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ABSTRACT  

The rigorous statistical mechanics of various classical systems 

of particles at real or complex fugacities is studied. Some 

existing techniques for deriving the equation of state at posi-

tive fucacities are surveyed & one of them is partially extended. 

Several theorems are proved (for systems which are, effectively, 

one-dimensional) concerning the distribution of limit points of 

zeros of the grand partition function in the complex fugacity 

---(z) 	plane, as the size of the system becomes infinite. 

The main new result is a criterion for the unique determination 

of this distribution from the equation of state. This is 

important because it allows unambiguous application of the Yang- 

Lee theorems (1952), which show that a phase transition can 

occur only if the zero-distribution meets the real positive z-axis. 

The calculation in Chapter VI & the work of Kac, Uhlenbeck 

Hemmer (1963), & Lebowitz & Penrose (1966), show that our criterion 

fails for certain systems with forces of infinite range; but the 

most general conditions for this or a modified uniqueness criterion 

to hold have still to be found. 



PREFACE 

The research in this thesis concerns a single problem: 

to determine the thermodynamic pressure at fixed temperature, 

of a classical system of interacting particles, throughout 

the complex plane of the fugacity variable, Z  . 

It was shown by Yang and Lee (1952) that the singularities 

of the complete analytic function, say11(2), obtained by analjtic 

continuation from the equation of state at positive fugacity, 

coincide with the limit points of zeros of the grand partition 

function as the size of the system becomes infinite. Chapter I 

is designed primarily to motivate and explain the theory of phase 

transitions due to Yang and Lee (1952), in which the above zero-

distribution plays a central role. In Chapter II we analyse some 

rigorous techniques for studying the equation of state of a 

classical, one-dimensional continuum system. Our original intention 

was to tackle the main problem with the help of these techniques, 

but the mathematical obstacles to this procedure have so far 

proved insurmountable and we have had to develop different methods. 

It was shown by Kao (1959) how the grand canonical pressure of a 

one-dimensional system could be determined implicitly if the pair 

interaction potential was equal to the autocovariance of a stationary, 

one-dimensional, Gansiian Markov process. We have extended this 

method in Chapter III to - study a system for which the potential is 

an element of the autocovariance matrix of a two-dimensional 

Markov process. However, the integral equation we obtain does not 
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share the symmetry of Kac's equation, so we have only been able 

to derive formal results. 

Chapter IV consists of a papet, 

The Yang - Lee Distribution of Zeros for 

a'Classical One-dimensional system, by 

O. Penrose & J.S.N. Elvey, 

which has been submitted for publication in the Journal of 

Mathematical Physics. For this reason the numbering of equations 

in chapter IV differs from that in the other chapters, but this 

difference causes no difficulties. In all chapters except Chapter IV 

each equation has a three-part number; for example (II 6 • 18) 

means Chapter II, section 6, equation 18. For reference within a 

chapter the chapter number is omitted. Finally, cross - references 

to Chapter IV, where the equations are numbered consecutivily from 

1 to 74, consist of just two numbers; for instance (IV.31)/ 

Our main result in Chapter IV states that when there is a 

unique branch of T1 ( Z )  having largest real part, and this branch 
is regular, then it is equal to the pressure at ft gacity )5 

The set of values of the fugacity for which no such branch exists is 

shown to coincide with the set of limit points of zeros of the 

grand partition function. These results are proved for a classical 

one-dimensional continuum system of particles with hard cores and 

• nearest-neighbour interactions. 

If lattice gases are considered, however, the principal 

theorems of Chapter IV may be extended to a class of systems in one 

two or three dimensions, provided that the lattices grow only one- 

WriReft.  ivs error; cocetAect 11 Fr°CAI. gbe.(1.ba abA) 	t 96 8 . 
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dimensionally. These extensions are achieved in Chapter V, where 

the problem of proving similar generalipations for continuum 

s2,-stems, by making the lattice spacing tend to zero in a suitable 

way, is also discussed, though no rigorous results are obtained. 

All of the theorems proved in Chapters IV and. V may be 

generalized at once to the case where the temperature is fixed 

but complex. * 

The work of Kac, Uhlenbeck and Hemmer (1963) shows that a 

continuum system of hard rods with exponentially decreasing attractive 

forces rigorously obeys Van der Waal's equation of state (modified 

by Naxwell's rule) in the limit that the range of interaction becomes 

infinite while its strength decreases to zero. 	This property has 

been generalized by Lebowitz and Penrose (1966) to a class of 

three—dimensional systems. Therefore it seems interesting to 

examine the consocuences of assuming our theorems for a Van der Weals 

gas, and our final Chapter (VI) contains an approximate calculation 

in which this is done. 	Our results are found to be consistent with 

thermodynamics at or below the critical temperature, Tel  but lead to 

incorrect conclusions above Pc. 
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' CHAPTER 1 

s 

General Considerations. 



The Dasic Aims of Statistical Mechanics and Thermodynamics. 

The aim of statistical mechanics is to explain and 

predict the behaviour of matter in bulk from the dynamical 

behaviour of its constituent particles. That is, given the 

Hamiltonian representing a physical object, such as a volume 

of gas in a container, to determine the observational properties 

of this object — for instance its specific heat or its entropy. 

A procedure whereby this aim can be achieved completely 

(at least in principle) was introduced by Gibbs (1902) for systems 

whose constituent particles move according to Newton's Laws of 

motion. The essential step in extending Gibbs' procedure to 

systems whose particles obey the laws of quantum mechanics was/ 

taken by Dirac (1930). / 

The basis of Gibbs' method lies in accepting our practical 

inability to determine the precise dynamical state of a system 

of particles (that is, the position and momentum of each particle) 

at a given time, and to use instead a probability distribution over 

cw-exvioc, 
the phase space of the system. The natural farm of cii-stzifaut-ion, 

doserib4416 the change of state of the system in time, makes the 

calculations intractable; but the ergodic theorem (4f,Khinch4n, 

1949 Ch. 3)*provides sufficient conditions for the time averages 

of dynamical variables to be replaced by expectation values over an 

appropriate ensemble consisting of systems identical to the one under 

consideration. 

* See also Farquhar (1964). 	'recent ,and fuller account. 
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The intruduction of probability from the outset envisages 

thermodynamic variables as ensemble — averages of dynamical variables: 

for instance, the temperature corresponds to the mean kinetic energy 

of the system,, and the total internal energy to the mean value of 

the Hamiltonian. Accordingly, the fundamental problem which Gibbs 

set himself was to specify suitable probability distributions and 

to construct from them analogues of thermodynamic quantities. In 

Sections 2 and 3 of this chapter the essentials of Gibbs' method 

are outlined. 

In classical thermodynamics it is postulated that a 

complete description of a physical object is provided by a set of 

independent variables, say R and d. function, sayIef these variables. 

The set R is called a (thermodynamic) representation, R being the 

corresponding (thermodynamic) potential. In general R 'consists of 

both intensive and extensive variables, though it is often convenient 

to consider 'reduced' representations, r, in which all extensive 

variables in R are replaced by densities (per unit volume). It is 

assumed that the set of macroscopic quantities constituting a full 

description of the observational state of the systemcan be specified; 

the manifold difficulties inherent in making this specification do 

not concern us here. In terms of R and 	, the set, 0 , of variables 

which determine the observational state, may be expressed as 

- 	u 
aR 



where the right - hand side of (1*1) denotes the union of the 

set R and the set Ay  N) of dependent variables obtained from 

by partial differentiation in the variables of R. 

If an equilibrium state-of an isolated composite system 

subject to internal constraints, such as partitions,is specified, 

in the representation R, then the new equilibrium•  state eventually 

attained when a constraint is relaxed, may be determined by solving 

the variational problem 

11 
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( 	1"2) 

for the variables in R subject to all of the remaining constraints, 

the sign (4.)  required of 01.2ik  depending upon whetheb 

is to be minimized (like the internal energy, u) or maximized (like 

the entrophy, s). That is, the linear differential form 	
C) 

/2:r 
must vanish, while the quadratic differential formI0L1-1R)  must 

be (positive or negative) definite. Following Callen (1960:ch:8), it 

may be shown that the statements (1'1) and(1•2) imply all of the 

usual thermodynamic stability conditions. 

If 0‹.<5. 	then a  fz/•90  and CX 	are called 

conjugate variables for R (an example is the pair T, S). A pair 

of conjugate variables always consists of one extensive variable 

and one intensive variable (except when one deals with reduced 

potentials, when both variables are necessarily intensive). 
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Further, if the representation R is derived from R by replacing 

a< with .D.TR,/ae then we have 

(T_ 1s) 
R 	 0.4 

Evidently the effect of the Legendre transformation (3) ib to make 

3gA4/7100 4 an independent variable and Ca< a dependent variable. 

The basic result (1) applied to (3) yields the thermodynamic state 

in representation R. 
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The Link Between Statistical.Mechanics  

and Thermodynamics. 

Gibbs'prescription for constructing analogues of 

the'reduced potentials' 07...-.4A0( when R includes at least 

one extensive variable, may be expressed succintly in the form 

r‘i 
	 (12:0 

where 	denotes the normalizing factor (structure function) 

of the normalized probability distribution ) D1 (),.; for the 
ensemble representing a system in which the variables of R are 

fixed, and x denotes a point in the phase space of the system. 

The asymptotic equality indicated in (2.1) holds as the volume, 7, 

becomes infinite. If 041. 	is extensive, it may be shown (of. 

Sack, 1959) that 	is the Laplace transform of 
fZ 	 k 

where R and R are related by (1.3). 

The guiding principles for the assignment of phase - 

space density functions are Lionville's theorem (DR  (A) is 

conserved along a phase - space trajectory), and the requirement 

that the functions ie 	should be strictly additive for a 

composite system comprizing two or more mutually isolated subsystems. 

Lionville's theorem implies that A!(0 must be a function of 

constants of the motion of the system. Moreover, the multiplicative 

law for the joint probability of a pair of independent events implies 

that 

§ 



whenever the phase space ,74  , of the whole system may be written 
14- 

as the topological product, / 	7of two subspaces with 

representative points j 	respectively. Fhysically,.(1•5) 
ir 

means that the system consists of two mutually isolated parts. The 

expectation valUe of any classical - dynamical variable, say 2!", 

is found by intergrating 2 	(;) over Fie 

For quantum mechanical systems the uncertainty relations' 

/ 
preclude the definition of a phase space. Nevertheless,-following 

Dirac (1950)/; one can still introduce a density operator,..1) ' 
which is simply a weighed sum of projection operators onto all 

possible linearly' independent quantum states, IC> , compatible 
with what is known about the system, each weight being the 

probability that a particular one of these states is attained. 

When the system consists of N particles, the domain ofj)Ris a 

subspace of the Hilbert space of square - integrable functions of 

N variables. For example, a hard - sphere Bose gas in a container 

would correspond to a subspace in which the wave - functions were 

totally symmetric in all N arguments and vanished if two particles 

overlapped or a particle was outside the container. 

The probability of finding a specified quantum state, say 
A 

, is then found to be <(:0)z )(::::› (in Dirac's notation), 

SO that the expectation value <2f>  of any quantum, - dynamical 
A 

variable, 	, equals ter( 1)-.)3g.  ), where the symboltr4 indicates 

the trace of an operator A, taken with respect to any complete set 

of wave functions of suitable symmetry. It is readily shown that 

* See Dirac (1958) Ch. V § 33 



is independent of the (quantum mechanical) representation 

with respect to which the trace is taken. The function 
le 

of equation (1.4) now becomes t !JR 	while equation-(2.5) 

generalizes to the case where the Hilbert space of the system is 

separable. 

16 
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N-1 ts1 

E 
i.1 Jo+,. (3_ 3-2) 

(I 3.1) 
where 

GO be )(I  Ar) 

3.3) (11 

The Basic Functions of Statistical Mechanics. 

For future reference, we now define the principal 

functions of classical statistical Aechanics; all of them have 

quantum mechanical analogues but we omit these, since this thesis 

is concerned only with classical systeds. 

For a system of N identical particles of mass 

moving in a y— dimensional container)171)  of volume. V (area 

A in two dimensions, length L in one dimension), interacting with 

one another through pair-wise forces only, the Hamiltonian is 

defined by 

denotes the total potential energy of the particles, 

w 

is the total kinetic energy and eN•„ accounts for the interactions 
of the particles with the walls of the container. As before, 

denotes a point in the phase space, / 	of the system. 

It may be demonstrated (of Khintiliin, 1949, Ch. V, Huang, 

1964 Chs. 7 and 8) that the probability density functions, 
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OMIIMM• 

o , 

can be determined from the conditions mentioned in § 2 (see, 

Table 1 for details). The explicit forms of -tTie  in the cases of 

interest.to us are as follows, the representation, R, being 

specified by the independent variables rippearing on the left 

hand sides of the defining equations. 

First, one.finds.that 

w(E,N,v) 

     

     

••=11•=1=111 
ORMIIINO 

 

Ti 

(.2"  3 40 
where 

and the integral of 4nS (4 over all real Z 	is positive. 

In the present context, .p is to be interpreted as the fjaximal 

uncertainty in the value of the energy, E .;.-many-aut-hors-take-p 

to_ ba:zzerciT_-_-so-that---inv-14-reduces-to-a-triult-iple--of----tire-Diracr,  

onb— 

The factor (04.1. 	is included here and'elsewhere to 

make the entropy, which is found to be proportional t 

an additive function of each of.its arguements. 

Next, we have 

(1" 3 



is,  the absolute temperature, 	being 

Boltzmann's Constant. Finally, one obtains for the grand • 

where 
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partition function 

al(Th A,V) 

 

a" 37> 

 

• 

where , the Activity of the system, is given by' 

    

••••••••••W 

41•1111 

•••••••••• 
UMW 

411•110 

• 

(fl/A /) 	3 - 
For convenience of presentation, the variable/3 will be shown 

explicitly only when its 	omission would lead to loss of clarity 

in the arguements. 

The function 14„ , called the chemical potential, 

measures the 'tendency of the system to exchange particles' with 

its surroundings; hence iike,  is meaningful only in ensembles such 

as the grand canonical or constant pressure ensembles. 

In the next section we consider the 'bulk limit; in which 

(2.1) holds; it will then be possible to obtain the equation of 

state for each representation R, though we shall not do so in 

detail. 
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§z+ The Bulk Limit  

 

It is a basic assumption in equilibrium thermodynamics 

that the variables constituting an observational state are sharply 
(of Callen,1960,P.267) 

determined and do not fluctuate about mean values. This condition 

holds for the statistical expectations,(4 	of dynamical variables, 

, for a system consisting.of N particles, only in the limit that 

r 
N becomes infinite, the standard deviation of 	being of order WI' 

(cf. Landau and Liftshitz, 1958).* The variable 	must be a 'bulk 
variable' and not a 'sum-variahle' such as the kinetic energy. 

The bridging operation which must be applied in; .a 

rigorous derivation of the laws of thermodynamics from statistical 

mechanics therefore consists of making the volume of the sample 

constituting the system tend to infinity at constant particle density. 

We shall refer to this operation.(follaging Penrose, Statistical 

Mechanics, to be published by Pergamon Press) as 'taking the bulk 

limit'. Another reason for taking the bulk limit will be given in 

where the Yang - Lee theory of condensation is outlined. 

The question of the existence and analitical properties 

of the reduced potentials 	defined in equation (1.4), was 

first considered by Van Hove (1949), who studies the convergence 

of the free - energy density in the bulk limit. Subsequently, Yang 

and Lee treated the same problem for the grand canonical pressure, 

while Whitten (1954) showed that the conditions assumed by Yang 

and Lee could be weakened. The problem has been solved generally 

* The system* is assumed to be in a single phase and to 

behave classically; .see also Farquhar (1964) Ch.iL (§2•5)• 
It is also supposed thatA. is not a 'sum-variable', such as 
the kinetic energy. 



only quite recently, in the work of Ruelle (1963), Fisher (1964), 

Griffiths (1964), Van der Linden (1966) and Van der Linden and 

Mazur (1967). 

This general solution provides an answer to the following 

questions:- 

(1) What are the— maim* conditions (a) on the interaction 

potential, (b) on the shapes assumed by the container 

' as its volume, V, becomes infinite, sufficient for the 

existence of Or  
Does 	depend on the shapes assumed by the container 

as its volume increases? 

If 	y'2  are distinct reduced representations, do the 

limit functions generate the same numerical 

values when used to calculate the same thermodynamic 

quantity? 

Question (1) is most readily answered in two stages. 

In the first stage it is assumed that, as V increases, the shape 

of 	1remains unchanged, so that the functions of the sequence 

depend only on V ; the existence of .96 may then 

be inferred if one can show that this sequence is monotonic and 

(suitably) bounded. This, in turn may be demonstrated very simply 

provided that (i) the binding energy per particle is bounded, 

uniformly over all configurations and all values of N - the total 

number of particles; 

21 



(ii) the mutual potential energy of two groups of particles becomes 

negative whenever the minimum separation of particles in different• 

groups exceeds a fixed number, say pt. 

Much work has been done'recently to find conditions 

sufficient for (i), which is known as the stability condition.* 

It is plausible on physical grounds provided that the particles 

have hard cores or, at least, that the forces become repulsive at 

small enough separations; moreover, it has been proved (Dyson and 

Lenard, 1967) that a system of charged point particles, moving 

quantum mechanically, is stable in this sense, eve.' when charges 

of both signs are present. 

The requirement (ii), known as 'strong tempering'w 

is also likely to be satisfied in real systems since the 

intermolecUlar 'Van der Waals', forces are attractive and of long 

range. AA example of a stable, strongly tempered potential is 

the Lennard zones (6 - 12) potential in three dimensionsi Fisher 

(1964) has shown that the strong tempering condition may be replaced 

by that of 'weak tempering', in which the interactions may remain 

repulsive for arbitrarily large separations, but this possibility 

seems to be of little physical interest. Fisher is also the only 

author to consider many-body forces though, again)it appears that 

such forces are not understood well enough to make it clear whether 

their inclusion affects the convergence of the sequence V7 

in realistic cases. 

* cf. Ruelle (1963c), Fisher (1964). 
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In answer to question 1(b), Fisher postulates certain 

'regularity' conditions on the domains n. , which ensure 
that they are not too'violently crennellatedl and do not grow 'too 

anisotropically.' It is then shown that CAL calbe approximated 

'sufficiently closely' by a union of standard (cubical) domains;. 

for which the existence of 
	

has already been demonstrated, 

and this also yields a negative answer to question 2. 

