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2. 

ABSTRACT  

A three-part study is made of the development of 
vorticity patterns in the flow of inviscid, stratified 
fluids. 

ccIrsis  The first parttotliallavtass of a study of aspects of 
the hydrodynamic stability of swirling flows. Features 
of the instability mechanisms of two dimensional flow 

of a homogeneous fluid, for which circulation can take 
on the role of a pseudo-stratifier, and of a non-gravitating 
fluid possessing a radial density stratification are 
highlighted by seeking analytical solutions to the normal 
mode stability problem for particular basic flow 
configurations. The effect of a radial gravity field 
is then incorporated into the analysis and an indication 
given of the limited physical significance of this case 
to small scale cloud patterns in the earth's equatorial 
atmosphere. A study is also made of the stability of a 
baroclinic equatorial atmosphere to perturbations that 
are axi-symmetric with respect to the earth's axis of 
rotation. 

Part II is devoted to a study of the possible effects 
of stirring processes in rotating fluids. A survey of 



existing theories on this topic is presented, and a 

distinction drawn between mechanical stirring of a homo-

geneous fluid by an external agency and thermal stirring 

of a stratified fluid due to a hydro-thermodynamic 

instability. A heuristic model is developed to determine 

the form of the Reynolds stress induced by mechanical 

stirring, whilst Ertel's 'potential vorticity' theorem 

is employed to elucidate the quintessential properties 

of thermal stirring. 

In the last part of the work numerical integrations 

are performed to trace the time development of the 

initial distribution of sets of point vortices. The 

investigation is undertaken to obtain an increased 

understanding of the advective development of strong 

swirling motion in the two dimensional flow of a 

homogeneous fluid. 
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8. 

CHAPTER 1 

Hydrodynamic stability of two dimensional 

swirling flows of an inviscid, homogeneous fluid  

I. Introduction and Outline 

This chapter is devoted to a study of some of the 

distinctive aspects of the hydrodynamic stability of 

two dimensional swirling flows of an inviscid, homo- 

geneous fluid confined between two concentric cylinders. 

In Section II the general stability criteria for 

such flows are re-examined and juxtaposed, for comparison 

purposes, with the stability criteria of plane shear 

flow bounded by two parallel plates. These general 

criteria were developed most notably by Rayleigh 

[(1880), (1916)], Fjortoft [1950], and Howard and Gupta 

[1962]. 

The criteria indicate that there exists an instability 

mechanism associated with an inflexion point in the 

angular velocity and velocity profiles respectively of 

the two types of flows, and that for the swirling flow 

there is also an instability mechanism related to the 

radial variation of angular momentum. The former mechanism 



may be regarded as the extension to continuous velocity 

profiles of the well known instability of a vortex sheet, 

whilst Rayleigh likened the latter mechanism to a density 

stratification in the presence of a radially acting 

gravity field. We also note in Section II that there is 

a dissident feature in the stability criteria of the two 

problems for two dimensional normal mode perturbations in 

the plane of the mean motion. 

To highlight this feature we seek in Section III an 

analytical solution to the stability problem for a parti- 

cular swirling flow distribution subject to two dimensional 

normal mode perturbations in the plane of the mean motion. 

The solution obtained is compared with the results of a 

relevant experimental study conducted by Hide and Titman [1967-1 _ 

In Section V a 'narrow gaps approximation is employed 

to enable us to derive analytical results for the instability 

of two particular swirling flow distributions to three 

dimensional perturbations. 

II. The Perturbation Differential Equations and the  

Stability Criteria  

Conducting our analysis in cylindrical polar 

coordinates (r,Q,z) for the swirling flow problem, and 
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in cartesian coordinates (x,y,z) for the plane flow 

problem, we assume basic states of the following form, 

(u,v,w) = (0,V(z),0) 	for the swirling flow 

and 	(u,v,w) = (V(z), 0,0) 	for the plane flow. 

(u,v,w) representing the velocities in the (r,G,z) 

and (x,y,z) directions for the respective flows. 

The appropriate equations of motion are linearised 

with respect to small perturbations of the above basic 

flows, and the perturbation quantities are assumed to take 

the normal mode form, 

(r) e1(Gt+m8+kz  for the swirling flow. 

ul

vt  

 

v 
w 

  

  

PIP 

and 

   

w 
(ty,) ei ( ct+f(x) for the plane flow. 

    

(Three dimensional perturbations are not considered for 

the plane flow since a result due to Squire may be invoked 

to prove that two dimensional disturbances of the above 
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form are the most unstable.) 

It proves possible to eliminate all dependent variables 

except one from both systems of linearised equations and 

the resulting differential equations governing the stability 

of the basic flows to small perturbations are given by, 

D[rf(P)] 	+ m(y-1)D(ff) 	k (y-2)(fV7A/ 	0 	(1) 

for the swirling flow 

where 90  = dr r,  9  D = 	, f - 	V 
dr 	 m2+k2r2  '  I = 

ta+mF) 

and / = ru . 

and the 'Rayleigh Stability Equation', 

R 
[D242 	 r ] 	X041)11,1z . 0 ( 2 ) 

for plane flow 

where _ d 
dz ' (a+Uf) 

The approate boundary conditions for these differential 

equations are 
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yS = 0 	at 	r = R1 , R2 	for equation (1) 

and 	0 	at 	z = z1' z2 	for equation (2) 

R1  and R2 being the radii of the cylinders bounding 

the flow, and z1 and z2 denote the location of the 

bounding plane in the plane flow problem. 

If we set k (the axial wave number) to zero in 

equation (1) the differential equation reduces to 

10,D-(114) 214 - (f) D914 = 0 	(3) 

where 
	

(4. + 

This equation resembles the Rayleigh stability equation, 

curvature being the only differentiating factor. This 

resemblance suggests that the previously mentioned 

stratifying effect of the circulation is associated with 

the toroidal component of the normal mode. With k = 0 

we may anticipate that the stability features of a 

swirling flow may well be analogous to those of a plane 

flow. 

This conjecture is supported by consideration of the 

general stability criteria for the two types of flow. 
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Necessary conditions for instability of swirling flow 

[see e.g. Howard and Gupta (t961)] are, 

(1) 	2k2(V 	1m2r[D()1]2  < 0 r 	somewhere in R1 <r<R2 

(ii) mD[f91] 	4k2(irrf) —1-2 	r -r (0  +4) 

must change sign within R1 <r<R2  

(iii) With k = 0 , minmq 
	

(m) < maxm (Y-r ) 

With m = 0 , 	or = 0  

	

< 0 	somewhere in 	<r <R2 

And ifai  . 	0 , there is an upper bound on the growth rate 

iv) G.2  < maximum 
,2 	v  

( 	2 	2) [1-47m2[D(t)]
2 	

21e-
„  
(-1,-)7] 

m -Fk r 

For plane flow the available criteria governing the 

nature of the disturbed flow are, 

(a) Squire's Theorem. The most unstable disturbances 

are those with zero wave—number in the cross flow 

direction. 
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and the necessary conditions for instability, 

(b) (*) must change sign within z1 <z<z2  

(c) D2U (U-Us) < 0 somewhere in 
(Z

1 
<Z<Z2) 9 

 where 

Us is the flow velocity at a point where (*) 

is zero. 

If U is a monotonic function and (D2U) is zero only 

once in (z1 <z<z2) then condition (c) may be rewritten 

as 

(*) (U-Us) < 0 everywhere within the flow field (4) 

Thus we may anticipate an unstable flow only if there 

exists a relative maximum of vorticity within the flow 

field. 

We now make a brief comparison of these two sets of 

stability criteria. 

It is not possible to construct an analogue of 

Squire's Theorem for swirling flows, but if (V91) is 

always positive in (R1 <r<R2) then condition (i) suggests 

that three dimensional disturbances may be more stable 

than those with k set to zero, whilst (iv) shows that 

decreasing k increases the upper bound on the growth 

rate. 



and integrate from Ri  to R2 ° 

R2 	R2 

E
rf IDySi 2  dr + 	f 

R1 	R1 

my-  D(d) 	2k2y-2(f4))] I/I 2  dr = 0 

1 5 . 

With k = 0 , condition (ii) states that the occurrence 

of an extremal of vorticity is a necessary condition for 

instability. We note that the stratifying role of the 

circulation plays no part in this criterion, which is 

analogous to condition (b) for plane flow. 

If we now seek the analogue of condition (c) for 

swirling flows we see that there is an essential difference 

in the analogue relation. The required condition was 

originally derived by Fjortoft [1950], using a 

variational principle, and has thereafter lain fallow. 

It may be derived from (1) as follows:- 

Uultiply (1) by 	the complex conjugate of yS 

Considering cylindrical disturbances (i.e. k = 0), the 

real and imaginary parts of this equation yield, 

R2 

S 	114 -2  D(F)1 bq 2  dr = 0 	(5) 
R1 
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and 

R2 

S 	Yi -2( 	m1)()3 in 2dr - f ~2 r ID/f 2 + Le 2.1 dr 

1 R1 m 

(6) 

Thereforeif. al /0 then 

R2 

m Lar m(r)I] S 111-2(EY) i/i 2 dr = 0 
	

(7) 
R1 

where I is a point within the flow field where 

0 . 

Subtracting (6) from (7) we obtain 

rt 2r 
-2(D) 	 jdr = - 	t 1DR 2 + P41 2.1 dr 

R1 

	

< 0 	(8) 

The analogue of condition (c) follows immediately. In 

this case, if(F) is a monotonic function of r and 

De2) vanishes only once in (R1 <r<R2) , the necessary 

condition for instability is that, 
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I 1Y: *I] (DCP < 0 	everywhere in (111 <r<R2) (9) 

A novel feature of this condition compared to that 

expressed by equation (4) is that it may be satisfied 

for a relative maximum or minimum of vorticity. This 

point is illustrated by the velocity/vorticity profiles 

of Figures 1. 

These figures also demonstrate that a velocity 

profile resembling a slightly diffused vortex sheet can 

exist in curved flow for both a relative maximum and 

minimum of vorticity. The discrepancy in the conclusions 

drawn from equations (4) and (9) is merely indicative 

of this fact. 

The general stability criteria quoted above do not 

yield any precise information of the instability, if any, 

of the velocity profiles shown in Figs. (1), when they 

are subjected to a small diSturbance. It is conceivable 

that the character of the instability of these flows 

could be markedly different for three dimensional 

perturbations since the toroidal component of the 

disturbance would activate the stratifying effect of the 

circulation and the velocity profile of Fig. 1(b) has a 

larger 'stable stratification'. 
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One significant result regarding the behaviour 

of profiles of these types to cylindrical perturbations 

emerges from an examination of the effect of the 

addition, or subtraction of a purely solid body rotation 

(I1) to the flow. The stability of differential equation 

(3) retains the same form when derived for a system of 

axes rotating about the z axis with a uniform angular 

velocity (n) , with (-.V  ) now denoting the angular 

velocity relative to the rotating frame of reference. 

Hence the addition of a purely solid body rotation to 

the flow leaves the stability properties unchanged. 

The problem considered is the next Section emphasizes 

this point and also serves to illustrate the effect of 

curvature on the instability of a flow to cylindrical 

perturbations. 

III. The Stability of a Partic 

distribution to cylindrical disturbances 

Simple velocity profiles have to be chosen if we 

are seeking analytical solutions of equation (3). We 

will consider the flow inside a cylinder of unit radius, 

with the flow coming of three distinct regions, inner 

and outer regions of solid body rotation separated by 
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an intermediate shear layer giving an overall, piecewise 

continuous velocity profile. 

Therefore our vorticity field takes the form, 

v, 	= 1 	in 0<r<a 

	

P = (positive constant) in b<r<1 	(10(a)) 

and hence 

f II = (b2-a2)-1(Pb2-a2) = Q in a<r<b 

The corresponding velocity distribution is 

1 = 2r  

1 Pr _ 
VIII - 2 

and 

(10(b)) 

Vt± = 1(b2- 	- a2 )-1[(Pb2 - 2 \- + 

These velocity and vorticity profiles are illustrated 

in Fig. (2). 

Note that if (i) 	1 > P then Q < P 

(ii) P > 1 then Q > P 
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Thus we have a relative minimum and a relative maximum 

of vorticity within the flow field in cases (i) and (ii) 

respectively, provided Q is a positive constant. 

From the general stability criteria we know that the 

flow is stable to axi-symmetric perturbations if 

Pb2>a2 . 

For cylindrical disturbances (i.e. k = 0) in a 

region of constant vorticity the stability differential 

equation reduces to, 

D 2/ + 	- p2 ,s  0 

This equation must be satisfied in each of the three 

regions. 

The required boundary conditions stipulate that u 

is finite at r = 0 , and zero at r = I , and that the 

interfacial pressures and radial displacements must be 

continuous. 

i.e. 

and  

0 	at r = 01 I 

Ai continuous at r = al b 

(a) - 

(b) (12) 

(ry(13,,ef) (m Pi 	continuous at r = a b 	(c) 

The expression for the perturbation pressure (r) in 
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(12c), was derived from the equations of motion 

linearised with respect to a small perturbation. 

For m / 0 , the solution of (11) is given by 

= Arm  + Br -m  

Therefore the perturbation functions 	in the three 

regions may be written, using (12(a)), as, 

/I = Al rm  

/II = A2  rm  + B2  r-m  

/III = A2(rm - r-m) 

Conditions (12(b)) and (12(c)) applied at r = a give, 

A2  a2m(1-Q) + B2[-(2c+m) + (1-Q)] = 0 

and at r = b they give, 

A2[c-1(2a+mP) + bm(Q-P)] + B2[c-1(2c+mP) + b-m(Q-P)1= 0 

where c = (bm-b-m) 
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The consistency condition for these two linear equations 

yields a quadratic in u , whose solution may be written 

after considerable manipulation in the form, 

40 = 	(a2M...1 )b2 	na(b2_a2)(1+p)(1....p)-1 

( (a2m-,~ m(b2.-a2) 	(b2m....1)a212 

-4a2m(abc) 2)1/2] 
	

(13) 

The flow will be unstable if G is complex, 

i.e. if [4a2m(abc) 2 _ ir(a2m_i)b2 	m(32-a2) 	(102m...1)a212]>0 

(14) 

This condition is independent of whether 1 	P ; that 

is, independent of whether the extremal of vorticity within 

the flow is a relative maximum or minimum. Thus the 

piecewise continuous, velocity profile considered here 

exhibits the instability feature deduced from expression 

(9) for continuous velocity profiles. Furthermore we 

deduce from (13) and (14) that the instability (if it 

exists) of the two flows with P = (1-1-a) are identical 

except for a numerical difference in the values of the 
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cyclic frequency of the unstable perturbations. 

A consideration of the results one would expect if 

region T was assumed stationary, together with the 

comments that were made regarding the effect of an 

additional, purely solid body rotation of the whole 

system, would lend support to the above result. 

The cyclic frequency (-ar) and the growth rate 

(01) of an unstable perturbation are given by the 

expressions, 

-40 	= ± a (b2-a2)-1 [ (a2m... 0 1324.m(32_a2)(24.a)(17,a)-1_032m..1)a2j 
r 

(1 5 ) 

and 

4ai 	a  (b2...a2)-1 [4a2m(abc)2 _ Ac(a2m...1)132+m(132-a2)  

/- 44/32m_na212 ]1 ie (16) 

Vie can immediately deduce from (16) the following stability 

features dependent upon the azimuthal wave no. (m), 

(i) m = 1 neutral for all 0<a<1 	a<b 

(ii) m > 1 neutral for a = b , and a, b 

(iii) m> 1 stable for a= 0 	b 4  0 

(iv) m>1 stable for b=1 , a/1 
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The second deduction may seem incongruous in view of the 

expected instability of a vortex sheet. However the flow 

model under investigation is such that, although in the 

limit of (b-a) tending to zero the velocity configuration 

tends to vortex sheet (if P / 1), yet the stipulation 

that a = b forces the further condition (P = 1) on 

the model. Thus when a = b the whole flow field rotates 

with the same angular velocity. These deductions also 

indicate the singular behaviour of the eccentric mode 

associated with the azimuthal wave number (m = 1) . 

