UNIVERSTITY OF LONDON
 IHPERILI COLLEGE OF SCEBHCE SABD THCHHOLOGY
 DEPARMAENT OF ELECHRTCAL EMGINEERTHG

THE AHALOGUE AND DIGITAL CONTROL OF HIGH VOITAGE
D.C. TRUMGMISSION SYSTEAS UNDER FRUET CONDITIONS

Asvini Kumar David, B.Sc. (Eng).

Thesis submitted for the
Degree of Doctor of Philosophy
in the Faculty of Engineering

Iondon, September, 1969.

ABSTRECT

H.V.D.C. transmission is now established for point to point high power transmission over long distences. The extension of d.c. techniques to more complex systea inter-connections is predicated on cheaper terminal equipment, the fuasivility of the multiteminal connoction and the developnent of d.c. circuit breakers or other fault control methods. In the work described here an h.v.d.c. sinulator has been used in conjunction with a process control type computer to investigate the control and behaviour of multiterminal h.v.d.c. systems under fault conditions.

The simulator in the Imperial College Power Systens Laboratory was equipped with reliable thyristor pulsing units and a complete set of converter controls. These controls included an entirely new method of c.e.a. control having many advantages over the conventionel 'consecutive control' techniques. A three terminal teed systen was successfully operated.

A PDP. 8 computer programed to function as a central fault controller was linked through D / A and direct-digital channels to the simulator; a group of electronic fault control circuits was installed at each converter terminal. The study has, in the main, been confined to d.c. transmission network and converter faults. The purpose of the central fault control is to obtain good fault discrimination ensuring minimum outage subsequent to fault. The programe is adaptive in that control is ensured as the network configuration alters subsequent to fault isolation. Results of the fault control tests on the simulator are included.

ACKIOULEDGEHENIS

The work presented in this thesis was carriod out under the supervision of Hr . B. J. Cory, B.Sc. (Eng)., A.C.G.I., C.Eng., F.I.E.E., of the Department of Electrical Engineering, Imperial College of Science and Tcohnology, University of London, whose constant encouragement and guidance is gratefully acknowledged. The author also wishes to express his gratitude to Mr. K. Patel of this Departront for his assistance in the design of electronic circuitry and to Hr. H. Hardie for general assistance in the laboratory.

The finenciol assistance of the Association of Comonwealth Universities by the award of a Comonwealth Scholarship and of the C.B.G.B. in raaking available funds for equipuent are also greatly appreciated.

COMTEMTS

Abstract 2
Acknowledgenents 3
List of principal symbols
CH:PMER 1
IT.V.D.C. in the A.C. Power Syster
1.1. Preamble 10
1.2. H.V.D.C. in the British Grid 10
1.3. Scope for Multiterminal D.C. in L.C. Grids 12
1.4. Autonatic Control of i.C. and D.C. Systems 14
1.5. Transaission Faults on Multiterminal H.V.D.C. Systems 16
1.6. Converter Faults in Fultiterminal H.V.D.C. Systems 18
1.7. Perspectives and Scope of this Nork 19
1.7.1. Perspectives 19
1.7.2. The h.v.d.c. simulator 20
1.7.3. The FDP-83 computer 21
1.7.4. The fault control progranme 21
1.7.5. The multiterminal system investigeted 22.
1.7.6. Enumeration of tests conducted 22
CRIPTRR 2
Simulation and the Simulator
2.1. The Scope of T.V.D.C. Hodel Studies 25
2.2. Linitetions of Modolling 25
2.3. The effect of crror in R / L on the Extinction Angle of Inverters 26
2.4. General description of II.V.D.C. System Model 30
2.4.1. The bridge transformer and d.c. smoothing inductor 31
2.4.2. The thyristor pulsing units 32
2.5. Flementary considerations of Three Terninal System Stability 37
2.6. Tho Constant Extinction inglo Controller 12
2.6.1. Conventional Method of control 42
2.6.2. The Principle of th: Nev Control Scheme 43
2.6.3. Circuit details of angle measuring and storing device. 4
2.6.4. The Comparator Amplifier 49
2.6.5. The twin-T filter 50
2.6.6. llonitoring of the valve current zero 53
2.7. Constant Current Control 53
2.7.1. Particular considerations undor rault conditions 53
2.7.2. The d.c. current transformer 59
2.8. Other control circuits 60
2.8.1. The by-pass control circuit 50
2.8.2. The Inverter Recovery Unit 61
2.8.3. The Control Selection Unit 61
2.9. Valve damping circuits 61
2.9.1. Analysis of damping effects 65
2.9.2. Inverter daming circuit design 66
2.10. Conclusions 68
CHAPTER 3
Performance of the Simulator
3.1. Introduction 69
3.2. The proposed Mathenatical Rodel 69
3.3. 6-pulse and 12-pulse system comparison 74
3.4. Steady-state Characteristics 78
3.5. Single-Brider Tests 82
3.5.1. Step chances of current orcer 82
3.5.2. Step changes of reference Extinction fingle setting 85
3.5.3. Transition of the converter between c.e.a. and c.c. controls 90
3.6. Three Terminal Systen Performance 93
3.6.1. Converter commutation failure 93
3.6.2. Step changes of Rectifier current order 93
3.6.3. Fast power reversal 97
CHIPTER 4
A Discussion of the Power System Representation
4.1. R.C. System Representation 100
4.1.1. Impedance characteristics of a.c. power systens 100
4.1.2. A.C. Systen Inertia 102
4.1.3. The a.c. system as reprosented on the Simulator 104
4.2. Recovery after A.C. side Faults 105
4.3. Representation of D.C. Transmission Lines 111
4.4. Interconnections of the D.C. Transmission System 115
4.4.1. Three terminal system configurations 115
4.4.2. Operating diagrams of an unconventional configuration 120
4.4.3. An unsteble operating node 124
4.5 Conclusion. 126
CHIPRTR 5
Fault Control Programes
5.1. Digital Computer Control-Protection of A.C. - D.C. sys tens 127
5.1.1. On-line digital control 127
5.1.2. Convertor control 128
5.2. Locel Fault Control 131
5.2.1. An assessment of the choice between static electronic circuitry and a small digital computer for locel control 132
5.3. The Transmission Fault Control Programe 134
5.3.1. Why logic? 134
5.3.2. The information transmitted on faults 134
5.3.3. Formulation of Boolean equations 137
5.3.4. The comands for central fault control 139
5.3.5. Progranming 140
5.3.6. Miodifications to progranme 144
5.4. Converter and Bridge Faults 146
5.4.1. Clearing of repotitivo faults by local control 146
5.1.2. Direct locel removel of a bridge 147
5.4.3. Disconnoction of a faulty bridge under contral control supervision 147
5.4.4. Autonatic extinction of an inverter 143
5.4.5. Sunary of methods for hending singlo bridge failures 149
CHLiPTER 6Fault Control Tests on the Simulator
6.1. Converter Fault Control Circuits 151
6.2. Description of Wavoform recordine procedure 154
6.3. Transmission System Faults 155
6.4. Converter Faults 168
Chister 7comotubions .
Conclusions 179
Suggestions for Future Work 181
Reficrelices 133
APPGIDIX A 191

List of Principal Symbols.

A	Amplifier gain constant.
A(s)	Arplifier opesational transfer function
$\mathrm{A}_{1,2} \ldots \ldots$	Logic information from $R \mathbb{L}$ to central controller.
$\mathrm{B}_{1,2} \ldots \ldots$	Logic information from INI to central controller.
$\mathrm{C}_{1,2} \ldots$	Logic information from IN2 to central controller.
C	Capacitance.
$e_{1,2} \ldots$	Voltage signals.
\pm	Frequency.
$\mathrm{F}_{\mathrm{y}}^{\mathrm{X}}$	Logic fault indication between conductors x and y
G	Amplifier gain.
H	Inertia constant.
I, $I_{1,2 \ldots} \ldots$	Current (a.c. or d.c.)
I_{d}	d.c. current.
i_{c}	Commutation loop circulating current.
INI, IN2	Inverter designations
$\mathrm{k}_{1}, 2 \ldots$	Amplifier gain constants.
L, 1	Inductance.
L_{c}	Commutating inductance/phase
Lx, y	Choke inductance.
$\mathrm{M}_{1,2} \ldots \ldots$	Logic information from node to central controller.
n	Harmonic order
	number of bridges per converter
	pulse number.
P	Power flow
R	Resistance
R_{G}	Inverter apparent negative resistance
r_{t}	Commutating loop resistance/phase

RE	Rectifier designation.
${ }^{R} \mathbf{s c}$	C.C. control slope resistance.
S, s	Laplace operator.
$\mathrm{T}_{1,2} \ldots$	Amplifier time constants.
u	Commutation overlap angle.
v	velocity of propogation
$\mathrm{v}_{\text {do }}$	Converter d.c. voltage at zero delay ang.
$\boldsymbol{v}_{\boldsymbol{r}, \mathrm{y}, \mathrm{b}}$.	Phase to neutral voltages.
${ }_{\text {dc }}$	Instantaneous d.c. voltage.
V_{L}	a.c. r.m.s. line volts.
V_{m}	Peak a.c. voltage.
$\mathrm{v}_{\text {th }}$	Th\%ristor drop.
X	Reactance
X_{c}	Commutating reactance/phase.
$\mathrm{Y}(\mathrm{S})$	Operational admittance.
$:$	2-transform operator.
α	Rectifier delay aingle
β	Inverter angle of advance
γ	Inverter extinction angle
0	Prefix to indicate incremental value
$8 I_{1,2}$	Current margins
ω	$2 \pi \times$ frequency
In the circuit diagrams unless otherwise indicated;	
All npn transistors are type 2N2926	
All pnp transistors are type 2N3702	
All diodes are type OA91	

CHAPTER 1

H.V.D.C. in the A.C. Power System

```
1.1. Preamble
```

If it is true that the consumption of electricty is a reliable index of the progress of any part of the world it is, dialectically, no less true that the diversification of materials, techniques and processes is the essence of growth. Examples of the related nature of growth and diversification abound in nature and in every aspect of man's culture, while the history of technology has been one of continual diversification.

In the field of Electric Power Engineering high voltage d.c. transmission is becoming established as a reliable method of power transmission with many functions complementary to more conventional a.c. transmission techniques. This renewed interest in d.c. transmission is on the one hand the result of improved techniques, especially the development of the high voltage mercury arc valve, and on the other is a response to certain problems in the a.c. power systerf. Heavy demands for power have made the transmission of bulk power over long distances unavoidable and here the use of d.c. transmission is no longer novel. Only more recently however has it come to be appreciated that h.v.d.c. can be usefully employed for limiting shortcircuit levels on heavily inter-connected a.c. systems, for inter-connecting large geographically dispersed systems, for the supply of massive conurbations and as a method of containing the growth of complex urban distribution systems.
1.2. H.V.D.C. and the British Grid

The decision to construct the 275 kv supergrid in Britain (1) stemmed from the need for much larger inter-connection capacity to meet the increascd load and generation and from an awareness that some regions of the country would be permanent areas of power
deficit while others have considerable export capability. The 275 kv supergrid was projected to meet these requirements and concurrently new generation was rapidly installed. The philosophy of the 400 kv supergrid $(2,3,4)$ whilc taking over the tasks of inter-connection and bulk power movoment introduces a third concopt, High Power Distribution, which has largoly determined its structure. A large part of the new generation capability in Britain is fairly evenly reployed around the principal load centres and a significant part of the national lood is sparsely distributed throurhout the countryfor these reasons some 20 Gl of the estimated 35 GV to be moved in the supergrid will be short distance bulk power transmission. This taken together with the rapid increase of 2 GV stations that must necessarily feed into a widely inter-connected network has dictated that the 400 kv grid function not only as an inter-connector and a bulk power transmitter but also as a supply "main" for local loads.

It can be appreciated from this sketch of the evolution of the grid why d.c. links were never a serious alternative to any part of the a.c. supergrid network. D.C. transmission techniques have not been proved in multiterminal connections and corisequently cannot be integrated into a grid, one of whose princip.al functions is high power distribution.

Further system growth when the 400 kv supergrid is saturated in the 1980's is being studied and h.v.d.c. techniques may be uscfully employed. The rapidy rising short circuit level of the supergrid is causing anxiety and when the 35 G (imit is cxceeded either a higher voltage grid will be laid over the present supererid or the system subdivided and suitably intertied. It is by no means clear that a higher voltage will be required in Britain $(3,5)$ Demographic and other studies have indicated that London and the South Eastorn load will continue to grow rapidly and will remain a major deficit area. Hence any subdivision of the national grid will need to be supplemented by a few bulk power transfer lines from centres of generation to load. H.V.D.C. can be used both to link together the separate parts of a subdivided network or to function as a bulk transmission line with multiple outlets in the South East.
1.3. Scope for Multi-torminal D.C. in A.C. Grids

For reasons briofly outlincd below the British grid does not mirror the future ovolution of power systens in other countries. Because a large evenly distributed load is not often encounterod outside Europe and because the geogrophical overlap of the coalfields and industrial regions of Ingland, the heritage of the Industrial Revolution, is not repoated in this classic form elsowhore, high power distribution is not a dominant foaturo of grid planning in other countries ${ }^{(6)}$. The paucity of hyáro resourcos, the short transmission distances and the maturing of the grid while d.c. transmission was in its infancy are also peculiar to Britain. The main areas of interest in h.v.d.c. in other parts of the world aro in system intor-connection, especially in the United States, the U.S.S.R., and the European Continent, and in multiple power feeds to massive conurbations.

The Federal Power Comnission of the U.S. Government recommended in $1964{ }^{(7)}$ that the economics arising from interconnection and the inportance of secure power syster operation were overriding motives for the inter-connection of the United States into 0 single integrated system. Investigations undertaken in connection with the North Eastern blackout of November 9 th, 1965, have shom (8) that seventeen of the twenty major failures that occurred since that dato have also been cascading feilures resulting fron intor-connections which were too weak to cope with the disturbance. It can be roasonably anticipatod that a strong cohesivo countryside e.h.v. grid overlaying the existing h.v. systems, quite apart from a mere strengthening of the present inter-area conmercial ties, will be constructed in the U.S. ovor the next docade. Plans for the inter-connection of the Contral part of the Unitcd States with iforth West Pacific coast are also being exarined (9). Seasonal and time zone dependant load diversity permits the exchange of 3 GW of pover over transmission distances of the order of 2000 miles. The need to inter-connect to and integrate the numerous power networks of tho intermediato regions dictates the use of e.h.v. a.c. or multiterminal d.c. Many $\varepsilon . c$. and d.c. plans have been considered and more detailed studios are now being undertaken.

The prosent five your plan of the U.S.S.R. envisages the croation of a single grid for Europoan Russia. Extensive studios for the bost use, in this process, of both a.c. and d.c. tochniques are undor way ${ }^{(10)}$ and no doubt multitorminal h.v.d.c. systems will bo considered. Another reason for interost in h.v.e.c. ariscs from the fact that the bulk of the now fossilfucl doposits and untepped hydro resourcos of the U.S.S.R. Iic in Siboria, Kazakhstan adCentral Asia while 75% of the population and industry is concentrated in Buropean Russia. By 1975 those regions will be connected to the contre and to the Urals by two 1500 kv d.c. lines with a single circuit capacity of $6000 \mathrm{NW}(11)$. However the two systems thus interconnected will not romain asynchrorovs for long as the fast growing a.c. systems are also to be inter-connected. Since this implics the need for support at intermediate points and also because of the desirability of multiple power infeods to the receiving European grid the developwent of multiterminal h.v.d.c. nceds to bo omphasisod. A not dissimilar situation has arisen in Canada where interest has been shown in tapping the Nelson rivor line to inverters in Saskatchewan.

The characteristic feature of the situetion as regards the inter-connection of the Wuropean countrics is the existence of three lare intor-connected grids, one in the East, ono in the West and one in Scandinvic. The torm interconnected grid as applicd to any of these systens is, as yet, a misnomer, because in genoral - the exceptions boing Switzerland, Luxembourg, Denmark ad Czechoslovakia - thoy are national grids with woek inter-connections and minimal internetional power exchange. For oxamplc, excepting one W. Germany - Switzorland/Austria, one France. - Switzerland and one U.S.S.R. - Hungary interconnection, there are no links at voltages above 220 kv . There is therefore cosiderable scope for inter-connection both within and between these systems and planning and organisation is well under way (12) There is plenty of scope for h.v.d.c. transmission but interest in the multiterminal aspect appears, at present, to be absent.

Another aspect of d.c. transmission of truly international significance is its potential application as a method to contain the expansion of urban a.c. distribution networks. Both direct
conomic advantages and great sirplification of the alroady overcomplex distribution system can be shown to accrue (13-17). Casson, Zast and Huddart ${ }^{(13)}$ have aftor oxtensive investigation shown that the incooperation of direct d.c. infeed from the supcr-grid to the a.c. distribution network can sometinos be substantially cheaper than the conventional expansion of the supoorting primary and sccondary high voltage a.c. networks.

An important conclusion arising from the forcgoing discussions is that thecxtensive use of h.v.d.c. vill be predicated on cheaper torminal equipment and the feasibility of the multiterminal connection.
1.4. Automatic Control of A.C. and D.C. Systems

The fault control of a multiterminal h.v.d.c. system as onvisaged in this thesis relics on a digital conputer gut it wald be difficult to justify computer access for hendling the fault problem alone. Furthermore the future of h.v.d.c. will be influenced by the methods adopted to control the world's electricty networks and therefore the recent trend towards the automatic control of power systoms is briefly surveyed.

Computers are an essential in Nuclear power station coutrol and are becoming well ostablishod in thermal stations for automatic start-up and shut down, boiler control and auxilizery supervisior $(18-23)$. Optimisation of plent and fault crogramming will be tle next steps in this field.

The automatic control of powcr systems using digital computers is bcing developed viz: the South West region experiment (24-27) of the CEGB and error adaptive computer cotrol and load dispatch in the U.S. $(28,29)$.

At presentcomuters are usually employed off-line to predict demand and prepare minimum cost generation schedules compatible with system security, plant availability, spinning reserve and transmission loading $(22,30-34)$. The future being problematic the computer serves the operations engineer burdened
with forecast errors and outages by making security checks and computing short time generation schedules. During emergencies it is a means of quickly assessing the effect of alternative actions. The trend is towards on-line security assessmert, on-line economic surveys, fault adaptive controllebility, and dynamic scannine with selective display aveilability.

In the United States where the emphasis is on the load frequency control concept and tho mininisation of area control error every area of an inter-connected network relios on independent control computors $(22,28,33,35)$. Complete automatic control where machine controllers at the generators and area switching stations arc automatically controlled from a 'nerve' centre is in tie process of developnont but it is as yet uncertain whether wholosale automation of the power system is economic or desirable. At the present time the degree of automation varies as do the methods of control which range from complete digital to various analogue-digital tochniques.

It is against this background that Ito and Sckine's emphatic remarks ${ }^{(36)}$ that "when considering the economic automatic oparation of inter-connected h.v.d.c. power systems within a.c. systems the most economic and efficient operation cannot be expected without the use of an on-line digital computer controlprotection systcm" should be read. Noting thet the digital computer is fast becoming an indispensable element in power system control they recomend automatic control from one, or a hierarchy of, digital computers, and estimate that, a computer developed exclusively for this purpose with comprehensive control-protection facilities will so simplify instrumentation as to make it comparable in cost with the complex circuitry of conventional cortrol-protection equipment. The Electrotechnical Laboratory in Tokyo is developing such equipment for use in conjunction with a simulator model (36-39).

The d.c. system has no inherent rosponse of its own and can be mado to respond rapidly to control. This can be usefully exploited either to achieve rapid changes in a healthy power system or during emergencies. The control of a d.c. terminal to alleviate a.c. system emergencies remains to be
studiod and the associeted problem of collecting and processing the right intelligence must be solved.

Digital computor control can therefore bo justified in h.v.d.c. intcr-connections handling large amounts of powor and in ref. (36) a scheme using a central control computer and three local computers attice terminala is proposed.

In contrast if d.c. links are employed noarer the distribution level $(13,14,16)$ where from a single rectifier on the primary or secondary h.v. a.c. Erid multiplo invertor injections are made to the distribution network, the use of a computer will be uneconomical.

One of the principal difficulties associnted with multiterminal h.v.d.c. schemes is templex control required to clear faults. The fault problem cannot bo handled in a mannor compatible with the deruands of maximum security and discrimination without a system control computer.

1.5. Transmission Faults on Fiultiterminal H.V.D.C. Systems

A short circuit on an intor-connected a.c. system collapses the system voltage only at the point of fault. Flsewhere due to the transmission reactancos end the large reactive current flow towards the fault the a.c. voltage is depressed only partially. Power transmission is completely disrupted only in the immediate vicinity of the fault and power flow in remote networks is unaffected. During a d.c. transmission line fault however the valtage short circuited at the fault point disappears throughout the systemsince current flows cannot be allowed to increase for reasons of valve safety and the only impedance between the fault point and the more remote sections of the network are the small line resistances. All power exchanges associated with the voltage that has been short circuited are terminated. (These remarks do not, of course, ap ply to the 25 to 50 us immediately after fault i.e.the the transient settling into the faulted condition).

It is clear that to limit the disturbence to the entire grid a fault on a hoavily connected high power multitorminal h.v.d.c. system must be isolated with the groatest possible speod. Dr. Lamm's statement that "we cannot see the advantage of a d.c. breaker it is possiblo that a d.c. breaker would be useful at a further stage." (40) is not conprehensiblo as a circuit breakor allows fast isolation of the faulty line only, while other methods involve the slower co-ordinated control or de-energisation of one both poles of the whole system. Even with circuit breakers post fault operation depends on fast re-setting of controlled orders at all operational converters andwould still need extensive commuication and automatic control facilities. Despite much rescarch in Germany, the U.S.S.R. and Switzerland andsoue promising research reported in a paper at CIGRE 1968, d.c. circuit breakers are not likely to be available in the near future.

For the two terminal link Uhlmann (41) proposes that the low voltage portion of rectifier and invorter characteristics be arranged such that under fault oanditions both converters move sharply towards $\pi=90^{\circ}$ and the invorter move less steeply than the rectifier, making the transmission unstable and leading to system extinction. The tine from the application of the fault to extinction is about 150 ms. This is rather large as the system is allowed to extinguish itself and tle converters are not deliberately pushed into continuous inversion. Also the author does not give the size of smoothing inductor used in these analogue computer studies. Furthermore an unrealistic feult resistance value of 100 amshas been us od.

Lamm et al (42) propose that fast de-cnergisation of a multiterminal system be achieved by forcing converters to invert, that the faulty line be opened by fast acting low current is olators and the system be quickly restarted. Total time from fault to restart is estimeted as 200 ms but the coniontionthat larger outage times are permissible with d.c. systems because greater divergence of phase and frequency at the terminals are no impediment to restart is questionable. D.C. system restart capability is not a sufficient criterion of permissible a.c. system instebility.

High speed reclosing of the a.c. side of an invertor subsequent to a.c. system faults lcas to transient commutation failure of the inverter during the re-starting process. T. Machida discusses (43) the origins of those failuros and suggests methods of co-ordinating a.c. system switching with d.c. system restart to eliminate this. Eigh speed controls of the type investigated in this thesis achieve satisfactory restart without the need for special controls and in any case Machida's proposals involvo commanication problers as inverter a.c. side switching has to be co-ordinatod with tho rectifier bridge controls.
1.6. Converter Faults in Multiterminal H.V.D.C. Systems

The external causes of commutation failure of a converter bridge valve are either sudden excessive drops of a.c. voltage or control and grid pulsing circuit malfunctioning. The internal causes of valve failure are rectifier arc-beck, rectifier or inverter arc-through and arc-quenching. The failure of one bridge at any converter of an 'TT' bridges per terminal system will result in a loss of $\frac{1}{N}$ of transmission capability everywhere in a multiterminal system.

Prosent protective practice relies on the comperison of currents in the a.c. and d.c. sides of tho converter and/or the detection of unvsual harmonics. More precise information of the nature of the failure or identification of the faulty valve are not sought and if the fault is repetitive the bridge is bypassed for about 200 ms and a re-start attempted (44, 45) The exception is rectifier erc-back where the severity of the fault demands immedia to shut down and precludes restart.

Reeve $(46,47)$ onumerates the shortcomings of the conventional techniques especially with regard to multiterminal connections, the trend to higher ratings with autometic control and the desirability of detailod data losging. Ref. (46) lays out a set of tablos in which time is divided into a soquence of discrots intervals soparatod by srid pulsing and by a.c. voltage zeros. In any interval only certain faults
can occur, these and their progressive developaent are derived. A wired logic set-up using 108 HOR gatcs is designed in ref. (47). The inputs to this circuit are the lagic statea of valve currents, grid firings and voltage zeros and the output is an unambiguous indication of every type of valve fault and the faulty velve. Fail sare reliebility is unfortunetely interpreted to mean that the failure of any logic component results in a ropetitive indication of conmutation failurc. This is not suitable if the detector is coupled to automatic bridge controls.

Where digital computers are available at convertor stations the wired logic schene proposed by Reeve can be replaced by direct digital processing. The converter information can be roonitored by sinple supervisors and the computer need be called only when an unusual sequence is detcoted.

The on-line digital supervisory instruments of the Universal control-protection unit of the E.T.L. works on a siwilar principle by Generating logic stetes for valve currents, conmutation voltages and permissible pulsing periods. These logic states are combined to form binary numbers and are processed in a control computer to define the operating condition of the converter ${ }^{(36)}$.

1.7. Perspectives and Scope of this work

1.7.1. Perspectives

The prospects of h.v.d.c. transmission have been assessed and the importance of multiterminal links has boen emphasised. The trend towards automatic control in power systems has been surveyed for its relevance to a higily controllable device like the converter and also because of the need for co-ordination and integral control when clearing faults. This thesis considers the control of a three terminal h.v.d.c. systen from a digital conputer and nakes comprehensive records with a simulator of the behaviour of the system while clowring numerous types of converter and bridge faults.

In preparing the fault control program it has been necessary to make the assumption that adequate fault information in logic form will be available to the computer. Very little has beon publishcd on fault detectors for d.c. transmission systems and indeed this aspect of d.c. system protection remains a wice open field for investigation. An effort has never theless been made to ensure that the type of fault information expocted is eminently reasonable :

The
development of moderately priced d.c. circuit breakers will radically altor the dutios of detecting devices and fault control procodures.

Abovo all, automatic control in large systems will integrate protection and control together and the results of fault investigations must be complenented by system control studies and feasible adaptive control methods.
1.7.2. The h.v.d.c. Sirulator

An h.v.d.c. simulator has been in use in the Imporial College Power Systems Laboratories for some time but lacked controls adequate for a study of this nature. Entirely new controls have been built for threc 6-pulse bridges including conventional constant current control, a new ty pe of constant extinction angle controller, bypass valve controls and reliable thyristor pulsing units. In addition an analogue interface from the digital coxpluter to the converter controls has been installed.

The controls have been desiened for fast stable operation wi.th the connected a.c. system reolistically woakened. The liniting of comutation failures in the geriod imediately following a fault is one of the features of these controls. The speed and controlability of the simulator are displeyed in a series of preliminary tests presented in Chapter 3.
1.7.3. The PDP. 8 Computer

This is a small process control computer thet has been programmed for the centralised fault control of the simulator. The computer has a twelve bjt word, a 4 k core memory, a cyclic tise of $I .6 \mu s$ and the input output facilitios include twelve direct digital channels each way, three D / h channels and six A / D chaniels.

The computor is linked to the simulator by a 100 ft . 30-way cable. A computer/simulator interface whose principle functions are the starting and stopping ofthe converter, the control of line isolators and by-pass values and the sotting of current orders has been built.
1.7.4. The fault control program

The objectives of any fault program must be
i) To discriminate between transmission and converter faults as the latter do not always need central control intervention.
ii) On available logic information to ascertain with maximum discrimination the nature and location of eny fault.
iii) To make up and transmit suitable commands to individual converter controls to de-energise the minimum necessary section of the network, then isolate the fault and restart. Also bypass valve operation under certain circumstances is initiated by the fault control program.
iv) To attempt asingle restert of the faulted section before locking out if this is desirable.
v) Where the network configuration has been altered by iii) above, to automatically update the program and ensure continued control.
vi) To ensure that occesional single misfiring of converter valves doos not trigger protective equipnent.

