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ABSTRACT  

The problem of inventory control in a stores complex consisting of 

a central store supplying a number of sub-stores upon which demands are 

made has received comparatively little attention in the literature. 

This thesis looks into the problems of control from an overall 

point of view and proposes heuristic rules drawing from the experience 

of an author in this field. These rules are tested and refined on 

simple yet fairly representative models of a real-life complex and com-

parison of performance under the proposed control rules is made with the 

control proposed by J.A. Cran, who recently has developed ideas which 

he has shown to improve considerably on traditional methods. 

It is shown that the rules proposed here are not only likely to 

lead to lower costs than the Cran control but are flexible enough to 

respond well to sudden changes in demand at any sub-store. The advantage 

of an anlytical procedure to obtain the instant the complex should order 

further stock benefits over the Cran control in which reorder level for 

the complex does not respond to change in demand rate at any sub-store. 
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This chapter discusses where the central store/sub-store complex is 

encountered in business and the types of policy decisions which have to 

be made in controlling it. 

1.1 Introduction to the Central_Store/Sub-store System  

The stores system or complex under consideration consists of a central 

store and a number of sub-stores, the, latter being dependent on their 

supply from the former, and where demands on the sub-stores are stochastic. 

The situation is depicted in the diagram below. 

There are many real situations in business where such a complex 

occurs. 	For example, the 'central store' may be a warehouse at a con-

venient location supplying a very large number of stores retailing to the 

public. 	In this case, the retail stores are the 'sub-stores' of the 

complex. Alternatively, the 'central store' may be a warehouse attached 

to the factory's production unit supplying to district warehouses (the 

'sub-stores') over the country, on which requisitions from retailers are 

made. It should be noted here that if these retailers are part of the 

same company operating the central store and the district warehouses, 

then the problem becomes more complicated in that the demands on the sub-

stores from the retailers are not completely random, since control can, 

and is, exercised over them. 	However, the complex depicted in the dia-

gram still has application in this case because the retailing store may 

be considered as the 'sub-store' and the district warehouse as the 

'central store'. 
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1.2 Introduction to the Problems of Control  

The basic control problem is to match supply and demand at the sub-

stores in the most economical way. An excess of supply over demand is 

costly because of the inventory investment, and an excess of demand over 

supply is costly either because of the loss of a sale or (where backorders 

are backlogged) because of the extra cost incurred in fulfilling back-

orders. In order to circumvent the problem, stock is usually held at 

some or all nodes of the complex, i.e., at the sub-stores and/or the cen-

tral store. 

Some of the basic problems will be introduced here so the reader can 

gain some insight into the overall difficulties. 

When stock ordered for the system arrives at the central store, a 

decision has to be made as to whether or not it should be immediately 

distributed out to the sub-stores, and if so, whether all or only a frac-

tion of it should be distributed. Also the allocation decision for each 

sub-store has to be made. 	In searching for a solution to this problem, 

it will be seen that a distribution to the sub-stores of all the avail-

able stock in the central store will be unwise since in the event of a 

new order for the system not being available at the sub-stores for a 

long period, a sub-store low in stock will be in either of two situations 

(i) 	It must suffer a stock-out; 

or (ii) It can receive a redistribution from some other sub-store. 

Generally either of these alternatives are excessively costly, and it 

pays to retain stock in the central store to be available for replenish-

ing needy sub-stores. It may be seen that the problem can in many 

instances be overcome by keeping a high level of average stock in the 

complex (i.e. by following on one stock order by another in less time 

than otherwise) so that sub-stores are replenished when their stocks 

are generally fairly high, but not only is this likely to be costly in 

terms of holding inventory costs, if the variance of sub-store de-

mand is high, shortages may still occur. 

When deciding on the quantity to be issued to a sub-store due to 

be replenished, it is clear that this issue quantity must relate to the 

inventory positions of all the other stores in the complex. Clearly 

when there is liberal stock in the complex, the sensible procedure is 

to try to aim that the quantity allocated will suffice the sub-store 

until stock from the next system delivery can get to this sub-store. 

In this way we attempt to minimise the overall cost of deliveries. 

On the other hand, when an issue is triggered by the sub-store reaching 
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a reorder level whilst the complex is low in stock (the latter point may 

be made more specific by relating it to those instances when a stock 

order for the complex is outstanding) the more important problem now is 

to try to ensure that the issue is not so high that shortages result in 

the other sub-stores. Thus a policy of 'rationing' should exist at 

such times. The problem may be seen to resolve into balancing the ex-

pected shortages of all sub-stores and the costs of replenishment. 

Further, it is clear that sub-store reorder levels should decrease as 

the time that the order for the complex is due to arrive gets nearer. 

The reason for this is that it may well be cheaper to wait for a large 

delivery rather than trigger a small one. 

The order for the system should itself be triggered by some function 

which encompasses the inventory position of the whole complex. Central 

store stock may be seen not to be a sensible trigger; it is costly in 

inventory holding to trigger an order when central store stock is low 

when sub-stores have plenty of stock 	The total inventory existing in 

the complex is better but not really satisfactory as a trigger because 

this would make a system with uneven distributions of stock over the 

sub-stores appear falsely safe. 

The variables which will be determined by the control method are as 

follows:- 

(i) number of replenishments to sub-stores 

(ii) number of shortages and time of shortages at sub-stores 

(iii)-  number of stock orders for the complex 

(iv) inventory holding costs related to the average level of 

inventory maintained in the complex. 
p4mumeters 

The ualvieJaaes which essentially define the problem are: 

(i) lead time for replenishments to sub-stores 

(ii) lead time for the stock order to the complex 

(iii) number of sub-stores 

(iv) nature of demand at each sub-store 

(v) cost of stock holding 

(vi) penalties for shortages 

(vii) cost of item itself 

(viii) cost of replenishing sub-stores 

The controlling decisions, of which some may be established heuris- 

tically, are as follows: 

when to trigger the order for the complex 

(ii) quantity of stock ordered for the complex 
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(iii) amounts delivered to sub-stores 

(iv) when to replenish sub-stores. 

1.3 Chapter Summary and Introduction to Chapter Two  

It is hoped that the reader will have some idea of the problems 

this thesis attempts to solve. 	In the relevant literature on this subject 

two distinct approaches are made. The first, the dynamic programming 

approach, considered by Clark '8'10  and his colleagues, is presented in 

Chapter Two. 



CHAPTER TWO , 

REVIEW OF THE LITERATURE PERTINENT TO 

THE CENTRAL STORE/SUB-STORE PROBLEM:- 

CASE OF 

THE DYNAMIC PROGRAMMING APPROACH 

10 
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2.1 The Work of Clark and Scarf 

2.1.1 Summary of work  

This work develops a dynamic programming model to produce decision rules 

for a stores complex consisting of a central store, a factory for supply of 

a procurement, a repair facility, and a number of sub-stores. 

Demands occur at the sub-stores and are assumed stochastic and inde-

pendent from sub-store to sub-store and from one period to another. De-

mands can be time dependent and distributions may be different between sub- 

stores. 	Stock review takes place at discrete instances in time, and lead - 

times for replenishment and pTocurement and repair lead tithe are all taken 

to be fixed integers times the interval between stock reviews. 

Costs of stockholding for any period are taken as proportional to the 

end-of-period stock at the particular sub-store but the unit cost may differ 

between sub-stores. 	Shortages cost a fixed amount times the total number 

of shortages experienced, and the cost of any shipment in stock is con-

sidered proportional to the quantity shipped. There is a restriction on 

movement of stock - only downwards in the stores hierarchy (not from sub- 

store to sub-store). 	Clark only considers costs up to a finite time 

horizon. 

The technique of solution is to set up a sequence of one-dimensional 

dynamic programming equations. In these the expected discounted future 

cost for period n for an echelon K is a function of the total stock of 

echelon K and depends on the function for period (n+1), echelon K and the 

function for period n, echelon (K-1). This representation of costs is 

admitted to be approximate.though it is claimed to produce good results. 

2.1.2 Introduction  

In 1958, A.J. Clark published his report8  in which a dynamic program-

ming model was proposed for the solution of the control problems of the 

complex depicted below. 

44: 
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The arguments employed by Clark in establishing his model were heuris- 

tic, and no claim of optimality was made. 	In 1959, Clar}c and Scarf to-

gether showed9 that Clark's model was optimal for the case of an un-

branching series of stores, and that it was probably good for the central 

store/sub-store problem. Later still, in 1961, Clark and 'Scarf went en 

to show10 how one of their more restrictive assumptions could be relaxed. 

2.1.3 The single echelon model  

The case of a single store is introduced first. Stock is considered 

at discrete review instants. The criterion is the minimization-of dis-

counted costs up to a finite planning horizon. The discount rate is w. 

Holding costs are assumed proportional to the stock after each decision 

is made. 

A vector H. is defined thus: 
-1 

(ii)x  = (h.x for x > 0 
( 3  
(0 for x 6 0 

(H.)x  is the holding cost associated with a virtual stock x at time j; 

h.
3 
 is the unit holding cost at time j. 	Depletion costs are assumed 

proportional to the number of shortages experienced, and thus a depletion 

vector DI.
3 
 is similarly defined: 

(D. )x  = (0 	for x 0 
3  

(-d.x for x < 0 
3 

Demands are assumed captive. 

A demand matrix P. is defined thus: 
3 

(P)xy = (g.(x-y) x y 
( 3  
(0 	x < y 

whereg .(i) is the probability of a demand of i units between time 

and (j+1). 

Then, if C. denotes the cost of the best policy from time j onwards, 

and assuming zero lead time, the following equation is given: 

C; = f(H. + P.
3
D.
0 
 + w P.C. ') (1) 

f being the ordering function or ordering policy. 

We put T. = H. + P.
3
D.
1 
 + w P.C

-1
.
+1 

 , and so:- 
-1 	-1 	3  
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T. is a vector whose xth element is the expected future cost if the 

stock at time j is x, and if no ordering action is taken at time j, and 

if an optimum policy is thereafter followed. 

It has been shown11 that if the ordering cost is proportional to the 

quantity ordered then the least cost ordering policy, f, is as follows:- 

f(t.,x) = (t.j,x for x a S. 
— 3 	(  

(t. 	+ v.(S.-x) for x < S. 
J,Si 3 3 	3 

where 	S. = Max (x : (t.,x 	3 - 
t.,x-1  4 v1) 	(3) 3 

and v. is the unit ordering cost at time j. 

Thus the ordering policy is: 

Do not order if x a S. 

Order (S.-x) if x < S. 
3 	3 

If the ordering cost for q units is C
R. + qv., then 3 3 

f(t.,x) = (t. 	for x > s. — 3., 
( 3,x 	3 

(t
3
.,,  + v.(S.-x) + C

R. for x $ s. J 3  
J 

where S. = 
3 	Max (x: (t. 

3 Oc 
-t. 

 9 
 ,-v2(S.-x)) 	

R C-  . ) 
3 3 .) J 	3 

Equation (1) leads to C. = H. + P. D. + f(wP. C. ) 

2.1.4 The Multi-echelon problem 

The model proposed here considers the complex depicted in 2.1.2 

although it is said to have application to many different stores complexes. 

Suppose the time horizon to be n intervals. Let tP,  tR' 
be the num-

ber of intervals in the production lead time and repair lead time res-

pectively. Then, for this complex, 

tp  > tR  a 1 

2.1.4.1 Echelon definition  

An echelon is defined as a store and all stores fed directly or 

indirectly from it. 

(2) 
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If S
s = Total Sub-store Stock, 

S
c = Central Store Stock, 

Ra = Repair stock with "a" intervals before availability at 

the central store, 

11Pb = Production stock with "b" intervals before availability 

at the central store, 

we have: 	tR  ?, a >, 1 

> tP 	
b> ' 1 

Echelon "K" is defined as containing EK as follows:- 

E_1 	Ss  Ss -1 

E
o 	
• S

s 
+ S

c 

E
K 	• Ss .+ Sc + s 	c  a=1 gRa 	E  qPb; 1 K t tR 	(7) 

b=1 
tR 

EK 	= S
s +S

c  +E aRa 	clPb-  tR< K < t - 	E  

	

a=1 	b=1 

E tP  

2.1.4.2 Assumptions  

(a) For Echelon -1  

It is assumed that the costs of supply to a sub-store are identical, 

whether the supply be from a sub-store or from the central store. 

(b) For Echelon 0  

It is assumed that the supply costs are identical, whether from pro-

duction or repair. 

(c) There is no fixed ordering cost for any echelon except the 

highest one. 

2.1.4.3 Heuristic formulation of the model  

Consider the Kth echelon. It will be clear from the definition that 

the stock present in this echelon is contained in all echelons of higher 

order. 

The holding cost charged to the Kth echelon is thus not the complete 

cost of holding its stock but just the increment in holding cost as a 

result of having stock at echelon K rather than at echelon (K+1). The 
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summation of such stock-holding costs then is correct for the whole complex. 

Similarly, the unit shortage cost charged to the Kth echelon is the 

difference between the cost to the system of a demand not being met, until 

the (K+l)th echelon instead of the Kth. 

There is, further, the extra cost involved if the stock at the Kth  

echelon is insufficient to supply the required stock at the (K-1)th 

echelon when the latter makes its order. The cost assigned to echelon 

K is the difference in the expected costs of working echelon (K-1) with 

the optimum stock level and with the stock available. 

2.1.4.4 The analysis for echelon -I  

Consider echelon -1 and suppose there are N sub-stores. H. . is the 

holding cost vector for period j at sub-store i. 	D. . is the correspond- 
-3,1 

CR. 	is the unit ordering cost . 
3,1  

gi /5- is the demand probability distribution 

is the lead time from central store to sub-store - which is 

to be either zero or unity. 

Then S. ., which is the maximum stock level for sub-store i, can be 
311  

obtained by the use of one-dimensional dynamic programming on equation 

(6). 

Now if all or part of the order of the sub-store cannot be satisfied, 

then the sub-store incurs more costs than assumed by the ordering policy. 

These extra costs, B., are given by:- 
-1/1  

ing depletion cost vector. 

B. , 	= ( t. . - f(t. .) 
-0/1 	( -051 	-021  

(wPj,iC-j 1- 1-(Pj,g.jj+1,i)  
if 2. i 4 

if = 1 
(8) 	- 

This cost vector simply represents the expected cost of sub-store i 

being forced to operate below its optimum inventory level, i.e.- if x is 

the notional stock of sub-store i plus the quantity at the central store 

free for allocation to sub-store i at the time j, then the penalty charged 

to echelon 0 as an extra depletion cost is {B. 
/1  
.} 
x
. 	If there exist 

-1 
N 

a. = E S. . serviceable items in echelon 0 at time j, then no such penalty 
i=1 3'1  

is to be charged to echelon 0. 
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It is to be noted that the extra depletion cost charged to echelon 

0 will be a total over all sub-stores. 	It is important to note that 

Clark is only able to obtain a unique answer on the assumption of optimal 

deployment of stock -among the sub-stores (even if this means redistributing 

stock amongst them). 

2.1.4.5 Clark's treatment of the problem of optimal deploy-

ment -of stock amongst sub-stores  

    

A vector A.
0,-1 

 is given such that the elements of the vector, which 

are denoted by 63. ,
--I- 
,9x are given by 

( 0. 	for x 	a. 
(S. 	.T.- ( 	3 
3,-1,x ( b. . 	for x < a. 

3,19Y 	3 

whereb..is the yth element of B. . and i,j are chosen so that 
,11Y 	-0,1  

> 6. 	> 0 6j,-1,x-1 ' 3,-1,x for x < 
3 

The elements of A. 	increase in value as the amount of serviceable -0,-1 
stock,x,decreases.Forstockpositionsbelowa.,these constitute the 

depletion cost chargeable to echelon 0. 

2.1.4.6 The analysis for higher echelons  

It is assumed that the following are available. 

H. 	= the holding cost vector at echelon K. 
-0,k 
D. 	= the depletion cost vector. ---3,k 

= the unit ordering cost Iij,k 

CP. 	= the fixed production set-up cost. 
3 

(applies to echelon (t -1) only). 

the demand probability matrix. G. 

It is assumed that the holding cost is proportional to the cash value 

of the stock balance. The additional cost of holding x units of inventory at 

echelon K rather than at echelon (K+1) is 

( w 	x kv. 
3,k 	

for x > 0 
hj,k,x = ( 

( 0 	for x 0 

where w
k 

is the unit holding cost per unit of increased value, and 

the value added to the item by ordering it into echelon X. vj,k 

(9) 
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Gj,k
(x) represents demands (or "losses" in the context of Clark's 

work) to the echelon during the period j. For 0 K e  tR 
it includes 

all failures, and for tR  K S t , it includes just the condemned failures. 

Each echelon is treated as a single echelon problem using the follow-

ing dynamic programming recurrence relations: 

C. 	= H. 	+ A. 	+ P. 	D. 	+f(wPiocE,i+i,k) 	(10) 
-1,k 	-0,k -1,k-1 	],k -0,k 

where 0 < K < t, and f is defined just as in the single echelon problem 

(equation (2) or (4)). 

For 	0 ; K ; tP  -1 

A.0,k 	] = wP.,k-g+1,k 
	f(w3

p.,k-3 C.+1,,k ) 
	(11) 

- 	-  

From these recurrence relations, C. and the echelon ordering pare- -3,k 
metersSioc for0:$j<n,OEK<t„r,can be obtained. 

2.1.5 The central•  store/sub-store problem  

With the assumptions of the Clark model holding, the sub-store stocks 

together comprise the lower echelon, and the higher echelon comprises all 

the stock in the complex (i.e. sub-store Stocks plus central store stock). 

It is necessary to the model to obtain a unique penalty function (which 

depends only on the stock of the higher echelon), to penalise the higher 

echelon for inability to supply the \lower to optimal levels. To do this, 

Clark was compelled to make the assumption that inventory was easily 

exchangeable amongst sub-stores, and the value of the extension of the 

Clark model to this problem is limited by the extent to which this assump-

tion is invalid. 

2.1.6 Comments on the work of Clark and Scarf  

The work of Clark and his echelon concepts is a major contribution to 

the literature for inventory control in a hierarchy of stores. Lampkin, 

in his thesis,
3 specifically disagrees with Clark on his construction of 

the vector A. 	in equation (9). This author agrees with Lampkin in 

noting that the costs defining 6j2-1,x should contain the costs for not 

allocating the optimal stock from the quantity available summed for all 

sub-stores (not just for one sub-store). 

In considering the application of Clark's model to the central store/ 

sub-store problem it has been stated that Clark was forced to assume easy 

exchangeability of stock between sub-stores to get over the problem of 
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assigning a unique penalty for a higher echelon stock less than a
3
.. 

However, in doing this, the future stocks at any sub-store become dependent 

on the stock level at all other sub-stores, since any of them might be 

short of stock and require shipments to them. The lower echelon model is 

thus incorrect, since it treats each sub-store separately and independently 

of other sub-stores. The usefulness of Clark's model applied to the 

central store/sub-store problem is thus limited by the extent to which 

transshipments would be a good idea in practice. 

In many instances in practice, inter sub-store distribution will often 

not occur, and so the model due to Clark will be nearly correct and should 
digiculty 

produce good results. There is the dJwmfaIl that this dynamic programming 

model may not be acceptable to some managements for running a central store/ 

sub-store complex because of the considerable computation necessary. 
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2.2 The Work of A. Gradwohl 

2.2.1 Introduction 

In 1959, Gradwohl published a report
16 
 in which the nature of solu-

tions to the multi-echelon inventory problem was investigated through case 

studies. This particular work is a straightforward exposition of the 

paper due to Clark and Scarf9  , in which the latter authors considered the 

mathematical aspects of the formulation of the multi-echelon inventory 

problem and established conditions under which the policies determined were 

truly least-cost (viz. in the case of an unbranching series of stores). 

After Clark and Scarf introduced a modification to their first for-

mulation
10 
 relaxing one of their more restrictive assumptions (in which 

fixed order costs at lower echelons were allowed yielding policies appro-

ximating the least-cost policies for the case of zero fixed order cost 

at lower echelons), Gradwohl"(also in 1961) published a report 24  dealing 

with several aspects of this formulation. 

This latter report describes the technique for computing the approxi- * 
** mate policies in non-mathematical terms. The sensitivity of these pol- 

icies (and their costs) to parameter changes is then investigated. 

Finally, the effect of the implementation of these approximate policies 

in a central store/sub-store complex is studied in an attempt to determine 

the cost increase over the theoretically optimum. 

2.2.2 Technique for computing approximate policies  

2.2.2.1 A simple example  

A simple example demonstrates the method. The case of a sub-store 

ordering from a central store is considered. It is now assumed the sub-

store incurs zero fixed ordering cost. 

A purely arbitrary cost curve is considered. If the cost associated 

with a level s at the sub-store exceeds that with one unit less by more 

than the cost P of a unit, then at least this level of inventory should be 

maintained. Thus it is required to find 

(Max s :C(s) 	C(s-1) > v) , where v is the per unit ordering cost. 
A 

Thus if we denote this level of s by s, if it is found that the stock 

level is less than s, stock is ordered up to s. 

* In this review, the present author feels an indication of the type of 
consideration in hand by general terms (rather than the particular case 
given by Gradwohl) to be more appropriate. 

** Approximations are used becausetrue least-cost solutions require compu-
tation which cannot economically be allowed. 
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If, however, an order for this stock difference cannot be met by the 

central store, the sub-store will be expected to experience greater 

costs than otherwise. 	If it is at a level s o  (so  < s) then its expected 

cost is C(so). 	
If the order had been filled, the cost would be C(s) 

(s so)v. 	It is suggested that a cost of {C(s)+(s-soC(s0)} be charged 

to the supply store because it has failed to supply. This is termed the 

'implied shortage cost'. This charge occurs at any time the total number 

of units at sub-store and centralstore is less than As. 

2.2.2.2 Case of non-zero fixed order cost at sub-store (cR) - 

The analysis here is analogous to that above with the exception that A 
we now have an (s,S) policy where ,S equals s and s is 

sROL = (Max s: C(s) 	{C(s 	(s-s)v+ cR} > 0) . 

The implied shortage cost must now be computed. If total stock at cen- 

tral store and sub-store ST  is such thatS 	
then the implied 

A 	 I 	ROL'  
shortage cost would be C(ST) {C(s) (s-ST)v+ cR} . This cost will be 

incurred because the sub-store is sure to be at its reorder point. 

2.2.2.3 Case where ST exceeds sROL 

The implied shortage cost is more difficult to compute for this case 

because it depends on the distribution of stock between central store and 

sub-store. It is argued that the implied shortage cost should be charged 

if the sub-store is at or below sROL' 
its reorder point, and not if it is 

above reorder point. This distribution of stock can be taken into account 

but means excessively long computation, and so to decide whether or not 

to charge an implied shortage cost to the central store, the following 

procedure is adopted. 

A 	 A 

Whenever ST exceeds sROL' 
sub-store stock s is considered to always be 

described by: 

either (i) S 4 sROL 

or (ii) s > sROL 

Case (i) results in a "maximum implied shortage cost" and (ii) a 

"minimum implied shortage cost". 

2.2.2.4 Control at the central store  

It is assumed that control at the central store is an (s,S) policy. 

For this store, s and S are computed twice with independent computations. 

The first considers the maximum implied shortage costs added to the cen-

tral store future costs and then the minimum implied shortage costs added. 

From each neut cost curve the (s,S) values are obtained. 	Neither (s,S) 



policy, of course, represents the optimal policy because neither the 

implied shortage costs of Cases (i) and (ii) are correct. 

The unknown optimum cost is shown to lie somewhere between the two 

possibilities, and the feasibility of using the central store"maximum 

policy" (Case (1)) with the assurance that the increase in costs over 

the optimum policy does not exceed that over the "minimum policy" 

(Case (ii))..is argued. 	It is shown that Similar assurance is not 

possible if the "minimum policy" is used. 

It is clear then that the central store "maximum policy" must be 

used since the margin by which the cost of this policy exceeds that 

of the least-cost policy can be calculated. 

2.2.2.6 Exceptions to use of a "Maximum Policy" at the  

central store 

It is stated that for very cheap items where it is economical to 

order a supply to last for a long time, the "minimum policy" is the 

more correct policy. 

2.2.3 Sensitivity of Policies  

The sensitivity of policies and costs to parameter values is inves-

tigated to identify regions in the parameter space where the maximum 

and minimum central store policies lead to expected costs which are not 

significantly different. In these regions both these policies approxi-

mate the unknown optimum policy. 

2.2.3.1 Method of, investigation  

A nominal case with nominal parameter values is fixed and each are 

varied systematically about this nominal one at a time. The parameters 

considered are 

(i) Mean demand per review period 

(ii) Sub-store fixed order cost 

(iii) Central store fixed order cost 

(iv) Sub-store shortage cost 

(v) Central store shortage cost 

(vi) Replenishment cost 

(vii) Number of sub-stores 

(viii) Distribution of demand among sub-stores 

(ix) Lead time to central store 

21 



2.2.3.2 Result of investigation  

The following parameter values lead to good 

optimum policy: 

High Mean Demand per period 

Low Sub-store Fixed Order Cost 

High Central Store Fixed Order Costs 

High Replenishment Cost 

Few Sub-stores 

Imbalance of Demand among Sub-stores 

Long Central Store Lead Time 

2.2.4 Application of Policies  

22 

approximations to the 

The evaluation of the practicality of the application of the suggested 

approximate policies is made by computing both the costs of controlling 

the complex with the central store maximum and minimum levels and com-

paring. In this way (with the assumption that the central store maximum 

levels are used for the entire stock) the cost increase over the optimum 

is estimated (assuming optimum cost and central store minimum level cost 

are equal). Then since the cost increase over optimum attributable to 

traditional control policies is roughly known through experience, savings 

attributable to the approximate policies may be estimated. A simple 

hypothetical multi-echelon complex (a central store/sub-store complex was 

used) was chosen for this evaluation. It was found that the cost asso-

ciated with the maximum policies was 2.5% greater than with the minimum 

policy. Thus  use of the maximum policy results in a maximum increase of 

2.5% over the optimum cost. 

Notably, the factor keeping this difference so low is the high-value 

nature of the stock. Gradwohl goes on to suggest traditional inventory 

policy costs range from 20-30% above optimal, and can be expected almost 

always to excedd 2.5%. It is concluded that implementation of the appro-

ximate policies is likely to result in significant savings. 

2.2.5 Comments on the work of Gradwohl  

This work is valuable in that it shows up (in very general terms) the 

regions in which the control model due to Clark and Scarf will produce 

fairly substantial savings over traditional controls. The same criticisms 

apply as in the review of the work of Clark (2.1); the ideas established 

are purely heuristic and (s,S) controls at sub-stores and central store 

may be improved upon. 
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Gradwohl has indicated that for very cheap items a "minimum policy" 

at central store is the preferred policy. There are likely to be other 

regions over the parameter space where this policy is to be preferred to 

a "maximum policy". It may be a good idea if these could be explicitly 

defined. 

The results of the investigation into the sensitivity of policies over 

the parameter space again are not very explicit, and for the converse of 

those parameter values cited in 2.2.3.2, Gradwohl states that the "maximum 

policy" poorly approximates the optimum policy. This thus tends to res-

trict the usefulness of the ideas in Clark's model when applied to prac-

tical cases where these paramters occur. 

As Gradwohl himself suggests, an "approximation" to the approximate 

policies to allow direct computation of policies for non-dynamic cases is 

a suitable area for further research, in order that the lengthy itera-

tions of the suggested dynamic programming procedure may be eliminated for 

these cases. 

2.3 Chapter Summary and Introduction to Chapter Three  

The very general model due to Clark is applicable in the case of a 

policy decision for stock to be reviewed periodically and simultaneously 

at all stores. 	It is important to note that it will, necessarily, entail 

considerable computation for each item considered, and can really only 

sensibly be used for expensive and important items. 

Most of the literature appertaining to controlling the central store/ 

sub-store complex under consideration takes a steady state approach and 

these works are dealt with in Chapter Three. 



CHAPTER THREE 

REVIEW OF THE LITERATURE PERTINENT TO 

THE CENTRAL STORE/SUB-STORE SYSTEM:- 

CASE OF 

THE STEADY STATE APPROACH 

24 
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3.1 The Work of F. Hanssmann  

3.1.1 Introduction  

The work of F. Hanssmann as described here is found in a paper to 

'Operations Research' and in his book2. This work considers the problem 

of inventories of partially finished goods but this is exactly analogous 

to the central store/sub-store problem, and the ideas are written here in 

the language of the latter. 

Hanssmann assumes that when shortages occur, no direct cost is involved, 

but that demand is related to the average waiting time of customers, and 

this relation is assumed known, being estimated empirically. It is assumed 

that demands are captive. 

Stock is reviewed simultaneously at all sub-stores after equal time 

intervals. Demands on the sub-stores are continuous, and demands in 

separate weeks are independently normally distributed. Stock is ordered 

each week from the sub-stores, and also from the central store, the for- 

mer orders being independent of each other, the latter order assuming 

full knowledge of the sub-store orders. 

As with afew authors in this field, Weissmann develops his ideas 

by considering firstly a single store, secondly two stores in series, and 

then thirdly the central store/sub-store problem. For comprehensive- 

ness, and convenience for the reader, these ideas will be taken in order. 

Initially two functions are introduced: 

cc 	I-I 
An
(In) = 

	1 f I  
exp { k 

, 	
)1 

n,2, -_, 
--- 	cd 2 ig 0 

4an(in) 2 	
1 fo IeXp{(-----)

2  } dI 
IIn
2  IFIW 740 

whsre. ...--r-_, ..x;=,:o-  ,,,,,th wk....e 
,..
., a-;„ o-  as.as.tes-pChve-ly "i.¢..•-• 

ov'd tkiz, ST21 dara device 	c 	sub-sire cle,q?.4-4- 
These are, respectively, the normalised overage 

shortage. 

3.1.2 The single store  

(1)  

(2)  

me-art m./evtifv y Lavel 

and normalised 

leadtimetweeks,d.is 

ordered by the store in 

Then the virtual inventory level 

the demand 

week (j-2.), 

at week i 

Let V be the starting stock, the 
. 

in the 
3th  week, and q. is the amount 

i.e.(1 . arrives at week j. 

is I
i 
where:- 

I. = V + I (q.-d.) 
1 	j=1 3 3  

• 

( 3 ) 
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Action by the store at time zero affects the stock level at time 2,, 

but not before. Thus qt  (the stock ordered at time zero for arrival in 

week 2,) is chosen so that at time t, the store holds a target level of 

inventory Io. 

Thus we have: 	E(IQ) = Io 

Using (3) then, 	I
o 	= V + c{

j  E1 
 (q.-d.)} 

= 3  3  

i.e. 	I
o 	j 

= V + 	E
1 
 {q.-c(d.)} 

= 	3 	3  
(4) 

From (4) qz  may be. found: 

2. 
Io = V+ E 	q. + qt 	E c(d) 

j=1 3 	j=1 3  

t 	k-1 
andqt = Io + E c(d.) - {V + E (IA 

j=1 	j=1 
2, 

Now (3) shows that 	I
I 	

V + E (q.-d.) 
j=1 3 3  

and so, using (4) 	I
t 	

I + E{E(d)-d} 
j=1 3 3  

If d- , is. N(p,a2), then I is N(Io,1t',a2  ). 

(5)  

(6) • 

3.1.2.1 A simpler ordering rule than (5)  

From equation (5) we obtain the stock to be ordered at week i, viz. 

q
1
. : 
+Q 

i+k 	i+k-1 
= 	I 	+ E. c(d.) - {I, + 	E 	

(1 .} o ..., 	3 	3.  
3-1+1 	j=i+1 

i+Z-1 
= 

10 + tp - I. - 	E 	qi 
j=i+1 

i+k-2 
Also, 	_1 = Io + kp - 	- E 	q. 

j=1  

by replacing i by (i-1) in equation (7)'and so:- 

qi+t qi+1-1 .4  1i-1 I- 	qi 

E incl Bates E)Te..c_teci V,Oue oc 

qi+2, 

i.e. q• (7)  

(8)  
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and, 	q. 	I. 	- I. 	q. 	 (9) 111 	1-1 

But from (3) 

I.1  = 	qi  - di  

and so (9) yields:- 

	

= d. 	 (10) 

Thus, the rule is, "originally Order as indicated by (5), and sub-

sequently order the quantity demanded in the previous week". 

3.1.2.2 Analysis to establish optimal  I0  

Hanssmann computes holdingcostfrominventory left at the store at the 

end of a week. 

Mean stock left over at the end of a week, the "Mean Overage" is given 

by A:- 
CO 

A = 1 f 

	

I exp 	I-I0)
2
/2ta2.dI 

4-  a An 
Similarly "mean shortage" B is IF a Bn 
	 (12) 

If the mean potential sales rate is s, and the empirical function of 

decay is u(t) such that a real sales rate su(t) is experienced, where 
an average-Customer delay time t is maintained (0 45 u(t) < 1) then the 

standard deviation of weekly demands s is assumed to be au(t) and It  

.will thus be 

N{Io, i(u(t)a)
2
1 	 (13) 

The average waiting time is defined as the total amount of waiting 

time divided by the total number of demands 

i.e. 	t = -W/su(t) = 	a/s 

and so: Bn 	-ts/A a. ' 

If p is the profit per unit (excluding consideration of holding 

or shortage):- 

We have expected weekly profit as a function of (t) equalling P(t):-

P(t) = p s u(t) - h A u(t) 

= p s u(t) - h JE au(t) An 	(14) 

a /Fa o 



3.1.3 Two stores in series  

Virtual 
Stock wo 

Supply 	- 4.- 

	

ql 	 
- 	f' 	' 	 Store 2 Store 1 

ntn,  
'2'1 cIN-1 
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Now A
n is a monotonic function of In and so An(Bn

-1 (x)) is a well- 

defined function. 	Hence (14) may be written thus:- 

P(t) = psu(t) - hii6u(t) An(Bn  -1( -ts/1570) 

The optimum value of t, t, can be found numerically. Optimal I0  is 

given by 

I
o 	= Lau(t) Bn

-1 
 (-ts/Tk

r- a). 

q12, 	q2 

End of Week 0 

Virtual Stock 

w =w 1 0+g1 

V  

Supply - - 	6. 0 	Store 1 	t$ a T- 	Store 2 

 

t 
(1)41 

fi  
'k 	q2 

Start of Week 1 

gittl (12, q3 q2 

 

 

Votql  

        

        

• 

Using the notation as in the previous section, we have in addition 

target inventory levels for stores 1 and 2, Jo, I0  respectively. 
4ne..5bcovc- -1;36 -e- 

At the beginning of week 1, as shown in i4qprimplimR,q9_,1  is ordered 

by store 2 and q;(1.1  by store 1 on the supply. The lead times to stores 

2 and 1 are It and k respectively. It should be noted that qi is avail-

able for issue in store 2 against the order for (111,41  on it. 

The ordering process is as follows: 

Given the quantities in stock and in the pipelines, a quantity x 

is computed which is the order from store 2 on store 1. Immediately x 

is decided upon, store 1 orders from the supply a quantity based on its 

new virtual stock (which will be wl  = wo+qi-x) and on the pipeline stock 

to it, viz. q ... (1141. The assumption is made that the supply always 

holds sufficient stock to meet orders in full. 

Store 1 may experience shortage  of course, and at the beginning 

of week 1, the quantity placed in the pipeline to store 2, viz. qi+1 
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can differ from x. 

If the virtual stock before the arrival of qi was negative (i.e., 

store 1 was depleted) then we would like the shipment quantity to be 

-wo + x, and, since the quantity available in the store is q' we will have: 

qt+1 = Min {cli, x-wo
} 
	

for wo < 0 

On the other hand, if woa. 0, then no demands are outstanding on store 

1, and there is a physical quantity of qi + wo  available with a desired 

amount x ordered; so 

qt+1 = Min {(111  + wo'  x) 
	,for wo ' > 0. 

3.1.3.1 The effect of a request for x on future inventory  

levels at store 2  

The week in which the effect is felt depends on the shortage at store 

1. This shortage is a consequence of the target Jo  and can be character- 

ised by the average time k' taken to fill an order x. It is assumed 

that k' is an integer. 

Then the first inventory level at store 2 over which control can be 

exercised is Vt+k'+1 
and 

t+10+1 
Vt+10+1 =Vo 

 + E qi 	1 + Eqt + x - 	E 	d. 
1=1 	i=1 	i=1 . 
	 (15) 

Hence an order rule is chosen to make 

e(Vt+10+1
) = I

o 	k' 
i.e. 	I

o 
=Vo 

 +Eq. +Eq: + x - (t+M+1) su(t) 	(16) 
i=1 	5.=, 

where t is the average delivery time maintained at store 2. 

After x has been found from equation (15), qt+1  can be computed and 

then c40.1  is determined by the order rule:- 

k+1 
+ 1 

 - (k+1) su(t) = Jo 
i=2 
	 (17) 

The inventory in store 2 will be normally distributed thus 

{I
o
; AWITE cru(t)}, 

Since the weekly output from the system at store 2 is a normally dis-

tributed random variable with parameters su(t), ou(t)}, it is assumed 

further that the output (41.1  from store 1 can be approximated reasonably 

well by the same normal random variable. 
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It then follows from (17) that the virtual stock at store 1 is nor- 

mally distributed with parameters {Jo; AT au(t)}. 	(n) 

The expected shortages at stores 1,2 are given respectively by 

-k'su(t) and -tsu(t). 

As with the reasoning for the single store case, the expected profit 

per week is given as:- 

e(P) = psu(t) -h2A-1-k1 -1-1 u(t) A
n
{B

n
-1  (  -ts  

it.-01 

-h1
dki1 au(t) A

n
{Bn-1  ( 19 ) 

where h1, h2 are the holding costs at stores 1,2 respectively. 

The problem is now reduced to that of maximizing e(P) with respect to 

the variables t and k' subject to the following restrictions:- 

(0 .‹t < k i ll 

(0,k' < k 

3.1.4 The central store/sub-store problem 

The method of control and general details of the model are as for the 

stores in series model, the difference lying in store 2 being replaced by 

N independent sub-stores. The lead time for each sub-store is assumed to 

be t weeks, and policies are restricted to those giving the same expected 

delivery time t to customers at each of the N sub-stores. The same decay 

function u(t) is assumed for all sub-stores. The holding cost for the h 

sub-store is h21. 
The mean potential sales rate on sub-store i is s1. 

th 
If Io

i 
is the target value at the 

.
sub-store the inventory level 

is normally distributed with parameters {I0 , J7771 aiu(t)} 
i = 1,2 ... n 

The expected shortage is 

B
i = -tsiu(t) 

Taking a as i{g (al)land S as E s1, analogy with earlier con- 
1=1 	i=1 

siderations yields e(P), the expected weekly profit:- 
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c(P) = p S u(t) - 	E h2
i  1/1,11717C a u(t) 

i=1 

-1 	-ts 	 x A 	{B 	( 	. )} n n 

- h 	au(t) An  (Bn
-1 	-k'S  )1. 

1 	k+1 a 

where 0 << t s 	0 ‘, kt s k. 

3.2 	The Work of W. Lampkin Specifically Related to, the Work of 

F. Hanssmann  

Lampkin, in his unpublished university thesis
3 
and in a paper to 

Operations Research
4 

has pointed out weaknesses in Hanssmann's work and 

corrected some mistakes. This work is given below. 

3.2.1 Corrections to Zanssmann's work  

Lampkin feels that Hanssmann's reasoning becomes invalid at the deri- 
vation of equation (15). 	Suppose that at the end of week zero, store 1 

is empty and qi, ql 	q1101, are all needed to meet demands on store 2 which 

have already been placed. Then it is true that demands at the start of 

week one cannot affect any stock level at store 2 before 
V2.+k*+1 

but what 

is not true is that this order determines 
Vk+k*+1. 	

If the order does not 

allocate all of qc4+1, then a later order may allocate more of 	and 

this will affect V1+0.4.1. 

It is pointed out that the ordering rule for the quantity x (equation 

(16)) includes the expected number of outstanding orders by store 2, i.e. 

( E qi  + E (II) rather than the true number. This; Lampkin says, throws 

a3*  nearWall feedback and produces violent oscillation in stock levels. 

It is concluded that the intended ordering rule is 

Vo + stock outstanding on order + x - (2.+10+1) su(t) = 

i.e. x = I
o + (2tk

1 +1) su(t) - Vo 
- stock oustanding on order. 

This is said to be equivalent to the simpler equationi- 

x = So; where So 
is the demand in week zero. 

Lampkin goes on to correct expressions (17), (18), (19) by replacing 

by k in each of them, giving (17'), (18'), (19'). 
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The equation wl  = wo  + qi - x and equation (17') together imply 

k+1 
= x and since x = S

o
, we have:- 

c4(+3. = So' 
These considerations are said to lead to the following very simple 

control of the systet:- 

"Once the notional stocks have been set to the required levels, sub-

sequent control- proceeds as follows: if Si  denotes demand in the ith  

week, orders for an amount S. are placed by store 2 onstore 1 and by store 

1 on the supplier." 

At this stage, two new constants are introduced. 

J
1 = Jo + ksu(t) 	 (20') 

= Io  + (t+10+1) su(t) 	 (21') 

For the moment. the dependence of the demand distribution on t is 

suppressed. 	Let the demand distribution in a week be N(s,a2  ). 

Then the initial ordering rules are:- 

x 
	
- V

o - orders by store 2 outstanding 	(22') 

k 

q1C+1 	Ji  - w - E q!'+ x o ira 	 (23') 

Then for T >2.+k we have:- 

T-1 
wT = 	J

1 	
- E a. 

i=T-k 1  

Outstanding 
Orders 

Stock + 
Outstanding 

Orders 

(24')  

(25')  
and 

. VT = + Min 64T-2,' 
0) E d. 

i=T-9, 1  

Stock + 
	

Outstanding 
Outstanding 

	
demands from 

Orders 	start of week 
T-9 +1 to start 
of week T 

Outstanding 
demands from 
before start of 
week T-2.+1 

	

T 	 T-t-1 
V
T ▪ 	1 - E 	+ Min {J1  - 	J .  

1=T-R. 1 	i=T-k-9. 1  
0) (26') 

Let y denote E d.; y is a normal deviate with parameters 
i=T-16 1 



I(L+1)s,/1-1-1 a} 

T-2-1 
Let z denote 	- E i; z is a normal deviate with, parameters 

i=T-t-k 

(ks; 	/17 a) 

and y, z are independent. 

It is clear that wT is a normal deviate with parameters {Jo
; IWM), 

which agrees with the corrected result of Hanssmann's equation (18). 

3.2.2 The distribution of V
T 

The distribution of VT' called v for convenience, is to be found. 

( I1 - y 	for z JI  
= ( 

( Ii  + J1 - y - z for z > J
1 

Thus the distribution of v is 

Ji -ks 
0(v) dv = { 	1 	17( .4" 	) Z( 1 

ch7T. ark a 

1  fm z(z-ks)z(I1+J1-v-z-(t+l)s ) dz} dv 
c2A(X+1) Ji  aViZ 	a/TTT 

2  
where 	P(X) = 1 fX e 	dx; Z(X) 

5W -w 

1 e-iX
2 

Using this equation, it can be shown that 

e(v) = f 	vv(v) dv = 

= Jo(1-P1) + I1  - (.4.+1)s -a/W z1 
	(27T) 

Also Var(v) = (l.+1)a
2 

+ kc
2
(1-P ) 1 

 

 

+ oP1 + of Z1)(Jo(1-P1 ) 1 (28') 

where P1 = P(-2-) and Z1 
= 

a1i 	a/F 

The integration in the expression for 0(v) dv may be achieved and 

yields:- 
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Ji-ks 	I,-v-(t+l)s 
*(v) dv = {  1  	ID( 	) 	( 	 

(WITT co/V (TATE 

+kv-kI1 	J1+I1-v-(t+k+l)s 

	

1 1 
(1 P( 	 )) Z( 	)} dv 

a/TT-7 	alk(t+1)(k+k+1) 	alRFTT 

3.2.3 Comparison of the VT  distributions of both Hanssmann and  

Lampkin  

The question posed here is how does this distribution of v compare 

with Hannsmann's solution that v is a normal deviate with parameters 

(Io; i2.+k'+1.0) where 

k' • 	aVF 	(Jo ) 
s n a sk 

Evaluation of k' in terms of. the P, Z functions yields:- 

sk' = ask Z1 - Jo(1-P1) 

and so equation (27') reduces to:- 

e(v) = 1 - (zti)s - k's = Io 
and so agreement is established with Hanssmann on the mean of the distri- 
bution, viz. 10. 

	

The variances differ, however. 	Hanssmann's result is:- 

2 042  
• (t+l)a + {a VW Z1 - Jo(1-P1)} 

which is not the same as (28'). 

Lampkin comments that Hanssmann's result is a function not only of 

t, k, cr2, Jo, as his own, but also of s. 	
He then gives the following 

argument to indicate that the variance should not depend on s: 

Suppose each weekly demand was augmented by a furtherlarge invariant 

weekly demand. 	If the target levels It)  and Jo  were retained, it is 

clear that the stock levels in bath stores would not be affected. The 

distribution of v and hence the variance would be unaltered. 

The next step Lampkin considers is that of investigation as to 

whether the shape of the v distribution is roughly normal, and if a normal 

distribution could reasonably be used as an approximation to *(v). 

Firstly, it is stated, the region of doubt is where (Jo/a11) is low 

since Jo 	co leads to g(v) dv approaching a normal distribution with 

uH
2 
• (t+M+1)u2  
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parameters {I
o
; A+1 a}. A value of Jo/a I "as low as would be met in 

practice" is investigated and the corresponding p(v) compared to a normal 

distribution with the same mean and variance. It is shown  by graphing the 

two distributions that the two distributions show a marked resemblance. 

From the expressions for e(v), Var(v), and from wT  = N(Jo; 	a), the 

following cost function, suggested as an improvement to that postulated 

by Hannsmann, is derived. 

J 
tsu 

i(F) 	psu(t) 	h E(J t) A {B 	( 	,)} h 1/Fau(t) A 
2 	o' 	n n

-1 
 E(Jo

(
,
t)
t) 	1 	n a4011N) 

where g(J0,t) is given by:- 

J 
E
2
(J ,t) 	(9,+1)a

2
u
2(t)i- Ica2u

2
(t) (1-F( 	° 	)) 0 	

Xau(t) 

J 	 J 
+ 	P( 	° 	) + au(t)/17 Z ( 	° 	)} 

° &au(t) 

x {J
o 
(1-P( 	° 	)) 	au(t) k Z( 	° 	)} 

Xau(t) 	4au(t) 

where 0 t * kti and the minimum value of E(P) is to be found over 

the (Jo,t) plane. 

3.2.4 The central store/sub-store problem  

Lampkin's rule for sharing to sub-stores follows:- 

"The quantity available shall- be issued in such a manner that for 

each sub-store, the amount by which the total in the pipeline to the sub-

store falls short of the quantity outstanding on order shall be propor-

tional to the average demand from the sub-store." 

It is said that this 	ually, but not always, possible. 	I 

tice, this con 	n would be met as closely as o 	The following 

s is presented on the assu 	at sharing according to the 

ossible, and thus it is said to be in error to this 

3.2.4.1 The distribution of VT 

As in the case of two stores in series, the dependence of the demand 

distribution parameters in t is suppressed and 

T is the stock at store 1 at the end of week T 



Vi  is the stock at sub-store i at the end of week T 

Jo is the target stock for store 1 

I
oi is the target stock for sub-store i 

§i -is  the demand at sub-store i in week t. 

N 
St = .E St

i 

11 

Then if 	J1 = Jo + kS 

and 1  = Io + (2.+10+1) SI  

T-1 
E 	S

t t=T-k 

T 	 Si r and 	VT 	1 	t S E Si  +— (min 
{wT10  0

}) 
t=T-9, 

T 1  . Si 	 T-k-1 

	

I1 	
f 

- 	E St 	S  + 	(min {(J1 - 	E 	St), 0)) 
t=T-t 	t=T-k-t 

T 
Let y denote 	E Si  ; • y is a normal deviate with parameters 

t=T-k 

{(k+1)Si • 

Let z denote 
T-k-1 
E• St' z is a normal deviate with parameters 

t=T-k-k 

{kS; V a} and y, z are independent. Replacing VT  by v we have:- 

( I 1- y 	for z JI  
v = ( 

( Ii  - y + S  (J1  -z) for z > J1 

The distribution of v is given by 

Tp(v) = 	
1 

P{
J1-ks

} 	{ 1 
 -v-(L+l)S' 

1 
ciVE.Ti—  (5117 	(1/1.7-1 

J -z)/s..  1 	 1 	 z{z-ks)  z{ 	dz 

which leads to:- 

i 

e(v) =1 
	s (2.+1) Si  + 	(3 o -131 - (1 	) 	aV z1) 

= Io 
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Then 	w
T 

a a 	Q1  R,+1 lU ICi•i.1.) 	aVF 
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Si  Var(v) = (ai)2 (Z+1) + a2  k (-:,T  ) (l-P1) 

i 	i 
r- 	 , + (J °P1 	S 

S + — avk Z1  )(J o  (1-P1 	
S o•ii -  ) + -z, 	Z1) s  

where P1 
	p(JoialF);  Z1  = z(Jo/a14i.). 

3.2.4.2 The profit function  

The following expected weekly profit is given as a suggested improve-

ment over that presented by Hanssmann: 

J 
c(P) = pSu(t) h

1  Nou(t) An  { 
	° } 

_a_ 
aYKUkt, 

-1 -tSu(t)  )1 2
i i E h o,t) An{11n 	(i(11 ,t) 1=1 

where J(J0,t) is given by:- 

i 
{Ci(J ,t)}2  = Cdi) 	

2 
(t+l)u2(t) +o2u2(t) k 	P( 	

J 	
)) 

Kau(t) 

+ {J  	Si 
 

P( 	° ) + 	ovx Z ( 	° 	) x 
atiTU(t) 	IKOu(t) 

x {Jo  (1-P( 	J°  )) + Spa 
	Jo  
N z( 	)} 

	

oVKU(t) 	orTu(t) 

Thus c(P) is now a function of Jo,t, and the maximum profit results 

from the use of those Jo,t values which maximize c(P). 

3.2.5 Discussion of the work of F. Hanssmann and the work of  

W. Lampkin applied to Hanssmann's paper  

The combined works of the two authors are open firstly to criticism on 

the assumptions made initially. Firstly the assumption that demand is re-

lated to the average waiting time of customers is a perfectly feasible 

alternative to the usual concept of a shortage cost resulting if a demand 

cannot be made ex stock at the store on which the demand is made. How-

ever this assumption does limit the field of applicability of Hanssmann's 

model. There are many instances where the penalty for a shortage is felt 

on the demand side in the form of (a) fixed cost because unit is not avail-

able when demanded or (b) fixed cost plus time dependent cost or (c) time 

dependent cost only (i.e. cost type (b) where the fixed cost is zero). 
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The demand does not necessarily have to drop off because of the non-immedi-

ate character of delivery. This is especially true when the demand is 

from a source which is under the same ownership as the central store/sub-

store'system itself. Even where the model is applicable, it is suggested 

that practical estimates of the function u(t) are likely to be inadequate. 

If the demand distribution is seen to vary in practice, it will be very 

difficult to assign just what proportion is due to the customer waiting 

time function u(t) and what is due to other changes of a dynamic nature, 

except for those distributions which are stationary. 	(These are rather 

limited.) 

The assumption that demands are captive is necessary for the analysis, 

and although this assumption is restrictive, it does not unduly limit the 

applicability of the model. The assumption of normal distribution of the 

demands makes the analysis simpler, especially in that it allows employ-

ment of the normalised overage and shortage functions. However it is felt 

that requiring a normal distribution of demands makes the model unfortu-

nately restrictive, from the overall contribution to the point of view of 

control of stock in a central store/sub-store complex. 

The next point, namely that stock is reviewed simultaneously at all 

sub-stores after equal time intervals and is ordered on the central store 

without knowledge of the other sub-store orders, represents a very large 

restriction on policy considerations. Firstly, reviewing at equal time 

instants immediately precludes reorder level considerations, which are, 

shown by Lampkin3 to result in roverwhelming advantage ... in the costs of 

stockholding and shortages at the sub-stores". Further, (although of 

course this requires centralised knowledge of stocks at various sub-stores) 

the control can be made much more efficient at sub-stores by taking into 

account the stock positions of all other sub-stores. 

Hanssmann develops his analysis with the assumption of attaining 

target inventory levels at all stores (central and sub-store), and then 

optimizing ordering decisions. It is not clear that the use of the cri-

terion of target inventory is very useful; no support or evidence is 

offered to indicate the value of this policy. However the analysis pro-

ceeds to the development of an expected profit function in terms of t (the 

average customer waiting  time) and k' (the average time to fill an order 

from a sub-store). -  Search over the (k',t) plane will provide the k',t 

to maximize this function. From these the target inventories are obtain-

able. The method of analysis development, namely considering firstly a 

single store, then two stores, in series, and then the central store feeding 
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sub-stores is a rather useful approach. 

Some of the results of Hanssmann's work are clearly wrong and Lampkin 

corrects these. The present author feels that Lampkin does a useful job 

in strengthening the model presented by Hanssmann by showing up and correct-

ing some false thinking. Lampkin's rule for sharing stock out to sub-

stores in thosd cases when the total order on the central store is too much 

to be met completely is thought to be appropriate to the type of control 

being considered. The final expression for expected profit as presented 

byiLampkin is a function of the target stock for the central store and t, 

and thus searching over the (J0,t) plane to yield the optimal Jo,t is 

required. 

The assumption made by Hanssmann when extending his "Two StOres in 

Series" Model to "'the Central Store/Sub-store Problem", (namely, that pol-

icy considerations would be'restricted to those having the same t value 

at each sub-store) is, of course, very useful in permitting simplification 

of analysis. However, it places the final control policy further away 

from optimal. 

Other assumptions, implicit in Hanssmann's model (e.g. lead times,to 

sub-stores constant and identical, lead time from supply constant) may all 

be criticised from the point of view of being restrictive, but this does 

not mean that they are unnecessarily so. It is recognized that models 

often require recourse to such restrictions to be workable. 

3.3 The Work of Lawrence, Stephenson, and Lampkin  

3.3.1 Introduction  

We deal here with the work of Lawrence and his associates at the 

National Coal Board. Inventory levels for spare parts for coal-face 

machinery were calculated and the work published in a paper to Operational 

Research Quarterly.5 

The central store was operated on a reorder level system,triggered by 

central store stock. The sub-stores were controlled by a base stock 

method. The demands on the sub-stores were from independent Poisson 

processes and were captive'. The lead times to N sub-stores were identi-

cal and constant, and the central store lead time *as constant. A fixed 

shortage cost-of c resulted every time a demand on a sub-store could 
31 

not be met ex sub-store stock but could be met ex central store stock: 

A cost of c resulted if neither of these stores could meet the demand. s2 
As is usual. in such models, the holding cost was proportional to average 
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inventory. No transfers between sub-stores were allowed. 

3.3.2 Symbols  

The following symbols appear throughout the work: 

Q = reorder quantity at central store 

A. • annual demand at sub-store i 
N 

T 
= 	E A. 

1=1 

P = price of item 

L = central store lead time 

= sub-store lead time 

• fraction of the price of an item which is the cost of holding 

it for one year 

m. = maximum stock level at store i 1 
M = reorder level at central store 

- cost of an order at the central store 

• SU. 1 

3.3.3 Analysis for the sub-stores  

Attention is concentrated on one sub-store. The assumption is made 

for the present, that the central store never fails in its ability to 

supply. ' 

The number of annual shortages* is:- 

n 
A E U! e-U 
n=m n 

(1), 	dropping the suffix "i" 

The sub-store average stock is:- 

mE—i- e.  -U E -r e 

	

n=0 n' 	n=0 n' 

	

m n 	m-1 un -U 	-U 	 (2) 

If r denotes the average cost of a shortage at the sub-store, we may 

write:- 

r 	r1(1-w) + r2w 

where r1, r2 are the unit shortage costs if the shortage is respectively 

met or not met by the central store; w is the proportion of shortages 

not met by the central store. 

* Here this author thinks that the word "expected" is omitted. 



The average annual cost at the sub-store is then 

	

m-1 n 	m n -U 	U 
e
-U Cm =X r -X(74-Pht) E 	e 	+ PhIT1 L - 

	

711- 	n: n=0 	n=0 

whence: 
m 	

2 e-U 
n 7  Cm+1 - Cm = Ph E 	e -11 

m. n=0 n' 

The boundary between the decision to hold stock M and stock (m+1) will 

be When:- 

Cm+1 = C
m 

This is easily obtainable from (3):- 

Pht/17  
U 

M. 
 e-U) 

ID 

e-U 

n=0 vel 

= f {U, 

A (Ph947.) vs. U chart can be drawn up to give the optimum base level 

of stock m to be held. 

3.3.4 Analysis for the central store  

It has been shown6 that in a reorder level system the average stock is 

given by:- 

F(M,Q) = 	E (M + Q21 	s) A(s) 
s =0 

M+Q 
+ it 	E 	(M+Q+1-s)(M+Q-s) A(s) 
" s=M+1 

and the average number of demands not met immediately per annum is given by:- 

M+Q 1 
G(M,Q) = T (1 - E A(s) - — E 	(M+Q-s) A(s)) 

e=0 	e=m+1 

where A(s) is the probability of s demands in time L. 

For a Poisson distribution of demands, these functions become: 

F(M,Q) 2( , +Q)(M+Q+1-ATL)P(ATL' Mi-Q+1) 0  

-ATL(M+Q-ATL)P(Aye,M+Q)-M(M+1-XTL)P(ATL,M+1) 

+ATL(M-ATL)P(ATI"M)) 

41 

(3) 
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1 and G(M,Q) = AT ( — Q {(M+Q)P(A
T M+Q+1) 

ATLP(ATL, M+Q) -mP( xTL ,  m+1) 	ATLP( ATL ,  m )) 

c-1 m e-ms  
where P(m,c) = 

s=0 s! 
• 

The system cost function is thus:- 

C(M,Q) = Phr(M,Q) + RG(M,Q) +cldtT/Q 

where R is a notional run-out cost, not known at the moment. 

3.3.5 	The calculation of R  

Let e* be the average time period from the instant the central store 

is depleted until it receives stock. Then the average time sub-stores 

have to manage without being replenished is et = e* + L. 

fee;is the expected part of the lead time that the virtual stock at the 

central store is zero or less (given that this state is attained). 

Hence 

e* = L(1 - a/b) 

m 
M 	(T"XT)s  where a = 	E 

LAT s=M+1 s! e 
_ A L 	 _ X L 
T 	c° (LAT)s 	T 

and b = E 	 e s! 
s=M 

Each sub-store i has a notional stock of m. at the beginning of the 
1 

period. The 'cost of shortages in the'period is thus approximately: 

s 
(e'A.) N 	... 	-e'A. 

Ca = ra  E 	E 	s1 	(s-m.) e 

	

1! 	1 i=1 :Y=Tn.+1 1 

In normal circumstances the shortage costs would have been:' 

Cb  = 	E r X.e' E (Sts e-U 
1 	s! i=1 	s=m. 1 

The shortage at the central store forces an average saving in stock 

holding costs at the sub-stores of approximately: 

A 
 Ch  = Ph(e'-1) -2

T 
 te'-i) 

The average cost of the system being forced to last for e' without 

extra supplies is:- 
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C = c
a - Cb - Ch 

The average number of items demanded from the central store in the 

period e' is e'AT  and so the average cost of an unmet demand is R = C/e'AT. 

Note that the calculation of R entails knowledge of the sub-store 

stock levels mi  and the central store parameters (M,Q). 

3.3.6 The calculation of r  

w = the proportion of emergency demands (after sub-store run-out) which 

cannot be met by the central store = G(M,Q)/AT, and r = 	r2  w. 

3.3.7 	Reconciliation of the Calculations  

Note that 

(a) To calculate the m., we need r. 1 
(b) To calculate (M,Q) we need R. 

(c) To calculate r we need (M,Q). 

(d) To calculate R we need the mi  and (M,Q). 

It is argued that the definitions are circular. An iterative pro-

cess is suggested which has been found to converge. No theoretical proof 

for convergence is offered. 

3.3.8 Comments on the Lawrence paper  

By stipulating a base-stock system at sub-stores, Lawrence immediately 

establishes sub-optimal operation of the whole complex. Delivery costs 

to sub-stores are now no longer considered since delivery policy has al-

ready been 'decided. 

Treating the analysis in terms of two models, one for sub-stores, the 

other for the central store, is a useful idea but.for the fact that the 

two analyses are not really independent (hence the circular definitions 

resulting finally). Maintaining a reorder level policy at the central 

store and not allowing inter sub-store replenishment, leads to the usual 

criticism of overall non-optimality, but of course, Lawrence is not sug-

gesting the latter anyway. 

The analysis for the central store presupposes that. shortage costs 

vary directly as the number of orders not met immediately ex central store 

stock. However, a few shortages are likely to be of little consequence 

cost-wise whereas a large number (thus making a penalty of r2  more 

likely) would cost more then proportionately more, on average. 
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3.4 The Work of P. Winters  

In a paper
21 

published in 1960, Winters considers the control of stock 

in a stores complex without a central store. Procurement of further stock 

is obtained from a factory production unit. An extension of this work to 

cover the case of the central store/sub-store complex problem is considered 

in his unpublished thesis7. 

Winters divides control consideration into two individual considera- 

tions. 	Firstly, he considers the criterion for triggering a procurement, 

and secondly, the procurement quantity and how to split this up for delivery 

to the stores. This is done by establishing two cost equations, the-first 

of which involves only the stock levels at the different stores for making 

the procurement order decision. It is admitted that this entails ignoring 

the interaction between procurement quantity and the procurement order 

trigger. 

In order to build these cost equations the cost of holding buffer stock 

for the length of time in any procurement cycle other than the procurement 

lead time is ignored. Also, the individual store reorder quantities 

(breakdown of the procurement quantity) are chosen without reference to the 

expected costs of shortage. 

The cost considered for establishing the trigger includes the expected 

sum of holding and shortage costs in the respective stores' procurement 

lead times. Couched for simplicity in terms of a complex with only two 

stores, Winters gives this cost sum as:- 

(sl-Al2,1)2 
i 	1- hipk,{2.Al2, 	y ic 	cs )

co  

s1A1 sl  
f(A

1
) dA

1 

co 	(s,.- 
+ ih2PR.2{2s2-A R} + i(h2P + cs  ) f s2, 2 s22 

' 2 

	 • ft 	dx  
2 	2 

where, for storeo,i, 

t,. is the holding cost per unit cost per unit time 

L. 	is the lead. time 

s • is the inventory at time of triggering procurement 

A 	is the demand rate 

P 	is the cost or price of a unit of stock 

c
s 	

is the unit shortage cost per unit time* 

f(A ) is the probability distribution of demand 

* Note Winters' model is only applicable for shortage cost being a linear 
function of time short. 
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Winters goes on to show that the values of s1, s
2 which minimize this 

expected cost during the lead time are given by the following equation: 

h1  s 	00 	s1-A1T1 
(1+  icT) 

1)f  
	 f1(A1) dx1/ A1 2 	1 	s1/R,1 

c 
s 	e.' s2-AT2 + A

2 (k2 
+ (1+ 	2) f   f2(A2) dA2} h2

P 
s2/2, A,2 

= 0 

This "trigger equation" is an implicit function of the stock levels 

and generates a curve on the s1,s2  plane which is hyperbolic in form. 