Neutral curves must satisfy the equation 

4a2m(abc)2 _ f(a2m_i)b2 	m(b2_a2) 	(n2m_1)a2r. 0 	(17)  

Neutral curves were computed from (17) in terms of the 

parameters 'a' and 'b' for fixed 'm'. The 

calculation was carried out for a range of values (a,b) 

with m taking integral values from 2 to 10. A selection 

of the results are plotted on the (b,a) plane in Figure 

(3). 

The flow configuration is unstable within the domain 

circumscribed by the line (a = b) , and the neutral curve 

for m = 2 . As (b-a) is decreased from its value 
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on the (m = 2) curve successively higher values of the 

azimuthal wave number (m) become unstable. This is 

consistent with the expectation that the vortex sheet 

created as (b-a) tends to zero would be unstable for 

all wave numbers (excluding m = 1) . 

Equation (16) may now be used to compute the values 

of the growth rate at unstable stations in the (b,a) 

plane. In Figures (4) values of (4ai(1-P)-1] 	are 

plotted against 'm' for various values of (b-a) and 

fixed 'a' . These diagrams indicate that the wave 

number and magnitude of the growth rate of the most 

unstable mode increase as the velocity profile tends to 

a vortex sheet. 

Another interesting feature of the neutral curve 

diagram is the stabilising effect of large curvature. 

IV. Comparison of Theory with Experimental Observations  

Instability of a 'quasi-cylindrical' form was 

observed by Hide and Titman [1967] in their experimental 

study of shear layers in a rotating fluid. Shear layers 

with a basic, swirl velocity profile resembling that 

considered in Section III were set up in their experiments, 
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and shown to be stable or unstable depending on the 

values of certain flow parameters. Hide and Titman were 

able to construct a 'marginal' stability relation between 

these parameters. 

Another salient feature of their results was that 

perturbed flows with a form attributable to wave-numbers 

m = 2 to 8 were observed when the basic flow had a 

relative minimum of vorticity, whilst only an eccentric 

perturbed mode appeared when the extremum was a maximum. 

Their results also indicate that for the range of flow 

parameters used in their experiments the azimuthal wave-

number observed was almost independent of the width of 

the shear layer, but directly related to the difference 

in the angular velocity of rotation within the layer..  

Hide and Titman's experiments were carried out with 

the shear layers situated at radii 	0.2 < (a,13) < 0.55 9 

where 'a' and tbt are taken to be defined as in 

Section III. The results of Section III indicate that 

the basic flow is unstable in most of the region in the 

(b,a) plane delineated by the above values, with the 
-41 	clefs-iamb-  kt eon 

perturbation wave numbers 	the width 

of the shear layer (b-a) , and totally independent of 

the difference in the angular velocity of rotation within 

the shear layer. 
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A theoretical analysis attempting to explain the 

stability of the observed flow for a certain range of 

flow parameters within the above range of (b,a) has 

recently been proposed by Busse [1968]. His analysis is 

based on the assumption that the so--called Proudman-Taylor 

constraint of the rotation ensures that the zero-order 

perturbation flow has no axial (z) dependence in regions 

removed from solid boundaries perpendicular to the z 

direction. By imposing an Ekman suction relation on the 

interior flow at these boundaries he is able to partially 

incorporate the effect of viscous dissipation, and thus 

account for the marginal stability relation deduced from 

experiment. 

However his analysis, which is an extension of the 

problem considered in Section III is also unable to 

account for the stability properties of the flow that 

are dependent upon the nature of the vorticity extremum 

within the flow. It has previously been mentioned that 

three dimensional perturbations might account for this 

differential behaviour. An examination of the results 

of Section III in conjunction with the first necessary 

condition for instability quoted in Section II lends 

credence to this conjecture. 
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V. Further Consideration of Three Dimensional Perturbations  

A brief attempt is made in this section to examine 

the stability of some two dimensional, swirling flows 

to three dimensional perturbations. A 'narrow gap' 

approximation is employed to simplify the stability 

differential equation (1), but only limited success is 

obtained from seeking analytical solutions of the 

resulting equation. 

To justify the adoption of a 'narrow gap' 

approximation we consider the swirling flow to be 

confined between two concentric cylinders radii, R1  

and R2  , such that, 

(R2-R1) << 4(R1+R2) 	(18) 

This stipulation enables us to use cartesian coordinates 

(x,y,z) , and by working in a frame of reference rotating 

with uniform angular velocity (1) we are able to retain 

a curvature effect in a modified form. 

Our cartesian coordinates (x,Y,Z) are defined in 

relation to the original cylindrical polars (rlOgr) as 

follows, 



x = r R where R = (R1  +R2  ) 2  

29. 

y = RO 
	

(19) 
z = z 

The governing equations in the new rotating frame of 

reference are 

vt  + (./.17)x + 2 (k,v) = Op) +(Rn2)i (a) (20) 

V .v = 0 

where (1,1,i) are unit vectors in the (x,y,z) directions 

Equation 20(a) is a vector form of the momentum equations 

in the (x,y,z) directions, and equation 20(b) is the 

mass continuity relation for an incompressible fluid. 

For a basic flow state (0,V(x),0) the analogue of 

the stability differential equation (1), obtained in 

the usual manner from equations (20), is 

L2(720 - (v..)L(uy) + 24( 2A+v.) ZZ
= o 	(21) 

where L = 8t+ Vay  

ri  2
= 
 a 2 .4.. 	a 2 
17 ay  7 2 az 

and 
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Considering normal mode perturbations of the form, 

x) ei(at+ny+kz) u = X( 	 (22) 

equation (21) may be re,:xitten as follows 

Xxx  -XE 
(1124.k2) 	ny-1(v  ) - k2(y-2. )211(2A*Vx)] = 0 

(23) 

The instability mechanisms attributable to the distri-

bution of the vorticity gradient and the circulation, 

which were salient features associated with equation (1::  

are also intrinsic in equation (23). 

The stability of two types of flow are obtained 

below from an examination of equation (23), whereas the 

original equation (1) would not have been so amenable 

to analytical treatment. 

Type 1: Three Dimensional Perturbations of a Uniform 

Shear Flow. (v = 0) 

Introducing a new independent variable defined by 

= G(p+V) 
	

where G2 = (vx)-2(n2.1.k2 

and 	p = 
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then equation (23) becomes 

X„ -X[1 i2] 12 
	 (24) 

where ' 
2a(2.+Arx) (11)  

X 2 (V)2  

This equation, whose solution may be written in terms 

of Modified Bessel functions, has to be solved subject 

to inviscid boundary conditions imposed at x = ± h . 

i.e. X = 0 	at 	I = 
	1-r-] 	(25) 

	

and at 	= a[l  h+]  

where a = h(n2+k2)1/2  

In deriving these boundary conditions we have assumed 

V = 0 (relative to the rotating system) at x = 0 . 

The solu'ton of an equation with the form of (24), 

subject to boundary conditions (25) has been extensively 

analysed by Kuo [1963]. His results indicate that the 

flow is mstable for 3 < Y(a) , and r(a) is shown to 

have the following behaviour: ? = -.75 for a = 0 , 
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decreasing to (-2) as a increases to (1.2), and 

thereafter ir remains constant for further increase of 

a . Kuo also indicates that the most preferred mode 

corresponds to the largest value of (-V) . 

Thus we may conclude that inviscid considerations 

of cylindrical Couette flow show that three dimensional 

perturbations may be unstable, but the largest growth 

rates are always associated with the two dimensional 

axi-symmetric perturbations. 

Type 2: Three Dimensional. Perturbations of a Vortex Sheet. 

It would be interesting to obtain an understanding 

of the interplay of the destabilizing effect of a vorticity 

extremum of a basic, swirling flow and the dOtabilizing 

effect of the circulation. Both these mechanisms are 

involved when the flow is subjected to three dimensional 

perturbations. 

Solutions of equation (23) can be obtained for some 

'three regioned', piecewise continuous velocity profiles, 

with the middle region forming a vorticity extremum. 

However, the consistency conditions obtained for the 

perturbed flow are heavily weighted with Bessel functions, 

and extensive computations would be required to ascertain 

the stability features of the solution. 
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We resort to solving the simplest possible problem 

involving both a vorticity extremum and circulation 

effects, namely we consider the problem of a vortex sheet. 

Consider the following basic velocity profile, 

Region I : 	V = Vo 
	for 0<x<d,. 

Region II : 	V = 0 
	

for -d2  <x<0 . 

In both regions equation (23) reduces to 

X„ 	X[(n2+k2) - (Y-1x112 k)2] = 0 
	

(26) 

with y = o in Region I 

and 	y = a = (0110.0) in Region II 

The usual inviscid boundary conditions requiring the 

vanishing of normal velocity at a rigid wall and 

continuity of radial displacement and pressure at a 

fluid interface may be written as follows for this 

problem 

X = 0 	at 	x = -d2' 

and (1) and [10(x  (nV))0 continuous at x = 0 
( 27) 
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The consistency condition obtained by solving the 

appropriate form of equation (26) in the two regions, 

subject to the boundary conditions (27), has the form 

a2 f2 tanh (f1d1) + a f1 tanh (f2 d2) = 0 
	

(28) 

where f1  Lk 2 =r,n2+k2) 	(V-)21/k] 

and 
	2 =Rn2.44c2) 	

(0-1  Mk] 

Rather than treat equation (28) directly we confine our 

attention to an examination of the stability of the vortex 

sheet in the limit of d1 and d2 tending to infinity. 

This stipulation gives a simplified consistency equation, 

a2f2 + 12 f1 =0 
	

(29) 

Squaring equation (29) a bi-quadratic for p (=a/n) is 

obtained which may be re-arranged in the following form, 

q2  + n(2v 2...bi  .r% 	lv 
`Y  
2( 	= 0 ,d.% 	2 
v
o .b1   (30) 

where 44? 	2 
g 	(n2+k2)  (10 

and 	q = p(p4iD 

2 

2 
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Solving (30) for q , and then p we obtain the 

following expression, 

2p = -Vo  + r (2g- 3V02) + (2VO4-2002+g2)/2j (31) 

Examination of (31) reveals that the vortex sheet is 

always unstable (i.e. p is complex) for n 0 , 

irrespective of the magnitude of the basic rotation 

(11) of the system. Thus the destabilizing effect of 

the vortex sheet's vorticity oan always overcome the 

possible stabilizing effect of the circulation in the 

particular problem considered here. 
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CHAPTER 2 

Hydrodynamic Stability of Two Dimensional Swirlinf 

Plow with a Transverse Density Stratification 

I. Introduction and Summary 

It is known from the work of Miles [1961] and 

Howard and Gupta [1963] that inertial instability of 

a parallel flow due to an extremum of vorticity can be 

suppressed for a range of velocity profiles by suitable 

stratifications, viz. density in the presence of a 

transverse gravity field in the case of plane shear flow, 

and the circulation of a swirl velocity in the case of 

axi-symmetric perturbations of an axial flow between 

concentric cylinders. 

Another example of inertial instability, that of 

two dimensional swirling flow to cylindrical perturbations 

when there is an extremum of vorticity within the flow 

field, was the subject of investigation in the previous 

chapter. The introduction of a radially acting gravity 

field and a density stratification of the fluid to such 

a flow would certainly lead to results similar to those 
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for plane shear flow in a gravity field, provided only 

cylindrical perturbations were considered. 

In the next section the general stability criteria 

for two dimensional, inviscid, swirling flows between 

two concentric cylinders are extended to include the 

effect of a radial density stratification. This 

stratification is introduced by considering the fluid to 

be heterogeneous but non—gravitating. It is shown that 

a radial increase of density coupled with a suitable 

circulation can itself produce a stabilizing effect, 

even for cylindrical perturbations. This effect is 

again able to suppress inertial instability of the 

swirl velocity for a range of velocity profiles and 

density stratification. Conversely a radial decrease 

of density obviously introduces another mechanism for 

centrifugal instability. The general stability criteria 

obtained are derived subject to a Boussinesq type assumption 

In Section III it is shown that at least for certain 

flow configurations and select perturbation modes the 

necessary conditions for instability embodied in these 

general criteria are also sufficient conditions for 

instability. 

The Boussinesq type assumption is not invoked in 
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Section IV, and it proves possible to obtain stability 

criteria for the flows when the density is proportional 

to a power of the radial distance. 

II. Derivation of the Stability Differential Equation, 

and General Stability Criteria  

The pertinent equations for an incompressible 

heterogeneous, inviscid, non—gravitating fluid in 

cylindrical polar coordinates (r,G,z) are the three 

momentum equations, a mass continuity relation denoting 

the incompressibility of the fluid, and a density advection 

equation stating that the density is merely advected with 

the fluid. The latter relation takes the mathematical 

form, 

Pt ± uPr 'iv 	wP  z 	° 
	

(1) 

where (u,v,w) are the velocities in the (r,G,z) 

directions respectively and p is the density. 

We have as our basic state of motion an azimuthal 

flow v = (01 V(r),0) and a radial variation of density 

p = 777(r) . Linearising the governing equations with 
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respect to small perturbations (v',p',p') from the 

basic state and allowing the perturbation variables to 

take the normal mode form 

ui = u(r) ei(ot+mQ+kz) etc. 

we can eliminate all dependent variables except flu' from 

the resulting set of equations. Then the stability e 

equation takes the form, 

D[rf(D0)] + [rfp(D0)] - 	+ my-1 	D(75  

y-2f 2k2(Vf) + f3(Yr.-)2) ] = 0 (2) 

where p = 1 (pr) , and the other symbols retain the 
p 

meaning attached to them in Chapter 1. 

The boundary conditions are again 

at 	r = 0 , and/or at the bounding cylinder(s) 

(3) 

Most of the work of this chapter will be subject to an 

assumption akin to the Boussinesq assumption, which is 
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frequently employed in gravitational convective problems. 

We will assume that the variation in p is small compared 

to p itself so that the effect of the variation of 

density on the inertia may be neglected except for the 

centrifugal effect it induces in the radial momentum 

equation. Subject to this assumption equation (3) 

simplifies to, 

D[rf(D0)] 	+ my-1D(f) - y-2{ 21J(M) + p(14)2)] = 0 (4) 

We will refer to (4) as the stability equation for 

a quasi-Boussinesq fluid. This differential equation is 

the same as equation (1.1) except for the additional term 

involving p(Z)2  . An important feature of this .term, 

compared with the other term with (y-2) as a factor is 

that it is independent of the wavenumbers 'm,  and 'k'. 

The similarity of these equations implies that we 

need only extend the method employed by Howard and Gupta 

[1963] to derive the general stability criteria. Utilizing 

their technique the following expressions are easily 

obtained, 

Hf 

of 
 R1 

[r3flo  2 + re-D(rf))/02  + { 2k2(y-cft) + p(3r-r) 2  

*i rm2(D(.117))23,14 -2 /412]dr  .., 0  (5) 
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Gi 
	0 

2 Cm D(fr 	2f2k2(y9'f) + 3(;)23.  (°r+m11.1) IYI -2] 
R1 	 tyl-2442 dr = 0 	(6) 

R2 i(y),2[r3i. 1 412 	ro....D(rf))/02]dr 	my 2()D(f) 442dr 
R1  

J 

2 
[2k2(Iff) + p(r)21/0 dr 	(7) 

R1  

From (5) we deduce that, 

a necessary condition for instability is that, 

[2k2(Vgf) + R(r)2 
	frm2(D(r

))2.1 < 0  somewhere in 

	

(Ri <r<R2) 	(8) 

and there is an upper bound on the growth rate given by, 

2 Mr 	 m i 2 V Min C'1-D(rf)] < llax E-A" m f(D(-))2  - 1P(Y)2 2k2(V9T) ( 1 	 r 	r r 	r - • `) 

Again from (6) we may deduce that, 

a necessary condition for instability is that 



EmD(f,SP) 	2f2k2(yYT) P(;)21 (ar+m;) IY/ -2] 

42. 

must disappear somewhere in (RI <R<R2) (10) 

and further if D(fF) / 0 in (yr<R2) then 

2 	2 ci  < pa s 2maxml[mp( G3) ]-I  /2.k2(ircif) +P(;)2.1(ar+4)] 	(11) 

An examination of (7) yields the following relation 

governing the frequency of a'. perturbation with either m 

or k set to zero. 