Detailed proofs of these properties may be found in 

the references quoted. However, one can sec roughly from (3.4) 

(3.9) and Table 1 that the stability condition ((i)) on the 

interaction potential implies bounds on the function 	• 

Further, by considering the form of 	
R 

when 	is a cube n 
constructed from a union of smaller cubes at mutual separation 

at least (4 	(so that the forces between particles in different 

subcubes are attractive) and supposing that no particles move in 

the'corridor' between the subcubes, one can also establish the 

monotonicity of 
	142 	. Notice that, in the process 

just indicated, the shape of 	remains unchanged as V 

increases, though it has to be proved that the exclusion of the 

particles from the 'corridor' has no effect on the resulting 

limit functions, 

23 



Equivalence of Representations:  

Equations of state  

It is .a natdral consistency condition on the formalism 

of thermodynamics that if the same thermodynamical quantity is 

calculated for an object using two distinct representations, then 

the numerical results of the two calculations should be'the same. 

The problem of showing that Gibbs' reduced potentials, 

satisfy this condition has been posed in § 	as question 3. 

To put it another way, does the equation of state in 

one representation imply those in all other representations? 

Ruelle (1963a, 1963b) and Fisher (1964) prove the equivalence of 

the canonical&grand canonical ensembles both for classical and 

quantum mechanical systems. Their methods, which are. essentially 

the same, cannot be cast in a form suitable for proving the 

equivalence cf all ensembles, but very recently the problem has 

been solved generally for classical systems by Van der Linden 

(1966) and Van der Linden and Mazur (1967). The main features 

of their work are (a) use of the central limit theorem of 

probability theory in establishing the existence of the reduced 

potentials (or bulk limit functions) (b) systematic application 

of a theorem due to Griffiths (1964), giving sufficient conditions 

for interchanging the operations of differentiation in a thermo—

dynamic variable and taking the bulk limit. It appears that this 

general method could be extended to quantum mechanical systems. 

2 4- 



For our purposes, only the equations of state in the 

canonical and grand canonical ensembles will be required. 

Denoting by 4.  (AP 27) ) 471-0> 	respectively the 

reduced potentials (5) for these ensembles, one hanyEby.7d4rinitiont  

t#e 1431,0A9nR965 

Plfi)v-) ^ -4-/A,PAIT) 5.1 ) 

where 
	v-) denotes the canonical pressure (at 

infinite volume) and V the specific volume; and that 

-2)) 

(,z) 	z 	ir(fl)z) 	(.T. 53)  

where )411)X4 stands for the grand canonical pressure at 

infinite volume and the fugacity variables  Z J  is related to 

the activity, 	, by 

z = ),(•24T140?-ift)1 	'.4L) 

brand—oanonical--pressure--(-at—inf-ini-te-Volume)% 

25 
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The equivalence of the equntionc (5*2) and 54,3) to 5.1) is 

reflected in the relation (of Ihin der Linden, 1966) 

.71.(fil=) 	/,(Fqp x)3 	s.) 
uhich holds for all values of 2; such that the untem is in a 

single phase. 	All of the usual thormoclyxmriic stability conditions, 

)5  such !Is the requirement that a Anib be non peeitive, may be 

0:7,tblished from the convexity zroDerties of the function2 

f (a,v) (convex 14, concavo ine) and ylviz)  (convex in 
log 2). 



The Theory of Yang and Lee. 
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The grand canonical pressure at finite volume is defined 

by 

ptg,7)11) 	6610-1-19 23(fi)z)v) (3: 

where 	/6, 	V ) is the function obtained from (6.1) by 

substituting for 
	ex 	from (5.4). Since the factor ( /271714) 

is obtained by performing the momentum integration for a single 

particle in (3.6), it follows that the grand partition function 

may be written in the alternative form 
00 

where the configurational integral is defined by 

Q()N,.v).:-=_ N. s-  41,1 .0x13HU04)611 
U(,)() being given by (3.2). 	 (Z6'3). 

Throughout this thesis we denote by 00A4  any 

configuration of N particles whose centres occupy the positions 

x. within a).) -. dimensional container, .g1 3 .1r1 ) ;2 , 	 

and byS40A/  the symbol specifying integration over (x)N. 

Functions Of x 	y. will be written as F(IE, 	25.Af)= F(x)N. This 



notation seems to be due to Ruelle (1963), who used it in his 

work on the bulk - limit problem. The symbol f..C23/4  for the 

domain of integration in (6.3) indicatetZ that all of the N 

particles are free to move throughout the container,SI 

The existence of the grand canonical pressure at 

infinite volume has been discussed, inter alia, in paragraph 

4 ; here, however, a different point of view will be adopted, 

our interest being in the convergence of-the sequence (6.1) 

when .Z is complex. 

When the pair interaction potential,ALN) has a 

hard core, say of diameter , (so that b(( X) equals plus 

infinity whenever 'XI is less than CC), the integral (6.3) 
vanishes if N exceed's (0.2r60,), and the right hand side of 
(6.2) becomes a polynomial in Z , whose degree equals .the 
greatest integer less than (\PZA! ). Moreover, since 

Q(N, V) is positive, -this polynomial has no positive zeros and 

hence ) (Z V ) is analytic in the neighbourhood of every 

positive value of:C. This, in turn, implies the analyticity of 

( J v ) ,, and finally thatb(2)70/ ) is analytic for 

all positive re The functions "" (Z)V  ), p (2J V ) denote 
respectively the grand canonical specific volume and the canonical 

pressure - both at volume V. 



Yang and Lee (1952) realized that the only possibility . 

for p(27)15; L 	363" 
I
oto be non analytic at some positive 

V—;11.00   
value, say 27; , of 27 , occurred when 24  was given by 

21  

••••••••••••••• 

where Zo  was a limit point of zeros of 	(z)v). 
Their first theorem, concerned with the existence of 4,.)(Z))  

is a special case of the 'bulk limit' problem. One form of their 

Theorem Tr 	is as follows: 
S 

If R denotes any bounded, simply connected region 

containing a segment of the real positive Z— axis 

and free from zeros of '27  (z.,k/ ) for all sufficiently 

large V, then , 
(1) /1,4(z )Vj converges to 4...)( (z) 

uniformly for Z in R, and hence 

   

(2) J` (Z) is analytic throughout R. 

The uniformity of convergence justifies the relation 

J-jvvt, 4  
c'c' Dz I 	 az 

for Z. in R, so that, since all of the derivatives of an 

analytic function are themselves analytic, one concludes that 

( 	is analytic in the neighbourhood of every positive 2 
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In order to relate the theorem just stated to the 

study of phase transitions, we must give a mathematical 

characterization of these transitions. We shall say that a 

system undergoes a phase transition when at least one of the 

thermodynamic variables used to specify it suffers a jump 

discontinuity. Since we are supposing the bulk limit to have 

been taken, we shall always deal with reduced representations. 

(see' paragraph 1). 	This definition of phase transitions, 

attributed to Ehrenfest,is not comprehensive. For example, 

it does not include the 'anomalies' associated with order — 

disorder phenomena, such as the 'infinity' in the specific 

heat of the two dimensional Thing model in zero magnetic field, 

as the critical temperature is approached. 
• 

But a wide variety of phase transitions are included 

in the Ehrenfest classification (for instaice the vapour — liquid 

'transition first studiedLby Van der Waals (1873) and Naxweli)and 

one can see at once that the theorems of Yang and Lee furnish a 

necessary condition for the occurrence of a transition of 

Ehrenfest type. For, their theorems provide sufficient conditions 

for tht,Emistence and analyticity of 	, the grand 

canonical pressure at infinite volume, for positive values of Z ; 

then the derivatives (of all orders) of ...)1 09 are also analytic 
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and hence tr:m.itionc of .::hronfest type are precluded. 	,oroover, 

if A or one of its derivatives is non—analytic in the neighbour— 

hood of a positive value of 	, then a plu,se transition occurs aslt 

passes through this value along the real positive axis (though this 

transition is not necessarily of Lhronfest type). 

The Yong — Leo theorems may be strct,zd more simply if we 

use explicitly the notion of limit points of zoros of ••• 

o define the point =I  to be a limit point of neror, of 	(21 ) 

;:hen the following condition is satisfied: 

Given any neighbourhoodAT of 2f  and any 

positive number 	there exists a 2: in .Ar 

and a V > K, such that E (z, V) 

The two thoorollu: of Y7;ng and Leo nay then bo combined into a 

single theorem; 

Thoorom  

Let R denote a bounded, simply connected region in the 2:-- plane 

containin,3 a segment of the real positive 	axis. 	Then a 

sufficient condition for the existence and analyticity of 

dItZ) 	%.(Z/V) throughout R is that R is free 

from limit points of zeros of 

If vo denote by C the cot of all limit points of Gros 

of 	and by
4 
 the real o.oeitivo ;5-- axis, then it follow: 

from the theorem just stated and the definition of ph .se 

tr- mdtions adopted hero, that 



iNE• 
'.the open segment Ra).4,4. of values of Z 
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corresponds to a single phase of the system 

-)L-r-- 
if and only if Xcontains no points of C.' 

The major pai•t*: of the research described in this thesis deals 

with the problem of specilying C rigorously; this work is 

explained in Chs179.  and V 

Ai analogue of Yang and Lee's theorems, referring to 

the uniform convergence of the canonical pressure at complex 

density, as the volume becomes infinite, has been proved by 

Lebowitz and Penrose (1966). A second analogue of these theorems 

(Jones, 1966) deals Uth the uniform convergence of the grand 

canonical pressure, regarded as a functiOn of the complex, 

variable/3 at fixed/(possibly complex) Z , as V tends to 

infinity. 
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CHAPTER 	11 

Some Methods for Studying the Equation of 

State of a One - dimensional System - a Survey: 



e 
	

The systems to be considered in this chapter consist 

of N particles moving continuously on a line of length L. The,  

essential simplification characteristic of one - dimensional 

continuum systems is that, even when the particles do not have 

hard cores, a fixed ordering of the particles may be defined 

and maintained throughout all calculations. This simplification 

reflects the total symmetry in its arguments of the potential 

energy function of N identical particles, which implies that 

the integrand of the configurational integral is invariant 

under changes in the order of the particles. For continuum 

systems in two or three dimensions, total ordering is impossible 

and the methods of this chapter break down. 

The term one - dimensional is, however, less definite 

when applied to lattice gases since such systems, even when they 

are nominally two - or three - dimensional, may often be considered 

to consist of particles with internal degrees of freedom, whose 

possible positions are restricted to the sites of a linear 

lattice (see Ch: 

SG 



/ 	 J r7 

§2 Classification of methods. 

  

Although the distinctions between various techniques 

are not always clear—cut, the following classification seems 

to be justified. 

(i) nerative Methods, in which either N or L is increased in 

regular steps, whence Q(N,L) may be 'calculated' 

recursively. (Von Hove, 1950; Kummer, 1962; Baur and 

Nosanow, 1962). 

(ii) Use of external potentials, in which Q(N,L) is shown to 

satisfy an operator equation with respect to variations 

in the 'external parameters'. (Baxter, 1964, 1965; cf 

Leff and Coopersmith, 1967, Coopersmith and Leff, 1967,*  

for a similar method applied to the study of distribution 

functions.) 

(iii) Use of random processes, in which Jt6Z1may be obtained 

implicitly with the help of the theory of Gaussian Markov 

processes (Kac, 1959; Edwards and Lenard, 1962; Kac, 

Uhlenbeck and Hemmer, 1963; Kac and Helfand, 1963.) 

In the following survey this classification helps us to 

identify the crucial assumptions responsible for the success of a 

• particular technique, though no explicit reference to it will be 

made. (Some of the methods discussed in this chapter are also considered, 

briefly, in the book, Mathematical Physics in One Dimension, edited by 

E. Lieb & D. Mattis (Interscience Publishers Inc., 1966)). 

zr.-114 Riujs. 8,306 3  8 )434.. 



§3 
Van Hove's method: Impossibility of phase transitions  

when the forces are of finite range. 

38 

   

Suppose that the particles have hard cores, that 

the interactions extend to J. 	nearest neighbours and that 

the potential is bounded below. Starting from a set of t:Ir 4+1 
particles on a line of length L, one can assemble a system of 

N = t + mtparticles by adding, successively, 'strings' of 

4,0 particles. The hard core condition makes it possible 
to maintain a definite ordering of the particles throughout 

this process, so that we have 

ivu 	.) =Solt/6d- 04440 i< 	k+1), 

CI 3.1) 
where the symbol SAO) denotes integration over all possible• 

configurations of the J th string (compatible with the chosen . 

ordering of the particles). The kernel K( 	))of which K
) 

stands for the pm. th iterate, is defined by 

( i,j) = 42*)51--P]E;,t(fi/1)3.142(7/300) 
( 	.2) .1141_,(i.,j) being the mutual potential energy of the 

nth and 	jth string:. Thus K ( 
,J  ) has the constant 

value 1 for all configurations of the strings i, j unless 11 47j) 

By introducing instead of K( i,j) the kernel 

( (11#  ; P) ?) 10J-1)&191-  P1:2  

(Li 3.3) • 
denote, the self-energy of the 	string. 



where, for each configuration of the 	tth string, 

denotes the distance between its first and last p3rticle6, 

one can express the Laplace transformII (N,P),of Q(t+ mh) in 

terms of the ;nth iterateX a")  (i,j;p) ofX (i,j;p), though 

the range of integration4m each of the 2.4 particle co-ordinates ' 

is now infinite. By making the change of variable: pi-1-44,1)H:).4 

) where 	denotes the separation of a pair of 

particles, Van Hove succeeds in reducing the problem of calculating 

the Gibbs free energy per particle, g(p), to finding the eigen-

value of maximum modulus of a_Fredholm integral equation. The 

modulus of this eigen-value equals the radius of convergence of 

the resolvent series of the kernel of the equation, and this 

expansion is used by Van Hove to show that 

j (P) 	(e 	kluivic 0,) ) • (E 3.4) 

where (t - 1) is the number of particles in a string, from which 

the equation of state is 

-Dit) 
3 -,C) 

04:NYespanding to the constant pressure ensemble (cf.Brown 1958, Sack 

1959). Finally, the existence and analyticity of 14: (h) are 
1441' 

justified for positive p by virtue of a.theorem of Jenisch (1912), 

whence (3.5) implies that a phase transition (in the sen8e of Ch.?.  

) cannot occur. 

39 



Kummer (1962) has generalized Van Hove's method to 

the case of a 'quasi two — dimensional' system, consisting of 

'hard squares' free to move parallel to the sides of a 

rectangular container, one side of which remains of fiXed length 

while the other may increase without bound. A procedure similar 

to Van Hove's but also based on the matrix method of Kramers 

and Wannier (1941) has been used by Baur and Nosanow (1962) 

in their treatment of lattice gases. 

In explicit calculation of the equation of state 

Van Hove's method is of little use, since the kernel K( 2 pj t, ) 

and its transform under the change of variable x--?.* y.  are neither 

symmettic, (except when /7 >0 & = 2 ) nor Hermitan 

when p is complex, so that analytical calculation of - A; (p) 

is, ingeneral, not possible. Moreover, the total number, N, of 

particles must have the form N = t + m h, which makes it impossible 

to consider the grand partition function. This difficulty may be 

avoided when dealing with lattice gases, since the grand partition 

function of a lattice gas equals the 'configurational sum' of a 

suitably defined spin system (see Ch. V 	). 

In fact it is possible but not useful to concider the grand 

p:Irtition function. 
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Another Iterative Method. 

the requirement that N has a special form, (except that N-  must 	
/// 

exceed t), has been suggested by penrose (unpublished). The 	/ 

conditions on the interaction are the same as Van Hove's. 	/ 

Suppose that (x) denotes any configuration of pi particles on a 

line, numbered from 1 	to Al , increasing with displacement 

to the right, and that y denotes a fixed configuration:of t 

particles (of the same species as the moveable particles) 

constituting a 'wall' to the right of all the particles adt 

the other end of the container being closed at the origin of 

displacement coodinates by a perfectly hard particle. That is, 

the X, 	SatiSfij 

a .45- xi 	z< 1••I < 	< 	<;.‘ 	4-1) 
We define a modified configurational integral s vw.;  

by 

VA/, 	U E (Z)m)q (ir 4_.2) 
where. UE(X),./j 	denotes the total potential energy of 

the N particles in configuration (NON  in the presence of the 

wall y, and the integration is taken over all such configurations. 

Since the interaction extends from a given particle to at most 

(t - 1) particles on its left, it follows from (4.2) that elir 
L_ 

satisfies the recurrence relation 

§ 
A method closely parallel to Van Hove's but avoiding / 



AkIL ( N÷ liv) 	S' 6110 ri PL:'fi lA(4--11111i1 1\ /). 0 1 Y) )  o 	iezw 

1A(x) being the interaction potential. 

This may be written in the operational form 

it 
which may be regarded as defining the operator 	. Since 

4 
the effect of .applying 11( is to introduce one more particle 

to the system, we may build a system of N particles from an 

empty container with the wall 
	at one end, by repeated 

use of K . Therefore we have 

(w y) 	r< evii.  (a; Y) (IL 4 -5) 
where 

Sr' U(Y;  LeS 
(17 4 

and U(y)L) is the potential energy of the fixed con- 
figuration of particles constiuting the wall. The usual 

configurational integral may now be found from (4.2) and 

(4.5) to be 

(11/ j  L.) = 	d• lef t(); 	t 
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where the integrations over yeb“Stare subject to the condition-

(4.1) (though the lower limit for yi  is now 0 because the x - 

integrations have been done). 

One expects that it should be possible to obtain from 

(4.7) a formal expression for glr), the canonical free energy 

per particle, analogous to Van Hove's formula (3.4) and so to 

reach the same conclusion regarding the impossibility of phase 

transitions. The rigorous justifications of such a procedure 
A 

would, however, entail a full study of the operator K 
If we keep the wall fixed, so that the effective 

length of the container is yi  , and define a modified grand 

partition function, 	k2; y, , rd....))bY . 

1 	fi47  zw?(N; 

4 	kY4  (o; y))  
• (E-4_. 8)  

by (4.5), then for all sufficiently small IZ./ we obtain 

,1)\(;1.) 
	

z k)- 	(0; y). 

41■111I.1 
'MEMO 
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The expression (4.9) has a misleading simplicity, it being 

4 
difficult to introduce a suitable norm for the operator 

pl c and hence give a precise meaning to the -pireetre 'for all 

sufficiently small fZ I ', used above. However, if t = 2 

(nearest neighbour forces) one may verify that the method of 

this section is equivalent to that of Takahasi (1942) and 

Garsey (1950), though their methods are preferable in this 

simple case. Our original intention in deriying (4.9) was 

to relate 3 (x) to the eigen-values of an operator, 

but we have not been able to see a simple way to study the 
A 

spectrum of K and so the method is mainly of formal interest. 



Baxter's Method. 
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This method was designed to show formally how the 

function can be obtained for positive 11. 

as the largest real eigen-value• of an operator, while the 

correlation functions may be calculated from a related operator. 

The argument is formulated for one — dimensional continuum 

systems and is shown to be valid both for particles with hard 

cores and for those with bounded interactions. 

