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P. 

ABSTRACT 

This thesis deals with the control by feedback of linear 

time invariant dynamic systems of finite order in a deterministic 

environment. The complete state is assumed not to be availalle 

for measurement and two main solutions to the problem are examined. 

A minor solution applies when the unmeasured states correspond to 

actuator dynamics, which are ignored in the design of a Lyapunov 

type controller. Conditions are found for which the closed loop 

system containing the actuator dynamics is stable. The alternative 

approach of constructing estimates of the unmeasured states is 

reviewed and extended. An improved method of designing reduced 

observers is presented and the existence of degenerate observers 

having arbitrary feasible poles is investigated. The effect on 

quadratic performance indices of using state estimates in otherwise 

optimal control laws is examined and two useful theorems are found. 

A design method is proposed that generates stable compensators 

for stable plant. A third approach to the problem of incomplete 

state measurement seeks optimal feedback gains for the measured 

plant outputs, and a new algorithm for finding the optimum is 



discussed. A new form of reduced model, the parallel path model, 

is considered. 

Finally it is shown that a combination of model reduction, 

observer theory and constrained gain optimization is a very 

effective approach to the design of linear control systems. 
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CHAPTER 1 

INTRODUCTION TO OBSERVER THEORY AND CONTROL SYSTEM DESIGN  

1.1 Introduction  

Over the past thirty years a classical theory of control 

system design has developed founded on single input transfer 

functions. Its main quantitative tools are root locus techniqus, 

Nyquist diagrams, Bode plots [H3] and finally Wiener's spectral 

factorization [Wl] approach to the design posed as an optimization 

problem. This body of theory very adequately deals with the design 

of sinEle input systems, but all techniques except the last are 

graphical. Multi-input systems tend to be too complex for pencil 

and paper graphical methods to be useful, and for any reasonably 

sized plant a computer must be used to obtain quantitative results. 

Unfortunately, digital computers are ill-suited to graphical 

techniques and amore appropriate approach has been found in the state 

space description of dynamic systems [Z1] . 

For systems of finite order the relevant tools for control 

design within the framework of state space have been found to be 



modal control and optimal control with quadratic costs, and a fairly 

complete theory has been developed in both fields [R1, W4, W3] . 

An obstacle to the application of these theories is that they lead to 

control laws which require measurements of the complete plant state 

vector. A solution to this difficulty is to use estimates of the 

unmeasured staZ:es. These may be optimal estimates provided by a 

Kalman filter [10] for a Gaussian white noise environment or estimates 

provided by a Luenberger observer EL1, L2] for the deterministic 

case. 

This thesis follows the spirit implied by the use of root locus, 

Bode and Nyquist plots in that consideration of noise in the dynamic 

system to be controlled is suppresse-1 during the calculation of a 

trial feedback law. Throughout the thesis we consider time invariant 

linear plant of finite order and examine methods of finding trial 

control laws that perform adequately in a deterministic environment, 

though in practice a trial law may be rejected because of its 

behaviour in a particular stochastic environment. The methods we 

have investigated and improved upon have the common feature of 

avoiding graphical techniques and of being readily implemented on a 

digital compater. 
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1.2 Outline of Thesis 

Chapter 1 serves as a general introduction and explains the 

motivation for this reearch. The unconstrained quadratic cost 

optimal control problem is introduced in Chapter 2 and because time 

invariant feedback laws are sought, we deal only with the infinite 

time problem. Because of the indirect relation between the specified 

costs on state and control and the characteristics of the 

corresponding optimal closed loop system, we examine two approaches 

connecting cost functions and closed loop poles. The first uses an 

exponential time weighting on the costs, the second is the implicit 

modelling method of specifying a cost function such that closed loop 

poles approximate desired values. II Chapter 2 we also discuss 

control laws based on Lyapunov functions of stable plant and show 

that this type of law provides a partial solution to the problem of 

unmeasured states. 

The theory of Luenberger observers is reviewed in Chapter 3 

and an improved design technique for reduced observers is presented. 

An extension of the theory to degenerate observers is developed in 

Chapter 4. Chapter 5 gives a somewhat academic solution to the problem 

of designing stable compensators using observer theory. 



The useiftate estimates from an observer in an otherwise 

optimal control law is examined in Chapter 6 with respect to the 

effect it has on the relevant quadratic cost function. 

In Chapter 7 we discuss the common approach to designing 

controllers with incomplete state feedback of hill-climbing on the 

parameters of a fixed feedback structure for a suitably defined 

cost function. We show that the optimal solution has a well-defined 

structure, which suggests a method of obtaining the solution. 

Conditions are found under which the method quickly converges to the 

optimum. The idea of a parallel path simplified dynamic model is 

discussed and it is shown how the methods of model reduction, 

observer theory and hill-climbing on a fixed structure may be 

combined in an effective technique for the design of linear time-

invariant multi-input plant. 



1.3 Contributions of the Thesis 

The main contributions of the thesis are the following. 

The Riccati solution in Chapter 2 of the unconstrained 

optimal control of linear systems with time exponentially weighted 

quadratic costs on state and control, is original. Also the 

technique whereby dynamic controllers produced by the implicit 

modelling method are reduced to proportional feedback controllers 

is new. The stability theorems concerning Lyapunov controls which 

enter the plant through error or actuator dynamics are believed 

to be original. 

An improved method of designing reduced order observers is 

presented in Chapter 3, and the theory of degenerate observers in 

Chapter 4 is new, as is the theory of stable compensators derived 

from observers in Chapter 5. The theorems of Chapter 6 describing 

the deterioration of system performance when state estimates are 

used in otherwise optimal control laws are original. 

In Chapter 7 the extension of Kleinmants algorithm [K8] for 

solving the steady state Riccati equation to the problem of finding 



optimal gains for incomplete state feedback is new. To the author's 

knowledge, reduced models, in the form of parallel path models, 

have not appeared in the literature before despite their advantages 

in some situation!. 



CHAPTER 2 

SELEUION OF CONTROL LAWS ASSUMING ALL  

PLANT STATES ARE MEASURED  

2.1 Introduction 

In this chapter we briefly discuss three methods of choosing 

time invariant feedback control laws for the regulation of multi-input, 

linear, time-invariant plant when all the plant states are measured. 

The three methods are pole-shifting designs, optimal control with 

quadratic costs and a control based on Lyapunov functions of stable 

plant. These objectives lead to important state space control design 

techniques because the corresponding feedback laws have analytic or 

easily programmed computer solutions. Furthermore, multi-input plant 

are handled as easily as single input, which is an advantage over 

classical design techniques based on Bode, Nyquist and root locus 

diagrams. However, frequency domain concepts remain a valuable tool 

for the evaluation of designs obtained from state space methods, 

particularly in the consideration of the effect of adational dynamics 

in a plant transmission path. 



The plant dynamics are assumed to be adequately described by an 

n-state, r-input system 

Ax f Bu , 	(2.1.1) 

and the control laws are of the type 

u = 	Kx . 	 (2.1.2) 

The following definitions are important in linear system theory. 

Definition 2.1.1 

The dynamics (2.1.1), or equivalently the pair (A, B), is 

controllable [K2] if the (n, n.r)-matrix 
	defined to be 

(B, AB .... An-1  B) 
	

(2.1.3) 

has rank n. 

Definition 2.1.2  

The pair (A, B) is defined to be stabilizeable [0] if the 

subspace of state space not spanned by the columns of the array (2.1.3) 

is stable. This subspace is 	• 	1, 	' is called the 

uncontrollable subspace. 
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Definition 2.1.3  

A set of poles will be called feasible if complex poles occur as 

conjugate pairs. 

The following concepts are fundamental in relating the state vector x 

to the output m-vector, 

y
-ir.  

Definition  2.1.4  

The dynamics (2.1.1), (2.1.4) or equivalently the pair (A, H), is 

defined to be observable if the pair (A', H') is controllable. 

Definition 2.1.5.  

The pair (A, H) is defined to be detectable [w3] if the pair 

(A', H') is sre7bilizeable, 
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2.2 Pole Shiftins Control Laws 

The plant dynamics (2.1.1) are regulated to the origin by the 

control law (2.1.2). Rosenbrock [R4] in an early paper suggested 

a method of altering r poles of the plant when r independent inputs 

are available. The method may be applied when only r plant outputs 

are measured, but then has the disadvantage that the remaining (n-r) 

poles move in an uncontrolled manner as the r selected poles are moved 

to desirable locations. 

Kalman [K6] has obtained a more general result from his theory 

of canonical forms of single input systems, namely that if the pair 

(A, B) is controllable, a feedback control (2.1.2) exists that gives 

arbitrary specified feasible poles to the closed loop system. 

Anderson and Luenberger [Al] extend the result to multi-variable 

systems with a proof by construction. Simon 1S3], discusses the 

problem thoroughly and gives a useful and computationally efficient 

technique for updating the control law as poles are moved singly 

or as complex pairs. Wonham [W4] and Rosenbrock [R11 give a 

general and complete analysis of the problem. Mayne and Murdock [113] 

give an alternative computational procedure for the progressive design 

of feedback gains to achieve arbitrary feasible poles. 



The location of the specified poles is best determined in an 

application by trial and error based on an output transient response 

criterion. An advantage of this approach to feedback design is that 

the generated eigenvalue and eigenvector data allows an eigensystem 

first and second order perturbation analysis [V3, N4, D3] to be 

made with very little extra computational effort. 

Apart from Rosenbrock's approximate theory [R4] and Simon's [S3] 

method of eliminating feedback from (r-l) states if r inputs are 

available, the theory requires feedback from all states of the plant. 

Usually not all plant states are available the control laws are 

implemented by feeding back estimates of plant states. This introduces 

a dynamic element such as a Kalman filter [K3] or an observer in the 

feedback path;.. the theory of observers is developed in Chapter 3. 
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2.3 The Unconstrained Quadratic Cost and Linear Dynamics 

Optimisation Problem  

Often feedback control is designed to optimise a performance 

criterion of the closed loop plant. The optimisation problem may be 

posed within a deterministic or stochastic framework, but we will 

restrict consideration to deterministic problems. Popular performance 

indices have been based on the plant output error in following a step 

input in desired output, and have included integral error squared, 

integral of the absolute value of the error and weightings of the 

cost integrand with powers of time. 

The minimisation of integral error squared is mathematically the 

most tractable and is the index most often considered in analytical 

design techniques. It has a particularly convenient formulation and 

solution in the state space domain. 

Consider the case where the dynamic equations for the n-state, 

r-input and m-output linear plant may be put in the form 

Ax Bu , 	(2.3.1) 

by a suitable choice of co-ordinate system for control and state 

space. The usual problem formulation is to require that the plant 
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(2.3.1) be regulated to the origin, and a performance index J that is 

useful is , 

xl(tf )Qf  x(t.f ) + J  (x'Qx + u'Ru)dt 	(2.3.2) 

t_ 

In general the matrices A, B, Q and R are time-varying, but we will 

be interested in the design of time-invariant feedback controls for 

time-invariant plant, so that these matrices will be assumed to be 

constant. In addition t is assumed to be infinite and to zero. The 

performance index for closed loop stable systems becomes 

J 	= 	+ u'Ru) dt . 	 (2.3.3) 

Kalman [Kl] has shown that the control that minimises J exists 

and is generated by a constant stable feedback law 

and 

-1 R B'Px , 	 (2.3.4) 

J = 	x'(o) Px(o) , 	 (2.3.5) 

where P is the steady state solution to the Riccati equation 

P 	= 	Q + 	+ PA - PBR-1BIP , 	(2.3.6) 
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if the pair (A, B) is controllable and the pair (A, H) is observable 

where H is any solution to 

H'H = Q 
	 (2.3.7) 

and 

Q > 0 , 

R > 0 . 

Wonham PA has relaxed the existence conditions to the requirement 

that the pair (A, B) be stabilizeableveee—t4te—pa-it.--(-A-5—i e. 

Evaluation of Stead State Solution of the Time Invariant Riccati 

Equation 

Direct evaluation of the steady state solution of (2.3.5) by 

integration is often inefficient in computing time. This has been 

noted by Kalman [11]who suggested using the canonical pair of linear 

equations associated with the Riccati equation (2.3.6) 

X = Px , 

d (;) 	A -BR-1B'X 
dt 	-Q 	-A' 

(2.3.8) 

(2.3.9) 

The transition matrix c2of (2.3.9) is calculated for a convenient period 

T and partitioned into blocks of dimension (n, n) 

= (5423.1 cl°12 
(P21 (P22 



r) 
• 

The steady state solution P of (2.3.6) is given by the limit as k 

tends to infinity of the recursive relation 

Po 	
any P.S.D symmetric matrix, 

Pk+1 	(C4721 + Ce2213k) ((Pia (1712Pk
)-1 	(2.3.10) 

This algorithm replaces the integration of the (n, n)-dimensioned 

matrix equation (2.3.6) over an 'infinite' time by the integration of 

a (2n, 2n)-dimensioned matrix equation derived from (2.3.9) over any 

convenient period T. In most cases the inversion of (2.3.10) is less 

time consuming than integrating (2.3.6) over a period T and the overall 

algorithm should be more efficient than direct integration. Potter [P3] 

MacFarlane [114] and Vaughan [V11 ...Jaye analysed the behaviour of the 

canonical system (2.3.9) in terms of its eigenvalues and eigenvectors. 

Assuming a well-defined problem,the poles of (2.3.9) are symmetric with 

respect to the imaginary axis in the complex plane, the stable poles 

heing those of the closed loop system (2.3.1) with optimal feedback 

(2.3.4). 

Because the algorithm (2.3.10) or integration of (2.3.6) corresponds 

to backward time trajectories of (2.3.9), the stable modes dominate 

and the asymptotic relation (2.3.8) is merely a statement that (x, X) 



belong to the stable invariant subspace of (2.3.9) parameterised by x. 

This suggests a way of obtaining P with computational effort on 

integration replaced by effort on eigenvector determination. Blackburn 

and Bidwell [B7] report that numerical results using this method 

are very promising. Blackburn 1.351 has analysed a Newton-Raphson 

iterative solution for P, but the method suffers the disadvantage of 

dealing with large Jacobian matrices. 

An appealing method of successive approximations in policy space 

M has been proposed by Kleinman [K8] . The algorithm is guaranteed 

to produce monotonic convergence and has quadratic convergence near the 

optimum. A minor disadvantage of the method is that a stable control 

is required as an initial approximation for the first iteration. If 

the plant's rightmost poles are on the imaginary axis the algorithm 

can be started by replacing the plant equations (2.3.1) by 

= 	(A - aI)x Bu , 	(2.3.11) 

with 
< a << 1 . 

Zero feedback will then be a stable control law for this auxiliary 

system. At or near the optimum of the auxiliary system, its closed 

loop poles may be expected to be to the left of -a in the complex plane 

so that the current control for the auxiliary system would be stable 



for the plant. Also if a is small the optimal control for the 

auxiliary system will equal the optimal control of the plant to first 

order. 

Finally we note that the first solution to the minimisation of 

performance index (2.3.3) was proposed by Wiener [vl] for the single 

input case and involved spectral factorisation of a scalar Fourier 

transform. Youla [Yi.] and Davis [Di] give methods for the spectral 

factorisation of matrix Fourier transforms so that Wiener's approach 

may be used for the multi-input case also. However, the formulation 

of the problem as one of spectral factorisation is not conveniently 

solved by computer and in fact the steady state solution of the steady 

state Riccati equation has been proposed as a practical method of 

matrix spectral factorisation [Al.] , [Hi] . 



2.4 Choice of Costs for the Ontimisation Problem 

2.4.1 Introduction  

The choice of Q and R in the performance index 

= f(xtQx + u'Ru)dt , 
0 

(2.4.1) 

is itself a problem. Given a plant with m outputs y of interest, 

x 	= 	Ax + Bu 
	

(2.4.2) 

, 
	 (2.4.3) 

the desired closed loop control is rarely specified to minimise a given 

J, but rather in terms of some less quantifiable characteristics of the 

transient response, peak overshoots aLd constraints on the magnitude 

of control input. The usual procedure in the initial stages of a 

control design assuming all states are measured, is to choose a Q and 

R more or less arbitrarily and find the optimal control and corresponding 

closed loop plant trajectories from a given initial condition or step 

disturbance on desired output. The cost on control is adjusted in the 

light of these trajectories to more heavily or lightly penalise controls 

that were above or well under the specified constraints. Similarly, 

adjustment of Q may give more desirable characteristics of the closed 

loop transients, but it is conceptually more difficult to see what 



23.  

adjustment should be made to achieve a certain effect. Some 

progress in this problem of the choice of Q has been made by 

examining the behaviour of the closed loop poles as elements in Q 

are varied. This approach of using root locus techniques to design 

optimal systems was first proposed by Chang [C3] , who considered 

single input systems with a single costed output, and later discussed 

by Kalman DO] . 

Tyler and Tuteur [T1] present a useful analysis of what happens 

to optimal closed loop multi-input system poles as single elements of 

Q are varied, but emphasis is placed on diagonal Q. The results of 

Sections 2.4.2 and 2.4.3 are original contributions that give 

additional guidance for allocating suitable values to Q. 

2.4.2 Exponential wei,diting of costs  

A more indirect method for achieving a desired characteristic 

of the closed loop optimal system poles has been independently found 

by the author, though the result has been found elsewhere [14.] . 

The result will be presented in the form of a Theorem. 
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Theorem 2.4.1  

The control which minimises the performance index 

J 	= 	re2X 
t(x1Qx + u'Ru) dt , 	(2.4.10) 

X > 0 , 	 (2.4.11) 

Q 	= H111 , 	 (2.4.12) 

x 	= Ax + Du , 	 (2.4.13) 

exists and is generated by a time invariant feedback law 

Kx 	 (2.4.14) 

if the pair (A, B) is controllable and the pair (A, H) is observable. 

The optimal J is finite and the closed loop poles of (2.4.13), (2.4.14) 

are to the left of -X in the complex plane. The above conditions 

may be relaxed to a requirement that the pairs (A 	,B) and 

( A 	H) be respectively stabilizeable and detectable. 

Proof 

Make the transformation 

z = 	eXtx , 	 (2.4.15) 

v = Xt  , 
	 (2.4.16) 



so that 

z = 	Xehtx + e;,c 

= XeXtx + eXt(Ax + Bu) 

= 	(A + XI)z + By . 	(2.4.17) 

The performance index J becomes 

J 	JO 
 (z'Qz + vvRv)dt . 	(2.4.18) 

The minimisation of J in (2.4.18) with respect to v and subject 

to the dynamics (2.4.17) is achieved with a constant feedback law 

Kz , 	 (2.4.19) 

if ((A + XI),B) and ((A + XI),H) are stabilizeable and detectable 

pairs [10.1 . 

A sufficient condition for the above requirement is that (A, B) 

and (A, H) be controllable and observable pairs, for consider the 

arrays 

(B, AB, A2B, 	An-1B) , 	(2.4.20) 

(B,(A + XI)B, (A + xI)2B, ... (A + XI)n-1B). 	(2.4.21) 
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The pair ((A + XI),B) is stabilizeable by definition if it is 

controllable and therefore if the array (2.4.21) has full rank. 

However, the array (2.4.20) may be constructed from the array (2.4.21) 

by taking appropriate linear combinations of columns, so that the 

arrays have the same rank. The pair (A, B) is controllable by 

assumption so that (2.4.20) and hence (2.4.21) has full rank. 

The optimal feedback K in (2.4.19) is given by 

P 	> 	0 , 

K = R-1BIP 

+ (A + XI)'P + P(A + XI) - PBR- 110P (2.4.22) 

Then J is finite and 

J = z'(o) Pz(o) 

x'(o) Px(o) . (2.4.23) 

(2.4.23) follows from the transformation (2.4.15). 

At any time t, the optimal control is 

u = e-Xt 

e-XtKz 
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= e-XtK eXtx 

= 	Kx , 	 (2.4.24) 

so that the optimal control for the performance index (2.4.10) is 

generated by a constant feedback law. 

Finally, the minimisation of J given by (2.4.18) subject to 

(2.4.17) with the control law (2.4.19) means that (A XI BK) 

is stable [Kl] . Adding %I to a matrix corresponds to moving the 

origin an amount (-X) in the complex plane plot of matrix eigenvalues, 

so that the optimal closed loop dynamics (2.4.13), (2.4.24), that is , 

= 	(A+ BK)x , 	(2.4.25) 

has poles to the left of -X in the complex plane. 

This result is expected because otherwise the integral (2.4.10) 

would not exist. 

Comment  

The steady state Riccati equation (2.4.22) shows that the 

solution of the minimisation of J (2.4.10) is identical to that of 
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J , 

J 	.r(x'Qx u'Ru) dt , 	(2.4.26) 

where 

a 	(Q 2XP) . 	 (2.4.27) 

The control law 

za = Kx 

is therefore optimal for an ordinary quadratic cost function which, 

however, is not known a priori. 

One interpretation of the procealre is that the equivalent 

quadratic costa in (2.4.26), (2.4.27) is automatically selected to 

achieve the desired effect of placing the closed loop poles. 

2.4.2 Approximate Modal Control via Optimisation - Implicit  

Modelling Method  

Because a great deal of experience is available of the effect of 

pole-zero closed loop configurations on system output transient 

behaviour an timplicit modelling' method has been suggested by Bass 
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and Gura [B1] , where the theory of optimal control and modal 

control merge. 	A cost function is selected for the single-input= 

single-output plant 

x = Ax + Bu , 	(2.4.28) 

y 

with performance index 

= lix 	, (2.4.29) 

J = r(v(Itox URu + Hex + EuU 2)dt , (2.4.30) 

so that the closed loop poles approximate desired prespecified 

positions. 

Schultz and Melsa [S2] discuss the method in detail, again 

for single-input-single-output plant. We give an outline of the 

argument. 

First consider the case of a plant where the transfer function 

from u to y contains no zeros and the set of stable desired closed 

loop poles is specified by the roots of a characteristic equation 

n-1 
S
n 	a.s = 0 . 

0 

(2.4.31) 
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Because there are no zeros in the transfer function from u to y, 

the nth derivative of y is the first that contains a term in u. 

Consider the performance index which therefore has the form (2.4.30), 

J 
n-1 

rC° 	y n ) 	a.,(1))2 ru2)dt  (2.4.32) 

Assuming that the plant is controllable a feedback control law K., 

exists [W4] that realises the closed loop poles specified by (2.4.31). 

The performance index (2.4.32) for this law becomes 

r'pru2 dt 

Jm(r) 

and as r tends to zero JM(r) tends to zero. For any value of r the 

optimal performance index J°(r) satisfies 

JM(r) > J
°(r) . 	 (2.4.33) 

Denoting the optimal law by e(r) , it follows that along the two 

different trajectories corresponding to the optimal and non-optimal 

laws beginning from the same initial condition, 

J'r(K°(r)x)2dt <jc7r(Iiix)2dt . 	(2.4.34) 
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So that from (2.4.33) and (2.4.34) as r tends to zerolJ°(r) tends 

to zero and therefore y and its derivatives tend to satisfy (2.4.31). 

It is also seen from (2.4.34) that the control cost of the optimal law 

is lower than the modal control cost at all times, but in the limit as 

r tends to zero, K°(r) tends to Km  and the control costs must approach 

the same value. The approach to modal control through optimization 

represents finding a compromise between the cost of deviation from 

achieving the desired closed loop poles and the cost on control. 

When the transfer function between u and y contains zeros a lower 

derivative of y than the nth  is the first to contain a term in u. In 

this case derivatives of u appear in the performance index (2.4.32). 

This type of performance index has been considered by Moore and 

Anderson [M6] who show that it may be treated in the usual way by 

considering the highest derivative of u appearing in the integrand as 

a new control variable, and augmenting the system state with u and its 

lower derivatives. If the original system is controllable from u, the 

augmented system is controllable from the highest derivative of u. This 

introduces extra system poles and asymptotically as the cost on control 

is reduced, the poles of the closed loop tend to coincide with the zeros 

of the costed output [B1] , 	, [Tl] , and the remaining poles tend 

to a Butterworth configuration. 
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The same considerations apply when the reference characteristic 

equation (2.4.31) has degree less than n. We may avoid introducing 

derivatives of u by choosing a performance index 

p-1 

J 	= 	((y(P)  +2_ 	a.ly (i))2  + ru
2)dt , 	(2.4.35) 

appropriate to a reference characteristic equation 

s(p) 
-1 

a.s 0 	(2.4.36) 

0 < p < n . 

The number p 'of specified desired closed loop poles may be 

restricted so that no derivatives of u appear in (2.4.35). 

Alternatively, derivatives of u may be avoided by considering 

a different plant output, but this is a somewhat artificial device if 

the purpose of the theory is to use experience of transient responses 

for simple pole--zero configurations to obtain desired responses for 

particular plant outputs. 

Till now, the discussion has been restricted to single-input-

single-coSted-output systems. The same ideas are applicable for 

multi-input plant and the potential advantage.; of the method then 
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become apparent. Simple modal control of multi-input plant [53] 

operates the inputs in fixed ratios so that 

U = U v , 

where v is a scalar and the ratio vector u is such that the pair 

(A, Buo) is controllable. This leads to a gain matrix 

Kx 

uok' , 

where k is such that (A + Buolc') has specified poles. In this case 

K has unit rank and would lead to a more constrained control action 

than if K had full rank. This follows because k measures the component 

of the plant state along one direction, and therefore the feedback 

control utilises information about one component in state space alone. 

If K had full rank r, information about the state in an r-dimensioned 

subspace would be used. It would appear that the full potential of a 

multi-input control is not realised if K does not have full rank. 

Full rank in K may be induced in the modal control design technique 

th by an r state process. At the . stage a control ratio vector uo( 

is assumed independent of tuo(j) : 0 < j < 11, and a set of poles 

specified. 



The plant matrix is taken to be 

i-1 

	

A(i) 	= 	A 4- 2E 	Bu (j)k'(j) 
1 	° 

and a feedback row vector k'(i) found so that (A(i) Buo(i)10(i)) 

has the specified poles. At the last stage the specified poles are 

those desired for the final closed loop system matrix (A BK), where 

K is likely to have full rank and is gin by 

r 

	

K 	= 	u (i) k'(i) . 
1 

This is a very indirect method and if it is desired that the 

degrees of freedom of a multi-variable system for achieving specified 

closed loop poles is to be used in obtaining some desired distribution 

of control effort among the inputs, it is not clear how it should be 

done this way. 

The approach of optimal control is very well suited to solving this 

type of problem. A performance index may include costing on the plant 

inputs whether or not the plant inputs remain controls, or become 

states in an augmented system. 



Consider the reference characteristic equation and associated 

performance index 

13-1  
sp  + 	a.si 0 	(2.4.37)  

0 

.p-1 
(D) 	(i

)l 
 2 

J 	=Z( 	+ 21 aiY‘ 	+ utRu) dt . 	(2.4.38) 
0 

Suppose that p is such that no derivatives of u occur in (2.4,38), then 

the distribution of control effort in forcing the (multi-variable) 

output to approximately satisfy (2.4.37) may clearly be varied by 

varying the relative control costs in R. As the cost on an input is 

raised in (2.4.38), the corresponding gains in the optimal feedback 

law will.. decrease and the outputs will tend to deviate more from 

(2.4.37), but this tendency may be reduced and eventually reversed as 

the cost on the remaining inputs is decreased. 

Interpretation of the situation is more complex when p in (2.4.37) 

is such that derivatives of u occur in (2.4.38). In that case the 

highest derivatives of u appearing in (2.4.38) must be regarded as 

system control variables, and the remaining derivatives regarded as 

being added components in an augmented state vector. Suppose that the 

augmented system has state vector x of dimension (n+q) and control 

vector u. All elements of x will appear in x, some or all of the 

elements of the plant input u appear in x and the remainder in u. 
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The performance index (2.4.38) will have the form , 

J 	= 
 f

( x 
2gl 

 + u 2
R1  + 
	Du I1 2)dt . (2.4.39) 

°   

Changes in costs on plant input are implemented by changes in the 

appropriate elements of 	and Ri. We might expect by analogy with 

the single input case that as R1 
 tends to zero, some of the system 

closed loop poles tend to those defined by (2.4.37). Tyler and Tuteur 

[Tli have analysed the movement of closed loop poles of optimal 

multi-variable systems as one element of the cost matrix varies, 

however we are also interested in a more detailed knowledge of the 

system behaviour with respect to the distribution of plant input effort. 

We recall that the system state vector has been augmented to dimension 

(n+q) and this scheme for approximately achieving specified values for 

some of the closed loop poles is not comparable with modal control, 

which does not alter the system dimension. We therefore move on to the 

next Section where it is shown that in simple cases specified poles and 

distribution of plant input effort may be approximately achieved and 

the system dimension is not changed. 
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2.4.3 An Extension to the Theory of Implicit Modellino- 

An original theory is presented for simple cases by which a 

constant feedback gain matrix is obtained for the given plant, such 

that specified closed loop pole locations and distribution of plant 

input effort are approximately achieved. 

Suppose that the costing procedure of the previous section leads 

to a closed loop system of increased dimension (n+q) that has among 

its poles a set approximating the desired poles. 

Suppose for simplicity that q=r and that the first derivative of 

each plant input occurs in (2.4.39). The optimal control is 

Kx 

0 	(K1  K2) (:) 	(2.4.40) 

We may select any set S of q elements of real and complex pair 

modes and obtain the corresponding set of reciprocal row eigenvectors 

for the closed loop augmented system. Suppose that these q row vectors 

are the rows of a matrix Vi and V is partitioned 

V = (Vi,V2), 

where V, V1  and V2  have dimensions (q, n+q), (q, n) and (q, q). 
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An initial condition (u
) of the augmented system has zero 

component of the q modes S, and lies in the invariant subspace 

corresponding to the complement of S if 

(V1  V2) (u)  ) (x) 	= 0 . 

