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Does better disease management in primary care reduce 

hospital costs? Evidence from English primary care 

 

ABSTRACT 

 

We apply cross-sectional and panel data methods to a database of 5 million patients in 8,000 

English general practices to examine whether better primary care management of 10 chronic 

diseases is associated with reduced hospital costs. We find that only primary care 

performance in stroke care is associated with lower hospital costs.   Our results suggest that 

the 10% improvement in the general practice quality of stroke care between 2004/5 and 

2007/8 reduced 2007/8 hospital expenditure by about £130 million in England.  The cost 

savings are due mainly to reductions in emergency admissions and outpatient visits, rather 

than to lower costs for patients treated in hospital or to reductions in elective admissions.  

 

Keywords: Quality.  Disease management. Primary care.  Hospital costs.  Ambulatory care 

sensitive conditions. Preventative care. 
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Does better disease management in primary care reduce 

hospital costs? Evidence from English primary care 

 

 

1 Introduction 
 

There is a widespread belief and hope amongst policymakers that timely disease 

management, in the form of encouraging behavioural change, self care by patients, and 

preventive medicine, can reduce demands for healthcare expenditure and improve health 

outcomes (HSCIC, 2005). The intention of disease management is to ensure that ‘at risk’ 

groups, or those with established chronic conditions, receive clinical best practice in the 

monitoring of their condition, and that recognized intermediate outcomes are achieved to 

reduce the risk of acute health deterioration. The hope is that better management of existing 

conditions and the reduction in the risk of serious complications will improve patients’ health 

prospects, and reduce expected future health services expenditure (Congressional Budget 

Office, 2004). 

 

The research evidence is however equivocal (Congressional Budget Office, 2004). Most 

preventive interventions are cost-increasing, and many are not even cost-effective when 

compared to more conventional clinical interventions. Less than 20% of studies have 

identified cost-saving preventive interventions (Russell, 2009). A recent review of the 

economic impact of disease management programs for diabetes, depression, heart failure and 

chronic obstructive pulmonary disease (COPD) found that only half of studies reported cost 

savings, mainly through reduced hospital admissions and specialist visits (de Bruin, 2011).   

The cost-effectiveness of disease management is therefore a critical issue. As summarized by 

Cohen et al (2008), “careful analysis of the costs and benefits of specific interventions, rather 

than broad generalizations, is critical.” In other words, it is likely that the precise population 

groups targeted, and the frequency and mode of implementation will be crucial determinants 

of an intervention’s impact on health and health service costs. 

 

In an attempt to improve the quality of disease management in primary care, pay for 

performance schemes have been introduced in several countries: Australia (Scott et al, 2009), 
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Italy (Bruni et al, 2009), Taiwan (Lee et al, 2010), the United States (Lester et al, 2010) and 

the United Kingdom (Roland, 2004; Doran et al, 2006). Since 2004, UK general practitioners 

(GPs) have been subject to a major ‘pay for performance’ incentive scheme, known as the 

Quality and Outcomes Framework (QOF).  The introduction of QOF was part of the new 

contract for the delivery of primary care.  The contract came with considerable additional 

funding for general practices, and expenditure on primary care in England increased from 

£5.8 billion in 2003/04 to £7.8 billion in 2005/06.  Under the QOF, about 20% of GP income 

was determined by practice achievement against quality indicators (National Audit Office, 

2008).  The QOF is probably the most radical attempt to date to embed preventive medicine 

and disease management into primary care and has a large number of indicators of disease 

management quality. Given the substantial additional funding provided to support the QOF, 

policymakers will want to determine whether those practices that record a better performance 

against QOF indicators reduce the costs patients incur in other parts of the health system. 

 

A number of studies have used the detailed measures of disease management produced by the 

QOF to examine the association between practice quality scores and hospital admissions 

(Downing et al, 2007; Shohet et al, 2007; Bottle et al, 2008a; Bottle et al, 2008b; Kiran et al., 

2010; Purdy, 2011;  Bankart et al, 2010 Calderón-Larrañaga A et al , 2011 ). They have 

found only a weak negative, and usually statistically insignificant, association. This might be 

due to the ineffective nature of the incentivized interventions. However, it could also be due 

to the use of aggregate geographic level data, or a relatively small samples of practices, to the 

use of a single year of data, to other data limitations, or to the characteristics of the pay-for-

performance scheme (for example, the QOF quality indicators have upper achievement 

thresholds of between 50% and 90% so that practices can score the maximum number of 

points without achieving the target for all patients). 

 

Dusheiko et al (2010) avoid many of these problems in their analysis of practice emergency 

hospital admission rates for short term complications of diabetes using data on all English 

practices from 2004/5 to 2006/7.  They find that moving 10% of registered diabetic patients 

from poor to good glycaemic control in an average practice was associated with a 14% 

decrease in the rate of emergency admissions for short term diabetic complications, and a 

£1,928 reduction in hospital costs per practice in 2006/7.  However, their study was at 

practice level and was not able to allow for the characteristics of individual patients in 

practices.   
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Some studies have directly investigated the impact of pay-for-performance (P4P) incentives 

for quality in primary care on hospital admissions and costs. Mullen et al. (2010) found that 

although P4P for a range of clinical quality measures in California had a positive impact on 

some of the clinical measures rewarded by the programs, there was no significant effect on 

avoidable hospital admissions.  Lee et al. (2010) reported that diabetes related examinations 

and physician visits increased for patients enrolled in a P4P disease management program in 

Taiwan compared with diabetic patients not enrolled in any P4P program, while inpatient 

admissions and diabetes related hospitalizations and expenditure fell significantly by 12% 

and 35%.  Chen et al. (2010) investigated the impact of P4P for quality of care for diabetic 

patients in Hawaii. Patients who saw P4P-participating physicians were significantly more 

likely to receive better quality care compared with patients who saw non–P4P-participating 

physicians and improvements in care were associated with significant reductions in 

hospitalization.  Fiorentini et al (2010) found the incentives for quality in primary care 

reduced related avoidable hospitalizations in the Emilia-Romagna region.  

 

We take advantage of a major new database of hospital records for over 50 million English 

citizens linked to disease management quality indicators for their general practice to examine 

the association between quality of disease management in general practice and hospital costs.  

We are able improve on previous studies by using QOF data for a longer time period (2004/5 

to 2007/8), and by having detailed information on the diagnostic history of individuals. The 

database also enabled us to examine the impact of disease management on the total hospital 

costs for individuals as well as their costs relating to unplanned admissions, specialist visits 

and planned hospital treatments. 1   

 

Section 2 discusses how general practice disease management may affect hospital costs and 

describes the estimation methods used to detect these effects.  Section 3 describes the dataset 

and section 4 the estimation methods.  Section 5 has the results and section 6 presents some 

concluding remarks. 

   

                                                 
1 We do not attempt to estimate the effects of the QOF scheme on quality or on hospital costs since we have no 
information of pre QOF quality.   
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2 General practice disease management and hospital cost  
 

Disease management of chronic conditions in general practice is intended to improve the 

health of individual patients with chronic conditions via monitoring (for example, cholesterol 

levels for patients with coronary heart disease), preventive medicine (for example anti-

platelet therapy for stroke patients, influenza immunization for vulnerable groups), and 

lifestyle advice for smokers or the obese.  A general practice’s disease management could 

affect hospital costs for its patients in a variety of ways.  Patients incur hospital costs via 

emergency admissions, elective admissions and outpatient visits.  Better disease management 

by a general practice could alter the probabilities of these three types of use and/or the costs 

incurred if a patient uses hospital services. 

 

Ambulatory care sensitive conditions (ACSCs) are medical conditions for which adverse 

outcomes such as emergency hospital admission may be reduced by better management in 

primary care (AHRQ, 2004).   Purdy et al (2009) estimate that a set of 19 ACSCs commonly 

used to monitor aspects of National Health Service (NHS) performance accounted for 14.1% 

of NHS emergency admissions in England in 2005/6 and a larger set of 36 ACSCs accounted 

for 40.1%.   Thus we would expect that practices with better disease management of ACSCs 

would have fewer patients being admitted as emergencies for complications of ACSCs.  

However, it is possible that over-zealous management of some ACSCs in general practice 

could increase certain types of emergency admissions.  For example, disease management of 

diabetic patients is aimed at reducing blood sugar levels and should therefore reduce 

emergency admissions for acute hyperglycaemic  complications.  But excessively aggressive 

management of blood sugar can increase the risk of admissions for hypoglycaemic  coma 

(Briscoe and Davis, 2006). The targeting of patients with specified chronic conditions may 

also divert GP efforts away from other types of patients and increase their risk of 

hospitalization.   On balance it is likely that better general practice disease management is 

associated with lower emergency admission probabilities, though there is no evidence on the 

overall magnitude of the association.  

