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Abstract—This paper presents a new approach in estimating X}, Px, Estimated mean and covariance of augmented
important parameters of power system transient stability model state, respectively,
such as inertia constantH and direct axis transient reactancez;,
in real time. It uses a variation of unscented Kalman filter (UKF)
on the phasor measurement unit (PMU) data. The accurate Y
estimation of these parameters is very important for assessing
the stability and tuning the adaptive protection system on power At Time step,
swing relays. The effectiveness of the method is demonstratedén
simulated data from 16-machine 68-bus system model. The paper
also presents the performance comparison between the UKF and
EKF method in estimating the parameters. The robustness of

Parameters vector,

Dimension of state vector,

method is further validated in the presence of noise that is likely X, X~ Sigma points and predicted sigma points of
to be in the PMU data in reality. state vector, respectively,

Index Terms—Power system dynamic model, parameters es- . . . .
timation, unscented Kalman filter, measurement-based, phasor 7 W Length .and associated weight of sigma points,
measurement units, synchrophasors respectively,

~

X, , Px, Weighted mean and covariance of predicted
NOMENCLATURE sigma points, respectively,

x(t), ¢, Continuous and discrete state variables,

) Y- Sigma points of predicted measurement,
respectively,

9., P, Weighted mean and covariance of sigma points

y(t), yr ~ Continuous and discrete output variables, of predicted measurement, respectivel,

respectively,

. : : . P, ross-correlation matrix

u(t), ur, Continuous and discrete input variables, = ®+¥x Cross-correlation matrix,
respectively, K, Kalman gain,

v(t), v, ~ Continuous and discrete process noise variables,

respectively, o, w, Rotor angle (rad), rotor speed (pu), synchronous

wo, WR speed (pu) and base speed (rad/s), respectively,

w(t), wr Continuous and discrete measurement noise

variables, respectively, P Mechanical power (pu),

Py, Qq Active power (pu) and reactive power (pu),

f(), h(.) State wupdate and measurement function, respectively,

respectively,

Vg, 04 \oltage magnitude (pu) and phase angle (rad),

Zy, P, Estimated mean and covariance of the state, .
respectively,

Q R Process and measurement noise covariance

: ‘Eq, 2l Generator internal voltage (pu), transient reac-
respectively,

H tance (pu) and inertia constant (s), respectively,

. .
zj, X Augmented state variables, Ve, P Pseudo input for voltage magnitude, and

active powerP,, respectively,
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ECHNICAL investigations of several recent power blackin Section IV. Section V compares the performance of the

outs revealed that inadequacy of control and mabroposed method with EKF and evaluates the performance of
operation of protection system led to widespread systeire proposed method in the presence of noise. In Section VI,
outage. A large majority of the existing control and pratatt the results obtained using proposed method is validated and
logics are engineered based on model-based simulatioestudompared with the actual parameters. Section VII concludes
over large number of operating scenarios. With the changar findings.
in generation capacity, load demand, network capacity and
configuration, the control and protection settings needeo b
recalculated and retuned. There is always some risk in model
based system design as in reality, the dynamic behaviourThe objective of dynamic model parameters estimation is to
of complex power network with hundreds of synchronougrovide an accurate representation of the dynamic behaviou
generators, thousands of loads and transformers can nevepbthe system for simulation studies. Conventionally, shor
very closely matched through model-based simulations. Thigcuit test on unloaded machine represented the standard
famous WECC blackout in 1996 corroborated this fact, wheraeasure of transient performance and various commonly ac-
measured response in the period just preceding the blackot#pted approximations formed the basis of model parameter
did not match with simulated results using the planning rhodéerivation. However, due to its limitation on providing gis
[1]. transient and sub-transient constant, several altematists,

Amongst many others, one important suggestion was auch as enhanced sudden short circuit test, stator decremen
adaptive protection, mainly correct operation of Zone 3 aréist and standstill frequency response test have beenggdpo
out-of-step relays [2]. The setting of out-of-step relay it obtain better representation of the dynamic model [4].
primarily dictated by three parameters: direct axis tramsi Although accurate, these approaches are not economically
reactancer’,, quadrature axis speed voltagg and generator feasible because the generator under investigation must be
inertia H [3]. While a largerz/, compromises the sensitivity offline.
and speed of the relay operation, a higli&rand H require Online methods have been proposed to address the pitfall
longer operation. It is clear that for accurate and secupé the staged test approach to identify the dynamic model
action of the out-of-step protection unit, these paranseteparameters. The approaches underlying these methods are
need to be precise. The generators manufacturers’ data dierse, e.g., trajectory sensitivity [5], extended Kamfiter
be representative. Moreover, increasing addition of powdrKF) [6], non-linear least square technique [7], Newton
electronics interfaced renewable generations at traissonis Raphson [8] and Euler [9]. Despite having advantages over
level influence the apparent impedance seen by the out-offline methods, these techniques have some limitations. Th
step relay during electromechanical oscillations. All sitne methods assume the availability of accurate rotor angle and
parametric uncertainties and variations demand reguldatep speed,; field voltage and current; terminal voltage and atjrre
of the relay setting to suit to prevalent operating situatih and active and reactive power measurements. In practice, it
is obvious that continuous estimation of, £, and H are is not always possible to have all these measurements time-
required to achieve this objective. stamped.