If the ss2 combination point moves below this curve, a procurement should 

be ordered. 	(This point is generalised in Winters' thesis to a function 

"f" of the stocks at the stores. Whenever this function changes sign 

from positive to negative, the procurement order is placed.) 

To obtain the procurement quantities for the various stores, the 

following total cost function is built: 

T.C. = cP  + 'h1  P{2(I1-A11) + Q1  }L1  + '- 2h2 P{2(I2-A22)+ Q2} L2 

where I1, 12 
are the inventory levels at time of procurement trigger 

for stores 1,2 and where Q1, L
1, 
 Q2, L

2 
respectively refer to the pro-

curement quantity and cycle time (time'between arrivals of stock) for 

stores 1 and 2. 	c is the procurement cost. 	Clearly, it is argued, 

Li  = L2. The imposition of this restraint using the Lagrange multiplier 
C.. 

technique in forming the function 4) = T + A(L1-L2), taking partial de- 
L1 

rivatives, and setting them equal to zero yields optimal Q1, Q2: 

ql = 14(2CPA12/P(h1X1-RI2A2)) , 
A 	

" 
A
2 

02 	01(7-)  
1 

The extension of the ideas to cover the case when the stores complex 

is supplemented by a central store regards the procurement as being trig-

gered when there is no way of allocating the central store stock to the 

sub-stores so that the trigger function calculated on the new levels re-

mains positive. The procurement quantity and its distribution to various 

sub-stores is established as above. 
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3.4.1 Comments on the work of P. Winters  

This work suffers from the distinct error that the two functions, the 

trigger and the procurement quantity are computed independently. The 

error that the trigger equation ignores the cost of holding the buffer 

stock outside of the procurement lead time is a very important error for 

those cases when the lead time 9cycle time ratio is not large. Further, 

the cost of shortages should be taken into account in the choice of pro-

curement quantity. 

3.5 The Work of Hadley and Whitin  

3.5.1 Summary  

In 1961, G. Hadley and T.M. Whitin published12  their model for a single 

echelon, multi-store supply problem for items of extremely low demand 

governed by a stationary Poisson process. Information on the overall stock 

position of this stores complex is held centrally, and hOth procurement 

(supply to the complex) and store redistribution* (either of two modes) 

lead times are assumed constant. The complex is operatdd as a base stock 

system and decision rules are developed for allocating the unit procure-

ment, for redistribution of stocks amongst the stores, and for establish-

ing how much stock should be retained at each store. These rules are 

established by the criterion of minimizing the expected overall costs of 

deliveries and shortage.** 

Store lead time is supposed to comprise both an administration and 

delivery time, and when more than a single unit is on order, the allocation 

of a unit ready to be delivered is determined by the solution of a dynamic 

programming problem. 	(It does not automatically go to the store ini-

tiating the procurement order.) In the case of only a single unit on 

order by the stores complex, the optimal allocation procedure is reduced 

to allocating the unit to that store which has the greatest probability 

of demanding it in a time period equal to the procurement lead time L 

plus (1/X
T
), where X

T 
is the total demand rate in the stores complex. 

3.5.2 	Stock objectives  

Shortage costs are denoted by %I  per unit time for store i, (i=1,2 

...N) at each of the N stores. 	Additionally, a. cost css  is assumed to 

occur per unit time if there is no physical stock in the complex. The 

* 	i.e., from another store. 

ice: This author feels that holding costs should be included here. 
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maximum stock of the base-stock system is m. It is stated that the optimal 

value of m may be determined by balancing stock holding costs against the 

costs due to shortage and redistribution. Procurement costs are said to 

be irrelevant since for a base-stock system the procurement quantity will 

be fixed. 

3.5.2.1 The case of zero store lead time and zero cost of  

redistribution  

This trivial case is considered as an introduction to the general 

approach. Firstly, the only shortage costs are those due to shortage in 

the stores complex. 	Clearly, individual store maximum stocks are irre-

levant. The maximum stock in the complex, m, is obtained by balancing 

holding costs against shortage costs for the complex. 

The expected physical stock in the complex at any random instant of 

time will be:- 

cornrkx 
(m-x) x {Probability of demand iso=careplex of xLin time L} 

x=0 

m 
E 

x=0 
(m-x) (ATL)x  

The expected number of backorders will be:- 

-X
TL 

Z 	(x-m) (A
T
L)x e 	 

x! 

The total cost per unit time will then be:- 

TC1(m) = hP E (m-x) p(x) + c 	E (x-m) p(x) 	(1) 
x=0 	ss x=m+1 

where hP is the holding cost per unit stock per unit time and 

p(x) a  (XTL)
x 
 e
-ATL

/x! 

Equation (1) leads to optimal m being the minimum rirsatisfying:- 

OD 

P(x)  < 	
hP  

x=m+1 	hP+c ss 

3.5.2.2 The general case of non-zero lead time of  

redistribution with cost attached  

The purpose of redistribution is said to be the elimination of 

shortages in the time interval between allocations. The assumption is 

now made that a redistribution is never made to a store until it acquires 

TL 

x! 

x=m+1 

(2) 



A. d AT { 1 
+X A.+A A 	) ; d . 	

(4) 
T 	T 
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a backorder. Attempt to justify this is given by the statement that since 

the complex is stocking low-demand items, stock levels at most stores will 
frequently be either 0 or 1. The assumption is also made that when 

shortage occurs, a redistribution will always occur, and that the shortage 
lasts for the full length of this redistribution lead time (and therefore 

that no allocation from a procurement will arrive during this time). 

With these assumptions, the cost associated with a shortage at store 

i is:- 

c
s1  
. 

= c x + c s. x 1 

where cx 
is the cost of redistribution by the appropriate mode of 

transportation* and Zx is the redistribution lead time. 
	Both cx9 

Stx  are 

averaged values, since they depend on which store does the redistribution 

to store i. 

3.5.2.2.1 Distribution of demand at a store between  

allocations  

The time period between allocations will have the same distribution 

as the time period between demands in the complex (viz. ATe Tt  for a 

Poisson process) since the procurement lead time is assumed constant. 

The probability of a demand d on store i between allocations is then: 

(A.t)d -A.t -XTt 1 
pba.

(d) = f d!
e 
	

(A
T
e 	)dt 

(3) 

from integration by parts, 

where A. is the rate of demand per unit time for store i. 

3.5.2.2.2 Expression for overall cost of shortages and  

redistribution  

Suppose there exist E units at store i when an allocation is received; 

the expected shortages (further) occurring in the time period between 

allocations will be:- 

CO 

E 	(d-E) pba.(d) d=C+1 
(5) 

* to be discussed later. 
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If the probability of existence of units at store i when an alloca- 

tion is received is p () then the expected further shorages between allo-
ei 

cations is:- 
03 

E -p,(E) 	E 	(d-E) 	(d) 	 (6) 

ei 	d=4-1 

The number of different allocations per unit time is AT  and so, the 

overall expected cost of shortages and redistribution per unit time is:- 

N 	 00 

AT .E cs. E pe. 	(d-g) pba.(d) 
1=1 	1 E 	d=E+1 

(7) 

No attempt is made to compute p_.(0. The procedure adopted is to 
ul  

let s.1  be the safety stock maintained at store i (i.e. maximum stock at 

store i is s.+A.L). 	Since AT
L will be the average stock on order by 

the stores complex, the maximum stock for the complex is given by 

N 
m - A

TL E s. 	 (8) 
1=1 

NQW the assumption is made that since the item is -low-demand by 

nature, si  will be 0 or 1 for most stores; and so an approximation for 

the virtual stock at store i after an allocation is s.1 	
As61401ption 	(a) 

Expression (7) is thus approximated to:- 

N 	00 
A
T 

E c
s. 	

E 	(d-s.) p 	(d) 1 ba. T. 
	a. d=s.+1 	1 

1 

3.5.2.2.3 	The total cost expression  

The total costs per unit time are then 

N 	co 
TC1(m) + AT 	

E 	cs 	E 	(d-s.) pba.  (d) 
i=1 	id =s.4-1 	1 1 

where TC
1(m) is 

the expression given by equation (1). 

In order for any given set of si  to minimize (10) it is necessary 

that: 

1 ATC(s.) TC(si+l) - TC(S,) 	0  1 

ATC(s.-1) < 0, 	i = 1, 	N 

Thus the smallest s.1  (i = 1,2,..., N) is chosen so that:- 

00 	00 
ATC(si) = hP-(hP-hcss) 	E 	p(x) -ATcs. 	E 	Pba(d) ;.0 x=m+1 	1 d=15.+1 

1 

TC(m) = 

(9)  

(10)  
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E 	Pba(d)  d=s.fl 1 	XTcs. 1 

, 	(i = 1, ..., 	(12) 
hP 
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If the complex shortage cost, c
se 

is negligible, then the smallest 

s. is chosen so that:- 1 

and hence m, by use of equation (8). 

3.5.2.3. Case where procurement lead time is less than  

redistribution lead time  

Hadley follows on by pointing out that 'if the procurement lead were 

ever less than the redistribution lead time, redistribution would never be 

used (Hadley's model implicitly assumes that the supply to the complex 

never fails). In this case the optimal store maximum stock levels are 

In.forstoreisuchthatm.isthesmallestm.satisfying:- 

co 
hP  E pi(d) 

hP+csi d=m.+1 1 

where pi(d) is the probability of a demand for d items at store i in 

the procurement lead time. The given inequality is obtainable by mini-

mizing the costs of holding and shortage for each store individually. 

3.5.2.4 The decentralised model and the centralised model 

3.5.2.3. gives'a clear instance where the "centralised model" considered 

prior to 3.5.2.3 would not be sensible. 	Hadley points out that for cases 

where procurement lead time is greater than redistribution lead time, the 

decentralised model of 3.5.2.3 may possibly still lead to lower expected 

costs. 	In these cases, the decentralised model is clearly to be preferred. 

3.5.2.5 Conclusion of Hadley's work  

The work is concluded by the treatment of the problems of (i) selection 

of mode of transportation from the source, (ii) rules of allocating the 

unit stocks on order to the various stores,and (iii) whether to redistribute 

or not, and if so, by what mode of transportation. 

For (i) Hadley's result is quoted: The optimal mode of transporta-

tion from the supplier or source is the one that minimizes:- 

N 
E 	c

is 
 X. + TC

1 
 (m) 

i  i=1 

where c
is is the cost of shipping one unit frOm the source to store 

i by mode r and m is that value  of m appropriate to the mode of transporta- 

tion considered. 
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For (iii) two cost expressions are compared, and their difference AC 

is considered. 	If AC 0, no redistribution should be made since this 

is more costly than awaiting the procurement arrival. If AC < 0, redis- 

tribution should be made by that store and mode of transportation that 

minimize AC. 

The result for (ii) is quoted in the summary at 3.5.1. 

3.5.3 Discussion of Hadleytand Whitih's work  
(a), pc 

The assumption/in 3.5.2.2 may be criticised. 	It does not follow 

that since stock levels at most stores are 0 or 1, redistribution does not 

occur until there is a backorder. This surely depends on the redistribu- 

tion rule itself. 	Further, stock levels are not necessarily usually 0 

or 1. 	The cost case Hadley considers itself has safety stock levels of 

2 and 1. 

Clearly, it is more likely that redistribution will be required for 

a store experiencing a backorder than for the case where a backorder is 

not produced by a demand, but the assuinption that a redistribution 

necessarily occurs is not supported, and does not appear generally reason- 

able. 

The cost of such a redistribution and the corresponding shortage 

cost is: 

c 	+ c k . x  si  X 

The cost of awaiting the procurement is 

t'; s.1. 
where t' is the earliest time a procurement which has not been allo-

cated can get to this store. 

Clearly if t' 4 tx, there is never any point in redistribution; neither 

is there if:- 

c
s.
t' 	c

x 
+ c 

1 s. x 

cx i.e. 	t' 	+c 	x s 

Redistribution then should occur if t'> x + x cs. a. 
and then the back order will clearly last the time Ix; this is not an 

assumption, as Hadley states. 

Thus the cost associated with every shortage at store i is:- 
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cx t c 	if t l 	t 

	

s. x 	c
s 	

x 1 	S. 

c 
c
s1 .
t' 	if t' < x 	

2. c
s. 	x 
1 

Thus the expression for Cs,  will be less than that given by (3). 

3.5.3.1 	Criticism of expressions (5), (6), (7)  

The expression (5) would give the expected shortage occurring in the 

time period between allocations correctly only for a 0. 

	

In the case of 	< 0, the expected extra shortages in this time per- 

iod would be:- 

E 	dpba. (d) d=0 

However, both expressions ignore the dependence of pbai(d)  on E. Clearly 

if 	is very low (negative), then the time interval between allocations 

must be correspondingly low and so it follows that the summation of (6) 

cannot be used to compute a general expression for the expected (extra) 

shortages between allocations. 

Further, this author feels that'in expressions (7), (9), (10), (11), 
Hadley has mistakenly written c, 	s  "a . The inequality (12) seems to si 	si 
be in order. 

	

3.5.3.2 	Criticism of the expressions (9), (10), (11), (12)  

Little support is given for taking sias an approximation for the 

physical stock at store i after an allocation. Clearly there will be many 

cases where this virtual stock is either negative or greater than si  in 

which case equation (9) will not hold. 	This means (10), (11), (12) are 

not strictly correct. 

3.5.3.3 Why not incorporate a central store? 

Such a base stock system keeps down the overall inventory commitment; 

this is likely to be a good idea for those cases where inventory holding 

costs are high. There are numerous shipments in this model, arising 

from the very nature of a base-stock system and also because of inter-

store redistributions. The latter arise because of the length of the 

procurement lead time. 
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Completely discounted, however, is the feasibility of holding some 

stock in a central store from which a shipment instead of a redistribution 

could take place. The cost of extra stock holding involved may be more 

than offset by the saving of redistributions. 

If Q items were suitably shipped to the central store at a cost of 

c and then delivered in unit amounts to the stores, (at a cost of c
R) 

the cost of this policy per unit time is 

(1) approximately hPQ in stock holding: 

N 	AT 	N 
(ii) E AicR.  + ---QP 	l Y 

c - E A.c.. , in delivery costs (may be a saving 
1=1 i 	1=1 i 

if c
Y.  > cR.): 

(iii) extra shortage costs by shipment from central store instead of 

redistribution (may be negligible or even a saving). 

Savings equal to the total expected cost of redistribution would 

result' 

In the above, cR, is the cost of a delivery from central store to 

store i and c
Y  is the cost of a delivery from source to store i. i 

3.6 	The Work of M. Shakun and Comments 

3.6.1 Summary 

In a paper published in The Journal of Industrial Engineering13  

Shakun compares two types of inventory control for a multi-store complex. 

He classifies the two types as (i) "Independent", wherein each store orders 

according to its own economic order quantities and reorder levels, these 

being set independently of each other, and (ii) "System-Wide", wherein 

a "System Economic Order" is triggered by the total stock in the complex, 

and a decision is made as to how to split this order up into the alloca-

tions to the various stores. No central store is incorporated, and so 

rules for inter-store shipments to balance out the store stocks as stock-

out approaches are developed. The paper reaches the conclusion that con-

siderable savings are to be gained by use of a policy of "System-Wide" 

control. 

3.6.2 Comments 

The work of Shakun has not been covered ether than superficially be-

cause it is felt that it is not a particularly valuable contribution to 

the literature on the central store/sub-store system inventOryeontrol. 



It appears wrong 
re_pie,s;.sk,e_ct Fram 2j prOcklreme.n.t. 
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• 
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This is not to say that the paper does not clearly show a saving in costs 

by "System-Wide" operation over independent store operation. It is such 

a result that has led on to the present author presenting this thesis for 

governing the central store/sub-store inventory problem other than by 

independent sub-store operation. 

It is felt that incorporating a central store within Shakun's complex, 

substantially better control is possible. Shakun already makes the point 

that "it is better to delay the allocation until near the end of the lead 

period". 	Why not delay the allocation until as late as possible, until 

a store reorder level is met? This will entail, of course, keeping part 

of the system procurement in a store (i.e. the central store) to be called 

upon when necessary. Further, it is to be recognised that inter-sub-

store shipments are costly to the system if the cost per item of shipment 

is significant. This is because they are extra costs as opposed to ship-

ment from a central store, where only the fixed cost is relevant (the per 

unit variable cost is irrelevant since this cost must necessarily be in-

curred, if not now, then in the future). No indication is given as to how 

the system reorder point or individual store reorder levels are established. 

Neither is it clear whether the system "Economic Order Quantity" takes into 

account the cost of shortages or not. Further, it is not clear at all 

from which store and with what quantity, a store dropping to its reorder 

level will be replenished. 
to 	ccrwskcier el r2Qi&Et a=,...t.c,r,  to a •ator.e. 	cre-are.  

which is on  order. This might lead one to assume that the lead time for 

inter-store shipments is zero. However, although no figure for the lead 

time is given, it cannot be zero, otherwise there would be no point in 

considering redistribution until a backorder were experienced. If the 

redistribution lead time is t
r
, then there is no point in considering 

redistribution for those store reorder pdints which occur when the time 

until the procurement will arrive at the store is less than tr. The 

analysis appears in error in this respect. 

3.7 The Work of W. Lampkin  

3.7.1 Introduction  

In 1963, W. Lampkin presented his thesis3  for the M.Sc. degree in the 

University of London. 

given, and in ChaRter  Two, the literature appertaining to inventory contrell  

In the third chapter eight control • 
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procedures for the central store/sub-store problem are considered, and 

it is this work which is particularly pertinent to this thesis. 

Lampkin commences his discussion for the problem by considering an 

(s,S) system at each sub-store and an (s,S) system at the central store. 

He suggests that this simple scheme might prove difficult to improve on 

in practice. 

3.7.2 Suggestions for control policy  

Some suggestions of ideas intuitively likely to cause improvements 

over the above control policy are um put forward. 

3.7.2.1 Suggestion 1: Use of a cyolical review system 

at sub-stores. 

An (s,S) control system at the sub-stores will cause bunching of orders, 

and hence a high variance of orders on the central store. Hence the cen-

tral store would have to hold high levels of safety stock if it were to, meet 

most orders. This problem would be got over if a cyclical review control 
ecwal 	al- eacti sub-store- 

system at sub-stores (with *ha review periods -evEktidAgy=sfettee,r1) were used. 

The orders at the central store would be much smoothed with a correspond-

ing reduction in safety stock for the same service level to sub-stores. 

Specifically, the suggestion-is to review store i at the time in-

stants tx(i/N + r) where r =0,1,2 ..)I N is the number of sub-stores, 

m (1,2, ..., N) and t is the review period for sub-stores. 	It is re-

cognised that the cyclical review system is, in general, inferior to the 

reorder level system in that sub-stores would require to hold more stock 

to give the same protection against shortage. 

3.7.2.2 	Suggestion 2: Use of an (s,S,t) system at sub- 

stores. , 
Pe,t-, 	a  reasc*-014a c_A=ve, Vzmi.st; 	 escavo.","es or an 

cev i‘eyi SySI•ewt Cca kPe 
t 

e 	, 	akr) C.s 5, 0 	 54.4b-sLore,5_, 
It IG slaggested that this cuggcs

t 
- •• 

which  Suggestion 1  facoc.  

3.7.2.3 Suggestion 3: Schedule sub-store reviews so that 

demand in the lead time is reduced. 

It is supposed that the central store works on an (s,S) system and 

the sub-stores on a cyclical review system according to Suggestion 1. 

Suppose that the central store procurement lead time L is almost a multi-

plte of (t/N), say L =m(t/N). 

Now since a central store order must be triggered by a sub-store order, 

then if LN/t > m o  we have m sub-store reviews in the lead time whereas if 

(s, s) sysln-n anci 
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LN/t < m, we have (m-1) reviews. Thus it may be possible to reduce the 

number of reviews at sub-stores in the lead time by a small change in t. 

3.7.2.4 Suggestion 4: Trigger the central store ordering 

by the total stock in the whole system. 

If knowledge of the sub-store stocks is available, the above suggestion 

is a simple way of utilizing this information. 

3.7.2.5 Suggestion 5: Keep a running account of the probability 

that the central store virtual stock will be below zero 

in time L, and let the central store order when this 

probability drops to a certain level. 

This is said to be equivalent to the central store ordering at 

"comparable" stock positions for the sub-stores. 

3.7.3 Model and operating rules  

The above suggestions were investigated by simulating their application 

in the following model: 

5 Sub-stores. 

Sub-store Demands Poisson, Mean Rate 10. 

Sub-store Lead Time zero. 

Central Store Lead Time .4. 

Captive demands at both levels. 

Shortage costs at sub-stores proportional to backup. 

Holding costs proportional to average stock. 

Central store ordering costs proportional to number of orders. 

The following operating rules were stipulated. 

(1) No inter-sub-store deliveries. 

(2) If the quantity in a central store is less than the sub-store 

order, the amount available is shipped, the balance remaining captive, 

and delivered as soon as Stock becomes available. The latter delivery 

is termed 'extra' (as opposed to 'normal') and there are different asso-

ciated costs. 

3.7.4 Restrictions on policies  

The point is made that, apart from Suggestion 3, the suggestions given 

do not involve mention of the order quantities, either of the central store, 

or of the sub-stores. It is reasoned that these quantities will be, in 

the main, governed by the costs of ordering and delivering, respectively, 

and so should be about the same for each control system based on the 

different suggestions. 
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It was then decided to restrict attention for the specified model to 

policies with a fixed average order quantity of 30 for the central store 
and 5 for the sub-stords. 

A cyclical review system at sub-stores will:generally result in over-

shoot at the central store, and so some additional arrangement was 're-

quired in order to make the systems comparable, since now it was not always 

possible to ensure an average order of 30. It was argued that for the 

results of comparison to be meaningful, it would not be sensible for one 

control system to show up best for certain values of the cost parameters 

only because its average central store order quantity was nearer to optimum 

than that of the other system. It was suggested that the problem be over-

come by fixing the central store order cost such that the optimum reorder 

quantity is about 30. This suggestion was supported by the fact that 

the cost curves are flat near the optimum, so small differences in the 

average order quantities for the central store have negligible consequences. 

3.7.5 Approach to the problem  

The following policies were simulated for the central store/sub-store 
complex. 

Policy Type 

A 

Central Store Policy Sub-store Policy 

(s,S) system, 8=s = 30 (s,S) system, 	S-s = 5 

(s,S) system, S-s = 30 Cyclical Review System 

t = .4965 

(s,S) system, S-s = 30 Cyclical Review System 

t = .5001 

(s,S) system, S-s = 30 (s,S,t) System with 

B 

C 

D 

E 
	

(s,S) system worked on total 

complex stock; S-s = 30 

F 
	

(s,S) system worked on total 

compleg stock; S-s = 30 

G 
	

(s,S,t) system taking advantage 

of precise scheduling; orders 
triggered on total complex 

stock 

H 	Continuous review; "Order when 

probability of central store 

stockout time L hence reaches 

trigger level" 

S-s = 4, t = .2001 

(s,S) System, S-s = 5 

Cyclical Review System 

t = .4965 

Cyclical Review System 

t = .5001 

(s,S) system, S-s = 5 
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Each policy-type was simulated for a period of at least 300 years and 

the following were observed:- 

(a) the distribution of stock in the central store; 

(b) the distribution of stock in the sub-stores; 

(c) the number of normal deliveries; 

(d) the number of extra deliveries; 

(e) the average size of a central store order; 

(f) the average size of a sub-store order; 

(g) the distribution of central store stock just prior to delivery. 

(g) is designed to see if Suggestions 1 and 5 have their desired 

effect. 

3.7.6 Avera&e reorder quantities for a (s,S,t) system with Poisson  

demands  

Some of the policy-types to be simulated have cyclical review or 

	

(s,S,t) systems controlling sub-stores. 	It is necessary to be able to 

predict the average reorder quantity from the s,S,t levels in order that 

it can be made equal to 5. 

If sub-store demand rate is Xi' then the expected size of the next 

order from a sub-store is found to -be:- 

`"(tX.t)i  -nX.t 
Q 	X.t (1 -E 	l e l j 

n=0 1 	i=q i. 

where q is the nominal reorder quantity (S-s). 

The values of t for which CT = 5 were obtained from this expression 

by a plot of Q versus A.t and interpolation. The results are given below:-
1 

S-s 

1 	.4965 

2 	.4758 

3 	.3982 

4 	.2001 

5 	0 

3.7.7 Discussion of the policy types  

3.7.7.1 Policy Type-A  

This is the method of control described as an 'obvious first thought'. 
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3.7.7.2 	Policy-Type B  

This is an adoption of Suggestion 1 - a cyclical review system at sub- 

stores. 	The reviews at sub-stores are .4965 time units apart. 	Since 

there are 5 sub-stores, a central store receives an order from a sub-store 

every .0993 time units. 	During each central store lead time, there will 

be four orders on the central store. 

3.7.7.3 Policy-Type C  

This is an adoption of Suggestion 3. By increasing the spacing of re-

views to .5001, the average order size of sub-stores is negligibly changed, 

yet now only three orders occur on the central store during its supply lead 

time. 

3.7.7.4 Policy-Type D  

This is a dual adoption of Suggestion 2 and of Suggestion 3. There 

are three possible (s,S,t) systems for the sub-stores (see the (S-s) vs. 

t table above) intermediate between policies of reorder level and cyclical 

review. 	The combination (S-s = 4, t = .2001) was chosen since: 

(i) .2001 was the most nearly intermediate between zero and .4965: 

(ii) the value, t=.2001, enabled the precise scheduling of Suggestion 

3 to be incorporated. 

3.7.7.5 Policy-Type E  

This is the application of Suggestion 4. 

	

3.7.7.6 	Policy-Type F  

This is an application of Suggestions 1 and 4. 

3.7.7.7 Policy-Type G  

This is an application of Suggestions 1,3,4. Central store orders 

are triggered by the total stock in the stores complex according to an 

(s,S,t) policy where the review instants are such that they occur just 

after each sub-store review. In this way stock will have just arrived 

in the central store when a sub-store orders. 

3.7.7.8 Policy-Type H  

This is an attempt at adopting Suggestion 5, with a reorder level 

system at sub-stores. Simulation time was deemed too much for calcula-

tions after each demand to obtain the probability of the central store 

stock dropping below zero in the following time L (= .4 time units). The 

following alternative suggestion was adopted. 
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7ach sub-store has five possible notional stock positions 0, 1, 2, 

3, 4. Each of these positions has associated with it an expected number 

of orders by that sub-store in the following time L and also a variance 

about that mean. 

After each sub-store demand, the mean and variance of the total orders 

on the central store in the following central store lead time was calcu-_-__ 

lable by use of the means and variances of the individual sub-stores' orders. 

The ordering rule adopted was:- 

"Order if 5 x Mean Number of Orders 5 x k x Standard Deviation of 

Number of Orders is greater than the Notional Stock at Central Store". 

The parameter k was varied between -0.7 and 2.80 in steps of 0.35. 

3.7.8 Simulation results  

3.7.8.1 Variance of central store stock just prior to  

delivery  

It is shown that, in respect of variance of virtual stock at the 

central store just before a supply of stock to this store, those policy-

types incorporating cyclical review at sub-stores are best. Additionally, 

of these, those using the total stock to trigger the central store order 

Fpfic.;es F,G) are best. 	The same is true of the policy-types using 

a reorder level policy at sub-stores. The more complicated policy-type 

H is not better than E. 

It thus appears that Suggestion 1 has some merits. whilst Suggestion 

2 	does not work at all. 

3.7.8.2 Service given by central store  

Three criteria of this measure are considered:- 

(i) average central store backup*  

(ii) proportion of sub-store orders not met completely 

(iii) proportion of sub-store orders not met at all. 

Each criterion of measure is plotted against the total cost of stock 

holding and ordering at the central store. Policy-types F,G are almost 

identical in performance (i) whilst policy-type D is worst, corroborating 

opinion on Suggestion 2. 

By use of criterion (ii) policy-type G is best, with C runner-up. 

F performs badly. 	Criterion (iii) has G best with C runner-up. 

)k" 
L--"""e-  al`e-racie-41  r1L-" -- 	,,.h7h5 orclOre-a on 	6±-ors r13 	•St,1 	C.CI at arca 
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3.7.8.3 	Costs of the best policies  

Lampkin tabulates the annual costs of operation for the optimal com-

bination of parameters (the latter being reorder level at sub-store and 

the central store control parameter). 	The cost of ten deliveries (since 

all policy-types are committed to at least ten deliveries per annum) is 

deducted throughout. 

The results'clearly show that all the policy-types incorporating cycli-

cal review at the sub-stores are inferior to the worst of the reorder level 

at sub-store policy-types. 

The policy-types with a reorder level policy at sub-stores have two 

advantages. 	Firstly, better sub-store performance results and, secondly, 

stocks can be arranged so that the central store always contains a multiple 

of 5. 	In this way it is said that the delivery totals can be minimized; 

either there is a normal delivery of five units and no extra delivery is 

necessary, or no stock is available, whence the cost of a normal delivery 

is saved. 

Lampkin expects, then, that the reorder level based policy-type to 

show up best when:- 

(a) cost of shortages at sub-stores is high: 

(b) extra deliveries cost no more than normal. 

Two examples are chosen, one when (a), (b) hold true, the other where 

the converse is true. Even in this second example, it is shown that the 

reorder level-based policy-types work better. The advantage is seen to 

be in the costs of stockholding and shortages. The conclusion is drawn 

that Suggestion 1 is of no value. 

Also noted is the fact that for many cost combination performances, 

the second advantage of the reorder level based policy-type (viz. the 

ability to arrange stocks so that the central store always contains a 

multiple of 5) is not utilized in many cases. The reason given is that 

holding one unit extra over the multiple of 5 enables the central store 

to supply a needy sub-store. When the central store runs out, the sub-

stores have to manage until the next supply arrives at the central store. 

The latter time is generally short and often just one unit would be 

enough to save a shortage. It is shown that even where delivery costs 

are high, it is often worthwhile having extra deliveries to prevent 

shortage. 

It is suggested that a rule to ration stock when the central store 

is low might prove a good idea. In concluding the discussion of the 
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results, Lampkin puts forward his view that, whilst not being able to provide 

information regarding the reliability of the figures in his table of results, 

policy-type H is best, and probably could further be improved by allowing 

central store stocks to be other than multiples of five; 

3.7.9 	Conclusions  

Lampkin concludes from his work the following points related to his 

specific suggestions:- 

1. The use of evenly spaced cyclical review policies at sub-stores, al-

though reducing the variance of demands on sub-stores, is inferior due to 

the basic inferiority of cyclical review compared with reorder level based 

policy. 

2. The 'compromising' use of an (s,S,t) system at sub-stores with evenly 

spaced reviews does not reduce the central store orders' variance much. 

It is said, however, to be better than cyclical review. 

3. The use of precise scheduling seems valuable at first sight, but for 

practical applications, seems difficult to utilize. 

4. The use of total stock for central store trigger seems valuable. 

5. The use of a policy-type triggering central store orders by a target 

level for the probability of the central store stock being depleted time 

L in the future seems slightly better than triggering the complex order 

on total system stock. 	However, this conclusion is not stated with com-

plete confidence. 

6. It is not usually a good idea to arrange central store stock to be 

a multiple of sub-store order; one or two units above the multiple is a 

more sensible idea. 

3.7.10 Comments on the work of Lampkin  
valtAa6)e 

This author feels that the work of Lampkin is a useful contribution 

to the literature on the problem of controlling a central store/sub-store 
ilead 

complex. 	It i3 very uccful for Operational Researchers/to know the effect 

of different policies to control such a complex, and with Lampkin having 

done the basic research work for a wide range of policy-types and cost 

combinations here is a good guide for the choice of a policy-type to suit 

a particular need. However, the practical applications do appear to be 

somewhat restricted by the assumptions, especially the one specifying zero 

lead time. 	It is felt that a justification of the assumptions and an 

attempt to indicate their non-engendering of speciality for overall prac- 

tical application would have been worthwhile. 	It is, of course, recognised 
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that-the assumption of no inter-sub-store replenishments was necessary -

otherwise much more work would be entailed to establish a more realstic 

model. 

All the suggestions presented initially by Lampkin appear feasible, 

and it is only simulation that can show up the performance of the complex 

under control of the different policy-types. 	It might have been useful 

to apply some significance tests to the results. 

Most important of all, this author feels, is that the simulation re-

sults show the overwhelming superiority of policy-types E, H. Both in-

corporate a reorder level policy at sub-stores and E has the order for the 

complex (procurement) trigger on total complex stock whilst H tries to 

utilize more information regarding sub-store stocks. Thus this points 
sensible 

the way to more usomitul criteria for triggering the complex order. 

Lampkin in concluding his thesis, suggests that the order trigger 

should take into account the sub-store individual stocks. 	Clearly this 

is the more sensible thing to do, when the information regarding the 

latter is available centrally. When it is not, one can fall back on one 

of the other policy-types. When this information is held centrally, 

even greater improvement is available over E and H. The size of the order 

to the sub-store can now not necessarily be constant, as in E, and H; 

rather, it can vary to take into account the stock positions of all stores 

in the system. This is just what Lampkin advocates - rationing stocks to 

stores in difficult times (when not much stock is available over the whole 

stores complex). 

3.8 The Work of K.F. Simpson, Jr.  

3.8.1 Summary  

In a paper to Operations Research, Simpson
15 considers the problem of 

allocating a procurement to a series of stores. A further procurement 

is expected to arrive at a known time in the future. The demand statistics 

at the stores are known. Simpson proposes a model for two management 

objectives and gives, with a proof, a theorem of allocation for each case. 

No central store is assumed, but the decisions are made by some central 

agency. 

3.8.2 	Simpson's model  

The allocation to be made from the procurement Q must last a known 

time ,T for the case of a cyclical reorder scheme. For reorder level sys-

tems, the time T will not be known, but Simpson assumes it can be estimated 
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sufficiently accurately from demand forecasts. The quantity to be allo-

cated is assumed given. 

3.8.3 The first management objective considered. 

The case of "Emergency Replenishment" 

This objective is the ease of replenishing a sub-store when it reaches 

an emergency reorder level, set high enough so that shortage at a store 

is seldom experienced. 

The sources of this "emergency replenishment" considered are:- 

(i) original source: 

(ii) another store with surplus stock. 

Whatever the source, the cost of the emergency replenishment procedure 

is said to be approximately proportional to the number of emergency replen- 

ishments. 	Simpson's model assumes exact proportionality. 

Further, Simpson assumes that the initial allocation is always suffic-

iently high that a particular store will not require to be "emergency 

replenished" more than once in any given "replenishment period".* Then if 

the cost of emergency replenishment is cRi  and the initial allocation to 

storeiisA.,then the probability of an emergency replenishment is de-

noted by P(di  >, Ai  ri) where ri  is the reorder level for store i and di  

is the demand on store i before stock from the new procurement can arrive 

there. 

The costs then per replenishment period are in total 

E cR.  P(d. >' 1 A. - ri) 
i - 	1 =1 1 

for the N stores. 

3.8.3.1 The optimal allocation policy for the "Emergency  

Replenishment" case  

The above will be found from the minimization of (1) subject to Ai); 0, 

N 
E A

i 
= 

i=1 

The following theorem, Theorem 1, proved in an appendix, is given: 

"Theoptimalallocationrequiresthatc1, 	is equal for 1 	1 1 
each store." 

* i.e. before it gets its next "normal replenishment" or allocation. 

(1) 

Q. 
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3.8.4 The second management objective. 

The case of "No Emergency Replenishments" 

This case deals with a policy-of having no reorder level and allowing 

stores to incur shortages without any action being taken until the next 

procurement is available. The shortage penalty csi  is assumed 
.th 

time- 

independent. 	If the density functiOn of demand at the 	store is gi(d1) 

then the expected cost of shortages for store i is 

00 
f
A 

c
Si
(d' - A.1) g.1(d') dd' 

whence the total cost of shortages is:- 

N 
E f 	c (d' - A.) g.(d') dd' 	(2) 
i=1 A. Si 	

a. 
1 

3.8.4.1 The optimal allocation policy for the "No Emergency  

Replenishment" case  

The problem of establishing the Ai  such that expression (2) is mini- 

mized is said to be analogous to the previous problem. 

The following theorem, Theorem 2, is given: 

• "The optimal allocation requires that the weighted probabilities 

cS.1 P(d. 	1. A-) be equal for all stores." 
1 

3.8.4.2 	The case of equal c,. 01  

If all the csi are equal, then the optimal allocation policy is such 

that the probability of a demand on a.hy store being greater or equal to 

the amount allocated is the same for all stores. Distinction is made 

between this result of equalising the distribution function P(di  Ai) 

and the result of equalising the probability density function for the case 

of emergency replenishment (for the case when the reorder levels ri  are 

all zero and the 
cR,  are identical). 

3.8.5, Applications of given theorems  

Equalisation of probability density functions is admitted to be im- 

practical for the case of large numbers of items. 	It is said that fore- 

cast errors at different stores, normalized by dividing by the standard 

deviation of forecast errors, frequently have the same distribution for 

all stores. 	When three conditions are met, the theorems have greater 

applicability. 	These conditions relate to the density function f(x) 

of the common distribution referred to above. They are:- 
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(1) f(x) decreases in (0,c0): 

(2) f(x) increases in (-00,0): 

(3) f(0) 4 I. 
The normal distribution satisfies these conditions. 

3.8.6 The "Emergency Replenish" case  

The case where the common distribution f(x) of forecast errors meets 

conditions (1) to (3) inclusive is considered. 

The probability of a demand between Ai  and (AtdAi) at store i 

(1/ai) NAi-Fi)/ai} dAi  
where F. is the forecast of demand at store i in the period T and a.1  is the 

standard deviation of past forecast errors. 

The function f(x): 

	

g(x) = ( f(x) 	for x 0 

	

(1-f(x) 	for 	x < 0 

is defined and the conditions (1) to (3) imply f(x) to be decreasing over 

,o0 ) 

Theorem 1 is said to be extendable to show that equating 

(cRi  Ali)g{(Ai-Fi)/ai) for all stores is both a necessary and sufficient 

condition for the allocation resulting to be optimal. The computation of 

the allocation quantities by an iterative method is said now to lie within 

the reaches of electronic computation. 

3.8.7 No-Emergency-Replenishment Case  

By similar means to the foregoing case, where the c6  are equal, a 

common forecast error distribution is all that is needed to reduce Theorem 

2 to the solution: 

A. = ((Q - EF.)/Ea ) a. + F. 1 	1 	i 	1 

(which is the same result for the Emergency Replenishment Case for the 

special circumstances where cR  /ai  are nearly equalfor all i). 

3.8.8 Comments on the work of K.F. Simpson, Jr.  

The above-described work is really only peripheral to the problem in 

hand, in as much as it only deals with the very specialised problem of how to 

allocate an amount of stock, once very important decisions have already 

been made. These decisions are that either the reorder level of stores will 

be r. or that stores will be allowed to experience shortage without replen-

ishment to them taking place. Even with these pre-established policies it 
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is not made clear what quantity to give to a store (in the case of 

emergency-replenishment). This is of no little significance if holding 

cost is itself not unimportant in the case that the stock comes from the 

original supplier.* In the case of supply from another store, there is 

again a substantial problem of deciding on the quantity, since the store 

from which the stock comes may be jeopardised by too high a quantity 

shipped out of it. Too little stock shipped may mean that further distri-

bution is necessary. To state that only one (at most) emergency shipment 

per replenishment period for any given store will occur does seem rather 

a restrictive assumption since actual demand may well exceed forecast 

demand. 

Where the cost of stock holding is minimal and where stock for the 

emergency distribution comes from the supplier at short notice, Simpson's 

work has some applicability. 	It is clear, however, that it may be ex-

pedient to hold some stock back instead of distribute out all the procure-

ment initially. This stock may be held either at a central store or at 

some other store. 

To summarise, this author feels that Simpson is establishing control 

of a Vta-well specified system. The fact that the arrival time for the 

next procurement is assumed to be known means that the buffer stock for 

the system is already specified. This may well be too high. The ri  may 

be either too high (such that a replenishment which might not really be 

needed could be saved) or too low, so shortage occurs in the lead time. 

The present author tackles essentially the same problem,of how to 

allocate a procurement amongst sub-stores and although the control necess-

arily prohibits inter-sub-store replenishment and requires a central store, 

and the allocation formula is in no sense optimal, it does try to esta-

blish reorder levels, quantities distributed, when to order a procurement, 

etc., not from management objectives, but from an overall view of attempt-

ing to optimise the combined procedures in control of the stores complex. 

All these considerations are interrelated and should surely be considered 

as such. 

* Or perhaps the quantity supplied is assumed a fixed quantity, and the 
cost associated with the replenishment takes into account an average extra 
stock holding cost. This will not strictly be correct since extra 
holding cost would necessarily, for a particular instance of a delivery, 
have to relate to the expected extra holding time, and thus the holding 
cost would differ appreciably for different delivery decisions. 
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3.9 The Work of S.G. Allen  

3.9.1 General  

This work was published17  in 1958. The complex that is considered 

consists of N stores, each of which holds stock, and no more stock is 

available to replenish this complex  until time T. 

At time zero stock may be redistributed over the stores as wished, 

with cost proportional to total number of units of stock moved. The 

objective function is the total cost of redistribution and shortages dufing 

the period T. This function is required to be minimized. What occurs 

beyond T is ignored for the purposes of this minimization. 

3:9.2 Notation 

Cost of moving 1 unit from store i to store j is c... 
13 

Probability that demand does not exceed r in time T for store i is 
pi(r). 

Each shortage costs c;. 

3.9.3 Analysis  

Total redistribution cost is:- 

	

N 	N 

CRT = E E 
ci313  .x..; 

i=1 j=1 

where x..13  is the redistribution quantity from store i to store j.  

Total expected shortage cost is:- 

N 

	

CST = c' 	E f 	(F-s.) dP.(r) 
1=1  

where s. is the stock at store i after the redistribution. 1 

The objective function is thus CRT +CST' which is to be minimized 

subject to:- 

	

N 	N 
s. 	s.°- E 	x.(i = 1,2...N) 1 

	

1 	ira  13 j=1  31 , 

where s.°  is the stock at store i before redistribution. 1 

The further restriction, x..2.3 	0, 	 (2) 

is given. 

It is stated that the assumption, 

cij < cik t °kj 
	 (3), 
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(which imples that it is always cheaper to ship directly from a store 

i to j than by any other indirect route) is sufficient to prevent the need 

for additional restrictions like:- 

N 
E x..$ s ko 

j=1 13  

since this is implied by equations (1) through (B). 

Ifthevalueofx..13' 	 13
which minimises TC = C

RT
+C
ST is x.., either 

a(Tc) 
ax. 
ii 

or 	(---1 
ax,. I 13 

51. 1j 

IX.. 13 

= 

> 

0 

0 and X.
1 
 . 
3  

= 0 

where a(TC)/ax.. = 	
3 

cl
s
{P.(s.) - ?.(s.)} t c

1
.. 

3 	1 1  

is satisfied for each pair (i,j). 

It follows that if:- 

1-P.(s.
1
o
) 1-P.(s.

o
) 1  

there cannot be any transfer from i to j. This means that redistribution 

will only occur when the receiving store has a higher probability of short- 

age than the shipping store. 

3.9.4 Computational procedure  

The suggested method is to vary just one of the x.
j  (with the others i 

held constant) until a conditional minimum is attained. This procedure 

isthenrepeatedfortheremainingx
ij  in cycles until a convergence 

criterion is satisfied. 

3.9.5 Author's comments on the work of S.G. Allen  

As this is essentially a publication peripheral to the work in this 

thesis, comments will be brief. 

There are two basic criticisms. Firstly, there is the non-provision 

of a further chance for redistribution within the period T should a store's 

stocks get to a level where the shortage cost can clearly be reduced 

by such a redistribution. 

Secondly, there is the possibility that the total cost of operation 

of the stores complex can be reduced by incorporating a central store which 

receives the procurement and ships some stock to stores out of each newly 
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arrived procurement. Further distribution from the central store or re-

distribution could then occur at strategic times in the time period T. 

As a result of the implementation of this central store, the total cost of 

shortages and deliveries might well be reduced to a figure below the op-

timum corresponding to the specific control considered by Allen. There 

is the further point that the value of T is itself a restriction. 

Relaxation of this restriction could itself lead to a cheaper cost of opera-

tion overall. 

3.10 The Work of S.A. Bessler  

3.10.1 Summary  

Bessler considers the case of a "Polaris type" multi-echelon supply 

complex consisting of a central store and N sub-stores. 	Replenishment of 

the central store and the sub-stores is periodic. Emergency replenish-

ments also occur to a sub-store whenever a backorder occurs at that sub- 

store. 	No inter-sub-store shipments are allowed. 

The optimal multi-echelon inventory procedure is a vector y, such that 
th at the order time, the 
.

sub-store orders that amount of stock to bring 

its notional stock to 	 .th 
(the latter being the 	component of y). 

Bessler constructs an algorithm with which to obtain y for a complex with 

a central store and three sub-stores. He goes on to compute optimal 

inventory procedures for various data combinations (unit cost, shortage 

cost, etc.). 

3.10.2 Introduction  

An item has a unit cost P and the cost of an emergency replenishment 

is cR' 	If the central store is unable to supply the sub-store (because 
e 

 

it is depleted) when an emergency replenishment is ordered, a cost C
1 
 re- 

suits. 	The case considered is:- 

P/cR  = 10; C1/cR = 15; 
e 	 e 

 

where the cash discount factor is 13 per period and where the demand 

comes from nine sources for sub-store 1, six sources for sub-store 2, and 

three sources for sub-store 3. The source demand pattern follows the bino-

mial distribution where the probability of demand for a unit in the in-

terval between replenishments is .01. The result of the application of 

Bessler's algorithm gives y = (1,1,0,0), i.e. Y0  = 1 (i.e. order to a level 

1 for central store), and yl  = 1, 72  = y3  = 0. 
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3.10.3 The model  

Let notional stocks for the central store and the N sub-stores be 

denoted by kt  = 
(xot' xlt' ...,xNt) at the general instant when ordering '  

is taking place, say the beginning of the tth  period (i.e. the suffix zero 

refers to the central store). Notional stocks after the order will be 

Yt 	(Yot' Ylt' 	YNt).  

The actual demand in the tth period over the N sub-stores will be 

some vector dt = (d dNt). This demand is assumed to be identically 

distributed between periods with a joint probability function of 

p(dl, d2, ... dN). 

Now let the vector of stock levels at the end of period t be e(yt, dt). 

Let sit  = Max((yit  - dit), o) 

and sit  = Max((di.
t  - yit 

), 0) 	, i = 1, 2, ..., N. 

th. Then if the 1 	component of s(yt'dt)  is s.
1
(y
t 
 ,d
t 
 ), we have:- 

N 
yo - E so(yt,dt

) 
1=1 it  

s.1(yt 
 ,d
t 
 ) = sit 

 , i = 1, 2, ..., N. 

This assumes all demands to be captive. 

3.10.4 The cost function  

Costs incurred during the tth period consist of a "regular" replenish-

ment cost, "emergency" replenishment cost and shortage costs. 

3.10.4.1 "Regular" replenishment costs  

The costs associated with the regular replenishment at the beginning 

of the t
th 

period, quantity (yt-xt), are 

N 
P x (yit 

 - x. ). 	Thus, it is seen that P is strictly the 
. 	it 1=0 

delivered cost of the item. 	(Production set-up costs are proportional to 

the number of units produced and are included in P.) 

3.10.4.2 "Emergency" replenishment costs 

N 
These arec

Re 
X Min( E it Yot)  

i=1 

3.10.4.3 	Shortage costs  

N 
These are C

1 	
Max -( E s! - yot 

 , 0) 
i=1 it  
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The sum of the emergency replenishment and shortage costs for the tth 

period will be denoted by g(yedt). 

3.10.5 Ordering policies  

The information available at the beginning of the tth period. is 

H = (xi, x2, ..., 	 The ordering t  
xt; yl, Y2' 	Yt-1; dl, d2, 	d 	). t-1 

policy Y = (Y1, Y2, ...) is a sequence of vectors. 	Yt  is defined on Ht, 

i.e. Y
t 

= Y
t
(H
t
) and (Y

t 
- X

t) will be the order vector for the central 

store and sub-stores at the start of period t. 

Clearly, we are concerned with those  policies such that Ye, xt. 
Such policies are termed feasible. 

3.10.6 Method of analysis  

Let W(y,d) = g(y,d) - acR  s(y,d). 	Suppose ft(x/Y) denotes the 

expected discount cost during p2riods 1, 2, ... t, when the initial inven' 

tory is xl  and the feasible policy Y is followed. Then we have: 

t 
, - ,t+1 c  f

t
(x
1
/Y) = 	c(E

1 
 al (c

Re
(y

i
-x
i
) +(d

ij 	P 	Re 

x 
 t+1)) i= 

The term at+1 c
Re 

xt+1 represents the disposal value for items left 

after t periods (i.e., the cost of satisfying the demand remaining after 

completion of the tth  period). 	Hessler goes on to show that f(xl/Y), defined 

by 

t 
lim 	f

t(x1/Y) = 	
a E iG(y.)) 	where G(y) = cR  y +E(W(y,d)) 

t+o, 	i=1 

exists for all Y. 

The problem is now reduced to finding a policy Y* such that 

f(x
1  /Y*) = Min f(x1  /Y) 

Yey 

where y is the class of feasible policies. 	If such a policy exists it is 

termed "optimal". 

3.10.7 The optimal procedure  

Bessler now proceeds to show that an optimal policy of particularly 

simple form exists for the problem described. 	If there exists a vector 

y = (yo, yi, 	ym) minimizing G(y) over the set Yi, then the optimal policy 

is:- 

Y (H*) = 
t t 
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where II* is the stock information available up to period t when following 

the optimal policy V. Thus for a complex of N sub-stores, the optimal 

policy is defined by a critical vector y = (yo, yi, 	yN). 	Then if 

at the beginning of an order period the notional stock xi  is less than Tri  

at sub-store i, an order for (ii  - xi) is placed. 	For all stores we then 

have a total ordered quantity of 

N 
E 	(yi  - xi). 

i=0 

Thus it must be shown that there exists a vector yeYi  for which 

G(y) = cR  y + c{g(y,d) - OcR  s(y,d)} 

is minimized. A theorem is given to establish this point. 

The problem of determining an optimal policy has now been translated 

into one of minimizing a function of the single period costs. That is, the 

vector y for which G(y) = Min G(y) is sought where 
ycY1  

N 	 N 
G(y) = c

Re 
(1-0) 	E y. +e(g(y,d) + cR  

1. 
	 di) 
=0 	e i=1 

To minimize e(g(y,d)),: 	,y(= yo, yl, 	yN) is formulated and solved 

by an N-stage dynamic programming problem. 

3.10.8 Algorithms derived  

For the case N = 2 a very simple algorithm is developed. 	It is para-

phrased as follows: "At each stage provide an additional unit to the sub-

store for which the return is greater. If there is no advantage gained 

from a supply of an additional unit to either sub-store, then stop." 

This algorithm has the feature of substantially reducing computations re-

quired to determine yg (the vector corresponding to minimal g(y)). 

Bessler goes on to develop a computational procedure for the case N=3. 

For more than three sub-stores an optimal distribution y is obtainable from 

the general method of solution. 	It is stated that a very desirable result 

would be the determination of restrictions to be satisfied to have a simple 

algorithm similar for the case N=2. Although this problem has been active-

ly considered, no solution is yet available. 

3.10.9 Comments on the work of S. Bessler  

The way in which Bessler takes into account the holding cost of the 

item is somewhat interesting. 	Whenever a sub-store orders a quantity,q say, 

then the cost of ordering for this sub-store is assumed to be Pq (where P 
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is the delivered cost of the item). 	Clearly it is not sensible to associate 

the actual cost of an item with an ordering sub-store. Account should be 

taken of the cost of the capital tied up with stocks at the ordering sub-

store, but this is just a percentage of the actual item cost. 

It may be more expedient to trigger an "emergency" replenishment before 

a sub-store receives a back order. Thus in no sense are Bessler's rules 

optimal from an overall sense. However apart from the aforegoing criticisms, 

the "optimal" policy suggested with the assumptions requisite for Bessler's 

model is likely to be useful for slow-moving items. 

3.11 The Work of D. Hoekstra 

3.11.1 Introduction  

Hoekstra considers20 a multi-echelon supply system for aircraft engines. 

The ability to support a given state of readiness of the aircraft popula-

tion is said to depend on the frequency of engine shortages, the length of 

time these shortages last and how many aircraft are grounded as a conse-

quence. 

Hoekstra tackles the problem from the point of view of "average customer 

waiting time", waiting time being the time a replacing facility has to wait 

for a replacement engine after removing an engine due for repair or over-

haul from an aircraft. 

The model considered is basically a specialized central store/sub-store 

problem except that the central store may be considered as the repair facil-

ity as well as a storage agent.When an item is sent to the central store 

for repair the sending sub-store is replenished as soon as possible from the 

central store. 

t. is the lead time for replenishment to sub-store i from the central 

store* and t
R 
is the time to repair an engine at the central store (taken 

as the time period between when the engine leaves the sub-store and the time 

it is in repaired condition at the sub-store). Both are averaged times. 

t
r 
is the average time for repair at a sub-store. tDi  is the average time 

in filling a demand at sub-stores as the result of stock not being available 

at the central store. 

Therateofdemandforsub-storeiisA.1 
 in total, of which A! are re-

turned to the central store for repair (instead of repair within the sub- 

store). 	The total rate of replenishment_ orders on the'central store will 

* When the central store is not out of stock. 
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then be E X' termed A RT. 
	The amount of stock in the central store 

(servicca5le physical stock plus stock in the repair cycle) is SM. r. 

designates the stock level at sub-store i equalling sub-store repair stock, 

physical stock, and transit stock from the central store. 	S
N is the 

physical stock in the central store less backorders from the sub-stores; 

the probability of SN  is designated by p(SN). 	The stock at sub-store i 

which is the sum of serviceable stock less backorders is n., the probability 

of which is p(ni). 

The average number of shortages in sub-store i is denoted by bi  and 

average time to fill a demand is tw. 

3.11.2 A note on central store availability  

The mean number of items in the central store repair cycle will be 

ARTtR . Clearly there will be times when the stock in the repair cycle 

exceeds A
RTtR to an extent that the central store is depleted. When this 

occurs, replenishments to sub-stores are delayed. 

The probability distribution of "net stock" S
N 
at the central store is:- 

p(SN) 

-XRTtR 	
S
M-SN 

e(ARTtR)  (1) 
(S

M
-S
N
): 

resulting in the average time to fill a demand when the central store has no 

stock of:- 

Di 	
= A

l 
E 	(-SN) p(SN) 

RT 	S
N
= -1 

(2)  

3.11.3 Average time to fill a demand 

The average number of items tied up in the pipelines attached to a sub-

store i is:- 

f (A.-A'.) tr 
 + A' (t

R  + kDi) . l 	i 	- (3)  

but fluctuates about this because of the Poisson distribution in demands. 

The inclusion of the factor AIR. . reflects the fact that the sending of an 
1 Di 

item for repair from sub-store to central store may not immediately be 

followed by a replenishment from the latter, since the latter may be depleted 

of serviceable stock. 

Sub-store shortage will always result if the number of items in the 

pipelines attached to a sub-store i (notional stock plus repair stock) 

exceeds the level r.. 
1 
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The expression for the probability distribution of n1, sub -store i's 

serviceable stock less backup, is given as 

p(ni) 

 

(r.-n.) 
1  1  

1 

 

The average number of backorders in sub-store i is given as 

b. = 	E (-ni) p(ni) , 
n.=-1 

and the average time to fill a demand, averaged over all sub-stores,is 

	

tw = 	E b, 
EX. 	i 
i 

3.11.4 Approach to the solution  

One problem which may require solving is that of allocating a given 

total I items over the complex to yield minimal average time to fill a 

= 1,2 ...) such that t 
w 
 (S

M 
 ,r.) is minimum, 

subject to SM  E r. 	I. 
i 1  

Hoekstra considers the following as characteristics of the optimum 

solution:- 

(i) Subtracting one item from any sub-store and adding to another 

sub-store will not improve the function tw: 

(ii) Subtracting one item from the central store and adding it to 

a sub-store does not improve tw, whatever sub-store is considered. 

3.11.5 The iterative procedure for the solution  

The following iterative procedure is given as one for which convergence 

to the optimum results: 

(i) SM 
 = 1. r. = 0 for all i. 	Compute t

w
: 

(ii) For k = 1,2,3..., compute t with S one less than before 

andric onemorethanbefore,leavingr.
wk
unchanged, for all i k: 

(iii) Is Min t < t ? w wk  

If Yes; put t
w 
 = t

w 
 and rk = rk  1 

Return to (ii): 

If No; 	tw is optimal. 

1 

(5)  

(6)  
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3.11.6 Conclusions/Results  

It is found that the decision as to how much stock to allocate to the 

central store has a distinct effect on the performance characteristics of 

the complex. Secondly, the stock level SM being retained by the central 

store is said to be surprisingly low for optimum complex performance. 

It is suggested that it is advantageous for the central store to be-

considered more as a repair facility than a storage depot, with stocks moving 

rapidly out of it once repaired. The point is made that for many types of 

item,the central store represents a relatively small part of the flow of 
stock. 	It is conjectured that the high level of protection against shortage 

at the central store (which characterises most "economic procurement quantity" 

models in use today) is largely unnecessary. 

3.11.7 Comments on the work of Hoekstra  

The work of Hoekstra considers a closed self-sustaining complex with 

no procurement problems, but the distribution of a given inventory investment 

over the central store and sub-stores. As such, the aid to management of 

an average time to fill a demand as a function of this inventory management 

is extremely valuable. The iterative procedure for obtaining the optimal 

distribution (i.e. of obtaining Sm, ri) such that the average waiting time 

to fill a demand is minimised, is remarkably simple. 

Although it appears sensible to replenish immediately a sub-store which 

ships an item to the central store for repair, no suggestion is offered that 

this procedure is optimal. 

For the operations system considered by Hoekstra this paper does seem 

to represent useful control. 

It does appear that equation (4) is not strictly correct. The reason 

for this is that the effective lead time is a random variable, and its mean 
--e p given by (3) is used as -.a constant in equation (4). 	A more _accurate 

version would be 

-- 	
r.-n. 

	

p(ni) = E 	 (r.-n. 

	

E 	~(E)), 	
1 1 

	

E 	1 	 * 

where is the effective lead time and its probability density function is 

gE). 

3.12 The Work of E. Berman  

3.12.1 Introduction  

Berman, in a paper published in Operations Research
22 

considers the 

problem of controlling stock in a complex consisting of a number of stores 
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with an initial even stock distribution and subject to a Poisson distribution 

of demand. No procurement from any central store or elsewhere is considered. 

Only redistribution between the stores is permitted. 

In each time period, the redistribution decision between a pair of stores 

is made using an analytical solution which takes into account the redistribu-

tion cost, the stocks on hand, the cost of shortage; and the demand probabil- 

ity function at the two stores. 	In addition a control parameter Bt  is in-

corporated representing the value of the redistribution in time periods be-

yond an artificial time horizon (i.e., it gives the fraction of the redis-

tribution cost charged in the tth period). The expected total cost of 

operation of the complex with different values of B is then determined by 

Monte Carlo Simulation. The ideas are extended to cover the case of the 

redistribution decision among three or more stores. 

3.12.2 Establishing the analytical solution to the redistribution  

decision  

The current redistribution decision is assumed responsible for shortages 

occurring between the time of arrival of stock redistributed now and the 

time of arrival of stock redistributed in the next decision period. The 

artificial time horizon for period t is the length of the period of the 

model plus the redistribution lead time. 

Thence, the cost associated with a stock (notional) at store i of 

s in time period t is:- 

CO 

C.(s,t) = c' 	I (x-s) fit  (x) 
s.  1 x=s+1 

where cs,  is the unit shortage cost* at store i and fit
(x) is the 

probability density function of demand at store i between the present period 

t and the artificial time horizon for the t
th 

period. 

3.12.3 Consideration of two stores  

It is argued that if C(s,t) has a greater slope for store i than for 

store j then the consideration of a stock redistribution can only be from 

store j to store i, not vice versa. 

	

A decision is to be made to ship a quantity qr  (30). 	The costs of 

this decision are 

CA(qr,t) = Ci(si+qr,t) + Ci(si-qr,t) 

+ (3tr qr + crf
) 	for q? 0 	(1) 

* This takes into account the cost of an "emergency redistribution" as well 
as the actual cost because the item is needed and is not immediately available. 
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where s., s.3 
 are the stocks at stores i,j before redistribution, and 

c , c are, respectively, the variable (i.e. per unit) and fixed costs 
re  rf  
of the redistribution. 

If qr  = 0 (i.e. no redistribution), 

CB(qr,t) = C.(s.,t) + c.(s.,t) 
	

(2) 

3.12.4 Method of proceeding to the solution  

Berman argues that the function CA(qr,t) is either increasing or convex, 

whence in the former case, the solution is qr  = 0. 	In the case that the 

function is convex, the qr  minimizing the function C(qr,t) is obtained, 

say qr, and then CA(4r,t) is compared with CB(0,t). 	If CA(Ir,t) < CB(0,t) 

then the decision is a redistribution of size 4,, otherwise there is no 

redistribution. 

3.12.5 A note on the B function  

The basic reason for this function is the need to allow for the fact 

that there exists the distinct possibility that the considered redistri-

bution, if not occurring now, may well be required between the same two 

stores (and in the same direction) at some later period. 

The 6t functions considered are characterised by the initial value of 

B (i.e. that in period one) and the shape of the function between this per-

iod and the last period considered in the model. Clearly at  functions: 

can be seen to reach a value of unity in the last period. 

3.12.6 Extension of the ideas to multiple-store redistribution  

Consideration of redistribution from two or more stores to one store 

is first made. The qr  items considered come successively from those stores 

which have the least value of C1(s,t) slope. If three stores are con-

sidered shipping to one store, equations (1), (2) are respectively modified 

thus: 

For store 1, cost of a redistribution of qr  to this store, 

CA(qr,t) = Ci(si+qr,t) + C2(s2-q2,t) + C3(s3-q3,t) 

+ C4(s4-q4,t) + 
	r q r + k cre 	f

) 
	

(3) 

where k is the number of stores contributing to the qr. 