 

It is also possible that better general practice disease management will reduce costs for 

patients who are hospitalized as emergencies if such patients are healthier, though still ill, 

when admitted. Moreover, some of the investments that practices make to improve disease 

management, such as better record systems, employing specialist nurses, and better liaison 
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with community health staff, will also enable their patients to be discharged earlier because 

aftercare arrangements are better.   

 

The effect of better practice disease management on the costs of elective hospitalizations is 

less clear.  Some elective hospitalizations are for the treatment of patients whose chronic 

conditions are more severe. For example, patients with heart disease requiring CABGs or 

PTCAs are usually admitted as elective patients, as are diabetic patients with ophthalmic 

complications. If better disease management reduces the probability of the disease 

progressing to the stage where such procedures are required then elective admissions will be 

reduced.  On the other hand better disease management can increase the probability that 

patients with chronic conditions are admitted for unrelated elective procedures such as 

cataracts or hip replacements, either because they survive long enough to require such 

procedures or because patients with better controlled chronic conditions will have greater 

health gains from such procedures and may therefore be more likely to receive them. 

Improved monitoring of patients with chronic conditions may result in earlier detection of 

other conditions requiring treatment.  Again, as with emergency admissions, if general 

practice disease management means that admitted elective patients are healthier, the costs of 

admitted patients may be lower because they are likely to develop fewer complications and to 

have shorter lengths of stay. 

 

The use of outpatient departments by a practice’s patients may also be affected by its disease 

management.  Of the 60 million annual outpatient visits in England, around 20 million are for 

new patients referred by their GP.  More active case finding may lead to GPs referring more 

patients to hospital outpatient departments for further testing and diagnosis.  GPs may also 

refer more patients for elective procedures and the first step in this process is a referral to an 

outpatient department for a specialist to agree that the patient should receive the treatment. 

On the other hand elective or emergency admissions will often lead to follow up outpatient 

visits, and if better disease management leads to fewer inpatient stays then follow up 

outpatient visits will also decline. 

 

Thus, in addition to examining the effect of disease management on a patient’s total hospital 

costs, it will of interest to examine its effects on the differing types of hospital cost (arising 

from emergency admissions, elective admissions, and outpatient visits) and to decompose 

these effects into those due to variations in the probability of use and those due to variations 
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in the intensity of use (costs of those who use the hospital).   Moreover, it may also be 

necessary to allow for the fact that different effects of primary care disease management may 

occur with differing time lags. For example better control of diabetic patients’ blood sugar 

will have a rapid effect on emergency admissions for hyperglycaemic complications. But 

better monitoring of their peripheral pulses will take some years to reduce the likelihood of 

admissions for long term neuropathological complications leading to lower limb amputations.   

Section 4 describes how we model these various effects in the light of the available data. 

 

3 Data 
 

We link two individual level and one practice level administrative databases to small area 

socio-economic and demographic data.  In the English National Health Service patients who 

wish to obtain publicly funded NHS primary care services from general practitioners (GPs) 

must register with a single general practice.  We had information on all patients (over 50 

million) who were registered with an English practice at any time between 1 April 2001 and 1 

April 2008.  We also had information on all hospital inpatient episodes and outpatient visits 

for all patients admitted to English NHS hospitals for the same period.2  We linked the 

practice registration data to hospital data at individual patient level using pseudonymized 

NHS numbers.   We then attached measures of the quality of disease management in their 

practices to the patients. Finally, we attached a large set of socio-economic and supply side 

variables to the individuals based on either their small area of residence or their general 

practice. 

 

For analysis we took a 10% random sample of patients in each English practice that had at 

least 1000 patients, yielding about 5 million observations per year.3   

 

3.1 Hospital expenditure 

For our models of patient cost the dependent variable is individual patient annual NHS 

hospital expenditure.4 We include expenditure on both outpatient attendances and all inpatient 
                                                 
2 Some patients of English practices are treated in hospitals located in Wales and Scotland.  Previous work has 
shown that dropping the small number of patients in practices near to the borders with Wales and Scotland 
makes no difference to estimation results (Dixon et al, 2009).  
3 Sutton et al (2007) report that a sample size of about 5 million individuals is sufficient to generate stable 
parameter estimates. 
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hospital spells finishing in that year whether they started in the year or the previous year.  We 

used the same set of unit costs obtained from the English Department of Health to cost spells 

in each of the years 2004/5 to 2007/8. We exclude costs for maternity from the calculation of 

total hospital costs since maternity costs are unlikely to be affected by chronic disease 

management.  We also exclude mental health costs because of doubts about the quality of the 

hospital expenditure data for mental health.  For 2007/8 31% of our sample record a non-zero 

hospital cost with the average cost of these patients being £1,383.  The average cost across all 

patients in our sample for 2007/8 is £427.  See Table 1 where we also present summary 

statistics for average costs and probabilities of use for emergency admissions, elective 

admissions and outpatient visits.  

 

<Table 1 about here> 

 

3.2 Practice disease management quality 

We measure practice disease management quality using data from the Quality and Outcomes 

Framework (QOF), a P4P scheme covering all practices in the UK that was introduced in 

April 2004 (National Audit Office, 2008). Because of the difficulty of attributing health 

outcomes to specific activities in a general practice, the QOF ties incentive payments mainly 

to process activities over which GPs have direct control and for which there is evidence of 

subsequent benefits to the patient (Doran, 2008; Roland, 2004).  The QOF was expected to 

lead to a reduction in avoidable hospital admissions by stimulating an improvement in 

chronic disease management (HSCIC, 2005, p2). We use the very rich practice level data 

extracted automatically from general practice electronic records to construct practice level 

measures of the quality of disease management in 10 disease areas.   

 

There were some revisions to the QOF in 2006/7 but its basic structure remained intact over 

the study period.5 In the revised version there were 136 performance indicators grouped in 

four domains: clinical (80 indicators), organizational (43 indicators), patient experience (5 

indicators), and additional services (8 indicators).  Practices scored points for their 

                                                                                                                                                        
4 Financial years run from 1 April to 31 March.  Hospital data are available at  http://www.hesonline.nhs.uk/. 
We exclude the costs of patients treated privately in NHS hospitals and include the costs of patients in private 
hospitals who were paid for by the NHS.  
5 The 2004/5 QOF had 1050 points for 146 indicators, with 76 clinical indicators in 11 disease areas accounting 
for 550 points (Department of Health, 2004). 
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achievement against each indicator, with the maximum number of points available varying 

across indicators.  In total a general practice could earn up to 1,000 points, each point worth 

£125 for an average practice. 675 of the points were for the 80 clinical indicators that covered 

19 groups of conditions.  QOF clinical quality determined about 10% of GP income. 

 

We use the clinical domain indicators to measure practice disease management quality.  We 

ignore the organizational indicators because they are unlikely to have a direct effect on 

hospital expenditure and would most likely influence expenditure only through their impact 

on the clinical domain indicators.  The clinical indicators generally measured regularity of 

monitoring (for example, whether a diabetic patient's blood pressure or cholesterol had been 

recorded in the last 15 months) and intermediate outcomes, such as whether blood pressure 

had been successfully controlled. Practices were awarded points according to the proportion 

of eligible patients for whom each target was met, with points increasing linearly between a 

lower threshold of 40%6 up to an upper threshold that varied across indicators.  See Table 2 

for examples of indicators for practice care of stroke patients. 

 

<Table 2 about here> 

 

Setting upper thresholds below 100% of maximum attainment was intended to reduce the risk 

that GPs would inappropriately treat some patients (Roland, 2004; Doran et al 2008). 

However, the upper threshold might also discourage practices from including the most hard-

to-reach patients because no further points are received when a practice has achieved the 

upper threshold (National Audit Office, 2008, p36). 

 

Most of the clinical indicators are expressed as percentages of the eligible population, an 

approach designed to encourage practices to increase the number of treated patients from the 

appropriate set of patients. However, the eligible population for an indicator is not the 

number of patients with the disease (prevalence - which we denote P).  Practices are able to 

exclude some patients from the denominator by designating them as ‘exceptions’ according 

to specified criteria.  Exception reporting is intended to avoid penalising practices where, for 

example, patients do not attend for review, or where a medication cannot be prescribed due to 

a contraindication or side-effect.  Thus the reported achievement used to calculate financial 

                                                 
6 Except for the DEMENTIA 2 indicator where the lower threshold was 25%. 
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rewards for a clinical indicator is N/(P−E) where N is the number for whom the indicator is 

achieved and E is the number exception reported for that indicator. 

 

Practices could increase their reported achievement, and hence their financial rewards, by 

overstating exceptions. There is some evidence that practices did so (Doran et al, 2008; 

Gravelle, Sutton and Ma; 2010).  Thus the reported achievement rate is not an appropriate 

quality indicator.  Using the actual points earned by the practice would also be questionable 

because the upper thresholds for earning points means that, for example, two practices with 

reported achievements of 60% and 90% on the Stroke 8 indicator would get the same number 

of points (see Table 2).   

