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ABSTRACT

The one-dimensional differential equations of motion
for the flexural vibration of a symmetrical multi-layer
damped beam are developed. The viscoelastic damping
materials are assumed to obey a general stress - strain
law which can be linear or non-linear. Shear and extensional
deformations in the wviscoelastic layers are included.
Rotatory inertia effects, shear in the elastic layers, and
thickness-wise deformations in all the layers are neglected.

An experimental method for determining the properties
of viscoelastic materials is described, and utilised in the
study of some viscoelastic materials with a view to
ascertaining their stress - strain law under harmonic
loading, their dynamic properties, and the nature of the
dependence of these properties on frequency, temperature,
and strain.

The information obtained from this study serves as a
useful guide in the development of a numerical method of
solution of the differential equations for systems subjected
to harmonic excitation. The method developed 1is capable of
dealing with all possible boundary conditions, as well as
linear and non-linear behaviours of the viscoelastic
materials. ,An experimental verification of the theory is

carried out by investigating the displacement responses of



cantilever beams vibrating in the first few modes. Various
configurations, combinations of materials, and dimensions

of the beams are covered, the experimental results generally
showing good agreement with the theory.

Finally, a systematic method for investigating the
resonant responses of multi-layer beams is presented.
Illustrations are given with a detailed desisgn study of
three-layer cantilever beams vibrating in the first mode,
and some studies of the five-layer configuration. Various
applications of this work are pointed out, including a
simple method for obtaining the viscoelastic material

properties from tests on symmetrical three-layer beams.
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LIST OF SYMBOLS

A list of the essential notations employed is given
below. In the text, each symbol is usually defined as soon
as it is introduced. In a few cases, the same symbols are
used in different éections to denote different quantities.
However, these sections are far from each other, so that
no Ganfusion is anticipated. Apart from the meanings given
below, the following symbols, i, J, k, £, m, P, 4, T, S, U,
v, F, P, Q,‘Z, and & , are used in a limited number of places

as variable indices for summations, suffices, etc.

A = crossg-sectional area of beam; total shear

area of shear specimen.

N

Ay = cross—sectional area of i-th layer of beam.
sk, BL, cI, Dl = coefficients of expansions in Chebyshev
polynomials of the displacement and shear’
variables.
+-AS,+'BS,+"CS
"=pS ~~4% 7"B%= defined in equations 4 i 225
, , = gquations 4.5.vi, page
—~nS == S )
L
as = input motion amplitude
= &8
a, 7
an = typical displacement amplitude of beam.
3. = coefficient of the Chebyshev series expansion

of the forcing function.
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coefficients of Fourier series expansions of

the displacement and shear variables.

width of beamn.

coefficient of Fourier series expansion of a

an arbitrary constant.

differential operator,

density ratios.

<
de*

distance of the central axis of i-th layer

beam from neutral axis.

effective, complex, in-phase, loss dynamic

Young's modulus for viscoelastic material

Young's modulus of i-th (elastic) layee

in-phase dynamic Young's modulus for i-th

(viscoelastic) layer.

’
1

E. E

£ B,
ihs
1ini

%, three-layer bean.
2

five-layer beam.

B
253 Ni dynamic flexural rigidity of a

"shear free" sandwich beam.

of

longitudinal force acting on the i-th layer.

frequency,

general functional notatiocn.

C.[).S.

effective, complex, in-phase, loss dynamic

shear modulus of viscoelastic material.
reduced in-phase shear modulus with respect

to the reference temperature, T,
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in-phase dynamic shear modulus of the i-th

layer.

¢
r

T, three~layer beam.
2

%?, five-layer beam.
3 .

thickness ratio, gi, three-layer beam.
thickness ratios, ﬁi, gi, five-layer beam.
step length for step-wise integration.
tnig}ness of i-th layer of beam.

Ai(I% + d;), second moment of area of the i-th
layer about the neutral axis.

variable index.

complex, in~phase, loss dynamic shear
compliance for a viscoelastic material.
J~L ; variable index.

bulk modulus

constants.

total wviscoelastic layer thickness
total elastic layer thickness

ratio of
total viscoelastic layer thickness.

resonant frequency factor for a plain
undamped Buler beam.

length of beam.

total bending moment at any cross~section of
beam, total mass of shear specimen.

bending moment contributed by the i-th layer.
mass per unit length of beam; mass of moving

parts of the shear test apparatus above the
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. strain gauge (excluding the specimen layers)
m = "equivalent moving mass"” of shear specimen

=m+m , effective moving mass for shear test.

N;? Na = coefficients of the differential equations,
defined in eguations 2.4.xvii&xL pages 77 & 84

n = variable index.

P = total force measured by strain gauge.

B = amplitude of the force,P.

B = total tensile force in shear specimen.

Pé, Pé = coefficients of differential equation, defined
in equations 2.4.xxiv & xLv pages 80 & 86

p(x,t) = forcing function.

Py = li%é;ﬁl , modified forcing function.

D s B = é;(three«layer bean) ; éé(five~layer beam)

Q;S, qét = coefficients of the differential equations,
defined in eguations 2.4 .xxvi & xLvi pages 0436

a = spatial rate of loading on the beam.

Ry, R = arbitrary functions

S = strain (shear or direct)

SO = amplitude of strain,S.

T = temperature, °C or Absolute.

T;(g) = Chebyshev polynomial of order r for the range
€= 0 to 1.

Ta = tip displacement amplitude ratio.

t = time variable.
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mean thickness of each layer of shear specimen.
displacement and shear variables at € = O.
in-phase, quadrature components of displacement
%‘, %:, dimensionless displacement components.
in-phase, quadrature components of shear
deformation, three-~layer beam.

in-phase, quadrature components of shear
deformation, five-layer beam.

cooerdinate in the longitudinal direction of
beam.

vertical displacement of centre-piece of the
shear test apparatus.

vertical displacement at any point on beam;
horizontal distance of an element of the shear
specimen from the fixed support.

displacement and shear variables at £ = O.
vertical distance of elemental fibre of i-th
layer from the central axis of this layer.
integrals for evaluating beam loss factor for
a three-layer beam, defined in equations
4.6.ix page 247

integrals for calculating beam loss factor for

5-layer beam, defined in equations#4.7.x page?52
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dimensionless coefficients of differential
equations for the 3-layer beam, defined in
equations 4.1.xvi to xviii page 203
dimensionless coefficlents of differential
’equations for the 5-layer beam, defined in
equations 4.7.vii to 4.7.ix page 250
m wha {#
g1 n-th mode resonant frequency factor.
loss angle for viscoelastic material.
phase difference between force and
displacement - shear test.
strain in any fibre of i-th layer of bean.
%; dimensionless longitudinal coordinate.
general dynamic modulus (direct or shear)
dimensionless Quantities, defined in
equations 4.6.v and 4.6.x page 24©
dimensionless gquantities, defined in
equations 4.7.xi page 252
some function of the strain in the general
stress - strain law of equation 2.1.1 paget%o
intégral defined in equation 2.4.xipage 76
integral defined in equation 2.4.xxii page 7%
integral defined in equation 2.4.x page 76
density
density of material of i-th layer of beam.

an arbitrary function.
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a = longitudinal stress in i-th layer of beam.
T, T = shear stress, shear stress amplitude.
T = shear stress at central axis of i-th (viscoelasti@

layer of beamn.

g, & = shear strain, shear strain amplitude.
@: = shear strain on i~th layer of beam.
n = material constant in general stress - strain law.

’L%ykf 7; = shear, extensional material loss factor for the

i-th (viscoelastic) layer.

YLH = beam loss factor for the n~th mode.
%T = damping efficiency for the n-th mode.
T = 3.14.....
TT? = displacement and shear variables at points on beam
Ve = ?%2, the characteristic shear parameter for the
5Tlayer beam.
Vi | = ﬁé , twice Kerwin shear parameter.
w? = fgrcing circular freguency.
Won = n-th mode resonant frequency.
9— = a definite integral.
FaN N = ¢yclic energy loss per unit volume of visco-

elastic material.
AEg = shear strain energy per unit volume.

== = change in resistance of straln zauge circuit.
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CHAPTER 1

LITERATURE REVIEW AND SCOPE OF WORK

L 2N

1.1 Introduction Y

Modern high-speed machines and high-energy power sources
give rise to appreciable levels of sound and vibration which
extend over a wide frequency range. These may be readily
:amplified by structural members at resonance, giving rise to
large displacements and accelerations, and high stresses at
critical points. This fact becomes more evident when it is
realised that the present day tremnd in structural design is
towards lighter weight, fewer joints, more integral
construction and hence, more "resonant" structures. If
resonant vibrations are not controlled, they may result in
intolerable noise and human discomfort, structural fatigue
and subsequent failure of components. ’

One wa§ of tackling the problem is by attacking the
éource of vibrational energy. This can be done by more
efficient balancing of rotating machinery, and by the use
of vibration isolators [i,é]*. Perfect balance in
machinery is, however, not a practical proposition, ané at
the very high speeds of operation, a very small out ofﬁ ’

balance will give rise to an appreciable disturbing force

(the force is proportional to the square of the speed).

.

*Numbers in square brackets refer to references at the end
of the thesis.

3.\(,“‘ '
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Vibration isolation can cut down tne amount of vibration
transmitted, but does not eliminnte it completely and
structursl vibrations may still be increased to undesirable
levels owin:® to structural resonances[ji] .

To tackle the problem satisfrctorily it becomes neces-
sary to attempt to control the dynomic response of .
the structure or its component part. Of the several
methods which can be used to eliminate dsnzerous
reson3nces [3 - ?], by far tne most suitable for control-
ing wide frequency-band stractur~l vibration is the use
of henvily dsmped structures.

In the past, considerable nttention was focussed
on the use of the internnal damping in structural materials
in combatting resonsant vibrations.

Closer study of the mechanisms of internal damping
were made and detailed annlysis of the dynamic behsviour
of svstems with internal damping was coarried out[:8 - 18] .
Materials research was also directed to the manufacture
of hish-strength, hith dampineg alloys. But in spite of
the great strides which hnve been made in this field in
recent vears, the amount of damping obtainable is still
of a very low order. As far as is known, tne nizthest loss
factor* reported for ~ny structural materinl is 0.067 Elj:].

*For the definition of loss factor as usad nzre,
see chapter 4, section 4.6.D.
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This falls far short of the requirements of present day
high energy sources of vibration.

In the past decnde, interest has grown on a new
method of appro~ch which involves the application of
hignly damped viscoelastic materials to the structures as
damping treatments. The treatment may be in the form of s
layer of the material sprayed or applied on the structural
surface. FEnergy dissipation then occurs when the viscoelastic
layer undergoes direct strain due to the bending of the
gstructure. In this form the applied layer is said to be
"free" or "unconstrained". Alternatively the material
can be built into the structure in the form of sandwich
construction. When thé structure undersoes flexural
vibrations, considerable shear deformation is induced in
the material leading to dissipation of energy. Under these
conditions, the applied layer is said to be "constrained”.
A large amount of damping can be achieved by this method.
As will be shown in chapter 6 loss factors of 1 or more
can be readily obtained by correct choice of material and
design.

The incorpor=ation of such damping tre~tments in
structures however involves a basic change in the structural
design. An understanding of the dynamic bensviour of
such structures is thus necessary in order that efficient
design can be carried out. The present work arises out

of this need for =2 clearer insight into the dynamic
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behaviour of such systems.

1.2 Review of past work

Past work in this field can be conveniently divided into
two groups according to whether it is related to the
unconstrained or the constrained damping treatment.

1.2.8 The unconstrained damping treatment

This type of damping was introduced first, probably
because of the relative ease with which it can be applied.
Liénard in France [27], and Oberst and his co-workers in
Germany [20 - 23, working independently analysed the case bf
an infinite beam with a homogeneous layer of a viscoelastic
material applied to one face. The damping was assumed to be
entirely due to stretching in the attached viscoelastic layer
when the beam vibrated in the flexural mode. Expressions
were obtained for the beam flexural rigidity. A linear
viscoelastic stress - strain law was then assumed, and the
Young's modulus of the material was replaced by complex
modulus. The damping of the beam was characterised by a loss
factor defined as the ratio of the imaginary to the real part
of the now complex flexural rigidity. They showed that the
beam damping was proportional to the thickness, loss factor,
and extensional stiffness of the applied damping layer. These
conclusions led Oberst to work towards the development of
Stiff high damping polymers [23,24] .

van Itterbeck and Myncke [?5] conducted an
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experimental study of the damping of steel plates covered
with thin layers of various damping m~terials. Tests
were carried out within the temperature ranse,
-20°C to 80°C, and their results followed the genernl
trend of Oberst's analysis. An extension of the above
analysis to the c2se of a two-layered structure in which
botn layers could be viscoelastic was carried sut by
Schwarzl [26] . His analysis also included coupling
between extensional and flexursl wave motions.

Other investigators have dealt with specinl cases.
For exaaple, Mead [28 - 30] has carried oit a study of
the dampins and stress distribution in 2 vibrating
stringer-skin combination having 2n applied layer of
Aguaplas. The damping properties of Aquaplsas under both
random and harmonic excitation were also investizated.
Tozetner with Pearce, he h2s also considered tne optimum
use of the unconstrained-layer treatment by concentrating
tne treatment in the regions of highest bending momnent [:51].
Methods of analysis for such sysﬁems are given, and the
optimum coverages required for various responses are
evaluated. Experimental verification of the analysis is
also carried out.

More recently, Hertelendy [}é] has considered the
displacement and strain energy distributions in a

longitudinally vibrating cylindrical rod with a very thin



viscoelastic coating; while Henry and Freudenthal have
analysed the forced vibration of a visc;elastic cylinder
case-bonded to a thin elastic shell {33 ].

The 2analysis of Oberst et al and Schwarzl did not
take account of tnickness-wise deformatioq‘in the viscoe-
lastic layer, this being regarded as negligihle. However,
experiments on structures with thnick viscoelastic layers
have shown some behaviours which cannot be explained on
tne basis of Oberst's theory. Oberst E?i] and later
Morris [}%] and James [35] observed peaks in the damping -
frequency response of such structures, and it was suspected
that this might be a result of appreciable thicxness-wise
motion in the applied layer. 9Quite recently Ungar and
Kerwin [Bél have tried to explain this behaviour by
including thickness—-wise deformation in ﬁne analysis.

.The damping is assumed to be small and it is shown
tnat for soft thick applied layers (i.e. weisht ratios
of‘base layer to damping layer of up to 4), thickness-wise

motion becomes important at frequencies corresponding to

standing wave resonances in the damping layer.

1.2.b. Constrained dampinz treztments or damped
sandwich structures

The idea of sandwich construction nas for long begn
employed in design for various reasons, such 38 the stif-

fening of structural members and the reduction of stress
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levels. As a result, there exists an enormous amount of work
in the literature on séndwich structureslg.g. 57,3@]. The
present work is however solely concerned with sandwich
structures with viscoelastic layers built in for the purpose
of introducing damping into the structures. Review of past
work will therefore be limited to tnis class of structures.
The main attractions of the unconstrained damping treat-

ment are the simplicity with which it can quite often be

applied to an existing structure, the relative ease with

¢

which its analysis can be carried out, and the fact that the
damping is not very sensitive to frequency changes. The
danmping depends on frequency only because the viscoelastic
material properties are frequency-dependent. In most prac-
tical applicntions, however, the constrained damping treat-
ment proves superior. It makes more efficient use of the
damping material [39,40,@@ and with proper optimisation of
the geometry, much greater damping can be achieved with a
relatively soft (but cheap) material than can ev:r be hoped
for with stiffer (and invariably more expensive) unconstrained
layers. Besides, the sandwich construction is less suscep-
tible to enviromental effects (e.g. humidity, chemicslly
adverse surroundings etc) than the unconstrained layer con-
figuration. The analysis of the sandwich configuration is,
however, much more involved; and has only been recently

given serious attention.
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Three groups of contributors festure prominently‘in
this field, viz :

Kerwin et al

Yu, and

Mead
Their contributions will be dealt with first.

Kerwin e% Al.

The first published work on the constrained damping
treatment was due to Kerwin[Z#l - 45] . He considered
the flexural vibration of a three -~ layer beam m=sde up
of an elastic base layer, a middle viscoelastic layer and
a comparsatively thin but stiff top elastic layer - a con-
figuration populsrly known as the "dampinsg tape'.
On assuming that the damping in the beam was due entirely
to shear deformation in the viscoelastic layer and that
the material loss factor was small enough for its square
to be negligible compared to unity, he obtained expressions
for tne damping of the beam and showed that it wa3s frequency-
dependent. A frequency-dependent shesr pnrameter was
defined to characterise this dependence.

Ross,Kerwin and Dyer [}4, 45] developed a more
general analysis of the three -~ layer beam, imposing no
restriction on the thickness of the top layer. They took

account of both extensional and shear deformations in the
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viscoelasstic layer and obtained expressions for the beam
damping for various configurations, including the two-layer
beam analysed by Oberst, the damping tape tre=ted by Kerwin,
and the symmetrical sandwich beam with a very thin layer
of viscoelastic material .. Expressions were also obtained
for the beam geometry for optimum damping in each case.
Their analysis was extended to multiple damping tapes by
Ungar and Ross [4@] . They cnowed that the damping per-—
formance of a multiple tape (made up of identical tapes)
approximated that of a single tape having the same
thickness of damping material as one of the tapes; but
with a constraining layer thickness equal to.the sum of
the thicknesses of the individual constraining layers.
Ross, Ungar, and Kerwin [47] have also analysed the
three-layer beam in wnich the stiffness of the base plate °
is much greater than that of the other layers, either or
both of which can be dissipative. General expressions
are obtained for the damping; and special cases are then
treated, including the homogeneous unconstrained layer
treatment, and the dampins tape. They also deal with
the "spaced" damping treatment in which =2n infinitely
shear-stiff spacer separntes the damping material from
the base layer. This configuration is shown to be

advantageous in both constrained and free-layer treatments.

The geometry for optimum damping is obtained in each case.
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Kerwin [48,4§] has further investigatved the spaced "ng
damping treatment for both free and constrained layers, Z
congidering the cases where the spacers have finite stiffnesgé

A comparison of the effectiveness of constrasined and
unconstrained damping treatments applied to plates was
carried out by Kerwin and Ross E4OJ o« Their study showed
that for the stiffest polymer known, the constrained ;3
damping treatment(damping tape) is capable of giving a much ‘@
hisher loss factor than the free-layer treatment, for weighf:é
ratios of damping treatment to bese plate of up to 0.2
for steel and O.4 for aluminium plates.

The above analysis has been restricted to homogeneouS'ggf
layers. A possible method of extending it to more complex
structures has been indicated by Ungar[Si]. This involves
treating the various layers vibrating in the flexural mode
as inter~conneéted viscoelastic springs in the manner
first suggested by Ungsar and Kerwin [5@] , and then 'j
obtaining expressions for the loss factor.in terms of
energy losses nd storages in the spring models.

Several design configurations arising from the above
study have been outlined by Ungar [52,5£] .

The general method of snalysis employed by Kerwin
et al has the following feature. No equations of motion
sare given for the system. The total effective flexural

rigidity of the sandwich structure is first obtasined.
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Then, as in Oberst's analysis, a linear viscoelsastic
law is assumed, the moduli of the damping laver being
replaced by complex moduli; and the damping is characterised
by a loss fa&tor defined 2s the ratio of the imaginary
part to the real part of the complex flexur2l risiditye.
When desired, the mode shape for the bean, as Well 1S the
shear distribution along tne length of thelviséoelastic
layer, is aésumed to be sinusoiaal. The analysis is thus
only strictly applicable to lightly damped systems
vibrating in the higher modes. Ross, Kerwin and Dyer have
in fact pointed this out with the remark: "It 'is assuuned
that the damnping factor of the composite plate is cmall
enousznh that the basic sine wave shape of the vibrations
is still valid" [44] . Besides; the loss factor as
defined <2bove is the same as the‘tangentibf the phase
difference between the applied bending moﬁent, and the
resulting curvature at any given sgction. The definition
is thus unique only for systems Wﬁére this phase difference
does not vary along the beam length.

Attempts have been made to verify some aspects
of the above analysis experimentally. Although agresement
between theory and experiment has in most cases been regarded
as "gfatifying", it has by no means been satisfactory.

The experimental work reported by Kerwin [#i] showed

fairly good agreement for the damping-frequency response
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of the d=amping tape within the frequency ranwge 200 cps
to 100 kes.. At fairly low frequencies (and also at low
tenperatures) differences of up to 100 per cent ,
between calculated and exﬁerimental values were recorded.
He attributed this to the assumption of small material
damping ~nd to uncertainty in the material properties.
Parfitt and Lambeth [54] carried out an expérimental
study of various configuraetions of the constrained layer
treatment., Their loss factors showed appreciable differences
from those calculated from Kerwin's theory (up to 200 per
cent in many cases) and this was again attributed to lack
of exact information on the material properties.
Ross, Kefwin and Dyer E4%] and also Ross, Ungar and Kerwin
[4?] reported good agreement in trends, but agreement
between calcul=2ted and experimental values wss again
poor.
Yu
In a series of articles [55~§£1, Yu has developed the
general equations of motion for the flexural vibrations
of an elastic symmetrical three-layer sandwich plate
taking account of shear and rotatory inertia effects,
but neglecting thickness-wise deformations. Displacement
functions are assumed for the various layers in such a
manner 8s to satisfy continuity requirements at the

interfaces, The strains and stresses are then obtained
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in terms of these functions, and the variational equations
of motion are utilised in obtaining the differential equations
connecting the above functions. Yu has apprlied these
equations in the analysis of the free vibration of damped
infinite and simply su-vorted plates [59] . Like previous
investigators, he assumes a linear viscoelasfﬁc law
and replaces the elastic moduli by comnplex moduli.
Furthermore, on the assumption of small overall damping
(in other words, that the natural frejuency is unaffected
by the dampine), he obtains expressions for the frequency
apd the damping, the latter being characterised by tne
1ogarithmic‘decrement.

The above work has been purely theoretical, and no
report has been given of experimental work to check any

aspect of the theory.

Mead

Mead has also analysed the symmetrical three-layer
plate, confining himself to detailed treatment of the
simply supported case [62,63] . He obtains the eguations
of motion for the plate, neglecting extensional deformat-
ion in the core, and thickness-wise deformations in
the various layers. These equations are then solved for
both harmonic and random excitation, the rotatory inertia

terms being icnored. The transverse displacement of the
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plate 1s expressed as an infinite series of sinusoidal
transverse displacement modes. Damping is taken account

of by replacing the moduli of the core by complex moduli.
For each normal mode, the damping of the plate is charact-
erised by a '"mod2l" loss factor which is defined in the same
manner as in Oberst's analysis. In addition, a "modal"
stiffness ratio is defined as the ratio of the "generalised
stiffness" EA] of the damped plate to that of 7 solLid plate
vibrating in the same mode, of the same material as, and
having a thickness equal to the total thickness of the
elastic layers. 1In a previous work [64] he had pointed out
that the loss factor, on its own, does not give 3 complete
assessment of the effectiveness of a damplng treatment in
the attenuation of a given response. The introduction

of a damping treatment modifies, not only the damping, but
also the mass and the stiffness of the system and this, by
varying amounts. Different criteria for comparison are thus
necessary for various responses. He obtains expressions for
the criteria for given responses, considering both harmonic
and randbm excitations; and gives the optimum geometry

for each response. This is done on the assumption that

only one mode is significantly excited, an assumption not
likely to hold for highly damped systems.

An experimental check of the above analysis has
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been carried out but this was confined to the natural
fr=quencies and fhe loss factor., The application of some
of the results of the above study to design has also been
outlined [55,661 .

Other Contributors

Other investigators have tackled various aspects of
the problem.

Plass [ﬁi] analysed the restricted case of a
symmetrical three-layer beam in which the face layers
were regarded as very thin membranes. Only two limiting
cases of pure shear and pure bending of an infinite beanm
were considered. The two-dimensional equivalent of this
problem, vie.,a .sandwich plate witnh thin facings, was
also analysed by Yildiz [ 74] who obtained the eguations of
motion for the plate but did not attempt to solve them.

Kurtze [E?,égj has considered the wave transmission
and attenuation in infinite multi-layef plates using
impedance technijues. The motions of the various layers
are characterised by impedances which are suitably
connected to reflect the coupling between them. Kurtze
and Watters [?Q] have also carried out an analysis of
the acoustic transmission loss characteristics of layered
‘structures. They show that higher flexural loss factors

can be obtained with the sandwich construction although
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it is inferior to the unconstrained layer treatment as
far as frequency regponse is concerned.

On the design éide, Ruzicka [?i] has outlined various
oontiguratiohs in which the shear damping technique
can be applied. These include the sandwich construction
as well as cell-inserts and strip—damper'configuratiods.
No general analysis of such structures ié undertagen.
Réther, a lumped parameter model is given for stu&}ing
their damping and frequency characteristics. ©Some experi-
mental work on cantilever beam models of the various
configurations is reported, but this is not related to any
theoretical work. ' _ |

Freudenthal and Bieniek EZ2,iE]have treated the
cage of flat and curved damped sandwich plates under
harmonic excitation. Like Mead, they use the "normal mode"
approach, expressing the total response as an infinite
series of responses in the various normai modes. The plate,
core and facings are assuned to be orthotropic and dissipa-
tive with linear stress-strain relations, and complex

moduli which are fregquency-independent.

1.3 Scope of present work

“Poom Ehe above review, it is observed that much

-

of past work has been centred on either simply supported

structures or lightly damped structures vibrating in
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the higher modes. This is simply because these structures
lend themselves more readily to analytical treatment. The
lower modes of vibration of systems with other boundary
conditions as well as heavily damped structures still remsain
uninvestigated. At these low modes, the boundary conditions,
and hence the mode shapes, are important; and the applicability
of some of the generalisations obtained by ahalysis of the’
higher modes becomes doubtful (see chapter 6). |

Besides, experimental verification of the wvarious
theories has not been very systematic. So far only loss
factors and natural frequencies have been checked experi-
mentally. The more exacting test of actually checking, say,
a predicted displacement or stress response, has not yet been
attempted. Lack of good agreement between theory and
experiment has often been attributed (sometimes without strict
justification) to lack of exact information on the visco-
elastic material properties.

Llso the viscoelastic material has been assumed to
behave like a linear material in the strain ranges encountered
in the analyses, although it is well known (see chapter 3)
that these materials exhibit a certain amount of "non-
linearity" even at very low strains. To what extent is this
assumption justified? This question remains unanswered.

The present work is aimed at filling some of the above

gaps, by investigating the dynamic behaviour of sandwich
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beams vibrating in flexure.

The one~dimensional equations of motion for a symmetri-
cal multi-layer beam with any number of lavyers are first
developed., Shear and extensional deformations in the viscoe-
lastic layers are considered., Rotatory inertia effects,
shear deformation in the elastic layers, and thickness-wise
deformations in all the layers are neglected. The viscoes
lastic material is assumed to obey a general (but as yet un-
prescribed) stress-strain law which could be linear or
non~linear.

The solution of the equations requires, amcngst other
things, a clear knowledge of the dynsmic behaviour of viscoe-
lastic materials. Hence, a simple method of determining
the dynamic properties of viscoelastic materials is developed;
and utilised in the study of 2 few viscoelastic materials with
a view to ascertaining their stress-strain laws under
harmonic loading, their dynamic properties and the nature of
their dependence oa.various factors. It is verified that
from the point of view of non-linearity, the viscoelastic
material can be satisfactorily regarded as a linear material
with strain-~dependent properties,

In the light of the informstion obtained from this
study, 2 numerical method of solving the differential
equations is developed, the method being capable of dealing

with all possible boundary conditions, as well as linear and



non-~linear behaviours of the viscoelastic material.

The analysis is then checked experimentally by consi-
dering the displacement response of cantilever three-layer
and five-~layer beams vibrating in the first few modes.

Finally, the application of the analysis to the design
study of multi-layer sandwich beams is illustrated with a
detailed study of the three-layer configuration vibrating in

the first mode, and some studies of the five-layer bean.



CHAPTER 2

DIFYSRENTIAL FQUATIONS FOR MULTI-LAYER VISCOELASTIC

SANDWICH BEAMS -~ DERIVATION.

Introduction

An important step in the analysis of any system is the
establishment of the equations governing its behaviour.
Accordingly, this chapter sets out to derive the differential
eguations for a multi-layer beam undergoing flexural
vibration.

The general case of an unsymmetrical three-layer beam
is first considered. It is shown that, for such a beam, the
neutral axis position in general varies from section_ to
section; and at any given section, it varies with the applied
load or deflection. The 'symmetrical' beam is shown to be
an exception to this, as its neutral axis always coincides
with its central axis, no matter the loading.

The one-dimensional differential equations for a
symmetrical multi-~layer beam are then developed. The
viscoelastic materials are assumed to obey a general stress -
strain law which can be linear or non-linear. GShear in the
elastic layers, and rotatory inertia in all the layers are
ignored. Both shear and extensional deformations in the

viscoelastic layers are included.
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2.1. General assumptions.

The following assumptions are made:

(a) The multi-layer beam is made up of alternate layers

of a viscoelastic material and a perfectly elastic material.
The viscoelastic layers sre always "constrained " that is,
there is 2lways an el-stic l=myer above and below any vVis=—
coelastic layer. Bach layer has uniform thickness.

(b) All the layvers partake of the same flexural motion.

In other words, at a given cross-section, enach layer has the
same vertical deflection y, and the same bending aﬁgle

= %%; X being measured along the length of the beam

(fig 2.3). As Ross, Kerwin and Dyer have pointed out E44],
this requires that tne thicknesses of the lsyers are small
compared with the shortest wavelength of any type of vibra-
tion within each layer.

(¢) In addition to the bending deformstion, each viscoe-
lastic layer has a shear deformation ¢: in the plane of bend-
ing (figs 2.3.c and 2.3.d). @: , in general, varies from
section to section along the length of the beam; but at a
given cross—section, it is assumed constant across the thick-
ness of tne léyer.

(4) Damping in the entire structure is due to imberfect
elasticity in the viscoelastic material which, when subjected

to periodic excitation, exhibits 2 stress - strain loop of
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M

the general forn,

o = }fﬁ{s +qu(S)}......................2.1.1

where
S is the applied strain - direct or shear,
¢’,the corresponding stress,
Hg,the approprinte dynamic modulus,
7,2 ‘constant' of the materisl.
From the above expression for o, it is clear that (41(8)
- a yvet unprescrived function of tne strain, 5 -~ represcnts
the departure from a linear stress - strain law.

The stress - strain loop is m=ade up of two branches,
the 'forward' or 'loading' branch, a3nd the 'return' or
'unloading' branch. The function qJ(S) is denoted by
iﬁks) for the 'forward' branch, and byij](s) for the 'return’
branch. The two branches may both form a continuous curve.
An exnaple of this is wnen the stress - strain law is
elliptical (fig 2.1). Then, the loop is a2 continuous curve
with QJ(S) given by
ics) = + (si-8* HF A
QE(S) _ (Sf Sz)k secessesccaans 261,11

S¢ being the maximum value of the strein S in one cycle,

i

However, tne loop need not be 2 continuous curve. The
¥
branches may be sny two intersecting curves. The law for

hysteresis damping in elastic mategials affords a simple

Ly,
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example of such 3 case (fig 2.2). For a material obeying
such a stress - strain lsw, Pisarenko has snown [9] that

i(s) = - [(8o + 8)® - 2" g?]
CH(S) = + (80 - 8)B - 27t 2]

n being 3 positive constsnt of the material (n>»l1).

—

#

® 8 ® o6 0060000000 choiii

[}

In tne next chapter, the stress — strain law for
viscoelastic materials will be prescribed. Until then,
however, the anslysis will be keovt in the rteneral fora to
show that it is wvalid for otner stress - strain laws.

It will only be assuned that the loop has "cyclic symmetry",
in the sense tnat

I(S) = (=) vueernnnrnnni2alaiv

and that LH(S) is 3 homosgenous function of the strsin S, and
the strain 2mplitude So 3 2nd hence is expressible in the form,
LU(S) = SELCE ) veeveiniiiiiai2illy,

Damping in the elastic layers 1s neglected, consistent

with the assumption that these are perfectly elastic.

(e) ©Shear effects in tne elastic layers =re nezlected,

and so is the effect of rotatory inertia.

(£f) The elastic lavers obey Hooke's law both in tension and

in compression.



PART A
THE GENERAL CASE

2.2 The three-layer beam

To illustrate the general method of approach employed,
consider the simplest form of a multi-layer beam -~ the

three-~layer beam.

2.2.a. Shape of a deformed element.

When the beam of fig. 2.%a is subjected to a bending
deformation, owing to assumption (c) above, plane sections
no longer remain plane, and the beam might take a shape
similar to that shown in fig. 2.3b. In other words, a
longitudinal element ccge of fig. 2.3%a deforms to c'cece in
fig. 2.3b. An enlarged diagram of the element cccc is given
in figs 2.3c and 2.%3d. Two cases are distinguished:

(i) when the neutral axis is in the viscoelastic layer -

fig. 2.5¢c ;3 and

(ii) when the neutral axis is in any of the elastic layers -
fig. 2.54.

h, (i = 1,2,5) is the thickness of the i-th layer, and

i - i, represents the central axis of the i-th layer, di being
the distance of this axis frem the neutral axis, N - A , of
the bean. Z; is the fibre distance of any longitudinal

fibre of the i-th layer from its central axis. The width

of the beam, and hence of the element, is b. Its total

3
thickness is :ipi and its length is dx. y is the vertical

(=1
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c) Neutral axis in viscoelastic layer.
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d) ‘Neutral axis in elastic layer.

FIG. 2.3 c)&d) Three layer Beam

Deformed element , dx .
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displacement of the neutral axis (a3t a distance x along

the beam) measured from its original equilibrium position.
¢: i8 the shear deformation in the i(-tn (viscoelastic) layer.
Ai (= bh; ), is the cross-—-sectional area of the i(-th layer.

2.2.b. Case (i): Neutral axis in the viscoelastic layer.

Consider first the c3se in wnich the neutral axis is in
the viscoelastic 1layer.

Longitudinal deformation

LAYER 1.

For any fibre distant 2z, from the =xis 1-1, the longitudinal
deformation can be thougnt of as made up of two parts:

(a) Extensionsl (or compressive) deformation due to bending.
The strain due to this is proportionsl to tne curvature

rA
and is given by (z + 4, ) %g?

(b) Extensional (or compressive) deformation due to tne
variation of the saear angle ¢, alons the length of the beam.
This gives rise to 3 longitudinsl strain of magnitude

(2, + d)gg’. The total longitudinal strain on the fibre is

thus
€= (z + d.){%%, N g-g} P S o |
LAYER 2. ~

The entire portion of this layer contained in the element
dx suffers &a extension (or compression) (%‘+ dd%%ﬁx due

to the shear in the viscoelastic layer 1. In addition,
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each fibre of the layer, distant 2z, from the axis 2-2,
experiences a bending strain given by (z,+ dggip. The

total longitudinsl strain on tnis fibre is thus

€= (2, + dz)aa"%z" (§'+ d,)%% eavasstocanees 2e2.1ii.

LAYER 3.

Again, owing to the shear in layer 1, the entire portion of
layer 3 contained in the element dx, undersoes 2 compression
(or extension) of magnitude (—%‘+ do%% dx. Also, éach fibre
of this 1layer a3t a distance z; from the axis 3-3%, experiences
an additional bending strain given by (2z;- dﬂ%%?- Hence,
the total strain in the fibre is

€= (z3- d9%¥;+ (- %’+ d&%% cesesensceeses 2.2.%11

Lonzitudinal stresses and fprces.

LAYER 1.

Since the material of tnis l=yer is viscoelsstic, the appro-
priate stress - strsin law is given in equation 2.1l.i.
Hence, the longitudinal stress in any fibre of the layer is
6= Bz v a)(§L+ ) rnp(el} onnnnnoi2i20i,

where B, and %), are the material constants in extension (or

compression). The total longitudinal force in layer 1 is

given by
F,=fcr.dA.
]
+hy/2 ' +h/2

= E (2, + d.)(bgia+ %% Jbdg, + rL'E,q.I(e,) b dz,
-hy/2 -h/2
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i'e' F1= EQAQ d1 (a—}Xcz+ %w‘) +£o ------------ .----2.2-‘{
+h1/2 ,

whereg = '%E,u_[( €)b a’z,. '
-hy/2 e

The integral}-can be conveniently split into

(hi/2 - 24d4) +hqy/2
YzeiE,L}J(e,) bdz, + YLiE,LU(E,) bdZy ceeerseccanns 2.2.Vio
-hy/2 (hy/2 - 24d4)

Fig 2.4 shows the strain distribﬁtion in the lavyer.
Consider any two fibres on either side of, and equidistant
from the neutral axis. Their strains are equal in mnagni-
tude but oprosite in sign. Moreover, if the upper fibre is
on the 'forward' brsnch, the lower fibPe will be on the
‘return' branch of the stress - strain loop. It follows

from this and from the assumption in equation 2.l.iv, that

A)

(hi/2 - 249
B | LI (€)dzr= O wevvvnnnnnnenninn.. . 2l2uyid
-h./2

Since €, = (2, + da(%¥2+ %%9, the maximum value of g over a
cycle is
) C a "ol
(éamax. = (z4+ QY (%zz* 5%9:] max. = (Z?? dQ 8{%%@ %gb
he.s2.2.v1id
NPT . » o)
where 9(% g—g’) is some fuction 0—1;%}%2 and g}—{'
Hence in view of equation 2.1.v,Ld(€) can be expressed as

HIE) = (zy+ d,)"fﬁ(%,,-%%)....—,.......2.2.ix‘
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Three layer Beam
Longitudinal Strain distribution

in Layer1.Cuase(i)
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It follows from equations 2.2.vi, 2.2.vii and 2.2.ix

that
+h/2

d-1 1m e 0”IGE4Y v,
(w2 - 24)

it being assumed (without any loss of genernlity) that the
portion of the layer sbove the neutral axis is on the
'forward’ branch of the stress - strain loop. Hence

qeaEa n+l -k +1
§= T4 Ox”ax)[( 'k'é'd‘)n]

Since 4, is necessarily less tnan -2-' , it is easy to show -

oy

that for all real positive values of n, the expression
B%‘+ d.)n+l - (-2-‘ - d.)n+l can be put in the form d.&( a,) »
where € (d) is an algebraic function of 4, . Thus,

ﬁﬂ-ﬂ-"i'—E—'—Lu(%l-‘l )g(d.) and putting this in equation 2.2.v,

nt+l
F‘ = E A d (axz —%) + M‘m(@? %) 9(@4).......(..:._-)(
LAYER 2.

is

This,an elastic layer; hence the stress ¢, in any fibre is
given by 0;= E,x strain , where E,is the Youngs modulus for

the material of the layer;

i.e.0;= B, {(zzi- d,) 2+ (Z + d.)ad)'} ........ 2e2eX1e
The longitudinal force F,, acting on the layer is thus
Fp = 50;“13:
a
+h,/2

= %( 2, + dz)—& - + d.)%%} bdz,
_hy/2
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i-e- l‘z = Ezmz%lt"‘ (—t}‘—"’d) E1A38¢' ....-...--.2.2.'}(11
LAYER 3
This is also an elastic layer, hence the stress 0; in any

fibre is given by

6= Bz - e (B d.)%g‘} feeeeieaea2.2.xidd

ax?

and the tot2l force in the layer is ziven by

Fy = 0; c(.A_;
Ay
+%3 .
or F = Es{( 2y = d;) + (= 5+ d:)'bggbiz » Ziving
hs
F! = E‘A;Edg%l'zf (-""'"” d.)—a%,] cerecsssesnaleleXiV

Bzbeing the Young's modulus for the material of the layer.

2.2.c Case (ii) : Neutral axis in any of the elastic lavyers:

Next, consider the case when the neutral sxis is in
an elastic layer. It is clear that it doesn't matter which
of the elastic lsyers contains the neutral axis; the same
form of strain distribution will be obtained in each case.
Consider, therefore, the case in which the neutral axis is
in layer 3 (fig2.5.d4).