Then 

V2 - Vax , 	(2.4.41) 

provided that the inverse exists. 

However, if an initial condition of the augmented closed loop 

system lies in an invariant subspace, the state trajectory will remain 

in that subspace. Therefore (2.4.41) will hold along the complete 

trajectory if it holds for an initial condition. 

We may regard (2.4.41) as a relation by which the n-vector x 

parameterises vectors (u
) of dimension (n+q) lying in an invariant 

subspace. Consider an initial condition x of the plant and consider 

a feedback law , 

- V2-1V1x 

A Kx . 
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The modes of the closed loop system matrix (A + BK) are then the 

modes of the closed loop al.gmentod (n+q)-state system omitting the 

- selected q modes S. 

The situation is very similar in the general case. Suppose that 

the augmented system has partitioned state and control 

x l  
X = 

ul  
U = u2  

where xl  = x , 	contains some elements of u, say u2, and derivatives 

of u2. The elements of al  are the remaining elements ul  of u, and u2  

is the group of the highest derivatives greater than zero appearing 

in (2.4.39). Let xi, x2, ul, u2  have dimensions n, q, r1  and r2. 

Again we may select q modes S with the objective of discarding 

them from the augmented system dynamics by choice of an appropriate 

initial condition subspace. Suppose that the reciprocal row eigenvector 

matrix V is again partitioned V = (V1, V2), so that initial conditions 

having zero S mode components satisfy 



Then by definition of 	, 

-1 
=-_ 	- —2 	V2  Viz, 

1 -V2 V1x ' 
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(2.4.42) 

if the inverse exists. 

The optimal control 

u= 	K x , ....  

may be rewritten for x in the invariant subspace (2.4.42) as 

 

= 	1-11 1C-12( x  1122 ) \ 2E2 

 

so that 

£1 	= (Ell - E12  V2-11/1)x • 
	(2.4.43) 

Also, by definition, the group u2  of plant inputs is contained 

in x2  so that for x lying in the subspace defined by (2.4.42) 

u2 	- HV22Vlx , 	(2.4.44) 

where H is a selection matrix-having each row zero except for a unit 

clement. Then (2.4.43) and (2.4.44) may be rewritten as 



(L11 - 1-02 V2 

(-HV2-1V) 

that is 

Kx 
	 (2.4.45) 

For any initial conditions x on the plant we may choose a plant-

input u given by feedback law (2.4.45), and the corresponding (x, u) 

trajectories generated by the n-state plant dynamics will be identical 

to (x, u) trajectories of the (n+q) dimensioned augmented system. 

Furthermore, the poles of (A + BK) will be the poles of the augmented 

system apart from the rejected poles S. 

It is clear that one of the difficulties of the approach to modal 

control via an optimization problem, namely an increase in the dimension 

of the dynamics, may be overcome by selecting a set of modes and 

rejecting them. The remaining difficulty concerns the distribution of 

control effort in the feedback law (2.4.45). The difficulty arises in 

the contraction of the dimension of the dynamics and the introduction of 

feedback terms involving functions of eigenvectors of closed loop systems, 

(2.4.43) and (2.4.44). In simple cases it is possible to predict the 

effect on these functions of making cost parameter changes in the 

elements of R1 
and Q

1 
of (2.4.39) concerning costing on plant inputs. 



Consider the particular simple situation where no derivatives 

of plant input higher than the first occur , 

IA'2R2u2+ u'1R1u1 + ut 

p-i 

+(y(1)) +LaP))2) dt 
0 

(2.4.46) - 

jb"(ut 
2  R2  u2 

 + uylui  + 102R3u2  

+ quad.fn.(x, ull  u2, up)) dt . 	(2.4.47) 

Here the augmented system state variables are x and u2, and 

control variables u1  and u2. We assune that the plant output y is a 

scalar, though this is not basic to the argument. 

Suppose that R3  is small in (2.4.46) and that R2  is large, so 

that large values of u2 cause a rapid accumulation of cost in J. 

There will be a tendency for the optimal u2  to quickly reduce large 

values of u2. If the cost on Ixl  is small enough, u1  may assume values 

such that the last term in (2.4.46) is small, and consequently the 

closed loop optimal system will have modes closely approximating those 

specified by 
p-i 

sP  + 	a.s 	= 0 . 



Fast modes will be associated with the fast reduction of u2 from 

large values, the speed depending on the relative costs in the 

integrand. Finally we might expect that in this case, the invariant 

subspace complement to these fast modes will have small u2 values 

because otherwise u2  would decrease quicklyr indicating the presence 

of fast modes. Also the higher the cost on u2, the smaller should be 

the magnitude of u2  present in the slower modes. 

Briefly summarising, we may expect that if augmented system controls 

are lightly costed, a group of closed loop system poles will approximate 

a set of desired poles and there will be q 'fast' poles. The dimension 

of the system may be reduced to n by suppressing the 'fast' modes so 

that a control law (2.4.45) is obtain,:d for the plant inputs. The 

magnitude of the gains on individual plant inputs arc adjustable by 

varying the cost weighting on them in the performance index (2.4.46). 

This behaviour is clearly illustrated in Table 2.4.1 of the 

following example. 

It is emphasised that a more careful analysis is required if 

higher derivatives of plant input occur in the performance index, and 

also if the performance index is in terms of a vector plant output, but 

the main ideas should carry over. Should a restriction to low order 
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derivatives of plant input emerge for the performance index, it is 

considered that this is not of great importance. This is because the 

number of derivatives required depends on the number of specified 

poles; but transient responses are usually thought of in terms of a 

dominant complex pair, which would lead to the specification of two 

poles and to first order derivatives at most. We suggest that in most 

situations only two or three poles would be specified explicitly. 

Finally the control (2.4.45) is not optimal for the performance index 

(2.4.46). Optimization of LT with respect to K for a given initial 

condition x is a non-quadratic problem and the optimal K will depend 

on the initial condition assumed. The design procedure should be 

regarded merely as a systematic method of shaping transient responses 

and apportioning control effort between plant inputs. 

Example 

Consider the plant shown in Figure 2.4.1, 

x 	= Ax Bu 

( -1 1)(x1) +( 0 1X113.\ 

0 -1 	x2 1 0 	u2/ 

The plant output to be controlled is x1. 



Figure 2.4.1 Plant dynamics of example. 

Suppose that it is desired to achieve closed loop poles (-2-3i). 

This may be done by modal control using ul  alone to give a unique 

control 

u1 	- 10x1 - 2x I 

which will be called the modal control. The characteristic equation 

corresponding to the desired poles is 

S
2 + 4s+ 13 	0 . 

To apply the theory of Section 2.4 the performance index (2.4.46) 

is specified as 

• 
= .4"((X

1  + 4x1  13x1)
2 + u'Ru) dt 

. 
= ....r°((10x + 4x2 u1 3u2 u2)

2  ulRu) dt . 
1 
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The corresponding augmented system is 

= (x1, x2, u2)" 

/ 0 	0 
u, 

O 0 0 j  

(u11 u2)• t 

with performance index 

J 	= Jr°((10x1  4x2 	+ u1  + u2 )
2 
+ r u 11

2 
 

+ r,x,2) dt . 

Scalars r1 and r2 control the costing on the plant inputs u1 and 

u2. Table 2.4.1 summarises the results of minimising J for a variety 

of costs on control. The achieved system poles are close enough to 

the specified values to verify the theory. It is interesting to note 

that the distribution of control effort, is strongly influenced by the 

costs on plant input in the way indicated by the theory. 
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Cost on control Feedback 
u = BG 

Eigenvalues of 
(A + BIG) 

U1 	-I- 
u222  

	

- 1.10 	- 1.30) 

	

- 3.57 	12.7 
-2.13:1.3.02i 

u12  + 3.16u2̀  

	

- 2.83 	.546) 

	

- 3.27 	3.46 

. 	. 

- 2.36-1-3.00i 

a
2 u 1 	+ u2

2 

	

(- 6.12 	- .706) 

	

- 2.46 	.763 
- 2.58; 3.17i 

modal control 
u2 = 00 

- 10. 	- 2. 
0 -2.0013.00i 

Table 2.4.1 Approximate  modal control via an 
optimal control Problem. 
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2.5 L-apunov Control for Stable Plant  

2.5.1 Introduction.  

We have already discussed modal and optimal controls for linear 

time-invariant plant. Lyapunov control is a third type of control law 

that is amenable to computer design techniques in the context of state 

space, because an exact non-iterative calculation gives a feedback 

law which is guaranteed to be stable. Like the previous laws, Lyapunov 

control requires feedback from all the system states. 

Consider a stable linear plant with n-vector state x and r-vector 

input u , 

	

x = 	Ax Bu . 	 (2.5.1) 

Because A is stableo a Lyapunov function V(x) [112] may be defined 

for any symmetric Q > 0 , 

AIP 4- PA 	= 	- Q. 	 (2.5.2) 

	

V(x) = 	x/Px . 
	 (2.5.3) 

and 	V(x) = 	- x'Qx 
	

(2.5.4) 

	

< 	0 ,V x 0 . 
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If the control u is chosen as 

RB1Px , 	 (2.5.5) 

for R > 0, V(x) remains a Lyapunov function and 

V(x) 	= 	x'(Q + PBRB'P)x 	(2.5.6) 

< 	0 ,Vx/0 

Definition 2.5.1  

Feedback laws (2.5.5) for stable plant and obtained from Lyapunov 

functions, will be called Lyapunov controls. 

n(n+1) Equation (2.5.2) is linear in the - distinct elements of P 2 

and may be solved directly. The number of independent unknowns has been 

shown by Barnett and Storey [B4] to be 
n(n
2
-1) - and. a reduced set of 

equations can be found to determine them. Jameson [J3] proposes an 

algebraic solution for P that is based on the annihilation properties of 

the matrix characteristic equations the computational effort mainly 

involves obtaining n powers of nth order matrices. Several approximate 

algorithms have been proposed, Smith [S11 uses a bilinear transformation 

to convert (2.5.2) to a discrete time analogy which is solved by 

evaluation of a finite number of terms of an infinite matrix power 
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series. Davison [D4] has suggested that the transition matri:: F of 

A corresponding to a small time interval ht be used, so that 

P = r=4eA t tgeAtat 

Q,F1   At 

i Lit , 0 
Cy Llt 

where N is sufficiently large. The power series is very efficiently 

evaluated by the recursive relations , 

F1  = 	7 

P1  = QAt 

r  2 Fk+1 = 

Pk+1 = Pk + Fk PkFk 

P = 	lim 	P
k 
. 

k-->co 

In practice no more than 10 or 13 iterations are required, which 

corresponds to 

29 or 212  . 



ri 

The author feels that for small systems no method shows distinct 

advantages except that convergence failure of a power series gives an 

automatic indication that the system is unstable. For n > 10 the 

iterative methods are probably preferable with respect to computing 

time and storage. 

Unless otherwise stated R in (2.5.5) will be assumed diagonal. 

The closed loop dynamics (2.5.1) and (2.5.5) may be written as ; 

• = Ax Bu 	 (2.5.7) 

B'Px 	 (2.5.8) 

- Ry 	 (2.5.9) 

The variable y may be regarded as a system output independent of gain 

variations in R. 

The development of equations (2.5.2) to (2.5.6) shows that the 

control law (2.5.9) is stable for all positive gains in the feedback 

loops, that is for all R > 0. 

This type of control law has been proposed by Kalman and Bertram 

[K5] and more recently by Barnett and Storey [B4] , and it is well 

known that because the feedback law (2.5.8), (2.5.9) is stable for 



all diagonal R 	0, R may be a function of x and represent non-linear 

positive gains in the feedback paths from the selected measured output 

y of (2.5.8) to the plant input. 

In theory the closed loop plant remains stable as the gains R tend 

to infinity3 the characteristics of the closed loop plant under these 

conditions are examined in the next Section. Section 2.5.3 presents an 

investigation of the effect on system stability of the presence of 

actuator dynamics that are absent when the Lyapunov control law is 

obtained. 

2.5.2 Characteristics of High Gain L auunov Control 

Lyapunov controls remain stable as the gains R tend to infinity, 

and it is interesting to analyse the corresponding behaviour of the 

closed loop poles. 

It is convenient to transform the plant state space so that the 

dynamics 

x 	= 	Ax + Bu 

have the form , 

x = 

A  All -1112) ( 	( I  
)u . 	(2.5.10) 

	

A 	x 	0 
—2l —22 —2 
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The partitioning of (2.5.10) is defined by the required form of B. 

Again for convenience we will drop the bar under the variables in 

(2.5.10) and refer to x, A, B as x, A, B, so that the plant dynamics 

become 

x • = 
A11 Al2 xl u. 
(A21 A22 	x2 	\ 0 

(2.5.11) 

P and Q of (2.5.2) are partitioned consistently with (2.5.11) so 

that a Lyapunov control for (2.5.11) becomes 

	

u 	= 	- RBIPx 

= 	- R(P11  x1  - P12  x2 
 ) . '  

The corresponding closed loop dynamics become 

	

(

x\ 	A11-RP11 Al2-RP12) xl) 

x2 
= 
 A21 A22 

x2 
 

(2.5.12) 

(2.5.13) 

We use the following notation for conciseness. 

Notation The set of eigenvalues of matrix X will be denoted by A tX3 . 

We note that P > 0, so that P11 > 	Pll > 0 and therefore 

P11 2 exists. Also 

1 
A[Rp111 	A 
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so that R F 

	

Ala) 	 co r 	are real and tend to - oaas R > 0 tends to. 

Therefore by Gershgorin's theorem [G1] 	A  A11-R1) tends to -oo. 

For 	11 R11 > 	' 11 A2111 , 11A2211 	the dynamics (2.5.13) 

satisfy the conditions for a weakly coupled system [M2] , so that as 

R tends to infinity the closed loop eigenvalues tend to At(A 11-R P111 

and AtA22  A21(A11-R P11)-1(Al2-R P12)1 ' that is to -00 and  

AA22  - A21P11 
-1P

12) . The poles of (A22  - A21P11 1'12' are independent 

of R for large R, but must be stable because the Lyapunov control is 

stable for all R. The poles may or may not ba slow, they are certainly 

finite and we cannot expect high gain Lyapunov control to give 

arbitrarily fast system dynamics. 

2.5.3 Stabilit of Lyanunov Controls for a. Class of Errors in Plant 

We have seen that Lyapunov control of the plant dynamics , 

x = Ax Bu 
	 (2.5.14) 

B'Px 
	 (2.5.15) 

- Ry , 	 (2.5.16) 

is stable for all linear and non-linear R > 0. We continue to consider 

diagonal R and examine the effect of introducing dynamics in the 

feedback path so that 

u(s) = - RE(s) y(s), 	 (2.5.17) 



where E(s) is a diagonal transfer function matrix having a finite 

number of poles. 

The transfer function matrix E(s) may occur as actuator dynamics 

in applying the desired plant input u = -Ry , or as a representation 

of an assumed form of error dynamics relating a process model (2.5.1) 

to the true process dynamics. 

Definition 2.2.2 

A stable transfer function having a finite number of poles and 

lying in the fourth quadrant of the complex plane will be called a 

fourth quadrant transfer function. A matrix of such transfer functions 

as elements will also be called fourth quadrant. 

The main result of this Section is the following theorem. 

Theorem  

The dynamics (2.5.14), (2.5.15) and (2.5.17) are stable for all 

diagonal R > 0, and all diagonal fourth quadrant E(c). 

The proof of Theorem 2.5.1 depends on several lemmas. 

Definition 2.5.3 

The return difference transfer function matrix T(s) of a system 
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(2.5.14) and 

(2.5.18) 

is defined 

T(s) = 	I + K(sI - A)-1B . 	(2.5.19) 

Lemma  2.5.1  

For any A, B and K the set of closed loop poles, MA - BK) 

of the dynamics (2.5.14) and (2.5.18) is contained in the union of the 

set of zeros of IT(s)I and A{A} 

Proof 

The set of closed loop poles, X(A BK) equals the set of zeros 

of IsI - (A - BK)1, However, we may write, 

IsT - (A1 - BK), = I (sI 	+ (sI - A)-1BK)I 

Is' - AI .11+  (sI - A)-1BKI 

IsI - AI . II + K(sI 	A)1BI 

= 	IsI - A I . 1T(s) I . (2.5.20) 

This is an identity in s, the LHS is an nth  order polynomial. 

Consequently the RHS is a polynomial and the denominator of IT(s)I 



arising from the term (sI - A)
-1  in T(s) must be cancelled by some or 

all of the factors of lsi - Al . Whether a particular open loop 

pole is involved in the cancelling or not depends on whether its 

associated eigenvector is present in none of the columns of B, or is 

meaoured by none of the rows of K. This is clearly seen in those cases 

where A has distinct poles and the eigenvectors system of A is chosen as 

the system state space co-ordinate basis. However, the details of the 

cancellation are not relevant to the proof, and (2.5.20) shows that 

zeros of (sI - (A - BK)I must be contained in the union of Af A3 

and the set of zeros of T(s). 

Lemma 2.5.2  

If E(s) and A are stable and there exists R1 	0 such that the 

system (2.5.14), (2.5.15), (2.5.17) is unstable with R = Ri  , then 

there exists R2  > 0 such that when R = R2  the same dynamics has at 

least one pole on the positive imaginary axis. 

Proof 

Under the assumption of finite dimensioned state, it is always 

possible to find a state space realisation of the dynamics (2.5.17), 

• 

	

x1 = 	Bly 

	

= 	RHlxl  t RDly . 



may be written 

(2.5.21) 

( 	) 

BRD1B'P BRH1  x 

B
1
B'P 	Al 

	
x:) . 

The closed loop dynamics (2.5.14), (2.5.15), (2.5.17) therefore 

The poles of the closed loop system are the eigenvalues of the 

system matrix of (2.5.21) and these lie in the LHP for zero R by 

assumption. By hypothesis there exists a real R1 
such that at least 

one pole lies in the RHP when R = R1. Consider the behaviour of the 

poles when R = aR1 as a varies continuously between 0 and I. 

The eigenvalues of the system matrix of (2.5.21) vary continuously 

with the matrix elements, and therefore with the elements of R, and 

therefore with a. The root locus of the system poles as a varies 

starts in the LHP for a = 0, and at least one branch finishes in the 

RHP when a = 1 and R = R1. At some intermediate value of a, a = a2, 

a branch of the root locus must cross the imaginary axis. As all the 

matrix variables in the system matrix are real, its eigenvalues are 

real or occur as complex conjugate pairs, so that there is at least one 

crossing of the positive imaginary axis for a = a2  

0 < a2  4 1. ' 

and then 
R2 = a2R1 > 0 , 

since R1 > 0 by hypothesis. 

The lemma is therefore proved. 



Corollary 2.5.1  

If there exists no R .> 0 such that the roJ,,,_A difference T(s) 

of the dynamics (2.5.34), (2.5.15) and (2.5.17) has at least one zero 

on the positive imaginary axis, then there exists no R 	0 such that 

the dynamics are unstable. 

The next lemma concerns loop gain matrices for the Lyapunov 

control of dynamics (2.5.14), (2.5.15) and (2.5.16) which are rewritten 

for convenience in terms of the variable v, 

x 	= 	Ax + Bu 

v = RB'Px 

u = 	v . 

Instead of considering the loop gain from u to v with the loop 

broken at the input u, it is convenient to break the loop in such a 

way as to preserve symmetry. The equivalent closed loop dynamics may 

always be formed for R symmetric and R > 0, 
A 

Ax + BR2  v
1 
	(2.5.22) 

V
1  = 
	R2B1 Px 

and the corresponding loop gain L1(s) is,  

.4 
L1(s) 	R2B1P(sI --A) BR2  , 

where negative feedback is assumed. 

(2.5.23) 

(2.5.24) 



Definition 2.5.3 

A matrix x is positive real [L1 if for all complex vectors 

Re(wKXw) > 0 , V w / 0. 

fIE11:1.3 

For all symmetric R > 0 the loop gain L1(s) of (2.5.24) is 

positive real. 

Proof 

For any X , 

Re(wXw) = 211.7'Xw + 1(1.4 x w);'(  

Ki,„K = 	 + X)w (2.5.25) 

Then (2.5.24) and using (2.5.2) gives , 

1 :I 
L134:  + L1 	R2B'((sI 	A)K 1P + P(xI - A)-1  )BR2  

R2B'(sI - A);(-1(P(sI - A) + (sI 	A)P)(sI - 

;1- 
= R2B(sI - A)-  ( - PA - A'P)(sI - A) BR2  

1 = 	RI-B1(sI A)-1Q(sI - A) -1BR1  , (2.5.26) 



OA 

which is PD since Q. is PD. The lemma is proved because of (2.5.25). 

Corollary 2.5.2.  

The eigenvalues of L1(s) lie in the RHP for all P and for all 

PSD symmetric R. For consider a unit magnitude eigenvector w3, 

corresponding toameigerivalue x. of L
1  (s)i then 

W.
5. W. 
	= 	1 , 

L(s)w. = xiwi  

and 

w. -L w. A. 	• 
1 	1 

By Lemma 2.5.3, L1  is positive real and therefore , 

Re(Xi) 	> 	0 1 

and X. lies in the RHP. 

Lemma 2.5.4  

For all diagonal gain matrices R 	0 and for all diagonal transfer 

function matrices E(s) with diagonal elements that are identical fourth 

quadrant transfer functions, the dynamics (2.5.14), (2.5.15), (2.5.17) 

are stable. 



Proof 

The dynamics are rewritten for convenience in terms of v, 

	

= 	Ax + Bu , 	(2.5.27) 

	

v = 	RB'Px , 	(2.5.28) 

and 

	

u(s) = 	E(s) v(s) . 	(2.5.29) 

Suppose that each diagonal element of E equals e(s), then 

	

E(s) = 	e(s) I 	(2.5.30) 

It is convenient to choose for a return difference stability 

analysis that point in the multi-variable feedback loop at which the 

return difference T2(s) involves L1(s) of (2.5.24) , 

	

T2(s) = 	I + E(s) R
4B'P(sI A)-  BR2-  

	

= 	I + E(s) Li(s) 

	

= 	I + e(s) L1(s) . 

The determinant of T2(s) is now considered. T2(s) isamxm 

matrix. 



ra 
I T2  (s)1 	i x (T2  (s)) . 1=1 

	

= IF 	(1 	x. (e(s) L (s))) 
1  

m 

	

ir 	(1 + e(s) X.(L1  (s)) 1=1 
(2.5.31) 

No factor in (2.5.31) may equal zero for any value of s on the 

positive imaginary axis, because ReXi(Li(s))> 0 for all s and all i 

from Corollary 2.5.2,and e(s) will represent a rotation in the complex 

plane of at most 90°. This is true for all diagonal R > 0 and therefore 

there exists no diagonal gain matrix R 	0 for which IT2(s)1 is 

zero. Since the open loop system is stable the lemma is proved by 

Lemma 2.5.1. 

2.222aaa2. 

The dynamics (2.5.27), (2.5.28) and (2.5.29) are stable for all 

diagonal R 	0 and for all diagonal fourth quadrant transfer function 

matrices E(s), such that the diagonal elements of E(s) not equal to 

unity are identical. 

Proof 

Suppose without loss of generality., that the first r1  < r diagonal 

elements of E(s) are unity. Denote the first r1  elements of u by u1 



and the remaining (r r1) elements by u
2, and partition the matrices 

E(s), R and B according to 

 

E(s) 
(1 0 
0 E2(s) 

( R1 0 

0 R2  

(2.5.32) 

(2.5.33) 

and 

 

(B1 B2) (2.5.34) 

Consider the system with the first r1 loops closed. The dynamics 

are then, 

x 	= 	Ax + Blul + B2u2 

= 	(A - B1R1B1'P)x + B2u2  

x 	, 	 (2.5.35) 
-m 

where A, B and u are defined by equation (2.5.35). The matrix A is 

stable since unforced trajectories of (2.5.35) have Lyapunov function 

V(x) 	= 	x'Px , 

V(x) 	= 	- 	(Q + 	tP)x 

< 	0 , Y xA 0. 

and 



Consider the system (2.5.35) and close the remaining (r r1) 

loops which contain the dynamic elements of E(s). The dynamics are 

then , 

A x Bu , 

R2B2'Px 

-RBPx, 

and 
u(s) = 	E2(s) v . 

These dynamics satisfy the conditions of Lemma 2.5.4, and 

therefore the closed loop system is stable. The lemma is therefore 

proved. 

Corollary  2.5.3  

The dynamics of lemma 2.5.5 are stable if in addition any or all 

of the diagonal elements of E(s) are zero. 

This follows because the zero diagonal elements of E(s) may be 

put equal to unity and the corresponding elements of R put equal to 

zero without changing the dynamics. The conedtions for Lemma 2.5.5 

hold and the system is stable. 



We may now prove the theorem which is restated. 

Theorem 2.5.1 

The dynamic system (2.5.14), (2.5.15), (2.5.17) is stable for 

all diagonal R > 0 -and all diagonal fourth quadrant E(s). 

Proof 

Call the dynamic system of the theorem SE. The non-dynamic 

diagonal elements of E(s) must be zero or real positive numbers 

which may be put equal to unity by scaling the appropriate diagonal 

elements of R, and R will remain PSD. If all the dynamic elements 

of E(s) are equal, the theorem is immediately true by Lemma 2.5.5. 

If not, a fourth quadrant single-input-single-output transfer function 

g(s) is constructed which has phase angle 0 more negative at any 

frequency than the phase angle of every diagonal element of E(s), 

evaluated at the same frequency. It is always possible to do this 

Consider a diagonal transfer matrix G(s) of the same dimension 

as E(s), and put those diagonal elements of G(s) corresponding to 

zero diagonal elements of E(s) equal to zero. The remaining diagonal 
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elements of G(s) are given the values unity or g(s), and the set of 

these elements will be called the subset G of diagonal elements of 

G(s). 

Consider the hypothetical system So  with dynamics (2.5.14), 

(2.5.15) and (2.5.17) except that G(s) replaces E(s). By Lemma 2.5.5 

SG 
is stable for all diagonal R 	0 and for any allocation of values 

unity and g(s) to the subset G. 

Consider a particular feedback loop of SF  that contains one of 

the dynamic elements of E(s), call it FBI., and re-index the system 

inputsofSE andSG sothattliiselernentraaybereferreatoa"' .L1(s)  

and the corresponding element of G(s) as G11(s). 

The loop FE1  in SG  is now broken and the scalar return difference 

T
1
(s) examined as a function of frequency. This is equivalent to 

looking at the Nyquist plot of the single-input-single-output system 

defined by the break in the feedback loop FBI. 

Suppose that the loop transfer function for this single-input-

single-output system is , 

g1(s) 	when G11(s) = 1 , 
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and 
	

Fl(s) 
	

when G(s) = g(s) . 

Then 
ia(s) 	= 	g(s) gi(s) 

Because the system SG  has been proved stable for all diagonal 

gain matrices R > 0 , both when G11(s) = 1 and when 	= g(s), 

SG 
will be stable for any fixed R > 0 , V I / 1, for all values' of 

R11 0. 

Therefore the Nyquist diagrams for g1(s) and gl(s) do not cut 

the negative real axis, as is illustrated in Figure 2.5.1 

Figure 2.5.1 Transfer functions when a feedback loop is broken. 
111:01, 

= g.g1) Both r: and g are stable for all positive gains. 



This follows from single-input-single-output stability theory. 

Alternatively by Corollary 2.5.1, the relevant return differences 

T1(s) and T1  (s)' 
 are non-zero for all finite positive gains R11 

at all 

frequencies; 

T1(s) = 1 R11g1(s) 

and 

it" (s) = 1 R 	(s) 11 1 

Therefore neither g1(s) nor g1(s) cross the negative real axis. 

Replace C11(s)  by E11
(s) and call the corresponding loop transfer 

, 
function g1

o 
 (s) 

g1°(s) = 	E
11(s) g1

(s). 

Then g
I
o(s) does not cross the negative real axis on a Nyquist 

diagram, because by the constructed properties of g(s), at any 

frequency g1
o(s) is obtained from g1

(s) by a smaller clockwise 

rotation than is g1(s). Magnitude changes induced by E11(s) are 

irrelevant for this analysis. 

Therefore SG with FB1 
closed, that is with all loops closed and 

G11(s) = E11
(s), is stable for all values of R11 	0 , and therefore 
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for all diagonal R .>„ 0 . 

Define a new subset GD1 
of the diagonal elements of G(s) as 

the subset G with the elementGil( 
 s) omitted. Then the result holds 

for any allocation of the values unity and g(s) to the elements of GD1. 

We complete the proof by induction. 

2.22pthesis 

Suppose that (k-1) diagonal elements of G(s) belonging to the 

subset GDO 
 have been put equal to the elements in the corresponding 

positions on the diagonal of E(s); the remaining elements of GDOare 

said to define the subset GD(k-1). 
 Suppose further that it is true 

that SG 
is stable for all diagonal R > 0 and for all allocations of 

the values unity and g(s) to the diagonal elements of G(s) belonging 

to GD(k-1). 

It is seen that the hypothesis has been proved for k = 1. It 

remains to show that if the hypothesis is true for (k-1) it is also 

true for k. 

Select a feedback loop FBk 
corresponding to a diagonal element of 

G belonging to the set Gp(k...1), and re-index the inputs of SG  and SE 



so that this element may be referred to as Gkk(s). Define GDK to 

be the subset GD(k_i)  of diagonal elements of G(s) with the element 

Gkk (s) 
omitted. 

Then by hypothesis SG 
is stable when 	(s) = 1 and when 

Gkk(s) = g(s), for all diagonal R 	0 and for all allocations of the 

values unity and g(s) to the elements of GDk. 

