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ABSTRACT

The rigorous statistical mechanics of various classical systems

of particles at real or complex fugacities is studied. Some
existing techniques for deriving the equation of state at posi-
tive fugacities are surveyed & one of them is partially extended.
Several theorems are proved (for systems which are, effectively,
one-dimensional) concerning the distribution of limit points of
zeros of the grand partition function in the complex fugacity
sner(2)—= plane, as the size of the system becomes infinite.

The main new result is a criterion for the unique determination

of this distribution from the equation of state. This is

important because it allows unambiguous application of the Yang-
Lee theorems (1952), which show that a phase transition can

occur only if the zero-distribution meets the real positive z-axis,
The calculation in Chapter VI & the work of Kac, Uhlenbeck &

Hemmer (1963), & Lebowitz & Penrose (1966), show that our criterion
Tails for certain systems with forces of infinite range; but the
most general conditions for this or a modified uniqueness criterion

to hold have still to be found.



PREFACE

The research in this thesis concerns a single problem:
to determine the~thermodynamic pressure at fixed temperature,
of a classical system of interacting barticles, throughout
the complex plane of the fugacity variable,:{ .

‘It was shown by Yang and Lee (1952) that thé singuiarities
of the complete analytic function, sayn(z), obtained b& analjytic
continuation from the equation of state at positive fﬁgacity,
coincide with the limit points of zeros of the grand partition
function as the size of the system becomes infinite. Chapder I
is designed primarily to motivate and explain the theory of phase
transitions due to Yang and Lee (1952), in which the above zero-

digtribution plays a central role. In Chaptef II we analyse some
rigorous techniques for studying the equation of sfate 6f a
classical, one-dimensional continuum systen. bur original intention
was to tackle the main problem with'the help of these techniques,
but the mathematical obstacles to this procedure have so far
proved insurmountable and we have had to develop different meéhods.
It was shown by Kac (1959) how the grand canonical pfessure of a
6ne—dimensional system could be determined implicitly if the pair
interaction potential was equal to the autocovariance of a stationary,
6ne-dimensional, Gsmssian Markov process. We have extended this
method in Chapter III to study a system for which the potential is

an element of the autocovariance matrix of a two-dimensional

Markov proceés. However, the integral equation we obtain does not



share the symmetry of Kac's equation, so we have only been able
to0 derive formal results. |
Chapter IV consists of a papqr,
The Yang - Lee Dpistribution of ZG505 for‘
a Classical One-dihensional gystem, by
0. Penrose & J.S.N. Elvey,
which has been submitted for publicatidn in the Journal of .
Mathematical Physics?‘ For this reason the numbering of'équations
in chapter Iv_differs from that in the ofher.chapters, but this
difference causes no difficulties. In all chapters except Chapter IV
" each equation has a three-part number; for example (II 6 + 18)
means Chapter II, section 6, equationlls. For reference within a ///

S
chapter the chapter number is omitted. Finally, cross - referencqs/

to Chapter IV, where the equations are numbered consecutivily’ffag
1 to 74, consist of just two numbers; for instance (IV '31)¢ -

our main result in Chapter IV states that when there is a
unique branch of r] (:L) having largest réal part, and this branch
is regular, then it is equal to the pressure at fugacity X .

The get of values of the fugacity for which no such branch exists is
shown to coincide'with the set of limit points of zeros of the
grand partition function. These results are proved for a classical,
one-dimensional continuum system of particles with hard cores and

' nearest-neighbour interactions.

If lattice gases are considered, however, the principal

theorems of Chapter IV may be extended to a class of systems in one,

two or three dimensions, provided that the lattices grow only one-

WriH:en' i;\ error ,-' o.cce}kel. ,'33 frotﬂj‘- gu.(l-bﬁlbﬂ) :Tu\g,”“.
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5
dimensionally. These extensions are achieved in Chapter V, whers
the problem of proving similar generaligetions for continuum
systems, by making the lattice spacing tend to zero in 2 suitable
wayy is also discussed, though no rigorous results are obtzined.

411 of the theorems proved in Chapters IV and V moy be
generalized at once to the case where the temperature iélfixed
but complex. *

The work of Kac, Uhlenbeck and Hemmer (1963) shows that a
continuum system of hard rods with exponentizlly decreasing attractive
forces rigorously obeys Van der Waal's equation of state (modified
by llaxwell'e rule) in the limit that the range of intcraction becomes
infinite while its strength decreases to zero. This property has
beon generalized by Lebowitz and Penrose (1966) to = class of
threc-dimensionel systems. Therefore it seems interesting to
examine the consocuences of assuming our theorems for a Van der ¥Waals
gas, and our finzl Chapter (VI) contzins an approximate calculation
in which this is done. Cur results are found ‘o be concictent with
thermodynamics at or below the critical temperature, Tc, but lead to
incorreét conclusions above Tc.
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CHAPTER 1

General Considerations.
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Eé 1 The Basic gims of Statistical Mechanies and Thermodynamigs.

The aim of statistical mechanics is to explain and

predict the behaviour of matter in buik'from_the dynamical
“behaviour of its constituent parficles.‘ That is, given the
Hamiltonian representing a physical object, such as a volume

of gas in a container, to determine the observational‘groperties
of thig object = for ingtance its specific heat or its entropy.

A procedure whereby this aim can be.achieved completely

(at least in principle) was introduced by Gibbs (1902)‘for systemns
whose conétituent particles move according to Newton's Laws of ,//
motion. The essential step in extending Gibbs' procedure to - S
systems whose particles obey the laws of quanfum mechanics was.-
taken by Dirac (1930). | . _///“

| The basis of Gibbs' method lies in accepting our practical
inability to-determine the precise dynamical state of a system

of particles (that is, the position and momentum of each particle)

at a given time, and to use instead a probability distribution over
the phase space of the system. The natural ferm of aiﬁiii%ﬁ&aen,
deéggig;ng the change of state of the systém in time, makes the
calculations intractable; but the ergodic theorem (éf, Khinchin,

1949 Ch. 35Lprovides sufficient conditions for the time averages

of dynamical variables to be replaced by expectationlvalues over an
appropriate gnsemble consisting of systema identical to the one under

consideration.
4

A

* See also Farquhar (1954X'£o:ﬂa‘more‘recent'and fuller account: - -

v
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The introduction of probability from the outset envisages
thermodynamic variables as engsemble - averages of dynamical variables:
for instance, the temperature corresponds to the mean kinetic energy
of the system, and the ftotal internal energy to the mean value of
the Hamiltonian. Accordingly, the fundamental problem which Gibbs
set himself was to specify guitable probsbility distributions and
to construct from them analogues of thermodynamic quantiiies. In
Sectionsg 2 and 3 of this chapter the essentials of Gibbs' method
.are outlined. |

In classical thermodynamics it is postulated that a
complete description of a physical object ;s provided by a set of
independent variables, say R and & function, sayéiieff these vari;bles.
The set R is called a (thermodynamic) representgtion,égz being the
corresponding (thermodynramic) potential. In general R ‘consists of
both intensive and extensive variables, though it is often convenient
to congider 'reduced! represeﬁtations, T, in which all extensive
variables in R are replaced by densities (per unit volume). It is
assumed that the set of macroscopic quantities constituting a full
description of the observational state of the systemcan be specified;
the manifold difficulties inherent in making this specification do

not concern us here. In terms of R and the set,C7 s, of variables

g!

" which determine the observational state, may be exprésSed as

O = Ruv §§g y (—7-7‘7)

3R
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where the right - hand side of (1°l) denotes the union of the
set R and the set (2_@/9() of dependent varigbles obtained from
?é o by partial differentiation in the variables of R.

If an equilibrium state of an isolated composite system
subject to internal constraints, such as partitions,is specified,
in the representation R, then the new equilibrium_ state eventually
attained when a constraint is relaxed, may‘be determined' by solving

the variational problem
d é& A (1 I-Z)
2 aq—
dL'de =+ ©
for the variables in R subject to all of the remaining constraints,

2 /
the sign ('_i') required of 0(, (4 depending upon whether éﬁ' p

/
/

is to be minimized (like the internal energy, U) or maximiéed (like,'"(
the entrophy, §). That is, the linear diffepential form )@E )"/ ,
must vanish, while the quadratic differential formja(_zé?z} must
be (positive or negative) definite. Following Callen (1960 ¢h.8), it
may be shown that the statements (1°1) and(1l+2) imply all of the |
usual thermodynamic stability conditions.

If X& K then 2%}1 /29{ and X are called
conﬁugate variables for R (an example is the pair T, s). A pair
of conjugate variables glr-rays consists of one extensive variable
and one intensive variable (except when one deals with reduced

potentials, when both variables are necessarily intensive).
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. -
Further, if the representation R is derived from R by replacing

of with 3§g/2o( then we have
;z R
Evidently the effect of the Legendre transformah. on (3) is to make

9$g/20( en independent variable and OX a dependent variable.

The basic result (1) applied to (3) yields the thermodynamic state

fasd
in representation R.
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§ 2 The Link Between Skatistical.Mechanies
' and Thermodynamics.

Gibba'prescription for constructing analogues of

the'reduced potentials! ?S’r"s -%-R/ when R includes at least

one extensive variable, may be expressed succently in the form

V—ifégq_]{g ~ ¢r, ) (T2:1)

where '}FR denotes the normalizing factor (structwe function)
of the normalizeé. probability distribution ) DE(E)) far 'the
ehsemble representing a system in which the variables of R are
fixed, and ,E denotes a point in the phase space of the system.
The asymptotic equality indicated in (2-1) holds as the volume, V,
becomes infinite. If o is extensive, it may be shown (of.
Sack, 1959) that -'}?E is the Laplace transform of %ﬁ 5
where R and R are related by (1+3).

The guiding principles for the assignment of phase -
space density functions are Lionville's theorem (.D2 (;) is
conserved along a phase - gpace trajeétory), and the requirement
that the functions é-ﬁ should be strictly additive for a
composite system comprizing two or more mutually isolated subsystems.
Lionville's theorem implies that 'DR (E) must be a functii on of

~constants of the motion of the system. Moreover, the multiplicative

law for the joint probability of a pair of independent events implies

" ()= D(¥9D. (6D (122)



i
)

4

whene'w}er the phase space,rl , of the whole system may be written
as the topolog:.cal product ﬂI@ 71 of two subspaces with

ll
representative po:.n’csg g regspectively. Physically, - (1 5)

means that the system consists of two mutually isoclated parts. The

expectation value of any classical - dynamical variable, say ), . /
PO LR BN 14

. . 1 7 (6) over . p

is found by intergrating Yo (?‘)Hf{' ; ver / ‘. y

For quantum mechanical systems the uncertainty 'relationg,./"'//
preclude the definition of a phase ‘space. Nevertheless, -'fo}‘lowirf;
Dirac (igso)};* one can still introduce a dénsit.y operator,.DR ,
whi'ch is fs.impls_r' a'wei'ghj:ed sum of projection 0peratofs onto all
poésible linearly " indepenc}ent quantum states, IC> , compatible
with what is known abuut the system, each weight being the
probability that a particular one of these states is attained.
When the system consists of N partigles, the domain of.DR is a
subspace of the Hil‘uert space of square - integrable functions of
N variables. For'example, a hard - gphere Bose gas in a container
would correspond to a subsp'acé in which the wave - functions were
totally symmetric in all N arguments and vanished if two particles
overlapped or a particle was outside the container.

The probability of flndlng a gpecified quantum state, say

IC> , is then found %o be <CLDE ] C> (in Dpirac's notation),
so that the expectatiqn value <2}‘> of any quantum - dynamical

A 2 Q . : N
variable, 2/ , equals tf( y‘LDE ), where the symbolty’?(f indicates
the trace of an 0perato,r}4, taken with respect to any complete set

of wave funotions of suitable symmetry., It is readily shown that

.* See Dirac (1958) Ch-__v § 33




.
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<’;:7’> is independent o\i; the (quantum mechanical) représentation
with respect to which the trace is taken. The function j@ie

of equation (1+4) now becomes ‘ér .Dg , while equation’ (2.5)
generalizes tp the case where the Hilbeft gpace of the agystem is

geparable.



The Basic Functions of Statistical lMechanics.

For future reference, we now define the principal . /
functions of ¢lassical statistical mechanics; all of them have ///

quantum mechanical analogues but we omit these, since this thesis

e
is concerned only with classical systers. -

For a system of N identical particles of mass : W1,
moving in a ) — dimensional container,jﬂz, of volumgfv (area
A in two dimensians; length L in one diménsiop), interacting with
one aﬁother through pair-wise forces only, the Hamiltonian is

defined by

Hu(8) = U +T(EN+a,

S N (T 3°1)
U= Ulsxy= > 3 W(ximxg)

J'1+L

where

Z

~e
o~

denotes the total potential energy of the particles,

f)u = (P ‘“‘P) ”7‘ (T 3'3>
1‘1:1 Z_M.
is the total kinetic energy and ‘%EL accounts for the interactions

of the particles with the walls of the container. As before, 3;
denot s 7
enoves a point in the phase space, / , of the system.

It may be demonstrated (of Khinalin, 1949, Ch. V, Huang,

1964 Chs. 7 and 8) that the probability density functions,,

\



can be determined from the conditions mentioned in § 2 (see

—

Table 1 for details). The explicit forms of ‘q;l? in the cases of
interest to us are as follows, the representation, R, being |
gpecified by the independent variables appearing on the left -
nand sides of the defining equations.
Mirst, one finds that »
WiEny) = — S AEA[E-J (%]
» N NI T ) -
(T 34)

where

) [x] < |
Al = {1 [i[ >? @ 3'5') 

o,

and the integral of A (3() over all real QL is positive.
In the present context, P is to be interpreted as the fgaximal
uncertainty in the value of the énergy, E .;..m&nw-au—t‘rhors»‘take-a?
to;be:zero,?so--that--Awtxr)wreduceswtO-«a«mu‘}:tip}e-—ofm’che"“Diracw
— O funcitionv..

The factor (I/N_l) is included here and elsewhere to
make the entropy, which is found to be proportiohal _to @W )
an additive function of each of .its arguements.

Next, we have

(T 36)



where (kﬂ) is the absolute temperature, being

Boltzmann's Constant. Finally, one obtains for the grand S

partition funection . /

BV = / + Z XNZ(&”V)
e T 37)
vhere A, the Activity of the system, is given by
M /g-f (?Z[/@NJV)(J— 3 7)

For convenience of presentation, the variable/3 will be shown

I

explicitly only when its omission would lead to loss of c¢clarity
in the arguements.

The function /LL , called the chemical po%ential,
measures the !'tendency of the system to exchange particles! with
its surroundings; hence /ﬂir is meaningful only in ensembles such’
as the grand canonical or constant pressure ensembles.

In the next section we consider the 'bulk limit4 in which
(2:1) holds; it will then be possible to obtain the equation of
state for.each representation R, though we sﬁall ﬁbt do so in

detail.
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R | ‘DR (§) | - 17 - ¢ | ENSEMBLE.._

R

i —R
{ E, N,V} (Nl)'n (E —-Jal—~(§ ) W(E, N,V) /(? W MIC ROC ANONICAL.

V) (lep[BRG)  Zew) g emevens

{ﬁ’l’ )2 (N!)‘TLAN@X}?[“IZ%NGB :(&})V} [?:-z G-RAND CANONICAL.
TABLE 1

[He  PRINCIPAL \E\NSEMBLES OF STATISTICAL MECHANICS

ok

N
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§ q . The Bulk Limit

It is a basic assumption in equilibrium thermodynamics
that the variables constituting an observational state are shari)ly
(cf Callen,1960,P.267)
determined and do not fluctuate about mean values. This condition
holds for fhe. statistical expectétions)(}:g >} of dynamical variables,
]6' , for a systezﬁ consisting of N particles, only in the limit that
N becomes infinite, the standard devié.tion of# being of order N"Z’
(cf.. Landau and Liftshitz, 1958).* The variable | must be a 'bulk
variable' and not & 'sum-variable' such as the Jkinetic energy.
The bridging operation which must be applied in: a
rigorous derivation of the laws of thermodynamics from statistical
mechanics therefore consists of making the volume of the sample
constituting the system tend to infinity at constant particle density.
We shall refer to this operation.(follosring Penrose, Statistical
Mechanics, to be published by Pergamon Press) as 'taking the bulk
Limit'. Another reason for taking the bulk limit will be given in §6
where the Yang - Lee theory of condensation is outlined. /
The question of the existence and analitical properties
of the reduced potentials,¢r , defined in equation (1°4), was
first considered by van Hove (1949), who studied the ‘convergence
of the free - energy density in the bulk limit._ Subsequently, Yang
and Lee treated the same problem for the grand canonical pressure,

while Whitten (1954) showed that the conditions assumed by Yang

and Lee could be weakendd. The problem has been solved generally

* The system is assumed to be in a single phase and to

behave classically; .see also Parquhar (1964) ch.2 (§2 5)-
It is also supposed thatA is not a 'sum-variable', such as
the kinetic energy. . .
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only quite recently, in the work of Ruelle (1963), Fisher (1964),
Griffiths (1964), Van der Linden (1966) and Van der Linden and
Mazur (1967).
| This general solution provides an answer to the following
questions; -
(1) What are tho-mamswmé conditions (a) on the interaction
potential, (b) on the shapes assumed by the container
-~ + g8 its volume, V, becomes infinife, spfficient for the
existence of 9bf ?
(2) Does gﬁr depend on the shgpes assumed by the container

as its volume increases?

(3) 1 7,7,

linit functions ¢f
7
values when used to calculate the same thermodynamic

are.distinct reduced representations, do the

) 94_ generate the same numerical
2

quantity?
Question (1) is most readily answered in two stages.
In the first stage it is assumed that, as V increases, the shape
of J::L, remains unchanged, so that the functions of the sequence'
{v-/iog%ﬂ} depend only on V ; the existence of ¢7’ may then
be inferred if one can show that this sequence is monotonic and
(suitably) bounded. This, in turn may be demonstrated very simply
" provided that (i) the binding energy per particle is bqunded,
uniformly over all configurations and all values of N - the total

number of particles;
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(ii) the mutual potential energy of twd groups of particles becomes
negative whenever the minimum separation of particles in different:
groups exceeds a fixéd number, say GL-

Huch'work has been done recently to find conditions

sufficient for (i), which is known as the stability condition.¥

1t is plausible on physical groundsAprovided that the particles
havé hard cores or, at least, that the forces become repﬁlsive at
small enough separations; moreover, it has been proved (Dyson and
Lenard, 196#) that a system of charged point particles, moving
quantum mechaniéally, is stable in this gsense, e¢ver when charges
of both signs are present.

