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ABSTRACT 

We present a discussion of the S-matrix theory of massless 

particles. 

Starting fin the transformation properties, unr1Pr the Lorentz- 

group, of massless particle states, we progress to the derivation 

of massless particle wave functions. The possible choices for the 

representations of the Lorentz-group to which these belong are seen 

to be restricted. 

For the photon, the polarisation vector is an unsuitable wave 

function, and in order to retain Lorentz-covariance of the S -matrix, the 

gauge condition must be imposed on the M-function. We circumvent 

this difficulty by using an antisymnetric tensor wave function. The 

M,function analysis is then much simpler than usual, and we discuss 

sane exalt-1)1es to illustrate the method. A similar treatment may be 

applied to the case of the graviton. 

We then turn to the massless particle crossing matrix, rederiving 

it in the covariant helicity formalism. We show that for consistency, 

the elements of the crossing matrix and the scattering angle cosines 

must be analytic at coincident channel-thresholds, such as occur in 

processes involving massless particles. 

Finally we derive sunrrules, both superconvergent and finite - 

energy, for nucleon-Compton scattering. Integrals over total photo- 

production' cross -sections are related to the parameters of the cross- 

dhannel Regge-poles, or to the electromagnetic parameters of the 

nucleon. 

As additional material, we present a paper "A New Formulation of 

Quantum Electrodynamics" in which we introduce antisynrretric tensor potentials. 

The Weinberg programme for electrodynamics is here carried out with covariant, 

local, causal fields. No unphysical particles are present, nor is there 



any indefinite metric. However, the difficulties of an axiomatic 

quantum field theory of electrodynamics are not ccmpletely 

resolved. 



PREFACE 

The work embodied in this thesis was carried out in the 

Department of Theoretical Physics, Imperial College of Science 

and Technology, University of London, between October 1966 

and August 1969, under the supervision of Professor P.T. Matthews. 

The material presented is original except where otherwise 

indicated in the text by clear implication or specific reference, 

and has not previously been submitted for any other degree in any 

university. It is based largely on four original papers, listed 

in the references, one of which is included at the end of the 

thesis as additional material. 

I would like to thank Professor Matthews and many other members 

of or visitors to this department, in particular Dr. H.F. Jones and 

Professor G. Feldman, for numerous helpful discussions and suggestions, 

and for their continued interest. 

I am happy to acknowledge the support of a Canmonwealth Scholarship 

during the last throe years. 



CONTENTS 

Pege. 

6. 

9. 

INTRODUCTION 

I. MASSTESS PARITCTE STATES AND WAVE FUNCIICNS. 

Poincare Group Generators and Representations. 9. 

Transformation Properties of Massless Particle States. 13. 

Auxiliary Operators and Wave Functions. 17. 

Spin-One Wave Functions. 25. 

Spin-One Projection Operators. 30. 

II. PHOTON M-FUNLaIONS. 34. 

Four-Vector M-Ftnctions and the Gauge Condition. 36. 

Antisymmetric Tensor MHFUnctions. 43. 

Examples of Photonic Processes. 45. 

Perturbation Theory and Pole Diagrams. 55.-:  

Charge Conservation. 62. 

Photon Propagators. 64. 

III. THE MASSLESS PARTICLE CROSSING MATRIX. 66. 

The Crossing Matrix for Helicity Amplitudes. 66. 

The Covariant Helicity Formalism. 70. 

• Massless Particles. 73. 

The Crossing Matrix. 75. 

retermillationofAb 	. 78. 

Appendix. 88. 

IV. SUM PULES IN NUCTECN COMPTON SCRiihRING. 	89. 

Amplitudes, the Crossing Matrix, and the Optical TheoLta. 	89. 

The Partial Wave Expansion and Regge Poles. 	92. 

Superccnvergence Relations. 	 94. 

Finite-Energy Sum Pules. 	 96. 

Using the Sum Rules. 	 99, 

itEkERENCES. 	 102. 

ADDITIONAL MATERIAL. 

"A New Formulation of Quantum Electrodynamics". 



INfEDEUCTTON 

Over the last ten years, there has boon considerable 

development of a pure S -matrix theory of strong-interactions 

flout basic postulates of Lorentz-invariance, analyticity, etc. 

Although first introduced to handle the strong-interactions, 

the methods should have general application to all strengths 

of interaction. 

With each of the non-strong forces, gravitational, weak 

and electramagnetic, is associated a massless particle, 

respectively the graviton, neutrino and photon. 

In constructing an S-matrix theory incorporating massless 

particles, there are two basic problems. The first, which we 

do not discuss in this thesis, may be described as "the infrared 

problem". Each pole in the scattering amplitude sits at the 

beginning of an infinite number of cuts due to an indeterminate 

number of exchanged massless particles. The second is the 

gauge problem, appearing only in gravitational and electromagnetic 

pTocesses, as usually formulated. The difficulty is largely artificial, 

as we shall show, and arises from the use of unsuitable photon and 

graviton wave-functions. The gauge-condition on the Ni-functions is 

necessary to ensure Lorentz invariance of the S-matrix. 

We introduce antisymmetric tensor wave-functions for photons and 

gravitons, so that the corresponding ME-functions are free of constraints 

of the gauge-type. The analysis is much simpler than usual. In fact 

conservation laws do impose some conditions on the M-functions, but 

these are easily dealt with, as we shall see. 
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Because the graviton gauge problem is exactly analogous 

to that for the photon, we make little mention of the former 

throughout our discussion. We do not mention the neutrino 

specifically because it is conventionally described by a wave-

function which causes no trouble, nor is there any conservation 

law, analogous to,that for Charge, which imposes constraints on 

neutrino N-functions. In this respect, the masslessness of the 

neutrino is of no particular significanoe,and the construction of 

NI-functions proceeds as in the case of massive particles. 

The matters outlined above are treated in Chapter 2, which is 

preceded by an introductory chapter on the transformation laws 

for massless particle states and massless particle wave functions. 

In the third chapter, we study another aspect of massless 

particle S-matrix theory, the helicity amplitude crossing matrix. 

This has previously boon found by several workers, but we present 

a novel derivation in terms of the elegant covariant helicity 

formalism. *The analysis raises the question as to how certain 

kinematic factors should be continued past channel-threshold branch 

points. This question being resolved as far as the preceding 

analysis is concerned, it still Dauains to be answered in the case 

of the elements of the crossing matrix itself. We show that for 

consistency between the behaviour of helicity amplitudes in two 

channels near the boundary of the physical region and the elements 

of the crossing matrix, the cosines of the scattering angles and the 

crossing angles must be analytic at.the coincident thresholds that 

occur in a massless particle scattering process. 
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• In the final chapter we make same slight use of the 
crossing matrix analysis in a discussion of forward nucleon-

Campton scattering. Superconvergent and finite-energy sum 

rules are derived and, through the optical theoxeit, are 

expressed in terms of total photoproduction cross-sections. 

The assumptions are analyticity and t-channel Regge-pole 

dominance of the amplitudes at high energy. The crossing 

matrix is used to relate the s-channel amplitudes, in terms 

of which the sum rules are written, with the t-channel 

amplitudes, whose high-energy behaviour, on the Regge assumption, 

is most easily seen. 

The refeeences to all chapters conclude the thesis. Though 

possibly not exhaustive, particularly in respect of the work of 

Chapter 4, we believe them to be caaprehensive and to include 

the more important sources. 

As additional material, we include the preprint "A New 

Formulation of Quantum Electrodynamics", in which the Weinberg 

program for electrodynamics is carried out with covariant, 

local, causal fields. No unphysical particles appear, ror is there 

any indefinite metric. However, the difficulties of an axiomatic 

theory of electrodynamics are not entirely resolved. 



9. 
CHAPTER I 

MASSLESS PARTICTE STATES AND WAVE FUNCTIONS.  

We begin by deriving the Lorentz-transformation properties 

of massless particle states. As these states are labelled by 

eigenvalues of the Poincar6 group invariants, we preface our 

treatment with a short discussion of this group and its 

generators. 

After deriving the transformation properties of the states, 

we introduce the wave-functions and auxiliary operators (fields), 

showing that these operators for a massless particle of helicity 

j transform covariantly only if they belong to the (0,j) 

representation of the Lorentz group. The wave-functions in such 

cases are given. 

We study in particular the antisymmetric tensor representation 

(1,0) e (0,1) for massless spin-1 particles of helicity +1, writing 

down-some of the properties of the wave functions Ei-v(p)- 

-Poincare Group Generators and Representations. 

The Poincaref group has the ten generators 	pe. , with 

which satisfy the commutation relations 

[Tp-v , -(r>cr] = 	r ip cr -+ Svo- 	— 3r-a-  Tyr It? 

, Pr] 	( 	— 	Pv) 

0 
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The 	are generators of rotations in 4-space. The 

set Ji 
1  E jk  J jk  have the =mutation relations of angular 

momentum operators, and the K. a J.10 
 are generators of boosts 

(rotations in the Oi plane) . The Pt, have the =mutation 

relations of translation generators and are identified with the 

components of the four-momentum. 

' The irreducible unitary representations of the group
1'2 

are labelled by eigenvalues of the invariants, of which there 

are two; 

PL 5s PI-13 	w z = WiA- Wp- / 
where W is the Pauli-Lubanski four-pseudovector 

W 	--L E 	T'e p- - 2 tA- 

One can verify that P2  and W2  commute with all the generators. 

We may write WI, in the alternative form 

Wo 	T. P 
(1.2) 

\IV = PO T -1--PxK 

with the J and K defined above..  

The mass-zero representations are characterised by P
2=0. 

Then there are two kinds of representations. Those with W2  = 0(/ 0, 

and those with W2  = O. In the latter case the representation is 

not completely specified by P2  and W2. However, PN„= 0 (always) , 

and P2  = W2  = 0 in our representation, so that W. must be proportional 

to Pr_ 

Wt- =APB 	 (1.3) 



where W, drk and P1  are representations of operators. A is 

in fact the helicity operator as may be seen by applying eq. (1.3) 

to an eigenstate of momentum 

1p,—.> 	A ri-IP, •••> 
(1.4) 

and in particular, 	W, = A Po 	(1.5) 

but 
	

T. P 

so that A = 

	

	
(1.6) 

Po 

the helicity operator. 

The eigenvalues. of A ,P2  and W2  new serve to Characterise 

the representation. - 

Let the four-momentum of the massless particle be (N t o,o,p.) 

in a suitable frame. Then W =W
o , and W1 and W2  conmute. 

Defining 

A = w,  
PG 

TT,. ± iTr, (1.7) 

= weL-  — w3 	— w2. 

= —1)02-  A+  A— 	 (1.8) 

11. 
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Also fram the commutation relation 

L Wt.,Wv] = — EI.,vr a- We Pa" 
	

(1.9) 

we may deduce that 

LA ) 	] 	A,± 

[A4.) 	 (1.10) 

Therefore A, TTI. and TT2 generate the group of rotations and 

translations in a two-dimensional Euclidean space, (but this is 

of no physical significance). 

Ncw let us denote the eigenstates of W2  and A for 

monr_ntum p by I p oc,A) 	or simply 1.fx,X> , since W,. and Pr. 

carrnute 

wa 1 c() x> = o< I c,, ,x> 

A 10(ix> =>I.0> 

Ai are clearly ladder operators, so that 

	

A A±Rx> = (x-±I)A±le()A> 	• 
	(1.12) 

The spectrum of X is then of the form X6+ -e , t any positive 

or negative integer and I > X o > o 

Ncw 	<0<,X I A I DC,A1> = A &A,X' 

and 
	

(°</A) A .d c( d' i > =ICIA gAdki+1 
	 (1.13) 
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Therefore 	= <0<,X1 W z  I o, X> 	A+A—ke,X> 

= —p:- <,4)x1A-Fla,x-1><.(,A-11 A._10c,x> 

= 	a--+A &A 	 (1.14) 

In a unitary representation, W. is hermitian, so that 

A.11.  = A- 	and ocit 	cci* 	. Therefore o< 	a-A 11-‘.. 0  . 

If at = as = 0 for all A , oC = 0 and A± = 0 in the representation. 

Consequently Wl  = W2  = 0 and We., = F),. Since in this case 

A 	commutes with /1.±. , it is an invariant, and the representation 

is therefore one-dimensional in the spin. The eigenvalue should be 

integer or half-integer if the representation functions are to be 

single or double-valued. A particle with spin s may exist in the two 

helicity states corresponding to the eigenvalues ± s of A 

but under proper Lorentz transformations, the representations corresponding 

to the two states are separately irreducible. 

Transformation Properties of Massless Particle States.  

. 	Nag let us see how the massless particle states with 0C=0, 

denoted by 1k, X> , transform under the Lorentz Group314. 

•There is a restricted group of transformations 19,!% , called the 

"little-group" which leaves the four-mmentum k' invariant. 

r _ 
(1.15) 
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This induces a unitary transformation of the states 

UCH-] k)A> 	 ik-,A'> 
	 (1.16) 

• where the functions D A,), LC must satisfy the group-property 

E D AA„ [kJ Deg C6RJ = DA A,  [R, 	(1.17) 

We can see from eqs. (1.15) and (1.16). that the little group 

is generated by /11  TT, and Trz  , for these commute with the 

momentum operator. Alternatively, we may deduce the little-group 

from eq. (1.15). 

An infinitesimal R/"-,, has the form 

(1.18) 

with uie"'= - w`'/A-  since Tt is a Lorentz transformation. If 

k is (k,O,O,k), we deduoe that the only non-zero components of 

uJ?" are 

	

(A) 	 w2-' = 0 

	

10 	- WO1 = Lk)13 = - 31 = X I  

02 	= - u)°' = W i3 = -W 3Z = )( 2 	(1.19) 

Recalling that the unitary operator corresponding to the 

general infinitesimal Lorentz transformation is of the form 
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U 	ui] 	-- 	I 	 -̀̀ 3fr) jit`v 
	(1.20) 

we see that 

U [R) 	 i 	(Tio -t-  Ti3) 	1:X4 (J1.1-  U13) 

	

1 	A 	xjr, 	(1.21) 

so that A, Tr, andiligenerate the little group. 

But we are interested in one-dimensional representations 

in which 

Tr, 	TT, = o 	 (1.22) 

so that a general R. in the little group transforms 1 k, X> 
into 

	

U[R] 111,X> 
	

exp -[ 8 [vai x,,x,)] Al 1k, X> 

=_- -exp/L 	ik)X> 	(1.23) 

where the angle 49 is some function of 0, Xi and X1 such that 

G - 0 	 (1.24) 

for infinitesimal a , by eq. (1.21). 
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Furthermore, by eq. (1.17) 

O[RI] + ()Cali = e[e..02,] 
	

(1.25) 

• We may now define the state of a particle of general momentum 

p, helicity A , in terms of the state with momentum k = (k,O,O,k). 

We define 

iP)X> 	U CZ(0) ih)X> 
	

(1.26) 

where u EA))) is the unitary operator corresponding to the Lorentz

ee(p) which takes k1_ into p,. 

We remove the ambiguity in defining 4)) by requiring it to be 

of the form 

ZPL y (D) 	0- M ), 
	 (1.27) 

where 13(1? i) is a boost along the z -axis taking k to 00,0,0)4)1) 

and k(P)• is the rotation taking (10,0,0,1pOto 

ccmpcnents of BOO are 

(3' 	= a2-  2. = I 

B3  3 = B°  0=  cos{ (1)(1.0) 

B3 	B° 3  = Sin t% CI)(1?1) 

P • the non-zero 

cb(Ipl) 	( WA) 	(1.28) 



The states (1),X) have the normalisation 

/Tr S (p-) < XI  .1 P X> = (27)4  S
4(,-p' SA,X1  

(1.29) 

A.general Lorentz transformation L'A'y now transforms ip,x> 

into 

	

u[ L] p,x) 	U [ L] u LZ(p)] k)  A> 

= u [Z(LP)] U V-1(-P)L 40] I 11)A) 	(1.30) 

But ,CALp) L (p) leaves k invariant, so that it belongs to 

the little !group and by eq. (1.23) we may rewrite this 

	

Ult.] p, x> 
	

U 	0] ex p f efe-10-01—e(1)1 I k, A) 

•e-Xp fix ei iLp,x> 	(1.31) 

Auxiliary Operators and Wave Functions.  

We now introduce the creation pperator e(p,X) which, 

when acting on the vacuum state, creates the state 1P,>> . 

The operators 0-(3)x) and a-t( p, X) 	satisfy the Bose or 

Fermi commutation relations 

zrr 	(6 [4').-CPA e(iv,x1)] 
	

( -rt)g- Sq"(p-pt) gAde 	(1.32) 

which is consistent with the normalisation of the states ip,x> . 

17. 
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The transformation law for the c 	may be deduced from eq. (1.31) 

()EC] oLt(p,x)U-ILL1 	exp [LX 9 V-10_0 L. 4)] at (i-p, X) 

(1. 32a) 

hence 

U[h] C.,_(p) x) U-1[L] = C.KID LA 0[Z-1(p) C.V0-141 cLO-p, 

(1.32b) 

The transformation phase factor exp 	G1k) 	depends both 

on the parameters of the transformation L and the momentum of the 

state. We may define m auxiliary operator4'5  

( 

with 0( a Lorentz-group representation label such that 

U[L] Ad  Cr) T'LL-1 = So(  P(L) Ap (LP) . 
(1:33) 

The transformation matrix depends only on the parameters of the 

transformation. The relation between A.(  (p) and 6- (p, A) 	is 

Ad  (P) — Aka (p,x) (A-cp)x) 
	

(1.34) 

which defines .u,4(p)a) , the "wave function" (the representation 

must contain the spin X ) . 
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Now 	<.< I V [.(1))] I X> ck-Cp, 	transforms under L as 

[L] <°4  I 1) /(p)-11 	0.(P j>k) 	[L] 

= <.4I u co I >,><A I U  [t-1())] 	u 	I A> cql-P,X) 

(1.35) 
<-(1 uCcJip> <pi u Co(Lp)3 A) c...(11, 

so we see that 

AA0C (P )X) 	<°4- I U 	(P)]l 
(1.36) 

	

--_-_ Kai u 	(p)]) is> <0 IA> 

Here OIX> is the constant spinor ALP 02 JX,) where k is our 

standard momentum, or, more simply, Ay(A) . Further 

AA 	(Lp )  ) A) 	<oc J  L) [p. (Lp)] 1p> -013 (A) 

= <pci ()D..] U [(p)] 	(p)] UR-1J x 

urpip)ilp>Kplx> 

(1.37) 

<.4.1 urL]l ie> <pi u tcp)-] I A> x 

x e-xp 	e EL-JOE-ILO-01 

since 	Z-4) L (Lp) is in the little group of k. 

