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ABSTkIACT 

In the first section of this thesis, the effect of a plane flexible 

composite boundary on the sound generated by nearby turbulence is examined. 

It is shown that the boundary reflects and diffracts the sound from the 

turbulence, and also that the inhomogeneity of the surface scatters the 

energy of eddy motion into propagating sound. 	aeflexion and diffraction 

processes do not appreciably increase the sound power from the turbulence., 

but the scattering :lochanism is a powerful means of augmenting 	radia;•:on. 

A general formulation of the problem of sound generation by a region 

of turbulence in which the fluid consists of a mixture of two phases is 

given in the next chadl•or. 	The theory is applied to the case of a small 

volume concentration of air bubbles in water, and also to that of a 

distribution of small dust particles in a gas. 	The effect of even a very 

small concentration of bubbles is to increase the turbulence radiation 

enormously, while the presence of dust particles in a gas also increases 

the radiation appreciably, though loss drastically. 

The vibration induced in a thin elastic plate by a random pressure 

field is then considered. 	General equations are derived and applied to 

the case of plate e;:citation by a turbulent boundary layer. 	The 

dependence of the vibration statistics on parameters characterising the 

plate and the turbulence is obtained, giving results which are analogous 

to the well-known results of Ughthill for the sound power generated by 

turbulence. 



Finally, an estimate is made of the corrections caused by 

compressibility to the pressure and velocity fluctuations in homogeneous 

turbulence. 	These corrections are large if the volume of turbulence is 

large, but are negligible for low Mach number flows on any terrestrial 

scale. 



CHAPTER I 
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GENERAL INTROD 



This thesis is concerned with four problems of wave generation as 

a by-product of turbulent flow. 	In all cases the turbulent flow is 

regarded as given, and the problem is to estimate the side-effects of the 

flow under the assumption that these cause a negligible back reaction on 

the turbulence. 	Very little is known, of course, about the detailed 

structure of most common types of turbulent flow, so that the problems 

must be posed in such a way as to require only a minimal specification 

of the properties of the turbulence. 	15imonsional arguments often enter 

the calculations, and preclude any highly accurate numerical predictions, 

but nonetheless those procedures have led in the past to valuable information 

about the gross effects to be expected in many situations of practical 

importance. 

The pioneering work in problems of this kind was done by Lighthill 

in 1952-1954, in a set of three well-known paters on the sound waves 

generated by turbulence. 	Lighthill formulated an exact acoustic analogy 

for this strongly non-linear problem, and applied it to the estimation of 

the noise fields of jets and boundary layers, and to the scattering of sound 

resulting from the interaction of sound and shock waves with turbulence. 

From the simplest possible ideas about turbulence he was able to draw 

powerful conclusions about the intensity and directivity pattern of the 

radiated noise fields. 	1:c.-icent years have seen great advances in the 

development of Lighthill's basic theory, and have shown it to be much 

superior to all other theories - above all in the range of possible appiiccm 



The work of the first two sections of this thesis describes the extension of 

Lighthill's theory to two new situations, 

Chapter 2 deals with a problem which provides a link between 

aerodynamic noise theory and the classical theory of diffraction of acoustic 

waves by a solid boundary. 	For a long time after Lighthill's first papers, 

the effects of solid boundaries upon turbulence-generated sound were 

inadequately understood. 	The work described here shows that it is possible 

to obtain a complete solution to the aerodynamic sound problem when a 

plane, flexible, but non-homogeneous boundary is present in the turbulent 

flow, 	Specifically, the boundary considered consists of two half-planes 

which have differing elastic and inertia properties. 	The interaction 

between a plane sound wave and such a composite surface provides a 

typical example of aTraction theory, though the solution of the diffraction 

problem sheds little light on how the composite surface will affect the 

radiction from nearby turbulence. 	A new method of solving Lighthill's 

inhomogeneous wave equation, subject to the discontinuous boundary conditions 

required by the presence of the composite boundary, is given here. 

Previously obtained results of diffraction theory are recovered, and they 

show how the sound emitted by the turbulence is reflected and diffracted 

by the surface. 	These effects do not substantially increase the radiation 

from the turbulence, 	However, the solution also shows that the inhomo-

geneity in the surface properties acts as a scatterer, converting the strong 

hydrodynamic near-field of the turbulence into radiating acoustic energy. 



This scattering mechanism is a powerful means of converting the energy of 

eddy motion into radiating sound, and from the detailed results given belov✓  

it appears that such surFace inhomogeneities - even though apparently 

small - may often make the dominant contributions to the noise fields 

found in practice. 

In Chapter 3, the problem of sound generation by turbulent motion 

occurring in a two-phase fluid mixture is considered. 	A modification of 

Lighthillis methods allows us to see clearly how the interaction of the two 

phases produces sound waves in the fluid beyond the turbulent region. 

The important case of a small volume concentration of air bubbles in water 

is considered in detail. 	Such a mixture is well-known to have very 

startling acoustic properties, arising from the fact that the inertia of the 

mixture lies almost entirely in the water phase, while the compressibility 

lies almost entirely in the gas phaii. 	These unusual properties naturally 

play an important part in the problem of sound generation by turbulence. 

It is shown hero that the presence of only 1% or gas by volume is sufficient 

to increase the acoustic power output of the turbulence by about 50 dB, 

while at the maximum concentration, of order 1 ,% perhaps, which can 

reasonably be covered by the theory, the power output is increased by 

about 70 dri. 	The two-phase mixture formed by a distribution of small 

dust particles in a gas is also examined. 	Increases in the acoustic power 

are again found. 	They are much smaller than those caused by the presence 

of bubbles in water, but are appreciable if the mass concentration of dust 

is high. 
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In the next section, an examination is made of the vibration induced 

in a thin elastic plate by an unsteady pressure) field acting over part of 

the plate. 	Particular attention is given to the case of a random pressure 

field, and the results obtained are applied to the case when the plate is 

excited by pressure fluctuations typical of a turbulent boundary layer. 

functional forms for the dependence of the vibration statistics on the fiow 

and plate parameters are given and these may be regarded as equivalent 

to the results of Lighthill for the aerodynamiC noise problem, 	Convection 

of the pressure field is examined in a simple ekai-nple. 	The results are 

interpreted as implying that; for excitation by turbulence; the normal mode 

analysis often used for finite plates may not be very useful in practice, 

Por no modes seem, a priori;  to be preferred, and the number of modes 

required to describe a turbulent pressure field may be so large as to render 

the method useless., 

Finally, the pressure fluctuations in stationary iiotropic turbulence are 

examined using Lighthill's wave equation.. 	When the fluid is slightly 

compressible, the pressure fluctuations in a large volume of turbulence 

diverge,- in mean square, in proportion to the linear scale of the region. 

In the strict homogeneous limit of infinite scale, the pressure fluctuations 

are bounded only by small' diffuSiVe effects, and Cannot therefore be applied 

to real flows unless Ei0 volume of turbulence involved i& enormous. 

Results for small and large volumes of turbulence are derived, and 

contrasted. 	fall turbulent flows on a terrestrial scale seem to involve only 
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a "small's volume, and for these flows compressibility effects aika found to 

be negligible when the Mach number is low. 

Not all of the work described in this thesis is that of the author 

alone. About one third of the work of Chapters 3 and 4 was done by 

Dr. J.C. Howes Williams, and those chapters will be submitted for 

publication as joint papers. 	Chapters 2 and 5 were written entirely by 

the author, though of course these have also benefited greatly from many 

discussions with Dr. FFowcs Williams. 	His help is again gratefully 

acknowledged. 



CHAPTER 2 

RADIATION F:',C,!\A TURBULENCE NEAR A COMPOSITE 

FLEXIBLE BOUNDARY 
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RADIATION FROM TURBULENCE NEAR A COMPOSITE 

FLEXIBLE BOUNDARY 

1. 	Introduction  

One of the major problems in the theory of aerodynamic noise 

concerns the influence of boundaries upon the noise generated by a 

turbulent fluid flow. 	In only two cases so far has a satisfactory solution 

been achieved. 	In the first case, the boundary surface concerned has 

typical dimension small compared with a typical wavelength of the sound 

generated, and then an unambiguous dipole field is created by the presence 

of the surface, which is assumed rigid. 	In the second case, the boundary 

is supposed to be formed by an infinite plane homogeneous surface, which 

may respond with small-amplitude vibration to the turbulent flow over the 

surface. 	We shall here consider an extension of the results known for 

this second case, and so a brief history of the previous developments will 

first be given. 

Lighthill (1952) was the first to consider the problem of noise 

generation by a turbulent flow in the absence of boundaries. 	He showed 

that the turbulent flow could be regarded as equivalent, acoustically, to 

a volume distribution of quadrupoles, the quadrupole strength being 

supposed known in terms of properties of the turbulence. 	Flows at low 

Mach number yield a quadrupole strength varying as the square of a 

velocity characteristic of the turbulence, while the radiated pressure varies 
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as the quadrupole strength, and as the square of a typical turbulence 

frequency. 	Thus the radiated pressure varies as V4, and the acoustic 

intensity as V
8
. 	In 1955, Curie obtained the complete solution of 

Lighthill's equations when the effects of rigid boundaries in the flow were 

taken into account. 	Fie showed that a rigid boundary was acoustically 

equivalent to a distribution of dipoles over the surface, witha radiated 

intensity proportional to V
6
. 	An analysis similar to that of Curie, in which 

the boundary is allowed to vibrate in response to the turbulent pressure field 

upon it, would show that the vibration of a flexible panel is acoustically 

equivalent to a surface distribution of monopoles (in addition to the dipoles 

and quadrupoles of Curle and Lighthill), with a radiated intensity proportional 

to V
4
. 	These conclusions, based on dimensional analysis of terms which 

appear superficially to represent acoustic sources of essentially high efficiency, 

are now known to be quite incorrect in the case when a single infinite 

homogeneous surface is the only boundary present. 

We can anticipate the correct result for this case by looking at the 

problem in the following way. 	The spectral components of the boundary 

layer type of pressure field (in a Fourier analysis in time, and in the plane 

of the boundary layer) have, for the most part, subsonic phase velocities, 

if the Mach number of the flow is small. 	These subsonic components 

constitute a strong near-field, but they are exponentially attenuated with 

distance from the flow, and cannot propagate as sound. 	Only the relatively 

few supersonic spectral components can propagate to the far-field, and the 
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flow is basically inefficient in generating sound. 	Now if the presence of a 

rigid, or flexible boundary in the flow were to substantially increase the 

sound radiation, some form of interaction between the flow and surface must 

occur in order to scatter the subsonic near-field into propagating sound. 

Scattering, or is wavenumber conversion" , must occur if the flow is to use the 

surface as a sounding board to increase its radiation. 	But it is difficult to 

see how such scattering could occur if the only boundary present were an 

infinite homogeneous plane, responding perhaps with vibration of small 

amplitude. 	For the problem is linear, and there are no edge-effects or 

discontinuities which alone could lead to wavenumber conversion in a linear 

problem. Consequently the flow cannot use such a boundary to augment 

its radiation, and the sound field must be essentially that due to the inefficient 

quadrupoles equivalent to the turbulent flow. 

These conclusions were first rigorously deduced by Powell (1960) in 

the case of an infinite rigid surface. 	He showed, from Curie's equation 

together with a complementary null equation, that the surface pressure dipoles 

merely a  reflected the turbulence-generated sound, and hence that the v 

law remained valid in this case. 	Ffowcs Williams (1965) subsequently extended 

Powell's work to cover the case of an infinite flexible boundary; the action 

of both monopoles and dipoles was here shown only to involve the reflexion 

of the quadrupole sound, but now with a phase change depending on the 

frequency and direction of the sound. 	The properties of the radiated sound 

are completely known, in principle, when the quadrupole strength and the 

reflexion coefficient for the surface are given. 	In a later paper, Ffowcs 

Vvilliams (1966) also considered the radiation from turbulence near a flexible 
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surface when a distribution of simple supports acts on the surface. 

Scattering does now occur, and the supports themselves act as radiators of 

genuine dipole sound. 	No specific dependence of the dipole sound upon 

the speed V was obtained, however, and the details of the scattering were 

somewhat by-passed in the method used by Ffowcs Williams. 	1.:lore will be 

said later in this paper about the influence of supports on the radiated sound. 

The papers of ?owell and Ffowcs Williams illustrate the groat dancer 

in assuming that one can regard the surface pressure and velocity as known 

(dimensionally, at any rate) independently of a knowledge of the Lighthill 

quadrupole strength. 	The estimates pn, pV2 and v #%., V for pressure and 

velocity are quite inadequate, and Powell and .:fowcs Williams show how one 

should attempt to calculate p and v when given only the quadrupole strength. 

In this paper, the calculation will be carried through in a situation of much 

greater complexity than has been considered before. 	Ordinary acoustic 

theory does, of course, deal with the diffraction of acoustic waves by 

boundaries of the type considered here. 	In particular, Heins and Feshbach 

(1954) have solved the diffraction problem for a composite flexible boundary. 

This is not, however, the sort of problem which is of relevance to aerodynamic 

noise theory. 	We are really interested in the scattering of near-field 

pressure into sound, rather than the scattering of a propagating field into 

diffracted fields. 	The scattering of sound into sound is a problem of no 

importance in flow-noise theory, whereas the scattering of near-field pressure 

into sound may provide a powerful means of increasing the acoustic efficiency 

of a flow. 	The theory is therefore set up here in a manner appropriate to 
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the flow-noise problela. 	As a special case, the results of Heins and 

Feshbach (1954) are recovered. 	The technique used here does, however, 

have the advantage oF potentially greater generality than does the Wiener-

Hopf method of Heins and Feshbach - even for the diffraction problem. 

It may thus be possible to extend results in diffraction theory by the present 

method, but that is left for further study. 

The situation to be discussed in this paper concerns the case of an 

infinite boundary, composed of two semi-infinite half-planes. 	Each of the 

surfaces is assumed homogeneous, but the surfaces are supposed to differ in 

their inertia and elastic properties. 	The basic problem is to formulate a 

set of equations sufficient, in principle, to determine the radiated sound 

field entirely in terms of the one quantity which can be supposed known LC" 

viz. Lighthill's quadrupole strength Tii(x,t), given throughout the flow. 

Only when such equations are set up and solved can one hope to give a 

reliable dimensional analysis of the sound field. 
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2. 	The Governing Equations  

Let the infinite surface to be considered occupy the (1,2) plane. 

A turbulent flow occupies some region in x
3 

 > 0, and we seek the radiated 

pressure fluctuation p(x,t) in the region beyond the turbulence. 	The 

equations governing the radiation may be written (Howes Williams, 1965), 

f 
1 a 	

"iE J7 gx,t) = T+ 	ax
3 
 Cps)r 	fr 	I   

(2.1) 

dy 
0 	- T  ± 1 2--  [Ps) 	- 	4- Cvi - ax3 	

(2.2) 

In these equations, viscous forces and nonlinear terms in surface response have 

been neglected, as usual. 	p is the mean fluid density, v the surface 

velocity in the (-3) direction. 	The y-integration is over the whole of the 

(1.2) plane, and ps  denotes the surface pressure. 	T+  is the contribution 

to p(x,t) from the turbulence stresses in the real fluid, while T_ is the 

pressure which would be radiated to (x,t) by the specular images of the 

stress quadrupoles Ti. in the (1,2) plane. 	T+  and T..  are to be regarded as 

known from a knowledge of T... As usual, square brackets 	I imply 

evaluation at retarded time, 

[f] 	= f(y,t 	a 	) 
0 

a
o 

being the speed of sound in the distant field. 

If now we are given the relation between r)
s 
 and v - i.e. if we know 

the response equation for the surface, we have in principle sufficient 

equations for the determination of p in terms of T+ 	For example, in the 



5(1) 
P 	cr = 

yi  > 

yi  < C • F2(1.)  
(2.3) 
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case of a rigid surface, considered by Powell (1)50), we have v = U, so 

that p = 	+ T 	This is just a statement of Powell's reflexion principle. 

In general, however, it is not at all clear how the equations can be used, 

even in a formal sense, to determine p(x,t), so that the first problem is to 

manipulate the equations into a more suitable form. 

Suppose that tlics. surface consists of two homogeneous half-planes, 

y1  > 0 and y1 < 0 say, which have different elastic and inertia constants. 

Suppose also that a distribution of applied stresses q(y,t) acts on the surface 

in addition to the turfpulent pressure field ps, a positive value of q implying 

a stress in the +3 direction. 	The response of the surface can then be 

expressed, most conveniently in terms of the surface deflextion 1.(z,t) in  

the -3 direction, by equations of the form 

F1, F2 
are linear space and time differential operators with constant 

coefficients. 

Using (2.3) we can express the surface integral of pressure as follows: 

I dy. 	dy,  

LPs1 7 = 	Cc1)  7 + F1 1 	2 21  + 1  + S • (2.4) 

s co 	i% +co 
where I = 	 [1,1 T. 

	

1 	Yi c+ 	Y2 = -°3  

	

12 	
•••••••• C 1,3  

y1 = -°3 	y2 = -a)  

and the term S denotes a collection of line-integrals along y1  = 0 from 
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Y2 = -co to 4co. 	In fact, if we take a fairly simple case, that in which 

an 	amam   

	

F. S A. 	+ B. 	+ C. 	(I = 1,2) I 	 II 	n 	t , m 	ats ayi 	uY2 

then 

S 
n-1 	r z ....••••••••• 

r 'n-r-1 r=o ax1 
and 

[CA2 

     

    

ak 	 dy2  

aYi
k 
 Yi=C+ 

   

[Al  

   

ayi  yi=0- 

  

We can interpret these line integrals at a later stage. 

If we now substitute (2.4) into (2.1) and (2.2), and use v = avt/at, 

we have 

p 
2 

+ 12), 
1 	a tt: 1 F212) - 	1 at 

(1_ = 	 ,_ 	
1 1 

+ 
 

(2.5) 

2 .„ a 
	(F1 11 + F 1 ) - (2.6) 0 	+ 4rr ax3  1 1 	2 2 	Tr at -11 + 12) . 

In these equations, modified pressure fields have been used/ defined by 

Q+ = T+  -T- 1 as 

3 
-7 1 	a 

F tf Eci 	r (2.7) 

Q is the pressure induced by the specular image of the system which 

generates Q+, reflexion of the system of surface dipoles involving S, q 

requiring only a chance of sign. 	It will be seen later that S is known 

if q is, so that the problem now is to understand the roles played by the terms 
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involving I, assuming the Q known, 	In equations (2.4-6), the operators 

F. are now taken to act on the field point x, and not on the source point 

y as they did in (2.1. 

The equations (2.5-6) are still insufficient to determine p, for we have 

as yet no relation between 11  and 12. 	(The relation is not needed in the 

case F1 = F2 treated by Ffowcs Williams, (1965) We can obtain the 

required relation by taking Fourier transforms in (1,2) space, and in time, 

and by expressing the transforms of each of 1.11 12 in terms of the transform 
tNi 
Vto  of the surface deflexion alone. 	We use the following definition of 

generalised Fourier transforms: 

g(x,t; x3) — g (k, c.); x3)exp i(kax + t)dk dc. , 

with k = (k1 ,k2) and x = (x1 ,x2). 	We need also the following result, 

which is easily proved by direct calculation; if 

Ax,t; x„) 
	

e(yvy2, t-r/ao) - , then 

ff(k,o; x3) 2TrI exp(-ix317 g(k,c..)) 

 

Here = 
ca2 

igncA 
q0 

k2 if 	if...)1> aok , 

= 	jk2 	2 	 if IL41< aok 
a  



co 	1 

	 dk' IT! - k 	1 (K'  

22 

This result, which is frequently useful, expresses the transform of the 

pressure 	radiated by a distribution of surface sources G in terms of the 

transform Q of the sources. 	To apply this result here, we interpret 11  as 

-too 	dY 
[1,1-1(y1)] r , 

-co 

-Ecor  

EV-Y19  
-co 

and 12 as 

H denoting the Heaviside unit function. 	Use of the convolution theorem 

to obtain the transform of vt,F1 then gives 

	

.... 	-ix1  "tr r 2Tri 	% i 	 1  l eR",  

	

I 	= - 	e 	1:21, - 2 14 

	

1 	V 

_e 11, 
2n  12 	
i 	

+ 
floe.. 
aC id  • 

A denotes the Hilbert transform operator, 

(2.0) 

the integral being taken in the sense of a Cauchy principal value. 

We now substitute (2.8) into (2.5-6). 	The transforms of the operators 

F1 , F2  are denoted by i w z1  and i caz2  respectively, so that z1 , z2  are 

the impedances of the two half-planes according to the usual convention. 

Also we write z = 1(21 + z2), and denote the acoustic wave impedance 
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pcok by zw. Then (2.5-6) become 

(p - Q.de ,12-(z zw) - 	z7)Pi 	(2.9) 

^/ 	ix 347 	 1 e 	= 	1(z + zw) - -4(z1-z2)f-elv , 	(MC) 

v 	= 	i6.3 vt being the transform of v = attra. 

