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Abstract

Compression members, made from slender metallic plate elements, are prone to a wide

range of different elastic instability phenomena. A thin-walled I-section strut, made from

a linear elastic material, can suffer from the nonlinear interaction between a global (Euler)

buckling mode, and a local flange plate buckling mode. The interactive buckling behaviour

is usually much more unstable than when the modes are triggered individually and hence

significantly reduces the load-carrying capacity of real struts. The current work focuses

on such a problem using an analytical approach, the methodology of which has been well

established in previous works on sandwich struts and I-section beams.

An analytical model that describes the interactive buckling of a thin-walled I-section strut

under pure compression based on variational principles is presented. Analytical formu-

lations combining the Rayleigh–Ritz method and continuous displacement functions are

presented to derive a series of systems that comprise differential and integral equilibrium

equations for the structural component. Solving the systems of equations with numerical

continuation reveals progressive cellular buckling (or snaking) arising from the nonlinear

interaction between the weakly stable global buckling mode and the strongly stable lo-

cal buckling mode. The resulting behaviour is highly unstable and when the model is

extended to include geometric imperfections it compares excellently with some recently
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published experiments.

Imperfection sensitivity studies reveal high sensitivity to both global and local imperfec-

tion types. The worst forms of local imperfection are identified in terms of the initial

wavelength, amplitude and degree of localization. The effect of the varying rigidity of the

joint of the section web and flanges is also studied and a rapid erosion of the cellular buck-

ling response is revealed with increasing rigidity of the flange–web joint. A shell-based

nonlinear finite element model is presented, primarily for validation purposes. The results

from the analytical and finite element models show a good comparison, particularly for

higher rigidities of the flange–web joint.

A parametric study is conducted for two limiting cases, where the flange–web joint is

assumed to be fully pinned or fully rigid. For a chosen set of geometries, the most

undesirable interactive region is identified for both global and local slendernesses, in terms

of the strut length and the flange width respectively. Practical implications are discussed

in terms of the idealized buckling design curve. An analytical framework for the structural

analysis of the thin-walled I-section struts that exhibit the nonlinear interaction of a global

and a local buckling mode, including cellular buckling, has therefore been established.
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Chapter 1

Introduction

Thin-walled structures generally refer to structural components which consist of one or

more thin plates or shells connected together at one or more common edges. The definition

of thin-walled is fairly vague; a general definition for thin-walled members would be such

that the plate elements having a relatively large width to thickness ratio. Thin-walled

structures, including various structural types such as plates, girders, beams, columns and

shells, have a wide range of applications in many fields such as in the sporting and auto-

motive industries, alongside the fields of aeronautical, mechanical and civil engineering.

Structural components with thin-walled elements can be made of approximately isotropic

materials such as steel and aluminium, or anisotropic and orthotropic materials such as

laminated composites. For different applications, thin-walled elements can be relatively

easily formed into open or closed, singly or doubly symmetric cross-sections, as shown

in Figure 1.1 (van der Neut, 1969; Brockenbrough & Merritt, 1999). They provide good

strength and stiffness with a relatively small amount of material. Designers have been

taking the advantage of this weight efficiency in various applications where self-weight of

the structure is a key design factor. The application of thin-walled structures continues
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Chapter 1–Introduction

Figure 1.1: Different types of thin-walled structural cross-sections including a C-section,
hat section, T-section, I-section and box section (from top left to bottom right). Dashed
lines show the lines of reflective symmetry.

to grow in number as new and innovative designs are developed.

1.1 Applications

In aeronautical engineering applications, structural components with thin-walled elements

are extensively used in aircraft, space vehicles and satellites. Stiffened panels, for example,

are very commonly found in many iconic aircraft such as the Concorde supersonic airliner,

Figure 1.2(a), the Boeing 747 family and most lately the commercial aircraft from Airbus,

the double-decker A380, Figure 1.2(b). The locations that utilize thin-walled elements

are almost everywhere including the wings, fuselage, tails, as well as interior components.

Composite structures such as sandwich panels, made from two stiff metallic plates sepa-

rated by a soft core material, are also widely used in aircraft construction. A major step
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(a) Concorde supersonic airliner, photo-
graph taken from Orlebar (2004).

(b) Airbus A380, photograph taken from
Norris and Wagner (2005).

Figure 1.2: Iconic aircrafts made from structural components with thin-walled elements.

towards composite materials in commercial aeroplanes was perhaps the Boeing-NASA

ACEE program in 1975. In 1984, five Boeing 737-200 airplanes, fitted with experimen-

tal composite horizontal stabilizers were placed into regular service. The graphite epoxy

composite material, NARMCO T300-5208 (Tsai, 1979), replaced aluminium in a co-cured,

stiffened-skin structural box arrangement with I-section stiffener panels. Since composite

structures have a very high strength to weight ratio, they have been increasingly popular

in aircraft construction over the recent decades. The recent Boeing 787 Dreamliner, for

example, comprises approximately 50% composites, 20% aluminum and 15% titanium in

terms of total weight (Wagner & Norris, 2009).

In civil engineering applications, thin-walled structures are commonly found in buildings,

bridges, nuclear and defence structures, and offshore structures. Figure 1.3(a) shows a

cold-formed steel thin-walled frame comprising lipped C-section columns. These are com-

monly found in residential and commercial buildings, temporary structures, roof trusses

and warehouses. Stiffened plates are found in long span bridges, such as the famous

Humber Bridge in the UK that had the longest span in the world of 1.41km when it was

completed (Kawada, 2010). The lower face of the box-girder bridge deck is essentially

made from steel plates with longitudinal T-section stiffeners welded to form the stiffened

panel, as shown in Figure 1.3(b). Cold-formed, thin-walled, metallic elements are also
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(a) (b)

Figure 1.3: Thin-walled structures in civil engineering applications; (a) a typical thin-
walled frame, available from http://www.sem.cee.vt.edu/research/thin_walled_

structures.html, and (b) the Humber Bridge box-girder lower flange with stiffened
plates.

commonly used as purlins, roof sheeting and wall cladding to minimize the self-weight of

the integral structure without compromising on strength and stiffness. Other applications

of thin-walled metallic structures include canopies, crane girders, storage tanks and racks

as well as a variety of domestic appliances (Schafer, 2011).

1.2 Materials

Structural components with thin-walled elements are associated with a wide range of ma-

terials. Examples of these materials and their properties are listed in Table 1.1. Steel is

perhaps the most commonly used material in civil engineering applications. Mild steel

is usually produced at a relatively low cost while it provides material properties that are

acceptable in many applications. Owing to its much higher corrosion resistance, stain-

less steel is sometimes used in highly vulnerable environments, such as in the chemical,

wastewater and food processing industries. The production method is another key factor

that affects the material properties of steel. The hot-rolling process is usually adopted for

manufacturing relatively compact universal columns and beams, whereas the cold-forming
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Material ρ (kg/m3) Ex (kN/mm2) Ey (kN/mm2)
Mild Steel 7800 206 206

Stainless Steel 7800 206 206
Aluminium Alloy 2700 73 73

Titanium 4500 108 108
GFRP 1800 39 8
CFRP 1600 180 10

Table 1.1: Mechanical properties of some materials commonly used in engineering appli-
cations. The quantity ρ is the material density; Ex and Ey are the Young’s moduli in two
orthogonal directions of the material.

process is usually adopted for manufacturing thin steel plates and sheeting. Compared to

the hot-rolled sections, cold-formed steel (Tata Steel, 2011) generally has a higher yield

stress and less ductility due to the work hardening effect during the cold rolling process,

as shown by the stress–strain curves in Figure 1.4 (Den Hartog, 1961). As mentioned

ε

σ
σu
σY
σe

E0 E0

A

B
C

D

E

A – Elastic limit (σE)
B – Yield stress for mild steel (σY )
C – Yield point after cold-forming (σ > σY )
D – Ultimate strength (σu)
E – Fracture

Figure 1.4: Stress–strain curve for mild steel including the effect of cold working.

above, aluminium alloys and titanium are also commonly found in aeronautical engi-

neering applications. Carbon-fibre reinforced polymers (CFRP), glass-fibre reinforced

polymers (GFRP) are typical materials used for thin face plates in sandwich structures.
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1.3 Research objectives

Since thin-walled structures tend to be slender, they are vulnerable to buckling instabilities

at the local as well as the global scales. The current research focuses on investigating the

interactive buckling phenomenon of a global (flexural) and a local (plate) buckling mode

in thin-walled I-section steel columns. It was found in the literature that such columns

may exhibit an Euler buckling mode, where flexure about the column weak axis occurs,

and a local buckling mode primarily within the flange plates. When the two buckling

modes are triggered in combination, the resulting response is usually far more unstable

than when they are triggered individually. This problem has been studied experimentally

and numerically by Becque and Rasmussen (2009a; 2009b) recently. An example of the

test specimen before and after the experiment is shown in Figure 1.5. The current research

(a) (b)

Figure 1.5: Experiments by Becque and Rassmussen (2009a), showing interactive buckling
phenomenon in thin-walled I-section columns made of stainless steel.

will study the same problem but from an analytical approach, for a strut made from an

elastic, homogeneous and isotropic material. The primary objectives are given as follows:

• To investigate the potentially dangerous interaction between a global and a local
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buckling mode in terms of the deformation and the nonlinear mechanical response.

• To investigate the effect of different types of imperfections in reducing the load-

carrying capacity and to identify the most severe form of imperfections.

• To investigate the effect of varying the rigidity of the flange–web connection in terms

of the deformation and the mechanical response.

• To investigate the buckling and the post-buckling behaviour of the strut with dif-

ferent global and local slenderness such that the most dangerous interactive zone,

which can be designed for with caution, are identified in terms of the strut length

and the flange widths.

1.4 Thesis outline

The present thesis contains seven chapters, a brief outline of those that follow is given

below.

1.4.1 Literature review

Chapter 2 comprises a literature review, starting from the basic buckling theory to the

more specific interactive buckling phenomenon in thin-walled structures. The chapter

reviews different research works including those presenting relevant analytical, experi-

mental and numerical developments. Also reviewed in some depth are the analytical

works by Hunt and Wadee (1998) and Wadee and Gardner (2012), on sandwich struts

and thin-walled I-section beams respectively. A similar methodology is used to develop

the analytical models for the thin-walled I-section strut in the following chapters.
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1.4.2 Cellular buckling thin-walled I-section struts

An analytical model is developed in Chapter 3 for the thin-walled I-section strut based

on total potential energy principles. It is assumed that the web provides no more than a

simple support to the flanges. A system of equilibrium and integral equations is derived

from a variational formulation. The equations are first solved numerically for the perfect

system using the software package Auto (Doedel & Oldeman, 2009). The cases where

either local buckling or global buckling is critical are considered in turn. For validation

purposes, a global type of imperfection – an initial out-of-straightness is introduced to

the perfect system, and the results are compared favourably against the experimental and

numerical works by Becque and Rasmussen (2009a; 2009b).

1.4.3 Imperfection sensitivity studies

The analytical model in Chapter 3 is further developed to include a local imperfection

– an initial out-of-plane deflection in the flange plates. Imperfection sensitivity studies

are conducted for three cases in Chapter 4. The first case considers the global imper-

fection only, for the case where global buckling is critical. The second case considers

local imperfections only, again for the case where global buckling is critical, and the third

case considers both types of imperfections, for the case where local buckling is critical.

The latter two cases also identify the worst form of local imperfection, in terms of the

wavelength and the degree of localization of the initial out-of-plane flange deflection.
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1.4.4 Rigidity of the flange–web connection and finite element
modelling

As mentioned above, the analytical models in Chapter 3 and 4 are associated with an

assumption such that the joint between the web and the flanges is pinned. Chapter 5

presents an extension to the earlier model by including a rotational spring at the flange–

web joint, for the case where global buckling is critical. By varying the rotational stiffness

parameter, investigations are conducted for a series of cases ranging from a pin joint to

essentially a fully rigid joint between the web and the flanges. A finite element model is

developed in the commercial software package Abaqus (Abaqus, 2011), the results from

which are then compared against the analytical model with good results.

1.4.5 Parametric studies

Chapter 6 comprises a parametric study for the limiting cases where the web is assumed to

provide a pinned or a fully rigid support to the flanges. The study focuses on changing the

global and the local slendernesses by varying the strut length and the width of the flange

plate respectively. The investigation highlights, within a particular parametric space, the

interactive region. This is where the strut exhibits post-buckling equilibrium paths with

distinctive characteristics, the features of which explicitly include localization and cellular

buckling. This is in terms of the deformation and the sudden change from stability to

instability, in terms of the nonlinear mechanical response. A deflection based criterion is

used to define the interactive region and a methodology is developed such that designers

may be able to evaluate the potential dangers of such instabilities in the elastic range.
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1.4.6 Conclusions and Further work

Chapter 7 presents some general conclusions to the thesis. Some potential areas for further

investigation are also highlighted.
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Literature review

2.1 Nonlinear buckling of compression members

It is well known that metallic structural components might fail in different ways. The

failure mechanism of tension members is often governed by the material properties such

as the yield stress. For compression members, however, the failure mechanism is normally

associated with instability issues whereby members suffer from some kind of buckling phe-

nomenon. Various buckling phenomena associated with different structural components

have been studied by a vast number of researchers in the past decades. The history of

buckling theory dates back to the middle part of the 18th century, when Euler (1744)

studied the buckling phenomenon of an incompressible, axially-loaded simply supported

thin strut, or elastica, as shown in Figure 2.1(a). He described the mechanics of the strut

using a mathematical technique that he had devised, known as ‘the calculus of variations’;

the governing differential equation for the strut for small deflections being expressed as:

EI
d4w

dx4
+ P

d2w

dx2
= 0, (2.1)
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P

E
L

x

w(x)

(a)

P

Q

Bifurcation point

Fundamental path

Post-buckling path

PE

(b)

Figure 2.1: The Euler strut with (a) showing the loaded strut with flexural rigidity EI
and deflection w(x); (b) shows the load–deflection graph of P versus the modal amplitude
Q. The post-buckling equilibrium path is shown as a flat line, which is a small-deflection
approximation.

where EI is the strut flexural rigidity, a measure of its bending stiffness, P is the applied

axial force and w is the lateral deflection. Note that E is the material Young’s modulus

and I is the strut cross-section second moment of area. For pin-ended conditions, this

equation has a trivial solution w = 0, but non-trivial solutions exist for:

wn(x) = Q sin
nπx

L
, Pn =

n2π2EI

L2
, (2.2)

where n is an integer and Q is the amplitude of the deflection. The lowest value of Pn is

of course associated with n = 1 and it becomes the well-known Euler load (PE), where:

PE =
π2EI

L2
. (2.3)
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The buckling of the strut is known as a bifurcation problem since w = 0 for the initial

equilibrium but once the load reaches PE, the solution w = 0 loses stability and the strut

has equal probability of exhibiting positive or negative lateral displacement. This is shown

by the load–deflection relationship sketch in Figure 2.1(b), which shows the relationship

when small deflections are assumed.

Another classic buckling problem is that of a plate. An early piece of work on plate buck-

ling is associated with St. Venant (1883), who derived the governing partial differential

equation describing the buckling of an in-plane uniaxially loaded rectangular elastic plate:

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4
+
σt

D

∂2w

∂x2
= 0, (2.4)

as represented in Figure 2.2, where w is the out-of-plane deflection of the plate, σ is the

applied stress in the longitudinal x-direction, t is the plate thickness and D is the plate

flexural rigidity. Note that for the chosen example, all edges of the plate are assumed

to be simply supported. The equation was solved by Bryan (1891) for simply supported

t

x

y
w(x, y)

σ

σ

L

b

Figure 2.2: An example of elastic buckling in a simply supported plate with width b,
length L and thickness t.

edges and later on by Timoshenko (1910) for other boundary conditions. Linear buckling

analysis provides important information on critical loads and the buckling mode profile,

not only for struts and columns, but also for other structural components such as plates
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and shells (Timoshenko & Gere, 1961). However, it is well known now that plates exhibit

a strongly stable post-buckling equilibrium path, implying that the structure is able to

carry an increasing load as the deformation progresses. Moreover, shells can only carry a

reduced load once buckling occurs (Thompson & Hunt, 1973; Wadee, 2007). It is therefore

important to study the post-buckling behaviour of structures in order to investigate the

true load-carrying capacity and to design safe and economical structures.

It is for the analysis of post-buckling behaviour for which geometric nonlinearities must

be accounted. Euler’s work on the elastica, for example, investigated in fact both the pre-

buckling and the nonlinear post-buckling behaviour of the particular problem. It was not

until the middle of the 20th century that Koiter (1945) provided a general approach to con-

duct nonlinear post-buckling analysis on a wide range of structural components including

struts, plates and cylindrical shells. The governing differential equations of equilibrium

were derived from minimizing a continuous nonlinear potential energy functional V that

is formulated over a domain S:

V =

∫
S

L dS, (2.5)

where L is similar to the Lagrangian function from dynamical systems theory (Fox, 1987).

For equilibrium, the total potential energy V must be stationary and so the first variation

of the total potential energy δV must be zero. Solving the equilibrium equations, it was

found that struts and plated structures normally exhibit a stable post-buckling response

whereas cylindrical shells exhibit an unstable post-buckling response, as sketched in the

load–deflection graphs in Figure 2.3. It is clear that systems exhibiting an unstable post-

buckling response are highly sensitive to initial imperfections, indicating a significant

reduction in the load-carrying capacity of real structures when compared against the

theoretically perfect ones. It is therefore potentially dangerous or wasteful to ignore

nonlinear effects in the design of real structures.
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PC

Q

P

(a) Stable–symmetric (supercritical)
bifurcation

PC

Q

P

(b) Unstable–symmetric (subcritical)
bifurcation

Figure 2.3: Stable and unstable post-buckling characteristics. Graphs show the applied
load P versus the modal amplitude Q; solid and dashed lines represent the perfect and
imperfect cases respectively.

Koiter’s pioneering work was progressed by Thompson and Hunt (1973) by applying the

total potential energy principles to a discretized system, leading to the development of

a systematic perturbation method of post-buckling analysis, which was also found in

parallel works by Sewell (1965; 1970). In that formulation, the total potential energy V

was expressed in terms of a system of discrete coordinates or modal amplitudes, Qi:

V = V (Q1, Q2, .., Qi, .., Qn). (2.6)

For any static system to be in an equilibrium state, the following condition must be

satisfied:

Vi =
∂V

∂Qi

= 0, (2.7)

which can be proved by Newton’s laws of motion. To examine the stability of any equilib-

rium state, the second derivatives of V with respect to the generalized coordinates must

be considered:

Vij =
∂2V

∂Qi∂Qj

. (2.8)

For the equilibrium state to be stable, the matrix of Vij must be positive-definite. Singu-

larity in the matrix of Vij indicates that the equilibrium state is critical; hence quadratic
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terms in V give information on critical loads but higher order terms are necessary for post-

buckling analysis (Thompson & Hunt, 1973). Fundamental to the perturbation method

of post-buckling analysis are two axioms that respectively relate V to equilibrium and

stability:

• Axiom 1 A stationary value of the total potential energy with respect to the gener-

alized coordinates is necessary and sufficient for the equilibrium of the system.

• Axiom 2 A complete relative minimum of the total potential energy with respect to

the generalized coordinates is necessary and sufficient for the stability of an equilib-

rium state.

Note that the axioms apply to elastic systems under conservative static loading.

In addition to geometric nonlinearities, the buckling of compression members with nonlin-

ear material properties has also been the subject of research in the past decades. Perhaps

the first practical insight into the inelastic buckling of columns was provided by Shanley

(1947), where the conventional approach of the usage of the reduced-modulus, Er, in de-

termining the critical load, which was regarded as the ultimate column strength within the

plastic range of the material constitutive relationship, was first questioned. The reduced

modulus Er was greater than Et, but less than E, where Et is the tangent modulus, i.e.

the instantaneous slope of the stress–strain curve in the nonlinear plastic range. Shan-

ley stated that it is impossible for the column to remain straight until the applied axial

compression reaches Pr = π2ErI/L
2, because if this were true the whole cross-section of

the column would have a stiffness proportional to Et. The buckling load would hence

be governed by Pt = π2EtI/L
2 which is lower than Pr. The fact that the column starts

to deflect at Pt would violate the initial assumption of column being straight until Pr.
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Instead, the column would begin to deflect at Pt. Shanley also stated that strain reversal

must occur at Pt on the less compressed side of the member when the column starts to

bend. This means that some compression would be released on the convex side where

strain hardening would take place. During unloading, the corresponding stiffness would

become the original Young’s modulus as for the elastic range, as shown in Figure 2.4(a).

This increase in stiffness is responsible for a higher load carrying capacity. The above

σ

ε

Et

E

(a)

σ

ε

E

(b)

Figure 2.4: Strain reversal in (a) inelastic and (b) nonlinear elastic systems, where Et is
the tangent modulus.

statements were demonstrated by studying a simplified model which consisted of a two-

legged hinged column in which the hinge consisted of a unit ‘cell’ formed from two axial

elements. On the other hand, if only the elastic buckling of the column was considered,

the release of the compressive stress in the convex side after buckling would follow the

initial stress–strain curve in reverse until the compressive strain becomes tensile as shown

in Figure 2.4(b).

2.2 Interactive buckling phenomena

It is commonly found in practice that structural components may exhibit more than

one buckling mode during the loading history. Although the behaviour of the individual
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buckling modes might be well understood, when these buckling modes are triggered in

combination, the behaviour of the system is normally much more complex than when

they are triggered individually (Budiansky, 1976). A major step towards a general theory

for nonlinear coupled instability problems is associated with Supple (1967). The work

focused on elastic systems with two-degrees-of freedom that exhibited symmetric bifur-

cations; equilibrium equations were derived for uncoupled and coupled modes based on

total potential energy principles. The total potential energy V was a function of the load

p and the deflection ui, thus:

V = V (ui, p), (2.9)

where i = 1, 2. A perturbation scheme allowed the development of the equilibrium equa-

tions for the doubly symmetric system, in a truncated form of a power series:

V11u1 +
1

3!
(V1111u

3
1 + 3V1122u1u

2
2) + δpV ′11u1 = 0,

V22u2 +
1

3!
(V2222u

3
2 + 3V1122u

2
1u2) + δpV ′22u2 = 0,

(2.10)

where a subscript i on V denotes partial differentiation with respect to the corresponding

generalized coordinate ui; a prime on V denotes partial differentiation with respect to

p and δp is the incremental change in p from a known state p0. For uncoupled modes

(u1 = 0 or u2 = 0), evaluating Equation (2.10) at the corresponding critical loads leads

to V C
11 = 0 and −(V22/V

′
22)|C = ∆p, where ∆p is the difference between the critical loads

of the two modes (i = 1, 2). Equation (2.10) thus simplifies to:

δp = −1

3

V1111

V ′11

u2
1,

δp = ∆p− 1

3

V2222

V ′22

u2
2.

(2.11)

It was found that the system would exhibit a stable or unstable symmetric bifurcation

when Viiii > 0 and Viiii < 0 respectively. For coupled modes, a relationship between u1

and u2 was obtained on eliminating δp from Equation (2.10), thus:

Xu2
1 + Y u2

2 = −6V ′11V
′

22∆p, (2.12)
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where X and Y are the coefficients given by the following expressions:

X = V ′22V1111 − 3V ′11V1122,

Y = 3V ′22V1122 − V ′11V2222.
(2.13)

It was found that the behaviour of the coupled modes are predominantly controlled by

the coefficients X and Y , where each can be positive or negative. Supple summarized the

solutions for various conditions of X, Y and ∆p. In general, for ∆p 6= 0, there are two

types of solutions, represented by an ellipse and a hyperbola in the u1u2 plane, shown

in Figure 2.5. The post-buckling stability for different conditions of X, Y and ∆p was

u1

u2

(a) Elliptic

u1

u2

(b) Hyperbolic

Figure 2.5: Major forms of coupled solutions relating generalized coordinates in the post-
buckling range.

summarized into four theorems. The work highlighted an important feature such that the

post-buckling behaviour from the coupled instabilities can be unstable, even if individual

modes exhibit a stable symmetric bifurcation. Parallel work was conducted by Chilver

(1967) with the focus being on both symmetric and asymmetric systems; the work also

applied the general theory to a structural model comprising three rigid links hinged at the

joints and restrained at their mid-span by elastic translational springs. This phenomenon

is also known as interactive buckling where one degree of freedom destabilizes the structure

in another.

Various types of structural components that exhibit interactive buckling have been stud-
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ied analytically (Lundquist & Stowell, 1942a; Lundquist & Stowell, 1942b; van der Neut,

1969; van der Neut, 1973; Koiter & Pignataro, 1976; Møllmann & Goltermann, 1989;

Goltermann & Møllmann, 1989; Hunt & Wadee, 1998; Wadee & Gardner, 2012), whereas

a large number of numerical studies such as the implementation of the finite element and

finite strip methods (Rajasekaran & Murray, 1973; Johnson & Will, 1974; Plank & Wit-

trick, 1974) have also been carried out in the past decades. Experimental studies (Cherry,

1960; Menken et al., 1997; Becque & Rasmussen, 2009a) have also found the highly un-

stable nature of the mode interaction in various examples. An illustrative example is the

reticulated column (Thompson & Hunt, 1973), also known as a built-up or compound

column, where small elements are assembled together to form a large compression mem-

ber, as shown in Figure 2.6. It is clear that in addition to the global buckling mode, in

(a) Pre-buckling

(b) Interactive post-buckling

Figure 2.6: Reticulated or compound column; (a) initial configuration and (b) possible
interactive buckling mode combining global and local modes.

this specific case the Euler buckling mode, individual elements may also buckle locally in

the more compressive side of the globally bent structure. The resulting behaviour can be

undesirably unstable.

Cylindrical shells (Hutchinson & Koiter, 1970; Hunt et al., 1986; Shen & Chen, 1991)

may also exhibit the nonlinear interaction between different buckling modes, leading to

the classic diamond buckling mode pattern (Hunt & Lucena Neto, 1991; Lord et al., 1997;
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Hunt et al., 2003), as sketched in Figure 2.7(a). Despite the fact that cylindrical shells are

Q

P

(a) Cylindrical shell (b) Stiffened plate

Figure 2.7: Examples of structural components exhibiting interactive buckling.

normally regarded as the most efficient structural component to carry axial compression,

the post-buckling behaviour is highly unstable due to the nonlinear interaction of the

buckling modes.

Plated structures are also susceptible to interactive buckling, such as stiffened plates

(Murray, 1973; Koiter & Pignataro, 1976; Wadee & Farsi, 2014), Figure 2.7(b), I-section

columns and beams (Hancock, 1981; Menken et al., 1991; Wadee & Gardner, 2012) and

sandwich panels (Allen, 1969; Hunt et al., 1988; Hunt & Wadee, 1998; Wadee et al.,

2010); such components are widely used in bridge and aircraft construction where mass is a

critical design variable. Although individual plates exhibit stable post-buckling behaviour,

the nonlinear interaction with the global mode often leads to a reduction in the post-

buckling stiffness. Structural components exhibiting nonlinear mode interaction, leading

to an unstable post-buckling response can also be highly imperfection sensitive (Wadee,

2000; Saito & Wadee, 2009). Designers must therefore exercise great caution in predicting
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the true load-carrying capacity for the aforementioned structural types.