1.7.5. The Multitcrminal System Investigated

To make the control program illustrative of general techniques it has been written for the typical three terminal, two bridges per terminal teed connection. Fig (1.1) shows the system including the positions of line isolators. The ficure indicates system inter-connection when all lines and convorters are operational but under conditions of temporary outrge of portions of the network it may be workine in one of a large number of possible configurations. Topologicelly thero are forty eight foasible configurations of the transmission lines and bridges that avoid clectrically nonsensical open circuits. Usually however numerous additional constraints are inposed by the power system, for cxample: restrictions on cable polerity, rostrictions on the use of ourth peth etc. Realistic constraints have been introduced and the number of inter-connections, i.c. operating modes, in which the system will bo allowed to work are limited to fiffoen.

As only three bridges of the simulator have been as yet equipped with the new controls each terminal is represented by a single converter bridge. For this reason only some sections of the fault coutrol pragram could be proved by online control tests in conjunction with the simulator.

It would appear reasonable to except the behaviour of the three bridge comection on pole to 'neutral' f'aults to be the same as that of a six bridge connection on pole to pole faults, as the only essential difference is in the twelve pulse and six pulse nature of the d.c. voltages and currents. A short analytical comparison using sampled data techniques at two difforent sampling rates has been made to throw light on this aspect.

1.7.6. Dnumeration of the Tests Conducted

The following faults wore put on the d.c. system and the behaviour of simulstor with on-line computer control was recorded.

Fig 1. 1 The Three Teminal Systieme
i) Transient faults on the rectifier and inverter lines
ii) Permenent faults on the rectifier line leading to system shut down
iii) Permenent faults on the inverter line leading to isolation of the faulty branch
iv) Repetitive commutation failure of the rectifior and of the inverters cleared by block-bypass - deblock sequence at the faulty station.

The mothod proposed by Lamm et al (33) for tho removal of both rectifier and invorter stations by co-ordinated control with minimum disturbance to the system and without firing the bypass valve have also been applied with promising results.

The recovery of the system subsequent to the following short time a.c. systen faults
i) Rectifier a.c. system 3 phasc short circuit
ii) Inverter a.c. system balanced and unbalanced faults
iii) Loss of inverter a.c. voltage
has also been recorded and is prosented in Chapter 4.

CHAPTER 2

Sinulation and the Simulator
2.1. The Scope of H.V.D.C. Model Studies
inalytical techniques have been developed $(48-55)$ for the solution of sone aspects of the two terminal h.v.d.c. link operation. These methods can be extended to the three terminal system but with increased computational complexity. The results presented by Norton and Cory $(52,53)$ can as yet be viewed only as a first step towards a satisfactory methematical analysis of h.v.d.c. system stability and performance. Increasing computational complexity, difficulties in finding a precisc mathematical modol and the large number of high order non-linear differential equations involved defeat the analytical solution of the general multiterminal system. While the analysis of the normal syston for stability etc, is itself formidable, the analytical study of the systen during emergencies is even more difficult as events like commatan failures cannot bo regardod as suall disturbances and are not amenable to linearisation. The need for model study and simulation is generally understood and accepted $(57-62)$. The simulator is free from the linearisetion often denanded by anclytical methods, does not overlook or approxinate many factors as the anolyst must do, permits the monitoring at will of voltage, current or any waveform in any part of a complex inter-connected network and is convincing to the practical engineer by the directness of its display. A proliminary simulation of a problen will usually indicate its salient features and be a guide to the choice of a nathenatical nodel and in this sense the simulator is complementery to more abstract techniques like digital computers. At the present stage of knowledge a good deal of emphasis needs to be laid on simulation techniques, sometimes evon as a stepping stone to computational methods.

2.2. Limitations of Modelling

An h.v.d.c. simulator is rolatively inflexiblc of control if the labour of building a new control loop is contrasted
with the changing of a fow cards in a computer progran. Full organisational and technical support is needed if a reliable and realistic simulator is to be maintained (58). The best d.c. simulstors are backod by a technical tean and are much moro costly than digital computor studies.

The three principal sourcos of error in a model are
i) the thyristor drop of 1^{V} to 2^{V} is a much larger ratio of the rodel voltage of 100^{V} than tho 40^{V} to 60^{V} arc drop in say a 100 kv mercury are valve.
ii) the spurious effects encountered in the laboratory, for exanple mains disturbance and stray capacitances are in no way identifiable with the spurious disturbonces encountered in valve houses and transmission networls.
iii) the resistance to inductance ratio of all laboratory equipment, particularly transformers transmission lines and connecting leads will invariable be higher then in power systems; Ref. (60) suggests ten times higher. This contributes to reducing the model rectifier d.c. voltage and raising the inverter voltage in comparison with an h.v.d.c. bridge.

Another difference relevant to fault studies is that if due to control frilure or during rapid transionts the inverter extinction englc falls below, say 5° (250 microsec) commutation failure is alnost cortain to occur in mercury arc valvos. Thyristors however require a de-ionisation tinc of only a few microseconds.
2.3. Effect of error in R / L on extinction angle of Inverters

It has been noted that the R / L ratio of a laboratory converter transformer is about ten times that of a power transformer. The equation for circulating current during comutation is written from figs. (2.1) and (2.2) which shov the two commuteting transformer phases and velves.
$2 L_{c} \cdot \frac{d i_{c}}{d t}=\left(v_{y}-v_{r}\right)-\left(V_{t h 1}-V_{t h 2}\right)-2 i_{c} r_{t}+I \cdot r_{t}-(2.1)$
where $V_{\text {th1 }}$ and $V_{\text {th2 }}$ are the; drops in the thristors. If $V_{\text {th1 }}$ and $V_{\text {th2 }}$ are assuned equal and written $V_{\text {th }}$ thed.c. terminal voltage during commutation is given by

$$
v_{d c}=\frac{v_{r}+v_{y}}{2}-V_{t h}-\frac{I \cdot r_{t}}{2}
$$

Before and after comutation the d.c. vatages are given by

$$
\begin{aligned}
v_{d c} & =v_{r}-v_{t h}-1 . r_{t} \\
\text { and } v_{d c} & =v_{y}-v_{t h}-i_{t} r_{t} \text { respectively. }
\end{aligned}
$$

It is to be noted the the voltage during commutation is not the mean of tiese two values being $\frac{I_{0} t}{2}$ less then the mean os indiceted in fig 2.3. From this figure it is also clear that the effect of this is to reduce the available extinction angle by an amount given approximately by

$$
\delta \gamma=\frac{I \cdot r_{t}}{V_{\max }}
$$

For thesimulator r_{t} isconservatively estimated at 0.5 ohrms so that under full laad conditi ons and $V_{\mathrm{r}}=60 \mathrm{~V} 2 \quad$ or $\gamma=2^{\circ}$.
$V_{\text {th }}$ however is not a constant, thowh non-linear and if it is assured that $V_{t h}=0$
i) for the thyristor beginning to corduct at the start of conduction
ii) for the thyristor ending conduction near the instant of extinction.

> At the beginning and end of tie comutation period

$$
V_{\mathrm{dc}}=\left(\frac{\mathrm{v}_{\mathrm{r}}+\mathrm{v}_{\mathrm{y}}}{2}\right)-\left(\frac{I_{0} r_{t}+V_{t h}}{2}\right)
$$

and the displacement on the mean is now $\left(\frac{I_{t}+V_{t h}}{2}\right)$ at

Fig 2.1 Cormutating Circuit.

Fig 2.2 Simnlifjeà Comatntinc Circuit.

Fig 2. 3 Comutating Waveform when $R / L \neq 0$

Fig 2.4 Variation of Commutation Overlap Angle rith Current when (R / L) is not negligible.

Graphs obtained by increasing R at fixed L to increase λ.
these instants but remains $\frac{\text { I. } r_{i}}{2}$ during the remainder of the comatation period. in additional loss of 1° to 2° in the offective extinction angle is to bo expected.

The overlap angle (u) is no longer given by the conventional equation

$$
\cos (\beta-u)-\cos \beta=\frac{2 \omega \operatorname{LcI}}{\operatorname{Vra}}
$$

and is now given by the solution of equation (2.1)

$$
\frac{\cos (\beta+\theta-u)-\cos (\beta+\theta) \cdot e^{-\lambda u}}{1+e^{-\lambda u}}=\frac{I_{0} \omega I_{c}}{\mathbb{E}_{m}} \cdot \sqrt{1+\lambda^{2}}
$$

where $\lambda=\frac{R}{\omega L_{c}}$ and $\theta=\tan ^{-1}(\lambda)$.
These results are plotted in fig. 2.4.

The effects of the resistance in the comutating circuit are
i) the commutation overlap angle is increased
ii) the d.c. voltage during comutation is less than the mean voltage of the commutating phascs and the effective available extinction angle is reduced
iii) the valve inversc voltages and step invorse voltages are not accurately modelled.

Inclusion of the nonlinear thyristor drop enhances these offects. It must also be pointed out that once successiful comutation occurs the de-ionisation angle is not affected.

2.4. General description of the II.V.D.C. System Model

The simulator is a threc terninal scheme with provision for a total of six three-phase Grate bridges. The bridge and bypass values are modelled by silicon controlled rectifiers rated at $16^{\text {i }}$ and 400^{v} p.i.v. Each bridge is nominally rated at 5^{A} and 100^{V} and a two bridge convertor at 2 kV . The high current
rating of the thyristor permits the use of cheap gless fuses during control dovelopnontand systen tests achieving considerable overall economy in simulators for roscarch purposes.
2.4.1. The Bridge Transformer and d.c. Sroothing Inductor

Each converter is supylied from two independent three winding transiormers, star/star/delta and delta/ster/delta both rated at $220^{\mathrm{V}} / 80^{\mathrm{V}} / 110^{\mathrm{V}}$. The primary is tapped to $\pm 10 \%$ in 1% steps, the tertiary is provided for filter or reactive compensation connection. The transformer is designed for minimum leakage inductance to allow a wide range of a.c. system reactance simulation using extornal reactors. Table 2.1. gives the losses in the transformer and fig 2.5 is a plot of magnetising current, both are reproduced from ref. (63).

The smoothing inductor used on the d.c. side has eight scparate sections cach of which has a sclf-inductance of 0.0464 Fand a mutual inductance of 0.065 H to any other section. The resistance of each section is 0.2 ohrs. A wide variety of inductances values between 0.46 H and 4.0 H can be obtaincd by suitable series parallel canections provided they are compatible with coil curreat rating.

Tests on the inductor are described in ref. (63) from which the tost circuit of fig 2.6 and the results in fig 2.7 heve boen reproduced. The a.c. source of fig. 2.6 is a $40^{\mathrm{V}}, 300 \mathrm{c} / \mathrm{s}$ oscillator.

2.4.2. The Thyristor pulsing units

The thyristor and the pulse trensformor are mounted on a single panel, fig. 2.9. Unidirectional pulses of current pass through tho thyristor gate-cathode junction and the transformer secondary during pulsing. This current is compensated by variablo rosistor $V R$ and tho d.c. magnetisation of the

$S T: P / S P R \quad$ STAGETA

Effective shunt resistance (core loss)	1010 ohms	1050 onms
Effective shunt reactance (magnetisjng)	554 ohms	505 ohns
Iumed series resistance	1.33 ohns	1.25 ohms
Iumed series reactance	Ieglicible	Iegligible

Supply:

Fig 2.6 Smoothing Inductor Test Cincuit. (Essults Iig i.7)

trin 2. 7 Results of Testis on Choke.
core is offset by a bias current of 40 ml in the tertiary winding. Sustained and unusual pulse distortion accentuated by the "bootstrapping" across the pulse generator output stage can arise if these precautions are not observed.

Pig. 2.8 is a circuit diagran or the pulse generating unit, one of which is roquircd for each thyristor. The circuits were designed and tested in the laboratory and commercially etched to ordor on fibre glass printed circuit cards. The circuit is controlled by a d.c. firing angle control signal and the phase of the output pulse is linearly proportional to the magnitude of this signal.

Transistors T1 - T2 form a level detector pair sensitive to an input sinusoidal supply and generating a square-wave fixed in phase with respect to it.

Transistor T3 is switched by this square wave and whon in the off state peraits capacitor C1 to charge through VR1. C2 provides positive feedback or bootstrapping to ensure a linoar rarp signal which in turn is applicd to a socond level detector pair T5 - T6 to generate positive going pulses ench tino the ranp voltage oxceeds the reforence signai. The output is difforontiated and used to trigger a 150° monostable T9 - T10 and is fod via output stage T11 - T12 (provided with bootstrapping for fast pulse rise) to the pulse transformer primary. The circuit is automatically roset each tine T 3 turns on and discharges $C 1$. The method of pulse terminating and pulse blocking are ovident from the circuit diagram. A pulse of 150° is adventageous during transients but is terminated at 120° by the next pulsing unit during steady state operation.

The triggering pulse rise time on opon circuit is 0.5 microsec and the ramp linearity is better than 0.5%.

Ainsworth (64) has shown that harmonic instability can arise with weak a.c. systems due to the distortion of the a.c. terninal voltage and therefore the pulsing unit reference sinusoid. An oscillator generating true sine waves end locked in frequency and phase to the a.c. system is proposed as a means

Fig. 2.8. Pulse Generating Unit.

Fig. 2.9 Myristor and Pulse Transfomer Penel Diagram.
of elininating harmonic instability. In the laboratory the a.c. infinite busbars may be used as a substitute provided the phese locked oscillator transient responsc will not be significant in the type of faults invostigated. This procoduro has usually boen adoptod and some further aspects of this are discussed in section 4.2.

2.5. Tlementary considorations of Three Terminal System Stability.

In exhaustive analysis of the stability of the two terminal system has been made by Reider (49) where it is shown that
i) A two terminal systen with rectifier constant current control and an uncontrolled inverter is always stable
ii) An uncontrolled rectifier with inverter c.e.e control is unstable
iii) An inverter on o.e.a controlworkine ageinst a rectifier on constant current control is normally stable but possesses a region of instability which can be roduced by confining the rectifier controller gein within certain uppar and lower bounds.

The method of solution was to obtain exprossions for the two terminal voltages in operational form using the discrete-Laplace trensform and investigate tho locus of the denominator of these expressions. As a complicated operator is obtrined an exhaustive investigation requires a fanily of curves corresponding to three parameters, rectifier angle α, invorter angle β, and the phase difference between the two systems. An investigation of the three terainal s.stem by this method would involve a more complicated operator having ifve parameters. The method of investigation by Norton (65) for the three terminal link is linited in usefulness by the assumption of an infinite bus on the a.c. side. Clade and Lacoste (55) again assume an infinite system at the inverter and arc also compelled to negloct line and cable capacitance in order to arrive at a third order operational equation.

A simple analysis providing approximate stability criteria will suffice as a starting point for dosign as the final adjustments are always made on the model. The following elementary analysis scrves this purpose.

A converter on constant current control nay be represented by a constant current source $I_{\text {se }}$ in parallel with a resistance R_{s} where

$$
R_{S}=\frac{3 \sqrt[V]{2}}{\pi} \cdot A \cdot V \cdot \sin \alpha+\frac{X_{R}\left(I \cdot X_{R}+V\left(A \cdot I \cdot \tan \dot{\theta} \cdot \sin \alpha+X_{R} \cdot \sin \beta\right)\right.}{V+I \cdot X_{R} \cdot \sin \%}
$$

where V, I, δ are the a.c. system voltage, current and phase angle X_{R} is tho a.c. system reactance.

The second term is to make ellowance for changes in a.c. system voltage as current changes.

An inverter on constant extinction angle control may siailarly be represented by a voltage source in sories with a resistance - R_{G} where
$-R_{G}=-\frac{3 X_{c}}{\pi}+\frac{X_{c}\left(X_{c} \cdot I-V \cdot X_{c} \cdot \sin \xi\right)}{V-I \cdot X_{c} \cdot \sin \theta}$
where V, I, parc the a.c, system voltage, current and power factor angle and X_{c} is the nett commutation reactance.

The mathematical nodel omployed is shown in fig. 2.10 (a) where $I_{S C} \cdot R E$ and $I_{S C}$. IIII are the short crpcuit currents of the converters or constant current control and $R_{s 1}, R_{s 2}$ are the linearised slope resistances determined as indicated above. Line and smoothing inductor parameters are lumped and the effective negative resistance $-R_{G}$ is modified to
$-R_{G}=-R_{G}$ (defined above) + inverter line resistance.
For stability considerations the sinplified circuit of fig. $2.10 b$ is derived where v_{d} is a disturbing signal and i_{d} is the

Fig 2.10a Kathematical Model for Three Terminal Sustem Elementary Stability Analysis.

Fig 2.10b Sinolified Form of Yathematical Model of fin. 2.10a.
disturbed current rele, ted by the operational equation

$$
i_{d}(p)=v_{d}(p) \cdot L(p)
$$

whore

$$
\begin{aligned}
& L_{y}=\frac{1}{2} L_{x} \\
& R=1 /\left(\left(\frac{1}{R_{s 1}+v_{1}}\right)+\left(\frac{1}{R_{s 2}+v_{2}}\right)\right)
\end{aligned}
$$

and the operator $L(p)$ is
$L(p)=\frac{p^{2} \cdot C L_{y}+p \cdot R C+1}{p^{3} \cdot C^{2} L L_{y}+p^{2} \cdot C^{2}\left(L R-L_{y} R_{G}\right)+p \cdot C\left(L+L_{y}-R R_{G} C\right)}$ $+C_{\text {. }}\left(R-R_{G}\right)$

If for convenience the assumption $L_{y}=\frac{1}{2} L_{x}=\frac{1}{2} L$ is made the conditions for stability are given by
i) $R>R_{G}$
ii) $R<\frac{3 L}{2 C \cdot R_{G}}$
iii) $R^{2}-R\left(\frac{R_{G}}{2}+\frac{L}{C \cdot R_{G}}\right)+\frac{L}{4 C}<0$

From i) and ii) the system cannot be stabilised if

$$
\mathrm{F}_{\mathrm{G}}>V(3 \mathrm{~L} / 20)
$$

In practise thecritical value of R_{G} is never exceeded but the linitations this places on the bounds of R may be unsuitable from constant current control considerations.

The function of criterion (iii) is sketched in fig. 2.11 and the stable region bounded by an upper and a lower limit of R is shown.

The stability limits indicated by this method both for typical and extreme parametervalues have been collected in table 2.2 for a single bridge converter. Only the upper limit of R is usually of any significance.

Fig 2.11 Sketch of function derivea in Section 2.5 and ascociated Stability boundary.

TABIE 2.2

Trensforner secondary kV a.c.	Inverter rating MVA	$\begin{aligned} & \text { Inverter } \\ & \text { a.c. } \\ & \text { SCR } \end{aligned}$	L Hen	$\mathrm{C} \mu \mathrm{~F}$	R.upper limit approx.	R.Iower limit approx. 3
80	200	2	0.5	100	330	15.0
80	200	5	0.5	100	820	6.5
80	200	5	1.0	25	6.5k	6.5
160	200	2	1.0	25	370	75

The principal error in this analysis is that the finite transient response of thecomrollers have been neglected.
2.6. The Constant Extinction Angle Controller

2.6.1. Conventional Method of Control

The only system of constant extinction angle (c.o. a) control in use at the present time is called consecultive control (66-68). In this method certain equations are assumed to describe the process of comeutation. Peak a.c. voltage, direct current magnitude and the instantancous cyclic time are continuously monitored and operated on until the requirenents of the equations are met when minimum firing angle for successful commtation is assumed to occur and the subsequent valve is fired. Reactive power consumption is minimised at every individual valve firing. Consecutive coxtrol suffers from a number of defects.

1. The assunption of belanced sinusoidal 3-phase supply is implicit, with the result that where hamonic or other waveform distortions reduce the area under the commeting voltage-tine curve the danger of comutation failure arises.
2. Phase unbalance can cause the true voltage cross over point to shift so that the angle available for extinction is reduced but this is not detected by this method of control.
3. The firing of the six valves is independently controlled so that successive firing intervals can differ from 60° resulting in the generation of extra harmonics including sizeable even harmonics. The harmonic instability discussed by Ainsworth (54) is aggravated.

2.6.2. The Principle of the new Control Scheme

In the new scheme the firing of the six thyristors is not independent. The method of control ensures that the firing interval is always maintained at 60° despite small disturbances. The extinction angle of every valve is measured and stored, each store being updated once a cycle. The smallest value in store is continuously selected, compared with the reference minimum extinction angle and the amplified error signal applied to all the pulse control units to complete a closed loop control. The extirction angles of all valves are equal to or greater than the selected minimum. The scheme is illustrated in fig. 2. 12.

Waveform harmonic distortion, supply voltage phase and magnitude unbalance or any other factors which influence commutation but are not accounted for in the conventional equations employed in consecutive control do not lower control effectiveness in this method as the actual extinction angles are measured. Overall control stability is improved because accurate 60° phase separation between successive firings is ensured. The concept is one of extreme simplicity involving merely the measurement of an angle and the use of a closed loop to hold it at an optimum value. Analogue computers are not required as the system is easily fabricated from. standard electronic circuitry. Very small settings of extinction angle, down to 6° have been successfully used. Commutation failure is detected as zero degrees extinction angle and the bridgc firing angle is rapidly advanced by the large error signal.

The main limitation of this method is that a tine delay of up to 60° (30° in twelve pulse operation) may be introduced
between the occurrence of some system transient and an awareness of it reaching the controller. No control action is taken to compensate for a disturbance until it is detected in the variation of the extinction angle itself.

It must be pointed out however that consecutive control corrects for a voltage disturbance only if it occurs before the voltage peak. Variations of d.c. current are taken into account up to the instant of valve firing but the large smoothing inductor ensures that these changes between successive firings is not fast. In any event if inverter $(\gamma+u) \geqslant 30^{\circ}$ consecutive control hes no advantage even in these respects.

The name 'comprehensive control' is proposed for this method of c.e.a. control to contrast this concept to the consecutive control principle.
The term C.E.A.Control when used in the following Sections refers to this new method of control.
2.6.3. Circuit details of Anglo Measuring and Storing device

Each bridge requires six separate angle measuring and storing circuits together with one output comparator amplifier. The measuring and storing units were designed in the laboratory and commercially etched to order on fibre glass printed circuit cards.

The functioning of circuit fig. 2.13 may broadly be divided into five sections, the input bistable, the ramp generator with buffer, the sample and hold circuit with buffer, the Schmidt trigger and the cascaded twin monostables. A voltage ramp commencing at the valve current zero is generated, this is sampled and stored at the corresponding commutation voltage zero. The stored signal is therefore a measure of the valve extinction angle.

The voltage across a thyristor, that is one of the six a.c. line to line voltage combinations, is supplied to the Schmidt trigger which has a snap action and rapidly changes state when the nett volt voltage passes an adjusteble level near zero.

Fig. 2.13. C.E.A. Control Angle Measuring Circuit.

VR3 is the adjustment potontiometor. The schmidt rosets at the next voltage cross ovor, i.e. 180° later. The Schmidt output is differentiated and triggers the first monostable which gonerates a 20μ positive going pulse. This pulse is used to discharge the capacitor on which tle measured extinction angle signal is stored in readiness to store a now sample. The negative going edge of this monostable triggers a second idontical monostable whose pulse is usod to operate the sample action. The phase of the Schmidt output can be controlled by VR3 and the whole circuit is carefully alignod to ensure that the second monostable pulse coincides with the commutation voltage zero.

The input bistable chenges state in response to a pulse generated by a circuit (section 2.6.4) detecting the instant of valve current zero. The bistable is reset only at the beginning of the valve conducting period so as to be insensitivo to spurious inpulses during the valve non-conducting poriod. The bistable switches the ramp generator, a ramp linearity better than 1% is obtained by bootstrapping via capacitor C4. Remp excursion is approximately, 0^{V} to 8^{V} for α going from 0° to 90°, and the slope can be aligned at VRi. The buffer has a potential divider added to reduce the ranp size as necessary and also to allow the ramp origin to be offset accurately away from zero volts, say to 1^{V}, for measurement precision at small extinction angles.

The sample and hold circuit receives a $20 \mu \mathrm{~s}$ discharge pulse at the base of T9 followed immediately by a 20 fs sample pulse at the base of $T 7$ at the valve comutating voltage cross over. The time constant of the sampling path is 2 Hs allowing ten time constants for the charging action. The sampled value is stored on C5, $0.1 \mu \mathrm{~F}$, and as the signal must be storod for 20 m s stringent measures have to be taken to minimise leakage of stored analogue signal. The output buffer is a Darlington-pair of solected high cain transistors. The capacitor $C 6$ supresses the impulse dip in the stored signal arising from cyclic discharging, the associated time constant of 0.1 m s is not significant from the power system point of view. The linearity of the sample and hold

(a) Feedback Circuit.

(b) Amplifier Details.

Fic. 2. 15 CPA Fee inacic Circuit anc Ampirier Circuit Details.
circuit is show in the results of fig. 2.14.
2.6.4. The Comparator Amplifier

The amplifier gain and time constants must be chosen for hish gain, that is negligible variation of extinction angle over a wide range of ovorlap angles, and fast response to elininate comutation failure. The most difficult design considerations arise with weak a.c. systems but it is found that performance is sensitive to smoothing inductor, transmission line and far-end characteristics as well. The paraneters of the control anplifier for best performance are therefore individually tuncd for any powor system.

The amplifier circuit diagram is shown fig. 2.15(a) and (b) from which the transfer function of the operational amplifier section alone is written

$$
\text { Vout }=V_{E} \quad k_{1} \frac{1+\mathrm{ST}_{1}}{1+\mathrm{ST}_{2}}+\mathrm{V}_{\mathrm{R} 1} \quad \mathrm{k}_{2} \frac{1+\mathrm{ST}_{1}}{1+\mathrm{ST}_{2}}-\mathrm{V}_{\mathrm{R} 2} \quad \mathrm{k}_{3} \frac{1}{1+\mathrm{ST}_{2}}
$$

V_{g} is the fed-back γ-mininum signal
$\mathrm{V}_{\mathrm{R} 1}, \mathrm{~V}_{\mathrm{R} 2}$ are reference level, i.e. angle, settings.

More accurately V_{E} above should be replaced by $\mathrm{V}_{\mathrm{g}} \frac{1}{\left(1+\mathrm{ST}_{3}\right)\left(1+\mathrm{ST}_{4}\right)} \quad$ where $\mathrm{T}_{3}=0.47 \quad \mathrm{~ms} . \mathrm{T}_{4}=0.1 \mathrm{~ms}$
to take delays in other parts of the circuit into account; the trin-T transient responso being neglected.

A typical set of values of the above parameters corresponding to the c.e.a. controller at the veak a.c. syster of the three terminal system exhaustively investigated in this thesis are set out below:-

$$
k_{1}=1.37 \quad k_{2}=1.37 \quad k_{3}=1.74 \quad T_{1}=1.7 \mathrm{~ms} \quad T_{2}+4.7 \mathrm{~ms}
$$

A fast control with high gain has a tendency to $25 \mathrm{c} / \mathrm{s}$ autooscillations round the closed loop including the converter, These oscillations were eli minated by a sharply tuncd (47 db peak, $20 \mathrm{db} \pm 5 \mathrm{c} / \mathrm{s}$) twin-T $25 \mathrm{c} / \mathrm{s}$ band stop filter.

A rigorous analysis of 'conprehensive' control is very difficult due to its numerous non-linearities, a particularly intractable one is the minimun angle selection. The response of this devico is sensitive to $\frac{d \gamma}{d t}$ in that the effective saupling rate is 20 ms and $\frac{20}{6} \mathrm{~ms}$ for positive and negative values of this quantity. Fig. 2.16 illustrates its response to monotonic increasing and monotonic decreasing values of Y. A second obstaclo to conventional sampled data theory is that the response of the various elenents is fast in comparison with the sampling frequency. For these roasons a brief description of how the oscillations arise is given in plece of an analysis. The $25 \mathrm{c} / \mathrm{s}$ oscillation arises when only one valve is controlling the system throughout as may arise with unbalanced line voltages, controller maladjustment or current zoro detector jitter. The siegnal fod back to the amplifier is of a square wave nature being alternatcly above and below the sot value. The cyclic time of this square wave is $25 \mathrm{c} / \mathrm{s}$, shown in fig. 2.17 (a).