The basic idea is that the configurational integral, 

Q (N.L), defined by(I6.3) is differentiable in L, and that the 

operation Di1X- may be performed before fhe integration over 

configurations. In order to make variations in L 'perceptible', 

an external potential, say g(r), is centred at the moveable end 

of the container. We define a modified configurational integral 

by 

ti 

1.) 	5/1, OS OLX( 
6." OLX 

eAP 4°' 

o Wi".<XN 	 sip) 
N-1 14 

W XI  "" xN; L; 	 ucxi.—)9+z 
g..2) 

where 
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Differentiating (5.1) in L, we obtain 

Q040= s-< 
	(I  5 (Ix, 	TeigpEW).1 

?L. 

• 1 	 CLX1 sa(X14 	 eixr (—w) . 
DL 

If the external potential can be made to depend on 

parameters 
21; 

 

2J in such a way that 
12. 

 

L — 270 4, 	x) 	(L-x, .u.04  •-•• 27: ) 
'11) 

JCL.- 	ItItl 27) 
1MM. j 

	 x 	v-k) 

A 
whereris an oparator acting only on the parameters 10.b; , then 

it follows from (5.1) - (5.3) that Q(N,L) satisfies the equation 

P/‘' AO= S66 6 65 
di(  le„ .r.4641%/ ..1  

oL 

+ 	ov,L) • 	(11 
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Notice that if the particles have hard cores, say of diameter 

et, then the domain of integration in (5.5) becomes C)‘. X i< 

X2,••••<XN.14.5 1~7010  . 	Moreover, if the pair interaction 

potential, U(r), satisfies an ordinary differential equation 

of order k with constant coefficients, the conditions (5.3) 

and (5.4) can be satisfied by functions g of the form

k 

	- 

JZ= 0 

where 
LLD 

 (f)• means Ot(tt(1.)/dfie  and in this case 

becomes a differential operator in one or more of the 2)7  

It may be shown, also, that the first term on the right—hand 
A 	r 	A.0 

side of (5.4) has the form  k(S2(AKI..)frr kCQ(A/-0...--40 
when the particles have hard cores], where k is the exponential  

of a differential operator in one or more of the 2,./2 
A, 

More general formal representations may be obtained for U )  Ic'  

as functional differential operators even when tt(x) does not 

sat* a differential equation, but these seem to be of little 

practical use (see Baxter, 1964). 

As a simple illustrative example (R.J. Baxter, 1966, 

private communication) consider a superposition of Kac potentials: 

2,r "" 
0 zrk) 

A 

 

Coe -NI) do-e  I y 
.1•••••••••• 



A 
••••••.... 

• 
	••••••IM 	IMMO, 

044 
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According to (5.5) we may write 

k* 

g(r; 13- 

(note that the argument, L x, of g in (5.2) is non negative, 

So that we may write T instead of 	when dealing withj). 

Using these expressions for u(r) and g(r) one can show'by 

manipulating (5.3) that 

• ?L. 
lE?(v, 	14? 	Al -7 	2rfo. 6, )2J2-FC,....,  

 

v., a  Q (N )  20;2P2. 4.444  

D2704  

 

By considering the first term on the right-hand side as a 

multible Taylor series one obtains, formally, 

(_. 2)-, 4- co‹ 52-e- e,)] 
while comparison with the general equation (5.5) yields 



Ai 
On introducing K in (5.5), multiplying by z and 

summing over all positive integers N, one obtains a differential 

equation for the function 

N Q (N, L) 

(or for both.i(z,L)4 ,f(z)1.-ct) when the particles have 
hard cores). When g(r) vanishes identically for 

4:(7>L) coincides with Z(Z)1...) , the grand partLtion function. 
Finally, if one assumes that the differential equation for 

has a separable solution of the form 

9 

4,;(z)eig7b(ki L) 

then an eigen-value equation (with eigen-values kj and 
•eigen—

functions Aj ) is obtained. The desired formula for h (z)., 
the pressure, results if there exists a real eigen-value, 

say Kmax, exceeding the real parts of all other eigen-values. 

For we have then 

L-2P- Qo
fiL 	(z, 	= 	(x) • 

Cr( sr 
Evidently, Baxterts treatment is rather schematic, 

but he has considered specific!pases. For a system with 

potential IA er).=  , outside 
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a hard core (to be discussed further in our next section) he 

has obtained the Van der Waals phase transition (in the limit 

e---110 04) which was first derived by Kac, Uhlenbeck and 

Hemmer (1963(a) ). He has also obtained results for a system 

of charged hard rods; the previous results for charged one 

dimensional systems (Lenard 1962, Edwards and Lenard 1962, 

prager 1960 depend on the assumption that the particles do 

not have hard cores. Baxter shows how his method may be used 

to obtain the distribution functions; essentially, he carries 

out the same procedure as we have outlined, but starting with 

the (unnormalized) distribution function, 

664 
11.10b4

W 

Xr< Xrai"4 <kfAL 
ti 

instead of GZ (Al)  L). 

This technique, depending on continuous variation of 

has no direct analogue for lattice gases, but the representation 

of the pressure as the largest eigen value of an operator has 

been demonstrated by Kramers and Vannier (1941) and Baur and 

Nosanow (1962). 
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The Covariance Method. 

The technique of this section allows a complete calculation 

of the Laplace transform of the configurational integral for any 

system whose pair potential, u(r), may be regarded as the auto - 

covariance of a Gaussian Markov process. We illustrate the 

method by giving a fairly detailed derivation of the Kac 

integral equation (Kac, 1959), which serves, also, as a 

preparation for our derivation of an analogous integral equation, 

described in Chapter III of this thesis. 

Since the elements of the autocovariance matrix 

of ant-dimensional Markov process satisfy a linear differential 

equation of order, (of de Groot and Mazur 1962, Ch. Vri i ) 

with constant coefficients, - which is just the condition 

for Baxter's method to be used effectively - it is possible that 

the two methods are equivalent, for a class of interaction 

potentials. However, we have been unable to apply Baxter's method 

successfully to the system with pair potential tt(f)=:'"1(COkf4r.-6)111  

(see Ch. III), which satisfies a second order differential 

equation with constant coefficients. In practice, therefore, 

it appears that Baxter's technique is effective only when the 

potential is proportional to DIA or to 4V4641 



Kdc based his calculation on the identity (cf. wilks, 1%3 

Se4.74 

2 ICI 2 S ot(r)tv 
00 

where S= (g 	14(1) denotes any vector with N 
(T i)6  

(real or complex) components, Cis a real, symmetric)positive-

definite matrix and (A,B) means the scalar product of vectors 

A, B. The integration extends over all real values of the N 

components pi  °"' le?A of the vector 	
and  IC denotes the 

determinant oftS The proof of (6.1) is immediate if one writes 

y 
	p === 

where the matriMas been chosen so that it I is a 

diagonal matrix whose eigen -values are, say, 1..."" 	11/) I 

being the transpose of TT For, (6.1) is then transformed into 

the identity 

G2 

...•••••• 
•••••• 
••=..• 



G3 

where 

k ( )/z) =k 1// 	)7itAnk 
CIS 6.3) 

and the identity (6.2) may be verified at once by integration. 

By setting all of the 5,_ equal to 0, one finds 

(cf Siegert, 1963) that 

••••• (.2.70-ficoz-4.(gc-iy) 
Cr 6'4) 

is the joint probability density for the components of a 

'random vectorT. Moreover, we have from (6.'0 the relations 

4,11 14-+.0 Digk rdSz 	 (:ket .- <Pic 126)') 
(21, 

where < > denotes expectation value subject to the 

probability density ✓  (0 . Hence the components pi  
constitute Gaussian random variables with _mean zero and 

covariance C kt  . 'AA extension of this technique will be 
dioouooed in ch. III. 

tk 

•  e  



4_ 

Kac considered a system of particles moving on a line 

of length L under pairwise forces -With interaction potential, 

u(r), defined by 

R. 01 	4  c47 
	 < 	

(it 6.7) 
.> a_ 

The configuration integral for this system is therefore 

Q(Af,L)= ''" dx•-•se-tk4711—(xj+r-x.4 0‘x,<....“„(L 	J2( 

• "e1Xiblic<fi l l 	2. 

4)." 
 

G.8)  
whereci(Y>denotes the step function: 

(r) 1 	irl < 
) 	ri > 	• a '/) 



In order to make use of (6.1) we consider the Gaussion 

random
/ 
 process, say p(x), whose autocovariance is equal to 

.> I X J ) . This process is known to be Karkovian, 

(Ornstein and Uhlenbeck, 1930), which means that the probability 

density function for a random vector, (A 	 Pa) 	(P(X1)""  

p(x,.,)) 
has the form 	

w-1 

probability that p ( )4. j.07.--Pj#i , 

where lfl (A) is the unconditional probability density of A 
and p( p• 	•i r • • x, . —•xii) 	denotes the conditional 

j (Pi "" Ziv) 	kJ(,)  ri 
j 	PO J 41 

	
ivi 	. 	CT 6 -10) 

p (xj) = 	• • 	may now use (6.1), obtaining by 

comparison with (6.8)  

GI (nr, L) — -C  i'le<l'S 1" iScL 5‘ I •D'atxiv 11 (1  — (x..3.#1—.-q — 
J 6'19 

• <-eixPeet,P)1>j, , 
wherey(p) is given by (6.10), -.i . denotes the N — 

, 	ii. 
dimensional vector (Cep 	f;)nifi) and the average is taken 

by integrating over each of 
PI 	 Pis/ from — 00  to +00 

(so that, since 2  (1) ..--_-.fc+-p),. we have <N2f-(4,p).}>i, --= 
(*.ex/464,01>f  ). . Moreover, the function it p) 

given that, 



is known explicitly in this case (Ornstein and Uhlenbeck, 1930). 

On making the transformation 

sG 

= X i  ) 	xj — xj.i (2‘ 	TAe#1 -= 	A, 

with unit Jacobian, we obtain for ff>i2lafter 

	/2) 

changing the order of integration and integrating twice by parts, 
OC, 

(p) = Satte-PLQ(1460 
0 

where./ is the density function 
a 6•/3)  

Ar-i Co a 

164(P) 	 W  (PI 	s.e-P7J1 P 	,4+i; :17). 
JT1 

(116'4) 
The crucial point is that the right hand side of (6.13) may be 

expressed in the form 

cio 

P-2-e—PrexfiSSdeit K"""(g) pm) 
.00 



Where ki!‘-1)(pA) is :obtained byiterating the basic 

kernel 

le (It 1r) 

00 

• r j dffe-Prp(ufv-I  ).(n-  g , f6) 

The ultimate success of Kac's calculation depends on 

the fact (which he proves) that kd:1L , 2r) is a Hilbert - 
4ohmidt kernel (cf.Courant and Hilbert, 1953, Ch. 2) so that 

I< (.e)  " , 	may be written as 

g)(  
101- /. (1))  VIA  1P7(2); k

tz) 	 J 
(E (v • 17 ) 

where the spectrum of k.  is discrete and bounded and all of 
the eigenvalues l Aj  , are positive. Since the abscissa of 

convergence of the Laplace transform (cf Widder, 1941, p.37) 

L) equals j((Z) , as defined by (15•2), it 
is then possible to relate ,1100  to the largest eigenvalue, 

say II(P))of K. In "thisWay*Kac: obtains ,)(.(Z 

•iimmm 
••=imm,/ 
SIMON. 

00 

of 
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implicitly through the relation 

z 	oe/31 	is) 

whence he is able to show that c)( (t.) is analytic for all 

positive Z , thus precluding a phase transition. His result 

extends those of Van Hove (1950) and Yang and Lee (1952.), since 

the potential (6.7) has infinite range. 

more recently, Kac, Uhlenbeck and Hemmer, (1963), 

building on the result (6.18), have shown that if CNC is 

replaced by 	4,14/.0 	in (6.7) then, in the limit as 

, the' Van der Waals limit; the system exhibits 

a phase transition described exactly be Van der Waals' equation, 

modified by Maxwells' 'equal area construction'. The fact that 

Maxwell's rule is 'built into' the calculation reflects the 

convexity properties of the bulk limit functions (745 ) 

which show that Van der Waals 'loops' cannot occur when the 

isotherms are calculated rigorously; indeed, the interaction 

potential (6-7) is.both stable and strongly tempered - the 

simplest conditions sufficient for the existence of the functions 

P( 21.).) MIIZ) [Cif '41  §Zi) . Kac and Helfand (1963) have studied 

several lattice systems using the technique of this section and 



G 

(" 
Siegert (1963) has formulated the Isirg problem in terms of 

random varihbles. 

The one - dimensional plasma problem has been treated 

by Edwards and Lenard (1962) using the method of functional 

integration, of which the covariance method is a special case 

(as they explain). Specifically, they show that the G.P.F.for 

a system of several species of charged particles equals the 

average of a functional whose argument function describes the 

position of a B.rownian particle (Wiener Process; Wiener (1923)). 

By using a theorem due to Kac (1951) they prove that this 

functional is the fundamental solution of a diffusion equation, 

thus obtaining,like Baxter, an explicit eigenvalue equation 

whose largest real eigenvalue equals jr(?5) when z is 

positive. 

The occurrence of phase transitions in the systems 

considered in this chapter may be characterized very simply. 

It is found that as Z 	moves along the real positive axis 

Jl (z) )being the largest real eigenvalue of an eigenvalue 
equation, 	analytic so long as there is only one such eigenvalue. 

If, on the other hand, two or more eigenvalues become equal and 

larger than the real parts of all others as Z tends to 

then )t (z) would be nonanalytic at Z1  , and a phase 
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transition could occur. This idea is used by Helfand (1964) 

to study the way in which a phase transition can 'grow' as a 

result of some limiting operations (for example, the Van der 

Weals limit). 

The basic aim of the research described in Chapters 

IV. and V is to locate the set of points lirejin the complex  

plane, at which .71() is non analirtic(or does not exist). 

According to the theory of Yang and Lee (1952) the set 

should coincide with C, the set of all limit points of zeros 

of 	).-7,/, and it will be seen that this is so. 
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CHAPTER III 
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Another Application of the Covariance Method. 



// 

§ 1 
	

In this chapter we present a generalization of the 

relation (II.6•13) giving la, p ) as a stochastic average. 
With certain assumptions, which will be stated, it will be 

shown how the equation of state may be obtained implicitly, 

in analogy with (II 6°3.8). These assumptions seem difficult 

to verify, so the second part of the calculation is 

hypothetical. 



§2, We consider a one - dimensional system of particles 

interacting through two - body forces; the interaction potential 

is defined to be 

bt. 04) "E 
ono 	x < 

eas kx 	x a- 
(pi, 2.1) 

where k, k and are positive constants. Our original aim 

in considering this highly unrealistic potential was to see 

whether some form of fluid - solid phase transition might 

appear in the limit as 	474% induced by the periodic 

factor, co-5 koc 
However, since this calculation was done, it has 

been pointed out that when Di(X) is given by (2.1), the 

integral oft(, O() (over all x 7 	) tends to 0 
with d- , so that it is not clear how the Van der Waals 
limit (4k--11” 04) can be taken in a me. :11saful way. . For, 

the work of Lebowitz and Penrose (1966), in which the long - 

range forces contribute a term proportional toYEA (X: )46C 

to the equation of state, indicates that this integral 

(or its limit as 1-4. 0.fr ) should not vanish, if there is 

to be any hope of finding a phase.transition. This difficulty 

has still to be resolved. 



2 :7/ 

GG 

The configurational integral for the potential (2.1) 
// 

is (cf (II 6.8)) 	 . / 
/ 

Af-i // 

Q (nr, L.)* — S 1... S . otx,..„ atk v 	 .0:0(.1.47-5(4)  
0 4.)ci‹.... <%N< L 	j'I 

N 

We aim to show that the Laplace transform of Q(N,L) may be 

calculated as a stochastic average, analogous to that defined 

by (II 6.13). 
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Since the function Co3k)(... d).X .... satisfies a 

second order differential equation in S., we must find a 

two-dimensional stationary Markov process for which 

Ce1k*C)(  is an element of the (2 X 2) auto - covariance 

matrix. A\heorem of Doob (1944) requires that this matrix 

have the form 

X >O 

x < 
(iri 3.1) 

Where 	is a constant matrix, AI  denotes the transpose of 

A and it is understood that X. is multiplied by the unit matrix 

of order 2. (cf. Wang and Uhlenbeck, 1945, Appendix, for a direct 

proof - due to Kac). By using Cauchy's formula, one obtains 

(cf. Goertzel and Tralli, 1960, Ch. 3) 

.mac) A % jt, 

vowsiaM1 
OEM.. 

et" 
A)ie  

Where 	stands for the (2 X 2) unit matrix and the contour of 

integration encloses no eigenvalues of (14.71/-4 ), whence it may 

be shown that 

•Ti, 32) 



For convenience in the forth—coming calculations we have written 

C G(x) 	C- k x  

s = s0c) = sj*I,kx 
3-4) 

 

Instead of the vector 9 T: 	sossIP") considered in 

]Vi6, we now introduce the 'vector' y rr ( 
I 	 ase 

N a 

••••.••••• 
••••=111. 
••••••• 

c ('k) 
e<zOc k)) 

s .5) 

and J ̀X is the process whose autocovariance is given by 

(3.1). Since j  (X) is a I1arkov process, the density function 
•411. 

jp ( r), the analogue of 	(17) in Bp, has the form 

JO/ 	W(64) n P U.A44; s)(:147 ki) 

jw1 	
CI 

so that our task is reduced to that of calculating the transition 

probabilities 113(4.il i.A.147.9* This, in turn, may be done by 

use of (II 6.1) successively for Arr./ and AR"--2 (and with 

p replaced by y 



For 7 , we obtain at once 

— (.2.70-±_eixpf—f (0‘,1-4 04.2-).- • (II: 
In order to determine W( 	, &2.  ) we must consider 

' 
the matrix 

eci 

-7) 

R (x) ••••••.•• OWNED 
•••11EN. [Oa Ji> < 

(V2 J < IV% Y2:› 
which corresponds to the covariance matrix C of Chat §6, . 

The explicit form ofi? is found from (3.3) to be 

1 0 C "'S 

A? --- 01.1.1. 	 a 	/ 	s 	C 	 0 	(TIT  3 '5 

(C S / 0 

	

". S C. 0 	/ 

In order to generalize (II 6.1) to the present case we must 

invert R . After a straight—forward computation we 'Obtain 

0 	c s 
I 	— s 

—5 1 0  

1J  

On 	3 • 1 0) 
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On using (3.7) - (3.10), one finds by analogy with (II 6.7), 

after some routine algebra, that the transition probabilities 

'are given by 

p (0e, 0 .  011062/:, • 
•••.•=•••••••• 
•=.6=1 

Ht(4<1  

 

Where we have set 	 (Tr' 3. 11) 
,2_ 	9.  _ 	(IT 3.12) 

One may verify,

•  

 by using the representation_ 

SC t) 	4- 2.] 
(cf.Lighthill, 1958 p.17 ex. 6), that, 

• 01:4•41, P (04 	I 06/0‹ x) 	("(1—  4)0(A/2-4  )) 

x—* o+ 	 3 .13) 
as we should expect. Moreover, we have also the 'time - reversal 

condition' 

mo(pc,) P(04 2 1040(' x)..= W(ce, 4<)P(oeicedoeicq; 
• • 	(2- 

As may be checked directly from (3.5), (3.7) and (3.11). 