The‘requiremeqt (ii), known as 'strong tempering'w
is also likely to be satisfied in real systems since thg
intermolgcula? 'Van der Waals', forces are atitractive and of long
range. An example of a stable, strongly tempered potential is
the Lennard - Jones (6 - 12) potential in ﬁhree dimensions; Fisgher
(1964) has shown that the strong tempering condition may be replaced
by that of 'weak tempering', in which the interactions may remain
repulsive for arbitrarily large separations, but this possibility
seems to be of little physical interest. Fisher is also the only
.author to consider many-body forces.though, again)it appears that
such forces are not understood well enough to make it clear whether

their inclusion affects the convergence of the sequence S'.Vq%ygk

in realistic cases.

# cf, Ruelle (1963c), Fisher (1964).



In answer to question 1(b), Fisher pc')stulates certain
tregularity! conditions on the domains Q , which ensure
that they are not too'violently crennellated'and do not grow 'to§
anisotropically.' It is then shown that £ ca be approximated
tsufficiently closely' by a union of stmdard (cubical) domainsy
for which the existenée of é{ has already been demonstrated,
and this also yields a negative answer to question 2.

Detailed proofs of these properties may be found in
the references quoted. However, one can see 'roughly from '(3.4) -
(3.9) and Table 1 that the stability condition ((i)) on the

interaction potential implies bounds on the function '_"d_{' e

" Purther, by considering the form of ?2 whenQ is a cube

constructed from a un;on of smaller cubes at mutual separation

at least 0(, (so that the forces between particles in different
subcubes are attractive) and supposing that no particles move in
the'corridor' between the subcubes, one can also establish the
monotonicity of  \/ ™! R"’?ig . Notice that, in the process
just indicated, the shape of -Q remiing uncﬁmﬁged as V
iﬁcreases, though it has to be proved that the exclusion of the
particles from the 'corridor' has no effect on the resulting

limit functions, ¢7' o

23



24

§§ é;;‘ Bquivalence of Representationss

Bquations of state

It is a natiral consistencyAcondition on the formalism
_of thermodynamics that if the s;me thermodynamical quantity is
calculated for an object using two distinect representations, then
the numerical results of the two calculations should be' the same.
The problem of showing that Gibbs' reduced potentials, Sér ’
gsatisfy this condition ‘has been p;)sed in §4—- as question 3.
4 To put it another way, does the equatioﬁ of state in

one representatlon imply those in all other representations? ////

Ruelle (1963a, l963b) and Fisher (1964) prove the equivalence of ///

1/’
s

the canonical&grand canonical ensembles both for classical and~/
quantum mechanicd systems. Their methods, which are-essentially
the same, cannot be cast in a form.suitable for proving the
equivalence & all ensembles, but very recently the problem has
been solved generally for classical systems by Van der Linden
(1966) and Van der Linden and Mazur (1967). The main features

of their work are (a) use of the central limit theorem of
probability theory in‘establishing the existence of the reduced
potentials (or bulk limit functions) (b) systematic application
of a theorem due to Griffiths (1964), giving sufficient conditions
for interchanging the_operations of differentiation in a thermo-
dynamic variable and taking the bulk limi£. It appears that this

general method could be extended to quantum mechanical systems.



For our purposes, only the equations of state in the

canonical and grand canonical ensembles will be required.

Denoting by JC//K, V), ._7('//3, Z) respectively the

reduced potentials (5) for these ensembles, One has,:by. définition,
the relationscs;

il e

plav) = — g2 (k) T 51)

where P/ﬁ) 2)) denotes the canonical pressure (at

infinite volume) and V the specific volume; and that

R P (42)=T(82)= lunV Lo = gg) s\/f)

7 (4, 2) = 3,3 H(B.2) ;. (z53)

where /b(ﬂ)Z) stands for the grand canonical pressure at

infinite volume and the fugacity variable) z ) is related to

the activity, A  , by
7 = \eTmp)i (& 54)

~denotes—thegrand—eanonical-pressure—{at--infinite-folume).

25



The cquivalence of the eauztions (5+2) and 5¢3) to 5¢1) io
reflacted in the relation (of Van der lLinden, 1966)

A(p=) = B p[T(A=] (L55)
whiech holdas for all values of % such that the zysten is in n
single phaeoe. All of the usual thormodynznic stability conditions,
nuch = the reaulirement that 9/)/2?/' bo non pocitive, nuy be
cotrblished from the convexity oroperties of the functions
J[ (ﬂ,l]) (convex inl@, concave ind') und ,')T(ﬂ,Z) (oconvez in
log 2).



§6 ' The Theory of Yang and Lee.

The grand canonical pressure at finite volume is defined

Blg,zV) = (B Uy Z(A2V) . Ger)

by

. where :-:( ﬁ,z;v ) is the function obtained from (-6‘-.1) by
substituting for 'X . from (5-4). Since the fa.cto‘x"(ﬁ/zﬁ/"’)zg:{
is obtained by performing the momentum integration for a single
particle in (3-6-), it follows that the grand partition function

may be written in the alternative fomrm

Z(pnV)= 1+ S 2QUeNV) (1)

where the configurational integral is defined by

’ /

. / . . pd

R (BNV) = 77 S d(&)N@X/J{-/f U<¥)~} |

gy h
U(&)N being given by (3.2). (I 6 ‘3 )
Throughout this thesis we demnote by Q(.) Ay BOY d

configuration of ¥ particles whose centres occupy the positions

X, ‘;.:2 gevecns g(‘w within a )) - dimensional container, Q 3

and by!ﬂg{)ﬁ the symbol specifying integration over (x) N.

Functions of x; ......¥. will be written as F(Ev“'”"&/\/) = F(g)N This

~N



notation seems to be due to Ruelle (1963), who used it in his //

work on the bulk - limit problém. The symbol {.Q}M for ?hé/"
domain of integration in (6-3) indicatei that all of the N
par'ticlesl are free to move throughout the container',g)- .

The existence of'the érand canonical pressure at
infinite volume has been discussed, inter alia, in paragraph
4 ; here, however, a different point of view will be a@opted,
our interest being in the convergence of- the sequence (6-1)
when & is complex. |

When the pair interaction poten‘cial,‘u‘.xlhas a
hard core, say of diameter L, (so that U (X) equals plué
infinity whenever |X l is less than & ), th§ integral (6-3)
vanishes if N exceeds (\//34_370@ ), and the right hand side of
(6-2) becomes a polynomial in Z , whose degree equals .the
greatest integer'less than (\//éideg ). Moreover, since
Q(N, V) is positive, -this polynomial has no positive zeros and

hence P(z ) V ) is analytic in the neighbourhood of every

positive value of Z. This, in turn, implies the analyticity of

U (Z,V ), and rinally thatlb (Y, V) is analytic for

all positive Y. ‘Phe functions ﬁ'(z) V), P (U} v )_denote

‘regpectively the grand canonical specific volume and the canonical

presgsure - both at volume V.

///

%
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Yang and Lee (1952) realized that the only possibility .

for 128 E‘&M PU’ to be non analytic at some positive
/9 ( ) V=00 ( /V> y P e
value, say , ., of ) , occurred when 7); was given by
= 2 (%)
U, 5 {*~e)
' o~
where L, was a limit point of zeros of O (Z,V)g
Pheir first theorem, concerned with the existence of :)T(Z)),
is a special case of the 'bulk limit' problem. One form of their
Theorem | is as follows:
If R denotes any bounded, simply connected region
containing a segment of the real positive L= axis
r\
and free from zeros of (Z)V ) for all sufficiently
large V, then _
(1) ﬁ/b(z) V) converges to «/f (Z) .
uniformly for Z in R, and hence
(2 N (Z) is analytic throughout R.
The uniformity of convergence justifies the relation
e an—— . —
of.bwu ..a_ /D (Z)V) —— _%_‘)( (Z) (—L 64‘)
V= © 2Z IZ .
for Z in R, 80 that, since all of the derivatives of an
analytic function are themselves analytic, one concludés © that

‘ P () is analytic in the neighbourhood of every positive v .

29



In order to relate the theorem just stated to the
study of phase transitions, we ﬁust give a mathematical
characterization of these transitions. We shall say that a
systenm gndergoés a phase transition when at least one of the
thermodynamic variables used to specify it suffers a jump
discontinuity. Since we are supposing the bulk 1§mit to'have s

rd
-

been taken, we shall always deal with reduced representdtions;

-
e
e

(see paragraph 1). Thig definition of phase.transitions,—
attributed to Bhrenfest,is not comprehensive. For example,
it does not include the 'anomalies' associated with order -
disorder phenomena, such as the 'infinity' in the specific .
heat of the two dimensional Ising model in zero magnetic field,
as the eritical tempefature is approached. |

But a wide variety of phase transitions are included
in the Ehrenfest.classification (for instamce the vapour - liquid‘~
"transition first studied by. Van der Waals (1873) and Maxwell)a.nd
one can see at once that the theorems of Yang and Lee furnish a
necessary condition for the occurrence of a transition of
Ehrenfest type. For, their tﬁeorems provide sufficient conditionsg
for themistence and analytidci ty of ;7((:Z) , the grand
canonical pressure at infinite volume, for positive values of Z :

then the derivatives (of all orders) of :7{(;5) are also analytic
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and henecoe tron. itions of hrenfest type a2re precluded, loToovar,
it 3( or one of its deorivatives iu non-onzlytie in the ncighbour~
hood of a positive value of Z*, then o phuce trinsition ceocurs asly
pasoce through thic vilue zlong the rezl positive oxic (though this
transition ie not nccescurily of bLhrenfect type).
The Yong = Leo theorens nay be ztxztad noro simpiy if we
use oxplicitly the notion of limit points of zoros of EE .
¢ define the point z/ o be a limit point of meroc of = (Z V)

vhen the following condition is caticfied:

Given any neighbourhood_,{/ of Z, and any

sooitive numder !, there exists a Z inM

snd =V > ¥, such that E(z, V)=o0
The tuo thooréms of Yang and Lee noy then bo combined into s
single theorenm:
Thooran

Lot R denote & bounded, simply connected region in the XK= »lano

coatuining a segrment of the recl pozitive axigc. Then z
gufficient condition for the oxistence mnd analyticity of
d‘[?) r@“,\[' /%P (zlv)throu ghout i ia that & is froe
from 1imit pointc of zeros of & (Z, \/)

f ue densote by C tho oot of 211 1imit poinic of “eros
of :: ond by :Zf the raal pocitive Z~ nxin, then it 7ollown

Tram tho theorem just siatad eond the definition of nhoce

tr-nzitionn udopted hero, thut



L s ' ‘
the open segment Rn S of values of < .

gorresponds to a single phase of the system . - //
_ Raoty . S
if and only if R contains no points of (.! v

The major part: of the research descri‘c-Jed in this thesis deals
with the problem of sgpeciiying C rigorously; this work ig,
explained in ChsN and 1\7 .

An analogue of ang and Lee's theorems, refei'ring to
the uniférm convergence of the canoniéai pressure at complex
density, as the volume becomes infinite, has been proved by
Lebowitz and Penrose (1966). A second analogue of these theorems
(Jones, 1966) deals i th the uniform convergence of the gr.and
canonical preséure, regarded as a function of the complex
variableﬂ at fixed” (possibly complex) Z , as V tends to

infinity.
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CHAPTER 11

Some Methods for Studying the Equation of

State of a One - dimensional‘System - a survey.
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ég '{ The systems to be considered in this chapter.éonsist
of N particles moving continuously on a line of length L. The .
essential simplification characterigtic of one -~ dimensibnal
continﬁum systems is that, even when thé particles do not have
hard cores, a fixed ordering of the particles may be defined
and naintained throughout all calculations. This simplification
reflects the total symmetry in its arguments of the potential
energy function of N identical particles, which implies that -
the integrand of the configurational integral is invariant
under changes in the order of the particles. For continuum ,’/
gystems in two or three dimensions, totgl ordering is impoééible
and the methods of this chapter break dowm.

The term one - dimensional is, however, less definite
when applied to lattice gases since such systems, even when they
are nominal;y two - or three - dimensional, may often be considered
to consist of particles with internal degrees of freedom, whose
possible positioné are restricted to the sites of a linear

lattice (see Ch. V ).
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:21 Clagsification of IMethods.

Although the distinctions between various téchniques

are not always clear-cut, the following classification seems

to be justifie&.

(1)

(11)

AY

Jporative Methods, in which either N or L is increased in-

regular steps, whence Q(¥,L) may be 'calculated'
recursively. (Voa Hove, 1950; Kummer, 1962; Baur and

Nosanow, 1962).

Use of external potentials, in which Q(N,L) is showa to
satisf& an operator equation Wi th respect to variations
in the 'external parameters'. (Baxter, 1964, 1965; cf
Leff and Coopersmith, 1967, Coopersmith and Leff, 1967,
for a similar methéd applied to the study of dis?ributiOn
functions. )

Use of random processes, in which.;ﬁé?)may be obtained

implicifly with the help of the theory of Gaussian lMarkov
processes (Kac, 1959; Edwards and Lenard, 1962; Kac,
Uhlenbeck and Hemmer, 1963; Kac and Helfand, 1963.)

In the following survey this clasgsification helps us to

identify the cruclal assumptions responsible for the success of a

- particular technique, though no explicit reference to it will be

made. (Some of the methods discussed in this chapter are also considered,

briefly, in the book, Mathematical Physics in One Dimension, edited by

E. Lieb & D. Mattis (Interscience Publishers Inc., 1966)).

X TM%P@ ’8)306)- 8,434 .
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§3 Van Hove's IMethod: Impossibility of phase iransitions

when the forces are of finite range.

Suppose that the particles have hard cores, that
the interactions extend to ~ nearést neighbours and that
' the potential is bounded below.' Starting from a set of t= ‘K‘i’"
particles on a line of length L, one can assem’oie a system of
N=1+ mfa,particles by adding, successively, 'strings' of
'Aa particles. The hard core condition makes it possible
t0 maintain a definite ordering of the particles throughout

this process, so that we have

Q (E+mA;L)= jat(r)joé(mw) kK (1, mt1),
(& 31)
where the symbol 50(.(,]) denotes integration over all possible:
configurationg of the J th lstring (compatible with the chosen .
ordering of the particles). The kernel K( 1 5 J. ),of which g

stands for the WA +th iterate, is defined by

K (1,03 = <xpi-8 B (1) berplAULD)

(5 3-2)

é-l;nt' {2«)./) being the mutual potential energy of the
. [3 . * . . .
< th and  )th strings. Thus K (1 , ] ) has the constant
value 1 for all configurations of the strings i, j unless ll“” -'-'I

By introducing instead of K( i,j) the kernel
(vsp) = K(3 JJ)"MP{"‘ P }
( 3 3)

U(J ) denotes the self- enorgy of theJth string.
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where, for each configuration of the 1~,th string, (>\i

denotes the distance between its first and last mrticles,

one can express the Laplace transforﬁ,l (N,P),of Q(t+ mh) in

terms of the m,th iterate X () (1,3;p) ofj( (1,33p), though

the range of integrationsiin'each <;f the 2#\, particle co-ordinates
is now infinite. By making the change of variable: /b-l.&(P("PX.)
= g , where OC denotes the separation of a pair of’
particleas, Van Hove succeeds in reducing the problem of calculating

the Gibbs free energy per particle, g(p),.to fin-ding the eigen~-
value of ma:_:imum modulus of a Fredholm integral equation. Th.e
modulus of this eigen-value equals the radius of convergence of

the resolvent series of the kernel of the equation, and this

expansion is used by Van Hove to show that
gy = (E-D ke (P), (T 34)

where (t - 1) is the number of particles in a string, from which
the equation of state is
2 {}:)-—_:: 2 j(P) (é_'—v '“"‘"(P)

/b(n 75/

aaryeaponding to the constant pressure ensemble (cf,Brown 1958, Sack
1959). Finally, the existence and analyticity of . KM ((D) are

&%
‘justified for positive Pby virtue of a theorem of Jentsch (1912),

whence (3.5) implies that a phase transition (in the sen8e of Ch.I

§b ) . cannot occur. . -
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Kummer (1962) has generalized Van Hove's method to
the case of a 'quasi two - dimensional' system, consisting of
thard squares' free to move parallel to the sides of a
rectangular container, one side of which remains of fixed length
while the otier may increase without bound. A procedure similar
to Van Hove's but also based on the matrix method of Kramers
and Wannier (1941) has been used by Baur and Nosanow (1962)
in their treatment of lattice gases.
In explicit calculation of the equation of state
Van Hove's method is of little use, since the kernel K( 1t ,j ; F’)
and its transform under the change of variable x—»y are neither
symnetFic, (except when Ib>o & é"-'-'z ) nor Hermition
vhen p is complex, so that analyticel calculation of 'F<m4y(P)
is, ingeneral, not possible. loreover, the total number, N, of
particles must have the form N= t + m h, which makes it impossibleg¢
to consider the grand partition function. This difficulty may be
avoided when dealing with lattice gases, since the grﬁnd partition
function of a lattice gas equals the 'configurational sum' of a

—

suitably defined spin system (see ch. \/ ).

omm——

X In fact it is possible but not useful to concider the grand

partition function.



§ 4 Another Jerative Method.
‘ A method closely parallel to Van Hove's but avoiding o y
the requirement that N has a special form, (except that N must e
exceed t), has been suggested by Penrose (unpublished). The pa
conditions on the interaction are the same as Van Hove's. ‘,///
Suppose that (xz‘denotes any configuration of ﬁJ particleéfon é
line, numbered from | to Af , increasing with dispiacement
to the right, and that Y denotes a fixed configuration of t
particles (of the same species as the moveable particles)
constituting a 'wall' to the right of all the particles af x;,)

the other end of the container being closed at the origin of

displacement coodinates by a perfectly hard particle. That is,
the  X§ , J; Sabtisfy
o ‘S X.<X1< ‘.‘"'<x”<5‘<uu<8b$ L_ .(L{_ 4‘1)

We define a modified configurational integral '}b”(%("<)
» A\,

YY) = Sd e exp{-pUL (0w Y]}42)

where’ U[(X)N) Y) denotes the total potential energy of

the N particles in configuration (X)N in the presence of the
vall Y, and the integration is taken over all such configurations.
Since the interaciion exztends from a given particle to at most
(t - 1) particles on its left, it follows from (4.2) “that 'QVL

satisfies the recurrence relation
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: 7y E-1
Y (N+1Y) = Sdffa {:WP[ puly- 51:)) (/\/5 Y)a
| . . 4’3)

A (x) being the interaction potential.

