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ABSTRACT 

The one-dimensional differential equations of motion 

for the flexural vibration of a symmetrical multi-layer 

damped beam are developed. The viscoelastic damping 

materials are assumed to obey a general stress - strain 

law which can be linear or non-linear. Shear and extensional 

deformations in the viscoelastic layers are included. 

Rotatory inertia effects, shear in the elastic layers, and 

thickness-wise deformations in all the layers are neglected. 

An experimental method for determining the properties 

of viscoelastic materials is described, and utilised in the 

study of some viscoelastic materials with a view to 

ascertaining their stress - strain law under harmonic 

loading, their dynamic properties, and the nature of the 

dependence of these properties on frequency, temperature, 

and strain. 

The information obtained from this study serves as a 

useful guide in the development of a numerical method of 

solution of the differential equations for systems subjected 

to harmonic excitation. The method developed is capable of 

dealing with all possible boundary conditions, as well as 

linear and non-linear behaviours of the viscoelastic 

materials. ,An experimental verification of the theory is 

carried out by investigating the displacement responses of 
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cantilever beams vibrating in the first few modes. Various 

configurations, combinations of materials, and dimensions 

of the beams are covered, the experimental results generally 

showing good agreement with the theory. 

Finally, a systematic method for investigating the 

resonant responses of multi-layer beams is presented. 

Illustrations are given with a detailed design study of 

three-layer cantilever beams vibrating in the first mode, 

and some studies of the five-layer configuration. Various 

applications of this work are pointed out, including a 

simple method for obtaining the viscoelastic material 

properties from tests on symmetrical three-layer beams. 
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LIST OF SYMBOLS  

A list of the essential notations employed is given 

below. In the text, each symbol is usually defined as soon 

as it is introduced. In a few cases, the same symbols are 

used in different sections to denote different quantities. 

However, these sections are far from each other, so that 

no .confusion is anticipated. Apart from the meanings given 

below, the following symbols, i, j, k, t, m, p, q, r, s, u, 

v, F, P, 	2, and of , are used in a limited number of places 

as variable indices for summations, suffices, etc. 

A 	= cross-sectional area of beam; total shear 

area of shear specimen. 

A. 	= cross-sectional area of i-th layer of beam. 

Ai, Bi'  Cr,i r  Di  = coefficients of expansions in Chebyshev r  
polynomials of the displacement and shear"' 

variables. 

+-AS +-B 

Ds--A

s 

 

+- 

s -- 

s 	s C , D 

= defined in equations 4.3.vi, page 2 2 5  

ao 	= input motion amplitude 

a„ 

aT 	
= typical displacement amplitude of beam. 

ar 	= coefficient of the Chebyshev series expansion 

of the forcing function. 
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a. n 

b 

br 

CL  

D 

D, , D2  

d. 

= coefficients of Fourier series expansions of 

the displacement and shear variables. 

= width of beam. 

= coefficient of Fourier series expansion of a, 

= an arbitrary constant. 

= differential operator, cit.  

= density ratios. 

= distance of the central axis of i-th layer of 

beam from neutral axis. 

= effective, complex, in-phase, loss dynamic 

Young's modulus for viscoelastic material 

E. 	= Young's modulus of i-th (elastic) layer 

Ei 	= in-phase dynamic Young's modulus for i-th 

(viscoelastic) layer. 

e 	= E three-layer beam. 

e, , 	E, , 	= E5  Es E:  , five-layer beam. 

EA 	= 

FI 	=EzINi  , dynamic flexural rigidity of a 

"shear free" sandwich beam. 

F. 	= longitudinal force acting on the i-th layer. 

f 	 = frequency, c.p.s. 

fx 	= general functional notation. 

= effective, complex, in-phase, loss dynamic 

shear modulus of viscoelastic material. 

Gri 	 = reduced in-phase shear modulus with respect 

to the reference temperature, To 
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G: 	= in-phase dynamic shear modulus of the i-th 

layer. 

gi 	= 	three-layer beam. 

S2 five-layer beam. 

H 	= thickness ratio,', three-layer beam. 
hi , 113 

h2 
, H1, H2 	= thickness ratios, 11  --five-layer beam. 

h  = step length for step-wise integration. 

h. 	= thickness of i-th layer of beam. 

'Ni 	=d2.) second moment of area of the i-th i 12 	' 

layer about the neutral axis. 

i 	= variable index. 

J
, j,, 

= complex, in-phase, loss dynamic shear 

compliance for a viscoelastic material. 

= \FT ; variable index. 

K 	= bulk modulus 

,K2  ,K s  1Kw  = constants. 

kT 	
= ratio of total viscoelastic layer thickness  

total elastic layer thickness 

kv 	= total viscoelastic layer thickness. 

k4 	= resonant frequency factor for a plain 

undamped Euler beam. 

= length of beam. 

= total bending moment at any cross-section of 

beam, total mass of shear specimen. 

M. 	= bending moment contributed by the i-th layer. 

= mass per unit length of beam; mass of moving 

parts of the shear test apparatus above the 
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strain gauge (excluding the specimen layers) 

ms 	= "equivalent moving mass" of shear specimen 

me 	= m ms , effective moving mass for shear test. 

Ni, Ni
q 	

= coefficients of the differential equations, 

defined in eqUations 2.4.xvii&xL pages 77 & 84 

n 	= variable index. 

P 	= total force measured by strain gauge. 

P 	= amplitude of the force,P. 

Pe 	= total tensile force in shear specimen. 

Pp, 
q 
Pi 	= coefficients of differential equation, defined 

in equations 2.4.xxiv & xLv pages go 84,  86 

p(x,t) 	= forcing function. 

i3PCq)  pm 	, modified forcing function. I 

=.z(three—layer beam). 3 — (five—layer beam) 113  

s, qt 	= coefficients of the differential equations, 

defined in equations 2.4.xxvi & xLvi pagesgaA8G 

q 	= spatial rate of loading on the beam. 

R I , Rz 	= arbitrary functions 

S 	= strain (shear or direct) 

So 	= amplitude of strain,S. 

= temperature, °C or Absolute. 

T;(f) 	= Chebyshev polynomial of order r for the range 

0 to 1. 

Ta 	_= tip displacement amplitude ratio. 

t 	= time variable. 
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to 	= mean thickness of each layer of shear specimen. 

ui 	= displacement and shear variables at g= 0. 

= in-phase, quadrature components of displacement 
Ito  v; dimensionless displacement components. U.°  , vo 	= T  , T  ,  

Xot Yoi 	= in-phase, quadrature components of shear 

deformation, three-layer beam. 

Xn, Yoe 	= in-phasel  quadrature components of shear 

deformation, five-layer beam. 

x 	= coordinate in the longitudinal direction of 

beam. 

x 	= vertical displacement of centre-piece' of the 

shear test apparatus. 

y 	= vertical displacement at any point on beam; 

horizontal distance of an element of the shear 

specimen from the fixed support. 

yi 	= displacement and shear variables at 	= 0. 

zi 	= vertical distance of elemental fibre of i-th 

A'2 ,B ,C; ,D; 

layer from the central axis of this layer. 

= integrals for evaluating beam loss factor for 

a three-layer beam, defined in equations 

4.6.ix page 247  

= integrals for calculating beam loss factor for 

5-layer beam, defined in equations4.7.xpage252 
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13,, Y, , 

6,, v,, 0-, 

0‹27 t32 , y2 1 Z3̀  

p_21 4 7 631 Vz 102 

Ion 
S 
E 

Et 

XI /<2 

= dimensionless coefficients of differential 

equations for the 3-layer beam, defined in 

equations 4.1.xvi to xviii page 203 

dimensionless coefficients of differential 

equations for the 5-layer beam, defined in 

equations 4.7.vii to 4.7.ix page 250  
m t.44 t 4  , n-th mode resonant frequency factor. .EI 

= loss angle for viscoelastic material. 

= phase difference between force and 

displacement - shear test. 

= strain in any fibre of i-th layer of beam. 

= 	dimensionless longitudinal coordinate. 

= general dynamic modulus (direct or shear) 

= dimensionless quantities, defined in 

equations 4.6.v and 4.6.x page 24-G 

= dimensionless quantities, defined in 

equations 4.7.xi page 252 

= some function of the strain in the general 

stress - strain law of equation 2.1.i page 40 

= integral defined in equation 2.4.xiipage 76 

= integral defined in equation 2.4.xxii page 78' 

= integral defined in equation 2.4.x page /6  

= density 

= density of material of i-th layer of beam. 

= an arbitrary function. 
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= longitudinal stress in i-th layer of beam. 

	

÷ 	= shear stress, shear stress amplitude. 

2-L 	= shear stress at central axis of i-th (viscoelasti 

layer of beam. 

	

,z5A 	= shear strain, shear strain amplitude. 

Oz 	= shear strain on i-th layer of beam. 

= material constant in general stress - strain law. 

= shear, extensional material loss factor for the 

i-th (viscoelastic) layer. 

lop 
	 = beam loss factor for the n-th mode. 

nm 	= damping efficiency for the n-th mode. 

TT 	= 3.14 	 

11-z! 	= displacement and shear variables at points on beam 

11-7, the characteristic shear parameter for the 

3-layer beam. 

)4( 	= ki.21  , twice Kerwin shear parameter. 

= forcing circular frequency. 

viafr, 	= n-th mode resonant frequency. 

a definite integral. 

= cyclic energy loss per unit volume of visco- 

elastic material. 

LIES 	= shear strain energy per unit volume. 

Al< 	= change in resistance of strain gauge circuit. 
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CHAPTER 1 

LITERATURE REVIEW AND SCOPE OF WORK 

1.1 	Introduction 
	 s't 7  

Modern high—speed machines and high—energy power sources 

give rise to appreciable levels of sound and vibration which 

extend over a wide frequency range. These may be readily 

'amplified by structural members at resonance, giving rise to 

large displacements and accelerations, and high stresses at 

critical points. This fact becomes more evident when it is 

realised that the present day trend in structural design is 

towards lighter -weight, fewer joints, more integral 

construction and hence, more "resonant" structures. If 

resonant vibrations are not controlled, they may result in 

intolerable noise and human discomfort, structural fatigue 

and subsequent failure of components. 

One way of tackling the problem is by attacking the 

source of vibrational energy. This can be done by more 

efficient balancing of rotating machinery, and by the use 

of vibration isolators Ll121*. Perfect balance in 

machinery is, however, not a practical proposition, and at 
r 

the very high speeds of operation, a very small out of 

balance will give rise to an appreciable disturbing force 

(the force is proportional to the square of the speed). 

*Numbers in square brackets refer to references at the end 
of the thesis. 
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Vibration isolation can cut down tne amount of vibration 

transmitted, but does not eliminate it completely and 

structural vibrations may still be increased to undesirable 

levels owin to structural resonances [ 3] . 

To tackle the problem satisfactorily it becomes neces—

sary to attempt to control the dynamic response of 

the structure or its component part. Of the several 

methods which can be used to eliminate dangerous 

resonances 	- 	by far tne most suitable for control— 

ing wide frequency—band structural vibration is the use 

of heavily damped structures. 

In the past, considerable attention was focussed 

on the use of the internal damping in structural materials 

in combatting resonant vibrations. 

Closer study of the mechanisms of internal damping 

were made and detailed analysis of the dynamic behaviour 

of systems with internal damping Was carried out [8 — 10] . 

Materials research was also directed to the manufacture 

of high—strength, high damping alloys. But in spite of 

the great strides which have been made in this field in 

recent years, the amount of damping obtainable is still 

of a very low order. As far as is known, the ni'!;nest loss 

factor* reported for any structural material is 0.0b7 DJ]. 

*For the definition of loss factor qs us-Lld 
see chapter 4, section 4.6.b. 
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This falls far short of the requirements of present day 

high energy, sources of vibration. 

In the past decade, interest has grown on a new 

method of appro-ch which involves the application of 

hignly damped viscoelastic materials to the structures as 

damping treatments. The treatment may be in the form of a 

layer of the material sprayed or applied on the structural 

surface. Energy dissipation then occurs when the viscoelastic 

layer undergoes direct strain due to the bending of the 

structure. In this form the applied layer is said to be 

"free" or "unconstrained". Alternatively the material 

can be built into the structure in the form of sandwich 

construction. When the structure undergoes flexural 

vibrations, considerable shear deformation is, induced in 

the material leading to dissipation of energy. Under these 

conditions, the applied layer is said to be "constrained". 

A large amount of damping can be achieved by this method. 

As will be shown in chapter 6 loss factors of 1 or more 

can be readily obtained by correct choice of material and 

design. 

The incorporation of such damping treatments in 

structures however involves a basic change in the structural 

design. An understanding of the dynamic benoviour of 

such structures is thus necessary in order that efficient 

design can be carried out. The present work arises out 

of this need for a clearer insight into the dynamic 
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behaviour of such systems. 

1.2 Review of past work 

Past work in this field can be conveniently divided into 

two groups according to whether it is related to the 

unconstrained or the constrained damping treatment. 

1.2.a The unconstrained damping treatment  

This type of damping was introduced first, probably 

because of the relative ease with which it can be applied. 

Li4nard in France [271, and Oberst and his co-workers in 

Germany [20 - 2j, working independently analysed the case Of 

an infinite beam with a homogeneous layer of a viscoelastic 

material applied to one face. The damping was assumed to be 

entirely due to stretching in the attached viscoelastic layer 

when the beam vibrated in the flexural mode. Expressions 

were obtained for the beam flexural rigidity. A linear 

viscoelastic stress - strain law was then assumed, and the 

Young's modulus of the material was replaced by complex 

modulus. The damping of the beam was characterised by a loss 

factor defined as the ratio of the imaginary to the real part 

of the now complex flexural rigidity. They showed that the 

beam damping was proportional to the thickness, loss factor, 

and extensional stiffness of the applied damping layer. These 

conclusions led Oberst to work towards the development of 

stiff high damping polymers D12] . 

van Itterbeck and Myncke [?] conducted an 
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experimental study of the damping of steel plates covered 

with thin layers of various damping materials. Tests 

were carried out within the temperature range, 

—20°C to 80°C, and their results followed the general 

trend of Oberst's analysis. An extension of tne above 

analysis to the case of a two—layered structure in which 

botn layers could be viscoelastic was carried out by 

Schwarzl Dea . His analysis also included coupling 

between extensional and flexural wave motions. 

Other investigators have dealt with speci'il cases. 

For exaliple, Mead [28 — 3g has carried o.lt a study of 

the damping and stress distribution in a vibrating 

stringer—skin combination having an applied layercif 

Aquaplas. The damping properties of Aquaplas under both 

random and harmonic excitation were also investigated. 

Togetner with Pearce, he has also considered the optimum 

use of the unconstrained—layer treatment by concentrating 

tne treatment in the regions of highest bending moment [ 3I]. 

methods of analysis for such systems are given, and the 

optimum coverages required for various responses are 

evaluated. Experimental verification of the analysis is 

also carried out. 

More recently, Hertelendy N] has considered the 

displacement and strain energy distributions in a 

longitudinally vibrating cylindrical rod with a very thin 



viscoelastic coating; while Henry and Freudenthal have 

analysed the forced vibration of a viscoelastic cylinder 

case-bonded to a thin elastic she111:53]. 

The analysis of Oberst et al and Schwarzl did not 

take account of tnickness-wise deformation in the viscoe-

lastic layer, this being regarded as ne.:0_igible. However, 

experiments on structures with thick viscoelastic layers 

have shown some behaviours which cannot be explained on 

tne basis of Oberst's theory. Oberst D2] and later 

Morris EY-1:1 and James C5] observed peaks in the damping - 

frequency response of such structures, and it Was suspected 

that this might be a result of appreciable thickness-wise 

motion in the applied lacer. quite recently Ungar and 

Kerwin N] have tried to explain this behaviour by 

including thickness-wise deformation in the analysis. 

,The damping is assumed to be small and it is shown 

that for soft thick applied layers (i.e. weight ratios" 

of base layer to damping layer of up to 4), thickness-wise 

motion becomes important at frequencies corresponding to 

standing wave resonances in the damping layer. 

1.2.b. Constrained damping treatments or damped  
Sandwidh structures  

The idea of sandwich construction nas for long been 

employed in design for various reasons, such as the stif-

fening of structural members and the reduction of stress 

2 
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levels. As a result, there exists en enormous amount of work 

in the literature on sandwich structures[i.g. 37,36]. The 

present work is however solely concerned with sandwich 

structures with viscoelastic layers built in for the purpose 

of introducing damping into the structures. Review of past 

work will therefore be limited to tnis class of structures. 

The main attractions of the unconstrained damping treat-

ment are the simplicity with which it can quite often be 

applied to an existing structure, the relative ease with 

which its analysis can be carried out, and the fact that the 

damping is not very sensitive to frequency changes: The 

damping depends on frequency only because the viscoelastic 

material properties are frequency-dependent. In most prac-

tical applications, however, the constrained damping treat-

ment proves superior. It makes more efficient use of the 

damping material E39,40,6A and with proper optimisation of 

the geometry, much greater damping can be achieved with a 

relatively soft (but cheap) material than can evr be hoped 

for with stiffer (and invariably more expensive) unconstrained 

layers. Besides, the sandwich construction is less suscep-

tible to ehviromental effects (e.g. humidity, chemically 

adverse surroundings etc•) than the unconstrained layer con-

figuration. The analysis of the sandwich configuration is, 

however, much more involved; and has only been recently 

given serious attention. 



26 

Three groups of contributors feature prominently in 

this field, viz : 

Kerwin et gl 

Yu, and 

Mead 

Their contributions will be dealt with first. 

Kerwin et Al.  

The first published work on the constrained damping 

treatment was due to Kerwin [.41 	. He considered 

the flexural vibration of a three — layer beam made up 

of an elastic base layer, a middle viscoelastic layer and 

a comparatively thin but stiff top elastic layer — a con— 

figuration popularly known as the "damping tape". 

On assuming that the damping in the beam was due entirely 

to shear deformation in the viscoelastic layer and that 

the material loss factor was small enough for its square 

to be negligible compared to unity, he obtained expressions 

for tne damping of the beam and showed that it vas frequency— 

dependent. A frequency—dependent shear parameter was 

defined to characterise this dependence. 

Ross,Kerwin and Dyer 54, 4] developed a more 

general analysis of the three — layer beam, imposing no 

restriction on the thickness of the top layer. They took 

account of both extensional and shear deformations in the 
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viscoelastic layer and obtained expressions for the beam 

damping for various configurations, including the two—layer 

beam analysed by Oberst, the damping tape treated by Kerwin, 

and the symmetrical sandwich beam with a very thin layer 

of viscoelastic material. Expressions were also obtained 

for the beam geometry for optimum damping in each case. 

Their analysis was extended to multiple damping tapes by 

Ungar and Ross E46] . They showed that the damping per—

formance of a multiple tape (made up of identical tapes) 

approximated that of a single tape having the same 

thickness of damping material as one of the tapes; but 

with a constraining layer thickness equal to,the sum of 

the thicknesses of the individual constraining layers. 

Ross, Ungar, and Kerwin [47] have also analysed the 

three-layer beam in wnich the stiffness of the base plate 

is much greater than that of the other layerp, either or 

both of which can be dissipative. General expressions 

are obtained for the damping; and special cases are then 

treated, including the homogeneous unconstrained layer 

treatment, and the damping tape. They also deal with 

the "spaced" damping treatment in which an infinitely 

shear—stiff spacer separates the damping material from 

the base layer. This configuration is shown to be 

advantageous in both constrained and free—layer treatments. 

The geometry for optimum damping is obtained in each case. 
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Kerwin [48,40 has further investigated the spaced 

damping treatment for both free and constrained layers, 

considering the cases where the spacers have finite stiffbeSO4' 

A comparison of the effectiveness of constrained and 

unconstrained damping treatments applied to plates was 

carried out by Kerwin and Ross [40] 	Their study showed 

that for the stiffest polymer known, the constrained 

damping treatment(damping tape) is capable of giving a much 

higher loss factor than the free—layer treatment, for weight;!:,  

ratios of damping treatment to base plate of up to 0.2 

for steel and 0.4 for aluminium plates. 

The above analysis has been restricted to homogeneous 

layers. A possible method of extending it to more complex 

structures has been indicated by Ungar[5l]. This involves 

treating the various layers vibrating in the flexural mode 

as inter—connected viscoelastic springs in the manner 

first suggested by Ungar and Kerwin [501i] , and then 

obtaining expressions for the loss factor._in terms of 

energy losses and storages in the spring models. 

Several design configurations arising from the above 

study have been outlined by Ungar D2,5] 

The general method of analysis employed by Kerwin 

et al has the following feature. No equations of motion 

are given for the system. The total effective flexural 

rigidity of the sandwich structure is first obtained. 
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Then, as in Oberst's analysis, a linear viscoelastic 

law is assumed, the moduli of the damping layer being 

replaced by complex moduliiand the damping is characterised 

by a loss faCtor defined as the ratio of the imaginary 

part to the real part of the complex flexural rigidity. 

When desired, the mode shape for the beam, as Tell as the 

shear distribution along the length of the viscoelastic 

layer, is assumed to be sinusoidal. The analysis is thus 

only strictly applicable to lightly damped systems 

vibrating in the higher modes. Ross, Ke2win and Dyer have 

in fact pointed this out with the remark: "It 'id assumed 

that the damping factor of the composite plate is small 

enough that the basic sine wave shape of the vibrations 

is still valid" [44] . Besides; theloss factor as 

defined above is the same as the'tangentiof the, phase 

difference between the applied bending moment, and the 

resultihg curvature at any given sqction. The definition 

is thus unique only for systems where this phase difference 

does, not vary along the beamaengtb.. 

Attempts have been made to verify some aspects 

of the above analysis experimentally. Although agreement 

between theory and experiment has in most cases been regarded 

as "gratifying", it has by no means been satisfactory. 

The experimental work reported by Kerwin [4i-lj showed 

fairly good agreement for the damping—frequency response 
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of the damping tape within the frequency ran7e 200 cps 

to 100 kcs., At fairly low frequencies (and also at low 

tellperatures) differences of up to 100 pe.: cent , 

between calculated and experimental values were recorded. 

He attributed this to the assumptiop of small material 

damping snd to uncertainty in the material properties. 

Parfitt and Lambeth [541 carried out an experimental 

study of various configurations of the constrained layer 

treatment. Their loss factors showed appreciable differences 

from those calculated from Kerwin's theory (up to 200 per 

cent in many cases) and this was again attributed to lack 

of exact information on the material properties. 

Ross, Kerwin and Dyer [44] and also Ross, Ungar and Kerwin 

[4.; reported good agreement in trends, but agreement 

between calcul,Ited and experimental values was again 

poor. 

Yu 

In a series of articles [25-6 ii, Yu has developed the 

general equations of motion for the flexural vibrations 

of an elastic symmetrical three—layer sandwich plate 

taking account of shear and rotatory inertia effects, 

but neglecting thickness—wise deformations. Displacement 

functions are assumed for the various layers in such 

manner as to satisfy continuity requirements at the 

interfaces. The strains and stresses are then obtained 
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in terms of these functions, and the variational equations 

of motion are utilised in obtaining the differential equations 

connecting the above functions. Yu has applied these 

equations in the analysis of the free vibration of damped 

infinite and simply sunported plates [59] . Like previous 

investigators, he assumes a linear viscoelastic law 

and replaces the elastic moduli by complex moduli. 

Furthermore, on the assumption of small overall damping 

(in other words, that the natural frequency is unaffected 

by the damping), he obtains expressions for the frequency 

and the damping, the latter being characterised by tne 

logarithmic decrement. 

The above work has been purely theoretical, and no 

report has been given of experimental work to check any 

aspect of the theory. 

Mead 

Mead has also analysed the symmetrical three—layer 

plate, confining himself to detailed treatment of the 

simply supported case 	2,6E. He obtains the equations 

of motion for the plate, neglecting extensional deformat—

ion in the core, and thickness—wise deformations in 

the various layers. These equations are then solved for 

both harmonic and random excitation, the rotatory inertia 

terms being ignored. The trqnsverse'displacement of the 
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plate is expressed as an infinite series of sinusoidal 

transverse displacement modes. Damping is taken account 

of by replacing the moduli of the core by complex moduli. 

For each normal mode, the damping of the plate is charact—

erised by a "modal" loss factor which is defined in the same 

manner as in Oberst's analysis. In addition, a "modal" 

stiffness ratio is defined as the ratio of the "generalised 

stiffness" E40 of the damped plate to that of 9 so Lid plate 

vibrating In the same mode, of the same material as, and 

having a thickness equal to the total thickness of the 

elastic layers. In a previous work M, he had pointed out 

that the loss factor, on its own, does not give a complete 

assessment of the effectiveness of a damping treatment in 

the attenuation of a given'response. The introduction 

of a damping treatment modifies, not only the damping, but 

also the mass and the stiffness of the system and this, by 

varying amounts. Different criteria for comparison are thus 

necessary for various responses. He obtains expressions for 

the criteria for given responses, considering both harmonic 

and random excitations; and gives the optimum geometry 

for each response. This is done on the assumption that 

only one mode is significantly excited, an assumption not 

likely to hold for highly damped systems. 

An experimental check of the above analysis has 
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been carried out but this was confined to the natural 

frequencies and the loss factor. The application of some 

of the results of the 

outlined [5,(4] . 

Other Contributors  

Other investigators 

the problem. 

Plass [67] analysed  the restricted case of a 

have tackled various aspects of 

above study to design has also been 

symmetrical three-layer beam in which the face layers 

were regarded as very thin membranes. Only ,two limiting 

cases of pure shear and pure bending of an infinite beam 

were considered. The two-dimensional equivalent of this 

problem, viz.,a,dandwich plate with thin facings, was 

also analysed by Yildiz [74] who obtained the equations of 

motion for the plate but did not attempt to solve them. 

Kurtze *160 has considered the wave transmission 

and attenuation in infinite multi-layer plates using 

impedance techniques. The motions of the various layers 

are characterised by impedances which are suitably 

connected to reflect the coupling between them. Kurtze 

and Watters DO.] have also carried out an analysis of 

the acoustic transmission loss characteristics of layered 

structures. They show that higher flexural loss factors 

can be obtained with the sandwich construction although 
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it is. inferior to the unconstrained layer treatment as 

far as frequency re4ponse is concerned. 

On the design side, Ruzlcka [71] has outlined various 

configurations in which the shear damping technique 

can be applied. These include the sandwich construction 

as well as cell—inserts and strip—damper confi3uratiohs. 

No general analysis of such structures is undertaken. 

Rather, a lumped parameter model is given for studying 

their damping and frequency characteristics. Some experi—

mental work on cantilever beam models of the various 

configurations is reported, but this is not related to any 

theoretical work. 

Freudenthal and Bieniek E2Irghave treated the 

case of flat and curved damped sandwich plates under 

harmonic excitation. Like Mead, they use the "normal mode" 

approach, expressing the total response as an infinite 

series of responses in the various normal modes. The plate, 

core and facings are assumed to be orthotropic and dissipa—

tive with linear stress—strain relations, and complex 

moduli which are frequency—independent. 

1.3 Scope of present work  

Pike e.,above review, it is observed that much 

of past work has been centred on either simply supported 

structures or lightly damped structures vibrating in 
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the higher modes. This is simply because these structures 

lend themselves more readily to analytical treatment. The 

lower modes of vibration of systems with other boundary 

conditions as well as heavily damped structures still remain 

uninvestigated. At these low modes, the boundary conditions, 

and hence the mode shapes, are important; and the applicability 

of some of the generalisations obtained by analysis of the 

higher modes becomes doubtful (see chapter 6). 

Besides, experimental verification of the various 

theories has not been very systematic. So far only loss 

factors and natural frequencies have been checked experi-

mentally. The more exacting test of actually checking, say, 

a predicted displacement or stress response, has not yet been 

attempted. Lack of good agreement between theory and 

experiment has often been attributed (sometimes without strict 

justification) to lack of exact information on the visco-

elastic material properties. 

Also the viscoelastic material has been assumed to 

behave like a linear material in the strain ranges encountered 

in the analyses, although it is well known (see chapter 3) 

that these materials exhibit a certain amount of "non-

linearity" even at very low strains. To what extent is this 

assumption justified? This question remains unanswered. 

The present work is aimed at filling some of the above 

gaps, by investigating the dynamic behaviour of sandwich 
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beams vibrating in flexure. 

The one-dimensional equations of motion for a symmetri-

cal multi-layer beam with any number of layers are first 

developed. Shear and extensional deformations in the viscoe-

lastic layers are considered. Rotatory inertia effects, 

shear deformation in the elastic layers, and thickness-wise 

deformations in all the layers are neglected. The viscoe4 

lastic material is assumed to obey a general (but as yet un-

prescribed) stress-strain law which could be linear or 

non-linear. 

The solution of the equations requires, amongst other 

things, a clear knowledge of the dynamic behaviour of viscoe-

lastic materials. Hence, a simple method of determining 

the dynamic properties of viscoelastic materials is developed; 

and utilised in the study of a few viscoelastic materials with 

a view to ascertaining their stress-strain laws under 

harmonic loading, their dynamic properties and the nature of 

theirTdependence on_various factors. It is verified that 

from the point of view of non-linearity, the viscoelastic 

material can be satisfactorily regarded as a linear material 

with strain-dependent properties. 

In the light of the information obtained from this 

study,a numerical method of solving the differential 

equations is developed, the method being capable of dealing 

with all possible boundary conditions, as well as linear and 
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non—linear behaviours of the viscoelastic material. 

The analysis is then checked experimentally by consi—

dering the displacement response of cantilever three—layer 

and five—layer beams vibrating in the first few modes. 

Finally, the application of the analysis to the design 

study of multi—layer sandwich beams is illustrated with a 

detailed study of the three—layer configuration vibrating in 

the first mode, and some studies of the five—layer beam. 
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CHAPTER2 

DIFFSRENTIAL EQUATIONS FOR MULTI-LAYER VISCOELASTIC  

SANDWICH BEAMS - DERIVATION.  

Introduction 

An important step in the analysis of any system is the 

establishment of the equations governing its behaviour. 

Accordingly, this chapter sets out to derive the differential 

equations for a multi-layer beam undergoing flexural 

vibration. 

The general case of an unsymmetrical three-layer beam 

is first considered. It is shown that, for such a beam, the 

neutral axis position in general varies from section_to 

section; and at any given section, it varies with the applied 

load or deflection. The 'symmetrical' beam is shown to be 

an exception to this, as its neutral axis always coincides 

with its central axis, no matter the loading. 

The one-dimensional differential equations for a 

symmetrical multi-layer beam are then developed. The 

viscoelastic materials are assumed to obey a general stress 

strain law which can be linear or non-linear. Shear in the 

elastic layers, and rotatory inertia in all the layers are 

ignored. Both shear and extensional deformations in the 

viscoelastic layers are included. 
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2.1. General assumptions. 

The following assumptions are made: 

(a) The multi-layer beam is made up of alternate layers 

of a viscoelastic material and a perfectly elastic material. 

The viscoelastic layers are always "constrainecL" that is, 

there is slwys on einstic 1'= -Ter above and below any vis-

coelastic layer. Each layer has uniform thickness. 

(b) All the layers partake of the same flexural motion. 

In other words, at a given cross-section, each layer has - tne 

same vertical deflection y, and the same bending angle 

Sx' x being measured along the length of the beam 

(fig 2.3). As Ross, Kerwin and Dyer have pointed out [44], 

this requires that tne thicknesses of the layers are small 

compared with the shortest wavelength of any type of vibra-

tion within each layer. 

(c) In addition to the bending deformation, each viscoe-

lastic layer has a shear deformation 4i, in the plane of bend-

ing (figs 2.3.c and 2.3.d). Oi , in general, varies from 

section to section along the length of the beam; but at a 

given cross-section, it is assumed constant across the thick-

ness of tne layer. 

(d) Damping in the entire structure is due to imperfect 

elasticity in the viscoelastic material which, when subjected 

to periodic excitation, exhibits a stress - strain loop of 
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Cr= it{s 411..p(s)1 
where 

ss, 
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2 1  i 

 

  

S is the applied strain — direct or shear, 

0,the corresponding stress, 

ligI the appropriate dynamic modulus, 

Il a 'constant' of the material. 

From the above expression for 0', it is clear that 4I(S) 

— a yet unprescrioed function of tne strain, S — represents 

the departure from a linear stress — strain law. 

The stress — strain loop is made up of two branches, 

the 'forward' or 'loading' branch, and the 'return' or 

'unloading' branch. The function Lp(s) is denoted by 

Lp(s) for the 'forward' branch, and by IT(S) for the 'return' 

branch. The two branches may both form a continuous curve. 

An example of this is wnen the stress — strain low is 

elliptical (fig 2.1). Then, the loop is a continuous curve 

with Lp(z) given by 

L11—*(S)  = 	(51—  5 )3  
1-1-1( s) 	— ( S: —Si) 

So  being the maximum value of the strain S in one cycle, 

However, tne loop need not be a continuous curve. The 

branches may be any two intersecting curves. The law for 

hysteresis damping in elastic materials affords a simple 
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FIG. 2.1 	Elliptcal Stress-Strain Law. 
(7=0.5 ) 
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example of such a case.(fig; 2.2). For a material obeying; 

such a stress — strain law, Fisarenko has shown [9.] that 

1:43(S) 	[(So + S )n 	211-1  

LIP(S) = 	t(S0 — 	— 211-1  Sonj 
	 2.1.iii 

n being; a positive constant of the material (n>1). 

In tne next chapter, the stress — strain law for 

viscoelastic materials will be prescribed. Until then, 

however, the analysis will be keot in the general form to 

show that it is valid for otner stress — strain laws. 

It will only be assumed tnat the loop has "cyclic symmetry", 

in the sense tnat 

CO(S) = —4:1( S) 	2 1  iv 

and that qp(s) is a homog;enous function of the strain S, and 

the strain amplitude So; and hence is expressible in the form, 

14.1(5) = L.) 2.1.v. 

Damping; in the elastic layers is neglected, consistent 

with the assumption that these are perfectly elastic. 

(e) Shear effects in tne elastic layers are ne7lected, 

and so is the effect of rotatory inertia. 

(f) The elastic layers obey Hooke's law both in tension and 

in compression. 



FART A  

THE GENERAL CASE 

2.2 The three-layer beam  

To illustrate the general method of approach employed, 

consider the simplest form of a multi-layer beam - the 

three-layer beam. 

2.2.a. Shape of a deformed element.  

When the beam of fig. 2.3a is subjected to a bending 

deformation, owing to assumption (c) above, plane sections 

no longer remain plane, and the beam might take a shape 

similar to that shown in fig. 2.3b. In other words, a 

longitudinal element ccqc, of fig. 2.3a deforms to ecv,c; in 

fig. 2.3b. An enlarged diagram of the element Oc"c;c:, is given 

in figs 2.3c and 2.3d. Two cases are distinguished: 

(i) when the neutral axis is in the viscoelastic layer 

fig. 2.3c ; and 

(ii) when the neutral axis is in any of the elastic layers 

fig. 2.3d. 

hi  (i = I.,2,3) is the thickness of the i-th layer, and 

i - i, represents the central axis of the i-th layer, di  being 

the distance of this axis from the neutral axis, N - A , of 

the beam. zi  is the fibre distance of any longitudinal 

fibre of the i-th layer from its central axis. The width 

of the beam, and hence of the element, is b. Its total 
3 

thickness is 
	

hi  and its length is dx. y is the vertical 
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a ) Undeformed beam 

9 

b) Deformed beam . 

FIG. 2.3 a) & b) 	Three- layer Beam 
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c) Neutral axis in viscoelastic layer. 

M p(x,t) y+Sy 

f 
d2  

N 	11-t _L 
d3  

d) 'Neutral axis in elastic layer. 

t 
hz  

hi  

h3  
A 

FIG. 2.3 c)&d) 	Three layer Beam 
Deformed element ,dx • 

Refe_ocg 5245. tc2r y 
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displacement of the neutral axis (at a distance x along 

the beam) measured from its original equilibrium position. 

Otis the shear deformation in the 4—th (viscoelastic) layer. 

bhi.), is the cross—sectional area of the i.—th layer. 

2.2.b. Case (i): Neutral axis in the viscoelastic layer. 

Consider first the case in which the neutral axis is in 

the viscoelastic layer. 

Longitudinal deformation  

LAYER 1. 

For any fibre distant z, from the axis 1-1, the longitudinal 

deformation can be thought of as made up of two parts: 

(a) Extensional (or compressive) deformation due to bending. 

The strain due to this is proportional to tne curvature 

and is given by (z, + d, ) a--1  3x4  

(b) Extensionql (or compressive) deformation due to tne 

variation of the shear angle 0, along the length of the beam. 

This gives rise to a longitudinal strain of magnitude 

(z,+ dAlt . The total longitudinal strain on the fibre is 

thus 

E,= (z, + 	+ 	2  2.i 

LAYER 2. 

The entire portion of this layer contained in the element 
h 

.dx suffers as extension (or compression) (7
,  + dOax  1x due 

to the shear in the viscoelastic layer 1. In addition, 
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each fibre of the layer, distant za, from the axis 2-2, - 

experiences a bending strain given by (z4+ The 

total longitudinal strain on tnis fibre is thus 

Cz= (z,,+ clz) axa + (2'  + d1)1 .t. 4,4L4,11.6 	 2.2.ii. 

LAYER 3. 

Again, owing to the shear in layer 1, the entire portion of 

layer 3 contained in the element dx, undergoes a compression 

(or extension) of magnitude (4+ d)it dx. Also, each fibre 

of this layer at a distance z3  from the axis 3-3, experiences 

an additional bending strain given by (z3 — a) c1,.. Hence, 

the total strain in the fibre is 
n3 

hi 
63= (z3—d3 	

/

)OXI
+ 	7 + th)8x 	 2.2.iii 

Longitudinal stresses and fprces.  

LAYER 1. 

Since the material of tnis Dyer is viscoelastic, the appro— 

priate stress — strain law is given in equation 2.1.i. 

Hence, the longitudinal stress in any fibre of the layer is 

= z, di)(S-1. it) 1,41(6.),} 

 

2 2  iv, 

 

where Eland% are the material constants in extension (or 

compression). The total longitudinal force in layer 1 is 

given by 

= 	cri dAt 
A. 

	

I

th12 	 +h/2 

E1 ( z, + d.) 	+ 	)b az, t 	41( E1) b dzi  

	

—h/2 	 —h/2 



x 
• (, 

• 

i.e. F, = E, A, d, (01Z ;+ ax  
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i-h f /2 
whereY *a' - "rie E,14_1(E,)b 

—h1/2 

The irate ;raft can be conveniently split into 

ft( h1/2 - 2d1  

rielE41(€1) b dz, + 

-h1/2 l

+h-1/2 	• 

YLE11.11(E1) bdz1  

(h1/2 2d1) 

 

2 2  vi. 

 

Fig 2.4 shows the strain distribution in the layer. 

Consider any two fibres on either side of, and equidistant 

from the neutral axis. Their strains are equal in magni-

tude but opposite in sign. Moreover, if the upper fibre is 

on the 'forward' branch, the lower fibe will be on the 

return' branch of the stress - strain loop. It follo•Ns 

from this and from the assumption in equation 2.1.iv, that 

'(h1/2 - 2d1) 
(6,) dz, = 0 

-h,/2 

Since Ei = (z, + d,)(S+ 

cycle is 

(E0 	+ dt) max. • 

the maximum value of c, over a 

	vii 

E
( d4Cz  ifEl)  MAX: 

	2.2.vtii 

where' 43(P P) is some fu.ction of 	and 
x'3 x . dx 

Hence in view of equation 2.1.v,L4(E0 can be expressed as 

= ( zo- donfriS, 	 0.04120241-3X, 



FIG. 2.4 Three layer Beam 
Longitudinal Strain distribution 
in La yer Case (i) 
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FE  = 0;ciAL  

= 
1

—

h/2 
Ea ++ 	b dz axa 4-  2 	x 	z 

hi/2 
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It follows from equations 2.2.vi, 2.2.vii and 2.2:ix 

that 

+hV2 
;z, + d.)11 41(1;Ye,t) b CLZI, 

(W2 - 2d0 

it being al-5,5umed (without any loos of o;enernlity) that the 
portion of the layer above the neutral axis is on the 

'forward' branch of the stress — strain loop. Hence 

n + 
17e,E, b  !Dv aly 	h. 

dl)n+1 — (75  — d, n+1 	• 

Since d, is n 	 hi ,necessarily less tnan 	, it is easy to show 

that for all real positive values of n, the expression 
don+1 	(121,= don+ lj can be put in the form d,SS 

where g',(d,) is on algebraic function of d, . Thus, 

n+1E, 
	ox') n i(d,) ; and putting this in equation 2.2.v, 

Ta 1c,bd, E, = E, A, 	( 83(2 + 	) + n+1 41( x2, it) g( 
LAYER 2. 

is 
ThisA an elastic layer; hence the stress cc in any fibre is 

given by Cra  = E2  x strain , where E, is the Young's modulus for 

the material of the layers 

i. ry' e .ciL  = Ez  Zi  da)  ex2 + (7 	`1st} 	2  2.xi 

The longitudinal force F2  acting on the layer is thus 
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i.e. Fx  = ELIVIzt* 11-fdd Ezikeit 	2 2  xii 

LAYBR 

This is also an elastic layer, hence the stress o in any 
fibre is given by 

2 2  xiii 0" - a - E36 za 	d3)Vca 	+. 

and the total force in the layer is liven by 

I

A  

F3 	= 	Cr; GLA3 

3 

or F3  = Est( zs  — ds)t ( 
, giving 

44E.,(13 !-Y as f (-111 + 2 	ax 	2 2  xiv 

E3  beingthe Young's modulus for the material of the layer. 

