WAVE MOTION AND VIBRATICN INPUCED BY

TURBULENT FLOW

A Thesis submitted for the degree of
Doctor of Philosophy

in the University of London

Do Go CRIGHTON

Department of Mothematics,
Imperial College of icience and Technology,
LONDON, Cetober, 1963,



ACKNOWLEDGEMENT

The author is exiremely grateful to his supervisor, Dr, J. E,
Ffowes Willioms, for his help and encouragemeni in many stimulat ing

discussions of the work described in this thesis.



CONTENTS

ABSTRACT
CHAPTER 1

Ceneral Introduction
CHAPTER 2

Dadiation from Turbulence near a
Composiic Flexible Boundary

CHAPTER 3

Sound Cienecrafion by Turbulent
Two=fhase Flow

CHATER 4

Plate Vibration Induced by
Unsteady Pressure Ficlds

CHAPTER &

The Seale Effect in Compressible
Turbulence

12

56

926

127

(¥}



ABSTRACT

In the first section of this thesis, the offcct of a plane flexible
composite boundary on the sound gencrated by nearby turbulence is examinod.
It is shown that the houndary reflects and diffracts the sound from the
turbulence, and alsc that the inhomogeneity of ihe surface scatters the
cnergy of eddy motion into propagating sound, Reflexion and diffraction
processes do not appreciably increase the sound power from the turbulence,
but the scattering :1cchanism is a powerful meons of augmenting the radiciion,

A general formulation of the problem of sound gencration by a region
of turbulence in which the fluid consists of o mixture of two phases is
given in the next chanter, The theory is applied to the case of a swall
volume concentrafion of air bubbles in water, and also to that of a
distribution of small dust particles in a gas.  The aifect of even a very
small concentration of bubbles is to increase the turbulence radiation
enormously, while the presence of dust particles in a gos also increases
the radiation appreciably, though less drastically,

The vibration induced in a thin clastic plate by a random pressure
field is then considered, General equations are derived and applicd o
the case of plate excitation by a turbulent boundary layer,  The
dependence of the vibration statistics on paramoters characterising the
plate and the turbulonce is obtained, giving results which are analogous
to the well=known results of Wghthill for the sound power generatad by

turbulence,
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Finally, an estiate is made of the corrections caused by
compressibility to the vressure and velocity fluctuations in homogencous
turbulence,  These corrections are large if the volume of turbulence is

large, but are negligibble for low Mach number flows on any terresirial
ge, gig V4

scale,



CHAPTER 1

GENERAL INTROD UCTION!



This thesis is concerned with four problems of wave generation as
a by-product of turbulent flow. In all cases the turbulent flow is
regarded as given, and the problem is fo estimatc the side-effecis of the
flow under the assumpiion that these cause a negligible back reaction on
the turbulence.  Very little is known, of course, about the detailcd
structure of most coimnon types of turbuleni flow, so that the problems
must bc posed in such o way as to require only a minimal specification
of the properiies of thc turbulence.  [imensional arguments often enter
the calculations, and preclude any highly accuraie numerical predictions,
but nonctheless these procedures have led in the past to valuable informaiion
about the gross cffecis to be expected in many situations of practical
imporfance,

The pioncering work in problems of this kind was done by Lighthitl
in 1952~1954, in a sci of thrce well=kknown papers on the sound waves
gencrated by turbulence,  Lighthill formulated an exact acoustic analogy
“for this strongly non=linear problem, and applicd it to the estimaiion of
the noisc fields of jets and boundary layers, and to the scatfering of sound
resulting from the interaction of sound and shock waves with turbulence,
From the simplest possible ideas about turbulence he was cble to draw
powerful conclusions about the intensity and directivity pattern of the
radiated noisc ficlds, Rocent years have seen great advances in the
development of Lighthili's basic theory, and have shown it to be much

superior to all other ihcories = above ail in the range of possible applicaiions.



The work of the first two scctions of this thesis describes the extension of
Lighthill's thcory to iwo new situations,

Chapter 2 deals with a problem which provides a link between
aerodynamic noise theory and the classical theory of diffraction of acoustic
waves by a solid boundary,  For o long time ofter Lighthill's first papers,
the cffects of solid Loundaries upon turbulence=gencrated sound were
inadequately understood,  The work described here shows thai it is possible
to obiain a complete solution to the aerodynainic sound problem when a
plane, flexible, but non=homogeneous boundary is present in the turbulent
flow, Specifically, the boundary considered consists of two half=plancs
which have differing clastic and inertia propertics,  The interaction
between a plane sound wave and such o composiie surface provides a
typical example of diffraction theory, though the solution of the diffraction
problem sheds little ficht on how the comnposite surface will affect the
rediation from nearby turbulence, A new method of solving Lighthill's
inhomogencous wave cquation, subject to the discontinuous boundary conditions
required by the presence of the composite boundary, is given here,
Previously obtained rosults of diffraction theory are recovered, and they
show how the sound emitted by the turbulence is reflected and diffracted
by the surface, These effects do not substanticlly increase the radiation
from the turbulence, ‘!owever, the solution also shows that the inhomo=
geneity in the surface properties acts as a scaitercr, converting the strong

hydrodynamic near=ficld of the turbulencc into radiating acoustic encrgy,



This scattering mechanism is a powerful means of converting the cenergy of
eddy motion info radiating sound, and from the dctailed results given below
it appears that such surface inhomogencities = even though apparently

small = may often malke the dominant contributions to the noise ficlds

found in practice,

In Chapter 3, the problem of sound generation by turbulent motion
occurring in a two-phose fluid mixture is considered, A modification of
Lighthill's methods allows us to see clearly how the interaction of the two
phases produces sound waves In the fluid beyond the turbulent region,

The important case of a small volume concentration of air bubbles in waicr
is considered in detail, Such a mixture is well=known to have very
startling acoustic properties, arising from the foct that the inertia of the
mixture lies almost entirely in the water phase, while the compressibility
lies almost entirely in the gas phete,  These unusual properties naturally
play an important part in the problem of sound generation by turbulence,

It is shown herc that the presence of only 195 of gas by volume is sufficient
to increase the acoustic power output of the turbulence by about 5C dB,
while at the maximui concentration, of order 1{:% perhaps, which can
reasonably ke covered by the theory, the power output is increased by
about 7C dB,  The two=phase mixture formed by a distribution of small
dust particles in a gas is also examined, Increases in the acousiic power
are again found., They are much smaller than those caused by the presence
of bubbles in water, but are appreciable if the mass concentration of dust

is high.
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In the next section, on oxaminarion is made of the vibration induced
in a thin clastic platc by an unsteady prossure field dcting over part of
the piafe. Particular attention is given to the case of a random pressurc
field, and the results obtained are apolied to the case when the plate i
excited by pressure fluctuations typical of a turbulent boundary layer,
Functional forms for the dependence of the vibration statistics on the flow
and plate parameters are given, and thesc may be regarded as equivaleni
fo the results of Lighihill for the aerodynamic noise problem,  Convection
of the prassure field is examined in o simple example.,  The results arc
interpreted as implying that, for excitation by furbulence, the normal modc
analysis ofien used for finite plates may not be very useful in practicey
For no modes scem, a priori, to be preforred, and the number of modes
required to deseribe a turbulent pressure ficld oy be so large as to rendor
the method usaless¢

Finally, the pressure fluctuations in stationary isotropic turbulence ore
examined using Lighthill's wave equation, When the fluid is slightly
compressible, the prossure fluctuations in a large volume of turbulence
diverge, in mean square, in proportion to the linear scale of the region,
In the strict homogencous limit of infinite scale, the pressure fluctuations
are bounded only by siwall diffusive effects, and cannot therefore be appliad
to real flows unless ilic volume of turbulence involved is enormous,

Results for simall and large volumes of turbulence afe derived, and

contrasted,  All turbulent flows on a ferrestrial scale seem to involve only
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a "small® volume, and for thase flows compressibility cffcets are found io
be negligible when the Mach number is low,

Not all of the work described in this thesis is that of the autheor
alone, About one third of the work of Chapters 3 and 4 was done by
Dr, J.E, Ffowes Willioms, and those chapters will be submitted for
publication as joint papers,  Chapters 2 and 5 were written entirely by
the author, though of course these have also bencfited greatly from many
discussions with Dr, Ffowes Williams,  His help is again gratefully

acknowledged.
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RADIATION FROUM TURBULENCE NEAR A COMPOSITE

FLEXIBLE BOUNDARY
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RADIATION FROM TURBULENCE NEAR A COMPOSITE

FLEXIBLE BOUNDARY

1.  Introduction

One of the major problems in the theory of aerodynamic noise
concerns the influence of boundaries upon the noise generated by a
turbulent fluid flow., In only two cases so far has a satisfaciory solution
been achieved, In the first case, the boundary surface concerned has
typical dimension small compared with a typical wavelength of the sound
generated, and then an unombiguous dipole field is created by the presence
of the surface, which is assumed rigid, In the second case, the boundary
is supposed to be formed by an infinite plane homogeneous surface, which
may respond with small-amplitude vibration to the turbulent flow over the
surface,  We shall here consider an extension of the results known for
this second case, and so o brief history of the previous developments will
first be given,

Lighthill (1952) was the first to consider the problem of noise
generation by a turbulent flow in the absence of boundaries. He showed
that the turbulent flow could be regarded os equivalent, acoustically, to
a volume distribution of quadrupoles, the quadrupole strength being
supposed known in terms of properties of the turbulence.  Flows at low
Mach number yield a quadrupole sirength vorying as the square of a

velocity characteristic of the turbulence, while the radiated pressure varies
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as the quadrupole strength, and as the square of a typical turbulence
frequency.  Thus the radiated pressure varies as Va, and the acoustic
intensity as V8. In 1955, Curle obiained the complete solution of
Lighthill's equations when the effects of rigid houndaries in the flow were
taken into account, He showed that a rigid boundary was acoustically
equivalent to a disiribution of dipoles over the surface, witha radiated
intensity proportional to V6. An analysis similar to that of Curle, in which
the boundary is allowed to vibrate in response to the turbulent pressure field
upon it, would show that the vibration of a flexible panel is acoustically
equivalent to a surface distribution of monopoles (in addition to the dipoles
and quadrupoles of Curle and Lighthili), with a rodiated intensity proportional
to V4. These conclusions, based on dimensional analysis of terms which
appear superficially to represent acoustic sources of essentially high efficiency,
are now known to be quite incorrect in the case when a single infinite
homogeneous surface is the only boundary present,

We can anticipate the correct result for this case by looking at the
problem in the following way, The spectral components of the boundary
layer type of pressure field (in a Fourier analysis in time, and in the plane
of the boundary layer) have, for the most part, subsonic phase vélocifies,
if the Mach number of the flow is small,  These subsonic components
constitute a strong near-field, but they are exponentially‘aﬂenuafed with
distance from the flow, and cannot propagate as sound.  Only the relatively

few supersonic spectral components can propagaie to the far-field, and the
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flow is basically incificient in generating sound,  Now if the presence of a
rigid, or flexible boundory in the flow were to substantially increase the
sound radiation, somc form of interactiun between the flow and surface raust
occur in order to scaiter the subsonic near=-field into propagating sound,
Scattering, or ™ wavenumber conversion®™ , must occur if the flow is to use the
surface as a sounding board to increase its radiation,  But it is difficult to
see how such scattering could occur if the only boundary present were an

infinite homogencous plane, responding perhaps with vibration of small

amplitude, For the problem is linear, and therz are no edge-cffecis or
discontinuitics which alone could lead to wavenumber conversion in a lincar
problem,  Consequently the flow cannot use such a boundary to augment
its radiation, and the sound field must be essentially that due to the ineiFicient
quadrupoles equivalent to the turbulent flow,

These conclusions were first rigorously deduced by Powell (1960) in
the case of an infinitc rigid surface.  He showed, from Curle's equation
together with a complementary null equation, that the surface pressure dipoles
merely ®reflected® the turbulence-generated sound, and hence that the \/8
law remained valid in this case.  Ffowes Williams (1965) subsequently extended
PoweH's work to cover the case of an infinite flexible boundary; the aciion
of both monopoles and dipoles was here shown only to involve the reflexion
of the quadrupole sound, but now with o phase change depending on the
frequency and direction of the sound.  The properties of the radiated sound
are compleicly known, in principle, when the quadrupole strength and the

reflexion cocfficient for the surface are given, In a later paper, Ffowes

Williams (19668) also considered the radiation from turbulence near a flexible
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surface when a distribution of simple supports ccts on the surface,
Scattering does now occur, and the supports themselves act as radiators of
genuine dipole sound, Mo specific dependence of the dipole sound upon
the speed V was obiained, however, and the details of the scattering were
somewhat by=passed in the method used by Ffowes Williams.,  Alore will be
said later in this poper about the influence of supports on the radiated sound,
The papers of Powell and Ffowes Williams itlustrate the great danger
in assuming that one can regard the surface pressure and velocity as known
(dimensionally, at any rate) independently of o knowledge of the Lighthill
quadrupole sirength,  The estimates p pV2 ond v~ V for pressure and
welocity are quite inadequate, and Powell and ‘fowes Williams show how one
should attempt to calculate p and v when given only the quadrupole strength,
In this paper, the calculation will be corried through in o situation of iuch
greater complexity than has been considered before,  Crdinory acoustic
theory daes, of course, deal with the diffraction of acoustic waves by
boundaries of the type considered here.  In particular, Heins and Feshbach
(1954) have solved the diffraction problem for a composite flexible boundery.
This is not, however, the sort of problem which is of relevance to aerodynamic
noise theory, Wes are really interested in the scattering of near-ficld
pressure into sound, rather than the scattering of a propagating field into
diffracted ficlds. The scattering of sound info sound is a problem of no
importance in flow=noisec theory, wherecas the scattering of ncar=ficld pressure
into sound may provide o powerful means of increasing the acoustic efficiency

of a flow, The theory is therefore set up here in a manner appropriate fo
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the flow-noise problein,  As a special case, the results of Heins and
Feshbach (1954) are recovered. The technique used here does, however,
have the advantage of potentially greater generality thon does the Véiencr-
Hopf method of Heins and Feshbach = even for the diffraction problem,

It may thus be possible to extend resulis in diffraction theory by the present
method, but that is left for further study,

The situation to be discussed in this paper coneerns the case of an
infinite boundary, composed of two semi-infinite half-planes, Foch of the
surfaces is assumed homogeneous, but the surfaces are supposed to differ in
their inertia and elostic properties, The basic problem is to formulote a
set of equations sufficient, in principle, to determine the radiated sound
field entirely in terins of the one quantity which can be supposed known -
viz, Lighthill's quadrupole strength Tii(-’?(-'t)' given throughout the flow,
Cnly when such equations are set up and solved can one hope fo give a

reliable dimensional analysis of the sound ficld,
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2,  The Ceoverning [quations

Let the infinite surface to be considered occupy the (1,2) plane,
A turbulent flow occupies some region in Xn > 0, and we seek the rodiaied
pressure fluctuation p(x,t) in the region beyond the turbulence.  The

equations governing thic radiation may be written (Ffowes Williams, 1965),

d
_ 1 @ 4
plx,t) = T - -4;'5%-“[:95]-; g;; 37 [(v1- (2.1)

© = T+t Z:I;r' [[p]—- i afj Ev +— - @2

In these equations, viscous forces and nonlinear terms in surface response have
been neglected, as usual. p is the mean fluid density, v the surface
velocity in the (=3) direction, The y=integration is over the whole of the
(1.2) plane, and p, donotes the surface pressure, T, is the contribution

to p(x,t) from the turbulence stresses in the real fluid, while T_ is the
pressure which would be radiated to (x,t) by the speculor images of the

stress quadrupoles TiE in the (1,2) plane, T ,ond T_ are to be regarded as

known from a knowledge of Tii' As usual, square brackets L1 imply

evaluation at retarded time,

, x -y
L¢] = ;(1,,-1:3._:_‘-) '

o
a, being the speed of sound in the distant field,
If now we are given the relation between P and v - i.e, if we know
the response equation for the surface, we have in principle sufficient

equations for the determination of p in terms of T, . For example, in the
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case of a rigid surface, considered by Powell (1v60), we have v = ), so
that p = T, + T, This is just a stotement of Powell's reflexion principle,
In general, however, it is not at all clear how the equations can be used,
even in a formal sense, to determine p(zc_,t), so that the first problem is io
manipulate the equations into a more suitable form,

Supposc that the surface consists of two homogeneous half-plancs,
yy > © and y, <O say, which have differeni elastic and inertia constanis,
Suppose also that o distribution of applied stresses gy,t) acts on the surface
in addition to the turbulent pressure ficld P © positive value of q implying
a stress in the +3 direction, The response of the surface can then be
expressed, most conveniently in terms of the surface deflextion "‘L(Z,f) in

the =3 direction, by cquations of the form

F( ) Y >GC,
- q = N 1 \ (2.3)

F., F., arc linear snace and time differential operators with constant

1772

coefficients.

Using (2.3) we can express the surface integral of pressure as follows:

Lo 9 4
[p] += (lad T +Al +Rp s, (2.4)
(o) +co d
where I.I = 3\ j [:'L] __Z_ ‘
- r
Yy = C+

Yy = =@

l, = \Yb- [ (] .?{. ,
yp =@ Jy, = -

and the term S denotas a collection of line=integrals along Yy = O from
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Yo = = fo +w, In fact, if we take a fairly simple case, that in which

n m S
Foo2 A2 45 2 s 2. (=12
1 ] a n ) a m | afS
7y Y2
then
n=1 ar
S = rZ=::) e T Jn-r-'l » and
Jl.g
+o
k Ak dy
_ f d ] [ 0 ] 2
= J l[Az"'H _ A— _.\} i
—co By, ~ yy=C- dyy T yy=CH

We can interpret these line integrals at a laoter stage.

If we now substitute (2,4) into (2.1) and (2.2), and use v = 61/61',

we have
i 0 P> 82
O=Q+]-@-—(FI+FI)-9 az(i+|) (2.5)
- Zn Oxg 11 0722 n 'a‘g 1 2 .

In these equations, modified pressure ficlds have been used,- defined by

d
_ . =18 = 1 3 L
Q- Ligm tw —"axaj‘[q + - @.7)

Q_ is the pressure incuced by the specular image of the system which
generates Q o reflexion of the system of surface dipoles involving S, q
requiring only a change of sign. It will be seen later that S is known

if q is, so that the problem now is to understand the roles played by the terms
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involving I, assuming the Q known, In cquations (2.4~6), the operators
F. are :;|ow talen fo act on the field point x, and not on the source poini
y as they did in (2,3).