Phis may be written in the operational form
- . ‘ 4 ‘ ' LF
- vy T 40 )
Y (N+;Y) = KY(NvY), (B4
. ' . | A -
which may be regarded as defining the operator K « 8Yince
A .
the effect of applying K is to introduce one more particle
to the system, we may build a system of ¥ particles from an
em};aty container vi th the wall Y é.t one end, by repeated

. A
uge of K « Therefore we have

Yoy = KNY(05Y), (3 45)
y (V)= ep[-BUNY:L]

(T 40

and U (Y jL) is the potential energy of the fixed con~

where

figuration of particles congtiuting the wall. The usual

configurational integral may now be found from (4.2) and

(4.5) to be

Q (N, L)" Sd‘( KN’%(O,Y)
g +7)
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where the integrations over y‘m-gtare subject to the condition,.
(4.1) (though the lower limit for y, is now 0 because the x -
integrations have been done).
One -expects that it should be possiblé to obtain from

(4.7) a formal expression for £(?), the ca,.nénica-l free energy
per particle, analogous to Van Hove's formula (3.4) and so to
reach the. same conclusion regarding the impossibility of‘ phasge
trangitions. The rigorous justification.. of guch a pricedure
would, however, entail a full study of the operator K .

| If we keep the wall fixed, so that the effective

length of the container is y' , and define a modified grand

Ll R
partition function & (Z_, 9, Y3L>)by

=@iuyY;L) = ]+ iZN';Z[[N;Y)'
N=1

o1+ i(zl%)”%(a;y)) -

-+ (Z4-3)

by (4.5), then for all sufficiently small 121 we obtain

3(255”\’,"_)# (1-212)_1'3{(05@.
L4d)



The expression (4.9) has a misleading simplicity, it being
A
" difficult to introduce a suitable norm for the operator F(

. . : o pheac

and hence give a precise meaning to thq-phaae tfor all
sufficiently small ,:1' f, used above. However, if t = 2
(nearest neighbour forcesj one may verify that the method of
this section is .equivalent to that of Takahasi (1942) and
alirsey (1950), though their methods are preferable in this

simple case. Our original intention in deriving (4.9) was

to relate <jr (:f) to the eigen~values of an operator,

but we have not been able to see a simple way to study the ////

A

,

spectrum of k{ and so the method is mainly of formal intérest.

4d



§ 5 Baxter's [ethod.

This method was designed to show formally how the
function /E—(Z) can be obtained,for positive Z
as the largeét real eigenevalue: of an operator, while the‘
correlation fqpctions may‘be calculated from a related operator.
The argumgnf is formulated for one - dimensional continuum
systems and is shown to be wvalid both fgr particles wi%h hard
cores and for those with bounded interactions.

The basic idga is that the configurational integral,
Q (N.L), defined by(I6.3) is differentiable in L, and that the
operation :%/:?L- may be performed before £he integration over
configurations. In order to make variations in L 'perceptible';

an external potential, say g(r), is centred at the moveable end-

of the container. Ve define a modified configurational integral.

by

L 0(,‘....0“ _
Q(N > o\xjx."-<x-§g<L. i MP{(JV:[%

where

227 Jsi#l

W (xix L; 3)= /;’?Z b X)+BY_ J(L-x))-
ALY

5:2)

4.5
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Differentiating (5.1) in L, we obtain

a Q(N L) —_ 5 AX, wd Xy, [&CP( Wg]

0<x, < Xpn- :<L

'+j . 0| ¢ S ix‘ ﬂ(xN _Z ] {_W) .
& X &£ Xn§ b J ) T' 5’03)
If the external potential ceiﬁ be made to depend on

parameters U u;;&c U- in such a way that

. j(L— X U (ers U—)“}' M{L‘X)—J(L_x) v-// .?j)’”)'
“ ' H;54

2 3(L-x Uyt U)—- J OCI(L-x W )
2 0155)

A
. vwhere ®is an operator acting only on the parameters?.r then s

it follows from (5.1) - (5 3) that Q(I\T L) satisfies the equation

2 Q(N D= Guu | di iy, [@x{a Wﬂ "

ogx <X, SL

T QML) - )
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Notice that if the particles ﬁave hard cores, say of diameter
@, then the domain of integration in (5.5) becomes O & ¥;<
xz""<x~-‘< L."“- . Moreover, if the pair interaction
potential, WU(r), satisfies an ordinary differential equation
of order k ‘wi.th congtant coefficients, the conditions (5.3)

and (5.4) can be satisfied by functions g of the form

R _
Flrium) = 2 Gut, @57
| =0 ' |

A

where M,(e)(‘f) meané aﬂ'{’(/{(”'}/t&ﬂ , and in this case :j-

becomes a differential operator in one or more of the V .

. . J
It may be shown, also, that the first term on the right-hand

A N ~a
side of (5.4) has the form K@(N‘Z,L}@r }QQ(N'/JL-"'a).

A
when the particles have hard cores], where K is the exponential

of a differential operator in one or more of the D‘;
: A

More general formal representations may be obtained for j‘-; K
as functional differential operators even when [{{x) does not
satisfy a differential equation, but. these seem to be of little
practical use (see Baxter, 1964).

As a simple illustrative example (R.J. Baxter, 1966,

private communication) cons:.der a superp031t:.on of Kac potentials;

(v Z Co up(~dz 1) -



According to (5.5) we may write R
' R

j(Y; Ve Yp) = Z Y "@X[b("dx Y) ;

ol =1
(note that the‘argument, L -x, of g in (5.2)'is non negative,
so that we may write ¥ instead of ,1” when dealing withz;).
Using these expressions for u(r) and g(r) one can show by

manipulating (5.3) that | |

2 8 -SU | |

2 QML = € = “ON-1,L; 9 ¢, , 04 )
- Z) 9 Q(N)L Uu”““‘

a(

By considering the first term on the right-hand side as a

multible Taylor series one obtains, formally,

K = exp[s (- %+ CeY]

while comparison with the general equation (5.5) yields

O =-Sru 2.
%“dw&



On introducing K in (5.5), multiplying by Z,N and
sunming over all positive integers N, one obtains a differential

equation for the function
Flzb) = 1+2_ QML)
W=y -

(or for both‘)c(z)L.)g JC(Z)L-CLD when the particles have

hard cores). When g(r) vanishes identically for Y 2 O
o~ :

:F(Z,L) coincides with O (’Z)L) , the grand partiftion function.

Finally, if one assumes that the differential equation forf

has a éeparable solution of the form

fl=L)=> A4 (z)oxp(%;L)
J ' _
then an eigen-value equation (with eigen-values kj and eigene
functions %:/ ) is obtained. The desired formula for /3(2))
the pressure, regults if there exigts a real eigen-value,

say Kmax, exceeding the real parts of all other eigen-values.

P(z) DZM (ﬂL) {g, S(al)= lf...,(:)) |

but he has considered specificicases. For a system with A

potential UL(T): —.O()’ @)7) (-)[Y}) , outside /

Evidently, Baxter's treatment is rather schematic,
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a hard core (to be discussed further in our next section) he
has obtained the Van der Waals phase transition (in the limit
a‘—*' O* ) which was first derived by Kac, Uhlenbeck and
Hemmer (1963(a) ). He has also obtained results for a system
of charged hard rods; the prevj:ous results for charged one -
dimensional systems (Lenard 1962, Edwards and Lenard 1962,
Prager 196]) depend on the assumption that the particles do
not have hard cores. Baxter shows how his methti)d may be used
to gbtain the distribution functions; essent.ially, he carries
out the same procedure as we have oﬁtlined, but starting with

the (unnormalized) distribution function,

TGS e )

Xe < Xrae <Xyt

. instead of é(/v) L_).

This technique, depending on continuous variation of
L, has no direct analogue for lattice gases, but the representation
of the pressure as the ]:argest eigen value of an o rator has
been demonstrated by Kramers and Wannier (1941) and Baur and

Nosanow (1962). . -
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» é 6 The (Govariance lethod.

The technique of this section allows a complete calculation
of the Laplace transform of the configurational integral for any
system whose'pair potential, u(r), may be regarded as the auto -
covariance of a Gaussian Markov process. Ve illuétrate the
method by giving a fairly detailed derivation of the Kac
integral equation (Kac, 1959), which serves, also, as 'a
preparation for our derivation of an analoéous integral equation,
described in Chapter III of this thesis.

Since the elements of the autocovariance matrix
of anz-dimensional Markov process satisfy a linear differentiél
equation of orderz(of de Groot and Ilazur 196é, Ch. @ )
with constant coefficients, - which is just the condi‘tfion
for Baxter's method to be used effectively - it is possible that
the two methods are equivalent, for a class of interaction
potentials. However, we have been unable to apply Baxter's method
successfully to the system with pair potential u(‘{)=-'A @Jky‘.é-)'rl
(see Ch. III), which satisfies a second order differential
equation with constant coefficients. 1In practi;ce, therefore,
it appears that Baxter!'s technique is effective only when the

potential is proportional to {X } or to ..Q-'“hq .
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Kic based his calculation on the identity (of. wilks, /963,

Sec74_)

(;,C‘E)_ @J-)""' Cl":‘i 5 6{(?),\;

-3 (0,C71P) 41 (5.9
- | ( 6] )
where g = (E, s 5“) denotes any véctor with N

(feal or complex) components, C is - a real, symmetric)positive -
definite matrix and (A,B) means the scalar product of vectors
A, B. The integration exiends over all real values of the X
components ?, " ?N‘of the vector ’? and [CI denotes the

determinant of@ " The proof of (6°1) is immediate if one writes

..T — . { ? =
5 | )
~, L
where the matrixlihas been chosen so that | C | isa
diagonal matrix whose eigen-values are, say, ’).‘ $eet fXN)
being the transpose of P¢ For, (6-1) is then transformed into

the identity | : oo | _ﬁ[_ ; 82
el = § den] [ e (%
I < @62



6, () = Z/Ag\/lk +yk/“/Ak
Ol 63)

and the identity (6.2) may be verified at once by integration.
By setting all of the gh equal to 0, one finds

(cf siegert, 1963) that

P2 T os)

is the joint probability density for the components of a

'random vector} ?. Moreover, we have from (6+1) the relations

. 2eiBCH
f;j,o agk = 2<a>=o,

. TeR R

ah Ej=>0 ng9§{ == Cie Z—ff§p(>

vwhere < > denotes expectation value subject to the

probability densityf(?) . Hence the components P' e ?I\f

constitute Gaussian random variables with maan zero and

covariance Ck( . 'An extension of this technique will be

disocugsed in Ch. III.

53
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Kac considered a system of particles moving on a line
of'length L under pairwise forces with interaction potential,

u(r), defined by .
| o0 < a
-E , Y 2 A~

The configuration integral for this system is therefofe

N-7

QL= S5 duma v/7(z,¢(ﬁ, ﬁ]/

0<X.(om< x~<L

| “9""&"" |
WZ xﬁ;%;le ¢ / r/\fd?]
(I ¢°8)

where¢(ﬁdenotes the step functions .

[
b= {3 s 0 @ e
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In order to make use of (6+1) we consider the Gaussion

random process, say (x), whose autocovariance is equal to

.ejx/p(- )‘IXI) - This process is kﬁown to be Markovian,

(Ornstein and Uhlenbeck, 1930), wh:.ch means that the probability

density function for a random vector, eseuns P ) (p[x,) ses)

e ?[x”)) has the form

P2 = W0 [ P(31305 % X.7%)
o (g_ & -10)
where W( %) is the unconditional probability density of y‘
and P(PJ’?J'H) xJ”—- XJ) " denotes the conditional /
probability that P ( ¢ _“)-.-2/.” , given that, g
P( ) p . - » We may now use (6°1), obtaining by /

comparison mth (6-8) Af- e

QL) = & H PSSt o] (1= s

O < X un ("~<L é ]1)

. Cexpfa, P)}>ﬁ (y)",

Whereflp) is given by (6-10), L denotes the N -
dimensional vector ((q’/;)i e cn@(/!)z and the average is taken

by integrating over each of Y ?A/ from - o0 to + 00

(so that,since () = ﬁ(+?) ,. we have <~&LP{- [-d,p)}?lo =
<‘&(P{('d/)p)}'>f ) . Moreover, the func’c:.onf(?)
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is lmown explicitly in this case (Ornstein and Uhlenbeck, 1930).

On making the transformation

‘C}: X T;= X— xJ., (2<J<Ar) T _[_—x”,

Vo J

with unit Jacobian, we obtain for N>/2)after

changing the order of integration and integrating twice by parts,

() Seer @iy =gt ﬁé”‘}’f%?)}[ »’

wheref is the density function

f(?/o) W(y)ﬂ fe /”P(P %,, )-

(T 6 14)

The crucial point is that the right hand side of (6-13) may be

expressed in the form

o=t S Sdpdy, K (1,2

- [wimveep(wergey]t
. (T 615)



N-1)
Where K ( ) ig bbtained byiterating the basic

kernel

Ky (w2) = [&‘F{@"ﬁ)*(&*”j} W(«)/_,,@,«/(zfﬂé
+ (dre" P (wls7).(F 610

‘The ultimate success of Kac's calculation depends on ‘
the fact (which he proves) that KP('U- ) 2]_> is a Hilbert -

Schmidt kernel (cf. Courant and Hilbert, 1953, Ch. 2) so that

K(‘e) (u V) may be written as

kY, )= }:1 (YR Y, (??P) ,

where the spectrum of KP is discrete and bounded and all of
the eigenvalues ’)‘J , are positive. Since the abscissa of

convergence of the Laplace transform (cf Widder, 1941, p.37)
of 8(2_,[_) equals DT(Z) , as defined by (I5-2), it

is then possible to relate JT(Z) to the largest eigenvalue,

say A, (P),of k. 1n this way Kac obtains Alz)-
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implicitly through the relation
DN [JI z)] = Z7exnp( '“/3) (" 618

whence he is able to show that J((Z) is analytiic for all
positive L , thus precluding a phase transition. His result
extends those of Van Hove (1950) and Yang and Lee (1952'"), since
the potential (6 7) has infinite range.
More recently, Kac, Uhlenbeck and Hemmer. (1963),

building on the resuli (6'18), have shown that if oK is
replaced by X, o in (6°7) then, in the limit as
)"“"' O~ , the'Ven der Waals limit! the system exhibits
a phase transition described exacily be Van der Waals' equation,
modified by Maxwells' 'equal area construciion'. The f.act that
Maxwell's rule is 'built into' the calculation reflects the -
convexity properties of the bulk limit functions (I§ 5 )
which show that Van der Waals 'loops! cannot occur when the
isotherms are calqulategl rigoroﬁsly; ix;deed, the interaction
potential (6-7) is both stable and strongly tempe;red - the
simplest conditions sufficient for the existence of the functions

/O(U)J J(-(Z) [Cf'~I §LQ. Kac and Helfand (1963) have studied

several lattice systems using the technique of this section and



Siegert (1963) has formulated thelIsing problem ig terms of
random varibbles.

The one - dimensional plasma problem has been treated
by Edwards and Lenard (1962) usiné the method of functional
integration, of which the CGVafianée method is a special caée
(as they explain). Specifically, they show that the G.P.F.for
a system of several species of charged particles equals the
average of a functional whose argument function describes the
position of a Brownian particle (Wiener Procéss; Wiener (1923)).
By using a.tﬁeorem due to Kac (1951) they prove that this
functional is the fundamental solution of a diffusion equation,
thus obtaining,like Baxter, an explicit eigenvalue equation
wnose largest real eigenvalue equals JT(Z) vhen L is
positive.

The occurrence of phase transitions in the systems
congidered in this chapter may be characterized very simply.

It is found that as <L movesg along the real positive axis
;7((;;)_,being the largest real eigenvalue of an eigenvalue
equation, i analytic so long as there is only one such eigenvalue.
If, on the other hand, two or more eigenvalues become equal and
larger than the real parts of all others as ;Z tends to ;t/

then JI (:;) would be nonanalytic at 25’, and a phase



6O

transition could occur. This idea is used by Helfand (1964)
to study the way in which a phase transition can 'grow' as a
result of some limiting operations (for example, fhe Van der
Waals limit). ’
The basic aim of the re;éarch described in Chapters

IV and V is to locate the set of points {Z'} in the complex

plane, at which.Jitz) is non aﬁal&tic(or does not exist).
According to the theory of Yang and Lee (1952) the set {.z’ _}
should coincide with ¢, the set of all limit péints of zeros

(x| -
of ™ , and it will be seen that this is so.
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CHAPTER III

Another Application of the Covariance Method..

N



§ 1 In this chapter we present a generaliza{:ion of the

relation (II<6°13) giving I(N, P ) as a stochastic average.

With certain 'assu.mptions, whidh will be gtated, it will be
shown how the equation of state may be obtained implicitly,
in analogy with (II 6°18). These assumptions seem difficult

to verify, so the second part of the calculation is
~

hypothetical.



§2 We consider a one - dimensional system of particles
interacting through two - body forces; the inferaction potential
ig defined to be
| + oo X < @,
1 ' ' ( i 2 ! ,)
U (X) = /L b -IX -
- A CsRXE “, X ZA
where A’, h and J are positive consta.nts'.' OQur original‘ aim
in considering this highly unrealistic potential was to see
whether .some form of fluid - solid phase transition might
appear in the limit as )’—b O+, induced by the periodic
factor, Co3 hx .
However, since this calculation was done, it has
been pointed out that when U (X) is given by (2-1), the

in‘hégral of U (X) (over all X ? L ) tends to O

with ~ , so that it is not clear how the Van der Waals .

-

limit (}’-—P' O+ ) can be taken in a mc. cuseful way. For,//'/
thé work of Lebowitz and Penrose (1966), in which the long -
range forces céntribute a term proportional tpfbl (X)O‘X
to the equation of state, indicates that this integral

(or its 1imit as J=% OT ) should not vanish, if there is

to be any hope of finding a phasé.transition. This difficulty

has still to be resolved.
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Phe configurational integral for the potential (241)
is (ef (II 6-8))
-1

Qoity= §oS  dumdy[J(-40575

04‘)('( <X~<L

)

iy S5 kD )

137 J =1
| /// 22

We aim to show that the Laplace transform of Q(N,L) may.be
calculated as a stOChastic“average, analogous to fhat defined

by (II 6-13).



§ 3 Since the function Cg;kx .2—'}’( satisfies a
second o;der diffefential equation in X, we must find a
two-dimensional stationary liarkov process for which

@ka-e-}x "is an element of the (2 X 2) auto - cqvériance
matrix. A\%heorem of Doob (1944) requires that this matrix

exp(Ax) , xZo gy
e (Ax) , x<©

Where A is a constant matrix, /4,/ denotes the transpose of
,4 and it is understood that X is multiplied by the unit matrix
of order 2. (cf. Wang and Uhlenbeck, 1945, Appendix, for a direct
proof - due to Kac). By ﬁsing Cauchyt's formula, one obtains
(cf. Goertzel and Tralli, 1960, Ch. 3) '
[MP(AX)J = = Qe @3
L 2R (wi-A), .
Where ﬂ stands for the (2 X 2) unit matrix and the contour of
integration encloses no eigenvalues of (W —A ), whénce it may
be shown that
op[(F B = (5 TI)E 3
| - S C



For convenience in the forth .coming calculations we have written

C = cK) = cCogzbkx e

i 3-4)
s = s(x) = Swmbkx o=t x -

Instead of the vector ? = (P, (Y ?N) consgidered in

E§ 6, we now introduce the 'vector!' Y = ( _‘jl "ee 3~),where
As -~

68

:'1:: = g("k) = [ N'ka)} | I 35)

c(,(xk)

and g(X) is the process whose autocovariance is given by
(3:1). since Y (X) is a Harkov process, the density function
L4

j.) (Y), the analogue off (?) in ﬁ§6, has fhe form

YY) = W) T P& %5 5%,

Il (L 3-6)

so that our task is reduced to that of calculatn.ng the transition -
probabilities P(ﬂ , +|)‘XJ'+7 j)o This, in turn, may be done by

uge of (II 6-1) successivaly for W= ! and N=2 (and with

P replaced by Y ).



