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Abstract Numerical methods for elliptic partial differential equations (PDEs) within both continuous (CG)
and hybridized discontinuous Galerkin (HDG) frameworks share the same general structure: local (elemental)
matrix generation followed by a global linear system assembly and solve. The lack of inter-element commu-
nication and easily parallelizable nature of the local matrix generation stage coupled with the parallelization
techniques developed for the linear system solvers make a numerical scheme for elliptic PDEs a good candi-
date for implementation on streaming architectures such as modern graphical processing units (GPUs). We
propose an algorithmic pipeline for mapping an elliptic finite element method to the GPU and perform a case
study for a particular method within the HDG framework. This study provides comparison between CPU and
GPU implementations of the method as well as highlights certain performance-crucial implementation details.
The choice of the HDG method for the case study was dictated by the computationally-heavy local matrix
generation stage as well as the reduced trace-based communication pattern, which together make the method
amenable to the fine-grained parallelism of GPUs. We demonstrate that the HDG method is well-suited for
GPU implementation, obtaining total speedups on the order of 30-35 times over a serial CPU implementation
for moderately sized problems.

Keywords High-Order Finite Elements · Spectral/hp Elements · Discontinuous Galerkin Method · Hybridiza-
tion · Streaming Processors · Graphical Processing Units (GPUs)

1 Introduction

In the last decade, commodity streaming processors such as those found in graphical processing units (GPUs)
have arisen as a driving platform for heterogeneous parallel processing with strong scalability, power and
computational efficiency [8]. In the past few years, a number of algorithms have been developed to harness
the processing power of GPUs for a number of problems which require multi-element processing techniques [7,
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31]. This work is motivated by our attempt to find effective ways of mapping continuous and hybridized
discontinuous Galerkin (HDG) methods to the GPU. Significant gains in performance have been made when
combining GPUs with discontinuous Galerkin (DG) for hyperbolic problems (e.g. [23]); in this work, we focus
on whether similar gains can be achieved when solving elliptic problems.

Note that within a hyperbolic setting, each time step of a DG method algorithmically consists of a single
parallel update step where the inter-element communication is limited to the numerical flux computation that is
performed locally. In the case of many elliptic operator discretizations, however, one is required to solve a linear
system in order to find the values of globally coupled unknowns. The linear system in question can be reduced
in size if static condensation (Schur Complement) technique is applied, but it has to be solved nevertheless.
Depending on the choice of linear solver, the system matrix can either be explicitly assembled or stored as a
collection of elemental matrices accompanied by the local-to-global mapping data. In this particular work we
have chosen to explicitly assemble the system matrix on the GPU to match the CPU code used for comparison.

Due to the different structure of numerical methods for elliptic PDEs and the unavoidable global coupling
of unknowns, one usually breaks the solution process into several of stages: local (elemental) matrix generation,
global linear system matrix assembly, and global linear system solve. If static condensation is applied and
the global linear system is solved for the trace solution (solution on the boundary of elements), there is an
additional stage of recovering the elemental solution from the trace data. Each of the stages outlined above
benefits from parallelization on the GPU to a different degree: the local matrix generation stage benefits from
parallelization much more than the assembly and global solve stages, due to the fact that operations performed
are completely independent for different elements.

The goals this paper pursues are the following: (a) to provide the reader with an intuition regarding the
overall benefit that parallelization on streaming architectures provides to numerical methods for elliptic prob-
lems as well as per-stage benefits and the runtime trends for different stages; (b) to propose a pipeline for
solving 2D elliptic finite element problems on GPUs and provide a case study to understand the benefits of
GPU implementation for numerical problems formulated within the HDG framework; (c) to propose a per-edge
assembly as a more efficient approach than the traditional per-element assembly, given the structure of the
HDG method and the restrictions of the current generation of SIMD hardware. The key ingredients to our pro-
posed approach are the mathematical nature of the HDG method and the batch processing capabilities (and
algorithmic limitations) of the GPU. The choice of method for our case study is motivated by the fact that
the local matrix generation stage, which benefits the most from parallelization, is much more computationally
intensive for the HDG method as opposed to the CG method. We now provide background concerning the
HDG method and discuss the batch processing capabilities of the GPU.