While the PMU technology provides high resolution time- PMU measurements driven model parameters estimation
synchronized measurements, it is necessary to have a fas$ been proposed in the literature. The PMU provides the
parameter estimation tool that is suitable to estimate tkata across the network with time synchronous stamping. The
parameters for adaptive protection and control applicatiomaximum likelihood estimation (MLE) is proposed to estimat
In practical operating environment, the PMU measuremeritee dynamic model parameters of the system in [10]. The
are influenced by transient, process and measurement naigethod requires a priori additional information of the stat
Existing literatures do not appear to address all thesectspevariable to estimate the parameters accurately. Otherteffo
comprehensively. This paper reports an algorithm which vistegrates hybrid dynamic simulation, trajectory sewiiti
believe addresses this issue well. Our algorithm is based arameter correlation analysis and minimum variancerasite
the moment-matching recursive estimation using augmented solve the estimation problem [11]. It is non-recursive
unscented Kalman filter (UKF). In order to demonstrate thend computationally exhaustive. Another approach, iateg
accuracy of the proposed technique, we have worked omdel estimation (IME), is reported in [12] and [13] to
data generated from 16-machine 68-bus test system moegiimate the parameters. The proposed method extrapolates
simulation. The UKF method is simple, accurate, fast argystem impedance and inertia using the inter-area osaiilat
robust in filtering out the effect of noise in the estimatedomponents in the voltage variables after disturbancedBss
parameters. being non-recursive, the complexity of the method increase

Section I, following this introduction, reports recentdan with the number of generators in the system.
ongoing research efforts in dynamic model parameter esti-Numbers of research groups exploit variants of EKF [14],
mation. Section Il elucidates the approach used to utilif&5]. The EKF works on the assumption that all non-linear
UKF for dynamic model parameters estimation using PMWansformations are quasi-linear. Hence, EKF simply liizes
measurements. Subsequently, the proposed approachiiscapglll non-linear transformations and substitutes Jacobiatrim
to measurement data simulated from 16-machine 68-bus syass for linear transformation. Although the EKF maintains
tem models. The results obtained are analysed and discusseclegant and computationally efficient recursive updiate,
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has some limitations. It works on linearization of non-ne time step ofAt, given by (2),
dynamic process which may produce highly unstable filters if
the assumption of local linearity is violated. The high com-
plexity and non-linearity of power system are susceptible t = fler—1,up—1,v51] (2a)
these problems. Furthermore, the calculations of the Jacob yr = hlzg, ug, vg] + wy (2b)
matrices are often very difficult. Also, the observability o , . ) ,

the parameters from the measurement points using EKF ard N€ Statéz; is considered as a random variables with an
limited. Method reported in [14] uses complementary infoStimated mearg, and an estimated covariande,,. The
mation from staged test in order to deal with the obser\it@tbiliprocess nois@y In (2), IS as.,sumed to be non-addlt.n./e, while
issue. lterative EKF approach proposed in [15] eliminatdg® measureme_nt noise;; is assumed to be additive. The
the requirement of stage-test complementary informatign Sovariance matrix for;, andw,, are denoted by) and R,
required in [14]. Besides being computationally expensivéespecnvely. Both are assumed to be constant. Assume that
iterative EKF-based prediction suffers from linearizatarror. (2) 1S parameterised by the unknown vectpr. The state
The robustness and accuracy associated with EKF drivh @nd the set of model parametefs need to be estimated
methods in [14] and [15] are not thoroughly investigatedeThmmultaneously. If¢ is also _treated as a state, then it may
presence of noise in measured signal influences the acaorac® augmented ngthg give an augmented state vector
the dynamic model parameter estimation technique. Thexefo®% € i = [z .4, ] . The state-space model in (2) is

it is important to guarantee that the dynamic model paramef§formulated as:

estimation technique is robust in the presence of measunteme x¢ = flad |, up_1, V1] (3a)
noise in the signals.

In this paper, the dynamic model parameters of synchronous
generators are estimated by processing the PMU measuréJsing the same approach in (3), the process nojsenay
ments using unscented Kalman filter (UKF); a momen@lso be concatenated withy, resulting higher-dimensional
matching filter that is significantly better than EKF. Thétate random variableX . = [zf ", v "]" with an estimated
UKF is developed to address the issues in EKF. It calculaté¥an X; and covariancePy,. Hence, the state random
the statistics of random variables that undergo a nonlineétiable is redefined as the augmentation of the origina sta
transformation. This method works on the assumption that, the set of unknown model parametg), and the process
it is easier to approximate a probability distribution than it noisew;, given in (4);
is to approximate an arbitrary nonlinear function or trans- . o
formations [16]. The UKF has earlier been used in power X, = [ Ty, ] = | v 4)
system for dynamic state estimation [17], [18] and pararsete Uk
estimation using operational data [19]. It has potentiab¢o o .
reformulated to solve dynamic parameters estimation prosl [N @ similar manner, the corresponding augmented state
[20]. However, the method proposed in this paper emploggvariance is built up from the individual covariance ns

better sigma point distribution and filtering approach canepl Of @&, %« andwv; given in (5):

Ty = Tp—1 + flTr_1,up_1,v5_1) At

yr = hlzf, ug, vi] + wy (3b)

Uk

to [20], which reflects in a better accuracy of the parameter e P,, 0 0
timated and consumes less computing power. The UKF offers Py, = 0 Qy, O (5)
flexibility to allow information beyond mean and covariance 0 0 Qu,

to be incorporated in the estimations [21]. Hence, the UKF
is able to estimate accurate dynamic model parameters eve
with the presence of noise in the measured data. Moreover, Xy = FIXp—1,up—1] (6a)
the UKF is co_mpletely data_t drl\{en fand recursive thus offerin i = B[ X, w] + wy (6b)
real opportunity of fast estimation in real time.