A.L01:( 1-P)X) = Do(0 [.1-] 43 (P, A) 	CX 

(1.38) 
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. 	In particular, if we choose p = k and L -=_ t(c1) we scc  

that the wave function for general momentum q is defined in -terms 

of IA-01(%) by 

AA-01 (q  A) --- Dap [L(c1)] AA-(300 
	

(1.39) 

If we insert this into eq. (1.38) on each side we see that 

Dgp 	0-0] AJ15 (x) 

= 	Day [1-] bp( to CO] Akr(x) exp [ix ecRii 	(1.40) 

i,e, 

Dt4p 	L-1,t 0-0] ,u,(3  (A = ex p {LAO VA?) 1:10.41 Akg  (A) 

(1.41) 

or 

D,q3, a] RA13, (A) 	x p t  X S {6-ti 3 Aka (A) 

(1.42) 

for any eit in the little group of k. 

This places a restriction on the possible representations 

/04> 4  of the Lorentz-group as we now show 4. 

For an infinitesimal 02. we have 

[k(6)1,,x,)] 
(1.43) 

Eq. (1.42) nag requires, since 0 --- 9 	for infinitesimal 	, 
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<0( I J3 113> µQ  (A)= A Akg (A) 
	

(1.43a) 

<.< I (K1 — 	I is> A-1-p (A) 	 (1.43b) 

c`"( 16<)-+ TI) 1  P> 	p (X) 
	0 • 	 (1.43c) 

We flag recall that we may rewrite J and K in terms of 

other operators M and N 

( 
(1.44) 

= 

which have the decoupled commutation relations 

L 	Plk L j 

1'0 = L E A K Nh 
(1.45) 

A representation of the Lorentz-group may then be labelled 

by the two spin values. of these. sets, m—and n. 

A little rearrangement of eqs. (1.43b) and (1.4 3c) gives us 

<°4  I (MI i M2-) 10 	= 0  

< 	(N, 	N,)10 Akp(X) =0 

while (1.43a) reads 
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<,4 I (M3 	N3) Ip),up  (A) = AA.(0(  (),) 
	

(1.46c) 

The commutation relations of the Mb and Ns, together 

with eqs. (1.46a,b) then show that AA.F(N) is an eigenvector 

of D13  and N3, having the lowest eigenvalue of NI3  and the 

highest of N3C 

M3 	= —m 

N3 	(x) = 
	A.A_ (?%) 
	

(1.47) 

Together with eq. (1.46c) this implies 

re\ 
	

(1.48) 

so that AA.../(A) only exists as defined when the representation 

> Ea rn, n> 	is such that ik=n-nn. 	We define a ri41-t- 

handed (left-handed) particle.of spin.j.to.have helicity 

A = 	. 	POSSible representations for a right handed 

particle are therefore 

(°)i) 	() j+-1) 

and for a left handed particle 

( j, o) 	 ) 

Notice that the vector representation (1/2,1/2) is not amongst 

the possible representations for a spin-one particle. Consequently 

the wave function corresponding to this representation, the 

polarisation vector, does not yield a covariant auxiliary operator. 
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We may ncw choose a suitable representation and within it 

calculate the wave-functions (or "spinors") AA ( p, ),) . 

If we label the states I 00 by the M3  and N3  eigenvalues a.,b, 

"'Lab (A) = s0.,-rft 8b r% • 
	 (1.49) 

However if we use tensorial labels, for example I v>, 

then AA7.44, (),) is rather arbitrary. 

We saw earlier that L(p) could be written in the form 

£(p) = k(.p) B (ipi) 
(1.27) 

where 13(1?1) was the boost up the z-axis, and P(g) the rotation 

that took the z-axis into the direction p 

Noi 

U.[(1))] = U[k(f)] Urg(1?0] 

= U{ (.g)] e `7K3  

= tt‘ ( I P /A),  

From eqs. (1.44) 	we see that 

K3  =. fr13 — N3  

(1.50) 

(1.51) 

and we know that 

(M3 -N3) AA-(%) = 	'(A) 
(1.52) 



Therefore 	<0(1 UEVIFI)31> ,tkis  (A) 

e.(r"-") 9  A4_,( tx) 

(11"1+n AA- oc(A) 
(1.53) 

24. 

Also 

441  u {dz (0] IP> = 1).“fai)] 
(1.54) 

an ordinary rotation matrix. 

Therefore 

AA-0(( ),X) = <°(j U ft(  P).] ip> AA (A) 

4,4ts  DR 	(111-

1m 

+nAkp(A) 
	

(1.55) 

For the sirrplest representation for spin j, (0,9 or (j,0) as 

the case may be, 

-ot  (p, 	= Dcy k(f)] (14-1 )i  AAts (A) 

= <9(1 b> 	[k].(iVAL.vb,  (A) 

In the representation (0,j) this may be shortened to 

CP?) 
	

Dii,j Lkj(I-T)i 

(1.56) 

(1.57) 

since then 

(1.58) 
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The rotation matrix D is a spin j matrix and is well-known 

so that .all one needs to calculate are the <0.4 1j> . 

Spin-Cne Wave Functions.  

As mentioned previously, if lot) is labelled by tensor 

indices, these values are not clear and are in fact arbitrary. 

This state of affairs occurs when we use for example, the anti-

symmetric tensor representation to describe a massless spin one 

particle. 

In this case, a suitable convention may be extracted Eau 

the following considerations. 

Let the particle be right-handed, that is A=I and rA.so l w. 

Furthermore, the eigenvalue of N3  is +1. N+  increases N3  by 1 

and corresponds in a sense with the state with N3  = +1. 

Now 

- 2- T.L1 	/.31 	° 
(1.59) 

so that we may associate the state 

1(I2-1) i)31> 	o> +0_0)) 

with the state (N=.1> . 	Here likY> = --ivik) 

In a similar way we associate 31:(j1z> - C.13 0)) 	with j N3  = 0> 

and 	1- (I 23> 	1> 	lo' I z 0> ) 
	

with 	I I\13 = —I 

We may then calculate </A-vii > 
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In the particular rase that p=k, R(p) = 1, the wave 

function 	v (X) 
	

is just </d-vi > which may be written 

AA- 	(X) 	(k) - ky e,(k) 
k 

(1.60) 

where 

	

(k) 	= 42_ ( o 	, 0) 

(1.61) 

with E0  and E3  arbitrary but equal. We set them equal to 

zero for convenience, and this characterises the "radiation gauge". 

E(k) is the conventional standard polarisation vector for 

a right-handed spin-one particle. 

A left handed particle has the polarisation vector 

I~ 	(k) 	 ( CD, 	, -t ,o ) 
(1.62) 

One may deduce from eq. (1.57) that the wave function xt-im-v(P)!) for 

general monentun p is of the form 

Akix.V P, x) 	(P) 	Cp) 

k (1.63) 

where E/L(P) (0 k(P)t, v  (k) 

p)", £1); (k) 	(1.64) 

since B(41) has no effect on e(k).. Clearly, any invariant multiple 

of eq. (1.63) is an equally possible choice for Atm.,,W9 . In particular 



we define Er.-v (p) by 

Fly (I ) ) a Pt 	P V EP - (P) 
(1.65) 

We naa discuss the properties of the EM. and c„.;‘,,, more fully. 

Conventionally, 4(0 is defined to be such that 

27. 

(1.66) 

This condition is insufficient to determine c4(p), so we may 
choose a particular gauge. In our rase we choose the radiation gauge, 

in which Ec.:(p)E.0 . The polarisation vector is then unique. A 

little thought shows, however, that it does not transform like a 

four-vector6'7; ln_particular.one can perform a sequence of-Lorentz 

-transformations-whose-product,is unity under which- -the polarisation 

veGtor-----is-not-invariant---(there is a change of gauge). In fact, 

EA(p) transforms with one of the infinite-dimensional representations 

of the Lorentz group7'8'9.  

A,w v  Et)" (p) = [Z (AO .C10\0 A LC 11 (h)]1A- 

= [ZCAp) R. i_(1,)1p, (1.67) 

where Q. 

sTe- — v — 

is in the little group of k and has the general form7  

1 
	

X/ , X2  , 

X.1c4pe+X.zsinia 

-Xis in G +Xzcps 6, 

D 

Lose , -XI  

-'sin© 	, 

colG -XLs;,  

X-I si,A-X4core 

(1.68) 



where 
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Then 

where 
xt  

-ex p (± i (9) £;,,(k) 1-  X 

X -Xi  

(1.69) 

(1 . 70) 

(1 . 71a) 

Eq. (1.67) then becomes: 

At: 	(p) 	t(Ap)t,' [ ex p (± i Elt (k) 	kv] 

e_x (±. ©) E (gyp) + Xt (AP)N 

Setting 	we find 

A, 	(p) -= X* (Ap)D  

141 

 

(1.71b) 

  

( A—  0,- A 0  ) 	) = -c.K14±.e) 	( ) 
t` 	 i 

(1.72) 

which incidentally shows that 8 does not depend on LO . 

4. E (Ap)  is still in the radiaticn gauge. 

'The auxiliary operator Eit(p)a.(p) 	then transforms as an 

infinite dimensional representation of the Lorentz group, and not as 

a four vector. 



Same of the properties of the E (0 are: 

(f)) 	0 

(1.73) 

(1.74) 

E,- 4-( P) 	(r) (1.75) 

*(P) &II)) 	— I (1.76) 

CI>) 0/4(0 = 	0 

(p) 	*(P) 	3/..v + 	PP Pv 	F Er-Vot p f P 

(1.77) 

(1.78) 
11-1-P11  

where 	p 	jpp FP 	(unsummed) 

hIffL" 

Consequently, 

0  (1.79) 

e  i:*(p) (1.80) 

E 	E.1o• Cp) 	 £r,,,, r (1.81) 

11-4- 	E.t„ (P) cit-*(P) = 	( r) 	1\i") ra-(P) 
 
(1.82) 

where10 

(P) 
	

Pr- PP 9vcr — PvPrr 3,,Ar 1%--Pcr 3pr -t- Pv 9,--71 

(1.83) 

29. 

. 
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and 

Ar-v)e4-  tp) = 2pg• [-- Pipe ev 
	

PYPrit,-px13 4- rt-NEvry+pvpptrx-apipcIP  

(1.84) 

A detailed inspection of Arv,er (r) shows that is is actually 

covariant for p2r_o . Those terns in p Atver (1)) which are 

non-zero are actually proportional to p,:-  or 	, which equals 

if r=o . In fact 

Atver (F) 	[ rh1/4  EVA r Cr 4. 	— pr e_v.ur — rcr 	.c.] 

(1.85) 

which is covariant for p1-4bD as well. 

An exactly similar analysis applies to the cnse of gravitons, 

massless particles of spin 2. The wave functions corresponding to 

the (2,0) @ (0,2) representation are 

fi") 
(p) €-,,(p) 	±0- r±  

The usual symmetric tensor representation (1,1) is excluded. 

Bin-One Projection Operators.  

We note that 

( 	 - 	 ( 
	 (1.86) 

are orthogonal projection operators 

TT/,,,P , (OTT' P''Ke, (r) 	riit,,Kx (0 

-T—T 	(Orr.  Pcr'Kx (p) 	o ..1/41) ) 

(1.87) 

(1.88) 



Another projection operator is 
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rr 	(r) 	Tr v p ( p..v)  Pr 	zr 	)1  

Other relations are, with 

	

(p) 	 (p) • 

A 	(?) "-) (p) 	 p) p-v) 

P° (P) ft 'KA (p) 	 (P) 

Pc (p) A e'Kx (r) 	Acv, KA (r) 

	

(p) TT-  teTiK 	= 	Tr 

(1.89) 

(1.93) 

(1.94) 

etc. 

It is easy to show that 

*(P) 	(P) 	 E-A-*(r) 	 (1.95) 

	

E-V-t(P) T1  y, r  Cr (13) 	 0 	 (1.96) 

ely *CO fr/.v, eCT 	 C- (20-4  (p) 	 (1.97) 

*(p) Arw 	(P) 	 i P°' (P) 	 (1.98) 



We may rewrite eqs. (1.95) and (1.96) by re-expressing 

Ap.v, (P) through eq. (1.93) 

*(p) 1:11;—,,,ecr (0 t 111,v, 	(P) A x' ie  (P)] 	..t.0-**(P) (1.99) 

E_;17  'co z 	 ] 

that is, 

	

*(p) 	(r) 	31`p '`a-- 	z  N"'e(r (P) = qa-*(p) 
(1.101) 

	

"(r) 	4 	 11 	

° 

(1.102) 

But 

EV *  (r) TTt,v, co- (0 = 	(p) 

(1.103) 

so that 

E 	*COa ( 1.-p9vu-  ± LA /„v, a (0 = E (/-)1(1))  

32. 

(1.104) 

(r) 
	

= 0 

(1.105) 

In other words, against the photon wave function, 

v 	Arkv, co- (r) 
	

(1.106) 

are equivalent to If tt,,e, (p) . 
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Furtheinure, by virtue of eq. (1.81), 

(st-r 9»ci- 	z g—t-ver) 
	

(1.107a) 

9v0-- 	 tr,v,a-) 	(1.107b) 

, 
are also equivalent to 11/AA/ jell- Lp) against the wave functions. 

These operators project outgoing photon helicity +1 respectively. 

All :these results have been deduced aunt the forms for 

IT(p) and A (p) given above. However, let us write eq. (1.95) 

say with TT ±.(p) given by its definition EA (p)e_P(p) • 

Then 

\ 
£1;-"(p) (Eiw 	f, * (p) 	;-.()))) = Err  (p) 

zp 
(1,108) 

But 

EV*(p)E.±", 	+ W(P)  p' 1*.(10 i
PL  (1.109) 

where p. £_•±(p) = p. v *(p) = o an3. 	 for free photons. 

For consistency between eqs. • (1.95) and (1.108) we rust take the 
.• indeterminate expression p z4(p) p E_±.4(p)to  be zero 

(as it would be for p2  0 ). 
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CHAPTER 2. 

PHOTON NF-FUNCTIONS. 

Let us consider the scattering amplitude for some process 

which for the sake of definiteness we take to be two-particle 

to two-particle. The s,t, and u channels are defined by 

s : A B 	D 

t : 	+ B --) C + A 

AA_ : A+D 

where A is the antiparticle of A, etc. 

Let the particles have momenta pi, and helicities A . 

Then, for example, the s-channel amplitude 

TS{ 	) 	- <Pc )xcl<PD)xpi TI PA AA> I 170E> 
(2.1) 

where T is the scattering amplitude operator in the space of.  

states. 

The s-channel helicity afflplitudell  is defined in terms of the 

two-particle helicity states I PA,N,XAIXE> 	and IN)PD,Xe)4> 

subject to 

	

-PA 	= _pc  + 	=- 0 
	 (2.2) 

PA 4  pg 	+ rD 	(2.3) 
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It is written 

T;tc. XD AA, as (S. 1.1; 41" 
	

<Pc-PD,) cXDI -F1 	rB,AA e> 
(2.4) 	. 

where we have indicated explicitly that the amplitude is a 

function of the invariants s, t and u. 

Now we may also write the amplitude as the contraction 

of a function12  M °f151(8  Pi} 
	

with the wave functions 

Ate( (pA, AA) 
	

etc., where 04,p,Y,S are auxiliary group 

indices. 

The s -Channel helicity amplitude is then given by 

Tx5 	(S t) AA) --c.)DjAA)^3 

rAlY (Pc,  >c) A7A-. S (PD)X1)) fric'4°' (1)11AA,.,(p„) AA)).tis(pu.)ta) (2.5) 

l with the conditions (2.2), (2.3). 	WIP"[Pi 	is called 

the Ni-function and is assumed to be free of kinematic zeros or 

singularities (KZF and KSF). 

In this chapter, we investigate the Mc-functions for processes -

involving massless particles, devoting most of our attention to the 

case of photonic processes. 

This is because of the traditional use of a four-vector M-function 

to describe a scattering involving a photon.13-18124 We have already 

seen, however, that a four-vector wave-function is not suitable for 

describing the photon. It turns out that one can use such a 

description if gauge-invariance is imposed, and it is this matter that 

we discuss first. 6imilar remarks apply to the use of symmetric tensor 

wave functions to describe gravitons. 
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We then introduce antisynmetric tensor wave- and M-functions19. 

Such M-functions do not need to satisfy a gauge condition and so are 

far simpler to construct. From these we are able to derive conventional 

M-functions satisfying the gauge-condition, and these are free of 

kinematic zeros and singularities. In fact this method of constructing 

four-vector ME-functions is simpler than the usual one. 

We treat some photonic processes to illustrate the power of the 

tensor method. 

We then shay the connection between this analysis and the anti-

symnetric tensor form of perturbation theory recently proposed by the 

authori°, finding a condition on the M-functions which follows from 

charge conservation. Finally we write down the photon propagator in 

the antisymmetric tensor formulation. 

Four-Vector M-Functions and the Gauge Condition.  

Before studying the NI-function in detail, let us derive the gauge 

condition for photonic processes when the photon is described by a 

four-vector wave function. 7he M function correspondingly carries a four-

vector index, or several such if more than one photon is involved. 

However, we shall consider the case of one photon with momentum 

k and helicity = + 1. We denote the amplitude by 

P) 

.where p refers to the momenta and helicities of the other particles in, 

the process. From the transformation law of helicity states eq. (1.31), 

and eq. (2.1) we find that 



 

0(k, A)} 	Ak 	 (2.6) 
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ticw 

Tth (k)p) 	Eit *(k) M'A- (k)r) 	
(2.7) 

where we have suppressed the massive particle wave-functions 

and. NI-function indices, and assumed the photon to be outgoing. 