The loop FBk  may now be broken and a single-input-single-output 

transfer function analysis undertaken in precisely ::.he same way as was 

done for G11 ' 
. In this way the system SG 

is seen to be stable for all 

diagonal R > 0 when, 

Gkk(s) = Ekk (s) 

and for all allocations of the values unity and g(s) to the elements 

of GDk• 

Therefore if the hypothesis is true for (k-1) it is true for k. 

However, the hypothesis has been proved for k = 1 and therefore the 

hypothesis holds for k = 1, 2, 3 ..... until the set GDk is empty. 

At this point the diagonal elements of G(s) belonging to the set Gpo  

have all been put equal to the elements in the corresponding positions 

of E(s). 



Then 

G(s) = E(s) 

and the dynamics of SG  are identical to those of SE, by construction. 

Because SG is stable for all diagonal R > 0 then so is SE, 7 
and 

therefore she theorem is proved. 

A  Result with Non-Linear Gains  

Consider a system with dynamics 

and 

where 

x 	= 	Ax + Bu , 	(2.5.36) 

u = N(v) , 	(2.5.37) 

y = RB'Px , 	(2.5.38) 

v 	= 	- Dv + Dy , 	(2.5.39) 

(1) N(v) is a nonlinearity lying in the third and fourth quadrants and 

has bounded derivatives. 

(2) D = Diag (d1, 	d ) and is PD 

(3) R is a diagonal PD matrix. 

(4) A is stable. 

(5) P satisfies (2.5.2). 
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Theorem 2.5.2 

The above system is stable. 

The proof follows by application of the multi-variable Popov 

criterion quoted below. 

Popov Criterion [J1] 

Given a strictly stable square transfer function matrix G(s) 

and a diagonal, non-interacting matrix non-linearity N, whose diagonal 

elements n.(a.) have bounded derivatives and satisfy 

0 < n.(a.1) < k.1a.1  , 	(2.5.40) 
3.  

define K, Q, F(jw) and P(w) I 

K = Dino. (k1, 	kn) 
	

(2.5.41) 

Qc = Diag (qi, 	qn) , 	(2.5.42) 

F(jw) = (I 	jwQ)G(jw) 	K-1„, 	(2.5.43) 

and 

Pc(w) = F(jw) 	ez(jw). 	(2.5.44) 

If there exists a Q such that 

Pc(w) > 0 
	

V w , 	(2.5.45) 

the closed loop system with the nonlinearity N in the feedback paths, 

and with negative feedback, is stable. 



Proof of Theorem  

Define a new diagonal non-linear matrix NR that incorporates R 

with N. Then NR  also satisfies (2.5.40) because R is constant and 

PD. 

The transfer function matrix G(s) of the Popov criterion from 

(2.5.36), (2.5.38) and (2.5.39) 

G(s) = (sI + D)-1DB1P(sI - 	-1B 

= (sD-1+ I)-1B'P(sI A)-1B . 	(2.5.46) 

Consider as a trial Qc in (2.5.42) 

QC 	= D

-1 
 • 

Then (2.5.43) and (2.5.46) give F(jw) 

F(jw) 	(I + jwD-1)(jwD-1 + I)-1. 

B'P(jwl - A) 1B + K 1 

B'P(jwI - A)-1B + K 1. 	(2.5.47) 

Then (2.5.44) and (2.5.47) give Pc(w) , 

Pc(w) = F(jw) FK(jw) 

Bl(jwI - A);4-1(- PA - A'P)(jwI A)-1  B 

+ 2K-1 

7" J. 



= B1(jwI -1 Q(' I 	-1  jw 	) - B 	-1  A, 	+ 2K . 

Because A has all its eigenvalues in the LHP, Q is PD and the 

columns of B are indeperdent by assumption, 

P (w) > 0 , V 

even as K-1 tends to zero. 

The Popov criterion is satisfied and Theorem 2.5.2 is proved. 

Comment  

The set of linear gains is included in the set of nonlinear 

gains so that Theorem 2.5.2 proves a special case of Theorem 2.5.1, 

because the dynamics (2.5.39) inserted in the feedback paths are 

fourth quadrant. However, the dynamics (2.5.39) form only a small 

subset of the set of dynamics lying in the fourth quadrant and 

Theorem 2.5.1 provides a more general result than Theorem 2.5.2 

applied to linear systems. 

The results of Theorems 1 and 2 are interesting because they are 

directly applicable to the situation of control being applied to a 

plant through actuators which have their own dynamics. 
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If desired plant inruts are determined from a Lyapunov control 

feedback law, even though actuator dynamics have not been included 

in the plant dynamics but are known to satisfy the conditions of 

theorem 2.5.1 or 2.5.2, the closed loop system is stable. 

2.5.4 Stability of a Claw of Riccati Controls for a Class of Errors 

in Plant Dvramics 

The results of Section 2.5.3 are interesting arid are probably 

most useful in assessing the effects of actuator dynamics on stability. 

It is interesting to see the implications of Theorems 2.5.1 and 2.5.2 

on optimal controls that minimise performance indices of the type , 

J  = fc4(x'Qx u'Ru) dt 0 

for 

Ax Bu , 	 (2.5.48) 

R > 0 diagonal. 

Suppose that the optimal control [Kl is 

-1 R B'Px 

la, (2.5.49) 

where P satisfies the associated steady state Riccati equation, 



(A + BK)'P + P(A + BK) = 	(Q + K'RK). 

J = x'Px is a Lyapunov function for the matrix (A + BK), and 

also [A3] for the dynamics with non-linear gain N(x) , 

x 	= 	Ax + By , 

v = 	N(x) Kx , 

where N(x) is diagonal and each diagonal element Nii(x) is continuous 

and satisfies 

Nii(x) > 2 , v x 

We may consider other actuator irregularities besides memoryless 

non-linearities by first recognising the relationship between the 

optimal control (2.5.49) and Lyapunov control. 

Consider the system 

x 	= 	- iBK)x + Bu . 	(2.5.50) 

We have seen that it is stable with Lyapunov function x'Px and 

therefore it is a candidate for Lyapunov control of the form 

- 2 B'Px 	(2.5.51) 

R > 0. 



7, . 

We shall consiriel,  diagonal R. We note that the optimal control 

(2.5.49) with dynamics (2.5.48) may be interpreted as a Lyapunov 

control (2.5.51) with R = IR-1  for the dynamics (2.5.50), and may 

then immediately prove the following theorem. 

Theorem 2.5.3 

The closed loop dynamic system, 

Ax Bu , 	(2.5.52) 

Kx 	(2.5.53) 

u(s) = 	E(s) y(s) , 	(2.5.54) 

where K is the optimal feedback law (2.5.49) is stable if E(s) is a 

diagonal stable transfer function matrix whose diagonal elements lie 

in the fourth quadrant of the complex plane to the right of 

Re(s) = 2 , and have a finite number of poles. 

Proof 

The dynamics (2.5:52), (2.5.53), (2.5.54) are equivalent to 

x 	= 	(A - 2BK)x 	(2.5.55) 
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y = Kx 	 (2.5.56) 

n(s) 	= 	E1  (s) y(s) 	 (2.5.57) 

where E
1(c) is a diagonal fourth quadrant transfer function matrix, 

and the control (2.5.56) is a Lyapunov control. The conditions for 

Theorem 2.5.1 hold and the system is therefore stable. 



2.6 Conclusion  

Three types of control law have been discussed with the common 

property that feedback is required from all plant states. These 

laws are convenient to work with in state space computer design 

techniques because they are solutions to well-defined problems. 

There is a difficulty in translating general specifications on cystem 

performance into mathematical objectives. Modal control requires 

some trial and error in fixing desired closed loop poles to attain 

indirectly related performance criteria. Similarly when a law is 

based on optimal control, the design process tends to involve 

selection of the performance index parameters on a trial and error 

basis, but it is usually clear what change to make in the costing 

to obtain a desirable change in transient response. This is not 

necessarily so in the design of modal control laws. We have discussed 

the implicit modelling method of assigning costs to a Riccati problem 

so that the optimal closed loop system has poles approximating 

specified values. This method can lead to a controller with dynamic 

elements, and a philosophy has been given by which a dynamic element 

in the controller can be avoided an example has been given that 

supports the ideas. A less specific method of obtaining a desired 
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characteristic of a closed loop optimal system weights the cost 

on state and control exponentially. The resulting problem leads to 

the standard Riccati equation, and the optimal closed loop poles 

are faster or more stable than the exponential weighting. 

We have ascertained the properties of Lyapunov control in some 

detail because of its tolerance with respect to stability of the 

presence of actuator dynamics not considered in the design process. 

The actuators form part of the plant dynamics, so that in the case 

of Lyapunov control and if the conditions of Theorems 2.5.1 and 

2.5.3 hold, the need to measure the complete plant state may be 

slightly relaxed. We have discovered in Section 2.5 that Lyapunov 

control imposes constraints on closet; loop system poles, which may 

make Riccati or modal control more appropriate in a given application. 

We must then measure the full plant state or use estimates of 

unmeasured states. The following chapters develop a theory of the 

observers that may be used to provide the required state estimates. 



CHAPTER 3 

OBSERVERS FOR DETERMINISTIC SYSTEMS  

3.1 Introduction  

As discussed in the previous chapter, an obstacle occurs in 

implementing controls obtained by modern control theory because not 

all plant states are measured. 

In the stochastic case of a linear plant with Gaussian noise on 

the input and output, the Kalman filter [K33 provides optimal state 

estimates for the plant. A control can be synthesized from these 

estimates without affecting system closed loop poles. However, as the 

noise tends to zero the Kalman filter tends to differentiate the plant 

output to obtain state estimates. Luenberger [Li] 	[L2] has 

proposed a filter theory which does not rely on optimization theory 

and filter dynamics are more directly specified by the designer. An 

advantage of the Luenberger observer theory is that observers of 

reduced dynamics may be constructed, sometimes of greatly reduced 

dynamics. 

Sections 3.1 and 3.2 contain introductory material, Section 3.3 

presents a convenient theory and design technique for (n-m)-state 

observers that has not appeared in the literature before. The 

remaining sections briefly consider some of the frequency domain 



characteristics oJ! Luenberger filters or observers. 

The Observer Equations  

Consider the linear plant 

	

X 	= 	Ax + Bu 1 	(3.1.1) 

Ex , 	 (3.1.2) 

with n states, r inputs and m outputs. 

Consider also F.-vectors Z, z and Az such that 

z = 	Lx , 	 (3.1.3) 

	

Az 	= 
A  
z - z 9 	 (3.1.4) 

	

A 	A 

	

Z 	= 	Dz + THx + Cu . 	(3.1.5) 

i.. 	• 

	

Az 	= z - Lx 

= Dz
A  + THx + Cu - L(Ax + Bu) 

= 	DAz + (DL + TH - LA)x + (C - LB)u . (3.1.6) 

The dynamics (3.1.6) become 

Az 	= 	DAz (3.1.7) 

if and only if 

DL - LA + TH = 0 , (3.1.8) 

and 
C 	LB = 0 . (3.1.5) 

Thus 



n Pt • 

Consider a trajectory of (3.1.1) with initial condition xo  and a 

trajectory of (3.1.5) with initial condition Zo. These trajectories 

define a trajectory in Lz defined by (3.1.4) which has dynamics 

(3.1.6). If (3.1.8) and (3.1.9) are satisfied the trajectory of 1z 

evolves according to (3.1.7) and Az will decay exponentially with 

time if D is stable. In this cases  by definitions (3.1.3) and (3.1.4)9  

the trajectory in Z is such that Z tends to Lx independently of the 

plant input u. We may then regard Z as an estimate of Lx and Az an 

estimation error. 

Definition 3.1.1 The p-state system (3.1.5) with state variable 
A  
z 

is called an observer or Luenberger observer [IA] , [1.2] . 

Definition 3.1.2 The equations (3.1.3) to (3.1.9) are basic to 

observer theory and will be called the set of observer equations; and 

a matrix set L, Ds  T, C satisfying them will be called a "solution to 

the observer equations". 

Families of solutions  

A solution to the observer equations generates a family of 

solutions. Consider a new variable w 
A 

obtained from a non-singular 

transformation of z 

A w2 	 (3.1.10) 



Co r, 

(3.1.11) 

A 
Then w is the state of an observer because (3.1.3) to (3.1.9) with 

(3.1.10) give, 

VLX 
(3.1.12) 

'fx 

Aw 
A A 

W W (3.1.13) 

and 

tr/ = kipv-l s'„) vnix wou 

Tflix -I- "Cu 
	(3.1.14) 

where (3.1.14) defines D, 'Tend U. 

Then it is easily shown that 

 

and " 

Y'H 	0 

 

Equation (3.1.14) shows that D has the same poles as D. The 

observers may be regarded as equivalent because (3.1.10) (3.1.11) 

show that no information is lost by running one of the systems 

(3.1.5) or (3.1.14) instead of the other. 
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An unsuitable solution to the observer equations  

It is noted that D and T may be specified and if the eigenvalues 

of D are different from those of A, (3.1.8) may be uniquely solved 

for L [J51 . Solution of (3.1.9) for C. is then trivial, and tile 

observer dynamics (3.1.5) are then completely specified. This approach 

p 
is not useful because L is not

re-
epecified and the variable z 

z = Lx 

which is estimated by z A may be of no interest. 

The alternative approach is to specify L rather than D in the 

design procedure. This leads naturally to two classes of observer, 

n-state and (n-m)-state, and the corresponding solutions of the 

observer equations are given later in Sections 3.2 and 3.3. 

Chapter 4 gives a more detailed analysis of the difficult 

problem of finding observers of dimension less than (n-m) that 

provide estimates of desired functions of plant states. 

A useful stability property of observers with respect to feedback 

systems 

Consider the n-state, r-input m-output plant (3.1.1) and (3.1.2) , 

= Ax Bu 	(3.1.18) 

y = Fix 	 (3.1.19) 
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and the p-state observer for which (3.1.3) to (3.1.9) hold so that , 

	

z 	= Lx , 	 (3.1.20) 

	

Az 	= z 
A 
- z 	 (3.1.21) 

= 	D2 + TIN Cu , 	 (3.1.22) 

and 

	

Az 	= DAz . 	 (3.1.23) 

Consider a desired feedback law 

	

u 	= Kx 	 (3.1.24) 

such that it may alternatively be expressed 

Ki  y K2 
A  z . 	(3.1.25) 

An estimate i of the desired feedback control may be defined. 

	

u 	= 	Ki y K2  z 	• (3.1.26) 

A 
and (3.1.26), (3.1.18) and (3.1.22) with 1.1. = u form the dynamic 

equations of the interacting system of observer and plant. Equations 

(3.1.21) and (3.1.23) allow the dynamics to be written in terms of 

plant state x and estimation error Az , 

hix 1 . [A4EK BK2] ix 

[Ad 	0 	D 	Az] . 
(3.1.27) 
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It is seen that the poles of the dynamics (3.1.27) are those of the 

ideal closed loop system, specified\by the desired law (3.1.24) as 

x 	= 	(A + BK) x 	(3.1.28) 

together with the observer poles determined by D. 

This well known [Li], [L2] property of observers provides most 

of the motivation for the study of observer theory. The form (3.1.27) 

of the closed loop plant and observer composite system shows explicitly 

that if the estimation error is zero, it remains zero and plant 

trajectories are identical to those of the ideal system (3.1.28). 

It is emphasized that this result applies for the general p-state 

observer, as long as the ideal control law (3.1.24) may be expressed 

as (3.1.25) in terms of the plant output and estimated variable. 

Sections 3.2 and 3.3 prove that if the plant is observable, n-state 

and (n-m)-state stable observers exist for which any ideal control 

law may be expressed as (3.1.25). Consequently any observable and 

controllable plant may be stabilized. A more detailed examination 

of the properties of observers in feedback paths is given in 

Chapters 5 and 6. 

Observers used in feedback paths may be regarded as compensators; 

the stability of compensators is considered in Chapter 5. Chapter 6 

examines the "degradation in system performance" when the appToximated 

ideal control is optimal with respect to a quadratic performance index. 
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3.2 The n-State Observer  

Consider the problem of constructing an n-state observer for 

the plant with dynamics (3.1.1) and (3.1.2). We are interested in 

finding the conditions for which stable observers exist, that is, 

for which the matrix D is stable. 

The following existence theorem was first presented in [L11 [IA . 

For convenience we introduce the definition. 

Definition 3.2.1 A set of poles is feasible if complex poles 

occur in conjugate pairs. 

Theorem 3.a.1  

A necessary and sufficient condition for an n-state observer to 

exist for the plant (3.1.1) and (3.1.2) and to provide an estimate 

A 
X of the plant state and to have prespecified feasible poles is that 

the pair (A, H) be observable. 

Proof 

Consider L in (3.1.3) to be defined 

L 	-- 	T , 	 (3.2.1) 



then necessary conditions (3.1.9) and (3.1.8) determine C and D , 

C 	= B , 	 (3.2.2) 

D 	= 	A - TH . 	(3.2.3) 

The dynamics of an observer are defined in terms of the plant data 

by (3.1.5), (3.2.1), (3.2.2) and (3.2.3) where T remains to be 

chosen. 

The form of the observer dynamics follows as 

d A 
dt x  

= 	(A - TH) x + Bu + Ty . 	(3.2.4) 

The poles of the observer dynamics (3.2.4) are the eigenvalues of D 

which are. also the eigenvalues of D'. A necessary and sufficient 

condition for a T' to exist to give an arbitrary prespecified set 

of feasible eigenvalues to D' is that the pair (A', H') be 

controllable [Al] . By the definition of controllable and 

observable pairs [KM], (A', H') is controllable if and only if 

(A, H) is observable. 

Corollary 3.2.1  

A necessary and sufficient condition for a stable n-state 

observer to eXist for the plant (3.1.1), (3.1.2) is that the pair 



(A, H) be detectable. This follows by applying the above theorem to 

the observable invariant subspace EIVO of the pair (A, H) ; the 

unobservable invariant subspace is stable by the definition of 

detectable pairs. 

Comment  

The theorem and corollary concern special case observers with 

L in (3.1.3) being the unit matrix, but as noted in Section 3.1 a 

whole family of observers having similar dynamics may be generated. 

From (3.1.12) it is seen that observers may be generated having L 

in (3.1.3) equal to any non-singular matrix. Often the observer is 

A 
used to provide an estimate v of v 

= Kx , 

and this may be done by defining 

A 
V = KX 

In this case the observer may be regarded as a filter with 

inputs the plant input u and plant output y, and output the desired 

estimate 
A  
v. Consider two observers in the same family one generated 

from the other by a non-singular transformation between their states 

A = 16. 
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The above equation indicates that w and A z are merely the state 

variables of different state realizations of the matrix transfer 

function of the filter. 

Before discussing further properties of n-state observers we 

move on to the examination of the conditions for the existence of 

(n-m)-state observers. 



3.3 The Reduced Observer  

Notation 	For the purposes of this section the plant dynamics 

(3.1.1) and (3.1.2) will be written , 

x = 	 (3.3.1) 

y 	= 	H x . 	 (3.3.2) 

We recall that the plant has n states, r inputs and m outputs. In 

the interests of simplicity it is desirable to have observers of order 

lower than n, but in addition Chapter 6 shows that the (n-m)-state 

observer may have an intrinsic advantage over n--state observers with 

respect to trajectory performance indices of integrated quadratic cost. 

Luenberger EL1.1 pq has shown that in the case of an observable 

system, :t is always possible to design an (n-m)-state observer having 

arbitrary feasible poles. 

We present an alternative derivation of this result which leads 

to a new and simpler (n-m)-state observer design method [C2] than 

that suggested by Luenberger. 

The matrix Ti of (3.3,2) is assumed to be of maximum rank, that 
is the outputs are independent. It is then always possible m to 

make a state transformation with (3.3.4) defining a non-singular W 

= 	W x 

(3.3.3) 



Then 
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If 7; 

4  Hx 

xl 
	 (3.3.4) 

x = W w-lx w u 

A Ax Bu 
	(3.3.5) 

A( All 
Al2) C1) + (B1) u 	(3.3.6) 

A21 A22 x2 	B2 

where A and B are defined by (3.3.5). The matrix partitioning 

is defined by (3.3.4), (3.3.3). 

We note that x1 is an m-vector and x2 is an (n-m)-vector. 

The above transformation is very convenient for the following theory. 

Lemma 3.3.1 

The pair (A22, Al2) in the plant equations (3.3.6) is observable 

if the pair g, TO of (3.3.1) and (3.3.2) is observable. 

Proof 

Observability is preserved under non-singular state transformations 

so that (A, H) of (3.3.5) 	and (3.3.4) is an observable pair. 
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Assume that (A22, Al2) is not an observable pair, then Kalman DK/41 

has shown that there exists a transformation matrix S such that, 

-1 S 	A22 S 	A 	(3.3.7) 

o L11 	:) 
A 	A —21 —22 

(3.3.8) 

and 
A12 S = x 	(3.3.9) 

(H1' 0) . 	(3.3.10) 

The dimensions of the matrices are : 

A22 (n-m, n-m) 

A (n-m, n-m) 

4 (n n ) 22 2' 2 	1 

where 

(m, n-m) 	S (n-m, n-m) 

121(n21  n1) 

H (m, n-m) 	and H1  (m, n1) 	1  

A11 (n11 n1) - 	' 

n1 + n2 = n-m . 	(3.3.11) 

The transformation (0 1 0) is applied to the plant equations (3.3.4), S 

(3.3.5) so that using (3.3.7) to (3.3.10) , 
-1 

I 0\ 

	o\\--:  A  II  
0 S) A 

l-) C (0 
S  ) 	S-1l A21 '`j1 	

(3.3.12) 

	

(x 	0 \) 
= 

	

x 	A 	. 	(3.3.13) 
-22 



Define a state variable w , 

(1 0 

0 S-;-) x  (3.3.14) W = 

(3.3.15) w 
x 

A 
w  
) 22 

09. 

The x's in (3.3.13) denote matrices whose precise values are 

irrelevant to the argument, and the block partitioning of (3.3.13) is 

different from that of (3.3.12). 

Then with partitioning as in (3.3.13) the plant dynamics for zero 

input from (3.3.5), (3.3.13) and (3.3.14) become 

and 

y 	= 	(x 0) w . 	(3.3.16) 

Equations (3.5.15), (3.3.16) show that the plant is unobservable 

which is contrary to hypothesis, and therefore (A22, Al2) must be 

an observable pair. 

Theorem  3.3.1 

If and only if the pair (A, H) is observable, an (n-m)-state 

observer exists for the plant (3.3.4), (3.3.5), provides an estimate x 
A 
2  

of the unmeasured plant state component, and may be given prespecified 

feasible poles. 
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Proof 

The theorem is proved by construction. By hypothesis the 

instantaneous values of the variables y and u are available. 

Information is provided about x2  through its interaction in the 

dynamics of xi  which is measured directly from (3.3.4)' 

xl = y • 

Define the m-vector z related to x2 through equation (3.3.6) 

z 	xi -  Ail 	- 5, / A, 
	 (3.3.17) 

A
12 

x
2 
	(3.3.18) 

We proceed as if z were available as a measurement and consider the 

dynamics of x2  , 

X2 	
= A

22 
x
2 

+ A21 x1 + B2 u 

where the inputs xl  and u are known. The form of an (n-m)-state 

Luenberger observer for this (n-m)-state system with assumed output z 1  

z 	= 	A12 
x
2 ' 

is given by Section 34 , 

A 	, 
x2 	= A22 x2 

+ A
21 

x
1 

+ B
2 

u + T(z --A12 x2/ 

(3.3.19) 



and from (3.3.17) 

x2 = (A22 - TA12)x2  + (A21  - TAll)xl  

+ (B2  - TB1)u + Tx1  . 	(3.3.20) 

Consideration of the unmeasured variable xl  is avoided by defining 

a new variable w and its estimate w 1  

w 	= 	x2 
- Tx 

1 1  

A 
W 	= 	X2  - Tx1  . 

The dynamics of 11.; are obtained from (3.3.20) and (3.3.22) as 

A 
x2 - TX1  

(3.3.21) 

(3.3.22) 

+ (B2 - TB1 
 )u . 	(3.3.23) 

Once a matrix T and an initial condition on 
A  w have been selected, 

equation (3.3.23) may be integrated in conjunction with plant 

trajectories because the variables x1 and u are then available. An 

A 	 A 
estimate x2 is obtained from w through (3.3.22) and (3.3.21) shows 
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that x2 = x2 when w = w 

A 	A 
x2 	= w + Tx1. (3.3.24) 

Equations (3.3.23) and (3.3.24) together define an (n-m)-state 

dynaMic system that provides an estimate X2  of x2. We call this 

system an observer of reduced dynamics, an (n-m)-state observer or a 

reduced observer. 

A 
The behaviour of w is examined by defining an error vector A'i 

A 
1w 	= w - w . 	(3.3.25) 

Equations (3.3.25), (3.3.23), (3.3.21) and (3.3.6) give 

A• 
Aw = w w 

(A22 TA12)(Aw + = 

	

	 (A22T A21 - TA11 

- TA12T)x1  + (B2.  - TB u ;c2  + T x1  

= (A22 	- TA12  TA12)Aw + (A22 	- A22 + TA12)x2  

(-(A22 - TA12)T + A22T + A21 TA11  TA12T 

- A21  + TA11  )x1  + (B2  - TB1  - B2  + TB1  )u • 

' (A22 TA12)4' • 
	 (3.3.26) 
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If an estimation error Ax2 is defined 

A 
Ax2 = X2  - X2 ' (3.3.27) 

Then (3.3.24), (3.3.21) and (3.3.25) give 

A 
Ax2 	

w + T 	x2 

A 
= w w 

iw 	 (3.3.28) = 

so that Lw may be associated with the plant state estimation error Ax2. 

The error dynamics (3.3.26) and the observer dynamics (3.3.23) 

have the same system matrix (A22  - TA12). The proof of the theorem 

requires that T exists that gives this matrix arbitrary feasible 

eigenvalues. 

By Lemma 3.3.1 (A' A12
) is an observable pair, in which case 

T may always be so chosen [Al] . 

Remarks  

A value for T to stabilize the matrix (A22 - TA12)  may alternatively 

be determined by the formulation and solution of an auxiliary optimal 
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control problem. T will then be the transpose of a steady state Riccati 

gain matrix. 

Luenberger [TARA restricts the obserVer matrix (A22  - TA12) 

to have no eigenvalues in common with those of the plant dynamics 

matrix A in (3.3.1). This restriction is unnecessary in the above 

reduced observer design method. A simple example illustrates this. 

The dynamics of the system are given in the form (3.3.6) , and 

consideration of input effects will be omitted ; 

A 	(
A11 A12) . (0 1  
A21 A22 -2 -3  

with eigenvalues -1, -2 . 

Then 

(A
22 - TA12) = -3 -T . 

The(scalar) matrix T may be chosen T = -2 or T = -1, which give the 

eigenvalue of (A22 - TA12) 
 a value of -1 or -2 respectively. The 

dynamics of an observer obtained by substituting for A and T = -2 in 
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(3.3.23) become 

w = (A22 TA12)i," (A22T Al2 TA11 TA12T)x1 

+ (B2  - TB1)u 

- ei 4- O. x1 	(B2  - TB1  )u . 

In this case (3.3.24) is 

A 	A 
x2 = w - 2 x1  . 

It is seen that the plant output x1  does not enter the dynamics of the 

observer but does affect the estimate x2. Equation (3.3.26) still 

holds, and for the example the errors Aw and Ax2  decrease exponentially 

as designed irrespective of plant input, 

Ax2(e) = e-t  Ax2(0) . 

The example emphasizes the following point for observer and plant 

with common eigenvalues : 

with respect to information about plant modes corresponding to the 

common eigenvalues, the observer is liable to degenerate to an open loop 

model excited by the plant input alone. Then estimation errors associated 

with these nodes will decay naturally at a rate determined by the mode 

pole. It is not thought worthwhile to pursue this point in detail. 
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3.4 The Frequency Domain Characterictics of Observers  

Introduction  

As indicated in Section 3.11  the usual reason for desiring the 

estimate of some unmeasured function of the plant state is that the 

function is required for feedback purposes. A link between state 

space control synthesis techniques and the frequency domain was 

derived by Kalman [Ki..] as the "Kalman equation for optimal systems" 

for the case of single input optimal control laws. Similarly insight 

into the effects of observers is obtained by analysis from the 

frequency domain point of view. The results of this section are 

perhaps not surprising, but the explicit analytic derivations are 

thought to be new. 

Definitions  

The given plant has input r-vector u, output m-vector y and an 

n-vector state. In the analysis of the (n-m)-state observer effects, 

it is convenient to choose a co-ordinate basis for the plant state such 

that (3.4.4) holds and the partitioning (3.4.2), (3.4.3) is introduced. 

The plant dynamics are , 

= 	Ax + Bu 
	 (3.4.1) 

Al 2 x] 4.(B1) 
u 	(3.4.2) A21 A22 \ x2 i 	

B2 
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Hx 	 (3.4.3) 

(3.4.4) 

and 
	x 

x = x
2 
	 (3.4.5) 

Suppose that some function v of plant is desired 

v = Kx , 	 (3.4.6) 

which in the case of the reduced observer analysis will be regarded 

as 

= 	K.x 	K x . 
1 	2 2 (3.4.7) 

Suppose also that the rows of K are not spanned by the rows of 

H, that is v is independent of plant output y, and that an observer 

is used to construct an estimate 
A  
v of v , 

A 
v = Kx . (3.4.8) 

The frequency domain viewpoint is introduced by defining the transfer 

functions L(s), L(g) such that 

v(s)= L(s) u(s) 	 (3.4.9) 

and A 	A 
v(s)= L(s) u(s) . (3.4.10) 

Theorem 3.4.1 When the estimate 2 in (3.4.8) is provided by a n-state 

Luenberger observer, 

L(s) . 
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A 
Theorem 3.4.2 When the estimate x in (3.4.8) is provided by a (n-m)- 

state reduced observer, 

A 
L(s) = L(s). 