1.1 Background

DG methods have seen considerable success in a variety of applications due to ease of implementation, ability
to use arbitrary unstructured geometries, and suitability for parallelization. The local support of the basis
functions in DG methods allows for domain decomposition at the element level which lends itself well to parallel
implementations (e.g. [2, 17]). A number of recent works have demonstrated that DG methods are well-suited
for implementation on a GPU [20, 21], for reasons of memory reference locality, regularity of access patterns,
and dense arithmetic computations. Computational performance of DG methods is closely tied to polynomial
order. As polynomial order increases on DG methods, memory bandwidth becomes less of a bottleneck as
the floating point arithmetic operations become the dominant factor. The increase in floating point operation
throughput on GPUs has led to implementations of high-order DG methods on the GPU [29].

However DG methods still suffer from and are often criticized for the need to employ significantly more
degrees of freedom than other numerical methods [13], which results in a bigger global linear system to solve.
The introduction of the HDG method in [10] successfully resolved this issue by providing a method within
the DG framework whose only globally coupled degrees of freedom were those of the scalar unknown on the
borders of the elements. The HDG method uses a formulation which expresses all of the unknowns in terms
of the numerical trace of the hybrid scalar variable λ. This method greatly reduces the global linear system
size, while maintaining properties that make DG methods apt to parallelization. The elemental nature of DG
methods have encouraged many to assert that they should be “easily parallelizable” (e.g. [23, 28, 30]). Due to
weak coupling between elements in the HDG method, there is less inter-element communication needed which
is advantageous for scaling the method to a parallel implementation. The combination of a batch collection of
local (elemental) problems which needs to be computed and the reduced trace-based communication pattern of
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HDG conceptually makes this method well-suited to the fine-grained parallelism of streaming architectures such
as modern GPUs. It is the local (elemental) batch nature of the decomposition which directs us to investigate
the GPU implementation of the method. In the next subsection we provide an overview of batched operations,
describe the current state of batch processing in existing software packages, and explain why it was relevant to
create our own batch processing framework.

1.2 Batched Operations

Batch processing is the act of grouping some number of like tasks and computing them as a “batch” in parallel.
This generally involves a large set of data whose elements can be processed independently of each other.
Batch processing eliminates much of the overhead of iterative non-batched operations. “Batch” processing is
well-suited to GPUs due to the SIMD architecture which allows for high parallelization of large streams of
data. Basic linear algebra subprograms (BLAS) are a common example of large scale operations that benefit
significantly from batch processing. The HDG method specifically benefits from batched BLAS Level 2 (matrix-
vector multiplication) and BLAS Level 3 (matrix-matrix multiplication) operations.

Finding efficient implementations for solving linear algebra problems is one of the most active areas of
research in GPU computing. The NVIDIA CUBLAS [15] and AMD APPML [14] are well-known solutions for
BLAS functions on GPUs. While CUBLAS is specifically designed for the NVIDA GPU architecture based on
CUDA [15], the AMD solution using OpenCL [4] is a more general cross platform solution for both GPU and
multi-CPU architectures. CUBLAS has constantly improved based on a successive number of research attempts
by Volkov [35], Dongarra [1, 34] etc. This led to a speed improvement of one to two orders of magnitude for
many functions from the first release version till now. In recent releases, CUBLAS and other similar packages
have been providing batch processing support to improve processing efficiency on multi-element processing
tasks. The support is, however, not complete as currently CUBLAS only supports batch mode processing for
BLAS Level 3, but not for functions within BLAS Level 1 and BLAS Level 2.

