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Abstract

This paper uses a modified formulation of Williams’ asymptotic solution
to examine the plastic zone near the root of sharp V-notches. A method for
assessing whether the plastic zone is ‘mode I like’ or ‘mode II like’ or mixed-
mode in character is presented. Small scale yielding limits are also calculated.
This analysis is then applied to monotonic, mixed-mode experimental test
data reported in the literature. The results indicate that: i) most tests were
carried out within 5% small scale yielding and ii) the plastic zone of practical
engineering components is likely to be either mainly mode I or mixed-mode
in character.
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1. Introduction

Sharp notches, and features that are notch-like, such as adhered complete
contacts and junctions between bonded components, give rise to implied
elastic stress singularities, which then may prompt the nucleation of cracks,
particularly under reversing loads. The amount of theoretical work on the
subject is enormous, and much of it is very elegant with great mathematical
finesse (see e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9] and [10] for a review). Here, the
analysis is down to earth but intended to provide comprehensive information
– meaning for a wide range of notch angles – about the nature of the notch
root region in which the process zone lies, i.e. the region within the plastic
zone where irreversibilities leading to crack nucleation occur. The intention is
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to provide three developments: i) to construct an alternative way of defining
when the plastic and hence process zone is ‘mode I like’ or ‘mode II like’
or mixed-mode in nature, refining the ideas developed in [11] but based
on a full-field correlation; ii) to provide an improved way of displaying the
results of this calculation that enables the results of experimental work to
be classified easily, and which is readily extendable to any notch angle; and
iii) to show, on the same diagram, the conditions under which small scale
yielding requirements are also satisfied. We are specifically interested in the
challenging case where both eigensolutions are singular, i.e. when the notch
angle is greater than 257.4◦.

2. Formulation

The previous paper [11] hinges on a new way of displaying Williams’
solution [12] for the state of stress at the tip of a sharp, semi-infinite elastic
notch, such as that shown in Figure 1. Williams’ solution may be interpreted
as giving the stress state in finite problems incorporating a notch of interior
angle 2α as

σij(r, θ) = KIr
λI−1f I

ij(θ) +KIIr
λII−1f II

ij (θ) + bounded terms, (1)

where i, j ∈ {r, θ}, and (r, θ) is the polar coordinate set defined in Figure 1.
If we assume plane strain, then

σzz = ν(σrr + σθθ), (2)

where ν is Poisson’s ratio. In equation (1), the terms λn, where n ∈ {I, II},
are the eigenvalues of the system, which are given by the lowest roots of the
following equations

λIsin(2α) + sin(2αλI) = 0 (3a)

λIIsin(2α)− sin(2αλII) = 0, (3b)

and these are plotted in Figure 2. The terms fn
ij(θ) are the angular eigenfunc-

tions, which we have normalised so that f I
θθ(0) = 1 and f II

rθ (0) = 1, and these
are written out explicitly in Appendix Appendix A. We note that both the
eigenvalues and the angular eigenfunctions are fully determined by the notch
angle, 2α, and are independent of the finite geometry under consideration.
The terms Kn are the generalised stress intensity factors (also sometimes
referred to as notch stress intensity factors), and these must be calibrated
from the finite problem under consideration. The angular eigenfunctions of
the mode I, II solutions uncouple along the notch bisector, i.e. f I

rθ(0) = 0
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and f II
θθ (0) = 0, and thus we can define the generalised stress intensity factors

as

KI = lim
r→0

σθθ(r, 0)r
1−λI (4a)

KII = lim
r→0

σrθ(r, 0)r
1−λII . (4b)

We note that equations (3a),(4a) correspond to the symmetric term of the
solution, whereas equations (3b),(4b) correspond to the anti-symmetric term.

2.1. Alternative method of display

From Figure 2, we can see that within the range 180◦ < 2α ≤ 360◦

there are three distinct forms that the semi-infinite solution can take. The
extreme case when 2α = 360◦ corresponds to the familiar problem from
fracture mechanics of an edge crack. Here, of course, both eigensolutions
are square root singular, and thus the mode-mixity of the stress field is self
similar with r. In contrast, within the range 180◦ < 2α < 257.4◦, we see that
only the mode I eigensolution is singular, so this term will dominate the
characteristic of the state of stress whenever the notch root is approached.

We are most interested, however, in notch angles within the range 257.4◦ <
2α < 360◦ for which both eigensolutions are singular but are of different
strengths, i.e. 1/2 < λI < λII < 1. Within this range, it is clear that the
more strongly singular mode I solution will always dominate the character-
istic of the state of stress as an observation point approaches the notch root
(unless the remote load is purely mode II in character). In contrast, ‘re-
mote’ from the notch root, the less strongly singular mode II solution will
dominate. Thus, we see that there is a length scale associated with Willi-
ams’ (semi-infinite) solution itself, and this can be brought out more clearly
by abstracting an alternative set of parameters from the generalised stress
intensity factors as in [11]

G0 = |KI |
λII−1

λII−λI |KII |
λI−1

λI−λII (5a)

d0 =

∣∣∣∣KII

KI

∣∣∣∣
1

λI−λII

. (5b)
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Williams’ solution can then be re-written as2

σij(r, θ)

G0

=

(
r

d0

)λI−1

f I
ij(θ) +

(
r

d0

)λII−1

f II
ij (θ). (6)

When written in this form, it is clear that d0 represents, in some sense, the
boundary between mode I dominant behaviour (if r � d0) and mode II
dominant behaviour (if r � d0), whilst G0 serves to regulate the magnitude
of the state of stress as a whole.