(2.1C) is a standard form of singular integral equation with Cauchy 

kernel, and with varia5le coefficients. 	It has a simple exact formal 

solution for arbitrary at and z, and this solution will be discussed in detail 

later. 	Note that the left sides of (2.9-10) are independent of x3. 

For 

a2 

	

(at2 	o V2 
	= 0 for all x3 >G , 

while a2 2 
ao 	

2 )
P` Q+ = at 

C whenever the observation point 

x lies beyond the region containing turbulence sources. 	In terms of trans-

forms this implies 

p(Ic,c.); x3) 	exp(-ix,olt ) 

ix34r 
with the use of suitable conditions at x3 = + co , and hence p a 	is 

- ix,* 
independent of x3. 	We may note also that Q e 	is the pressure which 

would be exerted by the turbulence sources (or their images) on the surface 

x3 
= G if the flexible boundary were absent. 	It is not a far-field 
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pressure, but in fact is dominated, for low Mach number flows, by the 

hydrodynamic near-field of the turbulence. 	We may therefore expect 

r 	ix3-431. 
Q e 	to be concentrated, for any frequency GO , on wavenumbers k 

such that 	101< aok. 	More precisely, if V, Lo  are characteristic 

velocity and length scales for the turbulence, with V << a
o

, then we expect 

a wavenumber of order 14
o 

. 

ix3* 
Gt e to be concentrated around a frequency of ord©r V/L

o 
and around 
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3. 	Acoustic Sources on the Discontinuity  

Before discussiri (2.9-10) further, we must examine the way in which 

the turbulence-generated pressure 1+ is augmented to C +' and in particular, 

the term S requires attention. 	Suppose the response operators Fi  have the 

usual forms for thin homogeneous panels, 

4 a2 
F.m 	mi a-72" + ai 71 ' (i = 1,2) 	(3.1) 

m denotes the panel mass per unit area, B is the bending stiffness, and 

dissipation in the surfaces is neglected. 	V 1
2  denotes the two dimensional 

Laplacian. 	Since the general effect of a distribution of externally applied 

stresses is well understood, it will be sufficient here to restrict those 

stresses to a line distribution along y1  = C; 

q(y,t) = q(y2,t)6(y1) . 

(The case q(y,t) = 8(z)q(t) is discussed in detail by Ffowcs Williams, 1966). 

The acceleration at y1 
 = 0 is not infinite, so that the externally applied 

stress must balance the discontinuity in shear across y1  = Cr which is induced 

by elastic forces; 

3 downward stress 
B a---1 = -(  

ayl 	line density 

 

= q(Y2,t)  

 

where, in this section, ti I denotes the discontinuity in f across 	= 

If 
	

f(y1  = 0-) - f(yi  = C+) 
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Now when the response operators have the forms considered here, the line 

integrals occurring in .3 involve the following as acoustic sources per 

unit length of y1  = C ; 

f)  
ay1 

a 

axl  
I B 	1 + a2 

B al's  I 
ay1 	

2 	ayi  

a
2 

 
ax

2 	
ayi 

a3
2  

ax
2 

ax
1 

2B1.1 

The orders of the sources 

act on them with respect 

above are acted upon by 

formally they represent a 

a (3,1,1) octupole, etc.  

are indicated by the number of derivatives which 

to the field point E. 	In addition, the terms 

the a/ax
3 

operator (cf. equation 2.7), so that 

dipole in the 3-direction, a (3,1) quadrupole, 

The dominant term is the dipole, and by the 

remarks above, the dipole strength is equal to the applied stress line density 

q(y2,t). 	Combining this with the other contribution to 441.  (equation 2.7), 

we see that the dominant term in the " edge sources* is a dipole distribution 

along y1  = C of strength 2q(y2,t). 

This remains true even if the surfaces have equal impedances. A 

line distribution of stresses induces a shear discontinuity, and so a dipole 

radiation additional to that induced by the stresses themselves. 	This should 

be regarded as a qualification to Ffowcs Williams' (1966) result, that the 

dipole strength is equal to the applied stress. 	That result is true only for 

a stress which is smoothly distributed in a two-dimensional sense, so that 

the space derivatives of the surface deflexion remain continuous. 
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4. 	Formal solution of the integral equation  

We turn now to the solution of equations (2.9-1C). 	For the theory 

of singular integral equations with the Cauchy kernel, reference may be 

made to the books by A•lushkelishvili (1953), and Gakhov (1966). 

If f-v1  satisfies (2.10), 701  can most easily be obtained by subtracting 

(2.10) from (2.9) to give 

ix 
- 	

3 
- je 	= - z v (4.1) 

"IP 
To obtain v , we writs (2.10) in the canonical form 

F(k1) = A(ki)‘"V.  (k11+ 
f +c° iNvi(k;)dk; 

	

Ir.,:' 	k1 

	

1 	1 

(4.2) 

'x3  
"../ ix3Az 

where F = Qe 	, A = 	+ zw), B = Tzi  - z2),  and the dependence 

upon k2, GJ is ignored for the moment, 	Sublect to suitable conditions 

on A,B, which are satisfied in the case considered in detail below, (4.2) 

has an explicit formal solution, which can be written in the form 

B*(ki  )Z(ki) 	+°° )dk; 
1(ki) = A*(y(ki) 	 J mkp(!ecki) 

-co 
(4.3) 

Here A* = A/(A2 - [12), B* = BAA2 - B2), and Z(k1  ) is the rsfundamentd 

function" for (4.2). 	The function 17...(k11)(kirk1)) -1  plays a role for the 

singular integral equation which is analogous to that played by the resolvent 

kernel of a Fredholm equation with regular kernel. 
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The fundamental function is defined by 

Z(k1) = (A -I- ri)X(ki) = (A + 8)exp 	(k1) 

+co dk' 

(c
i)=  2rti ( lm k 	C+) 	In 77-B I (WI  - (A-5)(le) 	 

• 
1 k1) 

-co 

(4.4) 

Thus we have to evaluate the non-singular integral 1-4+(k
1
) when k

1 lies 

in the upper half of the complex k
1
-plane, and then let Im k1 

—> 0+. 

The solution is completed, in principle, when 7_ is reduced to a usable fonn n 

not involving limits or singular integrals. 	Whether or not this can be 

achieved depends upon the complexity of the forms assumed for z 
1 z' 2' 

though this in no way invalidates the existence of the general solution (4.3) 

if the required regularity conditions are obeyed. 	This is the sense in which 

this formulation has, potentially, greater generality than the method employed 

by Heins and Feshbach (1954); in their formulation the impedances z. were 

taken as constant at the outset, and a major reworking of the theory would 

be needed to encompass any other case. Hero the impedances determine 

only the details of the solution, and not the general form. 	However, we 

have only found it possible to evaluate Z analytically for the constant 

impedance case of Heins and Feshbach, though it should be stressed again 

that the present formulation is particularly applicable to the flow-noise 

problem, while the Wiener-Hopf technique of Heins and Feshbach is only 

really suited to diffraction problems. 
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Suppose the surface impedances are independent of k, though dependent 

upon cz . The surfaces are thus assumed to i.e formed by a system of 

infinitesimal decoupled mass-loaded elements, and the possibility of elastic 

wave propagation in the surfaces is thereby excluded. 	The problem of the 

diffraction of plane acoustic waves by such a surface has been solved by 

Heins and C'eshloach (1954). 	The determination of the fundamental function 

Z is exactly analogous to the factor decomposition which is required by the 

Wiener- Hopf method. 

Consider then 

( k ) = 1 z1 + 	dki 
, 	 Im k 

-co

In  
z 	+ z 

(P  1  ) ,, (icy 	k ) 2 	w 	1 	1}  

a 

2iri 

By differentiation on k1 and integration by parts we find 

ar+(k1) 	
1 	+03 dk' 

kl k1

k'  1  
2rti 1 	 ' 	- 	D1 /41  + (K24120. 	(K2 	1:1 2) 

-co  

(4.5) 

minus a similar expression with it instead of A. 	Here we have inserted 

the appropriate expression for zw , have taken La > C, and written 

K2 = 	632/a  - k2.o  
	It will appear later that it is sufficient to consider 

only the k2  with j k7  < lie)/0
c), and therefore K can be taken as real 

and positive. 	Al  and A2  denote ,,L3/z1  and ,.)c/z2 
respectively, z

1
,z 

being regarded here as functions of to only. 	The branch of (i(2-k;2)2  is 

taken as that which reduces to K when k1 = .;„ 	There is thus a branch 
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point 	on the real k'
1-axis, but this can be removed from the 

integration path by supposing K to have a small negative imaginary part. 

This is a familiar tlevice (Copson, 1946), and corresponds to a slight 

dissipation in the fluid. 

With this supposition, consider the integral involving X1  in (4.5) 

around the contour shown in Fig.l. 	The contributions from the circular 

arcs vanish in the limits of large and small radii. 	The integrals along 

the edges of the branch cut combine to give 

dk' 

   

1,c2.1. 	(ei  2 	K2)3 	2 
"1 

where we can now put I;7t K = C. 	This integral can be evaluated by 

elementary means C loins and Feshbach, 1954), to give 

/) [ 	
(k1)  - i (al)  

;:1  - 01  

 

t(ki) 4 1 1 (-at ) 

tr k
1 

+ al 

= 	Gi(ki) say, where al  = (K2 y21  , and 

1 	-1 1K -  (k1) 2 I- tan C--+ ti  (.. 	- k1 
 ) 

1 	1 In ( 
k2 + (k2  K 2)2  

1 	1 

C(' 	2  k ) 

 

Combining this with the term G2(k1
), and with the residue contributions, 
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we have finally, on letting Im k1 	0+ , 

anki) k l 	[ 
= 	0 

Z  
-(k ) - G (k ) + 	

;2 

I 	1 1 	 2 2 	• 
uK1 	 (K" k1 

	" I
- 	X +(K2-k)

i- 	
;\2+0( 

(4.6) 

Then, since r (-co) = C, we have 

1  
Cci) 	

Dr (u)  
Du du 

-co 

but the integral cannot be expressed in terms of known functions, 

Approximations for ft  can be obtained, as shown by Heins and Feshbach, 

and these can be used if a detailed study of the function Z is required. 

We note for further use, that if we set zi 	z2  approximately in the above, 

then r = 0, = 1 and Z = A + B. This will provide us with an 

adequate approximation when the two surfaces have impedances differing 

by a small amount compared with the magnitude of either impedance. 

The next task is to invert the Fourier transforms over wavenumber, so as 

to obtain the far-field radiated pressure as a function of frequency. 
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5. Inversion of the Fourier transform; the far-field radiation  

From equations (4.1) and (4.3) we have the following equation for 

the pressure transform in terms of the source fields; 

pa(' ~:X3)  
esA 
Q+(i: 

- 

(w)tx3) 

zwB*Z. 

= 

, sf

F(lei 

''1X317 
Z

w
A )e 	F(k,(4) 

,k2, W) al 
(5.1) 

ifo Z(k; ,k2, ,-.4(kl-ki) 

Consider again a positive frequency CJJ , and write k
o 

= cA)/a
o

, and 

2 K = +vko
2 k

2 
where we again assume 	1:9 1 < ko. Multiply (5.1) 

by exp ikixi , and integrate over k1 . 	Under suitable assumptions, the 

k1, k' integrals in the final term can be inverted (even though one of then 

is singular), and after the integrals are inverted we also interchange the 

dummy variables k1' * 	For the final term in (5.1) we then have to 

consider the integral 

i-7-2 
1 

ik
1 

, 1.*
't
*x3 /K 	(z B*Z)(P)

1
dt'-' 

. 	 1 	w  L = (k 	) 
1 	• 

(5.2) 

taken in the principal value sense. 	By the Plemeli formulae (see 

Mushkelishvili, 1953), L is given by 

= 1(L+ + C) , 

where L are the values of L as k
1 

approaches the real axis from above 

and below respectively. 	We calculate the integrals L by a deformation 

of the integration path which is standard in the diffraction theory (Copson, 1946). 
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Consider for definiteness an observation point x with x
1  > C, 

x1 = R cos 4...,, x,,D  = R sin G, 0 < G < 2'2. 	We deform the path of — — 

integration into one branch of the hyperbola given by 

1 = 	K cos (G + it), 	(5.3) 

11( -1(11
2 = + K sin (G + it) , (see Fig.2). 

Again we suppose the branch points slightly displaced from the real axis 

by giving K a small negative imaginary part. 	The branch cut from -1: to 

to -co is now a radial one, as shown in Fig.2. 	1\1-  denote the integrals 

L taken along the hyperbolic path for lm k1  = 0+ and Im k1  = 0- 

respectively. 	The contributions to the integrals from the circular arcs 

joining the real axis to the hyperbola vanish in the limit of infinite radius. 

When -K cos Q < k1 < +co we have, from Cauchy's theorem, 

L + 	= 2tri (residue at k' = 1) 1 

= C, 	and hence 

L 	= 	Ili (residue at k' = k1  ) - N . 1  

On the other hand, if -co < kl' < -K cos G, we have 

+ N+  = 0 , 

L + 	= -2iri (residue at k; = k1) , 

(5.4) 

because the pole is now circumvented in the negative sense. 	Hence  

I 	= 	-id (residue at lc' = k1  ) - N 1  (5.5) 



k 

a> 

-Kcos4.-.) 

Because of the factor e 
-ix

3.11: 

'EN 

ik
1 

x
1 
-ix

3 
111:2-k2  

zwn-. e 1 
-KcosG 

-co 

il; x -ix 1- 	1 zw 

, the limits - co can be replaced 
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The residue contributions to L can be combined with the first term on the 

right of (5.1) to give a contribution 

ik1 x1-ix3N/K2-k 
(1 - zwA*)6' e 

by - K, the remaining contributions vanishing exponentially as x„ 	+co. 

Now from the definitions of A*, B* we find 

zi 	 z 
1 -z zw 	w3* 	 R 

(5.6) 

1 - zwA* + zwir - 
- z 

VJ z2  = R2 z2 + zw 

z1 + zw 	1 

where R1'R2 are the usual reflexion coefficients for the 

Therefore, p(k,63) contains the reflected fields 	Ct - 

two surfaces. 

or R 2 
( - according 

as 	-K cos 44 < k1 < +K, or 

-K < k
1 < -K cos G . 

This lust states that the propagating components of the source field G) 

(i.e. those for which k1 	< K) are reflected to the observation point 

from one surface or the other, with appropriate reflexion coefficients, 

according to the obvious geometric rule. 	These reflected pressures have 

precisely the interpretation placed on them by Ffowcs Williams (1965,1966). 
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Refiexion of turbulence-generated sound does not imply any fundamental 

increase in the efficiency of the turbulence flow. 	We shall therefore 

neglect these reflected pressures now, and shall consider only the scattered 

field, which is given by the integral along the hyperbolic path, and 

depends upon the integral 

N = 

+co 
e-iKRcosht, (zw

B*Z)(-Kcos(G+i t' )) 

k + K cos (G-Nr) 
-co 

iKsin(G+i t)dt . 	(5.7) 

Now, referring to (4.4), we have Z = (A+15)X, where X / 0 has only branch 

points as its singularities. 	We can therefore write 

zwB*Z = ii(z2-z1 )X/2 E + Ksin(ti3 + it)] , and then 

i 	(z2-zi  ) 
N = 	  

e-i K Rcosh-C X(i-Kcos(E) + i t ))Ksin(€ + i r  )d'  

[k1  	K cos(€' + sr)) CA,, K sin(te5) + it)] 

Two distinct cases now arise, representing quite different physical 

processes. 	Suppose firstly that k1 1 < K, i.e. consider a propagating 

element (k1,k2, t) with supersonic phase speed in the (1,2) plane. 	Such 

elements can propagate to infinity as sound when no boundaries (or an infinite 

homogeneous boundary) are present. The process denribed by the integral 

N for such components is that of the scattering of radiating energy with one 

directional distribution into radiating energy with a different directivity - 

i.e. the diffraction of sound. 	From the viewpoint of aerodynamic noise 

this process is unimportant, for the diffraction can only produce a directional 



redistribution of the turbulence-generated sound - whereas here we hope to 

find evidence of the conversion of non-propagating near field energy into 

radiating sound. 	The case ik
l
i <K is only of interest in diffraction 

theory, where the directivity pattern is the most important feature. 	When 

we write 

F(k1 ,k2,0) = 8(ki  + ko  cos G9S(k2)6(ca-a o o) k  

we have the case of a plane monochromatic wave of wavenumber k
o 

incident 

upon the plane at an angle 	. 	The integral determining the (two- 

dimensional) diffracted field is then proportional to N with k
2 

= G and 

k
1 

= -k
o 

cos 9' , i.e. 

+co -ik
o

Rcosh 
01/4.1  (z2-z1 ) 	r  r„, 	 (5.9: 

2 	
Cco-sko9cos s 3(Gc+ixiv+k)) ssiinn((:+livr))d3r  

Ccos(G+it ) 

This integral is just that found by Heins and Feshbach (1954) by the V\ iener-

Hopf method, and when certain changes of notation are made, we can recover 

their results on the diffraction of plane waves. 	The transformation of the 

integral to a usable form is not trivial, and the method of stationary phase 

cannot be applied immediately as there is a singularity when 6 e 6' at 

t = 0. 	The necessary transformations, and the final form for the diffracted 

field are given in detail by Heins and Feshbach. 

We turn next to the case k1 	> K, which does not correspond to 

a diffraction problem for plane waves. 	This is a case which necessarily 

arises when the inhomogeneous wave equation has to be solved, and the 
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radiated field is properly termed a scattered field in this case. 	We must 

emphasise that scattering of neer-field pressure into sound only occurs from 

any kind of inhomogenoity when turbulence sources exist at distances less 

than about a sound wavelength from the discontinuity, or inhomogeneity. 

Thus, if all the turbulence sources in this problem are at least several 

characteristic wavelengths away from the line yi  = 0, the radiated field 

consists of direct and reflected fields, and a diffracted field which can be 

treated in the manner described above. The impedance discontinuity cannot, 

in such a case, increase the power output from the flow. 	Practice! cases, 

however, often involve such impedance discontinuities with turbulence sources 

distributed nearly homogeneously in the (1,2) plane (as in a turbulent 

boundary layer) and then scattering is certain to occur. 

When lki 	> K, the situation is more easy to handle than in the 

diffraction problem, for the integral N contains no pole on the range of 

integration. An application of the method of stationary phase gives at once, 

for KR ---> co , 

N 

 

• IT 	• 
Z1) in' I  - 'KR 

X(-Kcos€#)XsinG  
2 	71T e 	 (k + ICcos)()1/41  + KsinG) 

1 
. (5.1(') 

 

We have now to multiply the expression by exp(ik2x2) and integrate over 

k
2. 	The factor exp(-IR11(2  k22) shows that only those k2  for which L k21 < ko  

contribute to the far-field integral, and this is the justification for taking 

(k2( < k
o, as was done earlier. A further application of the method of 
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stationary phase then gives us the following result for the scattered pressure 

field ils (x,ta) at position x. = 	and frequency (...1 > C ; 

A 
p(x,(.)) OM 

1 
•••%••• 
IT I 

7(ki,k2,4a) 	
ik ,k2, G)) e 2x2  dk

1 
 dk 7.(k k 

1' 2' 	 2 

k003  -ikar X(-kopi  , -k0/32, 44) 
N 	iX1(Z2-Z1 )(-7 )  e 	(Al ÷((cP3)  

F(ki, -1(0132, 	dkl  
Z(ki, 4(0(32,4) (k1  + kopi) 

ki  * 

where now K = v i k2 - k2 2  o 	o'L 

V(k 0
, p. , 04) (5.11) 

This is an exact asymptotic expansion for ;(x, ), in terms of the known 

source field F, in the far-field kor 	co„ 	In the next section, the 

familiar kind of dimensional analysis will be applied to (5.11) to predict 

the dependence of the scattered field on the characteristic length and 

velocity scales Lo, V of the turbulent motion. 
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6. 	Dimensional Analysis for Boy Layer Turbulence  

In this section we perform a simple dimensional analysis of equation 

(5.11), to predict the dependence of the scattered acoustic power on the 

parameters characteristic of the plates, and of the turbulent flow over the 

plates. A boundary layer type of flow will be considered, whose internal 

dynamics may be regarded as incompressible if the —eon flow Mach number 

is small. The flow may be characterised in the usual way by length and 

velocity scales Lo, V, representing a boundary layer thickness and free stream 

velocity, respectively. The typical frequency, both for the turbulent motion 

and for the emitted sound, then varies roughly as V/Lo, the typical turbulence 

wavenumber is of order 1/L
o

, and the acoustic wavenumber is of order 

M/Lo. M = V/ao is the free stream Mach number normalised on the far-

field sound speed ao. 

We have already supposed the plates to have negligible bending stiffness. 

This is a good approximation for underwater applications, where it is COillitiOn 

practice to represent plates by a purely mass-loaded impedance for the 

frequency range of general interest. 	To further reduce the complexity of 

(5.11) we shall suppose the impedance difference 122  - z1 1 to be small 

compared with either of 22 1 1 	I z11 	- which amounts here only to a 1 	1  

condition on the plate masses, independent of frequency or wavenumber. 