2.2.1 Analytical studies

Perhaps the most classic piece of work on the interactive buckling of columns is associated

with van der Neut (1969). He studied the interaction of local and global (Euler) buckling of

an idealized thin-walled compression member, which comprised two load carrying flanges

with width b, thickness h and length L, and a web with depth 2c that was laterally rigid

and had no longitudinal stiffness, as shown in Figure 2.8. A perfect column, a column with

an initial local deformation in the flanges and a column with an initial out-of-straightness

were investigated, by first considering the stiffness reduction factor η. This quantity was

expressed as:

η =
dP/Pl
dε/εl

, (2.14)

where P and ε were the applied compressive force and the direct strain within the flanges

respectively and Pl and εl were the local critical buckling load and the direct strain at this

load state within the flat flanges. The quantity η indicated the reduction of the flexural

stiffness after the flanges had buckled locally. For the perfect column, the ratio of the

slope of the P–ε relationship after local buckling almost remains at a constant value of

0.4083 (Hemp, 1945), indicating that the stiffness dropped by approximately 60% due to

the flange plate buckling. By fixing the flange width b and thickness h, the investigation

examined the impact of the column length L on the critical buckling mode and the stability

of the corresponding critical state. The findings are summarized in Table 2.1. The results

in Table 2.1 are also illustrated by the classic curves shown in Figure 2.8. Note that K is

the applied compression on the entire strut (as distinct from P ) with KE and Kl being

the Euler load and the local buckling critical load respectively. It should be noted that

L0 corresponds to the point where the Euler load is reduced by a factor given by the
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Category Column Length Critical mode Post-buckling characteristics
1 L > L1 Euler buckling Neutral (approx)
2 L 6 L2 Local buckling Neutral (approx)
3 L2 6 L 6 L0 Local buckling Stable
4 L0 6 L 6 L1 Local buckling Unstable

Table 2.1: Critical buckling modes and post-buckling characteristics for the column length
constraints in categories 1–4, Length L = L1 is the case where the local buckling load and
Euler buckling load are equal; L2 = η1/2L1; L0 = (2η/1 + η)1/2 L1.

KE = π2EI
L2

2η
1+η

KE = 0.580KE

ηKE

neutral

stable
unstable

neutral

L2 L0 L1

Kb

L

Kl

b

h

2c z

y

x

L

K

z

(a)

1

1

(1 + η)/2η 1/η
KE
Kl

Kb
Kl

neutral

neutral

unstable stable

(b)

Figure 2.8: The van der Neut strut and curves.
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Engesser ‘double-modulus’ formula:

Rd =
2ηoηu
ηo + ηu

, (2.15)

where ηo and ηu are the stiffness reduction factors within the compression and tension

flanges respectively. As Euler buckling takes place, more compression would be accu-

mulated in one flange causing further local buckling, whereas the other flange would be

subjected to unloading causing it to return to the unbuckled state. In this situation,

ηo = 1 and ηu = 0.4083, and the reduction factor Rd, for this case, would therefore be

0.580.

An initial local imperfection was then introduced to the flanges; the expression being

given by:

z = αh cos
(πy
b

)
sin
(πx
L

)
, (2.16)

where α is the imperfection size parameter with x and y being the longitudinal and

transverse coordinates, as shown in Figure 2.8(a). In contrast with the perfect case,

where the stiffness remains constant until local buckling occurs, the stiffness would begin

to drop as the load is applied. The stiffness reduction factor η is therefore a function of P

and ε as well as the imperfection parameter α. It was found that the buckling loads for

different imperfection amplitudes deviate the most from the perfect case in the vicinity

of PE/Pl = 1, where PE is the Euler load. This was defined as the imperfection sensitive

zone, which corresponds to the columns with length L0 < L < L1 in the perfect case,

where the equilibrium state at the critical buckling load is highly unstable.

The study continued to investigate the post-buckling behaviour. A direct equilibrium

approach was utilized, which involved bending theory expressions. The bending moment

M was given by:

M = (Po − Pu) c = −KW, (2.17)
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where W was the lateral deflection, Po and Pu were the forces within top and bottom

flanges respectively. The curvature κ, to leading order, was given by:

κ =
d2W

dx2
=
εo − εu

2c
. (2.18)

Since the equilibrium state was investigated in the neighbourhood of the buckling load,

P was expanded about the strain at buckling, εb as a Taylor series in ε. As stated above,

the first derivative of P with respect to ε is given by the stiffness reduction factor, η

which was then expanded about the buckling state. The applied load K was expressed

as Kb + k, where Kb is the buckling load and k is a small perturbation in the vicinity of

Kb. Since all these terms were expressed about a known state, a differential equation was

formulated for the lateral deflection W as follows:

(ηb + θb)EI
d2W

dx2
+ (Kb + k)W = 0, (2.19)

where

θb = η′b
k

Kl

+
1

2
η′′b

(
Kb

Kl

)2
W 2

c2
− 1

3

(
η2η′′ + ηη′2

)
b

c2

ε2
l

(
d2W

dx2

)2

, (2.20)

and the subscript b indicates the state of buckling. As θb approaches zero, the differential

equation tends to that for the Euler strut, which has a known solution W0 sin (πx/L).

Van der Neut introduced an additional function w, which was linearly superimposed on

this. The differential equation was rearranged and solved for w. The stability of the

post-buckling path was then studied by inspecting the first derivative of the load K with

respect to both the lateral deflection and the end shortening. It was found that the

slope of the equilibrium path of K with respect to W was positive when η′′ < 2η′2/η.

It was concluded that for the equilibrium at Kb to be stable, both dK/dW and dK/d∆

have to be positive, where ∆ represents the end-shortening. Columns with an initial

out-of-straightness were then investigated by following the same approach as for the local

imperfection case. It was concluded that the global imperfection has a minor effect in
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reducing the load carrying capacity in comparison with the local imperfection, which in

turn has a relatively strong effect.

Based on the van der Neut model, Thompson and Lewis (1972) developed an optimization

scheme for both perfect and imperfect columns. To optimize the load-carrying capacity of

the column, the weight and thus the cross-sectional area of the column was kept constant.

The only independent variable was therefore taken as the flange width b. The optimization

scheme first denotes KE/Kl and Kb/Kl from Figure 2.8(b) as x and y. Since KE and Kl

are both dependent on b, which can be expressed in terms of x, substituting for b in the

Kb expressions led to the following relationship:

P (x) ≡ Kb/R = y(x)x−2/3, (2.21)

where P (x) is a nondimensional parameter representing the buckling load Kb and R is a

constant comprising the Young’s modulus E and Poisson’s ratio ν. Figure 2.8 was then

transformed to Figure 2.9(a). Conventionally, the optimum design takes x = 1, where

x
1
3
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2
3

ηx
1
3

1
x = KE

Kl

P (x)

1

(a)

x
1
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2
3
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1
3

1
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Kl

P (x)

1

Imperfection increasing

2

(b)

Figure 2.9: The optimum design curve for perfect and imperfect column.

the load-carrying capacity reaches a local maximum; however this region was referred to

by van der Neut as the ‘imperfection sensitive’ region, and the optimum was therefore

eroded by initial imperfections as shown in Figure 2.9(b). Another distinctive feature

shown in Figure 2.9(b) was that the local maximum initially shifts to the left indicating
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that KE < Kl. Later, Thompson and Supple (1973) developed an optimization scheme

for structural systems with coupled instabilities that exhibit an unstable bifurcation.

The two-degree-of-freedom Augusti model (1964), shown in Figure 2.10, was selected

P
P

L L

c1

c2

Q1

Q2

Figure 2.10: The Augusti model – a two-degree-of-freedom structural model.

for a specific example. The conventional optimum design would be such that the two

rotational springs have equal stiffness. However, erosion of the optimum was revealed for

the imperfect system until the local optimum was no longer that case where the springs

have equal stiffness.

Very similar behaviour, as found in the van der Neut model, was captured by Koiter and

Pignataro (1976) from a more realistic model of a stiffened plate. In contrast with the

direct force balance approach utilized by van der Neut (1969), a total potential energy

approach was adopted. The investigation first reviewed the post-buckling behaviour of flat

plates under longitudinal compression. The buckling mode was described by the lateral
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and longitudinal displacement fields:

w (x, y) = fg (y) sin
(πx
a

)
,

u (x, y) = −∆x− π

8a
f 2g2 (y) sin

(πx
a

)
,

(2.22)

where x and y were the longitudinal and transverse Cartesian coordinates respectively, a

was the half-wave length of the buckled mode shape in the longitudinal direction, g (y)

modelled the transverse wave profile of the buckled mode shape, f was the amplitude

factor and ∆ was the unit overall shortening in the buckled mode shape. The membrane

energy, Us stored in the system was given by:

Us =
1

2
E

∫
ε2
xdS, (2.23)

where εx was the longitudinal direct strain component given by the standard von Kármán

strain expression (Timoshenko & Woinowsky-Krieger, 1959):

εx =
∂u

∂x
+

1

2

(
∂w

∂x

)2

, (2.24)

and the expression for Us represented a volume integral. It should be emphasized that

the transverse and shear stress components σy and τxy were ignored. This assumption

was then shown to provide a lower bound approximation of the stiffness reduction factor

η. In contrast with earlier work by Koiter (1943), where the transverse and shear stress

components were included in the energy formulation, this assumption provided a less

accurate but safe solution, hence applicable for many practical purposes. The bending

energy formulation also followed a simpler approach, where the bending energy is equiv-

alent to the release of the membrane energy when the plate buckles at the critical stress.

The total potential energy was formed by summing the membrane energy, the bending

energy and the work done by load, which was then minimized with respect to both the

lateral deflection amplitude, f and the end shortening ∆. The stiffness reduction factor

η was evaluated thus:

η =
E∗
E

= 1−

[
1
b

∫ b/2
−b/2 g

2 (y) dy
]2[

1
b

∫ b/2
−b/2 g

4 (y) dy
] . (2.25)
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For simply supported edges, η was found to be 1/3 which is approximately 20% lower

than the well-known exact value of 0.408. For clamped edges, η was found to be 0.449

which is 9% lower than the exact value of 0.497. For one simply-supported edge without

in-plane edge tractions and one free edge, η was found to be the same as the exact value,

indicating that the assumption of neglecting transverse and shear component was perfectly

acceptable for that specific case.

The interactive buckling behaviour of stiffened panels was then studied by first investigat-

ing a locally buckled stiffener. A local coordinate s was used for the transverse direction

of the local plate. The direct strain component εx only varied slightly due to the inclusion

of an additional term, χzx in the longitudinal displacement field u (x, s), where χ was the

curvature about the x-axis and z was the lateral coordinate. This arose from the assump-

tion of zero lateral deflection and rigid connections at the intersections of the plates. The

transverse and shear stress components were neglected and the stiffness reduction factor

found was again a lower bound solution. The global mode followed the same as for an

Euler strut:
W (x) = F sin

(πx
L

)
,

σE =
π2Er2

L2
,

(2.26)

where r was the radius of gyration of the cross-section of the panel and L was the panel

length. This was then combined with the local modes described in the previous paragraph

to give the direct strain component εx necessary for the membrane energy formulation. It

should be stressed that the amplitude factor f in the local mode was no longer a constant,

but a function of x, highlighting the nonlinear feature of the interaction and the potential

for non-periodic or localized solutions to the governing equations.

The stability of the critical state was found to be very similar in essence to the results of

van der Neut (1969). For λE > (1−B2), where λE was the ratio between the Euler stress
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and the critical stress for plate buckling and B was defined as a representative factor of η,

the panel was found to be governed by local buckling of the plate. For longer panels with

λ = λE < 1, the panel was found to be governed by global buckling. The post-buckling

behaviour was studied for 1 < λE < (1−B2); it was presented as a series of plotted curves

of the load parameter λ = σ/σC against a representative function of the end shortening

∆ for different values of λE. It was found that the post-buckling equilibrium was always

stable when λE > (1−B2/2)
2
, and was always unstable when λE < (1−B2/2)

2
. The

work went on to study the effect of local and global imperfections. The findings once

again strongly agreed with van der Neut’s model, showing high imperfection sensitivity

at λE = 1.

Svensson and Croll (1975) also reviewed van der Neut’s model. They followed the same

force balance approach with the governing equation being solved by a combination of a

perturbation and a Newton–Raphson method. The results showed once again the imper-

fection sensitivity when global buckling and local buckling were triggered simultaneously.

Their discussion went on to take into account material yielding, in order to develop design

criteria. A non-dimensional quantity H, referred to as the ‘slenderness index’ was defined

as:

H =
σY√
σC
l σE

, (2.27)

where σY was the yield stress, σC
l was the local buckling critical stress and σE was the

critical stress of Euler buckling. The merit of this quantity was such that it could be kept

constant when the local slenderness b/h, and therefore the σE/σ
C
l ratio is varied, while

the total weight could also be kept constant by fixing the beam length L with the cross-

sectional area A. This was referred to as the ‘simultaneous mode design criterion’, where

the column load carrying capacity is optimized against both local and global buckling, as

well as yielding. Results were presented as a series of plots of σ̄/σY against σE/σ
C
l , for
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different values of H as well as for different amplitudes of local and global imperfections; σ̄

is the column strength and was determined by the well-known Perry–Robertson formula:

(σ̄ − σE) (σ̄ − σY ) = aEσ̄σE, (2.28)

where aE is the global imperfection amplitude. They stressed the fact that the Perry–

Robertson formula should be modified as the ultimate average stress within buckled

flanges must be smaller than the yield stress for elastic buckling to take place within

the flanges. Therefore, the σY term in the Perry–Robertson formula should be replaced

by cσY , where c 6 1.

The nonlinear interaction of local and global buckling is also found commonly in sandwich

structures (Hunt et al., 1988; Hunt & Wadee, 1998; Wadee et al., 2010; Yiatros & Wadee,

2011). These usually consist of two stiff face plates separated by a relatively soft core.

Hunt and his co-workers (Hunt et al., 1988; Hunt & da Silva, 1990) studied the sandwich

panel based on a Rayleigh–Ritz approach. The investigation considered two modal contri-

butions named ‘snake’ and ‘hourglass’, as shown in Figure 2.11, which seem to originate

from Goodier (1946). The ‘snake’ shape essentially reflects the global mode with an arbi-

trary number of half waves i. Timoshenko beam theory (Reissner, 1945; Wang, 1997) was

considered, where shear strain becomes important, leading to two generalized coordinates

qs and qt, known as ‘sway’ and ‘tilt’; the lateral displacement W and the rotation of the

plane section θ thus became:

W = qs
L

i
sin

iπx

L
, θ = qtπ cos

iπx

L
, (2.29)

where L is the panel length, and x is the longitudinal Cartesian coordinate. It should

be noted that, under standard Euler–Bernoulli bending theory, where shear strains are

neglected, qs and qt would be equivalent. It can be seen that for i = 1, the buckling

mode shape is simply a half sine wave, which is the lowest mode of an Euler strut.
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Figure 2.11: Decomposed modes for critical buckling of a sandwich panel.

The ‘hourglass’ mode, on the other hand, treats the two face plates as two back-to-back

struts on elastic foundations (Allen, 1969) and two generalized coordinates qh and ql were

introduced that were analogous to ‘sway’ and ‘tilt’ for the hourglass mode, accounting for

the out-of-plane deflection w and the in-plane displacement u

w = qh
2y

b

L

i
sin

iπx

L
,

u = −2

b
qlπ cos

iπx

L
,

(2.30)

where b is the core thickness and y is the transverse Cartesian coordinate. Two further

generalized coordinates A5 and A6 were also introduced, accounting for the total end

shortening and total transverse shortening. The system was hence associated with six

generalized coordinates in total. The total potential energy comprised the bending energy,

the membrane energy, the core energy and the work done by the load. In Hunt and da

Silva (1990), the formulation contained the work done term in a general form, capable

of dealing with different loading conditions. Three examples were presented for uniform

59



Chapter 2–Literature review

moment, mid-span concentrated load, and a uniformly distributed load. It was found that

all equilibrium paths exhibit an initial linear stage corresponding to the global buckling

and a nonlinear stage where local modes begin to interact. All solutions represented

upper bounds in terms of the load-carrying capacities reflecting the generic properties of

the Rayleigh–Ritz method.

Hunt and Wadee (1998) studied the interactive buckling behaviour in an axially loaded

sandwich panel using a variational formulation. The approach also followed Timoshenko

beam theory since shear strain was found to be essential for the nonlinear interaction

between the global and the local buckling modes. The global mode used the snake mode

for i = 1 as in Hunt and da Silva (1988; 1990). The local mode was described by a set of

continuous displacement functions w and u, representing the out-of-plane and the longitu-

dinal in-plane displacements of the face plates, respectively. The face plates were assumed

to take all the direct stress, whereas the core would take all shear and transverse strain

components. The total potential energy functional V was formulated by summing the

bending energy, the membrane energy, the core energy and the work done by the loads.

The calculus of variations was used to derive a coupled system of nonlinear ordinary dif-

ferential equations comprising a fourth order equation in terms of the out-of-plane local

buckling displacement w and a second order equation in terms of the in-plane-displacement

u. These governing equations were also subjected to three integral conditions, which were

obtained by minimizing V with respect to three generalized coordinates qs, qt and the end

shortening ∆. The equations were then solved using the numerical continuation package

Auto (Doedel & Oldeman, 2009). The results showed that the sandwich panel indeed

exhibits a global buckling mode at a critical load determined from a linear eigenvalue

analysis, after which the system was found to be weakly stable until a secondary bifur-

cation point was encountered on the equilibrium path, which causes a further instability.
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The interactive mode that was triggered was found to be highly localized at mid-span and

depending on core nonlinearities, the localization persisted or the buckling mode evolved

to a periodic mode (Hunt et al., 2000), as discussed below.

More recently, Wadee and Gardner (2012) have studied the interaction of flange local

buckling and lateral torsional buckling in a thin-walled I-beam subjected to a uniform

moment. The model introduced two additional degrees of freedom qτ and qφ to account

for the global mode of lateral torsional buckling. The approach was adapted from the

sandwich problem (Hunt & Wadee, 1998). The equilibrium paths after the secondary

bifurcation point exhibited a behaviour known as ‘cellular buckling’ (Hunt et al., 2000)

or ‘snaking’ (Burke & Knobloch, 2007). This is the phenomenon where the equilibrium

path after the secondary bifurcation exhibits a sequence of destabilizing and restabilizing

processes, which is represented by a sequence of snap-backs on the equilibrium paths,

as shown in Figure 2.12. Referring to the buckling modes, this phenomenon tracks the

Deflection

Load P
Hamilton-Hopf
bifurcation

1

2

3
Buckling mode 1

Buckling mode 2

Buckling mode 3PM

Figure 2.12: An example of cellular buckling or snaking in the equilibrium path of a
structural system; PM is the Maxwell load.

progressively spreading waves in the flanges, which was initially localized at mid-span.

Cellular buckling is also observed in systems such as cylindrical shells and compressed
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confined layers (Hunt et al., 2000; Wadee & Edmunds, 2005). These systems are associated

with the Maxwell load PM, where the load oscillates about a fixed load PM as the deflection

progresses, as shown in Figure 2.12, and is associated with the eventual periodic profile

of the post-buckling mode (Budd et al., 2001).

Structural systems exhibiting cellular buckling or snaking were conventionally treated as

dynamical systems involving periodic, homoclinic and heteroclinic orbits of various kinds

in the phase space (Woods & Champneys, 1999; van der Heijden et al., 2002; Chapman &

Kozyreff, 2009; Taylor & Dawes, 2010), as sketched in Figure 2.13. Consider a two degree-

v

t v

v̇

(a) Periodic orbit

v

t v

v̇

(b) Homoclinic orbit

v

t v

v̇

(c) Heteroclinic orbit

Figure 2.13: Examples of different kinds of orbits in nonlinear dynamical systems, where
v and t represent displacement and time respectively. Dots represent the derivative of v
with respect to t. Such solutions can also appear in nonlinear static systems.
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of-freedom Hamiltonian (energy conserving) systemH; localized solutions exist in the form

of a pair of reversible homoclinic orbits (Figure 2.13(b)) which bifurcate into the region of

a saddle-focus equilibrium O. Suppose that the homoclinic orbits ‘collide’ with a finite-

amplitude periodic orbit L at some specific values of the system parameters; the unstable

manifold of the saddle-focus equilibrium, W u(O) then contains a heteroclinic connection

with L. Under parameter perturbations, W u(O) and the stable manifold of the periodic

orbit W s(O) pass through each other, forming a pair of successive heteroclinic tangencies

between W u(O) and W s(L); the unfolding of the successive heteroclinic tangencies leads

to an infinite number of symmetric homoclinic solutions at the intersection ofW u(O) and a

symmetric section S. It was found that these solutions lie on a single curve, snaking back

and forth in the bifurcation diagram. The simplest localized (single hump) symmetric

homoclinic solution, emanating from a Hamiltonian–Hopf bifurcation, develops towards

a periodic solution by gaining an extra peak or trough each time at the limit point is

encountered on the equilibrium path, as shown in the sketch in Figure 2.12 for a structural

system. Recall Figure 1.4, the fluctuations observed on the stress-strain curve between

point B and C were conventionally considered as one of the characteristics of the loading

rig. However, it was found that this is actually caused by snaking where Lüders bands are

formed progressively from the loading edges to the mid-span of the tensile test coupon,

as shown in Figure 2.14 (Den Hartog, 1961). Such a phenomenon was found in physical

models of a strut on an elastic foundation (Woods & Champneys, 1999), in the twisting

of an elastic rod (van der Heijden et al., 2002), cylindrical shell buckling (Hunt et al.,

1999; Hunt et al., 2003), in thin-walled I-section beams under pure bending (Wadee &

Gardner, 2012) and sandwich panels for certain core material nonlinearities as mentioned

previously.
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ε

σ

Lüders band

Figure 2.14: An example of Lüders band (Meier, 2009) on a tensile test coupon exhibiting
snaking.

2.2.2 Numerical studies

Alongside the analytical work already highlighted, a large number of numerical studies

have also been conducted to investigate the interactive buckling behaviour in various types

of structural components. Two most commonly adopted approaches are the finite element

method (Rajasekaran & Murray, 1973; Johnson & Will, 1974; Becque & Rasmussen,

2009b) and the finite strip method (Plank & Wittrick, 1974; Hancock, 1978; Ádány &

Schafer, 2006). One-dimensional finite element models were used in 1960s and 1970s

principally for predicting global buckling (Clark & Hill, 1960; Powell & Klingner, 1970),

since they could not easily capture the local plate buckling behaviour.

Rajasekaran and Murray (1973) used one-dimensional thin-walled beam elements in their

study of the wide flange beam-column problem. In addition, assumed plate flexural

displacements were superimposed to the global displacements of the beam element. These
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local modes were regarded as ‘coupled local buckling’. Some important assumptions were

also made in their model such as the omission of shear strain, fixity at plate intersection

points, as well as the mentioned superposition of the local and global displacements. For

local flange buckling, the predicted buckling loads have shown strong agreement with

some theoretical values obtained in the literature. However for local web buckling, the

model failed to produce accurate results because the assumed local displacements at the

web could not represent the fundamental mode accurately.

In contrast to the one-dimensional finite element models, Akay and his co-workers (1977)

used two-dimensional plane stress elements for the web and one-dimensional elements

for the flanges, which were believed to produce more accurate results with relatively

high computational efficiency. This method was initially used in a beam analysis, then

extended to a gable frame and a deep bridge girder analysis.

Hancock (1978) investigated the buckling modes of an I-beam using the finite strip

method. The finite strip method differs from the finite element method in such a way

that the flange of an I-beam, for instance, is divided into a number of longitudinal strips

(Graves Smith & Sridharan, 1978). The behaviour of each strip is then determined using

energy concepts; hence this method is often termed as ‘semi-analytical’. Hancock’s model

has yielded good results in predicting the critical mode of the I-beam with different beam

lengths and cross-sectional dimensions, as well as with lateral and torsional restraints.

Hancock (1981) also studied a thin-walled I-section column exhibiting local and weak-

axis Euler buckling. The work provided a first insight into the implementation of the

finite strip method in studying the nonlinear interactive behaviour of the global and the

local modes. Davids and Hancock (1986) obtained good comparisons between the finite

strip method and the experimental results on thin-walled I-section columns. Later on
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in the 1980s, Hancock and his co-workers successfully developed and implemented the

so-called ‘spline finite strip method’ to cope with non-simply-supported columns, as well

as the inelastic buckling behaviour within such elements (Lau & Hancock, 1986; Lau &

Hancock, 1989).

Schafer (2002) focused on the distortional buckling behaviour in lipped thin-walled sec-

tions and highlighted the lack of attention to such buckling modes in current design

methods. The linear distortional buckling response of a thin-walled I-section column was

approached analytically, as an extension of earlier work by Schafer and Peköz (1999),

where the distortional buckling behaviour of beams was studied. The post-buckling be-

haviour was then studied using the finite element method facilitated by the software

package Abaqus (2011). It had shown that the distortional buckling mode had a lower

post-buckling stiffness than local buckling.

Another well-known method of analysis for coupled instability problems is so-called ‘gener-

alized beam theory’ (GBT), which was originally developed by Schardt (1994). The early

applications of GBT was for the elastic critical buckling behaviour of open cross-sections

(Leach & Davies, 1996); Silvestre and Camotim (2003) developed nonlinear GBT formu-

lations for closed cross-sections while Goncalves and Camotim (2004; 2007) extended the

application of GBT to account for plasticity. An extensive set of investigations using GBT

have been carried out for the interactions between local, global and distortional buckling

modes for various types of cross-sections (Dinis et al., 2010; Basaglia et al., 2013).

66



Chapter 2–Literature review

2.2.3 Experimental studies

Since the 1960s, a large number of experimental investigations have also been conducted

for cold-formed thin-walled steel columns with various types of cross-sections such as hat

sections, channel sections, I-sections and box sections (Cherry, 1960; Johnson & Winter,

1966; Rasmussen & Hancock, 1993; Gardner & Nethercot, 2004a; Becque & Rasmussen,

2009a). Although the majority of the test data are associated with pure global buck-

ling, some results highlighted the importance of the interaction between global and local

buckling modes. In particular, Becque and Rasmussen (2009a; 2009b) approached an I-

section column problem both experimentally and numerically for stainless steel specimens.

These investigations have captured some important features of the nonlinear interactive

behaviour in thin-walled I-section columns.

In the experiments, I-section columns were effectively made from two channels connected

back to back. The depth, width and thickness of the channel were fixed. Tests were

carried out for columns with different lengths ranging from 500 mm to 3000 mm. Two

specimens with the same properties were tested for comparison, which were referred to as

‘twin tests’. A simple calculation of the Euler load and the critical stress for plate buckling

showed that, in all the test specimens, local buckling was the critical mode. This has been

shown by the experiments where all columns exhibit local buckling first. As the load was

increased, the specimen also started to bend about its minor axis and then the local and

global modes started to interact. It was found that the amplitude of the local mode on

the concave side increased most rapidly near the mid-span of the column, whereas the

convex side of the flange tended to be straightened out. The buckling pattern then tended

to localize at mid-span. The test results have shown that the ultimate column strengths,

determined from the twin tests, show a close match for columns with lengths ranging
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from 500 mm up to 2500 mm. Columns with lengths ranging from 2500 mm to 3000 mm

exhibited a much larger difference in the ultimate load PU between the twin tests. This

was the range of the previously mentioned ‘imperfection sensitive zone’ defined by van

der Neut (1969).

The numerical validation of this test result was attempted using finite element analy-

sis facilitated by the software package Abaqus (2011). The I-section column was again

formed by joining back-to-back channels with analytically rigid end plates that distributed

the axial force onto the cross-section uniformly. A shell element with four nodes and re-

duced integration, S4R, was used in the analysis. A linear eigenvalue analysis was first

conducted to obtain both the lowest global and local modes. The eigenvectors with appro-

priate amplitudes were introduced to the system as imperfections. A nonlinear arclength

method known as the Riks method (Riks, 1972) was then run to trace the equilibrium

path within the post-buckling range. The results from this model have shown reasonably

good agreement with the test results, with slightly larger discrepancies being found for

the columns with lengths ranging from 2500 mm to 3000 mm which corresponded to the

aforementioned ‘imperfection sensitive zone’. It should be stressed that the numerical

predictions were at least always on the safe side.