It is due to the these limitations of existing software that the authors were prompted to create a batch
processing framework. We developed a batch processing framework for the GPU which uses the same philosophy
present in CUBLAS. However, we augmented it with additional operations such as matrix-vector multiplication
and matrix inversion. The framework is generalized such that it is not limited specifically to linear algebra
operations; however, due to the finite element context of this paper, we restricted our focus to linear algebra
operations.

1.3 Outline

The paper is organized as follows. In Section 2 we present the mathematical formulation of the HDG method.
In Section 3 we introduce all the necessary implementation building blocks: polynomial expansion bases, matrix
form of the equations from Section 2, trace assembly and spread operators, etc. Section 4 and its subsections
present details that are specific to GPU implementation of the HDG method. First we describe the implementa-
tion pipeline followed by the description of the local matrix generation in Section 4.1, the global system matrix
assembly in Section 4.2, and the global solve and subsequent local solve in Section 4.3. In Section 5 we present
numerical results which include a comparison of CPU and GPU implementations of HDG method. Finally, in
Section 6 we conclude with potential directions for future research along with a summary of the results.

2 Mathematical Formulation of HDG

In this section we introduce the HDG method for the following elliptic diffusion problem with mixed Dirichlet
and Neumann boundary conditions:

−∇2u(x) = f(x) x ∈ Ω, (1a)

u(x) = gD(x) x ∈ ∂ΩD, (1b)

n · ∇u(x) = gN (x) x ∈ ∂ΩN , (1c)
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where ∂ΩD
⋃
∂ΩN = ∂Ω and ∂ΩD

⋂
∂ΩN = ∅. The formulation above can be generalized in many ways which

can be treated in a similar manner. For example, by considering a diffusion tensor which is given by a symmetric
positive definite matrix and by adding convection and reaction terms.

In Sections 2.2-2.4 we define the HDG methods. We start by presenting the global weak formulation in
Section 2.2. In Section 2.3, we define local problems: a collection of elemental operators that express the approxi-
mation inside each element in terms of the approximation at its border. Finally, we provide a global formulation
with which we determine the approximation on the border of the elements in Section 2.4. The resulting global
boundary system is significantly smaller than the full system one would solve without solving local problems

first. Once the solution has been obtained on the boundaries of the elements, the primary solution over each
element can be determined independently through a forward-application of the elemental operators. However
before proceeding we first define the partitioning of the domain and the finite element spaces in Section 2.1.

2.1 Partitioning of the Domain and the Spectral/hp Element Spaces

We begin by discretizing our domain. We assume T (Ω) is a two-dimensional tessellation of Ω. Let Ωe ∈ T (Ω)
be a non-overlapping element within the tessellation such that if e1 6= e2 then Ωe1

⋂
Ωe2 = ∅. By Nel, we denote

the number of elements (or cardinality) of T (Ω). Let ∂Ωe denote the boundary of the element Ωe (i.e. Ω̄e \Ωe)
and ∂Ωei denote an individual edge of ∂Ωe such that 1 ≤ i ≤ Ne

b where Ne
b denotes the number of edges of

element e. We then denote by Γ the set of boundaries ∂Ωe of all the elements Ωe of T (Ω). Finally, we denote
by NΓ the number of edges (or cardinality) of Γ .

For simplicity, we assume that the tessellation T (Ω) consists of conforming elements. Note that HDG
formulation can be extended to non-conforming meshes. We do not consider the case of a non-conforming mesh
in this work, as it would complicate the implementation while not enhancing the contribution statement in any
way. We say that Γ l is an interior edge of the tessellation T (Ω) if there are two elements of the tessellation, Ωe

and Ωf , such that Γ l = ∂Ωe ∩ ∂Ωf and the length of Γ l is not zero. We say that Γ l is a boundary edge of the
tessellation T (Ω) if there is an element of the tessellation, Ωe, such that Γ l = ∂Ωe ∩ ∂Ω and the length of Γ l

is not zero.
As it will be useful later, let us define a collection of index mapping functions, that allow us to relate the

local edges of an element Ωe, namely, ∂Ωe1, . . . , ∂Ω
e
Neb

, with the global edges of Γ , that is, with Γ 1, . . . , ΓNΓ .