This was the state of refinement that was used in our previous paper [11],
and we now propose further changes to bring out several issues clearly. To
do this, we imagine that a calibration has been found for the generalised
stress intensity factors in whatever configuration is being studied. From
dimensional considerations, we see that any set of calibrations can be written
in the form

Kn = mka1−λnSn, (7)

where a is a characteristic length scale of the finite problem (e.g. the dis-
tance to the nearest geometric feature, see Figure 9 for examples), k is the
yield stress of the material in pure shear, and m is a dimensionless scalar
that scales the applied load. This enables us to determine a dimensionless
calibration of the mode n generalised stress intensity factor, denoted Sn. The
parameters G0 and d0 may be written in terms of dimensionless generalised
stress intensity factors as

G0

k
= |mSI |

λII−1

λII−λI |mSII |
λI−1

λI−λII (8a)

d0
a

=

∣∣∣∣SII

SI

∣∣∣∣
1

λI−λII

. (8b)

Once defined in this way, it is clear that d0 is independent of the mag-
nitude of the applied load, m, whereas G0 is a function of m. Furthermore, as
d0 is solely dependent on the ratio of the generalised stress intensity factors,
we see that it provides a measure of the mode-mixity associated with the
given loading configuration. However, as we shall soon see, the mode-mixity
in the region relevant to crack nucleation is, in some cases, quite different
from the nominal mode-mixity of the loading configuration.

2Note that if the remote loads result in pure mode I or pure mode II conditions, this
alternative formulation cannot be used because d0 and G0 will tend either to zero or to
infinity. However, so long as there is some contribution from both terms in the solution
(even if one mode dominates the stress field), this formulation remains valid. We also note
that numerical difficulties arise when λI ∼ λII , i.e. for 2α � 330◦ (see Fiure 2), due to
the definition of d0, G0.
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3. Mode-mixity at the process zone

We may think of the process zone at the notch root, rp(θ), as a region
within the plastic zone where irreversibilities lead to crack nucleation. Its
properties are determined by the plastic hinterland, i.e. the region where the
yield criterion is violated, as is customary in estimates of small scale yielding
plastic zones. An idealised diagram of the process zone, rp(θ), which shows
both plastic lobes, rp1(θ), rp2(θ), is displayed in Figure 1.

The size of the process zone is, of course, controlled by the ratio of the
magnitude of the applied load, G0, to the strength of the material, k. Thus
when G0 � k, the process zone will be small in comparison to d0, i.e. rp � d0,
and will be mainly mode I in character. As G0 is increased, the process zone
will both rotate and increase in size, first becoming mixed-mode in character
when rp ∼ d0, and finally becoming mode II in character when rp � d0.
Hence we see that this ratio, G0/k, determines the mode-mixity at the scale
of the process zone. In the earlier paper [11], we characterised the process
zone as being mainly mode I or mainly mode II simply by looking at the
orientation of the plastic lobes. Here we use a different approach, based on a
local full field collocation with, as reference, pure mode I and pure mode II
process zones, rIp(θ), r

II
p (θ).

The second invariant of deviatoric stress in terms of the non-zero stress
components arising here is

J2 = σ2
rr + σ2

θθ + σ2
zz − (σrrσθθ + σθθσzz + σzzσrr) + 3σ2

rθ, (9)

and with this scaling von Mises yield criterion is

J2 = 3k2. (10)

The size and shape of the mixed-mode process zone, rp(θ), can be obtained
within the asymptote by equating expressions (9),(10) and substituting in
stresses from equations (2),(6). Similarly, we obtain the shape of the pure
mode n process zones, rnp (θ), by substituting stresses of the form

σn
ij(r, θ) = Knr

λn−1fn
ij(θ) = (mka1−λnSn)r

λn−1fn
ij(θ) (11)

into equation (9), using equation (2), and equating the resulting expression
with equation (10).

Notice that we can determine both the shape and the size of the mixed-
mode process zone within the asymptote because it contains an intrinsic
length scale, d0. In contrast, the pure mode I, II process zones are self-
similar and contain no intrinsic length scale, so we cannot determine their
size without normalising the solution by the characteristic length from a finite
problem, a.
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3.1. Comparison of pure and mixed-mode process zones

We now wish to compare the shape (but not the size) of the mixed-mode
process zone with the pure mode I, II process zones. For this purpose, we use
the correlation coefficient, ρ, (also referred to as Pearson’s product-moment
correlation coefficient) because it is invariant with both scale and origin. We
denote the correlation coefficient of the full field process zone, rp(θ), with
respect to the pure mode n process zone as ρn. The correlation coefficient is
calculated by dividing the covariance of two curves by the product of their
standard deviations. We note that, −1 ≤ ρ ≤ 1, where ρ = 1 implies a
perfect positive linear relationship, ρ = −1 implies a perfect negative linear
relationship, and ρ = 0 implies no linear relationship.