CB(qr,t) = C1(s1,t) + C2(s2,t) + C
3(s3,t) t C4(s4'0 
	

(4) 
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where (q
2 
 + q

3 
 + q4 

 = q
r 

cq2  3 0, q3  >„ 0, q4  >, 0 

and are established accordink, to the criterion given above. 

In the case that redistribution is considered from one store to two or 

more stores, each incremental item considered for the various qr  must go 

to the store offering the greatest marginal saving (i.e., that having the 

greatest slope of Ci(s,t)). 

3.12.7 Comments on Berman's work  

Bertan's work is designed only to cope with the rather specialized pro-

blem of interdistribution between stores where no further procurement from 

any source will arrive in the future. The length of the decision periods is 

unfortunately neither defined nor suggested. 

It is very difficult to see the exact type of comparison which is sug- 

gested in the extensions of the ideas to multiple-store redistribution. 	It 

is not made clear whether shipment from the store with the lowest value of 

C(s,t) is considered before shipment to the store with the highest value of 

C(s,t). 

Neither set of decisions necessarily yields the optimal solution. 

A very large number of combinations of redistribution combinations is 

necessary for this. 

To illustrate this point, the optimal decision for a period t may be: 

Ship 5 from store 2 to store 4 

Ship 2 from store 3 to store 1. 

Berman shows no way in which this type of result is obtainable except 

by the (obvious) method of considering every combination of inter-store 

redistribution available. 

3.13 The Work of K. Borch  

3.13.1 Introduction  

In an article
23  in the Academy of Management Journal, Borch considers 

the problem of inventory decisions in a hierarchial inventory situation. 

The situation considered in a simple model is that of a retailer and 

wholesaler. 

3.13.2 	The model  

If demand exceeds stock, the retailer can order an amount up to z from 
each 

a wholesaler and he makes a profit of a2 
on the resale of .614.- 
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a1 is the profit he makes on stock demanded ex retaillstock: The retailer's 

expected profit is given as 

y+z 	y+z 
P(y,z) 	al  fy  x f(x) dx + a1 

 yf 	f(x) dx + a
2 	(x-y)f(x) dx 

CO 

+ (a
1
y + a

2
z) f 	f(x) dx - b y 

1 y+z 

.where y is the retail stock held by the retailer, b1  are the storage 

costs per unit, and f(x) is the probability density function of demand. 

For the case that the retailer knows z, his optimal stock is determined 

by 

DP/3y = al{l-F(y)) -a2(F(y+z)-F(y))-b1  = 0 

+z 
where F(y) = ff(x) dx 	and 	 +z) ,--Jf(x) dx 

Further, DP/Dz = a2(1-F(y+z)) 0, 

and so the retailer's expected profit increases with z. Thus, the retailer 

gains by the wholesaler-  holding large- inventories which can be called on 

when needed. 

By similar analysis, it is ahown that the expected profits of the 

wholesaler will decrease as the stock y held by the retailer increases. 

3.13.3 Results of the situation and approach to the solution  

The retailer cannot decide on optimal y unless he knows the wholesaler's 

choice for z. Similarly, the wholesaler cannot find an optimal z until he 

knows the retailer's choice for y. 

Two methods of analysis are considered by Borch. The first of these 

analyzes the situation as a learning process, the second as a Two-Person 

Game. 

The first method leads to an unsatisfactory solution, unsatisfactory 

since there exist a number of other combinations of y,z for which both 

parties receive higher profit. The second method employs the usual Game 

Theory assumption that parties are allowed to co-operate, and that they in 

some manner batgain their way to an arrangement which both accept as the 

best they can hope for in the given situation. This limits the range of 

considered (y,z) combinations, but to establish the eventual "agreed" com-

bination, additional assumptions are required. 

Borch continues by discussing ways in which to generalize this model. 

The introduction of price and the "general public" is cited. 



32 

3.13.4 Comments on the paper of Borch  

The hierarchial decisions involved here are interesting since they do 

have some relevance to a central store/sub-store problem where the supply 

to the central store is by a wholesaler. The models suggested by Borch 

can then to some extent aid a simplified model of the central store/sub-

store problem to be built in which some estimate of the stock available to 

supply the complex can be obtained. 

3.14 The Paper of J. Magee  

3.14.1 Introduction  

In an article
18  in the Harvard Business Review Magee considers a spe-

cific central store/sub-store complex with supply from a factory under the 

same ownership as the complex. 

It is strictly a case study and the way in which service was improved 

and production stabilized are the most important features. 

Originally central  store and sub-store stock control was very much a 

haphazard process. A suggested improvement was a reorder level based 

control for both sub-stores and central store, the reorder quantity for sub-

storesequaltohyi/hPwherecil isthefixedorderingcost,A.is 

the sub-store i demand rate and hP is the holding cost per unit time. 

The reorder quantity for the central store was made equal to 

/2o
P
A
T
/hP where c is the cost of a supply (procurement) and AT 

= EA.. 

Under this control, production fluctuations were no larger than 

before, but the average change in production was equal to 80% of the aver-

age production level, leading to excessive production costs. 

3.14.2 Stabilization of production:: Control 2 

A new control was established with cyclical review at sub-stores. 

The central store would order the issued quantity from production, and 

receive the order within two weeks or by the beginning of the next review 

period, whichever was the greater. 

The review period was established by considering the annual cost of 

operation with different review periods and then choosing that period 

yielding minimum total costs. Assumptions were:- 

(i) Sub-store buffer stock was such that there existed 0.25% chance 

of a shortage in any one week. 

(ii) Central store buffer stock was set to allow a 1% risk that it 

"would be unable to replenish all sub-stores immediately". 
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(iii) Central store stock would average at half the average demand in 

a cycle plus its buffer stock. 

(iv) Production change costs were proportional to change in produc- 

tion level between cycles - equivalent to change in overall demand on 

the complex between cycles. 

3.14.3 Results of the new control  

With the data relevant to the specific case considered about 60% of the 

former cost of operation was cut. Although total inventories were 

reduced by 70%, most of the savings was obtained from smoothing production. 

Further savings resulted since the reductions in production fluctuation 

made possible production deadlines to be met regularly, which cut the sub-

store lead time allowing small reductions in sub-store buffer stocks. 

3.14.4 A further suggestions for control: Control 3  

In a new suggestion for control, the sub-stores "report" stocks at 

periodic time instants and the factory produces according to the demand. 

in the previous period. Replenishment to sub-stores only occurs from 

the central store when the "reported" demand "totals" an economic shipping 

quantity. It was hoped that (i) this control would reduce production 

fluctuation and buffer stock needs still further and (ii) fewer sub-store 
replenishments would be necessary. 

3.14.4.1 Policy decisions required  

3.14.4.1.1 Period between reporting demands  

for sub-stores  

By considering the costs associated with reporting intervals of one 

week and two weeks respectively (these costs were taken as the sum of 

inventory holding cost, production change cost and clerical costs) and 

taking the interval giving the least cost, the period between reporting 

demands (it turned out to be 1 week) was decided upon. 

3.14.4.1.2 Size of replenishment to sub-stores  

By balancing inventory holding cost against replenishment costs and 

ignoring cost of backup, an economic order quantity is established. 

3.14.4.2 Results of this control suggestion  

Over 20% cost reduction of the previous control is the result quoted. 

3.14.5 Ideas for further production stabilization: Control 4  

The production level under Control 3 was being adjusted each week to 

account for the full change in inventory due to demand fluctuations in 
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the complex. The proposal here is to limit the adjustment in production 

to some fraction of the difference between actual demand and average 

demand. As the production is smoothed, the buffer stock will be corres-

pondingly greater. Study showed that the total cost of production change 

and buffer stock could be minimized with a response or reaction rate equal 

to .125, i.e. where the production adjustment is limited to .125 times 

the difference between actual demand and average demand in the period 

since the last report. 

3.14.5.1 Results of the application of Control 4  

Another total cost reduction by about 18% of that with the previous con-

trol is claimed. 

3.14.6 Comments on the paper of Magee  

As this paper is not intended to be a significant contribution to the 

theoretical literature, its non-generality cannot be a major criticism. 
a 

In showing that considerable savings may be obtained by/sensible inventory 
the:  per 

control procedure, ,(does excellent work. 

There are several minor criticisms, however. The first of these is 

that the economic order quantity for both sub-stores and the central 

store does not take into account the cost of backorders (which may or may 

not be significant in the case of Control 1. Clearly this decoupling 

of control and establishing of independent ordering rules is not very 

sensible anyway. In consideration of Control 2, inability of the central 

store to "replenish all sub-stores immediately" does appear to be some-

what ambiguous. Presumbly it means "being able to supply the whole of 

the order", and in this case, one presumes the central store would issue 

out all the stock it has. 

Control 3 includes an economic order quantity which again does not 

account for backup. Further, it is likely that (for other than short-

length periods between reporting demands) when replenishment to sub-stores 

occurs "reported demands" significantly exceed the economic order quantity. 

This in turn leads to either backup or unnecessarily high buffer stock, 

whence high inventory holding costs. 

The general computation throughout the paper of an economic order 

quantity is to be criticised. It is not clear that the computation takes 

into account all the relevant costs. 	The amount delivered and when to 

deliver to sub-stores are interrelated, and clearly the shipment quan-

tity should not necessarily always be the same when the distribution of 

stock over the complex is different. 
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It is not clear that the reporting of demands in Controls 3 and 4 for 

sub-stores means simultaneous reporting for sub-stores or lagged reporting 

times. Clearly there are some savings to be gained from the latter al-

ternative. 

The final point is that this case study deals with the special case 

of supply to the complex under the same ownership and most of the savings 

occurred from smoothing production. Control for this case is required 

to be adapted accordingly, and it is not necessarily true that this type 

of control is best suited to other cases where procurement comes from an 

independent concern or where production smoothness is not so important. 

3.15 The Work of J.A. Cran  

3.15.1 Introduction  
6ytkepresuitaatkor 

This work has been treatedLrather differently than previous works, in 

that whilst presenting this author's work, discussion takes place along-

side it. This is because it is felt that Cran's approach to the problem 

is a really useful step forward along interesting lines and the ideas for 

his control will be used as a basis of comparison for the ideas developed 

in this thesis. 

3.15.2 Summary  

Cran's work was triggered by the existence of a two:-level distribution 

problem, i.e., a problem concerning the central store/sub-store complex, 

for the factory warehouse (central store) to the thirty sales branch ware-

houses (sub-stores) of Massey-Ferguson Ltd., Toronto. 

Cran's model of the real complex consisted of a central store and ten 

sub-stores subject to equal random demand and separated from the central 

store by a two week (constant) lead time. irike-the-aut-Iter-in-t-11  
ams,.1 a L.5. the ry,esept 

pent, Cran,xcludes the possibility of transshipments between stores, 

He gives the reason that the unit cost for such transshipments is so much 

greater than shipment from the central store. 

Stock to the complex via the central store occurs, as in the author's 

model in one batch, the 'procurement' which,in Cran's case, is subject to 

a variable reorder'  lead time of known distribution. Demands on the com-

plex come only in the form of retail demands on the sub-stores, with back-

orders being accumulated. Procurements and deliveries between central 

store and sub-stores cost fixed amounts. 	Inventory holding charges are 

(as with the author's model) independent of whether the stock is held at 

central store or sub-store. 
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In his paper on this subject14 Cran states that "at first glance it might 

seem that this system could be controlled on a two-level E.O.Q. basis" with 

each branch ordering from the central warehouse in E.O.Q's based on its own 
forecast sales and the redistribution set-up cost. However, 	he fano 

to make cicar that 	in the case of steehaatie demand, the E.O.Q. 	formula 

gives too low a values for procurement steantity awing to the fact that it 

folio to take into aecetint the expected cost of ohortagcs. Cran then 

goes on to show the lack of rationale in a two-level E.O.Q. basis of con-

trol, this lying within the fact that when deciding on the quantity of 

shipment between central store and sub-store, the cost of holding stock 

should not be considered, as no additional holding costs result from that 

decision. One might add that even if additional holding costs did result 
from the decision on quantity of shipment the E.O.Q. rule would still not 

take into account expected costs of shortage at the other sub-stores, 

these, apart from other factors, being dependent on the amount of stock 

remaining at the central store. 

However, two important points require making at this stage. Cran 

notes that in widespread commerical applications of the complex under 

consideration each store (including central store) is controlled inde- 

pendently on high/low limits (presumably on an (s,S) rule). 	Secondly, 

he recognizes that such independent commercial operation is irrational for 

a complex under single ownership, and that a more sophisticated control 

involving a 'rationing' to the sub-stores is required so as to offset the 

excessive cost of shortage which can result from independent store opera-

tion on (s,S) rules. 

3.15.3 The proposed control rule  

When a procurement arrives at the central store, distribution to sub-

stores occurs at once according to the following procedure. The total 

stock in the system (including the procurement) is summed and back-orders 

subtracted. This gives "System Stock". 	Having a forecast of total 

the/time system demand rate, the/time until the total system stocks out, the "mean 

stock-time" is calculated. Then, in order to find the value of the stan-

dard deviation of sub-store demand during the actual stock-time, he makes 

the following approximation, making the assumption that the distribution 

of demands is Poisson:- 

22 2 fx.„7\ 0  

	

°STD.  = ( MSTD., 	\ 	ST 
1 	1 

where aSTD = standard deviation of sub-store demand during stock-time 
i 

T 	= mean stock-time 
IF the bital stock io  blie_ sisha,, s 6 ,,,,3 	.-,- 	111-e- totl sy,sk!vi, aflo, 	rv'ite,)  
v-wza,„ .s.,,,,j,-_ '..,.-,, e, ;s 	,f5/A, . Stock:ci;;.2 is ik, 'IN etaak 1-71,,Ic_ ,,,,.. 	the- .-;-5:1-e_.-. Stiank_s oz" (S.=.10) , 
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X. = forecast of sub-store demand rate during mean stock-time 1 
a
ST = standard deviation of stock-time 

= standard deviation of sub-store demand during mean stock-time 
GMSTD. 1 

The method of stock allocation will now be described. Each sub-store 

is allocated its mean stock-time demand (i.e. expected demand in the mean 

stock-time) less a 'hold-back'. 	The sum of the hold-backs from all the 

sub-stores is kept at the central store and is used for redistributions 

to needy sub-stores as stock-out of the complex -approaches. 

The hold-back is defined as a control parameter multiplied by the stan-

dard deviation of the relevant sub-store demand during stock-time. Thus 

the allocation* to sub-store i is A.T- 
AaSTD. 

where A is the control para- 

meter which Cran wishes to optimize. 	1  

3.15.4 Criticism of "Mean Stock Time" 

The logic behind the idea of "Mean Stock Time" is apparently to ensure 

that no sub-store has too much stock by the time the whole .complex is 
41/),I2 skis. 	czr,sb 	%not svv)11 

short. The criticism of this is that, the whole complex is likely to be 

short quite rarely  since a new procurement is likely to arrive well before 

stock-out time. This policy is then guarding against a danger which 
V/, 	8►xrr  
3gft4W444KAMWKW-S does not occur. 

There are a few instances where Cran's policy has relevance, and 

is likely to provide good control. This is where both the unit shortage 

cost is small and replenishment is cheap. Then good policies will 

necessarily entail sub-store shortages and the complex may have numerous 

deliveries without incurring high total delivery costs. 

3.15.5 	Criticism of holdback  

There is little rational support for making the holdback proportional 

to the standard deviation of stock-time requirements. Presumbly, the 

logic is to ensure that each sub-store has (roughly) the same (small) 

chance of being overstoeked.Oen the whole complex is very short of stock. 

We have already shown however that this is guarding against an almost 

non-existent danger, and to do this to the same degree in every sub-store 

is not a major virtue. 

3.15.6 Sub-store reorder point  

Cran's proposed rule considers redistribution from the central store 

to a sub-store whenever the stock level of the latter reaches a reorder 

level. The latter is established as a minimum stock level for a branch 

such that redistribution can be effected from the central store in the three 

* Note that this implies that shipment quantities equal allocation less 
notional stock for any sub-store. 
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week lead time (consisting of one week review plus two week redistribution) 

with little fear of a stock-out. The sub-store is then shipped the 

difference between the allocation and its virtual stock except when the 

allocation is less than three weeks' mean demand on the sub-store,when 

the allocation is altered to three weeks' mean demand. Redistributions 

'continue on this basis until the central warehouse (i.e. central store) 

stock is exhausted'. 	(Presumably, Cran also means "or until the central 

store receives a procurement, and then the redistribution cycle recommences".) 

Allocation, in the case of redistributions, is calculated in the same way 

as for the initial distributions to sub-stores occurring at the time of 

procurement arrival. That is, for each redistribution necessary, mean 

stock-time is calculated, and the estimated value of the standard deviation 

of that sub-store's requirements during the actual stock-time computed from 

the given approximating equation, holdback being the factor 'A' multiplied 

by this standard deviation. 

3.15.7 Procurements for the complex  

Procurements for the complex are considered whenever the total system 

stock falls below a reorder level M. The amount of a procurement quan-

tity is Q, and the three control parameters, viz. Tii", M, Q of the model 

are to be optimized. 

3.15.8 Some criticisms  

Pe 	 

 

Firstly 

 

there is no absolute necessity to distribute stock as soon as a procure- 

ment arrives at the central store. 

antT 	yl, the author feels that greater justification for 

raising the minimum sub-store allocation to three weeks should be offered. 

It is recognized that deliveries to sub-stores should carry a high value 

of stock if possible in order to reduce overall transport costs, but when 

overall stock in the complex (i.e. system Stock) is low enough that the 

calculated allocation is less than three weeks' mean demand, raising the 

allocation to an arbitrary three weeks can well increase the risk of 

run-out at other sub-stores. reurth'ly, it would be more helpful to rea-

ders if Cran were more specific about the establishment of the Sub-store 

reorder level than quoting it as "that level such that redistribution can 

be effected in the three week lead time with little fear of run-out". 
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If it can be assumed that this implies that there will be only a small pro-

bability of the Poisson demand exceeding the reorder level in'the three 

weeks lead time, this probability being decided upon by management and 

a policy variable (using such data as extra costs of holding stock versus 

drop in probability of run-out), then this is satisfactory, but should be 

made explicit. 	It might, however, be a better idea, to make such a pro-

bability-of-run-out a control variable, but inherent difficulties owing 

to the extra cost of optimizing a four-variable function are recognized. 

3.15.9 Determination of optimal cost of parameters and the asso-

ciated total cost of control  

Cran obtained an approximately optimal combination of the Q, M, A 

parameters by simulation. He wished to obtain an improved method which 

could establish the optimal combination for a variety of combinations of 

costs and demand rate. 
per unlb brne, 

In order to do this a Total Cost function4 T.C., was built:- 

A 	 Q-c(Ns) 
T.C. = 

Q
T  (c + c(Cp ) + c(NR) x cp) + ( 	2 	+ (M-ATL)) hP 

• • • 
	 (a) 

where AT is the total demand per unit time 

c is the procurement cost 

c(CR ) is the expected cost of shortage per procurement equal to 0 c(Ns) x cg 

c(N
R
) is the expected number of replenishments per procurement 

c(NS) is the expected number of shortages per procurement 

L is the procurement lead time 

hP is the holding cost, per unit time 

c
R 

is the unit roplonichment costa rep  

Cran then proceeds to obtain from the results of simulation graphs 

of the total number of replenishments yR  versus System Stock S for several 

values of the holdback factor A. The probability of reaching a particular 

value of System Stock and hence incurring the corresponding yR  will be 

governed by both the reorder level M and the distribution of System lead 

time demand. 

For a particular value of A, the expected total number of replenish-

ments per procurement, E(NR), is obtained from the following simulation: 

E(NR) = function (M,T) = E YR(S;T) X f(M-S) 	
(b) 

S=M 

where f(M-S) represents the probability that the total demand in the pro-

curement lead time is (M-S). 
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By a similar method which uses the result of ten simulator runs for 

total number of backorders ys  experienced versus Total System Stock S, 

Cran obtains by approximate integration a value for the expression:- 

e(NS) = function (M,A) 

He makes the point that strictly the yR, ys, are also functions of 

Q, but he considers the dependence to be sufficiently slight over the range 

of Q "involved in proceeding to a solution" that this effect can be ig-

nored. 

3.15.10 Differentiation of the total cost function  

Setting the partial derivatives with respect to Q, M, and A respectively 
equal to zero, yields the following set of equations:- 

	

Q = 1/2XT(cp  + c; x e(Ns) + cR  x e(NR))/hP 	(c) 

c; )-6-{e(Ns)} 	cR  hie(NR)1 	= 	(d) 

	

L AP 	c') a  {e(Ns)}- cR  a  .WNR)} (e) 

	

T 	aA 	3A 

where etS 
 is the unit cost of shortage. This analysis is only appli-

cable where c; e(Ns) = e(CR0), i.e. shortage cost is dependent on number 

of run-outs only and there is no time dependent cost factor. 

3.15.11 Method of obtaining the optimal combination of parameters  

Equation (c), being very stable provides a value for Q when M,A are 

guessed. 	Substitution of this Q in equation (d) yields M. 	Iterations 

between these two equations are said to settle down quickly to limit values 

for Q and M. 	Substitution of these in equation (e) yields A. The pro-

cedure now is tb return to equation (c) and use the new M,A and commence 

iterations again. 

This procedure can be used to obtain optimum Q, M, A for various 

P, h, cp, cR) combinations. 

Cran is particularly interested in knowing the cost of operation for 

different unit costs.P as the value of service (gauged as fraction of de-

mands which are immediately met) is varied. The method by which these 

results are obtained is interesting. The equations (d) and (e) are eval-

uated with various unit shortage costs c;. The performance of the complex 

with regard to backup thus correspondingly varies, and the relevant para- 

meters M, A and Q are obtained. 	However since the actual cost of filling 
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a backorder is essentially fixed, the total cost of operation in equation 

(a) is evaluated with the true value of c;. 

3.15.12 Comments on the method of determination of optimal  

'combination of parameters  

It is clear that the method given is restrictive. Firstly, it is 

able to deal only with those rules of demand in the stores complex for 

which the graphs e(NR), e(Ns) were established. There is no evidence 

to suggest that these curves will be identical for the stores complex if 

theindividualdemandrateX.changes and similarly these curves would re-

quire to be re-established for any other stores complex in which the in-

dividual A. were not identical with those employed in the one specific 

case considered by Cran. 

Secondly, the E(NR), E(Ns) curves are said to be dependent on Q, A, 

M, but the dependence on Q is slight "over the range of Q involved in 

proceeding to a solution". The implication is that to obtain Q for any 

one value ofhP, the curves may be considered as essentially independent 

of Q. However when coming to use the curves to obtain the optimal com-

bination of parameters for different values ofhP (other than that for 

which the e(NS' 
 
) c(CRO  ) curves were constructed) it will be seen from 

equation (c) that the range of Q can be quite high, with Q varying as the 

son) 
and of e(N5) 

inverse square root ofhP. Clearly, the dependence4on Q over the new 

range involved in the change ofhP is not slight. 'Hence it may be wrong 

td use the soft curves for the new iterations. 

Thirdly, by utilizing the e(N
R
), c(NS) curves in proceeding to a solu-

tion for the optimal parameter combination, the same reorder level for the 

same sub-store must be used throughout (there can be no postponements of 

a delivery to try and save the cost of a delivery by waiting until the 

procurement arrives at the central store) otherwise undesirable randomness 

, is likely to be introduced into these curves. 	Similarly a change in policy 
cahnot 

to one which ships out plenty of stock 'when the Complex has-adequate stocks?  

easily be incorporated if reliance is to be placed on the e(NR.), e(Ns) 

curves. 

Fourthly, the method of obtaining the optimal combination of parameters 

does rely at present on the fact that overall shortage cost is directly 

proportional to the number of experienced shortages. To cater for the 

case when overall shortage cost is time dependent, two curves would have 

to be considered, viz. (i) the expected number of shortages versus S, and 

(ii) the expected cost of shortages versus  S. 	It is likely however that 

the latter curve may require many more simulation runs to provide a good 
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average, since it is likely to be much more variable. 

3.15.3 Criticisms of total cost of control equation (a)  

Equation (a) is presented as the total cost equation for operation. 

It purports to account for the occurrence of backorders in the holding 

cost term. If the number of shortages which is expected per procurement 

is E(N ), then we expect (since this backup is captive) that c(NS) of the 

Q items arriving in the central store are earmarked for immediate ship-
ment out of the complex. 

The stock time graph for the physical stock in the complex is given 

below. 	—14 

ke 

I 
etN,\ 	 hiAv i 4- 04,5) _ r / 	

me. 

The average value of stock held in the complex is the value 

M - TL + e(N
S) + Area ABEDC/AB 

Area ABEDC = iAB(Q-t(Ns))+ 

Average stock 
t(NL 

ABm -A
TL E(Ns) + iQ 	AB is 	--__--- 

Now AB is the average time complex demands Q-E(Ns) items 

Q-E(N ) 

AT 

whence average stock 

.-.., M-i L 	
S 

T + -7-- + iQ + Q-c(NS) 

c(N )' 	c(NS)XXT 

If the product c(Ns)AAT  is small with respect to Q-E(Ns) the last' 

term can be ignored, but the average holding cost per unit time resolveS 

into 

Q + c(Ns) 
{ 2 	+ (M-AT0) IT, 

ih contrast to the expression for average holding cost given by Cran in 
equation (a). 
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3.16 Summary of Chapter Three and Introduction to Chapter Four  

This chapter has presented the works taking the steady state approach 

in controlling the central store/sub-store complex. The works by authors 

who do not deal with this particular complex but with similar stores com-

plexes are also reviewed. It was felt worthwhile to include them since 

some of the ideas presented are relevant. For example the papers of 

Hadley and Whitin and of Shakun deal with a chain of stores without a 

central store. In both cases, the present author shows how the incorpora-

tion of a central store is likely to improve control. 

The.model due to Hanssmann, and the work related to it by Lampkin is 

applicable where demands are normally distributed in review periods, and 

both central store and the set of sub-stores are controlled by cyclical 

review systems with simultaneous reviews. 

The model due to Lawrence applies where demands are from a Poisson 

process, sub-stores work on a base stock policy, and the central store 

stock is controlled by a reorder level system. 

Lampkin considers several control policies applied to his model in 

which the demands on sub-stores are from the same Poisson process and where 

the lead time out to sub-stores from the central store is zero. From con-

sideration of control with the different policies over a wide range of 

cost combinations, he concludes from his model that a reorder level based 

policy at sub-stores and a trigger taking into account the levels of stock at 

the central store and at the sub-stores are likely to prove to be valuable 

ideas. 

The model due to Cran is applicable where the sub-store demands are 

from a Poisson process, and where the sub-stores are controlled on a re-

order level policy. Cran triggers the order for the complex on the com-

bined stock of central store and sub-stores and pioneers a rationing 

rule which modifies the amount to be shipped to an ordering sub-store by 

an amount proportional to the standard deviation of the demand of the sub-

store in the "mean stock time". This latter concept is the expected time 

until there would be zero stock in the complex if the complex were not to 

be replenished from outside. 

In the following chapter, the author's own model is presented. The 

assumptions are discussed, and the data are given. The latter are ini-

tially taken to be comparable with one of Lampkints cost combinations, 

and the combination of assumptions plus data is referred to as the "model". 
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ASSUMPTIONS OF THE INITIAL MODEL OF THE COMPLEX 
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4.1 Assumptions of the Model of the Central Store/Sub-stores Complex  

in which the Control Rules were Developed  

4.1.1 Sub-stores have identical demand distributions  

This is no doubt an assumption which has significant practical limita-

tions, but, as has been mentioned above, this does not interfere with the 

usefulness of the model either in the comparison of operating rule costs 

or in indicating the method by which optimal parameters are calculable. 

It is admitted, however, that some concepts introduced may need slight 

modification when considering non-identical demand distribution on sub-

stores.* 

4.1.2 Demand on sub-stores is Poisson distributed and stationary  

This neglects within the model the possibility of seasonal variation 

and of predictable growth or decay in the demand rate, and hence the con-

trol rules adopted in their present form are not applicable to these cases. 

It will be shown later**, however, that the rules developed are robust 

enough to deal with minor unpredictable changes in demand rate. 

4.1.3 Fully computerised operation of the complex  

This means that all data related to the substores within the complex 

will be held centrally and will be up-to-date. 	In practice this implies 

that a real-time operative computer will control the complex, and, of 

course, no autonomous sub-store decisions will be allowed. 

This may not be the situation in practice for complexes of this 

nature at present but the author is noting that such 'automatic' control 

is rapidly growing, and there is a need for methods to control such 

systems. 

4.1.4 Demand on sub-stores is for one item per demand  

Once again this assumption limits the practical significance of the 

model. However, when the control rule is applied to a more real-life 

complex, where several items might be requested on every occasion of de-

mand, its basic form will not change. 

4.1.5 (i) Lead time between supplier and central store is constant 

e 

constant 	and the s-amc for ach aub store 

In some complexes of the type under discussion we may find that eiber 
Rif the assumption, above is not applicable. However, the basic control 

Example, "Free Stock" (see Chapter 5) 
Chapter 16. 
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rules developed here are independent of these poiRtS. 

4.1.6 No shipments of stock between sub-stores 

There may be times in practice when the shipment of stock from ,one 

sub-store with a high level of'stock to another requiring replenishment 

seems a good idea, but this has not been considered, as it presents an 

additional complication to the main elements of the control rule. 

However, it is recognized that, in the event of a run-out at a sub-store 

concurrent with a run-out at the central store, the best decision might 

well be to ship between sub-stores. 

4.1.7 Items are treated independently 

This assumption results in the model dealing with one item only. 

The practicality of this assumption is not, as might appear at first 

sight, limited to complexes wherein only one item is stored. 

The question to be asked i5:-
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"Under what circumstances can the inventory positions of other items 

be ignored when dealing with an item?" 

For the case of slow-moving items or where not many items are held, 

it is unlikely that a s~ipment of another or other items will be a good 

idea at the same time as the shipment at present undertaken. The value 

of using the present shipment to include some other item or items will 

diminish as the cost of the item goes up and as the cost of delivery goes 

down. 

In the case that the complex stocks many items there are likely to 

be shipments to each sub-store regularly. In this case the cost of a 

shipment of an order, whenever the order is made,' will only be the rele

vant marginal cost, viz. packing, stock movement records, requisition

ing costs and loading, unloading and binning costs. Whereas for slow

moving stock one might, in a rare instance, save the whole cost of a 

lorry's movement, in this latter case of many items, noth~ng is to be 

gained. 

We thus have two practical cases where the present model is appli

cable to a multi-item central store/sub-store complex. 

It is in the case where there are several items (neither few nor 

many) that treating items independently is open to criticism. In this 

situation, the decision at every sub-store order time will have to be 

made as to whether or not the stock of any other item held at this sub-

store should be replenished or not. The factors to be considered for 
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this decision are the savings available from the possible saving of 

deliveries and the penalty of cost of maldistributing stock by replenish-

ing this store with other items earlier than otherwise. Although it is 

an interesting problem, interdependence of items will not be considered 

further in this thesis. 

4.1.8 Run-outs at sub-stores can be dealt with only by sub-stores  

It may occur that a run-out has occurred at a sub-store and that the 

overall cost of run-out can in practice be cut by dispatching the goods 

direct from central store to the demanding customer than via the sub-store. 

In the general case, however, when there exists stock in the central store 

over and above the sum of sub-store back-up the shipment to the sub-store 

is greater than its value of back-up, so that it will then have some stock 

on hand. This, then, will reduce the possibility of incurring a saving 

by dispatching direct from central store to customer as indicated above. 

The limitingfactor will be the relative costs of delivery, run-out etc. 

The possibility of such saving has not been considered. 

4.1.9 Cost of stock-holding proportional to cash value of average  
stock held  

Strictly the costs of holding stock are the costs of labour to man 

stores, the overhead and maintenance of the stores, and the opportunity 

costs of keeping capital tied-up in stock. With the reasonable assump-

tion that over the range of stock that will be held within the complex, 

labour, overhead, and maintenance costs will remain independent of stock 

on hand, then the cash tied up in stocks remains the only significant 

factor. At any one instant the cash value of stock held in the complex 

will represent capital tied up in stocks, and in the long run this cost 

will be the cost of holding unit stock times the time-averaged value of 

the stock"time function. 

4.1.10 Demands on sub-stores are captive  

In the case that the demands on the sub-store of the complex occur 

from plant under the same ownership as that of the complex, run-out costs 

are clearly measurable in terms of lost production, and it is likely that 

their being proportional to time outstanding is a good estimate, at least 

within a simplified model. 

When, however, the demands on the complex sub-stores are from out-

side of the complex ownership, two possibilities occur. Either the de-

mand is dropped, the cost of run-out being then equal to the tangible 

loss in sales profit plus cost of loss in customer goodwill  or the  

demand is held 'captive' and the customer seeks supply when the latter 
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is possible. The longer the demand is outstanding on the sub-store in 

this case, the greater the loss in customer goodwill. The actual value 

of this loss of goodwill is considered quite significant by sophisticated 

management for it is evident that run-out will breed lack of confidence 

and lower the future volume of the complex's business. In the case of 

'captive' demands, it may be expedient to make the delivery to the cus-

tomer by means other than would normally be the case, in order to reduce 

incremental run-out costs by the demand being outstanding for longer than 

is physically necessary. 

The latter point will be ignored as it represents a complication to 

the main formulation of the control rules, but its significance can be 

invoked at a later stage. For the purposes of a simplified model, only 

the situation where demands are captive will be considered, as this is 

the situation considered by Cran14, with whose work the control rules 

suggested by the author are to be compared. The control rules need no 

modification to deal with the situation of non-captive sub-store demands. 

4.1.11 Cost of supply to sub-stores is constant; same for each  

sub-store 

Even in the case that the transporation medium is such that the 

delivery costs are of the form:- Constant plus Constant times quantity 

delivered, the quantity-dependent part of the cost may be ignordd for 

comparative purposes, since the total quantity delivered to any store is 

independent of the control rules when demands are captive and hence this 

cost would be incurred for any control decision made. It is unlikely 

that the cost function will involve powers of the quantity delivered; 

hence for the great majority of practical cases, the shipment cost is 

unaffected by shipment quantity. 

There is, further, an implicit assumption that the costs of supply 

to sub-stores are independent of the day or time-of-day at which supply 

takes place. Clearly, this is an approximation (though, it is suggested, 

a good one) for one can envisage a sub-store delivery on a Friday after-

noon in congested traffic costing more than a delivery at a more peaceful 

time in the week. 

Rather more important an assumption is that costs of supply to 

different sub-stores are the same. 	In the case of postal deliveries, 

this assumption is reasonable. In the case that the fixed costs of 

delivery vary between sub-stores, it would be prudent to reflect this in 

the control rules, but this point is ignored in the model. 



This means that the results from consideration of this model are 

strictly not applicable to models where there are different costs asso- 

ciated with deliveries to sub-stores. 	In answering this criticism, 

the author simply feels that to commence with, restrictive assumptions 

have to be made, and this particular one is thought not to detract sig-

nificantly from the value of the work. 

4.1.12 Cost of complex procurement (i.e. central store supply)  

constant  

The quantity of the complex procurement will be invariategt, and 

provided the supplier to the complex does not change its geographical 

location, cost is only liable to vary insignificantly (on time of day 

or day of week of replenishment) though the more likely situation is 

that a fixed cost will be quoted for every procurement, if this comes 

from an outside supplier. 

When, on the other hand, the procurement comes from the production 

of a factory under the same ownership as that of the complex, the pro-

blem of costing the procurement is more difficult. In addition to the 

costs of transportation and paperwork etc. the costs of change-over of 

tooling for the batch-production run (assuming that the factory is en-

gaged in batch production) should be taken into account. 

The timing of a central store order on its supply channel (viz. 

procurement order) to take into account the savings possible by making 

the order when the change-over cost is minimal represents a significant 

task to develop, and appears to be beyond the scope of the present work. 

Suffice it to say that for the purpose of the simplified model and for 

models of systems (i.e. complexes) to be considered under the proposed 

control rules, the most realistic cost of procurement will be the mean 

of the costs over a large period of change-over costs, transport and 

paperwork costs, taking the case of supply from a factory under common 

ownership. If supply is from an outside supplier, the mean charge 

should be used. 

4.1.13 Costs of run-out proportional to time backorder is  

outstanding  

In many cases of the stores complex serving a production facility 

it is reasonable to suppose that costs are being incurred throughout the 

full length of time the demand is outstanding. In other cases (for 

example, where a demand occurs for an item of equipment for a machine 

* developed in the control rules. 
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just finishing a batch) the costs of a backorder are not a function of the 

whole length of time the demand is outstanding but more strictly a func-

tion of the time the facility placing the demand is rendered redundant 

by this failure to supply. 

In most cases of supply to a production facility, it is felt that it 

is reasonable to assume that if a backorder occurs, the cost is a function 

of the total time the demand is outstanding. The exact nature of this'  

function is likely to differ for different production facilities, but the 

one that is felt most likely to represent the majority of cases is the 

function proportional to time outstanding. It is recognized that a 

function equalling "constant + time-proportional factor" may also suit 

many cases and even a quadratic time function is possible in other in-

stances, but since a unique form has to be assigned to the model, the choice 

of the first-mentioned is made. 

Additionally recognized is the fact that when the complex does not 

serve a production facility the cost of the backorder may well not be de-

pendent on the length of time the demand is outstanding. Since there are 

naturally many business instances falling into this category, a constant 

penalty for each shortage cannot be dismissed. 	Indeed, in Chapters 

16 and 17, we investigate whether the control rules developed work well 

under the assumption of a constant for each shortage. 

4.1.14 Penalty function for shortage identical for each sub-store  

This assumption is made, as with many others, not to particularise 

the model, but to ensure it does not become overburdened with complications 

which are not likely to make a great deal of difference to the overall 

manner of operation. This is not to say that certain modifications to the 

control rules will not be necessary to incdrporate different shortage pen-

alty functions at the various sub-stores, but it is felt that for the 

purposes of this thesis, the modifications which would be entailed are not 

major. 

4.2 Data for Model One  

For the first model, these were taken as those employed in a data 
3 

configuration considered by Lampkin, in order that some kind of comparison 

might be made between the results of this work and those with Lampkin's 

best method of control. 



Hence we have: 

Item Value = 1 Unit 

Cost of Procurement = .5 

Cost of Supplying a Sub-store = .3 

Cost of Sub-store Run-out = 40% Item Value per day 

Cost of Stock Holding = 10% Value of Average Stock per year 

Mean Demand on Sub-store = 10/Year, Poisson Distribution 

Number of Sub-stores = .5 

Working Days/year = 250 

Lead Time for System = .4 year 

Lead Time for Sub-store = zero. 

Five. 
4.3 Summary of Chapter and Introduction to Chapter tae  

Chapter Four discusses the assumptions that were felt to be necessary 

to establish a workable model of the stores complex. At a later stage*, 

some of these assumptions will be relaxed. 

In Chapter Five policies for controlling the complex are considered, 

and a first method of control is established. 
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* Assumption 4.1.'1 in Chapters 16, 17, 
Assumption 4.1.2 in Chapter 16. 
Assumption 4.1.13in Chapters 16, 17. 
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FIRST ALTERNATIVE METHOD OF CONTROL 
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5.1 Initial Considerations  

The restrictive nature of assumptions necessary to build a simple 

enough model to develop and test control rules has been discussed in 

Chapter 4. Despite these restrictions, it is argued that rules developed 

and tested on this model will be easily generalised to control real com-

plexes of stores. The method of establishing the optimal values of the 

control parameter for models of actual commercial complexes is similar 

to that for obtaining the optimal values of the control parameters in the 

author's simplified model. 	Some modifications to the control rules to 

make them applicable to more general complexes are discussed in Chapters 

16 and 17. 

There are five main decisions to be made in controlling the complex. 

The solutions to the following problems form the mainstay of the control 

rules proposed. The point is once again made that there are no auto-

nomous sub-store decisions, all decisions being made centrally with over-

all knowledge of the complex stock positions. 

5.2 Five Main Problems of Control 

1. How much stock should the complex reorder? i.e. what is the 

"Procurement Quantity", Q? 

2. At what instant should the complex reorder? 

3. At what instant should a sub-store reorder? 

4. How much stock should be allocated to an ordering sub-store? 

5. Should distribution be made to sub-stores necessarily imme-

diately stock arrives at the central store? 

To begin with, it was recognized that, inevitably, there would be a 

necessity to search over a wide range of combinations of the control 

parameters to obtain the approximately-optimal combination resulting in 

minimal total-cost of operation. This, in turn, led to the recognition 

that much effort and much computing time could be saved by diminishing 

the field over which search for the optimal parameter combination would 

be necessary. 

5.3 Reorder Quantity for the Complex  

An expression for the rationally correct value of the Reorder 

Quantity of the complex Q can be obtained by considering the cost of 

running the complex per unit time. 
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If the procurement quantity is Q, then there will be a holding charge 

for the inventory in which capital is tied up. This will occur if the 

procurement arrives from an independent supplier or from a factory batch 

production line under the same ownership as that of the complex, since 

the decision to order a procurement means further capital to be tied up 

in stocks. The annual value of this 

Inventory Holding Charge - hP(Q+2F)*  
2 

where h = rate per annum cost of capital to operating company 

P = cost per unit inventory 

Q = procurement quantity 

B = average buffer stock held in complex. 

Now with every cycle (the latter being defined as the time between arrivals 

at the central store of successive procurements) will be associated certain 

costs, viz. the cost of procurement, the replenishment costs of the sub-

stores, and an expected cost of run-out for the sub-stores. The number 

of procurements per annum will average at (XT/Q) where:- 

AT  = mean total demand on sub-stores per annum 

Then, if C
P 
 = cost of procurement 

and if cR = cost of a replenishment (i.e. delivery) to a sub-store 

then :if e(NR) = expected number of sub-store deliveries per procure- 

ment 

and c(C
RO) = expected cost of run-out at sub-stores per procurement 

we have 

Annual Total Cost of Operation of Complex 

hP(QtiE)  
feP tc

R_ 
 x c(NR) 	e(CRO)1 2  

Now B is independent of the value of Q, but e(NR) will depend on the rules 

governing sub-store distribution. These have not, as yet, been dis-

cussed in this thesis, but suffice it here to say that they are dependent 

on the total stock within the system. Thus it is seen that c(NR) is 

dependent on Q, but the relationship is complex. It is probably more 

difficult to discover the relation between c(C
RO) and Q, other things 

being equal, but it is likely that for high Q (i.e. long time between 

procurements), c(CRO) will be higher than for shorter periods of time, 

i.e., for lower Q. The variability of c(C
RO) over the range for which 

Q can seriously be considered is of small magnitude, and so for convenience 

* Here the effect on the holding charge of the occurrence of shortages is 
neglected. 
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and introducing small error, c(CR0) will be taken as a constant. The 

expression for the total cost of operation will be considered again in 

5.9, after showing how an approximating value for c(NR) is estimated. 

5.4 Reorder Level for the Complex  

The reorder level for the complex, M, should obviously be related to 

the form of the criterion which triggers reorder for the complex. 

However, the adopted trigger criterion is not a simple function of the 

stock levels at the various sub-stores, and hence the mathematical com-

plexity of achieving an analytically optimal value for M is enormous, 

and M will be considered as a control parameter to be optimized.1- 

5.5 The Trigger Criterion for the Reorder for the Complex (Procurement  

Order) 

Lampkin
3 concludes from a number of simulations involving several 

triggers that the trigger "... should contain information, if possible, 

about stock at the central store and sub-stores". 	It is not difficult 

to see this point. It is not prudent to trigger a procurement if there 

is liberal stock in the central store yet little in the sub-stores. 
On the other hand, it is unwise (because of the extra inventory holding 

costs) to make a procurement order if the central store has little stock 

while the sub-stores have plenty. Lampkin's triggers* fall into the 

required category. The (s,S) system worked by the total stock in the 

complex is similar to the trigger used by Cran, except that the amount 

of the procurement in the former case may exceed (S-s), whereas the 

latter keeps a fixed value. 

5.5.1 Why total stock is not a good criterion for triggering a  

procurement order  

There is one great failing in triggering a procurement on the total 

stock in the complex. This is that stock distributions of very dif-

ferent strategic value are treated as the same. 

In the first model, the expected number of demands on each sub-

store between the procurement order placement and receipt of stock from 

the procurement in a needy sub'..store (viz. L + t, i.e. 100 days) is 

4 each. The reorder level of the complex would be 35, for a buffer of 

15. The following stock configuration in the complex can be envisaged:- 

Configuration 1 ) 19,2,3,8,13, Sub-store Stocks (Notional) 
0, Central Store Stock 

* Policy-types E,F,G,H in Review of Ref.3, see 3.7.5. 
In Chapter 17, this problem is solved on an analytical basis. 
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System Stock, defined as total physical stock in the complex less total 

backorders, is 45. Reorder cannot occur before 10 units are demanded 

in the complex. 	In this time the expected sub-store demand is 2 each, 

resulting in a situation where the expected stock levels of two of the 

stores are zero and one unit, respectively. Yet the central store has 

zero stock and no stock can get to these needy sub-stores for 100 days, 

in which time an expected four more demands will be made on each. Thus, 

when the configuration of stock is as in this example, the indicated 

buffer is painfully inadequate. It is to be noted that the possibility 

of achieving such a stock configuration in a real stores complex is 

not minimal; forecast demands help towards this situation. 

On the other hand, we do not wish a system reorder level much in 

excess of 35 because this undoubtedly represents excessive costs of 

inventory holding when stock configurations (in which stocks are fairly 

evenly distributed) similar to the following example occur. 

Configuration 2 ) 4,7,2,5,5, Sub-store Stocks (Notional) 
15, Central Store Stock 

Here, System Stock is 38. 	Provided that a good method of allocating 

stock to sub-stores is in operation, it is likely that the complex can 

afford to reach a System Stock level of 35 or less before making an order 

for a procurement, without much likelihood of run-out at a sub-store. 

In one case, then, we have a complex of total stock 45 where reorder 

is overdue and one where total stock is 38, where reorder is not yet re-

quired. Thus information of the total stock in the system alone is in-

sufficient as a good trigger for system procurement. It is recognized 

that this problem is not alleviated by raising the system reorder level 

to take into account stock configurations of the first type indicated 

above, for excessive inventory charges will accumulate, as has been 

shown, when configurations like Configuration Two occur. 

5.5.2 Suggestions for the trigger for the complex supply  

Thus a trigger for the complex is required that will better indicate 

the need of the complex to be replenished. An important role of this 

trigger is that it should be closely related to the likelihood of the 

system acquiring penalty owing to a run-out at one or more sub-stores. 

It is apparent that with the first stock configuration  considered, the 

reorder point of the system should have been reached, yet it has not, 

the prime reason being that the whole system falsely appears to be 

'safe' because of the high stock levels of 19 and 13. 
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Two suggestions come to mind to conquer this problem. 

5.5.2.1 	Suggestion One  

The first suggestion is to ignore the "excess stock" of any sub-store, 

"excess stock" being taken in the following formula:- 

"Excess stock of a sub-store" 

= Max(0,(Notional sub-store stock - Average stock of sub-stores)) 

where Average stock of sub-stores = System stock/No. of sub-stores 

Thus for Configuration 1, 

System stock - Sum of Excess stocks = 45-10-0-0-0-4 

and for Configuration 2, 

System stock - Sum of Excess stocks 

= 

= 

31 

38. 

Although this appears to be a fair indication of the stock level in the 

complex to be used for a trigger for the second configuration, the first 

value of 31 appears still to be too high, for there exists in this con-

figuration the two stores with stocks two and three respectively which 

will be out of stock in an expected time of fifty days and seventy-five 

days respectively, yet even if a procurement is ordered at this value 

of the trigger (i.e. 31) there is an expected high cost of run-out that 

will be involved. 

Now it is recognized that for most complexes in commercial undertak-

ings, the ratio of the run-out cost to inventory holding cost is very 

high, and the first model of the complex thus established this ratio as 

.4 times Item Cost per day to 10% times Item Cost per year, i.e. ratio 

= 1000 (taking working year as 250 days). Hence the above first sug-

gestion of a trigger criterion is unsatisfactory because it still over-

estimates the 'safety' of the system relative to run-out. This sug-

gestion can be seen to be further modified by taking the value of 

(System stock - Sum of Excess stocks), viz. 31, for the first-considered 

configuration, dividing by the number of sub-stores, and obtaining the 

integer value of the result, thus 31/5 = 6.2 giving 6. Neglecting the 

stocks of stores above this value, we have 6+2+3+6+6 = 23, the new 

"modified system stock value". However, these modifications to obtain 

a more realistic value of stock within the system to compare with a 

trigger quantity, although heuristically acceptable, are believed to be 

inferior to the next suggestion to be considered. 
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5.5.2.2 _Suggestion Two  

A second suggestion, which gets over the criticisms lodged against 

the first, recognizes that the sub-store with a stock of 2 in the second 

stock configuration is not much more likely to incur any backorder cost 

(owing to running out of stock).than is the sub-store with stock 5, or 

the one with stock 7, because stock exists in the central store to 

supply this sub-store. The suggestion to obtain a 'realistic stock 

level' of the system is to obtain a new stock configuration by a hypo-

thetioAl"equalising stock distribution" from the central store.' ,Thus 

in the case of configuration 2, there are 15 items in the central store. 

A stock of 2 is required to bring the stock level of the sub-store of 

lowest stock value up to that of the sub-store of next-lowest stock value. 

Thus for configuration 2 originally 

Central Decrease 	Increase to 4 
storeby 2 

15 	4, 7, t, 5, 5 

giving: 	13 in central store and 4, 7, 4, 5, 5 in the sub-stores. 

The next step is to consider the stock levels of the sub-stores with stocks 

of 4 raised in equal increments, if possible to the stock level of the 

sub-stores of next-lowest stock value, i.e.5, and so-on, until the stock 

in the central store is exhausted. 

"If possible" means "if there is sufficient stock Left in the central 

store for this to be possible". 

Thus, for configuration 2, we have 

Central Store 	Sub-store 
Stock 	Notional Stocks 

13 4, 7, 4, 5, 5 + 

12, 5, 7, 4, 5, 5 + 

11, 5, 7, 5, 5, 5 + 

10, 6, 7, 5, 5, 5 4 

9, 6, 7, 6, 5, 5 4 

8, 6,  7,  6, 6, 5 4 

7, 6, 7, 6, 6, 6 + • • • 

It is clear that finally with 0 at the central store, the following 

configuration obtains:- 

0, 	8, 8, 8, 7, 7. 

One notices, then, that if a-  stock level of some store were actually, 

say, 13, then a configuration like ... 
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0, 	8, 13, 8, 7, 7 	might result. 

By this hypothetical share-out process, that stock which may be neglected 

in the figure to represent the total stock state of the system stands 

out. 	In the last example considered where the stock levels are:- 

8, 13, 8, 7, 7 with 0 at central store 

we can compute a representativelevel of stock by ignoring stocks above 

the minium stock, whence we would have:- 

7, 7, 7, 7, 7. with 0 at central store. 

A representative stock = 7 + 7 + 7 + 7 + 7 = 35, 

or we can ignore stocks in excess of one unit above the minimum stock 

thus:- 

8, 8, 8, 7, 7 with 0 at central store. 

An alternative measure of stock is thus 8 + 8 + 8 + 7 + 7 = 38. 

The latter method of computation was thought to be more reasonable and the 

stock level thus obtaining was termed "Free Stock", denoted in the Thesis 

by F, and sometimes termed "F-value". 

5.6 Answerto the Question: "What Quantity should be Allocated to a  

Sub-store at its Reorder Point?" 

5.6.1 The Cran allocation  

Cran
14 

proposes to allow the ordering sub-store an allocation equal 

to the mean demand until the system stock reaches zero minus a hold-back 

amount. The latter equals a factor times the standard deviation of the 

stock-time demand for that sub-store. The lack of rationale implicit 

in the consideration of both standard deviation of stock-time demand, 

and stock-time demand itself, fostered some new thinking. 

5.6.2 Allocation when a procurement order is not outstanding  

5.6.2.1 A criterion of allocation  

A suggested criterion for allocation when the complex does not have 

an order for a procurement outstanding is to ensure that an ordering 

sub-store receives an allocation* such that there is a fixed (high) 

probability that the allocation will last the sub-store until stock from 

the next procurement is available there. 

* i.e. the sub-store is shipped'an amount such that the resulting sum 
of transit stock and physical stock equals the allocation quantity. 
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Making this probability high will induce a relatively high number of 

items in a delivery. Thus the probability that the sub-store needs to 

order again before new stock arrives at the central store is lowered, 

and hence overall delivery costs are reduced. 

Too high a value for this probability will result in an unnecessarily 

large stock level at the sub-store, and System Stock will exceed Free 

Stock. 	In this situation (which will be called "maldistribution of 

stocks") either stocks or backorders or possibly both will be excessive. 

An unnecessarily low value for the probability will give excessive re-

plenishment costs. 

The same probability rule will be used to determine allocation quan-

tities to sub-stores both when they reach their reorder level, and when 

they are being replenished immediately after the central-store receives 

its procurement (if this is to be done). Nothing has yet been said to 

indicate the relative merits of a "necessarily replenish" ruling and of a 

"not necessarily replenish" ruling for the situation immediately follow-

ing central store replenishment; these will he considered later. The 

probability in question will be required to be optimized as a control 

parameter. 

At this stage, a difficulty arises. Firstly, the distribution of 

the demand on a sub-store between the time it reorders and the time 

stock from the next procurement is available at that sub-store (this 

time is referred to as the coverage time*) is not exactly known. 

5.6.2.2 The problem of the distribution of sub-store  

demand in the coverage time  

As an approximation, the distribution of sub-store demand in the 

coverage time is taken to be a normal distribution in which the mean is 

equal to the mean demand on the sub store until complex reorder point, 

plus mean demand in the sum of procurement and sub-store lead times. 

(Note that this demand is the same for both "necessarily replenish" and 

"not necessarily replenish" policies.) 

Now since reorder point of the complex is triggered by Free Stock, 

a first approximation to the mean demand on sub-stores to the time of 

reorder for the complex is given by (F-M)/N 

where F denotes Free Stock 

M the Reorder Level Free Stock Trigger for the Complex 

and N is the number of sub-stores. 

* It is equal to the time to arrival at the central store of the next 
procurement plus sub-store lead time. 
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(This assumes equal mean demand on sub-stores, as with the model under 

consideration.) 

Hence the best approximation to the mean demand at a sub-store in 

its coverage time is:- 

(F-14)/N + Ai(L + t) 

where X. is the mean sub-store demand rate (per unit time) 

L is the lead time from supply to central store 

and R. .is the sub-store lead time. 

5.6.2.3 The variance of the distribution of sub-store demand  

in coverage time and an expression for the alloca-

tion quantity  

The variance of thid diStribution is difficult either to describe 

or to obtain mathematically. A consideration and discussion of an 

attempt to obtain it by simulation is given in Appendix Two. 

With the assumption of a normal distribution for sub-store'demand 

in the coverage time, a fixed probability of the allocation lasting the 

sub-store until stock from the next procurement is available there is 

equivalent to allocating the sub-store its coverage time mean demand plus 

a factor times the standard deviation of its coverage time demand. If 

this factor is the control parameter, z, then the allocation quantity 

A(F,M,t) is given by:- 

ALLOCATION QUANTITY (F-M) A(F,M,z) = 	N X.(L + Z) + za 

where a is the square root of the variance of the demand in the coverage 

time. An approximation for a is the square root of the variance of the 

demand in the coverage time if the complex were triggered on System 

Stock. * 

5.6.2.4 Rules of operation in difficult circumstances  

Rule 1: When the intended shipment quantity exceeds the central store 

stock level, the former is made equal to the latter. 

Rule 2: 	In the case of "necessarily replenish" control, the stock of a 

sub-store may already exceed its allocation. In this case, no shipment 

is made. 

Rule 3: When the sum of intended shipment quantities at any one time 

exceeds the central store stock, backorders are dealt with first, and 

then the method of allocating the rest of the central store stock is to 

see that the sub-store stocks are equalised as much as possible. 

* The method of obtaining this variance is given in Appendix One. 
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5.6.3 Shipment quantities to sub-stores when a procurement order 

for the complex is outstanding  

In this case, the subject of rationing is very important, and any 

delivery to an ordering sub-store must not put other sub-stores in jeo-

pardy of running-out of stock. 

5.6.4 Suggestions for ration quantity  

5.6.4.1 	Suggestion One  

First thoughts led to a delivery quantity equal to: 

Central store stock x Expected Extra Stock for ordering sub-store  
Sum of Expected Extra Stocks for all sub-stores 

where "Expected Extra Stock" is taken as 

Max 60, (Expected Demand in Coverage Time - Notional Stock Level)) 

Let us first consider a stock configuration for which we really would 

like this rationing rule to show up well, i.e., a situation close to the 

time of arrival of procurement stock into the central store. 

Example 1 : 	Central Store Stock 7 

Sub-store Stocks 	-1, 0, 0, 0, 1 

Coverage Time T t k = 26 days 

Sub-store No.1 is at reorder point 

Delivery Quantity is computed as 
2.04  

(2 .04+1.04t1.04t1.04+0.04)  
x 7 

lt• 

= 3 (to nearest integer) 

resulting in: 

Central Store Stock 4 

Sub-store Stocks 	2, 0, 0, 0, 1 

This does appear to be a sensible sort of delivery quantity for 

.this stock configuration example. To ensure that this ration rule 

deals with other stock configurations in the correct fashion, we would 

need to build into the delivery quantity formula an element involving 

the relative weights of shortage cost and delivery cost. Without 

analysis (which is not presented here) or empirical weighting this 

appears impossible. 

An example of a situation in which this particular suggestion for 

a ration rule tends to "overdeliver" is given below. 
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Example 2: 	Central Store Stock 7 

Sub-store Stocks 	5, 7, 12, 8, 2 

Coverage Time T £ :1 70 days (in this time mean sub- 

store demand is 2.8) 

Sub-store No.5 is at reorder point. 

The "Expected Extra Stock" for all sub-stores is: 

0, 0, 0, 0, 0.8, respectively. 

The Delivery Quantity for sub-store No.5 is (0.8/0.8) x 7 	7 resulting 

in:- 

Central Store Stock 0 

Sub-store Stocks 	5, 7, 12, 8, 9. 

5.6.4.2 	Suggestion Two  

At this stage, the usefulness of the Free Stock concept came to 

mind. 	If Free Stock indicates the 'useful' level of stock in the sys-

tem and ignores amounts of stock in individual sub-stores over a "certain 

level", then surely a ration quantity equal to this latter "certain 

level" would not be overdistributing? The sub-store in question would 

then be no more likely to run out than any of the other stores. A case 

of overdistribution or 'maldistribution' can be argued in as much as 

there exists the possibility that this store will, as a result of this 

distribution, still have stock in hand, when the central store is 

depleted and another sub-store has run out of stock. There is a small 

possibility of this occurring - we do not expect such a rationing rule 

to guard against every case, but on average it is expected to work well. 

If the other extreme of 'underdistribution' is adopted and the ration 

rule specifies a quantity less than that 'certain level' obtained from 

the Free Stock calculation mentioned above, this type of control runs 

the risk of incurring an extra replenishment to this sub-store. As 

has been-said before, the relative costs of run-out and delivery figure 

here, but for a general purpose rule the rationing formula specifying 

the individual stock level in the Free Stock calculation appears likely 

to be satisfactory and worth testing by simulation. 

It is interesting to see how this formula works when controlling 

the stock configuration of Example 1 (in 5.6.4.1). 	For this example, 

Free Stock = 7 = (1 + 1 + 1 + 2 + 2) 

The Ration Quantity" is then either 1 or 2. Arbitrarily, the decision 

Ration Quantity is defined as the sum of delivery quantity and 
present notional stock at the sub-store. 



114 

was made that when the ration quantity value, computed as (Free Stock/ 

Number of Sub-stores) is non-integer (as in the case above) it will 

be rounded down. 	(It was considered better in general to underdistribute 

rather than overdistribute.) \ 

The resulting stocks for this configuration are: 

Central Store 	5 

Sub-store Stocks 1, 0, 0, 0, 1, respectively. 

This, it is suggested, is a sensible sort of resulting distribution. 

Considerations Of other differing stock configurations led to the con-

clusion that this rationing rule for sub-store delivery quantities when 

a procurement is on order would be employed. This latter ration rule 

will be known as the "Share" Rule. 

5.7 Reorder Point for Sub-Stores  

Lampkin
3 
 concludes that cyclical review based systems of control 

for sub-stores are not advantageous, and usually have worse performance 

than control with a reorder level. 	In the work here the consideration 

of cyclical review systems is excluded, and attention is restricted to 

reorder level control for sub-stores.* In the case of the first model 

(in which lead time to sub-stores is zero) there is no need to replenish 

a sub-store before it occurs a backorder since this backorder can be 

filled immediately (assuming the central store has stock) without in- 

curring shortage cost. 	In the case of non-zero lead time, the reorder 

level can be made a control parameter. 	(At the first stage of the work 

consideration was limited to complexes where the sub-store lead times 

and demand distributions are identical, so this control parameter could 

be made identical for all sub-stores.) 

5.8 Should sub-stores necessarily be replenished as soon as the pro-

curement arrives at the central store? 

In general, it was thought that a firm answer to this question 

cannot be given. One notes that if, at the time of procurement arrival, 

sub-store stock levels are low enough, the reorder level control itself 

will require stock to be sent out to the substore. 

The advantage of replenishing sub-stores immediately upon arrival 

of the procurement at the central store is that this reduces the overall 

* i.e. a shipment of stock is considered whenever the sub-store notional 
stock has dropped to its reorder level. 
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number of times that sub-store stocks are allowed to run down to their 

reorder levels and hence reduces the cost of backorders in this manner.* 

However, by making this decision to replenish sub-stores earlier than 

otherwise, there is the likelihood of one or more sub-stores having more 

stock than they need later on when other sub-stores are in need of 

stock. That is, we have a case of maldistribution throlighout the com-

plex which in turn leads to higher stock holding costs (since Free Stock 

will be low When the total stock in the complex is high) or, alternatively, 

run-out costs at the sub-stores in need.+  

It was proposed to test the merits of the conflicting advantages of 

the two types of control by simulation of the complex separately using 

both policies termed "necessarily replenish" and "not necessarily re-

plenish" for sub-stores at the time of stock arrival at the central store. 

It was recognized that the merits of "necessarily replenish" ruling 

in reducing these backorders of the type specified below°' would be ab-

sent in the case of zero lead time to sub-stores. 

5.9 Reorder Quantity of the Complex  

From the considerations of 5.3, we wish to obtain the reorder quantity 

of the complex. 