Writing the amplifior transfer function in simplified form as

$$
A(S)=\left(\frac{1+S T_{1}}{1+S T_{2}}\right) \cdot A
$$

and the peak to peak value of the square wave input function as of tho operation equation for the firing angle oscillation is

$$
\delta \beta(S)=\frac{A \cdot \delta \gamma}{2} \cdot \frac{1+S T_{1}}{\left(1+S T_{2}\right)} \cdot \tan \left(\frac{3 T}{4}\right)
$$

where T is the periodic time.

Fig 2.16 Diarram to illustrate the dependence of the Sampler/Selector apparent frequency on the sim of the tine derivative of the invui. The output for monotonic increasing and cecreasing imput siranis is shown.

(a)

inverse transform

$$
\delta \beta(t)=\frac{A \delta \gamma}{2}\left(k_{1}+k_{2}+\left(1+\frac{\mathrm{T}_{1}-T_{2}}{2}\right) e^{-\frac{t}{T_{2}}}\right)
$$

where

$$
\begin{array}{rl}
k_{1}= & 0 \quad n T<t<\frac{2 n+1}{2} T \\
k_{1}= & -2\left(1+\left(\frac{T_{1}-T_{2}}{T_{2}} \cdot e\right.\right. \\
& \frac{2 n+1}{2} T<t \cdots(n+1) T \\
x_{2} & 0 \quad t<n T \\
k_{2}= & 1+\frac{(t-n T)}{T_{2}} \cdot e^{-\frac{(t-n T)}{T_{2}}}
\end{array}
$$

$$
t>n T
$$

This is plotted in fig. 2.17 (b) and corresponds closely to the firing angle signal observed on test.

Typical numerical values give

$$
\begin{equation*}
\text { (} \delta \beta \text {) peak to peak }=10 \text { to } 15 \times(\delta \gamma) \text { peak to peak } \tag{2.2}
\end{equation*}
$$

Also the commutation equation

$$
\cos \gamma=\frac{2 \mathrm{KcI}}{\mathrm{Vm}}+\cos \beta \quad \text { yields }
$$

$\delta \gamma=\delta \beta V 1-\left(\frac{4 X c I d}{V m} \cot \gamma \cdot \operatorname{cosec} \gamma-\left(\frac{2 X c I}{V m}\right)^{2} \operatorname{cosec}^{2} K\left(\frac{2 X c}{V \operatorname{msin} \gamma}\right) . \delta I\right.$ Again with typical numorical values, $\gamma=15^{\circ}$, $\mathrm{Xc}=3.14$

$$
V m=80^{\mathrm{V}}, I=5^{\mathrm{A}}
$$

$$
\begin{array}{rc}
\delta \gamma=3.2 \delta \beta-17.7 \delta I \quad & \quad \delta_{0}, \hat{\partial} \gamma \text { in degrees } \\
-(2.3)
\end{array}
$$

From equation (2.2) and (2.3) the possibility of sustained oscillations if δI is small enough are evident.

Similar effects aro conceivable at $50 \mathrm{c} / \mathrm{s}$ and $150 \mathrm{c} / \mathrm{s}$ when two valves only control the firing angle or when all six valves oscillete on alternato firings. Howover after cereful alignment neither of these effects caused any serious disturbance. This is explained by a woll known property of sampled data systems; a stable sampled data system can become incroasingly unstable as the sampling rate is decreased, that is, sampled data system may stabilise at higher sampling rates because in the limit, a continuous system possesses onc pole less than the corresponding sampled data system. Time constants and gains in all parts of the loop have been 'optimised' by trial and error adjustments.

2.6.6. Monitoring of the velve current zero

A magnetic method is used to detcct the valve current zero. A saturating tcroid of EUR, a material with a narrow rectangular Fyst ereses loop, (69) carries three windings fic. 2.18(a). Bias current in one winding magnetises the core to point Λ, fig. 2.18 (b), but velve curront in a second winding moves the magnotisation level to B. When valve current falls below $10 \mathrm{~mA}(0.350)$ the magnetisation level is returned to A and the flux change is detected on the third signol winding. The smallest value of valve current whose zero an be accurately detected is approximately $0.3^{A}(10 \%)$ though this varies somewhat with bias current value.

```
2.7. Constant Current Control (c.c.c.)
```

2.7.1. Particular considerations under fault conditions

Some questions relating to c.c.c. gain to preserve system

(a) Winding Arrangements.

(b) Lacnetic Characteristics.
stability have beon considered in section 2.5 and hore stability under fault conditions is briefly discussed as it is desirable that on line fault the converter should 'settle in' quickly with the mininus of comiatation failure or transient oscillations. In faulted transmission systems the three converters can be regerded as three non-intoracting units; an assumption exactly true for faults neer the node but liable to some error if the fault position is at the terminal end of a capacitive inverter cablo.

Any convortar may now bo taken separately as in fig. 2.19 a where r_{1}, depends on fault position. If tho c.c.c. transfer function is approzimately written

$$
\Lambda(S)=\frac{A}{1+S T}
$$

tho open loop system transfer function is

$$
\frac{k \cdot(S+z)}{(1+S T)\left(S-S_{1}\right)\left(S-S_{1}\right)}
$$

with

$$
k=\frac{A \cdot V_{d o} \cdot \sin \alpha}{}
$$

L

$$
\begin{gathered}
S_{1}, \bar{S}_{1}=-\lambda \pm \partial \\
\lambda=\frac{1}{2}\left(\frac{1}{r_{1} C}+\frac{r}{L}\right) \\
\partial=V\left(\lambda^{2}-\frac{r_{1}+r}{L C r_{1}}\right)
\end{gathered}
$$

Tho polo zero pattern and 180° lines are sketched in fig. 2.19 b where $p=-\left(\frac{1}{T}+\frac{r}{L}\right)$. Apparently the system is alvays stable, however the discrete nature of the convertor control may be represented approximetely by an additional pole at $S=-2 /($ sampling rate), and a further cluster of distant poles arise from filtering etc. ($D(S)$). This will cause the 180° lines to move right as shown dotted but a small amount of phase advance will pro-

Fig 2. 19a Matherratical Vodel for Stability Analysis of Converter on Fault.

Fise 2.2I Constant Current Control Amplifiere
duce a compensating distant zero. The c.c.c. transfer function was modified to

$$
\Lambda(S)=\frac{A\left(1+S T_{2}\right)}{\left(1+S T_{1}\right)}
$$

and this resulted in groatly inproved performance during both normal operetion and faults.

2.7.2. The d.c. current transformer

> A current transformer is an essential element in a flexible simulator as it enables current measurement at voltages removed from earth. The saturating reactor type $(70-71)$ was built but abandoned in favour of a Hall device ${ }^{(72)}$ (ABI Mark IIIA Eall Field Probe). Fig. 2.20 is a plot of its characteristic when feeding an 800 abmload with 75 mA in the constant current leads. The slope is $11 \mathrm{~V} / \mathrm{amp}$ and the linearity is adequate ($\pm 0.5 \%$) over the working range of $0-5^{h}$. The effect of laboratory temperature drift is not significant being below 0.1% per ${ }^{\circ} \mathrm{C}$.
2.7.3. The C.C.C. Amplifior

The basic component of the amplifior is a Plessy Sl702C integrated circuit module. An integrated circuit was chosen for its low drift and ease of circuit construction. The Hall dovice output is fod to the integrated circuit, the output is compared with a reference setting in a standard design difforence amplifier and the control signal taken to the thyristor grid pulsing units via buffers. See fig. 2.21.

The principal time constent is chosen for fast response and with special referonce to d.c. harmonic suppression. Clearly the control should be insensitive to the $300 \mathrm{c} / \mathrm{s}$ ripple but fast in comparison with the a.c. frequency of $50 \mathrm{c} / \mathrm{s}$. The variation in gain is under the control of the operator at VR3.

Low gain has adverse effects on system controllability while higher gain croates dangers of instability as proviously discussed.

There are also limitations to the phase advance that can be used as the systom must not be responsive to spurious signals.

The transfor function of the operational amplifier eloment of fig. 2.21 is

$$
\text { Vout }=-100\left(\frac{1+S T_{1}}{1+S T_{2}} \quad c_{1}-\frac{1}{1+S T_{2}} \quad c_{2}\right)
$$

where c_{1} and c_{2} are the double ended output voltages from the Hall effect current transformer and typically

$$
\begin{aligned}
& \mathrm{T}_{2}=4.7 \mathrm{~ms} \\
& \mathrm{~T}_{1}=0.5 \mathrm{~ms}
\end{aligned}
$$

The output stage transfer function is

$$
\text { Control voltage }=G \cdot\left(\frac{1}{1+S T}\right) \quad x \text { signal from comparator }
$$

where $T=0.4 \mathrm{~m} \mathrm{~s}$
$G=$ variable gain setting. Set at VR3

2.8. Other Control Circuits

2.8.1. The bypass valve control circuit

This is in principlo the same as the original circuit developed in ref. (63); circuit diagram fig. 2.22. A free running $30 \mathrm{kc} / \mathrm{s}$ squere-wave oscillator is continuously running and its output pulses are either gated to the bypass valve grid transformer or held suppressed by a bistable gate which is switched on and off as required by external control signals.

The largest possible operating deloy is equal to one mark-time of the oscillator i.e. $15 \mu \mathrm{~s}$.
2.8.2. The Inverter Recovery Unit

This is a simple monostable which when triggered injects a voltage pulse to the invorter pulsing units to transiently move the advance angle P beyond 60° for cne or two firing periods. In the unexciced stato the circuit output voltage is at the ceiling value of 10^{V} and is therofore igmored by the control selection panel. Circuit diagram: fig. 2.23.

2.8.3. The Control Sclection Unit

This pancl, fig. 2.24, selects from all the controllers the appropriate control signal to be transmitted to the pulsing units. A second function of this circuit is to impose a minimum β linit on the inverter firing angle as suggested in $(36,39)$. These authors heve, as would be done on an h.v.d.c. converter, made β minimum equal to the minimum extinction angle on the ETL simulator in Japan. However a thyristor bridge with $\beta=10^{\circ}$ to 20° is 3 good deal more reliable then a mercury arc rectifier and for this reason the minjrrum β setting has been reduced to between 5° and 10°. Mlso see last paragraph of scction 2.2 .

2.9. Valve Damping Circuits

Valvo danping series $R-C$ circuits are connected in parallel with i. V.D.C. convertor valves to limit the rate of rise of voltage and the voltage overshoot at the instent of valve current extinction when the anodewathode space is still ionised. Buscrann (73) attempted to formulate design oriteria by breaking down the circuit into simple oscilletory notworks each defining a normal mode of systom oscillation. The method however suffers from meny approximations and an over emphasis of the effects of stray capacity, and from the dosign point of view, the liniting of the rate of rise of recovery voltage is also

Fize 2. 22 Broass Valve Control Cirouit.

Fig. 2.23 Itrerter Reoovery Unit.

Imputs from Control Cimoits.

Fit. 2. 24 Control Solection Unit.
neglected. The design criteria proposed by Ainsworth (74) can be used to give satisfactory results.

2.9.1. Analysis of damping effects

The bridge circuit immediately after the current zero in valve 1 , that is with valves 2 and 3 conducting is as in fig. 2.25.a and is rearranged in fig. 2.25.b in a form suitable for analysis. Stray capacitance is neglected. V_{j} is the commutation jump voltage across the valve and is represented by two equal parts one in each phase. The operational equation for the voltage across the valve is given by
$V(S)=\frac{(1+S R C)\left(2+2 S R C+9 S^{2} L C\right)}{\left(1+S R C+S^{2} \cdot 3 L C\right)} \cdot \frac{V_{j}}{2 S} \cdot \frac{1}{\left(1+S I O+G^{2} \cdot 5 L C\right)}$
and the time solution is $-\pi x_{1}$
$V(t)=-\sqrt{2} V_{L} \sin (\alpha+u) \frac{3}{4}\left(1+e^{\sqrt{1 / 2}}\right.$

$$
\begin{aligned}
& \left.\left(\frac{\sin \pi x_{1} \sqrt{4-\frac{1}{M_{1}}}}{\sqrt{4 M_{1}-1}}-\cos \pi x_{1} \sqrt{4}-\frac{1}{M_{1}}\right)\right) \\
& +\frac{1}{4}\left(1+e^{\sqrt{\sqrt{M_{2}}}}\left(\frac{\sin \pi x_{2} \sqrt{4}-\frac{1}{M_{2}}}{\sqrt{\left(4 \pi_{2}-1\right)}}\right.\right.
\end{aligned}
$$

$\left.\left.-\cos \pi x_{2} \sqrt{ }-\frac{1}{\mathbb{N}_{2}}\right)\right)($
where

$$
\begin{aligned}
& V_{j}=-V_{2} V_{L} \sin (c+u) \\
& x_{1}, x_{2}=t / 2 \sqrt{3 L C} \text { and } t / 2 \sqrt{5 L C} \text { resp. }
\end{aligned}
$$

$\mathrm{H}_{1}, \mathrm{H}_{2}=3 \mathrm{n}$ and 5 resp.
$H=L / R^{2} C$
$t=$ time aftor current zero
$\mathrm{L}=$ comnutating inductance por phase

This solution is obtained from an equivalent circuit that is more straightforward than that used by Ainsworth ${ }^{(74)}$. Both solutions hovever should be identicel, but the latter has suffered at tho hands of the printer.

The conditions for critical damping apparently are
$R=V\left(\frac{20 L}{C}\right)$ and $R=V\left(\frac{12 L}{C}\right)$ but Ainsworth ${ }^{(26)}$ rightly points out that since the values of C required for limiting the rate of rise of recovery voltage are much larger than stray capacitances critical damping in the sense of no overshoot cannot be achieved.

2.9.2. Inverter damping circuit design

An acceptable rate of risc of recovery voltage across the valve after current extinction is $2 \mathrm{kv} / \mu \mathrm{s}$ or on the model scale, $R_{v}=2 v / \mu \mathrm{s}$. The commutating reactance L calculated from a.c. systom conditions for the weak a.c. system $=9.1 \mathrm{mH}$.

Taking inverter operation at $\gamma=15^{\circ}$
and a transformer secondary voltage of 80^{V}

$$
\begin{aligned}
& 0.4 \times 2 \pi \mathrm{LC}=\frac{V_{L} \cdot \sin \gamma}{R v} \\
& C=0.007 \mu^{\mathrm{F}} \text { use } 0.01 \mu^{\mathrm{F}}
\end{aligned}
$$

From the critical demping conditions of $R=\left(\frac{20 I}{C}\right)$ and $V\left(\frac{12 \mathrm{~L}}{\mathrm{C}}\right)$
$R=3$ to $4 k$ approximately
A value of 2.7 k was found to give best results on the simulator.
The valve danping circuits at the other converters were sinilarly designed.

(a)

(b)

Fig. 2.25 Circuits for Analysing Valve Daming Pffects.

Converter	R	C
Rectifier	1 K	$0.1 \mu \mathrm{~F}$
Inverter 1	2.2 K	$0.05 \mu \mathrm{~F}$
Inverter 2	2.7 K	$0.01 \mu \mathrm{~F}$

In no case could the oscillation overshoot be completely removed.
2.10. Conclusions

The design and synthesis of the controls nocessary for a flexible h.v.d.c. systom model suitable for multiterminal studies has boen described and the final circuits shown. The cnalytical considerations used as an aid to design are indicated but the final adjustments have been made on the model. The control details arc to a high degree dependent on the characteristics of the a.c. systems and on the transmission line parameters, with the result that h.v.d.c. system controls are in a sense tailor made. The objective at all tiracs wes to build a fast, closely controllable simulator free from system instability and commutation faults during transionts.

CHAPTRR 3

Performance of the Simulator

3.1. Introduction

In this chapter the performance of the simulator will be described in some detail. As outlined below the emphasis in these tests is on transiont response; the steady state characteristics of $h . v . d . c$. systems has been fully discussed in the literature in the form of voltagemeurrent characteristics $(42,48,67,75)$. The response of the individual controls are shown by a series of tests on a single bridge where the output signals of the constant current controller and the constant extinction angle controller together with the firing angle control sigmal and the measured extinction angle are recorded. The response of the three terminal inter-connected system is obtained from a second set of tests where step changes of order are communicated to the system controllers: The three converter voltages and currents and the voltage at the d.c. transmission line node point are recorded on these tests.

It is necessery to investigete the extent to which the singlo pole 3 -bridge studies conducted here can be extended to 2-pole 6-bridge operation. In particular it would appear reasonable to assume that the behaviour of a 3-bridge system during pole to neutral faults can be identificd with that of a 6-bridge system during pole to pole faults. The only essential difference between these two conditions is the 6-pulse and 12-pulse nature of the converter output d.c. voltage and the corresponding difference in the frequency of the discre t. control exercised by the converter control circuits. A mathematical model suitable for a comparison of this nature is proposed and the $6-$ pulse and 12-pulse converter characteristics are compared.

3.2. The proposed Mathematical Model

The d.c. converter is inherently a discretely controlled
device in that control action is effective only at six (or twelve) instants in the a.c. cycle. In the interval between the instants of seloction of firing angles the control signal exercises no influence on the converter. With sampled data theory in view the mathematical model of fig. 3.1 is proposed. S is on position 1 for an investigation of constant current control and in position 2 for constant extinction angle control. Linearised parametors are used throughout and therefore this discussion is strictly applicable to small disturbances only; it will be seon later that this restriction is not as serious as it appears.

The converter is represented by an amplitude term $V_{d o} \sin \alpha_{\text {in }}$ a sampler of frequency $1 / T$ and a zero order hold circuit. The input to this converter 'box' is $\delta<$ the change of firing angle from its quiescent value $\alpha_{i n} . T=20 / 6 \mathrm{MS}$ and $20 / 12$ MS for six and twolve pulse converter operation respectively. In addition
$A(S)$ is the constant current controller amplifier transfer function
$G(S)$ is the transfer function of extinction angle determining process
$H(S)$ is the transfer function of c.c.a. amplifier
$Y(S)$ represents the operational admittance of transmission line

The transmission line is represonted by the lumped parameter equivalent circuit of fig. 3.2 where the far end resistance r_{3} can be positive or negative depending on the terminal equipment. l_{1}, I_{2} are predominantly duc to the smoothing inductors.

The z transform operational equation of the converter is given by

$$
\begin{aligned}
& i(z)=k \cdot \frac{\left(1-z^{-1}\right) \cdot Z_{t}\left(\frac{Y(S)}{S}\right) \cdot Z_{t}(A(S) \cdot \delta I(S))}{1-\left(1-z^{-1}\right) \cdot Z_{t}\left(k \cdot A(S) \cdot \frac{Y(S)}{S}\right)}-(3.1) \\
& \text { and } \quad-\frac{f o r}{\text { constant current control }} \\
& i(z)=k \cdot \frac{\left(1-z^{-1}\right) \cdot \cdot_{t}\left(\frac{Y(S)}{S}\right): Z_{t}(H(S) \cdot \delta Y(S))}{1+\left(1-z^{-1}\right) \cdot Z_{t}\left(k \cdot H(S) \cdot \frac{Y(S)}{S} \cdot G(S)\right)}-(3.2)
\end{aligned}
$$

> - for c.e.a. control

Where $k=V_{\text {do }} \cdot \sin \alpha_{\text {in }}$
$\delta I(S)$, $\delta \gamma(S)$ are the operational input disturbing functions
$z_{t} \equiv z$ transform of
$Z_{t}(F(S))=\frac{1}{2 \pi j} \int_{\lambda_{1}-j \propto}^{\lambda_{1}+j *} \frac{F(p)}{1-c^{-T(S-p)}} \cdot d p$
Equations $3.1,3.2$ may be derived by an extinsion of results in ref(76)

```
p is a dummy variable of integration and }\lambda,\mathrm{ lics within
the abscissa of convergence
z= e ST
```

Equations (3.1) (3.2) show that in sampled data systems it is not always possible to write equations of the form

$$
\begin{aligned}
\text { Operational Output Quentity }= & \text { transfer function } \times \text { operational } \\
& \text { input quantity }
\end{aligned}
$$

In order to form an equation of this type whore the response function of the converter alone may be separated and examinod the disturbing function $\sigma \sigma(S)$ is introduced into the grid control signal as shown in fig. 3.3.

The system operational equations with c.c. and c.e.a. control now become respectively

$$
\begin{aligned}
& \qquad i(z)=(-k) \frac{Z_{t}\left(\frac{Y(S)}{S}\right)}{1-\left(1-z^{-1}\right) \cdot Z_{t}\left(k_{0} A(S) \cdot \frac{Y(S)}{S}\right)} \cdot \dot{Z}_{t}(\delta \alpha(S)) \\
& \text { and } \\
& \quad i(z)=(-k) \frac{Z_{t}\left(\frac{Y(S)}{S}\right)}{1-\left(1-z^{-1}\right) \cdot Z_{t}^{\prime}\left(k_{0} H(S) \cdot G(S) \cdot \frac{Y(S)}{S}\right)} \cdot Z_{t}(S \alpha(S)) \\
& -(3.4)
\end{aligned}
$$

It is now possible to postulate two closed loop system transfer functions;

Fig 3.1 Vathematical Model for the comparison of 6 and 12-Pulse Uystems.

Fig 3.2 Cimuit for detemination of $Y(s), Y(z)$.

Fig 3.3nvaif ed lighematical Yodel.

$$
z_{t}\left(\frac{Y(S)}{S}\right)
$$

$$
\begin{equation*}
1-\left(1-z^{-1}\right) \cdot Z_{t}\left(k \cdot A(S) \cdot \frac{Y(S)}{S}\right. \tag{3.5}
\end{equation*}
$$

- for c.c. control
and

$$
\begin{equation*}
\frac{\mathbb{z}_{t}\left(\frac{Y(S)}{S}\right.}{1-\left(1-z^{-1}\right) \cdot Z_{t}} \frac{\left(k \cdot H(S) \cdot G(S) \cdot \frac{Y(S)}{S}\right)}{(1)} \tag{3.6}
\end{equation*}
$$

- for cie.a. control
and investigate the behaviour of both for sampling rates corresponding to 6 -pulse and 12 -pulse operation. The constant current control is examined in detail in the next section.

3.3. 6-Pulse and 12-Pulse System Comparison

Inserting numerical values the z-trensforms of expression (3.5) are readily determined by conventional methods and thereafter alternative methods for comparing 6 -pulse and 12-pulse operation are employed.

In the first method the frequency rosponse of the transfer function is determined and plotted on a Bode diagram, A large number of diagrams were obtained for various parameter values and two typicel sets corresponding to c.c. control principal time constant value of 5 ms and 20 ms are shown fle.3.5. a, and fig. 3.5. b respectively.

In order to obtain these diagrams for 6-pulse and 12-pulse operation the following substitutions require to be made.

$$
\begin{aligned}
z= & e^{S T} \\
S= & 0+j 2 \pi f ; f=\text { frequency } \\
T= & 20 / 6 \mathrm{~ms} \text { for } 6 \text {-pulse and } \\
& 20 / 12 \mathrm{~ms} \text { for } 12-\text { pulse working }
\end{aligned}
$$

The general conclusion that can be made is that there is negligible difference between 6 and 12 pulse working for

Fir. 3.5a Bode Diarrans for the comparison of 6 and 12-Fulse Systems.
(c.c.control principal time constant value $=5 \mathrm{~ms}$)
—__ 6-_oulse.
_ - - 12-Pulse.

(c.c.control principal tume constant value $=28 \mathrm{mS}$)

Fig. 3.5b Bode Diagrams for the comparison of 6 and 12-Fulse Systers.
frequencies less than $100 \mathrm{c} / \mathrm{s}$. It is also found that increasins linc capacitance further reduces these differences as can be anticipated from the increased electrical inertia of the system. Consequertly the 6-pulse and 12-pulse system behaviour are closer to each other for cable networks than overhead lines.

The second method of comperison, used as a check on the above results is to re-write equations $3.3,3.4$ in the alternative form

$$
i(s)=\frac{\left(\frac{1-e^{-S T}}{S T}\right)}{1+\frac{1}{T} \sum_{-\infty}^{+\infty} F\left(S+j n \omega_{r}\right)} \cdot \sum_{-\infty}^{+\cdots}(S+j n \omega)
$$

where $n=1,2 \ldots$
$\omega_{r}=2 \pi x$ sampling frequency

$$
\begin{aligned}
& F(S)=-k\left(\frac{1-e^{-S T}}{S}\right) \cdot Y(S) \cdot A(S) \text { for c.c. control. } \\
& P(S)=-k\left(\frac{1-e^{-S T}}{S}\right) \cdot Y(S) \cdot G(S) \cdot H(S) \text { for c.c.a. control }
\end{aligned}
$$

Neglecting all values of $n>1$ and approximating $\left(\frac{1-e^{-S T}}{S T}\right)$ to $\left(1-\frac{S T}{2}\right)$ the transfer function of c.c. control can be written

$$
Y_{I T}(S) \cdot A_{D}(S) \cdot\left(1-\frac{S T}{2}\right)
$$

$$
\left(Y_{D}(S) \cdot A_{D}(S)-k\left(1-\frac{S T}{2}\right) \cdot Y_{N}(S) \cdot A_{N}(S)\right)+\left(Y_{D}\left(S+\omega_{r}\right) \cdot A_{D}\left(S+\omega_{r}\right)\right.
$$

$$
\left.-k\left(\frac{I^{-\left(S+\omega_{r}\right) T}}{2}\right) \cdot Y_{M}\left(S+\omega_{r}\right) \cdot A_{N}\left(S+\omega_{r}\right)\right)
$$

$$
+\left(Y_{D}\left(S-\omega_{r}\right) \cdot A_{D}\left(S-\omega_{r}\right)-k\left(1-\frac{\left(S-\omega_{r}\right) T}{2}\right) \cdot Y_{Y}\left(S-\omega_{r}\right) \cdot A_{N T}\left(S-\omega_{r}\right)\right.
$$

where subscripts \mathbb{N}, D refor to tho individual numerator and denominator polynomials of $Y(S)$ and $\Lambda(S)$.

It is now possible to obtain the poles and resjdues of this function for $T=\frac{20}{6}$ ms and $T=\frac{20}{12} \mathrm{~ms}$ and thus compare the characteristic modes of the 6 -pulse and $12-$ pulse systoms.

The fifth order polynomial has one pole on the real axis, near $S=-1$ and the difference in residue value and pole position at this pole is less than 1% between 6 -pulse and $12-p u l s c$ oporation. \dot{A} pair of poles are locatod near the inaginary axis between $20 \mathrm{c} / \mathrm{s}$ and $40 \mathrm{c} / \mathrm{s}$ for normal parameter range. The residue at this polo is negligibly small and its influence cen be neglected. I second pair of poles is located near the inoginary axis between $30 \mathrm{c} / \mathrm{s}$ and $45 \mathrm{c} / \mathrm{s}$. The difference in pole positions and residue values between 6-pulse and 12-pulse operation at this pole does not usually exceed $5-10 \%$.
3.4. Steady state charactoristics

The frequency response plots for the c.c. control amplifier and the c.e.a. control auplifier are plotted in fig. 3.6. and 3.7 respectively. In the latter caso the influence of the $25 \mathrm{c} / \mathrm{s}$ filter is easily discernible.

The Hall device curront transfomer has a frequency response better than $50 \mathrm{kc} / \mathrm{s}$ and a temperature co-efficient less than $0.1 \% /{ }^{\circ} \mathrm{C}$.

The constant current control characteristics are variable betwoen a slope of 50 p.u. d.c. impedance base and 5 p.u. d.c. inpedance base on the potentiometer VR. 3 fig. 2.21. Fig. 3. is a plot of the typical constant current characteristics of the rectifier in the system used in the majority of tests discussed in the following chapters.

The droop of the voltage-current characteristic of an inverter deponds on the a.c. systen reactance and this negative resistance is an important factor in system stability discussions. The characteristics of fig. 3.9 correspond to the weak a.c. systom of the subscquent three terminal studies. The disproportionally large a.c. side resistance drop of model systeras hes been discussed previously and the characteristics of fig. 3.9 have been corrected for this effect. The thyristor drops have been ignored and may be regarded as constant value

Fig. 3.6 Gain Characteristic of Constant Current Control Amplifier with Phase-Advance.

Fig. 3.7 Gain Characteristic of CEA Control Amplifier with Ehase-ddvance and Twin-T Filter.

Angle estimated onosiloscope. Usual range, nominal value to nominal value+20.
of about 3^{v} adding to the inverter back voltage. The pulsing units were carefully aligned to give an accurate 60° firing interval between thyristors over the range $\alpha=0^{\circ}$ to near 180°; an accuracy of about 0.5% being obtained.