2.2.c Case (ii) : Neutral axis in any of the elastic layers: 

Next, consider the case when the neutral axis is in 

an elastic layer. It is clear that it doesn't matter which 

of the elastic layers contains the neutral axis; the same 

form of strain distribution will be obtained in each case. 

Consider, therefore, the case in which the neutral axis is 

in layer 3 (fig2.3.d). 

Longitudinal deformation: 

The longitudinal deformation in each layer can be obtaine 

as in the first case, starting with the layer containing the 

neutral axis. 
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LAYER 3: For any fibre distant 7/  from the central axis 

3 - 3, the longitudinal strain is entirely due to bending, 

and is given by 

E3  = ( z3  -   ..2.2.iii.a 

LAYER 1: Due to bending, any fibre distant z1  from the axis 

1 — 1, has a strain of magnitude (z, + dOci/ca  . There is an 

ha a g additional strain of magnitude (z, + -2)ax  due to the variation 

of f5, along the beam length. Hence the total strain in tne 

fibre is given by 

E, = ( z, + 	a + ( z, 	22.i.o  

LAYER 2: The entire portion of the element contained in this 

layer suffers a longitudinal strain lila
x 
due to the shear 

in the viscoelastic layer. Also any fibre of the layer 

at a distance zz  from the axis 2 — 2 experiences a bending 

strain of magnitude (z2  + 42)t, . The total strain in the fibr 

is thus 

62= ("z2+ 	h 	2.2.ii.a 

Longitudinal stresses and forces:  

The stresses and forces are obtained in the same manner 

as in case (i), and are given below. 

LAYER 1 

= E,f( z, r 	r ( z, + 	tlii-P(601 
and F, =Ai &to  + EiAit 	 4- .vZi„ 	d.) aly 

where 172  is some function of Val 

 

ad, and  and dl  , 

2 2  iv.a 

	2 .2.x.=3 



LAYr.i 2 

= E, ( za 	+ 

E2A2 	E:  AZ  and F2  = 	lax  

LAYER 3 

c5 	Ei ( Zs  — q0tia 	2 2  xiii .a 
nitiq 

and 111  —E3A3  cis  re 	 2.2.xiv.9 

It is seen from equations 2 	2.i 	iii and 2.2.i .n — iii. 

that the two cases considered above give rise to different 

strain distributions in the various layers. This is a 

consequence of the discontinuities ( at the interfaces) 

in the strain distributions. The fibre stresses -end the 

forces in the layers are also different in each case. 

2.2.d. Neutral axis  

The equation for the neutral axis is obtained from the 

condition that the resultant longitudinal force, F, at any 

cross—section is zero. Consider the case when the 

neutral axis s in the viscoelastic layer . 

Thus F = 	= 0 ; which, from equations 2.2.x, 2.2.xii 

and 2.2.xiv,  1  gives 

E,A1  d, ( .sZ 4. it ) /11.4.dib 	d1)  1-11( Pc„ 	+ A d z 2 a x2 

EIA2 	+ 	—E3A3d31-1a+ ( 421-' + QE3A3krbs  = 0 	2 2  xv 

Noting that 

h. + h2 	 hi +  d2  = di +and that d3  - 	di 	2   , it is 2  

possible to rearrange equation 2.2.xv to obtain an expres— 

sion for d, in the form, 

54  

2  2.xi.a 

2 2  xii.a 
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E316(ht .  h2) - E216( htS  hh 2 ) 	(EgAs _ ExA2)/4,t)  

E Ail + 8x2' ax' ax=' 	
3a_n+bEi, 	pei 	A)  

.....2.2.xvi 
where the following notations have been employed; 

3 
EA = 	EiAc; 	1/1( 	= 	a-Zca  , and 

R2(  fix=, /,) 

	

14:1 	sPhe 
Equation 2.2.xvi gives d, as a function of /2-1  and t'ax.2 

which in turn are functions of x, the position along the 
beam. But d,- the distance of the neutral axis from tne 

central axis of layer 1 - defines the relative position 

of tne neutral axis at any cross-section. It follows, 

therefore, that in general the neutral axis position- 4varies 

from section to section along the beam. For any given 

deflection y - static or dynamic - Zand tare fixed, 

and hence the neutral axis is fixed at each section. If 

y varies, however, the neutral axis position also varies. 

It is thus possible to think of a case in which for some 

value of y, the neutral axis no longer raraains in the visco-

elastic layer for some or all the sections of the beam. 

The strain distribution, the forces, and hence the neutral 

axis position obtained for case (i) would no longer 

hold; and it would be necessary to use the strain distribut-

ions etc. for case (ii). The situation becomes rather 

complicated in a dynamic case where y varies with time. 
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In such a case, as .y varies, it is possible for the neutral 

axis to oscillate between the elastic and viscbelastic 

layers, the change from one layer to the other occurring at 

different points in time in the various sections. Analysis 

of such a beam by this method would thus be extremely 

difficult (see chapter 7). 

Suppose, however, that E2= E3, and h2 = 11_3 . Then the 

numerator of the right—hand side of equation 2.2.xvi 

vanishes. Also, since R, and Rare arbitrary functions of x, 

the denominator is not identically zero. Hence di vanishes; 

that is, the neutral axis coincides with the central axis 

of the viscoelastic layer. This is the case of the 

"symmetrical" three—layer beam; and for such a beam, the 

neutral axis position remains "fiKed" at the central axis 

of the cross—section. 

Although this result has been proved here for a sym—

metrical three—layer beam, it in fact holds true for 

any symmetrical multi—layer beam. A symmetrical multi—layer 

beam is characterised by the fact that any two lasers 

equidistant from the'central axis (i.e. the neutral axis) 

of the beam are of the same, material and have the same 

dimensions. Unless otherwise stated, the rest of the work 

will deal-_anlIelj with sym-aetrical multi—layer beams. 
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PART B  

SYMMETRICAL MULTI-LAYER BEAMS  

Zn the last section, a symmetrical multi-layer beam 

was defined as one in which any two layers equidistant from 

the central axis ,af the beam, have the same material 

properties and dimensions. Because of this symmetryl the 

neutral axis of such a beam coincides with its central axis, 

no matter the loading. 

Consider the general symmetrical n-layer beam. n is 

necessarily odd, and can thus be written as n = 2r + 1, 

where r is the number of viscoelastic layers in the beam. 

The following two cases are distinguished: 

(a) when the number of viscoelastic layers is odd. In such 

a case, r is of the form, r = 2i - 1 , i = 1,2,.... 

Owing to symmetry,i,the shear deformations in any two visco- 

elastic layers equidistant from the central axis of the beam 

will be numerically the same at any section; hence, there are 

i 	independent shear variables, 0„ 	associated 

with the viscoelastic layers. These, together with y, form 

the unknown variables. The number of differential equations 

required. for such a beam is thus (i+1); and the number of 

layers, n, is given by nF= 2r I- 1 = 4i - 1. 

(b) when the beam has an even number of viscoelastic layers. 

For such a beam r = 2i, 1-1,2, 	 

Again, there are i independent shear variables,02,41....021; 
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and hence (i+1) differential equations are needed. The 

number of layers, n = 4i + 1. 

It follows immediately that for all non-zero integral 

values of i, the (4i-1)-layer beam has the same number of 

differential equations as the (4i+1)-layer beam. The 

"proto-type" for each set is obtained by putting i = 1, 

giving rise to the 3-layer beam for case (a); and the 

5-layer for case (b). Before proceeding to obtain the 

differential equations for the two general cases above, it 

is intended to first illustrate the method of approach with 

the simpler cases of the 3-layer and 5-layer beams. 

2.2.e. Moments and equation of motion - 3-layer beam.  

The expressions for the strains, stresses and forces 

obtained in section 2.2.b (case(i)) hold good for the 

symmetrical 3-layer beam, with the additional condition that 

d,= 0, Ez = E3  andh2 = h,. With these expressions, the 

bending moments for the various layers can be worked out 

as follows. 

LAYER 1 

The bending moment, M„ about the neutral axis due to the 

forces in layer 1 is given by 

+114/2  

MI 	Cr; Zi  ciAi  = 	El  zf (ax   + 4) b dz, + ThIlle/E2, LigE,) zib otzi 
jr  AI 	-h//2 	-111/2 

or M/  = El  IN,(a-ke  + #c  ) + Y2 11- Imi 	 2 2  xvii, 
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where, in general, 	= 	+ di ) ....2.2.xviii is 

the second moment of area of the i—th layer about the 
neutral axis and 

f

— 

 hi/2 
4_14= 2 YietElb L41(60.  ( z: 	d,) dam: 	2  2.xix. 

hi/2 
LAYER 2 

The bending moment 12  contributed by this layer is given by 

4+'4/2 

b M a  = 	Zo.  4-  (12 )clAz = 	E4( Za d2) 	otz2  d2 )Vcz + 12-11(zi+  
Al  

or ML  = E214 + E,AArnt 	 2.2 . ›rx 
LAYER 3 

Similarly the bending moment contributed by liver 3 is 

M 3  = 	da  ( zs  — d3) beiz3  
fh3/2 

A3 	
= 	E3f( z3  — 

—h3/2 	

ds)w  — 7 ax  ( z3  — d3) beiz3  IlY h..A1 

h ack, i .e . his  = E31,, 	E3A3d3  -2,  (3—x 	 2 .2 . xxi 
= M2 , since E2  = E3  and h2 = h.3  . 

This result is to be expected from the symmetry of the beam. 

Also from equations 2.2.xii and 2.?.xiv, on putting d1  = 0, 
it is seen that; F3 = — P. This means in effect that in 

dealing with symmetrical multi—layer beams, only the layers 

of the top half (or the bottom half) of the beam need be 

considered, since the forces and moments for the layers of 

,the other half can be deduced. 
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The total bending moment, M, at any cross-section is thus 

M = 	mi , 2M2  or 

M = EI 	N:  ax 	Lij"" 	2 2  xxii, axe_ 
3 

where, EI = 	, and W = El IN1 + E,Azhi dz . 

If the spatial rate of loading is q, then 

a8x 
14 22 = q 	2 2  xxiii. 

But q = p(x,t) - m 2 2  xxiv, atz  

where m = 	, is the mass per unit length of the beam, 
c.1  

and p(x,t) is the externally applied load per unit length. 

is the density of the i-th layer. It follows from 

equations 2.2.xxii, 2.2.xxiii and 2.2.xxiv, that 

a2  c 	I a 01 	
2 

737£ EIdx= + N' ET* 	m a 	= p(x,t) ...2.2.xxv. 

This is the differential equation of motion for a 

symmetrical 3-layer beam. However, equation 2.2.xxv 

contains two. unknown variables, y and 01, so that two 

differential equations are needed. 

2.2.f. Shear deformation - three-layer beam.  

The second equation is obtained from consideration of 

the shear deformation in the viscoelastic layer 1. Fig. 2.5 

shows the shape of the element when longitudinal deforma-

tion is neglected. 95, — assumed constant across the 

thickness of layer 1 - is taken as the shear strain at the 

central axis of the layer, the shear stress at that axis 

being ?;. Thus 2/ and 01  are connected by the viscoelastic 
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FIG, 2.5. Symmetrical Three-layer Beam -
Shear deformation in element • 



stress - strain law thus, 

't; 	= 	G, 	-17,, 	(  2 2  xxvi, 

62 

  

G., and 7'4 being the material constants in shear. It is 

possible to obtain another expression for T-/ , by considering 

the equilibrium of the section of the element above (or 

below) the central axis 1 - 1. Assuming that there is no 
surface traction (i.e. that free surfaces of the beam are 

free from shear stress), longitudinal equilibrium of the 

shaded portion of fig. 2.5 requires that 

ri-hd2 
T bdx 	3 

3F. dx ( 	aa°x' otx) b 	 2  2 xxvii. 

do 
 

On substituting for 0-.;" and F2  and simplifying, the above 

equation gives 

bT,  = ax 	
a  x (EAzdz 

14111/2 

h, • .57  ( Eza, + E,A., T3-1) 	j.2.2.xxviii, 

where, Fi El7e11 1 1 (6,) 
0 

b otzi 	...... 2.2.xxix. 

   

Finally, equations 2.2.xxvi and 2.2.xxviii are combined to 
30, I P I  a 'Y 

xz ,ive 	‘4,1 	14-6 	- 	b G1 	4) = bG , . .2 . 2 . xxx "  
- 	 , where , 	EzA2d2 	E A -1 	and 4,1  = 	hi 	. 

Thus, equations 2.2.xxx and 2.2.xxv give the differential 

equations for determining y and ')7. 
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2.3. The Symmetrical 5—layer beam 

The method of-analysis introduced in section 2.2 will 

now be extended to beams with more than three—layer'. 

Consider tne 5—layer symmetrical beam. 

Fig 2.6 shows a deformed longitudinal element, dx, of 

the beam. The layers are numbered from the centre outwards. 

Thus, layer 1 is the central layer; the two layers on either 

side of layer 1 are called layer 2 (upper and lower) and 

so on. As already pointed out in section 2.2.e, owin to 

symmetry, only the central and upper layers need be considered 

in detail. The notations of the previous section are 

preserved and extended where necessary in the rest of the 

work. 

2.3.a. Longitudinal deformation  

The longitudinal strain in any fibre of the various 

layers can now be worked out as in the previous section 

starting from the neutral axis — the axis of zero strain — and 

working outwards. 

LAYER 1 

This is necessarily an elastic layer (from assumption (a), 

section 2.1.). Consider any fibre of this layer at 

distance z, from the central axis 1 — 1 which is coincident 

with the neutral axis,r This fibre experiences only a 

bending deformation, hence the strain is given by 

(IL 	 = z„te 	2.3.i. 
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UP.F6R LAYER 2 

Due to bending deformation, any fibre of this layer, z2  

distant from the axis 2 — 2, experiences a strain of 

magnitude (z2+ 4014. This layer, however, is a viscoelastic 

layer with an additional shear deformation 0.2. This gives 

rise to a longitudinal strain on this fibre of magnitude 

(z2+  22 211  
ax. Hence the total strain in the fibre is 

E2  = Z, 4- dz) Vc2  + Z2  + 	a-Pcs 	 

LOWER LAYER 2 

The strain in any fibre of this layer is easily deduced 

from the above result as 

621  = (z2— d2)  aZc 	(z2 -21)   2.3.iii. 

UPi-T2 LAYER 3 

Bending deformation gives rise to a strain (z3+ d3) -47,12  at a ax 
fibre z3distant from 3 - 3 and since the whole portion of 

this layer (forming part of dx) experiences a strain 

h2ax due to the shear deformation in the ,viscoelastic layer, 

the total longitudinal strain es becomes 

= ( z3  + d3) as+ het 	 2.3.iv. 

LOWER LAYER 3 

Similarly the strain in any fibre of this layer is 

= (z3 — d3) ciz  — h2  Z1 	 2.3.v. 

2.3.b. Stresses, forces, moments, and equation of motion.  

LAYER 1 

The stress in any fibre of this layer is given by 



0; = E, x strain, 

i.e.0; = E, z, 2 oo eeeee 2.5.vi. 
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Hence the total longitudinal force in the layer is 

2.3.vii 

Also the bending moment about the neutral axis contributed 

F1 = fo;c1A, = 

Ai 	. 

r+ h,/2 

Eiz,k, b dz, 

—h1/2 

= 0 

by the 

M, 	= 

UPPER 

layer is 

z, ciA, 	= 

Li f ER 	2 

r+ h,/2 
E, z,t2  b dz, 

—h,/2 

Ey 
Eti" ax. 

 

2.3.viii. 

 

It will be assumed, for convenience, that each fibre of this 

layer is on the forward branch of the stress — strain loop, 

and is in tension. (It follows that every fibre of the lower 

layer 2 is on the return branch of the loop and in 

compression). The stress in the fibre is thus 

C,r2  = Es{( 	az ) a4;Ye  + zz + Lp 	÷ ?1,2 	(E2).} 
	

41 ,0.41 2.3.ix, 

(E2 and 7],b. being; the material constants in extension). 

The longitudinal force, F2, in the layer is riven by 

F2 = 

f+ h2/2 
= 	E2 i.( 

—h2/2 
d2) z2 	—1:2-1 	+ 11LJ  (E2)S b atzz 
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i .e . F2  = E2A2  d2 2  + E2A2 ax 

^+hz/2 

Ez  rlez 	(62) b dz2  

—h2/2 

 

2.5.x. 

   

Also the bending moment Macontributed by the layer is given 

by 

Cr2 (z2 + dz) dAz  

A2  

E2 f( Z2  + 

—hz/2 

d2) t2 + ( zz  + t)-ti ( z2  + dz) b dz2  

 

h2/2 

Ez 121-1-1( e2) (Z2 	c12) b dz2, 

"412/2 

i.e. M2= 821642* (E2ATSZ 	E2A2d2hS )-aleax 2.5.xi. 

'-+h2/2 

where 	= Ez  riezLP(.) [ z2  + 	b ciZz 	 2 . xi i . 

aYiER 	LAfEii 

—h2/2 

2 

The stress in any fibre of this layer is given by 

= h2 	.4— 
E4( 	da)0--612 + 2.5 .xiii zz- 	( zz  — 	)-53-c 	lezLP(620 	 

The force and bending moment are obtained as above to be 

+h2/2 
F2. 	= —EzAzitiz 	— E2A2 12-12 ,-, + Ez  144-1(620 b dZL 	 2 5.xtv 

—h,2/2 

M2 
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and Mu = 

where = 

E21„2 0--!(E at. 	2 
ax2 	

A 
z1.2 E~Azdz?) 

fh2/2 
Ez /LP (E 21_)[zz - 

-hz/ 2 

efx 

b 	2 	 

2.3.xv. 

2.5.xvi 

It has already been postul-ited in section 2-2-e• that F2 = F2L 

and that 142 =- 

Equations 2.3.x, 2.3.xi, 2.3.xiv and 2.3.xv would, 

therefore, seem to disobey this postulate unless 

1-4-hz/2 113

ha/2

4/2 
Ezle2 Cr-I( 2t,) b 	azz - 	E2 7,21-P 2) b  dz2 	 2 .3 . xvif a 

- -11212 

and = 2 
The above cauditions in fact hold; for if the general 

elemental fibre of lower layer 2 is chosen at -zz 

(instead of at z2), then 	-62 (from equations 2.3.iii 

and 2..7).11), so that 

hil2 	 hz/2 
Ez 7121-P (62 L) bdzz = 	E ?„4-1 	b dz,. 

-112/2 	 -112/2 

+11z/2 
E21e21-1-/ ( ez ) bdzzi Eince CI-7 (6z) = -14j(--6.2)] 

-hz/2 

which proves the first condition 2.2.xviia. Similarly 



3 (b, E A h 3 3 2 ax  
moment, M3  is given by 

r4-h3/2 

Esi( zs  + d3  ) -3512  1- 

Also, 

M3  = 

E3A3  

the 

2 3  xix. 

h2  -gfc  3(112s? z, 	b 4z3  
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(-÷h2/2 
)7ezE2L4(e20 Ez, - 	b Azz 	t 	1( —4) b. R. 	djbd,,Z2  

—h2/2 —h2/ 2 

i

—

+h/2 
-riezEz  11(E2) z22  
h2/2 

d21 b az2, = , proving the second 

condition. 

UPPER LAYER 3 

The stress in any fibre is 

03  = E3  x strain Z3  4- do aX _ 
11  4  ax ....2.3.xviii. 

Hence, the longitudinal force l; , on the layer is given by 

*h3/2 

C16(As = 

vA3 	—h3/2 

d3 ) ax 	h2  2k bdz3  

i.e. Ii/L3 = ES IN3 dX1  E3A 	s h2 
3h2 ...... 2.3.xx. 

LOVER LAYER 3 

The expressions for the stress, force, and moment for 

this layer are given below. 



= 	E3  ( Z3  -" d3 ) 	 - h2 42} 

= 	-E3A3d3  342  - 5 11L3h2t2  	2.5.xxii, and 

Mx 	= E3IN39E, 	E316 d3 h2 301 
	2 3  xxiii. 

The total bending moment at any cross-section is 

M =M = m, + 2M2  + 
I

2M3  = EIN' 	f 
a X2 	3x 

where, as previously, EI= Ni ' and in addition, 

N; = 2 .....;A2p.22  

and 	t2 
	2 

The differential equation of motion is thus 

42 	axx El 221 ÷ N11-6 4- Li u x 	 2  a X 	m ta = p(x,t) ...2.5.xxvii 

The above differential equation contains two unknown 

variables, y and. 02. A second equation is thus necessary. 

2.5.c. shear deformation.  

As in the case of the three-layer beam, the second 

differential equation is obtained by considering the shear 

deformation in the viscoelastic layers. 

Fig. 2.7 shows the upper half of the element, dx, of 

the beam, longitudinal deformation being neglected. 

Longitudinal equilibrium of the hatched section gives the 

shear stress, ft; , at the central axis of layer 2 as 

f+h2/2 
b.c2-124  2 	8x 	*dx bazz 2 3  xxviii . 

0 
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2 3  xxi 

E2A2  -1-12 	E3A3d3 h2  
1 

...... 2.5.xxv 

'4- hi/2 
=2 	7J,2E2  1_1(62) [zz  4- d J b dzz  ..... 2 	xxvi 

-h2/2 

m • .2.5.xxiv, 
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results. 

3 Lr rz 	+ ‘0/72 	+ I-PF23 
,q 

ax 
where P; = EiA3d3  + EA 	+ EzAzhz 

8 z 

-774,Gz T (4z) b = b G202 	 2.3.xxx 

2 13..xxxi 
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however, is related to 021  the shear strain at the 

central axis, by the equation, 

T= Gzi + %LP( 43'2'  )   2.3.xxix 

On putting the appropriate values for Fa,a2and O2;  in the 

above equations, and eliminating T2, the following equation 

Q122  = EzA3h2  + 3 132Az hz 

  

  

+h2/ 2 

LPF2  = E1(6z) b 
0 

  

2.3.xxxiii 

  

Equation 2.3.xxx provides the second equation required for 

determining y and 4. 

A comparison of the differential equations for the 

five—layer beam with those for the three—layer beam will 

snow that they have the same basic form, differing only 

in the constants. 

It may have: been observed that for both beams tne 

bending moment M at any cross—section is not directly 

proportional to the curvature (as is tne case in homo—

geneousbeams). This is a general feature of .multi—laver 

beams. 
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20.8  The symmetrical n—layer beam.  

It is now intended to establish the differential 

equations for tne general case of an n—layer beam/  

The two cases distinguished at the beginning of this section 

will be dealt with in turn. Following the convention 

introduced in section 2.3, the layers are numbered from the 

centre outwards. The notations of the previous sub—sections 

are retained, and extended where necessary. 

2.4.a Symmetrical n—layer beam with an odd number of vis—

coelastic layers.  

Consider first the case of an n—layer beam with an 

odd number of viscoelastic layers. The central layer 1 

is necessarily viscoelastic. Also any liTers p and q are 

respectively viscoelastic and elastic, where 

p = 2k — 1 ; q = 2k ; for k = 1, 2, ... i 	2.4.i 

and n = 4i — 1 

Then, for all valid values of k (i.e. from 1 to i) 

the longitudinal strain Gp in the elemental fibre of layer 

p (fig 2.8) is given by 

afy 	la 30 E 	(z +d ) • + —! 
P 6x2 	2 ox 	a 	 

(1) 	(II) 

(zp 
	2 	ax 

hP ) glt? .... 2.4.ii 
. 

(iii) 	it>1 

&Ps h 	+ s ax 

where s = 2a — 1 , 	= 	. In equation 2.4.ii, 

the first term (i) is the -3 -train in the fibre due to 

bending; the next two terms (ii) are tree trains due to LOB 

shear deformations in all the viscoelastic layers between 
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d=1 

a(b5 
S--ax (z

P 
 — h P /2 ) 1' ax 

7C.  

the neutral axis and lager p; and the lost term (ill) 

the strain due to the shear in la )ler p itself. 

Equation 2.4.ii can be rearranc;ed in a more convenient form 

thus Ep = (z + d 	— ,,, p e 2 
h a 
ax
0 
	sit+ (zp  — hp /2)---Pax  

....2.4.iii 

Similarly, the longitudinal strain in any elastic layer 

can be expressed as the sum of the fibre strain due to 

bending, and the strains dui to the shear deformations in 

a the viscoelqstic layers between the neutral axis and 

layer q ; thus 

( z + d ) ax2  2 ax og.=2 
which can be put in the more convenient form 

ct= ( zq  + dq  ) 	— 	. Eca(1).  + 	hs 3x • • • 2.4.v; s 	— 1. axy 
The stresses are thus 

Epi(zp  + dp)V2 — 

+ 	LP (€0 I 

and Cr= E( z + d )212  — -1• q 	q 	axz 2 ax 
.d_bs 

s ax 	 2.4.vii 

d=1 

	 2.4.vi 

ac=1 
where EFand 77ep  are the viscoelostic constants (in extensior) r  

for layer p; and Eq  is the Young's modulus of elasticity 

of layer q 

The forces and bendin; moments in the layers are 

obtained in the usual way. Thus, for any viscoelostic 

layer p; 

Fp  = dA 

  



h 
s 
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i.e. Fp = EpApdp ax, E p p 2 ax ` - A III 84 4- P. A 	atOs 
p-p 	- sax 

-IEP AP hp Jax 
/2?-ap. 

 

2.4.viii 

 

and M = f (z 	d )q,ciA 
P 

A 

= E P NIP ax2 - ppp 2 	ppp 	h s x 

-t- (E A 	-EA dh 
PPle PPPP ax 

t.01) /? 

where L4Jp = 	Ep144-1(Ep) bcizp 	 

-hp /2 

2.4.x 

and Ili = 2 *P 

^.4-h /2 

p Ep lep/41( ) Z + d 	b dzp  2.4.xi 

  

Similarly, for any elastic layer q, 

=IT q = E A d 	- E A bf" -t- E A qqq a x2 	q qa TX • q 
q 

-)nd~dq (z 	) GIA q q $ 

=EI 	 z:7 	E d. hip + -alL 
Nq a X2 	C1:1 q 	 x 	—q" q—q 

a=t 
The total bending moment M at any cross.-section is 

2; 

given by M = Mi + 2 	M. 	j = 2,3,4, 
J=2 



the form, 

M = EI a 	Ni 34 + x, 
=, p ax  

where, 

N; = E/ IN1  -+ 

2 	'"1  

 

2 4.xv, 

 

E.A.d. 

j=2 
. 2.4.xvi; 
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92,1 	w 	30, 	1 r 
= 	E ± TA axa 	 + 2- 	, from equation 2.4. ix by 

putting p =1, and remembering that d, = 0. 
2  

Hence, M = E I 	x2  + E 'Ni 8x1 +1  2  it IT'  + 2 	...2.4.xiv. 
J=2 

The expressions for the bending moments, MJ , can be 

substituted in equation 2.4.xiv to obtain an expression of 

N 1  = 2E A h /12 — 2E A d h /2 + 2h 
P P P 	PPPP 

E.A.d.- 	n / 1 	.. 0 	2.4.xvii, 
and as before, EI = E1N1 + 2 	EjINj  ...... 2.4.xviii. 

J=2. 
It is noted that 	j = 2,274,....2i; and 

p-= 2k — 1 , k = 1,2,....i. 

The differential equation of motion for the beam is 

now given by 

Ni a Sr+ 1  p Ti 2 ml 1.4+ m 	= p(x,t) 
....2.4.xix, 

m = 	piAi  being the mass per unit length of the beam. 

This is the first of the (i+1) differential equations 

required. 

The other differential equations are obtained, as 

before, by considering the equilibrium of the portion 

of the element above the central axis of any viscoelastic 



78 

layer. Consider, for instance, i-the-ri-.4th layer ( fig. 2.9). 

Equilibrium of the longitudinal forces acting on the, 

portion of the element above the axis p—p, gives the shear 

stress Tp  as 

hp  /2 

1p b az b = 
aX 	 ax 

J=1:,41 

hip /2 

i.e. brp = 	 Fi  + 	'c bdzp  

 

2 .4.  

 

Furthermore, rp  and the shear strain are related by 

the equation Tp  = Gp  (bp  + 'kW ( Op) 	 2 .4 .xxi 

et. /2 

The integral P  bdzp  is easily evaluated as 

o - 

. (EPAP hp /8 + E A d /2)) 
3
;22  — E Arl--,-K- fix,  

_. , ti,  P p 'ID 	u x 	P. P `r 
k 

+ E A 	— ,..71'''E A h -a-OP+ LP Fp , where P P 	 L., p p p ax 
li /2 

1-1-IFP = Ep  Ylep41( 1:,) b ctz 	 P 	
2.4.xxii. 

,,0 

On substituting for 0. and performing the summation, 

equation 2.4.xx takes the form 

3  { i  b T P = 	P p 	+ axz 

 

is 
ax fps S F p ....2.4.xxiii 

c<=I a=ks1 

 



Symmetrical n-layer Beam. 
( n = 4I-7 ) 

Shear deformation in upper 
half of element • 
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where pi = 1 ... 2.4.xxiv • 8 EpAphp  + EpApdp  + 	EjAjdi  

2; 

• 	2

+1 
hl E.A.. 	+ E A 	, for all p71 

pp++ 
 

a 	PP 4 	...2.4.xxv 
hi 	h, 7 	EjAi 	Ef A, 7 for p = s = 1 

fps = 	h 	E.A . + 	Ep  Ap  hs 	, for s<p j.r.,0  

1 = h 	EjAj + 2 EsAshs 	, for sp for sal 

and =h
P 
 E.A. 1  

J. 	

+E
P-APhP 	

, for s=p 
P 

J 8  
" 

Equation 2.4.xxi can now be combined with equation 2.4.xxiii 

to obtain 

az  
ax p -Gps ax 	—r-s • 1-4jF 	- riGpbGp 	( 43,p) Pi 

= bG 

 

2 4  xxvii. 

 

In the summations in equations 2.4.xxiii and 2.4.xxviil it 

is important to remember that p = 2k - 1 , k = 1,2,..i; 

and s = 20C- 1 , o(= 1,2, ... 

It can thus be seen that as k as Imes values from 1 to 

, equation 2.4.xxvii gives the remaining i diffecential 

equations. Equations 2.4.xix and 2.4.xxvii ,therefore, 

provide the (i+1) differential equations required for a 

symmetrical (4i - 1)-layer beam. 

As an illustration of how these equations can be 

applied, consider the 'prototype' for this group of beams, 

namely, the case i = 1 or the 5-layer beam. The number 

of differential equations is 1 + 1 = 2. On setting 

IX el 



\ ty 
and for layer p, 	= (z + dp 	x  ) 	 1-  

alhe • .2 •14-  • X.XXi 
3X 

a=1 

81 

i = 1, equation 2.4.xix rives 

axz+ IT, 	+ .112".ILWm6I  + mg2 = p(x1t), ..2.4.xxviii Az is, 
where N = 1 - EA h 

2 

1 	12 " 	+ EZA2d2  h, , from equation 2.4.xVi. 

Also equation 2.4.xxvii yields the single equation 

-‘)-- 	ax 2 	(:)11.1 144 	} -7 17Q, b(1,1-1-1(4)1) = bG14; 	. .2 .14- xxix 
dx 	dx 

where 13: = E, A, Ty EzAzdz 	from equation 2./4-.xxiv-; and 

Q,411= E,A1 h.1/8 + EzAz  hi/2 , from equation 2.4.xxv. 

The above equations are seen to be exactly the same 

os equations 2.2.xxv and 2.2.xxx obtained earlier for 

the 5,-layer beam from first principles. 

2.4.b Symmetrical n-later beam with an even number of  

viscoelastic layers 

For the case when the beam haS an even number of visco-

elastic layers, the central layer 1 is elastic. Also, for 

p = 2k - 1 , k = 1, 2,...(i+1); 

q = 2k , k = 1,21...i 	; and n = 4i + 1, the q-th layer 

is viscoelastic whilst the p-th layer is elastic. 

With reference to fig; 2.10, the strain distributions 

in the viscoelastic and elastic layers can be summed up, 

as in the previous case, to obtain for layer q, 

ect, = (z
q 
 + d

q 	
+ 

axz 
p9,  gR  + (zq  + 7  hq) 

where the summation ham, "-= -=0 for v<u. 
8x 



FIG. 2.10 	Symmetrical n-layer Beam 
(n= 4i+1) 

Upper half of deformed element. 
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aci 
The forces and momenta in the virJcoelaztic layers 

0-P = E i(z + d ) p p p 3x2  

=EI 31 +E_Ad q Nq axe 	q q q 

+ LOrvici, 

1, 	2 	1, (372, EciAqhq  + EqAqq.qhq/2) a$  

2.4 .X3ocv 

The fibre stresses, are given by 

qi 	= E
q 
 {(z

q  + dq bx 2 	11' ) 	+ 	hg) 34* 
(z 1 
	13, 

3x 	q ax 

14-1-1(6%).} 

 

9 • and 
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are thus 

Fq  = faidlq  
A 

.2 = E4Aoilq ex4!+ EqAq  Mg+  1 7A 	a -5 	1 "57 	Eq qhq 1  
Cl-1 

and 

Mq  = 	(z 	011 
SA 	

(1 + d 
(1)0  q 

where Llict  and LORI  are as already defined in equations 

2.4.x, and 2.4.xi respectively. For the elastic layers, the 

forces and bending moments are riven by 

A 
0-ciA 	=EAd a!iy2 +EA 
P p 	p p p axe 	

P P 
a49247, ....2 .4- .x.:xvi 

a.1 

and M = ( z 	+ d )0j, 
P P P 



i.e. Mp  = E p INp '011ex  l+  F pa p  

The total bending 

4.1  M = 	1 
. T 2 

M1  = 	ugc, from equation 2 .4 .xxxvii , on putting 

1, and noting that dl= 
2i+ 

Hence M = 	axe+ 2 M 
j.z 

On substituting for M, and performing the summation, . 

equation 2.4.xxxviii can be written in tne form 
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h 

a 
moment at any cross—section is 

p= 0. 

, 
M = EI ax2+ 	

N ectsq  -yr- 
4e.  q 

K. 
....2.4.xxxix 

2,-44 
where 14i = 2i-Bqqq h2  /12 

qqqq 
+EAdh /2 	 hq 	E j  A.d 	.2.4.xL. 

.Pcpel v.44 
and as previously, BI = EiLv, + 2c E 

NO  
. 

The differential equation of motion is thus 

a):1  Ti 
13  &1k, 	N  ao  

2
. 	

q vx 	m4+  w—*+ 	Lp 	= p(x,t) ..2.4.xLi 
fc=1 

Once again the remaining i equations are obtained 

by considering the shear deformation in the viscoela.stic 

layers (fig.2.11). 

Consider the equilibrium of the portion of the element 

dx above the central axis q—q of layer q. The shear stress 

Vir  at this axis is again given by 

bri,= 

hq  /2 

Q--$ b clz ex 



FIG. 2.11 	Symm,:trical n-layer Beam. 
(n=44?) 

Shear deformation in upper half 
of element . 
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i 1 = 	
1 	

E A q  qd  q 
2i4•1 

e 	nt 	E . A 	+ ief ,e
Jae  

c. dc_ tt d 
 

J :•-•‘1,4•1  
, roc L q 

....2.4.xLv 

or b`ri, = 
'hq  /2 

F. + 	baz 	 2.4.xLii. 
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The inteP;ral 

—0 

h /2 

0-$  b dz i 	is easily evaluated to be 

= (h Eg A qhq  + EgA gdq)5+ 

EgA qhq 	LIJF1, 	 2.4.xLiii, 

Fcl,  is as defined in equatim 2 	4.xxii. 
Equation 2.4.xLif.  can then be expressed in 	form 

br = A- 
ct. 	3x j -EY 4.ii q 3x1 	 qt 3x 

ofx1 
, 	 1-1-12i+ 	• ...L.4.xLiv 

where t- 215( , and 
2i+ 

• v44 	1 E A 	+ 	E A he , for 141  a 
41 2  q 

2i44  

Qua 
= h 	E.A FIE qAqhq  , for e. 8  

j=1.1 
But 'cis related to cry by tne viscoelastic stress — strain 
law thus ".; = Gc.if 	+1,,,,L1A95 /)}- 
Equations2.L..xLvii and 2.4.xLiv can be cTabined to o;ive 

{ 
ax 	a x2  

a  + gi a44 
	 (le 	+ 	 2i  + 
..1 	J."4" 

Fqj b 4.1(4) = bG 41$. . 

= 
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Noting tnat q = 2k; 	k = 1,2,...i; it is seen that 

as k varies from 1 to i, equation 2.4.xLviii yields i 

equations, which together with equation 2.4.xLi, provide the 

(i+1) equations for the beam. 

The case, i = 1, is the five—layer beam — the prototype 

for this grou.D of beams. It is easily verified that putting 

i = 1 in equations 2.4.xLi and 2.4.xLviii gives the two 

equations already obtained earlier for the 5—layer beam. 

-Comparison of equations 2.4.xLi and ?.!i-.xLviii with 

equations 2.4.xix and 2.4.xzvii shows that although each 

set has the same number of differential equations, no set 

of equations is derivable from the other by any simple 

process of rearrangement or interchange of the constants. 

This is becaqse tAe strain distributions in the various 

layers are different in each case. 

2.5. Concluding remarks  

The differential equations for the general symmetrical 

n—layer beam have been obtained. To be able to solve these 

equations some further information is necessary. 	First, 

the system must be sufficiently specified. Apart from its 

'geometry', the boundary conditions for the beam must be 

known. Secondli, the method of excitation has to be 

prescribed. Thirdly, the coefficients of the differential 

equations must be known. These coefficients are partly 
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known when the geometry of the system is given. Hosever, 

they also contain material constants of the beam, and 

these must be known. For the elastic layers, the material 

constants that come into the equations are the Young's 

modulus and the density. These are known to be real 

physical constants and are easily obtained from existing 

data or by simple measurements. The properties of the visco—

elastic materials,however, are not "constants", as they are 

known to depend on several factors (such as frequency, 

temperature and strain) some of which appear in the differ—

ential equations. It is thus necessary to understand the 

nature of these properties, the various factors on which 

they depend, and the nature of the dependence, before 

attempting to solve the above equations. Fourthly, the 

[4i—functions must be known explicitly. This requires 

knowing the stress — strain law for the viscoelastic 

materials. 

The first two requirements will be given in chapter 4. 

Meanwhile, in the next chapter, the properties of visco—

elastic materials and their determination will be dealt with. 
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CHAPTER3 

DETMINATI3N OF T. DYNATL-C i'+OP!.32TIES  

OF VISCOELASTIC aT-MIALJS  

Introduction  

In this chapter a study of the dynamic properties of 

viscoelastic materials subjected to harmonic excitation 

is carried out. This is chiefly aimed at understanding 

the nature of these properties and the manner in which they 

are affected by various factors. 

The properties of viscoelastic materials are first 

defined, and their dependence on the frequenc;, temperature 

and strain amplitude are discussed. A simple laboratory 

method for determining the shear properties is then 

described. Experimental results obtained for some visco—

elastic materials using this test apparatus are presented 

and discussed. The study of these results helps in 

selecting materials to be used in the beam tests in charer 

5, and also yields conclusions useful in the solution of the 

differential equations obtained in chapter 2. 

3.1 	Dynamic properties — definitions. 

An important characteristic of viscoelastic materials 

is the fact that when they are subjected to a rapidly 

varying stress (direct or shear), the resulting strain 

does not occur instantaneously (as would be the case for 



The 'elastic" or "in-phase" dynamic shear 
cos8 modulus is defined as G - ....3.l.iv, and 

the strain by rt 
2 
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perfectly elastic materials). In particular, if the applied 

stress is sinusoidal and of frequency0.0., observations show 

that the resulting strain is virtually sinusoidal and of the 

same frequency, but lags behind the stress by an angle,S. 

For any given frequency, the stress - strain curve over one 

cycle is essentially an ellipse. This characteristic is 

utilised in the quantitative definition of the dynamic 

behaviour of viscoelastic materials. 

Suppose, for example, that a viscoelastic material is 

subjected to a sinusoidal shear strain given by 

0 = Ssin 	......3.1.i. Then the corresponding shear 

stress takes the form, V = i't sin(co-t + 6) 	3.1.ii 

g being the angle by which the strain lags behind the 

stress. Equation 3.1.ii can be put in the form, 

= ZcosS sin cot + "tsinS cos att, 
A 	 A 

i.e. v = tcosS sin uit + TsinS sin (cot + It ) 2 
Equation 3.1.iii shows that the stress can be split into 

two parts: 'Icos6 (the 'elastic part') in phase with the 

applied strain; and ri%sinS ( the 'viscous part') leading 

the "viscous" or "loss" dynamic shear modulus as 
rrsinS  G" 	 3 1  v. 
0 
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The effective snear modulus is given by 

. D12 + aiij 	 

	

G = 	 5.1.vi, and the ratio T5  
= = tang is called the loss factor, S itself 

bein7 often referred to as the loss an;le. 

The equation of the elliptic stress - strain curve 

i.: obtained by ellminatinm the time variable from 

eations 3.1.i and 5.1.ii, i.e. 

	

t= 	Gi cb -± 776(e52-0')Y4/ 

Fig 3.1 shows a typical stress - strain curve, and how 

the dynamic properties defined above can be obbained from 

the ellipse. For example, 

G, the effective modulus = OP -= = LA: 
OC 	BB' ' 

CD Gc the in-phase shear modulus - 0C ..:3.1.viii. 

and G, the loss shear modulus 

The area of the ellipse gives the energy loss per unit 

volume of the material during one cycle. This is given 

numerically by the relation, 

Cyclic energy loss per unit volume, LS.ED = TTC1112.3.1.ix.a 

which incidentally explains why G*. is termed the 'loss' 

modulus. 