Ivnk p) is a true four-vector 

M'(k,r) 
	

Ap) 
	

(2.8) 

but 	£_.,* (k) is not, for 

net, El.*
(k) = exp [± (9(k,A)i [E1*(Ak) (1\11)6  Ad°E.14(Akg 

I 13.1 

Uhese two equations in conjunction with eqp. (2.7) show 

that T transforilL, as 

e_xp f i G} [E.';' *(Alk) --(AikrAyeEl*Mk)J Mt, (Alt, AO 

f±igi Tt (mt,A0 
(2.10) 

-expfliel(AktA„°E.*(AK)Mi,,(Aik)Ap) 

which gives the correct transformation law eq. (2.6) only if 

(2.9) 
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le-  Mr Ck p) = 0 
(2.11) 

the gauge condition. ("Gauge", because this is equivalent to 

requiring that the amplitude be invariant under the gauge 

transformation 	E, (k) 	(k) + 	kr- . ) 

(In the spin-2 case (gravitons), symmetric tensor wave 

functions are not "permissible" (see Chap.l). However, they 

may be used if the symnetric tensor 117-function satisfies the gauge- 

condition? 	ekvivicv = o , in exact analogy with the 

photonic case). 

The ME-function may be expanded in terms of a spinor-tensor 

1/ Ak basis r\L transforming as four-vectors, with invariant (amplitude) 

coefficients. It is possible to choose the t‹-  so that the invariant 

amplitudes are, like the M-function, frcc of kinematic zeros and 

singularities.. 

tvv-(s,t,AA) 	KT A. Cs,i)AA-) 
	

(2.12) 

Such k are polynomials in the four-momenta and other objects, 

such as 10".  5,1" 1 £1"rt  , which carry four-vector indices. 

TWo. such bases Kir-  and U?' are equivalent14  (definition) if 

(2.13) 

• where the 0-L1  are kinematic functions and det(a..).is KSF and KZF. 
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A basis V:',1k  is defined to be minimal14  if the determinant 

of the transformation matrix (9,-i) from any other basis has no 

zeros (for morrenta on their mass shells, but possibly complex). 

A minimal basis is clearly unique up to equivalence. 

Nua if the ME-function is KSF and KZF, the invariant amplitudes 

associated with a minimal basis are KSF and KZF. 

They are clearly KZF, for a polynomial basis is, by construction, 

KSF.. That is, no invariant amplitude need have a zero to cancel a 

singularity of a Wt as there are no such singularities. 

Now. let an invariant amplitude, say Al, have a kinematic 

singularity. Then milk 
 
has a kinematic zero, since the NI-function is 

KSF. Let the singularity in Al  be of the form 

(2.14) 

where B is KSF and KZF and PS,t,i4 is KSF but has a zero. 

We may define another basis 3-1"` by 

K).(1  
f 

Ti 	K 	 2.)  3, • • 
	 (2.15) 

Then 

K r
. 

(2.16) 

and 

clet (a_j k) 	f (s, t, 	 (2.17) 



which has a zero, so that K' is not a minimal basis. 

Therefore Al  cannot have a kinematic singularity. 

The existence of such a minimal basis has been proved by Hepp20 

and Williams21. For processes involving only massive particles, 

such a basis is usually fairly easy to write down by inspection22. 

When a photon is present, however, such a basis will not in 

general, yield an NI-function satisfying the gauge-condition. 

One then proceeds as follads15,16.  Find a minimal basis 

I<PL 	with corresponding invariant amplitudes Ai . Now take 

a projection operator 

(2.18) 

. where k is the photon itwentum and p some other momentum in the 

problem. then 	is a gauge-invariant basis, 

(2.19) 

-but the function 

 

WI' Ai 	 (2.2o) 

is not KSF, because of the kinematic singularity in §"..v , unless 

some of the AL are related or have zeros so that these singularities 

cancel. 
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The constraints so placed on the Ai are a direct 

con Sequence of gauge-invariance or, equivalently, charge 

conservation. 
N 

We now form a new set of covariants 
	

by taking 

linear combinations of the 	L , with kinematic coeffiCients, 

so that the new set is KSF. A minimal basis RA:-  satisfying 

the gauge condition will then be associated with a KSF and KZF 

set of invariant amplitudes by previous arguments. In practice, 

a minimal basis Re -  is obtained in the following manner. 

1. Find a minimal basis Wt not necessarily 

satisfying the gauge-candition. 

2. Form the new basis 	„ Kr . Then  
kt.. 	 If Klalready satisfies 

the gauge condition, Wr= WE' . Note 

that there may be fewer 
	K '1."` 	than K".` 

In particular, taint, proportional to r or W." 

vanish. 

3. Take linear combinations of the Kr in as 

many ways as possible, with KSF coefficients, 

to yield KSF covariants Riik. There will be a 

limited number of these. Multiply the remaining 

covariants 11("ii-  by k.p to yield KSF covariants 

• 

We could have foLiwd the basis 4Zr simply by multiplying 
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each t\ by kp but examination of the transformation 

matrix between the bases obtained in these two ways shows 

that this other method does not yield a minimal basis. 

We do not offer a proof that the basis obtained by the 

rules 1,2,3 is minimal, but in practice it may be seen to be 

so. 

Let us ma consider a process with two photons, with 

momenta k,, and k; . The NE-function Mfr"' must then satisfy 

kt„ ,N1 	k v  m 
	

0 	(2.21) 

The procedure for finding a minimal basis Kris similar 

to that already outlined. At stage 3, we take linear combinations 

of the 

E.- 5 	5 rcr  cr (2.22) 

which now have second order singularities. 6/.4, is most conveniently 
k chosen to be 	. After taking linear ocrobinations and 

multiplying by k.k' to remove second order singularities, we take 

further linear combinations and multiplications by k.k' to remove 

first order singularities. This process can becana quite time- 

consuming. 
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Antisvametric 1- nsor ME-Functions.  

An alternative and more satisfactory way of describing a 

photon is by means of the anti-symmetric tensor wave-function 

E  (k) derived -in the last chapter19'23•it transforms 

as 

A 	V er (it) 	exp 
	e(kA)1 	(Ak) 	(2.23) 

so that . • 11 (k, P) 	e_g(k)Prv(k)0 	(2.24) 

transforms in the correct manner eq. (2.6) if W44)(k,F) is a 

tensor. No gauge condition is necessary for covariance. As 

EiL (h) is antisymmetric in /A-,v we may take Pli" to be 

antisymmetric in these indices too (it cannot be symmetric). 

tv,v may now be expanded in terms of a minimal basis 

and invariant amplitudes Ai . As soon as such a basis is found, 
our work is finished, for we do not have the tedious labour 

of converting it to a gauge-invariant one. In fact we may easily 

find a minimal gauge-invariant four-vector basis 

follaaing rethod19. Define ffAi 	by 

e (k) 	= £ (h) - 
Then 

by the 

(2.25) 

(2.26) 
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Clearly 	R'•:` = 0 	so that 
	

is gauge-invariant. Further 

it is KSF because 14T is, and KZF as we shall sec in a marent. 

is antisymmetric in /ix and V and has the form 

131"C! 
	

(2.27a) 

or 

Efr"rir  BeCcr 	 (2.27b).  

where B and C are independent four-vectors. If either B or C is k, 

then c,y(k)W"!=c), so that we do not admit k as a candidate for 

B and C. 

If W" has the form (2.27a), kivi<lj4  and 	are 

non-zero and independent four-vectors, free of =mon kinematic zeros, since 

Key is KZF. Therefore WA-  is KZF. 

If Kd"*4)  has the form (2.27b) , RP-  = —2 Efr-vetr k, 	which 

is KZF because B and C cannot contain kinematic zeros if 

Ki" 	gc 	is to be KZF as required. 

This method of constructing conventional gauge-invariant vector-

covariants is much faster than that outlined earlier, particularly if 

more than one photon is involved, as we shall see in some exciaples. 

Admittedly the minimal  basis takes a little longer to write down, 

involving as it does two indices for each photon instead of one, but 

the rest of the work consists merely in partially contracting these 

covariants with the photon momenta, as in eq. (2.26). We shall see 

in the examples that bases constructed in this way, are equivalent to 

the usual ones as we must expect (both being KSF and KZF, and by virtue 
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of the definition of equivalence). 

To'construct the minimal basis mi. , we construct all anti-

symmetric fault, (2.27a) and (2.27b) in independent 4-vectors B and 

C :(not k) without any scalar kinematic factors such as k.P0R, 
k•P 

etc. This set may be restricted by considerations22 of invariance 

under the discrete transformations P,C,T but we shall not discuss 

this matter in general. 

.We again offer no proof that such a procedure does yield a 

minimal basis, but in practice it may be seen to do so. 

Examples of Photonic Processes. 

We now cane to a consideration of sane examples of photonic 

processes, all with an ingoing photon and some with an outgoing 

one as well. Let the ingoing photon have nmentum k, and its wave 

function carry indices and V . The other ingoing particle has 

momentum p. The outgoing boson has momentum k' and indices, if any, 

e  and cr . The other outgoing particle, a baryon, or in the case 

of pion Campton scattering, the pion, has momentum p'. 

Also 

(2.28) 

Pion Photoproduction. 
 

The Mr-function carries two indices 	and V . The covariants 

are in the space of Dirac matrices and are pseudotensors because the 
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pion is pseudoscalar. This is most easily arranged by a 

factor )3/5 in each covariant. 

Nog, since 

(k) = kv 	(k) 
(2.29):, 

21- CZ -IF 

is equivalent to zero, and we do not use this vector in constructing 

covariants. It is in fact barred by our rules. We can use Q §ay 

and omit A 

Then, possible independent polynomial covariants are 

Kiev = 1(c[_YA-YvYr-] , 	CP/Av - 

ZCs-[ 	 Ys-LOA 	, 	2.30) 

m' t Az AA-) 
t=1 

(2.31) 

We were able to find only four independent covariants according 

to our rules, correspcnding to the four independent amplitudes. of 

the process. However, 	for example appears 

to be a fifth independent covariant. It is barred by our rules and 

is in fact is found to be dependent when contracted with the nucleon 

spinors and the photon wave function. This is an exainple of an 

"equivalence theaDae.22 

1,,tAN 
CoiLespcnding to these tvi, we may find the four-vector 

covariants Rit through eq. (2.26). 

They are 



IZ",` = 4 Ys-i( 	— 

equivalent to 	4 zl's 14 r"- 	by eq. (1.73), 

ZYS-(1.1)(1r — k.G) 

Rc 	 .r.Pr 

Ric 	7_ 2Ys- (k.Q Y/A' 
(2.32) 
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.which are equivalent to the set MA, MB, Mc  and MD  of Chew, 

Goldberger, Lag and Nambu13. The relation is... 

RI 	—4MA R2. 7:-.  I Me ) K3  MD +2MA 
	

Mc  

(2.33) 

A third equivalent set is given in. ref. 15. 

The conventional derivation of these gauge-invariant vector 

covariants is displayed in refs. 13-15. 

As in the usual analysis,13-15, 25, 26, both the t-channel 

don-pole and the s- and u-channel nucleon poles appear in the same 

invariant amplitude, A2. This double dynamical pole structure is a 

consequence of the fact that photons interact with a conserved 

quantity, charge. The independent amplitudes correspond to the various 

different charge and moment couplings of the photon to the NNir current. 

19 Rho meson Fhotoproduction.15  I 

We describe the produced rho meson by the polarisation vector 

E-r(W) with kfP  C- Ir(k9 r•- 0  . Therefore 2Q—A -= zle 	is 

equivalent to zero against the rho wave function, so that Q and A 

are not independent when they bear an index r  . As in pion-photoproduction 

Q and LA are not independent when they bear an index or V either. 



We therefore omit A in constructing covariants. 

From a count of helicity amplitudes we find that there are 

twelve independent ones, so there should be twelve independent 

covariants and invariant amplitudes. In fact there are fifteen 

possible polynomial covariants, three of which are dependent 

when contracted with the nucleon and photon wave functions. 

The fifteen covariants Kir-vie are 

(I), (2 ),(3 ) 

(4), Cc), CO 

C7), 	) (9 ) 

('0) 	), z) 

0_3) , 04), (!s-) 

(rt., ( Pr  ; Qr , 'e) 

(P/,Qo -Po ar) ( Pr , QF,Yr) , 

(211,,Pp 	(Pc Qe  )Yr) , 

(Yr_Q,)-40,,,....) (Pr, 	,Yr) 

J'f)(Ft`)Qt-)1(r.)-3/1(PY)GY)b/v) . (2.34) 

The corresponding invariant amplitudes Al 	A15 are KSF and 

KZF. 

Against the photon wave function we find the equivalence 

2 K5- =-- k•Q K,3 	k•P K :q  • 

(2.35) 

Between the photon and nucleon wave functions we have two 

equivalence theorems*22 (and here we assure neutral rho for 

simplicity): 

m K1  -Kg  — Kg —m Ki —K i o — m Kil 7- PI-  (K3  — 

(2.36) 

*There is in fact a third theorem involving covariants which we 

have not written dcwn because they contain, for example, a 0. 

48. 
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2 ,m KI, = v Ki  -wt K3  -Kg - 	Ku+ n't Kss- 

+ k.Q (K,2:4-K13 +Kul) ÷ -1-f: 	K , 	(2.37) 

where y = P. G 	-AA- 	m is the nucleon mass, and tA- is 

the rho meson mass. 

We now have three superfluous covariants and we would like 

to remove them. Equations (2.35) and (2.37) enable us to remove 

K
5 
 and K11, while eq. (2.36) allows any one of the covariants 

appearing on the LES to be eliminated. Let us choose K6. 

Then 

Kiri(  Ai 	 (2.38) 

 

t=5 

 

 

(2.39) 

where 

*5-, 6,11 

 

 

8, = A, + rblA c  +z A,, 

- A + 	A 11 2_ — 	2- 	Rol  

etc. 

(2.40) 

This new set of twelve auplitudes B  is clearly KSF and 

KZF. However, had we chosen to eliminate K13  say, rather than 

K5, by eq. 109, B5  would not have been KSF for then 

:= A s- + k2-4  Ai3 
(2.41) 
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which has a kinematic singularity. If the B:  are to be NSF and 

R2F we can eliminate via any particular equivalence theorem only a 

covariant which appears in that theorem with a constant coefficient 

(the theorem to be in such a form that none of the coefficients 

15 has a singularity) . 

It is simple to derive a conventional NSF and MB' set of 
••• 

covariants ni 	. Partial contraction of the 	yields 

R3 ) 	 ; QP, yr) 

z (k.PQP- -k.Q P/`) (PP pr, yr) 

RI) = 2- (V 	k.P 	Pr, Gze, Yr) 

Kos) = 2 ( kyr' k'99 A (P) (e) Y v) . (2.42) 

The equivalence theorems still hold when KZ is replaced 

by Rz. • Our set 
ti 

, with KS  eliminated, is equivalent to the 

set given in ref .15. 

We now turn our attention to two-photon processes, where 

the power of this method. is even more marked. 

Pion ComEton Scattering. 14,15,17,19,25,27.  

'We describe the outgoing photon by the wave function Et4!(h9 . 

The covariants carry four tensor irKlioesiv.vIer. Because ki,=-(Q+0, 

. and 	- 	I. and by virtue of 

kid` 	(k) = 	E1,-;0t0 = 0 
(2.43) 



51. 

Q and / are not independent when they bear ator V index, nor 

when they bear a e or Cr index either. We therefore omit L in 

constructing covariants. 

The process is supposed invariant under the discrete transformations 

P,C and T. 

Invariance under PT places on the covariants the restriction22  

Ki:...v,er ( 1),Q) = 	Krrr, v(P,Q)B 
(2.44) 

and C invariance (in the. t channel) the restriction 

Ki 	T 	 C Krffiry P, - R) -1  

(2.45) 

where 

	

B-' Irt, 	- c 	)(p.m  
(2.46) 

and transposition of K refers to its Dirac matrix character. 

Furthermore, it turns out that against the photon wave 

functions, covariants containing Q are dependent on those without, 

so we do not use Q in constructing covariants. The reason for 

this dependence is due basically to the fact that the photon 

polarisation vector has only one independent -component in the 

thrcc 	space defined by the scattering, so that it "sees" only 

one independent four-momentum. In the t-channel centre of mass 

fraile, this independent menentum is 	, for both photons. 
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For pion Compton scattering, then, the only two covariants 

are. 	
43/-e 51 r — 9/""7-  9vto 

%tAf 	r ±3 g- 	Pe 	3/-A-c-  Pt)Pp — 31ir Pcr- • (2.47) 

The corresponding invariant amplitudes are KSF and KZF, and are 

equal in number to the independent helicity caplitudes. 

We shall now find conventional oovariants 	R c 	by 

the prescription 

€7,),tv (9 e Acr*(w) 	tp  (k) 4,1 *(ki) 1Z `'e 
(2.48) 

They are 

K; `4' 	( k. 31.- p _ kit% le) = — 2t 

Rf-iF ^ 4 ( k. PAPI" k.P Pj,"-e - P Pikkr -k.P 	Pr) 

—zt 	4-v1-5 'ff 
	

(2.49) 

where IkJift!!f 

k. 
t 	k. 

= 	1/--v PI)  

These two covariants are equivalent to the usual ones, and are minus 

twice the RI  and dt2 respectively of reference 15. 



(2.51) 
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Nucleon Campton Scatterinci.14-19,28-30. 

Again, because of PT and C invariance, not both Q and D, can 

appear in the covariants. We therefore omit A. Again, those covariants 

containing Q are found to be dependent on those without, and cannot 

form part of a minimal set. There should be six independent covariants 

and in fact only six can be found. In the conventional analysis there 

are eight, two of which are dependent through the spinor equivalence 

theorems mentioned earlier. 

The six covariants 	are 

CI) , C2-), (3), (4) 
	

X1) r 	cr )c,r — 	xvr  —5 y rX1.40-  

wifk 	x/  x9 P P ) 

( f l  
(2.50) 

C') 
	

P/A,Ptr, 0;v- PAr c17,0  — 	croc  — Py Pr  0;lor 

The associated invariant amplitudes Ai are KSF and KZF. The 
- 

corresponding 	are found to be 

R, 	 -2t .1);_pr' 
• R3  =7 —2.t (Pp/. e' ')+ gy 

kct  = smo 3/4 — av 3;1, — t [y,..f l yri] 	• 
R 	Yri ] + 	 0a;,) 

/Z6 	L,,` , 	+ 	Pr' 
—4v(p,„'.0q +y,z(itpr) 	( Pr.'et! 