Longitudinsl deformation:

The longitudinal deformation in each layer can be obtaine

as in the first case, starting with the layer containing the

neutral axis.
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LAYER 3: For any fibre distant zz; from the central axis
5 - 3, the longitudiﬁal strain is entirely due to bending,
and is given by
(25 - dQ%%, ceccssssecesracleleiiiLg

LAYER 1: Due to bending, any fibre distant z¢ from the axis

l -1, nﬁo a strain of msgnitude (z + doa 2+ There is an
additional strain of magnitude (z, + gﬁsg'due to the variation
of # along the beam length. Hence the total strain in tne
fibre is given by

= (2, + dD%éé+ (z.+'%)%% cenenrscseseclel i
LAYER 2: The entire portion of the element contaipned in this
layer suffers 2 longitudinnl strain h%% due to the shear
in the viscoelastic layer. Also any fibre of the layer
at a distasnce z, from the axis 2 - 2 experiences a bending
strain of magnitude (2, + dg%ﬁz. The total strain in the fibr
is thus
€= (2, + d,)%z,‘» h.g?' cecrecncseceelel iia

Longzitudinal stresses and forces:

The stresses and forces 7re obtained in the ssme manner
as in case (i), and are siven below.

LAYER 1
o = Bz + d)%'fgg” (2 + 3 1:.].!(6)} Ceeeeeee..2.200V08

and F,=E,A,'1,a,+ I‘.,Ahl%% 3(31,, 09 g) iiei....2:20%08

39,

where g‘ is somne function of %%H B’ and d, -



LAYER 2
Jd, = & -a-gl i
A E,{(z,+ d)ax,+ n?x } - D~ & 1Y -
and FZ:' EzAzd*%z"' E’Azh'g}!;‘ ..-..----------2.2;){:].1-8
LAYER 3
2
0'3-: E,(Z,— d;)%%z ....-...-..-..2.2.Xiii.a
'y
and F3= -E3A3d3 axz .-.--......-....E-E.Xivua
It is seen from equations 2.2.i - iii and 2.2.i.a - iii.
that the two cases considered above give rise to different
strain distributions in the various lavyers. This is =
consequence of the discontinuities (at the interfaces)
in the strain distributions. The fibre stresses ~nd the

forces in the layers are also different in each case.

2.2.d. Neutral axis

The equation for the neutral axis is obtained fron the
condition that the resultant longitudinal force, F, a3t any
cross—-section is zero. Consider tne case when the
neutral axis is in the viscoelastic lavyer.

3
Thus F = égsz Q 3 which, from eaquations 2.2.x%, 2.2.xii
[ )

and 2.2.xiv, gives

2
E.A1d1 (%,4‘ %_‘%) +’?=%i'd‘i'g g(dl),——ﬁ(%i};zy %%') + EzAzdzaT)!é

r B A (T a)? —E3A3d3%,+ (B + d,)E,A,,%‘ o NP -

Noting that

4 = dy+ 2EDBe ong tnat a4 = -4, + Bt B it ois

possible to rearrange equation 2.2.xv to obtaln an expres-—

sion for 4, in the form,
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Eads (2t by EA,(h'* B ) v D (mny- manR(EL,, 2
1,
EA{l + GL 30 ¢ TP o R(EE. 3D

..o¢.2.2.xvi

de =

where tne following notations have been employed;

o adx a¢:

n( 2L, _gg) G2, 4 ax>/ a%* *

Equation 2.2.xvi gives d, as a function of %%,and %%
which in turn are functioms of x, the position alons the
beam. But d, - the distance of the neutral sxis from tne
central axis of layer 1 - defines the relative position
of tne neutral axis at any cross-section. It follows,
therefore, that in gemeral the neutral axis position3Varies
from section to section along the beam. For sny given
deflection y - static or dynamic - %Eéand'%% are fixed,
and hence the neutral axis is fixed at ensch sectisn. If
y varies, however, the neutral axis position also varies.

It is thus vossiple to think of 3 case in which for sone
value of y, the neutral axis no lonser rczn=2ins in the visco-
elastic layer for some or all the sections of the bean.

The strain distribution, the forces, 2and hence thne neutral
axis position obtained for casec (i) would no longer

hold; and it would be necessary to use the strain distribut-
ions etc. for case (ii). The situation becones rather

complicated in a dynanmic case where y Vvaries with tine.
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In such a case, as y varies, it is possible for the neutral
axis to oscillate between the elaatic and vié&éelastic
layers, the change from one layer to the other occufﬁng at
different points in time in the various sections. Analysis
of such a beam by this method would thus be extremely
aifficult (see chapter 7).

Suppose, however, that E,= Bz, and h,= hs. Then the
numerator of the right-hand side of equntion 2.2.xvi
vanishes. Also, since R,and Rr.are arbitrary functions of x,
the denominator is not identically zero. Hence 4, vanishes;
that is, the neutral axis coincides with the central axis
of the viscoelastic layer. This is the case of the
"symmetrical" three-layer beam; and for suén a beam, the
neutral axis position remains "fixed" at the central axis
gf the cross-section.

Although this result has been proved here for a évm—
metrical three-layer beam, it in fact holds true for
any symmetrical multi-layer beam. A symmetrical multi-laver
beam is characterised by the fact that any two layers
equidistant from the ‘central axis (i.e. the neutral axig)
of the beam are of the s3me material and have the same
dimensions. Unless otherwise stated, the rest of the work
will deal:mglely with symaetriéal multi-layer beanm$.

A

1

ry
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PART B
SYMMETRICAL MULTI-LAYER BEAMS

In the last section, a symmetrical multi-layer bean
was defined as one in which any two layers equidistant from
the central axis .of the beam, have the same material
properties and d&mensions. Because of this synmetry,the
neutral axis of such a beam coincides with its central axis,
no matter the loading.

Consider the general symmetrical n-layer beam. n is
necessarily odd, and can thus be written as n = 2r + 1,
where r is the number of viscoelastic layers in the beam.
The following two cases are distinguished:

(a) when bthe number of viscoelastic layers is odd. In such

a case, r is of the form, r = 21 -1 , 1 = 1,2,.... .

Owing to symmetry,. .the shear deformations in any two visco-
elastic layers equidistant from the central axis of the bean
will be numerically the same at any section; hence, there are
i independent shear variables,¢,,<j3,....gé(zi_l), associated
with the viscoelastic layers. These, together with y, form
the unknown variables. The number of differential equations
required for such a beam is thus (i+l); and the number of
layers, n, is given by n:= 2r ¢+ 1 = 4i - 1.

(b) when the beam has an even number of viscoelastic layers.
For such a beam r = 2i, i=l,2,+cccaus.

Again, there are i independent shear variables, @, @y.--- @y
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and hence (i+l) differential equations are needed. The
number of layers, n = 4i + 1.

It follows immediately that for all non-zero integral
values of i, the (4i-l1)-layer beam has the same number of
differential equations’as the (&4i+l)-layer beam. The
"proto-type" for each set is obtained by putting i = 1,
giving rise to the 3-layer beam for case (a); and the
5-layer for case (b). Before proceeding to obtain the
differential equations for the two general cases above, it
is intended to first illustrate the method of approach with

the simpler cases of the 5-layer and 5-layer beams.

2.2.e. Moments and equation of motion -~ 3-layer bean.

The expressions for the strains, stresses and forces
obtained in section 2.2.b (case(i)) hold good for the
symmetrical 3-layer beam, with the additional condition that
di= 0, E;= E;and h,= hy. With these expressions, the
bending moments for the various layers can be worked out
as follows.

LAYER 1
The bending moment, M,, about the neutral axis due to the

forces in layer 1 is given by

*hi/2 +h,/2
?/11 = JO; Zid‘A1 = E1 Zf (%%2 + %}?) b qu + TIHE’ Ll—l(eq) Z1b dZ‘)
Ay ~-hy/2 -hy/2

BZ
or My = Equ(’b‘%;*‘ %g’) + %meq -------- 2.2.}{\711,
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2
. h;. S s s
where, in general, Iu = A5 + ) ....2.2.7viii is

the second moment of area of the i-th layer about the -

neutral axis and

+hi/2

u—ll;z 2 Z{Eib L[_.l(el:) (Z;+ di) d‘Zi. ....o...2.2.KiX.
-hi/2
LAYYER 2

The bendinsg moment M,contributed by this layer is given by

hy/2
2
My = (03(2z,+ d,)dAz = E’i(z'+ 4, )%%,4- -g‘%%}{z‘-l- dy) bdz,
B, -hy/2
or My= ELZL + EAASY ...l 2000
LAYER 3

Similarly the bendins moment contributed by lover 3 is
+hy/2 y 4
Mg= |6 (z = ;) bz Bz - 4L, - %‘-%ff( Za - 4) bdzg
U h' a¢l -
E!L_i%!*’ E:Asdx-e-é—i s e e s eaee 2.2-}{}.1

= M,, since E;= E; and h,= hg.

]

oec 1‘&3

|

This result is to be expected from the syametry of the beam.
Also from equations 2.2.xii and 2.2.Xiv, on puttinzg 4,= 0O,
it is seen that ¥Fz= -~ F. This means in effect that in
dealing with symmetrical multi-layer beans, only the layers
of the top half (or the bottom half) of the beam need be
considered, since the forces and moments for the layers of

.the other half can be deduced.
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The total bending moment, M, at any cross-section is thus
M = T, = M+ 2, or

M =EI%§J—M%?<+%&M1.“.HHZQJQH,

+ E2A2h1 dz .

3
where, BI = SE;I.. , and N = B I
(=1

If the spatial rate of loading is q, then

2,
8—@:}%2 = q --..-.-...22.2.}0(111.
But q = P(X’t) - M %%l .....--.2-2.XX1V,

3
where m =jfkﬁAi, is the mass per unit length of the beamn,
(=1
and p(x,t) is the externally applied load per unit length.
[ is the density of the i-th layer. It follows from

equations 2.2.xxii, 2.2.xxiii and 2.2.xxiv, that

éa}—;{EI %fi" + NI-E%?' + yéu,\,..,}+ m %z%z = p(x,t) ...2.2.xxv.
This is the differential equation of motion for a
symnetrical %-layer beam. However, equation 2.2.xxVv
contains two unknown variables, y and ¢,, so that two
differential equations are needed.

2.2.f. Shear deformation - three-layer bean.

The second equation is obtained from consideration of
the shear deformation in the viscoelastic layer 1. Fig. 2.5
shows the shape of the element when longitudinal deforma-
tion is neglected. ¢/} - assumed constant across the
thickness of layer 1 - is taken as the shear strain at the
central axis of the layer, the shear stress at that axis

being T;. Thus 7T; and ¢; are connected by the viscoelastic
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Fila. 2.5

Symmetrical Three-layer Beam .
Shear deformation 1n element-




o2

stress - strain law thus,

o= G A M LB F Ll 2.2.xxvi,

Gi and ) being the material constants in shear. It is
possible to obtain another expression for 7;, by considering
the equilibrium of the section of the element above (or
below) the central axis 1 - 1. Assuming that there is no
surface traction (i.e. that free surfaces of the beam are
free from shear stress), longitudinal equilibrium of the
shaded portion of fig. 2.5 requires that

*h1/2
T, bdx = %f—;zdx N (-i-— AX) D dZt eenennnnn 2.2 . xxvii.
0

On substituting for ¢; and E, and simplifying, the above
equation gives

bty = % 8 z(EAd + E‘A, ) + ad) (EA 5 + EA,h‘)HLIF. 2.2 .XXViil,

1‘h«x/2
where, L, = E1ﬁml4J(6J bdz; ...... 2.2.xxix.
0

Finally, equations 2.2.xxvi and 2.2.xxviil are combined to

. < 3’y t 3 - -
give 3— B - &%‘BX +1Lhw} - ﬁkbG1uJ(¢0 = bG4k..2.d.xxx
where, F = EAQ, + BAY , and Wi = BAY £ ald.

Thus, equations 2.2.xxx and 2.2.xxv give the differential

equations for determining y and ¢y.



63

2.3. The Symnetricasl 5-1ayer bean

The method of .apalysis introduced in section 2.2 will
now be extended to besms with more than three-lajers. |
Consider tne S5-layer symmetrical beam.

Fig 2.6 shows a deformed lonszitudinal element, dx, of

he beam. The layers are nuabered from the centre’outwards.
Thus, layer 1 is the central lnyer; the two l2yers on either
side of layer 1 sre called layer 2 (upper and lower) and

so on. As already pointed out in section 2.2.e, owinsg to
synmetry, only the central and upper layers need be considered
in detail. The notations of the previous section are
preserved and extended wnere necessary in tne rest of the
work.

2.%3.2. Longitudinal deformation

The longitudinal strain in any fibre of the various
layers can now be worked out 25 in the previous section
starting from the neutral axis - the nxis of zero strain - and

workinz outwards.

This is ﬁecessarily an elastic layer (froa assuaption (a),
section 2.1.). Consider any fibre of this layer at 3
distance 21+ from the central axis 1 - 1 which is coincident
with the neutral axis,. This fibre experiences only 2

bendine deformation, hence the strain is given by

Iy

E = Z’é;,{‘ s v e 00 e 2.5-1-

1
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Fia. 2.6

Symmetrical Five layer Beam.
Deformed element, dx-
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UPPER LAYER 2
Due to bending deformation, any fibre of this layer, z,
distant from the 2xis 2 - 2, experiences a strain of
magnitude (z,+ dﬂ%zb This layer, however, is a viscoelastic
layer with an additional shear deformation .. This gives
rise to a longitudinal strain on this fibre of masgnitude
(2, + %ﬂ-%%. Hence the total strain in the fibre is
€= (2, + d,)%z}%,+ (2, + %‘)%% ceccssses 25411
LOWER LAYER 2
The strain in any fibre of this layer is essily deduced
from the above result as
€ = (2g- dz)‘%}{,+ (2, - %‘)%%’ Ceeeee. 20341
UPPER LAYER 3
Bending deformation gives rise to a strain (zg+ d,)%z,at a
fibre zzdistant from %3 - 3 and since the whole portion of
this layer (forming part of dx) experiences 2 strain
hégmdue to the shear deformation in the viscoelastic layer,
the total longitudinnl strain & becomes

2
€ = (zz+ ds) %¥c2+ m%gz cecreseass 2541V,
LOWER LAYER 3
Similarly the strain in any fibre of this layer is
€= (z-a)dL - ndE L 2.5
2.%5.b. Stresses, forces, moments, 2nd equation of motion.

LAYER 1

The stress in any fibre of this layer is given by
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G = E, x strain,
ioe.o; = E‘z,‘%‘}zca, s neseaawm 2-5.Vio
fdence the total lonzitudinal force in the layer is

+i,/2
F|= O;JA‘-‘-' E,Z,g}z{zbdzl = O ® e e 00 68 ¢ v s asse 2.5-Vii
Ay -hs/2
L1lso the bending moment about the neutral axis contributed

by the layer is

+.h.|/2 2
M, = gzds, = E'z%,bdz, = EIL, %%, ceeesesee 2edoviii.
A, -h,/2 '

UPPER LATER 2

It will be assumed, for convenience, that each fibre of this
layer is on the forward branch of the stress - strain loop,
and is in tension. (It follows that every fibre of the lower
layer 2 is on the return branch of the loop and in -
conpression). The stress in the fibre is thus

q= Bf(z+ dz)%z‘;%a*' (2, + %‘)%%4-%2@5(69} ceee 2.3.1x%,
(BE,2nd e, beinz the material constants in extension).

The longitudinal force, F,, in the layer is 3ziven by

¥, = |gdh

2

+b.z/2 2 >
Ez{('zz + dg) %% + (z *"%')%% + ’]q{_\_](é,)}bo{z;
-hy/2



67

+hy/2
ie. B = EzAzdz%;azi- EzAZ%Z%%i- Ezqezl:;_](ez) DdZg eveee 205.Xe
—hy/2
Also the bending moment Mycontributed by the layer is given
by
Mp= [0;(2z,+ dp dA,
Az
*hy/2
= Ez{(zz* dz);&xﬂ' (2, + %‘J%%}(zn d2) bdze
-h,/2
*he/2
* Ez7e,LIJ(GZ) (zg + 4y bdz,
~h,/2
ie. My EZL,%;%,+ (E,Azli;’w E,Azd.%")%%i- & ceeee 2.3uxi
+hy/2
wnere(% = Ezqeij(ez) [z:+ afbdz,e. ... 2.5.xii.
~h,/2

LOYER LAYER 2
The stress in any fibre of this layer is given by

) hs \d “ ‘e
On = Ez{( Z,~ d,)%z + (z, - —2—" )3%‘ + 7ezL\U(€n)} ...... 2.35.x1ii

The force and bendihg monment are obtained as above to be

+h2/ 2
2 —
P = —EzAzdz %‘%,. - E;Az%'g‘ ¥ Ezqezl_p(en) bdzg..... 2.5 X1V

~hy/2
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2 X
and M = BLoZl v (Bat2 + EA.0, 2980, 0 .. 2.3.xv.
+hy/2
where }z. = Ez"]egj(en)[zz— dé]bdzz ceeansns 2ed.xVi
~hz/2

It has already been postultted in section 2-2.e.that E = =Fa,
and that M;= M,.
Equations 2.3.x, 2.%5.%i, 2.3.xiv and 2.3%.xv would, .

therefore, seem to disobey this postulate unless

the/2 thy/2
E.N,, (&) bdz, = - E,,’]ezl_l_!(éz) bdzg eveeeea. 2.3.xviia
—h,/2 ~ha/2

andﬂz =g; aecesssanses 2e2.XViib

The above couditions in fact hold; for if the general
elemental fibre of lower laver 2 is chosen at -2z,
(instead of at z,), then €,= -€, (from equations 2.3%.iii

and 2.%.i1), so that

+HV?‘*_ +ha/2  ‘_
B, RLH (€a)bdz, = B N,,lJ (~€2) bdz,
~hg/2 ~he/2
*hy/2 —r — -
= = BT (&) bday Fince (I (&) = ~Li(-en)]
—h,/2

which proves the first condition 2.2.xviia. Similarly
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thy/2 vhy/2 )
gz = Y]aEqu(éZQ [ZZ - dz.'] b dZZ = — ‘l’]e;Ez’q_l(_%) EZ_ + d;z_]bd;zz
J=h,/2 ~hy/2
+h,/2 —
= "')QEZLH(%) Ezz + dzjb dz, = %1 , proving the second
“hz/e -

condition.
UPPER LAYER 3

The stress in any fibre is

2
0, = B, x strain = E3%_(zs v dy) -g-%’z + nz-%%} ‘e 2.5.xViid.

Hence, the longitudinal force,F; , on the layer is given by

+h3/2 2 ¢
3 29
F3 = OEG(AB = Esi( Zz + d, ) 'g%z + hz'a';} b ng
A3 _h3/2
= E,Ad, %’% v EAh, %—%’- ........... 2.3.xix.

Also, the moment, M;, is given by

+h,/2 . 2
My = | Bz rds) 3L+ 0,38 (2, v a) by
mhy/2
2
fe. My = By %X » maan % ... 2.5.%x.

LOWER LAYER 5
The expressions for the stress, forcs, and moment for

this layer are given below.
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Z-
0’3,_ = E{(Za—d )aaxz - hz'g’%z} ----..‘E.B.XXi
B = —E,Asda%:}%z - %Ashzg% ceseesed B xxii, and
= B I,%E, ¢ EBAGh -3% ..... c.2.5.%xiii.

The total bending moment at any cross-section is

g 2
Moo= ZEFE =M, + 2M, + 2M; = RI 5%2+ ;%9 [ e < 22,3 .xxiV,

where, as previously, EI = EEFH.N , and in addition,

2

212
+bi/2
and L-L—Inu: 23' =2J 'qezEzL.L{(éz) [zz + dzj bdz, ..... 2.5.xxvi.
-h,/2
The differential equation of motion is thus
2 2
3%2[%I %%; + Zax? +L t] = p(x,t) ...2.3.xxvii.

The above differentlal equathn contains two unknown

variables, y and ¢,. A second equation is thus necessary.

2.5.c. Shear deformation.

As in the case of the three-layer beam, the second
differential eguation is obtained by considering the shear
deformation in the viscoelastic layers.

Fig. 2.7 shows the upper half of the element, dx, of
the beam, longitudinal deformation being neglected.
Longitudinal eguilibrium of the hatched section gives the

shear stress, 7, , at the central axis of layer 2 as

° +h.2/2
bT, = %% + %% bdz, ....... ce2.3.xxviii.

0
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FIG. 2.7 Symmetrical Five-layer Beam.

Shear deformation in upper
layer 2.
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7, » however, is related to ¢,, the shear strain at the
central axis, by the equation,

B= Gid + UPE ......... 2.3.xxix

On putting the appropriste values for T;,G and $,.in the

above equations, and eliminating T,, the following equation

results.
'a"ai [-P; éﬁrxz""' Q‘gz % + [—lJFZ] "r’azGZLA"J(¢Z) b =" bG2¢2 LI 2.5 « XXX

where Pz' = BEzAzds + EA,dz + BAphe ceeeeaens 2,5,xxxi
z 8
Q;l = EzAsnz + % EzAth " s e 000 e 2050){-‘{}{1]‘.

+hy/ 2

(He, = quEZL[J(éz) DAdZs eeveneese 2e5.XxXiil
0

Equation 2.3.xxx provides the second equation required for
determining y and d)z.

A conparison of the differential equations for the
five-layer beam with those for the three-iayer beam will
show that they have the same basic form, differing only
in the constants.

It may have:been observed that for both besms tne
bending moment M at any cross-section is not directly
proportional to the curvature (32s is tne case in homo-
geneous beams). This is a general feature of multi-laver

beams.
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2,4, The symmetrical n-layer besna.

It is now intended to establish the differentisal
equations for tne general case of 4n n-layer beam,
The two cns2s distinguished at the bezinnins of this section
will be dealt with in turn. Followins the convention
introduced in section 2.%, the layers are numbered frou the
centre outwards. The notations of the previous sub-sections
are retained, and extended where necessary.

2.4.a OSymnetricsl n-layver beam with 2n odd numnber of vis-—

coelastic lavyers.

Consider first the case of an n-layer beam with an
odd nunber of viscoelastic layers. The central layer 1
is necessarily viscoelastic. Also 2any lnarers p 2nd q are
respectively viscoelastic and elastic, where
p=2k-1 ;q=2k 5 fork=1,2, ... 1 ees oM.
and n = 4i - 1

Then, for all valid values of k (i.e. from 1 to i)
the lonzgitudinal strain € in the elemental fibre of layer

p (fig 2.8) is given by
he 99, - s h W s
(z +d ) axz ?-5;4- %hs-é-}-ei- (z +§?) —a-?-c"......?.-ﬂt.ll
(1) (T (Ji) "1

where s = 26 - 1 , &« = 1,2,5,... . In equation 2.4.1ii,

the first term (i) is the ¢train in tne fibre due to
bending; tae next two terms (ii) are tne strains due to the

shear deformations in all the viscoelastic layers between
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Flag. 2.8 Symmetrical n-layer Beam
(n=4i-1) )
Upper half of deformed element-




the neutral axis nrd layer p; and the last term (iiz) i
the strain dae to tue shear in layer p itself.
Equstion 2.4.11 can be rearransed in a2 more convenient form

%
N 3@ 9%s 20»
thus €, = (z + d )axz 2&156)[ + (zp - hp/e)bx .
o=1 ceesl G iii
teet, 2
Similarly, the longitudinal strain in 2any elastic lsver
can be expressed as the sum of the fibre strain due to
bending, and the strains due to the shear deforuntions in
all the wviscoelastic layers between the neutral axis and
layer g 3 thus
- A I a¢9 1y +
qu— (Z$+ d1)§}lcz 72- 2!1 ® 2 e 8 e 0 0 et elV
which c¢an be put in the nore convenient form

_ Ey _ hi 3 o9s e -
€1’— (Zq + dq ) axz= 3 3x t hy 32 --- 2b4.vy 58 = 26 - 1,
'he stresses are thus “=1

Op = Ep{(zp + dp)%z;%z-:g' o 3d"+ (z - n /2 )Q@P

K=1

| +7,_,P1_11_J(e,,)} e, 2y
and ¢ = Eq{(zq + dq)%t;léz— g-'%-% - iﬁs %% el 2.4Lvid
where BEpand m¢ are the viscoelas %lc constants (in extensior )
for lasyer p; nrd Eq is the Youn<s's modulus of elasticity
of layer q

The forces snd bendinz moments 1n the layers are

obtained in the usu~l way. Thus, for any viscoelastic

layer p;
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| 2y h, 26, i at,
. - F = J - =! a e
i.e P pApdp 2% EpAp > Ax + EpAp < ?sax
- 99
BAL B /(2 g e 2.4 .viid

and Mp =J; (zp + dp)q,dA

‘ Y
P
= T a_zz - n p—' 1
B Iyp 55— Byhods 3 %;i; . EpApdpé hg %%‘
;Bz‘- o o=y
+ (BE_A -E Lt 4 /5,y 0P» -
(+h_ /2
*,*:.P .
where L}, = E, (&) bz, waeeinen. ce 2.4
u—hp. /2
(+h 2
p/
and L‘U"‘P= 23 quePLLI(eP) {Zp + dp} bdzp aeasesce 2.4.)(]'.
~h
p/z

Similarly, for any elastic layer a,

k
2
F = = a—-x -— h'a_é ] @.Q‘ 0 . -
. f% dr, = B nra %L - Ba Y aa;-quAqZhS ST - - 2uthakid
Aq ox1
and Mq =L (Zq +dq) %qu

q
k .
2 - . N
- - B4.a, 28 3% . 2 pxiid;
EqINq%-%, Eghdy 3 x+EququsBx 2 hdid
<=1

The total bending moment M at any cross-eection 1is

2:
given by M = Mi+ 2 ZMJ. J = 253,84, eoe .
J=2
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2
M = E7IN1%§‘ + U1IN’%g' + %Lihn, from equation 2.4.ix by

putting p=1, and remembering that 4,= O.
2t
& 3¢ 1 ., .
Hence, M = B, I oL . EByIg, 5o ¢ ZLLL,+ 2 2;3“3 e 24 xiv,.

i

1N 9x3 N1 dx

The expressions for the bending moments, Mj’ can be

substituted in equation 2.4.xiv to obtain an expression of

the form, . .
Lt . C
= Xy . < gid 1 §
M EI e+ QNPE% + 5 LL,_,i- *,ZLUmP Ceeeenen 2.4 v,
where, ’
i %
Ny o= B Iy, -+ n,ZEJ.AJ.dJ. B IR S
J=2 2¢
i -4
N = 2E_ A K 12 - 28 A dh + 2h E.A.d p £l ..
p ppp/ p PP /Z pz J 3.....;:.44:\«'11
2¢ J=P ?
and as before, EI = EiIN1 + 2 JINJ ...... 2. wviii.
‘)_
It is noted that J = 2y0,4,....21; and

p=2k -1, k=1,2,....1.

The differential equation of motion for the beam is
now given by

S 1 o &
“, {Eng g id r zLU..H-%LlJ,,,}*- m-é%z = p(x,t) ...,
: cee ol tbaxix,

m = sza ; being the mass per unit length of the beam.
This is the first of the (i+l) differential equatlons
reguired.

The other differential equations are obtained, as
before, by considering the equilibrium of the portion

of the element above the central axis of any viscoelastic
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layer. Consider, for instance, ‘the pwth layer (fig. 2.9).
Bquilibrium of the longitudinal forces acting on the, .
portion of the element above the axis p-p, gives the shear

stress ’Q as

2 a hp /2
= IiH 206

b = . Ti-x“ M axP bd“zp

J=p+ 0

; 2 np/z
1£.b§=i§ §§5+ %b&p} crasases Cobeux
J=p+i 0 \
Furthermore, t; and the shear strain ¢§ are reiated by
the equation T, = Gp{d’,, +7GPLIJ(¢p)} ....... 2.4 xxi
p/2

The integral

e
it

Oﬁbdzp is easily evaluated as

O -

2
3 = (EA h /8 +EA d /2;)8—I_EA“.\,£1_6_Q1

PP P PPP g x? pr 4 B3x
; k
" Ly 9@ _ 1. 2% ‘
+ EpAprze h 3%L~‘8 EpAphp ax t LUFP , Where
of =4
h_/2 )
o /
UJ“,= Ep'k;JJ(éﬁ bdzp teeceseses 2ol xxii.
0

On substituting for 2 snd performing the summation,

equation 2.4.xx takes the form

. 2 i . ‘ P
bT, = %{P; %}Zc’+ ZQ‘;S %%54. 2[_},15 + LLJFP} eeeelolbexxiii
«=1

& =k+1



FIG. 2.9
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Symmetrical
(n=4i-1)

Shear deformation in upper
half of element:

n-layer Beam.
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i 1 1
where P = 2 B A h + =E A d + B.A.d. oo...2.l.xxi
p 8 7ppip T2 Tpipp T 27575 2 faxxiv
i h Z he 3P
= 3 EA,. + EA #, for 311 pr1
Q 2 j:P*f J J p p 4 -.oo2.4.XKV
3 &
o = B Bohy o+ Echgofor p=s =1
2
i 2z 1
= h E.A. + 2 FE A f
st s %NJ i 5 Byby hy , for s«<p
' 1
= h EA. + 5 E_A_h y for s>p/for s>1 ..
s é;aa J 2 "s's’s L2 xxvi
i 3 3
7 = _[ . A =
and Qpp tﬁ)zEEJJJ + g EpJphp , for s=p

J=prt

Equation 2.4.xxi can now be combined with equation 2.4 .xxiii
to obtain

iR e Sl B S v L] - 700, L1 (49

oeq of s K+1

= bGﬁ$? ceeeea 2 boxxvii.

In the summations in equations 2.4.xxiiil and 2.4.xxvii it
is important to remember that p = 2k -1 , k = 1,2,..13
and s = 2K -1 , XK= 1,2, ...

It can thus be seen that as k assuunes values from 1 to
i , equation 2.4%.xxvii <ives the remaining i differential
equations. Equations 2.4.xix and 2.4.xxvii ,therefore,
provide the (i+1) differential equations required for a
symnetridﬁl (41 - 1)-layer bean.

As an illustration of how these equations can be
applied, consider the 'prototype' for this group of beams,
namely, the case i = 1 or the 3-layer bean. The number

of differential equations is 1 + 1 = 2. On setting
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i =1, equition 2.4.xix gives
2
—Q}-{,E@I %—z‘}%ﬁ- 4 a—@ + -—l_Ll,,, + m%z%z= p(x,t) --2.4.xxviii

where Nf fEI&A,n, + E,A,d, hy , from equatiIon 2.4.x¥i.

Also equation 2.4.xxvii yields the single equation
-a- 1 ‘sﬁ}cz"' Qﬂ éa-gq"' LLJFf} - ‘?Qi bGlL"J(¢7) = bG'1¢’ e -2oq' «Xuix
where l,='EA,Q-+ E,A2dz , from equation 2.4.xxivi and
Qu= E,Ah,/8 + FA:h/2 , from equation 2.4.xxV.
The above equations are seen Gto be exactly the samne

as equrtions 2.2.xxv and 2.2.xxx obtained earlier for

the 3~layer beam from first princivles.

2.4.b OSymmetrical n-layer beam with an even number of

viscoelastic lavyers

For the case when the beam ha8 an even number of visco-
elastic layers, the central layer 1 is elastic. 4lso, for

2k =1 , k=1, 2,...(i+1);

p .
q=2k , k=1,2,...1 ; and n = 4i + 1, the g-th layer
18 viscoelastic whilst the p-th layer is elastic.

With reference to fiq 2.10, the strain distributions
in the viscoelastic and elastic layers can be sumued up,

as in the previous case, to obtain for layer q,
k-

1
_ a 1 Qs .
€q = (zq +d_ )L T + hax 52"+ (z * 5 nq) 3% oo 2 axKY

’ ! 32 2w
2 - .
and for layer p, €, = (zp + dp) 5§z+ nnsg 002 o e XXX
oeq
where the summation khf%?“=o for wv<u.
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FIG. 210 Symmetrical n-layer Beam
(n=4i+1)
Upper half of deformed element.

82



83

The fibre streSSes\are given by

-
3 gl )
5f(zq + a) $hv >nm P (g w3 §h

+ q%q_l(ec,)} ...... ;_.é.x,.ii, and

Op = Ep{(zp+ a ) 3%zt Zlm;a-g"} ees el xxiziii

The rorcns and moments in the viscoelastic layers

&

are thus
F =
q J}E'qu
q
= E A4 a—fz+EA{£hzu§£‘“+lEAh ad"hl_u 2.4 axx <
qqqax‘ qq“=1 a}c 2 qqqa q,-.-- {1V
and
= Oad2
Mq J;<Zq + dq) gdh
q
¥y k e 1. e ady
= BT L+ By n,.%%Jf (3 Bghgfhy + B A d 0, /2) 52
o= 1
+%u_}m$ ....... cesnee ColbxXXV

where Lllg and Lllmy are as already defined in ejuations
2.4.x, and 2.4.x1 respectively. For the elastic layers, the

forces snd bending moments are ziven by

2 z
F = Oid-A = E A d a'lz + E A hz‘%@za ....2.4.X?{KV1
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7y 2"" ]
. Q' — D F3 . 2
le.Ce llp Ep_LNp aX2+ T‘p[\pdp hzqax e a 02-4 e XXXV
a=1
The total bending moment at any cross-section is
2+

Met+—2 Zza .

M

il

2 iz

M= BIq$L from equation 2.4.xxxvii, on putting

1, and noting that ds= O.

il

i

2+
ilence M = E]@,—x + 2:§§Mj sees el et exkxXVilil

i=Z

On substituting for Mj and perforaing the summation,

equation 2.4.xxxviil can be written in tne form

M = BEI &L 0 EE_Nl 3%, jé;lJJm@ een el xxXxix

2,+1

h i = 239E "3
where hq 2{ qubq/IE + Eghgdqhy /2 '*1{125;3 %38 .2.4.xL

J=g7
<

2+
and as previously, Bl = E,Ly + 2EE:EWI”Q
t ?

The differential equstion of motion is thus

Tz E.Laxz iﬂl 84’; Lﬂmi}" m%= p(x,t) ee2dt.xlid
%=1

Once again the remaining i equations are obtained
by considering the shear deformstion in the viscoelastic
layers (fiz.2.11).

Consider the equilibrium of the portion of the element
dx above the central sxis gq-gq of layer é. The shear stress

G 3t this axis is again given by

pind h, /2
_ oF; 30
bly, = 55+ 5% bdzg

js g+
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Fla. 2.11 Symmetrical n-layer Beam.
(n=4j+7)

Shear deformation 1n upper half
of element? .
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h /2
or bTy = —a@—%_é a3, bdzo} ceeeo. 2.4.xTid.
S 1
h
q/2
The intep;ralé = g, bdz is easily evaluated to be
~
= .l T l l‘. — a_d)‘?“
él = (§ Bghgh, + 3 Boh d, ) 2T . 4 Equihz“ax'
ra4
+—2 B bqobg %%‘h LHrg oonn... 2.4 .xLiil, where

Llieg is as defined in equation 2.4.xxii.

Equation 2 4.xL1t c:m then be expressed in tie fornm

A ily, Sl 3 é
bT:,, D% ‘q ox* qz ox LUZJ LUFQ,}....L 4.xLiv
J

= e+

where { = 2« , and

2(+!
-r-\.l - _1-_ ™ ot 1 ‘_1-_ hn p ]
P 5 Byhahy v _uq[aqdq E de ees 2t oxhiv
. qﬂ
: zist N
i - o, b
Que = 7 Bshy + Betes* 5 fovlrg
J=e+1
= =L BLAL. + 2B A ne, forf<q 2.4 xLvi
-8' L_"j.i'j 2 qqe, o) S - . 1
J=9H1
Qq q 73 8 "qgaty
RE
But Tg i5 related to @y by tne viscoelastic stress - strain
law thus A = G {¢$+761LU(¢?)} eeesethoaxhivii

Bquations 2.%.xLvii and 2.4.xLiv can be croablined to give

. ; o
a——i P}, %Sé que Pe gﬂiy +qu/} - 075 HC Sy - qud)q,..

=kt e 2 xliviid
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Noting tnat q = 2k; k= 1,2,...1i; it is seen that

as k varies from 1 to i, equation 2.4.xLiviii yields i
equntions, which together with equation 2.:+.xLi, provide the
(i+*1) equations for the bean.

The case, i = 1, is the five-layer beam - the prototype
for this grouv of beams. It is easily verified that putting
i = 1 in equsations 2.4.xLi and 2.4.xLviil gives the two
equations alresdy obtained earlier for the 5-layer beam.

"Comparison of equations 2.4.xLi and 2.%.xLviii with
ejquations 2.4.xix and 2.4.x4vii shows that although each
set has the s~me number of differential equitions, no set
of equations is derivable from the other by any simple
process of rearrangem=nt or interchange of the constants.
This ic becsuse2 tue strain distributions in the various

layers are different in each case.

2«5. Concluding remarks

The differential equations for the general symmetrical
n-layer beam have been obtained. To be able to solve these
equations some further information is necessary. First,
the system must be sufficiently specified. Apart from its
‘zeometry', the boundary conditions for the beam must be
known. Secondls, the method of excitation has to be
prescribed. Thirdly, the coefficients of the differential

equstions must be known. These coefficients are partly

ot
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known when the geometry of the system is <iven. However,
they also contain material constants of the beam, and
these must be known. For the elastic lavers, thae material
constants that come into the equations are the Young's
modulus and the density. These are known to be real
physical constants and 3re e2sily obtained from existing
data or by simple measurements. The properties of the visco-
elastic materials,however, are not "constants", as they are
known to depend on several factors (such as frequenvy,
temperature and strain) sone of which appear in the differ-
ential equstions. It is thus necessary to understand the
nature of these properties, the various factors on which
they depend, and the nsture of the dependence, before
atteapting to so0lve the above efuations. Fourthly, the
LJJ-fnnctions must be known explicitly. This requires
knowving the stress - strain law for the viscoelastic
materials,

The first two requirements will be given in chapter 4.
Meanwnile, in the next chapter, the properties of viscoe

elastic materisls and their determination will be dealt with.
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CHAPTER 3

DETTRMINATION OF TdRE DYNALVIC  PROPLDRTIES

OF VISCOELADTIC WMATTRIALS

Introduction

In this chapter a study of the dynamic properties of
viscoelastic materials subjected to harmonic excitation
is carried out. This is chiefly aimed 2t understanding
the nature of these properties and the manner in which they
are affected by various factors.

The properties of viscoelastic mnterials are first
defined, and their dependence on the frequency, temperature
and strain amplitude are discussed. A sinple laboratory
method for determining the shear properties is then
described. Experinental results obtained for some visco-
elastic materials using this test apparatus are presented
and discussed. The study of these results helvps in
selecting materials to be used in the beam tests in chaprer
5, and also yields conclusions useful in the solution of the

differential equations obtained in chapter 2.

3.1 Dynamnic properties — definitions.

An important ch=racteristic of viscoelsstic materials
is the fact that when they are subjected to a rapidly
varving stress (direct or shear), the resulting strain

does not occur instantaneously (as would be the case for
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perfectly elastic materials). In particular, if the applied
stress is sinusoidal and of frequency, wr, observations show
that the resulting strain is virtually sinusoidal and of the
same frequency, but lags behind the stress by an angle,s .
For any given frequency, the stress - strain curve over one
cycle is essentially an ellipse. This characteristic is
utilised in the quantitative definition of the dynamic
behaviour of viscoelastic materials.

Suppose, for example, that a viscoelastic material is
subjected to a sinusoidal shear strain given by
@ = ésinwt eeeeeas’s.1.i. Then the corresponding shear
stress takes the form, T = 7Tsin(wt + &) S T I 1
g being the angle by which the strain lags behind the
stress. Equation %.l1.ii can be put in the form,
T = Tcosd sinwt + %Zsind cos wt,
i.e. ¥ = Tcosd sinwt + 7% s8ind sin(wt + g) IR . . B
Fgquation 3.1.iii shows that the stress can be split into
two parts: 7cosd (the 'elastic part') in phase with the
applied strain; and <sind ( the 'viscous part') leading
the étrain by %}. The *"“elastic" or "in-phase" dynamic shear
modulus is defined as G = —Jt%§§§
the "viscous" or "loss" dynamic shear modulus as

A
Tsin &
G = 24

ceee3.lsiv, and
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The effective snear nodulus* is given by

¢ 2 "2 1:2 - -
G = [§ + G |7 v.seadelevi, 2nd the

e

beinyg often referred to as the loss aazle.

atio

"

rati
, tand is called the loss factor, S itself

GG B>

The equation of the elliptic stress - sirain curve
i.: obtained by eliminating the time wvariable from
eruations 3.1.1 and 3.1l.ii, i.e.
T - GiBEM(BT-¢vE) il
Fig 5.1 shows a typical stress - strain curve, 2nd hou

the dynamnic properties defined above can be obbtained from

the ellipse. TFor exnnple,

" " . _ OR _ AN

G, the-effective modulus = o " BE

GQ the in-phase shear modulus = %g c.i3.1.viii.
" ' On

and G, the loss shear modulus = o

The area of the ellipse wives the enerzy loss per unit
volume of the msaterial durine one cycle. This is given
numerically by the relation,

Cyclic enerzy loss per unit volume, AE, = TFP*.3.1.ix.a
which incidentally explains why G"is termed the 'loss'
modulus .