The equations (2,5-8) are still insufficient to determine p, for we have
as yet no relation befween ll and |2. (The relation is not needed in the
case F] = FZ treated by Ffowes Williams, (1965) We can obtain the
required relation by iaking Fourier transforms in (1,2) space, and in time,

1 ,12 in terms of the fransform

~
VL of the surface deflexien alone. Vie use the following definition of

and by expressing the transforms of each of |

generalised Fourier fransforms:
~
olx,t; x,) = j g (k,es x)exp i(kex + o3t)dk do ,
il 3 d 3 Do X =

with k = (k’i ,!{2) and x = (x.I ,xz). Vie need also the following result,

which is easily proved by direet calculation; if
dy
Blx,t; x3) = Q(y],yz, f-r/ao) — then

~ — 2mi

f‘(_litw§ X3) = ——_‘—I-GXP( IX3'*) )%'(ktw) .
Here \IJ = §gn.u /% - k2 if ]w] > aok R
qO
2
. 2 W .
= = kT - 0_7. if IQ,< Ook .
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This result, which is frequently useful, expresses the transform of the

pressure g radiated by a distribution of surface sources S in terms of the
~

transform € of the sources. To apply this result here, we interpret l.g as

+Q0

gg L Hoyy) d-;'-' ond 1, o
ﬁ" ["l.’"(“yi)]fr%

H denoting the Heaviside unit function. Use of the convolution theorem
to obtain the transforin of V\"H then gives
~ _ 2"' -I'('J’VI N ‘ﬂw?
i = e = 2 VLJ ’

1

~ . =ixop ~ ~
I, = -%—‘-e 3 i%"t‘*%ﬂ”},}

ﬁ denotes the Hilbert tronsform operator,

(K -k}
1 1

;ff ~ 3 n (<3 k), )
1 - -—o— dk' z
mi
©
the integral being taken in the sense of a Cauchy principal value,
We now substituic (2.8) into (2,5-6). The transforms of the operators
Fl’ F2 are denoted by i'taz] and iwzz respectively, so that Zjr 2y are

the impedances of the two half-planes according to the usual convention,

Also we write z = %(z1 + ZZ)' and denote the acoustic wave impedance
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poo/\‘} by Z, Then (2,5-6) become
e d ~ ixnﬂ’ g ~
(P - Q+)e ° = {T’Z(Z ZW) - %(Z] = Zz)ﬂ} v (2-9)

PR {%(z 2z )= %(z‘-zz)ﬂ}’\r , (2,10)
7 = iw';t being the transform of v = avl/ai-.

(2.1C) is a standard form of singular infegral equation with Cauchy
kernel, and with variable coefficients, it has a simple exact formal
solution for arbitrary Q and z, and this solution will be discussed in detail
later, Note that the left sides of (2,9-10) are independent of Xoe

For

92

ot

(

2
-a;vz)q_=c> for all x, > C

2 0 -
while (% - G: \V} 2)p, Q = C whenever the observation point
ot

x lies beyond the region containing turbulence sources. In terms of frans-

forms this implies

: ’?::([i, w; x3) ~ exp(=§x3\p’ ),

~ XY
with the use of suitable conditions at X =+ 0, aond hence p e is
~ iXS\P
independent of x,. e may note also that Q e is the pressure which

would be exerted by the turbulence sourcos (or iheir images) on the surface

x, = G if the flexible boundary were absent, it is not a far~field

3
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pressure, but in fact is dominated, for low Mach number flows, by the
hydrodynamic near=ficld of the turbulence, \We may therefore expect
" il
Qe

such that ‘&l < csok. More precisely, if V, Lo are characteristic

to be concentrated, for any frequency GJ , on wavenumbers k

velocity and length scales for the turbulence, with V << ar then we expect
~ ixg‘v

Qe to be congentrated around a frequency of order V/ L, and around

a wavenumber of ordor I/Lo .
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3. Acoustic Sources on the Discontinuity

Before discussing (2.9-10) further, we must examine the way in which
the turbulence-gencraied pressure T + is augimenicd to C + and in particular,
the term S requires attention,  Suppose the response operators Fi’ have the

usual forms for thin homogeneous panels,

;2 4 |
Fg = m, 5—;2- + Bi Vl R (i =1,2) 3.1

m denotes the panel wass per unit area, B is the bending stiffness, and
dissipation in the suriaces is neglected, \/ ]2 denotes the two dimensional
Laplacian,  Since the general effect of a disiribution of externally applied
stresses is well understood, it will be sufficient here to restrict these

stresses to a line disiribution along vy = Cs

q(_y_lf) = Q(erf)s()f]) ]

(The case q(y,t) = 8(y)q(t) is discussed in detail by Ffowes Williains, 1966),
The acceleration at = © is not infinite, so that the externally applicd
stress must balance the discontinuity in shear across "= C which is induced

by elastic forces;

‘ ifi downward stress
B 3 = - ( ) = Q(Yzlf) i
6y., line density

where, in this section, ‘fl denotes the disconiinuity in f across V= vy,

¢

fly, = C) - fly, = 09 .
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Now when the response operators have the forms considered here, the linc
integrals occurring in  involve the following as acoustic sources per

unit length of Yy = C s

2

2
&> 2 2
+ |8 + B
2] 2 2] - a3
3 3
N a ale -_.2 ‘2& + g &231‘ 2,2)
O Ox

The orders of the sources are indicated by the number of derivatives which
act on them with respect to the field point x.  In addition, the terms
above are acted upon by the a/ax3 operator (cf, equation 2,7), so that
formally they represent o dipole in the 3~direction, a (3,1) quadrupole,

a (3,1,1) octupole, cic. The dominant term is the dipole, and by the
remarks above, the dipole strength is equal to the applied stress line density
qlyyst).  Combining this with the other contribution fo Q, (equation 2.7),
we see that the dominant term in the ®edge sources” is a -dipole distribuiion
along y; = C of strength 2q(y2,t).

This remains truc even if the surfaces have equal impedances, A
line distribution of stresses induces a shear discontinuity, and so a dipole
radiation additional to that induced by the stresses themselves,  This should
be regarded as a qualification to Ffowes Williams' (1968) result, that the
.dipole strength is equal to the applied stress.  That result is true only for
a stress which is smoothly distributed in a two=dimensional sense, so that

the space derivatives of the surface deflexion remain continuous,



4, Formal solution of the integral equation

We turn now to the solution of equations (2,9-1C). For the theory
of singular integral equations with the Cauchy kernel, reference may be
made to the books by MMushkelishvili (1953), and Gakhov (1946),

If ¥V satisfies (2,10), B can most casily be obtained by subtracting

(2.10) from (2,9) to give
~ IXW
#-Q -Ql ° =-27. .1)

~d
To obtain v , we writz (2.1C) in the cononical form

, (4.2)

o Bk,) [ Vi akt
Flep) = Aled v (k) + j ——

mi Kt - k

) 1 1

ixs’v l
P A=3z + Zw)’ B== Z(zl - zz), and the dependence

~o
where ¥ = Qe
upon k2, W is ignored for the moment,  Subject to suitable conditions

on A,B, which are sofisfied in the case consiclered in detail below, (4.2)

has an explicit formal solution, which can be written in the form

B*(k )Z(k.) 7! !
V) = AR = Ty 2,9)
' T w UG R A
=0

Here A* = /a\/(.ﬂ\2 - [‘;2), BY = B/(A2 - Bz), and Z(kl) is the ?{undamenial
function® for (4.2), The function {Z(k?l)(k']-—k])] -1 plays a role for the
singular intcgral equaiion which is anologous to that played by the resolvent

kernel of a Fredholin cquation with regulaer kernel,



28

The fundamenial function is defined by
Z(k]) = (A + B)X(k]) = (A + Blexp [ (k]) ,

Ty = o fim ) +oni(”"ﬁ)(m & 4.4)
L m im k]—> C+ n A <1 (k!l - k]) . (’-.x

=CO

Thus we have to evaluate the non-singular integral r +(k.’) when !:.I lies

in the upper half of the complex k]-plane, and then let Im k] — 4,

The solution is completed, in principle, when Z is reduced to a usable fora n
not involving limits or singular integrals,  Whother or not this can be
achieved depends upon the complexity of the forns assumed for VY

though this in no way invalidates the existence of the general solution (4.3)
if the required regularity conditions are obeyed.,  This is the sensc in which
this formulation has, potentially, oreater generality than the method employed
by Heins and Feshbach (1954); in their formulation the impedances z; wore
taken as constant af the outset, and a major reworking of the thecory would
be needed to encompass any other case, Here the impedances determine
only the details of ihe solution, and not the general form, However, wc
have only found it possible to evaluate Z analytically for the constant
impedance case of ileins and Feshbach, though it should be stressed again
that the present formaulation is particularly applicable fo the flow=noise

problem, while the Wiener-liopf technique of ieins and Feshbach is only

really suited to diffraction problems.
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Suppose the surface impedances are independent of k, though depencient
upon . The surfaces are thus assumed to he formed by a sysiern of
infinitesimal decoupled mass=loaded clements, and the possibility of elastic
wave propagation in the surfaces is thereby excluded,  The problem of the
diffraction of plane acoustic waves by such a surface has been solved by
Heins and Feshbach (1954), The determination of the fundomental funciion
Z is exactly analogous to the factor decomposition which is required by the
Viener=Hopf method,

Consider then

+0
D) = o " ae) d““ im k. > C
1 2t nz‘,l2 @] m 1 ¢

=Q0

By differentiation on k] and integration by paris we find

“+C0 ' t

af"*(k‘) R J‘ ke 5 k!
kl
i

o _ . (4.5)
ak 2ni =k, [ + (:<272<']2)23 (k2 - kS

Z ' 4

1 )

minus a similar expression with )\2 instead of :\i. Here we have inserfad
the cppropr‘icte expression for z, have taken O > C, and written

K2 = W / - k2 It will appear later thai it is sufficient to consider
only the k2 with lk?J < w/oo, and therefore K can be taken as real
and positive, )\l and %.2 denote pw/z.l and pw/z respectively, z ],z,,

being regorded here as functions of €0 only, The branch of (( k' )2 i

taken as that which reduces to K when k'] =, There is thus a branch
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point on fhe real k!'-axis , but this can be removed from the
integration path by supposing i to have a small negative imaginary paori,
This is a familiar device (Copson, 1946), and corresponds to a slight
dissipaiion in the fluid,

With this supposition, consider the infegral involving 7\] in (4.5)
around the contour shown in Fig.1.  The coniributions from the circular
arcs vanish in the limits of large and small rodii,  The integrals along

the edges of the branch cut combine to give

| ]
1 k3

Ao
w g-m l:!l = EY E)\'.IZ N (k,]Z - KZ)_] (k,iz _ KT); P

where we can now pui kn K = G,  This integral can be evaluated by

clementary means (ileins and Feshbach, 1954), io give

n

A {{Akp- ) - wlj(-a,)}

KE - q] k] + a.l

2 23
= G-](k]) say, where a, = (K" - ?\]) , and

?<"‘L
vy ]
Y& = Z tan- /?Tr .
™ -\.l
< (L -K)E
1 1
= , » 'n( 2 )0
?;(/ k )f 1S

Combining this with the term GZ(k'l) , and with the residue coniributions,
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we have finally, on letting Im k] - O+,

ap(k]) ) - ColkL) k.' [ )\] . 3\2 ~}
k. = Lk - C + ) T = T .
%, L L A OOk ety
(4.6)

Then, since F (~0) = C, we have

k
1
Dy = j -"2%(-"-’-@,

=D

but the integral cannot be expressed in terms of known functions,
Approximations for F can be obtained, as shown by Heins and Feshbach,
and these con be used if a detailed study of the function Z is required,

We note for further use, that if we set z, o8 Zy approximately in the dabove,

1
then (' =0Q,X=1and Z=A+8, This will provide us with an
adequate approximaiion when the two surfaces have impedances differing
by a small amount compared with the magnitude of either impedance,

The next task is to invert the Fourier transforms over wavenumber, so as

to obtain the far=ficld radiated pressure as a function of frequency,
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5, [Inversion of the Fourier transform; the far~field radiation

From equations (4.1) and (4.3) we have the following equation for
the pressure transforin in terms of the source ficldsy

=3

Sk, eo,%) - @, ox) = (-2 ° Fke)
P, m'x3 o 1x3 = ZW e _,(p)

+

-ix, ¥
< -— = s N ] 8
e sz*/:. J‘ i (k.' ,LZ, W) dL.l

IO [

~ (5.1)

Consider again ¢ positive frequency > , and write ko = CD/GO, and

K= +\/k2 - K2 where we again assuine l ko] <k . Multiply (5.1)
o 2 2 o

by exp ik!x.l , and infegrate over k?' Under suitable assumptions, the

k.',k'] integrals in the final term can be inveried (even though one of thein

is singular), and after the integrals are inveried we also interchange the

dummy variables k],kfg. For the final term in (5.1) we then have to

consider the integral

H P - 2 £y, 8

- |L3xl.lx3x/K2 2 (2 B2

- © (P I
17

(5.2

taken in the principal value sense, By the Plemelj formulae (see

Mushkelishvili, 1953), L is given by

L= U+ L),

+

where L~ are the values of L as k' approaches the real axis from above
+

and below respectively,  We calculate the integrals L by a deformation

of the integration path which is standard in the diffraction theery (Copson, 1946;.
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Consider for definiteness an observaiion point x with %y > C,
X = R cos &, Xo = Rsing, OL<& < 72, We deform the path of

integration info one branch of the hyperbola given by

k'] = =Kecos (& +i7), (5.3)

K"Z—k!'2 = + Ksin (8 +iT) , (see Fig.2),

Again we suppose the branch points slightly displaced from the real axis
by giving K a small negative imaginary part,  The branch cut from =K to

+
to ~ is now a radial one, as shown in Fig,2, N denote the integrals

+
L™ token along the hyperbolic path for Im k‘l = O+ and Im k] = G~
respectively,  The contributions to the integrals from the circular arcs

joining the real axis to the hyperbola vanish in the limit of infinite radius.

When =K cos & < k.l <+ we have, from Cauchy's thsorem,

L+ + N+ = 2mi (residue at k'] = k‘) R
L+ = C, and hence
L = wi (residue at k'! = k]) - N, (5.4)

On the other hand, if = < k', < =K cos &, we have
L.
e Nt o= o,
L+ N7 = -2ai (residue at k} = k) ,
because the pole is now circumvented in the negative sense, llence

L = =ui (residue at k'] = k'l) - N, (5.5)
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The residue confribuiions to L can be combined with the first term on the

right of (5,1) to give a contribution

oo |’klx1 -ixs\/ Kz-k%
-5 A®)E
Q1 zw/‘ We dk]
-C0
© ey =i/ K22 ~Reos® ik]x.l-ixsw/l(z-kf
- z B*F e dk, + z B*Fe Ak
w 1 w §
~Keose . ) )
-ixa\/i(z-k? .
Because of the factor e , the limits = o0 can be reploced

+
by - K, the remaining contributions vanishing cxponentially as Xy —> to,
Now from the definiiions of A*, B* we find

zi T Zw
- A% C — LA A S
1 w
(5.46)
Zp =2

- V.
1 =2 A% 4+ z DB* ~z W = R ’
W w z. + z 2
2 W

where RI’RZ are the usual reflexion coefficienis for the two surfaces,

~ ~
Therefore, 'g;(_li,u) contains the reflected ficlds R]Q_ or RZQ- according
as =K cos & < k] <4K, or

=K < k.' <=Kecos &,
This just states that the propagating components of the source ficld @
(i.e, those for which ik.‘ 1 < K) are reflected to the observation point
from one surface or the other, with appropriate reflexion coefficients,

according fo the obvious geometric rule,  These reflected pressures have

precisely the interpretation placed on them by Ffowes Williams (1965,1965).
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Reflexion of turbulence-generated sound does not imply any fundamental
increase in the cfficiency of the turbulence flow.  We shall therefore
neglect these reflected pressures now, and shall consider only the scattered

field, which is given by the integral along the hyperbolic path, and

depends upon the integral

Ja0
. (z B*Z)(—Kcos(@ﬁ‘(‘:))
~iKRcosh et s .
N = S\ o cosh T’ Wk] T e ) iKsin(&+i t’)d'[’. (5.7)
-0

Now, referring to (4.4), we have Z = (A+B)X, where X # O has only branch

points as its singularities. We can therefore write

zWB*Z:‘". = ?\] (22-21))(/2 [?\' + Ksin(B + it’)] , and then

: O e
y o Nz ¢ TTHReOhT X(-Keos(® + iTNKsin(® + ITHY 5
2 o Ek] + K cos(& + ir)] [)\I + K sin(e + i'l‘ )]

Two distinct cases now arise, representing quite different physical
processes.  Suppose firstly that ‘k‘l < K, i.e. consider a propagating
clement (k',kz,(b) with supersonic phase speed in the (1,2) plane,  Such
clements can propagate to infinity as sound when no boundaries (or an infinite
homogeneous boundary) are present, The process desiribed by the integral
N for such components is that of the scattering of radiating energy with one
directional distribution into radiating energy with a different directivity - -
i.e. the diffraction of sound. From the viewpoint of aerodynamic noise

this process is unimportant, for the diffraction can only praduce a directional



redistribution of the turbulence-gencrated sound - whereas here we hope to
find evidence of the conversion of non-propagating near field energy into
radiating sound.  The case \k.'l < K is only of inferest in diffraction
theory, where the directivity pattern is the most important feature, When

we write

F(k

'I’kZ’ ) = S(k] + ko cos &' )E(kz)s(w-aoko)

we have the case of a plane monochromatic wave of wavenumber ko incident
upon the plane at an angle &'. The integral determining the (fwo=

dimensianol) diffracted field is then proportional to N with k2 =G and

k = -k COs e. 2 i.e-
] o

] _ d0 =ik Rcosh ¢
i : )\1(22 Z]) 5‘ e © X [-kocos(9+i‘i:)] sin(B+i v )dy (5.9

N
2 [cos(@tip) - cos © J[[ A sin(S+1)]

-0

This integral is just that found by Heins and Feshbach (1954) by the VWiener-
Hopf method, and when certain changes of notation are made, we can recover
their results on the diffraction of plane waves.  The transformation of the
infegral to a usable form is not trivial, and the method of stationary phase
cannot be applied immediately as there is a singularity when © = &' at
"\: = G, The necessary transformations, and the final form for the diffracted
field are given in detail by Heins and Feshbach,

We tum next to the case ‘k.‘l > K, which does not correspond to
- a diffraction problem for plane woves.  This is a case which necessarily

arises when the inhomogeneous wave equation has to be solved, and the
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radiated field is properly termed o scattered field in this case. We must
emphasise that scattering of neer-field pressure into sound only occurs from
any kind of inhomogencity when turbulence sources exist at distances less
than about a sound wavelength from the discontinuity, or inhomogeneity,
Thus, if allthe turbulence sources in this problem are at least several
characteristic wavelengths away from the line y; = C, the radiated field
consists of direct and reflected fields, and a difﬁ;acted field which can be
treated in the manner described above,  The impedance discontinuity cannot,
in such a case, increase the power output from the flow.  Practical cases,
however, often involve such impedance discontinuities with turbulence sources
distributed nearly homogencously in the (1,2) plane (as in a turbulent
boundary layer) and ithen scattering is certain to occur.

When lk]‘ > K, the situation is more casy to handle than in the
diffraction problem, for the integral N contains no pole on the range of
integration,  An opplication of the method of stationary phase gives at once,

. .1 .
N ~ iNG@yzy) - i7- KR K(~Kcos&s)Ksin® 5.10)
3 JTr © &, + ReosS)N, + Keme) *

We have now to multiply the expression by exp(ikzxz) ond integrate over

k The factor exp(—-iRw/kz - g) shows that only those k2 for which lkg‘ < ko

2.
contribute fo the far=ficld integral, and this is the justification for taking

‘kzl < ko' as was done earlier, A further application of the mcthod of
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stationary phase then gives us the following resuit for the scattered pressurc

field 9(5_, 1d) at position X, = rﬁi and frequency 3> C 3

N : g Flky ks 03) ik %,
kg -ikr)((-kop,-kﬂ,u)h.
. o3 o 1 02
~N - IN(ZZ"Z])( - e ()\‘ - ko@ V(kotﬁi: w) ,
V(ko'pi' %) j -Z—(E‘, n 52"3) ’(&] g B-]_} . (5.11)
ey U > ° °

where now K = Jl<2 - l<2 2 .
o o

This is an exact asymptotic expansion for 3(5_, ), in terms of the known
source field F, in the far~ficld kor —= o, In the next section, the
familiar kind of dimensional analysis will be applied to (5.11) to predict
the dependence of the scattered field on the characteristic length and

velocity scales Lo' V of the turbulent motion,
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6. Dimensional Analysis for Boundary Layer Turbulence

In this section we perform a simple dimensional analysis of equation
(5.11), to predict the dependence of the scattered acoustic power on the
parameters characteristic of the plates, and of the turbulent flow over the
plates, A boundary layer type of flow will be considered, whose internal
dynamics may be regarded as incompressible if the - -ecan flow Mach number
is small,  The flow inay be characterised in the usual way by length and
velocity scales Lo' V, representing a boundary layer thickness and free stream
velocity, respectively.  The typical frequency, both for the turbulent motion
and for the emitted sound, then varies roughly as V/Lo' the typical turbulence
wavenumber is of order l/Lo, Gl'.ld the acoustic wavenumber is of order
M/Lo' M = V/a° is the free stream Mach number normalised on the for
field sound specd a.