< (-40
r 
 ) < n 
	

(12) 

where n = Maxm(mV/r) 

and 	= Minm(mY/r) 

Finally if p and (V.?) are greater than, or equal to, 

zero in (R1 <r‹R2) then equation (17) is of the form for 

which the 'Semi-Circle Theorem' of Howard [1961] can be 

shown to be valid if m = 0 . For this situation we 

can assert that a = (ar  +ia.) is such that, 

Ear + 2(ii_11)]2 	ci2 < 	(k_n)2 	(13) 
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i.e. (-c) the complex frequency must lie inside a semi-

circle in the upper half plane with the circle's diameter 

given by (n-f). 
For cylindrical perturbations equation (8) gives a 

Richardson type criterion for flow stability. 

R. =r Dp  (-11-) > 1/4  everywhere ensures stability 	(14) 

with p = 	. 
Swirl velocity is thus seen to have a dual role even 

for cylindrical perturbations in this instance. It is 

the possible seat of inertial instability for an extremum 

of vorticity within the flow field, whilst coupled with 

the density stratification it can provide a possible 

stabilizing effect on such an instability for a range 

of velocity profiles. We note also that in this case 

the addition of a purely solid body rotation in the 

presence of a radial density stratification could certainly 

alter the stability features of some flows. 

Two interesting special cases of (8) are, 

(i) For solid body rotation the condition is, 

f 4k2(rf) + p] < 0 	somewhere in (Ri <r<R2) (15) 
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(ii) For axi-symmetric perturbations the condition may 

be written, 

DE-5(rV)21 < 0 	somewhere in (111<r<R2) 	(16) 

Condition (15) suggests that for this case cylindrical 

perturbations may be the most unstable if p is negative, 

whilst (16) expresses the previously known modifying 

effect of density variation on centrifugal instability. 

III. Instability of a quasi-Boussinesq fluid for certain 

flow configurations 

To show that the necessary condition for instability 

expressed by (8) for a quasi-Boussinesq fluid is also a 

sufficient condition for at least some velocity and 

density configurations we consider two special cases. 

Case 1: 	Cylindrical perturbations of a basic state 

given by 

(r) = n ( constant) 

p = Or) = cr and 	is a constant. 
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For a basic state of this form equation (4) becomes 

D
20 
	ipm m20[ on?y-2-.1.1  = 0 

r 
r 	2' (17) 

This equation has to be solved subject to the boundary 

conditions given in (3). The two boundary conditions 

can not be satisfied simultaneously if (c.a2y-2) is 

negative, i.e. if the solution of (17) is written in 

terms of modified Bessel Functions. Hence the general 

solution of (17) is given by 

0 = A Jm(pr) 	B Yin(Pr) 
	

( 1 8 ) 

where ,2 .11A2 c2(y)-2],  and Jm and ; are Bessel 

Functions of the first and second kind of order m . 

Substituting the boundary conditions for the flow 

inside a cylinder radius 'a' into equation (18) we have 

that 

Jm(pa) = 0 

and therefore 2 -2 2 2 m c = m'n (19) 

where (am)n is the nth root of Jm(pr) 
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With (a112y-2. ) positive it follows that, 

(a) For c positive, y2  is positive and real and 

hence the flow is stable. 

(b) For c negative, y2 is negative and real. 

Hence (-or) = mA 
(20) 

	

andGi . 	0 	i.e. the flow is unstable 

Thus for a radial decrease of density the flow is unstable 

to cylindrical perturbations. Furthermore we can deduce 

from (19) and (20) that for specified values of 11 , a 

and c (negative) that 

	

14-a211 (6i) rt 2 = 	cj 	maxm 	 
(am)n 

Thus the largest growth rates are associated with the 

largest azimuthal wavenumbers. 

A similar result may be derived for the flow between 

concentric cylinders. 

Case 2: Aid -symmetric perturbations of the flow between 

two concentric cylinders when the basic state has the 

following special form. 

= 
	= constant) 

— c p = 7  (p12$1.- with c taken to be a constant. 

aN, 
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In this case keeping u = (0/r) as the dependent variable 

the form of the differential equation (4) becomes 

2 
D 0 	(21) = 2u + u 1 nn 	[k2f () ( 4+c) - 	- 1  ]  

In view of the nature of the boundary conditions (3) we 

write the general solution of (21) in the form, 

u = AJ1 (pr) + BY1 (pr) 

2 
V - 

_ k2 1(.1.11'7) (4+c)-1] 

It follows that the flow is stable or unstable depending 

on whether 

(4+c) >< o 

If the flow is unstable then G
r 

= 0 and we can deduce 

also that the largest growth rates occur as the axial 

wavenumber (A) tends to infinity. 

Both these examples show that the condition given in 

(15) is a necessary and sufficient condition for instability 

of these two particular flows. 

and take to be positive. 
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IV. Some results for the Instability of a non-Boussinesq Fluid 

The quasi-Boussinesq restrction was originally invoked 

to reduce the complexity of the stability differential 

equation given by (2). In this section we derive some 

stability criteria for cylindrical and axi-symmetric 

perturbations of a non-Boussinesq fluid when the density 

stratification factor (t3) is inversely proportional to 

radial distance. 

Case 1. Two dimensional cylindrical perturbations of the 

flow between concentric cylinders for a basic swirl 

velocity Y(r) and a density stratification given by 

5= Po 
r  (n-1 ) 

so that 	p = .1(n-1) 

If we apply the following transformation of variables to 

the form of (2) appropriate to this problem, 

24-1 

r = ex 

Then the stability differential equation reduces to, 
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where F = m 2  ± my-  I 	+ .519(n- )J 

-m 2y  -2(k/ n- 	
2

1)(2) I + ( n-1 ) 2  

whilst the boundary conditions become 

p = 0 at x = loge  Ri  

and at x = loge  R2  

Applying the integral method due to Howard, which was also 

used in Section II of this chapter, we obtain the following 

necessary condition for instability, 

2 V 	1 ,-,V -N2 
[ P( ) 	qr 	< 0 somewhere in the field of flow 

This relation is of the same form as that given by (8) 

for cylindrical perturbations of a quasi-Boussinesq fluid. 

Case 2. Axi-symmetric perturbations of the same basic 

state. Proceeding in the same manner as for Case but 

keeping u = (0/r) as the dependent variable, we arrive 

at the following necessary condition for instability, 
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[21; op + 142] < 0 somewhere in the field 
of flow 	(22) 

Again this relation has the same form as that given by 

(8) for axi-symmetric perturbations of a quasi-Boussinesq 

fluid. 

We can further note that for this case when the 

fluid is in solid body rotation the stability differential 

eqaution can be solved immediately. The operative form 

of equation (2) is 

D2u + rDu + u[k2( (a)2(n+3)-- 	1-(2-n)] = 0 	(23) 
r2 

With a change of dependent variable to 	, where 

u r-1/11---1) 

equation (23) becomes a Bessel equation, and as for 

equation (21) it is possible to infer that the flow is 

unstable if 

(n+3) < 0 

Thus condition (22) is also a sufficient condition for 

instability of this particular basic state. 
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CHAPTER 3 

Centrifugal Effects in Stratified, gravitating  
swirling flows.  

1. 	Introduction 

In the previous chapter the stability of a non-

gravitating, swirling fluid possessing a radial density 

stratification was examined for small perturbations of 

the basic flow. 	Particular attention was paid to the 

centrifugal effects associated with the density strati-

fication. 

To investigate the role of the centrifugal terms in 

the inviscid limit of a real fluid we must relax the non-

gravitating condition. However radial stratification in 

the presence of a non-radial gravity field requires a 

concomitant shear in the swirl velocity, and this 

complicates the stability analysis of the linearised 

perturbation equations. 

In this chapter we study the following two problems, 

the effect of the introduction of a radial gravity field 

and secondly the stability of axi-symmetric perturbations 

of a swirling fluid with a radial and axial density 
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stratification in the presence of an axial gravity field. 

The effect of a radial gravity field is easily 

incorporated within the framework of the analysis of 

the previous section. 	An indication is given of the 

limited physical significance of this particular case 

to certain small scale motions of the earth's 

equatorial atmosphere. 

In the second problem the central issue is the 

relative importance of the gravity field and the 

centrifugal terms as possible instigators of convective 

and centrifuging motions respectively. 	The theory is 

developed only for axi-symmetric perturbations, whereas 

the insight gained from the results of the previous 

chapter suggest that it would be judicious to consider 

axially symmetric motions. 

II. The effect of a radial gravity field on Centrifugal 

Instability 

Only a slight modification of the analysis of the 

previous chapter is necessitated by the introduction of 

a radially inward acting (say) gravity field g = g(r) . 

In this case the radial equation of motion is given by 



2 Y- = 	- g(r) ut  + uu + u + wuz r 	r 	P 	ij  r  

The resulting differential equation determining the 

stability of the basic state to small normal mode 

perturbations becomes [c.f. II(2)], 

D[rfD/] + (rfP)D/-  PS* + m(Y0-1  D(Tfe) Y-2(2k2(VeT) 

p (;)2 	 ))] = 0 	(2) 

This equation is again subject to the same boundary 

conditions and obviously has stability criteria allied 

to those derived in the previous chapter. In particular 

the necessary condition for instability corresponding to 

II (8) is, 

[2k2(VY'f) + 	2:1  rfm ( (;))21 < 0 (3) 

somewhere in the field of flow 

Thus for small perturbations the role of the density 

stratification is seen to be dependent upon the relative 

magnitude of the angular velocity of the swirling flow 

and the strength of the gravity field. For a velocity 

53. 

(1) 
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profile with both D(.-V  ) and (V1) positive, and a 

potentially unstable density distribution, i.e. the 

second term in (3) taken to be negative, condition 

(3) again suggests that three dimensional disturbances 

(k/O) are more stable than purely cylindrical 

disturbances (k=0) . 

To set the problem in a geophysical context we 

consider the motion relative to a system of axes rotating 

with uniform angular velocity (R) , and we again employ 

the narrow gap approximation first introduced in the last 

section of Chapter I. 

We assume a basic state with the velocity in the 

cartesian coordinates (x,y,z) defined as before, given 

by 

v = CO, V(x), 0) 

and a density distribution 	P = i5(x) • 

We further assume Vx and 	= (1  Tx) to be constant 

for mathematical convenience and to preclude instability 

associated with vorticity extremae. 

The stability equation derived from the linearised 

system of equations is, 
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L2[9121u + uZZ] 	2/2(2114,V)uzz 	(g3j3) 2(u) 

+ p[42(ux) 	(2A+Vx)L(u7)3 = 0 	(4) 

where u is the radial perturbation velocity 

2 	2 
V h = 	

a2 

ax-  ay- 

4 = 	v147 

and 	g2 	(g -  112 — 21Ar) 

In subsequent work we will assume gi  g = constant. 

Considering normal mode perturbations of the form 

u = U(x) ei(at+ny+kz)  

equation (3) becomes, 

p 2 4. (n24., 2, ) + Y ( 2 v x  ) pn 	 r, { 2J k 2  ( 2A+Vx) 

p(n2+  (5) 
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1 inpx 
where 9,./ = (e I 	) u 

and 	y 	+ nV) 

Vanishing of the normal velocity at rigid boundaries 

placed at x = +d gives the boundary conditions 

= 
	at 	= + d 
	(6) 

The Boussinesq form of (5) is obtained by omitting the 

term involving (y)-1  

For a non-rotating system (II= 0) the problem 

posed by equations (5) and (6) is the stability of a 

constant shear flow of a stratified layer of gravitating 

fluid bounded above and below by rigid walls. A detailed 

treatment of the Boussinesq form of this problem for a 

compressible atmosphere was undertaken by Kuo [1963]. 

Briefly, Kuols analysis shows that the stability 

properties of such a flow may be described in terms of 

a modified Richardson Number (7) and a vectorial 

dimensionless wave number (a) , which for the problem 

posed by the Boussinesq, non-rotating form of equation 

(6) may be written as, 
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= 	 gP(Vx)-2  

	

and 
	

(7) 

a = 2 d (n2+k2)/2 

As mentioned in Chapter I, Kuo showed that the flow is 

unstable for U less than ;(a) , with U0  taking the 

value -0.75 for a = 0 , decreasing gradually to (-2) 

as a increases to (1.2), and thereafter remaining 

constant as a is further increased. Thus two 

dimensional perturbations in the direction of the flow 

(k = 0) , corresponding to the cylindrical perturbations 

of our previous analysis, become unstable only when " 

	

J = 	10(Vx)-21 is below a finite negative limit, 

namely the value of 70(a) quoted above. 

Kuo concludes that when J is only slightly 

negative, roll type convective motions with n = 0 will 

be the most preferred mode of motion, and he asserts 

that this result offers a possible explanation for the 

occurrence of certain cloud formations in the earth's 

atmosphere. 

His results are also valid for the rotating, Boussinesq 

form of equation (5) provided a further modification is 

made to the Richardson Number given in (7). For a 
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rotating system the operative form of the Richardson 

Number is 

[2n(211*v.)(11) 2 	0[14)2]] (Irx) 	(8) 

The following deductions arise as a direct consequence 

of this new Richardson Number representation, 

(a) Por (gp) < 0 the flow may be unstable to perturbations 

with k 0 for large, negative values of Vx  . 

(b) Assuming DA.(2A74-Vx) — (gp)] > 0 and proceeding 

to increase the value of (gp) from zero, the 

system is first stable, and then unstable only to 

two dimeneionalpertuibation.s in the direction of 

flow (k = 0) . 

This second result is in keeping with the inference 

that was drawn from the condition expressed in (3). 

A Physical Implication of the form of the new 

Richardson Number: Deduction (b) offers a subtle variation 

to the physical interpretation of the theory proposed by 

Kuo. He suggested that the formation of roll type 

convective cloud motions, with their axes aligned along 

the direction of the mean wind in the atmosphere, may 

be attributed to the growth of unstable perturbation 
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modes engendered by the effect of a shear flow on an 

unstable stratification. This proposal is certainly 

not tenable for a rotating system unless, 

(242.11+v.) 	gp] < o 	(9) 

The Boussinesq form of (5) is a reasonable 

approximation to the stability equation of a purely 

zonal, vertically sheared flow of the earth's equatorial 

atmosphere, provided our attention is confined to 

perturbed motions with horizontal length scales not 

greater than 10 kilometers, and 3 is taken to 

represent I.- Oxi , where Q is the potential 

temperature. Our °artesian coordinate system (x,y,z) 

points along the vertical and to the East and North 

respectively. The restriction on the length scales 

enables us to neglect the component of the Coriolis 

force proportional to the sine of the latitude. 

For /Vx/ >> 	condition (9) shows that the sign 

of Vx is of crucial importance in determining the mode 

by which the atmosphere will respond to a nascent, unstable 

stratification. With Vx  large and negative the parallel 

mode (n = 0) would dominate, whilst the theory predicts 
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that for Vx negative with /V,,, <<A, and for V.
11  

positive the cross wind mode (k = 0) would appear. 

Cross wind modes do occur in the atmosphere, and 

when they assume the form of billow clouds their 

existence is probably attributable to a Kelvin-Helmoltz 

type instability. The results of the above theory also 

suggest an instability mechanism that could give rise 

to a cross wind mode in subtropical and equatorial 

latitudes, and its appearance would not necessarily assume 

the form of billow clouds. 

Some details of the cloud formations in these 

regions are given by Riehl and Nalkus [1964] and Plank 

[1966]. Cloud rolls aligned parallel to the wind are 

frequently found embedded in the Trade Easterlies, 

where Vx is negative. Plank notes that the cross 

wind modes were observed to occur most frequently at 

low wind velocities (less than 5 metres/sec) in conditions 

not necessarily associated with K-H type instability. 

Care is required in the interpretation of these 

observations since the destabilizing mechanism in the 

tropical atmosphere could also be associated with 

saturation of the air coupled with a suitable 'equivalent' 

potential temperature distribution. Furthermore it should 
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be noted that cloud rolls aligned at a small angle to 

the wind have also been attributed to an instability of 

the surface Ekman layer (e.g. Faller [1965]). 