The snear strain enercy per unit volume, AE_, is a
s

. . . ~
*Phe qualifying term, "dynamic", is purgosely left Ogt
from this point onw-rds as there is no risk of confusion.



92

-t
|
I
|
!
|
!
|

+» STRESS —

G@——*>1

il
|

- STRAIN —=

FIG 3.1 Stress-strain {oop for a
viscoelastic Material.




g3

half of the product of the applied strain and the in-phase
component of the stress) Thus,

= 12 S 4 s
‘ﬂ?s = §%i¢......ﬁ.5.l.lx.b. The maxinum snear sthrain
energy per unit volume in one cycle is thus

; +H
(AQES) = 1% GP* ....3.l.ix.¢c. Prom equations 3.l.ix.a

mnax
and ¢, it 1s seen that the shear loss factor,‘ﬁ s Can be
[¢)

defined as an energy ratio thus

yz - 1 {shear enerzy loss in one cycle
G

—— - - ry ry ‘c;’. .. L]
2T | maximum shesr strsin energy in a cycle} 5el.ix.d

A mathematicnl concept, often very convenient in
analysis, is that of "conplex modulus%. If the tine axis
is replaced by a complex plane so that the applied strain

% Just s R :
becomes ¢ = ﬁeq ; then the c¢odrresponding shear strain

stress is given by T = "t‘ea.(wt +d ) where,

[y

3 = /=1 . The shear modulus is now defined as

G* - T . tedd  Rcosd . € sind
=3 - N S A
or G =6 + jGﬁ eeces?slex. The shear modulus thus

defined is seen to be complex, the real part beinsg the
elastic modulus, whilst the imasinary pert is the loss
modulus. A term often used in the literature is the

. » .
conplex shear compliancey J 5, defined as

/ \ :
J* = é* ..%.l.xi. The real part, Jggéf this quantity

is called the "elastic", "storaze" or "in-phase! shear
s .
compliance; whilst the imaginary part, J, is teraed the

Vs 74
tyiscous" or "loss" conpliance. d and J'are related to
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G and G in the manner given below.

; G
J = G R 5.1.xii
N f G5 ceeeeeedelexiids

The above definitions have been based on shear deforma-
tion. ©Similar terms also exist for direct deformation;
viz., an elastic Young's modulus, E'; a loss Young's
“modulus, B”; an effective Young's modulus, E = EE* + B* h;
and a complex Young's modulus, EX = E'+ jE”. A corresponding
complex compliance is also similarly defined.

It may be pointed out that although several guantities
have been defined above for a given material, these are not
all independent. Any two of them, in fact, are sufficient
for specifying the dynamic behaviour of a material (in either
shear or direct deformation), the rest being derivable
from these two. In the preliminary discussion to follow,
the effective modulus and the loss angle (sometimes referred
to as the damping) will be regarded as the two fundamental
properties of the material. when thought more convenient,
however, any other two of the quantities defined above may

be used to characterise the dynamic behaviour.
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2.2 Factors affecting the dynanic properties.

The dynamic properties defined in section 5.1 depend
on several factors such s, stress history, general mean
state of stress or strain, humidity, auplitude of applied
strain (or stress), frequency of the applied strain, and
temperature [9@]. Of these factors, tine last three are the
most significant [93 , and will thus be dealt with in sone

detall here.

%2.2.a8 Temperature and frequency effectis

5

Temperature and freguency effects will bte considered
together, cince they are intimately rel-ated.

Figz 3.2 shows tne general snape of grapns of the
effective modulug (curve 1), tre in-phase modulus
(curve 2), the loss modulus (curve 3), and the loss factor
(curve 4), against temperature (st constant frequency), or
azainst frejuency (2t constant temperature).

Consider first the grapns azainst temperature at a
given frejuency. Both the effective nodulus and tne in-
phase modulus decrease with increase in teaperature, the
rate of chan4ge of the modulus with tenmperature being small

"elassy" region) and 3t

at very low temperatures (in the
sufficiently hizh temperatures ( in the "rubbery" region).
In between (in the "glass-transition™ reszion), both

moduli fall very rapidly with tenperature rise. The loss

modulus hns a siailar trend except that it rises sooner
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with decrease in temnperature, and falls again at lower
temperatures. The loss factor is low at both hish and low
temperatures, and shows a maximum within the transition
regicr.

If these quantities are plotted against frsquency at
a siven temperature, a similar set of curves 1is obtained
provided that the frequency is plotted backwards (i.e. from
rizht to left) on a log scale, as indicated in fig 3.2.
This susmmsests that there may be some relationship between
temperature eflfects and frequency effects; to be more
specific, "temperature differences" may well be rela‘sed
to "freauency ratios". The eqguivalence betwveen these

two guantities will be dealt with later.

5.2.b. Molecular structure and temperature/frequency

dependence

The dependence of the dynamic properties of
viscoelastic materials on frequency and teaperature is very
closely tied up with the molecular structure of these
materials. A detailed treatment of this loes not fall
within the scope of tnis work. (S8ee references 90, 93,

9%, 95, 96, 101). It nay, however, be mentioned that this
field of study has been so develovned that, not only is it
possible to predict, sometimes guantitatively, the

behaviour of these materials under various conditions, but
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also it is now possible to literally 'tailor' viscoelastic
materiasls to specification within incredibly close limits
7.

Simply put, the viscoelastic molecular structure is
characterised by long flex<ible chain molecules which are
held tosether there and there by a few cross-links, and which
are otherwise free to mnove readily past one ganother.
Inter-nolecular attractions are very small. In the
unstrained condition, ‘the atoms in the lon¢g chain molecules
are subject to randon thermal vibrations in 211 directions,
and this results in the molecules takin% up an irresular
tortuous shape.

When the m~terial is being strained by an externally
applied force, the molecules nre aligned in 2 more or less
orderly =anner in the direction of the strain. To achieve
this orderly configuration requires work being done; and
when the applied force is removed, the molecules tend to
go back to the disorderly confi-suration. The material is
thus said to resist being strained; that is, to be elastic.
Owing to the irregular shepe of the molecules, it is clear
that their alignment in the direction of strain can not
rossibly occur instantaneougly - it takes time. This is
why, with a varying stress, the strain lass behind
by a time which represents the average time taken by the

molecules to respond to the external force.
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Consider now what happens when a viscoelastic material
is subjected to a sinusoidal stress of a given frequency,
and the temperéture is being varied. At very low tempera-
tures, intra-molecular motion is almost non-existent; and
the entire molecular structure is effectively "frozen-in".
Deformation now involves the straining of inter-atomic
bonds, similar to that which occurs in perfectly elastic
solids. This requires very large forces, and moreover
occurs almost instantaneously, so that the e€ffective modulus
is high and there is very little damping (small loss factor).
At sufficiently high temperatures (i.e. within the 'rubbery'
region), almost all the molecules can follow up the applied
stress very readily; consequently, the resistance to
deformation is small. The damping is also small since the
mobile molecules take very little time to respond to the
applied stress.

Within the transition zone (i.e. at intermediate
temperatures), however, some of the molééules are free to
move whilst others are not. Now, under a given deformation,
the frozen-in molecules can store much more energy than
the moblie ones. The resistance to deformation, or the
effective modulus, is thus seen to be intermediate in
value between the effective modulus within the glassy
region and the effective modulus within the rubbery resgion.

The rate of change of the modulus with temperature within
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this zone is high because as the temperature is varied,
some of the molecules become either frozen-in or mobile,
thus resulting in a2 change in the effective modulus.
This is not the case in the glassy or rubbery rezion
where almost all the molecules have attained the same
configuration (either frozen-in or mobile), so that a
chante in temperature has very little effect on the state
of the molecules, and hence, on the eflective modulus.
while the effective modulus depends on the relative
nurber of mobile and frogzen-in nmolecules in the structure,
the loss anrle (or the damping), within the transition
zone, depends on the averaze time taken by 311l the nole-
cules (mobile and immobile) to recypond to the applied
stress. As the temperature is increased (starting from
the glassy region), this sverase time increases; and
nmaximam danping is ncnieved within the teaperature
interval vhere a great many of the frozen—in molecules

the meriodic time

ct

becone mobile in a time coiparable
of the applied stress. Beyond this temperature interval,
the danping decreases since the mclecules cgn now follow
up bthe applied stresc mauch better and gaicker.

The dependence of the materinl properties on
frecuency can also be explained on the basis of the
moleculsr siructure. If the teuperature is kept

constant, tncn at very low freguencies of tae apnlied
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stress, the long chain molecules have ample time to respond
to the applied stress. The force required to produce a
given deformstion is thus small, and so is the averacge tinme
taken by the molecules to respond to the applied stress
(as comupared with the periodic time of the stress). Hence
the effective modulus 3nd the loss angle sre both small.
This is clearly similar to the behaviour at hizh tempe-
ratures (c0nstan£ frequency) already discussed. At very
hizh frequencies, the molecules do not get enoush time to
follow up the applied stress. They behave effectively as
frozen~-in molecules, and the situation is exactly sinilar
to thnt at lov temperatures, nanely, low damping and very
ith modulus. At intermediate frequencies some of the
molecules can follow up the motion while others cannot.
This is comparable to the situation a%t intermedinte
temperatures, so that the effective modulus rises very
rapidly with increase in freguency, whilst the loss angle

or danplng passes through a maximum.

3.2.c Temperature - frequency relationship:; method

cf reduced variables

As already indicated above, there is a3 very close
relationship between frequency effects and temperature
effects for a civen viscoelastic material. Fitzgerald
and Ferry E?é] , in 1953, established the nature of this

relation, and developed a method whereby experimental values
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of moduli (and dielectric constant) can be made to fall on
a single curve covering a larsze fregquency and temperature
ranze. This method, generally known as the "method of
reduced variables", can be found in any standard text on
polymer properties (se=2, for exanple,[gb, 9%, 95, 10§]).
It is, howevery intended to briefly illustrate, by
ﬁe?ns of a sinple example, tne significance of tone method,
'and in particul-sr how it can be utilised in checking
experimental results. Supuvose that there are available,
sets of values of a modulus (tne elastic shear modulus G',
for example) for a limited ranse of frequency, each set
being obtained at a constant temperature. Let the
teaperatures - expressed on the absolute scale - be T,, Ty,
etc. One of tne temperatures, T,, say, is cnosén as the
"reference teaperature" and the experimental values are
"reduced" to values corresponding to this reference
teaperature using the approxinate relation*
G, = G“%%? ceeeess. 3.2.1, where G is the elastic shear
modulus a3t teaverature Ty fJ and P are the densities of
the material at temperatures To and T respectively; and G;
is the reduced elastic shear modulus with respect to Tp.

The reduced variables are now plotted against frequency,

*This relation would be exact if the effective shear
modulus was infinite in the glassy resion (see [94] ).

e
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resulting in a series of constant temperature plots
similar to those shown in fig.3.5.
Any line of constant modulus will cut the To-curve

and any other T—curve at frequencies f, and f respectively,

Wnere log‘(%o) = -g;(fT(E ?-o)’lla) s 8 6 & 8 0 8 0 50201.‘1 L4

K; and K; are constants for any given materisl, and for a
given reference temperaturee. By defining a characteristic
teaperature, Ty , for each material, Williams, Landel, and
Ferry [ioé] were able to obtain a "master curve" applicable
to 3ll materials, in the form

o ..f_‘ = "8'86(T“]:¢)
1.03 (fs) —‘l()l.6 + (T—%) DR R R I 3-2-111-

Equation 5.2.1ii shows that, for any two temperatures

Te and T, any line of constant modulus cuts the curves at
points nsving the same frequency ratio. Put in another
way, if a plot is made of modulus against log. frequency
for various temnpersturzs tnen each T-curve will run
parallel to the Tg —curve in the sense tnat the interceﬁt
m3de on 3any line of constant modulus, by the T —curve and
any otner T-curve, has a constant lengta.(see fig. 3.3).
This thus provides 23 very useful way of checking the shapes
of experimental curves obtained from tests. It can also

be employed in extending experimental curves to frequency

ranges wnich could not be covered experimentally.
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It mry be necessary to a2dd a word of caution about
the use of the above method. Although considerable
theoretical evidence is availnble to back it, the method of
reduced variables is essentially an enpirical formulation
which will hold for most viscoelastic materials subject to
some conditions being satisfied. For exauple, the material
must exhibit nb structurzl change with temperature.
I'arthermore, the method, ss it is, will not nhold good
close to the glassy region; nor is it applicable to
highlv crystalline polymers. There =are also other require-
ments which involve molecular movementss; anl 1t is by no
nmeans easy to predetermine these for any ziven iaterial.
Before applying the method in the extension of available
data, therefore, it will be wise to first check that these
datas, by themnselves, obevy the above ftemperature - frequency
superposition principle. A full treatment of the limita-

tions of tne method of reduced variasbles can be found in
Ds] -

3.2.4 Strain amplitude effects

Apart froa the devendence of their dvnamic properties
on frequency and temnperature, many viscoelastic materials
also show an unusual type of non—linegvity. The modulus
and the loss factor devend on the amplitude of the applied
strain, 2lthough 2t 3ny one amplitude (under conditions

of shear) bthe response to a sinusoidal drivinsg force
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is essentially sinusoidal without any detectable evidence
of harmonic content sucnh as would be expected if non-
linearity was present. The stress - strain curve, at =zny
given amplitude, does not show any apprecinble departure
from an elliptic shape (see E}ﬂ s and also the section on
results). As soon as the strain aqplitude is changed,
however, the properties change. All the work reported in
the literature (for example, [91, 98, 110, 116 to llﬂ )
shows that the elastic modulus (or the effective modulus)
decreases with increase in strain amplitude (e.g. fig.5.4).
There is much less agreement =s to the nature of the
variation of the loss factor with strain auaplitude, probably
because this variation is much less pronoanced.

This topic is still a subject of current study, and
its relstionship with molecul~rr structure is not yet well
established [3). From a macroscovic standpoint, however,
the behsviour described above is equivalent to tnat of a
linear material, wnose properties depend on the strain
amplitude, The phenomenon will, therefore, be referkd

to as "strain-amplitude dependence”.

3¢5 Method of test

3.%3.a. Arzument for a shear test

In chapter 2, the "shear deformrtion” assuaption of
section 2.1 resulted in the differential equations

containing viscoel~stic material constants in shenr, as
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well as in extension. In chapter 4,it will be shown thsat
whilst the terms involving the extensional viscoelastic
nmaterial constants are comparnatively incisnificant, those
containing the shear constants are, in fact, very important.
To be able to test the validity of the above assumption
it is thus necescary to know the shenr properties of these
materitls. A considerable amount of data is available in
trne liternture on the she=sr properties of many viscoelastic
materials (for exanple, EOO, 97, 9ﬁ ), but the information
given is always incomplete. Either tne naterials tested
are not pronerly specified, or tne conditions of test - such
as temperature, strain amplitude etc. - are not 3iven
coapletely. Moreover, viscoelastic m2tarial properties
are so much dependent on conditions of manufacture that the
sane chenicnl foraulstion misght yield two dynaically
dissimilar viscoelastics under different conditions of
production. It becomes clear that for the purposes of
checkinz the "shear defornaation" theory, it ic essential to
perfora a shear test on the viscoelasbtic material to
obtain its ﬁroperties witiiln the frequency, teaperature,
and strain-saplitude ranges in which i% may be ased.
There is yet another arsgument in favour of obtaining
tne properties of viscoelastic materials under conditions
of shear. Under static equilibrium conditions, theoretical

considerations showv, and experiuents confirm, that the
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deformation of viscoelastic materisls in shesr is a

linéar process, the strain being directly proportional

to the aprlied stress. In contrast, however, in direct
deformation, the egquilibrium stress - strain relationship

is distinctly non—linear-[941. Althoush the deformation
characcteristics under equilibrium (static) conditions are
different from those under dynaunic conditions [94], it is
natural to expect that dvnamic deformation in shear should
conform much better to tne linear behaviour (described in
the previous section) than direct deformstion. Experimental
evidence tends to confirm this. WMany workers ( e.g. Payne
[éé]) have reported some higher harmonics in the response

of some materi~nls in direct defornation, as well as con~
siderable distortion of the stress - strain elliptic curves.
No such reports hnve been published for shear deforaation,
to the knowledge of the writer.

It is, in fact, now usual to resgard the shesar
properties as the more fundamental properties of viscoelas-
tic materials. Once tnese have been obtained, the material
properties in direct deformation are deduced, on making
a set oI sssuunptions. One such set of assuunptions consists
in:

a. regarding the bulk modilus as a real constant, and

bs. wmiking use of the elastic isotropic relationship
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between the elastic constants, viz.,

. ﬁﬁ%—é “eveeeev.. 3.%3.i3 E, G, and K being the

Young's modulus, the shear modulus and the bulk modulus
respectively.

Cramer [92]‘applied equation 3.%.1 to viscoels=sstic
mrterials, replacing tLhe Young's modulus, ¥, and the:shear
modulus, G, by the corresponding complex Young's modulus,

N - . .
¥y and the complex shenr modulus, G, to obtain the equations

. >{1+ G} o

%: = ¢ K ( ){l Ff}...-.....jo).ll,

and :k = cesncocesdeDiil
% 1 33 ){1 v ((‘,)}

where T, (= %) , and "L(— E}.) are the loss factors in exten-
sion {or compression) and in shear repectively. For most
viscoerlzsstic materials, the ratio, %; is much less than
unity within frequency 2sd temperature ranses of interest,

co that equations 3.5.1i1 and 5 3.1iii can be aprroximated

ct

o the =nach siapler relations™”

' % - ;

;'.'5 s e s 0 00 s e 5.5-1\7, Sl’ld—;?—:l .....-.5.‘).\7.
G

\!

feplfeo]

(1t may be mertioned in pnssipng that egquation 3.%5.1Vv can
be obtained from the usual elastic ilsobtropic relationship

betseen Younz's modulus anlt sheasr modulus if Poisson'’s

**Lquations 5.).iv and v woald, of course, be exact if the

meterial was incompresgible.
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ratio is tsken as J.5). Cramer verified tne vslidity of

tne above approximations experimentally [ﬁé].

B3eDebDa The mechanical set-up

Having argued in favour of testins bthe viscoelastic
material in shear, it is now intended to show how this can
actuallv be carried out.

Seversal methods have been developedr for determining
the dvnamic properties of viscoelastic 7oterials in both
shear and direct deformation. A general detailed treatment
of various test methods can be found in [95, I, lQé]. An
exhsustive list of existing methods including their v=arious
features have been recently compiled bv Praefcke [pya .
These methods are conveniently srouped into
a., Iree vibration tests
b. Forced resonance tests
c. Yorced non-resonince tests
d, Wave propagation tests
Tne free vibraticn and forced resontnce test methods
usually involve a3 considerable variation in the strain
distribution within tne test sample in the tine intecval
reqaired to take a reading. They are tnus zenerally inade-—
quate for the investigation of strain-=amplitnde effectse.
ioreover, measurenent difficulties usually arise if the

material danmping is nigh [1051. These methods were thus
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considered unsuitable for the testg éontemplated. Wave
propagation techniques are essentially high-frequency
(several kilocycles), low-strain (less than 0.001 per cent
in most cases) methods [i22 to 125:], and are thus not
suited for the relatively low frequencies (a few hundred
cycles) contemplated..

It follows that forced, non-resonant methods are best
for the proposed tests. None of the existing methods, however,
seemed to quite satisfy the needs of the test. Either their
frequency range is too low (usually not exceeding 50 C.p.S.)
as, for instance, the apparatuses of Roelig [105, 106 ;]
Payne [107, 108, 109:}, Philippoff [}lOJ y Fletcher and
Gent {}lil and Painter iil%f; or the apparatus is too
complicated to be easily modified for laboratory use, for
example, Fitzgerald and Ferry apparatus [99, 115, 114, 115;{0

Yor this reason, a simple apparatus was developed for
the test. The mechanical set-up is illustrated in fig. 3.5.
Two similar layers of the material, (3), constitute the
specimen and are glued in between two stationary supports,
(5), and a moving centre-piece, (4). The stationary
supports are made rigid and identical, and are firmly bolted
on to a steel base plate, (8), which is, in turn, rigidly

connected to the main body of a Goodman's electro-magnetic

vibrator, (10). The centre-piece is a half-inch square
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aluminium bar about two inches long. To its upper end

is glued a half-inch square piece of brgss, % inch thick,

(2). This helps to increase the sensifivity of an

inductance proximity gauge, (1), which is rigidly connected

to the fixed supports by means of a bridging piecej; and

which serves as a displacement pick-up to measure the

motion of the centre-piece. At the lower end of the centre-
piece is attached a short drive rod, (6). This is essentially
an aluminium rod, % inch in diameter, and two inches long.

The central one inch portion is machined down to two flat
.surfaces with a 0.050 inch thickness of metal between them.
Two similar Tinsley strain gauges, (7), each about 100 ohms
mean resistance, are stuck at this portion (one on each
surface) usihg durofix cement. These zauzes are connected

in series to eliminate bendinz effects, and measure -the

force transmitted from the vibrator to the moving centre-piece
and the specimen. The drive rod is attached at its lower

end to the output drive, (9), of the vibrator.

When a sinusoidal signal is fed into the vibrator, the
centre-piece is made to move vertically with simple harmo-
nic motion, thus inducing a sinusocidal shear strain in' the
specimen. A force signal is picked up by the strain gauge
whilst the inductance gauge picks up a displacement sisnal.

These can be analysed, in a manner to be indicated shortly,
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in order to obtain the shear properties of the material
under test.

It is essential that the fixed supports, (5), are
vertical on assenbly. To ensure this, the bottomn faces in
contact with the base plate are made exactly at risht
angles to the vertical faces, and are properly machined
so that they are flush with the ground upper surface of the
base plate. This surface is initially set in a horizohtal
position using a spirit level.

3.%5.c Theory of method

The force measured by the strain gauge is the force
transmitted by the drive rod at the point of attachment
of the gauge. This force is the force required:

a. to accelerate the moving centre-plece together with the

_ portion of the drive rod above the strain gausge (neglecting,

for the moment, the effective inertia »f the specimen); and
b. to cause shear in the viscoelastic material.

Let the moving mass under consideration be m. For a
sinusoidal input signal, let the vertical displacement, X,
of the centre-piece be a)sin wt,« being the frequency of
excitation. Froam fic. 5.6, it is clear that this will
induce a shenr strain, §, siven by

¢ = %fsin Wt ...3.3.vi, in the specimens; t, beins the thick-
ness of each layer of specimen. The shear stress in the

material will not be in phase with the strain, but will
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le~d it by the loss angls, & , so that the dxpression for
the stress takes the form, |

Te= Tsin(ast-+38)e ... 3.4 i1

The fecrce causin<g shear equals T4 or T A sin(wt +<S),
where A is the total shear =rea, that is, the sarea of both
faces of the centre-piece in phvsical contact with the i
leyersf The force causing acceleration is

mf = - mw, sin wt. Herce, the transmitted force, P, is
ziven by P = 7A sin(wt + & ) - mawfa,sin @b ......3.5.viil.
If the phase difference between the force, I, 3nd the
displacemnent is €, then P = ﬁ sin(Wt + € ) .....%.5.1%,

ﬁ beiny the anaplitude of tne transmitted force. Comparing

equ~tions 3.%3.viii and 3.%.ix, it follows that

A A

P cose = ThA cosd - mw?a, ......3.3.x, and
A A

P sine = TK sind S I I, T

A
P siné€
pcose + mwial

and since G = 1££§§ji by definition; it follows that

Hence *L = tand = cieeeebabexitg

A

A
> cos € + mwial P cose + mw?sg, ; e oz s
G = & mwWa, ° (§D e..303.xiiin
[-]

A g A
In the above anslysis, the inertia of the specinen
has been treated as neglizible compasred with the total
moving mass m. When the layers of specimen are rezasonably
thick, however, the above acsuaption may no lonmser nhold, and
it will then be necessary to take account of this. A

siaple wav of doing this is by adding an "equivalent mass’,
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L of the specimen on to the moving mass, m, to obtain

the corrected inertia nass, m, =@+ 13 which will then
replace m in equations %.%5.xii and %.5.xiii. The equivalent
mass mg of the.speciqen is obtained as follows.

Referring to fig. 3.7 and assumning perfect bonding of
tne specimen to the various faces; it is seemn that the
layer of specimen in direct contact with the stationary
support has zero displacement while the layer immediately
in contact with the moving centre-piece must have the same
displacement as the centre-piece itself i.e. g sin wt.

It follows, therefore, that under conditions of pure shesr
which are assumed to hold, any layer 3t a horizontal
distant v from the fixed support has a displacement given
by y(%? sin wt. IfpPis the density of the material, then
the inertia force of an elemental strip, thickness dy, and
distant y from the stationary support, is

- q’% dy)w‘(é%f% sin wt, remembering that tne shear area on
one side of the centre-piece 1isg %. The inertia force for
both layers is, therefore,

t,
2l - (éi: w'sin wt) v dy; which, when integrated, gives

0
- (?gt") 3,0“"511”1 wt. Butg-—‘%-g-’— = %;M beine the mwass of

both layers of the specinen. Hence the force required

. . :ﬁ V4 a4 .. i . h
to accelerate the specluen 15 —- 35 de W sin wt, which is the
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same as the inertia force for a mass, %; attached to, and
moving with the centre-piece. The effective mass, Ty of

the specimen is thus simply half its total physical mass.

3.4, Preparation of the specimens

Before discussing thg methods of measurement employed,
it is intended to give séhe further details about the
preparation of the test specimens. As already mentioned,
the specimen layers were glued to the centre-piece and the
stationary supports. In this, it was essential that there
was perfect adhesion throughout the areas of contact.
Another requirement was that the specimen layers should
have the same uniform thickness. This second condition is
not very critical, and it can be shown that provided the
mean thickness of both layers is used in the calculations,
the specimen layers could have as much as 25 per cent
difference in thickness without introducing much error in
the calculated values of the elastic modulus and the loss
factor. How the above requirements were taken care of will
become obvious in the following description.

The gluing material used in the preparation of all the
specimens was araldite AV 100, together with its hardener
HV 100, made by CIBA Ltd. This was chosen because of the
relative ease with which it could be applied, and its
ability to set at room temperatures. As for its bonding

strength, all tests pointed to the fact that there was no
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bonding failure. What these tests were #ill be seen snortly.
Two catesories of aaterials were tented;

(1) "soft" materisls - the ter:, soft, beins here luosely

apvlied to materials, sa2anles of which were 1vqilable in

the liquid form.

(ii) "hard"™ matsrizls or materials available in sheet formn.

In either case the surface prep=ration vas as follows. Both

faces of the centre-viece as well as toe relevant faces of

the fixed supports were fir:t degreased by cleaning tnem

with acetone. They were then =2braded in 4ilute sulphuric

ncid 2nd washed thoroughly in water.

Soft specimens

The faces were allowed to dry and 2 very btnin layer of
araldite was applied to the bondin~ surfaces of the
stationary suppoéts. A layer of the 1liquid naterinal was
then applied to each surface using a small fibre brash, snd
allowed a few hours to set slishtly.before the next layer
ws applied. The thic:ness. of the gpecimen layers was thus
sradu1lly built up until about the desired value w=2s
obtained. At this stage, & small mould, of height equal
to the desired laver thickness, was introduced round esch
layer and was filled to the brim by pouring in sone of the
liquid nmaterial. This lsst step was to ensble a smooth
unifora upper surface to be formed for the bondinsg of tne

centre-piece. The l7y2rs so formed were now left aside
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for about a fortniszhnt to set hord.

The moulds were renoved after this time, and the
centre~piece was glued to the two faces. A layer of
araldite was first smeqared on the f=ces bLefore piatting them
tozether. To ensure sood bondinz, the rpieces were held
together by means of bolts 2nd nuts tightened against a
spring load. This was necessary to keep the layer thick-
nesses constapt during the setting period. The entire
set-up was allowed somne more tine to cure before being
connected up for test. The tnickness of the specinen layers
1738 determined by taking the difference between the overall

N
width of the set-up when connected up for test and the
width of the stationary supports nd centre-piece (without
the snecinen). The tnickness of each layer was taken as
nalf this difference. The measureacnvs wece =m:de to the
accuracy of 0.021 inch using a microaneter screw <augse.

Hard specinens

These were much easier to prepire as bhe arterials were -
already available in the uniform thickness required for the
test. The two specimen layers were first cut ont to the
desired size from tine sheet of =usterisl available. They
were then degreased with acetone, and thorouszhly washed in
water. Aftec this, 7 very thin laver of araldite was artylied

on all the surfeces to “e bonisd tozether. Ths statio. ary
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now appropriately asseabled and neld tozsetaer unider slisat
pressure by means of nuts and bolts as above. The set-up
was allovied fhree days (to enable tne araldite to harden
properly) before being connected up for test. As in the
case of the soft specimens, Lhe specimen.thickness was
determined, not by direci measureq~:nt belore Seudlng, but
by measurins the overall thickness of the assenbly when
connected up for test, and takinz away from this the
corresponding thickness without the layers. This toox
account of the slight compression of the specinen during
bondins, due to the applied pressure.

All tné‘specimens tested (both hard and sofit) nad
about tne sane dimensions of bonding area - 2 x $.5 534iDw
Their thickpesses varied Troa about 0.0%0 inch to 0.160
inch.

Altnough care was taken to =chieve perfecl bonding of
tne svecimen to bLhe metal pieces (by ensurineg that a
uniform layer of aratldite was applied tc ench of the
surfaces bonded tosgether) it woald be difficult to check |
conclusivelv that perfect bonding existed at every polint
on the areas pf contact. 1t was, however, much easier to
verify that there wns no ponding failure when the syster
hrd been subjected to larze forces, as for e<ample, at nigh
frequencies. One way of doing tnis is by checking on the

repeatability of resualts obtained before »nl after sSach a
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process. oince araldite sets to a hard brittle solid, any
breaking of the bond would lead to a completely different
set of results from that obtained previously, for the same
test conditions. This check was applied to each specimen
tested, and the good agreement between repeated tests

(see section on results) was a clear indication that there
was no breaking of the bonds during test. Another method
which was mainly applicable to the soft specimens, was to
destroy the specimen at the end of the tests, by pulling
the stationary supports apart. This resulted in the metal
pieces coming apart with each bonding surface having some
portion of the specimen on it. Had there been any bonding
failure on any of the surfaces, that surface would have
come off with the whole or a portion of its area clear of

the specimen.

3.5. DMeasuring techﬁiques and calibration

> fon

3.5.a. guantities to be measured

The different methods of measurement emnployed in the
tests will now be discussed. Trom equations J3.5.x1i and
3.3.xiii, it can be seen that to evaluate the material
properties, G’ and TL, the following quantities nmust be
known:

(i) t,, the thickness of each layer of Specimen;

(ii) A, the total shear area.
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(iii) me, the total (effective) movinz mass above the
Strain gauge,

(iv) W, thecircular frequency of the applied strain,
(v) a, , the amplitude of the displncement sisnal,
(vi) ﬁ, the amplitude of the force signal,

(vii) ¢, tne phase difference between the force signal
and the displacement signal.

There is yet another dquantitiy not expres.:ed directlv in
the equations but on which the material .properties also
depend; nanely, the tenperature, T, of tihe specimen.

The metinod of determining t, has already been
explained. The shenr area was obtalned from measurenents
of the physical dimensions (lengtnh and breadth) of the
surfices concerned. To obtain n,, the centre-piece and the
drive rod were weighed separately on a chewuical balance, to
the accuracy of 0.01 gm. Tne mass of the specinen was
also obtained by weighing the fixed supnorts 2nd centre-
piece before and after gluing the specimen in position,
and taen taking the difference. The appropri=te inertia
mass was theﬁ faken 2s the sum of
(a) the mass of centre-piece,

(b) half tne nass of the drive rod (the strain sauges
were assumed to be situated at the centre of the symmetrical
drive rod), and

(¢) half the specimen mass.
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How the other quantities were measured are treated in

greater detail below.

3.5.b. Frequency measurement

The input signal to the vibrator was derived from
a Muirhead D-880 A low-frequency decade oscillator. This
has a calibrated frequency scale and a frequency range
from 0.0l c¢.p.s., continuously variable above 0.1 cop.5.,
to 1l1.2 kilocycles per sec. The specified accuracy of the
signal freyuency is about 0.2 per cent for most of the range.
This was checked by means of a Beckman electronic digital
counter. Agreement was. better than 0.5 per cent. The
frequency indicated on the oscillator scale is, of course,
the fregquency of the driving signalj; and should be equal to
the frequency of the displacement signal. This was checked
using the counter, and found to be so. Also the frequency
of the force signal was measured and was found to have the
same value as the displacement signal frequency.

A special feature of the above-mentioned oscillator
was the fact that it was capable of giving two output
signals, both at the same frequency, but differing in phase
by about 90%. Use was made of this in the phase measuring

set-up to be described later.

3.5.c. Amplitude measurement

Fig. 3.8 is a block diagram showing the train of
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measuring instruments. As mentioned sbove a2 signal was
first generated at a known frequency by the oscillstor, (l);
and this was then fed into 2 Derriton 250 watt low-frequency
power amplifier, (2). The amplifier, capable of delivering
full power from about 15 c.p.s. to 5 kc¢/s,-bBad a sinusocidal
output wave form with a distortion of less tuan 2 per cent
in this range. The amplified signal was fed into the -
vibrator, (3), which was capable of taking 4 amps uncooled,
and up to 8B amps when air-cooled. As the centre-piece
(connected to the output drive of the vibrator through the
drive rod) moved up and down in response to the applied
signal, the inductance of the proximity sause, (4), varied
proportionately. This caused a gauge oscillator, (&), to
send a frequency-modulated signal to a Minirack frequency-
modulated pre-amplifier, (8), for demodulation and: .
amplification. The resulting signal then passed throush a
driver amplifier, (9), on taiOne channel of a Minirack
double beam oscilloscope, (12), The amplitude of the signal
could now be measured usinsg the already calibrated scale of
the oscilloscope.

This calibration was done optically using & travelling
microscope, and also under dynamic conditions. 4 small
piece of very fine emery paper was stuck to the centre-piece
and illuminated by an external light source. A signal was

then fed into the vibrator, and as the centre-piece moved
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up and down, any bright spot on the enerv paver lengthened
into a verctical line which was then measured using the
eye-piece scale of the microscope. It was thus possiblé to
calibr+te the scope readin~zs against tne microscone eye-—
piece scale re=dings. This cslibration w=s done at the
beginning and end of each test, and whenever the mean gap
betrween the metal surfsce and the proximitv gauge was
changed. Such a calibration graph is shown in fig. 5.9.

It may be pointed out that the above calibration would
give the correct calibration for the movement of the centre-
piece only if the proximity sauwse was perfectlv stationary.
This was checked durinz Liie calibration (for the frequency
ranges of interest), and witn the hichezt microscone
magnification available, it wasn't possible tqg detect any
measurable motion of the gauge.

The miscroscope eye-piece scale w2s previcusly cali-
brated usins a staze micrometer; The stage micrometer
contained a stsndard millimeter length subdivided into
100 parts. Various objectives were calibrated for the same
eye-piece and the same working lensth. OSome of the graphs
are shown in fig. 3.10. The smallest distance meszsurable
with the microscope - for the combination of eye-piece and
objectives used - was 7 microns. The displncemnent ampli-
tudes actually measured varied from about 200 tio 2000

MiCTrons.
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3.5.4. Torce measurement

Referring again to the block diagram,.fig. 3.8; as .
the vibrator drove the centre-piece, the transmitted force
strained the drive rod causing, in the strain gauge, (5),

a change in resistance proportional to the transmitted
force. Since the strain gauge formed paét of a resistance
bridge, (7), a signal proportional to the force was trans-
mitted to a Minirack pre-amplifier, (8), then through a
driver amplifier, (9), to the other channel of the double-
beam oscilloscope, (12). The amplitude of the force could
now be measured on the oscilloscope scale which had been
previously calibrated.

To understand the calibration procedure, it is helpful
to examine the resistance bridge circuit employed. A
simplified sketch-of this is given in fig. 5.11. The arm
adjacent to the gauge consisted of decade dials covering a
range of 11,110 ohms in steps of 1 ohm. Two ratio arms,
eacﬁ of 2K, were provided, separated by a 10-ohm calibrated
apex resistor. This was a ten-turn helical potentiometer
with a dial subdivided into 100 parts and a counter to
indicate complete revolutions. One complete revolution of
the dial (i.e. 100 small divisions) corresponded to a change
in resistance,‘%?, of 163, in the resistance of any one
arm of the bridge. Each small divisien was thus equivalent

AR -5
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The apex resistor provided 3 very convenient medium for
calibration in the following wayv. The scale of the 3pex
resistor was first calibrated statically to measure force.
Known weights were hung, in turn, from the drive rod and

using the oscillo@cope as a null point indicator, balance

was effected in each ¢ase by suitably varyinsg the apex
resistance reading (i.e. the contact point on the apex
resistance). A graph of load against é%g was thus obtained
as shown in fig. %3.12. It should be noted that this ¢ali-
bration was independent of the scope sensitivity as well as
of the test-battery voltage. It was carried out at the
beszinning of the tests, and checked when all the tests were
conmpleted. The two calibrations agreed to within 2k..

With thHis calibration, it was now only necessary to
calibrate the oscilloscope scale zazainst the chaenge in the
apex resistance A%B., for any given anplifier maznification
and test-battery voltaze. This calibration was done at the
bezinninz and end of esch test, and whenever the amplifier

settings had to be chanzed. A typical sraph is shown in

fig. 3.15.

32.5.e. Phase measurement

The accur~te measurement of the phase difference
between two signnls is usually a very difficult and time-

consuming operatiun. HMany of the standard phase meters
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available have an accuracy of the order of £ 2°. This
level of =accuracy is very inadequate for the 7neasurenents
conteuplated since cheanges in phase difference of less than
2% wuaild often require to be detect:d.

e electronic digital cowinter available could be
used to measure tihe phase difference accurately. Used as
a phase meter, the cointer basically measired the tinz
intefval { in microseconds) betieen the two signals attain-
ing a certain voltz2ge value. (It is here assined tnat both
Siznals have tne saue cortinuous periodic focm - not
necessnrilvy sinusoid=l - and are exscbtlvy 23u31). The
counter was capable of detectin® phace differences as
smnll as 0.02° at 50 cepes., the resclition decreasin~g to
0.2° at 500 ¢ce.p.5. In practice, however, .this metnod proved
very wieldy =nd touvk a considerable amount of time to carry
out since the two signals 2ad first to be accurately
balrnced. Another set-back in the use of the countezr was
'noise'. For =accuarate readings, it reguiired pure waveforms.
Any noise in tne wyaveform was easily delectable 2nd could
lead to inconsistent sets of results. Owing to the ractner
high amplification which had to be employed in the force
channel, a considerable amount of noise was picked up by
the force signal, makinsg measurements wibh the cointer very
difficult.

For this reason, anot:ier method of messurin: the
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phase angle was developed. A variable phase potentiometer
was obtained b7 applying the two outputs of the decsade
oscillator (to be referred to as the 0° and 90° outputs),
eoch to one end of a linear potentiometer. A voltage
sienal of varying phase (and amplitude) could taus be
obtained at the variable terminal of the potentiometer, the
phase of G(he siwgnal beinj 0° at the zero degree terainal
and 900 at the 900 terminal. The pnase differznce 4t any
polnt would normally depend on the ratio of the amplitudes
of tne voltasges as well as on the ratio of the resistances
on either side of the point. In the set-up ased, tie
voltaze sisznals were of. the same amplitude, and under this
corditi n, thepbése of the signal at any point depended only
on the resistance ratio, the phase beins 45° at tne "resis-
tance centre" of the potentiometer. The phase 2t any
point co:1ld be calculated once the resisb-nce ratio was
XKriovin.

However, it wns thoazht more reassuring and accurate
to nctunlly calibrate the phase potentioneter using the
eloctronic counter, Fisg., 5.14 shows the calibratine tircuit
used. The si<snals whose phase difference was to be measured
were first mede el by displaying then on 2 doable beam
scone {(both chonnels of which hsd been set to the sgane
sensitivity) and monitoring one of the signals appropriastely.

They were tunen fed into each chinpnel of the digital couinter
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1. 600n TERMINATING RESISTANCE.

2. 100K MONITORING RESISTANCE.