We have already supposed the plates to have negligible bending stiffnoss,
This is a good approstiination for underwater applications, where it is common
practice to represent plates by a purely mass=loaded impedance for the
frequency range of general interest, To further reduce the complexity of
(5.11) we shall suppose the impedance difference ]zz - zll to be small
compared with either of Izzi ' lz]‘ + = which amounts here only to a
condition on the plate masses, independent of frequency or wavenumber,

This is a case evidently relevant to many practical sitvations, though of course
certain extreme situations are excluded (e.g., the case of one perfectly
rigid surface and one perfectly limp surface, z; =™, 2, = o). We can

then replace z, by the average impedance z everywhere, except in the



40

factor (zz-z]), and in particular we may replace the function X by unity,
As a check, we note that the resulting equation for 3(_)_4_,01) could have
been obtained, in this approximation, from a simple iteration process on
equations (2,9) - 2,10),

Taking the direction cosines [Si all O(1) and neglecting some numerical
factors, we then have, symbolically,

k «itkr O

N C Pk )
V() ~ 2 dk, .
ko

(6.1)

(k e )+ ]
ke~
1o

Leaving aside the function O(w) for the moment, we have now to distinguish
two cases. Suppose the panels to have the same thickness h, and to be
made of maierials of densities 0=, & + A0, with A6 K o,

Then we have

z; = icchw, z, = i(0r+ A e, [)\] = ofoh .

The ratio l?\l /ko is equal to pa c/ J2|, and thorefore the case in which
‘?\\ >> ko corresponds to that in which the specific acoustic impedance
pa, is large compared with the plate impedance lz‘ « This is the case
relevant to underwator applications.  There onc is often concerned with
steel plates of density @~ ~~ 10p, and with Mach numbers of order 10-?'.

The value of lhl/fco is then of order 10 Lc/h, and even the smallest
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relevant length scale Lo (the boundary layer displacement thickness 8%)

is at least soveral fiincs the plate thickness h, 8 =2 cm, h =1 com

are perhaps fypical values. In this underwater limit we have

A 2 -ik rAN
px, o) (—h—"—%—;é-g—) e ? V(o) (6.2)
o]

Cn the other hand, the limit |M| << ko implies that the fluid
loading on the plates, represented by the specific acoustic impedance PO s
is negligible compared with the mass loading represented by the plate
impedance |z}, This limit may apply in some acronautical contexis, wherc
in fact it is usual to ignore effects of fluid loading,  In those applications,
the Mach number is much higher than in underwater cases, so thot taking
M = C(1) we have

‘}\l/ko ~ (pLJd‘h) .
For aluminium plates in air, p/6" is of order HZ-'S, so that \M/ko <1
unless Lo/h 2 703. The case Lc/h 2, 1C3 may apply in practice,
since the plafes used in aircraft construction arc exceedingly thin (h~1 mm),
so that fluid loading cannot be neglected and the previous limit (6.2)
will apply. However, it is clear that the limii D\l << ko can only
occur in acronautical problems, if at all, and then we would have

~ilc r

g(gg:b) ~ (1’_‘:::‘_'41-)@ ° {\/(ca) . (6.2)
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We consider now the function '\\/(w). Since we are interested
primarily in the radiation scattered by the impedance discontinuity, rather
than in that induced Dy supports acting on the discontinuity, the support
sources in § will be omitted,  In fact the solufion obtained in 84 is
incomplete . if boundary conditions on the disconiinuity are prescribed through
the action of externally applied forces, For exomple, if the boundary is
supported along the discontinuity by a rib of infinite impedance, we have to

satisfy the condition v(y1 = () = O, or equivalently,

o~
fv(!\],kz,o)dk] = C (6.4)

on the boundary velocity,  To do this we have to add to the particular
solution (4.3), a solution of the homogencous integral equation, dotermining
the arbitrary constani so as to sotisfy the integral constraint (6,4). The
solution of (4.2) in ihe form of complementary function plus particular
integral is discussed in detall by Gakhov (1966) and Mushkelishvili (1953),
The solution (4.3) may casily be gensralised in this way, though to no great
point,
With support terins omitted, we have
~ ix,,
Fley kg @) = Tk, ko en)e R
~
T_ is the Fourier transiorm ofthe pressure induced at (ﬁ,f) by the sysiem of

image sources alone, i,e. of
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Here the integration runs over the volume V_ occupied by the Image sourcos,
By two applications of the divergence theorem we can interchange x and

y derivatives to wrije the image pressure as

2 - X =y
] D Hii -l— — dy \
Z;T_\f : i‘f‘)'i ly, t . )\2‘."2 . (6.5)
Y

There are no difficultics here concerning the surface integrals arising from

use of the divergence theorem, We are considering the image sources in
isolation, so thot the surface integrals may be taken over any distant
control surfoce cnclosing the observation point and the sources, and may
be neglected on the usual assumptions,  INow the integral (6.5) is propor=
tional to the pressurc exerted on a rigid planc boundary, Xy = O, by the

same turbulent flow,  This pressurc field has becen examined by Ffowes

Williams (1965a). | we toke Fourier transforins (1,2,t) space, and follow

his method of manipulating the resulting expressions, we readily find that

~ ix Ny
T (k, ka,03)e 3 «c
=172 1 v
02 2.2 o.;z 2.2
o [(—T—k)si3+kij (—-7-k)653+ki]
~ GO o
T. (k]l or Ix?}) ‘az % X
o (—-2-" f )
B O
S 7
X exp 3 ~ix, (-%- K) 1 =y . (6.6)
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o
MNumerical factors have again been omitied, "ﬂ'ﬁ is the (1,2,1) iransform
of 'i'ii ¢ the Lighthill turbulence stress tensor,  The vector ki appeoaring in
(6.6) is the 3=vecior (k] ’kZ’O)‘
o N o
Now the function Tii is the fransforin of a typical incomprassible
turbulence function, aind is conceniratcd on wavcnumbers of order 1/ Lo’

and on frequencies of order V/Lo. Since the Nach number M is small,

we are therefore inierasied in the regime for which 3 << aok, and in

~ i’x3‘\|l'
this regime we have, from (6.4), T‘_(k1 ,kz,w}e o
@ ~kx,,
~ - e Y -
< Ak : , - k ! 4
Tiia -ﬁll 2’“, (:,)(ksis + k;)(ksis + 1 i)""k‘_— GHm ( 07)
o
~ iX W
The typical value of T e now follows quickly from this equation,

The exponential factor may be replaced by unity, for in the boundary layor
tho sources are concenirated on wavenumbers foss than about I/Lo, while
the sources are also concentrated in space in the region C < x., S L.
-z o
The ;3-infegraﬁon is dimensionally equivalent to multiplication by Lo,
n 3
while the transform 'ﬁ'li is proportional fo PVLQ' This follows if we

suppose, as usual, that the Lighthill stress fensor is dominated by contriluiions

from the fluctuating icynolds stresses, Tii ~ eVz. Then we have

o~ iX
Te BYN PVLi R (6.5)

which is exactly whai one would expect for the fransform of a typical ncar-

field pressure pVZ.
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To complete the determination of ?/(w), note that, since k.' >> ko
for the dominant wavenumber ]/Lo, the factors (k,‘ + ko)—] and dk.ﬂ in
(6.1) cancel, dimensionally.  Also, that it is sufficient for the Miach
number dependence fo write

(z+—2L ) o (ch+pl)ed,

2
L] k

QO ™

leaving aside the question of whether, generally, ¢ h >> pL, or not.
Vihen all these astimates are made, we readily find the following
dimensional forms for the total scattered acoustic power output E from the

discontinuity:

2
E ~ (Pv'sl_c?;) Ma (._._t‘._.é..o.-__)
&h + PL
o
for (A] > k., (6.9)

PLO Lo )2

E ~ (pngg)N\(
° &(eh + L)

for Al <«<k_ . (6.10)

Note that these arc three=dimensional results, tlic turbulence being supposed
confined to a limited region in the X direction, If the turbulence exiends
to infinity in the %o direction, the problem is cffectively two-dimensional,

and M3 and M in (6.9=6,1C) should be replaced by M2 and 1.
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Thus the power output varies as Vé if fluid loading is significant,
and as V4 if fluid loading is negligible, As noted in §I, these laws might
be deduced immediately from the Curle type of solution to Lighthill's
wave equation.,  We ust, however, emphasisc again that any such
procedure is dangerous unless all quantities occurring in the expression for the
radiated pressure have been expressed in terms of the Lighthill tensor Tii.
In this sense, Curle's equation is not a solution, and the whole object of
this paper has been to show how one should attempt to obtain the proper
solution,  The danger of making predictions from an incomplete solution
of the Curle type con be seen at once by subtracting (2.2) from (2.1).
The resulting equation contains no monopole terins, and superficial examination
would appear to give €~ \/6, and would entirely preclude the Vﬂ'r law,
Cn the other hand, from (2.1) aleme, the monopole terms appear always to
dominate at low enough MMach numbers, and to yield a V4 law, The
difficulties, of course, stem from the fact that in our problem the typical
surface dimension is much larger than the typical sound wavelengih, and for
such cases tho conv.ational interpretaiions of acoustic sources as monopolcs,
dipoles, etc,, are valueless, Curle's aim was to apply his solution to the
Aeolian tone problecim, and for that problem there are no such difficulties,

A more interesting interpretation of (6,9 = 6,1C) can be given in terms
of the radiation from a single infinite homogenecous plate, driven by a point
force Foexp(iwi'). Under the assumption that the bending wavenumber

kB = 4\/mc-)2/B is large compared with the acoustic wavenumber ko = w/ao
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(i.e. when the bending stiffness B is small, as we have assumed), it is
found (Cremer and Heckl, 1967, p.4%7) that the power radiated by the

plate is given by

2.2
E = ﬁ%{g_[l o pan! ""‘"J (6.11)

The first term represcits the radiation if fluid loading is negligible, the
second term represenis the correction duc to fluid loading,  Suppose that

pLo <KL 0" h for simplicity, and set

2., Ag” A V
Fo o~ (9\02)(”,,0)(-—&—:— ’ e ji:; 6.12)

Then from (6,11) we find the result (6,9) by expanding the tan-] function
for the case of appreciable fluid loading, Po, > med . Also, for the
case of negligible fluid loading, P, K med , we find the result (6.1{)
by neglecting the i-cm“'ﬂ function,  Thus in either case, we can interprei
the radiation scattered by the discontinuity as being that produced by a
homogeneous plate wiihi small bending stiffness, driven at the turbulence

frequency ¥/ L, by a force of strength

. . relative impedance
typical pressure typical area ump

o U I 2 Ixl Agfe )



7.  Conclusions

The object of ihis paper hos been to solve Lighthill's inhomogeneous
wave equation, given only the turbulence stress tensor Tii , subjeci to the
discontinuous boundary conditions appropriate to ¢ composite flexible
boundary,  The boundary considered consists of two homogeneous scmi=
infinite planes "y > 0, " < C, with different impedances.,  To attain
reasonable analytical simplicity, we have been forced in the end to neglect
bending stiffness of the planes, and to suppose the planes to be merely
mass-loaded,  Somc iportant aspects of the inieraction between flows
and surfaces are undoubtedly by-passed by this supposition, though there is
no reason to doubt its usefuiness in bringing ouf many essential points, /
gencral formulation is attempted, in which details of the source terms and
of the boundary condiiions are not necded ot the outset,  The method
yields a singular integral equation, with variable coefficients, for the
Fourier transform of the boundary velocity, /. great deal is known abour
such equations, and it is possible to write down an exact formal solution
for arbitrary source terws and for arbitrary forms of the impedances of the
two halves of the boundary, The solution is applied here to the problem
of noise generation by a turbulent boundary layer formed on the plane,
However, the method might also be used either fo gencralise previously
obtained results in difiraction theory, or to estimate the radiation from a
propellor, for examplc, rotating near the boundary. It would seem that
the practical uscfulness of such extensions is probably severely limited,

as the formulae become formidably complicated,
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The methad given here may evidently be applied to other probleis
involving dliscontinuous boundary conditions, anc! it seems to be more
straightforward than the usual formulation of such problems in ferms of @
Wiener=-Hopf integral equation,  Morcover, the Wiener-Hopf method is
difficult to apply to problems in which sources arc involved,  However,
the details of the solution lie mainly in the ® Fundamentcl function® for
the singular integral cquation, and to that cxtent our method is not
superior, for the cetermination of this function is just equivalent to obtalning
the factor decomposition required by the Wiener=Hopf technique,

The formal solution obtained in this work for the radiated pressurc -
involves a funetion :°, which is essentially tho Fourier transform of the
pressure in the boundary layer,  The supersonic speciral componenis of
F (i.e, those for which 3 > aok) are those which can propagaic to
infinity as sound in the dbsence of any boundary,  They forn the genvine
sound field of the turbulence,  The solution shows that these propagating
components are reflected, according to the obvious geometrical rulc, wiil:
appropriate reflexion coefficients, from one hall of the boundary or the
other, depending upon their angle of incidence upon the boundary,

In addition, a diffracied ficld, emanating fron: the discontinuity, is sof
up by the action of propagating components on the surface, Mone of
these effects can substanticlly increase the radiation from the turbulence,
Reflexion of propagating componcents can ot mosi increase the acoustic

power oufput by a factor of 4, while the difiraction implies only a
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directional redistribution of the turbulence-generated sound,  The
diffracted field gencrated by propagating components draws its energy, by
definition, from thosc componenis, and not directly from the turbulence,

The solution olso shows clearly, however, that the impedance
discontinuity acts as ¢ scaiterer, or wavenumber converter,  Non-
propagating near~ficld pressure components arc scatiered info supersonic
propagating componeinis,  This process can maka use of the large cnergy
content of the hydrodynamic near=field of the turbulence, and may
appreciably increose the acoustic power ouipui,  Vavenumber conversion
is the principal aspeci of turbulence dynaimics, of course, where it arises
through the nonlinear convectiive terms in the idavier-Stokes equation,
The sound generation problem, as formulated by Lighthill, is linear, but
interaction between [‘ourier components at different wavenumbers con still
occur through discontinuities in boundary conditions, Any such discon-
tinuities cleorly lead to convolution integrals in Fourier space, and so to
scattering,

The terminology used here is different from that which is usual in
acoustics (see, e,g. i'orse and Ingard, 1968),  Scattering usually refors
to the process occurring when sound (i.c, a propagating wave=field) is
incident upon a body with typical dimension small compared with o wave-
langth of the incoming sound.  DNiffraction theory is concerned with the
interaction of a propagating wave with a body whose typical dimension

is large compared with the sound wavelength, The term "diffraction™
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is retained here, irplying in addition on energy=conserving exchange
between incident and diffracted waves, On the other hand, it scems
preferable to use the ierm "scattering™ for the process whereby energy is
converted from a passive near=field stafe to o propagating wave=ficld statc,
A dimensional analysis for the case of small impedance discontinuity
shows that the scatfered acoustic power vuries as \/4‘ if fluid loading on
the boundary is small, and as V‘5 if fluid loading is appreciable,  The
first limit is relevant fo acrodynamic probleas, the second to underwater
applications, The conventional interpretation of these results as implying
monopole and dipole radiation is worthless. /A inore illuminating inter-
pretation foilows by comparing our resulis with well=known resulis for the
radiation from a single infinite homogencous plaie driven by an oscillatory
point force, Setting the force frequancy equal io the turbulence
frequency, and the force sirength equal to the product (typical prossure
pVZ) x (typical arec Lz) % (relative impedance jump AO' /07) in those
results, and malcing the appropriate simplifications for low and high fluid
loading, we obtain the V4'cmd \/6 lows, togeihor with the other relevant
factors,  Thus, apart from the reflexion and diffraction cffects noted

earlier, the discontinuity acts in the same way as does a force

(pVZLg A:) exp(iT_\g-) 7.1)

on a homogencous boundary,
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To obtain & rough idea of the importance of the scattered radiation,
compare equation (6,%), with g~h >> ?Lo for simplicity, with the familicr
Lighthill formule for the acoustic power ouipui of the flow in the absence
of scattering, The relevant formula, obtained by the usual dimensional

analysis, is
325 Yo
B VLN . . (7.2)

whore V* Li is the correlation volume, and V'Qis the volume occupicd
by the sources,  For the boundary layer case, we haveVQN LOS where

S is the arca of surface covered by the layer, since the typical turbulence
length scale Lo is of ihe order of the boundary layer thickness, Then we
sce that the scattering process generates as much sound as do the furbulence

quadrupoles in an arca

s = Lz(—‘e-t-’:)M“ .2)

of the layer, Ina %ypiccx! underwater situation we might have

=)

AC/o =5 x 10 s M=5x 10 Lo = 1 ft,, in which case the

('.'\.‘3

of S is equal to 100 sq.ft, Thus the scattering due to surface inhoimo-
gencities is a poweriul effect, and may well moke the dominant contribution

to many noise ficlds observed in practice,
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Fig.2 . Deformation of integration path for L.(5.2.)
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Abstract

Sound generation by turbulent two-phase flow is considered by
the\éethods of Lighthill's theory of aerodynamic ncise. An
inhomogeneous wave equation is derived, in which the effects of one
phase on the other are represented by monopole, dipole and quadrupole
distributions. The resulting power outputs are obtained for the case
of a distribution of small air bubbles in water. The monopole
radiation resulting from volumetric response of the bubbles to the
turbulent pressure field overwhelms that from the quadrupoles
equivalent to the turbulent flow, the increase in acoustic power output
being about TO dB for a volume concentration of 10%. The monopole.
radiation occurs through the forced response of the bubbles at the
turbulence frequency; resonant response is shown to be impossible when
the excitation is due to turbulence alone. Surface radiation arises
from the edge of a cloud of bubbles. This radiation is important when
the region containing bubbles is in the form of a sheet with thickness
smaller than the length scale of the turbulent motion. Dipole radiation
is also considered, and found to be negligible whenever monopole sources
are present. In the case of a dusty gas, only dipole and quadrupole
sources are present, and here it is shown that the dipole ra&iation is
equivalent to an increase in the usual quadrupole radiation. The increase
depends upon the mass concentration of dust, and is significant for mass

concentrations in excess of unity.



1+ Introduction

In this paper we consider the sound rsdiation from a finite region
of turbulent or unsteady flow, in which the fluid consists of a mixture
of two phases- For the most part attention is confined to the case of
a small volume concentration of z2ir bubbles in water, though the case of
a gas containing small dust particles is also examined briefly. IMfuch
work has been done in the past on the radiation from a single air bubble
in water (e.g. Strasberg, 1956) vhen various Torms of excitation are
responsible for the motion of the bubble: The bulk properties of a
distribution of bubbles in water have also been studied, in particular
the well-known drestic reduction of the sound speed caused by even &
very small concentration of bubbles, and the variation of the sound
speed with frequency- A review of these, and meny other effects is given
by Babtchelor (1967). Much less has been done on the excibtation of a
single bubble, or o distribution of bubbles, by 2 turbulent pressure
field. 'This problem is discussed here on the lines of the Lighthill
(1952) theory of serodynsmic sound generation.