§4. 	We may now return to the problem of generalizing 

(II 6.13). Let us take the vector, ; , of (II 6.1) to be 
I 

5 

••••.M00 
IMI=MM1 

i 	

%144.11 	

••••••••• 
......0 

	

.1=M•• 	 (IW2 

 ) I ( / " 0, i p i 6 . i II  

01T 4.0 

where :e. has 9 Alcomponeno. ,lion 1m obtain from (2.2) and 

(3.6), by analogy with (II 6.1), (II 6.11)9  

ov,Ly. e-i-kAArs 
< x,4 .< x,v< L 
N-1 

[6r)Y0 T7(f- 	xJ) . (EL 4'2) ftY) 
Finally, by carrying out exactly the same procedure as that 

leading from (II 6.11) to (II 6.13), we reach the result 

(IT 4.3) 

and we have set X. —0‹• 	equal to 13 . The explicit CIE 4-.4) 

where 

/No 	ki(21,n j S 614 t 	P (.411.44.1) Yi 
j 	

) 
r-1 

expression fory(y) 

into (4.4). 

may be found by substituting (3.11) 



The next step towards determining 3((Z) should be, 

following Kac (1959), to express the Laplace transform of 

as an eigen-function expansion. This step is problematical 

in the present case because it does not seem possible to 

introduce a Hilbert - Schmidt kernel into the calculation. 

The symmetry property 

valid for the Ornstein - Whlenbeck process (used by Kac), is 

not true of the functions,IAOR(t121;X), considered in 

this chapter; it was precisely this symmentry in A I  pz  that 
allowed the construction of a symmetric kernel. 

We may, however, define a positive kernel by 

s'66 e-Px 
a. 

• p 	2 10‘,/c4/, x).oxi) f/eki+0‹,)} 
(EL. g•i) 
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where 

 

( 	 /s•.2) 

When p) is po6itive the kernel (5.1) is also positive and it 

follows from the theorem of Jentzsch (1912), quoted in II 

3 in connection with Van Hove's work, that hrt, possesses a 

simple eigenvalue which is positive and exceeds the real 

parts of all other eigenvalues. 

In terms of the kernel b(p, we have at once from 

(4'3) the relation 	440 

1:  (WI 1) = P.''2e1)(P(1121i0 S555 "a4AC4L1 

OV4) 
• Mrs) /<,, ctsluv-)..p.htpact.i_boi 	G • 3) 

where 7-5 	Lar,are the components of two column vectors Of( 

defined in (3.5), and 	is defined by (5.2). 

Since the potential (2.1) is stable (in the sense of 

I g 4), it follows from (I 6•2) and (I 6.3) that the Laplace 

transform of ..1:(Z.,/..) exists for all sufficiently large 

(deiA414Ag yi3 	). Mbt.eovet,, t1ip voquenos of partial sums 

47-7- 	 • z cilL) 
converges uniformly for all positive L, as may be seen by 

applying Dini's theorem (cf. Apostol, 1957, p. 425 ex 13.7(a)) 



7 4 
to the functions s, and hence we have (cf.Titchmarsh, HI 

1939, p 45) 

00 

c) 

•••••••••• 
.11M=INI 

	 -yamZZ AIIN ( 13),(i 4) 
A1=1 

for all sufficiently large f, , where we have used (5.4) to 

define 12-0t,, M. On substituting for Itv0D)from (5.3), 

we obtain 	 00 

(z) P) === 	z 	'217 + 1,;-*6r.elt)Ar14  
00 

Nz 

• S 5SS ctrals du-Wrs) ki(u-y)(ysiuv).e ( r." • 
CIE "•.g)'  

As we mentioned in paragraph 1 of this chapter, the equation 

of state may be determined implicitly from (5.5) only if an 

assumption is made about 	. Despite the asymmetry of 4 ; 

it is possible that it may be expanded in the form 

OC 

l<10  (rs(btr) >(I)) X7(Ys 4') ihfi(ur")i)) 
4z7 	

(g 5.0 • 



where the 'X.1  are eigenvalues, Z.t are respectively. 
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the corresponding left and right eigenfunctions and the asterisk 

denotes complex conjugates. If, in addition, the pairs of 

functions xj ) 	were orthonormal, we should obtain from 

(5.6) and (5.5) the result 

C.C) 

(z1 )))= 

oa 	• 	2 

of S 	I A I bAs) ay.) 11.z.e-;z At  
bc, (7 6.7) 

(cf,KaC, 1959, eq. (6.2), except that Kac omits the term 

s  
because of his definition of 	). By an argument formally 

identical to that by which we obtained (II 6.18) we now find 

that the equation of state is given implicitly by the condition 

[<-71.6zJ  

where the positive eigenvalue 	, exceeds the real parts of 
all other eigenvalues ofK. 

13 



Evidently, it is not worth trying to continue the 

present calculation unless we can establish the validity of 

(5.6), which we cannot see how to do. This obstacle to further 

progress suggests that one should strIzt by introducing as the 

pair potential the autocovariance of an arbitrary .—dimensional 

?arkov process, and then try to choose the parameters (includingZ) 

characterizing this process, so that a symmetric kernel was 

obtained. 
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CHAPTER IV 

The Yang-Lee Distribution of Zeros of a Classical One-dimensional , 
/ 

78 

System  

 

( By O.Penrose and J.S.N.Elve3r) 



ABSTRACT 

A classical one-dimensional continuum system of particles with 

hard cores and nearest-neighbour forces is considered. 	It is proved that 

the pressure at constant absolute temperature OM
-1 

(> 0) and complex 

fugacity ) 	) is equal to 7 
max(  ,z),  the branch of largest real part 

of the complete analytic function, / (3,-Z.), with branches J e(2, Z ), 

obtained by analytic continuation of the equation of state for positive 3, 

It is proved, further, that A
max

(Z) 	 (RI /1 e(Z) J exists and 

is subhannonic throughout the I —plane, and that the regions where X 
max 

is harmonic become free from zeros of the grand partition function for all 

sufficiently large values of L, the length of the container. 	On this basis 

the set, C, of limit points of zeros of the grand partition function, is 

shown to consist of arcs and its complement, C', is shown to be simply 

connected. 	The arcs C are determined for a system of hard rods. 

Various generalizations of this work are discussed. 

Tcl 



Introduction 

Yang and Lee have shown
1
'
7 

how the possible occurrence of phase 

transitions in a classical system of particles can be related to the behaviour 
.•••••••=.• 

of the zeros of the grand partition function 	in the complex plane 

of the fugacity variable z, in the limit where the size of the system becomes 

infinite. 	In this paper we shall consider one-dimensional continuum systems 

only, and we shall denote the grand partition function for such a system at 

absolute temperature (km -1 
and fugacity z on a line of length L by 

(z, L) (eqn (5)). 	Until §XII, we shall treat 3 as a (possibly complex) 

••••••-• 

constant, and therefore suppress the dependence of — on 3. 	A point 

z
o 

in the complex z-plane will be called a limit point of zeros of 

when the following condition is satisfied: for every neighbourhood 

or zo and every number K, there exists a number L > K and a z in _4  

such that 	(3,z, L) = 0. 

Under the assumption that the set C comprising all the limit points 

of zeros of 	is a system of curves in the complex z-plane, the Yang- 

Lee theory shows
1
'
2 

that phase transitions can occur only at those values of 

z where C meets the real positive z-axis. 

Recently, Hemmer and Hauge have published systems of curves C 

for some one-dimensional models
3 

and for a gas obeying van der Wools' 

equation of state.
4 

From the equation of state one can determine 

So 



Lim C /  log 	(z., L) 	 (1) 
L-->o3 

when z and ;3 are real and positive. 	Their method consists of continuing 

X (z) analytically into the complex z-plane, cut in accordance with the 

condition that 7.1 jk-  (3,z) 	must be continuous for all z, p being 

fixed and positive. 	The curves C are identified with these cuts. 	However, 

this procedure does not yield a unique set of curves. 	To show this, let 

us consider the system of curves C
1 

obtained by replacing any arc XY of 

C by a simple closed curve G, which encloses no part of C except the 

arc XY, and does not meet the real positive z-axis. 	Outside G the 

function corresponding to Jr  (3,z), which we shall denote by )(z), may 

be found as before by analytic continuation from the real, positive Z -axis. 

Inside G the real part of an analytic function 	(z) may be determined 

by solving Laplace's equation in two dimensions, subject to the boundary 

condition that RI j̀[ 1(z) 	is continuous across G. 	The imaginary 

part of J\ 1( z) inside G is then determined (up to a constant) by the 

Cauchy-Riemann equations. 	Thus the system C1 also satisfies Hemmer and 

Hauge's condition,5  

A second condition employed 

by Hauge and Hemmer, based on the total 'measure' of the set of limit 

points, also fails to distinguish between C and C1 . 	For, equation (74) 



of the present paper shows that, when such a measure can be calculated 

for any arc,say XY)of C, it depends only on the end points X,Y of this 

arc. 

The purpose of thig Wohk is to propose a prescription for determining 

C uniquely from the equation of state. 	Our proposed prescription is to 

construct, by analytic continuation, the complete analytic function, 

(C.A.F.) 11 (Z) that is equal to :A-  (Z) far real positive Z (14 3), 

and then to take it (Z) to be the branch of I I (Z) having largest 

real part (when this branch is unique and regular). 	The set C would then 

comprise all points 	at which (a) two .or more regular branches of / I 

have equal real parts, larger than those of all other branches; or (b) 

the unique branch of largest real part has a branch point; or (c) l (Z) 

is not defined at all. 	In the present paper we shall justify this pre-

scription for the special case of a one-dimensional continuum system with 

nearest-neighbour interactions by proving the following theorems. 

We define
5 
 max(Z) to be the supremum of the real parts of the 

branches of (Z). 	We shall show that ) 	(Z) exists for all 

  

When there is a unique branch of / (Z), regular near and having 

7,  
real part X 

ax
(Z), we denote this branch by 

m 
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Theorem I 

(T.) exists then 

(1) 	Lim L 1  log — (z', L) 
Liao 

S'3 

max(*Z")  

If max 

(2) X is not a point of C. 

Theorem II 

The function X (Z) is subharmonic throughout the 2:1 -Ficone. 
;TIOX 

Theorem III 

The set of points 	at which X (Z) is harmonic is simply connected. max 

Theorem IV  

The set S of points 7at which X ax(X,) is not harmonic consists of m 

arcs and their limit points. 

Theorem V 

C = S 

In section XIV these theorems are used to determine C for a system of hard 

rods. 	Finally, in section XV we discuss the possibilities of obtaining 

various generalizations of Theorems I-V 



I 1 . 	Preliminaries  

We consider a classical one-dimensional system of particles free to 

move on a line of length L. 	It is assumed that there are two-body 

forces only, with interaction potential 

4- co • 	r < a 

u(r) = 
	

Ar) • 	o < r < 2a 	 (2) 

• 2a < r 

so that only nearest neighbours can interact. 	The function id(r) is 

assumed to be bounded, iemann-integrable and piecewise continuous. 

The configurational integral for a classical n-particle system is 

	

/ 	c (L) 	 -eX.P-t—fg n(Nt Xr)lt  

	

n 	 3) 

where Un(xl•—xn) means the total potential energy of n particles at 

xi  ...xn. 	By virtue of (2) one can simplify (3) by using the total 

symmetry of U(xi...xn in xi  ...xn, and specifying once and for all a 

particular ordering of the particles. 	One then obtains (for n > 1) 

rt-) 

Oti(L)=. 1111 p 
c<xt-2'"<)4 /1_Z 	t-71 

7,t( X. -N)1, 
e-1-1 (4) 

The grand partition function is defined for all 	as 



(z 1 ( 5 ) 
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tv= I 

--„ 
III. The Laplace transform of  

It was shown by Takahasi
6 

that the Laplace transform of the con-

figurational integral for the system considered here can be evaluated in a 

simple way. 	Here we shall take advantage of the further simplification 

that can be obtainedby using instead the Laplace transform of the grand 

partition function, which is defined by 

(zo) 	e --/D L 
	

(z, L) 	
(6) 

for all values of z and p such that the integral converges, 	We shall show 

later (§ VI) how to extend this definition to all values of z and p. 

To study the convergence of the integral in (6) we note that (2) 

and (4) imply 

/4' 	 (7) 

where urnin  is the greatest lower bound of the function u(r). 	Hence we 

have from (5) 

L)C --e1){I 1 L 	/gm 



For all z, therefore, the integral in (6) converges absolutely to an analytic 

function of p throughout the region of the complex p-place defined by 

36 

(9) 

where praN+i 
I 

IV. Inversion of the Laplace Transform 

The inversion formula for the Laplace transform (6) is6 

c ÷U 

A p _ePL  nz ,/ -=-. _21_.[E (z. ,L-fr o) -)--..; (z ) L- o..  
A -*-- °CI  

C- A 

where c is any real number exceeding the abscissa of convergence of (6). 

The condition of validity for this formula, that 

for all finite ft, is satisfied here because of (3). Since the series (5) 

terminates because of the hard core condition in (2), and since n
(L) 

is continuous in L by (4) and (2), the function (z,L) is continuous 

in L, so that (10) simplifies to 

(4 2 A 

c — 2 A 

(10) 



V 	Calculation of y(z,p) 

To calculate y(z,p) we substitute (5) into (6), obtaining 
c>0 	 oa 

11)(/P)=- /b-fi - eCLe-PL 	Z C,\  (L) . C rt 	 (12) 

By Dini's theorem
9 

applied to the sequence of functions 

it can be shown that the series 	>  X ne.14-0,4...) 
S /4 s..--. t>  7:  it.e-PLart  (L) ) 

et = I 

04 

is 

uniformly convergent in L for all L > 0; consequently,
10 

the summation 
C. 

and integration in (12) may be interchanged, giving 
ov 

(13) 
f 

where 

oLLe.-161-0(L) 

Using (4), we can calculate I--  (p), obtaining
11 

cQ 
—>eir 	 op -4 lit (X 2 -X,) 

--T- t(P) 	 dx-e 

 

X 

  

It 	1 
I-D-2 i1P(P).1"1  (14) 
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when n > 1. 	The function 	 /b ) is defined as 
c>0 

V(P) 	dji e Idt(7) 	r  

0 

Substituting (14) into (13) we obtain 

/0-2z - zrik(p)14, 
for all p satisfying (9). 

VI. 	Analytic Continuation of y(z,p) 

Without loss of generality we may a.ssume that ISO has only one 

discontinuity, say at r = b, where a < b < 2a. 	Then, by (15) and (2) 

V(p) may be written as 

oc, 
itidyp)  (4—Ibr 4(.„-§k)-1))/  

1" 	
-Pr. (17) 

204- 
co 

Now the function 
p1e-2ap 

coincides with c dr ePr  throughout the half- 
2a 

plane RI p > 0 and is analytic for all p. 	Therefore, p le-2ap is the 
CO 

(unique) analytic continuation of .,c dr ePr  from the region RI p > 0 
2a 

into the whole p-plane. 	Further, when p is finite and r is a point of 

either of the subintervals a < r < b, b < r < 2a, the function e 3/S(r)-pr  

is jointly continuous in p and r (since g(r) is bounded, Riemann-integrable, 

S S 

(15)  

(16)  



and continuous in both subintervals), and analytic in p. 	It follows
12 

that each of the first two terms on the right-hand side of (17) is analytic 

in p for all finite p, and finally, that 
h 	 2A 

vo,) _ccily _e—le, 4r   
(18) 

is the analytic continuation of the right-hand member of (17) into the 

whole p-plane. 	The analytic continuation of r(z,p) into the whole p-

plane is therefore obtained by substituting (13) into (16). 

VII. The poles of y(z,p) 

In the next section we shall use the method of residues to estimate 

the integral in (11) for large L and fixed z. 	We shall find that the 

behaviour of this integral is dominated by the contribution from the poles 

of y(z,p) which lie farthest to the right in the p-plane. 	In the present 

section we shall show that, with the exception of at most two values of 

z, the function y(z,p) has at least one pole in the p-plane and has a 

finite number of poles p1...pk  (where k depends on z) whose real parts 

are equal and exceed the real parts of all the other poles. 	We shall 

call the poles 	 the poles of larost real part (L. R. P.), and we 

denote their common real part by 
Xmax(n.  tAflru2 	 11)  

0- 	 tte 	 of 	 culA cA, 
itiLvVUvt  /Nal oe-AAt U6A 6-rv-A--c/A cL.)(  ) 1/0-e, 	o 
ILL-j Tiftetsc)c.11Z) • 

Sci 



Equation (lb) implies13  that p is a pole of y(z ,p) if and only if 

po) - Z-f 	 (19) 

Moreover, this pole is simple if and only if 

90 

(20) 

We shall prove
14 

that 
	

(p) assumes every possible value in the 

complex plane, so thatyZ ,p) has at least one pole for all values of Z. 

and hence K > 1. 	For suppose, to the contrary, that 1/) (p) does not 

take some value a; then p L(p) - aJ would be, by (13), an entire 

function of p of order 1 with no zeros, which therefore would have the 

form exp (Ap + B), by Hadamard's factorization theorem, and so we 

should have Ap-Fg 

, where A < C. 

Since both V(p) and p-lexp(Ap + B) tend to 0 as p tends to + ao, it 

follows that a = 0, which in our case corresponds to Z = co. 	This 

completes the proof. 

To show that K is finite we show that for any constant X
o

, the number 

of poles to right of the line X F. RI p = No in the p-plane is finite. 
-pun, in  

First, all of these poles must lie to the left of the line X = 	z e 



since the integral (6) for y(z,p) converges whenever (9) is satisfied. 

Secondly, the Riemann-Lebesgue lemma
13 

 implies that the right side of 

(18) tends to 0 as /4- a Im p tends to ± co at fixed X and z, and hence 

(19) cannot be satisfied for arbitrarily large IL (unless z = 0, in which 

case y= lip). 	Consequently all the poles of y(z,p) whose real parts 

exceed X
o 

lie inside a bounded part of the strip 

'cumin 
X < X < z 
o— — 

By (18), y(z,p) is meromorphic in p and can therefore have only a finite 

number of poles in this bounded region, and  a fortiori K must be finite. 