This is a case evidently relevant to many practical situations, though of course 

certain extreme situations are excluded (e.g., the case of one perfectly 

rigid surface and one perfectly limp surface, al  = aa, 22  = o). We can 

then replace 2i  by the average impedance z everywhere, except in the 
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factor (z2-z1), and in particular we may replace the function X by unity. 

As a check, we note that the resulting equation for 11)(x,e1) could have 

been obtained, in this approximation, from a simple iteration process on 

equations (2.9) - 2.10). 

Taking the direction cosines pi  all 0(1) and neglecting some numerical 

factors, we then have, symbolically, 

/‘ 	 k 	-ik r I` 
PO( /10 f`.) 	X lz -z I (-a) 	o 	V(c...))  

2 1 r ° 	)+k ' 
0 

op F(ki,-k0,14 
V(w) /-4 	

(
(144(0)(z  + 	 dki  

1 

• 

(6.1) 

/4. 
Leaving aside the function V(w) for the moment, we have now to distinguish 

two cases. Suppose the panels to have the same thickness h, and to be 

made of materials of densities 0 , cr +40-  , with berx< GP-  . 

Then we have 

z1 = 	 z2 
= ;( r+ tir )hca, 	(Ai = phrh . 

The ratio IN I /k
o is equal to pailzi, and therefore the case in which 

I A 	>> k
o corresponds to that in which the specific acoustic impedance 

pa0  is large compared with the plate impedance tz I . This is the case 

relevant to underwater applications. There ono is often concerned with 

steel plates of density Ci- "J10p, and with Mach numbers of order 10 -. 

The value of IX1Aco is then of order 10 Lc/h, and even the smallest 
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relevant length scale Lc, (the boundary layer displacement thickness S) 

is at least several times the plate thickness h. 	.5* = 3 cm, h = 1 cm 

are perhaps typical values. 	In this underwater limit we have 

2A 	-ik r A 
p(x,(.3) 	( h 	LAG' 	o r 	) c 	V(4,) 

0 
(6,2) 

en the other hand, the limit IN << Ito  implies that the fluid 

loading on the plates, represented by the specific acoustic impedance pa, 
is negligible compared with the mass loading represented by the plate 

impedancelz4 	This limit may apply in some aeronautical contexts, where 

in fact it is usual to ignore effects of fluid loading, 	In those applications, 

the Mach number is much higher than in underwater cases, so that taking 

M = 0(1) we have 

l/ko 	(p Lo(6-  h) . 

3 
For aluminium plates in air, WO" is of order 	-, so that NA°  1 

unless L0/h 4 1 o 3  . The case Lo h > 1C3  may apply in practice, 

since the plates used in aircraft construction are exceedingly thin (h "1 mm), 

so that fluid loading cannot be neglected and the previous limit (6.2) 

will apply. 	However, it is clear that the limit I  Ai < k
o 

can Eir2k,  

occur in aeronautical problems, if at all, and then we would have 

A, 	
(#340_ -ikor 

pkxw; N (----) a 	V(61) . 
crr 

(6.3) 
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We consider now the function V(W). Since we are interested 

primarily in the radiation scattered by the impedance discontinuity, rather 

than in that induced by supports acting on the discontinuity, the support 

sources in 	will be omitted. 	In fact the solution obtained in §4 is 

incomplete - if boundary conditions on the discontinuity are prescribed through 

the action of externally applied forces. 	For example, if the boundary is 

supported along the discontinuity by a rib of infinite impedance, we have to 

satisfy the condition v(yi  = C) = 0, or equivalently, 

fe;r4(k1 k̀2 ' 0)d.1 
= C.:', 	 (6.4) 

on the boundary velocity. 	To do this we have to add to the particular 

solution (4.3), a solution of the homogeneous integral equation, determining 

the arbitrary constant so as to satisfy the integral constraint (6.4). 	The 

solution of (4.2) in the form of complementary function plus particular 

integral is discussed in detail by Gakhov (1966) and Mushkelishvili (1953). 

The solution (4.3) may easily be generalised in this way, though to no groat 

point. 

With support terms omitted, we have 

ixr, 	• 
F(t i ek216)) = 	1I 0)0  

4-4 
T_ is the Fourier transform of the pressure induced at (x,t) by the system of 

image sources alone, i.e. of 



9 
i 

-Z7r.ax. Bx. 
r.  

x 	yl 
T..(y, t ao 

V 

 

 

Here the integration runs over the volume V_ occupied by the image sources. 

By two applications of the divergence theorem we can interchange x and 

y derivatives to write the image pressure as 

1 	a2 7** 	IL - 	Y-I 	d ' 	, t - 	)—.Y-- . 
1 

	

aYe')Y. 	ao ix"( J V 	1 
- 

(6.5) 

There are no difficulties here concerning the surface integrals arising from 

use of the divergence theorem. 	We are considering the image sources in 

isolation, so that the surface integrals may be taken over any distant 

control surface enclosing the observation point and the sources, and may 

be neglected on the usual assumptions. 	Now the integral (6.5) is propor-

tional to the pressure exerted on a rigid plane boundary, x3 = C, by the 

same turbulent flow. 	This pressure field has been examined by Ffowcs 
11111••••••••••• 

Williams (1965a). 	if we take Fourier transforms (1,2,t) space, and follow 

Ms method of manipulating the resulting expressions, we readily find that 

r-..0 	ix3t 
i (k1  ,k2,43)0 	cc 

2 E(4 	i 	 2 	I 

k2) 6.13 	r 
+ k j 0 [ 473  - ak2)2 6. + koi 

3 	1 
EV 	 a 	 ao 0 

go  2 ' 2 2 
k ) (......2- - 

ao  . 

2 .- 	45 	2 2  I 
X exp 	(--2- k ) 	dR

3 ao  
(6.6) 

co 	
••• 

f 

T..(k ,k ,C.),R ) 
tl 1 2 	?) 

0 

X 



and on frequencies of order V/Lo. 	Since the Mach number M is small, 

we are therefore interested in the regime for which 4.3<< ok, and in 

cc 
ix3-4/-  

this regime we have, from (6.6), T - (k1'2'(.3)e 
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Numerical factors have again been omitted. 	T.. is the (1,2,0 transform 

of T.I., the Lighthill turbulence stress tensor. 	The vector ki  appearing in 

(6.6) is the 3-vector (k1 ,k2,0). 

Now the function T..• 	is the transForlyt of a typical incompressible 

turbulence function, and is concentrated on wavonumbers of order 1/L
o, 

-kx 

ti 1 2 	
to + ki)(k8i3  + 	a 	dx3 • 

	(6.7) 

0 

ix AV` 
The typical value o:. 6_e 	now follows qukkly from this equation. 

The exponential factor may be replaced by unity, for in the boundary layer 

the sources are concentrated on wavenumbers k_-_,ss than about 1/Lo, while 

the sources are also concentrated in space in the region C < x,- < L — 	'64  o 

The x▪ 3
-inteeration is dimensionally equivalent to multiplication by Lo, 

4 
while the transform it, is proportional to p vt.o

3  . 	This follows if we 

suppose, as usual, that the Lighthill stress tensor is dominated by contributions 

from the fluctuating .eynolds stresses, L. f•o.  ev2. 	Then we have 

3 Te NpVL3 , 	(6.) 

which is exactly what one would expect for the transform of a typical near- 

field pressure 042. 
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To complete the determination of V(G3), note that, since k >> k
o 1 

for the dominant wavonumber 1/Lo, the factors (k
1 

+ k -1 and dk1 
in 

	

(6.1) cancel, dimensionally. 	Also, that it is sufficient for the ifiach 

number dependence to write 

(z + 	 1 P 	) as 	crh + 
k q  k- 

1 

leaving aside the question of whether, generally, a- h >> eLo  or not. 

When all these estimates are made, we readily find the following 

dimensional forms for the total scattered acoustic power output E from the 

discontinuity: 

2 
3 	a 	h  

E "J' or 102  ) m 
rh + 0.0  

	

for 	» k
o 
	 (6.9) 

(eV3L2) m  el.')  46- 	2  ) 
TO- h + et.) 

for tht << ko  , 	 (6.10) 

Note that these arc three-dimensional results, the turbulence being supposed 

confined to a limited region in the x2 
direction. 	If the turbulence extends 

to infinity in the x2 
direction, the problem is effectively two-dimensional, 

and M3 and M. in (6.-?-6.1C:) should be replaced by M
2 

and 1. 
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Thus the power output varies as V6  if fluid loading is significant, 

and as V4  if fluid loading is negligible. 	As noted in §1, these laws might 

be deduced immediately from the Curie type of solution to Lighthill's 

wave equation. 	We must, however, emphasise again that any such 

procedure is dangerous unless all quantities occurring in the expression for the 

radiated pressure have been expressed in terms of the Lighthill tensor T... 

In this sense, Curie's equation is not a solution, and the whole object of 

this paper has been to show how one should attempt to obtain the proper 

solution. 	The danger of making predictions from an incomplete solution 

of the Curie type can be seen at once by subtracting (2.2) from (2.1). 

The resulting equation contains no monopole terms, and superficial examination 

would appear to give e r' \t, and would entirely preclude the V.  law. 

On the other hand, from (2.1) atone, the monopole terms appear always to 

dominate at low enough iViach numbers, and to yield a V law. 	The 

difficulties, of course, stem from the fact that in our problem the typical 

surface dimension is much larger than the typical sound wavelength, and far 

such cases the cony ,ntional interpretations of acoustic sources as monopoles, 

dipoles, etc., are valueless. 	Curie's aim was to apply his solution to the 

Aeolian tone problem, and for that problem there are no such difficulties. 

A more interesting interpretation of (6.9 — MO) can be given in terms 

of the radiation from a single infinite homogeneous plate, driven by a point 

force Fo
exp(i tat). 	Under the assumption that the bending wavenumber 

kG 	= 4v  i mCs2  /B is large compared with the acoustic wavenumber ko = 0/ao 



47 

(i.e. when the bending stiffness B is small, as we have assumed), it is 

found (Cremer and 1.1eckl, 1967, p./P.7) that the power radiated by the 

plate is given by 

2,9  

E — Paokoro  [
1 - ea° tan-1 mciai (6.11) 9 9 mt,3 	a 2sr m- 	 eo 

The first term represents the radiation if fluid loading is negligible, the 

second term represents the correction due to fluid loading. 	Suppose that 

?La << 	h for simplicity, and set 

r F0  i•-•/ (.N,2 2  )(I )(— 114t  ) , 4' 0 er (6.12) 

Then from (6.11) we find the result (6.9) by expanding the tan-1  function 

for the case of appreciable fluid loading, Pao  >> mto . 	Also, for the 

case of negligible fluid loading, Pao  < rnoa , we find the result (6.1(,) 

by neglecting the tan-1  function. 	Thus in either case, we can interpret 

the radiation scattered by the discontinuity as Leing that produced by a 

homogeneous plate with small bending stiffness, driven at the turbulence 

frequency \4/L 0, by a force of strength 

typical pressure 	typical area 	
relative impedance 

ev2. 	) x ( 	2 	) x ( 	lump 

	

Lo 	d6' /e- 
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7. 	Conclusions 

The object of this paper has been to solve Lighthill's inhomogeneous 

wave equation, given only the turbulence stress tensor T.., subject to the ti 

discontinuous boundary conditions appropriate to a composite flexible 

boundary. 	The boundary considered consists of two homogeneous semi- 

infinite planes y1  > 0, y1  < C, with different impedances. 	To attain 

reasonable analytical simplicity, we have been forced in the end to neglect 

bending stiffness of the planes, and to suppose the planes to be merely 

mass-loaded. 	Some important aspects of the interaction between flows 

and surfaces are undoubtedly by-passed by this supposition, though there is 

no reason to doubt its usefulness in bringing out many essential points. 	/ 

general formulation is attempted, in which details of the source terms and 

of the boundary conditions are not needed at the outset. 	The method 

yields a singular intuord equation, with variable coefficients, for the 

Fourier transform of the boundary velocity. A great deal is known about 

such equations, and it is possible to write down an exact formal solution 

for arbitrary source terms and for arbitrary forms of the impedances of the 

two halves of the boundary. 	The solution is applied here to the problem 

of noise generation by a turbulent boundary layer formed on the plane. 

However, the method might also be used either to generalise previously 

obtained results in diffraction theory, or to estimate the radiation from a 

propellor, for example, rotating near the boundary. 	It would seem that 

the practical usefulness of such extensions is probably severely limited, 

as the formulae become formidably complicated. 
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The method given here may evidently be applied to other problems 

involving discontinuous boundary conditions, and it seems to be more 

straightforward than the usual formulation of such problems in terms of a 

Wiener-Kopf integral equation. Moreover, the Wiener-Hopf method is 

difficult to apply to problems in which sources are involved. 	However, 

the details of the soletion lie mainly in the °Fundamental function° for 

the singular integral equation, and to that extent our method is not 

superior, for the determination of this function is just equivalent to obtaining 

the factor decomposition required by the Wiener-Hopf technique. 

The formal solution obtained in this work For the radiated pressure 

involves a function 	which is essentially the c=ourier transform of the 

pressure in the boundary layer. 	The supersonic spectral components of 

F (i.e. those for which Ga > a
o
k) are those which can propagate to 

infinity as sound in the absence of any boundary. 	They form the genuine 

sound field of the turbulence. 	The solution shows that these propagating 

components are reflected, according to the obvious geometrical rule, with 

appropriate reflexion coefficients, from one half of the boundary or the 

other, depending upon their angle of incidence upon the boundary. 

In addition, a diffracted field, emanating from the discontinuity, is sot 

up by the action of propagating components on the surface. 	None of 

these effects can substantially increase the radiation from the turbulence. 

Reflexion of propagating components can at most increase the acoustic 

power output by a factor of 4, while the diffraction implies only a 
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directional redistribution of the turbulence-generated sound. 	The 

diffracted field generated by propagating components draws its energy, by 

definition, froal those components, and not directly from the turbulence. 

The solution also shows clearly, however, that the impedance 

discontinuity acts as a scatterer, or wavenumber converter. 	Non-

propagating near-field pressure components are scattered into supersonic 

propagating components. 	This process can make use of the large energy 

content of the hydrodynamic near-Field of the turbulence, and may 

appreciably increase the acoustic power output. 	Wavenumber conversion 

is the principal aspeci of turbulence dynamics, of course, where it arises 

through the nonlinear convective terms in the ilavier-Stokes equation. 

The sound generation problem, as formulated by Lighthill, is linear, but 

interaction between Fourier components at different wavenumbars can still 

occur through discontinuities in boundary conditions. 	Any such discon- 

tinuities clearly lead to convolution integrals in Fourier space, and so to 

scattering. 

The terminology used here is different from that which is usual in 

acoustics (see, e.g. .orso and Ingard, 19613). 	Scattering usually refers 

to the process occurring when sound (i.e. a propagating wave-field) is 

incident upon a body with typical dimension smati compared with a wave- 

length of the incoming sound. 	Diffraction theory is concerned with the 

interaction of a propagating wave with a body whose typical dimension 

is large compared with the sound wavelength. 	The term "diffraction° 
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is retained here, implying in addition an energy-conserving exchange 

between incident and diffracted waves. 	On the other hand, it seems 

preferable to use the term 'scatterings For the process whereby energy is 

converted from a passive near-field state to a propagating wave-field state. 

A dimensional analysis for the case of siaall impedance discontinuity 

shows that the scattered acoustic power varies as V4  if fluid loading on 

the boundary is small, and as V6  if fluid loading is appreciable. 	The 

first limit is relevant to aerodynamic problems, the second to underwater 

applications, 	The conventional interpretation of these results as implying; 

monopole and dipole radiation is worthless. 	A more illuminating inter-

pretation follows by comparing our results with well-known results for the 

radiation from a single infinite homogeneous plate driven by an oscillatory 

point force. 	Setting the force frequency equal to the turbulence 

frequency, and the force strength equal to the product (typical pressure 

pV
2) x (typical area 1.2) x (relative impedance lump /6670) in those 

results, and making the appropriate simplifications for low and high fluid 

loading, we obtain the V4- and V6 laws, together with the other relevant 

factors. 	Thus, apart from the reflexion and diffraction effects noted 

earlier, the discontinuity acts in the same way as does a force 

(pV21.21111) eXP(1‘112) 0 tr 	
0 

on a homogeneous boundary, 

(7.1) 
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To obtain a rough idea of the importance of the scattered radiation, 

compare equation (6.. ), with Cr h > (Ao  for simplicity, with the familiar 

Lighthill Formula for •the acoustic power output of the flow in the absence 

of scattering. 	The relevant formula, obtained by the usual dimensional 

analysis, is 

Ect.") (fl11"1-2)M5( °  o 774  

where V* r.-• L')  is the correlation volume, and V" is the volume occupied 

by the sources. 	For ;he boundary layer case, we have V ,•••1  LoS where 

S is the area of surface covered by the layer, since the typical turbulence 

length scale Lo is of the order of the boundary layer thickness. 	Then we 

see that the scattering process generates as much sound as do the turbulence 

quadrupoles in an area 

.2, 11.5' 
L k 	 ) iv% 0 ff- 

(7.0) 

of the layer. 	In a typical underwater situation we might have 

41 IV 	= 5 x 10
-2, M = 5 x 10 	Lo  = 1 ft., in which case the 

of S is equal to 100 sq.ft. 	Thus the scattering due to surface inhomo-

geneitios is a powerful effect, and may well make the dominant contribution 

to many noise fields observed in practice. 

. (7.2) 



i >. 	i 
1/2 ,1172 	0 

arg (K 2- 42) 

branch point 
k, '.- -K 

1.... 

ki, Imk > o. 

Re k,' 

branch cut from 
K.- K to -oo arg (K2- k,' 2) 1/2. +7/2  

i ,. 

Fig. I. Integration contour for fundamental function. (4.5) 



= -o0 

--------- bro.- -------ch 
cu f -----___ 

----------- --_______. 

\ 
k 

hyperbolic path 
k =-Kcos(04-ir) 

-Kcose 

-------__. 

Fig.2. Deformation of integration path for L. (5.2.)  



55 

REF E,ZENCES  

Copson, E.T. 	1946. 	Oxford (.1uart.Math.17, 19. 

Cramer, L. and Heckl, M. 	1967. 	Kirperschallu, 

Springer-Verlag, Berlin. 

Curio, N. 	1955. 	Proc.aoy.Soc.A. 221, 412. 

Ffowcs 	J.E. 	1965. 	J.Fluid Mech.22/2, 347. 

Ffowcs Wi!Hams, J.11. 	1965a. 	J.Fluicl l'Ac-)ch.22/1, 507. 

Ffowcs Williams, J.E. 	1966. 	J.Fluid i'.1sch.26/4, 641. 

Gakhov,  , F.D. 	1-i66. 	"Boundary Value li•oblems° , 

Porgamon Press. 

Heins, A.E. and Fesf:bach, H. 	1954. 

Proc.Symp.AppI.Math.Vol.V (June 1952), 75. 

McGraw-Hill, N.Y., for Amor.N",ath.Soc. 

Lighthill, M.J. 	1952. 	Proc.,:oy.Soc.A.211, 566. 

Morse, P.M. and Ingard, K.U. 	1963. 	"Theoretical Acousticsu. 

McGraw-Hill, New York. 

Mushkelishvili, N. I. 	1953. 	"Singular Integral Equations", 

English translation, Noordhoff, Groningen, Holland. 

Powell, A. 	196 	J.Acoust.Soc.Amer.32/2., 932. 



CHAPTER 3 

SOUND GENERATION BY TURBULENT TWO-PHASE 

FLOW 

56 



57. 

Abstract  

Sound generation by turbulent two-phase flow is considered by 

the methods of Lighthill's theory of aerodynamic noise. An 

inhomogeneous wave equation is derived, in which the effects of one 

phase on the other are represented by monopole, dipole and quadrupole 

distributions. The resulting power outputs are obtained for the case 

of a distribution of small air bubbles in water. The monopole 

radiation resulting from volumetric response of the bubbles to the 

turbulent pressure field overwhelms that from the quadrupoles 

equivalent to the turbulent flow, the increase in acoustic power output 

being about 70 dB for a volume concentration of 10%. The monopole. 

radiation occurs through the forced response of the bubbles at the 

turbulence frequency; resonant response is shown to be impossible when 

the excitation is due to turbulence alone. Surface radiation arises 

from the edge of a cloud of bubbles. This radiation is important when 

the region containing bubbles is in the form of a sheet with thickness 

smaller than the length scale of the turbulent motion. Dipole radiation 

is also considered, and found to be negligible whenever monopole sources 

are present. In the case of a dusty gas, only dipole and quadrupole 

sources are present, and here it is shown that the dipole radiation is 

equivalent to an increase in the usual quadrupole radiation. The increase 

depends upon the mass concentration of dust, and is significant for mass 

concentrations in excess of unity. 