Flence, the state-space model in (3) is rewritten as follows,

Consequently, given that the system differential equation

(DEs), the measured signals from PMU and all noise co-
variances are available, the unknown parameter vegiors

I1l. DYNAMIC MODEL PARAMETER ESTIMATION USING  estimated using recursive algorithm by finding the reaktim

UKF estimates of the mean and covariance of the augmented state

Xk.

Generally, power system dynamics is represented using a

set of continuous-time nonlinear equation, given in (1). A Unscented Kalman Filter (UKF)

z(t) = flz(t), u(t),v(t)] (1a) The idea of UKF is the propagation of the statistical
y(t) = hlz(t), u(t), v(t)] + w(t) (1b) distribution of state through the non-linear equationsisTh
is realised by obtaining a set of vectors called sigma ppints
where thex(t) vector represents the state variables,gfg  which capture the mean and covariance of the s’tdistri-
vector represents the output variables, ar(d) is the input bution. A set of sigma points, denoted g, are selected in
variables. Equations (1) are rewritten in discrete formhvdt such a way that the mean and covariance of these points are



X and Px. Consequently, these points are transformed ingoe calculated using (12):
a set of transformed points by applying into a non-linear
function. This process is described as follows: ka _ Z Wi(X;k) (12a)

Vi =h(X;) (7)

N T
X X — X, 12b
Next, the meang and covarianceP, of the transformed ZW ( e ) ( ok k) (125)
points are calculated. The megnis the weighted average of , .
the transformed points while the covariarBgis the weighted _Subseduently, the predicted sigma poiifsare instantiated
outer product of the transformed points. Fonumbers of through the measurement equation to generate the predicted

sigma pointsg and P, are calculated as follows: measurement sigma poinftg; as follows:

Y. =h (X, u) (13)
- ZVV?% (8a) Consequently, the weighted mean of the predicted mea-
N surementy, , the corresponding covariance matd#, and
P, = Zm Vi —§) (Vi — g)T (8b) the cross-correlation matri¥,, , are computed as shown

in (14). The matrix P, ~represents the cross-correlation
between the difference of the predicted-state sigma points
To provide an unbiased estimate, the weid#it used to X, With the corresponding predicted-staf€,”, and the
calculateg and P, must be set such that: difference of predicted-measurement sigma pofnfs with
the corresponding predicted-measuremgnt

l
> wi=1 9) N B
= 9, = Z Wi(7;) (14a)
In this paper, for. number of state, a set é¢f= 2L + 1 T
points is used to distribute the sigma points. The followgeg P, = Z Wi (72} ) ('Yf,k - Q;) + R (14b)
of points satisfied the condition described above:
N T
Xo =X . (10a) P, Z Wi (x;k ) (’7; r— Ur ) (14c)
Wo=1- (10b) . o .
3 Finally, 'Ehe Kalman gain matrix;, is calculated to find
X; =X + [ = Px | (10c) the meanX, and covariance matriPy, as given in (15):
wi == (100) Ko = Py (Py)! (152)
. - X=X, + K (ye — 95 (15b)
Xiow =X~ [\/ihn Px| (10e) Py, = Px, - K,.P, K[ (15¢)
1-Wy
Wi, = 10 . .
+k 2L (100) B. Implementation of UKF for dynamic model parameters

estimation

The s_e_t of sigma p_omts de_scnbed in (10) able_to_explon Power system first swing dynamics is represented as fol-
any additional known information about the error distribot lows:
associated with an estimate and maintain the m&arand '
covariancePx . This set of sigma points provides approxima- ds(t) = (w(t) — wo) ws (16a)
tions accurate to a third order of Gaussian probability dgns dt
funct!ons, rega_rdless of the fqrms of non-Imear_ transhmm_ dw(t) _ b (P — Py(t) — D (w(t) —wp)) (16b)
function used in the estimation [21]. The weight associated dt 2H
with the new sigma pointW, provides a parameter for con- whered(t), w(t), wg andw, are rotor angle, rotor speed,
trolling some aspect of the higher moments of the distrdsuti synchronous speed and base speed, respectively. Neglectin
of sigma points without affecting the mean of the covariancthe damping coefficienD, the discrete form of (16) is given
In this paper, the value dV, is set such that the fourth orderby:
error for a Gaussian is minimized [21]. Consequently, each

sigma points is passed through the model of state evolution t Ok = O0p-1+ (W’Ztl — wo) ws Al (17a)
obtain the predicted-state sigma points given as: = W = (p. -
p g p g Wi = Wk—1 + 2H, . (Pm ng_1>
X = F (Xp1, U 11
k  Xi—1,u-1) (11) I A (Pm _ng_l) (17b)