These theorems are not surprising and a heuristic proof for both is 

given together with algebraic proofs. The algebraic proofs of this 

Section may be useful with their explicit presentation of cancellation 

processes, because at these points an indication is given of the 

magnitude effects of parameter variations from nominal values. 

Heuristic Support for Theorems 3.4.1 and 3.4.2 

For the purpose of this section the open loop plant is assumed 

to be stable. For both n- and (n-m)-state stable observers the 

estimate 
A  
x of x tends to x as time increases irrespectively of the plant 

input by (3.1.7). After all transients have decayed when a sinusoidal 

input u is applied to the open loop plant 

A 
X = 

and from (3.4.8) and (3.4.9) 

A 
V = V . 

This is true for all sinusoidal inputs and it follows that Fourier 

transforms of v and v are then equal. This with equation (3.4.10) 



indicates that the relation 1  

A 
L(s) = L(s) 

holda for both types of observer. 

Proof of Theorem  3.4.1  

The Laplace transforms of (3.4.3) and (3.4.6) are required 

y(s) = H(sI - A)-1  B u(s) , 	(3.4.11) 

and 	
v(s) = K(sI A)-1  B u(s) . 	(3.4.12) 

The dynamics of an n-state Luenberger observer have been shown in 

Section 3.2 to be , 

A 	A 
X 	= Dx + Bu + Ty , 	 (3.4.13) 

and 
D 	= A - TH 
	

(3.4.14) 

where T is a suitable gain matrix. 

The Laplace transform of (3.4.13) is 

A 
X(s) = (sI - D) 1(Bu(s) + Ty(s)) (3.4.15) 
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Use of (3.4.8), (3.4.15) and (3.4.14) leads to the following 

manipulations , 

As) = 1&(s) 

= 	K(sI - D)-1(B + TH(sI - A)-  1B)u(s) 

= 	K(sI - D)-1(I + TH(sI - A)- 1)Bu(s) 

= 	K(sI - D)-1(I - (D - A)(sI - A)
- 1
)Bu(s) 

= K(sI - D)-1(I - (sI - sI + D - A)(sI - A)-1)Bu(s) 

= K(sI D) 1(I - I + (sI - D)(sI - A) 1)Bu(s) 

so that 
A 
V(s) = K(sI A)-1  Bu(s) . (3.4.16) 

Equations (3.4.16), (3.4.12), (3.4.9) and (3.4.10) show that 

A 
L(s) = L(s) I 

which completes the proof of Theorem 3.4.1. Note that the transfer 

function (3.4.15) is essentially a steady state representation and 

the analysis is meaningful for stable D, corresponding to stable 

observers. 



Proof of Theorem 374.2  

Section 3.3 has shown that the form of the dynamics of an 

(n-m)-state observer for the plant equations (3.4.2) and (3.4.4) 

is , 
A 

Z = Dz Ex, Cu 1  

A 	A 
x2 = z Tlxl ' 

D 	= 	A22 - T1A12 ' 

E 	= 	A21 4- DT1 - T1A11 ' 

and 
C 	= 	B2 - T1B1 ' 

where T1  is any matrix such that D has stable eigenvalues. 

Define and partition Z 

(3.4.17) 

(3.4.18) 

(3.4.19) 

(3.4.20) 

(3.4.21) 

z 
(I Z11 Z12  

z21 z22 
(3.4.22) 

-1 
sli A11 

-Al2 

-A21 	sI2 - A22) 
(3.4.23) 

where I1 and I2 
are unit matrices of appropriate order. 
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Then 

sil - A11 

(

-Al2 

. 2 22 sI2  - A ) ( Z1

1 

:

12

) ( 01  21 	22 	
0,2) (3.4.24)4  

-A21  

The Laplace transforms of xi  and x2  for zero initial conditions are , 

x1  (s) = (Z11B1 + Z12B2)u(s) 
	

(3.4.25) 

and 
x2(s) = (Z21B1 

+ Z22B2)u(s) . 
	(5.4.26) 

The transform of (3.4.18) together with (3.4.17), (3.4.20) and (3.4.21) 

gives , 
A 	A 
x2(s) = z(s) + T1x1(s) 

= (812  — D)-1(0u(s) + Exi(s) ) + Tlys) 

= (sI2  D)-1((B2  - T1B1)u(8) + 

(-T1A11 + A21 + DT1 + (sI2  - D)T
1)x1(s)) 

(3.4.27) 

Substitute for x1(s) from (3.4.25) , 



x2(s) 	(312  - D) 1(B2  TiBi  

(-T1 A11  + A21  + sI2T1)(Z11B1  + Z12B2))u(s) 

= 	(sI2  D)-1(B2  - T1  B1  - T1  (sI1  - A11 )(Z11-1 + Z12  B2  ) 

+ A21(Z11B1  + Z12B2))u(s) . 
	(3.4.28) 

Terms (sI, - All)Z11 , (sIt - 11)Z12  , A21Z11  and A212  in (3.1!.28) 

are replaced by using the relation (3.4.24), so that 

A 
x2(s) = (sI2 - D)-1(B2-T1B1 + 

T1((I1 + A12Z21)(B1  + A12Z22B2)  

(sI2 A22)Z21B1 ((sI2 - A22)Z22 - I2)B2)u(s) 

= (sI2 e - A22 T1Al2 )(Z21B1 Z22B2)u(s) 

	 (3.4.29) 

Then (3.4.19), (3.4.29) and (3.4.26) give 

A x2(s) = (Z21B1  Z22B2)u(s) (3.4.30) 



x2(s)  ' 

so that from (3.4.7) and (3.4.8) 

v(s) = Kixi(s) K22(s) 

= Klxi(s) K2x2(s) 

= 	v(s) . 

This concludes the proof of Theorem 3.4.2. 

( 3 4.31) 

(3.4.32) 

Frequency effects of observers used in feedback oaths  

The return difference of a closed loop system has proved to be 

a useful guide in the classical design of single-input feedback 

control systems, because of its central position in the sensitivity 

analysis of these systems. A sensitivity theory of multi-input 
exists 

systmgy  both for optimal and non-optimal controls, and again the 

return difference plays a central role. It is therefore interesting 

to analyse the characteristics of return differences when feedback 

control is synthesised via an observer. 



Lluure 3.4.1 Open loop configuration of  

feedback system with all states measured.  

11. 
C:I:server 
	 J. 

lure 3.4.2 Open loop  operation of  

plant and observer.  

115. 
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Figure 3.4.1 illustrates a plant with all states measured and the 

feedback path corresponding to the closed loop control (the negative 

feedback (3.4.33) is introduced to retain the classical form of 

return difference) 

u = v 	 (3.4.33) 

and 
v 	= Kx . 	 (3.4.34) 

A natural break in the closed loop path is at the plant input, 

and the corresponding return difference T(s) is then defined by 

(3.4.33) , 

u(s) - ( - v(s)) = T(s) u(s) . 
	(3.4.35) 

Substitution from (3.4.34) and (3.4.9) gives 

	

T(s) 	= I + L(s) . 
	(3.4.36) 

Now consider the plant where not all state variables are measured, 

but the plant is observable so that either an n or (n-m)-state 

observer may be constructed to implement the control law , 

	

U 	= - v ., 	 (3.4.3) 



If the return difference T(s) is defined by the break in the 

A 
feedback path shown in Figure 3.4.2 then T(s) satisfies 

A 	A 
U(S) 	(- V(S)) = T(s) u(s) 	(3.4.38) 

and by Theorems 3.4.1 and 3.4.2 , 

T(s) = T(s) . 	(3.4039) 

This return difference or the associated loop gain indicates 

sensitivities of closed loop plant performance with respect to 

changes in dynamics in the connection joining (-v) to u. This is a 

useful result and shows that on any frequency test such as a multi- 

variable Nyquist criterion 
	for linear dynamics in the link 

AB, or the multi-variable Papov criterion 	for a non-linear 

gain in the link AB, the control law (3.4.37) obtained from a state 

estimate is equivalent to the ideal law (3.4.33), (3.4.34) with 

full state measurement. This conclusion requires that there are no 

errors in the plant equations (3.4.1), (3.4.3) and that the plant 

input u which is output by the link AB of Figure 3.4.2 closing the 

loopois measured precisely to drive the observer dynamics (3.4.13) 

or (3.4.17). 
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In many situations the measurement of the plant input variable 

u is not used to drive the observer, but rather u is assumed to be 
A 

the desired value (-v). The observer may then be called a compensator 

and has the configuration shown in Figure 3.4.3. The n state 

comrensator has dynamics given by (3.4.13) and (3.4.34) as, 

A 	A 
= 	(D - BK)x Ty 	(3.4.40) 

A 	A 
v
c 

= K x . (3.4.41) 

The (n-m) state compensator has dynamics given by (3.4.17) and 

(3.4.34) as , 

A 
= 	(p CK2)1Z\  + (E - Ki  - K2T1)x1 	(3.4.42) 

and 
A 

(Ki  + K2T1)x1  + K217, . 	(3.4.43) Vc  = 

The subscript c in vc  denotes the compensator configuration. 

Closed loop operation of the plant is initiated by closing the 

link AB of Figure 3.4.3. 



             

 

ConllenorAor 

            

Obso,-= 
	v, 	41 

7.• 

Figure 3.4.3 Open loop operation of plant 

and compensator derived from observer. 

In any real application the plant dynamics will differ from 

those assumed and this can to some extent be allowed for by 

considering error dynamics in the link AB of Figures 3.4.1 and 3.4.3. 

The loop gain from u to 
A 
vc is Lc(s) defined in terms of the transfer 

functions of the compensators , 

ve(s) 	= K(si - (D - BK)) 1  T y(s) 

110. 

F(s) y(s) 	(3.4.44) 
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and using the subscript r for the reduced state observer compensator, 

v (s) = [K1 K2  T1  K2  (sI - (D - CK2))-1
(B - K. 	K2T1).]y(s) 

Fr(s) y(s) 
A - • 

since by definition the plant output is denoted by xl  and y. 

If P(s) is the plant transfer function 

y(s) = H(sI A)-1  Bu(s) 

= P(s) u(s) 

then (5.4.41) and (5.4.43) become 

A 
Vc(S) = F(s) P(s) u(s) 

(3.4.45) 

(3.4.46) 

Le(s) u(s) 	 (3.4.47) 

and 
A 
vc(s) = Fr(s) P(s) u(s) 

	

Lcr(s) u(s) 
	

(3.4.48) 

The ideal loop gain L(s) is given as 

	

v(s) = K(sI 	A)-1 	B u(s) 

	

= L(s) u(s) • 
	 (3.4.49) 
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It is clear that the loop gains Lc  (s) and Lcr(s) do not equal the 

ideal loop gain L(s). An explicit relation between Lc(s) or Lcr(s) 

and L(s) is obtainable. 

Define the transfer functions Mi(s), 142(s) :rom the observer 

equations for n or (n-m)-state observers as the case may be, such that 

v(s) = N1(s) y(s) + m2(s) u(s) 
	

(3.4.50) 

= (M1(s) P(s) + M2(s) ) u(s) 

= L(s) u(s) . 	 (3.4.51) 

This observer is used in the feedback configuration of Figure 3.4.3 

with the ideal control , 

11. 

v = Kx. 

Again using subscript c for compensator configuration, (3.4.50) 

gives 

= r11(s) y(s) - M2(s) /lic(s) I 
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so that with (3.4.46) 

A 
vc(s) = 	m2(s))-1  ml(s) y(s) 

= 	(I M2(s))-1  M1  (s) P(s) u(s) 

g Lc(s) u(s) . 	 (3.4.52) 

Then substituting Ml(s) P(s) from (3.4.51) into (3.4.52) 

L (6) = (I 	M2(s))-1(L(s) 	M2(s)) . 
	(3.4.53) 

An expression connecting return differences of the compensator 

observer configuration is derived 1  

Tc(s) = 	Lc(s) 

= (I M2(s))-1  (I + M2(6) L(s) M2(s)) 

= (1 M2(s))-1T(s) 	(3.4.54) 

where T(s) is the ideal return difference. 

Equations (3.4.53) and (3.4.54) emphasize the difference in the 

situations when all plant states are measured and when an observer is 

used in its most useful role as a compensating element in a feedback 
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path. The inequality of Lc  or Lcr  and L arises from the minor loop 

feedback from the plant input Ott to the observer dynamics (Figure 3.4.3), 
A 

which is required so that the stringent equality L(s) = L(s) of 

Theorems 3.4.1 and 3.4.2 is satisfied. Because of this,nonlinearities 

or linear dynamics in the link AB of Figure 3.4.3 have different closed 

loop effects from the same nonlinearities or dynamics in the link AB 

of Figure 3.4.1. 

Sections 3.2 and 3.3 gave a straightforward method of obtaining an 

arbitrary set of feasible poles for the observer dynamics, and in 

Section 3.1 it was proven that observers in feedback paths had the 

desirable property that the observer-plant composite system had the 

poles of the observer and the ideal plant. From consideration of that 

property alone it may seem that not much is lost by not having 

measurements of all plant states. This section shows the fundamental 

disadvantages associated with the use of observers with respect to 

plant parameter changes of a particular type in comparison with the 

situation when all states are measured. 
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3.5 	Sonsitivit7 of 0,;)servars to 3,1rrors 

In any application of an observer in estimating unmeasured 

states of a plant, what in fact is attempted is the estimation of the 

states of a plant model which may be expected tc be an approximate 

description of plant dynamic behaviour. We will consider n and (n-m)-

state observers used in an open loop configuration for small 

perturbations of plant model parameters, but will not undertake a 

very full analysis. First order perturbation effects are calculated 

in a straightforward manner for particular examples and will not be 

dealt with here. A qualitative idea of perturbation effects is 

desired. 

n-state observer  

The observer equation of the plant model equations (3.1.1), 

(3.1.2) is 

	

= 	(A TH)x
A 
 Ty Bu . 	(3.5.1) 

It is now assumed that the plant equations have the same order as 

the model but are 

	

= 	Ax Bu , 	 (3.5.2) 

	

y = 
	

(3.5.3) 



(.31.-A) 
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The estimate error Ax 

A 
Ax = x-x 

has dynamicS 

Ax = x-x 

(A - TH)Ax + (A - A - T(H - H))x (B - B)u 

  

(3.5.4) 

(3.5.5) (A - TH)Ax + (AA - TAH)x ABu . 

 

Equation (3.5.5) defines AA A  AH and AB. Figure 3.5.1 gives the 

block diagram of (3.5.5), the most important qualitative feature is 

that the perturbation of the plant output matrix acts through the 

gain T. 

Figure 3.5.1 n-state Observer Estimation Error  

allamics for Perturbed Plant. 



A 
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A 3, 

Figure 3.5.2 (n-m)-state Observer Estimation 

Error Dynamics for Perturbed Plant. 

(n-m)-state observers  

The observer corresponding to the nominal plant dynamics is 

A = (A22 - TA12) (A22T 1.  A21 TAll  - TA12T)xi 

-I- (B2  - TB1)u . 	(3.5.6) 

Suppose that the plant dynamics have a perturbed value 

d (lx1 = -11 42) (ix1) 	(1132 u . 	(3.5.7) dt x2 	A 	A 	x2 ) ( A -21 	-22 	-2 ) 
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Then 

w = x2 - TX1 

A 
Aw = w - w 

• d = dt w - x2 + Tx]. 

= (A22 - TA12)Aw + (A22 -.A22 
 - T(Al2  -.42))x2  

+ (A
21 
 - A

21 
T(A11 - A11 ))x1 

 + (B2 
 - B2  T(B1  - B

1  ))u 

(A22  - TA12)Aw + (C A22 - TAA12)x2  

(6A21 TAA, 
	+ (AB2  - TABi)u . 	(3.5.8) 

The block diagram of (3.5.8) is shown in Figure 3.5.2. The essential 

difference between the n and (n-m)-state observers is that the 

latter is affected by a perturbation containing a control term which 

acts through the observer gain T. It may be expected that if control 

magnitudes are large, arising from an attempt to obtain fast plant 

responses, this term will adversely affect the estimate produced by 



the (n-m)-state observer. The quadratic term in T in (3.5.6) is 

seen to be internal to the observer, so that it is not subject to 

plant variations and should create no fundamental problem. We 

conclude that under normal conditions and in the deterministic case, 

there is no priori reason why one type of observer has better 

sensitivity properties than the other for time invariant plant 

parameter variations. 



CHAPTER 4 

DEGENERATE OBSERVERS  

4.1 Introduction  

We have seen in Chapter 3 that nand (n-m)-state observers may 

always be found for observable plant and that the observers may be 

given arbitrary feasible poles. In this chapter we examine the 

possibility of obtaining observers of dimension less than (n-m) to 

provide estimates of a desired vector function of state. In this case 

the observer will depend on the desired estimateo unlike the n-or 

(n-m)-state observers. 

Definition 4.1.1 Observers having dimension less than (n-m) 

and providing desired estimates of functions of plant states will be 

called degenerate observers. 

Previous interesting work by Luenberger [L2] considers the case 

of a multi-output plant and scalar state function for which an estimate 

is required; it is shown there that a suitable degenerate observer 

always exists having arbitrary feasible poles and dimension 
(Po - 1) 

where pc,  is the observability index of the plant. 



We extend these results by developing a theory of degenerate 

observers and consider some of the problems involved in the design of 

multi-variable degenerate observers of least order with arbitrary 

located poles. The investigation is partially successful since 

sufficiency conditions for the existence of a degenerate observer 

with arbitrarily locatable poles are found. A design method based on 

the sufficiency conditions is proposed, but it will not necessarily 

lead to observers of least order. 

The major part of the design of a degenerate observer providing 

an estimate of a 2-vector function of the states of a 5-state plant, 

is presented to illustrate the use and advantages of the theory. 



4.2 Dynamic Equations of Plant and Degenerate Observer  

Consider an n-state plant with r measured inputs u and 

m measured outputs 3vand such that its state space realisation has 

the form 

= Ax Bu 
	 (4.2.1) 

HX 
	 (4.2.2) 

= xl  . 
	 (4.2.3) 

Suppose that an estimate 
A  
v is required for the state nv-vector 

function v, where 

n < n-m , 

v = Kx 

A 
- Kix]. K2x2 ' 

and [xx).] 

(4.2.4) 

It may be assumed that the variables y and v are independent, 

because otherwise there exists a variable vo of smaller dimension 

A 
than v such that v is a function of y and vo

. An estimate v could 

A 
then be found from an estimate vo of vo

. It is always possible to 

A 
find an (n-m)-state observer that provides an estimate v ; the problem 



d A 

71E " 

A 
= Dw + Exi  + Cu , 

A 	A 
V 	= 	Mil + Gx 

1 

(4.2.5) 

(4.2.6) 

is to examine conditions for the existence of suitable observers of 

lower dimension. 

Form of Degenerate Observer  

A general form of degenerate observer of dimension nw  nv < nw  

4(n-m) that has all measured plant variables as inputs is 

where 
A  
w is an estimate of the variable 

w = Wx 

= wixl W2x2 

and there is a constraint on W such that 

= 	+ Gxj.  

(4.2.7) 

(4.2.8) 

that is 

K 	= 	}-5/ GH . 	(4.2.9) 

We define the estimate errors 

A 
Ay = v v (4.2.10) 

Aw 	= w - w 
	 (4.2.11) 
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so that 

Av 	= HAW . 	 (4.2.12) 

The error dynamics in Aw are 

d A  
AW = 	t W W 

= 	DW Ex].  + Cu - W(Ax + Bu) 

. A DLL + (DW1  E - W1A11 - W2A21)x1 

o This reduces t 

• (D142 - 111Al2 - W2A22)x2 

▪ (C W1B1  W2B2)u . 	
(4.2.13) 

Ai = DAB 	 (4.2.14) 

if and only if 

C = W1B1 W2B2 , 	
(4.2.15) 

E 	= 	W1A11 W2A21 - DW1  , 	(4.2.16) 

and 
DW2 	= W1A12 + W2

A22 . 	(4.2.17) 

Equations (4.2.15), (4.2.16) are satisfied by using them to define C 

and E. Then the existence of H, W, G and D such that (4.2.9) and 
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(4.2.17) are satisfied determines the existence of a suitable observer, 

provided that the error dynamics (4.2.14) are satisfactory. In order 

that there be a choice in the dynamics of D, there must be degrees of 

freedom in the D that satisfy (4.2.17). Degrees of freedom may be 

introduced by allowing Wi  to vary, say to Wlm  so that (4.2.7) defines 

a new variable wm, 

= 	Wl
mx1 + W2x2 
	(4.2.18) 

and v is recovered from w according to 

7' Htnt + (G + HW - 	m)x —1 1 1 (4.2.19) 

A = 	HWm + G x, . 

Equation (4.2.17) may be manipulated to 

(Dw
2 
- W
1
mA12) = W2A22 , (4.2.20) 

so that D and W1 
 may be regarded as free variables. (4.2.20) has an 

interesting interpretation described in Section 4.3. 

We summarise the results obtained so far. 
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First Form for Sufficiency Conditions for the Existence of Degenerate  

Observer  

A degenerate observer exists for the dynamics 

Ax Bu 

y = Hx 

= x1 

A 
and provides an estimate v of v 

Kx 

= K.x + K x 1 	2 2 ' 

if there exists D, H, W, G satisfying 

(Dw2 
 — W1Al2)  = W2A22 

K 	+ 

(4.2.21) 

(4.2.22) 

(4.2.23) 

(4.2.24) 

The observer dynamics are 

d A 	, 
dt w  = DwA 041

A
11 

 W2A21 DW 1 1 

+ (V1
1
B
1 
+ W

2
B
2
)u , 

(4.2.25) 
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A 	A = 	ihtt+ Gx 
1 (4.2.26) 

and the estimation errors evolve according to 

Aw 	= DAVI , 	 (4.2.27) 

Av 	= HAW . 	 (4.2.28) 

Furthermore the observer poles may be prespecified if the degrees of 

freedom in choosing D to satisfy (4.2.23) allow arbitrary feasible 

poles of D to be achieved. 

We note that no solution may exist for a trial dimension nw  of w 

and in this case the dimension must be increased. We are guaranteed 

that a suitable observer exists for nw = (n-m) by the theory of 

Chapter 3. 



4.3 Reformulation of Existence Conditions 

Condition (4.2.23) may be interpreted as a requirement that the 

time rate of change w of the nw-vector w depends only on wl  u and x11  

for 

w= W
1
x
1 
+ W2x2 

= wi(Alixi Al2x2)  (w1B1 W2B2)u 

▪ W
2
(A

21
x
1 + A22x2)  + D1il - Dvir 

(W1A11 W2A21 DW1)x1 ME4  

• (W
1Al2 

4 
 U2A22 - DW2)x2. 

+ (W1B1 
+ W

2
B )u . 

Degrees of freedom in D in solutions (D, W1) of (4.2.23) may be 

introduced in different ways. 

A special situation holds when the desired estimate is a scalar; 

this is discussed in Section 4.5 where it is apparent that there are 

difficulties in extending the approach to the multivariable case. 

An approach that may be used in the multivariable case follows 

from the Lemma 4.3.1. 
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Lemma 4.3.1 

The existence of linear combinations of the output of the unforced 

plant such that their time rate of change depends only on x
1 and w, is 

a sufficient condition that a solution of the observer equations has 

degrees of freedom in D. 

Proof 

Consider the (n
c, m) matrix L1 whose rows form a basis of maximum 

rank for all such linear combinations. That is, any such linear 

combination of plant output may be expressed as a'L1x1  where at is a 

row vector. Then by hypothesis there exist L2, L3  such that 

d 
dt 	

) = L3x1 + L2w , 

= (L1+L2111)xi  L2W2x2  . 

But the plant dynamics (4.2.1) give for zero input , 

Lix, 	= L
1
A
11
x
1 
+ L1A12x2 ' (4.3.3) 

so that equating coefficients of x2  in (4.3.2) and (4.3.3) , 

(L
1
A
12 - L2W2) 	= 0 . 	 (4.3.4) 



If T is any (nw, n2)-matrix, (4.3.4) may be premultiplied by T 

and added to (4.2.16) to give , 

(D + TIJ2)W2 - (W1 + TL1
)A12 = W2

A22 

so that if (D, G, W11  W2) is any solution of (4.2.16) then so is 

(Dm, Gm, W1', W2) given by 

Dm  = D + TL2 ' (4.3.5) 

W1
m = W1 + TL1 (4.3.6) 

Gm  = G + hull  - HiWi 	. (4.3.7) 

This concludes the proof of the lemma. 

Alternative Approach to Degenerate Observer Equations  

Lemma 4.3.1 leads to a straightforward approach to the theory of 

degenerate observers that closely parallels the theory of (n-m)-state 

observer design. This approach is presented as a theorem. 
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Theorem 4.3.1 

If there exists a plant nw-variable w such that the plant 

nv-variable v to be estimated is expressable in terms of w and the 

plant output y, and the dynamics of w depend only on y, w and the 

plant input u, a degenerate observer exists. The existence of linear 

combinations of y with dynamics depending only on 

sufficient condition for the existence of degrees 

dynamics of the observer. If the pair (D, L2) to 

is observable, the observer dynamics may be given 

poles. 

y, w and u is a 

of freedom in the 

be later defined 

arbitrary feasible 

Proof 

Consider the plant 

x 	= 	Ax 	Bu (4.3.8) 

Hx 

and suppose that it is desired to estimate v, and that 

v 	= 	Kx , 

w 	= 	Wx , 

(4.3.9) 

(4.3.10) 

(4.3.11) 
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GH + 
	 (4.3.12) 

w 	= 	Dw + Ex1 + Cu . 
	(4.3.13) 

By hypothesis there exist linear combinations of plant output y 

such that 

L1  y 	= L1la 

= 	L
3
y + L2w + L1B1u 
	(4.3.14) 

The device used in designing reduced observers of treating Ly 

as if it is directly measured suggests a form of nv_state observer 

for the nw-vector w , 

A 

dt w 
 = Dw + Ex1 + Cu 

• A 
+ T(Lly L

3
y - L2w - L1

B1u) . (4.3.15) 

Rearranging 1  

+ TLly) = (D TL2)ivi + (E - TL3)y + (C TL1B1)u 

= (D - TL2)(w + TL1y) 

+ (E TL
3 
- DTL1  + TL2TL1)y 

+ (C TL1
B
1
)u . 	(4.3.16) 



AM Define a new estimation variable w 1  

ABe 
W = W TL,y ,  (4.3.17) 

then the equations of the observer become, 

d 	x (D - TL2)w
A 	(E TL

3 
- DTL1  + TL2TL1)y 

+ (C - TL1B1)u , 	(4.3.18) 

^ 	Ax w 	= w - TL1y , 	(4.3.19) 

and therefore from (4.3.10) and (4.3.12) 

A 
V 	= 	(G — HTL1)y fO. 	(4.3.20) 

It follows from (4.3.13) and (4.3.15) that an estimation error Aw 

satisfies 

Aw 	tr A A 
— 

= 	w — w 

Aw = (D TL2)Aw . 	(4.3.21) 

The observer dynamics (4.3.18) may be given arbitrary feasible poles 

when the pair (D, L2) defined in (4.3.13) and (4.3.14) is observable. 
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Comment 

Note that when L
1 is the unit matrix of order m, the situation 

is identical with that of the design of an ordinary reduced observer 

of state dimension (n--m). 



4.4 Application of the Theory of Degenerate  Observers  

Consider the problem of designing an observer of least order 

to provide an estimate of the nv-vector v , 

v 	= Kx . 	 (4.4.1) 

We assume 

has order 

obtaining 

.K% that the matrix l-) has full rank so that the observer 

of at least nv. A systematic procedure follows for 

a w which leads to an observer of low order but not 

necessarily stable or having locatable poles. 

DefinethesetsofvectorsMandth.land the sets cf 

scalars[v.and [x.) 1) 

(v1, v2 ... vn 	1  

= 	(x1, x2 "' xn)1  ' 

= 	(kl, k2 	kn  ) 
V 

= 	
(h1, h2 414/41 hm) • 

(4.4.2) 

(4.4.3) 

(4.4.4) 

(4.4.5) 

and 

x 

H' 
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A suitable w with dynamics that satisfy (4:3.13) and related to v by 

the form (4.3.12) is obtained by constructing the (m+nv, n) array 

(4.4.6) with vector elements 

hi 	Athl  

h2 	A'h2 

• 

• 

• 
• 
• 

hm A'h • • 0 

kl A'k1 
 

• • • • • 0 0 (4.4.6) 

P2-1  
k2 A'k2 A' 	k2  0  . . 	. 0 

• . 

• • 

. • 
• 

kn A'k
nv 

• . • 0 

The generation of vector elements Aliki  in the row containing ki  

ceasesatthefirstpowerp.ofPatwhichthevectorA' ik.is 

linearly dependent on the vector elements of the columns to the left 

of column (pi+1), together with the vector elements of the column 



(D.41) above the row containing k.. The remainder of the row is 

completed with null n -vectors. 

By construction there exist sets of scalars ta...13(1 and 

.1..3..(j)). such that , 3.3 

nv  pi(q) 
Pi  

10k.-1- Za.
Jcl
(i)(At4k q  

q=1 j=0 

mPi  . 

b(i) Atjhq  = 0 	(4.4.7) 

q=1 j=0 

for i = 1, 2... nv  , where 

pi(q) = pi 
	if q > i 

= pi-1 if q i 

Define the notation 

xi(J) = dj  ' x.) . 
dt4 

i 
 1 

(4.4.8a) 

(4.4r8b) 

(4.4.9) 

The set of equations (4.4.7) when transposed and multiplied on the 

left by the state x may be interpreted for zero plant input as 



nv  pi(q) 

q=1 
a. (i) v (j)  
3q 	q 
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m 	pi 

> >  b. (i) Y(j)  
q=1 j=0 3q 

0 . 	(4.4.1o) 

Because vi(pi) depends on no derivatives of order higher than pi, 

this set of differential equations has a state space realisation 

derived in the appendix Section 4.8 of this chapter , 

and 

= Dw + Ey 

= 	Hw + p_y . 