!1,L'IntreduCtion 

In this paper'we Consider the sound radiation from a finite region 

of turbulent or unsteady flow, in which the fluid consists of a mixture 

of two phases- For the most part attention is confined to the case of 

a small volume concentration of air bubbles in water, though the case of 

a gas containing small dust particles is also examined briefly, Much 

work has been done in the past on the radiation from a single air bubble 

in water (e-g, Strasberg, 1956) when various forms of excitation are 

responsible for the motion of the bubble: The bulk properties of a 

distribution of bubbles in water have also been studied, in particular 

the well-known drastic reduction of the sound speed caused by even a 

very small concentration of bubbles, and the variation of the sound 

speed with frequency A review of these, and many other effects is given 

by Batchelor (1967), Much less has been done on the excitation of a 

single bubble, or a distribution of bubbles, by a turbulent pressure 

field, This problem is discussed here on the lines of the Lighthill 

(1952) theory of aerodynamic sound generation,  

A Lighthill inhomogeneous wave equation is first derived, in which 

the action of the bubbles on the water is represented by an equivalent 

distribution of monopole and dipole sources, in addition to the quadrupoles 

acoustically equivalent to the fluctuating flow, when no boundaries 

are present in the flow, the acoustic power output can be found in terms 

of the source strengths by the usual formulae- In order to estimate the 

monopole source strength, the response of a single bubble in turbulent 

flow is then considered using familiar equations- The pressure 

spectrum of a turbulent flow is relatively broad, and there is the 

possibility that large changes in bubble volume may arise from the small 
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spectral intensity of the pressure at the high natural resonance 

frequency of the bubble, This would be a difficult effect to estimate 

reliably, for although it is possible to give an analytical form for the 

pressure spectrum at high frequencies using the Kolmogorov theory 

of the fine-scale structure of turbulence (Batchelor, 1953), the resonance 

would be limited only by dissipative effects whose character is not 

yet properly understood, In particular, the radiation damping of a 

bubble at resonance when surrounded by a distribution of bubbles is difficult 

to analyse, since the sound speed at high frequency in the distribution 

is complex, and varies with frequency- A detailed consideration of these 

effects is, fortunately, not necessary here, for the possibility of 

significant resonant response under excitation by turbulence alone is 

ruled out ( 55)- The reason for this is that the length scale over which 

the pressure field remains coherent at the resonance frequency is found 

to be very small compared with the bubble radius, The phase of the 

pressure field then varies rapidly over the bubble surface, whereas 

significant volume response requires the pressure to be substantially in 

phase all over the surface, 

For this reason, the extension given by Curie (1955) to the Lighthill 

theory, taking account of the effect of surfaces in the floe', is not 

consideredn The only way in which the presence of surfaces can alter 

the inferences to be made about the effect of bubbles on the radiated 

noise, is by introducing the possibility of coherent forcing, at the 

resonance frequency, over length scales large compared with the bubble 

radius- 'If the behaviour of the surface is controlled entirely by the 

turbulent flow, this possibility is again ruled out, since the length 

scales of the forcing due to the surface would be of the order of those 

in the turbulent flow itself- If, however, the motion of the surface 
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were controlled by some external means, we could have the possibility 

of coherent forcing at the resonance frequency. This is exactly what 

happens if, for example, the bubble is irradiated by a sound wave 

generated by motion of a surface (Hunter, 1967). Even then, this does 

not necessarily mean that resonant response is significant, in view 

of the high dissipation occurring in a distribution of bubbles at 

the resonant frequency. If such cases, in which the control of the surface 

behaviour by external means provides a length scale large compared with 

the bubble radius, are excluded, we can entirely discount the resonant 

response of the bubbles, and no further attention need be paid to the 

effect of surfaces. 

Certain effects of two-phase flow are obvious, and will receive no 

more attention in this paper. These concern surface and volume sources 

in an infinite region of bubbly fluid in which the sound speed cm  is 

significantly lower than the sound speed ca  in pure water. According 

to the usual ideas of aerodynamic noise theory, the intensities of 

monopoles, dipole and quadrupole sources vary as c
-1

,c
-3

and c
-5

, where 

c is the sound speed in the far-field of the sources. Therefore in this 

case, the power output of these sources will be increased by the factors 

c 	/c m  , (c /c M 
)
3 
and (c CL  /c M)

5 respectively, over their values for emission 

into pure water. However, in practice this case never arises, and one is 

usually concerned with situations in which the bubbly liquid occupies 

a region with typical dimension small compared with a sound wave length 

in pure water. The theory is therefore set up in a form capable of 

handling these cases where the fluid mixture is inhomogeneous on 

scales smaller than a wavelength. In this way, changes in the turbulence-

generated sound are attributed to a distribution of acoustic sources, 

whereas the increases noted above for the infinite bubbly region are 



essentially connected with sound propagation over distances of many 

wavelengths. The physical bases for the results in the two cases are 

thus quite different. 

In the formulation given here, monopole sources of sound arise 

from the forced response of the bubbles at the frequency characteristic 

of the turbulence. They lead to an efficiency proportional to the 

fifth power of Mach number, which is the variation usually ascribed 

to quadrupole sources. In fact it is shown that the monopole intensity 

is just that of the usual Lighthill quadrupoles, but augmented by the 

factor (c a  /c III  )
4, which should be contrasted with the (c OL  /c M)

5 
factor 

referred to previously. ca/cm  can easily exceed 10, so that the presence 

of bubbles in a turbulent flow will very greatly increase the acoustic 

power output. For the extreme case of a 10% concentration of bubbles 

by volume the acoustic power may be increased by about 70 dB. 

Apart from effects arising from the variation of bubble volume, there 

is the question of whether abrupt changes in the mean concentration can 

produce appreciable sound. The sources corresponding to a discontinuous 

rise in concentration are examined in §6, where it is shown that the 

radiated field can be expressed in terms of a surface distribution over 

the interface across which the concentration changes. The radiation 

produced is shown to be equal to that produced by distributed sources in 

a volume which has one typical dimension equal to the turbulence length 

scale. 

Dipole sources of sound arising from bubble response are also 

considered. As expected, they are much less efficient than the monopoles 

at the very low Mach numbers typical in underwater applications. The 

case of a dusty gas is then dealt with, in which monopole radiation 



cannot occur, and in which the action of the dust particles on the gas 

is represented entirely by a dipole distribution. Again it is shown that 

the presence of dust is to augment the usual quadrupole radiation. The 

increase in power output is less startling than that caused by bubbles, 

but is appreciable when the mass concentration of dust exceeds unity. 
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2~, ' Li,hthill equation for flow of air bubbles in water 

We consider a finite region in which unsteady or turbulent flow 

occurs, and in which the fluid is a mixture of water (a - phase), and a 

sm$01 concentration by volume of gas bubbles (R.- phase) The small  

quantity gx,t) is the fraction of unit volume of the mixture which is 

occupied by the bubbles. pa, pf3 are the actual densities of the two phases, 

il,ev Pa = (mass of a -phase) / (volume occupied by a - phase): The mass 

of a - phase in unit volume of mixture is then (1 - 5) pa , and the total 

mass per unit volume is (1'.- 0) pa + .51) 	Far from the turbulent region 

= 0, and the fluid is entirely a - phase, at rest apart from small 

velocities induced by the passage of sound waves from the turbulence. 

We choose to formulate a Lighthill equation for the density pa. 

This has the advantage of displaying clearly the action of one phase on 

the other in terms of acoustic sources with a simple physical 

interpretation: In particular, monopole and dipole distributions appear, 

representing the effects of mass and momentum injection into the a -phase 

resulting from the motion in the a — phase, The same kinds of sources 

appear if we consider' the density (1 - 0) pa instead of just pa , but 

their interpretation is not quite so simple, and they are less easy to 

calculate* 'The alternative is to regard the fluid as a mixture, with 

density p = (1 - 5) pa $pf3e 'In this case, a conventional Lighthill 

equation can be derived, involving quadrupole sources only:, The 

physical interpretation is then largely lost, and the task of relating 

the quadrupole strength to the flow and phase parameters is difficult, 

as so much is hidden, for example, in the term p - cap, 

We are assuming the concentration 0, and the bubble radius a to be 

so smell that meaningful values can be attached to the velocity and 
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stress in the a - phase at all points (x,t), Let uia denote the 

velocity in the a - phase, Mass conservation for this phase is expressed 

by 

77  (1 - a)pa 	
ax. (1 - 	pa  u.a  = 0, 

J 

which we write in the form 

(2,1) i.1.7 p a 	_a 	a ax.  p u. =. 

Here 	Q = Pa  (2-1-  U el 	Pai (1 	13) at j ax. 

D a a = p (1 — 0) 

is the effective rate of mass injection density into phase a, If Fi  

denotes the interphase force density, the momentum equation for phase a 

reads 

Ft . (1 - 0pa  uia 	- 	pa  u.
1
a  u.a 	

13 	1 
p..1 = W., 

pij  is the stress tensor, and is composed partly of stresses set up 

by the eddy motion in the a - phase, and partly of stresses set up 

by the response of the '0 - phase to the fluctuating eddy pressures, 

For the" present there is no need to attempt to specify Fi  further, We 

rewrite the momentum equation in the form 

(2;2) a u. 	a {(1 - 	pa  u.a  u.a  4. p..1 = G., at 	ij 

where 	G.' = 1-- f3 a  u a  $ 3. 	at P 	i * 
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By cross-differentiation of (2-1) and (2,2) we get the required 

Lighthill equation, provided we note that far from the turbulent 

region this equation must reduce to the homogeneous wave equation 

2  - C2  V2)pa  = 0, 
at2 	a 

where ca is the sound speed in pure a - phase. This gives 

D2 	2 2‘ a  = 	9Gi  32Tij  ,

at2  
(2.3) 	ca  7  	P 	at 	ax. 	ax.a x. 

in which T. = (1 $) 	 pl  c)a u.1au.:j 4 4- •j  - 02  pa  6.., a 	la 

The process of sound generation by the turbulent flow is accomplished 

by three distinct mechanisms:. Firstly, by a distribution of monopoles, 

of strength Q, equal to the rate of mass injection into the a - phases 

Secondly, by a distribution of dipoles, of strength Gi. Gi  is the 

effective force on the a - fluid, composed in part of the interphase force 

F.0 andimpartethetermW. The latter represents the momentum 

defect arising from the fact that a fraction 0 of the total volume is 

not occupied by a - phase. Fins.11y„ we have a distribution of 

quadrupoles of the Lighthill type, of strength T... As usual, T..lj  is 

dominated by the Reynolds stress terms, since by the' definition of ca, 

the fluctuations in p and C2  pa  cancel, approximately. Viscous 

contributions to pij  are neglected here, just as usual, In general it 

is quite adequate, for the order of magnitude arguments to be used 

later, to approximate T.j  by pa u.a  u.a, where the zero suffix implies 

an average value, 
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The Mach number is typical underwater applications of flow noise 

theory is extremely small when based on ca  (10-2  at most), and the 

usual arguments would therefore indicate that monopole sources 

overwhelm the dipoles, while these in turn are very much more efficient 

than the quadrupoles* However, in the present problem we have a great 

range of new parameters . for example, the radius and resonance 

frequency of the bubbles, the strength of the interphase force, the 

relaxation tine for response of the bubbles to the a - motion, and the 

concentration 0 . The usual rank ordering of acoustic sources may 

therefore only be valid for certain restricted ranges of the above 

parameters* It is the object of subsequent sections to determine how 

the efficiency of each type of source varies with these parameters, as 

well as with the parameters (length and velocity scales) of the turbulent 

motion* 



3~ Vblumentria'Res once of 'a 'Bubble to a Fluctuatin `Pressure Field. 

In this section, we consider the volumetric response of a single 

bubble, immersed in infinite compressible fluid, when a fluctuating 

pressure field is set up in the fluid° The pressure will be regarded as 

uniform in space far from the bubble, though fluctuating in time. A 

real pressure field, with finite length scale, will behave in this way 

provided the bubble diameter is small compared with the length scale of 

pressure variations Viscous forces and thermal diffusion effects will be 

neglected, with the consequence that radiation damping is the only 

form of dissipation which limits the response of the bubble at its 

resonance frequency, It will be seen in §5 that resonant response cannot 

occur, and therefore that the validity of this assumption is only an 

academic matter for our purposes. 

The object is to determine the variation of bubble volume, and of 

the pressure scattered by the bubble, with the imposed pressure variation: 

The equations governing the response are well-known (see, erg, Strasberg, 

1956), so that only a brief derivation need be given here. In the 

undisturbed state, the bubble has internal pressure w and radius a, and 

is surrounded by infinite fluid of density po pressure P0 and sound 

speed c. 'A pressure fluctuation p(t) is then set up uniformly in space 

at infinity, the bubble pressure is pb(t) and the radius R(t)t T denotes 

the surface tension, ps(r,t) is the pressure induced by bubble response. 

Spherical symmetry is assumed, as it is known (Strasberg, 1956) that 

negligible acoustic power is contained in any mode of oscillation of the 

bubble other than the symmetric expansion mode 

For the pressure drop across the bubble surface we have 



(3.1) ry 
w =— 2T., P, and 

21:, 
(3,2) 	pb = 	4.1)4.32+ ps 	at r =.R, 

If adiabatic changes are assumed ia the bubble, 

(3,3Y 	2% R3Y  = il;a3Y  

There is evidence to suggest that in general changes are isothermal, 

so that y = I effectively. This is particularly likely to be true in 

the circumstances when the characteristic frequency of p is small compared 

with the bubble resonance frequency, in which case a slow forced motion 

of the bubble occurs At higher frequencies, however, changes are more 

likely to be adiabatic, and for this reason y is retained,  

The scattered pressure ps  is a solution of the homogeneous wave 

equation, vanishing at r = co, Thus 

ps(r,t) say, so that 

(3,4) 

The gradient of ps  at r = R is related to the bubble radius by the 

linearised equation of fluid motion, 

Dp 	2R  
(3.5) 	@xt

'P = p o at = p0 a at r  = .R, 
ate  

Write RI = R - a, and linearise (3-1) - (3:5), supposing that IR'I << 

Defining a resonance frequency 630  by 



Wo 	ap
2 =',..,,L'f(3y 	1)M. 1X24 

o  
a2 	a 

we find 

(37) Li' 	- k-a- /1  r + -a-, 
	 , in which = 	po 

2  ' awl o D 2 
at2 a at 0 

1• We find also that R' = - 	{p a. p
s(a,t)} , 

ap o 0 to2  

and this gives 

(3.,8) 	 ps (at t) = 	
ate 

From (3:7) we can now find an equation for the fluctuating 

concentration a in the case when we have N bubbles, each of mean 

radius a, in unit volume of fluid, For t= 4ira2N 	!?30  

in linearised form, where ao  is the time-average of S r This gives 

(3.9) 	LO = 
30' 

(„1- 	.) 	) 
a 	c at a 	P 0 

In this equationq  pc)  may still be taken as the density of the fluid 

surrounding each bubble (i,e,  the a - fluid) rather than of the mixture, 

for a smell mean concentration cannot significantly alter the density 

when pa « pa 	p must apparently nay include not only the forcing 

pressure set up at infinity, but also the resultant of all the scattered 

pressures set up by the distribution of bubbles- Just how much p is 
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modified by these scattered pressures is an important point, which will 

receive further attention, 

It will be seen later that in general the bubbles may respond 

significantly around two very distinct frequencies, one the resonance 

frequency wo  the other a frequency characteristic of the turbulent 

motion,  'The terms involving c in (3,9) will be found to be negligible 

for the forced motion at the turbulence frequency whichever of cm, ca  

is used; The problem of which value of c is relevant to (3 9) only 

arises in the case of resonant response, which we shall see is impossible 

when the bubbles are excited by nearly incompressible turbulence 
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4-. The  Sound  Field from Forced Bubble Metion- s-ilnWeriro, 

We assume for the moment that the pressure field p(t) generating 

the bubble motion is that of a turbulent flow whose internal dynamics 

may be regarded as nearly incompressible- Let 2,0  denote a correlation 

scale for the turbulent flow, U the mean flow velocity and uo  the 

r-lois'n turbulent velocity- 'The dominant frequency of the pressure field, 

measured in a fixed frame, is then of order U/9.0, and this is certainly an 

upper limit for the, typical frequency of the field p(t) experienced by 

the bubbles: Bubbles are convected with a speed of order U, and the 

frequencies observed following the mean flow are generally smaller than 

those observed at a fixed point by a factor a = uo/U- The dominant 

frequency of p(t) may therefore be taken as of order u0/20. Applications 

of flow noise theory to underwater situations commonly involve values of 

U of order 30 ft/sec, while awo  is roughly 60 ft/sec in the case of air 

bubbles in water at one atmosphere static pressure P- 	a = 5 x 10-2  

is perhaps typical, and also a << o , for a bubble of radius comparable 

frith 20 could not withstand the high shear across its It follows that 

uoo << wo„ and we have a situation in which there is strong forcing 

but small response at the turbulence frequency, while at the much higher 

frequency wo  the pressure field has relatively little spectral intensity, 

but the bubbles have a strong intrinsic response, 'The response spectrum 

for the bubble motion therefore has two distinct peaks, near u0/20  and 

near w
o 
 , corresponding to forced and resonant oscillations respectively-

If the resonance peak is sufficiently narrow, we may take the two effects 

separately, and add them in mean-square, a conclusion which can be 

investigated in detail if a definite analytical form for the pressure 

spectrum is assumed, 
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For the forced motion, we neglect D2/ Ot2  compared. with wo2  

The terms involving c in (19) can both be neglected, for they are 

snnller than those retained by a factor of order uoa/c2,0- This factor 

is extremely small even with c = cm, the mixture sound speed, for cm  

certainly never drops below the typical mean velocity U of order 30 ft/sec- 

The terms involving c represent radiation damping, and are important only 

in controlling the resonant response, We have then, simply 

3$0 	6 ) 

(aw)2 Po 

Before using this equation in the Lighthill equation (2 3), we 

first justify the assumption that the pressure field forcing any particular 

bubble is dominated by the eddy motion pressure, Now the mean square 

pressure scattered by a distribution of bubbles to any point in the 

distribution is size-dependent, and in fact varies linearly with the 

typical dimension L of the turbulent bubbly region- Thus, if L is large 

enough the scattered pressures would appear to dominate the pressure field 

experienced by any bubble, However, this dependence upon size L is 

largely irrelevant to the arc22213-aaLsc22._&indeneration to distances large 

corn  aced with L, 'The pressure reaching a bubble from bubbles further away 

then a wavelength X , approximately, is a radiating sound field pressure, 

and its action on the bubble is exactly that of ordinary sound waves on 

the bubble- The bubble is essentially passive in its response, and 

absorbs energy, if anything- Scattering of the incoming sound field 

results, with a directional redistribution, and a decrease in the acoustic 

energy fluxs The waves scattered draw their energy from the primary 

wave, and energies in the acoustic mode cannot be increased by the 

scattering, Compare Lighthill (1953), where the sound waves scattered 

(4-1) 	 = 

must 



by the interaction of a primary sound wave with turbulence draw their energy 

from the primary wave, and not:from the turbulence, We can therefore 

reject the scattered pressures reaching a particular bubbles  provided 

theyoriginateat distances greater than A from the bubble; That bubble 

can, however, scatter the near-field of any other bubble within reach 

(Hunter, 1967), so that modifications to p from scattered pressures 

originating at distances less than about a wavelength X must be considered; 

Whether these modifications are significant or not is now independent 

of the size L of the bubbly region, 

This idea has important consequences for the Lighthill (1952, 1954) 

theory of aerodynamic noise. A turbulent eddy radiates sound waves, with 

a 1/r  variation of pressure and velocity at distances greater than a 

wavelength, Consequently, the mean square acoustic pressure at any 

point in the turbulent region increases linearly with the scale L of the 

region, at any rate until viscous effects limit the otherwise unbounded 

increase which would occur in the "compressible homogeneous turbulence" 

limit L 03 (see Lighthill, 1955), When L is large, but finite, one might 

expect these acoustic quantities to provide a significant change in the 

acoustic stress tensor T.., so that the sound power output from the flow la 

might be increased, In view of the discussion above, we see that the 

apparent dependence of T. upon L is irrelevant to the sound generation 

problem; Wear-field corrections to T.. may be important, as an eddy 13 

can scatter the near-field of its neighbours into sound - but these 

corrections really should be discussed whether or not L is very large 

compared with to  or X 1, The outcome of this argument appears to be that 

the Lighthill theory for low Mach number flows is adequate for the 

description of sound emission from large volumes of turbulence (L >> X) 

to just the same extent that it is adequate in the case X > L to. 
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Returning now to the question of two-phase flow, we calculate the 

near-field correction to p by integrating the scattered pressure of a 

single bubble over the distribution of bubbles occupying a sphere of 

radius A about any point in the turbulent bubbly region, The wavelength 

is that appropriate to propagation at frequency u0/2,0  and at speed cm, 

the low frequency sound speed in the mixture, This will be true when 

L >> A, for then the time Licm for propagation at speed cm  across the 

distance L is large compared with the time-scale Zo/u0  of the source, and 

therefore the source radiates effectively into an infinite medium with 

speed cm, On the other hand, if L A, the integration of the scattered 

pressures must run only over a sphere of radius L. The greatest 

modification of the pressure field then corresponds to the case L >> A, 

and then we have A » k » a - for the minimum value of cm  weshall be 

concerned with is 100 ft/sec, corresponding to a concentration 0o = 10 

(see Batchelor, 1967)7  The integration procedure is therefore relevant 

on two counts. In the first place, the near-field of radius A is large 

enough for a continuous distribution of bubbles to be relevant, and in 

the second, the near-field is so extensive that it contains many eddy 

volumes zg This allows us to replace each eddy by a point source of 

strength proportional to the eddy volume q, 

The calculation is done at the end of this section, with the 

result 

93  2 c  
<ps2> / <p2> N ""r"""'°  ( in) 	) 

4W u au) 
0 0 

The brackets < > denote average values, all quantities being assumed 

stationary random functions of time- With the typical values 

o = 1019. cm 
= 100 ft/sec, o

/U = 5 x 102 E: U = 30 ft/Sec, ea = 6o ft/sec, 



75. 

which would seem to give the maximum value of <p›.  likely to occur in s 	• 

any practical situation, this gives 

<13> / <p2> ti  2 x 10-7  

Therefore it is quite adequate, for the forced motion, to assume that 

the pressure forcing any particular bubble is that generated by the 

turbulent motion alone. 