Subsequently, the weighted mean and covariance of the preSince At and Hk are constantywy, is simplified by substi-
dicted sigma point¥," defined asX;~ and Py, , respectively, tuting the term W|th G, to reduce the nonlinearity of the



equation. Consequently, the state vector of the systemmgive
in (17) is defined ag;, = [0k wk]T and is parameterized by NETS
inertia constantd, transient impedance/, and generator in-
ternal voltageE,,. These parameters and variable are unknown
and represented by the vecton = [E, ka

As described in (3), the state, and the unknown param-
eter vectoryy, are simultaneously estimated by augmenting
these two vectors into a higher-dimensional state varsable
xf = [0 wr B al Gk]T. Hence, to accommodate
this change, the state evolution equation in (17) is refdated

as:

Ok = Ok—1 + (Wr—1 — wo) ws At (18a)

Wi = wi_1+ Gr_1 (Pm — ng71> (18b)
E, = F 18c

,q’“ B (18¢c) Fig. 1. 16-machine 68-bus test system model
v, =, (18d)

G = Gr-1 (18e)

o _ same level of accuracy as the propagated estimation errors
In (18), the mechanical input powdt,, is assumed to be without the needs to calculate the Jacobian, Hessian or othe
known. It is approximated to the electrical power measureflimerical approximation [16]. Therefore, the UKF alganith

at the generator terminal bus prior to a disturbance in thg described in the preceding subsection will be directly
system. The dynamic behaviour of one generator unit can &gplied to estimateX,.

analysed independently from the dynamic behaviour of the re
of the network. This is realised by separating the signals at
the terminal bus into two groups: inputs and measurements. |
is assumed that PMU provides time-tagged voltage magnituderhe 16-machine 68-bus system model is considered as the
Vg, phasor angld,, active powerP; and reactive powe€), test system. The bus data, line data and dynamic charaicteris
measurements at the generator terminal bus to monitor #¥ethe systems are available in [22]. Fig. 1 shows the single
dynamic behaviour of the generators. Heriggand I, at the ine diagram of the system. Nonlinear simulations of the
terminal bus are treated as the input signal, whijleand @,  test system model are performed in MATLAB Simulink. The
are treated as the measurement to decouple one generationgychronous generators in the test system are modelled as
from the rest of the system. The equations for the measutemgRssical models. The mechanical power input to the genisrat

IV. APPLICATION, RESULTS AND ANALYSIS

quantities,f; and @, of a generation unit are: is assumed to be constant. The disturbance consideredigor th
) study is a three-phase bolted fault at bus 21. The fault is
0y, = Ok — tan—L < P.qk.z,mdk 2) (19a) applied att = —0.9s and cleared by removing line 21-22 after
V(EaVer) =(Poraiy) 100 ms. The proposed method is applied on the measured data
\/(Eqkvgk)Z,(pgk%k)thkz 800 ms following the clearance of the fault to avoid transien
Qgy, = <, (19b)  error of the PMU estimation during the transition periodnfro

L . re-fault to post-fault condition [2]. For parameter esttian,
In the presence of noise in the measured signals, deal : . :
: . proposed method is applied to the voltage magniljge
with V,; and P, may cause a problem to the UKF algorithm, . .
. Voltage phase anglé,, active powerF,, and reactive power
Hence, the actual values &, and P, have to be redefined ; .
. . . L . ¢ Signals from 16 machines.
to include the effect of noises in the estimation algorithm: L . .
: The main aim of the proposed methodology is to provide a
Consequently, the actual inputg,(and ;) are equal to the arameter estimation tool for adaptive protection and robnt
differences of their measured valueg ( and ;') and the b b P

associated noises/{’ and P). The associated noises” application, mainly for adaptive out-of-step protectidimere-

and P;” also drive the system modelled in the UKF algorithmf.ore’ the scope is focused on the dynamic in power swing time

They ‘are modelled as in [17] and given below. scal_e (0.5 t_o 0.8 Hz) [23]. In this time scale, the spged .gel_ta
E, is relatively constant because of large field circuit time

Vor =Vs' = Vo' (20a) constant (constant flux linkage situation). Transient ta@ce
P, =P — P (20Db) x/, and inertia constar®? will not be affected by the inclusion
9k 9k

of sophisticated electromagnetic dynamics model. Thesefo
Hence, V', and P}, formed a pseudo input vectat, a classical model (speed voltage behind a transient reztan
while Ve and P, formed a pseudo process noise vectas adequate for the purpose of this investigation. The @hoic
vi. As derived in (4), the process noisg is concatenated of sampling frequency is important. In this paper, 120 Hz was
with the state vector and the unknown parametggsvector used as recommended for 60 Hz system in the recent IEEE
to form an augmented staf€;.. This formulation incorporates Standard for Synchrophasor Measurements for Power System
the process noises;, into the predicted state vector with theC37.118.1-2011 [24].