To obtain definitive evidence of the stabilizing 

effect of the rotation without recourse to Duo's analysis, 

one need only consider the solution of (5) when there is 

no basic motion relative to the rotating system. 

Equation (5) then takes the form, 

+ m2  (I) = 0 
	

(10) 

where m2  = *q p 	 pn+  [4 2-813123 

and 	= (n2+k2) 

Applying the boundary conditions ca = 0 at x = 0,d 

to the solution of (10), and seeking the consistency 

condition of the resulting two homogeneous equations, 

we obtain a quadratic in a . The solution of this 

quadratic is, 

[ip2 	f2 	(12](12c.) = 	44-fil2p2 

[.. ip  2412412 ] [412(n) 2—g3(1) 211 ( 11  ) 
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where q = 	, 	taking integer values. 

For negative values of 3 the solution describes neutral, 

internal gravity waves, whose phase and group velocities 

may easily be determined. However for the conventional 

gravitationally unstable situation 0 positive) we note 

that the waves are not necessarily amplified. The 

condition for amplification being that 

ggi 	Orc,02] 	
[1

p2 	f2 .4 _ 142]-1 010.2 
	4n2

qd2  (12) 

In deriving this result the Boussinesq assumption 

was not invoked and the stabilizing effect of the non-

Boussinesq terms is represented by the first term on the 

right hand side, whilst the second term denotes the 

similar effect of the rotation. Both these stabilizing 

effects are of interest because theoretical treatments 

of small scale convection in the atmosphere invariably 

disregard or approximate the terms in the hydro-

thermodynamic equations that contribute to these effects. 

The stabilizing effect of rotation referred to above 

is, in a geophysical context, due to the Coriolis component 

of rotation that is proportional to the cosine of latitude. 

The stabilizing effect of the component due to the sine 
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of latitude for thermally driven convective motion of 

larger horizontal length scales is already well known. 

We also note that the result concerning the possible 

importance of the cross wind mode is again evident in 

expression (12). 

Finally we mention that for a basic state comprising 

of an axial (South -->North) velocity field v = [0,0,11(x)] 

and the same density distribution p the stability 

equation takes on the form, 

PTT — 	2  12  -1, + y k2An+Wx)p y-2f 211(21/k2+Wxnk)-0/2  1] 

=0 
	

(13) 

The same boundary conditions must be satisfied and under 

the Boussinesq assumption once more, the operative form 

of the Richardson Number for this flow is, 

= [244.024:ux(isi)] 0[1442]](wx)-2 (14)  

Again we may infer that for (gp) small and positive 

the k = 0 modes would be the likeliest candidates for 

instability, and for this flow such modes would have 

their axes aligned along the direction of the mean flow. 
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III. Stability of a stratified rotatin fluid to 

mmetric 	in the_pFesence of an 

axial gravity field  

In this section we again consider the motion 

relative to a system of axes rotating with uniform 

angular velocity /1 , and employ the narrow gap approxi-

mation. Here we replace the cylindrical polar coordinates 

(r,Q,z) by a cartesian coordinate system (x,y,z) with 

x pointing in the CI increasing direction, y pointing 

radially inward. Gravity will be taken to act in the 

negative z direction. 

The governing equations for an incompressible, 

heterogenous fluid in this rotating fraMe of reference 

are, 

P •
p 	gk 	(Rf2) . v 

ux + v + wz = 0 

where D 0 a , a 	a 
77 = 77 '77 ' v77 w77 
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and (i,a,k) are unit vectors in the (x,y,z) directions 

respectively. 

and R. is the mean radial distance within the flow field. 

A basic state v = [U(y,z),0,0] and p = po(y,z) must 

satisfy the relation, 

211Uz = g(Sy) -(Rn? + 2m)sz 
	(2) 

where S and Sz represent,Upoiy] 
vo 

and 	17,1( p )z.1 

respectively. 

A relation of this form, prescribing a shear flow that 

is induced by the stratification, has been termed a 

'thermal wind' equation in meteorological literature. 

The existence of a relation of this form is a poignant 

reminder of the care required in attaching a physical 

interpretation to the results of the previous chapter. 

Hereafter we will assume that, 

(114) < < 

so that the term involving (211U) may be neglected in 

(2). It follows that the relative contributions of 

the vertical and horizontal stratification to the shear 

of the thermal wind is represented by the value of the 
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dimensionalz number P given by, 

= ATL2 S  
g S 

y 

F is the product of the rotational Froude Number and 

the ratio of the vertical and horizontal density strati- 

fications. 

Stability Analysis: 

Linearise the system of equations (1) with respect to 

0 
= small, axi-symmetric perturbations ( 	0) of the •0x 

basic state given by equation (2). Applying a quasi-

Boussinesq assumption, that is,heterogeneity is reflected 

only in the buoyancy and centrifuging terms, we have the 

following set of equations for the perturbation quantities, 

66. 

(3) 

ut = (24,U )v 	(Uz)w 

vt + (210u = 

= - 

(RA?) PY  7 

P z (g) 

v + wz = 0 
	

(d) 

Pt 	v(Po)y 	w(Po)z = 0 
	

(e) 
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Where (u,v,w,p,p) are the perturbation velocities, 

pressure and density respectively, and pc.  =(constant)= 

The form of (4d) enables us to introduce a stream 

function (V) such that 

	

v = fdo  , w = 	y 
	(5) 

Substituting for v and w in terms of 9, in equations 

(4), and then eliminating all perturbation quantities 

except 	from the equations yields the following equation 

for Jo 

[21424-U )-(R112)Sy 
, 

+ 	+ 2(gS yz 	
[gs 	,2 YY = 0 

	

at 	zz 	y 	at 2   

(6) 

For solid walls at y = + a and z = 0,d , the inviscid 

boundary conditions are simply, 

= 0 	at all boundaries 
	

(7) 

Subject to the approximations already impose.f. 

equation (6) holds for an arbitrary velocity field 

U = U(y,z) that satisfies the Thermal Wind relation. 

However to obtain an explicit solution of (6) subject 

to the boundary conditions (7) we impose the following 
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restrictions on the basic state, 

U = 0 , and (Sy) and (SZ) assume constant values. 

Under these restrictions the coefficients in the partial 

differential (6) are constants and we may assume a 

normal mode form for 

IP- X (y) ei(ut+nz) 

Substituting this expression for 9v in (6) and 

solving the resulting ordinary differential equation with 

the boundary conditions (7) leads to the following 

expression for 

(R112)Sy 	(2.2)2  = —(gsz+02)—  (gS) 2 	(8) 

For negative values of o2 we conclude that the flow 

is unstable. We examine the form of equation (8) for 

various density configurations and limiting cases. 

For hydrostatic perturbed motion (Sz) is necessarily 

negative and igSz f 	 fat/ , so that (8) may be 

rewritten as, 

410[1 	(4.a2 z 
 -I.,„

6(s y
)2 	

7(RSy)] 	(9) 
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This relation indicates that rotation has a stabilizing 

effect, pure gravitational buoyancy effects are always 

destabilizing, whilst the role of centrifugal 'buoyancy' 

depends upon the sign of (Sy) . The ratio of centrifugal 

and gravitational effects is given by the number F . 

When S < 0 then F < 1 (i.e. Uz negative) is a 

necessary condition for instability. 

To compare the work with the theory of the previous 

chapter we examine the form of (8) with (Se) = 0 , 

u2f12(4-RSy) - g(S 2 
	0  

Therefore 

a2  =.112(4-RS 	+ 	+ 4 -4(4-RS )-2(gS )2) /2] (10) 
1 

y 

For Sy  / 0 (Sz  = 0) the fluid is unstable, as opposed 

to the non-gravitating result that (RS y) < 4 for 

instability. Thus when there is an axial gravity field 
J'Ayeig 

the results of the previous chapter are biul-Lificd. 

When (Sy) > 0 , asymmetric perturbations would also 

provide an instability mechanism. A superficially attractive 

argument for the situation (Sy) > 0 is that a very 

large stable vertical stratification would so inhibit 

vertical motion that two dimensional asymmetric motion 
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would result. The stability analysis of equation (1) 

for three dimensional perturbations does not yield a 

differential equation for a single perturbation quantity, 

however mere inspection of the equations for the vertical 

momentum and density advection indicate that the perturbed 

motion must be three dimensional. 

A feature of equation (8) that highlights a basic 

difference between the centrifugal and gravitational 

destabilising mechanisms is that the former is only 

associated with the horizontal density stratification. 

Hence.when 8y  = 0 , equation (8) indicates that the 

flow is stable or unstable depending merely on whether 

the density decreases or increases in the z direction. 

Axi-symmetric instability of a thermally stratified 

fluid is a meteorologically significant problem. 

Heterogeneity is replaced by compressibility and 

inhomogeneity in the atmospheric situation, and this 

increases the complexity of the relevant hydro-thermo-

dynamic equations. Partly to circumvent these additional 

difficulties, only the hydrostatic problem is usually 

discussed in the meteorological literature. This enables 

a quasi-Lagrangian coordinate system to be employed with 

pressure replacing the vertical height coordinate. The 
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centrifugal term is accounted for implicitly in such a 

system but it is no longer a simple matter to formulate 

the boundary conditions at the earth's surface. An 

equation resembling (6) is obtained from which a 

necessary condition for instability may be derived. A 

somewhat similar problem is considered in the next 

chapter. 
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CHAPTER 4 

Axi-S mmetric Motion in the Earth's E uatorial Atmos here 

I. 	Introduction 

In the preceeding chapter it was shown that the 

terms in the equations of motion involving the component 

of the Earth's rotation proportional to the cosine of 

latitude could play an important role in a fluid dynamical 

motion of the atmosphere which is of meteorological 

interest. This result served to motivate the work of 

the present chapter, wherein an examination is undertaken 

of the possible importance of these terms in another 

geophysical fluid motion. 

The terms referred to above have invariably been 

omitted in theoretical studies of geophysical fluid 

motions, and their neglect has been termed the 

'Traditional Appdeftmationt. This approximation has 

usually been based on an order of magnitude argument, 

but Phillips [1966] proposed a tentative 'rationale' 

for the validity of the approximation in almost all 

meteorologically significant fluid motions. 
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An attempt is made in this chapter to determine the 

role of these terms in a specific problem which arises 

in the theoretical studies of the general circulation 

of the earth's atmosphere. These studies deal with the 

convective instability of the atmosphere whose charac-

teristic mean state comprises of an horizontal temperature 

gradient and a predominantly stable vertical stratification 

of potential temperature. This mean stratification hag 

largely attributable to the convective response of the 

atmosphere to solar radiative heating which has a 

distinct latitudinal variation. 

The first theoretical contributions to the study of 

the general circulation considered motions that were axi-

symmetric with respect to the earth's axis of rotation. 

The circulation comprised of air rising at low latitudes, 

the region of greatest solar heat input, and descending 

in polar regions. These theories were unable to account 

for the large scale features of the observed circulation, 

and this failure led to the study of the stability of 

the mean state to asymmetric perturbations. It was 

shown that small, asymmetric, geostrophic perturbations 

of the basic, zonal, thermal flow would amplify. The 

results were directly applicable to the cyclone scale 
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motions of the westerly wind regime of the mid-latitudes. 

Large scale motion of the atmosphere in low latitudes 

on the other hand has always been taken to be axi-

symmetric, although its detailed structure remains 

largely undetermined due to the inadequacy of the data 

available for these regions. Theoretical work [Kuo 0956)] 

based on the available data emphasizes the weak nature 

of the mean meridional circulation. This circulation 
Z$ 

bet:mg regarded as a forced motion driven by smaller 

scale eddy motions and non-adiabatic heating. Kuo also 

derives a criterion for the existence of a stronger, 

free axi-symmetric convection deriving its energy 

directly from the mean thermal flow, and he points out 

that this criterion is generally not satisfied in the 

atmosphere. 

In this chapter we examine the form taken by this 

criterion when there exists an horizontal temperature 

gradient across the equator. This temperature distribution 

is of particular interest in view of the tentative hyp.).-

thesis that could be drawn from the following result:-

A non-rotating, inviscid fluid contained between two 

horizontal planes, possessing a stable vertical 

stratification, an horizontal temperature gradient, and 
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a basic state of zero motion is unstable to small, 

normal mode perturbations that have a non-zero wave-

number in the direction of the thermal gradient. 

As a prelude to the consideration of the problem 

posed above we derive in the next section the full 

thermal wind relation for zonal flow on a rotating 

sphere due to latitudinal and vertical thermal 

stratification. 

II. The basic, zonal, Thermal Flow 

An essential pre-requisite of a stability analysis 

of some given steady fluid motion to small perturbations 

is that the prescribed basic state is an allowable 

solution of the fundamental equations governing the 

behaviour of the particular fluid under consideration. 

Here we consider the steady, basic state of a zonal 

'thermal wind' arising from vertical and latitudinal 

thermal stratification of an inviscid fluid on a 

rotating globe. 

Referring the motion to a system of axes rotating 

with constant angular velocity A , then the basic 

state must satisfy the following equations, 
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/ (ansinfOU + rfl2  sinp cos/ + U2tani = (1) Pr 13/ 

and 

-(24,cossOU - rU2 = 1 p  pr 	g .2cos2Je (2) 

These equations lavAgi the reduced form of the equations 

of motion when the spherical coordinates (r,/,X) , with 

associated velocities (w,v,u) , represent directions 

along the radius, latitude and azimuth/respectively. 

For such a system the basic state represented in (I) and 

(2) is given by v = (0,0,U) and p = p(r,Q) 

Eliminating the pressure (p) from equations (I) 

and (2) we obtain, 

Vt[sin/ Ur  + cos/ r 11,6] + 21u7Ltanp Ur  + 11711/] 

= 	p,) 	+ ( i7117 	(3) 

where F ra2sin/ cos/ + 	I sin/ + -U2  tan/ 

and 	g1  = g r.412cos2/ - 24U cos/ - i U2  

In deriving (3) the only approximation made was that g 
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was taken to be a constant. 

Assuming that the equation of state of the 

atmosphere is adequately represented by the ideal gas 

equation, 

	

P = P RT 	where R is the universal gas const. 

and T the absolute temperature (4) 

Then using equations (1), (2) and (4) we obtain the 

following expressions for the density gradients 

	

pr) = 	Tr) - R1[g 
(5)  

and 	P/) = - (27, T/) 	 l[F] 

Alternatively they may be written in terms of the. potential 

temperature defined by 0 = T i)(Y)-1(7-1)  where P 

is a reference pressure. 

Then 

(r 	0 P ) = 	(14r 	yRT 	
] 

P  

P/) = (jo 4)/) - 7:16 [P] 

(6)  

Substituting the relations expressed by (5) and (6) in 

equation (3) we arrive at the following thermal wind 

relations, 
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ail[sin/ Ur  + cos 	Ufs] + 2 -1.UltanX Ur  + U1 

= qTrgpi qiy[gi ] 	(7) 

sr ) p] - 	y [gl] 

A steady zonal flow satisfying (7) is therefore a 

consistent basic state for a stability analysis of an 

inviscid fluid whose equation of state satisfies the 

ideal gas equation. 

The 'traditional approximation' referred to in the 

introduction was not employed in the above derivation 

and in consequeno, the term E 2.ncosx ;17U/1 appears in 
equation (7). Typical orders of magnitude of (Ur) and 

(.1  Uje) for the atmosphere suggest that, apart from an 

extremely narrow zonal band centred at the equator, 

[sine' Ur  / E cos/ u7 ›› 	(8) 

The restriction on the validity of condition (a) is a 

salutary warning of the care required in the study of 

equatorial motion. The equator itself Iii a dynamically 

unique region of the atmosphere because there the vertical 
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component of the earth's rotation vanishes. 

At the equator itself (iS = 0) equation (7) may 

be written with sufficient accuracy as, 

[ja. Tr/ 	Tfs  
gc=0 	 14.o (9) 

where a = earth's equatorial radius. 

The left hand side of (9) represents the vertical 

component of the relative vorticity of the zonal flow a 

at the equator. 

