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Abstract—This paper presents a new approach in estimating
important parameters of power system transient stability model
such as inertia constantH and direct axis transient reactancex′

d

in real time. It uses a variation of unscented Kalman filter (UKF)
on the phasor measurement unit (PMU) data. The accurate
estimation of these parameters is very important for assessing
the stability and tuning the adaptive protection system on power
swing relays. The effectiveness of the method is demonstrated ina
simulated data from 16-machine 68-bus system model. The paper
also presents the performance comparison between the UKF and
EKF method in estimating the parameters. The robustness of
method is further validated in the presence of noise that is likely
to be in the PMU data in reality.

Index Terms—Power system dynamic model, parameters es-
timation, unscented Kalman filter, measurement-based, phasor
measurement units, synchrophasors

NOMENCLATURE

x(t), xk Continuous and discrete state variables,
respectively,

y(t), yk Continuous and discrete output variables,
respectively,

u(t), uk Continuous and discrete input variables,
respectively,

v(t), vk Continuous and discrete process noise variables,
respectively,

w(t), wk Continuous and discrete measurement noise
variables, respectively,

f(.), h(.) State update and measurement function,
respectively,

x̂k, Pxk
Estimated mean and covariance of the state,

Q, R Process and measurement noise covariance,
respectively,

xa
k, Xk Augmented state variables,
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X̂k, PXk
Estimated mean and covariance of augmented
state, respectively,

ψ Parameters vector,

△t Time step,

L Dimension of state vector,

χ, χ− Sigma points and predicted sigma points of
state vector, respectively,

n, W Length and associated weight of sigma points,
respectively,

X̂−

k , P−

Xk
Weighted mean and covariance of predicted
sigma points, respectively,

γ− Sigma points of predicted measurement,

ŷ−k , P−
yk

Weighted mean and covariance of sigma points
of predicted measurement, respectively,

P−
xkyk

Cross-correlation matrix,

Kk Kalman gain,

δ, ω,

ω0, ωB

Rotor angle (rad), rotor speed (pu), synchronous
speed (pu) and base speed (rad/s), respectively,

Pm Mechanical power (pu),

Pg, Qg Active power (pu) and reactive power (pu),
respectively,

Vg, θg Voltage magnitude (pu) and phase angle (rad),
respectively,

Eq, x
′

d,

H

Generator internal voltage (pu), transient reac-
tance (pu) and inertia constant (s), respectively,

V u
g , Pu

g Pseudo input for voltage magnitudeVg and
active powerPg, respectively,

V w
g , Pw

g Pseudo process noise for voltage magnitudeVg
and active powerPg, respectively.

I. I NTRODUCTION
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T ECHNICAL investigations of several recent power black-
outs revealed that inadequacy of control and mal-

operation of protection system led to widespread system
outage. A large majority of the existing control and protection
logics are engineered based on model-based simulation studies
over large number of operating scenarios. With the change
in generation capacity, load demand, network capacity and
configuration, the control and protection settings need to be
recalculated and retuned. There is always some risk in model-
based system design as in reality, the dynamic behaviour
of complex power network with hundreds of synchronous
generators, thousands of loads and transformers can never be
very closely matched through model-based simulations. The
famous WECC blackout in 1996 corroborated this fact, where
measured response in the period just preceding the blackouts
did not match with simulated results using the planning model
[1].

Amongst many others, one important suggestion was an
adaptive protection, mainly correct operation of Zone 3 and
out-of-step relays [2]. The setting of out-of-step relay is
primarily dictated by three parameters: direct axis transient
reactancex′d, quadrature axis speed voltageEq and generator
inertiaH [3]. While a largerx′d compromises the sensitivity
and speed of the relay operation, a higherEq andH require
longer operation. It is clear that for accurate and secure
action of the out-of-step protection unit, these parameters
need to be precise. The generators manufacturers’ data can
be representative. Moreover, increasing addition of power
electronics interfaced renewable generations at transmission
level influence the apparent impedance seen by the out-of-
step relay during electromechanical oscillations. All these
parametric uncertainties and variations demand regular update
of the relay setting to suit to prevalent operating situation. It
is obvious that continuous estimation ofx′d, Eq andH are
required to achieve this objective.

While the PMU technology provides high resolution time-
synchronized measurements, it is necessary to have a fast
parameter estimation tool that is suitable to estimate the
parameters for adaptive protection and control application.
In practical operating environment, the PMU measurements
are influenced by transient, process and measurement noise.
Existing literatures do not appear to address all these aspects
comprehensively. This paper reports an algorithm which we
believe addresses this issue well. Our algorithm is based on
the moment-matching recursive estimation using augmented
unscented Kalman filter (UKF). In order to demonstrate the
accuracy of the proposed technique, we have worked on
data generated from 16-machine 68-bus test system model
simulation. The UKF method is simple, accurate, fast and
robust in filtering out the effect of noise in the estimated
parameters.

Section II, following this introduction, reports recent and
ongoing research efforts in dynamic model parameter esti-
mation. Section III elucidates the approach used to utilize
UKF for dynamic model parameters estimation using PMU
measurements. Subsequently, the proposed approach is applied
to measurement data simulated from 16-machine 68-bus sys-
tem models. The results obtained are analysed and discussed

in Section IV. Section V compares the performance of the
proposed method with EKF and evaluates the performance of
the proposed method in the presence of noise. In Section VI,
the results obtained using proposed method is validated and
compared with the actual parameters. Section VII concludes
our findings.