Fig. 2 illustrates the signals measured from Generator #4

terminal bus. Fig. 2a-2d display the measured dat¥,0%,, 15
P,, and Q,, respectively. All other generators are measure:
but not shown because of the lack of space. As described Z o9
Section Il, V, and P, are used as the input, whilg, and =
@, are used as the measurements for the UKF. The propos
method is applied to the whole set of measured data ar g7
the parameters are estimated. The initial parameters fdf Uk~ timg ©) time (s)
algorithm used in this paper are described as follows: (@) (b)

10

(pu
6 (rad)

0.8 5

Xo=[zo Yo wo]' 1 08
:[(50 wo qu l‘ldo HQ 0 O]T

0.8 0.6

T T
- [5 1.0 1.0 0.5 5.0 0 o} (21a) & _

P,, = diag{[1 1]} (21b) 0a | | 0.2

Q’ll’o = dzag{[l 1 ”} (210) -1 0 1 2 3 4 5 (—Jl 0 1 2 3 4 5

Qu, = diag {[1x 107" 1x107%]} (21d) time (s) time (s)

) c d
Px, = diag{[Pa, Qu, Qu,)} (2le) _ © @
. 4 _3 Fig. 2. Generator #4 measured data for 16-machine 68-bustsystelel
R = diag {[1 x107* 1x107°]} (21f)

0.4

(pu)
Q, (pu)

p

The values of initial parameters influence the convergence
rate of the proposed method. The closer the value of irgtalli 16 ™ ! e
parameters with the actual value of the parameters, therfas 14 == -Est 08 == -Est
is the convergence of the proposed method in estimating ttg Laf! 06
dynamic model parameters of the system. However, the woiw® | =~ * galse
presented in this paper assumes that the initial paramaters L 02 —Sessmss oo
unknown. Therefore, the proposed method is initialisedhatt  os TS a—a— ' T e—a—
same value to provide an unbiased assumption in estimatil time (s) time (s)
the dynamic models parameters using UKF. The initial values (a) (b)
for the covariance matrix oP,, andQ.,, are not important.
It will be updated throughout the UKF iteration process and 10 —
its value will become zero if the algorithm converged. On 8 - - -Est
the hand, the values of),, and R represent the process
and measurement noise covariance matrix and their valees ar
assumed to be known. Fig. 3 shows the results of the dynamic g
model parameters estimation for the 16-machine 68-bus test
system model. o ! ﬁme (5 40
Fig. 3a, 3b and 3c display the convergencefif =’ and (©)
H, respectively. The dashed line indicates the convergengg 3. Genarator #4 parameters estimation for 16-machineuggsstem
of estimated parameters obtained using the proposed methoaliel
while the solid line represents the actual parameters of the
test system. In this application, the parameters are asbktone

4 (PU)

6

H (sec)

,~_~

A

2

be unknown. The initial parameters were set arbitrarilyl. Al —
the results in the figure converged to their actual valdgis o Y 102 '
initialised arbitrarily at 1.0 per unit. After first iterai, £, 5 10 Eio /
increased before it became constant at 1.1250 per unit afl s 3

1.0 s. On the other hand, the initial value «gf; is set to 0.5 5 1\N
per unit arbitrary. After 1.0 s/, is converged to 0.3868 per 0

. P . 0 1 2 3 4 5 0 1 2 3 4 5
unit. Similar observation can be made fér, where the value time (s) time (s)

is initially set at 5.0 s and consequently converged at 4162 @) ()
s after 1.0's. Fig. 4. Generator #4 state estimation for 16-machine 68-bsteisymodel
Fig. 4 shows the estimation of rotor angle and speedg
of Generator #4. The dashed line indicates the estimated
state, while the solid line represents the simulated ste. rameters estimation for 16-machine 68-bus test system Imode
estimated rotor angle and speed match very well with thg,, 2/, and H for all machines were initialised to 1.0 pu, 0.5
simulated rotor angle and speed of the machine. pu and 5.0 s, respectively. From the table it can be observed
Table | summarises the results of the dynamic model pérat the estimated parameters are very close to the actual



TABLE | A. Parameter estimation using EKF
COMPARISON WITH ACTUAL VALUE FOR 16-MACHINE 68-BUS SYSTEM The details of the EKF method for dynamic model pa-

i [ Bt [ Bt [ 2 ] a T [ Haet [ Hest rameter estimation are reported in [14], [15] and is briefly

1 | 1.1867| 1.1871| 0.2480| 0.2485| 3.4000| 3.4030 discussed here to extend the discussion of the idea presente

2 | 1.1176] 1.1194| 0.4253| 0.4296 | 4.9494| 4.9540 in this paper. The EKF is formulated as a two-step predietion

3 | 1.1232| 1.1250 | 0.3831] 0.3868| 4.9623| 4.9673 correction process. The prediction step is a time updategusi

2 | 1.0629] 1.0660| 0.2995| 0.3081| 4.1629| 41627 the discretized differential equations as follows:

5 | 1.1227] 1.1224| 0.3600| 0.3595| 4.7667 | 4.7769 S = St + (W1 — wo) ws At (22a)

6 | 1.1611| 1.1607| 0.3543| 0.3534| 4.9107 | 4.9303 At

7 | 1.1145] 1.1144 0.2990| 0.2987| 4.3267 | 4.3434 szwkl+w|:Pm_

8 | 1.0489| 1.0485| 0.3538| 0.3519| 3.9150 | 3.9221 BV

9 | 1.0932| 1.0930| 0.4872| 0.4867| 4.0365 | 4.0427 —AEoL 9t gin (5k1_99k1)] (22b)