We now require an estimate of the acoustic power output Pm  from the 

region containing bubbles, whose volume is of order L3, arising from the 

monopole term 3Q/8t in (2.3). The contribution from the forced mode 

only is considered here. Pm  is given by 

(4t2) <> 	3  L 3  
Pm 	 c 	( at )o  

where po  = pa  is the denbity in the very distant field. This expression 

has been obtained from the usual retarded-potential solution 

(403) 	(Pa 	P o ) (20 t) = 	f 	 fix 	 441 
4=2  a 

	

	
c
a 	12.1 z 

on the understanding that differences in retarded-time (of order 20/ca) 

corresponding to points separated by less than an eddy scale 2.0  are 

negligible compared with the time-scale to/u0  of the source field in the 

forced mode. 'This is evidently well satisfied, since the fluctuation 

Mach number uo/ct is always exceedingly sns110 We can express this by 

saying that the source field is"acoustically compact" as far as the 

forced mode is concerned, 

Equation (4.2) is valid only if the turbulent region has typical 

dimension at least of order A,lo in all directions. It is useful to 

write down also the power output P6,  obtained from (443Y when the 
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radiating volume has the form of a sheet of area L2  (L ti2.0) and 

thickness A << o 

(I;. 1) 
1 

PQ 
------ < (22)2  > 620 L2, 

A 	LOT p C 	Dt o a 

For the moment, however, we consider only equation (4.2). 

Since 0 is smn11  compared with unity, we have from (4.1), 

D 
(4.5) 	pa 	Zn(1 — 	pc, 35-t 	= 	

30 	D
a  

(acoa)2 116  

as we are interested at present in the sound generated by fluctuations 

in f3 , rather than that generated by variations in space of the mean 

concentration so 	As already discussed, p will be taken as the 

fluctuation is the eddy notion pressure,: The magnitude of p will be 

estimated as the typical fluctuation in ipu2:,0  	ire. p  p0  a U2, where 

a = u/U is the relative turbulence level, The time differentiation 

Da/Dt will be represented by the frequency multiplication uo  /2,o  This 

is also the relevant estimate of the operation 3/at, although 

superficially one might expect a/at ti U/to. We can see this in two 

Trays. If the derivative Vat is written as the sum of a total derivative 

D/Dt and ,a convective derivative, the total derivative is equivalent to 

the multiplicative operation u0/R,0, while the convective term can be 

shown to represent an acoustic source of essentially lower efficiency. 

Alternatively, transform to a frame of reference which is convected with 

the mean, flow. In this frame the operation a/at is certainly equivalent 

to multiplication by u0/20, while other changes resulting from the 

transformation are negligible if the mean flow Mach number U/ca  is 

smalls 'Either way, we see that only the true turbulence frequencies 



contribute to the acoustic power output, and that for acoustic purposes 

all time differentiations are equivalent to multiplication by uo/R.0. 

This point is emphasised by Lighthill (1954). 

With these estimates, and with neglect of convective effects, 

except insofar as they determine the relevant frequencies, we find that 

2 

(4.6) 	Pm  q,  4°T  (po  a U3  L2) (01)5  
C 4 T  

N 
taw / kl 

0 	0 

where M = U/ca
. An efficiency can be conveniently defined by comparing 

Pm with the rate of working of the fluctuating pressure p a U2  against 

the mean flow U over an area L2. 

( 
C 

(3  2 	
4 -r 

(407) 	 „k,  0  (am).5 	) 
m 47 	taw

a 
 t
0 0 

 

The dependence of nm  on M5  is rather surprising, being characteristic of 

quadrupole rather than monopole sources. It is less surprising if we 

remember (§2) that it was noted that the whole problem could. be  tackled 

using a quadrupole type of source only, The monopole Q is equivalent, 

in part, to a(p c(21  p)/at, a quadrupole time-derivative which would 

occur in this alternative treatment, p and p now both referring to the 

two-phase mixture. Evidently the two forms both yield the same 

dependence upon M. 

We have already noted that changes of volume of the bubbles are 

likely to take place at constant temperature when the frequency is 

small compared with wo  . Thus y = 1 effectively, and then by (3.6), 

(aw0)2  = (3P 4. 41') 	P a 
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Now when So is neither too small nor too close to unity, Batchelor's 

(1967) expression for the isothermal sound speed cm  at low frequencies 

can be written 

(4.8) / 2 	(P Cm =    	Bo  P 3a 	o 

and therefore we have the following simple relation between sound speed 

and resonance frequency 

(4.9) (aw  )2 = 3B0 c2 m 

(4.7) can then be written in the form 

(4.1o) 
c 4  

rim 	(0M)5  (c-51) (±,1--) 411 	
mo 

Except for the factor (ca/cm)4, this is exactly the radiation 

efficiency of a typical turbulence quadrupole of strength T.. po  o U2. ij 

Note that the operation a2/at2  on T.i. must be represented here by 

multiplication by u(2)/q ; the reasons are exactly those referred to earlier. 

Thus the effect of bubbles in the turbulence is to increase the acoustic 

power output by the factor (c a 
 /c 
m
)4. This increase is extremely large; in 

fact (c /c m)4 
 is of order 105  even when 00   is as small as 10

-2, while for 

the maximum concentration 8o = 10
-1  which can reasonably be encompassed 

by the theory, (ca/cm)4  is of order 107  . The acoustic power output of a 

flow may therefore be increased by up to 70 dB by the monopole radiation 

of bubbles at the turbulence frequency. 

To close this section, note that the pressure ps  induced by the 

monopole source 3Q/at at any point in the turbulent bubbly region is 

given by 

1 	aQ dy 
P s 47r I

v 
at r 



where V is the turbulent volume,'and the square brackets imply evaluation 

at retarded-time, as in (4.3). When uo/cm  << 1, and when the volume 

✓ r,  L3  is large enough to contain many eddy volumes t3  , this gives 

(4.11) 2 <D ,s  
1 	

<t-- 
f aQ)2

> 
 3 I IX 

167r2 	at 	° V r2  

1 	,ac1,2 	3 
47 	at 

Thus, as claimed earlier, the mean square scattered pressure increases 

linearly with L. However, it was explained previously that if we wish 

to consider the sound generation problem only, the volume integration 

need run only over a sphere of radius A centred on the point considered. 

Hence 

1 <p2> — 
<0(1‘2> x  

S 47 	atj 	0 

and with the estimate of aQ/Wmade above, we quickly find the value 

of <p:› quoted earlier in this section. 
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Rego/wit Response  pf'Bubbles  

We have noted in the previous section that appreciable monopole 

radiation may result from the resonant response of bubbles to the small 

spectral density of the pressure field at the frequency wo- This, 

however, is a possibility which cannot occur when the applied pressure 

field p is that due to turbulent motion in a nearly incompressible 

fluid, The essential reason is that the turbulent pressure field cannot 

remain coherent in space, at the high frequency wog  over length scales 

as large as a bubble radius a, The spherically symmetric mode of oscillation 

of the bubble, which is the only mode which can give rise to volume 

change and so to Monopole radiation, cannot then occur, for it can be 

created only when the pressure field has nearly the same phase at all 

points on the bubble surface 

The effective length scale for the turbulent field at frequency wo  

can be found by the following argument- The bubbles travel with a 

translational velocity which Bust be comparable with the mean velocity U: 

Relative to the mean flow, the bubbles have fluctuating velocities which 

are certainly of the order of the turbulence velocity uo  in the a -phase.  

The pressure fluctuations experienced by the bubbles will therefore 

be similar to those observed at a point following the mean flow: Now 

the high frequency content of a field of turbulence, relative to the mean 

flow, occurs mainly through the convection of an almost frozen pattern 

of small spatial scales (i,e. small compared with to) by the energy- 

containing eddies with characteristic velocity uo, The length scale of 

the pressure fluctuations at frequency wo  is therefore of the order of 

the length scale which, when convected by the large eddies at speed 

uo  gives rise to the frequency wo, This gives Zr  " %two  for the 



"correlation scale" at frequency wo- following the mean motion-, 

With the typical values U = 30 ft/sec, awo  = 60 ft/sec'1, and 

uo/U = 5 x 10-2 
we then have 

rt, 2 5 x 10-2  

r is thus very much smaller than a, and the possibility of coherent 

forcing of the bubble over its entire surface is ruled out- 

It might be thought that resonant response could arise if the 

pressure field contained an acoustic component at frecuency woo  

generated either by the turbulent eddies themselves or by their interaction 

with a surface in the flow. 3Z,r would then be of the order of a wave-

length X0  at frequency wo  and at the mixture sound speed cm  at frequency 

wo- The low-frequency value of cm is 100 ft/sec when 0o = 10 

(Batchelor, 1967), and so Ao/a ' 10 in this case Coherent• forcing at 

the resonance frequency may then be possible, but the possibility is 

marginal, since the speed cm  at frequency wo  is much less than that at 

zero frequency In any case, we can exclude the resonant response to 

small acoustic fields from the sound generation problem by the argument 

used in 01- The action of sound waves on the bubble results merely in 

a scattering of acoustic energy, and no increase in energy output can 

occur. 'This does not quite complete the argument, for near-field 

scattering can occurs  as we have seen, However, the scale Ao  of the 

near-field in this case is very small, indeed comparable with the 

average separation between bubbles, so that we can probably ignore this 

effect - which if it occurs at all, will depend critically on how many 

bubbles are in the near field at any instant- 

Since we have now shown the resonant motion not to be significant: 



the problems of the relevant value of c in (3-9), and whether the 

neglect of viscous and thermal damping is valid, are of no interest 

here,  Resonance, and the dissipation which limits it, are two 

aspects of the problem which are irrelevant when incompressible 

turbulence provides the excitation- 



6-' 'Radiation due to Inholsowenei.tieAinarl,92ncentration- 

In the previous sections we have considered the radiation which 

arises when the concentration a fluctuates abouts its mean value 

because of the compressibility of the bubbles,  We now ignore that 

aspect of the problem and consider the radiation which may result from 

rapid spatial variation of the mean concentration- Situations 

commonly arise in which the bubbles form intense clouds, in which the 

concentration is high, surrounded by more or less clear fluid,  It 

is obviously of interest to see whether the unsteady convection and 

distortion of these clouds can produce an appreciable sound field- 

The concentration can be expressed as the sum of mean and 

fluctuating parts*, 6 = 	0"..-'The part of the monopole source 

strength involving V has been dealt with in the last sections, and 

here we consider the monopole 

( 6 1) ti 	2. 
at 	Po at Dt 

We shall model the cloud-water interface as a surface of discontinuity in 

which is convected by the bubble velocity field uia^ The interface is 

taken as locally plane, so that we can write 

(6,2) 
	

= aoH(Yn p Yo )  

where H denotes the Heaviside unit function So  is the constant value of 

the mean concentration within the cloud, yn  the coordinate normal to the 

interface, yo(t) the yn  - coordinate of the interface at time t- We 

have 



(6:3) ÷ u..0 	) 	= 0 Dt 	'at aye 
 

ay (t) 
= u

n and dt 

This gives At a u. as  
Dyi  

and therfthe monopole in (6:1) can be conveniently combined with that 

part of the momentum defect dipole Gil  = po  30 uiaht which contains 

to yield 

2G .l 

	

3Q 	
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The first term in (6-i.) represents a dipole field arising from the 

random distortion of the interface by the motion of the bubbles- This 

dipole term will be considered further belay, For the monopole term in 

Oweestimatethedivergencesofu.a, u. from the equation (2 l) 

and from the analogous equation 

(6,5) 	
3 
	p 	3yi 	u 	= C) 

expressing conservation of the mass of the (3 - these, Neglecting small 

variations in pa  we have 

a au.a D 	au. 	D 1 ,^;, a 	1 	, 
T. . 1J r'•"• 13 . * na - 

	

a y. 
 Dt ' aye 	T3' 17  P  1 

and the latter term dominates, since t--‹ l, Then 
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- 	3737 	-a P 
(awo)2 Dt  

where equation (4,1) has been used to relate the fluctuating 

concentration SI to the pressure p. The monopole term in (6,4) then 

becomes 

3S 
(66) 	--9-- (A4.. p ) 	gyn  

taw %2  ` 0/  

4. .. ••• 3°0 	
DR 

.,,•••-wasoole 	 r 

ce400)2 	at Dt ' 
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The operations DS/Dt   and Da/Dt on the pressure p are equivalent, to the 

degree of accuracy possible here- Comparing the second term of (6 6) 

with the value of 3Q/at obtained from (4,5), we see that this term 

involving the H-function represents the monopole sources distributed 

throughout the interior of the cloud On the other hand, the sources 

represented by the first term of (6,6) are confined to the interface 

between the cloud and the clear fluid outside it. The interface is 

equivalent to a distribution of surface sources, of strength 

3$ 
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(aw)2  to 

per unit area 

The resulting efficiency of these sources is found to be equal to that 
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produced by the monopoles distributed in a sheet whose total area 

is that of the interface and whose thickness is just one eddy length 

0 

Thus an area S of the interface produces the same power output 

as do the monopole sources distributed throughout a volume t
o S, The 

surface effects are therefore extremely large when the typical 

dimension of the bubbly region is comparable with to;  If the region 

is in the form of a thin sheet of thickness A < 2.
o'  the surface sources 

will dominate the radiation field. In that case, equation (4;2) 

represents an overestimate of the volume induced sound, and equation (4 

should then be used. 

The dipole term in (6,4) can also be expressed in terms of surface 

and volume distributions, Taking the dominant surface source term, the 

radiated density field can be shown to be given by 

P a x. 
(6,8) 

4702 r2 

from which the radiation efficiency follows as 

0 — 

2 A  
-o n, (%. 	a M3,  wir 

The ratio of this efficiency to that of the surface monopoles is of 

order 
aw 4 

2. 
v  
,-4 14-2 
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c 
 

and this is slightly greater than unity when the typical values given 

in 5h are again used. Therefore this form of radiation is also 

important when the radiating volume is in the form of a sheet with 

thickness less than about R°''The dipole and monopole sound fields are 

comparable in this case essentially because the dipole field exists 



independently of the response of the bubbles, and would be produced 

even if the bubbles were rigid and could not respond.,  On the other 

hand, the monopole surface sound field depends almost entirely on the 

compliance of the bubbles, and the velocities induced by bubble 

response are small compared with those in the turbulence which provide 

the convection and distortion of the interface, and hence the dipole 

surface sound. 



7. Dipole Sources of Sound. 

The term G,
1
' = 36 pa  u.a/at contains contributions other than those 

arising from changes in mean concentration. We have, identically, 

a a 

Gil  - p 	 aa:. 	1-8 at Ft 	( 1-opa u.1  a  . 

Assume that 8 is small compared with unity, and use the momentum equation 

(2.2) to transform the last term above. Apart from the interphase force, 

we have 

D 
(7.1) 	= pa u.a a 	a8 	3

-   

	

8 	p.. ax. 	3x . 	
rapa  u.

a  u a 
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The last term in (7.1) represents a quadrupole source, whose strength 

certainly vanishes in the far-field where 8 = 0. It therefore represents a 

basically less efficient source than do the other terms, and may be neglected. 

	

FromtheestimatesDo 	o
/L , p.. '' po a U2  we see that o 

the remaining terms are of the same order of magnitude. We use these 

estimates, with equation (4.1) to relate 8 to p, to obtain the dipole 

efficiency nd  due to volumetric response of the bubbles. 

98  2 c
%  

(7.2) d —2— 05  M7  V---  4: 	awa)
4 

,2 ) 
o o 

= M2 rim' 

where n is the monopole efficiency given in (4.10 ). The factor M2  

ensures that this kind of radiation is negligible in all cases. 

Neglect of the interphase force compared with the displaced momentum 

is certainly valid for the case of air bubbles in water, since the 

bubbles have appreciable volume but negligible mass. If, however, the 



density of the 8-phase is large compared with that of the a-phase, the 

interphase force may be important. This happens in the case when the 

a-phase is a gas, and the 8-phase a distribution of rigid dust particles. 

The volume concentration of dust particles is supposed negligible, though 

the mass concentration may be appreciable. We obtain the case of a dusty 

gas from our general equations by letting 8 4- 0, p 	=, so that the 

mass concentration Bps/pa  has a finite limit, f say. The terms 3Q/3t 

and 3G1'/3x. now vanish identically, and the influence of the dust particles 

on the gas is contained entirely in the interphase force Fi. 

Suppose that the dust particle number density is N, and that each 

particle has mass m, so that fpa  = Nm. Saffman (1962) wrote down the 

equations of dusty gas flow, and assumed that the force density Fi  was 

given by a linear Stokes law, 

(7.3) 
	

Fi  = 10(u. - u.a). 

a  u, is the velocity of the 0-phase at (x,t), and K is a constant 

proportional to the viscosity of the a-phase and to the typical particle 

dimension. This viscous drag force is very much larger than any forces 

due to virtual inertia for the kinds of system envisaged by Saffman. We 

do not need the specific form (7.3) here, though it is useful in that 

it allows us to define a relaxation time for the dust particles as 

= m/K. In most practical cases Y is small compared with the characteristic 

time of the gas motion, and when this is so, the dust particles follow the 

gas motion closely, The effect of the dust particles is then to increase 

the effective density of the mixture from pa  to (1 I- f)pa  without change 

in the other variables. In particular, the sound speed cm  in the dusty 

gas is given by 
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(7.4) 	c2  = c2/(1 + f), 
a 

where fo denotes an average value of f. This result is true, irrespective 

of the validity of (7.3), provided only that a suitable relaxation time is 

small compared with the time-scale of the gas motion. 

Now the momentum and mass conservation equations for the dust particles 

may be written (Saffman, 1962), 

(7.5) 	s + a 	a 
1 
 Oa = — F., at  Ip ui 	ax. fp u. u. 

0 	1 

a 	a 	a 	as 
at 	axi  

Using these equations, the dipole and quadrupole sources in equation (2.3) 

may be expressed as 

aF. 	32T.. 
(7.7) - -- 1  + 	13  

Dxi  axiaxj  

in which 

32 a  a2wi  

at2 	1 l 
fp + 	 ax.ax. 

0  

j 
 - pa  u. u

a j 
wig .a 	fpa  u.s  ups 	pig  

	

+ p. 	c2a 	i pad.j. 1 

To regard the terms in (7.7) as a monopole and a quadrupole, respectively, 

would be an error. For the monopole term may be rewritten as 

32 	a2 a  
(1 + f)p

a p  

at2 	at2  

= 	1 alp 4.  1 	fo alp, 
c2 at2 	c2 at2 	c2  a at2 a 
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since, by definition, -I" = 	(1 + f)pa. 
c2m  

(The low relaxation time limit has been assumed). Therefore the monopole 

strength is 0(M2), rather than 0(1), and this monopole is equivalent to an 

isotropic 0(1) quadrupole. 

We can now estimate the efficiency corresponding to the two terms 

in (7.7), remembering that in the low relaxation time limit we have 

u.a ti u.I3, and that pa  is increased to (1 + f)pa. This applies also to the 

factor p
o 
aU3  L2  used to normalise the efficiency. We find that 

(7.8.) nf, ti  7-1,;-  (GM)5 f2 (1 + f ) o t ' 
0 

(7.9) 	nw 	(uM)5  (1 	f0) 	
0 
' 

for the efficiencies corresponding to the first and second terms on the 

right of (7.7), respectively. When f0  < 1, nw  > nf' and then in virtue 

of (7.4), 

(7.10) 
C a.2  L 

Ti 	1,7 (uM)5  (7-) 
0 

The radiation efficiency is increased by the factor (ca/cm)2  by the 

presence of the dust, and the radiated power is increased by the factor 

(c 	/c m)4 
 , exactly as in the case of a suspension of air bubbles in water. 