II. STATE OF THE ART

The objective of dynamic model parameters estimation is to
provide an accurate representation of the dynamic behaviour
of the system for simulation studies. Conventionally, short-
circuit test on unloaded machine represented the standard
measure of transient performance and various commonly ac-
cepted approximations formed the basis of model parameter
derivation. However, due to its limitation on providing q-axis
transient and sub-transient constant, several alternative tests,
such as enhanced sudden short circuit test, stator decrement
test and standstill frequency response test have been proposed
to obtain better representation of the dynamic model [4].
Although accurate, these approaches are not economically
feasible because the generator under investigation must be
offline.

Online methods have been proposed to address the pitfall
of the staged test approach to identify the dynamic model
parameters. The approaches underlying these methods are
diverse, e.g., trajectory sensitivity [5], extended Kalman filter
(EKF) [6], non-linear least square technique [7], Newton
Raphson [8] and Euler [9]. Despite having advantages over
offline methods, these techniques have some limitations. The
methods assume the availability of accurate rotor angle and
speed; field voltage and current; terminal voltage and current;
and active and reactive power measurements. In practice, it
is not always possible to have all these measurements time-
stamped.

PMU measurements driven model parameters estimation
has been proposed in the literature. The PMU provides the
data across the network with time synchronous stamping. The
maximum likelihood estimation (MLE) is proposed to estimate
the dynamic model parameters of the system in [10]. The
method requires a priori additional information of the state
variable to estimate the parameters accurately. Other effort
integrates hybrid dynamic simulation, trajectory sensitivity,
parameter correlation analysis and minimum variance criterion
to solve the estimation problem [11]. It is non-recursive
and computationally exhaustive. Another approach, inter-area
model estimation (IME), is reported in [12] and [13] to
estimate the parameters. The proposed method extrapolates
system impedance and inertia using the inter-area oscillation
components in the voltage variables after disturbance. Besides
being non-recursive, the complexity of the method increases
with the number of generators in the system.

Numbers of research groups exploit variants of EKF [14],
[15]. The EKF works on the assumption that all non-linear
transformations are quasi-linear. Hence, EKF simply linearizes
all non-linear transformations and substitutes Jacobian matri-
ces for linear transformation. Although the EKF maintains
an elegant and computationally efficient recursive update,it
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has some limitations. It works on linearization of non-linear
dynamic process which may produce highly unstable filters if
the assumption of local linearity is violated. The high com-
plexity and non-linearity of power system are susceptible to
these problems. Furthermore, the calculations of the Jacobian
matrices are often very difficult. Also, the observability of
the parameters from the measurement points using EKF are
limited. Method reported in [14] uses complementary infor-
mation from staged test in order to deal with the observability
issue. Iterative EKF approach proposed in [15] eliminates
the requirement of stage-test complementary information as
required in [14]. Besides being computationally expensive,
iterative EKF-based prediction suffers from linearization error.
The robustness and accuracy associated with EKF driven
methods in [14] and [15] are not thoroughly investigated. The
presence of noise in measured signal influences the accuracyof
the dynamic model parameter estimation technique. Therefore,
it is important to guarantee that the dynamic model parameter
estimation technique is robust in the presence of measurement
noise in the signals.

In this paper, the dynamic model parameters of synchronous
generators are estimated by processing the PMU measure-
ments using unscented Kalman filter (UKF); a moment-
matching filter that is significantly better than EKF. The
UKF is developed to address the issues in EKF. It calculates
the statistics of random variables that undergo a nonlinear
transformation. This method works on the assumption that
it is easier to approximate a probability distribution than it
is to approximate an arbitrary nonlinear function or trans-
formations [16]. The UKF has earlier been used in power
system for dynamic state estimation [17], [18] and parameters
estimation using operational data [19]. It has potential tobe
reformulated to solve dynamic parameters estimation problems
[20]. However, the method proposed in this paper employs
better sigma point distribution and filtering approach compared
to [20], which reflects in a better accuracy of the parameter es-
timated and consumes less computing power. The UKF offers
flexibility to allow information beyond mean and covariance
to be incorporated in the estimations [21]. Hence, the UKF
is able to estimate accurate dynamic model parameters even
with the presence of noise in the measured data. Moreover,
the UKF is completely data driven and recursive thus offering
real opportunity of fast estimation in real time.

III. D YNAMIC MODEL PARAMETER ESTIMATION USING

UKF

Generally, power system dynamics is represented using a
set of continuous-time nonlinear equation, given in (1).