A, = 	A, f  P 

A3 = 

A.s- 
A 

_ A. 
8 TY% 

A 
T 3  
As- 4-  it A4 

A6—  

(2.53) 
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'These are not in the most convenient form for calculation 

but are exhibited in this way for comparison with earlier work
14'16 • 

. Amore convenient forth would be in term:, of unprimed quantities 

but in either case a certain amount of labour is involved reducing, for 

example, [1x ,X'] to 4,44-444 (between spinors) . This sort of 

operation is not necessary in the conventional approach, but is by no 

means so arduous that the conventional analysis is preferable. 

The relationship between the K and the equivalent sets 	of 

ref.16 and of;, of ref.14 is 

R, 

K3 = —2 3 

R4 = 

1Z5.- 	-÷ 4 7, 

(2.52) 

Consequently the relationship between our invariant amplitudes 

AL 	and those of ref.16, 	, is 
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We shall be making use of this analysis when we consider 

stun-rules for nucleon-Compton scattering in a later chapter. 

Perturbation theory and pole diagrams. 

One aspect of the electromagnetic processes we have been 

considering has not yet been touched upon. This is charge 

conservation. Weinberg7 has shown that charge conservation in 

any process follows from the gauge-condition on the Mrfunction 

for that process with one extra soft photon, assuming that the 

S-matrix has the same pole structure as in perturbation theory, in the 

soft photon limit31. 

In so far as this is a valid S-matrix assumption, the proof is 

S-matrix theoretic. Remember that the gauge condition was a 

consequence of Lorentz-covariance. 

When we express the S-matrix in terms of antisymmetric tensor 

photon wave- and M-functions, no subsidiary condition on the Mrfunction 

is necessary to ensure Lorentz covariance. How, then, is charge 

conservation expressed in terms of such Mi-functions? The partially 

reduced M-functions, obtained from the antisymmetric tensor ones, - 

satisfy the gauge condition, so we must conclude that the tensor 

M-functions already satisfy a charge conservation condition. ¶Lb see how 

they might not, we must turn to perturbation theory, expressed in 

terms of antisymmetric tensor fields. 

We have recently developed1 a formulation of quantum electrodynamics 

in terms of "tensor 'potentials" XA)(x-) which are related to the 



field strengths Fg(x-) by 

56. 

(2.54) 

The fields F-4(k) are proportional to the wave 

EAv (k) , while X:tto (k) are proportional to 

which we denote by VY(k) . 

functions 

£),! 1) (k) I 

 

10- 

 

The conventional amplitudes in the Landau gauge are obtained 

if the coupling of these fields at a vertex takes the form 

z Jay ( ( 	—   C ) 
(2.55) 

or 
	e ( (k"c9 —kv  

2 k' 	
(2.56) 

as the case may be. Here Cr`is the conventional coupling, 

for example r` at a photon-fermion-fermion vertex. The wave functions 

may be part of a photon propagator or they may be external. In the 

latter case, there is a term in the coupling which is not present in 

the conventional theory. 

The expressions (2.55) and (2.56) reduce to 

k'- 
(2.57) 

compared with the conventional e ck) 
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If one can overlook for a nument the fact that k2 = 

is clearly gauge invariant. Furthermore, 

() 0 
	

for any k2, so the second tern of (2.57) is 

zero for any kl-4,  0 , and may, if so desired, be defined to be 

zero at te--0 where it is formally indeterminate (c.f. eq. 1.109 

et. seq). Nevertheless, such a tern is not very desirable. 

Let us re-express the problem. Using the external photon 

wave function Et,notk), the form of the M.-function obtained in 

perturbation theory is 

ki -̀Ci!)  	A 

(2.58) 

' where k are invariant dfflplitudes and C conventional four-

vector covariants, such as r-, pi, etc. These covariants are 
not those we used in the last section. 

When this. Wis contracted with 	there are terms 

k.k) proportional to ---a- in addition to the usual ones. 

Now in in conventional perturbation theory, we would have obtained 

the NI-function 

(2.59) 

A 1 with exactly the same  tki 0, and this must satisfy 

ke-M',c) 	 (2 . 60) 

that is, 	i. 
(k.C.,)Az 	 (2.61) 



Contracting the k factors in £̀ „v  (k) with WAv  , we obtain the 

partially contracted M-function NO' 

 

/1- (2.62) 

58. 

by eq. (2.61) 

c (9 
	

(2.63) 

	

The coefficient of 	in !Ali' vanishes if the conventional 

four-vector Mfunction satisfies the gauge condition, that is, if charge 

is conserved. So we conclude that charge-conservation imposes on the 

M'-function M't the condition that no terms in kfr` appear. It 
may therefore be possible, if this condition is satisfied, to re-

express Mt" in terms of covariants which are free of ijj. terms. 

9b find such covariants, we consider the partially reduced 

forms 

	

ct" 	k.0 le- lev̀  

(2.64) 

Clearly 

	

k.c, (cr A.c2 _ 	- 	(c_;-  - 	 (2.65) 

	

is free of teucb in 	I being just 

(k .C,) CL — (k 
(2.66) 

Possibly multiplication by a suitable factor will remove such a term. 

For example, 



't' - (2.67) 
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But 

(k) (k. C, Cz - k c, c_11•&) 

and. 
	 ( 	 -K'`) 
	 (2.68) 

can be expressed in the forms 

0.-n- et 
	E 	(r-V' -YP 
	

(2.69) 

and we recognise these new covariants as the ones introduced 

earlier. They do not involve k. 

The process described here for deriving covariants f 

of 
k.1" 
— terns f_um perturbation theoretic covariants is very similar 

to that used in the conventional analysis14115. There the covariants 

C!6:',: are multiplied by gauge-projection operators 1 P-1)  — 1"- 2  

-and then linear coMbinations of the resulting covariants 	are 

taken to remove 	terms. 

In our work, it is as though we had used a gauge-projection 

operator 5.tv- 30 ? on the Cr' to get the forms (2.64) then taken 

linear caMbinations to remove — 

Let us now see what we have done.in terms of the unreduced 

covariants 

 

that appear in eq. (2.58). 

 

le- 



 

The linear combination that we took ia (2.65) is 
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new 

(kfrk-c:  -kvcr) — k.cL  ( k fr1/4 C 1')  
zkL 	 Zku (2.70) 

and this is not free of terms in s  . We notice, however, 

that 

ck) ciecr crcf) 
2_ 	(2.71) 

with inr,„,ev (k) defined in eq. (1.89). 

Therefore 

1</" 	EA, (k) 	— 	cc:-) 

(2.72) 

by eq. (1.97) so that the covariant 

(2.73) 

is equivalent to k('"  , and is clearly free of -kJ. terms. 

In a- similar fashion, the unreduced form of the LHS of (2.67) 

( 	— 
	

(2.74) 
Z fty  

which may be rewritten 

"rt'i r ,(k) (Yr Vr — VIF ) 	(2.75) 

This is equivalent to 	
2. 

v 	virtue of (1.97) 

and is frcc of IL_ terms. 



Notice that we can simply construct helicity convariants 

such that when the wave-function is contracted with them, only 

one helicity state gives a non-zero result. For example, 

4c(k) 	v)  to-(k) K Pr  

(2.76) 

We call cm- a  helicity covariant. 
• 

Now (in obvious matrix notation), 

fr+ K = ft +(I 011 K 	 (2.77) 

by eqs. (1.82) and (1.93), which is equivalent to 

(1(,-+ zA-)Kr --= 	(9'01- -f 	Krr 	(2.78) 

(see eqn. 1.106). Another equivalent form is 

(re 5vcr 	E""ecr) Krcr 	(2.79) 

(see eq. 1.107a), for example 

-1,-(B"C 	— 4&' pr WC"— IrCe) • (2.80) 

The perturbation theoretic covariants 

8P"'  pa-( k r- kBr) 
2 

(2.81a) 

61. 
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el"
P o- Crr — Vrce) 

2 k2" 2.81b).  

give rise naturally to the covariant 

EP-)BeC.' — B'Cf 
Pr (2.82) 

in the same way as the 

the 	— Cr C.r 
2 

k""C 	k'CC7 
.2.1e* 

(2.73). 

give rise to 

Charge Conservation.  

For Lorentz-covariance of the S-matrix a conventional 

M-function must satisfy k.M = Cc Charge is then conserved. If 

the invariant amplitudes are to be unconstrained by the gauge-condition, 

the corresponding covariants should each satisfy this condition. 

If the conventional M-function is gauge-invariant, then 

Charge is conserved and the antisymmetric tensor Mr-function can have 

no k1  terns. If the invariant amplitudes are to be unconstrained, 

the corresponding covariants must each be free of 	terms as were those 

introduced at the beginning of the chapter. 

The proof of the equivalence of charge-conservation and freedom 

of the M-function fluor ±t.. terms has rested upon results for four-

vector M-functions. We shall present a direct proof of this equivalence 

for any,  scattering process with a soft extra photon, but as it follcws 

closely that given by Weinberg7  to show that k.M = 0 implies charge 

conservation, we present this latter argument first. 
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Let the S-matrix for the basic scattering process be Sfi. . 

The ingoing particles have momenta pi charges ei and the 

outgoing particles have momenta pi, charges ej . The soft photon has 

momentum k , helicity X , and is outgoing (say). For simplicity 

let the charged particles be scalar. Then the M-function for the 

process with emission of the soft extra photon is proportional 

to (and this incorporates the pole structure assumption referred to 

earlier)31 

	 ‹a sf [ 	 • k Pi 	k Pi 	(2.83) 

Then k.m.--o implies 

(2.84) 

that is, the total ingoing charge equals the total outgoing 

charge. The basic scattering Sf-Z may be any process at all, 

so charge is conserved in any process, when charge is defined as 

the soft-photon coupling constant. 

Now in an antisymnetric tensor formulation, the S-matrix 

for the process with an extra soft photon is 

proportional to 

E 4'(k)[-Z 	(  e—VIT) —E ez (k"P! — 4K k)] 
it.j 1R-P, 	2kt-p 

(2.85) 

£,):,*(k)rE k.P~kfri 	42-4. (Pr - kr; 
k. pi 	 k• " 

It is easy to see that the 	terms have the coefficient 
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which vanishes if and only if charge is conserved. 

Although this shows that the absence of TL tams in the M-function 

implies charge conservation in any process, we cannot directly conclude 

that charge conservation implies the absence of kt teLitib in the 

14-function when the photon is hard, for the form given above was 

derived in the soft:photon limit. A similar Lumark applies to 

Weinberg's demonstration that charge conservation implies the gauge 

condition on the photonic four-vector M-functicri, 

However, if the NI-function is supposed to describe equally well 

both hard and soft photon scattering, the gauge condition or absence 

of -1- terms must hold for all photon energies, as the NI-function Is" 

is expanded in terms of covariants which separately satisfy the 

appropriate condition at any energy. 

.(Similar arguments for the case of gravitons7 show that 

universality of the graviton coupling constant and conservation of 

momentum imply that the four-index NI-functions are f   of -55_ terms, 

as appear in the perturbation theoretic couplings13. Graviton four- 

index covariants will therefore be of the form K'' Krr 	where 

	

KI" 	is an anti-symmetric tensor covariant such as (2.77), KSF and KZF) 

Photon Propagators.  

In writing dam the amplitude corresponding to a diagram involving 

internal photon exchange, we need to know the form of the propagator. 

This is well known in the four-vector description, and we now give it 

when the photon is described by an anti-symmetric tensor wave function. 

	

If 	E/ (k) is used, the propagator for helicity + 1 photons 



E (k) £_ *(k) eq- 
k.2--1- Jet 

(2.86) 
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is10  

(2.87) 

; A  

2 (it.1-4-i. 	L 7") 	' 
) 	

y,v)er  (k)] (2.88) 

With couplings of the form at 

either end of the internal line, the term in Af,veT(0 vanishes. 

With the Pauli-type couplings (J 	at each end, the two helicity 

states give complex conjugate contributions to the amplitude. 

Weinberg4 has given the general expressions for massless 

particle propagators in terms of the spin matrices in (j,0)0(0,j) 

bases. They are not manifestly covariant however, and for particles 

of spin one or more are more awkward to use than those bearing tensor 

indices. 
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THE MASSLESS PARTICTE CROSSING MATRIX. 

The Crossing Matrix for Helicity Amplitudes.  

The helicity amplitudes for a given scattering process are 

defined in a specific channel. The sets of helicity amplitudes 

for different channels are related and between them exist orthogonal 

transformations, the crossing matrices. These have been derived 

by Trueman and Wick for processes where all particles are 

32-35 massive 	and by Trueman and Mueller for processes with one or 

-more massless particles36'37  

We indicate the general idea of these derivations. The S-channel 

helicity amplitude is defined, up to a phase, to be 

TAse.,XD; AA, X8 (S' )  	<f)c)Xe-1 <43 XD I 	I rAixOlrE,Ag) 
(3.1) 

where 	p 	pg 	, the centre of mass condition. 

-T-s 
The generalised s -channel helicity amplitude 1,10,0,;),AxscrC1 

is defined in the same way32, but without the c.m. condition. Under 

a Lorentz transformation A , the state 	,Xj-> 	transforms, 

as we saw in Chapter 1, as 

U(Ni Pi.) Xi> 	D;,- ,,. [O 	I Api,Aii) 
(3.2) 

where Si 	the spin of particle i, and (pi, A) is the Wigner rotation. 



Because tie T--matrix is Lorentz-invariant, we see that 

TAs...4;xAx8..[P'} 

= E DAL‘10-.) 	D (02,) x 
ai 

(3.3) 

X  TA; ap; x,̀04 {AP;-} Dwoi, VA) DAt>.€ (CR(' 
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A similar expression holds for the t-channel generalized 

helicity omplitude 	i /A-y-, /AB LPG, -1)A — Pb 	 ,where 

we will still be in the s-channel physical region: 

t 	
-PA 	PI)  PO =-- /kt"/"90/A.-15/" 

f`c 	c [g (pc.'
/ A 

A)] 	[k(-PA)A)3 x r A 

t 
x 1;4/.4 	/„,B  ( Ap,., -Apt, i -ApD  Apa) 

X 	[OZ(-Po)A)] 	C rtoM 

(3.4) 

	

Now the factors D LR C-p),A1] 	and I) [C,(-  PA ) A)] 

ate determined by analytic continuation from positive timelike values 

of -pp , -IA  on the respective mass shells. The values will 
depend on the path of continuation. One determination is32  

{02 HA, n)] 	C-0'7̀  	( ?A ) A)] j 	(3.5) 

(-pp A)] 	P:r.[k(PD4 
(3.6) 
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Then 
	

T):c- XD AA X B P" PD  ; PA 

T 	x„ ; XD A B 	— A ; — PP J PO 

transform in the same way, so that if there is any connection between 

them, they are equal up to a factor. 

We then let the momenta satisfy the t-channel c.m. condition, 

so that (up to a numerical factor) 

$ 	
(p 	)T

;fA)•1 	 "p D;  pA  = 	; 	,Xe C so .,•41) • 
(3.7) 

Ncw let A in eq. (3.3) be such that Api  satisfy the s-channel 

c.m. condition. Then 

--r- s 
I A, Xt.; AikAb 

I)*A; (Rc) D:f, (R D) x 

---r-S 
X 	Az A t.;  x/A  (C)f,A4 bgio,A(A) 	(Rs 

(3.8) 

Inserting this into eq. (3.7) we obtain 

-1-Ac-t;%.;),1)X8 CS'  ttA'-) 

14_ X 	(P`A proaD 1_6q (Pp) ^)] 
(3.9) 

-r-s X 	i xzxl )A ,A ),10 	1:)A, ),-[g(PA)A)} DAtcdte,  [P.(p8,A)] 
A A 
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and it remains only to calculate the 1) factors on the right 

hand side. Because A takes the t channel on frane into the 

s channel an frame, it will in general be complex. The arguments 

of the E) functions are the crossing angles and Leader38 gives 

expressions for their sines and cosines. 

In continuing this expression aunt say the s-physical region 

to the t-physical region*, the nomenta Fi  and the transformation 

A will all change. The final form will depend on the path of 

continuation, as did the relation between s and t channel generalized 

helicity anplitudes. 

For a massive particle, there are two possible ways of continuing 

fLompcsitive-timelike to negative-tirrelike values32. 10 has 

branch points at po=---m and these should be avoided. po can then 

continue from a value > m to a value < -m by going into the 

complex plane,• crossing the real axis inside or outside the interval 

(in,m), and the two types of path yield different relations between 

b 	Cr), A)] 	0-Ina 
	

CR (--p, A)] 

p. should cross the real axis in the continuation so that we end up 
on the t-physical sheet. 

For a massless particle, there is only one type of path and36 

[02(pin)] 	_x 	(f,A)] 
	

(3.10) 

* We assume that such a path of continuation, avoiding the branch 

points at the channel thresholds, exists. For massive particle processes, 

the existence has been proved by S. Bros, H. Epstein and V. Glaser, 

Commun.Nath.Phys. 1, 240 (1965). 



70. 

Using this relation in eqs. (3.3) and (3.4) we see that the 

s- and t-channel generalized helicity amplitudes with opposite  

values of the nossless particle helicity transform in the same 

way. Furthermore, since a Lorentz transformation cannot change 

the helicity of a massless particle, the corresponding D-function 

in eq. (3.9) is proportional to SAN' (see also eq. F.31) 

The result is that the helicity of a massless particle is 

reversed in crossing frail one channel to the other if and only 

if it is outgoing in one channel and ingoing in the other. 

A rather more transparent way to derive the crossing matrix 

is through the covariant helicity formalism of Feldman and Matthews
39
. 

For massive particles this has been done by Feldman and King35. We 

present here the derivation for massless particles which has certain 

features of interest.40 

We start by discussing the covariant helicity (felicity) formalism 

with reference to the scattering process defined as at the beginning of 

Chapter 2 with no restriction on the particle masses. 

The Covariant Helicity Formalism.  