The snear strain energy per unit volume, LEs, is a 

*The qualifying term, "dynamic", is purposely left out 
from this point onwords as there is no risk of confusion. 

OA 
OC• 



92 



93 

half of the product of the applied strain and the in-phase 

component of the stress, Thus, 

,CBEs = 	1.3.1.ix.b. The maximum shear strain 

energy per unit volume in one cycle is thus 
•4 

(4Es) max = 	Gco ....3.1.ix.o. From equations 3.1.ix.a 

and c, it is seen that the shear loss factor, 	, can be 

defined as an energy ratio thus 

1S'shear enerp;y loss in one cycle  
= 27-T1 maximum shear strwin energy in a cycle "- 5 .1.ix.d 

A mathematical concept, often very convenient in 

analysis, is that of "complex modulus':. If the tine axis 

is replaced by a complex plane so that the applied strain 

becomes QS = 	; tnen the -e-6-rresponding shear strain 

stress is given by T = 	4ej.("  ÷ 8  ) where, 

- A  The shear modulus is now defined as 

75  G 	r 	te° . = 	= 2i24gA  	riC sin  
21 	 Ar 

or (?!.. = .1 	JG" 	3.1.x. The shear modulus thus 

defined is seen to be complex, the real part being the 

elastic modulus, whilst the imaginary part is the loss 

modulus. A term often used in the literature is the 

complex shear compliance; J*, defined as 

J =  ..5.1.xi. The real part, el A5f taisquentity 

is called the "elastic", "storage" or "in-prase" shear 

compliance; whilst the_ imaginary part, J, is termed the 

"viscous" or "loss" compliance. J` and J" are related to 
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G' and G" in the manner given below. 

    

3 1  xii 

    

 

(G2  * G'2) 

  

GJ" 	y  
(012  + 	G"2') 

    

    

The above definitions have been based on shear deforma—

tion. Similar terms also exist for direct deformation; 

viz., an elastic Young's modulus, E'; a loss Young's 

modulus, E"; an effective Young's modulus, E 	53'2 + E"-2_]; 

and a complex Young's modulus, E*  = E'+ jE". A corresponding 

complex compliance is also similarly defined. 

It may be pointed out that although several quantities 

have been defined above for a given material, these are not 

all independent. Any two of them, in fact, are sufficient 

for specifying the dynamic behaviour of a material (in either 

shear or direct deformation), the rest being derivable 

from these two. In the preliminary discussion to follow, 

the effective modulus and the loss angle (sometimes referred 

to as the damping) will be regarded as the two fundamental 

properties of the material. When thought more convenient, 

however, any other two of the quantities defined above may 

be used to characterise the dynamic behaviour. 
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3.2 	Factors affecting the dynamic properties.  

The dynamic properties defined in section 3.1 depend 

on several factors such is, stress history, general mean 

state of stress or strain, humidity, amplitude of applied 

strain (or stress), frequency of the applied strain, and 

temperature E]. Of these factors, the last three are the 

most significant M , and will thus be dealt with in some 

detail here. 

3.2.e Temperature and frequency effects  

Temperature and frequency effects will be considered 

together, since they are intimately related. 

Fig 3.2 shows the general shape of graphs of the 

effective modulus (curve 1), the in-phase modulus 

(curve 2), the loss modulus (curve 3), and the loss factor 

(curve 4), against temperature (at constant frequency), or 

against fre.-mency (at constant temperature). 

Consider first the graphs against temperature at a 

given frequency. Both the effective modulus and tne in-

phase modulus decrease with increase in temperature, the 

rate of ch,ah7,e of the modulus with temperature being smell 

at very low temperatures (in the "glassy" region) and at 

sufficiently high temperatures ( in the "rubbery" region). 

In between (in the "glass-transition" region), both 

moduli fall very rapidly with temperature rise. The loss 

modulus has a similar trend except that it rises sooner 
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FIG.3-2 	Variation of Dynamic Properties with 
Frequency and Temperature for a 

Viscoelastic Material. 
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with decrease in temperature, and falls again at lower 

temperatures. The loss factor is low at both high and low 

temperatures, and shows a maximum within the transition 

regicr. 

If these quantities are plotted against frequency at 

a given temperature, a similir set of curves is obtained 

provided that the frequency is plotted backwards (i.e. from 

right to left) on a log scale, as indicated in fig 5.2. 

This suggests that there may be some relationship between 

temperature effects and frequency effects; to be more 

specific, "temperature differences" may well be related 

to "frequency ratios". The equivalence between these 

two quantities will be dealt with later. 

5.2.b. Molecular structure and temperature/frequency 

dependence  

The dependence of the dynamic properties of 

viscoelastic materials on frequency and temperature is very 

closely tied up with the molecular structure of these 

materials. A detailed treatment of this foes not fall 

within the scope of tnis work. (See references 90, 93,  

94, 95, 96, 101). It may, however, be mentioned that this 

field of study has been so developed that, not only is it 

possible to predict, sometimes quantitatively, the 

behaviour of these materials under various conditions, but 
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also it is now possible to literally 'tailor' viscoelastic 

materials to specification within incredibly close limits 

COJ• 
Simply put, the viscoelastic molecular structure is 

characterised by long fle..:ible chain molecules which are 

held together here and there by a few cross—links, and which 

are otherwise free to move readily past one another. 

Inter—molecular attractions are very small. In the 

unstrained condition, the atoms in the long chain molecules 

are subject to randon thermal vibrations in all directions, 

and this results in the molecules taking up an irregular 

tortuous shape. 

When the material is being strained by an externally 

applied force, the molecules are aligned in a more or less 

orderly manner in the direction of the strain. To achieve 

this orderly configuration requires work being done; and 

when the applied force is removed, the molecules tend to 

go back to the disorderly configuration. The material is 

thus said to resist being strained; that is, to be elastic. 

Owing to the irregular sh,Spe of the molecules, it is clear 

that their alignment in the direction of strain can not 

possibly occur instantaneously — it takes time. This is 

why, with a varying stress, the strain lags behind 

by a time which represents the qverac;e time taken by the 

molecules to respond to the external force. 
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Consider now what happens when a viscoelastic material 

is subjected to a sinusoidal stress of a given frequency, 

and the temperature is being varied. At very low tempera 

tures, intra-molecular motion is almost non-existent; and 

the entire molecular structure is effectively "frozen-in". 

Deformation now involves the straining of inter-atomic 

bonds, similar to that which occurs in perfectly elastic 

solids. This requires very large forces, and moreover 

occurs almost instantaneously, so that the effective modulus 

is high and there is very little damping (small loss factor). 

At sufficiently high temperatures (i.e. within the 'rubbery' 

region), almost all the molecules can follow up the applied 

stress very readily; consequently, the resistance to 

deformation is small. The damping is also small since the 

mobile molecules take very little time to respond to the 

applied stress. 

Within the transition zone (i.e. at intermediate 

temperatures), however, some of the molecules are free to 

move whilst others are not. Now, under a given deformation, 

the frozen-in molecules can store much more energy than 

the moblie ones. The resistance to deformation, or the 

effective modulus, is thus seen to be intermediate in 

value between the effective modulus within the glassy 

region and the effective modulus within the rubbery region. 

The rate of change of the modulus with temperature within 
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this zone is high because as the temperature is varied, 

some of the molecules become either frozen—in or mobile, 

thus resulting in a change in the effective modulus. 

This is not the case in the glassy or rubbery region 

where almost all the molecules hove attained the same 

configuration (either frozen—in or motile), so that a 

change in temperature has very little effect on the state 

of the molecules, and hence, on the effective modulus. 

Vihile the effective modulus depends on the relative 

number of mobile and frozen—in molecules in the structure, 

the loss angle (or the damping), within the transition 

zone, depends on the averee time token by all the mole—

cules (mobile and immobile) to re :pond to the applied 

stress. As the temperature is increased starting from 

the glassy region), this overage time increases; and 

maximum damping is oceieved within the temperature 

interval .ihere a  great many of the frozen—in molecules 

become mobile in a time comparable to the neriodic time 

of the applied stress. Beyond this temperiture interval, 

the damping decreases since the molecules can now follow 

up the applied stress much better and quicker. 

The dependence of the material properties on 

frecuency can also be explained on the basis of the 

molecalnr structure. If the teaperature is kept 

constant, then at very low frequencies of the ap-elied 
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stress, the long chain molecules have ample time to respond 

to the applied stress. The force required to produce a 

given deformation is thus small, and so is the average time 

taken by the molecules to respond to the applied stress 

(as compared with the periodic time of the stress). Hence 

the effective modulus and the loss angle are both. small. 

This is clearly similar to the behaviour at high tempe—

ratures (constant frequency) already discussed. At very 

high frequencies, the molecules do not get enough time to 

follow up the applied stress. They behave effectively as 

frozen—in molecules, and the situation is exactly similar 

to that at low temperatures, namely, low damping and very 

hi-vi modulus. At intermediate frequencies some of the 

molecules can follow up the notion while others cannot. 

This is comparable to the situation at intermediate 

temperatures, so that the effective modaims rises very 

rapidly with increase in frequency, whilst the loss angle 

or damping passes through a maximum. 

3.2.c Temperature — frequency relationship; method  

cf reduced variables  

As already indicated above, there is a very close 

relationship between frequency effects and temperature 

effects for a given viscoelastic material. Fitzgerald 

and Ferry m , in 1953, established the nature of this 
relation, and developed a method whereby experimental values 
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of moduli (and dielectric constant) can be made to fall on 

a single curve covering a larr,e frequency and temperature 

range. This method, generally known as the "method of 

reduced variables", can be found in any standard text on 

polymer properties (see, for example, CO, 94, 95, 10E). 

It is, however, intended to briefly illustrate, by 

means of a simple example, tne significance of the method, 

and in particular how it can be utilised in checking 

experimental results. Suppose that there are available, 

sets of values of a modulus (the elastic shear modulus G', 

for example) for a limited range of frequency, each set 

being obtained at a constant temperature. Let the 

temperatures — expressed on the absolute scale — be To, Ti , 

etc. One of tne temperatures, T0 , say, is chosen as the 

"reference temperature" and the experimental values are 

"reduced" to values corresponding to this reference 

teaperature using the approximate relation* 

Gr = G T  '20 e 	 3.2.i, where G' is the elastic shear 

modulus at temi,erature Ti P  and P 8re the densities of 

the material at temperatures TO and T respectively; and Gr 

is the reduced elastic shear modulus with respect to To.  

The reduced variables are now plotted against frequency, 

*This relation would be exact if the effective shear 
modulus was infinite in the glassy region (see EA). 
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resulting in a series of constant temperature plots 

similar to those shown in fig.3.3. 

Any line of constant modulus will cut the To —curve 

and any other T—curve at frequencies I', and f respectively, 

where log( i) —Kt( T — T.)  
K2  -t- ( T — To) 

 

 

K1 and K2 are constants for any given material, and for a 

given reference temperature. 	By defining a characteristic 

temperature, 16 , for each material, Williams,Landel,and 

Ferr7 (IA were able to obtain a "master curve" applicable 

to all materials, in the form 
—8.86(T—T,)  

log (- ) 
 

101.6 f (T—Ts) 	 3.2.iii. 

Equation 5.2.ii shows that, for any two temperatures 

T, and T, any line of constant modulus cuts the curves at 

points flaying the same frequency ratio. Put in another 

way, if a plot is made of modulus against log. frequency 

for various temperatures taen each T—curve will run 

parallel to the To —curve in tne sense treat the intercept 

made on an/ line of constant modulus, by the To —curve and 

any otner T—curve, has a constant length:(see fig. 3.3). 

This thus provides a very useful way of checking the shapes 

of experimental curves obtained from tests. It can also 

be employed in extending experimental curves to frequency 

ranges wnich could not be covered experimentally. 
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It may be necessary to add a word of caution about 

the use of the above method. Although considerable 

theoretical evidence is available to back it, the method of 

reduced variables is essentially an empirical formulation 

which will hold for most viscoelastic materials subject to 

some conditions being satisfied. For example, the material 

must exhibit no structural change with temperature. 

Furthermore, the method, as it is; will not hold good 

close to the glassy region; nor is it applicable to 

high17 crystalline polymers. There are also other require—

ments which involve molecular movements; an,l it is by no 

means easy to predetermine these for any given material. 

Before applying tne method in the extension of available 

data, therefore, it will be wise to first check that these 

data, by themselves, obey the above temperature — frequency 

superposition principle. A full treatment of the limita—

tions of tne method of reduced variables can be found in 

5] • 

3.2.d 	Strain amplitude effects  

Apart from the dependence of their dynamic properties 

on frequency and temperature, many viscoelastic materials 

also show an unusual type of non—linearity. The modulus 

and the loss factor depend on the amplitude of the applied 

strain, although at any one amplitude (under conditions 

of shear) the response to a sinusoidal driving force 
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is essentially sinusoidal without any detectable evidence 

of harmonic content sucn as would be expected if non—

linearity was present. The stress — strain curve, at any 

given amplitude, does not show any appteciable departure 

from an elliptic shape (see 	, and also the section on 

results). As soon as the strain amplitaie is changed, 

however, the properties change. All the work reported in 

the literature (for example, [91, 98, 110, 116 to 11-) 

shows that the elastic modulus (or the effective modulus) 

decreases with increase in strain amplitude (e.g. fig.:5.4). 

There is much less agreement s to the nature of the 

variation of the loss factor with strain amplitude, probably 

because this variation is much less pronounced. 

This topic is still a subject of current study, and 

its relationship with molecul.Ir structure is not yet well 

established Do. From a macroscopic standpoint, however, 
the behaviour described above is equivalent to that of a 

linear material, wnose properties depend on the strain 

amplitude. The phenomenon will, therefore, be referred 

to as "strain—amplitude dependence". 

3.3. 	Method of test  

3.3.a. 	Argument for a shear test  

In chapter 2, the "shear deformation" assumption of 

section 2.1 resulted in the differential equations 

containing viscoelastic material constants in shear, as 
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well as in extension. In chapter 4,it Will be shown that 

whilst the terms involving the extensional viscoelastic 

material constants are comparatively insignificant, those 

containing the shear constants are, in fact, very important. 

To be able to test the validity of the above assumption 

it is thus necesclry to know the sheqr properties of these 

materials. A considerable amount of data is available in 

.tie literature on the shear properties of many viscoelastic 

materials (for example, .00, 97, 911  ), but the information 

given is always incomplete. Either tne materials tested 

are not properly specified, or the conditions of test — such 

as temperature, strain amplitude etc. — are not given 

co-ipletely. Moreover, viscoelastic material properties 

are so much dependent on conditions of manufacture that the 

same chemical formulation might yield two dyna'iically 

dissimilar viscoelastics under different conditions of 

production. It becomes clear that for the purposes of 

checking the "sheer defornation" theory, it ic essential to 

perform a shear test on the viscoelastic material to 

obtain its properties within the frequency, temperature, 

and strain—amplitude ranges in which it may be used. 

There is yet another argument in favour of obtaining 

the properties of viscoelastic materials under conditions 

of shear. Under static equilibrium conditions, theoretical 

considerations sh6v, and experiments confirm, that the 
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deformation of viscoelastic materials in shear is a 

linear process, the strain being directly proportional 

to the aptlied stress. In contrast, however, in direct 

deformation, the equilibrium stress — strain relationship 

is distinctly non—linear1)4]. Although the deformation 

characteristics under equilibrium (static) conditions are 

different from those under dynamic conditions [9L , it is 

natural to expect that dynamic deformation in shear should 

conform much better to tne linear behaviour (described in 

the previous section) than direct deformation. Experimental 

evidence tends to confirm this. Many workers ( e.g. Payne 

Do ) nave reported some higher harmonics in the response 

of some materials in direct deformation, as well as con—

siderable distortion of the stress — strain elliptic curves. 

No such reports have been published for shear deformation, 

to the knowledge of the writer. 

It is, in fact, now usual to regard the shear 

properties as the more fundamental properties of viscoelas—

tic materials. Once tnese have been obtained, the material 

properties in direct deformation are deduced, on making 

a set of assumptions. One such set of assumptions consists 

in: 

a. regarding the balk modulus as a real constant, and 

b, making use of the elastic laotropic relationship 
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between the elastic constants, viz., 

E _ 	9K    3.3.i; , , E G and K being the 3K + G 

Young's modulus, the sheer modulus and the bulk modulus 

respectively. 

Cramer [92] applied equation 3.3.i to viscoelastic 

mlterials, replacing the Young's modulus, E, and the shear 

modulus, G, by the corresponding complex Young's modulus, 

and the complex shear modulus, 4 to obtain the equations 

r.• 
3 + (i)il + (dGr)211 

1 + 	+ 4)2i + (g51 
	3.5.ii, 

and !. 
'14 	1 + 

 

	3.3.iii 
+ (17.)2j 

 

 

   

yM 	G" 
where tie  (-=•"'• E"  ) 	and 1(= Tir ) are the loss factors in exten—

sion (or compression) and in shear repectively. For most 

G' 
viscoelastic materials, the ratio, -7, is much less than 

unity within frequency and temperature ranges of interest, 

co tnat equations 3.3.ii and ,/), 5.iii can be aprroximated 

to the m,ich stapler relations** 

3 	
and e = 1 3  3.v. 

(lt may be mentioned in passing that equation 3.3.iv can 

be obtained from the usual elastic isotropic relationship 

betNeen Young's.  modulus anl shear modules if Poisson's 

*Equations 3.).iv and v woald, of course, 'be exact if the 
matefial was inco=resJible. 
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ratio is taken as J.5). Cramer verified the validity -of 

tae above approximations experimentally Eq. 

The mechanical set—up  

Having argued in favour of testing the viscoelastic 

material in shear, it is now intended to show how this can 

actually be carried out. 

Several methods have been developed' for determining 

the dynamic properties of viscoelastic mnterials in both 

shear and direct deformation. A general detailed treatment 

of various test methods can be found in [93, 94, 10j1 . An 

exhaustive list of existing methods including their various 

features have been recently compiled by Proefcke [101] . 

These methods are conveniently grouped into 

a. Free vibration tests 

b. Forced resonance tests 

c. Forced non—resonance tests 

d. Viave propagation tests 

The free vibration and forced resonance test methods 

usually involve a considerable variation in the strain 

distribution within the test sample in the time interval 

required to take a reading. They are thus 7enerally inade—

quate for the investigation of strain—arnplitilde effects.. 

Moreover, measurement difficulties usually arise if the 

materiel damping is nigh b_0243 . These methods were thus 
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considered unsuitable for the tests contemplated. Wave 

propagation techniques are essentially high-frequency 

(several kilocycles), low-strain (less than 0.001 per cent 

in most cases) methods [122 to 1251 , and are thus not 

suited for the relatively low frequencies (a few hundred: 

cycles) contemplated.. 

It follows that forced, non-resonant methods are best 

for the proposed tests. None of the existing methods, however, 

seemed. to quite satisfy the needs of the test. Either their 

frequency range is too low (usually not exceeding 50 c.p.a.) 

as, for instance, the apparatuses of Roelig [105, 106 ,*1 

Payne [107, 108, 109] , Philippoff [110j , Fletcher and 

Gent Lill ] and_ Painter L112.] ; or the apparatus is too 

complicated to be easily modified' for laboratory use, for 

example, Fitzgerald and Ferry apparatus [99, 113, 114, 115j 

For this reason, a simple apparatus was developed for 

the test.. The mechanical set-up is illustrated in fig. 3.5• 

Two similar layers of the material, (3), constitute the 

specimen and are glued in between two stationary supports, 

(5), and a moving centre-piece, (4). The stationary 

supports are made rigid and identical, and are firmly bolted 

on to a steel base plate, (8), which is, in turn, rigidly 

connected to the main body of a Goodman's. electro-magnetic 

vibrator, (10). The centre-piece is, a half-inch square 
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(1) Displacement pick—up 

(2) Brass piece 

(3) Viscoelastic layer under test 

(4) Moving centre—piece 

(5) Stationary supports 

(6) Drive rod 

(7) Force measuring strain gauge 

(8) Base plate 

(9) Output drive of vibrator 

(10) Electro—magnetic vibrator 
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FIG. 3.5 	Shear .testing apparatus. 
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aluminium bar about two inches long. To its upper end 

is glued a half-inch square piece of brass, -g inch thick, 

(2). This helps to increase the sensitivity of an 

inductance proximity gauge, (1), which is rigidly connected 

to the fixed supports by means of a bridging piece; and 

which serves as a displacement pick-up to measure the 

motion of the centre-niece. At the lower end of the centre- 

piece is attached a short drive rod, (6). This is essentially 

1 an aluminium rod, IT inch in diameter, and two inches long. 

The central one inch portion is machined down to two flat 

surfaces with a 0.050 inch thickness of metal between them. 

Two similar Tinsley strain gauges, (7), each about 103 ohms 

mean resistance, are stuck at this portion (one-on each 

surface) using durofix cement. These gauges are connected 

in series to eliminate bending effects, and measure.he 

force transmitted from the vibrator to the moving centre-piece 

and the specimen. The drive rod is attached at its lower 

end to the output drive, (9), of the vibrator. 

When a sinusoidal signal is fed into the vibrator, the 

centre-piece is made to move vertically with simple harmo-

nic motion, thus inducing a sinusoidal shear strain in'the 

specimen. A force signal is picked up by the strain gauge 

whilst the inductance gauge picks up a displacement signal. 

These can be analysed, in a manner to be indicated shortly, 
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in order to obtain the shear properties of the material 

under test. 

It is essential that the fixed supports, (5), are 

vertical on assembly. To ensure this, the bottom faces in 

contact with the base plate are made exactly at right 

angles to the vertical faces, and are properly machined 

so that they are flush with the ground upper surface of the 

base plate. This surface is initially set in a horizontal 

position using a spirit level. 

3.3.c Theory of method  

The force measured by the strain gauge is the force 

transmitted by the drive rod at the point of attachment 

of the gauge. This force is the force required: 

a. to accelerate the moving centre—piece together with the 

portion of the drive rod above the strain gauge (neglecting, 

for the moment, the effective inertia' -af the specimen); and 

b. to cause shear in the viscoelastic material. 

Let the moving mass under consideration be m. For a 

sinusoidal input signal, let the vertical displacement, x l  

of the centre—piece,be as sincot, te being the frequency of 

excitation. From fig. 5.6, it is clear that this will 

induce a shear strain,0, given by 

0 = to sinwt ...3.5.vil  in the specimens; to  being the thick— 

ness of each layer of specimen. The snenr stress in the 

material will not be in phase with the strain, but will 
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lewd it by the loss ano;le, 8 , so that the expression for 

the stress takes the form, 

TA,= 	sin( 	) 	3  3.vii. 

The force causin; shear equals TA or 2A sin((-t + 3 ), 

where A is the total shear area, that is, the area of both 

faces of the centre-piece in physical contact with the 

layers. The force causing; acceleration is 

= - rausla'a  sin wt. Hence, the transmitted force, P, is 

given by P = 	sin(wt + 6 ) - me.&casin at 	3  3.viii. 

If the phase difference between the force, P, and the 

displacement is E l  then P = P sin(ot * E ) 	 

P being the amplitude of tne transmitted force. Comparing 

equotions 3.3.viii and 3.3.ix, it follows that 

P cosh = CA cosS - muga:„ 	3  3.x, and 

sine = 	sin8 	 3  5.Ki. 

Hence 	= tan& 

and since 	= 

Ge 	II)  COS C 4- 

P sin E  
cosE 	m (Arta', 

cos S  

...... 5.5.xii; 

m to2a:, 

by definition; it follows that 
A 
P cosE 	Mutla'o 	to) ...3.xiii. A 0  

In the above analysis, the inertia of the specimen 

has been treated as nec;li_iible compared with the total 

moving mass m. When the layers of specimen are reasonably 

thick, however, the above assunption may no longer hold, and 

it will then be necessary to take accoint of this. A 

simple way of doinc; this is by adding an "equivalent mass': 
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ms, of the specimen on to the moving mass, m, to obtain 

the corrected inertia mass, me  = m 	ms; which will then 

replace m in equations 3.3 .xii and 3.3.xiii. The equivalent 

mass ms of the, specimen is obtained as follows. 

Referrinc to fir;. 3.7 and assuming perfect bonding of 

toe specimen to the various faces; it is seen that the 

layer of specimen in direct contact with the stationary 

support has zero displacement while the layer immediately 

in contact with the movinc; centre-piece must have the same 

displacement as the centre-piece itself i.e. an sin art. 

It follows, therefore, that under conditions of pure shear 

which are assumed to hold, any layer at a horizontal 

distant y from the fixed support has a displacement given 

by y(PE sin Wt. If p is the density of the material, then 

the inertia force of an elemental strip, thickness dy, and 

distant y from the stationary support, is 

A 	2 	 le  y - (1,  dy)o) (ato  ) sin art, remembering that tne shear area on 
A 
. one side of the centre-piece is 2— The inertia force for 

both layers is, therefore, 

rgAto ) a'ocaz 	
7.1 

- 	sin cot . But 91.2" t. - 1;m beinc3 the mass of 
both layers of the specimen. Hence the force required 

to accelerate the specimen is - 	ao  w sin Utt, which is the 
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M . same as the inertia force for a mass, 7, attached to, and 

moving with the centre—piece. The effective mass, m5, of 

the specimen is thus simply half its total physical mass. 

3.4. 	Preparation of the specimens  

Before discussing the methods of measurement employed, 

it is intended to give same further details about the 

preparation of the test specimens. As already mentioned, 

the specimen layers were glued to the centre—piece and the 

stationary supports. In this, it was essential that there 

wss perfect adhesion throughout the areas of contact. 

Another requirement was that the specimen layers should 

have the same uniform thickness. This second condition is 

not very critical, and it can be shown that provided the 

mean thickness of both layers is used in the calculations, 

the specimen layers could have as much as 25 per cent 

difference in thickness without introducing much error in 

the calculated values of the elastic modulus and the loss 

factor. How the above requirements were taken care of will 

become obvious in the following description. 

The gluing material used in the preparation of all the 

specimens was araldite AV 100, together with its hardener 

HV 100, made by CIBA Ltd. This was chosen because of the 

relative ease with which it could be applied, and its 

ability to set at room temperatures. As for its bonding 

strength, all tests pointed to the fact that there was no 
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bonding; failure. What these tests were will be seen shortly. 

Two categories of materials were tented; 

(i) "60ft" materials — the ter:i, soft, being here loosely 

apT-lied to 'materials, samples of which were available in 

the liquid form. 

(ii) "hard" materials or materials available in sheet form. 

In either case the surface preparation vas as follows. Both 

faces of the centre—piece as well as the relevant faces of 

the fixed supports were first dep;reased by cleaning; them 

with acetone. They were then abraded in dilute sulphuric 

acid and washed thoroughly in water. 

Soft specimens  

The faces were allowed to dry and a very tom layer of 

araldite was applied to the bondln7 surfaces of the 

stationary suppo?ts. A layer of the liquid material was 

then applied to each surface using a small fibre brash, and 

allowed a few hours to set slightly, before the next layer 

was applied. The tl:, cz.ness,  or 'the specimen layers was thus 

"gradually built up until about the desired value was 

obtained. At this stage, -a' small mould, of height equal 

to the desired layer thickness, was introduced round each 

layer and Was filled to the brim by pourin in sole of the 

liquid material. This last step Was to enable a smooth 

uniform upper surface to be formed for the bondirr; of i;he 

centre—piece. The layers so formed were now left aside ' 
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for ab(;ut i  fortnight to set herd. 

The moulds were removed after this time, and the 

centre—piece was glued to the two faces. A layer of 

areldite was first smeered on tie feces before p•Ittine; them 

together. To ensure 4001 bonding, the pieces were held 

together by means of bolts end nuts tightened against a 

spring load. This was necessary to keep the layer thick—

nesses constant during the setting period. The entire 

set—up was allowed sone more ti.ne to cure before being 

connected up for test. The tnickness of the specimen layers 

7e.s deteemined by taking the difference between the overall 

width of the set—up when connected up for test and the 

width of the stationary supports end centre—piece (withoat 

the seecimen). The tnickness of each layer was taken as 

half this difference. The measurement;s were mIde to the 

accuracy of 0.001 inch using a micrometer screw (gouge. 

Hard specimens  

These were much easier to prepare as the materiels were • 

already available in the uniform thickness required for the 

test. The two specimen layers were first cut omit to the 

desired size from the sheet of material available. They 

were then degreased with acetone, and thorou-;hly washed in 

water. After this, e very thin laver of ereldite Was aTeelied 

on all the surfaces to be bonled to ;ether. The statio:?.ry 

t • ea (2 	C 
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now appropriately assembled and neld tocetner ander sli;ht 

pressure b ar means of nuts and bolts as above. The set—up 

was allowed three days (to enable the araldite to harden 

properly) before being connected up for te.it. As in the 

case of the soft specimens, the specimenthickness was 

determined, not by direct measuremnt bero-,:e hohdL, but 

by measuring the overall thickness of the asse-mbly when 

connected up for test, and taki.ng away from this the 

corresponding thickness without the layers. This took 

account of the slight compression of the specimen during 

bondinc, due to the applied pressure. 

All tne. specimens tested (both hard and soft) had 

about the same dimensions of bonding area — 2 x 0.5 sqinc. 

Their thicknesses varied i'rom about 0.030 inch to 0.160 

inch. 

Although care was taken to - chieve perfect bonding of 

tne Specimen to the metal pieces (by ensuring that a 

uniform layer of aratdite Was applied to each of the 

surfaces bonded together), it would be difficult to check 

conclusively that perfect bonding existed at every point 

on the areas of contact. It was, however, mhch easier to 

verify that there Was no bonding failure when the system 

had been subjected to large forces, as for e(ample, at high 

frequencies. One way of doing this is by checking on the 

repeatability of resal_ts obtained before and after such a 
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process. Since araldite sets to a hard brittle solid, any 

breaking of the bond would lead to a completely different 

set of results from that obtained previously, for the same 

test conditions. This check was applied to each specimen 

tested, and the good agreement between repeated tests 

(see section on results) was a clear indication that there 

was no breaking of the bonds during test. Another method 

which was mainly applicable to the soft specimens, was to 

destroy the specimen at the end of the tests, by pulling 

the stationary supports apart. This resulted in the metal 

pieces coming apart with each bonding surface having some 

portion of the specimen on it. Had there been any bonding 

failure on any of the surfaces, that surface would have 

come off with the whole or a portion of its area clear of 

the specimen. 

3.5. Measuring, techniques and calibration  

3.5.a. Quantities to be measured  

The different methods of measurement employed in the 

tests will now be discussed. From equations ).5.xii and 

3.5.xiii, it can be seen that to evaluate the material 

properties, Gr and. "r1 , the following quantities must be 
* 

known: 

(i) tO , the thickness of each layer of specimen; 

(ii) A, the total shear area. 
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(iii) mCI the total (effective) moving mass above the 

strain gauge, 

(iv) A the circular frequency of the applied strain, 

(v). 	a; , the amplitude of the displacement signal, 

(vi) PI  the amplitude of the force signal, 

(vii) e, tie phase difference between the force signal 

and the displacement signal. 

There is yet another quantitiy not expresed directli in 

the equations but on which the materialmproperties also 

depend; namely, the temperature, T, of the specimen. 

The method of determining to 	already been 

explained. The shear area was obtained from measurements 

of the physical dimensions (length and breadth) of the 

surfaces concerned. To obtain mvI the centre—piece and the 

drive rod were weighed separately on a che-aical balance, to 

the accuracy of 0.01 gm. The mass of the specimen was 

also obtained by weighing the fixed supports and centre—

piece before and after gluing the specimen in positipn, 

and then taking the difference. The appropriate inertia 

mass was then taken as the sum of 

(a) the mass of centre—piece, 

(b) half toe qatis of the drive rod (the strain gauges 

were assumed to be situated at the centre of the symmetrical 

drive rod), and 

(c) half the specimen mass. 
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How the other quantities were measured are treated in 

greater detail below. 

3.5.b. Frequency measurement  

The input signal to. the' vibrator was derived from 

a Muirhead D-880 A low-frequency decade oscillator. This 

has &calibrated frequency scale and, a frequency range 

from 0.01 c.p.s., continuously variable' above 0-1 c.p.s., 

to 11.2 kilocycles per sec. The specified accuracy of the 

signal frequency is about 0.2 per cent for most of the range. 

This was checked by means of a Beckman electronic digital 

counter. Agreement was better than 00.5 per cent. The 

frequency indicated, on the oscillator scale is, of course, 

the frequency of the driving signal; and should be equal to 

the frequency of the displacement signal. This was checked 

using the counter, and' found to be so. Also the frequency 

of the force signal was measured- and was found to have the 

same value as the displacement signal frequency. 

A special feature of the above-mentioned oscillator 

was the fact that it was capable of giving, two' output 

signals, both at the same frequency, but differing in phase 

by about 90a.,> Use was made of this in the phase measuring 

set-up to be described. later. 

3.5.c. Amplitude measurement  

Fig.. 3.8 is a block diagram showing the' train of 
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measuring instruments. As mentioned above a signal was 

first generated at a known 

and this was then fed 

power amplifier, (2). 

full power from about 

output wave form with 

frequency by the oscillator, (1)4 

into n Derriton 250 watt low-frequency 

The amplifier, capable of delivering 

15 c.p.s. to 5 kc/s,,,,hed a sinusoidal 

a distortion of less than 2 per cent 

in this range. The amplified signal was fed into the Y. 

vibrator, (3), which was capable of taking 4 amps uncooled, 

and up to 8 amps when air-cooled. As the centre-piece 

(connected to the output drive of the vibrator through the 

drive rod) moved up and down in response to the applied 

signal, the inductance of the proximity gau,!,.e, (4), varied 

proportionately. This caused a gauge oscillator, (6), to 

send a frequency-modulated signal to a Minirack .frequency-

modulated pre-amplifier, (8), for demodulation and; 

amplification. The resulting signal then passed through a 

driver amplifier, (9), on tp:;.,One channel of a Minirack 

double beam oscilloscope, (12), The amplitude of the signal 

could now be measured using the already calibrated scale of 

the oscilloscope. 

This calibration was done optically using travelling 

microscope, and also under dynamic conditions. A small 

piece of very fine emery paper Was stuck to the centre-piece 

and illuminated by an external light source. A signal was 

then fed into the vibrator, and as the centre-piece moved 
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up and down, any bright spot on the emery paper lengthened 

into a vertical line which was then measured using the 

eye—piece scale of the microscope. It was thus possible to 

calibrate the scope readings against the microscope eye 

piece scale readings. This calibration was done at the 

beginning and end of each test, and whenever the mean gap 

between the metal surface end the proximity gauge was 

changed. Such a calibration graph is shown in fig. 3.9. 

It may be pointed out that the above calibration would 

give the correct calibration for the movement of the centre-

piece only if the proximity gauge was perfectly stationary. 

This was checked during the calibration (for the frequency 

ranges of interest), and witn the highest microscote 

magnification available, it wasn't possible to detect any 

measurable motion of the gauge. 

The miscroscope eye—piece scale was previously cali—

brated using a stage micrometer., The stage micrometer 

contained a standard millimeter 'length subdivided into 

100 parts. Various objectives were calibrated for the same 

eye—piece and the same working length. Some of the graphs 

are shown in fig. 3.10. The smallest distance. me4surable 

with the microscope — for the combination of eye-piece and 

objectives used — was 	microns. The displacement ampli—

tudes actually measured varied from about 200 to 2000 

microns. 
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3.5.d. Force measurement  

Referring again to the block diagram,,fig. 3.8; as 
4 

the vibrator drove the centre-piece, the transmitted force 

strained the drive rod causing, in the strain gauge, (5),  

a change in resistance proportional to the transmitted 

force. Since the strain gauge formed part of a resistance 

bridge, (7), a signal proportional to the force was trans-

mitted to a Minirack pre-amplifier, (8), then through a 

driver amplifier, (9), to the other channel of the double-

beam oscilloscope, (12). The amplitude of the force could 

now be measured on the oscilloscope scale which had been 

previously calibrated. 

To understand the calibration procedure, it is helpful 

to examine the resistance bridge circuit employed. A 

simplified sketch-of this is given in fig. *11. The arm 

adjacent to the gauge consisted of decade dials covering a 

range of 11,110 ohms in steps of 1 ohm. Two ratio arms, 

each of 2K, were provided, separated by a 10-ohm calibrated 

apex resistor. This was a ten-turn helical potentiometer 

with a dial subdivided into 100 parts and a counter to 

indicate complete revolutions. One complete revolution of 

the dial (i.e. 100 small divisions) corresponded to a change 

P.R in resistance, RR , of 10 3, in , 	the resistance of any one 

arm of the bridge. Each small division was thus equivalent 

RR  to 11-= 10-s 
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The apex resistor provided a very convenient medium for 

calibration in the following W9V. The scale of the apex 

resistor was first calibrated statically to measure force. 

Known weights were hung, in turn, from the drive rod and 

using the oscilldOcope as a null point indicator, balance 

was effected in each case by suitably varying the apex 

resistance reading (i.e. the contact point on the apex 

R A resistance). A graph of load against —R— was thus obtained 

as shown in fig. 3.12. It should be noted that this eali—

bration was independent of the scope sensitivity as well as 

of the test—battery voltage. It was carried out at the 

beginning of—the tests, and checked when all the tests were 

completed. The two calibrations agreed to within 46. 

With this calibration, it was now only necessary to 

calibrate the oscilloscope scale against the change in the 

apex resistance RR  	for any given amplifier magnification 

and test—battery voltage. This calibration was done at the 

beginning and end of each test, and v/henever the amplifier 

settings had to be changed. A typical graph is shown in 

fig. 3.13. 

3.5.e. Phase measurement  

The accurate measurement of the phase difference 

between two signals is usually a very difficult and time—.  

consuming operatiJn. Many of the standard phase meters 
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available have an accuracy of the order of 	2°. This 

level of accuracy is very inadequate for the measurements 

contemplated since changes in phase difference of less than 

-a° would often require to be detect-A. 

The electronic dic;ital co inter available could be 

used to measure the phase difference accurately. Used as 

a phase meter, the co inter basically measured the time 

interval 	in microseconds) between the two signals attain—

ing a certain voltage value. (It is here assumed that both 

signals have the same coLtinueus periodic form — not 

necessaril7 sinusoidal — and are exactly equal). The 

counter Was capable of detecting phase differences as 

small as 0.02°  at 50 	the resolltion decreasing to 

0.2°  at 500 c.p.a. In practice, however, this method proved 

very wieldy and took a considerable amount of time to carry 

out since the two signals had first to be accurately 

balanced. Another set—back in the use of the counter was 

- noise . For accurate readings, it required pure waveforms. 

Any noise in the w_weform was easily detectable end could 

lead to inconsistent sets of results. Owing to the ratner 

high amplification which had to be employed in the force 

channel, a considerable amount of noise -was picked up by 

the force signal, making measurements with the co inter very 

difficult. 

For this reason, anotuer method of measurin the 
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phase angle was developed. A variable phase potentiometer 

was obtained b7 applying the two outputs of the decade 

oscillator (to be referred to as the 0°  and 90°  outputs), 

each to one end of a linear potentiometer. A voltage 

signal of varying phase (arid amplitude) could thus be 

obtained at the variable terminal of the potentiometer, the 

phase of the signal being 0°  at the zero degree terminal 

and 90°  at the 90°  terminal. The phase difference at any 

point; would normally depend on the ratio of the amplitudes 

of tne voltages as well as on the ratio of the resistances 

on either side of the point. In the set-up used, the 

volLse signals were of: the same nnplitude, and under this 

conditi n, the phase of the signal at any point depended only 

on the resistance ratio, the phase being 45°  at the "resis-

tance centre" of the potentiometer. The phase at any 

point co 3.1d be calculated once the resistflnce ratio was 

known. 

However, it; was thought more reassuring and accurate 

to actually calibrate the phase potentiometer using the 

electronic counters. Fig.. 3.14 shows the calibrating-birtuit 

used. The signals whose phase difference Was to be measured 

were first made aril by displaying them on a do.ible beam 

scope (both channels of which hod been set to the same 

sensitivity) and monitoring one of the signals appropriately. 

They were men fed into each channel of the digital counter 
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and the time interval between their attainment of a given 

voltage level (zero voltage level was aimed at in the 

settings) was measured. This, together with the periodic 

time of the signals, also measured with the counter, gave 

TIM  
the phase angle as x 360 degrees, TIM being Periodic time 

the time interval. In this way the settings of the variable 

tapping were calibrated in degrees, the phase angle 

specified for each setting being the phase difference 

between the voltage picked up at that point and the 90°  

output which served as the driving signal. 

The actual setting-up of the phase potentiometer 

required a careful choice of the potentiometer resistance.  

A relatively low resistance applied across the terminals of 

the oscillator might cause the current flowing through the 

potentiometer to vary appreciably within a small frequency 

range, resulting in the potentiometer calibration being 

frequency-dependent. A similar effect would result if a very 

high resistance was used, a capacitive effect being 

introduced in the circuit. Various combinations of resistan-

ces were tested, and the one giving the best performance, 

over the frequency range within which measurements took 

place, was used. The calibration, which was done at 

27.78 c.p.s., was found to hold true from 10 to 400 c.p.s.  

Above this frequency range, it became necessary to make 

some corrections. The calibrated scale was checked at 

500 	and also at 1000 c.p.s., and correlating 
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graphs were obtained to help make the necessary corrections 

at these frequencies. The graphs are given in fig. :15. 

The minimum accuracy of calibration is the accuracy of 

the counter in measuring 1 degree at the calibrating 

frequency, 27.78 c.p.s. Since the counter accuracy is 

approximately inversely proportional to the count indication, 

this accuracy is about 1 per cent. The one degree divisions 

of the potentiometer were thus located with an accuracy 

better than 1 per cent. 