ẋ(t) = f̄ [x(t),u(t),v(t)] (1a)

y(t) = h[x(t),u(t),v(t)] +w(t) (1b)

where thex(t) vector represents the state variables, they(t)
vector represents the output variables, andu(t) is the input
variables. Equations (1) are rewritten in discrete form with a

time step of△t, given by (2),

xk = xk−1 + f̄ [xk−1,uk−1,vk−1]△t

= f [xk−1,uk−1,vk−1] (2a)

yk = h[xk,uk,vk] +wk (2b)

The statexk is considered as a random variables with an
estimated mean̂xk and an estimated covariancePxk

. The
process noisevk in (2) is assumed to be non-additive, while
the measurement noisewk is assumed to be additive. The
covariance matrix forvk andwk are denoted byQ andR,
respectively. Both are assumed to be constant. Assume that
(2) is parameterised by the unknown vectorψk. The state
xk and the set of model parametersψk need to be estimated
simultaneously. Ifψ is also treated as a state, then it may
be augmented withxk to give an augmented state vector
xa
k, i.e. xa

k = [xk
⊤,ψ⊤

k ]⊤. The state-space model in (2) is
reformulated as:

xa
k = f [xa

k−1,uk−1,vk−1] (3a)

yk = h[xa
k,uk,vk] +wk (3b)

Using the same approach in (3), the process noisevk may
also be concatenated withxa

k, resulting higher-dimensional
state random variablesXk = [xa

k
⊤,vk

⊤]⊤ with an estimated
mean X̂k and covariancePXk

. Hence, the state random
variable is redefined as the augmentation of the original state
xk, the set of unknown model parameterψk and the process
noisevk given in (4);

Xk =

[

xa
k

vk

]

=





xk

ψk

vk



 (4)

In a similar manner, the corresponding augmented state
covariance is built up from the individual covariance matrices
of xk, ψk andvk given in (5):

PXk
=





Pxk
0 0

0 Qψk
0

0 0 Qvk



 (5)

Hence, the state-space model in (3) is rewritten as follows,

Xk = f [Xk−1,uk−1] (6a)

yk = h[Xk,uk] +wk (6b)

Consequently, given that the system differential equations
(DEs), the measured signals from PMU and all noise co-
variances are available, the unknown parameter vectorψk is
estimated using recursive algorithm by finding the real-time
estimates of the mean and covariance of the augmented state
Xk.

A. Unscented Kalman Filter (UKF)

The idea of UKF is the propagation of the statistical
distribution of state through the non-linear equations. This
is realised by obtaining a set of vectors called sigma points,
which capture the mean and covariance of the stateX distri-
bution. A set of sigma points, denoted asχi, are selected in
such a way that the mean and covariance of these points are
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X̂ andPX . Consequently, these points are transformed into
a set of transformed points by applyingχi into a non-linear
function. This process is described as follows:

γ
i = h (χi) (7)

Next, the mean̂y and covariancePy of the transformed
points are calculated. The mean̂y is the weighted average of
the transformed points while the covariancePy is the weighted
outer product of the transformed points. Forl numbers of
sigma points,̂y andPy are calculated as follows:

ŷ =

l
∑

i=0

Wi
γ
i (8a)

Py =
l
∑

i=0

Wi (γi − ŷ) (γi − ŷ)
⊤ (8b)

To provide an unbiased estimate, the weightWi used to
calculateŷ andPy must be set such that:

l
∑

i=0

Wi = 1 (9)

In this paper, forL number of state, a set ofl = 2L + 1
points is used to distribute the sigma points. The followingset
of points satisfied the condition described above:

χ0 = X̂ (10a)

W0 = 1−
L

3
(10b)

χ
i = X̂ +

[√

L
1−W0

PX

]

i
(10c)

Wi =
1−W0

2L
(10d)

χ
i+L = X̂ −

[√

L
1−W0

PX

]

i+L
(10e)

Wi+L =
1−W0

2L
(10f)

The set of sigma points described in (10) able to exploit
any additional known information about the error distribution
associated with an estimate and maintain the meanX̂ and
covariancePX . This set of sigma points provides approxima-
tions accurate to a third order of Gaussian probability density
functions, regardless of the forms of non-linear transformation
function used in the estimation [21]. The weight associated
with the new sigma point,W0 provides a parameter for con-
trolling some aspect of the higher moments of the distribution
of sigma points without affecting the mean of the covariance.
In this paper, the value ofW0 is set such that the fourth order
error for a Gaussian is minimized [21]. Consequently, each
sigma points is passed through the model of state evolution to
obtain the predicted-state sigma points given as:

χ−

k = f (χk−1,uk−1) (11)

Subsequently, the weighted mean and covariance of the pre-
dicted sigma pointsχ−

k defined asX̂−

k andP−

Xk
, respectively,

are calculated using (12):

X̂−

k =
2L
∑

i=0

Wi(χ
−

i,k) (12a)

P−

Xk
=

2L
∑

i=0

Wi

(

χ−

i,k − X̂−

k

)(

χ−

i,k − X̂−

k

)⊤

(12b)

Subsequently, the predicted sigma pointsχ−

k are instantiated
through the measurement equation to generate the predicted-
measurement sigma pointsγ−

k as follows:

γ−

k = h
(

χ−

k ,uk

)

(13)

Consequently, the weighted mean of the predicted mea-
surementŷ−k , the corresponding covariance matrixP−

yk
and

the cross-correlation matrixP−
xkyk

are computed as shown
in (14). The matrixP−

xkyk
represents the cross-correlation

between the difference of the predicted-state sigma points
χ−

i,k with the corresponding predicted-statêX−

k , and the
difference of predicted-measurement sigma pointsγ−

i,k with
the corresponding predicted-measurementŷ−k :

ŷ−k =
2L
∑

i=0

Wi(γ
−

i,k) (14a)