%, BANK OF 6 10K POTENTIOMETERS IN SERIES ~ PHASE
POTENTIOMETER.

4, DOUBLE BEAM OSCILLOSCOPE.

5 MUIRHEAD L.F. OSCILLATOR.

6. SLECTRONIC DIGITAL COUNTER.

7. VARIABLE TERMINAL OF PHASE POTENTIOMETER.

Fla. 3-14 Calibrating Circuit for
Phase Potentiometer
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and the time interval between their attainment of s given
voltage level (zero voltage level was aimed at in the
settings) was measured. This, together with the periodic

time of the signals, also measured with the counter, gave

TIM
Periodic time

the phase angle as x 360 degrees, TIM being
the time interval. In this way the settings of the variable
tapping were calibrated in degrees, the phase angle
specified for each setting being the phase difference
between the voltage picked up at that point and the 90°
output which served as the driving signal.

The actual setting-up of the phase potentiometer
required a careful choice of the potentiometer resistance.
A relatively low resistance applied across the terminals of
the oscillator might cause the current flowing through the
potentiometer to vary appreciably within a small frequency
range, resulting in the potentiometer calibration being
frequency-dependent. A similar effect would result if a very
high resistance was used, a capacitive effect being
introduced in the circuit. Various combinations of resistan-
ces were tested, and the one giving the best performance,
over the frequency range within which measurements took
place, was used. The calibration, which was done at
27.78 c.p.s., was fomnd to hold true from 10 to 400 c.p.s.
Above this frequency range, it became necessary to make
some corrections. The calibrated scale was checked at

500 ¢.p.s., and also at 1000 c.p.s., and correlating
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sraphs were obtained to help make the necessary corrections
at these frequencies. The sraphs are ziven in fig. 5.15.

The mininum accuracy of calibration is the accuracy of
the counter in measurins 1 de<gree at the calibrating
frequency, 27.78 c.p.s. Since the counter accuracy is
approxinately inversely proportional to the count indication,
this accuracy ig about 1 per cent. The one degree divisions
of the potentiometer were thus located with an accuracy
better than 1 per cent.

Having obtained a calibrated phase potentiomneter, it
is now necessary to show how this was utilised in phase
measuremnent. Referring once more to the block diagran -
fiz. 5.8; the signal frou the potentiometer, (10), was fed
through a phase shifting network, (11), to the common
X plates of the double beam oscilloscope, (12). The sicni-~
ficance of the phase shifting network will be discussed
shortly. Already the displaceuent and force siznals had
been applied to the two Y plates of the scorpe. Since all
three sisnals were at the same frequency and were sinusoidal,
the resulting Lissajous fizures would, in 3seneral, be two
ellipses. The sha;es of the ellipses woild vary as the
phase of the signal applied to the X plates was varied,
and each of the ellipses would desenerate to a straignt line
when its phase (relative to the 900 output) equalled that

of the potentiometer signal. The phase difference between
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the force and the displacement signals was tnus obtained by
measuring the phase of each of the signals in the way just
indicated, and taking the difference.

The phase difference between the force and the dis-—
placement signals would normally be less than 900 so that
the calibrhted range of the potentiometer was basically
sufficient for all the phase measurements required. It might
happen, however, that one or both of the sizgnals had a phase
angle (relstive to the 90° output) lying outside the
calibrated range. This situation is illustrated in figs
.16 b and ¢, nere the shaded portion represents the
calibrated quadrant. Under this condition, it would no
longer be possible to measure the phase of both signals
as explained above.

One way of overcoming this difficulty was to change
the sign of one of the signals applied to the potentiometer
terminals without altering its magnitude. To do this a
well-balanced centre-tapped transformer of unity turns ratio
was introduced in the 0° channel. This nrovided two
outputs 180° out of phase (one in phase with the 0° signal,
and the other of nesative sign relative to it) and of
equal amplitude. These could then be connected in turn
by means of a switch to the 0° end of the phase
potentiometer. The range of the calibration was thus

effectively extended to cover another quadrant, so that the
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arrangement could measure any phase between 0° and 180°
( and hence between 1800 and 360°) - figs 3.16 d 3nd e.
Another solution involved "shiftinz" the calibrated
range approprintely to enclose the twc siznals - figs
%3.16 £ and ¢. This was done using the phase shifting
network already mentioned, which was simply a series arrange-
ment of resistances and capacitances so chosen as to
produce the reguired vhase shift (see fig. 3.17). 1In
using this method, it was essential that the impedance of
the phase shifting network was hisgh compared with that of the
potentiometer, so that its introduction did not affect the
performance of the oscillator. This second method was
employed in the tests reported in this chapter. For the
beam tests reported in chapter 5, the first method was
found more convenient, and was, therefore, used.
It is interesting to compare the merits and demerits
of the two methods of phase measurement - the counter, and
the phace potentiometer - in relation to the tests con-
templated. As has already been pointed out, the counter
was very accurate at low frequencies. Its accuracy, however,
was frequency-dependent, and the higher the frequency, the
less able it was to detect small phase differences. At
aobout 500 c.p.c., for example, its minimum resolution was
about 0.3 of a degree. Moreover, this accuracy was greatly

affected by noise levels wnich could cause as much as
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100 per cent error. The potentiometer accuracy depended

on the accuracy of locating the "straisht line condition".
This depended mainly on the magnitude of the sisnals applied
to the X and Y plaltes. With reasonaply large sisunals

(about two inches peak to peak on the scope), chanstes in
phase difference of less than 0.5 degree, could be easily
detected. The accuracy of the measurement was not frequency-
dependent (provided the calibrated scale was correct for
that frequency,. Moreover, small noise levels were easily
accomodated and only became 3 nuisance when they were of
comparable magnitude with the signals - it would then be

difficult to deteraine the balance condition accurately.

A more significant fact in the comparison is the time
required for taking 2 measurement in either case. Under
the most favourable conditions, counter phase measureanent
would take about 2 minutes to complete, because of the
balancing and setting-up operations involved. On the other
hand, phase neasurement with the potentioneter was a
matter of seconds. This difference in tine was particularly
important as regards temperature control (to be considered
in the next section). For reasonably highly damped
materials, the energy loss per cycle was appreciable
eSspecially at high strains (energy loss being proportional
to the square of the amplitude - equation 3.l.ix.a). If the

specimen was subjected to this vibration for a lonz time,



149

considerable temperature rise would occur, leading to an
observable change in the material properties durinz the time

interval required for a reading.

3.5.f4. Temperature control and measurement

It hes already been stated that it was necesssry to
keep the temperature of the specimen: at a definite desired
value during any set of tests. The specinen temperature
would change if the‘surnoqndinq temperature chanzed. Also,
crine to internal enerzy loss, btemperature rise would occur
in the specimen if it was subjected to vibration for some
tine. In addition to these, there was an easy 'hest path'
from the vigrator ont=-put drive (vias tne zluminium drive
rod and the aluminium centre-piece) to the specimen, so
that any rise in temperature in the vibrator easily - :
affected it.

In view of this, temperature control wis effected by
controllin~s the temper~ture of the room, i.e. heatin<g
up the room for nigh temverature tests, »nl cooling it .
down for low temperatures. Also, 3 constant stream of air
was blown against the specimen Lo help keep it at a constant
tempernture close to that of the surroundin=s and the
vibrator was kept air-cooled all throuszh the tests.

Next it was necessary Lo measure this temperature - and

hence check that it was really constant. This was done
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using a standard copper - constantan thermocouple. For

the soft specimens, the thermocouple was easily embedded in

the specimens. For the hard specimens, the thermocounles

were located in holes drilled on the flixed supports and

on the centre-piece, close to the interfaces. The

calibration graph for the thermocouple is shown in fig. 35.18.
With the method of temperature control mentioned

above, it was possible to limit temperature fluctgation in

the specimen to within * 0.25°C for all the tests performede

-

3.6. Test procedure

3.6.2a. Materials tested

The following materisls were tested:

Velbex P.V.C.

This was available in sheet form of nominal thickness,
0.160 inch. It is a relatively soft polymer obtained by
plasticising polyvinyl chloride with 35 to 40 per cent
of phthalate type plasticiser. It is of a black texture
and is used in industri=al applications such as, washers,
shot blast cabinets etc.  The detéils of the specimen

layers tested are:

i

mean thickness of each layer, % 0.152 inch,
total shear area, 4, = 2 x 0.5 = 1.00 sq. in.,

0.0927 1D,

total effective inertia mass, o,
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Hycadamp

This is 2 mixture of rubber and P.V.C. containing
100 parts of nitrile rubber to 30 parts of ?.V.C. It was
available in sandwich form, beinm bonded between two thin
backing sheets of aluminium. The material was tested in
this form, the aluminium backing lavers being glued to
the fixed supports and the centre-piece. The mean thick-
ness of each specimen layer was 0.C33% inchj and the total

shear area was 2 x 0.5 sq. in. The total effective inertis

mass, m,, Was 0.0882 1b.

Evoseal 202 and mulseal

These, available in liquid form, are emulsions of
rubber latex in a base of liquid bitumen. For evosesl,
the mean specimen layver thickness was 0.069 inch, and the
total effective inertia.mass m, was 0.0774 1b. The mulseal
specimen had a mean layer thickness of 0.168 inch, and the

total effective inertia mass was 0.0785 1b. The total

shear area in both cases was 2 x 0.479 sqg. in.

3.6.b. Detail of tests

The test procedure adopted for each specinen (except

mulseal) was as follows.
First, three constant strain, constant temperature
tests were carried out. Tach test involved keeping the

strain amplitude (i.e. the displacement amplitude) constant,
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maintaining the specimen temperature at a definite wvalue,
varying the forcing frequercvy in convenient steps, and
measurine at each step, the amplitude of the force, and of
the displacement, and tueir phase difference. The three
temneratures - the first, a few degrees above the room
temperature; the second, room temperature and the third,
a few dewsrees below room tempernture - were so chosen as
to cover the mhossible temverature ran<te wibthin which the
materials would be used in the subsequent besn tests. All
three Leuts were cz2rried oat on the sazne dny, Lhe hish
teuperature test beilns carried ont first, followed by the
roon tein-erature test, and then the low tempsrature test.
The value of the straln aaplitude was normally the sAaqe
for all three tests. These constant temnerabare, coustant
strain tesbts will be referred to, in tihe subsequent s=ctions,
sinaply as "temperature tests".

Next, tne frequency and tne tempernvure wsre botn
kevt constant and the strain amplitude was varied in con-
venient steps, readings of the force aaplitulde, displace-
nent 2aplitude and the vhase difference beins tvaken at each
step. This was done at two (or qaore) frequencies, the
temnerature bein< maintained constant at aboat rooan teanpera-
ture for each set of readin=s. This series of tests, also
carried ot on the same day, will be referred to as 'strain

tests'. Finally the room~temperature part of the
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teuperature tests was carried out again to cneck for
re;eanL2bility of results.

Apart from the above tests, 1t was also thousat
necessary to check on the shane of the stress - strain curve
exhiibi*=2d by the materisls. For this reason the force and
the displacenent sizgnals were fed to the X and Y plates of
cne caannel of the oscillecscope, and the resulting force -
dizplscemncnt rlot was sketched. Fis. 3.39 shows 2 com-
parison of oune siuch trace with points oa an actual ellipse.
The trace wnac made for an evosesl 3peclmen .

The calibration procedures already oaﬁlined were
carried out =t the beginning aad at tae end of 2ach set of
tests.

‘he 1in-phase shear modulus, G: and the loss factor, ﬂe,
were evaluzated froan the readings using equations j.ﬁ.xii
and 3.%.xiil. These two quantities will be utilised in
the ensuing discassion as the characterising proverties of
tho asteri~is. To avoid repetition, the in-nnase shear
mod.alus, G, will often be called simply the snear modulus
(or even, mninluz,. Alsc the loss factor nmav often b»
referred to 2g the danpin—-. The anterial prorerties have

been

3

lotted out azainst tune several variables, as shown
in figs 5.19 to 5.5
Only one temperature tect wag carried ot rfor mulceal.

Thiz wag hecause apart from the act That 1t toox a
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considerable amount of time to set sufficiently hard,
it did not show any narked difference in nroyerties from

evozeal.

3.7. Discussions

53.7.2. Exnerimental results.

Velbex P.V.C.

The grapihs obtained for 1.V.C. are shonn in fivs 5.19
to %.23.

Tennerature tests

The constant strain, constant teuver~tare sraphs are
Tiven in fiss 3.19 and 5.20. These show that the shenr
modulus, G; ic 1arkedly devendent or. fregquency, shoxring
a corsistent incrense wilh increase in frequerncy. T
rate of Lnerease of modulus with freqguencrs, for each »f ch
curves, decreases as the frequency ircreases. This suzjgests
tuat the maberiasl is within the portion of fthe transition
zone close to the rubbery regicn (see fi~. 3.2). The
damping, on the other hand shows a3 nuch less distinch
variation with frequency. The loss factor is seen to
increase initially with freguency and tien to remaln 7ore
or less constant at hisher freauenclies.

Temperature effects can also be easily observed in
these grapns. The she~r modulus snows a vronoincad ten-

perature-denendence, decreasing rather ravidly as the
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temperature increases. The loss factor also shows 1 similar
trend, confirniﬁq the prediction already nade, that the
material nust be on the "rubbery side" of *the 7lass . -
transition zone. The "three-point" granhs of fiz. 3.21
mavy help’to cive a clearer picture of the dervendence on
temperature. Thecse are crose-plots from the constant
temperature, constant strain zraphs, z2nd they show the
variation of %the shear modulus and the loss factor with
temnerature, at given frequency -nd stvrain amplitude.

The shane of the wdnlus-versus-frequency Trannhs was
checked usin<g the =metuod of reduced variables exnvlained in

~

cection %3.2.c. Fronu the ararn of u'against los. frejuency, -
fise 3.22 = the intercepts on lines of constant modilas

were -7easured nd 1aid out in tabular form (Lshle 3.2).

Very zoo0d =z sreement is seen to hold, the naximuam deviation

of any of tae invercepts from tne mean intercert beiny

about 3 per cent in the frequency ranse, 20 to 302 CeT S,

PMz. %.25 shows the variation of the shear modulus and
tne loss fsctor with strain 2aplituie a3t constant tenperature
and freguency. The shear modulus 1s seen to decrease with
increnase in sitrzin amplitude, whilst the losg¢ factor is
virtually strain-independent. It is, however, seen that the

. - ’ - . . N - - . L
variation of G with thne strain amplitude is rather slow.
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Constant Intercept between Intercept between
shear modulus, Te and Ty curves Te and T, curves
1b/sq. in. cm cn
1250 4.7 11.5
1350 4.8 11.6
1500 4.9 11.5%
1600 4.9 -
1700 5.0 —
1800 5.0 —
19500 5.1 —
2000 5.1 —
onoreeng™ - on 1.5
Mlax. percentage
deviation from 5.2 1.7

mean

Frequency range
covered

20 to 300 c¢/s

20 to 300 c¢/s

TABLE 3.a

Constant modulus intercepts for P.V.C. (obtained from fig 5.22)

Te = 19.3°%C ;

22.8% ; 1, = 28.2°%
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For instance, a change in the strain z2mnlitude from 2 per
cent to five times this value, causes a drop in G’ of less
than 20 per cent, at 150 ¢.p.S., and 22°C.

Within the frequency, and temperature ranges of the
tests, the variation of G’ with temperature, frequency, and

4.

strain can be represented in the sinsgle equationy

¢ = o(89:9336 = 15 573) {(0.9202 £ - 0.3439) +

(1.3799 2 - 2.2022) e—“‘¢}

where n = 0.1621, s = 184.9, f = the frequency in C.p.S.,
@ is the strain amplitude, and T is the temperature in
degrees Absolute (Centizrade scale).

This expreséion was found very convenient for purposes of
dizital computation (see chapter 4).

After the beam tests of chapter 5, the above shear -
tests were repeated for a specimen of P.V.C. cut out from
the same sheet. This was meant to be a check on the resultgr‘
ziven above. Fig 3.24 sives -a comparison of the results of‘
this test-with the results given in figs 3.19 to 3.22 for
two temperatures, 18°C and 25.500, and a strain aaplitude
of 3.06 x 1073 o Good acreement is seen to nold for tae
shear modulus, G, -The loss factof—fersusffrequency curves,
however, show a difference of uv to 5 per cent. This

difference cannot be attributed to calibration errors, as
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the calibrations of the first test were checked and found
correct. (The same measuring circuit was used in both
tests). It is not clear whetner the difference was due

to a variation in the loss factor with the ame of tne
Speciuen (the second test was carried out about a vear after
the first) or to local variation in the properties within
the same sheet of material. "However, the results implied
a possibility of error of up to 5 per cent in the material
loss factor. The material properties used in the calcula-
tions for the beam tests of chapter 5, were those obtained
during the first test (figs 3.19 to 3.23), as these were
the only values available a2t the time.

Bvoseal 202

Tenperature tests

Figs 3.25 and %.26 show the vari-tion of the shesr
modulus, G, and the loss factor, 7, , with frequenucy for
evoseal. The tests were carried out after the evoseal had
cured for twelve weeks. The graphs of the shear modulus
azainst the frequency are similar to those for F.V.C.
Temperature effects are, however, much more marked as is
casily seen from fig. 3.27 which gives the variation of both
the shenr modulus and the loss factor with teméerature at

given frequencv and strain awplitude. The loss factor is

seen to increase with temperature, which seems to su7zest
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that the material is still on tihne rising portion of the
damping~versus-temperature curve of fig. 3.2.

Fig. 3.28 gives the graph of the shear modulus against
log. frequency. The usual check on the shape of the curves
was carried out, and a reasonably good agreement was
obtained for most of the range, as can be seen from table
5.b. The maximum deviation from the mean length was about
9 per cent.

It may be pointed out that for this material, the loss
factor varies only slightly with the frequency.

Strain tests

Fig. 5.29 shows the dependence of these properties on
the strain amplitude. Whilst the shear modulus decreases
with the strain amplitude as for F.V.C., the loss factor
shows a slight incresse with strain. Again, the variation
of both the shear modulus and the loss factor with the strain
amplitude is seen to be slow.

Dependence of the properties on the time of cure

The properties of evoseal (and nulseal) very much
deperd on the 'time of cure' of the specimen. This is
because the material, originally in liquid form, takes sone
time to dry out, a process which affects its properties.
Fig. 5.50 gives the variation of the shear modulus and the
loss factor with time, for a specimen of evoseal prepared

during the period when the beam tests (reported in chapter 5)
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Constant Intercept between Intercept between
shear modulus, G T, and T, curves T, and T, curves
1b/sq. in. cm cm
560 5.1 z 13.0
o440 5.1 13.0
720 5.2 13.1
800 5.3 13.2
880 5.3 -
960 5.5 -
1040 5.7 -
1120 2.9 -
1200 6.0 -
incercept 5.5 15.1
Max. percentage !
deviation from 9.1 0.85
mean
iﬁiég:gcy range 20 to 300 c/s 20 to 300 c/s

Constant modulus intercepts for evoseal ,obtained from fig 3.2

TABLE 3.b

T, = 16.4°C

7, = 20.5°C ;

T, = 27.5°
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¢

" were being carried out -~ about a year after the tesﬁs
reported above. It is seen from the graphs that the shear
modulus kept increasing with time for the three months
during which the tests were carried out, the approach to
steady values being rather slow. The loss factor, however,
varied only slightly with time. Also indicated on the
graphs, are points corresponding to the test results of
figs 5:25 to 3.29. These lie close to the curves, implying
that the shear specimens for both tests must have been
curing at about the same rate.

Figs 3.31 and 3.32 give the results of the shear tests
carried out on the evoseal specimen immediately before the
corresponding beam tests were carried ocut. These were used
in the theoretical calculations for predicting the beam

responses.

Hycadamp

Temperature tests

’

The shear modulus~versus-~frequency graphs for this
material, fig. 3.35, have rather peculiar shapes. IRach
curve seems to exhibit a point of inflexion, at which the
slope passes through a minimum value. For the modulus-~
versus-log. frequency graphs shown in fig. 5.34, the
intercepts on lines of constant modulus show first a distinct
region of constant intercept, followed by a2 kind of

'transition' region where the intercept varies rapidly,
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Constant Intercept between
modulus, G T, and T, curves

lb/sq. in. cm

800 7.0

850 7.0

900 6.5

1000 5.5

1100 5.0

1200 4.4

1400 3.8

1500 5.5

1600 5.2

1700 5.5

1800 5.9

2000 55

¥requency range covered 20 and 500 c/s

5.c
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First region of
constant intercept

' Transition

iccond region of
constant intercept

Constant modulus intercepts for hycadamp, from fiz. 5.54

T, = 22.5°C

P, = 29.5°C
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and then finally, another region of constant intercept, the
length of the intercept in this region being exactly half
that of the first zone (table 3.c).

Also, the graphs of loss factor against frequency
(fig. 5.55)’have peaks which occur at frequencies close to
those at which the corresponding shear modulus-versus-
frequency <raphs show points of inflexion.

The above observations at first seem to suggest that
ﬁhe material might be in the middle of the glass transition
zone (i.e. close to the peak of the damping curve of fig. 3.2
However, if this was the case, one would expect the
predictions of the method of reduced variables to hold
throughout the range covered, and not just for distinct
regions of the range. The observations, on the other hand,
are too well-defined and consistent to be dismissed as
being merely due to experimental inaccuracies. Secondary
transition zones [95] can be ruled out, for although these
cou%d affect the shape of the modulus-versus-frequency
cﬁrves, thus causing a variation in the length of the
intercepts within a resion of the graphs, they would hardly
Tive rise to two resions of different constant intercepts.

It has been suggested* that the above behaviour could

*This suyggestion was made by A.R. Payne in a private
correspondence.
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be due to the fact that hycadamp is a mixture (and not a
chemical compound) of the two polymers, P.V.C. and nitrile
rubber, For such a material, it is possible for each
conponent compound to have a dominant influence in the
material properties within some frequency (or temperature
range) range. This could give rise to two regions of

the shear modulus~veréus-frequency graph, within which the
material would behave like a true viscoelastic material,
but would show differing trends. This suggestion seems to
explain the observed behaviour satisfactorily.

The dependence of the loss factor and the shear modulus
on temperature is shown in fig. 3.36, and has the same
features as that for P.V.C., both quantities decreasing with
increase in temperature.

Strain tests

The loss factor is virtually independent of the strain,
while the shear modulus decreases slowly as the strain
amplitude increases, as in the case of P.V.C. These trends

can be seen in fig. 3.37.

Mulseal

The mulseal specimen was tested after it had cured for
15 weeks. As already mentioned, only one set of shear
modulus and loss factor-versus-fregquency curves was obtained
(fig. 3.38), since the material had the same order of

modulus and damping as evoseal, and was found inferior to
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evoseal as regards rate of cure. It was thus thought

unnecessary to examine its properties in detail.

3.7.b. Shape of the force - displacement curve.

For a linear viscoelastic material, the stress - strain
curve over a cycle is, by definition, an ellipse. From the
theory given in section %.3.c, the corresponding force -
displacement curve for such a material will also be ellipti-
cal. As already mentioned, traces of the force -~ displace-
ment curves for the specimens were taken during the tests.
Such a trace is shown in fié. 3.39', with points on an
actual ellipse plotted on'it for comparison. A surprisingly
high degree of agreement is seen to exist. Since, for all
the specimens tested, the inertia forces were much smaller
than the shear forces in the frequency range covered (the
inertia forces were less than 5 per cent of the total
measured forces in most cases), it follows that the stress -
strain curves for the materials must be essentially
elliptical. ¢

This soes to confirm the oﬁéérvation, already mentioned,
that despite the dependence of their properties on the
strain amplitude, at any given frequency and strain
amplitude, these materials virtually exhibit an elliptical

(i.e. linear) stress-- strain law.
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3.7.C. Repeatability of results.

Table 3.d gives an indication of how close readings
could be repeated. The table applies to hycadamp. The set
of results, &', was obtained during the temperature tests.
The set, B, was obtained two days afterwards, after the
temperature and the strain tests had been completed. The
two sets of results agree very well, the disparity between

any two corresponding values being less than 2 per cent.

53.7.4. Estimated accuracy of the results.

The accuracy of the values of the shear modulus, G, and
the loss factor, 7)., obtained by the method described in.this
chapter, will depend on the accuracy of measurement of the
various quantities from which G and TL were calculated. The
important quantities in the calculation of these properties
were ﬁ, a,, €, t., and A, since the inertia force, muw’, ,
was usually rnuch smaller than the shear force.

It has been mentioned that the snallest length measurable
with the microscope available was 7 microns. Since the
minimum displacement amplitude measured with it was 200
microns, the maximnum error in the displacement measurement
was less than + 2 per cent. This is probably a very 'safe'
estimate, since the points for the displacement-channel
calibration graphs lay on straight lines with very little

scatter.
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% B
Frequency
Shear modulus |Loss factor|Shear modulus| Loss factor
CeP-S» G, 1b/sg.in. . &, 1b/sq. in. A
39 890 U.405 875 O.404
60 ] 1023 0.475 1030 0.480
100 1217 0.522 1211 | 0.540
150 1379 0.560 1351 " 0.562
200 1545 0.574 1558 0.572
250 1810 0.551 1790 0.540
300 2040 0.486 2005 0.490

TABLE 3.4

Repeatability of results for hycadamp

Set A" - obtained at 22.500, during the temperature tests.

Set B - obtained two days afterwards, after the temperature
and the strain tests; test temperature also 22.500.

Both sets were obtained at a constant strain amplitude of

5.87 x 107°.
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The accuracy of repeatability of the force calibration
has been given as better than 3 per cent. The scatter in
the force readings taken durihg a test was within £ % per
cent, so that the error in the force measurement was unlikely
to exceed £ 3 per cent.

The thickness, bt , was measured to the nearest 0.001
inch. The minimum double thickness measured was 0.066 (for
hycadamp); hence, the maximum error anticipated in the
measurement of t. would be less than *+ 1 per cent. The error
in measuring the shear area, A, would be much less than this,
since the dimensions of length (about 1.0 inch) and width
(avbout 0.5 inch) were each measured %o an accuracy of
0.001 inch, ¢iving a maximum error of less than * 0.5 per
cent.

For the phase measuring device, it has been stated
that the minimum angle detectable was about 0.50. The range
of values measured covered between 20° and 800, so that the
maxinum error involved in measuring cos ¢ was less than
+ 1 per cent, whilst the maximum error in tane was about
+ 5 per cent.

From the above analysis, it would avpear that the
accuracy of the calculated values would be well within
+ 7 per cent for G, and t 5 per cent for n. - It may be
pointed out that this estimate is for the worst possible

case. The general level of accuracy in the results obtained
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for any given material would be much better than this. For
instance, it was stated in section 3.7.c, that the results
for hycadamp could be repeated to within 2 per cent

difference.

3.7.e, Comparison of results

For purposes of comparison, an intensive search was
carried out through the literature for published data on the
materials tested. As far as is known, there are no published
data on evoseal and mulseal. Also, no information could be
found on the ﬁroperties of the brand of P.V.C. tested,
althoush there is published work on other brands of P.V.C.
For - instance, some data are given in [10@], for a formulation
of placticised P.V.C. containing some tri-cresyl phosphate
as plasticiser. These results are plotted in fig. 3%.40,
which shows the variation of G and YL with the frequency,
at a constant tenperature of 2500 (the strain amplitude was
not specified!). The shear modulus and the loss factor quo-
ted are seen to be much higher than the values obtained here.
However, since the two brands of P.V.C. are different, It

is doubtful whether further comparison is of any use.

3.7.f. The apparatus - its limitations and possibilities

It is intended to conclude this section with a short

discussion on the apparatus..

It will have been observed that the mechanical set-up
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is very simple. The different domponents are easy to make,
and can be assembled or dismantled in a matter of minutes.
The measuring circuit is not very complicated. The
displacement measurements can be very accurately made, and
the accuracy of the force measurements could be improved
upon, if desired, by replacing the straimn gauge with a more
sensitive force pick-~up, as for example, a crystal pick-up.

Although the temperature ranges covered in this work
were close to room temperature, temperature ranges of any
desirable magnitude can be obtained relatively easily, by
providing a small temperature chamber around the specimen.

The set-up is also very suitable for investigating
the effect of lateral compression on the shear properties.

One limitation of the apparatus is the fact that it is
essentially a low frequency set-up. The frequency limitation
arises from the requirement that the test frequency range
should be below the fundamental natural frequency of the
system (table + fixed supports + bolts etc). By careful
design, this frequency can be made reasonably high (up to
5 kc/s), so that a wide frequency range can be covered.

The apparatus, as it is, is not suitable for tests at
very high shear strains. Reference to fig. 3.41\will_shoﬁ
that when the shear specimen is subjected to a shear
deformation, &3 owing to the fact the the supports, (5),

are fixed in position, any horizontal element of the specimen
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undergoes a tensile strain of magnitude, (secH - 1). (It
is assumed that the element still remains straight. after
deformation). This gives rise to a tensile force, AP, in
the element. The sum total of all such elemental tensile
forces has a vertical component, designated by k sin©,
which must be provided by the drive rod. It follows,
therefére, that the total force, P, measured by the strain
gauze, not only provides for the shear deformation in the
specimen and the inertia of the moving parts, but also has an
additional component due to the necessary extension of the
specinen. TFor moderately high values of the strain, the
component, ¥ sin@, is neglizibly small. TFor instance,
for‘a shear strain of 10 per cent (i.e. tan 6 = 0.1),
P. s5in @ is only 1.5 per cent of the shear force. However,
at very high strains (say, 100 per cent or more), B sin @
becones very appreciable. Besides, the assunption that the
horizontal elenent deforms to a straisght line, and not a
curve, becomes less likely to hold. Hence, this method
can not be used for tests at such strains.

It may also be added that the results obtained with the
apraratas within the frequency range, 20 to 500 c.n.s., do

"

not shoxy any "dispersion resonances" [95] of the type very
often experienced using the Fitzgerald - Ferry apparatus
(see fiv 5.40, for example,. Perhaps this is due to the

fact thas the frequency range covered is low. However, the
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apparatus developed can be readily employed in checking on
this still uncertain phenosenon. It should then be possible
to provide a conclusive evidence as to whether this observa-
tion is due to a fault in the Fitzgerald -~ Ferry apparatus,
or is a characteristic peculiar to some viscoelastic

materials.

5.8, Concludine remarks

One of the aims of the tests reported in this chapter,
was to choose some viscoelastic materials which could be
used in the subsequent beam tests. “he test results <iven
in section 5.7, show that evoseal and P.V.U. have widely
differing properties. Thus, while evoseal has low shear
modulus and relatively high loss factor, F.V.C. has fairly
high modulus and moderately low loss factor. The properties
of hycadamp are close to those of P.V.C., while mulseal has
properties similar to those of evoseal. P.V.C. and evoseal
were, therefore, chosen as the viscoelastic materials to
be enployed in the experimental check on the theory on
sandwich beams.

Another aim of this chapter.was to study the dynamic
properties of viscoelastic materials when subjected to
harqnonic excitation. The experimental results have confirmed
that at any given strain amplitude and freduency, their
stress - strain loop is practically elliptical. But the

results also show that the material properties depend on the
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strain amplitude (as well as on frequency and temperature).
The dependence of their preperties on the strain means that
the viscoelastic materials are basically non-linear. It
follows, therefore, that the degree of non-linearity
exhibited by the materials tested is not strong enough to
cause any appreciable distortion of the elliptical stressﬁ?
strain loop. |

In the light of this, these materials will, in the
subsequent work, be treated as exhibiting an elliptical
stress - strain law at any ;iven strain amplitude, but alsox
having properties which are dependent on the strain - , %3,
amplitude. If this is done, the functions, LI; and ij] ’
(of section 2.1) will take the form given in equation 2.1.ii
(for an elliptical stress - strain loop). Also, the material
constants, iﬁ and 7 , of section 2.1, become the in-phase
modulus (Youny's or snear) and the material loss factor (in
extension or in shear), respectively. It was stated in
section %.%.a (equations %.%.iv and %.5.v) that
5 = 33 , and 0. = Y).. These approximations will be
used as exact relations in the rest of the work. Also,
the notations used in chapter 2 for the viscoelastic
material properties:will, froa now on, ve replaced with the
proper notations introduced in this chapter, thus

’

i G c ; o} . .
B., G (of chapter 2) becone ]l, Gl
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CHAPTER®H

SOLUTION Oy THE DIFFERENTIAL BGUATLIONS

Introduction

The differential equations derived in chapter 2 hold
for any symmetrical multi-layer peam subjected to either
free or forced vibration. In this chapter, the solution
of the ejuations for forced vibration will be considered.
To keep the analysis clear and simple, only three-layer
and five-layer beams are treated in detail. Extension of
the solution to "higher order" beams will be shown to
involve no basic chanze in the metnod.

Three important conclusions arrived at in chapter 5
are relevant in the present treatment and are repeated
here for emphasis:

(a) The viscoelastic stress-strain 1oopﬁunder harmonic
eéxcitation is an ellipse.
(b) The shear modulus (and hence, the Young's modulus)
of the viscoelastic material is a function of the strain
amplitude (as well as of frequency and temperature).
(c) The rate of change of the shear modulus with the
strain amplitude is small for many viscoelastic materials,
certainly for those investisated.

Bom (b), it follows that the coefficlents of the

‘differential equations are all functions o the straln
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anrlitude. The equations are therefore basically non-
linear. (c), however, susgtests that this non-linearity can

be treated as small; that is, as bqvinz second order effects.
If this is vmermissible, a first approximate solution could

be sought assuming tnat the coefficients are strain- indepen-
dent. This solution can then be used as a basis for obtain-
ing impro red solutions. It is intended to show first how

the equations can be sclved for the linear case. The modi-
fiation of the solutions to deal with strain-dependence
will be left to a later stage in tne analysis. Finally,
conclusion (3) above, apart from specifying the viscoelastic
stress-strain law, also implies that inspite of tiae slight
non-linearity in the viscoelastic material, the response of
the beam, under sinusoidal excitation, 1is also sinusoidal

and of the same frequency.

4.1 Three-layer beamn equations with strain-independent

coefficients.

On the assumption of strain-independent coefficients,
the equations 2.2.x«<v and 2.2.xxx, for the three-layer

bean+become

o'y . 33 ) 1 aa azy .
BI _§§+* N, 5#% ] axz{}p%} Fm g = p(X,t)eeaceatbali
B % %( WHa ) - nbctl(Pr) = bGP . 4.1.11

ox3

If the forcinsg function is assumed to be a sinusoidal

function time, of frequency wh, thus
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p(x,t) = p(x) cos Wb eeev.... ee dalliil
then from the discussion above, the displacement y, and the

shear, ¢, take the forms,

(1]

y U, CoS wt + ¥ 8in whb ...c.cedbolaiv,

@": XOI COS U-"t + Yol SinU)Jt -.....4-1.V

where u,, ¥, Xes 4 And Ya are functions of x.

4.1.a- The /J-functions

with the assumed form of y and ¢1, it 1s now possible
to determine the L/J—fUIICtiODS. fo illustrate how this can
be done, consider L{J{¢, ). This is readily obtained from
Jtne relation tH/($) = + JEE= g &beinﬁ; the maximum
value of Cf), (see equation 2.1.ii). However, it is beneficial
to obtain it from first principles. The shear deformation,

¢, , in the viscoelastic material is, from equation 4.1.v,

”~
¢4= Xot co. wt + Yoy sinwt = (@cos (wt - A ) where
evidently, Xo1 = @, cosAs
A -.....'+’.l..\"i
and Yoy = @ sinds

Since the resultineg shear stress, 7;, leads ¢, by the loss
ang‘leg (section %.1l.a), it has tne fornm
T = '&cos (wt + 8 —As) ceeeeot lavii
Wwhen expanded, this zives
T = ’i’,(cosg coshks + sind sinks ) cos wt
- 'E',(sing coshs - cosd sinhks ) Sin wh e..... 4. l.viii.

But from the definition of the shear modulus o viscoelastic



materials (equations 3.l.iv and v)

'&coscs' = Gf(a. and "t\,sing = G”a: = "l,GZ& .

Usins these, and equations 4.1.vi in equation 4.1.viii,
the following expression results:

T = \r,{(XM cos wt r Yo sin wt) + (Y cos wt - Ao Sin wt)

....... 4.1.1ix,
which 1s clearly of the form

T = u.id). + 'LL)J(CP. )},whence

L1U( ¢.) = Yo COS Wb = Xot Sin W6 «eeeeens e bilexea.
The other L)U— functions can be obtained in a similar

manner; and are given below.

e dz ’ dz ’ W
u—-‘F’ = 7 E, A,-{%‘{E‘;’f cos wt - dx;“ 5in art}
+’]'E,'A. g' { %—}-Y{ﬂ cos wt - g—i—” sin wt} eeeddilox.b.
z_, 2,
Ll—lml = ']‘E, I,..{—d%{—:—’“ cos wt - :é;l" sin wt}
+1ID Im{dY"' cos Wt -g—é‘lsin a’t} cesdblloxeC.
WS H (D) = 'bG:{Y,, cos wh - Xe sin wt} ....4.1.x.d.

where the distinction between shear anl extensional loss
factors has been dronped i.e. ', = 72. =" .

It is noted that all tne LYJ-functions aprear in the
differential equations with t.ae common factor ", » the loss
factor of the viscoelastic material. On account of this,
they are called tne dampins terms of the equations.

(when ",= O, tiese terms disaprear from the equations, and
the viscoelastic stress-strain law reduces to that of an

elastic loss-less material). The dampiny terms which
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contain the dynamic Yommcg;'s modulus E: , arise from the
extensional deformation in the viscoelastic material, and
are therefore refered to as the "extensional damping terms”.
Similarly those containing the dynamic shear modulus G ’

are called the "shear damping terms".

4.1.b Simplification of the e juations

Equations 4.1.iv, 4.1l.v, and &4.1.x can now be put

into eacuations 4.l1.1i and 4.1.ii to obtain the equations
4 , 4 -1
:fx% cos wt + a—dxlr" sin wt} v I {d Xa dXY“

B I,‘.{%X—l" cos wt - ﬁ' sin wt§

3
+ 7‘E:L.,{ﬁlx—-}’ cos wt - %},—("‘ sin wt}

- mw-{u’o cos wt + V. sin a"t} = p(x) cos wt....4.1.xi,

CcOS ust + sin w’b}

an

d} Vo " Xot d.z Yq

P{due cos wt + —== sin wt}f- Q“'{dxl cos Wt + ——3"sin u"t}

&’
v M. E, A 8' (dX;’ cos wt -

d* - ~? .
+ N B A 7 dxp cos wh -~ —=F° sin u"t) - ’)‘b’u.(Ye.cos wt- Xasin wt)

= b&.’(Xoa cos wt + Yo sin w-t) ceeensen 4.1 .xii.
Fauations 4.1.x1 and 4.1.xii must hold true 2t any time t.
The coefficients of sin ¢t and cos wt must therefore

seperately vanish. This results in the four equations
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CLq. d,3X ¢ d‘".' / ds
- mwu, = p(x)
dv o Ay . T 'S
BT ax+ " N, dx3M—TI«E‘ Lo ad—;' = ',. o ne dx3 l
- rﬂa}zv' = 0
l d-SU.o ¥ d'zXas E, d_svo' R, d'zY" eeool.xiii

3-— + Q}la;c—{ + 7,| E, A, 3 -_dx" i-q‘E' A,g a'—xz
- "],bG. Tor - bG. Xoy = ©

Cd 2y 3 R,
B —-d:‘,’ v @..——;-d ~ 1Bl A g——-—i{‘l - 7}|E,’A.-r81- ;&c’,‘“
+ 'LbG' X°| —— b\l', Yog = 0 \J

The above equations can be put into a dimensionless form

by introducing the dimensionless variables

= S - W = = Gol.xiv
. & 2 @ - - ,

U.,—-i Yy Vi 1 ;§ L Tt .

and simplifyinsg to obtaln

3
un.f- X,D"’v, + & D‘X,, + ‘(D’Y,, - pu, = ép(zg) ..(a)

- Y‘D’u, r Dty - YD‘X,. + u,D3 -Bve = © «."b)
3 e skl oV
UD%, v §T'v v DX, ¢ OTfYe = UXet =0T = o0 ..(C)
- 8D%, + UMD, - EDKer Dy r GXy= VY = 0 ..(d)
where
i 204 / )
d = I_q__ . = m(&"l _ E|I" B P
BT ’B' 1 ’Yl Lﬁ— ’/A’—Q‘l—l—’ +.1l.xvi

Si- MEA b Mzz‘.pcci; . o - kDS

and thz operator notation D = ag has been employed. It
is convenient to express the righthand sides of equations

4.1.xvi in terms of the dimensionless ratios,

= . =£ . _(_-; . B . R
i h, P, hy, ° Flz e—i\; (=32 )3 D'_Pz Hal.xvii
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Thus -
& = 6 + 6H* + eH® ,
= 8 ¢ 129 ¢ 6H® + en®
B, - 48mAp* (2 + D,H) {I,’f‘g'
‘' 8 + 12H + BH* + ell{gk, t
Y, - n.eH’ *
‘T 8+ 12H + GHZ + eH® ﬂ
5‘4:‘- J'—e-H— -----...4.1.'{Viii~
4 + eH
-4 r 4 + eHz |
- 4 + eH* '
_ _8ps
v' T 4 + eH=®
_  8171pt=z
% = R
£ =%

5 is the frequency of excitation in cycles per

second; Aand g, is the ~sravitational const-nt of acceleration.
To give an order of magnitude to these coefficients,

consider a symmnetrical three-layer beam (beam L1 for short)

20 inches long. The frequency of the exciting force is

such that B = 10, and G,= 1,000 1b/in% The other material

constants and dimensions are:

E, = 10'1b/sq. in.

f = 0.05 1b/cu. in.3 f,= 0.1 1b/cu. in..

hy = 0.1 in. 4 R,= 0.2 in.