 

In this paper we therefore measure quality by the population achievement rates calculated as 

N/P (i.e. not adjusted for exceptions), though, as we note in the results section, measuring 

quality by reported achievement (N/(P−E)) makes no substantive difference.  For each 

disease domain we calculate the domain population achievement as a weighted average of the 

population achievement rates on the indicators in that domain.  The weight attached to an 

indicator is the share of the maximum points that it attracts in the relevant clinical domain.7   

 

Some indicators refer to a subset of patients in a disease area and there is no information on 

the number of patients in these subsets to enable us to calculate our quality measure.  We 

therefore base our quality measures only on indicators that refer to all patients with a disease 

(Doran et al, 2006) For 2007/8 ee use 48 clinical quality indicators to calculate overall quality 

measures for the 10 disease areas shown in Table 3 that cover most of the major chronic 

conditions encountered in general practice. 

 

<Table 3 about here> 

 

Table 4 has summary statistics for 2007/8 for our quality measures for the ten clinical disease 

areas and Table 5 reports their correlation coefficients. Although the rates are positively 

correlated, many of the correlations are modest, suggesting considerable variations in levels 

of attainment within a practice across different domains. The mental health achievement rate 

                                                 
7 For details of the construction of the population achievement rates see Doran et al (2006). 
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is the least well correlated with the other sub-domains. Correlations for other years are 

similar.  

 

<Tables 4 and 5 about here> 

3.3 Covariates 

We use three sets of covariates: individual needs variables, small area needs variables and 

indicators of supply.8  The individual needs variables are: 

(a) age (5 year bands) at the beginning of the financial year and gender (38 age/gender band 

dummies). 

(b) previous morbidity for each individual as measured by 152 dummy variables based on 

ICD10 inpatient diagnosis categories used by the NHS Information Centre.9  The dummy for 

a morbidity category was set equal to 1 if the individual had one or more hospital spells in 

either of the previous two years with any diagnosis in the relevant subset of ICD10 

categories.10    

(c) four hospital encounter variables (the number of inpatient episodes in the previous two 

years, the number of outpatient attendances in the previous two years, and two dummy 

variables indicating whether the individual had a priority outpatient referral or received any 

treatment in the course of an outpatient attendance in the previous two years).  The rationale 

is that the number of times an individual has been admitted to hospital or attended an 

outpatient clinic in the past conveys something about the intensity of their morbidity 

experience, over and above the information contained in the binary ICD10 morbidity 

variables, which do not reflect repeated spells in the same ICD10 category.  

(d) two indicators for whether the individual patient had a private inpatient spell or a private 

outpatient attendance in an NHS hospital in the previous two years.  Our expenditure measure 

is for costs borne by the NHS. Some patients treated in NHS hospitals choose to pay to be 

treated as private patients to reduce their waiting times or to be able to choose their surgeon.  

Individuals who have been private patients in the past are more likely to use private provision 

in the future, and will therefore other things equal incur less NHS expenditure.  

 

                                                 
8 These variables are more fully described in PBRA Team (2010). 
9 See http://www.hesonline.nhs.uk/Ease/servlet/ContentServer?siteID=1937&categoryID=202. 
10 The morbidity indicators do not indicate severity of the condition, merely its presence or absence.  It would be 
useful in future work to include more refined measures of mobidity for particular conditions from data sets 
based on practice clinical records. 
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For the attributed (small area) needs variables we had over 160 small area level measures of 

population socio-economic characteristics that might plausibly be linked to variations in 

hospital utilization. These included data from the 2001 Census and the Indices of Multiple 

Deprivation 2007 that were attributed to each individual via their Lower Super Output Area 

of residence.11  We also had information on disease prevalence rates for each practice derived 

from the rates reported by practices as part of the QOF.   

 

The attributed supply variables included over 90 measures of local health system 

characteristics that might affect hospital utilization. They included practice characteristics 

such as the number of patients per GP and measures of the accessibility of different types of 

health care facilities from the small area in which the patient lives.  The supply variables also 

included measures of accessibility such as distance to providers and waiting times at local 

hospitals. 

 

We also included 151 dummy variables for the Primary Care Trust (PCT) responsible for the 

general practice with which the individual is registered.  PCTs were the administrative entity 

with prime responsibility for purchasing NHS services from local hospitals on behalf of their 

local populations, typically about 350,000 individuals. The dummies are intended to capture 

factors such as variations in aggregate PCT spending levels and PCT commissioning policies 

that may affect hospital costs.  Because patients in many PCTs tend to use one main hospital 

provider the PCT dummies will also pick up variations in hospital diagnosis recording 

practices, and hospital treatment thresholds.12  

 

4  Estimation  
 
Given the large samples of data together with the extensive set of covariates to be considered, 

we adopt a pragmatic approach, starting with cross-sectional models for exploratory analyses 

and building up to dynamic panel data models. The cross-sectional models allow us to 

explore specification of models that capture the impact of practice quality on hospital costs 

while controlling for confounding factors. They also allow us to investigate the impact of 

                                                 
11 See http://www.neighbourhood.statistics.gov.uk/dissemination/.    There are  32,482 lower super output areas 
(LSOAs) with a minimum population of 997 and a mean population of 1,513. 
12 We also estimated models using the proportion of a practice’s expenditure incurred at each hospital in 
England to control for hospital effects with very similar results. 



 15

different practice quality measures and the lag between quality and hospital costs. The impact 

of quality is then explored separately for total costs (zero and positive expenditures) arising 

from emergency admission, elective admissions and outpatient visits. We then consider the 

impact of disease management on the probability of incurring hospital expenditure and 

separately on the level of costs conditional on having incurred expenditures (positive 

expenditures only). Finally, we estimate dynamic panel data models of total hospital costs 

controlling for persistence in individual expenditures and heterogeneity in practice effects 

brought about, for example, by differences in referral decisions.  

 

The distribution of total hospital costs for individuals generally has a spike at zero and a long 

right-hand tail. They also tend to be heteroskedastic. In small to moderate samples these 

characteristics can be challenging to ordinary least squares (OLS) regression and alternatives 

including generalized linear models and ordinary least squares on a transformed dependent 

variable are often used (e.g. Buntin and Zaslavsky, 2004; Manning et a;, 2005).  For the 

dataset used in this study the performance of alternative estimators was investigated in depth 

and it was found that, because of the very large sample sizes available, OLS models of 

untransformed expenditure outperformed alternatives in terms of predictive power (Dixon et 

al, 2009). This is in line with findings from other researchers using large samples (Dunn et al, 

2003, Ellis and McGuire, 2007).  Accordingly, when modelling the level of costs we estimate 

linear specifications using OLS (and panel data counterparts) in what follows.  

 

4.1 Cross section models 

We first estimate cross section models of total hospital costs  

 0ijp jp q ijp x ijp m ijp n ijp v ijp sc q x m n v sβ β β β β β β′ ′ ′ ′ ′ ′= + + + + + + p PCT ijpPCT β ε′+ +             (1) 

where  is expenditure in the financial year 2007/08 on patient i in practice j in PCT p on 1 

April 2007. q is a vector of measures of general practice disease management quality, x is a 

vector of 37 age and gender dummies. m is a vector of 152 morbidity indicators based on 

ICD10 diagnoses for inpatient episodes and v vector of 4 encounter variables, with both 

vectors based on data from the previous two years.  n is vector of small area needs variables 

attributed to individuals on the basis of their place of residence and s a vector of supply 

variables based on practice characteristics and accessibility of health care facilities (all as of 1 
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April 2007). PCT is a vector of 151 PCT dummy variables and ε  is an error term. The model 

is estimated via OLS using practice cluster robust standard errors.  

 

We retained vectors of individual characteristics x, m and v in all specifications. However, the 

initial model had over 500 potential explanatory variables including 250 attributed needs and 

supply characteristics (n, v, s). To search for a parsimonious specification of the attributed 

variables these latter variables we start from a full model (containing all variables) and 

eliminate attributed variables on the basis of their t statistics.  We first drop attributed 

variables with |t| < 0.2 and re-estimate and drop attributed variables with |t| < 0.4.  We repeat 

increasing the required absolute t statistic until all remaining attributed variables have |t| ≥ 

2.00.  We then drop attributed variables with counter-intuitive signs, and re-estimate the 

models. We repeat these steps until only those attributed variables with a significance level of 

1% or better. The resulting model is then used as the basis for investigating the impact of 

quality measures on hospital costs.   