Due to phase voltage unbalance in the laboretory mains supply and the resulting shift of line voltage zeros a difference of about 2° has alvays been observed among the six extinction angles, The shift of line voltage zero per 1% magnitude unbalance in phase voltage is about 0.32° and the change of commutation angle of a typical $\beta=30^{\circ}, \gamma=15^{\circ}$ inverter per 1% magnitude change in the commutating voltage is about 0.22 degrees. A phase voltage phase angle unbalance introduces an angular error of half its value into the effective extinction angle.

3.5. Single Bridge Tosts

The purpose of thesc tests was to monitor the input and output signejs of the individual converter controls and their interactions, for step changes of control input signal and for transition from one controller to another. In order to eliminate completely the effects of the interaction of the controls at different terminals of a multiterminal system the tests were made with one converter only connected on the d.c. side through the smoothing inductor oither to a resistive load or to a constant $d . c$. source in series with a resistance.

In interpreting the grid control signal and the control amplificr output signals it is to be noted that an increase of control voltage linearly increases the firing angle α over the range $4.2^{v} / \alpha=0^{\circ}$ to $7.3^{v} / \alpha=180^{\circ}$.

3.5.1. Step Changes of Current Order

A step increase was applied to the reference current signal of the c.c. control unit and weveform recording fig. 3.10 was obtained. The grid control signal increases rapidly until

further incroase is prevented by the $"$ minimulanit circuits and the bridge romains in this condition for $3 \frac{1}{2}$ a.c. cycles. The c.c. amplifier output - not directly recorded here would in this period be in the saturated condition. The rate of increase of current is limited by the d.c. inductor and when it approaches the now domanded value the c.c. control amplifier comes out of saturation and increases the firing angle to control current to this value. The final steady state voltage and current are 132% of the initial values. Changing the size of the current step has the effect of changing the duration of $\quad \%$ minimuan control and introduces no qualitative changes in the recording.

Fig. 3.11 is a recording of waveforms subsequent to a step decrease of curront order such that the final voltage and current are 66.7% of the initial values. The fast high gain current control rapidly moves the bridge into inversion until further increase of the firing angle is limited by the β minimum stop. The bridge ronains in this state for about 1 a.c. cycle when d.c. current overshoot brings the c.c. control out of negative seturation forcing the bridge on α minimum control for over two cycles before c.c. control comes out of positive saturation settling the system into its new operating condition. If the size of the negative current order step is less then about 15% tho overshoot is limited and the secondary α minimum operating period is absent.
3.5.2. Step changes of reference Extinction Angle Setting

Rapid changes of extinction angle aro not required in any form of h.v.d.c. converter control envisaged at present. The tests discussed in this section therefore have no practical relevance and are included only as a record of the transient characteristics of the c.e.a. control unit. The tests were made on an invorter working on the d.c. side in series with a resistance of about 5 ohm and a 0.56 H choke against a 100^{V} d.c. mains. The a.c. system short circuit level ves reduced by inscrting a reactance of $12 \mathrm{mh} /$ phase on the 220^{V} side to give a commutation ovarlap angle of 12° to 15° at full load. Fig. 3.12
relates to a stop increase of bridge extinction angle from 10° to 15° as estimated on the oscilloscope at rated current. Fig. 3.13 and 3.14 show the effocts of a step decrease of extinction angle from 16° to 11° for bridge currents of 100% and 120% respectively of rated veluc. The sherp pips in the control amplifior output transferred ${ }^{\text {to }}$ tho grid control signal arise from the phase advance, i.e. $\overline{d t}$ component of the fed back control signal. The measured minimum extinction angle signals clearly show the discrete nature of the control and the peculiar non-linearity discussed in section 2.6.5. The waveform of fig. 3.12 settles down after a single overshoot of $\beta>30^{\circ}$ and the converter does not show any significant transient effects aftor 3 to 4 a.c. cycles.

A number of interesting aspects of 'comprehensive' c.c.a. control are illustrated in fig. 3.13 and 3.14 which deserve to be examined in some detail. Referring to fig. 3.14, on applying the step change of reforence signal demanding a roduction of extinction angle frora 16° to 11° the c.e.a. control amplifier begins to reduce the anglo of advance and due to the large operating current (120%) comutation failure occurs at the second comutation aftor the step change. At this point the angle measuring unit reads zero extinction angle and the amplifier responding to the large step error signal produces immediate corrective action in the form of the sharp pip of control voltage induced by the phase advance, i.e. $\frac{d Y}{d t}$, control. This ensures an immediate large increase, 25°, of delay angle at the subsequent commutation and the prevention of any further comutation failure. This is an important feature of the new control schene. Furthermore the c.e.a. control permits the bridge to resume normal operation only slowly as evidenced by the increased values of β for a further two a.c. cycles. Finally the bridge settles down to its new operating state at a reduced extinction angle of 11°. The waveform of fig. 3.13 shows the same test conducted at 100\% rated current when no comnutation failure takes place but the excessively small value of the extinction angle immediately offor step application is again corrected as described above but the action is less drastic.

One of the drawbecks of 'comprehensive' control when com-

Fring Ang. Control Sig.

COA Amp. output S1g.

CgA Amp. Ref. Input.

Mensured min. extinet. ang
D.C. Current.
D. C_{4} Voltage.

pared to consecutive control that was pointed out in section 2.6.2 is the inability to produce a correction until a change of extinction angle is sensed. However the excellent automatic corrective action to commutation failures exhibited by 'comprehensive' control, especially when $\frac{d Y}{d t}$ feedback is used is a marked advantage of this method.

If the $\frac{d Y}{d t}$ component of the control signal was sensitive to the small random variations of extinction angle that continuously occur in power systems, normal system operation would be adversely effected. The waveforms corresponding to the steady state region in these figures however show that for these small disturbances the control voltage pips produced by the phase advance action have completely disappeared by the time of the next valve firing. The $\frac{d Y}{d t}$ control component gain is low enough to ensure that it is effective only for large disturbances and commutation failures.

3.5.3. Transition of tho converter between c.e.c. and c.c. controls

A transition of inverter operation from c.e.a. controlled operation to c.c. controlled operation is brought about by collapsing the d.c. source voltage to 75% of its initial volue. The c.c. control setting is 18% below the initial operating current. The waveform of fig. 3.15 shows the c.c. controller output changing rapidly and begining to take over bridge control in less than half an a.c. cycle.

The reverse pehnomenon due to a 25% rise in d.c. source voltage is recorded in fig. 3.16. In this case the final operating current is only 5% higher than the initial value and the transient oxtinction angie is only slightly lower than the final value on c.c.a. control. The c.e.a. control amplifier therefore corrects more gradually than in fig. 3.13 or 3.14.


```
3.6. Three Temuinal Systea Performance
```


3.6.1. Converter Comutation Failure

Small disturbance analysis of h.v.d.c. trensmission system stebility using lincarised equations is not acceptable because the typical system disturbance, a single isolated converter comutation failure, is excluded. In tuning the gains and other characteristics of the controls at the three terminals of the h.v.d.c. simulator, particular attention was paid not only to obtaining fast, close control, but also to the ability of the system to ride through rectifier and inverter single commatation failures. The following figures illustrate the effect of comutation failures,

Figure	Failuro at	Type	Current margin
3.17	Rectificr	Singlo	8%
3.18	Irvertar connected	Single	8%
	to Woak a.c. system		

These tests werc conducted with the rectifier on normal volts and at full load current . 60% of which was delivered to the invorter on c.e.a. control by constant current controlling the other inverter to accept the remaining 40%. The inverter IN2 connccted to the weak a.c. system is on c.e.a. control for both tests and the converter voltage waveform immediately after failure clearly shows the corrective action discussed at some length in section 3.5.2.

The node voltage oscillations are representative of the predominant natural frequency of the transmission network and in the case of fig. 3.17 is easily measured as $30 \mathrm{c} / \mathrm{s}$. This is much lower than the conventional natural frequency of transmission lines and cables of the same length due to the large lumped smoothing inductor at line terminations.
3.6.2. Step changes of Rectifier Current Order

One of the principal advantages of h.v.d.c. transmission is the ability to rapidly alter power flow in different parts of

the network. This is illustrated in fig. 3.19 where rectificr current is increascd from 90% to 110% of rated value by a step change of control signal. Soon after the system settles down the current is reduced to its original value by a second step change of control signal. The second transient shows one double commutation failure of the rectificr arising from rapid control change but systom recovery is excellont. The transient is much less sovere than the corresponding effect in fig. 3.11 for a single bridge working against a resistive load because the other two controlled converters contribute favourably to the stability of the disturbed converter.
3.6.3. Fast Power-flow Reversal

Cautious experiments (78) have been conducted on the cross channel link to reverse the direction of flow of d.c. power betweon tho systoms. The method used was to dccroase both rectifier and inverter current orders to zero and restart the systen with the rectifier/inverter functions and therefore the cable polarity revorsed. The entire change ovei took 600 ms of which 500 ms was due to delay in the comrunication systems.

Much faster power revarsal can be achievad by altering converter control signals to make the operating current margin negative, if the rapid change of cable polarity is acceptable. In the most arduous case where step changes were applied (fig. 3.20) to the model the rapid transient includes one double commutation failure of inverter IN1 but control oscillations cease in two a.c. cycles. The converter which was initially on c.e.a. control transits to the α minimum limit control and continues the function of regulating system voltage. This converter exhibits a single excursion out of α min. Control to c.c. control and a return to α rin. control, in this case about 7 a.c. cycles after the step input, but the resulting system disturbance is small. If the transmission is to be maintained in the reverse direction for more than a few seconds it is desirable that the transformer top-changors are operated to lower the large firing angles that nocessarily arise at the two convorters on c.c. control.

The transmission was returnod to its oricinal operating state by a second step change. The reversal of the systen is now much more rapid and snooth, though minor oscillations of control persist for 2 to 3 a.c. cycles.

The two operating conditions are described by the table below.

Normal power transfer

Rectifier
current 106\%
voltage 90\%
c.c.control

Invertor 1

current 55%	48%
voltage	74%
c.c.control	-69%
	c.c.control

Inverter 2
(weak current 51\% 40\%
$\begin{array}{ll}\text { a.c. } & \text { voltage } 74 \%^{\circ} \\ \text { systen) } & \text { c.e.a. control }\end{array} \quad Y=13^{\circ}$
Node voltage 81% - 61%

Voltage and current everywhere are given as :\% of Rectifier rated values.

CHAPTER 4

A Discussion of the Power Syston Representation
4.1. A.C. system representation

The behaviour of a d.c. converter is to a large extent deternined by the characteristics of the a.c. systen to which it is connected. The a.c. system characteristics were taken into account when designing and synthesising the converter control circuits and here the discussion of those characteristics is extended. Generation and load connection, network interconnection and outages, continually cause modification to the characteristics of an a.c, power system.

4.1.1. Inpedance Characteristics of $A . C$. Power Systems

The $50 \mathrm{c} / \mathrm{s}$ impedance of $\mathrm{a} . \mathrm{c}$. power systens is usually determined with sufficient accuracy from an estination of systen short circuit level. An inpedance engle of between 80° and 90° is also assumed. Where the interest is in fast changes the system transient reactance together with transient damping effect have to be considered. When the rectirier is connected to an isolated machine the great coirplexity of adequate modelling with stztic components is best overcone by using micromachines.

The ramonic impedance of power systems however poses a much more complex problein then power frequoncy effocts. An approximation that is somotimes used is: hamonic impedance $=$ harmonic ordor x power froquency imperance. The convertor filter bank can resonat E with the a.c. system at a hamonic of order n, where $n=$ (i\#hort circuit level of a.c. systom/capacitor power frequency vir_{r} supply).

Hetwork analyser/conputer studies have been nade to determine the vari.ation of system impedance with frequency and the principal conclusitons errived at include (79)

1. fault level is not a euide to hernonic impedance except under maximum load conditions when resonance tends to be
damped out. The lowest harnonic impedances at high farnonic frequency were, surprisingly, oncountercd undcr minimun plant conditions.
2. the main resonance peak occurs betwoen the 5 th and the 10th harmonic. Many more subsidiary rosonance froquencies than wore theoretically anticipated occurred and resonances were more frequent on the highor voltage networks.
3. the high frequency impedance drops off aore markedly in cable systens than in overhead line networks.

Network analyser/computer calculations by Horicome et al (80) on a simplificd but typical power network however shows the resonance peak in the region of the 19th harmonic.

Field tests have been conducted (79) on the Lydd converter equipment to obtain the a.c. system harmonic impodance at the froquencies present in the converter a.c. linc currents. The resonances were found to be both more frequent and norc pronounced than in network analyser tests and the magnitude of the high frequency (above 20th harmonic) impedance was much higher. No reliance cen be placed on the harmonic damping resistance value indicated by network analysor studies. Impedance angles as low as 40° to 60° are sometimes uscd in transient studies on h.v.d.c. simulators.

Filter groups tuned to sorics resonance at odd harmonic frequencios can show parallel resonanco in pairs at intormediate hermonics of even number. Small cven harmonic currents arising from a.c. voltage, network cormutatinc reactance, or firing angle unbalancos can give rise to high even harmonic voltages at the converter transforner terainals.

It is known that simulator tosts have been carried out at the English Electric Co. where, with the bridge blocked, the converter station terminals have been suddenly energised by closing the main a.c. side circuit breaker. The a.c. waveform is hoavily distorted and shows numerous high froquancy spikes. It is belioved that those phenomene arise from filter ringing
and are influenced by transformer inrush currents.
Gardner ${ }^{(82)}$ has also pointed out that the impedance prosented to harmonics by synchronous nachines is dopendant on magnetic saturation, and therefore on lowd ragnitude and power factor. The harmonic inpedance decreases at higher saturation and usually lies in the range (hargonic order) x (transient or sub-transient reactance).

No high pass filter was originally plamed for the New Zealand schemo but telephone interference dictated installation. The English end of the cross channel link is subject to harnonic instability under certain network configurations without the third harmonic filter bank (01, 83) It is known that quite large odd and even hermonics flow in transmission networks near h.v.d.c. converter installations. In contrast no filters are used on the island of Gotland and this substantiates the statement that the severity of the harmonic probler depends entircly on the terminal a.c. systea.
4.1.2. A.C. syster Incrtia

The a.c. networks at the two (or more) terminals of an h.v.d.c. systom may bear one of the following thrce relationships to each other.

1. Closely integrated by other synchronous ties. Frequency deviations and phase swinging between the terminals is not significant.
2. Loosely coupled by synchronous ties. The possibility of loss of synchronism following faults needs to be investigated.
3. Asynchronously coupled.

The second and third cases roquire further consideration during fault studies so that either synchronism or frequency instability respectively of the two a.c. networks, nay be taken into account (84).
$H_{1,2}$ are suitably dimensioncd inertia constants for the two systoms and of $f_{1,2}$ are systom frequency deviations due to a disturbence, subscripts 1,2 rofor to the two systers. Suppose a power imbalance of occurs in either system, then

$$
\begin{aligned}
& \text { s. of } f_{1,2}=\left(\frac{\delta P}{H_{1,2}}\right) \\
& s=\text { the Laplacian oporator }
\end{aligned}
$$

If the d.c. system power transfor is sensitive to phase or frequency deviation we can write an approximate transfer equation connecting incromental power exchenge and frequency deviation.

$$
\begin{equation*}
\delta P=\operatorname{DC}(s) \cdot \quad \delta f \tag{4.2}
\end{equation*}
$$

. and undor the same conditions a sensible relationship for incremental power exchange through the synchronous links is

$$
\begin{equation*}
\delta P=A C \cdot\left(\frac{\partial f}{S}\right) \tag{4.3}
\end{equation*}
$$

where AC is a constant; for a single line we have the well known expression $A C=2 \pi \cdot \frac{\mathrm{E}_{1} \mathrm{E}_{2}}{\mathrm{X}} \cdot \cos \partial$ and for casc 3 above $\mathrm{AC}=0$.

Suppose that the power exchange required between two networks coupled in the genoral manner indicated above changes by an arount 5 P , from 4.1, 4.2 and 4.3.

$$
\begin{aligned}
& \delta f_{1,2}=\frac{1}{s}\left(\delta P-\left(D C(s)+\frac{A C}{s}\right) . \delta r\right) \frac{1}{H_{1,2}} \\
& \text { since } \\
& \delta f_{1}+\delta f_{2}=\delta f \quad \text { the nett frequency deviation, }
\end{aligned}
$$

$$
\begin{array}{r}
\delta f:\left(\frac{\mathrm{OP}}{\mathrm{H}}\right) \quad\left(\frac{s}{s^{2}+s \cdot\left(\frac{\mathrm{DC}(\mathrm{~s})}{\mathrm{H}}\right)+\frac{\mathrm{AC}}{\mathrm{H}}}\right. \\
\mathrm{H}=\frac{H_{1} \cdot \mathrm{H}_{2}}{\mathrm{H}_{1}+\frac{H_{2}}{2}}
\end{array}
$$

The damping due to losses and frequency dependent loads has been tacitly neglected, these may be approxinately accounted for by the inclusion of a factor 'la' to give

$$
\delta f=\left(\frac{\delta P}{H}\right)\left(\frac{s}{s^{2}+s\left(\frac{D C(s)}{H}+k\right)+\frac{\Lambda C}{H}}\right)
$$

This general exprossion represents a dainped sinusoidel oscillation where the d.c. link contributes to the system damping. The importance of accurately nodelling the combined system inertia and the damping can be appreciated.

It is not intended to demonstrate here thet a d.c. link can be used to stabilise a.c. networks. Stabilisation is in certain cases frustrated by the nonlinearity of DC(s) arising from the inability to overloed the converter valves for any worthwhile length of tine.
4.1.3. The A.C. systen as represented on the simulator

From the foregoing discussion it is clear that adequate a.c. systen representation is of prime inportance if comprehensive simulator studies are to be undertaken. At the sane time the complexity of the problen defeats straightforwerd solutions and at the time of writing no published research is available on simulation techniques suitable for this purpose though it is arousing interest. It the present time it is usual to connect the converter transformers of simulators to the laboratory meins through inductances and resistors to give correct short circuit level and transient damping only.

A compromise also necds to be struck between the requirements imposed by tho use of one bridge only per converter terminal and accurate modeling of system short circuit ratios. If X_{c} is the comutating reactance referred to the prinery at an n-bridge inverter on c.e.a. control the apparent d.c. side negative resistance arising from comutation overlap is $\frac{3 . X_{c}}{n_{0} \pi}$ The result of employing the correct value of X_{c} (from short circuit level considerations) when a single bridge of n-times higher rating ropleces n bridges is to magnify the commutation overlap angle and increase this negative resistance n-fold; correspondingly lowering transmission stability and liniting rectifier c.c. control gains. Throughout this thosis an ambivalent attitude is adopted towards the three bridge syston as numerous transients investigatod are considered typical of a two bridges per converter systen. Hence it is necessary to compromise between modeling the correct short circuit level or twice the correct short circuit levcl. The construction of filtors hes not been undertaken at any terminal and hence the benefits of V_{r} supply and reduced waveform harmonic distortion have to be foregone. For these reasons the higher velue of short circuit level is invariably employed.

A range of a.c. systoms has been obtained by comecting one inverter to a weak a.c. system of short circuit ration 5.5 and the other to a considurably stronger a.c. systen. The short circuit ratio at the recififier is of the order of 7.5. The connections to the a.c. mains aro mede through reactance coils having a $50 \mathrm{H}_{\mathrm{z}} \mathrm{X} / \mathrm{R}$ ratio of about 20 . It has been noted previously that a considerable resistive component is to be expected in sinulators. No additional damping has been provided as it is estimated that the existing scries resistances alone (giving rise to an irnpedance anglo of 60° to 70°) makos sufficient if not excessive allowance for transient damping.
4.2. Recovery after i.C. sicie faults

The purpose of those tests is to show the d.c. transmission system recovering trom a number of different faults on the
sending and receiving end a.c. networks. The shortconings in the representation of the a.c. network discussed above make these results optinistic but the absence of filters in the model provide a measure of compensation.

Test details are as follows.

Figure	type of fault	location
4.1	unsymnetrical Y to B phase to ascih short on trean an and teminals	Inverter
4.2	3-ph open circuit on transforner primary terminals	$\left\{\begin{array}{l} \text { IN2 con- } \\ \text { nected to } \end{array}\right.$
4.3	symetrical collapso of a.c. volts to 40%	$\left\{\begin{array}{l} \text { weak a.c. } \\ \text { sys tera } \end{array}\right.$
4.4	symetrical collapse of a.c. volts to 55%	Rectifier

Also, the system initial and final operating conditions which are idontical arc as follows:-

	Rectifier	Inverter IIM1	Inverter IM2	Node
voltage $\%$	96	82	80	85
current $\%$	100	40	60	
control	c.c.	c.c.	c.c.a. $\left(\gamma=15^{\circ}\right)$	

All \%ages on rectifier rated valucs.

Bricf reference was rade in section 2.4.2, to the fact that the pulsing unit reforence sinusoid was dorived from the laboratory mains rather than the transforwor prinary voltage in order to simulate a true-sinewave oscillator locked in frequency and phase to the a.c, power syster. This representation will give accurate rosults only for disturbances where the transient response of the oscillator is not relevant, thet is only for disturbances that do not materially alter the frequency or phase of the a.c. systea. Where these quantities do change the error is limitod to the first a.c. cycle; the 'phase-locked' oscillator devoloped

by the Inglish Electric Co. is capable of correcting for step changes of phase in about one cycle. In the test of rig. 4.2 to 4.4 the phaso of the a.c. supply initially and finally is identical. Jurthermore in fig. 4.3 and 4.4 the phase position for the duration of the feult is not permitted to vary significantly from the initial state. Fig. 4.1 however givos rise to a more complex condition arisirg from the unsymmetrical nature of the fault and the approximete representation considered above is loss valid.

The most sovere conditions occur in tho case of an a.c. system open circuit on the invorter transformer terminals, fig. 4.2. On sudden re-enorgisation two comutation failures and severe transient oscillations occur before tho systom settles down.

The transients in all tho tests have been applicd for 200 ms to 250 ms for casc of record reading. In prectice the converters would have to bo blocked after some 5 a.c. cycles to limit valve stross though the system itself is capable of recovering after an indefinitoly long fault period.

4.3. Representation of D.C. Transmission Lines

The transmission systom simulated in these studios consist of a 100 mile overhead line from the rectifier to the p-point from where two 2.0 mile cables lead to the two invertors. The lines have been modelpd on the nominal- π representation. The equivelent $-\pi$ reprosentation, sonetimes uscd in a.c. transmission studics, has no meaning here and in fact tends as a liniting case to the nominal π for $d . c$. voltages and currents. Lumped paranetor circuits are of linited accuracy for transient investigations as the accuracy of connecting a number of π-sections in scries to represont a distributod paremeter line is dependent on froquency.

By menipulation of the equations of conventional transmission line theory ${ }^{(85)}$ it can bo shown that

$$
\begin{aligned}
& z_{\pi}=z\left(1-\frac{1}{2!}\left(\frac{\mu \cdot \delta I}{2}\right)^{2}+\frac{1}{4!}\left(\frac{\mu 1}{2}\right)^{4}-\ldots\right. \\
& \mu_{\pi}=\mu\left(1-\frac{1}{3!}\left(\frac{\mu \cdot 5 I}{2}\right)^{2}+\frac{1.3}{2.4 .5}\left(\frac{\mu \cdot 0 I}{2}\right)^{4}-\ldots\right.
\end{aligned}
$$

where

```
z}\pi=\mathrm{ characteristic impedance of nominal- }
z = characteristic inpedance of line
\mu}\pi=\mathrm{ propagation cocfficient of nominel- }\pi\mathrm{ (per unit length)
\mu = propagation coefficient of line
    \delta1 = lino length represented per \pi section
```

In order to assess the crror, simplification to the lossless line casc of $\mu=j \frac{2 \pi \cdot f .}{V}$ is rade , whero f and v are the frequency and velocity of propagation respectively. The following expressions for approximate percentage errors can be obtained,

$$
\begin{aligned}
& \text { error in } z_{\pi}=\frac{\pi^{2} f^{2} \cdot 5 I^{2}}{2 v^{2}} \times 100 \% \\
& \text { error in } \mu_{\pi}=\frac{\pi^{2} f^{2} \cdot s 1^{2}}{6 v^{2}} \times 100 \%
\end{aligned}
$$

The fastest voltage changes arising in a converter are at the beginning and end of comnutation and may be approxirated by a wavefront of some 10 to 100 usec rise time. However the large smoothing inductors limit high frequency effects and a sensible upper linit to the values of froquency that need be considered in the error analysis above is in the range 300 Hz to 1 kHz . Using the numerical values dorived in the latter part of this section the above formulee yield

$\text { \% error in } z \text { \} o.h. linc }$	4.45	0.4
$\%$ error in μ)	1.5	0.14
\% error in z	1.2	0.11
$\%$ error in μ, cable	0.4	0.03

It 300 Hz the error is small and is much less significant than the errors in the values of the model transmission line components.

```
    A second source of error that is unavoidable in lumped parameter models is thet the finite propagation time arising from the large physical length of transmission lines is neglected. This effect cannot be reproduced in the laboratory by simply using a larger number of scctions so long as the physicel length of the simulation remains smell, nor by using delay lines as the \(R\), \(L\), \(C\) parmoters are too divergent. These times for the o.h. line and ceble modelled here aro 0.6 ms and 0.31 ms respectively.
```

The prometors essumed for the trensmission lines are as follows:-

```
O.h. Iine
```

length $\quad 100 \mathrm{mls}$
resistrnce $\quad 0.125$ ohms $/ \mathrm{ml}$
inductance $\quad 3.0 \mathrm{mi} / \mathrm{mI}$
enpecitonce $\quad 0.012 \mu \mathrm{~F} / \mathrm{ml}$
cable
length 20 mls ench
resistance $\quad 0.3 \mathrm{ohms} / \mathrm{ml}$
inductance $\quad 0.5 \mathrm{mH} / \mathrm{mI}$
capocitance
$0.07 \mu \mathrm{~F} / \mathrm{ml}$

The propagation velocities of the o.h. line and cable as dotormined fron those constants are $165,000 \mathrm{ml} / \mathrm{sec}$ and $80,000 \mathrm{ml} / \mathrm{sec}$ respectively.

Fig 4.5 Overhead Line Simulation Details:

Fig 4. 6 Cable Iine Sirulation Details.
In above figs. Resistance and Inductance values in 0hms and millen. resp.

The dctail transmission systen circuit constructed after reducing the doove constents to nodel sede and neglecting coblc inductance together with messured component values is given in fig. 4.5 and 4.6. The anble is modelled by 4-sections and the o.h. line by 5-soctions. All capacitors are $\pm 5 \%$ tolerence and the best conbinotions that could be obtoined from the air cored inductors available in the laboratory had to be used. The most serious component error is thet the total o.h. line series inductance is 52 mH while 60 mH is theoretically required. The error cannot be avoided as the correct R / L ratio cannot be reproduced, however inductance errors are not serious because of the presence of a large, 0.56 H , swoothing inductor in series with each line.
4.4. Interconnections of the D.C. Transmission Systen

The system control program, the interpretation of fault signals and the fault control procedure are all dependant on the operationel configuration of the system and the need therefore arises to make a systematic classificetion of the numerous configurations in which a given d.c. system may work. The arrangenent used here is espocially suitable for adeptive fault programming and can be extended woll beyond the three terminal case.
4.4.1. Three terminal systom configurations

The fault control program is written for a three terminal, two bridges per converter system, so as to be illustrative of general methods. The availability of isolators and the identification of transmission lines by assigning numerals to their end points is indicated in fig. 4.7. Topologically thore are forty eight electrically feasible configurations (or modes) of the lines and bridges with at least one earth isolator closed. However constraints imposed by power systen considerations, for cxample restrictions on cable polarity and earth return rostrictions, reduce this number considerably.

For the purpose of this study a number of reasonable and typical power system constraints are postulated and included in the general description of the system below.