VIII. Application of the residue theorem  

The estimation of 	(z,L) is simplest for values of z such that 

x(z,p) has only one pole of L.P,°. in the p-plane and this pole is simple, 

having affix p1 (z). 	Let X' be any non-vanishing constant less than the 

real part of the affix of the pole of L.R.P., 

X' < X , 	 (21) 

but greater than those of all the other poles, and deform the contour of 

integration in (11) to lie along the line 
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X = X' 



EY— 1?,  (z)JL' 
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(z?/+iitt) 

(24) 

Substituting from (16) into (24) we obtain 

d 	-e  CI L 	z 
?' L 

e2 	(?0,. )1/4 i/A 	2,42'+ ir911-1 _z  

(22)  fr, 

(23)  ke/s fr (z 
= 17 (z) 

indented round the pole of L.R.P. (see fig.2). 

Applying the residue theorem, we obtain 

where 

-X' 
The first integral is equal to 2rre 	

L 
 if X' > 0, and to 0 if X' < 0. 

Since RI p
1 
 > X' by (21), the contribution of this first integral to 

-p
1 

1. 
is either e 	with RI p

1 
> 0, or else zero. 	In either case, this 

contribution tends to 0 as L tends to co. 	To estimate the second integral 

we use the Riemann-Lebesgue lemma
15, which when applied to (18) shows 

E 

and 

(z, L) 



that lira 	(X' + i 	) = C. 	It follows that the second integral 
1/41 -moo 

in (25) converges absolutely and so has an upper bound which is independent 

of L. 	Since RI p1  > Nt, the contribution of this second integral to 

E (z, L) also tends to 0 for large L, so that 

E (z L) 
	

(26) 

Since p1  is a simple pole, Ai(z) cannot vanish, and it follows from (22) 

that 

1 ,1, 7,(Z L) (27) 

••••••=14, 

for a suitably chosen branch of the multi-valued function log 
	

(z,L). 

A definite choise of log j  is made in sC X II I 

It will be seen that in the next section the conditions under which 

we have proved (27) are precisely those conditions which are assumed in 

the statement of theorem I. 	Consequently, we need not consider the 

existence or properties of the left member of (27) in any other case. 

IX. 	The Connection between TqZ) and the poles of y(z ,p) 

In order to prove Theorem I from (27) we must relate p1(z) to the 

complete analytic function 	(z) obtained by analytic continuation from 

ir(z), the function giving the thermodynamic pressure for real positive z. 



TMs relationship is described by the following result: 

Lemma I. The branches of the complete analytic function rk (z) are 

the values of p at which z(z,p), regarded as a function of p, has poles, 

and these poles are simple except at the branch points of )1(z) 

Proof. When z is small, 41 (p) must be large near a pole of x(z,p). 

Hence, by (18) either p is small or else it has a large negative real part. 

For small z, the pole of largest real part is therefore near p = Q. 

Eqn (18) also implies that 1#(p) has a simple zero at p = 0 and hence 

the functional relation z = 	(p) may be inverted uniquely, se, )1bot for 

small z there is just one simple pole of largest real part, and this pole , 

pi(z),,is an analytic function of Z , vanishing at z = 0. 	Applying 

(1) and (26) we see that 

7t(z) = p1(z) for small positive z, 	 (28) 

where 
	

(pi(z)) = 1/z 	 (29) 

and P1(z) is small. 

From (28) it follows by analytic continuation that 

7(z) = P(z) 	 (30) 
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where P(z) is the complete analytic function one of whose elements is 

pt  (z) when z is small. 	From (29), it follows that every branch of rico 
satisfies 

Ua (z)) = vz 	 (31) 

and therefore, by (19), coincides with a pole of y(p,z). 	Moreover, if 

/ I (z) does not have a branch point then the derivative If n (.)) 
does not vanish, and hence by (20) the pole is simple. 

Conversely, if z
o 

is any point in the Z— plane and p
o 

is any 

simple pole of r(zo,p), then we may joint the point po  to the origin by 

a continuous path in the p-plane, avoiding the isolated points at which 

either 	11)(p) or d'y)/dp vanishes; under the mapping 	(p) = 1/z 

this path has a unique continuous image in the z-plane, one end of which 

is at the origin, and by continuing the function pi(z) analytically outwards 

along this image path we obtain a branch of P(z) taking the value po  when 

z = zo 	This completes the proof of lemma I. 

For any •C< K( z) we may therefore define the branches 

I I i(Z )... at(z) to have L.R.P. when their common real part equals 

mom(:), where K(z) and X (7) are defined in §VII. 
max 

Using Lemma I, we can prove a second Lemma, which will be used 

several times in the sequel. 



Lemma II 

Two branches of /1 (Z) cannot have equal real parts throughout 

a domain of values of 

Proof 

 

Suppose, on the contrary, that two branches, .1( 11  JI 2 of 
(Z ) satisfy the condition 

RI 	1(z.) 	R1.11 2( 7-; 

for all Z in a domain 	. Then the Cauchy—itiamonn conditions 

imply that the function 	jt r jrz 	has a constant value, 

for all Z in D , where C4-) is real. Since each of ji l  

satisfies (31)1we have 

4 Iii, (zi} 
for all 7 in (ID whence, by analytic continuation, 

say zed)  

 

for all p. 	But this cannot happen, for we have shown in §VII that 

1P (p) tends to C as 1 hi pi 	tends to co. 	This completes the proof 

of Lemma II. 
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X. 	Proof of Theorem I  

Theorem T states that if 	is a point such that -11  me.,-K k- )exists 

97 

then 

(1 ) 
0.0  

k 444 r-x (.4- 

(2) 	 is not a point of C. 

The , oof of (1) follows at once from Lemma I and equation (27). 	To 

prove (2) we show that there is a closed disk 	-4(z) of radius p, 
centred at the point Z = z"in the Z— plane with the properties 

(a) is given by (22) throughout 

(b) A 	 is bounded away from zero throughout 

(c) ((Z) L) 
	

tends uniformly to zero throughout 

so that for all sufficiently large L there can be no zeros of -- (z)z-) 

with Z in 

By the continuity of all branches of it is possible to 

find numbers A', A", and 19 such that A' 	C and 

RI 	j1 .(Z) < 	< A" < RI j{ max( "7 ) 	 (32) 

holds throughout 	(t) for any branch .(z) other than 
max (z).  

We shall show that 	„(z) has the properties (a), (b) and (c). 	It has 



the property (a) because throughout 	, (zi there is, by Lemma I, 

a unique pole of y(7 ,p) having largest real part. 	It has the property 

(b) because A1( Z) is the residue of r( z ,p) at a simple pole, and is 

therefore analytic and non-vanishing throughout the closed disk .2.h (Z) 

Finally, to establish (c), we note that X' defined in (32) satisfies 

the conditions stated in IX, so that we may estimate E(z , L) from 

(25). 	It has already been shown in §IX that the contribution to S(z,L) 

- 
from the first integral in (24) is e 

pi 	
if X' > 0 and C if X' < 0i 

hence, by lemma I and (32), this contribution tends uniformly to zero 

throughout 	(z) for either sign of X'. 	To estimate the second integral 

we use the fact that y( Z ,p) has no poles when Z is in 

which implies by (19) that 	2. -1 	
1p (X' + VA-) cannot vanish if 

/A- is real and Z. is in 	(zi). 	Further, by (18) and the Riemann- 

Lebesgue lemma, 1.1) (X' + ;AA) tends to 0 for large ttil 	, and 

consequently, since 	(r) is closed, the quantity 

has a pcs" ive lower bound, say a, valid for all Z. in 	(zi) and 

all real //t. 	The absolute value of the contribution of the second 

integral in (25) to £ (Z ,L.) is therefore at most 

I) L 
094, 
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where x i  .- - RI p1 . 	By Lemma I and (32), this contribution has the 

upper bound (2A'a)
1 

exp (X' - X" )L, and therefore tends uniformly to 

0 as L —› co. 	This completes the proof of (c), and hence of Theorem I. 

In the next three sections we shall establish several general 

properties of the function X 	(z). 	Although these properties are of 
max 

interest in themselves, it will be apparent by the time we embark on the 

proof of theorem V, that they are essential for the unique determination 

of C. 

X I. Subharmonicity of Xmax(Z ) 

Theorem 11 

The function X ax(z)  is subharmonic throughout the Z -plane. 
m 

Proof 

By virtue of the arguments given in §VII, the function Xmax(Z) 

exists and is continuous for all Z . 	Suppose that z' is any value of 

-2.- and denote by p1 , 	 ,pk  the poles of y(z',p) having L. R. P., where 

the integer K depends on z' but is always finite, (see §VII). Let pk  be 

any one of these poles and mk  (> 1) its multiplicity. 	Then, by (20), 

the first non-vanishing derivative of -d) (p) at p = pk  is of order mk, 
r 

which shows that mk 
must be finite, since 14) (p) is nonconstant. 

Consequently, by Lemma I and a general theorem on the inversion of power 
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Tm  141-- r ) T2 

(7) ---K- 
fL - 

(36)  

(37)  
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series17, there are mk  branches of / (z), all of which take the value 

pk  at z, and the point z' is an algebraic branch point of order mk  - 1 

for each of these branches. 

We shall now use the following result: 8 

If a complete analytic function has an algebraic branch point of order n - 1 

(n > 2) at the point z' (t co) then each branch having a branch point at 

zimay be represented in the form 	.-[(Z.-- Z./.) 	) , where 

is meromorphic for all Z in an annular neighbourhood of 

By applying this result to the complete analytic function J\(z) 

in an annular neighbourhood of 	we deduce that the function Tk(z)' 

defined to be the sum of all the branches of II 	which take the value 

pk  when 	Z = 	is analytic throughout a closed disk with centre zi 

and radius rk, depending on zl. 	For, each of these branches may be 
co 

expanded as a series of the form pk  + >  c (Z.), j = 1,...,n, 
Ai= 1 J 	1 

where t1"'  tn  denote the n distinct values of ( Z 	 Unless is 

an integer multiple of n the sum \ E (z) is zero and hence the Taylor 

expansion 'or ,or Tk  contains only integral powers of ( Z - z). 	On setting 



.( 01 

we obtain a function T(z), which is analytic throughout the closed disk 

with centre z1  and radius r and satisfies the condition 

(z) 	maix CZ)  ) 	(38) 

with equality, in particular, at zr 	Using (38) and applying the mean 

value theorem for harmonic functions
19 

to RI T(z), we obtain: 

iticuy (*z') 
	

R -e 7-(z 9-= 	e R-efT(z1+ 

23C 
O 

cte 	11 
	 -r-e- 9) 	(39) 

for all r < r(z). 	Conditions (35) and (39) 

harmonic throughout the Z -plane. 

Corollary 

imply20 
that X 	(z) is sub-

max 

    

If X 
ax

( z) is harmonic in a neighbourhood 	then 	
max

(Z) exists m 

throughout  

Proof 

Suppose that 	is an open disk with centre 4 then there is a closed 

disk, say D centred at z, throughout which X 	(Z) is harmonic. 	There- 
MCDC 

fore
21 

there exists a branch, say )( 1 , of j) , which is regular and has 

real part Xmax(7) for in D. 
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To complete the proof of this corollary we shall show that, within 

D, 	1(7) is the only branch of J having L.R.P. 	To see this, 

consider the function F(Z) = RI T(Z) - Xmcpc(z). 	Since T(Z) is 

analytic (as shown in the proof of Theorem II) and Amax( 	is harmonic 

within D (by the hypothesis of this corollary) the inequality in (39) becomes 

an equation. 	Consequently, F(2-:) vanishes for all 	on the boundary 

of D and hence22 throughout D. 	Moreover, RI T( z"), being the 

arithmetic mean of the real parts of all branches of J \ having L.R.P. at 

z; is less than Amax  (Z) unless each of these branches has real part equal 

to Amax  (7). 	Therefore, the vanishing of F( Z) entails that two or more 

branches of ) 1 (Z) have L.R.P. for all Z. in D, and this violates 

Lemma 	0.E,D. 

XII. 	The Sets So,Si LS2 	 

One of our aims in this paper is to verify rigorously the assumption 

made by Yang and Lee (which they verified2 
in the case of a classical 

lattice gas with purely attractive forces), that the limit points of zeros fall 

on curves in the Z -plane. 	To this end we define the following disjoint 

sets S1 
,S?''''  of points in the Z -plane. 

For k = 1,2,3,... 



z€ Sk  if and only if 	\ (71 has exactly k branches 

of L. R. P. at 	— all regular a 	 (40) 

We also define a set S
o

; 

-z c so if and only if 

either 	T (z) has no branch of L. R. P. 

or 	 = z is a branch point of 	
max" 

Evidently the sets So,S I ,S2... partition the whole Z -plane, so that 

we have at once 

Sr = S
o 
U S

2 
U S

3 
U 	 1 (41) 

where 9 means the complement of S1 . 	It follows from the corollary to 

theorem II that S
1 

may also be defined as the set of all points in the 

Z -plane at which X ( Z) is harmonic. max 

As a first step towards showing that C consists of arcs we prove the 

following theorem; 

o 



(OL  

The set S1  is simply connected. 

Proof 

We shall show 
23  that every simple olosed curve contained in S/  

encloses only points of S 

Let 	denote any simple, closed curve contained in Si  and let D 

denote the domain consisting ofZ and all points interior to 

Since k.....max(Z)E i if max (Z) is subharmonic (Theorem II) we 
213, 	.Le. 

have the inequality 	C 
- j• Rado, 1949, DF31) 

Theorem III  

(42) 

Where the two sides of (42) are equal if and only if A max 	) 

is harmonic throughout D. 

But 11 max (Z) exists in a neighbourhood of every point of 

(by the corollary to theorem II) and hence, by the Cauchy-Riemann 

conditions, 

ct2 	2,4  
2. 71-. 	a. ..:s 	

(43) 

where 4- max E611417max; fort  !l max(Z) must be single- 

valued because of Lemma 11.Hence N max (Z) is harmonic for 
all Z. in D and so (by a second application of Lemma II) 

max (Z) exists throughout D, showing thatItC.51  • 	Q.E.D. 

* This proof is due to Penrose 
*,* In this notation tL stands for the normal to :E 

and hence 4S coincides with clE . 



Theorem IV  

The set S of points Z  at which max(Z) is not harmonic is a 

closed system of arcs. 

Proof 

It follows from (41) and the corollary to Theorem II that the sets S,S.; 

are identical. 	Let z'be the affix of any point of S7  and denote by 

pi  ,p7  the two simple poles of y(z,p) having L.R.P. 	It follows from Lemma 

I 1 that p1  = 	1(z) and p2  = A 	 J 1  and 2(z) where 	 J are 2 

branches of jc (Z). 	Since all branches of A (Z) are continuous 

there exists a neighbourhood of 	say JV , throughout which JC 
1(Z) 

and 	2(2) are regular and have larger real parts than any other branch 

of )1 (Z). 	For all Z within 	, Taylor's theorem gives 

(44) 



loG  

where 

T-E 
	

(45) 

(46) 
zrzi 

and M is the order of the first nonvanishing derivative of 01,-71-0 
at 	7 = z! The value of M must be finite; for otherwise 

7 	
X 

tz) 	/1.1.CZ)would be equal to the imaginary constant p1  - p2  

throughout 	, in violation of Lemma II. 	Taking the real part of 

(44) and using (45), (35) and Lemma I, we find the condition for a point 

of NI  to belong to S
2 

to be 

(M 	01,4) + 0 Or frr)(47)  
M 

where O(r ARM) denotes a quantity which tends to zero faster than r
M 

 R 

as r tends to zero. 	Therefore the points of S
2 

within ..Ar form a set of 

M arcs intersecting at z'at angles of rr/M, or a single arc if M = 1. 

If 	Z c::: Sk , where k > 3, and ) 1 1,•••, II k  denote the 

branches of ) i having L.R.P. at Z. , then each of the functions 

RIjl 	—/ . 	, 1 < I, < ̀ j < k, must vanish at all points of Sk  ( f t 

,.)  
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in a neighbourhood of Z . 	We conclude, from an argument similar 

to that used in considering S2, that for k > 3 S
k 
 consists at most of 

arcs and isolated points. 

Since AP (p) is meromorphic and nonconstant, it follows from 

(20) and Lemma I that the set S
o 

consists of isolated points. 	Moreover, 

since S
1 

is simply connected (Theorem III) the complement) 
1)  

St of S1  

cannot contain isolated points. 	Finally, by the corollary to Theorem II, 

the limit points of Sk  for k > 2 cannot belong to Si; for Nmax(Z) is 

not harmonic at these points. 	This completes the proof of Theorem IV. 

We have also shown that S is a closed set. 

XIII. Determination of C 

We are now in a position to determine the set C of limit points of 
••••••••..., 

zeros of — (r.,L); this determination is accomplished in the 

following theorem. 

Theorem V  

C = S. 

Proof 

Define the set S to consist of all points Z interior to exactly one 

arc of S. 	Suppose that 	2
Y 

 is the affix of any point Y of an arc 
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Cr-  of Sr. .Then one can find a closed disk aD6(Y) with centre 

I. and radius 8, containing only points of 0-  and points of S
1, 

and split by C7-  into two disjoint regions, say R1, 
z  

R-
' 	

Further, 

denote by K
r
(Y) the circle with centre 	Z. and radius r 	8), and 

by 	ZA , 	B  2 the affixes of the distinct points A, B in which K
r 

cuts Li • 

form 

We shall show now that j( max(Z) may be represented in the 

(z) 
-1,JT:z (7), if 

k)(  

z 6  k)2 	(43) 

where J1 v  Tr2  are distinct branches of /( , regular throughout)) 

and satisfying the condition 

RI 11- 1(z) = RI /I 2(z) = Nam  (z) 	 (49) 

when 7 is on (7-  . 

To see this, suppose that 0— is an arc ofSk' • then there exists exactly 

k distinct branches of /1 having real part X ax(Z)  at points of 0-  , 
m 

and all regular throughout cp 	Since R
1'  R

2   are subsets of S
1' 

we 

may define /I , to be the unique branch of it having L.R.P. within 
' 

Ri. 	If /1 1  had the same property with R2  and j( 2  were any 



1 0 t 

other branch of / having real part max on V , then the integral 

mean of the harmonic function 111()i 1  —)( 2) over the boundary of 

would be positive and so different from the value (zero) of RI( 	— 

at the centre of D, in violation of the mean value theorem for harmonic 

functions.
16 

Hence it 1  cannot have L.R.P. within R2  and we may 

suppose (after relabelling the branches if necessary) that
2 
 has L.R.P. 

throughout R2 , thus justifying (51). 

Let us choose Ri  to lie to the left and R2  to the right of 0 

when 0—  has the sense of the directed segment AB. We shall prove 

Theorem V by obtaining bounds on the function L
-1  Nr(L) for large L, 

where Nr(L) denotes the number of zeros of — (Z,L) inside or on Kr. 