A Lighthill inhomogeneous wave equabtion is first derived, in which
the action of the bubbles on the wrater. is represented by an equivalent
distribution of monopole and dipole sources, in addition to the quadrupcles
scoustically equivalen: to the fluctuating flow. When no boundaries
are present in the flov; the acoustic power output can be found in terms
of the source strengths by the usual formulae.. In order to estimate the
monopole source strength; the response of a single bubble in turbulent
flow is then considered using familiar equations. The pressure
spectrum of & turbulent flow is relatively broad, and there is the

possibility that large chenges in bubble volume mey arise from the small
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spectral intensity of the pressurxe at the high natural resonance

frequency of the bubble. This would be a difficult effect to estimate
reliably; for although it is possible to give an analytical form for the
pressure spectrum at high frequencies using the Kolmogorov theory

of the fine-scale structure of turbulence (Batchelor, 1953), the resonance
would be limited only by dissipative effects whose character is not

yet properly understood. In particular, the radistion damping of a
bubble at resonsnce vhen survounded by a distribubion of bubbles is difficult
to analyse, since the sound speed at high Tfrequency in the distribution

is complex, and varies with frequency- A detailed consideration of these
effects is, fortunately, not necessary here, for the possibility of
significant resonant response under excitabion by turbulence slone is
ruled out ( §5). The reason for this is that the length scale over which
the pressure field remains coherent at the resonsuce frequency is found
to be very smell cempared with the bubble radius. The phese of the
pregsure field then varies rapidly over the bubble surface, whereas
significant volume response requires the pressure to be substantially in
phase all over the surface-

Tor this reason, the extension given by Curle (1955) to the Lighthill
theory, teking account of the effeét of surfaces in the flow, is not
considered. The only way im vhich the presence of surfaces can alter
the inferences to be made about the effect of bubbles on the radiated
noige, is by introducing the possibility of coherent foreing, at the
resonance frequency, over length scales large compared with the bubble
radius- I the behaviour of the surface is controlled entirely by the
turbulent flow, this pessibility is sgain ruled out, since the length
scales of the forcing due to the surface would be of the order of those

in the turbulent flow itself. ~If, however, the motion of the surface



to

were controlled by some external means, we could have the possibility
of coherent forcing at the resonance frequency. This is exactly what
happens if, for example, the bubble is irradiated by a sound wave
generated by motion of a surface (Hunter, 1967). Even then, this dces
not necessarily mean that resonant response is significant, in view
of the high dissipation occurring in a distribution of bubbles at
the resonant frequency. If such cases, in which the control of the surface
behaviour by external means provides a length scale large compared with
the bubble radius, are excluded, we can entirely discount the resonant
response of the bubbles, and no further attention need be paid to the
effect of surfaces.

Certain effects of two-phase flow are obvious, and will receive no
more attention in this paper. These concern surface and volume sources
in an infinite region of bubbly fluid in which the sound speed <, is
significantly lower than the sound speed <, in pure water. According
to the usual ideas of aerodynamic noise theory, the intensities of
monopoles, dipole and quadrupole sources vary as c-l,c'aand c-s, vhere
¢ is the sound speed in the far-field of the sources. Therefore in this
case, the power output of these scurces will be increased by the factors
ca/cm, (ca/cm)3 and (ca/cm)5 respectively, over their values for emission
into pure water. However, in practice this case never arises, and one is
usually concerned with situations in which the bubbly liquid occupies
a region with typical dimension small compared with a sound wave length
in pure water. The theory is therefore set up in a form capable of
handling these cases where the fluid mixture is inhomogeneous on
scales smaller than a wavelength. In this way, changes in the turbulence-
generated ;ound are attributed to a distribution of acoustic sources,

whereas the increases noted above for the infinite bubbly region are



essentially connected with sound propagation over distances of many
wavelengths, The physical bases for the results in the two cases are
thus quite different.

In the formulation given here, monopcle sources of sound arise
from the forced response of the bubbles at the frequency characteristic
of the turbulence. They lead to an efficiency proportional to the
fifth power of Mach number, which is the variation usually ascribed
to quadrupole sources. In fact it 1s shown that the monopole intensity
is Just that of the usual Lighthill quadrupoles, but augmented by the

. . S
factor (cu/cm)q, which should be contrasted with the (ca/cm) factor

L.

referred to previously. ca/cm can easily exceed 10, so that the presence

of bubbles in a turbulent flow will very greatly increase the acoustic
power output. For the extreme case of a 10% concentration of bubbles

by volume the acoustic power may be increased by about TO dB.

Apart from effects arising from the variation of bubble volume, there

is the question of whether abrupt changes in the mean concentration can
produce appreciable sound. The sources corresponding to a discontinuous
rise in concentration are examined in §6, where it is shown that the
radiated field can be expressed in terms of a surface distribution over
the interface across which the concentration changes. The radiation
produced is shown to be equal to that produced by distributed sources in
a volume which has one typical dimension equal to the turbulence length
scale.

Dipole sources of sound arising from bubble response are also

considered. As expected, they are much less efficient than the monopoles

at the very low Mach numbers typical in underwater applications. The

case of a dusty gas is then dealt with, in which monopole radiation
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cannot occur, and in which the action of the dust particles on the gas
is represented entirely by a dipole distribution. Again it is shown that
the presence of dust is to augment the usual gquadrupole radiation. The
increase in power oubtput is less startling than that caused by bubbles,

but is appreciable when the mass concentration of dust exceeds unity.
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2o Lighthill equation for flow of air bubbles in water. '

We consider e finibte region in which unsteady or turbulent flow
occurs, and in which the fluid is a mixture of water (o - phase), and a
small concentration by volume of gas bubbles (8.~ phase):. The small
quentity B(x,t) is the fraction of unit volume of the mixture which is

B are the actual densities of the two phases,

occupied by the bubbles. ba, p
iises p¥ = (mass of o -phase) / (volume occupied by o - phase), The mess
of o - phase in unit volume of mixture is then (1 - B) p® , and the total
mass per wnit volume is (1.~ B) p® + BQB? 'Fer from the turbulent region
B = 0, and the fluid is entirely o - phase, at rest epart from small
velocities induced by the passage of sound waves from the turbulence.

We éhoose to formulate a Lighthill equation for the density p“,
This has the edvantage of displaying clearly the action of one phase on
the other in terms of acoustic sources with & simple physical
interpretation. In particular, monopole and dipole distributions appear,
representing the effects of mass and momentum injection into the o =-phase
resulbing from the motion in the B - phase. The same kinds of sources
eppear if we consider the density (1 - g) p% instead of just p% , but
their interpretation is not quite so simple, and they ere less easy to
calculate. 'The alternative is to regard the fluid as a mixture, with
density p = (1 = g) p% + Bpﬁg "In this case, a convenbional Lighthill
equation can be derived, involving quadrupole sources only. The
physical interpretation is then largely lost, and the task of relsbing
the quadrupole strength to the flow and phase parameters is difficult,
as 8o much is hidden, for example, in the term p =- cépv ‘

We are:assuming the concentration B, and the bubble radius a to be

so smaell that meaningful values can be abtached to the velocity and
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stress in the o« - phase at all poihts (x,t): Let uiu dencte the

velocity in the o - phase. Mass conservation for this phase is expressed

by

RN a ;' 3 o ..o _
5 (-8t g o0 0wt =,

vhich we write in the form

; : 8_ o, 9 o o .
(2.1) ST Pt R e us = :Qa
dJ
Here Q= - pa'(§-+ u.® ~2“9 m (1 - B)
at J ij

D
o o
-p 7 %o (1 - g)

is the effective rabte of mess injection density into phese a» If F.

denotes the interphase force density, the momentum equation for phase o

reads
9 o c 9 - o, o, G
RN o L - . .o =T,
5p (L= Blo wg” o (1 -8) e w7t w4 pys) = T
pij is the stress tensor, and is composed partly of stresses set up

by the eddy motion in the ¢ - phase, and partly of stresses set up
by the response of the B - phese to the fluctuating eddy pressures-
For the present there is no need to attempt to specify Fi further- Ve

rewrite the momentunm equation in the form

R ol L1 B) a% ¥y O -
(2.2) = D Uy e {{L-8)p u. u, Ppij} Gss

1l 0xX s i 3

. P 9 i, O O
= ? LI - . e
where Gi F. + Gy G, = o Bp u
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By cross-differentiation of (2.1) and (2.2) we get the required
Lighthill equation, provided we note that far from the turbulent

region this equation must reduce to the homogeneous wave equation

32

- ¢2 Vz)pa = 0,
a2 ¢

where c, is the sound speed in pure o - phase. This gives

e 2 o9 o 9Q: : aGi azrrij :
(2:3) (E= - el V8) o7 =-gro gy ’
3t 1
- - —_ 2 [+ 3 ¢ 2 [+1
6o = - . P s+ PR " .
in which ng (L ~-8)p uy u.;j le e p 61J4

The process of sound generation by the turbulent flow is accomplished
by three distinct mechenisms: Firstly, by a distribution of monopoles,
of strength Q, equal to the rate of mess injection into the o - phase.
Secondly, by a distribution of dipoles, of strength Gi‘ Gi is the
effective forece on the a - fluid, composed in part of the interphase force
F:;s and in part of the ternm Gi'.‘ The latter represents the momentum
defect arising from the fact. that a fraction B of the total volume is
not occupied by o — phase, Finally, we have a distribution of
quadrupoles of the Lighthill ﬁype, of strength Tij" As usual, Tij is
dominated by the Reynolds stress terms, since by the definition of e,
the fluctuations in p and cé o cancel, approximately. Viscous
contribubions to pij are negleéted here, just as usual. In general it
is quite adequate, for the order of magnitude arguments to be used
later, to approximate Tij by pg uia uj“, where the zero suffix implies

an average value.
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The Mach humber is typical underwater applications of flow noise
theory iy extremely small when based on ¢, (1072 at most), and the
usual arguments would therefore indicate that monopole sources
overvhelm the dipoles, while these in turn are very much more efficient
than the quadrupoles. However, in the present problem we have a great
renge of new parameters - for example, the radius and resonance
frequency of the bubbles, the strength of the interphase force, the
relaxabion time for response of the bubbles to the a - motion, and the
concentration 8 . The usual rank ordering of acoustic sources may
therefore only be valid for certain restricted ranges of the a.bovel
parameters. It is the object of subsequent sections to determine how
the efficiency of each type of source varies with these parameters, as
well as with the parameters (length and velocity scales) of the turbulent

motion.
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3. Volumentric¢ Response of a Bubble to a Fluetuating Pressure Field.

In this section, we consider the volumetric response of & single
bubble, immersed in infinite compressible fluid, vhen a fluctuating
pressure field is set up in the fluid. The pressure will be regarded as
uniform in space far from the bubble, though fluetusting in time. A
real pressure field, with finite length scale, will behave in this way
provided the bubble diameter is small compared with the length scale of
pressure veriation. Viscous forces and thermsl diffusion effects will be
neglected, with the consequence that radistion damping is the only
form of dissipation which limits the response of the bubble at its
resonance frequency. It will be seen in §5 that resonant response cannot
occur, and therefore that the validity of this assumption is only an
academic matter for our purposes.

The object is to determine the variation of bubble volume, and of
the pressure scattered by the bubble, with the imposed pressure variation.
The equations governing the response are well-knowvn (see, e.g. Strasberg,
1956), so that only a brief derivetion need be given here. In the
undisturbed state, the bubble has internal pressure ¢ end radius a, end
is surrounded by infinite fluid of density P, » Dressure P, and sound
speed c, 'A pressure fluctuation p(t) is then set up uniformly in space
at infinity, the bubble pressure is p,(t) end the radius R(t): T denotes
the surface tension, ps(r,t) is the pressure induced by bubble response.
Sphericel symmetry is assumed, as it is known (Strasberg, 1956) that
negligible acoustic power is contained in any mode of oscillation of the
bubble other than the symmetric expansion mode-

For the pressure drop across the bubble surface we have
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(3.2) =2Lip . p+p at r =.Rs
’ Py, TR s '
If adisbatic changes are assumed in the bubble,

(3*3) pb RgY = E;aaY s

There is evidence to suggest that in general changes are isothermal,
so that vy = 1 effectively. This is particularly likely to be true in
the circumsbances when the characteristic frequency of p is smell compared
with the bubble resonance frequency, in which case a slow forced motion
of the bubble occurs: At higher frequencies, however, changes are more
likely to be adisbatic, and for this reason y is retained.

The scattered pressure Py is a solution of the homogeneous wave

equation, vanishing at r = «, Thus

ps(r,t) ='Ei£~§~££9l' say, so that

3p
s 4 -}- :-L -lu
(3.4) i e (c - o+ r) Pg-

The gradient of Py at r = R is related to the bubble radius by the

linearised equation of fluid motion,

op 2
: - B = 93 ., 3R =
(3:5) or o Tt T Po 52 at r =R.

Write R = R = a, and linearise (3-1) - (3:5), supposing that |R'| << a-

Defining = resonance frequency @, by
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b ]
0 a2 a
we find
, s ':-LL::}.:L: . .
{3.7) [R* = = (Z5p +7) (po) s in which
2 .
2 - aw
L:‘.a',..... _-_-O.-L-[-wz -
542 ¢ ot )

We find also thet R' = - {p + p(ast)} 4

ap Wl
and this gives
3%p
s at2

From (3:7) we can nov find an equation for the fluctuating
concentration B , in the case when we have N bubbles, each of mean

; — ~ B o ypazy B o 3g R
radius a, in unit volume of fluid. For el L i) e Eﬁo ¥

in linearised form, where Bo is the time~average of B . This gives

3B
(3.9) o=-% Gfrd @)

In this equation, P, MEY still be taken as the density of the fluid
surrounding each bubble (i.e:, the o - fluid) rather than of the mixture,
for a smell mean concentration cennot significautly alter the density
when pB << pa . p must apparently now include not only the forcing
pressure set up at infinity, but also the resultant of all the scattered

pressures set up by the disbtribution of bubbles- Just how much p is
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modified by these scattered pressures. is an important point, which will
receive further sttention.,

It will be seen later that in general the bubbles may respond
significently around two very distinct frequencies, one the resonance
frequency Wy the other & frequency characteristic of the turbulent
notion. 'The terms involving ¢ in (3.9) will be found to be negligible
for the forced motion at the turbulence frequency whichever of C.s C
is used: 'The problem of which value of ¢ is relevent to (3-9) only
arises in the case of resonant response, which we shall see is impossible

wvhen the bubbles are excited by nearly incompressible turbulence.
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‘4. " The Sound Field from Forced Bubble Motion:

We assume for the moment that the pressure field p(t) generating
the bubble motion is that of a turbulent flow vhose inbernsal dynemies
may be regarded as nearly incompressible- ILet 20 denote a correlation
scale for the turbulent flow, U the nmean flow velocity and u, the
ir-m-s~ turbulent velocity. 'The dominant frequency of the pressure field,
meesured in a fixed freme, is then of order U/QB, and this is certainly an
upper limit for the typical frequency of the field p(t) experienced by
the bubbles- Bubbles are convected with a speed of order U, and the
frequencies observed following the mean flow are generally smaller than
those observed at a fixed point by a factor o = uo/U~ The dominant
frequency of p(t) may therefore be taken as of order uo/zoc Applications
of flow noise theory to underwater situations commonly involve values of
U of order 30 ft/sec, while aw_ is roughly 60 ft/sec in the case of air
bubbles in water at one atmosphere static pressure P- o =5 10*2’
is perheps typical, end also a << %, » Tor a bubble of radius comparable
with 2, could not withstand the high shear across it: It follows that
uo/za << w,, and ve have & situation in which there is strong forcing
but small response at the turbulence frequency, while at the much higher
frequency Wy the pressure field has relatively little spectral intensity,
but the bubbles have a strong intrinsic response. The response spectrum
for the bubble motion therefore has two distinct peaks, near uo/zb and
near o s corresponding to forced and resonant oscillatioms respectively-
If the resonance peak is sufficiently nerrow, we may take the two effects
separately, and add them in mean-square, a conclusion which can be

investigated in detall if a definite analyticel form for the pressure

spectrum is assumed-
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For the forced motion, we neglect 3%/3%2 compered with mOZJ
The terms involving c in (3:9) can both be neglected, for they are
smaller'thén thoée retained by a factor of order uaa/czos This factor
is extremely smell even with ¢ = Cpo the mixture sound speed, for e,
certainly never drops below the typical mean velocity U of order 30 ft/sec-
The terms involving c represent radiation damping, and ere importent only
in controlling the resonant response. We have then, simply
(k1) B = - 2o (&) -

(aw°)2 - Py

Before using this equation in the Lighthill equation (2.3), we rust
Tirst justify the assumption that the pressure field forcing any particular
bubble is dominated by the eddy motion pressure. Now the mean square
pressure scattered by a distribution of bubbles to any point in the
distribution is size-dependent, and in fact varies linearly with the
typical dimension L of the turbulent bubbly region. Thus, if L is large
enough the scattered pressures would appear to dominate the pressure field
experienced by any bubble. However, this dependence upon size L is

largely irrelevant to the problem of sound generation to distances larze

compared With3§5 'The pressure reaching a bubble from bubbles further avay

then a wavelength X , approximately, is a radiating sound field pressure,
and its action on the bubble is exactly that of ordinary sound waves on
the bubble- The bubble is essentially passive in its response, and
ebsorbs energy, if anything- Scattering of the incoming sound field
results, with a directional redistribution, and a decrease in the acoustic
energy flux. The waves scattered draw their energy from the primary
wvave, and energies in the acoustic mode cannot be increased by the

scattering. Compare Lighthill (1953), where the sound waves scattered
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by the interaction of a primery sound wave with turbulance draw their energy
from the primery wave, and not:from the turbulence: . e can thererore

reject the scattered pressures reaching a particular bubble, provided

they originate at distances greater than A from the bubble, Ihat bubble

can, however, scatter the near~field of any other bubble within reach
(Hunter, 1967), so that modifications to p from scettered pressures
originating at distances less then sbout a wavelength A must be considered-
Vhether these modificetions are significant or not is nowv independent

of the size L of the bubbly region.