2.2.4 Concluding remarks

The present chapter has reviewed some of the most important works that are relevant

to the current research, from the middle of the 18th century to the state of the art. The

general nonlinear buckling theory was first discussed. Some classic works, on the nonlinear

interaction of different buckling modes, were then reviewed. The review then focused

specifically on the interactive buckling behaviour in structural components with thin-
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walled metallic elements. Some analytical works, including the classic van der Neut (1969)

model and the more recent work by Hunt and Wadee (1998), which provides a general

methodology for the current research, were highlighted. Some numerical studies on the

current subject were highlighted, including the finite element and the finite strip method

alongside generalized beam theory. Finally, some experimental studies were highlighted,

in particular the fairly recent works by Becque and Rasmussen (2009a; 2009b), the results

from which will be compared against in the following chapter.
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Variational modelling of I-section
strut

In the current chapter, the classic problem of a strut under axial compression made from

a linear elastic material with an open and doubly-symmetric cross section – an ‘I-section’

(van der Neut, 1969; Hancock, 1981) – is studied in detail using an analytical approach.

Under this type of loading, long members are primarily susceptible to a global (or overall)

mode of instability namely Euler buckling, where flexure about the weak axis occurs

once the theoretical Euler buckling load is reached. However, when the individual plate

elements of the strut cross-section, namely the flanges and the web, are relatively thin or

slender, elastic local buckling of these may also occur; if this happens in combination with

the global instability, then the resulting behaviour is usually far more unstable than when

the modes are triggered individually. Recent work on the interactive buckling of struts

include experimental and finite element studies (Becque & Rasmussen, 2009a; Becque &

Rasmussen, 2009b), where the focus was on the behaviour of struts made from stainless

steel. Apart from these works where some numerical modelling was presented (Becque &

Rasmussen, 2009b), the formulation of a mathematical model accounting for the nonlinear
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interactive buckling behaviour has not been forthcoming.

Presently, a variational model that accounts for the mode interaction between global

Euler buckling and local buckling of a flange is developed, such that the perfect elastic

post-buckling response of the strut can be evaluated. A system of nonlinear ordinary

differential equations subject to integral constraints is derived and is solved using the

numerical continuation package Auto (Doedel & Oldeman, 2009). Such a procedure has

been well established in previous works (Wadee & Gardner, 2012; Hunt et al., 2000; Hunt

& Wadee, 1998). It needs to be emphasized that in the current chapter, the web is assumed

to provide a simple support to both top and bottom flanges, in which case the flanges

and the web are considered as five individual plate members. Although representing

a limiting case when the web does not buckle, it is indeed found that the system is

highly unstable when interactive buckling is triggered; snap-backs in the response, showing

sequential destabilization and restabilization and a progressive spreading of the initial

localized buckling mode, are also revealed. This latter type of response has become known

in the literature as cellular buckling (Hunt et al., 2000) or snaking (Burke & Knobloch,

2007) and it is shown to appear naturally in the numerical results of the current model.

Similar behaviour has been discovered in various other mechanical systems such as in the

post-buckling of cylindrical shells (Hunt et al., 2003), the sequential folding of geological

layers (Wadee & Edmunds, 2005) and most recently in the lateral buckling of thin-walled

beams under pure bending (Wadee & Gardner, 2012). Models representing more rigid,

and hence more practically realistic flange–web connections will be developed in the later

chapters.
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3.1 Analytical model

3.1.1 Problem definition

Consider a thin-walled I-section strut of length L made from a linear elastic, homogeneous

and isotropic material with Young’s modulus E and Poisson’s ratio ν. It is loaded by an

axial force P that is applied at the centroid of the cross-section, as shown in Figure 3.1(a)

and (b) respectively, with rigid end plates that transfer the force uniformly to the entire

L

P

z

y

(a)

t

twh

b

x

y

(b)

Figure 3.1: (a) Elevation of an I-section strut of length L that is compressed axially
by a force P . The lateral and longitudinal coordinates are y and z respectively. (b)
Cross-section geometry of strut – the transverse coordinate being x.

cross-section. The web is assumed to provide a simple support to both flanges and not to

buckle locally under the axial compression, an assumption that is justified later. The total

cross-section depth is h with each flange having width b and thickness t. It is also assumed
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currently that the I-section is effectively made up from two channel members connected

back-to-back; hence, the web thickness tw = 2t, a type of arrangement that has been

successfully used in recent experimental studies (Becque & Rasmussen, 2009a; Wadee &

Gardner, 2012; Becque, 2008), provided that there is sufficient number of closely spaced

connectors so that the webs from each channel section behave as an integral member. The

strut length L is varied such that in one case, which is presented later, Euler buckling

about the weaker y-axis occurs before any flange buckles locally whereas in the other case

the reverse is true – flange local buckling is critical.

3.1.2 Modal description

The formulation begins with the definitions for both the global and the local modal dis-

placements. Timoshenko beam theory is assumed, meaning that although plane sections

remain plane, the effect of shear is not neglected, as it is in standard Euler–Bernoulli

beam theory. A diagrammatic explanation of the basic assumptions in the two bending

theories is shown in Figure 3.2. Although it turns out that the amount of shear strain is

θ(z)

dW
dz

dW
dz = θ(z)

(a) Euler–Bernoulli beam theory

θ(z)

dW
dz

dW
dz 6= θ(z)

(b) Timoshenko beam theory

Figure 3.2: Outline of the beam theories, the dotted line represents the neutral axis of
bending.

small, it is necessary for it to be accounted since it provides the key terms within the total
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potential energy that allow buckling mode interaction to be modelled (Hunt & Wadee,

1998; Wadee & Gardner, 2012). As mentioned in Chapter 2, to account for shear, two

generalized coordinates qs and qt, defined as the amplitudes of the degrees of freedom

known as ‘sway’ and ‘tilt’ (Hunt & Wadee, 1998) are introduced to model the global

mode, as shown in Figure 3.3(a), where the lateral displacement W and the rotation θ

θ(z)

W (z)

z

x

Sway:

Tilt:

z

x

(a)

x

y

w1w2

w2 w1

(b)

Figure 3.3: (a) Sway and tilt components of the minor axis global buckling mode. (b)
Local buckling mode: out-of-plane flange displacement functions wi(x, z); note the linear
distribution in the x direction.

are given by the following expressions:

W (z) = qsL sin
πz

L
,

θ(z) = qtπ cos
πz

L
.

(3.1)

For the present case, the shear strain in the xz plane, γxz, is included and is given by the

following expression:

γxz =
dW

dz
− θ = (qs − qt) π cos

πz

L
. (3.2)

Of course, if Euler–Bernoulli beam theory were being used it would imply that since

γxz = 0, then qs = qt.

The local mode is modelled with appropriate boundary conditions. Moreover, the possi-

bility of a distinct local buckling mode occurring before global buckling implies that the
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entire flange may deflect. However, if the interaction between local and global modes

occurs then the symmetry of the local buckling mode would be broken and the flanges

would not buckle with the same displacement. Hence, two separate lateral displacement

functions w1 and w2 need to be defined, as shown in Figure 3.3(b), to allow for the break in

symmetry. Since the outstands of the flanges have free edges, whereas the web is assumed

to provide no more than a simple support to the flanges, a linear distribution is assumed

in the x direction; Bulson (1970) showed this distribution is correct for the local buckling

eigenmode for that type of rectangular plate. For the local mode, in-plane displacements

ui, the distributions are also assumed to be linear in x, as shown in Figure 3.4. This is

Web line

b/2 w1

Free edge

w2Free edge

b/2

w2(x, z) =
2x

b
w2(z)

w1(x, z) = −2x

b
w1(z)

x

u2(0)

u1(0) Modelled flange

end-displacement

Average flange

end-displacement

z

u1(L)

u2(L)

Figure 3.4: Displacement functions of the local buckling mode in the flanges. Longitudinal
and lateral flange displacements ui(x, z) and wi(x, z) respectively. Note the linear distri-
butions in the x direction and the average end-displacement, as opposed to the modelled
flange end-displacement, which is used to calculate the local contribution to the work
done.

in fact another consequence of the Timoshenko beam theory assumption where plane sec-

tions are assumed to remain plane. These assumptions lead to the following expressions

for the local out-of-plane displacements wi with the in-plane displacements ui:

wi(x, z) = (−1)i
(

2x

b

)
wi(z),

ui(x, z) = (−1)i
(

2x

b

)
ui(z),

(3.3)
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where i = {1, 2} throughout the current chapter. The transverse in-plane displacement

v(z, x) is assumed to be small and is hence neglected for the current case; this reflects the

findings from Koiter and Pignataro (1976) for rectangular plates with three pinned edges

and one free edge.

Since, in practice, perfect geometries do not exist, an initial out-of-straightness in the

x-direction, W0, is introduced as a global imperfection to the web and flanges in the

current model. An initial rotation of the plane section θ0 is also introduced to simulate

the out-of-straightness in the flanges. The expressions for W0 and θ0 are given by:

W0 = qs0L sin
πz

L
,

θ0 = qt0π cos
πz

L
,

(3.4)

and are analogous to Equation (3.1). Local imperfections are considered in Chapter 4.

3.1.3 Total Potential Energy

Having defined both the global and the local modal displacements, the total potential

energy, V , of the strut was determined with the main contributions being the global and

the local bending energy Ubo and Ubl respectively, the membrane energy Um, and the work

done PE . Note that the global bending energy Ubo only comprises the bending energy

stored in the web, since the membrane energy stored in the flanges accounts for the effect

of bending in the flanges through the tilt mode. The initial out-of-straightness W0(z)

is stress-relieved (Thompson & Hunt, 1984; Wadee, 2000), implying that the elemental

moment M drops to zero as illustrated in Figure 3.5(a). The global bending energy

involves the second derivative of W is hence given by:

Ubo =
1

2
EIw

∫ L

0

(
Ẅ − Ẅ0

)2

dz =
1

2
EIw

∫ L

0

(qs − qs0)2 π
4

L2
sin2 πz

L
dz, (3.5)
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θ

L

E
E0z

W (z)

W0(z)

Stiffness : EIw

z

dθ

dz
dW

M

M

M

χχ0

Stress relieved

(a)

θ0
θ

z

x

εz,overall =
∂ut
∂z

ut = −x (θ − θ0)

(b)

Figure 3.5: Introduction of geometric imperfections W0 and θ0 in (a) the web and (b) the
flanges. The quantity χ represents the bending curvature of the member.

where dots represent differentiation with respect to z and Iw = t3w(h−2t)/12 is the second

moment of area of the web about the global weak axis. Obviously, for the case where

tw = 2t, the expression becomes Iw = 2t3(h−2t)/3. The local bending energy, accounting

for both flanges, is determined as:

Ubl = D

∫ L

0

[∫ 0

−b/2
B1dx+

∫ b/2

0

B2dx

]
dz

= D

∫ L

0

[
b

6

(
ẅ2

1 + ẅ2
2

)
+

4 (1− ν)

b

(
ẇ2

1 + ẇ2
2

)]
dz,

(3.6)

where Bi, the contribution from wi to the standard expression for the incremental strain

energy from bending a plate (Timoshenko & Gere, 1961), is given by:

Bi =

(
∂2wi
∂z2

+
∂2wi
∂x2

)2

− 2 (1− ν)

[
∂2wi
∂z2

∂2wi
∂x2

−
(
∂2wi
∂z∂x

)2
]
, (3.7)

with D = Et3/[12(1 − ν2)] being the plate flexural rigidity. The buckled configuration

of the flange plate involves double curvature in the x and z directions, indicating the

non-developable nature of plate deformation. The so-called membrane strain energy (Um)
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is derived from considering the direct strains (ε) and the shear strains (γ) in the flanges

thus:

Um = Ud + Us =

∫ L

0

[∫ −h/2+t

−h/2
Fdy +

∫ h/2

h/2−t
Fdy

]
dz, (3.8)

where:

F =
1

2

{∫ 0

−b/2

[
E
(
ε2
z1 + ε2

x1 + 2νεz1εx1

)
+Gγ2

xz1

]
dx

+

∫ b/2

0

[
E
(
ε2
z2 + ε2

x2 + 2νεz2εx2

)
+Gγ2

xz2

]
dx

}
.

(3.9)

The transverse component of strain εxi is neglected since it has been shown that it has

no effect on the post-buckling behaviour of a long plate with three simply-supported

edges and one free edge (Koiter & Pignataro, 1976). The longitudinal strain εz has to be

modelled separately for different outstand flanges. Recall that the tilt component of the

in-plane displacement from the global mode, is given by ut = −θx, hence:

εz,global =
∂ut
∂z

= x (qt − qt0)
π2

L
sin

πz

L
. (3.10)

The local mode contribution is based on von Kármán plate theory. A pure in-plane

compressive strain ∆ is also included. The direct strains in the compression and tension

side of the flanges, denoted as εz1 and εz2 respectively, are given by the general expression:

εzi = εz,global −∆ +
∂ui
∂z

+
1

2

(
∂wi
∂z

)2

= x (qt − qt0)
π2

L
sin

πz

L
−∆ + (−1)i

(
2x

b

)
u̇i +

2x2

b2
ẇ2
i .

(3.11)

The strain energy from direct strains (Ud) is thus, assuming that h� t:

Ud = Etb

∫ L

0

{
b2

12
(qt − qt0)2 π

4

L2
sin2 πz

L
+ ∆2 +

1

6

(
u̇2

1 + u̇2
2

)
+

1

40

(
ẇ4

1 + ẇ4
2

)
− (qt − qt0)

bπ2

2L
sin

πz

L

[
1

3
(u̇1 − u̇2) +

1

8

(
ẇ2

1 − ẇ2
2

)]
− 1

2
∆ (u̇1 + u̇2)

− 1

6
∆
(
ẇ2

1 + ẇ2
2

)
+

1

8

(
u̇1ẇ

2
1 + u̇2ẇ

2
2

)
+
h

b
∆2

}
dz,

(3.12)
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where, apart from the final term which represents the energy stored in the web, the

contributions are from the direct strains in both flanges. The shear strain energy Us

contains the shear modulus G, which is given by E/[2(1 + ν)] for a homogeneous and

isotropic material. The shear strain γxz contributions are also modelled separately for the

compression and the tension side of the flanges. The expression for each outstand is given

by the general expression:

γxzi =
∂

∂z
(W −W0)− (θ − θ0) +

∂ui
∂x

+
∂wi
∂z

∂wi
∂x

= (qs − qt − qs0 + qt0) π cos
πz

L
+ (−1)i

(
2

b

)
ui +

4x

b2
wiẇi.

(3.13)

The expression for the strain energy from shear is thus:

Us = Gtb

∫ L

0

[
(qs − qt − qs0 + qt0)2 π2 cos2 πz

L

− (qs − qt − qs0 + qt0)
π

b
cos

πz

L
(2u1 − 2u2 + w1ẇ1 − w2ẇ2)

+
2

b2

(
u1

2 + u2
2 +

1

3
w1

2ẇ2
1 +

1

3
w2

2ẇ2
2 + u1w1ẇ1 + u2w2ẇ2

)]
dz.

(3.14)

Finally, the work done by the axial load P is given by:

PE = P

∫ L

0

[
q2
s

π2

2
cos2 πz

L
− 1

2
(u̇1 + u̇2) + ∆

]
dz, (3.15)

where E comprises the longitudinal displacement due to global buckling, the in-plane

displacement due to local buckling and the initial end-shortening. Note that the displace-

ment due to local buckling is taken as the average value between the maximum in-plane

displacement in the more compressed outstand u1 and the maximum in-plane displace-

ment in the less compressed outstand u2, which is illustrated in Figure 3.4. Moreover,

the possible term in qs0 has been neglected since it would vanish on differentiation for
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equilibrium anyway. The total potential energy V is therefore assembled thus:

V =Ubo + Ubl + Um − PE

=

∫ L

0

{
1

2
EIw(qs − qs0)2 π

4

L2
sin2 πz

L
+D

[
b

6

(
ẅ2

1 + ẅ2
2

)
+

4 (1− ν)

b

(
ẇ2

1 + ẇ2
2

)]
+ Etb

{
b2

12
(qt − qt0)2 π

4

L2
sin2 πz

L
+ ∆2 +

1

6

(
u̇2

1 + u̇2
2

)
+

1

40

(
ẇ4

1 + ẇ4
2

)
− (qt − qt0)

bπ2

2L
sin

πz

L

[
1

3
(u̇1 − u̇2) +

1

8

(
ẇ2

1 − ẇ2
2

)]
− 1

2
∆ (u̇1 + u̇2)

− 1

6
∆
(
ẇ2

1 + ẇ2
2

)
+

1

8

(
u̇1ẇ

2
1 + u̇2ẇ

2
2

)
+
h

b
∆2

}
+Gtb

[
(qs − qt − qs0 + qt0)2 π2 cos2 πz

L
− (qs − qt − qs0 + qt0)

π

b
cos

πz

L

(
2u1

− 2u2 + w1ẇ1 − w2ẇ2

)
+

2

b2

(
u1

2 + u2
2 +

1

3
w1

2ẇ2
1 +

1

3
w2

2ẇ2
2

+ u1w1ẇ1 + u2w2ẇ2

)]
− P

[
q2
s

π2

2
cos2 πz

L
− 1

2
(u̇1 + u̇2) + ∆

]}
dz.

(3.16)

3.1.4 Variational Formulation

The governing differential equations are obtained by performing the calculus of variations

on the total potential energy V following a well established procedure that has been

detailed in Hunt and Wadee (1998). The integrand of the total potential energy V can

be expressed as the Lagrangian (L) of the form:

V =

∫ L

0

L (ẅi, ẇi, wi, u̇i, ui, z) dz. (3.17)

The first variation of V , which is denoted as δV , is given by the general expression:

δV =

∫ L

0

[
∂L
∂ẅi

δẅi +
∂L
∂ẇi

δẇi +
∂L
∂wi

δwi +
∂L
∂u̇i

δu̇i +
∂L
∂ui

δui

]
dz. (3.18)
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By differentiating partially with respect to the corresponding parameters, δV is deter-

mined, thus:

δV =

∫ L

0

[(
1

3
Dbẅ1

)
δẅ1 +

(
1

3
Dbẅ2

)
δẅ2

+

{
8D(1− ν)

b
ẇ1 + Etb

[
1

10
ẇ3

1 −
b

8
(qt − qt0)

π2

L
sin
(π
L
z
)
ẇ1 −

1

3
ẇ1∆ +

1

4
u̇1ẇ1

]
+Gtb

[
2

b2

(
2

3
w1

2ẇ1 + u1w1

)
− 1

b
(qs − qt − qs0 + qt0) π cos

(π
L
z
)
w1

]}
δẇ1

+

{
8D(1− ν)

b
ẇ2 + Etb

[
1

10
ẇ3

2 +
b

8
(qt − qt0)

π2

L
sin
(π
L
z
)
ẇ2 −

1

3
ẇ2∆ +

1

4
u̇2ẇ2

]
+Gtb

[
2

b2

(
2

3
w2

2ẇ2 + u2w2

)
+

1

b
(qs − qt − qs0 + qt0) π cos

(π
L
z
)
w2

]}
δẇ2

+

{
Gtb

[
2

b2

(
2

3
w1ẇ

2
1 + u1ẇ1

)
− 1

b
(qs − qt − qs0 + qt0)π cos

(π
L
z
)
ẇ1

]}
δw1

+

{
Gtb

[
2

b2

(
2

3
w2ẇ

2
2 + u2ẇ2

)
+

1

b
(qs − qt − qs0 + qt0) π cos

(π
L
z
)
ẇ2

]}
δw2

+

{
Etb

[
1

3
u̇1 −

b

6
(qt − qt0)

π2

L
sin
(π
L
z
)
− 1

2
∆ +

1

8
ẇ2

1

]
+

1

2
P

}
δu̇1

+

{
Etb

[
1

3
u̇2 +

b

6
(qt − qt0)

π2

L
sin
(π
L
z
)
− 1

2
∆ +

1

8
ẇ2

2

]
+

1

2
P

}
δu̇2

+

{
Gtb

[
2

b2
(2u1 + ẇ1w1)− 2

b
(qs − qt − qs0 + qt0) π cos

(π
L
z
)]}

δu1

+

{
Gtb

[
2

b2
(2u2 + ẇ2w2) +

2

b
(qs − qt − qs0 + qt0) π cos

(π
L
z
)]}

δu2

]
dz.

(3.19)

To find the equilibrium states, V must be stationary, which requires δV to vanish for any

small change in wi and ui. Since the following relations are true:

δẅi =
d(δẇi)

dz
, δẇi =

d(δwi)

dz
, δu̇i =

d(δui)

dz
, (3.20)

integration by parts allows the development of the Euler–Lagrange equations for wi and

ui; these comprise fourth order ordinary differential equations (ODEs) for wi and second

order ODEs for ui. For the equations to be solved by the continuation package Auto, the

system variables need to be rescaled with respect to the non-dimensional spatial coordinate

z̃ = 2z/L. Non-dimensional out-of-plane displacements w̃i and in-plane displacements ũi
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are also introduced as 2wi/L and 2ui/L respectively. The non-dimensional scalings for

higher order derivatives with respect to wi and ui are determined by the chain rule of

differentiation and summarized in Table 3.1. Note that these scalings assume symmetry

First order derivatives ˜̇wi = w̃i, ˜̇ui = ũi
Second order derivatives ˜̈wi = Lw̃i/2, ˜̈ui = Lũi/2
Fourth order derivatives ˜....w i = L3w̃i/8

Table 3.1: Non-dimensional scalings for higher order derivatives with respect to wi and
ui.

about the midspan and the differential equations are solved for half the length of the

strut; this assumption has been shown to be perfectly acceptable for cases where global

buckling is critical (Wadee, 2000). For cases where local buckling is critical, this condition

is also acceptable so long as the length of the strut L is much larger than the flange

outstand width b/2 (Wadee & Yiatros, 2011); hence the critical loads for symmetric and

antisymmetric modes are sufficiently close for the buckling plate. The non-dimensional

differential equations for wi and ui are thus:

˜....w1 − 6φ2 (1− ν) ˜̈w1 +

(
3D̃

8

){
(qt − qt0)

π2

4φ

(
sin

πz̃

2
˜̈w1 +

π

2
cos

πz̃

2
˜̇w1

)
+ ˜̈w1

(
2

3
∆− 3

5
˜̇w2

1

)
− 1

2

(
˜̈u1

˜̇w1 + ˜̇u1
˜̈w1

)}
− 3G̃

8
φ2w̃1

[
2

3
˜̇w2

1 +
2

3
w̃1

˜̈w1 + ˜̇u1 + (qs − qt − qs0 + qt0)
π2

2φ
sin

πz̃

2

]
= 0,

(3.21)

˜̈u1 +
3

4
˜̇w1

˜̈w1 −
{

(qt − qt0)
π3

4φ
cos

πz̃

2
−
(

3G̃φ2

D̃

)[
(qs − qt − qs0 + qt0)

π

φ
cos

πz̃

2

− 1

2
w̃1

˜̇w1 − ũ1

]}
= 0,

(3.22)

˜....w2 − 6φ2 (1− ν) ˜̈w2 −
(

3D̃

8

){
(qt − qt0)

π2

4φ

(
sin

πz̃

2
˜̈w2 +

π

2
cos

πz̃

2
˜̇w2

)
− ˜̈w2

(
2

3
∆− 3

5
˜̇w2

2

)
+

1

2

(
˜̈u2

˜̇w2 + ˜̇u2
˜̈wi
)}

− 3G̃

8
φ2w̃2

[
2

3
˜̇w2

2 +
2

3
w̃2

˜̈w2 + ˜̇u2 − (qs − qt − qs0 + qt0)
π2

2φ
sin

πz̃

2

]
= 0,

(3.23)
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˜̈u2 +
3

4
˜̇w2

˜̈w2 +

{
(qt − qt0)

π3

4φ
cos

πz̃

2
−
(

3G̃φ2

D̃

)[
(qs − qt − qs0 + qt0)

π

φ
cos

πz̃

2

+
1

2
w̃2

˜̇w2 + ũ2

]}
= 0,

(3.24)

where D̃ = EtL2/D, G̃ = GtL2/D and φ = L/b. Note that there is no interaction between

the terms with i = 1 and the terms with i = 2; each set of local displacement functions

interacts with the global coordinates qs and qt, indicated by the cross terms which carry

opposite signs for i = 1 and i = 2.

Equilibrium also requires the minimization of the total potential energy with respect to

the generalized coordinates qs, qt and ∆. This provides three integral equations, which in

non-dimensional form are:

∂V

∂qs
= π2(qs − qs0) + s̃ (qs − qt − qs0 + qt0)− PL2

EIw
qs

− s̃φ

π

∫ 1

0

cos
πz̃

2

[
1

2

(
w̃1

˜̇w1 − w̃2
˜̇w2

)
+ (ũ1 − ũ2)

]
dz̃ = 0,

∂V

∂qt
= π2(qt − qt0)− t̃ (qs − qt − qs0 + qt0) + φ

∫ 1

0

{
t̃

π
cos

πz̃

2

[
1

2

(
w̃1

˜̇w1 − w̃2
˜̇w2

)
+ (ũ1 − ũ2)

]
− sin

πz̃

2

[
2
(
˜̇u1 − ˜̇u2

)
+

3

4

(
˜̇w2

1 − ˜̇w2
2

)]}
dz̃ = 0,

∂V

∂∆
=

∫ 1

0

[
2

(
1 +

h

b

)
∆− 1

2

(
˜̇u1 + ˜̇u2

)
− 1

6

(
˜̈w2

1 + ˜̈w2
2

)
− P

Etb

]
dz̃ = 0,

(3.25)

where s̃ = 2GtbL2/(EIw) and t̃ = 12Gφ2/E. Since the strut is an integral member

the expressions in Equation (3.25) provide a relationship linking qs and qt before any

interactive buckling occurs, i.e. when wi = ui = 0. This relationship is assumed to

hold also between qs0 and qt0, which has the beneficial effect of reducing the number of

imperfection amplitude parameters to one.

The boundary conditions for w̃i and ũi and their derivatives are for pin ended conditions

for z̃ = 0 and for symmetry at z̃ = 1:

w̃i(0) = ˜̈wi(0) = ˜̇wi(1) =
.̃..
wi(1) = ũi(1) = 0, (3.26)

83



Chapter 3–Variational modelling

with further conditions from matching the in-plane strain:

1

3
˜̇ui(0) +

1

8
˜̇w2
i (0)− 1

2
∆ +

P

2Etb
= 0. (3.27)

This final expression is derived from minimizing the terms δu̇i in Equation (3.19). For

both cases, the imposed symmetry reduces computational effort considerably.

3.1.5 Linear eigenvalue analysis

Before solving the differential equations, linear eigenvalue analysis for the perfect strut

is conducted to determine the critical load for global buckling PC
o . This is achieved by

considering that the Hessian matrix Vst at the critical load is singular. Hence:

det (Vst) =

∣∣∣∣∣ ∂2V
∂q2s

∂2V
∂qs∂qt

∂2V
∂qt∂qs

∂2V
∂q2t

.

∣∣∣∣∣ = 0. (3.28)

Recalling of course that in fundamental equilibrium for this case, qs = qt = wi = ui = 0.

Hence, the critical load for global buckling is:

PC
o =

π2EIw
L2

+
2Gtb

1 + t̃/π2
. (3.29)

If the limit G→∞ is taken, which represents a principal assumption in Euler–Bernoulli

bending theory, the critical load expression converges to the Euler buckling load for an

I-section strut buckling about the weak axis.