Having obtained a calibrated phase potentiometer, it 

is now necessary to show how this was utilised in phase 

measurement. Referring once more to the block diagram - 

fig. ").8; the signal from the potentiometer, (10), was fed 

thtough a phase shifting network, (11), to the common 

X plates of the double beam oscilloscope, (12). The signi-

ficance of the phase shifting network will be discussed 

shortly. Already the displacement and force signals had 

been applied to the two Y plates of the scope. Since all 

three signals were at the same frequency and were sinusoidal, 

the resulting Lissajous'figures would, in general, be two 

ellipses:  The sha;'es of the ellipses would vary as the 

phase of the signal applied to the X plates was varied, 

and each of the ellipses would degenerate to a straight line 

when its phase (relative to the 900  output) equalled that 

of the potentiometer signal. The phase difference between 
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the force and the displacement signals was thus obtained by 

measuring the phase of each of the signals in the way just 

indicated, and taking the difference. 

The phase difference between the force and the dis—

placement signals would normally be less than 90°  so that 

the calibrhted range of the potentiometer was basically 

sufficient for all the phase measurements required. It might 

happen, however, that one or both of the signals had a phase 

angle (relative to the 900  output) lying outside the 

calibrated range. This situation is illustrated in figs 

3.16 b and c, where the shaded portion represents the 

calibrated quadrant. Under this condition, it would no 

longer be possible to measure the phase of both signals 

as explained above. 

One way of overcoming this difficulty was to change 

the sign of one of the signals applied to the potentiometer 

terminals without altering its magnitude. To do this a 

well—balanced centre—tapped transformer of unity turns ratio 

was introduced in the 0°  channel. This provided two 

outputs 180°  out of phase (one in phase with the 0°  signal, 

and the other of negative sign relative to it) and of 

equal amplitude. These could then be connected in turn 

by means of a switch to the 0°  end of the phase 

potentiometer. The range of the calibration was thus 

effectively extended to cover another quadrant, so that the 
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arrangement could measure any phase between 0°  and 1800  

( and hence between 180°  and 360°) — figs 3.16 d and e. 

Another solution involved "shifting" the calibrated 

range appropriately to enclose the two signals — figs 

3.16 f and g. This was done using the phase shifting 

network already mentioned, which was simply a series arrange— 

ment of resistances and capacitances so chosen as to 

produce the required phase shift (see fig. 5.17). In 

using this method, it was essential that the impedance of 

the phase shifting network was high compared with that of the 

potentiometer, so that its introduction did not affect the 

performance of the oscillator. This second method was 

employed in the tests reported in this chapter. For the 

beam tests reported in chapter 5, the first method was 

found more convenient, and was, therefore, used. 

It is interesting to compare the merits and demerits 

of the two methods of phase measurement — the counter, and 

the phase potentiometer — in relation to the tests con— 

templated. As has already been pointed out, the counter 

was very accurate at low frequencies. Its accuracy, however, 

was freauency—dependent, and the higher the frequency, the 

less able it was to detect small phase differences. At 

about 500 c.p.s., for example, its minimum resolution was 

about 0.3 of a degree. Moreover, this accuracy was greatly 

affected by noise levels wnich could cause as much as 



147 

E 

Input voltage from 
phase potentiometer 

C 	Output voltage 
-to X plates 

	AA/VV‘ 	 

_ 	(C) 

Input voltage 
from phase pot. 

Output voltage 
to X plates 

(b) 

FIG.3.17 	Phase Shifting Circuits . 



748 

100 per cent error. The potentiometer accuracy depended 

on the accuracy of locating the "straight line condition". 

This depended mainly on the magnitude of the signals applied 

to the X and Y plates. With reasonably large signals 

(about two inches peak to peak on the scope), changes in 

phase difference of less than 0.5 degree, could be easily 

detected. The accuracy of the measurement was not frequency—

dependent (provided the calibrated scale was correct for 

that frequency). Moreover, small noise levels were easily 

accomodated and only became a nuisance when they were of 

comparable magnitude with the signals — it would then be 

difficult to determine the balance condition accurately. 

A more significant fact in the comparison is the time 

required for taking a measurement in either case. Under 

the most favourable conditions, counter phase measurement 

would take about 2 minutes to complete, because of the 

balancing and. setting—up operations involved. On the other 

hand, phase measurement with the potentiometer Was a 

matter of seconds. This difference in time Was particularly 

important as regards temperature control (to be considered 

in the next section). For reasonably highly damped 

materials, the energy loss per cycle was appreciable 

eSpecially at high strains (energy loss being proportional 

to the square of the amplitude — equation 	If the 

specimen was subjected to this vibration for a long time, 



149 

considerable temperature rise would occur, leading to an 

observable change in the material properties during the time 

interval required for a reading. 

3.5.f„ Temperature control and_ measurement  

It has already been stated that it was necessary to 

keep the temperature of the specimen' at a definite desired 

value during any set of tests. The specimen temperature 

would change if the surrounding temperature changed. Also, 

axing to internal energy loss, temperature rise would occur 

in the specimen if it was subjected to vibration for some 

time. In addition to these, there was an easy 'heat path' 

from the vibrator out—put drive (via the aluminium drive 

rod and the aluminium centre—piece) to the specimen, so 

that any rise in temperature in the vibrator easily 

affected it. 

In view of this, temperature control was effected by 

controlling the temper-'tune of the room, i.e. heating 

up the room for high temperature tests, 'an] cooling it 

down for low temperatures. Also, a constant stream of air 

was blown against the specimen 1.0 help keep it at a constant 

temperature close to that of the surroundings and the 

vibrator was kept air—cooled all through the tests. 

Next it was necessary to measure this temperature — and 

hence check that it was really constant. This was done 
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using a standard copper - constantan thermocouple. For 

the soft specimens, the thermocouple was easily embedded in 

the specimens. For the hard specimens, the thermocouples 

were located in holes drilled on the fixed supports and 

on the centre-piece, close to the interfaces. The 

calibration graph for the thermocouple is shown in fis. 5.18. 

With the method of temperature control mentioned 

above, it was possible to limit temperature fluctuation in 

the specimen to within ± 0.25°C for all the tests performed• 

3.6. Test procedure  

3.6.a. Materials tested  

The following materials were tested: 

Velbex P.V.C.  

This was available in sheet form of nominal thickness, 

0.160 inch. It is a relatively soft polymer obtained by 

plasticising polyvinyl chloride with 35 to 40 per cent 

of phthalate type plasticiser. It is of a black texture 

and is used in industrial applications such as, washers 9 

shot blast cabinets etc., The details of the specimen 

layers tested are: 

mean thickness of each layer, to  = 0.152 inch, 

total shear area, A l  = 2 x 0.5 = 1.0J sq. in., 

total effective inertia mass, me  - 0.0927 lb. 
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Hycadamp  

This is a mixture of rubber and P.V.C. containing 

100 parts of nitrile rubber to 30 parts of F.V.C. It waE 

available in sandwich form, beinr; bonded between two thin 

backin,; sheets of aluminium. The material was tested in 

this form, the aluminium backinP; layers being; clued to 

the fixed supports and the centre—piece. The mean thick—

ness of each specimen layer was 0.033 inch; and the total 

shear area was 2 x 0.5 sq. in. The total effective inertia 

mass, mc, was 0.0882 lb. 

Evoseal 202 and mulseal  

These, available in liquid form, are emulsions of 

rubber latex in a base of liquid bitumen. For evoseal, 

the mean specimen layer thickness was 0.069 inch, and the 

total effective inertia mass me was 0.0774 lb. The mulseal 

specimen had a mean layer thickness of 0.168 inch, and the 

total effective inertia mass was 0.0785 lb. The total 

shear area in both cases was 2 x 0.479 sq. in. 

3.6.b. Detail of tests  

The test procedure adopted for each specimen (except 

mulseal) was as follows. 

First;  three constant strain, constant temperature 

tests were carried out. 7.,:ach test involved keepin7 the 

strain amplitude (i.e. the displacement amplitude) constant, 
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maintaining the specimen temperature at a definite value, 

varying the forcing frequency in convenient steps, and 

measuring at each step, the amplitude of the force, and of 

the displacement, and their phase difference. The three 

temperatures — the first, a few degrees above the room 

temneratare; the second, room temperature and the third, 

a few degrees below room temperature — were so chosen as 

to cover the possible temperature range within which the 

materials would be used in the subsequent bean tests. All 

three tests were carried out on the same day, the high 

temperature test bein; carried. oet first, followed by the 

room teineature test, and then the low temperature test. 

The value of the strain amplitude was normally the same 

for all three tests. These constant tenerature, constant 

strain tests 4ill be referred to, in the subsequent sections, 

si-froly as ntemperature.tests". 

Next, the frequency and the temperature were both 

kept constant and the strain amplitude was varied in con—

venient steps, readings of the force amplitude, displace—

ment a aplitude and the phase difference being taken at each 

step. This was done at two (or more) frequencies, the 

temperature being maintained constant at about room tempera—

ture for each set of readin'cs. This series of tests, also 

carried out on the same day, will be referred to as 'strain 

tests'. Finally the room—temperature part of the 
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temperature tests was carried out la?;ain to check for 

rep,:aability of results. 

Apart from the above tests, it Was also thouat 

necessary to check on the share of the stress — strain curve 

exhibit ?d by tne materials. For this reason the force and 

the displacement si9;nals were fed to the X and Y plates of 

one channel of the oscilloscope, and the resulting; force — 

disnlacemoht r ')-t; 	sketched. FiT. ).39 sho,is a com— 

parison of one such trace with points on an actual ellipse. 

The trace was made for an evoseal specimen 

The calibration procedures already outlined were 

carried oat at the beginhin,; and at -Lie end of each set of 

tests. 

The in—phase shear modulus, LT, and the loss factor, la 

were evaluated from the readin-cs asin equati6ns 

and 	These two quantities will be utilised in 

the ensuirc3 discussion as the characterisin pronerties of 

tho natori-ls. To avoid repetition, the in—nhase shear 

modu_las, G, will often be called simply- the sneer modulus 

(or, even, 'no,i;Ilus). Also the loss factor rini often b2 

referred to as the dampinT. The nrJterial T)roperties have 

been TIotted out a-;ainst the several variables, as shown 

in fir,;s 5.1.9 to 5.>j. 

Only one te!-,erqtare tart ;Leas vIrtited olt for mulceal. 

Thia Jas because apart from the fact that it took a 
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considerable aeriount of tine to set sufficiently hard, 

it did not show any rlar:ed difference in nroper:ties from 

evoeeal. 

3.7. Discussions  

3.7.q. Exnerimertal results.  

Velbex P.V.C.  

The srapts obtained for T'.V.(7, are she7In in firs 5.19 

to 3.23. 

Te-imerature tests  

The constant strain, constant temleeretere r;rabhs are 

7iven in firs 3.19 and 3.20. These show that the shear 

modulus, (1-', in qerkedly derendent on frequency, shoeins 

a consistent increase with increase in freqaency. The 

rate of increase of modulus with frequenc/, for each of 

curves, decreases as the frequency increases. This su;ests 

teat the material is within the portion of the transition 

zone close to the rubbery region (see fi'. 3.2). The 

dampins, on the other hand, shows a mech less distinct 

variation with frequency. The loss factor is seen to 

increase initially with freauency end teen to remain -flore 

or less constant at Lister freauencies. 

Temperature effects can also be easily observed in 

these ;rapes. The sheer Modulus snows a pronoencei tem—

perature—dependence, decreasins rather ra-eidly as the 
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temperature increases. The loss factor also shows a similar 

trend, confirming the prediction already made, that the 

material must be on the "rubbery side" of the lass . 

transition zone. The "three—point" gTaPhs of fi.T. 3.21 

may help to give a clearer picture of the dependence on 

temperature. These are cross—plots from the constant 

temperature, constant strain 23raphs, and they shop; the 

variation of the shear modulus and the loss factor with 

temrerature, at riven freuuepcy ,nd strain amplitude. 

The shine of the -aodulus—versus—frequency ;rahs was 

checked usinc; the method of reduced variables explained in 

section 3.2.c. From the ,;ral-h of a'a.;ainst lo. freiuency,- 

3.22 — the intercepts on lines of constant modulus 

were measured and laid out in tabular form (table 3.a). 

Very :rood acreemeht is seen to hold, the maximum deviation 

of an7 of tae intercepts from the mean intercept bein 

about 3 T;er cent in the frequency range, 20 to 30) 

covered. 

strain tests  

Fi7. 3.2j shows the variation of the shear modulus and 

tne loss factor with strain amplitude at constant temperature 

and frequency. The shear modulus is seen to decrease with 

increase in strain amplitude, whilst the lose factor is 

virtually strain—independent. It is, however, seen that the 

variation of G' with the strain amplitude is rather slow. 
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Constant Intercept 
shear modulus, G

, 
 

lb/sq. 	in. 

between 
T. 	and T1 	curves 

cm 

Intercept between 
T. 	and T2 	curves 

cm 

1250 4.7 11.5 

1550 4.8 11.6 

1500 4.9 11.5 

1600 4.9 — 

1700 5.0 -- 

1800 5.0 -- 

1900 5.1 -- 

2000 5.1 — 

Mean length of 
intercept 4.94 11.5 

Max. percentage 
deviation from 
mean 

3.2 1.7 

Frequency range 
covered 20 to 300 c/s 20 to 300 c/s 

TABTR 3.a 

Constant modulus intercepts for P.V.C. (obtained from fig 3.22) 

T, = 19.5°C 	T1 = 22.8°C ; Ti  = 28.2°C  
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For instance, a change in the strain amplitude from 2 per 

cent to five times this value, causes a drop in G'of less 

than 20 per cent, at 150 	and 22°C. 

Within the frequency, and temperature ranges of the 

tests, the variation of G'with temperature, frequency, and 

strain can be repreented in the single equation; 

T  
G'= e(29.956 	12.7145)  (0.9202 fn  — 0.3439) + 

— 731 (1.3799 fn  — 2.2022) e 0/$(4  

where n = 0.1621, 40(s = 184.9, f = the frequency in c.p.s., 

Q5 is the strain amplitude, and T is the temperature in 

degrees Absolute (Centigrade scale). 

This expression was found very convenient for purposes of 

computation (see chapter 4). 

After the beam tests of chapter 5, the above shear 

tests were repeated for a specimen of F.V.C. cut out from 

the same sheet. This was meant to be a check on the results 

given above. Fig- 5.24 gives a  comparison of the results of 

this test with the results given in firs 3.19 to 3.22 for 

two temperatures, 18°C- and 23.3°C, and a strain amplitude 

of 3.06 x 10 3 	Good ag.reement is seen to hold for the 

shear modulus, Gc -The loss factor—versus—frequency curves, 

However, show a difference of UD to 5 per cent. This 

difference cannot be attributed to calibrition errors, as 
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the calibrations of the first test were checked and found 

correct. (The same measuring circuit was used in 'both 

tests). It is not clear whether the difference was due 

to a variation in the loss factor with the age of the 

specimen (the second test was carried out about a year after 

the first) or to local variation in the properties within 

the same sheet of material. 'However, the results implied 

a possibility of error of up to 5 per cent in the material 

loss factor. The material properties used in the calcula—

tions for the beam tests of chapter 5, were those obtained 

during the first test (figs 3.19 to 3.23), as these were 

the only values available at the time. 

Evoseal 202  

Temperature tests  

Figs 3.25 and 3.26 show the variation of the shear 

modulus, G, and the loss factor, 73  , with freque-Icy for 

evoseal. The tests were carried out after the evoseal had 

cured for twelve weeks. The graphs of the shear modulus 

against the frequency are similar to those for P.V.C. 

Temperature effects are, however, much more marked as is 

easily seen from fig. 3.27 which gives the variation of both 

the shear modulus and the loss factor with temperature at 

given frequency and strain amplitude. The loss factor is 

seen to increase with temperature,_ which seems to suggest 
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that the material is still on the rising portion of the 

damping-versus-temperature curve of fig. 3.2. 

Fig. 3.28 gives the graph of the shear modulus against 

log. frequency. The usual check on the shape of the curves 

was carried out, and a reasonably good agreement was 

obtained for most of the range, as can be seen from table 

3.b. The maximum deviation from the mean length was about 

9 per cent. 

It may be pointed out that for this material, the loss 

factor varies only slightly with the frequency. 

Strain tests  

Fig. 3.29 shows the dependence of these properties on 

the strain amplitude. Whilst the shear modulus decreases 

with the strain amplitude as for F.V.C., the loss factor 

shows a slight increase with strain. Again, the variation 

of both the shear modulus and the loss factor with the strain 

amplitude is"' seen to be slow. 

Dependence of the properties on the time of cure  

The properties of evoseal (and mulseal) very much 

depend on the 'time of cure' of the specimen. This is 

because the material, originally in liquid form, takes some 

time to dry out, a process which affects its properties. 

Fig. 3.50 gives the variation of the shear modulus and the 

loss facto; 'with time, for a specimen of evoseal prepared 

during the period when the beam tests (reported in chapter 5) 
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Constant 
shear modulus, G' 

lb/sq. in. 

Intercept between 
T. 	and T, 	curves 

cm 

Intercept between 
Te  and T2 	curves 

cm 

560 5.1 	13.0 

640 5.1 	13.0 

720 5.2 13.1 

800 5.3 13.2 

880 5.3 - 

960 5.5 - 

1040 5.7 - 

1120 5.9 _ 

1200 6.0 — 

Mean length of 
intercept 5.5 

' 	. 
13.1  

Max. percentage 
deviation from 
mean 

9.1 0.85 

Frequency range 
covered 20 to 300 c/s 20 to 300 c/s 

TABLE 3.b 

Constant modulus intercepts for evoseal,,pbtained from fig 3.2 

To  = 16.4°C ; T, = 20.5°C ; T2  = 27.5°C  
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were being carried out - about a year after the tests 

reported above. It is seen froth the graphs that the shear 

modulus kept increasing with time for the three months 

during which the tests were carried out, the approach to 

steady values being rather slow. The loss factor, however, 

varied only slightly with time. Also indicated on the 

graphs, are points corresponding to the test results of 

figs 3.25 to 3.29. These lie close to the curves, implying 

that the shear specimens for both tests must have been 

curing at about the same rate. 

Figs 3.31 and 3.32 give the results of the shear tests 

carried out on the evoseal specimen immediately before the 

corresponding beam tests were carried out. These were used 

in the theoretical calculations for predicting the beam 

responses. 

Hycadamp  

Temperature tests  

The shear modulus-versus-frequency graphs for this 

material, fig. 3.33, have rather peculiar shapes. Each 

curve seems to exhibit a point of inflexion, at which the 

slope passes through a minimum value. For the modulus-

versus-log. frequency graphs shown in fig. 3.34, the 

intercepts on lines of constant modulus show first a distinct 

region of constant intercept, followed by a kind of 

'transition' region where the intercept varies rapidly, 
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Constant 
modulus, G" 

lb/sq. 	in. 

Intercept between 
T1 	and Ti 	curves 

cm 

800 7.0 

850 7.0 

900 6.5 

1000 5.3 

1100 5.0 

1200 4.4 

1400 3.8 

1500 3.5 

1600 5.5 

1700 5.5 

1800 3.5 

2000 5.5 

First region of 
constant intercept 

J 

Transition 

:0iocond reion of 
constant intercept 

179 

lerequency range covered 20 and 500 c/s 

TABLE 3.c 

Constant modulus intercepts for hycadamp, from 	3.34 

T, = 22.5°C ; T2 = 29.5°C  
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and then finally, another region of constant intercept, the 

length of the intercept in this region being exactly half 

that of the first zone (table 5.c). 

Also, the graphs of loss factor against frequency 

(fig. 3.35) have peaks which occur at frequencies close to 

those at which the corresponding shear modulus-versus-

frequency graphs show points of inflexion. 

The above observations at first seem to suggest that 

the material might be in the middle of the glass transition 

zone (i.e. close to the peak of the damping curve of fig. 3.2). 

However, if this was the case, one would expect the 

predictions of the method of reduced variables to hold 

throughout the range covered, and not just for distinct 

regions of the range. The observations, on the other hand, 

are too well-defined and consistent to be dismissed as 

being merely due to experimental inaccuracies. Secondary 

transition zones [9] can be ruled out, for although these 

could affect the shape of the modulus-versus-frequency 

curves, thus causing a variation in the length of the 

intercepts within a region of the graphs, they would hardly 

give rise to two regions of different constant intercepts. 

It has been suggested* that the above behaviour could 

*This suggestion was made by A.R. Payne in a private 
correspondence. 
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be due to the fact that hycadamp is a mixture (and not a 

chemical compound) of the two polymers, P.V.C. and nitrile 

rubber, For such a material, it is possible for each 

component compound to have a dominant influence in the 

material properties within some frequency (or temperature 

range) range. This could give rise to two regions of 

the shear modulus—versus—frequency graph, within which the 

material would behave like a true viscoelastic material, 

but would show differing trends. This suggestion seems to 

explain the observed behaviour satisfactorily. 

The dependence of the loss factor and the shear modulus 

on temperature is shown in fig. 3.36, and has the same 

features as that for P.V.Cb, both quantities decreasing with 

increase in temperature. 

Strain tests  

The loss factor is virtually independent of the strain, 

while the shear modulus decreases slowly as the strain 

amplitude increases, as in the case of P.V.C. These trends 

can be seen in fig. 3.37. 

Mulseal  

The mulseal specimen was tested after it had cured for 

15 weeks. As already mentioned, only one set of shear 

modulus and loss factor—versus—frequency curves was obtained 

(fig. 3.38), since the material had the same order of 

modulus and damping as evoseal, and was found inferior to 
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evoseal a's regards rate of cure. It was thus thought 

unnecessary to examine its properties in detail. 

3.7.b. Shape of the force — displacement curve.  

For a linear viscoelastic material, the stress — strain 

curve over a cycle is, by definition, an ellipse. From the 

theory given in section 3.3.c, the corresponding force —

displacement curve for such a material will also be ellipti—

cal. As already mentioned, traces of the force — displace—

ment curves for the specimens were taken during the tests. 

Such a trace is shown in fig. 3.39, with points on an 

actual ellipse plotted on it for comparison. A surprisingly 

high degree of agreement is seen to exist. Since, for all 

the specimens tested, the inertia forces were much smaller 

than the shear forces in the frequency range covered (the 

inertia forces were less than 5 per cent of the total 

measured forces in most cases), it follows that the stress —

strain curves for the materials must be essentially 

elliptical. 

This goes to confirm the observation, already mentioned, 

that despite the dependence of their properties on the 

strain amplitude, at any given frequency and strain 

amplitude, these materials virtually exhibit an elliptical 

(i.e. linear) stress-- strain law. 
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3.7.c. 	Repeatability of results.  

Table 3.d gives an indication of how close readings 

could be repeated. The table applies to hycadamp. The set 

of results, A% was obtained during the temperature tests. 

The set, 13,, was obtained two days afterwards, after the 

temperature and the strain tests had been completed. The 

two sets of results agree very well, the disparity between 

any two corresponding values being less than 2 per cent. 

3.7.d. 	Estimated accuracy of the results.  

The accuracy of the values of the shear modulus, 	and 

the loss factor, /I, obtained by the method described in_this 

chapter, will depend on the accuracy of measurement of the 

various quantities from which G and ri4 were calculated. The 

important quantities in the calculation of these properties 

were F, 	, to  and A, since the inertia force, rkoza'., 
was usually much smaller than the shear force. 

It has been mentioned that the smallest length measurable 

with the microscope available was 7 microns. Since the 

minimum displacement amplitude measured with it was 200 

microns, the maximum error in the displacement measurement 

was less than ± 2 per cent. This is probably a very 'safe' 

estimate, since the points for the displacement—channel 

calibration graphs lay on straight lines with very little 

scatter. 
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Frequency 

c.p.s. 

A' B' 

Shear modulus 

G', 	lb/sq.in. 

Loss factor 

7/ 

Shear modulus 

T, lb/sq. in. 

Loss factor 
rk 

30 890 0.405 875 0.404 

60 	r  1023 0.475 1030 0.480 

100 1217 0.522 1211 0.540 

150 1379 0.560 1351 0.562 

200 1545 0.574 1558 0.572 

250 1810 0.531 1790 0.540 

300 2040 0.486 2005 0.490 

TABLE 3.d 

Repeatability of results for hycadarap  

Set A - obtained at 22.5°C, during the temperature tests. 

Set B' - obtained two days afterwards, after the temperature 

and the strain tests; test temperature also 22.5°C. 

Both sets were obtained at a constant strain amplitude of 

5.87 x 
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The accuracy of repeatability of the force calibration 

has been given as better than 3 per cent. The scatter in 

the force readings taken during a test was within ± 3 per 

cent, so that the error in the force measurement was unlikely 

to exceed' f 3 per cent. 

The thickness, to , was measured to the nearest 0.001 

inch. The minimuM double thickness measured was 0.066 (for 

hycadamp); hence, the maximum error anticipated in the 

measurement of to would be less than +. 1 per cent. The error 

in measuring the shear area, A, would be much less than this, 

since the dimensions of length (about 1.0 inch) and width 

(about 0.5 inch) were each measured to an accuracy of 

0.001 inch, giving a maximum error of less than ± 0.3 per 

cent. 

For the phase measuring device, it has been stated 

that the minimum angle detectable was about 0.5°. The range 

of values measured covered between 20°  and 80°, so that the 

maximum error involved in measuring cos E was less than 

± 1 per cent, whilst the maximum error in tanE was about 

f 5 per cent. 

From the above analysis, it would appear that the 

accuracy of the calculated values would be well within 

± 7 per cent for Cyc and 	5 per cent for 7i. It may be 

pointed out that this estimate is for the worst possible 

case. The general level of accuracy in the results obtained 
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for any given material would be much better than this. For 

instance, it was stated in section 3.7.c, that the results 

for hycadamp could be repeated to within 2 per cent 

difference. 

3.7.e. Comparison of results  

For purposes of comparison, an intensive search was 

carried out through the literature for published data on the 

materials tested. As far as is known, there are no published 

data on evoseal and mulseal. Also, no information could be 

found on the properties of the brand of P.V.C. tested, 

although there is published work on other brands of P.V.C. 

For instance, some data are given in [100J, for a formulation 

of placticised P.V.C. containing some tri-cresyl phosphate 

as plasticiser. These results are plotted in fig. 3.4Q, 

which shows the variation of Gi and Yi with the frequency, 

at a constant temperature of 250C (the strain amplitude was 

not specified!). The shear modulus and the loss factor quo-

ted are seen to be much higher than the values obtained here. 

However, since the two brands of P.V.C. are different, it 

is doubtful whether further comparison is of any use. 

3.7.f. The apparatus - its limitations and possibilities 

It is intended to conclude this section with a short 

discussion on the apparatus., 

It will have been observed that the mechanical set-up 
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is very simple. The different components are easy to make, 

and can be assembled or dismantled in a matter of minutes. 

The measuring circuit is not very complicated. The 

displacement measurements can be very accurately made, and 

the accuracy of the force measurements could be improved 

upon, if desired, by replacing the strain gauge with a more 

sensitive force pick-up, as for example, a crystal pick-up. 

Although the temperature ranges covered in this work 

were close to room temperature, temperature ranges of any 

desirable magnitude can be obtained relatively easily, by 

providing a small temperature chamber around the specimen. 

The set-up is also very suitable for investigating 

the effect of lateral compression on the shear properties. 

One limitation of the apparatus is the fact that it is 

essentially a low frequency set-up. The frequency limitation 

arises from the requirement that the test frequency range 

should be below the fundamental natural frequency of the 

system (table + fixed supports + bolts etc). By careful 

design, this frequency can be made reasonably high (up to 

5 kc/s),,so that a wide frequency range can be covered. 

The apparatus, as it is, is not suitable for tests at 

very high shear strains. Reference to fig. 3.41,willshow 

that when the shear specimen is subjected to a shear 

deformation, G; owing to the fact the the supports, (5), 

are fixed in position, any horizontal element of the specimen 
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Effect of extension in the 
Shear specimen. 
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undergoes a tensile strain of magnitude, (sec e - 1). (It 
is assumed that the element still remains straight.after 

deformation). This gives rise to a tensile force, LE6, in 

the element. The sum total of all such elemental tensile 

forces has a vertical component, designated by PesinE9, 

which must be provided by the drive rod. It follows, 

therefore, that the total force, P, measured by the strain 

gauge, not only provides for the shear deformation in the 

specimen and the inertia of the moving parts, but also has an 

additional component due to the necessary extension of the 

specimen. For moderately high values of the strain, the 

component, PesinG, is negligibly small. For instance, 

for a shear strain of 10 per cent (i.e. tan 0 = 0.1), 

Pe  sin 6? is only 1.5 per cent of the shear force. However, 

at very high strains (say, 100 per cent or more), Pe sin 

becomes very appreciable. Besides, the assumption that the 

horizontal element deforms to a straight line, and not a 

curve, becomes less likely to hold. Hence, this method 

can not be used for tests at such strains. 

It may also be added that the results obtained with the 

app=aratus 	the fre(mency range, 20 to 500 c.p.s., do 

not show any "dispersion resonances" X of the type very 

often experienced using the Fitzgerald — Ferry apparatus 

(see fig 5.40, for example). Perhaps this is due to the 

fact thau the fre4uency range covered is low. However, the 
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apparatus developed can be readily employed in checking on 

this still uncertain phenomenon. It should then be possible 

to provide a conclusive evidence as to whether this observa—

tion is due to a fault in the Fitzgerald — Ferry apparatus, 

or is a characteristic peculiar to some viscoelastic 

materials. 

3.8. 	Concluding remarks  

One of the aims of the tests reported in this chapter, 

Was to choose some viscoelastic materials which could be 

used in the subsequent beam tests. The test results given 

in section 5.7, show that evoseal and P.V.C. have widely 

differing properties. Thus, while evoseal has low shdar 

modulus and relatively high loss factor, P.V.O. has fairly 

high modulus and moderately low loss factor. The properties 

of hycadamp are close to those of P.V.C., while mulseal has 

properties similar to those of evoseal. P.V.C. and evoseal 

were, therefore, chosen as the viscoelastic materials to 

be employed in the experimental check on the theory on 

sandNich beams. 

Another aim of this chapter.was to study the dynamic 

properties of viscoelastic materials when subjected to 

harmonic excitation. The experimental results have confirmed 

that at any given strain amplitude and frequency, their 

stress — strain loop is practically elliptical. But the 

results also show that the material properties depend on the 
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strain amplitude (as well as on frequency and temperature). 

The dependence of their properties on the strain means that 

the viscoelastic materials are basically non-linear. It 

follows, therefore, that the degree of non-linearity 

exhibited by the materials tested is not strong enough to 

cause any appreciable distortion of the elliptical stress.i,  

strain loop. 

In the light of this, these materials will, in the 

subsequent work, be treated as exhibiting an elliptical 

stress - strain law at any given strain amplitude, but also: 

having properties which are dependent on the strain 

amplitude. If If this is done, the functions, LP and 	 
9 

(of section 2.1) will take the form given in equation 2.1.ii 

(for an elliptical stress - strain loop). Also, the material 

constants, 	and 	7 , of section 2.1, become the in-phase 

modulus (founs.'s or shear) and the material loss factor (in 

extension or in shear), respectively. It was stated in 

section 3.3.a (equations 5.3.iv and 5.5.v) that 

7 A 3G 	and I A 11. These approximations will be 

used as exact relations in the rest of the work. Also, 

the notations used in chapter 2 for the viscoelastic 

material propertiesvill, from now on, be replaced with the 

proper notations introduced in this chapter, till's 

E. G. (of chapter 2) become 1!] 	G. 
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C liAPTEH4 

S u_LJT 	',)17.  THE D IFFE -ENT IA 	' 1 ....TS 

Introduction 

The differential equations derived in chapter 2 hold 

for any symmetrical multi-layer beam subjected to either 

free or forced vibration. In this chapter, the solution 

of the equations for forced vibrati)n will be considered. 

To keep the analysis clear and simple, only three-layer 

and five-layer beams are treated in detail. Extension of 

the solution to "higher order" beams will be shown to 

involve no basic change in the method. 

Three important conclusions arrived at in chapter 3 

are relevant in the present treatment and are repeated 

here for emphasis: 

(a) The viscoelastic stress-strain loop under harmonic 

excitation is an ellipse. 

(b) The shear modulus (and hence, the Young's modulus) 

of the viscoelastic material is a function of the strain 

amplitude (as well as of frequency and temperature). 

(c) The rate of change of the shear modulus with the 

strain amplitude is small for many viscoelastic materials, 

certainly for those investinted. 

Mom (b), it follows that the coefficients of the 

'differential equations are all functions cithe strain 
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amplitude. The equations are therefore basically non-

linear. (c), however, sqggests that this non-linearity can 

be treated as small; that is, as having second order effects. 

If this is permissible, a first approximate solution could 

be sought assuming tnat the coefficients are strain- indepen-

dent. This solution can then be used as a basis for obtain-

ing improred solutions. It is intended to show first how 

the equations can be solved for the linear case. The modi-

fication of the solutions to deal with strain-dependence 

will be left to a later stage in the analysis. Finally, 

conclusion (a) above, apart from specifying the viscoelastic 

stress-strain law, also implies that in spite of 	slight 

non-linearity in the viscoelastic material, the response of 

the beam, under sinusoidal excitation, is also sinusoidal 

and of the same frequency. 

4.1 Three-layer beam equations with strain-independent  

coefficients. 

On the assumption of strain-independent coefficients, 

the equations 2.2.xcv and 2.2.xxx, for the three-layer 

beam become 
1 2  eY 	 a  1414 	azY 

EI 8x4  N, ax. + 7 a-R1- 	m a1 L = p(x,t) ......4.1.i 

3  P. 37 	pact), 	a 
3  X3 	

ax1  +. 	
( 
k 	Fl 	- ni bG'&14-1(01) = 

If the forcing function is assumed to be a sinusoidal 

function time, of frequency cd; thus 



	

evidently, X01. 	C OS Xs 
A 

	

and Y01 	0, sin is 
.... 4 .1•14.Vi 
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p(x,t) = p(x) cos co-t 	4  1.iii 

then from the discussion above, the displacement 

shear, 0,, take the forms, 

y = 11:0  cos of f- IC sin wt 	4 1  iv. 

)/ = X01 cos 00-t 	Y01 sin it ...... 4.1.v 

where u: , 	, Xes , and Y.1. are functidns of x. 

Ys and the 

4.1.a- The /1J—functions  

With the assumed form of y and 011 it is now possible 

to determine the LP—functions. To illustrate how this can 

be done, consider 4_1( 45, ) . This is readily obtained from 

the relation Liri( ) 	j  ,ez  	 7,  ; op, bein7 the maximum 

value of 4 (see equation 2.l.ii). However, it is beneficial 

to obtain it from first principles. The shear deformation, 

0, , in the viscoelastic material is, from equation 4.1.v, 
01= Xoi  CO; tot 	Y01  sin art = 	,cos (wt — Xs ) where 

Since the resultinm shear stress, T71 , leads  0, by the loss 

ansle S (section 3.1.a), it has tne form 

ri = 2; cos (cot +8 —As) 	...... .1.vii. 

Vdien expanded, this J;ives 

2; = e (cos S costs 	sins sin As ) cos cot 

— i's(sinS cosAs — cos8 sin As ) sin uit 	4 1  viii. 

But from the definition of the shear modulus cf viscoelastic 
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materials (equations 3.1.iv and v) 
A A  

ijC OS S 	G41 and 	'Cis in 8 = G 9, = 	. 

Using these, and equations 4.1.vi in equation 4.1.viii, 

the following expression results: 

(X., cos tot 1- yo, sin c&t) +- las( Yof  cos cot - Xof  sin cet 
4  1 ix, 

which is clearly of tne form 

14.1( ch.) = Yew  

q, 	(4,  )17  whence 

cos Lot - X01  sin Lot 

 

4 1 x• a • 

 

The other Lij- functions can be obtained in a similar 

manner; and are given below. 

LtiFi =*- 	rpi A  .y) 	 i. 	 „g2V'  
cos Wit 	

d2UP sin tat] /L d 
c—c2 	 dx4 

dx E, A, 41 	a3-÷° -' cos .&t - ct-Tmc  sin /et ....4.1.x.b.] 
cevi 	ceu, 

= 	E, 	tc-Ect° cos cot - 013--(74" sin coti 

E, 	i*-c°' cos id-t - dxX'° in  ult.} 	....4. 1 .x 

( (1)1 ) = 14  b 	cos not - Xoi  sin cot] . . .4.1   x d 

where the distinction between shear and extensional loss 

factors has been dropped i .e 14, = 	= 	- 

It is noted that all the 41-functions prear in the 

differential equations with t.le common factor 	, the loss 

_fctor of the viscoelastic material. an account of this, 

they are called tne damping terms of the equations. 

(When IV= 0, t - lese terms disappear from the equations, and 

the viscoelastic stress-strain law reduces to that of an 

elastic loss-less material) . The dam-ping; terms which 
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contain the dynamic Young's modulus E:, arise from the 

extensional deformation in the viscoelastic material, and 

are therefore refeAd to as the "extensional damping terms". 

Similar1,7 those containing; the dynamic shear modulus G o , 

are called the "shear damping terms". 

4.1.b Simplification of the e  

Equations 4.1.iv, 4.1.v, and 4.1.x can now be put 

into equations 4.1.i and 4.1.ii to obtain the equations 

cru", EI1 	:17 717 	cos Ot + 	sin Leti + 	dxs N; {-515-I" cos wet + dx3  sin on j 
Y 

e e E: ImtcE--(144 	
4  ; 4- cos coat - 	sin wti 

+ 	E: Tx, 37r1  cos wt - 1,3c1(  sin wt1 

- 	m 0- 111/0  cos WIt F 14; sin cot 	= p(x) cos wt ....4.1.xi, 

and 
Id3  u' 	ds 	. wrcr° cos cot F dx3  sin mot} + q ù 	 COS w-t + 4!1.q  si dxl 	n wt.1  
, d3  v; 	 d3 uo +- 	E, A, fe- (377 cos cot 	dx3 sin wt) 

GP 	"'i f• 	E; A. 4. (4:1:- cos Of - xl
X., sin (4t) - 31,13LTI(Y.0, cos cot- X., sin 09 

= b:',(Xer cos wt 4-  Ye, sin cot) 	4 1  xii. 

Equations 4.l.xi and 4.l.xii must hold true at any time t. 

The coefficients of sin -t and cos ait must therefore 

seperately vanish. This results in the four equations 
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ct 	3 y 

EI 	 ° 	' 	1-t's• 	Ei  I 	ckfv: E, dx+ 	4)0 	?di crj 	dx3 
- M 1.021f0  = p(x) 

EI dx4  N; 

 

uf. x01 "c-17-"C4  1,E, rc3  dx3  

...4.1.xiii 
- ?v; = o 

° 	
ex., Es, A d!W 	, h. c1.2Y 

CbC5 	Ai 7 TT:" 
Yo, - 	= 0 

pi 	alv.' * I az  Yoi dxs  1,411 - - A, 

* 	X., - 1).1: Yo, = o 

h, 
8 ax3  

, - 
E A 11-3  ceXof  

dx 2  

The above equations can be put into a dimensionless form 

by intrbducing the dimensionless variables 

u. = - • v = - • 	= 
x 0 

and simplifyin7 to obtain 
/3 	, etio i- 	Are 	Dix., Y, D33Yol - uo = 	

, 
1-5 I • • ( a ) • 

- 	Dtao 	D4V. - Y,D3X, + ac,D3i , - Ave, = o 	. 	) 

D3u 0  t• S,Diva 	D2X„, 	Dz 	- v,Xo, - Y„, = 	o 	. ( 

- S. Du, 	/A,D3v-„ 	8, Di 	eyo, f- 	v, yo, = o . .( a) 

where 

	

0(1 , N.' 	ma  .2/4 
EI 	; g' 	EI 	\‘' =  

.... .1. xvi 
(Si  = 14, 	_ tabAG ;  

‘1,11 
and th-3 operator notation D = 4 has been employed. It 

is convenient to express the ript-hand sides of equations 

.1.xvi in terms of the dimensionless ratios, 

H = h, r12  
_ 

13, -Et  ; 01 77z  e = ) ; 	= 
E2, 	 P2 

4 1  xiv, 

• • .1_ .x-v 
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a( 8 

- 4 
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6H 6H3 	eH3  
+- 	12H 

48Trz 

6H' 	4- eH3  

(2 	+- 	D,H) 	ief. 
i- 12 4- 	6H' 	4- 	efilgEz, 

1,eH 3  
12H +- 	6H2 	eli5  

4  1 xviii • 
eH 

4H 4-- 	eHz  . 
4H eHz 

8  V - 	11'  
' 411 eHz 

(35 	4,8L:9 eHz2g  

f = 	is the frequency of excitation in -cycles per 

second; and go  is the -;ravitqtionql const-nt of acceleration. 

To mite an order of maa;nitude to these coefficients, 

consider a symmetrical three-layer beam (beam Ll for short) 

20 inches lon. The frequency of the excitins.  force is 

such that [,= 10, and G;= 1,000 lb/in2. The other material 

constants and dimensions are: 

Ez  = 107lb/sq. in. 

- 0.05 lb/cu. in.) fz= 0.1 lb/cu. in.. 

hi  = 0.1 in. 7 	 ha= 0.2 in. 