Thus, since the j-th edge of the element Ωe, ∂Ωej , is the l-th edge Γ l of the set of edges Γ , we set σ(e, j) = l so

that we can write ∂Ωej = Γσ(e,j).
Next, we define the finite element spaces associated with the partition T (Ω). To begin, for a two-dimensional

problem we set

Vh := {v ∈ L2(Ω) : v|Ωe ∈ P (Ωe) ∀ Ωe ∈ T (Ω)}, (2a)

Σh := {τ ∈ [L2(Ω)]2 : τ |Ωe ∈ Σ(Ωe) ∀ Ωe ∈ T (Ω)}, (2b)

Mh := {µ ∈ L2(Γ ) : µ|Γ l ∈ P (Γ l) ∀ Γ l ∈ Γ}, (2c)

where P (Γ l) = SP (Γ l) is the polynomial space over the standard segment, P (Ωe) = TP (Ωe) is the space of
polynomials of total degree P defined on a standard triangular region and P (Ωe) = QP (Ωe) is the space of
tensor-product polynomials of degree P on a standard quadrilateral region, defined as

SP (Γ l) = {sp; 0 ≤ p ≤ P ; (x1(s), x2(s)) ∈ Γ l;−1 ≤ s ≤ 1},
TP (Ωe) = {ξp1ξ

q
2;0 ≤ p+ q ≤ P ; (x1(ξ1, ξ2), x2(ξ1, ξ2)) ∈ Ωe;−1 ≤ ξ1 + ξ2 ≤ 0},

QP (Ωe) = {ξp1ξ
q
2;0 ≤ p, q ≤ P ; (x1(ξ1, ξ2), x2(ξ1, ξ2)) ∈ Ωe;−1 ≤ ξ1, ξ2 ≤ 1}.

Similarly Σ(Ωe) = [TP (Ωe)]2 or Σ(Ωe) = [QP (Ωe)]2. For curvilinear regions the expansions are only polyno-
mials when mapped to a straight-sided standard region [25,33].

2.2 The HDG Method

The HDG method is defined in the following way. We start by rewriting the original problem (1) in auxiliary
or mixed form as two first-order differential equations by introducing an auxiliary flux variable q = ∇u. This
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gives us:

−∇ · q = f(x) x ∈ Ω, (3a)

q = ∇u(x) x ∈ Ω, (3b)

u(x) = gD(x) x ∈ ∂ΩD, (3c)

q · n = gN (x) x ∈ ∂ΩN . (3d)

The HDG method seeks an approximation to (u, q), (uDG, qDG), in the space Vh ×Σh, and determines it
by requiring that∑

Ωe∈T (Ω)

∫
Ωe

(∇v · qDG) dx−
∑

Ωe∈T (Ω)

∫
∂Ωe

v (ne · q̃DG) ds =
∑

Ωe∈T (Ω)

∫
Ωe

v f dx, (4a)

∑
Ωe∈T (Ω)

∫
Ωe

(w · qDG) dx = −
∑

Ωe∈T (Ω)

∫
Ωe

(∇ ·w)uDG dx+
∑

Ωe∈T (Ω)

∫
∂Ωe

(w · ne) ũDG ds, (4b)

for all (v,w) ∈ Vh(Ω)×Σh(Ω), where the numerical traces ũDG and q̃DG are defined in terms of the approximate
solution (uDG, qDG).