Differentiation of the expression for the annual total cost of opera-

tion obtained in 5.3 and placing the derivative equal to zero, yields: 

AT  lcP  + cR  x c(NR) + e(C
RO)} 

hP/2 - 

hP 
where 

-u 0_PTIMAL is the optimal choice for the procurement quantity. 

Initially several points were noted. Firstly, for different costs 

of replenishment and run-out, E(NR) and e(CR0) would tend to vary, and 

thus the method of determination of QOPTIMAL 
 was unlikely to lend itself 

to very general treatment- 	Secondly, the Annual Total Cost of Operation 

of the Complex versus Q curve is quite flat in the optimal region, and 

the slope magnitude is less for Q > QopTimAL. The implication is that 

i.e., these backorders occurring as a result of the sub-store demand 
exceeding the numerical value of its reorder level in the sub-store 
lead time. 

The central store stock may be depleted. 

Q2  OPTIMAL. 

nm(cp  + cR  x c(NR) + e(CR0)) 
from which 0 	i{ 	  

-OPTIMAL 
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a bias toward overestimating QOPTIMAL is acceptable, with a fair degree 

of certainty that the resulting Q is close to the optimal. Further, 

the parameter Q is one of most insignificant related to the overall pro-

blem of controlling the complex, and it was felt that successive itera-

tions by simulation in order to perfect Q were not worth the computing 

time involved. 

We would like to choose c(NR) such that the complex suffers this 

chosen value of c(NR)- sub-store deliveries per procurement for optimal 

choice of the control parameters. A few trial runs on the author's 

first model using a Q value computed,by taking E(NR) equal to 10 and 

c(C
RO) equal to 0, showed that the number of sub-store deliveries rose 

to well above 10 for combinations of the control parameters which were 

far off optimal, but dropped back appreciably for more sensible para-

meter combinations. 

It was noted that the cost of run-out per cycle, CR0, tended to be 

minimal for sensible choice of the parameters; hence c(NR) was taken 

as 10 and c(CRO) taken as zero, and the resulting Q used for the pro-

curement order quantity. 

As a last note, it is pointed out that simulations of the complex 

using a reorder quantity of the complex that is non-optimal for optimal 

choice of the control parameters will not purposely affect the compara-

tive performance of the complex operated under different types of con-

trol rules. It is expected that the Q values employed* will be no 

nearer to the optimal for Cran's control than they are to the optimal 

for the author's control rules. 

5.10 Summary of Chapter and Introduction to Chapter Six  

At the outset of this chapter the five main problem areas of 

control policy are specified. 	Each one is dealt with in turn. 

In 5.3 and 5.9 the annual total cost of operation of the complex 

is considered, and it is shown how the procurement quantity that the 

complex orders from its supply is computed from this cost function. 

In 5.4 the level at which the complex will make its reorder is considered, 

and 5.5 follows on by considering criteria  for triggering the order for 

the complex. Methods by which a "representative" stock for the whole 

complex may be obtained are discussed, and the final choice of "Free 

Stock" as trigger is made. 

* These will, in the first instance, be the same for Cran's control 
rules as for the author's control rules. 
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The problem of what quantity should be allocated to an ordering 

sub-store is considered in 5.6. 	It is shown that this problem is 

appropriately divided into two policy considerations, firstly policy 

when a procurement is not on order and, secondly, policy whilst a pro- 

curement is on order. 	In the former case the quantity to be allocated, 

known appropriately enough as the "allocation quantity" is established 

as the mean demand on the sub-store in the coverage time plus a para-

meter, z, times the standard deviation of the demand in this time. 

A formula is given- at 5.6.2.3, 	In the latter case, a policy of ration- 

ing is shown to be all-important, and suggestions for a ration quantity 

formula are considered. The adopted ration quantity known as "Share" 

is taken as the integer value of (Free Stock 4- Number of Sub-stores). 

In 5.7 the reorder point for sub-stores is discussed, and Lampkin's 

conclusion that reorder-level based systems of control at sub-stores 

are to be preferred is cited. 	It is shown that for zero lead time at 

sub-stores, the stock level for reorder (both virtual and notional) can 

be minus one. The final consideration of whether all sub-stores should 

necessarily be replenished immediately following the arrival of the 

procurement at the central store is then considered. 	It is suggested 

that the merits of each be tested by simulation. 

A series of policies to cover all the problem areas has now been 

suggested and in the next chapter the merits of the proposals will be 

tested by studying the results of a simulation of the operation of the 

complex under the suggested control policies and comparing them with 

control as proposed by Cran. 
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THE COMPARATIVE SIMULATIONS 



6.1 Summary  

The control rules established in Chapter Five were compared with. 

those of J.A. Cran1 4.  
in Experiment One by simulating the complex under each 

type of control for a period sufficient enough for any non-generality 

engendered by the starting stock configurations to be ironed out and 

for a representative average annual cost of operation to be established. 

These simulations were executed by electronic computation either employ-

ing the simulation language C.S.L.(”Control and Simulation Language") 

for use on the Imperial College IBM 1401-7090 installation or the 

Fortran language using a special set of subroutines ("Simon" simulation) 

for use on the Management Engineering Section's IBM 1130 installation. 

6.2 Techniques of Comparing Methods of Control in the Simulations  

The criterion of comparison was, in the main, the Total Cost of 

Annual Operation, this being the sum of the costs incurred per annum 

in procurements, deliveries to sub-stores, run-out costs and costs of 

holding stock in the complex. This total cost was taken as the average 

annual cost from a ten-year simulation (in some cases a four-year 
_ 	. 

simulation). 

In order to make the starting conditions as equivalent as possible 

between simulations of different M (reorder level of complex) for all 

methods of control of the complex, it was decided to make the times of 

triggering a procurement identical. This was ensured by starting the 

complex off with a total stock of M+35, M+10 of which was at the central 

store, and 5 each at the 5 sub-stores. 

The times of demands on sub-stores came from a random number gener-

ating stream, which produced random variables from a Poisson Distribu- 

tion with the mean as specified in the model data. 	In establishing 

the average annual cost of operation of the complex, the average over 

more than one such random number- generating streams was taken. This 

was to ensure that any peculiarities or specialities in the timing of 

demands did not affect the appraisal of performance of the complex. 

6.3 Description of the Simulation for Model One* 

6.3.1 General description  

The simulation started off with the stock configuration as described 

in 6.2. Times of the first demand at each sub-store are obtained from 

* A similar procedure is adopted for all other experiments. 
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the Poisson Distribution using the random number generating stream. The 

clock is updated to the first of these times, the stock level of the 

sub-store receiving the demand is reduced by 1, and the time until the 

next demand at this sub-store computed as a random variable from the 

same Poisson distribution. The time of the next-occurring demand 

over all sub-stores is now noted and the clock updated to this time, 

the sub-store stock is reduced by 1, and so on, until either the Free 

Stock (in the case of the author's control) or System Stock (in the 

case of Cranes control) reaches the level M, or until a sub-store reaches 

its reorder level. 	In the former ease, a time equal to the central 

store lead time hence is associated with the arrival of the procurement 

for the complex. 	In the latter case, a delivery of stock to the sub-

store is made, the desired delivery quantity being decided by the rele-

vant control rule ('Allocation' or 'Share' in the case of the author's 

control rules). 	If the desired quantity exceeds the central store 

stock, it is made equal to the latter. 	If the central store is de- 

pleted of stock, then the sub-store at its reorder level must wait until 

stock arrives at the central store before shipment to it is further con- 

sidered. 	If, at any time, a sub-store cannot meet a demand, then this 

demand is 'shelved' or held captive until the store first receives 

stock, at which time'the time pebiod within which the demand was held 

captive is noted and then multiplied by the cost per unit time of run-

out to compute the cost of that particular backorder. 

6.3.2 	Inventory holding costs  

The method by which the inventory holding costs were computed is 

worth noting. 	If "h" times the capital tied up in stocks is the annual 

stock-holding cost then the inventory holding cost over a Y-year period 

is equal to Yh times capital tied up in inventory. The latter 

(inventory capital) will equal the cost per item times quantity of stock 

items held. The quantity of stock held will vary from its maximum at 

time of procurement arrival to its minimum just before procurement 

arrival, but its time-averaged value will be the time-averaged value of 

the total physical stock in the complex (this takes the stock levels 

of sub-stores with backorders as zero, and is denoted by G). To obtain 

this from the simulation, the following method was employed: 

At the time of the first demand on the complex, the G-value before 

this demand was met was multiplied by the time the complex existed with 

this G-value. The G-value is then decreased by 1 (since the sub-store 

stock has been reduced by 1). Whenever a stock change occurs in the 
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complex to affect the G-value of the complex, then this computation is 

made. 

Mathematically, we have: 

Y year Inventory Cost 

= Yh x Cost of Unit Stock x Average G-value 

t=250Y days 

= Yh x Cost of Unit Stock x j 	G(t).dt /250Y 
t=0 

= — 250 x (Cost of Unit Stock) x (Area of Gil,time function in 
unit days) 

6.4 Illustrations of Simulation of the Complex with Data of Model I  

6.4.1 "Control-and Simulation Language" simulation using author's  

control rules - Case of "Not Necessarily Replenish" policy  

SECTORS: INITL (Initial Sector) plus following activity sectors 

(ordered list):- 

Title of Sector 	Description of Purpose of Sector 

CWDD 	If procurement is due, brings procurement into central 

store. 

DSS 	If a sub-store demand is due, demand is made on sub-

store. 

SYRO 	If complex is at its reorder level, order for a pro-

curement is made. 

SSRO 	If a sub-store is at its reorder level, redistribution 

is ordered. 

SSDD 	If a sub-store delivery is due, stock is brought into 

sub-store. 

RESU 	If simulation time-of-finish is due, Total Cost of 

Operation calculated. 

The flow diagrams for these sectors are given in Figs. 1 to 6 respectively. 
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6.4.2 The complete program for the C.S.L. simulation for Model- I  

with control lA (see 6.8)  

This is given in Program 1. 

6.4.3 The "Simon" simulation program  

The flow diagram for the "Simon" simulation program for Model III 

is very similar to that for the C.S.L. program. The activities CWDD, 

DSS, SSDD, RESU are considered in the A-phase; the timeset containing 

times associated with each activity is scanned in the A-phase and the 

clock updated to the least of these times. The B-phase constitutes the 

execution of that activity, followed by the C-phase where the activities 

SYRO and SSRO are considered. Return is then made to the A-phase. As 

with the C.S.L. program, the initial data necessary to describe the 

model and commence the simulation is at the beginning of the program, 

and comes before the A-phase. 

6.4.3.1 Simon simulation process  

Initial data, including sampling from Poisson distribution to obtain 

times of first demands on each of substores 

A-Phase. Scan timeset containing starting times of activities 

CWDD, DSS, SSDD, RESU. Find minimum time and update clock to this 

value 

B-Phase. Execute activity with minimum time found in A-Phase 

(if RESU activity, then simulation is terminated) 

C-Phase. Test for SSRO and/or SYRO if activity of B-phase results 

in a possibility of SSRO or SYRO test being positive 

Return to A-Phase. 

6.5 Method of Searbh for Optima of Simulations  

At first, a search for low values of the total cost functions for 

different combinations of the control parameters was made. This indi-

cated those parameter combinations for which the total cost function 

was expected to be near-optimal. Simulations incorporating these para-

meter combinations were made, from which further interesting combinations 

were shown up. For the author's first two models, three random number 

generating streams were employed each in four-year simulations over 
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which the annual cost of operation was averaged. Convexity of the total 
*ff 

cost function with respect to both z and IMF was generally assumed. 

Because of simulation noise, it proved impossible to predict the optimum 

total cost by interpolation between near-optima, and thus a decision had 

to be taken as to the increments between z values and HBF values to be 

employed in optima searches. 

For Model One, where the optimum value of M turned out to be 35 in 

the case of the author's control rules (and 40 for Cran's control) the 

range of F for which the Allocation Rule is expected to be used is 35 to 

75. If the increments of z are i, then the differences between alloca-

tions are, on average, ii.24(F-35)+4 ranging from 3.7i at F = 75* through 

3.0i at F = 55 to 2.0i at F = 35t. 	If corresponding increments of HBF 

are j then the differences between Cran's allocation quantities are 

jiSystem Stock ranging from j180 =.8.9j at System Stock = 80* to 6.3j at 

System Stock = 40. 

The j-values in the optimum region were made 0.1 (i.e., increments of 

HBF of 0.1 were considered). 	In order to make the search for the opti-

mum for the author's control rules with about the same degree of thorough-

ness as with Cran's (to ensure that comparisons were meaningful) an i-

value of 0.3 (corresponding to increments in z of 0.3) was employed in the 

optimum region. 

6.6 Concept of a Test Stream of Random Numbers  

It was noted that, one of the chosen random number streams used for 

generating time intervals between demands gave rise to a period of rather 

high demand in the sum of the sub-store and central store lead times (in 

the case of Model One, 28 demands on sub-stores in a time period of 100 

days with an expected demand of 20). Thus the mean performance over three 

simulations with the same control parameters but different random number 

generating streams was largely governed by the performance with this par-

ticular stream, for these rules which were poor in coping with tendencies 

of sub-stores to run out were liable to result in heavy run-out costs. 

Since the mean performance was largely governed by the performance of the 

complex under rather higher demand than usual, the stream producing the 

latter was considered as a test stream; that is, the performance of the 

complex was first considered for this stream alone. 

* Expected F-value or System Stock value immediately after procurement 
delivery at central store. 

+ Expected F-value or System Stock value at complex reorder level. 

** The Cran hold-back factor see Arivetbid, iiz Llz.) 
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6.7 A Note on the Presentation of the Results  

The symbols are given in the Summary of Symbols in Appendix Eleven. 

'Area' indicates the area under the stock-time function for the length 

of the simulation. 

A breakdown of the costs is given for the lowest-cost combination 

of parameters. 

6.8 Summary of Experiment One  

4 Year Simulation of Model I with Controls 1A, 1B, 1C using 

IBM 1130 System with "Simon" Simulation Language 

Model I Description (as detailed in 4.2.1) 

Item Value = 1 

Cost of Procurement = .5 

Cost of Supplying Sub-Store = .3 

Cost of Sub-Store Run-out = 40% x Item Value per day 

Cost of Stock Holding = 10% Value of Average Stock per year held 

Mean Sub-store Demand = 10/year; Poisson distribution 

Number of Sub-stores = 5 

Working Days/year = 250 

Lead Time for Complex = .4 year 

Lead Time for Sub-stores = 0 

Control Descriptions  

All controls have sub-store reorder leVel of -1, and central store 

reorder quantities equal to 60. For each control, reorder level is 

the parameter "M". 

Control 1A: Author's suggestions with "Not Necessarily Replenish Policy" 

Sub-store Reorder Quantity 

Case 1: Procurement on Order : "Share" Ration Rule (see 5.6.4.2) 

Case 2: Procurement not 'on Order: "Allocation" Rule (see 5.6.2.3,) 

Criterion of Reorder Level for Complex : "Free Stock" (see 5.5.2.2) 

Control 1B: Author's suggestions with "Necessarily Replenish Policy" 

Sub-store Reorder Quantity 
as for Control 1A. 

Criterion of Reorder Level for Complex ) 



Control IC: 	Cran's Control Method 

Sub-store Reorder Quantity: Cran Allocation Rule (see 3.15) 

Criterion of Reorder Level for Complex: "System Stock" 

6.8.1 Table 6-1 

Control 1A Applied to Model One  

Results for Test Stream No.1729 

NR  CRO  Area T.C. M z NP  

30 -0.6 3 32 30.0 39472 56.8888 

-0.3 3 27 28.0 39499 53.3996 

t0.0 3 22 24.4 39586 48.3344 

+0.3 3 20 68.4 39808 91.8232 

35 -0.3 3 28 0.0 44397 27.6588 

+0.0 3 24 0.0 44397 26.4586 

+0.3 3 22 8.4 44418 33.2672 

40 +0.0 3 25 0.0 49397 28.7588 

+0.3 3 23 0.0 49397 28.1588 

+0.6 3 19 4.8 49452 31.7808 

+0.9 3 16 18.8 49627 44.9508 

Total Costs for Various Stream Numbers  

M z 1729 1921 1147 Mean 

35 "0.3 27.6588 - 	27.0452 27.0196 27.2412 

+0.0 26.4586 26.4452 25.8196 26.2411 

+0.3 33.2672 26.7464 25.5196 28.5107 

40 +0.3 28.1588 28.2452 27.8196 28.7045 

+0.6 31.7808 27.7460 26.3196 28.6155 

Breakdown. of Costs at Optimum 

M z Stream INP  NR CRO Area T.C. 

35 0.0 1729 3 24 0.0 44397 26.4586 

1921 3 23 0.0 45113 26.4452 

1147 3 23 0.0 43549 25.8196 

Mean 3 23.3 0.0 44353 26.2411 

Mean Total Cost 26.24  
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6.8.1.1 Comments on the application of Control lA to  

Experiment One  

The optimum value of M for the above control ("not necessarily 

replenish" policy), with M being considered in 5 unit intervals turns 

out to be 35. The next lower value of M, viz. 30, results in a heavy 

cost of run-out. It is interesting to note that this is not because 

the total demand in the complex in the combined lead time Lc  exceeds 

30 in any simulation. The maximum demand in this time noted was 28, 

and the run-out is occurring because of a maldistribution of stock 

within the complex. 

6.8.1.2 Maldistribution Types  

It was considered useful to establish a categorization of maldis-

tribution types to enable the workings of the various types of control 

to be more clearly viewed. 

6.8.1.2.1 Maldistribution Type 1  

If, at the time of complex reorder, System Stock exceeds Free Stock, 

then a maldistribution has occurred because an extra cost of stock-

holding results. This is known as "Maldistribution Type 1". 

6.8.1.2.2 Maldistribution Type 2  

If a run-out is experienced at a sub-store, as a result of the cen-

tral store being depleted of stock, and there exists stock in any one 

or more of the other sub-stores (which could be used to replenish the 

depktdsub-store, but for the condition prohibiting inter-sub-store 

replenishments), then a maldistribution of type 2 is said to have 

occurred. 

This type of maldistribdtion can be seen to stem from two sources 

in the case of the author's control. The sub-store(s) with stock at 

the time backorder costs are being incurred at another sub-store can 

be considered to have been shipped too high a quantity at its last 

replenishment. If the last shipment quantity was decided by the 

'allocation' rule then the chosen z value may well be too high for the 

M-value being employed.* If the last shipment quantity was chosen by 

the 'Share rule'+  then the latter, in combination with the other para-

meters employed, may be responsible for the run-out (whether the latter 

* Type 2A Maldistribution 
+ Type 2B Maldistribution 
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is a bad thing will of course depend on the relative costs of run-out 

and distribution, but in general it is to be expected that it is expedient 

to try to prevent Maldistribution Type 2). 

6.8.1.2.3 	Maldistribution Type 3  

This type of maldistribution occurs in the cases of non-zero lead 

time, 2., to sub-stores where the sub-store receiving a distribution incurs 

a demand in time P. exceeding the stock level at which the order for stock 

from the central store was placed. It was considered as a maldistribu-

tion because the latter might have been prevented if shipment occurred at 

a higher reorder level. The probability of this type of maldistribution 

occurring is easily obtained, if required, from the Cumulative Poisson 

Distribution. 

6.8.1.3 An illustration of the three types of maldistri-

but ion  

Consider the following stock configurations within the complex 

Sub-store 
Stocks 

Central 
Store Stock 

Configuration No.1 12, 6, 7, 6, 5 11 F = 44 System Stock = 47 

Configuration No.2 9, 6, 7, 6, 5 11 F = 44 System Stock t 44 

Configuration No.3 0, 6, 7, 6, 5 20 F = 44 System Stock = 44 

Configuration No.1 will incur maldistribution cost of type 1 on in-. 

ventory holding if such an excess of System Stock over Free Stock F exists 

at complex reorder level. 

Configuration No.2 may appear equivalent, superficially, to Configura-

tion No.3. However, in the case of configuration No.2, maldistribution 

of type 2 is more likely because we have the likelihood that before any 

stock from the next procurement can reach sub-stores, any of sub-stores 

No.2 through 5 may have incurred shortage costs,whilst sub-store No.1 

still has a finite stock level. 	If the sub-store 1 had been allocated 

a quantity less than 9 (whether this was from the allocation rule -

Maldistribution Type 2A, or from the rationing rule - Maldistribution 

'Type 2B) then some or all of these Maldistribution Type Two costs might 

have been saved. 

	

Sub- 	Lead Time 	Central 

	

store 	2 days 	Store 

4 	11 

5 in transit 
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The figure above represents a sub-store and its link to the central 

store. The probability of its run-out in the lead time* is the proba-

bility of its experiencing a demand of 5 or more items in k days, which 

is: 

- ' E e 	
k! 	

wherep.T.X.2,r. 1 for Model Three 
j=5  

This probability equals (1 - e-1 (1 + u + 2
/2  + 3/3  + u4/4)) 

= 1 - 3.083/e 

The associated expected cost of run-out, ,c3*(s,2,), is obtained by 

use of the expression for 44EXJ) given in Appendix 5. 

6.8.1.4 Further comments on the results of Control lA  

applied to Model I  

NO type'3 maldistribution was in evidence in the results of Table 

6-1, since Model One has the sub-store lead time, R. = O. 

Type 1 Maldistribution was noted for those z-values which were 

too high for the M-value employed. This was seen to be as low as 

z = -0.3 for M = 30. 

Maldistribution Type 2 was in evidence for M-values of 30 and 35 and 

for the higher z-values (+0.6 and over) of the M = 40 simulations. For 

M = 30, M = 35, it was not removable by adjustment to z since low z-

values, whilst tending to ensure an evenness of stock distribution amongst 

sub-stores at complex reorder point, were hampered by the fact that the 

'Share' rule would now operate on more sub-stores and at an earlier point 

in time than for higher z-values. This is a poor situation, because 

'Share' used thus is a poor rationing rule. Too high a z-value gets 

over this difficulty but leadi to maldistribution by the time of complex 

reorder level, and tends to leave too little (if any) stock in the cen-

tral store for emergency 'Share' distributions. The z-value around 0.0 

tends to minimize the sum of these disadvantages, and the optimum turns 

out to be z = 0.0 at an M-value of 35. 

As was expected, for a given M, replenishments tend to drop in num-

ber, as z is increased. An interesting phenomenon not disclosed in 

the results list is that as z is decreased to well below zero for close-

to-optimal M, backup increases because of the early application of 'Share' 

(as mentioned in the previous paragraph). 

*i.e., of it incurring maldistribution, type 3. 
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6.8.2 	Table 6-2  

Control 113 Applied to Model  

Results for Test Stream No. 1729  

M z Np 	
RRO 

Area T.C. 

35 -0.3 3 	30 2.4 44403 30.2612 

+0.0 3 	27 2.0 44402 29.3608 
+0.3 3 	25 12.8 44512 41.6048 

40 +0.0 3 	28 0.0 49397 29.6588 

+0.3 3 	25 0.0 49397 28.7588 

+0.6 3 	21 5.2 49613 32.8452 

+0.9 3 	19 20.4 49737 47.4948 

Total Costs for Different Stream Numbers 

M z 1729 1921 1147 Mean 

35 -0.3 30.2612 27.8460 27.6196 28.5756 

+0.0 29.3608 27.3452 26.7196 27.8085 
+0.3 41.6048 27.3464 25.8196 31.5903 

40 +0.3 28.7588 27.9452 28.7196 28.4745 

+0.6 32.8452 29.4320 29.3288 30.5353 

Breakdown of Costs at Optimum 

M z Stream 1;1
P 

 NR CRO Area T.C. 

35 +0.0 1729 3 27 2.0 44402 29.3608 

1921 3 26 0.0 45113 27.3452 

1147 3 26 0.0 43549 26.7196 

Mean 3 26.33 .0.7 44355' 27.8085 

Mean Total Cost 27.81  

6.8.2.1 Comments on the application of Control 18 to  

Model "I 

The main benefit of "necessarily replenish" polipy over "not nec-

essarily replenish" is absent when the sub-store lead time is.zero. 

An attribute to the credit of this former policy is that it is known that 

just after procurement arrival each sub-store has sufficient stock to 

last it for an expected time. Therefore the probability of a sub-store 

needing replenishment immediately after the next complex reorder point 
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(at this time the 'Share' ration rule is likely to be too high) is calcu-

lable. Except for low z, this probability will be much lower than 

with "not necessarily replenish" ruling. This advantage has to be 

balanced against the disadvantage of replenishing earlier than necessary 

(additional overall replenishment costs and higher maldistribution costs 

types 1 and 2A). 

The optimum turns out to be (M=35, z=0.0), as for "not necessarily 

replenish" ruling, whilst the replenishment costs are up on average. 

However, the run-out costs, on average, are down, leading to an overall 

total cost result worse than for a "not necessarily replenish" policy. 

6.8.3 	Table 6-3  

Control 1C Applied to Model 

Results for Test Stream No. 1729 

TRO Area T.C. M HBF 7
P 

 NR 

35 0.7 3 45 0.0 44397 32.7588 

0.6 3 36 2.8 44404 32.8616 

0.5 3 29 6.4 44413 34.3652 

0.4 3 23 9.6 44421 35.7684 

40 0.6 3 40 0.0 49397 32.2588 

0.5 3 29 0.0 49397 28.9588 

0.4 3 25 0.8 49399 29.5596 

0.3 3 20 3.6 49466 30.8624 

0.2 3 18 20.4 49448 47.0792 

Total Costs for Various Stream Numbers 

1921 1147 Mean • M HBF 1729 

35 0.6 32.8616 29.7452 29.1196 30.5755 

0.5 34.3652 27.6452 27.3196 29.7767 

0.4 35.7684 27.9464 26.1196 29.9448 

40 0.5 28.9588 29.9226 29.3196 29.4003 

0.4 29.5596 28.7226°" 27.8196 28.7006 

0.3 30.8624 27.5226 27.7212 28.7021 
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Breakdown of Costs at Optimum 

M HBF Stream TIP  NR ;0 Area T.C. 

40 	0.4 	1729 	3 	25 	0.8 	49399 	29.5596 

1912 	3 	24 	0.0 	50113 	28.7226 

1147 	3 	23 	0.0 	48549 	27.8196 

Mean 	3 	24 	0.27 	49354 	28.7006 

Mean Total Cost 28.70  

6.8.3.1 Comments on the results of the application of  

Control 1C to Model I  

Maldistribution Type One is absent in Cran's control. Although for 

an M-value of 35, Cran's control can result in zero backup, a high hold-

back factor Him is required, and inevitably high replenishment costs 
result. The disadvantage of the latter tends to outweigh  the advantage 

of the former, and the optimum is at the next higher value of M,viz., 40, 

(where zero backup is noted for the three stream simulations at a HBF 

value of 0.5). 

A reduction in HBF to 0.4, whilst resulting in a run-out of 2 item-

days for one particular random number stream, leads to an overall lower-

ing of replenishment costs, and it is at this value that the Optimum 

Total Cost is to be found. 

In general with Cran's control, as HBF is reduced, so are replenish-

ment costs but at the expense of higher shortage costs. 

6.8.4 Significance of difference between cost of operation for  

Model One under the different control types  

6.8.4.1 Control lA comp ardd with Cran's Control 1C for 

Model I 

The result due to Cran will be tested here against the author's 

better control policy, viz. Control 1A, by the .ut!' significance test. 

Contr:ol lA Cost 	Control 1C Cost 	Difference d. 	Stream No. 

	

26.4586 	29.5596 	3.1010 	1729 

	

26.4452 	28.7226 	2.2774 	1921 

	

25.8196 	27.8196 	2.0000 	1147 

The average difference d = 2.4595 

The value of t is given by Toi//a(di-a)2/Fi(iT-1)) where N is the number 

of observations. 
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Therefore t = 10.21, dof = 2. 

The improvement afforded by the author's control "not necessarily 

replenish" policy over Cran's policy is judged significant at the 

0.5% level. 

6.8.4.2 The extent to which the above improvement in  

performance is due to the use of a "not necessarily  

replenish" policy as opposed to a "necessarily  

replenish" policy  

The 't' significance test will be applied to the results of the 

author's control with a policy of "necessarily replenish" and to Cran's 

control to see whether there is a significant difference in this comparison. 

Control 1B Result Control 1C Result Difference d. 1 Stream No. 

29.3608 29.5596 0.2288 1729 

27.3452 28.7226 1.3774 1921 

26.7196 27.8196 1.1000 1147 

Average difference d = .8937 

t is given by or/ ifE(di-71)2/171(171-1)} 

= 2.54 , 	dof = 2. 

The improvement is judged significant at the 7% level. 

6.9 Conclusions from the Simulation of Model One  

The advantages of "not necessarily replenish" as an alternative 

individual policy over "necessarily replenish" policy for the author's 

control are obvious in the case of zero lead time so it was not surprising 

that the former turned in a better performance. The "e. test was also 

used to test the significance between Cran's control and the author's 

control with a "not necessarily replenish" policy, and it was encouraging 

to see that the improvement over Cran's result could be judged signifi-

cant at as low a level as 0.5%. 

It is apparent that further consideration of "necessarily replenish" 

policies for zero lead time at sub-stores is not really valuable and thus 

further consideration in this case was dropped. 



6.10 Chapter Summary and Introduction to Chapter Seven 

This chapter introduces the method of comparison for the author's 

and Cran's control policies, simulation(by electronic computer)techniques 

for making possible the comparison are given, and this is followed by 

a general description of the simulation. Details of flow diagrams for 

procedure in the C.S.L. Language are presented. 

The method of search for the optimum combination of parameters is 

discussed and the concept of a test stream of random numbers is intro-

duced. 

Three control types were considered and described as Experiment One. 

These are all on Model Number I and consider the operation of the model 
of the complex under (a) the author's control with a "not necessarily 

replenish" policy for sub-stores following procurement arrival, 

(b) the author's control with a "necessarily replenish" policy, and 

(c) Cran's control. Tables of results,for different parameter com-

binations are given and a breakdown of costs for the minimum cost com-

bination for each control is given. Discussion of the. various simula-

tions is accompanied by a categorization of Types of Maldistribution. 

The author's control as in (a) proved better than with (b), which 

in turn gave better performance than Cran's control. "t"  -significance 

tests were applied to the results, and "necessarily replenish" policy 

with the author's control was judged significantly better than Cran's 

control at the 7% level. As was to be expected, "not necessarily 

replenish" policy again improved performance. 

In Chapter Seven the data of the first model are altered to be such 

as to favour Cran's control. Two controls are considered in this 

chapter and together form Experiment Two. Cran's control is compared 

with that of the author with a "not necessarily replenish" policy. 
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CHAPTER SEVEN 

MODEL TWO AND EXPERIMENT TWO: COMPARISON OF CRAN'S 

CONTROL AND AUTHOR'S CONTROL WHEN MODEL DATA FAVOUR-CRAM 
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7.1 Introduction to Model Two  

It was recognized that, in Model One, Cran's control tends to be 

relatively expensive because,compared with the author's control, deliveries 

to sub-stores tend to be more numerous at the same M-value and the same 

backup figure, and since individual deliveries at a cost of 0.3 each are 

rather costly, so the total delivery cost is correspondingly excessive. 

Working on a System Stock trigger, for complex reorder, Cran tends to in-

cur more run-outs than for the same M-value on the author's control. 

Now, if both run-outs and deliveries are not so costly, Cran's performance 

will tend to be better. The author's control will still be tending 

(by means of the ideas behind the 'Allocation Rule') to reduce delivery 

numbers (although it is admitted that the z-value parameter allows the 

control to enjoy a not insignificant flexibility in this region) and the 

Free Stock trigger will act to minimise run-outs; the savings resulting 

from these tendencies will be smaller than for Model One. It was ex-

pected, in addition, that the superiority of a Free Stock trigger over 

a System Stock trigger would be lessened in the case of high average 

demand rate. 

Thus, in order to test the performance of the author's control.  

against Cran's under conditions favourable to Cran, the changes to the 

data of Model One are: 

Replenishment Costs : Reduced to 10% original value 

: Now each cost 0.03 

Run-out Costs 	: Reduced to 25% original value 

: Now each cost 0.1 per item-day shortage 

Demand Rate 	: Increase in Ratio 2.5:1 

: New Mean Time between sub-store demands: 10 days 

The performance of the author's "not necessarily replenish" ruling 

control and Crania control are compared in Experiment Two. 

7.2 Summary of Experiment Two  

4 Year Simulation of Model II with Controls 2A, 2C using 

IBM 1130 System with "Simon" Simulation Language 

Model II Description (as specified in 7.1) 

Item Value = 1 

Cost of Procurement = .5 

Cost of Supplying Sub-store = .03 

Cost of Sub-store Run-out = 10% x Item Value per day 



Cost of Stock Holding = 10% Value of Average Stock per year held 

Mean Sub-store Demand = 25/year; Poisson Distribution 

Number of Sub-stores = 5 

Working Days/year = 250 

Lead time for Complex = .4 year 

Lead time for Sub-store = 0 

Control Descriptions  

All controls have sub-store reorder level of -1, and central store 

reorder quantities equal to 85. For each control, reorder level is 

the parameter "M". 

Control 1A: Author's suggestion with "Not Necessarily Replenish Policy" 

Sub-store Reorder Quantity: 

Case 1: Procurement on Order: "Share" Ration Rule (see 5.6.4.2) 

Case 2: Procurement on Order: "Allocation" Rule 	(see 5.6.2.3) 

Criterion of Reorder Level for Complex: "Fred Stock" (see 5.5.2.2) 

Control 1C: Cran's Control Method 

Sub-store Reorder Quantity: Cran Allocation Rule (see '3.15) 

Criterion of Reorder Level of Complex: "System Stock" 

7.2.1 Table 7-1  

Control 1C Applied to Model 11  

Results for Test Stream No. 1729 

5It CRO Area T.C. M HBF 7
P 

60 0.7 6 122 1.6 49783 28.1731 

0.6 6 105 1.7 49784 27.7635 

0.5 6 91 1.6 49783 27.2431 

0.4 6 72 2.1 49788 27.1751 

65 0.5 6 74 0.0 54767 27.0268 

0.4 6 61 0.0 54767 26.6368 

0.3 6 55 0.7 54774 27.2596 

0.2 6 47 2.9 ' 54796 29.2284 
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Total Costs for Different Stream Numbers  

M HBF 1729 1921 1147 Mean 

65 0.6 27.4468 27.6832 26.9479 27.3593 

0.5 27.0268 27.3232 26.6479 26.9993 

0.4 26.6368 27.0232 27.8943 27.1848 

60 0.7 28.1731 26.4844 29.3616 28.0064 

Breakdown of Costs at Optimum 

NP 
	
; 	T

RO 	
Area T.C. M HBF Stream 

65 0.5 1729 6 	74 	0.0 	54767 27.0268 

1921 6 	71 	0.0 	55483 27.3232 

1147 6 	74 	0.1 	53320 26.6479 

Mean 6 	73 	0.03 	54523 26.9993 

Optimal Mean Total Cost 27.00 

7.2.2 Table 7-2 

Control lA Applied to Model II  

Results for Test Stream No. 1729  

M z TTP  NR 
RO 

Area T.C. 

65 -0.3 6 54 0.0 54767 26.5262 

+0.0 6 48 0.3 54770 26.6480 

+0.3 6 44 3.1 54798 29.3392 

Total Costs for Different Stream Numbers  

M 	z 	1729 	1921 	1147 	Mean 

65 	-0.3 	26.5262 	27.3556 	26.3791 	26.7536 

	

+0.0 	26.6480 	27.0649 	25.9879 	26.5669 

Breakdown of Costs at Optimum 

M 	z Stream N
P 

R
R 

c1,
z0 

Area 	T.C. 

65 0.0 1729 6 48 0.3 54770 26.6480 

1921 6 49 0.4 55487 27.0649 

1147 6 52 0.1 53320 25.9879 

Mean 6 49.7 0.27 54526 26.5669 

Optimal Mean Total Cost 26.57  
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7.3 Comments on Model Two 

With Model Two, neither Cran nor the author were expected to achieve 

a good performance with an H-value of 60, since in the central store 

lead time a demand of 62 leading to a minimum achievable backup of 16 

item-days was experienced with the random number generating stream 

1729. 	At the next higher M-value, viz. 65, at a HBF value of 0.5, Cran 

was able to cut average backup costs to 0.03, while incurring average 

replenishment costs of 2.19 (corresponding to 73 sub-store deliveries on 

average). Lowering the HBF factor to 0.4 resulted in delivery total 

savings but backup costs rose. 	Cran's optimum was for an HBF of 0.5, 

at which parameter, costs of 27.00 in total resulted. 

At the same M-value of 65, the author's control incurred .a small 

backup cost .for each random number generating stream at the optimal z 

of 0.0, yet this was for an average sub-store replenishment number of 

50. Although unit delivery costs were small in this Model, the cost 

savings resulting from the savings in delivery totals was significant 

enough to establish a performance superior total-cost wise to that of 

Cran's control. 

As with Model One, reduction of z from the optimum leads to higher 

run-out costs of maldistribution type 28 and an increase in z beyond 

the optimum leads to higher maldistribution costs type 2A. 

7.4 Significance Testing the Results  

The t-test is applied to the results for the optima 

Author's Result 	Cran's Result Difference d. 1 Stream No. 

	

26.6480 	27.0268 	0.3788 	1729 

	

27.0649 	27.3232 	0.2583 	1921 

	

25.9879 	26.6479 	0.6600 	1147 

t r• -alifE(di-d)2/171(171-1)} = 3.63 	dof = 2 

The improvement afforded by the author's control is judged signi-

ficant at the 5% level. 

7.5 Conclusions from Experiment Two  

It is felt that the Rationing Rule "Share" can lend itself to improve-

ment but the next issue will be the consideration of how the author's 

control compares with Cran's in the case of non-zero lead time at sub-

stores, the more general case. 



7.6 Chapter Summary and Introduction to Chapter Eight  

This chapter has considered the application of both the author's 

and Cran's control suggestions to a model of the complex *ith data 

specifically designed to favour Cran's control - Model Two. It is 

encouraging to see that the improvement afforded by use of the author's 

suggestions is significant at the 5% level. 

The next chapter deals with the more general problem of non-zero 

lead time at sub-stores. 
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CHAPTER EIGHT 

MODEL THREE AND EXPERIMENT THREE: COMPARISON OF CRAN'S 

CONTROL WITH AUTHOR'S TWO ALTERNATIVE TYPES OF CONTROL 

FOR THE CASE OF NON-ZERO SUB-STORE LEAD TIME 
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4-, 
8.1 The Problem of Sub-store Reorder Level in the Case of Non-Zero  

Sub-store Lead Time  

The new problem arising in considering a model with non-zero sub-store 

lead time is that of determining the reorder level of sub-stores. Whereas, 

in the case of zero lead time, backup was only like to occur if the sub-

store reached its reorder level and the central store was empty at the same 

time, in this case backup will occur if the sub-store's demand in the lead 

time exceeds the stock level at which it reorders. The latter, it will be 

remembered, results in Maldistribution Type 3 costs. 

Initially, the sub-store reorder level was made a fixed quantity for 

all stock configurations; i.e., it was made an additional control para-

meter. 

8.2 Model III and the 'Allocation' Rule  

Model III is identical to Model I with the exception that sub-store 

lead time is now 25 days. The coverage time demand on a sub-store is 

assumed to be distributed thus:- 

Mean 	= .2(F-M) +AiLc  

.2(F-M) + 5 	for Model III 

Variance 	= .24 (F-M) + A.L C 

.24(F-M) + 5 	for Model III 

Allocation Quantity is then: 

.2(F-M) + 5 + z1(.24(F-M)+5) 

for Model III 

8.3 A Note on the Simulation for Experiment Three  

The simulation runs in this experiment were carried out for a simu-

lated period of 10 years and the averaged 10 year total cost was obtained 

from the mean of four runs with different random number generating streams 

being employed for sampling times between sub-store demands from the 

Poisson distribution relevant to this model. 

8.4 A Note on the Parameter Intervals Considered in the Search for Optima 

of Experiment Three  

The hold-back factor interval considered in the optimal regions was 

0.05, and the corresponding z interval to be employed to make the searches 

* Appendix One shows how this result is established. 
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directly comparable was 0.1, calculated in the same way as for models One 

and Two (as indicated in 6.5). 

8.5 Summary of Experiment Three  

10 Year Simulation of Model III with Controls 2A, 2B, 2C 

using IBM 7090 Computing System with "C.S.L." Simulation Language 

Model III Description  

Item Value = 1 

Cost of Procurement = .5 

Cost of Supplying Sub-store = .3 

Cost of Sub-store Run-out = 40% x Item Value per day- 

Cost of Stock Holding = 10% Value of Average Stock per year held 

Mean Sub-store Demand = 10/year; Poisson Distribution 

Number of Sub-stores = 5 

Working days/year = 250 

Lead Time for Complex =.4 year 

Lead Time for Sub-stores = 25 days 

Control Decisions  

All controls have a parameter "ROLss" for sub-store reorder level, 

and central store reorder quantity equal to 60. For each control, reorder 

level is the parameter "M". 

Control 2A: Author's suggestions with "Not Necessarily Replenish Policy" 

Sub-store Reorder Quantity 

Case 1: Procurement on Order: "Share" Ration Rule (see 5.6.4.2) 

Case 2: Procurement not on Order: "Allocation" Rule (see 5.6.2.3) 

Criterion of Reorder Level for Complex: "Free Stock" 

Control 2B: Author's Suggestions with "Necessarily Replenish Policy" 

Sub-store Reorder Quantity 

Criterion of Reorder Level for Complex ) as for Control 2A 

Control 2C: Cran's Control Method, 

Sub-store Reorder Quantity: Cran Allocation Rule (see 3.15) 

Criterion of Reorder Level of Complex: "System Stock" 



8.5.1 Table 8-1  

Results for Test Stream 

Control 2A Applied to Model III 

T.C. 

96.29 

100.59 

98.95 

No.1115 

NR  CRO M 

40 

ROLSS 

2 

z 

0.0 

0.1 

0.2 

0.5 71 16.0 91.09 

0.6 60 37.2 110.69 

40 3 -0.2 105 11.2 95.50 

0.0 93 6.0 86.98 

0.1 94 0.0 81.49 

0.2 85 5.2 84.29 

0.3 79 1.6 78.59 

0.4 76 9.2 85.30 

40 4 0.1 93.10 

0.2 91.60 

0.3 87.34 

45 2 0.5 69 49.6 127.92 

0.6 67 34.0 111.71 

0.7 60 22.0 98.51 

0.8 61 14.8 91.62 

0.9 57 34.4 111.77 

1.0 54 29.2 105.93 

45 3 -0.2 111 4.4 95.28 

0.0 98 0.4 87.37 

0.2 87 0.4 84.07 

0.3 85 2.8 86.07 

0.4 	- 78 0.4 87.80 

0.5 80 2.8 84.93 

0.6 75 13.2 93.91 

0.7 68 2.4 81.50 

0.8 62 4.4 82.09 

0.9 59 16.0 94.16 
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Results for Test Stream No.1115(cont.) 

M 
ROLSS 
zZRO N

R 
T.C. 

45 4 -0.2 128 3.2 99.18 

0.0 116 4.4 96.78 

0.2 102 2.4 90.86 

0.6 84 1.2 84.81 

0.7 75 0.0 81.42 

0.8 70 0.0 80.18 

0.9 63 1.2 90.79 

1.0 58 15.6 96.03 

Total Costs for Different Streams 

M 
ROLSS 

z 1115 	1729 1147 1921 Mean 

40 3 0.1 81.49 	95.56 82.64 86.05 86.43 

0.3 78.59 	92.10 78.87 83.47 83.26 

45 3 0.4 81.80 	90.45 82.01 87.65 85.48 

0.7 81.50 	83.44 78.04 78.76 80.43 

0.8 82.09 	81.23 77.38 86.29 81.75 

45 4 0.7 81.42 	86.79 81.04 80.60 82.31 

0.8 80.18 	83.44 80.13 81.66 81.35 

Breakdown of Costs at Optimum: 	Average over 4 Streams 

ROL 
SS  

N 	N 	a- 
P 	R 	RO 

Average 
Stock 

T.C. 

45 	0.7 3 7.75 	61 	1.6 56.66 80.43 

Optimal Mean Total Cost 80.43  
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8.5.2 	Table 8-2 

Control 2B Applied to Model III 

Results for Test Stream No.1115 

271
R 

 CRO ,T.C. M 
ROLSS 

z 

40 2 0.0 87 21.2 100.49 

0.1 82 18.8 96.81 

0.2 77 3.2 79.81 

0.3 73 3.2 78.80 

0.4 70 7.2 82.48 

0.5 66 27.2 102.24 

0.6 61 54.0 127.80 

40 3 -0.2 107 4.4 89.29 

+0.0 93 4.0 85.08 

0.1 91 7.2 87.90 

0.2 87 3.2 82.81 

0.3 81 3.6 81.60 

0.4 75 7.6 84.38 

40 4 -0.2 129 9.2 100.70 

+0.0 111 0.4 87.27 

0.1 - - 99.10 

0.2 91 15.2 96.02 

0.4 76 25.6 102.84 

45 2 0.4 72 2.8 82.80 

0.5 68 3.6 82.51 

0.6 65 9.2 87.41 

0.7 62 7.6 86.18- 

0.8 58 16.0 93.74 

0.9 53 25.2 103.81 

1.0 57 28.8 109.42 

45 3 -0.2 111 3.6 94.48 

0.0 100 4.4 91.98 

0.2 89 0.4 85.27 

0.3 81 0.0 82.40 

0.4 80 0.0 82.39 

0.5 77 0.0 81.61 

0.6 73 0.0 80.60 

0.7 65 0.0 79.47 

0.8 61 11.2 88.65 cont.. 



Results for Test Stream No. 1115 

M 	ROLSS 

(cont.) 

R RO T.C. 

40 4 -0.2 130 2.4 98.97 
+0.0 119 3.2 96.48 
0.2 97 0.0 87.27 
0.4 81 0.0 85.39 
0.6 - - 84.85 
0.7 80.21 
0.8 - 90.46 

Total Costs for Different Random Number Streams  

ROLSS 1115 1729 1147 1921 Mean 

40 2 0.2 79.81 101.91 87.28 76.62 86.40 
0.3 78.80 99.76 84.78 77.25 85.15 

40 3 0.2 82.81 84.94 82.97 77.62 82.08 
0.3 81.60 81.08 83.07 77.55 80.82 ,  

0.4 84.38 93.80 89.57 80.16 86.98 

40 4 0.1 99.10 104.36 82.09 81.86 91.35 

45 2 0.5 82.51 92.10 89.88 80.83 86.33 

45 3 0.6 80.60 88.64 82.23 83.40 83.72 
0.7 79.47 80.08. 83.06 85.01 81.90 

45 4 0.6 84.85 84.15 84.63 83.91 84.39 
0.7 80.21 89.77 84.58 83.74 84.57 
0.8 90.46 86.61 86.64 83.57 86.07 

Breakdown of Costs at Optimum: Average Over 4 Streams  

	

M 	z 	ROL 	17 	7R 	
6 	Average Stotk 

SS 	P 	RO =Holding Cost T.C. 

	

40 	0.3 	3 	7.75 	70.5 	3.1 	52.70 	80.82 
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Optimal Mean Total Cost 80.82 



8.5.3 	Table 8-3 

Control 2C. Applied to Model III  

Results for Test Stream No. 1115 

dRO  T.C. M 
ROLSS 

HBF N
R 

40 3 0.2 74 17.6 92.39 

0.3 101 4.4 87.28 

0.4 126 11.2 101.58 

0.5 135 43.2 136.32 

40 4 0.2 82 47.6 124.82 

0.3 116 11.2 98.58 
1 

45 3 0.1 58 21.6 96.59 

0.2 70 9.2 87.78 

0.25 84 1.2 83.97 

0.3 91 0.4 85.27 

0.4 105 4.0 93.08 

0.5 123 10.0 104.48 

45 4 0.1 57 22.8 97.49 

0.15 - - 78.57 

0.2 75 1.2 81.27 

0.25 - - 86.07 

0.3 103 0.0 88.47 

50 3 0.15 82.37 

0.20 84.27 

0.25 84.37 

0.30 86.37 

0.35 91.22 

0.40 90.77 

50 4 0.20 83.57 

0.30 90.77 

0.40 94.37 
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Total Costs for Different Random Number Generating Streams  

M ROLSS HBF 1115 1729 1147 1921 Mean 

45 3 0.25 83.97 106.84 130.98 79.72 100.38 

45 4 0.15 78.57 121.66 165.02 76.72 110.49 

0.20 81.27 86.42 131.18 79.12 94.50 

0.25 86.07 89.32 132.08 81.22 97.17 

50 3 0.15 82.37 85.32 116.07 79.92 90.92 
0.20 84.27 87.12 99.25 81.12 87.94 

0.25 84.27 85.02 100.15 82.02 87.86 

0.30 86.37 86.52 92.64 84.12 87.41 

0.35 91.22 88.73 88.37 85.32 88.41 
0.40 90.77 93.92 88.03 87.42 90.03 

0.50 - 99.02 - 91.43 - 

50 4 0.20 83.57 - 100.95 - - 

0.30 90.77 96.44 - - 

0.40 94.37 - 91.83 - - 

Breakdown of Costs at Optimum: Average Over 4 Streams  

M HBF ROL Tr 	N "613
0 

Average T.C. SS P 	Stock 

50 	0.30 	3 	7.5 	68 	2.7 	60.56 	87.41 

Optimal Mean Total Cost 87.41  

8.6 Comments on Model Three and Experiment Three  

Cran's control is unable to prevent backup with modest use of buffer 

stock. Low HBF tends to result in high initial deliveries, reducing 

central store stock appreciably to begin,with (after procurement arrival). 

High HBF tends to result in, as well as high delivery numbers and hence 

costs, more sub-stores than otherwise requiring a second (or even third) 

delivery before next procurement arrival. This means an overall large 

number of times that reorder level is experienced by sub-stores, and 

hence a corresponding larger chance of run-out, overall, than otherwise. 

Cran's optimum requires a buffer stock of 35, corresponding to an M-value 

of 0.3. Raising HBF over this value results in higher delivery costs, 
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and lowering HBF incurs a heavier contribution to run-out. Cran's sub-

store reorder level at optimum was 3. A level of 2 led to heavy run-out 

costs in the lead time, whilst a level of 4 although reducing the effect 

of run-out of Maldistribution Type 3 in the lead time, inevitably led to 

Maldistribution Type 2, by replenishing too early. 

As with Cran's control, the author found that for both his "necessarily 

replenish" and "not necessarily replenish" policies, optimal balance be-

tween the Maldistribution Types 2,3 was obtained for a sub-store reorder 

level of 3. 

A shift in the optimal z (compared with the author's control for 

zero sub-store lead time) was noted for both types of policy considered. 

The shift was upwards (to 0.7 for "not necessarily replenish" and 0.3 for 

"necessarily replenish"). At these z-values, application of the 'alloca-
tion' rule did not lead to excessive maldistribution of type 2A, and the 

number of times reorder level was experienced (and hence maldistribution 

costs type 3) was cut, compared to close-to-zero z-values. For the case 

of "not necessarily replenish", the author required an M-value of 45, 

corresponding to an overall buffer stock of 20 for his optimum. Whatever 

the (z, sub-store reorder level) combinations applied to an M-value 

of 40, run -out'led to excessive costs. 	In the case of a "necessarily 

replenish" policy, run-out costs of maldistribution type 3 were cut down 

by the reduction in number of times sub-stores experienced running-down 

to their reorder levels, but, of course, at the expense of maldistribution 

type 2A costs. The optimal M-value was found to be lower than for a 

"not necessarily replenish" policy. 

As was to be expected, the allocation parameter, z, was not able 

(without excessive costs) for a "necessarily replenish" policy to be as 

high as a "not necessarily replenish" policy. At optimal it was 0.3, 

compared with 0.7, with, as expected, higher overall replenishment costs. 

Additionally, Maldistribution Type One was experienced for both types of 

the author's control at their optima, and, as would be expected, was 

greater for the case where lower buffer stock was retained (viz., the 

"necessarily replenish" policy case). 

8.7 Testing to See if the Observed Improvement over Cran is Significant 

The improvement of the "not necessarily replenish" policy over the 

"necessarily replenish" policy is obviously insignificant. Here the 
t-test is applied to the results of the author's control with the former 
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policy and to the results of Cran's control to see whether these two 

results are "significantly" different. 

-Control 2A Control 2C d. Stream No. 

81.50 86.37 4.87 1115 

83.44 86.52 3.12 1729 

78.04 92.64 14.60 1147 

78.76 84.12 5.36 1921 

The value of t is given by 71//{ Z(a-di)2/171(7-1)1 where IT is the 

number of observations. 

Hence t = 4.58, 	dof = 3. 

The improvement afforded by the author's control is judged significant 

at the 1% leVel. 

8.8 Summary of Chapter and Introduction to Chapter Nine  

This chapter has considered the application of the author's control 

(and also Cranis. control) to a more general model of the complex in 
which the lead time to sub-stores is non-zero. The latter modification 

to the model results in an additional consideration, that of sub-store 

reorder level. This, in the first instance, has been made an extra 

control parameter. 

The simulations considered constitute Experiment Three and the re-

sults indicate that there is little to choose between the two types of 
policy considered by the author when applied to this model. However, 
the improvement of either over Cran's control is significant at as low 

a level as 1%. 

To avoid the involvement of an extra parameter for a reorder level 

at the sub-stores, an attempt at some analysis to establish a policy for 
this problem was made for those instants when the order for the complex 

is outstanding. This work is described in the next chapter along with 
some experiments to see whether performance is improved using the newly 

adopted approach. 



CHAPTER NINE 

INTRODUCTION TO THE FIRST DYNAMIC PROGRAMMING MODEL TO 

ESTABLISH THE REORDER LEVEL OF SUB-STORES AS A FUNCTION 

OF TIME TO PROCUREMENT ARRIVAL AT THE CENTRAL STORE 

(FOR THE CASE OF PROCUREMENT ON ORDER). INCLUDES THREE 

EXPERIMENTS TO IMPROVE OVERALL CONTROL USING THIS MODEL. 
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9.1 Introduction  

For the case when a procurement to the complex is on order, the pro-

blem of when to order a shipment of stock to a sub-store may be resolved 

into the problem of balancing the cost of run-out at the sub-store by re-

plenishing it too late (as a result of maldistribution type 3) against 

the cost of a delivery which if replenishment does not occur now, may be 

saved. If delivery (a replenishment) occurs whilst the procurement is 

on order, the delivery quantity is small since the Free Stock is low. 

Hence it is likely that a delivery will again be necessary shortly after 

the procurement arrives. 

On the other hand, if replenishment is postponed until after the 

procurement arrives, then it follows that the cost of a replenishment 

is saved. There is the further consideration that the expected cost 

of run-out at other sub-stores is not quite independent of the decision 

whether to replenish any particular sub-store or not, since the latter 

decision will affect the availability of stock to buffer the other sub-

stores' stocks. Maldistribution type 2B, with some expected associated 

cost, is liable to result in general. In order to establish a gen-

eral decision method for the reorder level of sub-stores whilst a pro-

curement order is outstanding, the maldistribution type 2B costs will 

be ignored. 

9.2 Establishment of the Dynamic Programming Decision Method  

9.2.1 Costs associated with replenishing a sub-store and postponing 

replenishment  

The problem la 9.1 is resolved as follows: consider a notional 

stock level at the sub-store under consideration equal to s (this will 

equal actual sub-store stock plus any stock in transit to that sub-

store) whilst the time until the procurement is delivered at the central 

store is T. 

There are two alternative decisions for any (s,T) couple; either 

a decision to replenish the store at that time instant, or a decision 

to wait until the next time instant before considering the situation 

again. Let the cost of the former decision be CA(s,T) and of the 

latter, CB(s,T). The cost of the better of the two decisions, to be 

known as the "Cost of the Best Decision", will be denoted by C(s,T). 

Then C(s,T) = Min {CA(s,T); CB(s,T)} 
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If, of course, C(s,T) = CA(s,T), then it is cheaper to replenish now and 

the Decision Function associated with the decision is unity, i.e. 

D(s,T) = 1. 	If C(s,T) = CB(s,T), then the decision is to wait until 

the next time instant before review, the associated decision function 

being zero, i.e. D(s,T ) = 0. 

If the expected number of item-days of shortage for a sub-store with 

a notional stock level 8 when the decision is made to replenish is de-

noted by Ip(s,k), 1, being lead time from central store to sub-store, and 

the cost per item-day of shortage is cs, then we have:- 

CA(s,T) = cs*(2300 + cR  

where CR is the cost of a sub-store replenishment. 

CB(s,T) is the cost of the decision to wait before further review 

until the next time instant. Strictly, this is an infinitessimal time 

6T hence, in which time the sub-store sustains an expected demand of 

A.ST, where A. has its usual meaning in this thesis, that is, the mean 

rate of demand per unit time on a sub-store. Now assuming that in 

this time 6T, no more than one demand may be received at any one sub-

store, we have two states which may exist at time 6T, viz.:- 

state 1 (s,T-6T) 

state 2 (s-1, T-5T) 

The probability of occurrence of state 1 is (1-Ai6T) and that of. state 

2 is A.6T. 

Hence 	C (s T) = (1-A 6T) C(s,T-6T) 

+ (x1  T) C(s-1, T-6T) 
	

(1) 

For the purposes of simulation where the individual time units 

are in days, equation (1) may be modified thus:- 

CB(sl'O (lali)C(sJ-1) 7.C(s-1,T-1) 

where 7 now represents mean sub-store rate of demand per day. 

9.2.2 Boundary conditions 

To establish the dynamic programming method, it is necessary to 

have knowledge of the bounding conditions, i.e. what the cost of the 

best decision is when T=0.. For the case of "necessarily replenish" 

ruling, sub-store deliveries are always ordered immediately the central 

store receives its procurement at T=0. 

Then we have: 

C(s,0) =cstp(s,9.) for "necessarily replenish" ruling. 



In the case of "not necessarily replenish" ruling, no decision to 

replenish sub-stores is taken as a matter of course at T=0. However, 

the expected stock level of a sub-store at T=0 will, in general, be 

sufficiently low for the sub-store to require a replenishment in the 

next cycle (i.e. before further stock arrives at the central store from 

the next-ordered procurement). 	It is not an unreasonable assumption, 

then, that the cost of the best decision at T=0 is equal to the cost 

of repleniShing at that time. (Analysis formulated later for the case 

of the model data of Model Three shows that for the expected sub-store 

stocks at time of procurement arrival within the complex, deliveries 

will be' required immediately to be sent out to the sub-stores.) 

Hence C(s,0) = csliAsA) 

also for the case of "not necessarily replenish" ruling. 

The nature of ip(s,k) is described in Appendix No.5. 	Appendix No.6 

tabulates the function 4(s', Q.) for a particular case and showS'ho'w the 

decision functions are calculated for a few interesting cases. 

9..2.3 Decision functions of (s,T) states from the dynamic  

programming method applied to Model III  

For Model III, c
R  /A.c 	= .3/(.04 x.4 x 25) = .75 and the types 

of calculation illustrated in Appendix No.6 give for all T, D(0,T) = 1. 

The other decision functions over the region for which T is defined 

as-,calculated are:- 

s 

1 

T 

1 0 

2 + 100 1 

2 1 + 6 0 

7 + 100 1 

3 1 + 22 0 

23 + 100 1 

4 1 + 61 0 

62 + 100 1 

5 1 + 100 0 
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9.3 The Problem of Sub-store Reorder Level for the Case when Complex  

Procurement is not on Order  

The large amount of computing done for Experiment Three (described 

in Chapter Eight) owing to the extra control parameter (viz. sub  -store 

reorder level) convinced the author of the value of eliminating the latter 

in subsequent work. 

When a procurement is not on order, we do not know the time until 

the central store receives further stock. However, the time until the 

complex orders a procurement can be estimated and hence an estimated T 

(time until procurement arrival in central store) can be obtained. 

If the Free Stock level at any time is F, with complex reorder M, then, 

the estimated time until complex reorder is (F-M)/AT, AT  representing, as 

usual, the mean rate of demand on the complex. The estimated T is thus 

(F-M)/A
T + L. 

The range of considered T was 0-400. Within this range, the 

decision functions for s-values from 1 upwards were calculated and the 

complex was simulated using the obtained decision functions for sub-

store reorder level control and employing the data of Model III. The 

simulation is known as Experiment 4 and embraced both the author's alter-

natives of "not necessarily replenish" ruling and "necessarily replen-

ish" ruling. 

9.4 Summary of Experiment Four  

10 Year Simulation of Model III with Controls 3A, 3B 

Using IBM 7090 System with "C.S.L." Simulation Language 

Full Description of Model Given in 8.5  

Control Decisions  

All controls have a central store reorder quantity equal to 60, 

and have reorder level as a parameter "M". 

Control 3A: Author's suggestions with "Not Necessarily Replenish Policy" 

Sub-store Reorder Quantity 

Case 1: Procurement on Order: "Share Ration Rule" (see 5.6.4.2) 

Case 2: Procurement not on Order: "Allocation Rule" (see 5.6.2.3) 

Criterion of Reorder Level for Complex: "Free Stock" 

Reorder Level for Sub-stores 

Case 1: Procurement on Order: "1st D.P. Model Decision Rule" (see 9.2) 

Case 2: Procurement not on Order: 



An estimate of the T parameter in 1st D.P. Model is made and the 
decision rule worked on this T. 

Control 3B: Author's suggestions with "Necessarily Replenish Policy" 

Sub-store Reorder Quantity 

Criterion of Reorder Level for Complex ) as for Control 3A. 

Reorder Level for Sub:-Stores 

9.4.1 Table 9-1 

Control 3A Applied to Model III 

Results of Test Stream No.1115 
M z 171R

T.C. 
.6D0 

40 0.3 82 31.2 109.53 

0.4 81 26.4 64.43 

0.5 70 4.0 79.57 

0.6 60 63.2 137.89 

45 0.4 83 0.0 83.29 

0.5 80 0.0 82.51 

0.6 73 3.2 83.80 

0.7 71 0.0 80.84 

0.8 	, 61 0.0 78.03 

0.9 57 17.2 95.65 

Total Costs for Different Stream Numbers 

1115 1729 1147 1921 Mean 

40 0.5 79.57 112.41 78.82 

45 0.6 83.80 82.93 82.51 82.18 82.85 

0.7 80.84 81.82 80.28 81.95 81.22 

0.8 78.03 81.42 80.44 83.16 80.76 

Optimal Mean Total Cost 80.76  

(occurring at M = 45, z = 0.8) 
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9.4.2 	Table 9-2 

Control 3B Applied to Model III 

Results for Test Stream No.1115 

M 

40 

. z 

-0.1 

'0.0 

0.1 

NR  

125 

114 

101 

CRO 

1.6 

0.4 

8.0 

T.C. 