3.2 Numerical examples of perfect behaviour

Two numerical examples, representing the perfect behaviour of the strut, are presented

in this section for the cases where local buckling and global buckling are critical in turn.
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Obviously, the critical buckling mode is controlled by the section properties and member

length. In the current chapter, a fixed set of cross-section and material properties are

chosen and shown in Table 3.2, whereas the strut length, L, is varied such that the

Flange width b 96 mm
Flange thickness t 1.2 mm

Cross-section depth h 120 mm
Cross-section area A 513 mm2

Young’s modulus E 210 kN/mm2

Poisson’s ratio ν 0.3

Table 3.2: Cross-section and material properties of an example strut. Recall that the
thickness of the web tw = 2t. The geometric properties are similar to those tested in
Becque and Rasmussen (2009a).

cases where local buckling or global buckling are critical can be presented. The global

critical load PC
o can be calculated using Equation (3.29), whereas an estimate for the local

buckling critical stress σC
l can be evaluated using the well-known plate buckling formula:

σC
l =

kDπ2

b2t
, (3.30)

where the coefficient k depends on the boundary conditions; values of k = 0.426 and

k = 4 are chosen for the rectangular plates representing the flange outstands (three edges

pinned and one edge free) and the web (all four edges pinned) respectively, assuming that

the plates are relatively long (Bulson, 1970). Table 3.3 summarizes the critical stresses

L (m) σC
o (N/mm2) σC

l,flange (N/mm2) σC
l,web (N/mm2) Critical mode

3.5 58.3 51.1 2731 Local (flange)
4.0 44.7 51.1 2731 Global

Table 3.3: Theoretical values of the global and local critical buckling stresses for two
separate lengths. The expression for σC

o = PC
o /A and the web is obviously not vulnerable

to local buckling.

and shows that the assigned cross-section dimensions satisfy the assumptions that the

local mode is critical for one of the lengths and the global mode is critical for the other.

Moreover, the critical stress of the web is two orders of magnitude higher than that of the
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flange, which justifies the assumption stated earlier that the web would not be susceptible

to local buckling. It should be noted that tw = 2t has been taken to evaluate σC
l,web and

this assumes that there are a sufficient number of closely spaced connectors to make the

two web plates act as one. However, since σC
l,web � σC

l,flange the assumption that the web

does not buckle before the flange still holds even if tw = t.

3.2.1 Auto-07p

The full nonlinear differential equations are obviously too complicated to be solved analyt-

ically. The continuation and bifurcation software Auto-07p (Doedel & Oldeman, 2009)

has been shown in the literature (Hunt & Wadee, 1998; Wadee & Hunt, 1998; Wadee,

2000; Wadee & Blackmore, 2001; Wadee et al., 2010) to be an ideal tool to solve the

equations numerically. For this type of mechanical problem, one of its major attributes

is that it has the capability to show the evolution of the solutions to the equations with

parametric changes. The solver is very powerful in locating bifurcation points and tracing

branching paths as model parameters are varied.

The current study comprises nonlinear non-autonomous ordinary differential equations

subject to boundary and integral conditions, which are solved by numerical techniques

including the modified Newton–Raphson method and the pseudo-arclength continuation

method. Auto initially discretizes the problem by the method of orthogonal collocation

(de Boor & Swartz, 1973). The mesh size can be manually controlled before each nu-

merical run to achieve convergence. The mesh is automatically adapted during the run

to distribute the local discretization error evenly (Russell & Christiansen, 1978). The

solver starts at an initial point in the solution space and estimates a solution that is then

iteratively corrected using the modified Newton–Raphson method, until the solution is
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within the specified error tolerance. Beyond folds and limit points, the pseudo-arclength

continuation method is utilized in conjunction with Newton’s method (Riks, 1972). This

is important in the current investigation since the expected cellular behaviour comprises

a sequence of limit points in the post-buckling range. Furthermore, the solver is pow-

erful in locating bifurcation points by recognizing that the rank of the Jacobian matrix

of the system reduces by at least one at the location of a bifurcation point (Doedel &

Oldeman, 2009). Upon the evaluation of the derivative of the Jacobian, the different

post-bifurcation paths can be traced by finding the solution of the roots of the resulting

algebraic bifurcation equation. The solver allows branch switching after the detection of

the bifurcation points, which will be shown to be very powerful in the numerical examples

presented later. The software package can also identify other critical points such as folds,

Hopf bifurcations, and period doubling bifurcations, which shows its wide applicability in

solving nonlinear problems, although most of these features are beyond the scope of the

current problem.

3.2.2 Local buckling critical

In this section, the strut with properties given in Table 3.2 with length L being 3.5 m is

analysed, where the flange plates buckle locally first. In this case, both sets of the local

displacement functions are solved. In general, the current case where local buckling is

critical requires a finer mesh and therefore more computational effort.
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Solution strategy

Numerical continuations were performed in Auto. The governing differential equations

were first transformed into a system of first order differential equations. The principal

parameters used in the continuation process were interchangeable, but generally qs was

varied for computing the equilibrium paths for the distinct buckling modes and P was

varied for evaluating the interactive buckling paths. For the case of local buckling being

critical, the continuation process initiated from zero load with the local buckling critical

load PC
l being obtained numerically. The post-buckling path was then computed by

using the branch switching facility within the software and the distinct local buckling

equilibrium path was computed until a secondary bifurcation point S was found. It was

from this point that the interactive buckling path was found, again through the use of

branch switching. Figure 3.6(a) shows the procedure diagrammatically.

Run 1

Run 2

Run 3PC
l

S

P

qs

C

(a)

PC
o

S

P

qs

Run 1

Run 2
C

(b)

Run 1

(No interaction)

Run 2

(Interaction)

PC
l

S

P

qsqs0

C

PU

S0

(c)

Figure 3.6: Numerical continuation procedures. (a) Local buckling being critical. (b)
Global buckling being critical. (c) Imperfect case – example of local buckling being critical
shown. The thicker line shows the actual solution path in each of the examples shown.
Points C and S represent the critical and secondary bifurcations respectively, whereas the
point S0 represents the bifurcation leading to interactive buckling in the imperfect case
with the load PU being the ultimate load for the imperfect case.
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Results and discussion

Figure 3.7 shows a plot of the normalized axial load p = P/PC
o versus (a) the local

mode and (b) the global mode amplitudes. Figure 3.8(a) shows the local and global

mode relative magnitudes during post-buckling and (b) shows that there is a small but

importantly, non-zero shear strain during global buckling. The local critical buckling

load is calculated at p = 0.905, whereas according to Table 3.3, this value should be

0.877, which represents a small error of 3%, particularly since it is well known that the

theoretical expression for the critical buckling stress for an infinitely long plate is a lower

bound value for the relevant boundary condition and current plate geometry.

One of the most distinctive features of the equilibrium paths, as shown in Figure 3.7(a)–(b)

and Figure 3.8(a), is the sequence of snap-backs that effectively divides the equilibrium

path into 10 individual parts (or cells) in total. The fourth, seventh and the tenth

paths are labelled as C4, C7 and C10 respectively. Each path or cell corresponds to the

formation of a new local buckling displacement peak or trough. Figure 3.9 illustrates the

corresponding progression of the numerical solutions for the local buckling functions w1

and u1 from cell C1 to C10, where C1 represents the initial post-buckling equilibrium

path generated from the critical bifurcation point C. Once a secondary bifurcation is

triggered at S, it is observed that the local buckling mode is contaminated by the global

mode and interactive buckling ensues with the buckling deformation spreading towards

the supports as new peaks and troughs are formed. Figure 3.10 shows a selection of

3-dimensional representations of the deflected strut that comprise the components of

global buckling (W and θ) and local buckling (wi and ui) at a specific state on paths

C1, C4, C7 and C10. As the equilibrium path develops to C10, the maximum out-

of-plane displacement wmax approaches a value of 2.5 mm which is approximately twice
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Figure 3.7: Numerical equilibrium paths for L = 3.5 m where local buckling is critical.
Graphs of the normalized force ratio p versus (a) the maximum out-of-plane displacement
of the buckled flange plate, in non-dimensional form, wmax/t and (b) the generalized
coordinate qs are shown.
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Figure 3.8: Numerical equilibrium paths for L = 3.5 m where local buckling is critical.
Graph (a) shows wmax/t versus qs and (b) shows the relationship between the generalized
coordinates qs and qt (average percentage difference ≈ 0.11%) defining the global buckling
mode during interactive buckling, with the dot-dashed line showing the Euler–Bernoulli
bending condition qs = qt.
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Figure 3.9: Numerical solutions for the local out-of-plane displacement w1 (left) and
local in-plane displacement u1 (right) for the tip (x = −b/2) of the vulnerable flange.
Individual solutions on equilibrium paths C1 to C10 are shown in sequence from top to
bottom respectively.

92



Chapter 3–Variational modelling

(a) (b)

(c) (d)

Figure 3.10: Numerical solutions of the system of equilibrium equations visualized on
3-dimensional representations of the strut. The results are shown for individual points on
paths (a) C1 (p = 0.9039), (b) C4 (p = 0.9081), (c) C7 (p = 0.8111) and (d) C10 (p =
0.7177). All dimensions are in millimetres.

93



Chapter 3–Variational modelling

the flange thickness and can be regarded as large in terms of geometric assumptions.

The interactive buckling pattern becomes effectively periodic on path C10. Any further

deformation along the equilibrium path would be expected to cause restabilization to the

system since the boundaries would begin to confine the spread of the buckling deformation.

It should be stressed of course that any plastic deformation during the loading stage would

destabilize the system significantly. Figure 3.11 shows the comparison between the lateral
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Figure 3.11: Numerical solutions for the local out-of-plane displacement w2 (left) for the
tip of the non-vulnerable flange (x = b/2) and w1 (right) for the tip of the vulnerable flange
(x = −b/2) for cells 1–3. Note the rapid decay of w2 reflecting the reducing compression
in that outstand once global buckling is triggered.

displacement of the two flange outstands. The local buckling displacement in the non-

vulnerable outstand w2 decays to zero rapidly as the global mode amplitude increases

during interactive buckling; by the third cell, w2 has vanished implying that if global
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buckling occurs first, both w2 and u2 would be negligible.

The magnitude of direct and shear strains may be calculated once the governing dif-

ferential equations are solved. Figure 3.12(a) shows the direct strains, εz1 and εz2 in

the extreme fibre of the flange outstands, at the equilibrium states specified in Figure

3.10, whereas the corresponding shear strains are shown in Figure 3.12(b). The direct

strain in the non-vulnerable part of the flange becomes tensile at C10 due to bending,

whereas the maximum direct strain in the vulnerable part of the flange is approximately

1.3 × 10−3(= 0.13%). This level of strain is confined to the ends of the strut and is

also well below the yield strain of most structural steels; moreover for the stainless steels

given in the works by Becque and Rasmussen (Becque & Rasmussen, 2009a; Becque,

2008), significant reduction in stiffness only begins from approximately 0.15% strain and

so quantitative comparisons can be made later for the post-buckling response for the

majority of the cells.

As mentioned earlier, systems that exhibit the phenomenon described above are termed

in the literature to show ‘cellular buckling’ (Hunt et al., 2000) or ‘snaking’ (Burke &

Knobloch, 2007). In such systems, progressive destabilization and restabilization is ex-

hibited; currently, the destabilization is caused primarily by the interaction of the global

and local instabilities, whereas the restabilization is caused by the stretching of the buck-

led plates when they bend into double curvature. As the amplitude of the global buckling

mode qs increases, the compressive bending stress in the flange outstands increases also,

which implies that progressively longer parts of the flange are susceptible to local buck-

ling. Since local buckling is inherently stable, the drop in the load from the unstable mode

interaction is limited due to the stretching of the plate when it buckles into progressively

smaller wavelengths. Therefore, the cellular buckling occurs due to the complementary
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Figure 3.12: Graphs (a) and (b) show direct and shear strains respectively, in the extreme
fibre of the vulnerable and non-vulnerable flange outstands, at the equilibrium states
specified in Figure 3.10. The more oscillatory solutions are for those with higher cell
numbers.
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effects of the unstable mode interaction and the stable local buckling.

Cellular buckling is also strongly associated with the Maxwell load PM (Hunt et al., 2000;

Wadee & Edmunds, 2005), where the load oscillates about a fixed load PM. The Maxwell

load is associated with a purely periodic solution of the governing equations to which the

localized solutions evolve for large values of the deformation (Hunt et al., 2000). However,

in the systems such as the cylinder or in compressed confined layers, there is only one

loading source (the axial load). In the current case, the global mode provides an effective

additional loading source through the coordinate qt, and hence the total load on the

flange continues to increase while equilibrium demands that the external load continues

to decrease. Hence a fixed Maxwell load is not seen. The detailed considerations of the

level of the load P when the local buckling mode becomes periodic is much more complex

and is left for the future. However, it is noted that the total loading, identified as the

‘body force’ in Hunt and Wadee (1998) could be used to begin this analysis, since it has

been shown in Wadee (1998) to give a reasonably good approximation of the total load

in a local element such as the flange.

3.2.3 Global buckling critical

In this section, the strut with length L being 4 m is analysed. After global buckling is

triggered, one half of the flange is subject to more compression whereas the other half is

subject to less compression, due to the bending of the strut about the weak axis. As a

consequence, only a half of the flange is vulnerable to local buckling; the functions w2 and

u2 can therefore be neglected due to the evidence shown in Figure 3.11. This simplifies the

formulation considerably and the number of the governing differential equations reduces

from four to two.
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Solution Strategy

Since the critical load was determined analytically in Equation (3.29), the initial post-

buckling path was computed first from PC
o and many bifurcation points were detected on

the weakly stable post-buckling path; the focus being on the one with the lowest value of

qs, the secondary bifurcation point S. A subsequent run was then necessary starting from

S using the branch switching function, after which the equilibrium path again exhibits the

interaction between the global and the local modes; Figure 3.6(b) shows the procedure

diagrammatically.

Results and discussion

Figures 3.13 and 3.14 show plots of the equilibrium diagrams that correspond directly to

Figures 3.7 and 3.8 respectively. This time, cellular buckling is triggered when the pure

global mode is contaminated by the local mode. Since the global mode is only weakly

stable, no significant post-buckling stiffness is exhibited initially. Figure 3.15 shows the

progression of the numerical solutions for the local buckling functions w1 and u1 from cell

C1 to C10. The emergence of the buckling cells in sequence is very similar to that shown

for the case where local buckling is critical. However, a more localized local buckling

pattern is observed for the early cells. A selection of 3-dimensional representations of the

deflected strut is shown in Figure 3.16. Figure 3.17 shows the direct and shear strains,

corresponding directly to Figure 3.12, for the equilibrium states specified in Figure 3.16.

The direct strain in the non-vulnerable part of the flange again becomes tensile at C11,

whereas the maximum direct strain in the vulnerable part of the flange is approximately

1.3× 10−3(= 0.13%).
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Figure 3.13: Numerical equilibrium paths for L = 4.0 m where global buckling is critical.
Graphs of the normalized force ratio p versus (a) the generalized coordinate qs and (b)
the maximum out-of-plane displacement of the buckled flange plate, in non-dimensional
form wmax/t, are shown.
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Figure 3.14: Graph (a) shows wmax/t versus qs and (b) shows the relationship between
the generalized coordinates qs and qt (average percentage difference ≈ 0.49%) defining the
global buckling mode during interactive buckling, with the dot-dashed line showing the
Euler–Bernoulli bending condition qs = qt.
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Figure 3.15: Numerical solutions for the local out-of-plane displacement w1 (left) and
local in-plane displacement u1 (right) for the tip (x = −b/2) of the vulnerable flange.
Individual solutions on equilibrium paths C1 to C11 are shown in sequence from top to
bottom respectively.
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(a) (b)

(c) (d)

Figure 3.16: Numerical solutions of the system of equilibrium equations visualized on
3-dimensional representations of the strut. The results are shown for individual points on
paths (a) C1 (p = 0.9988), (b) C4 (p = 0.9597), (c) C7 (p = 0.8635) and (d) C10 (p =
0.7753). All dimensions are in millimetres.
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Figure 3.17: Graphs (a) and (b) show direct and shear strains respectively, in the extreme
fibre of the vulnerable and non-vulnerable flange outstands, at the equilibrium states
specified in Figure 3.16. The more oscillatory solutions are for those with higher cell
numbers.
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3.3 Validation and discussion

3.3.1 Comparison with experiments of Becque and Rasmussen

A fairly recent experimental study of thin-walled I-section struts by Becque and Ras-

mussen (Becque & Rasmussen, 2009a; Becque, 2008) focused on the case where local

buckling is critical. Although the struts were made from a stainless steel alloy (ferritic

AISI404), the compressive stress–strain curve showed that the material remained linearly

elastic when the axial strain was below approximately 0.15%. Two specific tests were

conducted on struts with material and geometric properties as given in Table 3.4. The

Strut length L 3.0 m 2.5 m
Flange width b 96.64 mm 96.80 mm

Corner Radius r 3.06 mm 3.02 mm
Flange thickness t 1.21 mm 1.21 mm

Section depth h 125.12 mm 125.24 mm

Table 3.4: Geometric properties for the strut tests taken directly from (Becque & Ras-
mussen, 2009a; Becque, 2008). Recall that the thickness of the web tw = 2t. For both
struts the initial Young’s modulus E = 195 kN/mm2 and Poisson’s ratio ν = 0.3.

initial out-of-straightness mid-length lateral deflections of the specimens of length L, be-

ing 3 m and 2.5 m, were measured to be L/3352 and L/16234 respectively (Becque, 2008).

In order to make direct comparisons, numerical runs were conducted in Auto with the

initial global buckling mode imperfection amplitude ratio qs0 being equal to 3 × 10−4

and 6 × 10−5 respectively. The solution strategy for the imperfect system is illustrated

diagrammatically in Figure 3.6(c). The cross-section properties given in Table 3.4 were

adapted slightly to consider the flat width of the flange, bf = b − 2r; the flat width was

used in the numerics for the analytical model, the results for which follow.

The numerical continuation process was initiated from zero load. The value of qs was
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increased up to a bifurcation point, shown as S0 in Figure 3.6(c), beyond which interactive

buckling was introduced. The equilibrium path then progressed to a limit point at which

P can be defined as the ultimate load PU . Then destabilization and the cellular buckling

behaviour was observed as described in the previous section. Figures 3.18, 3.19, 3.20 and

3.21 show comparisons between the current analytical model, the experimental results

and the previous numerical models. The comparisons show strong agreement between

the analytical model and the results from the physical experiments, the correlation being

clearly superior to the previous numerical results. However, as deformation progresses

beyond the cross marks in Figure 3.18 to Figure 3.21, a larger difference in the slope of

the post-buckling paths between the analytical model and the experiments is observed,

with the analytical model showing a slightly stiffer response. This is perhaps caused by

the material nonlinearities in the physical experiments where significant reduction in the

material strength takes place after the strain reaches 0.15%, whereas in the analytical

model, a linear elastic material is assumed.

For the 3 m length strut, the ultimate load was found to be 25.2 kN from the experiment,

which is approximately 3% higher than the numerical value from the analytical model

where PU = 24.4 kN. It is also observed in Figure 3.19(b) that the theoretical local

out-of-plane displacement w1, at a location that was remote from the strut midspan

(z = 400 mm), changes from positive to negative and vice versa several times. This is

evidence of the cellular behaviour, indicating the progressive change in wavelength of the

local buckling mode pattern. The actual experimental response, on the other hand, did

not in fact pick up the cellular buckling response with progressive snap-backs; the reason

for this is perhaps two-fold:

1. The relative fixity between the web and the flanges makes the experiment differ
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Figure 3.18: Numerical equilibrium paths comparing with Becque’s experiment with a
strut of length 3 m. Graphs of the applied axial load P versus (a) the total end-shortening
and (b) the generalized coordinate qs. Solid lines show the current analytical model,
whereas the dashed and dot-dashed lines respectively show the experimental and finite
element results from Becque (2008). The crosses represent the equilibrium state where
εz > 0.15% in the analytical model.
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Figure 3.19: Numerical equilibrium paths comparing with Becque’s experiment with a
strut of length 3 m. Graphs of the applied axial load P versus (a) the generalized coor-
dinate qt and (b) the out-of-plane displacement of the buckled flange plate w1 measured
at z = 400 mm are shown. Solid lines show the current analytical model, whereas the
dashed and dot-dashed lines respectively show the experimental and finite element results
from Becque (2008). The cross represents the equilibrium state where εz > 0.15% in the
analytical model.
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Figure 3.20: Numerical equilibrium paths comparing with Becque’s experiment with a
strut of length 2.5 m. Graphs of the applied axial load P versus (a) the total end shorten-
ing and (b) the generalized coordinate qs. Solid lines show the current analytical model,
whereas the dashed and dot-dashed lines respectively show the experimental and finite
element results from Becque (2008). The crosses represent the equilibrium state where
εz > 0.15% in the analytical model.
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Figure 3.21: Numerical equilibrium paths comparing with Becque’s experiment with a
strut of length 2.5 m. Graphs of the applied axial load P versus (a) the generalized coor-
dinate qt and (b) the out-of-plane displacement of the buckled flange plate w1 measured
at z = 400 mm are shown. Solid lines show the current analytical model, whereas the
dashed and dot-dashed lines respectively show the experimental and finite element results
from Becque (2008). The cross represents the equilibrium state where εz > 0.15% in the
analytical model.
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from the pinned assumption presented in the model. This would also mean that the

local buckling pattern is more modulated rather than localized once the instability

is triggered.

2. In a physical experiment, even with displacement control, the mechanical response

in a region with snap-backs in the perfect behaviour exhibits dynamic, rather than

static, behaviour, which smoothes the load versus deflection path.

Even though in the current case the experiment did not pick up the full cellular response,

it did show the change from positive to negative for w1, which is a clear indication of

the changing wavelength in the local buckling mode pattern. The interactive buckling

wavelength Λ can also be compared, which is defined in Figure 3.22. The local buckling

Λ

w

z

Λ

Figure 3.22: Definition of local buckling wavelength Λ from results for w(≡ w1) from the
variational model.

mode had a plate buckling wavelength that was measured to be 275 mm with a modulated

amplitude for this specific test (Becque & Rasmussen, 2009a). The numerical results in the

current work show that the value of Λ is 280 mm for the interactive buckling wavelength

at the end of the equilibrium paths from the analytical model shown in Figure 3.18 and

Figure 3.19. The close comparison (less than 2% difference) offers further grounds for

encouragement for developing of the current model further.

For the 2.5 m length strut, the features are similar; the ultimate load PU is 16% higher

than the maximum load shown in the experiment. However, this is only a very small

part of the global picture. The graphs in Figure 3.20(a), (b) and Figure 3.21(a) show
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sequential snap-backs in the theoretical response almost immediately in the post-buckling

range that reduce the true load-carrying capacity to levels which practically coincide with

the experimental result, demonstrating an excellent overall comparison. In Figure 3.21(b),

a similar response is observed to Figure 3.19(b). Unfortunately, a numerical measurement

of the plate buckling wavelength was not reported for this particular experiment.

Finally, it can be seen that the results from the analytical model and the experiments

begin to diverge after a certain level of displacement. This is postulated to be as a result of

onset and spread of plasticity due to the use of stainless steel in the experiments, whereas

linear elasticity is assumed throughout the analytical model. However, the opinion of the

author is that for the most part the close comparisons between the analytical model and

the experimental results, validate the current modelling approach both qualitatively and

quantitatively.

3.4 Concluding remarks

A nonlinear analytical model based on variational principles has been presented for a

perfect axially-loaded thin-walled I-section strut buckling about the weak axis of bending.

Two numerical examples, representing the cases where global buckling and local buckling

are critical, were examined in turn. The model identifies an important and potentially

dangerous interaction between global and local modes of instability, which in a limiting

case leads to highly unstable cellular buckling through a series of snap-back instabilities

that change the local buckling profile from localized to distributed. These instabilities

result from the increasing contributions of buckling mode amplitudes forcing the flanges in

more compression to buckle progressively. This process had also been observed in recent
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experimental work, apart from the snap-back instabilities (although the changing local

buckling wavelength is indeed observed), which is superior to previous nonlinear finite

element analyses. Comparisons with published experiments are excellent and validate the

model. The following chapters build on the findings of this preliminary study and extend

them to analyse more practical cases with initial local imperfections and cases where the

flange and web have a finite rotational stiffness.
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Imperfection sensitivity

In the previous chapter, an axially loaded thin-walled I-section strut (van der Neut, 1969;

Hancock, 1981), made from a linear elastic material with an open and doubly-symmetric

cross-section, was studied using an analytical approach. The nonlinear mode interaction

between global Euler buckling and local buckling of the flange plates was fully described

by the analytical model, which was validated against recent experimental and numerical

works (Becque & Rasmussen, 2009a; Becque & Rasmussen, 2009b). The primary focus

was on the perfect elastic post-buckling response; and the highly unstable cellular buckling

behaviour was highlighted. Such systems have been shown in the literature to be highly

imperfection sensitive when the global critical load and the local critical load are suffi-

ciently close (van der Neut, 1969; Becque & Rasmussen, 2009a). In the current chapter,

the previous analytical model is extended to study the behaviour of imperfect systems.

The two most common types of imperfection, an initial out-of-straightness of the strut

and an initial local out-of-plane displacement of the flange plates (van der Neut, 1969;

van der Neut, 1973), are introduced and investigated individually and in combination.
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4.1 Development of the analytical model

The analytical model that governs the perfect system and the imperfect system with

an initial out-of-straightness has been fully developed in Chapter 3. In this chapter, the

previous model is extended to include an initial out-of-plane deflection in the flange plates

as a type of local imperfection. Recalling the analytical model in Chapter 3, the same

definitions for the section properties are used and shown in Figure 3.1(a) and (b). Figure

3.3(a) shows the description of the global buckling mode, where the lateral displacement

W and the rotation of the plane section θ are given by Equation (3.1). Figure 3.3(b) shows

the description of the local buckling mode, where the out-of-plane displacement function,

wi and the in-plane displacement function, ui are given by Equation (3.3). Recall also that

i = {1, 2} representing the more and the less compressive sides of the flanges respectively.

The initial out-of-straightness W0, and the initial rotation of the plane section θ0 are given

by Equation (3.4). Note that all assumptions made in Chapter 3 also hold in the current

chapter.

The extension of the previous analytical model begins with introducing the local imper-

fection by defining an initial out-of-plane deflection, w0i(x, z), which has the form:

w0i(x, z) = (−1)i
(

2x

b

)
A0 sech

[
α

(
z

L
− 1

2

)]
cos

[
βπ

(
z

L
− 1

2

)]
, (4.1)

where z ∈ [0, L], A0 is the amplitude of the imperfection and β is the parameter that

controls the number of waves along the length in the imperfection. The parameter α

controls the degree of localization of the imperfection; it is periodic when α = 0, and

modulated when α > 0. This expression for w0i is derived from a first-order approximation

from a multiple scale perturbation analysis of a strut on a nonlinear softening foundation,

which closely matches the least stable localized buckling mode shape (Wadee et al., 1997).

This form of imperfection, illustrated in Figure 4.1 has been shown to be fully applicable
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to struts on a softening quadratic foundation and sandwich struts that undergo global

and local buckling mode interaction (Wadee, 2000). The current work applies a similar

approach. Note that the imperfection is always assumed to be symmetric about the mid-

0 0.5 1 1.5 2

−1

0

1

z̃

w̃
0

0 0.5 1 1.5 2

−1

0

1

z̃

w̃
0

Figure 4.1: Examples of modulated and periodic imperfections; nondimensional initial
deflection w̃0 are plotted versus the nondimensional longitudinal coordinate z̃. Note the
symmetry at z̃ = 1.

span of the strut. The distribution in the transverse direction x is assumed to be linear,

which is consistent with the definition of the local out-of-plane displacement wi(x, z).