This idee has important consequences for the Lighthill (1952, 1954)
theory of aerodynemic noise. A turbulent eddy radiates sound waves, with
a 1/y veriation of pressure and velocity at distances greater then a
vavelength. ' Consequently, the mean square acoustic pressure at any
point in the turbulent region increesses linearly with the scale L of the
region, at any rate until viscous effects limit the otherwise unbounded
inerease vhich would occur in the “compressible homogeneous turbulence"
limit L + @ (see Lighthill, 1955). Vhen L is large, but finite, one might
expect these acoustic quantities to provide & significant change in the
acoustic stress tensor Tij’ so thet the sound power output from the flow
might‘be increased. In view of the discussion sbove, we see thet the
apparent dependence of Tij upon L is irrelevant to the sound generation
problen. lNesr-field corrections to Tij mey be important, as an eddy
can scatter the near-field of its neighbours into sound - but these
corrections really should be discussed vhether or not L is very large
conpared with zo or A . The outcome of this argument appears to be that
the Lighthill thecry for low Mach number flows is adequate for the

description of sound emission from large voluues of turbulence (L >> A)

to just the same extent that it is adequate in the case A > L > 203
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Returring now to the question of two-phase flow, we celculate the
near~field correction t0 p by integrating the scattered pressure of a
single bubble over the distribution of bubbles occupying a sphere of

'radiug A gbout any point in the turbulent bubbly region. 'The wavelength
is that appropriate to propagation at frequency ﬁolzb and at speed C s
the low frequency sound speed in the mixture. This will be true when
L >> A, for then the time’L/ch for propagabion at speed ¢, across the
distence L is large compared with the time-scale R.O/uo of the source, and
therefore the source radiates effectively into an infinite medium with
speed ce 'On the other hand, if L < A, the integration of the scattered
pressures must run only over a sphere of radius L. The grestest
modification of the pressure field then corresponds to the case L >> ),
end then we have A >> £ >> a = for the minimum velue of c we shall be
concerned with is 100 ft/sec, corresponding to a concentration Bo = ZLO"1
(see Batchelor, 1967),; The integration procedure is therefore relevant
on two counts. In the first place, the near-field of radius A is large
enough for & continuous distribution of bubbles to be relevant, and in
the second, the near-field is so extensive that it contains meny eddy

volumes zg . This allows us to replace each eddy by & point source of
strength proportional to the eddy volume ng

The calculation is done at the end of this section, with the

result
<pc> [ <pt> v e (a-;) (-gw-:)

The brackets < > denote average values, all quantities being assumed
stationary random functions of time. With the typical values

B, =107}, ¢ =100 ft/sec, u /U =5 x 1072, U = 30 ft/sec, an = 60 ft/sec,
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which would seen to give the meximum value of <p§>',likely t0 occur in

any preactical situation, this gives

<p:>‘/ <p?> v 2 x 1077,
Therefore it is quite adequate, for the forced motion, to assume that
the pressure forcing any parbticular bubble is that generated by the
turbulent motion alone.
We now require an estimabe of the acoustic power cutput‘?m from the
region containing bubbles, whose volume is of order L3, arising from the
monopole term 2Q/3t in (2.3). The contribution from the forced mode

only is considered here. 'Pm is given by

1 b 2
. 29 31,3
B R &) Tt
where P = pg is the density in the very distant field. This expression

has been obtained from the usual retarded=-potential solubiom -

Ba3) (0% - p ) (x, %) = j B (gt - iy
o ° = o bme2 oy g6 “a [Eggﬂ .

on the understanding that differences in retarded-<time (of order 2O/ca)
corresponding to points separated by less than an eddy scale zo are
negligible compared with the time=-scale 2°/u6 of the source field in +the
forced mode. This is evidently well sabisfied, since the fluctuation
Mach nurber uo/c& is always exceedingly small. Ve can express this by
saying that the source field is"acoustically compact" as far as the
forced node is concerned.

Equation (4.2) is valid only if the turbulent region has typical
dimension at least of order L in all directions. It is useful to

write down also the power output P, obtained from (43) vhen the

A
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radiating volume has the form of & sheet of area I? (L 3 g.o) and

thickness A << 20, '

Q2 292 1.2
(ko) Py ™ LT p_ C < (B'b) >4 ¥ T
0o
Tor the moment, however, we consider only equation (4.2).

Since B is small compared with unity, we have from (L.1),

oD, D, 38, D
(4s5) Q,=~p5:b-zn(l—s)xpo-ﬁ.€g=-.(._a;_)_2_ﬁ.t_p’

as we are interested at present in the sound generated by fluctuations
in B , rather than that generated by variations in space of the mean
concentration Bé » As already discussed, p will be taken as the
fluctuation is the eddy motion pressure. The megnitude of p will be
estimated as the typical fluctuation in %po wy ices p o P, O U2, where
g = uo/U- is the relative turbulence level. The time differentiation |
D'a/D-b will be represented by the freguency multiplication u°/ oo This
is also the relevant estimate of the operation 3/3t, although
superficially one might expect 3/3t ~ U/R.o, We can see this in two
wayss If the derivative 3/3t is written as the sum of a total derivative
D/Dt and a convective derivative, the total derivative is equivalent to
the multiplicative operation uol.?.o, while the convective term can be
shown to represent an acoustic source of essentially lower efficiency.
Alternatively, transform to a frame of reference vhich is convected with
the mean flow. In this frame the operation 3/t is certainly egquivalent
to miltiplication by uolz'-o, while other changes resulting from the
transformation are negligible if the mean flow Mach number Ulca is

small. Either way, we see that only the true:turbulence frequencies
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contribute to the acoustic power output, and that for acoustic purposes
all time differentiations are equivalent to multiplication by uollo.
This point is emphasised by Lighthill (195k).

With these estimates, and with neglect of convective effects,

except insofar as they determine the relevant frequencies, we find that

9g 2 c 4
(py o 0% 1) (a)® (i) 3

(4.6) P

where M = U/ca. An efficiency can be conveniently defined by comparing
P with the rate of working of the fluctuating pressure P, O U? against

the mean flow U over an area LZ.

9g 2

0 I:COLQL
(L.7) N (oM)= (E;:) (E; .

The dependence of n, on M® is rather surprising, being characteristic of
quadrupole rather than monopole sources. It is less surprising if we
remember (§2) that it was noted that the whole problem could be tackled
using a quadrupole type of source only. The monopole Q is equivalent,
in part, to 3(p - ci p)/3t, a quadrupole time~derivative which would
occur in this alternative treatment, p and p now both referring to the
two-phase mixture. Evidently the two forms both yielé the same
dependence upon M.

We have already noted that changes of vyolume of the bubbles are

likely to take place at constant temperature when the frequency is

small compared with w, Thus vy = 1 effectively, and then by (3.6),

2 - AT
(a”o)‘ =3P+ =) /o, o
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Now when B is neither too small nor too close to unity, Batchelor's
(1967) expression for the isothermal sound speed c at low frequencies

can be written

" 2 - .l:E-
(4.8) 2= (P+y2) /8, 0, -

and therefore we have the following simple relation between sound speed

and resonance frequency,

(4.9) (aw )2 = 38, c2

(4.T) can then be written in the form
(1.10) n v (ans (' &) .
L <. 20
Except for the factor (ca/cm)“, this is exactly the radiation
efficiency of a typical turbulence guadrupole of strength Tij vp, o Uz,
Note that the operation 32/3t2 on Tij must be represented here by
multiplication by ug/lg . the reasons are exactly those referred to earlier.
Thus the effect of bubbles in the turbulence is to increase the acoustic
power output by the factor (ca/cm)”m This increase is extremely large; in
fact (cu/cm)“ is of order 10° even when B, is as small as 10"2, vhile for
the maximum concentration Bo = 10-? which can reasonably be encompassed
by the theory, (ca/cm)” is of order 107 . The acoustic power output of a
flow may therefore be increased by up to TO dB by the monopole radiation
of bubbles at the turbulence fregquency.
To close this section, note that the pressure 1 induced by the
monopole source 3Q/3t at any point in the turbulent bubbly region is

given by

dy
= Ea_ D
ps b v ot r
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where V is the turbulent volume, and the square brackets imply evaluation
at retarded-time, as in (4.3). When uo/cm << 1, and when the volume

V ~ L3 is large enough to contain many eddy volumes lg , this gives

(’4-11) <p:> N —-——1—— <(.g.%)2> 23 J QV_
16m2 ° Jy r2
1 (39y2, .3
Vs <5 2 L

Thus, as claimed earlier, the mean square scattered pressure increases
linearly with L. However, it was explained previously that if we wish
to consider the sound generation problem only, the volume integration
need run only over a sphere of radius A centred on the point considered.

Hence

1 3Q, 2
vz <GP el

and with the estimate of 3Q/9t made above, we quickly find the value

of <p§> quoted earlier in this section.
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'5: ' Resonant'Response ' of Bubbles

We have noted in the previous section that apprecizble monopole
radiation may result from the resonant response of bubbles to the small
spectral density of the pressure field at the frequency Wy This,
however, is & possibility which cammot occur vhen the epplied pressure
field p is that due to turbulent motion in a nearly incompressible
fluid. The essential reason is that the turbulent pressure field cannot
remain coherent in space, at the high frequency w s Over length scales
as large as a bubble radius .a. The sphericelly symmetric mode of oscillation
of the bubble, which is the only mode vhich can give rise to volume
change aud so to monopole radistion, cannot then occur, for it can be
created only when the pressure [ield has nearly the same phase at all
points on the bubble surface.

The effective length scale for the turbulent field at frequency g
can be found by the following srgument. The bubbles travel with a
transletional veloeity which must be compareble with the mean veloeity U-
Relative to the mean flow; the bubbles have fluctuating veloecities which
are certainly of the order of the turbulence velocity u, in the o =-phase:
The pressure fluctuations experienced by the bubbles will therefore
be similar to those observed at a point following the mean flow: Now
the high frequency content of a field of turbulence, relative to the mean
flow, occurs mainly ‘through the convection of an almost frozen pattern
of small spatial scales (i-e. small compared'with'zo) by the energy-
containing eddies with characteristic velocity ﬁo’ The length scele of
the pressure Tluctuations at frequency @, is therefore of the order of
the length scale vhich, when convected by the large eddies at speed

u, gives rise to the frequency Wy 'This gives'zf v uo/wb for the
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"eorrelation scale" at frequency w,. following the mean motion.
With the typiecal values U = 30 ft/sec, ay = 60 ft/sec, and

u fU=5 x 10"% we then have

'Q'r -2
~=n 2.5 x 10 a
a

L. is thus very much smaller than a, and the possibility of‘coherent
forcing of the bubble over its entire surface is ruled out.

It might be thought that resonant response could arise if the
pressure field contained an acoustic component at frequency Uyo
generated either by the turbulent eddies themselves or by their interaction
with a surface in the flow. '2r would then be of the order of a wavew
length Ao at frequency U and at the mixture sound speed c, at freguency
wo« 'The low-frequency value of c is 100 ft/sec when B, = 10~}
(Batchelor, 1967), and so Ao/a-w 10 in this case Coherent: forcing at
the resonance frequency may then be possible, but the possibility is
narginal, since the speed c, at frequency Wy is much less than that at
zero frequency. In any case, we can exclude the resonant response to
small acoustic fields from the sound generation problem by the argument
used in §4. The action of sound waves on the bubble results merely in
a scattering of acoustic energy, and no increase in energy output can
occur. This does not quite complete the argument, for near-field
scattering can occur, as we have seen. However, the scale.lo of the
near-field in this case is very small, indeed comparable with the
average separabion between bubbles, so that we can probably ignore this
effect - which if it occurs ab all, will depend critically on how neny
bubbles are in the near field at any instant-

Since e have now shown the resonant motion not to e significant,
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‘the problems of the relevant value of ¢ in (3-9), and whether the
neglect of viscous snd thermal dewping is valid, are of no interest
here- 'Resqnance, and the dissipation vhich limits it, are two
aspects of the problem which are irrelevant when incompressible

turbulence provides the excitabion-
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‘6. Badiation due to Inhomogeneities in Mean Concentration-

In the previous sections, we have considered the radistion which
arises when the concentration 8 fluctuates gbouts its meen value
because of the compressibility of the bubbles- Ve now ignore that
aspect of the problem and consider the radiation which may result from
repid spatial variation of the mean concentration. Situations
cormonly arise in which the bubbles form intense clouds, in which the
‘concentretion is high, surrounded by more or less clear fluid- It
ig obviously of intevest to see whether the unsteady convection and
distortion of these clouds can produce an apprecisble sound field-

The concentration cen be expressed as the sum of mean and
fluctuating parts, B = B + B'. The part of ‘the monopole source
strength involving B° has been dealt with in the last sections, and

here we consider the nonopole

L

(6-1) 29, Xp

G
ot B

é’u
)

=

0

We shall model the cloud-water interface as a surface of discontinuity in
B which is convected by the bubble velocity field uiB~ The interface is

taken as locally plane, so that we can write

(6.2) B = BOH(Yn - Yo) 3

where H denotes the Heaviside unit functhion Bo is the constent value of
the mean concentration within the cloud, Ty the coordinate normal to the
interface, yo(t) the‘yh - coordingbe of the interface at time t. e

have
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B = _ 3 B 3 y = _
ay (%)
o = P
and -t un :
D -y
e niven  o2T o= (w& _ o By 2B
This gives E g = (U-i u. ) W »

and then the monopole in (6.1) can be conveniently combined with that

part of the momentum defect dipole Gi' = o B uia/at which contains B,

to yield
¥
6,y 8% L ko A cp S B -, AU BEAL (W - By
ot N o ayi ot i o 3t oy i 1

The first term in (6.%) represents a dipole field arising from the
randon distortion of the interface by the motion of the bubbles- This
dipole term will be considerved further below. For the monopole term in
(6-4) we estimate the divergences of uiu. ui6 from the equation (2-1)

and from the analeogous equation

B B, 8.

u = O,

(650 ko y

3
—{-mmSp
Byi

expressing conservation of the mass of the B - phase. Neglecting small

A . . c
variations in p we have

. O . B
P owle, Miao_ 1l
5y, Dt *ay, EDE P oo

and the latter term dominates, since § << 1. Then
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2 (0% - u.B L8 g
B oy (g - u”) 3’sont"’
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vhere equation (4.1l) has been used to relate the fluctuating

concentration §' to the pressure p.- The monopole term in (6.4) then

hecones’
38 D
0 B B o
(6-6) - e =F D ) u S(yn yo)
o
. 360 3 DB

W‘ st oo P) By - v )
Q

The operations DB/Dﬁ and Da/Dt on the pressure p are equivalent, to the
degree of accuracy possible here- Comparing the second term of (6.6)
with the value of 9Q/dt obtained from (L:.5), we see that this term
involving the H-function represents the monopole sources distributed
throughout the interior of the cloud On the other hand, the sources
represented by the first term of (6.6) are confined to the interface
between the cloud and the clear fluid outside it. The interface is
equivalent to a distribution of surface sources, of strength

366 D

(awo)
38 o udU
VRN F N per unit area-
(amo)2 L

The resulting efficiency of these sources is found to be equal to that



86,

produced by the monopoles distributed in a sheet whose total area
is that of the interface and vhose thickness is just one eddy length
%

Thus an area S of the interface produces the same power output
as do the monopole gources distributed throughout a volume 20 S. The
surface effects are therefore extremely large when the typical
dimension of the bubbly region is comparable with 207 If the region
is in the form of a thin sheet of thickness A X %,» the surface sources
will dominete the radiation field. In that case, equation (4.2)
represents an overestimete of the volume induced sound, and equation (L .4)
should then be used.

The dipole term in (6.4) can also be expressed in terms of surface

end volume distributions. Taking the dominent surface source term, the

redisted density Tield can be shown 4o be given by

p..B Xa o
00 (l)

g

(6.8)  (o% - p ) (x,t) =
0! i e, 2

from which the radiation efficiency follows as
2
nSm:% o M3,
The ratio of this efficiency to that of the surface monopoles is of
awgo L
o

order =5 12 (3~

9 5

end this is slightly greater than unity vhen the typical values given
in §k are again used. Therefore this forn of radiation is also
important vhen the radiating volume is in the form of o sheet with
thickness less than gboutb 20’ ‘The dipole and monopole sound fields are

comperable in this case essentially because the dipole field exists
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indepéendently of the response of the bubbles, and would be produced
even if the bubbles were rigid and could not respond. On the other
hand, the nionopole surface séund field depends almost entirely on the
compliance of the bubbles, and the velocities induced by bubble
response are small compared with those in the turbulence which provide
the convection and distortion of the interface, and hence the dipole

surface sound.
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7. Dipole Sources of Sound.

The term Gi’ = 38 pauiu/at contains contributions other than those

arising from changes in mean concentration. We have, identically,

paua
S U T S TN
6" =T T% 3%t Top ot (I7Ble wi .

Assume that B is small compared with unity, and use the momentum equation
(2.2) to transform the last term above. Apart from the interphase force,

we have

1= A% O oo 9B _ 9 o o o
(T.1) 65" = 0" ug B+ Pis oypr " x. BP Wy Uy *oBpi.)
. J J
The last term in (T7.l) represents a quadrupole source, whose strength
certainly vanishes in the far-field where B = 0. It therefore represents a
basically less efficient source than do the other terms, and may be neglected.

: 2

From the estimates Da/Dt 0 uo/zo, 3/3xj " 1/20, Pij v p, 0 U® we see that
the remaining terms are of the same order of magnitude. We use these
estimates, with equation (4.1) to relate B to p, to obtain the dipole

efficiency "a due to volumetric response of the bubbles.

98o2 ca N L
S w7 fH_.
(7.2) g~ 2o M7 (%) (3)
o 0
= u? L™

where n_ is the monopole efficiency given in (4,10 ). The factor M?
ensures that this kind of radiation is negligible in all cases.

Neglect of the interphase force compared with the displaced momentum
is certainly valid for the case of alr bubbles in water, since the

bubbles have appreciable volume but negligible mass. If, however, the
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density of the B-phase is large compared with that of the a-phase, the
interphase force may be important. This happens in the case when the
a-phase is a gas, and the B-phase a distribution of rigid dust particles.
The volume concentration of dust particles is supposed negligible, though
the mass concentration may be appreciable. We obtain the case of a dusty
gas from our general equations by letting B8 » O, pB + o, gso that the
mass concentration Bpe/pa has a finite limit, f say. The terms 3Q/3t
and aGi'laxi now venish identically, and the influence of the dust particles
on the gas 1s contained entirely in the interphase force Fiu

Suppose that the dust particle number density is N, and that each
particle has mass m, so that fp* = Nm. Saffman (1962) wrote down the
equations of dusty gas flow, and assumed that the force density Fi was

given by a linear Stokes law,

. _ B o
(1.3) F, = KN(ui ~ )

°

uiB is the velocity of the B-phase at (g,t), and K is a constant

proportional to the viscosity of the a-phase and to the typical particle
dimension. This viscous drag force 1is very much larger than any forces

due to virtual inertia for the kinds of system envisaged by Saffman. We

do not need the specific form (7.3) here, though it is useful in that

it allows us to define a relaxation time for the dust particles as

T = m/K. In most practical cases t i1s small compared with the characteristic
time of the gas motion, and when this is so, the dust particles follow the
gas motion closely. The effect of the dust particles is then to increase

the effective density of the mixture from e% to (1 + £)p® without change

in the other varisbles. 1In particular, the sound speed < in the dusty

gas is given by
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(7.%) C§ = c;/(l +f),

where f, denotes an average value of f. This result is true, irrespective
of the validity of (7.3), provided only that a suitable relaxation time is
small compared with the time-scale of the gas motion.

Now the momentum and mass conservation eguations for the dust particles

may be written (Saffman, 1962),

9_

(7.5) 5% i Y. i Y

9_ .0 3 a B _
(7-6) at fp + axi fp U.i - Oe

Using these equations, the dipole and quadrupole sources in equation (2.3)

may be expressed as

oF aZTij 2 azwi,
° - + = - +-*-.""J*‘
(1.7) ox; " ax o, 8t2f° 8x ox °
in which
o o o o B B 2 O
c. B . .+ . .+ Dp.. -
Wl.J pous u..J fp u, u.J le cy P 613

To regard the terms in (7.T) as a monopole and a quadrupole, respectively,

would be an error. For the monopole term may be rewritten as

2 2
- L e
a2 at?
02 T

;

= e

2
JL_9tp o, L 0

c? 3t?2 2 32 c? at?
m o o
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since, by definition, £Z~= %5-(1 + f)pa.

C
m

(The low relaxation time limit has been assumed). Therefore the monopole
strength is 0(M2), rather than O(1), and this monopole is equivalent to an
isotropic 0(1) quadrupole.
We can now estimate the efficiency corresponding to the two terms
in (7.7), remembering that in the low relaxation time limit we have
a v B

u,tovou T, and that pa is increased to (1 + f)pa. This applies also to the

factor Py © U3 12 used to normslise the efficiency. We find that

(7.8.)  npnd= (o) £2 (1 + 1) (1,;-;) :

1 5 L
(7.9) n, vy (M) (1 +£) (9‘0) )
for the efficiencies corresponding to the first and second terms on the

right of (7.7), respectively. When f, <1, n, > ng, and then in virtue

f,
of (T.4),
C
(1.20) vk (@n® (B &),

m . o
The radiation efficiency is increased by the factor (ca/cm)2 by the
presence of the dust, and the radiated power is increased by the factor
(ca/cm)“ , exactly as in the case of a suspension of air bubbles in water.
However the increases are negligible, in practical terms, when fo < 1.