Number of converters	Three
Network type	INodal
Normal rectifiers	Converter RP (200 kv/2000A)
Normal invertors	Converters IN1 and IN2
Normal operation	Full system
	Narthed at RT only
Earth (neutral) paths	Allowed on all sections
	To be used only when
	essential.
	Unstable modes (sce 4.3.3) ex-
	cluded. Power exchange between

Those constraints reduce the permissible operating nodes to fifteon, which have been sketched in fig. 4.8 Apart from problems of interpreting fault signals and building up the best commands for transmission to the individual converter controls, the noed for a fully adisptive contral control progran dictates that these modes bo erranged in a systematic manner. A systematic troetment has been achieved by classifying the various operating modes into groups and tiers as in the chart of Table 4.1, from an examination of which the method can be understood. The method is readily extended to the n-terminal case.

This classification achieves the following:-

1. Subsequent to any line to line fault from any initial mode and the isolation of the faulted line, the end mode is at the same tier level of the next lower group.
2. Subsequent to any line to earth fault from any initial mode and isolation of the faulted conductor, the system moves downvard fron ticr to tier within the same Group. Therc is howevor one set of well defined oxcoptions to this rule.

Fig i. 3 System Opematine lioces.

INTERFRIMT BLANK SFACES AS 1.

GROUP I
(3 terminal)

GROUP II
(2 terminal)

3. The system cannot move between the operating modes represented in the same group and tier.
4. The system cannot move to a higher group or tier.

In the chart of teblo A. 1 the positions of all isolstors (line $I_{1} A+I_{1} A$, etc; earth $I_{e} A, I_{e} B$, etc.) and the condition of all six bridges are indicated. The entry ' 0 ' is interpreted as a bridge not operating or as an isolator open and a blenk space is interpreted as "1" the logical complement of ' 0 '.

The extension of this method to systens with any number of converters, $n>3$, connected at a single node is straightforward, though from a practical point of view such connections are of trivial importance. Nonetheless when dealing with any general network, whethor branch, delta or ring etc., it is nccessary and possible to derive a general classification if the writing of an on-line adaptive control program is to be reduced to a systematic and repotitive task. The complexity increases in systems thet may divide into two or more discrete sub-systens subsequent to fault isolation.
4.4.2. Operating diagrams of an unconventional configuration

In the rodes (ii) to (v) of fig. 4.8 the current settings at the positive and negative poles of the rectifier will in general be different. In order to evolve a convenient diagramatic basis for their representation, fig. 4.8 (iii) is chosen, threo concepts are defined and sone diagrans sketched.

Through current: This is the conponent of d.c. current passing in series through both bridges at a converter.

Through current characteristic: This is the operating diagram when 811 current passes through both positive and negative poles, that is no current in the neutral path.

Neutral current characteristic: This is the operating diagram when non-zero current flows in the neutral path. The shape of the diagram varies with this current.

Let $I_{1}+I_{2}$ and I_{2} be the current orders at tho positive and nogetive poles of the rectifior, fig. 4.9. In fig. 4. 10 the rectifier positive and nogative pole chorecteristics ere sketchod separatoly in (i), (ii) is the through current charactoristic obtained by assuming zero noutral current and hence derived as the difference ordinate between the characteristics of (i). The neutral current characteristics for $I_{N}=I_{2} / 2$;
I_{2}; and $3 I_{2 / 2}$ are sketched in (iii), (iv), (v) respectively with through current as the abscisa. In general the positive pole characteristic of (i) is moved left by an anount I_{N} and the difference ordinate is plotted to obtain these neutral current characteristics.

The nethod developed is used to draw diagrams that clearly illustrate the normal operation of the system. Later on these ideas will be used to provide useful insights into systom operation during bridge faults. As can bo appreciated from the foregoing discussion the systen of fig. 4.9 has tro degrees of voltage freedon in that the positive polc to carth and the pole to pole voltages can be set indepenciently and at separate stations. Four operating conditions can normelly arise and in every case two diagraras have to be drawn as in fig. 4.11, one for pole to pole voltage (against through current) and the other for positive pole to earth voltage (against positive pole curront).

The noutral currents in fig. 4.11 (i) to (iv) are givon by:-
(i) I_{2}
(ii) $I_{2}-\delta I_{2}$ where δI_{2} is the nott negative pole margin
(iii) $I_{2}+\delta I_{1}$ where δI_{1} is the nett positive polo margin
(iv) $I_{2}-\delta I_{2}$

Only the unusual looking second diagran of 4.11 (iii) where both rectifier and inverter appear to be on constant current control needs explanation. This is clarified by the third diagren of (iii) which shows the positive and negative poles of $R E$ separately. The operating points are marked and the transmission is quite stable.

FIG 4.9 An uncorventional Cperating kode.
(i) RE Characteristics.

(ii) Through Current Characteristic.

(iii) Neutral Current Characteristics.

(i) Voltage levels fixed by INI(both briages) and IN2.

(ii) Voltage levels fixed by INI (both bricges) and RE+ bridge.

(iv) Voltage levels fixed by the two RE bridges.
4.4.3. An unstablc operating mode

The configuration sketched in fig. 4.12(i) in which the bridge groups are mubered, has been cxcluded as it is unstable except in the trivial (though in practice the nost probable) case where positive and negative pole settings are identical, that is except when unit control is exercised over the bridges at RE and IIN 1 .

In the general case when these settings are different the system voltage can be controlled i_{1} one of several ways by the bridge groups as follows:-

EITHER Bridge group Bridge group (1. or 5.) $A H D \quad$ (2. or 6.)

OR

$$
\text { (1. or 5.) } \operatorname{AND} \quad(3 . \text { and 4.) }
$$

OR
(2. or 6.) and (3. and 4.)

All combinations on the first line are stable.

Considering the operating condition whero the voltage is set at bridge 1 . and bridges $3 . / 4$., and writing I_{1} to I_{6} for bridge currents. I_{01} to I_{06} for bridge current orders and $\delta I_{1}, \delta I_{2}$ for positive and negative pole nett current margins,

$$
\begin{aligned}
& I_{01}=I_{03}+I_{05}+\delta I_{1} \\
& I_{02}=I_{04}+I_{06}+\delta I_{2} \\
& I_{03}=I_{04}
\end{aligned}
$$

and since bridges 2, 5 and 6 are necessarily on c.c. control

$$
\begin{aligned}
& I_{2}=I_{02} \\
& I_{5}=I_{05} \\
& I_{6}=I_{06}
\end{aligned}
$$

(i)

(ii)

$$
\left.\begin{array}{rl}
I_{3}= & I_{4}
\end{array}=I_{2}-I_{6}=I_{04}+\delta I_{2}\right) ~=~ I_{03}+\delta I_{2} .
$$

Since bridge 1 is a rectifier it is stable in operation only if $\varepsilon I_{1}>\delta I_{2}$. However it follows immediately that should voltage control pass from bridge 1 and bridges $3 / 4$ to bridge 2 and bridges $3 / 4$ the condition for an operating condition to exist is that $\delta I_{2}>\delta I_{1}$. Λ a result of these conflicting requirements the system is not always stable.

This instability is also illustrated in fig. 4.12(ii) for the case where $\delta I_{2}>\delta I_{1}$ and systom voltage levels denand that bridges 1 and bridges $3 / 4$ control the d.c. voltage. Since the line distent $I_{03}+\delta I_{2}$ from the bridge 5 constant current linc has no intersection with the constant o line of bridge 1 no operating state exists and either the entire systom or converter $3 / 4$ will extinguish.
4.5 Conclusion.

This chapter has beor devoted to a discussion of some cxtensions of the simulator, that is, the connection of the convertor to the a.c. power system ara the renresentation of the d.c. transmission network. The different onerating modes of the d.c. three teminal system also beon prescetod and classificc in a chart. The chaptor as a whole is intonded to serve as a bridre from the description of the simulator design and performance of chapters 2 and 3 to an investigotion of the control of the d.c. system under fault conditions.

Fault Control Frogramnes

5.1. Digital Conputer Control-Protection of A.C.- D.C. Systems

The functions of a digital computer in power system operation may be divided into off-line planning and on-line control. The planning of system operation includes long teri forecasting, generation and econowic dispatch schedule preparation, ensuring security and satisfying reactive power flow and voltage level constraints. The d.c. system and associated filter capacitor banks are easily included in these studies (37). The constant current or constant power controlled d.c. link presonts no problems in economic transmission determinations and it has also been suegested that in load flow anelysis of the inter-comected a.c. system the d.c. converters may be treated as current sources and sinks.

On a more long term basis the digital compute: is also becoming an indispensable aid to the plaming of system extension (34), the collection and processing of power system and energy statistics and the general investigation of system operating techniques.

The computers used for these studies are large conventional celculating machines while the on-line controls discussed below feature smeller process-control type computers fitted with specially designed interface connections.

5.1.1. On-line digital control

On-line digital computer aided control of inter-connected a.c. - d.c. systoms includes the control of the system both during normal operation and undor emergency conditions. The starting point of normel system control is to achieve the preplanned generetion/transmission targets. Unforeseen outages
and srrors betweon predictod and true loads mals continuous amendment of syston operating conditions necessery. In interconnected a.c. - d.c. systems rogulation of power flow and, loss Elexibly, control of War lozding in the d.c. tios provide detorminato and direct metrods of adiusting systen operation and must be fully exploited in the control prograniedssessnent of the possibiljty or desirebility of d.c. converter operation during balanced and unbalenced faults at various points on the a.c. systom and a policy for overload elfaination by load rejoction are further aspects of power system operation that devolve on the normal control prograinme.once the power and Whr loadings of the d.c. links have been defined from these genoral perspoctives the basic operating mode of the d.c. converters have to be chosen. A converter con operate with constant power control, constant current control, constant extinction angle control, frequency sensitive control, etc. The control methods chosen for the stations must be compatible with each other and satisfy the specified loading condition.
5.1.2. Converter Control

The method of implementing the controls will depend ontirely on the structure of the converter controls. It has been suggested (37) that a digital computer pre-programned for the diffcrent methods of control enumerated above may replece the conventional circuits thet heve been used in the past. Faliside and Jackson (88) have promrammed a PDP. 8 computer to control the output voltege of a bridge to follow a given reference input signal. The control proposed is of the open loop type where the input signel is sampled at bridge repetition froquency, the samplo processed, and then compared with a look up teble at 100 us intervals to determine the instant of valve firing. Ambiguity at starting or due to loss of a firine pulso are avoided by a simple adressine system which identifies pulse-valve pairs. This nethod of control is wastoful of computer time as the actual time lost per cycle in simply 'looking up the table' is the equivalent of ($n \mathrm{z} \alpha$) electrical degrecs for an n-pulse bridge, firing angle α°.

Digital computer control of a converter can be economically justified only where the computer can be used for other aspects of converter control than as a Blorified pulse genurator. However, while as at most times the converter is working steadily in an undisturbed systom the proposed control scheme requires the computer to cycle wastefully. Clearly, for h.v.d.c. applications, other methods of pulsing end of selecting precalculated firing angles must be found.

Horigomo et. al. ${ }^{(37)}$ derive a series of equations for calculating the rectifier and inverter firirg angles at every firing once the control modes at the terminals are defined. If however this result implies thet due to changes in the system any absolute constraint (e.g. valve current rating, invortor minimum extinction angle) is violated an alternative control loop is chosen and fresh calculations heve to be performed before the next valve firing so that acceptable firing instants can be re-detormined. It can be appreciated that with coaputer control the altornative control modes have to be chocked out in sories during system transients, and two or more control loops may have to be obtained in the tine between successive valve firings. This however is not the case with conventional bridge control equipment where all the control loops are continuously operating in parallel and one is clectronically selected. Proper estimatos of the considerable analogue digital conversion equipment required for complete closed loop control whon mede, may prejudice the economics of computer control.

For these reasons it is believed that for some time to come the immediate bridge and converter control circuits will remain of the analogue static-electric type. The reference inputs, emergency injections and conceivably certain parameters of these control circuits cen hoviever be supervised by a digital computer. The computer can either be common to a number of terminals to which it is linked by telecomunication channels or the converter equipment, a.c. system protection and power station controls at the same place may have access to a common computer. Under onergency conditions the affected scction will have immodiate access to the computer on a priority basis.

Note 1. Only one node and converter shom for simplicity.

Fig.5.1 Diagram illustrating Fault Control of lululiterminal HVDC system.

Note 2. Moritors and detectors not Installed on Simulator.

The fault control methods invostigated in this chapter and simulated by the on-line control tests are of the type where a central control computer is associated with various analogue fault control circuits at each converter terainal. Before proceeding to doscribe theprorrmemesthat have been dem veloped it is necessary to sumnerise briefly the under-lying hierarchy of control.

5.2. Locel Tault Control

Abstract

"Local equipment" is that equipment physically located at a. converter station, as contrasted to "central" or "nodal" equipment. "Fault control" is the control of en h.v.d.c. systom during oither trensmissjon or valve faults as distinct from "normal control" which refors to a hoalthy system.

The philosophy of fault control (fig. 5.1) that underlies the subsoquent programes is sumarised as follows:-

1. A contral control computer that supervises locel control equipaent at each convarter and roceives information fron all fault detectors.
2. Whether local control is computerised or static electronic depends on the size and requirements of any particular system and terminal.
3. Converter and valve feults are handled locally whenever possible.
4. For maximun discrimination, and therefore minimun outage on faults, directionally sensitive fault detectors at every node are assumed.
5. Local control is allowed independent action when central control or the communication chamel feil.
5.2.1. An assessment of the choice between static-cloctronic
circuitry and a small digital computer for local control

In this section interest is centred on fault control only and a summary of the capobilities of the two alternative nethods is given.

(i) Static Rlectronic Circuits

These controls are built around the normal operating characteristics so as to ensure safe operation of the converters until energency control instructions have been received fron the central controller. Spacificolly, on overriding constint current limiter and circuits to rpidly reduce bridge currents to a low vilue when compelled to operate with α near 90° (87) are designed as on integral part of the normal control circuits.

The capability of normel static-electronic controls are summrised below.
a) De-cnergise and re-strit one or both poles with or without simple chenges in current/power order in response to central control comands.
b) Fized rete of shut down and restart.
c) Block-bypass end deblock/remove single bridge units or entire converter without contral control intervention in cose of velve or a.c. side foults.
d) Back-up protection in case of commuication failure.

(ii) Computer Control

A digitel computer at the locel control level is capable of entering into a conversation with the central control pormitting the transfer of large amourts of infometion when requirod by the contral control. This facility, hovever, is of no great value under fault conditions as fost control is necessary and the prosrane relies only on simple logic information
from spocicl d.c. fault detecting equipment.

The advantoges of computerised locel feult controls are sumarised below.
a) Stert, de-energise or control to any pre-progranmed method one or both poles of a converter in response to central control instructions.
b) Rate of shut down and start up are fully controllable and may be programed to be sensitive to a.c. system voltage and frequency.
c) Block-bypass and deblock/remove single bridge units or whole converter without central control intervention in case of valve faults and autometic "fault development control" (8B).
d) Plexible control progremes can be written to aid the recovery of the a.c. system following a.c. faults. However, gethering and processing the correct intelligence is an inportant problem that awaits study.
e) Flexible control programes in the event of communcation failure.
f) Programmes are easily modified or extended.
g) Simple interfacing with the central control computer. Logic decoding replaced by programmed decoding.

By comparison of (i) and (ii) above and bearing in mind the discussion of Section 5.1.1. it is concluded that the use of a digital computer for locel fault control is not justified unless it can be corbined with a.c. side fault detection and protection and also made available for general extended programing for normal control and optimisation studies.
5.3.1. Why Logic?

It is very desirablo that the information channels be limited to cheap simple types, preferably using ordinery telecomunication squipeent. Information will be required to be transmitted to the centrel control from (i) fault detecting equipnent at the system nodes; (ii) transmission system protective equipaent at the converter terminals;and (iii) converter/bridge monitoring equipmont. Migh speed of protection and the transmission of deta from many points in the system to ensure adequate discrinination are essential. The commands from the control centre to the local converter controls and the trensmission node will begin a sequence of de-energising and re-starting operctions together wioth the opening or closing of isolators. It is evident that with these limitations imiormation cen and should be binary, i.e. logic (YES/HO) form. Apart from the logic type of information if in somo cases a small amount of binary coded analogue information is transmitted, only narginal changes in the main control programme need to be made.
5.3.2. Information transmitted on faults

It is assumed that the information from the terninal fault sersing equipment will contain the following iters:-
(i) Whether a line to line or linc to earth voltage collapse has been detected at the converter terminal.
(ii) If line to earth the polarity of the fault.
(iii) The state of the converter bridece.
(iv) If a commutation failure or an a.c. side disturbance has caused bridge failure, the polarity of the bridge that has reiled. The types of bridge failure or a.c.
disturbanco that cen causc spurious rault detection are commicated to the centre.

A rinimun of four informetion bits is required to carry this information. The nature of the information is such that high roliability in transmission is indispensoblo and an crror correctine code will have to be employed. Hannings' crror correcting code is suitable requiring three or four error correcting bits to be added to the transmitted word. In generel with Hammings' codo the word length is $2^{k}-1$ whore k is the number of error correcting bits. This will ensure that eny single error is detected and corrected while a twin error vill be detected but not corrected. Two additional leading bits aro added for differentiating between normal system information and emergency sault information and for the purpose of identifying the infornation source.

The information from the systm node points must identify the fault as line to line or as line to earth and in the latter case the fault polarity. Thenever possible the node must further discriminate directionally, that is, carry information that the fault detected is towards converior stations $R \mathbb{E}$, INT or IIN2. Here too the mininum number of information bits required is four and leading bits and crror correcting bits will be added as suggested earlier.

Hence, in either case a ten bit word length will adequately convey sufficient information for energency fault control.

The incoming information is docodod by the fault control program and stored in the computer memory as five bits in the case of torminal end information and twolve bits in the case of node point information. Symbols A, B, C and 1 are used for information originating at the three converter stations and the node respectively and subscripts 1 to 5 and 1 to 12 are attached to these symbols with the neaning given below. The symbols are explained by posing questions, such that if the answor is a YES its value is a binary 1 and if the answer is NO its value a binery 0 .

These last threc information bj.ts are to be used in cases where the feult sensors at the node detect a fault, but it is not possible to discrininate accurately the direction fron the node in which the fault has occurred.
5.3.3. Fornalation of Boolean Equations

It is now possible to formalate Booloan equetions to tost for ovory type of favit Iron any initial ade (seo Soct. 4.4.2) of the systen and to suggest the order of priority in which these tosts should bo nede. The equations are solved on the basis of the availeble information and the derived values of any words not reccived aro set to zero jin the above list.

The sybol F is used to indicato tho presence or absence of trensuission line faults, $F=1$ if a positive feult indication results fron cerrying out the Boolean expression thet F is cquated to, if not $F=0$. F always appocrs with superscripts and subscripts indicating the line elononts bew tween which e fault is searched for. For example F_{24}^{13} is used in connection with a fault between conductors 13 and 24 of the systom, i.e. a line to line feult on the line ssction between the node onc convertor station $R E$. F_{17}^{E} sinilarly refers to a line to onrth fault on positive conductor 17 between node and station IN2. The line section aomonclature follows fig. 4.7.

The Boolean equetions written in toras of tho previously defined Boolean variables for every feult fron all fifteen peraissible oporatine aodos of the d.c. systen are given in Appendix \therefore The operating wodes and their naining was treated in Section 4.4.1.

In overy mode the equations are solved in the order in which they are written, which is to say the equations are written in their order of priority. Hence in mode G1/T1 (a) the information is chockod first for a line to line feult betweon 13 and 24 $\left(F_{24}^{13}\right)$ and thereaftor for line to line faults between 15 and $26\left(\mathrm{~F}_{26}^{15}\right)$ and betreen 17 and $28\left(\mathrm{~F}_{28}^{17}\right)$. If these three tests do not give positive fault indication a check is wade for a line to line feult between the positive and negative conductors whose position cannot be localised (F_{-}^{+}) to account for casos Where sufficient intelligenco to setisfy the first three tests is lacking. In the absence of lino to line faults the conputer progra: proceeds to check for faults on the positive or
negative lines to earth in a very similar foshion.

The nature of the Booloan equations is best understood by examining one of tho longer equations in sone detail. Selecting for example the equation that checks for a tine to earth fault anywhere in the systan of initial node Gi/Ty (a).

$$
\begin{aligned}
\mathrm{B}_{+}^{E}= & M_{11} \cdot\left(A_{4}^{\prime} \cdot B_{4}^{\prime} \cdot C_{4}^{\prime}\right) \\
& +A_{2} \cdot\left(B_{4}^{\prime} \cdot C_{4}^{\prime}\right)+B_{2} \cdot\left(C_{4}^{\prime} \cdot A_{4}^{\prime} \cdot\right)+C_{2} \cdot\left(A_{4}^{\prime} \cdot B_{4}^{\prime}\right) \\
& +M_{10} \cdot\left(A_{4}^{\prime} \cdot A_{5}+B_{4}^{\prime} \cdot B_{5}+C_{4}^{\prime} \cdot C_{5}\right) \\
& +A_{1} \cdot\left(B_{4}^{\prime} \cdot B_{5}+C_{4}^{\prime} \cdot C_{5}\right)+B_{1} \cdot\left(C_{4}^{\prime} \cdot C_{5}+\dot{A}_{4}^{\prime} \cdot A_{5}\right) \\
& +C_{1} \cdot\left(A_{4}^{\prime} \cdot A_{5}+B_{4}^{\prime} \cdot B_{5}\right)
\end{aligned}
$$

The first tern will provide a positive fault indication (1 or YES) if the node point detector has seen a positive line to earth fault ($\mathrm{N}_{11}=1$) ARD mone of the positive side converter bridges have failed $\left(A_{4}=B_{4}=C_{4}=0\right)$.

The next three tems on the second line of the equation will provide positive fault indication if any one or more of the terainal fault dotectors have sensed a positive line to earth fault (A_{2} OR $B_{2} O R C_{2}=1$) AMD the positive bridees of none of the other stations have failed.

The tera on the third line of the equation will provide positive indicetion if a line to line fault has alreedy $H 0 T$ been detected - since the above equation is solved after F^{+}has been checked - MD the node detector has indicated a line to line fault ($M_{10}=1$) $A N D$ the nogetive side bride but NOT the positive bridge at some convorter station has failed (0.6. $A_{4}=0, A_{5}=1$).

The three terms on the fourth line of the equation will indicate fault presonce if the protective equipment at one or more teminals has sensed a line to line voltage collapse $\left(L_{1}\right.$ OR B_{1} OR $C_{1}=1$) IMD the negative bridge but IOT the positive bridge at BTMRER of the other two stations has failed (e.g. $i_{4}=0, \Lambda_{5}=1$).

A closer examinetion of the sixty eight equations in ippondix A shows that all of them can be built up by morging two or more of twonty two bosic full lencth oquations. In cortain oases selected irrolevant terns in tho basis equations havo to be simultanoously supprossod, as for example in two terminal operating nodes all roferences to tho third non operating converter must be deletod from the besic equations. This is easily arranged by putting the infornetion bits corresponding to irrelevant tems equal to 0 prior to solving the equations. Hence the computer nogrunfearries twenty two sub-routines, beine the st: ed equetions in the Appendix, in some of which provision is made for suppressing conputation of selected terms if desired. On apparent fault indication from some part of the system the on line control calls such sub-routines as are apprepriate to the initial mode that the system is operating in.

The actuel equations thonselves and the method of solution via twonty two indepondent sub-routiaes is specific to the three terninal systea and to the type of inforiation postuleted. This in turn dopends on the type of fault sensors or detectors instelled in the h.v.d.c. network. It follows then thet if tho charactoristios of tho fault sensors installod in a systen or the structure of the notwork itself diffors, the equations suggestod above will noed to be modified to acconmodate the changed character of the infomation. However it is anticipated that in any control schene that relios on logic methods the approach to the problen of accurate feult detection and the broader lines of the fault control porgrmadill be sinilar to that proposed.
5.3.4. The Comands from Central Fault Control

Ary instruction to the node point will oper one or more of the six line isolators at current extinction and include a resct instruction to fault detectors. The dinimun nuraber of information bits required for this command is four and with the addition of Hamings' error correcting codes and the loading trensuission bits a ten bit word is used.

The fault control signal to the converter stations will either request nc action - i.e. reset - or the de-energisation of one or both poles and, when required, the restarting of one or both poles. Whencver both poles are to ronain operationel in the post fault mode the instruction nust specify whether the earth isolator is to be open or closed. A minimuin of four binary bits is required to contain this basic set of instructions. Usually further instructions apecifying restart at reducod or increasod current settings or for variable rates of shut down require to be transuittod and hence two or nore information bits require to be added depending on the flexibility required. Together with identification and transmission synchronisction binary cleaents and error correcting codes the word length reaches thirteen bits. It is proferable in this cese to transmit two independent and successive ten bit words, one with de-energise and/or shut down instructions together with the rate of deenergisetion, the second with restart instructions and the new current settings. In this way a ten bit word has been standardisod for all information flows in the system. Where the receiving station controls are of the static electronic type with no computational facilities compressed coding is avoided and instructions transmitted on the basis of one specifidinstruction per bit.

5.3.5. Progranming

The on-line controlprormes illustrated in the flow diagran of fig. 5.2.The tro whe is capable of finding the location and type (linc to line, line to earth positive or negative pole) of fault to the groatest degree of accuracy possible with the information available at the time of execution. Thereafter the zinimura necessary section of the systom is de-energised and a single system re-start is attenpted. In the cvent of a scoond and imediate failuro of the same transmission line the ninimum number of lines and bridges compatible with the constraints of the network is isolated. For exanle an earth fault on the positive conductor between
the node and invorter IN2 will ontail the pormanent disconnection of this conductor and tho positive bridere at IN2. Ilowover if the positive conductor to the roctiriter station RE is faulted the ontire positive pole is shut down as power oxchene between the inverters is excluded; the negative pole romains fully operationel.

Rocoipt of fault infomation on any input channel interrupts the computer which begins to scan all inconing channels for further sigals. Since the utilisation of the discriminating capacity of the on-line controlprocrumadepends on the amount of data collected, a compromise must be struck betweon floxibility and scan tine liniting. If at least a single signal word is received from every converter and node the scan is terminated, otherwise the scan is terminated by a clock whose setting is variable betmean ono and five a.c. cycles (20 to 100 m sec). In laboratory tests the sotting has been raised to a very learge velue as all simulated favit information has to be sot up manually on the computer input channel. In the evont of a clock out from the scan routine it is ascuned that the converters at all stations from which no signel is recoived are healthy and the transmission fault detectors unercitod. The offect of this is that a voltase collaws arising from convertor faults will be troated es a transmission line fault and thorefore the method fails to safety.

At the end of the scan the availsble information is decoded and stored and the programe is then routed to one of fifteen perallel sections corresponding to the initial mode of operation of the d.c. system. The appropriate Boolean equetions are selectod and solved in their order of priority. In tho event of a positive fault indication from any Boolean exprossion the programe moves out to classify the feult by type and location simultaneously with the preparation of the commands to be trensmitted. In the absence of a fault 'no fault' and 'reset' comends as necessery may be loaded into the transmit routine. In the lebore.tory a dumay $\emptyset \emptyset \phi \varnothing$ signal is succossively loaded.

Fig. 5.2. Fault Control Programme-Flow diagram.

A transmit routine is noxt celled to transmit those comands. In a realistic systol the conputor would interface rith teloconmunicetion transmitting cquipnent; in the laboratory tosts those comands are passed on to a separato programio which succossivoly louds tio diroct disital and dicsital to analogue chemmels of the PDP-8 computer with a decoded vorsion of these signals together witil an address to identify the stations for which the signal is intonded. When the new mode of syster operation resulting fron the execution of these comands by local control equipment is difforent from the initial operating mode, the Routing section of the programe is updated accordirgly. The programe finally enters a waiting loop to ensure thet the power system restart is successful.

The Besic ControlProcrotakes up approximatoly two thousand five hundred locations of PDP-8 core memory, that is about two thirds of available computer core store. The programe, as written, has been simplified at certain points not significant from a laboretory testins point of view, for exanple the error correcting coding and do-coding procedure has been droppec. The PDP-8 is a twelve bit word, 1. 6 is per nemory cyclo computer. The word length is the most serious linitation of this computer as the nuaber of nenory reference instructions are linited to six, and fron any one memory location all but 128 of the other locations hove to be addressed by an indirect addressing technique which westes an additional menory location for each distant location addressed. The excution time of the fault controlprorrmevarios with the type of fault and the initial mode of d.c. syster operation. Line to line faults will be detected in a shorter tine than line to earth faults and naturally faults whose location in the network is determinate from the available intelligence will be detected in less tine than a fault of unknown location. The maximun and minirum execution times, excluding the scan time and the final wasting loop, both of which can be set by the operator, veries from 25 m sec to 5 m sec respoctively.
5.3.6. Modificotions to Programe

The sinple entry routine into the frult control progranie sugeosted above will neod to be modifiee and refincd considerably in any practical applicetion. Some of theso requirenonts arc discussed here and the first of thesc has been programmed and tested separately. It has not hovever been attached to the propared mainproremas it will not be required in the envisaged laboratory simulation usage.