1f 	Tid 1 	)154=0  1̂ 000-8) 	then (7 Ugi) 1,4=0  .' 0(10-3) 

The value assigned here to the horizontal thermal gradient 

is comparable with typical mid-latitude values of the 

same quantity. We note that it results in an exceedingly 

large value for the vertical component of the relative 

vorticity, and implies that there would be a narrow band 

of large horizontal shear of the zonal velocity straddling 

the equator. 

This aspect of the zonal, thermal flow will play a 

central role in the theory developed in the succeeding 

section. 
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III. Derivation of the Stability Criterion 

We confine our attention to the stability of zonal 

flow in equatorial latitudes of the earth's atmosphere 

and we employ a p plane approximation to the equations 

of motion. Veronis [1963] gives a systematic derivation 

of the equations for a p plane centred at the equator 

and his model is used in the present work. 

The adoption of a p plane system of coordinates 

requires further justification, because Phillips [1966] 

indicated that in a mathematical study of an atmosphere 

motion, for which the terms involving the component of 

rotation proportional to the cosine of latitude are 

considered important, it would be preferable to work 

in Spherical Polar Coordinates. The basis for Phillips' 

caution is that, when these terms are retained in a p 

plane type approximation of the original equations, the 

resulting system has the inherent deficiency of lacking 

a relation corresponding to the 'angular momentum 

conservation' principle. 

With regard to the present work we may note that, 

consistent with the explicit approximations made by 

Veronis, his p plane equations do conserve angular 

momentum. Furthermore, it is anticipated that a similar 
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result to that obtained in this section would be obtained 

by working the problem through in spherical polar 

coordinates. 

In the p plane equations used below we have 

replaced the expression (2A$) by (22y) , an approxi-

mation which is justifiable within the framework of 

Veronis' analysis. 

The I plane equations of motion, the continuity 

equation, and the equation expressing the adiabatic nature 

of the flow are, 

v:V)v + 2py(k,v 2f1(.1^v) = 	;1-3113 	(g-an-2)k 	(Y112)i 

pt  + (v.v)v + p(v.v) = 0 

(XnQ)t  + (v.17)(fn0) = 0 

where (i,l,k) are unit vectors in the (x,y,z) 

directions pointing east, north and vertically 

respectively. 

v = (u,v,w) are the associated velocities 

= (M) 

and Q is the potential temperature. 
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A basic steady zonal flow given by v = (U,0,0) with 

po  = po(y,z) must satisfy the following equations 

(2(3y)U + yit2 	(n p `vo'y 0 

o =(p ) 	[g P 	o z 	1 0 

(12)  

(13)  

where gl  = [g-012-2AU] 

From (12) and (13) we obtain the thermal wind relation, 

(213y)Uz  + (2= 	) 
o Y = 	° 

[g 	(4-
0

(po) z[yA.2+(2(3y.)u] 

(14)  

=444)0)z[ve+(2psr)u] Go` /y". 1 -1  

These expressions are the forms of equations (3) and (7) 

for the p plane approximation. 

Linearising the equations of motion, the continuity 

equation and the adiabatic equation with respect to 

small, axi-symmetric perturbations they become, after 

some minor manipulation, 
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ut + vU + wU - (213y)v + 211w = 0 
	

(15) 

vt + (2py)u = 
Po'f° Y 

P------(po+p) 
(p y. 

07-F7 [F1] 
	

(16) 

W
t  - (210u 	( 	 ) 	g 	2(Po)z 

o (1301-PT  z 	(p+p) 

e,i 	r 
(P +P) Lgl j  (07) 

w(Po)z  + (P +P)Evy  +wz  ] = 0 
	

(18) 

st + v(S 	+ w(sz ) 
	

(19) 

where (u,v w,p,p,Q) are the perturbation variables, 

S = Pn(i) 	S = (4)(0 ) 
Y 	° Y 

Fl  = [yJ + (21337-)U] 

We now make several explicit assumptions regarding the 

and 
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nature of the basic and perturbed motions:- 

(a) (40)H  << Po  where (40)H  is the 

horizontal variation of density of the basic state, 

(b) (4190)H  << 61Q0)v  << Qo  

(c) << tiL(Po)z 

(d) Time scale of the motion is taken to be large enough 

to exclude sound and gravity waves. 

These stipulations enable (16), (17) and (18) to be 

approximated to, 

+ (213y)u 

vy + 

	

= 	(-11- 	+ F(s) + 
Po Y 

	

— (211)u = 	(-1)- P ) + g(s) 
o z 

= 0CW 

where 	
o od. 

In writing these equations we have used the relations 

Po r 
po 
( 
`r
n 
 o'
) 
 y 	Ly11. + (2A0U] 	S (20) 

	

and 
P  
-- 	= " A - u] sz  (21) 

	

0 	Y P

n r

o 
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which are derived using the ideal gas equation. 

A term (1-.) (%) 
Po 

has been dropped from the right hand 

side of (I7b), its neglect being justified by consideration 

of equation (11) and assumption (c). To this degree of 

approximation we have also replaced (g1) by (g) and 

P1 by P (=yJL2) , whilst assumption (a) has allowed us 

to write 

_ y p 	p o 	o 
s 

A further simplification results from the introduction 

of a new vertical coordinate 5 = p(z) , chosen such 

that 5 approximates closely to pc)  , the pressure 

distribution of the basic state. 

Then z = z(5) 

and A = 	-bir where p = V(z) is related 

to 'IT by the hydrostatic relation. 

With this new vertical coordinate equation (18b) 

may be rewritten in the form, 

V
Y 

 + Tf-0'
P  = 

	

	 (18c) 

where r = -6>gW 
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This enables us to introduce a stream function 

such that, 

v = 	= 	y 
	(22) 

Then on assuming that S is not a function of z 

a single differential equation for 5d can be obtained 

from the system of equations (15-19). Allowing the 

perturbation quantities to have a time dependence of 

the form exp(iat) , the resulting equation for 9) 

has the form, 

V,55- + 2H 9./yve +  	+ (y p  cdy, 	= 0 	(23) 

where A = ppy(213y-Uy) + F(S ) 	02] 

2H = [2k(Ug, 	2A(t)(213rUy) 

	

Ag 

- S5(F) + 	s 
rDg Y j  

B = 	j- EgSg,  + 2.11(Upe 2.(14) 
Arg 	

.pg 

For the flow bounded by vertical latitudinal walls at 
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y = + a , and horizontal walls at z = 0 and h 

the requirement that the normal component of velocity 

vanishes at these walls leads to the boundary conditions 

	

tri = 0 	at y = + a 

	

= 0 	at ii"(0) and p(h) 
	(24) 

Alternatively the upper boundary condition could be replaced 

by the condition of vanishing velocity at p = 0 (z =00). 

Since a linear, elliptic, homogeneous, partial 

differential equation with the form of 3) can not have 

a maximum within the bounding surfaces its solution would 

be identically zero if it satisfied the boundary conditions 
a 

specified in V4). Hence a necessary condition for the 

existence of a perturbed motion is that equation (14 3) 

is non-elliptic (H2  > AB) at least somewhere within 

the flow region. 

lr i.e. qL-218y(216-Uz) 	21.(2ply-U) + g(Sy) + F(Sz)]2  

> i2ly(2(:3-Uy) + F(Sy) 
	

][24:(2.11.+Uz) + gSz] 

somewhere inside y = + a ; z = 0,h . 

Using the thermal wind relation (14) the above expression 
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may be rewritten as follows, 

G2 > 2(3y(2py-uy) + (sy)1, 	[g(Sy)-2/1(2py-Uy)]2 

Eg (S ) + 211( 2414-Uz  ).7-1 	(25) 

Thus a necessary condition for the instability of the 

zonal flow to a-symmetric perturbations is that, 

C2p 	+ p(sy)] 	g(sy)- 24-(5°A)] 2  D(Sz) + 21K7/)] -1  (26) 

somewhere inside y = + a ;. z = O,b . 

where 5°  and 71A are the components of the absolute A 
vorticity of the basic zonal flow in the z and y 

directions respectively. 

This expression is an extension of the necessary 

condition for the existence of 'free' axi-symmetric 

convective motion [see e.g. Kuo (1956)] that renders 

it valid for equatorial flows. 

A similar criterion may be derived for oceanic flows. 

Neglecting molecular diffusive processes again/it is 

possible to formulate an advective conservation equation 

for 'apparent' temperature (i.e. the variation of density 

due to both thermal and saline effects is taken into 
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account). Then subject only to the Boussinesq and 

hydrostatic assumptions we obtain the analogue of 

equation (23), 

+ zz  2H Wyz  + BiPyy  + G(y,z,6A)= 0 
	

(27) 

with A = (2py)7k + (Sy)F - a2  

H= (2!1);{,x - (Sy)g 

B = (240 71A  + (Sz)g 

G = [(2p)/jA  Szle]9/z  

and nos (Sy) and (Sz) represent r_ 41--(po)y] and 

E- -1- o(p )z  ] respectively. Condition (26) follows po   
directly. 

TV. Comments on the Criterion 

The criterion expressed in equation (26) is merely 

a necessary condition for instability and this limits 

its possible significance. For any consistent basic 

state the value of the' terms on both the left and right 

hand side of (26) vanish at the equator. This marginal 
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satisfaction of the necessary condition for instability 

may be contrasted with the extra-equatorial form of 

condition (26) which precludes the possibility of free 

axi-symmetric convection in the atmosphere, except in 

the vicinity of fronts where the horizontal temperature 

gradients may be substantial. Condition (26) can not be 

a sufficient condition for instability for general flow 

situations since it embraces the situation when the 

atmosphere is homogenous. 

It was noted in the discussion of the basic state 

that the magnitude of f  u j 	] would be substantial for 
Yy=0 

only moderate values of r S 
YI = 0]  y 

, and this implies 

that condition (26) might then be strongly satisfied 

in the immediate neighbourhood of the equator. If this 

implied instability then the resulting circulations 

would act to vitiate the strong satisfaction of the 

instability condition by contriving to reduce the value 

of (Sy) near the equator. 

Hence a stipulation that the mean zonal state 

of the equatorial troposphere should violate, or 

marginally satisfy, condition (26) would imply that the 

latitudinal thermal gradient in this region would be 

small throughout the year, irrespective of the 
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equatorially asymmetric heat input during the inter- 

equinox periods. 

The singular behaviour at the equator of a zonal, 

thermal flow due to an equatorially, asymmetric thermal 

stratification may also be important in other situations. 

Equatorial, zonal streams of fluid moving faster than 

the flow further to the north and south are known,de 

features of the major oceans of the Earth and of the 

circulations of the atmospheres of the Sun and the 

planet Jupiter. 

In the earth's oceans the equatorial streams take 

the form of eastward, sub-surface currents flowing along, 

and centred on, the equator, in contrast to the surface 

flow which follows the atmospheric wind pattern. In 

the Pacific Ocean the undercurrent is known to be 

approximately 300 Kilometres wide and is confined to 

the thermocline region. 

It is unlikely that the undercurrent is a manifestation 

of axi-symmetric motion arising out of the requirement 

that the mean zonal thermal flow should everywhere 

violate the condition expressed by the analogue of (26) 

for the oceans. However, it is intriguing to consider 

the possible modifying effect such a requirement would 



92. 

have on the undercurrent. The requirement would 

certainly imply that the isopycnics be almost horizontal 

at the equator, whilst the zonal component of the flow 

would satisfy the following equation in the vicinity 

of the equator, 

(213y)Uz  + (2I0Uy  = - g(Sy ) 	 (28) 

A mean density stratification with a maximum (minimum) 

at the equator would represent an easterly (westerly) 

flow, whilst the reverse would be true for the second 

term. 

It is pertinent to note that recorded features of 

the undercurrent indicate that the isopycnics are 

horizontal at the equator and that the traditional 

thermal flow approximation can not always account for 

the observed flow structure of the current. 
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CHAPTER 5 

Review of Theories on Mixin Processes in Rotatin Fluids 

I. 	Introduction and Outline  

Scorer (1965,1966) outlined a novel approach to the 

study of turbulent mixing processes in rotating fluids. 

His work initiated a resurgence of interest in this 

particularly polemic field of study, and the recent 

experimental work of Gough and Lynden-Bell (1968) will 

serve to further stimulate theoretical studies. 

Scorer suggested that when a body of fluid possessing 

a vertical component of vorticity is stirred the momentum 

would be redistributed so as to reduce the absolute 

vorticity in the interior of the fluid and concentrate 

it at the boundaries. In particular he states that if 

a portion of fluid in solid body rotation is stirred it 

would tend to become more like a potential vortex with 

energy being transferred from the eddies to the mean 

motion. 

It is known from Statistical Mechanics that zero 

momentum transport occurs for solid rotation in gas flows. 
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However no violation of the second law of thermodynamics 

occurs if solid rotation of the mean flow produces 

momentum fluxes in a turbulent fluid for there must anyway 

be a steady input of mechanical energy to sustain the 

turbulence. 

Implicit in Scorer's studies are two different forms 

of stirring: small scale mechanical stirring induced by 

an external agency, and thermal stirring of virtually 

any scale arising directly from a thermo—hydrodynamic 

instability of the fluid. Vertical injection of gas 

bubbles into a liquid rotating in a horizontal plane is 

an example of the former type of stirring mechanism and 

the concept of anvil cloud stirring of the earth's 

atmosphere is an example of the latter. These two types 

of stirring which we shall refer to as forced and free 

gurgitation respectively will be treated separately in 

the present work. 

Following some general comments on the nature of 

Reynolds stresses the remaining sections of this chapter 

are devoted to a resume of the early developments in the 

study of mixing processes in rotating fluids and a brief 

review of Scorer's theory. A survey of this field of 

study was also prepared recently by Bretherton and 

Turner (1968). 
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II. Reynolds Stresses  

Before discussing the early transport theories of 

turbulence it is necessary to introduce the concept of 

Reynolds Stresses. 

For the moment we work in Cartesian coordinates. 

Consider that the velocity v of a homogeneous, turbulent 

fluid be separated into a mean flow V and a fluctuating 

part v' by employing an averaging process defined by, 

2T 
	v at 

—T 

where T is a time large compared to the time scale of 

the turbulent fluctuations and small compared to the 

time scale of the development of the mean flow. 

We substitute the expression (V+171) for v in 

the inviscid momentum equations. Then on time averaging 

the resulting equations in the manner indicated above 

and employing the incompressibility condition we find 

that the mean flow (V) satisfies the following equation, 

vt  + (v.Vpv = - - 
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where in tensor notation 0 is given by 

0. 	p ax.
(T ) 
ij 

and Tip  = -priTU3 is a symmetric second order tensor 

that is termed the Reynolds stress. 

We note that the mean flow obeys an equation of 

exactly the same form as the Cauchy equation of motion, 

37..: t 	(z.V)y = 	wi- (T,.
4-3
) 

where Tij  is an undefined second order tensor. 

Thus the influence of the turbulence on the mean flow 

can be interpreted as a stress (T..ij) set up by the 

fluctuating motion and acting on the mean flow. 

A measure of understanding of the possible limitation 

upon the form of the Reynolds Stress may be gleaned from 

a consideration of the assumptions made in deriving the 

constitutive equations of a 'Newtonian type fluid'. A 

postulation that the fluid conserves its angular momentum 

is equivalent to restricting Tip  to be symmetrical. For 

a Newtonian fluid the further assumptions are made that 

the stress is homogeneous, isotropic, a linear function 
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of the deformation tensor (eil) , and that the stress 

vanishes when eii  E 0 (e.g. in solid body rotation). 

If the effect of the turbulent fluctuations on the mean 

velocity field is to differ in any respect from the effect 

of viscous diffusion of a Newtonian fluid then at least 

one of the assumptions mentioned above can not be applicable 

to the turbulent motion. 

Our present study is concerned with mixing processes 

in a rotating fluid and it may be shown that in cylindrical 

polar coordinates (r,G,z), the equation of motion for the 

mean swirl velocity (V) of a body of fluid in cylindrical 

rotation about the z axis is given by, 

v 
—Sr; .1 (r2'©))2 Or 

Pr 

with the Reynolds stress scro = pa7.7 

where u' and v' are the velocity components of the 

fluctuating motion along the radius and azimuth. 