 

We next estimate probit cross-section models of the probability of incurring hospital 

expenditure in 2007/8 ( )Pr ijpy , where yijp = 1 if cijp > 0 and yijp = 0 otherwise, with practice 

cluster robust standard errors.  We also estimate OLS cross section models for individuals 

with positive expenditure cijp > 0, again with practice cluster robust standard errors.   We use 

the set of regressors selected in the final parsimonious version of  (1).   

 

4.2  Panel data models 

We extend the cross-sectional analysis to exploit the longitudinal dimension of the data and 

estimate panel data models for 2004/5 to 2007/8  

 0ijpt jpt q ijpt x ijpt m ijpt n ijpt v ijpt sc q x m n v sβ β β β β β β′ ′ ′ ′ ′ ′= + + + + + +     

       2p PCT t jp ijptPCT β ϕ μ ε′+ + + +   (2) 

ϕt is a year effect, μjp is a practice-specific time invariant error term and ε2ijpt is a time and 

individual pooled error term.  Note that the pooled error term could be decomposed into an 

unobserved individual specific effect and an idiosyncratic error term: ε2ijpt = αijp + ζijpt. 

However, due to computational constraints of estimating three-way error-component panel 

data models with such a large set of variables and observations we pool these two 
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components of the error.  This is unlikely to be overly restrictive given that variability in the 

quality measures occurs across time and practices and not across individuals within practices.  

 

First we estimate (2) assuming, separately, that the μjp are fixed and random practice effects. 

We then use a dynamic specification by including an autoregressive one-period lag of the 

expenditure variable to reflect persistence, or state dependence, in the use of health care not 

fully reflected through the set of morbidity and encounter variables: 

 0 1ijpt jpt q ijpt x ijpt m ijpt n ijpt v ijpt s ijptc q x m n v s cβ β β β β β β γ −′ ′ ′ ′ ′ ′= + + + + + + +     

       2p PCT t jp ijptPCT β ϕ μ ε′+ + + +   (3) 

Persistence in health expenditures is captured through the parameter  .  For example, should 

an individual experience a shock to health (via ε2ijpt) resulting in higher hospital expenditure 

in period t, then γ̂ > 0 will imply that health care expenditures will be higher in future 

periods.  

 

To derive consistent estimates of the parameters of (3) we need to allow for the correlation 

between the lagged dependent variable cijpt-1 and the error ε2ijpt and in particular via an 

unobserved individual effect ie ε2ijpt =αijp + ζijpt. In the context of models with discrete 

outcomes this is often referred to as the problem of initial conditions (Heckman, 1981). 

Wooldridge (2002) proposes an approach to deal with the initial conditions problem intended 

for non-linear dynamic random effects panel data models. It involves modelling the 

distribution of the unobserved effect conditional on the initial value of the dependent variable 

(first wave observation) and any exogenous explanatory variables (see Contoyannis et al. 

(2004) for an application). Following the spirit of this approach but adapting to our linear 

model we parameterise the unobserved individual effect as follows:   

 2 0 1 1 2ijp ijp ijp ijpc zα κ κ κ ε′= + + +         (4) 

where ijpz is a vector of the average values over time within individuals of the exogenous 

variables (x,m,n,s).  εijp is an error term assumed to be independent of ijpz′ , q, the initial 

condition cijp1 and the residual pooled error term (ε2ijpt − α2ijp).  Substituting (4) into (3) gives 

a model with regressors at time t augmented to include cijp1 (costs in year 2004/5) and ijpz . 

This model can then be estimated using random practice effects.  Note that we would expect 



 18

the coefficient 1κ̂  to be positive as it is informative about the relationship between the 

individual unobserved effect and initial hospital expenditures.  

 

Blundell, et al. (2002) suggest modelling individual heterogeneity in dynamic count data 

models as a function of baseline or pre-sample averages of the dependent variable and show 

this to perform well in simulations.  To further control for practice level heterogeneity we 

adapt this approach by averaging individual baseline costs cijp1 across individuals within 

practices to construct a variable representing practice baseline costs based on data from the 

initial period 2004/5. In a similar way to the augmented regression in (4), this constructed 

variable 1jpc  can used as a regressor in the parameterization of the unobserved practice effect 

as 0 1 1jp jp jpcμ τ τ ε= + + .  

 

5 Results  
 

5.1 Cross-section models for 2007/8 total cost 

Although our final parsimonious model contained only five of the 250 attributed needs and 

supply variables, there was only a small loss in explanatory power compared with the initial 

model with a full set of covariates (the 2R fell from 0.2662 to 0.2654).  The signs and 

coefficients on the covariates from the parsimonious model are generally plausible.13  The 

variables that make the largest contribution to explanatory power are the 152 past morbidity 

indicators and the age/gender categories.  Unsurprisingly, individuals with past morbidity 

generally have higher costs.  Costs for both males and females decrease with age until 25 

years and then increase (see Appendix Table A1).  There is no hump at child bearing age for 

women because maternity costs are excluded from the total cost dependent variable.     

 

The coefficients on the four hospital encounter variables are significant and positive. They 

imply that, for example, the number of times an individual has been admitted to hospital or 

attended outpatients in the past conveys something about the intensity of their morbidity 

experience, over and above the information contained in the binary ICD10 morbidity 

                                                 
13 Appendix Table A1 reports coefficients on age/gender, past hospital use, and attributed needs and supply 
variables for the main cross-section and panel data models. The complete set of coefficients (including the 
individual past morbidity dummies and PCT dummies) are in the working paper Dushieko et al (2011).  
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variables. The two private health care variables have a negative effect on NHS costs. This is 

as expected since individuals who have been private patients in the past are more likely to use 

private facilities in the future when they are ill and thus will generate lower NHS expenditure.  

The five attributed small areas needs variables that are significant in the final parsimonious 

model have plausible signs but make a very small contribution to explanatory power of the 

model because of the presence of the individual level past morbidity variables and the 

age/gender coefficients.  

 

Our focus is on the ten disease management quality measures for general practices.  Only the 

measure for stroke care quality is statistically significant with a coefficient of −0.664 (Table 

6, model 1).14 We also estimated the cross-section parsimonious model for 2007/8 costs, 

replacing the current QOF stroke score for 2007/8 with the stroke score for previous years 

(models 2 to 4 in Table 6).  The estimated effect of lagged quality on 2007/8 expenditure is 

smaller the greater the lag, falling from −0.664 for current stroke quality to −0.322 for 2004/5 

stroke quality.15  

 

<Table 6 about here> 

 

We undertook robustness checks by forcing the other nine QOF quality measures into 

models. Model 1 in Table 7 shows the coefficients on the disease domain quality measures 

when all ten are included in the regression.  Three of the coefficients are positive, though not 

statistically significant, six are negative and statistically insignificant, and only the stroke 

quality measure is negative and significant.  The estimated effect of stroke quality in this 

model is very similar to its effect when the nine insignificant quality measures are dropped 

(model 1, Table 6).    

 

<Table 7 about here> 

 

                                                 
14 The coefficient on stroke care quality was robust to the nesting down process. The coefficient in the full 
model with all 250 attributed needs and supply variables was −0.565 (t: −2.23). 
15 Most of the indicators in the clinical domains reflect practice achievement in the 15 months to the financial 
year end (that is, the QOF indicators for 2007/8 reflect practice achievement from January 2007 to March 2008).  
This will be slightly (three months) behind of the cost variable which relates to inpatient episodes and outpatient 
attendances finishing between April 2007 and March 2008.   
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We also computed an aggregate quality measure as the weighted average of the 10 disease 

domain measures and found that it is negative and significant when it is included as the only 

QOF quality measure (Table 7, model 2).  The coefficient on the aggregate measure is very 

similar to that on the stroke score in the earlier model.   Finally, we estimated 10 separate 

models for total hospital cost forcing one of the 10 quality measures into each model.  The 

coefficients from on the quality measures from these 10 separate models are reported in 

column 3 of Table 7. Four quality measures (asthma, chronic heart disease, diabetes, 

hypothyroidism) are separately significantly negatively associated with expenditure but the 

coefficients are smaller and less precise than that on stroke care quality.16 

 

In the light of the consistent results from the simple cross-section models we decided to 

restrict attention in more sophisticated models to the effects of stroke care quality and to use 

the same parsimonious specification.  

5.2 Two part cross section models 

Table 8 reports estimates of two part models for all hospital expenditures, and for expenditure 

disaggregated for emergency, elective and outpatient attendances. Higher quality stroke care 

was significantly associated with a lower probability of any hospital expenditure and reduced 

hospital expenditure conditional on incurring any expenditure. A 1% increase in quality was 

associated with a decrease in the probability of positive expenditures of 0.0002 against a 

mean probability of 0.309 (elasticity −0.05).  A 1% improvement in stroke care quality was 

associated with a £2 reduction in total hospital costs (elasticity −0.12) for those with any 

costs.  We also ran a two part model with log costs and the stroke quality coefficient was 

−0.0009 (SE 0.0002).   