-5

Then, from equations #.l.xviii, the coefficients can be

evaluated as:
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XK= 0.29 3 B,= 10.00 3 Y, = 15 x 10™¢

& = 8 x 10-6 s M= 3,00 5 V= 4,00 3 Gi= 2.67

It may be observed that¥ and S - the coefficients of the
extensional damping terms - are much smaller than the
other coefficlents; and in particular, are neglisible com-
pared with g,y the coefficient of the shear damring term.
The relartive importance of these terms will be examined in
greater detail in section 4.2.f.

The coeffickents ), and B, will be referred to as the
"shear parameter"” and the "frequency factor" respectively.
Their importance in the design study of multi-layer sand-
wich beams will become clear in cha: ter 0.

BEquations 4.l.xv can now be conpared with those
obtained by Mead for a symmetrical three-layer sandwich
Plate [52, 65]. When his equations are reduced to the case
of a sandwich beam, neslecting the lateral inertia terms;
they become identical with the above equations with the
extensional terms neglected.

Also, when the equations of Yu [55, 78] are reduced
to the case of a one-dimensional uniaxially stressed
viscoelastic sandwich beam, and tne lateral inertia terms

are ne<lected; they azree with the above equations with

only a slight difference in the viscoelastic extensional
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terms. The slight difference is due to the difference in
the methods of obtainins the equations. The equations for
shear deformation were obtained in chapter 2 by assuming
that the shear in the viscoelastic material is the shear
at the central axis of the layer. Yu, however, obtains
his equations by applyin+s the variational equations of

mnotion.

4.2. Solution of the linear equations by finite difference

approximations - 3-lavyer beam.

Equations 4.1.xv form a set of simultaneous ordinary
differential euations, with constant coefficients and of
the twelfth order. It is thus theoretically possible to
obtain a closed solution by any of the classical methods
available in standard texts on differentizl eauastions
(see, for instance, [7?] Y. In practice, such a solution
would be cumbersome and virtually intractable. Besides,
it would not be p.ssible to n10odify it to apnly to the case
where the coefficients of the equations are strain-dependent.
A numerical method of solution has thus been chosen.

Apart from the relative ease with which solutions can be
obtained using the fast Atlas digital computer évailable,

the method has the special advantage of being readily

adaptable to the 'non-linear' case.
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It m17 be noted that evi1ations +.l.vv reniire 12
boundar:s conditions fa their solutinn. They are, however,
not solvei in their rresent form. bqunations 4.l.xv.c, 2nd d
are differentinted with respect to € (to et 21l the enuations

into the samne honozedbus form), so that thevy now becone

Drus v v D% r DX, v v Do ~ gu. = T;%p(fg).......(a)?
~yD*u, r D, - vD%Ky r %D - Bw = O .......(b)
et 21
whhu, + D% ¢ (D* = %D)da + (&0 - 0D)Yw = O....(c)
S, o ouD' = (8D = @D ) e v (DP = uD)Te = o....(u)_J

rhese ejuations now form a set of fourteentn order emations
reuiring fourteen boundary conditions. <the tuvo extra
boundnary conditions are readily obtaines by aprlving

e systea (pre-

o

equations 4.l.xv.c and 3 to any point in &
ferably to either boundary,.

+elea. PMinite-=difference eJuations

For each dependent variable, tne nizhest order

derivative is split into 3 ser of first order differential

by

eu1tions 1s shoxn below

Us Vo _éoi _Y_‘oq
- o w & to_)_ -il

&
R
]
©
&
i
o
g

TTzzDu, Tr3= D
and tne set g = DT 5 L= 2y 5,000l

3 _ n¥
where T\"z = Dgxg' , M = D Ya N Trt4 = D+Ua 3 TrlS = DVa
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The beam is now divided into a convenient number of equal
steps, the step-lensth being h. If T denotes the value of
m. at a point distant sh from the point € = O, then the
differential equatioqs 4.2.1 are exactly equivalent to the
following set of 18 simulbta2neous equations.

Tl = Do, 775 = Dv§, M = DXi., TS = DY ..(a) - (&)

TTLS+4»= DTrf'- 9 ‘: = 2, 5,---0.11 ...(e) - (n)
TS + 8T ¢ TTh + 8T8 —VTT, -6 =0 ...(p)
§rs . . . s s Y-S
- JT(Z + 7 —S(Trm, +‘H‘TT|5 + 077T4- —V,Trs = O ..(q)

s s s s 3 ,23
g + Y, Tar v Thy v 4Ths - BUs = Zp(ff) ..(r)
~Y T r o Tl =Y, ¢ e = BW =0 «oue.(t)
At this stacge, the first order eguations (+.2.iii (a) - (n))
are transformed by replacing the derivatives by finite-
difference approximations.
The finite-difference equation employed is that due

originally to Adams [80, 8/] and is of the form
Bepys P PR Sz o
2(Dy-+ Dy") = (@+ 75 55 " I I A A S~ . & 4
where the operator«Sis defined in the relation
(S-'ys-‘/z= y° - A= B

and y represents any of the dependent variables.

Equation 4.2.iv is trun:oted after the first term to yield

the ap;roximation*

1

%(D'ys 4—Dys-')=ys-7s- cerasesnsedti2.vVi

*Phis relation would be exact if the function y was a
parabola. The aporoximation is thus eguivalent to fitting

1 parabola within the interval h.
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This is a "second-order" approximation with a truncation
error of the order K.

With this approximation, equations 4.2.iii (a) - (n)
are changed into the following recurrence relations
uo - Bre - uS B
- B - W BT L)

Xo = %ﬂf = X570 %ﬂ?"’ ..... ceeas(c) hl20vii
PR | A 1N )

M8 - Snf,= 7' BRS Li- 2,5,...100 (o) - ()

The above relations #.2.vii.(a) - (n) alons with ecuatiosns
4.2.iii.(p), (a), (r), (t) form the set of 18 eguntions
which now replace the differential equatiocns.

The recurrence relations relate the variables at any
point s with those at the preceiins point s-1. Hence if
211l the variables are known qtg==(h their values at each
successive point can be evaluated. However, this is a
"boundary value" problen, and tne variables are not all
known at any one boundary. A specisl techn}que is thus
necessary in the above step-by-step process.

4.2.b Boundary condition control -

The followin< method* [Bi] w1s used to introduce the
correch boandnry conditions.
Let the variables be denoted by w at one boundary

(£ = 0) and % at the othor boundary (¢ = nh = 1); that is,

*This method was suggested by Dr. P. Marcal of Imperial
College, London.
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o
W, = W, VW = Uz, Xa = ug, Y, = u,
. . ceeese . 2.viiig
Tr:_ = Wir3 . L= 2,5,.0-----.--...15

U? Yy o WP =Y Xg = % o Y£ R
.......4.2.viii.b

ML = Tz 50 = 253,.4.15

n(= %) being the number of steps. Then, in their most
teneral form, the boundary conditions will comprise P
equntions of the form

gj(uQ = Aj at € = 0, s =0 .......4.2.ix.8;and Q equations

of the form

fr (v = Beotg=1, s = n cesesest.2.ix.b where

= 1,2, ...P; 0=1,2,...Q; i=1,2,...(F +Q), and(P + Q)
is the order of tne differentisal equatigns (14,in this cnse).
fy and gj
(non-zero) values are sssuned for Q of the u;. Let these

are functions of y; and u;respéctively. Arbitrary

be u_, k = m,n,....{(to Q values). With these, the other u;
can be calculated using the boundary conditibns gj(ua = Aj’
and the differential equations 4.2.iii p,q,r,t. Since these
are not necessarily the correct values, they will be denoted
by u. A set of uivalues are now available with wnich the
step-wise integration process indicated in section 4.2.a can
be advanced until the other boundary §==1.is reached,
vielding a set of variables y/at this point. Except by

extrene chance the y/ will not satisfy the boundary conditions

f‘e(%) = B£0 Let ft(Y;) = Bz...-.."’r.2.x.
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Each of the Q@ assumed ukxis now increnced partially in turn

9fe

by 3 small amount snd the guantities 33; are calculated.
Finally the corrections ,Auk for the initially assumed uk
are calculated from the Q simultaneous equations
%&-Au’k = By - Bl......4.2.xi, &= 1,2, ...Q. Better

%k
assumptions for ul'{ are thus ui{ »Au’k. These are now used
1S starting values and the ~bove process is repeated until
the boundary conditions fe= Bgare satisfied to a desired
ACCUTACYT .

In theory, for linear equations, the correct initial
values uwiare arrived at by carrying out the above process
only once. In pr~ctice, however, it may be necessary to
repeat the process a few times Lf tne initisll; assumed
values are very poor. For most linear csases, convergence
is very rarid and the boandary conditions are adejuately

satisfied after about two cycles.

4.2.c Systems with displacement forcing

Forcing function

To illustrate how the above general method can be
applied to a specific problem, 2 bensmn with "displacement
forcing" is considered. For such a beam, the supports are
subjected to a sinusoidal motion of constant anplitude given
by a = a, cos wt cerese He2oxid
The forcing function p(x) is e=sily deduced from ejuations

4.1.xi to be midd,where y = u,coswt + Vv, sinwt 1s,in this case,
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the displacement of any point on the beam relative to tne
supports. Hquation 4.7.i.a now becoues

D4uo + Y;Dq’\ro + M]D3Xo1 + Y‘DSYM - ﬁlu,, = P'ao LI -....4.2-Xii-a.

as
2

Boundary conditions

where g, = The rest of eguations 4.2.1i remain unchanzed.

For a cantilever beam, with the end €= O so clamped
s to prevent any shear in the viscoelastic material at
that end, the appropriate boundary conditions are
(a) Zero slope, no relative displacement, and no shear
deformation at £= O.
(b) No longitudinal force in ench layer at €= 1. Also the
bendins moment and its spatial rate of change must vanish
at this point.
Using the notations of 4.2.viii, tne above conditions can
be put in the form given below.
Ag §= 0; u;= 0,¢ =1,2,...6 ....(a) - (£)
At €= 1, Fie= 0s § = 1,2,...4 ceeo(3) = (3) o h.o.xiid
Vs FYY, tAV F YV, = O-es .oCk) (a)-(1.
“YYs t Ve —XV. FX Y, = Oc....(1)
Two otner boundary equations are reguired, and these are
obtained by applsing eauntions 4.1.vv 2t the point §= 0.
This gives
R A """(m)} o ub.2.xiii.(a) - (n)
~S8us * pug = Suu F Uz = 0 ....(n)

If the beanm is simply supported at both ends suca that
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tnere is no axial restraint, and the ends are free from
longitudinal stress, then the bending moment and the relative

displacenent vanish at both ends, siving rise to the

relations
j\mt 5:: O; u‘ = O, uz= O, u‘“b = O, [:: 1,2,--4 ..4.2-Xiv-a—f
At §= 15 %= 0, %= 0, Fue = 0, {= 1,72,..4 et 2.xiveag=]

As abovz, two other equations are obtained by applyin<
equations 4.l.xv at the boundary'§= 0, ziving
g F 8w, v oy F due - yus —gquy = O ..(m)
A 2exivea-n.
‘8-'413 £ il sﬂlu F oz fOuy -V = 0..(n)
The boundary ejuacions for beans with other end con-
ditions c3an be readily obtained following the lines

illustrated =above.

Solution of the equations

Once the boundsary equations are known, the process

of solution sketchel above in sections 4.2.3 1nd b can be
applied. ©Still using the cantilever and tne simply suprorted
beans as illustrative cases, it is noted that for each case,
six boundary equations are given at §= 1. =Hence any six

of the unknown gjuantities (u) at §= 0 are assumed. VWith
these tne remaining unknown ujare calculated from the boun-
dary equntions and the differential equations. 4 set of 18
starting values are now 3vailable at §= O. Corresponding

values at each successive point are then calculated from the
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equations 4;2.vii (a) - (n), #.2.xii.a, and &4.2.i (b) - (4d)-
This is very conveniently done by matrix inversion, thes main
m13trix of the equations being the 18 x 18 matrix of ejuation
4.2.xv (see next page). when tne boundary §= 1 is reached,
tne necessary corrections to tne initially assumed values
are calculated in the manner indicated in section #.2.b.
The above cycle of ocerations is tnen revcated asin~g the
corrected values s startinsg values. The correct solutions
are those which satisfy the boundary conditions at §= 1.

A prosramme was written for tnhe London University Atlas
digital computer for the above process. The boundary
equations at §= 1 were recarded 7s satisfied when the right-
hand sides were less than 10~ . In most cases this involved
just one or two cycles.

4.,2.4 Effect of the ster-lensth n

The accursacy of the results obtained with tinis method
would noturally depend on the step-lensth, n, used in the
step-wise integration process. Table 4.3Tgives tne solutions
obtained for the beam L1 (of section 4.1.t) for various step-
lénzths. The besm is solved as a cantilever with displace-
ment forcinm, snd the forcing frequency is such that B= 10.
The percentage error relative to the "corrected" value is

given underneath each fisure. The "corrected" values

sre obtained by the method of interpolation sugiested by
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Eqguation 4.2-xv — Main matrx for step-wise

integration — inear case.




Ue Vo qu _‘-é:;‘z
No.of steps a a, 5 =
. -5.013465 | 5.500559 |4.586566 | 0.23%2%60
(5.77) (16.0) (8.60) (-36.2)
~4.852005 | 3.129886 | 4.054024 | 0.555027
10
(1.15) (3.76) (2.70) | (-8.08)
- 4.810786 | 3.044429 | 3.973944 | 0.357310
20
(0.28) (0.93) (O.67) (-1.91)
- 4.800445 | 5.02%488 | 3.954126 | 0.562682
40
(0.07) (0.23%) (0.17) (=0.49)
"CORRECTED"
—-4.796998 | 3.016508 | 3.947520 | 0.564475
VALUE
TABLE &4.a.
Displacement and Shear Components at § = 1 for

Cantilever BReam L1l.
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Richardson [82,83].

The table snows that ss tne number of steps is
increased (i.e. the step-lenzsth is decreased) the accuracy
of the solution increanses. This is a9 consejuence of the fact
that the error in the finite-difference sapproximation
pecomes less and less as the step-lensth decreases. There
is, however, a practical limit to the number of steps.

Apart from the fact that the computation timne increases with
the number of steps; when the step-lensth becomes very small,
there is the danser that roundin-s-off errors and other ran-
dom errors may bulld up to substantial proportions, thereby
nullifying the accuracy sousht [€4J.

Trventy to forty steps were found sufficiently accurate
for most of the computations amade. No attemﬁt was made to
correct for the hisgher order terms »f the finite difference
expressions #.2.iv which were dropced in tnie approximation
4.2.v. The solutions obtained provez sufriciently accurate;

.and when better accuracy was desired, this yas 2acnieved by
increasins the number of steps ard by interpolatinsn.

4.2.e. Effect of the finite-difference npproximation.

To check how the solutions were affected by the finite-
difference approximation used, another finite-difference

formula of a higher order truncation error yas used, viz

51

L, s _ YS—Z) = ?(Dys—2+ 4Dy 4+ Dys) ceselba2ex®VL
>
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with an error of tne order i . "nis formula Tsiven by
Crandall [84] is simply the application of Simpson's rule
to the intecration of differential ecuations. Unlike the
previous one, it connects values 2t % successive points
(instead of two). It is thus necessary bto ctart it off
usinz-the finite-difference approximation of equation
4.2.v. Once this is done, the step-wise integration
process can be carried out as above.

Table 4.b shows the solutions obtalned for beam LI
usine the above finite-difference formula and various
step-lengths. The displacement and shear components at
5 = 1 are given as-well as their percentage differences
relative to the "corrected" values.

Compared with the results of table 4.a, it is seen
that for a given number of steps, the higher order differe-
nce formula sives more accurate results in the displacements
but less accurate results in the shear components. As the
number of steps increases, both solutions agree more closely.
The "corrected" values (which are meant to be better
approximations to the limiting case in which the number of
steps becomes infinitely large) are seen to azree very well.
It is observed, however, that the agreeanent in Yo1 /a0 is not
very good. This is most likely due %o the fact that for
small values, errors (other than those due 5o the truncation

of the difference equations) become of comparable



No. of steps Yo % Los Y.
8o 8 Ao 3o
= 4.796226 | 3.118992 | 5.976619 | 1.223462
10
(-0.012) (3.31) (0.68) (225.0)
5 - 4795455 | 3.0%2501 | 5.964226 | 0.5013535
0
(-0.028) (0.48) (0.37) (23.41)
40 - 4.796696 | 5.018711 | 3.950589 | 0.385528
(-C.002) (0.03) (0.02) (2.09)
"CORRECTED"
- 4.796779 | 5.017805 | 3.949679 | 0.375675
VALUE
TABLE 4.b.
Displacement and Shear Components at € = 1 for

Cantilever Beam 1Ll.

219

"Higher order™ Difference Formula.
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magnitude and nccurate results are difficult to obtain.

The above consideration shows that there.is very little
to sugwest the second difference-~formula in preference to
the first whicdi, in practice, is much easier to handle.

+.2.f. Txtensional dampine effects

krom ejuations 4.l.xviii, the extensional d-aping
coefficients ¥, and &, are seen to depend on tne ratios H
anl 7€ (orMg,). It has slready been vointed nut that the
coefficients‘ﬁ,S.ando;control the dompin<g in the system.
The relative contributlon ofyﬁumi&to the overall daaping
would therefore depend on their mhgnitude compared with g,
which 2s well as depending on Hand 19.,, also varies with.ﬁ .
As H increases, Y, nnd 3, increase, while ¢  decreases. Also 0] 1is
proportionnl to the square of f. It follows therefore that
the extensional daamping terms are nore siznificant in short
beams rather tnan long ones, and in beams with relatively
thick snd/oy stiff viscoelastic layers.

Within frejuency anl temperature ronaes Qf practical
interest, the inphase shear modulus of most viscoelastic
materials lie between lCF and lOzlb/inzqul, ‘Hence for most

-2
engineering materials 74, is not likely to exceei 10 .

Tables 4.c & 4.d sive the solutions of the 3%-layer
differential eguntions with ani without extensional damping,

for various vnlues of g . Table 4.c is for a2 relatively

>
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Forcing Beam with Beam without
Extensional Damping Extensional Damping
g =G| Frequency ~
E, T = Y b T = da @-
C.DP.S. a a, 8, a as 8e
_5 7.21215 | 15.25505 7.212%5 | 15.25354
10 26.7
(0.003%) (0.003)
a 6.88705% 4.,78205 ©.88746 4.78244
10 ©66.0
(0.006) (0.008)
=3 24 .16354.1 1.25914 | 24-.16946 1.25945
10 95.2
(0.025) (0.024.)
TABLE 4.c.

5-layer Beam with and without Extensional Damping.

Beam Dimensions and Material Properties:

he

R
B

1l

0.1 in.

0.05%5 1b/cu.in.
107 1b/sq.in.

»
]

hy = 0.1 in. 3 4 =

]..-O

7=

10.0 in.

£ = 0.1 1b/cu.in. ;

b



Forcing Beam with Beam without
o Extensional Damping| Extensional Damping
gf’ﬁ Frequency
2
- Ue él . Ua '
C op L3 S . Ta - 3. a, Ta - ao %ﬂ
- 10.61996 [ 16.%7173 | 10.62159 | 16.37397
10 55%6.0
(0.014) (0.014)
s 7.271860 10.505%75 | 7.29077 10.55208
10 656.0 ,
(0.206) (0.27)
3 4.249538 | 5.52950 | 4.27634% | 5.55709
10 1248.0
(0.64) (0.79)
2 5.05785 1.04092 5.08%29 1.04997
10 2980.0
(0.21) (0.87)
TABLE 4.4.

3-layer Beam with and without DIxtensionnl Damping.

Beam Dimensions and ilaterial Properties:

h, = 0.4 in. h,= 0.1 in. 3 = 2.0 in.
g = 0.05% lb/cu.in. 3 £ = 0.1 1b/cu.in. H
E, = 10" 1b/sq.in. 3 7 = 1.9
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lone beam, while table 4.4 is for =2 shorﬁ’beam witn 2 thick

W

viscoelastic layer. The fisures given are the absolute
displacemen~ 7mplitude ratios (Ta) and the shear amplitude
ratios ( g&) at the free end of a cantilever beaa with dis-
placement forcing at the root. The percentage error in
nezglecting extensional domping is given below the fisures
where relevant. The forcing frequency in each case 1s so
cbbsen as to be close to tae first natural frequenc; of the
bean.

It is seen from the tables that the error in neglecting
extensional damping increases with g, . This error is,

however, still very swall even at high values of 3, and for

most practicnal c¢eses can be regarded s insignificant.

4.5, Solution of the linesar differential eguations by

Chebyshev series

As a3 check on the accuracy of the solutions obtained
b7 the finite-difference method of section &4.2. other methods
of solution were employed. One such metanod is by expansion
in Chebyshev polynomials. The procedure adopted is that due
to Clenshaw [85,86] .

It is assumed that each variable and its derivatives

can be expressed in infinite Chebyshev series -in the form
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ob
- 1 -
F o= 37, + ZZrTr(g)
=1
oo
e b Zree
: ; T
LI > (- -J .
e I Zzlrfr:(g)
=1

where ¥ and ZI_are "dummy variables'. 4, represents the

coefficients Ar’ Br’ Cr’ or Dr according as F takes the
values u, , V, , Xa2nd Y, respectively. In equation &4.%.1,
following the notation of lLanczes [86], T;(g) represen s
the Chebyshev polynomial of order r for the ran-e §= O to 1.

The coefficients of the polynomials obey the recurrence

relations
4rﬁg = A;—1 - A;+1
L‘-rA” = t _ "

r Ar—1 Ar+1

, O Ll3.iia
4rA = A - A

r -1 r+1

. ’

4rAr = by Ar+1

with similar expressions for the Br-coefficients, and

4rC; N o

-t r+1
4 ] PR
L‘"I‘C’r = Cr-'— Cr+’ 'ooo-.q‘.?)'ollb
. _ ’, ]
ArCr = Cru’ Cr+1

with similar expressions for the Dr—cocfficients. Also
the sssumed series of ejuations 4.%.1 must satisfy the
differential equations 4.2.i. This gives rise to the

following relations:
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1 4 w ur 1 .
Ar + Y‘Br +o(,CI_ + Y'Dr = a_ +PBA

r r

L1

-y aY + BY ~yC¥ +aD] =pB

ez T r r PSS S Tl
P+ 8B + C¥ + &D" = YO, + oD ’

r B o r r (et S

W 14 n oo ’ '
—S.Ar FABL - S,Cr + O = -0 CL v YD, J
where a, is the r-th coefficient of the expansion in
Chebyshev series of the frcing function. For a2 systen with
"displacement forcing",

:lr 2ﬁla°, for r = O « 8 » ® 68 80 405-1\’
0 for r # 0O

[t

It

Equations #4.%.1i must also satisfy the boundary conditions
at §= 0 and §= 1.
Using the relations
(0) = (-1)F and Tg(1) =1 ..... ee. B30,
the boundary eguations 4.2.xiii for a cantilever beamn with

displacement forcing give rise to the eguations

hAe = A, A, ="K ,B ="B ,B =" h

G ="C , b ="D ,Ay=""A", B = B

c. = ~¢ , v =D

A" + Y BY +&C, +¥D; = TA+ Y B+ o, "C" F D" ARy
—YAY + By-YCo+ %D = B K - A

WAL v SEY ¢ Ol ok 8D = A+ 8B TTCM 4 §TTD

5K e B - BCy + DY = =& TA"e p TEM- 8O +=D"

where tho notations 0

tTAS = 22-1)’?"1&? , TTAS = -2 A5, etc. ..uB3wd

Y= 1 T=1
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have been employed. ©Similarly the equations in the case
of a simply-supvorted beam are easily obtained from
ejquations 4.2.xiv.

To solve the above eguations for tne coefficients, the

infinite series are curtailed after a suitable number of

S -5 <] S
= . T A = = = =
terms, say at r N nus r B Cr Dr O for r >N.

vhe rest of the §olution is then carried out in the following
sequence:

(a) Assumne trisl values for Ag, B§, Cﬁ, and D§ such that
they satisfy the differential equations i.e. equations
AL.5.3i11.

(b) Use the recurrence relations 4.5.1i1 and the equations

4.7.11i to obta:in

1’4 L) " ]

o1 Ayers Anere fwei, g
W i) 1 1

B 1» Byo1s Byops Bu-ps Bueoa

I i
» Cp1g Ow-1 Cwe

L " (

Dy1r Dxovs Dyons Dyon

The step for r =.N-1 is thus coarlete.
(¢) Continue cperation (b) for r = -2, N=5, etc. until

the step r = O ls reached.

(d) Having obtained
" n " , v

Ao * Ao , Aa Y Ao 3 B; ’ BZ’ N B: N _B;
w " ' m "

Ca v Co ’ Co H Do , Do D;
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from the recurrence relations, determine A,, B,, C , Do
this timne usinj four of the boundary ejaations 4.3.v. This
leaves the four equations &.%.iii at r = 0 and . {O * other
boundary equations unsatisfied.

(e) Go back to step (a), and assume  new set of values
for the coefficients. Then repeat the cycle of operations
to obtain a second set of trial solutions. Continue this
process until . [4 .- such sets of solutions are obtained.

A linear combination of these solutions, so chosen 23s
to satisfy the ldL outstanding enuaticns of step (d4),
gives the correct solution.

It may be pointed out that, owing to the convergence
of the Chebyshev series, the coefficients Ai, Bi, etc.
increase in magnitude ns r decreases. Hence in dealing
with high-order ejuations such as these, it may be nece-
ssary to keep the initially assumed values small, so as to
avoid the lower coefficients becoming exceedin-~ly larze.
This would be disadvantageous (especially in digital
éomputation) gsince the solution sought is a linear combi-
nation of the various solutions and would therefore suffer

from serious rounding-off errors if the individual

Juantities are large numbers.

Once the coefficients have been calculated, the
dis: lacement and shear components (as well 25 their

derivatives) are obtained from equations #.3.i. A table

o the Chebyshev polynominls T: can be found in [86]'
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A programme for calculating the coefficients in the
manner outlined above was written for the Atlas computer.

Tables 4.e and 4.f give the solutions obtained for
a cantilever beam and a simply-supported beam by both
Chebyshev series and the finite-difference method. The
dimensions given above for beam L1 are used in each case.
The Cnebyshev(series expansions were terminated after the
10th term.

Agreement between the two methods of solution is seen

to be good.

4.4, Solution of the differential equations by Fourier

series expansions - 3-layer simply-supported

beam without eXxtensional danmping.

When the extensional damping terms are neglected, the
differential equations 4.l.xv take the form

(D¥= B)uo + 4 D°Xer = 8o,

(D‘* - gl)Vo *‘ Da'fm = 0]

s 2” ....... eaodbbli
lulDuo <+ (D -— V[)Xgﬂ —O’;n’ = O
wDv, + (D = V)Y¥or + OXer = O

for a beam with displacement forcing.
For a simply-supported beam, the variables u,, V% ,

X, and Y. may be assumed to take the forms
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Chebyshev Series Finite-difference
Solution Solution (40 steps)
>at £=1 4789991 -4 .796998
Zat £=1 %.0320%5% 3.016508
2 at £= 3 3.941%05 3.94752
Loas g-1 0. 344629 0.364575
TABLE 4.e

Cantilever Beam Ll. B, = 10
Comparison of solutions by Chebyshev series and by
Finite difference.

Chebyshev Series Finite-difference
Solution Solution (40 steps)

Y op g= & ~0.339883 -0.539758
8o 2 *
.;L: at £ = ;EL. 4524041 4.524703
Lot g1 -7.%0310% -7.31135.
Lt ap g =1 28.92389 28.92982
Qo

TABLE &4.f

Simply-supported Beam Ll. P,= 480
Comparison of solutions by Chebyshev series and by

Finite difference.
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) o0
Up = 2 a, sin k ;0 V., = a_ sin k
° prorilis ng o ° Zﬁn n&
n=1 '&co.‘q'oq'oii.
oQ 00
= I . - 0S ..
nef n=1

where kn = nmw, n= ;,2,... .
It is noted that the assumed functions satisfy the

boundary conditions. a, can 3lso be expanded in an infinite

sine series, thus 8o = ZE b, sin kng S S T s R
where b_ = 28943 . (__l)n} or
. 4 n Kn ) -
o - f2e r Oy1,c G4, iv
2r+1 k ’ sLglgeen L .
2r+1

On substituting in the differential egquations #4.4.i,
the followins alsgebraic equations relating the coefficients

are obtained.

(k% - Blaw Folkba, = Bb,

f\Q =

\ Il ?> naqn O A..‘IQQOL;..L;’.V
3 2 -

Hikpen + (kn MG Daan F 0%y 0

O

3 2
pikpay, o (ky + Vg, - Oa,

Equations 4.4.v are readily solved to obtain the following

expressions:
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6 R
2 3 ,2 ._BL 1 LN
—B:bn (l{ﬂ + )/l){o‘uu‘z(n - (l\n +VI )(kn - KL)}_J‘;(I’;H - Kil)
a =
in k; D
n
a = #lutqﬁlbﬂ_
zn D
n
3 Bl
2R LT L (k; + (k- F)}

a, = e
in D

n

B.

—ﬂtﬁ.bn{q(Kn - I{?)}
a, = n
4n D
n i i e e 4.4 ,.vi

where

3 2 B 2 B z
D, ={gdhkn - (k + vk - ]§2}+<%z(kn - Ei)} .
The above coefficients can now be calculated usins a desk
machine or a digital computer.

Table 4.7 gives the first six non-zero coefficients
of the Fourier series expansion for uw,, V, , %, , and Y,. The
same beam Ll is considered, and the forcing frequency is
such that B.= 40. It can be seen that the rate of converge-
nce is fairly rapid for tne beam consideresl.

Table 4.h gives a comparison of the solubions
obtained by the Fourier series expansions and the finite-
difference method. The close asreement between the two

solutions further checks on the accuracy of the numerical

method.
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v

n a a a
in Zn 3n 84-11

1 |- 3.27708x107" | 4.50604 9 B9 - 2.88659x10'

) 1.29850x10—z l.91479x10—3 -5.49485x10_1-6.18445X10—2

-3 - -
511.17027x10 7 .49050x10 g -5.42252x10”z-4.0SOO7X10 3

2

7 12.28381x107% | 7.92905%x10™° | - 1.49398x107 - 6.00520x10~*

9 6.65768x10-5 1.45185X10-6 - 5.60165X10—3-1.59458x10_4

11 2.46Ol2x10_5 5.6O2O7X10—7 -2.54180X10—3-4.28746X10—s

TABLE 4.g
Beam Ll. ﬁ,= 40 Fourier Series Coefficients.

Fourier series Finite-difference
Solution Solution(40 steps)
o o5 £- 1L ~0.33972 - 0.33986
ao 2 ‘ .2
L oat €= 3% 452439 452493
Stat £-0 7.51844 751264
Ioat g=0| -28.93263 - 28.90142
TABIE 4.h

Simply-suoported Beam Ll. B, = 40
Comparison of solutions by Fourier series and by

FPinite difference.



233

4.5, Solution of the equations takin= account of

strailn-dependence.

It has been pointed out that when the shear modulus Gy
is strain-dependent, each of the coefficients of the
differential equations is strain-dependent. The methods
of solution so far discussed cannot be directly applied in
this case.

It will be assumed, for simplicity of illustration,
that the only coefficients that are significantly affected
by the strain-amplitude dependence of G, are ¥, and 6 . This
is equivalent to assuming that the viscoelastic extensional
terms make very little contribution to the coefficients,
so that any small variations in these teras (due to the
strain-dependence) have neglizible effect.

On this assuaption, the differential equations &4.l.xv
renain valid. To get them into a homnogeneous form,
equations 4.1l.xv (c) and (4) are differentiated with respect
to g, to obtain
WDtk 8,D% + DXy + 8T, = VD Xor = GD Ty = YKo =Gy = 0

%.4.54

- S0t + Dty = 8Ky + VL, + O7DXe = YD Y, + 0K =Y Yoy = O

where (¢ = -g—g‘ , and Y’ = -g—é:j' e ced4l5.idn
It is noted that

dor _ Kb d., dv. _ b dG

dg = '@"‘ dg( 'LU-) ’ and g - "'i": d_g .

A
. 4 . N - s
Since Gy and'me are functions c¢f the strain aoplitude ¢&,
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it follows that

A6 _ ZG' %‘Lﬁ)‘ , and dd']'G')%—‘p':@f_'-Sl) ..... e .5.iid.
, : § Tdg

Both %% and éQ‘G')are obtained from the law of strain-

ae,
amplitude dependence for ") and Gi. To obtain 4%%', it is
A
noted that @ = (X4 + Y2)® | so that
4o Ko DXer & Y°;D;f:' AU S
dg x5 + i}

To solve the equations, an iterative method is
emploved, the namerical method of solution developed in
section 4.2. being used. A convenient shear-strain
distribution is assumed for?;iscoelastic layer. With this,
the coefficients y,, o , ¥’ , and 0 are calculated for
each po&nt on the beam. Using these values of the coeffi-
cients, the differential equations can now be solved by the
finite~difference nethoi. The process of solution is
basically the same as described in gsection %4.2. The only
difference is that the main matrix (fcvr the step-wise
integration process) which now takes the foram 7iven in
equation 4.5.v (see next page) varies from point to point.
The boundary condition control is the sanme. The solution
of the equations will yield a new shear-strain distribution
which w1ll in ¢eneral be different froa that initially
assumed. ith this new shear distribution, , s 0 V' s

and 0’are again calculated for each point, and tae equations
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I ' ’ ' . M + ’ M 1 1
U VS X Yo T T T T T T 47T T T TG T (T (T

1...-5.............
.1...-8............
..1...-8...........
...1..._%.....-....
....1..._%.........
o|lo|lo|efeln ...-g........
olo|eolo|e|el1]e]e ._g.......
.ooo.oo']o'o—gooccon
ol ololalalalalel] ...-g.....
.........1..._8....
clefo|le|ale|elofalel ..._g...
.........-.1...-%..
............1...-9_.
.............1.i..._%
cle Vgl e|oely|-g|e| efe|e]e .Hics,',u-lcg.
oo OV e |T |-V e|e|e]|ele ._5"1 -&ij A
Bloe olol|elo|olo|e|ale|lele|olx|y|1]Y
e |-Blelelolololaloelelelolelalylotl-v]n

(Dots indicate zero

Equat.cn 4.9v

terms )

Main matrix for step-wise
Integration - strain-
depencence cose.
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solved again. This cycle of operations is repeated until
converzence is achieved, that is, two .successive strain
distributions agree to a specified accuracy.

A programme for solving in the above manner the
equations for a beam with displacement forcing was developed
for the Atlas computer*.

It was assumed initially that only y and o were
affected by strain-dependence. This assumption does not,
however, determine the validity of the above method of
solution. Consideration of the strain-dependence of the
other coefficients merely involves introducin-~ further
terms similar to vy, and 0;”in the equations. The iterative
procedure remains valid.

Tables 4.i to 4.f give the solutions obtained by the
above method for various cantilever beams. Solutions
obtained by assuming a constant strain distribution are
also shown alongside for purposes of counparison. The laws
of strain-amplitude dependence used are as embodied in the
srapns of shear modulus G, and loss factor 7, against
strain amplitude for the materials, as <iven in chapter 5.
In the tables,'Ta is the absolute displacement amplitude

ratio at the tip, already defined in section 4.2.f, and

*This and all the other programmes mentioned in this
chapter are available in the Imperial College (iech. Eng.)
prograume library.
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"Strain-depende- ["Constant-strain"|"Constant-strain"
ncé" solution solution solution
FREQ |
Input motion ampliAssumed strain Assumed strain
= 0.00055 in. ampl. = 0.0001 ampl. = 0.001
1.67820] 0.95944 |1.67856 |0.96066 [1.68046 |0.96604
20
(0.02) | (0.13) | (0.15) | (0.78)
. 7.92228] 9.52738 | 7.93556 [9.46961 |7.88784 |9.70440
5
(0.17) | (=0.61)| (-0.43)] (1.86)
7.87429| 9.61608 | 7.900663 [9.57881 (7.80223 |9.74936
57.5
(0.41) (-0.32)[(-0.91) (1.38)
38 7.70183% 9.54664 | 7.75014 |9.53606 [7.59733 |9.639460
(0.69) | (~0.10) [(-1.36) | (0.97)
6.34319| 8.51517 | 6.4012% [ 8.33460 | 6.18676 | 8.32405
40
(0.92) ((0.23) |[(-2.47) | (0.11)
TABLE 4.1

Aluminium - P.V.C. 3-layer beam. Solutions in the region
of the first resonant frequency (37 c.p.s.).

hy= 0.135 in. 3 hp= 0.25 in. 35 £ =20 in. ; T = 27°%

Bz= 1.0 x 10 lb/in* ; £ = 0.1 1b/cu.in. ; P = o0-048 I [in®

for the properties of P.V.C., see figs 3.19 to 5.25.



"Strain-dependence"

"Constant-strain"

Forcing Solution Solution
Frequency Input motion ampl. |Assumed constant-
= 0.00034 in. strain ampl = 10”7
. Us [ _ a )
CePeSe Ta = 2, Ta = 3, .
150 1.51368 9.8163%6 1.50994 | 9.75641
(-0 .25) (-0.61)
4 .23649 53.88405 | 4.07727 | 32.05876
195
(=3.76) | (=2.49)
) 4.79761 39.96995 | 4.70980 | 38.45920
05 .
%.617%8 %1.63785 | 3.09162 | 31.79417
220
(2.21) | (9.50)
1.899048 18.16827 | 1.31650] 18.19771
250
(0.30) (0.16)
TABLE &.J

Steel - P.V.C.

3~layer beamn.

Solutions in the resion

of the second resonant frequency( 206 ¢.p-S) -

hg= 0.187 in. ;

By= 5.0 x 10 bfin's £ = 0.283 1lb/cu.in. ;

For the properties of P.V.C., see figs 5.19 to 3.23.

hy= 0.1%57 in. 5 £ = 15 in. ; T
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26.7 C

= 0048 bin®
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Forcing solution solution

frequency 1.4t motion ampl. |Assumed strain

0.000226 in. | ampl. = 0.0001

"Strain-dependence"| "Constant-strain"

Ua _@( T o= @1

a s 8o a =¥ 8o

3

CePeSe T

2.27396 | 32.50699 | 2.22425] 31.58500

480
(-2.23)} (-2.87)
> 3.75240 | 56.25050 | 3.59180| 53.18631
0
(~4.27) (=5.45)
528 3.77443 | 57.09430 | 5.66527 | 54.76521

(-2.90) (~4.08)

TABLE 4.k
Steel - P.V.C. 3-layer beam. OSolutions in the
the third resonant frequency (527 c.p.S.).
hy= 0.137 in. ; hp= 0.187 in. ; 4 = 15 in. ;
Ba= 3.0 x 107 1b/sq.in. ; £ = 0.283 1b/cu.in.
for the properties of P.V.C., see figs 5.19 to

region of

T = 23.8°C
5 €= 0-04% Ibin’
3.23.
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"Strain-dependence'l "Constant-strain”
Forcing solution solution
frequency Input motion ampl. Assumed strain
= 0.000681 in. ampl. = Q.0QUL
A A
- e = 1 gl _ Ua Q1
C'}J.o Ta - a: ao Ta - an ao
2.06%590 1.82247 2.09594 | 1.95800
25
(L.46) | (7.42)
4.393373 | 5.97061 | 4.39791 | 6.25085
26
(0.10) (4.70)
4.57243 ©.60001 4.52655 | 6.81744
28
(=1.02) | (5.29)
4.38430 6.67925 4.29945 | ©6.85503
40
(-1.27) | (2.33)
2.43571 4.69155 2.57005 | 4.71293
50
(=2.70) | (2.e4)
TABLE 4.1¢

Aluminium - BEvoseal 35-layer beam. ©Solutions in L.:e resion

of the first resonant frequency (37.8 c-ps)

he= 0.057 in. ;3 hg= 0.125 in. 3 4£="1%4.02 in. ; T = 22.1°C

Bp= 1.0 x 107 1b/ir% g = 0.1 1b/cu.in. ; £ = 0.041 1b/in®
z FS

for the properties of Evoseal, see figs 5.31 & 5.52.
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zﬁ, is the shear-strain amplitude at the free end. The
percentage error in the '"constant strain"” solutions
(relative to the "strain-dependence" solutions) is given
undegngath each figure.