P−

yk
=

2L
∑

i=0

Wi

(

γ−

i,k − ŷ−k

)(

γ−

i,k − ŷ−k

)⊤

+R (14b)

P−

xkyk
=

2L
∑

i=0

Wi

(

χ−

i,k − X̂−

k

)(

γ−

i,k − ŷ−k

)⊤

(14c)

Finally, the Kalman gain matrixKk is calculated to find
the meanX̂k and covariance matrixPXk

as given in (15):

Kk = P−

xkyk
(P−

yk
)−1 (15a)

X̂k = X̂−

k +Kk

(

yk − ŷ−k
)

(15b)

PXk
= P−

Xk
−KkP

−

yk
K⊤

k (15c)

B. Implementation of UKF for dynamic model parameters
estimation

Power system first swing dynamics is represented as fol-
lows:

dδ(t)

dt
= (ω(t)− ω0)ωs (16a)

dω(t)

dt
=

1

2H
(Pm − Pg(t)−D (ω(t)− ω0)) (16b)

where δ(t), ω(t), ω0 and ωs are rotor angle, rotor speed,
synchronous speed and base speed, respectively. Neglecting
the damping coefficientD, the discrete form of (16) is given
by:

δk = δk−1 + (ωk−1 − ω0)ωs△t (17a)

ωk = ωk−1 +
△t

2Hk−1

(

Pm − Pgk−1

)

= ωk−1 +Gk−1

(

Pm − Pgk−1

)

(17b)

Since△t andHk are constant,ωk is simplified by substi-
tuting the term △t

2Hk
with Gk to reduce the nonlinearity of the
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equation. Consequently, the state vector of the system given
in (17) is defined asxk = [δk ωk]

⊤ and is parameterized by
inertia constantH, transient impedancex′d and generator in-
ternal voltageEq. These parameters and variable are unknown
and represented by the vectorψk =

[

Eqk x′dk
Gk

]⊤
.

As described in (3), the statexk and the unknown param-
eter vectorψk are simultaneously estimated by augmenting
these two vectors into a higher-dimensional state variables
xa
k =

[

δk ωk Eqk x′dk
Gk

]⊤
. Hence, to accommodate

this change, the state evolution equation in (17) is reformulated
as:

δk = δk−1 + (ωk−1 − ω0)ωs△t (18a)

ωk = ωk−1 +Gk−1

(

Pm − Pgk−1

)

(18b)

Eqk = Eqk−1
(18c)

x′dk
= x′dk−1

(18d)

Gk = Gk−1 (18e)

In (18), the mechanical input powerPm is assumed to be
known. It is approximated to the electrical power measured
at the generator terminal bus prior to a disturbance in the
system. The dynamic behaviour of one generator unit can be
analysed independently from the dynamic behaviour of the rest
of the network. This is realised by separating the signals at
the terminal bus into two groups: inputs and measurements. It
is assumed that PMU provides time-tagged voltage magnitude
Vg, phasor angleθg, active powerPg and reactive powerQg

measurements at the generator terminal bus to monitor the
dynamic behaviour of the generators. Hence,Vg andPg at the
terminal bus are treated as the input signal, whileθg andQg

are treated as the measurement to decouple one generation unit
from the rest of the system. The equations for the measurement
quantities,θg andQg of a generation unit are:

θgk = δk − tan−1

(

Pgk
x′

dk
√

(Eqk
Vgk)

2
−(Pgk

x′

dk)
2

)

(19a)

Qgk
=

√

(Eqk
Vgk)

2
−(Pgk

x′

dk)
2
−Vgk

2

x′

dk

(19b)

In the presence of noise in the measured signals, dealing
with Vg andPg may cause a problem to the UKF algorithm.
Hence, the actual values ofVg andPg have to be redefined
to include the effect of noises in the estimation algorithm.
Consequently, the actual inputs (Vg andPg) are equal to the
differences of their measured values (V u

g and Pu
g ) and the

associated noises (V w
g and Pw

g ). The associated noisesV w
g

andPw
g also drive the system modelled in the UKF algorithm.

They are modelled as in [17] and given below.

Vgk = V u
g k

− V w
g k

(20a)

Pgk
= Pu

g k
− Pw

g k
(20b)

Hence,V u
g k

and Pu
g k

formed a pseudo input vectoruk

while V w
g k

and Pw
g k

formed a pseudo process noise vector
vk. As derived in (4), the process noisevk is concatenated
with the state vector and the unknown parametersψk vector
to form an augmented stateXk. This formulation incorporates
the process noisesvk into the predicted state vector with the
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Fig. 1. 16-machine 68-bus test system model

same level of accuracy as the propagated estimation errors
without the needs to calculate the Jacobian, Hessian or other
numerical approximation [16]. Therefore, the UKF algorithm
as described in the preceding subsection will be directly
applied to estimateXk.