When fo > 1, we have

(1) sk an” (2 ),
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so that now the efficiency is increased by the sixth power of the sound
speed ratio, and the power output by the eighth power. If the typical
velocity U is the same for both a clean and 2 dusty gas, this increase in
power output is large - up to about 20 4B perhaps, for mass concentrations
£, of the order of 2 or 3 which are common in many industrial processes
where dusty gases are used to increase rates of heat transfer. In some
cases, however, this comparison is not relevant. For example, if the
mechanical power of the flow were the same for the clean and dusty gases,

as might be the case in a jet-type flow, then
3 = 3
(1 + fo) U us s

where U, Uo are the values of the same typical velocity with and without

the presence of dust, respectively. The increase in power output, according
7

to (7.11) would then only be of order fo/3, instead of fo“, but should

still provide an effect which is easily detectable in practice.
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:8, Conelusions-

The radiabtion properties of turbulent flow in water have been
showm to be greastly modified by the presence of a smell distribution
of air bubbles in the turbulence. In the model used here to describe
this process, the effects of the bubbles have been represented as
acoustically equivalent to volume distribution of monopoles and dipoles,
in addition to the quadrupoles equivalent to the fluctuating stresses
in the turbulence. HMonopole radiabion results from the low=-Trequency
Torced volumetric response of the bubbles to the turbulent pressure
field. "The effect of this radiation is in all cases equivalent to an
inerease in the quadrupole radiation (above its value in pure water)
by the factor (d&/ch)“,‘where c,» C, are the sound speeds in pure water
and in the bubbly region respectively. The acoustic power oubtput of
the flow is increased by 50 dB for a 1% air/water concentration, and by
- 70 dB for a 10% concentration. These nay be regarded as relevant figures
for meny practical situations.

Significant volumetric response of the bubbles at their high
natursl resonance frequency hes beenvshown to be impossible when the
excitatbtion is due to nearly incompressible turbulence alone. The
reason is that the length scale over which the pressure field remains
coherent at the resonance frequency is found to be very small compared
with the bubble radius- The exclusion of resonant response indicates
that the use of linear equations to represent the bubble respounse is
Justified-

Dipole radisblon arises through the displocement of fluid
monentum by the gas bubbles, and through the action of the force between

bubbles and fluid. The momentum displacenent effect is the dominant
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cause of dipole radiation, but the resulting efficiency is always
negligible compared with that of the monopoles.

Monopole and dipole radiation occur through the unsteady convection
of the interface petween the bubble/water mixture and the clear fluid
outside it. In this case the radiation is generated essentially by a
distribution of sources over the interface. The monopole and dipole
radiation efficiencies are comparable, and are important, compared with
the volume-generated sound, if the radiating volume is in the form of &
sheet with thickness equal to, or smaller than an eddy scale loo If the
thickness is equal to the eddy scale, which may be of the order of one
foot in practical situations, then surface and volume monopole power
outputs are equal, and either overwhelms the radiation which would occur
if no bubbles are present.

Finally, in the case of a suspension of dust particles in a gas, no
monopole sound can be produced. Dipole radiation occurs through the
action of the force exerted by the dust on the gas, and it is shown that
this form of radiation is equivalent to an amplification of the quadrupole
sound which occurs in a clean gas. When the mass concentration of dust
exceeds unity, this increase is large - up to about 20 dB perhaps, though
not nearly as large as that provided by the presence of bubbles. Moreover,
the presence of a large mass concentration of dust will substantially
reduce the flow speeds if the flow is governed by a source of constant pover.
In that case, the quadrupole sound is enhanced, in intensity, by the factor

7
/3 over its value in a clean gas under the same

(mass concentration fo)
nechanical power. This would still indicate that the use of dust particles
in many industrial processes will make a considerable contribution to the

noise level.



References

Batchelor, G.K»

Batchelor, G-K.

Curle, N.
Hunter, W.
Lighthill, M:J.
Lighthill, M-J%
Lighthill, M.J.

Lighthill, M.J-

Saffman, P:G-

Strasberg, M-

qs.

1953.' "The Theory of Homogeneous Turbulence', Cambridge
University Press.

1967 Proc~ 8th Symposium on Advanced Problems and
Methods in Fluid llechanics. ' Terda, Poland,
September, 1967.-

1955. Proc. Roy. Soc. A.231, Ll2,

1967 Ph. D- thesis, University of London.

1952, Proe. Roy- Soc: :A.211l, 566.

1953- Proc, Camb- Phil: Soc. 49, 531.

195k. Proc. Roy. Soc. .A.222, 1.

1955. Proc. I.A-U. Symposium No- 2. Carmbridge, EIngland,
1953. North Holland Publ. Co- Amsterdam.

1962. J. Fluid lMech» 13, 120

' 1956, J. Acoust. Soc: Amer. 28/1, 20



CHAPTER 4

PLATE VIBRATICN INDUCED BY UNSTEADY PRESSURE

FIELDS

96



97

PLATE VIBRATION INDUCED BY UNSTEADY PRESSURE

FIELDS

1. Introcluction

In this paper, o study is made of the vibration induced in an infiniic
thin plate when an unstzady pressure ficld acts over a finite region of the
plate, The use of a Creen's function is evidently required, and for
this purpose the well-known Creen's funciion (i.. and L, Cremer, 1945)
for the time-roduced plate cquation is first obtained by Fourier analysis,
The method given herc involves the usc of a radiation condition in a
certain manner, and aay easily be applicd to other problems (e,g., surface
gravity waves on waier) without the difficulties usually encountered when
an appeal fo fictitious damping forces is made, The complete Green's
function is then obtained by a frequency integration,  This function does
not seem to have been found before, although i has a very simple form,

A new representafion of mechanical dissipation in the plate is postulated,
to remove some unphysical characteristics of the Creen's function,  This
representation gives agreement with experimentolly determined dissipation

laws, and is more satisfactory = particularly in real space and time = than
the usual representation of dissipation through o complex elastic constant,

The excitation o the plate by o random, siatistically steady, prossure
ficld is considored in 52,  Calculations have been made in the past of tha

resulting vibration (e.q. Ffowes Williams and Lyon, 1963), but in the main



98

these have assumed the pressure field to be randomly, but uniformly,
distributed over the infinite area occupied by the plate,  The problem is
then singulor, in the sense that :nean=square vibration emplitudes are
limited only by small dissipative effects, or by non-=linear effects, and

may be unrealistic in the sense that the resuits are not relevant fo practical
cases unless the pressure acts over a very large area indeed. In the
problem considered here, statistical homogencity is not required, ncither is:
any form of damping, The steady state is achicved as a balance between
the power input from the pressure acting over « finite area, and the encroy
loss from thot area in the form of free flexural waves in the plate propagating
outward to infinity,

The general resulis obtained arc applied in 84 to the case when the
pressure field exciiing the plate is that of a turhulent boundary layer in
incompressible fluid, The form of the important vibration statistics can
be found from a knowledge of the form of the pressure spectrum function
near zero wavenumber and frequency, and for ihis knowledge gencral
theoretical results are available, A dependence of the power inpui info
the plate unon \/5 ai fow flow speeds V, and on V3 at high speeds is
found, These dimensional laws may bc regarded as analogous to the well-
known V8 and V3 lows for the acoustic powci output of turbulent flow
(Lighthill, 1952; ifowes Williams, 1963), In both problems, the efficioncy
of the wave~gencrating process becomes constant in the high-specd limit
(and this is also true if we consider gravity waves on deep water instead

of elastic waves in a plate),
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The dispersive nature of the waves in the plate makes it very difficuli
to decl adequately with the offects of conveciion of the pressure field,
A simple example illusirating convective cffects is, however, considered,

]

and this example clso provides a c:iemonstmﬁon of the use of the complete
Creen's function,  The interesting result is found that, when a point
force with stowly varying strength is convected across the plate at speed V,
encrgy is propagated away from the force af speed V in the direction of
propagation, and also at speed V radially ouiwerd from the force. Thus,
as judged from the encrgy propagation vector (which is all that is available),
the waves generated by the force travel ot most at double the convection
speced,  The paper ends with a discussion of this result in terms of plate
excitation by turbulent eddies,  The claim is made that, for such
excitation, the approccii to plate vibration through a normal mode represen~
tation is inappropriate, andthat it is preferable to regard o finite plate
as cffectively infinite and devoid of modal structure,  Any possibility of
reverberant build~up of a modal structure is precluded by the fact that the
phase of the turbuleni excitation at any point cannot remain even roughly
constant over the timc taken by the waves generated at that point fo cross

the plate and return again,
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2, The Green's functions for the plate motion equation

The differential equation describing the motion of a thin homogeneous

elastic plate has the well=known form (e.g. Cremer and Heckl, 1967),

m— +B87 )y = p. 2.1)

Here y is the plaie deflexion, p the total applied force per unit area,

m is the mass of the plate per unit area, and B is the bending stiffness,
We write A for the quantity VB/m, vhich has the dimensions of kinematic
diffusivity, and ko for the wavenumber m— of free flexural waves
of frequency w in the plate. The effects of mechanical damping in the
plate are neglected for the moment.  This will be seen to be permissible
in general unless the fluctuating pressure p on the plate is either highly
concentrated over a very small region, or is distributed randomly, but
uniformly, over a very large area,

The Green's function for (2,1) is essentially the solution of
2, .2 1.
(? + 2 gYy = — 55() , (2.2)
d

and we require a solution valid for an infinite plate, with no boundaries,
The solution of (2.2) is of ;:ourse not unique; solution by generalised
Fourier analysis gives a particular solution in the form of a singular integrel.
The integration path may be deformed in several ways, each giving a

different interpretation of the integral, and any two results differing only
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by a solution of the homogeneous equation.  We shall here render the
solution unique by the requirement that each eclement of y(x,t) in a Fourier
time=analysis of y shall represent entircly outgoing waves as l x I — o,
Each frequency component of y(x,t) then represents the physically realistic
solution of (2.1) when the applied pressure is that due to an oscillatory
point force,

P(Zg,f) o §(x) exp it ,

Define generalised Fourier transforms by

ylx, 1) = g?(_’f_,“) exp ilk.x +e1) dk d>
(2.3)
y(_)i,ir) = \f;’(ﬁ,w) exp it d
The k~integration is over all wavenumbers in the plane of the plate, and
the frequency integration is over (- @, + ), Write r = l>_¢' l

k =

k‘ ’ k = kr cos &, so that dk kdkd®, Also take @ > O,

and let ko be the positive root of kf = / ?\2. Then we have from

(2.2),

ikr cos ©
k™ - ko

. ® 3 (kr) 3 (k)
[e] (o]

2w |kr cos © dk 4@
where % R
4k

]
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The integrals involving Jo(kr) are given by Watson (1966, pp.435

and 434 respectively), as

® 3 (kr) .
S L2 {ﬂo(kor) - Yo(kor)} :
o)

where I_-!o is the Struve function, Ko the modified Bessel function of the
second kind,  The integrand in | has a pole on the range of integration,

and must be interpreted in a certain way, Firstly we write

fo o] +co o
J’ j dk d& = f f dk d& -~ f f dk d& ,
eY o & Y -0 & “~0

and then the last integral can be evaluated as above,  The first integral

2w itk r cos & +oo
. o iar cos © da
is equal to f e f e -a-de ’
o

=CO
+ao

. , i &
and the radiation condition referred to earlier requires that f ' €8 _‘%‘_

~c0
must equal zero when cos © > C, For otherwise, y(i,i') would contain
Fourier components of the form exp ‘i(kor cos © + @ t), representing inward
propagating waves when (3 , cos © > C,  We must therefore interpret

the integral as



103

+co

J eicr cos & a—dq:—i-bs = =2ui H{=cos 8) .
-c0

H denotes the Heaviside unit function, and the definitions and fransforms
of the generalised functions (a = iC)™ are given by Jones (1966),

I can then be evaluated using the result of Watson (1966, p.312),
w

S exp(~iz sin ©)d® = n {Jo(z) + i -Eo (z)} ’
o

noting that Eo(z) = -ﬁo(z) (Watson, »,337). This gives us finally,

2

3.~ _ . ni (2) _m
8 B ylx,») = -2—k;7— Ho (kor) -k:i Ko(kor)' (2.5)

in which ng) denotes the Hankel function of the second kind, The

corresponding result for W <o is

2
3.~ _ mi (1) . _;
8n BY(?_(_' (,o) = 4 ;!:7 Ho (kol') ';-Z'Ko(kor) ’ (2.6)
(o] (o]

where again ko is the positive root of kj = Oaz/}\z .
~
The function y(x,03) is itself the Green's function for the time-

reduced plate~equation,
4 ~
gt - wh Yo =1

This function has been found before (H., and L, Cremer, 1948), though

not by this kind of method,  The method given here is evidently applicable
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to other problems (e.g., gravity waves on deep water), and replaces the
difficulties which can arise in on appeal to fictitious domping forces by
an explicit appeal to a suitable radiation condition in frequency-space.
We note that the radiation condition is obviously satisfied by (2.5) and
(2.6) with the time factors exp(t i1t) respectively, the Ko function
vanishing exponentially for kor -~ o ,

For the compleie Creen's function, we have now to integrate (2.5) and
(2.6) over frequency (D . The quantities of physical interest are the
velocity v = 3y/dt, and q = sz; q is proportional to the bending
moment, Ve find that

ao

81136 v(zc_,i') = 2nA S {K Q-“-'.-—) +—Y (--—-;—)} sinw t dw
o

a0

+ ﬂ'g}\ S J (———I—) cos Lt ded ’

o
ond both of these integrals are tabuloted by FErdelyi et ol. (1954, pp.111

aond 53). We obtain

2
Vi) = ey sin (g5 (2.7)
and
1 r2
q(_’f_li') = - 4}1‘8" 305(4N.) . (2-8)

These Creen's functions do not seem to have been found before, As a
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check, consider the result of applying the pressure

pOc,t) = 8(x)e’Y/2n , with @ >0,

The velocity is given by

f 1 [5 - i‘-"
vix,t) = pr—y (i) sin P ) p(¥,t') dx'dt' ,
[}

x! t= -

and this can be shown to be equal to

/)
e Vx,0)

whereh\;(ic_,w) = iw‘;(zc_,u) and ';(ﬁ,w) is given In (2.5). Thus the
use of the Creen's function (2.7) leads us back to the steady-state
oscillatory motion given by (2.5).

In the next section, certain unphysical aspects of these solutions
will be discussed, and the modifications to them will be discussed when a

new form of mechanical dissipation is postulated,
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3. A new representation of mechanical damping

The Green's functions (2,7) and (2.8) are singular in the sense
that v > C as r —= o for fixed + > C, and v — © as t —= O+
for any r > G,  This unphysical behaviour must arise through r;eglect of
mechanical damping in the plate, and there are two ways in which this
domping is usually represented, EifEer one adds a term (8 ay/f)f to the
left hand side of (2.1), or one writes B in complex form, B = B(1 + iv‘; ),
where ’VL is the aticnuation rate.  The B dy/ot term is quite unrealistic,
giving an amplitude decay exp(~Bt/2) independent of frequency w .
Moreover, this term can only represent some kind of "air resistance®™ , and
it has no connection with the internal dissipation in the plate, The
unphysical behaviour of the Green's functions is not removed by this kind
of damping, for the behaviour arises from the presence of some Fourier
components in the dispersive system with very large phase velocity (the
point impu'se having a white specirum in k and in &), A physically
realistic form of dissipation must attenuate Fourier components more rapidly
with increasing frequency, and it is found experimentally that in fact the
amplitude of a free flexural wave of frequency O decays like exp(~ (Q'Lt/Z),
with ], @ constant.. (Alternatively, the amplitude of a cylindrical
wave of wavenumber ko decays with disfance like exp(-koer/aﬁ-)).

Agreement with these experimental results is obtained by writing
B(1 + ivl) for B (see Cremer and Heckl, 1967), The physical meaning

of this substitution is not clear, however, and difficulty arises in some
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problems, because the poles at €O = z N<2 are displaced from the real
axis in opposite directions by the damping. We are therefore led to
postulate the following modification of (2.1);

2
(m-s%_ - m»va -5?- sty = p @3.1)

This is equivalent to letting the diffusivity » become complex, The
attenuation factor m, is supposed small, so that 7"2 can be neglected
compared with unity., The damping force is proportional to the time raie
of change of bending moment, and the dissipation may be regarded as
occurring through a hysteresis loss in the bending process,

Instead of (2.5) we have now

T

S

an° B Ylx, @) = ;’-'-2— {Ko(r-/i;;?-— L) - K ([~H2+) |, G2
o]

for V>0, Asr-—> o we have the wave~like structure already

implied by (2,5), but with the multiplicative factor

koyLr
exp(- "T) r

while corresponding to (2.7) we have

2 2
Vi) = i expl- . Tk + ) (3.3)
This solution does not have any of the unphysical characteristics of (2.7),
and the proposed damping term certainly gives agreement with the known

experimental resulis,
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In the subsequent work we shall revert to using (2.7), noting that
any singular effects which may arise can easily be removed by the exponential

factors given above,
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4,  Steady=state plaie response induced by o random pressure ficld

We shall now consider the applied pressure field p(x,t) to be
stationary random function of the time t, so that the resulting plate vibration
is statistically steady in time., Homogeneity of the pressure in the space
variables is not required.  The object of this section is to set up general
relations between the statistics of the plate vibration and those of the
pressure ficld without further assumptions about the pressure,

The simplest way of dealing with the stationary case involves the use
of the time=reduced Green's function (2.5). The solution of (2.1) may be

written, with the aic of this Green's function, in the form

‘;(_’f_lw) = J\ Gy(i’il ,IJ) ﬂi;(_’_f_lrw)d_’_(_l ’ (‘4-”
!

where r = x' = x and

2,
C (:‘f,ifl SW) = -——2]—-2—- {" z 12 *Hiz)(kor) - -?—2- Ko(kor)} .
Y A mA 2k° ko

Equations in a corresponding notation hold for the transforms of v = oy/O¢

and q = sz. For kor >> 1 we have the asymptotic formulae

A / .
Gv(_)f_:}f_' ,O) ~ = -E[,fz;; exp l(% - kor) |
4.2

| ' ~ 2 T
Gq(_)_(_,_)_(_,w) "ﬁ'lﬁ" /—nk—o—r exp I(Z - kor)

for ®& > O, and with the obvious change of i to =i for W< O,
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Now let <,,..> denote on ensemble=average (or equivalently, «
time-average in this case) and * denote complex conjugate.  Vihen oll
the variables considered are stationary random functions of f, the various
Fourier coefficients are statistically orthogonal (see, e.g., Batchelor, 1953),

so that

<) Vx, 9> = B k@B w- @), (4.3

§ (x,63) is the (real) tronsform of the one~point velocity autocorrelation,

+®
<v(_>i,f)v(§,f +UP> = j eiwc § (>_<_', wdw , (4.4)
-0

and gives the speciral density of mean=square velocity.  Similarly, we
define sx(i'w) as the spectral density of <q2>. Also we write
~ ~
<P el 0> = T i w-al) D)

so that i‘)‘ is the time tronsform of the two=point pressure autocorrelaiion,

Q0

<p(5' '”P(Z(_" L +’c‘)> = f elut ?(ZEI '5" f@)dw . (4.6)
-0
We have then
~
Yoi) = [ et o) Pl

xl

from which it follows that
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i

