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ABSTRACT 

The thesis is concerned with the design and detection of digitally-

coded-speech signals, where these are multiplexed in a random access dis-

crete address system. Only single links using binary-coded antipodal 

signals are considered. 

The following four arrangements are studied:- 

1) Many transmitters feeding many receivers. 

2) Many transmitters feeding a single receiver. 

3) A single transmitter feeding many receivers. 

4) A single transmitter feeding a single receiver via a multi-

channel link. 

In the arrangement 1, the systems use asynchronous multiplexing with 

modulated carriers whose instantaneous frequencies vary continuously with 

time. In the arrangements 2 to 4, the systems use synchronous multi-
plexing with baseband signals. 

Three systems are proposed for the arrangement 1 and the method of 

operation of the third of these is analysed theoretically. 

The conditions necessary for the unique detectability of the trans-

mitted signals in arrangements 2 to 4 are derived and various methods are 
proposed for achieving this. 

Many different iterative detection processes are proposed for the 

arrangement 2, and are tested by computer simulation. The more effective 

of these are tested under various conditions of noise and level variations, 

and the convergence of some of the latter is analysed theoretically. 

Computer simulation tests are carried out with the arrangement 4, to 
assess the performance of a particular coding and detection process. 
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GLOSSARY OF SYMBOLS AND TERMS  

number of combinations of m out of n 

* (on line) 	convolution 

* (superscript) 	conjugate transpose 

IXI 	magnitude (absolute value) of X, if X is a scalar; 

length (Euclidean norm) of X, if X is a vector 

{Xij 	the set 	X2, ..., Xn (n is given in the text) 

max y 	maximum value of the variable scalar y 

max {zi} 	maximum value of the members of the set 

min fzil 	minimum value of the members of the set 

MT 	 transpose of the matrix M 

det M 	determinant of the matrix M 

p(M) 	spectral radius of the matrix M 

0 
El 

addition 

subtraction 

multiplication 

integration 

block-diagram symbols 

FDM 	frequency-division multiplex 

TDM 	time-division multiplex 

RADAS 	random-access discrete-address system 

RASSAS 	random-access sequentially-switched address 

system 

AM 	amplitude modulation 

FM 	frequency modulation 

PM 	phase modulation 

A double-modulation signal is one generated in two consecutive and 

separate modulation processes, where each of these may be either AM, 

FM or PM. 

A PM-FM signal is one in which a PM signal is used to frequency modulate 

the transmitted carrier. 

A signal element is a unit component of a digitally-coded signal. 
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Two signal-elements are said to be orthogonal when their cross-correlation 

coefficient is zero. 

A frequency-time matrix is the sub-division of the total frequency-time 

space containing a signal element, into separate frequency-bands and 

time slots. 

A unit area in a frequency-time matrix is the area in the frequency-time 

domain occupied by the combination of one frequency-band and one time-

slot in that matrix. 

A varying-frequency carrier is a frequency modulated carrier whose 

instantaneous-frequency varies continuously with time. 

The frequency-time trace of a signal is the path followed by the 

instantaneous frequency of the carrier in the frequency-time domain. 

A synchronous system is one in which the sending and receiving equipments 

are operating continuously at substantially the same number of signal 

elements per second and are maintained, by correction, in the desired 

phase relationship. 

In coherent detection of a digital signal the receiver makes use of a prior 

knowledge of the phase of the received signal carrier in an element detec-

tion process. 

In incoherent detection of a digital signal the receiver has no prior 

knowledge of the carrier phase at the start of an element detection process. 

Envelope detection is incoherent AM detection. 

In differentially-coherent detection of a PM signal the receiver compares 

the carrier phase in a signal element with that in the preceding element. 

A detection process here involves two adjacent elements and this is 

incoherent PM detection. 

The terms random access, discrete address, element address, element  

synchronism, synchronous multiplexing, asynchronous multiplexing, general  

asynchronous system and channel-synchronized asynchronous system, are 

defined in Section 1.3. 
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1.0 INTRODUCTION 

1.1 Subject of Thesis 

This thesis is concerned with the application of random-access 

discrete-address techniques and further developments of such techniques, 

to the multiplexing of digitally-coded-speech signals. The two basic 

problems studied are the design and detection of the signals fed over the 

common transmission path. 

1.2 Conventional Methods of Multiplexing Signals  

The most widely used methods of multiplexing signals are frequency-

division multiplex (FDM) and time-division multiplex (TDM). Whereas only 

FDM may be applied to analogue signals, either FDM or TDM or a combination 

of the two may be applied to suitable digital signals. The important 

property of these multiplex methods is that the different transmitted 

signals are orthogonal. 

Consider a combined FDM and TDM system designed to carry n separate 

digital signals, where each signal comprises a serial stream of binary-

coded AM pulses, an element "1" being represented by a pulse and "0" by 

the absence of a pulse. The time slots and frequency bands for these 

signals can be arranged as in Fig. 1. 

I 5T. ELEM ENT 	a ND. ELEM ENT 	3 RD. ELEMENT 
OF RLL SIGNALS 	OF ALL. SIGNALS 	OP ALL SIGNALS 

< X X XXX> T1M E (sEe) 

 

FIG. I. 	FREQUENCY —TIME MATRICES 
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There are — separate frequency-bands and — separate time-slots in the 

frequency-time space allocated to n signal-elements, one from each of 

the n different signals. This frequency-time space will be referred 

to as the "frequency-time matrix". Three of these are shown in Fig. 1. 

Clearly 

WT 
W • t 

n  = — oho 
, 

so that n is the number of "unit areas" in the frequency-time matrix. 

Each signal occupies a different unit area in a matrix. The equivalent 

TDM system would have n time-slots and one frequency band in the frequency- 

time matrix, and the equivalent FDM system would have n frequency bands 

and one time-slot. In a practical system a unit area in Fig. 1 would 

have a frequency-time product of approximately 2. 

1.3 Random Access Discrete Address Systems 

If each unit area of a frequency-time matrix is associated with 

only one receiver, then a communication system with n subscribers but no 

central exchange can be designed. The unit area allocated to a subscriber 

is the "discrete address" of that subscriber. A calling subscriber trans-

mits a signal having the discrete address of the subscriber he wishes to 

contact. After a sufficient delay to allow the receiver to recognize 

and become synchronized to this signal, he gives his own address and the 

return channel using this address is then set up. 	Arrangements involv-

ing only single two-way links will be considered here. 

In general there are many more than n subscribers, so that in an 

arrangement equivalent to that just described, the discrete address of a 

subscriber must use more than one unit-area of the frequency-time matrix. 

If each address uses m unit areas, there can ideally be altogether (:) 

different subscribers. In any signal element here, each of the m unit 

areas has the binary value of that element. The weakness of this arrange-

ment is that since each unit-area forms part of the signal of many sub-

scribers, interchannel interference is likely to become severe when the 

number of simultaneous signals approaches n. 

Where there are a number of transmitters in different locations, 

the frequency-time matrices (elements) of a signal will not in general be 

(1) 
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in phase with those of any other. 	To enable a receiver to determine 

the phase of the wanted signal-elements, one of the unit areas used by 

an address always occupies the first time-slot. In addition, the equip-

ment is simplified if a signal never uses more than one unit-area in any 

one time-slot. With these two restrictions the number of addresses is 

m . 	t -  
m - 1 

  

where m t • 

  

Where the discrete address is repeated with every signal-element, 

as it is here, it is sometimes referred to as the "element address". 

Because of the lack of synchronism between the different transmitted sig-

nals, these are said to be "asynchronously multiplexed". Where the trans-

mitted signals are fed through a single repeater, it is possible to arrange 

that at the repeater and therefore at each receiver, the signals are in 

"element synchronism", which means that the elements (frequency-time 

matrices) of the different signals are in phase as in Fig. 1.D2 These 

signals are "synchronously multiplexed". 

A communication network in which a subscriber has direct access to 

any other, without the intervention of a central exchange, is known as a 

"random-access" system. Hence the general title "random-access discrete-

address system" or RADAS. 

Arrangements of RADAS using asynchronous multiplexing, can be 

classified into "general asynchronous systems" and "channel-synchronized 

asynchronous systems". In the former the various channels of the system 

are all sensitive to the same general regions of the frequency-time space, 

whereas in the latter each channel is sensitive to only a fraction of the 

total frequency-time space used .D7' D22 

1.4 	Published Work on RADAS 

The arrangement of RADAS outlined in Section 1.3 is based on the 

RADEM system developed by Motorola, Inc. Delta modulation is used here 

to convert the original speech waveform into a binary-coded digital sig-

nal and the latter is then converted into a transmitted signal of the 

type described.B22 D16, D20 

An alternative arrangement of RADAS, called RACEP and designed by 
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the Martin Company, samples the original speech waveform to produce a 

pulse-position modulated (PPM) signal, each of whose pulses is then 

converted into three corresponding PPM signals, occupying different unit-

areas in the associated frequency-time matrix.' D12, D15  

Following these two early systems, both of which are channel-

synchronized asynchronous systems, a number of different arrangements 

of RADAS have been designed and tested.D 
Some of these have been studied 

as systems for achieving multiple access to a communications 

satellite.
D1'D2'D19'D30'D38'D59'147 

The most interesting of these 

various systems are the general asynchronous systems, alternatively des-

cribed as "spread-spectrum" systems, which use digital pseudo-noise 

signals.D1'D2'D23'D25 

The general conclusion reached from these investigations is that 

RADAS with asynchronous multiplexing can sometimes lead to a simpler over-
all system design than the equivalent FDM or TDM system. It has, however, 

an appreciable element error probability in the absence of noise and a 

lower tolerance to additive noise than the latter systems, when the number 

of simultaneous signals approaches n. Since a much higher element-error-

rate can be tolerated with digitally-coded-speech signals than with data 

signals, RADAS is of most interest as a system for transmitting digitally-
coded-speech signals. 

In reference D13 the arrangement of RADAS uses synchronous multi- 
plexing and each receiver detects all transmitted signals. 	It is shown 

here that if there are always m+1 active transmitters out of a larger 

total number and if each transmitter has an output signal power Ss  with 

no attenuation in transmission, then the total channel capacity C1  is 

given by 

C1 	
1 = W log2  (1 + (m+N)S 3 (2) 

where W cps is the total available bandwidth and N is the total white 

gaussian noise power in this band. C1  is the same as the channel capacity 

in the corresponding arrangement, having only a single transmitter which 

delivers the same total power (m+1)S as the m+l transmitters above. 

It is also the same as the channel capacity in the equivalent FDM system, 

having m+1 orthogonal signals each of power S, which together use all the 

available bandwidth.D7' D13 

In the large majority of the arrangements of RADAS studied,D the 
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transmitted signals are not orthogonal and a receiver only detects the 

wanted signal, treating the remaining signals as noise. Assuming that 

a general asynchronous system is used, the total channel capacity is now 

C2  = (m+1)W log2  ( 1  + ms
S  
+ N ) • (3) 

As before there are m+1 signals each with a power S.D7,D13 

A comparison between the two channel capacities shows an appreciable 

advantage for Ci  over C2, when m and are both fairly large. For instance 

when 10 < m < 100 and 10 db < Fr  < 20 db, then 5C2  < Cl  < 10C2 D7 

A general asynchronous system has in turn an appreciable advantage 

over a channel-synchronized asynchronous system. For instance when 

10 < m <100 and 10 db < < 20 db, then 4C3  < C2  < 40C31  where C3  is 

the total channel capacity of the channel-synchronized asynchronous system. 

Each channel is here assumed to use only 0.001 of the total number of de-

grees of freedom available to the transmitted signals.D7  

Studies into novel methods of multiplexing and routing signals, 

not employing RADAS,E/1/14  suggest that over telephone-line links there are 

a number of alternative techniques for the automatic routing of signals 

to the called subscriber. These are in general preferable to conventional 

arrangements of RADAS, since they use orthogonal signals and do not there- 

fore suffer the interchannel interference normally associated with the 

latter. 

Very little work seems to have been done on practical arrangements 

of RADAS in which a receiver does much more than detect just the wanted 

signal. The reason for this is probably that the large majority of the 

systems studied, involve radio links between many transmitters and many 

receivers. Considerations of equipment economy together with the complex 

transmitted waveforms, prevent anything but the simplest detection process 

being considered for the receivers. However, where the transmission 

medium is a line which permits the transmission of simple baseband signals, 

and where a single receiver is fed from a number of different transmitters, 

much more sophisticated detection processes could be used. 

Studies into methods for reducing intersymbol and interchannel inter-

ference in practical multi-channel systems:
F 

show that in general useful 

reductions in interfere/ice can be obtained without the use of unduly com-

plex equipment. Furthermore, where the transmitted signals are linearly 
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independent but not necessarily orthogonal, detection errors due solely 

to intersymbol and interchannel interference, may be entirely eliminated 

by means of suitable linear filters in the receiver. The tolerance to 

noise is however decreased as signals in different channels become less 

nearly orthogonal. In all these systems a single receiver is used which 

detects all the received signals, as in reference D13. 

If techniques similar in principle to those just mentioned, could 

be applied to RADAS, a significant improvement in performance could be 

expected. Such systems should have many useful applications. 

1.5 Work on RADAS carried out by the Author before October 1965  

1.5.1 Introduction  

The author began his work on RADAS in June 1964, when he carried out 

a feasibility study to determine the basic techniques most likely to lead 

to an effective yet simple RADAS design. The work was completed in 

August 1964 and is described in reference B2. The following is a brief 

outline of this investigation. 

1.5.2 Incoherent Systems  

In the early part of 1964 the two most important systems described 

in the published literature were RADEM and RACEP. It was decided to 

take RADEM as the starting point and to see what improvements could be 

applied to this basic system. The application considered was that with 

radio links between many transmitters and many receivers. Only binary-

coded signals were studied, the element address being defined here to be 

the signal waveforms for the two binary-elements "0" and "1". 

Modulation methods using frequency shift and time-shift keying and 

various combinations of these, were studied as alternatives to the ampli-

tude modulation used in RADEM. The latter modulation method, although 

making a more efficient use of bandwidth, gives a poor performance under 

conditions of fading. Two or three of the alternative modulation methods 

were found to have useful properties. In all these arrangements, an 

element "1" of a given address is characterized by the presence of signal 

in m of the n unit-areas of the frequency-time matrix, where m << n, and 

an element "0" by the presence of signal in a disjoint set of m unit-areas. 

Signals having an instantaneous carrier frequency varying linearly 
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with time, as in "chirp" radar,Cll were considered next. Each frequency- 

time matrix here contains a number of separate "varying-frequency" sig- 

nals each of which occupies a different time-slot, for instance as follows:- 

ELEMENT lle 

  

TIME 

ELEMENT (I I I' 

TIME 

FIG. a.  INCOHERENT VARYING-FREQUENCY SIGNAL. 

These signals will probably give an inferior performance when there are 

large differences between the levels of the various received signals, but 

when there is a small range of levels they should enable a slightly larger 

number of signals to be transmitted simultaneously, for a given average 

interchannel interference level. The reason for this advantage is the 

reduction in the maximum interference level likely to be caused by any 

one interfering signal-element. The advantage can alternatively be re-

garded as being due to a more uniform distribution of interference levels' 

between the different interfering signals. 

1.5.3 Adaptive Systems 

Adaptive arrangements of "frequency-band switching" and "transmitter-

speed control" were studied, as a means of reducing interchannel inter-

ference. In the former system, each receiver has a stand-by address, 

occupying a different region of the frequency-time matrix to the normal 

address. Whenever the measured interference level at the receiver 

exceeds a predetermined value, both the transmitter and the receiver auto- 

matically switch to the stand-by address. 	In the arrangement of 
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transmitter-speed control, the phase of the transmitted signal-elements 

is automatically adjusted to minimize the measured interference level 

at the receiver. Both these arrangements use feedback control signals 

via the return speech channel and in their more sophisticated forms are 

subject to severe instability. They also require complex equipment. 

They should however under favourable conditions appreciably increase the 

maximum number of signals which may be transmitted simultaneously. 

In view of the disadvantages of the adaptive arrangements of RADAS 

just considered, it was decided to confine further investigations to 

non-adaptive systems. 

1.5.4 RASSAS 

In order to reduce the serious interference effects caused by a high-

level unwanted signal, having an element address rather similar to that 

of the wanted signal, it was proposed that the discrete element address 

used in all the systems studied so far, should be replaced by a 

"sequentially-switched" element address. Thus successive elements of 
a signal have different element addresses, no element address being 

repeated until all other addresses have been used. A discrete address 

is used as before to set up a call, and a suitable timing or count-down 

signal then informs the receiver of the particular signal-element at which 

the transmitter will begin sequentially switching the element addresses. 

Assuming that the receiver has prior knowledge of the sequence of element 

addresses that will then be transmitted, the receiver can remain correctly 

synchronized to the transmitter throughout the rest of the call. This 

arrangement will be referred to as a "random-access sequentially-switched 

address system" or RASSAS. 

RASSAS is a special case of RADAS in which the discrete address of 

a signal changes from element to element. It is a general asynchronous 

system, whereas the arrangements previously described are channel-synchronized 

asynchronous systems. Although RASSAS uses a type of pseudo-noise signal, 

it requires no additional bandwidth relative to the equivalent arrangement 

of RADAS. Provided that there are at least say 107  different element-

addresses in a sequence, which could in general be arranged quite easily, 

there is a negligible probability that any two signals will drift into 

phase over a period of a few minutes, assuming a timing oscillator stability 

of about 1 in 106. 

The useful property of RASSAS is that any two interfering signals of 
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the same level will ideally produce the same average interference level 

in the detected wanted signal. Furthermore the resultant interference 

signal has the characteristics of random noise. 	It will sound as a 

hiss or rumble instead of the short bursts of intelligible cross-talk 

obtained with the arrangements of RADAS. An appreciably higher level 

of interference should therefore be acceptable with RASSAS than with 

RADAS. With delta modulation used to produce the digitally-coded-speech 

signal, an element error rate as high as 1 in 10 could probably be tol-

erated with RASSAS, before the reconstituted speech signal becomes un-

intelligible. 

1.5.5 Coherent System  

The final arrangement studied was an arrangement of RASSAS using a 

continuous signal with no amplitude or phase discontinuities, whose 

instantaneous carrier frequency varies linearly with time over each time-

slot of the frequency-time matrix. A new address is used for each 

signal-element transmitted, and the binary elements "0" and "1" fora 

given address could typically appear as follows:- 

ELEMENT 0 

 

TIM E 

ELEMENT af " 

0 
2 u ' 2 4- CC tu 
2 W 3 

cri 
kL 

TIME 

FIG. 3,  COHERENT VRRY1N-FREQUENCY 

The plot of the instantaneous carrier frequency against time is referred 

to here as the "frequency-time trace" of the signal. Clearly the 

frequency-time trace is a function both of the sequence of element 

binary-values as well as of the sequence of element addresses. 

Assume for simplicity that the instantaneous carrier frequency at 
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the end of a signal element is always the same as that at the beginning, 

and that there are p different possible values of the instantaneous carrier 

frequency at the boundary between two time-slots, there being q time-slots 
1 	l in a signal element. There are now 2 --(13-1)(q-1)  different possible element- 

addresses. By a suitable choice of waveforms, for the two binary-elements 

corresponding to each address, it should be possible to arrange that the 

two binary-elements are always nearly orthogonal. 

The advantage of this arrangement over an incoherent system is that 

under favourable conditions the receiver can carry out a process of co- 

herent detection over each signal-element, since it can have a prior know- 

ledge both of the exact frequency-time traces of the two binary values of 
an element, and of the carrier phase at the start of the element. The 

receiver is therefore ideally sensitive to an area with a frequency-time 
1  product of only 7  in each frequency-time matrix.F4 ,A2 	In practice, how-

ever, the receiver cannot generally have so accurate a prior knowledge 

of a received signal-element, with the result that it will be sensitive 

to an area with a frequency-time product of say 2 or more. 

The arrangement just described is referred to as the "coherent 

system", the previous arrangements being classed as "incoherent systems". 

The coherent system will not in general give a good performance when there 

is a wide range of received signal levels or when the transmission medium 

introduces significant phase variations over the duration of a signal 

element. Under favourable conditions, however, an arrangement of co-

herent RASSAS should give a better performance than any of the other 

arrangements considered. 

1.6 	Aims of the Research Prolect  

The intention of this research project, which was started in October 

1965, has been to continue the work outlined in Section 1.5 with a view 

to determining further techniques for reducing the interchannel interfer- 

ence levels in an arrangement of RADAS. 

In the general communication network there are four possible basic 

configurations involving only single links:- 

1) Many transmitters feeding many receivers. 

2) Many transmitters feeding a single receiver. 

3) A single transmitter feeding many receivers. 

4) A single transmitter feeding a single receiver via a multi-channel 
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Where there are many transmitters or many receivers, these are assumed to 

be in separate locations. 

Although all four of the above configurations have been studied in 

some detail, the majority of the time has been spent on the arrangement 

2, since the latter appears to offer the most interesting possibilities 

for an application of RADAR. The introductory work carried out from 

October 1965 to October 1966, was concerned mainly with the arrangements 1 

and 4, and is described in two unpublished reports.B3'E4  These form an 

elementary introduction to this thesis. 

In the arrangement 1, considerations of equipment economy dictate 

that a receiver detects only the wanted signal and treats all other signals 

as noise. The main problem studied here was that of the optimum signal 

design. 

In the arrangements 2, 3 and 4 it is assumed that the transmission 

medium passes baseband signals and that synchronous multiplexing is used. 

This is the ideal situation for the economic application of more sophisti-

cated detection processes at the receiver. The main problem studied in 

the arrangement 2 was that of the optimum detection process. 

In view of the wide field covered by this research project, the work 

has been concentrated into certain well defined topics, which in the view 

of the author have not yet been adequately studied. The project is thus 

one of attempting to fill some of the larger gaps in the present state of 

the art. 

In this thesis the subject under investigation is treated as a branch 

of electrical engineering and not as a branch of applied mathematics. This 

is because the aim of the investigation has not been the detailed analysis 

of some known system or rigorous proof of some relationship, but rather 

the development of new techniques which may lead to useful practical systems. 
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2.0 RADAS WITH MANY TRANSMITTERS AND MANY RECEIVERS  

2.1 Introduction 

Communication networks, where there are many transmitter-receivers 

in separate locations, may either use direct links between the different 

subscribers or alternatively all signals may be routed via a central 

repeater or exchange. Whenever the total bandwidth available is con-

siderably greater than that needed to transmit the required maximum number 

of simultaneous signals as orthogonal waveforms, a suitable arrangement 

of RADAS may enable useful equipment economies to be achieved, without 

excessively reducing the received speech quality.D2 

Where there is no central repeater or exchange, asynchronous multi-

plexing must in general be used and there is often likely to be a wide 

range of levels for the different signals reaching a receiver. 	Under 

these conditions the signals must be designed in such a way that there 

is a high probability that any interfering signal is orthogonal to a 

wanted signal over the duration of an element. The best way of achieving 

this is to use signals similar to those in RADEM and to arrange that a 

signal occupies the minimum number of unit areas (say 3) in any frequency-

time matrix.D1'D2 Furthermore, the use of FM (that is FSK) in place of 

AM, although reducing the probability of orthogonality, has a number of 

other useful advantages which should more than offset this disadvantage.C3 

An element HO" is here transmitted by a signal occupying a different set 

of unit areas to the element "1", instead of by no-signal as in the AM 

system. Systems using signals of this general type have been widely 

studied and will not be considered further here.D Varying-frequency 

signals would not be very suitable for these applications. 

Where there is a central repeater and arrangements can be made to 

control the transmitted signal powers for approximately equal power levels 

at the repeater input, or alternatively where there is no repeater and 

the maximum signal attenuation in transmission is less than say 20 db, 

continuous varying-frequency signals could be used. 

2.2 System A 

This is essentially a modification of the coherent varying-frequency 

system (Section 1.5.5). In System A the same frequency-time trace is 
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used for both binary values of a signal element, and differentially-coded 

binary PM (PSK) is used for the message modulation. Thus a "1" is re-

presented by an instantaneous phase-change of 1800  in the varying-

frequency carrier, at the boundary between two adjacent signal-elements, 

and a "0" as no phase change here. The frequency-time trace of a signal 

element is now independent of the message modulation and is therefore 

uniquely determined by the element address. 

Coherent detection is used at the receiver, with a locally generated 

reference-carrier which has the same frequency-time trace as the wanted 

signal but with no additional phase-modulation. The phase of the refer-

ence carrier is adjusted by means of a suitable phase-locked loop to be 

in phase or in anti-phase with the received carrier. 

A discrete element-address, using an FM RADAS signal of the type 

outlined in Section 2.1, is used for setting up a call, and once a call 

has been established the system is automatically switched over to a varying-

frequency RASSAS signal. This has the useful property that once a sub-

scriber is engaged in a call he will not experience significant interference 

from another subscriber attempting to contact him. 

It is well known that a wide-deviation FM signal with a linear 

frequency-time trace, similar to that in one time-slot of Fig. 3 (Section 
1.5.5), has an energy-density spectrum which is essentially flat over the 

signal frequency-band and zero outside.C11 The varying-frequency signal 

used by System A can for practical purposes be considered to have a power-

density spectrum of rather similar shape, so that it is difficult to listen 

in to or to jam. System A is described in some detail in reference B3. 

System A, although simpler than the Coherent System (Section 1.5.5), 

involves considerable equipment complexity. This is partly due to the 

complex nature of the varying-frequency signal and partly to the arrange-

ments for switching over to this signal from the discrete address. 

2.3 System B  

This uses a continuous transmitted signal whose instantaneous carrier 

frequency varies continuously with time. Each receiver has a discrete 

address as in RADAS but instead of this being a discrete element-address, 

it has a duration very much longer than that of one signal-element. The 

element address is therefore sequentially switched as in the varying-

frequency signal in System A. Thus System B has the properties of both 
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RADAS and RASSAS. 

The frequency-time trace of the transmitted signal in System B is 

the sum of two sine-waves of equal amplitudes. One of these has a fre-

quency, fl  cps, which is somewhat greater than the signal element rate, 

and the other has a much lower frequency, f2  cps. The discrete address 

of each receiver is the unique pair of values allocated to fl  and f2  for 

that receiver. 

Because of the simple form of the transmitted signal, the receiver 

can be designed to detect the presence of a signal having the correct 

address and to synchronize onto this signal automatically. No special 

signal need therefore be transmitted for setting up a call. 

As in the case of System A, differentially-coded binary PM is used 

for the message modulation. This is applied to the varying-frequency 

carrier at the transmitter, and coherent detection is used at the receiver. 

System B, like System A, is a general asynchronous system, since over a 

sufficient number of signal elements the receiver is sensitive to the whole 

area of the frequency-time matrix. System B is described in some detail 

in reference B3. 

System B is basically much simpler than System A but has the dis-

advantage that special arrangements must be made to prevent interference 

in a call between two subscribers, when a third subscriber attempts to 

contact one of these two. Another disadvantage of the System B is the 

fact that its signals are not such ideal pseudo-noise signals as those in 

System A, so that interchannel interference will in general be more serious 

under equivalent conditions.B3 

In both systems A and B, the modulation and detection processes used 

for the binary-coded signal elements are optimum in the sense that, given 

ideal equipment and no phase variations introduced by the transmission 

medium, and assuming that a separate detection process is used for each 

received element, the optimum tolerance to additive white gaussian noise 

is obtained for a given signal-element energy.Cl-G  

Systems A and B have one serious weakness. In order to achieve 

ideal coherent detection of a binary-coded PM signal, where one signal-

element is the negative of the other, it is essential that the receiver 

has exact prior knowledge of the form of one of the two elements. 	This 

necessarily means that the generator of the reference carrier in the co-

herent detector, must have an instantaneous frequency accurate to 
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approximately 1 part in 100c where c is the number of carrier cycles 

per signal element. Assume a total signal bandwidth of say 10 Mc and 

an element duration of 25 Ilsec, and suppose that the received signal is 

frequency translated at the receiver input, to occupy the lowest con-

venient frequency-band, say 10 to 20 Mc. A signal element in System B, 

whose mean instantaneous carrier frequency has the maximum value, has 

about 400 cycles. Thus the oscillator used to generate the reference 

carrier, must have an instantaneous-frequency accurate to 1 part in 40000. 

Although this could easily be achieved by an oscillator having a constant 

instantaneous-frequency, considerable practical problems are involved in 

designing a frequency-modulated oscillator whose instantaneous frequency 

tracks that of the received signal to this order of accuracy, particularly 

where its modulating waveform, as in System B, may be subject to phase 

errors due to the effects of noise. 

Errors in the tracking of the wanted varying-frequency signal can 

of course be reduced, by decreasing the response time (effective integration 

period) of the phase-locked loop, which is used to synchronize the phase 

of the reference carrier to that of the received signal. However, since 

the response time must now be reduced to a fraction of the duration of a 

signal element, this inevitably reduces the tolerance of the receiver to 

additive noise, under ideal conditions, thus destroying much of the advan-

tage gained by the use of coherent detection. 

Although System B has some interesting possibilities, where the trans-

mission medium does not introduce significant phase variations in the trans-

mitted signal carrier and where the area of the frequency-time matrix is 

relatively small, it appears to be of limited value where these two con-

ditions are not both satisfied. 

2.4 System C 

2.4.1 Introduction  

Although not capable of as good a performance as System B, under 

conditions favourable to the latter, System C will operate correctly when 

neither of the two conditions required by System B is satisfied. Thus 

it could for instance be used for the transmission of digitally-coded-

speech signals over radio links. It has the one important weakness, 

common to all varying-frequency systems, which is that the different 
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received signal levels must have a range of less than say 20 db. 