The vector w is related to the original state vector as indicated 

by (4.8.22), (4.8.23) of the appendix , 

w = Wx . 

When the plant has an input u , 

• • 

w = Wx 

= 	W(Ax +. 1311) 

(4.4.13) 

= 	Dw + Ey + WBu . 	(4.4.14) 



Equations (4.4.13), (1 /1.14) have the form required by Theorem 

4.3.1 to guarantee the existence of an observer but its dynamics may 

not be suitable. This leads to the main difficulty in the design of 

degenerate observers and it has not been completely solved. It is 

clear that in this case the dimension of w must be increased, which 

should give more degrees of freedom in the observer dynamics. When 

nw reaches (n-m) the theory of (n-m)-state observers applies and 

there is always a satisfactory solution. 

It is not obvious what is the most appropriate method for choosing 

a new w of increased dimension. The algorithms proposed contain a 

degree of arbitrariness, and it is clear that there is a need for 

further investigation directed towards obtaining observers of least 

order. 

Algorithm A  

(1) Increase the dimension of v by adjoining an arbitrary row to 

K in such a way that v and y remain independent. 

(2) Calculate a vector w by the method using array (4.4.6). 

(3) Check the observability of (DI  L2) and return to step (1) if 

necessary. 
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Algorithm B 

In step (1) of algorithm A choose the row adjoined to K as a 

linear combination of the rows of HA, v(r +1)  =-17„,'HA say where t 

is an arbitrary vector. This ensures that tty will be a function 

of w and y, and there is a possibility that this will lead to 

observable (D, L2). 

Algorithm C  

The vector v remains unchanged. The dimension of w is increased 

by suppresbing linear combinations of ATJH from the expanding basis 

used for the test of linear independence in the construction of the 

array (4.4.6). Again these linear comoinations may be arbitrary and 

it is not clear which to choose. 

Algorithm D  

This proposal is similar to algorithm C except that linear 

combinations of AtjK are suppressed rather than those of AtjH , in 

the test for finding [pi) in the array (4.4.6). 
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Comments on the Algorithms 

None of the algorithms is completely satisfactory because of the 

arbitrary decisions that must be made. As the dimension of w increases 

and w is maintained independent of y, the dimension of w at which 

(D L2) is observable must be less than or equal to (n-m). 

.  
When nw  equals (n-m) the matrix (w) Is invertible and the plant 

state could be taken as (Y) and a (n-m)-state observer may always be 

found which has arbitrary pole locations. In general any combination 

of the four algorithms may be used during a design attempt and the 

arbitrariness in the method is compounded. The special cases scalar 

v and v = x2' nv 
= (n-rn) do not offer guidance. It is shown in 

Section 4.5 that essentially algorithm D is appropriate to the scalar 

case. The algorithms are not needed when nv 
= (n-m) because immediately 

(D, L2) is observable. 
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4.5 A Comparison with Other Reduced Observers  

The connection between (n-m)-state reduced observers and this 

type of degenerate observer is apparent from the similarity between 

the developmmt of Theorem 4.3.1 in deriving degenerate observer 

dynamics and the derivation of the (n-m)-state observer of Section 3.3. 

When the dimension of v or w becomes (n--m), the two observer design 

methods are equivalent. 

Luenberger [L2] provides a systematic technique for designing 

a degenerate observer that provides an estimate of a scalar function 

of the plant states. The plant equations are transformed to a 

canonical structure represented by blocks of dynamics, each block 

outputs one plant output, and the bloci:s are interconnected by paths 

from their outputs only. At an intermediate stage of the design 

algorithm, ordinary reduced observers are found for each block; this 

is possible because of the derived structure. The block states 

represent a transformation of the plant states in the original basis, 

and the desired scalar function of plant states is expressed as a 

function of the block states. The reduced observer for each block 

provides a scalar estimate for that block's contribution to the 

desired scalar function, and these sub-observers may be regarded as 

multi-input single-output transfer function operators. If it is 
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arranged that these transfer function.; all have the same poles, 

because their outputs are to be summed to provide the desired scalar 

estimate, the same effect may be achieved by summing the numerators 

and creating a single multi-input single-output transfer function 

of the same order. 

Luenberger's scheme is valuable because it gives insight into 

the design process. Bass and Gura achieve the same final design but 

without gaining much insight. It is interesting to achieve the same 

results again using the theory of Sections 4.3 and 4.4. 

The observability index po  of the plant (4.2.1), (4.2.2) is 

defined as the least integer such that the matrix Ho  , 

p -1 
H' 	= 	A'H' ... A' ° H') 	(4.5.1) 

has n independent columns, and because the plant is assumed to be 

observable 

Po  z n . 	 (4.5.2) 

Define the square matrix Hi!,  whose columns are the first n independent 

columns taken from HI, 
thenC3. is invertible. 
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The argument closely follows that of Section 4.4. 

Suppose that a scalar estimate 

v = k'x 
	 (4.5.3) 

is required, and define 

p -2 
K' 	= 	(k, A'k 	Al ° k) . 	(4.5.4) 

Because IIo is invertible we may write for arbitrary vector 	(4.5.5) 

which parallels (4.4.7) , 

p -1 	p -1 
(k'A ° -1- )E1Ko) 	= 	° )7171 K°) o o 

-1)ll 0  a3' -1-tIK H o o 	o .  (4.5.5) 

Post-multiply both sides of (4.5.5) by x and apply (4.5.3), (4.2.2) to 

obtain 

(p -1) 	Po-1 

° 	-e-• 
1 1  

 

(il)  
Y: 
"1 

= Cf31 	y.(im) 

3m  

 

 

v(i-l) (4.5.6) 

    

This is a (po-1)
th order differential equation with inputs linear 

combinations of the elements of y and their first (p0-1) derivatives. 
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The vector L is arbitrary and may be chosen to give arbitrary poles 

to (4.5.6) consistent with real Z. 

When 4!.. is specified (4.5.6) may be realised by a (p0-1) state 

system (4.5.7), (4.5.8) as discussed in Appendix (4.8) of this 

chapter , 

= Dw 	, 	(4.5.s7) 

v = Hw+Gy 
	 (4.5.8) 

where the poles of D are those of (4.5.6). 

The system (4.5.7), (4.5.8) has the form (4.3.16) where degrees 

of freedom in D have been introduced through L directly in such a 

way that pole allocation is simply done before the relation 

w = Wx 

is found. 



4.6 Example  

This example demonstrates a straightforward application of the 

ideas in designing degenerate observers with arbitrarily specified 

poles. The conditions of Theorem 4.3.1. are satisfied immediately 

without augmenting the estimation vector w. 

A 5-state, 2-input, 2-output plant is considered and numerical 

values in the dynamics have been taken to be small integers for 

convenient calculation. The example is not worked through completely, 

it is considered sufficient to find solutions D and L2 and show that 

(D, L2) is an observable pair. 

The plant dynamics are given arbitrary values denoted by (.) for 

those variables that do not affect the dynamics of the observer in 

this example. 

The example is interesting because a normal (n-m)-state observer 

has dimension 3, the Luenberger observer estimating a scalar function 

would require 2 states, the multivariable degenerate observer giving a 

2-vector estimate has 2 states. It is apparent that there is an 

advantage in using the 2-state multivariable observer in this example. 

All the above observers have arbitrary feasible poles. 
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Consider the plant , 

x 

with required estimate 

v 	= 

and plant outputs 

y 

	

. 	. 

	

. 	. 

	

. 	. 

	

[1 	0 

	

0 	1 

0 
2 

1 

0 

1 

1 

0 

0 
0 

0 
1 

0 

1 

2 

0 

1 

0 
0 

1 
1 

2 

1 

1 

1 

2 

0] 
0 

x 

x . 

• 

• 

IA 	 (4.6.1) 

(4.6.2) 

(4.6.3) 

The design requires the construction of the array (3.4.6) which is a 

rearrangement of the elements of Table (4.6.4), symbollically in 

column 1, and numerically in columns 3 to 7 . 

H y1  

Y2 

1 

0 

0 

1 

0 

0 

0 

0 

0 

0 

K v1 . • 1 0 1 

v2 • • 0 1 2 

HA y1  • • 0 0 1 

Y2 • • 2 1 1 
J 

KA v1 • • 2 2 3 

v2 • • 2 5 3 

Table (4.6.4)  
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Column 2 of Table (4.6.4) indicates the variables obtained when column 1 

is post-multiplied by x. 

By inspection of Table (4.6.4) it is seen that v1 and v2 are 

expressable as functions of y, v and y, so that by Theorem 4.3.1 a 

degenerate observer exists. The design may begin by putting the 

estimation vector w equal to v. It remains to investigate the observer 

dynamics. 

A linear combination L1x1 
is sought such that L1x1 when the plant 

is unforced is a linear combination of v and xl. Table (4.6.5) with 

notation similar to that of Table (4.6.4) is constructed as an aid in 

obtaining the required linear dependencies. 

yl 
 

3 0 0 0 0 

Y2 0 1 0 0 0 

v1  - y1 . . 
1 0 0 

v2 - 2y1 . . 0 1 0 

Y1 ' 
. • 0 0 1 

Table (4.6.5) : Convenient linear row  

combinations of Table (4.6.4)  
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Denote a function of y by f(y) ; f(y) need not represent the same 

function at each appearance. 

From Table (4.6.5) and Table (4.6.4) y2  may be obtained , 

• • 

	

Y2 
	= 2(v1  - yi) + (v2  - 2y1) 	+ f(y) , 	(4.6.6) 

and re-arranging , 

• 

	

(3Y1 + Y2) 
	= 2v1  4. v2 

 4. f(y) 
	

(4.6.7) 

The L1  and L2 
of (4.3.14) are from (4.6.7) 

	

L1  = 	(3 	1) , 	 (4.6.8) 

and 

	

L2 = 	(2 1) . 	 (4.6.9) 

Table (4.6.4) and (4.6.5) are used again to obtain , 

v 	= 	2(v1  - y1) + 2(v2  2y1) + 3y1  f(Y) 

	

= 	2v1  2v2  - 3y1  + f(y) , 	(4.6.10) 

	

v2 	= 2(v1  - yi) + 5(v2  - 2y1) + 3Y1  + f(y) 

	

= 	2v1  + 4v2  - 9y1  + f(y) , 
	(4.6.11) 



so that 

2 2)(v1  _.(3) 	
f(y) 

5 v2 9 
y1 

1  59. 

(4.6.12) 

The state space representation of (4.6.12) is 

2:) 
w f(y) w = 2 5 (4.6.13) 

and 3 \ 
v 	= 	9 ) (4.6.14) 

The D of (4.3.13) is from (4.6.13) 

(2 2 

2 5 (4.6.15) 

The pair (DI  L2) may now be tested for observability. The observability 

array is constructed , 

2D) = (2 1 L  

6 9 2 
) 

and found to have non-zero determinant. Therefore (D, L2) is an 

observable pair. The form of the degenerate observer is (4.3.18), (4.3.20); 

numerical values have been found for D, LI  and L2  and because (D, L2) is 

observable the observer dynamics (4.3.18) can be given arbitrary pole 
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locations. E and C are found by comparing equation (4.6.13) with 

(4.3.13) once numerical values are given to the undefined parameters of 

the plant dynamics (4.6.1), (4.6.2). The observer equations (4.3.18), 

(4.3.20) are then found by direct substitution. 
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4.7 Conclusion  

The design theory of degenerate observers that are required to 

provide a scalar estimate is complete. The theory for the multivariable 

case is less satisfactory, and although a systematic design method has 

been suggested, it by no means always achieves the observer of least 

order. This investigation has revealed some of the properties of multi-

variable degenerate observers, but further research is required to discover 

better methods of introducing and using degrees of freedom in the observer 

dynamics matrix D. 



4.8 Appendix  

This appendix discusses the state space realisation of transfer 

functions that occur in the design of degenerate observers, and 

specifically the differential equation (4.4.7). 

Scalar Transfer Functions  

Consider the differential equation (4.8.1) where u and v are 

scalars and u is taken as the independent variable , 

p -1 

v
(p) 	a. v(i)  	b. u(i) 

	
(4.8.1) 

0 
	i=0 

A convenient state space realisation of (4.8.1) is shown in Figure 4.8.1, 

and with a p-state w, input u, and output vihas dynamics 

w = Dw Bu , 	(4.8.2) 

v 	= 	w 	b u , 	 (4.8.3) 

	

/ 0 	-ao 	, companion form , 	(4.8.4) 
3. 

1 	-ap -1 

and 
B 	= 	(b

o

, b

1, SOO  bp-1) 
	 (4.8.5) 
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It is easily verifiable from Fig. 4.8.1 that this state space 

realisation leads to differential equation (4.8.1). 

Denote the transfer function from x 	to x with the system open p-r 	p  

circuited at the input of the rth integrator from the left as L
r 
. 

Then, 

Ln 	1 ,  

L
P-1
. = 

 

1 L s r 

 

1 
(1 +a s Lr p- r-1) 

1 

L + a
p -r -1) 

and therefore by induction 

L 1 	 (4.8.6) 0 	(sP 	2. a.s) 
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wJ 

—0  b p 

Figure 4.8.1 State space realization  
p 

of y(s) o 
b.si 

u(s) . 
sp 	P-1 alai 

0 

Referring to Fig. 4.8.1, Lo  is the transfer function from the 

input of the leftmost integrator to the output y, and block diagram 

manipulation rules indicate that an input u(s) along the rth  input path 

from the left is equivalent to an input su(s) along the (r_l)th  input 
p 

path. Therefore an input (2:. b.si)u(s) feeding into the leftmost 
0 

integrator is equivalent to the input u(s) entering the system through the 

gains (b
o, 	b

n). A deeper analysis of this type of manipulation is 

given by Zadeh and Desoer [2111 . 



Multiple Input Transfer Functions  

Consider an independent input vector u with components (ul, 	ur) 

so that , 

v 	+ 	 (p) -1 	tiN 

a.vv 	b..
33.
u.
I 

(4.8.7) 

	

i=o 	i=1 j=0 

then the state space realisation is (4.8.2), 	(4.8.4) with (4.8.8), (4.8.9), 

r 
V 	= b .u. 	(4.8.8) 

i=1 
Fa 1  

and 
bll blr 

by-1,1 bp-1,r 

(4.8.9) 

This follows from the linearity of state trajectories with respect to 

system inputs. 

-Realisation of the Set (4.4.10) of Differential Equations  

Consider the set of differential equations (4.4.10) rewritten as 

(4.8.10) , 
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((1)  a
J 
 (i) v (J)  
q 	q 

(13-) v. 1  + 

q=1 j=0 

1 P. m  
N 	(j) + y_ Z b. (q) Y 	= 0 1 

q=1 j=0 Jq 	q 
(4.8.1o) 

for 	i = 1, 2, 	n1)- 

and pi(q) defined by (4.4.5). 

Consider now the differential equation corresponding to a particular 

valueofi.Thismayberegardedasa(.)th order system with inputs pi  

(y : q = 1, 2, .. m) 
q 

(vq  : q= 1, 2, 	r ; q 	i) 

and derivatives of these variables of order not greater than pi. It 

follows that there exists a (pi)-dimensioned state space realisation 

of this differential equation of the form (4.8.2), (4.8.4), (4.8.8) 

and (4.8.9) with inputs (yq  : q = 1, 2, 	m) and& q = 1, 2, ..r; 

q /Diandoutputv..Similar blocks of dynamics exist for each i : 

i = 1, 2, .. r and because the interaction between the blocks contains 

no dynamics the interconnected set of blocks may be regarded as a 
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(21 p.)-state realisation of (4.8.10) with independent inputs I 

(yq  : q = 1, 2, .. m) and outputs (vi  : i = 1, 2, .. 	. 

This is the desired state representation of (4.8.10) and may be 

written, 

and 

w = Dw Ey , 

Hw gy 

Transformation relating state 14 to original state basis  

The vectors v and y of (4.8.10) are defined in terms of the 

plant state x 

(4.8.13) 

(4.8.14) 

with unforced plant dynamics 

x = Ax 
	 (4.8.15) 

It is required to find W such that w of (4.8.12) is given by 

w 	= 	Wx . 	 (4.8.16) 



The dynamics (4.8.11), (4.8.12) are observable because each a the 

component dynamic blocks is observable. This follows because each block • 

has the form (4.8.2), (4.8.4) and (4.8.8) where measured variables 

v and'y replace u in (4.8.8). 

Define 

HDi-1  w = F.x . 1 (4.8.17) 

Then 
w 	Fix 

so that from (4.8.11) and (4.8.13) 

HD1  w 	= (F.A - EH)x 
1 

= 	(F.A - EH) . 

F1 	
= (K - GH) , 

and therefore 

Starting with 

(4.8.18) 

(4.8.19) 

the set of equations (4.8.20) may be constructed using (4.8.18) 1 

H 

HD 

HDf-1  

w = 

F1  
F2 

F 
p 

x . (4.8.20) 
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Since the system (4.8.11), (4.8.12) is observable p independent 

rows of the left hand side matrix may be selected and the resulting 

equations written as 

(4.8.21) H
o 
w = Fo 

x , 

may be solved for w 

w = H0-1 F0 
x, 

and therefore 

W = H -1  F . 
0 	0 

(4.8.22) 

(4.8.23) 

Equation (4.8.23) is the required relation. 
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CHAPTER 5 

STABLE COMPENSATORS OBTAINED  FROM OR•RERVERS  

5.1 Introduction 

We have seen in Chapter 3 that it is possible to design observers 

that provide an estimate of unmeasured plant states if the plant is 

observable. FUrthermore, if an unrealizeable desired control contains 

feedback from unmeasured plant states and is implemented by a realizeable 

control which substitutes plant state estimates for the unmeasured plant 

states in the control law, the closed loop realizeable system has the 

same poles as the closed loop unrealizeable system together with the 

observer poles. This property holds if estimates are substituted for 

some or all of the measured plant states. The realizeable control is a 

good approximation to the unrealizeable control with respect to stability 

and transient response of the plant, for when the initial condition state 

estimation errors are zero the realizeable and unrealizeable controls 

generate identical plant trajectories. Observers used in this way may 

be regarded as compensators and have the configuration of Figure 3.3. 

As shown below the compensator and its component observer have different 

dynamics. The observer and the closed loop system of compensator and 

plant are designed to be stable, but the stability of the corresponding 



compensator may only be determined by stability analysis of particular 

cases. Classical single-input-single-output design techniques [113] 

avoid the problem by working with stable compensation blocks at all 

times. Unfortunately the classical techniques are not easily extended 

to the multivariable case, though Rosenbrock {112] has made some progress 

in multivariablc compensator design using the inverse Nyquist array and 

graphical techniques. The general problem of the design of stable 

compensators is by no means solved. The particular solution of this 

Chapter is straightforward but restricted in application to plants 

stabilizeable from their measured outputs and by the form of control 

law that is required. 

This work is original, though the idea that the stable dynamic 

system and Lyapunov function 

X = Ax 1  

V(x) = x' Px 1 

P > 0 

generate a family of stable systems 

x = (A P1C)x 1  

C > 0 , 
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has been proposed by Barnett and Storey [B4] , but not in the context 

of the design of stable compensators. Whether or not it is acceptable 

to have an unstable compensator must depend on the particular application. 

It is certainly desirable to have state space techniques for generating 

compensators that are guaranteed to be stable. 

Plant, Observer and Compensator Equations  

The plant has a state n-vector x, output m-vector y, and input 

r-vector u with dynamics 

x 	= 	Ax + Bu 	 (5.1.1) 

and 	y = Hx . 	 (5.1.2) 

We suppose that an unrealizeable, stable control law 

16( 
	 (5.1.3) 

A 
is desired but is implemented by substituting a state estimate x for x 

= 1&. 
	 (5.1.4) 

The dynamics of an n-state observer for the n-state plant have been 

derived as (3.2.5) rewritten 

A 
at X  = 

A 
(A - TH)x + Bu + Ty , (5.1.5) 
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and the estimation error has dynamics given by (3.1.7) and (3.2:3) as 

d 
at x (A - TH)6 x (5.1.6) 

The dynamics of the closed loop composite system of plant and observer 

have been obtained (3.1.27) as 

d 	 x 
dt ( Ax'  

l (Al-BK BK ) ( x)  
0 A-TH 	' (5.1.7) 

and the corresponding compensator dynamics are obtained from (5.1.4) and 

(5.1.5) as 

d A 
at x  = 	(A - TH BK)x Ty 	(5.1.8) 

and 	
= Kx

A  
. 	 (5.1.9) 

A 
The compensator has state variable x, input y and output u . 

By the choice of K and T the matrices (A - TH) and (A BK) are 

stable, the stability of (A - TH BK) has not entered the design of the 

observer gain T or the control gain K, and the compensator dynamics could 

possibly be unstable. A similar difficulty occurs when (n-m)-state 

compensators are derived from (n-m)-state observers. 

The following Sections present a method for the design of a class of 

stable compensators. 



d A 
dt x  

= (A BL2  TH)x (T Byy 1 

A 
U = L2

x Lly . 
and 

5.2 A Stable n-State Compensator  

The compensator is based on observer theory but does not approximate 

a given control law (5.1.3). The stable observer, compensator and 

closed loop plant dynamics are obtained simultaneously. 

We examine the form of control law 

A 
= L2x Lly 

so that 
= L2Ax 4,  (L2  IIH)x 

(5.2.1) 

(5.2.2) 

where LI  and L2 are free parameters. The observer dynamics (5.1.5) 

become, 

d 
dt x A = (A 	

2 - TH)x
A  

(T BL1)y $ (5.2.3) 

and the associated compensator equations are 
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The closed loop system is given by (5.1.1), (5.1.6) and (5.2.2) as 

d 	x (A+B(L2+L1H) BL2 x ) 

= 	0 	A-TH 	(,11 dt ( ‘ 
	 ) 

`x (5.2.6) 

For our purposes, a suitable choice of Li, L2  and T give stable closed 

loop plant dynamics and a stable compensator. That is, the matrices 

(A + B(L2  + LiH)), (A TH) and (A + BL2  - TH) are required to be stable. 

.It is shown by construction that a sufficient condition that 

satisfactory Li, L2  and T can be found is that a stable control law , 

u = Jy 	 (5.2.7) 

= 	 (5.2.8) 

is known, so that (A + BJH) is stable. A Lyapunov function, V(x) for 

the plant with control law (5.2.8)  may always be found as 1  

V(x) = x'Px , 	 (5.2.9) 

where P satisfies 

(A + BJH)'P + P(A + BJH) = - Q 
	

(5.2.10) 

and Q is an arbitrary symmetric positive definite matrix. 
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The following values are assigned to L1, L2  and T for arbitrary 

symmetric positive semidefinite 	and R2 ' 

Ll  = J 1 	 (5.2.11) 

1.* - 	Ri  BIP 
	 (5.2.12) 

and 	
P 111' R2  -BJ 
	(5.2.13) 

Because Q > 0 in (5.2.10) then P > 0 and the inverse of P exists. 

The control laws ($.2.11), (5.2.12), and (5.2.13) are shown to be 

stable by analysing the error, plant and the corresponding compensator 

dynamics 

dt x  = 	(A + BJH - BR
1 
 B'P - P 1H'R2)x 

+ P 1H'R2y 	 (5.2.14) 

u 	= 	Jy - RiB'Px
A  
. 	 (5.2.15) 

Stability of the error dynamics  

The rate of change of a trial Lyapunov function V(Ax) 

V (Ax) = d x' PD x 

d 



177. 

is considered and using (5.1.6), (5.2.13) and (5.2.10) we have 1  

V(Ax) = Ax'P Ax + Ax'P Ax 

= Ax'((A TH)'P + P(A - TH)) Ax 

= 	Ax' ((A + BJH)'P + P(A + BJH) - 2H'R2H)Ax 

= Ax'(- Q - 2H'R2H) Ax 

-Ax'Q Ax 	 (5.2.16) 

< o . 	 (5.2.17) 

The positive definite function V(d x) decreases for all .Lx and is 

therefore a Lyapunov function. The matrix (A - TH) is stable and 

(5.2.16) shows that in a sense [B4] , the error is likely to have a 

faster response than (A + JR). 

Stability of Closed Loop Plant  

Equation (5.2.6) shows that the closed loop dynamics are stable 

if (A + B(L2  + LiH) is stable, since (A - TH) is stable. 
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Stability is analysed by considering an autonomous system , 

x 	= 	(A + B(1,2  + 1,1H))x 
	(5.2.18) 

and testing a trial Lyipunov function V(x) 

	

V(x) = 	x'Px . 	 (5.2.19) 

Then (5.2.19), (5.2.18), (5.2.11), (5.2.12) and (5.2.10) give , 

V(x) = x'Px + x'Px 

x'(A + B(- RiB'P + J11))Tx 

+ x'P(A + B(- R1  B'P + JH)x 

x'((A + BJH)'P + P(A + BJH))x 

- 2x'PBR1B'Px 

x'(- Q - 2PBR1B'P)x 	(5.2.20) 

x'Qx 	 (5.2.21) 

< 	0 . 	 (5:2.22) 
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Equation (5.2.22) shows that V(x) is a Lyapunov function for the 

dynamics (5.2.18), which again are likely to be faster than those 

corresponding to the control law (5.2.7). 

Stability  of the Compensator  

The positive definite matrix P also defines a suitable trial 

Lyapunov function to test the stability of the compensator dynamics 

(5.2.4), the autonomous form of which is , 

A 	 A 
X 	= 	(A -I- BL2  - TH)X . (5.2.23) 

Then A 	A A 
V(x) = x'Px (5.2.24) 

and use of (5.2.23), (5.2.12), (5.2.13) and (5.2.10) gives 

• A A AA 
x'Px + x'Px 

A 
X l ((A BL2  - TH)'P + P(A + BL2 - TH))x

A  

N(A + BJH)'P + P(A + BJH)A 

- 2x
A  
'(PBR1E'P + H'R2H)d;c 

x'(- Q - 2PBR1  B'P - 2H'R2H)x
A 
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- x'Qx 	(5.2.26) 

	

< 	0 . 	 (5.2.27) 

The trial function V(X) is therefore a Lyapunov function for the 

dynamics (5.2.23) and the compensator is stable. 

Example  

A stable compensator is designed for the simple stable plant 

O l x+  0 

	

x _ - 	 u, 

and 

	

(1 	0 ) x . 

These equations correspond to (5.1.1) and (5.1.2). Because the plant 

is stable we may take 

	

J = 	0 	, 

in (5.2.7). The matrix Q in (5.2.10) is arbitrarily chosen , 

	

( 1 	0 

o 1 

0 



and (5.2.10) may be solved for P 

( 1.5 0.5 
0.5 	1). 

-1 	o.8 -0.4 
-0.4 1.2 . 

Substitution into (5.2.12) and (5.2.13) for P and P-1  gives 

L2 	= - R1B'P 

- R1  (0 5 1) 

p-1R'R2 

( 0.8)R  
2 

The designed control law (5.2.1) involving L1  and 1,2  defines K 

in (5.1.4) so that in the example 

u = L2x 

A Kx . 

P 

Then 



The matrices (A + BK), (A - TH) and (A + BK - TH) governing the 

closed loop system and compensator dynamics (5.1.6) and (5.1.8) 

become , 

(A + BK) 
	0 	1 

-1-0.5R -1-R1  1  1  

(A - TH) 
	-0.8R2 	1 

0.411_-1 
	) 

and 

(A + BK - TH) 
	-0.8R2 	1 

-1-0.5R1+.4112  -1-R1 . 

The above matrices have characteristic equations respectively 

s2 + (1 + R1)s + (1 + 0.5R1) = 0 

2 + (1 + 0.8R2)s + (1 + 04112
) = 0 

and 	2 + (1 + R1 + 0.8R2
)s + (1 + 0.5R1 + 0.4R2 

+ 0.8R1R2) = 0 

which have roots in the left half plane for all positive R1  and I2. 



5.3 An (n-m)-State Stable Compensator 

It is possible to design an (n-m)-state stable compensator for an 

initially stable plant, however no degrees of freedom exist for the 

design parameters that are analogues to T in (5.1.5). Consider the 

dynamic system (5.101) and (5.1.2), where the state co-ordinate basis 

is chosen so that (5.1.2) becomes 

Hx 

(5.3.1) 
= xl 

where the m-vector xl  and (n -m) -vector x2 are defined by 

(5.3.2) 

It has been previously shown in Chapter 3 that an (n-m)-state 

observer that provides an estimate x2 of the unmeasured state comonent 

x2 , has the form 

• 
A 
z = 	(A22 TA12A‘  + (A22T + A21  TAll  TA12T)xl  

+ (B2 - TB1)u , 
	(5.3.3) 

and 	

2 = (z
A 
 + Tx1) . 	(5.3.4) 
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Subscripted matrices are submatrices defined by the partitioning (5.3.2) 

A = ( 	Al2
) A 	A . 21. 22 

B 

(B1)  2 

(5.3.5) 

(5.3.6). 

and 

= 	(K1 K2) • 
	 (5.3.7) 

The feedback law (5.2.3) may be implemented as , 

u 	= 	Kix].  + K2x2 	 (5.3.8) 

= 	(Ki  K2T)xl 	2z
A 
 . 	 (5.3.9) 

Equations (5.3.3) and (5.3.9) combine to give the dynamic compensator 

used for feedback , 

(A22 - TAB + (B2 - TB1)K2)z + (A22T  + A21 - 

TAll  TART + (B2  - TB1)(KI  + K2  x1 . (5.3.10) 
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Define the vector z and the error Az , 

	

z 	= 	x2  - Tx, , 	 (5.3.11) 

and 

	

A z 	= z A  
- Z • 	 (5-3.12) 

The complete closed loop dynamics of the system and compensator 

may then be expressed as 

/A+BK 	BK 	x;) 

AZ 	 Az 0 	A22-TA12  
(5.3.13) 

It is clear that the closed loop system dynamics (5.3.13) and 

associated compensator dynamics (5.3.10) are stable if the following 

matrices are stable , 

(A + BK) , 

- TA (A22 	12)  ' 

(5.3.14) 

(5.3.15) 

and 
(A22 - TA12  + (B2  - TB1)K2). 	(5.3.16) 



Q 

P22
1 P
21' 

A/P PA = 

(5.3.18) 

(5.3.19) 

(5.3.20) 

A Stable Desisn of (5,11,111) t  (5.3.15) and (5.3.16)  

Consider the set of values for K, T and the associated auxiliary 

matrices P, Q, R, P22  and P21  defined as : 

(5.3.17) 

Q 
	

gli qi2 	symmetric PD , 	(5.3.21) 
Q21 Q22 

and 

R 	0 . 	 (5.3.22) 

Then the matrices (5.3.14), (5.3.15) and (5.3.16) are stable . 