However the increases are negligible, in practical terms, when f0  < 1. 

When f0  > 1, we have 

(7.11) 
c 

1 	5  a L 
Ti 	1-4Tr.  (0M) %)

6 
 (T), 



so that now the efficiency is increased by the sixth power of the sound 

speed ratio, and the power output by the eighth power. If the typical 

velocity U is the same for both a clean and a dusty gas, this increase in 

power output is large - up to about 20 dB perhaps, for mass concentrations 

fa of the order of 2 or 3 which are common in many industrial processes 

where dusty gases are used to increase rates of heat transfer. In some 

cases, however, this comparison is not relevant. For example, if the 

mechanical power of the flow were the same for the clean and dusty gases, 

as might be the case in a jet-type flow, then 

(1 	fo) U3  = U3  , 

where U, Uo are the values of the same typical velocity with and without 

the presence of dust, respectively. The increase in power output, according 

to (7.11) would then only be of order fo
'', instead of fo' 

but should 

still provide an effect which is easily detectable in practice. 



8. Conclusions. 

The radiation properties of turbulent flow in water have been 

shown to be greatly modified by the presence of a small distribution 

of air bubbles in the turbulence. In the model used here to describe 

this process, the effects of the bubbles have been represented as 

acoustically equivalent to volume distribution of monopoles and dipoles, 

in addition to the quadrupoles equivalent to the fluctuating stresses 

in the turbulence:. Monopole radiation results from the low-frequency 

forced volumetric response of the bubbles to the turbulent pressure 

field,. 'The effect of this radiation is in all cases equivalent to an 

increase in the quadrupole radiation (above its value in pure water) 

by the factor (ca/cm)4„, where ca, cm  are the sound speeds in pure water 

and in the bubbly region respectively- The acoustic power output of 

the flow is increased by 50 dB for a 15 air/water concentration, and by 

70 dB for a 105 concentrations These nay be regarded as relevant figures 

for many practical situations. 

Significant volumetric response of the bubbles at their high 

natural resonance frequency has been shown to be impossible when the 

excitation is due to nearly incompressible turbulence alone. The 

reason is that the length scale over which the pressure field remains 

coherent at the resonance frequency is found to be very srvol compared 

with the bubble radius- The exclusion of resonant response indicates 

that the use of linear equations to represent the bubble response is 

justified 

Dipole radiation arises through the displacement of fluid 

momentum by the gas bubbles, and through the action of the force between 

bubbles and fluid, The momentum displacement effect is the dominant 



cause of dipole radiation, but the resulting efficiency is always 

negligible compared with that of the monopoles. 

Monopole and dipole radiation occur through the unsteady convection 

of the interface between the bubble/water mixture and the clear fluid 

outside it. In this case the radiation is generated essentially by a 

distribution of sources over the interface. The monopole and dipole 

radiation efficiencies are comparable, and are important, compared with 

the volume-generated sound, if the radiating volume is in the form of a 

sheet with thickness equal to, or smaller than an eddy scale io. If the 

thickness is equal to the eddy scale, which may be of the order of one 

foot in practical situations, then surface and volume monopole power 

outputs are equal, and either overwhelms the radiation which would occur 

if no bubbles are present. 

Finally, in the case of a suspension of dust particles in a gas, no 

monopole sound can be produced. Dipole radiation occurs through the 

action of the force exerted by the dust on the gas, and it is shown that 

this form of radiation is equivalent to an amplification of the quadrupole 

sound which occurs in a clean gas. When the mass concentration of dust 

exceeds unity, this increase is large - up to about 20 dB perhaps, though 

not nearly as large as that provided by the presence of bubbles. Moreover, 

the presence of a large mass concentration of dust will substantially 

reduce the flow speeds if the flow is governed by a source of constant power. 

In that case, the quadrupole sound is enhanced, in intensity, by the factor 
7 / 

(mass concentration fo) 3 
 over its value in a clean gas under the same 

mechanical power. This would still indicate that the use of dust particles 

in many industrial processes will make a considerable contribution to the 

noise level. 
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PLATE VIBRATION INDUCED BY UNSTEAFN NESSUZE 

FIELDS 

1. 	Introduction  

In this paper, ci study is made of the vibration induced in an infinite 

thin plate when an unsteady pressure field acts over a finite region of the 

plate. 	The use of ci Green's function is evidently required, and for 

this purpose the well-known G'reen's function 0:„ and L. Cramer, 1940 

for the time-reduced plate equation is first obtained by Fourier analysis. 

The method given here involves the use of a radiation condition in a 

certain manner, and loay easily be applied to other problems (e.g., surface 

gravity waves on water) without the difficulties usually encountered when 

an appeal to fictitious damping forces is made. 	The complete Green's 

function is then obtained by a frequency integration. 	This function does 

not seem to have boon found before, although it has a very simple form. 

A new representation of mechanical dissipation in the plate is postulated, 

to remove some unphysical characteristics of the Green's function. 	This 

representation gives arjreement with experimentally determined dissipation 

laws, and is more satisfactory - particularly in real space and time - than 

the usual representation of dissipation through a complex elastic constant. 

The excitation o;: the plate by a random, statistically steady, pressure 

field is considered in §2. 	Calculations have been made in the past of the 

resulting vibration (e.g. Ffowcs Williams and Lyon, 1963), but in the main 
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these have assumed the pressure field to be randomly, but uniformly, 

distributed over the infinite area occupied by the plate. 	The problem is 

then singular, in the sense that Inean-square vibration emplitudes are 

limited only by small dissipative effects, or by non-linear effects, and 

may be unrealistic in the sense that the results are not relevant to practical 

cases unless the pressure acts over a very large area indeed. 	In the 

problem considered here, statistical homogeneity is not required, neither is, 

any form of damping. 	The steady state is achieved as a balance between 

the power input from the pressure acting over a finite area, and the enercy 

loss from that area in the form of free flexural waves in the plate propagating 

outward to infinity. 

The general results obtained are applied in (§4 to the case when the 

pressure field exciting the plate is that of a turbulent boundary layer in 

incompressible fluid, 	The form of the ivnportant vibration statistics can 

be found from a knowledge of the form of the pressure spectrum function 

near zero wavenumbor and frequency, and for this knowledge general 

theoretical results are available. 	A dependence of the power input into 

the plate upon V5  at low flow speeds V, and on V3  at high speeds is 

found. 	These dimensional laws may be regarded as analogous to the well-

known V
8 

and V3 laws for the acoustic power output of turbulent flow 

(lighthill, 1952; Ffewcs Williams, 1963). 	In both problems, the efficiency 

of the wave-generating process becomes constant in the high-speed limit 

(and this is also true if we consider gravity waves on deep water instead 

of elastic waves in a plate). 
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The dispersive nature of the waves in the plate makes it very difficult 

to deal adequately with the effects of convection of the pressure field. 

A simple example illustrating convective effects is, however, considered, 

and this example also provides a demonstration of the use of the complete 

Green's function. 	The interesting result is found that, when a point 

force with slowly varying strength is convected across the plate at speed V, 

energy is propagated away from the force at speed V in the direction of 

propagation, and also at speed V radially outward from the force. 	Thus, 

as fudged from the energy propagation vector (which is all that is available), 

the waves generated by the force travel at most at double the convection 

speed. 	The paper ends with a discussion of this result in terms of plate 

excitation by turbulent eddies. 	The claim is made that, for such 

excitation, the approach to plate vibration through a normal mode represen-

tation is inappropriate, and that it is preferable to regard a finite plate 

as effectively infinite and devoid of modal structure. 	Any possibility of 

reverberant build-up of a modal structure is precluded by the fact that the 

phase of the turbulent excitation at any point cannot remain even roughly 

constant over the time taken by the waves generated at that point to cross 

the plate and return again. 
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2. 	The Green's functions for the plate motion equation  

The differential equation describing the motion of a thin homogeneous 

elastic plate has the well-known form (e.g. Cremer and Heckl, 1967), 

a2 
(m 13 --\"/ 4)y = p 

at 
(2.1) 

Here y is the plate deflexion, p the total applied force per unit area. 

m is the mass of the plate per unit area, and 13 is the bending stiffness. 

We write X for the quantity a7m, which has the dimensions of kinematic 

diffusivity, and ko for the wavenumber 11w t" of free flexural waves 

of frequency cz in the plate. 	The effects of mechanical damping in the 

plate are neglected for the moment. 	This will be seen to be permissible 

in general unless the fluctuating pressure p on the plate is either highly 

concentrated over a very small region, or is distributed randomly, but 

uniformly, over a very large area. 

The Green's function for (2.1) is essentially the solution of 

, a2 	 1 + A \I )y = 	5(X)5(t) , 
M 	 (2.2) 

and we require a solution valid for an infinite plate, with no boundaries. 

The solution of (2.2) is of course not unique; solution by generalised 

Fourier analysis gives a particular solution in the form of a singular integral. 

The integration path may be deformed in several ways, each giving a 

different interpretation of the integral, and any two results differing only 



f e ikr cos G 
8Ir3  6 fj:(x, 44) = 

k4 k
o 
4 

k dk dQ 
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by a solution of the homogeneous equation. 	We shall here render the 

solution unique by the requirement that each element of y(x,t) in a Fourier 

time-analysis of y shall represent entirely outgoing waves as 
x I 	

co. 
Each frequency component of y(x,t) then represents the physically realistic 

solution of (2.1) when the applied pressure is that due to an oscillatory 

point force, 

p(x,t) cc S(x) exp iW t . 

Define generalised Fourier transforms by 

y(x,t) = 	rii(k,o) exp i(k.x + w t) dk du) 

y(x,t) = 	 fAx,ca) exp I w  t d 

(2.3) 

The k-integration is over all wavenumbers in the plane of the plate, and 

the frequency integration is over (- co, + co). 	Write r = 

k = lki , k.x = kr cos 0, so that dk = kdkde. Also take W > 0, 

and let k
o be the positive root of k4  = C.02/X2. 	Then we have from 

(2.2), 

°° Jo(kr) 	
co 

J (kr) 

2 
1 + 	rr 

- dk 	 2° 	2  k dk , 	(2.4) 
-- 

k 	k + k 2k
o 0 	 0 0 	0 

lc° ...cs2rt 
e
ikr cos G 

where 1 = 
dk dG 

0 0 	
o 4k

o 



i 217  ik
o
r cos 49 	 c c' 

a 	
eiar cos G da 

a de  ' 
is equal to 

o 	 -co 
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The integrals involving J0(kr) are given by Watson (1966, pp.436 

and 434 respectively), 

ctz)  Je(kr) 
dk 

lc dk 

as 

IT 

2 

= 

{H (k er) - Ve(ker)]. 

K 0  (k 0r) , 

k + k
o 

as 
jo(kr) 

k2 + k 
0 	0 

where H0  is the Struve function, K
o 

the modified Bessel function of the 

second kind. 	The integrand in I has a pole on the range of integration, 

and must be interpreted in a certain way. 	Firstly we write 

I 

lco 

dk de = 

9 o 

+co 

dk d9 

r  0 

je 
 

dk de , -co   

and then the last integral can be evaluated as above. 	The first integral 

+co 

and the radiation condition referred to earlier requires that 	e
iar cos 6 da 

 

must equal zero when cos e > 0. 	For otherwise, y(x,t) would contain 

Fourier components of the form exp i(ker cos 	+ W t), representing inward 

propagating waves when 	, cos 9 > 0. We must therefore interpret 

the integral as 

a 



+co 
iar cos e; da  2Tri H(-cos 	. a - i CJ 

103 

H denotes the Heaviside unit function, and the definitions and transforms 

of the generalised functions (a -I-- i0)m  are given by Jones (1966). 

I can then be evaluated using the result of Watson (1966, p.312), 

exp(-iz sin 9)d9 = IT (J0(z) + 

noting that E (z) = -H (z) (Watson, p.337). 	This gives us finally, 

BIT 	y 
^A 

(x, 	= 
2. IT 1 (2) Ho 	(kor) - 	K (k or) 

k 2 o  (2.5) 
2k 2 

o 

in which H(2)  denotes the Hankel function of the second kind. 	The 

corresponding result for (4) < o is 

8173  C(x, 	= 
2. 1T 1 

2k 2 
o 

H(1)(k o  r) 	Tr Ko(k r) H(o) 

	

ko 	° 
(2.6) 

where again ko is 

The function 

the positive root of k 4 = 2/A2 

AJ 
y(x, 63) is itself the Green's function for the time- 

reduced plate-equation, 

2 	4 	2 ,4 	1 ts' - 	) y( o. 	—m- = 	p(x,(,)) . 

This function has been found before (H. and L. Cremer, 1948), though 

not by this kind of method. 	The method given here is evidently applicable 
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to other problems (e.g., gravity waves on deep water), and replaces the 

difficulties which can arise in an appeal to fictitious damping forces by 

an explicit appeal to a suitable radiation condition in frequency-space. 

We note that the radiation condition is obviously satisfied by (2.5) and 

(2.6) with the time factors exp(- lot) respectively, the K
o function 

vanishing exponentially for k
o
r 	co . 

For the complete Green's function, we have now to integrate (2.5) and 

(2.6) over frequency 03 

velocity v = ay/at, and q = 

moment. We find that 

ao 
8Tr

3
B v(x,t) = 2i  

The quantities of physical interest are the 

V 2y; q is proportional to the bending 

+ rr y 	•2. ( ro ) 
7 0-7  sin rda t 

CO 	1 

J 
, 

	

4 	w  ) cos 	t d cz , o("— 
 x2 

0 

and both of these integrals are tabulated by rirdelyi et al. (1954, pp.111 

and 53). We obtain 

2 
1 

v(x,t) = 4=n t—sin
(4—~) 

' (2.7) 

and 

q(x,t) = 
1 

417Bt 

2 
cos(-) (2.8) 

These Green's functions do not seem to have been found before. As a 



check, consider the result of applying the pressure 

p(x,t) = 5(x)eiG2t/21r , with c3 > 0 . 

The velocity is given by 
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v(x,t) :,-- 
sit x, is -co 

1  
zinm),(t-t') 

ix  _ x12 

sin 	  47* - t') p(x,t') dxlcits , 

and this can be shown to be equal to 

e
iwt ,1/40, 

vkx,w) , 

44 
where ", v(x,w) = iwy(x,w) and R4y(x„c.3) is given in (2.5). 	Thus the 

use of the Green's function (2.7) leads us back to the steady-state 

oscillatory motion given by (2.5). 

In the next section, certain unphysical aspects of these solutions 

will be discussed, and the modifications to them will be discussed when a 

new form of mechanical dissipation is postulated. 
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3. 	A new representation of mechanical damping  

The Green's functions (2.7) and (2.8) are singular in the sense 

that v 	0 as r 	co for fixed t > 0, and v ---> co as t ---> 0+ 

for any r > 0. 	This unphysical behaviour must arise through neglect of 

mechanical damping in the plate, and there are two ways in which this 

damping is usually represented. 	Either one adds a term p eyrat to the 

left hand side of (2.1), or one writes B in complex form, B = 	+ 	), 

where 	is the attenuation rate. 	The A ay/3t term is quite unrealistic, 

giving an amplitude decay exp(-/3t/2) independent of frequency c. . 

Moreover, this term can only represent some kind of air resistance*, and 

it has no connection with the internal dissipation in the plate. 	The 

unphysical behaviour of the Green's functions is not removed by this kind 

of damping, for the behaviour arises from the presence of some Fourier 

components in the dispersive system with very large phase velocity (the 

point impulae having a white spectrum in k and in (t) ). 	A physically 

realistic form of dissipation must attenuate Fourier components more rapidly 

with increasing frequency, and it is found experimentally that in fact the 

amplitude of a free flexural wave of frequency La decays like exp(- 4.3 t/2) 

with 	a constant. 	(Alternatively, the amplitude of a cylindrical 	• 

wave of wavenumber ko 
decays with distance like exp(-k o

r/4)). 

Agreement with these experimental results is obtained by writing 

B(1 + ibt) for B (see Cremer and Heck!, 1967). 	The physical meaning 

of this substitution is not clear, however, and difficulty arises in some 
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problems, because the poles at 	± 
	

= ,4<2 
 are displaced from the real 

axis in opposite directions by the damping. 	We are therefore led to 

postulate the following modification of (2.1); 

a2 

(m 	- 1-72  at + V4)Y P at 
(3.1) 

This is equivalent to letting the diffusivity N become complex. 	The 

attenuation factor -t. is supposed small, so that 1,
2 

can be neglected 

compared with unity. 	The damping force is proportional to the time rate 

of change of bending moment, and the dissipation may be regarded as 

occurring through a hysteresis loss in the bending process. 

Instead of (2.5) we have now 

     

Ko(ri 	 ÷ .(1),) j , 	(3.2) ad B 	, c4) 

    

    

0 

for 	63 > 0. As r --> co we have the wave-I ike structure already 

implied by (2.5), but with the multiplicative factor 

kvt; 
eXp(- 

while corresponding to (2.7) we have 

2 	2 
1r  

v(x,t) - 47rmAt  exp(- 	. -Twsin(
r  

-an.  + 7)  . 	(3.3) 

This solution does not have any of the unphysical characteristics of (2.7), 

and the proposed damping term certainly gives agreement with the known 

experimental results. 
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In the subsequent work we shall revert to using (2.7), noting that 

any singular effects which may arise can easily be removed by the exponential 

factors given above. 



1 - --- 
2k 

2 itHo2)  (kor) - Tr 2  Ko(kor) 
4n2m X2  0 	

ko 
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Y
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4. 	Steady-state plate response induced by a random pressure field 

We shall now consider the applied pressure field p(x,t) to be a 

stationary random function of the time t, so that the resulting plate vibration 

is statistically steady in time. 	Homogeneity of the pressure in the space 

variables is not required. 	The object of this section is to set up general 

relations between the statistics of the plate vibration and those of the 

pressure field without further assumptions about the pressure. 

The simplest way of dealing with the stationary case involves the use 

of the time-reduced Green's function (2.5). 	The solution of (2.1) may be 

written, with the aid of this Green's function, in the form 

(4.1) 

XI 

where r = x' - x and 
WOW 	0.0 	•MM/M. 

Equations in a corresponding notation hold for the transforms of v 

and q = ®2y. i7or ko
r >> 1 we have the asymptotic formulae 

= ay/ot 

G v  (x,x',G3) r°4  Ty 	exp *(41T  kor) 

 

    

(4.2) 

 

G (x'  x'' 	 exp 	- or) q-- 	
le r  

 

for 	G3 > 0, and with the obvious change of i to -i for c4 < 0 . 
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Now let <....> denote an ensemble-average (or equivalently, a 

time-average in this case) and * denote complex conjugate. 	When an 

the variables considered are stationary random functions of t, the various 

Fourier coefficients are statistically orthogonal (see, e.g., Batchelor, 1953), 

so that 

et4 < v*(X,W)V(X, 	)> = 	(x,(..1)6 LA) — 	) • (4.3) 

1(x,4.1) is the (real) transform of the one-point velocity autocorrelation, 

+a) 

<v(x,t)v(x,t -117)> = 	
-co eitat- 	

(x., (4)d 	, 	(4.4) 

and gives the spectral density of mean-square velocity. 	Similarly, we 

define X(x,o) as the spectral density of q2>. Also we write 

p4 
< P*(1ta 4-1)P(cI 	)> = 	'‘V (x1  ,x" ,(4)g( t.4 	) 	(4.5) 

so that 	is the time transform of the two-point pressure autocorrelation, 

<p(x' ,t)p(x" +r)> = w)dc..) . 	(4.6) 

We have then 

".0 
v(x,t,a) v  (x,xt 	p (x`,(Adxs 

from which it follows that 

fXI  

SAM 
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a 
rxr 	(r., w) G*v  (r ,(.3)G (r + s, Li)) IPx ( ",x + s , 43)ds . 	(4.7) v — —  

Here the left hand side gives the contribution to i (x, W) from unit area 

at x'. 	We have written x" = x' + s, x' = x + r, and noted that the 

Green' s functions depend only on the differences x' - x, x" - x. 	The 

dependence of 	upon x' may be ignored for the present. 

Suppose now that r= I x' o  x I satisfies 

(i) or >> 1, i.e. x Res in the far-field of the flexural waves generated 

at x', 

(ii) r >> L , where L is a correlation scale for variations in the applied 

pressure. 

Then we may approximate (4.7) by 

a 	 ;\2 ikon.s 	 (4.8) (x,c.1) 	• 	e 	i(x' ,x' + s, c.Ods 
32vB2k r 

	

o 	s 

where n = -r/r is a unit vector from x' to x. 	Now define a complete 

pressure spectrum function by 

<p(x' ,t)p(x' 	s, t +V> = 	e 
ik.s  + igplt s  (k wixi)dk dr.3 • — 

Then from (4.6) we have 

ik n.s 
e 0— — + s , w )ds = 42 5 	, (.3 ;x1  ), p o 

$ 

and when this is substituted into (4.0) we have 

P 	— — 
(4.9) 
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a r a)-7- 	(.1,61) S p  (-nk o, to ; x') . (4.10) 
Wen 

MOM 

Gprnkor 

The contribution to the mean-square velocity at x from unit area 

1 at x' decays as /r, as is required for energy balance in the steady state. 