We reran that the Pauli-Lubanski four-vector operator MVO for 

particle 	is defined by 

W (i) =E 	Prrti) 
a /-vea.  (3.11) 

where for each J £t) and P7(i) they the canutation relations of a 

Poincare algebra, F,4 (I) is the four-momentum operator for particle 	, 

and 	3 CO its rotation and boost operators, which we rewrite in. the 
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form 

Tz.3 T;t I To.) 

Tio 	T2.0 ) 13t) 	. 	(3.12) 

As we shall always be concerned with eigenstates of the mcmentum 

operators Pt., (0), we replace the latter by their eigenvalues 

in what follows. 

The s-channel felicity operators for particles A and B are 

defined39 by 

- Acs,21,,B) w/-(A) P)-(B) = a 1A1/~('‘ i'(")  (3.13) 

 

F$(13) - Q (5 A,$) WP-(e) r(A) 	Er(A) r")1  • (3.14)  

Using eqs. (3.11) and (3.12) we may write eq. (3.13) as 

Fs(A) = Ac ,8)  [PA). (1)°(8).p (A) - rA)13  (e)) 

7— 	. 	(a) x (A)) 

and similarly for eq. (3.14): 

.F s(B) A 	(s A, 5:(8). fiVOr(8) — p°(a)f (A)) — 

— K(B). ((A)x p(B)) 

where .p(z) is the space part of 1),-(i) and 

(S, A,B) =-. 	+ nit7 + 	- 2s ma 	rlq1-8 	r''8 

(3.15) 

(3.16) 
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We may rewrite eqs. (3.15) and (3.16) by introducing right-

handed sets of unit three-vectors .p1 /4  , rr, and n for each of 

particles A and B. 

Here m(A) is the unit vector in the direction off(Oxf(A); n (A) 

is the unit vector in the direction of f (A)X E0 (A) 	and 

similarly for 01(0 and n CEO . In teLlib of these vectors, 

F s  (A) = 	(SA, B) [PA). p (A) (1.0(A)I p (B) - ro(A) (8) •. 	— 

I vA)x (8)1(Pto. r1 (A) p.m) + KN. M 00) 

I. (A)I 
	 (3.17) 

FS(B) = • 	• (A-4B) 	. 	 (3.18) 

Further, the t-channel felicities of Tk and B are defined by 

Ft-(A) = AajA,0  Wr. (A) r (c) 	 (3.19) 

Ft(B) vv....() run. 
of  , (3.20) 

Now, since the felicity operator is Lorentz invariant, it may be 

calculated in any convenient frame. In the s -channel c.m. frame, 

1?(A)=.--4?(B.) 	, so that 

F s  (A) = Acs2-JA 	 Wo  (A) ( p°  (A) -4  r(B)) 

= 	• 7-(A) . p (A) 	 (3.21) 
A(s)  A, g) 
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and 

Fs  (g)= .7(10• :p(g) 
(3.22) 

which are respectively the s -channel con. helicities of particles A 

and B. 

Similarly, calculating Ft(A), and Fr t(B) in the t-channel c.m. frame, 

we find that they are respectively the t-channel c.m. helicities of 

particles X and B. 

Massless Particles.  

Let us now take particle B to be massless. Its eigenstates are 

IP010,4> where the helicity X B is fixed, and is the eigenvalue of the 

helicity operator /11(13), the generator of rotations in the little group 

E (2) of F(8) . The two translation generators are Trm and IT, , which 

have zero eigenvalues in the one-dimensional representations of E(2) 

to which massless particles belong. In tautts of the vectors r4(13)andr\CO 

introduced earlier, 

Tim 	= TN. rn (8) — K (a) • r‘ (0 
(3.23) 

Tin 	T.(1)• n (0 t K (8) 	(0 

For p(a) physical (real, with 1033) o LIM is given by T(e)400 , and 

its matrix elements, for all p(8) , are 

Axe,, g. 	 <P(B),Xt,'  I A(B)A rcov~e> = AB )'Ll 	(3.24) 

where we have anitted the mcmentum delta function. 
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Ncw F-509 acts in the space of two-particle states of A and B, 

but if P(R) is replaced by its eigenvalue 1(A) in F509 , we may think 

of it as a single-particle operator in the space of states of B. 

With this in mind, we see from eq. (3.18) that PCB) is a linear 

combination of 	PE) and Trn (since f..01)=10A), and conclude that 

its eigenstates are just the helicity eigenstates of B, at least for 

p(B) physical. 

We find 

<1> (8), I Fs(B) I r(g),/ka) c = 	 
A (s,A,

AB .bA B  ,fttE  

(3.25) 

for p(B) physical, so if s>4 	s  FAev.,6(3).--AA B,/,,a(B). We may now fix 

p (B) and continue in p(A) so that s-rrili% beccanes negative. In this 

is clearly unaffected, but F-Z,....03) may change sign 

is taken to continue as s-rnA  . With this choice, 

F7:1r, (8) 	and A A vp. (8) are identical for all s, and p(B) physical
* 
 . 

Now Ax1t._ (8) is by definition invariant under any complex Lorentz 

transformation (which may take p(B) to an unphysical value), and F-4-03) 

is invariant by construction, so that FL/..(g) and A.>„),-(E) 	are 

*We could have made the other choice. The felicity and helicity 

would then have been of opposite sign for s<r4 , and the felicity 

amplitudes and crossing matrix would be different from, though simply 

related to, the helicity amplitudes and crossing matrix. Our impending 

calculation of the helicity crossing matrix would be altered in detail, 

but not in its result. 

case, AA,/,..(16) 

unless Rs,A,4 
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identical for all p(B) and s, and the qigenstates of the ;two 

operators are identic?i1 (in our representation). 

As Fa,, (B) and AAv  (B) are identical in this representation We , 

may find an explicit form for A (B) from eq. (3.18): 

A A,/,, (B) = 	B) 

<F(E),ABI s 	 mA 
..,(8)-" D(A)•.p(8)) 

0-(8) (B)  po 1  (v — p 
i_poo  L 

< pas), Az 

 

— I p(A)xp(B)1 Trn 

p 01) 
Po t E.) 

(3.26) 

  

Therefore 24  is the correct form for the massless particle 
Pe 

helicity operator, which agrees with the argument of Chapter 1. If A is 

expressed in the form 2LE 	the sign of the square root is uniquely 
trilk 

determined. 

It is interesting.to note that in those representations in which NO 

and FS(B) are not'identical namely those with W201 in which the massless 

particle has continuous spin and TT.,1,71-4  are non-zero, the helicity 

is not Lorentz-invariant, as it differs fLum the invariant felicity by • 

the non-invariant 7T., term. 

The Crossing Matrix.  

We new consider the behaviour of particle B under crossing. We 

calculate Fs(B) and r(e)in the same frame, so that the momenta p(B) 

appearing.  in the two expressions are the same. A convenient choice 

is an s-channel c.m. frame such that the scattering is in the yz-plane and 

p,.. (8) = Cp,  0,0,0 
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F.rAin eq. (3.22) we find 

Fs B) = 13 (g) 
	

(3.27) 

From eq. (3.20), expanded in the manner of eqs. (3.15) and (3.16) 

we find 

F t(B) = A 	2.8  P-3(0 (ME)-- P.sgr — 7-rn (B) pL 	f5] 	
(3.28) 

in the representation, with our choice of sign of L1 aa3,0 for 

t4:Ivq; . Therefore 

F s(B) = Ft(s) 
	

(3.29) 

and the eigenstates are related, up to a phase by 

p(B), As > = 11)(8), A t - As> 	 (3.30) 

where As and At are the s- and t- channel c.m. helicities of particle 

B (for a massless particle, the helicity is the same in any frame, 

and so is the same as the con. helicity). 

From eq. (3.30) we sec that the crossing relation between the s- and 

t- channel helicity amplitudes, in the spin space of particle B, is, 

apart from a possible phase 

TS. ; • 	(s,t,m-) = Tt  ; A  (s,t,AA-) 
	

(3.31) 
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since the general-frame t-dhannel helicity amplitude is the same as the 

C.R4 frame helicity amplitude as far as the massless particle label is 

concerned. 

Ncw let particle A, rather than B, be massless and let us calculate 

Fs (A)and Ft(A) in an s -channel C.114 frame, with the scattering 

in the yz -plane and pt,(A)--f)....CA) = (9 ,0,°,1) . 

Fiuu eq. (3.21) 

FS(A) = T3 (A) 
(3.32) 

Fruit eq. (3.19), expanded in the manner of eqs. (3.15) and (3.16) 

Ft(A) - AA0 	(A)(p.(0—p.,(0).j 	(A)1 p,(b)] 	
(3.33) 

=T3 CA) 

in our representation. 

The spin operators T(A) and TOO of particle and antiparticle are 

related by 

T(A) = TT(A) 
	

(3.34Y 

Hence T3  (A) --T3(A) , as the. representation is one-dimensional 

(and in any case, diagonal for j3). Therefore 

Fs(A) = — F ICA) 
	

(3.35) 

and the eigenstates are related up to a phase by 

p(A), As> 	P(A) = —1(A) , Xt = —As> 	 (3.36) 
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Therefore the s -channel c.m. helicity of A is opposite to the 

t-channel c.m. helicity of A and the crossing relation, in the 

spin space of particle A is, up to a phase 

Ts 	 t  • • ; AA A. (s,', A-L) = T---xA; - • ( s,',.) . (3.37) 

Eqs. (3.31) and (3.36) show that the C.R4 helicity of the 

massless particle changes if and only if the particle is crossed 

in going from one channel to the other. This statement is independent 

of the particle manentum or the values of s,t, and u, because the 

helcities are. In other words, the crossing angle is either 0 orir, 

and is constant in the entire (s, t, u) plane. 

The extension of this analysis to processes involving more than one 

massless particle is. trivial, as the reasoning applies. to each particle 

independently. The crossing-matrix. in the product space of the (remaining) 

massive particles has been given by Trueman and Wick32. 

Determination of A(x,i,j),(mi = 0). 

We would like to comment on the determination of 0fx-,14) below the 

pseudo-threshold x- -mj)i- to be used in the expressions for 

the centre-of-mass scattering angles and the crossing angles of the 

massive particles in the reaction. Leader's expressions38  for the cosines 

of the crossing angles may be used for the massive particles, with the 

appropriate masses set equal to zero, because the masslessness of other 

particles makes no essential difference to the reasoning used to obtain 

-these expressions. However, there is an ambiguity in the interpretation 

of ti(x-,Z,j) . 

In earlier sections of this paper we used the analytic determination 

of 	 j) when mi. or mi was zero, but this choice was not essential 
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topur result; it merely enabled us to arrive at this result more 

easily. Consequently, we must decide all over again how we are 

to interpret A in the cosine expressions. 

We show that, when a massless particle is present, we are 

forced by consistency considerations to choose Abc-,,j),(11z=e)), 

to be analytic in the x-plane. With this determination of A , 

Leader's expressions for the crossing angles are valid for the 

massless particles as well. 

The boundary of the physical region has six asymptotic portions, 

on each of which (with the possible exception of the lines s = 0, t = 0, u = 0) 

the crossing and c.m. scattering angles are constant and separately equal 

to 0 orir. We label these portions s+, s-, t+, t-, u+, u-, where s+ is 

that portion of the boundary of the s -physical region on which cos e = +1 

	

s-)ca 	etc. 

Near such a portion, to within a phase, 

TA
s
c. A b  d1/4/1/ 4  X a  (S it,  AI) = 	 xis  (5  it,AA-) 

	
(3.38) 

where the set fl is determined in terms of the set [Al by the crossing 

angles, and E goes to zero an the boundary, and at least as fast as 

-1-  I  

	

A 3 	1 t1 	if this amplitude vanishes there. Because E is a 

linear canbination of independent t-channel helicity amplitudes, E and 

71,vits&") cannot in general 'conspire' to make the right-hand side 

of eq. (3.38) vanish faster than Tit-k1 on the boundary. 

Furtheill 	re, near-this portion of the boundary11 

T s 
Ac 	AAXB ( J't .AA-) 0C (sin es  1  Ac- 	AA 4" 18 

(3.39) 
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according as cos es = I , and 

TG 0, 

	

I A s  	IA 
6 
' I 

; 	Aig 	cc (si., 	c- 	A   (3.40) 

according as cosOt .TEI so that in view of our previous remarks, 

the exponents in the right-hand sides of eqs. (3.39) and (3.40) must 

be equal. This implies an intimate connection between the crossing 

and scattering angles. 

Let us take particle A as massless, and consider the crossing 

fLoia s- to t-channel. Let us order the masses of the particles: 

ri)>D11:3 > Inc > mA  = 0. Then, with the definitions (consistnnt with 

our previous definitions of s and t channels) 

5 tt 	+ mg-  (rq--- cos Os  — 	  
ieRSA,B . A (s,c,D) 

(3.41) 
ics„) 

cos e, — 	 
t"--g,D) 	(t)  Pt, c) 

c-os 	-±)  t Tvii; (111,1-- ma) 

A (kL, t, c) A (AA-, A, b) 

- which are unambiguous above the relevant channel thresholds, we 

see that along  

*We refer the reader to Figs. 1 and 2. 



FIGURE I 

The boundary of the physirn1  region. 

"is 'V 'V nieue mA = 0. 



FIGURE 2.  

The boundary of the physical region. 

inn's 	mB"le mA = 0. 
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.S 	S 	+00 , 	0— 	AA. 	— 00  j  

S-. ) 	S 	00 
	

— 00  

4 	S 	°— 	" I 
	

— 1 

i - 1 	S --> -00 	t --> -Fer, J 	AJ4... --, 0— 
J 

At 4 	S —3 0 + 	f —* — 001 	—) +co J 1  J 

,A— 	S --) — c° J 	
t --) 0+  j 	A.A- ---, -t• 00 . 

J 

(3.42) 

This information enables us to determine easily the sign of 

the cosines on any of the six portions of the boundary. 

FLuin Leader, we have the expressions for the cosines of the 

massive particle crossing angles: 

COS X8 = 
(.S+ retn(t+mt -mn - 2rnt(mc. +Mg - rn t,-) 

8) A (t,B,D) 

COS 1.c._ - 

 

(3.43) 
A (s, c, b) 	A, c.) 

CoS ?CD :17- 
(s+rni,'-m2.-)Ct 	+2m1;-(mci"+011--tylit-) 

A (sic, I)) A 	8, 1)3 	• 

Now we can choose particular determinations for the t and sac if they 

are consistent. We find co ses and casee  on each of the six portions 

of the boundary. The equality of the exponents in eqs. (3.39) and (3.40) 

with the appropriate signs gives us V] in tellit, of {Al and 



TABLE I 

Values of the cosines of the crossing angles on the different 

portions of the boundary. 

s+ 	s- 

cos°s 

Cos 8t -T 

cosxA  

from eqs. (339) - CosXB 	++ 	_ 	+ 	+ 	+ _ 

and (3.40),sco 	Coqc 	- 	+ 	++ 	+ 	+ _ 

text 	CJs XD + T 	7- 	+ 	+ _  

Cos; 	- 	- 	+ _ 7- T + _ 

from eq. (3.43) 	CosXc 	+ T 	- 	- 	+ 	T __ 

cbai)  - + - + 	+ 

84. 
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therefore cOag 	Goa.c 	and C,DaD (because cosX1pc  Ea -1). 

We can then compare these values of the cosines of the crossing 

angles with the values obtained from eq. (3.43). 

The results are presented in table 1, which assumes the conventional 

determination of21(5i,j) for milmi40 , that is, the one which gives 

6.>13 for x..‹.(oli-wv3-  . The two determinations of A(x,i.,j),(rvii=o) 

are presented together; when there is more than one entry, the upper 

corresponds to A.Ix-r11 , the lower to' A=x-1r . (The entries are 

all +1 or -1; we give only the signs.) 

It may be soon in table 1 that the lower entries, but not the upper, are 

consistent between lines 4-6 and lines 7-9. This means that, for consistency, 

Li(x,L,j) ,(ni.o), 	must be taken as , the analytic form of A in 

this case. Therefore, ACs,A,B) 	= 2.p(A)-f(B) 	always; 

4(t-,A,c)= t-mom=--2.14A).p(c) 

Had we used the other (analytic) determination of Z1(1,17,j),(miimi*c), 

our conclusion about the mi=0 case would have been unaltered. This is a 

reflection of the fact that there are two ways of continuing, in ntmentum, 

massive particle c.m. helicity states32'36. 

*Here, x is taken to vary along paths which connect the upper side 

of the right-hand cut of the S-matrix in the x-plane with the lower 

side of the left-hand cut. Thus if Z1('(.i,j), (mZ,f;ai *co) 	is greater 

than zero for x below pseudothreshold, it is analytic in the x-plane 

cut from —co to Col i-rn,j)l-  and (ni • +PI 'YL-  to +co 
	

(rather than fruit 

.pseudothreshold to threshold). 



86. 

The conclusions are unaltered when the analysis is extended 

to the remaining, finite portions of the physical region boundary 

(on each of which it is still true that the cosines are constant 

and separately equal to +1). 

With the above determinations of the functions A , all the 

crossing angle cosines are correctly given by Leader's expressions; 

that for cosXA 	reducing to -1 identically. 

Analogous conclusions are obtained from a.consideration of s-u 

and tL.0 crossing, and when more than one massless particle is present. 

It is of some interest to examine more closely the finite 

portions of the physical region boundary referred to above. This is 

because the cosines of the scattering angles and the cosines of the 

crossing angles do not change sign at the same points. 

There are two cases to be considered (a) rn 6+ rrt, > mD > ma > me->nirr ° 

and (b) mD  ,> rYAB-i-Mc  > n  > 	MA 
	when there is a fourth 

physical region corresponding to the decay of D into E44c. These 

situations are depicted in Figs. 1 and 2. 

The boundary of the physical region has as tangents the highest 

and lowest thresholds in each Channel41. Furthermore, if in each 

channel both ingoing thresholds lie lower than both outgoing 

thresholds or vice versa, then the fourth finite region exists and has 

as tangents the second highest and second lowest thresholds in each 

channel. (See also the Appendix to this Chapter). 