To establish these bounds we shall apply the argument principle, but 

before this can be done, a definite branch of the multivalued function 

arg 	(Z ,L) must be chosen. 	By virtue of (22), which holds at all 

points of S1, we may choose the branch 

A  g 	 A--g  A ftwxtz) + 0 (1)) (50)  

where 	/4max(Z)  is defined to be the imaginary part of i 1 
max(z) 

and, in view of Lemma I, Amax(Z) equals A
1
(Z) as defined in (23). 

The function Arg Amax(Z)  is defined so that it varies continuously as 

varies on Kr () 0.1 	0--  ' being the complement of C7-  . 
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Finally, the term 0(1) in (50) denotes a quantity which, for each Z , 

tends to 0 as L tends to co. 

We now define a broken contour, r , consisting of two segments 

P'0', P" Q" of K
r 

such that: 

(1) 	PI O', P"Q" are on opposite sides of 

(ii) Each of P'Q', P" Q" has the same sense as AB; 

(iii) Each of the straight lines P'P", GI' Q" has length p > 0 

(See Figure 3). 

It follows from (22) and the fact that, for Z in any close subset of Si , 

(z, L) tends uniformly to 0 as L tends to co (see the proof of Theorem 

1(2), §X for the reasoning) that the term 0(1) in (50) is uniform in Z 

on 
	

Further, we define a function 	L\Nr  (L; 1;1  ) by 

Z__\Ti (L. 	•67  TEr 	a 0  -/\) -I-( 	, 

where (for X = P' ,P" , 	,10" ) Arg —
x 
 means the numerical value 

of the right side of (50) at Z X. 	To complete the preliminaries to 

the use of the argument principle, we introduce the circle K1 
with centre 

and radius r1, where 

0 < r < <5 	 (52) 

(51) 
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In order to obtain an upper bound on A T(L; 2), we consider 

separately the contributions from zeros of 	(a) inside or on Kt, 

(b) outside KI' 	Denoting by N the total number of zeros of 	(as 

before) and by NI the number inside or on K1' we obtain the bound: 

LJ ii (1--)9) < 2rNi  (N- N1) (Op + ea) ) 	(53) 

where 
(for X = Por Q), 

i"?x means the greatest angle subtended by the chord X' X" at points 

outside K1 (see Figure 3). 	The simplest way to derive the bound is to 

consider the contribution of one particular zero, say z f, of 	, taking 

the axis from whichArg 	is measured to pass through this zero. 	Since 

( 	z is a fact--or of 	(Z,L), it follows from (54) that the numbers 

2n, (A0  + 	constitute upper bounds on the contribution to 

Ar-i(L; ) from a zero z1  in the regions (a), (b), respectively. 	By 

this method, all zeros of 	are counted according to their multiplicities. 

The angles Ax  depend on r) ( 	; in particular, we have 

Lim Q (7) = 0 	 (54) 
->0 x  

On dividing both sides of (53) by L and then letting L tend to co, we 

obtain 
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I  rL 	
'Lit 	IrfE2r1:`Nif 1.1.1(N-Ivi)(9p+14-55)  

A/ oo 

Let Lim . mean that 	tends to 0 while all of the conditions 
p 

(i)-(iii) on F are maintained. 	Then we obtain from (57) and (56) the 

inequality 

L-2.\(L, 	 (L) (56) 

For all 2 in D we define 

Timet,(z)a— 	0— J12 (z) 
	

• (57) 

According to (40, (B/On)R1 /\ 	max(z..) is nonnegative, where (a/an) 

denotes differentiation along the normal to Gr drawn from R2  into R1' 

Taking this normal as the RI 'Z —axis of a right-handed pair of axes )  

we obtain from the Cauchy-Riemann equations 

(58) 

where BA denotes differentiation along a-  in the direction BA. 
...•••••• 

Since RI /\ 	max(2) vanishes along CT , the left side of (58) can 
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vanish only at isolated points (otherwise 	 max(z)z- 0 in D, 

in violation of Lemma II). 	Consequently, the left side of (56), which 

by (50), (51) and (57) equals Im{21 J t 
max( ZA) 	 max(zB) 

is positive for all positive values of r
1 

and hence 	Z Y  is a limit point 

(---- 
of zeros of 

Moreover, Z y may be chosen arbitrarily on Cr and (7" 

itself denotes any arc of S, so we have shown that S is a subset of C. 

Since C is closed it follows that the closure of S-  is also a subset of C. 

Further, in view of Theorem IV and the definition of S, the closure of S 

coincides with S, so 'hat S is a subset of C. 	We can also show, 

however, that C is a subset of S; for theorem 1(2) implies that C is a 

subset of Si
' 
 and the result proved immediately after (41) shows that S' 

1 	 1 

coincides with S. 	Since C and S are subsets of each direr, it follows 

that 

C = S 
	

(59) 

WkIG 	tt-e 	 tiLZ-oreAk4 

XIV. The Hard Rod System  

In this section the set of arcs C is determined uniquely for a system 

of hard rods. 	Here the interaction potential is 
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+ 	, 	r < 1 

U(r) = 
	

(60) 

r > 1 

For this model we have, from (18), 

- - 
h.r(P)  = P 

1 
 e  p  

so that p is a pole of 4.1.r.(Z ,p) if and only if 

P313  = Z 

The argument given immediately after (20) implies that there is at least 

one value of p satisfying (62) for each value of Z. 	The arcs C 

will be determined by use of Theorems I - V in conjunction with the 

following properties of 

0) 	If xh.r.(z ,p) has two poles of L.R.P., both simple, then Z is 

reali 

(ii) If Z > -e-1 then 
yh.r.  (2 p) has exactly one pole of L.R.P., — 

and this pole is simple. 

(iii) If z < - e 1 then xii.r.(z ,p) has exactly two poles of L.R.P., 

both simple. 

Proof of 0)  

Taking the modulus of both sides of (62) we see that 

(61)  

(62)  



1 IS  
)k-4_,,,t4 4, 0, 

eLA,xot '-'11 '14  
1/4A y w  f 1 2_ 	2 	 (63) 

If two distinct simple poles p1 , p2  have L.F.P. then 

ts>k 2.  --_-_-- 

/4 	
2- 

17.2 e13- 	z 
Conditions (63)-(65) imply that 

- ......- 

whence 

P1 = P2 

and z = p1e = p2e - 

That is, z is real. 

The branch points of p(z) may be found, from the condition (dz/dp) = 0, 

applied to the function (74), to be zl  = 0, z2  = -e-1 , both of which 

are real. 

p1 	- P2 	 z  

(64)  

(65)  

(66)  

(67)  

(60) 



When Z. = 0, it follows at once from (5) and (6) that y(z ,p) 

has exactly one pole, at p = 0, and that this pole is simple. 

Consequently we deduce from (20) and (65) that all of the poles of 

y(z ,p) are simple except when Z = -e 1 . Consequently, when 

- 
-e

1 
 every solution of (74) corresponds to a simple pole y . 

Proof of (ii)  

When Z > C there is always a unique p > 0 which satisfies (65), 

and this is the unique simple pole of 1. R. P.since, when X > 0, the 

maximum value of X for which (X2 + ,2)4-? 	= Z 	const. > C) 

occurs when /it = 
	

Further, when 

- -e 1  < Z < (39) 

there is a unique solution
)pia (62) which is real and > -1, and once 

again, this value of p corresponds to the unique simple pole of r  having 

L. P. 

To see this, suppose that 

-1 < X 
(70) 

and that Z (= (A + irt)exp 	X + i 	 ) is real (so that A = 	cotlit ); 

then we obtain, by substituting into (62) 



	

Z 	 c--/A cot" 	(71) 

To make Z negative, we must take only those values of 
	

for which 

	

AA. cosec /1h 	is positive, that is 

2ku < 	< (2k + 11rr 	 (72) 

k = C,1,2,... . 	But since 	ilk cosect4 1 	is an increasing function 

of 1 ILI and tends to 1 as Ifri 1 	tends to 0, (74) and (75) imply that 

is less than -e-1, which is incompatible with our initial assumption 

(72). 	Thus statement (ii) is proved. 

Proof of (iii) 

!;'hen Z < -e-1
, equation (62) has no real roots and it follows 

frail (65) that there are for each X precisely two roots, which are complex 

conjugates of each other, 	:\Aoreover, by (2C') these roots correspond to 

simple poles of 4.r.; by the argtpaent of §VII, 4.r.(z)p) has a finite 

number of poles of L.. P. 	Therefore for all real Z, less than -e 1 , v. 

has exactly two poles of L. R. P., both simple, and they are complex 

conjugates of one another. From theorems 1 and V we now find at once 

that C is the semi-infinite straight line 

-or) < Z < -e
1- 	

(73) 

This confirms the result obtained by Hauge and Hemmer using a non-rigorous 

method. 
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XV. 	Discussion 

The problem of determining the Yang-Lee zero distribution uniquely 

has been considered by Byckling,
26 

whose criteria are less explicit than 

ours but not in conflict with them. 

The fact that RI n(3,Z) is equal to the abscissa of convergence of 

e -- 
the Laplace transform of 	(3,7,1) when 3 and Z are positive, seems 

to have been used First by Kac
27 

to calculate the equation of state of 

a system of hard rods with exponentially decreasing attractive forces. 

This property is also valid
28 

for three-dimensional systems when the Laplace 

transform of - (3,Z ,V) is taken with respect to the volume, V. 

Our work generalizes this property to some one-dimensional systems at 

complex fugacities. 

Recently it has been shown
33 

that, by redefining the configuration 

space of the system to consist of only those configurations in which no pair 

of particles overlap, one can prove analogues, referring to the complex 

3-plane, of the theorems of Yang and Lee.1-12 	From this it follows that 

-1 
the relation y 03,0 	z. 	which, as we have shown in §IX, is 

.0.1•••••• 

satisfied by the complete analytic function 	(z), may equally well be 

used to generate an analytic function r30), for a fixed value z/of Z . 

It seems likely that all of the theorems we have proved for /1 (Z) can 

also be established for the C.A.F. obtained by analytic continuation in the 
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3-plane from rf(p,z). 	We shall not attempt this task here since no 

new ideas are involved. 	The only difficulties in this process requiring 

further investigation are: (1) to verify that the branch points of P(3) 

form an isolated set and to locate these points in the 3-plane, (so that 

the analogue of Lemma I may be proved); (2) to modify the proof of 

theorem V to take account of the fact that, even for finite L, 	0,0 
has in general infinitely many zeros in the 0-plane. 

The well-known formula26 

g(Z) = (210)-1 
a /\ (Z( T.)) 	(74) max 

for the density of limit points of zeros of — (par unit length of the 

container of the system) at a point of arc length t on S , can be 

derived from our analysis if it can be shown that (56) holds with equality, and 

with lim In H.-1 N1 replaced by Urn C1  N1' 	However, we have been 

unable to prove that these conditions hold. 

Theorem I of this paper may be extended to the case of a classical 

one-dimensional lattice gas with interaction potential, U(r), defined in 

(1). 	The method of proof is unchanged except for the replacement of 

integrals by sums. 	However, the lattice gas analogue of IP (p) 

has period 2rriS-1, s  being the (uniform) lattice spacing, so that the 

pressure is no longer single-valued and all of the proofs 
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in the present paper which depend on the aperiodicity of -1/) (p) 

break down for a lattice gas. 	It appears that Theorems I, II, IV and V 

may be extended to lattice gases, though parts.  of the proofs would have to 

be changed, but that Lemma II, the Corollary to Theorem II and Theorem 

III cannot be so extended. 

The restriction to nearest-neighbour forces in one dimension excludes 

30 
all cases where a phase transition can occur, such as the model with 

forces of infinite range studied by Kac, Uhlenbeck and Hemmer.
31 

However, it should be emphasized that many of the proofs given in the 

present paper are sufficiently general to be valid, with only minor 

modifications, for more general one-dimensional systems, including those 

with forces of infinite range, and even for some systems in more than one 

dimension. 	The most difficult problem, to generalize Theorem I, is 

currently being considered. 
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CHAPTER V 

The Yang — Lee Distribution of Zeros  

for a Classical Lattice Gas. 
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§ 1. 	In this Chapter it will be shown that the principal 

results of Chapter 17 May be extended to classical lattice 

gases when the particles have hard cores and an arbitrary 

but finite range of interaction. Moreover, it will be found 

that the basic lattice may have any dimensionality, provided 

that it is sim2le and grows only one - dimensionally; but the 

pressure at complex 	in general, now be multivalued, so 

that only its real part can be determined uniquely. 

The functions occurring in this chapter depend on 

several variables; for simplicity we show in each section at 

most those variables directly involved in the reasoning. The 

full dependence of all functions may be ascertained from their 

definitions. 

The technique used in this chapter is similar to the 

matrix method of Kramers Wannier (1941); they considered only 

nearest - neighbour interactions (two-dimensional Ising model) 

but allowed the lattice to grow two-dimensionally. It is possible, 

also, that the results of 3aur Nosanow (1962) on one-dimensional 

lattice gases, in which the range of interaction may have any finite 

value and the particles may have any finite number of internal degrees 

of freedom, could be adapted for use in the present work; however, 

the treatment given hero is simpler and seems more elegant. 
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V 2.2: 
(k. 2.3) 

L 0 	of 	) 

rt.. X • 

12.9 
Caltsi.d.tr-a-lattice-comp=-kw!g-M equally-spaced- sites 

on a line. Suppose that the two body interaction potential for 

the corresponding lattice gas is defined by 

) 	1 	s 

• D  4'4 	&--.1 (2-24) 
L. 0 	) & Ji-j)‘. M-1 

Where we take the distance between neighbouring sites as-'the unit 

1 • 
of length, so that s and t are integers, and the function 5POZ--jjj 

is taken to be bounded. Next, consider the model consisting of 

an array of spins, one per site, denoted by 67iwi crm  and capable 

of just two orientations, sup,  ( ), or 'down' W. For this 

model, in the presence of a magnetic field of strength X 
(in suitable units), we specify the following interaction: 

where 

71_ 1 MT. 
C\T 2'42) 

Iti-(4denotes the two-spin potential, thfj,j) is defined by L ,1 	 (2.1) 

and £y(,() accounts for the interactions of the separate spins 

with the external magnetic field. It should be stressed that the 

somewhat peculiar conditions (2.2), (2.3) have been imposed only 

as a formal device and are not intended to be physically realistic. 
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By virtue of (2.2) and (2.3), the Configurational sum 

(canonical partition function) for the spin system may be written as 

Q M, )= 
	' 6* 	1-1.16 (f. Y4,1 

where 	1/*;. 	 (V  2 '5) 

lvtlAA E Ili  kJ, 	j) 	nz 
= j - 

and the summation in (2.5) extends over all of the f,7-  • possible 

configurations of the spins 	.4as tr 	Following Lee and Yang 

(1952),we may identify an 'up' spin 07( in the snin system with 

a particle on the -.0 site in the lattice gas, thus obtaining 

from (2-4) - (2.6) the correspondence 

3-1 

CZ'S 04) '30 	(Z=.  -6)8X).  

(7 2-7 ) 
being".  the grand partition ,function of the lattice gas at 

fugacity -6"xio(--/gx)- 
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We aim to show that R1( A4 it) equals the trace of a ; 

suitably defihed matrix; therefore we adopt cyclic boundary 

conditions, so that all sites on the lattice are numbered 

Modulo M. In the limit as M tends to CO (the lattice analogue 

of the bulk limit discussed. in 	
' 	

the grand canonical 

75ZOS3112:0, -1..7(Z) , is not affected by these boundary conditions, 

provided that the potential is stable, and this is. the only case 

in'whiCh we are interested. 

The recuired matrix, say T, may be specified as follows. 

Denote by X= Otp 	(!../ 	4I) , any configurations 
• 1- 

of ( 	) spins taken in clockwise order round the lattice. 

qihen we may define T by 

-{3k--t 	 i= x,e z 

a/Ie./J.006 	Cci 3 1 ) 
Where Sigt.i po3 denotes the Boltzmann factor of the spin 4P- 
in state, 	, in the presence of the configuration of spins, 

, and the magnetic 	Thus T is a scuare matrix of 

order etE-  f , independent of M. 

In terms of. the matrix T we have at once from (2.5) -

(2.7) the basic result:. 

.4......,t CZ=  6-PC1 M) 
 m - , kt.L. i 

7-* More Precisely, for any k -t.:. 0 j  ,,.4 	 4 I\4-  • ) . 

	

., 	.. 	
. .. 

let V (ci 3 .,2) 
Denote any configuration of the spins ar ....- w, . 
And Y any catfiguration of (r". 	..,41...- iftl 

• ' 2 	u Jo t 



Where 
r 
b.) (z) 
k 

that the the characteristic equation for. the eigenvalues of d has 

are the eigenvalues of T. It follows from (3-1) 

1 32  

the form . 

j=1  
	 ,; 

 
in which the 'coefficients', iOare polynomials of degree 

at most J in Z . Consequently, if the left-hand member of 

(3.3) is identically decomposable into 7' irreducible polynomial 

factors of degrees, say,<1141-4:  then the condition (3.3) 

0)z) 4  p °‘‘ determines a set of algebraic functions, 	( 1 , 0 	Yr  
where poz) (z) has Clk branches and 411-4-‘12± 

(cf. Saks and Zygmund, 1965, pp273-5). When there is a unique 

eigenvalue of T having largest Modulus, and this eigenvalue is 

simple,we shall denote it by p 	). For a given value of 21: 
orktx 

the sum
m

.vrtik 
 tends to I as 1 tends to 0400. 

ax 

Therefore we may 'define' the argument of 	) by 

Pesux  (Z)  ) (V 2 4)  * 
where O ( ) denotes a Quantity which tends to 0 as M tends to 047 • 

Of course this is not yet a proper definition, since arg max 

is a multi-valued function. There are now two possibilities: 

(a) One can choose the principal value of the argument of Atow  

thus making the argument of ,t  single-valuedbut discontinuous as 

varies; or (b) One can define a function, sayjil max (Z), 
to. vary continuously with 
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throughout the domain of existence of If max (..4), rendering 

the argument of Ztcontinuous but multi - valued. We shall 

denote these values of ar,s1 4.1oy ..krge771  , Atg -7e  respectively 

(cf 	(IV 44(54)). Thus, when 	(Z) exists, we obtain 
Men 

from (3.2), by taking logarithms,' dividing by M and then letting 

A4 tend to oo, the results 

todig,,a141-1- i 
depending on our choice of arg 

ZiS positive so is -.7-(z)?  bui in .c.'eneri.17  thci inlaEinLry 

4 15.rArt of 	cu-lto arbitrary. 	Thus only the rczl vAzt 

of the ..71.-essura i2 uni,:uoly determined by (3 - 5). 	This.':_rbitrv.rinces 

in the imain.:2oy 	of the '..rssure also extends to the 2:;ste7..: 

.etudied in Chapter IV 2  whore L..n api-:arently stronEer re:ult ( 

was sti,tcd. 