 

<Table 8 about here> 

 

                                                 
16 We also estimated models with the quality measure constructed using patients reported eligible by the practice 
P−E, rather than those with the disease P (see section 3.2). For the cross section model the coefficient on the 
stroke quality measure is reduced slightly from −0.644 (SE 0.190) to −0.602 (SE 0.219).The reduction in the 
estimated coefficient is probably because removing exceptions from the denominator in the quality measure is 
akin to a rescaling which increases the magnitude of the explanatory variable and hence reduces the magnitude 
of the coefficient. We also ran models including measures of the share of each practice’s admissions at each 
hospital. The stroke coefficient was again reduced slightly −0.609 (SE 0.219).  We tested for robustness to 
estimation methods by running a cross section GLM model with a log link and gamma distribution for total 
hospital costs.  The coefficient on the stroke quality score was again negative and significant −0.0016 (SE 
0.0005). 
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Higher quality was associated with significantly lower emergency and outpatient visit 

expenditures, but not with elective costs. The reduction in emergency expenditures was 

driven by a significant reduction in the probability of admission. A 1% improvement in 

stroke quality was associated with a 0.00007 decrease in the probability of emergency 

admission (elasticity −0.11). There was a negative but insignificant association with 

emergency expenditure conditional on the patient being admitted. The significant decrease in 

outpatient expenditures was due to significant reductions in both the probability of a visit 

(elasticity −0.51) and the cost of visits conditional on any outpatient expenditure (elasticity 

−0.01).    

 

5.3 Panel data models 

Results of panel data estimates are presented in Table 9.17  Column 1 presents results from a 

fixed practice effects model.18 This estimator controls for unobserved practice-level effects 

correlated with both quality and expenditure. It relies on variation in QOF scores within 

practices over time to identify the impact of quality on costs.  The estimate of the effect of 

stroke quality is negative (−0.091), a great deal smaller than the corresponding cross-

sectional estimate (Table 8, column 1) and not significant. This is likely to reflect the relative 

lack of variation in practice QOF scores over time compared to the cross-sectional model 

estimate where the impact of quality is identified through variation across practices. The 

discrepancy may also reflect the bias in the cross-sectional estimates due to correlation 

between unobserved practice heterogeneity associated with quality of care and patient costs.    

 

<Table 9 about here> 

 

Column 2 is the corresponding random effects specification with a practice-specific error 

component.  The coefficient on the stroke QOF score (−0.193) is smaller than the cross-

                                                 
17 For the panel models, a 10% sample of patients registered with each general practice with a list size of at least 
1000 at 1 April 2004 was selected (n=5,131,161), and  practice registration details along with the LSOA of 
residence were added for these patients as at 1 April 2005,  1 April 2006, and 1 April 2007.  The panel sample 
thus excludes people born after 1 April 2004 but it includes patients alive at 1 April 2004 but who die at some 
point during the next four years.  
18 We further attempted individual fixed effects estimation. However, due to a lack of within individual 
variability in key variables of interest (notably the QOF score) from which to identify parameters, estimation 
yielded poor and imprecise estimates. 
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section estimate but larger than the fixed effects estimate in model 1 and is significant at the 

1% level.19  

 

Column 3 presents the results of the dynamic panel specification (3)  augmented with the 

individual effect specified as in (4).  The coefficient on the stroke QOF score is −0.266, 

which is greater than the corresponding coefficient in the random effects model and is 

significant at the 5% level. The model controls for individual heterogeneity in costs by 

directly allowing for persistence over time together with a random GP practice error 

component. The significant coefficient on lagged cost is 0.125, so a negative health shock 

that increases costs in one period will increase future costs but at a rapidly diminishing rate. 

The coefficient on the initial period individual cost is positive indicating the expected 

positive correlation between the unobserved individual-specific effects and costs.  

 

Column 4 has results from augmenting the dynamic panel model by including the baseline 

2004/5 mean practice cost to provide additional control for practice level heterogeneity. The 

absolute value of the coefficient on the practice stroke quality score decreases slightly to 

−0.255.  

 

We repeat the model in column 4 separately for emergency, elective and outpatient visit 

costs. The results confirm that the significant association between better quality of practice 

stroke care and hospital expenditure is driven primarily by prevention of emergency 

admission and subsequent specialist follow up care than by reductions in elective hospital 

treatments. The coefficient on lagged costs is much smaller for emergency cost than for 

outpatient and elective expenditures. suggesting that emergency costs are less persistent.20   

 

The mean practice stroke quality increased by ten percentage points between 2004/5 and 

2007/8.  The average practice population was 5700 so that the RE model dynamic model with 

baseline individual and mean practice costs (column 4, Table 9) suggests that the 

improvement in quality of care of stroke patients reduced annual expenditure on the patients 

of an average practice by £10*0.255*5700 = £14,535 (95% CI: -£1,464 -£27,606). 

                                                 
19 Using quality measures constructed with P−E rather than P (see section 3.2) for the random practice effects 
model (model 2 the coefficient is reduced to −0.152 (SE 0.082). 
20 The difference is not due to the relative magnitude of costs in these three categories as average emergency 
costs exceed average elective and outpatient costs.   
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Nationally, with an English population in 2007 of 51.1 million, the improvement in stroke 

care in general practice may have reduced 2007/8 hospital expenditure by £130million (95% 

CI: £13.1million −£247million) compared with 2004/5. The significant positive coefficient 

on one period lagged expenditure (0.125) implies that the total cost saving from a one off 

increase in  2007/8 stroke quality of 10%  which reduced total 2008/9 cost by £130 million  

should also include a reduction in 2008/9 expenditure of 0.125*£130million = £16 million.  

 

6 Conclusions 
 

This study has taken advantage of a major new data set that links practice-based patient 

registration data, patient level hospital use data, and GP practice clinical quality data to 

examine whether higher quality of disease management in primary care is associated with 

reduced hospital costs. Applying cross-section and panel data methods to a data set of 5 

million individuals, with a very rich set of covariates, we find that the current QOF stroke 

quality score almost always has a statistically significant negative association with patients' 

hospital costs in the same year.  Once stroke quality was allowed for, hospital costs were not 

affected by the quality of primary care disease management for any of the other nine 

conditions for which we had data.  

 

The reduction in total hospital expenditure associated with better quality of practice stroke 

care is due primarily to a reduction in the probability of emergency hospitalization and in 

outpatient visits.  There were negative but small and insignificant associations between 

quality and elective expenditure, which suggests that better monitoring of patients has not 

lead to increased costs arising from increased referrals by GPs to secondary care. Since we 

measure costs for all patients in practices, not just those whose disease management was 

incentivized under the QOF, our estimates allow for the possibility of diversion of preventive 

efforts in primary care away from other primary care patients. There was also significant 

persistence over time in secondary care medical costs indicating the longer term importance 

of better disease management.  There are weaker, but still statistically significant associations 

of 2007/8 hospital costs with general practice stroke quality in earlier years. The study 

demonstrates the importance of using panel data methods to control for unobserved patient 

and practice heterogeneity in non-randomized studies when assessing the impact of quality of 

care on patient outcomes.  
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Whilst we suggest a modest association between this aspect of primary care disease 

management and hospital costs, we so not claim that improved primary care will reduce 

lifetime health care costs. As is well-known, the majority of disease prevention strategies 

generate additional costs (Cohen et al, 2008). Our focus is solely on the annual impact on 

contemporaneous secondary care costs when there is an improvement in primary care 

prevention. We do not consider, for example, the £1 billion paid to general practices for their 

QOF achievements, nor the additional pharmaceutical and primary care costs associated with 

meeting QOF stroke targets, nor the impact on total lifetime healthcare costs if the patient 

lives longer as a result of better primary care.  Ideally a full evaluation would use measures of 

disease management quality for individuals rather than at the practice level as in this paper 

and would also incorporate data on morbidity from practice records, rather than from just 

from hospital records. A full evaluation of primary care disease management must also take 

account of its effect on the future time stream of health and on costs.  But the reduction in 

hospital costs due to better primary care disease management is part of the gains to be 

included in the evaluation.  

 

In summary, we are cautious about drawing inferences of causality from our analysis, but feel 

that the panel data results do offer solid grounds for believing that improvements in primary 

care disease management do not increase hospital costs, and that for at least some conditions, 

better management materially reduces hospital costs. 
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Table 1.  Costs and use for 2007/8 
 
  All hospital 

use 
Emergency 

inpatient 
Elective 
inpatient

Outpatient Other 

Average cost (sd) for all 
patients (£) 

427 
(2,067) 

150 
(1,086) 

144 
(1,338) 

119 
(451) 

14 
(410) 

Probability of positive cost 30.85% 5.54% 7.55% 28.74% 0.30% 

Average cost (sd) for patients 
with positive cost (£) 

1,383 
(3,539) 

2,707 
(3,791) 

1,904 
(4,513) 

414 
(765) 

4,710 
(5,818) 

Notes.  For random sample of 5,170,603 patients on lists of English practices with at least 1000 patients at 1 
April 2007.  Excludes maternity and mental health. The “Other” category includes patients transferred between 
hospitals and where the admission method is not known. 
 