It is probably easiest to visualise the calculation of the correlation coef-
ficients, ρI , ρII , on a Cartesian plot of rp(θ) vs. θ. An example of this is
shown in Figure 3 for a 270◦ notch with ν = 0.3. In this figure, we plot the
shape of: (a) a pure mode I process zone and a mixed-mode process zone of
G0/k = 0.2495 and (b) a pure mode II process zone and a mixed-mode pro-
cess zone of G0/k = 1.292. Each process zone in this figure is normalised by
its maximum value because the relative size of the process zones has no influ-
ence on the correlation coefficient. We note that the correlation coefficients
between the process zones shown in Figure 3(a),(b) are ρI = 0.7, ρII = 0.7,
respectively. See Appendix Appendix B for some more details on how we
carry out this calculation.

In order to illustrate more clearly the relationship between the correlation
coefficients and the strength of the applied load, we plot ρI , ρII (when posit-
ive) over a wide range ofG0/k in Figure 4 for the example case of a 270◦ notch
with ν = 0.3. In this figure, we see that for very small G0/k (when rp � d0)
the correlation with a pure mode I process zone is high (and the correlation
with a pure mode II process zone is negative and not shown). However,
as G0/k is increased, ρI decreases until it reaches zero (when rp ∼ d0) and
the correlation with the mode II process zone becomes positive. As G0/k
is increased further, ρII increases and eventually approaches unity (when
rp � d0).

3.2. Mode-mixity results

We now wish to use this technique to characterise the mode-mixity of the
process zone and to obtain general results, which can be used to characterise
experimental data. To do this, we select values of ρI , ρII that mark the
boundary between a mixed-mode process zone and a process zone that is
‘mainly mode I’ or ‘mainly mode II’ in character. In Figure 4, we show, as
an example, the regions that result if we assume ρI , ρII > 0.7 to constitute a
process zone that is mode I or mode II dominated.
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Notice from Figure 4 that any value of G0/k corresponds to fixed values
of ρI , ρII and thus to fixed levels of mode-mixity at the process zone. We
exploit this in Figure 5 and show the values of G0/k for which the process
zone is mode I dominated, mode II dominated, or mixed-mode in character
for notch angles within the range 270◦ < 2α < 330◦ for ν = 0.3. Because
the values of ρI , ρII assumed to constitute a process zone that is mode I
or mode II dominated is arbitrary, we show results corresponding to four
choices of ρI , ρII , viz. 0.95, 0.9, 0.8, 0.7.

Although Figure 5 is useful and comprehensive, it employs an unfamiliar
characterisation of the magnitude of the load, G0/k, which the user will
have to calculate from equation (5a) or (8a). Alternatively, the regions of
mode I, II domination of the process zone can be plotted in generalised stress
intensity space, i.e. on a plot of mSII vs. mSI (or equivalently KIIa

λII−1/k
vs. KIa

λI−1/k), and this is done in Figure 6. In Figure 6(a), we plot results
corresponding to ρI , ρII = 0.95, 0.9, 0.8, 0.7 but only for a particular notch
angle, 2α = 270◦, with ν = 0.3. In Figure 6(b), we show results corresponding
only to ρI , ρII = 0.9 but for three notch angles, viz. 2α = 270◦, 300◦, 330◦,
again with ν = 0.3. We note that to plot the results in Figure 6, we simply
substitute the value of G0/k corresponding to ρI , ρII from Figure 5 into
equation (8a).

From Figures 5,6(a), we see that the selection of ρI , ρII has a very sig-
nificant effect on the size of the regions in which the process zone may be
said to be mode I or mode II dominated. This is, of course, because ρI , ρII
control the definition of what constitutes a process zone that is mode I or
mode II dominated. From Figure 6(a), we also see that the effect of varying
ρI , ρII is to apply a simple dilation to these boundaries.

In contrast, in Figure 6(b), we see that varying the notch angle, 2α, has
marked effects not only on the size but also on the shape of the mode I
and mode II dominated regions. In fact, it is clear that varying the notch
angle significantly alters the relative sizes of the mode I and mode II dom-
inated regions. This is not surprising and is explained by the variation of
the strength of the mode I and mode II singularities with notch angle (see
Figure 2). Thus, we see that for ‘small’ notch angles the mode I domin-
ated region is much larger than the mode II dominated region because the
mode I singularity is much stronger than the mode II singularity, e.g. for a
270◦ notch λI −1 = −0.4555 and λII −1 = −0.0915. On the other hand, the
mode I and mode II dominated regions are of a similar size for larger notch
angles because the singularities are of similar strengths, e.g. for a 330◦ notch
λI − 1 = −0.4985 and λII − 1 = −0.4018.
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4. Small scale yielding limits

We now extend the scope of the calculation to permit the bound on the
load needed to maintain small scale yielding conditions to be calculated and
displayed in plots of mSII vs. mSI . This calculation is very similar to the
familiar approach in fracture mechanics for calculating small scale yielding
limits. We simply note that this asymptotic solution is valid only very near
to the sharp corner where the singular solution dominates the state of stress,
i.e. for r � a. Hence, this solution can only be used to describe the process
zone when rmax

p /a � 1, where rmax
p is the maximum extent of the plastic

zone.
We now use the same basic formulation described in detail above but in-

clude information about the distance to the nearest salient geometric feature,
a, by normalising the solution by this parameter. We obtain an estimate of
the size of the process zone by substituting stresses from equations (1),(2)
into equation (9) and using equations (7),(10). We then calculate the com-
binations of mSI , mSII that result in rmax

p /a being equal to the desired small
scale yielding limit. See Appendix Appendix C for some more details on this
calculation.