IV. A PPLICATION, RESULTS AND ANALYSIS

The 16-machine 68-bus system model is considered as the
test system. The bus data, line data and dynamic characteristics
of the systems are available in [22]. Fig. 1 shows the single
line diagram of the system. Nonlinear simulations of the
test system model are performed in MATLAB Simulink. The
synchronous generators in the test system are modelled as
classical models. The mechanical power input to the generators
is assumed to be constant. The disturbance considered for this
study is a three-phase bolted fault at bus 21. The fault is
applied att = −0.9s and cleared by removing line 21-22 after
100 ms. The proposed method is applied on the measured data
800 ms following the clearance of the fault to avoid transient
error of the PMU estimation during the transition period from
pre-fault to post-fault condition [2]. For parameter estimation,
the proposed method is applied to the voltage magnitudeVg,
voltage phase angleθg, active powerPg, and reactive power
Qg signals from 16 machines.

The main aim of the proposed methodology is to provide a
parameter estimation tool for adaptive protection and control
application, mainly for adaptive out-of-step protection.There-
fore, the scope is focused on the dynamic in power swing time
scale (0.5 to 0.8 Hz) [23]. In this time scale, the speed voltage
Eq is relatively constant because of large field circuit time
constant (constant flux linkage situation). Transient reactance
x′d and inertia constantH will not be affected by the inclusion
of sophisticated electromagnetic dynamics model. Therefore,
a classical model (speed voltage behind a transient reactance)
is adequate for the purpose of this investigation. The choice
of sampling frequency is important. In this paper, 120 Hz was
used as recommended for 60 Hz system in the recent IEEE
Standard for Synchrophasor Measurements for Power System
C37.118.1-2011 [24].
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Fig. 2 illustrates the signals measured from Generator #4
terminal bus. Fig. 2a-2d display the measured data ofVg, θg,
Pg, andQg, respectively. All other generators are measured
but not shown because of the lack of space. As described in
Section III, Vg and Pg are used as the input, whileθg and
Qg are used as the measurements for the UKF. The proposed
method is applied to the whole set of measured data and
the parameters are estimated. The initial parameters for UKF
algorithm used in this paper are described as follows:

X0 = [x0 ψ0 v0]
⊤

= [δ0 ω0 Eq0 x′d0
H0 0 0]

⊤

=
[π

2
1.0 1.0 0.5 5.0 0 0

]⊤

(21a)

Px0
= diag {[1 1]} (21b)

Qψ0
= diag {[1 1 1]} (21c)

Qv0 = diag
{[

1× 10−4 1× 10−3
]}

(21d)

PX0
= diag {[Px0

Qψ0
Qv0 ]} (21e)

R = diag
{[

1× 10−4 1× 10−3
]}

(21f)

The values of initial parameters influence the convergence
rate of the proposed method. The closer the value of initialised
parameters with the actual value of the parameters, the faster
is the convergence of the proposed method in estimating the
dynamic model parameters of the system. However, the work
presented in this paper assumes that the initial parametersare
unknown. Therefore, the proposed method is initialised at the
same value to provide an unbiased assumption in estimating
the dynamic models parameters using UKF. The initial values
for the covariance matrix ofPx0

andQψ0
are not important.

It will be updated throughout the UKF iteration process and
its value will become zero if the algorithm converged. On
the hand, the values ofQv0 and R represent the process
and measurement noise covariance matrix and their values are
assumed to be known. Fig. 3 shows the results of the dynamic
model parameters estimation for the 16-machine 68-bus test
system model.

Fig. 3a, 3b and 3c display the convergence ofEq, x′d and
H, respectively. The dashed line indicates the convergence
of estimated parameters obtained using the proposed method,
while the solid line represents the actual parameters of the
test system. In this application, the parameters are assumed to
be unknown. The initial parameters were set arbitrarily. All
the results in the figure converged to their actual value.Eq is
initialised arbitrarily at 1.0 per unit. After first iteration, Eq

increased before it became constant at 1.1250 per unit after
1.0 s. On the other hand, the initial value ofx′d is set to 0.5
per unit arbitrary. After 1.0 s,x′d is converged to 0.3868 per
unit. Similar observation can be made forH, where the value
is initially set at 5.0 s and consequently converged at 4.1627
s after 1.0 s.

Fig. 4 shows the estimation of rotor angle and speed
of Generator #4. The dashed line indicates the estimated
state, while the solid line represents the simulated state.The
estimated rotor angle and speed match very well with the
simulated rotor angle and speed of the machine.

Table I summarises the results of the dynamic model pa-
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Fig. 2. Generator #4 measured data for 16-machine 68-bus system model
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Fig. 4. Generator #4 state estimation for 16-machine 68-bus system model

rameters estimation for 16-machine 68-bus test system model.
Eq, x′d andH for all machines were initialised to 1.0 pu, 0.5
pu and 5.0 s, respectively. From the table it can be observed
that the estimated parameters are very close to the actual
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TABLE I
COMPARISON WITH ACTUAL VALUE FOR 16-MACHINE 68-BUS SYSTEM