7_3 
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Equation (3.5) generalizes the relation (",27 ) of 
Chapter IV to the case of a lattice gas consisting of simple 

particles (that is, particles having no internal degrees of 

freedom) with an abitrary but finite range of interaction, whose 

possible positions are limited to the sites of a linear, equally 

spaced lattice. Before discussing some consequences of (3.6), 
h^tQy 

we shall show how this, in turn, be extended to include- three 

dimensional (or two - dimensional) lattices which grow one 

dimensionally. 

Consider a simple cubic lattice in the form of a 

rectangular parallelepiped comprizing pop(A/1 cells. If we 

retain as the unit of length the separation of a'pair of 

neighbouring sites, we may regard this 1,attice as consisting of 

M square sheets of sidel, the mutual spacing of neighbouring • 

sheets being unity. We denote the sheets ,by./di 	aad suppose 

that each sheet can assume V ?2s distinct internal states, 

say 0ik 	=1)2.1 <1"" ) v , corresponding to the total number of 

distinct configurations of the 'compound spin' DT formed by 

plad4-i;a a sf.mplo, 	- down' spin on each of the q,~' lattice 

of AZ . For the simple spins at positions 

we introduce the two - spin interaction 

(14) 	spas sip tj 	60, 

0 ciit—rhr-14-6, 

v 
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where 

< s  
5 	rtilS 

 

(544) 

of+  ite12-) and Ky,:7) is bo,  nded. 
We also introduce the spin field interaction 

E jk  = 6(4ile) defined by 

-- -Elk 	 ‘k.:k .> 

energy, 

where4k (C9) denotes the total number of 'up' spins in the 

internal0—  state)  k, of 07, and X denotes the field strength 

of a constant external magnetiC field (again, in such units that 	SD 

'Magnetic mc;:den:JF does ,not appear explicitly). Finally; for two 

compound sniffs, we define the interaction by 

0 

dth 	o 
(17.44) 

6)-z4 e= 0 

,,:_ere Fkk)5e;11—,11) stands for the interaction energy of a pair 
of compound spins, ik  ,4571C, the interaction of simple spins 

being defined by (4.1). 
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If we adopt cyclic boundary conditions, so that the 

sheets,A• , are numbered moduloPla:nd, say, in clockwise order, 

we may generalize the method of section• 3 by defining a matrix 
ens,' 

▪ y

ti 

^NJ 

any configurations of ( I' - ) consecutive 
4(- 

spins,4 , in clockwise order. Define the matrix j 

0 	 ( V 4 -5; 
The Boltzmann factor 	AIIRA is now supposed to include 

both the internal energy of the compound spin Li 	and the 
Ay 

interaction energy of 36..1 	with the compound spins .14K 

and the magnetic field,X . 

Finally, if we identify pairs of simple sup' spins 

with pairs of particles interacting via the potential (4-2), 

it follows from (4'1) - (4.5) that the grand partition function 

as 

Itli 

compound 

by 

follows. Denote by x •••fte' 

x1 	6'4 

for the lattice gas consisting of these particles is given by 

4e 

• "JP  >  
k 

k25- v 
we now obtain an eigenvalue In analogy with (3.3) 

(2:4-0 

equation of the form. 

Je- (x7 aictc--/ 
ak  

34-  E17.17 111L7 	PC10--11,0-1-61 OW P. 139- 
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for the eigenvaluel, 
IV
of i , the coefficients B. being 

polynomials inZ. , so that .(4.7) determines a set of algebraic 

functions, say p CAIN  c4c,:tc 	VI- 1,7 	(±..) of degrees civ  tatt:i 4V4 1 . ki,..d 

olk...0m 	
) 	

• 	. 

nv.. 

where 044" ' 1  1F"CrO4C 

	

	. If-I-  hasa unique, eigenvalue, 
• ......0 

say 	Prnamc (Z ) of largest modulus and this eigenvalue is 

simple, then we obtain from (4.6) the basic result 

bg 

.x  (z)14-.2 	?Lax (z) 
according to our choice of arg.Mt, where the dependence of all 

functions only  has not been shown explicitly. 

The formula (4.8) extends (3.5) to a class of three - 

dimensional (or two - dimensional) lattice gases. Lpart from the 

fact that the functions pizCZ.) depend on t , (3.5) and (4.8) 
are formally identical. Therefore we nay omit the tilda in 

(4.8) and all of the observations made in the rest of this chapter 

will apply equally to lattice gases in one, two or three 

dinensions, provided that the lattices grow only one - dimensionally 

(that is, $, is constant). 

The analogue of the second part of theorem I is that 

if 	has a unicue eigenvalue, (20 
) 	

, of largest modulus, and 

le4?1, is simple, then Z  is not a limit point of zeros of 

t 	) 417-P 	. The only change needed in the proof 

(Ch. IV § X 	) is that the function 	L ) defined bi0V24) 
• ' must now be replaced by 
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(z M) 	- 	(where we have numbered the 

so that 
	

sax = pi ), and it must be shown that E.: (Z,M) 
tends uniformly to 0 in a neighbourhood of:Z. To prove this propery 

we use the continuity of all branches of PW. If D denotes any 

sufficiently small closed disk centred at Z , then the number 
MOOt 1 

90 -2:61) 
exists and is less than 1 . 
Hence we have 

(z, 	L'44$-/ ) 6< 
which tends to 0 uniformly for .Z in j>.. 

From novr on we shall suppose that F ( 	;:z) is irreducible to 

a product of two or more polynomials in ,Z. .This has the important 

consequence that the relation log It (Z) = log tie44(2') 	2443 

Wa real constant) cannot hold over a' domain of values of unless 

4) = 2.1c no, 	0, 1, = 2,,".) and log 	, loge 
Pot 

are two values of the logarithm of the same sivele.zero of F( 2)Z 
CFor otherwise Fwould be reduoble). 	Since the precise form of.fr 

is deter mined by the interaction potential, we may regard the 

irreducibility of Fas a property of the models considered. For such 

models, two branches of the pressure.correspondins to.distinct zeros 

of F cannot differ by an imaginary constant (and so cannot have equal 

real parts) over a region in the Z7plane; but the multi:.-valuedness of 

log 	for given w still implies that theorem Ill of Chapter IV is, 
in general, false for lattice gases. 
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We have seen that the function r (z ) defined by 
(4.7) is algebraic, which implies that it has only a finite number 

of branch points, each of finite order..(cf. Saks and Zygm=d, 

l965,. P.275): Instead of the sats$Ch. IV • 	3(V ) 

we now introduce sets, 	R. A.JE , of points in the=-plane, defined 

by the condition 

for k 	I)  2a.. o 	4.1C 

Z64)  k if and only if q,  has exactly k eigen- 
values, say , whose common modulus 

exceeds those Of all others, and all of these 

eigenvalues are simple. 

We shall say that the eigenvallies 	Assalie  have largest modulus  

(14/). We also introduce a set of points, :7; , where 

ZE 	0 if and only LI (Z ) has at least one 

multiple eigenvalue of 

The  sets 	
(-)1 4J2.  2 

	 partition the Z' plane. 

Finally,wo shall writs 

 

 

z 	dilepx 	p (z)  5 ,  0 

 

   

so that ehi#3441,1c  (2: ) is defined and continuous for all 7,7Z , 

thugh p,„ (z ) exists only who:II-n(: , in agreement 
I 

with the notation used in sections 3 and 4. 

According to (4.7), a necessary condition for,(z ) 
I'? 

to have a branch point is thatr (p) z ), regarded as a function 
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ofp , has a multiple zero. (cf. Forsyth, 1918, p. 197). Since 

the definition of7i Stir k> 1 requires that 0, "", 
are simnle zeros ofF(19)2:), it follows that each of kip/zr),1 

gli Pk (z) is regular near a point of:. Consequently we may 

also define pi; by the conditions : 

for k 	1, .2, 	yVL , z- 

p(z) has exactly k branches 'of L.H.iall regular. 

Suppose now that Z. C-.7. q 2  ; then n(z.)-, 
have L.M. aad are therefore non vanishing. throughout a neighbour- 

hood, says of Z .• Therefore the function [ r16)--4g1.)3 
is regular Within NI and so may be expanded in a Taylor series. 

.1•110111111011i. 

By repeating the arguments used in proving theorem IV (Ch. IV §)Cif ) 

with ( 	) in place of .( ff --77) we conclude 
that_the points of Dmi withinff constitute a set of arcs intersecting 

at t?.: , or possibly a single arc passing through7ot, so that 

as a whole consists of arcs. We also find that the sets Z7-  ,) “ 
4 

4i,4 	.consist of (at most) arcs and isolated points. 

However, the analyticity of 
_mm 

in the the neighbourhood of a point of J k• shows that 
no isolated points (for, otherwise the harmonic function 

40:1 -4 	woUld'vanish at isolated points - an 

impossibility). Thus the union, say 4J , of the sets 72-,tC48 du, 

if and only if 

8(2!) 

contains 



consists of arcs in the 2:.-plane. We define :7— to be the set 

of all points Z interior to exactly one.arc ofj(cf. the definition 

ofS7 Ch. IV § X II/ ) - 

It. remains to consider the set, which contains as 

a subset all of the branch points of 	(z). All of the simple 

terminal points of arcs ofj-are points.of17(and, probably, branch 

points of 	(Z.)), since the moduli of two branches of p(z ) 

cannot be equal throughout a domain of values of Z. For the 

continuum system of Chapter IV, we shoWed that „C.;was.a subset 

of 5 ( 	If 	), but this was a consequence of Theorem III, 

• which, as we have mentioned„ breaks down for lattice gases. so  

we cannot exclude the possibility that the union of the sets 

contains a finite number of isolated points. 

We shall indicate now the proof that the function 

log j110,0,„, z ) is subharmonic throughout theZ-plane; again 

the reasoning closely parallels that in Chapter IV ( ,j ) 0 

Let Z~ be any point (i-mo) in the Z— plane and 

the branches of . 1 (It) having L.X. 	ri (Z) ca ..,•,.....,,, pkz A 	 Then 

91464 are nonvanishing throughout a neighbourhood, say.A J 

of-eand hence the functions log 119.1(7..) 	
log Pk (Z 

) 
have branch points only at the branch points of.pi I I 1 pk , 

Therefore, within an annular neighbourhood of Z1, each of 

4 I  

the functions log 	(Z) having a (necessarily algebrain) branch 

Point at Z1, say of order )2,j,-4 (4%/4)) may be expressed as a 

IN / 
meromorphic function of (a definite branch of) CZ-5-Zr) nzi 



(cf. Saks and Zycmund, 1965, p.267). (The value rti mr.1 
is to be taken whenever .(Z) is regular throughout44(1 ). 

We may now apply the arguments used in the proof of theorem II 

(Ch. IV 3 XI ) to the function 

-epie(z), 
ky=1 

obtaining, after taking real parts, 

Kex 	cds  drit„(zi÷rei9) 
(V 5 ,2) 

for all sufficiently small values of r`", which proves that 
• 

log 44A-;4(%) is subharmonic throughout the Z.-plane. (cf. Saks 

and Zygmund, 1965, p.485). 

Lastly, we want to generalize theorem V of Chapter IV 

and so determine the set, Cl, of limit points of zeros. • 

of 	 Zilo 

If we define Aif 04  ";,) to be the change in 

ite(2P/1:,4i) when Z describes the broken contour,  

corresponding to r in figure 3 (but with 	now denoting an arc 

of t) and" replacing 1, to avoid ambiguities in the notation) . 
then the, proof given in Chapter IV ( 	lit y may be extended 

to show that t3- is a subF;et of Ce. We can show, also, that ,Ct 

is a subset of jtir but this does hot permit us to identify 
• Cs 

an d Ce . Thu; s.,:r analysis does not preclude the existence 

of a finite number of isolated limit points of zeros of 	 ic  2:4/ 
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which is donsistent with the fact that the grand partition 

function for a lattice gas of noninteracting point particles 
211,4  

equals ( 14. 17: 	9 , for the lattice considered here, so that 

Z= —1 is an isolated limit point of zeros. 

A:-  _.1tr,rn,ative proof of theorem V, for the r,yotem considered 

in Chap tor TV or for the let-,Ice 	conLi,_ored here, is due to 

Penrort; (to be oubli::hed in the paper by G. onrcze 	T.S.M.Elvey7  

of which Chapter IV of tZif thesis is a prelimin 	7,rsicn). 

::rcof is b-od on Jensen's fornula ( 	for the nui::ber 

of .;:,ros of 	entire function (here --CZ,L), or ,--%14.1014) 

for 	gascs) within the circle 1Z11=-1)s 	s a 7,:y-',-rcuct 

of 	7,reef, ene el;taino a formula for tho total 	of the 

of limit points of zeros on LEVY i)re in the Z— p1Pne; t'ze 

• to one user, L,y He n. 	Hau,c (1964).. 
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Unsolved problems. 

 

     

The problem of generalizing theorem I (ch. IV §X ) 

to continuum systems with forces of arbitrary but finite range 

(and ultimately to those where the forces have infinite range) 

is a formidable one, involving the asymptotic evaluation of 

for large L. Ostensibly, the techniques of 
• • 	• e--- 	• 

Chapter II yield estimates of 	(2:14), either directly, as in 

Baxter's work, or indirectly, by inverting the Laplace transform 

'4111# 
--- an extension of the method employed in Chapter IV. 

But closer study reveals the difficulty of analysing the spectra 

• of the operators encountered in estimating . 	4I  ,—) when Z is 

comple=. 

As explained in Chapter II ( 	4; ), Kac (1959) 

has derived an eigen-function expansion for the Laplace transform 

, of which our equation (III 5-7 ) is an 

extension (subject to our assumption about the kernel). When 

p is allowed to take complex values, however, as it must whant 

is complex, Mac's kernel becomes non heraitian and the validity of 

the expansion is no longer assured. 

In view of these difficulties, it seems that the most 

promising method of attacking the problem consists of studying the 

limiting form of the. pressdre of a lattice gas as the lattice 

spacing tends to zero in a suitable way. we shall refer to this 

limit operation as 'taking the continuum 	It will become 

of 
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clear that all of the problems encountered in seeking a complete 

generalization of theorem I reduce to showing that pairs of limit 

operations commute with oneanother. In this section we reformulate 

the calculation of section: 4 so that the continuum limit can be 

discussed. The possibility of treating interactions of infinite 

range is also considered, though it is only for one — dimensional 

systems that this extension is essential in the study .Of phase 

'transitions, (see Ch. II § 3) - 

We suppose that the lattice spacing is 

,, 	 CV 61) 
where IL is an integer, and that-.  

MD 11, 	 (2 6 -2) 
47, 

0 	 ( 7 3  
so that the total number of cells of edge g 	say., , is rd. ' 	gL 

Afra, 	

••6••• 

; iAl  0 
0 	

07  6  
The basic result (4.5) now becomes 

ji 4;  ) 
all of the arguments of,. 

r 
k  , being shown to make it easier 

to follow the coming limit operations. In order to suggest one 

possible way of tackling the limit problems of this section, we 

replace the variables Ma) 
Y0) 11,) 

temporarily by.451(02A3N)  

(z mo ) 	 m° &(*z 4L?) 12') 



° 
Ooa t ji(ted 	• c,.< k 

Lff • 0 ° oCk s 
o1 

• j 

A 

42,1k; e(kic'4,0ei,ock  
of The setfkijk stands for any permutation 

• 

We now quote two theorems on double secuences, whose 

generalizations to the case of sequences having more than two 

indices are immediate. 

Theorem 1. 

If 	 and Z 	
exist,. 

then so does LA,L. o, 

L 2: 
1 
t:i  

respectively, purely for notational convenience, and define the 

following operations: 

Evidently, all of the 	are totally symmetric in their 
• 
indices. 

and 

dZt/ 	4:2t0 • a/c 
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Theorem 2. 

A 
If 	exists uniformly in  

he 
then the.existenco of LiviLASki implies that 

A 
of L 	7  and the. two limits are equal. 
(cf. Apostol, 1957, Section 12-14). 

In these theorems,ii,  denotes a known function 7ki 0( 	0 , 	2 

we present now a plausibility argument to show that the 

problem of extending theorem I may be reduced to proving that the 

single - index operators, L4, intercommute. -The idea is that the 
existence of.A (;) for' a class of three - dimensional continuum . 

systems with forces of infinite range has already been demonstrated 

for positive Z. . These results may be extended to soMe complex 

values/ of Z by analytic continuation. On the other hand, we 

shall make it Plausible that the iterated limit 

IL, 	 E,(z)ivie,x„n.,01 
also exists and would be equal to 	(Z) if the order of the 

L-- operators could be changed. 

.We denote by by Tip the interaction potential (4'2) 

and by U.00( lip the potential, of infinite range, obtained 

formally from (4.2) by making Linfinite. We suppose that U 	(rii). 

is stable (in the sense of Oh. I 	14. ) and such that the 

grand canonical pressure exists in the bulk limit for a three - 



14 (r.) 	The results 00 

) show that this is possible. 

interaction Totential 

( 

cited in Chapter 7 
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dimensional  continuum system-at positive fugacity and with 

The configurational sum for a lattice gas consisting 

of k particles is defined by 
0)h at(k)P40,410,71,0z-s dn- 

In terms of q, we have 

r-.. 	 k 
1  ÷ 	62-e(k)  km./ 

by (6.4) 

(=Y: 

C  where the summation ranges over all possible configurations o V.y. 

particles on a rectangular lattice of. 46y  sites, 444: being defined 

Horeover, the stability of 1.4(rij,-) implies that there exists a 

positive number, say 	, such that 

UE(4 	tax)k 	80t, 	(V— G .  9) 
for all values of k  (1041,  ) 'and all Configurations (')'k 

the subscripts 	, 	in (6.8) indicate,- respectively, . 

the total potential energy calculated with interaction potential 

Itoz, 

If 	.6" 	, so that the matrixTr, defined by (4'5) 
has a unique eigenvalue of largest modulus, say 	Z.) ) 

, and 	Is simple, we obtain 

.ehti,,frt, zie,Pgiv 
from (6.5) — (6.8) the inequbei4e.s 

	 IV421 J _2  
6'7) 

 

  



On taking logarithms in (6-9), dividing by M401  and making 

tend to infinity, we obtain 

-072  :11' 	IA [z) 	np L-31<1.1 	Foo. 
(sz e 0) 

showing the left member of (6.10) to be uniformly bounded in 

From the Boltzano Neierstrass theorem and (6.10) 

it now follows that the sequence 

vx 	hi! ErZ40) ‘113 
has at least one point of accumulation when 	t-tend to Ca° 

successively or together. 

ale have assumed from the outset that the grand 

canonical pressure at infinite volume 'exists for a three 

dimensional continuum system with potential Lot ora 	J) 

That is, we have supposed that 

A A A 

LLLL iir2-0m0) 
\-1 h 

Mo)(1,0) ) 	T ) 

Meo 

for positive values of Z. The result (6.11) would also hold, 

by analytic continuation, within a region of the complexZ7-plane. 