91.89 

87.77 

91.70 

0.2 91 10.4 91.22 

0.3 82 40.4 118.74 

45 0.3 87 2.8 87.00 
0.4 84 0.0 83.59 

0.5 84 0.0 82.21 

0.6 72 3.2 83.50 

0.7 66 0.0 79.91 

0.8 63 11.2 90.46 

Total Costs for Different Stream Numbers 

M z 1115 1729 1147 1921 Mean 

45 0.5 82.21 86.19 

0.6 83.50 83.27 82.14 82.20 82.78 

0.7 79.91 81.95 82.48 82.54 81.72 

Optimal Mean Total Cost 81.72  

(occurring at M = 45, z = 0.7) 

9.5 Comments on Experiment Four  

Both types of alternative policy used by the author, "not necessarily 

replenish" and "necessarily replenish" policies, did not perform as well 

in Experiment Four as they did in Experiment Three. 

Comparative results are given below for mean optimal total costs 

over the 10-year simulation. 

Necessarily Replenish 
	

Not Necessarily Replenish 

Expt. 3 
	

80.82 
	

80.43 

Expt. 4 	81.72 
	

80.76 



As the policy of "necessarily replenish" failed to perform as well 

as "not necessarily replenish" in both experiments, it was thought of 

little value to consider this as a viable type of control any further. 

The main reason why the results of Experiment 4 were poor (compared 

with Experiment 3) overall became apparent when studying the details 

of the simulation. Sub-stores were being replenished too early, 

that is, often at stock levels of six or seven, when the complex did not 

have a procurement order outstanding. Costs of maldistribution of 

types 1, 2A (see 6.8.1.2) are definitely not negligible in the case of 

replenishment to sub-stores before procurement order. 	(It will be re-

membered that the Dynamic Programming Method was established for T-

values up to L, i.e. for use whilst a procurement is on order, when 

there would be no resulting maldistribution of type 1 or 2A possible, 

(with }Share' being the rule employed for deciding reorder quantity). 

9.5.1 Change in the formula for reorder level at sub-stores when  

an order is not outstanding  

In order to circumvent the problem, the reorder level of sub-stores 

for the case when the procurement is not on order was made equal to 

that in existence when the procurement is ordered; this lends to con-

tinuity in the reorder level vs. time to procurement arrival function. 

For the data case of Model Three, 9.2.3 shows this stock level to be 

equal to 4. The complex was simulated with the above change in Experi-

ment Five in 9.6. 

9.5.2 A modification to the 'Share' ration rule  

Another proposal, the merits of which are considered in Experiment 

Six, was to modify the "Share" rationing rule such that the resulting 

notional stock level at the ordering sub-store does not exceed the value 

that the allocation rule would yield. 

It will be recalled that:- 

Allocation = Mean Coverage Time Demand 

z x Standard Deviation of Coverage Time Demand. 

When this is translated into the terms of the case when a procure-

ment is on order, due in time T, then this allocation is equal to 

A.(T+L) zi4.(T+0. Hence the new ration rule for the case of five 

sub-stores is:- 

Share MK.II = Min(I(F/N) , (Ai(T+2.)+ziAi(T+t)))* 

where I indicates "Integer value of". 
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The expected benefits of this proposal are the reduction in costs 

of maldistribution of type 2B (as a result of ensuring that "Share" is not 

excessive in its delivery quantities), but it is expected that further de-

livery numbers and also, possibly, an increase in maldistribution costs 

type 3 will result. The greatest benefits are of course likely to be 

noted where the maldistribution type 3 is absent and replenishment costs 

are low (Model Two fits this category). 

The value of this proposal was tested independently of any improvements 

resulting from the use of the First Dynamic Programming method, in order 

to see whether the overall performance for the case of fixed reorder level 

at sub-stores could be improved. It was also tested in the case of the 

First Dynamic Programming method. Both tests are considered in Experiment 

Six in 9.7. 

9.6 Summary of Experiment Five  

10 Year Simulation of Model III with Control 4A Using IBM 7090 

System with "C.S.L." Simulation Language 

Full Description of Model Given in 8.5. 

Control Decisions  

The central store reorder quantity equals 60 and the reorder level for 

the complex is the parameter "M". 

Control 4A: Author's suggestions with "Not Necessarily Replenish Policy" 

Sub-store Reorder Quantity 

Case 1: Procurement on Order: "Share Ration Rule" (see 5.6.4.2) 

Case 2: Procurement not on Order: "Allocation Rule" (see 5.6.2.3) 

Criterion of Reorder Level for Complex: "Free Stock" 

Reorder Level for Sub-stores: 

Case 1: Procurement on Order: "1st D.P. Model Decision Rule" (see 9.2.) 

Case 2: Procurement not on Order: 

Reorder Level made equal to that corresponding to T = L 

(when procurement order is initiated) from the 1st D.P. Model. 



Breakdown of Costs at Optimum: Average Over 4 Streams  

M 	z 	NP 	NR 	CRO  Holding Cost 	Mean 
= Average Stock 

45 	0.8 	7.75 	57 	1.33 	56.49 	78.79 
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9.6.1 	Table 9-3  

Control 4A Applied to Model III  

Total Costs for Different Stream Numbers  

M z 1115 1729 1147 1921 Mean 

45 0.6 - 92.84 - 80.00 

0.7 82.10 81.58 78.96 78.36 80.25 

0.8 78.43 78.75 78.21 79.78 78.79 

0.9 81.75 82.41 - - 

Optimal Mean Total Cost 78.79  

(occurring at M Et 45, z = 0.8) 

Optimal Mean Total Cost = 78.79  

9.6.2 "t" test to determine whether the observed improvement of 

Control 4A over Control 2A is significant for Model III  

Opt. Result 
For Control 2A 

Opt. Result 
For Control 4A d. 1 Stream No. 

81.50 78.43 3.07 1115 

83.44 78.75 4.69 1729 

78.04 78.21 -0.17 1147 

78.76 79.78 -1.02 1921 

The value of t = 1.21; dof = 3. 

The difference is insignificant at the 5% level. 

9.6.3 Comments on Experiment 5  

As was expected, throughout the range of (M,z) combinations worth 

considering, the maldistribution of types 1, 2A, was much reduced by 

cutting the reorder level of sub-stores whilst a procurement order was 

not outstanding to 4. Maldistribution costs of type 2B were, in general, 

down; this was due to the fact that by postponing shipments to sub-

stores until their stock levels dropped to 4, more stock was held in the 
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central store when the procurement order was made; if "Share" did tend to 

be a little over-generous, this did.not tend to lead to as much run-out at 

other sub-stores as was the case with a lesser amount of stock being 

held at the central store. 	The increase in maldistribution type 3, as 

a result of any such above-average demand in the lead time to sub-stores 

was insignificant for cases of replenishing sub-stores whilst the pro-

curement order was not outstanding. 

It was concluded that the establishment of the reorder level for 

sub-stores whilst a procurement order was not outstanding at that level 

of reorder obtained from the Dynamic Programming Method at time of complex 

'reorder (T = L) was a valuable idea. 

It was clear where the savings were occurring. The original Dynamic 

Programming approach of Experiment Four in 9.4.1 led to decisions to re-

plenish sub-stores at the following stock levels:- 

Sub-store notional stock Replenish if estimated T 

7 T3298 

6 T 3 206 

5 T;,, 125 

4 T; 	62 

In general, shipments were ordered at stock levels of six and five 

and the average system stock existing at the complex reorder level of 45 

(optimum) worked on Free Stock was in the region of 48 or 49. When the 

stock levels, 7, 6, 5 were excluded for consideration of sub-store reorder, 

the system stock at complex reorder level dropped to the region of 46, 

47. 	This represented a saving of about 2 units of stock on average, 

resulting in a two unit cost saving over 10 years. 

9.7 Summary of Experiment Six  

10 Year Simulation of Model III with Controls 5A, 5B using 

IBM 7090 System with "C.S.L." Simulation Language 

Full Description of Model Given in 8.5. 

Control Decisions 

Both controls have central store reorder quantity equal to 60, and the 

reorder level is equal to the parameter "M". 

Control 5A: Author's suggestions with "Not Necessarily Replenish Policy" 
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Sub-store Reorder Quantity 

Case 1: Procurement on Order: "Share MK II" Ration Rule (see 9.5.2) 

Case 2: Procurement not on Order: "Allocation Rule" (see 5.6.2.3) 

Criterion of Reorder Level for Complex: "Free Stock" 

Reorder Level for Sub-stores 

Case 1: Procurement on Order: 

Case 2: Procurement not on Order ) the same parameter "ROL SS"  

Control 5B: Author's suggestions with "Not Necessarily Replenish Policy" 

Sub-store Reorder Quantity 

Case 1: Procurement on Order: "Share MK II" Ration Rule (see 9.5.2) 

Case 2: Procurement not on Order: "Allocation Rule" (see 5.6.2.3) 

Criterion of Reorder Level for Complex: "Free Stock" 

Reorder Level for Sub-stores: 

Case 1: Procurement on Order: "1st D.P. Model Decision Rule" (see 9.2) 

Case 2: Procurement not on Order: 

Reorder Level made equal to that corresponding to T = L 

(when procurement is initiated) from the 1st D.P. Model. 

9.7.1 Table 9-4 

-Control 5A Applied to Model III 

Total Costs for Different Stream Numbers 

M 
ROLSS z 1115 1729 1921 1147 Mean 

40 3 0.1 111.11 105.11 82.57 83.62 95.60 

0.2 105.63 100.05 79.55 78.19 90.85 

0.3 99.43.  102.06 82.35 79.52 90.84 

0.4 102.83 83.67 - 79.03 - 

40 4 0.3 101.65 91.85 80.98 78.36 88.21 

0.4 100.47 90.06 79.09 79.23 87.21 

0.5 99.82 76.76 77.77 82.59 84.23 

45 2 0.8 102.19 95.96 80.03 91.92 92.52 

45 3 0.6 .94.32 99.58 79.52 80.30 88.43 

0.7 87.48 80.44 78.51 80.21 81.66 

0.8 83.84 85.77 76.66 86.57 83.21 

45 4 0.7 90.62 93.77 79.68 79.26 85.83 
0.8 85.28 80.32 79.23 81.86 81.67 

Optimal Mean Total Cost 81.66  

(at M = 45, z = 0.7, ROLss  = 3) 
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9.7.2 

Total Costs 

Table 9-5 

5B Applied to Model III Control 

for Different Stream Numbers 

M z 1115 1729 1147 1921 Mean 

40 0.4 98.62 89.08 89.37 79.02 89.02 

0.5 92.08 95.19 86.67 79.72 88.44 

45 0.6 93.03 80.81 86.98 

0.7 82.72 81.48 86.16 

0.8 82.62 80.74 84.36 

9.7.3 Comments on Experiment Six 

At its best performance modification to the rationing rule of 'Share,  
to 'Share Mk II' as proposed in 9.5 was unable to improve the results of 

the simulations. This applies to both tests of Experiment Six, that 

is, for fixed reorder level at the sub-stores and for the dynamic pro-

gramming method for reorder level at sub-stores. The simulations 

showed that when the modified share rule "Share Mk II" was employed, the 

shipment quantities were, as expected, lower than when "Share" was em-

ployed. This indeed aids the positions of the other sub-stores with re-

gard to run-out since more stock is held back at the centre.' store, thus 

reducing maldistribution type 2B. 

However, an interesting phenomenon is noticed. In the case of 

fixed reorder level at sub-stores, even though a sub-store is down to 

this level of this level of stock, its 'Share Mk II' ration quantity is 

likely to be less than this level, and hence replenishment is postponed 

until the notional stock level of the sub-store drops below the ration 

quantity designated by 'Share MkII', whence the difference (generally one 

unit) is shipped. In the case of the dynamic programming model for 

obtaining the sub-store reorder levels, the model is based on the assump-

tion that delivery will always occur at the step-line in 9.2.3 or below 

it. This implies then that the rationing rule must always allocate to 

the ordering sub-store a quantity in excess of the notional stock level 

at which reorder takes place. One can see that, with the employment 

of 'Share MkII' ,as a rationing rule this is not the case. 	Because 

sensible (close to optimal) z-values are in the region of 0.7 (higher z- 

values necessarily exclude themselves because of the associated costs 

of Mald;_stribution Type 2A) a sub-store with a notional stock level of 

2 at a T-value of, say, 10,* will be allocated the minimum of 

9.2.3 shows that this store is at its reorder level. 
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(I(F/N) I (Xi(T+10+z)57171))), which is most likely to be the second 

quantity, viz. 1.4 + v/I7LT equalling (when rounded), 2. Hence shipment 

does not take place, contrary to the decision of the dynamic programming 

model. 

It is clear then, that by employment of'Share1  thus modified, mal-

distribution of type 3 is more common than with the 'Share' rule and the 

heavy resultant shortages necessarily preclude this proposal for modi-: 

fying the rationing rule from further consideration. 

9.8 Summary of Results for Controls on Model I 

Optimal 
Cost 

Optimal z 
or HBF 

Optimal 

Control lA (Table 6.1 at 6.8.1) 26.24 z = 0.0 35 
Tr 	1B (Table 6.2 at 6.8.2) 27.81 z = 0.0 35 
Tr 	1C (Table 6.3 at 6.8.3) 28.70 HBF = 0.4 40 

Control lA (author's"not necessarily replenisW policy) significantly 

differs from Control 1C (Cran's control) at the 0.5% level. 

Control 1B significantly different from Control 1C at the 7% level. 

9.9 Summary of Results for Controls on Model II  

Optimal 	Optimal z 	Optimal 
Cost 	or HBF 

Control lA (Table 7.1 at 7.2.1) 	27.00 	HBF = 0.5 	65 

Control 1C (Table 7.2 at 7.2.2) 	26.57 	z = 0.0 	65 

Control lA significantly different from Control 1C at the 5% level 

("t" significance test). 

9.10 Summary of Results for Controls on Model III  

Optimal Optimal Optimal z Optimal 
Cost 	ROLSS 	or HBF 

Control 2A (Table 8.1 at 8.5.1) 80.43 3 z = 0.7 45 

Control 2B (Table 8.2 at 8.5.2) 80.82 3 z = 0.3 140 

Control 2C (Table 8.3 at 8.5.3) 87.41 3 HBF = 0.3 50 

Control 2A (author's suggestions) significantly different from Contro1:2C 

(Cran's control) at the 1% significance level. 
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Optimal 
	

Optimal 
	

Optimal 
Cost 	z 
	

M 

Control 3A (Table 9.1 at 9.4.1) 80.76 0.8 45 

Control 3B (Table 9.2 at 9.4.2) 81.72 0.7 45 

Control 4A (Table 9.3 at 9.6.1) 78.79 0.8 45 

Control 4A (application of dynamic programming model for sub-store reorder 

level) improves over fixed reorder level Control 2A, but insignificantly 

at the 5% level. ("t" significance test.) 

Optimal 
	

Optimal 
	

Optimal 
Cost 
	z 
	

M 

Control 5A (Table 9.4 at 9.7.1) 
	

81.66 
	

0.7 
	

1+5 

9.11 Summary of Chapter and Introduction to Chapter Ten  

It is stated initially that when the complex has an order outstanding, 

the problem of establishing sub-store reorder level may be resolved into 

the problem of balancing the cost of shortage at the sub-store by deliver-

ing too late against the cost of the delivery which may be saved if re-

plenishment does not occur now. A Dynamic Programming method is developed 

to give the reorder level of sub-stores as a function of time until the 

proburement arrives at the central store. 

The experiments using this Dynamic Programming method still faced the 

problem of what to do about the reorder level of sub-stores when the order 

for the complex was outstanding. The first of these experiments, Experi-

ment 4, estimated this time T to be (F-M)/XT 
L and considered the author's 

control using the two alternative policies of "necessarily replenish" and 

"not necessarily replenish". The results of the latter experiment* were 
poorer than for Experiment 3, and this effect was traced to the fact that 

obtaining the reorder levels for sub-stores as a function of the estimated  

time until procurement arrival made use of an assumption which just does 

not hold true. It was proposed to make sub-store reorder level for T-

values greater than L equal to that level corresponding to T = L in the 

Dynamic Programming method in the next experiment, Experiment Five. 

In Experiment Six, another proposal (that of making the Ration Rule 

formula not exceed the formula which the 'Allocation' Rule would yield 

when the procurement is on order) was also tested for Model Three for the 

cases of fixed reorder level for sub-stores and for the Dynamic Programming 

method for sub-store reorder level. The result of Experiment Five was en-

couraging for the Dynamic Programming method but the ideas for modifying 

*It was seen that "necessarily replenish" was again the poorer policy, so 
it was excluded from further consideration. 
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the rationing rule 'Share' were unsuccessful. 

In Chapter Ten, an attempt at some analysis to improve the Rationing 

Rule is given. 



CHAPTER TEN 

REORDER QUANTITY FOR SUB-STORES WHEN A PROCUREMENT IS 

ON ORDER: ALTERNATIVE TO 'SHARE' RATION RULE 

172 
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10.1 Introduction to Chapten Ten  

In Chapten Ten, an attempt at some analysis to establish the reorder 

quantity for sub-stores when a procurement is on order is presented. 

Hitherto, the reader will recall, the rationing rule known as 'Share' 

has been employed. Attempt at modification to 'Share Mk 'ft was not 

successful in the case of Model Three. 

Basically, the main idea is to balance the cost of a further possible 

replenishment to the sub-store in question as a result of issuing too 

little stock against the cost of run-out at other sub-stores in the com-

plex as a result of Maldistribution Type 2B. Since the best results so 

far have been obtained by employment of the Dynamic Programming approach 

of Chapter Nine, attention will be restricted to control types using 

this method for sub-store reorder levels whilst the procurement is on 

order within the complex. 

10.2 A Specific Case to Illustrate the Ideas  

The situation considered is an actual case from the simulation of 

the complex with Model Three. Sub-store No.1 is at its reorder level 

and the problem is to determine the ration quantity. The stocks for 

all the stores are given in the table below:- 

Notional 

After Hypothetical 
Relidtribution 

Sub-store Stocki* 	Central Store Stock 

	

3,4,6,6,6 	3 

	

5,5,6,6,6 	0 

F = 28 

10.2.1 The costs associated with a particular ration quantity  

Consider a ration quantity for sub-store No.1 of 3 units (i.e. no 

shipment). The resulting Free Stock is 28, the corresponding individual 

sub-store "fair share" defined by F/N being 5.6. The assumption is made 

that those sub-stores whose present notional stock levels exceed this 

"fair share" value will suffer zero cost of run-out until stock from 

the next procurement is available. 	The expected costs of run-out, 

in this time are assumed, therefore, to be confined to sub-stores Nos. 

1,2. We cannot, however, say that the expected cost of run-out at sub-

store No.1 is that resulting from a stock level of 3 with (T+L) days 

to go before next possible delivery date. This is because there exists 

*First number refers to store 10  second to store 2, etc... 
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a stock of 3 at the central store for possible delivery to sub-store 1. 

The same applies to sub-store 2 with its stock level of 4. 

The assumption is now made that the position with respect to run-out 

of sub-stores Nos.l-,2 and the central store is equivalent to that for a 

special, single store. This store will have a stock level equal to the 

combined level of the individual notional stocks of sub-stores Nos. 1 and 

2 and the central store stock itself and a rate of demand equal to double 

(since we are dealing with two sub-stores) that of a single sub-store. 

Thus, in the case considered above, the expected costs of run-out of the 

complex stemming from an allocation of 3 to sub-store No.1 is that of 

a store of stock level 10 and the rate of demand equal to .08 (=2 x .04) 

in the case of Models One and Three. The value of this expected cost 

of run-outcagf = 10; L = T+Z) for a rate of demand value 7 of ,08 may 
be computed from the function described in Appendix Five. 

10.2.2 Implications of merging the stock levels of stores  

The implication, of course, of this assumption is complete inter-

changeability of stock between the two sub-stores and the central store. 

This means that by considering the two sub-stores as a single store one 

of the sub-stores cannot experience shortage whilst the other holds stock. 

Unless. deliveries are always in unit amounts, then it is possible for 

one store to run-out whilst the other has stock (even if not present at 

the store itself, then in transit to it). Thus, treating the two sub- 

stores as a single store assumes zero cost of run-out resulting from mai-_ 
distribution within the two stores themselves. It also assumes that 

the two stores do not experience maldistribution of type 3 (maldistribu-

tion due to the finite time,stock takes from the central store to a sub - 

store). It is expected that the performance of the complex utilizing 

this assumption will be influenced strongly by how close to the truth 

the assumption comes. 

In order to compute the expected extra cost of replenishment asso-

ciated with this allocation under consideration, recourse is made to the 
, 

table at 9.2.3. 	Thip-is the representation of the reorder /level 

vs. T function. If the reasonable assumption is made that the sub-store 

being replenished at this stage will sustain, at the most, one extra 

delivery before the procurement arrives at the central store, then the 

expected extra costs of replenishment equal the cost of a single replen-

ishment times the probability of again crossing the reorder level vs. T 

step function line. The method of calculating this latter probability 

P(s,X) is given in Appendix 7B. 
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10.2.3 Obtaining the ration quantity "Share Mk III"  

The first ration quantity considered is that equal to the present value 

of the sub-store notional stock level.* The sum of expected cost of 

run-out and expected cost of extra delivery is obtained as described 

above. The ration quantity is then raised by one and the corresponding 

sum of these two costs computed. As soon as this cost sum becomes 

greater than the previous-computed cost sum, the computations are com- 

plete, and the chosen ration quantity** is equal to the one with the 

minimum cost sum. This, of course, assumes convexity of the cost 

sum functions. 

10.2.4 A table of results for the decision method in the case of 

the reorder point described in 10.2.1 is givdn below:- 
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a 	Pa 

3 1.0 0.300 5.6 2 10 .006 .306 

4 .931 0.279 5.6 2. 10 .006 .286 

5 .819 0.246 5.6 2 10 .006 .252 

6 .795 0.239 4.8 1 4 .246 .485 

The optimal ration quaniity is 5, resulting in a shipment quantity 

of 2. 

10.3 Summary of Chapter and Introduction to Chapter Eleven  

In this chapter, the ration quantity for sub-stores whilst a pro-

curement is on order is reconsidered. Attention is restricted to the 

A This means that initially the cost of not making a replenishment at all 
at this stage is computed. This takes the probability of another re-
order before stock arrives in the central store as unity. 

** To be known as Share Mk III. 

*** See Appendix 7B. 
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author's sub-store reorder level policy which obtains this level from 

Dynamic Programming analysis. 

Different ration quantities, from the value of the reorder 'level up- 

wards are considered. 	It is assumed that the sub-store under considera-

tion will experience, at most, one more reorder level in the time until 

the procurement arrives. 	It is shown how, given the reorder'level vs. 

time function, the probability of another replenishment can be calculated, 

and thus the corresponding cost of extra deliveries as a result of the 

considered ration quantity is obtainable. 

As the ration quantity alters, so does the resulting Free Stock level 

of the complex. Shortage costs are considered for only those stores 

whose notional stock will be less than the "fair share" level (computed, 

as usual, by F'/N). 	The sum of the expected cost of shortages and extra 

replenishments is obtained for each ration quantity.Convexiy., of this 

sum with respect to ration quantity is considered, and the optimal choice 

of ration quantity is taken as "Shai-e Mk ITI" where the cost sum turns 

upwards. 

Chapter Eleven goes on to consider the problem of sub-store reorder 

level for the case when a stock order for the complex is not outstanding. 



CHAPTER ELEVEN 

REORDER LEVEL OF SUB-STORES IN THE CASE WHEN A PROCUREMENT 

IS NOT OUTSTANDING 

177 
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11.1 Introduction to Chapter Eleven  

At this stage, some sense of dissatisfaction was felt with regard to 

the rather arbitrary sub-store reorder level in the case of a procurement 

not on order being made equal to the sub-store reorder level at time 

T = L* obtained from the Dynamic Programming Model. Some relevant analysis 

was required. 

Since an order for a procurement is not outstanding, the prime concern 

at this moment when considering the reorder level of a particular sub-

store is not with the prevention of shortages at other sub-stores, but 

rather the prevention of run-out at this particular sub-store whilst attempt-

ing to ensure that, as a result of replenishing now, maldistribution is not 

engendered. Whilst stating that the immediate concern is not with other 

sub-stores' shortage possibility, the author wishes the reader to recall 

that this problem is considered important once the procurement has been 

ordered. 

It can be seen that the tendency of the allocation rule to issue a 

stock quantity to a sub-store which results in maldistribution is related 

to both the present notional stock level of the sub-store, and the allo- 

cation quantity itself, the latter being a function of F, M, z. 	For a 

given couple of control parameters (M,z), then the decision whether to 

replenish a sub-store must depend on both notional stock and F. The 

problem can be seen to resolve into a Dynamic Programming Decision Model 

somewhat similar to that employed when the procurement order is outstand-

ing. 

11.2 Formulation of the Dynamic Programming Decision Model to Establish  

the Reorder Level of Sub-stores Whilst a Procurement Order is Not  

Outstandin& 

The cost of the decision to replenish a sub-store at a notional stock 

level s, when Free Stock is F, is 

CA(s,F) = cR  + Total Expected Costs of Maldistribution 

= 	cR  + cs 
 *(s,i) + Expected Costs of Maldistribution 

Types 1,2 	(1) 

The cost of the decision to wait one day before reviewing the situa-

tion (one day being as in the previous Dynamic Programming model the mini-

mum time unit of simulation) is:- 

* i.e. T =100,in the case of Model Three. 



CB(s,F) = TiC(s-1,F-1) + 4AC(s,F-1) + (1-571.)C(s,F) 

where C(s,F) represents the cost of the best decision for any (s,F) 

couple.t 

C(s,F) is then the least of the two above costs: 

C(s,F) = Min{CA(s,F); CB(s,F)} 

The decision D(s,F) is 1 ("Replenish now") or 0 ("Wait") according to 

whether C(s,F) equals CA(s,F) or CB(s,F), respectively. 

Note that CB(s,F) is defined on the assumption that by the next day, 

there is the chance that only one demand at most may occur on the complex 

(a reasonable assumption in the case of a total mean demand of 0.2 per day 

as for Model Three). The probability of this demand occurring; (a) on 

a sub-store other than the one under consideration is LITi' resulting in 

a state (g,F-1); (b) on the sub-store in question, is Tai, resulting in 

a state (s-1,F-1). The probability of no demands at all is (1-5ai) 

resulting in the initial state (s,F); hence equation (2). 

11.3 Boundary Conditions  

The cost of the best decision for an (s,M) couple is clear for s- 

values less than or equal to the reorder level when T = L (say s so  and 

so = 4 for Model Three) from the previous Dynamic Programming model. 

The decision function for these s-values is unity and the costs C(s,M), 

s E so
, are cR+cs't)  + Expected Costs of Maldistribution Type 2B. 

Now the latter maldistribution costs (resulting from the over-

distributing effect of 'Share') as in the case of the previous Dynamic 

Programming model, will be ignored. 	(It will be recalled that the main 

considerations of the former Dynamic Programming model were those of bal-

ancing the cost of run-out of the sub-store in question against the cost 

of delivery which might be saved by not delivering until the procurement 

arrives at the central store.) It was envisaged that this was likely 

to be a good assumption where the "right sort**" of buffer stock (reflected 

in the M-value of the complex) was employed. This assumption was sup-

ported both in the control of Model Three with the employment of the 

Dynimic Programming approach and with 'Share' in Experiment Five, where 

an extremely small run-out cost at the optimum was noted. 	(This was of 

Maldistribution Type 2A,) 	By far the major factor for close-to-optimal 

couples was maldistribution of type 1. 

** 

f 

In general, for N sub-stores, "4" is replaced by (N-1). 
Implying close-to-optimal. 

	

T4,;a is ay, apprc,x7,,,,it..n. It 	a LtveA (s-i) 
(Te-e Stock ,--.2_0,a4r1; 	at F. 

179 

(2) 

th- 



a.§o 

Now we have D(s,M) for s-values greater than the reorder level corres-

ponding to T=L from the previous Dynamic Programming model (i.e. s > s
o in 

general) to be equal to zero. The cost of the best decision in these 

cases is less, then, than the cost of immediately replenishment, i.e. 

C(s,M) < csip(s,k) + cR; s > so  . 

But C(s,M) 	csi(s,f4), since whatever time at which the sub-store. is 

replenished, it must sustain an expected cost of run-out equal to cs*(s,Z). 

Thus 	c
s
11)(s,Z) + c

R 
> C(s,M) 3. c

s
Ip(s,k) 

The approximation: 

C(s,M) L.= c
s
11)(s,t) + cR  x P(s,k) is suggested, where P(s,k) is the 

probability of a sub-store with a notional stock level s ordering in the 

central store lead time L. 

11.4 Consideration of Maldistribution Costs  

From the results of Experiment 5, the decision to assume expected costs 

of Maldistribution Type 2 as negligible was supported in the case of control 

with near-optimal (M,z) operating couples. The author is not too bothered 

that it is not a good assumption when (M,z) couples are not near optimal, 

since a commericial complex would never be operated with such a couple 

anyway. 

Equation (1) of 11.2 thus is translated into:- 

CA(s,F) = c
R 
+ c

s
11)(s
'
t) + Expected Cost of Maldistribution Type 1, 

and attention is now focussed on the method of computing the expected costs 

of Maldistribution Type 1 for an (s,F) couple. 

11.4.1 Maldistribution Costs of Type 1  

Consider the expected stock-time function for a complex when maldis-

tribution of type 1 occurs. Figure 7 illustrates this. 

If the complex reorders with a total stock level exceeding M by A, 

then it is clear from the Figure that the extra area under the total stock, 

time graph is Q. AAT. 

The corresponding cost of extra inventory holding is then hPAQAT. 

The probleA now is to obtain the probabilities of occurrence of A. 

If we decide to replenish a sub-store, then the allocation I.A" is a func-

tion of F,M,z; for any given control then where the (M,z) 'couple is fixed, 

we have A = A(F). 

* the  method of computation is given in Appendix 7A. 
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The ways in which this allocation can result in maldistribution 

of type 1 are now considered. At the time of reorder for the complex, 

we will have, assuming that maldistribution (if any) occurs at only the 

one sub-store under consideration in the coverage time* (this is a fairly 

reasonable occurrence; it is seen from the simulations that for any given 

time between procurement arrivals, the likelihood of maldistribution of 

type 1 occurring as a result of two 'over-distributions' is very small 
indeed), a stock level of (A-i), where i=amount of demand on the sub-store 

in question between the time of its allocation and time of reorder for the 

complex. 

Provided that (A-i) > .2M, in the case of 5 sub-stores, then maldis- 

tribution has occurred. 

Remembering assumption (a), we have:- 

A = (A-i) -.2M, and 

the cost of maldistribution (type 1) is given by CM  where; 
1 

hP^ A-.2M  CM 	= E 	(A-i 12M) . p(i)  
1 	XT i=0 

hPQ A-.2M-1 
(A-i I2M) . p(i) = 

	

T 	i=0 

where p(i) denotes the probability of the occurrence of i. 

Now immediately after the allocation A to the sub-store, the sum of 

the notional stocks at other sub-stores and the central store stock is 

(F-A). At the time of complex reorder, the combined notional stock of the 

other four sub-stores and the central store must equal 0.8M-1. (Note that 

it is not 0.8M, since with this value and with the remaining sub-store 

having a stock exceeding 0.2M - we are taking this store to be the one with 

maldistribution - the Free Stock of the complex is M+1, and the complex is 
not yet at reorder point.) Thus the four stores in total have sustained 

a demand of (F-A) - (.8M-1), i.e., (F-A-0.8M+1); hence p(i) is the pro-

bability of a demand i at one sub-store when the combined demand on the 
other (four) sub-stores is this quantity (F-A-0.8M+1). 

Now the probability density function of the time in which a quantity 

K is demanded over four sub-stores is 

(X1 t)K-1 	-X/t X;dt (K-1): e  where A' E 4xi  . 

* Assumption (a). 



for C
M 

yields:- 
1 

CM 	(hPQ/XT).pK  
1 
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The probability generating function (p.g.f) of the demand in this time 

on the sub-stores in question is:- 

ASK 

f(xf+A)-AziK  

= 0./ /(V+X ))
K  
 / {1-A.z/(AT+Xi)}K  

If Ai  /(Al+A ) is denoted by q, V/(A 1 49ti) by p = 1-q, then this 

p.g.f. is p-/(1-qz)K, 

but ion. 

Hence p(i) = (K+i-1): pK  (11/(K-1): I! 
A-.2M-1 

pK  qi/(K-1)! i! and 	= ,
T 	

(A) C hPQ 

Ml AT 1 

where K = F-A-.8M+1, and p = .8, q = .2 applicable for K >, 1, and 

for A 3 (.2M+1). 

Obviously, if A 0.2M, then CM  is zero. 	If A is sufficiently 
i  

high (due to a high z-value) as to set off a procurement order immediately, 

i.e. if K = 0, then C
M1 

= hPQ 

T 

Further, note that in the case that A = 0.2M+1, the expression (A) 

which is the p.g.f. of the Negative Binomial Distri- 

A note on the method of computation and a table of the solutions for 

the dynamic programming approach for reorder levels of sub-stores whilst 

the procurement is not on order are given in Appendices Eight and Nine, 

respectively. 

11.5 Chapter Summary and Introduction to Chapter Twelve  

This chapter has presented a Dynamic Programming Method for obtaining 

the reorder level at sub-stores as a function of the Free Stock level. 

The ideas of this chapter and of Chapter Ten are tested by simulation in 

the next chapter. 

* for the case of Model Three, where hP = .1, Q = 60, AT= 50, Cm  = .12(F-M). 
1 
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12.1 Introduction to Chapter Twelve  

The merits of the ideas presented in Chapters 10 and 11, that is 

(a) the new Rationing Rule "Share Mk III" to establish the reorder quan-

tities of sub-stores whilst a procurement is outstanding, and (b) the 

Dynamic Programming method to establish the reorder level of sub-stores 

when the procurement is not on order, are evaluated in this chapter, 

in Experiment Seven, for the case of non-zero sub-store lead time. 

12.2. Summary of Experiment Seven  

10 Year Simulation of Model III with Control 6A Using IBM 1130 

System with "Simon" Simulation Language 

Full Description of Model Given in 8.5.  

Control Decisions  

Central store reorder quantity equals 60, and the reorder level for 

the complex is the parameter "M". 

Control 6A is defined thus: 

Case 1: Procurement on Order: Ration Rule "Share Mk III" (see 10.2). 

Case 2: Procurement not on Order: "Allocation Rule". 

Criterion of Reorder Level for Complex: "Free Stock". 

Reorder Level for Sub-stores: 

Case 1: Procurement on Order: Function of "T" from 1st D.P. Model. 

Case 2: Procurement not on Order: Function of "F" from 2nd D.P. Model. 

12.2.1 Table 12-1 

Total Costs for Different 

Control 6A Applied to Model III 

Stream Numbers 

1115 1729 1147 1921 Mean 

45 0.6 82.03 83.95 79.25 78.62 80.96 

0.7 82.71 81.02 78.56 77.92 80.05 

0.8 78.75 77.31 78.25 78.03 78.08 

0.9 80.04 80.29 - 

Breakdown of Costs at Optimum (Average over 4 Streams) 

M 	z 	IT 	6R0 	
Average 31, 	R 	Stock 

T.0 

45 0.8 7.75 57.67 1.25 55.76 78.08 

Optimal Mean Total Cost =.78.08  



186 

12.2.2 Note that for the employment of this Second Dynamic Pro-

gramming Model for Model III, the expected Free Stock level at time of 

procurement arrival (viz. 85 for M=45) is such that at this time the ex-

pected reorder level for sub-stores is about 8 (remember that this reorder 

level is a function of F, M, and z, and thus for a given (M,z) will be 

defined as a function of F) for near-optimal z. The expected notional 

sub-store stocks at this time are 5 or less each (the expected F-value 

immediately before procurement arrival will be 25); and thus in general 

sub-stores will be replenished immediately following the central store receiv-

ingthe procurement.It is with this in mind that the simulation starting 

conditions were made thus: 

Each sub-store has A(M+40)* 

equal to .2(40) + 5 + z✓.24(40)+5 

i.e. 13 + 
	

for Model III 

and the central store has M+40 - Sum of sub-store stocks. 

12.3 Comments on Experiment Seven  

When compared to the previous best performance for Model III (obtained 

in 9.6.1 with Control 4A) a definite improvement is noted in respect of 

inventory holding costs. Run-out and replenishment cost alter insig-

nificantly. Overall, the improvement did not appear to yield results 

commensurate with the sophistication of the ideas proposed for control-

ling the complex. 

Detailed study of the simulation showed that the new rationing rule 

employed was still over-generous in its general operation; indeed, in 

the great majority of instances, its operation was identical to the 

"Share" formula itself. 

12.4 Illustration of the Working of the Latest Ration Rule, "Share  

Mk III" 

Reference is made to the stock configuration for the complex given 

in 10.2. 

Central Store Stock 	Notional Sub-store Stocks 

3 	3. 	4. 	6. 	6. 	6. 

The Free Stock is 28, and hence the 'Share' formulaproposes a ration 

quantity equal to 1(28/5), viz. 5, resulting in:- 

* The expected F-value at time of procurement arrival is M+40. 
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Central Store Stock 	Notional Sub-store Stocks 

1 	5. 	4. 	6. 	6. 	6. 	Configuration "A" 

The choice for a ration quantity greater than the fair share value 

computed as 28/5 (=5.6), say a choice of 6, results in an actual configura-

tion as below:- 

Central Store Stock 	Notional Sub-store Stocks 

0 	6. 	4. 	6. 	6. 	6. 

The resulting Free Stock is reduced to 24, and the store to receive 

the replenishment has a notional stock level exceeding its "fair share" 

level (which will be 4.8). Only su.btstorelf2is the one for which shortages 
are considered, and, naturally enough, the cost associated with one store 

with a stock of 4 to last (T+2.) days is considerably higher than the con-

sidered run-out costs for the next lower ration quantity. (These short-

age costs will be those associated with configuration "A" resulting from 

a single store with a stock of 10 to last (T44) days, with an expected 

demand rate of double 

This effect of a sudden increase in shortage cost (which nearly al-

ways is so important that the combined expected cost of shortage and 

extra replenishment is greater than for the previous-considered ration 

quantity) is seen to occur for the first ration quantity greater than the 

"fair share" value of the stock configuration existing in the complex 

before the considered replenishment. 

The ration quantity adopted is therefore that stock level equal to 

the value of the "Share" ration quantity itself. This result occurs for 

the majority of cases in the simulation and so the run-out costs due to 

Maldistribution Type 2B are not removed. 

The improvement in performance over that from the control suggested 

in Experiment Five must therefore be attributed to that afforded by the 

Second DynaMic Programming Method (which establishes the reorder levels 

of sub-stores whilst a procurement is not on order). 

12.5 Chapter Summary and Introduction to Chapter Thirteen  

This chapter has invoked the ideas of Chapters Ten and Eleven in con-

trolling the complex. The results indicate that the ideas for the new 

Rationing Rule are not useful, since the "overdistributing effect" of the 
"Share" Ration Rule is often repeated. However an improvement in over-

all cost indicates that the ideas for the Second Dynamic Programming 
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Method for obtaining the reorder level at sub-stores whilst a procurement 

is not on order may be useful. 

In the next chapter, this Second Dynamic Programming Method is re-

tained and a more sophisticated approach for rationing sub-stores whilst 

the complex is awaiting a procurement is considered. 
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13.1 Discussion of the Ration Rule "Share Mk III" and Introduction to  

the New Ration Rule "Share Mk IV"  

The last-considered Ration Rule "Share Mk III" was based on the assump-

tion that whatever the ration quantity considered, the sub-store undei,  con-

sideration would only receive one extra delivery, at most, before arrival 

of the procurement in the complex. This assumption is now relaxed. 

Further, this Ration Rule assumes that the costs of Maldistribution 

Type 2, occurring as a result of any tendency in the Ration Rule to "over-

distribute", were negligible for all future sub-store deliveries. The 

same assumption will apply to the new Ration Rule, since it is expected 

that if the latter is sufficiently useful, such maldistribution will be 

minimal. 

Maldistribution Type 3 (where shortage is experienced in the sub-store 

lead time) was not considered for either Share Mk III or Mk IV since the 

quantity sent out has little direct effect (unless it is very low) on this 

maldistribution. 

With "Share Mk III" the costs of maldistribution were assumed confined 

to those (K) sub-stores with notional stock levels less than the value of 

"Fair Share" (equal to F/5) resulting from the considered ration quantity. 

This cost was equated to the expected cost of shortage for these K stores 

taken as a single store with demand rate Kai, stock level equal to the 

sum of the sub-storenotional stocks plus central store stock, and with 

supply not available until the coverage time hence. 

13.2 The New Ration Rule"Share Mk IV"  

13.2.1 General ideas  

The reorder level has been met some time To before procurement arrival 

(L To> 0) as shown in Figure 8. 	Suppose B is chosen as the ration 

quantity. We would like to know as a result of this ration quantity 

what the ration quantity is likely to be for other values of T < To. A 

reasonable approximation is assumed to be the straight line joining the 

point X (corresponding to value B at time To) to the point y (correspond-

ing to one unit more than reorder level at T=1). To view the consequences 

of the decision to allow a quantity of B to the ordering sub-store differ-

ent demands in future time (To-1) will be considered. Attention is res-

tricted to linear through time demand rates. These demands will have the 

random variable d from the Poisson distribution with mean X.(T 
o-1). 1  

* i.e. K sub-stores. 
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FIG. 8 

ILLUSTRATION OF EXPECTED EXTRA REPLENISHMENTS POSSIBLE AS A 
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(CASE OF ZERO TIME AT SUB-STORES) 
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13.2.2 Consideration of Further Reorder Points  

The line XA of Fig.8 illustrates a particular demand d of XP/PA 

units/day. As a result of the (d,B) combinations further replenishments 

to this sub-store are expected at times T1, T2  and T3. 	If the number of 

such further replenishments is, generally, denoted by K(d,B) and the quan.L. 

tity of stock delivered in such extra deliveries are denoted by bi, 

(i = 1,2,... K(d,B)) we have a total of 

K(d,B) 
ST - B 	E b. items to last the other (N-1) stores for a time 

i=1 1  

period equal to To+ £(at which time stock can first get to them from the 

procurement now on order). 

The cost of shortages associated with this stock position is estimated 

at:- 
E ,(d,B) =  

( 
( 

where ( 
( 
( 

K(d,B) 
• ST - B 	E 	b. 

i=1 

L 	= 	To 
+ 

• = 	(N-1)Ai  = 4Ai  for 5 sub-stores. 

13.2.3 Cost considerations  

The combined cost of extra deliveries and shortage cost of the 

complex until the coverage time is reached is thus estimated at:- 

C(B) = E p(d) Cffs(d,B) + K(d,B) x cR) 
d 

where p(d) denotes the probability of the random 

Putting AiTo  equal to TA.  we have 

— 
p(d) = e 	u

d  /d! 

variable d. 

It is assumed that C(B) is convex.*** Optimal B is thus given by 

B where B = (Min B: C(B+1)-C(B) > 0) 
	

(1) 

*ft 

*** 

ST is the total virtual stock in the complex 

The function 1/(7, I; 5) is given in Appendix 
This  was seen to be true from the results of 

at time T=To. 

5. 

Experiment 8. 
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13.2.4 Assumptions of this analysis 

This analysis assumes the sub-store under replenishment consideration 

itself does not incur shortage. In the event of high d however, this 

assumption does not hold true and we wish to.consider the effect of B on 

the combined cost of shortage and extra deliveries when shortage is ex-

perienced at the ordering sub-store, say for d > d
o
. 

A 
Equation (1) is transformed thus:- B = Min B such that 

do 
E p(d) (15(d,B+1)(d,B) + (K(d,B+1)-K(d,B)} x c

R) d=0 

co 
+ 	E 	p(d) (Combined Shortage Cost and Delivery Cost for ration 
d=do+1 quantity B+l - Combined Shortage Cost and Delivery 

Cost if ration quantity is B) > 0 

If the term within this latter bracket is referred to as y, then the 

latter summation is E 	p(d)y and for d values greater than do, it 
d=d

otl 

is clear that p(d) itself is small, and the y term is also small (since 

if shortages do occur at the considered sub-store it is because the com- 

plex itself is short of stock and so the combined shortage over all stores 
A 	A 

is likely to change minimally whether B or B+1 be employed as the ration 

quantity.). Clearly the difference in replenishment cost is minimal. 

The product p(d)y is therefore minimal and the second summation is 

thus neglected for do  for which the cumulative probability 
cc 
E p(i) <.05. 

i=d
o 

13.2.5 Consideration of detail in ylg.s 

This detail is shown in Fig.9 and allows a formula for the number of 

deliveries to be established for the zero sub-store lead time case. 

1 or more extra deliveries corresponds to a demand d B+1 	(1) 

2 or more extra deliveries corresponds to d (B+1)+(1-8/d)(B+1) 
(2) 

and so for K or more deliveries, we have:- 

d 	(B+1)(1+(1-Bid)+(l-B/d)2  + 	(1-D/d)K-1) 



5+1 

2 pd EXTRA ,c:IiIPMENT • 
QTY. ,p (B+1) 

3rd EXTRA. 
S4-IIPMENT QTY. 

(B+1) 

Y 
TIME 

TO PROCURE—
MENT LEVEL 

FIG. 9 • 

DETAIL -FROM FIGURE 8 

NOTIONAL 
SUB—STORE 
STOCK 

N.B. SLOPE OF DEMAND LINE = u 
SLOPE OF XY = v 

• 715= 	- v/u 
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i.e. 	d > (8+1)(1+0+02+ 	+0
K-1
) 	where 8 = B/d 

K-1 Q  
i.e. 	d 	(B+1) {-"-P } 

Utilization of (1) and (2) leads to:- 

(1-0) + 1 > d/(B+1) >, 1; 	X(d,B) = 1 

.(1-0)2  + (1-8) + 1 > d/(B+1) 	1 + (1-0); 	Md,B) = 2. 

In general:- 

K(d,B) 	 K(d,B)-1 
1+ E (1-8)j > d/(B+1) 	1+ E 	(1-8)j 

j=i 	 j=1 

corresponds to K(d,B) deliveries. 

13.3 Summary of Experiment Eight  

4 Year Simulation of Models I, II with Control 7A Using IBM 1130 

System with "Simon" Simulation Language 

Full DescriRtion of Model I Given in 6.8. 

Model II Given in 7.2. 

Control Decisions  

Central store reorder quantity equals 60 for Model I and 85 for Model 

II. 	Complex reorder level is a parameter "M" in both cases. 

Control 7A 

Sub-Store Reorder Quantity 

Case 1: Procurement on Order: Ration Rule "Share Mk IV" (see 13.2.) 

Case 2: Procurement not on Order: "Allocation Rule" 

Criterion of Reorder Level for Complex: "Free Stock" 

Reorder Level for Sub-stores 

Case 1: Procurement on Order 
Reorder Level = -1 . Case 2: Procurement not on Order ) 
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13.3.1 Table 13-1 

Control 7A Applied to Model I 

Results for Test Stream No. 1729 

M z Np NR e
RO 

Area T.C. 

30 -0.3 3 33 2.0 39402 29.1608 

0.0 3 29 4.8 39589 30.8536 

+0.3 3 25 52.0 39767 76.9067 

35 0.0 3 28 0.0 44397 27.6587 

0.3 3 24 0.0 44397 26A+586 

0.6 3 22 16.0 44857 42.0427 

Total Costs for Different Stream Nos. 

M z 1729 1921 1147 Mean 

35 0.0 27.6587 27.0452 27.0196 29.2412 

0.3 26.4586 26.1452 25.5196 26.0411 

Breakdown of Costs at Optimum 

M z Stream Np NR e
RO 

Area T.C. 

35 0.3 1729 3 24 0.0 44397 26.4586 

1921 3 22 0.0 45113 26.1452 

1147 3 22 0.0 43549 25.5196 

Mean 3 22.7 0.0 44353 26.0411 

Mean Total Cost 26.04 



13.3.2 	Table 13-2  

Control 7A Applied to Model II  

Results for Test Stream No. 1729  

M z NP  NR  ;
0 

Area T.C. 

65 -0.3 6 59 0.0 54767 26.6767 

+0.0 6 53 0.0 54767 26.4967 

+0.3 6 48 1.8 54785 28.1539 

Total Costs for Different Stream Numbers  

1729 1921 1147 Mean 

65 -0.3 26.6767 26.9631 26.1275 28.5891 

+0.0 26.4967 26.7831 26.1079 26.3469 

F0.3 28.1539 26.2831 26.2995 26.9122 

Breakdown of Costs at Optimum 

M - z Stream NP  N
RR 

6
R0 

Area T.C. 

65 0.0 1729 6 53 0.0 54767 26.4967 

1921 6 53 0.0 55483 26.7831 

1147 6 56 0.1 53320 26.1079 

Mean 6 54 0.03 54523 26.3469 

Mean Total Cost 26.35  

13.4 Significance Testing the Improvement Obtained by Use of the "Share  

Mk. IV" Ration Rule Instead of "Share Mk I" in the Application  
to Models I, II  

13.4.1 Application of "t" significance test for Control on Model I  

ShareMcIResultShareMkIVResultd.Stream No. 
(Control 1A) (Control 7A) 

26.4586 26.4586 0 1729 

26.4452 26.1452 .3 1921 

25.8196 25.5196 .3 1147 
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t is given by 70E(di-d)2/W(W-1)}, dof = 2 

. . t = 2.0. 

The improvement in cost is judged significant at the 10% level. 

13.4.2 Application of "t" significance for Control on Model II  

Share Mk I Result Share Mk IV Result d. 1 Stream No. 

(Control 1A) (Control 7A) 

26.6480 26.4967 .1513 1729 

27.0649 26.7831 .2818 1921 

25.9879 26.1079 -.1200 1147 

t = 0.889, 	dof = 2. 

The improvement is insignificant at 5% or 10% levels. 

13.5 Comments on Experiment Eight  

Application of "Share Mk IV" to Model I (for Results, see Table 13-1 

at 13.3.1) represents a 2% improvement in total cost result over the pre- 

vious best control for Model I (viz. that in 6.8.1). 	However most of 

the costs comprising the total cost are irreducible anyway. 	(A substan-

tial inventory holding cost and fair-sized replenishment and procurement 

cost cannot be eliminated whatever the control type.) As was expected 

with "Share Mk IV", delivery numbers are increased, but with the benefit 

of reducing backup substantially, leading to lower overall costs of con-

trol, with a higher z-value. 

The same type of result is noted in the application of "Share Mk IV" 

to Model II. Replenishment costs are increased, but backup is reduced, 

and an overall cost saving is noted. 
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u-tt r significance test shows insignificant improvement in savings 

of Model 

The 

due to the use of "Share Mk IV" rather than "Share" in the case 

II yet a significant improvement at the 10% level for Model I. 

13.6 Chapter Summary and Introduction to Chapter Fourteen  

'his chapter has established a new Ration Rule "Share Mk IV" considered 

to be superior to the last ration rule "Share Mark III". 

For different considered ration quantities, various future demands 

(the probabilities of occurrence of which are known) are considered and a 

model proposed which estimates the expected cost of extra replenishments 

required for the sub-store in question. (Clearly, this will be non-zero 
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unless the quantity distributed is high.) 'The cost of shortage in the 

complex is obtained by taking several factors into account to obtain a stock 

value (say S ) and computing the shortage cost as that for a single store 

withstockS,demandrate(11-1)X.,at which stock will arrive in the cover-

age time hence. 

The flow diagram used for the Ration Rule is phrased only for the con-

text of zero lead time at sub-stores, and the ideas are tested on Models 

I, II. 	An improvement is noted over control with "Share(Mk. I)", insigni- 
ficant for Model II, but passing the "t" significance test at the 10% level 

for Model IT 



CHAPTER FOURTEEN 

EXTENSION OF THE NEW RATIONING RULE "SHARE MARK IV" 

TO COVER THE CASE OF NON-ZERO SUB-STORE LEAD TIME 
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14.1 Introduction to Chapter Fourteen  

Following the success of the rationing rule of "Share Mk IV" (developed 

in Chapter Thirteen for deciding on the amount to issue a sub-store which 

has reached its reorder level whilst the complex is awaiting the procure-

ment arrival) in the case of zero sub-store lead time, this chapter is de-

voted to the extension of the rule to govern the case where the sub-store 

lead time is non-zero. Model III applies. _,Basically the ideas are very 

much the same,with the additional complication of having a reorder level 

which depends on how long to go before the procurement arrives. 

14.2.1 The ration rule "Share Mk IVB" 

This is identical to the ration rule of the previous chapter except 

that it is applicable to non-zero sub-store lead time cases., , 

The situation is as in Figure 10 and as before the ration quantity 

line is assumed to run from the point (B,T0) to the point (f+1, 1) where 

f corresponds to the reorder level at the time T = 1.* The analysis 

of Chapter Thirteen other than that of 13.2.5 is applicable. 

A flow diagram for the computation of the values Ebi, K(d,B) is given 

in Fig.17 (at Bai51e226). The expression "c(n)" as a function of reorder 

level "n" gives the T-value at which the reorder level step drops from 

level "n" to level (n-1) from the 1st Dynamic Programming Model. 

14.2.2 Computation of the ration quantity function  

The Expected Ration Quantity Line has the equation:- 

T-1 R(T) = (f+1) + 	- (f+1)) 
0 

.14.2.3 Computation of the value,  the expected cost of shortage  

for the other sub-stores in the complex when a sub-store  

ration quantity is being decided upon  

The procedure uses the expression established in Appendix 5, 

K(d,B) 
4)(3,1,1-)Iilleres=s - Eb.-13, T = To 	11 = 4X.. 

i=1 

It is better to replace T T by 3 in the expression whence:- 

i.-1 -j 
TS1 	' (d B) = cs  {LE' (1 - E 	--r,i1  

j:.10 4'  

	

s —j — —2 — 	;41 --j 
- 

	

	+ s +s (1  - E  li_ T T (1 - E -1 F- e-P) 
j=0 3" 	iT 	 j=0 31  

' If f is not defined, f is taken as 0. 
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14.3 Experiment Nine  

This experiment is a simulation of Model III of the complex with 

similar contol to that used in Experiment Seven (see 12.2) where the best 

results so far have been achieved. Here, however, the new Ration Rule, 

"Share Mk IVB", as described in this chapter, replaces the "Share Mk III" 

Ration Rule. 

14.3.1 Summary of Experiment Nine  

10 Year Simulation of Model III with Control 8A Using IBM 1130 

System with "Simon" Simulation Language 

Full Description of Model given in 8.5. 

Control Decisions  

Central Store Reorder Quantity equals 60, and the reorder level for 

the complex is the parameter "M". 

Control BA is defined thus:- 

Sub-store Reorder Quantity:- 

Case 1: Procurement on Order: Ration Rule "Share Mk IV B" (see 14.2) 

Case 2: Procurement not on Order: "Allocation Rule" 

Criterion of Reorder Level for Complex: "Free Stock" 

Reorder Level for Sub-stores: 

Case 1: Procurement on Order: Function of "T" from 1st D.P. Model 

Case 2: Procurement not on Order: Function of "F" from 2nd D.P. Model 

14.3.2 Table 14-1  

Control 8A Applied to Model III 

Total Costs for Different Stream Numbers 

M z 1115 1729 1147 1921 Mean 

45 0.9 78.35 77.91 76.45 77.03 77.44 

1.0 77.35 77.11 76.16 76.75 76.84 

1.1 77.48 76.67 76.69 76.47 76.83 
1.2 78.20 77.14 
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Breakdown of Costs at Optimum (Average over 4 Streams) 

NR C 	
Holding Costs 

RO Average Stock T.C. 

45 	1.1 	7.75 	55.67 	0.4 	"55.86 	76:63 

Mean Total Cost = 76.83  

14.4 Significance Testing the Improvement Afforded by the Use of the  

New Ration Quantity Rule  

The result must be compared against the result obtained by usage of 

the identical control but with the previous-best ration rule. This was 

the control simulated in Experiment Seven at 12.2. 

Result: Control 6A Result: 	Control 8A d. 
3. 

Stream No. 

78.85 77.48 1.27 1115 

77.31 76.67 0.64 1729 

78.25 76.69 1.56 1147 

78.03 76.47 1.56 1921 

78.08 76.83 d = 1.25 Mean 

The value of t is givenh;), -a.,7/{z(d7di)2/NIN=1)} 

t = 6.2, 	dof = 3. 

The improvement afforded by "Share Mk IVB" Ration Rule is judged 

significant at the 0.5% level. 

14.5 Comments on Experiment Nine  

The previous best operation of the complex was achieved by use of"Share 

Mk III"coupled with the two Dynamic Programming Models for sub-store reorder 

level (for the two respective cases; procurement on and not on, order) 

at 12.2.1 in Experiment Seven. This represented nearly a 1% improvement 

in total cost over the result of Experiment Five (where the Second Dynamic 

Programming Model was not employed, and where the Ration Rule was "Share" 

(see 5.6.4.2). 	A further reduction in total cost from 78.08 (Experiment 

7) to 76.83 is achieved, by employment of the rationing rule "Share Mk IVB" 

along with the Second Dynamic Programming Model (sub-store reorder level 

as a function of Free Stock) in 14.3.1 of Experiment Nine. 

In general, as with Experiment Eight for models of the complex with' 

zero lead time to sub-stores, replenishment totals are increased with 

control using Share Mk IVB  but savings in backup are achieved. The con-

trol responds to this by allowing a higher z (which tends to a reduction 
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in delivery totals) whilst performing very well in reducing backup. The 

optimum turns up at z = 1.1, where the average backup cost in a ten-year 

simulation is equivalent to only one day of shortage. At higher z-values, 

the increase in backup cost is greater than the decrease in replenishment 

costs. 

In the next section a suggestion to improve the present Ration Rule 

(Share Mk IV for zero sub-store lead time, and Share Mk IVB  for non-zero 

lead times) is given. 

14.6 Ideas for Modifying the Ration Rules "Share Mk IV, IVB"  

14.6.1 The disadvantage of computing the shortage costs of the re-

maining (N-1) sub-stores as the expression in 13.2.2 and 14.2.3 is that due 

to combining or "lumping" the stock levels of the individual stores to.-

gether and considering the shortage of a hypothetical store with the lumped 

stock and (N-1) times the individual demand rate. 

Consider the following stock configurations for the four*remaining 

sub-stores and central store 

T = 100 

t = 25 

x = .04 

) 	3, 

) 	6, 

3, 

6, 

3, 

6, 

3, 

6, 

(20)** 

(8) 

No.1 

No.2 

Mean demand is 5 
in coverage time 
for each sub-store 

) 

8, 8, 8, 8, (0) No.3 

For Case 3, "lumping" the stocks together and approximating the short-

age as that fora store with demand rate .16 with a mean demand in the cover-

age time of 20 and with a stock level, of 32 will give a lower cost of 

shortage than summing the expected costs of shortage for four stores each 

with stock levels 8 and mean demand 5 in the coverage time. In this case 

the correct estimate is naturally the latter. 

For Case 2, the stock of 8 at the central store is available to re-

plenish the needy sub-stores and so lumping all the four sub-stores' stocks 

together (and in effect stating that complete interdistribution without 

cost is possible) is not such a poor assumption. 

For Case 1, it is probably a closer approximation to reality to con-

sider the stores"lumped together into one store" rather than take the sum 

of the expected costs of shortage for four stores each with stock 8. 

Equal to (N-1) for Complexes in this thesis. 
k(d,B) 

The bracketed value is central store stock.less the value I less the 
shipment quantity to the considered sub-store. This stock 
is known as the "left stock". 
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14.6.2 Where to "Draw the Line" between the "Lumping" and ".Non-

Lumping" of Stocks  

The problem of"where to draw the line" between lumping the stores, to-

gether and considering the run-out costs of the separate stores now arises. 

By "lumping the sub-store notional stocks together" this makes a configura-

tion like No.3 appear falsely safe. By considering the stores separately 

a configuration like No.1 appears falsely unsafe. 

A suggested "line" is where the va.lueoi<nle.cbstock"exceeds the sum 
of the four sub-store notional stocks. Thus only configuration No.1 would 

be considered as a single store. 

14.6.3 How to compute shortage costs when stores axle considered  

individually  

The problem now arises as to how to estimate the costs of run-out for 

a configuration such as:- 

	

8, 	7, 	9, 	5, 	(5)* 

The stock in brackets' will be assumed distributed amongst the sub-

stores "in such way as to equalise stocks". ' 

Thus we have:- 

	

8, 	9, 9, 8, from which the individual stores' run-out 

costs are.  computable. 

The Ration Rule "Share Inc IVB" thus modified is termed "Share Mk V". 

14.7 Summary of Chapter and Introduction to Chapter Fifteen  

This chapter has considered in Experiment Nine the application of the 

latest ration rule for the decision of how much to ship an, ordering sub-

store whil4 the complex has stock on order. The analysis follows along 

the same lines as Chapter Thirteen, but the computations for expected 

extra replenishment numbers and expected future shipment quantities are 

made somewhat more lengthy owing to the step-function nature of the reofder 

level of sub-stores in the future.(the latter is a function of time to go 

until procurement arrival). 

Application of control using the resulting Ration Rule "Share Mk IVB" 

leads to a significant improvement ("t" test yields this result fora 

0.5% significance level) over the previous best control (with Share Mk 

in Experiment 7). An improvement (Share Mk V) whichsuggests a criterion 
for either "lumping" sub-store stocks together or considering sub-stores in- 

Again, the bracketed stock level refers to "left stock".. 
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dividually for the purpose of estimating future shortage costs until the 
coverage time is finally suggested. 



CHAPTER FIFTEEN 

INTRODUCTION OF NEW MODELS, TO TEST THE WORKINGS 

OF THE AUTHOR'S CONTROL OVER A MORE GENERAL FIELD 
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15.1 Introduction to the New Models IV, V  

Further models, with variations in data were introduced in order that 

the performance of these with control as suggested by the author may be 

determined. 

In Chapter Fourteen we have been dealing with Model III in which the 

data is as below:- 

Replenishment Cost: 0.3 

Demand Rate: 10 per year per sub-store, 5 sub-stores, 

i.e. AT  = 50 'units/yr 

Procurement Cost: 0.5 

Holding Cost: 10% item value per year 

Shortage Cost: 0.4 per item-day of shortage 

Procurement Lead Time: 100 days (.4 year) 

Sub-store Lead Time: 25 days (.1 year) 

The data for Model IV is identical except that the cost of replenish-

ment is reduced to 0.03. 

It is felt that this means that more replenishments per procurement 

are likely and this is reflected in the calculation of Q*, the procurement 

quantity, which is 45 for this model.** 

The data for Model V is identical to that for Model III with the ex- 

ception of the lead time being increased to 50 days.*** 	It is expected 

that shortage costs will necessarily increase and this is reflected in 

the computation of Q*, taken as 75. 