Also, the effective source strength at x' for waves of frequency 4.3 

arriving at x is proportional to the pressure spectrum at x', evaluated at 

the free wavenumber nko  for flexural waves at frequency 	propagating 

from x' to x. 	For the spectrum of <q
9
> we have, similarly, 

   

S p  (-nko 	x') (4.11) 

 

813 kor 

This gives m (x,w) = 8x(x,(40), indicating, as expected, that there is 

equipartition of energy at each frequency between 

modes of the plate. amt (x,61) and 2Qit(x,42) 

of the kinetic and elastic energies per unit area, 

pectively.) 

Consider next the energy balance. 

the kinetic and elastic 

are the spectral densities 

2m<v2  > and 2D<q2  > res- 

Let S be an area of the plate, 

bounded by the closed curve t , with unit outward normal 2F. 	From 

(2.1) we find the energy equation 

a f E(x' ,t)dx' = 	p(x' ,t)v(x' ,t)dx' 

where 

E = 2aw2 4, 2, the energy density, 

F = r3(vS7q qVv), the energy flux vector. 

a  F(x,t). v(x)d (x) 	(4. 1 2) 
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Taking a mean value, we have in the steady state, 

<pv> dx' 	E>. y dt (4.13 

  

Now let -t(x',w), 	(x, 4z) denote the frequency spectra of <pv(x').> 

and of <F (x)> respectively. 	Here an origin is taken at some point in r- 

the region over which the pressure acts, x denotes a point very distant 

from all points x' of that region, and Fr denotes the component of F 

normal to the curve t, which is taken to be a circle of large radius 

R= i xl1  . 	Then from the definition of F, and the expressions for v, q 

in terms of the pressure field, we can calculate a-Tcra 	()5,(z) in much •the 

same way as above, subfect to the two conditions on r =I x'x I 

find 

-e 	TT )\ £ 
aX ' -3 (x1°)  = 43 r 	Sp(-ni(o'LA; 	' 

and on integrating this expression round the circle 't centred on the origin, 

and letting the radius R = Ixt '4(1 	x —> eo, we have 1_ 

a -e 	 2 

•— 	 41. 

	

p 0. 7 	• 

Here S is the direction-averaged spectrum, 

(4.14) 

 

21r 

S 
p  (k ,ca; x') o ..ft,  

410.1 s
P0

n(G),I,A;x')dG , 
- 

 

(4.15) 

Q representing the angle between x'x and some fixed line as x varies 
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round the circle t 	Now (4.13) is equivalent to 

	

ft(xl , c,3)dx' 	3(x,(.3)dt(x) 	or to 

	

11 (2  '1'3)  = 	
14T (x, 1-4)d 4.4x) , 

and therefore from (4.14) we have the following expression for the spectral 

density of the rate of work of the pressure field, 

2 A 

	

1,(x' ,C.3) = 	Sp(k0,0; x') . 	(4.16) 

This is an exact expression for the rate of working of the pressure 

field in terms of the pressure spectrum evaluated at the free flexural wave-

number, and averaged over all directions of the bending waves. A 

similar result for the rate of working has been Found by Ffowcs Williams 

and Lyon (1963); in their derivation, however, the pressure field was 

assumed to cover the whole infinite plate, and to be spatially homogeneous. 

In that case, dissipation in the plate has to ho invoked if the bending 

wave intensities are to remain finite. 	Here we haw no need to consider 

mechanical damping. 	The rate of working of the pressure field is balanced, 

for a finite region in the steady state, by the outflow of energy from that 

region in the form of propagating elastic waves. 

The formulae developed here can be used to estimate the intensities 

and power input at any frequency if the pressure spectrum is known at that 

frequency and at the free wavenumber ko. The integration over frequency 

will be carried out in the next section, to obtain mean intensities induced 

when incompressible fluid in turbulent motion flows over the plate. 
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5. 	Plate Vibration induced by a turbulent boundary-layer  

In this section, we suppose the statistically steady pressure field to 

be that of a turbulent boundary layer in the flow of incompressible fluid 

over the plate. 	A general theoretical result about the form of the pressure 

spectrum of such a flow near zero frequency and wavenumber allows us to 

determine the dependence of the vibration statistics upon the flow and plate 

parameters in the limits of high and low fluid velocity. 	As before, edge 

effects are neglected, and dissipation in the plate is also assumed negligible. 

As is usual in the theory of aerodynamic noise, the boundary-layer 

flow will be supposed unmodified by the plate vibration, at any rate in a 

first approximation. 	The vibration is regarded as a small byproduct of a 

given flow, which here we take to be the boundary layer over an infinite 

rigid plate. 	It can then be shown (Kraichnan, 1956; Ffowcs Williams, 

1965) that the spectrum S of the surface pressure must approach zero like 

k2 as the wavenumber k 	0. 	Equivalently, the pressure field has zero 

correlation area in incompressible flow. 	Hence, for small values of lk , 

we have 

S (k,t,z; x') = A..(t.3,x9k.k + 0(k3), 
P — 	— j (5.1) 

where the A. are determined by the distribution of velocity in the boundary 

layer. 	The frequency spectrum is, 	the main, a duplication of the wave- 

number spectrum, so that one might expect that 

S f 	
2 

%) 0.1 as (...) --> G . 
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This does not, however, occur, since Taylor's hypothesis of rigid convection 

is only valid for frequencies 43 large compared with the mean shear. 

For k finite and (,,a 	C, the spectrum does not generally vanish, but 

approaches a non-zero constant value. 	The zero of S
P 
 at k = C arises 

entirely from the fact that the "source terms' in the Poisson equation for 

the pressure is a double space-derivative. 

Let V, 64e denote the mean velocity and displacement thickness, 

respectively, of the boundary-layer. 	These are taken as (constant) 

characteristic velocity and length scales for the flow. 	e  is the constant 

fluid density. 	We assume that the pressure p 	h magnitude equal to 

the typical fluctuation in 2?....u2 , i.e. p e e€V2, where 	e = u/V is 

the ratio of r.m.s. turbulent velocity to mean velocity. 	We also assume 

that the characteristic frequency of the pressure field is of order WS% 

These are the usual estimates of aerodynamic noise theory. 	Then we can 

write the following general form for the real part of the pressure spectrum; 

(k, 43) = 	E 
2

V
3
a rt.'3(k.k. S*2)A..(1(6** ---7-446*) Sp 	 2  (5.2) 

where A.. is a dimensionless function of the dimensionless frequency 

(36*/V and wavenumber ke*. 	In view of (5.1) and the subsequent 

remarks, we have 

rI 
A..(kg*, C) 

— 

Substitute 	into (4.10), and use the fact that 
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S 
P 
 (k,4)) = Sp(-k, -0) to get a 

ac' 

+co 

-CO 

(x,w)dc..) 

CO 

n.n.A..(-nlIZTr, Q')0-2c117 . 

0 

(5.3) 

Here R = Va*/X is a kind of Reynolds number based on the °plate 

diffusivity° X. 	Two cases now arise, 	When R << 1, the integral in 

(5.3) is approximately equal to 

co 
n.n.A..(C,01 old 0-  = f(n) say . 1 1 t[ 

0 

Hence, for R < 1 , 

< v2(x)), = 	f(n),2()2(L) v2R5/2  (5.4) 

Secondly, if R >> 1 we may put tr R = q, and then the integral 

in (5.3) transforms into 

Co -3 

I R 	n.n. A..(-n (12,  51.)q2dci  /2 	 1 1 

0 

co -3p)  
(\) R 	

I 
n.n. A.(-n 	q2, 0)q2dq [ 	ii 

0 

"2 = R 	g(n) say. 

Therefore, for R >> 1 we have 



<v2  (x)> = n 
g 
 ( ) 2€2..)2( )R1/ .5* 	2 

-- m • (5.5) 
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For the rate of working of the pressures, we write 

VS (k,o) = e2e 2V35*3(kS*)2A(kS*, —  ) , 	(5.6) 

in analogy with (5.2), and define a,j3 by 

co 

a = 	cr A(0, ,tr)dtr 

(5,7) 
co 

TA(61,0)010- . 

Then we find 

<pv> = 
fro 	2 o6* 	3 

(tr., xpv )R
2 
 e (R << 

(R >> 

1) 

1 

(5.3) 

(5.9) e 1(221)(eV3) 

The formulae derived above are analogous to the well-known resu4s 

in aerodynamic noise theory, for the acoustic intensity of a turbulent flow 

in the low and high speed limits (Lighthill, 1%)52; Ffowcs Williams, 1963). 

The limits R << 1, 	>> 1 also have exactly the same interpretation as the 

corresponding limits in the acoustic problem. 	The turbulence and the 

resulting plate vibration have the same typical frequency V/8, S* being 

the characteristic length over which a turbulent eddy remains coherent. 

The wavelength of the flexural motion corresponding to frequency VAS* 

is A • 	S*R 2, and hence R << 1 implies 	» S*. 	In the limit 
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R << 1, the turbulence scale 6* is small compared with a wavelength of 

the flexural waves generated by the turbulence. 	The corresponding case 

in aerodynamic noise theory is referred to as the "acoustically thin" 

limit, and arises as a consequence of low Mach number. 

An efficiency can be defined for the vibration process by the relation 

<pv> 
•-? 7 

PVc' 
is a measure of the rate of energy loss from the flow 

into the plate as compared with the rate of advection of energy by the 

mean flow. 	The efficiency rises fairly slowly with the speed V( y, R2 

as It 	0), and asymptotes to a constant value as R --> co. Iwo 

factors may prevent this ultimate state from being achieved. 	Firstly, the 

3* 
value of 	2( °̀ ) determines whether the energy loss into vibration can 

appreciably modify the basic flow. 	The vibration can only be regarded 

rtl eV as a small by-product of the flow if i • e2  (xm  —) « 1 . 	Secondly, 

compressibility may become important in the case R >> 1 if then the i'.1ach 

number V/ao 
is not small. 	If Woo is not small, compressibility will 

certainly affect all scales of motion, and most of all will affect the spectral 

components at low wavenumber and finite frequency - for these have high 

phase Mach number c.)/ao
k. Ffowcs Williams (1965) has shown how these 

spectral components are modified by compressibility. 	He shows that the 

k2 decay of the pressure spectrum cannot continue to wavenumbers lower 

than about M/&, where M = Woo
. In the wavenumber range (0, MAP) 

the pressure spectrum is approximately constant and non-zero. 	Without 

more precise details, however, it is not possible to apply these ideas in 
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a reliable way to the problem of plate vibration, though we should note 

that in underwater applications the limit R < 1 applies almost always, and 

that the compressibility effects should be quite negligible. 	For the 

quantities rn, D are related to the plate thickness h, plate density ;3), 

and the speed C
1 of longitudinal waves in the plate by the formulae 

rn 	= pph, 	13 = PpC- 
9 
h712 
	

(5.1L4 

(Cramer and Heck!, 1967). 	Typical values of the various parameters for 

steel plates used in underwater situations are 

, S* 	= 3 cm, h 1 cm, p = g eilycm3  , V = 1C: viloVSOC. , 

and then we have It r--.1 2 x 10-2, $i 	7 x 10-3. 	The spectral 

density of the pressure field in the range (0, M/3*) is proportional to M2 

and since also this range is extremely small, the compressibility effects on 

low wavenumbers are likely to be quite insignificant. 

The fact that the efficiency becomes constant as V --> co is interesting, 

for this behaviour is also found in the acoustic problem (Hawes Williams, 

1963). 	In that problem, source convection effects play an important role, 

and it is possible that similar effects may not have been adequately covered 

in the above work. 	This is a difficult problem to deal with here, since 

the system is dispersive, and any convection speed is "supersonics relative 

to some spectral components. 	Eddy 11 )\,lach waves" are emitted at any 

frequency provided the convection speed exceeds the free flexural wave 

speed for that frequency. 	The difficulty lies in the problem of treating 
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simultaneously these Mach waves, which depend only on supersonic 

convection, and the waves generated by subsonic spectral components, 

which depend on the time variation of the source field. 	Such problems 

do not arise in the acoustic problem, where all components of the source 

field are convected in the same way relative to the wave speed. 	Source 

convection will not be considered further in connection with the boundary 

layer, though we may note again that this effect is probably negligible 

in underwater applications. 	There the dominant components of the source 

field are well °subsonic", the condition R << 1 being equivalent to the 

statement that the convection speed V is small compared with the phase 

speed of flexural waves of frequency VAS*. 



t 

tt= -cc) 
t') 	p(xi ,ts )dxicit' v(x,t) = 1 

"7"--.1-  "frinik 
1 sin 

ix 	x, 12 
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6. 	Waves induced by a convected pressure field  

The Following simple example is chosen to illustrate some effects 

due to convection or the pressure field, and also to demonstrate the use of 

the complete Green's function. 	Fourier time-analysis, and the use of 

the time-reduced r'reen's function may also give the result, but it seems 

preferable to use the more direct method given below. 

Consider the motion generated by the application of a point force, 

of constant unit strength, convected at uniform speed (V,C,) through the 

origin at time t = o, 	The pressure field is then 

p(x,t) = gx1  a  Vt)6(x2) , 

and the velocity at (x,t), in a fixed frame of reference, is given by 

1  

S 	

1. 	1 
4Trm/k 	sin 

r 

	

vt- 	4- 12  

	

4Ar 	d (6.1) 

Here ( i  = xi  - Vt, 	xr)) are the coordinates of x relative to the 

current position of is force. 	11-,e evaluate the integral by the method 

of stationary phase. 	The point of stationary phase occurs at 

t = 	where (11 ,1,9) 	(r,e) 

and the method is valid for (WO' << 1 . 	(This follows from a consider- 

ation of the second and third derivatives of the phase at 	= r/V). 



We find that 

v 

and similarly 

q r+A 

1 Vr sin { yx  (1 + cos G) 	irr  3 

[
Vr 

(1 + 	G) + 

123 

(6.2) 

. 	(6.3) 

411 (TAVIf 

that 

4D(tAVO-2 
cos 	-27 	cos 4 

The effect of a time-varying strength po(t) is merely to multiply (6.2) 

and (6.3) by the factor po(t-r/V), and these Formulae may then be used 

to give the far-field of an arbitrary convected pressure distribution in 

(x, t), 

The waves have crests defined by the lines of constant phase, 

r + 6 Yi 	= 	say 	c.), or 1 

1,21 = -21)(111  - W2) 

For varying ft e (0,00) this equation represents a family of confocal 

parabolas, with focus at the position of the force. 	The situation here 

is evidently very different from that which occurs when a point force is 

uniformly convected over deep water. The surface gravity waves thus 

produced have the characteristic two-family ship wave form, and are 

confined to a wake behind the force (Lamb, 1962, p.434). 



(6 . 6 ) 1 = 32nmAlr 
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The energy relationships have an interesting form for the bending wave 

case. 	Consider a fixed reference frame, with origin instantaneously 

A " 
coincident with the position of the force, and let r , x be unit vectors 

in the radial and convection directions, respectively. 	The energy flux 

vector 

= 	L,(vN7q - qV v) 

is easily found to be given by 

1  
23Tm (r + x) h (6.5) 

and the energy density 

2 	2 rriv + -2.13q 	by 

Thus the energy-propagation vector c, giving the rate at which energy of 

unit density is propagated, is given by 

A A 
= V(r + x) (6.7) 

This is a surprising result, and again is quite different from the 

behaviour found in the gravity-wave case. The rate of energy propagation 

at large distances depends only upon the convection speed V, and not on 

the parameters m„P. of the plate, 	In the problem with a constant 

strength force one might expect a dependence of c upon V, and also on 
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the dimensionless ratio Vr/X, but evidently the latter dependence disappears 

for (Vr/X)2  >> 1. 	Also, if the strength of the force is po(t), (6.7) is 

unchanged, and c does not depend on the typical frequency of the force, 

provided this is low enough for p
o to be regarded as slowly varying com-

pared with the trigonometric term in (6.1). 

The result (6.7) means that if one were to make a normal mode analysis 

of the vibration induced In a finite plate, it would be difficult to say, 

a priori, which set 6' modes would be preferred above the others indepen- 

dently of the details of the excitation. 	For any particular mode to be 

preferred, reverberant anplification must occur. 	This requires that the phase 

of the excitation change only slowly in the time taken by a flexural wave 

to cross the plate at least several times. 	Here, however, the waves 

containing most of the energy travel only at a speed comparable with the 

convection speed of the excitation, 	if one can suitably model a turbulent 

pressure field as a distribution of convected pressure points (ft eddiesi”, it 

follows that by the time the group of waves generated by an eddy have 

crossed the plate once, the eddy will have been replaced by a succession 

of eddies with random relative phases. 	Reverberant amplification cannot 

then occur. 	The number of modes required to describe the vibration will 

then depend very much upon the details of the excitation, about which 

little is known in a form suitable for modal analysis. 	Equation (6.7) 

points to the relevance of the infinite plate equations for plates of finite 

size. 	The plate is effectively infinite for most of the time spent by a 

turbulent eddy over fle plate. 
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THE SCALE EFFECT IN COMPRESSIBLE TURBULENCE 

1. 	Introduction  

The density fluctuations in a fluid in turbulent motion are governed 

by Lighthill's (1952) well-known wave equation 

a2 
a2 	 T.. (-2- - a 2 V2)o = . o 	ex.ax 

	

at 	 I I  

p is the density, ao the sound speed in the fluid at rest, and 

Ti' 3.. = pv.v. + p., - a2p6.. is Lighthill's acoustic stress tensor, v.
I 
 i eins 

	

t I 	il 	0 II  

the fluid velocity and p.. the compressive stress tensor. 	This equation is q 

usually used to predict the density fluctuations occurring far from the 

turbulent region, where T.. = 0, and where the fluctuations propagate as 

sound waves with speed ao. 	The equation is, however, formally exact, 

and we shall use it in this paper to estimate the fluctuations occurring in 

the turbulent fluid due to the passage through the fluid of turbulence- 

generated sound waves. 

Lighthill's equation shows that we can calculate the density fluctuations 

by replacing the actual turbulent fluid with a perfect acoustic medium at 

rest, acted upon by a volume distribution of stresses Ti.. 	For this to be 

a meaningful way of visualising the generation of sound by turbulence, 

T.. must be regarded as a forcing stress, essentially independent of the sound 

field it generates. 	At sufficiently low Mach numbers this requirement is 

generally satisfied, for we can approximate L. by p o  u.u. , where po  is q 	I 
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the mean density and ui  is the solenoidal velocity in the vorticity mode of 

the turbulence. 	(The resolution of low Mach number flows into vorticity, 

sound and entropy anodes 	is due to Kovaszoay (1953), and Chu and 

Kovaszoay (1953)). 	Using this approximation, Proudman (1952) was able to 

calculate the acoustic power output of isotropic turbulence. 	The power 

output of unit volume of stationary isotropic turbulence is evidently independent 

of time, and of the position of the volume element considered. 	This leads 

to the paradox first noted by Lighthill (1955), that the density fluctuations 

occurring in an infinite expanse of stationary isotropic turbulence are infinite 

in mean square, even at very low Mach number. 

The singularity in these fluctuations will become apparent later when 

a modified form of (1.1) is considered. 	In physical terms it arises from the 

fact that stationary isotropic turbulent flow generates sound in the same way, 

statistically, as a uniform volume distribution of acoustic sources whose 

strengths are statistically stationary in time, 	(This is true provided the 

sources are correlated over a region small compared with the region occupied 

by the sources.) The intensity thus produced at the centre of a spherical 

shell of thickness dr is proportional to (1/r
2

)4frr
2
dr; hence, on integration, 

the intensity of sound due to a large volume of turbulence diverges in 

proportion to the linear scale R of the volume. 

Essentially the same effect occurs when we try to calculate the intensity 

at a fixed distance from a large plane sheet composed of a uniform random 

distribution of statistically stationary sources. 	As the problem is two—dimensional 



a 
3 
0 

0 
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the intensity this time diverges like In R, where R is the radius of the sheet. 

This was noted by Saffman (1962). 

The infinite singularity is known as the "scale effect" , and is a Far- 

field, rather than a near-field singularity. 	Now as Lighthill (1955) has 

shown, the singularity is removed once diffusive effects are taken into account. 