4.1.1 Total potential energy

The full formulation of the total potential energy, V , of the perfect strut and the strut with

an initial out-of-straightness W0 was fully established in the previous chapter. Similar to

the global imperfection, the local imperfection is introduced by assuming that the initial

out-of-plane deflection w0 is stress-relieved (Thompson & Hunt, 1984; Wadee, 2000),

implying that the elemental moment M and thus the local bending energy drops to

zero, as illustrated in Figure 4.2(a). The local imperfections are introduced to the more

compressed flange with i = 1 and the less compressed flange with i = 2, respectively. Note
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Figure 4.2: Introduction of (a) local geometric imperfections w0 and (b) the global geomet-
ric imperfection θ0 in the flange plates. The quantity χ represents the bending curvature
of the member.

that although w01(z) and w02(z) are identical after integration over the flange width, the

notation cannot be used interchangeably. This is because in the case of global buckling

being critical, the local buckling deformation in the less compressed half of the flange

(i = 2) can be neglected; the local imperfection is also assumed to exist only in the

vulnerable half of the flange (i = 1). The introduction of the local imperfection provides

additional expressions to the local bending, membrane and shear strain energy functions.

However, the global bending energy Ubo and the work done PE remain the same as in

the system with the global imperfection only, and given in Equations (3.5) and (3.15)

respectively. The local bending energy, Ubl accounting for both top and bottom flanges is
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determined as:

Ubl = D

∫ L

0

[∫ 0

−b/2
B01dx+

∫ b/2

0

B02dx

]
dz

= D

∫ L

0

{
b

6

[
(ẅ1 − ẅ01)2 + (ẅ2 − ẅ02)2]

+
4 (1− ν)

b

[
(ẇ1 − ẇ01)2 + (ẇ2 − ẇ02)2]}dz,

(4.2)

where B0i, the contribution from wi to the standard expression for the incremental strain

energy from plate bending (Timoshenko & Gere, 1961), including the contribution from

the initial out-of-plane displacement w0i, is given by:

B0i =

[(
∂2wi
∂z2

− ∂2w0i

∂z2

)
+

(
∂2wi
∂x2

− ∂2w0i

∂x2

)]2

− 2 (1− ν)

[(
∂2wi
∂z2

∂2wi
∂x2

− ∂2w0i

∂z2

∂2w0i

∂x2

)
−
(
∂2wi
∂z∂x

− ∂2w0i

∂z∂x

)2
]
,

(4.3)

with D = Et3/[12(1−ν2)] being the plate flexural rigidity. The direct strains εz1 and εz2,

including the contribution from w0i, are given by the following expression:

εzi =
∂ut
∂z
−∆ +

∂ui
∂z

+
1

2

[(
∂wi
∂z

)2

−
(
∂w0i

∂z

)2
]

= x (qt − qt0)
π2

L
sin

πz

L
−∆ + (−1)i

(
2x

b

)
u̇i +

2x2

b2

(
ẇ2
i − ẇ2

0i

)
,

(4.4)

where ut = −(θ − θ0)x, which is essentially the in-plane displacement from the tilt com-

ponent of the global buckling mode, as shown in Figure 4.2(b). The membrane energy

from the direct strains (Ud), assuming that h� t, is given thus:

Ud = Et

∫ L

0

[∫ 0

−b/2
ε2
z1dx+

∫ b/2

0

ε2
z2dx

]
dz

= Etb

∫ L

0

{
b2

12
(qt − qt0)2 π

4

L2
sin2 πz

L
− (qt − qt0)

bπ2

2L
sin

πz

L

[
1

3
(u̇1 − u̇2)

+
1

8

(
ẇ2

1 − ẇ2
01

)
− 1

8

(
ẇ2

2 − ẇ2
02

)]
+

(
1 +

h

b

)
∆2 +

1

6

(
u̇2

1 + u̇2
2

)
+

1

40

[(
ẇ2

1 − ẇ2
01

)2
+
(
ẇ2

2 − ẇ2
02

)2
]
− 1

2
∆ (u̇1 + u̇2)− 1

6
∆
(
ẇ2

1 − ẇ2
01

)
− 1

6
∆
(
ẇ2

2 − ẇ2
02

)
+

1

8
u̇1

(
ẇ2

1 − ẇ2
01

)
+

1

8
u̇2

(
ẇ2

2 − ẇ2
02

)}
dz,

(4.5)
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The shear strains γxz1 and γxz2, including the contribution from w0i are given by the

following expression:

γxzi =
∂

∂z
(W −W0)− (θ − θ0) +

∂ui
∂x

+
∂wi
∂z

∂wi
∂x
− ∂w0i

∂z

∂w0i

∂x

= (qs − qt − qs0 + qt0) π cos
πz

L
+ (−1)i

(
2

b

)
ui +

4x

b2
(wiẇi − w0iẇ0i) .

(4.6)

The membrane energy from the shear strain component is thus:

Us = Gt

∫ L

0

[∫ 0

−b/2
γ2
xz1dx+

∫ b/2

0

γ2
xz2dx

]
dz

= Gtb

∫ L

0

{
(qs − qt − qs0 + qt0)2 π2 cos2 πz

L
+

2

b2

[
u1

2 + u2
2 +

1

3
(w1ẇ1 − w01ẇ01)2

+
1

3
(w2ẇ2 − w02ẇ02)2 + u1 (w1ẇ1 − w01ẇ01) + u2 (w2ẇ2 − w02ẇ02)

]
− (qs − qt − qs0 + qt0)

π

b
cos

πz

L

[
2u1 − 2u2 + (w1ẇ1 − w01ẇ01)

− (w2ẇ2 − w02ẇ02)

]}
dz.

(4.7)

The final expression of the total potential energy, V is assembled thus:

V = Ubo + Ubl + Ud + Us − PE . (4.8)

4.1.2 Governing equations

The governing equilibrium equations are obtained by performing the calculus of variations

on the total potential energy V following the procedure detailed in Chapter 3. The system

is again nondimensionalized with respect to the non-dimensional spatial coordinate z̃,

which is defined as z̃ = 2z/L. The non-dimensional expressions for the out-of-plane

displacement w̃i, the in-plane displacement ũi and their derivatives are summarized in

Table 3.1. Moreover, the non-dimensional initial out-of-plane displacement, w̃0i is given
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by the following expression:

w̃0i =
2A0

L
sech

[
1

2
α (z̃ − 1)

]
cos

[
1

2
βπ (z̃ − 1)

]
. (4.9)

The differential equations for the rescaled variables w̃i and ũi are thus:

˜....wi − 6φ2 (1− ν) ˜̈wi − (−1)i

(
3D̃

8

){
(qt − qt0)

π2

4φ

(
sin

πz̃

2
˜̈wi +

π

2
cos

πz̃

2
˜̇wi

)
− (−1)i

[
˜̈wi

(
2

3
∆− 3

5
˜̇w2
i

)
− 1

2

(
˜̈ui ˜̇wi + ˜̇ui ˜̈wi

)]}
− 3G̃

8
φ2w̃i

[
2

3
˜̇w2
i +

2

3
w̃i ˜̈wi + ˜̇ui − (−1)i (qs − qt − qs0 + qt0)

π2

2φ
sin

πz̃

2

]
= ˜....w0i − 6φ2 (1− ν) ˜̈w0i −

3

40
D̃ ˜̇w0i

(
˜̈wi ˜̇w0i + 2 ˜̇wi ˜̈w0i

)
− 1

4
G̃φ2w̃i

(
˜̈w0iw̃0i + ˜̇w0i

2
)
,

(4.10)

˜̈ui +
3

4
˜̇wi ˜̈wi + (−1)i

{
(qt − qt0)

π3

4φ
cos

πz̃

2
−
(

3G̃φ2

D̃

)[
(qs − qt − qs0 + qt0)

π

φ
cos

πz̃

2

+ (−1)i
(

1

2
w̃i ˜̇wi + ũi

)]}
=

3

4
˜̇w0i

˜̈w0i −
3φ2G̃

2D̃
˜̇w0iw̃0i,

(4.11)

where D̃ = EtL2/D, G̃ = GtL2/D, φ = L/b as in Chapter 3 and dots now represent

derivatives with respect to z̃. The integral conditions, including the local imperfection

becomes:

∂V

∂qs
= π2 (qs − qs0) + s̃ (qs − qt − qs0 + qt0)− PL2

EIw
qs −

s̃φ

π

∫ 1

0

cos
πz̃

2
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+
1

2
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)
− 1

2

(
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)]
dz̃ = 0,
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(4.12)
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where s̃ = 2GtbL2/(EIw) and t̃ = 12Gφ2/E as before. The boundary conditions for w̃i

and ũi and their derivatives are for pinned end conditions at z̃ = 0 and for symmetry at

z̃ = 1, and given by Equation (3.26). The boundary condition from matching the in-plane

strains becomes:

1

3
˜̇ui(0) +

1

8

[
˜̇w2
i (0)− ˜̇w2

0i(0)
]
− 1

2
∆ +

P

2Etb
= 0. (4.13)

The global critical load, PC
o , determined by the linear eigenvalue analysis of the perfect

system, remains the same and is given by Equation (3.29).

4.2 Numerical examples

In this section, three representative numerical examples are presented. The material and

section properties that were used for the perfect system are given in Table 3.2. The

same material and section properties are used throughout the current chapter. The strut

length L is chosen to be 3.5 m and 4 m for cases where local buckling and global buckling

are critical respectively. The first numerical example considers the case where global

buckling is critical (L = 4 m), where initially the local imperfection amplitude A0 is

set to zero so that only the global imperfection exists. The generalized initial out-of-

straightness coordinate, qs0, is varied for the imperfection sensitivity study. The second

and third numerical example focus on the local imperfections. The second numerical

example considers the case where global buckling is critical, but only an initial local out-

of-plane displacement w0 is considered (qs0 = 0). The third numerical example considers

the case where local buckling is critical (L = 3.5 m), with both qs0 and w0 present in the

model. The initial out-of-straightness, qs0 is kept constant at a very small value. For the

latter two cases, the local imperfection amplitude A0, the periodicity parameter β and

the localization parameter α are varied to determine the worst case combination which
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gives the lowest peak load. A measure for the relative size of the imperfection is taken

from earlier work (Wadee, 2000).

Numerical continuation is performed in Auto-07p. The solution strategies for the afore-

mentioned cases are demonstrated diagrammatically in Figure 4.3. Note that it is only the

Increasing qs0 qs

P

Run 1

Run 2

PC
o

(a)

Increasing w0

qs

P

Run 1

PC
o

(b)

Increasing w0

qs

P

Run 1

qs0

PC
l

(c)

Figure 4.3: Numerical continuation procedures. (a) Global buckling being critical with
initial out-of straightness qs0 only. (b) Global buckling being critical with initial local
out-of-plane displacement w0 only. (c) Local buckling being critical with both qs0 and
w0. The thicker line shows the actual solution path in each of the examples shown. The
thinner solid line shows the equilibrium path of the perfect system and circles represent
bifurcation points.

latter two cases that require a single run without any branch switching. This is because

in the second case, Figure 4.3(b), where global buckling is critical, the local imperfection

is introduced only to the vulnerable half of the flange (i = 1). This imposes the break

in symmetry as soon as the numerical run begins and therefore qs and qt are introduced

without the need of branch switching. In the third case, Figure 4.3(c), although the lo-

cal imperfections are introduced to both the vulnerable and the non-vulnerable flanges,

the initial out-of-straightness allows the strut to bend as soon as the load is applied.

These procedures reduce the computational effort as well as avoiding the possibilities of

non-convergence.
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4.2.1 Global buckling critical (qs0 6= 0, w0 = 0)

In this section, the strut with properties given in Table 3.2 with length L being 4 m is

analysed. Only an initial out-of-straightness, W0 is introduced at this stage. A set of

values of the normalized initial out-of-straightness amplitude qs0 ranging from 1/10000 to

1/1000 are selected for analysis. Table 4.1 summarizes the values of qs0 and the corre-

sponding peak loads. Figure 4.4 shows a family of plots of the normalized axial load p

versus (a) the global mode and (b) the local mode amplitudes. Figure 4.5(a) shows the

local and global mode relative magnitudes during post-buckling. Each curve within the

family corresponds to one particular imperfection size, as specified in Table 4.1. Figure

qs0(×10−4) 0 1 2 3 4 5 10
pU 1 0.8949 0.8419 0.8055 0.7788 0.7562 0.6864

Table 4.1: The values of the initial out-of-straightness coordinate, qs0 in the numerical
continuation and the corresponding normalized peak loads, pU = PU/P

C
o .

4.5(b) shows a scatter plot of the peak load, PU , against the global imperfection ampli-

tudes. It is clearly observed that the peak load PU decreases as the size of the imperfection

increases. A further inspection of the imperfection sensitivity plot in Figure 4.5(b) shows

that the peak load takes a significant drop as soon as a small imperfection is applied.

For qs0 = 1/1000, the peak load drops approximately 30% as compared with the global

critical load, PC
o , of the perfect system, which shows that the strut is highly sensitive to

global imperfections. Examining the post-buckling paths, where interactive buckling takes

place, it can be observed that the system converges asymptotically to the same equilib-

rium state for all sizes of imperfection. As a result, struts with large global imperfections

are expected to be approximately neutrally stable in the post-buckling range. It is worth

noting that cellular buckling behaviour is captured for all sizes of imperfection. The final

buckling mode shape of the imperfect system is very similar to that of the perfect system

in terms of both amplitude and wavelength.
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Figure 4.4: Numerical equilibrium paths for L = 4 m. The graphs show a family of curves
of the normalized force ratio p = P/PC

o versus (a) the global mode amplitude qs and (b)
the normalized local mode amplitude, wmax/t.
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Figure 4.5: Graph (a) shows the numerical equilibrium path of the local versus the global
mode amplitude; (b) shows the imperfection sensitivity diagram of the normalized peak
load pU = PU/P

C
o versus the initial out-of-straightness coordinate qs0.
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4.2.2 Global buckling critical (qs0 = 0, w0 6= 0)

In this section, the 4 m strut with a local imperfection only is analysed. The reduced

set of equilibrium equations is solved and therefore the initial out-of-plane displacement,

w0 is only present in the vulnerable half of the flange. The initial end shortening of the

flange plate, E0, due to the local imperfection, is defined as:

E0 =
1

2

∫ L

0

ẇ2
0dz, (4.14)

which can also be treated as a kind of mean square measure of the initial imperfection

(Wadee, 2000). Since A0, α and β are parameters that can have different combinations,

this term provides a direct interpretation of the size of the local imperfection, which is

particularly useful to facilitate meaningful comparisons between different imperfection

types. Three types of local imperfections are studied in separate stages. During the

first stage, α and β are kept at constant values of 0 and 1 respectively. This form of

imperfection is essentially the linear eigenvalue solution for the axially loaded plate with

three edges simply supported and one edge free (Bulson, 1970). The amplitude A0 and

therefore E0 are varied. The peak loads are recorded for each value of E0. During the

second stage, the imperfections are periodic where E0 is kept constant with α = 0 and β

is the principal parameter. The amplitude, A0, is varied accordingly to keep E0 constant,

with an increase in β resulting in a decrease in A0. Note that only odd integer values are

taken for β takes to satisfy the boundary and symmetry conditions. The combination of

β and A0 that gives the lowest peak load is determined for particular values of E0. In

the third stage, the modulated local imperfection is investigated by varying α, while E0

is again kept constant for each case. The amplitude, A0 is varied accordingly whereas

β is kept at the value that is determined in the second stage. As would be expected,

increasing α results in a higher value of A0. The combination of α and A0 that gives the

lowest peak load is also determined.
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Figure 4.6: Imperfection sensitivity diagram with the abscissa in each case being the
normalized imperfection size E0/L plotted against: (a) the normalized peak load, pU and
(b) the periodicity parameter β which gives the lowest peak loads. In (a) the triangular
symbols correspond to the imperfection with the form of the plate linear eigenvalue so-
lution; the circular symbols correspond to the periodic imperfection, whereas the crosses
correspond to the modulated imperfection. In (b) the crosses and the triangular symbols
are not relevant.
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Figure 4.7: Imperfection sensitivity diagram with the abscissa in each case being the
normalized imperfection size E0/L plotted against: (a) the localization parameter α which
gives the lowest peak loads and (b) the normalized imperfection amplitude A0/t. The
circular symbols correspond to the periodic imperfection, whereas the crosses correspond
to the modulated imperfection.
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Figures 4.6 and 4.7 show a series of imperfection sensitivity diagrams. It is observed in

Figure 4.6(a) that for β = 1 and α = 0, there is very little reduction in the peak load as

E0 increases, indicating that the strut is fundamentally insensitive to this type of imper-

fection. However, for the periodic imperfections with β varied, the peak loads are reduced

significantly as E0 increases. The periodicity parameter β that gives the lowest peak load

is different for each value of E0, which is observed in Figure 4.6(b). It is found that for

larger E0 values, periodic imperfections with larger wave numbers become critical. A fur-

ther reduction in the peak loads is observed when the imperfection is modulated, for all

values of E0. The variation in the localization parameter α shows that larger imperfections

require less localization to give the worst combination of A0, α and β. It is observed in

Figure 4.7(b) that for the largest value of E0 in the graph, the amplitude A0 for the worst

periodic imperfection is more than t/10 whereas for the worst modulated imperfection, A0

is slightly more than t/5. The reduction in the peak loads for the periodic and modulated

imperfections for the largest E0 is approximately 11.8% and 12.6% respectively, indicating

the strut is sensitive to both types of imperfection. Table 4.2 summarizes the values of

E0(×10−9) 0 4.441 17.77 111.0 444.1 999.3 1777
pU (β = 1) 1 0.9943 0.9940 0.9934 0.9931 0.9931 0.9915

pU (periodic) 1 0.9885 0.9808 0.9567 0.9254 0.9013 0.8817
pU (modulated) 1 0.9865 0.9772 0.9513 0.9190 0.8941 0.8739

Table 4.2: The values of the initial local end shortening E0; and the corresponding normal-
ized peak loads pU for imperfections with β = 1, periodic and modulated imperfections.

the initial end shortening E0 presented in the imperfection sensitivity diagrams and the

corresponding values of the normalized peak loads for all three types of imperfections con-

sidered. Figure 4.8 shows the shape of both periodic and modulated imperfections with

the worst combination of A0, β and α, for each E0 value in the imperfection sensitivity

diagrams.

Figure 4.9 shows a family of equilibrium paths for the worst case modulated imperfections
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Figure 4.8: Mode shapes of the initial out-of-plane displacement, w0 showing the worst
combination of A0, β and α for increasing E0 values from top to bottom. The left column
shows the worst case periodic imperfection (α = 0, β > 0), whereas the right column shows
the worst case modulated imperfection (α, β > 0). All dimensions are in millimetres.
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Figure 4.9: Numerical equilibrium paths for the worst case modulated imperfections for
the 4 m strut. Graphs show a family of curves of the normalized force ratio p versus (a)
the normalized total end shortening E/L and (b) the global mode amplitude qs.
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Figure 4.10: Numerical equilibrium paths for the worst case modulated imperfections
for the 4 m strut: (a) shows a pair of equilibrium paths of p versus qs, selected from
Figure 4.9(b) for E0/L = 17.77 × 10−9 and E0/L = 441.1 × 10−9 and (b) shows the
normalized maximum local mode amplitude wmax/t versus qs for the two cases in (a).
The triangle in (a) marks the point where the equilibrium paths cross, the corresponding
qs and wmax/t values are marked with the vertical dot-dashed line in (b).
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for all E0 values stated in Table 4.2. Note that the normalized total end shortening E/L

is determined by:

E/L =
1

4
q2
sπ

2 +
u1(0) + u2(0)

L
+ ∆. (4.15)

Note that since the symmetry is imposed, the in-plane displacement u1(L) and u2(L)

are identical to u1(0) and u2(0) respectively. A slightly different response is observed in

contrast to the system with a global imperfection only. The number of snap-backs in the

equilibrium paths reduces as E0 increases. This is because the buckling mode shape starts

to develop from a certain number of waves that is defined by the initial imperfection. As

a result, the formation of the first new peak or trough (snap-back) takes place further

down the post-buckling path for larger initial imperfections. It is also observed that the

formation of the new peak or trough undergoes a longer restabilization path, and therefore

a larger snap-back, meaning that more membrane stretching is required for the formation

of the new peak or trough. It is also clear in Figure 4.10(a) that there is a cross-over

between the equilibrium paths. This is a result of the different local buckling modes in

those two particular cases. It is clear in Figure 4.10(b) that the maximum local out-of-

plane deflections are different at the specific equilibrium state where the two curves in (a)

cross.

4.2.3 Local buckling critical (qs0 6= 0, w0 6= 0)

In this section, a 3.5 m strut with both global and local imperfections is analysed. The

global imperfection coordinate qs0 is kept at a constant value of L/10000, whereas the

local imperfections are introduced to the entire flange; and therefore the full set of the

equilibrium equations are solved with w1, w2, u1 and u2 all included. Figures 4.11 and

4.12 show the imperfection sensitivity diagrams that correspond directly to Figures 4.6

and 4.7. Note that since the strut has been shown to be insensitive to the imperfection
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Figure 4.11: Imperfection sensitivity diagram with the abscissa in each case being the
normalized imperfection size E0/L plotted against: (a) the normalized peak load pU , (b)
the periodicity parameter β that gives the lowest peak loads. The circular symbols in (a)
correspond to the periodic imperfection, whereas the crosses correspond to the modulated
imperfection in both graphs.
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Figure 4.12: Imperfection sensitivity diagram with the abscissa in each case being the nor-
malized imperfection size E0/L plotted against: (a) the localization parameter α which
gives the lowest peak loads and (b) the normalized imperfection amplitude A0/t. The
circular symbols in (a) correspond to the periodic imperfection, whereas the crosses cor-
respond to the modulated imperfection in both graphs.
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Figure 4.13: Mode shapes of the initial out-of-plane displacement, w0 showing the worst
combination of A0, β and α for increasing E0 values from top to bottom. The left column
shows the worst case periodic imperfection (α = 0, β > 0), whereas the right column shows
the worst case modulated imperfection (α, β > 0). All dimensions are in millimetres.
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with β = 1, the focus is on the cases of periodic imperfections with higher values of

β and modulated imperfections. The same E0 values are used as in Table 4.2; and the

corresponding peak loads are summarized in Table 4.3, for both periodic and modulated

E0(×10−9) 0 4.441 17.77 111.0 444.1 999.3 1777
pU (periodic) 0.8215 0.8137 0.8103 0.7978 0.7863 0.7766 0.7685

pU (modulated) 0.8215 0.8134 0.8098 0.7966 0.7843 0.7743 0.7655

Table 4.3: The values of the normalized peak loads, pU for both periodic and modulated
imperfections, which correspond to the E0 values in Table 4.2.

imperfections. It is observed that the strut is sensitive to both types of imperfections.

However, although the modulated imperfections always give lower peak loads than the

periodic imperfections, the reduction is much less severe as compared with the L = 4 m

case. For the largest E0, the reduction in the peak loads are 6.5% and 6.8% for the

periodic and modulated imperfections respectively. The graph in Figure 4.11(b) shows

a similar trend as in Figure 4.6(b); however for the same E0, the profiles of w0i for the

L = 3.5 m model are generally associated with more waves. In the case of modulated

imperfections, the degree of localization, which gives the worst combination, is roughly

constant at α ≈ 4, as shown in Figure 4.12(a). The worst case mode shapes of the initial

imperfections are shown in Figure 4.13.

Figures 4.14 and 4.15 show plots of equilibrium paths for the worst case modulated imper-

fections, which correspond directly to Figures 4.9 and 4.10. Similarly, for larger imperfec-

tions, the cellular behaviour is contaminated by the initial mode shape of the imperfection.

Figure 4.16 shows a selection of 3-dimensional representations of the deflected strut that

comprise all the components of global buckling (W and θ) and local buckling (wi and ui).

The value of E0 increases from top to bottom; the left column corresponds to the equi-

librium state at the peak load whereas the right column corresponds to the equilibrium

state at a significantly larger magnitude of the global mode, where qs = 7 × 10−3, for
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Figure 4.14: Numerical equilibrium paths for the worst case modulated imperfections for
the 3.5 m strut. Graphs show a family of curves of the normalized force ratio p versus (a)
the normalized total end shortening E/L and (b) the global mode amplitude qs.
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Figure 4.15: Numerical equilibrium paths for the worst case modulated imperfections
for the 3.5 m strut: (a) shows a pair of equilibrium paths of p versus qs, selected from
Figure 4.14(b) for E0/L = 17.77 × 10−9 and E0/L = 441.1 × 10−9 and (b) shows the
normalized maximum local mode amplitude wmax/t versus qs for the two cases in (a).
The triangle in (a) marks the point where the equilibrium paths cross, the corresponding
qs and wmax/t values are marked with the vertical dot-dashed line in (b).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.16: Numerical solutions of the system of equilibrium equations visualized on 3-
dimensional representations of the strut. The results are shown for E0/L = 17.77× 10−9,
E0/L = 444.1 × 10−9 and E0/L = 1777 × 10−9 from top to bottom; (a), (c) and (e)
correspond to the equilibrium states at the peak loads whereas (b), (d) and (f) correspond
to the equilibrium states at approximately qs = 7×10−3. All dimensions are in millimetres.
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each case of E0. It is clear that at peak loads, struts with larger imperfections have more

waves. Comparing the pair of struts with the smallest and the largest initial imperfection

at qs = 7×10−3, it is observed that the strut with smaller E0 has developed approximately

ten sinusoidal peaks in total along the length whereas the strut with larger E0 has a total

number of eight sinusoidal peaks, which is the essentially same mode shape as the initial

imperfection. No snap-back is observed on the equilibrium path in the latter case, imply-

ing there is no formation of a new peak or trough. However, as the buckling progresses,

a snap-back would be expected at a larger qs value, followed by a longer restabilization

path until a total number of 10 sinusoidal waves are fully formed. The corresponding

equilibrium paths would then be expected to converge asymptotically.

4.3 Concluding remarks

The nonlinear analytical model for the axially-loaded thin-walled I-section strut in Chap-

ter 3 has been developed to include an initial local out-of-plane displacement imperfec-

tion. Imperfection sensitivity studies have been conducted for the cases in the presence

of global imperfections only, local imperfections only, and both imperfections types in

combination. The highly imperfection sensitive nature of the struts that are susceptible

to cellular buckling is highlighted. A significant reduction in the load-carrying capacity

is observed for the struts with a small initial global deflection, local deflection and both

in combination. The study also highlights the importance of the initial wavelength in the

local imperfection, as well as the degree of localization. In contrast to the earlier work on

the sandwich panel by Wadee (2000), the current study shows that the wavelength of the

initial local deflection affects the load-carrying capacity more significantly than the degree

of localization. However, the modulated local imperfection always seems to be the worst
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case in terms of the load-carrying capacity, even though it is only by a narrow margin.

Nevertheless, the study on different forms of global and local imperfections indicates the

need of caution in design considerations, for actual thin-walled I-section columns that

undergo cellular buckling behaviour.

141



Chapter 5

Analytical model enhancements and
finite element validation

In the previous chapters, an open and doubly-symmetric thin-walled I-section strut un-

der axial compression made from a linear elastic material was studied in detail using an

analytical approach. One of the major assumptions was that the web provided a simple

support to the flanges. So-called cellular buckling (Hunt et al., 2000) or snaking (Burke

& Knobloch, 2007) was captured, where snap-backs in the response, showing sequential

destabilization and restabilization and a progressive spreading of the initial localized buck-

ling mode were revealed. The results showed good comparisons with recent experimental

and finite element studies (Becque & Rasmussen, 2009a; Becque & Rasmussen, 2009b).