 
 
Table 2.  QOF indicators used to construct measure of practice quality of care for 
stroke patients  
  Upper 

threshold 
Available 

points 

STROKE 5 % who have a record of blood pressure in the notes in 
the preceding 15 months 

90 2 

STROKE 6 % in whom the last blood pressure reading (measured 
in the last 15 months) is  150/90 or less 

70 5 

STROKE 7 % who have a record of total cholesterol in the last 15 
months 

90 2 

STROKE 8 % whose last measured total cholesterol (measured in 
the last 15 months) is 5 mmol/l or less 

60 5 

STROKE 10 % who have had influenza immunisation in the 
preceding 1 September to 31 March 

85 2 

STROKE 12 %who have a record that an anti-platelet agent 
(aspirin, clopidogrel, dipyridamole or a combination), 
or an anti-coagulant is being taken  (unless a 
contraindication or side-effects are recorded 

90 4 

Notes.  TIA: transient ischemic attack.  For '%' read 'the percentage of patients'.  Indicators Stroke 5 to Stroke 12 
have lower payment thresholds of 40%.   Source: NHS Employers (no date) .   
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Table 3.  Disease domains in the Quality and Outcomes Framework 2007/8 used to 
construct general practice disease management quality measures  
 
 Number of 

indicators in 
measure 

Total points 
available

 
Asthma 2 35
CHD 9 85
CKD 3 21
COPD 4 30
Dementia 1 15
Diabetes 15 87
Hypertension 2 77
Hypothyroidism 1 6
Mental health 5 35
Stroke 6 20
Total 48 411
Notes. Source: NHE Employers (no date).  CHD: coronary heart disease; CKD: chronic kidney disease; COPD: 
chronic obstructive pulmonary disease.  Note: not all indicators were used to construct our composite quality 
scores (see section 3 for further details).   
 
 
Table 4. Descriptive statistics for general practice disease management quality measures 
2007/8 
 
QOF quality measure Number of 

practices 
Weighted average population 

achievement (%) 
Mean SD Min Max 

Asthma  8289 76.38 9.11 0.00 100 
CHD  8284 82.74 3.85 35.00 100 
CKD  8251 97.68 2.57 50.00 100 
COPD  8279 81.97 8.61 0.00 100 
Dementia  8200 75.44 17.48 0.00 100 
Diabetes  8290 87.42 5.57 9.38 100 
Hypertension  8292 91.28 4.11 14.87 100 
Hypothyroidism  8281 95.37 3.78 9.09 100 
Mental health  8284 74.73 13.66 0.00 100 
Stroke  8276 86.17 5.77 6.67 100 
Notes: population achievement for an indicator i in disease domain k is defined as Nik/(Pk−Eik) where Nik is the 
number of patients for whom the indicator is achieved, Pk is the number of patients with the disease, Eik is the 
number of patients with the disease who are exception reported.  The quality measure for a disease domain is a 
weighted average of population achievement on each indicator in the domain, where the weights are the 
maximum points available for the indicator.   
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Table 5. Correlation coefficients for general practice disease management quality measures 2007/8   
 Asthma CHD CKD COPD Dementia Diabetes Hyper-

tension 
Hypo-

thyroidism
Mental 
Health 

CHD 0.349         
CKD 0.212 0.266       
COPD 0.356 0.485 0.194      
Dementia 0.257 0.216 0.129 0.226     
Diabetes 0.368 0.536 0.245 0.484 0.218    
Hypertension  0.406 0.476 0.336 0.373 0.229 0.489    
Hypothyroidism 0.272 0.368 0.210 0.296 0.179 0.400 0.455  
Mental Health 0.329 0.210 0.137 0.225 0.285 0.212 0.213 0.110
Stroke 0.343 0.607 0.301 0.466 0.225 0.530 0.484 0.371 0.234
Note: the number of practices is 8,178. 
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Table 6.  Association of general practice stroke management quality with 2007/8 
hospital expenditure: cross section models  
 
 1 2 3 4 
Stroke 2007/8  -0.664***    
 [0.190]    
Stroke 2006/7  -0.531***   
  [ 0.169]   
Stroke 2005/6   -0.460***  
   [ 0.145]  
Stroke 2004/5    -0.322** 
    [ 0.124] 
     
Observations 5170603 5170603 5170603 5166983 
R2 0.265  0.265  0.265  0.265 
Notes:  Dependent variable: patient hospital expenditure in 2007/8.  Reported coefficients are effect of a 1% 
increase in clinical population achievement in a patient’s practice on the patient’s hospital expenditure.  Robust 
standard errors in brackets with clustering by PCT. 
All models also contain 37 age/gender bands, 152 ICD10 morbidity dummies for 2006/7 and 2005/6,  4 hospital 
encounter variables for 2006/7, 2005/6, 2 private patient measures for 2006/7 and 2005/6,  5 attributed needs 
variables, 151 PCT dummies. See Sections 2 and 3 for details. *** p<0.01, ** p<0.05, * p<0.1 
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Table 7.  Association of 2007/8 general practice disease management quality measures 
with 2007/8 hospital costs   
 1  

All 
quality 

measures 
in single 

regression  

2 
Overall 
quality  

3 
Quality 

measures 
entered in 
separate 

regressions
Asthma -0.153  -0.241**

 [ 0.127]  [ 0.099] 
Coronary heart disease  -0.028  -0.637** 
 [ 0.385]  [0.297] 
Chronic kidney disease -0.013  -0.442 
 [0.437]  [0.395] 
COPD 0.099  -0.158 
 [0.180]  [0.152] 
Dementia -0.039  -0.090 
 [0.062]  [0.059] 
Diabetes 0.037  -0.374** 
 [0.237]  [0.182] 
Hypertension 0.462  -0.213 
 [0.376]  [0.251] 
Hypothyroidism -0.387  -0.657* 
 [0.438]  [0.372] 
Mental health -0.046  -0.115 
 [0.077]  [0.072] 
Stroke -0.666**  -0.664*** 
 [0.258]  [0.190] 
Overall quality  -0.698***  
  [0.236]  
    
Observations 5,170,603 5,170,603 5,170,603 
R2 [  0.265] [  0.265]  
Notes: Dependent variable in all models is 2007/8 hospital expenditure.  Reported coefficients are effect of a 1% 
increase in clinical population achievement in a patient’s practice on the patient’s hospital expenditure. Robust 
standard errors in brackets with clustering by PCT. All models are cross section and also contain 37 age/gender 
bands, 152 ICD10 morbidity dummies for 2006/7 and 2005/6,  4 hospital encounter variables for 2006/7, 
2005/6, 2 private patient measures for 2006/7 and 2005/6,  5 attributed needs variables, 151 PCT dummies. (See 
Sections 3 and 4 for details.)  All 10 models reported in column 3 had the same R2 of 0.265.   
*** p<0.01, ** p<0.05, * p<0.1 
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Table 8. Association of general practice stroke management quality with costs and use for different types of hospital cost, 2007/8 
 

  1 2 3 4 5 6 7 8 9 10 11 12 

 _________All hospital use_______ ________Emergency admissions____ _______Elective admissions______  ________Outpatient visits_________ 

 Total cost 
(OLS) 

Part 1 
 Prob use 
(probit) 

Part 2  
Cost if use 

(OLS) 

Total cost 
(OLS) 

Part 1 
Prob  

admission 
(probit) 

Part 2 
Cost if 

admitted 
(OLS) 

Total cost 
(OLS) 

Part 1  
Prob 

admission 
(probit) 

Part 2 
Cost if 

admitted 
(OLS) 

Total cost 
(OLS) 

Part 1  
Prob visit 
(probit) 

Part 2  
Cost if visit 

(OLS) 

Stroke QOF 
score 

coefficient 

-0.664*** -0.00066** -1.996*** -0.319*** -0.00071*** -1.970 -0.089 -0.00042 -1.406 -0.164** -0.00061** -0.400** 

[0.190] [0.00026] [0.602] [0.096] [0.00026] [1.431] [0.113] [0.00027] [1.324] [0.063] [0.00026] [0.197] 

             

Av marginal 
effect 

 -0.00019**   -0.00007***   -0.000052   -0.0017**  

 [0.00007]   [0.000025]   [0.000034]   [0.00007]  

             

