(k)M | | (53)

Therefore

1 . 1
MY =T K,
. 31

where

K;“ = K¥ - k-K.%— | | | (54)

and the Ai are still the same.
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Now let Cin be kinematic factors, free of singularities (but

possibly possessing zeros) such that the covariants
K. =] C.. K. o (55)

satisfy k'ﬁi = 0, that is, they are conventional gauge invariant covariants.

_r '
Then the same combinations Ki of our covariants Ki are

-1 » t "
E¥=Tc.. k"= Jc. k-5 7Tc xk
1 © 1y ] S B I B
J J ' J
=7c.. k" (567 .
X
by definition of the Cij’ so that
K*p . : . A
;= K (57)
. . _ H
which have no term in 5> and are the conventional gauge-invariant forms.
.k '
It may or may not be possible to construct n covariants free of
M ' : . .
k . .
) terms in this way. If not, we cannot remove all such terms from the
k

M-function. If we can construct n such covariants, then the M-function is
expressible with these only and is clearly identical with the conventional
one which is, of course, gauge invariant.

More succinctly, by virtue of eq. (51) and eq. (54)

' H
m* e T, - E ke | (58)
S D § 2 .
y k
. Yy | - ku . - '
1f M " has no term in = it 1s equal to M and k°M = 0. Conversely,
k u ‘ .
if kM = 0, M has no term in 55-, and is egqual to M. Thus the sbsence
Bl k<,
of 55- terms in our M-function M ¥ is equivalent to gauge-invariance
k . : .

_of the conventional M-function.




IX. CHARGE CONSERVATION

Our tensor potential theory is not a gauge-theory. Charge

conservation is not necessary for covariance and must be imposed a posteriori.

In the Weinberg theorys, charge conservation is a necessary and sufficient

condition for the theory to be covariant, and is expressible as k*M = O.
But we saw in the last section that this implied the absence of E;-terms in
' M'u énd vice versa, sé that in our theory charge is conserved ifkand only if
'u . . xM . " i
M " contalns no terms 1n ;5-. If charge is conserved, then M " = M  and
the conventional M—function is theréfore.reproduced exactly by owr rules.
The equivalence between absence of the E; terms and charge
éonservation is seen very clearly when we construtt M'u, by our rules, for
the emission of one soft extra photon in some scattering processll. The
coefficient of —; in M' is proportional to the difference betweén"th?
total ingoing ang total outgoing charges. If charge is conserved no E%
k

term appears, and vice versa.

On the other hand, if our fields interacted with non-conserved
' H ' : .
quantities, M M would have & term in > giving an indeterminate contribution
LUASL=SE e K :

to the matrix elements (which we might, however, "define away").
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- X, HIGHER SPIN MASSLESS FIELDS

A similar formulation can be made of quantized spin-2 graviton

theory. A suitable fundamental field is S (x), related to the Riemann

uvbc
tensor R by
. uvpa

00 8,,,,(x) =R (x) - (59)

The self-dual and anti-self-dual parts of Suvpo(x)’ which may be
projected out locally and covariantly, then describe gravitons of helicity
+2. The quantization of the fields is achieved by imposing the basic

commutation reiation, eq. (17), on the graviton creation and annihilation

operators.

Suvpo(x) can interact locally with the energy-momentum tensor -
Tuv(x) to reproduce the usual fTqu form.
k k HY
We find that Uhv terms are absent from the partially-reduced
k .

two-index M-functions if and only if the gravitational coupling constant
"is universal.
In the same way we may formulate field theories of massless particles
of épin-3 or higher. Such fields can interact at zero momentum, contrary
to a statement in ref. 4, and can therefore give rise to macroscopic fields.
However (}{2)"j terms cannot in general be removed from the partially-
- reduced M—functions by any conse&vation or universality principle. We
could remove such terms by using different wave functions, but then the
fields wéuld not interact at zero-momentum, and would give rise to a non-

renormalizable theory.
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XI. CONCLUSION

We hare presented a solution to the difficulties inherent in
Weinberg's approach to quantum electrodynamicss. Qur tensor potentials
aré'local covariant fields which igteract locally with the electromagnetic
current. They have causal commutation relations. No gauge considerations
enter, and there are no unphysical particles. The Hamiltonian and the
metric of the space of physicai states are positive definite.

The fields satisfy ﬁheir equations of motion as operatdr idéntitiés
on the physicai.states, and would be compatible with axiomatic field theory
but for the fact that the states generated by applying them to physical
statés do not lie in the Hilbert space. The physical states are in fact
generated by the fields Fuv(x)' Howeve}, the PCT theorem is not lost.

Alternativeiy, if we had introduced the tensqr potentials through
an axiomatié formuiaﬁion, the theory would have beén trivial. This -
represents an extension of the analysis of refs. 1 and 2.

Subject to these reservations, the theory appears to be, in
principle, dérivable from a Lagrangian formalism.

The Feynman ruiés for calculating scattering matrix elements
are similar to those in conventional quantﬁm electrodynamics, and by
virtue of charge conservation, the usual matrix elements are recovered
exactly.

A similér analysis in the same spirit may be anplied to higher-

spin massless field theories.
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APPENDIX

The Hilbert space‘%_of free photon states 1is the direct sum9.

K- 07 H® o (A1)
n=o

of Hilbert spaces %(n) which are subspaces of those states with n photons.