10 | 1.0307| 1.0305| 0.4868| 0.4846| 2.9106| 2.9133 Ty

11| 1.0093| 1.0093| 0.2531| 0.2536 | 2.0053 | 2.0068 Eq = Eq._, (22¢)

12 | 1.1527| 1.1523| 0.5525| 0.5515| 5.1791| 5.1827 Ty, =y (22d)

13| 1.0398| 1.0405| 0.3345| 0.3454| 4.0782| 4.0786 Hy, = Hy_; (22€)

14 | 1.0030| 1.0029 | 0.2850| 0.2837| 3.0000| 3.0004 ) ) ) ) _ ) _

15 [ 10023 | L0022 | 0.2850| 0.2781| 3.0000| 2.997a The discretized dlﬁerentlgl equations in (22_) predict th(_a

16 10233 102311 0.3590  03572] 4.4500 | 2.4460 state a_nd measurement variables of the next time step ysmg
the estimated values of the state and measurement variables

of the previous time stepE,, x/, and H are the unknown
) _ parameters that need to be estimated. Apart from the state

value of the dynamic model parameters for all machinegyyiaples, the process also estimates priori error cavegia
The maximum percentage errors in estimation /it «; and  atrix corresponding to the state variables. Consequently

H are 0.29%, 3.26% and 0.21%, respectively. This indicatgg, estimated measurement is calculated using the foltpwin
that the results obtained using dynamic model parametes,ations:

estimation technique proposed in this paper are accurate an

consistent for all machines in a large interconnected power Py, = Msm (5k_1 —0,, 1) (23a)
system context. Zy,_, -
The proposed method is able to estimate the dynamic V.2 + By Vy, cos (8 — 0y,.)

model parameters of the systems without prior knowledge Qg = 7 (23Db)

of system model. The UKF method requires a time window . . .
Next step involves the calculation of the Kalman gain,

of 1.0 s to estimate the parameters accurately. Therefor%,, o s th tth timated stat iablesd
the method requires 120 iterations to precisely estimate g1ich corrects the error ot Ine estimated state variables®a
the discrepancy between the estimated and the actual

parameters using the measured data sampled at every 833 ) . .
ms. The speed of computation of UKF method recorded mea_su_rement. Th_e following set of equations summarized the
MATLAB Simulink environment is 281.2us per iteration. prediction-correction process of EKF.
Hence, considering the time windows required for estinmatio diction:
and the computation time of UKF, it only requires 1.0337 s fd:‘r)re iction:
the proposed method to precisely estimBjez/, andH at real x; = f(xp_1,u5_1,0) (24a)
time. Typically, a power swing oscillates with the frequgnc - T T

. ) . . P =A.P.,_ 1A WiQi_1W, 24b
of 0.5-0.8 Hz [23], which gives a time windows of 1.25-2.0 k B A+ WiQi— Wi (24D)
s to analyse the oscillation as it develops. Thus, the spéedGmrrection:
estimation using the proposed method is sufficiently fast fo

-1
— T - T T
adaptive out-of-step protection application which focuealy Ky = P, Hy, (Hkpk Hy' + ViR, V; ) (24c)

on the first few swings of the system. x, = x;, + Ky, [y — h(z),,up—1,0)] (24d)
Pk = (I — Kka) Pk‘_ (246)
where,

V. COMPARISON AND PERFORMANCE ROBUSTNESS

_of (Tr—1,Uk—1,0) Of (Trp—1,ur—1,0)

) W = )
In this section, the accuracy of the dynamic model param- g oz g ow
eters estimated using the proposed method is compared withyy, _ oh (a:k,17uk,1,0)7 Vi = Oh ()1, ur1,0)
the results obtained using the EKF approach [14], [15]. The oz ow

performance of the proposed method and the EKF methodUsing this process, the unknown parameteys z/, and H,

is also evaluated in the presence of noise in the measuetdng with other state variables will be updated at everyetim
signals. Using identical operating condition, the 16-niaeh step. If the EKF process convergef,, z/, and H estimation
68-bus test system model is used for this evaluation. will approach their actual values.
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Fig. 6. Generator #4 measured data with noise for 16-machifi§8ystem

Fig. 5. The comparison of UKF and EKF estimation for Generatbr # model

B. Comparison dynamic model parameters of the system.

In order to evaluate the performance of the proposed
method, the dynamic model parameters estimated using fhePerformance robustness
proposed method is compared with the results obtained using) Performance under noise: It is well known that the
EKF. For this evaluation, 16-machine 68-bus test systemainogiresence of noise in the data influences the quality of any
is used to simulate the measurement 16f, 6,, P, and measurement-based method. This subsection evaluates the
Q, for every generator sampled at 120 Hz. The disturbanperformance of the proposed technique in the presence & noi
considered for this evaluation is similar to the disturleandn the measured signals. For this evaluation, the measwated d
considered in Section IV. Using identical initializatiofithe illustrates in Fig. 2 is added with white Gaussian noise and
parameters, the estimation 8%, =/, and H, for Generator #4 the proposed technique is applied on this data to estimgte
obtained using UKF and EKF is illustrated in Fig. 5. x/, and H of the generator. The presence of noise affects the