1. The Fault control programe ss written is not capable of handing simultaneous or overlappinc riultiple faults or of utilising data arriving after execution has comenced. Information simals received betwoen the exit from the SCLN routine and the final return is completely neglectod. Fic. 5.2. is a siinple flow diagran of a partial solution to this problem: All incoming infomation is recordod on registers which are cleared when therrermexite from the SCAN routine to the nozt stege of the falilt control programine. Information arriving during execution is stored on these registers up to maximui of one signal word per channel. The main profranme oxit routino checks these registers and ir non-zero the information is further checked for equivalence with the fault currently attended. If a new fault is indicated the procramme returns to the fault routine after up-dating stored information.
2. Information about self-correcting convertor failures and local block-deblock sequences requiring no central control intervention is transmittod to prevent spurious system tripping. This must notimitinte the SCMI routine but data is directed to a teaporary store for a pre-determined time interval after which it is erased. From observations of the simulator behaviour it appears that this tine interval should be about four tines the line natural oscillation frequency plus the block-deblock or comutation failure period.
3. Intelligence arriving during execution, if used via data-break facilities on the computer, will enhance the reliability of control.

FIG, 5.3 Modifications to Control Programme;
4. Fuch work renains to be done on poripheral regions of the fault control programe to obtain the best co-ordination with the edjacent noraal control progranaes.
5.4. Converter and Bridce Failures

Comutation failures occurrine occesionally in convertor valves are usually sclf-correctins and require no control action. Their occurence nust however be reported to the central controller when the possibility of spurious foult detection elsewhere in the systen arises. It is advisable to log random comutation failures for statisticel analysis.
5.4.1. Clearinf of repotitive faults by local control

When valve faults are not self-corrocting one or more attempts are nade by the local controller to clear the feult without reference to central control, which is merely warned. Orten the effects of a block-bypass-deblock sequence at a converter bridsc are of sone importance to the connccted a.c. systens, as for example in the case of a d.c. Iink connected to isolated eenorators or wherc the a.c. syster voltages can change ereessively aiter current rejection. A simplified analysis of the steady state foetur artor by-pass valve operation can bo made in terms of conventional voltase-curront characteristics. It is casy to show that in any atable operating configuration of the syster, (e.g. fif. 4.8 (i) to (xv)) with conventional control characteristics a singlebridge block-bypass operation at any converter cannot cause power flow reversal at the faulted or eny other converter, though partial or total load rejection is unavoideble.

The number of tines a bridge nay be blocked and de-blocked to clear a velve fault will depend on both the a.c. system and on valve properties. The conservative restrictions now imposed by valve iakers can be only removed after long experience, as yet lecinc, with h.v.d.c. schemes.
5.4.2. Direct-local renoval of a bridec

Under certain circunstances a brictge nay be disconnocted by the locei control circuits, and sonetinos the removal is directly under central control supervision. When one of many bridges per pole is faulted the healthy bridges continue to operate in serios with the bypass valve of the faulted bridge. Whether the station is a rectifier or an invorter the faulty bridge is invariably blocked and bypassed locally but subsequently nomal (not fault) control has to choose between disconnecting the terminal or opereting the pole at reduced voltage.

In converters with only one bridge per pole a faulty bridge can be blocked without bypassing only if it is initially rectifyine. Central control may thon have to alter the current order settings throughout the systen and this may be done before or while blocking the rectifier. In the former case the voltage controlling inverter is transiently overloaded and in the latter case transient power fluctuations and reversals occur on one or both poles. The method of rovising current orders must follow a sinple standerdisod procedure to avoid softwove complications not necessary in a fault routine. Rectifier loadings are increased in proportion to their ratings, while still obsorving ceiling current constraints, and a residual error is disposed of by reducing inverter loads proforably in proportion to their indjviduel ratings.
5.4.3. Disconnection of a faulty bridge under central control supervision

A temporary de-energisetion of one or both poles of the system prior to bridge disconncction is sometimes unavoidable for the following purposes:-

1. Removel of an inverter bridee not in series with any other bridges on the same pole.
2. Removal of a rectifier bridge.
a) Where direct local by-pass operation implies working with halr voltage betreen poles and it is dosireble to change to single pole operation via noutral.
b) Direct local blocking Ioaves the d.c. systea in an unstable or otherwise unacceptable mode and therofore a new mode must be switched into.
c) Local cortrol feils to block the briage and firc the valve e.e. for two valve failures or a control circuit fagilure.

Under these circunstances the central control programe is required to send complete restarting instructions and the syster classification chart, table 4.1, must be usod as in the transmission fault control programe.

The speed at which the syster has to be run down varies with the nature of the fault. Line and cable faults require very fast de-energisation and the sane applies to rectifior back fircs not successfujly bypassed. Commatation failures not successfully bypessed aro less serious. Consequent to a fiailure thet bas boen successtully bypassed but recuires both poles to be de-enersised before restart, a slow shut dom is accepteble. Current/power orcers to the system aro slorly and everly reduccd chicfly to mininise disturvance to the a.c. systen and to achieve co-ordination with conpensating changes thet may be made elsewhere in the system.

5.4.4. Autonatic extinction of an inverter

The method of bridge disconnection under central control supervision discussed above requires the intial de-encrgis ation of the system. This is a serious linitation. An elternative ${ }^{(42)}$ method, that is suiteble for certain rectifiers and inverters in some inter-comnection modes, is to imitially revise voltage levels throughout the sustem to ensure that the favity bridge talres over the function of voltage control. Thereafter all systen current orders are
revised gradually to reduce the current in this bridec to zero, or in the case of an invertor to the argin valuc above zero. A low current isolator can now open the circuit at the bridge to be disconmected. The method is slow but the rete of shut down is varisble and it also has the advantage that the participetion of local controls at the faulty station are not required.
5.4.5. Sumary of mothods for handing single bridge failuros

The following table sumarises the types of single bridge faults thet cen be encountercd and the methods of protection. All those methods that cen be tested on a three bridges sinulator have been programed and checked as separate routines, but a composite progreme, as in the cese of transmission faults, has not becn prepered.

Converter typo	Faul.t type	Fethod of protection
Rectifier	Single valve permanent failure	1. Local removel 2. Central control when local renoval viclates systen constraints.
Inverter	Single valve pernanent failure	Central Control a) De-energise restert b) Auto-extinction
Rectifier and Invorter	Failure of one bridge when nore than one bridge in series on each pole	Local bypass. Followed by renoval of all bridges if reduced voltage operation is undesireble.
Rectifier and Inverter	One pole in bypassed condition	De-energise one or both poles as necessary and restart
Rectifier and Inverter	Local control feilure a) Pailure to ex- tinguish oridge b) Failuro of control circuits	De-energise and restart. Auto-extinction depending on extent of control circuit failure.

Converter type	Fault type hethod of protection
Rectifier	```Priluro of com- Local removal aunication channel```
Inverter	

Chafrer 6

Fault Control fiests on the Simulator

Abstract

The performence of the h.v.d.c. sinulator, controlled under fault conditions by the PDP. 8 computer, has been invostigated whon clearing numerous typos of transmission and convertor and feults. Thesc tests are doccribed in this chapter and a selection of the wevefora recordings that vero made are presented.

6.1. Convertor Fault Control Circuits

Anelogue fault control circuits have been constructed for the fast shut-down and start-up of the simulator bridges in response to instructions rron the contral control conputor. The fothod of mergency control usod is to inject simnels into tho firing angle control circuits and to avoid changing any of the settings of the normal control circuits cxcept when the post-fault and pre-feult operating conditions differ. Each teminal is provided with a conplete group of these energency controls. The imediate interface at the computor is the direct digital output chennels and the digital to analogue (D / A) converter output channels. The direct digital input is used to entor fault information into the progreme. The D / A outputs from the computer mer be plugged into the constant current controller reforence inputs to reset the converter current orders after de-energisation and before re-startins, or to alter the operating conditions of the cnergised system. The direct digital output takes the place of the telccommancetion channels that would be used in a power system. Monolithic diode-transistor logic silicon integreted circuit devicos ere wired to function as de-coders for the direct digital signals. The output of the decoding circuits pulse control the analogue feult control circuits whose functions are discussed velow.

1. Fast de-eneroisjing circuits.

The circuit diagran of the convortor rapid de-energising circuits and the variation of the convertor controlled firing
angle, which corresponds to the control circuit output voltage waveforn, are illustrated in fig. 6.1(a) and (b) rospectively. The function of this circuit is to rapidly wove the convortior into the invertine rogion by increasing the firing angle to a proset valus and drein onergy out of the transmission syston. Iowever, vory largo values of firing anclo (i.e. in eacess of 160°) aro not approached to avoid transient conautation failures thet can occur despite the protection afforded by the constant extinction angle control circuit. The rate of change of firing angle is also limited to less than 30° change betwoen successive firings to minimise stress on the valves. The circuit is triegerod on and off by nogativo going pulsos at the corresponding inputs. Usuelly, the convertor is blocked at curront zero and the de-onergising signal may, theroafter, be turned off.

The points a, b and the time interval a of fig. 6.1.b aro dofince as follows:-

	Roctifier	Invertor
a-dolay angic (dogrees)	35	90
b-dolay anglo (dogrees)	150 to 160	150 to 160
c-m soc	10	20

When the converter is to be run dom more slomly the curront ordor to the consiant current control circuits may be reduced at the appropriate rate, under programe control.

2. Past re-stertine circuits

The rectifier and inverter circuits for the quick restarting of a converter, e.g. subsequent to fault isolation, together with the firing angle output weveforas of those circuits are illustrated in fig. $6.2(a, b)$ and $6.3(a, b)$ respectively. The invorter restart circuit perforis the function of not perniting the invertor firing ancle to becone loss than a preset value of 120° in this instance. This is necessary in orcer to revent the reversal of pover flows whech would otherwise occur et the inverter when deblocked due to the noraal action of tho constant current
control circuit in attempting rectification to build up current. The rectifier re-start circuit builds up the rectifier full forward voltage in about two a.c. cycles and precludes the sudden encrgisation of the linc at full voltage when the rectifier is doblocked.
3. Converter blocking circuit.

This is a simple bistable followed by a drive stage and triggered by negative going pulses at its inputs. The output is nomally, with the converter operating, at 10^{V} and when triggered on it is grounded, thus cutting off the valve firing pulses. The output is connocted to the pin marked 'Pulse Block' of the pulse generating units in fig. 2.9.
4. By-pass valve control circuit.

This circuit has been described in Section 2.8.1, fig. 2.22. The output of the computer signal decoding unit is coupled to the trigger inputs of this circuit.
5. Low voltage current rejection circuit ${ }^{\text {(} 87)}$.

When the converter terminal voltage falls to a low value, say below 0.2 pu , the current order is decreased to prevent operation at full load current and firing angles of approximatly 90 degrees, a condition of high valve stress. It is desirable that this circuit has sufficient delay to prevent spurious operation for comnutation failures or fast transients and has been designed with a lag exceeding one a.c. cycle. A straightforward low voltage relay has been erployed on the sinulator.

At delay angles near 90° a converter appears as a reactive load to the a.c. system and the need to limit its effects on the voltages of the neighbouring portions of the a.c. network is an additional reason for using these circuits especially if this system is weak.
6. Isolator controls.

Relays, driven from bistables, are used to represent the low current line isolators ${ }^{(42)}$ of the simulator. The operating times are not significant in comparison to the normal doad time, de-energisation and restart of the systen.
6.2. Description of Wavefom recording procodure

The waveforms have been recorded on an ultreviolet recorder on direct print paper. Nomal photogrophic developnont and fining has beon used in preference to developnent by arposure to an ultra-violot soureo and spray firing as a much bettor inege contrast is obtained.

The following table sumnarises the waveforms recorded and provides some details of the galvanoneters employed.

Waveform	Galvo.natural Irequency	Remarls
Rectifier RE current	$600 \mathrm{c} / \mathrm{s}$	sensitivity
Inverter IN1 current	$600 \mathrm{c} / \mathrm{s}$	($\mathrm{cm} / \mathrm{amp}$)
Inverter In 2 current	$600 \mathrm{c} / \mathrm{s}$	equalised
Rectifier RE Voltage	$3 \mathrm{kc} / \mathrm{s}$)	sensitivity
Node point voltage	$600 \mathrm{c} / \mathrm{s}\}$	(om/volt) approx.
Inverter $\ln 1$ voltage	$\left.700 \mathrm{c} / \mathrm{s}^{*}\right)$	qquelised
Inverter In2 voltese	$6 \mathrm{kc} / \mathrm{s}^{*}$	sensitivity less than above 3 . Galvo. rating linitations
* These two galvos are sonctiros intorchanged.		

An assortment of galvanometcrs have been used for the voltage recordings as sufficient high frequency dovices capable of roproducing details of converter output voltage waveform were not available. The frocuency sensitivity of the $3 \mathrm{kc} / \mathrm{s}$ and $6 \mathrm{kc} / \mathrm{s}$ galvanonetors is adequate, but as the sensitivity of the latter is low, one of the four voltage traces is recorded to a sensitivity of approzimetely 0.23 timos that of the other threc. The natural frequency of $700 \mathrm{c} / \mathrm{s}$ for the galvanonoter recording node voltaje and $600 \mathrm{c} / \mathrm{s}$ for those rocording currents is adequate. The

Fig 6.la Converter De-Energising Circuit.

Fig 6.2a Rectfier Starting Circuit.

Fig 6.3 b cutput Waveform.

Fig 6.3a Inverter Starijng Circuit.
convertor torminal voltage and not the voltage on the line side of the choke hes been recorded at oach terninal as a great doal more information of convertor performance is obtained et this point.
6.3. Pransmission Systom Faults

Funerous tests of faults at various locations in the d.c. transmission circuit and over a wide range of system load conditions have been conducted. The realistic a.c. system connoctions discussed in Section 4.1 .3 heve invariably been used but a few tests were conducted with strong 2.c. systems connected to all three terminals. In these latter tests, the response of the h.v.d.c. simulator was optimistic and therefore confinas the inportance of proper a.c. systom representation. Tho systen behoviour at light loads is, as anticipatcd, better than the performanco under full load conditions. The heavily loaded systen is nore prone to corlmutation failure, shows greater perturbation and settles down more slowly after faults or other disturbences.

The location of the fault on the d.c. transmission circuit does not have much influence on the extent to which the converters are disturbed beforo settling into the faulted oporating concition, except when the fault is on the station terainals themselves, in which case, the near converter shows nore pronounced oscillations of control and a tendency to transient comutation failure. The behaviour of the converters ves found to be sensitive to the alignment of the control circuits, since especielly careful aliganent of the pulse generating units to ensure correct 60° pulse intervals and accurate measurenent of the six extinction angles was found to improve transient performance.

Transient Paults
i transiont short circuit on the c. transmission circuit is cleared by shutting down and ro-sterting, fif. 6.4. The operating conditions of the system are as follows:-

		LIE 6.1		
		D.C.		A.C.
	Current	Voltage	Control	Transformor secondary vol.ts
Rectifier RE	100\%	99,:	c.c.c.	107\%
Invorter IN1	40\%	86\%	c.c.c.	88\%
Inverter Ind	60\%	84\%	c.e.a. γ	= $13^{\circ} 86.5 \%$
Node	-	88\%	-	-
Smoothi	Inducto	\% 0.55	$\mathrm{H} / \mathrm{temin}$	
Location o	fault	Transm	sion sys	ton node
The a.c. s	tear repr	esentatio	of sect	ion 4.1.3. is us

In this and the following tables all percentage values refor to rectifier rated values as base. The base a.c. voltage is that voltege at the transformer secondary torminals to give 100% d.c. voltage on open circuit for a firing engle of 0°.

Fig. 6.4 shows that iumodiately after feult application, oscillations of control occur, atterpting to sustain ordered current in the converters. This causes trensjont excursion of the invertors into the region of rectification before the systen settles dom. These oscillations corpletely disappear in about 60 m sec. The rectifice and invertor $\mathrm{I}: 2$ current are cxamples of the ability of the constant current controllers to intervene quickly and sustain ordered curront. Inverter In 1 current however shows a larger current ovarshoot arising frow a double cormutation failure and consequent transient loss of control.

The time interval between the occurence of the fault and the stert of system de-cnergisation is, in the main, determined by the delays in protective equipment and telecomnunication channels -the processing time of the computer being snall -and therefore an arbitrary value of 120 ms has been used to

went of de-crergisation to current adinction depence on the size of the swoothins rocetor and the initisl currents. at the rectifier, wher pushed to invorsion at a delay engle of 155°, this demoncrgisation tine is 55 a sec for 1.0 p.u. curront, as in fis. 6.4. The systom dead time before reotart nust be sufficient to cnsure de-ionsamion of the d.c. arc path and a reosoneble valuo of 130 ns is alloved in this test, durine which tjee the fault relay is opened.

The following points should be noted with regard to the restert poriod. The controlled build up of rectifior forward voltage limits overshoot of line voltage, the largest overshoot of node voltage does not exceed 5% over the entire restart period. Both inverters are prevented from reducing their firing anglis below 120° during the re-start period to prevent power flow reversal at these terminals. When invertor current exceeds the constant current controller setting this controller intervenes, takine over control from the restart circuits and increasing the firine angle to full inversion. The inverters return to their normal controlled operation sone 125 m sec after the rectifier is deblocked but a further 90 asec is required for the rectificr to build up the additional margin current.

The overall time fron the instant of feult to restitution of complotely normal operation is approxintely 0.5 sec.

Fie. 6.5. shows in deteil the initial part of the fault control. A test carried out under entirely different conditions fron that recorded in fig. 6.4 has been chosen to illustrate a number of additionel foatures.

The a.c. systeus comected to the three tominals are now very strong, having short circuit ratjos in excess of 15 , and the time between reult and the beginning of shut dom has been reduced to 80 m sec to linit the record length. The detail figure shows the inebility of the galvanometer, natural frequency $700 \mathrm{c} / \mathrm{s}$, recording IH1 voltage wave shape to adequately follow the converter ripple.

The system oporatiace conditions aro givon below:-

		BIT 6.2		
		D.C.		L. $C_{\text {c }}$
	Current	Voltege	Control	Transfiomer secondery voltece
Rectifior RE	102\%	103\%	c.c.c.	110;
Inverter İ1	61\%	88\%	c.c.c.	91\%
Invertor IVI2	41\%	89\%	c.e.a.Y	$=16^{\circ}-9.1{ }^{\circ}$
Mode	-	92\%	-	-
snoothing	ductance	0.55 I	r termi	
Fault loce	: On r	cotifier	line et a	distance of
		line Io	gth from	the node.

The transient rectification of the inverters to sustain ordered current and the ensuing oscillations arising fron current overshoot leading to steady working offer some 60 m sec are all features that can now be seen in detail. The disturbance to the converters is sumeller than that encountered with the weakened a.c. systers at the terminal.

In this test the de-energising circuits at all throe terninals have been triggered simultancously whereas in the previous test, fig. 6.4, the beginning of de-energisation at the three terminals wes staggered to obtain a near simultancous current extinction in the system. Clearly, the former procedure, thet is fig. 6.5, is not desirable as large currents flow into the fault path during the latter part of the de-energisation poriod.

The node voltage does not collapse immediately but decays to zero in $1.5 \mathrm{a} . \mathrm{c}$. cycles in the form of damped sinusoidal oscillations at the relatively high frequency of $450 \mathrm{c} / \mathrm{s}$.

Permanent Faults.

The control of the system during a permanent fault on the line between node and inverter IN1 is shown in fig. 6.5. The

syston is de-onergisod, a single unsuccessful remstert attempted, thereaftor the faultod line is locked out and the healtiny portion re-sterted.

Pre-fault and post-fault operating conditions are sumarised belon:-

TABLE 6.3.

	D.C. pre-fault			D.C. post-fault		
	Current	voltage	control	current	voltago	control
Rectifier RE	100\%	99\%	c.c.c.	66\%	97\%	c.c.c.
Invertor In 1	40\%	86\%	c.c.c.	-	-	-
Inverter IN2	60\%	84\%	c.e.a.	66\%	84\%	c.e.a.
			$\gamma=18^{\circ}$			$\gamma=18^{\circ}$
Node	-	88\%	-	-	90\%	

> Smoothing inductance $0.55 \mathrm{H} . /$ teminel
> Feult location : Midpoint of line between node and Inl

The a.c. systen representation of section 4.1.3. was used.

The aystem is re-sterted with the rectifier current order reduced to supply one inverter only, but 100% rectifier current may be suppliod to this inverter should this be desirable.

The other feature of this test that requires coment is the attempted unsuccessful re-stert. When invorters are deblocked on to a faulted line they neither inject current nor build up voltage since the firing angle is held groater than 90° by the remstart circuits. Subsequently, when the rectifier is cleblocked, the current, limited by circuit impedance only, rises repidly. Rate of rise of current detectors will detect the deblocking of the converter on a faulted line innedietely; in the laboratory fault information is artificially set up at the computor input. Demenergising circuits are turned on a

```
second time to drein energy from twe system. .
```

Fault and de-energisation of a system when the constant current controllers are provided with low voltage current rejection circuits is illustrated in fig. 6.7. The operating conditions of the systen are tabulated below:-

TABLE 6.4

	D.C.			A.C.
	Current	Voltage	Control	Transformer secondary
Rectifier RE	104%	100%	c.c.c.	108%
Inverter IN1	38%	87%	c.c.c.	89%
Inverter IN2	66%	85%	c.e.c. $Y=14^{\circ}$	87%
Node	-	89%	-	-

Swoothing inductance $0.55 \mathrm{H} /$ terminal Fault location : D.C. transmission circuit node The a.c. system representation of section 4.1.3. was used.

Approxinately $30 \mathrm{~m} \sec$ after the fault the current orders at the three converter stations are decreased to a low value as operation at firing angles near 90° and large currents presents velve stress problens. The curront order is reduced rapidly, the circuit tine constant being 6.5 msec , and this accounts for the more pronounced transient oscillations of control; these can howover be ontirely elininated by increasing this time constant to about $50 \mathrm{~m} s e c$.

The complete de-energisation of the systen is carried out only in response to instructions from the contral control computor. The de-energisation time is considerably reduced as the system is now worling at reduced current, and in the case shown, where the rectifier current is roduced to 27%, extinction time is about 20 m sec .

Certain objections exist to the inclusion of this controller

in converter systens havine one bridge per pole per terminel. Repetitivo conmutation failure is usually cleared by bypassing the bridge for a short tire end then deblocking. When these controls are included this would lead to current rejection in the relcvent pole and it would be some time after deblocking before nomal current, and therefore power trensmission, is built up again. Co-relation with fig. 6.4, 6.8, 6.9, indicates that if current rojection to nearly zero is used, the time between de-blocking and stoady normal operation would require over $200 \mathrm{~m} \sec$ as against 25 to 50 n sec when these controls are not included. Cormutation faults in valves are encountered far more frequently than trensmission system faults in h.v.d.c. systems.

6.4. Converter Feults

The control of the h.v.d.c. system during bridge fajlures is prosented in two perts, feults thet are cleared by local control circuite at the convorter and faults that require the intervention of the central control computer.

Converter Faults cleared by Local Control

The two following tests relato to the discussion of section 5. 4.1 .

Fig 6.8: Repetitive rectificr comutation failure cleared by a block bypass, deblock sequence at the rectificr.

Fig. 6.9: Repetitive inverter comutation failure cleared by a block-bypass, deblock-recover scquence at the inverter. The fault is applicd on the inverter IM2 which is connected to the weakened a.c. system, section 4.1.3.

The operating condjtions of the systen was the sane as that tabulated for Teble 6.1, except that in fig 6.9 the currents in TII and TN 2 are 45% and $55 \%^{\circ}$ respectively.

In these two tests the central control programe plays no positive part, its role being to identify the disturbence as one that does not require system de-mergisation. The

systen resumes nomal operation when the converter is deblocked with the fault cleared, the initial transient associated with the restart disappears in loss than 50 ms and in any evont it is hardly perceptiblo in these recordings after the first 20 asec. The inverter rocovery unit, described in suction 2.8.2. and fis. 2.23, is usec to obtain current pick up in the inverter in tho first firing poriod aftor beblocking. The period for which the foulty converter needs to be brpassed depends on mercury arc valve recovery charceteristics, a value of 100 a sec being used in these tests.

Convortar Faults cleared by Contral Control
Fie. 610 shows a test, relatod to the discussion of section 5.4.3 where subsequent to the failure of two valves in series on the same am of an inverter bridgo the syster was rapialy run down by the central control. Either a local control failure or the inability of the values to de-ionise is hypothosisoc but this aspect is not relevant here. The fault was removed before restarting the system.

A failure of two valvas in series was induced prior to the comencenent of the recording and a d.c. short circuit results. Firing the bypass valve causes a sharing of the d.c. current between these two parallel paths but fails to ensure current extinction in the bridge valves. This test nay also be considered as describing the protection sequence required subsequent to the following convertor faults.

1. Failure of bypass valve hold off properties.
2. Failure of an inverter to pick up current in a block-bypass-deblock operation; e.g. due to recovery unit failure.

The automatic removal of an inverter from a live system under centrol control suporvision, discussed in section 5.4.4, is illustrated in fis. 6.11 and 6.2.

The conventional nethod (44) of disconnocting an inverter from an h.v.d.c. systen is to run the systen dom transiently,
or in the cnse of a faulty inverter, to bypass before deenergisation. For a period transuission is interrupted ovor the whole d.c. network or on pole the disconncction of an inverter may be nocessary for a number of roasons, for exarple, for maintenance work on the converter oquipmont or some essential conponent of the e.c. syster, or where one of a number of bridges in series has filed and has been bypassed and discomoction of this terainal is preforred to operating all the converters in the syster at reduced voltage, or to effect the isolation of a faulty converter, or to reverse the airuction of nower filo at the inveric only.

It was sugeested in section 5.4 .4 that in a centrally controlled multiterainal systen rapid disconnction of an inverter without the need to bypass which interruptstransmission elserhere, may be echioved in three stages, as follows:-

1. Ensure that the inverter to be disconnected is on c.e.a. control, that is, that all other convorters are on constant current control. This will certainly occur automatically in the second and third oxamples suggestod above, in general tap changers hevo to be operated.
2. Bring the current order of the inverter to zero and then alter the current orders of the other converters in a coordinated danner to bring down the current in this inverter to margin value. The rate at which this chenge may be implewented depends on the pormissible transient disturbance to the system. The quickest method is to make current order step changes but this is also the most severe. (sec fig. 3. 19).
3. When the current into the inverter has fallen to a low value (equal to the system current margin) a low curront isolator is opencd. Another converter will then take on the function of voltafo control and the system continuos to operate normally.

[^0]

Initial
Current Voltage Control Current Voltage Control

Rectifier RE	100%	99%	c.c.c.	54%	96%	c.c.c.
Inverter IN1	50%	85%	c.c.c.	54%	86%	c.e.a. $\gamma=16^{\circ}$
Inverter IN2	50%	85%	c.e.a. $\gamma=16^{\circ}$	-	-	-
Node NN	-	88%	-	-	89%	-

The a.c. syster representation of section 4.1.3. was used. Snoothing inductance $=0.55 \mathrm{I} /$ terrinal.

The rectificr current order is reduced in ten equal steps over a total time of $200 \mathrm{~m} \sec$ in the case of fig. 6.11 and 600 m sec in fig 6.12. The forner represents the fastest possible without instantaneous voltege reversal at the rectifier.

Fig. 6.13: Shut down of a faulty inverter by contral control.
If for any reason it is not desirable or not possible to block-bypess a faulty inverter station locally the system must be rapilly de-energised by central control. In the test shown the fault was of a permanent nature and comatation failure persists then a restart was attempted. The system was deenergised for a second time and the healthy converters only restarted. The isolators on the line to the faulty inverter are not opened at either the node or the terminal, the inverter only being blocked. In practice this should pernit a quick restart.