In general, the tables show that strain-dependence
nas comparatively little effect on the displacement
amplitude. The error in the solutions which assume a
constant shear-strain distribution would naturally depend
on the actual value of the shear strain assumed. For
example, in table 4.i, it is seen that an assumed constant
shear-strain amplitude of 0.0001 gives a better approxima-
tion to the exact solution than a value of 0.001. Tables
4.3 and 4.k show that the neglimence of strain-dependence
leads to worse results at the higher modes of vibration of
the beam. This is clearly due to the fact that the varia-
tion of the shear strain ¢ along the beam becomes much
zsreater at these modes. .

It has been tacitly assumed that the above method
will always converge to a unique solution neo matter the
nature of the initially assumed strain distribution. The
establishment of an "Existence tneorem" for the method is
evidently a difficult mathematical problem, and is not
attempted here. It is, however, believed that provided
the degree of strain-dependence 13 sufficiently small for

a unique solution to exist, the above method will always
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converge to this solution.

In all the cases in which the method was applied,
a constant shear-strain distribution was initially assumed.
It was found that (for the viscoelastic material properties
available) no m;tter the value of the initially assumed
strain amplitude, the solutions converged to the same final
result. Convergence to an accuracy of better than 0.0l per

cent was usually obtained within three cycles.

4.,0. Application of the solutions.

4.6.a. Resonance curves.

It will now be shown how the solutions developed can
be emploved in predicting the dynamic behaviour of actual
beams.

Suppose, for instance, that it is desired to obtain
the displacement response of a 5-layer beam subjected to
displacement forcing, within a freguency range close to
any of its "resonant fregquencies" (that is, its "displace-
ment resonance curve"). Then, for'the given temperature,
a suitable frequency is chosen. The viscoelastic material
properties can now be obtained from the appropriate graphs
of the properties (or from any general eguations satisfying
these graphs), on the assumption of a convenient shear-
strain amplitude. From the dimensions of the beam and

the material properties, the coefficients of the
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differential equations are evaluated. The equations are
then solved by the finite-difference method. They are
solved again by the "iterative method" of section 4.5 to
check that the above "constant-strain" solution gives
reasonably accurate results for the displacements. Various
values of the frequency are now chosen in turn, the equations
being solved in each case as above. The process 1s stopped
when the desired frequency range has been satisfactorily
covered.

The absolute displacement-amplitude ratio, Ta , at
a typical point on the beam (for instance, the free end, for
a cantilever beam), tomether with its phase relative to the
input motion, is plotted against the forcing frequency.
The freduency ab wnhich this amplitude ratio is a maximum
is referred to here as a "resonant frequency" of the beanm?,
and in the immediate neishbourhood of this frequency, the
graphe of the amplitude ratio, Ta’ and its phase, azainst
the frequency, are called "displacement-resonance curves".
At the resonant frequency, the locus of the absolute
displacement amplitudes at each point on the beam will be
referred Lo (rather loosely) as the "mode shape" at that

frequency. In plotting this locus, the following convention

*Close to the resonant frequency, frequency steps of 0.5
per cent (or less) difference were taken in the calculati-
ons,in order to locate the peak of the resonance curve
accurately.
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has been adopted: If the phase difference between the
absolute displacement at a given point and the input motion
is positive (i.e. between O° and 180° , with the input
motion leading), the displacement amplitude at that point
(or its ratio relative to the input motion) is plotted
below the axis; otherwise, it is plotted above the axis.
It is emphasized that this locus does not represent the
true shape of the beam at the resonant frequency. The true
beam-shape would require a three-dimensional polar plot to
indicate the variation, along the beam length, of the
displacement amplitude as well as its phase relative to the
input motion. The locus described here is only a convenient
way of representing the displacement amplitudes at various
points along the beam, for comparison with experimentally
measured values (see chapter 5).

For examples of the above-mentioned graphs, see

figs 5.6 to 5.15.

4 .0.D. Overall loss factor - 3-layer bean.

One way of specifying the damping in the beam is by
the "loss factor". The definition of "loss factor" employed
by Kerwin et al [41,44,47], and by ilead [62,63] are strictly
applicable to systems whose dynamic flexural rigidity (i.e.
the ratio of the resisting aoment to the curvature) is
independent of the position along the beam. A typical

exanple of such a system would be a beam whose displacement
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and shear amplitudes, at a resonant frequency, are
sinusoidally distributed along tne length (for instance,
a lightly-damped simply-supported bean). For most damped
sandwich beams, however, the dynamic flexural rigidity
varies from point to point along the beam. Hence, a loss
factor defined as the ratio of the quadrature component to
the in-phase component of the dynamic flexural risidity,
would vary from point to point along the beam, and would
therefore not have a unique value for the system.

In the present work, the energy definition of "loss
factor" (applicable to all damped systems [8]) is used in

the form

_ 1 2Total energy dissipated per cycle 4.6.1
mm T 2TM(Maximum strain emergy in a cycle Tty

Qm being used to designate the "overall loss factor" or
the "beam loss factor". It is noted that this definition
has the same form as the energy definition of the material
loss factor given in equation 3.l1l.ix.d. qm is evaluated
at a resonant frequency, and is termed the beam loss factor
for the mode, n, of flexural vibration corresponding to
this frequency. The expressions for evaluating it are
developed below for a 3-layer bean.

From equation 3.l.ix.a, the energy dissipated per

cycle in an elemental volume dV, of the viscoelastic material
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is given by AE, = nv,{G,’a,’ + 'E,’éf}d\r, Y A TS T
where é’, and g, represent the shear and extensional strain
amplitudes in the element. The total cyclic energy loss in

the viscoelastic material - and hence in the beam - is thus

= nq{@éf P BESA,  ..........4.6.10d.

1
Noting that sz = X2 + ‘fof , and
€f EL{("“L dx‘”) y (L% ﬂ“)}, equation 4.6.i1i can be

reduced to the form

dg‘

By = 2IT(=~E8%-) Y'BD“u,+ DX,,)2+ (F*v + DY, )ﬂ + VL'(.[Xf, + Yﬁ]dg A .6.1

0
(, = Logh _ L2p? &, :
Whel‘e Al - EI = 8 +12H + 6}“{34_ eH; .--.......-14'.6.\7',

and Y’ is as defined in equations 4.l.xviii. The operator
D dg has again been employed.

The strain energy in an element dV of any layer of
the bean is given by A(S5.E.) = %}¢§‘dv , where S is the
Strain in the element, and Ksis the appropriate modulus.
The elastic top and bottom layers suffer only extensional
(or compressive) deformation, while tne central viscoelastic
layer undergoes both shear and extensional deformation.

Hence the ‘total strain energy in the viscoelastic layer 1

at any time t is given by

‘w

5.0 = %— j EE,’ef+ G,'¢,‘ildV, cereeenenest Coviy and the
1
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strain energy in each of the elastic layers is

09
=

N
0

%JEze:ava e ..6.vii. When the
%

expressions for the various strains are substituted into
equations 4.6.vi and 4.6.vii, and the integrals are
simplified, the total strain enerny in the beam, at any

time t, can be put into the form

©.B. = BL A costat + B sirfut + 20 sinwt cos wb§ ...4.6.viid

where

I

1
Al = ﬁzpzuo Y2+ 26Du,DXo, + A, (DX )* + A,Xf,] dg ....4.6.i%.a
)

1
B = EDzvo P v 2aD%, DY., + Ko(DYor ) + A,rﬂdg ........ 4.6.ix.b
0
1
c; = [Dzuobzvc FXD, DY ¢ DY DXey + ADEDTe, A KoLer [dg -
Q ceesabr.blix.C.

In equations 4.0.ix a to c ,

%
Az = . = '8 -

EI 8 + 12“ + 6‘;}1 + GHS o . 04‘060X‘.

The maximum value of the expression 4.C.viii, as tine

varies, 1is siven by

1

2
o~ - _ LI ]_ / . l__ . \2 2 .
[.,:.t .jmax = Z{EEA‘ + BJ ¥+ 2[(A( - B,) + 1+CJ } R RN ST & I

1
Jn denoting E[‘{( Do+ XM)"+ (D*v, + DY, )2}1- q,/(l(X:f + Yiﬂds
O
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by D: cesesd.0.ix.d , the beam loss factor is given by
D, -
'70"_—. l - - ) 2 " ‘/2, .........4.6-Xll-
§EA, + B+ {(A, - B )+ 40.}]

Once the differential equations have been solvéd, n, can
be calculated. The integrations involved in the evaluation
of A,, B/, C/, and D' are carried out numerically using

" Simpson's rule.

A programmne for calculating fhe beam loss factor
in the manner indicated above was written for the Atlas
Computer.

It may be remarked that for systems whose dynamic
flexural rigidity is independent of the position along.tne
beam, the beam loss factor defined here is not the same
as the ratio of the imagilnary to the real part of the
complex dynamic flexural rizidity. This is a conseguence
of the fact that the strains in the various fibres are not
all in phase with one another. Both definitions of the
losg factor will tend to the same value at small values
of the system damping when the fibre-strains become in phase

with one another.

4.7, Pive-~laver beam - Solution of the differential

eguations.

As in the case of the 5-layer beam, it is first
assumed that the coefficients of the differential

equations are strain-independent. Equations 2.5.xxvii
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and 2.%.xxx thus become

¢ Bt} 2
EI%%+ N, gfg + aaxl(l..{-lmz) ¥ m%%, = p(x,t)

sedbl7.1
B2 qulls L) - oGl = bGdh
On assuming a sinusoidal forcing function, of frequency w,
viz., p{(x,t) = p(x) coswt  ...... A.7.1i, the variables,
y and @, take the forms
y = u,cos wt + v, sin wt ; ¢L = X, cOs Wt + Yoo 8in wt ..4.7.i1

With these, the UJ-functions can be determined in the manner

illustrated in section 4.l.a. They are quoted below.

L g, = 2Y]LE;I.,,,{%‘1COS wi - EBsin wel
+ 27 (EAZ% + T“Az‘é"h,,){“h:°” eos Wt - %"" sin u}t} ...(a)

e = ’72(31“*1‘8‘2 + E;A,_ ){ , COS Wt - lul;’S'ln w’t}

+ (%EQAzhz){gE”cos wt - jﬁ"51n_wt} ceeea..(b)

,GhLU(@) = MbGi{Yon cos @b = X sin wt} ......u(c)
A & N 1 T
The distinction between the extensional and shear loss
factors has been dropped in the above expressions, i.e.,
rfaz = Tlez = qz’
Equations 4.7.ii, 1ii, and iv can be substituted into
the differential equations, and the coefficients of sin wt
and cos wt equated to zero. The resulting equations are

then put into a dimensionless form, employing the
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dimensionless variables u,= %°, v, = f . g = % ce b 7w,
and simplifving to obtain
3 3
D, + 0% + X DKe+ %D, - Bu, = EI@GS)
3
- %D + D - %DMt DY, - Bw. = O CouHL7vE,
D, + 82D ¢ DKt 85DWer - VoXex — O Yop = O
— 8%, + D, - &D¥M, v DM v 03Key — VyYeg = O
where,
N m w?f* 2MF;L B
O(zzrp_fs ﬁzz Tl ) Y __1]3.__2__12,, ﬂz‘—‘“{;"
2
. / _D._; 4 Q’* T -dﬁ'
v, = 272<E1A212 ¥ Adz *) 5. - (EzAzg ¥ EzA"Q) 4.7 ai
: 7T ' s aak
S« 3MBhna |y . el . Tafipul
3 = < ) 2 = 7 ’ 2 o .
22 22 L2
Tne riznt-hand sides of equations %4#.7.vil can also be
expressed in terms of the dimensionless ratios
h A £ Ga
Hy = '5;, Hy = 5“:3 B = hs ° 8, = E’:a
o AL aviid
E, ~ e _ ) ~ ) R
e = —E.S, e, = E:("’ 5%7,)) Dy = é ’ D, ”F:
Thus,
o = —12Ha(1 r Hi+ 2Hy) v beHy(Hi v Ha) * 2eH3 h.7.ix.8
2 = 2% qHfr ZeHFF GeH (i, + Hpt v 61 F 2ilg+ i)z - s i¥e
_ 48T B* (2 ¢ DyH; ¢ 20:H) (f‘l‘ﬁ)
Bz 2 F eHIr 2e,d2 + e, H,(Hy + Hp)* + 6(1 + 2Hp+ He)*\ gLz /°°°
A .7.1x.b
Y, = BU_Eesz ¢ 3o (H, + 1)) L4 L7.ix.c
2 2 F e Hlr 2eH: r b, (1l + Hp)*+ 6(1 + ZCHa+ Hi)?
Y = 21N Eeszf 33132( H + Ht)j - eee b7 ix.4
3 2 + ef; + 28 + 6e,H,(Hy+ ;)" + 6(1 + 2H, + H)?
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Uy = (1 + H+ o) + e, H(Hy + Hy) + g H?

8H, + 36 essessstZlxXee
V= 8E8121~):§23ezﬂ’5 Y I B % &
g, = Bﬁjvl ;eJﬁ cesesssencisaast7ixeg
S, = ’7262(853‘5;5@‘) R JE F Y
ds = %z UYL, 2 £ B
IZig

As in equations 4.l.xviii, f = , 1s the frequency of

n
=

excitation in cycles per second, and g, is the gravitational
constant of acceleration.

Lquations 4.7.vi are seen to be similar to egquations.
4.1.xv for the three-layer beam. Hence the method of solu-
tion developed for the 3-layer beam is applicable without
any modification. When the coefficients of the differential
equations are strain-dependent, the method of section 4.5
is employed.

The expression for the overall loss factor is also

similar to that for the 3-layer beam. Thus,

T = =
on %.{ & o+ B o+ [(ag- B;)2+4Cf']’/"}

where,
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D

<Du.,> b (D )+ As(DXe) + As(DYon)” )

+ 2%( DXp D' + D'y DYoo) +7A(XE+ ¥5)]dE

i

Alz X[(Dzuo) + /(;(DX,:) + 2K DluaDXa, + 1(41\_02] dg

1
che L7 X
Bz, = J[DVQ)*I{z(DYez)"ng DY,:‘F/(Y«: dg
0
1 .
c; = E)‘v, D', + DY, DX., + Kz { DY, D', + DXecDw} + &X«Y;]dg
0

and the following additional notations have been employed:

3
As = %—%&E;b% + Eb h‘}
= Bqﬂ.exﬂi

2 + (1 + 2Ha+ H)* + e H?+ 2e,H; + 6e,Hy(Hy + Hz)*
7 exi
20%GA
= £t _nfhs
K4 i
SP,fezHL
2 + 6(1 + 2Hy + Hy)* v e HZ + 26, HF + 6e,H,(il, + H,)?

4.8, Solution of the equations for any multi-layer beam

The order of the differential equations for a
multi-layer beam increases with the number of layers. In
the method of solution developed above for the 3-layer
and S-layer beams, the differential equdtions are solved
as a set of simultaneous equations oftthe 14-th order.
The method can be readily extended to the solution of the

equations for the general n-layer beam, where n = 4i - 1,
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or 41 + 1 3 i = 1,2,5, etc. Tor such a beam, the
differential equations are solved as a‘set, of the

(8 + 6i)-th order. The number of boundary equations
required is thus (8 + 6i). The procedure for the numerical
method of solution of these equations is the same, the

main matrix for the step-wise integration process being

a square matrix of order (8i + 10). Oystems with strain-
dependent coefficients can also be solved, employing the

method of section &.5.
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CHAPTER 5

EXPERIMENTAL VERIFICATION OF THE THEQRY'

Introduction

To check the theory developed in chapters 2 and 4,
the displacement responses of 3-layer and 5-layer beams
were investigated experimentally. The beams were tested
as double cantilever beams with displacement forcing at
the root. Various lengths, as well as combinations of
elastic and viscoelastic materials, were dealt with. For
each specimen, the tip displacement amplitude and phase
responses were determined over a frequency range covering
the first two or three resonant frequencies. At each
resonant freguency, the displacement amplitudes at various
points along the beam were also measured. These were then
compared with theoretically calculated values.

The details of the test procedure, as well as the

results, are reported in this chapter.

5.1. Details of the apparatus.

5.1.a. The mechanical set-up

Fig. 5.1 shows a diagrammatic sketch of the mechanical
set-up of the test apparatus. The specimen, (1), was
clamped at its central 2k-inch portion (details of the

clamping arrangement, (2), are given saortly), and then
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sz 7777

1. BEAYM SPECIMEN.

2. CLAMPING DEVICT.

3. ELECTROMAGNETIC VIBRATOR.

4, FLAT PIECES.

5. MASSIVE TABLE.

6.50FT COIL SPRINGS.

7. DISPLACEMENT PICKUPS (PROXIMITY GAUGES).

FlGg 5.1 Diagrammatic Sketch of
fest Apparatus.
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mounted, by means of six 2 B.A. Allen screws, on the table
of a Derritron V.P.5 electro-magnetic vibrator, (3). The
vibrator was powered by the Derritron 250 watt power
amplifier, details of which have already been given in
section 3.5.c. This amplifier also energised the d.c. coils
of the vibrator field, and supplied a fan which provided
suction cooling for the vibrator moving coils and field
energising coils. The vibrator was capable of giving up

to 70 pounds thrust, and had a working frequency range of
between 5 cycles per second and 12 kilocycles per second.
It sét on two carefully machined flat pieces, (4), on top
of a massive table, (5), which was isolated from the
surroundings by means of four soft coil springs, (6), in
tension. The highest natural frequency of the table and
its attachments on the springs was in vertical translation,
and was about 0.5 c.p.S.. A travelling microscope ( not
shown in the sketch) was rigidly mounted on the table.

With it, the displacement amplitudes at various points on
the beam could be measured. Two electro-dynamic inductance
proximity gauges were suitably mounted at the beam support

and tip, for picking up the motions at these points.

5.1.b. The clamping device

¢

Two essential requirements were borne in mind in the
design of the clamping device. The first was the necessity

for ensuring proper clamping in which tnere was negligible
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movement at the root. The second had to do with temperature
control. Inspite of tne coolinzg, the vibrator table

(which was made of 3 magnesium alloy, a good conductor of
hest) would normzally get relatively warn diring a test
period. It was thus necessary to insulate the specinen

from wossible heat fron the vibrator table.

Fig 5.2 gives some details of the clamp. Two identical
strips of compress:d asvestos, (3), % inch wide, were.
bonded to each half of the clamp, (b), in such 2 way that
their outer edqges were 2m inches apart. The free surfaces
of tnese strips were carefully ground so that they were
flush with each other when the two halves of the clamp were
assembled. The specimen, (c), was clamped between these
surfaces. This arrangement apart from providing the
required insulstion 8lso helped to reduce the number of
"high spots" which would be detrimental to the good
clamping sought. To prevent the squashing of the viscoela-
stic 1l3yer, the central 2¥-inch section, (h), of the
specimen (at which the clamp was located) was‘made of metal
- see the section on the preparstion of the specimens.

Four ¥-inch B.S.F. bolts, (d) held the specimen between the
canping surfaces. These were further assisted by the

six 2 B.A. screws, (e), which held the clamp on to the
vibrator table, (f). These screws passed very close to the

outer edges of the strips thus ensuring sood clamping
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Secton through X-X

Details of Clamping Device.

FIG. 5.2







260

at these edges. Besides, the two central screws, (g),
passed through the specimen, the clearance holes being
fairly large to avoid any heat transmission through the
screws. In this way, possible motion at the clamping
surfaces was reduced to the barest minimum. The effective
lensth, { , of the beam was measured from each outer edsze
of the strips, as shown on the sketch.

A photograph of the clamp mounted on the vibrator

is shown in fig 5.2a.

5.1.c. The electrical circuit.

A block diagram of the electrical circuitry is given
in fisg 5.3. The only difference between this and the
circuit employed in the shear tests (fig %.8) is that the
force measuring (strain-gauge) channel is here replaced
by another f.m. displacement-gauge channel. Also for phase
neasurement, instead of the phase shifting device, the
other alternative - a phase-inverter in the form of a
centre-tapped transformer - was employed. Details of these

have already been given in section 5.5.

52 Specinen preparstion

Two viscoeiastic materials, namely, Velbex P.V.C.,
and Tvoseal 202, were used in the tests. The method of
preparatipn of the specimens was slightly different in

each case.



261
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120°

1. DECADE OSCILLATOR - 2 OUTPUTS 90 OUT OF PHAGE.
2. 250 WATT POWER AMPLIFIER.

5. ELECTROMAGNETIC VIBRATOR.

4,5. DISPLACEMENT PICKUPS (PROXIMITY GAUGES).

6. GAUGE OSCILLATOR.

8. FREQUENCY-MODULATED PRE~AMPLIFIER.

9. DRIVER AMPLIFIER.

10. PHASE POTENTIOMETER.

11. PHASE~INVERTING TRANSFORMER.

2. DOUBLE BEAM OSCILLOSCOPE.

Flg. 5.3 Blccx Dicgram of Measuring
Circurt.
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5.2.a8. Beams with P.V.C. layers.

The P.V.C. was available as a sheet - the same sheet
from which the shear test specimens (chapter %) were cut off.
As the thickness of the sheet varied slightly over 1its
area, a strip of about the required width was first cut out.
The thickness was then measured at one inch intervals and
the most uniform portion of the strip was cut out for use.
Two such identical strips were required for a 3-layer beam,
and four for the S5-layer bean.

The surfaces to be bonded together were desreased by
cleaning thoroughly with carbon tetrachloride, and then
with acetone, and finally washing with plenty of water.

The metal surfaces were then abraded with the appropriate
reagent. Dilute sulphuric acid was used for steel surfaces,
and 2 per cent hydrofluoric acid for alumninium surfaces.
After abrasion, the surfaces were finally clesned with
acetone and thoroughly washed in water.

For a three-layer specimen, a steel piece 2 inches
long, of the same width a2s the svecimen layers, and of
thickness equal to the mean thickness of the viscoelastic
strips, was zlued with araldite to the central portion of
one of the metal layers. The araldite used was the same
cold-setting type used in the shear tests of chapter 3.

In the case of a five-layer beam, two such pieces were

bonded (one to each face) at the central portion of the
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central layer. Also, for both three-layer and five-layer
beams, small copper - constantan thermo-couple wires,

0.020 inch thick, were planted with aréidite in small
grooves cut at suitable intervals in the metal faces. The
"hot" junctions were raised slightly so that they projected
by. about 0.005 inch above the metal surface. This was to
ensure that the actual temperature beins measured was that
of the viscoelastic layer (which would be bonded to this
surface). The araldite was allowed a day to set.

Next, a very thin layer of araldite was evenly applied,
by means of a small roller, on all the faces to be bonded
together, including the inner edges of the viscoelastic
strips which were to bear on the central steel pieces.

The layers were now assembled, care being taken that the
inner edses of the viscoelastic layers were pressing -firmly
against the edges of the central metal pieces. (This was
essential in order to satisfy the assumed condition of

zero shear in the viscoelastic layers at the clamped end -
see section 4.2.c.). The assembly was carefully loaded,
between two flat surfaces, on 2 Denison testing machine.
The applied load, which was released after twelve hours,
was such as to tive a setting pressure of about 10 1b/sq.in.
The specimen was left for a few days to allow the araldite
to reach its optinmum bonding strensth. Any excess araldite

was scraped off the edges, and the specimen was now ready
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for test. If it was required to test a shorter lensth of
the specimen, the excess bits were cut off from each end
usinz a band saw. For specimens with steel facing lavers,
a thin strip of brass or aluminium (y2"x 3"x 0.020") was
zlued to the top surface close to each free end. This

helped Lo increase the sensitivity of the inductance

PLCK-Up.

5.2.b. Specimens with Lvoseal layers

The surface preparation was the same as for the P.V.C.
sandwich specimens. The central steel piece was also
bonded to one of the metal layers as in the first case.

In addition, two metal pieces , of the same thickness as
the central piece, were glued (with araldite) one to each
end surface of the metal layer.

A thin lavyer of araldite was now evenly applied to
the surface of the metal layer (in the space between thé
bonded -metal pieces); and the first layer of the evoseal
was painted on, using a small fibre brush. This was allowed
about six hours to harden slightly. Subsequent layers
were then applied, at six hour intervals, until it was
felt that the desired thickness had been approached. It
would evidently be difficult to obtain uniform thickness
no mmatter now carefully the evoseal layers were avplied.

To take care of this, the evoseal layer thickness was built

up to a slightly hisher value than desired. The top facing
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layer was then glued on with araldite, and the assembly
was allowed to set under load, as in the previous case.
Enough load was applied to enable the viscoelastic layer
To attain a fairly uniform thickness, the metal pieces at
the centre and the ends acting as "stops" to determine this
thickness. The excess evoseal spread out to tne edges of
the beam. The load was taken off after 24 nourcs, and the
specimen was left to cure gradually. A shear specimen was
prepared at the same time as the evoseal sandwich beams.
Before testing the specimen, the ends containing the
nmetal pleces were cut off, and the excess viscoelastic
material at the edges was also trimmed off. ©Small copper -
constantan thermo-couple wires were stuclk into the visco-
elastic layer at convenient intervals for measuring the

temperature of the layer.'

S.2.C. Bean zeometry and material properties

The overall thickness of each specimen was measured
at one inch intervals using a micrometer screw gauge;
and the mean value was taken as the correct thickness.
The thicknesses of the metal layers were mneasured before
bonding, and the viscoelastic layer thicknesses were found
by difference. No allowance was made for the thickness

of the bonding material, this being assumned negligible.
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All thicknesses were measured to the nearest 0.001 inch.
After each specimen had been mounted for test, its effective
length (see section 5.2.b.) was measured to the nearest
0.01 inch using a suitably graduated scale.

The elastic layers were either steel or aluminium.
The steel layerg were chosen from a stock of "bright mild
steel" bars, 1¥% inches wide, available in various thicks-
nesses. The properties of the material were taken as
E = 3 x 107 1b/sq.in. ;3 § = 0.283% 1b/cu.in.
The aluminiumn layers were chosen from a similar batch of
bars of an aluminium alloy, SIC ¥H, whose composition is
specified in B.5. 1470. The material properties were taken
as B = 10" 1lb/sq.in. 3 ¢ = 0.1 1b/cu.in.

As the P.V.C. layers were cut out from the same sheet
as the shear specimens of chapter 5, the properties are
as given in that chapter (fizgs 3.19 to %.23). For the
properties of evoseal, the shear specimen prepared at the
same time as the beam specimens were first tested before
the beam tests, and the properties obtained were used in
the theoretical calculations (see comments on bhis, in
sections 5.4.b and 5.5.c). These have already been given
in figs %.51 and %.32.

To obtain the densities of P.V.C. and evoseal, portions
cat off from the beam specimens were weizhed. From the

weizhts and dimensions of these portions,and using the
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known densities of the metal layers, the densities of the
viscoelastic materials were calculated to be 0.041 1b/cu.in.

for evoseal, and 0.048 1b/cu.in. for P.V.C.

5.5, Measuring technigues and calibration

But for the modifications mentioned in section 5.1l.c,
the measuring techniques and calibration are the same as

already described in section 3.5.

5.4, Test procedure

54 .a. Check on the clanping device

To check that the clamping device save the correct
boundary conditions, a test was carried out initially on
a plain aluminium beam. The displacement amplitude respo-
nses in the region of the first three resonant frequencies
were measured, as well as the corresponding mode shapes.
The resonant frequencies, and the amplitude ratios of

motion at any point on the beam
motion at tip

at resonance, were

compared with those calculated from the classical beam
equation. The results are 3iven in fiz 5.4 and table 5.a.
Also the graphs of the tip amplituds ratio azainst frequency
are ziven in 5.5. The danpinz was estinated from the
bandwidth of these curves, and the values are given &8s

well in table 5.a.
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5.4.b. Beam tests

A total of ten specimens were tested. Details of
these are given in table 5.b.

The F.V.C. sandwich specimens

The tests on each specimen involved obtaining
(a) the tip amplitude and phase responses in the frequency
range covering the first two or three resonant frequencies,
and (b) the 'mode shapes'* at each resonant frequency.

For (a), the input motion was kept constant. The
forcing frequency was varied in convenient steps, and at
each step the temperature of the viscoelastic layer, the
tip displacement amplitude, the input motion at the root,
and the phase difference between the tip motion and the
input motion, were measured. This was continued until the
particular resonant frequency was fully covered. Tempera-—
ture changes during a test interval were kept to a
ninimum by carrying out the test when the ambient
temperature was fairly steady. )

For the mode shapes, the apuropriate resonant frequency
was first quickly determined. The phase potentiometer
proved very useful in this, since the rate of change of

the phase difference with frequency was maximumn close to

the resonant frequencies. The displacemnent amplitudes

*For the method of plotting this locus here, see
section 4.0.a.



269

alonzg the beam were then measured at one inch interﬁals,
using the travelling microscope. The input motion and the
temperature of the viscoelastic layer were also measured.
The tip amplitude ratios, phase differences, and mode
shapes corresponding to each of the tests were calculated
theoretically and compared with the experimental values.
These are given in figs 5.6 to 5.15.
The above tests were usually carried out on one side
of the double cantilever bean. Althousgh care was taken
(during the preparation of the specimens) to make both sides
of the bean identical, it was thouzht necessary to check,
for each specimen, that the motion of both sides of the
cantilever beam was tne same. For the specinens tested,
the resonant frequenqies and the tip amplitudes at resonance
were checked for both sides. No change could be detected
in the resonant freguencies within the freduency steps
usually taken in tne measurements.(steps of about one per
cent difference were usually taken close to the resonant
frequencies), The aqaplitudes were also found to be the
sane.

The evoseal sandwich specimens

The specimens with evoseal viscoelastic layers
presented some extra experimental problens. ©Since the
evoseal was originally in liquid form, its properties

would be expected to depend on the "state of cure” of the
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layer. This fact motivated the preparation of a shear
specimen alongside the beam specimens. It was, however,
recognised that the state of the material was determined,
not only by the method of preparation of the specimen, but
also by its rate of cure. This rate would. depend on several
factors, such as, local humidity and temperature conditions.
An even more significant factor is the "effective curing
thickness" of the layer, which may be defined as the ratio,

volume of material
exposed surface area

of the layer. Clearly, the smaller

this ratio, the quicker would bhe the rate of cure. The
shear specimen had an effective curing thickness of 1/6 inch
while that of the beam specimens was about 3/4 inch.
Hence, assuming the same initial conditions of cure and
the same local atmospheric .conditions, it is clear that
the small shear specimen would cure much faster than the
beams. If the exact dependence of the cure rate on the
effective thickness were known, then the properties
corresponding to the state of the material of the bean
could be deduced from observation of the curing rate of the
shear specimen (since both specimens were prepared at the
same tigae, and cured under the same environment).

It was thought necessary, at any rate, to obtain the
Ycuring curve" for the shear specimen. If the rate proved
to be fairly rapid, then the problem could be solved by

4

allowinz a considerable amount of time to elapse to enable



271

both specimens to reach the flat portions of their curing
curves. Accordingly, tests were carried out on the shear
specimen at regular intervals. From the results, the
in-phase shear modulus and the loss factor at a constant
temperature, strain amplitude, and frequency were plotted
against the time of cure. The graphs have already been
given in chapter 3 - fig 3.30.

When it was realised that the rate of'cure was not as
rapid as was desired, tests were carried out on the beam
specimens after a time of cure of three months. The test
procedure was the same as for the P.V.C. specimens. The
experimental results are compared with theoretical values
in figs 5.14 and 5.15, and discussions on these follow in
the next section.

The temperatures and input motions for all the tests

are given in tables 5.4 and 5.e of appendix LI

5.5. Discussion of the experimental resultlts

5.5.a. The plain aluminium bean

¥Fig 5.5 gives the displacement resonance curves, for
the plain aluminium beam, in the regions of the first three
resonant frequencies. In the graphs, the tip displacement
amplitude ratio, Ta’ already defined as

absolute displacement amplitude at tip
input motion amplitude

3

is plotted amainst the frequency. The corresponding mode
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VIODE RESONAST FREQUENCY, c.p.s. LOSS TFACTOR
NO. Calculated Measured 'Zn,(measured)
1 26.10 25.92 0.00193

| (0.69)
2 ) 163.6 162.5 0.00558
(0.67)
3 457.5 455.5 0.00155
(0.87)
TABLE 5.a

Test results for the plain aluminium bean

Details of beam dimensions: length = 15.07 in.
Thickness = 0.187 in.
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shapes are also shown in fig 5.4, in comparison with
theoretically calculated values. Since theoretically the
absolute amplitude at each point on the undamped bean
becomes infinite at resonance, the quantity plotted in
fig 5.4 is the ratio of the displacement amnplitude at any
point to the tip displacement amplitude. This ratio has
a finite value for any given mode. The graphs show very cfese
agreement between the experimental and theoretical mode
shapes. Table 5.a gives the theoretical and experimental
resonant frequencies, the percentage difference between
any two corresponding values being éiven underneath each
experimental figure. Agreement is seen to be better than
1 per cent.

The good agreement in the frequencies and mode shapes
confirms that movement at the cantilever root must have been
nezligibly small, and hence checks on the adequacy of the
clamping device.

The loss factors* for the beam, as estimated from the
bandwidth of the resonance curves of fiz 5.5, are also given
in table 5.a. It is seen that the system damping (the
clamp and the plain metal beam) is of a small order and

can thus be justifiably ignored in the analysis.

*for the retatlon between the loss factor (enersy definition)
and the bandwidth of the resonance curve, for a lishtly
damped system with one degree of freedon, see, for instance,

-
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5.5.b. Specimens with P.V.C. lavers

The experimental results for the three-layer and
five-layer beams wikth P.V;C. viscoelastic layers are
compared with theoretical values in figs 5.6 to 5.153.

Figs 5.6a to 5.1%a give the variation of the tip
displacement amplitude ratio,Ta, and the phase difference
(between the input motion and the tip motion), with frequency
for the first two or three modes. The graphs show good
agreement in the resonant frequencies, the maximum percentage
difference between the measured and the theoretical walues
being less than % in a2ll the cases. Agreenent is much
better for the three-~layer than for the five-layer beams.
It is, in fact, thought that in the case of the three-layer
beams, the slight disparities could be due mainly to slight
temperature variations along the beam length during a test
interval. The temperature used in the theoretical
calculations was the mean of the temperatures at two points
along the beam. The difference between these two tempera-
tures could be as high as 0.5% especially at the higher
modes.

The five-layer beams show consistently hither resonant

frequencies than theoreticall¥y calculated. This is thousht
to be due to the effect of the araldite bonding layers.

In the calculations, these were assumed to be part of the

viscoelastic layers, since the thickness of the viscoelastic
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BEA!1 ELASTIC LAYBRS VISCOELASTIC LAYBRS | BEAI
1 NO laterial |Thickness llaterial Thickness | LENGTH
hy, in. hg, in. £, in.
3 Aluminium 0.250 P.V.C. 0.135 20.00
3A " 0.250 " 0.135 18.00
31 " 0250 " 0.1%5 12.00
4 Steel 0.187 " 0.137 15.00
LA " 0.187 " 0.137 12.00
Y Aluminium 0.124 Evoseal 04065 14 .04
8 Oteel 0.187 " 0.077 15.07
(i) Three-layer Beams.
BEAM ELASTIC LAYERS VIDCOWLACSTIC BEAM
Yo, | CENTRAL LAYER | FACING LAYERS LAYERDS LENGTH
\Miater- | Thick- | Mater—| Thick- | Mater—| Thics-
- ilal ness ial ness ial ness
hq,in. hg,in. ha ,in l, in..
5 Oteel 0.123 Alunm. 0.124% r.v.C.| 0.161 [17.95
5A n 0.1235 " O.124 " 0.161 |12.00
6 Alum. 0.250 | Steel | 0.123 " 0.155 [15.00
‘ (ii) Five-layer beams.
TABLE 5.b Details of the beam specimens.
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layers was obtained by subtracting the total metal thickness
from the beam overall thickness. As the bonding layers
were much stiffer than the viscoelastic layers, their
contribution to the beam effective stiffness would be more
than that of a viscoelastic material of the same thickness.
This contribution would be more significant in the five-
layer beams which haq more bonding layers.

The measured tip amplitude ratios agree well with the
calculated values, especially in the second and third modes.
The worst agreement occurs very close to the first resonant

frequencies, where maximum errors of up to 8 per cent

are seen to exist in a few cases. The lonser beams (e.z.
beams 3%, %A, and 5) give worse results than the shorter ones.
Several factors could be responsible for this discre-
pancy. Any error in the material loss factor, for instance,
was bound to reflect itself most at resonance. It has
already been stated in section 5.7.a that the loss factor
for P.V.C. could be as much as 5 per cent in error. Such
an error would lead to an error of about S per cent in the
measured amplitude ratio. Another factor might be the
elasticity of the araldite bonding layers. The theory
assumes an infinitely shear-stiff bonding layer of negligible
thickness. If this layer is not sufficiently stiff, the
actual shear deformation in the viscoelastic layers (and

hence, the cyclic energy loss) will be less than that
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predicted theoretically. The actual tip amplitude ratio
will, therefore, be more than the calculated value. It may
be remarked that the above factors would also affect the
higher modes. However, their overall effect on the amplitude
ratios would be more easily detectable in the first mode than
in the hizher modes where the amplitudes, for any given
amount of damping, are invariably less. It was originally
thouzht that the lack of exact agreement in the amplitude
ratios could be partly due to possible rocking of the
vibrator table owing to slisht differences in the dynamic
loading from both sides of the double cantilever beam.

This was checked by measurineg the displacement amclitudes

at various points on the clamping device. No rocking could
be detected, and it was concluded that errors from this
source were very unlikely.

The experimental and tneoretical phass differences
conpare very favourably in all the cases. Any disagreement
is due to either lack of exact asreement in the resonant
frequencies or temaperature effects.

The measured mode shapes are compared with the theore-
tical ones in figs 5.6b to H.1%5b. In the graphs, the
anplitude ratio of the motion a3t any point to the input
motion is plotted at each point. It is seen that the nature
of the agreeaent is the same as for the tip amplitude ratlos,

namely, the first mode experimental values are slightly
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higher than the theoretical values, while the second and
third mode values show very close agreement. These results
show that the agreement in the displacement response is

not Just restricted to the tip displacements, but,in fact,

holds for each point on the beam.

5.5.c. Beams with evoseal viscoelastic layers

The results for the specimens with evoseal viscoelastic
layers are given in comparison with the theoretical values
in figs 5.14 and 5.15. The results correspond to a time
of cure of three months. ‘

It is seen that for the two beams; the agreemnent
between the measured and the calculated resonant frequencies
is comparatively poor, the maximum error being as high as
10 per cent. The measured frequencies were consistently
lower than the theoretical values. This is due to the fact,
already mentioned, that the viscoelastic materiél of the
beam was curing at a much slower rate, and hence, was much
softer than the shear specimen. Since the theoretical
values were calculated using the properties obtained from
tests on the shear specimen, they were bound to give higher
values for the resonant frequencies.

As for the tip displacement amplitude ratios, agreement

between the experimental and the thepretically calculated

values is fairly good for beam 7, but clearly poor for
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beam 8. This might at first sisht appear surprising,
especlally in view of the fact that the error trends in

the two cases are dissinilar. In the first mode, for
instance, the measured resonant tip amplitude is less for
beam 7, but more for beam 8, than the corresponding theore-
tical value.