Proof 

A is assumed to be stabletand then (5.3.19) and (5.3.21) give 

P 	7 0 symmetric . 	(5.3.23) 



Consider the matrix (A + BK) . 

Then 

(A + BK)'P + P(A + BK) = 	Q 2PWRBP 	(5.3.24) 

- Q 

< 0 , 	 (5.3.25) 

so that (A + BK) is a stability matrix. 

Consider the expansion of the rightmost  4  a-Psonal block of the 

matrix equation (5.3.19) , and apply (5.3.18), then , 

- Q22 = (P21Al2 P22A22)' (P21Al2 P22A22)  

(P22  1P21Al2  + A22)fP22 + P22(P22 -1P21A12 + A22) 

= 	(A22 - Al2)1P22 + P22(A22 - TA12) 	(5.3.26) 

Equations (5.3.26), (5.3.21) and (5.3.23) show that (A22  - TA12) is 

stable. 
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Finally, consider the expansion of the rightmost diagonal block 

of the matrix inequality (5.3.25) and use (5.3.18) , 

0 > (P21(Al2  + B1K2) + P (A 22-  22 + B2K2))'  + 

(12'21(A12 + B1K2)  + P22(A22 + B2K2)) 

(P22(A22 TA12  + (B2  - TB1)K2)' + =  

- TA12  + (B2  - TB1)K2) . 	(5.3.27)  

Equations (5.3.27) and (5.3,23) show that (k22  - TA12  + (B2  - TB1)K2) 

is stable, which concludes the proof. 

Comment 

For this section the matrix A has been assumed to be stable. 

This assumption may be relaxed by using the following device if a 

stabilizing control 

= Jxl  

is known; replace A by 

( All + 1 J Al2 

A21 

+ BB 

2j 

	

A 22 / 

throughout the section. 



Example, 

The simple example of Section 4 is used. Substitution for P and 
P-1 from the previous example (5.3.17) and (5.3.18) give , 

- R(.5 1) 

- •5 

and then 

( 0 	

1 

(A+BK) = -1-0.5R -1-R 

This matrix has been shown to be stable for all positive R in 

the previous example . 

Also, 

(A22 -TA12)  = - .5 

so that this is stable. 

Finally , 

(A22 B2K2 T(Al2 B1K1))  = -.5 - R 

and the compensator is therefore stable. 



190. 

Conclusion  

The method presented enables a stable compensator to be designed 

for an initially stable plant, or a plant that can be stabilized by 

feeding back the available outputs. 

The feedback control obtained is constrained to have the form of 

Lyapunov control so that the stability properties and limitations on 

transient response discussed in Sections 2.5.2 and 2.5.3 will apply. 

It would be desirable to have similar results for Riccati gains, but the 

algebraic convenience of Lyapunov control laws in achieving stability of 

(A + B(L2  + L111)), (A - TAI) and (A + BL2  - Ta) by choice of L1, L2  and 

T via a common Lyapunov function does not apply. 

The (n-m)-state stable compensator solution of Section 5.3 allows 

little variation in design parameters, and in n-state compensators the 

effect of varying R1, R2  in (5.2.14), (5.2.15) is reduced by the minor 

loop feedback. These considerations indicate that the compensators may 

be of theoretical interest only. 
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CHAPA.-12 6 

OBSEIWERS AND nUADTUTIC COSTS 1TR DETIMMISTIC  SYSTEMS  

6.1 Introduction 

We have seen that if the plant is observable we may design an 

observer such that the error in the estimate, will decay irrespective 

of input according to the dynamics , 

dx = D x , 	 (6.1.1) 

in the case of an n-state observer and 

D
2 
Ax2 I 
	 (6.1.2) 

in the case of an (n-m)-state observer. 

Quadratic performance criteria play an important role in modern 

control theory, as they offer a quantitative measure of controller 

performance which is amenable to mathematical analysis and calculation.—

Meir and Anderson [M5] have studied the effects of optimal (Kalman) 

estimators and non-optimal n-state estimators in the feedback path of 
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an n-state dimension, linear plant for a Gaussian white noise 

environment. The performance of filters of arbitrary order in the 

feedback path, again in the same idealised noisy environment, may be 

evaluated numerically using sets of computer programs as described 

in [371 . Tattle progress has been made in the theory of the 

performance of filters of arbitrary dimension in either the stochastic 

or deterministic environment. 

Newman [N2] and Bongiorno and Yonla [B6] have made recent 

contributions to the theory of the degradation of system performance 

when an observer is used in the feedback path to approximate an 

optimal control law. Both references prove the decoupling property of 

(6.2.2) and (6.2.3)1 however, both place more emphasis on the state of 

the observer than on the desired plant estimate. The author believes 

that the analysis presented here gives a better understanding of the 

underlying mechanism, and in addition it treats a slightly more general 

performance index where Q1 in (6.1.4) is non-zero. 

The main contributions of this Section are Theorems 6.2.1 and 6.2.3 

which give conditions for the degree to which system performance 

degradation arising from synthesizing a control from an observer 

estimate of plmit state, may be reduced by increasing the observer speed 

of response. It is shown that often, in a sense to be defined, the 
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performance degradation cannot be decreased beyond an easily 

calculated lower bound estimate greater than zero. The estimate, 

however, is not the greatest lower bound. 

Mathematical Formulation  

The plant dynamics are again expressed in a co-ordinate basis 

such that the m plant outputs y form the first m components of the 

n-vector state 

x 	= 

y 	= 

Ax + Bu 

	

[A11 	A12] 

	

A
21 	

A
22 

xl • 

rill 

x2j 

[B1 u 
B2 

A performance index J is defined 

jr1x1Qx + 2x'Q1u + u'Ru)dt , 0 

and an ideal control law , 

(6.1.3) 

(6.1.4) 

Kx 	 (6.1.5) 

= 	Kix].  + K2x2  , 	 (6.1.6) 
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minimises J Which is then defined by 

Jo 	A 	x'(o)P x(o) . 	(6.1.7) 

Matrices Q, Q1, R are assumed to be such that the optimum exists and 

is stable so that P is finite. It will be assumed that P is positive 

definite (P.D.). 

Control law (6.1.5) is unrealizeable because the state x2  is 

unmeasured and the realizeable laws (6.1.8), (6.1.9) are used as 

approximations , 

(6.1.8) 

and for 1-educed observers 

A 
= KiXi 1"2x2 . 

(6.1.9) 

We wish to see the effect on the system performance index J of 

using control laws (6.1.8), (6.1.9) which may be written 

= Kx K21x , 	 (6.1.10) 

and 

u 	= 	Kx K2  i1x2 . 	(6.1.11) 



) 2 	= ,..( x ) 	(A + BK BSitx (6.1.12) 
dt Ax 	0 	D 	Ax). 
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Effect of n-state Observer  

The dynamics of the n-state observer and plant may be represented 

by (6.1.1) and (6.1.3) which are coupled through (6.1.10) to give 1.  

A Ttx .kA.) 

Under the control law (6.1.10) the cost integrand of (6.1.4) 

becomes , 

cost 
(integrand) - (xl 	ax' ) 

/(Q+KIRKI-Q1K+KIQ11  

KtQlt+KIRK 

QZ-EKIRK)( x  

KIRK 	Ax) 
(6.1.13) 

(x t 	akL-1) 7.(L) • (6.1.14) 

Then 

(xt 	Ax2)-q() dt (6.1.15) 

(x' 	Ale) 
73.1 	12 (6.1.16) 

22/(Ax)  
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(xt Axt ) 	. 	 (6.1.17) 

The integral (6.1.15) exists because 7:is stable if both (A. BK) 

and D are, which is assumed. The optimal J°  has been assumed to be 

greater than zero for all non-zero initial condition on xl  and 

therefore so is J of (6.1.15). Because the cost integrand is positive 

and the system stable we must have [112] , 

0 

0 

AtP + P A = • 

The solution P of (6.1.20) is considerably simplified by the 

following observations. 

F or initial conditions such that 

Ax = 0 

the dynamics (6.1.12) show that Ax remains zero. The control law 

(6.1.10) then equals the ideal control law (6,1.5), the presence of the 

observer has no effect and the performance index J for the trajectories 

corresponding to this class of initial c9ndition must equal the optimal 

jo. 



Jo x'Px 

x1P x 11 ' 
and therefore 

11 = P • 

(6.1.21) 

(6.1.22) 

Substitution of zero Ax in (6.1.16) gives for all x, 
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The submatrix 721 is now evaluated. The expansion of (6.1.16) is , 

J 	= 	xf711x + 	 Axt 2x116  Ax + 	-i5'22 Ax . 12 	(6.1.23) 

Because of (6.1.19) P22  must satisfy 

P22 ) 0 	 (6.1.24) 

T22". I > 0 . 	 (6.1.25) 

Selection of Ax such that 

Ax = - 11-5  x 22 	2 x 	(6.1.26) 

and substitution into (6.1.22) and use of (6.1.21) gives 

22 I)-1(-2(I +1; ) jo x1712(1-22+  

722)(1522 1)-3;2'  x 

and then 



= J°  + x11312022  + 1)-1(-21 -722°22 1)-27121 . 

.... (6.1.27) 

J° 	AJ . 

From (6.1.25) for all x 

AJ C o 	 (6.1.28) 

and for non-zero P12 there exist non-zero x such that 

AJ < 0 . 

Th.s is impossible because J°  is optimal for such an x and 

therefore 

712  = 0 . 	 (6.1.29) 

With P11  and 1512 given by (6.1.22) and (6.1.29), ;2 is the  
only unknown since 'Pis symmetric. Equation (6.1.30) is the bottom 

diagonal block of the matrix equation (6.1.20) and has solution ;2  

D' 22  + P22 D = 	K2IRK2 	 (6.1.30) 
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Expression (6.1.23) with (6.1.29) and (6.1.21) gives 

x'Px 	Ax/722  Ax 
	(6.1.31) 

Jo AJ 	 (6.1.32) 

Equations (6.1.31) and (6.1.30) are an important simplification 

in determining the effect of the observer on the performance index 

(6.1.4). This simplification depends on the ideal control law being 

optimal. 

Effect of (n-m)-State Observer 

Equations (6.1.12) to (6.1.17) become , 

d 	x 	(A + BK BK2) (x 

dt (Ax2 	0 	D2 	Ax2 
(6.1.33) 

Cost 
integrand = (x' Ax2  

(6.1.34) 

Q+KIRKA1K+KI(6.1 	q1K2 
+KIRK2 Ax2 (6.1.35) 

K2ig1I+K2IRK K2IRK2 

(x' Ax_ ')4 
	

(6.1.36) 



O (xi 
—11 

A _ 	:2) 
—21  

(6.1.38) 

A(Xi  
Ax21) 2(3c16x2) 

(6.1.39) 
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and 
= 	r be(xi  AxA) 94c) dt 	 (6.1.37) 

Using equations (6.1.33) to (6.1.39) and the fact that the control 

law (6.1.11) is optimal for zero Ax2' the procedure used in the case of 

an n-state observer may be followed to prove that 

1411 = 	
(6.1.40) 

2.12 	 (6.1.41) 

and P22  is given by 

D2 IP22 - Pe2 D2  = - K2IQIC2 
	(6.1.42) 

However, a completely algebraic derivation which could also have been 

used for the n-state case is presented for completeness. 



(1211 

--21 Z22 / 

P 12\((to-BK) BK2 

D2 

= 	4.• 

(Q÷KIRK+Q1K+Kigit 

 

Vc21Q3.t+K2`RK 

X01.  

From (6.1.39), (6.1.37) and (6.1.34) P is given by the solution 

of , 

A1P 	P A = 	a 	 (6.1.43) 

or in expanded form 

(Ari-BK)t 

K2'B' 	D2 

P11 -al 

\:-21 

P -12 

-22 / 

(6.1.44) 

The upper diagonal block of (6.1.44) is , 

(A + BK)'P11 
	(A BK) = - (Q K'RK Q1K Klqii) , (6.1.45) 

and (6.1.45) with the definition of J in (6.1.4) give 

P11 = P - (6.1.46) 
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The upper off-diagonal block of (6.1.44) is 

(A + BK)T12  + I11BK2 P12D2 = 	K'RK2 Q1K2 	which 

becomes 

(A + BK)'P + P12D2 	0 

from (6.1.46) and because the optimal K satisfies 

- R-1(Q1  + B'P) . 

(6.1.47) 

(6.1.48) 

The matrices (A + BK) and D2 are stable by assumption and therefore 

no eigenvalue of D2  can be the negative of an eigenvalue of (A + BK). 

Equation (6.1.47) then has a unique solution [J3] , [9i, Chapter 8] 

and because the left hand side is zero, the solution P„%1..C.  is zero, which •""  

proves (6.1.41). As in the base of an n -state observer, this 

simplifying result depends on the ideal control being optimal. The 

lower diagonal block of (6.1.44) gives (6.1.42). 
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'6.2 	Inhorent Perfor:17tnce  Deratioa Illeluce(1 lThen 

State  Estimates_ Are Used in Optimal Contr.ol  14.1-1-,rs 

The performance cost increment above the optimum has been defined 

to be N.  for non-zero initial estimate error, so that 

AJ 

= 

= 

=I 

JO 	.4. 	, 

40722  be 1  

AK 2 P  —22 	2 ' 

(6.2.1) 

(6.2.2) 

(6.2.3) 

where (6.2.2) and (6.2.3) correspond to n and (n-m)-state observers 

respectively. 

!e are naturally interested in having small /NJ for a given initial 

estimation error, and therefore it would be desirable to make P22, 222 

small. 

The right hand sides of (6.1.30) and (6.1.42) are fixed with respect 

to the observer design problem so that P22 and P22  are determined by the 

observer error dynamic matrices D and D2  alone. 

An important question is : can INJ be made arbitrarily small  for 

all estimation errors of unit norm? The following theorem gives the 

answer. 
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6.2.1 Theorem 

Consider an n-state plant with an m-vector output xl  such that 

x = Ax + Bu 

A11 A3.2 /xl) + B1) 
A21 	A22 ) Vc2 	\ B2 

and performance index J 

flx1Qx + 2xtQiu + u'Ru)dt . 
0 

'Consider the(ideal) optimal control law , 

Kx , 

for which J is J°  and the (non-ideal) approximating control law 

generated by an (n-m)-state observer, 

A 
u 

= KiX1 K2x2 ' 

for which 

J = 	J°  + LJ 

where 
AJ = '211222 65(2 ' 

and Ax2 is the initial estimation error. 
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Use ofthe non-ideal control law introduces an irreducible 

performance degradation in the sense that tr(P22  ) has a finite lower 

bound independent of the observer if the rows of A12 do.not spnn the 

rows of K2. 

Proof 

Temporarily denote K2IRK2  by S, then (5.3.42) gives 

tr(X22) = 	exp(D2It)S exp(D2t) dt 

= 	tr(S4.1exp(D2t) exp(D2't) dt SI) 	(6.2.4) 

The integrand of (6.2.4) is now examined by considering an 

auxiliary (n-m)-state dynamic system and performance index J1  , 

w 	= D2 w 

= 	(A221 	Al2I T11) w  ' 	(6.2.5) 

J1 	= Jew' w dt 	 (6.2.6) 
0 

A w'(o) L w(o) , 



so that 

L 	=J 	 2 	- t) exp(D2  't) dt . 
	(6.2.7) 

20C). 

(6.2.5) comes from (3.3.23). 

We examine the effect of different matrices T1 on the cost L by 

introducing a control v in the dynamics (6.2.5), 

v = TI* w 

A22lw - A12  * v . 

Suppose that the columns of K4* are a minimal ortho-normal basis 

for the columns of Al2' . Then no dynamic information is lost by 

introducing an equivalent input v and writing 

A22 *-K4  Iv -- 

where K4' has maximum rank. 



-4  (Gil 012 -w-1 ( I 

021 022/ Ee 0 
(6.2.9) 
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It is always possible to make a nonsingular transformation such 

W 	= 	W w , 	 (6.2.8) 

I 
• 

W -1 22  ' W w+ (I0
) v 
— 

that 

J1 	
= 	W114 w dt 

w dt . 	(6.2.10) 

Note that all matrices are finite. 

We now prove that there exists a lower bound on Ji  for all non- 

zero initial w2. Because the input v is not costed, impulse functions 

are allowable and this will be interpreted that wl  may be instantaneously 



adjusted to any value, and may be therefore considered to be a 

control variable. The dynamics (6.2.9) may then be written 

• 
-11-2 	= 22-2 	21-1 

(6.2.11) 

and the performance index JI  could be minimised with respect to w1. 

Because the matrices in (6.2.11) are finite the minimum J1°  exists, 

is finite, and greater than zero for any non-zero initial condition w2. 

Explicit Lower Bound on Ji°  

An explicit lower bound on Ji°  may be obtained in terms of 114 

by condensing the dynamics (6.2.11) to a scalar equation associated 

with the norms of a2  and w1. 

Trajectories of (6.2.11) that minimise JI  are generated by an 

optimal control of the form 

1 	= 	K vr . '- 	-2 

Consider an optimal trajectory TR1 for which Jl  = J1°, and 

(6.2.12) 

associate the scalar variables w1
v.: w2K  with 11 w1

11 and 1l 11 along -2 



TR1 so that , 

w2
IC  

= 11-'21. 1 ' 

. K 	_ 	d 11 	, w2 	- 	dt 11 2-1211 ' 

wl 	11 1q3-11 

e(t) wi4c  

(6.2.13) 

(6.2.14) 

(6.2.15) 

(6.2.16) 
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and 

where 

. K 	
C 	K 	 v

K 

w2 = 22w2 21w1 

822 
A 

i "22 

(6.2.17) 

(6.2.18) 

de23. 
A (6.2.19) 

and e(t) is defined by (6.2.15), (6.2.16) and therefore 

K(t) 	0 . 

Introduce a performance index 	for the dynamics (6.2.17) , 

ec   (w2K2  w1 ) dt . 0 
 (6.2.20) 



0 J1  
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Along the trajectory TR1 

w WIW w dt 

o 
 W 2 " 

= 	-ft°  ( 1 w 1
2 
+ p. 112) dt 

= 
 jrn

m 	m2 
w2 
2  w1  ) dt 0  

= _r(1 K(t)2)wig2  dt 

(6.2.21) 

The optimal trajectory TR1 is stable and by construction 

W1 0 s' 
n n 

22' ""21 	' 

w2 ' el(t), v > 0 . 
and 
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Because v is positive, it has a destabilizing effect for 

positive w2K  on the dynamics (6.2.17) rewritten as , 

w2 	
- 42W2 621X1K "K  

- 22 2 d KK(t))w2K 
 vK 	 (6.2.22) 

x and therefore J2 
A JK evaluated along a trajectory of (6.2.22) with 

zero v but having the same initial condition w2
x 
satisfies 

J2K  < Jl
x 

However, we may find an explicit solution to the problem of 

minimising JK  with respect to w1K  for zero vv  and dynamics (6.2.17). 

The optimum for initial condition w2  is , 

j2e. 4.  e 2 
22 	21  x2 

w2 
 

01' 21 
(6.2.23) 

K 2 = w . 
2 

Any optimal trajectory of (6.2.11) with initial condition Late  must 

satisfy , 
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1 	Jl 

> J2 

> J2  

= 	 x2 p 
w2 

= P'11 1t2112  • (6.2.24) 

We recall that 

	

tr(P22) 	= 	tr(S.4  L S'4) , 

	

S 	= K 'RK 2 2 I  

= WI w , 

W'W 

and 	J1 	w' L w 

p. 

The r non-zero eigenvalues of S must have eigenveators made up 

of linear combinations of the rows of K2. 
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Suppose that these eigenvalues are denoted by the set (si  : i = 1 .. 

with associated eigenvectors Ile(i) i = 1 .. r and that {e(i)} have 

components te2(i) i = 1 .. ri• normal to the subspace spanned by the 

rows of A12 • 

Then 

tr(P22) = ;El si  eki) L e(i) 
i=1 

(6.2.25) 

p   s. e2  1(i) e2(i) . 

The derivation of this inequality is independent of the observer 

gain T1 so that there exists no T1 , even as I
Till 	co , for which 

the inequality does not hold. 

The matrices A, K2, R completely determine (6.2.25) and are 

assumed to be fixed, so that if the rows of K2  are not spanned by the 

rows of A12 , 

r 

tr(P22) > PK 21 Si le2(i)U 2  
i=1 

A 

> 0 . 
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6.2.2 Corollary, 

Consider an n -state plant, with an m-output y such that 

x = 	+ Bu 

Ex 

and performance index 

J 	= f(xigx + 2,0Qiu + tit/4u) tit 

with optimal J°  under the (ideal) optimal control law 

u = Kx 

An n-state observer provides an estimate x 
A 
of x and the ideal 

control law is approximated by 

1  

which for initial estimate error Ax results in 

J = 	J°  + AJ 

J°  + AxIT Ax . 

Then an irreducible performance degradation is introduced in the 

sense that there exists a CK  such that for all n-state observers 
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tr al) 	e 

> 0 . 

Proof 

The matrix P is defined by 

Dt1 PD = - RK 

where 

D 	= 	A - TH 

and the matrix T is the only design variable. 

It may be shown that by replaciag the matrices D1, T1, A22, Al2, 

P22  by the matrices D, T, A, H, P in the proof of Theorem 6.2.1 that 

if the rows of K are not spanned by the rows of H then there exists 

a e .such that 
tra")) > e 

> 0 . 

We note that if the rows of K are spanned by the rows of H, an 

observer is unnecessary. 
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6.2.3 Theorem 

Consider the plant, performance index and optimal ideal control 

law of Theorem 6.2.1. 

Suppose that the rows of A span the rows of K2. Define a 

matrix K3 with rows orthogonal to those of K2  and such that the rows of 

K2 and K3 
 form a minimal basis for the rows of  Al2.  

Consider the system 

w = A22'w - A12IV 

then by construction the same dynamics may be effected by a new 

forcing term v, 

• 
= A22 - (K2' 	Kpz. 

Transform the above system so that 

W = Ww 

WK2' 	(0) , 

and 
- 

= 	W  A221/4 
1 

 IL W(K2'1Y)  

I 

0 
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If the pair (C22, K4) is controllable or stabilizable, the performance 

degradation introduced by using the control law 

u = Kixi 	, 

may be arbitrarily reduced by stable observers in the sense that 

DJ =tP AX 222 2 ' 

and for any 0K  > 0 there exist observers for which 

0 < tr(E22) < C . 

Proof 

As in Theorem 6.2.1 denote K2'RK2  temporarily by S. 

We recall (6.2.4) and (6.2.7) , 

tr(122) = tr(S2rexp(D2t) exp(D21t)dt 51) 

A4. 
tr(S2  L 5') 	(6.2.26) 

and associate a dynamic system 

= D2ow 

(6.2.27) 



= 	A22lw + A12tv 	
(6.2.28) 

v = T1
tw . 	 (6.2.29) 

By hypothesis we may write 

= 	A221/4 	(K2' K3') -Y- ' 

and introduce the state transformation 

= Ww , 

so that 
Cu w 

021 

Define 

J1 	
jc7w'w dt 

(6.2.30) 

(6.2.31) 

= low W-11W-1w dt . 

The implication of allowing the observer gain matrix Ti  in (6.2.27) 

to tend to infinity is that the magnitude of v in (6.2.29) or vi  in 

(6.2.30) may tend to infinity. In this case feedback laws exist 
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vl  = K w 

that generate impulse like inputs that may force wl  to zero value in 

an arbitrarily short time, and maintain it there. 

The contribution to J1 of a finite non-zero initial condition 

on w1  can therefore be made arbitrarily small by suitable gains on 

In this case the dynamics of w2  tend to 

C22-2  +K4-v2  , 	(6.2.32) 

which can be made stable with some feedback 

212  = K10.1 , 

because (C22, K4) has been assumed to be a controllable or stabilizable 

pair. 

The feedback laws 

vl  = K517 

,22  = 	K61L2  , 
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may be rewritten 

	

v 	= 	T1 
 ow . 

--- -•- 

But for any such TI  the same dynamic effect may be achieved by 

a T1 in (6.2.29), so that there exist observer gains Tl  for which 

the observer dynamics 

D2 = (A22 - TlA12) 

are stable, and the contribution to Jl  of a non-zero initial wi  can 

be made arbitrarily small. 

Now consider an initial condition w of (6.2.29) such that w 

lies entirely within the subspace spanned by the columns of K2' 

w = K2lb ' 

w = W w 

= WK2lb ' 

and because by hypothesis 

WK21  = ()) 

then 
1 

and 

	

27.2 	= 	0 . 
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Therefore for this type of initial condition, 	can be made 

arbitrarily small. 

Using the same notation as Theorem 6.2.1 the eigenvectors 

corresponding to non-zero eigenvalues of S = (K2'RK2)3  must be 

of the form 

e(i) = K2lbi 

and therefore from (6.2.25) 

r 
tr(P22) 	

i=1 
	s.1  e(i)' L e(i) . 	(6.2.33) 

All terms in (6.2.33) can be made arbitrarily small by a suitable 

choice of gains on v in (6.2.29) and hence by a suitable choice of 

Ti in (6.2.28). 

That is, for any CK  > 0 there exists observers for which 

0 	< tr(P22) < CK 



909 

6.3 Comparison with Other Work and Comments on Results  

Reference D56] claims a result which conflicts with Corollary 

6.2.2,and the error in the analytic support for the claim is 

demonstrated in this Section. 

Support for Claim  

For an n-state observer we have non-singular L with dimension 

(n, n) connecting observer state z and plant state estimate x 
A 

x = L-1  z = x+ Ax, 

Lx 

Liz 	= D Az , 

dx = L-1  DL Ax 

D dx 

(6.3.1) 
= (A - TR) Ax , 

and 	
DJ = _C'AxtKIRK Ax dt 

--4-fAxt S Ax dt . 	(6.3.2) 



Suppose that s is the maximum eigenvalue of S. Then the 

argument of [B6.] runs, 

0 	J < s 	 ailexp(A) Ax(t0)11 2  dt . f  

Using the properties 

ilexP(Dt) A x( )11 
	

ilexp(R)11 	116x(to)fi 

and 

lexp(M < C exp(dt) , 	(6.3.3) 

where C is an appropriate constant and d <0 is greater than the real 

part of the eigenvalue of D with largest real part (D is similar to 

D), one getS from (5.3.83)  , 

0 	J <s Px(t0)11 2  (-91) . 
_fa 

(6.3.4) 

The only term in the right hand side of (6.3.4) which depends on D 

is d. Clearly AJ ----> 0 as 	—oo . 

Error in the Analysis  

But this is a false conclusion because in (6.3.4) C depends on 

77 from (6.3.3); 17 varies through the gain T in (6.3.1) in order that 
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it may be similar to %so that 1; is a function of D. --Therefore both 

C and d in (6.3.4) are functions of D. This invalidates the proof 

given. 

Comthents on Theorems 6.2.1 and 6.2.3 

It is interesting to note that if the desired control cannot be 

synthesized from the plant output and its first derivative, the 

conditions for Theorem 6.2.1 hold and there is an inherent performance 

degradation in the deterministic optimal control problem. 

The Theorems consider the situation where observer gains may 

approach infinity. There are several reasons why the performance 

limits indicated by the Theorems caniot be attained in practice. 

Firstly, perfect arithmetic will not be achieved internally in the 

observer and numerical errors arising there will cause deviations 

from the theoretical trajectories. 

Differences between the plant dynamics and the equations 

assumed for the plant are unavoidable with respect to the order of 

the equations as well as individual parameter values, and these 

discrepancies sooner or later would be a limiting factor that has not 

entered our analysis. Finally ;:he deterministic environment is 
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itself an idealization. The plant output will be noisy and in so far 

as the observer tends to differentiate as its dynamics are made faster, 

the effect of the output disturbances will become more significant. 

It the output noise is Gaussian, white and with zero mean the Kalman 

filter will give optimal expected costs [A] . 

Though very high observer gains can never be implemented in 

practice, the author feels that the results of this chapter are of 

theoretical interest and may give an overall idea of what can and 

cannot be achieved with closed loop control when not all plant states 

are measured. It is emphasized that the concept of performance 

degradation used throughout the analysis reflects the system performance 

from all initial conditions of estimation errors of the punt state. 
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CHAPTER 7 

SIMPLE CONTROLLERS FOR HIGH ORDER PLANT  

7.1 Introduction  

One of the main problems of designing control systems is that 

the available dynamic models of the plant merely approximate reality. 