However, the full cellular buckling response with associated snap-backs was not picked up

by the experiment and it has been postulated that one of the reasons is perhaps associ-

ated with the relative fixity between the web and the flanges, which makes the experiment

differ from the fully pinned assumption. The current chapter presents an extension of the

analytical model presented in the earlier chapters such that the relative fixity between

the flange and the web can be varied parametrically. Note that the current work focuses
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on the perfect system where global buckling is critical. A variational model accounting

for the nonlinear mode interaction between global Euler buckling and local buckling is

developed following the well established procedure in the previous chapters. The system

of nonlinear ordinary differential equations subject to integral constraints is solved again

using the numerical continuation package Auto (Doedel & Oldeman, 2009). Erosion

of the cellular buckling phenomenon is observed with increasing fixity between the web

and the flanges. However, the changing wavelengths in the local buckling mode profile is

revealed to persist for all cases from the pinned connection to the fully rigid connection

between the web and the flanges – a phenomenon that was captured by experiments on

I-section struts (Becque & Rasmussen, 2009a) and I-section beams under uniform bending

(Wadee & Gardner, 2012).

A finite element model is also developed using the commercial code Abaqus (2011) for

validation purposes. The two models show good comparisons in terms of the mechanical

destablilization and the nature of the post-buckling deformation. A brief discussion on

the future enhancement of the current models is presented before final conclusions are

drawn.

5.1 Development of the analytical model

5.1.1 Modal description

The analytical model of the perfect system for the case where the web is assumed to

provide a simple support to the flanges has been fully developed in Chapter 3. In the

current chapter, the model is extended by introducing a rotational spring of stiffness c to
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the supporting edge of the flanges that are vulnerable to local plate buckling, as shown

in Figure 5.1(a). Since the web is twice as thick as the flanges, it can be demonstrated

w

w

c

c

y

x

(a)

w

w

y

x

(b)

Figure 5.1: (a) and (b) show the out-of-plane flange displacement functions w(x, z) of the
local buckling, when c � ∞ and c → ∞ respectively. Note that the web is assumed to
be fully rigid.

that the local buckling in the web cannot occur before any local buckling in the flanges.

The rotational stiffness c constrains the rotation of the supporting edge of the flange plate

about the z-axis, whereas the other edge remains free. As a result, the local buckling mode

shape of the flange plate in the transverse direction x differs from the pinned case; hence,

the local buckling displacement functions therefore need to be refined. The local out-of-

plane displacement w(x, z) is expressed as w(x, z) = f(x)w(z), where f(x) represents the

deflected shape in the transverse direction x (see Fig 5.2). It is assumed that f(x) has a

general form that is derived from the limiting conditions of a beam and a cantilever strut

such that the cases for fully pinned or fully fixed conditions may be modelled, thus:

f (x) = A0 + A1

(
2x

b

)
+ A2

(
2x

b

)2

+ A3

(
2x

b

)3

+ A4 sin
πx

b
, (5.1)

where A0, A1, A2, A3 and A4 are the coefficients that are determined by the boundary

conditions:

(i) f (0) = 0, (ii) Df ′′ (0) = −cf ′ (0) ,
(iii) f ′′ (−b/2) = 0, (iv) f ′′′ (−b/2) = 0,

(5.2)

with D = Et3/[12(1 − ν2)] being the plate flexural rigidity, and primes refer to the

derivatives with respect to the transverse coordinate x. Substituting the corresponding
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expressions into the boundary conditions, A0 and A3 are found to be zero, A2 and A4 can

be expressed in terms of A1 as s2A1 and s4A1 respectively, where s2 and s4 are determined

as:

s2 = − c̃π

4 (π − c̃) ,

s4 =
2c̃

π (π − c̃) ,
(5.3)

and c̃ = cb/D. The expression for A1 is determined by a fifth boundary condition that fixes

the amplitude to unity, f(−b/2) = 1. The full expression of the out-of-plane deflection

Web line
z

x

b/2 w(z)

w(x, z) = f (x)w(z)

Free edge

(a)

Web line
x

b/2

u(x, z) = −2x
b u(z)

Free edge

θl ≈ ∂u
∂x = −2

bu(z)

z

θl
u

(b)

Figure 5.2: (a) Definition of the local out-of-plane displacement, w(x, z), where f(x) varies
with increasing rotational stiffness c. (b) Definition of the local in-plane displacement
u(x, z), where a linear distribution is assumed across the width of the flange due to the
assumption of Timoshenko beam bending of the flange in the xz plane.

w(x, z) thus becomes:

w(x, z) = − w(z)

(1− s2 + s4)

[
2x

b
+ s2

(
2x

b

)2

+ s4 sin
πx

b

]
. (5.4)

Note that if the rotational stiffness of the spring c tends to zero, s2 and s4 also tend to

zero, implying that f(x) becomes a linear function as in the case of the pinned flange–web

connection as presented in Chapter 3. On the other hand, when c tends to infinity, f(x)

becomes:

f(x) = −
[

4π

4π − π2 − 8

][
2x

b
+
π

4

(
2x

b

)2

− 2

π
sin

πx

b

]
, (5.5)

which is essentially the model for the rigid connection between the flange and the web,

shown in Figure 5.1(b).
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The local in-plane displacement function, u(x, z) has a linear distribution across the flange

width due to the assumption of Timoshenko bending, which is the same as the case of

the pinned flange–web connection, as shown in Figure 5.2(b). The global buckling mode

has been fully described for the pinned flange–web connection in Chapter 3. The lateral

displacement W and the rotation of the plane section θ were shown in Figure 3.3(a) and

given by Equation (3.1).

5.1.2 Total potential energy

A procedure for deriving the total potential energy V for the pinned flange–web connec-

tion, was presented in Chapter 3; the current formulation follows the same approach with

the focus being on the case where global buckling is critical. The derivation of the strain

energy components and the work done by the axial load is outlined in this section. The

global bending energy Ubo and the work done PE are the same as in Chapter 3 and given

by Equations (3.5) and (3.15) respectively. The local bending energy, Ubl accounting for

both top and bottom flanges is determined by the general expression:

Ubl = D

∫ 0

−b/2

∫ L

0

(
∂2w

∂z2
+
∂2w

∂x2

)2

− 2 (1− ν)

[
∂2w

∂z2

∂2w

∂x2
−
(
∂2w

∂z∂x

)2
]

dzdx. (5.6)

Once the partial derivatives of w(x, z) are substituted into Equation (5.6), integration

with respect to x leads to:

Ubl = D

∫ L

0

[
{f 2}xẅ2 + {f ′′2}xw2 − 2ν{ff ′′}xẅw + 2 (1− ν) {f ′2}xẇ2

]
dz, (5.7)

where dots once again represent derivatives with respect to z; the braces with subscript

x denote that a definite integration has been performed with respect to x for the range

from −b/2 to 0, for example,

{F}x ≡
∫ 0

−b/2
F (x)dx, (5.8)

146



Chapter 5–Model enhancements and FE validation

where F is an example function. The integration is performed in the commercial computer

algebra software Maple (Monagan et al., 2005); the full integrated expressions are very

long and are therefore presented in Appendix A.

The membrane strain energy (Um) is derived by considering the longitudinal component

of the direct strains (εz) and the shear strains (γxz) in the flanges. The general expressions

of the direct strains, εzt and εzc in the non-vulnerable and vulnerable parts of the flange

respectively are:

εzt =
∂ut
∂z
−∆,

εzc =
∂ut
∂z
−∆ +

∂u

∂z
+

1

2

(
∂w

∂z

)2

,

(5.9)

where ut = −θx, which is the in-plane displacement from the tilt component of the global

buckling mode. A pure in-plane compressive strain ∆ is again included. The membrane

energy from the direct strain Ud accounting for both top and bottom flanges, is thus:

Ud = Et

∫ L

0

∫ b/2

0

ε2
ztdxdz + Et

∫ L

0

∫ 0

−b/2
ε2
zcdxdz + Eth

∫ L

0

∆2dz

= Etb

∫ L

0

{
b2

12
q2
t

π4

L2
sin2 πz

L
+

1

6
u̇2 +

{f 4}x
4b

ẇ4 − qt
bπ2

6L
sin

πz

L

[
u̇− 6{xf 2}x

b2
ẇ2

]
− 1

2
∆u̇− {f

2}x
b

∆ẇ2 − 2{xf 2}x
b2

u̇ẇ2 +

(
1 +

h

b

)
∆2

}
dz.

(5.10)

The presence of shear strain, the contributions of which are γxzc and γxzt, also adds to

the membrane energy, the general expressions being:

γxzt =
∂W

∂z
− θ,

γxzc =
∂W

∂z
− θ +

∂u

∂x
+
∂w

∂z

∂w

∂x
.

(5.11)

The membrane energy from the shear strain, Us accounting for both top and bottom
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flanges, is thus:

Us = Gt

∫ L

0

∫ b/2

0

γ2
xztdxdz +Gt

∫ L

0

∫ 0

−b/2
γ2
xzcdxdz

= Gtb

∫ L

0

{
(qs − qt)2 π2 cos2 πz

L
+

2

b2

(
u2 +

b

2
{f ′2f 2}xẇ2w2 − 2{f ′f}xuẇw

)
− 2

b
(qs − qt) π cos

πz

L
(u− {f ′f}xẇw)

}
dz.

(5.12)

The strain energy stored in the rotational spring, Usp, accounting for the top and bottom

flanges, is given by the following expression:

Usp =

∫ L

0

c

[
∂w(0, z)

∂x

]2

dz =
c

b2

∫ L

0

(
2 + s4π

1− s2 + s4

)2

w2dz. (5.13)

Finally, the total potential energy V is given by the following expression:

V = Ubo + Ubl + Ud + Us + Usp − PE . (5.14)

5.1.3 Variational formulation

The governing differential equations are obtained by performing the calculus of variations

on the total potential energy V following the procedure presented in the previous chapters.

The non-dimensional differential equations for w̃ and ũ are thus:

˜....w − b2φ2

2{f 2}x
[
ν
(
{ff ′′}x − {f ′2}x

)
+ {f ′2}x

]
˜̈w +

b4φ4

16{f 2}x

[
{f ′′2}x +

60c̃

b
f ′2
]
w̃

− G̃φ2w̃

16{f 2}x

[
b2{f ′2f 2}x

(
˜̇w2 + w̃ ˜̈w

)
− 2b{f ′f}x ˜̇u+

bπ2{f ′f}x
φ

(qs − qt) sin
πz̃

2

]
− D̃

8{f 2}x

[
3{f 4}x ˜̇w2 ˜̈w − 4{xf 2}x

b

(
˜̈u ˜̇w + ˜̇u ˜̈w

)
− 2{f 2}x ˜̈w∆

+
2π2{xf 2}x

bφ
qt

(
sin

πz̃

2
˜̈w +

π

2
cos

πz̃

2
˜̇w

)]
= 0,

(5.15)

˜̈u− 12{xf 2}x
b2

˜̇w ˜̈w − qt
π3

4φ
cos

πz̃

2
− 3G̃φ2

D̃

[
ũ− {f ′f}xw̃ ˜̇w − (qs − qt)

π

φ
cos

πz̃

2

]
= 0,

(5.16)
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where w̃, ũ, D̃, G̃ and φ were defined in Chapter 3. It is worth noting that the braces

represent integration with respect to the originally defined variable x and limits. The

minimization of V with respect to the generalized coordinates qs, qt and ∆ lead to the

integral conditions in non-dimensional form:

∂V

∂qs
= π2qs + s̃ (qs − qt)−

PL2

EIw
qs −

s̃φ

π

∫ 1

0

cos
πz̃

2

(
{f ′f}xw̃ ˜̇w + ũ

)
dz̃ = 0,

∂V

∂qt
= π2qt − t̃ (qs − qt)

+ φ

∫ 1

0

[
t̃

π
cos

πz̃

2

(
{f ′f}xw̃ ˜̇w + ũ

)
− sin

πz̃

2

(
2˜̇u− 12{xf 2}x

b2
˜̇w2

)]
dz̃ = 0,

∂V

∂∆
=

∫ 1

0

[
2

(
1 +

h

b

)
∆− 1

2
˜̇u− {f

2}x
b

˜̈w2 − P

Etb

]
dz̃ = 0,

(5.17)

where s̃ and t̃ were defined in Chapter 3. The boundary conditions for w̃ and ũ and their

derivatives are for pinned end conditions for z̃ = 0 and for symmetry at z̃ = 1:

w̃(0) = ˜̈w(0) = ˜̇w(1) =
.̃..
w(1) = ũ(1) = 0, (5.18)

with further conditions from matching the in-plane strain:

1

3
˜̇u(0) +

2{xf 2}x
b2

˜̇w2(0)− 1

2
∆ +

P

2Etb
= 0. (5.19)

Linear eigenvalue analysis is conducted to determine the critical load for global buckling,

PC
o which is of course the same as for the pinned flange–web connection (Wadee & Bai,

2014), since the rotational spring stores no energy in the fundamental state and during

global buckling; the expression is thus given by Equation (3.29).

5.2 Numerical examples

In this section, numerical examples with varying rotational stiffness c are presented for

the perfect system. The current examples use the same material and section properties
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that were used in the case of the pinned flange–web connection, given in Table 3.2. The

strut length L is chosen to be 4 m. It has been shown in Chapter 3 that for this specific

configuration, global buckling is critical where the web provides a simple support to the

flanges (c = 0). Obviously increasing the rotational stiffness c increases the local critical

buckling load of the flange plate, PC
l whereas the value of the global critical load, PC

o is

unchanged. Therefore with L = 4 m, global buckling is always critical for any positive

value of c.

Numerical continuation is performed in Auto. A similar solution strategy, as for the

pinned flange–web connection, is illustrated diagrammatically in Figure 5.3. The initial

PC
o

Run 1

Run 2

S1

C

P

qs

S2 S3 S4

c increasing

Figure 5.3: Numerical continuation procedure with varying rotational stiffness c. The
thicker lines show the actual solution paths for different values of c. Points C and Si are
the critical and secondary bifurcation points respectively.

post-buckling path was computed first from PC
o with qs being varied. Many bifurcation

points are detected on the weakly stable post-buckling path; the focus being on the one

with the lowest value of qs, the secondary bifurcation point S. Presently, a series of c

values, listed in Table 5.1, with its nondimensional counterpart c̃, are substituted in turn.

Note that the flange is connected to the web at x = 0, whereas the free edge of the flange is

at x = −48 mm. As c is increased, the value of qs at the secondary bifurcation is expected

to increase due to the higher local buckling critical stress. After branch switching, the
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c (Nm/m) 0 1 5 10 50 100 500 1000
c̃ (×10−3) 0 2.9 14.4 29 144 289 1444 2888

Table 5.1: Rotational stiffnesses c and corresponding values of the non-dimensional scaling
c̃ = cb/D. These values are used in the numerical results presented in the current chapter.

subsequent equilibrium path exhibits a nonlinear interaction between the global and the

local buckling modes. Figure 5.4(a) shows the plots of the transverse component of the

out-of-plane displacement f(x), for the vulnerable half of the flange according to each

value of c̃ stated in Table 5.1. Figure 5.4(b) shows f(x) versus x when c → ∞; the

dashed line shows the approximate solution from Bulson (1970) for an axially loaded

rectangular plate with one edge fully fixed and the other edge free. Figures 5.5 and 5.6
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Figure 5.4: Transverse profiles of the out-of-plane displacement f(x) for (a) the range of
values of c̃ summarized in Table 5.1, and (b) an extremely large value of c̃ where the dashed
line represents the approximate solution from Bulson (1970), with f(x) = 1− cos (πx/b).

show the numerical equilibrium paths for each c̃ values listed in Table 5.1. Examining

the post-buckling paths, it is observed that the cellular buckling behaviour found for the

pinned case (c̃ = 0), is rapidly eroded by increasing the rotational stiffness. Comparing

the remaining equilibrium paths against the equilibrium paths for c̃ = 0, it is observed

that as c̃ increases, the snap-backs begin to vanish from the first cell to the last, and
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Figure 5.5: Numerical equilibrium paths. The graphs show a family of curves of the
normalized force ratio p = P/PC

o versus normalized modal amplitudes: (a) the global
mode qs and (b) the local mode wmax/t.
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Figure 5.6: Normalized equilibrium paths: (a) local versus global modal amplitudes and
(b) load p versus the total end-shortening E/L.

153



Chapter 5–Model enhancements and FE validation

the restabilization path of the snap-backs becomes shorter as c̃ increases. The cellular

buckling behaviour vanishes almost completely when c̃ = 0.029. For larger values of c̃

(from 0.14 to 2.9), no cellular behaviour is observed in the post-buckling paths. Another

feature in Figure 5.5(a) is that, although with a larger c̃ value the local buckling mode

is triggered at a larger magnitude of qs, the post-buckling paths of p versus qs seem to

converge somewhat as the deformation progresses. Moreover, for the local out-of-plane

displacement w, the post-buckling paths show a significantly stiffer response for higher

values of c̃. At p = 0.74, the maximum local out-of-plane displacement w for c̃ = 0 reaches

a value of approximately 2.0t, whereas for c̃ = 2.9, it is approximately 1.6t. Figure 5.6(b)

shows the normalized axial load p versus the normalized total end shortening, E/L, which

is given by the following expression:

E
L

=
1

4
qs

2π2 +
1

2

u(0)

L
+ ∆. (5.20)

It is observed that just after the secondary instability is triggered, the total end shortening

reduces with decreasing load for small values of c̃. This is a result of the local buckling of

the flange plate releasing some proportion of the direct strain from the global mode and

the pure in-plane compressive strain, ∆. The proportion of this release reduces as the

rotational stiffness c̃ increases.

It was found in Chapter 3 that a snap-back signified the formation of a new local dis-

placement peak or trough; the local buckling mode shifting from a localized to a periodic

pattern and the wavelength reducing as a result. Since the snap-backs vanish for large

c̃, it would be expected that, in contrast to the case where c̃ = 0, the local buckling

mode shape of the out-of-plane displacement, w would appear to be more periodic as

soon as interactive buckling is triggered. Moreover, there would be less reduction in the

wavelengths as the buckling progresses. Figure 5.7 illustrates the numerical solutions for

the local out-of-plane displacement function w with the c̃ values stated in Table 5.1. The
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Figure 5.7: Numerical solutions for the local buckling displacement w. Each row corre-
sponds to the c̃ values as given in Table 5.1 increasing downwards, whereas each column
corresponds to the same normalized p, where p = 0.99 (left), p = 0.74 (right).
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wavelengths of the buckling mode shapes are very similar at the same load in the top three

rows of the graph in Figure 5.7, which correspond to the cases where cellular buckling

is observed. As c̃ increases, a significant reduction in both the amplitude and the wave-

lengths is observed at the same load level. Recall the local buckling wavelength, Λ defined

in Figure 3.22. It is found that Λ is measured to be 280 mm and 206 mm at p = 0.74

for c̃ = 0 and c̃ = 2.9 respectively, showing a significant reduction (approximately 26%)

for the case with higher rotational stiffness at the joint. Figure 5.8 shows a selection of

3-dimensional representations of the deflected strut that include the components of global

buckling (qs and qt) and local buckling (w and u) for c̃ = 0.014, 0.29 and 2.9 from the top

to the bottom row respectively. Figures from the left to the right columns correspond to

the equilibrium states at p = 0.99, 0.85 and 0.74 respectively.

5.3 Finite element model

The commercial finite element (FE) code Abaqus has been shown in the past to be

capable of predicting the buckling modes and more importantly investigating the nonlinear

interactive post-buckling behaviour of various types of thin-walled structures. Examples

include sandwich struts with different core bending models (Wadee et al., 2010), stainless

steel square and rectangular hollow section columns (Gardner & Nethercot, 2004b) and

stainless steel I-section columns formed by channel sections bolted back to back (Becque

& Rasmussen, 2009b). It is therefore used in the current work to develop the FE model

of the axially compressed I-section strut with the same section and material properties

as for the analytical model, as shown in Table 3.2. Similar to the analytical model, the

focus is on the cases where the flange–web connection with varying rigidity is modelled

by introducing rotational springs to the edge of the flange that connects to the web.
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(a) c̃ = 0.014, p = 0.99 (b) c̃ = 0.014, p = 0.85 (c) c̃ = 0.014, p = 0.74

(d) c̃ = 0.29, p = 0.99 (e) c̃ = 0.29, p = 0.85 (f) c̃ = 0.29, p = 0.74

(g) c̃ = 2.9, p = 0.99 (h) c̃ = 2.9, p = 0.85 (i) c̃ = 2.9, p = 0.74

Figure 5.8: Numerical solutions of the system of equilibrium equations visualized on a
three dimensional representation of the strut. All dimensions are in millimetres.
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5.3.1 Element type

A quadrilateral four-noded linear shell element (S4R) is chosen from the Abaqus element

library. Each node has three translational and three rotational degrees of freedom that

allow the element to bend in double curvature. It has been shown to be applicable to

the problems with geometrical nonlinearities since it accounts for finite membrane strains

(Becque & Rasmussen, 2009b). The element uses reduced integration points and there-

fore hourglass control is applied to avoid unphysical solutions with excessive flexibility.

It has been shown that the reduced integration significantly reduces the computational

costs without compromising the accuracy, compared with full integration (Becque & Ras-

mussen, 2009b). Since no particular geometrical complexity exists in the current model,

uniform rectangular elements were applied to the entire strut. A mesh sensitivity study

was carried out for both linear eigenvalue and post-buckling analysis. It was found that

a mesh size where the length of each element was approximately 10 mm provided a suf-

ficiently high degree of accuracy versus computational costs. The total number of nodes

in each flange and the web were 2406 and 5213 respectively for a strut length of 4 m.

5.3.2 Strut modelling

The individual parts of the strut, i.e. the flanges and the web were created. The nodes in

the longitudinal edges of the flanges and the web were then tied with the rotational degrees

of freedom released. A linear rotational spring element ‘SPRINGA’, which restrains

the rotation about the longitudinal axis, was applied to each node in the longitudinal

edge of the flange that joins the web, except the nodes at the ends of the strut. Axial

compression was applied at both ends of the strut, where roller supports were introduced
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as boundary conditions. An additional boundary condition ‘*ZSYMM’ was applied at

the midspan implying that the displacements of nodes were symmetric about the midspan

– an assumption that was also made in the analytical model.

5.3.3 Method of analysis

Linear eigenvalue analysis was first conducted to investigate the critical buckling loads

and modes. The first respective global buckling and local buckling modes were then in-

troduced as imperfections in the nonlinear Riks analysis (Riks, 1972), using the command

‘*STATIC, RIKS’, to investigate the post-buckling behaviour. The Newton–Raphson

method was used internally to track the equilibrium paths and the increment size was lim-

ited to avoid the possibilities of non-convergence. The command ‘*STEP, NLGEOM’

was active to account for geometric nonlinearities.

5.4 Validation

The models with small values of c̃ that exhibit cellular buckling were shown to be very

similar to the case where a pinned connection is assumed between the web and the flanges.

This was validated in Chapter 3 primarily by comparing against physical experiments. In

the current chapter, the focus is on intermediate and large values of the rotational stiffness.

Note that c is a rotational stiffness per unit length and it is assumed to be uniform along

the length of the strut. Hence, the total rotational stiffness ctotal, accounting for both top

and bottom flanges, is 2cL. In the FE model, since the rotational spring is applied at

individual nodes and the same spring element is assumed along the length of the strut,

the stiffness of the spring element, ca is therefore ctotal/Nsp, where Nsp is the total number
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of springs which, in the current case, was 400 springs per joint for a 4 m long strut.

Three FE models with the rotational stiffnesses being ca = 1000 Nmm, ca = 10000 Nmm

and ca = 1 × 1013 Nmm are studied and compared against the analytical model with

c̃ = 0.29, c̃ = 2.9 and c̃ = 2.9× 1014 respectively, where ca is the rotational stiffness of the

spring element in the FE model. Note that the third case basically models a fully rigid

connection between the flange and the web, as shown in Figure 5.1(b).

A linear eigenvalue analysis was initially conducted in Abaqus, the global buckling critical

mode being shown in Figure 5.9(a), whereas the local buckling critical modes for ca =

1000 Nmm, ca = 10000 Nmm and ca = 1× 1014 Nmm are shown in Figure 5.9(b), (c) and

(d) respectively. The global critical load was found to be 22.72 kN, approximately 0.9%

z

(a)

z

(b)

z

(c)

z

(d)

Figure 5.9: The critical eigenmodes from the linear eigenvalue analysis in Abaqus, for
(a) global buckling, (b) local buckling with ca = 1000 Nmm, (c) local buckling with
ca = 10000 Nmm and (d) local buckling with ca → +∞. The eigenmodes are shown for
half of the strut length from z = 0 to z = 2 m.

lower than PC
o from the analytical model. Shorter wavelengths were observed in the local
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critical modes as ca was increased, which agrees with the trend found in the analytical

model qualitatively. The local critical modes in combination with the global critical mode

were introduced as imperfections in the Riks analysis. The amplitudes of the global and

local imperfections were set to 10−6L and 10−3t respectively, the values being sufficiently

small such that the almost perfect response was studied and compared against the perfect

system of the analytical model.

Figures 5.10, 5.11 and 5.12 show a series of equilibrium paths for c̃ = 0.29, c̃ = 2.9 and c̃→
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Figure 5.10: Comparisons of the equilibrium paths for c̃ = 0.29; (a) shows the normalized
force ratio p versus the global mode amplitude qs; (b) shows p versus the normalized local
mode amplitude wmax/t and (c) shows local versus global mode amplitudes.
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Figure 5.11: Comparisons of the equilibrium paths for c̃ = 2.9; (a) shows the normalized
force ratio p versus the global mode amplitude qs; (b) shows p versus the normalized local
mode amplitude wmax/t and (c) shows local versus global mode amplitudes.

+∞ respectively. The equilibrium paths of the load versus the local deflection diagram

show good comparisons between the analytical and FE models, with the analytical model

showing a slightly stiffer response for all three cases of c̃. It is observed in all three cases

of c̃ that the values of qs at the secondary bifurcation points are extremely close between

the two models, with errors that are negligible. It is also observed that the comparison

improves as c̃ increases.
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Figure 5.12: Comparisons of the equilibrium paths for c̃→∞; (a) shows the normalized
force ratio p versus the global mode amplitude qs; (b) shows p versus the normalized local
mode amplitude wmax/t and (c) shows local versus global mode amplitudes.

For wmax/t ≈ 2, the errors in the normalized load p are approximately 6.2%, 2.3% and

1.9% for c̃ = 0.29, c̃ = 2.9 and c̃ → +∞ respectively. The equilibrium paths of the load

versus the global mode amplitude qs show a slightly larger error. Similar to the equilibrium

paths of the load versus the local deflection, the comparison of the load versus the global

deflection improves as c̃ increases. At qs = 0.015, the errors in p are approximately 14.3%,

11.1% and 8.3% for c̃ = 0.29, c̃ = 2.9 and c̃ → +∞ respectively. For the same degree

of qs, the FE model generally shows a larger maximum local out-of-plane displacement
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compared against the analytical model, with the percentage error reducing as c̃ increases,

as shown in Figures 5.10(c), 5.11(c) and 5.12(c).