System C is similar to System B, except that it uses a "double-

modulation" method for generating the binary-coded signal elements and 

it uses a form of incoherent detection at the receiver. It will be 

assumed that the transmission rate per channel is of the order of 

40 k-bits/sec. 

2.4.2 Transmitter 

The block diagram of the transmitter is shown in Fig. 4 and the 

waveforms obtained at different points in the circuit are shown in Fig.5. 

Two frequencies fl  and f2  cps are generated in separate oscillators 

and the output sine-waves, which are arranged to have exactly equal levels, 

are added together and then used as the main modulating waveform for the 

frequency-modulated oscillator. Neglecting for the moment the waveform 

at the terminal J, the resultant varying-frequency carrier at the terminal 

D has a frequency-time trace which is the sum of the two sine-waves 

sin 2nf1t and sin 2nf2t. Different values of f, and f2 are used for 

every channel and in each case fl  > f2. The combination of f1  and f2  

used for any channel is the discrete address of that channel. 

The element timing waveform generator produces at the terminal Fs  

a series of regularly-spaced short positive pulses, at fg  pps, whose 

rising edges determine the signal-element boundaries. These are not 

synchronized in any way to the fl  and f2  cps sine-waves. The element 

timing waveform is fed to the associated digital equipment, where it is 

used to synchronize the binary-coded-speech signal fed to the transmitter. 

The latter signal represents a "1" as a negative level and a "0" as a 

positive level. 

The AND and OR gates together with the 4-2 stage re-code the binary-

coded speech signal into a form where a "1" is represented by a positive 

or negative transition and a "0" by no change. The resultant signal, at 

terminal H, is fed as the modulating waveform to the phase modulator. 

The carrier waveform fed to the phase modulator at terminal E is an fg  cps 

sine-wave, synchronized to the timing waveform at F. A positive level in 

the signal at H allows the carrier at E to pass through the phase modulator 

unchanged, whereas a negative level inverts the carrier, that is it shifts 

its phase by 180°. The phase modulator is thus a simple switched inverter. 

The resultant signal at the terminal I is passed through the band-pass 
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filter, which limits the signal frequency band to approximately 

3 
— f

g 
 - 2 fg  cps, to give the band-limited signal g(t) at the terminal 

J. 	f1  > 2 f
g  and f2 3 < — fgl  so that neither f1  nor f2 lie within the 

frequency band of g(t). The latter is a differentially-coded binary PM 

signal which carries the message information to be transmitted. Its level 

is very much lower than that of the sine waves at A and B, and it is added 

to these so that the modulating waveform at C is the sum of the waveforms 

at A, B and J. The signal at the output of the frequency-modulated 

oscillator can therefore be regarded as a varying-frequency carrier, with 

a frequency-time trace given by the sum of the fl  and f2  cps sine-waves, 

which has been frequency modulated by the binary PM signal at J. Thus the 

waveform at D is a PM-FM varying-frequency signal. This is fed to the 

output stage from which it is transmitted. It will be assumed here that 

the transmitted signal has a constant instantaneous-amplitude. 
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2.4.3 Receiver  

The block diagram of the receiver is shown in Fig. 6 and the wave-
forms obtained at different points in the circuit are shown in Fig. 7. 

The received signals are fed to the receiver input stage where they 

are filtered and then amplified in an automatic gain controlled amplifier. 

The gain of the latter is controlled by the level of the detected signal 

at the terminal C, in order to prevent possible overloading at this point. 

The output signal from the receiver input stage, at the terminal A, 

is fed both to an FM discriminator and to a piece-wise linear envelope-

detector followed by a squarer. The two resultant output signals are 

multiplied together in a product modulator to give the detected signal at 

terminal C. As shown in equation 9 (Appendix 1), this signal contains, 
in addition to a large number of intermodulation products, a series of 

waveforms each of whose voltage varies linearly with the instantaneous 

frequency of a different one of the received signals. Thus when the 

correct calling signal is received, two sine-waves of frequencies fl  and 

f2 cps appear at C. 

The waveforms at C are fed to two correlation detectors, one of which 

is tuned to f1 cps and the other to f2 cps. The first of these contains 

the f1 cps oscillator, a -90°  phase shifter, the product modulators 2 and 

3, and the low-pass filters 1 and 3. The second contains the correspond-

ing circuits associated with the f2 cps oscillator. 

The method of operation of the two correlation detectors is the same 

and is described in Appendix 2. Once stable equilibrium has been obtained, 

following the appearance of the fl  and f2  cps signals at C, the sine wave 

at the terminal E has the same phase as the fl  cps signal at C, and the 

terminal K has a positive voltage proportional to the level of the fl  cps 

signal. Similarly the sine wave at the terminal F has the same phase as 

the f2 cps signal at C, and the positive voltage at L is proportional to 

the level of the f2 cps signal. These correlation detectors have the 

properties of very-narrow-band filters and can operate correctly in the 

presence of high-level interference.B3'C12 

The output signals from the low-pass filters 3 and 4, at the terminals 
K and L, are fed to separate level detectors. The output signal from 

each of these is maintained at zero volts, unless the input signal exceeds 

a given threshold level, in which case the output signal is set to a given 

positive voltage. The positive-logic AND gate gives an output of zero 
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volts, unless both input signals are positive, in which case the output 

has a fixed positive voltage. This signal at the terminal M is fed to 

the integrator and level detector whose output signal at N goes positive 

in response to that at M, after a certain time delay, provided the sig-

nal at M remains positive during this period. The signal at N does not 

respond to rapid oscillations in the waveform at M. When the signal at 

N goes positive it operates the calling indicator, which informs the called 

subscriber that a received signal, having the correct address, has been 

detected. At the same time, the bistable circuit fed from N, which at 

the end of the previous call was set to give a negative signal at P, is 

now reset to give a positive signal at P, and this signal remains positive 

for the rest of the call. 

The output sine-waves from the f1  and f2  cps oscillators, at the 

terminals E and F, have equal levels and are fed via the adder to the 

frequency-modulated oscillator. The sum of these two waveforms frequency- 

	

modulates the oscillator. 	The received varying-frequency signals at the 

terminal A are fed via the delay network to the terminal B, and the delay 

introduced by this network is equal to that introduced between the ter-

minals A and C by the intervening circuits. Thus under conditions of 

equilibrium, the sum of the fl  and f2  cps frequency components at the ter-

minal C should correspond exactly to the frequency-time trace of the wanted 

varying-frequency carrier at the terminal B, neglecting the message modula-

tion, g(t), applied to the latter signal. The modulation index and mean 

frequency in the frequency-modulated oscillator are chosen so that the 

instantaneous frequency of the output signal at Q follows that of the 

wanted received carrier at B, with a constant difference of fd  cps between 

the instantaneous frequencies, again neglecting the modulation of the re-

ceived carrier by g(t)0 Thus the signal at Q is given by 

	

t 	 -I 
(fc- fd+ fe cos 2n f1 	fecos 2n f ) 

(15)  
and the signal at B is given by 

t 
s(t) = b(t)cos[ 27ti (f

c+ g(")+ u(r)+ fecos 2n fl7;+ fecos 2n f21 ) dt , 
o 

(16)  

assuming for convenience that both carriers have a zero phase angle at t=0. 

q is a constant and b(t) is the amplitude of the wanted received signal at B. 

fc is the mean value of the instantaneous carrier frequency at the transmitter 

[ 

r(t) = q cos 2n 
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output, and fe  is the peak deviation in the instantaneous carrier fre-

quency introduced in the frequency-modulated oscillator by each of the 

f
1 
and f

2 cps modulating wav3forms. The latter are taken here for 

convenience as fe cos 2nf1"c and fe cos 2nf2T . g(ti) is the message 

modulation applied to the varying-frequency carrier at the transmitter, 

and u(T) is a shift in the instantaneous carrier frequency introduced 

in the transmission path. t and T. are used interchangeably here for 

the time variable. 

The signal at the output of the product modulator 6 is given by 

s(t).r(t) = 2lia(t)q cos kr,Ji (fd + g(T) + u(-C)) d-c 

+ 2=b(t)q cos 2n 	(2fc-fd+ g(T)+u(T)+2fecos 2nfit +2fecos 2nf2v) dT . 

(17) 
1 -Tc  > fe >> fd' and fd is much less than the lowest value of 2  
(fc+ fecos 2nl1c +fecos 2nf,T). The maximum magnitude of u(t) could be 

of the same order as that of g(t), where max  I g(t)  I << fd. fl, f2  and 

the highest frequency component of g(T) are much less than fd. Again the 

highest frequency components of b(t) and u(t) would normally be very much 

less than f2 cps. 

Thus the frequency band occupied by the signal 

2 
1 
-io(t)q cos 2n Jr (2f

c-fd+g(t)+u(m)+2fecos 2Itf
1 
 +2fecos 2nf2T) dt 

(18) 
is much higher than that occupied by the signal 

lb(t)q cos 2n Jr (fd + g(T) + u(t)) 

there being negligible overlap between the two. This can be seen from the 

fact that the expression inside each integral is the instantaneous fre-

quency of the corresponding signal. 

The band-pass filter 1 removes the signal component 18 and passes 

the signal component 19 to the terminal R. The FM discriminator 2 does 

not respond to the slow variations in the amplitude of the received signal, 

0 

(19) 
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given by b(t), and gives the output signal 

g(t) + u(t) 	 (20) 

this being the deviation from fd  of the instantaneous frequency at time t, 

for the signal at R. The constant of proportionality is for convenience 

omitted here. 

Since the lowest frequency component of g(t) is approximately 1  fg  cps 
1 
g 

and 
3 
-T > f2, the highest frequency component of u(t) is normally very much 

less than the lowest frequency component of g(t). 

The band-pass filter 2 has a pass-band extending approximately from 

3  
1 
g 

-T to 2f cps, as for the corresponding band-pass filter at the trans-

mitter, so that it removes all frequency components outside the band occu- 

pied by the signal g(t) and passes only this signal to the terminal S. 

If the tracking error, u(t), is caused partly or wholly by unintended 

discrepancies between the varying-frequency carrier at Q in the receiver 

and the signal at D in the transmitter, instead of being caused entirely 

by frequency-modulation effects in the transmission path as assumed above, 

it will probably contain frequency components in the pass band of the band-

pass filter 2 and so introduce noise into the signal at S. In order to 

reduce the effects of this noise, a wider frequency-deviation can be used 

for the message modulation, thereby increasing the magnitude of g(t). 

The fg  cps sine-wave generator, the product modulator 7, the low-

pass filter 5 and the slicer, together form a coherent PM detector for 

the signal at S. 

The f
g 
 cps generator is of conventional design. It full-wave recti-

fies the signal at S, frequency divides the 2fg  cps component extracted 

from this signal and uses the resultant f cps signal, suitably phased, to 

synchronize an fg  cps oscillator. The signal at T is the oscillator out-

put sine-wave. This may be either in phase or in anti-phase with the 

fg  cps carrier of any particular signal-element at S. 

The signals at S and T are multiplied together in the product 

modulator 7 and the resultant signal at U is filtered in the post-detection 

low-pass filter 5 to give the waveform at V. In the slicer, this is sliced 

	

at zero volts and amplified, to give the square-wave signal at W. 	The 

latter is the coherent detector output signal. 

The element timing waveform generator uses the transitions in the 
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waveform at W to control a phase-locked oscillator, whose output wave-

form is shaped to produce the timing waveform at terminal X.B3 Each 

timing pulse at X is ideally located at the mid point of the corres-

ponding element in the waveform at W. 

In the sampling and bistable circuit, the waveform at W is sampled 

and regenerated to give the waveform at Y. This is then re-coded in 

the following bistable and comparator circuit to give an output binary 

signal at Z, in which an element "1" is represented as a negative level 

and a "0" as a positive level. 

This signal is fed via the gate to the receiver output terminal. 

The gate only transmits the received signal when the control signal at 

the terminal P is positive, that is when the received signal has first 

been identified as a correctly addressed signal. 
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2.5 Assessment of the Systems B and C  

If the message modulation applied to the varying-frequency carrier 

at the transmitter of System C, uses a relatively wide deviation FM 

signal, that is if max (g(t)( >> f , the two possible binary forms of 

any transmitted signal-element will be approximately orthogonal. Fur-

thermore the receiver in System C uses a process of incoherent detection 

on the received signal. In System B, however, the two possible binary 

forms of any transmitted signal-element are the negatives of each other, 

and coherent detection is used at the receiver. This suggests that 

when there are no frequency-modulation effects in the transmission path 

and the interchannel interference levels are low, the System B should 

gain an advantage of about 4 db over System C, in tolerance to additive 
white gaussian noise at high signal/noise ratios. Cl-05  

When the interchannel interference levels are high, the performance 

of System C would be appreciably poorer than that of System B, because 

of the threshold effect in the FM discriminator 2. The signal/noise 

ratio at the receiver input which marks the beginning of the further 

degradation in the performance of System C relative to System B as the 

signal/noise ratio is decreased, may be lowered by reducing the bandwidth 

of the band-pass filter 1 in the receiver of System C. This reduces the 

level of the noise entering the FM discriminator 2. The bandwidth of 

the filter must however be wide enough to handle the tracking errors in 

the instantaneous frequency of the signal at Q. Furthermore, the fre-

quency deviation used for the message modulation g(t), must be wide enough 

to give this FM signal an adequate tolerance to these tracking errors. 

There is therefore a strict limit on the minimum bandwidth which may be 

used for the band-pass filter 1. 

At the expense of an appreciable increase in equipment complexity, 

the threshold level in the FM discriminator may be reduced by the use of 

threshold extension techniques. The FM discriminator 2 may be replaced 

either by a frequency-compressive feedback FM demodulator or alternatively 

by a phase-locked FM demodulator, either of which should reduce the threshold 

level by a few decibels.C13 

Clearly the System B should be used wherever its advantage in toler-

ance to additive noise can be exploited. However it seems that in per-

haps the majority of practical applications the System C should give a 

better performance, because of its much greater tolerance to errors in 
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the tracking of the instantaneous frequency of the received signal carrier. 

2.6 Optimum Performance obtainable with Systems A, B and C  

Approximate upper bounds for the best possible performances of 

Systems A, B and C can be obtained as follows. 

Assume that there are m+ 1 statistically independent binary-coded 

signals, each with the same mean power level S and element duration T, 
and having a constant element energy 

E 	= 	ST . 	 (21) 

Suppose that there is no additive or multiplicative noise in the trans-

mission path and let m >>. 1. Assume also that the system is an idealised 

general-asynchronous-system using continuous varying-frequency signals, 

in each of which the frequency-time trace follows a random path such that 

the power-density spectrum is constant over the signal frequency band and 

essentially zero outside. All signals occupy the same frequency band, 

with bandwidth W cps. The sum of m of these signals has a mean power mS, 

with a constant power-density over the signal frequency band, and the 

resultant signal value is a random variable with an approximately gaussian 

probability density.A7'
D2
'C19 Thus the m interfering signals at a re- 

ceiver input can be considered as the approximate equivalent of band-

limited white gaussian noise, having zero mean and variance mS,B4  and a 
noise power per unit bandwidth (defined for positive frequencies only) 

given by 

_ mS N
o 	W 1  

E 	 WT so that 	= — 	 (23) N
o 

It has been shown that in an ideal binary PM (PSK) system using 

coherent detection, the probability of an error in a detected signal-

element is 

and it has been shown that in an ideal binary FM (FSK) system using 

(22) 

00 

P1 	
1 	

exp(- 2  - x
2  )dx 

1  
(24) 

0 



(-0 

0.3 

0-I 

0.03 

0.01 

0.003 EL
EM

EN
T

 EA
'R

O
R

 'P
R

O
B

A B
IL

IT
Y 

0.001 - 

37 

incoherent detection, the probability of an error in a detected signal-

element is 

1 	• 	E 
P
2 

=  -2- exp (- 2N ) 	
(25) 

0 

See references C2 and C5. 

The minimum element error probability of System A or B is therefore 

approximately 

(26)  
727 

and the minimum element error probability of System C is approximately 

1 	1,4T P
2 = —2  exp (- -71  ) . 

In Fig. 8, P
1 
 and P2 are plotted against m, for values of m in the 2WT 

range 20 

P1 
 

1 

co 

/exp(- 1." x2)dx 

/
.. -214=T 
m 

(27)  

to 2WT. 

0.04- 0-06 0.1 	o.a 	0+ 0.6 	I.0 
7n 
awr 

FIG. 8.  VARIATION OF "PI  19ND 1')  WITH;zn_ 
RWT 
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With the differential coding of the binary PM signals in Systems A, 

B and C, the minimum attainable error probabilities are in fact about 

twice those given in Fig. 8, at low error probabilities, and somewhat 
less than twice at error probabilities greater than 0.1. Differential 

coding need not of course be used, but more complex equipment is then 

required at the receiver, which must now allocate the correct binary 

values to the two possible carrier phases in a PM signal element. 

An ideal binary-coded PM-FDM or PM-TDM system has zero element 

error probability for m 4; 2WT-1, under conditions similar to the above. 

Thus an arrangement of RADAS of the type being considered, is unlikely to 

be an attractive alternative to this, except in applications where m is 
WT 2 

always less than -5— . In the latter case, an arrangement of RADAS using 

either System B or System C, has interesting possibilities because it 

involves no very complex equipment. 
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3.0 SIGNAL DESIGN FOR RADAS WITH MANY TRANSMITTERS AND A 

SINGLE RECEIVER 

3.1 Influence of the Detection Process on Signal Design  

In an arrangement of RADAS using a single receiver fed from many 

transmitters, it becomes economic to use considerably more sophisticated 

detection processes than those considered in Section 2.0. However, for 

these arrangements to be really effective, it is necessary that certain 

conditions are satisfied by the transmitted signals. 

The receiver here must carry out a detection process on the total 

received signal and determine the most likely binary values of the sig-

nal elements in each individual signal. If the individual received 

signals are not in element synchronism, or worse still if the elements 

in different signals have different durations which are not simply related 

to each other, the receiver cannot achieve anything approaching an optimum 

detection process on any one received signal-element, unless the detection 

process involving this element is of a much longer duration than that of 

the element. Any such detection process must generally involve con-

siderable equipment complexity in relation to the standard of performance 

obtained. For this reason it will be assumed here that all individual 

signals have the same element duration of T seconds and that all signals 

are in element synchronism at the receiver. Under these conditions the 

receiver carries out a separate detection process on each resultant (total) 

received signal-elements  to determine the corresponding binary values of 

the individual signals. 

If the individual received signals are modulated carriers in which 

the carrier frequency is very much greater than the signal-element rate, 

as in a typical radio system, then very small changes in the relative trans-

mission delays of the different signals can cause considerable changes in 

the resultant received signal. Although suitable arrangements of double 

modulation and incoherent AM and FM detection could probably be designed 

to tolerate these effects,Bl any such arrangement would not only involve 

appreciably greater equipment-complexity than that in the equivalent base-

band system, but it would also have a poorer performance, because the re-

ceiver can no longer have a knowledge of the carrier phase relationships 

between the different received signals. For this reason it will be assumed 

here that only baseband signals are used, the transmission medium being a 
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line or other suitable channel, which passes the signal frequency-band 

with no frequency modulation or translation effects. A telephone cir-

cuit which includes a carrier link would not be a suitable transmission 

path here.
C3 

Since we are interested primarily in systems having the best per-

formance for an acceptable degree of equipment complexity, it will be 

assumed that all transmitted signals are binary-coded antipodal signals 

and that each resultant (total) received signal-element is detected 

separately. An ideal transmission system using a binary antipodal signal, 

achieves the best possible tolerance to additive white gaussian noise 

together with the simplest detection process at the receiver, among the 

various possible systems using binary-coded signals and a.separate detec-

tion process for each received signal-element.B4/C3  

It will also be assumed that a transmitter generates a continuous 

serial stream of signal elements, each having a nominal duration of T 

seconds and occupying the (double sided) frequency-band -W to W cps. 

Consider an element starting at time t = 0. This element is produced 

at the transmitter by first generating a sequence of 2WT very short 
1 

rec- 

tangular pulses, which are regularly spaced at 2w  seconds. The,k th 

pulse here is given by c
k8(t - --) where k = 1, 	2WT. 6(t) is the 2W / 

unit impulse at t=0 and ek  may have any positive or negative value within 

some predetermined range. 

These pulses are passed through an ideal low-pass filter whose trans- 

fer function H(f) is given by 

-W <f < W 

11(f)= 	 (31) 
0 , 	elsewhere 

where f cps is the frequency. 

The signal at the output of the low-pass filter is fed over the 

transmission path to the receiver, where it is passed through another 

low-pass filter having a transfer function H(f), and then sampled at the 

2WT points given by t = 	. The delay introduced by the two low-pass 

filters and the transmission path is neglected here, and the transmission 

path is assumed to introduce no signal distortion. 

As indicated in Appendix 3, all the useful information in the received 

signal-element can be obtained from the 2WT sample values of this element, 
A8,A9 at the time instants t = k . 	The subsequent detection processes 
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in the receiver can therefore operate entirely on the 2WT sample values 

obtained for each signal-element. This enables a considerable reduction 

in equipment complexity to be achieved. 

It will be assumed that the receiver stores the 2WT sample values of 

a signal element in 2WT capacitor stores. Two sets of these capacitor 

stores are required, so that while one holds a signal element for the 

subsequent detection processes, the other is receiving the sample values 

of the following element. 

The column vector R, representing a received signal-element together 

with additive white gaussian noise, is defined by the 2WT sample values of 

the element, so that the kth component of this vector, rk, is given by 

/LA 
rk = 	n  

'12Wi n(2W) 

= sk  + nicl  for k = 1, ..., 2WT 	(43) 

where s(t) and n(t) are the received signal and noise waveforms respectively.. 

sk = s(2W) and nk = n(k).  

Thus 	R = S + N 	 (44) 

where S = [ stc ] and N = [nk] are the column vectors representing the 

received signal-element and the noise respectively. 

The arrangement studied so far in this section has involved a single 

transmitter feeding a single receiver. It has been assumed that a separate 

timing signal is fed from the transmitter to the receiver, so that the 

receiver can determine the correct time instants at which to sample the 

received waveform, and so that it also knows the positions of the element 

boundaries in relation to these time instants. 

Consider now the general case where there are many transmitters feed-

ing a single receiver. The timing signal is here generated at the receiver 

and fed via the common transmission path to all the transmitters in turns  

so that it arrives back at the receiver together with all the transmitted 

signals. The transmitted signal from each transmitter is synchronized 

to this timing signal, and all signals reach the receiver in element syn-

chronism. The arrangement is as shown in Fig. 9. 
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TRANSMITTER TRANSMITTER 

FIG. 9.  SYNCHRONIZATION OF THE TRANSMITTED stanns. 

A separate transmission path, following the same route as the common 

transmission path, can if necessary be used for the timing signal, provided 

that the separate transmission path introduces everywhere the same delay 

as the common transmission path. The received timing signal informs the 

receiver of the correct time instants at which to sample the received wave-

form and also of the positions of the element boundaries in relation to 

these time instants. 

When there are m active transmitters, a received signal-element vector 

S is the sum of m individual signal elements Qi, for i = 1, 	m, so 

that 
m  

= 	Qi 
	 (45) 

i=1 

and R = S + N as before. 

The arrangements just outlined for generating and receiving the sig-

nal waveforms, are both simple and effective. Although the transfer 

function H(f) is not physically realizable, a reasonable approximation to 

this can normally be obtained in practice. Where the maximum tolerance 

to errors in the sampling instants is required, it will be necessary to 

use a wider and suitably rounded frequency spectrum for the transmitted 

signals. One such arrangement is considered in reference B4. See also 

the references Fl to F3. For the purposes of this thesis, however, the 

ideal arrangement described above, will be assumed. 
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3.2 Unique Detectability 

The receiver accepts the total received signal and in the detection 

of each element it determines the most likely binary values of the m 

individual signal-elements. It is assumed that the receiver has prior 

knowledge of the number of received signals and of their element addresses. 

The element address of an individual signal does not vary over the duration 

of that signal, so that the arrangement of RADAS considered here is a 

channel-synchronized synchronous system. 

In the ideal case, the levels of the different received signals may 

be chosen as required and do not vary with time. In this case a total 

received signal-element cannot be detected uniquely if and only if it has 

the same vector for two or more different sets of the binary values of 

the individual signal-elements. 

Suppose that for a given set of m received signals, there are at 

least two sets of binary values giving the same total signal-element. 

Consider two of these sets. Suppose that x of the signals have differ-

ent binary values in the two sets and m-x have the same binary values. 

Since for each signal, an element "1" is the negative of an element "0", 

the resultant of the x signals in one set must be the negative of the 

resultant in the other, whereas the resultant of the remaining m-x sig-

nals must of course be the same in the two sets. Thus the sum of the x 

signals in each set must be zero. It follows that if a set of m signals 

cannot be uniquely detected, then a subset of these signals has a zero 

resultant vector. The converse is also true, since any set of x signals 

having a zero sum is unchanged if all x binary values are changed, which 

necessarily implies that these cannot be uniquely detected. 

If for a given set of m element-addresses, the resultant of the 

corresponding m signal-elements is uniquely detectable for all possible 

sets of binary values of the m elements, then the set of m element-addresses 

will be said to be uniquely detectable. Clearly, a necessary and suffic-

ient condition for this is that the resultant signal vector has 2m  differ-

ent possible positions in the signal space.. 

From the definition of linear dependence and the fact that the two 

binary forms of a given element-address are the negatives of each other 

and therefore linearly dependent, it follows immediately that if a set of 

element addresses is not uniquely detectable then these addresses are 
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linearly dependent. The converse is however not true. Consider, for 

instance, two signal vectors which are colinear. Suppose one vector has 

twice the length of the other. There are four different resultant vect-

ors, corresponding to the four different combinations of the two binary 

values, so that the element addresses are uniquely detectable. Neverthe-

less, the vectors are linearly dependent. Linear dependence does not 

therefore necessarily imply that the signals cannot be uniquely detected. 

From the above we have:- 

Theorem 1. A necessary and sufficient condition for the unique detect-

ability of the sum of m binary antipodal signals is that there is no 

combination of binary values for which a subset of these signals adds 

to zero. 

Theorem 2. A sufficient condition for the unique detectability of the 

sum of m binary antipodal signals is that these are linearly independent. 

Another important case to be studied is that where the levels of 

the different received signals cannot be chosen as required and may have 

a wide range of values. The levels may for instance vary with time. It 

is shown in reference F7 that the necessary condition for unique detect-

ability under conditions equivalent to those here, is that the signals are 

linearly independent. This can also be seen by applying the definition 

of linear dependence to the received signal vectors 

vectors 	are defined to be linearly dependent 

scalarvaluesluilnot all zero, such that 

{Q-.1 • 
if there 

m signal 

exist m 

     

u. Q. = 0 . 	 (46) 

Under these conditions it must always be possible to arrange a subset of 

these signals to add to zero, by suitably adjusting the signal levels and 

binary values. Thus to ensure unique detectability the signals must now 

be linearly independent. 

If 2WT = v, so that a signal element has v degrees of freedom and 

the corresponding vector has v components, then there cannot at any one 

time be more than v linearly independent element-addresses. Thus where 

the received signals must be linearly independent, there cannot be more 

than v signals received simultaneously. 
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Linear independence is a sufficient condition to ensure unique 

detectability in the two different situations considered above, but 

whereas in the second of the two cases it is also a necessary condition, 

in the first it may often be unduly restrictive. 

3.3 Signals of Constant Power Level 

In Section 3.2 no particular signal code or waveform was assumed 

and so no restrictions were imposed on the element addresses on this 

account. Such an arrangement, although extremely flexible, could in-

volve fairly complex equipment. The arrangement which achieves perhaps 

the best compromise between flexibility and equipment economy, is that 

where all the components of a signal vector have the same magnitude, 

different signals having different arrangements of positive and negative 

signs in the v components. 

Let an individual received signal-element be given by 

Qi  = zi  Ci 	 (47) 

where zi  is a non-zero real scalar whose magnitude is determined by the 

received signal level and whose sign is determined by the element binary-

value. C. is a column vector whose v components have unit magnitude and 

signsdeterminedbytheelementaddress.C.will for convenience be 

considered as the signal-element address, so that it is assumed here that 

no two addresses are distinguished from each other simply by the signal 

level.ancez.is  a scalar, two Qiis are linearly dependent if and 

only if the corresponding Cilb are also linearly dependent. 

If two received signal-elements have the same address, Ci, these 

are not necessarily uniquely detectable, since with different binary values 

and the same level, the two signals will add to zero. It will therefore 

be assumed that for the received signals, C. 0+ C.
a  for all i j. Under 

these conditions, two signal vectors must always span two dimensions in 

the v-dimensional signal space, so that these signals must be linearly 

independent. Thus if there are only two received signals, these will 

always be uniquely detectable. 

Consider three received signals, 	J , whose resultant (total) 

element is given by 

S
T 

3 

= T, 
i=1 

z.C. = Z
T
C I (48) 
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where C = [c..] is a 3xv matrix whose i th row is the element-address ij 
C1, and Z is the column-vector r

3
z.1 with three components. 

L 	 1 
The three signals, tg,i} , can only be linearly dependent if the 

rank of C is less than 3. Since Ie..1j' = 1 for all i and j, and since 

notwoofthethreeaddressesiC.)  Ican be linearly dependent, it is 

always possible by elementary transformations to convert the matrix C into 

the matrix 

1 1 1 d14  • • • div  

-1 1 1 d24  . . . d2v 
1 -1 1 d_,

,4 
. . . d

3v 

where Idij  I = 1 for all i and j. D clearly has rank 3, so C must also 

haverank3.ItimmediatelyfollowsthattheadAresses.p./and so the 
1j 

three signals { 	, must be linearly independent. Thus if there are 

only three received signals, these will always be uniquely detectable. 