2.3 Local Problems of the HDG Method

We begin by assuming that the function

λ := ũDG ∈Mh, (5a)

is known, for any element Ωe, from the global formulation of the HDG method. The restriction of the HDG
solution to the element Ωe, (ue, qe) is then the function in P (Ωe)×Σ(Ωe) and satisfies the following Equations:∫

Ωe
(∇v · qe) dx−

∫
∂Ωe

v (ne · q̃e) ds =

∫
Ωe

v f dx, (5b)∫
Ωe

(w · qe) dx = −
∫
Ωe

(∇ ·w)ue dx+

∫
∂Ωe

(w · ne)λ ds, (5c)

for all (v,w) ∈ P (Ωe)×Σ(Ωe). To allow us to solve the above equations locally, the numerical trace of the flux
is chosen in such a way that it depends only on λ and on (ue, qe):

q̃e(x) = qe(x)− τ(ue(x)− λ(x))ne on ∂Ωe (5d)

where τ is a positive function. For the HDG method taking τ to be positive ensures that the method is well
defined. The results in [9, 11, 12] indicate that the best choice is to take τ to be of order one. Note that τ is
a function of the set of borders of the elements of the discretization, and so, it is allowed to be different per
element and per edge. Thus, if we are dealing with the element whose global number is e, we denote the value
of τ on the edge whose local number is i by τe,i.

2.4 The Global Formulation for λ

Here we denote the solution of (5b)-(5c) when f = 0 and when λ = 0 by (Uλ,Qλ) and (Uf ,Qf ), respectively,
and define our approximation to be

(uHDG, qHDG) = (Uλ,Qλ) + (Uf ,Qf ).

Note that for the HDG decomposition allows us to express Uλ,Qλ in terms of λ when f = 0.
It remains to determine λ. To do so, we require that the boundary conditions be weakly satisfied and that

the normal component of the numerical trace of the flux q̃ given by (5d) be single valued. This renders this
numerical trace conservative, a highly valued property for this type of methods; see [3].
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So, we say that λ is the function in Mh such that

λ = Ph(gD) on ∂ΩD, (6a)∑
Ωe∈Th

∫
∂Ωe

µ q̃ · n =

∫
∂ΩN

µ gN , (6b)

for all µ ∈ M0
h such that µ = 0 on ∂ΩD. Here Ph denotes the L2-projection into the space of restrictions to

∂ΩD of functions of Mh.

3 HDG Discrete Matrix Formulation and Implementation Considerations

In this section, to get a better appreciation of the implementation of the HDG approach, we consider the matrix
representation of the HDG equations. The intention here is to introduce the notation and provide the basis for
the discussion in the following sections. More details regarding the matrix formulation can be found in [27].

We start by taking ue(x), qe(x) = [q1, q2]T , and λl(x) to be finite expansions in terms of the basis φej(x)

for the expansions over elements and the basis ψlj(x) over the traces of the form:

ue(x) =

Neu∑
j=1

φej(x) ûe[j] qek(x) =

Neq∑
j=1

φej(x) q̂e
k
[j] λl(x) =

N lλ∑
j=1

ψlj(x) λ̂
l
[j],

where ue(x) : Ωe → R, qe(x) : Ωe → R2 and λl(x) : Γ l → R.
In our numerical implementation, we have applied a spectral/hp element type discretization which is de-

scribed in detail in [25]. In this work we use the modified Jacobi polynomial expansions on a triangle in the
form of generalized tensor products. This expansion was originally proposed by Dubiner [16] and is also de-
tailed in [25,33]. We have selected this basis due to computational considerations: tensorial nature of the basis
coupled with the decomposition into an interior and boundary modes [25,33] benefits the HDG implementation.
In particular, when computing a boundary integral of an elemental basis function, edge basis function together
with edge-to-element mapping can be used. This fact will be further commented upon in the following sections.