69

For N = ], we ovtain at once
W(?.z) = ('2'7—) 2,@)5/9{-—'{“ +0(7_)} <’” 3- 7>

In order to determineW( 31 '-) .‘j,_‘ ) we must consider
. . . ~r A

the matrix

g Y

/Q(") = <442 < D ’ IH 3 8>
' <gz gl> <,‘i,, --‘-y“> .

which corresponds to the vovariance matrix C of cn.dl §4 .

¢ The explicit form of K is found from (3.3) %o be

Y 1 o ¢ =5 .
R=levis] - @ms
~S ¢ © 1 |

In order to generalize (II 6-1) to the present case we must

invert R + After a straight_forward computation we obtain

R (1_—4?—59-1(1 o -c S




on using (3<7) - (3-10), one finds by analogy with (II 6:7),
after some routine algebra, that the transition probabilities

‘are gﬁ'.ven by

P (iota [t/ x) = [2.;-,(3-7);]”
e { el 55 S“>+(°< -]
- = (1- % o{”)]}

Where we have set (”l 3 ”)
2—-c—s* = 6. (T 3:12)

One may verlfy by using the representation,

- n
()= Ly (Hrexp[-n']
(cf. Lighthill, 1958 p.17 ex. 6), that

P skt

as we should expect. Moreover, we have also the 'Yime - reversal

condition!?

(o(x,)Po(d o<’0<¢,> W(““)P(d"‘ (‘”1»‘)
- (/// 3-14)

As may be checked directly from (3.5), (3.7) and (3.11).



11
é%lg- We may now return to the problem of generalizing
(I 6+13). Let us take the vector, Eg , of (II 6+1) to be
: . . .
Fo g = (G2 (Lot 19
| (I 4+1)

[V . 2/ : f . o
where %& hdos 2 A components, <7hen we obtain from (2.2) and

(3-8), by analogy with (11 6-1), (II 6.11)9

QW,L}':.- e—%“/‘”j.‘...j /xo()(,v |

o<x< WX, < L

@bf(r,y)}>(y) (,_75“” X) - (///4.,2)

Finally, by carrying out exactly the same procedure as that

leading from (IT 6-11) to (II 6-13), we reach the result

- In(e)= ,b 2 Aﬂ”<@xP{(F;Y)}> )  3>

where

and we have set XJ xj equal to T; . The explicit <
expression for (\f) may be found by substituting (3.11)

into (4.4).
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§5 The next step towards determining J((Z) should be,
following Kac (1959), to express the lLaplace transform of (Z,L)
as an eigen-function expansion. This step is problematical
in the present case because it does not seem possible to

introduce a Hilbert - Schmidt kernel into the calculation.

The symmetry property

W(2)P (2 1%;%) = W(%)P(?J?,,x)

valid for the Ornstein - Uhlenbeck process (used by Kac), is
not true of the functlons,W(g,) P(y l,,.,_, X) considered in

this chapter; it was precisely this symmentry in ?. ) p?. that
allowed the construction of a synmetric kernel.

We may, however, define a positive kernel by

oD

(°<|°<'z!°(:/°(z/ ) = j Ax e—fb X /

P (o(, Qz [d,/o({; x)e/x,b {7, [+ «,)}
- (L 57)

K

p



where

FH) - (T 5

When /o is positive the kernel (5-1) is also positive and it
follows from the theorem of Jentzsch (1912), quoted in II §
3 in connection with Van Hove'é work, that b possesses a
simple eigenvalue which is positive and exceeds the reai
parts of ail other eigenvalues. | ) -
In tefms of the kernel P{P , we have at once from
(4°3) the relation .
(v, /’)“/"_—@x (- w)SSSSmém&w&w
« W(rs) Ke™(rsd)anp [, (7], (B 5-3)
where ?§ , Wy ,are the components of two column vectors  ,
defined in (3-5), and q/ is defined by (5-2).
Since the potential (2.1) is stabie (in the sense of
I § 4), it follows from (I 6°2) and (I 6+3) that the Laplace
transform ofE(z,/_) exists for all sufficiently large /9

- e

(Gepenaing an = ). INoreevey, the ssquence of partial sums

e ,
Sn TP L z/QU.L)
) :
converges uniformly for all positive L, as may be seen by

applying Dini‘s theorem (cf. Apostol, 1957, p. 425 ex 13.7(a))



to the functions Sm , and hence we have (cf.Titchmarsh,

1939, p 45)

T (2,pp) = SGLL.Q,—PI‘— = (=L)
o

= P S 2N (), (T 54)
N={

for all sufficiently large P » Where we have used (5-4) to

" define f.(Z, /9) On substituting for IN(P)from (5-3),

we obtain

Fip=rs pressfis S
» . XSSS aergd;«alu-W(Ys) /(P(Nq‘)/ﬂ)llv" ’ ‘},('r-#-u:)}‘

(i 55)

As we mentioned in paragraph 1 of this chapter, the equation
of state may be determined implicitly from (5.5) only if an
assumption is made about l<!° « Despite the asymmetry of KP J.

it is possible that it may be expanded in the form

2Kyl = 3N 0D s,

@59



(5

“where the )_( are eigenvalues, %1 J % are respectively .
the corresponding left and right eigenfunctions and the asterisk
denotes complex conjugates. If, in addition, the pairs of
functions xj J 7/{‘ were orthonormal; we should obtain from

(5+6) and (5.5) the result

P (2p)= Prlpize? >
L=1

A §Tarawiy eV f1-ze i 0 )
o (I 5°7)

(ef.Kac, 1959, eq. (6-2), except that Kac omits the term P"
because of his definition of = ). By an argument formally

identical to that by which we obtained (II 6+18) we now find

. that the equation of state is given implicitly by the condition
. _ i 7'2. .
), [JR)] = z7et (ir 5-8)

where the positive eigenvalue 1 ! exceeds the real parts of

all other eigenvalues ofK .

b
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Evidently, it is not worth trying to continue the
present calculation unless we can establish the validity of
(5.6), which we cannot see how to do. This obstacle to further
progress sugéests that one should gtext by introducing as the
pair potential the autocovariance of an arbitraryfl-dimgnsionai
Markov process, and tﬁen try to choose the parameters (including )
characterizing this process, so that a symmetric kernei was

obtained.
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CHAPTUERIV

Y
The Yang-Lee Distribution of Zeros of a Classicai One-dimengional /

e

s

System 3 e

( By 0.Penrose and J.S.N.Elvey)



ABSTRACT

A classical one-dimensional continuum system of particles with
hard cores and neu;est-neighbour forces is considered. It is proved that
the pressure ot constant absolute temperature (k;‘i)-] (> O) and complex
fugacity )Z) is equal to ']_(‘mox(‘a'Z)’ the branch of largest real part

e

of the complete analytic function, / i (3,2), with branches /k e(§3, Z),

71

obtained by analytic continuation of the equation of state for positive 3, < .,

It is proved, further, that )\max(Z) Max [/l e(Z ) ] exists and

is subharmonic throughout the Z ~plane, and that the regions where )\mox

is harmonic become free from zeros of the grand partition function for oll
sufficiently large values of L, the length of the container., On this basis
the set, C, of limit points of zeros of the grand partition function, is
shown to consist of arcs and its complement, C', is shown to be simply
connected.  The arcs C are determined for o system of hard rods,

Various generalizations of this work are discussed.



§0

I Introduction
1,2 .

Yang and Leze have shown '~ how the possible occurrence of phase
transitions in a classical system of particles can be related to the behaviour
of the zeros of the grand partition function —_  in the complex plane
of the fugacity variable z, in the limit where the size of the system becomes
infinite.,  In this paper we shall consider one~dimensional continuum systems
only, and we shall denote the grand partition function for such a system at

absolute temperature (lq’})-] ond fugacity z on a line of length L by

E(z,L) (eqn (5)).  Until 8XIHl, we shall treat 3 as a (possibly complex)

——

N

constant, and therefore suppress the dependence of —, on 3, A point

D

z_ in the complex z-plane will be called a limit point of zeros of -

q
when the following condition is satisfied:s for every neighbourhood N

of z, and every number K, there exists a number L > K and a z in Jyp

such that —. (3,z,L) = O.

Under the assumption that the set C comprising all the limit points
—
of zeros of . is a system of curves in the complex z-plane, the Yang-
2 .
Lee theory shows;l " that phase transitions can occur only at those values of
z where C meets the real positive z-axis,
Recently, Hemmer and Hauge have published systems of curves C

for some one-dimensional models3 and for a gas obeying van der Waals®

. 4 . .
equation of state, From the equation of state one can determine



g1
TUB,2) = Lim U log = (@,L) M
L=
when 2 and 3 are real and positive.  Their method consists of continuing
N (z) analytically into the complex z-plane, cut in accordance with the
condition that A K (3,2) wust be continuous for all z, B being
fixed and positive, The curves C are identified with these cuts.  [However,
" this procedure does not yield a unique sef of curves, To show this, let
us consider the system of curves C, obtained by replacing any arc XY of
C by a simple closed curve G, which encloses no part of C except the
arc XY, and does not meet the real positive z-axis, Cutside G the
function corresponding to _7{ (3,z), which we shall denote by ){(z), may
be found as before by analytic continuation from the real, positive = -axis.
Inside G the real part of an analytic function JU(z) may be determined
by solving Laplace's equation in two dimensions, subject to the boundary
condition that Rl :f](z) is continuous across C.  The imaginary
port of N ‘(Z) inside G is then detemnined (up to a constant) by the
Cauchy-Riemann equations,  Thus the system C] also satisfies Hemmer and
Hauge's condih‘on.‘j
A second condition amployed

by Hauge and Hemmer, based on the total 'measure’ of the set of limit

points, also fails to distinguish between C and C‘. For, equation (74)



of the present paper shows that, when such a measure can be calculated
for any arc say XY,of C, it depends only on the end pdints X,Y of this
arc.

The purpose of thid wotk is to propose a prescrfpﬁon for determininé
C uniquely from the equation of state,  Cur proposed prescription is to
construct, by analytic continuation, the complete analytic function,
(C.AE) [](Z) that is equal to T (2) far real positive Z (£ 9),
and then to take JU(Z) to be the branch of ﬂ (Z) having largest
real part (when this branch is unique and regular).  The set C would then
comprise all points at which (a) two .or more regulul; branches of /\l
have equal real parts, larger than those of all other branches; or ()
the unique branch of largest real part has a branch point; or (c) ﬂ ()
is not defined at all, In the present paper we shall justify this pre-
scription for the special case of a one~dimensional continuum system with
nearest-neighbour interactions by proving the following theorems,

We define” )‘max(z) to be the supremum of the real parts of the
branches of ]T (2). We shall show that )\mcx(,Z) exists for all Z .

When there is a unique branch of /( (Z), regular near Z and having

rvna—

real part )‘max(z ), we denote this branch by /‘/

o)

%2
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Theorem |
IF / \max(z:) exists then
M tim L7

L R I )

(2) Z  is not a point of C,

Theorem 1}

The function )‘max( Z) is subhammonic throughout the Z ~ghane,

Theorem il

. =~ . . < . .
The set of points . at which )\mox(Z) is harmonic is simply connected.

Theorem IV
The set S of points < at which )‘max(z‘) is not harmonic consists of

arcs and their limit points,

Theorem V

cC =35

In section XIV these thcorems are used to determine C for a system of hard
rods.  Finally, in section XV we discuss the possibilities of obtaining

various generalizations of Theorems |-V
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Il.  Preliminaries

We consider a classical one-dimensional system of particles free to
move on a line of length L. It is assumed that there are two-body
forces only, with interaction potential

 +o, r<a
u(r) = g, a <r<2 (2)
¢, 2a<r

so that only nearest neighbours can interact.  The function 4(r) is
assumed to be bounded, Riemann-integrable and piecewise continuous.

The configurational integral for a classical n-particle system is

’ _ Lk o b= U (% %,
(R L) = ”/T")c Scb(,»--.c(xyL e-xp{—,é’U,,(, ))(3)

where Un(x.'...xn) means the total potential energy of n particles at
Xye..X . By virtue of (2) one can simplify (3) by using the total
symmetry of U(x]...xn} in XpeeaX s and specifying once and for all a

particular ordering of the particles, Cne then obtains (for n > 1)

)= 55 D»q» up) e

<X, X< L

The grand partition function is defined for all < as
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o= 1+ Z "R (L) “

-
1l The Loplace transform of —

It was shown by Tt.'kc:hosi6 that the Laplace transform of the con-
figurational integral for the system considered here can be evaluated in a
simple way, Here we shall take advantage of the further simplification
that can be obtoined7by using instead the Laplace transform of the grand

partition function, which is defined by
T <Z"/D) E_ECLL e-PL = (Z’ L> (6)
O

for all values of z and p such that the integral converges, We shall show
later (§V|) how to extend this definition to all values of z and p.

To study the convergence of the integral in (6) we note that (2)

and (4) imply
n g
Qn(l-> = *LE-[ @/j‘{‘(‘”’f)/gm MW} ) ‘ @)

where v is the greatest lower bound of the function u(r). Hence we

have from (5)

Zeoj< ep{li e i T
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For all z, therefore, the integral in () converges absolutely to an analytic

function of p throughout the region of the complex p-place defined by

N> fz] e %

where p= N+ i 1L .
/

IV. Inversion of the Laplace Transform

The inversion formula for the Laplace transform (6) is'g
(- —I—z

Lioon, A/’ QPLT(" /7) L~(z,l_+g>+3(z,1_-oj’) o)

A~50 _
C- 2
where ¢ is any real number exceeding the abscissa of convergence of (6).
The condition of validity for this formula, that
f AL / = ( =L) J
for all fimfe R, is satisfied here because of (8)., Since the series (5)
terminates because of the hard core condition in (2), and since Qn(L)

is continuous in L by (4) and (2), the function = (=, is continuous

in L, so that (1C) simplifies to
c+i A

g (/(/b-@ LTZ)/’)“‘ S<Z)L‘> Can

-2A

— O



V. Calculation of y(z,p)

To calculate y(z, p) we substitute (5) into (6), obtaining
10( /’) />‘+fo2 PLZ'ZhQ (L) - (12)

By Dini's theorem9 applied to the sequence of functions

N
- L,
SN = E e P C:\)n([-)
it can be shown thaf the series z Z é o/ )LQy, (L) is

unifornly convergent in L for all L > O consequently,]o the summation

and integration in (12) may be interchanged, giving .
o
. g nT
Ter=pr+> "L,
n={

where

I,.(p)= Sw ALe” L@,L(L)

Using (4), we can calculate _lh(p) obtammg”

(P) = )/alx~e 'ij = ()P =AU %)

by o Xfo(/{L e—(L-ln)P:/sz[‘L/J(F>]n-1 (14)

S7



when n > 1, The function y)(/g) is defined as

o0
-Bu(r)=pr
Yp) = Sdre : 15)
' o
Substituting (14) into (13) we obtain

Tlop)= P+ P -2, 06

for all p satisfying (9).

VI, Analytic Continuation of Z(z,p)

Without loss of generality we may arsume that £(r) has only one
discontinuity, say at r = b, where a <b < 2a, Then, by (15) and (2)

'?;}(p) may be written as
b 7 0o
oA f W To e
A b 24

®
Now the function p-le-Zop coincides with Sdr e P' throughout the half-
2a
plane Rl p > C and is analytic for all p.  Therefore, p-'le-Zap is the

©
(unique) analytic continuation of § dr e P from the region Rl p>0
2a
into the whole p-plane.  Further, when p is finite and r is a point of

-;’35(l')-pr

either of the subintervals a < r < b, b < r < 2a, the function e

is jointly continuous in p and r (since 4(r) is bounded, Riemann-integrable,
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and continuous in both subintervals), and analytic in p. It i’ollows]2

that each of the first two terms on the right-hand side of (17) is analytic

in p for all finite p, and fmally, that

i) - w AR gm'm) P

is the analytic continuation of the right-hand member of (17) into the
whole p-plane,  The analytic continuation of y(z,p) into the whole p-

plane is therefore obtained by substituting (13) into (16).

VII. The poles of y(z,p)

In the next section we shall use the method of residues to estimate
the integral in (11) for large L and fixed z. We shall find that the
behaviour of this integral is dominated by the contribution from the poles
of y(z,p) which lie farthest to the right in the p-plane.  In the present
section we shall show that, with the exception of at most two values of
z, the function y(z,p) has at least one pole in the p~plane and has a
finite number of poles Pye <Py (where k depends an z) whose real parts
are equal and exceed the real parts of all the other poles, We shall
call the poles Py-« Py the poles of largest real part (L.R.P.), and we

denote their common real part by M (4) Whew Thane v
zLJA/n/M, Axo{/( ar hWan Z amcd
jruve part me) mmf){ft&m brznnch

ay i)



Equation (16) implies]3 that p is a pole of y(z,p) if and only if
-7
viPp= <" " a9

Moreover, this pole is simple if and only if

Ve G0 o
We shall prove]4 that 7./) (p) assumes every possible value in the
complex plane, so that%y(Z ,p) has ot lecst one pole for all values of Z
and hence K > 1. For suppose, to the contrary, that T’U (p) does not
take some value a; then p [#J (p) - aJ would be, by (13), an entire
function of p of order 1 with no zeros, which therefore would have the

form exp (Ap + B), by Hadamard's factorization theorem, and so we

should have
, -/ /4/7+g
P(p) =+ pre
s Where A < C,
Since both "l!/(p) and p-"exp(Ap + B) tend to O as p tends to + @, it

follows that a = C, which in our case corresponds to Z = ., This

completes the proof,

To show that K is finite we show that for any constant )\o, the number

of poles to right of the line A= Rl p = )\o in the p~plane is finite,
-3u_.
First, all of these poles must lie to the left of the line A= z min

90



since the integral (6) for y(z,p) converges whenever (9) is satisfied.