Consider four received signals whose resultant (total) element is 

given by 

where C = NJ] is a 4xv matrix whose i th row is Ci, and Z is the column-
vector [z1] with four components. 

The rank of C cannot be less than 3. Suppose that it is 3. Since 
notwoorthreeoftheaddresses.p./ 

J 
 can be linearly dependent, it is 

always possible by elementary transformations to convert the matrix C 

into the matrix 

.._ •••• 

1 1 1. di4 . 	. d_ Iv 
= -1 1 1 	d24  . . 	. d2v 

1 -1 1 	d,,,*  . . 	. d3v 
1 1 -1 	d44 ' ' 	. d4v  

where the 4 x 3 matrix 

1 1 1 
-1 1 1 
1 -1 1 
1 1 -1 

4 

	

z.c. 	zc, 

	

T 	T 	
(49) 

i=1 1. 
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and D each have rank 3. Idij  I = 1 for all i and j. 

If ZTD = 0 2 (50) 

then 	-z1  = z2 
= z

3 
= z4 	(51) 

gives the values of all Z satisfying equation 50. 

Since the elementary transformations carried out on the matrix C, 

involve only the interchange of rows or columns and changing the signs 

of all components in a row or column, all vectors Z satisfying the equa-

tion Z
T
C = 0 must also satisfy 

zi I = 	1221 	Iz3 I 	= 	1 z4 1 

 

. 	(52) 

 

It follows that if the four received signal-elements are linearly 

dependent, then the element addresses will not be uniquely detectable for 

equal received signal-levels, but they will be uniquely detectable if the 

received signal-levels are not all the same. 

Consider now five received signal-elements whose addresses CT. } 

are the rows of the matrix C, where 

r -1 1 1 1 
• I 

3. 
3. -1 3. 3. -1 
3. 1 -1 3. -1 
3. 1. 1 -3. -1 (53) 
1 1 1 1 -3. 

C is a 5x5 matrix of rank 4, so that the five signal-elements are linearly 
dependent. The solution of the equation Z

T
C = 0 is 

ZT 
	

u(-1$  -1, -1, -1, 2) , 	(54) 

where u is a real scalar with any positive or negative value. Since 

ZTC is the total signal-element received, the five element-addresses 

are not uniquely detectable when the first four signals all have the same 

level and the fifth signal has twice this level. They will however be 

uniquely detectable for any other set of relative signal-levels, say for 

instance when all the received levels are the same. 

Thus for more than four received signals, linear dependence does 

not necessarily imply that these addresses will not be uniquely detectable 

for equal received signal-levels. 

It may incidentally be shown that for equal received levels no odd 
number of these signal vectors can add to zero. 
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If the signals of constant power level considered here are to be 

of value in an application of RADAS, it is important that an adequate 

number of possible addresses {Ci} should be available. In Appendix 4 
an approximate upper bound is derived for the number of available element-

addresses, for the important case where there are up to v received sig-

nals which have equal levels and are linearly independent. The result is 

plotted in Fig. 10 below. 

a000 - 
TI 

1500 - 

1000 - 

500 - 

io 	Rio 30 	4.0 

FIG. 10.  MAXIMUM NUMBER OF DIFFERENT RDDRESsES J  fl )  FOR 

LINERRLY-INDEPENDENT SIGNALS OF CONSTANT POWER 

LEVEL RND EQUAL. 'RECEIVED LEVELS. 

In view of the criteria used to derive this upper bound, it is un-

likely to be approached very closely by the maximum number of addresses 

actually available. The upper bound probably gives a better indication 

of the maximum number of addresses obtainable when the received addresses 

are only required to be uniquely detectable for equal received levels, and 

not necessarily linearly independent. 

An important property of the signals of constant power level, when 

v >> 1, is that so long as the element addresses are uniquely detectable 

and the received signals have equal levels, the minimum distance between 

two possible positions of the resultant signal vector, for any number of 
2 simultaneously received signals, is J1F — times that when only one signal is 

received. In the worst case, where there are two received addresses 

having this minimum distance between two possible positions of their re-

sultant vector, there is a probability of typically 1 in 2 that the 
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resultant vector actually transmitted will be separated from another poss-

ible position by this minimum distance. Thus if an optimum detector is 

used, the tolerance to additive white gaussian noise in the two channels 

using these addresses, is reduced to nearly 10 10610 4 db below that where 

only one signal is received. In the latter case the tolerance to additive 

noise is the same as that in the equivalent FDM or TDM system using anti-

podal signals. 

The optimum signal design here is taken to be that which maximizes 

the minimum distance between two possible positions of the resultant (total) 

signal-vector for the m received signals. Where there are many trans-

mitters and many receivers, as in the case of the systems A, B and C, the 

optimum signal design is taken as that which minimizes the maximum project-

ion of any unwanted signal onto the wanted individual signal-vector. The 

optimum signal design for the systems A, B and C may clearly result in 

received signals which are not uniquely detectable and which are there-

fore unusable here. 

3.4 Adaptive Coding to Ensure Linear Independence  

Attempts have been made to develop parity-check codes such that unique 

detectability can be ensured for up to a given number of received signals. 

p components are added to each signal-element, to give a total of v p 

components, in which all components have magnitude unity and the v com- 
(v-1) ponents can generate 2 	different addresses. Although  a limited degree 

of success was achieved with some of the codes investigated, it became 

evident that this approach did not in general lead to very efficient codes. 

A better method of determining suitable element-addresses for unique de-

tectability, appears to be by direct selection of the element addresses, 

using a computer. 

Another approach to this problem is to use adaptive coding. The 

arrangements of RADAS considered here are already in one sense adaptive, 

since a timing signal is fed from the receiver to the various transmitters, 

to adjust the transmitted signals to be in element synchronism at the re-

ceiver input. Under these conditions it only requires an additional 

control signal to be fed from the receiver to the various transmitters, 

to enable each transmitted signal to be modified in some way that is 

dependent on the other transmitted signals. By this means the trans-

mitted signals can be adjusted to be linearly independent and therefore 
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uniquely detectable for all received levels. 

Consider v signal vectors given by the rows of the v x v matrix 

all b12 1315 . . . b1v 

b21 a22 b23  . . . b2v  

(63) 
e 	• bil bi2 • 	aii 	biv 

bvl bv2 	bvv 

j 
wherea..ij  isanevenintegerandbI..enodd integer, for all i and j. All 

components of the above matrix are odd, except for the first v-1 components 

of the main diagonal. 

Add the last row of M to each of the other rows, to give the matrix 

bll a12 al3 • • • alv 

a21 b22 a23  • . • a2v  

ail 	ail • • • b.. • a. 
iv 

bvl bv2  
vv 

where as before 	is an even integer and 	an odd integer, for all i aij 	bij  

and j. All components of this matrix are even except for the main dia- 

gonal and the last row. 

Add each of the first v-1 rows of the above matrix to the last row, 

to give the matrix 

b
11 alt a13 • • • alv 

a21 b22 a23  • . a 2v 

ai2  • • • b.. • a. ail 	
11 	Iv 

a
vl av2 vv 

L = =( 64 ) [e3.3 

where all components are even except for the main diagonal whose components 

are all odd. 



The determinant of this matrix is given by 

51 

detL = 

 

(-1)e ilk1 i2k2 ••• ivkv ' 
( 65 ) 

   

where k1,  k2, 	kv range over all the v! permutations of the numbers 

1, 2, 	v:  taken v at a time, and where e is the number of inversions 

of kl„ k2, 	from the normal order 1, 2, ..., v. 
A10 

Clearly only one of the v: terms on the right hand side of equation 

65 is odd, namely 

(-1)e ill i22 	= b b 	b 11 22 • 	vv • 
	(66) 

The value of this term cannot be cancelled to zero in equation 65, since 

the sum of the remaining terms must be even. The components biij here 

are of course those in equatiollv64. 

Thus 	det L 	0 . 	 (67) 

Since the transformations by means of which the matrix M is con- 

verted into the matrix L, do not affect the value of the determinant of 

the matrix, it follows that 

det M 	0 . 	 (68) 

Since both L and M are non-singular, the v signal-vectors given by 

the rows of L or M must be linearly independent. Thus we have 

Theorem 3.  A sufficient condition for v signal-vectors, each with v 
components, to be linearly independent, is that these when multiplied by 

a real constant are given by the rows of L or M. 

Under the most unfavourable conditions, the signal vectors given by 

the first v-1 rows of the matrix M give a better tolerance to additive 

white gaussian noise than do the signal vectors given by the v rows of 

L or M. Thus the former signal-vectors are to be preferred. 

If for i = 1, ..., (v-1), the original i th signal-vector has v 

components di  .. such that I d.. = 1 for j = 1, ..., v, then the v-1 

signal-vectors can be made linearly independent by arranging that I dal 

is even for i = 1, ..., (v-1). Thus each signal-vector has the magnitude 

of one component changed. With this arrangement a maximum of v-1 linearly 

independent signals can be transmitted simultaneously, the total number of 
v-1) available addresses being 2( 
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The receiver here feeds back to the transmitter the element timing 

signal and an additional signal to indicate which of the v components 

must have its magnitude changed in the next new signal to be transmitted. 

This component must of course not coincide with any of those whose magni-

tudes have been changed in the signals already being transmitted. 

, since for a received element-address to 

be uniquely recognizable after one of its components has been set to zero, 

each original element-address must differ from every other in at least 

two of the v components. 2(v-2) 
is nevertheless considerably larger than 

the corresponding value of n in Fig. 10 (Section 3.3). 	When v >> 1, 
the minimum distance between two possible positions of the resultant 

signal-vector for m received signals, is here -- 	times that in the 

equivalentrion-adaptivesystern,whereM= 1 	for all i and j 

and the element addresses are selected to ensure unique detectability. 

Thus if an optimum detector is used, the minimum tolerance to additive 

white gaussian noise in a channel of the adaptive system, is about 3 db 

below that in the equivalent non-adaptive system, and therefore approx-

imately 10 log10 2 db below that of a channel in the equivalent FDM or 
TDM system. 

The alternative to the above approach is to give I d.. I an even 

value greater than or equal to 2, for i = 1, 	(v-1). Again, the vxv 

matrix D = [ d
3.3  . .1 , where Id.. I 

all i # j, is strictly diagonally 

by a well known theorem.A12 The 

> v-1 for all i and I d..3.31 = 1 for 

dominant, so that it is non-singular, 

v signal-vectors given by the rows 
of this matrix may therefore be used, since they are linearly independent 

regardless of the exact value of I did 
• 

The most effective of the adaptive systems are clearly those where 

> v-1. The transmitted signals here are nearly orthogonal and 

the tolerance to additive noise approaches that of the equivalent TDM 

system. An individual transmitted signal-element can here be considered 

to contain two components: the original RADAS signal in which 1 d..
ijI = 1 

for all i and j, and an adaptive component in which I did > v-2 for 

all i and I d1. 
3  
.1 = 0 for all i j. The arrangement is thus a combina-

tion
1 

 of RADAS and conventional TDM. It does not however appear to have 

any overall advantage over the equivalent message-switching system, which 

An interesting and basically simple arrangement is that where 

dii = 0 for i = 1, ..., (v-1). With this arrangement the total number 

of available addresses is 2(v-2) 
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uses a conventional TDM signal and transmits the message-address separate- 

ly, before the start of the message. Such systems are considered in 

some detail in reference B4. 

3,5 AM System  

This is an alternative arrangement of RADAS, using adaptive coding, 

which may under certain conditions have useful advantages over the equi-

valent message-switching system. In this arrangement, instead of each 

individual signal-element carrying the address of the signal, the dura-

tion of the address is extended in time so that it takes several successive 

elements of the same individual signal to carry the message address, just 

as in Systems B and C.B3 The arrangement is based on a conventional 

TDM system using bipolar signals in which Ida' = 1 for all i and dij  = 0 

for all i # j. The successive binary digits which carry an individual 

signal, that is the successive dii  for a given value of i, are amplitude 

modulated by the addition to these digits of binary-coded digits carrying 

the address of the called subscriber. Each signal-digit has added to 

it one address-digit. The address digits have an amplitude of one tenth 

to one fifth of that of the signal digits, giving a depth of modulation 

of 10 to 20°4 . An element "0" of the address digits is given the same 

sign as that of the signal digit to which it is added, and an element "1" 

is given the opposite sign. The message address has a fixed length of 

h digits and is repeated sequentially. Clearly the different message 

addresses can be selected from an extremely wide range, and the preferred 

arrangement, which will be considered here, has a minimum Hamming distance 

of 3 between any two addresses. 

The receiver feeds an additional timing signal to the various trans-

mitters in order to synchronize the message addresses received from these, 

so that the receiver has prior knowledge of which is the first digit in 

each received message-address. The receiver detects the message address 

of an individual received signal, by applying AM envelope detection to 

the appropriate digits, d..
11, of the total received signal. That is, 

the receiver determines the magnitude of each received digit and subtracts 

from this the magnitude of an unmodulated signal-digit, to give the corres-

ponding detected address digit. A low-pass filter whose impulse response 

is a single rounded positive pulse with an effective duration 2gt, where 

g = 100 to 1000 and t is the repetition period of the address, is allocated 
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to each of the h digits in the message address. A separate set of h 

low-pass filters is allocated to each of the v individual received sig-

nals. A current or voltage pulse proportional in value to a detected 

address digit, is fed into the appropriate low-pass filter, each time 

this digit is received. The output signal from each filter is compared 

with both a positive and a negative threshold level, each having half 

the magnitude of the corresponding maximum signal-level. If the output 

signal has a value outside the range included between the two threshold 

levels, the corresponding address digit is detected as being present and 

as having the appropriate binary-value. A negative output-signal re-

presents an element "1" and a positive signal an element "0". In the 

absence of noise, g consecutive appearances of the k th address-digit, 

following its absence for a period somewhat greater than 2gt, will just 

cause the k th digit to be detected as present. Similarly the dis-

appearance of the k th digit in g consecutive addresses, following its 

presence for a period somewhat greater than 2gt, will just cause the 

digit to be detected as absent. Immediately the presence of at least 

h-1 of the h digits of a valid message-address, is detected at the re-

ceiver, the address is recognized and the detected signal is automatically 

connected to the corresponding receiver output terminal. 

It is shown in Appendix 5 that with additive white gaussian noise 

at the receiver input and with a high signal/noise ratio, the probability 

of a failure in the detection of a message address, at a given instant, is 

very small compared with the probability of a signal-element error, so 

long as g > 	, where x is the magnitude of an address digit relative to 

that of a signal digit. The probability of the wrong message-address being 

detected is an order of magnitude lower and so should not be important. 

Since the depth of amplitude modulation applied to the signal digits, 

dii, is only 10 to 20°/0  , the resultant reduction in tolerance to addi-

tive white gaussian noise of a transmitted signal is only about 1 to 2 db. 

Furthermore, the individual transmitted signals are orthogonal as in a 

conventional TDM system, so that the tolerance of this arrangement to 

additive noise is only about 1 to 2 db poorer than that of the equivalent 

message-switching system which uses a conventional TDM signal. The 

arrangement is therefore equally suitable for data or digitally-coded-

speech signals. 

The particular advantage of this arrangement over the equivalent 

message-switching system, is that since the message address is being trans-

mitted continuously with the signal, temporary loss of transmission caused 
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by "transient interruptions" or long bursts of high-level noise,C3  will 

not cause the loss of the remainder of the message. The arrangement is 

therefore particularly suited for the automatic routing or message switch-

ing of long signal-messages. On the other hand, because of the appreci-

able time delay of say 0.1 to 1 seconds in the detection of the message 

addiess at the receiver, the arrangement is not suitable for the trans-

mission of short messages, whose duration is of this order of magnitude. 

Nor can any effective use be made here of the gaps in a speech signal, 

by stopping transmission during the gaps and so reducing the occupancy 

of the common transmission path. 

The system will handle up to v simultaneous signals and its toler-

ance to additive noise will approach the best that can be expected from 

any arrangement of RADAS. 
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4.0 SIGNAL DETECTION IN RADAS WITH MANY TRANSMITTERS AND  

A SINGLE RECEIVER  

4.1 Optimum Detection Processes 

It is assumed here, as in Section 3.1, that the individual received 

signals are binary antipodal baseband signals in element synchronism, 

each total received signal-element being detected separately. 

Where the receiver has prior knowledge of the element addresses 

and levels of the received signals, the detection process which minimizes 

the element error probability in each channel, is similar to that des-

cribed on pages 32-35 of reference F24. This is of no great practical 
interest because of its complexity and so will not be considered further 

here. 

Assume that the individual received signal-elements are statistically 

independent and equally likely to have either binary value. The signals 

are received in the presence of additive white gaussian noise, and the 

receiver has prior knowledge of the element addresses and levels of the 

received signals. For the minimum probability of error in the detected 

binary values of an element detection process, the resultant or total vector 

corresponding to these binary values must be that nearest to the received 

vector in the signal space.A8'F24 

In an element detection process here, the receiver generates in turn 

the resultant vectors corresponding to the different combinations of binary 

values of the individual signal-elements. Each resultant vector is sub-

tracted from the received vector, whose components are stored in v storage 

capacitors and remain unchanged throughout the element-detection process. 

The components of the difference vector are squared and added, to give the 

square of the distance between the two vectors. In the first subtraction 

process, the distance measure together with the associated binary-values 

are stored. In subsequent subtraction processes no action is taken, un-

less the distance measure is smaller than that stored. When this occurs, 

the new distance measure together with the associated binary-values re-

place those stored. Thus at the end of the element-detection process, 

the receiver has a record of the detected binary-values. Since the separ-

ate operations in the detection process are carried out sequentially, 

these can be performed by a single piece of equipment, so that no great 

equipment complexity is involved here. 
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If there are m received signals, the receiver must carry out se-

quentially 2m  separate subtraction processes. Where the received signal 

is a 40 k-bps digitally-coded-speech signal, it would not be economic to 

carry out more than about 100 subtraction processes, so that no more than 

6 or 7 simultaneous signals could be handled. Clearly, for a detection 
process of this type to be of any real practical value, it is important 

that the number of separate operations in an element-detection process, 

should increase linearly and not exponentially with the number of signals 

received. 

When the receiver has no prior knowledge of the levels of the re-

ceived signals and these may vary over a wide range, the above detection 

process would not in general operate correctly. The received signals must 

now be linearly independent and the optimum detection process is one of 

linear filtering.F7' F23 

Consider the detection process at the receiver for a total received 

signal-element. Suppose that the receiver knows only the number, m, and 

the element-addresses of the individual received signals. The element-

address of the i th signal is given by the real column-vector Y.. which 

has v components and unit length. The m element-addresses { Yi  3. are 

assumed to be linearly independent. Let the individual received signals 

in the element detection process be given by 

Qi  = z. Y. for i = 1, 	m 1 	(74) 

where zi  is a scalar having any positive or negative value. The total 

signal-element is 

(75) 

Let the received noise-vector be N, whose v components are statistically 

independent gaussian random variables with zero mean and variance cr2. 

Thus the resultant received vector is 

m 

R = S + N = 	 z Y 	N = YZ + N 
	

(76) 

wheretheithcolumnofthevxmmatrixYisY.and Z is the real m- 
1 

component column-vector [zi] 0 

Since the m signals .[Qii are linearly independent, they span an m-

dimensional subspace of the v-dimensional signal space. For the given m 
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element-addresses, the signal S is uniquely determined by the m signals 

f
al and vice versa. In the presence of white gaussian noise at the receiv- 

er
2  input, and with no prior knowledge of the .5. z./ or 0- , the best estimate 

that the receiver can make of S is to take this as being the vector in 

the m-dimensional subspace, closest to R. Thus, if the projection of 

R onto the subspace spanned by the m addresses { 	is the vector P, 

then P is the best estimate of S. 

The projection of R onto Yi  is diYi„ where 

d. = YYR . 1 1 (77) 

d.istheinnerproductofthevectorsRandY..Since the m linearly 

independent vectors {Yil form a basis for the subspace spanned by 

these vectors, the vector P is completely and uniquely defined as the 

vector in this subspace whose projection onto Y, for i=1, 	m, is 

diYi. There is a one-to-one relationship between P and the dd. . 

Ifthereceivertakesxastheestimatedvalueofz.,for 1 	 1 
i=1, 	m, the estimated value of S is 

x. Y. = YX 
1 1 

where X is the real m-component column-vector [xi] . The vector YX lies 

in the subspace spanned by the m vectors Yi 

If now 	Y.(YX)=d.,for i=1, 	m 	(79) 

the projection of YX onto Y., for iMly my my is diYi. 

Thus 	YX 	 (80) 

so that the values of {xii given by equation 79 are the estimated values 

of 	given by the vector P. 

From equation 79, 

Y YX = D 	 (81) 

where D is the real m-component column-vector [d.I  ] . 

Thus 	AX 	= 	D , 	 (82)  

where 	A 	= 	YT  Y . 	 (83) 

So that 	X 	= 	Iclp . 	 (84) 

Since the m addresses [ Yi  I are real and linearly independent, 

i=1 
(78).  
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A = ra..1 is a real mxm symmetric positive-definite matrix, so that its 
L IJJ 

inverse A-1 clearly exists. The components of A are the cross-correlation 

coefficients for the different pairs of element addresses. 

d. is the output signal obtained in response to the received vector 

R, from a correlation detector whose reference signal is Yi. This cor-

relation detector multiplies each component of R by the corresponding 

component of Yi  and adds the products, to give the output signal 1/.12. 

Since the v components of R are stored at the receiver input throughout 

the detection process, the separate operations of multiplication and 

addition are carried out simultaneously. The received vector R must be 

fed simultaneously to m correlation detectors tuned to the m element-

addressesp.i.The output signals from the correlation detectors 

are the m components of the vector D. To obtain the m estimates {xi/ 
of the received signal values zi 

J. 
 , the output signals of the cor-

relation detectors must be fed through a network which performs the 

linear transformation Al on these signals. Thus the optimum detector 

is as shown in Fig. 11. 

dl  

cla  

CORR ELATION DETECTOR 

TUNED TO yi  

CORRELATION DETECTOR 

TUNED TO ')/R  

CORRELATION DETECTOR 

TUNED TO yin 

F!G, It.  OPTIMUM DETECTOR FOR 777 RECEIVED SIGNALS tapi3 
WHERE THE blij ARE KNOWN BUT THE RECEIVER HAS 

NO PRIOR KNOWLEDGE OF THE DJ OR 

This detector minimizes the probability of error in an element detection 

process. 

Since the transmitted signals are antipodal, the detection process 

is not affected by a constant attenuation applied to the xi  . Thus the 
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network A 1 can under favourable conditions be simply a set of m2 attenua-

tors together with arrangements for combining the m signals at each output. 

In the final stage of the detection process, not shown in Fig. 11, the re-

ceiver examines the signs of the {xi} and allocates the appropriate binary-

values to the corresponding 

Where the receiver is always fed with m signals having m given 

addresses, but the receiver has no prior knowledge of the fz. 	2/ or ail, 

the arrangement of Fig. 11 achieves the best compromise between performance 

and equipment complexity. The arrangement can handle up to v simultan-

eous signals. 

In the RADAS situation, the number and addresses of the received 

signals are continuously changing. Since 

A-1  = 
[dai  et A] for i, j = 1, ...2  m , 	(85) 

wheree—isthecofactorofaiv it follows that the addition of a new Ij 
signal to the m already being received, will not just require 2m+1 ad-

ditional components for A-1 but will in general cause the majority of the 

existing components to be changed. Clearly any such arrangement could 

become extremely complex. It is therefore of interest to examine alterna-

tive methods of performing the linear transformation A 1. 

4.2 	Detection with Signal Cancellation  

In 1936 L. A. MacColl proposed an ingenious arrangement for in-

creasing the transmission rate of a serial digital transmission systemF5. 2
F6 

 2  

The essential feature of his arrangement is as follows. 	Where each 

separate pulse of the received digital signal is lengthened, due to a 

combination of attenuation and delay distortions in the transmission path, 

the receiver need only use the first portion of each received pulse in order 

to achieve correct detection of the pulse. Assuming that the transmission 

path has fixed attenuation and phase characteristics, the remaining portion 

of each pulse is completely determined for a given amplitude of the sample 

value obtained at the end of the first portion. 	It follows therefore 

that after having sampled a pulse, the receiver can generate an exact 

replica of the remaining portion and add the inverted replica to the re- 

ceived signal, so as to cancel out the remainder of the pulse. 	Thus 

immediately after a pulse has been sampled at the receiver, the pulse is 



61 

reduced to zero and the receiver is then ready to begin receiving the 

next pulse. Received signals in which there is appreciable intersymbol 

interference between neighbouring pulses, can be successfully detected in 

this way. 

It is evident that this basic technique can be applied not only to 

a serial stream of pulses but also to a number of simultaneously received 

signals of widely differing levels .B4  Suppose that there are m received 

signals tziYi  in element synchronism, where the element addresses fYil 

are real unit vectors which need not here be linearly independent. 

Let I z1  I >>1 z2 » . . . 
>> I zm I 	

If the signals!. 1 1. are bin- 

ary antipodal signals and the receiver knows the levels flzilj and addres-

ses i Yi  . of the individual signals, then the receiver can detect the m 

signals as follows° 

The resultant received vector R is given by 

R = S + N =Qi  + N = 	+ N , 	(86) 
i=1 	i=1 

where N is the noise vector, as before. R is fed simultaneously to m 

correlation detectors tuned to the m element-addresses, as in Fig. 11 

but with the network A-1 omitted. The output signal from the first 

detector is sampled and depending upon whether this is negative or posi-

tive, the signal - 
z1 I Y1 or  I zl I Y1 is subtracted from R at the input. 

If the output signal is zero, the subtracted signal is selected at random 

from its two possible values, 	1 z11 Y1 . If z1
Y1 is correctly detected 

it is eliminated from the m received signals at the detector input. The 

output signal from the second correlation detector is now sampled and the 

signal z217..2  similarly eliminated from the detector input. This process 

continues until all m signals have been detected and cancelled. In the 

absence of detection errors, only the noise vector N now remains at the 

input. Although this is clearly not an optimum detection process, it is 

very simple to implement. 

In the arrangement of MacColl's proposal, it is assumed that the 

pulses following that being detected, do not cause intersymbol interfer-

ence in the detection of this pulse, so that incorrect detection cannot 

be caused on this account. In the arrangement here, however, the signals 

remaining to be detected in any element detection process, may cause the 

incorrect detection of an individual signal-element or at least a noticeable 

reduction in tolerance to additive noise, if the differences between the 
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4.3 Iterative Detection Processes using Large Steps  

4.3.1 Constraints I, J and K 

In the arrangement described towards the end of the previous section, 

the received vector R is stored throughout the whole of the detection 

process, so that it is possible to repeat the detection cycle, if neces-

sary several times. Thus after the completion of the first detection 

cycle, the outputs of the correlation detectors are again examined se-

quentially and in the same order as before. When the sign of the i th 

correlation-detector output signal is not in agreement with the sign of 

the i th signal already subtracted from R, for any value of i, and the 

magnitude of the correlation-detector output signal exceeds Izil then 

the sign of the subtracted signal is changed. When the signs disagree 

and the magnitude of the output signal equals I zi  I then the subtracted 

signal is selected at random from its two possible values, + Izi l Yi. 

In all other cases the subtracted signal is left unchanged. The detection 

cycle may be repeated as many times as required. This is of course an 

iterative detection process. 

In -this arrangement, at the end of the process of selection and 

subtraction of the i th signal in the k th detection cycle, the magnitude 

l
xik l of the i th signal xikYi  subtracted from R, is constrained to 

satisfy the equation 

xik  I = I z* 
 I , for all i and all k>0,   (87) 

where :cik  is a real scalar. x. = 0 for all i (Section 4.2). io 

The constraint K is defined as that where the individual signals 

t
xikYi} 0  subtracted from the input, are constrained to satisfy equation 

87. 

The constraint K may be modified by arranging that in the k th 

detection cycle, the i th signal subtracted from the input is no longer 

such that the resultant subtracted i th signal 
is  IzilYiP but is d

ikYil  

where (1ik is the corresponding correlation-detector output signal at the 

time immediately preceding the subtraction. Thus, immediately after the 

subtraction of the i th signal in the k th detection cycle, the total i th 



signal subtracted from the vector R at the input is 

k  

xikYi    d. Y.
1 	

for all i and k, 
j=l 

and there is zero output from the i th correlation detector. 

The constraint I is defined as that where the individual signals 

subtracted from the input are given by equation 88. It represents the 

absence of any constraints applied to the Ixik} 
If, with the constraint I, only the i th signal ziYi  is received 

and there is no noise, the corresponding detector gives an output signal 

zi  at the start of the first detection cycle, so that the signal sub-

tracted from R at the end of this cycle is ziYi. This is of course the 

same as that with the constraint K, under the same conditions. 

1:-.> The constraint I may be modified so that at the end of the process 

of selection and subtraction of the i th signal in the k th detection 

cycle, the magnitude Ixix ! I of the total i th signal x., Y. subtracted 

from R, is constrained to satisfy the equation 

zi  I , for all i and k. 	(89) 

The constraint J is defined as that where the individual signals 

f xiicYd. , subtracted from the input, are constrained to satisfy equation 
89. 

The constraint J is clearly a compromise between I and K. Where 

the constraint I or J is used, it is assumed that Izil 
-1z21 >  ...• i  lzmi' 

and the m addresses { Yi  I must be linearly independent. 