This apparent inconsistency is, however, readily
explained using the "optimisation curves" presented in
chapter 6. Considerins only the first mode, the thickness
ratio, H, and the theoretical shear parameter* at resonance,
V, » for each beam are given in fhe table below. Also given
is the shear parameter, \4opt’ corresponding to the maximum
overall loss factor for the given beam thickness ratio.

The material loss factor is assuned to be 1.0 (for ease of
interpolation), a value very close to the values obtained -

from tests on the shear specimen.

BRAM 7 BEAY 8
H 0.5 0.575
Vv, 1.9 0.25
Voot (he10)  0.72 o.78

The above values, together with the optimisation curves,

show that while bear 7 is on the portion of the Ta—versus—ﬂ

*This shear paranmeter is calculated usinz the properties
of the shear specimen, hence the qualifying term,
"theoretical".
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curve beyond the damping peak, beam 8 is on the rather
sensitive portion of the curve before the peak.

To illustrate the significance of this, suppose that
the in-phase shear modulus of the viscoelastic material of
the beams was 30 per cent less than that of the shear
specinen. (The value, 30 per cent, was actually arrived at
by "working backwards" to determine, from the optimisation
curves, the change in the shear modulus, G;, which would
give rise to the observed error in the first mode resonant
frequency for beam 7). Then, since the shear parameter is
directly proportional to the in-phase shear modulus, the
actual values of V, for beams 7 and 8 would be 1.%% and
0.245 respectively. From the curing curves for evoseal
(fig. 5.30), it is observed that the material loss factor
shows very little change with the curins time, so that,
in the argument to follow, it will .be assumed to have the
same value for the beams as for the shear specimen.

From the optimisation curves for H = 0.5 (fig. 6.1,
chapter 6), it is seen that a change in V, from 1.9 to 1.35
would resull in a drop in the tip amplitude ratio from
4.9 to 4.6, or a percentaze decrease of about 6. This
change in y, would also cause a decrease in the resonant
frequency factor from 6.5 to 5.6, or a decrease in the
resonant frequency of about 7 per cent. ©Siailarly, by

interpolation from the optimisation curves for H = 0.1 and
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0.5 (figs 6.5 and 6.1), it is seen that, for beam 8, the
change in )/ would give rise to a decrease in the resonant
frequency of 8.5 per cent, and an increase in the‘tip
amplitude ratio of 14.5 per cent. These values (column A)
are shown side by side with the actual percentage differences
between the experimental and theoretical values (column B)

in the table below.

BEAM 7/ ~ BEAM 8

A B A B
% increase in .
amplitude ratio 6.1  -5.5 14.5 16.0
% decrease in 2.0 2.0 8.5 3.5

frequency

The close and consistent agreement between the fizures,
apart from explaining the observed behaviour in the tip
amplitude ratios, also implies that the true difference
between the in-phase shear moduli of the shear specimen
and the beam evoseal must have been around 30 per cent.

It also confirms the assertion that the disparity in the
results was due to the difference in the curing rates of
the beam and shear specimens.

It might be thought that, in view of the fact that
evoseal is a relatively soft viscoelastic mnaterial, there
was a possibility of the various layers having independent

lexural motions, especially at the hizher modes. This

would, of course, violate one of the assunptions of the
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theory (see section 2.1.b, chapter 2), and would lead to
incorrect results. iowever, this was checked, for each
mode, by measuring the displécement amplitudes in each

layer at any cross-section. These were found to be the same
in each case, implying that all the layers of the beanms

had the same flexural motions up to at least the third mode.

The theoretical phase difference-versus-frequency
curves shown in figs 5.14a and 5.15a are seen to be displa-
ced (horizontally towards the right) from the experimental
points. This is due to the difference in the experimental
and theoretical resonant frequencies. Once more, the
agreement between the mode shapes (figs 5.14b and 5.15b)
is seen to be a reflection of the agreement in the resonant
tip amplitude ratios.

The difficulty encountered Qith the gvoseal sandwich
beams might raise the question whether it would not have
been possible to obtain the exact properties of the beam
evoseal from a shear test on a portion cut off from the
beams. This approach was examined thoroughly and discarded
for several reasons. Firstly, it would be extremely
difficult to cut a small portion off the beam, to the size
of a shear specimen, without squashing the soft viscoelastic
layer appreciably. ©Secondly, the Specimen‘wdﬁld have to
be tested in the sandwich fofm; that is, with the wmetal
facing layers in tact. The facing layers would then be

bonded to ‘the fixed supports and the centre-piece of the
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shear-test apparatus (fig. 3.5), as in the case of the
hycadamp shear specimen. This would considerably increase
the total effective moving mass. Since evoseal is a
relatively ccft viscoelastic material, the contribution of
the inertia forces to the total measured force would be so
large that the accuracy of the determination of the material
properties would be extremely poor. Moreover, with such

an arrangement, there would be four araldite bonding layers
(instead of two, as for the beam) to each half of the shear
specimen. Any bonding imperfections would, therefore, cause
a different level of error. Tinally, the shear specimen

cut off from the beam would have a snmaller "effective curing
thickness" (see section 5.4.b) than the beam itself, and
would thus tend to cure faster than the beam. As the process
of preparation of the specimen for a shear test would take
at least three days to complete, the material properties
obtained in this way would invariably be different from
those of the beam evoseal, thus defeating the purpose of

the test.

5.6. Concluding remarks

The tests carried out cover §;§ide ranse of material
properties and beam geometry. Consider, for instance, the
three-layer configuration. Table 5.c gives the shear
parameter, y,, and the material loss factor, m , at the

first resonant frequency, as well as the thickness ratio, Hj
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eam Material Thickness Shear Shear
no. loss factor ratio parameter . parameter
at first at maximum
mode loss facton
T)' i \/, \/: opt
3 0.50 O.5% 2 .04 J.88
34 O.54 0.54 1.65 C.87
5B 0.61 O.54 0.96 0.84
4 0.58 0.73 0.:68 0.79
4A 0.53 0.75% 0.441 0.80
1.09 0.50 1.90 0.78
8 1.12 0.37 0.35 0.72
TABLE 5.c

Three-layer beams tested.

Details of the thickness ratio,

first mode shear parameter, material loss factor, and

optimum shear parameter.
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for each of the beams tested. The shear parameter
corpesponding to the maximum beam loss factor (for each set
of values of Yl and H) is also given in each case, this
being obtained from the optimisation curves in chapter 6.
The table shows that the beams tested spread over regions
before, close to, and beyond the peaks of the damping-versus-
shear parameter curves for various values of the thickness
ratio and the material loss factor (see chapter 6).
flaterials with widely differing properties have been used,
as for instance, a relatively soft viscoelastic material,
evoseal, and a fairly hard one, velbex P.V.C. 6 Also, for
the five-layer beams, various combinations of materials

and geometry were tested.

The generally good agreement obtained can thus be
regarded as a satisfactory check, over a wide range of
properties and geometry, on the theory developed for
symmetrical three-layer and five-layer beams, and, in

general, for symmetrical multi-layer beams.
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CHAPTER ©
AN INTRODUCTION TO THE DESIGN STUDY OF

SYMMBETRICAL MULTI-LAYER BEAMO

Introduction

It will now be shown how the foregoing analysis can
be applied in the design study of multi-layer beams.
Systems with harmonic excitation will be considered, and
the general treatment will be illustrated with the specific
case of cantilever beans subjected to displacement forcing
at the root. For simplicity, strain amplitude dependence

will be neglected.

The parameters for the study of the resonant
responses of multi-layer beams are first established, and
the general nature of the dependence of the damping and
the stiffness on these variables is predicted from the
differential equations. Illustrations are then given
with a detailed ‘study of the stiffness, danping, and reso-
nant amplitude responses of three-laver cantilever beams.
Results of studies carried out on five-layer beams are also
presented, chiefly to demonstrate how they can be used as
an improvement on three-layer beams. Various applications

of the results of this study are illustrated.
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6.1. Theoretical considerations

6.1l.a. Relevant parameters

Consider first the three-layer beam. On neglecting
strain dependence, the differential equations for the beam
are as given in equations 4.l1.xv. In this preliminary
discussion, the extensional damping terms (already Shown to
make little contribution to the system damping for most
practical cases) are ignored. Also, the contribution of
the viscoelastic extensional terms (i.e. the terms
containing the in-phase Youns's modulus of the viscoelastic
material as a factor) to the coefficients of the differential
equations is assumed neglible. The consequences of these
assumptions and their accuracy are exanined at a later stage.

Assume, to begin with, that the thickness ratio, H,
and the material loss factor, n, + are kept constant. Then,
from equations &4.1l.xv, it is seen that as the forcing
frequency, the material properties, and the beam length are
varied, every other coefficient of the differential - L
equations remains unchanged except V,, (= 12)4), and
Bi*. Tor any siven values of B,» VY, and the modified
forcing function, p, = ﬁ%;ﬁﬁv, there is only one solution
to the equations, no matter the actual values of the

material properties, the beam geometry (for a given H), and

*For the definitions of these symbols, see equations
4.1 .xvi, 4.1.xvii, 3nd 4.1l.xviii.
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the forcing frequency. It follows, therefore, that the
dynamic state of the beam is uniquely determined by the
quantities, H, 71, Vi o 51, and Pp- Any response of the
beam can thus be expressed as a function of these five
variables. In particular, a "typical" displacement
amplitude of the beam (e.g. the tip displacement amplitude
in the case of a cantilever beam) can be expressed as,

aT = fa(nf,H, V1, ‘Bf’pm) o------oo-.6oloi.

The geheral functional notation, w. = fw(uuth,uy «..), used

1
throughout this chapter, is meant to designate that w; can

be expressed, implicitly or explicitly, as a function of

the variables, u,,uz,uz ...etc.

If resonance* is defined as the state at which this
displacement is a maximum in the immediate neighbourhood
on the frequency axis (which, for any siven geometry and
material properties, is parallel to the B axis), then, the
resonant state is given by
f'a(fL,H,l/,,IBon,pm) = @a—;‘: = 0 ........6.1.ii, where
F%", the value of Fﬁ at resonance, defines the resonant
frequency at the n-th mode being considered. Using the
functional notation defined above, equation 6.1.1i1 can be
put in the form, fB,, = fb(rL,H,)4,pn) ceesebliiin

From the above reasoning, the beam loss factor, which

*Other methods of defininsg resonance can be employed
without prejudicing the argument presented in this section.
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has been defined in terms of energy ratios at a resonant
frequency (see section 4.6.b), can also be expressed as
an = fz(VZ,H,14, B 2Pgp) ceseeabaliiv.
It is possible fo eliminate B,, from equation 6.1.iv, using
equation 6.1.iii. This gives fkn = ﬂ?(\4,H,q',pm) «.6.1l.ve
In other words, the beam loss factor is uniquely determined
by the four parameters, )} , H,)% s P

These four quantities, along with F%m, constitute the
relevant parameters in the general study of the resonant
responses of three-layer beams. )}, has already been called
the "shear parameter". ﬁ%n is called the "resonant frequency
factor", or simply the "frequency factor", there being
very little risk here of confusing it with ﬁ,(the non-
resonant frequency factor). The inclusion of ﬁ” as one
of the parameters may appear superfluous in view of
equation 6.1l.iii. However, it will be seen later that
under certain conditions, it is very convenient to use it
as one of the independent variables for characterising the
damping response. The presence of thé modified forcing
function, D, a8 2 basic parameter is significant. It
shows that, in seneral, the damping (in fact, any response)
of the structure is a function of the forcing function.
The nature and significance of these parameters will be
examined in more detail later.

In its general form, the argument presented above
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is applicable to beams with more than three layers. The
only additional complication is that the number of
parameters increases with the number of layers. For
instance, for the symmetrical five-~layer beam, the frequency
factor, Bon? and the beam loss factor, Ykn’ can each be
expressed as 8 function of the six quantities, Hi,H,,e, V4,
qf and Ppe Hence these variables, together with ;%n, form
the seven parameters associated with the design study of

five-layer beams.

6.1.b. Parameters for systems with constant fofcing

function.

From the argument presented in section 6.l.a, it is
seen that the parameters on which B.q, aqd an depend céan
be classified into two groups: parameters external to the
vibrating system; namely, Py and parameters which are
inherent to the system, for example, q’, Hy and },, for
the three-layer configuration.

In general, for any given configuration, it is not
easy to seperate the effects of these two sroups of
parameters. \VWhen, however, the forcing function is
independent of the position along the beam, this separation
is readily achieved. For instance, with a uniformly
distributed force (of constant amplitude), the modified
forcing function is a constant for any given system, and

so can be easily eliminated from the equations (e.g. by
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division). Also, for systems subjected to displacement
forcing, the modified forcing function is directly
proportional to [, (see section 4.2.c). Hence, at
resonance, it will also be proportional to @n, and can,

therefore, be eliminated by replacing it with For

on®
systems such as these, the frequency factor and the beanm
loss factor can, from equations 6.1.iii and 6.l.v, be
expressed as,

Bon

7ﬁm = ga(qf,ﬂ,\4) cseseesbel.vii, for the three-layer

L

fpo,,( '71 ,H, 1/1) -------6.1.Vi, aﬂd

configuration. In other words, the system damping, and
any resonant response, can now be expressed in terms of
only the parameters inherent to the system; it is.thus
possible to study the effects of these parameters on their
own. The rest of the general theoretical considerations

will be restricted to such systems.

b.1l.C. Variation of the beam loss factor and the

frequency factor with the system parameters.

In the design study of multi-layer .beams,.two
quantities are of special interest; namely, the damping
and the dynamic stiffness. In this Work,7z;and fin are
taken as measures of these quantities for any mode, n. It
is possible to obtain some idea of the nature of the
dependence of qm and ém on the system parameters, purely

from examination of the differential equations. Once again,
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for simplicity of illustration, the argunents presented
are centred on the three-layer confizuration.

The shear parameter, Vi.

Consider first the shear paraneter, . Assume that
LA and H are held constant. Then, at very low values of
Vi (i.e. as Yy—+0Q), the damping terms of the differential
equations become very small, and equations #4.l.xv tend to

o 3 MDUet DXy = O
: x 2 N ....G.I.Viii,
(D* - BV + 64D¥a= O 3 DV v Die 0

(o* - Bidu, + X DKoy = D

pmc, being the now constant modified forcing functiorn.

The disappearance of the damping terms inplies that no
enersy dissipation occurs, and hence, that the loss factor
is gero.

The zolution of eguations 6.l.viii, for any boundary
condition, gives
(a) v = Yoy = O ; in other words, the guadrature components
of the displacement and the shear deformation disappear; and
(b) u, and X,, the in-phase components of the displacement
and the shear, become infinitely large at the resonant
frequency defined by B, = k';(l - 0aMy)  L...6.1.ix,
where kg is the freguency factor for a plain undamped Tuler
beam. Thus, for simply supported beans,
k = n1r , 0 =1,2,%,... 3 for cantilever beams,

1.875, 4.694, .....5 and so on.

e
[

Interpreted physically, the above result shows that



306

for very short beams or beams with very soft viscoelastic
layers, the shear deformation and the displacement become
very large at resonance; but they are both in phase (or
anti-phase) with each other and with the exciting force, so
that no energy loss occurs. Equation 6.l.ix defines the
resonsnt frequency for the limiting case of a sandwich beam
made up‘of two similar elastic layers, spaced apart as
hitherto, and vibrating in phase. Incidentally, equation
©.1.ix also gives the lower limit of the frequency factor,
Bon »+ for any three-layer beam of the given thickness ratio,
H.

Again, as )/ tends to infinity, it is seen from
equations 4.1.xv, that X, and Yo (and hence their derivative@,
tend to zero, with the equations reducing to
(o* - B

This is clearly the Euler bi-harmonic equation for a plsin

pmc ., and D“v’o = O ...‘10601OX0
undamped beam, and the solution gives the displacement as
infinitely large at the resonant frequency defined by
Bon = kI ....6.1.xi.

The above result can also be interpreted physically.
For very long beams or beams with very stiff viscoelastic
layers, very little shear deformation occurs in the visco-
elastic layer, and hence the damping is small. The beanm
behaves more like a plain solid beam. Equation 6.1.xi gives

the upper 1limit of the frequency factor for sandwich
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beams.

As y, increases from zero to infinitv, the bhean
loss factor must pass throusn a maxinuun (or maxima) at
some intermediate value of ), . 1t will in fact be sezn
from the specific cases considered later, that only one
penk occurs in the dsmplng-versus-shear p=raneter curve for
the given mode; a fact which intuitiocn would have lel one
to anticipate. Also as )/ varies from the state of "infinite
shear"™ (V = 0) to the "shear-free" state (¥ =00) it is
reasonable to expect the frequency factor,ﬁm,to increasge
continuously from its lower to its upper limit.

The material loss factcr, A

Jt is best to consider the effect of the material loss
factor v, by first examining what" havpens when the shear
parameter y, is varied, keeping i) and H constant, as in the
above discussion. Another look at the differential equations‘
4.1.xv will show that the onlv coefficient that is ~ffected
by a variation in Vy, is O/(= MV ). B, m2y also be 3ffected,
but it is an arbitrary coefficient, since it contains the
forcing frequency,W. In any case, for any value of V¥, it
has to be varied until the resonant condition is reached
before the beam loss factor (and the rsesonant frejuency
factor) can be obtained. -

4s ¥, is increaseli from zero, g, increases, and so does

the beam loss chtor.vkn; and 3t some values of ¢; and Vi
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", 2ttains its maximum value. Further increase in V, and

O/ leads to a drop in 7 . Now, the rate at which Of increa-
ses as )/ increases is evidently determined by 7). When Y]l = 0,
the system damping is zero, and the 'qm-verSus-)ﬁ curve
coincides with the 3/ axis. For very small values of g

the enersy loss in the system is small, so that the overall
damping is small. Also, as )}/ increases, (, increases

rather slowly; cons=2quently, the value of 1V, at which the
maximum ﬁL'occurs is relatively high. On the other hand,

as )}/, becomes larger and larger, O] approaches infinity
rather slowly, so that the damping tends to zero rather
gradually. Tor high values of Q s, O, increases rapidly with
V,; hence the peaks of the damping curves would be expected
to occur at smaller values of V. Besides, for a given

value of'»{, o; tends to infinity at a much faster rate, so
that the dauping decreases to zero more rapidly.

It follows, therefore, that for a given thickness ratio,
the 7] -versus-)| curves, for various values of the materiasl
loss factor, will <et peakier as q’increases, the peaks being
at the same time displaced towards the axis,V,=0. Also, at
sufficiently large values of the shear parameter, the curves
will intersect giving rise to regions where it is possible
to obtain a higher Qm with a smaller Q .

The effect of the material loss factor on the frequency
factor, Bwﬂ can also be siuilarly argued. 1t has already

been postulated that the frequency factor increases
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as Vv, (and henc:, ;) increases. Since, “or anv V,, oy
increases with incresse in 7z, it follows that the freauency
factor will also increase with 7 . tence, the szraphs of

the frequency f=ctor against the shear parameter (at a
constant thicxness ratio) wiil all start and end a3t the
limits alrendy determined, in ecuations 6.1.ix and 6.l.xi
but the curves for hisher values of " will tend to tne uprer
limit much more rapidly.

Thicrxness ratio, H

It 4s rather difficult to deduce Irom the differential

egurbions now the thicknes: ratio, t, 2ffe.ts the beam

loss [actor and the frejuencs pacaneter, since all the
coefficients of the eruztions (inclidingy, and B) depend on

f . [From purels phvsical considerations, hovever, it +ill
be éxpected that for given values »ry,and 7, the beam
daaping will increase as the thickness ratic (which is 3
n1easure of the volume of viscoelastic materizal in a 3iven

volume of the beaw) increases.

o.1.d Variation of the beam loss facior with the frequency

factor

In eyuation ©.l.vii the beam loss factor qm has been
expressed‘as a function of 7, i, and V, . It 1s, however,
possible using equations ©.l.vi, to expres. it in terms
) » H, and B,: thus usins ﬁm 95 2 basic parameter in

place of )/ . When this is done, 1t is ensy to deduce the
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shape of the resulting fb;versus-gi curves (at constant 7) and
H) from the predictions above. For instance, it has been
stated that as )}/ varies, the frequency factor increases
from k;(l-4M#D to kg, while the beam loss factor increases
from zero to a maximum and drops gradually to zero once
more. Hence, curves of Y] -—versus-P will start at

%n = k;(l-wmup, increase to a maximum at some value of fF _,
and then terminate at f, = k.

Although the above discussion has, for simplicity,
been particularised to three-layer beams, much of the
reasoning applies equally to higher order beams. For
five-layer beams, for instance, the nature of the dependence
of the beam loss factor and the frequency factor on the
shear parameter and the material loss factor, for given
values of Hy, H;, and e;, is the same as discussed above.
The effects of the other parameters can be examined on
similar lines.
Some of the general trends predicted above were

arrived at by Mead, by considering the solutions obtained
from analysis of three-layer simply-supported plates [§2,6£] .
However, the treatment given here is quite generaly, and the
deductions have been made straight from the differential
equations. Hence they apply to beams of all boundary

conditions.
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©.1l.¢ he nature of the parameters — three-layer be-=n.

The parameters established above for the desian study
of three-layer beaws are n 1L Vv, and B, . Of these, the
thickness ratio, H, and the material loss chtor,vz,need no
further introduction.

The shear paroneter, VY , apart fromn dependinzy on the

-~

- . . . , . J

tiilckness ratio, is proportional te tle ratio, E‘, and the
£ z

Scuace of the ratio, D= . It is thas entirely Jdependent
42

on tiie beam -seoanetry and material properties. Its importance
lies in the fact that for given values of H and M, 1t
unliizel7 determines the system resonant resionse no matter
the values of the anaterial properties or the bean .
dimensions.

The frequency factor,ﬁaﬂ has alresdv been reqarcded
s a neasure of the dynamic stiffness of th: beam. This is
because, for siven beam seonetrv and properties, a higher
value of g" means 2 hither resonant fredquencv. ﬁm can
also be looked upon as a measure of the "stete of shesr
deformn-tion" of +the beam. It has been showvn in ecuations
©.l.ix and 6.l.xi that, for sandwich beams, B, varies
between the limits, k;(1—- &, M) and kg, correzvonding to
states of infinite shear and zero shear respectively, in
the viscoelastic layer. For any jiven ql and tI, therefore,
a hizh valie of B, implies swuall siear defcraation in the
viscoelactic mnterinl, In otner words, the sreater the

snear def.rmation in the viscoelastic nateri=2l, the
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more is tue reduction in the stifiness of the beam. It is
eaphasised that B is not a 'basic' parameter, since it
depends not only on the material property and meometrvy, but
alsc on the resonant fre.uency which 18 not usually known

a priori. Its inclusion as a2 design par=meter stens from
the fact that, guite often, it serves as =2 convenient

bese for analysing the damping response. Besides, if the
shear parameter is not known or easily determined, B, can
be enqsily obtained experimentaliy and used as 2 neans of
evaluating } (sce section 6.2.c).

It is significant that the only =material properts
w#nich appears explicltly as a paraneter is 7 - The other
properties anpear in the parameters V and @m as ratios. It
is thus possible to vary them, without affecting the system
resonant response. Llor instance, for a given thickness
ratio. i, the in-phase shear modalus, G, and the Young's
nodulus, bE,, can be incressed by the szme ratio without
causing agv-cnanqe in V,, and hence, in the svsten danping
and freguency factor. Besides, since these material
properties appear in parameters which also depend on the
beam <eonetry, it is possible to eliminate the effect of
a clhianse in properties with a suitable alteration of the
beam seomnetry. Tous, for a given i, if the in-phase shear
nodulus, &, is incressed to four times its value, and

tne bean length is halvad, tne shear paramneter, \4(and

el N g
hence, anv re¢sonant resronse of the systen Inor 3 glven 7‘)
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will remain unaffected.

It may be noted that the dependence of tne shear
modulus, &, on tempersture and frequency does not affect
tne considerations asbove. 4 varistlioan in the temperature
(or freguency) merel:; alters the valae of V,, leading to

a corresponding chanze in the sysbel resonant respgonse.

Danvinz efficiency

The bean losz factor, q , h:3 been snoin to be a

on

function of tae 1aterial loss lactor, YL. To be 2ble 1o
assess tne usefulness of 2 yiven naterial los. factor, in
incrensing the danping response, a "doaping efficiency™™

is defined as the ratio of tuae beam loss [actor, ﬁ;ﬂ to tua

aaterial loss factor, TL.

6.2. Desizn studs of three-laver cantilever teams with

disnlacement forcints at the root.

6. e3. Optimisation curves for the first ninde

The <eneral considerations jiven in seciion L.Ll. wWill
noye be illustratel with Lie study of Lile resonant responses
of three-layer cantilever heamns subjected to disnlacement
forcing at Lhe root.

Fig. 6.1. shows the variation of the benn loss factor,
Moy the frequency factor, ﬁ”, and the tip displacenent

amplicude ratio, Ta’ with the shear paraaseter, V, , at a

*This ratic is referred to as "the relative loss factor"
Dyotise, i0gdrly ANd nerwin Eﬂﬂ.
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constant thickness ratio, H = 0.5, and for various wvalues of
the material loss factor,vl . The graphs are for the
first mode*.

As already anticipated, each damping curve passes
through a maximum at a value of V, which decreases as the
material loss factor, 7, » increases. It is also seen that
the higher the material loss factor, the greater the maximum
value of the beam loss factor. The curves for higher
values of 7) are seen to drop more rapidly beyond the peak,
intersecting with the curves for lower values of TL. Hence,
there exist regions of the curves where a high material
loss factor is, in fact, a disadvantage as regards the beanm
damping response. For instance, at ¥y = 170, it is seen that
a material loss factor of 2 gives more beam damping than
a value of 5; at V; = 6, more beam loss factor is obtained
with a material loss factor of 0.5, than with a value ten
times as large (5.0).

The B,~curves are seen to rise gradually at first, and
then more rapidly in the region of the peaks of the damping
curves, and to gradually approach the uprer limit €12.36).
For any given value of;the shear parameter, the frequency

4

*The values plotted in all the graphs presented in this
section were obtained by solving the differential equations
(the viscoelastic extensional terms being included) as
described in section 4.2, and calculating the beam loss
factor in the manner indicated in section #.%.b.
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factor increases with the material loss facton ", > the
rate of incresse being greatest in the region of the
danping oveaks.

It may be remarked that the damping and stiffness
curves remind one of the displacement and phase resonance
curves for damped beams. The trends are, of course,
opoosite, the curves for aigh values of n behaving like
the response curves for lightly d=amped svstems, and vice
versa.

s would be expected, the tip amplitude curves behave
in the op:..osite manner to the dampin~s curves, having their
minimum values at about tne same values of v, as for the
peaks of the corresponding dnmpin<s curves. This,
incidentally, shows that the beam loss factor, as defined
here, is a3 fair reflection of tae tip amplitude, a point
whici #i1l be considered in mnore detail later.

Fim. 6.2 shows the beam loss factor,qﬂ, plotted
asainst the frequency factor for the same thickness ratio
H = 0.5. An interesting feature of the curves is that,
for a =iven 4, the maxinum loss factor occurs at the same
value of P, , no matter the value of the naterial loss
factor. It has 2lready been stateu that the fraquency
fiactor can be resarded as characterisiny the state of shear
defnrmation in the bean. The above observation, therefore,
implies that, for any given thickness ratio, there is 2

uniqQue state of sthear at which the mawxinum dampln<
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obtainable with that configuration, occursy and that this
state is unaffected by the material loss factor: It is
also seen that the curves for various values of n do not
intersect each other, which implies that, Jjudged on the
basis of equal stiffness (i.e. B, ), a beam with a higher
material loss factor, ) , will also necessarily have a
higher beam loss factor,7”),. These facts wouldznot have
been very obvious from fig. 6.1 - a justification for
including B, as a design parameter.

Curves similar to those given in figs 6.1 and 6.2 can
be obtained for various values of the thickness ratio, H.
This has, in fact, been done for three other thickness
ratios: H = 0.1, 1.0, and 2.0, as shown in figs 6.3 to 6.8.
From these graphs, it is possible to plot the maximised

beam loss factor,qo1 against the thickness ratio, H,

opt?
for various values of the material loss factor,vl . Buch

a graph is shown in fig. 6.9. The graph shows that the
maximum beam loss factor increases as the thickness ratio
increases, a trend which has already been anticipated.

Also shown in fig. 6.9 is the variation of the shear
parameter, )/ > and the frequency factor, ﬁxopt’
corresponding to the maximum beam loss factor, with the
thickness ratio. Both quantities are seen to decrease with
increase in H.

The maximum beam loss factor is also plotted against

the material loss factor, q,, for various values of H, in
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fig. 6.10. The fizure also contains curves showinz the
variation of the maximised dampinz efficiency, Teiopt | ma
the shear parameter, \4opt’ at maxinum loss factér, with
q‘. As the material 1loss factor increases from zero,
the beam loss fsctor also increases. £An interesting
feature of bthe curves is that whilst the maximnum beam
loss factor increases with the material loss factor, the
maximised danmving efficiency shows an opoosite trend.
Thus, althoﬁgn more dampinz is obtained with a hisher
material loss factor, better use is, in f=act, made of the
nateriasl loss factor at its smaller rather than its higher
values; in other words, the law of diminisainz returns
hold:es The maximised danpin; efficiency curves tend
towarde finite values at % = -0, for each thickness ratio.
These limits are difficult to establish for the zeneral
case; but their presence implies that the maximum efficiency
obtainable with a =ziven daunping treatment is limited by
the beam smeometry. The greater the value of H,(i.e. the
thicker the damping laver compared with metal layers),
the ~rester is the danmpin; efficiency obtainable.

The shear vnaramneter at maximnun bean loss factor

is s=z22n to decrense as Q‘increaSes, 15 ¥ predicted earlier

in section b.l.cC.
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6.2.b Investiwation of the hicher modes

Graphs similar to those given in section 6.2.a for
the first mode, can also be obtainel for the higher modes.
The natural question to ask is: is there any simple
relation between them? To investigate this, it is noted
that two of the parameters, namely, B,and )| , contain the
beam length, L . It se=ms logical, therefore, to attempt
to replace this with a 'characteristic' length for each
mode, and to examine whether the resultin<g paranmeters
uniquely determine the systemn resonant response.

One method of approach immediately suggests itself.
For the n-th mode, 8 = gﬁgélf(from equations 4.l.xvi),

where W,, is the n-th mode resonant freauency. This can
L
[
from which it can be seen that it is possible to define a

2
on 4 >
be written in the form, Eé%—( ) =1 eei.... 62415

"characteristic length", gc, for each mode, such that the

frequency factor is the same at all modes. This characte-

ristic length is thus given by £c==-£z cesses O.2.11.

on

1f l. is used, instead of L , in the definition of the
shear parameter, a *e¢hepateristic shear parameter",

Vo = J% ceces.s.6.2.1ii, results. The beam loss factor,

on
v,, » ¢an now be expressed as a fanction of ¥ (instead of V),
H and m . Is this relation independent of the mode? 1In
other words, for fixed values of H, and VL, is there a

unijque relationship between 7, and V. ?



329

For a beam-whose absolute digplacement and shesr
deformation amplitudes are sinuséddally distributgd»along
its length at the resonant frequency, it can be Shdwn
(see Avpendix III) that the beam loss factor as defined
here is, in fact, a unique function of the characteristic
shear parameter, V.. This is in agreement with the analysis
of Kerwin et al [B1,44,47]**, and of Mead [62,63].

This is, however, not so for the genersl case. Fig.
©6.11 for instance, shows the beam loss factor for the
first three modes, plotted against)4;vzand H being kept
constant at 0.5. The graphs are for a cantilever besan
sub;jected to diSpla%ement forcing at the root. A similar
set of graphs is also given in fig. 6.12 for the first two
modes, H, and Y/ beins held constant at 0.5 and 2.0 respect-
ively. It is seen that these curves do not overlap; and
that the maximum beam loss factor is slightly different for
each mode. In other words, the beam loss factor is not.=a
unique funcfion of the characteristic shear paramneter, ), ,
in this case.

The reason for this is not difficult to appreciate.
The beam loss factor as defined, depends on the mode shape
of the beam at resonance. For a cantilever beam, and
indeed for most other damped beams, the mode shapes,
especially at the lower modes, are distinctly dissimilar.

It is, therefofe, not easy to choose a characteristic

**See foot note next page(i‘e' page 332)
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length which will be a true raflection of the beam shape .
for all modes. The characteristic lensth is defined here
from consideration of the resonant frequency factor. It
will thus not necessarily be truly "characteristic" of the
mode shapes. It would be truly characteristic in the
special case mentioned éarlier where the true mode shape
of the beam was a number of identical sine waves. This is
the basic assumption underlying the analysis of Ross,
Ungar and Kerwin (and the "normal mode" approach of Hesd),
and hence explains why they obtain a unique damping relation
for all the modesﬂ In tanis regard, it is clear that their
an2lysis cannot be applied to the lower modes of cantilever
beams with good accuracy.

Although the dampin% curves do not overlap, it is
seen that for values of ¥ far from the peaks, they are
fairly cloée to each other. The differences are more
pronocunced in the resion of the peaks. For instance,from
fig. 6.11, the ma<imum error.in the damping, in assuming
that the second mode curve is coincident with the first
mode curve is about 16 per cent (at ¥ = 0.%). Similarly,
for the third mode, the error is about 12 per ce:rt

(at V, = 0.6). Vihere a larse error may result is in the

**7he "erwin shear parameter (which is a half of the
reciprccal of the 'Mead shear parameter' for a beam) is
different from the characteristic shear parameter defined
here. Both definitions are, however, simply related; and

the above condition holds good in each case (see Appendix III)
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exact location of the danping peaks. For instance, still
referring to fig. 6.11, the assumption of coincidence of
all the curves with that for the first mode, would lead to
errors of about 80 and 25 per cent in the location of the
second mode and third mode dampins peaks respectively.
Luckily, however, the damping curves (at any rate, for
moderately low values of the material loss factor) have
fairly broad peazs, so that a large error in the values

of y. involves a much smaller error in the beam lo:cs
factor.

The near-—-equal values of Qn(at a given V. ) for these
modes permit some general observations to be made. For
any given beam, Y.(= ﬁ%i) will normally decrease as the mode
number increases. Tn;s is because gf is directly
proportional to the resonant freque:cy; and although V,
may increase with frequency (owing to the frequency-
‘Bdpendence of the shear modulus, G, ) its rate of increase
will usually not be as rapid. It foliows that if a beanm
is desisned so that, at the first mode, it is at the peak
of the damping curve, then the higher modes will nqvé
progressively less d-mpinc than this mode, unless the
material loss factor increases sufficientlv rapidly with
frequency to counter the effect of the decrease in V..
Similarly, if it is desired to design a besm so that the

higher modes are highly damnped, it would be necessarv to
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ensure that at the first mode, the shear parameter is nuch
gsreater than that for maximum dampin~.

These observations are borne out by the experimental
results presented in section 5.5 (chapter 9 ). Reference
to table 5.c will show that beam 5, for instance, has at
the first mode, 8 8hear parameter of 2.09 which is much
sreater than the optimum (C.88). From the tip amplitude
response curves for the beam (fig. 5.6a), it is cliear
that the higher modes (second and third, at any rate) are

nmore damped. (The material loss factor for P.V.C. varies
very little with frequency, - sSee the section on material

prorerties, chapter 3 - , so that its dependence on frequency

Pas regligible effect nhere). On the other hand, beam 4
has a shear parameter close to the value for maximum damping.
From its resonance curves (fig. 5.9a), it is seen that tLhe
resonant tip amplitude ratios for the 2nd and 3rd modes

are of the same order of magnitude, and not much different
from that for the first mode, implyinz that these hiczher
mudes are progressively less damped.

Figs 6.13% and 6.14 show the resonant tip amplitude
ratios (corresponding to fiss 6.11 snd 6.12 respectively)
plotted against the characteristic shear parameter. AsS
would perhaps be expected, the curves lie one above the other,
in spite of the fact that the corresronding damping curves

intersect. Thig is due %2 the fact, already menticned, that
Y
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for any given beam loss factor, the tip amplitude ratio

becomes less as the mode number increases.

GaloCo Application of the graphs

There are many ways in which the optimisation curves
of the last section can be applied. An obvious one is in
the design of beams to satisfy some damping and stiffness
requirements. The problem can take several forms, such as:
(a) the choice of a suitable geometry, for given material
properties;
(b) the choice of a suitable material, for a given geometry;
(c) the choice of both material and geometry, but with some
restriction on, say, weight, length, etc.
The procedure adopted in most cases is usually straightforward.
Besides, this aspect of the design study has received
fairly wide treatment from previous investigators (e.g.
Kerwin et al [A?] and Mead [62]). It will, therefore, not
be dealt with in detail here.

One point, however, needs some mention. If the
viscoelastic material properties are frequency-dependent
@s they invariably are), a "trial and error" procedure
has to be adopted if the resonant frequency is not initially
specified. To illustrate how this can be done, consider
the following problem: The cross-sectional dimensions
and the material properties of a three-layer beam are

given; and it is further specified that the beam loss
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factor at the n-th mode should not be less than a
prescribed value. It is desireld to find a suitable
length, and the corresponding resonant freguency.

The problem can be tackled in the following manner.
Choose a trial value for the resonant freiuency, and from
the information on the viscoelastic material properties
given, obtain the corresponding shear modulus, G;, and the
material loss factor, n - Use this value of 7 anl the
given thickness ratio of the bean, 3s well as the
optimisation curves for the n-th mode (assumed available),
to deterwine tne shear parsmeter, ) , and the fre juency
ﬁactor,én,corresponding to tne siven value of the beam loss
factor. From this shear parameter, V, , and the above shear
.nodulus,Gﬁ calculate the correspondin~ lenzth of the bean.
Use this length and B, .to calculate the corresponding
resonant frejquency, Wy . If this is different from that
assumed initially, use it as a better approximation and
repeat the process until an initiallv =2ssumed frequency
and the calculated one are apvroximately tne same.
Convergence »ill usually be rapid since the variation of
the material properties with frequency is normally slow.

The optimisation <raphs can also be employed in the
estimation of the viscoelastic material properties. All
that is necessary is that the seometry of the éystem, the

resonant frequency, and the tip amplitude ratio be known.
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The last two can be determined very readily by testin< a
ziven length of the beam 3s a cantilever beam subjected

to displacement forcinz at the root. Suppose, for instance,
that such a test on a three-~layer beam, of thickness ratio
H = 0.5, gave an amplitude ratio of 1%.0 2nd a first mode
resonant freguency such that B = 2.02. Then, to

deternine the properties, it is only necessary to find,
from the graphs for H = 0.5, (fig. 6.1) the loss factor,?,
and the shear parameter corresponding to the givan
amplitude ratio and frequency factor., This 1is readily doné
by interpolation, 8s illustrated below.

As a first trial value, take 3 material loss factor,
no= 0.5. From the ﬁl—versus-vﬁ curve correspondinzg to it,
it is seen tnat when B, = 2.02, ¥ = 0.15. Also from the
tip anaplitude ratio curve, when Ta = 13, V, = 0.12. The
difference between these twio values of V is 0.05. Next,
%aKe a material loss factor, 7}, = 1.0. From its B, curve,
when B = 2.02, V, = 0.09 ; and from its T, curve, when
T, = 13, VY, = 0.058 ; giviny a difference of -0.03%2
betreen the two values of '% . Interpolation between the
two differences gives ) = 0.75. It is, in fact, seen
that ’1 = 0.75 and B = 2.02 gives Ta = 1% and also
W = 0.1. Since the beam dimensions and other matertal
properties are known, the shear modulus, G, , can be

calculated from ‘W . ‘The shear modulus and the loss
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factor of the viscoelastic material et the given resonant
frequency are thus known.
It may be remarked that the best portion of the curves

for this purpose is the region immediately befolre the peaks
of the damping curves. At very high values of V), the curves

begiﬁ to intersect, and interpolation becomes rather
difficult. In an actual practical case, it would be
necessary to start off with a falrly long beam to locate
the working position on the curves. The beam can then be
shortened appropriately to get it to the regioﬁ where
interpolation is best. Moreover, frequency-dependence can
be examined bv sulitably choosing thickness ratios, and

then shortening the beam lengths progressively.

Phe obvious ﬁisad&éhiége in using this =as a method of
determining the material properties is that it does not
take account of strain effects. It is thus not suitable
for the accurate determination of the material properties
of viscoelastic materials with very pronounced strain-
dependence. On the other hand, it has the advantase that
it can be used to determine the properties of viscoelastic
materials as bonded, so that the properties of the bonding
agent are taken into account. This ¥s particularly
important if these material proverties are to be later
used in predicting a given response of the beam accurately.