Figure 5.13 shows the solutions of the out-of-plane displacement w(z) for c̃ = 0.29 and
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Figure 5.13: Comparisons of the numerical solutions from the analytical and the FE
models for the local out-of-plane displacement, w for c̃ = 0.29 and c̃ = 2.9 in the top
and the bottom rows, respectively. The left and the right columns correspond to the
equilibrium states at p = 0.99 and p = 0.74, respectively.

c̃ = 2.9, at approximately p = 0.99 and p = 0.74. It is observed in both cases that at

p = 0.99, i.e. close to the secondary bifurcation point, the solutions for w(z) are practically

identical from the analytical and the FE models. At p = 0.74, shorter wavelengths are

observed in the analytical model for both cases of c̃. Figure 5.14 shows the solutions of

w(z) for c̃→ +∞. It is clear that the solutions for w(z) from the two models are almost

identical at the equilibrium state that is close to the secondary bifurcation point, where

the wavelengths are approximately 166 mm in both models. As the buckling progresses,

a reduction in the wavelength is observed in the analytical model whereas the wavelength

in the FE model remains at a constant value. Comparing the wavelengths, Λ, at p = 0.74

for c̃→ +∞, the values of the analytical model and the FE model are found to be 129 mm

and 166 mm respectively. It is also observed that in the advanced post-buckling cases
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Figure 5.14: Comparisons of the numerical solutions of w for c̃ → ∞ at the same load
level as the buckling progresses from the top to the bottom. The analytical model is
shown as a solid line, with the Abaqus model as a dot-dashed line.
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the mode shape of w is more modulated in the FE model whereas it is more periodic

with a more uniform amplitude for much of the strut length in the analytical model. The

difference in the progression of the buckling mode shapes is indicated by the equilibrium

path of wmax/t versus qs as shown in Figure 5.12(c). For the same degree of lateral

deflection, the FE model shows a larger maximum but a more modulated local out-of-

plane deflection whereas the analytical model shows a smaller maximum but more periodic

local out-of-plane deflection with most of the wave amplitudes closer to midspan being

more uniform.

Figure 5.15 shows the comparison of a series of 3-dimensional representations of the de-

flected strut selected from both the analytical model and the FE model. It is observed

that for the same degree of global deflection, the FE model always gives a lower bound

estimation of the applied load. Similar trends were also observed for sandwich struts with

different core bending models, where the analytical model and the numerical model were

compared (Wadee et al., 2010). The recent work on cold-formed stainless steel I-section

columns (Becque, 2008) also showed a similar comparison between the numerical model

and the experiments whereas the current approach correspondingly showed much better

comparisons with experiments, as presented in Chapter 3. Furthermore, the changing

wavelengths in the local buckling mode pattern was captured experimentally for various

structural components such as I-section columns (Becque & Rasmussen, 2009b; Becque

& Rasmussen, 2009a) and I-section beams under uniform bending (Wadee & Gardner,

2012). In the author’s opinion, the fundamental physics of this system is better captured

by the analytical model both qualitatively and quantitatively. It seems clear that for

these local–global mode interaction problems that there is an increasing body of experi-

mental evidence showing that the local buckling wavelength changes as the deformation

increases, as the system proceeds along the equilibrium paths (Becque & Rasmussen,
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(a) (b)

(c) (d)

(e) (f)

Figure 5.15: Comparisons of the numerical solutions for fully rigid flange–web connection
(c̃→∞) visualized on 3-dimensional representations of the strut. The results are shown
for equilibrium states at qs = 0.00585, 0.00942 and 0.02408 from the top to the bottom
row respectively. The left and the right columns are the results from the analytical model
and the FE model respectively. All dimensions are in millimetres.
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2009b; Becque & Rasmussen, 2009a; Wadee & Gardner, 2012; Wadee & Bai, 2014).

There is also evidence that static FE programs find difficulty in modelling the behaviour

of such wavelength changes using the standard method of using affine imperfections in

both linear eigenmodes (Becque & Rasmussen, 2009b; Wadee & Bai, 2014) and that FE

underestimates the post-buckling strength. However, the analytical approach that allows

the system to determine its own post-buckling profile after interactive buckling has been

triggered seems to be able to track the mechanical response of the physical experiments

much better.

5.4.1 Future model enhancements

It seems that the standard method for performing post-buckling analysis using nonlinear

FE methods, i.e. introducing a small amplitude of an eigenmode, fixes the local buckling

wavelength throughout the loading history. This does not seem to match the results from

physical experiments (Becque, 2008; Becque & Rasmussen, 2009a; Wadee & Gardner,

2012). A possible way to overcome this problem might be to utilize dynamic (explicit)

analysis within Abaqus, instead of the current Riks analysis, although a more intensive

computational effort would be required. Furthermore, the analytical model could be

extended to include the possibility of the local buckling in the web in combination with

the flanges. With the particular section properties chosen currently, the local critical

buckling load for the web is significantly higher than those for the global mode and the

flange local mode; the contribution to the strain energies is very small and therefore

neglected. However, with increasing local slenderness, the buckling in the web would

become more likely and the load-carrying capacity would most likely be reduced.
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5.5 Concluding remarks

The nonlinear analytical model for the perfect axially-loaded thin-walled I-section strut

with a pinned joint between the section web and flanges has been extended to include a

rotational spring between the web and flanges. Numerical examples with varying bending

rigidities of the flange–web connection, focusing on the cases where global buckling is

critical, are presented. Rapid erosion of the cellular buckling phenomenon is highlighted

when the rigidity of the flange–web connection is increased. Finite element models were

also developed for validation purposes; the results generally show very good comparisons

between the two models particularly for pinpointing the onset of interactive buckling.

However, the changing wavelength in the local buckling mode profile is not captured by

the finite element model due to the introduced global and local imperfection seeming

to fix the local buckling wavelength, which consequently results in the differences in the

equilibrium paths as the post-buckling deformation progresses. Nevertheless, since the

onset of the interactive buckling has been shown to be captured very well by the analytical

model, a parametric study to investigate the practical implications can now be conducted

with a degree of confidence.

169



Chapter 6

Parametric study

The previous chapters introduced variational models for axially compressed thin-walled

I-section struts with a varying rigidity of the flange–web connection. The numerical ex-

amples, with the chosen section and material properties, focused on the cases where the

critical loads for the global and the local buckling modes were sufficiently close where the

interaction between the global and the local buckling modes was most likely to take place.

The highly unstable post-buckling behaviour was revealed for all cases in the numerical

examples, including the cellular and the non-cellular buckling behaviour for the cases

where the flange–web connection was assumed to be a pin and fully rigid respectively.

However, it was found in the classic work by van der Neut (1969) that the post-buckling

behaviour may be approximately neutral, strongly stable or strongly unstable for varying

strut length, assuming all other section properties remain constant. In the current chap-

ter, it is therefore expected that with varying cross-section properties, the corresponding

variation in global and local slenderness will result in different post-buckling behaviour,

which needs to be investigated in detail.

170



Chapter 6–Parametric study

A parametric study, to determine the effect of varying global and local slenderness is

conducted with the aid of Auto currently. The variation in the global and the local

slenderness is achieved by varying the strut length and the width of the flange plate

respectively. The present work focuses on the cases where the flange–web connection is

assumed to be fully pinned or fully rigid, the boundary conditions for which the behaviour

of the local buckling of the flange plate is well understood (Bulson, 1970). It is found that

when the local critical buckling load is significantly higher than the global critical load,

global buckling mode is dominant; conversely when the global critical load is significantly

higher than the local critical load, the opposite is true. Under such conditions, there is

practically no interaction between the global and the local buckling modes. On the other

hand, within the defined interactive region, it is found that the strut exhibits post-buckling

equilibrium paths with different characteristics, which are highlighted and discussed in

detail. It should be stressed that all the calculations and numerical continuations are

performed for elastic systems and that any plasticity effects would change the results.

However, for the current case, the effects of plasticity would be negligible, an assertion

that is justified later.

6.1 Review of the analytical models

6.1.1 Pinned flange–web connection

The parametric study is first carried out for the perfect system of a strut with a pinned

flange–web connection. The coordinate system, section and material properties, global

and local displacement functions are fully defined in Chapter 3. The current chapter

uses the same definitions and notation. The same sets of governing equilibrium and
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integral equations are used in the parametric study, and given by Equations (3.21)–(3.25).

Note that the initial out-of-straightness coordinate, qs0 can be neglected from the original

equations because only the perfect system is being considered. The expression for the

global buckling critical load PC
o is given by Equation (3.29). The critical stress for the local

buckling σC
l is evaluated using the well-known plate buckling formula given by Equation

(3.30); the local buckling critical load is thus:

PC
l = A

kDπ2

b2t
, (6.1)

where A is the cross-section area. The coefficient k is approximately 0.426 for a long

rectangular plate with three edges pinned and one edge free. It is clear that varying the

strut length L only affects the global critical load PC
o , whereas varying the flange width b

affects both the global critical load PC
o and the local critical load PC

l . Note that for the

section properties satisfying the condition: PC
l < PC

o , the full set of equilibrium equations

are solved, whereas for PC
o < PC

l , equilibrium equations are solved for w1 and u1 only.

6.1.2 Rigid flange–web connection

The analytical model for the perfect system of the strut with a fully rigid flange–web con-

nection was developed in Chapter 5. The current section will use the same definitions and

notation for the coordinate system and the section properties. Since the local displace-

ment functions w and u are only introduced in the vulnerable half of the flange, solving

for the perfect system where local buckling is critical may be troublesome. Introducing

an extra set of displacement functions in the non-vulnerable half of the flange causes com-

putational difficulties for this particular case, where convergence problems often occurred

after the second branch switch where global buckling is triggered. A significantly finer

discretization and numerous numerical continuation attempts were required to overcome

172



Chapter 6–Parametric study

this problem, which significantly increased the computational time. An alternative ap-

proach was used; this involved introducing a local imperfection in the vulnerable half of

the flange only, which allows the break in symmetry from the beginning of each numeri-

cal continuation. The global mode was then triggered automatically due to the break in

symmetry, as shown in Figure 4.3(b). The introduction of the local imperfection follows

the same procedure established in Chapter 4. Recall Figure 4.2, the initial out-of-plane

deflection, w0(x, z) has the form:

w0(x, z) = f(x)A0 sech

[
α

(
z

L
− 1

2

)]
cos

[
βπ

(
z

L
− 1

2

)]
, (6.2)

where f(x) was given by Equation (5.5) and z ∈ [0, L]. Note that the transverse compo-

nent of the initial out-of-plane deflection, f(x) becomes the function for the rigid flange–

web connection. The introduction of the local imperfection provides additional expres-

sions to the local bending, membrane and shear strain energy functions, whereas the

global bending energy Ubo, strain energy in the rotational spring Usp and the work done

PE remain the same as Equations (3.5), (5.13) and (3.15), respectively. Note also that

the expressions for the global lateral deflection W and the rotation of the plane section θ

are still given by Equation (3.1). The local displacement functions w and u are defined in

Equations (5.4) and (3.3), respectively. The local bending energy Ubl accounting for both

top and bottom flanges is thus:

Ubl = D

∫ L

0

[
{f 2}x (ẅ − ẅ0)2 + {f ′′2}x (w − w0)2

− 2ν{ff ′′}x (ẅw − ẅ0w0) + 2 (1− ν) {f ′2}x (ẇ − ẇ0)2

]
dz,

(6.3)

where dots represent derivatives with respect to z as before; the braces with subscript x

represent the integral with respect to x evaluated from −b/2 to 0. The membrane energy

from the direct strain Ud accounting for both top and bottom flanges, including the initial
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out-of-plane deflection is thus:

Ud = Etb

∫ L

0

{
b2

12
q2
t

π4

L2
sin2 πz

L
+

1

6
u̇2 +

{f 4}x
4b

(
ẇ2 − ẇ2

0

)2 − 1

2
∆u̇− {f

2}x
b

∆
(
ẇ2 − ẇ2

0

)
− qt

bπ2

6L
sin

πz

L

[
u̇− 6{xf 2}x

b2

(
ẇ2 − ẇ2

0

)]
− 2{xf 2}x

b2
u̇
(
ẇ2 − ẇ2

0

)
+

(
1 +

h

b

)
∆2

}
dz.

(6.4)

The membrane energy from the shear strain, Us accounting for both top and bottom

flanges, including the initial out-of-plane deflection is:

Us = Gtb

∫ L

0

{
(qs − qt)2 π2 cos2 πz

L
+

2

b2

[
u2 +

b

2
{f ′2f 2}x (ẇw − ẇ0w0)2

− 2{f ′f}xu (ẇw − ẇ0w0)

]
− 2

b
(qs − qt) π cos

πz

L

[
u− {f ′f}x (ẇw − ẇ0w0)

]}
dz.

(6.5)

The total potential energy, V is thus:

V = Ubo + Ubl + Um + Usp − PE . (6.6)

The derivation of the governing equilibrium and integral equations follows the same pro-

cedure established in Chapters 3–4. The non-dimensional differential equations for w and

u are thus:

˜....w − b2φ2

2{f 2}x
[
ν
(
{ff ′′}x − {f ′2}x

)
+ {f ′2}x

]
˜̈w +

b4φ4

16

{f ′′2}x
{f 2}x

w̃

− G̃φ2w̃

16{f 2}x

[
b2{f ′2f 2}x

(
˜̇w2 + w̃ ˜̈w

)
− 2b{f ′f}x ˜̇u+

bπ2{f ′f}x
φ

(qs − qt) sin
πz̃

2

]
− D̃

8{f 2}x

[
3{f 4}x ˜̇w2 ˜̈w − 4{xf 2}x

b

(
˜̈u ˜̇w + ˜̇u ˜̈w

)
− 2{f 2}x ˜̈w∆

+
2π2{xf 2}x

bφ
qt

(
sin

πz̃

2
˜̈w +

π

2
cos

πz̃

2
˜̇w

)]
= ˜....w0 −

b2φ2

2{f 2}x
[
ν
(
{ff ′′}x − {f ′2}x

)
+ {f ′2}x

]
˜̈w0 +

b4φ4

16

{f ′′2}x
{f 2}x

w̃0

− G̃φ2b2{f ′2f 2}xw̃
16{f 2}x

(
˜̈w0w̃0 + ˜̇w0

2
)
− D̃{f 4}x ˜̇w0

8{f 2}x
(

˜̈w ˜̇w0 + 2 ˜̇w ˜̈w0

)
,

(6.7)

˜̈u− 12{xf 2}x
b2

˜̇w ˜̈w − qt
π3

4φ
cos

πz̃

2
− 3G̃φ2

D̃

[
ũ− {f ′f}xw̃ ˜̇w − (qs − qt)

π

φ
cos

πz̃

2

]
=

3G̃φ2

Ẽ
{f ′f}xw̃0

˜̇w0 −
12{xf 2}x

b2
˜̇w0

˜̈w0,

(6.8)
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The non-dimensional integral conditions are:

∂V

∂qs
= π2qs + s̃ (qs − qt)−

PL2

EIw
qs −

s̃φ

π

∫ 1

0

cos
πz̃

2

[
{f ′f}x

(
w̃ ˜̇w − w̃0

˜̇w0

)
+ ũ

]
dz̃ = 0,

∂V

∂qt
= π2qt − t̃ (qs − qt) + φ

∫ 1

0

{
t̃

π
cos

πz̃

2

[
{f ′f}x

(
w̃ ˜̇w − w̃0

˜̇w0

)
+ ũ

]
− sin

πz̃

2

[
2˜̇u− 12{xf 2}x

b2

(
˜̇w2 − ˜̇w2

0

)]}
dz̃ = 0,

∂V

∂∆
=

∫ 1

0

[
2

(
1 +

h

b

)
∆− 1

2
˜̇u− {f

2}x
b

(
˜̈w2 − ˜̈w2

0

)
− P

Etb

]
dz̃ = 0.

(6.9)

The boundary conditions for w̃ and ũ and their derivatives are for pinned end conditions

for z̃ = 0 and for symmetry at z̃ = 1, given by Equation (5.18). The boundary condition

from matching the in-plane strain becomes:

1

3
˜̇u(0)− 2{xf 2}x

b2

[
˜̇w2(0)− ˜̇w2

0(0)
]
− 1

2
∆ +

P

2Etb
= 0. (6.10)

The local critical buckling load is determined using Equation (6.1), where the coefficient k

is approximately 1.25 for a rectangular plate with one longitudinal edge fixed and the other

being free. For the section properties satisfying the condition: PC
l < PC

o , the equilibrium

equations with local imperfections are solved, whereas for PC
o < PC

l , equilibrium equations

are solved for the perfect system. The amplitude of the initial out-of-plane deflection is

kept at a constant value of approximately 0.01t, where t is the thickness of the flange

plate. This value is sufficiently small such that the near perfect system is analysed.

6.2 Solution strategy

6.2.1 Variation in strut length

The investigation begins with varying the global slenderness λo, where λo = L/r with

r being the radius of gyration of the cross-section, which is a length scale defined as a
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quantity essentially being a ratio of the flexural to the axial stiffness where r2 = I/A. In

this case, I = Iyy, the second moment of area of the cross-section about the weak axis

(Trahair et al., 2008). The strut length L is principally changed while all other section

properties are kept constant and given in Table 6.1. Theoretical values of the global and

Flange width b 96 mm
Flange thickness t 1.2 mm

Section depth h 120 mm
Section area A 513 mm2

Young’s modulus E 210 kN/mm2

Poisson’s ratio ν 0.3

Table 6.1: Cross-section and material properties. Recall that the thickness of the web
tw = 2t.

local critical loads are determined using Equations (3.29) and (6.1) respectively. A critical

strut length, denoted as Lc is determined when PC
o = PC

l . Numerical continuations are

first conducted with the strut length L being in the vicinity of Lc. It is obvious that,

with such a condition, the secondary instability will be triggered almost simultaneously

with the primary instability. Increasing the strut length implies that the global critical

load PC
o decreases; global buckling becomes critical and the secondary instability would be

triggered at a larger value of qs. With PC
l being significantly larger than PC

o , it is expected

that the flange plates would not buckle until a significant amount of global buckling

deflection has developed. In those situations, problems such as plastic deformation may

have taken place before any interactive buckling. The current work considers an arbitrary

value of L/500 as a large global lateral deflection; therefore cases where qs > 0.002 at

the secondary bifurcation are considered to be equivalent to no mode interaction. The

strut length, where qs = 0.002 at the secondary bifurcation, is determined and denoted

as Lo. The interactive region where global buckling is critical is therefore Lc < L < Lo,

which is illustrated diagrammatically in Figure 6.1(a). The load carrying capacity PU –

determined by the global critical load PC
o for cases where global buckling is critical – and

the post-buckling behaviour are studied for the interactive region: Lc < L < Lo. Note
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qs

LLc Lo

1
500

Global critical
(interactive)

Pure global

(a)

wmax
L

LLl Lc

1
500

Local critical
(interactive)

Pure local

(b)

Figure 6.1: Solution strategy for varying the strut length L. The definition L = Lc when
PC
l = PC

o , whereas struts with L > Lo and L < Ll are assumed to exhibit pure global
buckling and pure local buckling respectively.

that the value of L/500, chosen arbitrarily in the current study, is used as an imperfection

for the manufacturing tolerance of cold-formed sections (Saito & Wadee, 2009); adjusting

this value changes the range where interactive buckling is most significant. Of course,

currently, the aforementioned L/500 deflection would be in addition to any imposed initial

imperfection.

Conversely, decreasing the strut length implies that the local buckling becomes critical.

Since the post-buckling characteristic of the flange plates is stable, the load increases as

the local deflection progresses. It has been demonstrated, in the numerical example in

Chapter 3, that the system exhibits an unstable interactive post-buckling path after the

peak load PU is reached. A similar hypothesis is used for the maximum local out-of-plane

deflection wmax at the peak load, which is illustrated diagrammatically in Figure 6.1(b).

Although the limit of wmax/L is set also to L/500 currently, this again is chosen arbitrarily.

It is considered that the strut with L < Ll exhibits pure local buckling, whereas the

interactive region where local buckling is critical lies in the range: Ll < L < Lc. The load

carrying capacity PU is determined numerically. The same approach is applied to both
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cases where the flange–web connection is pinned and rigid.

6.2.2 Variation in flange width

A similar approach is applied to vary the local slenderness λl, where λl = b/(2t). The

flange width b is principally varied; the flange thickness t, the strut length L are kept

constant, as given in Table 6.2. For the given strut length, the critical flange width bc

Strut length L 2150 mm
Flange thickness t 1.2 mm

Section depth h 120 mm
Young’s modulus E 210 kN/mm2

Poisson’s ratio ν 0.3

Table 6.2: Geometric and material properties. The flange width b is varied, implying that
the section area A and the minor-axis second moment of area Iyy are varied accordingly.

is determined when PC
o = PC

l . Increasing b implies that PC
l would decrease whereas PC

o

would increase, due to the increase in the minor-axis second moment of area Iyy; the

local buckling of the flange plates would therefore be critical. The same hypothesis, as

for the cases where the strut length is varied, is applied and shown in Figure 6.2(a). It is

considered that the flange with b > bl exhibits pure local buckling, whereas the interactive

region where local buckling is critical is given by bc < b < bl. Conversely, decreasing b

below bc implies that PC
l would increase whereas PC

o will decrease; global buckling would

therefore be critical. Figure 6.2(b) shows the interactive region for b where global buckling

is critical. Struts with a flange width smaller than bo are considered to exhibit a purely

global mode with no interactive buckling.
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wmax
L

bbc bl

1
500

Local critical
(interactive)

Pure local

(a)

qs

bbo bc

1
500

Global critical
(interactive)

Pure global

(b)

Figure 6.2: Solution strategy for varying the strut length b. The definition b = bc when
PC
l = PC

o , whereas struts with b < bo and b > bl are assumed to exhibit pure global
buckling and pure local buckling respectively.

6.2.3 Buckling strength curves

It is well-known that the failure mechanisms are governed by buckling and plasticity, for

slender and stocky columns, respectively. First, consider the idealized buckling design

curve for perfect columns in terms of the failure stress σf versus the global and local

slenderness, λo and λl shown in Figure 6.3(a) and (b), respectively. The value of the

σf

λoλo1

σE

σY

(a)

σf

λlλl1

σC
l

σY

(b)

Figure 6.3: The idealized design curve in terms of the failure stress σf versus (a) the
global slenderness (λo) and (b) the local slenderness (λl). Parameters λo1 and λl1 are the
global and the local slendernesses when σY = σE and σY = σCl , respectively.
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yield stress σY varies depending on the grade of the steel, but a high strength steel with

σY = 460 kN/mm is considered in the current study, which is a commonly used value for

light-gauge cold worked steel. Recall that I/A = r2 and L/r = λo; the Euler stress can

be expressed in terms of λo, thus:

σE =
π2E

λ2
o

, (6.11)

denoting λo1 as the value of λo when σE = σY , and after a bit of manipulation, the

following is obtained:

λo1 = π

√
E

σY
. (6.12)

A normalized stress σ̄o and a normalized global slenderness λ̄o are defined as σf/σY and

λo/λo1 respectively; a relationship between σ̄o and λ̄o can then be obtained for the elastic

global buckling curve, thus:

σ̄o = (λ̄o)
−2, (6.13)

where λ̄o is given by the following expression:

λ̄o =
λo
λo1

=
L

r

[
1

π

√
σY
E

]
. (6.14)

A normalized local slenderness λ̄l is derived by following a practically identical procedure

as for λ̄o, by taking the plate buckling stress σC
l given in Equation (3.30) and finding λl1

for the case where σC
l = σY and so on (Trahair et al., 2008), thus:

λ̄l =
b

2t

[
1

π

√
σY
E

] [
12(1− ν2)

k

]1/2

, (6.15)

and the elastic local buckling curve becomes: σ̄l = (λ̄l)
−2. The idealized buckling design

curves are therefore plotted in terms of the nondimensional stress and slenderness, as

sketched in Figure 6.4. It is clear that for λ̄x > 1, where x = {o, l}, columns are slender and

elastic buckling dominates; but for λ̄x < 1, columns are stocky and plasticity dominates.

Moreover, if λ̄x � 1, the elastic buckling load is approximately the ultimate load and

plasticity effects are negligible. In the following section, numerical examples are presented
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σ̄x

λ̄x1.0

1.0

Yielding
Buckling

Figure 6.4: The idealized strength curve in terms of the normalized stress at failure σ̄x
versus the normalized global and local slendernesses λ̄x, where x = {o, l}.

for an example set of strut lengths and flange widths; the corresponding normalized

slendernesses are calculated using Equations (6.14) and (6.15) respectively.

6.3 Numerical results and discussion

6.3.1 Pinned flange–web connection

Numerical continuations are first carried out in Auto for the strut with a pinned joint

between the section web and flanges. The effect of varying the strut length L is first

examined. It is observed in Figure 6.5 that for the particular properties given in Table 6.1,

struts with lengths between Ll = 2295 mm and Lo = 5842 mm are most vulnerable to

interactive buckling, whereas struts with L < Ll and L > Lo are vulnerable to the pure

local buckling and the pure global buckling respectively. The critical strut length Lc when

PC
o = PC

l is found to be approximately 3740 mm by both the theoretical expressions and

the numerical solution. Figure 6.6 shows the load-carrying capacity PU versus L. It
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Figure 6.5: Graphs show (a) the normalized lateral displacement at the secondary bifur-
cation point qS

s and (b) the normalized maximum local out-of-plane displacement wUmax/L
at the ultimate load PU , versus the strut length L, for the cases where the global buck-
ling and the local buckling are critical, respectively. The vertical dot-dashed line with
label Lc represents the critical strut length where PC

o = PC
l . The horizontal dashed line

represents the amount of displacement, above which interactive buckling is assumed to
be insignificant; the interactive region is therefore Ll < L < Lo, as shown by the vertical
dot-dashed lines.
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Figure 6.6: The graph shows the ultimate load PU versus the strut length L. The solid line
represents the actual numerical solutions whereas the dashed lines represent the theoretical
calculations of the global and local critical loads. Note that the local critical load is
independent of the strut length and is therefore represented by the horizontal dashed line.
The vertical dot-dashed lines represent lengths Ll, Lc and Lo directly corresponding to
Figure 6.5.

183



Chapter 6–Parametric study

is observed that for Lc < L < Lo where global buckling is critical, PU = PC
o since the

global buckling is only weakly stable, whereas the interactive buckling behaviour, after the

secondary instability (for local buckling) is triggered, is highly unstable. For Ll < L < Lc

on the other hand, the load-carrying capacity PU is capable of reaching a higher value

than the local critical load PC
l , due to the stable post-buckling behaviour of the flange

plates. However, the load is not able to reach the global critical load PC
o due to the mode

interaction after the secondary instability (for global buckling) is triggered. Figure 6.6

is transformed, in a similar way as the classic work by van der Neut (1969), into the

central graph of Figure 6.7, which shows PU/P
C
l versus PC

o /P
C
l for varying L. The graphs

surrounding the main one show examples of the actual equilibrium paths for different strut

lengths corresponding to different parts of the central graph, indicated by the arrows. It

is observed that for L > Lo, the strut exhibits pure global buckling that is weakly stable

after the critical bifurcation point. For Lc < L < Lo, the strut exhibits a weakly stable

equilibrium path after the critical bifurcation point, followed by an unstable interactive

post-buckling path after the secondary bifurcation point. For L ≈ Lc, the global and the

local buckling modes are triggered practically simultaneously; and the strut exhibits an

unstable interactive post-buckling path. For Ll < L < Lc, the strut exhibits a stable

equilibrium path after the critical bifurcation point, followed by an unstable interactive

post-buckling path after the secondary bifurcation point. Finally for L < Ll, the strut

exhibits pure local buckling of the flange plates that is strongly stable. Note that for

Ll < L < Lo, all equilibrium paths exhibit the sequential snap-backs signifying cellular

buckling behaviour.