As can be seen in Figure 1, the process zone has two lobes, rp1(θ), rp2(θ).
In Figure 7, we show the values of mSI , mSII that result in rmax

p1 /a, rmax
p2 /a =

0.1 for the example case of 2α = 270◦ with ν = 0.3. The shaded area in this
figure gives the range of mSI , mSII for which both plastic lobes, rmax

p1 , rmax
p2 ,

are within small scale yielding. Hence in all subsequent plots, we show only
the curve corresponding to the edge of this shaded region.

4.1. Small scale yielding results

We now wish to create general plots that can be superposed with the
mode-mixity results shown in Figure 6(a) and used to classify experimental
data. Of course, the selection of the small scale yielding limit, rmax

p /a, is
also arbitrary and depends on how much influence of the (neglected) higher
order terms in the series expansion may be accepted. Thus, we show results
for several small scale yielding limits, viz. rmax

p /a = 0.01, 0.05, 0.1, 0.15, in
Figure 8(a) for the example case of 2α = 270◦ with ν = 0.3. In Figure 8(b),
we show only one small scale yielding limit, rmax

p /a = 0.1, but for three notch
angles, viz. 2α = 270◦, 300◦, 330◦ again with ν = 0.3.

As is no surprise, Figure 8(a) illustrates that the selection of the small
scale yielding limit, rmax

p /a, has a significant effect on the range of loads, i.e.
mSI , mSII , that fall within small scale yielding. It is also apparent that the
effect of increasing rmax

p /a is to apply a fairly uniform dilation the small scale
yielding curve.

8



In contrast, and notably, we see from Figure 8(b) that varying the notch
angle has only the most minuscule effect on the area within small scale yield-
ing for loadings that are mainly mode I in character (i.e. that are very near
to the mSI axis) but a marked effect for loadings that are mainly mode II
in character (i.e. very near to the mSII axis). We attribute this to the fact
that the order of the mode II singularity changes much more rapidly with
notch angle than does the mode I singularity (see Figure 2).

5. Example application

We now wish to apply these techniques to analyse experimental data re-
ported in the literature. A review of the literature reveals that a great deal
of experiments have been carried out to validate the various brittle fracture
criteria that have been proposed for sharp and blunt notches, e.g. [13, 14,
15, 16, 17, 18, 19, 20, 21]. Of the various experiments reported, we have
selected five groups of tests, viz. [22, 23, 16, 24, 17], which were performed
with polymethyl metacrylate (PMMA) under mixed-mode, monotonic load-
ing conditions.

Idealised diagrams (not to scale) of the various test geometries we have
selected are shown in Figure 9. In this figure, the applied loads denoted
P, T,M correspond to an applied normal traction, shear traction, distributed
moment, respectively, and R1, R2 are reaction forces that arise at supports
in the test rig. We also show the dimension we have selected as the char-
acteristic length, a, which controls the definition of the small scale yielding
limit and also affects the values computed for the dimensionless generalised
stress intensity factors, Sn. As can be seen in the figure, we have chosen a to
be the smaller of: i) half the distance to the nearest sharp re-entrant corner
(2α > 180◦) or ii) the full distance to any other geometric feature. We have
selected a in this way because sharp re-entrant corners sustain a very large
stress intensification and thus have an early influence on the stress state,
whereas external corners (2α < 180◦) and smooth surfaces do not.

To apply our analysis, we require knowledge of the generalised stress
intensity factors at failure, which we obtained from [22, 14, 23, 16, 24, 17].
The details of how we processed these data is given in Appendix Appendix D.
For our analysis, we also require knowledge of Poisson’s ratio, ν, and this is
quoted as 0.35 in [14], 0.36 in [23, 16, 24], and 0.38 in [17]. In Figure 10,
we show (a) the mode-mixity results for ρI , ρII = 0.9 and (b) the small scale
yielding results for rmax

p /a = 0.1 over a wide range of values of Poisson’s
ratio, viz. ν = 0.1, 0.3, 0.5, for the example case of a 270◦ notch. This figure
makes clear that the effect of varying ν from 0.35 to 0.38 is negligible, so all
subsequent results are computed for ν = 0.36.
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In Figure 11, we plot the generalised stress intensity factors at failure on
plots of mSII vs. mSI . These plots show the regions in which the process
zone is mode I dominated, mode II dominated, or is mixed-mode in character
according to four definitions, viz. ρI , ρII = 0.95, 0.9, 0.8, 0.7.3 Small scale
yielding limits of rmax

p /a = 0.01, 0.05, 0.1, 0.15 are also shown simultaneously.
In Figure 12, we display all the data4 presented in Figure 11 on a single plot
of G0/k vs. 2α that shows the mode-mixity of the process zone again for
ρI , ρII = 0.95, 0.9, 0.8, 0.7. The benefit of this plot is that data from many
different notch angles can be plotted simultaneously, but this comes at the
cost of being unable to view small scale yielding information.