For plant of any complexity it is necessary to use a computer at some 

stage in the design process, and this has motivated the development of 

design tools like modal control,Riccati control, Kalman filters and 

Luenberger observers that incorporate easily programmable, non-iterative 

algorithms. However, these state space design methods when applied to 

large plant models lead to controllers that are known by experience 

to be unnecessarily complex. There are two approaches to overcoming 

the difficulty, (a) to retain the same plant model and simplify the 

controller by constraining its structure, or (b) to simplify the 

model of the plant dynamics and use the algorithmic state space 

design methods. A computer search for a satisfactory control based 

on (a) is usually organised as the search for the minimum of an 

optimisation problem. In this case, a practically complete description 

of the plant dynamics is retained and there is every prospect that 

the plant and controller will have the same performance as the plant 

model and controller. For complex plant the iterative procedure of 

hill-climbing to optimal feedback parameters is likely to require 
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large amounts of computing time compared with procedure (b), unless 

some structure can be found for the problem. The disadvantage 

of (b) is that information about plant dywmics is discarded so that 

it is possible for closed loop full and simplified model dynamics 

to differ unless precautions are taken. These precautions are 

difficult to define a priori and are catered for in the design 

process by manipulating upper limits on feedback gains or cost on 

control to maintain agreement between the closed loop full and 

reduced model dynamics. This problem of agreement is very similar 

to that of the plant and plant model dynamics agreement, and 

understanding one problem is helpful for the other. Since methods 

(a) and (b) lead to more or less automatic limitations on input 

magnitudes, it is probable that the closed loop plant performance 

will agree with the closed loop full model performance. 

In Section 7.2 we present a design method of type (a) and find a 

structure for the hill-climbing problem, by which conditions are 

obtained that convergence to the optimal feedback parameters will be 

fast. 

Section 7.3 discusses a method for obtaining the invariant 

subspace of the dominant modes cf sampled data plant models. 
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Section 7.4 introduces the concept of a parallel path model and uses 

the method of Section 7.3 to obtain parallel path models of reduced 

dimension. 

The theories of hill-climbing on a fixed fedback structure, 

model reduction and observer theory are combined in Section 7.5 to 

give an overall philosophy for the design of simple controllers for 

complex plant, where not all state variables are measured. 



7.2 Gain Optimization from Available Plant Outputs  

7.2.1 A Convenient Performance Index 

Consider a closed loop plant with dynamics 

X 	= 	Ax + Bu 	 (7.2.1) 

y = Hx 	 (7.2.2) 

Ky , 	 (7.2.3) 

and suppose that K is to be found to minimise the cost of an infinite 

time trajectory with initial condition xo  

11(xo,K) 
60 

J(x'Qx u'Ru)dt , 
0 

(7.2.4) 

for Q 	0, R > 0. 

Rekasius [R7] has considered a min-max problem over all 

initial xo. Unless H is invertible the optimal K is a function of 

xo. A more general performance index on K is specified in terms of 

a set of initial conditions tx(i) : i = 1, ... Ni and a cost J 

defined, 

A c J = 4: J(x(i),K) 

= tr(X0'PX0) , 	(7.2.5) 
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where 

Xo 	
0 	(x(1), x(2) ... x(N)), 	(7.2.6) 

(A BG)'P P(A BG) = - 	G'RG , 	(7.2.7) 

and 

G = KR 	 (7.2.8) 

Necessary conditions at the optimum 

We shall find the necessary conditions at the optimum for K to 

minimise J (7.2.5), and establish a hill-climbing algorithm from them. 

The problem has an interesting structure which may give insight into 

the requirements of simplified dynamic models used for feedback design. 

The first order perturbation of (7.2.7) is with the definition 

AG 	4  A + BKH , 	 (7.2.9) 

AG?  AP +AP AG  = AG1(RG + B' P) + 	+ BIP)1 AG (7.2.10) 

A Q . 

BJ We obtain Irc  by evaluating the first order change AJ in 

J (7.2.5) with respect to a change AG in G. From (2.7.10) 

AP 	= trexp (A_ 't) AQ exp (AGt) dt, 0 
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so that to first order 

A J 	= tr (X' A PX) 

co 
= 2 tr (1 Xo t exp (AG 't)(RG + BtP)1 PG 

0 

exp (AGt) X0  dt) 

= 2 tr ( 	xp (AGt) XoXot  exp (AG It) dt 

(RG + B tP) t AG) 

= 2 tr (T(RG + B'P)I AG). 	 (7.2.11) 

Where 	 ..rc'exp (AGt) X0X0I exp (AG t t) dt. 	(7.2.12) 

However , 	AG = A KE1 so that 

A J 	= 2 tr (T(RG + B'P) A KEI) 

= 2 ti ( AKI(RG + B'P)TH'). 	 (7.2.13) 

For A J = 0 for all A,K / 0 it is necessary that 

ao- 	= (RG 	BtP)TH' = 0 . 	 (7.2.14) 
8K 

The matrix T defined by (7.2.12) is invertible if the dynamic 

system 
= 	AGx + Xov , 	 (7.2.15) 
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is controllable [K101 from input v, where X0  is the set of 

initial conditions (7.2.6) over which J is minimised. 

When H and Xo are invertible T must be invertible and (7.2.14) 

gives the usual condition for the Riccati controller 

-1 - R B'P. 

For the case when H has maximum rank m < n (7.2.14) becomes 

RKHTH' + BY1.1-0 = 0 

or 	K 	 - R 1BIPTP(HTH')-1, 
	(7.2.16) 

at the optimum where we assume that inverses exist. 

Interpretation of necessary conditions  

The expression (7.2.16) is usefully interpreted in the following 

way. Consider an estimate x of x to be obtained as a function of the 

measured output y so that 

xK Z y. 	 (7.2.17) 

Consider the problem of finding Z to minimise 	defined in terms of 

the closed loop trajectories with initial conditions X0, 



noo c.uv • 

ge:  11 
2 

xx  - x,l 	dt 
M'M 

(7.2.18) 

tr 	Xo exp (AGIt)(HtZ' - I)M'M 

exp (AGt) xo  at 1  

so that from (7.2.12) 

JK 	= tr (H'Z' - I)M'M(ZH - I)T 

= 	tr M(ZH I)T(ZH - I)IM,. 

Then if we define Z = MZ and minimise J wrt. Z , we have 

a . 	tr ((eH - M)T(ZH M)') 
BZ 	BZ 

= 	HT (ell - M)1  

which is zero when 

xl (HTIP)-1HTM' 

or 	MTH'(HTHI)-1. 

Therefore since 21  = MZ, the Z that minimises J is given by 

Z = TH1(HTH')- 
	

(7.2.19) 



When M is invertible (7.2.19) is a unique solution, otherwise 

(7.2.19) is one of an infinite number of solutions. 

Comparing (7.2.17), (7.2.19) and (7.2.16) it is seen that at 

the optimum, the incomplete state feedback control has the form 

- R-1B/FTH'(HTH') lY 

-R1B'P x'. 	 (7.2.20) 

X is an 'optimal' estimate and in particular, putting M = R-1B1P 

in (7.2.18) we see that along the constrained feedback trajectories 

2 x .0 	dt 
0 

is minimised. Since the Riccati control with full state measurement 

is u = R-iBtPx, it is clear that there is a close connection between 

the full and incomplete state measurement optimization problems. 

This is an encouraging result and suggests the approach 

followed in the succeeding Section for obtaining the solution of the 

constrained optimization problem, however we first examine the term 

(HTIP)-1. 
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Notation  

Paralleling the definition of the matrix of plant initial 

conditions 

	

0 4 	(x(1), x(2), 	x(N))t=. $ 

we introduce the matrices X(t), Y(t) corresponding to plant closed 

loop trajectories corresponding to X0, 

	

X(t) 4 	exp (AGt) Xo 	 (7.2.21) 

Yx(t) 
4  HX(t) 	 (7.2.22) 

We now show that singularity of (HTH') is merely a consequence 

of linear dependence among the plant output trajectories Yx(t). 

From (7.2.12) 

OD 
HTH' 	exp (A,t)X o Xo  exp (AG't) dt H' 

= 	J H X(t) X'(t) H'dt 

OD 
= 	r YX(t) YX1(t) dt . 

AD 
(7.2.23) 

Therefore (HTH') is singular if there exists a constant p such 

that Y'(t) p is zero for all t 	0 . That is for each closed loop 

trajectory starting from the initial conditions X0, y'(t)3 = 0 and 

the plant outputs are dependent. There is then indeterminacy in 

choosing Z of (7.2.17) and in the context of noise-free systems one 
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or more plant outputs could be neglected with no loss of informati3n. 

We will assume that plant outputs are independent so that 

(HTH1)-I always exists. 

7.2.2 Almorithm  for Constrained Optimization 

The similarity between conditions at the optimum of the constrained 

and unconstrained problems has been noted. One successful method of 

solving the steady state Riccati equation is due to Kleinman [K8] . 

It is presented in the literature for the continuous time case but we 

rederive it for discrete time, because the author feels that its 

convergence properties when small perturbations in the control are 

present are more easily obtained. This will be helpful in discussing 

the convergence of a similar algorithm for constrained gains. 

The discrete time Kleinman algorithm 

Consider a sampled data system 

Axk  Buk  , 	(7.2.24) 

Yk 	= Hxk  , 	(7.2.25) 

with performance index 

(7.2.26) 



The minimisation of J with respect to u leads to the discrete 

time Riccati equation, which at steady state is , 

= Q + G'RG + (A + BG)'P(A + BG) 
	(7.2.27) 

Q 	A'PA AIPB(R + BIPB) 1B1PA , 	(7.2.28) 

when 

G = 	(R + B'PB)-1B/PA . 
	(7.2.29) 

The Kleinman algorithm is based on (7.2.27) and (7.2.29) rather 

than (7.2.28). Suppose that a stable control law G(k) is available, 

then we may define 

J 	= 	xo1P(k)xo , 
(7.2.30) 

P(k) = 	Q + G'(k) RG(k) + AG(k)1 P(k) AG(k) , (7.2.31) 

AG(k) = 	A + BG(k). (7.2.32) 

.Now consider a new control law 

G(k+l) = 	- (R + BIP(k)B)-1111 P(k)A . (7.2.33) 

We show that the corresponding P(k+1) satisfies P(k+1)< P(k) and 

that P(k+1) / P(k) if G(k+l) / G(k). The approach taken is convenient 

for later developments. 
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`3 
P , a2 

1+1 	(+2 

Figure 7.2.1 Trajectories for different applications of  

control laws G(k) and G(k+1)  

Consider a trajectory with initial condition xo and law G(k+1) 

for 0 < j < e, and suppose that the state xi 	ao. 

At time (index) we consider two alternatives to apply G(k) to 

make xtia  = al  (see Figure 7.2.1) or to apply G(k+1) to make xlia  = a2. 

Law G(k) is to apply for e < j <co . The first choice gives a cost to 

co from xe, of J = aotP(k) ao  = VP(k) xt. The second choice gives a 

cost to co from 9,, 

J = (xtqx + 1.111111 + (Ax + Bu)'P(k)(Ax + 11m))x  

= G(k+1) 

But G(k+1) has been chosen to minimise the above expression for 

all x so that the second choice gives a lower cost to oo from xt  

than the first. We conclude that at any time index 4, and any value 

for xt, extending the application of G(k+1) by a sampling interval 



239. 

reduces the cost to infinity. By induction, when G(k+1) is applied 

for 0 < j< 00 , the total cost is less than for G(k). This is true 

for all initial conditions and therefore P(k+1).< P(k).Finally there 

is always a cost improvement for some initial conditions when 

G(k+1) 	G(k). 

It also follows from the quadratic nature of the cost that the 

gain update G(k+1) may be modified in the Kleinman algorithm by using 

a gain (aG(k+1) + (1 a)G(k)), 0 < a < 1 and a cost decrease will 

always occur. 

The Kleinman algorithm uses (7.2.32) to (7.2.34) recursively to 

obtain the non-increasing sequence iP(0), P(1), ... 1 and companion 

gains sequence cG(0),G(1), ... I. At the optimum 26§= 0 so that 

if G(k) = G
(0)

-1- ppG : 0 < p<.< 1, then P(k) = (P. 	(terms in p2)) 

and G(k+1) = (G(aD)+ (terms in p
2)). The sequences therefore converge 

quadratically near the optimum. 

We note that if at any stage of the Kleinman algorithm the law 

G(k+1) = (-(R + BiP(k)B)-1B'P(k)A ma) is used containing a small 

error pAG, the cost decrease in choosing the law G(k+1) rather than 

G(k) at time g is unaltered to first order in p. Consequently the 

cost decrease when G(k+1) replaces G(k) over the whole trajectory has 

zero first order variation with respect to control perturbations. 
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The continuous time algorithm follows by allowing the sampling 

time to tend to zero and obtaining expressions for the discrete time 

dynamics in terms of continuous time dynamics parameters. The Kleinman 

algorithm is readily derived for the dynamics (7.2.1) and cost (7.2.4) 

as , 

P(k) = [ I exp (AG't)(Q + G'RG)exp (AGt) dt] k  

G(k+1) 	R-1BiP(k) . 

It follows also that in the continuous case, the cost decrease 

will be unaffected to first order by perturbations to the updated 

control law G(k+l). 

Algorithm 7.2.1 - Constrained minimization 

The continuous time Kleinman algorithm suggests a parallel 

algorithm for solution of the necessary conditions (7.2.16). A stable 

gain Ko is required to start the recursive process. The k
th stage of 

the algorithm is : 

Step 1 : For a stable gain Kk  calculate 

op 
P(k) = 	i(exp (AGtt)(Q + G'RG) exp (AG

t) dt] 

T(k) = rjr 
oo 	

0X0 exp (AGt)X' exp (AG't) dt] k  
L 0 
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Step 2 : 	Calculate 

K(k+1) = [- R-1B,PTH1(HTHI)-21 

Step 3 : 	Calculate for 0 < a < 1 

ikk+1) = 	K(k) + a(K(k+1.). 	K(k)) , 

and choose a such that 

- tr (P(k+1) X0X0') < tr (P(k) X0X0') 

and return to Step 1. 

It is very easy to derive the discrete time analogue of the above 

algorithm for the dynamics (7.2.24), (7.2.25) with performance index 

(7.2.26). If P and T become the discrete time counterparts to the 

integral expressions of Step 1, then Step 2 is given by 

K(k+1) = [- (R + BIPB)-1BIPATH'(HTH')-1 1 

and step 3 is unchanged. However, the analysis will be done for the 

continuous time case, and characteristics of the algorithm will be 

very similar for the continuous and discrete time forms. 
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Generation of Descent Directions  

The algorithm may converge to a true minimum, a local minimum 

or a saddle point since the problem is non-quadratic. However, descent 

directions are generated, which may be shown by the following first 

order analysis. 

From (7.2.13) and Steps 2 and 3 of the algorithm, 

107 = tr (A Kl(RG + B'P)TH') 

= atr (HT(H'K'R + PB)(-R-1BIPTHI(HM-1- K)) 

- atr (HT(RKH + IPP)'R-1(B'PTH' + RK(HTilt)) 

(HTH9-1) 

- atr ((BtPTH' + RKHTH1)IR-1  

(B,PTH,  + RKHT119(HTHI)-1 	(7.2.34) 

Since R-1> 0, (HTHI)-1 is multiplied by a positive semi-definite 

symmetric matrix, also (HTH1)-1 > 0 if the inverse exists as assumed. 

The digenvalues of the matrix product (7.2.2.3) are therefore real and 

0. 



Not all eigenvalues are zero and therefore the trace in (7.2.25) 

is non zero, unless (B'PTH' + RKHTH') is zero. Therefore it is 

guaranteed that t J < 0 for changes in gain K indicated by the 

algorithm, if the step size parameter a is small enough for the first 

order analysis to be valid. 

Conditions for fast convergence of algorithm 7.2.1  

We will say that the convergence rate of the algorithm is fast if 

it is comparable to that of the Kleinman algorithm. The m< n plant 

output y is available for feedback, and 
	

£K11 has proven 

we shall assume that at all times the. dominant dynamics of the plant 

have dimension m. This is equivalent to an assumption that a good 

reduced order model of the closed loop plant exists. 

Consider a closed loop matrix AG
(k) at the kth stage of algorithm 

and suppose that it has two distinct groups of fast and slow modes. 

Suppose that the initial condition set X0  contains substantial 

components of all slow modes and not excessive components of the fast 

modes. We suppose further that the fast modes have small associated 

costs. 
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By our assumption the trajectories lie mainly in the slow mode 

]
subspace. The effect of the term [TH1(HTH, )-1  k  of the algorithm, as 

explained in the interpretation of the necessary conditions, is to form 

an optimal estimate x = Zy,so that Dec  will very nearly lie in the slow 

mode subspace. 

Suppose that the slow and fast modes have components yl  and y2  and 

that we choose a modal co-ordinate basis in state space. So that 

d 

y 

[yl 

Y2 

J 

- 1  

= 

Y1  1 	1 

All 

0 	A --22 

(YI' Y2)  

Hy —2 2 

[Yli 

y 2 

P11 

P 21 

1  

(k)  

(k) 

B 1 

—2 

P 

P12(k) 

o u 

22 (k) 

y1 

Y2 

(7.2.35) 

(7.2.36) dt 

(7.2.37) 

where we write p u because yl, y2  are modes of the closed loop system. 

= 	(A + BK(k)H)x + BAu . 	(7.2.38) 

An accepted approximation [D2] in (7.2.36) is that 

8  -1 A  

Y2 22 22 u 

A 	s A u , 	 (7.2.39) 
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where possibly S is small, either because 1123.211<< 1, or 112L2211 	1. 

Under our assumptions P12(k) and P22(k) are small, H2  and S are 

possible small. 

We will compare a Kleinman and constrained gain update on gains 

and subscript variables with K and C respectively. 

The current constrained control at the kth  iteration of algorithm 

7.2.1 is 

T H' (H T 	H y ucCk) 
k-1 

    

    

R-1B1  P11 	P11 
Yl P21 	P21 

H.-2H y - 2 k-1 • 

    

    

    

A 	P(k) - P(k-1) , 

A uK(k+1) uc(k) 

R-130  

	

[[A., P11  I 	P (k+1)-P12 — (k)H1 —111 12 	2 

	

Yi 	1. 11,-)17 la 
" 

	

A P21 	22(+'
t 
 22(-1-1  

42 	YlaY1 + A  KIC2Y2 
	(7.2.40) 

We define 

AP 

A uK 
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u 
	A u0(k+1) - u6(k) 

111 -1 41.4 -R B' Ap 
21 Yl 

H  
—1
1H
-2 Y2 

   

4A Kci(Y3. H11Y-2 Y2)  , 
	 (7.2.41) 

where it is seen that 

	

AKCl 	. 

The above equations are essentially open loop relations. We use 

the fast mode steady-state approximation (7.2.39) to obtain closed loop 

relations, 

	

Au 	d KCl  (y1 — H-11H-2 y2) 

AKCl (y1  + Ha1.H2 SA  u) -- — 

so that 

Also 

so that 

- A K 	1 H S)-1 K 

	

uc 	C1 1 2 	C1Y1 • 

Li uK — AK1Y1 + A K2Y2 

= 	A K1y1 + A K2 S A uK ' 

	

ki  uK 	
— 	(I - A K2S)-1  A K1y1  . 

(7.2.42) 

(7.2.43) 
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The approximation signs approach equality as the optimal estimate 

of plant state tends to measure the slow modes only, and also as 

(7.2.39) tends to be a better description of the fast modes. (7.2.42) 

and (7.2.43) show that if L1 K2, S, H2  are small,Auc  tends to AuK  alon 

the closed loop trajectories when fast modes have taken up their steady 

state approximations (7.2.39). The initial fast mode transient has 

been omitted from the analysis, but if fast modes are not heavily costed 

and do not have excessively large initial conditions, changes in the 

total cost from the initial conditions Xo will not be significantly 

affected by changes in fast mode transients. 

Therefore the cost decrease arising from the constrained gain 

algoritLm update tends to equal that of the Kleinman update. We note 

that AKl' ,AK2 depend on the cost on control, so that as R decreases 

there will be greater discrepancy between Aux  and Auc. The cost 

decrease has been shown to be independent of perturbations in Au 

to first order and this tends to diminish the effect of differences 

between AuK and Aua' 

We conclude that when there are m plant measurements y which are 

independent with respect to initial conditions X0  defining a performance 

index J (7.2.5), the cost decreases resulting from the gain updates of 

algorithm 7.2.1 tend to be the same as for the Kleinman algorithm. 
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Our analysis has used a modal co-ordinate basis for the closed 

loop system at the kth stage. At different stages, these will be 

different modal decompositions. The role of the T matrix in (7.2.12) 

may be interpreted as an updated implicit specification of a reduced 

order model of the closed loop system as the feedback gains are 

changed. Mitra [M7, M81 has stressed the importance of a "W-matrix" 

in model reduction theory, and this is very similar to our T matrix. 

As the conditions for fast convergence are invalidated., possibly by 

specifying a low cost on control resulting in high gains, the algorithm 

still provides descent directions. The rate of convergence may be 

associated with the existence of dominant dynamics at the optimum or 

with how well the plant output measures dominant dynamics at the 

optimum. Consequently convergence rate indicates the closeness between 

the constrained and unconstrained optima from the given initial 

conditions. If the open loop system has m1-< m say, slow modes 

forming a distinct group that causes most of the open loop performance 

cost, we would expect that the value of the cost function would at 

first quickly decrease with the iteration number and then level out 

to a slow descent. In other words, we would expect that the cost 

function would quickly converge to a near optimal value, even if the 

gains do not. The reason for this is that the plant outputs are 

capable of providing a good measure of the dominant slow modes, and 
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therefore the updated control at each iteration will closely approximate 

the Kleinman update, as far as the slow modes are concerned. As the 

dominant modes are assumed to contribute most of the cost, the cost 

decrease per iteration will tend to keep in line with the cost decrease 

of the Kleinman iteration, until the feedback from the mi  slow modes 

is near optimal. Then the effect of fast mode dynamics will become 

significant in seeking cost decreases and the question of fast convergence 

to the optimal gain arises. If there is slow convergence, we have 

argued that there is either no dominant group of modes at the optimum 

or that there is a dominant group of greater than or less than m modes. 

In either case it may be profitable to use more or fewer than m plant 

outputs for the control scheme. 

There is little practical justification of seeking the optimal 

constrained gains to great accuracy for two reasons. The first is that 

the description of the plant dynamics (7.2.1), (7.2.2) is an 

approximation, the second is that in practice gain values can only be 

set approximately to desired values. Near the optimum the cost is 

fairly insensitive to gain changes and this is a desirable feature of 

the controller. Convergence of the algorithm is a convenient 

unambiguous theoretical stopping condition for the computation in 

those cases where it is easily achieved. 
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7.. .3 Implementation of the algorithm 

Weighting function description of plant dynamics 

The algorithm may be used directly when the plant dynamics 

information is given in weighting function form. Given a feedback 

law at the kth iteration 

= K(k) y, 

the state space approach specifies the (k+1)
th law as 

K(k+1) 	K(k) 	a(K(k+1) - K(k)) , 
	(7.2.44) 

where 	
k(k+1) = I- R-1131PTH'(HTH')-1 

k  . 
	(7.2.45) 

The matrices P(k) and T(k) are calculated, substituted into 

(7.2.45) and K(k+l) is obtained from (7.2.44). This approach is 

helpful in the interpretation of the conditions at the optimum and is 

easily programmed. As an alternative, the matrices (B'PTHI) and (HTH') in 

(7.2.38) may be found by calculations based on the trajectories starting 

from the initial conditions Xo1  if the state cost x'Qx arises from a 

costing y'Ly on the measured plant output. Then Q = H'LH, say. 
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We define YB(t) to be the weighting function matrix of the 

closed loop plant so that 

YB(t) 	exp ((A + BKH)t)B 

exp (Aat)B . 	(7.2.46) 

Using (7.2.39), (7.2.40) and the definitions (7.2.7), (7.2.12) 

for P and T, and introducing Yx(t) defined by (7.2.22) we have , 

B1PTH1  B1(1.  exp(AG/t)(q + G1RG)exp(AGt)dt) 

oo 
(jr exp(AGs)X0X01  exp(AG's)ds)H1  

oo 
= 	Y

BGYX(t+s)YX1(s)dt do , (7.2.47) 

where 

1111,GH 	
4_ Q + G'RG 

= 	H1(1, + K'RK)H. 	(7.2.48) 

A suitable expression (7.2.23) has been found previously for the 

term HTH' which is rewritten as 

HTH1 	= 	YX(t) YX1(t) at . 	(7.2.49) 

Equations (7.2.47), (7.2.49) show that the expression (7.2.46) 

may be evaluated by output trajectory information alone, so that the 
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algorithm could be applied to infinite dimensional systems. It also 

follows that information for the gain updating algorithm (7.2.44), 

(7.2.45) can be obtained using an analogue computer simulation of the 

system. 

Description of simple dit-,ital computer program'of Algorithm 7.2.1  

A program based on this algorithm has been written in which the 

matrix P is calculated by the purely algebraic method of [J3] , and 

no check is made on the positive definiteness of P to ensure a stable 

feedback gain. The Kleinman algorithm ensures that stable feedback 

laws are generated for step size parameter a = 1, but Algorithm 7.2.1 

is an approximation and precautions elould be taken that the gain 

remains in a stable region. We use the simplest precaution in the 

programmed implementation of the algorithm of adjusting a so that the 

norm of indicated gain changes is less than a prespecified constant. 

Otherwise a is initially taken as a = 1 and halved until a decrease 

in performance index is achieved. A new search direction is then 

obtained. 

Convergence is assumed when the norm of the indicated change in 

gain is less than a prespecified value. 
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This crude approach is justified by the desire to prove the 

potential of the method, rather than to produce a finished and 

efficient computer hill-climbing program. 

Several numerical examples have been worked using the program 

and we briefly present the results. 

Simple example 
Willmea.s.rmeorm..msememe• 

Consider the 3-state, single-input, 2-output plant to be called 

"plant A', 
-1 1 0 

x = 0 -1 1 x+ 0 

0 0 -10 10 

y = Hx 

1 0 0 x . 
0 1 0 

with two performance indices of the form , 

OD 

J1 	
jr (x12 4. u2) dt  

0 

and 
a3  J2 	
r( 

x1 
 2 4.  

au
2) dt , 

!Jo 
from initial condition 

X 	= 	(D, 1, 0)' . 
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Using the established notation, it is desired to 

MinK  (tr (X01PX0)) 

u = Ky . 

For comparison of closed loop performance and convergence rate 

we consider another problem concerning a plant B, with dynamics 

-1 1 0 
x 	= x + 	u 

0 -1 	1 

Hx 

1 01 0 1 x  

and the same performance index. We note that Algorithm 7.2.1 here 

becomes the Kleinman algorithm [K8}. 

The results of applying Algorithm 7.2.1 to both problems are 

shown in Table 7.2.1. 

It is seen that the number of iterations required for convergence 

to the optimal gain for plant A is excellent in comparison with the 

number required for plant B. The optimal gains are similar which is 

what is expected on an intuitive basis. The performance index was 

defined in terms of one initial condition but the resultant closed loop 

control gives costs that are close to thin optimal of the "ideal system" 

plant B for all initial conditions. 
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;able 7.2.1 Performance of simple program of Algorithm 11.2.1 
for example 7.2.1  

Quantity Plant A Plant B Plant A Plant B 

Cost J1  = 	(xi2-1-112)dt j2 = 	(x2
2  +.1u2  )dt - 

Xo (0, 1, 0)' (0, 	1)' (0, 	1, 0)' (0, 1)' 

Initial G (0, 0) (0, 0) (0, 0) (0, 0) 

Initial J .25 .25 .25 .25 

Optimal G L1918 1  

.1949 
.2163 

.1974 

' 1.107' 

.917 

[1.3781  
[ .938  

Optimal J .2013 .1974 .1029 .0938 

No. of 
search 
directions 

4 4 6 5 

No. of P 
evaluations 
for 
solution to 
10-3  

4 4 

4 

6 5 
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The closed loop costs from all sates for plants A and B are 

lA xA' 

.480 

.221 

	

.221 	.020 

	

.201 	.020 xA 
.020 .020 	.002 

j1B xBI 
1.476 .2171 2cE  
.217 .197 

and 

2A 

2B 

xA' 

xBi  

.421 

.150 

.013 

.405 

.138 

.150 

.103 

.010 

.138 

.094 

.013 

.010 

.001 

xs • 

xA 

It is seen that the difference between JA' JB increases as the 

cost on control decreases, and the state present in plant A but 

neglected in plant B then has an increasing influence on plant 

trajectories. The agreement between JA  and JB  is still reasonable 

enough to indicate that the algorithm would converge well for a smaller 

cost on control. The closed loop eigenvalues of plant A for the 

smaller cost on control are (- 9.03, - 1.49 T 1.07i). 

A more complex example  

A more complex example is taken to illustrate fast convergence of 

Algorithm 7.2.1. The system is a linear 8-state, single input, 
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4-output boiler model that has been used by Ellis and White [El] 

to demonstrate modal control/  by incomplete state feedback. The 

dynamics are 

x = Ax Hu 

y = Hx . 

The reader is referred to reference [El] for a physical 

description of the state variables. Briefly the state variables in 

order are perturbations from a working point of the following :-

drum pressure, range pressure, air pressure, air flow, integral action 

on air flow, fuel flow, integral action on fuel flow and fan actuator 

output. 

The outputs to be controlled are range pressure (x2) and steam 

flow f
t' 

ft = 	.5261 (x1 x2) • 

Ellis and White show that y is a good representation of the four 

slow modes that are roughly separated from the rest to form a distinct 

group, the set of eigenvalues of A being approximately (-.0019, -.09, 

-.1, -.166, -.38 -T- 3i, -.499, -1.17). We therefore expect Algorithm 
7.2.1 to show an acceptable convergence rate for suitable performance 

indices. 



n-n 
,,:;O.)e 

A::: 

- .0121516 .021516 o. o • -.001138 
• 662 0 .. o. 