= 
Then, from equations 4.1.xviii, the coefficients can be 

evaluated as: 

4 
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0.29 ; 	10.00 ; y( = 15 x 10-6  

8, 	8 x 10-6  ; 	3.00 ; 14= 4.ao ; eri= 2.67 

It may be observed that Y, and 	— the coefficients of the 

extensional damping terms — are much smaller than the 

other coefficients; and in particular, are negligible com—

pared with o;, the coefficient of the shear damning tern. 

The relative importance of these terms will be examined in 

greater detail in section 4.2.f. 

The coefficients V,  and p, will be referred to as the 

"shear parameter" and the "frequency factor" respectively. 

Their importance in the design study of multi—layer sand—

wich beams will become clear in chatter 6. 

Equations 4.1.xv can now be compared with those 

obtained by Mead for a symmetrical three—layer sqndwich 

plate [62, 63.1. When his equations are reduced to the case 

of a sandwich beam, neglecting the lateral inertia terms; 

they become identical with the above equations with the 

extensional terms neglected. 

lidso, when the equations of Yu [55, 78] are reduced 

to the case of a one—dimensional uniaxially stressed 

viscoelastic sandwich beam, and tne lateral inertia terms 

are neglected; they agree with the above equations with 

only a slight difference in the viscoelastic extensional 
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terms. The slisht difference is due to the difference in 

the methods of obtainins the equations. The equations for 

shear deformation were obtained in chanter 2 by assuming 

that the shear in the viscoelastic material is the shear 

at the central axis of the layer. Yu, however, obtains 

his equations by applyin; the variational equations of 

motion. 

4.2. Solution of the linear equations by finite difference 

approximations — 3—layer beam. 

Equations 4.1.xv form a set of simultaneous ordinary 

differential equations, with constant coefficients and of 

the twelfth order. It is thus theoretically possible to 

obtain a closed solution by any of the classical methods 

available in standard texts on differential e:luations 

(see, for instance, [79] 
	

In practice, such a solution 

would be cumbersome and virtually intractable. Besides, 

it would not be passible to 'iodify it to apply to the case 

where the coefficients of the equations are strain.—dependent. 

A numerical method of solution has thus been chosen. 

Apart from the relative ease with which solutions can be 

obtained using the fast Atlas digital computer available, 

the method has the special advantage of being readily 

adaptable to the 'non—linear' case. 
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It M17 be noted that eouotims 	reqzire 12 

boundary conditions fcr their. solution. They are, however, 

not solved in their present form. Equations 	ond d 

ore differentiated with respect to f' (to 7et 911 the equations 

into the some homo;eri5ous form), so that they now become 

.17u, h Y,. D*v; t- a, Ds  X‘,4 	y. D3  Yof 	r3, F 
(1 \ 	  

TT p(1Z) 

-y,D4ue, i D4v, - 	Dit 	— 13,V° = 

   

(b) 

 

    

      

. . 	.2 . 
u0 	?- S, nye 	( D3  - vi D)X,,, r (S, D3 	 D fl f = 0 • • • ( C ) 

'" D411,, h 11,D4Vo  •-• 	CS, D3 	D ) 	 ( D3  "- 

itese e quo Lions now form o set of fourteenth order e luotions 

reluiring; fourteen boundary con'iitions. The two extra 

boundary conditions ore reodily obtainel by op':11ing 

equations 4.1.xv.c and 	to any point in toe syste-a (pre- 

ferob17 to either boundary). 

4."4.,.a. Finite-difference equations  

For each dependent variable, tne ni;nest order 

derivative is split into o set of first order differential 

equations os shon below 

X., 	Y., 

= D uto  7T3  = D v; 	Tr4 = D 4,1  Trs = D 
	.... 1-.2.i i 

ond tne set 	Tri,4. = D11- 	; C - 2, 	, 

where 1112 = D3X., , 7ri3 = D3  Yei 	, 11-14 = D+u, , 	D+Va . 
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The beam is now divided into a convenient number of equal 

steps, the step-length being h. IfiT denotes the value of 

TrL  at a point distant sh from the point f = 0, then the 

differential equations 4.2.i are exactly equivalent to the 

following set of 18 simultaneous equations. 

TT1 = D 	= D Vg 	TT: = D 	TT: = D 	( 	- ( d) 
111.4  = DIT5i 	= 2, 3,  	.( e ) - (n) 

it 	4- S,-rr,s, 	Trs+ 	8, -ffiss -U, Tr: - d,Tr: = 0 ...(p) 
-8,Tr‘: 	Tr,sa 	- 8,17,54  + 	Tr,: 	+ 	 = 0 ..( q) 

a 	Ys Tr,ss• +- 1-1,14. 	- 	= 6)(1S) • -(1") 

0(1 Tr: 	- )3,1r: = 0 	(t) 	,) 

At this stage, the first order equations 	(a) - (n)) 

are transformed by replacing the derivatives by finite-

difference approximations. 

The finite-difference equation employed is that due 

on 	to Adams 180, 8;.] and is of the form 

.7(D 	D ys') = 	* 12 
' 	iS4  
- 120 ►- ...) y 

s-1/2 	
--  2  iv 

where the operator S is defines in the relation 

37S-*„. 7S 	7S-1 

 

LI-  2  v 

 

and y represents any of the dependent variables. 

Equation 4.2.iv is trun._:-Ited after the first term to yield 

the aproximation* 

11-(D  "9P i D 	= ys7
S 	 4 2  vi 

*This relation would be exact if the function y -vas a 

parabola. The approximation is thus equivalent to fitting 

parabola within the interval h. 

..4.2.iii 
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This is a "second-order" approximation with a truncation 

error of the order O. 

With this approximation, equations 4.2.iii (a) - (n) 

are changed into the following recurrence relations 

1 110 • - 7[,2 	uos  2 	(a) 

vs  - h  = 2Tf3 -1  7 3 	(b) 

..4.2.vii - (c)  
_ 12 s-1 Yo 	 2 5 	2"5 	(d) 

frp - 	t. 
2 '1.4 	

• L= 	...(e) - 

The above relations 4.2.vii.(a) - (n) along with equations 

4.2.iii.(p), (q), (r), (t) fora the set of 18 equations 

which now replace the differential equations. 

The recurrence relations relate the variables at any 

point s with those at the preceding point s-1. Hence if 

all the variables are known at f= 0, their values at each 

successive point can be evaluated. However, this is a 

"boundary value" problem, and tne variables are not all 

known at any one boundary. A special technOue is thus 

necessary in the above step-by-step process. 

4.2.b Boundary condition control 

The following method* [4] was used to introduce the 

correct bolndnry conditions. 

Let the variables be denoted by uL at one boundary 

(1 = 0) and y  at the othor boundary 	nh = 1); that is, 

*This method was suggested by Dr. P. Marcel of Imperial 

College, London. 
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u*„ = u, , ve° = u2  , w = u3  , Y = 

111.' = u 	, 	= 2 , 3 , 	 15 

and 

 

4 2  viii.a 

 

un 
 

= 
	vn  = 

37Z+3 	= 

n(= 1  -) being the number of steps. Then, in their most 

7eneral form, the boundary conditions will comprise P 

equations of the form 

gi(uO = Ai  at S = 0, s = 0 	4 2  ix.a5and Q equations 

of the form 

fi(w) = BtatS = 1, s = n 	4 2  ix.b where 

j = 1,2, ...P; t= 1,2,...Q; t= 1,2,...(P 4- (1), and (P 	q) 

is the order of the differential equations (14,in this case). 

ft  and 	are functions of yi  and uL respodctively. Arbitrary 

(non-zero) values are assumed for Q of the uE. Let these 

be 	 ' u'k  k = m,n,....(to Q values). With these, the other u;,  

can be calculated using the boundary conditions gi(14 = Ai, 

and the differential equations 4.2.iii p,q,r,t. Since these 

are not necessarily the correct values, they will be denoted 

by 	A set of ulvalues are now available with wnich the 

step-wise integration process indicated in section 4.2.a can 

be advanced until the other boundary f= 1 is reached, 

yielding a set of variables yi'at this point. Except by 

extreme chance the 	not satisfy the boundary conditions 

4(R) = Bt. Let fe(571) = 	...... 4.2.x. 

Tit 

:5rz  , x:1 = Y3  , Y2 = ya 
2,3,...15 

 

4 2  viii.b 
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Each of the q assumed &x  is now increased partially in turn 

?ft by a small amount and the quantities 	are calculated. Du'ic  

Finally the corrections LuC for the initially assumed uC 

are calculated from the Q simultaneous equations 

Qui = Bt — Bt 	4  2.xi, t= 1,2, ...Q. Better aulc  

assumptions for ulk  are thus uk 4-4.u/c. These are now used 

as starting values and the 2bove process is repeated until 

the boundarY conditions ft= Bt are satisfied to a desire: 

accuracy. 

In theory, for linear equations, the correct initial 

values uLare arrived at by carrying out the above process 

only once. In practice, however, it may be necessary to 

repeat the process a few times if tne initially assumed 

values are very poor. For most linear cases, convergence 

is very rapid and the bo.andary conditions are adequately 

satisfied after about two cycles. 

4.2.c 	Systems with displacement forcing 

Forcinp4 function  

To illustrate how the above general method can be 

applied to a specific problem, a beam with "displacement 

forcing" is considered. For such a beam, the supports are 

subjected to a sinusoidal motion of constant amplitude given 

by a = a',„ cos Lot 	4  2 . xi i 

The forcin!:; function p(x) is easily deduced from equations 

4.1.xi to be night, where y = uf,, cosurt 	.W sink is, in this case, 
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the displacement of any point on the beam relative to tne 

supports. gquation 4.2.i.a now becomes 

D4u. + te,Dt4 	ix, D3 	1', D3  Ym - p, u, = 13,a0 	4 2  xii.a. 

where a.= T. The rest of equations 4.2.i remain unchanged. 

Boundary conditions  

For a cantilever beam, with the end S= 0 so clamped 

as to prevent any shear in the viscoelastic material at 

that end, the appropriate boundary conditions are 

(a) Zero slope, no relative displacement, and no shear 

deformation at g= 0. 

(b) No longitudinal force in each layer at g= 1. Also the 

bending moment and its spatial rate of change must vanish 

at this point. 

Using the notations of 4.2.viii, tne above conditions can 

be put in the form given below. 

At f= 0; uz = 0, i =1,2,...6 	....(a) - (f) 

At 	
1;Jf- 

j = 1,2,...4 ....(g) 	(j) 

pa 	Y, .yµ 	a, 37n 	',y,2 = 0 . . 	 (.k )  

—`1,373 F 	Ye 7,1 	51;2 ' 0 	(1) 

Two other boundary equations are required, and these are 

obtained by applfing equations 4.1.-v at the point f= 0. 

This gives 

(m)/ 
....4.2.xiii.(m) - (n) 10,3 +. 114. 	Uri 	(StUt2 = 0 

If the beam is simply supported at both ends suca that 

..4.2.xiii 
(a) -(1, 

— C31  U,3  /411.114 — 811-let f.  1112 = 0 ....(n) 
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tnere is no axial restraint, and the ends are free from 

longitudinal stress, then the bending moment and the relative 

displacement vanish at both ends, giving rise to the 

relations 

At g. 0; 	0, uz= 0, u,b = 0, L= 	..4.2.xiv.a-f 

At (5= 1; y = 0, -5T2  . 0, 	• = 0, E= 

As abova, two other equations are obtained by applying 

equations 4.1.xv at the boundary f= 0, giving 

Alum  r 8,11*  f- an  4- S, um  - 	- d u4. = 0 	( m ) 

ra,3 	 811111 	1242 4" 0:113 - 	= 0 	(n) 

The boundary euatIons for beans with other end con-

ditions can be readily obtained following tho lines 

illustrated above. 

Solution of the equations  

Once the boundary equations are known, tne process 

of solution sketched above in sections 4.2.a and b can be 

applied. Still using the cantilever and the simply supported 

beams as illustrative cases, it is noted that for each case, 

six boundary equations are given at 5= 1. rience any six 

of the unknown quantities (u0 at 	0 are assumed. viith 

these tne remaining unknown dLare calculated from the boun-

dary equations and the differential equations. A set of 18 

starting values are now available at = O. Corresponding 

values at each successive point are then calculated from the 



274 

equations 4.2.vii (a) - (n), 4.2.xii.a, and 4.2.i (b) 	(d). 

This is very conveniently done by matrix inversion, the main 

matrix of the equations being the 18 x 18 matrix of equation 

4.2.xv (see next page). ',:hen tne boundar7 S= 1 is reached., 

tae necessary corrections to tne initially assumed values 

are calculated in the manner indicated in section 4.2.b. 

The above cycle of ocerations is tnen repeated using the 

corrected values as starting values. The correct solutions 

are those which satisfy the boundary conditions at g. 1. 
A programme was written for tne London University Atlas 

digital computer for the above process. The boundary 

equations at g. 1 were regarded as satisfied when the right-
hand sides were less than 10

-7
. In most cases this involved 

just one or two cycles. 

4.2.d Effect of the step-length a 

The accuracy of the results obtained with this method 

would naturally depend on the step-length, n, used in the 

step-wise integration process. Table 4.?-gives tne solutions 

obtained for the beam Li (of section 4.1.b) for various step- 

lengths. The beam is solved as a cantilever with displace-

ment forcing, and the forcing fraquency is such that fA= 10. 

The percentage error relative to the "corrected" value is 

given underneath each figure. The "corrected" values 

are obtained by the method of interpolation sug;ested by 
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( Dots indicate zero terms ) 

Equation 4.2-xv — Main mati-fx for step-wise 
intc2gnation— :inean case 
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No.of steps u. 
ae 

v. 
a, 

X, 
ao 

Y., 
a. 

-5.015465 3.500559 4.386566 0.232360 
5 

(5.77) (16.0) (8.60) (-36.2) 

-4.852005 3.129886 4.054024 0.335027 
10 

(1.15) (3.76) (2.70) (-8.08) 

-4.810786 5.044429 3.973944 0.357310 
20 

(0.28) (0.93) (0.67) (-1.91) 

-4.800445 3.023488 3.954126 0.362682 
40 

(0.07) (0.23) (0.17) (-0.49) 

9ORRECTED" 
-4.796998 3.016508 3.947520 0.364473 

VALJE 

TABLE 4.a. 

Displacement and Shear Components at C = 1 for 
Cantilever Beam Ll. 
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Richardson E82,83. 

The table shows that as tne number of steps is 

increased (i.e. the step-length is decreased) the accuracy 

of the solution increases. This is a conseluence of the fact 

that the error in the finite-difference approximation 

becomes less and less as the step-length decreases. There 

is, however, a praCtical limit to the number of steps. 

Apart from the fact that the computation time increases with 

the number of steps; when the step-length becomes very small, 

there is the danger that rounding-off errors and other ran-

dom errors may build up to substantial proportions, thereby 

nullifying the accuracy sought 184]. 

Tmenty to forty steps were found sufficiently accurate 

for most of the computations made. No attempt was made to 

correct for the higher order terms of the finite difference 

expressions 4.2.iv which were dropped in tue approximation 

4-.2.v. The solutions obtained proves: sufficiently accurate; 

and when better accuracy was desired, this was achieved by 

increasing the number of steps aLd by interpolation. 

4.2.e. Effect of the finite-difference approximation. 

To check how the solutions were affected by the finite-

difference approximation used, another finite-difference 

formula of a higher order truncation error vas used, viz 

7 - 
1 \/ s 	3-2  ) 	T12( D ys-z  i+D ys  + D y) . 
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with an error of tree order IP . T,ais formula gven by 

Crandall [841 is simply the application of Simpson's rule 

to the integration of differential eouations. Unlike the 

previous one, it connects values at 3 successive points 

(instead. of two). It is thus necessary to ::tart it off 

usin7-the finite-difference approximation of equation 

4.2.v. Once this is done, the step-wise integration 

process can be carried out as above. 

Table 4.b shows the solutions obtained for beam LI 

using the above finite-difference formula and various 

step-lengths. The displacement and shear components at 

5 = 1 are given as-well as their percentage differences 

relative to the "corrected" values. 

Compared with the results of table 4.a, it is seen 

that for a given number of steps, the higher order differe-

nce formula gives more accurate results in the displacements 

but less accurate results in the shear components. As the 

number of steps increases, both solutions agree more closely. 

The "corrected" values (which are meant to be better 

approximations to the limiting case in which the number of 

steps becomes infinitely large) are seen to aree very well. 

It is observed, however, that the agreement in Waois not 

very good. This is most likely due to the fact that for 

small values, errors (other than those due to the truncation 

of the difference equations) become of comparable 



No. of steps uo 
an 

v. 
ao  

Xo, 
an 

Yn, 
ao  

—4.796226 3.118992 3.976619 1.223462 
10 

(-0.012) (3.31) (0.68) (225.0) 

—4.7•)5455 3.032301 3.964226 0.501335 
20 

(-0.028) (0.48) (0.37) (33.41) 

—4.796696 3.018711 3.950589 0.383528 
40 

(-0.002) (0.03) (0.02) (2.09) 

"CORRECTED" 
—4.796779 3.017805 3.949679 0.575673 

VALUE 

TABLE 4.b. 

Displacement and Shear Components at 5 = 1 for 
Cantilever Beam Ll. "Higher order" Difference Formula. 

219 
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magnitude and accurate results are difficult to obtain. 

The above consideration shows that there-is very little 

to suggest the second difference—formula in preference to 

the first which, in practice, is much easier to handle. 

Txtensional damping effects  

3Jrom equations 4.1.xviii, the extensional damping 

coefficients Yo  and Si„ are seen to depend on the ratios H 

and 	(or1,133. It has already been pointed out that the 

coefficients X, 8,anda; control the damping in the system. 

The relative contribution of yi nnd $, to the overall damping 

would therefore depend on their magnitude compared with lo.;, 

which as well as depending on Hand YLii, also varies with 1:; . 

As H increases,y,nnd 8, increase, whileCrdecrenses. Also 0; is 

proportional to the square of pl. It follows therefore that 

the extensional damping terms are more significant in short 

beams rather than long ones, and in beams with relatively 

thick and/or stiff viscoelastic layers. 

Within frequency and temperature ranges of practical 

interest, the in-phase shear modulus of most viscoelastic 

materials lie between 10
5 

and 102 lb/ix? D4a. Hence for most 

engineering materials 'K is not likely to exceel 10
2
. 

Tables 4.c & 4.d give the solutions of the 3—layer 

differential ogations with and without extensional damping, 

for various values of g,. Table 4.c is for a relltively 
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g,  =C.: 
El 

Forcing 

Frequency 

c.p.s. 

Beam with 

Extensional Damping 

Beam without 

Extensional Damping 

T a 	a. 
A 
a. 

T.- _a 	a. a. 

10-5 36.7 
7.21213 15.25305 7.21235 15.25354 

(0.003) (0.003) 

6.88703 4.78205 6.88746 4.78244 
10 4 66.0 

(0.006) (0.008) 

24.16341 1.25914 24.16946 1.25945 
10

3 
95.2 

(0.025) (0.024) 

TABLE 4.c. 

3—layer Beam with and without Extensional Dampin7. 

Beam Dimensions and Material Properties:  

hi = 0.1 in. 	; hz  = 0.1 in. 	; 	= 10.0 in. 
C = 0.05 lb/cu.in. 	; 1'; = 0.1 lb/cu.in. 	; 

Ez = 107'1b/Sq.in. ; r = 1.0 
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T g,= E-.  

Forcing 

Frequency 

c.p.s. 

Beam with 
Extensional Damping 

Beam without 
Extensional Damping 

T 	= Ll' a 	ac, 
3, 
a„ T 	= 1-1' a 	a„ 

1! 
a. 

10.61996 16.37173 10.62139 16.37397 
10 s 536.0 

(0.014) (0.014) 

10-4 656.0 

7.27186 10.50375 7.29077 10.53208 

(0.26) (0.27) 

4.249338 3.52930 4.27634 3.55709 
10

3 1248.0 
(0.64) (0.79) 

-z 5.03785 1.04092 5.08529 1.04997 
10 2980.0 

(o.)1) (0.87) 

TABLE 4.d. 

3-layer Beam with and without Extension91 Damping. 

Beam Dimensions and Material Properties:  
h,= 0.4 in. 	; h2= 0.1 in. 	; 	= 2.0 in. 
e = 0.05 lb/cu.in. 	; P = 0.1 lb/cu.in. 

E2  = 107  lb/sq.in. 	; i, = 1.3 
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long beam, while table 4.d is for a short beam witn a thick 
ti 

viscoelastic layer. The figures given are the absolute 

displacemen amplitude ratios (Ta) and the shear amplitude 

ratios ( 	) at the free end of a cantilever beam with dis- 

placement forcing at the root. The percentage error in 

neglecting extensional damping is given below the fig.ures 

where relevant. The forcing frequency in each case is so 

chosen as to be close to tne first natural frequencj of the 

beam. 

It is seen from the tables that the error in neglecting 

extensional damping increases with g, . This error is, 

however, still very small even at high values of g, and for 

most practical caws can be regarded as insignificant. 

4.5. Solution of the linear differential equations by  

Chebyshev series  

As a check on the accuracy of the solutions obtained 

by the finite-difference method of section 4.2.E  other methods 

of solution we're employed. One such metaod is by expansion 

in Chebyshev polynomials. The procedure adopted is that due 

to Clenshaw &5,8Eg . 

It is assumed that each variable and its derivatives 

can be expressed in infinite Chebyshev series -in the form 
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1 F 7Z. + Zr  T;(!) 

co 
DF= Z 1  

2 ° 	z'iri(g) 

1  
Di F = —2Z°i 	T7.3) 

 

4.5.i. 

 

where F and Z r are "dummy variables". Zr  represents the 

coefficients .Ar, Br, Cr, or Dr according, as F takes the 

values u, , v, , X„ond Y., respectively. In equation 4.5.i, 

following the notation of Lanczos [86j, Tr(t) represents 

the Chebyshev polynomial of order r for the range g= 0 to 1. 

The coefficients 

relations 

	

4rA" 	= 	A
iv 	

- 	
.iv 

	

r 	r-i 	A r+1 

	

4rA" 	Am  

	

r-1 	r+1 

	

4rAir 	
='r -1 	r+1 

	

14-rAr 	r -1 	- r-1-1 

of the polynomials obey the recurrence 

...... 4.3.iia 

with similar expressions for the Br-coefficients, and 
m 

4rer  = c - cm r..., 	r+i 
4rer = Cu  - C1 	 4  3 . iib 

Li-rer = C' 	- C' r-1 	14-1 

with similar expressions for the Dr-coefficients. Also 

the -assumed series of equations 4.3.i must satisfy the 

differential equations 4.2.i. This gives rise to the 

following relations: 



Asr 
 etc. ...4.5.vi 

rr,  I 
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+ y,13; +cx,C; + 	NO; 	'ar  fp,Ar r  

— Y, Alry  + BIry Cr"' + 001; 	13,Br  

÷ 8' Brw 	Cr"'  + 8' Dr"111 Cr' 4- cri  r 
 -81A; + yiBiry  - &C; + Drr = -ccCir  + Or  

r 

 

4 5  iii, 

 

where ar is the r6.th coefficient of the expansion in 

Chebyshev series of the forcing function 	 For a system with 

"displacement forcine, 

r = 2pia„ for r = 0   4.3.iv 
= 0 	for r 0 

Equations 4.3.i must also satisfy the boundary conditions 

at g. 0 and t= 1. 
Using the relations 

T (0) 	(-1)r  and T7,(1) = 1   4.3.iv, 

the boundary equations 4.2.xiii for a cantilever beam with 

displacement forcing give rise to the equations 

A0  = +-A 	 A' , B. 	B' 

Co = P-C , Do  = 	= 	B" = 0 

Co  = —c' , .1),; 	—DI  

A; 	+ 04,C: 	D: = - e yi--Bni + 

	

-y,C: + - yi-A+ 	- 	rl  
 oc-Dii 

AA; +- S, Bo  + 	+ 	= 	ru + 37 — But + -C" 

—S1 A"'0  * 	- 	D: = -5,' 	+ µ, L'" 	-C +. 	-D sr 

where tho notations 
0 

+-As  = 2( 1)
r 	s Ar  	--As  
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have been employed. Similarly the equations in the case 

of a simply-supported beam are easily obtained from 

equations 4.2.xiv. 

To solve the above equations for tne coefficients, the 

infinite series are curtailed after a suitable number of 

terms, say at r = N. Titus As  - Bs  = Cr = Ds  = 0 for r >N. 

l'he rest of the solution is then carried out in the following 

sequence: 

(a) Assume trial values for A
N
, 
B' N 

Cs
' 
 and D5  such that 

they satisfy the differential equations i.e. equations 

4.5.iii. 

(b) Use the recurrence relations 4.3.ii and the equations 

to obtain 

h 	Air 
N-1' N-1' N-1' '11[...a, AN-1 

N-1' T-1' 
Bm-1' 

BN-1 

C" N-1;-1' 
cN-1 

D"
N 	

D  
-1' N-1' DN-1, DN-1 

The step for r =.N-1 is thus co-nplete. 

(c) Continue operation (b) for r - N-2, 	etc, until 

the step r = 0 is reached. 

(a) Flavin; obtained 

Ao  , 4 , 	1,,7 	, B , Bo  , go  

Co  , Co , Co 	 ; 	Do , Do , Da 
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from the recurrence relations, determine A., B., C. , D. 

this time using four of the boundary eqaations 4.3.v. This 

leaves the four equations 4.3.iii at r = 0 and 10 other 

boundary equations unsatisfied. 

(e) Go back to step (a), and assume a new set of values 

for the coefficients. Then repeat the cycle of operations 

to obtain a second set of trial solutions. Continue this 

process until (4 - such sets of solutions are obtained. 
A linear combination of these solutions, so chosen as 

to satisfy the .14-,  outstanding equations of step (d), 

gives the correct solution. 

It may be pointed out that, owing to the convergence 

of the Chebyshev series, the coefficients A c1.3, 131,3, etc. 

increase in magnitude as r decreases. Hence in dealing 

with high—order equations such as these, it may be nece—

ssary to keep the initially assumed values small, so as to 

avoid the lower coefficients becoming exceedin7ly large. 

This would be disadvantageous (especially in digital 

computation) since the solution sought is a linear combi—

nation of the various solutions and would therefore suffer 

from serious rounding—off errors if the individual 

quantities are large numbers. 

OnOe the coefficients have been calculated, the 

Oislacement and shear components (as well 9s their 

derivatives) are obtained from e'luations 4.3.i. A table 

of the Chebyshev nolyno-ninls r  can be found in D61 
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A programme for calculating the coefficients in the 

manner outlined above was written for the Atlas computer. 

Tables 4.e and 4.f give the solutions obtained for 

a cantilever beam and a simply-supported beam by both 

Chebyshev series and the finite-difference method. The 

dimensions given above for beam Ll are used in each case. 

The Chebyshev series expansions were terminated after the 

10th term. 

Agreement between the two methods of solution is seen 

to be good. 

4.4. 	Solution of the differential equations by Fourier  

series expansions  3-layer simply-supported 

beam without extensional damping. 

When the extensional damping terms are neglected, the 

differential equations 4.l.xv take the form 

(D4- 131)u. 1- (x,D3X., = av 131 

(D4 - 131)vc, 	D3 y,„ = 

A4D3u. + (D2 — vi) x., — a;41 = 0 

psDavo  + (D - 10Y, + 0",X01 = 0J  

for a beam with displacement forcing. 

For a simply-supported beam, the variables uo  vo 

X,, and Li  may be assumed to take the forms 

..........4.4.i 



22 9 

Chebyshev Series 

Solution 

Finite—difference 

Solution (40 steps, 

12Pat ao = 1 —4.789991 — 2-4- .796998 

v.o — at g = 1 3.032033 3.016508 

sr 
'
o, 	at a. f= 1 3.941305 3.94752 

l 	at ao = 1 0.344629 0.364473 

TABLE 4.e 

Cantilever Beam Ll. 13,= 10 
Comparison of solutions by Chebyshev series and by 

Finite difference. 

Chebyshev Series 

Solution 

Finite—difference 

Solution (40 steps) 

ao 	1 
ao 
	at 	g= -2- -0.339883 —0.339758 

1° 	at 
ao 

4.524041 4.524703 

X., at 	S = 1 a. —7.303103 —7.31135. 

•O1  at 5 = 1 a0  28.92389 28.92982 

TABLE 4.f 

Simply—supported Beam Ll. 	= 40 

Comparison of solutions by Chebyshev series and by 

Finite difference. 



uo 

x01 

co 

tz12n sin k 
1,1 r, I 

00 
3 COS 

n=i 

aIn sin kng 

00 ~ a3n cos kns 
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where kn = nir , n 

It is noted that the assumed functions satisfy the 

boundary conditions. ao can also be expanded in an infinite 
00 

sine series, thus 	ao = 	bn sin k e 	...... 4.4.iii , 

where bn 

_ 4a0  b2.r+i 	kZr 

2a4 ( _i)n 
K, 	 9 or 

, r - 0,1,2 1 ... ...4.4.iv. 

On substituting in the differential equations 4.4.i, 

the following algebraic equations relating the coefficients 

are obtained. 

(k41; — 131)av, 4- of t kn3 asn = I3,bn 

(k.4 — 13,)a + 	lc/ a 	= 	0 n 	zn 	n 4n 

 

4 4  v 

  

kt,kn atn  + (kn 	)a.3n cia.4n = 0 

+A' kn azn 4- (c n 	VI )a4n 0ri-a3n 7-1 0 

  

Equations 4.4.v are readily solved to obtain the following 

expressions: 
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-p,bnn 	i v)tai  n 	(k di4k3  	+ V )( kn  - R3  - 
ava =

kn 	 Dn 

cri f3(bn 
an 
a - 

Dn 

a3n = 

3 
JA/f3E bnIgi/Alkn  

 

+ 	kn  

  

Dn 

  

a - 4n 

-A41,bekn  - 

Dn 

    

   

4 4  vi 

    

where 
2 	Pr 2  

Dn 	n =foc„u.,k3  - ( 	+ V, )( kn 	Jic! 
- - 2)1+ /cr( kn 	k3  - --)1 

The above coefficients can now be calculated usin7 a desk 

machine or a digital computer. 

T9ble 4.7 gives the first six non-zero coefficients 

of the Fourier series expansion for uo  , vo  , X.„ and Y,. The 

same beam Ll is considered, and the forcing frequency is 

such that pi. 40. It can be seen that the rate of converge-

nce is fairly rapid for tree beam considere'l. 

Table 4.h gives a comparison of the solutions 

obtained by the Fourier series expansions and the finite-

difference method. The close agreement between the two 

solutions further checks on the accuracy of the numerical 

method. 
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n a411 a2n a 3n a 4 n 

1 - 3.27728x10-1  4.52624 7.74774 - 2.88659x101  

3 1.29830x10z  1.91479x103  - 3.49483x10-1  - 6.184-45x10-2  

5 1.17027x10 7.49050x105  - 5.4-2232x10 a  - 4.05007x10-3  

7 2.28381x104  7.92945x10-6  - 1.49398)(10-4  - 6 . 30529x10-1- 

9 6.63768x105  1.43185x106  - 5.60165x104  - 1.39438x10-4  

11 2.46012x10-5 3.60207x107 - 2.54180x10-3  - 4.28746x10-5 

TABLE 4.g 
Beam Li. 13, = 40 Fourier Series Coefficients. 

Fourier series 

Solution 

Finite-difference 

Solation(40 steps) 

uo To  at y 5 = 1 7   -0.33)72 _J.33986 

-11-9 	at a. f = 1  2 4.52439 4.52493 

2C.91 	at 
ao 

g.= 0 7.31844 7.312/1/i 

Yb, 	at f = 0 - 28.93263 - 28.90142 

TABIR 4.h 
Simply-supported Beam Ll. 3,= 40 
Comparison of solutions by Fourier series and by 

Finite difference. 
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4.5. 	Solution of the equations taking; account of 

strain-dependence.  

It has been pointed out that when the shear modulus G; 

is strain-dependent, each of the coefficients of the 

differential equations is strain-dependent. The methods 

of solution so far discussed cannot be directly applied in 

this case. 

It will be assumed, for simplicity of illustration, 

that the only coefficients that are significantly affected 

by the strain-amplitude dependence of G; are V, and 0; . This 

is equivalent to assuming that the viscoelastic extensional 

terms make very little contribution to the coefficients, 

so that any small variations in these terms (due to the 

strain-dependence) have ne7,1i7ible effect. 

On this assumption, the differential equations 4.1.xv 

remain valid. To get them into a homogeneous form, 

equations 4.1.xv (c) and (d) are differentiated with respect 

to S, to obtain 

)2,li4ue  4- &DIV. + D3X., + 8,D3Y„, - MD Xa, - op YO, - VOX„,  - 0; Yei  . ,0 

- 8,D4u„ AL,D+-cro  stexo, 	D3 Y„ 	D X01 - V  D Y." + 0";a0i - WY01  = 0 J 
• . 5 .i 

where cri = cid  , and 	1/,' = 	 4 5  ii . 

It is noted that 

olZ = et) 	„ 	d 	dG' 
ds 	0,1 	and d g = Q. dS 
Since Gi and 71,G; are functions of the strain amplitude 	, 
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it follows that 

GLG: - dG co, 

	

as 	c:7-t, ci: , and 
d 	

clott , 4.d(vit'j 
g 	

4 5  iii. 

Both cl--; and Q34:)are obtained from the law of strain- 

amplitude 
. 	dcP, 

dependence for ',land GC. To obtain da),  
01 ' it is 

A 
noted that 0, = (X f, 4- )1.12  , so that 

+ Yof 	 4 5  iv. 

	

g 	+ Y4 P 2  
To solve the equations, an iterative method is 

employed, the numerical method of solution developed in 

section 4.2. being used. A convenient shear-strain 
the 

distribution is assumed for,viscoelastic layer. oath this, 

the coefficients I), , c; , W , and 	are calculated for 

each point on the beam. Using these values of the coeffi-

cients, the differential equations can now be solved by the 

finite-difference metho,]. The process of solution is 

basically the same as described in section 4.2. The only 

difference is that the main matrix (for the step-wise 

integration process) which now takes the form given in 

equation 4.5.v (see next page) varies from point to point. 

The boundary condition control is the same. The solution 

of the equations will yield a new shear-strain distribution 

which will in general be different from that initially 

assumed. iith this new shear distribution, 14 	07 	14' 

and ware again calculated for each point, and the equations 
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u: , vc! 
1.'“' 

1 	y 5 	TrS 	-,-TS ..,..rS .,,,S 	...,4 errS : TTS 	ITTS :TO ; TTS  
/del i 

 1 	- 	, 

	

  C4 	"2 	ria 	I 1 4- 	tis 	i 14 	: "7 	. 1  is 	a 1  "I 	'Tr 	, "II I I la 

	

1  71.5 	:mS 	
,Tr 

	

"13 	 + , "16  

1 . . • --. -h 

2 . • • • • • •••••• • 

• 1 •••--h 
2 • • • • • • • • a • • • 

• • • 1•• . -_h • 2 • • • . • • • • • 
• • • 1 • • • -- • • • • • • • PO • 
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int f„-gra tion 	-- st4  ra in- 
dep,.-ncencc. 	c- .,-_-,C . 
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solved again. This cycle of operations is repeated until 

convergence is achieved, that is, two ,successive strain 

distributions agree to a specified accuracy. 

A programme for solving in the above manner the 

equations for a beam with displacement forcing was developed 

for the Atlas computer*. 

It was assumed initially that only vi  and cl; were 

affected by strain—dependence. This assumption does not, 

however, determine the validity of the above method of 

solution. Consideration of the strain—dependence of the 

other coefficients merely involves introducing further 

terms similar to 14', and 0'in the equations. The iterative 

procedure remains valid. 

Tables 4.i to 4.i give the solutions obtained by the 

above method for various cantilever beams. Solutions 

obtained by assuming a constant strain distribution are 

also shown alongside for purposes of comparison. The laws 

of strain—amplitude dependence used are as embodied in the 

graphs of shear modulus G: and loss factor 74 against 

strain amplitude for the materials, as given in chapter 3. 

In the tables, Ta  is the absolute displacement amplitude 

ratio at the tip, already defined in section 4.2.f, and 

*This and all the other programmes mentioned in this 
chapter are available in the Imperial College (leCh. En.) 
programme library. 
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"Strain-depende- 

ncd"solution 
"Constant-strain" 

solution 
"Constant-strain" 

solution 
FREQ. 

Input motion ampi.Assumed strain Assumed strain 
= 0.00055 in. ampl. = 0.0001 ampl. = 0.001 

c.p.s. Ta  = l: al t T 	25,.. . 
a 	a. a. 

T 	= 	11t. 
a 	ao 

I,  
ao 

1.67820 0.95944 1.67856 0.96066 1.68046 0.96694 
20 

(0.02) (0.13) (0.13) (0.78) 

7.92228 9.52738 7.93556 9.46961 7.88784 9.70440 
37 

(0.17) (-0.61) (-0.43) (1.86) 

7.87429 9.61608 7.90663 9.57881 7.80223 9.74936 
37.5 

(0.41) (-0.39) (-0.91) (1.38) 

7.70183 9.54664 7.75014 9.53606 7.59733 9.63946 
38 

(0.69) (-0.10) (-1.36) (0.97) 

6.34319 8.31517 6.40123 8.33460 6.18676 8.32405 
40 

(0.92) (0.23) (-2.47) (0.11) 

TABLE 4.i 
Aluminium - P.V.C. 3-layer beam. Solutions in the region 
of the first resonant frequency (37 c.p.s.). 
hi = 0.135 in. ; h2= 0.25 in. ; t =,,0 in. ; T = 27°C 
E2= 1.0 x 107.  lb/in2  ; P = 0.1 lb/cu.in. ; P = o.048 lb/in3  

for the properties of P.V.C., see figs 3.19 to 3.23. 
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Forcing 

Frequency 

c.p.s. 

"Strain-dependence" 
Solution 

Input motion ampl. 
= 0.00034 in. 

"Constant-strain" 
Solution 

Assumed constant-
strain ampL = 10-4 

Ta  = -a0114  a 
a°  T 	= 24  a 	ac, ao 

1.51368 9.81636 1.50994 9.75641 
150 

(-0 .25)- (-0..61) 

4.23649 33.88405 4.07727 32.03876 
195 

(-3.76) (-2.49) 

4.79761 39.96995 4.70980 38.43920 
205 

(-1.87) (-5.82) 

3.61738 31.63785 3.69162 31.79417 
220 

(2.21) (0.50) 

1.89948 18.16827 1.31650 18.19771 
250 

(0.90) (0.16) 

TABLE 4.j 
Steel - P.V.C. 3-layer beam. Solutions in the recion 
of the second resonant frequency( 2o‘ e.p•s) • 
h2 = 0.187 in. ; hi = 0.137 in. ; 	= 15 in. ; T = 26.7 °C 

E2= 3.0 x 107n:1/.01j P = 0.283 lb/cu.in . ; P = 0.048 Iblin3. 
For the properties of P.V.C., see figs 3.19 to 3.23. 
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Forcing 
frequency 

c.p.s. 

"Strain-dependence" 
solution 

Input motion ampl. 
= 0.000226 in. 

"Constant-strain" 
solution 

Assumed strain 
ampl. = 0.0001 

T 	= 	12-a a 	a, 
:6 
as T 	= L14 a 	a, 

s:/i, 
a. 

480 
2.27396 32.30699 2.22425 

(-2.23) 

31.38506 

(-2.87) 

520 
3.75240 56.2505k) 3.59180 

(-4.27) 

53.18631 

(-5.45) 

528 
3.77443 57.09130 3.66527 

(-2.90) 

54.76321 

(-4.08) 

TABLE 4.k 
Steel - P.V.C. 3-layer beam. Solutions in the region of 
the third resonant frequency (527 c.p.s.). 
LI = 0.137 in. ; h2= 0.187 in. ; 	= 15 in. ; T = 23.8°C 

E2= 5.0 x 107  lb/sq.in. ; P = 0.283 lb/cu.in. ; 
for the properties of P.V.C., see figs 3.19 to 3.23. 
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Forcing 
frequency 

"Strain-dependence" 

solution 

Input motion ampl. 
= 0.000681 in. 

"Constant-strain" 
solution 

Assumed strain 
ampl. = 0.001 

c.p.s. T 	= 	Ila.. a 	a, 
051 
-a-c, 

ua. T
a = -a-. 

A, 
P 
a, 

2.06390 1.82247 2.09394 1.95800 
25 

(1.46) (7.42) 

4.393373 5.97061 4.39791 6.25083 
36 

(0.10) (4.70) 

4.57243 6.60001 4.52635 6.81744 
38 

(-1.02) (3.29) 

4.38430 6.67925 4.29945 6.83503 
40 

(-1.97) (2.33) 

2.43571 4.69133 2.37005 4.71293 
50 

(-2.70) (2.64) 

TABIR 4.t 
Aluminium - Evoseal 3-layer beam. Solutions in L e region 

of the first resonant frequency (37.8 c•p.$) 

h1  = 0.057 in. ; h2= 0.125 in. ; 	14.02 in. ; T = 22.1°C 

Ez= 1.0 x 107 	; 	= 0.1 lb/cu.in. ; P = 0.041 lb/in3 

for the properties of Evoseal, see fits 3.31 & 3.32. 
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, is the shear-strain amplitude at the free end. The 

percentage error in the "constant strain" solutions 

(relative to the "strain-dependence" solutions) is given 

underneath each figure. 

In general, the tables show that strain-dependence 

nas comparatively little effect on the displacement 

amplitude. The error in the solutions which assume a 

constant shear-strain distribution would naturally depend 

on the actual value of the shear strain assumed. For 

example, in table 4.i, it is seen that an assumed constant 

shear-strain amplitude of 0.0001 gives a better approxima-

tion to the exact solution than a value of 0.001. Tables 

4.j and 4.k show that the negligence of strain-dependence 

leads to worse results at the higher modes of vibration of 

the beam. This is clearly due to the fact that the varia-

tion of the shear strain 0, along the beam becomes much 

greater at those modes. 