5.1. Small scale yielding of experimental data

From Figure 11, we see that much of the data are within 1% small scale
yielding (rmax

p /a = 0.01), including all of the tests by Seweryn et al. [22]
and Priel et al. [16] and also most of those by Dunn et al. [23], Kim and
Cho [24], and Ayatollahi et al. [17]. The remainder of the tests by Dunn
et al. [23] are within 5% small scale yielding. This is also true of most of
the tests by Kim and Cho [24] and Ayatollahi et al. [17] aside from those
conducted under mode II dominated loading on notches of 2α � 300◦ (see
Figures 11(a),(c),(d)). In Figure 11(a), we see that for mode II dominated
loading the tests by Kim and Cho [24] are between 5% and 15% small scale
yielding, whereas those by Ayatollahi et al. [17] are outside 15% small scale
yielding. Here, it is clear that the the small scale yielding assumption is
being stretched, and this is likely because the stress field is only very weakly
singular (λII − 1 = −0.0915).

That some of the tests stretch the small scale yielding assumption may
be evidenced in [24] by the observed critical loads exceeding the predictions
of the brittle fracture criterion used by the authors, which is based on an
asymptotic analysis. However, Kim and Cho [24] only remark on the general
underestimation of failure loads (for all notch angles) and attribute this to
the effect of a small but finite notch root radius. In contrast, the analysis
by Ayatollahi et al. [17] predicts failure accurately even in pure mode II
conditions for 2α = 270◦ when our analysis suggests that the process zone
is outside 15% small scale yielding. Although this is somewhat surprising,
similar findings were also reported by Dunn et al. [23]. This seems to imply

3The only exception to this is in Figure 11(g) for 2α = 330◦ for which only the results
for ρII = 0.95, 0.9, 0.8, 0.7 and ρI = 0.9, 0.8, 0.7 are shown because the ρI = 0.95 case
failed to converge.

4We note that this plot excludes data obtained in pure I, II loading conditions because
under these conditions d0, G0 are not defined.
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the useful result that the asymptotic solution can be used to predict crack
initiation even as higher order terms begin to exert an influence on the process
zone.

5.2. Mode-mixity of experimental data

From Figures 11(a),11(e),12, we see that all the data reported by Dunn
et al. [23] and the majority of those by Priel et al. [16] resulted in a process
zone that was mainly mode I in character. In fact, Figure 11(a),12 shows
that the tests by Dunn et al. [23] resulted in a process zone with a correlation
coefficient of between 0.8 < ρI < 0.9 with a pure mode I process zone. This is
in agreement with the findings of Dunn et al. [23] as they were able to predict
failure accurately based on a critical mode I generalised stress intensity alone.
As can be seen in Figure 11(e), the tests carried out by Priel et al. [16] extend
over a wider range of mode-mixities than the tests in [23] but still are only
mildly mixed-mode in character at the level of the process zone. This finding
is in agreement with the analysis of Priel et al. [16] as well as with remarks
made by Ayatollahi et al. [17] in their analysis of a subset of the data in [16].

The data reported by Seweryn et al. [22], Ayatollahi et al. [17] and Kim
and Cho [24] explore the full range of mode-mixities. However, for small
notch angles (2α � 300◦), we see that these nominally mixed-mode loading
conditions usually result in a process zone that is mainly mode I or only
mildly mixed-mode in character. In fact, for these notch angles, the process
zone is almost never found to be mainly mode II in character aside from pure
mode II loading conditions. Thus, for practical engineering components, we
see that the process zone will often be mainly mode I in character. This is,
of course, due to the difference in the order of the mode I, II singularities
(see Figure 2), and so we temper these remarks because as 2α → 360◦ this
difference decreases. Hence, for larger notch angles, mixed-mode conditions
at the process zone become increasingly likely and mainly mode II conditions
become increasingly plausible.

6. Conclusion

We have taken further steps beyond that described in [11] to include useful
information in a simple portryal of the results of the Williams eigensolution
calculation when applied to notch experiments. Specifically, two quantities
are mapped out, viz. i) the proximity of the qualities of the process zone
to both mode I and mode II behaviour, and ii) the maximum load that
may be tolerated without violating small-scale yielding considerations. The
form chosen is particularly well suited to categorising the results of any ex-
perimental investigation because it is easy to see the underlying quality of
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the plastic and hence process zone. This can also be used in combination
with, for example, strain energy density and/or finite distance and volume
averaging methods to assess the likelihood of brittle failures in notched com-
ponents [16, 18, 19, 20]. Higher order terms could also be embedded [24, 25].