The results in Fig. 5 show thak,, 2/, and H estimated quality of the PMU measurements. It is assessed by the Total
using UKF and EKF converged to its actual value of 1.0 piyector Error (TVE) of the PMU measurements described as
0.5 pu and 5.0 s, respectively. This implies that both UKfollows:
and EKF are able to estimate the dynamic model parameters \/

]2

~ 2 ~

in the system. However, it is observed from the results thatTVE (n) = 100 x [XT(”)_X"(")L i [X'i(");xi(")
the proposed method shows better performance in estimating [Xrm)]” + [Xi(m)]
the parameters, especially for the estimation:pf The EKF As recommended in [24], the TVE of PMU measurement
requires about 3.5 s while the proposed method only requirgisould be less than 1%. However, in order to validate the
about 1.0 s to converge to its actual value aff. This is robustness of the proposed method in filtering out the effect
because the proposed method has a better approximatiorofofioise, TVE less than 3% is used in this analysis. The plots
nonlinear process in each iteration compared to the EK the data are given in Fig. 6a-6d repres&pt 6,, P,, and
approach. Qg for Generator #4. Fig. 7 displays the result obtained from

It is also necessary to compare the computational spebe application of the UKF method using the measured signals
of UKF and EKF, formulated to estimate the dynamic modetith noise.
parameters. The computational speed of EKF is 49&.@er The estimation ofE,, 2’4 and H using the measured
iteration while the computational speed of UKF is 28L.2 data with noise are illustrated in Fig. 7a-7c. The greensline
per iteration to estimatéZ,, «/, and H. The difference in represent the 99% confidence interval of the estimated pa-
computational speed of EKF and UKF is related to the comameters. The results clearly show that the UKF method has
putational load at each iteration for both methods. The EKd fast convergence rate even with the presence of noise in
algorithm requires to update the Jacobian matrix at eveny sthe measured data. All parameters converged to the actual
of computation to estimat&,, z/, and H. On the other hand, value in about 1.0 sE,, 2’4 and H converged to 1.0627 pu,
the UKF method does not need the calculation of the Jacobia2998 pu and 4.2278 s, respectively. It is also observed tha
matrix. This finding is consistent with the discussion répdr the actual values of the parameters lie between the upper and
in [25]. This implies that the EKF consumes more computinigwer bounds for the 99% confidence interval of the estimated
power compared to the proposed method in estimating tharameters.

(25)
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Fig. 7. Generator #4 parameters estimation for 16-machineu6&ystem in Fig. 8. The comparison of UKF and EKF estimation in the preseficmise
the present of noise in measured data.

TABLE I
COMPARISON WITH ACTUAL VALUE FOR 16-MACHINE 68-BUS SYSTEM
MODEL (MEASURED DATA WITH NOISE)

i B, | B xl/iact wl/iest Fact Hest
1 | 1.1867| 1.1803| 0.2480| 0.2354 | 3.4000 | 3.5498
2 | 1.1176| 1.1207| 0.4253| 0.4335| 4.9494| 5.0670
3 | 1.1232| 1.1158| 0.3831| 0.3668| 4.9623| 5.0914
4 | 1.0629| 1.0627 | 0.2995| 0.2998 | 4.1629 | 4.2278
5 | 1.1227| 1.1234| 0.3600| 0.3558| 4.7667 | 4.6444
6 | 1.1611| 1.1669| 0.3543| 0.3714| 4.9107 | 4.7569
7 | 1.1145| 1.1117| 0.2990| 0.2997 | 4.3267 | 4.3902
8 | 1.0489| 1.0529| 0.3538| 0.3659| 3.9150| 3.7245
9 | 1.0932| 1.0858| 0.4872| 0.4633| 4.0365| 4.2310
10 | 1.0307| 1.0345| 0.4868| 0.5073| 2.9106| 3.0081
11| 1.0093| 1.0091| 0.2531| 0.2556| 2.0053| 2.0931
12| 1.1527| 1.1485| 0.5525| 0.5456| 5.1791| 5.1894
13| 1.0398| 1.0430| 0.3345| 0.3618 | 4.0782| 4.0552
14 | 1.0030| 1.0034| 0.2850| 0.3025| 3.0000 | 2.9742
15| 1.0023| 1.0024 | 0.2850| 0.3056| 3.0000| 3.0075
16 | 1.0233| 1.0218| 0.3590| 0.3559| 4.4500 | 4.5790

for Generator #4

The convergence of,, z’; and H using both methods are
plot in Fig. 8a-8c, respectively.