It has been tacitly assumed that the above method 

will always converge to a unique solution no matter the 

nature of the initially assumed strain distribution. The 

establishment of an "Existence theorem" for the method is 

evidently a difficult mathematical problem, and is not 

attempted here. It is, however, believed that provided 

the degree of strain-dependence is sufficiently small for 

a unique solution to exist, the above method will always 



242 

converge to this solution. 

In all the cases in which the method was applied, 

a constant shear-strain distribution was initially assumed. 

It was found that (for the viscoelastic material properties 

available) no matter the value of the initially assumed 

strain amplitude, the solutions converged to the same final 

result. Convergence to an accuracy of better than 0.01 pet 

cent was usually obtained within three cycles. 

4.6. 	Application of the solutions.  

4.6.a. Resonance curves.  

It will now be shown how the solutions developed can 

he emploqed in predicting the dynamic behaviour of actual 

beams. 

Suppose, for instance, that it is desired to obtain 

the displacement response of a 3-layer beam subjected to 

displacement forcing, within a frequency range close to 

any of its "resonant frequencies" (that is, its "displace-

ment resonance curve"). Then, for the given temperature, 

a suitable frequency is chosen. The viscoelastic material 

properties can now be obtained from the appropriate graphs 

of the properties (or from any general equations satisfying 

these graphs), on the assumption of a convenient shear-

strain amplitude. From the dimensions of the beam and 

the material properties, the coefficients of the 
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differential equations are evaluated. The equations are 

then solved by the finite-difference method. They are 

solved again by the "iterative method" of section 4.5 to 

check that the above "constant-strain" solution gives 

reasonably accurate results for the displacements. Various 

values of the frequency are now chosen in turn, the equations 

being solved in each case as above. The process is stopped 

when the desired frequency range has been satisfactorily 

covered. 

The absolute displacement-amplitude ratio, Ta  , at 

a typical point on the beam (for instance, the free end, for 

a cantilever beam), together with its phase relative to the 

input motion, is plotted against the forcing frequency. 

The frequency at which this amplitude ratio is a maximum 

is referred to here as a "resonant frequency" of the beams, 

and in the immediate neighbourhood of this frequency, the 

graphs of the amplitude ratio, Ta, and its phase, against 

the frequency, are called "displacement-resonance curves". 

At the resonant frequency, the locus of the absolute 

displacement amplitudes at each point on the beam will be 

referred to (rather loosely) as the "mode shape" at that 

frequency. In plotting this locus, the following convention 

*Close to the resonant frequency, frequency steps of 0.5 
per cent (or less) difference were taken in the calculati-
ons,in order to locate the peak of the resonance curve 
accurately. 
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has been adopted: If the phase difference between the 

absolute displacement at a given point and the input motion 

is positive (i.e. between CP and 180°  , with the input 

motion leading), the displacement amplitude at that point 

(or its ratio relative to the input motion) is plotted 

below the axis; otherwise, it is plotted above the axis. 

It is emphasized that this locus does not represent the 

true shape of the beam at the resonant frequency. The true 

beam-shape would require a three-dimensional polar plot to 

indicate the variation, along the beam length, of the 

displacement amplitude as well as its phase relative to the 

input motion. The locus described here is only a convenient 

way of representing the displacement amplitudes at various 

points along the beam, for comparison with experimentally 

measured values (see chapter 5).  

For examples of the above-mentioned graphs, see,  

figs 5.6 to 5.15. 

4.b.b. 	Overall loss factor - 3-layer beam.  

One way' of specifying the damping in the beam is by 

the "loss factor". The definition of "loss factor" employed 

by Kerwin et al [1144,01, and by Mead F2,0] are strictly 

applicable to systems whose dynamic flexural rigidity (i.e. 

the ratio of the resisting moment to the curvature) is 

independent of the position along the beam. A typical 

example of such a system would be a beam whose displacement 
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and shear amplitudes, at a resonant frequency, are 

sinusoidally distributed along the length (for instance, 

a lightly-damped simply-supported beam). For most damped 

sandwich beams, however, the dynamic flexural rigidity 

varies from point to point along the beam. Hence, a loss 

factor defined as the ratio of the quadrature component to 

the in-phase component of the dynamic flexural rigidity, 

would vary from point to point along the beam, and would 

therefore not have a unique value for the system. 

In the present work, the energy definition of "loss 

factor" (applicable to all damped systems [8]) is used in 

the form 

1 1.Total energy dissipated per cycle  
2T1" Maximum strain energy in a cycle 

 

4 6  i, 

 

'J being used: to designate the "overall loss factor" or 

the "beam loss factor". It is noted that this definition 

has the same form as the energy definition of the material 

loss factor given in equation 3.1.ix.d. n is evaluated on 
at a resonant frequency, and is termed the beam loss factor 

for the mode, n, of flexural vibration corresponding to 

this frequency. The expressions for evaluating it are 

developed below for a 3-layer beam. 

From equation 3.1.ix.a, the energy dissipated per 

cycle in an elemental volume 4 of the viscoelastic material 
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is given by QED  = TritiV6,2  + 	4 6  ii, 

where a and E, represent the shear and extensional strain 

amplitudes in the element. The total cyclic energy loss in 

the viscoelastic material - and hence in the beam - is thus 

ED  = 	+ E:gc13);   .4.6.iii. 

Noting that ife = X,11 	, and 

E, 
	22' ictUo - dx., i. 	Al., )21 • equation 4.6.iii can be d g2 dg 

reduced to the form 

i 
ED 	2t = 2n(—EI  ) 	Dxu 	Dx.,)2+. (Dav-o+ 	 lit iCi[x<ff 	e]d-S2'..4 .6.i 

4.0 

ebci:b., 	12v1 g,H  where Al= 	 4 6  v; EI 	',8 +12H + 6H4+ 013  

and 11 is as defined in equations 4.1.xviii. The operator 

D....- — ci has again been employed. 
4 

The strain energy in an element clV of any layer of 

the beam is given by 6,(S.E.) = 	, where S is the 

strain in the .element, and kis the appropriate modulus. 

The elastic top and bottom layers suffer only extensional 

(or compressive) deformation, while the central viscoelastic 

layer undergoes both shear and extensional deformation. 

Hence the 'total strain energy in the viscoelastic layer 1 

at any time t is given by 

=f 
	61•2+ 

vt 
G:0,16134 	 -+.(-).vii and the 
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24-  6,xi. 4.  
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strain energy in each of the elastic layers is 

S.E.2  = 1 E2E:oltiz  

i.  

6  vii. When the 

Irz 

 

expressions for the various strains are substituted into 

equations 4.6.vi and 4.6.vii, and the integrals are 

simplified, the total strain energy in the beam, at any 

time t", can be put into the form 

= 77 Ell , Al cosz'at + B:sina tat + 2Csincetcos Let/ ...4.6.viii 

where 

1 

Eeu.)4 4- 20(1D2u0Dx0/  Kz( DX,, )2' + A,X;,;j 	. . . 	. 6 . ix . a 
0 
cl 

	

= 	D2vc, )2 	20(,D2v, D Y01  + Xz(D1,,f)2+- ,C +- /4-  6 i  .b  

0 
"1 

	

C; = 	[D2u0D2v0  +0<j)212,,DY,/ 	ix,D2v,,,DX-c,/  fAzDX611-)Yot  fAiXoiLTidg• • • 
Q 	 ..... 4.6.ix.c 

In equations 4.6.ix a to c , 

,z 

A 
EzA2,-9--f 

z  = 	 
LEI 

6H2' + cH3  
8 + 12H I- 6112- + eH3  

The maXimum value of the expression 4.6.viii, as time 

varies, is given by 

'1 

Dn denoting N(D2Ut0+ DX01)2 + (D2v0- DY,m)2i+ ri,X,OC/  + Y.fijc4; 

0 
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by D, ..... 4.6.ix.d , the beam loss factor is given by 

D,  
- 	+ B,' 4- {( 	- B; 	+ 4C,"zi‘14j 	

4 6  xii. 

Once the differential equations have been solved, rim  can 

be calculated. The integrations involved in the evaluation 

of A; B:, C: , and D: are carried out numerically using 

Simpson's rule. 

A programme for calculating the beam loss factor 

in the manner indicated above was written for the Atlas. 

Computer. 

It may be remarked that for systems whose dynamic 

flexural rigidity is independent of the position along the 

beam, the beam loss factor defined here is not the same 

as the ratio of the imaginary to the real part of the 

complex dynamic flexural rigidity. This is a consequence 

of the fact that the strains in the various fibres are not 

all in phase with one another. Both definitions of the 

loss factor will tend to the same value at small values 

of the system damping when the fibre-strains become in phase 

with one another. 

4.7. 	Five-layer beam -,Solution of the differential  

equations.  

As in the case of the 3-layer beam, it is first 

assumed that the coefficients of the differential 

equations are strain-independent. Equations 2.5.xxvii 



yixGzib 1 11(49,) - la b G;:[ Y„ cos t&{; - X„a  sin tett} (c) 
4 7  iv. 

24 9 

and 2.3.xxx thus become 

N;e LL4Jetz) + mae  = p(x,t) 

+ 4-(1-1.-kz) - 92,1)G'2.1-1-1(02) = bT2.02 
...4.7.i . 

On assuming a sinusoidal forcing function, of frequency 0', 

viz.,.p(x,t) = p(x) cos asit 

y and Oz, take the forms 

y = u; cos ot + vo sin aft ; 	= X02, cos wt  + Yoe, sin urt ..4.7.ii 

With these, the Lip-functions can be determined in the manner 

illustrated in section 4.1.a. They are quoted below. 

1.13.z 	1 = 2 	E;4,,Ri c os at- si sin tot 
4- 2 riz( E;A212 + Fiz.A4thst, )1E9z  eos aft - 	sin 

I-47z = ria( E:tAL 	ExiA2. )/16. c OS LOt — dxz sin wt} 

+ 	(bizAzhz)f-kcos wt ksin 0-t] 	(b) 

4 7  ii, the variables, 

The distinction between the extensional and shear loss 

factors has been dropped in the above expressions, i.e., 

r1G2. 
Equations 4.7.ii, iii, and iv can be substituted into 

the differential equations, and the coefficients of sin at 

and cos Wt equated to zero. The resulting equations are 

then put into a dimensionless form, employing the 
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v' dimensionless variables u.= — ,, , 	
. = — 	= t 

and simplifying to obtain 
3  D4/1„ 1-  Yz  D

4V„ 	0<x Dka + Y3 D3
Yoz — 13,u. =11IPqr) 

- y2.D4u. + D4v. — Y3 D3X*2 + ;D3  Yoz 	13zV. = 0 
)4D3u. + SiD3ve, 	+ S3  DLL. - 	- cr2  Yo = 0 

 

...4.7.v, 

•-‘ 

  

 

...4.7.vil  

- SAD3uo  1-  /11-03Vo 
	S3  DzX,3 	DzYcz 	Oj  xoL — v2 Y.2 

	0 
where, 

NI 	 U/ 2  e 	21.,F;IN2, 
d" 2  = 1 , A. = 

al 
E 	 z I  1  Y4 - EI 	1 A = —11  eem  

, hz 	h 
_ 	  

	

= 	
1-3? - + E21A 2  ; •.' 2 772(M2 -f-21 	Pz  + iAZ  dZ  — ) '''  

EI 	1 62 	
(E:A2 

 4.2., 

_ 	viz  E:Axii&1/ 	bG1, 	114  tl  b04,.  
8 	'4122 	2 	 q't 	(gezz 

The ri;at-hand sides of equations 4.7.vii can also be 

expressed in terms of the dimensionless ratios 

11 	3  

	

hi 	a 
Fi3. 1 = Fi' i Hz  = 	' pz  = 

	

R, 	 Eiz  e, = 7 , ez  = T (= 3E.), 3 _...,3 

173 
= "D2, 

  

. 	.7 .vii i 
D1 = 

P3 
Dz Pz -

fa 

     

Thus, 

     

12f12. (1 + 	+ 2H2.) 	6e1H1(H, 	H,z)  
()(2. - 2 4-  eilif 4- 2e2l1 6;Hz( 	-F 	6( 1 1- 21i2,4- 	) z ..4.7.ix.a  

487T2  w . (2 i- D,H, 2Dzfiz)  
2 4- e,W 2e2i-4 + 6ezHz(Hi + 14)1  4- 6( 1 + 2i12,+ 110z 

(fzeR 
f3z  k. 90E3 I • • 

..4.7.ix.b 
t-  3 	 21 

2'72, 0.11. + e,tiz( H,  

	

2 + e,1-1; 4- 2e211; 6e,,f-12(Ht  + H2)1 1- 6( 1 + 2Hg, 4- 	)2 . 
.4 .7 . ix c Y2  

2'1. Ce.lif 3e2Hz ( H4  
2 4- 	2e2.4 + 6e2H2( Hti ÷ 112)2  t 61 4- '2112  + Hi )2' • 

. 	.d 

1/3  

63  

arl* 
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Juz 
_ 4(1 + H, + 2Hz) 	2eA  Hz( Hi 4- Ha) 4- ezHt,  

8H2  + ezHz 

 

4 7  ix.e 

 

8p:gz  
8Ht + 3e2ki 

   

4 7  ix.f 

   

0 	
8  774g,.  

5.  8Hz + 3e2H1 

    

4 7  ix.g 

    

Sz 	34 1- 2117) 
8 + 3ezHz  

  

4 7  ix.h. 

  

3la.e2.Hz  
8 + 3ezHz  

    

4 7  ix.i . 

    

As in equations 4.1.xviii, f 	271 , is the frequency of 

excitation in cycles per second, and g, is the gravitational 

constant of acceleration. 

Equations 4.7.vi are seen to be similar to equations. 

4.l.xv for the three-layer beam. Hence the method of solu-

tion develOped for the 3-layer beam is applicable without 

any modification. When the coefficients of the differential 

equations are strain-dependent, the method of section 4.5 

is employed. 

The expression for the overall loss factor is also 

similar to that for the 3-layer beam. Thus, 

Dz  

B'z  + [(A"2- 	+ 4C,12]/1 

where, 
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I 

+ 2Y3( DX" Dlu.; 4- Davo  DY.;2, ) +-'1z4 r.42.+ Yot )lcit 
i t  

A;( Dzu., )

2 
 -4- X2,( DX02)

2, 

 -1-  2 aiD

1 
 u.DX" 4-  A 4 Aot] GI = 

, 	. 

0 

1 

B; = 	Da  v. )2 4- Az  (D!ez  )2  4- 2 cc ev, DY„ +- 

0 

I 

= 1 g  

C; E v„ Dino  4- Az  DY„, DX, + (Xz f DY,',2  D2'uo  + D LzD 2v. i + 44 X02 Yoz 
0 

-1 
Dz = 	ry,.( Dzut, + Y2( D2vc, )2' + A( DX02)2  I-  A3( DY02)2.  

01- 

and the following additional notations have been employed: 

A 3 	2  b 131  I + Ez  b 

	

12 	-4 

  

5 8  
4- e1H + 2e,.111 	6e21-IL( fi i 	fIz)z 

 

2 + 6t1 + 214+ 

4 = 2eq,1  
EI 

.4.7.xi. 

 

  

8 s'e.Hz,  
2 4- 6( 1 4- 21h, 4- IQ' e,H 	2e7,111 4- 6e, jiz( 	+ HA.)2  

4.8. 	Solution of the equations for any multi-layer beam 

The order of the differential equations for a 

multi-layer beam increases with the number of layers. In 

the method of solution developed above for the 3-layer 

and 5-layer beams, the differential equ'iitions are solved 

as a set of simultaneous equations of the 14-th order. 

The method can be readily extended to the solution of the 

equations for the general n-layer beam, where n = 4i - 1, 
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or 4i + 1 ; i = 1,2,3, etc. For such a beam, the 

differential equations are solved as a set, of the 

(8 + 6i)—th order. The number of boundary equations 

required is thus (8 + 6i). The procedure for the numerical 

method of solution of these equations is the same, the 

main matrix for the step—wise integration process being 

a square matrix of order (8i + 10). Systems with strain—

dependent coefficients can also be solved, employing the 

method of section 4.5. 
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CHAPTER5 

EXPERIMENTAL VERIFICATION OF THE THEORY' 

Introduction  

To check the theory developed in chapters 2 and 4, 

the displacement responses of 3—layer and 5—layer beams 

were investigated experimentally. The beams were tested 

as double cantilever beams with displacement forcing at 

the root. Various lengths, as well as combinations of 

elastic and viscoelastic materials, were dealt with. For 

each specimen, the tip displacement amplitude and phase 

responses were determined over a frequency range covering 

the first two or three resonant frequencies. At each 

resonant frequency, the displacement amplitudes at various 

points along the beam were also measured. These were then 

compared with theoretically calculated values. 

The details of the test procedure, as well as the 

results, are reported in this chapter. 

5.1. 	Details of the apparatus.  

 

5.1.a. 	The mechanical set—up  

Fig. 5.1 shows a diagrammatic sketch of the 

set—up of the test apparatus. The specimen, (1), 

mechanical 

was 

clamped at its central 2—inch portion (details of the 

clamping arrangement, (2), are given shortly), and then 
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1. BEAM SPECIM-M. 
2. CLAMPING DEVICr:. 
3.ELECTROMAGNETIC VIBRATOR. 
4. FLAT PIECES. 
5. MASSIVE TABLE. 
6.SOFT COIL SPRINGS. 
7. DISPLACEMENT PICKUPS (PROXIMITY GAUGES). 

FIG 5.1 	Diagrammatic Sketch of 
Test Apparatus. 
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mounted, by means of six 2 B.A. Allen screws, on the table 

of a Derritron V.P.5 electro-magnetic vibrator, (3). The 

vibrator was powered by the Derritron 250 watt power 

amplifier, details of which have already been given in 

section 3.5.c. This amplifier also energised the d.c. coils 

of the vibrator field, and supplied a fan which provided 

suction cooling for the vibrator moving coils_and field 

energising coils. The vibrator was capable of giving up 

to 70 pounds thrust, and had a working frequency range of 

between 5 ,cycles per second and 12 kilocycles per second. 

It sat on two carefully machined flat pieces, (4), on top 

of a massive table, (5), which was isolated from the 

surroundings by means of four soft coil springs, (6), in 

tension. The highest natural frequency of the table and, 

its attachments on the springs was in vertical translation, 

and was about 0.5 c.p.s.. A travelling microscope ( not 

shown in the sketch) was rigidly mounted on the table. 

With it, the displacement amplitudes at various points on 

the beam could be measured. Two electro-dynamic inductance 

proximity gauges were suitably mounted at the beam support 

and tip, for picking up the motions at these points. 

5.1.b. 	The clamping device  

Two essential requirements were borne in mind in the 

design of the clamping device. The first was the necessity 

for ensuring proper clamping in which tnere was negligible 
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movement at the root. The second had to do with temperature 

control. Inspite of toe cooling, the vibrator table 

(which was made of a magnesium alloy, a good conductor of 

heat) would normally get relatively warm diring a test 

period. It was thus necessari to insulate the specimen 

from possible heat from the vibrator table. 

Fig 5.2 gives some details of the clamp. Two identical 

strips of compressed asbestos, (a), 1 inch wide, were. 
8 

bonded to each half of the clamp, (b), in such a way that 

their outer edges were 2Y' inches apart. The free surfaces 

of tnese strips were carefully ground so that they were 

flush with each other when the two halves of the clamp were 

assembled. The specimen, (c), was clamped between these 

surfaces. This arrangement apart from providing the 

required insulation also helped to reduce the number of 

"high spots" which would be detrimental to the good 

clamping sought. To prevent the squashing of the viscoela—

stic layer, the central 2K—inch section, (h), of the 

specimen (at which the clamp was located) was made of metal 

— see the section on the preparation of the specimens. 

Four 3—inch B.S.F. bolts, (d) held the specimen between the 

camping surfaces. These were further assisted by the 

six 2 B.A. screws, (e), which held the clamp on to the 

vibrator table, (f). These screws passed very close to the 

outer edges of the strios thus ensuring good clamping 
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I. VIBRATOR 

2. CLAMPING DEVICE 

3. SPECIMEN 

4. TIP DISPLACPAENT GAUGE 

5. SUPPORT DISPLACEMENT GAUGE 

FIG. 5.2a 	Photograph of the clamp mounted on the vibrator- 
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at these edges. Besides, the two central screws, (g), 

passed through the specimen, the clearance holes being 

fairly large to avoid any heat transmission through the 

screws. In this way, possible motion at the clamping 

surfaces was reduced to the barest minimum. The effective 

length, e , of the beam was measured from each outer edge 

of the strips, as shown on the sketch. 

A photograph of the clamp mounted on the vibrator 

is shown in fig 5.2a. 

5.1.c. 	The electrical circuit.  

A block diagram of the electrical circuitry is given 

in fig 5.3. The only difference between this and the 

circuit employed in the shear tests (fig 3.8) is that the 

force measuring (strain—gauge) channel is here replaced 

by another f.m. displacement—gauge channel. Also for phase 

measurement, instead of the phase shifting device, the 

other alternative — a phase—inverter in the form of a 

centre—tapped transformer — was employed. Details of these 

have already been given in section 3.5. 

5.2. 	Specimen preparation  

Two viscoelastic materials, namely, Velbex P.V.C., 

and Evoseal X02, were used in the tests. The method of 

preparation of the specimens was slightly different in 

each case. 
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1. DECADE OSCILLATOR - 2 OUTPUTS 90 OUT OF PHASE. 
2. 250 WATT POWER AMPLIFIER. 
3. ELECTROMAGNETIC VIBRATOR. 
4,5. DISPLACEMENT PICKUPS (PROXIMITY GAUGES). 
6. GAUGE OSCILLATOR. 
8. FRDOENCY-MODULATED PRE-AMPLIFIER. 
9. DRIVER AMPLIFIER. 
10. PHASE POTENTIOMETER. 
11. PHASE-INVERTING TRANSFORMER. 
12. DOUBLE BEAM OSCILLOSCOPE. 

FIG. 5..3 	Biccx Dicciram of Measuring 
Circuit. 
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5.2.a. 	Beams with P.V.C. layers.  

The P.V.C. was available as a sheet — the same sheet 

from which the shear test specimens (chapter 3) were cut off. 

As the thickness of the sheet varied slightly over its 

area, a strip of about the required width was first cut out. 

The thickness was then measured at one inch intervals and 

the most uniform portion of the strip was cut out for use. 

Two such identical strips were required for a 3—layer beam, 

and four for the 5—layer beam. 

The surfaces to be bonded together were degreased by 

cleaning thoroughly with carbon tetrachloride, and then 

with acetone, and finally washing with plenty of water. 

The metal surfaces were then abraded with the appropriate 

reagent. Dilute sulphuric acid was used for steel surfaces, 

and 2 per cent hydrofluoric acid for aluminium surfaces. 

After abrasion, the surfaces were finally cleaned with 

acetone and thoroughly washed in water. 

For a three—layer specimen, a steel piece 2) inches 

long, of the same width as the specimen layers, and of 

thickness equal to the mean thickness of the viscoelastic 

strips, was glued with araldite to the central portion of 

one of the metal layers. The araldite used was the same 

cold—setting type used in the shear tests of chapter 3. 

In the case of a five—layer beam, two such pieces were 

bonded (one to each face) at the central portion of the 
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central layer. Also, for both three—layer and five—layer 

beams, small copper — constantan thereto-couple wires, 

0.020 inch thick, were planted with araldite in small 

grooves cut at suitable intervals in the metal faces. The 

"hot" junctions were raised slightly so that they projected 

by about 0.005 inch above the metal surface. This was to 

ensure that the actual temperature being measured was that 

of the viscoelastic layer (which would be bonded to this 

surface). The araldite was allowed a day to set. 

Next, a very thin layer of araldite was evenly applied, 

by means of a small roller, on all the faces to be bonded 

together, including the inner edges of the viscoelastic 

strips which were to bear on the central steel pieces. 

The layers were now assembled, care being taken that the 

inner edges of the viscoelastic layers were pressing .firmly 

against the edges of the central metal pieces. (This was 

essential in order to satisfy the assumed condition of 

zero shear in the viscoelastic layers at the clamped end 

see section 4.2.c.). The assembly was carefully loaded, 

between two flat surfaces, on a Denison testing machine. 

The applied load, which Was released after twelve hours, 

was such as to give a setting pressure of about 10 lb/sq.in. 

The specimen was left for a few days to allow the araldite 

to reach its optimum bonding strength. Any excess araldite 

was scraped off the edges, and the specimen was now ready 
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for test. If it was required to test a shorter length of 

the specimen, the excess bits were cut off from each end 

using a band saw. For specimens with steel facing layers, 

a thin strip of brass or aluminium (iex ;ZIlx 0.020") was 

glued to the top surface close to each free end. This 

helped to increase the sensitivity of the inductance 

pick-up. 

5.2.b. 	Specimens with Evoseal layers  

The surface preparation was the same as for the P.V.C. 

sandwich specimens. The central steel piece was also 

bonded to one of the metal layers as in the first case-. 

In addition, two metal pieces , of the same thickness as 

the central piece, were glued (with araldite) one to each 

end surface of the metal layer. 

A thin layer of araldite was now evenly applied to 

the surface of the metal layer (in the space between the 

bonded -metal pieces); and the first layer of the evoseal 

was painted on, using a small fibre brush. This was allowed 

about six hours to harden slightly. Subsequent layers 

were then applied, at six hour intervals, until it was 

felt that the desired thickness had been approached. It 

would evidently be difficult to obtain uniform thickness 

no matter how carefully the evoseal layers were anblied. 

To take care of this, the evoseal layer thickness was built 

up to a slightly higher value than desired. The top facing 
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layer was then glued on with araldite, and the assembly 

was allowed to set under ldad, as in the previous case. 

Enough load was applied to enable the viscoelastic layer 

to attain a fairly uniform thickness,,the metal pieces at 

the centre and the ends acting as "stops" to determine this 

thickness. The excess evoseal spread out to: tree edges of 

the beam. The load was taken off after 24 nours, and the 

specimen was left to cure gradually. A shear specimen was 

prepared at the same time as the evoseal sandwich beams. 

Before testing the specimen, the ends containing the 

metal pieces were cut off, and the excess viscoelastic 

material at the edges was also trimmed ofC. ,(3mall copper — 

constantan therrno—couple wires were stuck into the visco—

elastic layer at convenient intervals for measuring the 

temperature of the layer. 

.2.c. 	Beam geometry and material properties  

The overall thickness of each specimen was measured 

at one inch intervals using a micrometer screw gauge; 

and the mean value was taken as the correct thickness. 

The thicknesses of the metal layers were measured before 

bonding, and the viscoelastic layer thicknesses were found 

by difference. No allowance was made for the thickness 

of'the bonding material, this being assumed negligible. 
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All thicknesses were measured to the nearest 0.001 inch. 

After each specimen had been mounted for test, its effective 

length (see section 5.2.b.) was measured to the nearest 

0.01 inch using a suitably graduated scale. 

The elastic layers were either steel or aluminium. 

The steel layers were chosen from a stock of "bright mild 

steel" bars, 1,,h inches wide, available in various thick-

nesses. The properties of the material were taken as 

E = 3 x 107  lb/sq.in. ; 	= 0.283 lb/cu.in. 

The aluminium layers were chosen from a similar batch of 

bars of an aluminium alloy, SIC Y211, whose composition is 

specified in B.S. 1470. The material properties were taken 

as E = 107  lb/sq.in. ; 	? = 0.1 lb/cu.in. 

As the P.V.C. layers were cut out from the same sheet 

as the shear specimens of chapter 3, the properties are 

as given in that chapter (figs 3.19 to 3.23). For the 

properties of evoseal, the shear specimen prepared at the 

same time as the beam specimens were first tested before 

the beam tests, and the properties obtained were used in 

the theoretical calculations (see comments on this, in 

sections 5.4.b and 5.5.c). These have already been given 

in figs 3.31 and 3.32. 

To obtain the densities of P.V.C. and evoseal, portions 

cut off from the beam specimens were weighed. From the 

weights and dimensions of these portions,and using the 
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known densities of the metal layers, the densities of the 

viscoelastic materials were calculated to be 0.041 lb/cu.in. 

for evoseal, and 0.048 lb/cu.in. for P.V.C. 

	

5.3. 	Measuring techniques and calibration  

But for the modifications mentioned in section 5.1.c, 

the measuring techniques and calibration are the same as 

already described in section 3.5. 

	

5.4. 	Test procedure 

5.4.a. 	Check on the clamping device  

To check that the clamping device gave the correct 

boundary conditions, a test was carried out initially on 

a plain aluminium beam. The displacement amplitude respo—

nses- in the region of the first three resonant frequencies 

were measured, as well as the corresponding mode shapes. 

The resonant frequencies, and the amplitude ratios of 

motion at any point on the beam 
motion at tip at resonance, were 

compared with those calculated from the classical beam 

equation. The results are given in fig 5.4 and table 5.a. 

Also the graphs of the tip amplitude ratio against frequency 

are riven in 5.5. The damping was estiaated from the 

bandwidth of these curves, and the values are given as 

well in table 5.a. 
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5.4.b. 	Beam tests  

A total of ten specimens were tested. Details of 

these are given in table 5.b. 

The P.V.C. sandwich specimens  

The tests on each specimen involved obtaining 

(a) the tip amplitude and phase responses in the frequency 

range covering the first two or three resonant frequencies, 

and (b) the 'mode shapes'* at each resonant frequency. 

For (a), the input motion was kept constant. The 

forcing frequency was varied in convenient steps, and at 

each step the temperature of the viscoelastic layer, tne 

tip displacement amplitude, the input motion at the root, 

and the phase difference between the tip motion and the 

input motion, were measured. This was continued until the 

particular resonant frequency was fully covered. Tempera— 

ture changes during a test interval were kept to a 

minimum by carrying out the test when the ambient 

temperature was fairly steady. 

For the mode shapes, the appropriate resonant frequency 

was first quickly determined. The phase potentiometer 

proved very useful in this, since the rate of change of 

the phase difference with frequency was maximum close to 

the resonant frequencies. The displacement amplitudes 

*For the method of plotting this locus here, see 
section 4.6.a. 
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along the beam were then measured at one inch intervals, 

using the travelling microscope. The input motion and the 

temperature of the viscoelastic layer were also measured. 

The tip amplitude ratios, phase differences, and mode 

shapes corresponding to each of the tests were calculated 

theoretically and compared with the experimental values. 

These are given in figs 5.6 to 5.13. 

The above tests were usually carried out on one side 

of the double cantilever beam. Although care was taken 

(during the preparation of the specimens) to make both sides 

of the beam identical, it was thought necessary to check, 

for each specimen, that the motion of both sides of the 

cantilever beam was tne same. For the specimens tested, 

the resonant frequencies and the tip amplitudes at resonance 

were checked for both sides. No change could be detected.  

in tne resonant frequencies within the frequency steps 

usually taken in tne measurements .(steps of about one per 

cent difference were usually taken close to the resonant 

frequencies). The amplitudes were also found to be the 

same. 

The evoseal sandwich specimens  

The specimens with evoseal viscoelastic layers 

presented some extra experimental problens. Since the 

evoseal was originally in liquid form, its properties 

would be expected to depend on the "state of cure" of the 
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layer. This fact motivated the preparation of a shear 

specimen alongside the beam specimens. It was, however, 

recognised that the state of the material was determined, 

not only by the method of preparation of the specimen, but 

also by its rate of cure. This rate would.depend on several 

factors, such as, local humidity and temperature conditions. 

An even more significant factor is the "effective curing 

thickness" of the layer, which may be defined as the ratio, 

volume of material 	of the layer. Clearly, the smaller exposed surface area 

this ratio, the quicker would he the rate of cure. The 

shear specimen had an effective curing thickness of 1/6 inch 

while that of the beam specimens was about 3/4 inch. 

Hence, assuming the same initial conditions of cure and 

the same local atmospheric 'conditions, it is clear that 

the small shear specimen would cure much faster than the 

beams. If the exact dependence of the cure rate on the 

effective thickness were known, then the properties 

corresponding to the state of the material of the beam 

could be deduced from observation of the curing rate of the 

shear specimen (since both specimens were prepared at the 

same time, and cured under the same environment). 

It was thought necessary, at any rate, to obtain the 

curing curve" for the shear specimen. If the rate proved 

to be fairly rapid, then the problem could be solved by 

allowing a considerable amount of time to elapse to enable 
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both specimens to reach the flat portions of their curing 

curves. Accordingly, tests were carried out on the shear 

specimen at regular intervals. From the results, the 

in—phase shear modulus and the loss factor at a constant 

temperature, strain amplitude, and frequency were plotted 

against the time of cure. The graphs have already been 

given in chapter 3 — fig 3.30. 

When it was realised that the rate of cure was not as 

rapid as was desired, tests were carried out on the beam 

specimens after a time of cure of three months. The test 

procedure was the same as for the P.V.C. specimens. The 

experimental results are compared with theoretical values 

in figs 5.14 and 5.15, and discussions on these follow in 

the next section. 

The temperatures and input motions for all the tests 

are given in tables 5.d and 5.e of appendix II 

5.5. 	Discussion of the exuerimental results  

5.5.a. 	The plain aluminium beam 

Fig 5.5 gives the displacement resonance curves, for 

the plain aluminium beam, in the regions of the first three 

resonant frequencies. In the graphs, the tip displacement 

amplitude ratio, Ta, already defined as 

absolute displacement amplitude at tip  
input motion amplitude 

is plotted against the frequency. The corresponding mode 
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MODE 

NO. 

RESONANT FREqUENCY, c.p.s. LOSS FACTOR 	1 

/1 ,(measured) Calculated - 	Measured 

1 26.10 25.92 0.00193 

(0.69) 

2 163.6 162.5 0.00338 

(0.67) 

3 457.5 453.5 0.00155 

(0.87) 

TABI1E 5.a 

Test results for the plain aluminium beam 

Details of beam dimensions: 	lenp;th = 15.07 in. 
Thickness = 0.187 in. 
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shapes are also shown in fig 5.4, in comparison with 

theoretically calculated'values. Since theoretically the 

absolute amplitude at each point on the undamped beam 

becomes infinite at resonance, the quantity plotted in 

fig 5.4 is the ratio of the displacement amplitude at any 

point to the tip displacement amplitude. This ratio has 

a finite value for any given mode. The graphs show very close 

agreement between the experimental and theoretical mode 

shapes. Table 5.a gives the theoretical and experimental 

resonant frequencies, the percentage difference between 

any two corresponding values being given underneath each 

experimental figure. Agreement is seen to be better than 

1 per cent. 

The good agreement in the frequencies and mode shapes 

confirms that movement at the cantilever root must have been 

negligibly small, and hence checks on the adequacy of the 

clamping device. 

The loss factors* for the beam, as estimated from the 

bandwidth of the resonance curves of fig 5.5, are also given 

in table 5.a. It is seen that the system damping (the 

clamp and the plain metal beam) is of a small order and 

can thus be justifiably ignored in the analysis. 

*For the relatIon betweon the loss factor (energy definition) 
and the bandwidth of the resonance curve, for a lightly 
damped system with one degree of freedo-a, see, for instance, 
F/7 
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5.5.b. 	Specimens with P.V.C. layers  

The experimental results for the three-layer and 

five-layer beams with P.V.C. viscoelastic layers are 

compared with theoretical values in figs 5.6 to 5.l5. 
Figs 5.6a to 5.13a give the variation of the tip 

displacement amplitude ratio,Ta, and the phase difference 

(between the input motion and the tip motion), with frequency 

for the first two or three modes. The graphs show good 

agreement in the resonant frequencies, the maximum percentage 

difference between the measured and the theoretical:values 
being less than:3 in all the cases. Agreement is much 

better':for the three-layer than for the five-layer beams. 

It is, in fact, thought that in the case of the three-layer 

beams, the slight disparities could be due mainly to slight 

temperature variations along the beam length during a test 

interval. The temperature used in the theoretical 

calculations was the mean of the temperatures at two points 

along the beam. The difference between these two tempera-

tures could be as high as 0.5°C especially at the higher 

modes. 

The five-layer beams show consistently higher resonant 

frequencies than theoretically calculated. This is thought 

to be due to the effect of the araldite bonding layers. 

In the calculations, these were assumed to be part of the 

viscoelastic layers, since the thickness of the viscoelastic 
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BEAM 

NO. 

ELASTIC 	LAYERS VISCOELASTIC 	LAYERS BEAM 

LENGTH 
t, in. 

Material Thickness 
h2, in. 

Material Thickness 
hi, 	in. 

3 Aluminium 0.250 P.V.C. 0.135 20.00 

3A ,, 0.250 If 0.135 18.00 

313 It 0.250 ft 0.135 12.00 

4 Steel 0.187 u 0.137 15.00 

4A 0.187 te 0.157 12.00 

7 Aluminium 0.124 Evoseal 0.363 14.04 

8 Steel 0.187 I, 0.077 15.07 

(i) Three—layer Beams.  

BEAM 

NC.. 

ELASTIC 	LAYERS VISCCELASTIC 

LAYERS 

BEAM 

LENGTH 

L, in. 

CENTRAL 	LAYER FACING 	LAYERS 

:dater— 
- 	ial 

Thick— 
ness 
hi,in. 

Mater— 
ial 

Thick— 
ness 

h3,in.  

Mater— 
ial 

Thic!.,:-
ness 
hz,in 

5 Steel 0.123 Alum. 0.124 P.I.C. 0.161 17.93 

5A 11 0.123 r, 0.124 If 0.161 12.00 

6 Alum. - 0.250 Steel 0.123 fi 0.155 15.00 

(ii) Five—layer beams.  

TABU', 5.b 	Details of the beam specimens. 
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layers was obtained by subtracting the total metal thickness 

from the beam overall thickness. As the bonding lagers 

were much stiffer than the viscoelastic layers, their 

contribution to the beam effective stiffness would be more 

than that of a viscoelastic material of the same thickness. 

This contribution would be more significant in the five-

layer beams which had more bonding layers. 

The measured tip amplitude ratios agree well with the 

calculated values, especially in the second and third modes.  

The worst agreement occurs very close to the first resonant 

frequencies, where maximum errors of up to 8 per cent 

are seen to exist in a few cases. The longer beams (e.g. 

beams 3, 3A, and 5) give worse results than the shorter ones. 

Several factors could be responsible for this discre-

pancy. Any error in the material loss factor, for instance, 

was bound to reflect itself most at resonance. It has 

already been stated in section 3.7.a that the loss factor 

for P.V.C. could be as much as 5 per cent in error. Such 

an error would lead to an error of about 5 per cent in the 

measured amplitude ratio. Another factor night be the 

elasticity of the araldite bonding layers. The theory 

assumes an infinitely shear-stiff bonding layer of negligible 

thickness. If this layer is not sufficiently stiff, the 

actual shear deformation in the viscoelastic layers (and 

hence, the cyclic energy loss) will be less than that 
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predicted theoretically. The actual tip amplitude ratio 

will, therefore, be more than the calculated value. It may 

be remarked that the above factors would also affect the 

higher modes. However, their overall effect on the amplitude 

ratios would be more easily detectable in the first mode than 

in the higher modes where the amplitudes, for any given 

amount of damping, are invariably less. It was originally 

thought that the lack of exact agreement in the amplitude 

ratios could be partly due to possible rocking of the 

vibrator table awing to slight differences in the dynamic 

loading from both sides of the double cantilever beam. 

This was checked by measuring the displacement amolitudes 

at various points on the clamping.  'device. No rocking could 

be detected, and it was concluded that errors from this 

source were very unlikely. 

The experimental and tneoretical phase differences 

compare very favourably in all the cases. Any disagreement 

is due to either lack of exact agreement in the resonant 

frequencies or temperature effects. 

The measured mode shapes are compared with the theore—

tical ones in figs 5.6b to 5.13b. In the graphs, the 

amplitude ratio of the motion at any point to the input 

motion is plotted at each point. It is seen that the nature 

of the agreement is the same as for the tip amplitude ratios 9 

namely, the first mode experimental values are slightly 
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higher than the theoretical values, while the second and 

third mode values show very close agreement. These results 

show that the agreement in the displacement response is 

not just restricted to the tip displacements, but,in fact, 

holds for each point on the beam. 

5.5.c. 	Beams with evoseal viscoelastic layers  

The results for the specimens with evoseal viscoelastic 

layers are given in comparison with the theoretical values 

in figs 5.14 and 5.15. The results correspond to a time 

of cure of three months. 

It is seen that for the two beams, the agreement 

between the measured and the calculated resonant frequencies 

is comparatively poor, the maximum error being as high as 

10 per cent. The measured frequencies were consistently 

lower than the theoretical values. This is due to the fact, 

already mentioned, that the viscoelastic material of the 

beam was curing at a much slower rate, and hence, was much 

softer than the shear specimen. Since the theoretical 

values were calculated using the properties obtained from 

tests on the shear specimen, they were bound to give higher 

values for the resonant frequencies. 

As for the tip displacement amplitude ratios, agreement 

between the experimental and the thedretically calculated 

values is fairly good for beam 7, but clearly poor for 
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beam 8. This might at first sight appear surprising, 

especially in view of the fact that the error trends in 

the two cases are dissimilar. In the first mode, for 

instance, the measured resonant tip amplitude is less for 

beam 7, but more for beam 8, than the corresponding theore—

tical value. 

This apparent inconsistency is, however, readily 

explained using the "optimisation curves" presented in 

chapter 6. Considering only the first mode, the thickness 

ratio, H, and the theoretical shear parameter* at resonance, 

VI , for each beam are given in the table below. Also given 

is the shear parometer, \J viopt' 

overall loss factor for the given beam thickness ratio. 