Besides,; the set-up for the test is very simnle and requires



very little instrumentation.

The above design study has yet another impoptant
application. This comes in the prescription of laws of
frequency-dependence for viscoelastic materials, an essential
prerequisite in the process of the "tailoring" of these
materials. The basic philosophy recognises the fact that
frequency—-dependence is inherent in viscoelastic materials;
and that it is possible to influence the nature of this
dependence quite considerably by chemical and physical
processes well under the command of physicists and chemists.
It then sets out to examine whether it is indeed possible
to put frequency-dependence to advantage, and if so, in what
ways. Two examples will be considered, as an 1llustration
of the approach.

ouppose it is required to design a three-layer beam of
a given thickness ratio, H, mass per unit length, m, elastic
layer thickness, h,, and Young's modulus, E, ; such that
the damping at any given mode is independent of the bean
length. What law of frequency-dependence snould the
viscoelastic material have?

To start with, assume that the material loss factor
is frequency-independent. Of the system parameters, only
Y; and ﬁm contain the beam length, L. From the optimisation
curves for fixed values of H and ”),, it is seen that for
any value of the shear parameter, Vi, there is only one

value of the beam loss factor, ] . If the beanm lengtin, 4,



342

varies, YV, also varies being proportional to {2 s and hence
the beam loss factor, "), , changes. If M., 18, therefore, to
remain constant as £ varies,it follows that ¥V, must also
remain fixed for sll values of £ : which implies that

£*G{ = constant ......6.2.iv, since E,, H, h,, are all
constant. Again, for any V,, there is only one value of
gﬁ, so that if V, is to remain constant, g  must also
remain constant ass { varies, i.e. R, = EwT:-I!i = constant,
for all £ ; and since Z: is constant, it follows that

ﬂﬁh[+ = constant ......6.2.v. The variable, £ , can be
eliminated from equations 6.2.iv and 6.2.v to give the
condition G = K%U%n ceeee.b.2.vi, K% being a coﬁstant-
Hence, to achieve the desired condition, the shear modulus
must be directly proportional to the frequency'aﬁd the
material loss f=ctor has to be frequency—independent. For
such a beam, the resonant frequency will be inversely
proportional rto the square of the length (equatipn 6.2.v)
as in the case of 3 plain undamped be m.

As a second example,(example 2, for short), consider
an even more pracltical problem. OSuppose it is required to
design a beam (of ziven dimensions and elastic layer .
properties) woich is such that its beam loss factor is the
same for all modes. What law of frequency-dependence should
the viscoelastic properties obey?

Assume once more that the material loss factor does

not vary with frequency. Then, the method for obtaining. ™+
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the exact solution involves the following stens. For the
given beam thickness ratio and the assumed material loss
factor, obtain for each mode, the graphs of the beam

loss factor, QM, and the frequency factor, ﬁ

.+ 333lnet

the shear parameter, VY, . For the given constant 7, ,
obtain from each set of curves the correzpondiny values
of ¥, and B,, . Using the ziven beam dinensicns, calculate
§{ from V, and wh from B . Do this for all the modes.
L zrapn of G:;gainst Wh zives the reguired 1aw.

It is, however, possible to obtain san ap  roximate
and siapler solution, by =2ssuning that tae curves of the
benn logs factor against the cheracteristic shear parameter,
V., are the saae for all the modes. It has 1lready been
shown that although tnis is not true, the error is nont
very appreciable. If this is done, then the only require-

ment for a constant beam loss f4ctor for z2l1ll modes is that

v - Y

" constant «.eee.b.2.vii: 1nd since, for a given

bean, g&, m, £, H and hp are constant, equaition 6.2.vii
reduces to U = KWU%n casaseaab.g.viii. In other words,
the in-phase snear modulus must bhe provortional to the
resonant frequency, a condition which is definitely
satisfied when the shear modulus, G , is directly propor-
tional to the frequency.

It is thus seen that a three-layer Lesm whose visco-

elastic layer has a shear modulus varying in direct



344

proportion with the freqguency, will have, not only 2 'modal'
beam loss factor that is independent of the length, but
also, for a given lersth, a bteam loss factor that is
approximately independent of the mode; provided the

materizl loss factor, '), , is constant with frequency.

It is possible to think of similar oproblems, and.to work

out the laws to satisfy the desizsn requirements; but the
above cases serve to illustrate the method of approach.

In the two cases considerei, it has been acsumed that
the material loss factor is frecuencv-independent. It has
been mentioned earlier that the material loss factors for
many viscoelsastic materisls vary only slightly with
frecuency. uch an effect would, therefore, only cause
a slirht variation irn the design condition being sousght.

In any cose, if it is rejuired to take 7ccount of the
frequency-dependence of the loss factor, this can be done
using the optimisatisn curves. o obtain a3 unique solution,
it would be necessary to first pres~ribe one of the follow-
ing:

(2) the frejuencv-dependence of the loss factor, 9, ,

(b ) the frequency-dependence of the shear modulus, G, ;

(c) some relaticn between the shear modulns, G; and the
material loss factor, /A

As an illustration of the method of approach, Suprose

that in example 2 considered earlier, instead of a
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constant‘%, a relastion between G:and'Zis specified. Then
the procedure for plottins the freguencv-dependence curves
is as follows: Choose a value of ™), and calculate the
corresponding G. Go to the .amping curve corresponding

to this value of nand the given thickness ratio. For the
prescribed value of the beam loss factor, ;ind the corres-
ponding characteristic shear parameter, V.. Using the beam
dimensions given, and the value of G calculated above,
celeculate, from VY, the corresponding frequency, W;,. This
is now the frequency corréspondinc to qland G, . Choose
another value of 7 and repeat the process. Continue until
enough points are obtained for plotting the | ~versus- W

and ]-Versus~uf curves.

6.2.4d. LEffect of the viscoelastic extensional terms

In the theoretical considerations leading to the
28tablishment of the design parameters (section b.l.a), it
was assumed that the viscoelastic extensional terms made
negligible contribution to the system response. 1If, for
instance, this were not so, a variation in the shear
parameter, ),, due to a chanse in the shear modulus, Gf,
would also cause a change in all the other coefficients
of the differential equations. The resonant response of
the system would, therefore, depend not only on ¥, , H,

and 7) , but slso on g, = G /B. Under what conditions, if any,
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does the parameter, g, have appreciable effect on the
system response?

To examine this, it is best to consider the worst
possible case. It has been shown in section 4.2.f, that the
extensional terms become relatively important at
(a) large values- of %i(or %i); (b) large values of H;
and (¢) small values of V,(short lengths of beam). The
stiffest viscoelaétic material reported in the literature
‘has T E; = 5.8 x 10* 1b/sq. in. [23,24]. Remembering that
E, = 3G;, it follows that the value of g = 10~ (7, = 1) can
be regarded as a truly upper limit for practically all
present day engineering materials. (For concrete, for
instance, assuming a2 Young's modulus of 4 x 10°1b/sq. in.,
g < 5 x 10°, for 7,= 1.0). With this value of g, , and the
largest thickness ratio considered in the optimisation graphs,
namely, H = 2; graphs of the various resonant responses can
be obtained as in the previous section. This has been done
for "], = 1.0. Table 6.a gives a comparison of these
results with those obtained for g,= 5 x 10" (and the same
values of H and Y), ). The latter set is completely indistin-
guishable with the values for g = 2 x 10°, both of which
were plotted together in all the graphs given in sectlon
6.2.a. The percentage differences between the two sets of

values for the beam loss factor, the freguency factor,

and the tip amplitude ratio, are given underneath the figures
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SEBER | TIT BUDLITUSE | BEAWM  LOBS FRESUENOY
PARAMETER |  RATIO, T, FACTOR 1], FACTOR, B,
\ %: 5x1 07 %: 15° %i:sxld“ %: 16° —-%i=5x10—4 %: 10°%
0.0125  |13.04646 19.75594 |0.11083 |0.13095| 0.50204 [0.53536
(=30.0) (18.15) (6.63)
0.05 5.18416 [+.80080|0.30899 |0.31897| 0.69617 |0.75172
(=7.40) (3.24) (5.10)
0.1125 5.64992 [5.54961 |0.45231 |0.45713| 1.01809 |1.05271
(-2.78) (1.07) (%.40)
0.2 5418235 |5.1359510.52367 {0.52754| 1,42554 |1.456060
(-1.52) (0.74) (2.32)
0.45 2.95506 [2.91946 | 0. 55368 | 0. 56544 | 2.35027 |2.40092
(-0.53) (0.67) (1.77)
0.8 2.96541 [2.96989 |0.55272 |0.55385| 3.58004 |3.42905
i0.15) (0.20) (1.18)
1.25 5. 15489 [5.16721 | 0.52640 |0. 52544 | 4 44238 |4 48055 |
(0.39) (=0.18) (0.86)
5.2 440132 40818 |0.38874 |0.32310] 7.13138 |7.18575
(0.18) (-0.16) (0.06)
TABLE ©.a

Three—-layer beam:

Solutions showing the effect of

the

viscoelastic extensional terms.

H=2.0

vq = 1.0
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for g, = 1074

It is seen from the tables that the values agree
closely except for very small values of tpe shear parameter,
Vi; that is, for short beams. The peaks of the damping
curves occur at the same value of the shear parameter, and
agreement 1s best in this region for the damping and the
tip amplitude responses. Thus, even for this extreme case,
the error involved in ignoring the effect of the viscoelastic
extensional terms is seen to be small for most of the range
of values of V.

It is even more revealing to consider a specific
example. Assume tnai the beam overall thickness is 0.6 in.,
and that the beam is being designed to have Fhe maximum
damping for H = 2 and 7), =1.0. If the metal layers are nade
of aluminium (B, = 10’ 1b/in%), then for g,= 10°, the beam
length would have to be 1.3# in.. If steel had been used
instead, the length would be 2.3 in.. Such a beam would
be too short to be of any practical use. Besides, for
such short lengths, some of the assumptions of the theory
(e.g. no shear deformation in the elastic layers etc.)
would no longer hold (see limitations of the theory,
section 7.1). This illustration emphasises the truly

limiting nature of the assumed value of g,, and the close

agreement between the values obtained for this value of g,,
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and those for lower values, confirms that extensional

effects can, in most practical cases, be ignored.

©.3. Five=layer beam: Effect of the distribution of the

elastic lavers on the sti¥fness and damping response -—

constant viscoelastic-layer to elastic-layer thickness

ratio.

The relevant parameters in the study of the resonant
responses of five-layer beams have been obtained in section
6.1.3 and b 2s H, , Ha» €, 7,4V, and B, for systems with

constant modified forcing function. Tne effect df these

pardmeteérs can be studied in the same way as for the three-
layer bean. Thus, by keeping H, , H, and e, constant, it is
possible tc obtain, for varlous values of the material loss
factor, 0, the familiar curves of the beam loss factor

and the frequencv fact-r against the shear parameter V,.

- Then, by varying esch of the quantities H, , H, and e in

2
turn, =2nd repeating the process each time, a whole family
of graphs can be obtained, as in the three-lzyer case.

In the rresent work, however, it is intended to
investigate only an aspect of these graphs: one which has

an important place in the design aprlication of multi~layer

beamc. 1t is best presented as a problen. Fara given

total viscoelastic layer thickness
total elastic layer thickness

ratio of - .« Now does the

distribution of the elastic layers affect the system

HEE ¥ o] - I Ps P 3 Ll
cLiffnoon and daarin o’
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The significance of this problem can be illustrated
with the following example. Suppose it 1s intended to
make 2 damped symmetrical sandwich structure out of two
available 1layers of viscoelastic material (of equal
thickness), and some elastic material, available in any
desired thickness. The structure is to have a fixed
overall thickness. Two methods of approach can be adopted.
A three-lsyer beam can be constructed, by bondin~= the two
viscoelastic layers together, and using this as the central
layer, the thicknes; of the elastic facing layers being so
chosen a3s to give the desiréd overall thickness. Alter-
nativelv, a five-layer beam can be made. A probienm
immediately arises as to how the elastic layers have to be
distributed. The central lavyer could be made relatively
thick, with the facing layers extremely thin; or vice verss.
Ur, the three elastic layers could be made ol equal thickness,
Wilint should guide one in deciding how these layers should
be distributed? The present study is ained =2t illustrating
how such a problem can be tackled.

supj.ose the given thickness ratio of

totrl viascoelnastic layer thickness
total elastic layer thickness

is KT‘ It follows,

. 2h, _ . _ . Y s
therefore, that 5he + 0, - KT_’ or2H2 = kT(a + Hy) ...6.%.1.
H2, is thus expressible as a function of Hy, and is known

when Hyis known. Also, since the facin<% layers and the

central layer are of the same material, e = 1. The
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independent variables now reduce to three, namely, n, s H,,
and V,, similar to the three-layer case. The computational
procedure thus ipvolves varying Hs+ in steps; and at each step,
obtaining the beam loss factor and the frequency factor-
versus-shear parameter curves.

Such a set of graphs is given in fig. 6.15 for a
thickness ratio kT = %, and a material locs factor, 7, = 1.0.
The graphs are for a cantilever beam subjected to displacement
forcing at the root and vibrating in the first mode.

Fig. 6.16 also gives the variation of the beam loss factor
with the frequency factor.

Fig. 6.15 shows that as the thickness ratio, H1, is
gradually increased from zero (i.e. the three-layer case),
the beam loss factor, for any given value of the shear
parameter, increases; while the frequency factor, ﬁm,
decreases. A maximum value 1s soon reached for the damping
response, at a thickness ratio of around 1.0, beyond which
value the damping decreases with increase in Hi . The
freguency factor also shows a turning point - a minimum ~ at
about H1 = 1.0, and thence increases as My increases.

This variation is brought out more clearly by fig. 6.17,
which shows the variation of the maximum beam loss factor, and
the corresponding frequency factor and shear parameter
with the thickness ratio, Hi. OSome important features of
these graphs need mention.

(1) The graph of the maximised beam loss factor against
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Hy shows a maximum at about ;= 1.0 (in fact, Hy= 0.95 from
the graph). This maximum value, 0.55, represents the
largest possible beam loss factor obtainable from a five-
layer beam with ky = 5 (7 = e, = 1.0). It is seen that
this corresponds to a configuration in which the elastic
layers are of about egual thickness.

(2) As H, is increased beyond 1.0, the damping decreases
and becomes egual to that of a three-layer beam (of the
same thickness ratio, kT) at a value of Hy= 2.4. Beyond
this value, the five-layer configuration gives less

maximun beam loss factor than the corresponding three-layer
beamn.

(3) As the max}mised beam loss factor increases to a
maximum, the corresponding frequency factor, ’%opt’
decreases to a minimum at the same value of Hy. As Hy is
further increased, ﬁ&10pt now increasses, reaching the value
for the corresponding three-layer beam at the same value

of H,= 2.4. Thus, it may be said, of the behaviour of
YL,opt and ﬁqut’ that "what is gained in damping is lost
in stiffness, and vice versa'".

(#) From the graphs of figs 6.16 and 6.17, it is seen that
for any given beam loss factor, the f;equency factor for
the five-layer configuration is greater than, equal to, or
less than that for the correSpondinélthree—layer configura-

tion, according as Hy is greater than, equal to, or less
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than 2.4. This is true for all values of the beam loss .’
factor attainabls using both configurations. A similar
statement can also be made about the beam loss factor.
Thus, for any given frequency factor obtainable using both
configurations, the five-laver beam will vield a beam loss
factor which is sreatef than, equal to, or less than that
of the corresponding three-layer beam, according =s H,; is
less than, equal to, or greater th=n 2.4.

(5) The shear parameter at the maxiaum be=m loss.facfor
varies in much the same way as the cofresponding frequency
factor, showing a minimum at the same value of H,.

It must be emphasised thnt a high value of the
frequency factor, ﬁ" , does not necessarily imply a high
resonant freguency. Fig. 6.18, for instance, shoss araphs
of the resonant frequencv and beam len=zth at the maximum
beam loss factor, plotted against Hy, assumning a constant
in-phase shear modulus of 5,000 1b/in%, as well as
Es = 107 1b/ini, £ = 0.1 1bv/irh, § = 0.05 1b/in%, ang

total metal thickness = 0.5 in. (kT = %). It is seen
that, although from fig. ©.l17 the ﬁ%opt curve has a

minimum value, the corresponding resonant frequency
insréases with 9, since the bean lenzth, £ , decreases
with increase in Hy.

The optimisation curves obtained above can now be

employed in answerinsg juestions such as this: For any
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given length of beam, and material properties, what thicx-
ness ratio gives the best damping performance? Assume
that the shear modulus G is frequency-independent. Then,

if the total viscoelastic layer thickness is kv’ then the

k
total elastic layer thickness 1is EK'; and it is easily
T
shown from the expression for the shear parameter, V,,
2 BG] ky

(equation 4.7.ix.f), that }, = —E;E;—_(2 + Hy ), extensional
viscoelastic terms being neglected. This o ves
V, = CL(E + Hy) «e.aee ©.3.11, where CL is some constant,
known for the given system. Thus V, and Hy Aare linearly
related. TFor each H;, the corresponding V., can be calculated,
and with this, the correspondins ", and By can be obtained
from the curves.

tfore conveniently, the sraph of Hyasainst V¥, can be
plotted on the s=ame sheet 2s the optimisalion curves, tne
axis of iy being vertical. Two such granas, (a) and (b),
are shown in fig. ©.15. (a) is for a2 length of &4 .in.,
while (b) is for an &-inch length. The shear modulus is
assumned to be 5,000 1b/in% in each case. The other
material propertie8, and beam dimensionc are taken 2s
By = 107 1b/int , £ = 0.1 1b/irf., f-= 0.05 1b/in’, total
metal thickness = 0.4 in..

Tn illustrate how to obtain the desired values from
these grephs, consider the bean of lenzth, 4 inches.

Take any value of Hq . The corresponding value of V, is
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obtained by moving horizontally across (along that value
of Hy ) until curve (a) is reached. Move vertically -miswesg
this value of ), ,and read off the values of v and B
corresponding to the c¢hosen value of Hy. 7The resonzant
frequency is calculated from B, using the beam dimensions.
Repeat this procedure until the desired ranse of values

of Hy has been covered.

It is seen from the zravhs, and from the »bovse
procedure, that for values of Hy between O and 6, the values
for the beam loss factor and the frequency Factor for
£=4 in. lie in the portion of the curves between ¥ = 0.4
and 1.6; white for £ = 8 in,, they lie in the recion
between V, = 1.6 =nd 6.4. It will thus be obvious that the
variation of the damping and the frequency with H; in each
cise would depend on the regions where the curves of
Hy ~versus-), cut the damping and frejuency factor curves.
For instance, fig. 6.19 gives the beam loss factor and
freguency curves for (a) snd (b). The twc sets of curves
are by no means similar. Thus, while the natural frejguency
curve Tor f = 4 in. shows a marked variation with Hy 4 the
corresponding curve for £ =8 in. is 21lmost insensitive
to tiy. This is beczuse curve (b) culs the grapas at the
portion where the ﬁo, curves are crowded tosether. Also
the damniny curve. for =4 in. nas a peaik close to

gy = 1.0, uhile for £ =28 in., the peai occurs at a lower
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value of Hy(0.7).

From équations 6.5.1i, and a careful study of the graphs
of fig. €.15, it will be seen that the frequency and
damping curves (plotted against H; ) for any given length of
beam, will take the same form of variation as the maximised
beam. loss factor and the corresponding frequency factor
curves of fig. ©.17, if the Hi-versus- ), curve intersects the
graphs in regions where the separation between the TL1or’

., curves is such that
VH:(Z’) 2 + H:
In equation 6.3.1iii, \QAEJ{Qr\@ﬂiJ} designates the shear

cressaas ..Bb.5.1i.

parameter corresponding to any value 2 = Z4, on the

Z-versus-)4 curve for any Hi= H:{pr H{}. Z, here, stands

for either 7) or f.,. Also, it is assumed that the

Z-versus- }, curve corresponding to H;= H?, occurs before

that for Hy= H/ , as one moves across the graphs (within

the region of intersection), in the direction of ¥, increasing.

This direction is indicated by the arrow head A in fig. 6.15.

6.4. Relation between the beam loss factor and the tip

amplitude ratio.

In section 4.6.b, the beam loss factor was defined
as an energy ratio. The definition was, however, related
to a given response -~ the tip displacement amplitude

response - since the frequency at which this loss factor
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was determined corresponded to the maximum tip displace-
ment amplitude. It is thus natural to ask: Is this loss
factor a true reflection of the tip displacement amplitude
response? In other words, for any given mode, is there a
unigue relationship between them, in the sense that to any
beam loss factor, there corresponds one and only one tip
amplitude ratio, no matter the beam geometry?

It is perhaps easy to see that such a unique relation
is unlikely , as the beau loss factor depends, not only on
the displacement amplitudes, but also on their phase
relations, and , in fact, on the actual bedm mode :shape,
which, in turn, depends on the beam geometry. But how far
off is 1it?

Fig. 6.20 gives a graph of the beam loss factor for
the first mode, plotted against the tip amplitude ratio
at resonance. Points for this graph were indiscriminately
taken from the responses of three-layer and five-layer beaus
of differing geometry. Although only a few polnts are
shown for clarity, many more points had been plotted, and
the scatter in the points were the same. 1t is seen from
the graph that for beam loss factors of up to 0.2, the
points lie practically on a smooth curve. Beyond this
“value, slight discrepancies occur between points from the
various configurations. The close agreement of the points

is, however, remarkable, and except for extremely accurate
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work, the beam loss factor can be regarded as uniquely
related to the tip displacement amplitude ratio.

An important significance of this is that if it is
required to design a cantilever beam to have a given
resonant tip amplitude ratio when subjected to displace-
ment forcing at the root, all that is necessary is to
design the beam to have a given loss factor. The geometry

or configuration chosen is rather unimportant.

6.5. Concluding remarks

In addition to the conclusions already arrived at
in the various sections of this chapter, some general
concluding remarks can be made.
(a) A’¢lea¥ understanding of the parameters essential
in the design study of multi-~layer bBeams is important for
efficient design. This chapter has been aimed at showing
how the effects of these parameters can be carefully and
systematically investigated. Once they have been
understood, the choice of materials and geometry becomes
easy and straightforward.
(b) With careful choice of materials, and optimisation
of the geometry, high beam loss factors can be readily
achieved. TFor instance, from fig. 6.9, it is seen that
for a threé-layer cantiléver beam with a viscoelastic
layer having a material loss factor of 2, and only twice

as thick as each of the elastic layers, it is possible
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to obtain a beam loss factor of 1.0.

(c) Owing to fhe nature of the dependence of the beam loss
factor on the shear parameter, it can be said that, as a
general rule, stiff viscoelastic materials are suitable for
short lengths of beam and for relatively stiff elastic layers,
while soft viscoelastic materials are suited to long beams
and to elastic layers with low Young's modulus.

(d) Temperature effects can be readily taken account of by
careful design. For instance, suppose a three-layer
cantilever beam of thickness ratio, H = 0.1, is designed to
have a beam loss factor of 0.2 in its first modej; and that
its wiscoelastié layer has .a material loss factor,-»f abolt
1.0, which either increases or remains constant with decrease
in temperature. From fig. 6.3 it is seen that the minimum
value of the shear parameter necessary is 0.24. If this
v&lue is used in carrying out this design in the summer,

it is clear from the optimisation graphs that the shear
parameter can increase to 4.0 during the winter, with the
beam loss factor always being greater than , or at least
equal to the prescribed value of 0.2. This implies a
possible increase of the in-phase shear modulus to about 16
times its summer value. For evoseal, the most temperature
sensitive viscoelastic material investigated in chapter 3,

such an increase in the shear modulus would require a drop

S,
»

in temperature, from summer to winter, of 40°C - a more-than-—
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adequate allowance for a normal winter.

If 8 higher beam loss factor is desired for the same
temperature drop, this can be readily achieved by using a
higher thickness ratio, since, for any given material loss
factor, the graph of the beam loss factor against the shear
parameter becomes 'broader' as the thickness ratio increases.
Thus, with a thickness ratio of 1.0, the beam loss factor
could be kept to a minimum of 0.35, for the same material
loss factor and the same temperature range as above.
However, a higher thickness ratio implies a lower stiffness
(i.e. frequency factor) for any ziven shear parameter; and
in certain cases, it might be necessary to strike a
compromise between the damping and stiffness requirements.
(e) Frequency-dependence can be utilised to advantasge by
seeking for laws of dependence that favour some desired
responses. FPor instance, it has been shown that a three-
layer beam with a viscoelastic layer the in-phase shear
modulus of which is directly proportional to the frequency,
will, for any given mode, have a beam loss factor independent
of the beam length; and for any given length, the overall
loss factor of such a beam will be approximateiy independent
of the mode. This is true no matter the end conditions of
the beam, provided the material loss factor exhibits negli-
gible frequency-dependence.

It is useful to examine how the material properties
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given in section 3.7 approximate this "straight line" law.
Reference to the graphs will show that at room temperatures,
and between 50 and 200 c.p.s., the deviation from the
straight line law may vary within #35 per cent for evoseal,
and within +45 per cent for P.V.C. Hycadamp shows a much
less marked deviation within the frequency range, 200 to
400 c.p.s., and at room temperatures - the departure from
the law being within &5 per cent.

The above comparisons may not be very encouraging.
However, the straight line law can certainly be a target at
which chemists and physicists engaged in the tailoring of
viscoelastic materials should ain.

(f) The optimisation curves can be employed in the deter-
mination of the viscoelastic material properties. The
method, apart from its simpicity, has the particular
advantage that the properties are determined under conditions
of bonding, so that the properties of the bonding material
are taken into account.

(g) VYor a given ratio of total viscoelastic layer thickness
to total metal layer thickness, the five-layer configuration
can yield more damping than the three-layer, provided that
the correct geometry is used. Such an improvement in the
damping may entail a loss in stiffness, depending entirely

on the geometry and the material properties chosen.
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CHAFYPTER 7

CONCLUSION

Detailed conclusions on the experimental verification
of the theory developed, and on the application of this
theory in the design study of multi-layer beams are given

in sections 5.6 (page 296) and 6.5 (page 364) respectively.

7.1. ihe theory, its scope and limjitations

The differential equations developed in the seneral
form in chapter 2, were solved and.verified for beams with
viscoelastic materials whose non-~linear behaviour was such
that it did not cause any appreciable deviation from the
(linear) elliptical stress - strain law. However, the
equations are egually applicable to systems with viscoelastic
materials having any kind of non-linear stress - strain law.
A1l that is necessary is that this law be prescribed
in the general form given in equation 2.1.i (page 40 ).

Once this is done, it is possible to seek a solubtior of the
resulting non-linear eauations by either numerical methods
simil~r to those employed here or other standard methods
(see for instance [326, 12?]). Besides, the analyszis can

be extended to take account of the hysteresis dnaping in

the elastic materials, by renlacing the simple straight-line
stress - strain law used here by the general stress - strain

law of equation 2.1.i.
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Some of the assumptions made in the development of the
theory, however, impose some limitations toc its range of
applicability. For instance, shear deformation in the
elastic layers was neglected in the analysis. This would
become important for very short beams, and at the higher
modes of vibration. Rotatory lnertia effects, also ignored
in the development of the theory, will be significant at
the higher frequencies. Mead has shown [6é] that for
symmetrical three-laver plates (with a linear viscoelastic
core), rotatory inertia effects may be neglected so long as
wzéfgﬁ; ceeeses.sa7.1.1, where § ,and h, are the
density and the thickness, respectively, of the facing
layers; G, and h; are the shear modulus and the thickness,
respectively, of the core; and «w is the forcinzg frequency.

It was also assumed that all the layers had the sane
vertical displacement, y, at each cross-sectiony in other
words, that there was no thickness-wise deformation in the
layers. The implication of this has already been stated in
section 2.1. It is easy to see that this assumption neglects
the necessary reduction in thickness which results when the
viscoelastic layers are deformed in shear, and which %mposes
an additional vertical motion on the layers. This effect
is bound to be more siznificant for very thick viscoelastic
layers, and at very high forcing frequencies.

It follows, from the above discussion, that the present
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theory can be classed as a 'low frequency' analysis of

nmulti-layer beams.

7.2, Suggestions for further work

The analysis presented here opens a wide field of study
in the dynamic response of synmetrical multi—layer beams.
The design study introduced in chapter 6, clearly shows how
much useful information can be gained by a systematic
avproach. This study should be extended to beams with more
layers, to examine how the system responses are affected
by the number of layers, the distribution of material within
these lavyers, and their relative stiffnesses (i.e. the
ratios of the Young's moduli of the elastic layers, or of
the shear wmoduli of the viscoelastic layers). Also, the
effects of boundary conditions on the beam responses should
be investigated.

A detailed study of the effects of rotatory inertia in
all the layers and of shear in the elastic layers, should
be carried out with a view to establishing the errors
incurred in neglecting these effects at the higher modes.
This can be done by ascribing shear functions, Qﬂ, to the
elastic layers ( as for the viscoelastic layers), and by
taking the lateral inertia terms into account in considering
the long;tudinal equilibrium of an element of the beam.

It should be pointed out that the shear functions, ¢2, for

the elastic layers may not be assumed constant across the
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layer thickness (as in the case of the viscoelastic layers),
unless a "shear correction factor" ESS,lEé] is used. The
assumption of a constant shear deformation across the layer
thickness, is permissible (without any correction factor)

for the viscoelastic layers , only because they are much
softer in extension than the elastic layers which, as a
result, provide most of the forces causing shear deformation.

The effects of the thickness-ﬁise motions of the
layers, resulting from the shear in the viscoelastic layers, .
should also be examined, by including the appropriate
inertia terms in the egquations.

Only systems subjected to harmonic excitation have been
analysed in detail here. The present work can evidentiy be
carried on to investigate the free and random vibrations
of such systems.

The general unsymmetricasl multi-layer beam should also
be investigated. It was shown in section 2.2.d, that the
analysis of such a beam by the method presented here, may
prove extremely difficult owing to the wvariation of the
neutral axis position with the applied load or deflection.
However, it can be tackled by other methods. One such
method is the use of the variational principles of mechanics
55,129,13é]. This would involve assuming, for each layer,
displacement functions which satisfy continuity requirenents

at the interfaces. The strains can then be obtained, and
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from these the stresses, using general stresc - strain laws
similar to that of section Z.1. The equations of motipn
can now be obtained by applying the appropriate extremunm

principles.
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APPENDIX II

TABLES GIVING TIE INPUT MOTIONW AND THF TEST

TEMPERATURES TOR THE BBAL TESTS

TABLE 5.d Input motion, a5, and temperature (of the

viscoelastic lavers), T, for the resonance tests.

Beam no. First mode Decond mode Third node
5 T,°C 27.0 27.5 27 .2
a. ,in. 0.00055 0.00055 0.02029
44 T,"C 27 4 27.5 25.6
a, ,in. 0.0003%8 0.0003%8 0.00016
53 7, °C 26.6 279.,%
a, ,in. 0. 00064 0.0003%0
" T, °C 2%.5 26.0 26.0
a, yin. 0. 00068 0.20048 0. 0018
4A T, °C 25.4 25.8
a, ,in. 0.00060 0.00029 -
5 T, °C 25.0 24 .3 4.5
a; ,in. 0. HO0069 0.00055 0.00040
51 T, °C ou .1 21.4
al ,in. 0.00056 C. D004
6 T,OC 2404 25-6 '
&, ,in. 0.00063 0.)20%9
7 T, °c 22.6 24.5 25.8
& ,in. 0.00067 0. 00054 0.00040
o T, C o .7 24,6 25.8
a ,in. 0.00064 0.00051 0.00027




TABLE 5.e  Input motion amplitude, ap,, and temperature
(of the viscoelastic layers), T, for the
"mode shape" tests.
Beam no First mode Second mode Third mode
5 T, °C 26.0 26.7 27.5
a,, in. | 0.00M5 0.00054 0.00022
4 T, °C 26.% 27.0 27.2
a,, in. | 0.00038 0.000%8 0.00016
- T, °C 26.6 27.3
ay , in. | 0.00064 0.00030 T
N T,°C 1 25.5 25.1 25.% |
ap in.! 0.00067 0.00048 0.00017
A T, °C 264 . 26.7
&y, in. | ©.00062 0.00028 '
5 1 T, °C 2u 7 22.2 25.5
a,, in. | 0.00069 £.00054 0.00038
54 | T,°C 2h 1 22.5
a,, in. | 0.00092 0 . 0004 T
6 T, °C 26.0 24..0
a5 , in. | 0.00060 0.00047 “
” 7,°C 25.0 25.0 26.0
ah, in. | 0.00067 J.00054 3.00041
3 T, °C 24.0 4.8 25.7
a,, in. | 0.00064 0.00051 0.00027




375

APPENDIX III

THE RELATION BETWEEN . THE BSAM 1055 FACTOR AND

THE SHEAR PARAMETER FOR BEAMS WITH SINUSOIDAL

MODE SHAPES

The analyses of Kerwin et al [?1,44,4i], and of
Head [%2,65], show that for a beam having displacement and
shear deformation amplitudes which are sinusoidally distri-
buted along its length, the damping can be ewpressed as a
unique function of a "shear paraneter", for given values of
H and *L. Although their definition of the beam loss factor
is different from the one given here (see section 4.6.b),
it will now be shown that this condition is also true for
the beam loss factor, TLn, as defined here. Also, it will
soon bé evident that the shear parameters defined by the
above~-mentioned investigators differ from the 'characteristic
shear parameter' defined in section 6.2.b. It will,
however, be shown that these parameters are all related,
and that the beam loss factor, YLH, is a unique function of
each of themnm.

Iror {he given beam, the absolute displacement, Taqo and

the shear deformation, ¢

X at any point can, for the n-th

mode, be expressed as,

]

Ta

o}

N . DK€ s
a, sin k € cos wt 8,, 5in k § sin wt 251,

i

S + s in Wi
a,, cos k. § cos wt %p €O kng sin



]
~d
)

harmonic excitation being assumed. k; is the resonant
frequency factor for a plain undamped beam with the same
boundary conditions as the given beam. For instance, for a
simply-supported beam, kn =nivr, n=1,2, etc.

To excite the beam in the manner prescribed, the forcing
function must have a predominant component of the form,
P, sin kng cos wt, at the n-th mode. Hence, on neglecting
the viscoelastic extensicnal terms, the expressions for the

coefficients, a_ , a

n ? &y, » and 8 are obtained (by

1n
comparison with equations 4.4.vi) as,

b, (¥ + w ){mﬂ,kg - (k) + vk, -5 )} A f;)

= I3
m n

a = p O
2D ] D
n

ﬂ,{ow.k; - (k + Vi)(k - %)}

[
|

D ]
n

&n ~ Pn D_
e #)
a4n = "'an-
’n ceveeeeABLAT
where,
z 2 BI 2
Dn 2= {O{,ﬂfkn ~ (kﬂ + Vf)(k - "‘")} Il - Ei)}

Remembering that O; =7),Vi(see equations 4.1l.xviii), the

expressions of equations A3.ii can be rewritten thus,
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: R
(1 + m{«x.u. ~ (1 # % )1 - k—;)} -2V - —f-:;)
2 n n
a = ~p_ K . ,
1n nn D
n
a = kz 0(1/1-1'71\/*]
2n Pn®n N
. g
w gom, - (1 e oG- Ebf
a = p k3 n
n nn D
n
B
3 //LJYI,VK(]- - R"r%")
a = -p k
4n n'n D
n
1 2 2
and D_ = k;&«,#, - (1 + V1 —‘1%0} +{’?,VK(1 - E%)f ]
where 14 = g% sy is twice the shear parameter defined by

n

Kerwin et al [41, 44, 47]*. ©, and M, are functions of the
thickness ratio, H, only (since the viscoelastic extensional
terms are being neglected); hence, the coefficients,;%n 5

g evc. can be expressed in the forms,

2n3
s W e - WS - vk ©. - W |
. W8 5 g wnS’z ;o8 e ,,93, and g, Wnknfaiii

where each of the SE is a function of the quantities, Vi s

B

E:"L’ and H; and is independent of the mode. On the other
n

. p
hand, Wn wnich’equals.zg,.depends only on the mode.
n

"Assume now that both fz and H are held constant.

*V, is also the reciprocal of the shear parameter as defined
by Head for ,the -case of a simply supported beam [62,65].
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The absolute displacement amplitude, Yao at any point is

it

2 2 Y s
(am + am) sin k &

WSOk ’1‘%‘3 sin k € , from equation A3.iii,

given by ¥

where §, is a function of Y and T{-B;’- only.
n

For any «iven mode, a8s the frequency varies, the
displacement amplitude at any point becomes a maximum when
Qi(Ve,B) = 0 .......63.iv , where Q) is the first
derivative of §; with respect to 1% ; and E = 1%1:" , is

i

the value of 7 at the n-th mode resonant frequency. It
n

follows from eguation A3.iv that B is expressible,
implicitly or explicitly, as a unique function of ), ; hence,
on employing the functional notation defined in section 6.l.a
it can be written as 5 = f?(}i) ceeo BBV

It is important to note that this functional relation is

independent of the nmode.

The beam loss factor, QM, is defined in section 4.6.Db,
at the n-th mode resonant frequency (i.e. when B' = ﬁ ),

by the relation,

_ Di ,
°" l[ B + {(Af - B )2+ 40‘,2},;_]

7

where 4, B,, Ci, and D] are as siven in equations 4.6.ix.

ceeseAB0VE,

Consider, for instance, A, . On substituting for the

displacement and shear components, the following expression



results:

A = ' k*a* + 20k a_a v Ak*a* o+ Aaz— sin‘k € d

! olLLnp m "'nTir an 2% n"3n 173n in 55 §
1

={4g? 3 2,2 2 s s
slkpa, * 2xka 2, + Azknam + A‘asg Lee A3 vii.
It is noted that A, which, from eguation 4.6.v, is given by

2 3
Az = 5 +6§2H*+ gé£+ S HE ? is a function of H only, since

the viscoelastic extensional terms are being ne:;lected.

2’0.'
However, A = 57 12H13Q6§;§ o from equation 4.5.v;

z(qsp,zg. 2)<1M1.5H(LLH + eH) )kz

""'z ra TN ~~ 12 -
H+ eH kn & + 120 v 6H*+ e H3 n
8p* g,
But from equations &4.l.xviii, Y = ——0/ .
4H + e H?

1.5 H(4H + e H*) . .
8 + 121{ S» 612 + g,g)i ) k2= V£ (H) k7,

Hence, A = %é (
n

where f, (H) is a function of H only (viscoelastic
extensional terms being ignored). A/ can now be put in the

form,

f k a k_a ’
’ 2 2 1 PP
A = %(knam) (-—Ia-l——’—g—) + 20,( Ial ) + Az+ V£ (H) ceASL.vidii

in n

It follows from equation Aﬁ.viii,'and from the expressions
for the coefficients (equations A3.iii), that A] can be
expressed as A, = (kna:m)2 S(Ve,P) , for fixed values
of # and %) ; where §. is some function of Vi and ﬁ , this
function being independent of the mode.

Proceeding in a similar manner, each of the other

gquantities, Bf, C/, and Df, can be expressed as the product
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of (knam)z and some function of VW and ﬁ . Since the
expression for the beam loss factor, Ykn(equation A3.vi), is
a ratio of homogeneous flunctions of. the .guantities, 4, , B,
C/, and D; , it follows that Y], can be expressed as a
function of Vi and B, in the form,

Thn = S;(\a, B) veseassssessAd.ix, where the functional
relation f% is independent of the mode. But equation A3.v
shows that there is a functional relation between ﬁi and

Vk » @ relation which is also independent of the mode. It
follows, therefore, .that YLn is expressible as a function of
W- In other words, for fixed values of 7] and H, there
exists, for all modes, a unique relation between the beam
loss factor defined here, and the Kerwin shear parameter
(and hence, the Mead shear parameter), for the beanm

considered.

It was mentioned earlier that 14 is different from the

Vi

characteristic shear parameter,\é. However, since L@ = xT )
n

- Bon
B

and == 3 it follows that V., which equals -%%a, is
n on

related to Y and E thus: Ve = —%% ceee.ae A3,
It has already been shown that both YLn and B are unique
functions of M . It follows, therefore, that M  is also
a unique function of Y. In other words, the relation

between the beam loss factor, YLn, and tne characteristic

shear parameter, V., is also independent of the mode.
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The above considerations show that the unigue
relationship (between the da:aping and the shear parameter)
obtained by Kerwin et al, and by ™ead, is not a peculiarity
of their definitions of these quantities, but rather a

conseqguence of the assumed distribution of the displacement

and the shear deformation along the beanm.
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