Application of this analysis to mixed-mode fracture data reported in the
literature shows that the majority of tests were conducted within 5% small
scale yielding (rmax

p /a = 0.05). The only exception to this was for oblique
notches subjected to mode II dominated loading conditions for which the
singularity of the stress field is relatively weak. The results also indicate
that mode II domination of the stress field is very unlikely to occur for ob-
lique notch angles, and hence in practice; indeed, in many cases, the process
zone will be mainly mode I in character – even under nominally mixed-
mode remote loading. The exception is for very acute notch angles for which
mixed-mode conditions are most likely and mainly mode II conditions are
conceivable.
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Appendix A. Williams’ solution angular eigenfunctions

The angular eigenfunctions, fn
ij(θ), with the normalisation we have used

in our formulation of Williams’ solution are given by [11]

f I
rr(θ) =

cos[(λI − 1)α] cos[(λI + 1)θ]− λI−3
λI+1

cos[(λI + 1)α] cos[(λI − 1)θ]

cos[(λI + 1)α]− cos[(λI − 1)α]

(A.1a)

f I
θθ(θ) =

cos[(λI − 1)α] cos[(λI + 1)θ]− cos[(λI + 1)α] cos[(λI − 1)θ]

cos[(λI − 1)α]− cos[(λI + 1)α]
(A.1b)

f I
rθ(θ) =

sin[(λI − 1)α] sin[(λI + 1)θ]− sin[(λI + 1)α] sin[(λI − 1)θ]

sin[(λI − 1)α]− λI+1
λI−1

sin[(λI + 1)α]
(A.1c)

f II
rr (θ) =

sin[(λII − 1)α] sin[(λII + 1)θ]− λII−3
λII+1

sin[(λII + 1)α] sin[(λII − 1)θ]

sin[(λII − 1)α]− λII−1
λII+1

sin[(λII + 1)α]

(A.2a)

f II
θθ (θ) =

sin[(λII − 1)α] sin[(λII + 1)θ]− sin[(λII + 1)α] sin[(λII − 1)θ]

− sin[(λII − 1)α] + λII−1
λII+1

sin[(λII + 1)α]

(A.2b)

f II
rθ (θ) =

cos[(λII − 1)α] cos[(λII + 1)θ]− cos[(λII + 1)α] cos[(λII − 1)θ]

cos[(λII − 1)α]− cos[(λII + 1)α]
.

(A.2c)
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Appendix B. Mode-mixity calculation

To approximate the process zone of a notch subjected to mixed-mode
loading, rp(θ), we equate expressions (9),(10), substitute in stresses from
equations (2),(6), and manipulate and simplify the resulting expression to
give

3

(
k

G0

)2

=

(
rp
d0

)2(λI−1)

pI(θ) +

(
rp
d0

)2(λII−1)

pII(θ)

+

(
rp
d0

)(λI+λII−2)

pM(θ).

(B.1)

We see that the left side of this equation accounts for the strength of the
applied load, and the right side specifies the size and shape of the pro-
cess zone based on the contribution of three terms, viz. pure mode I,
pure mode II, and mixed-mode. The pξ(θ) functions in this expression,
where ξ ∈ {I, II,M}, account for the θ-variation of the mode I, mode II,
and mixed-mode term, respectively. Note that the pξ(θ) functions are com-
prised of combinations of the trigonometric functions given in Appendix Ap-
pendix A, and that they account for the influence of Poisson’s ratio, ν.

Similarly, the process zone of a notch subjected to pure mode n loading
can be obtained as above except by using stresses from equation (11) instead
of from equation (6). Simplifying and manipulating the resulting expression
as before gives

3

(mSn)2
≡ 3

(
k

Knaλn−1

)2

=

(
rnp
a

)2(λn−1)

pn(θ), (B.2)

where rnp (θ) defines the shape of the pure mode n process zone.
To calculate the correlation coefficient between a mixed-mode process

zone and pure mode I and pure II zones, ρI , ρII , we first determine the shape
of the pure mode I, II process zones, rIp(θ), r

II
p (θ), using equation (B.2). As

these are self-similar, we do this simply by fixing mSn = 1. Similarly, to
obtain the shape of the mixed-mode process zone, rp(θ), we fix G0/k to a
particular value and use equation (B.1). To carry out this calculation, we first
discretise these process zones, rp(θ), r

I
p(θ), r

II
p (θ), with respect to θ and then

calculate the the correlation coefficients, ρI , ρII , with these discretised process
zones. As we are interested in obtaining the values of G0/k corresponding to
particular values of ρn, we use a search algorithm that employs a combination
of the bisection method and Newton-Raphson iterations for this purpose.

The typical convergence of this technique, i.e. the variation in the value
of G0/k corresponding to any given value of ρn with the number of points
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used in the discretisation, N , is shown in Figure 13 for the example case of
ρII = 0.9 for a 330◦ notch with ν = 0.3. In the figure, N is varied from 8
to 512 (in multiples of 2), and it is clear that a converged result is obtained
for N = 256 or greater. Hence, all results are computed at this level of
discretisation. We also note that we have explored a range of combinations
of α, ν, ρn and have found convergence to be insensitive to ν but to be slightly
slower for large values of α, ρ. Thus, Figure 13 illustrates close to the slowest
convergence within the range of α, ρ considered in our analysis.

Appendix C. Small scale yielding calculation

To calculate the bounds on applied loads that lie within small scale yield-
ing, we approximate the process zone, rp(θ), by equating equations (9),(10),
substituting in stresses from equations (2),(1), using equation (7), and ma-
nipulating and simplifying the resulting expression to give

3

(mSI)2
=

(rp
a

)2(λI−1)

pI(θ) +

(
SII

SI

)2 (rp
a

)2(λII−1)

pII(θ)

+

(
SII

SI

)(rp
a

)(λI+λII−2)

pM(θ)

(C.1a)

3

(mSII)2
=

(
SI

SII

)2 (rp
a

)2(λI−1)

pI(θ) +
(rp
a

)2(λII−1)

pII(θ)

+

(
SI

SII

)(rp
a

)(λI+λII−2)

pM(θ).