At the start of the first detection cycle, in all the arrangements 

considered, x. = 0 for all i; and when the total number of n detection 

cycles has been completed, the receiver determines the signs of the xin } 

and allocates the appropriate binary values to the corresponding .[Qi). . 

4.3.2 Detection Processes 1 to 4  

Each of the three constraints I, J and K may be combined with differ-

ent rules for selecting the order in which the m signals are subtracted 

in a detection cycle. The different rules will be identified with differ-

ent detection processes, as follows. 
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(88) 
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Detection Process 1 

In each cycle the m signals are selected and subtracted simultan-

eously, but the individual subtraction processes are otherwise similar 

to those described in Section 4.3.1. In the first detection cycle with 

the constraint K, the subtracted signals are determined as in Section 4.2. 

Detection Process 2 

In each cycle the m signals are selected and subtracted sequentially, 

exactly as described in Section 4.3.1. With the constraint K, the first 

detection cycle is as described in Section 4.2. When two or more signals 

have equal levels, the order in which they are selected and subtracted is 

chosen arbitrarily, but remains fixed from one cycle to another. 

Detection Process 3  

In each cycle the m signals are selected and subtracted sequentially, 

but not necessarily in the same order in any two cycles. The i th cor-

relation detector here has a reference signal 'zi t Yi  for all i, instead 

of Y. used in the detection processes 1 and 2. 

Consider the start of the (k+1) th detection cycle. Let the signal 

at the output of the i th correlation detector be di(k+1)  and let the 

total i th signal subtracted from the input as a result of the previous 

k detection cycles be xikYi  for all i. The receiver now determines the 

value of i for which 
I di(da) lzil 

xik l is maximum and carries out the 

process of subtraction for the corresponding signal. This will in general 

change the output signals of the m correlation detectors. The receiver 

then determines the value of i for which I di(k+1)  + I z. xik  is 

maximum for the remaining m-1 signals, and subtracts the corresponding 

signal from the input. This process is repeated until all m signals have 

been subtracted. 

With the constraint I, 

1) 	xik  xj( 	
d1 

+l for all i, 	(90) 10.  Izil 

where di(k+1)  is the output signal from the i th correlation detector 

immediately preceding the subtraction of the i th signal, which is 

..(k+1)  Y. 
(zit 

for all i. (91) 
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Thus there is zero output signal from the i th detector immediately 

following the subtraction of the i th signal. 

With the constraint J, xj(k4.1), determined as in equation 90, is 

constrained to satisfy 

I xi(k+i) I 	I zi I 
	

for all i and k. 	(92) 

With the constraint K, 

I xi(10.1)  I = Izi  I 	for all i and k. 	(93) 

In the first detection cycle and after each process of selection, the 

output signal of the selected correlation detector (say the i th) is 

sampled, and depending upon whether this is negative or positive, the 

signal -Izil Yi  or Izil Yi  is subtracted from R at the input. If the 

output signal is zero, the subtracted signal is selected at random from 

l zil Yi. In subsequent detection cycles and after each process of 

selection, if the sign of the detector output signal (say the i th) is 

not in agreement with the i th signal already subtracted from R, and if 

the magnitude of the detector output signal exceeds z, then the sign of 

the subtracted signal is changed. When the signs disagree and the magni-

tudeoftheoutputsignalequalsz.2  , then the subtracted signal is selected 

at random from its two possible values, +Iz. 	3.  I Y.. In all other cases the 

subtracted signal is left unchanged. 

Detection Process 4  

The signals here are not selected cyclically. As in 3, the i th 
correlation detector has a reference signal Izi  I Yi  for all i. 

Consider first the constraint I. In the k th individual process of 

selection and subtraction, the receiver samples the output signals {dik} 

of the m correlation detectors. It determines the value of i for which 

is maximum and subtracts the corresponding signal 

Y. 
I zit 	

Y
3. 

from the input, to give zero output from the corresponding detector. A 

new set of output signals { di(k+1)  results and the receiver repeats the 

procedure for the (k+l)th process of selection and subtraction, and so on. 

Whereas in the detection processes 1 to 3, k increases by 1 for each 

dik 
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new detection cycle, in the detection process 4, k is taken to increase 

by 1 for each new individual process of selection and subtraction. 

Consider now the constraint J. At the start of the (k+l)th in-

dividual process of selection and subtraction, the total i th signal 

subtracted from the input is xikYi, for all i. If no constraints were 

applied as with the constraint I, the total i th signal subtracted from 

the input at the end of the (k+l)th process of selection and subtraction, 

would be 

di(k+1)  = 	+  	Y. • xi(k+1) Yi 	xik 	zi  (94) 

With the constraint J, 

I xi(k+l) ) 	I zi 	for all i and k, 	(95) 

so that x
i(k+1) is the value of 

truncated if necessary so that equation 95 is satisfied. The receiver 
determines the value of i for which 

I
Zi(Xj(k4.1)  "" xik) I 

is maximum and subtracts the corresponding signal 

(xi(k+1) xik)Yi 

from the input, to make the total i th signal subtracted from the input, 

xik.,  k+1)a... 	A new set of output signals, idi(k+2)} , results and the 

receiver repeats the procedure on these, and so on. 

Where the constraint I or J is used, the deteci-don process is auto-

matically terminated when 

	

max { I di (k+i )I 	 < e ( min {zi2 	for all i, 	(96) 

where e is a positive constant such that e <K1. 

Consider now the constraint K, where 

	

I xi(k+1)I = 	zi l or 0 , for all i and k, 	(97) 

and consider the (k+l)th individual process of selection and subtraction. 



Let xik 
f- 	- di1 	(k+1) I z 	for all i. (98) 

Thereceivernowdeteminesthevalueofiforwhich. gi  is a maximum 

(most positive)/  where 

idi(k+1)I 	
if 	= 0 

gi = 	
xik  

gi 	= f. 	if0 0 and fi  > z 1 	
xik 	i 

gi  = 0 	if xi k 0 and fi  = zi  

= -1 	if 	/. 0 and f. < z 
gi 	xik 	1' 

If for this value of i, xik  = 0, the receiver sets 

xi(k+1) = 
	

if gi = 0 
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or di (k+1) •   
I di (k+1 )1 I zi  

Oif 	. > . 

Alternatively, if for this value of i, xik  0, the receiver sets 

xi(k4.1) = xik if gi  > 0 

or xi(k+1) =x
ik  if gi  < 0 , 

The (k+l)th process of selection and subtraction generates a new 

set of output signals fdi(k÷2)} and the receiver repeats the above' 

procedure on these, and so on. 

When, for the selected value of i, gi  = 0 and xik  = 0, the receiver 

checks to see if there is another value of i for which gi  = 0 and xik  O. 

If so, the receiver proceeds with this value of i. If not, or alterna-

tively if gi  < 0, the detection process is automatically terminated. 

Clearly, any of the detection processes 1 to 4 may be combined with 

any one of the constraints I, J or K, to give altogether 12 different 

detection processes. These will be known by the combination of the two 

appropriate symbols, for instance 3J. 

Arrangement H 

An important modification which may be applied to the eight detection 

processes using the constraint I or J, and in particular to the detection 

processes 1 and 2, is to arrange that the individual signal subtracted from 
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the input in a process of subtraction, is multiplied by a positive constant 

h, where h 1. Thus in the process 21 the subtracted signal becomes 
h dikYi  for all i and k, instead of d.  Y.. In the process 2J the total 

subtracted signal, xikYi, must still satisfy the equation 89, so that 

for h >> 1 the process approaches 2K. Similarly for the other processes 

involving the constraint J. 	Any process with the constraint I or J in 

which the subtracted signal is multiplied by a constant h, where h 

will have the letter H added to the symbols identifying the system. Thus 

the modified detection process 21, mentioned above, will be known as the 

process 2IH. Where a general detection process such as 2IH is mentioned, 

this will for simplicity be taken to include the special case where h = 1. 

The detection processes, listed in the order of increasing equipment 

complexity, are 2, 1, 4 and 3, the arrangements 1 and 2 being considerably 
less complex than 3 and 4. For any particular detection process, the 
equipment complexity does not appear to be very seriously affected by 

which of the constraints I, J or K is used. The use of the arrangeMent 

H should have a negligible effect on equipment complexity. In a typical 

application of RADAS all these detection processes should be substantially 

less complex than the equivalent arrangement of Fig. 11. This is because 

in these systems the addition or removal of any correlation detector to-

gether with its associated circuits, does not affect the circuits associated 

with the other correlation detectors, each group of circuits being effect-

ively independent of the others. 

4.3.3 Convergence of the Detection Processes 1IH,  

2IH and 41  

Consider the start of the (k+l)th detection cycle of the process 1IH, 

with m received signals iziYil 	where the element addresses i 1 Yi  are ) 
v-component real unit-vectors. The output signal from the i th cor-

relation detector is di(k4.1)  and the total i th signal already subtracted 

from the input is 
k 

xi  Y. = k j=l 
h d.3.31  :Y. , for all i, (100) 

where h is a positive constant. Thus the resultant input signal to the 

m correlation detectors is 

m  

R - > x Y = 
1 	ik i 	

R - YXk 2 

i=1 
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m  
\ • 

where 	R = S + N = 	, N 3. (102) 
i=1 

 

as before. Y is the vxm matrix whose i th column is Yi, and Xic  is the 

m-componentcolumn-vectorp. sj .1.The corresponding signal-vector at al 
the outputs of the m correlation-detectors is 

D
k+1 = YT

(R - 
YX.k 

= D - AXIs 
	(103) 

where Dk+1 is the m-component column-vector rd. L 2.(10-1)] , D = D1 
= Y

T
R 

is the correlation-detector output-vector at the start of the iterative 

detection process, and A = [aij] = YTY as before. 

At the end of the (k+l)th detection cycle, 

xk, = k + h Dk+1 = xic  h(D - AX.k) p 
	(104) 

so that 
	

Xk+-1 =  (I - hA)Xk  + hD 	k 	0 	(105) 

where I is the mxm identity matrix, and X0  = 0. 

In the special case where h = 1, the process lIH reduces to the 

process 1I and equation 105 becomes 

X)s+1 = (I - A)X.k D , k > 0 	(106) 

Equation 106 represents the point Jacobi iterative method applied 

to the solution of the linear simultaneous equations AX = D, in the 

special case where a = 1 for all i.A12 (I - A) is the point Jacobi 

matrix associated with the matrix A. Equation 105 represents the point 

Jacobi method with overrelaxation. 

Consider now the start of the i th individual process of subtraction 

in the (k+l)th detection cycle of the process 2IH. For j = 1, 	(i-1), 
the total j th signal subtracted from the input is 

k+1  

xj(k+1) Yj = 	>  % 
Q=1 	J 

h  d.
iJ  
Y. 	(107) 

where dji  is the output signal from the j th correlation detector, immed- 

iately preceding the 	th subtraction of the j th signal. For 

j = 1, m, the total j th signal subtracted from the input is 

k  

xjk Y. = 	h d. Y. . 	(108) 
J i =1 
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Thus the resultant input signal to the m correlation detectors at this 

moment is 

R - xj(k+1)Yj 

m  
\ • 
 	x 	Y j .1 	jk 
J=1  

(109) 

giving an output signal from the i th detector, 

i -1 	 mm 
d
i(k+1) i , = YT(fIR - > , xj(k+1)Y 	x. Y. j 	) 

j=1 	- 	 

	

j=i . 
	jk j 

i-1 	m  

= di  - > 	aijxj(k+1)- > , a..x. 1  
ij jk j=1' 	j'i 

(no) 
where di  = dil  = YiR and A = [aij] =

T
Y, as before. 

The signal subtracted from the input in the i th subtraction process 

of the (k+l)th detection cycle, is hd 
--i(k+1)11' where d. i(k+1) is given by 

equation 110. Thus 

xi(k+1) = xik + h di(k+1)  

i-1  

= x 	+ h d. - ik 
j=1  

  

)

aijxjk  aij 	1 - jkk+1) 
J=1  

(111) 

Let A = I - B - C, where I is the identity matrix and B and C are 

respectively strictly lower and upper triangular mxm matrices whose non-

zero components are the negatives of the corresponding components in A. 

Then from equation 111, 

= Xk  + h (D + BXk4.1  + (C-I)Xk) 	(112) 

or 	(I-hB)X10.1  = ((1-h)I + hC)Xk  + hD 	(113) 

Since (I-hB) is non-singular for all h, 

Xic+1= (I-hB)-1  ((l-h)I + hC)Xk+ h(I-hB)-1D 	k 7 0 y (114) 

where D = D1  and Xo = 0, as before. 

Equation 114 represents the point successive overrelaxation method 

or the extrapolated Gauss-Seidel method, applied to the solution of the 
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linear simultaneous equations AX = D, in the special case where aii  = 1 
2 for all i.A1  

(I - hB)-1. ( (1-h)I hC ) 

is the point successive relaxation matrix. 

In the special case where h = 1, the detection process 2IH reduces 

to the process 21. Equation 114 now becomes 

Xkfa  = (I -B) -1  C Xk  + (I -B) -1D 	k > 0 . 	(115) 

This is the point Gauss-Seidel iterative method, corresponding to the 

successive overrelaxation method of equation 114.A12 (I-B)-1C is the 

point Gauss-Seidel matrix associated with the matrix A. 

It can similarly be shown that the process 41 is the Gauss-Southwell 

relaxation method,
G7 

where this is applied to the solution of the simul- 

taneous equaticalsEV=D.Eisthemxmmatrix[e..]where 
ij 

e..
ij 

= 
	

I 2'  I  
Y.Y. I 

zi 
	 (E.6) 

and V is the m-component column-vector 	. Where a unique solution- 

vector V exists and in the absence of noise, ivil = 1 for all i. 

Each of the equations 105, 106, 114 and 115 is the well known re-

presentation of the matrix equation AX = D in the corresponding iterative 

form:- 

= J-1K Xk  J-1D 	k > 0 , 	(117) 

where A = J - K. It is well known that the vector Xk.1.1  in equation 117 

will converge to the solution vector X in the equation AX = D, as k 	OD y 

if and only if the spectral radius of J-1K is less than unity.A12 

An important theorem by Ostrowski states that, if A = F - G G*  

is an mxm Hermitian matrix, where F is Hermitian and positive definite, 

and (F - hG) is non-singular for 0 	h 4 2, then the spectral radius 

of 

(F - hG)-1  . ( (1 - h)F 	hG*) 

is less than unity if and only if A is positive definite and 0 < h <2.A12 
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Except where otherwise stated, it is assumed throughout Section 4.0 

that the in address-vectors Y. T are linearly independent. Clearly 
J 

M 	v and the vxm matrix Y is real and of rank m. Since A = T
Y, A 

is a real symmetric positive-definite matrix. Also A = I - B - C where 

C = B
T 

= B, and of course I is a real symmetric positive-definite matrix. 
Furthermore, I - hB is non-singular for all h. Thus by Ostrowski's theorem, 

the spectral radius of 

(I - hB)-1. ( (1-h)I + hC ) 

in equation 114, is less than unity if and only if 0 < h < 2. 

It follows that the iterative detection process 2IH will converge 

to give the solution vector X for the equation AX = D, so long as 

0 < h < 2, and clearly the process 21 will converge. Provided that 

a sufficient number of detection cycles are used, the detection process 

2IH or 21 performs the linear transformation A 1 on the vector D, so that 

it performs the same function as the network A 1  in Fig.11 (Section 4.1) 

and may therefore be used in place of this* 

It has been shown that the Gauss-Southwell relaxation process, when 

applied to the solution of a set of linear simultaneous equations EV = D, 

will converge to the solution so long as the matrix E is symmetric and 

positive definite.
G7 

From equation 116, E is real, symmetric and positive- 

definite, since the { Y. are real and linearly independent. Thus the 

detection process 41 will converge. 

If a matrix A is a strictly or irreducibly diagonally dominant mxm 

matrix, then both the associated point Jacobi and point Gauss-Seidel 

matrices are convergent, and the iterative methods given by equations 106 

and 115 for the matrix equation AX = D, are convergent.A12 

The conditions which must be satisfied by the element-addresses {Y. } I  

to ensure that the matrix A is strictly diagonally dominant, are derived 

in Appendix 6. Under these conditions either of the detection processes 

1I or 21 will converge. Adaptive coding of the type described in Section 

3.4 can be used to generate the m transmitted signals here. 

In any of these various detection processes which converge, the 

correlation-detector output signal vector, Dk, tends to zero as k increases, 

so that AXk 	D. 
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4.3.4 Detection Processes 5 to 7  

There is another class of iterative detection processes, based on 

the method of Kaczmarz for solving linear simultaneous equations.G7 

These are closely related to the processes just described, although de-

rived in a very different manner. 

Consider the set of m simultaneous equations AX = D, where A = ra..1 
L 1JJ 

is an mxm non-singular matrix which need not now be symmetric or positive 

definite. The equations can be considered as a set of m hyperplanes in 

m-dimensional Euclidean space. Since A is non-singular, there is a 

unique solution vector U for which AU = D. This vector is given by the 

point of intersection of the m hyperplanes. 

The i th hyperplane is given by 

>m = d. 	 (129) 
j=1 1J J 

ConsideranyvectorP=[pAand drop a perpendicular from this point 

onto the i th hyperplane, to give at the foot of the perpendicular the 

vector Q = [qj] . Since the vector Q-P is perpendicular to the hyper-

plane, 

,j  -  Pj = g a.j 	for all j $ 	(130) 

where g is a constant. 

m 

Also 	T a..q. = d. , 
=1: 	1J 	3. 

since Q lies on the hyperplane. 

(131) 

 

m 

 

   

Thus 

d. 1 >  1=1 
a..P. 
1J J 

(132) 

 

m  
2 
a.. 

j 	ij =1 

 

Given the vector P, the vector Q can be determined from equation 130. 

The triangle whose vertices are given by P, Q and U, is a right-

angled triangle:  so that the hypotenuse U - P is longer than the side 

U - Q. The vector Q must therefore always be closer to the solution 

vector U, than P, unless of course P lies on the i th hyperplane, in which 

case P and Q coincide. 



d
i(k+1) 

= 	 • A. 	2 

>ni  a. 
2 

j=1 " 

(135) 
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In the method of Kaczmarz, an arbitrary point P is first selected, 

and the point is projected onto the first hyperplane. The resulting 

point is projected onto the second hyperplanel  and so on in cyclic order, 

until a sufficiently close approximation to the solution vector U is 

obtained.
G7 

This iterative process has the advantage over the Gauss-Seidel 

process that it does not require the matrix A to be symmetric and positive 

definite, in order to ensure convergence to the required solution vector. 

It is only necessary that A be non-singular. 

Detection Process 5 

Consider first the constraint I. The detection process is an 

application of the method of Kaczmarz to the basic system represented by 

Fig. 11. The iterative process here performs the linear transformation 

A-1 on the output signal-vector D, to obtain the solution vector X of the 

equation AX = D. As in the detection process 21, the output signals of 

the m correlation detectors are selected and reduced to zero sequentially 

and in a fixed cycle. Th.. i th correlation detector has a reference signal V. 

At the start of the (k+l)th individual process of selection and sub-

traction, YX1c  is the total signal subtracted from R at the input to the 

correlation detectors. As before Y is the vxm matrix whose i th column 

is the unit address-vector Y.. Thus the resultant input signal is R-YXkl  

giving an output signal-vector D
k+1 from the m correlation detectors, 

where 

D
k+1 

= YT(R - Y Xk) = D - A Xk . 	(133) 

D :=D1 =YTRandA=p..
ij
]=4 YTY, as before. 

The output signal from the i th correlation detector is now 

mm 
di(k+1) = d. - 	a jk • 	(134) 

j=11ij 

From equations 130 and 132, the new estimate 
Xk+1 of the solution vector 

X. is 
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where Ai  is the m-component column-vector given by the i th column of 

A
T 

or A. The new total signal subtracted from R at the input to the 

detectors, is now YXkia. 

In the process of subtraction associated with the i th correlation 

detector, signal vectors corresponding to all the m received signals are 

subtracted from the input, the coefficient wz(k+i)  of the 	th signal-

vector w2(k+1)Y  subtracted, being 

di(k+l)ai/ 
wf(k+1) = xi(k+1)- 	= 2 aii  

j'i 

(136) 

The constraint J or K may be used here instead of I. Alternatively 

the constraint IJ or IK may be used. 

Constraints IJ and IK  

The appropriate constraint J or K is applied to Xk, but only at the 

end of each complete detection cycle which involves all m correlation. 

detectors. The value of Xk  after intermediate processes of selection 

and subtraction is allowed to adopt any value, as with the constraint I. 

The detection process 51 should converge to the required solution 

vector, but it clearly involves considerable equipment complexity. It 

has the disadvantage relative to the detection processes 1 to 4, that the 
circuits associated with any correlation detector are no longer independent 

of the other detectors. 

Detection Process 6 

Consider first the constraint I. The process applies Kaczmarzts 

method directly to the received signals, without the use of correlation 

detectors. The simultaneous equations to be solved here are given by 

YX=R,whereYisthevxmmatriq.. Yol], whose i th column is the unit 

address-vector Y1, as before, and R is the v-component column-vector 

X is the solution vector and has m components. The receiver samples the 

first component of the received vector R and generates the signals wiYi  

for i = 1, ..., in, which are added together and then subtracted from R to 

give a zero first component. 1 wi  I are scalar values. The process is 

repeated for the second component of R and so on cyclically. 

Consider the (k+l)th indiv4dual process "4.  
\Ja. subtraction and suppose 
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that this operates upon the j th component of R. Just before the sub-

traction, YXk  is the total signal subtracted from R at the input to the 

correlation detectors, so that the value of the j th component, dj (k+1)° 

of the resultant input signal-vector Dk+1 is 

dj(k+1) = r.  
• ID Yjixik • (13?) 

From equations 130 and 132, the new estimate X10.1  of the solution 
vector X, is 

= Xk  • 
d'(k+1) . V. 

2 
ir • 
1=1 YJi  

(138)  

where V.
J 
 is the m-component column-vector given by the j th column of Y20 

In the process of subtraction giving X 	the coefficient x.+12 	wi(k+1) 
of the t th signal-vector wi(k+1)YE subtracted, for £ = 1, ..., m2  is 

wt(k+1)= xi(k+1) xik = (139)  

This is clearly not an optimum detection process and in the presence 

of noise the v hyperplanes here will not in general intersect at a point, 

contrary to the situation in the detection process 5. When v > m there 

are more simultaneous equations than there are unknown variables { 

so that in the presence of noise there are in general inconsistencies be-

tween the v equations. Nevertheless, as k increases the vector Xk  con-

verges to the vicinity of the optimum solution vector X. Furthermore 

in the particular case where all the received signals have equal levels 

and have address vectors TY. all of whose components have equal magni-

tudes, the arrangement becomes no more complex than the detection process 2. 

Any of the constraints J, K, IJ or IK may be used here in place of I. 

Detection Process 7  

This is a modification of the process 6. The v components of the 

resultant input vector Dk  are selected and subtracted sequentially, but 

not necessarily in the same order in any two detection cycles. In the 

first process of selection and subtraction in any detection cycle, the 
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receiver determines which of the v components of Dk  has the largest 

magnitude and selects this component for the process of subtraction. 

After the subtraction it determines which of the remaining v-1 components 

has the largest magnitude and selects this for the next process of sub-

traction, and so on until all v components have been subtracted. The 

detection cycle is then repeated as often as required. 

Any of the constraints I, J, K, IJ or IK may be used here. 

4.4 Iterative Detection Processes using Small Steps 

4.4.1 Convergence of Detection Process 1IH  

In the detection processes considered in Section 4.3, where these 
do not involve overrelaxation, it is assumed that the magnitude of the 

subtracted signal in an individual process of subtraction, is such as to 

reduce to zero the output signal of the appropriate correlation detector, 

in the absence of any constraint. Where overrelaxation is used, its purpose 

is normally to increase the rate of convergence and with this in view the 

subtracted signal is usually greater than that used in the absence of over-

relaxation. In all these cases the iterative process can be considered to 

use large steps. 

Consider now the detection process 1IH, as given by equation 105 in 

Section 4.3.3:- 

Xkia  = (1 - hA) Xk  + hD 
	

k 0 	(140) 

This iterative process converges to the required solution vector X if and 

only if 

p(I - hA) 	< 	1 	 (141) 

where pa - hA) is the spectral radius of I - hA.Al2  

Inequation1,40,A=I[a.1.= YTY, where Y is a vxm matrix whose i th 

column is given by the real unit-vector Yi. The m address-vectors 

Let P be the orthogonal matrix such that 

P-1A P = Q 
	

(142) 

Y. 
i 

 assumed to be linearly independent. Thus A is an mxm real symmetric 

positive-definite matrix, where I a..
11  I = 1 for all i and I a..13 I < 1 

for all i 6 j. 	All the eigenvalues of A are positive. 
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where Q = [qij] is a real diagonal matrix. Clearly qii  > 0 for all i. 

Also 	P(I - hA)P = I - hQ = U , 	(143) 

where U is a real diagonal matrix. 

Since the spectral radius of any matrix is invariant under similarity 

transformations, 

p(Q) = p(A) 

and 	p(U) 	= p(I hA) . 

m  

But 	, I aij I < m 	for all 1, 
j=1 

so that 	p(A) < m , 

by a well known theorem.A12 

Thus 	p(Q) < m . 	 (148) 

Since q.4  > 0 for all i and U = I - hQ, a sufficient condition to 

ensure that p(U) < 1 is that 

h 	m 
	 (149) 

From equations 141 and 145, this is therefore also a sufficient condition 

to ensure the convergence of the iterative detection proceSs 1IH. 

Since m < v, the condition that the process 1IH will always con-

verge is given by 

h E. 2 	 (150) 

Normally v >> 1, so that if equation 150 is satisfied, h << 1 

and the iterative process uses small steps. 

4.4.2 Detection Processes 8 to 14 

Detection Process 8  

Because of its great importance, the detection process 1IH in which 
2 
— will be known as the process 81. 

This process can be modified, as in the previous cases, so that the 

total i th signal xiji, subtracted from the input, is constrained to satisfy 
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I xik I 	I zi I for all i and k. 
	(151) 

This is the detection process 8J. There is no detection process 8K. 

Detection Process 9 

This is a modification of the detection process 8, in which h is 
no longer a constant but a function of the number of the detection cycle. 

The value of h in the k th detection cycle is 

hk g — e ÷ 

 

(152) 

 

where 	= k - ng < g . 	(153) 

g, £ and n are positive integers, and g is a constant. 

The whole process repeats itself every g = 1 -- cycles. In each 

detection cycle all signals are selected and subtracted simultaneously. 

Where no constraints are applied to the vector Xk, this is the 

detection process 91. Where the constr-4nt.J is applied, it is the 

process 9J. Where the constraint K is applied, but only at the end of 

each set of 1 detection cycles, it is the process 91K. 

Detection Process 10 

This is a modification of the detection process 8. Let the i th 

individual signal subtracted in the k th detection cycle be wikYil  where 

y ilt  is a scalar. If the output signal from the i th detector, immediately 

preceding the subtraction, is dik  , and I dik l < e 'zit, where e is a positive 

constant, then wik  = 0. 	If Idik l> e I zil , then 

wik = 	c  I zi I 	 (154) 

the sign taken for wik  being the same as that of dik. c is a positive 

constant such that c << 1. When e = 0 and dik  = 0, wik  is selected at 

random from its two possible values + c I zil. 

In each detection cycle all signals are selected and subtracted sim-

ultaneously. At the end of the k th detection cycle, the total i th sig-

nal subtracted from the input is 

= (xi(k-1) 	' for all i and k, 	(155) 

so that 	
= xi(k-1)wik for all i and k. 	(156) 
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Where no constraints are applied to the vector Xk, this is the 

detection process 101. Where the constraint J is applied, it is the pro-

cess 10J. Where the constraint K is applied, but only at the end of each 

set of — detection cycles, it is the process 10a. 

Detection Process 11  

This is a modification of the detection process 10. Instead of all 

signals being selected and subtracted simultaneously in each detection 

cycle, the signals are selected and subtracted sequentially and in a fixed 

cycle. The detection process is otherwise as described for the process 

10. The arrangement can alternatively be regarded as a modification of 

the detection process 2K. 

Where no constraints ,are applied to the vector Xk, this is the detect-

ion process 111. Where the constraint J is applied, it is the process 11J. 

Detection Process 12  

This is a modification of the detection process 11. The ith cor-

relation detector now has a reference signal IzilYi  instead of Yi  used in 

10 and 11. At the start of the k th detection cycle, the receiver deter-

mines the value of i for which Idik l is maximum and subtracts the corres-

ponding signal from the input. The receiver then determines the value of i 

for which I dik l is maximum among the remaining m-1 detectors, and subtracts 

the appropriate signal, and so on until all m signals have been subtracted. 

Thus the signals are selected sequentially and cyclically, but not necess-

arily in the same order in any two cycles. The value of the subtracted sig-

nal is determined as in 10, but 

thethresholdlevelwithwhichki
ik

liscompared,is ez.2  
.1,ik  = 0 or 

+clzil. The constraint I or J may be applied here, as for 11. 

Detection Process 13  

This is a modification of the detection process 12. The signals are 

selected sequentially but not cyclically. In the k th individual process 

of selection and subtraction, the receiver determines the value of i for 

which kik' is maximum, and subtracts the corresponding signal, which 

is determined as in 12. Each selection is made from all m detectors, 

and the process of selection and subtraction is repeated as often as re-

quired. As in 12, the.i th correlation detector has a reference signal 

I zi  I Yi.. 
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The arrangement may be regarded as a modification of the detection 

process 4K. The constraint I or J may be applied here. 