In general (except possibly along s=o, t=o, u=o) the scattering 

angle cosines are +1 along the boundary. Mbving along the boundary 

the i channel scattering angle cosine changes sign at the points where 

the i channel thresholds are tangent to the boundary. In Fig. 1 for 

example, doses  changes sign at points A and F, cos 8t at C and D, 
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cost, at B and E. The numerators of the expressions for the cosines 

change sign at these points. The denominators also vanish but do not 

Change sign. The same applies to the crossing angle cosines: cos; 

changes sign at C and D, cos3(c, at A and F, cos-XD  at A,F,C,D. 

It is simple to verify that as one moves along the boundary, the sign 

changes at each point occur in just the right expressions to maintain 

consistency. 

The second case is rather different, for now the boundary has 

as tangents the thresholds involving the massless particle, and 

it crosses these instead of coming away on the same side. In Fig.2 

this happens at point G. Moving along u- through G towards K or 

along u+ through G towards H, the cosines do not change sign.. At 

all other points A,B,C,H,J,K the behaviour is as previously stated. 

Once again we obtain consistency on the finite portions AB,GH,HJ, 

JK, KG, but only because of the analytic determination ofiVx,Q),(mi=0). 

For any given process, the crossing matrix may also be calculated 

by contracting the NE-function with particle spinors satisfying the 

channel conditions. The helicity amplitudes in two channels can then 

be related through the invariant amplitudes, but this is a tedious 

procedure. 

• The implication of the result derived above for photons is 

(3.44) 

But by eq. (1.64) 

c 	for too> 0 

so that E x 1 	is a function of !Po c • f A = 	ro  

(3.45) 
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APPENDIX. 

The Channel thresholds are tangents to the boundary of 

the physical region in the s-t plane, as has been remarked in ref.4l. 

However, we have not seen a proof of this, so give a simple one here. 

The boundary of the physical region is the curve (Set) = 0 

where one form of IP is 

(sit) = 4s 
p'"(s, A, g)L.'-(s, c, 	s;n1- Os  

The tangent to this curve is parallel to lines of constant s, such 

as the s channel thresholds, when 	0 
W-• 

But 

at 

 

—A (s,A,B)A6s,c-)1)) COS Os 

  

Therefore implies that 

d (s,A,B)Msic,b) = 0 

since not both doses and sines can be zero. Therefore the tangent is 

one of the s-channel thresholds, and all channel-thresholds are 

tangents (but not necessarily at points in the real s-t plane). 

A similar argument holds for the other channels. 
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CHAPTER 4 

SUM RULES IN NurTECN COMPTON SCArthRING. 

We cane now to an applicatiOn of some of the preceding work. 

It is the derivation of sum rules for nucleon-Campton scattering 

amplitudes on the assumption that these satisfy fixed -t dispersion 

relations and are dominated at high-energies by the contributions 

from Regge-pole exchange in the crossed (t) channel. 

It is easy to deduce42  the high -s behaviour of t-channel 

helicity amplitudes on the Regge-assumption. The sum-rules 

however involve s-channel amplitudes, and we consequently need 

to knave the crossing-matrix between the two sets of amplitudes. 

Alternatively we may express the s-channel helicity amplitudes 

in terms of the invariant amplitudes, and the high -s behaviour 

of the latter immediately becomes clear. 

We consider forward nucleon-Campton scattering, relating the 

amplitudes, via the optical theorem, to photoproduction cross-

sections. The sum-rules equate integrals over these cross-sections 

to Born-term parameters, or the parameters of the leading Regge-pole 

in the cross-channel. 

Amplitudes, the Crossing Matrix, and the Optical Theorem.  

At 	there are two independent s-channel ('N -'YN) helicity 

amplitude s43-46 Tp 	(s,t,u) and Tis _ 	_Os,t,u) which we 
1,1/2;1,1/2 	. 	-2,-1-

L., 
 1 2 

denote by TA  and Tp  respectively, and two independent t-dhannel 

(NR-3n) 	helicity amplitudes Til_141111/2(s,t,u) and T 	s t/u) i,_341/2,_ 

which we denote by T210  and T2,1  in the usual way. 



+
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ztl-k+1.'1  f  -z*,  y-1A -/A1 x 2._ 	 2 ( 

Near t=3, the crossing matrix32,38 gives 
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0 -1- 	(ri, +TA) -+ 0(i14-) 

1-2_, o (-C9 (Tr  -TA ) + (f 19 
(4.1) 

An examination of the relation between the helicity amplitudes 

and the invariant amplitudes15,16 shags that 

CS, 0,.w) 	tv‘ A j_SJ01 ,44 I-  2. A3  (S)0,,0-)) 
(4.2) 

T23, 

In fact, T20  and T2  1  are related to the usual  forward Compton 

amplitudes43 f1  (V) and f2(v) by 

0  (S,0j AA) :7- 8mrrn f (V) 

Tz), (S,0,µ) 	- g-rrmvfx0 	 (4.3) 

where V = m, equal at t-:1 to the photon lab. energy, and m is 

the nucleon mass. 

The kinematic-singularity-free arrplitudes 	(S A tA.14. 	are 
given47,48 by  

=- 

	

X 	TA Jr. ( t) 1-A-) 
	(4.4) 

where Zt  = cos 0 - 	s-AA_ 
t (t--4ftit) 

This may also be seen from the invariant amplitude expansion16. 

Under crossing sk->AA- I in which the two photons are interchanged, 

the process remains YN --) XN 	and 
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A 	• 	A 	A 	 A 
-12.)0 (Sit'A") 	T-z, 0 (4)4-)s) ) 7-2,1 (Sit' '`A) = 

	 (4.5) 

We  oxm the new amplitudes 
A 

(s,t,.,) 	t,c, 

„ 
T_ (s,t, 0-) = Tal I 

(4.6) 

which are respectively even and odd under crossing. 

At 

T, (v)t= 	(-2-rAv) z 	 0 (v,o) (v, 
A 	

V, 0) = (etrAV)-2—  [—ri, (v,o) — T2,1 
	(4.7) 

The crossing properties of t(v,o) are also clear alau the 

behaviour of A2, A3, A6  under st"--)µ (1)&4-v,0I t.0) . They are 

respectively even, even and odd, since K2, K3  and K6  are respectively 

even, even and odd under the interchange of initial and final photon 

indices. 

The definitions show that ti*,() are parity-conserving amplitudesil  

and their asymptotic dependence on V is two powers lower than that of 

the Ti., in terms of which they are defined. 

The optical theacem for the's-channel amplitudes reads 

Tp , (V, °) 	.2.mv Crp , (V) 
	

(4.8) 

where cii,(0) and di(v)are the photoproduction cross sections defined in 

ref. 49. By eqs. (4..1), (4.7) and (4.8) we deduce 
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(v, 	(znrw)--% 	(v) 	cr-A (0) . 
	(4.9) 

Finally, we require the t-dhannel isospin amplitudes in terms 

of the s-channel ei) and Yn amplitudes. The amplitudes TAP  +M 

correspond to isospin 0 and 1 respectively in the t-channel. 

The Partial-Wave Expansion and Regge Poles.  

The t7channel amplitudes have the partial-wave expansion 

(sJteu) = z E (27+1)ETAT/,+  ti)(d;kt,(zi.) + (s)  4,1 
+ T,1 (f) (otZt, (z) 	6-1)'`014,/,. (-20)] (4.10) 

TA3:7,({)=- <xmXcADIT1017t/1),A1,› ,J even (odd), with Ac-A, = A r  

XA — AB =74- 
ymmetryll of The s 	olc(z10 and T4, ME) 

equivalence of (4.10) with the familiar form 

TA,.. Cs it, = 	( 2-u-÷) Tx7  (t) CCU (Z-t) 	 (4.11) 

We now Reggeise the amplitudes TA,/.._ by performing the Sommerfel& 

Watson- transform on the partial-wave expansion (4.10) and Obtain50'51 

the representaticn, 

where 

may be used to shag the 

(s't,4,„ 	2-°"')-4-1  
Poles Si r̀ .11-°(i( t ) 

czto p:4-(1)(0C" (1)(z + (0" ct(-z t)) + 
(4.12) 

Zoe 	.c• ct) ocitt-) 	 of 	\ 0- to ( d (4) — 	d_ Ezt)) 
sircrroc.(t) 	

)viv, 
oe 

+ background integral. 



oci (t) 
At high V ) A  (zt) 	v  ct) 

the amplitudes ti(P,t) 

where 	c<,, () 	is the greatest of the c4i 	Alternatively 

-we could have made a partial wave expansion in the t-Channel of the 

invariant amplitudes and deduced the 	V -dependence of '1+  via 

eq. (4.7). We assume that this behaviour persists at t=0 where, in 

fact, Zt  is infinite. The c<z(t) appearing in eq. (4.12) for any 

given process depend on the relevant selection rules. 

By conservation of B, Y, Q, I, C and P at each vertex, the Pegge 

trajectory must have quantum number assignments B = Y = Q = 0, I=0 or 

1, C even. The amplitudes t(v,0) are parity-conserving and have 

contributions only from normal and abnormal trajectories respectively 

(a normal trajectory has the same parity as signature, while the parity 

and signature of an abnormal trajectory are opposite. This is a 

natural extension of the concept of normal and abnormal particles, 

respectively). 

Thus we find that trajectories contributing to 1;b10 are 

neutral bosons with zero hypercharge, isospin 0' or 1, C even, and 

normal parity. The most important are the two vacuum trajectories P,P', 

and the A2  trajectory. 

*There has been some discussion as to whether the P trajectory couples 

to two photons at t=0. The explicit factor 0(0)-1 in the amplitude 

would appear to decouple the trajectory at this point52. More recently, 

Abarbanel et. al.53 have pointed out that a fixed pole in the angular 

nrxment plane at J=1 can restore the Pameranchuk contribution. We 

therefore include it in our analysis. 

93. 

. It follows from eq. (4.4) that 

have asymptotic behaviour V 
oc,,,(0 
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Trajectories contributing to -1:.(Vio) differ only in having 

abnormal parity. The Tr and 7 axe forbidden in this amplitude 

by C conservation at the NR-pole vertex, so that only the D and Al  

may be exchanged. 

SUPERCONVERGSNCE RELATIONS.  

By the definition of V and -110)4 the amplitudes V-24-1 1-4..1. (IV) 
14 -• 

and V
-2 	

(v) 	, with integral N>0 , are odd under crossing Sc-,AL. 

Furtherllore for t<0, they are bounded at large y by I v 1 -t-S , S > 0 • 

This follaas fLom (4.4) and (4.12) and the fact that for T4 V, 

1:4„;, (t) 	and for T (v, t) 	, tem  it) < r 
	e< o 	(see 

preceding section). 

Therefore we are able to write the superconvergence relations 

f GLI)  v  -2-1 im Tf  0),  t) 

= +IT' X sum of Born term residues. (4.13) 

and correspondingly for v-2" I. (y, -E) 

At t=O we may use the optical theorem, eq. (4.9) and write eq.(4.13) 

as 

r. 
v-"-2J  acv 	 ( cv) *To)) M1TX Born term residues, 

(4.14) 

-2"-  I  f cL) (Cti) (V) 	(V)) vo  = 1611-x Born term residues. 

The. mpst familiar of these relations is for the amplitude T (Vic) 
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Expressed in the form (4.14) , and using eqs. (4.1), (4.3), (4.6) 

and (4.7) , it is49  

00 

( 0- (v) 
f 	—IT 	1) 	VA v.!) 7-7. 	712  to ) 	2:eV 41- (4.15) 

where DC = i37 --- and X is the anomalous magnetic iromant of the nucleon. 

This is the Drell-Hearn sum rule derived in the manner suggested by 

Choudhury46. 

The next most familiar relation is for V-rt(v,c) , and in the 

form (4.14) is 

re)  co v-2. ((rp (V) 4 QA (4) = 	f= 2.11-1m (0(E 0<tei 

(4.16) 

which is the original Gell-Mann, Goldberger and Thirring43 subtracted 

dispersion relation for fi(v) , taken at yz.-..0 	and where C4E and 

	

044 	are the electric and magnetic polarizabilities of the 

nucleon 4'55  

In general, the superccnvergance relations (4.14) yield. 

jr e: k  -2N —1 (o 	\ =_. 	--4-1T1  r (2^142-) (0)  v 1,( v )  gril(v)) 	 (4.17) 

	

V6 	 (Z144 2)! 

• 

du V .-214-1  (9> (9) 	(1))) 	
-41e-   r (zN) (0) , 
(2.0 

the values of the right hand sides being dependent on the detailed 

structure of the nucleon. 
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Finite-EneE2y Sum Rules.  

The amplitudes V2141-I 	 and V 21442T (v, N > o, are also odd 

under crossing S4---'- 	They are not superconvergent but have asymptotic 

behaviour in V of V c(mtt.) ÷2N— I  04, (+) +2.14 and V 	 respectively. 

However we may form the superconvergent dinplitudes V 2141-1(t. 

where tiz 
zw+2..," ^ ) 

and V 	Cr- 	 is that (analytic) part of T± 

which is not bounded by V-14-2-  C. and V -2N-3- E.. respectively. 

In the Rugge-pole model, -1-±K is the sum of the (analytic) contributions 

free all allowed poles with 	ol 	> - 2N and -2N-1 respectively. 

We therefore write56' 57  

eboty v 2.34+1 In, LT+  (v,t) t„cv,t).] 0 
(4.18) 

and similarly for 1)214+2-212 (V,t) . There are no Born teens in these 

amplitudes, excepting 1)-1; . Since the integrand in (4.18) is 

0(V-I'S ) , by construction, we have 

r A 	. 
dv v2A+1 	Nit) = of  Actv 1/24-1.1  Imt (9,0 + 0 (A- s  ) vo  

(4.19) 

and similarly for - ('),t) . 

	

Making the approximation TR  (VI 	(coast) V41"(9-1  where o tt-) 

corresponds to the leading trajectory, eq. (4.19) becornes57'58  

A 
SIN  F- A 	

‘2\1+11,T+(vit) = 	R (AM  ( ÷ 0 (ig  )) _ A 

(4.20) 

	

A 	21,11-2. 	^ 

A S2wi1 _7= 	 jVo 	A (--t)---) 	6,, 	LAT-R (A,I)  ( + 0  0-9) 

4,,„(t)+ 214 
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At t=0, and large A, we find finally 

v \24  
2mA.S21.4 	-kill.  ety(7-0 	0-1)()))+TA(1))) 	Crp(A) crA(A) 

eCrvi(0)+2N1  

A. .32,4,1  ritdv 12_12-4+1/ 
A JA, 	A ) 	LIP (v)-(Th (v)) 

(4.21) 

irp (A) — (A) 
0(e,i (0) -i- 2W-1-  I 

A similar expression for -FN scattering was derived by Gatto59. 

A slight modification to (4.18) must be made when the plus signs 

are taken and Nom. This is because Vt. (V 	has a Born term 

(JrrrAn )(f)(9)h) which contributes to the right-hand sides of 

eqs. (4.18)-(4.21). In (4.21) this contribution appears as 4TrIll (04 . 

Since cri, (v) +CrA  (V) 	has asymptotic behaviour 01°1(0)-1 	and is 

presumably dciminated by the P and A2  trajectories which have c{(0) > o 

the Born term will be, in comparison, of no significance at high energies. 

Our result (4.21) is therefore correct for any 

The most interesting of the relations (4.21) are those with small N in 

which the higher-energy cross sections are not heavily weighted. In 

particular, the sum rules 

i Jrvo 
A 

otv (cr (0 -EcIA(1))) 
A 	

p 

A v f A 	(A) 	crA (v)) 

(rp(A) 4 criN (A) 

c<m (0) 

(rp (A)  + TA (A) 
dr,,(0) -t-  I (4.22) 

may possibly be evaluated with sane accuracy. We discuss these matters 

further in the next section. 
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In concluding this section we point out that superconvergence 

relations may be cast into the finite energy sum rule form. We 

illustrate this with an example. 

The at 	vlitude t (V) is superconvergent and 

( A 
ctv 101 (v,o) 1:60 	C9,0 = 

(4.23) 

In the second integral, we approximate T...(olo) by the Begge form as 

before. In the integration the contribution flow the infinite upper 

limit vanishes, since 	o(v-8) , and we obtain 

(PO A 	(Trik fv. 	frp(v) _QA  0) ) 	÷ p (A) -C 
 

— oCril (0) 
(4.24) 

We may therefore evaluate the Drell-Hearn sum-rule with data up 

to a finite energy only, since the term Ecrp(A) -WAVE,  -0(r.,(0)] 

provides the necessary correction once gr,(0) is known. For the 

IO channel, the leading trajectory is D, and for the I=1 channel, Al. 

The corresponding quantities in (4.24) are (rp-aX)eptL 9:.-crA)yn  

c(1)(') gA1(0) 	and 11;- ± K, . For the mixed isospin channels 

of pure Yp or pure Y n scattering, the leading trajectory is the 

A1. (4.24) therefore applies to either protons or neutrons with 

c<rn CO = c<A,(6) 0 	. We conclude therefore that the reasonable 

agreement of the two sides of (4.15) obtained in ref. 49 with data up 

to 500.MV is not likely to be upset by higher-energy data, since 

at this energy the correction term is already small. 



UsincLthe Sum Rules.  

Sum rules of the form (4.21) and (4.24) provide a very 

physical means of either checking analyticity (from which they 

follow) or determining the Rigge parameters 104n1(0. 

Mien, Horn and Schrnid58  propose finding 0(r.,60 from the ratio 

S2N: S2N+2M = (oc.,(0+21\11-2M) : (0(,,,(i)+,134) 
	

or similarly 

with S2N+1'  where the S2N are to be calculated from low-energy data. 

At tom, this is particularly simple by virtue of the optical theorem 

(see eq. (4.21)). We think, however, that more accurate results 

might be obtained (at t01) using the single sum rule S2N, since 

higher moment rules, which are necessarily introduced by the ratio 

method, weight preferentially the higher energy data which is less 

precise. The only advantage of the ratio method is that 700+.0.A(A) 

need not be accurately known insofar as it appears in the right-hand 

side of (4.21) , but since it must be known if the left-hand side is 

to be evaluated, the advantage is minimal, at any rate in the 

asymptotic energy region. 