i Eq
act Eq

est x′d
act

x′d
est

Hact Hest

1 1.1867 1.1871 0.2480 0.2485 3.4000 3.4030

2 1.1176 1.1194 0.4253 0.4296 4.9494 4.9540

3 1.1232 1.1250 0.3831 0.3868 4.9623 4.9673

4 1.0629 1.0660 0.2995 0.3081 4.1629 4.1627

5 1.1227 1.1224 0.3600 0.3595 4.7667 4.7769

6 1.1611 1.1607 0.3543 0.3534 4.9107 4.9303

7 1.1145 1.1144 0.2990 0.2987 4.3267 4.3434

8 1.0489 1.0485 0.3538 0.3519 3.9150 3.9221

9 1.0932 1.0930 0.4872 0.4867 4.0365 4.0427

10 1.0307 1.0305 0.4868 0.4846 2.9106 2.9133

11 1.0093 1.0093 0.2531 0.2536 2.0053 2.0068

12 1.1527 1.1523 0.5525 0.5515 5.1791 5.1827

13 1.0398 1.0405 0.3345 0.3454 4.0782 4.0786

14 1.0030 1.0029 0.2850 0.2837 3.0000 3.0004

15 1.0023 1.0022 0.2850 0.2781 3.0000 2.9974

16 1.0233 1.0231 0.3590 0.3572 4.4500 4.4460

value of the dynamic model parameters for all machines.
The maximum percentage errors in estimation forEq, x′d and
H are 0.29%, 3.26% and 0.21%, respectively. This indicates
that the results obtained using dynamic model parameters
estimation technique proposed in this paper are accurate and
consistent for all machines in a large interconnected power
system context.

The proposed method is able to estimate the dynamic
model parameters of the systems without prior knowledge
of system model. The UKF method requires a time window
of 1.0 s to estimate the parameters accurately. Therefore,
the method requires 120 iterations to precisely estimate the
parameters using the measured data sampled at every 8.33
ms. The speed of computation of UKF method recorded in
MATLAB Simulink environment is 281.2µs per iteration.
Hence, considering the time windows required for estimation
and the computation time of UKF, it only requires 1.0337 s for
the proposed method to precisely estimateEq, x′d andH at real
time. Typically, a power swing oscillates with the frequency
of 0.5-0.8 Hz [23], which gives a time windows of 1.25-2.0
s to analyse the oscillation as it develops. Thus, the speed of
estimation using the proposed method is sufficiently fast for
adaptive out-of-step protection application which focuses only
on the first few swings of the system.

V. COMPARISON AND PERFORMANCE ROBUSTNESS

In this section, the accuracy of the dynamic model param-
eters estimated using the proposed method is compared with
the results obtained using the EKF approach [14], [15]. The
performance of the proposed method and the EKF method
is also evaluated in the presence of noise in the measured
signals. Using identical operating condition, the 16-machine
68-bus test system model is used for this evaluation.

A. Parameter estimation using EKF

The details of the EKF method for dynamic model pa-
rameter estimation are reported in [14], [15] and is briefly
discussed here to extend the discussion of the idea presented
in this paper. The EKF is formulated as a two-step prediction-
correction process. The prediction step is a time update using
the discretized differential equations as follows:

δk = δk−1 + (ωk−1 − ω0)ωs△t (22a)

ωk = ωk−1 +
△t

2H

[

Pm − . . .

Eqk−1
Vgk−1

x′dk−1

sin
(

δk−1 − θgk−1

)

]

(22b)

Eqk = Eqk−1
(22c)

x′dk
= x′dk−1

(22d)

Hk = Hk−1 (22e)

The discretized differential equations in (22) predict the
state and measurement variables of the next time step using
the estimated values of the state and measurement variables
of the previous time step.Eq, x′d and H are the unknown
parameters that need to be estimated. Apart from the state
variables, the process also estimates priori error covariance
matrix corresponding to the state variables. Consequently,
the estimated measurement is calculated using the following
equations:

Pgk
=
Eqk−1

Vgk−1

x′dk−1

sin
(

δk−1 − θgk−1

)

(23a)

Qgk
=

−Vgk
2 + Eqk

Vgk cos
(

δk − θgk
)

x′dk
(23b)

Next step involves the calculation of the Kalman gain,
which corrects the error of the estimated state variables based
on the discrepancy between the estimated and the actual
measurement. The following set of equations summarized the
prediction-correction process of EKF.

Prediction:

x−

k = f (xk−1,uk−1, 0) (24a)

P−

k = AkPk−1Ak
⊤ +WkQk−1Wk

⊤ (24b)

Correction:

Kk = P−

k Hk
⊤

(

HkP
−

k Hk
⊤ + VkRkVk

⊤

)−1

(24c)

xk = x−

k +Kk

[

yk − h
(

x−

k ,uk−1, 0
)]

(24d)

Pk = (I −KkHk)P
−

k (24e)

where,

Ak =
∂f (xk−1,uk−1, 0)

∂x
, Wk =

∂f (xk−1,uk−1, 0)

∂w
,

Hk =
∂h (xk−1,uk−1, 0)

∂x
, Vk =

∂h (xk−1,uk−1, 0)

∂w

Using this process, the unknown parametersEq, x′d andH,
along with other state variables will be updated at every time
step. If the EKF process converged,Eq, x′d andH estimation
will approach their actual values.
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Fig. 5. The comparison of UKF and EKF estimation for Generator #4

B. Comparison

In order to evaluate the performance of the proposed
method, the dynamic model parameters estimated using the
proposed method is compared with the results obtained using
EKF. For this evaluation, 16-machine 68-bus test system model
is used to simulate the measurement ofVg, θg, Pg and
Qg for every generator sampled at 120 Hz. The disturbance
considered for this evaluation is similar to the disturbance
considered in Section IV. Using identical initialization of the
parameters, the estimation ofEq, x′d andH, for Generator #4
obtained using UKF and EKF is illustrated in Fig. 5.