Secondly, the Riemann-Lebesgue lemmcls implies that the right side of

(18) tends to C as /LL Z |Im p tends to ¥ o at fixed A and z, and hence

(19) cannot be satisfied for arbitrarily large {L (unless z = C, in which
/

case y = 1/p). Consequently all the poles of ¥(z,p) whose real parts

exceed )\o lie inside a bounded part of the strip

AN <AL z e
o——

By (18), y(z,p) is meromorphic in p and can therefore have only a finite

number of poles in this bounded region, and a fortiori K must be finite,

VIIl. Application of the residue theorem

TN
The estimation of ,—, (z,L) is simplest for values of z such that
¥(z,p) hos only one pole of L.P,®, in the p-plane and this pole is simple,
having affix p](z). Let X' be any non-vanishing constant less than the

real part of the affix of the pole of L.R,P.,
N <A, (21)

but greater than those of all the other poles, and deform the contour of

integration in (11) to lie along the line

A =N

11



indented round the pole of L.R.P. (see fig.2),

Applying the residue theorem, we obtain
Sk l=2¢ ’(Z)L{A (D) +£(Z, z_)} o2)

where

A2)= P%ﬁ(z) T(Z>F> (23)
and

D ~pEIL7
EE0= S o7 50(/“ Tl

(24)

Substituting from (16) into (24) we obtain

: L
E(zL)= ‘3( o df“fﬂ o sk

.______.-—'—————-7‘,"'“
Er R I DN (R dass =A

-)\!
The first integral is equal to 2me ML if ' >0, and to C if ' <O,
Since RI P > M by (21), the contribution of this first integral to E (z,L)
-p L
is either e with RI Py > C, or else zero. In either case, this

contribution tends to C o3 L tends to . To estimate the second integral

we use the Riemann-Lebesgue Iemmals, which when applied to (16) shows



that lim (N + i /A) = C, It follows that the second integral
in (25) converges absolutely and so has an upper bound which is independent
of L. Since R Py > N', the contribution of this second integral to
E (z,L) also tends to O for large L, so that
Lom LY =0 .
| —>00
Since Py is a simple pole, A](z) cannot vanish, and it follows from (22)
that
) -1 T ('/ > ppesa /3
,évm L /&3., = 1 (Z) ) (27)
L—~o0 &
for a svitably chosen branch of the multi-valued function log . (z,L).
A definite choise of log ?__ is made in § X il
It will be seen that in the next section the conditions under which
we have proved (27) are precisely those conditions which are assumed in

the statement of theorem I.  Consequently, we need not consider the

existence or properties of the left member of (27) in any other case,

IX. The Connection between / | (Z) and the poles of y(z ,p)

In order to prove Theorem | from (27) we must relate p](z) to the
complete analytic function ﬂ (z) obtained by analytic continuation from

n(z), the function giving the thermodynamic pressure for real positive z,



This relationship is described by the following result:
Lemma |, The branches of the complete analytic function ﬂ (z) are
the values of p at which y(z,p), regarded os a function of p, hos poles,

and these poles are simple except at the branch points of ﬂ(z)

Proof, When z is small, l,U (p) must be large near a pole of y(z,p).
Hence, by (18) either p is small or else it has a large negative real part,
For small z, the pole of largest real part is therefore near p = Q,

Eqn (18) also implies that 1/#(p) has a simple zero at p = O and hence
the functional relation z = 1/ (p) may be inverted uniquely, 3= Yeat. for
small z there is just one simple pole of largest real part, and this pole ,
Py (z),is an andlytic function of Z , vanishing ot z = O,  Applying
(1) and (26) we see that

z) = p'(z) for small positive z, (28)

where 1!/ ( pl(z)) = 1/z (29)

and P](z) is small,

From (28) it follows by analytic continuation that

—

Jl@) = Pz) | (30)

i
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where P(z) is the complete analytic function one of whose elements is
p'(z) when z is small, From (29), it follows that every branch of / g(z)

safisﬁés
YT @ = 1z (31)

and therefore, by (19), coincides with a pole of y(p,z).  Moreover, if
ﬂ- (z) does not have a branch point then the derivative ’\If '(ﬂ‘(z))
does not vanish, and hence by (20) the pole is simple.
Conversely, if z is any point in the Z— plane and Py is any

simple pole of Z(ZQ'P)' then we may joint the point P, to the origin by

a continuous path in the p-plane, avoiding the isolated points at which
either UJ(P) or d’}’]/dp vanishes; under the mapping '(7() p) = 1/z
this path has a unique continuous image in the z-plane, one end of which
is at the origin, and by continuing the function p,(z) analytically outwards
along this image path we obtain a branch of P(z) taking the value Py when

z=2z. This completes the proof of lemma 1.

For any tg K(z) we may therefore define the branches
/l‘(Z )... ﬂ:I(Z) to have L.R.P. when their common real part equals

)\mux(z), where K(Z) and Amax( Z) are defined in 3VII,

Using Lemma I, we can prove a second Lemma, which will be used

several times in the sequel,
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Lemma il

Two branches of ﬂ- ("Z) cannot have equal real ports throughout
a domain of values of Z ,
Proof

Suppose, on the contrary, that two branches, j( 1’ J‘ 2 of

;’ l (z) satisfy the condition
— - — -
B () = R (R)
for all < in a domain -»D . Then the Cauchy-Riemonn condftions
imply thot the funetion :/T i :)T 2 has a constant value, say'w)) ’

forall Z in OD , where (U is redl, Since each ofﬂ' ,ﬂz_

satisfies (31) we have
p = YT (B i
for dll in oD whence, by analytie continuation,

Y (P2

for all p,  But this cannet happen, for we have shawn in §VII that

J

Hp(p) tends to C s 'Im p! tends to o, This completes the proof

of Lemma I,



X.  Proof of Theorem 1

—_ / / =/
Theorem 1 states that if < is o point such that / ’ MM("')exisfs

then

7 - oo = 0T —_
w Ao T A= EFL) = (@)
(2) =’ is not a point of C.

The | oof of (1) follows at once from Lemma | and equation (27). To
prove (2) we show that there is a closed disk D (z) of radius P ,

4

centred at the point I = z’in the Z— plane with the properties

r\ 2
(o) {‘_,(Z )l—) is given by (22) throughout ID )

® A (=Z) is bounded away from zero throughout i})

(c) 6(2) > tends uniformly to zero throughout :8 )

so that for all sufficiently large L there con be no zeros of :,(Z’L)
. . t ) ot
with < in i),/,, (;,).
By the continuity of all branches of /’j (:) , it is possible to

find numbers ', A, ond f’? such that M # C and

Rl ) J(::) SURSURE N L7 (32)
holds throughout j/)p (z) for any branch j ‘ J(z) other than j ‘ max

We sholl show thot O@?(z’) has the properties (o), (b) ond (c). It has

17

(z).
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the property (a) because throughout @‘7 (29 there is, by Lemma |,

a unique pole of y(Z ,p) having largest real part, It has the property

(b) because A (Z) is the residue of y( 2 ,p) at a simple pole, and is

therefore analytic and non-vanishing throughout the closed disk @ (2).
Finally, to establish (c), we note that ' defined in (32) sahsﬁes

the conditions stated in IX, so that we may estimate E (z ,L) from

(25). It has already been shown in 31X that the contribution to g(z,L)

from the first integral in (24) is e-p'L if ' >0 and C if N' <Gy

hence, by lemma | and (32), this contribution tends uniformly to zero

throughout iDh(z') for either sign of \'. To estimate the second integral

we use the fact :haf y(Z ,p) has no poles when Z is in [i/)y (3,

which implies by (19) that Z oL ']_}) (N + F/M) cannot vanish if

/4—4- is real and < s in @7(2‘). Further, by (18) and the Riemann-

Lebesgue lemma, 'l;) (N + i/M) tends to O for large ‘/""-l , and |

consequently, since i/ (z) is closed, the quantity IZ 1 —"y/()\-n/u)l

has a pes’ive lower bound, say a, valid for all Z in .7\.) (z) and

all real /M- . The dbsolute value of the contribution of the second

integral in (25) to 5 (Z ,L) is therefore at most
(Y=L =°
£ ' 0(_/4,1,
~ v/ M 2
27 X . | X+1 /A[
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where 7\] = Rl Py By Lemma | and (32), this contribution has the

upper bound (2\' a)-] exp (' = M')L, and therefore tends uniformly to

C as L — . This completes the proof of (c), and hence of Theorem I.
In the next three sections we shall establish several general

properties of the function )\max(z). Although these properties are of

interest in themselves, it will be apparent by the time we embark on the

proof of theorem V, that they are essential for the unique determination

of C.

XI. Subharmonicity of )\max(Z)

Theorem I

The function )\max(z) is subharmonic throughout the Z =-plane,
Proof

By virtue of the arguments given in 8VIl, the function )\mox(Z)
exists and is continuous for all ZZ , Suppose that z/is any value of
< and denote by PyreseesrPy the poles of y(z}p) having L.R.P., where
the integer K depends on z'but is always finite, (see §VII). Let Py be
any one of these poles and m (> 1) its multiplicity,  Then, by (20),
the first non-vanishing derivative of "lljj (p) at p = Py is of order LW

which shows that m, must be finite, since L}/j (p) is nonconstant,

Consequently, by Lemma | and a general theorem on the inversion of power
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et .

seriesw, there are . branches of / \ (z), all of which take the value
P of z’, and the point z’is an algebraic branch point of order m - 1

for each of these branches.

We shall now use the following resulfg‘a

If a complete analytic function has an algebraic branch point of order n - 1
(n > 2) at the point 2’ (# o) then each branch having a branch point at

z!may be represented in the form @{(Z‘Z/)lh} ) , where é

is meromorphic for all Z in an annular neighbourhood of z/

b

By applying this result to the complete analytic function / \ (Z)
in an annular neighbourhood of z] we deduce that the function Tk(Z),
defined to be the sum of all the branches of /'\ which take the value
Py, when Z =2z/ is analytic throughout a closed disk with centre z’
and radius Nt deperding on z{  For, each of these branches may be

D
expanded as a series of the form p, + > ¢t (Z), j= e,
k i Lj
where fl "'*n denote the n distinct values of (Z — 2T,  Unless {is

an integer multiple of n the sum X\ & (Z) is zero and hence the Taylor

expansion or Tk contains only integral powers of ( Z =~ 2).  On setting

L = - | 36
TMm:MW {)/')TZ,HI})YK)L) ()

(==K M-ITR (z) (37)



we obtain a function T(Z), which is analytic throughout the closed disk

with centre 2/ and radius - and satisfies the condition
M

KT (L Amax(Z), (38)

with equality, in particular, at z/  Using (35) and applying the mean

value theorem for harmonic Funchons]? to El T(Z), we obtain:

)\MM (z’) - /24 99’@‘# z/+ Teze)}
2;!

L Sd@ ?MMVIJfTezQ) ()

xﬁJl

for all r < r(z).  Conditions (35) and (39) imply20 that )\max(z) is sub=-
harmonic throughout the Z -plane,

Corollary
EE— —
If Amux ) is harmonic in a neighbourhood N then i { mux( Z) exists

throughout j \/ "

Proof

Suppose that N is an open disk with centre z then there is a closed

disk, say D centred at z/ throughout which )\qu( Z) is harmonic,  There-

e
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Forezl there exists a branch, say /l 17 of /” , which is regular and has

7 -
real part )\max(‘Z) for Z inD,



To complete the proof of this corollary we shall show that, within
D, 7( ..(2") is the only branch of ;'T ‘having L.R.P. To see this,
consider the function F(Z) = Rl T(Z) - )\max(z)' Since T(Z) is
analytic (as shown in the proof of Theorem Il) and )\max(:.”) is harmenic
within D (by the hypothesis of this corc;llary) the inequality in (39} becomes
an equation,  Consequently, F(Z) vanishes for all "Z on the boundary
of D and hence22 throughout D.  Moreover, Rl T(Z), being the
arithmetic mean of the real parts of all branches of ﬁ having L,R.P. at

z, is less than )\max(Z) unless each of these branches has real part equal

to )‘max(z ).  Therefore, the vanishing of F Z) entails that two or more

rr—

branches of } \ (Z) have L.R,P. for all Z in D, and this violates

lemma Il.  Q.E,D,

Xll, The Sets So’-s-'l'—S-Z-:#-’—’-—l

One of our aims in this paper is to verify rigorously the assumption
made by Yang and Lee (which they verified2 in the case of a classical
lattice gas wifhvpurely attractive forces), that the limit points of zeros fall
on curves in the °Z -plane, To this end we define the following disjoint
sefs 51,52,.._. of points in the Z -plane,

For k = 1,2,3,...



e Sk if and only if 7\— () has exactly k branches

of L.R,P. at — all regular - (40)

We dlso define a set S-O:

ZE S0 if and only if

either 7(.(2) has no branch of L.R,P.

or = z is a branch point of ]—( max”

Evidently the sets So’Sl’SZ"‘ partition the whole Z =-plane, so that

we have at onece

S = S U S (41)
o

1 U s, u

2 3 evoecoy
where S!‘ means the complement of S'I' It follows from the corollary to
theorem 1l that S.I may also be defined as the set of all points in the

Z -plane at which A (Z) is harmonic,
max

As a first step towards showing that C consists of ares we prove the

following theorem;

103
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Theorem III
The set 51 is simply comnected.

Proof

We shall show 22

that every simple closed curve contained in Si
encloses only points of S;’ .

Let 3 denote any éimple, closed curve contained in S, and let D
l den'o-te the domain consisting ofz and all po;'.nts interior to 2 .
Since )\_.max(z)" ﬂ( ]T max (Z) is subharmonic (Theorem II) ve

have the :.nequal:.t:gq o ( ‘-J . Rado, 1949, B 31

§9A dE 7 O

Where the two .a:.des of (42) are equal if and only if 3\ max (Z )

) e

is harmonic throughout D.
But n max (Z) exists in a neighbourhood of every point of E
(by the corollary to theorem II) and hence, by the Cauchj-l-?iemann"

conditions,

f 9 /\MG(E"‘§_/’"MG{E O
where /U. max = %ﬂmax, for, l_imax (2) must be single-

valued because of - Lemma II. Hence } max (Z) is harmonic for

(43)

all 2 in D and so (by a sécond application of | emma II)

n max (Z) exists throughout D, showing thatDCSz .+ Q.E.D.

* This yroof is due to Penrose
** In this notation /U stands for the normal to z

and hence kS coincides with dz .

- ———— = e~




Theorem IV

The set S of points Z at which )\max(Z) is not harmonic is a
closed system of ares,

Proof

It follows from (41) and the corollary to Theorem Il that the sets S ,S;

are identical. Let z’be the affix of any point of S, and denote by
P1+Py the two simple poles of y(z,p) having L.R,P. It follows from Lemma

| that Py = j—l ](z) and Py = j( 2(z) where ]T] and )—(2 are

m—

branches of J\ (Z). Since all branches of T (Z) are continuous
there exists a neighbourhood of Z| say M , throughout which J \ ](Z)
and ) 2(Z) are regular and have larger real parts than any other branch

e

of u” (Z). Forall Z within _/(/ , Taylor's theorem gives

ﬂ,(z)_ j\—z (z)= /?__/;_}__Z Ti—é’,iﬁefie ei@,_

(44)

———r

JI



where

Tet? = zo = 5 (45)
7 ~£@ —_— ~—/-—- ’(é-je[—( (Z)_}_( (Zj—"}
kel ™% = 41 L\dz) N 2 JZ (46)
=xf

and M is the order of the first nonvanis‘hing derivative of (ﬂ,"ﬂ}_}
at =z/ The value of M must be finite; for otherwise

7-'\-, (Z) - ﬁi(i)would be equal to the imaginary constant Py = Py
throughout J\P , in violation of Lemma Il.  Taking the real part of
(44) and using (45), (35) and Lemma I, we find the candition for a point

of N to belong to S2 to be
O = (Y )Q) Y (/V\f-)—l- @M> + O (TMRM>)W)

where O(rMRM) denotes a quantity which tends to zero faster than r"\"\RM

as r tends to zero,  Therefore the points of 52 within M form a set of
* ares intersecting at z’at angles of WM, or a single arc if M =1,
f Z¢& Sk’ where k > 3, and ﬂl""' /lk denote the

branches of )t having L.R.P. at ZZ , then each of the functions

Rl{_}l‘ b-—j&J} + 1 < &< j <k, must vanish ot all points of Sk

106
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in a neighbourhood of Z . We conclude, from an argument similar
to that used in considering 52 ; that for k >3 Sk consists at most of
arcs and isolated points,

Since \)U (p) is meromorphic and nonconstant, it follows from
(20) and Lemma | that the set So consists of isolated points.  Moreover,
since S] is simply connected (Theorem 1) the complemenf)S;)oF S]
cannot contain isolated points.,  Finally, by the corollary to Theorem I,
the limit poinis of Sk for k > 2 cannot belong to S.I; for Amax( Z) is
not harmonic at these points,  This completes the proof of Theorem IV,

We have also shown that S is a closed set.

XIH. Determination of C

We are now in a position to determine the set C of limit points of
zeros of —_ (Z,l); this determination is accomplished in the

following theoram.

Theorem V

Proof

Define the set S~ to consist of all points Z interior to exactly one

arc of S.  Suppose thai £ y is the offix of any point Y of an arc
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(J of S . Then one can find a closed disk ,D 8(Y) with centre

ZY and radius 8, containing only points of <7 and points of S'I’
and split by ¢/ into two disjoint regions, say R], R2. Further,
denote by Kr(Y) the circle with centre Z Y and radius r (< §), and
by Z Ar Z B the affixes of the distinct points A, B in which Kr
cuts U,

We shall show now that 7(— mcx( Z) may be represented in the

form

g ‘Z)}{‘F ‘Zék)(

[T
Hen2) = (=), § z <Ky | @

where jT 1’ TB are distinct branches of / Q , regular throughout D

and satisfying the condition
ANz = RJ[(2) = 2 () (49)

when Z ison T .

To see this, suppose that 0 is an arc of Sk;. then there exists exactly
k distinct branches of / ( having real part )\qu(z) at points of T ,
and all regular throughout oD . Since R], R2 are subsets of S], we
may define 7{— j to be the unique branch of 7( having L.R,P. within

R]. If / 'l ] had the same property with R2 and /f ( o Were any
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other branch of \ having real part hmax on /" , then the integral
mean of the harmonic function Rl(j{.l -ﬁ 2) over the boundary of D
would be positive and so different from the value (zero) of RI(H.I - 7T 2)
at the centre of D, in violation of the mean value theorem for harmonic
{"uncl'ions..|8 Hence /T'I cannot have L.R.P. within R2 and we may
suppose (after relabelling the branches if necessary) that 7_\ 2 has L.R.P.
throughout R2, thus justifying (51).