The results displayed in Fig. 8 show that both methods are
able to estimatef, accurately using the measured signals
with noise. The EKF method requires about 5.0 s while
the proposed method only requires about 0.2 s to estimate
E, accurately. The estimation of/, and H using EKF
approach shows that the presence of noise in the measured
data influences the accuracy of the dynamic model parameter
estimation technique. The EKF method shows limitation in
estimatingz/, and H using the measured signals with noise.
However, the proposed method is able to estimgfeand
H even with the presence of noise in the measured data.
This may be due to the fact that the approach proposed
in this paper accurately approximate the posterior mean and
covariance up to the third order of the Taylor series exmamsi
for any non-linear system while the EKF method only achieved
first-order accuracy [21]. The results imply that the pragubs
method outperforms EKF in estimating the dynamic model
parameter in the system, particularly in the presence afenoi
in the measured data. These attributes are important for any
data-driven estimation tools as the presence of the noise in

The proposed algorithm is applied to all machines in the testeasured data is inevitable.
system model and the results are shown in Table Il. In Table3) Performance in coloured noise: Coloured noise covers
I, the results obtained using the UKF method is validateal wide range of intensities and bandwidths for a variety of
by comparing the estimated results with the actual value fddw fluctuation during power system operation [26]. Since
the dynamic model parameters. As depicted in the table, tihemay be present in the measured data, hence influencing
estimated value of£,, =’y and H are very close with the the accuracy of any data-driven method, it is necessary to
actual value of the dynamic model parameters, even with thesess the operation of the proposed method in the presence
presence of noise in the measured signals.

2) Comparison with EKF under noise: Both UKF and EKF used for this evaluation is generated by filtering the white
require measured signal from PMU to estimdig, =’; and Gaussian noise used to produce signals in Fig. 6 through a
H of the system. It is worthwhile to assess the performantmv pass finite impulse response (FIR) filter of order 31 with
of UKF and EKF in the presence of noise in the measuresbrmalized cut-off frequency of 0.5 [27]. The measured aign
signals. In this investigation, the UKF and EKF are applieitlustrated in Fig. 2 are added with the coloured noise and
to the measured signals with TVE of 3% illustrated in Fig. Ghe UKF method is applied to estimate the dynamic model

of coloured noise in the measured signals. The colourecnois
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Fig. 9. The comparison of UKF estimation in the presence of avhitise
and coloured noise for Generator #4

parameters of the system. Fig. 9 depicts the UKF estimation
trace of E,, z/, and H in the presence of coloured noise in

the measured data. For the purpose of comparison, the UKF 1 2 3 7 e 5
estimation in the presence of white noise is also plottedhén t time ()
same figure. (b)

From the figure, it is observed that the UKF estimation

of E,, «, and H in the presence of white and coloured 083

noise demonstrate good convergence to the actual value of 0.82f
parameters. The performance of the proposed method in the 081}
presence of coloured noise is similar to that of the proposed o8t
method in the presence of white Gaussian noise. Therefore, 3 07oh
this implies that the proposed method is able to estintgte 0

z/, and H of the system in the presence of coloured noise in 0.78
the measured data. This is an important feature for any data- 077
driven method as the fluctuation of power flows is inevitable 0.76 bt

during power system operation. 075

time (s)
VI. MODEL VALIDATION (c)

An accurate dynamic model should be able to replicakég. 10. Generator #4 model validation a) case 1 b) case 2 €)%as
the system dynamic behaviour for any type of disturbance.
The results obtained in Table | and Il are substituted into ) ) )
the 16-machine 68-bus test system model. Three cases iR (St system model using the parameters estimated in the
different types of disturbances were considered in thigiystu Présence of noise in measured data. The small difference

The disturbances considered in this analysis are as followg’&tween the response of the test system models for all cases
. : indicate that the results obtained using UKF are able to
Case 1 - Fault at bus 61, line 61-30 is removed to cl

the fault after 50 ms e’F"épresent the dynamic response of the system, even with th.e
Case 2 - Fault at bus 67 Ii;‘1e 67-68 is removed to Cle%esence of noise in Fhe measured_ data. Thus, the dynam_lc
the fault after 100’ms odel paramet_ers estimation tec'hnlque'proposed in paper is
! . accurate, consistent and robust in filtering out the effdct o
Case 3 - Fault at bus 46, line 38-46 is removed to Cle%ise in the measured signals
the fault after 100 ms. '

Fig. 10 displays the response of the systems with this study.
For all cases, the blue line indicates the response from the
test system model using the actual parameters, the red lindh measurement-based dynamic model parameter estimation
represent the response from the test system model using fihvepower system has been proposed. The approach is based on
actual values, and the green line represent the response fthe application of augmented UKF based technique to estimat

VIlI. CONCLUSIONS
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the dynamic model parameters from wide-area voltage magnB] A. Chakraborttyet al., “A Measurement-Based Framework for Dynamic
tude, voltage angle, real power and reactive power sighaks.

dynamic model parameters are estimated by augmenting fﬂﬁ
unknown states (rotor angle and speed) and parametersginer

constant, transient reactance and internal voltage) isiogle

higher-dimensional state vector. Subsequently, the djmar{llsl
model parameters are estimated by using the proposed UKF

on the augmented state vector.

The accuracy of the estimation is validated by comparing the
estimated results with the actual dynamic model paramet¢rg
of the system. The presence of noise always affects the
performance of any data driven method. Nevertheless, the Uﬁg]
method accurately estimates the dynamic model parameters
even with the presence of noise in the measured data. The
results demonstrate that the proposed method outperforﬁg,?
EKF in estimating the dynamic model parameter in the system,
particularly in the presence of noise in the measured dédta. T
method is simple, fast and does not require a priori detdils %O]

the system information. Finally, estimating the value oé th

dynamic mode parameters in real time is essential to ensi#d
appropriate operation of power system protection. Thid wiby
be pursued as immediate future activity by adapting theyrela

characteristic to suit the current system operating camit
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