At lower energies, where erp(A)-E0WA) is showing sane direct-

channel resonance fluctuations, it may still be possible to use the 

ratio method, but not a single sum-rule unless a modified value of 

IT (A) C-A(A) 
	

is used on the right-hand side. This modified 

Value.  may be obtained by drawing a smooth curve of the form V°(-1  

through the experimental curves. The reason for this procedure may 

be seen by examining (4.18). This says that itn i,PIT±R  (y, o )

is in a sense the smoothed-out absorptive part of v-T±(v,o) 
(see ref 58 for comments on this and related points) and eq. (4.19) 

says that the (Pegge) form V°(-1  drawn to fit the experimental 

99. 
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curves may be expected to be a good approximation to YirntR(v)0 ) 

which is the quantity appearing on the right of (4.20) and which is to 

be found. The conditions that (4.20) be good do not necessarily. 

require that A be above the resonance region, whereas eq. (4.21) as 

it stands is valid only in the asymptotic region of the cross 

sections. 

As we remarked earlier, the most interesting sum rules are S0  

and S1, in addition to the two supercdonvergence sum rules (4.15) and 

(4.16). There is sane hope of evaluating them with reasonable 

accuracy over the resonance region, if not now, in the forsccable 

future. 

In order to determine Regge parameters oG,(0) we make the isospin 

deccmpcsitions of S0  and Sl: 

(07)(4fgA(A))y„ 

o( p (0)
._y,  ctv 04,0)+aA(0)„,yrx = 	 A v, = 0 ) 

(A a 

cr'v —A—  40 	(TP")+CrA(v))  
(0-p (A)+(TA (A)) yr  -yr, 

 

A A GO A  (—IL) (Crp (1)) 	(V)) 4-p+ 75'n v.  
(lirp (A) —CrA (A) )  

b(c) -÷ 
1=0, 

A
(4.25) 

k 	49 (-0 (Cri)(v)— 6))) 	 (cri, (A) — crA(A)) 27= 
yo 	

DIA (6) 1-  
	  r 	) 

where 071 	rreans crYPE Cr Irr%  . The appropriate trajectories 

were determined in a previous section. 
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An evaluation of these four sum rules should provide values 

for o<p(o) , 0(A2(0), 0<i) (o) and °<A1(o) ; 	S0  should be easier to 

calculate than S1 because it involves unpolarised cross sections 

only. Neither the IO or 1=1 parts of a sum rule Si  will be easy to 

evaluate separately because of the grave lack of Wn photoproduction 

data. At present we can hope only to evaluate the sum rules (4.22) 

corresponding to the mixed isospin process 1'p -› total and in 
which 040,(.0) will be 04p(0) and (XA,(0.)iespectively, since 0vd.r>w,e4d 

and 	o(Ai  (o) > c<j) 
	(if these latter two trajectories are 

parallel) . 

Total  photoproduction60  data up to 5 GeV photon lab. energy yield, 

via eq. (4.22) a value of OVID) of approximately .85 . As the total  

cross section appears to be more or less constant ftuiu 2 GeV upwards, 

we can expect the value of o4(o) obtained to approach 1 as higher and 

higher energy data are taken into account. 

We sac therefore- that the easiest sum rule to use provides 

the least interesting information viz. the value Up(0), and with 

less accuracy than other methods. The data are not good enough to 

calculate 0,<A,(0 . The sum rules are therefore at the nonent more 

interesting as a check on the postulate of analyticity, using 

known values of the Pegge parameters, than as a means of ralculating 

these parameters, which are more readily found from phenomenological fits 

to hadron-hadron scattering amplitudes. 
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We formulate quantized electromagnetic field theory in terms 

of "tensor potentials". None of the usual difficulties, such as 

indefinite metric or unphysical particles arises. Gauge considerations 

do not enter. The compatibility with axiomatic field theory is discussed. 

Our fields interact locally with the electromagnetic current 

and the resultant quantum electrodynamics reproduces exactly the usual 

results. 

A similar solution to the problems of spin-2 graviton theory 

is indicated. 



1. 

I. 	INTRODUCTION  

It has long been recognised that the usual formulation of 

quantized electromagnetic theory in terms of the potentials A (x) suffers 

from theoretical difficulties (not least that of possibly not existing 

within the framework of axiomatic field theory1,2) due basically to the 

fact that a four-vector wave-function is unsuitable for the description 

of a massless spin-1 particle3. The work of Weinberg3'4  exposes this 

fact and shows how, in the usual treatment, Lorentz-covariance of the 

S-matrix is ensured by the imposition of the gauge condition on the M-

functions, equivalent to the conservation of charge. In spite of the 

elegance of this analysis, it unfortunately remains true that such a 

non-trivial theory is incompatible with axiomatic field theory . 

Similar remarks apply to the usual theory of spin-2 gravitons. 

We learn from Weinberg that we can avoid these difficulties 

if we describe the photon in its two helicity states by means of fields 

transforming with (a,a+1) (+) (a+1,a) representations of the Lorentz group. 

The simplest and obvious choice is (1,0) 0) (0,1) and this corresponds to 

fields antisymmetric in two indices, such as the electromagnetic field 

tensor F (x). In spin-2 graviton theory, the corresponding choice is the 
Pv 

Riemann tensor R 	(x) with suitable covariant subsidiary conditions. uvpa - 

In section II we discuss briefly the tensor F 
111)
(x), concluding 

as usual that it is unsuitable, as the interaction Lagrangian is non-

local. 

In section III we introduce the "tensor potentials", showing 

that the usual minimal coupling is local in terms of these. Their 

properties are deduced and, in section IV, the classical theory discussed. 

See Footnote 9, reference 



2. 

The tensor potentials are quantized, in the manner of Weinberg3, 

in section V. The commutation relations and the momentum-space 

propagators are written down, and the positive definiteness of the 

Hamiltonian and the metric of the space of states of the theory is demon-

strated. 

In section VI we discuss the compatibility with axiomatic field 

theory, concluding that our theory may almost be cast into this form. We 

show that arguments similar to those in ref. (1) which might be expected 

to imply triviality do not actually do• so because the two-point functions 

are not Green's functions and do not satisfy the equations of motion. An 

outline of a rigorous theory, with comments on this last point, is given 

in the Appendix. 

We further discuss in section VI the derivation of our theory 

from a Lagrangian formalism. 

In section VII we modify the Feynman rules, but find that the 

matrix elements of the conventional theory are reproduced exactly. 

Section VIII deals with certain indeterminate terms in the 

matrix.elements, arising from the external photon wave functions. The 

absence of these terms is shown to be equivalent to the gauge-invariance 

of the conventional theory. 

Section IX deals with charge conservation. 

Finally, in section X, the extension of the preceding work 

to higher-spin massless fields is indicated. 



3. 

II. 	THE ELECTROMAGNETIC FIELD TENSOR  

A theory formulated in terms of F pv(x)  suffers from none of 

the drawbacks mentioned above, and if suitable couplings with other fields 

are chosen, yields exactly the usual results. The use of the corresponding 

tensor wave-function*4'5  

e
pv

x
(k) Ek

p  Ev
X
(k) - k 

p
x(k) 

in S-matrix theory simplifies considerably the usual M-function analysis, 

as we shall see in a subsequent paper, because gauge considerations no 

longer enter. 

The crux of the matter is the choice of coupling. The usual 

interaction Lagrangian is 

1(k) 	) int 	Ap k  

and this is reproduced'by the form, in terms of F 
pv
(k), 

1-v  L int = -el(k) 2 Fpv (k) 

since 

F. (k) 
 

= k 
P  A  v 

 (k) - k 
v 
 A (k) 	and 	klij (k) = 0. 

Pv  

With this form of coupling we are able to describe soft-photon processes 

and long range forces, contrary to the usual statements2,5, but in 

configuration space this interaction is non-local, being 

This form is a consequence of Lorentz covariance
3,4

, and not of the known • 

relation between A (k) and F (k) 	Because of this relation, however, we 
Pv 

may identify E 
X
(k) with the usual polarisation vector. 

(1)  

(2)  



4. 
x 

int 	(x) = 
	

jil(x) -2— F uv(x) 
	

(3) 

It would therefore appear that we have merely exchanged one problem 

for another, albeit a more tractable one, by using the electromagnetic fields. 



III. 	THE TENSOR POTENTIALS  

Although forced to abandon F 
Pv
(x), we would still like to 

• 

formulate our theory in terms of an antisymmetric tensor field. We 

notice that if we define a new field X 
Pv
(x), the "electromagnetic tensor 

potential", by 

XPv (X) E 	F Pv(x) 

the interaction Lagrangian (3) takes the local (and minimal) form 

. 	= - i j 
P 
 (x)3 XPv(x) nt 	v 

Notice that current conservation is not necessary for the invariance of 

this interaction. 

We now elaborate on the definition of X (x). By (4) we mean 
Pv 

precisely 

x 
Pv 
 (x) = f dltx' D(x-x') F 

pv
(xl) 

The Green's function 5(x) is half the sum of the advanced and retarded 

functions, and we indicate the reason for this choice when we consider field 

commutation relations in the quantized theory. 

Clearly 

x 
pv 

 (x) = F pv(x) 
	

(T) 

so that Maxwell's equations read 

CD 	x"(x) = 0 
	

(8) 

We wish to stress this point. The interaction is local in terms of our 

fundamental fields X (x). 
Pv 

5. 

(5)  

(6)  



E 	avX"(x) = o 
t 

Furthermore, X. may be split up5 into its self-dual and anti-self dual 

parts X-  (x) which correspond to the two helicity or polarization states 

of the field. 

Xpv (x) = X
+ 
(x) + X pv(x) pv  

and (7), (8) and (9) become 

0 	xi v  (x) = pv(x) p  

0 DX-
-I- 
v = 0 

ti 

(c) 

(8'), (9') 

6. 

(9) 



IV. 	THE CLASSICAL LAGRANGIAN THEORY 

In terms of the classical fields X- (x) we may write the free 
Pv 

Lagrangian 

= - 	Ek.JX-
Pv 
 0 X+11‘)  + A±P a Pox±

P 
 ) 

= - 4(F
Pv
Fuv   + E 	DPF±  ) 

PP 

since F-+ F
Tuv  
 = O. X-  are Lagrange multipliers. pv 	. 

The Euler-Lagrange equations of motion derived from this Lagrangian 

by variation with respect to X-  (x) and X-  are 6  
Pv 

c 	0 X± v 	p 
(x) = 0, ClaV  X± (x) = 0 

the second of these being just Maxwell's equations (8') and (9'). The 

Lagrangian eq. (10) reduces to the usual form when Maxwell's equations 

are satisfied. 

There are twenty-four independent canonical fields X;v
(x) 

3 X- 
 v(x) and their corresponding canonically conjugate momenta

6 
o p 

, 
H- (x) = 3 a F-   kx) 

	

Pv 	o pv 

H 	(x) = 	F-+  (x) 
pv 	pv 

which satisfy the usual Poisson bracket conditions. A typical one is 

r + 
(x), 11 (x)..1 	i(g g VG — g g  ) 

	

pv 	PG 	pp 	pa vp 

The Hamiltonian density Zis given (when equations (81) and (9') 

are satisfied) by 

= 	rlo  F± ia xtuv 4(3  2x± 	4F± F±PVJ 
L 	o pv o 	o pv 	Pv 

( 12 ) 

(13) 

( 1)4) 
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V. 	THE QUANTIZED THEORY  

WedefinethelocalquantizedWeinbergfieldsX- (x) in the 
uv 

usual way4 -.5  

( 	+ f 	f 	
(k  x-  (x) = - id k +

‘k 	e 	E-  kk) a-±-kk, + eik'x 	%kiaTt  k )1 pv 	 pv 
(15)  

where 

dmksn+(k2) 	(211)n-m ammn(k2)0(k0),  

a±(k) are the annihilation operators for photons of momentum k and helicity 

+1, and C-  (k) are the corresponding wave functions which are in this case 

k 
P 
 e±I)(k)-kv p 	P 

e-
+ 
 (k) 	e-

+  
I) (k) 

-1---

PI) 

- „ 
(k) = 	- 

k2 k
2 

(16)  

The factor of 1  is introduced to ensure the correct relation 
k2  

between X (x) and F Pv(x)  as usually defined. However, because of this 

d(k2) factor, X-  (x) is not perhaps well defined by eq. 15 as we have 

in the integral. We therefore take the 12  outside the integral as the 

operator 	, so that we interpret eq. (15) as 

r  - 	 2 -ik.1.0 + X-  (x) = - ;d4x1D(x-xt )rd4kCS4-(k )1e 	e-  (k)a±(k)+e 	pv
ikx'÷*

(k)a(k).] 
pv  

(151 ) 

We remark that these fields are true tensors5. The particular 

Green's function i5(x) is chosen so as to yield causal commutators between 

the fields X. These we now discuss. uv 

The commutators of the fields X-  (x) follow simply from the 
uv 

basic relations 

k2 

Eax(k),ax"-(k, ,+(k2) = 64 k-10)(six, 	 (17) 



and the properties
4 
of the polarisation vectors , E

A (k). These satisfy 
.P 

k• 	) = o, ,c(k) = x* (k) , 

(18) 

E-  (k)s-4.*  (ic.) E II 	± (k) = Ali 	(k) ± i  A 	(k) pv pa 	Pv,Pa 	pv,pa 	2 Pv,Pa 

where 

li 	(k) = [-kkg -kkg +kkg +kkg 	 (19) 
Pv,Pa 	p p va 	v G pp 	p G vp 	v p pa 

and 

A 	(k) = 1 	 -kkE 
2k pv,pa 	2 [lckE 	+ kkE ppvaaa 	vGppal3 	p a -vpal3 

o 

a-t3 - k k 	k k 	(20) v p paaP,  

where 	ks = gf313 k 	(unsummed).  

We notice that A 	(k) is covariant if k2=0, as expected, and may be 
Pv,Pa 

rewritten, after detailed analysis, 

A 	(k) = - ka(k E + k E 	- k 	 (21) 
pv,pa 	p avpa 	v papa 	p pvaa - kaEpvpa ) 

This form provides a covariant extension of A(k) to off-shell momentum values. 

The commutation relations are, then, 

f it (X), X±t(Y)] 
PV 	PO 

=fdxid y 15(x-x')15(y-y')fd ke(k2) 

X fl± 	(k)[e-ik.(xt-Y')-eik"(xt- 
Pv,Pa 

(22) 

* 
Our metric is goo = 1' eii = -1. 



= ild
4
x'd y b(x-x')15(Y-Y') n- 	D(x'-y') 

Notice that the result is the same whether we use the definition eq. (15') 

for the fields, or instead manipulate formally with the forms eq. (15), 

finally interpreting a factor —4- in the k-integration as Id4 x
v 
d4 y'15 D .... 

We write down a further commutation relation, that between the 

fields Xpv(x) which are self-conjugate since X±}  (x) = X
* 
 (x). 

pv 	pv 

'EXpv(x), Xpa(Y)] 	ii(x-x 1 )775(Y-Y') npv,p (-ia)D(xt-y 1) 

(17)  

It is straightforward to show that all these commutators vanish for x-y 

spacelike, but they would not (necessarily) do so if we replaced -5(x) by 

ret 
.D. 	(x), say. 

The propagators in momentum space are 

+ 	+* 	+ 
c- 	(k) n-  (k) 
PI) 	pa 	Pv0a  

, 

	

(k2+5_E) 	k4  (k2  +is) 

or, summed over helicity states, 

(k) 
1.1v,Pa  

k
4
(k
2
+is) 

Finally we show that the Hamiltonian of the free fields has a 

positive definite expectation value, and that the states of the theory, 

obtained from the vacuum by applying polynomials in the smeared free 

fields, have a positive-definite metric. 

With our fields defined as in (15) or (15') we are able to 

derive all the quantities appearing in the expression (14) for the 

10. 

(23)  



11. 

Hamiltonian density. After some calculation, its vacuum expectation value 

is found to be positive definite : 

<017(x)10> = 12 f d3k w(k) 

k>0 
0 

where 

w(k) = ko  = 11. 

The smeared field X
x (f) is defined by 
pv 

XX  (f) = (d4x XX  (x) f(x) 
Pv 	J 	Pv 

where f(x) is some test function.. The one photon state 	X
X
pv(f)10. has 

the (norm)2  (bee also the Appendix) 

pv 

+( 2)1, ,1 2 
<01XXt(f) X

X v (f)10> = rd k 	Ifkk) 	R- 	(k) 
d- p 

k 	
v,pv 

where 

f(k) = fd4x e
ik. x

f(x) 

Now 

RX 	(k) = - g k
2 - g k2 + 2g k k 

Pv,Pv 	pp v 	vv p 	Pv P v 

?. 0 
	

(29) 

equality only holding if p,v and k are such that E
X 
v
(k) = 0 . The metric 

P 

is then clearly positive-definite. It is straightforward to extend the 

analysis to the multi-photon states 

Xi 
X- 	(f.) ... 10> . 

(25)  

(26)  

(27)  

(28)  



12. 

In fact we shall find in the next section and in the appendix 

that these states do not lie in the Hilbert space, this being spanned by 

states obtained by applying polynomials in OX 	to the vacuum. However pv 

the metric is still positive-definite as may be seen by appropriately 

modifying eqs. (26) and (27). 
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VI. 	AXIOMATIC FIELD THEORY  

an axiomatic' formulation,
8,9,* 

for they have causal commutators, transform 

covariantly, and the two point functions 

• W-Pv,Pa (x-y) E <01X-  (x)X71
co

1.(y)10> 
pv  (30) 

are the boundary values of the functions, analytic in the extended tube, 

Py0a 
(E) 	 B(E-x')15(,y') 	-iD)D+(x'-y? ) 	(31) 

This form is obtained using the translational invariance of (30). 

Recently Strocchi has shown1,2 that in any theory of electrodynamics 

based on vector potentials, whether covariant or not, the condition that 

the two point functions be boundary values of functions analytic in the 

extended tube and satisfy the same equations of motion as the potentials  

leads to a trivial theory, 

<01F (x)F (y)10> = 0 uv 	- pa 

We will extend Strocchi's analysis to our two point functions 

W- 	(x-y) and show that if they satisfy Maxwell's equations 
Pv,Pa 

3 W- 	(xy) = 0 
Pv,P0 

we obtain a trivial theory. 