The results in Fig. 5 show thatEq, x′d andH estimated
using UKF and EKF converged to its actual value of 1.0 pu,
0.5 pu and 5.0 s, respectively. This implies that both UKF
and EKF are able to estimate the dynamic model parameters
in the system. However, it is observed from the results that
the proposed method shows better performance in estimating
the parameters, especially for the estimation ofx′d. The EKF
requires about 3.5 s while the proposed method only requires
about 1.0 s to converge to its actual value ofx′d. This is
because the proposed method has a better approximation of
nonlinear process in each iteration compared to the EKF
approach.

It is also necessary to compare the computational speed
of UKF and EKF, formulated to estimate the dynamic model
parameters. The computational speed of EKF is 497.6µs per
iteration while the computational speed of UKF is 281.2µs
per iteration to estimateEq, x′d and H. The difference in
computational speed of EKF and UKF is related to the com-
putational load at each iteration for both methods. The EKF
algorithm requires to update the Jacobian matrix at every step
of computation to estimateEq, x′d andH. On the other hand,
the UKF method does not need the calculation of the Jacobian
matrix. This finding is consistent with the discussion reported
in [25]. This implies that the EKF consumes more computing
power compared to the proposed method in estimating the
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Fig. 6. Generator #4 measured data with noise for 16-machine 68-bus system
model

dynamic model parameters of the system.

C. Performance robustness

1) Performance under noise: It is well known that the
presence of noise in the data influences the quality of any
measurement-based method. This subsection evaluates the
performance of the proposed technique in the presence of noise
in the measured signals. For this evaluation, the measured data
illustrates in Fig. 2 is added with white Gaussian noise and
the proposed technique is applied on this data to estimateEq,
x′d andH of the generator. The presence of noise affects the
quality of the PMU measurements. It is assessed by the Total
Vector Error (TVE) of the PMU measurements described as
follows:

TVE (n) = 100×

√

[X̂r(n)−Xr(n)]
2
+ [X̂i(n)−Xi(n)]

2

[Xr(n)]
2
+ [Xi(n)]

2 (25)

As recommended in [24], the TVE of PMU measurement
should be less than 1%. However, in order to validate the
robustness of the proposed method in filtering out the effect
of noise, TVE less than 3% is used in this analysis. The plots
of the data are given in Fig. 6a-6d representVg, θg, Pg, and
Qg for Generator #4. Fig. 7 displays the result obtained from
the application of the UKF method using the measured signals
with noise.

The estimation ofEq, x′d and H using the measured
data with noise are illustrated in Fig. 7a-7c. The green lines
represent the 99% confidence interval of the estimated pa-
rameters. The results clearly show that the UKF method has
a fast convergence rate even with the presence of noise in
the measured data. All parameters converged to the actual
value in about 1.0 s.Eq, x′d andH converged to 1.0627 pu,
0.2998 pu and 4.2278 s, respectively. It is also observed that
the actual values of the parameters lie between the upper and
lower bounds for the 99% confidence interval of the estimated
parameters.
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Fig. 7. Generator #4 parameters estimation for 16-machine 68-bus system in
the present of noise in measured data.

TABLE II
COMPARISON WITH ACTUAL VALUE FOR 16-MACHINE 68-BUS SYSTEM

MODEL (MEASURED DATA WITH NOISE)

i Eq
act Eq

est x′d
act

x′d
est

Hact Hest

1 1.1867 1.1803 0.2480 0.2354 3.4000 3.5498

2 1.1176 1.1207 0.4253 0.4335 4.9494 5.0670

3 1.1232 1.1158 0.3831 0.3668 4.9623 5.0914

4 1.0629 1.0627 0.2995 0.2998 4.1629 4.2278

5 1.1227 1.1234 0.3600 0.3558 4.7667 4.6444

6 1.1611 1.1669 0.3543 0.3714 4.9107 4.7569

7 1.1145 1.1117 0.2990 0.2997 4.3267 4.3902

8 1.0489 1.0529 0.3538 0.3659 3.9150 3.7245

9 1.0932 1.0858 0.4872 0.4633 4.0365 4.2310

10 1.0307 1.0345 0.4868 0.5073 2.9106 3.0081

11 1.0093 1.0091 0.2531 0.2556 2.0053 2.0931

12 1.1527 1.1485 0.5525 0.5456 5.1791 5.1894

13 1.0398 1.0430 0.3345 0.3618 4.0782 4.0552

14 1.0030 1.0034 0.2850 0.3025 3.0000 2.9742

15 1.0023 1.0024 0.2850 0.3056 3.0000 3.0075

16 1.0233 1.0218 0.3590 0.3559 4.4500 4.5790

The proposed algorithm is applied to all machines in the test
system model and the results are shown in Table II. In Table
II, the results obtained using the UKF method is validated
by comparing the estimated results with the actual value of
the dynamic model parameters. As depicted in the table, the
estimated value ofEq, x′d and H are very close with the
actual value of the dynamic model parameters, even with the
presence of noise in the measured signals.