With the section properties given in Table 6.2 and L being fixed, the numerical continua-

tions are carried out for the varying flange width b. Figures 6.8, 6.9 and 6.10 correspond

to Figures 6.5, 6.6 and 6.7, for varying b, respectively. It is observed in Figure 6.8 that
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Figure 6.7: The central graph shows the normalized ultimate load PU/P
C
l versus the

normalized global critical load PC
o /P

C
l . The solid line represents the actual numerical

solutions whereas the dot-dashed lines representing Ll, Lc and Lo correspond directly to
Figure 6.6. The surrounding graphs show examples of the equilibrium paths corresponding
to the different parts of the central graph, separated by the dot-dashed lines. Labels C
and S correspond to the primary and the secondary bifurcation points.
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Figure 6.8: Graphs show (a) the normalized lateral displacement at the secondary bifur-
cation point qS

s and (b) the normalized maximum local out-of-plane displacement wUmax/L
at the ultimate load PU , versus the flange width b, for the cases where the global buckling
and the local buckling are critical, respectively. The vertical dot-dashed line with label bc
represents the critical flange width when PC

o = PC
l . The horizontal dashed line represents

the amount of displacement, above which interactive buckling is assumed to be insignifi-
cant; the interactive region is therefore bo < b < bl, as shown by the vertical dot-dashed
lines.
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flanges with widths between bo = 65 mm and bl = 91 mm are most vulnerable to the

interactive buckling behaviour, whereas flanges with b > bl and b < bo are only vulnerable

to pure local buckling and pure global buckling respectively. The critical flange width

bc when PC
o = PC

l is found to be approximately 75 mm by both the theoretical expres-

sions and the numerical solution. Figure 6.9 shows the load-carrying capacity PU versus
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bo blbc
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Figure 6.9: The graph shows the ultimate load PU versus the flange width b. The solid line
represents the actual numerical solutions whereas the dashed lines represent the theoretical
calculations of the global and local critical loads. Note that increasing b implies that the
local critical load decreases whereas the global critical load increases. The vertical dot-
dashed lines represent bl, bc and bo directly corresponding to Figure 6.8.

b. It is observed that for bo < b < bc where global buckling is critical, PU = PC
o since

the post-buckling behaviour is only weakly stable, whereas the interactive buckling be-

haviour, after the secondary instability (for local buckling) is triggered, is highly unstable.

For bc < b < bl, the load-carrying capacity PU always reaches a value that is higher than

the local critical load PC
l , due to the stable post-buckling behaviour of the flange plates,

but is not able to reach the global critical load PC
o due to the mode interaction after the

secondary instability (for global buckling) is triggered. Figure 6.10 shows a plot of PU/P
C
l

187



Chapter 6–Parametric study

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

P
o

C
/P

l

C

P
U

/P
lC0 5

x 10
−3

0

0.5

1
C S

q
s

p

0 5

x 10
−3

0

0.5

1
C

q
s

p

0 5

x 10
−3

0

0.5

1

C,S

q
s

p

0 0.5 1 1.5

x 10
−3

0

0.5

1

CS

w
max

/L

p

0 1 2

x 10
−3

0

0.5

1

C

w
max

/L

p

bo bc bl

b increasing

Figure 6.10: The central graph shows the normalized ultimate load PU/P
C
l versus the

normalized global critical load PC
o /P

C
l . The solid line represents the actual numerical

solutions whereas the dot-dashed lines representing bl, bc and bo correspond directly to
Figure 6.9. The surrounding graphs show examples of the equilibrium paths corresponding
to the different parts of the central graph, separated by the dot-dashed lines. Labels C
and S correspond to the primary and the secondary bifurcation points.
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versus PC
o /P

C
l for varying b and examples of the actual equilibrium paths for different

ranges of b are shown. It is observed that for b < bo, the strut exhibits pure global buck-

ling that is weakly stable, after the critical bifurcation point. For bo < b < bc, the strut

exhibits a weakly stable equilibrium path after the critical bifurcation point, followed

by an unstable interactive post-buckling path after the secondary bifurcation point. For

b ≈ bc, the global and the local buckling modes are triggered practically simultaneously

and the strut exhibits an unstable interactive post-buckling path. For bc < b < bl, the

strut exhibits a stable equilibrium path after the critical bifurcation point, followed by an

unstable interactive post-buckling path after the secondary bifurcation point. Finally for

b > bl, the strut exhibits pure local buckling of the flange plates that is strongly stable. It

is worth noting again that all equilibrium paths exhibit cellular buckling behaviour within

the interactive region.

6.3.2 Fully rigid flange–web connection

In this section, numerical continuations are carried out for the struts with fully rigid

joints between the section web and flanges. The strut length L is first varied with the

section properties given in Table 6.1. Figures 6.11, 6.12 and 6.13 correspond to Figures

6.5, 6.6 and 6.7, for the fully rigid flange–web connection, respectively. It is observed in

Figure 6.11 that struts with lengths between Ll = 1610 mm and Lo = 2680 mm are most

vulnerable to the interactive buckling behaviour, whereas struts with L < Ll and L > Lo

are vulnerable to the pure local buckling and the pure global buckling respectively. The

critical strut length Lc, when PC
o = PC

l , is found to be approximately 2185 mm by both the

theoretical expressions and the numerical solution. Figure 6.12 shows a very similar trend

as in Figure 6.6. However, one distinctive feature is that for 1800 mm < L < 2300 mm, the

ultimate load PU is very close to the local buckling critical load PC
l whereas PU only starts
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Figure 6.11: Graphs show (a) the normalized lateral displacement at the secondary bifur-
cation point qS

s and (b) the normalized maximum local out-of-plane displacement wUmax/L
at the ultimate load PU , versus the strut length L, for the cases where the global buckling
and the local buckling are critical, respectively. The vertical dot-dashed line with label
Lc represents the critical strut length where PC

o = PC
l . The horizontal dashed line rep-

resents the amount of displacement, above which the interactive buckling is assumed to
be insignificant; the interactive region is therefore Ll < L < Lo, as shown by the vertical
dot-dashed lines.
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Figure 6.12: The graph shows the ultimate load PU versus the strut length L. The
solid lines represent the actual numerical solutions whereas the dashed lines represent the
theoretical calculations of the global and local critical loads. Note that the local critical
load is independent of the strut length and therefore represented by the horizontal dashed
line. The vertical dot-dashed lines representing Ll, Lc and Lo directly correspond to
Figure 6.5. The vertical dot-dashed line L1 represents the strut length below which PU
begins to deviate from PC

l significantly.
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to be significantly higher than PC
l for L < 1800 mm. This feature is also indicated by the

dramatic change in the slope of the curve in Figure 6.11(b). This is caused by the different

post-buckling behaviour after the secondary instability is triggered, which can be observed

in Figure 6.13; and such a region is known by van der Neut (1969) as the ‘imperfection
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Figure 6.13: The central graph shows the normalized ultimate load PU/P
C
l versus the

normalized global critical load PC
o /P

C
l . The solid lines represent the actual numerical

solutions whereas the dot-dashed lines representing Ll, L1, Lc and Lo correspond directly
to Figure 6.12. The surrounding graphs show examples of the equilibrium paths corre-
sponding to different parts of the central graph, separated by the dot-dashed lines. Labels
C and S correspond to the primary and the secondary bifurcation points.

sensitive’ zone. The point where PU starts to deviate from PC
l is denoted as L1, as shown
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in Figure 6.12. Note that numerical solutions for the cases where local buckling is critical

are associated with a small local imperfection whereas the perfect system is analysed for

the cases where global buckling is critical. The reduction in PU caused by the imperfection

is approximately 9.8% when L ≈ Lc. Figure 6.13 shows similar graphs as in Figure 6.7.

However, it can be observed in Figure 6.13 that for L1 < L < Lc, the strut exhibits

a strongly unstable interactive post-buckling path, whereas for Ll < L < L1, the strut

exhibits a weakly unstable (approximately neutral) interactive post-buckling path, after

the secondary instability is triggered.

Finally, the flange width b is varied for the strut with the geometric properties in Table 6.2

and length L being fixed, for the fully rigid flange–web connection. It is observed in

Figure 6.14 that struts with flange widths between bo = 88 mm and bl = 120 mm are

most vulnerable to the interactive buckling behaviour, whereas struts with b > bl and

b < bo are only vulnerable to pure local buckling and pure global buckling respectively.

The critical strut length bc when PC
o = PC

l is found to be approximately 95 mm by both

the theoretical expressions and the numerical solution. Figure 6.15 shows a very similar

trend as in Figure 6.9. Similar to the case where L is varied, it is observed that for

95 mm < b < 104 mm, the ultimate load PU follows the local buckling critical load PC
l

closely, as shown by the dashed line, whereas PU only starts to be significantly higher

than PC
l for b > 104 mm. Therefore, for the range of flange widths 95 mm < b < 104 mm,

increasing the flange width would lead to a reduction in the load-carrying capacity. The

point where PU begins to deviate from PC
l is denoted as b1. The post-buckling behaviour

for the strut with 95 mm < b < 104 mm exhibits a stable, followed by a strongly unstable

equilibrium path, whereas for b > 104 mm, the strut exhibits a stable, followed by a

weakly unstable equilibrium path, as shown in Figure 6.16.
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Figure 6.14: Graphs show (a) the normalized lateral displacement at the secondary bifur-
cation point qS

s and (b) the normalized maximum local out-of-plane displacement wUmax/L
at the ultimate load PU , versus the flange width b, for the cases where global buckling
or local buckling is critical, respectively. The vertical dot-dashed line with label bc repre-
sents the critical flange width where PC

o = PC
l . The horizontal dashed line represents the

amount of displacement, above which interactive buckling is assumed to be insignificant;
the interactive region is therefore bo < b < bl, as shown by the vertical dot-dashed lines.
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Figure 6.15: The graph shows the ultimate load PU versus the flange width b. The
solid lines represent the actual numerical solutions whereas the dashed lines represent
the theoretical calculations of the global and local critical loads. Note that increasing
b implies that the local critical load decreases whereas the global critical increases. The
vertical dot-dashed lines representing bl, bc and bo directly correspond to Figure 6.14. The
vertical dot-dashed line b1 represents the flange width above which PU starts to deviate
from PC

l significantly.
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Figure 6.16: The central graph shows the normalized ultimate load PU/P
C
l versus the

normalized global critical load PC
o /P

C
l . The solid lines represent the actual numerical

solutions whereas the dot-dashed lines representing bl, b1 bc and bo correspond directly to
Figure 6.15. The surrounding graphs show examples of the equilibrium paths correspond-
ing to different parts of the central graph, separated by the dot-dashed lines. Labels C
and S correspond to the primary and the secondary bifurcation points.
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6.3.3 Interactive buckling zones

Tables 6.3 and 6.4 summarize, for both the pinned and the fully rigid flange–web con-

nection, the region where the interactive buckling is significant and the post-buckling

behaviour is highly unstable after the secondary instability is triggered, in terms of the

strut length L and the flange width b respectively. It is clear that by increasing the

min (Ll, L1) (mm) Lc (mm) Lo (mm)
Pinned 2300 3700 5800
Rigid 1800 2300 2700

Table 6.3: Summary of values for Ll, L1, Lc and Lo, for struts with the properties given
in Table 6.1, for both the pinned and the fully rigid flange–web connection.

min (bl, b1) (mm) bc (mm) bo (mm)
Pinned 92 74 65
Rigid 104 95 88

Table 6.4: Summary of values for bl, b1, bc and bo, for struts with the properties given in
Table 6.2, for both the pinned and the fully rigid flange–web connection.

rigidity of the connection between the section web and flanges, the vulnerability to un-

stable interactive buckling is reduced, in terms of both the strut length L and the flange

width b. Tables 6.5 and 6.6 summarize the values of the global and the local normalized

slendernesses, λ̄o and λ̄l, the values of which are calculated using Equations (6.14) and

(6.15), directly corresponding to the values of the strut lengths and the flange widths

given in Tables 6.3 and 6.4, respectively. Note that the global and the local normalized

slendernesses, for each critical strut length Lc and flange width bc, are approximately

equal, and therefore denoted as a single notation λ̄c. Also note that when L is varied,

the local normalized slenderness remains unchanged, and therefore λ̄c = λ̄l as seen in

Table 6.5. On the other hand, when b is varied, λ̄c differs from both λ̄l and λ̄o, as seen in

Table 6.6. The values of global and the local normalized slendernesses given in Tables

6.5 and 6.6 are plotted on the idealized strength curves in Figure 6.17. Recall that a
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Figure 6.17: The idealized strength curves with the marks representing the global and the
local normalized slendernesses given in Tables 6.5 and 6.6. Triangular marks and crosses
represent the cases where the flange–web joint is assumed to be fully rigid and pinned
respectively. Note that for the pinned case in (b), the global and the local slendernesses
for the given geometry are very close, but not precisely equal.
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λ̄l λ̄c λ̄o
Pinned 3.00 3.00 4.68
Rigid 1.76 1.76 2.17

Table 6.5: Summary of values of λ̄o, λ̄c and λ̄l, directly corresponding to the values of the
strut lengths given in Table 6.3.

λ̄l λ̄c λ̄o
Pinned 2.88 2.31 2.88
Rigid 1.91 1.74 1.94

Table 6.6: Summary of values of λ̄o, λ̄c and λ̄l, directly corresponding to the values of the
flange widths given in Table 6.4.

yield stress of 460N/mm2 is assumed in the current study and that altering this would

change the slendernesses. It is observed that for the chosen set of section properties,

elastic buckling dominates the failure mechanism in the interactive region for all cases.

The struts with fully rigid flange–web joints are less slender than the struts with pinned

flange–web joints, and therefore closer to the region where plasticity would begin to alter

the behaviour significantly. Nevertheless, for the chosen set of section properties, it is

justified that plasticity effects would be negligible. For further studies with a wider range

of section properties, the above procedure can be applied to investigate the possibility of

any potential plasticity influence, so that a better estimation for the true load-carrying

capacity may be obtained.

6.4 Concluding remarks

Parametric studies were conducted for an example set of geometries of a series of thin-

walled I-section struts for two limiting cases where the web was assumed to provide a

fully pinned or a fully rigid support to the flanges. The model in Chapter 3 is used for the

fully pinned case, whereas the model in Chapter 5 is adapted slightly, for computational
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reasons, to include a local imperfection, for the fully rigid case. The investigation focuses

on changing the global and the local slendernesses by varying the strut length and the

flange width respectively. A deflection based criterion was defined such that an interactive

buckling dominated region, where the interaction between the weak-axis global (Euler)

buckling and the local flange plate buckling, may be determined. For fully pinned flange–

web connections, all struts within the interactive region exhibit unstable cellular buckling,

including the cases where global buckling or local buckling is critical. For fully rigid flange–

web connections, struts for the cases where global buckling is critical, exhibit unstable

post-buckling responses without the observation of the cellular behaviour although the

post-buckling profiles still exhibit changing wavelengths. However, for the cases where

local buckling is critical, it is found that struts may exhibit two distinct post-buckling

responses:

• a stable equilibrium path followed by a weakly unstable (approximately neutral)

equilibrium path, or,

• a stable equilibrium path followed by a highly unstable equilibrium path.

It is the latter that should be avoided in design because of the high imperfection sen-

sitivity associated with that characteristic response. It is found that by increasing the

rigidity of the flange–web connection, the potentially dangerous region, where the highly

unstable post-buckling behaviour is caused by the nonlinear mode interaction, becomes

more confined.

The current methodology may be applied to determined the dominant interactive region

with the section and material properties for a given set of basic geometries so long as the

buckling occurs in the elastic range. However, since the normalized slenderness for local
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and global buckling properties may be calculated, the analysis can determine whether

plasticity effects need to be considered in a more advanced structural analysis.
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General conclusions

7.1 Conclusions

This thesis has presented a series of analytical models with increasing complexity that

account for the interactive buckling phenomenon in axially-loaded thin-walled I-section

columns with a varying rigidity of the flange–web connection. Using the calculus of vari-

ations, the analytical models have been developed based on elasticity theory and total

potential energy principles. The models focus on the nonlinear interaction between a

weak-axis Euler–type buckling mode and a local buckling mode of the flange plates. The

highly unstable post-buckling behaviour has been highlighted; the vulnerability to cellular

buckling behaviour has been revealed for columns with weak flange–web connections. Im-

perfection sensitivity and parametric studies were conducted; highlighting some important

behaviour that needs particular attention in the context of structural design.

The investigation began with the focus on a limiting case where the web is assumed to

provide a simple support to the flanges. Distinct features were captured by the numerical

202



Chapter 7–General conclusions

examples for the cases where local buckling and global buckling were, in turn, critical.

The section geometries were chosen such that the critical loads were sufficiently close so

that interactive buckling was most likely to take place. For local buckling being critical,

the strut initially followed the trivial fundamental path until the primary bifurcation

point was reached; the flange plates then buckled locally and exhibited a stable post-

buckling path until the secondary bifurcation point where the global mode was triggered.

The local buckling in the less compressed side of the flange was rapidly contaminated by

the global mode and the interaction between the local and the global modes resulted in

highly unstable post-buckling behaviour. For global buckling being critical, the strut first

buckled globally at the primary bifurcation point and followed the weakly stable post-

buckling path until the secondary bifurcation point where local buckling of the flange

plates was triggered.

Cellular buckling behaviour was revealed for both cases, implying that the struts exhib-

ited a progressive failure which consisted of a sequence of destabilizing and restabilizing

paths, known as snap-backs. The local buckling mode profile was initially the solution

for a rectangular plate with three edges simply supported and one edge free (Bulson,

1970); each snap-back corresponded to the new formation of a peak or trough in the

local buckling mode profile. The wavelength of the local out-of-plane buckling deflection

pattern therefore reduced as the deformation progressed. The results compared excel-

lently against recent published experiments and numerical studies (Becque, 2008; Becque

& Rasmussen, 2009a; Becque & Rasmussen, 2009b). Most importantly, the experiments

clearly showed the changing wavelength of the local buckling mode pattern, although the

physical flange–web connection might have a higher rigidity than the simple support, as

assumed in the analytical model at that stage. The earlier numerical studies (Becque &

Rasmussen, 2009b), however, did not capture such a change in the local buckling wave-
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length. Nevertheless, the comparisons were very encouraging and the analytical model

was considered to be validated both qualitatively and quantitatively.

The model was then extended to include two types of geometric imperfections: an initial

out-of-straightness (global imperfection) and an initial out-of-plane displacement of the

flange plates (local imperfection). Imperfection sensitivity studies were carried out for

three cases with a global imperfection only, a local imperfection only and both imperfec-

tions present. The results revealed the highly imperfection sensitive nature of the struts,

with geometries such that the global and local critical loads were in close proximity, for

both types of imperfections. Moreover, two forms of the local imperfection, namely a

periodic and a modulated imperfection were examined. In order to carry out meaningful

comparisons, the initial end shortening E0 is introduced; it is essentially a measure of the

imperfection size that avoids using simply the amplitude. By keeping E0 constant, it was

found that the modulated imperfections always result in a more severe reduction in the

load-carrying capacity, although the effect on shorter struts is less severe than that on

longer ones. It is also found that the worst case form for larger imperfections (larger E0)

is always associated with a larger number of waves, but a smaller degree of modulation

as may have been expected after the perfect case results are considered.

The model was then adapted to investigate the effect of varying rigidity of the flange–web

connection, by introducing a rotational spring that restricts the rotation of the supporting

edge of the flange about its longitudinal axis. The focus was on the case where global

buckling was critical. The results showed a rapid erosion of the cellular behaviour as the

stiffness of the rotational spring increases. The local critical buckling mode was associated

with a large number of waves for larger rotational stiffnesses; therefore, the snap-backs

reduce in number. It was also found that the restabilizing path gets shorter as the ro-
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tational stiffness increases. The results were compared against a bespoke finite element

model developed in Abaqus. Shell elements were used and Riks analysis was performed

with the introduced imperfection obtained from the linear eigenvalue analysis. The re-

sults showed good comparisons between the two models for large rotational stiffnesses,

especially for the case where the web was assumed to provide a fixed support to the

flanges (c → ∞). However, similar to the numerical studies by Becque (2009b), the FE

model does not capture the changing wavelength in the local buckling mode pattern, as

the system proceeds along the equilibrium paths, which has been observed in a number

of experimental studies (Becque & Rasmussen, 2009a; Wadee & Gardner, 2012). This

is perhaps because the introduced local imperfection fixes the local buckling wavelength,

which consequently resulted in the slightly larger error in the equilibrium paths. On

the other hand, the analytical approach allows the system to find its own post-buckling

profile after interactive buckling has been triggered and it seemed to track the physical

experiments better than the FE model.

Parametric studies were conducted for two limiting cases where the web was assumed to

provide a simple or a fully rigid support to the flanges. The global and local slendernesses

were varied by changing the strut length and the flange width respectively. The results

were presented in a similar way to the classic curve described by van der Neut (1969), as

shown in Figure 2.8. The parametric regions most vulnerable interactive buckling were

determined for both limiting cases. Since the global buckling and the local buckling of

the flange plates are well understood, the focus was on investigating the post-buckling

behaviour for the struts within the interactive region. For the pinned flange–web con-

nection, the interaction between the global and the local mode always resulted in highly

unstable cellular buckling behaviour. However, for the fixed flange–web connection, the

results revealed a distinctive feature which was a weakly unstable (or approximately neu-

205



Chapter 7–General conclusions

tral) post-buckling response, caused by the global and local mode interaction, for the cases

where local buckling was critical. Similar behaviour was captured by van der Neut (1969),

as shown in Figure 2.8. The parametric study allowed full investigations on the effect of

changing section properties on the buckling and post-buckling behaviour of the thin-walled

I-section strut. The analytical model identified the potentially dangerous region where

the strut is most vulnerable to the highly unstable interactive and cellular post-buckling

behaviour, which have to be treated with great caution in design considerations.

7.2 Future work

Hitherto, the analytical model has been developed to investigate the interaction between

the weak-axis Euler buckling and the local buckling of the flange plates. However, in

practice, weak-axis bending might be constrained, leading to a higher critical load; the

strong-axis buckling may be critical under such conditions. The analytical model can

be adapted to consider the interaction between the strong-axis global buckling and the

local buckling of the flanges, as shown in Figure 7.1(a) and (b). Note that the local

x

y

w

(a)

x

y

w

(b)

ww

w

y

x

ww

(c)

Figure 7.1: (a) and (b) show local buckling mode descriptions for major-axis global buck-
ling for pinned and fully rigid flange–web connections respectively; (c) shows a local
buckling mode description for minor-axis global buckling including the local buckling in
the web.

buckling in the bottom flange is restricted by the strong-axis bending. Further studies on
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the post-buckling load level within the section elements, when the local buckling mode

becomes periodic, such that the Maxwell load PM may be investigated, can be conducted

by considering the ‘body force’ as in Hunt and Wadee (1998). Another extension to the

current model is to include the effect of the local buckling in the web. Hitherto, the

section geometries are chosen such that the critical stress for the local buckling of the web

is much higher than that of the flanges. However, with increasing local web slenderness,

the effect of web buckling would obviously become more important. This can be achieved

by considering the moment continuity at the flange–web joint, hence relating the out-of-

plane displacement of web ww to the out-of-plane displacement of the flange wf , as shown

in Figure 7.1(c). Lipped sections are known to suffer from distortional buckling, with

proper modelling of the boundary conditions of the flange plates, the interaction between

the global and the distortional buckling mode may also be studied. Furthermore, the

interactive buckling behaviour in the plastic range of the material can also be studied.

Recall the Shanley model that was discussed in Chapter 2, after the strut has buckled

globally, the release of the compressive stress in the convex side of the strut follows a

different path in the stress–strain diagram, shown in Figure 2.4. This effect may apply to

a piecewise linear or nonlinear stress–strain relationship that can be modelled by extending

the current work.

As mentioned before, the current FE model finds difficulty in capturing the wavelength

change of the local buckling mode pattern in the post-buckling range. However in a recent

study (Brubak & Hellesland, 2011), the snap-back response is captured for a rectangular

plate with three edges simply supported and one edge free by both a semi-analytical and an

FE model, where the local buckling mode pattern develops from one half-wave to several

half-waves in the longitudinal direction. The result encourages future development of the

current FE model. Moreover, it has been found in the literature that Abaqus/Explicit,
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which solves equations of motion as opposed to static ones, is potentially capable of tracing

sharp snap-backs in the post-buckling response (Degenhardt et al., 2001). Therefore there

is potential that future work will focus on treating the problem as a dynamical system

within Abaqus such that snap-backs may be replicated more readily.
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Expressions for definite integrals

The full expressions of {f 2}x, {f ′′2}x, {ff ′′2}x, {f ′2}x, {f 4}x, {xf 2}x, {f ′2f 2}x and

{f ′f}x, defined in Chapter 5 were obtained in Maple, thus:

{f 2}x =
b

60π3

(
6π3s2

2 + 15s2
4π

3 + 10π3 − 15π3s2 + 240πs4 − 480πs2s4 + 960s2s4

)
, (A.1)

{f ′′2}x =
1

4b3

(
128s2

2 + s2
4π

4 + 64πs2s4

)
, (A.2)

{ff ′′2}x =
1

12πb

(
48πs2s4 − 24πs2 − 24πs4 + 16πs2

2 − 3s2
4π

3 − 192s2s4

)
, (A.3)

{f ′2}x =
1

12πb

(
−96πs2s4 + 24π + 32πs2

2 − 48πs2 + 48πs4 + 3s2
4π

3 + 192s2s4

)
, (A.4)
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{f 4}x =
b

15120π7
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1512π7 − 5040π7s2 + 6480π7s2

2 − 3780π7s3
2 + 840π7s4

2 + 2786918400s3
2s4

− 69672960s2s4π
2 + 358400s2s

3
4π

4 − 2903040s4π
3 + 45360s2

4π
5 + 7560s2

4π
7 + 2835s4

4π
7

+ 362880s4π
5 + 94080s3

4π
5 + 696729600πs2

2s4 − 1393459200πs3
2s4 − 1451520s2s4π

5

− 136080s2s
2
4π

5 + 90720s2
2s

2
4π

5 − 544320s2
2s

2
4π

3 + 34836480s2s4π
3 + 1814400s2

2s4π
5

− 87091200s2
2s4π

3 − 725760s3
2s4π

5 + 58060800s3
2s4π

3 − 188160s2s
3
4π

5 − 11340s2s
2
4π

7

+ 4536s2
2s

2
4π

7 + 544320s2s
2
4π

3

)
,

(A.5)

{xf 2}x = − b2

240π4

(
15π4 − 24π4s2 + 960π2s4 + 11520s2s4 + 15s2

4π
4 − 1440s2s4π

2

+ 10π4s2
2 + 60s2

4π
2 − 1920πs4

)
,

(A.6)

{f ′2f 2}x =
1

15120π5b

(
17280π5s4

2 + 10080π5 − 60480π5s3
2 − 45360π5s2 + 78624π5s2

2

+ 278691840s3
2s4 − 6773760s2s4π

2 + 116480s2s
3
4π

4 − 241920s4π
3 + 37800s2

4π
5

+ 1260s2
4π

7 + 945s4
4π

7 + 60480s4π
5 + 33600s3

4π
5 + 69672960πs2

2s4 − 139345920πs3
2s4

− 241920s2s4π
5 − 98280s2s

2
4π

5 + 65520s2
2s

2
4π

5 − 151200s2
2s

2
4π

3 + 3386880s2s4π
3

+ 302400s2
2s4π

5 − 8709120s2
2s4π

3 − 120960s3
2s4π

5 + 5806080s3
2s4π

3 − 67200s2s
3
4π

5

− 1890s2s
2
4π

7 + 756s2
2s

2
4π

7 + 151200s2s
2
4π

3

)
,

(A.7)

{f ′f}x = −1

2
(s2 − s4 − 1)2 . (A.8)

Note that the expressions for s2 and s4 can be found in Equation (5.3).
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