(C.1b)

We now have two (equivalent) expressions that can be used to calculate the
size of the process zone in comparison to the finite dimensions of the geometry
under consideration.

To perform this calculation, we choose a particular small scale yielding
limit, thus fixing rmax

p /a, and we also fix the ratio SII/SI . We then employ
a numerical optimisation that searches equation (C.1a) for the value of θ
that minimises mSI , which occurs when θ = θmax, where θmax is the angle
corresponding to the maximum plastic radius, rmax

p , i.e. rmax
p = rp(θ

max).
Thus, we obtain mSI that corresponds to the specified small scale yielding
limit, and, as SII/SI is known, we can easily calculate the corresponding value
of mSII . We must then simply perform this calculation for multiple values of
SII/SI . As this ratio tends to infinity as pure mode I loading conditions are
approached, we perform the calculation as described with equation (C.1a)
for 0 ≤ SII/SI ≤ 1 and with equation (C.1b) for 0 ≤ SI/SII ≤ 1 to account
for the full range of mode-mixities.

17



Appendix D. Processing of experimental data

To process the experimental data in [22, 14, 23, 16, 24, 17], we require
the mode I, II generalised stress intensity factors, KI , KII , at failure; the
characteristic length dimension, a, (see Figure 9); and the shear yield strength
of the material, k. Once Kn, a, k are known, we use equation (7) to obtain
mSI , mSII , which we plot in Figure 11. We then use equation (8a) with
the values of mSI , mSII just obtained to calculate G0/k, which we plot in
Figure 12.

In all the papers we considered, the tensile strength, σy, of the tested
PMMA was reported, but the shear yield strength, k, was not. Thus, we
assume the shear yield strength to be given by

k =
σy√
3

(D.1)

in the absence of material data. In Table 1, we record the values of a and σy

used in our analysis, which we obtained from [14, 23, 16, 24, 17].
We obtained the values of the generalised stress intensity factors at fail-

ure in different ways depending on the information reported in each paper.
For the data reported by Ayatollahi et al. [17], we used image extrapola-
tion software to infer the generalised stress intensities at failure directly from
Figure 8 in [17]. Both mode I, II generalised stress intensities in this figure
are normalised by the critical mode I generalised stress intensity factor de-
noted KV

Ic in [17] (which is distinct from the fracture toughness denoted KIc

in [17]). To obtain the actual values of the generalised stress intensity at
failure, we calculated KV

Ic from equations (8),(11) in [17] using the values of
fracture toughness (KIc = 1.96MPa

√
m) and tensile strength (see Table 1)

reported in [17]. From equations (4),(A1),(A2) in [17], it can be seen that
the authors use the same normalisation of the angular eigenfunctions as in
our formulation, so no rescaling is required.

For the data reported by Dunn et al. [23], we used image extrapolation
software to obtain calibrations for the generalised stress intensity factors
from Figure 5 in [23]. We then used equation (5) in [23] with the failure
loads reported in Table 3 in [23]. Unfortunately, we were unable to find
explicit mention of what scaling was applied to the angular eigenfunctions.
However, we assume that Dunn et al. [23] used the typical normalisation of
f I
θθ(0) = 1 and f II

rθ (0) = 1 because this normalisation is used in several other
papers by the authors around the same period [15, 26, 27]. As this is the
same scaling used in our formulation, no rescaling is required.

For the tests conducted by Kim and Cho [24], we used image extrapola-
tion software to infer the mode I, II generalised stress intensities at failure
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(denoted Kn
Icr, K

n
IIcr in [24]) directly from Figure 10 in [24]. However, the

formulation used by Kim and Cho [24] does not normalise the angular eigen-
functions in the same way as in our formulation and also pulls out a factor
of 1/

√
2π as shown in equation (4) in [24]. Thus, we must rescale the gener-

alised stress intensity factors inferred from Figure 10 in [24] (i.e. Kn
Icr, K

n
IIcr

in [24]) to match those used in our formulation. To do this, we multiply the
obtained values of Kn

Icr and Kn
IIcr by f I

θθn(θ = 0)/
√
2π and f II

rθn(θ = 0)/
√
2π,

respectively, where f I
θθn(θ = 0) and f I

rθn(θ = 0) are the angular eigenfunctions
used in [24] evaluated along the notch bisector. These angular eigenfunctions
are written out explicitly below equation (2) in [24].

For the tests reported by Priel et al. [16], the ratio of the generalised
stress intensities, KII/KI , (denoted A2/A1 in [16]) is given in Table 5 in [16].
The value of the mode I generalised stress intensity at failure is given in
Table 10 in [16] (and is denoted A1 in [16]). This information enables the
value of the mode II generalised stress intensity at failure to be calculated
easily. From equation (5) in [16], it is clear that Priel et al. [16] normalise the
angular eigenfunctions in the same way as in our formulation, so no rescaling
is required.