Detection Process 14  

This is a modification of the detection process 11. As for the 

detection processes 8 to 11, the i th correlation.  detector has a reference 
signal Yil  for all i. The value of will  in the k th process of subtraction 

of the i th signal, is determined exactly as for the detection processes 10 

and 11, and wik  is added to xj(k_1), as before. Immediately following the 

addition, the sign of the resultant signal (xi(k_i)  + wik) is determined and 

to this signal is added the signal 

U. = + b I z. — 	1 (157) 

where b is a positive constant such that b << c. The sign taken for uik  

is the same as that of (x1(1  _1)  + wik) , the sign being chosen at random 

when xi(k-1)  + wik  = 0. Thus 

xik = xi (k-1) wik 4-  uik , for all i and k. (158) 

Where no constraints are applied to the vector Xk, this is the 

detection process 141. Where the constraint J is applied, it is the 

process 14J. 

The interesting property of each of the detection processes 10 to 14, 

is that these are entirely digital, in the sense that they involve only 

"yes-no" decisions in determining the signals to be subtracted. If the pre-

sent steady reduction in the cost of integrated circuits and equivalent de-

vices continues, the cost of making such receivers may in the future compare 

favourably with that of any of the detection processes 1I to 91 and 1J to 9J. 

Although a simple theoretical analysis of the detection processes 10 and 

11 indicates that these will converge for extremely small values of c (equa-

tion 154), it has not been found possible to show theoretically that conver-

gence will be obtained for useful values of c. Computer simulation has 

proved to be a much more effective tool for studying these systems. 	The 

convergence of the detection processes 10 to 14 has therefore been examined 

in some detail by means of computer simulation, and is discussed in Section 

5.9. 
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4.5 Continuous Detection Processes  

4.5.1 Detection Process 15  

The (0-1)th detection cycle of the detection process 81 is given by 

equation 105 in Section 4.3.3:- 

Xk4.1  = (I - hA)Xk hD , 	k > 0 
	

(159) 

so that 
	

Xk+l 
	= h(D AXk) = hpk+1 

, 	(160) 

from equation 103 in Section 4.3.3. 

Let h 	0, Xk.1.1  - Xk  = 8X, Xk  = X and Dk+1 
= E, where X 

and E = re.] are functions of Ica L 1 

= 

Then 	OX = hE . 	 (161) 

OX is the vanishingly small change in X determined by the value of hE. 

The subsequent change in E, resulting from the change 5X in X, is also 

vanishingly small. 

Consider now the continuous process in which for each i a current 

gei  is fed to a storage capacitor whose vo?tage gives the value of xi. 
g is a positive constant. Assuming that all m storage capacitors have 

the same capacity, 

X = 	 (162) 

where £ is a positive constant. There are m received signals, as before. 

Thus 	SX = £ St E = 	 (163) 

where tot = h. This agrees with equation 161. 

At any instant during the detection process, the total signal sub-

tracted from R at the input is 

m  

 

x.Y. YX 

   

sothattb-erematantinputsignalisR-IX.Y.and Y are as defined 

at the beginning of Section 4.3.3. 

The continuous detection process clearly represents the limiting case 

of the iterative detection process-a„ as h -4 0 . Since 81 has been shown 

to converge for all sufficiently small values of h, it follows that the 

continuous process will also converge. 

The continuous detection process just considered has no constraints 
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FIG. Ia.  DETECTION 'PROCESS 15I . 

applied to X and is the process 151. 	')here the constraint J is applied, 

it is the process 15J. The arrangement of 151 is shown in Fig. 12. 

At the start of an element detection process, the vector X is set 

to zero and the received vector R is fed to the input, so that 

E = Y
T
R = D . 	 (164)  

At the end of the element detection process, F = 0 and X is the solution 

vector of the equation AX = D. .During the detection process, 

E = Y
T
(R YX) = D - AX . 	(165) 

It follows from equation 162 that 

X = 	= i(D AX) 	 (166) 

1 • or 	32:- X + AX = D . (167) 

Equation 167 describes a well known analogue method for the solu- 

tion of the linear matrix equation AX = D.G18G19 A commonly used analogue 

method involves high-gain amplifiers in feedback loops with heavy negative 

feedback.G2 Such systems are however often difficult to stabilize.G9,G29 

The use of integrators as in Fig. 12, not only removes the need for high-

gain amplifiers but serves in addition to mask the characteristics of any 

amplifiers in the feedback loop.
G9 

No difficulty should therefore be 
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experienced in stabilizing the arrangement of Fig. 12, provided only that 

the matrix A is positive definite. 

The circuits for the detection processes 1 to 4 and 8 to 14 are 

the same as that of 151 in Fig. 12, except that the vector E becomes 

D
10-1 and X becomes X.k 1  and the m integrators are replaced by the appro- 

priate m circuits which determine 	from am,  for i = 1, xik 	 m. 151 

and 15J therefore appear to involve considerably less complex equipment 

than the other detection processes. In all these arrangements the cir-

cuits associated with any correlation detector are independent of any other 

correlation detector or its associated circuits. Thus when a new call is 

set up or an existing call is broken down, this only involves the addition 

or removal of the appropriate correlation detector and its associated cir-

cuits, without affecting the other circuits. Such an arrangement is 

ideally suited to RADAS. 

4.5.2 Convergence of Detection Process 15  

Consider first the detection process 151. As before let the received 

vector be 

where 

R = 

S = 	z.3.Y.3. = YZ . 

(168)  

(169)  

  

i=1 

  

Y is the real vxm matrix [y. 
j] of rank m, whose j th column is the unit i 

address-vector Y.. Z is the m-component column-vector [zit and N is 

the v-component column-vector [ni] 

During the detection process, 

R 	YX = Y(Z - X) 4- N = G, 	(170) 

where the vector G is the error in the estimate of R. 

The square of the length of the input error vector G is 

f = GTG = (Y(Z-X) 	N )T. (Y(Z-X) 	N 

N
T
N = (Z-X)TYTY(Z-X) NTy(z_x) (z_x)TYTN 

= (Z-X)TA(Z-X) 2(Z-X)TYTN NTN 

= ZTAZ - ZTAX - XTAZ 4. XTAX 2ZTYTN - 2XTYTN + NTN 

(171) 

where A = p.
j] is the real symmetric positive-definite matrix Y

T 
 Y. i 



m 
df _ 
dt   axi  dt 

. of 	1 = ) 

i= 
(:f 

2 

.) 1 

dx .  
m 

Thus 0 . 	(180) 

A, Y, Z and N are constants during the element detection process. 

85 

m 	m 
of 
ax.= - 
	z.a..- 

1 	31 
a. .z . + 
IJ J 
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=1 
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)n 
J  
.y 

 3
..
1 
 , for all i. (172) 

 

j=1 

From equations 171 and 172, f is positive definite and is a unimodal func-

tionoftheix1  .I. At the minimum of f, 

0 	for all i ) (173) 

m  

so that 	> 	a. .(z.- x.) 
j=1 	1 J 	J/ 

or 	A(Z X) + YTN = O. 

  

j=1 1  
n.
J
y
J
.. = 0 for all i ,(174) 

(175) 

But 
	

A(Z - X) + YTN = YT(YZ + N) AX 

= YT  R - AX = D AX. 	 (176) 

Thus at the minimum of f, AX = D. 

From equations 166 and 176, 

X= 	(D - AX) = t A(Z - X) + YTN 	 (177) 

so that 

dx. 3. = 
dt 

(
: a. .(z 	x .) + 

j=1 	1JI J 	i= 

From equations 172 and 178, 

dx. 
I  =- • 

!  of -  — , for all i. dt 	2 ax. i 

n .y Ja. for all i.(178) 

(179) 

af Since IT  = 0 for all 	only at the minimum of f, f must eventually be 

reduced Ito its minimum value, at which AX = D.A14 Furthermore, it follows 

from equation 179 that the variables 1 xi/ will approach their values at 

the minimum of f, along the direction of steepest descent with respect to 
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the function f.A13'G7 As shown in Section 4.1, the solution vector X 
given by AX = D, is the optimum estimate of Z, in the case where the re-

ceiver has no prior knowledge of Z and where the received signals are in 
the presence of additive white gaussian noise whose level is not known. 

In the detection process 15J, the values of { xi} are constrained 

so that at all times 

I x' 	
I 
z' I , for all i. 
	(181) 

From equation 172, 

a2f 
= 2aij  , for all i and j. (182) ax. ox. 

1 j 

From equations 172 and 182 it can be shown that f is linearly unimodal 

(unimodal along any straight line) in the m-dimensional Euclidean space 

whose m axes represent the xi} . It follows that if the function f 
is confined to the values of the 

L .11 Tx./ which satisfy equation 181, it is 
still linearly unimodal. 

During a period of time when certain of the T x
1  
.1 are held constant 
1 

by the constraints of equation 181, dx. = 0 for all corresponding values 
at 

of i. Suppose that m - k of the xi  / are held constant and re-number the 

remaining k xi's, xl  to xic. From equation 180, 

k 
 df _ _ t 	

2 

dt 	2 	
 / 

axi
19 

If the minimum of f has coordinates i'
1
x.1 which are all within the 

C 	) 

constraints applied by equation 181, the system will clearly converge to 
df the vector X for which AX = D, although the rate of convergence, — 
dt 2  may  

at times be slower than before. 

Consider now the case where the minimum of f has coordinates { x1  .1 .) 
some of which are outside the constraints of equation 181. It is clear 

from equation 183 that the detection process always attempts to minimize 

the function 

f = (R - YX)T.(R - YX) 	 (184) 

Thus the vector YX, which is the estimate of the received vector R, is 

adjusted to have the minimum distance from R, within the constraints 

applied. These are of course that YX must lie in the subspace spanned 

by the m element-addresses f Yi  3 and that ixil 	'zi t for all i. YX 

will always converge to the required vector V at the minimum distance from 

.< 	0 . 	(183) 
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R, since f is a unimodal function of the 	
}.  

ix.
I 
 within the region bounded 

by the constraints on the xi} . 

4.5.3 Relative Tolerance of 151 and 15J to Additive  

Gaussian Noise 

A useful insight into the effects of the constraints I and J on the 

tolerance to additive gaussian noise, can be gained from the following 

simple example. Assume that two binary antipodal signals Q1  = z1Y1 and 

Q2  = z2Y2  are received in the presence of white gaussian noise. The 

possible positions of the individual signal-vectors Q1  and Q2  in the plane 

containing Y1  and Y2, are shown by the points marked e in Fig. 13. Qi  

may be either U1  or U3  and Q2  may be either U2  or U4. The four possible 

positions of the total received signal 

S  = Q1 Q2 = zlY1 z2Y2 2 
	(185) 

are shown by the points marked p . It is assumed that U1  and U2  cor-

respond to the positive values of z, and z2, and that Qi  and Q2  have equal 

levels, so that Izil = I z2 I 	The total received vector, R = S + N, 

will not in general lie on the plane containing S„ and the projection of 

R onto this plane is the vector P. 

FIG. 13.  DECISION/ REIONS FOR THE DETECTION OF qi  RND Q. 
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The detection process 151 determines the values of x1 and x2 as 

those which satisfy the equation 

xlY, 	x2Y2 = P . 	 (186) 

This is a process of linear filtering. The receiver then allocates to 

Qi  and Q2  the binary values corresponding to the signs of xl  and x2. The 

two dimensional signal-space is here divided into four decision regions 

whose boundaries are given by AOB, DOA, COD and BOC. For the particular 

position of P shown in Fig. 13, it follows from equation 186 that xl  < 0 

and x2 > 0, so that the binary values allocated to Q1 and Q2 are "1" and 

"0" respectively. Thus R is detected as the particular Si(i=1,...,4) in 

the decision region containing P. This is the optimum detection process 

in the case where the receiver has prior knowledge only of Y1  and Y2. 

Suppose now that the receiver knows I 	 and l z2  1 exactly, but has 
no prior knowledge of their signs, which are assumed to be equally likely 

and statistically independent. In this case the optimum decision regions 

in Fig. 13 are separated by the boundaries ELF, HMLE, GM[I and FLMG.A8  

As before, the receiver detects the received vector R as being the parti-

cular Si  (1=1,...,4) in the decision region containing P. Thus in Fig. 13, 

R is detected as Si, so that xl  = Izilandx2 4. 
	

the binary value 

"0" being allocated to both Qi  and Q2. 	
I 321'  

When Qi  and Q2  are orthogonal (at right angles), the decision regions 

here are the same as those where linear filtering is used. However, when 

the angle between Q1  and Q2 approaches 00 or 1800, there is a considerable 

difference between the two sets of decision regions. In an arrangement 

of RADAS the angle between Qi  and Q2  would not normally be 900, so that 

if the receiver knows 1 311 and I z2 I , linear filtering would have a 

noticeably lower tolerance to additive white gaussian noise than would the 

optimum detection process just described. 

Assuming that the receiver knows 1z11 and lz21 0  the detection 

process 15J determines the vector V which is confined to the parallelogram 

S1S2S3S4  and which has the minimum distance from R and therefore also from 

P. 	When P is inside S1S2S3S4  this is clearly P itself, whereas when P 

is outside S1S2S3S4, it is the foot of the perpendicular from P onto the 

nearest side of S1S2S3S4. The detection process determines the values of 

x1 and x2 as those which satisfy the equation 

	

x1Y1 + x2Y2 = V . 
	 (187) 
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The four decision regions here are separated by the boundaries EU10U2F, 

HU4OU1E
, 
GU
3
0u
4
H and FU2OU3G. As before, R is detected as the particular 

S.(i=1,...,4) in the decision region containing P. Thus in Fig. 13 R is 

detected as S1  so that the binary value "0" is allocated to both Qi  and 

Q2.  

The decision boundaries in the detection process 15J, where these 

are not the same as those in 151, correspond more closely to those of the 

optimum detector. 	Thus where the received signal levels lz11 and (z2) 

are equal and are known by the receiver, the detection process 15J should 

give a better tolerance to additive white gaussian noise than the detection 

process 151. It appears furthermore that this conclusion may be extended 

to the case where there are more than two received signals and probably 

also to the more general case where these do not have equal levels, al-

though the detailed analysis here becomes difficult. 

Since the detection processes 21, 41, 81 and 151 all converge to 

the vector X for which AX = D, these should all have the same tolerance to 

additive white gaussian noise. By a similar argument, if it is assumed 

that the detection processes 2J, 4J, 8J and 15J all converge, these should 

all have a given and in general somewhat better tolerance to additive white 

gaussian noise, in the case where the received signal levels are equal and 

are known by the receiver. 

4.6 Other Iterative Detection Processes  

The majority of the detection processes studied have been selected as 

those which lead to the simplest receiver design, on the assumption that 

the receiver is designed specifically to detect the m received signals. 

Where there is available at the receiver a general purpose computer which 

could be involved in the detection processes, then a very much wider range 

of iterative processes becomes available.G Of particular interest is the 

method of conjugate gradients,G4'G26 and other equivalent arrange- 

ments.G15'G20,G27,G32,G38,G39 These have the useful property that when 

the matrix A is symmetric and positive definite, the detection process 

involves only m iterations, one for each signal received. As before, it 

is assumed that the iterative process replaces the network A-1 in Fig. 11. 
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4.7 Arrangements for Setting-up and Breaking-down a Call  

It has been assumed here that the receiver has prior knowledge, 

not only of the number of signals received, but also of the addresses of 

the received signals. Thus during the setting up of a call, the calling 

transmitter must inform the receiver of the element address of its trans-

mitted signal. 

When the receiver has an accurate knowledge of the received signal 

levels, the following arrangement can be used. To set up a call, a trans-

mitter sends a continuous stream of the elements "0" having the address 

of the called subscriber. The signal is transmitted for a fixed total 

period and at a much lower level than that used for a signal during a call. 

No serious interference should therefore be caused in the other transmitted 

signals. 	At the end of each element detection process, when the receiver 

has determined the binary values of the different received signals, the 

receiver removes the total subtracted signal YX (see Fig. 12, Section 4.5.1) 

and replaces this by the signal Y2, which is then subtracted from R at the 

input to the detectors. 	The i th component of 2 is -4- Izil , the sign 
being positive or negative depending upon whether the detected binary value 

of z.Y. is "0" or "1" respectively. If there are no errors in the detected 

signals, the signal remaining at the detector input is the calling signal 

together with the noise vector. This signal is now fed to an "address 

detector", similar to that which follows the process of AR detection in the 

AM System (Section 3.5). Immediately the presence of an address is re-

cognized here, a correlation detector having the given reference signal, 

together with the associated circuits, is automatically switched into 

operation. At the same time, the output signal from the circuits asso-

ciated with the correlation detector, is fed to the appropriate receiver 

output terminal, and an acknowledgement signal, bearing the address just 

detected, is fed back to the transmitters. 	The calling transmitter will 

only begin transmitting at the full signal level, when it has detected this 

acknowledgement signal. When two transmitters attempt to set up a call 

simultaneously, neither address will in general be detected. By stagger-

ing the intervals used by different transmitters, before they attempt to 

set up a call the second time, it can be arranged that the two transmitters 

will not normally interfere with each other in the second attempt. 

When the receiver does not have an accurate knowledge of the received 

signal levels, which Would most often be the case, the above arrangement 

of signal cancellation cannot be used to isolate the calling signal from 
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the others. In this case the calling signal must be transmitted over 

a separate channel. In other respects, however, this arrangement is 

similar to that previously described. 

When a separate channel is not used for setting up a call, or where 

a detection process with the constraint K is used, a unique signal must 

be transmitted at the end of the call to indicate to the receiver the 

particular signal-element at the end of which the transmitted signal will 

be cut off. When this moment comes, the appropriate correlation detector 

and its associated circuits are disconnected. 

When a separate channel is used for setting up a call, and with any 

detection process not using the arrangement K, it is not necessary for the 

receiver to disconnect the correlation detector and its associated circuits, 

at the exact instant when the received signal is cut off. No special sig-

nal need therefore be transmitted here to indicate the end of a call. This 

is now detected by monitoring the levels of the different xils at the end 

of each element detection process. Whentheaveragevalueoflxdover 

say 100 successive elements is below a certain threshold level, for any 

value of i, it is assumed that the corresponding signal has been cut 6ff, 

and the appropriate correlation detector and its associated circuits are 

disconnected. This is clearly the simplest arrangement. 
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5.0 COMPUTER SIMULATION OF THE DETECTION PROCESSES 1 TO 15 

5.1 Introduction  

For an iterative detection process to be of practical value, not 

only must the process converge to the required solution vector, but it 

must do so within a reasonable number of detection cycles. Since it 

appeared unlikely that a theoretical analysis of this problem, starting 

from known techniques, Al2,A13,A14 would lead to any very useful results 

for an application of RADAS, it was decided to study the problem by means 

of computer simulation. 

The detection processes 1 to 15 have been tested under various con-

ditions, the method of operation of these processes being as described 

in Section 4.0. The computers used for the tests were the I.B.M. 7094 

at Imperial College and the University of London, Atlas computer. All 

programs were written in Fortran IV, a total of about 70 hours computing 

time being used. 

It is assumed here that the transmitted signals and the transmission 

medium have the basic properties described in Section 3.1. It is also 

assumed, as in Section 4.0, that the receiver has prior knowledge of the 

number and element-addresses of the received signals. 

5.2 General Signals 

An element of the i th received signal is given by Qi  = ziYi, where 

Yi isthe10-compcinentoolumn-vectoll yji] , in which j=1,...,10. 

yjil- :-/-Nr for all i and j. Thus 'lid= 1 for all 1, as tbefore. 

	

These are 	the signals of constant power level considered in Section 

3.3.Eachelement-addressY.of the m received signals, is selected at 

random from the 210 possible element-addresses, subject to the restriction 

that no two element-addresses are the same or the negatives of each other. 

In each selection, all permissible element-addresses are equally likely. 

The selection of the m element-addresses is repeated for each new element 

received, so that this is an arrangement of RASSAS. RASSAS is used here as 

a convenient means of obtaining a measure of the overall average perform-

ance of the system. It would not in general be suitable for a practical 

application, because of .the excessive equipment complexity involved. 

Two different situations are studied for the received signal levels 

	

zry  IT . 	In the first, the levels are all equal such that I  z4  I = la 
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for all i. In the second, each ( zi t is selected at random from 200 

different values spaced at 0.1 db and covering a 20 db range of levels. 

The level selected for any one of the m signals is equally likely to 

have any one of the 200 possible values, different selections being 

statistically independent. The selection of the signal levels is re-

peated for each new element received. A range of levels of 20 db is 

about as great as could be handled accurately by practical detection 

processes of the various types studied. 

The binary value of an element of the i th signal is given by the 

sign of zi. An element is equally likely to have either binary value. 

With the exception of the restrictions on the m element-addresses in any 

total-element, any one selection of an address, level or binary value is 

statistically independent of any other. 

In each test, £ total-elements are received for each of the values 

of m from 2 to 11. For m > 4, the received signals may not only be 

linearly dependent but also not uniquely detectable (Section 3.3). These 

signals therefore represent the most general case where neither linear 

independence nor unique detectability can be ensured. 

5.3 Linaar2LiE112/2adalIL10121g. 
An element of the i th signal is given by Qi  = ziYi, where Yi  is 

the 11-component column-vector [yji] , in which j=1,...,11. I yiil = 0 
1 for all i and ] yji 	VET I = ----- for all jai. II  Thus Y. = 1 for all 

The element 	address of the i th signal is generated by as before. 

selecting the address Yi, for which 
Yji = 

random from the 2 possible addresses. 

likely and no restrictions are imposed on the 

yii  is then set to zero. An arrangement of  

for j=1,...:11, at 

All addresses are equally 

selection of any address. 

RASSAS is used as before, but 

1 
i0 

only the case of equal received levels, where I zi 	= 10 for all 1, 
is studied here. 

In each test, 	total-elements are received for each of the values 

of m from 2 to 10. ThemvectorsliTY.are the first m rows of the 

matrix M (equation 63, Section 3.4), in the particular case where the even 

integers are zero, the odd integers are ± 1 and v = 11. From Theorem 3 

in Section 3.4, the m received signals are always linearly independent, 

and therefore from Theorem 2 in Section 3.2, they are uniquely detectable. 
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5.4 Level Variations and Additive Gaussian Noise  

In order to determine the effects of variations in the received sig-

nal levels from their nominal values, the received signal-elements, 

I
ziYi  , in an element detection process, are replaced by Izi(1 + fi)Yil, 

where the f fib are m sample values of a random variable which is uniformly 

distributed between gl  and g2. gl  4; 0 and g2  > 0 are constants which 

determine respectively the lower and upper limits of the possible received 

signal levels. A new set of values is selected for the {I'd for each 

new total-element received, the different sample values of the random var-

iable being statistically independent. The detection process at the re-

ceiver operates on the total received element, on the assumption that the 

received signal levels are 
t i 
ilz. 

Tests with level variations have been carried out on the more effect-

ive detection processes and for the case where all received signal levels 

are nominally equal, that is where the flzill are all equal. This arrange-

ment simulates the situation where the different transmitters were initially 

adjusted to give equal signal levels at the receiver, but the received 

levels have since drifted from their nominal values, due to variations both 

in the transmitted levels and in the attenuations over the transmission path. 

The term "level variations" will be used here to refer to this situation, 

as opposed to that where the flzill may vary over a range of 20 db and the 

receiver has an accurate knowledge of these. 

T1 tests with level variations are aimed at comparing the performances 

of the different detection processes, under conditions where the receiver 

has an inaccurate knowledge of the received signal levels. The tests are 

not intended to give an absolute measure of the performance of any detection 

process under practical conditions of fading or variations in transmitted 

levels, since the received signal levels would not normally have a rectangu--

lar probability density nor would they in general vary independently. 

The more effective detection processes have also been tested for their 

tolerance to additive white gaussian noise, with and without level varia- 

tions, in the case where all received signal levels are nominally equal. 

As before, in an element detection process the resultant received vector 

R is given by 

I  11  
11 e.421 	N 
i=1 

(188) 

Whereas in all the other tests the noise vector, N, is zero, its v components 
are now 	nf statistically independent gaussian random  variables, 
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(189) 

I zil where 	is the nominal magnitude of a non-zero component of any of the 

m individual received signal-elements. 

5.5 	Detection Processes  

For each total received signal-element, the receiver performs the 

iterative detection process under test. This is one of the detection 

processes 1 to 14, with one of the different constraints applied. The 

detection process 15 is tested as the detection process 8. The signs of 

the pi} are compared with the signs of the corresponding estimates { 

at suitable values of k. k andxik  are here as defined in Section 4.3.1. 

If for n of the m individual signal-elements, the signs of zi  and xik  are 

different, then the fraction of the signals wrongly detected is . For 

each value of m tested, the average value of 11711  is determined for I total- 

elements received. 	i remains constant throughout the complete test. p 

is the resultant average value of 111,,, over all values of m. Thus p is an 

estimate of the long term element error probability per channel in an arrange-

ment of RASSAS, where at any instant m is equally likely to have any of its 

different possible values. p is also a weighted estimate of the fraction 

of the total number of possible signal combinations which will be correctly 

detected, so that p is a measure of the degree of convergence for the given 

value of k. The variation of p with k gives an indication of the rate of 

convergence of the iterative detection process* 

For the detection processes 8 to 15, the term "detection cycle" will 
now be re-defined as follows. For the processes 8 and 9, a detection cycle 
will be taken to involve respectively 1 and h cycles of the iterative process 

(Section 4.4.2). 	For the processes 10, 11, 1  12 and 14, a detection cycle 

will be taken to involve 2-- cycles of the iterative process (Section 4.4.2). 
The detection process 13 is of course non-cyclic and the process 15 is tested 

as the process 8. The relative values of p after k detection cycles, for 

different detection processes and for different values of k, enable both the 

degrees and rates of convergence of these processes to be compared. 
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5.6 Tests with General Signals and No Noise  

The more important results obtained from these tests are shown in 

Figs. 14 to 20. The confidence limits for these results are given in 
Table 1 (Section 5.10). The value of p at the end of the stated number 

of detection cycles, is the value determined for 	total-elements and for 

the ten values of m from 2 to 11. The value of £ normally used is shown 

in each figure. 	Wherever a different value is used, this is shown in 

brackets against the appropriate graph. Where no values pf 	are shown, 

these are given in the text. 

Some of the better detection processes have been tested with the num-

ber of components in a signal vector changed first to 9 and then to 11, but 
no very significant change in performance is obtained for any of these, so 

long as the different processes are compared for similar values of m, where 

v is the number of components in a.signal-vector R. 

With general signals, a small fraction of the total received elements 

are not uniquely detectable, so that p cannot decay to zero. From Sections 
3.2 and 3.3 it appears that the minimum attainable value of g should be much 
smaller when the received signal levels have a range of 20 db than when they 

are equal. The accurate determination of the minimum value of p is diffi-

cult in either case and has not been attempted here, since no direct use is 

made of this quantity. 

Some of the detection processes have been tested with the minimum 

Hamming distance between the signal-elements + z.  Yd.}  , increased from 

1 to 3. In each case the results show an increase in both the rate and de-

gree of convergence. 

In Figs. 14 and 15, h = 0.1, h1 = 0.1, c = 0.1 and e < 0.00001, wherever 

they apply. The only exceptions are 41 and 4J for which e = 0.01. The 

detection process 4K has an upper limit of 30 subtraction processes but nor-
mally performs only as many subtraction processes as there are received 

signals. 41 and 4J each have an upper limit of 100 subtraction processes, 

an upper limit of 200 giving values of p respectively 0.0099 and 0.0012, 

with L = 300. 131 and 13J have an upper limit of 300 subtraction processes. 

Some of the better detection processes have been tested with the pos-

sible signal levels spaced at intervals of 0.09 and 0.11 db instead of 0.1 db, 

but there are no noticeable differences in the results. This suggests that 

the results in Figs. 14 and 15 apply also to the general case where the 

signal levels are statistically independent random variables, with a uniform 
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probability density on the decibel scale over a given range of 20 db, 

and zero outside this range. 

The value of -n obtained for the detection processes 2J and 3J, 

after 10 detection cycles, is shown by the appropriate circled point in 

Fig. 14. These processes appear to be converging. An appreciably more 

rapid rate of convergence is however shown by 4J. '3K and 4K appear to be 

the best detection processes here. Of the remaining detection processes, 

only 9J is converging at a useful rate. 

In Figs. 16 and 17, h = 0.1, h1  = 0.1, c = 0.1 and b = 0.01, wher-

ever they apply. e = 0.01 for the detection processes 4, 10, 11 and 13 

and e = 0.05 for 14J. The detection processes 4 and 13 have the same 

upper limits to the number of subtraction processes as in Figs. 14 and 15. 

4K normally performs as many subtraction processes as there are received 

signals, and in no case more. The best detection processes here appear 

to be 14J, 11J and 12J. 

In Figs. 14 to 17, the detection process achieving the best overall 

performance is 4J. 41 and 4J are tested with a threshold level e = 0.01, 

throughout Figs. 14 to 25. Additional tests with e = 0.001 and e = 0.1, 

show no change in performance with the former and a small degradation with 

the latter. Thus for equal received signal levels, an accuracy of about 

1°4 in the detector output signals should be more than adequate. 

With the exception of the detection processes 3K, 4K, 3J and 4J, a 

detection process which shows a significant rate of convergence, converges 

more rapidly when the received levels are equal than when they are not. 

Since the very good performance of the detection processes 3K and 4K under -

the conditions of Fig. 14, requires a more accurate knowledge of the re-

ceived signal levels than is likely to be achieved in practice, and since 

there are other obvious practical difficulties in operating with signals of 

widely differing levels, the most interesting situation is that where the 

received levels are nominally equal. 