The material loss factor is assumed to be 1.0 (for ease of 

interpolation), a value very close to the values obtained 

from tests on the shear specimen. 

BEAM 7 	BEAM 8  

H 	 0.5 	0.575 

	

1.9 	0.35 

0 pt (71, 	0.72 	C,.78 

The above values, together with the opti:aisation curves, 

show that while beam 7 is on the portion of the Ta—versus-1/8  

*This sheor parameter is calculated using the properties 
of the shear specimen, hence the qualifying term, 
"theoretical". 

corresponding to the maximum 
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curve beyond the damping peak, beam 8 is on the rather 

sensitive portion of the curve before the peak. 

To illustrate the significance of this, suppose that 

the in-phase shear modulus of the viscoelastic material of 

the beams was 30 per cent less than that of the shear 

specimen. (The value, 50 per cent, was actually arrived at 

by "working backwards" to determine, from the optimisation 

curves, the change in the shear modulus, G,, which would 

give rise to the observed error in the first mode resonant 

frequency for beam 7). Then, since the shear parameter is 

directly proportional to the in-phase shear modulus, the 

actual values of v, for beams 7 and 8 would be 1.33 and 

0.245 respectively. From the curing curves for evoseal 

(fig. 3.30), it is observed that the material loss factor 

shows very little change with the curing time, so that, 

in the argument to follow, it will ,be assumed to have the 

same value for the beams as for the shear specimen. 

From the optimisation curves for H = 0.5 (fig. 6.1, 

chapter 6), it is seen that a change in V, from 1.9 to 1.53 

would result in a drop in the tip amplitude ratio from 

4.9 to 4.6, or a percentage decrease of about 6. This 

change in v, would also cause a decrease in the resonant 

frequency factor from 6.5 to 5.6, or a decrease in the 

resonant frequency of about 7 per cent. Similarly, by 

interpolation from the optimisation curves for H = 0.1 and 
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0.5 (figs 6.3 and 6.1), it is seen that, for beam 8, the 

change in y would give rise to a decrease in the resonant 

frequency of 8.5 per cent, and an increase in the tip 

amplitude ratio of 14.5 per cent. These values (column A) 

are shown side by side with the actual percentage differences 

between the experimental and theoretical values (column B) 

in the table below. 

BEAM 	7 	BEAM 	8 

A 	B 	A 

% increase in 	-6.1 	-5.5 	14.5 	16.0 
amplitude ratio 

A decrease in 	7.0 	7.0 	8.5 	9.5 frequency 

The close and consistent agreement between the figures 

apart from explaining the observed behaviour in the tip 

amplitude ratios, also implies that the true difference 

between the in-phase shear moduli of the shear specimen 

and the beam evoseal must have been around 30 per cent. 

It also confirms the assertion that the disparity in the 

results was due to the difference in the curing rates of 

the beam and shear specimens. 

It might be thought that, in view of the fact that 

evoseal is a relatively soft viscoelastic material, there 

was a possibility of the various layers having independent 

flexural motions, especially at the higher modes. This 

would, of course, violate one of the assumptions of the 
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theory (see section 2.1.b, chapter 2), and would lead to 

incorrect results. However, this was checked, for each 

mode, by measuring the displacement amplitudes in each 

layer at any cross-section. These were found to be the same' 

in each case, implying that all the layers of the beams 

had the same flexural motions up to at least the third mode. 

The theoretical phase difference-versus-frequency 

curves shown in figs 5.14a and 5.15a are seen to be displa-

ced (horizontally towards the right) from the experimental 

points. This is due to the difference in the experimental 

and theoretical resonant frequencies. Once more, the 

agreement between the mode shapes (figs 5.14b and 5.15b) 

is seen to be a reflection of the agreement in the resonant 

tip amplitude ratios. 

The difficulty encountered with the evoseal sandwich 

beams might raise the question whether it would not have 

been possible to obtain the exact properties of the beam 

evoseal from a shear test on a portion cut off from the 

beams. This approach was examined thoroughly and discarded 

for several reasons. Firstly, it would be extremely 

difficult 'to cut a small portion off the beam, to the size 

of a shear specimen, without squashing the soft viscoelastic 

layer appreciably. Secondly, the specimen would have to 

be tested in the sandwich form; that is, with the metal 

facing layers in tact. The facing layers would then be 

bonded to the fixed supports and the centre-piece of the 
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shear—test apparatus (fig. 3.5)1  as in the case of the 

hycadamp shear specimen. This would considerably increase 

the total effective moving mass. Since evoseal is a 

relatively soft viscoelastic material, the contribution of 

the inertia forces to the total measured force would be so 

large that the accuracy of the determination of the material 

properties would be extremely poor. Moreover, with such 

an arrangement, there would be four araldite bonding layers 

(instead of two, as for the beam) to each half of the shear 

specimen. Any bonding imperfections would, therefore, cause 

a different level of error. Finally, the shear specimen 

cut off from the beam would have a smaller "effective curing 

thickness" (see section 5.4.b) than the beam itself, and 

would thus tend to cure faster than the beam. As the process 

of preparation of the specimen for a shear test would take 

at least three days to complete, the material properties 

obtained in this way would invariably be different from 

those of the beam evoseal, thus defeating the purpose of 

the test. 

5.6. 	Concluding remarks  

The tests carried out cover a,wide range of material 

properties and beam geometry. Consider, for instance, the 

three—layer configuration. Table 5.c gives the shear 

parameter, IA, and the material loss factor, rh , at the 

first resonant frequency, as well as the thickness ratio, Hi 
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Beam 
no. 

Material 
loss factor 

Y7► 

Thickness 
ratio 

H 

- 	Shear 
parameter 
at first 
mode 

Vi 

Shear 
,parameter 
at maximum 
loss factor 

V► opt 

3 0.50 0.54 2.04 D.88 

3A 0.54 0.54 1.65 0.87 

►3B 0.61 ._, 0.54 0.96 0.84 

4 0.58 0.73 0.68 0.79 

4A 0.53 0.73 0.'-i 0.83 

7 1.09 0.50 1.90 0.78 

8 1.12 0.37 0.35 0.72 

TABLE 5.c 

Three-layer beams tested. Details of the thickness ratio, 

first mode shear parameter, material loss factor, and 

optimum shear parameter. 
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for each of the beams tested. The shear parameter 

corresponding to the maximum beam loss factor (for each set 

of values of n and H) is also given in each case, this 
fi 

being obtained from the optimisation curves in chapter 6. 

The table shows that the beams tested spread over regions 

before, close to, and beyond the peaks of the damping-versus-

shear parameter curves for various values of the thickness 

ratio and the material loss factor (see chapter 6). 

Materials with widely differing properties have been used, 

as for instance, a relatively soft viscoelastic material, 

evoseal, and a fairly hard one, velbex P.V.C., Also, for 

the five-layer beams, various combinations of materials 

and geometry were tested. 

The generally good agreement obtained can thus be 

regarded as a satisfactory check, over a wide range of 

properties and geometry, on the theory developed for 

symmetrical three-layer and five-layer beams, and, in 

general, for symmetrical multi-layer beams. 
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CHAPTER6 

AN INTRODUCTION TO THE DESIGN STUDY OF 

SYM1ETRICAL MULTI-LAYER BEAMS  

Introduction  

It will now be shown how the foregoincr analysis can 

be applied in the design study of multi-layer beams. 

Systems with harmonic, excitation will be considered, and 

the general treatment will be illustrated with the specific 

case of cantilever beams subjected to displacement forcing-

at the root. For simplicity, strain amplitude dependence 

will be neglected. 

The parameters for the study of the resonant 

responses of multi-layer beams are first established, and 

the general nature of the dependence of the damping and 

the stiffness on these variables is predicted from the 

differential equations. Illustrations are then given 

with a detailed study of the stiffness, damping, and reso-

nant amplitude responses of three-laver cantilever beams. 

Results of studies carried out on five-layer beams are also 

presented, chiefly to demonstrate how they can be used as 

an improvement on three-layer beams. Various applications 

of the results of this study are illustrated. 
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6.1. 	Theoretical considerations 

6.1.a. 	Relevant parameters  

Consider first the three-layer beam. On neglecting.  

strain dependence, the differential equations for the beam 

are as given in equations 4.l.xv. In this preliminary 

discussion, the extensional damping terms (already Shown to 

make little contribution to the system damping for most 

practical cases) are ignored. Also, the contribution of 

the viscoelastic extensional terms (i.e. the terms 

containing the in-phase Young's modulus of the viscoelastic 

material as a factor) to the coefficients of the differential 

equations is assumed neglible. The consequences of these 

assumptions and their accuracy are examined at a later stage. 

Assume, to begin with, that the thickness ratio, H, 

and the material loss factor, 11 , are kept constant. Then, 

from equations 4.1.xv, it is seen that as the forcing 

frequency, the material properties, and the beam length are 

varied, every other coefficient of the differential 

equations remains unchanged except IA, c7;(= 17 0), and 

For any given values of po  14, and the modified 
3  forcing function, pm = -f-ip-f), there is only one solution 

to the equations, no matter the actual values of the 

material properties, the beam geometry (for a given H), and 

*For the definitions of these symbols, see equations 
4.1.xvi, 4.1.xvii, and 4.1.xviii. 
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the forcing frequency. It follows, therefore, that the 

dynamic state of the beam is uniquely determined by the 

quantities, H, 	, V,  , pi , and pm. Any response of the 

beam can thus,  be expressed as a function of these five 

variables. In particular, a "typical" displacement 

amplitude of the beam (e.g. the tip displacement amplitude 

in the case of a cantilever beam) can be expressed as, 

alp 	= 	fa( 171 ,111 V,, 13,11),n) 

 

61 1.  

 

The geheral functional notation, wi  = fw(u,,uz,u3, ...), used 

throughout this chapter, is meant to designate that wi  can 

be expressed, implicitly or explicitly, as a function of 

the variables, u„u2,u3, ...etc. 

If resonance* is defined as the state at which this 

displacement is a maximum in the immediate neighbourhood 

on the frequency axis (which, for any given geometry and 

material properties, is parallel to the pi  axis), then, the 

resonant state is given by 

a fa. 
f a ( rh '}-' 14  A"Pril ) 	ai31  = 

, the value of Rl  at resonance, defines the resonant r 
frequency at the n—th mode being considered. Using the 

functional notation defined above, equation 6.1.ii can be 

put in the form, Pon 	 1.4,pr1) ..... 6.1.iii. 

From the above reasoning, the beam loss factor, which 

*Other methods of defining resonance can be employed 
without prejudicing the argument presented in this section. 

0 	6 1  ii, where 

Pon 
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has been defined in terms of energy ratios at a resonant 

frequency (see section 4.6.b), can also be expressed as 

( 171 ,H, V/  5 13„ p ril ) 	...... 6.1.iv. 

It is possible to eliminate 	from equation 6.l.iv, using 

equation 6.1.iii. This gives Y7on = f77  ( 	H Eh 	) • •6•1•v• 

In other words, the beam loss factor is uniquely determined 

by the four parameters, V1  , H, 	, pm. 

These four quantities, along with p6„ constitute the 
relevant parameters in the general study of the resonant 

responses of three—layer beams. V, has already been called 

the "shear parameter". 130n  is called the "resonant frequency 

factor", or simply the "frequency factor", there being 

very little risk here of confusing it with pi(the non— 

resonant frequency factor). The inclusion of 130n  as one 

of the parameters may appear superfluous in view of 

equation 6.1.iii. However, it will be seen later that 

under certain conditions, it is very convenient to use It 

as one of the independent variables for characterising the 

damping response. The presence of the modified forcing 

function, pm, as a basic parameter is significant. It 

shows that, in general, the damping (in fact, any response) 

of the structure is a function of the forcing function. 

The nature and significance of these parameters will be 

examined in more detail-Water. 

In its general form, the argument presented above 
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is applicable to beams with more than three layers. The 

only additional complication is that the number of 

Parameters increases with the number of layers. For 

instance, for the symmetrical five—layer beam, the frequency 

factor, pony and the beam loss factor, Ylon , can each be 

expressed as a function of the six quantities, fii,H2,e„ v2, 

n, and pm. Hence these variables, together with gn , form 
the seven parameters associated with the design study of 

five—layer beams. 

6.1.b. 	Parameters for systems with constant forcing  

function.  

From the argument presented in section 6.1.a, it is 

seen that the parameters on which pan  and 13,1  depend c6.n . 

be classified into two groups: parameter's external to the 

vibrating system; namely, pm; and parameters which are 

inherent to the system, for example, 	, H, and I for 

the three—layer configuration. 

In general, for any given configuration, it is not 

easy to seperate the effects of these two groups of 

parameters. When, however, the forcing function is 

independent of the position along the beam, this separation 

is readily achieved. For instance, with a uniformly 

distributed force (of constant amplitude), the modified 

forcing function is a constant for any given system, and 

so can be easily eliminated from the equations (e.g. by 



304 

division). Also, for systems subjected to displacement 

forcing, the modified forcing function is directly 

proportional to p1  (see section 4.2.c). Hence, at 

resonance, it will also be proportional to pem, and can, 

therefore, be eliminated by replacing it with An. For 
systems such as these, the frequency factor and the beam 

loss factor can, from equations 6.l.iii and 6.1.v, be 

expressed as, 

/EL = fp.,( 	14) 	 6 1  vi, and 

rion  = fz(rlf  ,H, 14) 	6 1  vii, for the three—layer 

configuration. In other words, the system damping, and 

any resonant response, can now be expressed in terms of 

only the parameters inherent to the system; it is:thus 

possible to study the effects of these parameters on their 

owrr. The rest of the general theoretical considerations 

will be restricted to such systems. 

6.1.c. 	Variation of the beam loss factor and the  

frequency factor with the system _parameters.  

In the design study of multi—layer,beams,.two 

qualitities are of special interest; namely, the damping 

and the dynamic stiffness. In this work, Ton  and Pon  are io 

taken as measures of these quantities for any mode, n. It 

is possible to obtain some idea of the nature of the 

dependence of 77on   and An on the system parameters,- purely 

from examination of the differential equations. Once again, 
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for simplicity of illustration, the arguments presented 

are centred on the three-layer configuration. 

The shear parameter, V,. 

Consider first the shear parameter, VI . Assume that 

ill  and H are held constant. Then, at very low values of 

VI  (i.e. as 14-1P-0), the damping terms of the differential 

equations become very small, and equations 4.l.xv tend to 

(D+  - [3.1 )110 f cX,D3X01  = Dmc 	AD311„f eXol  = 0 -  

ja,D3,70  D2
Y,”= 0 ....6.1.viii, 

(1)4  - [31)v,„ 	o(I D3L1  = 	0 

Pmc, being the now constant modified forcing function. 

The disappearance of the damping terms implies that no 

energy dissipation occurs, and hence, that the loss factor 

is zero. 

The solution of equations 6.1. viii, for any boundary 

condition, gives 

(a) vi,= Yo, = 0 ; in other words, the quadrature components 

of the displacement and the shear deformation disappear; and 

(b) uo  and X,/, the in-phase components of the displacement 

and the shear, become infinitely large at the resonant 

frequency defined by An  = kl-11(1 - OV-41) ....6.1.ix, 

where k4  is the frequency factor for a plain undamped Euler 

beam. Thus, for simply supported beams, 

kn 	
nTT , n = 	; for cantilever beams, 

kn 	
= 1.875, 4.694, 	 ; and so on. 

Interpreted physically, the above result shows that 
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for very short beams or beams with very soft viscoelastic 

layers, the shear deformation and the displacement become 

very large at 'resonance; but they are both in phase (or 

anti-phase) with each other and with the exciting force, so 

that no energy loss occurs. Equation 6.l.ix defines the 

resonant frequency for the limiting case of a sandwich beam 

made up of two similar elastic layers, spaced apart as 

hitherto, and vibrating in phase. Incidentally, equation 

6.l.ix also gives the lower limit of the frequency factor, 

pon , for any three-layer beam of the given thickness ratio, 

H. 

Again, as 1; tends to infinity, it is seen from 

equations 4.1.xv, that X., and im (and hence their derivative4 

tend to zero, with the equations reducing to 

(D4  — 	)110  . pm, 	; and Deli. = 0 	......6.1.x. 

This is clearly the Euler bi-harmonic equation for a plain 

undamped beam, and the solution gives the displacement as 

infinitely large at the resonant frequency defined by 

Pon = k 	....6.l.xi. 

The above result can also be interpreted physically. 

For very long beams or beams with very stiff viscoelastic 

layers, very little shear deformation occurs in the visco-

elastic layer, and hence the damping is small. The beam 

behaves more like a plain solid beam. Equation 6.l.xi gives 

the upper limit of the frequency factor for sandwich 
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beams. 

As V, increases from zero to infinity, the beam 

loss factor must pass throug;n a maximum (or maxima) at 

some intermediate value of V, . It will in fact be seen 

from the specific cases considered later, that only one 

peak occurs in the damping-versus-shear parameter curve for 

the given mode; a fact which, intuition would have lei one 

to anticipate. Also as i; varies from the state of "infinite 

shear" 	= 0) to the "shear-free" state (1 = 00) it is 

reasonable to expect the frequency factor,P,,,,, to increase 

continuously from its lower to its upper limit. 

The material loss factor,'?, 

It is best to consider the effect of the material loss 

factor 17, by first examining what happens when the shear 

parameter V, is varied, keeping,. Yli  and H constant, as in the 

above discussion. Another look at the differential equations 

24-.1.xv will show that the only coefficient that is affected 

by a variation in V, is Cf; (= 	). p, may also be affected, 

but it is an arbitrary coefficient, since it contains the 

forcins.  frequency,t4.9-. In any case, for any value of Vly it 

has to be varied until the resonant condition is reached 

before the beam loss factor (and the resonant frequency 

factor) can be obtained. 

As V, is increasel from zero, o; increases, and so does 

the beam loss factor.)) 
On 

; and at some values of Cri  and V I 
'  
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/7,, attains its maximum value. Further increase in V, and 

07 leads to a drop in 	Now, the rate at which 	increa— 

ses as V, increases is evidently determined by 12. When 1= 0, 

the system damping is zero, and the rion—versus— VI  curve 

coincides with the 14 axis. For very small values of r 
it 

the energy loss in the system is small, so that the overall 

damping is small. Also, as V, increases, 07 increases 

rather slowly; consequently, the value of V, at which the 

maximum 	occurs is relatively high. On the other hand, 

as y, becomes larger and larger, 0, approaches infinity 

rather slowly, so that the damping tends to zero rather 

gradually. For high values of /7, , 0-; increases rapidly with 

hence the peaks of the damping curves would be expected 

to occur at smaller values of V,. Besides, for a given 

value of' , o tends to infinity at a much faster rate, so 

that the damping decreases to zero more rapidly. 

It follows, therefore, that for a given thickness ratio, 

the 77—versus—VI  curves, for various values of the material 
On 

loss factor, will get peakier as n increases, the peaks being 
at the same time displaced towards the axis, V, =0 . Also, at 

sufficiently large values of the shear parameter, the curves 

will intersect giving rise to regions where it is possible 

to obtain a higher lien  with a smaller 	. 

The effect of the material loss factor on the frequency 

factor, Row  can also be similarly argued. It has already r 

been postulated that the frequency factor increases 
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as V, (and hence, O;) increases. Since, :'or any V; , oT 

increases with increase in r , it follows that the frequency 

factor will also increase with 17,. Hence, the 7:7aphs of 

the frequency factor against the shear parameter (at a 

constant thicruless ratio) will all start and end at the 

limits already determined, in equations 6.l.ix and 6.l.xi 

but the curves for hi7her values of I will tend to the upper 

limit much more rapidly. 

Thickness ratio, El  

It -is rather difficult to deduce from the differential 

ecuations how the thickness ratio, d, affe,ts the beam 

loss factor and the frequency pallater, since all the 

coefficients of the euations inclldino,V, and PI ) depend on 

. From purel7 physical considerations, however, it A.11 

be expected that for given viths -)_cy, and )7,  , the beam 

dampirni will increase as the thickness ratio (which is a 

measure of the volume of viscoelastic material in a i_ven 

volume of the beam) increases. 

6.1.d Variation of the beam loss factor with the frequency 

factor  

In eouation 6.1.vii the beam loss factor 	has been 

expressed as a function of Y),  , ii, and )./1 . It is, however, 

possible using equations 6.1.vi, to expres- it in terms 

17 , H, and An; thus using 	 as a basic parameter in 

place of 11. When this is done, it is easy to deduce the 
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shape of the resulting 10,7versus-1 curves (at constant 7,  and 

H) from the predictions above. For instance, it has been 

stated that as Vi  varies, the frequency factor increases 

from k4(1 -0(,,u) to k4.n'  while the beam loss factor increases 

from zero to a maximum and drops gradually to zero once 

more. Hence, curves of riar,-versus-pon  will start at 

pc„ = k4-(1_0(41), increase to a maximum at some value often 

and then terminate at g„ = k. 

Although the above discussion has, for simplicity, 

been particularised to three-layer beams, much of the 

reasoning applies equally to higher order beams. For 

five-layer beams, for instance, the nature of the dependence 

of the beam loss factor and the frequency factor on the 

shear parameter and the material loss factor, for given 

values of H1 , Hz, and el , is the same as discussed above. 

The effects of the other parameters can be examined on 

similar lines. 

Some of the general trends predicted above were 

arrived at by Mead, by considering the solutions obtained 

from analysis of three-layer simply-supported plates [0,65j . 

However, the treatment given here is quite general}, and the 

deductions have been made straight from the differential 

equations. Hence they apply to beams of all boundary 

conditions. 
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6.1.0-, The nature of the parameters - three-layer beam. 

The parameters established above for the design study 

of three-layer beams are )7 , II, V and Am  . Of these, the 

thickness ratio, H, and the material loss factor, I1, need no 

further introduction. 

The shear parameter, U , apart from dependin; on the 

tilickness ratio, is proportional to the rati, a , and the 

s7:uace of the ratio, pi  = 	It is thus entirely dependent 

on the beam -;eometry and material properties. Its importance 

lies in the fact that for given values of H and r , it n 

unioael7 determines the system resonant reslonse no matter 

the values of the material properties or the beam 

dimensions. 

The frequency factor, Pon, has already been re,;al:ded 

2s a measure of the dynamic stiffness of th beam. This is 

because, for given beam geometry and properties, a hi;ner 

value of A. means a higher resonant frequenci. 13,„ can 
also be looked upon as a measure of the "state of shear 

deformation" of the beam. It has been shovn in equations 

€.l.ix and 6.l.xi that, for sandwich beams, po„ varies 

between the limits, k4(1- 00-Li) and k4, corresponding to 

states of infinite shear and zero shear respectively, in 

the viscoelastic layer. For any ;iven n and H, therefore, 

a high value of revi  implies small shear deformation in the 

viscoelastic material. In other words, the ;renter the 

snear def_irmation in the viscoelastic material, the 
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-tore is tlie reduction in the stiffness of the beam. It is 

eftphasised that pa, is not a 'basic' parameter, since it 

depends not only on the material property and geometry, but 

also on the resonant fre, _luency which is not usually known 

a priori. Its inclusion as a design parameter stems from 

fact that, quite often, it serves as a convenient 

base for analysing the dameing response. Besides, if the 

shear parameter is not known or easily determined, on  can 

be easily obtained experimentally and used as a means of 

evaluating v,(see section 6.2.c). 

It is significant that the only material property 

which appears explicitly as a parameter is T4. The other 

properties appear in the parameters VI  and 	as ratios. It 

is thus possible to vary them, without affecting the system 

resonant; response. Por instance, for a given thickness 

ratio. ii, the in—phase shear modulus, G,, and the Young's 

modulus, E2, can be increased by the same ratio without 

causing any change in 	and hence, in the hystem damping 

and freuuencj factor. Besides, since these material 

properties appear in parameters which also depend on the 

beam geometry, it is possible to eliminate the effect of 

a change in properties with a suitable alteration of the 

beam geometry. Thus, for a given ii, if the in—phase shear 

modulus, 'G , is increased to four times its value, and 

the beam length is halved, tree shear parameter, Cand 

hence, any resonant response of tree system for a given rif) 
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will remain unaffected. 

It may be note" that the dependence of toe shear 

modulus, G; , on temperature and frequency does not affect 

toe considerations above. A variation in the temperature 

(or frequency) merel7 alters the value of VI  , leading,. to 

a correspondin cOanqe in the syste-1 resonant; resFonse. 

Dam in=; efficiency  

The beam loss factor, "rion , nHls been sno:m to be a 

fanction of toe material loss factor, 	To be able to 

assess toe usefulness of a given material los_ factor, in 

incre,,sini; the damping response, a "dg.yping efficiency"* 

is defined as the ratio of toe beam loss factor, Ylom, to toe 

material loss factor, 1 . 

6.2. Desi7n stadi of three—la -7er cantilever beams with 

displacement forcin', at the root. 

Optimisation curves for the first-code  

The ;.energl considerations riven in section 6.1. will 

be illustrate,' with the study of the resonant responses 

of three—layer cantilever beams subjected to disblacement 

forcin,,:: at the root. 

Fit-g. 6.1. shows the variation of the beam loss factor, 

110i 
1  the frequency factor, 	and the tip displacement 

ampli6ude ratio, '1a, with the shear parameter, 1), , at a 

*This ratio is referred to as "the relative loss factor" 
bf 	unbar, and }LerNin  
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constant thickness ratio, H = 0.5, and for various values of 

the material loss factor, n . The graphs are for the 7 
first mode*. 

As already anticipated, each damping curve passes 

through a maximum at a value of V, which decreases as the 

material loss factor, 711 , increases. It is also seen that 

the higher the material loss factor, the greater the maximum 

value of the beam loss factor. The curves for higher 

values of 17 are seen to drop more rapidly beyond the peak, 

intersecting with the curves for lower values of 171. Hence, 

there exist regions of the curves where a high material 

loss factor is, in fact, a disadvantage as regards the beam 

damping response. For instance, at V1  = 	it is seen that 

a material loss factor of 2 gives more beam damping than 

a value of 5; at )A = 6, more beam loss factor is obtained 

with a material loss factor of 0.5, than with a value ten 

times as large (5.0). 

The gi,l—curves are seen to rise gradually at first, and 

then more rapidly in the region of the peaks of the damping 

curves, and to gradually approach the uprer limit €12.36). 

For any given value of the shear parameter, the frequency 

*The values plotted in all the graphs presented in this 
section were obtained by solving the differential equations 
(the viscoelastic extensional terms being included) as 
described in section 4.2, and calculating the beam loss 
factor in the manner indicated in section 4.6.b. 
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factor increases with the material loss factor, y1, the 

rate of increase being greatest in the region of the 

damping oeaks. 

It may be remarked that the damping and stiffness 

curves remind one of the displacement and phase resonance 

curves for damped beams. The trends are, of course, 

opposite, the curves for nigh values of 771  behaving like 

the response curves for lightly damped systems, and vice 

versa. 

As would be expected, the tip amplitude curves behave 

in the op:,osite manner to the damping curves, having their 

minimum values at about tree same values of x as for the 

peaks of the corresponding damping curves. This, 

incidentally, shows that the beam loss factor, as defined 

here, is 3 fair reflection of tree tip amplitude, a point 

which :rill be considered in more detail later. 

Fig. 6.2 shows the beam loss factor, let , plotted 

a-;ainst the frequency factor for the same thickness ratio 

H = 0.5. An interesting feature of the curves is that, 

for a given H, the maximum loss factor occurs at the same 

value of p,, no matter the value of the material loss 

factor. It has already been stated that the frquency 

factor can be regarded as characterising the state of shear 

deformation in the beam. The above observation, therefore, 

implies that, for any given thickness ratio, there is a 

unique state of shear at which the maximum damping 
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obtainable with that configuration, occurs; and that this 

state is unaffected by the material loss factor. It is 

also seen that the curves for various values of I do not 

intersect each other, which implies that, judged on the 

basis of equal stiffness (i.e. A4), a beam with a higher 

material loss factor, 17,  will also necessarily have a 

higher beam loss factor,%. These facts would not have 

been very obvious from fig. 6.1 — a justification for 

including 4, as a design parameter. 

Curves similar to those given in figs 6.1 and 6.2 can 

be obtained for various values of the thickness ratio, 

This hap, in fact, been done for three other thickness 

ratios: H = 0.1, 1.0, and 2.0, as shown in figs 6.3 to 6.8. 

From these graphs, it is possible to plot the maximised 

beam loss factor, b niopt' against the thickness ratio, H, 

for various values of the material loss factor, 	. Such 

a graph is shown in fig. 6.9. The graph shows that the 

maximum beam loss factor increases as the thickness ratio 

increases, a trend which has already been anticipated. 

Also shown in fig. 6.9 is the variation of the shear 

parameter, V opt, and the frequency factor, Polopt' ri  

corresponding to the maximum beam loss factor, with the 

thickness ratio. Both quantities are seen to decrease with 

increase in H. 

The maximum beam loss factor is also plotted against 

the material loss factor, rig  , for various values of U, in 
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fig. 6.10. The figure also contains curves showing the 

variation of the maximised damping efficiency, '7 	 opt , aad 
/, 

the shear parameter, 	 opt' NJwt 	
at maximum loss factor, with 

n . As the material loss factor increases from zero, 

the beam loss factor also increases. An interesting 

feature of the curves is that whilst the maximum team 

loss factor increases with the material loss factor, the 

maximised damping efficiency shows an 0000site trend. 

Thhs, although more damping is obtained with a higher 

material loss factor, better use is, in fact, made of the 

material loss factor at its smaller rather than its higher 

values; in other words, the law of diminishing returns 

holds The maximised dampin; efficiency curves tend 

towards finite values at n =-0, for each thickness ratio. 4 

These limits are difficult to establish for the general 

case; but their presence implies that the maximum efficiency 

obtainable with a given damping treatment is limited by 

the beam geometry. The greater the value of H,(i.e. the 

thicker the damping layer compared with metal layers), 

the -Treater is the dambin; efficiency obtainable. 

The shear parameter at maximum bean loss factor 

is seen to decrease as Y7 increases, increases, 	,Sr >s :predicted earlier 

in section 6.1.c. 
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6.2.b Investigation of the higher modes  

Graphs similar to those given in section 6.2.a for 

the first mode, can also be obtained for the higher modes. 

The natural question to ask is: is there any simple 

relation between them? To investigate this, it is noted 

that two of the parameters, namely, pa, and v, , contain the 
beam length, t . It seems logical, therefore, to attempt 

to replace this with a 'characteristic' length for each 

mode, and to examine whether the resulting parameters 

uniquely determine the system resonant response. 

One method of approach immediately suggests itself. 
4- 

For the n—th mode, pon 	
m 
EI 

e 
- 	 (from equations 4.1.xvi), 

where 4,, is the n—th mode resonant freauency. This can 

be written in the form, 112221(-)4  = 1 	 6.2.i; EI 

from which it can be seen that it is possible to define a 

"characteristic length", ic, for each mode, such that the 

frequency factor is the same at all modes. This characte—

ristic length is thus given by tc =   6.2.ii. 

If 2, is used, instead of 1. , in the definition of the 

shear parameter, a'Charateristic shear parameter", 

V 	6 2  iii,results. The beam loss factor, Y2. 

can now be expressed as a fnction of X(instead of y), 

H and r . Is this relation independent of the mode? In 

other words, for fixed values of H, and lc , is there a 

unique relationship between Im and 	? 

77.„ 
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For a beam whose absolute ditplacement and shear 

deformation amplitudes are sinusdadally distributed along 

its length at the resonant frequency, it can be shown 

(see Appendix III) that the beam loss faCtor as defined 

here is, in fact, a unique function of the characteristic 

shear parameter,Vc . This is in agreement with the analysis 

of Kerwin et al E41,44,01**, and of Mead [62163j. 

This is, however, not so for the general case. Fig. 

6.11 for instance, shows the beam loss factor for the 

first three modes, plotted against 14;izand H being kept 

constant at 0.5. The graphs are for a cantilever beam 

subjected to displacement forcing at the root. A similar 
4 

set of graphs is alo given in fig. 6.12 for the first two 

modes, H, and 	being held constant at 0.5 and 2.0 respect— 

ively. It is seen that these curves do not overlap; and 

that the maximum beam loss factor is slightly different for 

each mode. In other words, the beam loss factor is note 

unique function of the characteristic shear parameter, y/c 1  

in this case. 

The reason for this is not difficult to appreciate. 

The beam loss factor as defined, depends on the mode shape 

of the beam at resonance. For a cantilever beam, and 

indeed for most other damped beams, the mode shapes, 

especially at the lower modes, are distinctly dissimilar. 

It is, therefote, not easy to choose a characteristic 

**See foot note next page4i•e• page 332) 
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length which will be a true reflection of the beam shape 

for all modes. The characteristic length is defined here 

from consideration of the resonant frequency factor. It 

win thus not necessarily be truly "characteristic" of the 

mode shapes. It would be truly characteristic in the 

special case mentioned darner where the true mode shape 

of the beam was a number of identical sine waves. This is 

the basic assumption underlying the analysis of Ross, 

Ungar and Kerwin (and the "normal mode" approach of Mead), 

and hence explains why they obtain a unique damping relation 

for all the modes;. In tnis regard, it is clear that their 

analysis cannot be applied to the lower modes of cantilever 

beams with good accuracy. 

Although the damping curves do not overlap, it is 

seen that for values of V, far from the peaks, they are 

,fairly close to each other. The differences are more 

pronounced in the region of the peaks. For instance,from 

fig. 6.11, the ma(imum errorjn the,  dampitig, in assuming 

that the second mode curve is coincident with the first 

mode curve is about 16 per cent (at 14 . 0.3). Similarly, 

for the third mode, the error is about 12 per ce2t 

(at 11,-= 0.6). Where a large error may result is in the 

**The 'Kerwin shear parameter (which is a half of the 
reciprocal of the 'Mead shear parameter' for a beam) is 
different from the characteristic shear parameter defined 
here. Both definitions are, however, simply related; and 
the above condition holds good in each case (see Appendix III). 
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exact location of the damping peaks. Eor instance, still 

referring to fig. 6.11, the assumption of coincidence of 

all the curves with that for the first mode, would lead to 

errors of about 80 and 25 per cent in the location of the 

second mode and third mode damping, peaks respectively. 

Luckily, however, the damping curves (at any rate, for 

moderately low values of the material loss factor) have 

fairly broad peaks, so tat a large error in the values 

of 	involves a much smaller error in the beam loss 

factor. 

The near—equal values of Vat a given Vc) for these 

modes' perriat some general observations to be made. For 

an? given beam, 1/,(= 	) will normally decrease as the mode 

number increases. This is because e.2 is directly 
proportional to the resonant frequel,cy; and although V 

may increase with frequency (owing to the frequency-

- etiendence of the shear modulus, G;) its rate of increase 

will usually not be as rapid. It follows that if a beam 

is designed so that, at the first mode, it is at the peak 

of the damping curve, then the higher modes will have 

progressively less d-'mping than this mode, unless the 

material loss factor increases sufficiently rapidly with 

frequency to counter the effect of the decrease in \,. 

Similarly, if it is desired to design a beam sothat the 

higher modes are highly damped, it would he necessqry to 
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ensure that at the first mode, the shear parameter is much 

greater than that for maximum dampin. 

These observations are borne out by the experimental 

results presented in section 5.5 (chapter 5). Reference 

to table 5.c will show that beam 3, for instance, has at 

the first mode, 0 shear parameter of 2.09 which is much 

greater than the optimum (0.88). From the tip amplitude 

response curves for the beam (fig. 5.6a), it is clear 

that the higher modes (second and third, at any rate) are 

more damped. (The material loss factor for P.V.C. varies 

very little with frequency, — see the section on material 

properties, chapter 3 — , so that its dependence on frequency 

ta.s negligible effect here). On the other hand, beam 4 

has a shear parameter close to the value for maximum damping. 

From its resonance curves (fig. 5.9a), it is seen that the 

resonant tip amplitude ratios for the 2nd and 3rd modes 

are of the same order of magnitude, and not much different 
from that for the first mode, implying that these higher 

modes are progressively less damped. 

Figs 6.13 and 6.14 show the resonant tip amplitude 

ratios (corresponding to figs 6.11 3nd 6.12 respectively) 

plotted against the characteristic shear parameter. As 

would perhaps be expected, the curves lie one above the other, 

do spite of the facb that the corresponding damping curves 

intersect. This is due tc, the fact, already mentienei, that 
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for any given beam loss factor, the tip amplitude ratio 

becomes less as the mode number increases. 

6.2.c. 	Application of the graphs  

There are many ways in which the optimisation curves 

of the last section can be applied. An obvious one is in 

the design of beams to satisfy some damping and stiffness 

requirements. 

(a) the choice 

properties; 

(b) the choice 

(c) the choice  

The problem can take several forms, such as: 

of a suitable geometry, for given material 

of a' suitable material, for a given geometry; 

of both material and geometry, but with some 

restriction on, say, weight, length, etc. 

The procedure adopted in most cases is usually straightforward. 

Besides, this aspect of the design study has received 

fairly wide treatment from previous investigators (e.g. 

Kerwin et al [7471 and Mead [62]). It will, therefore, not 

be dealt with in detail here. 

One point, however, needs some mention. If the 

viscoelastic material properties are frequency-dependent 

as they invariably are), a "trial and error" procedure 

has to be adopted if the resonant frequency is not initially 

specified. To illustrate how this can be done, consider 

the following problem: The cross-sectional dimensions 

and the material properties of a three-layer beam are 

given; and it is further specified that the beam loss 



338 

factor at the n—th mode should not be less than a 

prescribed value. It is desired to find a suitable 

length, and the corresponding resonant frequency. 

The problem can be tackled in the following manner. 

Choose a trial value for the resonant frequency, and from 

the information on the viscoelastic material properties 

given, obtain the corresponding shear modulus, G'1 , and the 

material loss factor, '7,  . Use this value of 7), ani the 

given thickness ratio of the beam, as well as the 

optimisation curves for the n—th mode (assumed available), 

to determine tne shear parameter, 14 , and the frequency 

factor, k, corresponding to tne given value of the beam loss 

factor. From this shear parameter, v' , and the above shear 

.modulus,G:, calculate the corresponding length of the beam. 

Use this length and 136,1  ,to calculate the, corresponding 

resonant frequency,Won. If this is different from that 

assumed initially, use it as a better approximation and 

repeat the process until an initially assumed frequency 

and the calculated_one are apnroximately tne same. 

Convergence gill usually be rapid since the variation of 

the material properties with frequency is normally slow. 

The optimisation graphs can also be employed in the 

estimation of the viscoelastic material properties. All 

that is necessary is that the geometry of the system, the 

resonant frequency, and the tip amplitude ratio be known. 
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The last two can be determined very readily by testing a 

given length of the beam as a cantilever beam subjected 

to displacement forcing at the root. Suppose, for instance, 

that such a test on a three—layer beam, of thickness ratio 

H = 0.5, gave an amplitude ratio of 13.0 and a first mode 

resonant frequency such that 130, = 2.02. Then, to 

determine the properties, it is only necessary to find, 

from the graphs for H = 0.5, (fig. 6.1) the loss factor1 77,2  

and tha shear parameter corresponding to the given 

amplitude ratio and frequency factor.,•  This is readily done 

by interpolation, as illustrated below. 

-As a first trial value, take a material loss factor, 

= 0.5. From the fL—versus—V; curve corresponding to it, 

it is seen tnat when fL= 2.02, V, = 0.15. Also fro% the 

tip amplitude ratio curve, when Ta  = 13, V, = 0.12. The 

difference between these two values of V, is 0.03. Next, 

take a material loss factor, 11  = 1.0. From its poi  curve, 

when Al = 2.02, VI  = 0.09 ; and from its Ta  curve, when 

Ta 
= 13, V = 0.058 ; giving a difference of —0.032 

between the two values of 14 . Interpolation between the 

two differences gives 17, 	0.75. It is, in fact, seen 

that n = 0.75 and 	= 2.02 gives Ta  = 13 and also 

= 0.1. Since the beam dimensions and other material 

properties are known, the shear modulus, G;, can be 

calculated from V. 	The shear modulus and the loss 
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factor of the viscoelastic material at the given resonant 

frequency are thus known. 

It may be remarked that the best portion of the curves 

for this purpose is the region immediately before the peaks 

of the damping curves. At very high values of 140  the curves 

begin to intersect, and interpolation becomes rather 

difficult. In an actual practical case, it would be 

necessary to start off with a fairly long beam to locate 

the working position on the curves. The beam can then be 

shortened appropriately to get it to the re ;ion where 

interpolation is best. Moreover, frequency-dependence can 

be examined by suitably choosing thickness ratios, and 

then shortening the beam lengths progressively. 

The obvious 'disadvdttage in using this as a method of 

determining the material troperties is that it does not 
take account of strain effects. It is thus not suitable 
for the accurate determination of the material properties 

of viscoelastic materials with very pronounced strain-

dependence. On the other hand, it has the advantage that 

it can be used to determine the properties of viscoelastic 

materials as bonded, so that the properties of the bonding 

agent are taken into account. This ks VArticularly 

important if these material properties are to be later 

used in predicting a given response of the beam accurately. 

Besides, the set-up for the test is very simple and requires 
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very little instrumentation. 

The above design study has yet another important 

application. This comes in the prescription of laws of 

frequency-dependence for viscoelastic materials, an essential 

prerequisite in the process of the "tailoring" of these 

materials. The basic philosophy recognises the fact that 

frequency-dependence is inherent in viscoelastic materials; 

and that it is possible to influence the nature of this 

dependence quite considerably by chemical and physical 

processes well under the command of physicists and chemists. 