For the data reported by Seweryn et al. [22], slightly different calibrations
of the generalised stress intensity factors are reported in [22, 14]. The latter
set of calibrations were obtained using a more refined model and are more
accurate. Hence, we have use this latter set of calibrations, which are given
in Table 1 of [14], along with the failure loads reported in Table 2 in [22]
to determine the generalised stress intensity factors at failure. From [22, 14,
28], it is clear that the authors use the same normalisation of the angular
eigenfunctions as is used as in our formulation. However, from equation (1)
in [14] we see that their formulation differs from ours by a factor of (2π)λ−1.
Thus, we must multiply the obtained generalised stress intensity factors by
(2π)λ−1 to rescale them for our formulation.

Captions to figures

1. An idealised diagram of a semi-infinite notch of interior angle 2α show-
ing the polar coordinate set (r, θ) and both lobes of the plastic zone,
rp1(θ), rp2(θ).

2. A plot of the order of the mode I, II singularities against notch angle,
2α.

3. A Cartesian plot of r vs. θ displaying the relative shape of: (a) a
pure mode I process zone, rIp, and a mixed-mode process zone, rp,
of G0/k = 0.2495, and (b) a pure mode II process zone, rIIp , and a
mixed-mode process zone, rp, of G0/k = 1.292. These process zones
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are computed for the example of a 270◦ notch with ν = 0.3 and result
in ρI , ρII = 0.7 in plot (a),(b), respectively.

4. A plot of showing the correlation coefficients, ρI , ρII , (when positive),
vs. G0/k for a notch of 2α = 270◦ and ν = 0.3, which illustrates
the variation of the mode-mixity of the process zone with the applied
load. The range of applied loads for which the process zone is mode I
dominated, mode II dominated, or mixed-mode are shown (assuming
ρI , ρII = 0.7 mark these boundaries).

5. Plots of G0/k against notch angle, 2α, showing the mode-mixity of
the process zone for four choices of ρI , ρII , viz. 0.95, 0.9, 0.8, 0.7, when
ν = 0.3.

6. Plots in dimensionless generalised stress intensity space, i.e. mSII vs.
mSI , showing the mode-mixity of the process zone (a) for four choices
of ρI , ρII , viz. 0.95, 0.9, 0.8, 0.7, when 2α = 270◦ and ν = 0.3 and
(b) for three different notch angles, viz. 2α = 270◦, 300◦, 330◦, when
ν = 0.3 and ρI , ρII = 0.9.

7. A plot of mSII vs. mSI that shows the values of generalised stress
intensity factors that result in rmax

p1 , rmax
p2 = 0.1a for the example case

of 2α = 270◦ and ν = 0.3. The shaded area shows the region in which
both plastic lobes, rmax

p1 , rmax
p2 , are within small scale yielding.

8. Plots of mSII vs. mSI showing small scale yielding limits (a) for four
choices of rmax

p /a, viz. 0.01, 0.05, 0.1, 0.15, when 2α = 270◦ and ν = 0.3
and (b) for three different notch angles, viz. 2α = 270◦, 300◦, 330◦,
when ν = 0.3 and rmax

p /a = 0.1.
9. Diagrams (not to scale) of the selected test geometries. The applied

loads and the dimension we have selected as the characteristic length,
a, are also shown.

10. Plots showing the influence of Poisson’s ratio (a) on the mode-mixity
results for ρI , ρII = 0.9 and (b) on the small scale yielding results for
rmax
p /a = 0.1, both for the example case of a 270◦ notch.

11. Plots of mSII vs. mSI that show the state of generalised stress intens-
ity at failure for the fracture test data reported in [22, 23, 16, 24, 17].
Mode-mixity results for ρI , ρII = 0.95, 0.9, 0.8, 0.7 and small scale yield-
ing results for rmax

p /a = 0.01, 0.05, 0.1, 0.15 are also shown (all calcu-
lated assuming ν = 0.36).

12. A plot of all the mixed-mode data from Figure 11, which shows the
mode-mixity of the process zone for ρI , ρII = 0.95, 0.9, 0.8, 0.7 (calcu-
lated assuming ν = 0.36).

13. A plot of the typical convergence of ρ with the number of points used
in the discretisation, N , for the example case of ρII = 0.9, ν = 0.3, and
2α = 330◦.
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Captions to tables

1. The values of the characteristic length, a, and tensile strength, σy, used
in our analysis.

Tables

Author Test group a (mm) σy (MPa)
Ayatollahi et al. [17] 270◦ 14.142 70.5

300◦ 11.547 70.5
330◦ 10.353 70.5

Dunn et al. [23] 270◦ 2.54 69.8
270◦ 5.08 69.8
270◦ 7.62 69.8
270◦ 10.16 69.8

Kim and Cho [24] 270◦ 20 61.7
285◦ 20 61.7
300◦ 20 61.7
330◦ 20 61.7

Priel et al. [16] 315◦ at 198K 3.266 179.5
315◦ at 296K 3.788 111.8

Seweryn and �Lukaszewicz [14] 280◦ 25 102.8
300◦ 25 102.8
320◦ 25 102.8

Table D.1: The values of the characteristic length, a, and tensile strength, σy, used in our
analysis.
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