= & ) CH ()G (¢ + 5, Pl x' +5,0s . (4.7)

s
Here the left hand side gives the contribution to § (x,¢2) from unit arco
at x'. Ve have written X" =x' +s5, x' =x+ r, and noted that ihe
Green's functions cepend only on the differences x' - x, x'"' = x.  The
dependence of 'ﬁ upon x' may be ignored for the present.,
Suppose now ihat r = li' - _‘ satisfics
() kor >> 1, il x lies in the far-field of the flexural waves generated

at x*,

(i) r > Lp, where ﬂ_.p is a correlation scale for variations in the applied
pressure,

Then we may approximate (4 7) by

- n‘B oF

where n = —L/r is a unit vector from x' to x, Now define a compleic
pressure spectrum funciion by
Pl Al +s, 14T = J‘ EERR plroixldk dea o (4.9)
Then from (4,6) we have
fkones 2
P +s,ads = 4 S (ks wix'),
s

and when this is subsiituted into (4.3) we have
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9 rr

5 B &) = g Sk 2ix) . (410

- o

The contribution to the mean-square velocity at x from unit area
at x' decays as ]/r, os is required for energy halance in the steady statc.
Also, the effective source strength ot x' for waves of frequency o
arriving at x is proportional to the pressure specirum at x', evaluated af

the free wovenumber = nko for flexural waves at frequency (> propagating

2
from x' to x,  For the spectrum of <q > we have, similarly,
d ]
e (_)3,0) = e S (~nk ,c3; x') 4.11)
5 L ek P T

This gives m § (5,03) = L:,x(i , @), indicoting, as expected, that there is
equipartition of cnergy at each frequency between the kinetic and elastic
modes of the plate, (3m§ (x,ta) and %Bx(zc_, e3) are the speciral densitics
of the kinetic and clastic energies per unit area, -;-m<v2> and %_D<q2> res=
pectively,)

Consider nexi the energy balance, Let S be an area of the plate,
bounded by the closed curve ‘£ , with unii outward normal 2r,  From
(2.1) we find the energy equation

5%— B! ' = j plx' v’ )dx! = §f(§_,i’).2(§)d£(5) (4.12)
S

where

™
it

%mv2 + -}:qu, the energy density,

=
It

BlvVq ~ qWVv), the energy flux vector,



Taking a meon voluz, we have in the steady state,

J pv> dx' = § <E>, p dd (4.3
]

MNow let .1'(5. L), S (3(_, ¢3) denote the frequency specira of <pv(5' »
and of <Fr(_)£)> respectively.  Here an origin is token at some point in
the region over which the pressure acis, x denotes a point very distant
from all points x' of that region, and Fr denofes the component of F
normal to the curve £ , which is taken to be a circle of large radius
R= ‘_)_(_‘ « Then from the definition of F, ond the expressions for v, ¢

in terms of the pressure field, we can calculate gxqrg(xr“:’) in much the

same way as above, subject to the two conditions on r = ] x' = _l . e
find
9 )
o Slw) = g £ 5 (nk e %)

and on integrating this expression round the circle { centred on the origin,

ond letting the radius R = hﬂ'x‘?ﬁ' - ﬁ' —= 0, we have

2y A
?a%)ﬁ Sl = -"gé‘- S (pri x') . (414)

A
Here Sp is the direciion=averoged specirum,
2n
® s | ' : 3
S (ress #) = 5 £ S, (k n(€),005x' 1 (4.15)
' o

@ representing the angle between x' = x and some fixed line as x varies
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round the circle (/ . MNow (£4.13) is equivalent to
11(5',&3)@35' = § S, orto

7l(§' ) = 52;—§ Tix, e L) ,

and therefore from (4.14) we have the following expression for the speciral

density of the rate of work of the pressure ficid,

1 "2}‘ A '
ML) = H Sk x) . (4.16)

This is an exact expression for the rate of working of the pressurc
field in terms of the pressure spectrum evaluated at the free flexural wave-
number, and averaged over all directions of the bending waves. A
similar result for the rate of working has been found by Ffowes Williams
ond Lyon (1963); in their derivation, however, the pressure ficld was
assumed to cover the whole infinite plate, and to be spatially homogencous,
In that case, dissipation in the plote has to be invoked if the bending
wave intensities are to remain finite, Here we how no need to consicler
mechanical damping, The rate of working of the pressure field is balanced,
for a finite region in the steady state, by the outflow of energy from thai
region in the form of propagating elastic waves,

The formulae developed here can be used to estimate the intensitics
and power input af any frequency if the pressure spectrum is known at that
frequency and at the free wavenumber ko. The integration over frequency
will be carried out in the next section, to obicin mean intensities induccd

when incompressible fluid in turbulent motion fiows over the plate,
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5.  Plate Vibration induced by a turbulent boundary=layer

In this section, we suppose the statistically steady pressure ficld o
be that of a turbulent boundary layer in the flow of incompressibie fluid
over the plate, /\ general theoretical result about the form of the pressure
spectrum of such a flow near zero frequency and wavenumber allows us to
determine the dependence of the vibration statistics upon the flow and plate
parameters in the limits of high ond low fluid velocity, As before, odge
effects are neglected, and dissipation in the plate is also assumed negligible,

As s usual in the theory of aerodynamic noise, the boundary=layer
flow will be supposed unmodified by the plaie vibration, at any rate in o
first approximation, The vibration is regarded as a small by=product of @
given flow, which here we take to be the boundary layer over an infiniic
rigid plate, It can then be shown (Kraichnan, 1956; Ffowes Williams,
1965) that the spectrum Sp of the surface pressure must approach zero like
k2 as the wavenumber k —> O,  Equivalently, the pressure field has zero
correlation area in incompressible flow, Hence, for small values of ‘i_\_\ R

we have
S(kear x') = Ak + 000, (6.)

where the Aii are deiermined by the distribution of velocity in the boundary
layer,  The frequency spectrum is,,in the main, a duplication of the wave-
number spectrum, so that one might expect that

SPN oaz as Wy —= O,
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This does not, however, occur, since Taylor's hypothesis of rigid convection
is only valid for frequencies 3 large compared with the mean shear,

For k finite and (3 —= C, the specirum does not generally vanish, bui
approaches a non=zero constant value, The zero of SP at k = G arises
entirely from the fact that the "source term® in the Poisson equation for
the pressure is a double space=derivative,

Let V, 8* denote the mean velocity and displacement thickness,
respectively, of the boundary-layer,  These are taken as (constant)
characteristic velocity and length saales for the flow, p is the constont
fluid density. We assume that the pressure p hes magnitude equal to
the typical fluctuation in —'2—;)22, e, P~V Pe_Vz, where &=vu/Vis
the ratio of r,m,s, turbulent velocity to mean velocity., We also assumc
that the characteristic frequency of the pressure field is of order V/&*,
These are the usual estimates of aerodynamic noise theory., Then we con

write the following general form for the real part of the pressure spectrum;

%SP(E,Q) = 92e2v3&*3(kiki6‘*2)/‘\ii(!ﬁ&*,—°9\-,§ : (5.2)

where Aii is a dimensionless function of the dimensionless frequency
W8 /V and wavenumber k&, In view of (5.1) and the subsequent

remarks, we have
1a8* . N 2 -
Aii(Q' T) % C’ r Aii(lj'g*' C’) % ‘L"'o

Substitute (5,2) into (4,10), and use the fact that
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+00
S (o6 = Sk, =) foget —- B (x, colded =
P= p - . &t -
- -0

5 ® \
1 2P &R j nn e, o)etde (5.2)

)

Here R = V&%) is a kind of Reynolds number based on the ®plate
diffusivity® A,  Two cases now arise, When R << 1, the integral in
(5.3) is approximately equal to

(e o]

S niniAii(C,O‘)O“%do" = f(n) say.
)

Hence, for R << 1 ,

5
.&_3:‘. V> = Time?@PE) Va7 (5.4)

Secondly, if R >> 1 we may put &R = q, and then the integral

in (5.3) transforms into
- ©
/2 3 q,3

o]

<o
-?79 1 1
nJ R/° [ ny Aii(-ﬂ 9, Olg’dq

o

P

-3
= R 72 gln) soy .

Therefore, for R >> 1 we have
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2 P> = Fome i Eny: . (5.5)

For the rate of working of the pressures, we write

A
S o) = pleViluerawe, 55, 6.9

in analogy with (5.2), and define «, by

Q0

a = g o AC,6)e ,
o
(5.7)
e o]
1
ﬁ = J G—A(G'E,O)da' .
o
Then we find
wv> = BV g« (5.5)
= IR He v ® > 1 (5.9)

The formulae derived above are analogous to the well-known resulis
in aerodynamic noise theory, for the acoustic intensity of a turbulent flow
in the low and high speed limits (Lighthill, 1952; Ffowcs Williams, 1953),
The limits R << 1, & >> 1 also have exactly the same interpretation as the
corresponding limits in the acoustic problem,  The turbulence and the
resulting plate vibration have the same typical frequency V/8%, 8* being
the characteristic length over which a turbulent eddy remains coherent.

The wavelength of the flexural motion corresponding to frequency V/&*

-t
is A\ ~ &R 2, and hence R << 1 implies /N >> ¥, In the limit
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R << 1, the turbulence scale & is small compored with a wavelength of
the flexural waves generated by the turbulence.,  The corresponding case
in acrodynamic noise theory is referred to as the "acoustically thin®
limit, and arises as a consequence of low Mach number,

An cfficiency can be defined for the vibration process by the relation

> .
= <pv )’ is a measure of the rate of energy loss from the flow
oV

into the plate as compared with the rate of advection of energy by the
mean flow, The officiency rises fairly slowly with the speed V( Y~ R”
as R —> ©O), and asymptotes to a constant value as R —> 0,  Two
factors may oreveni' this ultimate stote from being achieved,  Firstly, the
value of %G ( ) determines whether the energy loss into vibration can
appreciably modify the basic flow, The vibration can only be regarded

as a small by=produci of the flow if rﬂ €2( — ) <1 ., Secondly,
compressibility may hecome important in the case R >> 1 if then the iMach
number \//c:o is not small, If V/cxo is not small, compressibility will
certainly affect all scales of motion, and most of all will affect the speciral
components at iow wavenumber and finite frequency = for these have high
phase Mach number @O /uok. Ffowes Williams (1965) has shown how these
spectral components are modified by compressibility, He shows that the

kz decay of the pressure spectrum cannot continue to wavenumbers lower
than about M/8*, where M = V/ao. In the wavenumber range (O, M/3*)

the pressure spectrum is approximately constant and non-zero,  Without

more precise details, however, it is not pessible to apply these ideas in
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a religble way to the problem of plaie vibration, though we should note
that in underwater applications the limit R << 1 applies almost always, and
that the compressibility effects should be quite negligible., For the
quantities m, D arc related to the plate thickness h, plate density Py

and the speed C, of longitudinal waves in the plate by the formulae
] 2 3
moo= ppn, B = ppCL h“/12 , (5.1)

(Cremer and Heckl, 1987).  Typical values of the various parameters for

steel plates used in underwater situations are

& = 3 ecm, h=1an, Pp = ggm/cms, vV = 1C mce/fsec.,

and then we have R ~ 2 x 10-2, M~7 x 10-3. The speciral

density of the pressure field in the range (O, M/G*) is proportional to M2,
and since also this range is extremely small, the compressibility effects on
fow wavenumbers are likely to be quite insignificant,

The fact that the efficiency becomes constant as V —= @ is interesting,
for this behaviour is also found in the acoustic problem (Ffowes Williars,
1963).  In that problem, source convection cffects play an imporitant role,
and it is possible that similar effects may not have been adequaiely covered
in the above work, This is a difficult problem to deal with here, since
the system is dispersive, and any convection speed is " supersonic® relative
to some spectral components,  Eddy *Mach waves® are emitted at any
frequency provided the convection speed exceeds the free flexural wave

speed for that frequency.  The difficulty lies in the problem of freating
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simultaneously these Mach waves, which depend only on supersonic
convection, and the waves generated by subsonic speciral components,
which depend on the time variation of the source field,  Such problems
do not arisz in the acoustic problem, where all components of the source
field are convected in the same way relative to the wave speed.  Source
convection will not bhe considered further in connection with the bounckiry
layer, though we way note again that this effect is probably negligible

in underwater applications,  There the dominant components of the source
field are well ®subsonic®, the condition R << 1 being equivalent to the
statement that the convection speed V is small compared with the phase

speed of flexural waves of frequency V/6*.
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6, Waves induced by a convected prassure field

The following simple example is chosen to illustrate some effecis
due to convection of the pressure field, and also to demonstrate the use of
the complete Creen's function,  Fourier time~analysis, and the use of
the time=reduced (‘reen's function may also give the result, but it scems
preferable to use the more direct method given below.

Consider the mofion generated by the application of a point force,
of constant unif strength, convected at uniforin speed (V,C) through the

origin of time t = o, The pressure ficld is then
p(_)_z_,r) = S(x.I - Vf)&(x?) R

ond the velocity at (x,t), in a fixed frame of reference, is given by

- ot
i 1 Bz . as
— & N 1:.3
vizet) = =T I plx" /" Joe'cl

: g‘m“’t"gw?l

Q 2
1 1 .
= T j = AT far- D
t’=0

Here (1} =%y - Vv, \l 5 = x2) are the coordinates of X relative to the
current position of iho force, Vie cvaluate the integral by the method

of stationary phasc,  The point of siationary phase occurs at

't= /V , where (1]"12) —_— (r,B) ,

1
and the mathod is valid for (W/Vr)? << 1, (This follows from a consicer=

ation of the second and third derivatives of the phase at T’ = r/V),
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We find that

1 . Vr T
VA —————sin | 53 (1 +cos &) + ’ 6.2)
e\ { 2 % ]

and similarly that

q ~ --—i—-_j_—-cos [-;{%(1 + cos &) '-E-] . (6.3)
AR(nAV/r)* N

The effect of a time=varying strength po(i') is merely to multiply (6.2)
and (6,3) by the factor po(f-r/V), and these formulae may then be used
to give the far-ficld of an arbitrary convected pressure distribution in
(x,1).

The woaves have crests defined by the lines of constant phase,

ro VL.‘ =8 say B>C), or

M5 = -280), - 2 (6.4

For varying B e (O,m) this equation represents o family of confocal
parabolas, with focus at the position of the force,  The situation here
is evidently very cifferent from that which occurs when a point force is
uniformly convected over deep wata, The surface grovity waves thus

produced have the characteristic two~fomily ship wave form, and are

confined to a wake bhehind the force (Lamb, 1962, p.434).
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The energy relationships have an interesting form for the bending wave
case, Consider ¢ fixed reference frame, with origin instantancously
. . . ore AN .
coincident with the position of the force, and let r , x be unii veciors
in the radial and convection directions, respeciively.  The energy flux

vecior

F = 0B(vVg = qW@v)

is easily found to be given by

[Ty (o (6.5)
and the energy density

E = z',;mvz + %qu by

S -32—'“7“%\—\,—; (6.6)

Thus the energy~propagation vector ¢, giving the rate at which encrgy of

unit densiiy is propagoted, is given by

c = FE = V(r+%) (6.7)

This is a surprising result, and again is quite different fron the
behaviour found in the gravity-wave case, The rate of energy propagation
ai large distances depends only upon the convection speed V, and not on
the parameters m,D of the plate, In the problem with a constant

strength force onc might expect a dependence of ¢ upon V, and also on
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the dimensionless ratio Vr/A, but evidently the latter dependence disappears
for (Vr/)\)% >> 1, Also, if the strength of the force is po(f), (6.7) is
unchanged, and ¢ does not depend on the typical frequency of the force,
provided this is low cnough for P, to be regarded as slowly varying com-
pared with the trigonometric term in (4,1),

The result (6,7) wmeans that if one were to wake a normal mode analysis
of the vibration induced In a finite plate, it would be difficult to say,
a priori, which sef of modes would be preferrcd above the others indepen=
dently of the dotails of the excitation, For any particular mode to bo
preferred, revorberant aaplification must occur,  This requires that the phase
of the excitation change only slowly in the time taken by a flexural wave
to cross the plate ot lcost several times, Here, however, the waves
containing most of the energy travel only af a speed comparable with the
convection speed of the excitation, If one con suitably model a turbulent
pressure field aos a disiribution of convected pressure points (*eddies®), it
follows that by the time the group of waves gencrated by an eddy have
crossed the plate once, the eddy will have been replaced by a succession
of eddies with random relative phases.  Reverberont amplification cannof
then occur,  The number of modes required to describe the vibration will
then depend very much upon the details of the excitation, about which
little is known in a form suitable for modal anclysis, Equation (6.7)
points to the relevance of the infinite plate equations for plates of finite
size, The plate is coffectively infinite for most of the time spent by a

turbulent eddy over tac plate,
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CHAPTER 5

THE SCALE EFFECT IN COMPRESSIBLE TURBULINCE
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THE SCALE EFFECT IN COMPRESSIBLE TURBULENCE

1.  Introduction
The density fluctuations in a fluid in turbulent motion are governed

by Lighthill's (1952) well=-known wave equation

2
2 0T
9" 22 _ i
(Tai_ OO V )ID __3.‘ ai (].I)

o is the density, a the sound speed in the fluid at rest, and

Tii = pv;vi + pii - adzpﬁii is Lighthili's acoustic stress tensor, \f being
the fluid velocity and Pi; the compressive siress tensor,  This equation is
usually used to predict the density fluctuations occurring far from the
turbulent region, where Tii = C, and where the fluctuations propagate as
sound waves with speed a. The equation is, however, formally exact,
ond we shall use it in this paper to estimaie the fluctuations occurring in
the turbulent fluid due to the passage through the fluid of turbulence=-
generated sound waves,

Lighthill's equation shows that we can calculate the density fluctuations
by replacing the actual turbulent fluid with a perfect acoustic medium at
rest, acted upon by a volume distribution of stresses Tii. For this to be
a meaningful way of visualising the generation of sound by turbulence,

Tii must be regarced as a forcing stress, essentially independent of the sound

field it generates, At sufficiently low Plach numbers this requirement is

generally satisfied, for we can approximate Tii by Pouiui , where Po is
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the mean density and U, is the solenoidal velocity in the vorticity mode of
the turbulence.  (The resolution of low iMach number flows info voriicity,
sound and enfropy inodes is duc to Kovasztay (1953), and Chu and
Kovaszoay (1958)),  Using this approximation, Proudman (1952) was able to
caleulate the acoustic power output of isotropic turbulence.  The power
output of unit volume of stationary isotropic turbulence is evidently indecpendent
of time, and of the position of the volume element considered, This leads
to the paradox first noted by Lighthill (1955), that the density fluctuations
oceurring in an infinite expanse of stationary isotropic turbulence are infinite
in mean square, even at very low Mach number,

The singularity in these fluctuations will become apparent later when
a modified form of (1,1) is considered.  In physical terms it arises from the
fact that stationary isotropic turbulent flow generates sound in the same way,
statistically, as & uniform volume distribution of acoustic sources whose
strangths are statistically stationary in time, (This is true provided ihe
sources are correlated over a region small compared with the region occupied
by the sources.) The intensity thus produced at the centre of a spherical
shell of thickness dr is proportional to (l/rz)ém'zdr; hence, on integration,
the intensity of sound due to a large volume of turbulence diverges in
proportion to the linear scale R of the voluie,

Essentially the same effect occurs when we try to caleulate the intensity
at a fixed distance from a large plane sheet composed of o uniform random

distribution of statistically statfonary sources, As the problem is two-dimensional
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the intensity this time diverges like In R, where R is the radius of the sheet,
This was noted by Saffman (1962).