The detection processes 1, 5, 10 and 13, and any process using the 

constraint K, have a poor performance with equal received signal levels. 

Although 91 and 9J have a more rapid rate of convergence than 81 and 8J, 

they would involve more complex equipment. These various arrangements are 

not therefore considered further. 

In Figs. 18 and 19, values of p are plotted for up to 20 detection 

cycles of the more promising of the arrangements in Figs. 16 and 17. 

considered here, but not in Figs. 16 and 17, are 
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various arrangements of 2JH, 8J, 11J and 14J. In Fig. 18, the numbers 

in brackets immediately below 2J and 3J give the number of detection cycles, 

and the corresponding numbers for 41 and 4J give the maximum number of sub-

traction processes permitted. The values of I used in Fig. 18 are: 

= 300 for 2JH(h=1.375), 2JH(h=1.875), 3J(50), 41(100), 7J, 81, 8J(h=0.05) 

and 8J(h=0.1); i=600 for 2JH(h=1.625), 41(200), 61.and 6J; .2=1000 for 

21, 2J, 2J(50), 2JH(h=1.25), 2JH(h=1.5) and 2JH(h=1.75); 	=1200 for 

4J(200); £ =1500 for 3J and 4J(100). 

In Fig. 19, the parameters associated with the different graphs for 

11J are as follows:- 

c e i 

(1)  0.2 0.01 1000 

(2)  0.1 0.05 1000 

(3)  0.1 0.01 1500 

(4)  0.1 0.0 1000 

(5)  0.05 0.025 1000 

and the parameters associated with the different graphs for 14J are as 

follows:- 

b c e i 

(1)  0.005 0.1 0.05 600 

(2)  0.01 0.1 0.05 1200 

(3)  0.015 0.1 0.05 1500 

(4)  0.02 0.1 0.05 600 

(5)  0.033 0.1 0.05 300 

(6)  0.01 0.1 0.01 1000 

(7)  0.015 0.1 0.01 1200 

(8)  0.02 0.1 0.01 1000 

The standard deviation for the value of p for the graph 14J(2) after 

the fifth detection cycle, estimated from four sample values each with 
=300, is o- =0.00023. Although Student's t-test cannot be applied here, 

since the total number of errors is too small for this number to have an 

approximately normal distribution, it is reasonable to expect that the 950  

confidence limits for the value of p should lie in the range +0.0004 to 

+0.0008 about the given value of p. No great significance can therefore 

be attached to the different degrees of convergence of the graphs for 14J. 

In Fig. 20, the limits to the signal level variations are given by 

gl  = -0.1 and g2  = 0.1 (Section 5.4). The values of 	in the left half 
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of Fig. 20 are: t =300 for 3J, 7J and 8J; £ =1000 for 2J, 2JH and 6J. 

The parameters associated with the graphs in the right half of Fig. 20 

are as follows:- 

b c e Z 

11J - 0.1 0.01 1000 

14J(1) 0.01 0.1 0.05 300 

14J(2) 0.015 0.1 0.05 300 

14J(3) 0.02 0.1 0.05 300 

14J(4) 0.01 0.1 0.01 600 
14J(5) 0.015 0.1 0.01 600 
14,1(6) 0.02 0.1 0.01 600 

A comparison of the systems tested here with the same systems in the 

absence of level variations (Figs. 18 and 19), shows only small differences 

in their performances. This suggests that the performance of a detection 

process with the constraint J is not critically dependent on an accurate 

knowledge of the signal levels at the receiver. 

The effect of the level variations is to reduce the probability that 

the received signal-elements are not uniquely detectable. At the same time 

the minimum distance between two possible values of the total received 

vector, corresponding to two sets of binary values of the individual signal-

elements, for the case where these are uniquely detectable, can now be much 

smaller than that where there are no level variations. It is interesting 

to observe that of the detection processes 14J, those with e=0.01 are the 

most effective in Fig. 20, contrary to the situation in Fig.19. 
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5.7 Tests with Linearly Independent Signals and No Noise  

The more important results obtained from these tests are shown in 

Figs. 21 to 25. The confidence limits for these results are given in 

Table 1 (Section 5.10).. The value of p at the end of the stated number 

of detection cycles, is the value determined for £ total-elements and 

for the nine values of m from 2 to 10. The value of i normally used 

is shown in each figure. Wherever a different value is used, this is 

shown in brackets against the appropriate graph. When no values of L are 

shown, these are given in the text. In all cases Jzil = / 10 for all i. 

Since the received signals are linearly independent, the minimum 

attainable value of p is zero. In order to show zero values of p, where 

necessary, the vertical scales in Figs. 21 to 24 are modified so that these 

are linear over the range 0.0 to 0.00005. The vertical scale of Fig. 25 

is linear over the range 0.0 to 0.0001. p is only shown as zero if there 

are no errors in detection. 

A detection process is considered to converge completely in a given 

test with linearly independent signals, if the value of p decays to zero 

and remains at zero as the detection process proceeds. It is of course 

assumed here that no noise is present. 

In Fig. 21 it appears that the detection process 2IH converges more 

rapidly for h=1 than for h > 1. When h=1, p converges to zero after some-

what more than 100 detection cycles. When h=2, p remains above 0.25, 

indicating that the system does not converge. 

The detection process 2JH has the maximum rate of convergence when h 

is in the range 1.75 to 2.0. The graph plotted for h=1.75 to 2.0 is the 

average value of p for the six values of h spaced at intervals of 0.05 from 

1.75 to 2.0. Convergence is not obtained when h 3 2.25. 

2JH converges over a wider range of values of h and at a considerably 

faster rate than 2IH. It is clearly the preferable system here. 

In Fig. 22, the figures in brackets immediately below 41 and 4J show 

the maximum number of subtraction processes permitted. The detection 

processes 2, 3, 4 and 8 all aprear to be converging. The constraint J 

introduces a considerable increase in the rate of convergence of each of 

the processes 3 and 4, a smaller increase for 2 and a reduction in the final 

rate of convergence for *8. It is shown theoretically in Section 4.3.3 

that the detection processes 21 and 41 will converge, and from the analysis 

in Sections 4.4.1 and 4.5.2, both 81 and 8J should converge for sufficiently 
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small values of h0  the latter because it approximates to 15J. Further-

more 15J should in general converge at a slower rate than 151. Thus the 

results in Fig. 22 are consistent with the theoretical analysis. 

The parameters for the four graphs for the detection process 12 in 

Fig. 22, are as follows:- 

c e I 

121(1) 0.1 0.0.5 300 

121(2) 0.1 0.01 600 

12J(1) 0.1 0.05 300 

12J(2) 0.1 0.01 300 

None of these systems converges completely. 

In Fig. 23, the parameters associated with the different graphs for 

11I are as follows:- 

c e t 

I(1)  0.1 0.05 1000 

I(2)  0.1 0.01 1000 

I(3)  0.05 0.025 1000 

I(4)  0.05 0.01 1000 

I(5)  0.05 0.005 1000 

and the parameters associated with the different graphs for 11J are as 

follows:- 

c e £ 

J(1)  0.1 0.05 1000 

J(2)  0.1 0.01 1000 

J(3)  0.1 0.0 1000 

J(4)  0.05 0.025 1000 

J(5)  0.05 0.01 1000 

J(6)  0.05 0.005 1000 

J(7)  0.05 0.0 1000 

None of the arrangements of 11I or 11J converges completely, although 

the better of these systems, as for 12J(2) in Fig. 22, only fail to con-

verge for a very small fraction of the signal combinations tested. 

In Fig. 24, the parameters associated with the two graphs for 141 

are as follows:- 

b c e t 

I(1) 0.01 0.1 0.05 500 

1(2) 0.01 0.1 0.01 500 
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and the parameters associated with the different graphs for 14J are as 

follows:- 

b c e .e 

J(1)  0.005 0.1 0.05 300 

J(2)  0.01 0.1 0.05 600 

J(3)  0.015 0.1 0.05 600 

J(4)  0.02 0.1 0.05 300 

J(5)  0.01 0.1 0.01 1000 

J(6)  0.015 0.1 0.01 1000 

J(7)  0.02 0.1 0.01 1000 

J(8)  0.01 0.2 0.01 1000 

J(9)  0.02 0.2 0.01 1000 

J(10)  0.01 0.5 0.01 1000 

14J is completely convergent for c = 0.1, e = 0.01 and b = 0.01 or 0.015. 

It is probably also convergent for c = 0.2, e = 0.01 and b = 0.01, after 

a sufficient number of detection cycles. 

In Fig. 25, the parameters associated with the different graphs for 

14J are as follows:- 

b c e g1 g2 £ 
(1)  0.01 0.1 0.05 -0.1 0.1 300 

(2)  0.015 0.1 0.05 -0.1 .0.1 300 

(3)  0.02 0.1 0.05 -0.1 0.1 300 

(4)  0.01 0.1 0.01 -0.1 0.1 600 

(5)  0.01 0.1 0.01 -0.2 0.2 600 

As with the general signals in Fig. 20, level variations over a range of 

+ 100/0  of the nominal signal level I zi l reduce the degree of conver-

gence of 14J when e = 0.05 but not when e = 0.01. 

The detection process 14J, with b = 0.01, c = 0.1 and e = 0.01, 

and the detection process 2JH, with 1.75 4; h 	2.0, have the best over- 

all performances in this series of tests. 

The detection process 12 is appreciably more complex than 11 and 

appears to achieve no advantage in performance. It is not therefore 

considered further. 
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5.8 Tests with Noise and Level Variations 

The more important results obtained from these tests are shown in 

Figs. 26 to 39. The confidence limits for these results are given in 

Table 2 (Section 5.10). For all except Fig. 39, linearly independent 
signals are used (Section 5.3). The value of p at the end of the stated 

number of detection cycles, is the value determined for £ total-elements 

and for the five values of m from 2 to 6. The values of i are shown 

as before, the only exception being that i = 1200 for the graph marked 

"1", for each of 21, 2J, 31, 3J, 41 and 4J. 	In all cases I z*1 I = 10 2 
for all i. 

The tests here with no noise or level variations represent a con-

siderably less severe test of the convergence of the detection process, 

than do the corresponding tests in Section 5.7. This has been arranged to 

provide somewhat more realistic signals for the tests with noise and level 

variations. 

The vertical scale of each of the Figs. 26 to 38 is linear for values 

of p greater than 0.002. For p < 0.002 the vertical scale is linear be-

tween each adjacent pair of values marked. p is only shown as zero when 

there are no errors in detection. 

The parameters associated with the different graphs in each of the 

Figs. 26 to 38, are as follows:- 

crn  g1  g2 

1 1.0 o.o 0.0 
2 1.0 -0.1 0.1 
3 1.0 -0.2 0.2 

4 1.o -0.3 0.3 
5 1.0 -0.5 0.5 
6 0.75 -0.5 0.0 
7 0.8414 0.0 0.0 
8 0.6685 -0.5 0.0 
11 0.0 0.0 0.0 

12 0.0 -0.1 0.1 

13 0.0 -0.2 0.2 

14 0.0 -0.3 0.3 
15 0.0 -0.5 0.5 
16 0.0 -005 0.0 

For all graphs in Fig. 39: cr = 1.0, gi  = 0.0 and g2 = 0.0. 
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The parameter values given for 6 and 16 above, are those where the 
signal levels vary over a range of 6 db and the constraint J, where applied, 
is correct for the received signal levels having the maximum value in this 

range. This is probably the best arrangement of the constraint J, when 

the received signal levels are not accurately known but may vary over a 

known range, because in no case is the estimate, xik, of a received signal 

value,z.].  , prevented from reaching its correct value. For signals not hav-

ing the maximum level, the arrangement represents a relaxation of the con-

straint J and so becomes a compromise between the constraints J and I. 

The tests with no noise or level variations (graphs 11 in Figs. 26. to 

38), show convergence for all the detection processes tested, except for 

11J with c = 0.1 and e = 0.0 or 0.05 (Fig. 36). 	81 and 8J with h = 0.025, 

in Fig. 32, are clearly converging even though p has not reached zero (see 

Figs. 30 and 31). 

Tests with no noise (graphs 11 to 16 in Figs. 26 to 38) show that 21:  

41, 81 and 11I, with suitable values of h, c and e, where appropriate, con-

verge under all the conditions of level variations tested. Tests with no 

noise also show that 2JH, 3J, 4J, 8J, 11J and 14J, with suitable values of 

h, b, c and e, where appropriate, converge under all the conditions of level 

variations except 15 (g1  = -0.5, g2  = 0.5). 8J with h = 0.05 (Fig. 31) has 

been shown to achieve this result, if the maximum number of detection cycles 

is increased to 20. 

As might be expected, the constraint I leads to a greater tolerance 

to level variations than the constraint J. Correct operation of the var-

ious detection processes with the constraint J, can however be obtained in 

the absence of noise, even when the levels of one or two of the received 

signals have drifted by nearly 3 db above their nominal value. The con-
straint J does not therefore require an unduly accurate knowledge of the 

received signal levels. 

The results of the tests with additive gaussian noise (graphs 1 to 8) 

give a useful general guide to the relative performances of the different 

detection processes, but they must be treated with some caution. The 

results of any test approximate to the overall average performance of the 

corresponding arrangement of RADAS, for all possible combinations of 

element-addresses and signal-levels within the specified range, when m is 

equally likely to have any value from 2 to 6. The fact that a given 

arrangement shows a better tolerance to additive gaussian noise than ano-

ther, under these conditions, does not necessarily imply that the same 
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advantage will be maintained for any given combination of element-addresses 

and signal-levels. For instance, the detection processes 21 and 2J each 

show a slightly poorer performance with general signals (Fig. 39) than 

with linearly independent signals (Fig. 26, graphs 1), even though the 

worst-case tolerance to additive gaussian noise with the former signals, 

when uniquely detectable, is ideally about 3 db better than that with the 

latter signals, when v > 1 and an optimum detector is used (Section 3.4). 

The number of detection errors caused by the non-uniquely detectable general-

signals, is small compared with the total number of errors counted in any 

of these tests, and if taken into account suggests that each detection 

process has a similar tolerance to noise with either type of signal. When 

m << v, there is a high probability that the m element-addresses selected 

at random will be nearly orthogonal,D2 so that on theoretical grounds the 

tests with gaussian noise should give the performance of a detection process 

under typical or average conditions, when the individual received signal-

vectors are more nearly orthogonal than colinear. The results of the tests 

will not therefore be greatly influenced by the minimum tolerance to noise 

of the possible received signals. Further experimental confirmation of 

this is given in Section 5.11. 

Fig. 39 shows that the detection processes 61 and 6J have appreciably 
lower tolerances to additive gaussian noise than 21 and 2J. This is in 

agreement with the theoretical analysis of these systems (Section 4.3.4). 

The detection processes 3 and 4 achieve no advantage in tolerance to noise 

over the detection process 2, showing that the ordering of the individual 

processes of subtraction is not very important here. The detection process 

7, however, achieves an appreciable advantage over 6. Clearly the order-

ing of the individual processes of subtraction in 7, can to some degree 
make up for the inferior performance of the basic system. Since the de-

tection processes 6 and 7 would involve appreciably more complex equipment 
when used with linearly independent signals, than would the majority of the 

other detection processes, the processes 6 and 7 are not studied further 
here. 

For certain of the detection processes using the constraint I, the 

value of p tends to increase with the number of detection cycles, over part 

of the range tested. This tendency is particularly marked in 111. How-

ever 11I could not be used successfully with only one detection cycle, in 

order to exploit the advantage in tolerance to noise, because at this stage 

of the detection process it has non-zero values of p in the absence of noise, 
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under most of the conditions of level variations tested (Figs. 33 and 34). 

The most striking result from Figs. 26 to 38 is the general simi-

larity between the performances of the different detection processes, when 

these all have the same constraint I or J. The constraint J clearly 

gives a better tolerance to additive gaussian noise than the constraint I, 

for all the detection processes and under all conditions of level varia-

tions tested. This effect is considered in more detail in Section 5.11. 

Even when due allowance is made for the failure of some detection processes 

with the constraint J to converge in the absence of noise, under the more 

severe conditions of level variations, the constraint J appears to have a 

useful overall advantage over the constraint I. 

The detection processes 3J and 4J require more complex equipment than 

the other detection processes, and 2J is rather slow to converge. 2JH 

with h = 1.25 to 1.5, however, has very good convergence properties, even 

under the most extreme conditions tested (Figs. 18, 20 and 21), and it is 

a relatively simple system. 2JH with h = 1.25 to 1.5 is therefore one of 

the preferred detection processes. 

Fig. 38 shows that a serious degradation in performance results in 

the detection process 14J, if c is increased from 0.1 to 0.2. Tests with 

11J (Fig. 19) similarly indicate that for correct operation c should not 

exceed 0.1. On balance, the arrangements of 11J and 14J showing the best 

overall tolerance to noise and level variations, are as follows:- 

11J: 1)  c = 0.05, e = 0.01 

2)  c = 0.05, e = 0.025 

3)  c = 0.1, e = 0.01 

14J: 1)  b = 0.015, c = 0.1, e = 0.05 

2)  b = 0.01, c = 0.1, e = 0.01 

With neither detection process is there a significant difference between 

the performances of the different arrangements listed, when taking into 

account the confidence limits of these results (Table 2, Section 5.10). 

It is reasonable to assume, although requiring further confirmation, 

that with a particular combination of received element-addresses, having 

a small minimum distance between possible values of the resultant vector, 

the arrangements of 11J may have a lower tolerance to additive noise than 

those of 14J, because of the better convergence properties of the latter 

(Figs. 19, 20, 23 and 24). Under these conditions the best arrangement 



119 

of 14J appears to be that with b = 0.01, c = 0.1 and e = 0.01, and the 

best arrangement of 11J that with c = 0.05 and e = 0.01. However, where 

an adaptive coding system is used to keep the received signals nearly 

orthogonal (Section 3.4), the relative performances of the different ar-

rangements would be approximately as predicted by Figs. 33 to 38. Under 

these conditions the best arrangement of 14J appears to be that with 

b = 0.015, c = 0.1 and e = 0.05, and the best arrangement of 11J that 

with c = 0.1 and e = 0.01, the latter because it requires fewer separate 

processes of subtraction per detection cycle than the alternative arrange-

ments. Although the detection process 14J is more complex than 11J, it 

appears on balance to be the preferable arrangement, because of its much 

better convergence properties. 

The detection process 8J is of considerable interest because for 

small values of h the performance of the system approximates to that of 

15J (Section 4.5.1), which is by far the simplest of all the arrangements 

considered (Fig. 12, Section 4.5.1). The combined evidence of Figs. 30 

to 32 confirms that the performance of the detection process 15J should be 

similar to that of 8J. It should therefore be similar to that of the pre-

ferred arrangements of 2JH, 11J and 14J, under any of the conditions of 

noise and level variations considered in Figs. 26 to 38. 15J is clearly 

the preferred detection process. 

In Figs. 30 to 32, 8J has a lower rate of convergence than 81. This 

is consistent with Fig. 22 and with the theoretical analysis of 151 and 

15J in Section 4.5.2. The main weakness of 15J is probably that under 

difficult conditions as in Fig. 22, it may be necessary to use a very small 

effective time-constant for the integrators of Fig. 12, in order to complete 

the detection process in the available time, and this may lead to instability. 

No difficulty should however be experienced under the much less stringent 

conditions which apply in Figs. 30 to 32. 

The preferred detection processes, listed in the order of their appar-

ent overall merits, are 15J, 14J, 2JH and 11J. 
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5.9 Convergence of the Detection Processes 10 to 14  

The convergence properties of these systems are considered in detail 

in Sections 5.6 to 5.8, and are summarised here. 

The results of the computer simulation tests without noise, show that 

under the less extreme conditions tested (Figs. 33 to 38), the detection 
processes 11, 12 and 14 will converge with either of the constraints I or 

J and with suitable parameter values. Under the most extreme conditions 

tested, only 14J converges (Figs. 22 to 25). 10 and 13 do not in general 

converge with the parameter values tested (Fig. 17), although 13J will 

converge under the more favourable of the conditions tested. The above 

conclusions concerning the detection processes 12 and 13, are derived from 

details of the computer simulation results not shown in Figs. 14 to 39. 

The constraint J in general gives a better degree of convergence 

than the constraint I, for the detection processes 10 to 14, and of these 

the detection process 14J has by far the best convergence properties. 

5.10 Confidence Limits  

In Table 1 below, the 95°/0  confidence limits for the values of p in 
Figs. 14 to 25 are given for different values of p and t , on the assump-

tion that the dependence between the individual element errors in an ele-

ment detection process, is equivalent to that where the errors always occur 

in groups of 5 for general signals and in groups of 4 for linearly indepen-
dent signals. Where p decreases or increases steadily with the number of 

detection cycles, the confidence limits apply to the value of p at the 

end of the last detection cycle. 

Analysis of the results of the tests by computer simulation, shows 

that the total, number of errors obtained in a test, is approximately given 

by 

n 	= 	t p 	 (190) 

where t = 100 for Figs. 14 to 20 and t = 80 for Figs. 21 to 25. If the 

errors are statistically independent, n > 30, p << 1 and an accuracy of 

no better than say 20°4 is required for the confidence limits, then it can 

be assumed that n has a gaussian probability density with a mean p = n and 

a standard deviation cr'= ' . 	For given values of p > 0 and .e 	the 
950/0 

 confidence limits for the value of p are approximately 

2p 	TIT + 	= + 2 
— 	J tx — 

(191) 
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p 

0.1 

0.03 

0.01 

0.003 

0.001 

0.0003 

0.0001 

0.0 

300 

+0.0082 

+0.0045 

+0.0026 

+0.0018 
-0.0012 

+0.0015 
-0.0007 

+0.00101 
-0.00028 

+0.00050 
-0.00010 

0.00040 

600 

+0.0058 

+0.0032 

+0.0018 

+0.0010 

+0.00083 
-0.00047 

+0.00063 
-0.00025 

+0.00050 
-0.00010 

0.00020 

1000 

+0.0045 

+0.0024 

+0.0014 

+0.00077 

+0.00054 
-0.00041 

+0.00044 
-0.00020 

+0.00032 
-0.00009 

0.00012 

1500 

+0.0037 

+0.0020 

+0.0012 

+0.00063 

+0.00057 

+0.00033 
-0.00016 

+0.00024 
-0.00009 

0.00008 

2000 

+0.0032 

+0.0017 

+0.0010 

+0.00055 

+0.00032 

+0.00025 
-0.00014 

+0.00020 
-0.00008 

0.00006 

3000 

+0.0026 

+0.0014 

+0.00082 

+0.00045 

+0.00026 

+0.00018 
-0.00012 

+0.00015 
-0.00007 

0.00004 

TABLE 1 Approximate 9504 confidence limits to the value of p, expressed 

as deviations from the given value of p, for different values of 

p and £ in Figs. 14 to 25. 

where the limits are expressed as deviations from the given value of p. 

In any test with general or linearly independent signals, where p has 

not fallen to zero by the end of the last detection cycle and is not steadily 

decreasing to zero, there is a high degree of dependence between the in-

dividual element errors in an element detection process. The result of 

this dependence is to reduce the effective number of independent errors, 

n, obtained in the test, and so to widen the confidence limits. For 

instance, if errors always occur in independent groups of d, with complete 

dependence within a group, then the effective number of independent errors 

is 1 x(total number of errors). Thus the confidence limits are multiplied 

by ,/7, assuming that the effective number of independent errors is not less 

than 30. 

If due account is taken of the effects of non-unique detectability 

with general signals, it appears that a reasonable approximation for the 

effective number of independent errors in a test, is n = 2O pt for both 
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general and linearly independent signals. Thus t = 20. 

Where n > 30 in Table 1, the confidence limits are determined from 

equation 191, with t = 20. Where n < 30, the confidence limits are 

estimated from the correct binomial distribution, assuming 20pi inde-

pendent errors and using the results of reference C22. For p=0 it 

is assumed that the equivalent number of independent elements received in 

a test is 252 . This number has been estimated from the computer simula-

tion results, which show that for small values of p the error probability 

only becomes significant for the two or three largest values of m. 

It is unlikely that the true confidence limits for any detection 

process exceed the values given in Table 1, except possibly the confidence 

limits for 14J and 2JH, which may be slightly wider. 

In Figs. 14 to 25, the 950/0  confidence limits for the difference 

between the values of p for two different detection processes, where these 

have similar values of p, are approximately 1.4 times the 950/0  confidence 

limits for the mean value of p. 

In Table 2 below, the upper and lower bounds for the 950/0  confidence 

limits of p are given for Figs. 26 to 39, assuming that £ = 1000. The 

lower bounds assume that the individual element errors are all statistically 

independent. In Figs. 26 to 39 the total number of errors obtained in a 
test is approximately given by n = 25pt , so that t = 25. Thus from 

equation 191, the lower bounds for the 950/0  confidence limits are approx- 

imately given by + 2 2 	The upper bounds for the confidence limits 

are determined by assuming that in an element detection process the in-

dividual elements are all detected correctly or incorrectly. Under these 

conditions, the effective number of independent errors in a test is n = 5p2l  

so that t = 5. Thus from equation 191, the upper bounds for the confid-

ence limits are given by + 2j . Where n < 30, the correct binomial 

distribution is assumed for n. 	For p = 0, it is assumed that the equi-

valent number of independent elements received in a test is bounded by 152 

and 52 . 

Since the value of t varies somewhat from one detection process to 

another, the confidence limits in Tables 1 and 2 are only accurate to 

about -400/0  to +600/0, even where the effect of the dependence between 

element errors is as estimated. They are however adequate for our pur-

poses. 

The mean and standard deviation for p, determined from seven graphs 



p 	0.0 0.0033 0.0067 0.0100 0.0150 0.0200 
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LOWER 
BOUNDS 

+0.0020 +0.0023 +0.0028 +0.0035 +0.0040 
-0.0014 - 

UPPER 
BOUNDS 0.0010 

0.0002 +0.0007 +0.0010 +0.0013 +0.0015 +0.0018 

TABLE 2 Upper and lower bounds for the 950/0  confidence limits to the 

value of p, expressed as deviations from the given value of p, 

for different values of p in Figs. 26 to 39. 

No. 1 in Figs. 26 to 38, one each for the detection processes 2J, 3J, 4J 
and 8J, and three for 11J, are la = 0.0035 and s = 0.00032. The corres-

ponding values determined from four graphs No. 1 of each of 2JH and 14J, 

are respectively p = 0.0038, o-  = 0.00101 and p = 0.0037, cr = 0.00102. 

The differences between the three mean values of p are not significant. 

The standard deviation for 14J and 2JH is some three times that for the 

other detection processes. This is a greater increase than that observed 

in the absence of noise. If p = 0.0037, with statistical independence 

between the individual element errors, the standard deviation is 0.00038 

(assuming t = 25 and t = 1000). It appears therefore that in the presence 

of additive gaussian noise there is appreciable dependence between the in-

dividual element errors in an element detection process for 2JH and 14J, 
whereas there is little or no dependence for 2J, 3J, 4J, 8J and 11J. 

5.11 Effects of the Constraints I and J on the Tolerance to  

Additive Gaussian Noise  

For the detebtion processes 2, 3, 4 and 8, with no level variations 
(graphs No. 1), the constraint J improves the tolerance to additive gaussian 

noise by about 1=1  db over that obtained with the constraint I. Where the 2 
limits of the level variations are gl  = -0.5 and g2= 0.0 (graphs No. 6), 
the constraint J improves the tolerance to gaussian noise by about 1 db. 

For the other cases tested, the improvement varies somewhere within or very 

close to the range 1 to'l-1  db. 	The one exception appears to be graph 5 2 
for 81 and 8J in Fig. 30. For the detection process 11, the constraint J 
achieves a slightly greater advantage over I than that described above, when 
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e = 0.01 (Figs. 33 and 34), and a slightly smaller advantage when c = 0.05 
and e = 0.025 (Fig. 35). 

The tolerance to additive gaussian noise for all the detection 

processes 2J, 2JH, 3J, 4J, 8J, 11J and 14J, is essentially the same for 

any given range of signal level variations, provided only that suitable 

values are used for h, b, c and e, where appropriate. 

For the graph J in Fig. 40 below, the value of pa  is the average 

value of p at the end of the complete detection process, for the arrange-

ments of the detection processes 2J, 2JH, 3J, 4J, 8J, 11J and 14J in 
Figs. 26 to 38, which converge. For each value of pa, the results of 

altogether 11 different tests have been used, one each for 2J, 3J, 4J and 

8J, three for 11J and four each for 2JH and 14J. For the graph I, the 

values of pa  are determined as before but now for the detection processes 

21:  31, 41 and 81, the result of one test for each of these processes being 

used for each value of pa. 11I converges to slightly different values of 

p, and so is not included in these results. The value of £ for any value 

of p used here, is in the range 900 to 1200, being 1000 in most cases. 

The estimated 95% confidence limits for the values of pa  in the 

graphs I and J, are approximately +0.0018 for graph I and +0.0005 for 

graph J. The 954 confidence limits for the values of p corresponding 
to any value of pa, are approximately +0.0037 for graph I and +0.0018 for 

graph J. For each graph, a gaussian probability density having a given 

0-020 

0.015 - 

0.010 - 

0.005 - 

1 	if- 	6 	5 

GRAPH No. 14V FiGS. 26 TO 36 

FIG. 11-0. 	VALUES OF po.  FOR DIFFERENT CONDITIONS OF 

NOISE AND LEVEL VARIATIONS 

V.5INC7  LINERFLY iNDET-'EN.I)Eiv'TiCii\tfi . 
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mean and standard deviation is assumed for the values of p corresponding 

to any value of pa, and Student's t-test is applied to these. 