If W- 
+ 
1.1v0 0

(E) is analytic in the extended tube, and covariant, 

then by the Araki-Hepp theorem10 and some extra reasoning outlined in ref. 1, 

See also the Appendix. 

The fields X-  (x) appear at first sight to be consistent with 
Pv 

(32)  

(33)  



(40) 	. 

we find that 

0:IgvG .V 9 915  )1:10D±(x) = 0 . 

-it can be expressed in the form 

w— 	(e) = 	1 D-k + f N E) + - A 	(-ia)D-A(C) 
Pv,PP 	Pv,Pa 	 - 2 Pv,P0.  

where 11(-ia) and A(-ia) are defined in eqs. 18-20 and the functions 

D7(t) and D1(0 are invariant, Di(AO = Di( O. In fact this is not 

the most general form of W(), but we consider only those covariants 

ll(-ia) and A(-ia) arising from photon fields. 	W- 	(x-y) his given by pv,pa 
the boundary value of eq. (34). 

* Now if 

0Pwl: viPa(x—Y) 	0 	 (35) 

0 C] [(9 p  g VG  -9 g vp  ) DI(x) 	i aac avpaD±(x51 = 0 
0 	A 

by eq. (34). 

Further, 

W-  (x-y) E <ola x- (x)aPx-  (y)10> va 	 Pv 	Po - 

satisfies the same equation of motion as 	aPxpu  (x), 

i.e. 	CI W-
va
(x-y)= 0 , 

then, since from eq. (34) 

WI  (x) = i(tIgVG  - a V  a 071"  )0D-(x) va  

14, 

(34) 

(36) 

(31) 

(38)  

(39)  



This implies, by a lemma proved in ref. 1, 

C3 0 D(x) = constant 

so that eq. (36) now reads 

a
a 
avoo 	A 

ODD-(x) = 0 . 

Now, from the definition of X-  (x), 
Pv 

Pv,Pa (x-Y) 	
<0!Ft (x)F±t(Y)I 0> EICLW 	(x-y) pv 	Pa 	 Pv,PcJ 

and it is clear from eqs. (34), (41) and (42) that 

. • . 

t  Pv,Pa 
(x-y) = 0 (40)  

which implies a trivial theory. However,with the fields X-  (x) defined 
Pv 

in eqs. (15) and (15'), the two-point functions eg. (30) do not satisfy 

Maxwell's equations nor do they satisfy the Klein-Gordon equation 

I ❑  
WPv,Pa
- 	(x-y) = 0 
	

(45) 

even though the fields themselves appear to satisfy both these equations as 

operator identities (but see the Appendix). 

This is not perhaps surprising in some respects, as the Green's 

functions are not the W's but 

G-Pv,Pa (x-y) = <0 I X- (x)131± 1-(y )10> 
Pv 	Pa 
	 (46) 

and these satisfy the two equations. 

We conclude that the Strocchi-style analysis given above does not 

15. 

(41)  

(42)  

(43)  



apply to our theory, as eqs. (35), (36), (38), (40)-(42), and (44) are 

not correct. 

.Nevertheless, there remains the apparent contradiction that 

0 0 <01X± 
 v
(x)fit(y)10> V 0 , p 	pa 

al-b<olx± (x)X±f(y)10> 	0 
Pv 	pa 

whereasourfieldsaadefinedineci.(15)satisfyripx-l b0=03/1 X1 ,(x) =-0. 
Pv 	Pv 

We discuss this at greater length in the Appendix. The explanation is that 

none of the equations (11) can hold as operator identities on states formed 

by applying polynomials in the fields X 	to the vacuum state. But since pv 

these equations are operator identities on the vacuum state, (47) shows that 

X 
Pv

la-,  cannot even be a state in the Hilbert space (its scalar product with 

the zero vector being non-zero). For the physical states we must take those 

obtained by applying to the vacuum polynomials in El X 
pv 
 , and no contra-

dictions then arise. Eqs. (11) hold as operator identities on such states. 

All this shows that the fields X
pv
(x) are not really of much 

interest in an axiomatic approach. Their chief virtue is that they all3w 

the Weinberg programme to be carried through with covariant fields satisfying 

causal commutation relations, and a local interaction Lagrangian. 

Finally we would like to point out that our theory should in 

principle be. derivable from a Lagrangian formalism such as that outlined in 

Section IV. The field- commutation relations should then follow from the 

equal-time- canonical commutation relations together with a number of assumption: 

about the form of the fields in momentum space. The S-matrix could then be 

calculated by the usual techniques. Of course this would do nothing to 

avoid the above criticisms. 

16. 

(47) 
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VII. 	THE FEYNMAN RULES  

The S-matrix is given in terms of the interaction Hamiltonian as 

S = P [Fxp (-i 	
1 

(x))1 	 (48) 

In Weinberg field theory this is an assumption. 

We are then able to derive a set of Feynman rules for calculating 

the scattering amplitudes and these of course differ slightly from those 

which one uses in the conventional theory of electrodynamics. We give the 

necessary modifications : 

.(a) For an external incoming (outgoing) photon we must now use the 

wave function 	(k) (E
X*
(k)). uv 	uv 

(b) For each photonic vertex, we now put -(k C -k C ), where before 
2 	v P 

we had simply eC
P 
 (Cu  = y , for example). 

(c) For each internal photon line, we now insert the propagator 

(We could write down the separate contributions of k4(k2i_ie)  

the two helicity states, but they turn out to be equal with the 

couplings given in (b). With Pauli-type couplings papv  at the 

vertices, the two helicity states give complex-conjugate 

contributions). 

Using these modified rules, it is not hard to see that we obtain 

exactly the same expressions as in the conventional• theory with the Landau 
k k 

propagator 	g
uv
- 	, with the sole exception that at an external  

k
2

v  

2 . 
k +ic 

photon vertex, the coupling reduces to 

E(k)(e-k- G--) 
k 2 
	 (49) 

uv,pa
(k)  
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which differs from the usual c•C by the term k'C 

Now -for k
2 
 =0 =

E•
15- is indeterminate, but for other values of 

'k 
	k 

c

2

k • 

k
2 

it is zero. We may therefore argue that it vanishes for k
2
=0 also, 

as a limit from k
2
V0. However, we cannot altogether ignore this second 

term- 	as it becomes non-zero under Lorentz-transformation (e (k) is 

not a four-vector
4), cancelling an equal and opposite term which appears 

when 6.0 is transformed. In other words, E•C is not a scalar, but 

(C
P 
 -k'C--- 

k 
 2
) is, to within a phase, and in another frame, obtained by 

k. 
the Lorentz transformation A, has the value 

E±(Ak)(AC)1-1= e± 
ie(A,i) E±(k)C- 
	

(50) 

so that the matrix elements of the usual theory are exactly reproduced 

' (providing always that the 
k.E

terms give no contribution). 

k 
2 
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VIII 	FURTHER CONSIDERATIONS  

Even though the 
k
--0  parts of the couplings, or covariants 
k- 

as we shall call them from now on, need not contribute to the matrix 

elements, we may still try to remove them in some way. 

To do so, we may form new covariants, free of such parts, by 

taking suitable combinations of the original ones, in fact the same 

combinations as are necessary, in the usual analysis, to give gauge-

invariant covariants. We see this in the following way: 

Let the complete set of conventional non-gauge-invariant 

covariants for a given process be 	P 
1 	

with corresponding invariant 

amplitudes 
Al'..An 

such that the M-function is given by 

Mu - y K1.1  A. 	 .(51) 

Following our rules, we find an M-function 

Mug  = 	1 (kije-k''KI:1 )A. 	 (52) 

the .A.
1 
 and. K. being the same as before. We define M to be such that 

eX(k)M
tp 
 = EA  (k)M" 

Therefore - 

11 M 	= L  K. A. 
1 

1 

where. 

K . P = K.P  - 
1 	1 kk2 

and the A. are still the same. 
1 

• (53) 

(54) 



Now let C..13 be kinematic factors, free of singularities (but 

possibly possessing zeros) such that the covariants 

- 1C.=1 C. 	K. 
1 	13 j 

satisfy k*R. = 0, that is, they are conventional gauge invariant covariants. 

_t 
Then the same combinations K. of our covariants K. are 

1 

R:P = , C.. K.-  = 	C. KP - 	7  C..k•K. 
1lj j 	k2 L  lj 	j 

. 

=V C K 
J • • 1.)  

(56) 

by definition of the C.., so that 
13 

1 
	 (57) 

kP  
which have no term in 

--2-, 
and are the conventional gauge-invariant forms. 

k 
It may or may not be possible to construct n covariants free of 

Itu  
— terms in this way. If not, we cannot remove all such terms from the 
k
2 

M-function. If we can construct n such covariants, then the M-function is 

expressible with these only and is clearly identical with the conventional 

one which is, of course, gauge invariant. 

More succinctly, by virtue of eq. (51) and eq. (54) 

.„ 
Mv = 	KP A. - 

ht 
k.M 

1 1 
k
2 

t, 
if M " has no term in 

kt 
it is equal to M and k°M = 0. Conversely, 

k
2 , 

1-1 
if k°M = 0, Mau

k  has no term in — , and is equal to M. Thus the absence 

kP 	 k ► 
 

of 7  terms in our M-function M u  is equivalent to gauge-invarlan::e 
k 

of the conventional M-function. 

20. 

(55) 

(58) 



conservation is seen very clearly when we construct M , by our rules, for 

the emission of one soft extra photon in some scattering process
11 

 . The 

kP 	1, 
coefficient of — in M is proportional to the difference between the 

k
2 

kP  
total ingoing and total outgoing charges. If charge is conserved no 

k
2 

21. 

IX, 	CHARGE CONSERVATION  

Our tensor potential theory is not a gauge-theory. Charge 

conservation is not necessary for covariance and must be imposed a posteriori. 

In the Weinberg theory5, charge conservation is a necessary and sufficient 

condition for the theory to be covariant, and is expressible as k•M = 0. 

kP 
But we saw in the last section that this implied the absence of —2 terms in 

t fl  
M " and vice versa, so that in our theory charge is conserved if and only if 

kP 	 l o  

M 	contains no terms in 2 — . If charge is conserved, then M " = MP  and 
k 

the conventional M-function is therefore reproduced exactly by our rules, 

kP 
The equivalence between absence of the 	 terms and charge 

k2 1 

term appears, and vice versa. 

On the other hand, if our fields interacted with non-conserved 

t, 	k 
quantities, M " would have a term in — giving an indeterminate contribution 

k
2' 

to the matrix elements (which we might, however, "define away"). 
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X. 	HIGHER SPIN MASSLESS FIELDS  

A similar formulation can be made of quantized spin-2 graviton 

theory. A suitable fundamental field is S 	(x), related to the Riemann 
PvPG 

tensor R 	by 
PvP0 

E]O s 	(x) R 	(x) 
uvpo 	PvP0  

(59) 

The self-dual and anti-self-dual parts of S 	(x), which may be 
PvPG 

projected out locally and covariantly, then describe gravitons of helicity 

+2. The quantization of the fields is achieved by imposing the basic 

commutation relation, eq. (17),on the graviton creation and annihilation 

operators. 

Suvpo(x) can interact locally with the energy-momentum tensor 

TP  (x) to reproduce the usual fTP  gform. 
k k 	Pv  

We find that 	v terms are absent from the partially-reduced 
k 

 

two-index M-functions if and only if the gravitational coupling constant 

is universal. 

In the same way we may formulate field theories of massless particles 

of spin-3 or higher. Such fields can interact at zero momentum, contrary 

to a statement in ref. 4, and can therefore give rise to macroscopic fields. 

However (k
2
)
-j 

terms cannot in general be removed from the partially- 

reduced M-functions by any conservation or universality principle. We 

could remove such terms by using different wave functions, but then the 

fields would not interact at zero-momentum, and would give rise to a non- 

renormalizable theory. 
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XI. 	CONCLUSION  

We ha-e presented a solution to the difficulties inherent in 

Weinberg's approach to quantum electrodynamics5. Our tensor potentials 

are local covariant fields which interact locally with the electromagnetic 

current. They have causal commutation relations. No gauge considerations 

enter, and there are no unphysical particles. The Hamiltonian and the 

metric of the space of physical states are positive definite. 

The fields satisfy their equations of motion as operator identities 

on the physical states, and would be compatible with axiomatic field theory 

but for the fact that the states generated by applying them to physical 

states do not lie in the Hilbert space. The physical states are in fact 

generated by the fields F 
Pv
(x). However, the PCT theorem is not lost. 

Alternatively, if we had introduced the tensor potentials through 

an axiomatic formulation, the theory would have been trivial. This 

represents an extension of the analysis of refs. 1 and 2. 

Subject to these reservations, the theory appears to be, in 

principle, derivable from a Lagrangian formalism. 

The Feynman rules for calculating scattering matrix elements 

are similar to those in conventional quantum electrodynamics, and by 

virtue of charge conservation, the usual matrix elements are recovered 

exactly. 

A similar analysis in the same spirit may be anDlied to higher-

spin massless field theories. 
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24. 

 

The Hulbert space of free photon states is the direct sum9. 

 

CO 

= 	(n) 
	

(Al) 

n=o 

iv(n) of Hilbert spaces e  n. 	which are subspaces of those states with n photons. 

A vector T in 	is given by the sequence 

{T(0),T(1)0,(2), • • • o 	. 

40  of vectors T(n) 	(n) , with the scalar product in 

(4),T)  .. 	(c1)(n) (n)) 	 (A2) 

n=o 

ev 
where (0(n),T 

	

	
(n) (n)) is the scalar product in ok- 

Only those sequences such that 

(T,T) < 	 (A3).  

are in 4X4 

Vt(0) is.the (one-dimensional) space of complex numbers,W
(I) the 

space of square-integrable functions of momentum with anti-symmetric 

indices u,v etc. 

--1/ 	. 
The scalar product in

(n) 
 u en_ 	s then 

(,,,,(n),,y(n)) 	f_f a4pe 	
x  

- 	n 

(n)* 	(n) x 	(p 	)T 
.111v1nvn 1  -n 11

..,pnn 
...pn ) (A4) 
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• 

where T
(1) 

 (p) is the single-photon wave function. 
Pv 

Now it is a disease of zero-mass theories that the class of 

functions square-integrable on the mass hyperboloid, viz. the light cone, 

contains only the zero element due to singularities at infinity and at 

the vertex of the light cone. We may attempt to remedy this by, for 

example, defining our class of functions with respect to a measure somewhat 

smeared in mass. We shall not investigate this problem, and shall continue 

to use singular measures. Any meaningful result obtainable, such as 

fake(k2 2 = 0 
	

(A6) 

will surely hold in some sense in the rigorous formalism. 

The smeared fields X-  (f) are defined as linear functionals on 
Pv 

a suitable space of test functions f( x), and the Hilbert space of states should 

be obtainable by applying to the vacuum state polynomials in the smeared 

fields. 

In particular, the one photon state is given by 

• 

X (f)10> = jd k (51-(k 	(k)f(k)a (k)10> 
At 	r 	2 X* 	Xt 
Pa 	pa 
	 (AT) 

where f(k) has been defined in eq. (28). 

Now let us apply the operator DPDXIXIv(g) to this state. We have 

aPEIXX
v 
 (g) k,X> = 

P 
	g4 p§ (p

2 
 )Ev

A 
 (p)g(-p)a

A(p)aAt(k)10-,  - 

dp 	p
2
p
2
Ev
X 
 (p)g(p)a (p)1k,X> 	(A8) 

The second integral vanishes because of the p26 (p
2
) factor, while the 

first, by virtue of eq. (17), is 



But 

aPDXA 
 v
(g)10> = fdliki÷(k2)k2EA*(k)g(k)10-,,  = 0 

ti 
( Al2 ) 

26, 

Jr d 10(5. (13-k)P2E-Xv(10)g(-13)10> = k2c)x') (k)e-k)10> 	(A9) 

This is not zero, nor need it be, since Ik,A> is not normalizable 

and thus not a state in our Hilbert space. However, as soon as the state 

lk,A> is put on-shell, k2=0, as happens in an integration over k, the 

right hand side of (A9) vanishes. 

Finally we find 

DuE1Xx (g)Xxt(f)10> u 	pa 

which is not zero, because the 12k  

k
2 in the integrand. 

Therefore, 

4 	 - 	- 
fd k(5

4-
(k
2 
 )k
2 
 f(k) 0G(k)g(-k)Ev  (k)10> (A10) 

factor in 
A  (k) cancels the explicit 
Po 

V A Xt <Op 	(g)X (f)10> V 0 uv 	pa 
( Ail ) 

so that XXt(f)10> cannot even be in the Hilbert space, as its scalar product 
Po 

with the zero vector is non-zero. 

In a similar way, we find that the states auOXxt(f)10-> cannot uv 

be in the Hilbert space either. However the equations of motion (11) are 

satisfied as operator identities on the space of states obtained from the 

vacuum by applying polynomials in the smeared fields EJX ‘,0(f) E F.x0v(f). 

This is simple to verify and comes about because the wave-functions for 

these fields have no 1 — factor. 
k
2 

Of course, these conclusions show that the fields X (x) are 
Py 

of little interest in this axiomatic approach. This is not to say, 

however, that the two-point functions involving them are not meaningful; 
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we have given one in eq, (31), calculated from the representation eqs. 

(15) and (15'). Nor do we lose axiomatic field theory results, such as 

PCT. This theorem will apply to the fields DX (x) E F (x) and their 
Pv 	Pv 

n-point functions. Consequently the n-point functions of the fields 

X Pv(x)  , having meaning as distributions, if not as scalar products in a 

Hilbert space, will satisfy the PCT condition9  : 

<01Xp v 
(x
1 	iin 
)-... X(x

n 	
nn 	

n 	y 
)10>=<01X

pv
(-x 	X 

v 
(-x)10-- 

1 1:. 	vn 	 1 1 	
1 

(A13) 

as may be seen by repeated application of eq. (6) to 

<01F ( )-,. 
P1v1 n v n (xn

)10> ' <01F- Pnvn 
...F 	(-x 

P1v1 

Finally, we remark that the analysis in section VI and in this 

appendix suggests that in formulating quantized electromagnetic theory 

axiomatically without unphysical particles, we cannot have both a local 

minimal Lagrangian and the equations of motion as operator identities on 

the (physical) states generated by operation of the fields on the vacuum 

state. 
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