We also note that the Reynolds stress and the vorticity 

(TI) of the fluctuating motion are connected by the 

following relation, 

-E a 2 	2 -T  kr *4;4) = pr f--lu 

where -0- r 2-(r-sr') ar 
au", 
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III. Historical Resume 

The early work on mixing processes in turbulent fluid 

motions culminated in the Transport theories of Prandtl 

and Taylor. Prandtl proposed a 'Momentum Transfer Hypo-

thesis' in 1925, and the 'Vorticity Transfer Hypothesis' 

was formulated as an alternative theory by Taylor in 1932 

after having been originally introduced by him in 1915. 

These theories were purely phenomenological in 

character and were based on an analogy with the Kinetic 

Theory of Gases. The fluid in turbulent motion was con-

ceived as consisting of a swarm of turbulent elements 

moving across the direction of mean motion through a 

medium possessing the mean properties of the flow. 

These elements were assumed to detach themselves from 

their mother layer, travel a finite distance through the 

medium along an eddy trajectory before rejoining the mean 

flow. At the moment of detachment the element was assumed 

to possess all the physical properties of the mother layer 

except for an additional velocity component perpendicular 

to the mean flow. On rejoining the mean flow it was 

assumed that they lost this velocity component and 

contributed with their properties to the layer in which 
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they were stopped. Since they carried a component of 

momentum in the direction of the mean flow they could give 

rise to a Reynolds Stress in shear flow. 

Prandtl assumed that it was the component of momentum 

in the direction of the mean flow that was conserved along 

the eddy trajectory, while Taylor assumed the conservation 

of vorticity. The former theory implies that the turbulent 

elements move without being acted upon by the transitory 

pressure gradients associated with the turbulent motion. 

They must however be acted upon by the gradient of the 

mean pressure, which in the case of a cylindrically 

rotating fluid acts radially. Hence for this situation 

Prandtl assumed that the physical entity conserved along 

the eddy trajectory was the angular momentum. 

Both Prandtl and Taylor specified a relation between 

the local Reynolds stress and the local mean velocity 

field by the use of an 'eddy viscosity'. For cylindrically 

rotating flows we may formalise their Transport Theories 

as follows: 

(a) Prandtl's Momentum Transfer hypothesis. 

Consider a turbulent element at radius r having 

the mean tangential velocity V and the fluctuating 

velocity components (u',v',w'). 
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Then the Reynolds Stress is given by, 

	

Tr,g = 	p ulv,  

1/ 2 	1/
/ ----w  2 

	

= 	-pp (ut)2 	(v1).e 

1/2 	1/2  
gvt)2  rj fp 

(u))2 /r 

where p 

 

is the correlation coefficient. 
1/2 1  • /2 

(u')2 	2 (v') 

1/2  

and 	p (v') 	1- j is the fluctuating component of 

the angular momentum. 

Assuming that the fluid element leaving the layer at 

conserves its angular momentum over a small 'mixing length' 

11 corresponding to the eddy trajectory. Then taking 

the gradient of the angular momentum be constant over 

the mixing length we have, 

1/2  

fp(vt)2r = 11 ar  (P+V) 

1/2  
Hence 	Tr 	(ut) 	0 4 

(21 .1_ .Y.:\ 
1 `ar ri  

= p (1 ) 
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where v1 is the eddy viscosity. 

(b) Taylor's Vorticity Transfer hypothesis. 

In this case we assume that the gradient of vorticity 

is constant over a small mixing length '2  corresponding 

to the eddy trajectory. Then the variation ill of the 

mean vorticity at a fixed radial position may be written, 

= 1/(2 	7v::) 

Hence the Reynolds Stress may be deduced from the relation, 

Pr
-12 4V(r2  TrG) = J-Ltuf 

(77)4(g + 31r-) 

v  a ( 
2 Or 'Or 	r' ( 2 ) 

where v2 is the eddy viscosity. 

A steady state cylindrically rotating mean flow 

maintained by turbulent fluctuations must satisfy the 

relation, 

r2 T
r() 

= constant. 	 (3) 
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It is clear from (1), (2) and (3), that there is a 

contrast in the predictions of the two theories regarding 

the form of the mean steady state. Some cogent remarks 

of Taylor (1932) help to clarify the reason for this 

dichotomy. Taylor showed that Prandtlts representation 

of the Reynolds Stress is invalid for a cylindrically 

rotating mean flow if the turbulent fluctuations are also 

two dimensional and in the plane of the mean motion. At 

the same time Taylor relaxed his unilateral support of 

the vorticity transfer hypothesis when he suggested that 

PrandtlIs theory might be expected to apply in the case 

of the flow between concentric rotating cylinders if the 

turbulence consisted entirely of ring shaped vortices 

that were symmetrical about the common axis. He further 

notes that such motions do occur for certain specified 

values of the rotation of the inner and outer cylinders. 

Evidence of this torlidal motion was obtained in the 

results of the stability analysis undertaken in Chapter 1. 

In the same context we recall that inertial instability 

associated with an extremism of vorticity in a cylindrically 

rotating flow would tend to favour purely two dimensional 

velocity fluctuations in the plane of the mean motion. 

Thus the correct form of the Reynolds Stress is probably 
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highly dependent upon the nature of the mechanism that 

induces the turbulent fluctuations. 

It was left to Wasiutynski (1946) in his monumental 

work on astrophysical fluid dynamics to indicate the 

manner in which the Momentum Transport theory should be 

applied to rotating fluid motions. He obtained the 

following expression for the Reynolds stress (tiro) by 

a pseudo-molecular argument, 

(;t)z;(ar 	 ;70 - 2(v=)2,r (.7,) 

where ¶ is a typical time scale for the velocity 

fluctuations. 

For purely radial fluctuations( (v')2  = 	this expression 

yields 

1"r9 = (1102T 4; 37i) 

This expression is in accordance with 2randtl's formula 

given in equation (1). ----7- 	----7- 
For isotropic fluctuations, 	(ut) T 	= (10) T 	= il 1 

we have, 

T 	= a (2.1f. 
p Or 
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This is the form taken by the ordinary Newtonian viscous 

stress tensor. 

It is clear that if turbulent fluctuations in the 

azimuthal direction occur in a rotating fluid then the 

effect of these fluctuations, as well as those in the 

radial direction, must be taken into account if a Momentum 

Transport Theory is being used to derive an expressions 

for the stress tiro  . Thus Wasiutysnkits work underlines 

the possible importance of anisotropic mixing in determining 

the form of the stress. 

Wasiutynski's clarification of the mathematical 
di6e,.ence  hetrovo-1 

nature of the fiblvtnta 	vk  the Transport Theories was 

utilized by fluid dynamicists studying large mixing 

processes in astro- and geo-physical fluid motions. 

Theories based on the anisotropy of solar turbulence were 

developed to account for the differential rotation of 

the sun, whilst Rossby (e.g. 1947) and Raethjen (e.g. 1951) 

offered explanations for certain features of the motion 

of the earth's atmosphere based on modifications of 

Taylor and Prandtlts theories. 

Both Rossby and Raethjen were concerned with adiabatic 

eddy motions and they argued that the atmospherets 

gravitationally stable stratification of potential 
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temperature constrained such motions to take place in 

isentropic surfaces. This line of reasoning led to the 

concept of 'lateral mixing' in isentropic surfaces. 

Rossby adopted a Vorticity Transfer approach postulating 

that thermally driven exchange in the form of lateral 

mixing would lead to a redistribution and equalisation 

of the vertical component of absolute vorticity. Raethjen 

on the other hand advanced the view that when the ison-,  

tropic surfaces of the atmosphere are inclined in a 

meridional direction (say) the lateral mixing is not 

isotropic but intensified in the meridional direction. 

The degree of this intensification determining the state 

of vanishing angular momentum flux, and obviously this 

must lie between the two extremes, rigid rotation and 

motion with constant angular momentum. 

IV. Scorer's Hypothesis  

In his theory on the stirring of a rotating fluid 

by turbulent processes Scorer (1965) did not adopt a 

conventional mixing length approach. First he noted that 

'in the molecular motion of a gas 	, there is no 

neutral state dividing a stable state in which molecules 
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oscillate about a mean motion and an unstable one in 

which the displacement of a molecule sets off a new 

pattern of motion.' On the other hand, he points out 

that there are many fluid motions which do possess a 

neutral state between a stable regime in which an internal 

perturbation would experience a restoring force and an 

unstable regime in which a perturbation would be amplified 

and the fluid would move away from the initial state. 

Bearing in mind this distinction, Scorer advanced 

the view that, if a fluid in a stable state is forcibly 

stirred by an external source of energy then the fluid 

system would tend to move towards a new state in which 

the restoring force on displaced fluid elements would be 

less, and if the stirring continued the ultimate state 

would be the neutral one. These arguments were 

particularised to the case of a cylindrically rotating 

fluid, for which the hypothesis implies that forced 

stirring would redistribute the vorticity so that it 

would be reduced to zero in the interior, and concentrated 

on the boundaries if the stirred region is annular, and 

on the boundary and at the centre if the stirring takes 

place inside a cylindrical region. 

Scorer assumed that the stirring of the rotating 

fluid takes the form of either radial or vertical impulses 
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so that no net external tangential force is applied to 

the fluid. Radial impulses generate torgidal eddies and 

Scorer noted that the mixing of angular momentum induced 

by these eddies would produce the velocity distribution 

of a potential vortex. Vertical impulses.generate eddies 
093 

which are tordal with respect to the local axial 

direction. These eddies derive their kinetic energy from 

the stirring agency. 	Scorer reasoned that if the eddies 

spread out (or shrink) horizontally in the plane of the 

mean motion before the displaced elements are integrated 

with their new environment, then some of this energy is 

used to do work against the centrifugal restoring forces 

of the stream. The energy consumed by this process is 

permanently lost to the eddies and must be fed into the 

mean motion or dissipated during the smaller scale 

mixing accompanying the integration process. The ratio 

of the increase in energy of the mean motion to the 

amount of energy dissipated would then be a measure of 

the efficiency of an imposed form of stirring as a vortex 

producing mechanism. 

Scorer suggested that anvil type cloud convection 

in the earth's atmosphere would be particularly efficient 

in this respect. Anvil type eddies were modelled as thin 
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vertical cylinders rising.through a rotating fluid and 

spreading out horizontally into a flat disc shape at 

some level through which they could not penetrate. If 

the whole system had a uniform positive vorticity 

initially then an eddy's vertical vorticity is reduced 

on spreading and the eddy will be moving faster than the 

circumambient fluid on the side of the disc nearest the 

axis of rotation and slower on the side remote from the 

axis. Hence when the fluid disc is mixed with the 

neighbouring environment forward momentum will be 

transferred radially inwards. 

In view of the distinction already remarked upon 

regarding the significance of purely toroidal eddies as 

opposed to fully three dimensional ones it would be 

desirable to rigorously justify Scorer's contention that 
de »01" 

the fore and aft portions of the fluid disc contribute 

nvft#t=g on the average to the redistribution of the 

mean angular momentum. It is worth noting that since the 

stirring mechanisms envisaged produces essentially three 

dimensional eddies no special consideration need be given 

to the fact that two dimensional eddies in the plane of 

the mean motion are not subjected to a restoring force 

if the mean motion is one of solid body rotation. 
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Scorer was wary of trying to formulate a mathematical 

representation of the mixing process pointing out that 

the quantity 'transferred' would depend upon the local 

mean flow properties of the fluid, the strength of the 

restoring force field, the energy put into the stirring 

motion, and the efficiency of the eddy form in producing 

a well mixed state. 

The meteorological implications of the hypothesis 

were also discussed (Scorer [1965], [1966]). It was 

suggested that the spawning of the incipient hurricane, 

and certain features of the jet stream and frontogenesis 

could be accounted for by the vorticity concentration 

produced along the boundary of a region of the atmosphere 

subjected to the stirring effects of cloud-scale convection. 

The recent work of Gough and Lynden-Bell (1968) was 

undertaken with the specific purpose of determining the 

effect of imposed stirring on a rotating fluid. In 

view of Scorer's hypothesis it is interesting to record 

that they observed a vorticity expulsion from the stirred 

region. 
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CHAPTER 

Simple Models of the Gurgitatioi 	otating Fluids 

A naive theoretical model is developed in the first 

section of this chapter to determine the form taken by 

the Reynolds Stresses set up by forced gurgitation of 

a cylindrically rotating fluid. An interpretation is 

given of the form of the expression derived for the 

(r,G) component of the Stress tensor and a study of 

certain facets of this expression is undertaken in the 

succeeding section. In the third section we seek to 

elaborate upon the distinction between forced and free 

gurgitation and some general comments are made regarding 

the effect of free gurgitation on the mean velocity field. 

I. 	Reynolds Stresses for a simple model of Forged 

Gurpitation  

An approach based on the Kinetic Theory of Gases 

is used to calculate the Reynolds Stresses on the mean 

flow of a cylindrically rotating, homogeneous and 

incompressible fluid which is forcibly stirred. The 



stirring is assumed to induce fluid elements to detach 

themselves repeatedly from the mean flow with randomly 

distributed velocities, travel with those velocities 

for a short eddy convection time (r) , and then integrate 

themselves into their new environment. This approach is 

a consistent extension of Prandtl's Momentum Transfer 

hypothesis to rotating flows, and is based on the same 

assumption that the motion of the turbulent elements is 

unaffected by the associated transitory pressure gradients 

The present study has at most a heuristic value:- if 

certain observed effects of turbulent mixing can be 

interpreted in terms of this naive mathematical model, 

then one has a better chance of understanding the actual 

physical process. 

We denote the velocity components of a fluid element 

at the time of detachment from the mean flow by (10,V(r)-i-vt,W) 

where V(r) is the mean swirl velocity and (u',v',w1) 

are the turbulent velocity components in cylindrical 

polar coordinates (r,Q,z) . We assert that u' and v' 

are uncorrelated so that the odd moments 1.11 , u'v' 

71.75  , 1112vt etc. vanish at the time (t-ti) of 
detachment. The Reynolds Stress (tire) is given by the 
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correlation of the radial and azimuthal turbulent 

fluctuations at the later time (t) 

i.e. 	rQo uivt It 

Consider a turbulent element that is detached from 

the mean flow at N(r-Ar, 0, 0) and travels to P(r,0,z) 

in the time T . Then the velocity of the element at 

N and P is given by, 

Velocity at N (Ay = 	(Vievi), v0] 	(1) 

Velocity at P (vp) = [ utcos/ + (VN+v-I)sin/ 

-utsin/+(V+v1 )cosyS 

and we have the following expressions for (tk r) and 

sir4 

(A r) = 	1—Cosjo) + 11!  T 

rsin/ = (VN+v')T 
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For mathematical convenience it is assumed that over a 

radial distance comparable to a typical length scale of 

the mixing process the mean swirl velocity has a linear 

radial variation, so that we may write, 

av 
VN  — v 	( 4 r) N P 	Dr (5) 

whet.e VP  is the mean swirl velocity at P . 

Thus the expression obtained for the Reynolds stress 

will be strictly valid only for a fluid in solid body 

rotation. This t=cnzionnt physical limitation is not too 

restrictive in the present work since our main interest 

lies in examining the possibility of a body of fluid 

moving away from a state of uniform rotation due to the 

interaction of the fluctuating motion and the mean velocity 

field. 

Algebraic manipulation of relations (3) and (4) 

with VN  represented by (5) yields the following equation 

for cos4 . 

El+e2]cos2/ 	2e[64.y-e(1+p)] cos/ 

+ [(8+Y)2-(1-62)-2e(84-y-pE)-26p(84y4pe)] = 0 (6) 
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UI T 	VIT where p 	, y = 
V 

5 = (-1,2) c  
c  = 

(-Z-1)T 

The solution of equation (6) for cos / may be written 

as follows, 

[1+6 ]cos / = 
	

[(8+y)- (1+P)] 

+41—(84-y) 2+2c(8-1-y—pc)+2ep(8-1-y2pc)) (7) 

We now make two further assumptions regarding the form 

of the eddy mixing process. First the mixing is assumed 

to be strong so that the eddy convection time (T) is 

much less than the period of'rotation of the mean flow, 

i.e. 	e 	87 << 1 	 (8) 

Secondly the typical horizontal length scale of the 

turbulent fluctuations is taken to be considerably smaller 

that the mean radial distance of the eddy during its life-

time. Hence we have, 

R 	and 	y << 1 	(9) 



, )2v,T3) -7,1 	fui 2I -7 	- "
1 1 4.  ,82, 	0 ( T4 ) 	(11) 

r 
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These last two inequalities imply that our theory will 

not be applicable to the core region of a cylindrically 

rotating fluid. 