Let us choose R, to lie to the left and R2 to the right of U

1
when U has the sense of the direcited segment AB, We shall prove
Theorem V by obtaining bounds on the function L—]Nr(L) for large L,
where Nr(L) denotes the number of zeros of E (z ,L) inside or on Kr‘
To establish these bounds we shall apply the argument principle, but
before this can be done, a definite branch of the multivalued function

arg E (z ,L) must be chosen. By virtue of (22), which holds at all

points of S] , we may choose the branch
,494 = (L) = Ml wcé;,/\m(z) + (1) 5oy

where //umax(Z) is defined to be the imaginary part of / ! max(Z)
and, in view of Lemma |, Amax(Z) equals A](‘Z) as defined in (23).
The function Arg A'nax(Z) is defined so that it varies continuously as 2

varies on K_ N o', (" being the complement of &~ ,
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Finally, the term O(1) in (5Q) denotes a quantity which, for each Z ,
tends to C as L tends fo .
We now define a broken contour, [—’ , consisting of two segments

PrQ’, P*Q" of Kr such that:

(i) PéQ', PH Q" are on opposite sides of U
(ii) Eéch of P'Q', P"Q' has the same sense as AB;
(iii) Each of the straight lines P'P*, Q'Q" has length p >Q

(See Figure 3).
It follows from (22) aond the fact that, for Z in ony close subset of Sl ,
é; (z,L) tends uniformly to O as L tends to o (see the proof of Theorem
1(2), 8X for the reasoning) that the term O(1) in (50) is uniform in Z

on ?—' . Further, we define a function AT.,(L- ) by

Ar(’l—m)‘f(’%w =iy = <*\+(’4”’“Q" ’ O‘FD“‘”
7

where (for X = P',P", Q',Q") Arg E ,c means the numerical value
of the right side of (50) ot Z < To complete the preliminaries to
the use of the argument principle, we introduce the circle K] with centre

Z v and radius Fyr where

O<K<r<r<56 (52)

1



In order to obtain an upper bound on A .IiL;p), we consider

separately the contributions from zeros of . (a) inside or on Kf,

(b) outside K Denoting by N the total number of zeros of ‘:_, (as

].
before) and by N, the number inside or on Ky we cbtain the bound:

Arlep) <IN, +H(-H) (00 8a),

LulweTé‘ )
(for X = Por Q)’

@x means the greatest angle subtended by the chord X'X'" ot points
outside K] (see Figure 3). The simplest way to derive the bound is to
consider tha contribution of one particular zero, say z/ of E , taking
the axis from whickArg::_; is measured to pass through this zero. Since
(Zz ~ 2) is a fackor of E (z,L), it follows from (54) that the numbers
2n, (,JQ + )JQ), consfftute upper bounds on the coniribution to
Arl(L;V) from a zero z'in the regions (a), (b), respectively. By
this method, all zeros of E are counted according to their multiplicities.
The angles Gx depend on y s in particular, we have

Lim € (n) = O (54)
pq\-o"p

Cn dividing both sides of (53) by L and then letting L tend to o, we

obtain
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Lim, D9 i lmﬂi’nl. N+ (8-A) P+9):z

L—h— o0 (55)

Let Lim  mean that y tends to O while all of the conditions
y -0 :
(i)=(iii) on r’ ore maintained, Then we obtain from (57) and (5%) the

inequality

lom A TA (L) L 2 Dbl TN

?'?() l >co |_==o00

For alt Z in D we define

éﬂ;@((l)’f ]—{,(Z)—]l-z@) - &

According to (48), (9/an)al &T (Z) is nonnegative, where (3/9n)
denotes differentiation along the normal to &  drawn from R2 into Rl’
Taking this normal as the Rl ZZ —axis of a right~handed pair of axes 5

we obtain from the Cauchy-Riemann equations

=LAV G

y

where 3/3s denotes diffarentiation along & in the direction BA,

Since RI Aﬂ max(Z) vanishes along 7~ , the left side of {38) can
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vanish only at isolated points (otherwise Aﬂmax(Z) =0 in D,

in violation of Lemma Il). Consequently, the left side of (36), which

‘{Aﬂ max( ZA) '—A 7T max(Z'B) !

is positive for all positive values of r and hence £ v is a limit point

by (50), (51) and (57) equals Im
—
of zeros of —_ (Z,L).
Moreover, 7 y may be chosen asbitrarily on U— ond (7
itself denotes any arc of S*, so we have shown that S~ is a subset of C,
Since C is closed it follows that the closure of S is also a subset of C.
Further, in view of Theorem IV and the definition of S , the closure pf S~
coincides with S, so that S is a subset of C, We can also show,
however, that C is a subset of S; for theorem 1(2) implies that C is o
subset of S}

1

coincides with S, Since C and S are subsets of each dher, it follows

, and the result proved immediately afier (41) shows that Si

that

which 1 Yo staliment :/Z U\.‘L{W«A—\l

XIV. The Hord Rod System

In this section the set of arcs C is determined uniquely for a system

of hard rods, Here the interaction potential is
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W r) (60)

For this model we have, from (18),

'IP h.P) = p-]e-p) (61)

so that p is a pole of Y, (Z ,p) if and only if

pP = Z (62)

* The argument given immediately after (2C) implies that there is at least
one value of p satisfying (62) for each value of Z , The arcs C
will be determined by use of Theorems | -~ % in conjunction with the

following properties of Y,

. .

M IF Y, (z ,p) has two poles of L.R.P., both simple, then Z is
real5

Gy 1 zZ > -e-] then Zh.r.(z ,p) has exactly one pole of L.R,P.,
and this pole is simple,

(ii) W T <=~ e-l then Zh.r.(z p) hes exactly two poles of L.R,P.,
both simple,

Proof of (i)

Taking the modulus of both sides of (62) we see that



—2X 7 (63)

7
/A ! _;J"‘"‘ /4 z

65
beh = g _ ' (65)

Conditions (63)-(65) imply that
(66)

whence
b = 52 (67)
Py - Py _

and z = p]e' = p2e2 = z (65)

That is, z is real.

The branch points of p(z) may be found, from the condition (dz/dp) = O

applied to the function (74), to be z) = C, z, = -e-], both of which

are real.



Whan Z = (, it follows at once from (5) and (6) that ¥(Z ,p)
has exactly one pole, at p = C, and that this pole is simple.
Consequently wa deduce from (2%) and (65) that all of the poles of
y(z ,p) are simple except when Z = -e_]. Consequently, when

Z # —e-‘ every solution of (74) corresponds to a simple pole y .

Proof of (ii)

When Z > C there is always a unique p > O which satisfies (63),

and this is the unique sitiple pole of L R.P.since, when A > G, the
. . 2 24 ) 7 '

maximun value of A for which (X~ + /Lb Yo' = (= const, > C)

occurs when /A- = (,  Further, when

<<z <c (9)

there is a unique solution )p)OF (562) which is real and > =1, and once

again, this value of p corresponds to the unique simple pole of y having

L.2.P.

To see this, suppose that

1< N

pe

(7C)

(16

and that 7 (= (A + i/b\)eXp{ A+ 1/‘/(}, ) is real (so that A\ = -/M coi'/Jl );

then we obtain, by substituting into (52)
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' — Cot
Z:*-/“WC/M\‘Z,/M ~ 1)
To make Z negative, we must take only those values of /M for which
/L,L cosec /v\ is positive, that is

%ke < (M| < (2% + Dn, 72)

is an increasing function

k=¢C,1,2,... . Butsince l}kcosac/.i

of f /‘Ll and tends to 1 as [ /4‘ tends to C, (74) and (75) imply that

Z  is less than -e.'], which is incompatible with our initial assumption

(72).  Thus statement (ii) is proved,

Proof of (iii)

Vhen Z < -enl, equation (52) has no real roots and it follows
frora (65) that there are for 2ach ) precisely two roots, which are complex
conjugates of each other,  Moreover, by (2C) these roots correspond to
simple poles of Yoo d by the argu:nent of 8§VIl, !h.r.(z1p) has a finite
number of poles of L.2,P.  Thercfore for all real = less than —e-], Y.
has exactly two poles of L.R.P., both simple, and they are complex

conjugates of one another,  From theorems | and V we now find at once

that C is the semi~infinite straight line
~1
~0 < Z < -, 73)

This confirms the result obtained by Hauge and Hemmer using a non-rigorous

method,
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XV. Discussion

The problem of determining the Yang-lee zero distribution uniquely
has been considered by Byckling,25 whose criteria are less explicit than
ours but not in conflict with them,

The fact that Rl a{3,7) is equal to the abscissa of convergence of
the Laplace transform of E (3,Z,L) when 3 and 7 are positive, seems
to have been used first by Kac27 to coleulate the equation of state of
a system of hard rods with exponentially decreasing attractive forces,

This property is also vc:lid:r8 for three-dimensional systems whaen the Laplace
transform of E (3,Z,V) is taken with respect to the volume, V.

Our work generalizes this property to some one-dimensional systems at
complex fugacities,

a9

Recently it has been shown™ "’ that, by redefining the configuration
space of the system to consist of only those configurations in which no pair
of particles overlap, one can prove analogues, referring to the complex
B-plane, of the theorems of Yang and Lee.]J2 From this it follows that
the relation \4/ B,p) = z - which, as we have shown in §lX, is
satisfied by the complete analytic function 7‘{ (Z2), may equally well be
used to generate an analytic function P(3), for a fixed value zlof Z. .

It seems likely that all of the theorems we have proved for / \ (Z£) can

also be established for the C.A F. obtained by analytic continuation in the
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B-plane from mn{3,z). We shall not attempt this task here since no
new ideas are involved, The only difficulties in this process requiring
further investigation are: (1) to verify that the branch points of P(3)
form an isolated set and to locate these points in the 3-plane, (so that
the analogue of Lemma | may bz proved); (2) to modify the proof of
theorem V to take account of the fact that, even for finite L, E(ﬂ,L)
has in general infinitely many z=ros in the @-plane,

26

The well=known formula

g(T) = (?.Tl’i)-l % A]—( mox(Z(‘T—)) (74)

for the density of limit points of zeros of = (per unit length of the
container of the system) at a point of arc length £ on S~, can be

derived from our analysis if it can be shown that (36) holds with equality, and
However, we have been

with lim In fL-]N replaced by lim L—]N

1 1°
unable to prove that these conditions hold,
Theorem | of this paper may be extended to the case of a classical
one~dimensional lattice gas with interaction potential, U(r), defined in
(1).  The method of proof is unchanged except for the replacement of
integrals by sums, However, the lattice gos analogue of ’E{J (p)

has period 2ni8"], 8 being the (uniform) lattice spacing, so that the

pressure is no longer single~valued and all of the proofs
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in the present paper which depend on the aperiodicity of 1/) (p)
break down for a lattice gos. It appears that Theorems 1, Il, IV and V
may be extended to lattice gases, though parts of the proofs would have to
be changed, but that Lemma 1lI, the Corollary to Theorem Il and Theorem

Il cannot be so extended.

The restriction to nearest~neighbour forces in one dimension excludes
all cases where a phase transition can occur,g osuch os the model with
forces of infinite range studied by Kac, Uhlenbeck and Hemmer,31
However, it should be emphasized that many of the proofs given in the
present paper are sufficiently general to be valid, with only minor
modifications, for more general one-dimensional systems, including those
with forces of infinite range, and even for some systems in more than one
dimension,  The most difficult problem, to generalize Theorem |, is

currently being considered.
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§§ j, In this Chapter it will be shown that ihe principal
results of Chapier IV moy ve extended to classical lattice
gases when the pariicles nave hard cores and an arbitrary

but Tinite range of ins

o

raction. ioreover, it will be found

that the basic latiice may have any dimensionality, provided

that it is simple and grows only one - dimensionally; but the
pressufe at complex Zwill, in general, now be multivaiued, s0
that only its real part can be determindd uniquely.

The functions occurring in this chapter depend on

BN
[

gseveral variables; for simplicity we show in each section a
most those variables direcily involved in the reasoning. The

full dependence of all functions may te ascertained {rom their
de?initions.

The technique used in this chapter is similér to the
matrix method of Kramers & Wannier (1941); ithey considered only
nearest - neighbour interactions (iwo-dimensional Ising model)
but allowed {the lattice to grow two-dimeasionally. It is possible,
also, that the results of Baur & Nosanow (1962) on one-dimensional

lattice gases, in which the range of

interaction way have any Iinite
value and the particles nmay have any finife nuaber of internal degrees
of freedom, could be adaptied Ior use in the present work; however,

the treatpent given here is simpler and seems more clegant.
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__~_WM,.___-_M,-§-2’-w . @onsider-a-latblce—comprizing-M equally-spaced sites——
~on & line. Suppose that the two body interaction potential for

the corresponding lattice gas is defined by

| + oo , o< |i-jlks \
R (7 2-)
W) ) P, s e B oY
L o , B Ji=jl€ M-
Wnere we take the distance 5etwéen neighbouring sites as_'the unii '
; of lengih, so0 that s :'and't are integers, and the funcition 50(’ Z"'J D
is taken to be bounded. Next, consider the model comsisting of
; an array of spins, one per site, denoted by OF;‘ fe0:1. G-M end Capal;le
s of just t+0 orientations, ‘up' ('f), or tdowm’ (&) For this
5 rodel, in the presence oif a magnetic field of strength J-C

o (in suiteble units), we specify the following interaction

KLisj), if both of 03,07 omme T .
(@) - othervne @ 22,
— ne X | - Vv 2-3)
6&(}‘)“ VtzJC- ) ‘ . S

@

v(i,}5 =

¢ Where
! Ind 0" 1904 .
n, = t, e 7 ¥ 2-4)
; Q ) }/7 0-1, % ¢ ‘ -

'U'(l;_/)denotes the two-gpin potential,U-(},j)_is defined by (2-1)
and 61()'() accounts for The interactions of the separate spins

Ad
Ve

ith fhe external nagnetic field. t should be stressed that the
somewnat peculiar conditions (2.2), (2.3) have been imposed only

as a formal device and are not intended to be physically realistic.
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By viriue of (2.2) and (2-3), ‘the configurational sum

(canonicel partition _uculon) for the spin system may be wriiten as

Qs (MH) = @x;»[ AU () 5
wher;_ {n }I M CM 2'5)

Ut( EM_‘;?XM- i jw(tj)‘/‘.zn.{}é,

I L=t ,_
(‘ g i (¥ 2-6

extends over gll of the ZM possible

and the sunmation in
configurations of the spins O} s &?7%‘ Following Lee and Yang
(1952) we may identify an tup! spin (72 in the spin systen with
a particle on the zzu”site in the lattice gas, thus obtaining

from (2-4) - (2 6) the correspondence

Q3= = (=t M)
— | <vz7)

ng—t
._,1& being the grand partition funciion of ulhe lattice gas at

fugecity &L == -@/x'b {-——ﬁx/ .
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é 3 Ye aim %0 show fh_at QA( M)Jé) équais the trace of a
suitably defihed matrix; vherelore we adopt cyclic boundary
conditions, éo that all szites on the lattice are aumvered
whcdulo M. In the limit as 11 Tends to co (the laitice analogue

. ’ .
of the bulk limi% discussed. in 1§ 4) ‘the grand canonical
sressure, ﬁ'j{(z) is no% affected by these boundary conditions,
provided that the potential is stable, aad .this is_“che only cese
i"n'*.-.rhiéh we are interested. )
The rbcuired m:itri:c, say T, may be specified as follows.

Az
2L

Denote by X— (3(,): e ¥ -ﬁ)’ Y‘: (y .o.cnyb_‘) any configurations
of ( E‘a—'{ } spins taken in clockwise order round the lattice.

Then we may derine T Dby .

B{yk-tl Xj}(.} 5 IF ,f{g’:x‘e) 2 <0< bA

d

Txy 6= . .
O , @"/AMM‘EA& Va1 >

Where 3{&&,, X}é} denotes the Boltzmann factor of ithe spin &

in state y‘: , in the presence of the configuration of spias,

Hy

X , and the.magaevic :“ield,i}f.‘. Thus T is a sguare natrix o

k-
order Z ! , independent of M.

.

In terms of the matrixz T we have at once Irom (2-5)

A

(2.7) the basic results.
M i
i/%?zé 1/)

Szt )=t T L S U ME

-3 T-‘”O.T.‘e nDrecisals Ll k y | » -
= It hs isely, Tor ang :
) sely, any R O e M"! o let ) V 3 2
Derote any co onfiguration of the sSpin -
b

.‘@.:fl:d..”Y' any coxfiguration of ‘.-7—- k‘H o %*b“f

~

.

'
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— — [ — - e g——

)

there ?k (Z) ‘;are the eigenvalues O_.T It follows from (3~1)

that the characteristic eguation Ioxr the eigenvalués of ! nas

the form

n

e Blp=o, [nest] (T39)

n' which the ’coemlclenus’, BJ (ﬁare polynomials of degree
ot most J in Z . Consequently, if the left-hand member of
(3-3) is identically decomposable into 7~ irreducible po _ynomlal
actors of degrees, saj ’CLI“"ATZ then the condition (3"5)
determines a set of algebraic funciions, P’(l){z) “”‘p@‘}[z))

/ N N : -_ m
where P(H(Z) has dk branches and c(,—,#alqﬂ‘ ,"”"+@l?‘
(cf. Saks and Zygmund, 1965, pp273-5). When there is a unigue
eigenvalue of T having largest m’odulus, and this eigenvalue is
A}

simple we shall denots i% by ? (z ). ror a given value of Z
the sunm (P ﬁ,-T } tends to 1 as M tends to ©<.

4

Therefore we rnay 'define! the argument of :l(Z,M) by
a?u{(z,M) Ma/g? (Z)+ o/}, V 3-4)

where @ () denotes a guantity which tends %0 0 as M %encs to O .

Hy

O course this is not yet a proper definition, since arg pmaz«:
is a multi-valued function. There are now two possibilities:

(a) One can choose the principal value of %the argumeni of p‘“Mﬂ

——

~

tnus making the argumeni oI :£ single-valued but discontinuous eas
2 varies; or (b) Oné can define a function, sayA‘lg?max (z),

to. vary coatinuously with Z



-~
g depending on our choice of arg :»'C"

© B

.

throughout the domain of existence of l? max (Z), rendering

the argument of Zycontinuous but nultl - valued. Te shall
' 4

f!b
denobe tnese values of arg "Loy Arb ,_‘ ,

(zv 44, (50))

fron (3.2), by taking

,/{rg..sz, respectively

(ef Thus, when (Z«) exists, we obtain
LY

logarithmg, dividing by i and then letting

4 tend to 00, the results .
, .

. , . TR Y v s R T

When Z 18 pocitive o ic “‘L.éz- , but in generul, tWe imazialsy
part of Eaj .is cultc arzbitraxy. ihus only the rcal parss

. 2 \ ~-_ s . . .
of thec scure iz uaisuely determined by (2 = 5). Thin. crbitrerineas
in the iweginerny npurd of the srsooure glso exfends to the oyston _
t ~a——

studied in Chapier IV, where on appavently sirongar zo:ulis ( Jh i ‘ 1) )
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54 Bquation (3-5) generalizes the relation (&VZT) of

Chapter IV to the case of a latiice gas consisting of simple

particles (ﬁhat is, particles having no internal degrees of

+h
[ER

freedox) with en abitrary but finite range o nteraction, whose

pOossible positions are limited to the sites of a linear, equally - .

spaced lattice. Before discussing some consequences of (3.6),

mo ’ .
J ~

we shall show how %his, in turn, be extended to include- three ~

,

dimensional (or two - dimensional) lattices which grow one -
dimensionally.

consider a simple cubic la%tice in the Fform of a
rectanzular parallelepived com;.)'rizing inxM cells. I we

recain as the wnit of lengvh the separation of a"pair of

. -

neighbouring sites, we mnay regard this lattice as con sting of
1 square sheets of side’i{, vhe mutual spacing of neighbouring
sheets being unisy. e denote the sheets .by./,&,i , aad suppose

. . ] ‘Lz ' _

that each sheet can assume ’})‘52 distinet internal states,
say Ozk h:1)2)”lllu, 1) , corresponding to the total number of
digvinet configurations of the 'compound spin! 0{ formed oy
plaéihg a simplo, 'up ~ down' spin on each of theq/ lattice
wiias 0 «85 . For the simple spins at positions I, 7.

we introduce the two - spin interaction

~ ']/L(Z,) ul«aswswf'jz 'M{, é_{o",\ f
Vdj) = s w; 3

o wWine

(V 4
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where

“*C“J | 0 ), 5< TS (¥ 49

, [ A

'Tg‘"f]:ri".?”, b ‘-:-,' (2‘1_7'-}- M?')z' - and ?{@) is bcuzided.