2) Comparison with EKF under noise: Both UKF and EKF
require measured signal from PMU to estimateEq, x′d and
H of the system. It is worthwhile to assess the performance
of UKF and EKF in the presence of noise in the measured
signals. In this investigation, the UKF and EKF are applied
to the measured signals with TVE of 3% illustrated in Fig. 6.
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Fig. 8. The comparison of UKF and EKF estimation in the presenceof noise
for Generator #4

The convergence ofEq, x′d andH using both methods are
plot in Fig. 8a-8c, respectively.

The results displayed in Fig. 8 show that both methods are
able to estimateEq accurately using the measured signals
with noise. The EKF method requires about 5.0 s while
the proposed method only requires about 0.2 s to estimate
Eq accurately. The estimation ofx′d and H using EKF
approach shows that the presence of noise in the measured
data influences the accuracy of the dynamic model parameter
estimation technique. The EKF method shows limitation in
estimatingx′d andH using the measured signals with noise.
However, the proposed method is able to estimatex′d and
H even with the presence of noise in the measured data.
This may be due to the fact that the approach proposed
in this paper accurately approximate the posterior mean and
covariance up to the third order of the Taylor series expansion
for any non-linear system while the EKF method only achieved
first-order accuracy [21]. The results imply that the proposed
method outperforms EKF in estimating the dynamic model
parameter in the system, particularly in the presence of noise
in the measured data. These attributes are important for any
data-driven estimation tools as the presence of the noise in
measured data is inevitable.

3) Performance in coloured noise: Coloured noise covers
a wide range of intensities and bandwidths for a variety of
flow fluctuation during power system operation [26]. Since
it may be present in the measured data, hence influencing
the accuracy of any data-driven method, it is necessary to
assess the operation of the proposed method in the presence
of coloured noise in the measured signals. The coloured noise
used for this evaluation is generated by filtering the white
Gaussian noise used to produce signals in Fig. 6 through a
low pass finite impulse response (FIR) filter of order 31 with
normalized cut-off frequency of 0.5 [27]. The measured signals
illustrated in Fig. 2 are added with the coloured noise and
the UKF method is applied to estimate the dynamic model
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Fig. 9. The comparison of UKF estimation in the presence of white noise
and coloured noise for Generator #4

parameters of the system. Fig. 9 depicts the UKF estimation
trace ofEq, x′d andH in the presence of coloured noise in
the measured data. For the purpose of comparison, the UKF
estimation in the presence of white noise is also plotted in the
same figure.

From the figure, it is observed that the UKF estimation
of Eq, x′d and H in the presence of white and coloured
noise demonstrate good convergence to the actual value of
parameters. The performance of the proposed method in the
presence of coloured noise is similar to that of the proposed
method in the presence of white Gaussian noise. Therefore,
this implies that the proposed method is able to estimateEq,
x′d andH of the system in the presence of coloured noise in
the measured data. This is an important feature for any data-
driven method as the fluctuation of power flows is inevitable
during power system operation.

VI. M ODEL VALIDATION

An accurate dynamic model should be able to replicate
the system dynamic behaviour for any type of disturbance.
The results obtained in Table I and II are substituted into
the 16-machine 68-bus test system model. Three cases with
different types of disturbances were considered in this study.
The disturbances considered in this analysis are as follows,

Case 1 - Fault at bus 61, line 61-30 is removed to clear
the fault after 50 ms,

Case 2 - Fault at bus 67, line 67-68 is removed to clear
the fault after 100 ms,

Case 3 - Fault at bus 46, line 38-46 is removed to clear
the fault after 100 ms.

Fig. 10 displays the response of the systems with this study.
For all cases, the blue line indicates the response from the
test system model using the actual parameters, the red line
represent the response from the test system model using the
actual values, and the green line represent the response from
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Fig. 10. Generator #4 model validation a) case 1 b) case 2 c) case 3

the test system model using the parameters estimated in the
presence of noise in measured data. The small difference
between the response of the test system models for all cases
indicate that the results obtained using UKF are able to
represent the dynamic response of the system, even with the
presence of noise in the measured data. Thus, the dynamic
model parameters estimation technique proposed in paper is
accurate, consistent and robust in filtering out the effect of
noise in the measured signals.

VII. C ONCLUSIONS

A measurement-based dynamic model parameter estimation
for power system has been proposed. The approach is based on
the application of augmented UKF based technique to estimate
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the dynamic model parameters from wide-area voltage magni-
tude, voltage angle, real power and reactive power signals.The
dynamic model parameters are estimated by augmenting the
unknown states (rotor angle and speed) and parameters (inertia
constant, transient reactance and internal voltage) into asingle
higher-dimensional state vector. Subsequently, the dynamic
model parameters are estimated by using the proposed UKF
on the augmented state vector.

The accuracy of the estimation is validated by comparing the
estimated results with the actual dynamic model parameters
of the system. The presence of noise always affects the
performance of any data driven method. Nevertheless, the UKF
method accurately estimates the dynamic model parameters
even with the presence of noise in the measured data. The
results demonstrate that the proposed method outperforms
EKF in estimating the dynamic model parameter in the system,
particularly in the presence of noise in the measured data. The
method is simple, fast and does not require a priori details of
the system information. Finally, estimating the value of the
dynamic mode parameters in real time is essential to ensure
appropriate operation of power system protection. This will
be pursued as immediate future activity by adapting the relay
characteristic to suit the current system operating condition.
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