15.2 Summary of Experiment Ten  

4 Year Simulation of Model IV with Control 9 Using IBM 1130 

System with "Simon" Simulation Language 

Full Description of Model given in 15.1 

Control 9 identical to Control 8A (see last Experiment No.9 at 14.3.1) 

with following exceptions: 

See Appendix 10 

The value (hPQAT)figuring in the calculation of Cm, for the Second 
D.P. Model now has values .09, .15 respectively forlModels IV, V. 

In which mean sub-store demand is 2. 

* * 
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Sub-store Reorder Quantity:- 

Case 1: Procurement on Order: Ration Rule "Share Mk V" (see 14.6) 

in Exhibit 'B' followed by "Share Mk VA" in Exhibit 'C'. 

Complex Reorder Quantity: 

Q = 45. 

15.3 Analysis of Simulation Details 

Analysis of the operation of the Ration Rule "Share Mk V" shows that 

the rule is too liberal when the sum of the sub-store stocks exceeds the 

central warehouse stock. 	This is clearly seen in Exhibit 'B'. This 

simulation shows that at procurement arrival, the sub-store stocks are, 

respectively, 3, 7, 1, 2, 3, a clear case of a poor distribution of stocks 

over the sub-stores. The high level of stock at sub-store 2 can be traced 

to too high a distribution from the "Share Mk V" rule at a time of 125 

(see Exhibit 'B'). 

15.4 Introduction of Share Mk VA 

Following the observance of this phenomenon, the Ration Rule "Share 

Mk VA" was introduced. 	In this rule, the shortage costs at the other 

sub-stores are always computed by hypothetically sharing out the "left stock" 

from the central store to them in as equalising a way as possible, and 

then taking the sum of the expected costs of shortageS for each sub-store 

with the resulting stock levels. 

Exhibit 	records the simulation using "Share Mk VA" and it is 

seen that the problem discussed above (with "Share Mk V") is alleviated. 

15.5 Observance of Inefficient Use of Buffer Stock  

In Exhibit 'C' one can see that with stbck levels of 2, 5, 2, 3, 4 

for the sub-stores at time of procurement arrival, we have an unsatisfac-

tory situation with regard to shortages for sub-stores 1 and 3. This 

is seen to be the case from the result that a cost of 4.4 is sustained as 

a result of one backorder existing for 11 days at sub-store 1. 	Sub- 

store 3 does not acquire backup. 

What is happening IS that Share Mk VA is not efficiently using the 

buffer stock. At a clocktime of 169 in the simulation (lines "a", 

Exhibit "C") the Ration Rule depletes the central store and there exist 

6 units for each sub-store to last until a simulation time 250 (t after 

procurement arrival). 
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15.6 Results of Experiment Ten (incorporating Ration Rule Share Mk VA"), 

15.6.1 Case of above average demand in coverage time  

Exhibit 'C' using Share Mk VA, had the following information extracted 

from it. 

Clock Time Stock Configuration 
(Notional Sub-store Stock's) 

Central Store Stock 

161 6 6 6 6 6 5 

161 6 5 6 6 6 5 

6 6 6 6 6 4 

163 5 6 6 6 6 4 

6  6 6 6 6 3 

168 6 5 6 6 6 3 

6 6 6 6 6 2 

168 6 6 6 6 5 2 

6 6 6 6 6 1 

169 6 6 5 6 6 1 

6 6 6 6 6 0 

Procurement 
Arrival 

225 2* 5 2 3 4 0 

15.7 Reasons for Inadequacy of Share Mk VA  

The Ration Rule "Share Mk VA" is still not equipped to deal with 

the problem of distinguishing between the desirability of having a stock 

configuration of (a) as opposed to (b) below: 

(a)  3, 3, 3, 3, 3, (10)** 
Stock configurations 

(b)  5, 5, 5, 5, 5, (0) 

It has been shown (see reference to Exhibit 'B' on last page) that 

"lumping" the stocks to compute the expected cost of shortage for a 

configuration like (a) is incorrect. Yet by doing the other alternative 

(viz. considering stock to be distributed from the central store in 

an equalising manner and computing shortage costs correspondingly) we 

are saying that the above two configurations are equal in terms of ex- 

pected shortage costs. 	Clearly fort times before procurement arrival, 

(a) is better than (b) since stock is available in the central store to 

* This store receives a backup of cost 4.4 units in next 2, days. 

h* Central store stock. 
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supply to those stores really in need as time of real shortage in the com-

plex approaches. It should of course be recognised that we cannot afford 

to keep too much stock back at the central store since individual stores 

will then be holding too little stock with consequent risk of shortage in 

the lead time. 

15.8 How Can the Ration Rule be Modified to More Efficiently Use the  

Buffer Stock? 

The Ration Rule has to be modified so as to more efficiently distri-
bute the last few units of stock from the central store. 

Clearly it is only for the last few units of stock in the central 

store that the problem is really acute, and some "stronger rationing" is 

required. If we were to incorporate this "stronger rationing" at an 

earlier stage, the risk is run of incurring extra replenishments and 

maintaining dangerously low levels of stock at sub-stores over fairly 
long periods of time. It is seen from the simulation details that for 

most cases, the present ration rule"Share Mk VAlis adequate when central 
store stock is not very low. 

Clearly, any ideas proposed must not be solely suitable for spec-

ialised cases, but must be such as to reflect the relative costs of 

shortage and replenishment. 

15.9 Ideas Adopted to Modify "Share Mk VA" to "Share -Mk-VI"  

After many hours of search for an analytical solution, the task was 

abandoned as being too difficult; a heuristic approach was adopted. 

To be acceptable, the Ration Rule must, be able to strike the correct 

balance between overall shortage and replenishment costs for different 
combinations of unit shortage and unit replenishment costs. 

15.10 Heuristic Determination of the "Stronger Rationing" Ideas for. 

"Share Mk VI" 

We do not want to let the stock at sub-stores get dangerously low, 

but we do not want other sub-stores to incur shortage as a result of 

maldistribution. This applies irrespective of unit replenishment cost. 

It is solely concerned with efficiently using the buffer stock. 

At any time we can compute what stock will be expected to exist in 

total in the complex when the procurement is just about to arrive at the 

central store. 	If an estimate of this figure is 19 say, we can do no 

-F.. 45 6brev-1. 0.4- 7-0  co is-L-3 i5 	; P o,;tr a I ,i,i±erc_ (rLoe 
e-cArq 	tetc,1 deh,v3r,c1 	 t 
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better than expect to have a configuration such as 3, 4, 4, 4, 4 at the 

sub-stores at this time. This means that the buffer employed is such 

that we are not expecting to have the sub-store stock level drop below 

3 with replenishment due R. days hence. Hence it is unreasonable to let 

any sub-store stock ever drop below 3 before replenishing. Clearly a 

replenishment of one unit is the only one to be sensible, otherwise mal-

distribution is very likely. 

The rule thus resolves into-one of restricting the r4tion quantity 

to one more than the value of "Expected Stock at Procurement Arrival N". 

For the case cited above, this restriction in stock value will be- 1 + 19/5 

= 4.8; the integer value is taken (since the value of 5 would be above 

the restricted value) and so the ration quantity is thus restricted to 

15.11 Consideration of -the "Stronger Rationing Ideas" 

It is hoped that this rule will tend to result in an even distribu- 

tion of stock when the procurement arrives in the central store. 	In the 

period equal to the sub-store lead time after this time instant is the' 

time when shortages in the complex are most likely, so it is important 

to try to ensure that at this time there is even distribution of stocks 

amongst the sub-stores. 

If overall stocks are low when the "stronger rationing" rule is in-

voked, we expect shortages anyway, but we are minimising the overall 

cost of shortage. Where shortages do not matter very much, the 1st 

Dynamic Programming Model reflects this in making the sub-store reorder 

level low anyway. 

15.12 Is the Stronger Rationing Rule Excessively Liberal in Replenishment? 

An argument may be voiced that by restricting the quantity rationed 

out to an ordering sub-store, another replenishment at a later date will 

be necessitated. This question will now be considered for the cases 

where (i) expected buffer is high and (ii) expected buffer is low. 

The following comments are felt to apply equally well whether unit 

shortage cost is high or low. 

Case (i) Buffer High. 

The replenishment consists of several units, and the possibility 

of further replenishment is minimised. 
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Case (ii) Buffer Low 

The replenishment is correspondingly small in terms of units of stock 

shipped, but another replenishment to the sub-store is not really likely, 

since with buffer low, the other sub-stores are likely very soon to be at 

their reorder level, and the remaining few units in the central store can, 

for most cases, be considered "reserved" for these sub-stores. 

15.13 Incorporating the New Ration Rule  

The New Ration Rule, known as "Share Mk VI", is used for the simula-

tion of Models IV and V and was seen to be beneficial, althougb_it cannot 

always be expected to result in an even distribution of stocks. The 

simulation of Model IV with the new Ration Rule "Share Mk VI" will be 

known as Experiment 10A and the control known as Control 10A. 

15.14 Summary of Experiment 10A  

4 Year Simulation of Model IV with Control lOAUsing IBM 1130 

System with "Simon" Simulation Language 

Full Description of Model given in 15.1 

Control 10A identical to Controls 8A, 9 (see Experiments Nos. 9,10) 

with following exception: 

Sub-store Reorder Quantity: 

Case 1: Procurement on Order: Ration Rule "Share Mk VI" (see thii 

chapter). 

15.15 A Note on the Results of Experiment 10A 

The results of the application of Share Mk VI to Model IV for the 

ease (M = 50, z = 0), are very illuminating. 	In comparing it with the 

results from Exhibit IC' using Share Mk VA, we note a more even distri-

bution of stock at the critical time, just prior to stock arrival from 

the new procurement. 

Criticism may still be given that at procurement arrival sub-store 

1 has a stock level of 2 whilst sub-stores 2 and 6 each have 4. 

Careful consideration of the simulation will, however, show that to avoid 

this occurrence, one would have had to have retained a policy of non-

replenishment for all sub-stores from clock-time 193 onwards'. This 

would mean waiting for stock levels of 2 before replenishment. This 

would mean considerably more shortage cost then the present policy (of 
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the new "stronger rationing" rule) leads to, where only once does such 

a dangerously low stock level occur before replenishment follows. 

15.16 An Extraction from the Simulation of Experiment 10A - 

Application of "Share Mk VI to Model IV for the Case M = 50, z = 0  

Clock Time Sub-store Stocks Central 
Store 
Stock 

Ration Quantity 
from 

Share Mk VI 

161 6 5 6 6 6 (5) 5 

163 5 5 6 6 6 (5) .5 

168 5 5 6 5 6 (5) 5 

168 5 4 6 5 6 (5) 4 

169 5 4 6 5- ,  5 (5) 

173 5 4 5 S  5 5 (5) 

175 5 4 4 5 5 (5) 4 

177 5 4 4 5 4 (5) 4 

179 4 4 4 5 4 (5) 4 

185 4 4 4 4 4 (5) 4 

193 ) 3 4 4 4 4 (5) 4 

) 4 4 4 4 4 (4) 

199 ) 4 4 3 4 4 (4) 4 
) 4 4 4 4 4 (3) 

206 ) 4 4 4 4 3 (3) 4 

) 4 4 4 4 4 (2) 

207 ) 4 3 4 4 4 (2) 4 

) 4 4 4 4 4 (1) 

212 ) 4 4 4 3 4 (1) 4 

) 4 4 4 4 4 (0) 

212 3 4 4 4 4 (0) 

216 3 4 4 3 4 (0) 

218 2 4 4 3 4 (0) 

223 	) 2 4 3 3 4 (0) 

225 ) 
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15.17 Results of Experiment 10A 

15.17.1 	Table 15-1 

-C-110 
Area T.C. 

Results for Test Stream No. 1729 

M 	z NP 
 

IN
R 

45 	-.6 5 122 13.6 48926 39.3303 

-.3 5 103 13.6 48926 38.7603 

0 5 84 13.6 48926 38.1903 

+.3 5 69 13.6 48926 37.7404 

+.9 5 37 13.6 49511 37.0143 

+1.2 5 31 20.4 51193 44.3071 

50 	.6 5 56 4.4 53903 30.1411 

1.2 5 35 4.4 53903 29.5112 (N.B.) 

1.5 5 27 11.6 55181 36.9823* 

55 	1.2 5 40 0.0 58892 27.2567 (N.B.) 

1.5 5 31 4.4 60163 31.8951* 

Stream No. 1115 Results 

M 	z Np  RR  CR
O 

Area T.C. 

50 	1.2 4 34 0 55431 25.1923 

55, 	1.2 4 34 0 60431 27.1923 

Mean of 2 Streams 

M 	z ITP  NR 
 

C
RO 

Area T. c . 

50 1.2 4.5 34.5 2.2 54667 27.3517 

55 1.2 4.5 37.0 0.0 59661 27.2245 

The latter is the optimum of these results. 

15.18 Summary of Experiment 11  

4 Year Simulation .of Model V with Control 10B Using IBM 1130 

System with "Simon" Simulation Language 

Full Description of Model given in 15.1 

* Central store initially depleted; No buffer available from Central 
Store. 
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Control 10B identical to that for Experiment 10A (see 15.14) with following 

exception: 

Complex Reorder Quantity Q = 75. 

15.19 Results of Experiment 11 

Table 15-2 

Case` M=50 Stream 
No. NP  NR  CRO H.C. T.C. 

0.3 1115 3 43 0.0 26.40 40.80 
( 1115 3 34 0.0 26.85 38.55 

0.6 1729 3 36 20.8 27.42 60.52 

( Mean 3 35 10.4 27.13 49.53 

( 1115 3 19 1.2 29.85 38.25 

1.2 1729 3 20 41.6 26.47 79.57 

( Mean 3 19.5 21.4 28.16 58.91 

Case M=55 ( 1115 3 31 0.0 28.40 39.20 
( 0.6 1729 3 38 1.6 28.41 42.91 
( 
( Mean 3 34.5 0.8 28.40 41.05 

( 1115 3 24 0.0 30.26 38.96 

0.9 ( 
( 

1729 3 32 1.6 29.40 42.10 

( Mean 3 28 0.8 29.83 40.53 

( 1115 3 23 1.6 29.51 39.51 

1.2 	, ( 1729 3 24 1.6 32.31 42.61 
l 
( Mean 3 23.5 1.6 30.11 41.06 

Case M=60 ( _1115_ 3 25 0.0 30.43 39.43 

0.9 	, ( 1729 3 33 0.0 30.40 41.80 
i. 
( Mean 3 29 0.0 30.42 40.62 

( 1115 3 22 0.0 30.85 38.95 

1.2 (  11(  1729 3 25 0.0 31.39 40.39 

( Mean 3 23.5 0.0 31.12 39.67 

1.5 1729 3 24 1.6 32.31 42.61 

cont.. 

* This is the least-cost result. 
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Table 15-2 (cont.) 

Case M=65 	z 
Stream 

No. Ti NR  CRO H.C. T.C. 

( 1115 3 25 0.0 32.37 41.37 

0.9 1729 3 29 0.0 32.40 42.60 

( Mean 3 27 0.0 32.39 41.99 

( 1115 3 23 0.0 32.40 40.80 

1.2 	, 1729 3 27 0.0 32.40 42.00 

( Mean 3 25 0.0 32.40 41.40 

( 1115 3. 22 0.0 33.24 41.34 

1.5 	, 1729 3 21 0.0 34.34 43.14 

( Mean 3 21.5 0.0 33.79 42.24 

15.20 Details of ComputingL Procedure for Models IV, V  

1. Use Program "NNNN" with subroutine "SUBX" to obtain the 1st D.P. Model. 

Use this information in Programs, "DSJF", "MMMM". 

2. Run program "DSJF" to obtain off-line the D.P. Model 2. Store this 

information in the machine data file. 

3. Follow on immediately with the simulation program "MMMM" with its 

various subroutines. 

The complete simulation program for Experiment 11 is given as Program 

2. 	This is the program of control type 108 incorporating the latest-

modified Ration Rule "Share Mk VI". 'This control, apart from this ration 

rule, and a use of Q = 1S (due to a difference in model data), is identi- 
cal to that of Conti:O1 8A described in 14.3.1. 	It is applied to Model V 

(details of which are_given at 15.1) and the results are illustrated by 

means of equi-cost curves in Fig.12. Figure 11 shows the variation of 
the cost of an (M,z) policy with the parameter M for a elosa-to-optimal 

z value. 

15.21 Details of Program 2  

Flow diagrams are given for the vein  programs "NNNN", and "MMMM" 

(referred to above in 15.20) and for the more important and interesting 

subroutine calculations. 

The proposal here is to list all the programs and subprograms used 

in the complete simulation program for Experiment 11, with a brief des-

cription of their purpose. 
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FIG. 11 
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FIG. 12 

EQUI-COST CURVES FOR EXPERIMENT 11 (SIMULATION OF MODEL V) 
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15.21.1 Program "NNNN" + Subprogram "SUBX": 

Off-line computation of reorder level at sub-stores as a fqnction of 

time to arrival of procurement at central store. Actually the decision 

function for different notional stock level and T combinations are given, 

but this amounts to the same thing. The flow diagram for this computa-

tion is given in Fig. 13. 

15.21.2 Program "DSJF" + Subprograms "DSJG", "SUBA", "SUBC  

Off-line computation-  of reorder level at sub-stores as a function of 

Free Stock. This information is kept on a data file. 

15.21.3 Program "MMMM": 

Main simulation program, consisting of the initial conditions plus the 

three phases of the Simon Simulation Procedure. The flow diagram is given 

in Fig. 14. 

15.21.4 Subprograms called from "MMMH"  

(i) "CALCS (ISDA, ILDA, RLAMD)" 

This subprogram computes the expected cost of shortage for sub-stores 

in the coverage time as a result of a possible ration quantity. The 

three arguments are respectively the values of S, L, A used in the 

computation. The flow diagram for this subprogram is given 

in Fig.15. 

(ii) "CALG" 

This subprogram computes the G-value of the complex and updates the 

value of the total stock time area function "Area". Figure 16 gives the 

flow diagram for this computation. 

(iii) "CALKB(D)" 

This computes the expected number of extra replenishment K(d,B) as 

a result of a ration quantity B when experienced demand until the time 

T=1 is d, and the total number of shipped items in these extra deliveries, 

K(d,B) 
E 	b., The flow diagram is given in Figure 17. 

i=1 

(iv) 	"GEN" 

This takes a random variable from the Poisson distribution of sub-

store demands and associates the time of the next demand at a sub-store 

which has just experienced a demand as this time value hence. 
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(v) "PNOO" 

This subprogram calculates the Allocation Quantity A(F,M,z). 

(vi) "P001" 

This subprogram calculates the Ration Quantity. 	It is described by the 

flow diagram in Fig. 18. 

(vii) "SFRS" 

This represents the computation of "Free Stock" F. The relevant flow 

diagram is given by Fig. 19. 

(viii) "SSRO" 

This subroutine tests whether any sub-store is at its reorder level 

and calls the relevant subprogram, either "PNOO" or "P001", if positive. 

(ix) "SYRO" 

This checks to see if Free Stock is less than the reorder level of the 

complex and, if so, initiates a procurement order. 

(x) "PLAN, ADDL, BEHE, GROU, HEAD, MEMN, REFN, SCA, QUEUE, SETT 

SIZE, TIMV, SIMO, DELE, ENTI" 

are the special purpose subroutines of the "Simon" Simulation procedure. 

15.22 Comments on the Results of Experiment Eleven  

For the case of stream 1729, in the first cycle, a buffer of 16 at time 

of procurement arrival' spread over 5 sub-stores means an average of three 

to each sub-store, and so in the days when the central store stock is be-

low 10 (in the region of half the central store lead time prior to procure-

ment arrival) sub-store reorder level is made by the rationing rule equal 

to 3. The probability of a demand of greater than 3 in the sub-store lead 

time (when mean demand is 2) is as much as 0.14! Hence not only does 

this buffer spell shortage in the sub-store lead time immediately following 

procurement arrival at the central store, but also in the sub-store lead 

times prior to procurement arrival. 

The "stronger rationing rule" "Share Mk VI" although of some obvious 

merit, is felt to be unacceptable for future considerations because of its 

heuristic context, and is dropped from future considerations. The pre-

vious best Ration Rule "Share Mk VA" will be employed in the following 

work. 

Note that ;Chapter- 181  gives a summary of the Ration Rules used in 

this thesis. 

' Corresponds to M=50. 
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15.23 Summary of Chapter Fifteen and Introduction to Chapter Sixteen  

Chapter Fifteen introduces the two new models, Models IV, V, the 

controls of the author are applied to each and the results are presented. 

The application of "Share Mk V" to Model IV, as shown in Exhibit 'B' re-

sults in a poor stock distribution at a critical time. This situation 

is seen to improve with modification to "Share Mk VA", and an extract from 

Exhibit 'C' is given which shows this. Further modification for the pur-

pose of improvement of performance is suggested, and Experiment 10A con- 

siders the latest suggestion "Share Mk VI" in its 

Experiment 11 uses this Ration Rule on Model V. 

simulation for Experiment 11 (control type 10B)is 

the details of this program is given at 15.21 and 

important operations are given. 

application to Model IV. 

A full program for the 

given. A summary of 

flow diagrams for the 

The results of Experiments 10A and 11 (given in Tables 15-1, 15-2 

respectively) show that a low overall cost with zero expected shortage is 

possible for use of low buffer stock in the complex. An extraction from 

the simulation of Experiment 10A is given at 15.16 in which the operation 

of the all-important ration rules may be viewed. 

Chapter Sixteen turns to a more general model of the complex. At 

the sub-stores the demands are forecast from past data. The performance 

of the author's control rules is to be tested in their control of this 

model. An interesting point is that a jump in mean demand rate is applied 

to one sub-store within the time of control of the simulation. 
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16.1 Introductory Remarks  

This next phase of the work considers the application of the author's 

control to a model of the complex in which sub-store demands are forecast 

from past data. Additionally, the model must cope with the mean demand 

rates at sub-stores being different. In fact the model, will feed in ran-

dom variables from given distributions, but the control will work in ignor-

ance of the latter, just making forecasts of demand rates from past data. 

The model will work with the assumption of shortage cost at sub-stores 

being proportional to the number of demands not met immediately. The time 

factor in shortage will not be considered as contributing to cost. 

16.2 Model VI  

This model considers shortage costs to be independent of time and each 

shortage occurring will be considered to cost cL = 0.4. The mean demand 

rate A. vector for the five sub-stores is (,01, .02, .03, .04, .05) units/ 

day, Poisson distributed for sub-stores 1 to 5 respectively. 

The lead time to sub-stores is 25 days, and the procurement lead time 

(as with all other models) is 100 days. 

The value of cR 
is .3, c = .5, hP = .1. 

Four-tenths of the way in the 4-year simulation, the value of A3 changes 

suddenly to .06/day. 

Knowledge of sub-store demand rates is only gained from demand occur-

rence data. Future sub-store demand rates are forecast for each sub-store. 

16.3 Modification of Concepts to Cater for the Change in Model Conditions  

16.3.1 Trigger of reorder for the complex  

This is still "Free Stock". However, now stock from the central 

store is considered distributed (hypothetically) to the sub-stores in such 

a manner as to attempt to equalise the expected time stock will last sub-

stores ("stock-lasting time"). 

When no more stock is available in the central store in this hypo-

thetical distribution, Free Stock is taken as the product of the minimum 

of the resulting "stock lasting times" and the total demand rate, AT' of 

the complex. 

A flow diagram for this computation is given in Fig. 26. 

16.3.2 Demand rates  

Since for Model VI, no exact knowledge of the distributions from which 

the sub-store demands are coming is assumed, the demand rates require to 
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be forecast. 

It is convenient,to consider inter-arrival times of demands, and work 

a forecasting procedure on these. Sub-store demand rate will then be 

the inverse of this forecast inter-arrival time. The total demand rate 

for the complex, AT, is found by summing Xi  over all sub-stores. 

The forecast used here is that of exponentially smoothing the inter- 

arrival times. We have for a particular sub-store:- 

Tf 	
or, Tf 	+ (l - a) T 

n n-1 

where Tf 
is the new forecast 

n 
Tf 	

is the old forecast 
n-1 

T 	is the last inter-arrival time observed 

a 	is the smoothing constant. 

16.3.2.1 Obtaining the initial forecasts  

Demands over a period equal to the length of time that the model is 

being simulated over are fed in for each sub-store, and these are exponen- 

tially smoothed. The resulting Tf  and its inverse represent the ini- 

tial inter-arrival time forecast an demand rate, respectively. This is 

done for each sub-store. 

16.3.3 Reorder level of sub-stores  

Case One: Procurement on order  

This employs the off-line computation of the reorder level ti time 

function for "strategic" values of the demand rate Xi. 	(The values of 

X = .01 to .10 are consideredfor this model in .01 steps.) This informa- 

tion is stored in the computer by associating the time at which the step 

'drops' with the level at which this occurs. 	Thus, in Fig. 10 (see 14.2.1) 

the value of the step-end "e" for level s would be equated to T 
P1 

(Note that the value of "c" for the level Immediately above that corres- 

ponding to the time T=L is not equated to L; rather the exact value at 

which this step drop occurs is found in the dynamic programming off-line 

computation.) 

For every value of sub-store notional stock existing the "c" value 

is estimated by linear interpolation between the strategic values for 

which accurate dynamic programming "c" values of the complex are stored. 
Reference to Fig. 20 shows this to be a good approximation. This figure 

* i.e. the function e (A .,s ) = T . 
1  P1 	P1 
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FIG. 20 

REORDER LEVEL FOR THE (Xi,T) PLANE FOR-THE 3rd D.P. MODEL 
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** 
shows the reorder level regions on the )si  ti T plane.' 	The "e" value 

for any given Ai  ti  notional stock level 's' combination is found by obtain- 

ing the (s,s-1) boundary for this Ai  and taking the corresponding value 

of T. 

Thus when forecast demand is, say, .07234 and notional stock s is 

6, estimated e is .234e(.07, 6) +,.766e(.08,6). 	If the actual value of 

T is such that T estimated e, the sub-store is deemed to be at its re-

cider level, and its issue quantity is decided by the subprogram "POOX" 

utilizing the Ration Rule. 

A flow diagram for the computation of e is given in Fig. 24. 

The reorder level time function for Case One requires the use of 

a 3rd Dynamic Programming Model. 

16.3.3.1 The Third Dynamic Programming Model  

This is very similar to the 1st d.p. Model. The only basic change 

is that the shortage cost is now independent of time and a cost e' occurs 

only at the instant a backorder is experienced. 

The analysis is identical-to that given in 9.2, except that the ex-

pected cost of shortage of a sub-store with stock s when replenishment 

willdefinitelyarriveintimetisnotthefunction ut 

the  furictiol ihere:- 
s 

gs,,t, xi) = E (x-) p(x) 
x=s4-1 

where 
-X.R. (X X)x  1 	 p(x) = x! and d is Max {s,0} 

16.3.3.1.1 Decision functions for negative notional  

stock 

Appendix 6.5shows that for the 1st d.p. Model D(-n,l) = 1 for all 

n 	1 where cR  < cs(n+Xii). 

AppendixEG1shows that if D(s,1) = 1 for a general s, then D(s,T) = 1 

for all 1 < T L. 

In a similar manner to Appendix'6'.5, consider the (s,T) state (-n,l) 

for the 3rd d.p. Model. 	As before, CA(s,7), CB(s,T) refer respectively 

to the cost of not replenishing and the cost of replenishing a sub-store 

at the state (s,T). 

This graph is determined from the 3rd d.p. Model, details of which are 
given in 16.3.3.1. 

The reorder level. regions which would exist if in fact shortage costs 
are dependent on time are shown in Fig. 21 (case cs  = 0.4). 



For all n a 0, we have 

CA 	' (-n 1) = 	cR 	s + c' 0(0, k, A.) 

CB( -n,l) = (1-Xi)C(-n,0) + AiC(-n+1, 0) + Xic; 

c's 4)(0,P..,A.)+ A.c' 

Thus D(-n,l) = 1 for all n > 0 only where xic: > cR  (for no cases 
in Model VI can we ever expect A1  > cRs  fc'). 

If we denote c;0(k, ,, Xi) by csk, then for T = 2, 

CA(-n,2) c + R cso 

	

CB(-n,2) = 	 +C(-n+1, 1) t A.c' s 

	

= 	(1-Ai)(A.lc s+c so  )+x.(x.c s+c s  0) +xi  c' li s 

= 2x.ci + c • s 	so 
Similarly, 

CB(-n,T) = TA.c' + c • s 	so 

CA(-n,T) = cR  + cso  

For Model VI in particular, we have 

D(-n,T) = 0 for TA.c' < cR s 

D(-n,T) = 1 for TAic; > cR  

The decision boundary is Tb  where 
cR Tb = - c' i s 

.75/Ai  for Model VI. 

For T > Tb, C(-n,T) = cR + cso 

T < T 	C(-n,T) = TA c' + cso  
16.3.3.1.2 	

i 	so 
16.3.3.1.2 	Some other cost functions 

CA(1,1) = cR + csl 

	

CB(1,1) 	(1-A.- ) c 	+ A- cso 

	

C(n,0) 	

i so 

	

C(n,0) 	csn  for all n where n' = max(n,0). 

237 
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16.3.4 Reorder level of sub-stores  

It is considered satisfactory to make the reorder level in the period 

when the complex does not have stock on order equal to that corresponding 

to the time T=L (the time of initiation of the procurement order) from the 

3rd Dynamic Programming Model. A dynamic programming model similar to 

the Second Dynamic Programming Model of this thesis with reorder levels 

as a function of Free Stock is not available to cope with the modified 

	

concept of Free Stock. 	(Further, at this stage, the value of this Second 

Dynamic Programming Model is itself considered to be minimal.) 

This suggestion for reorder level does work well. It tends to be 

better at avoiding Maldistribution Type 2 (by postponing replenishment 

until really considered necessary) than the 2nd d.p. Model. The resulting 

reorder level versus demand rate function (ROL R. Ai) is the step function 

illustrated in Figure 28. (Figure 27 illustrates the step function which 
would result if the cost of backup were proportional to time of shortage 

for the case c
s = 0.4 and otherwise the same data of Model VI.) 

16.3.4.1 Reorder level for very low Ai  

The 3rd d.p. Model shows that for Model VI, the decision at T = L is 

"never to replenish" for Ai  below the level .0075. Clearly, we cannot 

sensibly establish a reorder level at sub-stores which is less than 0 

whilst a procurement is not On Order. For those Ai$ cR/cLL (see the 
analysis for the negative stock decision boundary in 16.3.3.1.1) the 
reorder level for the period when procurement is not on order is equated 

to O. 

16.3.5 Reorder quantity for sub-stores  

Case One: Procurement not on order  

The Allocation Quantity is the expected demand in the coverage time 

plus "z" times the standard deviation of demand in this time. 

Thus assuming that the mean and variance of demand in the coverage 
time when working on a Free Stock trigger can be approximated to that 

when the trigger works on System Stock (as for all previous models con-
sidered) we have, with the aid of Appendix 1, 

A. 
Mean = (F-M) 	+ 

	

T 	
c 

Allocation = Mean t z/17,:i7 

A • 
where 	Var = (F-M) (ri)2  + (F-m)( 

i
+ L cx. 
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If we put r.1  = A. 1/X T' 	1 R = F-M, h. = Rri + XiLc 

Allocation 	= hi  + z 44ri2  + hi) 

-.46, 	It is clear that on arrival of the procurement in the central store, 

whatever the employed z value, the allocation should be restricted to the 

value of (A./A )F. Otherwise, for those stores not being-replen4mhed at 1 T 
this particular instant there will be no stock available to ship to them 

when they are short of stock (as they generally will be) in this cycle. 

16.3.6 Reorder quantity for sub-stores  

,Case Two: Procurement on order  

Again, we must ration sub-stores. The cost• function for a ration 

quantity B if T = To  is as before:- 

do 
C(B) = 	E 	p(d) {c(d,B) + k(d,B) x 

d=0 

To compute both k(d,B), (i.e. the expected number of extra orders) 

and the amount bi  for each of these orders for a given d, the following 

procedure is adopted. The e-valueGfor all those notional stock levels 

for which 	Lam first established from the subprogram "CAIEX" and used 

to estimate the future reorder level vs. T function. The procedure fol-

lows on as before. The flow diagram for the computation of wa,B) and 
Eb.
1  is given for the subprogram "CALBX(D)" in Fig.17. 

To obtain p(d) some forecast of the future distribution of demands 

has to be made. It is assumed hbre that from analysis of past demands, 

a reasonable approximation will be the Poisson distribution, hence p(d) 

is given as follows:- 

-A.(T -1) {A.(T -1)}
d 

1 o 	1 o  p(d) = e d! 

B is taken as that value minimizing the C(B) function. ConVexityj 

of C(B) is assumed.* CzA0 is cot-nroted. as an-  &In e 1'4 	" 	45 04 ) 

This 'Ration Rule' is known as "Share Mk VIA". 

16.3.7 Reorder quantity for the complex  

As before, in previous models of the complex this is taken as 

V2NT{cp+cR  x e(NR) + e(CRO/hP where e(NR), e(CR0) are estimates. 

* and seen to be true in practice. 
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16.3.8 Should sub-stores necessarily be replenished immediately  
following the procurement arrival in the complex? 

The better policy in this respect is assumed to be identical to that 
for the control of previous models, viz., "Not necessarily replenish" 

policy. 

16.3.9 Reorder level of the complex  

As before, we would like to make this a control parameter. However, 
since the forecast demand will vary (and the actual mean demand may itself 

vary) the reorder level of the complex "M" would be required to be different 

at various instants of time. 

To overcome this problem, we note M to be closely related to buffer 
stock held in the complex. For any given control, we want to employ a 

certain buffer stock so that there is a given (small) probability of the 
demand in the combined lead time L exceeding this buffer. If this pro- 

tz• A v:.+A
c 

 rri wriZC 
bability is the parameter "y", we 441.,e, since mean demand in time Lc is 

A
T  L c

• 
' 

M = A
T
L
e 
t y x V'Variance of Demand in time L

c 

i.e. M = n + pin 	where n = X TLc 

16.4 Summary of Experiment Twelve  

4 Year Simulation of Model VI with Control 11 Using IBM 1130 

System with "Simon" Simulation Language 

Full Description of Model given in 16.2. 

Control Decisions 

Central Store Reorder Quantity equals 60. 

Control 11 is defined thus:- 

Case 1: Procurement on Order: Ration Rule Share Mk VIA (see 16.3.6.) 

Case 2: Procurement not on Order: "Allocation Rule" 

Criterion of Reorder Level for Complex: "Free Stock" 

Reorder Level for Sub-stores: 

Case 1: Procurement on Order: Function of "T" from 3rd d.p. Model 

Case 2: Procurement not on order:  Made equal to reorder level for 

instant T = L from 3rd d.p. Model. 
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16.4.1 Results of Experiment 12  

In the following results the breakdown of the costs are given for 

three values of a, the response factor in the exponential smoothing fore-

cast routine.* The results are illustrated graphically by the equi-

total cost curves for the three a-values in Figs. 29, 30, 31. 

y 	NP 	14
R 
	 H.C. 	T.C. Ro  

-0.5 3 15 2.6 22.95 31.55 Case 

0.0 3.5 17.5 2.4 20.73 30.13 a = .80 

0.5 3.5 22 2.2 20.95 31.50 z = 0.0 
1.0 3 23 2.2 21.60 32.20 

1.5 3 23 1.4 22.25 32.05 

-0.5 3 15 1.6 22.65 30.25 Case 

0.0 3 16 2.2 21.01 29.51 a = .80 

0.5 3 16.5 2.0 22.04 30.49 z = 0.3 

1.0 3 15.5 2.4 23.41 32.01 

1.5 3 17.5 1.8 23.98 32.53 

-0.5 3 15 1.6 23.52 31.12 Case 

0.0 3 15.5 2.6 21.63 30.38 a = .80 

0.5 -3 15.5 2.4 23.13 31.68 z = 0.6 

1.0 3 15 2.2 24.24 32.34 

1.5 3 15.5 1.0 23.63 30.78 

2.0 3 19 1.4 24.50 33.10 

0.0 3 16.5 2.6 22.57 31.87 Case 

0.5 3.5 16 1.8 24.08 32.43 a = .80 

1.0 3 15 1.8 25.02 32.92 z = +0.8 

1.5 3 13 1.0 23.93 30.33 

2.0 3 16.5 1.2 24.14 31.79 

1.0 3.5 13 1.4 26.75 33.80 Case 

1.5 3 13.5 0.8 24.97 31.32 a = .80 

2.0 3 14 0.8 25.27 31.78 z = *1.0 

-1.0 3 22.5 4.4 16.00 28.65 Case 

-0.5 3 26.5 3.0 15.74 28.21 a = .90 

+0.0 3 33.5 2.4 16.12 30.07 z = -0.6 

+0.5 3 38 1.6 16.75 31.25 

* The results give the average over two simulation runs (employing streams 
1115, 1729). 
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y NP R T 
R0  

H.C. T.C. 

-0.5 3 19.5 3.0 17.76 28.11 Case 

0.0 3 21 2.4 17.35 27.55 a = .90 
0.5 3 24 2.2 17.64 28.54 z = -0.3 
1.0 3 28.5 2.0 17.78 29.33 

-1.0 3 15 3.4 20.93 30.33 Case 
-0.5 3 17.5 3.2 18.63 28.58 a = .90 

0.0 3 17.5 2.6 19.49 28.84 z = 0.0 

0.5 3 19.5 2.4 19.44 29.19 

1.0 3 21 1.8 20.29 29.89 

+0.0 3 16.5 3.0 19.67 29.12 Case 

0.5 3 16.5 2.4 20.14 28.99 a = .90 

1.0 3 14 3.2 24.23 33.13 z = +0.3 

-0.5 3 11.5 2.4 22.76 30.11 Case 

+0.0 3 15 2.4 21.87 30.27 a = .90 

0.5 3 16.5 2.4 20.14 28.99 z = +0.6 

1.0 3 12.5 1.8 23.97 31.02 

-1.0 3 17.5 5.8 17.61 30.16 Case 

-0.5 3 18.5 6.0 17.25 30.30 a = .95 

0.0 3 22 5.4 17.29 30.80 z.= -0.3 

-1.5 3 15.5 5.8 19.06 31.01 Case 

-1.0 3 16 5.4 18.70 30.55 a = .95 

-0.5 3 16 5.6 18.92 30.82 z = 0.0 

+0.5 3 19.5 4.6 18.96 30.91 

-1.0 3 14.5 6.0 19.20 31.05 Case 

0.0 3 16 4.8 19.50 30.60 a = 	.95 

0.5 3 19 3.4 19.39 30.49 z = +0.3 

1.0 3 20 2.8 20.43 30.73 

1.5 3 21 2.4 21.16 31.37 

-1.0 3 14 5.0 19.84 30.54. Case 

-0.5 3 13.5 4.8 19.90 30.25 a = .95 

+0.0 3 14 4.6 20.42 30.72 z = +0.6 

0.5 3 16 3.8 19.62 29.70 

1.0 3 16.5 4.2 20.86 31.51 
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Y 14  P 
N
R 

CA 
 0 

H.C. T.C. 

-0.5 3.5 14 4.0 20.63 31.58 Case 

+0.0 3 15.5 4.6 20.60 31.35 a = .95 

0.5 3 14.5 4.0 21.40 31.25 z = +0.9 

1.0 3 17 3.8 21.63 32.03 

1.5 3 15 3.4 21.51 30.91 

1.0 3 15.5 4.0 21.58 31.73 Case 

1.5 3 15.5 4.0 22.84 32.99 a = .95 

2.0 3 16.5 3.0 23.02 32.47 z = +1.2 

16.5 Details of Program 3  

This describes the work for Experiment 12. The Third Dynamic Pro-

gramming Model is given by Program "NNNY" and subprograms "SUBY" "CAL" 

(see Flow Diagram in Fig.22). This is computed off-line and the results 

are used in the main simulation prgram "MMMX" (see Fig. 23 for flow chart) 

and its subprograms. 

16.5.1 Subprograms called from the Main Simulation Program "MMMX" 

(i) "CAIEX" 

This subprogram computes for sub-stores the value "e" for the relevant 

demand rate and notional stock level by linear interpolation between those 

e values for the nearest defined X. The flow chart is given by Fig. 24. 

(ii) "CALCX (ISDA)" 

This subprogram is analogous to "CALCS" in Program 2. It computes 

the expected cost of shortages in the coverage time as a result of a 

possible ration quantity. The flow diagram for this calculation of 

cs 
(§;E:Tt) is given by Fig.25. 

(iii) "CALGX"  

This subprogram computes G and is described by the flow chart in 

Figure 16. 

(iv) "CALBX(D)"  

This is analogous to "CALKB(D)" of Program 2 and its flow diagram is 

given by Fig. 17. 

(v) "GENX"  

This subprogram is identical to "GEN" and contains the instructions 
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D(S,T)=I 
C(S,T)= 
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CB( SIT)r-(1)ti C 

+ Xi C(S-I,T-Il 
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FIG.22 FLOW DIAGRAM FOR OFF-LINE COMPUTATION OF THE 
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EXPERIMENT 12 

READ IN 
DATA 

4 

CA ( 1,T)=C 51+ 
CBI 1,T)=(1-X0C(1,T-11 

+ AiC (0, T-I 

C (I,T )=CA(I,T) 



No 

Yes 
PROCUREMENT 
ON ORDER  

COMPUTE 
RATION 
QUANTITY'R' 

Yes 
PROCUREMENT 
NOT ON ORDER 

COMPUTE 
ALLOCATION 
QUANTITYW 

245 FIG. 23 FLOW CHART FOR SIMULATION IN EXPERIMENT 12 

READ IN Li- 
Z ,o( 

ESTABLISH MODEL 
STAR TING 
CONDITIONS 

USE EXPONENTIAL SMOOTHING 
OF DEMANDS OVER A 4-YEAR 
PERIOD FOR INITIAL FORECASTS  

SET TIME INSTANTS OF 
INITIAL DEMANDS FOR 
EACH SUB-STORE 

COMPUTE 
FREE STOCK F 

L2_ 

IS 
ROCUREM 
ON ORDE 

IS 
STOCK J 
GO? Ye s 

COMPUTE 
I M 

THIS 
SIMULATION 

IS 
FINISHED 
GO TO 1 

ADD 1 TO 
Np 

IMP 

RE FORE-
CAST 
DEMAND 
RATE 

REDUCE 
STOCK 4 
NOTIONAL 
STOCK 

BY 1  
4  

DEMAND 
SUB -
STORE 

J 

PROCURE-
MENT, IS 
NOW NOT 
ON ORDER 

ADD Q 
TO CENTRAL 
STORE 
STOCK 

4  
DELIVERY 

AT 
CENTRAL 
STORE 

'REDUCE 
TOTAL 
TRANSIT 
STOCK 
BY Os  

ADD 
STOCK 
ARRIVING 
TO SUB-
STORE 
STOCK 

DELIVERY 
AT 

SUB - 
STORE  

TOTAL 
COST 
=SUM OF 
INDIVIDUAL 

COTS  

UPDATE 
'AREA' 

FINISH 
SIMULATION 

4 
B ADD 1 TO J 

IS 
ENTRA 

STORE 
STOCK> 

OTIONA 
STOCK AT 
STORE J 

`AREA,  

UPDATE CLOCK 
TO TIME OF 
NEXT EVENT 
‘A.;B",*C;•D' or 'E 

E 

DEMAND RATE 
FOR STORE 3 

= 0.06 

Yes 
ST 

F SUB-
STORE IS AT 

REORDER 
LEVEL 

HAS 
STOCK 

JUST ARRIVED 
IN CENTRA 

TO R 

ASSOCIATE ARRIVAL 
TIME AS ..g' HENCE 
ABD 	Qs TO NO 
STOCK 	FOR STORE 	J 
ADD I TO 	AR 
REDUCE CENTRAL 
STORE STOCK BY Qs 

SHIPMENT 	 
= MAX (Q510) 

IS 
Qs > 

CENTRAL STOR 
STOCK ? 

Qs = 
CENTRAL 
STORE 
STOCK 

C 

PROPOSED 
SHIPMENT Qs 
= A ( or R MINUS 
NOTIONAL STOCK 

4 



IS 
THIS TH 

FIRST TIME 
SUBPROGRAM I 

NTER 

LIST e VALUES FOR 
STRATEGIC 
COMBINATIONS OFX"‘ 
AND NOTIONAL 
STOCK 'S' 

246 
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FIG. 27 

SUB—STORE REORDER LEVEL FOR TiJE CASE WHEN AN ORDER FOR A 
PROCUREMENT IS NOT OUTSTANDING PLOTTED AGAINST FORECAST 
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FIG. 28 

SUB-STORE REORDER LEVEL WHILST A PROCUREMENT IS NOT 
OUTSTANDING VERSUS FORECAST DEMAND RATE FOR. EXPERIMENT 
12: (USES THE 3rd D.P. MODEL RESULTS FOR MODEL VI WITH 

SHORTAGE COSTS TIME-INDEPENDENT) 

ROL 

.02 	.04 	.06 	.08 	.10 	.12 	ai 



FIG. 29 

EQUI-COST CURVES FOR CONTROL APPLIED TO.MODEL VI 
IN EXPT. 12' (CASE at,  0.8) 
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EQUI-COST CURVES FOR CONTROL 11 APPLIED TO MODEL VI 
IN EXPT. No. 12 	(CASE a 0.9) 
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FIG. 31 

EOUI-COST CURVES FOR CONTROL APPLIED TO MODEL VI 
IN EXPT. No. 12 (CASE : 	= 0.95) 
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for establishing the time of the next demand for a sub-store which has just 

experienced a demand. 

(vi) "PNOX" 

This is the computation of the allocation quantity, fully described 

in 16.3.5. 

(vii) "POOX" 

This is the computation of the Ration Quantity analogous to "P001" 

for Experiment 11 (Program 2) and is given as a flow chart in Fig.18. 

(viii) "SFRX" 

This is the computation of "Free Stock" F. The flow chart is given 

by Fig. 26. 

(ix) "SSRX"  

This is analogous to "SSRO" in Program-2 and tests whether any sub-

store is at its reorder level or not. 

(x) "SYRX" 

This is analogous to "SYRO" in Program 2. It computes M from the 

expression in 16.3.9 and tests whether Free Stock < M. 	If so, a procure- 

ment order is initiated. 

(xi) "PLAN, ADDL, BEHE, GROU, HEAD, MEMN, REFN, SCA, QUEUE, SETT, SIZE 

TIMV, SIMO, DELE, ENTI" are the special-purpose subroutines of the "Simon" 

Simulation procedure. 

16.6 Comments on the Results of Experiment 12  

Cost of computer simulation prohibits simulation with further random 

number generating streams. The two employed for this experiment produce 

meaningful equi-cost curves and from these one can see that the a= 0.9 

parameter is able to produce control for a wide area of (y,z) combinations 

for which total cost is less than the best achieved for both the a= 0.8 

and a= 0.95 cases (see contour lines for Total Cost = 29.5 in Figs. 29, 30, 

31). 

Good estimates of the best parameter combinations and their expected 

total costs are obtained from these equi-cost graphs. These are 

( y = -0.1 ) 
= 0.8 ( Cost = 29.5 

( z = +0.3 ) 



(y = -0.1) 
0.9 	( 	) 	Cost = 27.5 

(z = -0.3) 

(y = +0.4) 

	

a = 0.95 ( 	) 	Cost = 29.5 
(z = +0.5) 

It is fair to generalise that the results indicate an optimal result 

in the region of zero y and zero z. This may appear somewhat surprising 

since, on the surface, zero y seems to mean very small buffer and zero 

z seems to indicate that replenishment costs will be high. 

16.6.1 Implication of the results that the optimal is for zero y, 

zero z 

Let us refer to the least-cost result recorded from the simulation 

runs. 	This occurred at a = 0.9, z = -0.3, y = zero. 	Raising y for this 

z reduces the cost of shortage but not to a significant extent. However 

it clearly results in an increased overall replenishment cost. Lowering 

y means more shortage and more holding costs. 

Keeping y = zero, and raising z reduces the number of replenishments 

but results in extra holding costa and (to a lesser extent) extra shortage 

cost. 

The result that (for the least-cost case) y is zero, does not really 

mean that there is little buffer stock; it merely means that the control 

is responding to the low-level (relative to expected demand) of stock 

which has occurred in one particular sub-store when initiating the procure-

ment order. Exhibit "D", which records the simulation details for the 

least cost result admirably demonstrates this point. At a clock time 

of 798, the third request for stock for the complex is made. 	Since y = 0, 

M = ATLc and since forecast AT = .172, M = .172 x 125 = 21.5. 	The sub-

store stocks (notional) are:- 

2, 	5, 	7, 	11, 	11. 

Respective forecast•demand rates Ai  are:- 

.010, 	.019, 	.064, 	.034, 	.044. 

The minimum value of notional stock/A. is for the 3rd store, 7/.064, 

whence the hypothetical "equalising distribution" from the central store 

results in:- the new minimum value of 8/.064, with zero stock at the 

central store. As usual, the value of F is computed as this value, 

8/.064, times AT; i.e. 8/.064 x .172 = 21.5, whence F = M and the pro-

curement order is initiated. At the least-cost result, the average 

buffer stock maintained is 13.4. Attempts to reduce this buffer with this 
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control must be made by keeping z down - whence the expected optimum result 

is for a low z, viz. z = 0. 

16.6.2 Consideration of the parameter  a 

Clearly, making the value of a very low has the undesirable effect of 

making the forecast demand rates too responsive to the random nature of 

the individual times between demands. Too high a a (close to unity) means 

that the control takes an excessively long time to respond to the type of 

jump in demand that is experienced in the workings of Model VI. The 

expected best choice for a can be seen (from a cubic approximation from 

the minimum cost estimates for those values of a employed in Experiment 12) 

to lie in the region of 0.88, for which an estimate of annual total cost 

of operation is 6.75 cost units. 

16.7 Conclusions from Experiment 12  

The ideas of modification to the concepts of the earlier chapters for 

their application to a model of the complex with demand rates which are 

forecast and different over the sub-stores produce sensible results. 

The Exhibit "D" can be used to check the details of the control for a close-

to-optimal parameter combination; the ration rule can be seen to decide 

on the "right,sort" of shipment quantity. Further, the idea-to_make the 

reorder level for spb-stores in the period when the procurement is not on 

order equal to that at the time'instant when the order is first mdde is 

clearly an important contribution. It results in delaying the decision 

to replenish sub-stores until about the right sort of time. Replenishing 

earlier (at a higher notional stock level) is likely to lead to both 

higher cost of Maldistribution Type 2 and extra stock-holding costs (the 

latter is particularly variable and poor distribution of stock over the 

sub-stores can result in high maldistribution cost, type 1) whilst result-

ing in minimal sayings of Maldistribution Type 3. 

16.8 Experiment 13  

This experiment represents the simulation of the previous model for 

a period of 8 years (2000 days) but here the jump in demand for sub-store 

No.3 (from a mean rate 0.03 to 0.06) occurs at the half-time instant. 

Two simulations are run. The first of these uses the stream 1111 for the 

occurrence of demands in the simulation with stream 1113 for the occurrence 

of demands to obtain the initial forecast. The second uses streams 1115, 

1117 respectively for these two purposes. As with the previous experiment, 
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the initial forecast represents that resulting from the consideration of 

four years' demands. 	The parameters (y =-.1, z = .3, a = .9), which are 

the optima from Experiment 12, are employed. 

16.9 Results of Experiment 13  

Figure 32 represents the forecast demand rate for sub-store No.3 when 

plotted against time. Fluctuation about the mean AB is noted for the 

period in time 0 1000 days and the lag in time for the forecast  to reach 

the mean CD is noted from 1000 days onwards. 

Figure 33 shows how the virtual stock for sub-store No.3 varies 

through time. The occurrence for three backorders at time 1130 is to be 

noted in one of the simulations. 

16.10 Conclusions from Experiment 13  

The response and stability of the control rules may be judged from 

the Figures 32 and 33. The forecast demand rate load's fairly quickly to 

the demand jump and there is no disastrous onset of backup at the critical 

Period (just after time equals 1000 days). 

16.11 Experiment 14  

This experiment represents the simulation of Model, VI with those 

parameters which yielded the least-cost result in Experiment 12.* Here 

the demand jump is not applied. 	It is a lengthy simulation over 20 years 

and is primarily designed to show the sort of variation in stocks and 

number of replenishments per procurement that is likely as a result of 

the control. 

A cycle is defined as the time between procurement arrivals. The 

cycle for the consideration of maximum and minimum virtual stock at sub-

stores is advanced by the sub-store lead time on the defined cycle. 

That is to say the cycle for this case begins time t after procurement 

arrival (when sub-store stocks are critically low) and finishes time t 

after the next procurement arrival. 

16.12 The Graphs for Experiment 14  

Figure 34 records for the thirteen different cycles System Stock 

at interesting instants in time, viz. 

* (viz. y = -.1, z = -.3, a = .9) 
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(i) time of procurement in central stare 

(ii) time of order of new procurement 

(iii) immediately prior to arrival of new procurement. 

It also graphs the number of replenishments for each cycle. 

Figure 35 records the length of each cycle. 

Figures 36, 37 record the maximum and minimum virtual stock levels 

for the five sub-stores over each cycle. 

16.13 Summary of Chapter Sixteen  

This chapter has considered the extension of the control rules as 

proposed in this thesis fo a model in which demands at sub-stores are 

different and are forecast. A further innovation is to introduce a 

sudden change in demand at one sub-store. The response to this may be 

altered by changing the parameter 'a' in the exponential forecast pro-

cedure. Equi-cost graphs for three different values of a are given 

and a detailed simulation for a close-to-optimal parameter combination 

is shown in Exhibit "A". 

The variation in the forecast demand rate and the virtual stock 

level for the sub-store experiencing the demand jump are illustrated 

graphically. Also represented graphically for a similar model of the 

complex in which no demand jump is experienced are the variation in 

stocks and number of replenishments per,procurement over a lengthy 

period of time. 
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17.1 Introduction to Chapter Seventeen  

In this chapter a comparison is made between the optimal solutions 

using the author's suggested control with the control that Cran would 

achieve when following the procedure14 (involving the drawing of graphs 

and solving a series of equations by the suggested iterative method) to 
locate his optimal solution. 

17.2 Method of Comparison  

The comparison is to be made on a non-zero lead time model in which 

shortage costs are time-independent. This latter point is important since 

Cran's procedure is given only for the case of time-independent shortage 

costs. 

There are two alternative comparisons which may be made: 

(i) The author's control rules may be applied to the specific model 

considered by Cran and simulation performed to locate the expected optimal 

parameters. Use may then be made of Cran's graphs to locate the para-

meters which will yield his optimal solution. A comparison is then 

possible by simulating the model (a) with Cran's control rules and his 
optimal parameters, and (b) with the author's control rules, using opti-

mized parameters. The same random number streams should be used for.(a) 

and (b). 

(ii) The author's control rules may be applied to any suitable model 

for which Cran's control is applicable and simulation performed to locate 

the minimum cost solution., The graphs Cran requires which will permit 

the location of his optimal solution are obtainable by simulating the model 

and determining the expected number of replenishments (yR), and number 

of backorders (ys), occuring when System Stock is allowed to run right down 

to zero. The same number of simulator runs as suggested by Cran over 

which to average will be used to obtain the relevant graphs in this case. 

These graphs from the simulation will be used in the method indicated by 

Cran14 to locate those parameters he claims will yield his optimal solution. 
1-1-,; 	is will.,-,,-1  [--2/ 	°44 	(i) above 

17.3 Factors Affecting Choice of a Model for Comparison  

As has been said before when considering the model favouring Cran with 

zero lead time to sub-stores, Cran's control will work well when shortages 

and replenishments are not costly. This then includes those complexes 

for which it is correct to incur shortages, 	We would expect that for such 
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complexes, the cost of holding stock is high compared with shortage cost. 

Clearly, low buffer must be maintained for sensible control. Whether Cran 

has holdback (i.e. whether his holdback factor exceeds zero) will depend 

on whether the savings in shortage costs as a result of holdback are worth 

the extra replenishment costs required. 	(This depends on the relation 

between the Unit costs of each.) If Cran is striking a correct balance 

between inventory holding and shortage for his control, the author's con-

trol, which has been generally orientated towards shortage prevention 

(but flexible enough in the z-parameter to respond to cases where it is 

correct to have shortages) is expected to be little better than Cran's. 

The regions in which possible gains can be made are:- 

(i) Ensuring that reorder for the complex occurs at stock configura-

tions of comparable strategic value (unlike Cran's control with a fixed 

System Stock level where the procurement is likely to be trigger at dis-

similar strategic values with regard to shortage). 

(ii) Not necessarily replenishing sub-stores following procurement 

arrival in the central store. As a result of this, there is generally 

stock "held back" in the central store after procurement ari,ival. This 

has the advantage that for some period of time there will be stock avail-

able in the central store to buffer any needy sub-store; this benefit 

is "free", i.e. it is not necessary either to: 

(a) incur more than one delivery to sub-stores per procurement on 

average; 

or (b) keep stock in the central store held back at the critical time 

just prior to next procurement arrival. 

If Cran has holdback, either (a) or (b) must occur, and so, in this 

respect, the author's control has advantage. However, when q/cR  is suf-

ficiently low, it is generally not worth a replenishment to save a possible 

shortage, and the benefit of a period of "free buffer" for sub-stores in 

this case does not exist since it is not generally sensible to, utilize 

this stock in further shipments in the same cycle. 

17.4 Model VII  

The model for comparison will be designed to incorporate data features 

where Cran's control is expected to work well compared with the author's. 

Model VII, with the data for Model VI (without demand jump) fits this 

category. This model is realistic in that sub-stores have differing aver-

age demand rates (Poisson distributed) although the distribution is sta-

tionary. This latter point is assumed for control purposes, and the real 
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average demand rate and Poisson nature will be assumed obtainable from past 

demand figures. 

The A. vector is (.01, .02, .03, .04, .05) units/day and hence 
A
T = .15/day or 37.5/year. The shortage penalty c; is 0.4/unit and 

cR  = 0.3, Cp. = 0.5, hP = 0.1, L = 25 days, L = 100 days. 

17.5 The Author's Control Compared with Model VI  

It will be recalled that for Model VI, three parameters of control 

(viz. a, y, z), were required. 	Since demand rates are not forecast for 

Model VII a is not required. Further, reversion to a fixed value of M 

is now possible since the total demand in the the combined lead time Lc  

is assumed to have a stationary distribution. 

17.6 The Role of "Free Stock" as Criterion for Triggering a Procurement  

Order 

It has been shown in this thesis that "Free Stock" is a good criter-

ion for triggering a procurement order for cases where shortage cost is 

time-dependent. It is adaptable to cases of differing demand rates and 

applies to cases where shortage costs are time-independent (as for Model 

VI). However, it is clearly orientated towards shortage prevention. 

The argument that it is a parameter and can be changed to adapt to the 

different cost data for different complexes does not detract from the fact 

that it will not work so well for cases where it is correct to have short-

ages as it will where it is costly to have them. 

Free Stock responds to the stock figure of the store with lowest 

stock. 	(If stock is present in the central store, the "lowest stock" means 

lowest stock after the usual hypothetical "equalising distribution" from 

the central store.) If the sensible* amount of buffer stock for the 

complex is generally about 50% of the combined lead time average demand 

(results Show this is of the correct order), this figure is often likely 

to be reached when Free Stock is lower than the mean combined lead time Lc 
demand. 

Clearly, we would like to establish M in the region of 15-17 for a 

Free Stock trigger criterion in the case of Model VII. There are times, 

however, when a sub-store of below  average demand has experienced a high 

demand in a short period of time resulting in its stock level dropping 

to unity or below. This may set the procurement order trigger off even 

* balancing shortage costs against holding costs. 
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if high levels of stock exist in the other sub-stores. To prevent high 

associated holding costs as a result of this, a higher level of holdback 
can be retained in the central store; this can be induced by (i) lowering 

the parameter z. 

Alternatively (ii) the parameter M may be reduced (but for typical 

cycles this policy means numerous shortages occur as a result of ordering 

the procurement too late). The best policy may be neither of the two 

cited here; rather it may be: "Do not order a procurement and let this 

sub-store run down its stock". Since its average demand is low the ex-

pected shortage penalty resulting from its-run-out is low. 

The savings in overall replenishment costs as a result of not adopt-

ing policy (i), or in shortage costs as a result of not adopting policy 

(ii) are likely to be substantial. 

Thus "Free Stock" may be improved on for the role of criterion for 
procurement order trigger. The suggestion made now is not only to en-

sure that stock 7coeri3uvrations: at time of procurement order are 

strategically equivalent, but also to obtain the approximately correct 
level by analysis. 

17.7 Analysis to Establish When to Trigger a Procurement  

For any given stock configuration, certain costs are expected to 

accrue as a result of waiting until another unit is demanded somewhere 

in the complex. 

17.7 1 The addition to shortage costs by waiting  

The expected shortage costs at present are in total approximately:-

N 
cl 	E 	4(s!H, Lc, Xi), 	siH = Max { 	0) siH, 

i=1 

where siH represents the 
hypothetically equalised stock at store i. The 

increment in expected shortage costs as'a result of waiting until the 

next demand approximates tc:- 

N Ai  
AcsH  = c; .E 	WsiH-1, Lc, Xi) - (s! 	Lc' X )) 

1=1 T 

(If (s
iH 

 -1) < 0, the function 40(s! -1, Lc, Xi) is taken as unity.) IH 

This expression follows since the probability of the next demand in 

the complex reducing the "hypothetically equalised" stock at store i to 

(s'IH -1) is (X./X ). 
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17.7.2 Savings in holding cost by waiting  

The savings in holding cost by this postponement of ftiggering the pro- 

curement are approximately* hPQtp, where tp  is 
(in years). tP, which will be the time until 
complex is exponentially distributed with mean 

probability of tp  is AT  e-ATtF. The expected 

are then: 

ACSAV = hPQA
T 	

e-AT
t
P a 

0 

= hPQAT  

the time of postponement 

the next demand on the 

(14T) anetlieefore the 

savings in holding cost 

If 	ACSH > AC SAV 	 (1) 

procurement order should be' triggered now, and not be postponed. 

17.8 Effect of the Suggested Trigger Criterion  

M is now redundant as a parameter. This means a really useful sav-
ing in computing time since z is the only remaining parameter. The 

Allocation Atle requires an estimate of the time to reorder level of the 

complex. Hitherto, this time is taken as (F-M)/XT  where F is the pre-

sent Free Stock. M, the System Stock level at which procurement order 
occurs will now vary. 

17.9 Use of the Level M  

A few trial runs on the computer can give an estimate for the average 

level of System Stock at which procurement order occurs whilst using the 

new trigger criterion. This average value is used for M in the Alloca- 

tion Rule. 	Furthermore, the test (1) of 17.7.2 is not considered (to 

save unnecessary, computing) until F drops to the level M+10. 