N 5,170,603 5,170,603 1,595,303 5,170,603 5,170,603 286,629 5,170,603 5,170,603 390,245 5,170,603 5,170,603 1,486,211 

R2 0.2654 0.1940 0.2502 0.0986 0.1314 0.1421 0.0977 0.1276 0.3943 0.2062 0.1929 0.0936 

 
Notes: All models are cross section and also contain 37 age/gender bands, 152 ICD10 morbidity dummies for 2006/7 and 2005/6,  4 hospital encounter variables for 2006/7, 
2005/6, 2 private patient measures for 2006/7 and 2005/6,  5 attributed needs variables, and 151 PCT dummies. See Sections 2 and 3 for details.  The R2 is a pseudo-R-
squared for the probit models. *** p<0.01, ** p<0.05, * p<0.1. 
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 Table 9. Panel data models for patient hospital costs 2004/5 - 2007/8  
 
  1 2 3 4 5 6 7 

 
fixed practice 

effects 

random 
practice 
effects 

random 
practice 
effects 

random 
practice 
effects 

random 
practice 
effects 

random 
practice 
effects 

random 
practice 
effects 

 
all costs all costs all costs all costs 

emergency 
costs only 

elective costs 
only 

outpatient 
costs only 

stroke QOF score  -0.091 -0.193** -0.266** -0.255** -0.245*** 0.072 -0.058** 

[0.135] [0.085] [0.117] [0.117] [0.078] [0.065] [0.026] 
   

lagged individual cost 0.125*** 0.125*** 0.053*** 0.205*** 0.558*** 

[0.005] [0.005] [0.002] [0.011] [0.030] 
   

base individual cost 0.016*** 0.016*** 0.046*** 0.013 0.088*** 

[0.005] [0.005] [0.003] [0.011] [0.015] 
   

base practice cost 0.032*** 0.024*** 0.023** 0.105*** 

[0.007] [0.008] [0.009] [0.007] 
   

Observations (NT) 19,701,431 19,701,431 14,590,999 14,590,999 14,590,999 14,590,999 14,590,999 
Individuals (N) 5,123,157 5,123,157 5,005,347 5,005,347 5,005,347 5,005,347 5,005,347 

   

Within R2 0.2047 0.2031 0.2091 0.2091 0.0691 0.2825 0.2937 

Between R2 n/a 0.7414 0.7007 0.7006 0.5508 0.6644 0.8632 

Overall R2 n/a 0.2043 0.2103 0.2103 0.0699 0.2832 0.2979 

Note:  The dependent variable in all models is individual hospital cost in a year.  Model 1 is a fixed (practice) effects model with robust standard errors clustered by general 
practice. Model 2 is a random (practice) effects model with robust standard errors clustered by practice.  Model 3 is the same as model 2 with the addition of lagged 
individual cost and baseline individual cost.  Model 4 is the same as model 3 with the addition of baseline practice cost.  Models 5 – 7 are the same as model 4 but employ a 
different measure of cost as the dependent variable and as regressors.  All models also contain 37 age/gender bands, 152 ICD10 morbidity dummies, 4 hospital encounter 
variables, 2 private patient measures,  5 attributed needs variables, 3 year dummies and 151 PCT dummies. See Sections 2 and 3 for details. *** p<0.01, ** p<0.05, * p<0.1. 
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Appendix A1: Summary of modelling results   
Table A1 Determinants of individual hospital costs 

One period 
cross-
section 
model, 
2007/8 

Panel data models, 2004/5-2007/8 

OLS 

Fixed 
practice 
effects 

Random 
practice 
effects 

Random 
practice 
effects 

Random 
practice 
effects 

Random 
practice 
effects 

Random 
practice 
effects 

Random 
practice 
effects 

all costs all costs all costs all costs all costs 
emergency 
costs only 

elective 
costs only 

outpatient 
costs only 

1 2 3 4 5 6 7 8 

Demographic variables                 
males aged < 1 197.419*** 165.777*** 166.433*** 

[17.287] [13.691] [13.684] 
males aged 1-4 -2.405 -10.080*** -9.873*** -8.601** -8.597** -14.991*** -8.546*** 7.524*** 

[5.080] [3.098] [3.095] [3.685] [3.685] [2.757] [1.861] [0.982] 
males aged 5-9 -20.949*** -20.829*** -20.425*** -22.129*** -22.191*** -12.320*** -13.768*** 1.802** 

[3.789] [2.104] [2.100] [2.285] [2.285] [1.334] [1.314] [0.747] 
males aged 10-14 -2.121 -2.398 -2.105 -5.412** -5.518** -1.553 -16.942*** 8.937*** 

[3.087] [2.027] [2.021] [2.272] [2.272] [1.387] [1.310] [0.771] 
males aged 15-19 -9.816*** -10.526*** -10.257*** -12.963*** -13.087*** 5.582*** -14.648*** -4.961*** 

[3.654] [2.248] [2.239] [2.491] [2.492] [1.590] [1.326] [0.555] 
males aged 20-24 -12.602*** -10.898*** -11.892*** -10.279*** -9.817*** 2.200 -7.905*** -3.775*** 

[3.648] [2.123] [2.111] [2.409] [2.407] [1.500] [1.276] [0.625] 
males aged 25-29 -18.198*** -17.334*** -17.447*** -16.983*** -16.686*** -4.240*** -6.617*** -4.658*** 

[3.380] [2.073] [2.067] [2.357] [2.356] [1.486] [1.343] [0.545] 
males aged 30-34 -14.297*** -15.341*** -15.332*** -15.034*** -14.917*** -5.988*** -3.073** -3.663*** 

[3.352] [2.016] [2.010] [2.311] [2.310] [1.394] [1.453] [0.557] 
males aged 40-44 17.037*** 17.991*** 18.358*** 18.861*** 18.781*** 5.793*** 6.443*** 4.049*** 

[3.874] [2.264] [2.261] [2.604] [2.605] [1.623] [1.556] [0.611] 
males aged 45-49 51.812*** 47.238*** 47.569*** 45.639*** 45.523*** 14.678*** 16.739*** 9.311*** 

[4.568] [2.605] [2.603] [2.945] [2.945] [1.821] [1.682] [0.620] 
males aged 50-54 97.534*** 86.394*** 86.492*** 86.698*** 86.532*** 24.956*** 35.819*** 17.243*** 
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[5.971] [3.010] [3.007] [3.435] [3.435] [2.082] [2.078] [0.750] 
males aged 55-59 158.800*** 158.851*** 159.115*** 158.972*** 158.763*** 44.319*** 73.653*** 28.233*** 

[5.513] [3.378] [3.376] [3.860] [3.860] [2.382] [2.397] [0.757] 
males aged 60-64 256.885*** 257.573*** 257.563*** 253.905*** 253.651*** 75.854*** 114.211*** 43.510*** 

[7.790] [4.201] [4.199] [4.812] [4.813] [3.030] [2.961] [0.964] 
males aged 65-69 372.892*** 388.696*** 388.242*** 384.364*** 384.076*** 122.706*** 170.182*** 60.646*** 

[10.292] [5.628] [5.627] [6.359] [6.358] [3.900] [4.186] [1.059] 
males aged 70-74 543.605*** 554.111*** 553.779*** 544.812*** 544.476*** 217.906*** 209.371*** 77.231*** 

[10.572] [6.862] [6.858] [7.874] [7.872] [5.170] [4.778] [1.256] 
males aged 75-79 665.427*** 723.810*** 723.210*** 719.482*** 719.098*** 354.787*** 227.876*** 88.193*** 

[17.597] [8.466] [8.462] [9.880] [9.881] [6.807] [5.785] [1.445] 
males aged 80-84 849.446*** 893.550*** 892.651*** 899.530*** 899.111*** 580.771*** 186.437*** 80.618*** 

[21.208] [11.342] [11.345] [13.266] [13.265] [9.437] [7.498] [1.521] 
males aged over 85 1,054.627*** 1,100.922*** 1,100.030*** 1,110.798*** 1,110.323*** 904.912*** 95.547*** 53.821*** 

[26.048] [13.845] [13.847] [15.887] [15.889] [13.320] [6.495] [1.510] 
females aged < 1 138.289*** 99.636*** 100.181*** 

[15.358] [12.828] [12.838] 
females aged 1-4 -25.905*** -30.018*** -29.581*** -25.498*** -25.526*** -20.387*** -11.985*** 2.534*** 

[4.524] [2.540] [2.532] [3.083] [3.083] [2.039] [1.624] [0.826] 
females aged 5-9 -26.827*** -28.287*** -27.892*** -28.225*** -28.286*** -13.132*** -15.420*** -1.287* 

[3.196] [1.994] [1.986] [2.294] [2.294] [1.413] [1.233] [0.659] 
females aged 10-14 -3.985 -6.166*** -5.632*** -7.875*** -7.994*** -4.513*** -12.549*** 6.306*** 

[3.801] [2.038] [2.034] [2.325] [2.325] [1.415] [1.414] [0.731] 
females aged 15-19 -6.266** -6.412*** -6.346*** -7.919*** -8.042*** 2.209 -11.180*** 0.708 