• ~32 -.1469 o. o • o. 
o. o. o. 

o. o. -.4241 o • o. 
o. o. • 5561 

o. o. -.516 o. o. 
o. o. o. 

o. o. 2.70 73 o. -.4995 
o. o. o • 
o. o. • 5166 o. o. 

-1.834 .1207 o . 
o. o. • 516 o. o. 

-1.332 o. o. 

o. o. -.2346 • 0909 o • 
o. o. -..4546 , 

B= (0. o. o. -1. O. O. o. -.4546)f t 

H = 1. o. o. o. o. o. o. o. 

o. 1. 0 .. o. o. o. o. o. 

o. o. o. 1. o. o. o. o. 

o. o. o. o. o. o. 1. o. 
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We have tried several performance indices costing range pressure, 

steam flow and control.Typically, 
00 

J(1) = Jr°  (x22  + .3(xl  - x2)2 	.1u2)dt 

T0000000.  
Xo(1) 0 1 0 0 0 0 0 0 

and 
J(2) ( , 

x22 	k + x, - x2)
2 + .1u2)dt 

X0(2) = HI 1  

and finally 

J(3) = Lc (x22 
	- x2)2  + .01u2)dt 

X0(3) = H' . 

The corresponding optimal gains are given in Table 7.2.2 with 

Ellis and White's modal control. Table 7.2.3 shows the typical 

convergence rate of the algorithm. There was no problem starting with 

zero (stable) control. During the course of the calculations it was 

apparent that the performance index was insensitive to gain changes. 

We note that J(1) is defined in terms of two initial conditions and 

J(2), J(3) in terms of four. In all cases the P matrix at the optimum 

showed that the control was good for all initial conditions. For the 

purposes of a rough comparison Figure 7.2.1 shows the response of the 

boiler to a step demand on steam flow with constant feedforward adjusted 



260. 

Table 7.2.2 Constrained optimal  and modal gains 

P.1. Cost Gain 

3(1) 6.674 -(2.338, .7792, .5600, .2289) 

J(2)  13.130 -(3.097, .4341, .6384, .5340) 

J(3)  

modal 

11.684 

- 

-(12.11, 

-g(.8083, 

1.572, 

.1200, 

1.873, 

.4041, 

1.720) 

.4108) 

Table 7.2.3 Typical convergence to constrained  optimum 
for example 

Quantity 

--,— 

1 
Iteration No. 

2 	3 4 5 

modal control to start 

J(2)  13.378 13.140 	13.1305 13.1301 - 

il Gk+l-Gkil - .91 	.166 .003 (exit) 

G(2) optimal to start 

J(3)  12.366 11.733 	11.686 11.6837 11.6832 

Pk+l-GIA - 14.0 	3.9 .82 .027 
(exit) 



Steam 
Flow 

Ti_le units 

Ranzp 
Pressure 

10 _ 

100 

—40 
Control 

-20 

0 

Nodal 

0 
	 100 

Figure...7.2.1 Comparison of modal (ga01I111 

constrained optimal control ( J(1) ). 
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to give zero offset of range pressure, for modal and an optimal 

constrained feedback. The modal trajectories are insensitive to gain 

increases, and the optimal trajectories corresponding to J(1), J(2), 

J(3) are very similar despite the increasing control effort expended. 

7.2.5 Conclusion  

We have proposed an optimization problem and algorithm for 

designing feedback controllers using incomplete state feedback, 

and suggested when the algorithm may be expected to show near 

quadratic convergence. Fast convergence is achieved in the trial 

examples. The optimization problem is valid whether or not conditions 

are suid to fast convergence, and descent directions are always 

generated. 

With further research au improving the algorithm, possibly by 

finding the minimum along search directions, it should prove to be 

a valuable tool for designing feedback controllers for plant that have 

dominant dynamics, but for which it is difficult to produce reduced 

order models. An attraction of the algorithm is that the computational 

effort per iteration does not depend on the number of plant inputs or 

outputs, nor on the number of trajectory initial conditions included 

in the overall performance index. 



263. 

We have indicated that should the algorithm not converge quickly 

near the optimum, the plant output is not a good measure of the 

dominant dynamic characteristics of the plant. Methods of dealing 

with the problem of inadequate plant outputs are discussed in 

Section 7.5. 
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7.3 Generrltion of Irnr;Irint Sllbs-IF:ce of Tb7linfmt 7Toclo  

7.3.1 Introduction 

One method of model reduction which has wide acceptance is 

Davison's modal reduction. technique [D21 which restricts the dynamics 

of the plant to its dominant invariant subspace. We extend the idea 

of using dominant invariant subspaces to the parallel path form of 

reduced model introduced in the next section, but in anticipation 

discuss methods of generating the required invariant subspaces. 

The problem is formulated for a sampled data n-state system 

xkla 	Axk Buk 
	(7.3.1) 

and the invariant subspace, SD  say, corresponding to 	dominant 

modes of A is sought. It is also required to find the component of B 

lying in Sp. One solution to this problem is to find individual 

eigenvectors corresponding to the dominant modes of A. It is always 

useful to do an eigenvalue analysis of a system unless the approximate 

distribution of eigenvalues is known beforehand. A thorough account 

of the computational schemes for finding eigensystems is given by 

Wilkinson [W5] . The most common methods involve complex arithmetic 

but these may not be satisfactory when multiple eigenvalues occur in 

such a way that the Jordon form of A is non-diagonal. 
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An iterative method has been developed that avoids complex 

arithmetic and identifies SD directly without finding individual 

eigenvectors. It has subsequently been found to be a general 

application of a method described by Wilkinson 1.;,75 (p. 599 onwards)] 

for finding the subspace spanned by a group of close modes. We give 

a brief description of the idea and note an interesting connection 

with one of the methods for finding the steady state solution to the 

Riccati equation. The component of B lying in SD  may be found in 

several ways. 

7.3.2 Power method of identifying the dominant invariant subsloace  

The principle in finding the dominant invariant subspace of 

dimension q of A (7.3.1) is to construct an (n x q) matrix Vo  and 

consider the matrix VN ' 

VN = A
NVo  , N>> 1 . 
	(7.3.2) 

Assuming that the components of the columns of V in SD are 

independent, the columns of VN  tend to be composed entirely of the 

dominant modes of A, and therefore tend to span Sp. An obstacle to a 

simple application of this principle is that the columns of VN  tend to_ 

be composed entirely of the most dominant mode of A, so that VN  tends 

to have rank less than q. 
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It is very convenient to introduce the concept of a subspace 

trajectory under given dynamics. 

Definition 7.3.1  

Consider as a set of P initial conditions the independent columns 

of a (n, p) matrix, X say. Then X and the dynamics (7.3.1) define p 

independent trajectories which at any sampling time, tk  say, define 

a subspace, Sk  say. Then the sequence [Si, S2, ...1 will be called 

a subspace trajectory. Also denote this set of p trajectories by the 

sequence X1, X2, ...] where the i-th column of X3  • represents the 

state of the i-th trajectory at time tj. 

This concept provides the means whereby the obstacle of loss of 

rank of VN  as N increases is overcome. The subspace SD  spanned by VN  

is desired, and the principle of the power method states that SD  is 

the steady state subspace of a subspace trajectory with the subspace 

spanned by Vo  as initial condition. However, a subspace may be defined 

by an infinite number of different bases and it may be advantageous 

to describe a subspace trajectory by different vector trajectory basis 

sets over different time intervals. The choice of different vector 

bases is akin to scaling and may be done for the purpose of preserving 

rank. 
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A structure of defining subspaces suitable for the ultimate 

purpose of model reduction is also convenient for the scaling necessary 

for a well-conditioned representation of subspace trajectories. 

Suppose that a p dimensional subspace S in En  is spanned by the 

p independent, real vectors (wl, 	 wp) . Put 

W 	= 	(wl,  w2' ... w ) , 
	(7.3.3) 

and any n-vector x in S may be written for some p-vector a 

x = Wa 
	 (7.3.4) 

x and W may be partitioned such that xi is a p-vector, W1 is a  (p, p) 

matrix and 

X = 

1 

WW2  

and 

If W1 is non-singular 

= 

= 

A 

W1 

I 
 w  
2 

I 
Imi  

(7.3.4) 

xl 

W1--1 

gives 

xl  (7.3.5) 

(7.3.6) 

a 

x 
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Vectors in S are then parameterised by their components xl  and S 

itself is defined by M. We will write S as S(M) to emphasize this. 

Clearly the representation (7.3.6) of S is of full rank. 

Consider the subspace trajectory [Si, S2  ...1 under the unforced 

dynamics (7.3.1), and suppose that Sk  is parameterised by Mk  in the 

form (7.3.6). Then if Mkia  corresponds to Sk+l  , there is a non-linear 

recursiverelationbetweenMk_la and Mk. This is found by partitioning 

A of (7.3.1) to correspond to (7.3.6). By definition Skil_  is spanned 

I I
by the columns of A m  , but 

S [Alit Al2Mki Almill = 	7 	(7.3.7):,  
[A21+ A22Mk 

to that from (7.3.5) 

k+1 	
= (

A21 + A22Mk)(All  + A M. )-1  12 K 	4. 	(7.3.8) 

(7.3.8) is the desired non-linear recursive relation and is well-defined 

if the inverse exists. This is merely a requirement that xi  can 

parameterise the subspace Skil.. If the matrix (All  + Al2Mk) tends to 

become singular, a more suitable choice of state components may be 

made to parametlrise the subspace Skia. This is done by choosing any 

p independent rows of the matrix on the RRS of (7.3.7). The subspace 



{I 
m 	. The form (7.3.6) is easily regained for the augmented subspace. 
k+1 

modes apart from the marginal complex pair have decayed, the invariant 
I I 

subspace of increased dimension is spanned by the columns of M. and 
 I 
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trajectory evolution may be then continued in terms of the relation 

(7.3.8)wherethepartitionblocksA..are redefined to correspond to 

the appropriate re-indexing (or re-ordering) on the state components. 

The above procedure provides a well-conditioned description of the 

subspace trajectory at all times as it evolves, and therefore removes 

the main obstacle to the power method of obtaining dominant subspaces. 

Convergence of the method 

The rate of convergence of the sequence of (n -r, p) matrices 

[Mil  M2  ... P ...1 to a limit depends on the ratio of the magnitude 

of the least dominating mode to that of the greatest dominated mode, 

and the transient decays as a geometrL., series of this ratio. Clearly 

if there is no p dimensioned dominant subspace, the subspace trajectory 

and hence the sequence (Mic l cannot converge. The most common 

condition for this to occur is expected to be when a (p+1) dominant 

subspace exists, with a complex pair being the least dominant modes. 

In this situation the dimension of the desired invariant subspace must 

either be increased or reduced. If it is assumed that all dominated 
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7.3.3 A connection with a Riccati equation solution 

The above method of obtaining an invariant subspace has an 

interesting special case, the steady state solution of the Riccati 

equation. As has been discussed in Chapter 2, the Riccati equation 

may be represented by a pair of n-vectors (x, X) with stable and 

unstable poles symmetrically placed about the imaginary axis. The 

Riccati solution P(t) merely represents a continuous time description 

of a subspace trajectory in (x, X)-space parameterised by x in the 

relation (2.3.8). The canonical pair dynamics are transformed to a 

sampled data version and the recursion (2.3.10) is identical with 

(7.3.8) with Pk  and Qij  replacing Mk  and Aid. 

7.3.4 Reduced dynamics corresponding to dominant invariant subspace  

If we denote the dominant subspace of A (7.3.1) by SD  with a 

corresponding MD, then for any x in SD, 

x1,k+1 
= -A

11 
x
1,k + Al2 X2,k 

= (All Al2MD)  xl,k 

A_ 
= -R -1,k (7.3.9) 
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AR  in (7.3.9) is the system matrix of states in the dominant subspace 

parameterised by x1. 

The most straightforward way of getting the dominant mode 

component of B in (7.3.1) is to find the reciprocal dominant invariant 

subspace spanned by the columns of (T11) say. Suppose that the 

dominant eigenvectors and reciprocal eigenvectors are the columns of 

W and W' , scaled so that 

W W 	= I. 	 (7.3.10) 

Suppose that 

[k] A W D 

, ED ) A D W , 

W E + (components in non-dominant modes) 

Bb + (components in non-dominant modes) 

I 
(I, IV [141) 	.= 	DWWD 

ant; 

D , 

BD = WWB 

II D-1D-1(I, ) B  MD 

(7.3.11) 

 

B A 

Then 

 

A 
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This is considered to be the most satisfactory derivation of BD, 

an alternative procedure seems from experience to be more liable to 

computatfonal error. The theory of this is simple for the special 

case we consIder. SD is the dominant subspace and suppose S
e  is its 

complement invariant subspace. Consider a column b of the matrix B 

(7.3.1) and suppose that (A, b) is controllable. Define 

b 	= 	b1 + b2 
	 (7.3.12) 

where b1  is in SD  and b2  in Sc. Because (A, b) is assumed controllable 

any x may be expressed as 

n-1 	4 

X =2- 	a. Alb , 	(7.3.13) 
o 

where ai  are the components of an n-vector a. Suppose that xD in SD 

is defined so that 

xD (I  
mD 

(7.3.14) 

and (7.3.13) is solved for a for x = xD. 

Then 	n-1 

xD 	a. Alb1  + 	ai  Aib2  

but xi)  and bl  belong to the same invariant subspace and b2  is in its 

invariant complement. Therefore 

n-1 
xD  = L ai  Aibl  . 

0 

(7.3.15) 

0 
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(7.3.15) may be used as the basis of a numerical procedure for 

finding b1, but (7.3.13) must be solved for an n-vector a. 

Computational experience  

The algorithm has worked successfully on a variety of small 

systems using a subspace initial condition arbitrarily chosen to 

correspond to MI  = 0. The largest numerical example that has been 

tried was a sampled data version of the 8-state boiler model used in 

the example of the previous section. 

Conclusion 

A simple method of identifying the dominant invariant state 

subspace of specified dimension of a sampled data system has been 

developed. The corresponding reduced system dynamics and control 

matrices are also found. The method is iterative, a matrix of the 

order of the sought subspace must be inverted at each iteration any 

Jordon form configuration may be handled. Very little computer 

storage is required so that the method is considered to be simple 

enough and general enough to be useful in practice. 
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7.4 Parallel Path Models 

We propose a method of model reduction that is especially 

suited to discrete time systems. It allows for fast mode effects by 

incorporating a weighting function truncated to a small number og 

terms. The proposed reduced model form is shown in Figure 7.4.1 where 

one path transmits slow mode input-output effects, the other oath 

Slow 
Lioe,es 

Fast 
ciocies 

111* J  
J r) 

y Ci 

Figure 7.4.1 	Form of parallel path model  

corresponds to the fast mode transmission through the plant. It is 

proposed that the slow mode dynamics be modelled by a low order state 

space system, and fast mode effects be modelled by a weighting function. 

If the fast modes decay quickly enough, their effect can be well 

represented by a discrete time weighting function truncated to very 

few terms. This model reduction scheme provides an alternative to the 

Davison method [D2] because the dynamic effect of fast modes is 
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represented to some extent. Also the effects of many fast modes 

can be accumulated into a small number of terms in the weighting 

function. There is a model complexity tradeoff determined by the 

number of fast modes, their rate of decay and the number of plant 

inputs, in the comparison of a Davison reduced model and one of the 

proposed form. Mathematically the model form is 

w
k+1 

= A_xwk + BR  uk  , 
	(7.4.1) 

71k 	= Hlwk ' 
	 (7.4.2) 

72k 
	= 	G.

1 
 u. 	(7.4.3) 

=O. 

Yk 
	

= 71k 2k ' 
	(7.4.4) 

where wk 
represents the slow mode state of the reduced order model 

and subscript R denotes reduced order quantities. The above form may 

be put into the more conventional notation, 

Ac+3. = 42 	+ 	uk 
	 (7.4.5) 

"k 	
= H wkwk + D uk 1 	(7.4.6) 
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by augmenting the dimension of the reduced model to include the 

controls (uk_i, 	uk_r) in the model state. Values for the barred 

matrices in (7.4.5), (7.4.6) are then simply found. Preliminary 

computational results are encouraging, a detailed investigation of 

this form has not been undertaken. Possibly the true value of the 

idea is that it offers an alternative rationale for the forms of 

compensation proposed in the next section. 
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7.5 Philosophy of. Controller Design 

7.5.1 Introduction  

Throughout the thesis we have dealt with time invariant, finite 

dimension, state space descriptions of plant, and have examined several 

separate blocks of control theory, which are now Shown to combine into 

a method for the design of time invariant feedback controllers. The 

important question of controller specifications and practical constraints 

on the controller cannot be discussed outside the framework of specific 

design examples. We shall assume that the design problem has been 

condensed to the problem of optimizing a suitable quadratic performance 

index, possibly to be updated or redefined when the solution has been 

found, in order to produce desirable changes in properties of the 

solution. Methods of choosing the performance index have been 

discussed in Chapter 2. Our restriction to finite order plant is not 

rigid because the theory of gain optimization of Section 7.2, though 

developed within the context of finite order systems, is applicable 

to multi-variable systems of infinite order. 

It would seem that idealised linear plant models occur as one of 

three types. 

Type I is derived as precisely as possible from the laws of physics, 

and.is usually far too complex to simulate and unnecessarily complex for 

a control study. Type II is a description of plant dynamics that is 
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considered to be adequate for the purposes of a control study, and 

the difference in behaviour between it and the type I model is 

assumed to be insignificant. Type III is crude and there are 

significant differences in behaviour between it and the type II model, 

but feedback structures are often obtained by such models. Sometimes 

the feedback gains are obtained as well, and then the performance of 

the designed controller must be checked using the type II dynamics. 

This classification of a model may depend on the duty required of it, 

which is usually related to the speed of response desired of the 

closed loop plant, which again is related to the cost on control. 

7.5.2 Complete state measure on models of t Des II and III 

If the complete state is measured on a type II model the required 

feedback is obtained from the solution to a Riccati equation. If 

there is incomplete state measure, but such that the unmeasured states 

correspond to dynamic actuators on the inputs, a Lyapunov control is 

easily calculated and may be suitable if the corresponding constraints 

on closed loop transients are acceptable. 

It remains to consider what can be done when an accurate type II 

model with incomplete state measure, and crude type III model with 
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complete state measure are available. Firstly a control law can be 

obtained by the methods of Chapter 2 for the crude model and checked 

against the more accurate one a. posteriori. 

A more precise but compact model for discrete time plant may be 

to add a parallel path to the crude model to account for some fast 

mode effects, and then to design a control law, again by the methods 

of Chapter 2. This leads to a dynamic compensator, and if the parallel 

path model is an adequate representation of plant dynamics the 

compensator will be satisfactory. 

An alternative which the author prefers is the use of Algorithm 

7.2.1 to obtain optimal incomplete state feedback gains for the 

type II model. The existence of the crude model having complete 

state measure indicates that convergence to the optimum will be fast. 

As the performance index is varied the optimal feedback law will be 

updated with very little computational effort. This algorithm on 

current experience is highly effective, and is also more versatile 

than appears at first sight. We demonstrate this by the following 

theory. 
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Design of.multivariable proportional plus integral controllers  

This design procedure is a modification of Johnson's [J2] 

for complete state measure. Given a system with constant equivalent 

disturbance w, and cost J, 

x 	= 	Ax + B(u + w), 	(7.5.1) 

Hx 
	 (7.5.2) 

CIO 

J 
	(x'Qx + 	, 	(7.5.3) 

U = U W 

then at the optimum' 
• A Kix + K u 2- (7.5.4) 

Klx + K2(BIB) -11P(X Ax) 

A K1x + K2  - Ax).  — (7.5.5) 

Since a crude model of full state measure is assumed to exist, 

the plant'output y and y must contain most of the information in 

(7.5.5). Then there exist L1, L2, Ay  analogues to Ki, 5.2, A such 

that 

+ L2  - A y) 	(7.5.6) — 



so that 

d 
dt Cu - L2  y) (L1  - L2  A y)y 

. 	y 

Therefore along optimal trajectories there existA21  L3  such 

that t 
u(t) 	L2  y(t) 	f L3  y dt . 

o 
(7.5.7) 

The Kleinman algorithm [K8] has fast convergence to the optimal 

Kl, K2  of (7.5.4), and there exist K2, K3  analogues to 12, L3  in 

(7.5.7) algebraically related to Kl, K2. Therefore the algorithm 

7.2.1 'Jill have fast convergence (near quadratic near the optimum) 

to the optimal values of L2, L3  for the problem, 

x 1 	tAx Bul 

dt z 	Hx 

y = Hx 

u(t) = L2  y(t) L3 
 Jr y dt 
	

(7.5.8) 

= 	L2  y(t) L3 z(t) 

co 
=2" jr (xtax 	dt, 

Xo 	
= a set of specified initial conditions, 



then 

L —2' 3 

The constrained optimal control law (7.5.8) is of proportional 

plus integral form. 

Incomplete state feedback of different outputs to different inputs  

In the presentation of the theory of gain optimization of 

incomplete state feedback using Algorithm 7.2.1 and a suitable cost 

function we have dealt with the form 

u = Ky. 

The update algorithm for K is based on the new estimate K of the 

optimal K which always indicates a descent direction, 

K 	= 	- p-lippmil(HTH9 -1. 

We may impose different constraints on the control form by defining 

selections of outputs yl, y2  and selections of inputs u1, u2 , 

 

yl 

92  

u1 

A 

A 

A 

H1x 

H2x 

KlY1 2  

and 
u2 

A K2y2 

233. 
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where there may be some overlap between yl  and y2. It is easy to 

Show that in exact correspondence with the relation for K, we have 

K1 
	R11B1'PTH1,(H1TH1

11)-1  

cc-2 	- R21B2'PTH2'012TH 0-1  

using obvious notation for R1,  R2, 
B1, B2. 

It is clear that the results can be generalised to sets 

f ur  u2 	uql and fYls Y2 	Yqi 

It is anticipated that this type of control constraint may occur 

when systems are coupled and some uncomplicated control interaction 

between them is desirable. This idea has not yet been tested 

computationally. 

Incomplete state feedback of unstable plant  

The proposed method of obtaining incomplete state feedback 

controllers requires a feasible, stable initial control law to start 

Algorithm 7.2.1. If a stable feasible gain u = Ky is not known, the 

following device may overcome the obstacle provided that a stable, 

feasible law exists. 



For the plant dynamics 

x = 

y = 

u = 

Hx ,  

Ky , 

introduce an extra plant input v so that 

X = Ax + Bu + Bvv , 

v = Kvx , 

and a cost is defined 
co 

Jv 	
= 	

Jr (x'Qx + u'Ru + v 1Rvv) dt . 

0 
0 

v-is chosen such that (A, Bv) is a controllable pair so that a stable 

law Kv 
exists. The algorithm may then be started and organised according 

to the theory of the previous sub-section to optimise K and K.  As 

Rv 
tends to infinity, at the optimum Kv 

should be small and K a stable 

law, if one exists. In addition K should be nearly optimal for the 

cost 
co 

= 	jr.  (xtqx + u'Ru) dt 
o 

and the optimum found with little computational effort. 
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Ax + Bu , 



7.5.3 Incomplete state measure on Type III models  

When the crude model has incomplete state measure, the control 

problem is more difficult and there may be essential degradation of 

performance as discussed in Chapter 6 even if complex observer.; ore 

used. Apart from determining optimal constrained gains which remains 

a valid approach, there seem to be two solutions to the controller 

design problem. Both lead to dynamic compensators. 

Introduction of input derivatives  

The first approach follows the spirit of Pearson [Pl] and 

Ferguson and Rekasius [F11 where input derivatives are introduced, 

the number depending upon the observability index of the plant. 

Both papers work with the type II accurate model and propose a precise 

method that may lead to unnecessarily complex controllers. Our 

contribution is to apply their ideas to the design of simple controllers. 

We work with the accurate model but assume that the crude model exists. 

Consider the plant 

X = Ax + Bu 

Hx , 

= 	L (xtqx + utRu + 1:0S171) dt 	(7.5.9) 

Xo = a set of initial conditions. 
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Consider a particular case where the vectors y, z = (ir - HBu) 

would give adequate information about the state of the crude model. 

Then by the theory we have developed, Algorithm 7.2.1 will have fast 
,ks 

convergence to constrained gains Ki, K2,,that optimise J where, 

Kiy + K2z + K3u 
	

(7.5.10) 

so that 

Kly + (K3  - KgB)u dt (u -K2y} = 

(K3 - K2HB)(u - K2y)+(K1+(K3 - K2EB)K2)y  

A 	K4(u - K2y) + K5y . 	(7.5.11) 

The control law (7.5.10) may be implemented by (7.5.11) as shown 

in Figure 7.5.1. 

JP' 

	

1  ls 
	 Plant 

	I lid  

Figure 7.5.1 Compensator realization of feedback from y and y. 
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We note that y and u are vectors, and that in some cases first 

derivatives of some y components may be omitted, in other cases 

higher derivatives of y are required to describe the dominant 

dynamics. Then, higher derivatives of u are introduced as the control 

variable in J (7.5.9), the principle of eliminating derivatives of y 

from feedback by block diagram manipulations is unchanged. We note 

that Figure 7.5.1 has the same form as a degenerate observer, 

discussed in Chapter 4, and that the optimal Kl, K2 may possibly 

tend to a low order multi-variable degenerate observer. 

Introduction of observer based on crude model  

We 	available crude and accurate state space models of the 

plant dynamics and the crude model has incomplete state measure. It is 

reasonable that a low dimensioned observer obtained from the crude 

model and used with the accurate one should together with the output y 

provide a good characterization of the dominant dynamics of the plant. 

A control can be formulated as a feedback law from the plant and 

observer outputs, and the constrained gain optimization approach used 

to get values for the gains. An example illustrates the usefulness 

and pitfalls of the method. 
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Example  

The simple example of Section 7.2 is considered with the change 

that only one output is measured. 

The plant dynamics are 

-1 1 0 0 

}.0 = 0 1 'X 0 u, 

0 0 -10 10 

where xi  alone is measured as shown in Figure 7.5.2, and a crude model 

is taken to be 

X  -I 
x2I 

[-1 I 

= 	0 	-11 

xi  

x 
L 

dt 

and the corresponding reduced observer with state x4' from (3.3.23) 

with T = 9 is 

= - lox4  - 81x, u , 

x2  = x4  4. 9x1  . 

x2 
is an estimate of the crude model state x2. Incorporating the crude 

observer.into the full dynamics we have 

-1 0 0 0 0 

• X = 0 -1 1 0 x+ 0 U 
0 0 -10 0 10 
-81 0 0 -10 1 

• 
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with output 

0 	0 	0 

X2
1  

[91 
0 	0 x 1 . 

10 1 
s÷71.0 s+1 s+1 

01 

Figure 7.5.2 Plant and simple observer  

A performance index is defined 

co 
J 	= f (x

1
2  + .1u2) dt 

J was optimized with respect to feedback from x1  and x2  for two initial 

conditions X. The two solutions are compared below with respect to 

optimal gains K and P matrices (J = x'Px) , 
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XO/(1) = (1 0 0 0), 

K(1) 	= 	(.6507 	.1147) 1  

  

P(1) 	= 

	

.424 	.15 	.013 	.0001 

	

.15 	.15 	.015 	-.0015 

.013 .015 .0015 -.0002 

.0001 -.0015 -.0002 .0001 

  

and 

X0'(2) = 	(0 	1 	0 	0) , 

K(2) 	= 	(.907 	1.267) , 

	

1.01 	.106 	.005 	.07 

P(2) 	= 	.106 	.107 	.01 	-.005 

	

.005 	.01 	.001 	-.001 

	

..07 	-.005 	.008 

Comments on example  

The optimal costs for the constrained optimization problems, 

P11(1) = .424 and P22(2) = .107 compare favourably with the unconstrained 

optimal costs of the crude model, P11  = .405 and P22 = D94, and for 

which the optimal control is (-1.378x1  .938x2). We note that P11(2) 

and P22(1) are not close to the optimal values, in fact P11(2) is 
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about twice its open loop value. This effect is the result of the 

mismatch of the plant initial state x2  and the initial observer 

A 
estimate x ° 

The initial condition x' = (1 0 0 0) implies that 

x2  = 9 when x2  = 0 , and costs due to estimation error accumulate as 

the wrong estimate for x2  is fedback strongly. 

This may or may not be important depending on the disturbances 

that are likely to act on the system, but it does emphasize the 

importance of looking at all initial condition costs, which is easily 

done by reference to the P matrix. There is a tradeoff between speed 

of observer dynamics and the error effects and the next level of 

complexity in controller design using observers, is the solution of 

the most vAtable observer. We leave this as a topic for further 

research. 
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7.6 Suggestions for Further Research  

Some potential research topics have been touched upon in the 

previous section. Further computational experience in designing 

incomplete state feedback using Algorithm 7.2.1 is required to confirm 

its early promise as a powerful design tool. The relevance of 

allocating feedback from different outputs to different plant inputs 

should be explored with respect to the control of interacting 

subsystems. The last example clearly illustrates that research is 

required into the specification satisfactory design objectives when 

observers are intended to be used in constructing a dynamic compensator. 

These objectives should define what is a suitable, or the most suitable, 

observer. 

The thesis has been solely concerned with deterministic control 

problems and it is felt that the proposed method of solution of the 

adequate incomplete state feedback laws is a contribution to design 

techniques. A parallel theory clearly exists for the state estimation 

problem, and a fruitful topic of investigation should be to find out 

how far the ideas we have developed are applicable to controller 

design in a stochastic environment. In the same way that full state 

feedback gives an often unnecessarily complex controller in the 

deterministic case, it is felt that the use of a Kalman filter and 

Riccati controller is often an unnecessarily complex design procedure 

in the stochastic environment. 
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