A vector V¥ in 9 is given by the sequence

{w(°);w(1),w(2), PR

of vectors ‘Y(n) e?ﬁ(n) , with the scalar product in H

| ®

(e,9) = § (a2 4(0)) o - (a2)

L

n=o

(Q(n),w(n))

where is the scalar product in ?((n)

Only those sequences such that

(¥,¥) < = | (a3)

are in ‘;"C

ﬂt(o) is the (one-dimensional) space of complex nu'mbers,ﬂ(l) the
‘space of square-integrable functions of momentum with anti-symmetric
indices u,v ete.

The scalar product in %(n) is then

(¢(n)’w(n)) =
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(1)(

" where LA p) is the single-photon wave function.

Now it is a disease of zero-mass theories that the class of
functions square-integrable oﬁ the mass hyperboloid, viz. the light cone,
confains only the zero elément due to singularities at infinity and at
the vertex of the light cone. We may attempt to réﬁedy this by; for
exaﬁple, defining our class of functions with respect to a measure somewhat

smeared in mass. We shall not investigate this problem, and shall continue

to use singular measures. Any meaningful result obtainable, such as

will surely hold in some sense in the rigorous formalism.

The smeared fields Xiv(f) are defined as 1iﬂear functiqna}; on
a suitable space of test functions f(x), and the Hilbert space of states should
be obtainableAby applying to the vacuum state polynomials in the smeared
fields.

In particular, the one photon state is given by

XM‘ L

o X §+(k2)g;‘§(k)§(k)g”(k)|o> (A7)

(£)]o> = fa

where f(k) has been defined in eq. (28).

Now let us apply the operator auCIXﬁv(g) to this state. We have
A R - D P A A
: a“[]xuv(g)|k,x> = Ja'pg (p7)e (ple(-pla"(p)a f(x) 0>

+ f@hpé+(1ﬂ2)p2€$*(p)é(p)a'”(p) |, 2> (48)

The second-integral vanishes because of the p26 (p2) factor, while the

first, by virtue of eq. (17), is
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J d'oe 02 phatp) 0> = 12X o)) o> (89)
This is not zero, nor need it be, since |k,A> is not normalizablé
and_thus not a state in our Hilbert space. However, as soon as the state.
|k,x> is put on-shell, k2=0, as happens in an integration over 'k, the
right hand side of (A9) vanishes.

Finally we find

00X (g)X,1 (£) |0 fqhkg‘f(kg)sz‘(k)agi(k)é(—k)eﬁ (k)]0 (A10)

which is not zero, because the lé factor in Ezo(k)Tcancels the explicit

2, . k
k¥~ in the integrand.

Therefore,

<o|'a“Dxﬁv(g)x;‘:(f)|o_> #0 (A11)
But |

BUDXﬁv(g)]O‘) = fc,_lhkgf’(kz)kesi*(k)é(k)[O> = 0 (A12)

so fhat XQZ(f)|O> cannot even be in the Hilbert space, as its scalar product
with the zero vector 1s non-zero.
In a similar ﬁay, we find that the states Builxﬁt(f)|0> cannot
“be ip the Hilbert space either.‘ However the equatiops of motion (11) are

satisfied as operator identities on the space of states obtained from the

> (£).

vacuum by applying polynomials in the smeared fields E]XS;(f) = Fuu

This is simple to verify and comes about because the wave-functions for

these fields have no ié factor.
. k . .
Of course, these conclusions show that the fields Xuv(X) are

of little interest in this axiomatic approach. This is not to say,

however, that the two-point functions involving them are not meaningful;
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ve have given one in eq. (31), calculated from the representation egs.

(15) and (15'). DNor do we lose axiomatic field theory results, such as
PCT, This theorem will apply to the fields [:]Xuv(x) E'Fuv(x) and their
n-point functions. Consequently the n-point functions of the fields

Xuv(x) » having meaning as distributions, if not as scalar products in a

Hilbert space, will satisfy the PCT condition9

<0|X (x,)eee0 X (x_)|o>=<0|x (-x_Jevee X (~x_ )]0
: Hyvyo L Hp¥n “p¥po B Hyvp L

(A13)

as may be seen by repeated application of eq. (6) to

<OIF“1\’1 ] n(xn)|0> = <O|Fﬂnvn(-xn)*MFulVl(—-kl)]O) Co(a1) "

Finally, we remark that the analysis in section VI and in this
appendix suggests thét in formulating quantized electromagnetic theory
axiomatically without unphysical particles, we cannot have both a local
minimal Lagrangian and the equations of motion as operator identities on
the (physical)'states generated by operation of the fields on the vacuum

state.



28.
REFERENCES
1. F. Strocchi, Phys. Rev. ;gg_(1967) 1429.
2. - F. Strocchi, Let. al Nuov'c; Clm 1 (1969) 169.
3. S. Weinberg, fhys. Rev. 134 (1964) B882.
h, S. Weinberg, Phys. Rev. 135 (1964) B1OLS.
5. S. Weinberg, Phys. Rév. 138 (1965) B98S.
6. A.O. Barut & G. Mullen, Annals of Phys. 20 (1962) 203.
7. A. Pais & G.E. Uhlenbeck, Phys. Rev. 12 (1950) 145,
8. ~ A.S. Wightman, Phys. Rev. 101 (1956) 860.
9. R. Streater & A.S. Wightman, PCT, Spin and Statistics

and All That, (New York, 196L4).
10. ‘H. Araki, Prog. of Theor. Phys. Suppl. 18 (1961) 83.

11.  F.E. Low, Phys. Rev. 110 (1958) 9Tk.



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135