Ve also introduce the spin - field 1nueracclon ena“"J, '
zk__ €<Atk> defined by _ |

= My, - Y 43

wher e)k (},g) denotes the total number of tup! spins in the

ku'"’ internal state G'k, of a?, and J{ denotes the field sirength

of o consitant external megnetic field (again, in such.unitls that - the 'sp

Hognetic noddnd does nmot appear explicitly). Finally, for two

-compound spins, we deiine the interactiion by

V . F—( ik J-EJ,Z JD J}&%@?O
IR ) (Y 44
“d O | c}gé‘QZgﬁ== O

Waere F(G;h)%j]?‘]l) stands for the interaction energy of a pair

of compound spins, aZk ,%‘{, the interactvion of simple spins

being defined by (4.1).
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if we adopt cyclic boundary conditions, so that the

Shcets’/ji, , are numbered moduloM and, Saj, in clockwise orcer,

we may geaneralize the method of seciion- 3 by defining a matri:c:
~F o
“r . = (22 oo —
2s followus. Denote oy X:‘_ (x' ..nu'-'l)(&_'/ ) 5 Y ——
? .
r ~S ~e i ~ . - e
{ y’ be s '«yt:—i ) any configurations of ( b»'f ) consecutive

. 07 . s . X .. =
conpound spins, U, , in clockwise order. Dpeifine the matrix ]

by i . . . -

Ar >
Phe Boltzmenn Tactor ‘B{Ub 1[)(;}{} is now supposed to include

“~s'
oth the internal energy of the compound spin y and the
~ g'-{ ~
interaction energy of g with the compound spins X
. 6-‘1
aad the magnetic field, . . .

Finally, if we identify pairs of simple ‘up? spins

it follows from (4°1) - (4:5) that the grand partition function

for the latiice gas consisting of these DaI‘vlc1eS ;Ls given by

= (z= o o) = ﬁ*{! "= Z (7 4--6)

In analogy with (3.3) we now ovbtain an eigenvalue

equation of the form .

F (%z> =) K+ g&@? ‘Klf + B (ZF o,(k= m‘f)

. . | o T 47)

See  Tue Foo‘rua":‘a on P 132
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~ 0 - : Pa WX d

for the elgenvalues}?kof { , the coefficients B;’ being
7 .

polynonials inZ , so that (4°7) devermines a set of algebraic
~
~ _
i‘unc‘“;on say p()(z);.c.ue ?(A)(z) of o.eg:cees d, sasgl- Oéhu
wher JT’)L “'“"[‘xk'—.K . has a unique, eigenvalue,

say P (Z) of larcest modulus end this eigenvaelue is
wax :

simple, then we obbain from (4-6) the basic result
s . ~y :
[ Z«MCE)‘ +2 A? p W%(z)
O ” ) —

according to our choice of arg :'l’ where the dependence of all

48)

<|

funciions on ?/ nas not veen shown expliciily.
The Tormula (4.8) extends (3.5) to a class of three -

dimencional (or two -~ dimens ional) latiice gases. ipart from the

act tnat the funchions lﬁz(z) depead on i , (3.5) and (¢-8)

Therefore we nay omit the tilda in

Yy

are formally ideaticel.

(4-8) and all of the observations made in the rest this chapter

will apply equally to lai® ce gases in one, two or three

dimensions, provided that the lattices grow only one — dimensionally

(that is, 7/ is consiant).

Phe analogue of thé second part of theorem I is that

Sume——— - - ’ .
f[ has a unicue eigenv_alue,?)(z_) , of largest modulus, and
I is simple, then Z° is not a limit point of zeros of
—~— ’ 2 . N . /
- (7 M) . The only change needed in the proof

(ch. IV § Y © ) is that the function & (z,L.) defined by‘(n_/24\:%
wa— <

aust now be replaced by
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' 7.
(Z} M) z (bk /ymcu:) (vhere we have numbered the VR

so that ? max: ?i , and it must be shown that g (z.M)

L

tends uniformly to O in a neighbournood of Z. To prove this proper

we usc the continuity of all branches of ?(Z) If D dencies any
sufficiently s mall closed disk centred at Z en the nu'“ber
x = Moux{lpky C2<k IM‘D)
. z é.D
exists and is less tha .
Hdence we have ' - M

g (z,M)] € (M-1)
. ’ ) -~
which tends to O wniformly for Z in D
From now on we shall suppose that & (\? J2) is arredusible vo
a nroduci of two or more polynomials in P,Z, .Tnis nas the importans
onsequence that the relation log ‘?£ (2) = log ‘?M(Z) + W)

@(Qa real constant) cannot nold over a domain of values of Z unless

W= 2x%n (n= O, S ¢ ) ané log y/e | 705?

are two values oi the lo oga rithm of the same smm"ezero ot F (%Z)

O

~~
13
O
>
(o]

therwise F would be recugible). Since the vprecise form of F
is determined dy the interaction votential, we may regard tae
rreducibility of F as a vronerty of the models considered. Tor such
models, two branches oi the pz;essure. corresponding vo.distinct zeros

cannot differ r by an irmeginary coanstant (and so carnot have egual

he multi’-valuedness oz

<k

real paris) over a region in the Z-m.ane, out
log }7 for ziven 7 v s5till imvlies that theorem ILI of Chapter IV is,

in general, false for lattice gases. -
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§ 5 Y2 have seen fthat the function g (Z ) defined by

(4.7) is algebraic, which izplies that it has only a finite number

of brancnh poinis, each of Finiie order..(cf. Saks and Zygmund,

. )} ———
1965, p.275). Instead of the sets »Sk(Ch. w -9 XIF)

iy
theZ- plane, defined

by the condition ¢

fo::].z—..Q: ")2; deeo ‘K
. DR

zecJ

values, say % TFYIY ? , whose common modulus

exceeds those of all others, and zll of these

if and only if T hasg exactlyk eigen—

n

eigenvalues are simple.

e shall say that the eigenvalues Z mwpl’g have largest modulus

(L.M). %e also introduce a set of poinis, :;o , Where

ZEJg  if and oniy i:‘-? (Z ) has at leas?t one

mulitiple eigenvalue of Il
N . Pw— C— . . ‘o
The szets o ? QJT y JZ , o partition the Z=-planec.

finally we shall write

s ) = Ha{lpl}, @5

0]

o that a’] o (Z ) is defined and conbinuous for all Z ,

though (z )“ exists only whenZg_ [, , in agreement
ey A 7

with the notation used in sections 3 end 4.

tecording to (4.7), a necessary condition :“o:? (Z)

t0o have o branch point is that F" ( ?j, Z ), regarded zs o function
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M_o

of? , has a multiple zero. (cf. Forsyih, ._918, D. 197) s:.nce
the definition ij-il for k}] “ requires that PI teics ?;?
are simple zeros ofF’(P)Z), it follows that each of 2(2)::
L1y ?kCz) is regular near a point of ‘U’: . Consequently we may
also definezT,; by the_ conditions _

for R =12, v m ,Z€Jg  if and only if

P(Z) has exactly k branches of L.M. all regular.

Suppose now that Z & -J 2. ; then ?‘(Z), ?z(Z/

have I,#. and are therefore non vanishiﬁg_ throughout a ngighbour—-
hood, say.‘N" of.z .- Therefore %he function [l?%(i}~%?1(z)_]
is regular within N' and s0 may be expanded in a Taylor series.
By repeating the arguments used in prov:.nff theoren IV (Ch. IV §X“ )
with ( Z?p‘ “J?PQ_ ) in place of-(m -—"7?_) we conclude
that the points of U;_ within” constitute a set of arcs intersecting

— --- . - K . - | —
at ¥ , or possibly a single arc passing through3Z, so that ‘Jz

. . Wit
as a whole consists of arcs. We also find that the sets J., . J, *
‘ - 3:Y%.

G40 5 ‘}‘ﬁm consist of (at most) arcs and isolated poinis.

however, the analytlcn.ty of /Z?P(Z’)-»@P(Z) b ?.7(:/ > 7‘<'L,J <k;
s & g Jq_

in the neighbourhood of a point of J’? shows that .@j,‘_’contains

no isolated points (IOI‘, otherwise the harmonic function

ﬂ{%%*[gz} would vanish et isolated poin‘és - an

impossibility). Thus the wnion, say ¢J , of the sets ; ;2““ JM
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- .
consigts of arcs in the Z—-plane. Ve define oJ %o be the set
f\“ ' - ] ~ - -
of all points Z interior to exactly one arc ofJ (cf. the definition

of §7 Ch. IV §2(_I_l_} ).

It. remains to consider the set'; ia » which contains as

a subset a2ll of the branch points of?' (Z). 111 o2 %he simple
terminal points of arcs ofU are points-of :] (and, probably, branch
points of? (Z)) since the moduli of two branches of P (z )

©, cannot be equal throughout a domain of values of Z. For the
continuuam system of Chapnter IV, we showed that Sowas, a subset

. i ep——
of S ( Ckﬂ § X”), but this was a consequence of Theorem IIT,
1ich, as we have mentioned,  breaks down for lattice gases. 8o
we cannot exclude the possibility that the union of the sels
E— " .
; i ’ Jo , containg a finite number of isolated points.
Ye shall indicate now the proof that the function
log dL‘ * (Z ) is subharmonic throughout the Z-plane; azein
. ———
tie reasoning closely varallels that in Chapter IV (§ X] ) o
Let Z/ be any point (74"'0) in the Z=— plane and
P J.....,)? the branches of ? (Z) having L.i. Then ?’(Z)m .
! R
P’Q (_Z) are nonvanishing throughout a nen.ghbournood sayw
ofZ/ and hence the func ons log ?1(2) log ?k<2)
have branch points only at the branch points of. p sty p/?
”hereLore, within a_n annular neignbour hood of Z', each of

the functions log 7 (Z) having a (necessarily algebrair) branch

point at Z/, say of order ﬂJ "‘1 (7/0) nay be expressed a,s a

. N e
meromorphic function of (& definite branch of) CZ*"Z/ n
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(cf. Saks and Zygmund, 1965, 9.267). (The value nj =_‘f
is to be taken whenever Z (Z) is regular throughoutw‘)
e may now apply the arguments used in the proof of theorem II

r——
(Ch. IV § Xl to the fh.nCulOIl

‘Te<z> = K"Z ‘?Ze(z)

obtaining, affer taking real parts, 23t

- d8 logdi s ’+7*e‘9
LpFal)< 5 /eg el

for all sufficiently Su.al.!. values of P, which proves “bh
log J’m(*z) is subharmonic throughout the Z=plane. (cf. Saks
and Zygaund, 1965, p.485).

Lastly, we want to generalize theorem ¥ o Chapter IV
and so determine the set, C—C’ of limit points of zeros

- .

e S (24M). -
If we definc A]‘I(M j)) to oe the change in
A?-l(z)?’ M) ynen £ describes the broken 00"11:0111‘, ZZ ,

corregponding o ; in figure 3 (but with g'no*.-r denoting an arc

of d mdf replacing P t0 avoid ambiguities in the notaiion) .
e

then the proof given in Chapter IV ( § ”‘ ) may be extendcd

t0 snow tha ::ris a suoset of C( ]')‘e can show, also, that C{

eiste—— : N

is a subset of Ju:", but this does not permit us Vo identiiy

: . "B

;] and Ce . Thus our analysis does not preclude the existence

- Py 2
-~ . - ~ . . L) > . o -~ B
of a FTinite numober of disolated limit points of zeros oi __,_" z,‘L 3
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which is donsistent with the fact that the grand partition
function for a lattice gas of noninteracting point particles

2
equals ( [+ Z ﬂ‘M , for the latiice considered lLere, so that

.

Z==] is an isolated limit point of zeros.

[\)
[RN)

. e — < .. - y
An wiZernative proof of thoorsm Vy for the system concidor

)
[
e
ot
o
’..4'0
(¢
(&
cb
<

in Chupior IV ox for th guees conticored here, is due

Penzoce (Yo bs publiched in $he peper By Ce 20nvorc & TS NLElve:

e R P _ TR o, 1 3 eo— A o Tampas

Tor iTuviics gases) withkin the eireclce NZ‘— s AL & LF-rToLucty

A % T VSN . Yosde o} v e o “ad <o} T S 4 TP TR S . Y o

ol thiv freoely one olluing & Formula for tho tovul meacure of the
. - - ' - L - ! - -, v n + Y

cot oof 1lizmit polpds oF zeoros on eny sxce in the L= plane; the

>

1
o cae used By Hemmer & Hause (19645.
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§ (6 Unsolved Problems.

o _ - N
The problem of generaliszing theorenm I (ch. iv é X J

to continuum systems with forces of arbitrary but finite range
(and uliimately to those where the forces have infinite range)
is a formidable one, involving the asymptotic evaluation oFf

3 . - .
ey (_z; L} for large L. Ostensibly, the techniques of
St .

Chapter II yield estimates of :(Z;L), either directly, as in

" Baxver's work, or indirectly, by inverting the Laplace iraansform

o:i E — an e:{."r,ension of the method employed in Chapter IV.
But closer siudy reveals the difficulty of anelysing the spectra
of the operators encountered in estimating :(:Z)l_) when Z is
comp]-.-'e:-:. .

As explained in Chapter II ( § 6 ), Kac {1959)
has derived an eigen-function expansion for the Laplac.e transform
of =(z,L) , or wnich our equation (IIX 5-7 ) isan
extension (subject to our assumption about the kernel). When'

/3 is allowed to take complex values, however, as it must ﬁhenz
is coaplex, Kac's kernel becomes non heraitian and the .validity'of |
the expansion is no longer assured.

In view of these difficuliies, it seems that the mosi
-promis;ing method of attacking the problem consists of studying the
limiting form of the, pressure of a latiice gas as the lattice

spacing tends to zero in a suitable way. VWe shall refer o this

limit operafion as 'teking the continuum limitt!., It will become



‘transitions, (see Ch. IX § 3)'

1 A Y o Lot o
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clear that all of the problems encountered in seelking a complete

that palrs of limit

gencralization of theorem I reduce to shéwing tha
cperations conuute with_oneanother. In this section we reformulate
the cdlcula‘c_ion of sectionr 4 s0 that the continuun limit can be_
discussed. The possibility of treating interactions of infinite

range is also considered, though it is only for one - dimensional

systems that this extension is essential in the study .0f phase

We suppose that the lattice spacing is L

S =, (Y6t

n

-

where £l is an integer, and that

M = Mo, (Y 6-2)
9 = ?’o”/‘)f | (_f G3)

so that the total number of cells of edge gn ’ say_Af y 1s

Mo = PFMe (T 6o

The basic resuli (4-5) now becomes (t’i)q:"

= (. M,9,0,0)= zp”’“’”‘(z% £
_ | ("és*)

all of the argunents of __2, Z? , being shown to make it easier
to follow the coming limit operaiions. ., In order %o suggest one
possible way of tackling the limit problems of this section, we

replace the variables Ma) io) [LJ t temporarily by’ 0{1;0(1)0(3)0(4
J
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respectively, purely for notatlional convenience, and define the

following operations:

A K - .
| L, o g ee el fiel e

21 -

A - ‘ -
R B T ATl

L X ol 00 Al fiked Xp o

hij J

Lﬁyk X4, o —= 2 -
The oeulﬁ th), stan c..g for any permutaiion of {’J Z/ 224}
Evidently, all of th lafwonerators are totallj symmetllc in their
indiceas.
jle now quote two uheorems on double seguences, waose
generalizations +to the case of sequences having mofe than two
- indices are immediate.

Theorenm 1.

. " :
A .
=L L f and L 9 JCZ exist,
then so does Lﬁ JC and

zﬁzii’cki Z— Ly Jii :




ﬂﬂ’

fheorem 2.

I ’:i é:cists uniformly in 0(1-
Az .

;hon uhe exzistence of .’L‘ﬁl ‘:i;mplies that

of f , and the two limiits are equal.
“K 44 ‘

(ef. Apostol, 1957, Section 12-14).

In thege ‘aheorems,aﬁ , denotes a knowm function)f(o(*)o(iD o
(2 )

ye present now a plausibility argument to show that the
problena of exteading theorem I may be redL.cea to proving that the
A
single - index operators, ‘L’-ﬁ,’ intercommute, - Phe idea is vthat the
exisience of J\ (Z) for & class of three - dimensional continuunm

systens with fo:.ces of infinite range has already been demonsirated

for positive L . These results may be extended Go sozme complex

-

<
©
}_l

alues; of 32 by analytic continuation. On the other hand, we

-

12ll malze 1t plausible that thae itera‘ced._limit
A A e -] ~ ‘ ‘

! 9, - ‘

t, L L LMD (Maq‘o /Zg :{(Z)M”Zﬂ/ n, fj

also exists and would be equal to J\ CZ3 if the order of the

42}
oy

L—- operators could be changed.

e denote by Mb( Tgl‘) the in‘.ceraction'potenfcial.' (4°2)
and by um( TE/) the poiential, of infin_ite range, obtained
formally from (4-2) by zﬁa.lcingt"infini‘ce. We suppose that ?loo( )
is suvable .(in the sense of Ch. I 3 4 ) and such that the

grand canonicel pressure exists in the bulk limit for a three —




e

V:.nteracnon potential uoo( '

dinecasional continuum system- at positive fugacity and with

&

Lj }. The results cited in Chapter I

(9 A’. ) show that this is possible.