It then sets out to examine whether it is indeed possible 

to put frequency-dependence to advantage, and if so, in what 

ways. Two examples will be considered, as an illustration 

of the approach. 

Suppose it is required to design a three-layer beam of 

a given thickness ratio, H, mass per unit length, m, elastic 

layer thickness, h2 , and Young's modulus, E2; such that 

the damping at any given mode is independent of the beam 

length. What law of frequency-dependence should the 

viscoelastic material have? 

To start with, assume that the material loss factor 

is frequency-independent. Of the system parameters, only 

y/  and 	contain the beam length, L. From the optimisation 

curves for fixed values of H and 171  it is seen that for 

any value of the shear parameter,l/r, there is only one 

value of the beam loss factor, /7 on 	If the beam length, C , 
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2 s varies, VI  also varies being proportional to t ; and hence 

the beam loss factor, 11,7 , changes. If 	therefore, to 

remain constant as 	varies, it follows that V, must also 

remain fixed for all values of £ ; which implies that 

eGfi  = constant ......6.2.iv, since E2 , H, h2 , are all 

constant. Again, for any V,, there is only one value of 

, so that if vi  is to remain constant, p must also 

remain constant as t varies, i.e. 	wt.f*  

	

El 	- constant, 

EI for all t ; and since -fa- is constant, it follows that 

1.0414-  = constant 	6  2.v. The variable, 	, can be 

eliminated from equations 6.2.iv and 6.2.v to giVe the 

condition G; = 	...... 6.2.vi, Kg  being a constant. 

Hence, to achieve the desired condition, the shear modulus 

must be directly proportional to the frequency and the 

material loss factor has to be frequency-independent. For 

such a beam, the resonant frequency will be inversely 

proportional to the square of the'length (equation 6.2.v) 

as in the case of a plain undamped belm. 

As a second example,(example 2, for short), consider 

an even more practical problem. Suppose it is required to 

design a beam (of given dimensions and elastic layer 

properties) wnich is such that its beam loss factor is the 

same for all modes. What law of frequency-dependence should 

the viscoelastic properties obey? 

Assume once more that the material loss factor does 

not vary with frequency. Then, the method for obtaining, 
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the exact solution involves the following stens. For the 

given beam thickness ratio and the assumed material loss 

factor, obtain for each mode, the graphs of the beam 

loss factor, IL, and the frequency factor, p , against 

the shear parameter, 	. For the given constant 17 

obtain from each set of curves the corresponding values 

of V1  and A, . Using the given beam dimensions, calculate 

_from W, and WP-on   from L. Do this for all the modes. 

A grapn of G, against tem gives tree required law. 

It is, however, possible to obtain an aproximate 

and simpler solution, by assuming that the curves of the 

beam loss factor against the characteristic shear parameter, 

are the sane for all the modes. It has already been 

shown that although tnis is not true, the error is nbt 

very appreciable. If this is done, then the only require— 

ment for a constant beam loss factor for all modes is that 

= 	= constant 	6  2.vii; and since, for a given 

bean, El, m, f, H and hz are constant, equation 6.2.vii 

reduces to Crt  = Kwt0-or, 	6  '.viii. In other words, 

the in—phase shear modulus must be proportional to the 

resonant frequency, a caadition which is definitely 

satisfied when the shear modulus, G,, is directly propor—

tional to the frequency. 

It is thus seen that a three—layer beam whose visco—

elastic layer has a shear modulus varying in direct 
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proportion with the frequency, will have, not only a 'modal' 

beam loss factor that is independent of the length, but 

also, for a given length, a beam loss factor that is 

approximately independent of the mode; provided the 

material loss factor, '7, , is constant with frequency. 

It is possible to think of similar problems, and:to work 

out the laws to satisfy the design requirements; but the 

above cases serve to illustrate the method of approach. 

In the two cases considered, it has been assumed that 

the material loss factor is freeuenci-independent. It has 

been mentioned earlier that the material loss factors for 

many viscoelostic materials vary only slightly with 

freeuency. Such an effect would, therefore, only cause 

a slight variation in the design condition being sought. 

In any case, if it is reiuired to take accunt of the 

frequency-dependence of the loss factor, this can be done 

using the optimisati-?r_ curves. To obtain 9 unique solution, 

it would be necessary to first presr!ribe one of the follow-

ing: 

(a) the freluencv-dependence of the loss: factor, I?, 

(b ) the frequency-dependence of the shear modulus, G,; 

(c) some relation between the shear modulus, Go  and the 

material loss factor, 	• 

As an illustration of the method of approach, suppose 

that in example 2 considered earlier, instead of a 
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constant 70  a relation between G;andr4 is specified. Then 

the procedure for plotting the frequency-dependence curves 

is as follows: Choose a value of 1-4, and calculate the 

corresponding 	Go to the iamping curve corresponding 

to this value of 1I  and the given thickness ratio. For the 

prescribed value of the beam loss factor, find the corres- 

ponding characteristic shear parameter, 	Using the beam 

dimensions given, and the value of G: calculated above, 

calculate, from V the corresponding frequency, 4,,. This 

is now the frequency corresponding to 11  and Gr,. Choose 

another value of Yi and repeat the process. Continue until 

enough points are obtained for plotting the 	-versus-0" 

and 7-Versus-t0-  curves. 

6.2.d. Effect of the viscelastic extensional terms  

In the theoretical considerations leading to the 

establishment of the design parameters (section 6.1.a), it 

was assumed that the viscoelastic extensional terms made 

negligible contribution to the system response. If, for 

instance, this were not so, a variation in the shear 

parameter, y, due to a change in the shear modulus, G;1  

would also cause a change in all the other coefficients 

of the differential equations. The resonant response of 

the system would, therefore, depend not only on V , H, 

and 771  , but also on g,-= G;/E2. Under what conditions, if any, 
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does the parameter, g1, have appreciable effect on the 

system response? 

To examine this, it is best to consider the worst 

possible case. It has been shown in section 4.2.1, that the 

extensional terms become relatively important at 
G'  (a) large values-of 1 i (or 	). ' (b) large values of H; 172   

and (c) small values of \/, (short lengths of beam). The 

stiffest viscoelastic material reported in the literature 

has 	'4 E11 = 5.8 x 104  lb/sq. in. E23,24-1 . Remembering that 

E; = 3G,, it follows that the value of gi = 1(52  ( 	= 1) can 

be regarded as a truly upper limit for practically all 

present day engineering materials. (For concrete, for 

instance, assuming a Young's modulus of 4 x 106lb/sq. in., 

g1 .4.. 5 x 163., for ro = 1.0). With this value of g, , and the 

largest thickness ratio considered in tte optimisation graphs, 

namely, H = 2; graphs of the various resonant responses can 

be obtained as in the previous section. This has been done 

for '71  = 1.0. Table 6.a gives a comparison of these 

results with those obtained for gi = 5 x 104(and the same 

values of H and Yll ). The latter set is completely indistin—

guishable with the values for g1 = 2 x le, both of which 

were plotted together in all the graphs given in section 

6.2.a. The percentage differences between the two sets of 

values for the beam loss factor, the frequency factor, 

and the tip amplitude ratio, are given underneath the figures 
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SHEAR 
PARAMETER 

V, 

TIC 	AiIPLITUDE 
RATIO, Ta  

BEAM 	LOSS 
FACTOR,7701  

bRE,VENOY 
FACTOR, 4, 

x 	 4 El= 5 x1 0 G 	 2  T i 2= 1 0 G' 	 4 Tfz= 5) (1 0 G -E: 	'2  2= 10 G: 	-4 
0 

G 
E 
: 	2 
a= 10 -W,  5 X1 

0.0125 13.94646 9.75594 0.11083 0.13095 0.50204 0.53536 

(-30.0) (18.15) (6.63) 

0.05 5.18+16 4.80080 0.30899 0.31897 0.69617 0.73172 

(-7.40) (3.24) (5.10) 

0.1125 3.64992 3.54961 0.45231 0.45713 1.01809 1.05271 

(-2.74) (1.07) (3.40) 

0.2 3.18233 3.13393 0.52367 0.52754 1.42354 1.45660 

(-1.52) (0.74) (2.32) 

0.4-5 2.-)3506 2.91')16 0.55968 0.56344 2.35927 2.40092 

(-0.53) (0.67) (1.77) 

0.8 2.96541 2.96989 0.55272 0.55385 3.38904 3.42905 

1(0.15) (0.20) (1.18) 
‘ 

1.25 3.15489 3.16721 0.52640 0.52544 4.44238 4.48055 

(0.39) (0.18) (0.86) 

3.2 4.40132 4.40818 0.38874 3.55310 7.13138 7.18575 

(0.18) (-0.16) (0.06) 

TABLE 6.a 

Three-layer beam: Solutions showing the effect of the 
-viscoelastic extensional terms. H = 2.0 , 	/7/  = 1.0  
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for g1 = 10-2. 

It is seen from the tables that the values agree 

closely except for very small values of the shear parameter, 

VI ; that is, for short beams. The peaks of the damping 

curves occur at the same value of the shear parameter, and 

agreement is best in this region for the damping and the 

tip amplitude responses. Thus, even for this extreme case, 

the error involved in ignoring the effect of the viscoelastic 

extensional terms is seen to be small for most of the range 

of values of 1/1. 

It is even more revealing to consider a specific 

example. Assume that the beam overall thickness is 0.6 in., 

and that the beam is being designed to have the maximum 

damping for H = 2 and 'f-1.1  =1.0. If the metal layers are made 

of aluminium (Ez = 107 lb/inz.), then for g1 = 10-2, the beam 

length would have to be 1.34 in.. If steel had been used 

instead, the length would be 2.3 in.. Such a beam would 

be too short to be of any practical use. Besides, for 

such short lengths, some of the assumptions of the theory 

(e.g. no shear deformation in the elastic layers etc.) 

would no longer hold (see limitations of the theory, 

section 7.1). This illustration emphasises the truly 

limiting nature of the assumed value of gl , and the close 

agreement between the values obtained for this value of gl, 
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and those for lower values, confirms that extensional 

effects can, in most practical cases, be ignored. 

6.3. Five-layer beam: Effect of the distribution of the  

elastic layers on the stiffness and damping response --

constant viscoelastic—layer to elastic—layer thickness  

ratio. 

The relevant parameters in the study of the resonant 

responses of five—layer beams have been obtained in section 

6.1.a and b a s H, , H2 el , 	Va  and Pon for systems with 

constant modified forcing function. The effect df these 

pntamPt4rt can be studied in the same way as for the three—

layer beam. Thus, by keeping Hi  , H2  and e, constant, it is 

possible to obtain, for various values of the material loss 

factor, ) , the familiar curves of the beam loss factor 

and the frequency fact-.r against the shear parameter V2. 

Then, by varying each of the quantities Ht  , Hz  and e, in

turn, and repeating the process each time, a whole family 

of graphs can be obtained, as in the three—layer case. 

In the present work, however,.it is intended to 

investigate only an aspect of these graphs; one which has 

an important place in the design application of multi—layer 

beams. It is best presented as a problem. Fara mil/en 

total viscoelastic layer thickness, how does the 
ratio of total elastic layer thickness 

distribution of the elastic layers affect the system 

da'Thin? 
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The significance of this problem can be illustrated 

with the following exam ple. Suppose it is intended to 

make a damped symmetrical sandwich structure out of two 

avai19,41e layers of viscoelastic material (of equal 

thickness), and some elastic material, available in any 

desired thickness. The structure is to nave a fixed 

overall thickness. Two methods of approach can he adopted. 

A three—layer beam can be constructed, by bondirr; the two 

viscoelastic layers together, and using this as the central 

layer, the thickness of the elastic facing layers being so 

chosen as to give the desired overall thickness. Alter—

natively, a five—layer beam can be made. A problem 

immediately arises as to how the elastic layers have to be 

distributed. The central layer could be made relatively 

thick, with the facing layers extremely thin; or vice versa. 

Or, the three elastic layers could be made of equal thickness. 

What should guide one in deciding how these layers should 

be distributed? The present study is aimed at illustrating 

how such a problem can be tackled. 

Suppose the given thickness ratio of 

total viscoelastic layer thickness  
total elastic layer thickness 	is kT.  

therefore that 2h2 2h3  + 	= kT  ; orZH2 = kT(2 + Hi ) ...6.3.i. 

H2, is thus expressible as a function of H1 , and is known 

when H1 is known. Also, since the facin,f layers and 

central layer are of the same material, e,= 1. The 

It follows, 

the 
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independent variables now reduce to three, namely, 112  , Elf, 

and Uzi  similar to the three-layer case. The computational 

procedure thus involves varying HI in steps; and at each step, 

obtaining the beam loss factor and the frequency factor-

versus-shear parameter curves. 

Such a set of graphs is given in fig. 6.15 for a 

1 thickness ratio kT  = 7 , and a material loss factor, "I = 1.0. 
The graphs are for a cantilever beam subjected to displacement 

forcing at the root and vibrating in the first mode. 

Fig. 6.16 also gives the variation of the beam loss factor 

with the frequency factor. 

Fig. 6.15 shows that as the thickness ratio, Hi, is 

gradually increased from zero (i.e. the three-layer case), 

the beam loss factor, for any given value of the shear 

parameter, increases; while the frequency factor, Poi , 

decreases. A maximum value is soon reached for the damping 

response, at a thickness ratio of around 1.J, beyond which 

value the damping decreases with increase in H,. The 

frequency factor also shows a turning point - a minimum - at 

about HI = 1.0, and thence increases as H1  increases. 

This variation is brought out more clearly by fig. 6.17, 

which shows the variation of the maximum beam loss factor, and 

the corresponding frequency factor and shear parameter 

with the thickness ratio, Hl . Some important features of 

these graphs need mention. 

(1) The graph of the maximised beam loss factor against 
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5.5  

H/  shows a maximum at about H/ = 1.0 (in fact, Hi = 0.95 from 

the graph). This maximum value, 0.55, represents the 

largest possible beam loss factor obtainable from a five-

layer 1  beam with kT  = 	= e, = 1.0). It is seen that 

this corresponds to a configuration in which the elastic 

layers are of about equal thickness. 

(2) As H, is increased beyond 1.0, the damping decreases 

and becomes equal to that of a three-layer beam (of the 

same thickness ratio, kT) at a value of 111= 2.4. Beyond 

this value, the five-layer configuration gives less 

maximum beam loss factor than the corresponding three-layer 

beam. 

(3) As the maximised beam loss factor increases to a 

maximum, the corresponding frequency factor, 8 

decreases to a minimum at the same value of H1 . As HI is 

further increased, g opt,  , now increases, reaching the value r oi  

for the corresponding three-layer beam at the same value 

of 11 1 = 2.4. Thus, it may be said, of the behaviour of o

a

f 

andiN opt'  that "what is gained in damping is lost 

in stiffness, and vice versa". 

(4) From the graphs of figs 6.16 and 6.17, it is seen that 

for any given beam loss factor, the frequency factor for 

the five-layer configuration is geater,than, equal to, or 

less than that for the corresponding three-layer configura-

tion, according as Hi is greater than, equal to, or less 
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than 2.4. This is true for all values of the beam loss 

factor attainable using both configurations. A similar 

statement can also be made about the beam loss factor. 

Thus, for any given frequency factor obtainable using both 

configurations, the five—layer beam will yield a beam loss 

factor which is greater than, equal to, or less than that 

of the corresponding three—layer beam, according as H1  is 

less than, equal to, or greater than 2.4. 

(5) The shear parameter at the Maximum beam loss factor 

varies in much the same way as the corresponding frequency 

factor, showing a minimum at the same value of Hl . 

It must be emphasised that a high value of the 

frequency factor, pot  , does not necessarily imply a high 

resonant frequency. 	.Fig. 6.18, for instance, shoNs graphs 

of the resonant frequency and beam length at the maximum 

beam loss factor, plotted against H1  , assuming a constant 

in—phase shear modulus of 5,0:.)0 lb/in2., as well as 

E3 = 107  lb/inz., P = 0.1 lb/in3., P = 0.05 lb/in3., and 

1 
total metal thickness = 0.5 in. (kT  = 7). It is seen 

that, although from fig. 6.17 thehropt curve has a 

minimum value, the corresponding resonant frequency 

!rlt!.r6nses With H7 , since the beam length, t, decreases 

with increase in H1. 

The optimisation curves obtained above can mow be 

employed in answering luestions SUCh 3L' this: For 41])1 
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given length of beam, and material properties, what thick—

ness ratio gives the best damping performance? Assume 

that the shear modulus G; is frequency—independent. Then, 

if the total viscoelastic layer thickness is kv, then the k, 
total elastic layer thickness is 7=,; and it is easily 

'T 
shown from the exprssion for the shear parameter, y2  , 

2g2G;kT  
(equation 4.7.ix.f), that V2  = r 	, 	(2 +- Hi ), extensional "v  

viscoelastic terms being neglected. This gives 

112 = OL(2 	"' ) 	 6.3.ii, where CL is some constant, 

known for the given system. Thus V2  and Hi are linearly 

related. For each H1 , the corresponding 1/2 can be calculated, 

and with this, the corresponding 1-101  and Poi  can be obtained 

from the curves. 

More cinveniently, the graph of Hiegainst 	can be 

plotted on the same sheet as the optimisaLion curves, the 

axis of H1  being vertical. Two such graphs, (a) and (b), 

are shown in fig. 6.15. (a) is for a length of 4_in., 

while (b) is for an 8—inch length. The shear modulus is 

assumed to be 5, Y3D lb/in2 in each case. The other 

material properties, and beam dimensions are taken as 

E3  = 107  lb/in2. , pa  = D.1 	q—. 0.05 lb/in15., total 

metal thickness = 0.4 in.. 

To illustrate how to obtain the desired values from 

these graphs, consider the beam of length, 4 inches. 

Take any value of H1  . The corresponding value of Vz  is 
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obtained by moving horizontally across (along that value 

of H1 ) until curve (a) is reached. Move vertically 

this value of ),and read off the values of 1, and p, 
corresponding to the chosen value of Hi. The resonant 

frequency is calculated from g, using the beam dimensions. 
Repeat this procedure until the desired range of values 

of HI  has been covered. 

It is seen from the graphs, and from the above 

procedure, that for values of HI between 0 and 6, the values 

for the :beam loss factor and the frequency factor for 

t= 4 in. lie in the portion of the curves between vz  = 0.4 

and 1.6; while for f = 8 in„ they lie in the region 

between 14 - 1.6 and 6.4. It will thus be obvious that the 

variation of the damping and the frequency with H/  in each 

case would depend on the regions where the curves of 

H1  —versus—VZ  cut the damping and frequency factor curves. 

For instance, fig. 6.19 gives the beam loss factor and 

frequency curves for (a) and (b). The two sets of curves 

are by no means similar. Thus, while the natural frequency 

curve for f . 4 in. shows a marked variation with Hi , the 

corresponding curve fort =8 in. is almost insensitive 

to Hi . This is because curve (b) cuts the grapris at the 

portion where the 0, curves are crowded to ;ether. Also 

the darn in curve, for f = 4 in. has a peak close to 

H1  = 1.0, while for t. - 8 in., the pew,: occurs at a lower 
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value of H1(0.7). 

From equations 6.3.ii, and a careful study of the graphs 

of fig. 6.15, it will be seen that the frequency and 

damping curves (plotted against H. for any given length of 

beam, will take the same form of variation as the maximised 

beam,loss factor and the corresponding frequency factor 

curves of fig. 6.17, if the Hi-versus- V2 curve intersects the 

graphs in regions where the separation between the Y01  or 

poi  curves is such that 

	

vw, ( ) 	2 +  

	

*C4) 	H; 

In equation 6.3.iii, Vii:,A){orVI-1,1 designates the shear 

parameter corresponding to any value Z = Z11  on the 

Z-versus-14 curve for any Hi= H; for 	Z, here, stands 

for either rioi  or POi. Also, it is assumed that the 

Z-versus- 1/2  curve corresponding to Hi = H./1, occurs before 

that for Hi= Hp, as one moves across the graphs (within 

the region of intersection), in the direction of 1!/z  increasing. 

This direction is indicated by the arrow head A in fig. 6.15. 

6.4. Relation between the beam loss factor and the tip 

amplitude ratio. 

In section 4.6.b, the beam loss factor was defined 

as an energy ratio. The definition was, however, related 

to a given response - the tip displacement amplitude 

response - since the frequency at which this loss factor 

6 3  iii. 
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was determined corresponded to the maximum tip displace-

ment amplitude. It is thus natural to ask: Is this loss 

factor a true reflection of the tip displacement amplitude 

response? In other words, for any given mode, is there a 

unique relationship between them, in the sense that to any 

beam loss factor, there corresponds one and only one tip 

amplitude ratio, no matter the beam geometry? 

It is perhaps easy to see that such a unique relation 

is unlikely , as the beam loss factor depends, not only on 

the displacement amplitudes, but also on their phase 

relations, and , in fact, on the actual beam mode shape, 

which, in turn, depends on the beam geometry. But how far 

off is it? 

Fig. 6.20 gives a graph of the beam loss factor for 

the first mode, plotted against the tip amplitude ratio 

at resonance. Points for this graph were indiscriminately 

taken from the responses of three-laye'r and five-layer beams-

of differing geometry. Although only a few points are 

shown for clarity, many more points had been plotted, and 

the scatter in the points were the same. It is seen from 

the graph that for beam loss factors of up to 0.2, the 

points lie practically on a smooth curve. Beyond this 

'Value, slight discrepancies occur between points from the 

various configurations. The close agreement of the points 

is, however, remarkable, and except for extremely accurate 
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work, the beam loss factor can be regarded as uniquely 

related to the tip displacement amplitude ratio. 

An important significance of this is that if it is 

required to design a cantilever beam to have a given 

resonant tip amplitude ratio when subjected to displace—

ment forcing at the root, all that is necessary is to 

design the beam to have a given loss factor. The geometry 

or configuration chosen is rather unimportant. 

6.5. 	Concluding remarks  

In addition to the conclusions already arrived at 

in the various sections of this chapter, some general 

concluding remarks can be made. 

(a) Adlettri understanding of the parameters essential 

in the design study of multi—layer beams is important for

efficient design. This chapter has been aimed at showing 

how the effects of these parameters can be carefully and 

systematically investigated. Once they have been 

understood, the choice of materials and geometry becomes 

easy and straightforward. 

(b) With careful choice of materials, and optimisation 

of the geometry, high beam loss factors can be readily 

achieved. For instance, from fig. 6.9, it is seen that 

for a three,-layer cantilever beam with a viscoelastic 

layer having a material loss factor of 2, and only twice 

as thick as each of the elastic layers, it is possible 
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to obtain a begm loss factor of 1.0. 

(c) Owing to the nature of the dependence of the beam loss 

factor on the shear parameter, it can be said that, as a 

general rule, stiff viscoelastic materials are suitable for 

short lengths of beam and for relatively stiff elastic layers, 

while soft viscoelastic materials are suited to long beams 

and to elastic layers with low Young's modulus. 

(d) Temperature effects can be readily taken account of by 

careful design. For instance, suppose a three-layer 

cantilever beam of thickness ratio, H = 0.1, is designed to 

have a beam loss factor of 0.2 in its first mode; and that 

its viscoelastid.layerLiws_a material loss factor,-ybf abatzt 

1.0, which either increases or remains constant with decrease 

in temperature. From fig. 6.3 it is seen that the minimum 

value of the shear parameter necessary is 0.24. If this 

Value is used in carrying out this design in the summer, 

it is clear from the optimisation graphs that the shear 

parameter can increase to 4.0 during the winter, with the 

beam loss factor always being greater than , or at least 

equal to the prescribed value of 0.2. This implies a 

possible increase of the in-phase shear modulus to about 16 
times its summer value. For evoseal, :the most temperature 

sensitive viscoelastic material investigated in chapter 3, 

such an increase in the shear modulus would require a drop 

in temperature, from summer to winter, of 40°C - a more-than- 
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adequate allowance for a normal winter. 

If a' higher beam loss factor is desired for the same 

temperature drop, this can be readily achieved by using a 

higher thickness ratio, since, for any given material loss 

factor, the graph of the beam loss factor against the shear 

parameter becomes 'broader' as the thickness ratio increases. 

Thus, with a thickness ratio of 1.0, the beam loss factor 

could be kept to a minimum of 0.35, for the same material 

loss factor and the same temperature range as above. 

However, a higher thickness ratio implies a lower stiffness 

(i.e. frequency factor) for any given shear parameter; and 

in certain cases, it might be necessary to strike a 

compromise between the damping and stiffness requirements. 

(e) Frequency-dependence can be utilised to advantage by 

seeking for laws of dependence that favour some desired 

responses. For instance, it has been shown that a three-

layer beam with a viscoelastic layer the in-phase shear 

modulus of which is directly proportional to the frequency, 

will, for any given mode, have a beam loss factor independent 

of the beam length; and for any given length, the overall 

loss factor of such a beam will be approximately independent 

of the mode. This is true no matter the end conditions of 

the beam, provided the material loss factor exhibits negli-

gible frequency-dependence. 

It is useful to examine how the material properties 
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given in section 3.7 approximate this "straight ling" law. 

'Reference to the graphs will show that at room temperatures, 

and between 50 and 200 c.p.s., the deviation from the 

straight line law may vary within ±35 per cent for evoseal, 

and within ±45 per cent for P.V.C. Hycadamp shows a much 

less marked deviation within the frequency range, 200 to 

400 c.p.s., and at room temperatures - the departure from 

the law being within ±5 per cent. 

The above comparisons may not be very encouraging. 

However, the straight line law can certainly be a target at 

which chemists and physicists engaged in the tailoring of 

viscoelastic materials should aim. 

(f) The optimisation curves can be employed in the deter-

mination of the viscoelastic material properties. The 

method, apart from its simpicity, has the particular 

advantage that the properties are determined under conditions 

of bonding, so that the properties of the bonding material 

are taken into account. 

(g) For a given ratio of total viscoelastic layer thickness 

to total metal layer thickness, the five-layer configuration 

can yield more damping than the three-layer, provided that 

the correct geometry is used. Such an improvement in the 

damping may entail a loss in stiffness, depending entirely 

on the geometry and the material properties chosen. 
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CHAPTER 7 
CONCLUSION 

Detailed conclusions on the experimental verification 

of the theory developed, and on the application of this 

theory in the design study of multi-layer beams are given 

in sections 5.6 (page 296) and 6.5 (page 364) respectively. 

7.1. 	The theory,, its scope and limitations  

The differential equations developed in the general 

form in chapter 2, were solved and verified for beams with 

viscoelastic materials whose non-linear behaviour was such 

that it did not cause any appreciable deviation from the 

(linear) elliptical stress - strain law. However, the 

equations are equally applicable to systems with viscoelastic 

materials having any kind of non-linear stress - strain law. 

All that is necessary is that this law be prescribed 

in the general .form given in equation 2.1.i (page 40 ). 

Once this is done, it is possible to seek a solution of the 

resulting non-linear equations by either numerical methods 

similar to those employed here or other standard methods 

(see for instance D126, 12]). Besides, the analysis can 

be extended to take account of the hysteresis damping in 

the elastic materials, by replacing the simple straight-line 

stress - strain law used here by the general stress - strain 

law of elqation 2.1.i. 
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Some of the assumptions made in the development of the 

theory, however, impose some limitations to its range of 

applicability. For instance, shear deformation in the 

elastic layers was neglected in the analysis. This would 

become important for very short beams, and at the higher 

modes of vibration. Rotatory inertia effects, also ignored 

in the development of the theory, will be significant at 

the higher frequencies. Mead has shown [623 that for 

symmetrical three-layer plates (with a linear viscoelastic 

core), rotatory inertia effects may be neglected so long as 

.<< h G
,hz 

 7 1  i, where f' ,and h2  are the g  

density and the thickness, respectively, of the facing 

layers; G; and hl are the shear modulus and the thickness, 

respectively, of the core; and 0.  is the forcing frequency. 

It was also assumed that all the layers had the same 

vertical displacement, y, at each cross-section; in other 

words, that there was no thickness-wise deformation in the 

layers. The implication of this has already been stated in 

section 2.1. It is easy to see that this assumption neglects 

the necessary reduction in thickness which results when the 

viscoelastic layers are detormed in shear, and which imposes 

an additional vertical motion on the layers. This effect 

is bound to be more sinificant for very thick viscoelastic 

layers, and at very high forcing frequencies. 

It follows, from the above discussion, that the present 
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theory can be classed as a 'low frequency' analysis of 

multi-layer beams. 

7.2. 	Sugcestions for further work  

The analysis presented here opens a wide field of study 

in the dynamic response of sTumetrical multi--layer beams. 

The design study introduced in chapter 6, clearly shows how 

much useful information can be gained by a systematic 

approach. This study should be extended to beams with more 

layers, to examine how the system responses are affected 

by the number of layers, the distribution of material within 

these layers, and their relative stiffnesses (i.e. the 

ratios of the Young's moduli of the elastic layers, or of 

the shear moduli of the viscoelastic layers). Also, the 

effects of boundary conditions on the beam responses should 

be investigated. 

A detailed study of the effects of rotatory inertia in 

all the layers and of shear in the elastic layers, should 

be carried out with a view to establishing the errors 

incurred in neglecting these effects at the higher modes. 

This can be done by ascribing shear functions, Oz, to the 

elastic layers ( as for the viscoelastic layers), and by 

taking the lateral inertia terms into account in considering 

the longitudinal equilibrium of an element of the beam. 

It should be pointed out that the shear functions, Oz, for 

the elastic layers may not be assumed constant across the 
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layer thickness (as in the case of the viscoelastic layers), 

unless a "shear correction factor" [56,128.7 is used. The 

assumption of a constant shear deformation across the layer 

thickness, is permissible (without any correction factor) 

for the viscoelastic layers , only because they are much 

softer in extension than the elastic layers which, as a 

result, provide most of the forces causing shear deformation. 

The effects of the thickness—wise motions of the 

layers, resulting from the shear in the viscoelastic layers, 

should also be examined, by including the appropriate 

inertia terms in the equations. 

Only systems subjected to harmonic excitation have been 

analysed in detail here. The present work can evidently be 

carried on to investigate the free and random vibrations 

of such systems. 

The general unsymmetrical multi—layer beam should also 

be investigated.  It was shown in section 2.2.d, that the 

analysis of such a beam by the method presented here, may 

prove extremely difficult owing to the variation of the 

neutral axis position with the applied load or deflection. 

However, it can be tackled by other methods. One such 

method is the use of the variational principles of mechanics 

E8,129,130. This would involve assuming, for each layer, 
displacement functions which satisfy continuity requirements 

at the interfaces. The strains can then be obtained, and 
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from these the stresses, using general stress: — strain laws 

similar to that of section 2.1. The equations of motion 

can now be obtained by applying the appropriate extremum 

principles. 
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APPENDIX II 

TABLES GIVING THE INPUT MOTION AND THE TEST 

TEMPERATURES FOR THE BEAEA TESTS  

TABLE 5.d Input motion, a;, and temperature (of the 

viscoelastic layers), T, for the resonance tests. 

Beam no. First mode Second mode Third mode 

5 
T,°C 27.0 27.5 27.2 
a'. ,in. 0.00055 0.00055 3.03029 

3A T,°C 27.4 27.5 25.6 
a',„in. 0.00038 0.00038 0.00016 

3B T,DC 26.6 27.3 
a;,in. 0.00064 0.00030 

4 T,°C 23.5 26.0 26.0 
a; lin. 0.00068 0.00048 0..30018 

4A T, 'C 25.4 25.8 
a,l in. 0.00060 0.00029 

5 
T,*0 25.0 24.3 24.5 
a; ,in. 0400069 0.30053 0.00040 

5A 
T, °C 24.1 21.4 
a',,,in. 0.00056 0.000/1-4 

6 T,°C 24.4 23.6 
ar„,in. 0.00063 0.)3039 

7 
T,°C 22.6 24.6 25.8 
a; tin. 0.00067 0.30054 0.00040 

8 T, C 24.7 24.6 25.8 
a 	,in. 0.00064 0.00051 0.00027 
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TABLE 5.e 	Input motion amplitude, 4, and temperature 
(of the viscoelastic layers), T, for the 
"mode shape" tests. 

Beam no. First mode Second mode Third mode 

3 T,°C 
acl, 	in. 

26.0 
0.00045 

26.7 
0.00034 

27.5 
0.00022 

5A T, °C 
a;, 	in. 

26.3 
0.00038 

27.0 
0.00038 

27.2 
0.00016 

3 3 T1 °C 
a; , 	in. 

26.6 
0.00064 

27.3 
0.00030 

___. 

4 T,°C 
a;, 	in. 

23.5 
0.00067 

25.1 
0.00048 

25.3 
0.00017 

4A T,cC 
a:01 	in. 

26.4 
0.00062 

.26.7 
0.00028 

5 
T,°C 
a!,,, 	in. 

24.7 
0.00069 

22.2 
0.00054 

23.5 
0.00038 

5A T,°C 
a;, 	in. 

24.4 
0.00092 

22.5 
0.00044 

6 T,°C 
al" in. 

26.0 
0.00060 

24.0 
0.00047 

7 
T,°C 
W., 	in. 

25.0 
0.00067 

25.0 
0.00054 

26.0 
0.00041 

8 T,°C 
a'0 , 	in. 

24.0 
0.00064 

24.8 
0.00051 

25.7 
0.00027 
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APPENDIX III 

THE RELATION BETWEEN .THE. BEAM LOSS FACTOR AND  

THE SHEAR PARAMETER FOR BEAMS WITH SINUSOIDAL 

MODE SHAPES  

The analyses of Kerwin et al &1,44,4j, and of 

Mead F.602,0j, show that for a beam having displacement and 

shear deformation amplitudes which are sinusoidally distri-

buted along its length, the damping can be expressed as a 

unique function of a "shear parameter", for given values of 

H and Yl. Although their definition of the beam loss factor 

is different from the one given here (see section 4.6.b), 

it will now be shown that this condition is also true for 

the beam loss factor, rion  as defined here. Also, it will 

soon be evident that the shear parameters defined by the 

above-mentioned investigators differ from the 'characteristic 

shear parameter' defined in section 6.2.b. It will, 

however, be shown that these parameters are all related, 

and that the beam loss factor, Ilon is a unique function of 

each of them. 

For the given beam, the absolute displacement, ya, and 

tne shear deformation, 	, at any point can, for the n-th 

mode, be expressed as, 

Ya 	aIn sin kng cos un f a2n  sin knt in i 	A3.i 

= ama cos kng cos let t a4n  cos kng sin te-t 
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harmonic excitation being assumed. kn is the resonant 

frequency factor for a plain undamped beam with the same 

boundary conditions as the given beam. For instance, for a 

simply-supported beam, kn  = 	n = 1,2, etc. 

To excite the beam in the manner prescribed, the forcing 

function must have a predominant component of the form, 

pn  sin knC cos cdt, at the n-th mode. Hence, on neglecting 

the viscoelastic extensional terms, the expressions for the 

coefficients, am , a2n , a3n  , and 4n  areobtained (by 

comparison with equations 4.4.vi) as, 

a
in 

a 
2L1 

Pn 
(kz  + V, )foCliAlkn3  (k(kn 4-  V, )( kn  

k3  

114  
Dn 

[0(i 
D  

- 0,2( kn  

a3n = pn [
Al  0Qpikn3  - (knz  4- V 1 )(kn  - 

kn  - 

Dn 

k3' 
a = - 4-n

n 

where, 

Dn = f oispikn3  - (2n  +1/1)(k n  - 32 )12  + {0;  (kn 	/31 )12  

	

k3 	k3  

	

n 	n 

Remembering that a; = 104(see equations 4.1.xviii), the 

expressions of equations A3.ii can be rewritten thus, 
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2 	
(1 F 	- (1 	)(1 	14),1 - 	14,2  (1 - A.) 

n ar 
n 

= -pn 

a = 
p 	lior,  

2n. 	n n 

Dn 

,tl, faacts  - (1 -4- VK  )(1 

a 	
1,,t, 	

n 

( 1 - k 

4/1  • -Pnkn Dn 

3 a 3n • Pnkn 

2  and 	Dn = kbn  E0(1/11  - 	(1 * Vic) (1 - .-I•i  )1 +  Yi t  UK  0- - k4 )

2 

n 	n J 

where 14(  = 14 , is twice the shear parameter defined by kl  n 
Kerwin et al E41, 44, 47J* Oli  and /h, are functions of the 

thickness ratio, H, only (since the viscoelastic extensional 

terms are being neglected); hence, the coefficients, ,arn  

am, etc. can be expressed in the forms, 

aln 
= vi i  6)  • n 	' 	a 	= Wi g • ama  = Vi'knY; and a 	= 1,1 1 14,4 

	

2/1 	n 2 ) 	n 3 	Afh 	n   A3.iii 

where each of the St is a function of the quantities, lix  

E, qi, and H; and is independent of - the mode. On the other 
n 

Assume now that both 17,  and H are held constant. 

94, is also the reciprocal of the shear parameter as defined 
by Llead for ,the -case of a simply supported beam [62,63j. 

pn hand, Wn which equals.-- depends only on the mode. 
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The absolute displacement amplitude, ya, at any point is 

given by ya  = (a5In 
4-  a'va )3  sin knt 

	

inn 	O. ) sin knt = 	' 	6 ( VK ,k+' 	, from equation A3.iii, 
n 

where g is a function of VK and — only. 

For any given mode, as the frequency varies, the 

displacement amplitude at any point becomes a maximum when 

q;(" 5 P) = 0 	 A3.iv , where S51  is the first 

Pi A derivative of g with respect to 7.7 ; and lE3  = -17c-T m  , is 
"n 

ILthe value of k+  at the n-th mode resonant frequency. It 

follows from equation A3.iv that p is expressible, 
implicitly or explicitly, as a unique function of )4(  ; hence, 

on employing the functional notation defined in section 6.1.a 

it can be written as 	= foolo 	A3.v. 

It is important to note that this functional relation is 

independent of the mode. 

The beam loss factor,  7 , is defined in section 

at the n-th mode resonant frequency (i.e. when 	gi  

by the relation, 

rlon 	1A' 
2 

   

A3.vi, 
4C‘,2i )(1 

  

  

where Ac, 	C;, and D; are as given in equations 4.6.ix. 

Consider, for instance, A;. On substituting for the 

displacement and shear components, the following expression 

k`F n 



results: 

11 , 	 . z 
%, = [1.4-  a2  i- 2 oc, kn3  athasn  + Azle a' + X a211 sin k c clS 0 n in 	 n 3n 	i 3n 	n 

-2 	i 
1 . 	

3 a = 	 in331a - C4n2n 	2 c(i kn  a 	+ 	+ A
2 n  eaz 	4,a 

	

3n 	. + 	a 	....A3.vii. 3n.  

It is noted that A2  which, from equation 4.6.v, is given by 

6H2  + e H3  
42 = 8 + 1211 + 6H+ eff3 , is a function of H only, since 

the viscoelastic extensional terms are being ne,J;lected. 
1213a g:a  

8+ 12H+ 6112 + elis 

813.2g' 	)(1 1(  1.5 H (411 + e112 )  
1441 + e Hz/ 

lens` 	+ 1211 I- 6112 + e 113) 

But from equations 4.1.xviii, V, = 

 

8P2  g, 

 

• 
4H 4-  -e H2  

Hence, 
V A, 
k2  

1.5 H(4H + eel) , z) k 	= 	fA  ( H) 8 .1- 1211 + 6H2  e H3  - 

where 	fA(H)is a function of H only (viscoelastic 

extensional terms being ignored). A, can now be put in the 

form, 
a 	k a, 

Alt 	= 2( kna3n)(n  In
)2, ÷ 2 	n 	) 	A2  +. 	fA  (1.1) 	..A3.viii 

a3n 	s11  

It follows from equation A3.viii, and from the expressions 

for the coefficients (equations A3.iii), that A, can be 

expressed as A; . (knam )2  EA (4K 	) 	, for fixed values 

of i and rit ; where S),„, is some function of 14(  and p 	this 

function being independent of the mode. 

Proceeding in a similar manner, each of the other 

quantities, 	C;1  and D, can be expressed as the product 

However, A, , from equation 4.6.v; 

k2  n 



it follows that and , 

= thus: A3.x. 
k4

;  
n 

related to VII  and 

which equals 

VK  
r2  
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of (k4,1asn)2 
 and some function of V, and f3 . Since the 

expression for the beam loss factor, /1n(equation A3.vi), is 

a ratityof .homogeneous functiOns arZthe.quantities, 	13; , 

C, and D; it follows that r1 on can be expressed as a 

function of V.. and 13, in the form, 

rion  = 5)1( vk , 13) 	A3.ix, where the functional 

relation 5 is independent of the mode. But equation A3.v 
shows that there is a functional relation between g and 
yK  , a relation which is also independent of the mode. It 

follows, therefore, .that 
70,1 

is expressible as a function of 

V. In other words, for fixed values of 17  and H, there 

exists, for all modes, a unique relation between the beam 

loss factor defined here, and the Kerwin shear parameter 

(and hence, the Mead shear parameter), for the beam 

considered. 

It was mentioned earlier that V is different from K 

characteristic shear parameter,U. However, since 141  = 

the 

kz n. 

is 

It has already been shown that both r) ion 
 and p are unique 

functions of vic  . It follows, therefore, that non   is also 

a unique function of VV. In other words, the relation 

between the beam loss factor, 77)n, and the characteristic 

shear parameter, 14, is also independent of the mode. 
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The above considerations show that the unique 

relationship (between the damping and the shear parameter) 

obtained by Kerwin et al, and by Mead, is not a peculiarity 

of their definitions of these quantities, but rather a 

consequence of the assumed distribution of the displacement 

and the shear deformation alOng the beam. 
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