It is clear that now F may be less than M without the procurement 
order having been triggered. If this is the case, then F is Made equal 

to M, and the allocation computed with the usual formula. 

17.10 Method of Location of Optimal z for Author's Method of Control  

A i4 year period of control for the complex with z varying around 

the optimal region (which was determined by employing just two random number 

Nsl+Ns2 
More correctly, this expression is hP(Q-( 	2 	))tp  where N91, N

s2 
are respectively the numbers of shortages expected if order occurs 
now or when the next unit is cleyriantlaa.. Generally for (M-ATLc)> 0, this 
expression is well approximated by hPQtp. 
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streams) in 0.3 intervals was simulated until convex*yi?zwas noted for the 

averaged total cost values (three random number streams). A cubic appro-

ximation on these total cost figures indicated an estimate for optimal z. 

17.11 Random Number Streams Chosen for Comparison with Cran's Control  

These were other than those which were employed in obtaining an esti-

mate of optimal z. They were Nos. 1811, 1831, 1891. The simulations 

were long enough such that at least twelve procurements would be experienced. 

14 years was the length of time the complex was simulated for, for each 

random number stream. Each control was started off with the expected 

stock after a procurement arrival, spread over the stores according to the 

respective control rules. 

17.12 Results of Location of Optimal Parameter z for Author's Control 

Initial Trial Runs (M guessed as 24'in first instance) yielded 

M = 24. 

Q was estimated at 47 (see Appendix 10). 

17.12.1 

Table 17.1 

Location of optimal z 

Stream Numbers Total Costs for Different 

1711 1731 1751 MEAN z 

0.0 84.77 96.90 - - 

0.3 88.42 83.58 - 

0.6 87.20 84.54 88.68 86.81 

0.9 81.90 82.34 86.48 83.57 

1.2 84.77 85.29 86;27 85.44 

A cubic approximation yielded estimate for optimal z'of 0.95. 

17.13 Cran's Method of Location of the Optimal Parameters (A, M) for 

His Control 

It is sufficient for Cran's control to know the xi  values, the lead 

times and the sub-store reorder levels before the simulations can proceed 

to establish the yR, ys  characteristic curves. 

The reorder level for sub-stores was set as low as possible subject 

to the condition that the probability of a shortage occurring during the 

lead time does not exceed O. 01. 	For Model VII, the'se reorder levels 

were (3,4,4,5,5) for sub-stores 1 to 5, respectively, with demand rates 

01, A2, A3, A4, A5), This is consistent with Cran's suggestion, although 
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he does not quote a figure for this shortage probability. 

17.13.1 The simulator to produce the charattetiStic-xurves  

At first Monte Carlo Simulation was attempted, but the work was tedious, 

especially for higher holdback factor -A" values. Minor modifications to 

the main simulation program allowed the accumulation of shortages and re-

plenishments which would occur if System Stock were allowed to run down be-

yond zero to be recorded. The value of the initial System Stock was varied 

between 60 and 87 in steps of 3 over 10 simulations and each simulation 

employed different random number generating streams. For values of S 

between 90 and 0 in 5-unit intervals, the averages over the ten simulator 

runs of the cumulative number of shortages ys  and replenishments yR  were 

plotted against System Stock S. This was done for various holdback fac-

tors W. The plot of ys  against S is given in Fig. 38. 

The expected number of shoriages and number of replenishments are 

obtained from the Ys, YR  curves by the summations c(Ns) = E Ys(S)f(M-S) 
S 

and c(N
R
)= E yR(S)f(M-S), where f(x) is the probability of demand x in S 

the combined lead time L. Cran states that this was performed by appro- 

ximate summation. The method used here was to obtain the product 

y(S)f(M-S) for S values over the range of S and the values of e(Ns), 

c(NR) were obtained by the areas under the respective graphs of ysf(M-S) 

and YR(M-S) versus S. The c(Ns), c(NR) curves are given by Figures 40, 

41. 

17.13.2 Use of the characteristic curves to locate the optimal  

solution 

The extra information relating to the costs is utilized here. Follow-

ing the method suggested by Cran, the procedure adopted is as follows: 

(i) Guess Ma 24, A= 0: 

Figs. 40, 41 give Ns  =2.5, NR  = 5. 

Equation (c)* gives Q = 47; 

Equation (d)* gives 

am {c(NS  )) = -0.37: 

Graph 40 gives M = 24: 

Iteration 

(ii) M = 24, A = 0: 

Equation (e)' gives -0.337 
a --(e(N

S  )) = eR P (E(NR  )) aA 

* see the review of Crants work, 3.15.10. 
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Figs. 40, 41 give A = 0 

Hence, final solution is (A = 0, M = 24, Q = 47). 

17.14 Results of Experiment 15: The Comparative Performance with  

Cran's Control of the Author's Control applied to Model VII  

17.14.1 Summary of Experiment 15* 

14-year Simulation of Model VII with Controls 12A, 12C Using IBM 1130 
System with "Simon" Simulation Language 

Model VII Description  

Item Value = 1 

Cost of Procurement = 0.5 

Cost of Supplying Sub-store = 0.3 

Cost of Sub-store Shortage = 0.4 

Cost of Stock Holding = 10% Value of Average Stock per year held.  

Number of Sub-stores :: 5 

Lead time for Complex =0.4 year 
Lead time for Sub-stores = 0.ilrear 

Sub-store Demand Rates (0.01, 0.02, 0.03, 0.04, 0.05) items/day. 

17.14.2 Author's suggestions (Control 12A) 

Sub-store Reorder Quantity:  

Case 1: Procurement on Order: "Share Mk VIA" (see 16.3.6) 

Case 2: Procurement not on Order: "Allocation Rule" 

Procurement Order _Quantity (see Appendix 10 for computation) 47 units 

Criterion of Reorder Level for Complex: Analysis (see 17.7) 

Reorder Level for Sub-stores: 

Case 1: Procurement on Order: Level in 3rd D.P. Model corresponding 

to T =L 

Case 2: Procurement not on Order: Found from 3rd D.P. Model. 

* The complete computer programs for this experiment are given in 
Program -4. 
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Table 17-2 Control 12A Applied to Model VII for Comparison Streams 

171P g11 Z ito  H.C. T.C. Stream No. 

12 60 12.8 41.56 84.36 1811 

13 70 19.6 44.61 91.71 1831 

13 65 17.6 46.62 90.23 1891 

12.7 65 16.7 44.93 88.77 MEAN 

17.14.3 Control'12C: Cran's control  

Sub-store Reorder Quantity: Cran Allocation Rule 

Criterion of Reorder Level for Complex: System Stock 

Reorder Level for Sub-stores: As low as possible, such that the 

probability of a shortage in the lead time does not exceed 0.01. 

Table 17.3 Control 12C Applied to Model VII for Comparison Streams 

171P  N
R TR  0  H.C. T.C. Stream No. 

12 60 17.2 44.16 85.37 1811 

13 65 23.6 43.04 92.64 1831 

13 60 22.0 44.76 91.27 1891 

12.7 61.7 20.9 43.99 89.76 MEAN 

17.15 Lead in Triggering Instants Over Cran's Control  

Since procurement quantities are identical for both controls (this 

is a chance occurrence), the instants of triggering procurement order are 

comparable. The following are the period in days by which the suggested 

trigger precedes Cran's trigger. Note that the average demand on the 

complex is 1/6.7 days. 

Table 17-4 

Numbers Procurement 

Stream No. 1 2 3 4 5 6 7 8' 9 10 11 12 

1811 18 12 0 0 13 34 20 6 34 25 5 11 

1831 20 -10 6 -27 2 27 1 7 4 -40' 20 4 

1891 42 39 19 6 0 2 -16 23 17 -19 4 0 
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17.16 Significance Testing the Results: "t" Test  

Control 12A Result 	Control 12C Result d. Stream No. 

84.36 85.37 1.01 1811 

91.71 92.64 0.93 1831 

90.23 91.27 1.04 1891 

t = 30.4; dof = 3. 

The improvement over Cran's control is judged significant at the 

0.05% level. 

17.17 Conclusions from Chapter 17  

The author's optimal result in general has an average reorder level 

in excess of that of Cran, although there are instances when the pro-

curement order is triggered later than for Cran's control. It is to 

be expected, then, that holding cost will exceed that for Cran's control. 

Slightly higher than one sub-store delivery per cycle for the author's 

control indicates that on rare occasions, it is considered worthwhile to 

effect a second distribution to,'a sub-store. 	(This is a result of the 

"free" benefit of buffering sub-stores by "not necessarily replenishing" 

all sub-stores following procurement arrival.) The fact that higher 

z leads to an expected worse result indicates that too much of the stock 

"held back" (in the author's control) in the central store would be 

shipped to the first sub-store (i.e. first after the initial shipmen-ts 

to needy stab-stores on arrival of the procurement) which runs down to its 

reorder level. 

The ability to achieve a significantly better result than Cran for 

this model which is specifically debigned to favour Cran's control is 

felt to significantly strengthen support for the ideas in the suggested 

control policy. The suggestion to remove the reorder level M as a con-

trol parameter appears valuable since much computing effort to locate the 

optimal control solution is saved. This idea can be applied to the 

author's control generally. 	(This implies that for real complexes where 

demand rates are forecast, only the optimal parameters (a,z) need to be 

located before controlling the complex with these values.) 
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18.1 	Summary of Experiment Details 

Reference Controls Considered Experiment No. Model Nov. 

1 I 6.8 IA, 1B,, 1C. 

2 II 7.2 1A, 1C 

3 III 8.5 2A, 2B, 2C 

4 III 9.4 3A, 3B 

5 III 9.6 4A 

6 III 9.7 5A, 5B 

/ III 12.2 6A 

8 I, II 13.3,1 7A 

9 III 14.3.1 8A 

10 IV 15.2 9 

10A IV 15.14 10A 

11 V 15.18 10B 

12 ( 16.4 ) 
( ) 

13 VI 	( 16.8 ) 11 
( ) 

14 ( 16.11 ) 

15 VII 17.14 12A, 12C 

18.2 Model Descriptions  

Model No. 	Description 	Reference  

I 	Zero Lead Time for Sub-stores 	6.8 

II 	Zero Lead Time Costs favouring Cran 	7.2 

Control 

III 	Non-zero Lead Time for Sub-stores 	8.5 

IV 	 15.1 

V 	11 	15.1 

VI 	Different Demand  Rates/Non-zero Lead 	16.2 

Time 

VII 
	

17.4 



18.21 Summary of Control Rules 

[

Control 

Ref 
Page No 

Sub-Store Control 	 Control for Complex 

Reorder Level Qu&atity Allocated 
Reorder Level Reorder Qty. 

Procurement 	Procurement 
on Order 	not on Order 

Procurement 
on Order 

Procurement 
not on order 

129 lA - 1 only Share 1 Allocation 
Quantity 

3-  Free Stock 
Parameter M 

Q using an Expression 
for optimal Q 
see p. 	115 	(5.r,) 

129 1B -lor upt-n 
Procurement 

. Arrival 

Share 1 A11,,cation2  
Quantity 

Free Stock3  
Parameter M 

- Ditto - 

130 1C - 	1 	;_:1.-. 	=:pon 
Procurement 
Arrival 

Cran Allocation Qty.6 System Stock 
Parameter M -- Ditto - 

147 2A - 	1 only Share 1 Allocation2  
Quantity 

Free Stock
Parameter M - Ditto - 

147 2B - 1 or upon 
Procurement 
Arrival 

Share I  Allocation2  
Quantity 

Free Stock 
Parameter M - Ditto - 

147 2C - 1 or upon 
Procurement 
Arrival 

Cran Allocation Qty.
6  

System Stock 
Parameter M - Ditto - 

160 3A 1st d p model 
variable 

Share Allocation2  
Quantity 

Free Stock3 

Parameter.  M - Ditto - 

161 3B 1  ' 	1st d p model4  
variable 

or on Proc. Arrival 

Share Allocation2  
Quantity 

Free Stock3 

Parameter M - Ditto - 

164 

._____ 

-4A 

----- 

1st clop 4 
	RoL when 

Model 	Proc. 
variable 	ordered 

(from 1st 
di.p Model) 

Share 1 Allocation2  
Quantity 

Free Stock3 

Parameter M 

i 	I. ....r...ee. .1...w........ 

- Ditto - 

1.--------- 
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Ref. 
Page No. 

Sub-Store Control Control for Complex 

Reorder Level Quantity Allocated 
Reorder Level Reorder Qty, 

Procurement 
on 	order _,  

Procurement 
not on Order 

Procurement 
on order 

Procurement 
not on Order 

166 	5A Parameter Share MK II 
(similar to 
'share': 	see 
P163, 	9.5.2) 

Allocation2 

Quantity 
Free Stock3 

Parameter M 
Q using an Expression 
for opt. 	: 	Q 
see p0115 	(5.9) 

167 	5B Parameter er on Proc. 
Arrival 

Share MK II 
(similar to 
'sharer: 	see 
P163, 	9.5.2) 

Allocation
2 

Quantity 
Free Stock3 

Parameter M - Ditto - 

185 	6A 1st d.p.4 

Model vble. 
2nd d.p.5 

Model vble. 
Analytical 
Ration rule 
Share MK III 
(P175,10,21 3) 

Allocation
2 

Quantity 
Free Stock3 

Parameter M - Ditto - 

195 	7A - 1 only Analytical 
Ration rule 
Share MK IV 
(p190, 	13.2) 

Allocation2 

Quantity 
Free Stock  

Parameter M - Ditto - 

r4e 

203 	8A 1st d.p.4 

Model vble. 
2nd d. p5 
Model.vble° , 	. 

Share MK 
IV B11 	" 
see p. 201 

rir 
Allocation2 

Quantity 
Free Stock3 

Parameter M - Ditto - 

I.- 
209 	9 

i 
1st d.p.4 

Model vble. 
2nd d.p.5 

Model vble. 
Share MK 

V A10 
Allocation2 

Quantity 
Free Stock 

Parameter M - Ditto - 

214 110A 
216 !MB 

1 
T••••• 

1st d.p.
4 

Model vble. 
2nd d.p.5 

Model vble. 
Share MK 

VI9 

Allocation2 

Quantity 
Free Stock3 

Parameter M - Ditto - 



Control 

Ref 
Page 

Sub-Store Control 	 Control for Complex 

r  
No 

Reorder Level Quantity Allocated 
Reorder Level Reorder Qty. 

Procurement 
on order 

Procurement 
rot on order 

Procurement 
on Order 

Procurement 
not on order 

240 11 3rd d.p.7  

Model vble. 
RoL when 
Proc. is 8 
Ordered, 
from 3rd 
d.p. Model 

Share MK 

VI A 

Allocation
2 

Quantity Parameter y 
spates to 

M 

Q using an Expression 
for optimal Q 
see p. 	115 	(5.9) 

276 12A 3rd d.p.
7 

Model vble. 
RoL when 

Ordered, 
from 3rd 
d.p. Model 

Proc. is Quantity 
Share MK 

Vi A8 
Allocation2 Analysis 

(see 	17.7, 
p. 	269) 

- 

- Ditto - 

i277 12C As low as possible 
subject to"probability 
of shortage in lead time 
.ol" and Proc. Arrival 

Cran Allocation Rule System Stock 
Parameter M 

Parameter 	Q 

1. Share = Truncated 	Q 	,Free. Stock 	No. of Sub-.(:':ores. 
2, A = Mean Demand + Z x Std. Deviation of Demand in coverage time. 
3. Free Stock F is computed by a hypothetical stock distribution from central store 

to.minimize shortage cost. 	See pages 108-109 for further details. 
to sub-stores 

4, See p. 	159, 	(9.2.3.) 
5.  See p. 	178, 	(11.2) 
6.  See p. 	86, 	(3.15.3) 
7, See p. 	236, 	(16.3.3.1) 
8.  See p. 	239, 	(16.3.6.) 
9.  See p. 	212, 	(15.10) 
10.  see p. 	210, 	(15.4) 
11.  See p. 	201, 	(14.2-) 
12, See p. 	240, 	(16,3.9) 
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• Expt.1: Significant Improvement over Cran's Result for "t" test at 

0.5% level. 

Expt.2: ►t 5% level. 

    

Expt.3: 	r, 	U 	ft 	ft 	If 	If 	►t 	►► 	1% level. 

Expt.4: Use of 1st d.p. Model: Results worse than for Experiment 3: 

Fault in d.p. Model: Improvement suggested. 

Extp.5: Use of amended d.p. Model: Improvement on Result for Unamended 

d.p. Model significant: Improvement in result over Control 3A 

(fixed r.o.l. at sub-stores) but insignificant. 

Expt.6: Suggestion for a new Ration Rule "Share Mk II" without d.p. Model 

not a good idea. 

Expt.7: Use of the new Ration Rule "Share Mk III" plus use of two d.p. 

Models for sub-store reorder level gives small improvement-over 

Control 4A (Expt.5) but Ration Rule still needs improvement. 

Expt.B: A new Ration Rule "Share Mk IV" a good idea ("t" test indicates 

significant improvement compared with "Share" for zero lead time 

models I, II at 5%, 10% levels, respectively). 

Expt.9: New Ration Rule "Share Mk IVB" a good idea for non-zero lead 

time Model III ("t" significance test positive compared with 

previous best result (Control 6A) at 0.5% level). Further 

improvement on Ration Rule suggested. 

Expt.10: Two suggested modifications ("Share Mk V") tested both improve 

performance but a further improvement is possible. 

Expts. 10A,11: A new Ration Rule "Share Mk VI" applied to Models IV, V 

produced improved — performance. However, "Share Mk VA" 

deemed to be best so far ("Share Mk VI" is strictly to be dis-

counted because of its heuristic context). 

Expts. 12,13,14: Modifications to concepts to allow for different and 

forecast demand rates over sub-stores (Movel VI) with shortage 

costs time-independent and where jump in demand is applied to a 

particular sub-store. Demonstrates the stability of the Control 

Rules. 

Expt.15: (Comparison with Cran for a non-zero lead time, shortage cost 

time-independent model for different demand rates. Author's 

model incorporates analysis for trigger criterion and this model 
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favours Cran control.) An improvement over Cran's control is 

judged by "t" test to be significant at the 0.05% level. 

18.4 Ration Rule Summary  

"Share" = I (Free Stock/N) 

."Share Mk II" = Min{Share, Allocation} as in 9.5.2. 

"Share Mk III" = Analytical Ration Rule as in 10.2. 

"Share Mk IV" = Analytical Ration Rule, distinct improvement over last 

Ration Rule, specified in 13.1e. 

"Share Mk IVB" identical to "Share Mk IV", except for modification to 

take into account the step-function reorder level for sub-stores (case 

T S L) - see 14.2. 

• 
"Share Mk V" as "Share Mk IVB" except shortage cost computation con- 

siders a criterion which decides whether to consider individual stores' 

shortages or lump their stocks together and compute shortage accordingly 

see 14.6). 

"Share Mk VA" always computes the shortage costs of the sub-stores 

individually (see 15.4). 

"Share Mk VI" incorporates a stronger rationing idea, limiting the 

ration quantity when central store stock drops below a "critical level" 

(see 15.8). 

18.5 General Summary and Conclusions  

This thesis was written in the belief that it fills to some extent 

a large gap in the literature in the field of controlling inventory ship-

ments and storage quotas for a stores complex consisting of a central store 

feeding a number of stores (sub-stores). 

Chapter One introduces the reader to the nature of the complex and in-

dicates the problem of control. Chapters Two and Three review the liter- 

ature pertinent to the subject. 	In Chapter Four the author presents the 

assumptions of the models of the complex to be used in this work and 

Chapter Five puts forward the author's first alternative method for con-

trolling the complex. Chapter Six discusses the simulation techniques 

employed for comparing methods of control and details the simulation of 

control on the first model (Experiment One). Chapters Seven and Eight 

consider the author's second and third models and give the results of their 

simulation, comparisons being made (as in Experiment One) with Cran's con-

trol. 
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Chapters Nine, Ten, and Eleven present analysis consisting of two dyna-

mic programming methods to establish the reorder level of sub-stores in two 

types of situation and put forward an alternative to the "Share" Ration 

Rule for sub-stores formulated in Chapter Five. At the end of Chapter 

Nine appears a short summary of the conclusions reached at that stage. 

Chapter Twelve considers the simulation of the author's third model 

with the control rules governed by the analysis of the past three chapters, 

and concludes that the Rationing Rule to sub-stores can be further improved. 

Chapters Thirteen and Fourteen develop and test the new Ration Rule and pre-

sent the results of the simulation of the complex when governed by this 

rule for each of the first three models. 

This work is followed by the testing of suggested improvements to the 

Ration Rule. Chapter Fifteen introduces two further non-zero sub-store 

lead time models on which the author's control is tested. In the follow-

ing chapter, a more generalized model in which the sub-store demand rates 

are forecast and different is introduced. For this model, the response 

of the control to a sudden increase in demand at a sub-store is observed. 

In Chapter Seventeen, some analysis is formulated to establish the 

trigger for the procurement order. (This is felt to be particularly val-

uable.) The comparative performance of the author's suggestions and 

Cran's control is then observed on a representative model of the complex, 

in which the data is specifically designed to favour Cran's control ideas. 

In conclusion to this thesis, the author puts forward the view that 

the potential cost savings inherent in applying sophisticated control ideas 

such as proposed in this work to a commerical complex are well worth the 

effort involved. 

If all the information prerequisite for this type of control can be 

held centrally, the control decisions can be made at this point. The re-

quired control couple (z,a) can be obtained by simulation of a model of 

the commercial complex as demonstrated in this thesis, and then used in 

the control rules for on-line control of the complex. 

The extent of programming necessary to include all the control rules 

is not too substantial for a medium-sized electronic computer. 
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1.1 	Introduction  

This appendix establishes the mean and varience of the 

demand at a sub-store in the coverage time' when System Stock is t 

the procurement trigger. 

1.2 Computation of Mean, and Variance of Sub-Store Demand  

in the Coverage Time  

The complex reorder is triggered by System Stock at a 

level M, and the present System Stock is S. The sub-store 

demand affects the time until the complex reaches the trigger 

point. Let this time be t, so that there are R = S-M demands 

during t. Let r be the demand at sub-store 1 during this time. 

The probability of R and r during time t is 

(Ait)r 	
- X'tR-r 

where Ai = 

(R -r): 

Hence the probability of r gi en K is 

Rt f ir x, R-r / r! (R-r): ;\T R  

whichhasmean andvarienceRA.()\T -;‘i)/NT  , 

The sub-store demand during the combined lead time Lc is 

Poisson and independent of demand prior to this time. Hence mean 

and variance during Lc  are both ::\/„.; 	. Since demand in the 

coverage time is the sum of two independent parts (viz, during 

time to trigger and during the combined lead time) its mean is 

(S-M) 	t A;Lc. The variance is (S-M)›i 

a 
For the case Ar = N 	, this expression for the varipnce 

becomes (S-M) ( 1/N - 1/N2) + ,\.„1,c. As a check, when N=1, 

variance is due only to demand during the lead time, and the 

variance should be independent of N. 

The given expression satisfies this check. 

For the particular case of 5 sub-stores, 

Mean = 0.2 (S-M) + X.L c 
Variance = 0.16 (S-M) + 	Lc  

Time until Stock from the next Procurement can arrive at the 
Sub-Store. 
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2.1 Introduction  

This appendix describes the method by which the distribution of the 

demand on a sub-store in the coverage time was sought when "Free Stock" 

is employed as the procurement order trigger. Although this method was 

found impractical in this case, the ideas appeared interesting enough to 

warrant insertion in an appendix. 

2.2 The Problem of Variance of Sub-store Demand in the Coverage Time  

The variance of this distribution is difficult to obtain mathematically. 

For a given AT, A., Lc, we have from Appendix One the variance of coverage 

time demand with a trigger of System Stock to be a function of (S,M). 

Now the latter variance is known to be less than that of the distribution 

required here. This is because when System Stock is the trigger, reorder 

cannot occur for the complex until exactly (S-M) items are demanded over 

the sub-stores, whereas with Free Stock as the trigger reorder can occur 

when a total number of units either less than or greater than (S-M) have 

been demanded. 

2.3 Approximations for Variance  

A first approximation to the required variance could be to use the 

variance from Appendix One. 	If this expression is denoted in general by: 

a + b(S-M), 

a better approximation to the required variance is: 

a + b(F-M), 

where F is the "Free Stock" level. The mean is assumed to be satisfac- 

torily approximated
3; 
 by (F-M)/N+L ai.  

t 

2.4 The Suggested Method to Obtain the Variance of Demand  

A more correct value of the required variance could possibly be ac-

quired by the following method. The complex is simulated with an initial 

estimate of this variance as a+b(F-M). When a sub-store reorder level 

is reached for the first time (say when Free Stock = F1) the Allocation 

Quantity is computed using the constants (a,b). 	At a time It after the 

procurement arrival, the actual figure for demand on this sub-store since 

shipment will be available. 

* for the case AT  = NAi. 
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As time advances, so reorder for a sub-store will occur for another 

F(F F1)
, say F = F2, when the deviation from-mean,  will be some value, say 

dev
1
(F
2) which is the difference between d2 and {(F2-M)/N+L cA.}. 

Now the variance vs.(F-M) relation may be re-estimated by linear re-

gression between the points (dev1(F1), (F1-M)),(dev2(F2),(F2-M)) The result-

ing relation may be denoted thus: 

p + q(F-M). 

As time advances with the Allocation Quantity being decided using the 

new constants p,q, so more values of deviation from mean for various F 

values will be available. At any instant, if the experienced deviations 

from mean for a level F. are 
J 

dev1  (F.), dev2j (F.), 10404 devkj (F.), 

thenthebestestimateofvariarmeVarforthepoint(F.
3
-m) is 

k 
1 E dev.(F.). 
IZ 1=1 	3. 

Again, the best estimate of the constants p,q, at any time will be 

found by linear regression on theLyar,(F-M))couples  which are available. 

2.4.1 Difficulties with initial estimates of p,q  

Obviously, as the simulation begins, estimates of variance for differ-

ent (F-M) values are poor and so the p,q constants in the Varl,(F-M) rela-

tion are correspondingly poor. It is envisaged that the beginning of 

the simulation will yield such poor estimates of p,q, that if these were 

to be used for the Allocation Rule, sensible estimates would only be 

obtained after a prohibitively long simulation run. 

In attempting to overcome this problem, whenever-p+q(F-M) is less 

than a+b(F-M), the allocation formula uses the constants a,b. This is 

because it is known that the variance of the required distribution will 

always exceed a+b(F-M). 
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DETAILS OF THE LINEAR REGRESSION IN APPENDIX TWO 
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For convenience we put R = (F-M). The best straight line through 

the graph of points of Var vs. R in order to secure the best available 

approximation to the constants p,q (of the Var' R relation of Appendix 

Two) to date,is obtained  by regression analysis. The procedure is as 

follows: 

All the different values of R for which an estimate, of variance is 

available are summed, to yield ER. The number of different values of R 
is denoted by n. The sum of R2 is called ER2. The product of-Rand 

Var for each (Var,R) couple is computed and summed over all values of R 

to yield EProd. The sum of the squares of variance values is called 

EVarsqd. 

If the best straight line through the points on the Var...R graph of 

points is called p+qR, then p,q are given by: 

= (ER2EVarsqd - EREProd)/E 

q = (nEProd EVarsqdER)/E 

where ,E = TIER
2
4  (ER)

2 
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5.1 Introduction 

This appendix gives the method of computation of p(S,L,A), the number 

of item-days of shortage resulting from replenishing a store with stock 

level S, when its rate of demand is A and when stock will arrive at it in 
time L. 

For the 'special case of a = xi , L = I, S = s, this function is simply 
referred to as 0(s,i). 

Obtaining the expression for (T,17,)7)  

17 
*c§,T.25,-) = I 	E 	(i-T) 

o 1=-S-+1 

 

e-Tt dt 

 

= 	E 
i=S+1 
	I - - 

L ea i  e-Tt dt ) 	 (1) 

Now 
0 	 7 o 01 

1-r—c(rt )i e--At dt 	e 	dt (At)1 	-7t 

= 1 — {Probability that (i+1)th demand occurs between 0 and 1.;} 
A 

_{Probability that (i+1) or more demands occur by time L} 
37.  

J =i+1 3.  
E 	 e-T 
	

(2) 

Using equation (2), (1) becomes:- 

CO 	 CO 

1 E ( 
= i=g+1 	j=i+1 X 

(X L) j  
ji 

e-3 L (3) 

If we introduce a function p(x) defined as follows:- 

(7 1)x  -7 1 = 
.17 	x. 
A 

then (3) becomes:- 

CO 

E 	P (X), 

*(§,r,7,-) = r (i-T) E p(j) 
i=S+1 	j=14.1 



This summation can be seen to lead to:- 

tp(T,17;T) = p(Tt2) +3(7+3) + 6p(7+4) + 10p(T+5) t 

i.e. 4)( -,1,-.)  = 1 	E 	(m1--1)(m-.§)(a I)111 	_XL  

A m=g-i-2 	2 
(4) 

Now (m-5-1)(m-7) = m(m-1)-21ng+ .2  + S. 	and (4) resolves into:-

: 

IP(TX,T) = 	E m(m-1) 	Dm  e-7 

71 m=7+2 2 	m! 

7 	2z (7 Dm  e-717 
A m=§+2 2 	m! 

+ 1E 
A m=§+2 

72+7 	r 
2 	m. 

which in turn resolves into:- 

7-1 (TIT)j  
*(-§,Y.7,3t-) = 	r 2  {1 - E ' 	j 

2 	j=0 
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S 
-SL {1- E 

j=0 

7+1 -s-2+-s- 
+ 	- E 

2A 	j=0 

(717)i  
jf e-57 

 

e--371-; 
(5) 

The form of equation (5) is the form best suited to computational 

methods. 
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DETAILS OF THE FIRST DYNAMIC PROGRAMMING MODEL 



6.1 The ty(s,t) Calculation for a Few s-Values  

For the particular case of Model III we have: 

Xi = .04, t= 25. 

s-1 
tp(sot) = 12.5 {1-Xi  E p(j)} 

j7.0 

-25s 	p(j)) 
j=0 

stl 
+12.5(21-s) (1-x 	p(j)} 

jr-0 

from equation (5) of Appendix 5. 

Let (1) be called:- 

*(s,X) = 12.5A' - 25sB' + C'D' 

, where C' = 12.5(s2  +s). 

Then the component parts of the function are tabulated below for a 

few s-values. 

s 	A' B' C' D' 11)(s,t) 

1 .63212 .26424 25 .08030 3.3026 
2 .26424 .08030 75 .01899 0.7123 
3 .08030 .01899 150 .00366 0.0189 
4 .01899 .00366 250 .00059 

5 .00366 .00059 375 

6 .00059 

6.2 	Illustration of C09putation of a Few Cost Functions (refer to 9.2.3) 

An interesting example to consider is C(1,1). 

In the case of Model III, where the shortage cost, cs, equals ;4 we 

have:- 

CA(1,1) = cs  4)(1,1) 	cR  = 0.4 x 3.3026 + 0.3 = 1.6210 

CB(1,1) 	(1- A)C(1,0) + iC(0,0) 

+ Xics  (0,Z) 
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(1) 

Then 
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Equation (1) yields 11,(°,2,) 	= 	Ait2/2 	= 	12.5 for Model III. 

Then CB(1,1) 	= .96 x .4 x 3.3026 + .04 x.4 x 12.5 

= 1.4682. 

Since CB(1,1) < CA(1,1), 

we have C(1,1) = CB(1,1) = 1.4682, and the decision function associated 

with the state (s,T) of (1,1), viz. D(1,1) is 0 (i.e. wait until the next 

time instant before further review). 

Consider now the (s,T) state of (1,2) 

CA(1,2) = c5*(1,2,) + cR  = 1.6210 

CB(1,2) 	.96 C(1,1) + .04 C(0,1) 

.96 x 1.4682 + .04 C(0,1) 

We require the value of C(0,1). 

Consider CA(0,1) = cs*(0,t) + cR  = .4 x 12.5 + .3 = 	5.3 

CB(0,1) = .96 c(0,0) + .04 C(-1,0) 

.96 x 5.0 + .04 x cs(1)(0,L) +L) 

= 4.8 + .04 x .4 x 37.5 

= 4.4 

Thence 	- C(0,1) 	= CA(0,1) = 5.3 

and 	CB(1,2) = .96 x 1.4682 + .04 x 5.3 

= 1.6215 

Thence 	C(1,2) 	= Min '(CA(1,2); CB(1,2)) 

= 1.6210 

and the Decision Function D(1,2) is (marginally) 1. 

6.3 	To Show that, if D(s,T) = 1 for T = 1, then it is also 1 for 

all L T 1  

Consider the state (s,T) for T 2 2. 

CA(s,T) = cslp(s,k) + cR 	 (a) 

CB(s,T) = (1-y C(s,T-1) + TiC(s-1,T-1) 	(b) 

Equation (b) shows CB(s,T) > C(s0T-1) 	(c) 

since it is clear that C(s-1,T) > C(s,T) for all s ,T. 

(a) implies CA(s,T) = CB(s,T-1) 	 (d) 
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From (c), (d), it follows that if C(s,T-1) = CA(s,T-1) (which implies 

D(s,T-1) = 1 ), then 

CB(s'T)  > CA(s'T)' 

i.e. 	D(s,T) = 1. 

Now the original supposition gives us D(s,l) = 1, and so D(s,T) = 1 

for all L * T 1. 

6:4 	Method of Computation of the D(s;T) Values  

(i) Calculation of C(1,1): 

CA(1'1) = cR  + cV(IXT 

CB 9  (1 1) 	(1-TdC(1,0)+ ;1C(0,0) 

= (1-T.)a W. 2.) + A.c tp(0 S 	S ' 

hence C(1,1) and D(1,1). 

(ii) Calculation of C(1,2): 

CA(1,2) = cR  + c0(1,2,) 

CB(1,2) = (1-Ai)C(1,1) + 

(ii.a) Sub-calculation for C(001): 

as in 6.2, hence C(1,2) and D(1,2). 

(iii) Calculation of C(1,T) for all defined T > 2: 

C(1,T) = CA(1,T) = cs*(1,i) + cR, independent of T 

(iv) Calculation of C(s,1) for all s > 2 (in order; s = 

CA(s,l) = CR + cSgs,t) 

C;(8,1) = (1-Xi)C(s,0) + 

Hence C(s,l) 
	

Min (CA(s,1); CB(s,1)) 

and D(s,l) 

(v) Calculation of C(s,T) for all remaining s,T is obtainable from 

results included in (i) to (iv). 
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6.5 Consideration of Decisions for Negative Stock Levels  

It is not true, as might have been considered obvious, that for all 

cases where a sub-store has a negative stock level, it should necessarily 
be replenished forthwith. 

6.5.1 The (s,T) state (-1,1)  

CA(-1'1) = cR  + cS  {IA. 2
2 ill 

-1,1) = (1-Ai)C(-1,0) AiC(-2,0) cs  

• (1-Ai){cs(ixi22+2,)}.1. Aifcs (ixit2 + 2k)) + cs  

= cs(iXik2  +k) + cs(i+Xit) 

C(-1,1) 	= CA(-1,1) ) ONLY IF cRS 	(1+X.k) 
D(-1,1) = 1 

6.5.2 	The (s,T) state (-2,1)  

CA(-2,1) • cR  + cS  {tA.k
2 
 + 2k} 

c13(...41)=0...A.M-2,0.1.xx(-3,0) + 2cs 

	

f 	2 	r, • (14 ){cS I (AA 	2Z)}+ A.(cS 	2 + 3,0)+ 2c 

S 
r 	1 • c 	2+2.S.1 cS(2+Ai2,) 

C(-2,1) CA(-2,1"ONLYIrcRicS ."2"" 

D(-2;1) 	= 1 	' ( 

Ingeneralp(-11,1)=Iforriegativel 

Similarly D(-1,2) = 1 and D(s,T) = 1 for all L T 1 1, and s < 0, 

in the case cRics  < (1+Ait). 

6.6 	Model III Specialities  

The fact that D(0,1) = 1 (since CA(0,1) < CB(0,1) in 6.2) and the 

theorem of 6.3 together give D(0,T) = 1 for all 1 T $ L. 

Since for Model III, cR  < cs(l+Ait)„ we have, for all negative s, 

and all 1.5 T < L, D(s,T) = 1. 



APPENDIX SEVEN 

THE PROBABILITY FUNCTIONS P(s,L); Pt(s,9,) 

(A): THE PROBABILITY OF A SUB-STORE WITH A GIVEN NOTIONAL STOCK LEVEL 

Isl AT TIME OF PROCUREMENT ORDER RUNNING DOWN ITS STOCK TO REORDER 

LEVEL IN CENTRAL STORE LEAD TIME - THE PROBABILITY P(s,Z) 

(B): THE PROBABILITY OF A SUB-STORE WITH A GIVEN NOTIONAL STOCK LEVEL 

's' AT TIME T(T < L) BEFORE PROCUREMENT ARRIVAL RUNNING DOWN ITS 

STOCK TO REORDER LEVEL WITHIN TIME T HENCE:- THE PROBABILITY 

1"(s,Z) 
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7A The Probability P(s,Z)  

Consider a sub-store with a notional stock level 's' at time of the re-

order level of the complex. The probability* of it reaching a reorder 

point again before the ordered procurement arrives** is equal to the pro-

bability that the sub-store experiences demand such that the reorder level 

step function line is crossed before procurement arrival. This function 

is illustrated for Model III by Fig. 39. 

Let the step lengths be of time values tl, t2... t5  etc., as in Fig. 

39'. 	The demand in time intervals t1,  t2' 
etc. will be r1, r2 etc. 

The probability of the notional stock level of the sub-store meeting 

or going below the step-line will equal:- 

(Probability of incurring such a demand that the stock level drops 

below the step-line in the interval t1) 

(Probability of a demand in t2  such that the stock level crosses 

the step-line in time interval t2, for all pos6ible values of 

s-r1  > 4, i.e. of r1 	s-5) t 

Probability of crossing step-line in intervals t3, t4, t5  

i.e. P(s,k) 	
2 Pl(r1)  r1=s-4 

s-5 	00 

E 	p1(r1) 	
E 	p2(r2) r

1=0 	
r
2
=s-r

1
-3 

s-5 	s-r1-4  

Pl(r1)E 	
p2(r2) 	

E 	p3(r3) 

r =0 	
r2=0 	

r
3
=s-r1

-r
2
-2 

1 

s-5 	
s-r

1-4 	s-rl-r2-r3  

+ 	E 
=0 	

p
1
(r
1
) 	E 	p2(r2) 	p3(r3) 

r
1  r2 0 	

r
3 0 

CO 

p(r) 
r
4
=s-r

1
-r
2
-r3-3 

* This probability, P(s,Z) is required for use in the 2nd Dynamic Program-
ming Model. 

** If the reorder point is in fact met, the assumption is made that the 
Ration Rule will decide upon a RationWantity which is greater than the 
present notional stock, i.e. a shipment will always occur when the reorder 
level is met. 
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FIGURE 39 

THE REORDER LEVEL VS. T STEP FUNCTION FOR MODEL III 

(NOT TO SCALE) 
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s-r1-4 	
s-ri-r2-r3 

P2(r2) { 1- r30' 	
P3(r3) 

= 

s-5 
Ex(r1) 
r1=0 

E 
r2=0 
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s-r1-r2-3 	s-ri-r2-r3-4 s-5 	s-r1-4 

rE=0 Pl(r1) 	P2(r2) 	E 	p3(r3) 	p4(r4) 

1 r2=0 	r3=0 	r4=0 

co 

p5(r5) r5=s-r1-r2-r3-r4-4 

where pk(rk) indicates the probability of a demand of rk units in the time 

interval tk. Thus, for Model III we have: - 

p r1 
1 

 

; 	1  = X it, = .04 x (100-62) = 1.52 
1! 

 
r" 

u 2 

-P2 	
r2/r2!  ; p 2  = A it2  — .04 x (62-25) = 1.56 

Pl(r1)  

P2(r2)  = 

p3(r3)   = 

p4(r4) = e P4  

P5(r5)  

- 1-1 
1. 

- 
P3 

P3 e 	3/r3. 

r 4 

P4 ir4! 

e P5 J5 
r5 
/r5!  

; p3  = hit3  = (23-7) x .04 = 0.64 

; p4  = Ait4  = (7-2) x .04 = 0.20 

p5  = hits = (2-1) x .04 	0.04. 

The probability of crossing the step-line at all, then, P(s,t) is 

given by: 

P(sjt) 

s-5 
= 1 - 	p

1
(r1
) 

r1=0 

s-5 	s-r1-4 

+ E 	p1(r1) { 1 - r1=0 	r2+o 
P2 ( r2 

A --+-1 	Iii'i 

r2-r3  -r 	s- - 	r  
rl r

2_ 
r3

_ 
 

+ 	A 	x 	B 	E 	p3(r3) {1- 	E 	134(r4) 

	

r3=0 	
r4=0 
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s-r1-r2-r3-2 , 	s-r1-r2-r3-r4-1 

+AxBxC 	E 	P4(r4) {1  - 	E 	p5(r5)} 

r4 =0 	r5 = 0 

This is not too difficult a function for electronic computation. 

7B 	The Probability Pl(s,L)  

The probability of a sub-store with a given notional stock level and 

at a given time TI  before procurement arrival running down it stock to re-
order point before the procurement arrives is a more generalized case of 

the probability considered in 7A. 

If we require P'(s L) for a sub-store at time T=To, then we require the 

probability of crossing the step-line in intervals ta, t2,  t3, t4, t5 
(see Fig. 39). 	This probability is as given in 7A where to = t1, and 

thus 	= Aita. 	If P1(8,10 is required for Too  > T > T10  then we require 

the probability óf crossing the step-line in intervals tb, t3, t4, t5. 

The latter probability is equal to:- 

(Probability of the notional stock level meeting or going below the 

step-line in interval tb) + 

(Probability of a demand in t2  such that the stock level crosses the 

step-line in time interval t3, for all possible values of s-rb > .3, 

i.e. of rb  ...5 s-4)* 

(Probability of crossing step-line in intervals t4, t5) 

E pb(rb)  rb=s-3 

s=4 
+ E 
rb=0 

pb(rb) 
E 	p3(r3) 

r3  =s-rb  -2 

s-4 	s-rb-3 

rE=0 Pb(rb) 	p3(r3) 	p(r4) 

	

r3=0 	r4=s-rb-r3-3 

s s-4 	s-rb-3 	-rb-r3-4  00  
E 	p(r4) 

+ E 	 p
5
(r

5
) Pb(rb) E P3(r3)  

rb-0 	r3=0 	r4=0 	r5=s-rb-r3-r4-r5  

* rb represents the demand in time interval tb. 



As in 7A pk(rk ) represent the probability of rk  demands in time 
period tk. 	 rb 

P 	11 b b Thus) = e 	— ; p = X.t Pb('rb' 	 b 	1 b rb! 

PI
ji  -p 1 	.--- ; p1 = X.

1t 	etc. e p1(r1) = 	 l' ! ri  

Similarsurnmationsfor whenT10 >TIUD>T20 are obtainable 
in the same way. 
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APPENDIX EIGHT 

A NOTE ON THE METHOD OF COMPUTATION OF REORDER LEVEL OF SUB-

STORES IN THE CASE WHEN A PROCUREMENT ORDER IS NOT OUTSTANDING 

(THE SECOND DYNAMIC PROGRAMMING MODEL OF CHAPTER ELEVEN) 
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For any (s,F) couple, 

CA(s,F) = cR  x P(3,L) + cstp(s,t) + CM  (F)is easily computed. 1   

We have, also, 

CB(s,F)=X.C(s-1,F-1)+14A.C(s,F-1)+(1-5X.)C(s,F) 

Thus, if C(s,F) = CA(s,F) 

this implies CA(s,F) < CB(s,F) 

i.e. that. C(s,F) < AiC(s-1,F-1) 	4aiC(s,F-1) 	(1-5AdC(s,F) 

and the implication is then that 

5XiC(S,F) < XiC(s-1,F-1) + 4aiC(S,F-1) 

CA(s,F) 	< .2C(s-1,F-1) + .8C(s,F-1) 

The test then is:- 

is 	CA(s,F) 	< .2C(s-1, F-1) + .8C(s,F-1) ? 

If true, then C(s,F) = CA(s,F) 

whence the decision D(s,F) = 1 (replenish now) 

If false, then C(s,F) = CB(s,F) 

Using (A), (B) is thus transformed ... 

C(s,F) =AX(s-1,F-1)+ 1.1. X.C(s,F-1) + (1-5X .)C(s,F) 

i.e. C(s,F) = .2C(s-1,F-1) + .8C(s,F-1) 

and 	D(s,F) = 0 (wait) 

The first requirement for solution of the dynamic programming model 

is the nature of D(0,F). For most cc:EL and lead time data combinations 

(certainly for that of Model III) it is clear that D(0,F) = 1 (replenish 

now). 
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APPENDIX NINE 

FURTHER NOTES ON THE 2ND DYNAMIC PROGRAMMING MODEL 

(SOME TABULATED VALUES FOR THE SOLUTION OF THE DYNAMIC 

PROGRAMMING MODEL FOR THE REORDER LEVEL OF THE COMPLEX 

WHILST A PROCUREMENT IS NOT ON ORDER (PLUS AN INDICATION 

OF THE TESTING PROCEDURE FOR OBTAINING COSTS OF BEST 

DECISIONS IN THE MODEL)) 
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9.1 	Tabulated Data for Solution of the 2nd dtp. Model for Model III 

for the Case (14 = 50, z = 0.8) 

s 1 2 	3 4 5 6 7 8 9 10 

P(s,2)* 1.0 1.0 	1.0 1.0 .894 .675 .433 .239 .116 .050 

cs1,(s,9) 1.321 0.285 	0.051 0.008 0.0001 

F A(F) Cm (F) 1 
ROL(F) F A(F) C

ml
(F) ROL*(F) 

51-57 Various 0 4 76 13 .0199 4 

58-60 10 0 5 77 13 .0171 5 

61 10 .0034 5 78 13 .0147 5 
62 10 .0027 5 79 14 .0341 .3 
63 10 .0022 '5 80 14 .0261 4 

64 10 .0017 5' 81 14 .0117 6" 

65 11 .0100 4 82 14 .0034 8 

66 11 .0083 4 83 15 .0040 5' 

67 11 .0069 5 	, 84 15 .0006 8 

68 11 .0057 '5  85 15 .0003 8' 

69 11 .0047 5. 86 15 .0002 8 

70 12 .0165 3"• 87 16 .0003 

71 12 .0139 4 88 16 .0002 - 

72 12 .0118 4 89 16 .0002 . 9_ 

73 12 .0100 5 90 16 .0001 9 

74 12' .0268 3 	. 91 16 .0001 9.  

75 12 .0231' 4 92 17 .000t 4 -' 
93 17 .0001 9 

It will be seen that the ROL-F function is not monotonic. As with 

the C
M  (F) function, this is a result of the step nature of the A(F) func-

tion. What occurs is that when the allocation quantity steps up one as 

F is increased, the associated costof Maldistribution Type 1 increases, 

and the dynamic programming model reflects this in lowering the reorder 

level of sub-stores (hence tending to prevent a replenishment). 

See Appendix Seven. 

* Reorder Level at Sub-stores as afunction of Free Stock. 



9.2 An Example of the Testing Procedure for Obtaining Costs of Best  

Decisions at a Few s-values for an F-value of 46  

Test: Is 	CA(s,F) 	< .20(s-1,F-1) + .80(s,F-1) 

For s=1, 	CA(1,46) = cgp(s,t) + cR  

= 1.321 + .3 = 1.621 

The test, then, is:- 
5.3 

Is 	1.621 < .2($') + .8(1.621) 

Answer: Yes 

Hence C(1,46) = CA(1,46) = 1.621 

D(1,46) = 1. 

For s=2, 	CA(2,46) = cs*(2,t) t cR  = .585 

C(1,45) 	= cs4)(1,t) + cR  = 1.621 

The test is:- 

? 	 o. 586 
Is 	0.585 < .2(1.621) + .8(14-811) 

Answer: Yes 

Hence C(2,46) = .585 

D(2,46) = 1. 

The result is similar for s=3, 4. 

But for s=5; 

CA(5;45) = ce(5$1.) + cR 

= .001 + .3 	= 	.301 

C(4,45) = cs*(4'St) + cR 

= .308 

The test is:- 

Is 	.301 < .2(.308) + .80(5,45) 

i.e. 	Is 	.301 < .2(.308) + .8f*(5,54)0e cR  x P(s,101 
.000l 

i.e. 	Is 	.301 < .2(.308) + .8(,001 + .3 x .8939) 
.2762 

Is 	.301 < 0.612 

Answer: No. 
.2762 

Then C(5,46) = 	D(5,46) = 0 (Wait) 

The reorder level for an F-value of 46 is thus 4. 
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CALCULATION OF REORDER QUANTITY OF THE COMPLEX FOR THE 

VARIOUS MODELS 
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10.1 Summary of Reorder Quantities for the Complex (Procurement Order 
Quantities) for the Various Models  

These incorporate the computation: 

Q = ✓(2X T/hP {cP + cR x E(NR) 	c(CRO))) 

Table A  

Model No. T 
units/yr 

c cR hP t 

days 

Estimates 

c(CRO ) 	E(NR) Q 

I 50 0.5 0.3 0.1 0 0 10 J 60 

II 125 0.5 0.03 0.1 0 2 10 85 

III 50 0.5 0.3 0.1 25 0 10 60 

IV 50 0.5 0.03 0.1 25 1 20 45 

V 50 0.5 0.3 0.1 50 1 15 75 

VI 37,5 0.5 0.3 0.1 25 1 10 60 

VII 37.5 -0.5 0.3 0.1 25 0.8 5.5 47 
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11.1 Introduction to the List of Symbols  

In the text of the thesis, many symbols are defined wherever they occur. 

However, a large number have universal application. It is these that 

the author has particularly in mind in compling this list. This list, 

does, however, include symbols often defined where they occur in the work. 

11.2 List of Symbols  

A, A(F0M,z)0  A(z), A(F)mz 	Allocation Quantity 

-A- 	 Cran Hold Back Factor (related to HBF 

in Appendix One) 

b 	= 1,2,3 ... 	Values of Extra Delivery Quantities 
ti 

B Optimal Value of B 

B Considered Ration Quantity 

B Average Buffer Stock Maintained in Complex 

C(s,T), CA(s,T), CB(s,T) 	Costs involved in First Dynamic Pro- 

gramming Model 

C(s,F), CA(s,F), CB(s,F) 	Costs involved in Second Dynamic Pro- 

gramming Model 

C(B) 	 Costs associated with a Ration Quantity B 

CM 	
Cost of Maldistribution Type One 

1 
 

cR 	 Cost of a unit procurement 

cR 	
Cost of a unit replenishment 

CRS 	
Cost of Run-out per procurement 

TB 	 Cost of Run-out per Simulation 

cS 	 Cost of shortage per item-day 

cl 	 Cost of unit shortage (Experiment 12) 

TB(d,B) 	 Total cost of shortages a s function of 

d,B 

d 	 Random variable of Demand in time (To-1) 

D(s,T) 	 Decision function in 1st d.pp Method 

dof 	 Degrees of Freedom for "t" significance 

test 
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d Average difference in "t" significance test 

D(s,F) 	 Decision function in 2nd d.p. method. 

E(x) 	 Expected value of x 

F 	 Free Stock 

G The Physical Stock in System at any time 

h Rate per annum cost of capital 

HBF 	 Cran Hold Back Factor 

H.C. 	 Holding Costs for the length of a simula- 

tion run 

I(x) 	 Integer value of x 

k(d,B) 	 Number of extra deliveries if Ration 

Quentity is B 

Lead time to Sub-stores 

L Argument in (S,F,T) computation 

L Procurement Lead Time 

Lc 	 Combined Lead Time (= L+t) 

M 	 Reorder Level for Complex 

N Number of Sub-stores 

N Number of observstions for the "t" 

significance test 

NR 	 Number of Replenishments per procurement 

NP 	 Number of Procurements per simulation 

NR 	 Number of Replenishments per simulation 

Value per unit inventory 

P(s,t) 	 Probability used in the 2nd d.p. Model 

P/(s,t) 	 Probability used in the Ration Rule 

"Share Mk III" 

Q 	 Procurement Quantity 
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QOPTIMAL 	Optimal Procurement Quantity 

ROL, ROLss 	Sub-store Reorder Level 

s 	 Sub-store Notional Stock Level 

so 	 Sub-store Reorder Level at T=L 

S 	 System Stock 

S 	 Argument for stock level in 4,(7,17,r) 
computation 

T, To 	 Time before Procurement Arrival 

Tb 	 DecisionBoundaryT in Experiment 12 

T.C. 	 Total Cost of Control in a Simulation 

y 	 Control Parameter for Reorder Level in 

Model VI 

z 	 Control Parameter in Allocation Rule 

A . 
3. 

Ai 

A 

Mean Sub-store Demand, Rate per unit time 

Mean Sub-store Demand Rate per day 

Argument for Demand Rate used in 

ty(7,17,X) computation 

A' 	 Defined as (N-1)A 1  

AT 	 Mean Total Demand Rate in complex per unit 

A 

4)(7,17,1") 

a 

time 

Mean Total Demand Rate in complex per day 

Difference between Free Stock and System 

Stock at time of reorder for the complex-

Expected cost of shortage for a store 

with stock 7 with replenishment due time 

L'henCe, with a demand rate A 

As 44§„t,T) where ( I; = s 

= 

= 
Experimental Smmothing Factor as used in 

Experiment 12 
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Value of "Step-End" (see 16.3.3) 

n 
	 Defined as ATLc in Experiment 12 

4 (§,r,7) 	 As i  function except shortage cost is not 

time-dependent. 
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Allocation  

When a sub-store reaches its reorder point whilst no procurement is 

on order, it is "allocated" a certain quantity of stock. This quantity 

is called the "Allocation Quantity" and the actual quantity to be shipped 

will equal the Allocation Quantity less the Notional Stock of the Sub-

store. The Allocation Quantity is denoted by A, where A = A(F,M,z) 

Complex 

This is the name given to the whole system of stores. 

Configuration  

This is the complete description of the stock levels for all stores 

in the complex. 

Coverage Tide  

This equals the expected time until a sub-store can next be replen-
ished from the next procurement. Thus when a procurement is expected in 

time T, the coverage time is (T+2.). 

Demand 

Demands are in unit quantities and occur on sub-stores'only. 

Decision Function  

In the First Dynamic Programming Model, Decision Functions are func-

tions of notional sub-store stock 's' and time before procurement arrives 

in the complex, 'T'. For all the three Dynamic Programming Models, 

Decisions Functions may be either O'or 1, zero corresponding to "do not 

replenish" and unity corresponding to "replenish now". 

Free Stock  

This is a stock level of the complex especially conceived to repre-
sent a useful stock level. It is denoted by F, and is sometimes termed 

the F-value. 

Fair Share  

This is equal to the value of F divided by the number of sub-stores. 
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Maldistribution 

Whenever the stock is distributed over the sub-stores in a non-optimal 

fashion and either shortages result or extra inventory holding occurs (as 

a consequence of ordering a procurement when the System Stock exceeds M) 

then maldistribution is said to have occurred. 

"Necessarily Replenish" and "Not Necessarily Replenish" Policies  

The above policies are the alternative procedures adopted for sub-

stores when the ordered procurement arrives in the complex at the central 

store. 

Notional Stock  

The sum of a store's physical stock and stock on order less any back-

orders. 

Order and Reorder  

The above synonyms refer to the decision to consider shipment from 

the next higher level to the store under consideration. If a sub-store 

is at a "reorder point", then an order from the central store is consid-

ered for it. 

Procurement  

The name given to the order for the complex. It is received at the 

central store. 

Ration Rule  

The name given to the formula or procedure for establishing the amount 

to be "rationed" to a sub-store when the complex has a procurement on 

order. The quantity shipped equals the Ration Quantity less the notional 

stock of the sub-store. 

Replenishment  

The name given to -a sub-store delivery. 

System Stock  

The sum of the central store stock and sub-store notional stocks. 



Trigger  

The mechanism deciding when to order a procurement. 

Virtual Stock 

The stock present at a store less any backorders. 
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APPENDIX THIRTEEN 

EXHIBIT DETAILS 

EXHIBIT B: Extract from Simulation of Experiment 10 

Control 9 applied to Model IV 

Shows unsuitability of "Share Mk V" (see 15.3) 

EXHIBIT C: Extract from SiMulation of Experiment 10 with 

Control 9 (using "Share Mk VA") - see 15.4 to 15.6 

EXHIBIT D: Simulation Details for Control 11 applied to 

Model VI for a close-to-optimal parameter coMbina 

tion (Experiment 12, see 16.4) 
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2 -"2  6 0 6 
1 

3 

3 

4 

3 

3 

4 

4 

riarinargAliat, ' • 

498 2 0 3 0 

0.187 0.039 0.040 

499.  2 0 3 0 

0.189: 0.042 0.039 

511 2 0 3 0 

0.191 0.044 0.042 

524 2 0 3 0 

0.190 0.039 0.040 

526 2 0 3 0 

0.176 0.055 0.069 

527 2 0 3 0 

0.181 0.048 0.044 

527 .2 0 3 0 

0.186 , 0.061 0.055 

528 2 0 3 0 

528 2 0 3 0 

0.185 0.009' 0.010 

530' '1 0 1 , 	3 0 

0.190 0.052 0.048 

550 1 0 3 

0:193 0.042 0.039 

553 1 0 3 

0:196 0.045 0.042 
0 50 	- 	1 

0.199 	0.048 

0 • 3 

0.045 

551 1 • 0 3 

553 	' 1 0 3 

558 1 0 3 

558 1 ' 0 3 

558 1 0 3 

4 

0 

0.196 0.049 0.052 	3 

560' 	1 	0 	3 

0.197 '0.610 0.009 	'1 

5G5 	0 	0 	3 

565• 	0 	• 3 	3 	0.  

0:198 0.049 0.048 	4 

566 	0 	3 . 	3 	0 

0:193 0.022 0.027 

575 	0 	3 	2 	0 	 ..:.
15 	12 

0.182 0.049 0.061 

581 0 3 2 0 0 16 I 14 4 15 

58) 	0 	3 	2 	0 	16 	0 	1 	14• 	4 , 15 	12 

41 	t 	3 	0 	16 	0 	15 	0 	4 	15 	12 

583 	 16 • 0 	15 	0' 19 	0 	12 



590 	3 	0 	2 	16 	1 	• 19 	12 343  

0.179 0.047 0.049 	3 

591 	3 	0 	2 	0 	15 

0,181 '0.023 0,022 	2 

595 	3 	0 	1 	0 	15 

595 3 0 1 6 .15 

0..181 0.047 '0.047 	3 

612 	3 	0 	1 	6 	14 

620 	' 3 	0 	7 	0 	14 

0'.183 00 049 0.047 	3 

625 	3 	0 	7 	0 	13 

0.177 0.044 0.049 	5 

625 	3 	0 	7 	13 

0.168 0.041 0.049 	4 

629 	3 	0 ::4.:-.•7 	0 	, 13 ;* 

0.172 0.04.8 00 044 	5 

630' 	3 	- 0; 	7 	.0 	13 • 

0.170 0,046 0.048. 5 

G5'8 	' 3 ' 	0 	7 	0 	13 

0%170 0.010 0.010 	1 

6'60• 	2 	0 	7 	0 	13 

0.167 0,045 0.049 	3 

661 	2 	0 	7 	0 	12 

0%166 0.045 0.046 

U83 	2 	0 	7 

0.162 0.036 0.041 

684 	'2 	0 	.7 .  

0.165 0.039. 0.036 

689' 

0.162 

695 

0.163 

700• 

0.160 

701 

0.163 

705 

0.166 

717 

0.166 

718 

0.169 

728 

0.171 

'2 0 • 7 0 

0.020 0.023 2 

2 0' 6 0 

0,046 0.045, , 5,  

2 0 6 0 

0.042 0.045 

2 0 6 0 

0.045 0.042 3 

2 0 6 ' .0 

0.048 0.045 d 3 

2 0 6 

0.047 0.04G 5 

2 	
• 
0 6 0 

0.050 0.048 3 

2 0 6 0 

0,04 0.447 

12 

12 

12 

11 

10 • 

8 



731 	2 	0 	6 
'0.171 0.050 0.050 
747 	2 	0 	6 
•0.165' 0.034 0.039 
756 	2. 	0 	6 	0 
0;165 0.050 0.050 
769 	2 	- 0 	6 
0.159 0.044 0.049 
775 	2 	0 	6 . 	0 
0.162 0.052 
779 	2 - 0 	6 	0 
0.160 0.019 -0.020 	2 

784 	2 	0. 	5 	0 
0.163 0.055 '0.052 	3•  
• r 

7. 90 	2 	0 	5 
790' 	2 	0 	5 
0.166 0.058 0.055 

	

798 _ 2 	0 	5 
0.172 0.064 0.058 

	

2 	0 	5 

798 	3 
0.171 0.032 0.034 
800 	2 	0 . 5 
0.172 0.020 0.019.  

803 	2 	4 
0.3.71 0.009.  0.010 
808 	1 	0 	4 
808 	1 	1 	4 	0 

9.172 	0.065 -  '0.064 • 
813 	1 	1 	4 
0.169 0.041 0,044 
814 	1 	1 	4 
• 

0.173 0.045 -0.041 
815 	1' 	1 	4 

815 	•1 - 1 	4 
0.175 0.033 0.032 
817 	1 	1 	4 
0.178 0,048 0.045 
823 	1 	1 	4 
0.180 	0.036, -- 0.033 
824 	1 . - 	1 	4 
0.181 0.021 0.020 
828 	1 	1 	3 
0.184 0..023' .021 



APPENDIX FOURTEEN 

PROGRAM DETAILS 

Program 1: The C.S.L. Simulation of Model 1 with Control lA 

(see 6.4.2, 6.8) 

Program 2: The "Simon" Simulation of Model V with Control 10 

(see 15.18, 15.20) 

Program 3: - The "Simon" Simulation of Model VI with Control 11 

(see 16.4, 16.5) 

Program 4: The "Simon" Simulation of Model VII with Cran's 

and author's best control policies 

(see Chapter 17) 
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Program 1  



S* 	 MOUNT—SGRATCH_.T_APE 	 i5 	  
—SE 

	 12 	  

 	CONTROL 	  
	PIP401-1)- eAta 
	 ASS--TAPIE=DEL-SS5----DEMA5 	  

	INTEGER- TREAMA- 
I NTEGER 	  

 	 S-IGI4Al2 004ELVAR1_200 ) 
	 TEGE14---J- 1-5 -FRSIX 	 

 	NTEGER- RMA X=N 5 ) 	  
	RE-AL—MEANISV20tf) 

- 	 - 
INTEGER 	TOTE“)=BDIRDS153 

=REAL. :DE SS AV_STic-=43_fJMR-C-Er-_Z=__-A2P- BEF.-T-V_AR___ 
	REAL=-4-  1E- 

-- 	 - NT_EGEIREATz_01130._ 	 
 	WITEGER 	SIWCICt5 M SYST — 

 

TOY AMT(51 a' 

 

REAL—NOPRC—REPTO =T-COST-X180 	  
	iNTE-Gr-REPSt-Si---G14K-ke-TS 	/—T51-K 	

_ _   T II4E_F N,S-YPRO_C—SYERCA=SYPRCB 	  

_ 	 N I  TA. 	  