The configurational sam for a lattice gc..s congisting

of k particles is defined by

Qb Megn )= 2

where the summation ranges over all pous:.ble con.‘.:.gurat ons o~ 6

particleg on a rectangular lattice of Mn SluCS, oeing defined

by (6+4). 1In terms of %, we na.ve '
T, =1+ zz’%M ) (T 67
~ L 4
lioreover, ithe stability of u ot T3 J ) implies that there exists a

positive number, sayg , such that
o0

U () > U 2 kB ¥y

Tor all values ofk _)V‘ ' a sonfigurati ( 4 )‘
(é n«’ and all ¢onfigurations (2% k5
the subscripts "L*, ' po 'y in (6-8) indicate,- respeciively, .
3

the total poteniial energy calculated with interaction poiential
ub ? uw

If Zé,', ;1 , SO that %he matrix ] defined by (4.. 5)
has a unique eigenvalue of largest modulus, say P (Z)

and is simple, we obtain from (6-5) - (6 8) the inegu al:.:neo
-] 2

WP{M‘L eﬁgm >{_,£[> o 1—-22 jp/y)
@ é*?)
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1&-‘1

On g logarithms in (6- 9), dividing bjMoﬁ/ and making Mo.

tend to infinity, we obiain
oo ,

29 .n z[ef
17 ndig |0, (2., m 0| <[le ren

showing the lef: member of (6+10) %o be u.a:.:ormlj bounaed in
(i’a,n,) L' s From the Bolizano - ‘xieierstrass theorem and (86+10)
it now follows thatv the sequence .

{ 1.7 n Ay | Pi(z.3.,n, t)l}
has at least one point of accumula‘b:.on when 7,a)h/t:tend to OO,
successively or together. .

e have assumed From the outset That the grand
canonical pressure at iniinite volume cx .'.LSL:S for a three -
dimensional continuum system with potential Uoo(}};})
mhat ig, we' nave supposed thaet

/N

M

& 6°11)

for positive values of Z . The result (6-11) would also hold,
by analytic continuation, within a region of the complexZ-plane.
However, we nmust take the limits in a different order, since our

calculation rests on the use of the matriz | . Insicad of (6-11),

"we have considered the Llimit

LLLL {Gem)'s. 3& (M0 5, m.E)

Eong, M _
g (¥ 6+12)

LLLL {6ty S mgn )= 760



e b e e e e ]

Pae s

yaet

A
operations » L-. ’ l—

N ‘_1 Lo

ry of the (rectangular) lattice implies that the
A A .

c
1 ‘I/ ) invercommute, for a lat
3 o

L4
edges of length 7{ , ‘L . It has. been shown by Van der
) 2

Linden and Hazur (1967 ) that the iterated limi$, in which 2“1 ,
2

1 tend successively to OO, exists and equals the usual bulk

Ao

l.’m. Uy

for the reduced poieniials such as the free encray aenulw

or eniropy densiiy (see Ch. I § 4) Alfhough they considered

continuun systems, 1t is probavle that their pethod works for

lattice gases, thus meking it possible (avam, by analyti

continuation) 1o extend our theorem I to some complex values of Z

for genuinely three - dimensional laitice geses with forces o

the opers

-y

)

The most difficult ta...lc seems (o be the proof that
A

n
tion L

oumutes with ‘LM Prelininary invesbtigation

S
’UC

of this provlem using a subdivision of the configuration syace

0 the

3

-
i)

ystvem into 'hypercubical! cells of edge - length egual

tiice spacing, indicates that when 2 is positive and

tL:: 1 » we ha

where

o

./LM Ln-%o;‘: L"’L_'“\_o 2;410‘&’ | @:.6-{]3>

o LR M_1[7 Qg(k M., n)

(V ¢-14)
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and £is defined by (6-6). ohe estimates from which (6-13)

1

ras derived are too crude to be used for the grand canonical

-t

pressure, bulb more refined estimates can certainly be found.
A "

A Tigorous prcoz’"that the operatiors Lkinter—commﬁte may be
envisaged in terms the Theorems on double sequences (and their
genoralizations to multiple sequences). Despite %the greab
difficulties in such a proof, tue impossibili{:y_of calci;lating
:}T (Z) for a three - dimensional continuim gystem with

realistic interactions shows that our method is the only one

availavle at present.
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The calculations of Kac, Uylenbeck & Hemmer (1963) on a one-
dimensional hard-core fluid model with weak, long-range attractive
forces, showed that the equation of state for this system is
vigorously Van der Waals' equation (plus Maxwell's construction)
in the limit that the range of the interaction becomes infinite,
while its: strength tends to zero. (See Baxter (1965) for another
derivation of this result; see also Lebowitz & Penrose (1966) for
several generalizations to three-dimensional systems). It is
therefore of interest to investigate whether the " LRP™ criterion,
introduced in Chapter IV, yields results consistent with the known
thermodynamic behavidur, for a fluid obeying Van der Vaals' equation
of state,

The present chapter consists of an approximate calculation
of the pressure (as a function of B, Z) near the critical point,
We shall show that L.R.P. yields physically consistent results at
or below the critical temperature, Tc, but that the critefion fails
above Tc., Thus the problem of exagctly when L,R.P., holds (in general)
and if what should replace it when it fails is still very much open.

The Van der Waals equation of state is
- Lo 2 - |
= —— - SVIT
V(v = WI(1)

where y — a/kT and a is a positive constant. This form
of the equation is obtained when the particles are assumed to be
hard spheres of unit diameter interacting through weak, long-range,

attractive forces; then (-a) is the integral of the attractive
~
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potential over all possible separations.
By using the relatlonfﬂ- zan[P( ]/az together with the
'infinite dilution' boundary condition z.wjp asp — o* ’

one obiains from (1) the relation (6f Hemmer & Hauge(1964))

P
— exp| — - 2v¥ VI(Z)
-_P [1-f f]
The critical values o;f>, Y are
| 21
jOc = 3! VC = 8 VI(B)
On substituting
. -2 (1+20)
i
v = 2L (145%) VI(4)

into (1), (2) one obtains the expansions

7(6,k) = - 9k-36x2(g+e2) +12 (g +a%) +0(e%) .VI(5)
(o,x) = —2= (3 + 2L %)
o 27K3 z )
.
Bk 2@ - -5 G wol|x] + |x||e/x]% vI(6)

Where we have assumed that K #C), &

ninm (n-nc) ~.

vI(7)

~ -1
z=Z, (Z'ZC)

The notation

x(t) =o(¥ (t)) as t - «

means that ]x/y] —0Das t— q
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We shall also use the notation

L0)

£(t) = as t = «

to mean that there exist positive numbers b, B, independent of 1,

where b ¢B, such that

< .
b<|f(’t)|@ B as t— q

We shall denote by 0(1) any quantity which is bounded; for instance

o = 0(1)

means that a bounded value of o iéjﬁonsidered, the values of 6, k
in (6) being assumed compatible with this condition.
Finally, £(t) = 0(1) as t = « means that £(t) - 0 as t - «

Our generel plan is now as follows. Ve want to 'substitute
for 8' from (6) into (5)3;6 is a multi valued function of o, K,
so we shall obtain, in turn, a multi velued function m(a, K).
When z & y are both positive, it will always be possible to
identify the 'physical branch(es)' of n (o, K) by using the
continuity and.reaiity of the pressure. It will then be possible -
to test the L.R.P. criterion.
The form of (6) suggests that we define a function f(o) by

—;—fB (¢) - (o) =0 | : vI(8)

and then write

6 = K(£(g)+3) vI(9)

AN

Substitution of (9) into (6) and comparison with (8) yields the
following equation, in which the 'O' & 'o' symbols refer to the

limit process K— 0. (We shall always suppose that [okd;
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the calculation is self-consistent in the sense that the functions

5 that we obtain élways satisfy this condition.)
O = 5k + 3[(¢ +8)°- ferties) £ L]

- (o)t r o (] + o] (e 0)4))

which may be written

3

5 4

2 2 ° .27 (f+s)

(1-f)5-fa=3+&{16-__6 ]
+ of k| + k| [(f+5)4|} vI(10)
There are several cases 1o consider .
Case A
=l 20 o0
(10) gives
4
5 = __13_2 (.12.% - f6_ ) +o(k) vI(11)
1-f

Case B

1-£2 = ©(1); then & must be determined (to lowest order in

k) from the quadratic egquation

]

4 .
£6° = (1-£2)p + k(%% - —2—- ) =0

with solution .
f4 1 s

25 = 1-12 ¢ [(1-£2)% —are(El - L)) vi(12)

L
(1) If 1-£2 o ok?), then (12) gives

4
Tg - g— ) + O(k) vI(13)

while if
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1
(ii) (1-f2)~1 = 0(k™%) we obtain

5 = f-1(1-f2) +.o(1-f2) vI(14)
Case C
If £ = o(1); then (10) yields

P Al | V(15

We define the notation o~ O to mean that there is a rooi of
equation (8) satisfying case C.

The essential point of equations (11) - (15) is that, whatever the
value of f,® is small compared with 1 & (except in case C) compared

with f.

On subtracting the single-valued function ¢ - %% k

2
from n 19k , using (5) & (6), we obiain
36k
7 +9%2 27 ot 2 4
i k = 22 - 2 +oflx] + |x|}e/x|"} vi(16)

26 K° PR
Let us now suppose that ¢ is 0(1); then, by (8) £ is 0(1). If we
define h(k,f) to be the left member of (16), regarded as a function

of k, £, then we find, on using (9) in (16) that

n(k,£) = 3k(s4-2:2) + o(x) vI(17)

in Case A or Case B, while, by (f5) n(k,r) = o(k) in Case C. VI(18)
It follows from (17) that, in the present approximations, the
‘physical value', £ (¢), of f(o) may be found from the condition
that f4 - 2f2 must ge real when the fugécity & temperature variables

b
are positive (except in case C for T>T,, when fp is identified by

continuity from its value in case &4 or case B).

Using this criterion, we may classify the roots of (8) as follows.
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- For T(Tc (o, k real), f,(c) is continuous for all (real) o &
vanishes at o = 0, while fz(o), fp(c) are continuous for all

nonvanishing real ¢ & satisfy the conditions

lim, £ (o) = = lim, £, (¢) = +A/3 vI(19)
-0t P o—*O+ 2

lim f (g) = - lim_£,(0) = -~3

o=0~ P10 om0

For T)TC (o0, k imaginary) we make the change of variable

f =2 sinW, Wzu + iv VI(20)
so that (8) gives

g = - % sin 3 vI(21)

Since ¢ is purely imaginery, we may, without loss of generality,

take u equal to 0. Then 21l of the roots of@)are continuous, &

fp(o)

)i

fp(-% ish 3y ) =2 ishw vI(22)

for all real v, while we adopt the convention that

f,](o)s.-' +a/3 ch v - 1 sh vf

f2(0) 2 ~V3chv-ishv VI(23)
We define functions dr(c), for v= 1 or 2, by

2
4 (o) z £ R [n(k,£)) - n(k,2)] - VI(24)

where R1[X] means the real part of X.



160

From (19) & the continuity of all roots of (8), as labelled here,
foro A0 & T # TC, it follows that d1(o), dz(o) are continuous
for all (real or imaginary) bounded values of o. Moreover we have

the criterion that, when ¢ is given, the ILRP rule is valid if &

only if both of d.{(g), d.(c) are positive.

We shall show that when T<TC, both d1 & d2 are positive for all

bounded (pésitive) values of |o|, while, above TC, there is a

positive number, J, such that both of d1, d2 are negative for
C><|0L<J, zero for jo|= J & positive for all bounded |0r>J. The

point o= 0 is the "transition point" for temperatures below TC.

Using (8) in (17) & substituting the result into (24), we obtain:
2 2
d.(c) = 3 Rl[ofp - ofr] + Rl[fp - fr] vi(2s)

for all T £ TC in cases A & B, while we have in Case C,

4,(0) = 3 Rifes ] + Rl[fi] + of1)
» 5 VI(26)
dy(o) = 3 Rl[ofp - of,] + Rl[fp - £g]
for T(Tc;
a_(o) = of1) - 3 Rfo£] - R1 [£7] vi(27)
r r r
for T>T,.
Since the sum of the roots of (8) is zero, we have
£+ £+ 5, =0 | vi(as)

~.
}
Further, by (19), (22) & the continuity of all roots when

o £ 0, we find that
ofp(c)) 0 . VI(29)
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for all (real or imeginary) bounded o, (#0) so that the identity

of f1f2_02(an immediate consequence of (8)) implies that

sgn (f1f2) = sgn (02) = sgn (Tc - T) . VI(30)

where sgn (X) means the algebraic sign of X & (22) has been
used again.

Sﬁppose now that T<T « When |o]> %, f1, f are complex
conjugates of each other & hence, by (28) & the reality of f ’
each has real part (-"fp) When g >lo|> 0, so that all the
roots of (8) are real & nonvanishing, K (30) implies that £, £,
have the same sign~— opposite to that of fp——— & we have the.

inequalities

2ol = 1501+ 1g,] > 12,

ol

1 or 2,

]

for r

Consequently, we have the conditions:

BGfP(o) > 3 Rl[of _(0)] VI(32)

2
R £ - fi]::fi - Rl[fi];fi - R1ED?> © VI(33)

which hold for all bounded |o| (>0) when T<T, .
Using (29), (32) & (33) in (25) & (26), we conclude that both
dy & d, are positive for all bounded [o|>0 & T .
At the point ¢ = 0, we have, using (19) & thedefinition of
f1(o) for KT,

a,(0) > 0

lim dz(c) =0
o0
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so that the pressure is continuous across ¢ = 0, while fp & f2
"change places". It is just this interchange that produces the
first order phase transition (discontinuity in the. first derivative
of jT(z)) associated with van der Waals' equation of.state.

When T>T,, we use (21) -~ (23) in (25) & (27), obtaining

d1(a) = d2(g) = 6shvsh3v - 6sh°yv - 3;; 3 (ch4v ~ 2ch2v) VI(34)
in cases A & By & in case C,

a,(c) = d,(c) = 2shvsh3v - 2sh’v = 3 + o(1) = o(1) = 3.... vI(35)
where we are using the fact that 050 (case C) implies that shv is o(1).

If we define the numbers + vo.to be the solutions of the gquation

ch4v = 2ch2v, & write

WwWro

Je= |

sh 3 v, | ‘ VI(?6)

then we can summarize the behaviour of the functions d1, d2 for
T)TC, by

<0, <|o|¢a
d1(a) = d2(a) =0, ]a] = J vI(37)
>0, J<]c|<w.

as we anticipated.

To study the situation near the points o= + iJ, we set

v = v+ A(a]<<) | vI(38)

.

which defines A, & we suppose, also, that |u|<<1, so that

u + O(u3)
1+ 0(u?) | 73(39)

sin u

COs u
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We wish to characterize the set of points {o} such that one of

the conditions

Rh - n] =0, Rl[h -h_]=0 ' VI(40)
holds, where h is give by (18) in cases A,B & iso0(1) in case C,

—

\
’

Wil

& the subscripts o, +, -, indicate that we take u equal toOQ, +
- %?F, respectively in (20)., We denote these sets of points by

C +, C= respectively. Ve note, first, that near the points _
o= + id, casé A applies to all of the roots of (8), so that, by

combining (18) & (20), we obtain h = 2 cos 4w - 4 cos 2 w + 2. VI(41).

On using (20), (38) & (39) in (41), we find thet, to lowest order

u, A, the points of C+ must satisfy the conditions,

n
1+

4 3u(ch2vo + ch4vo) VI(42)

12 A(sh 4 v, - sh 2 vo) + 4 3u(ch2vo + ch4vo) VI(43)

where (42) applies to the point ¢ = - iJ & (43) to the point

o = + idJ,.

If we define the function B(t) by

shdt - sh2t
3(ch4t + ohat) | vi(44)

B(t)=

where t is real, then we find that C+,comprizes a straight line

of gradient +B-1([v0|) through the point ¢ = + iJ & a straight

line of gradient - B™'(|v |) through the point = -iJ, while C_
consists of lines of gradients -B-1(]vo|) + 3-1(]v0|), respectively,
through the same pair of points. We note from (44) that B(t) is an
odd function of t & is positive when t> O, This_specification of
C+, C_ is valid only near the points o = + iJ, in aqcordance with

(38) & (39).
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To complete our description of the sets of points at which two
branches of J\ have LRP, we must consider RI1[h+-h_] for |u[<<1.

Using (41), we obtain
R1[ h+ -h ] = -2/3sin2u(2cos2uch4v + ch2\r) . | VI(45)

Since |u[<<1, by assumption, cos u is always positige, while

ch2v, ‘ch4v are intrinsically positive. Further, (21) gives

R1[o] = - % sin3uch3v. | VI(46)
Combining (45) & (46), we obtain

R h+ -h_] 20 <=> RL [o] %0 VI(47)
Vhen |u]<¢<1.

(In fact (47) holds for a larger renge of values of |u|, but
this is irrelevant in the present calculation, in which only

values of g with real part near G, are important).

Finally, by (6),c becomes imaginary with 2+ %l k2 when

T(Tc, so that the set of curves at whose points two branches

of n have 1RP for T(TC is obtained from the set for T)Tc by an
anticlockwise rdation through an angle % about ¢= 0, The
corresponding sets of curves in the complex z-plane are sketched
in Figure 1.

It only remains to treat the Case K = 0, which has already been
studied by Hemmer & Hauge (1964).

On multiplying (6) by g% k> and then setting K = 0, we obtain

N

z =2 o° 2 ot +o(e4) vI(48)

while (5) gives at once

7= 12 {eB + %) + o(e") vI(49)
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.in agreement with the expressions obtained by Hemmer & Hauge.

—— o ~ -1 . . .
(But note that our m is T, (n-nc), and Hemmer's is simply

n-nc).

To solve (48) for & we write
1

—

6 = (g )3 +a vI(50)

(which defines a). Substituting (50) into the right number of

~

(29), we obtain to lowest order in z:

2/3

CRS ‘ vI(51)

o =

Dl

oN

Using (50) & (51) in (49) we find that

4/3 ~4/3
)=53+3(52) " +olz ), vI(52)

N

S8

1A
EER
in agreement with our neglect of 0(64) in (48) & (49).

Let us write 2 zZ= relcp, where - n{ 9 { &

9 /3 .

-~ 4
Then the tree possible values of (2;/9) for given z are

~ 43 4/3
(% z) =T exp [i(%-¢+ Z%E )] vI(53)

for 3 = 0,1,2,

When z is positive, we must take ¢ = 0, When z approaches a
negative value through the lower half-plane, we take p=- m;
while, if =z approaches a negative wvalue through the upper half
plane,-we consider the limit process in which ¢ tends to + =n

through positive values. .
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If we number the branches of n corresponding to S = 0,1,2 as

I, II, III, respectively, we obtain the "lines of LRP" as

shown in Figure 1. It may be verified from (53) that the

tranches II, III are equal on the real, negative ; - axis,

so that there is no discontinuity in the pressure across this line,
Ve conclude that the LRP criterion is wvalid at T = TC. For the
physically meaningful values of % (% real) our resulis for the
pressure agree with those obtained by Hemmer & Hauge (1964)

using another criterion

~o 7

. /!\Imz

v

(@) (b) (c)
Figure 1. "Lines of L,R.P." in the complex Z - plane for (a)
2<T (b)) =T (c) T> T,
c c c : 5 5
The lines cut the real Z-axis at the point where z = 20(1-21 k).
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