However, we must take the limits in a different order, since our 

calculation rests on the use of the matri±T. Instead of (6.11), 

we have considered the'limit 

(v 6 -11) 

 

{,(1Zm. 
rs., 
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The symmetry of the (rectangular) lattice implies that the 
A 	 .A.. 

operations L3,, AL , L, intercommute, for a lattice with 
jh 

. 	. 	. 

.v3)   

Yi Pi 'vg 
, 

edges of length 	q 	41 
. It has been shorn shown by Van der iT , 	, 

Linden and Nazur.(1967)that the .iterated limit, in which 1,ji 1Z! 
tend successively to CO, exists and equals the usual bulk 

limit, for the reduced potentials such as the free ener6.y density 

	

or entropy density (see Ch. I 	Although they considered 

continuum systems, it is probable that their method Works for 

lattice gases, thus making it possible (again, by. analytic 

continuation) to extend our theorem I to some complex values of Z 

for f:enuinely three — dimensional lattice gases with forces of 

finite range. 

The most difficult task seems to be the proof that 
. 	. 

the operation L commutes 	. Preliminary investigation' 
pie  

of this problem using a subdivision of the configuration space 

of the system into Ihypercubical' cells of edge — length equal 

to the lattice spacing, indicates that whenZ is positive and 

1 , we have 

• 

el 

1,4 0  11. 
.41111•••••• it,L %a 41 

where 

sy-fr,0 	k ) (k m ) 
CV G .  14) 

 

 



and 
	

defined  Qt  is by (6.6). The estimates from which (6.13) 

was derived are toy crude to be used for the grand canonical • 

Pressure, but more refined estimates can certainly be found. 
lk  

k rigorous proof that the operators 1.A...inter-commute may be 

envisaged in terms the theorems on double sequences (and their 

generalizations to multiple sequences). Despite the great 

difficulties in such a proof, the impossibility of calcUlating 

:-JT (Z) for a three - dimensional continuum system with 

realistic interactions shows that our method is the only one 

available at present. 
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CRAFTER VI: 

VflUDEIZ WAALS FLUID NEAR 	CRITICAL, POINT 



5 4.. 

The calculations of Kac, Uylenbeck & Hemmer (1963) on a one-

dimensional hard-core fluid model with weak, long-range attractive 

forces, showed that the equation of state for this system is 

vigorously Van der Waals' equation (plus Maxwell's construction) 

in the limit that the range of the interaction becomes infinite, 

while its, strength tends to zero. (See Baxter .(1965) for another 

derivation of this result; see also Lebowitz & Penrose (1966) for 

several generalizations to three-dimensional systems). It is 

therefore of interest to investigate whether the "LRP" criterion, 

introduced in Chapter IV, yields results consistent with the known 

thermodynamic behaviour, for a fluid obeying Van der Waals' equation 

of state. 

The present chapter consists of an approximate calculation 

of the pressure (as a function of gs, z) near the critical point. 
We shall show that L.R.P. yields physically consistent results at 

or below the critical temperature, To, but that the criterion fails 

above Tc. Thus the problem of exactly when L.R.P. holds (in general) 

and if what should replace it when it fails is still very much open. 

The Van der Waals equation of state is 

= 
	2 

l7f) 	
,;VI(1) 

where y,, a/kT and a is a positive constant. This form 

of the equation is obtained when the particles are assumed to be 

hard spheres of unit diameter interacting through weak, long-range, 

attractive forces; then (-a) is the integral of the attractive 
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potential over all possible separations. 

By using the relation.p= zon[r(z)Vaz together with the 

'infinite dilution' boundary condition z ~10 as? 0+ , 
one obtains from (1) the relation (Of Hemmer & Hauge(1964)) 

.)4°  

z = L7p ex p[ 17,7 - 27,11 

The critical values off  , V are 

1 
= 3,  vc

= 
 8 

On substituting 

`
i4D = (1+20) 

8 (1+3k2) 

into (1), (2) one obtains the expansions 

- 9k2-36k2(0+02) +12 (03+04) +o(e4)  

VI(2)  

VI(4) 

VI(3)  

a(e,k) 	2 .g  (2 4. 	k2) 
27k-i 	4 

= 	k + 1  (9)3 	1 84  16 	3 k 	k 	6 k3 
4-oilki + 'kilo/WI 	vi(6) 

Where we have assumed that k k), & 

(n-gc) 

(z_zo)  

The notation 

x(t) =o(104(t)) as t--+ a 

means that lx/y1 -*pas t-+ a 

VI(7) 
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We shall also use the notation 

f(t) = elp(1) 	as t 	a 

to mean that there exist positive numbers b. B, independent of t, 

where b <B, such that 
• 

b <I f(t)I 	as t 	a 

We shall denote by 0(1) any quantity which is bounded; for instance 

a = 0(1) 
• 

means that a bounded value of a is-considered, the values of 0, k 
in (6) being assumed compatible with this condition. 

	

Finally, f(t) = OM as 	a means that f(t)-° 0 as t--) a 
Our general plan is now as follows. We want to 'substitute 

for 0' from (6) into (5);0 is a multi valued function of a, K, 
so we shall obtain, in turn, a multi valued function ;,(a, K). 
When z & y are both positive, it will always be possible to 

identify the 'physical branch(es)' of n (a, k) by using the 

continuity and.reality of the pressure. It will then be possible 

to test the L.R.P. criterion. 

The form of (6) suggests that we define a function f(a) by 

1 3 
3 f  (a) - f(a) = a VIM 

and then write 

0 = K(f(a)+O) 
	 VI(9) 

Substitution of (9) into (6) and comparison with (8) yields the 

following equation, in which the '0' & 'o' symbols refer to the 

limit process GC 	0. (We shall always suppose that 1E4'4; 
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the calculation is self-consistent in the sense that the functions 

that we obtain always satisfy this condition.) 

C) = 16 k  i[(f +6)3- (f 	-f 	) 	}— [. 

- 	k(f+ 6)4  + el pc I+Ik I1(f÷c)41 I , 

which may be written 

b
3 

(1-f2)6 - fb 

+ ofikl + IkI l(f+b)41] 	VI(10) 

There are several cases to consider, 

Case A 	2 	0(1) 	0(1) 1 - f = e 	, f = e 

(10) gives 

 

o - 	k 	(21 -  f4 ) +0 (k) 
1-f2 '16 	6 vi(11) 

Case B 

  

1-f2 = 0(1); then b must be determined (to lowest order in 

k) from the quadratic equation 

2 , 2\  ,(21 f4  1'6 - <1-f lb 	1̀ '16 - 6 ) 	C)  
with solution 

 

2fb = 6 1-f + [(1-f2)2 	
f 4 

'16 - 	)]1  VI(12)  

(i) If 1-f2  = 4k2), then (12) gives 

= f 	

f ) 	(D(k) -k( 
'16
12 	4 -6-- 

- 

while if 

VI(13)  

12 (f+04  . 3 	ki 16 - 	 6 
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(ii) (1-f2)-1  = o(k 2) we obtain 

/ 	N 
b = f-1(1-f2) +.oL1-f

2) 

Case C 

If f = o(1); then (10) yields 

VI(14) 

k  
') 	16 

1-f
2 o(k) 	 VI(15) 

We define the notation ciPa 0 to mean that there is a root of 

equation (8) satisfying case C. 

The essential point of equations (11) - (15) is that, whatever the 

value of f,o is small compared with 1 & (except in case C) compared 

with f. 

2.1 1. On subtracting the single-valued function a - 16 

2 
1.1 +9k 

from , using (5) & (6), we obtain 
36k3  
2 +9k 	Z1 k  . 1  0 

	
0
2 

-.-- 	Oilkl + Ik118/k141 	VI(16) 
CY  + 16 	

2 

36 k3  — 	k3  — K  + 

Let us now suppose that a is 0(1); then, by (8) f is 0(1). If we 

define h(k,f) to be the left member of (16), regarded as a function 

of k, f, then we find, on using (9) in (16) that 

h(k,f) = -7--5-k(f4  -2f2  ) + 0(k) 	 VI(17) 

in Case A or Case B, while, by (15) h(k,f) = 0(k) in Case C. VI(18) 

It follows from (17) that, in the present approximations, the 

'physical value', f (a), of f(0) may be found from the condition 

that f4 - 2f2 must be real when the Xugacity & temperature variables 

are positive (except in case C for T>Tc, when f is identified by 

continuity from its value in case A or case B). 

Using this criterion, we may classify the roots of,(8) as follows. 
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• For T(Tc (a, k real), fl(u) is continuous for all (real) a & 

vanishes at a = 0, while f2(a), f (a) are continuous for all 

nonvanishing real o-  & satisfy the conditions 

limi.  f_(a) = - lim+ f2(a) . +A/3 	 VI(19) 
o---1,0 	' 	c-PO 

 

lim f (a) = - lira f2(a)= 
P 	• a--.p- 

For T>Tc (a, k imaginary) we make the change of variable 

	

f = 2 sin \J, Wr.u. + iv 	 VI(20) 

so that (8) gives 

2 
a = - 3 sin 3W VI(21) 

Since a is purely imaginary, we may, without loss of generality, 

take u equal to 0. Then all of the roots ()Mare continuous, & 

fp(a)! fp(-3 	sh 31y) = 2 iSiAN 	 VI(22) 

for all real v, while we adopt the convention that 

f 1  (a) 

f 2(c) 

+„,/3 ch v - 7 sh vi 

-1/3 ch v - i sh v VI(23) 

We define functions dr(a), for y= 1 or 2, by 

dr(a) 	11 R1 [h(k,fp) - h(k,fr)] 	 VI(24) 

where R1[X] means the real part of X. 
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From (19) & the continuity of all roots of (8), as labelled here, 

fora 	& T / Tc, it follows that di(a), d2(a) are continuous 

for all (real or imaginary) bounded values of a. Moreover we have 

the criterion that, when a is given, the LRP rule is valid if &  

only if both of di(c), d2(a) are positive. 

Vie shall show that when T<T , both d
1 & d2 are positive for all 

bounded (positive) values of lal, while, above Tc, there is a 

positive number, J, such that both of d1, d2 are negative for 

0 <14<J, zero for I al=  J & positive for all bounded lar, The. 

point a= 0 is the "transition point" for temperatures below Tc. 

Using (8) in. (17) & substituting the result into (24), we obtain: 
r 2 	2, dr(a) = 3 Rl[af p  - of r] + R1Lf p  - frj 	 VI(25) 

for all T 	Tc in cases A & B, while we have in Case C, 

d1  (a) = 3 Rl[afp] + HIE f 2] + 0 (1 ) 

r  2 d2(a) = 3 Rl[crf p - of2] + R1Lfp - 21  
VI(26) 

for T<T ; 

dr(a) = 0(1) - 3 Rl[cf r] - R1 [f2] 	 VI(27) 

for T>T . 

Since the sum of the roots of (8) is zero, we have 

fp  + f1  + f2 = 0 

Further, by (19), (22) & the continuity of all roots when 

a ,h 0, we find that 

of (0)› 0 

VI(28)  

VI(29)  
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for. all (real or imaginary) bounded a, (/0) so that the identity 
1 
afpfl

f 
a2(an immediate consequence of (8)) implies that - 

sgn (1.1 1'2) = sgn (a2) = sgn (To  - T) 	VI(30) 

where sgn (X) means the algebraic sign of X & (22) has been 

used again. 
2 
' Suppose now that T<Tc. When lap 3— f1 , f2  are complex 

conjugates of each other & hence, by (28) & the reality of f , 

each has real part (-ifp). When 	>101> 0, so that all the 

roots of (8) are real & nonvanishing)(30) implies that f1 , f2  
have the same sign 	opposite to that of f 	& we have the 

inequalities 

If p l = If i I 	If 2 1 >lf r l 

for r = 1 or 2. 

Consequently, we have the conditions: 

3afp(a) > 3 Rl[afr(a)] 

2 Rl[f2
P 

f  - 	Rl[f>f2  - (R1 [c])2  > C)2 
r
1
j
„f

P 

VI(32)  

VI(33)  

which hold for all bounded lal (>0) when T<To. 

Using (29), (32) & (33) in (25) & (26), we conclude that both 

d
1 
& d

2 are positive for all bounded IaI>0 & T<To. 

At the point a = 0, we have, using (19) & theNdefinition of 

f1  (a) for T<Tc 

d1(0) > 0 

lim d
2(a) = 0 

cr-ID+ 



so that the pressure is continuous across a = 0, while f & f
2 

"change places". It is just this interchange that produces the 

first order phase transition (discontinuity in the. first derivative 

of JT(z)) associated with van der Waals' equation of:state. 

When T>Tc, we use (21) - (23) in (25) & (27), obtaining 

di(a) = d2(a) = 6shvsh3v - 6sh2v - 3 	3 (ch4v - 2ch2v) 	VI(34) 

in cases A & B; & in case C, 

di(a) = d2(a) = 2shvsh3v - 2sh2v - 3 + o(1) = 0(1) - 3.... 	VI(55) 

where we are using the fact that 10. 0 (case C) implies that shv is 0(1). 

If we define the numbers + v
o 

to be the solutions of the eiquation 

ch4v = 2ch2v, & write 

12 
Jra 13  sh 3 vo  I 

then we can summarize the behaviour of the functions d1 , d2 for 

T>T
c
, by 

<0, <Ial<J 
d

1 
 (a) = d

2
(a) 	=0, lal = 

>0, Rick- 
as we anticipated. 

To study the situation near the points a= + iJ, we set 

VI(36)  

VI(37)  

V = V + x(Ixi«i) 

which defines X, & we suppose, also, that lul<0, so that 

sin u = u + 0(u3) 

cos u = 1 + 0(u2) 

VI(38)  

VI(39)  
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We wish to characterize the set of points {G} such that one of 

the conditions 

Rl[ho  - 	= 0, Rl[ho-h_]=0 	 VI(40) 

holds, where h is givn by .(18) in cases A,B & is 0(1) in case C, 

& the subscripts 0, +, -, indicate that_ we take u equal toC), + 2 
- 27,T 

respectively in (20). We denote these sets of points by 
3 

C +, C- respectively. We note, first, that near the points 

a= + iJ, case A applies to all of the roots of (8), so that, by 

combining (18) & (20), we obtain h = 2 cos 4 sir - 4 cos 2 w + 2. VI(41). 

On using (20), (38) & (39) in (41), we find that, to lowest order 

u,k,thepointsofC
Z  
C+  must satisfy the conditions. 

12 k(sh 2 vo - sh 4 vo) = + 4 3u(ch2vo  + ch4v0) 	VI(42) 

12 X(sh 4 vo  - sh 2 vo) 
	

+ 4 3u(ch2vo + ch4vo) 
	

vi(43) 

where (42) applies to the point a = - iJ & (43) to the point 

a = + iJ. 

If we define the function B(t) by 

B(t)== sh4t - sh2t  
3(ch4t + ch2t) VI(44) 

where t is real, then we find that C+ _comprizes a straight line 

of gradient 4-B-1(1v
oI) through the point a = + iJ & a straight 

line of gradient - B-1(Iv I) through the point 	= -iJ, while C 
I\ 	1\ consists of lines of gradients -B-1(

1
o1) + B

-1  (Ivo1), respectively, 

through the same pair of points. We note from (44) that B(t) is an 

odd function of t & is positive when t>0. This specification of 

0+, 0_ is valid only near the points a = + iJ, in accordance with 

(38) & (39). 
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To complete our description of the sets of points at which two 

branches of :T have LRP, we must consider Rl[h+-h ] for lul<<1. 

Using (41), we obtain 

R1[ h+ 	= -2,./3sin2u(2cos2uch4tr+ ch2). 	VI(45) 

Since lui<<1, by assumption, cos u is always positise, while 

ch2v, Ph4v are intrinsically positive. Further, (21) gives 

Rl[a] = - 	sin3uch3v. 	 VI(46)  

Combining (45) & (46), we obtain 

R1[ h+ -h..] <0 <=> R1 [a] <0 	 VI(47) 

When lul<<1. 

(In fact (47) holds for a larger range of values of lul, but 

this is irrelevant in the present calculation, in which only 

values of a with real part near ac  are important). 

21 
Finally, by (6),a becomes imaginary with z+ 	k2  when 

T<Tc, so that the set of curves at whose points two branches 

of n have.LRP for T<Tc  is obtained from the set for T>Tc  by an 

anticlockwise relation through an angle 2 — about a= O. The 

corresponding sets of curves in the complex z-plane are sketched 

in Figure 1. 

It only remains to treat the Case K = 0, which has already been 

studied by Hemmer & Hauge (1964). 

On multiplying (6) by 2 k3  and then setting K = 0, we obtain 

7.1 = 12 (03  +  0 4) 	0 ( 04)  

VI(48)  

VI(49)  

2 
z 	e3 - .2. A  4 	0(04) 4 " 

while (5) gives at once 



.in agreement with the expressions obtained by Hemmer & Hauge. 

(But note that our n is 	 1( nc Ln-n), and Hemmer's is simply 

To solve (48) for 0 we write 

0 = ÷ CI VI(50)  

(which defines. a). Substituting (50) into the right number of 

(49), we obtain to lowest order in z: 

1 	. 2/3 
a = 	Z) 

Using (50) & (51) in (49) we find that 

VI(51)  

12 n (z) = 	z+(i 	) 
4/3 	.4/3 

+ o(z 	), 111(52) 

in agreement with our neglect of o(04) in (48) & (49). 
2 Let us write 9 — zare 	where - n< y < n 

4/3 
Then the tree possible values of (2z/9) 	for given z are 

2 ^ 4/3 	4/3 2s )] 
	VI(55) z) 	= r 	exp [ i(-° 	

n 
3 cP+ 3 

for S = 0,1,2. 

When z is positive, we must take p = 0. When z approaches a 

negative value through the lower half-plane, we take 	n; 

while, if z approaches a negative value through the upper half 

plane,. we consider the limit process in which p tends to + n 

through positive values. 



If we number the branches of n corresponding to S = 0,1,2 as 

I, II, III, respectively, we obtain the "lines of LRP" as 

shown in Figure 1. It may be verified from (53) that the 

branches II, III are equal on the real, negative z - axis, 

so that there is no discontinuity in the pressure across this line. 

Vie conclude that the LRP criterion is valid at T = T
c. For the 

physically meaningful values of 	real) our results for the 

pressure agree with those obtained by Hemmer & Hauge (1964) 

using another criterion 

A Lii= \c 

   

  

 

R 

(a-) 	 (L) 	 (c) 
Figure 1. "Lines of L.R.P." in the complex Z - plane for (a) 

T< Tc (b) T = T 	(c) T> T
c
. 

The lines cut the real Z-axis at the point where z z (1-L1  k2)  4 
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