For the graph J in Fig. 41 below, the value of pm  for each value of 

m, is the average value of the error probability per channel, determined 

at the end of the complete detection process, for the arrangements of the 

detection processes 2J, 2JH, 3J, 4J, 8J, 11J and 14J in Figs. 26 to 38, 

which converge. For each value of pm, the results of altogether 19 

different tests have been used, one each for 2J, 3J, 4J and 8J, four each 

for 2JH and 11J and seven for 14J. For the graph I, the values of pm  are 

determined as before but now for the detection processes 21, 31, 41 and 81, 
the result of one test for each of these processes being used for each value 

of pm. The value of 2 for any test is in the range 600 to 1200, being 

1000 in most cases. 

The graph 0 is the theoretical error-probability per channel, calcula-

ted for m orthogonal signals having the same form and signal/noise ratio 

as the signals for the graphs I and J. The orthogonal signals are assumed 

to be detected in ideal correlation detectors. The error probability of 

0.00078 for these signals, is a little lower than the minimum error probab-

ility obtainable for any of the signals used for graphs I and J, since 

m 	2 and the minimum cross-correlation coefficient for any two of the 

latter signals is 0.1 and not zero. 

0-0a0 - 

(>015 - 

0.010 -

0.005. 

—0 

a 	3 	5 	6 

NO. OF RECEIVED siGaRL.s, 

FIG. 	VARIATION OF )27 77  WITH 771 ; US1NG LINEFIRLY 
INDEPENDENT S Ic N,9L.S WITH NOISE BUT NO 

LEVEL VARIATIONS . 0—  = I . 
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When m << v there is a high probability that the m individual 

signal-elements selected for a transmitted total-element, will be nearly 

orthogonal.
D2 

Thus it is to be expected that as m is reduced to 2, the 

value of pm  will fall to a value of the same order as but slightly greater 

than 0.00073. 

The estimated 950/0  confidence limits for the values of pm  in the 

graphs I and J are approximately +0.0039 for graph I and +0.0005 for graph 

J. The 95°4 confidence limits for_the individual values of the estimated 

error-probability per channel, from which any value of pm  is determined, 

are approximately +0.0079 for graph I and +0.0021 for graph J. For each 

graph, a gaussian probability density having a given mean and standard 

deviation, is assumed for the individual values of the estimated error 

probability corresponding to any value of pm, and Student's t-test is ap-

plied to these. 

Figs. 40 and 41 suggest strongly that the different detection processes 

with the constraint J, will in general converge to the same solution vectors  

for the same received signals and noise, that is the same resultant vector 

R. With the constraint I there is an appreciably wider variation between 

the performances of the different detection processes than there is with the 

constraint J, but the agreement is still quite good. Figs. 40 and 41 show 

a significant and consistent advantage for the constraint J over the con-

straint I, for all the different conditions tested. This confirms the 

previous conclusions drawn from Figs. 26 to 39 as well as the simple theore-

tical analysis in Section 4.5.3. 

The analysis in Section 4.5.3 suggests that the constraint J achieves 

no advantage over the constraint I when the individual received signals are 

orthogonal, both arrangements being optimum here, but the constraint J 

should achieve a steadily increasing advantage over I, as the individual 

signals become less nearly orthogonal. The relatively small advantage 

in tolerance to additive gaussian noise shown by J over I in Figs. 26 to 

33, is consistent with the fact that in these tests the individual signal-

vectors are generally nearly orthogonal. 

Under the conditions most favourable to the constraint J (graphs 1 

and 6 in Figs. 26 to 33), it is therefore likely that for any particular 

combination of element addresses and signal levels, J will never have an 

inferior performance to•I and may have an advantage in tolerance to additive 

gaussian noise appreciably greater than that obtained in Figs. 26 to 33. 

Cn the other hand, under the most severe conditions of level variations 
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(graphs 4 and 5), J may well result in a poorer performance than I, for 
certain combinations of element addresses and signal levels. These effects 

clearly require more detailed investigation. 

5.12 Tests on Other Detection Processes  

Computer simulation tests were carried out, using general signals 

with no noise or level variations, on a number of detection processes not 

so far considered here. The symbols - used in this section are as defined 

in Section 4.0. 

In the first of these arrangements studied, the detection process 

does not use correlation detectors but uses the input error signal_ 

G = R - 	 ..y 	R - YX , 	 (192) 
" 

which is the difference between the received vector and the estimate of 

this vector. Before each process of subtraction, a search procedure must 

be carried out to determine the value of the additional subtracted signal, 

w. Y. which minimizes the length of the error vector, G. The arrangements ik is 
tested are digital systems using small steps, equivalent to 11I, 11IJ and 

llIK with c = 0.1 and e = 0.0, and 11J with c = 0.1 and e = 0.05. In 

every case only a limited degree of convergence is obtained. 	The detection 

process is here attempting to determine the vector X in the matrix equation 

YX = R. The matrix Y is in general neither square nor symmetric and posi-

tive definite, so that complete convergence of the iterative process is not 

to be expected. The application of Kaczmarz's method to the same situation 

(detection process 6, Section 4.3.4) has however been shown to converge. 

In the second group of detection processes, the magnitude of xik  is 

increased by a fixed small amount after each process of subtraction involv-

ing the i th signal, for all i. This arrangement is of course used with 

great effect in 14J. It has been applied also to 8J but no improvement in 

performance appears to be obtained here. 

In the third group of detection processes, the constraint J is used 

but its magnitude instead of being fixed at Izi l for all i, increases 

steadily to Izi l from a very much smaller value, during the detection 

of each total-element. . This modification has been applied to 8J and 11J. 

In each case the performance is at least as good as that when the constraint 

is fixed. More detailed tests are needed to determine whether or not any 
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useful improvement in performance can be obtained by this arrangement. 

Other results obtained by means of computer simulation, are as follows. 

The introduction of a threshold level, el  into the detection processes 1K 

and 2K, where e steadily decreases from 1 to zero, has little effect on 2K 

but gives a significant improvement in the degree of convergence of 1K. 

The improvement is however not sufficient to make 1K an effective system. 

If 1K and 2K are modified so that the magnitude of the total i th subtracted 

signal, xiji, instead of being fixed at I zi l for all i, steadily in-

creases to I z1. I from a very much smaller value, during the detection of 

each total-element, a significant increase in the degree of convergence 

is obtained for both detection processes. Since the improvement is obtain-

ed during the first two or three detection cycles, this further illustrates 

the importance of using small steps in purely digital systems. 

2JH with h = 0.1 has an appreciably lower rate of convergence than 11J 

with c = 0.1 and e = 0.01. 
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6.0 RADAS WITH A SINGLE TRANSMITTER AND MANY RECEIVERS  

6.1 Introduction  

As in Sections 3.0 to 5.0, only baseband signals are considered and 

the transmission medium is assumed to introduce no frequency-modulation 

effects. A total transmitted signal-element, S, is the sum of m individual 

binary signal-elements, which are in element synchronism and each of which 

is addressed to a different receiver. At any receiver, a resultant re-

ceived signal-vector R is given by R = S + N, where N is a noise vector 
and each vector has v components, as before. The attenuation in trans-

mission is neglected here, since it does not affect the basic operation of 

the system so long as it is the same for all signals. 

6.2 System using Simple Detection Processes  

For the most economical arrangement, the design of the receivers 

should be kept as simple as possible, if necessary at the expense of a more 

complex transmitter. The simplest receiver design, is that where the re-

ceiver has only one correlation detector, this being tuned to its element-

address 'Y.1  . In order that this detector should detect the received signal-

vector R correctly, in the absence of noise, each transmitted signal-element 

S should be arranged so that the corresponding output-signal from the cor-

relation detector in the i th receiver, is given by 

1 	1 
	i = 1, 	m 

	(193) 

where 	z. = + k 
	

for i = 1, 	m . 	(194) 

k is a constant. The binary value of an individual element is given by 

the sign of zi, as before. 

In the presence of noise, 

z. + Y.N , 	for i = 1, 04,6, m . 	(195) 

Except where all the element-addresses 
m 

S A 	z.Y. 

Y. are orthogonal, 

(196) 

Instead, the projection of S onto Yi  is equal to ziYi, for all i. 
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From equation 193, 

YTS = Z , 	 (197) 

where Y is the vxm real matrix whose i th column is the unit-vector Y., 

and Z = [I zi  is an m-component column-vector. 

From equations 194 and 197, YTS has 2m  different possible values, 
which form the vertices of an m-dimensional hypercube and so span an m- 

dimensional space. 	Since the matrix Y remains unchanged for these dif-

ferent values of YTS, Y must be of rank m. Thus the m element-addresses, 

must be linearly independent. It follows that up to v receivers but 

no more, can be fed simultaneously from the single transmitter. 

One problem in generating the signal S at the transmitter is that S 

is not uniquely determined by Z for a given Y in equation 197, except when 
v different element-addresses are being transmitted. When this occurs, 

Y is non-singular, so that 

(YT)-1Z . 	 (198) 

Thus the.  difficulty can be overcome by always making up the number of ele-

ment addresses to v. The v element-addresses must always be linearly 

independentandthevaluesofz.for the additional addresses can be set 

to zero. 

The best method of generating S at the transmitter, appears to be as 

follows. From equation 197, 

YYTS = HS = YZ 	 (199) 

where Z now has v components, Y is a vxv non-singular matrix and H = YY 

is a real symmetric positive-definite matrix. Thus 

S = H-1YZ . 	 (200) 

v 	m 

Clearly 	YZ = 	z. Y. = 	ziYi $ 	(2 01) 1 i i=1 	i=1: 

since only the first m of the zl  . } are non-zero. 

The transmitter generates YZ and performs the linear transformation 

H-1 on the resultant vector. Since the majority of the components of H-1 

will in general change with any change in the combination of element-addresses 

SYi  7 , the use of a linear network for H
-1 

would lead to considerable equip- 

ment
L   

complexity in an application of RADAS. A better arrangement is to use 

an iterative process, similar to 151. Instead of the process performing 

T 
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the linear transformation A-1 on the vector Y
T
R to give the vector X, as 

in Fig. 12 (Section 4.5.1), it now performs the linear transformation H 
-1 

on the vector YZ to give the vector S (equation 200). Thus in Fig. 12, 

RisreplacedbyZ,XbyS,mbyvl andYTby the i th row of the matrix 

Y, for i = 1, ..., v. The i th column of Y is the element address of the 

i th signal, as before. Since H is real, symmetric and positive-definite, 

the process will always converge (Section 4.5.2). The iterative process 

could not be used to achieve the simpler linear-transformation (i2)-1  in 

equation 198, since Y is not in general positive definite, so that con-

vergence could not be ensured. 

The arrangement just described is an adaptive system. The levels 

of the different individual signals, comprising a total signal-element Sy 

are adjusted to eliminate the effects of interchannel interference. This 

would otherwise occur whenever these signals are not orthogonal, since the 

individual signals are detected by means of simple correlation detectors. 

The main weakness of this arrangement is that an unduly high trans-

mitted level may be required for S, whenever a resultant vector of a sub-

set of the vectors {z.a.Y.3_ } is small compared with the magnitudes of the 

individual vectors in the subset. This can be avoided if the v element-

addresses are always nearly orthogonal . Where the total number of ad-

dresses is not much greater than v, or where some form of adaptive coding 

is used at the transmitter to keep the element-addresses nearly orthogonal, 

the maximum transmitted level required for S need not be excessive, so that 

a useful system could be designed. 

6.3 AM System  

Since the arrangement described in the previous section is an adaptive 

system, a preferable arrangement is the AM System, described in Section 3.5. 
The latter can be modified for working with a single transmitter, with only 

minor changes. Compared with the arrangement in Section 6.2, this involves 

an appreciably simpler transmitter but more complex receivers. It should 

in general achieve a useful advantage in tolerance to additive noise, for 

a given mean transmitted power level. 
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7.0 MULTI-CHANNEL LINK BETWEEN A SINGLE TRANSMITTER AND 

A SINGLE RECEIVER  

7.1 Introduction  

The same basic assumptions are made here as in Section 3.1, con- 

cerning the transmitted signals and the transmission medium. 	If the 

transmitted signals can be arranged to be linearly independent and of equal 

level, the detection process 15J (Fig. 12, Section 4.5.1) can be used at the 

receiver. Alternatively one of the detection processes 14J, 2JH or 11J 

could be used. The arrangement achieving the best compromise between per-

formance and equipment economy, is probably the AM System (Section 3.5) 

when suitably adapted for working with a single transmitter and a single 

receiver. 

In the particular case where the total number of different addresses 

is only twice the number of components in a signal vector, the coding and 

detection process 16, to be described here, leads to a most effective and 

simple arrangement of RADAS. As in Sections 4.0 and 5.0, it is assumed 

that the receiver has prior knowledge of the number and element-addresses 

of the received signals, and as in Section 6.0, the attenuation in trans-

mission is neglected. 

7.2 	Orthogonal Sets B and C  

The2velement-addressespilare selected from two sets of v 

orthogonal signals, where v is the number of components in a signal vector. 

It is assumed that the element energies of all received signals are equal. 

For the signals in the orthogonal set B, yii  = 1 for all i and yji  = 0 

fm.alljOi,whereY=Eyjdisthevxvmatrixwhosecolumns,Y.,are 

the element addresses in the orthogonal set B. Thus Y is the vxv identity 

matrix I. For the signals in the orthogonal set C, the corresponding vxv 

matrixIistheorthogonalmatrixsuchthatI Yji 	
11= 	for all j and 

i. 	When this matrix is multiplied by IV-, so that I 
jiI y 	= 1 for all j I  

and i, it becomes a Hadamard matrix. Such matrices have been discovered 

for all values of v which are multiples of 4 in the range 4 to 200, with 
the exception of 116, 156 and 188.C17  When v = 2n, where n is a positive 

integer, the rows or columns of the Hadamard matrix become the corresponding 

Walsh functions, which may be generated in a particularly simple manner.D2'C18 

It can readily be shown that the orthogonal sets B and C are such that 
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the minimum distance of every member of one set from the v members of the 

other set, is maximized, this distance being the same for all pairs of sig-

nals with one in each set. The optimum detection process for the m re- 
Zroaz cgle LAtertittj 

ceived signals, whereAthe receiver has no prior knowledge of the values of 

the I z. 11 1 0  is as shown in Fig. 11 (Section 4.1). 	This detection process 

determines the value of the vector X in the equation 

AX = D , 	 (202) 

where the mxm matrix A is given in partitioned form by 

A 

I
I 
 F 

F
T 

12 

(203) 

   

1 I
1 
and 12  are identity matrices and all components of F have magnitude IT  

This matrix is an example of a matrix with property A,
G5 

and is 

alternatively described as a consistently ordered 2-cyclic matrix.A12'G13 

The matrix A is of course also real, symmetric and positive definite. It 

has been shown that for the matrix equation 202, with the matrix A given by 

equation 203, both the point Gauss-Seidel and the point Jacobi iterative 

processes will converge.A12G5G13  Thus the detection processes 1 and 2 

should both be effective here. Furthermore, any detection process deter-

mining the vector X in equation 202, is appreciably simplified by the fact 

that the received signals belong to two orthogonal sets. 

The weakness of the arrangement, when v = 22n  where n is a positive 

integer, is that when there are many more than v4T signals in each orthogo-

nal set, there is a high probability that the signals are linearly dependent 

and there is an appreciable probability that they are not uniquely detectable. 

For other values of v >>. 1 1 	such that the signals are always uniquely 

detectable, there is an appreciable probability of a very low tolerance 

to additive noise, so that the guarantee of unique detectability is of no 

real practical advantage. 

Various sets of orthogonal signals suitable for applications of RADAS 

are considered in some detail in reference B4. 

7.3 	Coding and Detection Process 16 

A better way of using the signals in the two orthogonal sets is to 

transmit the signals in set C as the envelope of the signals in set B.. 

For each total-element transmitted;  the signals in sets B and C are first 
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generated as before, the sum of the signals in set B being stored separately 

from the sum of the signals in set C. If the j th digit (component) of 

the sum of the signals in set C is negative, its sign is arranged to be 

the opposite to that of the coincident signal in set B, and if it is posi-

tive its sign is arranged to be the same. If there is no coincident signal 

in set B, the j th digit is left unchanged. The above procedure is car-

ried out for j = 1, ...0  v. All individual signal-elements have equal 

levels, such that I zil = v/i7r for all i in each orthogonal set. 

The receiver uses correlation detectors as in Fig. 11 and the detec-

tion process is a modification of the process 2K. In the first detection 

cycle for a total element at the receiver, the received signals in set B 

are detected first, by determining the signs of the appropriate digits. 

Since these signals are orthogonal they may be detected sequentially or 

simultaneously, whichever is the most convenient. If any of these digits 

are negative, their signs are now changed to make them positive. 	The 

magnitude, 17 , of a signal in set B, is then subtracted from each of them. 

If all received signals in set B have been correctly detected, the resultant 

signal is the sum of all received signals in set C as first generated at 

the transmitter, together with a noise vector. This signal is fed to the 

appropriate correlation detectors, where the individual signals are detected. 

In the second detection cycle, the detected binary value of each re-

ceived signal in set C is used to generate the corresponding signal vector, 

and these vectors are then added together to regenerate the sum of the re-

ceived signals in set C, as used to amplitude modulate the signals in set B. 

If, coincident with any received signal in set B, there is a negative digit 

in this regenerated signal, with a magnitude greater than ,F.r-  , then the 

detected binary value of the corresponding signal in set B is changed from 

its value determined in the first detection cycle. At the same time, in 

the circuit which changes the sign of a negative received digit where this 

coincides with a received signal in set B, the sign of the received digit 
is now left uncharged. As before, 	is subtracted from the value of each 

of these digits and the resultant digits together with the remaining re-

ceived digits are fed to the correlation detectors for the received signals 

in set C. The outputs of the latter are then sampled to determine their 

binary values. The above procedure is repeated for each subsequent detec- 

tion cycle. 	In practice only two detection cycles would probably be used, 

since no useful reduction in the error probability per channel appears to 

be achieved by the subsequent detection cycles. 

A signal in set B is not uniquely  detectable if the coincident digit 
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of the sum of all received signals in set C, has the opposite sign and 

same magnitude. If this condition is not satisfied by the sum of all 

received signals in set C but only by a subset of these, the coincident 

signal in set B is in general uniquely detectable. 	By suitably select-

ing the number of components in a signal vector, for instance v = 12 or 20, 

and maintaining the signal levels equal, it is possible to ensure that the 

unique detectability of the received signals in set B is not prevented by 

the effect described. However a better minimum tolerance to additive noise 

is obtained if v = 22n  and the total number of signals in set C is arranged 

always to be odd. This is achieved by transmitting an additional signal 

when necessary. 

When the coding and detection process 16 is not used and signals in 

the orthogonal sets B and C are transmitted, with v = 16, a received signal 

is not uniquely detectable if it is in a subset of received signals in the 

same orthogonal set, which together with a subset of received signals in the 

other set, add to give a zero resultant vector (Section 3.2). Clearly this 

cannot be prevented by using only an odd number of signals in the set B or 

C, or by some other equivalent arrangement. However it can be avoided by 

changing v to say 12 or 20, but at the expense of a low minimum tolerance to 

additive noise. With v = 16, the probability of a signal in either orth-

ogonal set here being not uniquely detectable, appears in general to be 

considerably higher than for the coding and detection process 16 with an 

odd number of signals in set C. 

7.4 Tests by Computer Simulation  

Figs. 42 and 43 compare the performance of the coding and detection 
process 16 with the performances of various detection processes, where the 

latter use signals in the orthogonal sets B and C as described in Section 

7.2. In every case lzi l = 4 for all i in each set. 

In these and all subsequent tests, v = 16, so that there are al-
together 16 different element-addresses in each orthogonal set. Further-

more, an arrangement of RASSAS is used, so that when there are mB  and mc  

received signals respectively in the orthogonal sets B and C, a random 

selection is made of these numbers of element addresses from the two or-

thogonal sets, for each new total signal-element transmitted. The { zi  

of the different individual signal-elements are statistically independent 

and equally likely to have either binary value. 
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For each pair of values of mB  and mC, 8 total signal-elements are 

transmitted, and the value of p, determined independently for the signals 

in each orthogonal set, is the average of the estimates of the error 

probability per channel, obtained for the different combinations of mB  

and mc. In Fig. 42 there are 25 such combinations and in Fig. 43 only 
4. The values of 	used, are shown as for Figs. 14 to 39. 

It is clear from Figs. 42 and 43 that the coding and detection process 

16 not only converges to much lower values of p than the other arrangements 

tested, but it does so much more rapidly. It is also interesting to ob-

serve here that for a given constraint I, J or K, the detection processes 

1 and 2 have similar convergence properties. 

In Fig. 44 the parameters associated with the different graphs are 
as follows:.- 

Set B 

mB 

 

Set C 

 

mC 	I zi I 

1 odd 4 odd 4 200 

2 even 4 even 4 200 

3 even 4 odd 4 100 

4 odd 4 even 4 100 

5 odd 6 odd 4 100 

6 even 6 even 4 100 

7 odd 8 odd 4 100 

8 even 8 even 4 100 

Where mB is marked "odd", p is determined from all combinations of mB and 

m such that mB has an odd value in the range 7 to 15. Where mB  is marked 
"even", p is determined from all combinations of m

B and m such that mB 
has an even value in the range 8 to 16. Similarly for m0. 

These tests, together with more detailed tests with i = 1000 whose 

results are not shown here, suggest that when the levels of the signals in 

set C are 6 db or more below the levels of the signals in set B, the levels 
in each set being equal, then in the absence of noise there are no errors 

in detection for the process 16, so long asIzi l for each set is even and 

m, is always odd. 

In Figs. 45 and 46 the letter B or C against a graph indicates the 

orthogonal set to which the values of p apply. The parameters associated 
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with the different graphs here are as follows:- 

Set B 	Set C 

mB 	Izil 

Bl, Cl 16 1.0 0.4000 0.125 

B2, C2 8 1.0 0.4000 0.125 

B3, C3 16 1.0 0.3636 0.125 

B4, C4 8 1.0 0.3636 0.125 

B5, C5 16 1.0 0.4000 0.000 

B6, C6 16 1.0 0.3636 0.000 

is or i the variance of the sample values of the additive white gaussian noise. 

Figs. 45 and 46 give the values of p at the end of the first and second 

detection cycles respectively. The values of p plotted here are the esti-

mates of the error probability per channel for given values of mB  and me. 

The values of p originally determined for each of the graphs Cl to C4 re-

main approximately the same, regardless of the number of received signals 

in set C. Thus to simplify Figs. 45 and 46, the graphs plotted for Cl to 

04 show in each case a constant value of p, which is its average value for 
all values of m from 1 to 16. 

In Table 3 below, the 950/0  confidence limits for the values of p 
in Figs. 42 to 46 are given for different values of p and .g . The con-

fidence limits are calculated in the same way as those in Tables 1 and 2 

(Section 5..10), so that these are only approximate estimates and assume that 

in the detection of a total element, errors always occur in groups of 4. 

With the degree of dependence likely to be obtained between the individual 

element errors, it is unlikely that the true confidence limits will exceed 
or even reach the values given in Table 3. The latter may therefore be 

taken as approximate upper bounds to the true confidence limits. Alter-

natively they may be taken as the 95% confidence limits for the difference 

between the values of p, for two different detection processes having similar 
values of p. 

The confidence limits for the graphs Cl to C4 in Table 4 below, have 

been estimated from the individual measured values, assuming that these have 

a gaussian probability density. 

It can readily be'shown that for the signal/noise ratio which applies 

to the graphs Cl and 02, the probability of an element error in the detection 

of a signal in set C, assuming that no other signals are received, is 0.00069. 

cn  
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FIGS.45 & 46 

2 =100 

(t=82.5) 

+0.0070 

+0.0038 

+0.0022 

+0.0014 
-0.0011 

- 

- 

- 

2 =200 

(t=82.5) 

+0.0049 

+0.0027 

+0.0016 

+0.00085 

- 

- 

- 

2 =1000 

(t=8.5) 

+0.0069 

+0.0038 

+0.0022 

+0.0014 
-0.0011 
+0.0011 
-0.0005 

- 

_ 

0.00019 

2=100 

(t=82.5) 

+0.0070 

+0.0038 

+0.0022 

+0.0014 
-0.0011 
+0.0012 
-o.0006 
+0.00081 
-0.00027 

+0.00050 
-0.00010 

0.00038 

2 =200 

(t=82.5) 

+0.0049 

+0.0027 

+0.0016 

+0.00085  

+0.00070 
-0.00042 
+0.00051 
-0.00021 

+0.00035 
-0.00010 

0.00019 

Bl, B3, 
B5 & B6 
(t=4) 

+0.0032 

+0.0025 
-0.0014 
+0.0020 
-0.0008 

+0.0015 
-0.0003 

+0.00050 
-0.00010 

0.00019 

B2 & B4 

(t=2) 

Ole 

+0.0054 
-0.0041 

+0.0044 
-0.0020 
+0.0032 
-0.0009 

+0.0015  
-0.0003 

+0.00050 
-0.00010 

0.00038 

TABLE 3 • Approximate 950/0  confidence limits to the value of p, for 

different values of p and 2 in Figs. 42 to 46. 

GRAPH FIG. 45 FIG. 46 

Cl, C2 +0.00012 +0.00010 

C3, C4 +0.00023 +0.00022 

C5, C6 0.00008 0.00008 

TABLE 4 	+ 950/0  confidence limits for the values of p in the graphs 

Cl to C6 in Figs. 45 and 46. 

For C3 and C4 it is 0.00181. The signals are here assumed to be detected 
in ideal correlation detectors. For the conditions tested and within the 

confidence limits for the results of these tests, it therefore appears that 

in the coding and detection process 16, the tolerance to noise of the signals 
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in set C is not significantly different from that of these signals when 

transmitted and detected with no other signals present. 

Fig. 46 suggests that when there are normally around 8 received sig-
nals in set C, the best overall tolerance to additive gaussian noise should 

beobtainedwitillz.1=0.4 for all i in set C, and an odd number of sig-

nals in this set. When there are normally around 12 signals in set C, 

the best overall tolerance to additive gaussian noise should be obtained 

with Izil = 0.3636 for all i in set C, and an even number of signals in 

thisset.ltisassumedthatlz.1= 1.0 for all i in set B, and that 

there are normally as many or more signals in set B as there are in set C. 
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8.0 COMMENTS ON THE RESEARCH PROJECT  

8.1 Originality 

All the work described in this thesis which is not specifically 

ascribed to others, usually by quoting the appropriate reference, is 

original to the best of the author's knowledge. 

The following are the more important of the contributions which are 

believed to be original. 	The design and analysis of the Systems A, B 

and C (Section 2.0). The analysis of the conditions for unique detect-

ability (Sections 3.2 and 3.3). The design of the adaptive coding systems 

for linear independence (Section 3.4). The AM System (Section 3.5). The 

design and analysis of the optimum detector for several non-orthogonal sig-

nals, for the case where the receiver has no prior knowledge of their levels 

(Section 4.1). The application of MacColl's proposal to the detection of 

several signals received simultaneously (Section 4.2). The development of 

MacColl's proposal leading to a unified treatment of the various detection 

processes 1 to 15 (Section 4.0). The application of the constraints I, J 

and K to these processes (Section 4.0). The application of the point 

Jacobi, Gauss-Seidel and Gauss-Southwell iterative methods to the detection 

processes 1, 2 and 4 respectively (Sections 4.3.2 and 4.3.3). The appli-

cation of Kaczmarz's method to the detection processes 5, 6 and 7 (Section 
4.3.4). The detection processes 3 and 9 to 14 (Sections 4.3.2 and 4.4.2). 
The application of conventional analogue techniques for solving linear 

simultaneous equations, to the detection process 15 (Section 4.5). The 

further modifications of the detection processes 1 to 15 (Section 5.12). 

The system using simple detection processes in an arrangement with a single 

transmitter and many receivers (Section 6.2). The use of sets of orthogonal 

signals for RADAS (Section 7.2). The coding and detection process 16 
(Section 7.3). The theoretical analysis of the different coding and 

detection processes, with the exception of the elegant proof for the non-

singularity of the matrix M (Section 3.4), which is due to Mr. G. R. Selby 

of Imperial College. All computer-simulation tests and all computer pro-

grams. The use of RASSAS signals and the quantity p, to determine the 

degree of convergence of an iterative detection process when operating with 

a general class of signals. 
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8.2 Possible Further Investigations 

The constraint J is most effective in improving both the rate and 

degree of convergence of the majority of the detection processes tested. 