Inequalities (8) and (9) enable us to rewrite (7) 

in the following unambiguous form, 

cos / = 14-e2 	2(5+y) 2 ep(84y) 	0(T4) 	(10) 

This relation can be used to obtain expressions for 

(4r) and sin / in terms of 3 , y 5 and e . On 

substituting the resulting expressions in (2) we obtain 

the following equation for vp  = (up,vp,wp) . 

up  = + 	s.2  [e 	2812  - 2e181  + (uIT)  ir J 

+ ivIT) [281  + 6ct.2 	-lc 8 12 21 13 !co T2 
r 2 r I 1 

T 2 1 
2 1 6-2T2) 	E 5 

r2 1 1 

(v' ti) 
	1 

2 	 2 -1 iutv'T  r5 1 	r  - e1  ] 
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vP 

	

	 1 2  = utTi [-81  - 63  / 1'2 	21 1 5 2  • e1811.2  + (1.1  s.) 
▪ El ]  

• [elk 	1/  + 	(0) si] 

2 1 2 + [V +vf 	(u? T) E 	-FE T2-
2  - 071 T -8 1 	1 	2 1 	r 1 

 

(v f s.)2 utT3) 	e 8 + (u1v1 T3) 
2r2 

- 	+{ut(vl 

r e..3cr2 	fe1812,r2 	0(T4)  

wP  = 

1 	, 	I02-0 T31 	e2  
2r2 -1 - I 	' 	 2 1 

(13) 

with el =tie 	 = 	I5  • 

To determine the Reynolds stress (tiro) at the point 

P we must calculate the correlation (77 1. Recalling 

that the odd moments of lit and v' vanish at time 

(t-T) and stipulating that there is no net radial mass 

flux (i.e. up  = 0 ) , we obtain the following expression 

for the stress from (11) and (12). 



(ur )2T  
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UpVp = - TrQ 

'I) + 11FrITI(2.51 ) 

(U0)2(v,)2T3 	
2 
 (4E1461 

r 
) -1 (vt)4T3  

+4 (111 ) T5  }[-2q + 2 elq -I- 2481] 

2,3 1[_. 253 _4E1E4 2e,78  

+ 	 (14) 

If the stirring is assumed to produce an isotropic mixing 

process (i.e. (u')2 = (v')2 ) then the Reynolds stress 

(tiro) may be written thus, 

rG = p4LITG — frG  - 7  2( 2.T -3K,G )] + o(T4 ) (15) 
r 

where IL , v and 72, represent the eddy coefficients 
) (1,1 1 )2T ),I (ut) 2 3 	and f (u1) 4T 	respectively, and 

(4'11 (LY- + Y) ar r is the axial component of vorticity for 

the flow 
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8V V whilst fr,g 	(TE -- 7) is the (r,Q) component of the 

deformation tensor for the flow. 

It was noted in Chapter 5 section II that assumptions 

invoking the symmetry, isotropy, homogeneity and linearity 

of the stress tensor formed the basis of the derivation 

of the constitutive equation of a Newtonian fluid. 

Viewed in comparison with these assumptions the form of 

the Reynolds stress derived above has several interesting 

features. Wasiutynski's result regarding the effect of 

anisotropy on the form of the Reynolds stress is again 

evident in the terms of order T in the expression (14) 

derived above. Moreover the term'of order T3  indicate 

the manner in which inhomogeneous and non-linear effects 

enter the expression (15) for the Reynolds Stress. 

Confining our attention to the case of isotropic 

mixing, it is possible to offer the following interpretations 

of the two types of T3 terms in equation (15). The 

term involving v can be regarded as contributing to a 

reduction of the eddy viscosity p. to 0 where, 

= [p. - 2v f21,17:- 

Inequalities (8) and (9) ensure that p: is positive 
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within the range of validity of the present theory. If 

we assume that centrifugal effects cause a fluid element 

that is displaced radially in a swirling flow to oscillate 

about its original radial location, then to a first appro-

ximation the frequency of this oscillation is give by 

1
/2 

{224 T} 	Hence we are led to attribute the reduction 

in the effective eddy viscosity to a tendency of the 

turbulent elements to oscillate about their original 

radial positions due to centrifugal effects. This inter-

pretation suggests that centrifugal effects contribute 

to the Reynolds stress even in an isotropic mixing process. 

We may also compare this interpretation with the well-known 

damping effect of a gravitationally stable density 

stratification on the turbulence in a mean horizontal, 

shear flow. In the latter situation the relevant frequency 

would be the Brunt-Vaisala frequency. 

The inhomogeneity of the term involving -)2 in 

expression (15) for the Reynolds stress is certainly a 

novel feature. An illuminating interpretation is to 

regard this term as a couple stress, whereby adjacent rings 

of fluid exert a torque upon one another. It is clear 

that, for a fluid possessing such a stress form, solid 

body rotation is a permissible steady state only if ri is 



1 20. 

not a function of the radial distance, for then adjacent 

rings of fluid exert equal and opposite torques upon 

one another. 

The nature of the problem examined here is such 

that the Reynolds stress is inherently symmetrical, and 

this serves to distinguish the above pseudo-couple 

stresses from those that occur in conjunction with an 

anti-symmetric stress tensor in the study of certain 

special fluids. 

II. Physical Implications of the Reynolds Stress 

In this section we examine some of the physical 

implications of the particular form of the Reynolds 

stress derived in the last section. 

We begin by calculating the time development of the 

mean swirl velocity of a cylindrically rotating flow, 

confined within an annular region, when the flow is 

subjected to a fully anisotropic mixing process. The 

flow is considered to be in solid body rotation initially, 

and the eddy viscosity is assumed constant. In view of 

the frequent allusions in theoretical studies to the 

possible importance of anisotropy in the mixing motions 
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of rotating fluids it seems worthwhile performing such 

a calculation. 

The azimuthal equation of motion of a cylindrically, 

rotating turbulent fluid is given by, 

air 	1 • a 	0 -- -7  -r  (r  tiro) 
Pr r  

(16) 

and for a fully anisotropic mixing process we have, 

rG 
= p (21 v )  

or 7  

where If = (u')2T is assumed constant in the present 

problem. 

To trace the time development of the mean swirl 

velocity (V) from its initial state of solid body 

rotation we require the solution of (16) subject to 

boundary conditions imposed at the inner and outer 

radii, a and b respectively, of the annular stirred 

region. Regarding the fluid as inviscid in the unstirred 

areas then the boundary conditions must stipulate that 

no angular momentum can be transferred out of the stirred 

regions, 
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i.e. r ar 6  (rV) = 0 at r = a and r = b 	(17) 

We rewrite equation (16) as follows, 

r 8r 
(r  p6.7  (rV) ;-f (r1T) = 	 (18) 

This equation is analogous to the Heat Conduction 

Equation for the temperature, when the temperature is 

merely a function of radial distance and time. The 

angular momentum (rV) of the present problem corresponds 

to the temperature and K takes on the role of a 

thermometric conductivity. 

The solution of (18) subject to the boundary 

conditions (17) is [see Carslaw and Jaeger § 14.8, 

example IV], 

b 
V 	2 

(77)Ca 
r' f(r dr' 

0,0 
+ E (  1  exp 

*4 	 n7 • 
n=1 

-4(an)2t1.[J1(ban) ]2Co(r a
n
) 	2nrIf(r1 ) 

a 

Co/ (rla
n 

 )1dri 	(19) 
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where the 	(an) are the positive roots of the equation, 

Ji(aa) Yi(ba) 	Yi(aa)Ji(ba) = 0 

whilst 
	

F(an) = [Ji(aan)]2 	[Ji(ban)]2 

The conventional notation for Bessel Functions is being 

used above, f(r) is the distribution of the angular 

momentum at the time t = 0 , and is given by, 

f(r)  _ sz 2 

where Q = the uniform angular velocity of the initial 

state. 

It can be shown that 

r3Yo(ran)dr 
a 

1,2 2 
= 2(g—) [Y (P ) 	(ign-i)Y1(Pn)] pn  o n [Yo(kPn) 

(2k n k2 	 (143n) 

where 	ban = Pn. and k - a b 
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A similar result can be derived for the required 

companion integral involving Jo(ran) . 

Using these results we may write (19) in the following 

form, 

(rV) 	 (132.1.a2) 

Cat) 

-FTC 2  (q) z exp f -Pn  2(0 N i rX2(1,Q .11....71-2(0 )
1-1. 

1"n)•  Lul`"Pn/ ul`Pn" 

[0-0(Pnr/b) Y (kPn) 	Yo(p r/b)Ji(kP )].0'(k•Pn) (20) 

where C' (k,= 2Y1(kPn) [b2J0((3n) 	a200(k13n) + 

(iff P 	r)ji(kkX)] 	2J1(kk)[102Y0((3n) 

(kPn)  r2-)Y (kp 1 n 

and = Kt 
b2  9  

The radial distribution of angular momentum was calculated 
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1 
)
N  for a fixed value of k (----- TU and various values of 

¶ . The calculation proved tractable because of the 

rapid convergence of the series in expression (20) for 

moderate values of T . The results are given in Pig.(5), 

( 
where values of the non-dimensional quantity-g have 

lIb' 
been plotted against (r/b) . As might have been anti- 

cipated from consideration of the initial state and the 

boundary conditions, the initial redistribution of 

angular momentum towards the final state proceeds most 

rapidly in the outer region of the stirred annulus. It 

is evident from Fig.(5) that a substantial proportion of 

the redistribution has been completed in the time T = 0.1. 

From the results obtained it is possible to estimate 

the pressure difference (4P)r  across the annulus at 

the time r . Calculating this pressure difference using 

the relation, 

(4P),r = 	p 	(rv)f dr 

a 

we obtain, for k lu ' 
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(6P) 	2( prt2b 2) 

(4F)11 . 03 
	7.4(pieb2) 

(Ap )1, 4.0 4  ..81n. ci
1 

2b2)  
k 

For values of 

p = 10-3  grm.cm-3 	0= 3.5 x 10—  sec.-1  and b = 200kms. 

the pressure differences at /4  equals 0 , 0.03 and 

infinity are approximately 0.2 3.5 , and 5.0 millibars 

respectively. 

These calculations are of particular interest 

because of Scorer's suggestion that the incipient hurricane 

could be created by an angular momentum redistribution 

similar to the redistribution which has been time traced 

in the above calculation. It is felt that, despite the 

major assumption that the eddy coefficient is constant, 

the present mathematical model may be taken to represent 

the gross features of the pressure drop and time 

development of Scorer's 'Hurricane Spawning' mechanism. 

For cumulonimbus stirring of the atmosphere we would 

have the following typical values, 
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12 1 	3 metres/sec 	and ¶ ^/1.8 x 103  secs 

so that K 	104  (metres)2/sec. 

Thus using the results noted above we deduce that 

a meteorologically significant pressure drop of 3 mb, 

corresponding to T = .03, would occur in approximately 

two days. These considerations, although lending support 

to Scorer's conclusions, do not of themselves substantiate 

the anisotropic nature of the Reynolds stress. 

The value of the present heuristic theory for the 

Reynolds stress due to forced gurgitation must be judged 

on its ability (or inability) to explain observed effects. 

We will therefore attempt to interpret the experimental 

results of Gough and Lynden—Bell (1968) using this theory. 

In essence their experiments involved the gurgitation 

of a cylindrical region of water which was initially 

rotating with an uniform angular velocity about the axis 

of the cylindrical region. The apparatus comprised of 

a beaker, containing the water to be stirred, floating 

at the free surface of a larger, co—axial, water contaiing 

vessel, which was rotating with the same angular velocity. 

Gurgitation was brought about by the release of gas bubbles 

from lAlka—Seltzerl tablets immersed in the water of the 
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inner beaker. An increase in the angular velocity of 

this beaker was observed shortly after the commencement 

of gurgitation, and the experimenters concluded that 

vorticity, and with it angular momentum, was being 

expelled from the stirred liquid. 

Typical order of magnitude estimates of the large 

eddies produced by the bubbles were, 

T ^d 1 sec , 	u' 	1 cm/sec. 

whilst the inner beaker had a radius of 10.2 ems, and 

an initial angular velocity of (7  2n  75) sec-1. Hence 

characteristic values of the dimensionless parameters 

of the theory presented in section I are, 

(e 	8) 	0.4 	 (21) 

and the inequalities given in (9) for p and y indicate 

that the theory can not account for a core region within 

a distance of approximately one centimetre from the axis 

of rotation of the liquid. 

An interesting interpretation can be given to the 

restrictions imposed on the validity of the theory by 

the inequalities expressed in (8) and (9) for a 'bubble 
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stirring' source of forced gurgitation. Assuming that 

the eddy lifetime is not less than the lifetime of the 

generating bubble, then 

where h is depth of water through which the bubble has 

to rise. 

Hence 8 must be such that, 

> 122h  

?" h 
> (7 

o
)(7—) 

where ro is the initial radial distance of the bubble 

from the axis of rotation. 

fl ' I ( , ow214/2 
` g l`r 

mately the ratio of the time the bubble takes to reach 

the surface of the water to the time it would take to 

approach the axis of rotation. Hence the restriction 

that 8 << 1 implies that the theory is not valid if 

the bubbles travel an appreciable radial distance during 

their ascent through the fluid. 

Now may be regarded as approxi- 
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In this sense 8 is also one measure of the 

anisotropy of this particular stirring mechanism. With 

8 >> 1 the anisotropy would certainly tend to create a 

motion akin to a potential vortex in the stirred fluid. 

This tendency is cogently illustrated in the experiments 

of Turner and Lilly (1963). 

In Gough and Lynden-Bellts experiments we have the 

following characteristic value, 

- ..a2h 	o 4) 
	

(22) 

so that the anisotropy is not expected to dominate the 

mixing process. More significantly, at the commencement 

of stirring the anisotropy would mean that the inner 

beaker would be subjected to a deaacelerating torque, 

and this deaaceleration would be several orders of 

magnitude smaller than the experimentally observed 

acceleration. Hence we will assume that the mixing is 

isotropic, and calculate the initial torque (T) exerted 

on the beaker using equation (15). 

  

4 ; T = (bit) p( (u 

N 18 cm/dyne 
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where d = depth of stirred fluid. 

This torque arises from the radial stratification of 

the eddy coefficient / . Since the moment of inertia 

(I) of the beaker and its contents was 7000 grm/cm2, 

the initial acceleration is given by, 

T  = 2.6 z 10-3  sec.-2 
	

(23) 

This result compares favourably with the value 1.4 x 10-3  sec.-2, 

which was the acceleration observed experimentally when 

the mixing due to the gurgitation first became effective. 

This successful prediction of the initial 

acceleration suggests that further attention be given in 

the study of forced gurgitation of rotating fluids to 

the possible existence of inhomogeneous terms in the 

Reynolds Stress. 

We also note that the model examined in the first 

section of this chapter gives the following expression 

for the aximuthal eddy flux of a scalar quantity / = /(r,t) 

77; = 	[P.02  4; 	(- ) IT-2 v 	(;)] . 	(24) 

Thus it is seen that rotation can produce an azimuthal 

flux of the scalar quantity / . This effect was noted 

by Welanderq1966). 
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III. A note on Free Gurgitation 

A distressing feature of previous studies of mixing 

processes in rotating fluids is the failure to adequately 

distinguish between forced and free gurgitation. Some 

of the early theoretical treatments of the general circu- 

lation of the earth and the sun may be criticised in 
lespect- 

this , and again only a nebulous distinction is 

drawn between the two mechanisms in the work of Scorer, 

and Gough and Lynden-Bell. In this brief note we argue 

that to regard the self-induced thermal stirring of a 

rotating fluid as a forced gurgitation deprives the motion 

of its quintessential properties. 