The rectifier startor has not been operated during restart when the rectifier was deblocked. This has boen done for purposes of comparison with the nomel re-start procedure, see previous figures, 6.4 and 6.6. The switching transient shows the over-voltage at the node to be of the ordor of 40% to 50%
as against the small value of 5% when the rectifier starter is used.

The initial operating conditions are approrimately the same as for fig. 6.4, section 6.3. The syston is re-started with the two terminal system current order arbitrarily reset to 75% of rectificr rated value. Any velue consistent with converter ratings and optimun: a.c. systen performance could be substituted.

The final section of fig. 6.13 shows an additional switching actiong the current orders were suddenly modified to their original values and the inverter IN2 deblocked. The system returrs to its oricinal opereting stato after a transient of duration 75 msoc to 100 nssc that jncludes a period of reversed power flow at all the converters. This is presented here as a pointer to future extensions of the control studies discussed up to now. The sudden switching in and out of converters, and the opening of live line sections as a circuit breaker would, have been tentatively simulated. Here is scope for an extensive atudy with a view to obtaining results of practical value in the develoment of ultra-fest control and protection.

CHAPTER 7

Conclusions

The first part of this thesis describes the construction of an h.v.d.c. sinulator, equipped with fast rcliable controls, that can be used for the investigation of h.v.d.c. system operation with sone measure of confidence. The model was however, more than a sinulation of lnown h.v.a.c. techniques as the investigation and installation of an entirely rev method of constant extinction angle control has also been undertakon. These controls have boen successfully incorporatod into a three bridge system and the test rosults of Chapter 3 are evidence of excellent operational cheracteristics achieved after some problens of instability and oscillation, not previously anticipated, had been ovorcome. This rethod or c.e.a. control is of areat interest in vion of the fact that at least two major manufecturers of h.v.a.c. equipnent are developing it for use in future installations. This report howover is the first complete description, including circuit details and performance characteristics, of the new method of c.e.a. control.

Reliable thyristor pulse generating units rosponding rapidy and accurately to the nev controls are an indispenseble coaponent of the control structure. The now pulsing units that have been incorporated in the sinulator have been good enough for all the tests conducted. Constent current control, bypass valve control, en inverter recovery uinit and a circuit incorporating α-minimus andmminimu stops together with the function of selecting the control loop have also been included and a three terminal systen satisfactorily operated with realistic a.c. systerns and d.c. transmission networks. However the simulator surfers from two dofects, firstly the inflexibility imposed by the use of only one bridge per station and seconcily tho absence of a.c. sice filtors and therefore the inebility to nodel very weak a.c. systens. The additional construction work of installing controls on three more bridgos and building a.c. filter banks could not be underteken.

The construction and proving trials on the simulator wore follored, es recorded in the socond purt of the thesis, by an investigation of sone aspects of the control of an h.v.d.c. systen under feult conditions. Tho study has, in tho main, been confined to d.c. transmission systen faults and converter faults. A few tests have, howevcr, boen conducted to demonstrate the abjlity of the h.v.d.c. system to recover autonatically from sovore a.c. syster faults. However this resiliance refers to the systen espect alone; other limitetions arising frori the properties of the mercury arc valve not being represented in a simuletor of this type.

Tho purpose of tho control prosrawio discussed in Chapter 5 , and to sone extent tho justification for the use of a digital computer as a contral control, is to obtain high fault discrimination and therefore de energise the smallest and restart the larest feasible portion of the system. The full versatility of the control progrome in this respect cannot be appreciated fron three bridec systen tests. Normal systen operation, thet is power and Ver control, optimisation and possibly a.c. system sonsitive controls, must hovever be the conomic justification for the inclusion of a control corputer in the first place. The concept of energency control proposed hore consists of a digital computer programmed to receive logic fault information from systen detectors and converter monitors, ensuring ligh speed and discriaination in protection, associated with straightforvard anelogue control circuits at the terminals functioning es slaves, in the hierarchical sense, of the centre. As converter faults can ofton be cleared by blocking and deblocking locelly. provision is mede for this. The emergoncy local control functions by superimposï̈g eacrgency fault control signals on the thyristor firing circuits, theit is, interference with the settings of norual control equipment are avoided.

The results of fault control tests conducted on the simulator and controlled by the PDP. 8 couputer are presented in a series of waveform recordines in Chapter 6. Control is lost, that is control oscillstes or comutation fails, only for a short period usually not exceeding two a.c cycles, and the
convortors can be de-envegised, shut down or re-started in a fully controlled faslion. The principle time delays are the allowances made for telecomunication and mirinun favit poth de-ionisetion tine. It is srgued that these tests show that the division of functions as between central and local control and also between energericy converter control and normal converter control provides a satisfectory besis for the protection of $h . v . d . c$. systems. No doubt a practical central control programe will be nore thorough, less fragmentaxy, ourry numerous refinemonts pertaining to correletion with associeted nomel systen control progranmes and interfacing with comunication receiving and transmittine equipment and include fail safo and beci--up protective facilitios. Progranmes of the tyne dovelopod here, therefore, form the necessary and basic skeleton only. The invostigation of the autonatic/computer control of an $h . v$.$] . systen is a$ new field and few publicetions of note have appeared as yet. The contents of Chaptors 5 and 6 are the first systematic treatnent of the fault control of a multiteminel h.v.a.c. system.

Sugcestions for future work

The h.v.d.c. simulator provides a ness for the investiaction of alnost ovory systru aspect of d. o. trans-
 investisction of a wide rane on control tocmiquos and the stucy of tho Enteraction, on onch othor, of fifformt a.c. and d.c. sustons anc inter-comotions. Tho formor mot ain on the one hend at doriviag adaitional modos on control thet are prectically vsenil and on the othor at obtanine criteria for the stability and Aitrection of the various controls or a mititaminal systen. Me importance of tho chareotoristios of the a.c. systen on h.v.d.c. converter opration is notr well apprecietod. The stralctor provides periaps the nost reliakle wethod for the Livestigetion of such problon as operation mader conditions of a.c. systen imbalance, con nection to veale a.c. systers of hoth cable and o.h. line net-
works, the connection of a converter to isolated ecneration and the comection of a converter at the end of a long a.c. transmission line.

Hore apecifically, with regard to the sinulator at Inperial College, the following extensions are urged. The installation or a.c. side filters, whose components have already been designed and purchased, and the further weakening of the a.c. system at one of the inverters, the construction of constant power control circuits at a rectifier and an inverter and, if connection of a micro-machine to the simulator is undertaken, frequency sensitive controls need to be investigated. It is considered desirable to develop for the simulator actual analogue nodels of analogue type h.v.d.c. control circuits. If a number of analogue type control loops are installed at each terainal of a multiterminal h.v.d.c. system, the simultaneous digital simulation of the controls at all the terrinals as a technique of laboratory modelling to be used in conjunction with a basic simulator is not likely to be a feasible method of systen investigation.

Although the construction of fault detectors and converter monitors will facilitate the extension and improvement of fault control programes it is prematuro to equip a research sinulator of this type with a complete set of detecting and monitoring units in the imediate future. The design of various types of detectors, in conjunction with a rultiterminal simulator, should however be profitable.

The fault control prosramo can be extended to develop more sophisticated techniques for use in conncction with a.c. systom faults and a.c. switchine, e. §ु. loss of one of many machines feeding a rectifier, fall of inverter a.c. system short circuit level due to switching, partial loss of a.c. voltage for longer than about 100 ms , comordination with a.c. protectjon stc. Criteria for altering the power/ current order and for shutting down a converter need to be investigated - these rapid changes are not to be confused with changes that "nationel control" may request from considerations of the power systen as a whole.

RET'ERENCES

1. SAYERS. D.P., FORREST. J.S. and LANE. F.J., 275 kv Develoments on the British Grid Systen Proc. I.E.i. Vol. 99 Prt II 582 606.
2. BOOTH. E.J., CLARK. D., EGGINGTON. J.L. and FORREST. J.S., The 400 kv Grid System for England and Wales. Proc. I.E.E. Vol. 109 Pt. A 1962 pp :93-511 Discussion pp 511..519.
J. DREYFUS. H.B. The Growth of the C.E.G.B. Transmission Gysteal Electrical Times 26th fiarch 196t.
3. CHORITON. A. Conception of the British 400 kv System. I.E.E. Conference publication No. 15. Design Criteria and Dcuipaent for Transiaission at $4,00 \mathrm{kv}$ and higher voltages. Part I 1964: pp 9..16.
4. BROWN. F.H.S. Introductory Lecture. ibid. Part II. Di 5-9.
5. LYON. G. and MILIERR. D.J. Planning and Design of Transmission Systems for Overseas. ibid. Part I. pp 17-2l.
6. THE FEDERAL POVER CONmiISSION. National Power Survey 1964. 2 Vols. U.S. Government publication.
7. THE FEDERAL POIR COMISSSION. Frevention of Power Failure. 3 Vol. July 1967. U.S. Government publication.
8. DEPARTVENT OF IHE INITERIOR. U.S. GOVERNIENT. Trensmission Study 190. Feb. 1963.
9. LAVRENKO. K.D., MARINOV. A.M., INARKOVICH. I.I., NAKHA PETYAN. K.T., ROKOTYAN. S.S. and SORALOV. S.A. Stages in the Developnent of the Unified Electricity Supply of the U.S.S.R. VII ${ }^{\text {th }}$ World Energy Conference. Moscow. August 1963.
10. VOLKENAU. I. H_{\bullet}, ZEJLTNGER. A.N., KOLPAKOVA. A.I., MARKOVICH. I.M., MIRNOV. P.L., and SARKIVOV. M.A. Problems on Formation of the United Power Systern in the Soviet Union. Paper No. 147

VI ${ }^{\text {th }}$ World Power Conference. Tokoyo. 1966.
12. UNITED NATIONS. ECONOMIC COMMISSION FOR EUROPE. The Electric Power Situation in Europe and its Future Prospects. Triennial Version 1963-65. New York 1967.
13. CASSON. W., LAST. F.H., and HUDDART. K.W. The Economics of D.C. Transmission applied to an Interconnected System. I.E.E. Conference publication No. 22 H.V.D.C. Transmission. Part I. 1966. pp 75 83.
14. BREWER. G.L. and FRAZER. K.G. D.C. Transmission in A.C. Distribution Systems. ibid. pp 87-89.
15. HUDDART. K.W. and WATSON. W.G. Multiterminal D.C. Transmission. ibid. pp 94-98.
16. WATSON. W.G. Discussion. ibid. Part II. pp 41-42.
17. CASSON. W., IAST. F.H., and HUDDART. K.W. The Introduction of D.C. Transmission into a predominantly A.C. Network. Flectrical Review 25th Feb. 1966. pp 290-295.
18. AYRES. C. The Control and Supervision of Thermal Generating Units. I.E.E. Conference publication No. 16 Automatic Control in Electricity Supply. March 1966. pp 118-132.
19. CASTELL. B.D. and HARKIESS. J.A. Automatic start up and Loading System for Turbo Generators. ibid. pp 142-147.
20. HIITON. K.G. Some Methods of Automatic Start up of Power Station Plant. ibid. pp 46-62.
21. BINNEY. M.F. General Aspects of Control System Design in Power Stations. ibid. pp 34-45.
22. COHEN. N. The Automatic Control of Electric Power in the United States. I.E.E.E. Spectrum Nov. 1965 pp 67-77.
23. FRIEDLANDER. G.D. Computer Controlled Power Systems. Part I Boiler; Turbine; Unite Controls. ibid. April 1965. pp 60-81.
24. PARISH. C.C.M. and PREWEITI. J.N. Automatic Load dispatching for part of the British Grid System. I.E.E. Conference public.. ation No. 16. Automatic Control in the Electricity Supply industry 1966. pp 27-33.
25. ELECTRICAL TIMES. Computer to Optimise System. Electrical Times 27th Jan. 1966.
26. FARMER. E.D., JAMES. K.W., MORAN. F. and PEITIT. P. The development of Automatic Digital Control of a Power System from the Laboratory to a Field Installation. Proc. I.E.E. March 1969. Vol. 116 No. 3. pp 436-443

BREWER. C., CHARIES. G.F., PARISH. C.C.M. PREWETY. J.N., SALTHOUSE. D.C. and TERRY. B.J. The Performance of a Predictive Automatic Load Dispatching System Proc I.E.E. Vol. 115. Oct. 1968. pp 1577-1586.
28. MOREHOUSE. S.B. Recent developments and trends in Automatic Control of Large Inter-comnected Power Systems. CIGRE 1956. Paper 313.

ROSS. C.W. Error Adaptive Control Computer for Inter-connected Power Systems. I.E.E.E. Trans. PAS. July 1966.
30. PULSFORD. H.E. and GUNNING. P.F. Developments in Power System Control. Proc 1.E.E. Vol. 114. No.8. pp 1139-1148.
31. MORLEY. S.J. and SUISKINS. J.A. Generating Plant Programming by Computer. I.E.E. Conference Publication No.16. Automatic Control in Electricity Supply. 1966. pp 20-26. CASSON. W. and LAST. F.H. Future scope for Automation in the Supply Industry. ibid. pp 318-326.
33. FRIEDLANDER. G.D. Computer Controlled Power Systems. Part II Area Control and Load Dispatch I.E.E.E. Spectrum May 1965. pp 72-91.
34. GAUSSENS. P., PARDIGION. J.-M., CARPENTIER. J., AUGES. P., MESTRES. C. and SIROUX. P. The Application of Digital Computer to Power Transmission Network Studies and Operation. CIGRE 1964 Paper 327.

MOREHOUSE. S.B. Automatic Loading practices on Interconnected Power Systens in the U.S.A. CIGRE 1966. Paper 315.
36. ITO. N. and SEKINE. S. Digital Computer Control of HVDC Power Systems. Part I. Hardware. Paper submitted to CIGRE Study ComrnitteeNo.10. June 1963.
37. ITO. N. and SEKTNE. S. ibid. Part II. Softwave. Paper submitted to CIGRE Committee No.14. May 1969.
38. SEKINE. S. Universal Control Protection System for Multiterminal D.C. Power Transmission. Report of the E.T.L. Tokyo.

YAMADA. T., FUJII. S. and HORIGOME. T. System Stability and Control Protection Scheme of A.C. - D.C. Link. Cigre 1966 Paper No. 325.
40. CIGRE. Joint meeting of A.C. and D.C. Study Comaittces; 22.5.63. Summary in Direct Current Vol. 8 No. 8 pp 205-214.
41. UHLMANN. E. Clearing of Earth Faults on HVDC Overhead Lines. Direct Current. Sept. 1960. pp 45-47 and 65-66.
42. LARM. U., UHLMANN. E. and DANFORS. P. Some aspects of t-apping HVDC Transmission Systems. ibid. Vol. 8. pp 124-129.
43. MACHIDA. T. Some considerations relating to a reclosing protective method for a D.C. Transmission System in connection with a 3-phase Short Fault on the receiving A.C. System. ibid. Feb. 1966 pp 8 -18 and 33.
44. ADAMSON. C. and HINGORANI. N.G. High Voltage Direct Current Transmission. Book. Garraway 1964.
45. ADAMSON. C. The Protection of HVDC Convertors and Systems. Chapter 6. in High Voltage D.C. Converters and Systems (Ed. Cory) Book. McDonald. 1965.
46. REEVE. J. Logic behaviour of HVDC Convertors during normal and abnormal conditions. Proc. I.E.E. Vol. 114 No. 12 Dec. 1967 pp 1937-1946.
47. REEVE. J. Direct Digital Protection of HVDC Converters. ibid. pp 1947-1954.
48. GAVRILIOVIC. A. and TAYIOR. D.G. The Calculation of the Regulation Characteristics of D.C. Transmission Systems. Trans. I.E.E.E. PAS. Vol. 83. 1964.
49. REIDER. A.M. Analysis of the Stability of the Control Systems of the Kashira - Moscow Direct Current Transmission line. In U.S.S.R. Direct Current Research Book. Pergammon Press. 1964.
50. HINGORANI. N.G., HAY. J.L., and CROSBIE. R.E. Dynamic Simulation of HVDC Transmission Systems on Digital Computers. Proc. I.E.E. Vol. 113. 1966. pp 793...802.

51 HINGORANI. N.G, and HAY. J.L. Representation of Faults in the Dynamic Simulation of HVDC Systems by Digital Computers. ibid. Vol. 114 1967. pp 629-
52. NORTON. J.P. and CORY. B.J. A Digital Simulation Prograrme for MuItiterminal HVDC Systems. ibid. Vol. 115. 1968. pp 397-406.
53. NORTON. J.P. and CORY. B.J. Control System Stability in Multiterminal HVDC Systems. ibid. Vol. 115. No.12. pp 1828-1834.
54. HORIGOME. T. and ITO. N. Digital Computer method for the Calculation of Power Flow in an AC-DC Interconnected Power System. ibid Vol. 111. 1964. pp 1137-1144.
55. CLAUDE. J. and LACOSTE. A. Simplified Study of the Stability of Regulation of a D.C. Link. Direct Current. Vol. 12. No. 1967. pp 9-12.
56. BERLIN. E.M. Steadiness of Systems for Regulating D.C. Power Transmission improved by altering the principle on which the Inverter is Compounded. ibid. Vol. 7. No. 121960 pp 319.
57. CORY. B.J. Sirnulation of High Voltage Direct Current Systems. Chapter 9 in High Voltage Direct Current Converters and Systems. (Ed. Cory). Book. McDonald. 1965.
58. AINSWORTH. J.D., and BOWLES. J.P. An HVDC Transmission Simul. ator suitable for both Steady State and Transient Studies. I.E.E. Conference Publication No. 22 HVDC Transmission. 1966. MARTENSON. H. and ADIELSON. T. Simulator Studies of Multiterminal HVDC Systems. ibid. pp. 134-145.
60. VOSHRENSKII. V.V., BARAKAEY. Kh. F. and TRARIN. T.V. A scale model of the Stalingrad Hydro- Filectric station to Donbass D.C. Power Transmission System. Direct Current. Vol. 6. No. 1 pp. 3-8.
61. AINSWORTH. J.D. Correspondence. Proc. I.E.E. VoI. 116. No. 5 p. 870.
62. ARRIILAGA. J. and EFTHYMIADES. A.E. Correspondence. ibid. p. 870 .
63. BOWLBS. J.F. The Model HVDC Transmission Systera at Irperial College. Power System Report No.44. Imperial College of Science and Technology. Jan. 1963.
64. AINSWORTH. J.D. Harmonic Instability between Controlled Static Converters and A.C. Networks. Proc. I.E.E. Vol.117.No.7. 1967.
65. NORTON. J. Use of a Digital Computer in the Study of HVDC Systems. Ph.D. Thesis. University of London. 1966.
66. ADAMSON. C. and HINGORANI. N.G. Control of HVDC Convertors. Direct Current. Vol. 7 No.6. 1959.
67. FORSSELJ. H. The Gotland D.C. Iink. The Grid Control and Regulation equipment. ibid. Vol. 2.No. 5 pp. 109-114 and Vol. 2. No. 7 pp.166-170. 1955.
68. TUNTAWIROON. N. Control Systems for High Voltage Direct Current Transmission. Ph.D. Thesis. Victoria University of Manchester. 1963-4.
69. MARRISON and CATHERALI ITD. Commercial Literature on their Grain-Oriented Silicon Steel materials.
70. ADAMSON. C. and HINGORANI. N.G. A new Transductor type D.C. Transformer particularly applicable to HVDC Transtaission. Proc. I.E.E. Voi. 1101963 No. $4 \mathrm{pp} .739-750$.
71. HINGORANI. N.G. An accurate Transductor type measuring transformer. Direct Current Vol. 9. No. 2. 1964.
72. VAN DEN HORE. C. The Hall Effect. ibid. Vol. 7. July 1962 pp. 188-191.
73. BUSEMANN. F. Damping Circuits of Convertors for HVDC Transmission. ERA Technical Report B/T 114. 1952.
74. AINSWORTH. J.D. Filters, Damping circuits and Reactive volt-amps in HVDC Convertors. Chapter 7 in HVDC Convertors and Systems. (Ed. Cory). Book. McDonald. 1965.
75. ENGSTROM. P.G. Operation and Control of HVDC Transmission. Trans I.E.E.E. PAS. Jan. 1964. pp. 71-77.
76. JURY. E. Sampled Data Control Systems. Book. John Wiley 1958.
77. FREEMAN. H. Discrete Time Systens. Book. John Wiley. 1965.
78. CLADE. J., MIDDIETON. M.H. and UHLMANN. E. Special operational tests on the Cross-Chennel connection. I.E.E. Conference Report No. 22. HVDC Transmission. 1966. pp. 21.-25.
79. HUDDART. K.W. and BREWER. G.I. Factors influencing The Harmonic Impedance of Power Systems. I.E.E. Conference Report No. 22. HVDC Transmission. pp. 450-452.
80. HORIGOME. T., MACHADA. T., SANBO. Y., TAMURA. T. and OSHIMA. K. Some aspects of Design of A.C. Filters for D.C. Converter connected to Unbalance A.C. System. CIGRE. May 1969 (Vol:ograd).

No. 14-69 (SC) J.I.
81. HOLMBORN. H. and MARTENSON:" H. Experience of A.C. Harmonics from HVDC installations. ibid. pp. 445-447.
82. GARDNER. G.E. Discussion. ibid. Part II. p.115.
83. JARRETT. G.H.S. and CSUROS. L. The Performance of the Lydd Cross-Channel connection, ibid. Part I. pp. 17-20.
84. UHLMANN. E. Stabilisation of an A.C. Link by a Parallel D.C. Link. Direct Current. Aug. 1964. pp. 89-94.
85. KIMBARK. E.W. Electrical Transmission of Power and Signals. Book. John Wiley. 1962.
86. ARRILLAGA. J. and GALANOS. G. Fault Development Control in A.C.D.C. Convertors. Froc. I.E.E. Vol. 116. No. 7. July 1969. pp. 1201-1208.
87. ATMSTORTF.J.D. and MAPTII.C.J.B. Principles of Control for FVDC Transmission. I.E.E.Conference Report No.22. HVEC Transmission. pp. 158-160.
88. FALLSIDE.F. and JACKSON.R.D. Direct Digital Control of Thyristor Amplifier. Proc.I.t.E. Vol, 116. no. 5. pp. 873-678.

APPEidix a

This appondix contains the Boolean equations of the basic fault control proerciu for detecting transuisoion systou faults. Rach fault is idontified by superscripts and subscripts denoting the olenents betroen which the fault occurs. For cxaple F_{26}^{15} refers to a line to line fault between linc 15 and 26 of Converter stetion $B, F_{+}^{E}, F_{-}^{E}, F_{-}^{+}$refer to earth to positive pole, negative pole and positive to negative pole faults in any part of the syster. The other symols have been dofined previously.

The equations are mitten for every one of the fifteen operating nodes of the systeri sketched previously anc? classified in the chart of lable 4.1. They are identified by heading of the form $G . n_{2} /$ where $n=$ group muber, $m=$ tier muber and on addition iuentifying alphabetic. The fifteen sketches of fig. 4.8 are drowi in the same order as the equations here.

Line sections are nuwered in rig. 4.7.

+ = Booleen OR operation
- = Boolean All operation
' = Complenent; OT operation

MODE $\mathrm{G} 1 / \mathrm{T} 1$ (a)

$$
\begin{aligned}
& F_{24}^{13}=A_{1} \cdot H_{1}+M_{1} \cdot A_{4}^{\prime} \cdot A_{5}^{\prime} \\
& F_{26}^{15}=B_{1} \cdot H_{4}+M_{4} \cdot B_{4}^{\prime} \cdot B_{5}^{\prime} \\
& F_{28}^{17}=C_{1} \cdot M_{7}+M_{7} \cdot C_{4}^{\prime} \cdot C_{5}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{F}_{-}^{+}=\mathrm{H}_{10} \cdot\left(A_{4}{ }^{\prime} \cdot \mathrm{AA}_{5}{ }^{\prime} \cdot B_{4}{ }^{\prime} \cdot B_{5}{ }^{\prime} \cdot \mathrm{C}_{4}{ }^{\prime} \cdot C_{5}{ }^{\prime}\right) \\
& +A_{1} \cdot\left(B_{4}^{\prime} \cdot B_{5}^{\prime} \cdot C_{4}^{\prime} \cdot C_{5}^{\prime}\right)+B_{1} \cdot\left(C_{4}^{\prime} \cdot C_{5}{ }^{\prime} \cdot A_{4}^{\prime} \cdot A_{5}^{\prime}\right) \\
& +C_{1} \cdot\left(A_{4}{ }^{\prime} \cdot A_{5}{ }^{\prime} \cdot B_{4}{ }^{\prime} \cdot B_{5}{ }^{\prime}\right) \\
& F_{13}^{D}=L_{2} \cdot I_{2}+M_{2} \cdot A_{4}{ }^{\prime}+I_{1} \cdot A_{4}{ }^{\prime} \cdot A_{5} \\
& F_{15}^{E}=B_{2} \cdot M_{5}+M_{5} \cdot B_{4}^{\prime \prime}+M_{4} \cdot B_{4}^{\prime} \cdot B_{5} \\
& \mathrm{~F}_{17}^{\mathrm{E}}=\mathrm{C}_{2} \cdot \mathrm{TH}_{8}+\mathrm{M}_{8} \cdot \mathrm{C}_{4}{ }^{\mathrm{A}}+\mathrm{H}_{7} \cdot \mathrm{C}_{4}{ }^{\prime}+\mathrm{M}_{7} \cdot \mathrm{C}_{4}{ }^{\prime} \cdot \mathrm{C}_{5} \\
& F_{+}^{E}=F_{11} \cdot\left(A_{4}{ }^{\prime} \cdot B_{4}^{\prime} \cdot C_{4}^{\prime}\right) \\
& +A_{2} \cdot\left(B_{4}^{\prime} \cdot C_{4}^{\prime}\right)+B_{2} \cdot\left(C_{4}^{\prime} \cdot A_{4}^{\prime} \cdot\right)+C_{2} \cdot\left(A_{4}{ }^{\prime} \cdot B_{4}^{\prime}\right) \\
& +\mathrm{M}_{10} \cdot\left(\mathrm{~A}_{4}^{\prime} \cdot \mathrm{A}_{5}+\mathrm{B}_{4}{ }^{\prime} \cdot B_{5}+\mathrm{C}_{4}{ }^{\prime} \cdot \mathrm{C}_{5}\right) \\
& +A_{1} \cdot\left(E_{4}^{\prime} \cdot B_{5}+C_{4}{ }^{\prime} \cdot C_{5}\right)+B_{1} \cdot\left(C_{4}^{\prime} \cdot C_{5}+A_{4}{ }^{\prime} \cdot A_{5}\right) \\
& +C_{1} \cdot\left(A_{4}^{\prime} \cdot \dot{B}_{5}+B_{4}^{\prime} \cdot B_{5}\right) \\
& \mathrm{F}_{24}^{\mathrm{E}}=\mathrm{A}_{3} \cdot \mathrm{HA}_{3}+\mathrm{HI}_{3} \cdot A_{5}{ }^{\prime}+\mathrm{H}_{1} \cdot A_{4} \cdot A_{5}{ }^{\prime} \\
& F_{26}^{\mathrm{E}}=\mathrm{B}_{3} \cdot \mathrm{PH}_{6}+\mathrm{M}_{6} \cdot \mathrm{~B}_{5}{ }^{\prime}+\mathrm{H}_{4} \cdot \mathrm{~B}_{4}{ }^{\prime} \cdot \mathrm{B}_{5} \\
& \mathrm{~F}_{28}^{\mathrm{E}}=\mathrm{C}_{3} \cdot \mathrm{H}_{9}+\mathrm{H}_{9} \cdot \mathrm{C}_{5}{ }^{\prime}+\mathrm{Fi}_{7} \cdot \mathrm{C}_{4} \cdot \mathrm{C}_{5}{ }^{\prime} \\
& \mathrm{F}_{\mathrm{E}}^{\mathrm{E}}=\mathrm{H}_{12} \cdot\left(\mathrm{~A}_{5}{ }^{\prime} \cdot \mathrm{B}_{5}^{\prime} \cdot \mathrm{C}_{5}^{\prime}\right) \\
& +A_{3} \cdot\left(B_{5}{ }^{\prime} \cdot C_{5}{ }^{\prime}\right)+B_{3} \cdot\left(C_{5}{ }^{\prime} \cdot A_{5}^{\prime}\right)+C_{3}\left(A_{5}{ }^{\prime} \cdot B_{5}{ }^{\prime}\right) \\
& +\mathrm{H}_{10} \cdot\left(A_{4} \cdot A_{5}^{\prime}+B_{4} \cdot B_{5}^{\prime}+C_{4} \cdot C_{5}^{\prime}\right) \\
& +A_{1} \cdot\left(B_{4} \cdot B_{5}^{\prime}+C_{4} \cdot C_{5}^{\prime}\right)+B_{1}\left(C_{4} \cdot C_{5}^{\prime}+A_{4} \cdot A_{5}^{\prime}\right) \\
& +C_{1} \cdot\left(A_{4} \cdot A_{5}^{\prime}+B_{4} \cdot B_{5}^{\prime}\right)
\end{aligned}
$$