It does not however necessarily guarantee the correct detection in the 

absence of noise, of received signals which are uniquely detectable but 

linearly dependent. This can be seen by considering the five received 

signals whose element-addresses are given by the columns of the matrix 

	

-1 	1 	1 	1 	-1 

	

1 	-1 	1 	1 	-1 
1 	1 	-1 	1 	-1 (204) 
1 	1 	1 	-1 	-1 
1 	1 	1 	-1 	-1 

where Y is of rank 4. 	The sum of the five signals is 

s 	= 	YZ 	 (205) 

where Z is the 5-component column-vector rz1  . 1 . If Z
T 

= (1,1,1,1,1), L J 
then S

T 
= (1,1,1,1,1). If an iterative detection process with the con-

straint J is used at the receiver, such that the estimate X = [xi] of the 

vector Z is constrained to satisfy the equation 

I
xi l 	lzil = 1 y 	for i = 11. ..., 5 , 	(206) 

then the solution vector X obtained at the receiver in response to the 

received vector S, must satisfy equation 206 and 

S = YX . 	 (207) 

There is an infinite number of these solution vectors, between the two 

extreme values given by XT = (0,0,0,0,-1) and XT = (1,1,1,1,1), each of 

them satisfying the equation 

1 xi  = 2.(1 + x5) , 	for i = 12  sloe, 4. 	(208) 

To ensure correct detection (X = Z) in a case such as this it is 

essential that the receiver accepts only those binary values which together 

with the correct signal levels, give the best approximation to the total 

received signal-vector S. One approach to this is to use the constraint J 

and to introduce a continuous tendency for the I xi I} to increase in 
magnitude towards the II z. 	, during the detection process. This is 

achieved automatically in the detection processes 14J and 2JH. It is there-

fore of some interest to determine whether or not the better arrangements 
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of 14J and 2JH achieve an advantage over the other detection processes, 

when general signals of equal levels are being received. In the tests 

carried out here (Figs. 16 to 20) the confidence limits are too wide for 

any definite conclusions to be reached on this. 

Further tests are also needed to check whether or not the apparent 

dependence between element errors in a detection process of 14J or 2JH, 

is accompanied by a reduction in tolerance to additive gaussian noise, for 

certain combinations of element addresses and signal levels. There is 

clearly a need to examine the performance of all the more promising detec-

tion processes, that is 15J, 14J, 2JH and 11J, when using RADAS rather than 

RASSAS signals. 

It would finally be of interest to examine the effects on the de-

tection process 14J, of a constraint J which instead of being fixed at 

l zd,increasessteadilytolz.lfrom a very much smaller value, during 

the detection of each total-element. On the basis of the available evi-

dence this appears to be the most promising of all the detection processes, 

for applications where the received signals are uniquely detectable but 

linearly dependent. 

8.3 Possible Applications 

The arrangements of greatest potential value studied in this thesis 

are the System C, the AM System, the detection process 15J and the coding 

and detection process 16. The detection processes 14J, 2JH and 11J also 

have some interesting possibilities. 

The System C and the AM System would, under suitable conditions 

which are of course quite different for the two systems, provide useful 

alternatives to existing or proposed message-switching systems. 

The coding and detection process 16 could be used to provide an 

increase of around 500/o  in the channel capacity of a conventional TDM 

system, where this uses binary-coded bipolar baseband signals. When the 

number of simultaneous signals transmitted, that is the number of calls, 

does not exceed the number of components v of a signal vector, only signals 

of the orthogonal set B are transmitted. When more than v signals are 

transmitted, the additional signals are selected from the orthogonal set 

C. The levels of the signals in an orthogonal set are equal, the signals 

in set C having the appropriate level to maximize the overall tolerance to 

additive noise. Alternative arrangements enabling the capacity of the TDM 
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system to be increased by a factor of 2 or 3 times, are considered in some 

detail in reference B4. 
The detection process 15J, or one of the processes 14J, 2JH or 11J, 

may be used in many applications where it is required to find the vector X 

from a known matrix A and vector D in the equation AX = D, given that A 

is an mxm real, symmetric, positive-definite matrix and varies slowly with 

time. This is the situation where separate groups of m orthogonal binary-

coded signals are transmitted over a channel which introduces slowly-time-

varying intersymbol or interchannel interference. By transmitting known 

test signals at suitable intervals, a reasonably accurate knowledge of A 

can be maintained at the receiver. From the vector D obtained in response 

to a set of m received signals, the receiver determines the vector X and 

hence the individual binary values. A possible application for this ar-

rangement is, for instance, an adaptive filter used to reduce the effects 

of multi-path propagation in a digital H.F. radio or other equivalent trans-

mission link. 
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9.0 CONCLUSIONS 

In an arrangement of RADAS with many transmitters and many receivers:  

the interfering signals in the detection of an individual signal-element, 

must be treated as noise in the interests of equipment economy. 	Under 

these conditions some errors are inevitably caused by interchannel inter-

ference. Where there is only a single receiver, errors due to interchannel 

interference may be entirely eliminated by detecting the sum of the received 

binary antipodal signals as a single multi-level signal, provided that the 

received signals are baseband, in element synchronism and linearly indepen-

dent. Although in the latter case the maximum transmission rate over the 

common channel is much greater, for an acceptable tolerance to additive 

noise, than it is in the former case, it is always inferior to that of the 

equivalent TDM system using orthogonal signals. Where suitable adaptive 

coding is used with RADAS, as in the AM System, its performance is however 

only slightly inferior to that of the TDM system. 

Where the required transmission rate over a common channel with many 

transmitters and many receivers, is always small compared with that avail-

able with the equivalent FDM or TDM system using orthogonal signals, RADAS 

may sometimes permit a useful reduction in equipment complexity to be achieved, 

without suffering an excessive degradation in performance, provided only that . 

digitally-coded-speech and not data signals are transmitted. The most pro-

mising of the transmission systems studied for this application, is the 

System C. 

In the arrangement of RADAS using many transmitters and a single re-

ceiver, 15J appears to be by far the simplest of the different detection 

processes studied, and it has in general as good a performance as that of 

any of the other systems. Other detection processes which may achieve a 

useful compromise between performance and equipment economy are 14J, 2JH 

and 11J. 

Where there is a single transmitter feeding a single receiver via a 

multi-channel link, and the total number of different addresses is only 

twice the maximum number of orthogonal signal-elements, then the simplest 

and most effective of the systems studied, appears to be the coding and 

detection process 16. An arrangement of this type could be used to in-

crease the capacity of an equivalent TDM system by about 50°4, while at 

the same time minimizing the reduction in tolerance to noise of the original 

TDM signals. 
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Perhaps the most useful outcome of the investigations carried out 

here, is the development of coding and detection processes, which may under 

certain conditions be used to eliminate or at least greatly reduce the 

intersymbol and interchannel interference between binary-coded digital 

signals reaching a single receiver, in applications where this interfer-

ence varies with time. 
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APPENDIX 1 

DETECTION OF THE FREQUENCY-TI! TRACES OF A 

NUMBER OF VARYING-FREQUENCY SIGNALS  

Suppose that at the terminal A of the receiver of System C there 

are m varying-frequency signals, each of which has no discontinuities in 

amplitude or instantaneous frequency. 

Let the amplitude and phase of the k th signal at time t be ak(t) 

and 6t) respectively, for k = 1, ..., m. Assume for convenience that 

when t = 0, ek(t) = 0 for all k. 

Let the resultant signal obtained by adding together the m varying-

frequency signals, be given by the real part of V(t), where 

jek(t) 
V(t) = v(t)ejr15(t)  =  	ak(t)e 	(4) 

k=1 

Thus the amplitude of the resultant signal at A is given by v(t) and its 

phase angle by O(t). 

From equation (4), 

m 

v(t) cos0(t) = .> 	ak(t) cos ek(t) s 	(5) 
k=11  

m  

v(t) sin0(t) . > . 	(t) sin ek(t) . 	(6) 
k=1 

m  

>  % ak(t) sin ek(t) 
= 	k=l  

	

2 	(7) M 

 	ak(t) cos ek(t) 
k=1 

• • 
	tan 0(t) 



ak(t)ek(t) 
k=3.'  2=1 

t/k 

m  ak(t) 
k=1 	2=1 

2/k 

(t)e (t)cos(e.e (t)-ek(t)) +a(t)sin(0(t)-ek(t)) 	. 	(8) 

and sec20(t). 93(t) 

m  = (>  
k=1 

• 
, ak(t)ek• (t)cos 0k(t) 4- 

. (›ni  
k=3 ak(t) cos 0

k(t) 	4" 
k=i. 

+ V  
3.1

ak(t)ek(t)sin ek(t) 
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(t)sin k(t) ) 

(t)cos ek
(t) )2 

k= a
k(t)cos ek(t)) 

m 
T ak(t)sin ek(t)) 
k=1 

2  	 ak(t)cos ek(t)) 

OM 

m 	 m  m 
. \ / 2 •  ak/ , (t)ek(t)cos2ek(t) -1->

' 	 ( 	
Tak(t)a2 Wet(t)cos ek(t).cos 02(0 

k=1 	 k=1 2=1 
.2/k 

	 ak(t)aks  (t)cos ek(t).sin ek(t) +  	ak(t)ae (t)cos ek(t).sin 0,e (t) 
k= 	 k=3.#  t=1 

tAt 

T ak(t)az (t)ei(t)sin ek(t).sin et  (t) 
k=1 2=3. 

2/k 
m m  

>  , ak(t)ak(t)sin ok(t).cos 

	

ek(t) - ;5'  	 ak(t)a,,(t)sin ok(t).cos 02(t) 
k=3. 	 k=1 

2/k 
m 

+ 	ak(t)cos ek(t) 
k=1 

2 • 
k=1' alc(t)ek(t)sin2ek(t) 

)2  

(t)ai (t)e2(t)cos(e2(t) - ek(t)) 

▪ >  %  	ak(t);2(t)sin(ei,(t) - ek(t)) 	v2(t)cos20(t) . 
k=1 L=1 

.e/k 

2 • v (t)0(t) ak 2 	• (t)ek(t) • • 
k=1/. 
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At any value of t for which either sec295(t).0(t) or O(t) is infinite, 

v2(t)¢(t) is zero, the latter function being continuous and bounded. 

The output signal from the FM discriminator 1 is 0(t) and the output 

signal from the squarer is v2(t). Thus the signal at terminal C is 

v
2(00(t). 

The value of a (t) would normally vary only slowly with time, so that 

a2(t) 2:0 for L=1,..•,m. 
m 

. 	2 	• 	• 
. . v (t)0(t) 2= ,̀5—‘ ak(t)ek(t)

2  
k=1'  

(t) (t)&2(t)cos (et  (t)-ek(t)) 

(9)  

The first term on the right hand side of equation 9 is the sum of m 

separate terms, each of which is proportional to the frequency-time trace of 

a different one of the m varying-frequency signals. 

ek(t) = 27c(fc+ gk(t)+fecos tic fiat + locos 2n fk2t):  for k=1,...A. 

(10)  

The components of 6k(t) here are as defined for equation 16 (Section 2.4.3). 

fc  > 2fe  >> f>> fk2  >> 1, gk(t) is the message modulation applied to 

the k th signal and the two frequencies fkl  and fk2  cps define the discrete 

address of this signal. 

d / 
dt c(t)- k(0) = e2(t)- EVt)=2nfe(cos 27cf21

t+cos 2nft-cos 27cfkl`  A—oosanfk2t) 

+ 2n(ge(t) - gk(t)) 	 (11) 

where fe  » max I gk(t) I = max 1 g
t
(t) I 

Thus the signal cos Pe  (t)-ak(t)) is a wide-deviation FM signal, whose 

instantaneous frequency varies continuously over a range from zero to a little 

over 4fe cps. In the absence of message modulation, this has a line spec-

trum with frequency components which are harmonics of flu, fk2'  fel  and f221  

together with the sums and differences of these harmonics. The frequency 

components are spread over a frequency range only a little wider than that 

swept out by the instantaneous carrier frequency.A7 Under normal condi- 

tions, the message modulation signal gk(t) or gz(t), has a continuous power-

density spectrum extending from about lf
g 
 to 2fg  cps. Thus in the presence 

3  
of message modulation and with any reasonable modulation-index, the line 

spectrum becomes effectively blurred into a continuous spectrum. Since gk(t) 
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or g(t) is not synchronized or simply related to any of the frequency 

components fk-, fk2P  fiel  or ff2, the signal cos(82(t)-0k(t)) normally 

has a smooth power-density spectrum. The power spectral density is maxi-

mum at zero cps and decreases slowly as the frequency rises to 4fe  cps, 

falling rapidly to zero as the frequency increases above 4 fecps. 

The second term on the right hand side of equation 9 represents the 

intermodulation products at the terminal C. Assuming equal received sig-

nal levels and statistically independent message-signals, the intermodulation 

products have a total power level of m(m-l) times that of any one fkl or fk2 
cps component, say for instance that fl  cps component in Fig. 6. They have 

a resultant spectrum which is continuous and extends from zero cps to a 

little above 41-fe cps. Since normally fe > 10
6 and the effective band-

width of a correlation detector is less than 10 cps, it appears that for 

values of m around 10, very little interference should ideally be caused in 

a correlation detector by the intermodulation products. 

fkl and  fk2' for all k, should lie outside the frequency band of gk(t), 1 which extends from about 3 - fg  to 2 f cps. Otherwise appreciable interfer- 
ence may be caused by the message modulation in the corresponding correlation 

detectors. Furthermore, in order to prevent the intermodulation products 

at the terminal C from developing line spectra and so possibly causing exces-

sive interference in a correlation detector, the message modulation should 

be applied continuously to all transmitted signals, and the transmission of 

regular signal patterns for extended periods should be avoided. 
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APPENDIX 2  

CORRELATION DETECTOR FOR AN f
1 
 CPS SINE-WAVE 

The feedback control loop for this detector involves the product 

modulator 3 and the low-pass filter 1. The function of this circuit is 

to adjust the sine wave at the terminal E to be exactly in phase with the 

f1 cps sine-wave component at C. The sine wave at D multiplies the sig-

nals at C, in the product modulator 3. If there is no fl  cps frequency 

component at C, then there is no d.c. component at the output of the pro-

duct modulator, at the terminal I. The low-pass filter 1 has a very-low-

frequency cut-off and removes essentially all the a.c. components from its 

input signal, to give therefore zero volts at J. The signal here is the 

control signal for the f
1 cps oscillator, which now oscillates at its 

natural frequency. 

Suppose that the signal at C contains an f1 cps component a(t)sin 2nf1t 

where a(t) is the amplitude of the signal component. Let the signal at E 

be sin(2nf1 + 0(t)), where e(t) is its phase angle relative to the f1 cps 

sine-wave at C. The signal at D is now cos(2nf1t + e(t)) and the resultant 

output signal from the product modulator 3, at the terminal I, is given by 

a(t) sin 2n f1t .cos(2n f1t + e(t)) 

1 	1 
= 2 -a(t)sin(4n f1t + e(t)) - -a(t)sin e(t), 2 (12) 

assuming unity gain in the modulator. 

With correct system design and in the absence of rapid fading, both 

a(t) and e(t) should only change slowly with time and in such a way that 
1 the signal - 2  -a(t)sin e(t) contains only very-low-frequency components. 

Under these conditions the low-pass filter 1 removes the signal 

la(t)sin(4n f1t + e(t)) and passes the signal - a(t)sin e(t) to the 2  
terminal J. 

The f
1 cps oscillator is so designed that a positive voltage at the 

terminal J increases the instantaneous frequency of the oscillator by an 

amount proportional to the voltage magnitude, and a negative voltage at J 

similarly decreases its frequency. Taking fl  as a constant, 

e(t) = - k a(t) sin e(t) , 	(13) 

where U 4e. a positive const-nt and a(t) 	O. 
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The condition where 0(t) = 0 is thus the point of stable equilibrium 

and the instantaneous frequency of the fi  cps oscillator is automatically 

adjusted until the sine wave at the terminal E is exactly in phase with the 

f
1 cps component in the signal at C. The condition where 0 = % is a point 

of unstable equilibrium and the oscillator is very unlikely to remain in 

this condition for long. 

The general conditions for stability of a phase-locked oscillator of 

this type as well as its transient behaviour and response to noise, are 

analysed in some detail in reference C12. These will not be considered 

further here. 

When stable equilibrium has been obtained, the signal at G, resulting 

from the component a(t)sin 27t fit at C, is 

a(t) sin2 2%f
1
t 

= la(t) - la(t)cos 	f
1
t 	(14) 2 	2 

The low-pass filter 3 has a very-low-frequency cut-off and filters 
1 out the second component of this signal, that is - ya(t)cos 4% f,t. It 

also effectively removes the other a.c. components present at G. If the 

impulse response of the filter is h(t), the signal at the filter output 

is h(t) 	This is proportional to the appropriate weighted average 

of a(t) over the period t-T to t, where T is the total period over which 

h(t) has a significant value. Thus the magnitude-of the positive voltage 

at K is a measure of the level of the f
1 cps sine-wave at C. 



s(t) 

• co  

k=-co 

sinn(2Wt-k)  c .2W. 	/ k 	nk2Wt-k) 

so that 	s(H 
	

2Wck  

for all k. 

uk(t) 	,5/7 sinn(2Wt-k)  
n(2Wt-k) 	• 

Let 

= exp 2W 	f %/iv, 

/ J2nfk ) 	1 	H(f)  exp(- • 2/4  

sin 2nWt  
2nWt 
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APPENDIX 3  

ANALYSIS OF BASEBAND SIGNAL WAVEFORMS  

The transmitter low-pass filter, the transmission path and the re-

ceiver low-pass filter may together be represented by a single low-pass 

filter with a transfer function H(f) (equation 31, Section 3.1) 

The impulse response h(t) of this filter is given by 

H(f) exp (j27tft) df 

cos 2wft df 

2W. sin2nWt  
2nWt 	' 

(32) 

neglecting the time delay in the filter which is ideally infinite. 

The waveform s(t) at the output of the filter is given by 

h(t) 

The Fourier transform of uk(t) is 
co 

Uk(f) = jr uk(t)exp(- j2nft) dt 
-co 	oo 

3 	(33)•  

(34)  

(35) 

exp(-j2nft) dt 

(36)  

From Parseval's theorem, 
co 

uk(t)ue(t) dt 
4.14 
Jr x (EafiLt1) ep 2W 	2W 

-w 

Uk  (f)e(f) df 

df 	= 	8k1 (37) 
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where k and i are integers
'  8 	is the Kronecker. delta and * here re-

presents the complex conjugate. Thus the waveforms luk(t)} are orthonormal 

functions. 

The signal element represented at the input of the low-pass filter by 

the sequence of 2WT pulses 

2WT 

 	ck  8 — k27) 
k=1 

(38)  

appears at the output of the low-pass filter, whose delay is again neglected, 

as 
2WT  

k=1 

2WT  

> 	  s  
k=1:.  

2WT 

sin7c(2Wt-k)  c
k
. 2W. 

it(alt-k) 

v4217 ck  uk(t) 

1 
Cfri uk(t)  k=1/  15 

from equation 34, so that it contains 2WT of the orthonormal functions uk(t). 

These may be taken as unit vectors to specify the 2WT orthogonal axes of the 

signal space in which the transmitted signal-element is defined. The 

signal-element clearly has 2WT degrees of freedom,A1'A2  and the k th com-

ponent of the vector defining the signal element is 

1 	5 (kJ) 	
(40) 

The response to s(t), at t = 

filter tuned to uk(t), is given by 
co 	co 

of a correlation detector or matched 

Jrs(t)uk(t) dt = Jr S(f)UZ(f) df 

-co - 	-co 

(where S(f) is the Fourier transform of s(t)1  and * here represents the 

complex conjugate) 
co 

S(f) 	1 

( 	
H(f) exp 	.21•1-11-k  ) )16  2W 	df 

-co 

(from equation 36) 
+w 

= 	1• jn S(f)exP('229 df 2W 2W 	 -W 

= 	1 	* 

0 	k2W) • 
	 (41) 

(39)  
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Thus s(L)/  the sample value of the waveform at the output of the 2W  
low-pass filter at the time t = 	, is 42W times the k th component 
of the vector defining the signal element. It is also 267 times the 

response to the total waveform s(t) at t =c01  of a filter matched to 

uk(t). The signal element at the output of the low-pass filter given 

by equation 39, is therefore determined completely and in an optimum man-
ner, by the 2WT sample values for k = 1,...,2WT.A81A9 

Whereas the signal element at the input to the low-pass filter has a 

duration of T seconds and infinite bandwidth, the corresponding signal-

element at the output of the low-pass filter has infinite time duration 

but a bandwidth -W to W cps. A band-limited signal-element is however 

for convenience associated entirely with its 2WT sample values, so that it 

is described as having a duration of T seconds. 

If the transmission path introduces into the signal at the receiver 

input, gaussian noise having zero mean and a constant power density of 1 No  

over the frequency band -W to W, it can be shown that the resulting noise 

components at the sample values of the signal, at the output of the receiver 

low-pass filter, are statistically independent zero-pean Gaussian random 
variables with variance WN

o
.A8  Furthermore, by the sampling theorem, the 

noise signal n(t) at this point is given by 

n(t) 

CO >  

k=-00 
co 

= 2 1 

k= -m 	
n(77) uk(t) 1 	(42) 

so that the noise signal is completely determined by its sample values, 

n(--) for all k.A8,A9 2W 

((k_}} sin7c(2a-k)  n  
l2W/ n(aft-k) 
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APPENDIX 4 

APPROXIMATE UPPER BOUND TO THE NUEBER OF DIFFERENT 

ADDRESSES, FOR v LINEARLY-INDEPENDENT SIGNALS OF 

CONSTANT POWER LEVEL AND EQUAL RECEIVED LEVELS  

The receiver is assumed to have prior knowledge of the number and 

element addresses of the received signals. Thus if there are never more 

than m received signals, where m 	v and the signals are always uniquely 

detectable, one set of p signal-elements may have the same resultant (total) 

vector as another set of q signal-elements, which need not be a disjoint 

set, so long as there are more than m different addresses in the union of 

the two sets. 

Consider any two subsets g and h of a given set of m received element-

addresses, where m is assumed even. g and h may or may not be disjoint. 

Suppose that for suitable sets of binary values in g and h, the two result-

ant vectors are equal. A signal element common to both sets need not of 

course have the same binary value in the two sets. Since the two binary 

forms of any signal-element are linearly dependent, it necessarily follows 

that under these conditions the element addresses in the union of g and h 

are linearly dependent, so that the m received element-addresses are also 

linearly dependent. Thus no two subsets of the m element-addresses may 

have the same possible resultant vector. 

1 It follows that no set of 2  m element-addresses selected from the n 

different addresses, can have the same possible resultant vector as any 

other set of 1 — m element-addresses, whether or not these are disjoint. 2 
Each of these sets must also have 22m different resultant vectors. There 

are 	(im) 	different 

so that there 

1 sets of 7 m addresses, 

must be altogether at least 
( n )lm 
1 	2

2 
m 2 

selected from the n addresses, 

(55)  

different possible resultant vectors. 

1 A set of 7  m signals of the type being considered, has at the most 

(1m + 1)v  different possible resultant vectors. Thus 2 
1 

(1n  ) 
2 m  

(-21-m 	i)v • (56)  

Each of the v components of an individual received signal-element is 

assumed to have a magnitude of unity, so that each of the v resultant com- 

ponents of the sum of k signal-elements, where k 	m, will be odd or even 
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depending upon whether k is odd or even. Thus the resultant vector of 

the sum of (2m - e) signals, where e is an even integer less than 21m, is 
1 	

2
1 a possible resultant vector for 2  -m signals. 	But no set of up to -m 

element-addresses selected from the n different addresses, can have the 

same possible resultant vector as any other set of up to 1  -m element-addresses, 2 
whether or not these are disjoint or have the same number of members. Thus 

 	(1 n  ) 2(2m-e) 	
(1m 1)v 
2 

e=o 2 -m-e 

1 where f is the largest even integer less than 2  -m. This reduces approximately 

to 1 n m 

(
- , „lm  2"' 

 
(1m 	1)V  2  
‘2 (58) 

if a maximum error of a few parts in a hundred is permitted. 

Consider the important case where v is even and m=v. 

1 

(11  ) < 	
-(-v +  1)2 ) 2  2 2 	. 

-v 
or 	

(. 2.  
(60) 

2 

But 	
(n 
1 ) 	= 
2 	

n!  

2 (4)1(n- 1v)! 2  1 -v 
(n- 1  -v + 1)2 2 

(4)/ 2 

And by Stirling's formula, so long as v >> 1, 
1 	1 -(v+1) 	1 

2 qv): == (2102 (1.7)2 

1 
(n...1- +-112  
' 	2 j'i 	

(21,2 
1 	‘2) 2 

1 1 	1 so that 	< 	•-•1/4"•V + 1) 
i  

.-. 	 (V+1/ "' - v 1 (2A)-(2v)2 	e 2 

(57) 

1 

Now  1 ) 22 	+ 1)v  2 	, 	 (59) 

2 

(61) 

1 	1 -v 
%2 < (7tv)2  or (n - -v+1/ 21 

v 
4e 2 — (-v1  + 1)2 

1 
2 -v 

1 
1 or 	n 	-v 2  -1 + (..xv)v  • 

v 	
2"j  
, )2 

4e ‘" (62) 

t5; Maximum values of n, satisfying the above inequality for 10 	40,  

are plotted in Fig. 10 (Section 3.3). 



exp(- -1 y2) dy 	(69) 
1 

 

f 

  

  

2 
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APPENDIX 5 

PROBABILITY OF A FAILURE IN THE DETECTION OF 

A MESSAGE ADDRESS IN THE AM SYSTEM  

Assume a high signal/noise ratio at the receiver input, with additive 

white gaussian noise such that the noise components at the sample values of 

the received signal are statistically independent zero-mean gaussian random 

variables with variance  mil. Under these conditions the noise signal at 

the output of a low-pass filter can very approximately he represented by a 
2 gaussian signal with zero mean and a variance of 2goi. It is assumed here 

that the output signal at any instant is the sum of the preceding 2g input 

signal-pulses. With the equivalent practical filter, the output signal 

at any instant would be dependent on rather more than the 2g preceding 

input-pulses, and their individual contributions to the output signal would 

be suitably weighted. As a result, the variance of the output noise sig- 
2 nal would be typically 1 or 2 db greater than 2gol. The error is however 

not excessive for our purposes and so will be neglected. 

Suppose that the amplitude of a received unmodulated signal-digit 

is 1 and that of an address digit is x. After somewhat more than 2g 

consecutive appearances of the k th address digit of the i th received 

signal, the signal at the output of the corresponding low-pass filter will 

have the maximum amplitude of 2gx and will be positive or negative depending 

upon whether the address digit is a "0" or a "1". The corresponding thres-

hold has half the value of this signal. Thus the probability that the 

presence of the k th address digit will not be detected at a given instant 

is 
00 

exp 
4g cr 

1 	

dy 

y2 
1 

gx 

co 

p1 

147cgo-1  

a_ 

The probability of an error in the detection of the binary value of 

an unmodulated signal-digit, in the presence of gaussian noise with zero mean 



2 	. and variance so-.2  2  IS 

177 

00 

p2 
1 2 

 

2 _Y--. 
2 cr 2 

2 
exp 

 

  

1  

1  
2 

0-2 

exp(- 1  y2) dy . 	(70) 

  

     

Thus 

j 2 
P1 = P2 ' if °-f 201 

2 
011 2 = or g" • (71) 

The presence of the signal address will not be detected so long as 

there are at least two address digits not detected. Since the noise sig-

nals at the outputs of the different low-pass filters are statistically 

independent, the probability of the address not being detected at a given 

instant is 

h  
> 	(h) 

n 	
n (1_pi)(h-n) = 	 h2p2i  .<< pl  

, (72)  
n=2'  

for the normal situation where 

-1 p 	» h
2 

>>. h >> 1 . 1 

When 1  - gx2  > 1, then for a given received signal/noise ratio, 2 

pl < p2  so that p3  << p2. 

Under these conditions, the detection of the message address should 

only begin to be affected by additive white gaussian noise at the receiver 

input, when there is already a high element error-rate in the detected sig-

nal, since the element error probability of a detected signal is greater 

than p2. 

p3 

(73) 



178 

APPENDIX 6 

CONDITIONS WHICH MUST BE SATISFIED BY THE  

ELEMENT ADDRESSES TO ENSURE THAT THE MATRIX A 

IS STRICTLY DIAGONALLY DOMINANT  

Suppose that the m columns p.1} of the vxm matrix Y = [5.51] are 
no longer vectors of unit length but are such that I y.. I = 1 for all 
j i and !yid = g > 1 for all i. g is a positive constant and no 

restrictions are placed on the component signs of any vector Yi. 

The condition for the matrix A = 	 J ra1..1 	YTY to be strictly diagon- L 	J 
ally dominant is that 

  

I aijl  for i = 1,...,m, 	(118) 

 

j=1 
j/i 

  

'm 

Or 	 IYTYI 
J 1  
j/i 

for i= _ 1 ,...,m, (119) 

so that 	g2 (v-1) > (m-1)(2g + v - 2) , 	(120) 

or 	g2 - 2(m - 1)g > (m-1)(v-2)-(v-1) , 	(121) 

> (m-1)(v-2)-(v-1)+(m-1)2  
% ) 2 	 , 	%2 , 2‘ ei - 	-lv-1) 

(m..3)+ 
 2
(v-2)) 2 _ 4 v2.  

-or 	g - (m - 1))2  

(122) 

Clearly the value of g needed to satisfy the inequality 122, in- 
creases with m. Since m 	v, the value of g required to ensure that A 
is strictly diagonally dominant for all permissible 

	

(g - (v-1) )2> ((v-1)-1-  2(v-2)) 2 	v20  

g - (v_i)  )2 > (2v_2)2 	v2 

= 2v2 - 6v + 4 

2(v-1)(v-2). 

The inequality 124 is satisfied if 

(5 - (v-1) )2  > 2(v-1)2, 1 

or 

values of m, is given by 

(123)  

(124)  

(125)  
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or 	g - (v-1) > f (v-1) , 	 (126) 

or 	g > (1 + n ) 	 (127) 

Let 	f = 41g2  + v - 1 . 	 (128) 

If I 
yji..  I = f  for all j 94 i and ly..I = 	for all i„ where g l 	 f 4  

satisfies the inequality 127, then the matrix A is strictly diagonally 

dominant for all m 	v. The element addresses here are unit vectors, 
as before. 
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