[3.074] [2.053] [2.046] [2.354] [2.355] [1.549] [1.314] [0.598] 
females aged 20-24 -2.239 -2.425 -3.145 -1.105 -0.539 -2.968* -7.755*** 9.028*** 

[3.564] [2.103] [2.092] [2.418] [2.412] [1.548] [1.425] [0.587] 
females aged 25-29 6.534* 8.078*** 7.911*** 7.637*** 7.858*** -6.935*** -0.321 12.955*** 

[3.594] [2.124] [2.119] [2.419] [2.418] [1.434] [1.409] [0.604] 
females aged 30-34 27.344*** 27.337*** 27.349*** 24.292*** 24.379*** -4.888*** 9.986*** 16.456*** 

[3.796] [2.112] [2.110] [2.430] [2.429] [1.501] [1.392] [0.612] 
females aged 35-39 42.123*** 41.957*** 42.325*** 39.431*** 39.393*** -3.267* 22.277*** 19.733*** 

[3.740] [2.339] [2.334] [2.671] [2.671] [1.784] [1.571] [0.661] 
females aged 40-44 55.333*** 48.340*** 48.722*** 47.460*** 47.352*** -5.639*** 30.240*** 21.491*** 

[4.127] [2.246] [2.242] [2.560] [2.561] [1.544] [1.555] [0.670] 
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females aged 45-49 83.608*** 72.951*** 73.269*** 72.187*** 72.054*** -2.246 43.298*** 27.910*** 
[5.256] [2.587] [2.580] [2.934] [2.934] [1.791] [1.759] [0.759] 

females aged 50-54 116.499*** 99.410*** 99.756*** 100.411*** 100.230*** 3.494* 58.210*** 32.986*** 
[5.475] [2.815] [2.811] [3.258] [3.259] [1.983] [2.037] [0.807] 

females aged 55-59 145.882*** 138.527*** 138.764*** 136.996*** 136.774*** 12.848*** 76.963*** 39.512*** 
[5.613] [3.125] [3.119] [3.515] [3.515] [1.994] [2.254] [0.869] 

females aged 60-64 210.316*** 204.924*** 205.115*** 201.209*** 200.934*** 35.906*** 106.441*** 46.661*** 
[7.340] [3.824] [3.826] [4.287] [4.289] [2.599] [2.621] [0.927] 

females aged 65-69 305.235*** 313.520*** 313.356*** 313.155*** 312.824*** 90.045*** 143.013*** 59.600*** 
[8.924] [4.843] [4.840] [5.541] [5.542] [3.592] [3.319] [1.126] 

females aged 70-74 442.255*** 437.202*** 436.949*** 428.955*** 428.588*** 169.465*** 168.990*** 65.578*** 
[11.018] [5.461] [5.454] [6.295] [6.297] [4.114] [3.871] [1.073] 

females aged 75-79 577.341*** 602.705*** 602.174*** 596.728*** 596.318*** 315.451*** 171.712*** 70.522*** 
[12.413] [6.625] [6.620] [7.800] [7.799] [5.323] [4.575] [1.179] 

females aged 80-84 730.523*** 781.650*** 780.755*** 782.183*** 781.752*** 541.031*** 127.826*** 65.061*** 
[13.866] [7.722] [7.720] [9.122] [9.126] [7.160] [4.230] [1.409] 

females aged over 85 984.768*** 1,059.716*** 1,058.386*** 1,064.372*** 1,063.915*** 882.623*** 77.182*** 35.239*** 
[19.499] [9.295] [9.296] [10.811] [10.812] [8.885] [4.638] [1.095] 

Past hospital encounters 

number of episodes 298.628*** 288.928*** 289.002*** 242.669*** 242.669*** 11.823*** 201.800*** 1.842*** 
[9.938] [4.285] [4.283] [4.081] [4.081] [0.828] [4.328] [0.368] 

number attendances 45.712*** 49.476*** 49.577*** 41.021*** 41.011*** 8.507*** 9.144*** 0.719 
[2.211] [0.593] [0.592] [0.661] [0.661] [0.269] [0.344] [1.254] 

Outpatient priority referral 70.965*** 107.030*** 106.849*** 85.185*** 85.106*** 16.132*** 55.142*** -13.782*** 
[10.590] [3.463] [3.461] [3.659] [3.659] [2.160] [2.155] [1.907] 

Outpatient treatment 55.845*** 37.174*** 36.742*** 27.134*** 27.113*** -19.191*** 40.612*** -8.695*** 
[12.415] [4.790] [4.766] [5.050] [5.050] [3.047] [3.234] [1.488] 

Past private hospital use 

private attendance  -168.255*** -137.481*** -138.798*** -122.626*** -122.523*** -36.251*** -47.655*** 14.103*** 
[25.153] [13.234] [13.240] [13.795] [13.797] [8.641] [8.464] [3.438] 

private episodes -491.478*** -468.248*** -470.636*** -345.384*** -345.360*** 
-

165.139*** 
-

114.463*** -15.185*** 
[24.625] [15.506] [15.525] [18.348] [18.348] [11.119] [12.090] [2.378] 
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Year dummies 
year 2 dummy -24.113*** -23.705*** 27.542*** 27.597*** 26.034*** 1.428 -4.613*** 

[1.446] [1.361] [1.571] [1.571] [0.997] [0.876] [0.396] 
year 3 dummy -21.033*** -20.064*** 32.412*** 32.408*** 28.676*** 4.545*** -3.743*** 

[2.105] [1.796] [1.621] [1.621] [1.055] [0.877] [0.329] 
year 4 dummy -55.337*** -54.373*** 

[1.970] [1.611] 

Attributed needs variables 

in social rented housing 0.342*** 0.306*** 0.347*** 0.386*** 0.407*** 0.356*** -0.005 0.042*** 
[0.101] [0.056] [0.049] [0.056] [0.056] [0.037] [0.032] [0.010] 

disability living allowance 292.772*** 433.599*** 413.832*** 432.916*** 410.730*** 331.005*** 39.095 37.276*** 
[79.592] [48.667] [43.526] [50.657] [50.870] [33.458] [28.855] [8.488] 

no qualifications standardised 23.136*** 19.466*** 20.080*** 18.025*** 17.209*** 7.307*** 5.037*** 1.865*** 
[4.836] [3.383] [2.779] [3.198] [3.200] [2.087] [1.927] [0.487] 

ONS 15: City professionals  -22.845*** 2.345 -4.329 -1.020 -0.410 4.507 2.253 -3.615** 
[7.027] [5.477] [4.980] [5.838] [5.826] [3.694] [3.497] [1.509] 

students in population -1,254.64*** -1,302.84*** -1,315.06*** -1,329.76*** -1,324.40*** -622.02*** -470.47*** -185.95*** 
[138.77] [95.26] [84.15] [97.29] [97.31] [62.90] [55.31] [16.88] 

Disease management

stroke QOF score -0.664*** -0.090 -0.193** -0.266** -0.255** -0.245*** 0.072 -0.058** 
[0.190] [0.135] [0.085] [0.117] [0.117] [0.078] [0.065] [0.026] 

Lagged cost variables 

lagged one period individual cost 0.125*** 0.125*** 0.053*** 0.205*** 0.558*** 
[0.005] [0.005] [0.002] [0.011] [0.030] 

base period individual cost 0.016*** 0.016*** 0.046*** 0.013 0.088*** 
[0.005] [0.005] [0.003] [0.011] [0.015] 

base period practice cost 0.032*** 0.024*** 0.023** 0.105*** 
[0.007] [0.008] [0.009] [0.007] 

Constant 130.476*** 72.433*** 112.274*** 88.511*** 76.304*** 23.638** 28.715*** 23.741*** 
[17.584] [10.881] [10.039] [13.788] [13.882] [9.981] [8.037] [2.637] 
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Robust standard errors in 
brackets 
*** p<0.01, ** p<0.05, * p<0.1 

Note:  The dependent variable in all models is individual hospital cost in a year.  Model 1 is a one period cross-section OLS model with robust standard errors.  Model 2 is a 
fixed (practice) effects model with robust standard errors clustered by general practice. Model 3 is a random (practice) effects model with robust standard errors clustered by 
practice.  Model 4 is the same as model 3 with the addition of lagged individual cost and base period individual cost.  Model 5 is the same as model 4 with the addition of 
baseline practice cost.  Models 6 – 8 are the same as model 5 but employ a different measure of cost as the dependent variable and as regressors.  All models also contain 152 
ICD10 morbidity dummies and 151 PCT dummies. See Sections 2 and 3 for details. *** p<0.01, ** p<0.05, * p<0.1.  Full results are in the Working Paper (Dusheiko et al, 
2011). 
 
  