	 CWDIYAYSS=SYROSSRO--SSDID-F-R4 	 
EMY 	 



:46 OR0S4 



—SECTOR' 	CWDD 	 

5 	NOPT4C+ 1 

	T—P-Vrjcerar0 	 

	END 	 



- 	 S1LCSL OSS 	 
	SECTOR--DSS 	 

9 

	 REA-TVENT4IG 	  
	- - 	- -To EVENT_=0 	 
	 OCK—I-J4--1 

YST 	1 	 
G1*--_-S-T__OCK--,-_-_-1_--J_V-J24 	  

1'01-8044  -- 
04;411301:105-1--d-) 

	 -..aot-d.SOR4410 	

	

-24 	Tik-DEM ---JiiNEGEXP-1'25=4-STREAMA-) 

	23 	 DUMMY 	- 

	

L-1 NGEN 	

END 



	SIAOSitSYCZO  	
TOR- 	SYRO 

	

''SYPROC=L 	 

NO 	 

	

 	1 



SECTOR 	5SRO 

A 	rOTBOuTOTBO 

ST Pc- 

	yomvrt -c-A-ranto 	 

 

91 	 • 111P 

 

	—ANITA4J4411111-5-.  TX 	  
--GO TO 

	9=1:=1:3-0140Z-11=ea--0435-- 
9 	IMT1r1-4=13 

2T-Ti-S-YPROC 3 	1 

	ANITI-4-1-2,BADRDS . C-0-) 
	G 0  - '113t__  

A i--CALCV 	  

5 	 
ei==9',11411---J-1-1030RD -X 	 

	CWSTI --t-rAtviT 

	

 	_TR  STK +AM-TAI-1-- 
-11--JI-GE-tIORD-Sarv55 

	 AT_OT-E3 0*-BORDS-Cd 	  
	G0=-1-  0 'Al 	 

	  1130.44-T4-) 	 
	.oEtSSikSS 	 

DIJMM-Y 	

	I 

1 



• p. 

	SECTOR-550L 

Arrri-J- 

	

j 	  
Rt.PT-0+ 1 

	CALL—CALCG 	 

	

1":!•• VENTAG 	
4e- V'EtcrrzgO 

 	 Z 014" 	-e= e- 	r= fin=-  	

	SCIPDSI 	J ) 

	FrOP=Kien'ANT 

Ti 

	

T 	o 	s-Y is 0 
	G 	 

	

err. ". 	 sera -.6 = Z 

	ORtYStT 
	6 	--TOTSO 

OCK1 	IP4T--1 	4 

	krvITT-J4-- 
	 P_O 	nUMIWY 	 

	AC 	E0 	3-46 	 
	 AC 421- 

	46__F441)  



- - 	LCSL,RE.SU 	2- 
	SECTOR-RE-SU 

GE_ TA 	  
	CALL 	G 	 

AREA..-T-4•EVENTAG- 
F-0 .112-1-0-5 

	Foil- WioRDS1d1 	 

DUMMY 	 
AVSTX=AREA,TF 	 

------TCOST-sw-e-5*140PRCWJAIREPIV4BOVS 	  

	WRITE t 64,51D) AVSTK ITT-cosT-i-zw4 	  
- _ WR 'TEA 6. STD )NOPRCivREPTADIrC8C-14-CUOCK 	  

END 



	 iLCSL—CALCG 	 

	SUMSztO  
 	FOR Ktt-1 	ei 	  
	ST00 0A_I,17 	  

	

UivtliSTOCKI-10 	 

	

StirtitS-+CtoiSTIC+TRSTK 	 

	

--RETURN 	



	bUFSPZUTTNE----CAV 

=FR-S-T 

	- 	StItzt$01RT  444-24*P.4 	  
-----MEAN1=Jir-FTICR, 

----11-1-J 	FF IViSTOCK-tj-) 
- - 	- 	-- 	 - 	- 	- 	_ 

 	ST  -V'S 	  
	 Vilt  0 

— — — 
	 -END 



, . 	 . 	. 

	SUBPOUTINE 

	 iiVcRE----)-rz F RSTK/S 	  
 	 SHAtEQG'4 	

	

—X 61 —0 	 

4 	0—GT---STIA-RE1-34-1 5 

SR 

—5 RETurN 
ND 	  

--a 
3 

	 I 



	-SUBRoCrisiE-  SF RST 

SC K ) =STUCK (IQ 

C9=0 
Tire.e2 "Sit: BEM 

SS(K+ 	1 ) 

	SI-14“0113 

--Go -4 

	S(ij EQ s-tz ) 

	5191- 0M-9-44 • 7 

	Har5 

	b 

	 -G  
	7-131t3 
	GO TA)---9 	  

R*1 

	

-4 	 

} *-F-1 
AA 34_16 	 

	H=5 
	-1 1 	6OTO=9- 

	=4-2$-C-3 .43 	 

	S4-4 )-10-Y 	 

	 -END 	 



	VIEDTT 	 SYSC -SCH-- 

'I 	I Cili clOREF 	 

I el — S I BMAP-CA 

- 	--4401-ASTAIRENORE11 	 
01_ 	Ti-IvIFTC- OREF 	 

	s=1=BMAP  
	$1MAPS5RO 	41:11;ZE 	 

:lc 

mr TC*NOREF 

 	 STBMAPSHAR 	 fNOR 	  
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77.7-'- 	• 

-,/,"  FOR 	  
----4C1OCSI=C-Ak0-/- 

=-REAL=4...---4MUm_LAM 	  
 	 NTEGEN ST 	 

	LAMst-404  
-Lit 50 	 

flTV_ 

	BE'WE0 
 	CR=-4, 3 	 
	—DENTC-2-1. 

	

FSIRFLOATIS 	
	 EN5EN*PS 	  
A = A+MU**FS/DEN 	 

s —A 
_2 --CONT-I NUE 	  

-• 
=  

04-211- L A tior 	  
	 CO41,-) 0 • 441C0-111 	  

	

--0C4344÷1--CR. 	 
—HS _ _ _ -====14=ir-LA144:-* CO_ --(A- LA---*--5*MUitLitiLAM*--/tri4 	  

----Ar--1-HB-..-HA--)'-TTr 	 

CI 3--1411H 
 	GO TO-41` 	  

	52 	 
	C  OArls) =HA 

42 	00-44rfeeir-upo 	 
	sgs-1 	  
	HA   t-A3R 	 

_ 	 

	78-1/(-S-t-10 	  
- - 	C=4-5-•-T-4,10HB 

	

4_7_  	  
S64-Sr—T 	) '411-# 

4 
	- - 	44 CONT_INVF 	 

	

tSUBX 	 

	

—END 	



	ItSTOR 	WS=1:1A=NNNN 	 

	sumouTime—stia-x 

1tu 	EGER—SIFT 
 	4_CO:(40.4.LT,======= --- • - 	 

	I S4Mtt-1...—ii3ETA 	ft. 	Afit- T 
• - 

	

	 .10 	 
FStIFLOATIS, 

-- 	 01-5=-)--*T0-54HYRI*C*-(13ETA*S=1-1 -1-w••SETA*-S-/-61-SIT+4-5*F S*1 FS+ 1 

	

-   1 *--)*C-1--•-..BE-TA*SIGA-S+_14i11,404 	
	C01 S'c s 4 *C (S 	 

—  	HA   *CO (814-CR 
	 ) 	 

- - 	53—D1 S 9-11-11,0 • 	  
C ( S,T1 )1.LitHe 	  

- 	-GO TO 	 
 	 1-0 CS • _1_,) 

IsHA 

	HA 	=CO 1-S44-CR 	 

	

_ __HB 	vart In-nor-Af41-*C I S....11-144.-.4k144*__CAS•••-1-t-T...4-) 	
	 1ff 	A885 	 
	8 0-1S-9-T_1411- 

	

-5=DIS1-71T1/1 	• 
 	C Sio-T-4A 

	

--401s1T114LF 	  
_ 	up  1-T_E-(4=1--1-4=S-11=17--•0 	  

	

-  ------ COTINUE 	 

	

— 	
1 	F ORM A T__(_7__( 13 14-4E-2-•_0 roltX4A 	 

 	tTUPN 
END 



•-• 	 fDL,< 	 7 	

v 	DISK) 	  
	v_O<E4'4DEIPPECIS4ADN 	  

	INTEZER —Dm 
	D=I 

 
	 4EN NI  

- 

	8/3—FORMA71-12-e-F 3 • 1 • I 41 

	DEN Iv+. 	 

	BEItBET A 
	CIC----2--0±4- -•-1 I 	 
	DEtslatCrEi*IiK 	  
	1:44104P4K7DEN 

	AvFA-14:zEiti4 	 

	IzrWRIvIU 	 
	 2—CONTINUE 	  

7.11= -̀ ;",;,1=== -`•-•fft..fT 

	ALPHA-4CP 	t 	. 
I -0 

	co 

 

11; • - 

 

	CIX(4(1 -00411/4**1 

	C--ALLIBC 	 
	 CAL.S.1.93A  	

	IVFMTE-13 -421321=D A 	 
lk±i/2_40 I 3/1 	  

	 CALL 	EXIT 	 
	 __END 	 



	

 	te:r 4.g1  

	 -211  

	*S-TORE 	WS- 	1JA 	DSiF 	 

	

FOR 	
	*EXTENDED-PRECIS/ ON 

	SuBROUTINE----1>S-JG 	 

	 -COMMON-C+1- 20-11--/-1-ZO V-vALPHA vC.-R t-C-0 1-0 )-art>P4-e-.4 
	 --4(A*Ctwi,  	  
	bGAs: 	  
	GOT 	 

	FTOT*O 	 
	,Atit._•"1e-e  

13-  -=-• 7 -6= 	-r I JA 

(--1-)--59-• 69 • 7 

	

 	 750J10:101` 	  
	'Meits-SG-A 	

	_SCIA- SGA-4-4-4R1464107 	
	GO-TO---7t 

	69-" 	GAsA.  	

	70-VA-stEI-s36--J414:SGA  	
SA:J=0 	 

--5-- 

rg 	 

	

  	4-W1-80-4,430-,s8 	

 	 TGBaSG0- 
	--439-sFSGSWIWW-4007.  

	

0=S7GSsul-* 	 
TGB-O 

	C-Gr-s=0 	  
	UUTI 	 
JC_=K_•-• I  

	N=NA-..4 

	

--1441.3W9 	 
- 	  

	rGtWay--- 

	GO-T-0-99 
	SI 	--SCC-b 	

 	EAXTATILI 	  

	DO 7.15.7,.-AL,JD 	 

	tff-140.-/-= 8-21r 	82-9 4-0 	 

	6-tulttS GO* (-0 • 	ZO**KA1-"EuT 	 



	r-GE4rSGE 	  
Set•-=-SGE-P-t-4.0-wti13**K-8-)71- OT 
	GO e  — *  

f4—SGE-Ael 

	 GO T1 	  

	 1-2 GOTs~GO KC 	 

	SGF- 4s-SG -JO -**/KCJI_GO 	  
	 GO TO-11111 	  

	 -65 _SCF 	 
	 xi 	0 	 

	

GF_J 	 
1-f-t 	I-0 T-+V A*VE3*VCIWCHIFVE-454 	 

	

GF-Ic 	 SGF 	 
	74--4:x4T-t NUE- 	

iSGE 	 
	  PT-0-TAIPTOTA-VA4t-V84€14-CAA/D*44-4,--SGE-1 	 

  	S0D12EYPI---4111-20344SGO 
	  PrOYIPTT4VAilNi34i'Ve*-1 	 
	13.4) 	btu 	 

* 

TifiteE 	 
	sciaiste-.24:34LicGa 	  

41,1:1 

	 6=C-ONT-1NU 	 

C-4- 4-14tCD-11(4,-+04 	0 T 	 

* 	• • 

	145 	 ccw4JF 	  

FND 



	44•_Dticzt 	
WS 	UA- —osJG 	 

	*L=TS"r---XL--L 
	_IOONE_W 
	*EXTENDEI S-1-ON 	  
	 SUBROtanAfiA_ 	  

	 TE-GER-DA-1-120-1 

CMAttM 	 1--=-0 • 
____-1411•v44_43 	  

1:oz1114,7 4.trviWAm 	 
KOtJ 	 

 

+Ct4A 	 X .1= 

 

1-9C -1-•111C1-1- 41-44AL-14-) 

ZJ 

 	--P&C1 K•,tsi/At,r2*_4C---4-•IsL-44,+A•RdkC—tAC•sN•--I 	  

	4441=1)A4N --- 
	KOLizt-z000 	 

 	21.   CONT-1+4U 	  
	 tff=tKOU-r7i7 ,74 	 

	

 	 7 DAAN-1=-1-0 	

	 WR-1-1E4G__•:300 	1-1--114 48AA4 	  

	RE 	LiraN 
	END 	 

L. 



300 FORMAT-C-1-0F_12-*-61 	 
	RE-TURN 
	ENO 	 

-- 	- 

Mai-L-1-20 
	=144.4 	 
	—136=1=6=Plitict-4-41 mkt 	 

	 t—r..A+4AtiE)--Asa0 	 

 	WP-TTet3 a---300'CM-A-LIT{Fal fig tvt740113.1 

I a 13 -Cm=1-F 	 

70=AAL/44:=45*1:1**t< 
	-Go—r o--46 	 
- CMAL-1441 

	-11 
	$14RT-• 	 

	  RI<A___*SHRK-1.4)PX.044 	 

	JG*1-4-44 	 
	00-1-2 IwFiJG 	 
	S-1-41452-1-, 	 

	 0 	 4 	Ni-• JH 
	 SPWW5HRIFFLIVr-1941 	 
	 4_ CONLINtJ 	 

	Sliva-Wvf-LOAT-4-ftr 
	 I_S--r—ON-T  I-NUE 	  

	VIAL (II) = 	a- Sir{1.1*-44:~Y÷-464-0-3 
	1-6—CONT_ I-HUE 	- 

az ..r• 



1.41.ria 
	

1 

	*4-S-ToRt. WSUASUBC 	 

	tfFQR 	  
	L 	 
	*ONC--WC4Zw-t-pi-1-21.4L--14S 

 

NTER-4-31-stc) 	 • * 

 

et 	 . 	  

	REAL-MU 44 LA M-41_ AM TO *-Alat A 	 
- • 	=c••.....t.4= :t 	•=uzzu 	 =st 	 

------301zOst4E1=AFTFri 
-IN tGe.R-W-- 

   

-r, 	 =•••.--&•==-:, • 	

 

   

	BA 

 

z 	= REPT43AEG  

   

 	INTEGEFENEuT4viAtic 	  
	LFIMEN-S-1-1X4-9g1.314- -051-  

	_COMM  

     

fit.t.umw. cum 	1.,••••st.. 

  

=CM.' A VV. 

 

    

 

SrOCK 	 	 T-RS--rL--*43Nuke-*-M-*-5Y-PtiO -7-9-L-WST1(s=rZTRE-ti..)2V1 
-.4XOLINT-4-03-1-1-04-rBORDS-4-Nat-54,4-IAR-----.NoTott,A  

2-- 	el_S-S*ALPPIA -DA 	irt4OPRL 	cRR*-L-AMTu4-1-T-G 
	 COMmoN----JC*D_OT4,,SGC OK-AWNT=srp__Toje_irsc,A 	_ 	

AvIllE2-A444-4--2413)---- 
	84/3 REAC84=MA--Z-*--1-STP 	  

	88-#4.1RMATh 

P 	t-32--FORmA144 04 3/) 	 
	WRLIT-E-f-32 JA 	 

* ret, • 	 , 

	 CALL___ROV413ACK4344-44-64 	  
	 C9%-t_Rt3A -13Elk 

 	 GALL-GROU-t OEL5-44-) 	  
	 ATEA-NO 	  
	 Cli)0*=0 	  

a 

	LAm42--34 	 

	G210 	 
	NOPRc*s_O  

	RE—PTOur-O 	 
	NO-T43341_40 	  

VC- el 
	NOEL-140 	 

	C--A1-4,--14714 SYP_RO 1,24 	
	-C-ALL—ENT14VIEN 

 	CALL-ENT-17C-F---14443 	 
--00-1-69011 *-Ve 	 

	 BACK-4314 043  	  

	 TEA-Ni14).1)31‘ 	



ACK4:04DeRS-X-1-51"-- 
	1_0-1e02-NB+4 	 

-----PF5--T-DCKA1F-1=v-TI;t5-#4.1=--s-S-T-OCK .7"'"'":•:"Ort...••.e • 
Z 

-ST-Oe #T—.3".• 

OCAS-TOCK 

^e• 

	Y-PRcut- T-AT-E-)=NO 

	CALL-ADDL----( F-1-NiTIAf4E1 	ir-TTMESI 	 
	 CALSC---4_11E-44-T=±NANI 	 

	 GG=T4t---3- 
11 	1 	 

C 	 	 *Ye 

	00CALL,SCT-T----( 	SVEN TJ MAME 

	 WI=T4Z-4•40-litO 	 

	 RRifttlif 	
	00-5 

   64=S:4,10-=.5.-Ti3C1(-4-K-y-4-114.3-110 	  

DO 79-  J-id-4-5- 
	ML-1- GENA_1(4:1C- 14:144131:11 	 

	STOCkl 	3)- 5 

T-RS-targrO 

O-79-11-1) 	 

• ..:"rini="‘ 

	 JvilvIEPIN - (MEMBE_) 	 

	-729-C-801,  • • 	 271= T V.S 

	 DO -72_9-40111_5 	 

	1F-4-BACK° 	N • ST_ATE 	

61 NB_=1  	
BACK-fails16-444A14E-Y-vM000 	 

	BA0(04-1413-4-SiT_ 	 
-----raCYLL-GE144=KK-K- ESO Y 	 
	 GO-1!0--400 	
	DEL-A=VERY 

   wsTiortevs-ix+o 	  
	 SN'PRO-440TON- 
	Vr. 	  

	A153- 

474-FRMAT 4___CBD=J_I:F.A2ak 6 
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Program 4  



// JOB 
// FOR 
*ONE WORD INTEGERS 
*/OCS(TYPEWRTTER) 	• 
*10CS(CARD,1132 PRINTER•DISK) 

REAL LAM(51.LAMT,RA(S) 
INTEGER /ROL(5) 
INTEGER TAILM•STATE•TIMESeONORD•SYPRO(2)•CWSTK•DEM(5,2)eG,B,VB,VC, 

ICLOCK•MASTI(200),MASTP(20O)•NOSTK(5),TRS(5)•T 
INTEGER STOCK(S) 
INTEGER 	REPTO,TR(5,10) 0DEL(25,2).F/N(2)4EVENT(2) 

1•TEINsTIMV,REEN.MEMN410 
DIMENSION 	NUM(5)•KCHEC(5)41N0(5) 
COMMON NIM•TAILM•MASTIeMAST2 	,STATE+NAME+TIMES,CLOCK•MEMBE 
COMMON CB0oBsCWSTK•DEM*PloGoISTRE•d•JC.KAUNT0LAM•LAMT,LC,LSS•MoKA•N 
leNOSTK,ONORDMAsSYPRO•VA•V8•YCoYeZeKCHECoCR,TRS, NOPRC,tEX.T 

171 REA6(2oPS) M.ISTRF,O,TFIN,PR,HBC,CP 
88 FORMAT(4I4.3F4.2) 

CALL S1MO 
CALL GROU (DEM,S•1) 
CALL GROUtDEL•25,4) 
AREA=0 
CRO=0 
KOUN=0 

34 DO 46 K=14# 
46 RA(K)=4.1/(•01*K) 

LC=128 
LSS=25 
L=100 
CR=e3 
G=0 
NOPRC=0 

REPT0=0 
IROL(1)=1 
IROL(P)=4 
IROL(3)=4 
IROL(4)=5 
MOL(5)=5 
NOTON=0 
ONORD=1 
VC=12 
NDEL=0 
CALL ENT1(SYPRO,2) 
CALL ENTT(EVENT97) 
CALL ENTI(ETN*3) 
CLOCK=O 
SYPRO(STATE)=NOTON 
CALL SETT(EIN(NAME)*TE/N) 
CALL ADDL (FIN(NAME)•TIMES) 
CALL SETT (EVENT(NAMF)•O) 
DO 3523 K=1•5 

3523 LAM(K)=•01*K 
LAMT=eis 
F=M.*,LAMT*L-1-0+•5 
CWSTK=F 
DO 217 J=1,5 
KCHFC(J)=0 
CRA=LAM(J)/LAMT 



4a0 

S=F*CRA.-NSC*SORT(F*(CRA+CRA*CRA))+4,5 
14 STOCK(J)=B 

IF (S—CWSTK) 	465.46541466 
466 STOCKCJ)=CWSTK 

CWSTK=O 
GO TO 888 

465 CWSTK=CWSTK-43 
217 CONTINUE 
888 DO 79 J=1,9 

CALL GENX 
ND(J)=0 
TRS(J)=0 
NOSTK(J)=TRS(J)+STOCKCJ) 
NUM(J)=0' 
DO 79 K=1,10 

79 TR(JeK)=0 
GO TO 4001 

11111 CALL SCA (T/MES•MEMSE *CLOCK) 
K=REFN CMEMBE ) 
CALL DELE tMEMSE ,TIMES) 
CALL CALGX 

500 AREA=AREA+G*(CLOCKTIMV (EVENT(NAME))) 
800 CALL SETT (EVENT(NAME),CLOCK) 
116 GO TO (102.3,4),K 

C 
C 

I 
69 

90 

AoPMASE 
DEMAND ON SUB,-STORE 

J=MEMN 	(MEMBE ) 
STOCK(J)=STOCKCJ1-.1 
NOSTK(J)=NOSTK(J).-1 
FORMA-T(3E7,3,16) 
F=NOSTKi1)+NOSTK(7)+NOSTKi3)+NOSTK(4)+NOSTK(5)+CWSTK 

910 IF (STOCK(J)) 	10.1000.1000 
10 CSO=CS0+4,4 

374 FORMAT(2F10,6) 
1000 CALL GENX 

GO TO 4000 
C DELIVERY AT CENTRAL STORE 

CWSTK=CWSTK+O 
SYPPO(STATE)=NOTON 
VC=1P 
GO TO 4001 

C FINISH SIMULATION 
3 CALL CALGX 

AREN=AREA+G*(CLOCK.-T/MV 	(EVENT(NAME))) 
NC=.0004*PR*AREA 
TCOST=CP*NOPRC+ CP*REPTO+CEO+NC 
!RTTF(1,2621NOPRC,REPTO,C8004C, 	TCOST 

262 FORMATto NOPRC=',I4s ,  REPT0=',7440 cso=t.r8.4.0  HC =**E10•24, 0 	TCO 
IST=4 ,F12.4) 
GO TO 171 

C DELIVERY AT SURSTORE 
4 NN=MEMN(MEMBE) 

J=DELCNN,STATE) 
Num(j1=NUMtJ)+I 
K=NUM(J) 
IF 	(K-,10) 	91.104,91 

104 NUM(J)=0 
91 STOCK(J)=STOCK(J)+TR(J,K) 

TRS(J)=TRS(J).-TR(J,K) 



GO TO 4000 
C 	 C—PHASE 
C 	TEST FOR SUBSTORE ORDER OR SYSTEM ORDER 
4000 IF (SYPROtSTATE)...NOTON) 304.4001.304 
4001 CALL SYRY 
304 IF (CWSTK) 11111,111119305 
305 DO 777 jt.-1, 

IF (CWSTK) 11111,11111,306 
306 IF (VC-12) 307.40,307 
307 IF tNOSTKtJ)..IROL(J)) 40,40.777 
40 F=NOSTK(1)+NOSTK(2)+NOSTK(1)+NOSTK(4)+NOSTK(5)+CWSTK 

CRA=LAM(J)/LAMT 
B=F*CRA.,-HBC*SORT(E*(CRA+CRA*CRA))+4•5 
IF (8..-LAMtJ)*LSSI 50.60960 

50 8=LAMtJl*LSS+.65 
60 B=84,NOSTK(J) 

IF (B—CWSTK) 8.8.7 
7 BetCWSTK 

GO TO 118 
B IF (B) 777.777.119 

118 ND(J)=NOtJ)+1 
IF (J-5) 713.210,713 

210 IF (HSC) 713+613,713 
613 IF (VC-12) 713,5119713 
513 B=CWSTK 
713 KT=ND(J) 

IF (KT-101 222.223+2PP 
223 NDtJ)=0 
222 TR(J.KT)=8 

TRS(J)=TRS(J)+8 
NOSTK(J)=NOSTK(J)+8 
REPTOttREPT0+1 

6S3 FORMAT(I6,F6.0) 
NDEL=NDEL+1 
CWSTK=CWSTK—B 
/F (tIDEL26) 

56 NDEL=1 
55 CALL SFTT (DEL(NDFLeNAME),(CLOCK+LSS)) 

CALL ADDL (DELANDEL.NAME)*TIMES) 
DEL(NDEL.STATE)=J 

I75 FORMAT (121.5) 
777 CONTINUE 

VC=0 
GO TO 11111 
ENO 



422 

// DUP 
*STORE 	WS UA MMMC 
// FOR 
*TOCS(CARD+1132 PRINTERoDISKeTYPEWR/TER) 
*ONE WORD INTEGERS 

REAL LAM(S).LAMT•RA(5) 
INTEGER TAILMeSTATEsTIMES,ONORD•SYPRO(2),CWSTKiDEM(5,2),G48eVBeVC, 

ICLOCK.MASTI(200),MAST2(200)•NOSTK(5),TRS(5),T 
INTEGER STOCK(5) 
INTEGER 	REPTO•TRt5,10) •DEL(28$2),F/N(2),EVENT(2) 

1.TFIN'T/MVIIREFNeMPMN*0 
DIMENSION 	NUM(S),KCHEC(5),N0(5 )  

COMMON NIM,TAILM.MASTI.MAST2 	oSTATE,NAME•TIMESoCLOCK•MEMBE 
COMMON C300:5•CWSTK,DEM•FsG,/STREeJ,JC,KAUNT+LAM,LAMTeLCoLSS,MoKA+N 
1•NOSTKoONORD,RA,SYPRO,VA,V8sVC,YoZ,KCHEC•CR,TRSo NOPRCsIEXoT 

171 READ(2088) M,ISTRF•0,Tr'IN•PR,Z,CP 
88 FORMAT(4I4.3F4.2) 

CALL SIMO 
CALL GROU (DEM.5.1) 
CALL GROU(DEL*25,4) 
AREA=0 
C80=0 
KOUN=0 

3R DO 46 K=/,5 
46 RAtX)=.,1/(4•01*X) 

LC=125 
LSS425 
L=100 
CR=s3 
G=0 
NOPRC=0 
KA=-50 
REPT0=0 
NOTON=0 
ONORD=1 
VC=12 
NDFL=0 
CALL FNT1tSYPRO,2_) 
CALL FNT1tFVENT*7) 
CALL ENTItFIN•3) 
CLOCK=0 
SYPRO(STATE)=NOTON 
CALL SETT(FIN(NAMF)•TFIN) 
WRITE(I,88) M.ISTRE,O,TFIN.PR,Z•CP 
CALL ADDL (FIN(NAME)•TIMES) 
CALL SETT (EVENT(NAMF),0) 
DO 3523 K=1,5 

3523 LAM(K)=4,01*K 
LAMT= 4,1s 
F=MsLAMT*L+0+.S 
CWSTK=F 
DO 217 J=1,5 
KCHFC(J)=0 
CALL PNOX 
IB=F*LAM(J)/LAMT+.5 
IF (11,../B) 200,200,201 

201 8=18 
200 STOCK(J )=B 

IF (P*CWSTK) 	465,465,466 



123 

466 STOCK(J)=CWSTK 
CWSTK=O 
GO TO 888 

465 CWSTK=CWSTK-8 
2/7 CONTINUE 
SSP DO 79 J=145 

CALL GENX 
ND(J)=0 
TRS(J)=0 
NOSTK(J)=TRS(J)+STOCK(J) 
NUM(J)=0 
DO 79 K=1 ,110 

79 TR(J,K)=0 

/1111 

300 
800 

GO TO 4001 
CALL SCA (T/MES00=MSF •CLOCK) 
K=PFFN 	(MEMBE ) 
CALL DELP 	(MENEM! ,TIMES) 
CALL CALGX 
APP2lAPrA4t4*(CLOCwA,TIMV 	lnirNT[NAME))) 
CALL SETT 	,(EVENT(NAME)f#CLOCK) 

116 GO TO 	(162.3414),K 
C A.PHASE 
C DEMAND ON SUSA-STORE 

1 J=MEMN 	(MEMBE ) 
69 STOCK(J)=STOCK(J)-A1 

NOSTK(J)=NOSTKCJ1-1 
90 FORMAT(3F743,06) 
910 IF (STOCK(J)) 	10,1000,1000 
10 C80=C5O+.4 

1000 CALL GENX 
GO TO 4000 

C DELIVERY AT CENTRAL STORE 
2 CWSTK=CWSTK+O 
SYPRO(STATE)=NOTON 
VC=12 
GO TO 4001 

C FINISH SIMULATION 
I CALL CALGX 

AREA=AREA+G*(CLOCK-TIMV 	(EVENT(NAME))) 
HC=•0004*PR*AREA 
TCOSTsCP*NOPPC+ CP*REPTO+CRO-PHC 
WRITE(1+262)NOPRC+REPTO,CBO+HC+ 	TCOST 

262 FORMAT(( NOPPC=t,14•' REPTO=',14•' C80=•+F8.4+• HC =',F10,2,1 	TCO 
1ST= 0,F12.4) 
GO TO 171 

C DELIVERY AT SURSTOPE 
4 NN=MEMN(MEMBE) 

J=DFL(NN,STATE) 
NUM(J)ftNUMtJ)+I 
K=NUM(J) 
IF 	(K-10),91,104.91 

104 NUM(J)=0 
91 STOCKCJ)=STOCK(J)+TR(JoK) 

TRS(J)=TRStJ).ATR(jiwK) 
GO TO 4000 

C CA-PHASE 
C TEST FOP SUBSTOPF ORDER OR SYSTEM ORDER 
4000 IF (SYPPWSTATE)-NOTON) 304+40014304 
4001 CALL SYRX 



4e4 
304 IF (CWSTK) 11111,111110305 
305 DO 777 J=1+5 

IF (CWSTK) 1111/011111,306 
306 IF (NOSTK(J).- 5) 111,111,777 
111 CALL SSRX 
49/ IF (KAUNT94) 	777.1389339 
338 CALL SFRX 

CALL PNOX 
IF (VCS-12) 38.484138 

48 T8=F*LAM(J)/LAMT+.5 
IF (#1•48) 38,38,49 

49 B=T8 
GO TO 38 

339 CALL POOX 
38 8=8a-NOSTK(J) 

IF (8....CWSTK) 8,8,7 
7 SmCWSTK 
GO TO 118 

8 IP cc .777.777.018 
118 ND(J)=ND(J)+/ 

KT=NO(J) 
IF (KT—I0) 222,2P3,222 

223 ND(J)IT0 
222 TR(J,KT)t....P 

TRS(J)=TRS(J)+11 
NOSTK(J)=NOSTK(J)+R 
REPTO=REPT0+1 
NDFL=NDEL+1 
CWSTK=CWSTK-8 
IF (NDEL,..261 5596,155 

56 moeL=1 
55 CALL SETT (DEL(NDELfiNAME).(CLOCK+LSS)) 

CALL ADOL (0EL(NDEL4NAME)4TIMES) 
DEL(NDEL,STATE):=J 

175 FORMAT (12/5) 
777 CONTINUE 

VC-0 
GO TO 11111 
END 
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// DUP 
*STORE 	WS VA MMMY 
// FOR 
* ONE WORD INTEGFRS 

SUBROUTINE SFRX 
REAL LAM(ti)•LAMT 

— REAL RA(5) 
INTEGER KCHEC(9) 
INTEGER TAILM•STATE+TIMES+ONORD•SYPRO(2)•CWSTK.DEM(5+2)•G$B+VB•VC• 
ICLOCK+MASTI(200)+MAST2(2_OO)•NOSTKCS)•TRS(5)•T 
COMMON NIM•TAILM•MASTI•MAST2 	•STATEoNAMEeT/MES$CLOCK$MEMBE 
COMMON CBO.B•CWSTKoDEM+FoG*TSTRE4jojCWAUNTeLAMoLAMT,LC$LSS•M$KA$N 
1+NOSTK•ONORD•RA•SYPRO+VA•VB+VC•Y+Z•KCHEC•CR•TRS• NOPRC$IEX•T 
DO 1 K=1$5 

I S(K)=NOSTK(K)/LAM(K) 
RR=CWSTK 
1=1 
K=2 

11 .1= tSW-Stg, 
3 K=K4-/ 

IF (K-6) 11,7,7 
T=K 
GO TO 3 

7 IF CRP/ 34034.21 
21 S(1)--S(1)+1/LAM(I) 

RR=RR..*1 
GO TO 2 

34 F=S(1)*LAMT 
RETURN 
END 



1/ OUP 
*STORE 	WS UA SFRX 
// FOP 
* ONE WORD INTEGERS 

SUBROUTINE SYRX 
REAL LAM(5),LAMT 
REAL PA(5) 
INTEGER KCHEC(5) 
INTEGER TAILM•STATE•TIMES•ONORDeSYPRO(2),CWSTKoDEM(5,2),G•BeVB,VC, 

ICLOCK,MAST1(200),MAST2(200),NOSTK(5),TRS(5),T 
DIMENSION S(5) 
COMMON N/MsTATLM•MAST1,MAST2 	,STATE,NAME•TIMES,CLOCK,MEMBE 
COMMON CBO,B+CWSTK,DEM*FeG,ISTREejeJCWAUNT ,LAM,LAMT,LCooLSSeM,KA ,N 

1,NOSTK,ONORD,RA+SYPRO,VA+VB•VCitYs7oKCHEC•CRitTPS, NOPRC,IEX,T 
DO I K=1,5 

I S(K)=NOSTK(K)/LAM(K) 
PR=CWSTK 

2 1=1 
Km2 

It IF (S(I1..,S(K)) 3.3.8 
3 K=K+1 

IF (K-,6) 11,7,7 
8 I=K 

GO TO 3 
7 IF (PR) 34,34421 

pl S(11=S(/+1,LAM(/) 
RP=PR....1 
GO TO 2 

34 F=S(I*LAMT 
IF (F—M) 80,80,111 

80 TOT=0 
DO 434 K=1.5 
ISDA=S(K)*LAM(K)+415 
INDE=1SDA 
ILDA=LC 
PLAMT)=LAM(K) 
CALL CALCX(ISDAsILOA,RLAMD) 
VI=VA 
ISDA=INDE,.-1 
CALL CALCX(TSDA,ILDAoRLAMD) 

170 FORMAT(2F2305) 
IF (ISOM 707,434,434 

707 VA=VA+4,4 
434 TOT=(VA—VI1*LAM(K)/LAMT+TOT 

IF (TOT-4.7/37.5) 1/1.18041180 
180 CALL SETT (SYPRO (NAME),(LC—LSS+CLOCK)) 

CALL ADOL (SYPRO (NAME)IITIMES) 
NOPPC=NOPPC+1 
SYPPO (STATE)=ONORO 
WR1TE(1,g) CLOCKIINOPPC 

9 FORMAT( 216) 
Ill RETURN 

END 



427 
// DUP 
*STORE 	WS UA SYRX 
// FOR 
*ONE WORD INTEGERS 

SUBROUTINE PNOX 
REAL RAtS1 
REAL LAM(S)*LAMT 
INTEGER KCHECtB) 
INTEGER TAILMoSTATE,TIMESeONORDoSYPRO(2),CWSTKoDEM(5+2)41G,BeVEleVC• 

1CLOCK•MAST1(200),MAST2(200)•NPSTK(5).TRS(S),T 
COMMON N/MoTAILM•MAST1,MAST2 	,STATE4INAME•TIMES,CLOCKeMEMBE 
COMMON CE5003,CWSTK,DEM.F,G•ISTRE•J•JC,KAUNT9LAMsLAMTeLC*LSS•MoKAsN 
leNOSTK,ONORD,RA,SYPROvVAINesVC+YeZoKCHEC•CR,TRSo NOPRC4./EX,T 
RL=LAMCM/LAMT 

IF (SRB) 748o8 
7 SREF30 
ti HI=SRB*RL+LAM(J)*LC 

Be--Mt#7*SOnTtSRB*PL*PL*HT14..S 
RETURN 
END 



42E 
// DUP 
*STORE 	WS UA PNOX 

/1 JOB 

(=7 9K511017 1 1 Y21 X/*9X*(R*7P*7)P(X*9(P(PM=*(**7R*9)7274PX*7PX=7( 7PIX=/'/ 
// FOR 
*ONE WORD INTEGERS 

SUBROUTINE GENX 
REAL LAM(5),RA(5)•LAMT 
INTEGER KCHEC(S) 
INTEGER TAILMoSTATE+TIMES,ONORD•SYPRO(2),CWSTK,DEM(5+2)4GoBioVB,VCe 

ICLOCK+MASTI(2_00)•MAST?_(200)•NOSTK(5)•TRS(5),T 
COMMON NIMeTAILM•MAST141MAST2 	oSTATEeNAMEeTIMES•CLOCK,MEMBE 
COMMON CBO,PB•CWSTKoDEMeFoGgISTRE•JeJCWAUNTIILAMoLAMT•LC•LSS,M•KA9N 
1•NOSTK+ONORD•RA,SYPRO•VA,VB•VC,Y,Z•KCHEC•CR•TRS• NOPRC•IEX•T 

21 FORMAT(F1246(04) 
CAM=ALOG(RANDY(/STRE)1 
INT=CAM*0A(J14.c 

6566 INTA=CLOCK+INT 
CALL SETT (OEM(J,NAME)•INTA) 
CALL ADOL (DEM(J,NAME),TIMES 
RETURN 
END 



zi 29 

// DUP 
*STORE 	WS UA GENX 
// JOB 
// DUP 
*DELETE 	 MMMC  
// JOB 
// DUP 
*DELETE 	MMMY  
// FOR 
*ONE WORD INTEGERS 

SUBROUTINE SSRX 
REAL RA(5),LAM(5),LAMT 
INTEGER KCHEC(5) 
INTEGER TAILM,STATE+TIMESoONORD•SYPRO(2)+CWSTKoDEM(5,2),G03,VS,VC, 

1CLOCK,MAST1(200),MAST2(200),NOSTK(5),TRS(5),T 
INTEGER TIMV 
COMMON NtMoTAILM,MAST1,MAST2 	eSTATE,NAMEeTIMES,CLOCK,MEMSE 
COMMON C8OoSoCWSTK,DEM+FsGoISTRE,J+JCWAUNT,LAM•LAMT0LC,LSS,M,KA,N 
1,NOSTK+ONOPD.PA.SYPRes.VA.VS,VC,Y*7.KCHEC0CR,TRS, NOPRC,IEXeT 
C=LAM(J) 
IF (SYPRO(STATE)*ANORD) 76,41.41 

76 IF (C-4,095) 7,6,6 
6 IR=S 

GO TO 21 
7 IF (C—.083) 5.4.4 
4 /R=7 

GO TO 21 
5 IF (C—.071) 240.1 
1 IR=6 
GO TO 21 

2 IF (0.059) 11.12.12 
12 IR=5 

GO TO 21 
11 IF (C,-.046) /3.14914 
14 IR=4 

GO TO 21 
13 /F (C—.035) 15.16,16 
16 IR=3 

GO TO 21 
15 IF (C.‘,025) 17.18,18 
IS IR=2 

GO TO 21 
17 IF (LAM(J),•015)' /9,20,20 
20 /121 

GO TO 21 
19 IR=0 
21 IF (NOSTK/J141-1R) 26.26,27 
26 KAUNT=94 

RETURN 
27 KAUNT=0 

RETURN 
41 N=NOSTK(J) 
52 T=T/MV(SYPRO(NAMF))CLOCK 

IF (N) 42,42,43 
42 IF (T.i...75/C) 26,95,95 
43 CALL CATEX 

IF (T..-TEX) 27.95,95 
9F KAUNT=95 
34 FORMAT(2I2) 



430 

RETURN 
END 
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// OUP 
*STORE 	WS UA SSRX 
// FOR 
*ONE WORD INTEGERS 

SUPROUTINE CATEX 
REAL RA(5),LAM(5)4LAMT 
INTEGER IE(12.0I1) 
INTEGER KCHEC(5) 
INTEGER TAILM•STATE,TIMES+ONORDliSYPRO(2)*CWSTK4DEM(542)4G.BoVBsVC4 
ICLOCK.MAST1(200),MAST2(200).NOSTK(5)*TRS(5),T 
COMMON NIM4ITAILMIIMASTIoMAST2 	4STATE4NAMEsTIMES,CLOCK.MEMBE 
COMMON CBOse•CWSTK,DEM.F4G4ISTRE+JeJC+KAUNT,LAM•LAMT*LC•LSSeMeKA'N 
IgNOSTKoONORDeRA*SYPRO•VA•Ve4IVC,Y*Z,KCHEC,CReTRS* NOPRCsIEKeT 
IF (KA) 30,444444444 

30 00 75 K=1.12 
DO 75 I=Ioll 

75 TE(K+Titt11111 
tE(I411)=160 
IE(P..1)65 
M(2,2)1= -145 
/E(3,1 )=38 

IE (343).'m/ 38 
IE(4.1 )=26 
IF(4,2 )=45 
TE(4 '3)=82 
IE(4*4 )1-.137 
IE(5./ )=t9 
tE(5,2)e3/ 
TE(5,3)53 
tE (54,4 )e(59 
TE(5.5)=138 
IE(6,1 )14.45 
YE (6 ,2 )=22 
tE(6$3 )=37 
MC 6,4 )=62 
IE(05,5)==447 
IE(605)=140 
IE(7,1)=13 
IE ( 7.2)=17 
YE ( 7.3)=27 
IE( 7.4 )=45 
TE(/$5)=70 
IE(7•61=103 
TE(8. I )11 
IE(S42)*14 
IE(8,31=21 
IE (8.4 )=34 
IE(B,5)=53 
IE (806) =78 
IE(84,7)=109 
YE (9, 11=10 
TE(9.2)=12 
IE(993)=17 
IE (9.41=26 
IE(9.5)=40 
IE (9,16)=60 
/E (9 '71=85 
IE(94,9)=I41 



-4 az 
iE(10.1)=9 
TE(10.2)=11 
IE(10,3)=14 
IE(10.4/=20 
IEt10.5)=31 
1E(10461=46 
TE(70,7)=67 
IE(10.8)=92 
KA=100 

4444 FLAM=100*LAM(J) 
ILAM=FLAM 
ILAM11=ILAM+1 
A=FLAM,...ILAM 
1EX=A*TE(ILAMoN)441—Al*IE(ILAM14N) 
RETURN 
END 
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1/ OUP 
*STORE 	WS UA CAIFX 
1/ FOR 
*ONE WORD INTEGERS 

SUBROUTINE CALCX(ISDA,ILDA.PLAMO) 
REAL LAM(5)41LAMT,RA(5) 
INTEGER KCHEC(5) 
INTEGER TAILM•STATE*TIMESsONORDipSYPRO(2)*CWSTKoDEM(502).GoBoVB*VC, 

1CLOCK.MAST1(200)+MAST?(200)+NOSTK(5).TRS(5)•T 
COMMON NIMIPTAILMeMAST1sMAST2 	•STATE.NAME+TIMES,CLOCK,MEMBE 
'COMMON CBO*B•CWSTK,DEM,F•GoISTREitJ•JC•KAUNTIILAM,LAMTeLC•LSS•MoKA,N 

I+NOSTK,ONORD ,RA,SYRROoVA1VB•VCoYoZOCCHECeCR ,TRS, NOPRC4IIEX,T 
A=0 
CO=0 
RMUDA=RLAMD*ILDA 
TM=EXP( ,..,RMUDA) 
GO TO 5 

3 A=A+I 
TfutreTWIMMUMA/A 
IF (ISDA) A2.5.5 

81 ISDA=0 
5 IF (A.-ISDA) 3.3.4 
4 CI=TM*(A.6,4SDA)**4 

CO=C04-C/ 
(CI..-.01) 7.7.3 

7 VA=C0 
70 FORMAT(3F10.6.16) 

RETURN 
END 



// OUP 
*STORE 	WS UA CALCX 
// FOP 
*ONE WORD INTEGERS 

SURROUTINE- POOX 
REAL LAM(5)+LAMT,PA(5) 
INTEGER KCHEC(5) 
INTEGER TAILMoSTATEsTIMES•ONORDoSYPRO(2).CWSTK•DEM(542).G.841VB.VC+ 

1CLOCKWAST1(200)aMAST2(200)+NOSTK(5).TR5(5),T 
DIMENSION 5(5) 
COMMON NIMoTAILM,MASTI+MAST2 	eSTATE,NAME,TIMES,CLOCK.MEMBE 
COMMON C80.8,CWSTK,DEM.F.G.ISTRE.j.JC.KAUNT.LAMoLAMT•LCeLSS•MoKA•N 
1.NOSTKsONORD.RA.SYPRO.VA.VE3.VC.Y.7,KCHEC+CR.TRS, NOPRCI.IEX.T 
U=LAM(J)*(T-1) 
8=NOSTK(J)41 

76 D=0 
RTM=FXR(..,U, 

I JC=0 
VP=0 
IF (D) 31.31+773 

773 CALL CALBX(0) 
31 RR=CWSTK4—(84-V8—NOSTK(J)) 

DO 23 K=1.5 
23 S(K)=NOSTK(K)/LAM(K) 

S(J)=P9PP 
100 IF (RR) (41.91.21 
21 T=1 

K=2 
11 IF (5(I).,S(K)) 32,32.8 
32 K=K+1 

IF (K...5) 11+17.17 
8 I=K 
GO TO 3 

17 RR=RRe—I 
S(11=S(11+1/LAM(J) 
GO TO 100 

PI VT=0 
DO 20 K=105 
IF (K—J1 7.20.7 

7 ILDA=T+LSS 
ISDA=S(K)*LAM(K) 
RLAMD=LAM(K) 
CALL CALCX(ISDA.ILDA.RLAMD) 
VT=VT+VA 

20 CONTINUE 
VA=VT 

183 TC=VA41-JC*CR 
IF (0) 18.18+19 • 

IP SUM=TC*PTM 
STGP=RTM 
GO TO 2 

IP RTM=0*RTM/D 
StGR=SIGR+RTM 
SUM=SUM+TC*PTM 
IF tSIGP+r•95) 2+3.3 

2 
GO TO 773 
0=0+1 

IF (F3,,NOSTK(J)-1) 37.22.37 
SUMOL=SUM PP 



80 TF (84.‘NOSTK(J-CWSTK) 75*75481 
75 8=84-1 

GO TO 76 
37 IF t SVW.SUMOL ) 2P+81.81 
RI 	1 

700 RETURN 
END 



// OUP 
*STORE 	WS UA POOX 
// FOR 
*ONE WORD INTEGERS 

SUBROUTINE CALGX 
REAL RA(5),LAM(),LAMT 
INTEGER KCHEC(5) 
INTEGER TAILM,STATE,TIMES,ONORD,SYPRO(2)+CWSTK410EM(542)11G49,VB•VC• 

1CLOCK•MAST1(200)smASTP(200),NOSTK(5)+TRS(5),T 
INTEGER SUMS 
COMMON NIM4ITAILM•MAST1sMAST2 	eSTATE•NAME•TIMES•CLOCKIMEMBE 
COMMON C80068•CWSTK•DEM,E,GoISTRE.J,JCIIKAUNT,PLAM•LAMTeLC$LSSoMoKA•N 
1eNOSTK,ONORO9RAeSYPRO4VAoVe'VC9YoZoKCHECoCR,TRS4 NOPRCsIEX,T 
SUMS=O• 
00 2 K=1, 
KS=NOSTK(K)..-TRS(K) 
IF (KS) 2+298 

p SUMS=SUMS+KS 
P CONTINUE 

G=SUMS+TRS(1)+TRS(2)+TRS(3)+TRS(4)+TRS(5) +CWSTK 
RETURN 
END 
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// OUP 
*STORE 	WS tJA CALM( 
// FOR 
*ONF WORD INTEGERS 

SUBROUTINE cALF3xcni 
REAL RA(5),LAM(51oLAMT 
INTEGER KCHFC(5) 
INTEGER TAILMeSTATEtTIMES•ONORD,SYPRO(2),CWSTK,DEM(5,2),GoeitVetVC, 

1CLOCK,MAST1(200),MASTP(200),NOSTK(5),'TRS(5141T 
DIMENSION IEN(12)' 
COMMON NIMoTAILMeMAST1sMAST2 	eSTATE,NAME4TIMES•CLOCK•MEMBE 
COMMON CROeSsCWSTKoDEM•E,GoISTRE•J,JCWAUNTsLAM,LAMT4ILCilLSSoMoKA,N 
leNOSTK,ONORD,RA,SYPRO,VA,VB,VC,Y,7*KCHEC,CRoTRSI NOPRC,TEXsT 
VB=0 
JC=0 
IRL=R-.NOSTK(J) 
IW=NOSTK(J) 
IT=T 
00 Sn N=1.1P 
CALL CA/EX 
IEN(N)=IEX 
IF (IEX-.100) 33.31.34 

34 K=N...I 
GO TO 35 

33 CONTINUE 
35 IFL=0 
30 V=0/FLOAT(T-../1 

IF (IW) 130,130,11 
110 /F (V*(/T.-675/LAM(J))-1SL) 5,4.4 
11 IF (V*(TT.,,IEN(IW)) —IPL) 5,4.4 
5 IF (IW...IEL) 6.146 
6 IFIL=IRL+1 

GO TO 3 
4 /T=IT.i-FLOAT(TBL)/V+465 

JC=JC+1 
18L=C/FL+114.(IT....t)*(FLOAT(B—IFLI))/FLOAT(T-1)+45—IW 
IF (ISL) 27,27.28 

P7 IBL=1 
PS V8=VR+ISL 

C 	VR IS SUM OF LITTLE R 
IF (IW/FL) 3.141 
RETURN 
END 
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// DUP 
*STORE 	WS UA CALeX 
// FOR 
*ONF WORD INTEGERS 

SUBROUTINE ENTICW,M) 
INTEGER NIM•TAILM•MAST1(2O0)•MAST2(2OO)•STATE,TIMES.CLOCK 
DIMENSION N(1) 
COMMON NIM•TAILM•MASTI.MAST2 	•STATE•NAME+TIMES,CLOCK•MEMBE 
IF(NIM-,2)10514101,1050 

100 FORMAT(32H MASTER LIST EXHAUSTED IN ENTITY) 
1051 WRITE(34I00) 

CALL EXIT 
1050 NtI)=TAILM 

TAILM=MAST2(TAILM) 
JftMAST2tTAILM) 

MASTI(TAILM)=M 
MASTPCTAILM,=TAILM 
TAILIAttJ 

MASTI(IM)=-1 
WRITE(-14453)NIM 

453 FORMAT(. NIM='•I4) 
RETURN 
END 
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// OUP 
*STORE 	WS UA ENTI 
// FOP 
*ONE WORD INTFGFRS 

SUBROUTINE SIMO 
INTEGER NIMoTAILM.MAST1(200),MAST2(200)+STATEeTIMES+CLOCK 
COMMON NIM,TA/LM,MAST1*MAST2 	tSTATE$NAME,TIMES.CLOCK,MEMBE 
1=0 

1 FORMAT(I4) 
DO 1001 J=1.199 

1001 MAST2(J)=J+1 
NIM=14X1 
TAILM=2 
WRITF(1.1) I 
STATF=2 
NAMF=1 
WR/TF(141) 1 
CALL OUEUE(TIMES) 
WRITE(1.1) 1 
RETURN 
END 



'140  
// DUP 
*STORE 	WS UA SIMO 
// FOR 
*ONE WORD INTEGERS 

INTEGER FUNCTION MEMN(IF) 
INTEGER NIM+TAILM•MASTt(20O)•MAST2(2OO),STATE•TIMES•CLOCK 
COMMON NTM,ITAILMeMASTI,MAST2 	•STATE+NAME+TIMES.CLOCK+MEMBE 
K=MAST2(IE) 
MEMN=mMAST2(K) 
RETURN 
END 
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// DUP 
*STORE 	WS UA MEMN 
// FOR 
*ONE WORD INTEGERS 

INTEGER FUNCTION SI ZE ( LI 
INTEGER NIM TA ILM • MAST1 t 200 ) • MAST2t 200 ) *STATE • T I MES • CLOCK 
COMMON NIM•TAILM•MAST1 •MAST2 	• STATE *NAME • T / MES•CLOCK • MEMBE 
SIZE=MASTICL )  

RETURN 
END 



442 
// OUP 
*STORE 	WS UA SIZE 
// FOR 
*ONE WORD INTEGERS 

SUBROUTINE OUEUE(L) 
INTEGER NIM•TAILM•MAST 1t200),MAST2(200),STATE,TIMESIICLOCK 
COMMON NIM.TAILM.MAST1 •MAST2 	•STATE•NAME•TIMES.CLOCK•MEMBE 
IF (N/M)1010,1010,0011 

100 FORMAT(29H MASTER LIST EXHAUSTED IN SET) 
1010 WR/TEt3*100) 

CALL EXIT 
011 L=TA/LM 

J=L 
TAILMmMAST2(J) 

MAST1(J)=0 
RETURN 
END 



443 
// OUP 
*STORE 	WS UA OUgUE 
// FOR 

INTEGER FUNCTION HEM) (L) 
INTEGER NTM•TAILM•MASTI(200)•MAST2t200)+STATE•TIMES+CLOCK 
COMMON NIM•TAILM+MAST1•MAST2 	+STATE+NAME+TIMES+CLOCK+MEMBE 
IP1MAST1(L))3+102 

1 WRITE(3,100) 
100 FORMAT(IEW HEADOF EMPTY LIST) 

CALL EXIT 
3 WRTTE(3•POO) 

200 FORMAT(t4H HEADOF ENTITY) 
CALL EXIT 

p K=MASTP1L, 
KrIMAST2t0() 
HEAO=MAST1(K) 
RETURN 
ENO 



444 
// DUP 
*STORE 	WS UA HEAT) 
// FOR 
*ONE WORD INTEGERS 

INTEGFR FUNCTION TIMV(N) 
INTEGER NIMsTAILM•MAST1(2OO)•MAST2(2OO).STATEsTIMES,CE.00K 
COMMON NIM.TAILM•MASTIsMAST2 	•STATE.NAME•TIMES•CLOCK•MEMBE. 
TIMV=*MAST1tN1-1 
RETURN 
END 



-14 S 
// OUP 
*STORE 	WS UA TIMV 
// FOR 
*ONE WORD INTEGERS 

INTEGER FUNCTION REFNCIE) 
INTEGER NIMeTAILM,MAST1(200),MAST2(200)0,STATEeTIMESeCLOCK 
COMMON NIMITAILM•MASTI+MAST2 	•STATE+NAME•TIMES,CLOCK•MEMBE 
K=MAST2(IE) 
REFN=MASTI(K) 
RETURN 
END 



// DUP 
*STORE 	WS UA PEEN 
// FOP 
*ONE WORD INTEGERS 

SUBROUTINE BEHE(L) 
INTEGER NIM,TATLM,MASTI(200),MAST2(200),STATE,TIMES,CLOCK 
COMMON NIMoTAILM4MASTlirMAST2 	,STATE,NAME,TIMES,CLOCK,MEMBE 
IF(MASTI(L)11030,10300,1031 

/00 FORMATf/SH BEHEAD EMPTY LIST) 
1030 WRITE(3,100) 

CALL EXIT 
1031 K=MASTP(L) 

J=MAST2(K) 
MAST2(K)=MAST2(J) 
MAST2(J)=TA/LM 
TAILM=J 
N/M=NIM+/ 
MAST1(L)=MAST1(L).-1 
RETURN 
END 



447 
// OUR 
*STORE 	WS UA BEHP" 
// FOR 
*ONE WOPD INTEGERS 

SUBROUTINE ADDL(M+L) 
INTEGER NIM•TAILMOAST1(200).MAST2(200)45TATEeTIMES.CLOCK 
COMMON NIMsTAILM9MAST1,MAST2 	,STATE.NAME,TIMES.CLOCKeMEMBE 
IF(WM)1070.1070,1071 

100 FORMAT(33H MASTER LIST EXHAUSTED IN ADDLAST) 
1070 WRITE(34p100) 

CALL EXIT 
1071 J=TAILM 

TAILM=MASTP(J) 
N1M=NTM-1 
MAST1(J)=M 
IF(MASTI(L))1072,1071.1074 

101 FORMAT(18H ADDLAST TO ENTITY) 
107? WR/TE(3,6101) 

CALL EXIT 
1073 MAST2(J)=J 

MAST2(L)=J 
MAST1(L)=1 
GO TO 1075 

1074 MASTI(L)=MAST1(L)+1 
K=MAST2(L) 
MASTP(J)=MASTP(K) 
MAST2(K)=J 
MAST2(L)=J 

1075 RETURN 
END 



44 
// DUP 
*STORE 	WS UA ADDL 
// FOP 
*ONE WORD INTEGERS 

SURROUTINE DELE(M40Si 
INTEGER NTMoTAILM•MASTI(200),MAST2(P00)+STATEeTIMES,CLOCK 
COMMON NIMoTAILM.MASTI,MAST2 	*STATEoNAMEITIMES,CLOCK•MEMBE 

40 J=MASTI(IS) 
00 1080 I=1..) 

42 K=MAST2tIS) 
44 K=MASTP(10 
46 1F(MAST1(K)—M)10804#108141080 

1080  MAST2_CIS1=K 
100 FORMAT(POH MEMSER NOT PRESENT IN DELETE1 

WRITE(34100) 
CALL EXIT 

1081 K=MAST2tIS1 
KIC=MAST2(K1 
MAST2(K)t!MAST2(KKI 
MAST2(K10=TAILM 
TATLM=KK 
NTM=N/M+t 
MASTICIS1=Jam.1 
IF(I-,,i1)108441108P,10e4 

1084 
/F(t)toss.los2.1op 

1085 no 083 K=1,1 
KK=MASTP(TS) 

1083 MASTP(IS1=MASTP(KK) 
1082 RFTURN 

END 



149 
// OUP 
*STORE 	WS UA DELF 
// FOR 
* ONF WORD INTEGFRS 

SUBROUTINE SYPY 
PEAL LAM(5)•LAMT 
PEAL PA(5) 
INTEGER KCHEC() 
INTEGER TAILM+STATE+TIMES+ONORD•SYPRO(2)•CWSTK•DEM(5.2)•G•B•VB•VC• 

ICLOCK•MASTI(200)•MASTP(200)•NOSTK(5)•TRS(5)•T 
COMMON NIM•TAILM•MASTI•MAST2 	eSTATE•NAME•TIMES•CLOCK4MEMBE 
COMMON CRO•B•CWSTK•DEM•F+G•ISTRE♦J•JC+KAUNT+LAM+LAMT•LC•LSS•M+KA•N 
1•NOSTK•ONORD,RA•SYPRO•VA•VB•VC•Y•?_•KCHEC•CR•TRS• NOPRCetEX,T 
F=NOSTK(I)+NOSTK(7)+NOSTK(3)+NOSTK(4)+NOSTK(5)+CWSTK 
IF (F—.M) 80.80.111 

SO CALL SFTT (SYPRO (NAME)•(LC—LSS+CLOCK)) 
CALL ADDL (SYPRO (NAME)sTIMFS) 
NOPPC=NOPPC+1 
SVPPO (STATONMOD 
WRITF(1•1) CLOCK,NOPRC 

I FORMAT(2I6) 
111 RETURN 

END 



450 
// DUP 
*STORE 	WS UA SYRY 
// FOR 
*ONE WORD /NTEGFRS 

SUBROUTINE SCAtiSo1MsTL) 
INTEGER NTWITATLM0MAST1(200).MAST2(200)4STATE,TIMES,CLOCK 
COMMON NIM4TAILMeMASTleM4ST2 	,STATE.NAMEtTIMES,CLOCKsMEMBE 

456 NIS=MASTI(IS) 
IF(NYS)1090.109040091 

100 FORMAT(15H SCAN EMPTY SET) 
1090 WRITE(14100) 

CALL EXIT 
1091 IP=MAST2(1S) 

IL 299Q9 
DO 1092 J=IoNTS 
M=MAST1(IP) 
L=MAST1(M) 
IF(L..IL)10924,1092.1093 

1001 TL=L 
TM=M 

1092 IP=MAST2(IP) 

RETURN 
END 
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// DUP 
*STORE 	WS UA SCA 
// FOR 
*ONE worm INTEGERS 

SUBROUTINE SETT(N•M) 
INTEGER NIMoTAILM,MASTIt200)*MAST2(200,41STATE41TIMESoCLOCK 
COMMON NIM,TAILM•MASTI.MAST2 	eSTATE,NAME9T/MES4CLOCK,MEMBE 
MASTI(N)=—M-1 

213 FORMAT(31I0) 
RETURN 
END 



452 
// DUP 
*STORE 	WS UA SETT 
// FOR 
*ONE WORD INTEGERS 

SUBROUTINE GROUt1F•IN•IL) 
INTEGER N1M•TAILM•MAST11200)•MAST2(200)•STATE•T1MES•CLOCK 
DIMENSION IE(1.1) 
COMMON NIM•TA1LM•MASTI•MAST2 	•STATE•NAME•TIMES•CLOCK•MEMBE 
IFINIMP*IN/II900/151611S1 

1150 WRITE(3,1001 
100 FORMAT(37H MASTER LIST EXHAUSTED IN GROUPENTITY) 

CALL EXIT 
1151 DO 1152 J=1•IN 

tE(jolttTAILM 
TAILM-J.-MASTP(TAILM$ 
K=MAST2ITAILM) 
MAST1ITAILM)=IL 
MASTPITAILM/=J 
TAILM=K 
K.tr(J,1) 

11!5P MAST1(10.1 
NIM=NIMP*IN 
RETURN 
END 
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/I' OUP 
*STORE_ 	WS UA GROU 
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