These cause the intensity produced at distance r from a source to die off like 

exp(-ar), and so ensure a finite intensity from an infinite volume. 	If unit 

volume of the (isotropic) turbulence has power output E, then the intensity 

produced at the centre of a sphere of turbulent fluid of radius R is given 

by 

(47  = 3E  (1 - e-aR) 
	

(1.2) 

p2  denotes the mean square of the density fluctuation. 	Letting R 	co, 

and using Proudman's (1952) estimate 

E 	= 	40p u 
f3
/a 

5 
L , 

ov o o 
(1.3) 

we have the following infinite-scale viscous limit to density fluctuations, 

7 2 	40 3 
o P /P  = a-- AA 

0 
(1.4) 

here M = u 	, 
v
✓

o 

turbulence and L
o 

equation given by  

u
v 

is the r.m.s. velocity in the vorticity mode of the 

is the integral scale of the u
v
-field. 	(1.4) is the 

Lighthill (1955). 
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It is partly the purpose of this note, however, to emphasise that (1.4) 

is unlikely to give a correct prediction - even in order of magnitude - of 

the density fluctuations under ordinary circumstances in which a turbulent 

motion can be regarded as approximately homogeneous and stationary. 	If the 

fluid is strictly incompressible, and occupies a limited region which is large 

enough for the assumption of homogeneity to be valid, then well within the 

turbulent region all mean square quantities are accurately given by a theory 

which assumes the turbulent region to be infinite in all directions. 	Finite 

compressibility, however, permits each element of fluid to act as a source 

of acoustic energy, and any result which is derived for an infinite medium 

is found to grossly overestimate the density or pressure fluctuations which 

occur in a finite region. 

Thus, when art << 1 the appropriate form of (1.2) will be 

P /Po
2 
 = 40 6v18  ( 	) 

	
(1.5) 

0 

instead of (1.4). 	This is the inviscid small-scale limit, in which the 

intensity varies directly as the scale length R. 

The damping Factor a varies with frequency. Assuming the Stokes-

Kirchhoff formula for a we have (Lighthill, 1956), 

2 3 
a = to

o 
(1.6) 

for a wave of frequency to . 	i3 is the "diffusivity of sound" which, 

with an approximate adiabatic exponent y = I  and Prandtl number 7  is 
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related to the mean kinematic viscosity V by p = 2v . 	A "typicalts 

frequency in both the acoustic and vorticity modes of the turbulence is 

uv/1-o 
(see §3), so that equations (1.4) and (1.5) may now be written 

p2/pa = 20 M
5 

Re , 	(M3()L-1—)(Re)-1  >> 1) , 
0 

p2/p: = 40 M8  (-EL) , (M3Q—Wer1  « , 
0 	 0 

(1.7) 

(1.8) 

Re is the turbulence Reynolds number, Re = u
v

Loris" , M = u v o 

is the turbulence Mach number. 	The coefficients should be of the correct 

order of magnitude, but no more. 	The implications of these equations for 

practical situations will be discussed in §4. 	We shall see there that, even 

at very low values of M, the pressure fluctuations generated in the acoustic 

mode will be extremely large if the region of turbulence considered is large 

enough for (1.7) to be relevant. 

2. 	The camped Wave Equation  

We propose now to obtain the result (1.7) directly, without using 

Proudman's equation (1.3), by extracting an explicit diffusive term from the 

acoustic stress tensor T... 	The equation we shall use is 

02 2 2 	2 a 	a2W.,  
- o V  - 	-017 )P 	ax.ax. 

at 	 I I 
(2.1) 

a Lighthill equation with a damping term included in the wave operator. 

As before, fi is the diffusivity of sound, and 



V.1.. = Ti. - 	Si.  II 	at• (2.1) 
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The operator on the left of (2.1) is the well-known wave operator in a viscous 

heat-conducting fluid, (e.g. Kovaszay (1953)), while on the right we have 

Lighthill's stress tensor with a linearised approximation to diffusive effects 

removed. 	It is not difficult to check, from the momentum and energy 

equations, that the right side of (2.1) is independent of viscous and thermal 

diffusion effects, in a first approximation. 	We suggest that (2.1) represents 

a realistic model for calculating the intensity in homogeneous turbulence. 

The essential point of the equation is tPat (3 is some combination of the 

diffusivities, and the term OV2ep/at accounts, supposedly, for all irreversible 

effects. 

It may now be realistic to prescribe W.., the part of T.. remaining al 

when viscous effects are explicitly removed, as a stationary random function 

of x . 	Stationarity in t will also be required. 	The field can be 

supposed stationary if a random stationary driving force Fi  per unit mass is 

added in the momentum equation. The equation (2.1) remains unaltered by 

this chcnge provided div F = 0. 	In addition to this constraint, Fi  will 

be taken as statistically isotropic. 

We can solve equation (2.1) formally by the methods of Batchelor 

(1953). 	Define Fourier-Stieltjes transforms by 

jp(x,t) = 	exp i(k.x + Ga t)dP(k, W) i 	
(2.2) 

W..(x,t) = 	exp i(k.x + GI t)dR..(k, (.1 )„ 
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Here p, W.. denote the fluctuations in these quantities about their mean 

values. 	The Stielties differentials are statistically orthogonal, so that, 

e.g., 

dP*(kt, cap' )d 	e ) = 0 	if k 	k' or 	to 	ta
t 

 

but 

dP*(k, w )dP(k , w ) = 	§ (k, w )dkcico , 

(2.3) 
Cill!.II (1C, t#3 )CIR1

M  (kr •••• 
V.. (k, )dkdco rib  

Thus 	(k, 	 ) and V.film  (k, 	) are spectral densities, 

2 
P = 

 

(k, to )dkdo 

 

    

(2.4) 
a2W.. 1. 

( B>t axI  ) k ik ik ikmV.iiim(.11-, to )ctdc., 5 

The function 	(1 (k, w ) is entirely real, though Villm (k, w ) will in 

general be complex. 	However, since Viiim(k, 	) = imi 	) , the 

contracted form k.k.k k m 1  V. 	is purely real. 0m 

From the differential equation (2.1) we have 

(k,  ) kikikikm  

(a2k2 	c4 	2)2 4. k4-W2 0   (2.5) 

in which k= 1 1.1 I . 	When the turbulence is isotropic we can write 

k.k.k k V. (k, 	) = k4V(k,tA ) , 
I lm iilm 
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with V an even function of k and of (A) (Robertson, (1940)). 	We then 

have 

2 	= 	
-Foo 	s  co 

d(.3 	Link6V(k, 0.1 )dk  
(ak2 632)2 + 13k4.332 

-co 	o o 

(2.6) 

Incompressible flow results are obtained from (2.6) by putting p = clop 

and letting p 	0, a: --> co so that a 29 has a finite limit. 	This 

gives 

co 

fc°p2  = 	clths 	4rik2V(k,0.1 )dk , 

o 
(2.7) 

which is the equation which one would obtain by applying Fourier transforms 

to the Poisson equation 

v2i, 

for the pressure in Inoompreesiliole flow. 	Batchelor (1951) and Kraichnart 

(1956) have discussed the pressure fluctuations in incompressible isotropic 

turbulence using the Poisson equation. 	Their results are similar and will 

be used later. 

The incompressible flow fluctuations arise essentially from the fact that 

the spectrum V is concentrated, for a particular frequency Ga , around 

wave-numbers of order 42/uv. For these wave-numbers, a2k2  >> w 2; 

the term involving 0 in (2.6) may also be neglected, and we obtain (2.7). 
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There is, however, the possibility of near-resonance arising when V(k, c.)) 
WNW 

has significant values for particular values of k, 4) satisfying t) = a
o
k. 

Fluctuations generated by spectral components of the forcing field \4'., with 
/ 

(.6,3 = aok correspond to motions of an acoustic kind. 	To obtain these 

acoustic fluctuations we consider the integral in (2.6) over the narrow 

resonance peak near k = C"Vao. Take V(k, ) as constant at the value 

V( 65/aof  W)1  perform the integration over the resonance band and then 

let p 	0. 	This gives the following result for density fluctuations 

limited only by the small diffusive constant (1, 

r  
4n2 	

co 

p 	= 	 Ca
2

V( 4) r 	)ci (A.3 	 (2.8) a
o 

This formula holds provided all frequencies co making a significant 

contribution to the acoustic spectrum satisfy R 43 o
2  < 1, 	We can also 

perform the integration of (2.6) over frequency first. 	Supposing this time 

that Ok/ao 
<< 1 for all relevant wave-numbers we find 

2 
p = 

4rr
2 

Pao 

ao 

k2V(k,a
o
k)dk. (2.9) 

As expected, (2.C) and (2.9) are symmetrical in k, ca ; either is obtained 

from the other by putting L = aok, a substitution which shows that the 

requirements pi tA/ao
2 << 1, (3k/a

0 
<< 1 are equivalent. 	Equation (2.8) 

will be analysed dimensionally in §4, and will be shown to be consistent 

with the result expressed in (1.7), obtained by Lighthill (1955) on the basis 

of Proudrnan' s work. 



137 

3. 	Typical Frequencies and Wave= numbers 

We want hero to decide what are the typical frequencies and wave- 

numbers in the acoustic and vorticity modes of the turbulence, so as to make 

an estimate of the integrals in (2.3) or (2.9). 	The suffix s denotes a 

quantity representative of the irrotational acoustic mode, the suffix v a 

quantity representative of the solenoidal vorticity mode. 

At sufficiently low Mach numbers, the turbulence can be regarded as 

incompressible from the point of view of the sound generation process. 

a
o can then play no part in determining frequencies in the voracity mode. 

The only frequency which can be defined in the spectral range which contains 

most of the energy of the turbulence is 	04
v 

= uv/Lo. 	
The characteristic 

wave-number for the vorticity mode is k
v 

=
o  

Consider now Fig.1, which shows a possible contour of maximum source 

power spectral density. 	The turbulence is not convected relative to a main-

stream flow, V(k, to) is even in k and in W , and so the contour is 

symmetrical about both axes. 	Now the only contribution to the acoustic integrals 

in 2.8 or 2.9 comes from points on the sonic line CA = a
o
k, and at 

sufficiently low Mach number, the source power along the sonic line OT 

must be approximately equal to that along the zero wave-number line Os. 

Frequencies which can contribute to the acoustic integrals lie in OR, while 

the only wave-numbers which can contribute are those in the range 0 K. Wave- 

numbers beyond R (i.e. those for which k > M/L ) are unable to contribute 

to the acoustic integrals, because the frequencies to which they correspond 
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via the sonic line are outside the frequency range which carries most of the 

source power. A given wave-number can only contribute if the frequency 

to which it is acoustically matched is less than the typical frequency 

c'y = u/ o; 
Since OT 7. OS as M 	0, this means that the frequency 

characteristic of the acoustic mode is W 
s 

=
v 	v

✓= u 	, while the 

characteristic wave-number is k
s 

=
o 

=
v
. 	The typical wavelength 

is then s = 	>>
0

, so that the situation we have here may be termed 

"acoustically thin". 	Turbulence scales are very much smaller than a wave- 

length of the sound produced by the turbulence. 	The acoustically thin 

situation is a necessary consequence of the assumption of low Mach number. 

We have then the following characteristic quantities: 

= W
I/ 

uv kv  = 1 
k

s 
= M40  . 

0 

Taking ft = 2 V again, the approximation (141/%2  « 1 of the last section 

will be justified if 

2M
2

(Re)
-1 << 1 

This is certainly well satisfied in all relevant situations, and is consistent 

with common experience that sound waves of moderate frequency are not 

significantly damped over a distance of a few wavelengths. 
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4. 	Dimensional Analysis 

The function V..iilm  is the spectral density of the mean square 

fluctuation in W.. , ti 

fW..ti Wlin = 	Viiim(k, ca )dkdo . (4.1) 

We suppose that we can approximate W.. by the fluctuation in p ou.u., 

where u. is the velocity in the vorticity made. 	The left side of (4.1) 

then has the value 

p 2  (u.u. 	u.u.) (alum 	alum) • o 

We can also suppose that the one-point distribution of the ui  is Gaussian. 

This should give a correct order of magnitude estimate. The above mean 

value is then equal to 

o 2
uv

4(S. 	irn + S. S. ) o im  

when the turbulence is isotropic. 

From this and (4.1) we can express a typical value '41?)  of V.. 	in terms tilm 	tilm 

of u , p , 	: v o o 
u  

po
2

uv
4(g ii m + 

6
itn 	 o 

6 ) = v(0) -3 
i 	 L Lo 

The typical value of V(k, 	) is then given by 

 

(4.2) 

V(o) = 2p 2u  3 L  4 
o v o 

(4.3) 
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If we now substitute this value in (2.8) or (2.9) and perform the 

integrations over to ,k using the characteristic values cia ,k given in §3, 
s s 

we find, on writing 3 = 2v as before, that 

p2  /p2 = 4OM5Re 
	

(4.4) 

The functional form of this equation is identical with that of (1.7), 

while the coefficioets are of the same order of magnitude. 	Lighthill's 

equation (1.4), based on Proudman's estimate of the power output of isotropic 

turbulence, is thus confirmed by the method given here. 

At low Mach numbers, the mean square acoustic pressure and velocity 

fluctuations are given by 

p2 	= a 
4
p = p

2
u 

4
(40MRe), and 	(4.5) 

o v 

2 	2 2 .2 
p

s 	
= p

o  ao  us 
 , or 

3 
us 	= uv

2 
 (40M Re) (4.6) 

To these we may add (cf. Lighthill, 1955) the values of p
2 

and u
2 

involved 

in maintaining the local incompressible eddy turbulence (the vorticity mode). 

The pressure fluctuations in incompressible flow have been calculated by 

Batchelor (1951) and Kraichnan (1956), with the result 

A  _
o  
2 4 

Pv  = PIP v  • (4.7) 

where A = 0.34 (Batchelor), or A = 1 (Kraichnar). Addition of the two 

(uncorrelated) contributions gives 



= 	p
o
2 

 u
v 
4 

+ 40MRe) 

for the total pressure fluctuations, and 

uv
2  
(1 + 4OM3Re) 

for total velocity fluctuations. 

We can regard these formulae as giving the first two terms in an expansion 

of mean square quantities in terms of Mach number. 

The above results are relevant to the case of infinite scale R. 

Analogous results for the inviscid limit aR << 1 also follow directly from 

(1.8). 	The two sets are compared below. 	For consistency, Lighthill's 

equation (1.7) has been used, rather than (4.4). 	Provided R >> L
o

, the 

result (4.7) is independent of R; acoustic pressures depend upon R, since 

they fall off only as r whereas the vorticity-mode pressure field falls off 

-3 
as r 

Infinite Scale 	 Finite Scale 

Viscous Limit 	 Inviscid Limit aR << 1 

p 	= pa u4 (A + 20MRe) 	 = pc.2u1:(A + 40M4 R  ) 
0 v 

2 
q = uv

2  
(1 + 20M

3
Re) 	 q2  = t.)(1 + 40M61-1) 

Lo  

2 - 5 	 2 	 R 
= po  (20M Re) 	 p = po

2 
 (40M

8 
 —) 

0 

141 

(4.8) 
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The effect of compressibility with increasing Mach number will 

evidently show in the value of the pressure before it becomes noticeable in 

any other quantity. 	In the case of infinite scale, the acoustic pressure 

will greatly exceed that in the vorticity mode even at very low Mach 

numbers. 	For example, if we use the figures given by Batchelor (1953, 

p.124), viz. uv = 0.5 met.sec-1, o= 100 met. as typical in atmospheric 

turbulence, then we have in the case of infinite scale 

,5 2 4 	2 p 	p u >> p 
0 v 	v 

though p/p 2 f../ 10-6, so that there would still be no tendency towards 

cavitation. 

However, although the atmosphere seems to provide the largest volume 

of turbulence for which any reliable figures are available, its scale length, 

of the order of 5 km perhaps, certainly satisfies the condition aR < 1 for 

the inviscid limit. 	The corresponding value of ps  is then only of order 

10-7
p o v

4 2u . 

There are thus two observations to be made from this example. 	Firstly, 

while the pressure fluctuation in the vorticity mode are correctly predicted, 

in order of magnitude, for a finite region by the infinite scale model, those 

in the acoustic mode are not, unless the region concerned is very large 

indeed. 	For example, the atmosphere would have to have a scale length 

of order 1016 metres for the viscous limit to apply. 	Secondly, the acoustic 

pressure fluctuations are not likely to be appreciable in the case of low 
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Mach number turbulence unless the turbulence occupies a region with scale 

vastly greater than any that can be found in a terrestrial example. 

5. 	The Two-Dimensional Singularity  

We now consider the intensity at a fixed distance z above the centre 

of a circular sheet of radius R. 	The sheet is composed of acoustic sources 

whose strengths Gt per unit area are stationary random functions of space 

and time. 	Working this time in terms of the induced pressure fl uctuation 

p we have 

1  r 	r/a0) 
P 	-37,) r  exp(- 5-1) dy 	 (5.1) 

r being the distance from the element of area dy to the point considered. 

A damping factor has been included, with the same value of a as that used 

previously. Then 

1 - riaon(x.', t-r'iao) If 	  

(47r 	 rri ) 
x 

(5.2) 

exp{- (r + 0)1 

If the sources are correlated over an area S* which is small compared with 

the area of the sheet, and if retarded-time differences for points separated 

by less than a correlation length Ari;  are small compared with the time-

scale for variations in the source strength, (5.2) can be reduced to the 

approximate result 
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p 	S* 	exp(-ar)  
2 	dy 

16st 

02s* 
use [ei(az) o  ei(ar)J 

(5.3) 

f a, -u 
where ei(x) = 	--eu du 

x 

For the inviscid limit, we let a —> o, keeping r finite, and obtain 

Q2s* 	R2 
P 	16rr 	In(1 + 	) , (5.4) 

since ei(x) ,v 	in x as x --> o. Thus p2  —› co like In R as R —> co. 

On the other hand, for the viscous limit we let r, R —› co to obtain 

Q25* = 	ei(az) (5.5) 

The divergence of the mean square pressure, as given by (5.4), is 

extremely slow, so that there is little possibility of finding any realistic 

example in which the pressure fluctuations become so large that they are 

limited only by viscous effects. 	Nonetheless, these results show that it is 

not possible, for example, to represent finite scale situations by models 

involving infinite spatial distributions of source if we want a realistic estimate 

of the sound produced. 

The same ideas apply to the steady state wave motion produced in a 

thin plate, or on the surface of deep water, by a homogeneous stationary 

pressure field applied over the surface of the plate or the water. 	Steady 
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state energy conservation requires a Yr fall-off of mean square velocities, 

deflexions, etc., where r is distance in the surface from any source position. 

This Yr decay then implies that the mean square velocity at any point on 

the surface increases with the logarithm of the typical length R over which 

the surface pressure acts. 	The response in the strict homogeneous limit 

R 	co must be limited by some kind of dissipation, or by nonlinear 

effects. 	The steady-state solution, bounded by some mechanism, is, however, 

not relevant to problems in which only a finite region is directly excited by 

externally applied pressures. 

6. conclusions  

The pressure fluctuations in a compressible fluid in stationary isotropic 

turbulent motion depend critically on the size of the turbulent volume. 

Finite compressibility permits each element to act as a source of acoustic 

energy, and in virtue of the assumptions of stationarity and homogeneity the 

distribution of these sources is statistically uniform in space and time. 	The 

inverse square law of acoustics - which applies if diffusive effects are neglected 

then implies that the intensity at any point diverges in proportion to the 

linear scale of the region: 	If viscous damping is included, the simple 

argument of §1 shows how the pressure fluctuations in an infinite medium are 

bounded by dissipative effects, and also define a scale length below which 

the effect of viscosity can reasonably be ignored. 	The same result is obtained 

if Lighthill's wave equation is modified by the inclusion of a damping factor, 

and then solved formally as in §§2 and 4. 
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The results for finite and infinite scale are very different, and the 

model of an infinite expanse of compressible fluid in homogeneous turbulent 

motion will not give results which are relevant to real flows in a volume 

satisfying the condition aR << 1 for the inviscid limit. 	In contrast, results 

derived for an infinite expanse of strictly incompressible fluid may be applied 

to the motion of a finite volume of fluid, provided only that the length R 

is large compared with the scale 10  of the turbulent motion. 

All easily conceived turbulent motions at low Mach number which are 

approximately homogeneous and stationary seem to satisfy the condition for 

the inviscid limit - except perhaps those on astrophysical scales - unless the 

dissipation assumed here has been vastly underestimated. For example, one 

might think it more realistic to use an eddy diffusivity 3e  in (2.1) instead 

of the molecular diffusivity rs, although such an idea could not leave the right 

hand side of the Lighthill equation with its usual form. 	If this were done, 

and fi
e 

were so large that the effective Reynolds number were reduced to 

order one, we should then find that the infinite scale acoustic pressures were 

somewhat smaller than the eddy motion pressures. 	However, egen though 

the scale R required to achieve the viscous limit would be much reduced in 

the case Re"-,  1, R would still be very much greater than any length occurring 

in terrestrial problems. 	The viscous limit seems therefore never to be 

relevant, except perhaps in astrophysical problems, even when an eddy 

diffusivity is used to explain the action of the small scale turbulence on the 
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large scale sound waves it produces (Per,' 107(4 is assumed here as an 

exaggerated upper limit on Pe  for atmospheric turbulence). 

We conclude that the acoustic pressure occurring in turbulent motion 

do depend upon the scale R of the turbulent volume in the manner given by 

(1.8), provided M is small and R is typical of terrestrial motions. 	The 

acoustic pressures seem to be always negligible compared with those involved 

in maintaining the eddy turbulence. 
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