Whereas forced gurgitation was regarded as being 

set up and maintained by the steady input of mechanical 

energy to the fluid by an external agency, there may be 

a transient free gurgitation of a thermally active fluid 

which is not associated with the input of external energy. 

In the latter case the motion is driven directly by the 

release of potential energy as the fluid moves away from 

an initial thermally unstable flow configuration, and 

the motion would persist until the fluid attained a new 

equilibrium state. Sustained free gurgitation could be 
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achieved by the input of thermal energy by a conductive 

or radiative process. 

An appreciation of the interplay of rotation and 

thermal stratification in a transient fluid motion may 

be obtained by consideration of the 'potential vorticity' 

of fluid elements. Ertel OW) showed that if a scalar 

quantity s = s(x,y,z,t) can be assigned to each element 

of fluid such that 

TT(s) = 
	 (25) 

where Q = Q(x,y,z,t) is the rate of generation of s 

per unit volume and time, then 

(26) 

where O and v are the vorticity and the coefficient 

of viscosity respectively of the fluid, and the standard 

notation for symbols in cartesian 

used in both (25) and (26). 

Equation (26) shows that if the fluid is 
0.fla  

the potential vorticity, 

quantity for each fluid element if 

coordinates has been 

inviscid (v = 0) 

, is a conservative 

is also a conservative 
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quantity. For adiabatic and pseudo-adiabatic motion of 

an ideal gas, s may be taken to represent the potential 

and the equivalent potential temperature, 9 and QE  

respectively, and Q may then be set to zero. Again 

for an heterogeneous, incompressible and inviscid fluid, 

for which the density remains constant along the fluid 

trajectories, equation (26) becomes, 

-rt[t.7.Vp/ = 0 
	

(27) 

We restrict our attention for the moment to flows 

for which equation (27) is valid. Now let us consider 

the following simple flow configuration: A fluid is at 

rest relative to a frame of reference rotating with uniform 

angular velocity 12 about the vertical axis through r = 0 

and is confined within an annular region (a < r < b) 

bounded above and below by horizontal walls at z = 0 

and z = (b-a) , The fluid is assumed to possess a 

gravitationally unstable vertical density stratification 

(13) at the initial instant. 

Potential energy is released as the fluid moves away 

from this unstable equilibrium configuration and this 

energy must reappear as kinetic energy of motion. It 
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follows from equation (27) that if the fluid could move 

to a state of purely horizontal motion with an inverted 

stable density stratification (-p) then the flow vorticity 

would also become reversed to 	. Considerations of 

the conservation of energy and angular momentum of the 

flow indicate that this is not in general a permissible 

flow state. Nevertheless this example is indicative of 

the important effect rotation has on thermal convection 

in a fluid. 

Again let us consider the readjustment of the same 

fluid from an unstable baroclinic configuration. Let 

the fluid possess a radially decreasing density distri-

bution, a stable vertical density stratification and be 

in geostrophic equilibrium at the initial instant. The 

'baroclinic eddies' which are formed derive their energy 

from the potential energy associated with the horizontal 

density gradient. We assume that they in turn convert 

their kinetic energy into that of the mean zonal motion 

and that a new purely azimuthal geostrophic motion is 

attained in which the vertical stability has been increased 

everywhere. The it follows from (27) that the value of 

the vertical vorticity must be decreased. If this motion 

was treated as a forced gurgitation of a homogeneous fluid 
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we would have had to invoke the concept of an anisotropic 

eddy viscosity. 

As a free gurgitation problem Scorer's 'Hurricane 

Spawning Mechanism' must result from the time development 

of a portion of the atmosphere according to the equation, 

d r 	G-  
= 
	 (28) 

where M is the change of the potential vorticity due 

to diffusive and radiative processes. 

If the air is initially at rest relative to the earth 
04)E then for free gurgitation to take place (Tr) must be 

negative and the air must be saturated somewhere in the 

fluid. 

One of the most controversial aspects of Scorer's 

hypothesis is the explicit suggestion that the small 

scale cumulus and anvil type cloud convection can 

directly partuiate the larger scale hurricane motion. 

The latent energy associated with the water vapour 

content of a meso—scale region of the tropical atmosphere 

is certainly sufficient to spawn an incipient hurricane. 

However the magnitude of M  in equation (28) is difficult 

to assess in cloud convection situations, and hence there 
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is no means of directly determining the efficiency of 

such a gurgitating motion. Nevertheless the possibility 

of parturition of the form suggested by Scorer is not 

ruled out. 

To conclude our discussion of gurgitating  motions it 

would be instructive to seek experimental and/or theoretical 

evidence to corroborate 'the principle' advanced by 

Scorer that continued gurgitation of a fluid would result 

in the fluid moving towards a neutral state 1Yetween a 

stable and an unstable flow regime. Below we examine 

the results of various studies with this objective in mind. 

For the flow between two horizontal, non-rotating, 

parallel plates, with the lower plate maintained at a 

higher temperature than the upper plate, it has been 

noted experimentally that at highly super-critical 

Rayleigh Numbers the mean temperature of the interior 

fluid assumes almost a constant value,, and the temperature 

gradients are confined to thin boundary layers at the 

two plates. In the analogous case of the supercritical 

swirling flow between two concentric cylinders, with th 

inner one rotating and the outer one stationary, it has 

been observed that the gradient of angular momentum is 

confined to boundary layers on the cylinders. 
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We may interpret these observations in terms of 

'the principle' as follows:- If the vertical (radial) 

gradient of temperature (angular momentum) is negative 

then the flow is unstable to exchange processes which 

conserve temperature (angular momentum) and the turbulent 

motion can gain energy from the interchange. Large 

eddies, which are the least subject to loss of energy 

due to dissipative effects, could then traverse the 

fluid region. The interior fluid attains a state of 

'non-diffusive' neutral equilibrium and the unstable 

gradients are confined to the neighbourhood of the 

boundaries where eddies sufficiently small to dissipate 

the energy exist. 

If in the cylinder experiments the inner cylinder 

is kept at higher temperature than the outer so that the 

temperature distribution has a stabilizing role (c.f. 

Chapter 2) then experimental results indicate that the 

interior fluid is characterized by constancy of both 

angular momentum and temperature. Thus the motion acts 

to reduce the stabilizing effect of the density gradient 

in the interior fluid. 

Similarly solid body rotation of the two parallel 

plates about a vertical axis in the gravitational 
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convection problem also imposes an additional constraint 

on the motion. The effect of the rotation, acting via 

the Coriolis forces, on thermal circulations in a 

vertical plane is to induce horizontal circulations. 

These circulations have the same energy source as the 

convective circulations and they too must be maintained 

against frictional dissipation. In a sophisticated 

mathematical treatment of this convection problem 

Veronis (1959) showed that the finite amplitude motions 

generate a non-linear vorticity which tends to counteract 

the vorticity generated by the imposed constraint of 

rotation. 

Further evidence of the tendency of the fluid to 

react to an imposed constraint by generating internal 

motions to counteract the external restraint may be 

inferred from the results of certain dishpan experiments 

undertaken by Fultz et al. (1959). In the Hadley (axi-- 

symmetric) flow regime they state that an analysis of 

the free surface velocity field shows that the fluid 

attempts to attain a constant angular momentum profile 

on the portion of the surface removed from the bounding 

cylinder. This is in accord with the setting up of a 

neutral state in the interior fluid characterised by the 

potential vorticity r.vpj approaching zero in that region. 
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CHAPTER 7 

Tiri nen-  of 	 ticitPatternsieDeveloi 

I. 	Introduction and Theorem 

The occurrence of vigorous, swirling flows in geo-

physical fluid motions has always aroused the aesthetic 

and practical interest of fluid dynamicists. Innumerable 

mechanisms have been suggested for the generation of 

such motions. In this study we confine our attention 

to what is perhaps the conceptually simplest mechanism. 

Two dimensional flow of a homogeneous, incompressible, 

inviscid fluid is considered, and we examine the possibility 

of the advective development of a strong, swirling motion. 

Motion of this type is governed by the vorticity 

advection equation, 

91.t  + u Tx  + v 	= 0 

where 	= 

and 	1 is a stream function such that, 
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u =
Y 	

and 
	v = 	 (3) 

To ascertain the ability of certain initial distributions 

to produce vorticity concentrations, i.e. strong swirling 

motions, during the evolution of the flow, we require 

the solution of equation (1) for T as a function of 

space (x,y) and time (t) for a given initial distri- 

bution. 

Strong advective development is essentially a non- 

linear process and we will therefore have to resort to 

a numerical technique to solve equation (1). A modified 

form of this equation is employed in numerical weather 

forecasting so that techniques for obtaining its solution 

are highly developed. These methods are based on finite 

difference techniques and are not well suited to follow 

the development of strong shear layers since the 

numerical procedure introduces a pseudo-diffusion effect. 

Moreover our prime objective is to obtain a better 

physical understanding of advective vorticity concentration 

and not necessarily to obtain the best possible forecast 

of the time development of the motion. 

Bearing these comments in mind we will represent 

the motion by discrete vortex elements, i.e. the 
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continuous vorticity distribution is approximated by a 

finite set of parallel rectilinear vortex filaments of 

infinitesimal cross-section and finite strength. This 

representation may be formalised mathematically as 

follows:- 

Assuming the fluid to be unbounded the solution of 

(2) may be written, 

(x,y,t) = 	 G(xly; xt,y1 )!r(xl,yl l t)dx' dy' 	(4) 

where G is the Green's function 

1 G = TT  log r 	 (5) 

with r2 = (x-x')2 +(Y Y1)2  

Replacing the continuous vorticity distribution (T) 

by a finite set (n) of point vortices, then the discrete 

analogues of (4) and (5) are, 

i 
j=1 
i/j 

1. log r.. 
0 	10 

(6) 
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with r?. = (x- .x j)2  + Y-Yj)2  (7) 

The point vortices follow the motion materially and their 

velocities are given by, 

dxi  
• 3 

i/j 

Y.-Y- 
(8) 

rij 

and 
dyi  aw, 	x.—xi  

= 777 
= 	

2  ' 
_L i/j  

(9) 

Equation (1) has thus been replaced by a set of 2n 

ordinary differential equations, and these equations 

are quite amenable to numerical integration. 

Introducing an energy function, 

H = 	ti 1/ j  log rij 
	(10) 

> j 

then we may rewrite (8) and (9) in the Hamiltonian form 

dx. _ aH 
Pi U7—  — '6771 
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and 
dv. all 

:'± 	— ay. (12) 

Kirchoff showed that for the system of equations (11) 

and (12) the four quantities 	2:11i  xi  , 	Yi 

and 17 tli(14 	yD are conserved. These quantities 

correspond to the energy, linear momentum and angular 

momentum respectively of a system of point vortices, 

and some important consequences may be deduced from their 

invariance. In discussing these consequences we will 

assume that 	(i = 1,n) is positive. 

The energy function H involves the distances 

separating the point vortices. Since H = constant, it 

follows that the approach of one pair of vortices must 

be accompanied by a recession of other pairs. Again 

.(x 	—\ the conservation of 	u1 ? + J?) implies that if a 44 '\ 	l 

concentration of point vortices develops in some region 

during the flow evolution then there must also be an 

accompanying divergence of other vortices away from 

this region. We may note that the compensating motion 

could be confined to the removal of a few weak vortices 

a large distance. For symmetric motion, which will be 

our chief concern, the invariance of both 1: 	xi  and 
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I t . 	IT . '1 1 follows from the symmetry alone. 

The commonest example of the advective development 

of strong swirling motion is the rolling up of an 

uniform vortex sheet into regularly spaced vortices. 

Mathematical treatment of such a motion has been mainly 

restricted to numerical studies of discrete arrays of 

point vortices with a uniform one dimensional distribution 

of these being assumed to represent approximately a 

continuous vortex sheet. 

Investigations undertaken by Birkhoff and Fisher 

(1959) and Van der Voreen (1965) showed that an initially 

one dimensional array of point vortices perturbed 

sinusoidally do not roll up smoothly. Van de Voreen 

also showed that the round, off error in the numerical 

computation offsets the better representation obtained 

by increasing the number of point vortices taken to 

approximate to a continuous vortex sheet. The round 

off errors generate microscopic disturbances which amplify 

rapidly and swamp the macroscopic rolling up process. 

These disturbances may be a manifestation of a physical 

instability of the point vortex system that has been 

catalysed by round-off errors. 
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In view of the apparently smooth rolling up of 

vortex sheets in natural phenomena, the results of the 

studies mentioned above indicate that point vortex 

representation is not a satisfactory method of simulating 

the motion of a perturbed vortex sheet. Nevertheless 

these studies provide us with an useful insight to the 

study of the advective development of swirling motion, 

and in the next section we again pursue this line of 

investigation. 

II. Numerical Study of the Concentration of Point Vortices  

Numerical integrations of equations (11) and (12) 

were performed to trace the time development of the initial 

distribution of point vortices. The integrations were 

carried out by means of a second order Runge-Kutta method 

with the time step chosen so small as to give no appreciable 

change in the motion when it was halved. A check was 

also kept on the magnitude of the conservative energy 

function H , and its percentage change was found to be 

less than 10-2  in all the experiments. 

Kirchofffs fourth conservation 

) 	

property, 

1 
54 1).(x+17-?\  = constant, suggests that an infinite vortex 
'ff"  4  	1 
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sheet of uniform strength may not be highly efficient in 

engendering a concentration of point vortices because of 

the necessary divergence of other point vortices away from 

the region of concentration. 

Here we present the results obtained for two simple 

types of initial distributions of point vortices, both of 

which it was anticipated would effectively produce point 

vortex concentrations. 

Type A. 

A set of numerical experiments was performed to trace 

the evolution of a vortex sheet of non-uniform strength, 

the vortex sheet being represented by point vortices of 

varying strength placed at equal distances along the x 

axis (say) at time t = 0. 

Amolthe forms chosen for the variation in strength 

(+0) of the sheet was the following, 

W = 0(1 + cos 4 -T) 
A 

= 0 

for /xi < f 

for ha > 
(13) 

The strength (10 of an individual point vortex at 

x = 3 (say) was either (a) read off directly from equations 
3.5 

(13) or (b) taken to be the integrated value I 	W dx . 
2.5 
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-J?igures (6) and (7) record the time development of a 

half strip of the vortex sheet with the above form of 

vorticity distribution and the strength distributions 

(a) and (b) respectively. Similar results were obtained 

for other analogous distributions, and the more striking 

qualitative features of the results are discussed below. 

There is an initial period of concentration (see 

Figures 6a, 6b, 7a, 7b) in which the strong inner 

vortices perform fairly tight inward spirals, whilst the 

weaker outer vortices traverse a slightly outward spiral. 

However the approach of the two central vortices, one in 

each half strip, during this process induces these 

vortices to accelerate in their motion around the centre 

[(x,y) = (0,0)] . The point vortex representation of 

the vortex sheet deteriorates rapidly at this stage. 

On further development of the motion the central vortices 

arrive at a location dominated by the influence of the 

other 'half strip' of the vortex sheet, and at this 

stage the innermost vortices begin to diverge away from 

the centre, although the rolling up process continues. 

(see Figures 6c, 6d, 7c, 7d). The transient concentration 

process that has been isolated by these simple experiments 

merits further investigation. 
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Type B. : 

The previous set of experiments were repeated with two 

additional vortices placed symmetrically at (x,y) = 

(,(r,-m) and (41 m) , where f and m assume prescribed 

positive values. A typical initial distribution is shown 

in Figure (8a). Only half of the symmetrical distribution 

is illustrated. During the development of the motion it 

was hoped that the new vortices would continuously aid 

point vortex concentration, first by directing the 

inner vortices towards the centre and later by dragging 

the weak outer vortices further away. 

The results of the numerical computations indicate 

that the motion of the vortices was irregular and thus 

the concept of vortex sheet representation has to be 

abandoned in this case. Nevertheless the motions are 

of intrinsic interest and the results obtained for the 

development of the distribution illustrated in Figure 

(8a) are shown in the succeeding diagrams. A qualitative 

feature that was common to all Type B experiments was 

the splitting of the point vortices into three groups, 

an inner group comprising of the strong vortices centred 

around the origin and two outer groups of weak vortices. 
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