HODE $G 1 / T_{2}(a)$

$$
\begin{aligned}
& H_{24}^{13}=\dot{A}_{1} \cdot M_{1}+M_{1} \cdot A_{4}{ }^{\prime} \cdot i_{5}{ }^{\prime} \\
& \mathrm{F}_{26}^{15}=\mathrm{B}_{1} \cdot \mathrm{~F}_{4}+\mathrm{Hi}_{4} \cdot \mathrm{~B}_{4}{ }^{\mathrm{t}} \cdot \mathrm{~B}_{5}{ }^{\prime} \\
& \mathrm{P}_{-}^{+}=\mathrm{H}_{10} \cdot\left(A_{4}{ }^{\prime} \cdot A_{5}{ }^{\prime} \cdot B_{4}^{\prime} \cdot B_{5}{ }^{\prime}\right)+A_{1} \cdot\left(B_{4}{ }^{\prime} \cdot B_{5}^{\prime}\right)+B_{1} \cdot\left(\dot{A}_{4}{ }^{\prime} \cdot A_{5}{ }^{\prime}\right) \\
& F_{+}^{D}=M_{11} \cdot\left(K_{4}{ }^{\prime} \cdot B_{4}{ }^{\prime}\right)+A_{2} \cdot B_{4}{ }^{\prime}+B_{2} \cdot A_{4}{ }^{\prime} \\
& +A_{2} \cdot M_{2}+M_{2} \cdot A_{4}^{\prime \prime}+M_{1} \cdot A_{4}{ }^{\prime} \cdot A_{5} \\
& +\mathrm{B}_{2} \cdot \mathrm{H}_{5}+\mathrm{M}_{5} \cdot \mathrm{~B}_{4}{ }^{\prime}+\mathrm{H}_{4} \cdot \mathrm{~B}_{4}{ }^{\prime} \cdot \mathrm{B}_{5} \\
& +\mathrm{H}_{10} \cdot\left(\mathrm{H}_{4}{ }^{\prime} \cdot \mathrm{H}_{5}+\mathrm{B}_{4}{ }^{\prime} \cdot \mathrm{B}_{5}+\mathrm{C}_{5}\right) \\
& +A_{1} \cdot\left(B_{4}^{\prime} \cdot B_{5}+C_{5}\right)+B_{1} \cdot\left(A_{4}^{\prime} \cdot A_{5}+C_{5}\right) \\
& F_{24}^{E}=A_{3} \cdot H_{3}+H_{3} \cdot A_{5}^{\prime}+M_{1} \cdot A_{4} \cdot A_{5}^{\prime} \\
& F_{26}^{E}=B_{3} \cdot H_{6}+M_{6} \cdot B_{5}{ }^{\prime}+M_{4} \cdot B_{4} \cdot B_{5}{ }^{\prime} \\
& \mathrm{F}_{28}^{\mathrm{E}}=\mathrm{C}_{3} \cdot \mathrm{M}_{9}+\mathrm{Mi}_{9} \cdot \mathrm{C}_{5}{ }^{\prime} \\
& \mathrm{F}_{-}^{\mathrm{B}}=\mathrm{M}_{12 \cdot} \cdot\left(\mathrm{~A}_{5}{ }^{\prime} \cdot \mathrm{B}_{5}{ }^{\prime} \cdot \mathrm{C}_{5}^{\prime}\right) \\
& +A_{3} \cdot\left(B_{5}{ }^{\prime} \cdot C_{5}\right)+B_{3} \cdot\left(C_{5}^{\prime} \cdot A_{5}^{\prime}\right)+C_{3} \cdot\left(A_{5}{ }^{\prime} \cdot B_{5}{ }^{\prime}\right) \\
& +\mathrm{H}_{10} \cdot\left({\dot{A_{4}}}_{4} \cdot \mathrm{H}_{5}^{\prime}+\mathrm{B}_{4} \cdot \mathrm{~B}_{5}^{\prime}\right) \\
& +A_{1} \cdot\left(B_{4} \cdot B_{5}^{\prime}\right)+B_{1} \cdot\left(A_{4} \cdot A_{5}^{\prime}\right)
\end{aligned}
$$

HODE $\mathrm{G} 1 / \mathrm{T2}(\mathrm{~b})$

$$
\begin{aligned}
& \mathrm{F}_{24}^{13}=A_{1} \cdot \mathrm{MF}_{1}+\mathrm{M}_{1} \cdot A_{4}^{\prime} \cdot A_{5}^{\prime} \\
& \mathrm{F}_{26}^{15}=B_{1} \cdot \mathrm{M}_{4}+\mathrm{A}_{4} \cdot B_{4}^{\prime} \cdot B_{5}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& F_{-}^{+}=M_{10} \cdot\left(A_{4}{ }^{\prime} \cdot A_{5}{ }^{\prime} \cdot B_{4}^{\prime} \cdot B_{5}^{\prime}\right)+A_{1} \cdot\left(B_{4}{ }^{\prime} \cdot B_{5}^{\prime}\right)+B_{1} \cdot\left(A_{4}{ }^{\prime} \cdot A_{5}^{\prime}\right) \\
& F_{13}^{E}=A_{2} \cdot M_{2}+H_{2} \cdot A_{4}^{\prime}+M_{1} \cdot A_{4}^{\prime} \cdot A_{5} \\
& \mathrm{~F}_{17}^{\mathrm{E}}=\mathrm{C}_{2} \cdot{ }_{8}+\mathrm{M}_{8} \cdot \mathrm{C}_{4}{ }^{\prime} \\
& F_{+}^{\mathrm{B}}=M_{11} \cdot\left(A_{4} \cdot{ }^{\bullet} \cdot B_{4}^{\prime} \cdot C_{4}^{\prime}\right) \\
& +A_{2} \cdot\left(B_{4}^{\prime} \cdot C_{4}^{\prime}\right)+B_{2} \cdot\left(C_{4}^{\prime} \cdot A_{4}^{\prime}\right)+C_{2} \cdot\left(A_{4}^{\prime} \cdot B_{4}^{\prime}\right) \\
& +H_{10} \cdot\left(A_{4}^{\prime} \cdot A_{5}+B_{4} \cdot B_{5}\right) \\
& +A_{1} \cdot\left(B_{4}{ }^{\prime} \cdot B_{5}\right)+B_{1} \cdot\left(A_{4}{ }^{\prime} \cdot A_{5}\right) \\
& F_{-}^{E}=M_{12} \cdot\left(A_{5}{ }^{\prime} \cdot B_{5}^{\prime}\right)+A_{3} \cdot B_{5}^{\prime}+B_{3} \cdot A_{5}{ }^{\prime} \\
& +A_{3} \cdot H_{3}+H_{3} \cdot A_{5}{ }^{\prime}+\mathrm{H}_{1} \cdot A_{4} \cdot A_{5}{ }^{\prime} \\
& +\mathrm{B}_{3} \cdot \mathrm{H}_{6}+\mathrm{Hi}_{6} \cdot \mathrm{~B}_{5}{ }^{\mathrm{\prime}}+\mathrm{PH}_{4} \cdot \mathrm{~B}_{4} \cdot \mathrm{~B}_{5}{ }^{\mathrm{g}} \\
& +\mathrm{H}_{10} \cdot\left(A_{4} \cdot A_{5}^{\prime}+B_{4} \cdot B_{5}^{\prime}+C_{4}\right) \\
& +A_{1} \cdot\left(B_{4} \cdot B_{5}^{\prime}+C_{4}\right)+B_{1} \cdot\left(A_{4} \cdot A_{5}^{\prime}+C_{4}\right)
\end{aligned}
$$

MODE $\mathrm{G} 1 / \mathrm{TR} 2(\mathrm{c})$

$$
\begin{aligned}
& F_{24}^{13}=A_{1} \cdot H_{1}+M_{1} \cdot A_{4}^{\prime} \cdot A_{5} \\
& F_{28}^{17}=C_{1} \cdot H_{7}+H_{7} \cdot C_{4}^{\prime} \cdot C_{5} \\
& F_{-}^{+}=M_{10} \cdot\left(A_{4}^{\prime} \cdot A_{5} \cdot \cdot C_{4}^{\prime} \cdot C_{5}^{\prime}\right)+A_{1} \cdot\left(C_{4}^{\prime} \cdot C_{5}^{\prime}\right)+C_{1} \cdot\left(A_{4}^{\prime} \cdot A_{5}^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& F_{+}^{E}=M_{11} \cdot\left(A_{4}{ }^{\prime} \cdot C_{4}^{\prime}\right)+i_{2} \cdot C_{4}^{\prime}+C_{2} \cdot i_{4}^{\prime} \\
& +A_{2} \cdot H_{2}+H_{2} \cdot A_{4}{ }^{\prime}+H_{1} \cdot A_{4}{ }^{\prime} \cdot A_{5} \\
& +\mathrm{C}_{2} \cdot \mathrm{~F}_{8}+\mathrm{H}_{8} \cdot \mathrm{C}_{4}{ }^{\mathrm{\prime}}+\mathrm{H}_{7} \cdot \mathrm{C}_{4}{ }^{\prime} \cdot \mathrm{C}_{5} \\
& +A_{1}\left(B_{5}+C_{4}{ }^{\prime} \cdot C_{5}\right)+C_{1} \cdot\left(A_{4}{ }^{\prime} \cdot A_{5}+B_{5}\right) \\
& F_{24}^{E}=A_{3} \cdot M_{3}+F_{3} \cdot A_{5}{ }^{\prime}+I i_{1} \cdot A_{4} \cdot A_{5}{ }^{\prime} \\
& { }_{26}^{E}=B_{3} \cdot H_{6}+{ }_{6} \cdot B_{5}{ }^{\prime} \\
& { }_{28}^{\mathrm{E}}=\mathrm{C}_{3} \cdot \mathrm{H}_{9}+\mathrm{M}_{9} \cdot \mathrm{C}_{5}{ }^{\prime}+\mathrm{M}_{7} \cdot \mathrm{C}_{4}{ }^{\prime} \cdot \mathrm{C}_{5} \\
& \mathrm{~F}_{-}^{\mathrm{E}}=\mathrm{M}_{12} \cdot\left(\mathrm{~A}_{5}{ }^{\prime} \cdot B_{5}{ }^{\mathrm{A}} \cdot \mathrm{C}_{5}{ }^{\mathrm{I}}\right) \\
& +A_{3} \cdot\left(B_{5}^{\prime} \cdot C_{5}^{\prime}\right)+B_{3} \cdot\left(C_{5}^{\prime} \cdot A_{5}^{\prime}\right)+C_{3} \cdot\left(A_{5}^{\prime} \cdot B_{5}^{\prime}\right) \\
& +\mathrm{H}_{10} \cdot\left(n_{4} \cdot A_{5}{ }^{\prime}+\mathrm{C}_{4} \cdot \mathrm{C}_{5}{ }^{\prime}\right) \\
& +A_{1} \cdot\left(C_{4} \cdot C_{5}^{\prime}\right) \cdot+C_{1}\left(A_{4} \cdot A_{5}^{\prime}\right)
\end{aligned}
$$

MODE G1/T2(d)

$$
\begin{aligned}
& F_{24}^{13}=i_{1} \cdot M_{1}+M_{1} \cdot i_{4}{ }^{\prime} \cdot \hat{H}_{5}{ }^{\prime} \\
& \mathrm{F}_{28}^{17}=\mathrm{C}_{1} \cdot \mathrm{H}_{7}+\mathrm{H}_{7} \cdot \mathrm{C}_{4}{ }^{\prime} \cdot \mathrm{C}_{5}{ }^{\prime} \\
& F_{-}^{+}=M_{10} \cdot\left(A_{4}^{\prime} \cdot A_{5}{ }^{\prime} \cdot C_{4}^{\prime} \cdot C_{5}^{\prime}\right)+A_{1} \cdot\left(C_{4}^{\prime} \cdot C_{5}^{\prime}\right)+C_{1} \cdot\left(A_{4}^{\prime} \cdot A_{5}\right) \\
& F_{13}=A_{2} \cdot H_{2}+H_{2} \cdot A_{4}{ }^{\prime}+M_{1} \cdot A_{4} \cdot{ }^{\prime} A_{5} \\
& F_{15}^{\mathrm{E}}=\mathrm{B}_{2} \cdot \mathrm{M}_{5}+\mathrm{H}_{5} \cdot{ }_{4}{ }_{4}{ }^{\text {a }} \\
& { }_{17}^{E}=C_{2} \cdot H_{8}+H_{8} \cdot C_{4}^{\prime}+M_{7} \cdot C_{4}^{\prime} \cdot c_{5}
\end{aligned}
$$

$$
\begin{aligned}
F_{+}^{E}= & M_{11} \cdot\left(A_{4}^{\prime} \cdot B_{4}^{\prime} \cdot C_{4}^{\prime}\right) \\
& +A_{2} \cdot\left(B_{4}^{\prime} \cdot C_{4}^{\prime}\right)+B_{2} \cdot\left(C_{4}^{\prime} \cdot A_{4}^{\prime}\right)+C_{2} \cdot\left(A_{4}^{\prime} \cdot B_{4}^{\prime}\right) \\
& +H_{10} \cdot\left(A_{4}^{\prime} \cdot A_{5}+C_{4}^{\prime} \cdot C_{5}\right) \\
& +A_{1} \cdot\left(C_{4}^{\prime} \cdot C_{5}\right)+C_{1} \cdot\left(A_{4}^{\prime} \cdot A_{5}\right) \\
F_{-}^{E} & =H_{12} \cdot\left(A_{5}^{\prime} \cdot C_{5}^{\prime}\right)+A_{3} \cdot C_{5}^{\prime}+C_{3} \cdot A_{5}^{\prime} \\
& +A_{3} \cdot H_{3}+H_{3} \cdot A_{5}^{\prime}+M_{1} \cdot A_{4} \cdot A_{5}^{\prime} \\
& +C_{3} \cdot M_{9}+M_{9} \cdot C_{5}^{\prime}+H_{7} \cdot C_{4} \cdot C_{5}^{\prime} \\
& +H_{10} \cdot\left(A_{4} \cdot A_{5}^{\prime}+B_{4}+C_{4} \cdot C_{5}^{\prime}\right) \\
& +A_{1} \cdot\left(B_{4}+C_{4} \cdot C_{5}^{\prime}\right)+C_{1} \cdot\left(A_{4} \cdot A_{5}^{\prime}+B_{4}\right)
\end{aligned}
$$

HODE G1/T3(a)

$$
\begin{aligned}
F_{24}^{\mathrm{Q}} & ={A_{3}}_{3} \cdot M_{3}+M_{3} \cdot A_{5}^{\prime} \\
F_{26}^{\mathrm{B}} & =B_{3} \cdot H_{6}+M_{6} \cdot B_{5}^{\prime} \\
{ }_{i_{28}}^{E} & =C_{3} \cdot M_{9}+H_{9} \cdot C_{5}^{\prime} \\
F_{-}^{E} & =M_{12} \cdot\left(A_{5}^{\prime} \cdot B_{5}^{\prime} \cdot C_{5}^{\prime}\right) \\
& +i_{3} \cdot\left(B_{5}^{\prime} \cdot C_{5}^{\prime}\right)+B_{3} \cdot\left(C_{5}^{\prime} \cdot i_{5}^{\prime}\right)+C_{3} \cdot\left(A_{5}^{\prime} \cdot B_{5}^{\prime}\right)
\end{aligned}
$$

MODE G1/T3(b)

$$
\begin{aligned}
& \mathrm{F}_{13}^{\mathrm{B}}=A_{2} \cdot \mathrm{M}_{2}+\mathrm{M}_{2} \cdot \Lambda_{4}^{:} \\
& \mathrm{F}_{15}^{\mathrm{B}}=\mathrm{B}_{2} \cdot M_{5}+\mathrm{H}_{5} \cdot B_{4}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
F_{17}^{E} & =C_{2} \cdot M_{8}+F_{8} \cdot C_{4}^{\prime} \\
F_{+}^{B} & =M_{11} \cdot\left(A_{4}^{\prime} \cdot B_{4}^{\prime} \cdot C_{4}^{\prime}\right) \\
& +i_{2} \cdot\left(B_{4}^{\prime} \cdot C_{4}^{\prime}\right)+B_{2} \cdot\left(C_{4}^{\prime} \cdot A_{4}^{\prime}\right)+C_{2} \cdot\left(i_{4}^{\prime} \cdot B_{4}^{\prime}\right)
\end{aligned}
$$

HODE $G 1 / T 3(c)$

$$
\begin{aligned}
& F_{-}^{+}=M_{10} \cdot\left(A_{4}^{\prime} \cdot A_{5}^{\prime}\right)+A_{1} \cdot\left(B_{5}^{\prime} \cdot C_{4}{ }^{2}\right) \\
& +A_{1} \cdot H_{1}+M_{1} \cdot A_{4}^{\prime} \cdot A_{5} \\
& \mathrm{~F}_{+}^{\mathrm{E}}=\mathrm{H}_{11} \cdot\left(\mathrm{i}_{4}{ }^{\prime} \cdot \mathrm{C}_{4}{ }^{\mathrm{i}}\right)+\mathrm{A}_{2} \cdot \mathrm{C}_{4}{ }^{\mathrm{i}}+\mathrm{C}_{2} \cdot A_{4}{ }^{\prime} \\
& +\Lambda_{2} \cdot M_{2}+\mathrm{H}_{2} \cdot \dot{A}_{4}{ }^{\prime}+\mathrm{C}_{2} \cdot \mathrm{H}_{8}+\mathrm{H}_{8} \cdot \mathrm{C}_{4}{ }^{\mathrm{m}} \\
& +\mathrm{II}_{10} \cdot\left(A_{4} \cdot A_{5}+B_{5}\right)+i_{1} \cdot B_{5} . \\
& F_{-}^{B}=M_{12} \cdot\left(A_{5}{ }^{\prime} \cdot B_{5}^{\prime}\right)+A_{3} \cdot B_{5}^{\prime}+B_{3} \cdot A_{5}^{\prime} \\
& +\dot{A}_{3} \cdot \mathrm{H}_{3}+\mathrm{H}_{3} \cdot A_{5}{ }^{\prime}+\mathrm{B}_{3} \cdot \mathrm{H}_{6}+\mathrm{H}_{6} \cdot B_{5}{ }^{\prime} \\
& +n_{10} \cdot\left(A_{4} \cdot A_{5}^{\prime}+C_{4}\right)+\lambda_{1} \cdot C_{4}
\end{aligned}
$$

MODE G1/T3(d)

$$
\begin{aligned}
F_{-}^{+}= & M_{10} \cdot\left(A_{4}^{\prime} \cdot A_{5}\right)+A_{1} \cdot\left(B_{4}^{\prime} \cdot B_{5}^{\prime}\right) \\
& +A_{1} \cdot \bar{H}_{1}+H_{1} \cdot A_{4}^{\prime} \cdot A_{5}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
F_{+}^{E}= & M_{11} \cdot\left(A_{4}^{\prime} \cdot B_{4}^{\prime}\right)+A_{2} \cdot B_{4}^{\prime}+B_{2} \cdot A_{4}^{\prime} \\
& +A_{2} \cdot H_{2}+M_{2} \cdot A_{4}^{\prime}+B_{2} \cdot B_{5}+M_{5} \cdot B_{4}^{\prime} \\
& +M_{10} \cdot\left(A_{4}^{\prime} \cdot A_{5}+C_{5}\right)+A_{1} \cdot C_{5} \\
F_{-}^{B}= & M_{12} \cdot\left(A_{5}^{\prime} \cdot C_{5}^{\prime}\right)+A_{3} \cdot C_{5}^{\prime}+C_{3} \cdot A_{5}^{\prime} \\
& +A_{3} \cdot M_{3}+H_{3} \cdot A_{5}^{\prime}+C_{3} \cdot H_{9}+M_{9} \cdot C_{5}^{\prime} \\
& +M_{10} \cdot\left(A_{4} \cdot A_{5}^{\prime}+B_{4}\right)+A_{1} \cdot B_{4}
\end{aligned}
$$

MODE G2/T1 (a)

$$
\begin{aligned}
F_{-}^{+}= & M_{10} \cdot\left(A_{4}^{\prime} \cdot A_{5}^{\prime} \cdot C_{4}^{\prime} \cdot C_{5}^{\prime}\right) \\
& +A_{1} \cdot\left(C_{4}^{\prime} \cdot C_{5}^{\prime}\right)+C_{1} \cdot\left(A_{4}^{\prime} \cdot A_{5}^{\prime}\right) \\
& +A_{1} \cdot H_{1}+H_{1} \cdot A_{4}^{\prime} \cdot A_{5}^{\prime} \\
& +C_{1} \cdot M_{7}+M_{7} \cdot C_{4}^{\prime} \cdot C_{5}^{\prime} \\
F_{+}^{E}= & M_{11} \cdot\left(A_{4}^{\prime} \cdot C_{4}^{\prime}\right)+A_{2} \cdot C_{4}^{\prime}+C_{2} \cdot A_{4}^{\prime} \\
& +A_{2} \cdot M_{2}+M_{2} \cdot A_{4}^{\prime} \\
& +C_{2} \cdot H_{8}+A_{8} \cdot C_{4}^{\prime} \\
& +A_{1} \cdot\left(C_{4}^{\prime} \cdot C_{5}\right)+C_{1} \cdot\left(A_{4}^{\prime} \cdot A_{5}\right) \\
& +H_{10} \cdot\left(A_{4}^{\prime} \cdot A_{5}+C_{4}^{\prime} \cdot C_{5}\right)
\end{aligned}
$$

$$
\begin{aligned}
& F_{-}{ }^{\prime}=M_{12} \cdot\left(J_{5}^{\prime} \cdot C_{5}^{\prime}\right)+A_{3} \cdot C_{5}^{\prime}+C_{3} \cdot H_{5}^{\prime} \\
& +i_{3} \cdot \mathrm{H}_{3}+\mathrm{H}_{3} \cdot \mathrm{~A}_{5}{ }^{\prime} \\
& +\mathrm{C}_{3} \cdot \mathrm{M}_{9}+\mathrm{Mi}_{9} \cdot \mathrm{C}_{5}{ }^{\prime} \\
& +\mathrm{Bi}_{10} \cdot\left(\mathrm{~A}_{4} \cdot \mathrm{H}_{5}^{\prime} \cdot+\mathrm{C}_{4} \cdot \mathrm{C}_{5}^{\prime}\right) \\
& +A_{1} \cdot\left(C_{4} \cdot C_{5}^{\prime}\right)+C_{1} \cdot\left(i_{4} \cdot A_{5}^{\prime}\right)
\end{aligned}
$$

HODE G2/T1 (b)

$$
\begin{aligned}
& \mathrm{F}_{-}^{+}=\mathrm{H}_{10} \cdot\left(i_{4}{ }^{\prime} \cdot \Lambda_{5}{ }^{\prime} \cdot B_{4}{ }^{\prime}, B_{5}^{\prime}\right) \\
& +i_{1} \cdot\left(B_{4}{ }^{\prime} \cdot B_{5}^{\prime}\right)+B_{1} \cdot\left(A_{4}^{\prime} \cdot A_{5}^{\prime}\right) \\
& +A_{1} \cdot H_{1}+M_{1} \cdot A_{4}{ }^{\mathrm{t}} \cdot A_{5}{ }^{\mathrm{a}} \\
& +\mathrm{B}_{1} \cdot \mathrm{M}_{4}+\mathrm{M}_{4} \cdot \mathrm{~B}_{4}{ }^{\prime} \cdot \mathrm{B}_{5}{ }^{\prime} \\
& F_{+}^{\mathrm{E}}=\mathrm{HI}_{11} \cdot\left(\mathrm{~A}_{4}^{\prime} \cdot \mathrm{B}_{4}^{\prime}\right)+{i_{2}}^{\prime} \cdot \mathrm{B}_{4}^{\prime}{ }^{\prime}+\mathrm{B}_{2} \cdot \dot{i}_{4}^{\prime}{ }^{\prime} \\
& +\mathrm{A}_{2} \cdot \mathrm{MI}_{2}+\mathrm{M}_{2} \cdot \mathrm{~A}_{4}{ }^{\prime} \\
& +\mathrm{B}_{2} \cdot \mathrm{M}_{5}+\mathrm{H}_{5} \cdot \mathrm{~B}_{4}{ }^{\mathrm{\prime}} \\
& +\mathrm{N}_{10} \cdot\left(\mathrm{~A}_{4}{ }^{\prime} \cdot A_{5}+B_{4}{ }^{\prime}, B_{5}\right) \\
& +A_{1} \cdot\left(B_{4}{ }^{\prime} \cdot B_{5}\right)+B_{1} \cdot\left(A_{4}{ }^{\prime} \cdot A_{5}\right) \\
& F_{-}^{E}=M_{12} \cdot\left(A_{5}{ }^{\prime} \cdot B_{5}{ }^{\prime}\right)+A_{3} \cdot B_{5}{ }^{\prime}+B_{3} \cdot A_{5}{ }^{\prime} \\
& +A_{3} \cdot \mathrm{H}_{3}+\mathrm{H}_{3} \cdot A_{5}{ }^{\prime}+\mathrm{B}_{3} \cdot \mathrm{H}_{6}+\mathrm{H}_{6} \cdot B_{5}{ }^{\prime} \\
& +\mathrm{M}_{10} \cdot\left(A_{4} \cdot A_{5}^{\prime}+B_{4} \cdot B_{5}^{\prime}\right) \\
& +A_{1} \cdot\left(B_{4} \cdot B_{5}^{\prime}\right)+B_{1} \cdot\left(i_{4} \cdot A_{5}^{\prime}\right)
\end{aligned}
$$

MODE G2/T2(a)

$$
\begin{aligned}
F_{-}^{I}= & M_{12} \cdot\left(A_{5}^{\prime} \cdot C_{5}^{\prime}\right)+A_{3} \cdot C_{5}^{\prime}+C_{3} \cdot A_{5}^{\prime} \\
& +A_{3} \cdot M_{3}+H_{3} \cdot A_{5}^{\prime}+C_{3} \cdot M_{9}+M_{9} \cdot C_{5}^{\prime}
\end{aligned}
$$

MODE G2/T2(b)

$$
\begin{aligned}
\mathrm{F}_{+}^{\mathrm{E}}= & \mathrm{M}_{11} \cdot\left(\hat{A}_{4}^{\prime} \cdot \cdot_{4}^{\prime}\right)+A_{2} \cdot C_{4}^{\prime}+C_{2} \cdot A_{4}^{\prime} \\
& +A_{2} \cdot M_{2}+H_{2} \cdot A_{4}^{\prime}+C_{2} \cdot M_{8}+H_{8} \cdot C_{4}^{\prime}
\end{aligned}
$$

RODE G2/T2(c)

$$
\begin{aligned}
E_{-}^{E}= & M_{12} \cdot\left(A_{5}^{\prime} \cdot B_{5}^{\prime}\right)+A_{3} \cdot B_{5}^{\prime}+B_{3} \cdot A_{5}^{\prime} \\
& +A_{3} \cdot H_{3}+H_{3} \cdot A_{5}^{\prime}+B_{3} \cdot M_{6}+A_{6} \cdot B_{5}^{\prime}
\end{aligned}
$$

MODE G2/T2(d)

$$
\begin{aligned}
\bar{F}_{+}^{E}= & M_{11} \cdot\left(A_{4}^{\prime} \cdot B_{4}^{\prime}\right)+A_{2} \cdot B_{4}^{\prime}+B_{2} \cdot A_{4}^{\prime} \\
& +A_{2} \cdot \bar{M}_{2}+M_{2} \cdot A_{4}^{\prime}+B_{2} \cdot H_{5}+H_{5} \cdot B_{4}^{\prime}
\end{aligned}
$$

[^0]: The operating conditions of the syston as follows:-