The infinite singularity is known as the *scale effect”, and is a far-
field, rather than o near~field singularity, MNow as Lighthill (1955) has
shown, the singularity is removed once diffusive effects are taken into account,
These cause the intensity produced at distance r from a source to die off like
exp(~ar), and so ensure a finite intensity from an infinite volume, If unit
volume of the (isoiropic) turbulence has power output E, then the intensity

produced at the centre of a sphere of turbulent fluid of radius R is given

a —
o 2 5(1 - &Ry (1.2)

m
]

,07 denotes the mean square of the density fluctuation, Letting R —= oo,

and using Proudman®s (1952) estimate

E = 4Opou:/a°5!.o , (1.3)

we have the following infinite=scale viscous limit to density fluctuations,

2,2 _ 40 .8
p./po -EEM (1.4)

here M = u/uo, u, is the r.m.s. velocity in the vorticity mode of the
turbulence and Lo is the integral scale of the uv-Field. (1.4) is the

equation given by Lighthill (1955),
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It is partly the purpose of this note, however, to emphasise that (1,4)
is unlikely to give a correct prediction = even in order of magnitude - of
the density fluctuaiions under ordinary circumstances in which a turbwlent
motion con be regarded as approximately homogeneous and stationary,  if the
fluid is strictly incompressible, and occupies a limited region which is large
enough for the assuinption of homogeneity to be valid, then well within the
turbulent region all mean square quontities are accurately given by a theory
which assumes the furbulent region to be infinite in all directions, [inite
compressibility, however, permits each element of fluid to act as a source
of acoustic energy, and any result which is derived for an infinite medium
is found to grossly overestimate the density or pressure fluctuations which
occur in a finite region,

Thus, when aR << 1 the appropriate form of (1.2) will be

Z o~ 8 R
ool = 4o n ) 0

instead of (1.4). This is the inviscid small=scale limit, in which the

intensity varies directly as the scale length R,

The damping factor a varies with frequency.  Assuming the Stokes

Kirchhoff formula for a we have (Lighthill, 1956),
a = pota’ (1.6)

for a wave of frequency @ . P is the ®diffusivity of sound® which,

.

o
with an approximate adiabatic exponent y = % and Prandtl number% is
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related to the mean kinematic viscosity ¥ by § = 2v. A "typical®
frequency im both the acoustic and vorticity modes of the turbulence is

u / Lo (see 83), so that equations (1.4) and (1,5) may now be written

ol =20 M ke, (R >, .7
o

ol = oMy, WG <D, 0.8
o 0]

Re is the turbulence Reynolds number, Re = uvL c‘/V' s M=u \/ao
is the turbulence iMach number, The coefficients should be of the correct
order of magnitude, but no more, The implications of these equations for
practical sttuations will be discussed in 84, We shall see there that, even
at very low values of M, the pressure fluctuations generated in the acoustic
mode will be extremely large if the region of furbulence considered is large

enough for (1.7) to be relevant,

2. The Damped Wave Equation

We propose now to obtain the resuli (1,7) directly, without using
Proudman's equation (1.3), by extracting an explicit diffusive term from the

acoustic stress tensor Tii' The equation we shall use is

2

2 W,
o 2 2 2 9 _ if
(—Tat -a V" - gV ¥y o = a"iaxi ' 2.1

@ Lighthill equotion with a damping term included in the wave operator,

As before, B is thediffusivity of sound, and
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w, = 1. -85, . ‘ @.1)

The operator on the left of (2.1) is the well~known wave operator in a viscous
heat~conducting fluid, (e.g. Kovaszaay (1953)), while on the right we have
Lighthill's stress tensor with a linearised approximation to diffusive effects
removed, It is not difficult to check, from the momentum and energy
equations, that the right side of (2,1) is independent of viscous and thermal
diffusion effects, in a first approximation, We suggest that (2.1) represants

a realistic model for calculating the infensity in homogeneous turbulence,

The essentiol point of the equation is that B is some combination of the
diffusivities, and the term szap/ar accounts, supposedly, for all irreversible
effects,

It may now be realistic to prescribe W.',E, the part of Tii remaining
when viscous effects are explicitly removed, as a stationary random function
of x . Stationarity in t will also be required. The field can be
supposed stationary if a random stationary driving force Fi per unit mass is
added in the momenfum equation, The equation (2,1) remains unaliered by
this chonge provided div F = C,  In addition to this constraint, Fi will
be taken as statistically isotropic.

We can solve cquation (2.1) formally by the methods of Datchelor

(1953).  Define Fourier-Stieltjes transforms by

P(’_‘_r") = j‘exP i(_’i-f + W ")dP(EI W),
(2.2)

Wi;(i'*) = j exp ik.x + & f)dRﬁ(ig, w).
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Here p, Wii denote the fluctuations in these quantities about their meon

values, The Sticltjes differentials are statistically orthogonal, so thaf,

(=3« PO
dP*(_'ﬁ;r u')dP(_l_(_,c.a) = O if Efl‘_‘ or (;,;75&1‘ 'y,
but
dPre, w)dPl, 0 ) = Pk, w ddkde
(2,3)
dRii(-lf-' (XY )dR|m(|_<_, w) = vijlm(-lf-' w )dkdes
Thus @ (k, @) and Viilm(&-’ &3 ) are spectral densities,
j§(l_<_,m Jdkdea
(2.4)

\A\'
(—WL) o= Jkikiklkmviilm(ii' ) )d'lf_dw .
The function § (k, ©>) is entirely real, though viilm(-'f-' & ) will in
general be complex, However, since V:ilmqi' w) = Vlmii(-lf-’u ), the
contracted form k.k.klk V.im is purely real,

From the differential equation (2,1) we have

kel Vi (kp 03)

I"m
§ (k,(A ) = ' l r (2'5)
- («':lfk2 - 3 ) + kaI;GZ
in which k = l.lf.’ « When the turbulence is isotropic we can write

ki ) = KWk, e ),
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with V an even function of k and of ) (Robertson, (1940)), We then

have

- +wo @ 6
PZ _ des %ﬂkZV(k . gz)dk - 2.6
(k™ =~ @) + ﬁz ke
~C0 o "o

Incompressible flow results are obtained from (2.6) by putting p = afp '
ond letting p — O, af — o so that aozp has a finite limit, This

gives
- 40 s o]
o = S des ‘( Ak, e Yk , @2.7)

which is the equation which one would obtain by applying Fourier transforms
to the Poisson equation
azu.u°
Vo = o
|
for the pressure in ineompressibble flow. Batchelor (1951) and Kraichnan
(1956) have discussed the pressure fluctuations in incompressible isotropic
turbulence using the Poisson equation,  Their results are similar and will
be used later,
The incompressible flow fluctuations arise essentially from the fact that
the spectrum V is concentrated, for a particular frequency 3 , around
wave-numbers of order @/uv. For these wave=numbers, aikz > W 2;

the term involving B in (2.6) may also be neglected, and we obtain (2.7).
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There is, however, the possibility of near-resonance arising when vk, )
has significant values for particular values of k, @ satisfying = dok.
Fluctuations generaied by spectral componenis of the forcing field wif with

W= aok correspond to motions of an acoustic kind., To obfain.these
acoustic fluctuations we consider the integral in (2,.68) over the narrow
resonance peak near k = w/co. Take V(k, @) as constant at the value
V( f')/uo, @ ), perform the integration over the resonance band and then
let 8 —= O, This gives the following result for density fluctuations

limited only by the small diffusive constant R,

- 2 @
o = A SV, o )dw . (2.9)
R o
o o]

This formula holds provided all frequencies 3 making a significont
contribution to the acoustic spectrum satisfy §w /Cl°2 K1, We can also
perform the integration of (2.6) over frequency first.  Supposing this time

that @k/a << 1 for all relevant wave-numbers we find

- 2 @®
Pz = _1_12_2_ S\ k2V(k ,uok)dk. (2,9)
Bog

As expected, (2.2) and (2,9) are symmetrical in k,6d ; either is obiained
from the other by putting 3 = aok ; a substitution which shows that the
requirements @w/coz «1, (Sk/ao << 1 are equivalent, Equation (2,8)
will be analysed dimensionally in 84, and will be shown to be consistent
with the result expressed in (1.7), obtained by Lighthill (1955) on the basis

of Proudman's worl<,
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3. Typical Frequencies and Wave=numbers

We want here to decide what are the typical frequencies and wave=
numbers in the acoustic and vorticity modes of the turbulence, so as to make
on estimate of the integrols in (2.8) or (2,9)s The suffix s denotes «
quantity representative of the irrotational acoustic mode, the suffix v o
quantity representafive of the solenoidal vorticity mode,

At suficiently low Mach numbers, the tﬁrbulence can be regarded as
incompressible fromn the point of view of the sound generation process,

a can then play no part in determining frequencies in the vorticity mode.
The only frequency which can be defined in the spectral range which contains
most of the energy of the turbulence is W =u ‘/ Lo' The characteristic
wave=number for the vorticity mode is kv =7 &o .

Consider now Fig,1, which shows a possible contour of maximum source
power spectral density, The turbulence is not convected relative to a main-
streom flow, V(k, ¢a) is even in k and in 3 , and so the contour is
symmetrical about both axes. Now the only contribution to the ocoustic integrals
in 2.8 or 2,9 comes from points on the sonic line W= ook, and at
sufficiently low Mach number, the source power along the sonic line OT
must be approximately equal to that along the zero wave=number line 0s,
Frequencies which can contribute to the acoustic integrals lie in C&, while
the only wave-numbers which can contribute are those in the range OR., Wave-
numbers beyond R (i.e. those for which k > M/Lo) are unable to contribute

to the acoustic integrals, because the frequencies to which they correspond
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via the sonic line are ouiside the frequency range which carries most of the
source power. A given wave~number can only contribute if the frequency
to which it is acoustically matched is less than the typical frequency

wv - Ui/ l'4.')‘ _

Since OT = OS as M —=> O, this means that the frequency
characteristic of the acoustic mode is W =W, =u / Lo’ while the
characteristic wave=number is ks =,W Lo = Mkv. The t)"';')?cul wavelength
is then 2\5 =L O/M >> Lo' so that the situation we have heré may be termed
"c:codstically thin® .  Turbulence scales are very much smaller than o wave-
length of the sound produced by the turbulence, The dcouéﬁ"cally thin
situation is a necessary consequence of the assumption of low iMach number,

We have then the following characteristic quaontities:

U

ws = @, T;" 3 kv T.;" ks M/Lo.

Toking B = 2¥ again, the approximation B“/C'f <L 1 of the last section
will be justified if

2M2Re) ! << 1,
This is certainly well satisfied in all relevant situations, and is consistent

with common experience that sound waves of moderate frequency are not

significantly damped over a distance of a few wavelengths,
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4, Dimensional Analysis

The function viilm is the spectral density of the mean square

fluctuation in Wif ’

WW = fvmm(k,w)d_lida . @.1)

We suppose that we can approximate Wii by the fluctuation in p@uiui ’
where u. is the velocity in the vorticity mode, The left side of (4.1)

then has the value

We can also suppose that the one-point distribution of the v, is Gaussian,
This should give a correct order of magnitude estimate,  The above mean

value is then equal to

4
pzuh(& 8,
o v il

5)

m im j

when the turbulence is isofropic.
From this and (4,1) we can express a typical value \}i?gm of me in terms
of U, r Py Lo:

v

2 4 _ yle) (=3 v
pc:uv(gilsim * 8imsil) - vii!m L% _L:' * @.2)

The typical value of V(k, w ) is then given by

Vo) o 22,314, (4.2)
[« 3 "4
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If we now substitute this value in (2,8) or (2.9) ond perform the
integrations over ¢> ,k using the characteristic values c.os,ks given in §3,

we find, on writing § = 2% as before, that

pz/ pf = 4OM5Re . (4.4)

The functional form of this equation is identical with that of (1.7),
while the coefficiegts are of the same order of magnitude.  Lighthill's
equation (1.4), based on Proudman's estimate of the power output of isotropic
turbulence, is thus confirmed by the method given here,

At low fMach numbers, the mean square acoustic pressure and velocity

fluctuations are given by

3 4

pf = ofpz = pfuv (4OMRe), and (4.5)
2 _ 2232

p. = pau , or

s o O S

uf = u3(40i\/‘\3Re) ) (4.6)

To these we may add (cf, Lighthill, 1955) the values of pv2 and 03 involved
in maintaining the local incompressible eddy turbulence (the vorticity mode).
The pressure fluctuations in incompressible flow have been calculated by

Batchelor (1951) and Kraichnan (1956), with the result

92 = Apzu4 P (4.7)

v oV

where A = 0,34 (Batchelor), or A = 1 (Kraichnar),  Addition of the two

(uncorrelated) contributions gives
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P = pfuf(A + 40MRe) (4.8)

for the total pressure fluctuations, and

o = o1 + somCre)
for total velocity fluctuations,
We can regard these formulae os giving the first two terms in an expansion
of mean square quantities in terms of Mach number,

The dabove results are relevant to the case of infinite scale R,
Analogous results for the inviscid limit aR << 1 also follow direcily from
(1.8).  The two sets are compared below. For consistency, Lighthill’s
equation (1,7) has been used, rather than (4,4). Provided R >> Lo’ the
result (4.7) is independent of Ry acoustic pressures depend upon R, since

they fall off only os . whereas the vorticity~mode pressure field falls off

-3
as r .
Infinite Scale Finite Scale
Viscous Limit Inviscid Limit aR << 1
pz = Pq u (/\ + 20MRe) pz =P, u (A + 4OM4 'T.E-
o]
q = uf(i + 20MRe) ¢ = ol 21 + aom® L
o]
2_ 2,...5 2 _ 2,8 R
n" = po(2UM Re) p- = p°(4OM T

(]
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The effect of compressibility with increasing Mach number will
evidentiy show in the value of the pressure before it becomes noticeable in
any other quantity, o the case of infinite scale, the acoustic pressure
will greatly exceed thai in the vorticity mode even at very low Mach
numbers,  For exanple, if we use the figures given by Batchelor (1953,
p.124), viz, u, = 0.5 mef.sec-], Lo = 1CC met. os typical in atmospheric

turbulence, then we have in the case of infinite scale

2 52 4 2
ps ~ 10 pc>uv >> Pv

4

though p'z./pf ~ 10_6, so that there would still be no tendency towards
cavitation,

However, although the atmosphere seems to provide the largest volume
of turbulence for which any reliable figures are available, its scale length,
of the order of 5 kin perhaps, certainly satisfies the condition aR << 1 for

the inviscid limit, The corresponding value of p? is then only of order
i 0-79 ZU 4.

ov

There are thus two observations to be made from this example,  Firstly,
while the pressure fluctuation in the vorticity mode are correctly predicted,
in order of magnitude, for a finite region by the infinite scale model, those
in the acoustic mode are not, unless the region concerned is very large
indeed, For example, the atmosphere would have to have a scale length

of order 1016 metres for the viscous limit to apply., Secondly, the acoustic

pressure fluctuations are not likely to be appreciable in the case of low
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Mach number furbulence unless the turbulence occupies a region with scale

vastly greater than any that can be found in o terrestrial example,

5. The Two=Dimensional Singularity

We now consider the intensity at a fixed distance z above the centre
of a circular sheet of radius R.  The sheet is composed of acoustic sources
whose strengths Q per unit area are stationary random functions of space
and time, Vorking this time in terms of the induced pressure fl uctuation

p we have

exp(--gz:) dy . - (5.1)

o Q(th = r/ao)
P = Zx r

r being the distance from the element of area dy to the point considered,
A damping factor has been included, with the some value of a as that used

previously,  Then

p§ _ QRly,t = /a )Ry, t-r'/a ) .
(@) " (5.2)

exp[— % (r+r¢ )] dydy' .
If the sources are correlated over an area $* which is small compared with
the area of the sheet, and if retarded~time differences for poins separafed
by less than a correlation length Js* are small compared with the time=
scale for variations in the source strength, (5.2) can be reduced to the

approximate resulf
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©
I
B

2

= 2
2 _ Qs® f exp(~ar) dy
r
(5.3)

a2

on

[ei(az) - ei(ar)] ’

@ v
where ei(x) = —- du .
X

For the inviscid limit, we let a —=» o, keeping r finite, and obtagin

- ] 2
2 _ Qs R
" e 0+ ) 5.9

since ei(x) v = In x as x —> o,  Thus p2 —= o like In R as R —= o,
On the other hand, for the viscous limit we let r, R —= o to obtain

5 2

of = S eifem) (5.5)

The divergence of the mean square pressure, as given by (5.4), is
extremely slow, so that there is little possibility of finding any realistic
example in which the pressure fluctuations become so large that they are
limited only by viscous effects.,  Nonetheless, these results show that it is
not possible, for example, to represent finite scale situations by models
involving infinite spatial distributions of source if we want a realistic estimate
of the sound produced.

The same ideas apply to the steady state wave motion produced in a

thin plate, or on the surface of deep water, by a homogeneous stationary

pressure field applied over the surface of the plate or the water,  Steady
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state energy conservation requires a % fall-off of mean square velocities,
deflexions, etc., where r is distance in the surface from any source position,
This yr decay then implies that the mean square velocity of any point on

the surface increases with the logarithm of the typical length R over which

the surface pressure acts, The response in the strict homogeneous limit

R —> o must be limited by some kind of dissipation, or by nonlinear
offects.  The steady~state solution, bounded by some mechanism, is, however,
not relevant to problems in which only a finite region is directly excifed by

externally applied pressures.

6.  Conclusions

The pressure fluctuations in a compressible fluid in stationary isotropic
turbulent motion depend critically on the size of the turbulent volume,
Finite compressibility permits each element to act as a source of acoustic
energy, and in virtue of the assumptions of stationarity and homogeneity the
distribution of these sources is statistically uniform in space and time. The
inverse square law of acoustics = which applies if diffusive effects are neglected -
then implies that the infensity at any point diverges in proportion to the
linear scale of the region, If viscous damping is included, the simple
argument of §1 shows how the pressure fluctuations in an infinite medium are
bounded by dissipative effects, and also define a scale length below which
the effect of viscosity can reasonably be ignored.  The same result is obfained
if Lighthill's wave equation is modified by the inclusion of a damping factor,

and then solved formally as in 852 and 4.
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The results for finite and infinite scale are very different, and the
model of an infinite expanse of compressible fluid in homogeneous turbulent
motion will not give results which are relevent to real flows in a volume
satisfying the condition aR << 1 for the inviscid limit, In contrast, results
derived for an infinite expanse of strictly incompressible fluid may be applied
to the motion of a finite volume of fluid, provided only that the length R
is large compared with the scale Lo of the turbulent motion,

All easily conceived turbulent motions at low Mach number which are
approximately homogeneous and stationary seem to satisfy the condition for
the inviscid limit = except perhaps those on astrophysical scales - unless the
dissipation assumed here has been vestly underestimated,  For example, one
might think it more realistic to use an eddy diffusivity ;3e in (2.1) instead
of the molecular diffusivity B, although such an idea could not leave the right
hand side of the Lighthill equation with its usual form, If this were done,
and ﬂe were so large that the effective Reynolds number were reduced fo
order one, we should then find that the infinite scale acoustic pressures were
somewhat smaller than the eddy motion pressures.  However, egen though
the scale R required to achieve the viscous limit would be much reduced in
the case Re~ 1, R would still be very much greater than any length occurring
in terrestrial problems. The viscous limit scems therefore never to be
relevant, except perhaps in astrophysical problems, even when an eddy

diffusivity is used to explain the action of the small scale turbulence on the
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large scale sound waves it produces ((ierv 1073 is assumed here as an
exaggerated upper limit on ﬁe for atmospheric turbulence).

We conclude that the acoustic pressures occurring in turbulent motion
do depend upon the scale R of the turbulent volume in the manner given by
(1.8), provided M is small and R is typical of terrestrial motions, The
acoustic pressures seem to be always negligible compared with those involved

in maintaining the eddy turbulence,
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Fig.l. FEATURES OF SOURCE SPECTRUM AT LOW MACH NUMBER
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