3.1 Matrix Form of the Equations of the HDG Local Solvers

We can now define the matrix form of the local solvers. Following a standard Galerkin formulation, we set the
scalar test functions ve to be represented by φei (x) where i = 1, . . . , Ne

u, and let our vector test function we be
represented by ekφi where e1 = [1, 0]T and e2 = [0, 1]T . We next define the following matrices:

Dek[i, j] =
(
φei ,

∂φej
∂xk

)
Ωe

Me[i, j] =
(
φei , φ

e
j

)
Ωe

Eel [i, j] =
〈
φei , φ

e
j

〉
∂Ωel

Ẽ
e
kl[i, j] =

〈
φei , φ

e
jn
e
k

〉
∂Ωel

Fel [i, j] =
〈
φei , ψ

σ(e,l)
j

〉
∂Ωel

F̃
e
kl[i, j] =

〈
φei , ψ

σ(e,l)
j nek

〉
∂Ωel

.

Note that we choose the trace expansion to match the expansions used along the edge of the elemental

expansion and the local coordinates are aligned, that is ψ
σ(e,l)
i (s) = φk(i)(s) (which is typical of a modified

expansion basis defined earlier). With this choice, Eel contains the same entries as Fel and similarly Ẽ
e
kl contains

the same entries as F̃
e
kl.

After inserting the finite expansion of the trial functions into Equations (5b) and (5c), and using the
definition of the flux given in Equation (5d), the equations for the local solvers can be written in matrix form
as:

Aeve + Ceλ̂e = we. (7)

where fe[i] = (φi, f)Ωe , w
e = (fe, 0, 0)T and ve = (ûe, q̂e

1
, q̂e

2
)T is the concatenation of all the unknowns into

one vector.
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In case of a triangular element, λ̂
e

=
(
λ̂
σ(e,1)

, λ̂
σ(e,2)

, λ̂
σ(e,3)

)T
and matrices Ae and Ce are defined as

follows:

Ae =

∑Neb
l=1 τ

(e,l)Eel −D
e
1 −De2

(De1)T Me 0

(De2)T 0 Me

 . (8)

Ce =

−τe,1Fe1 −τe,2Fe2 −τe,3Fe3−F̃e11 −F̃e12 −F̃e13
−F̃e21 −F̃e22 −F̃e23

 (9)

We note that each block matrix Ae is invertible since every local solver involves the DG discretization of
an elemental domain with weakly enforced Dirichlet boundary conditions λ̂

e
. Therefore each local elemental

problem is well-posed and invertible.
In the following sections, in order to solve local problems (7) (express ve in terms of λe), we will require the

application of the inverse of Ae. Instead of inverting the full size matrix Ae we have chosen to form (Ae)−1 in
a block-wise fashion, which would involve the inversion of much smaller elemental matrices:

(Ae)−1 =

 Ze ZeDe1 (Me)−1 ZeDe2 (Me)−1

−(Me)−1(De1)TZe (Me)−1[I− (De1)TZeDe1(Me)−1] −(Me)−1 (De1)T ZeDe2 (Me)−1

−(Me)−1(De2)TZe −(Me)−1 (De2)T ZeDe1 (Me)−1 (Me)−1[I− (De2)TZeDe2(Me)−1]

 (10)

where

Ze =

Neb∑
l=1

τ (e,l)Eel + De1 (Me)−1 (De1)T + De2 (Me)−1 (De2)T

−1

(11)

and we have explicitly used the fact that Me = (Me)T and Ze = (Ze)T .

3.2 Matrix Form of the Global Equation for λ

Using the matrices from the previous section we can write the transmission condition (6b) in a similar matrix
form. First we introduce the matrices:

F̄l,e[i, j] =
〈
ψli, φ

e
j

〉
Γ l

˜̄Fl,ek [i, j] =
〈
ψli, φ

e
jn
e
k

〉
Γ l

Ḡl[i, j] =
〈
ψli, ψ

l
j

〉
Γ l

.

After defining gN
l[i] =

〈
gN , ψ

l
i

〉
Γ l∩∂ΩN

, the transmission condition (6b) for a single edge can be written as:

Beve + Geλ̂e + Bfvf + Gf λ̂f = gl
N
, (12)

where matrices Be and Ge are defined as follows:

Be =

−τe,1(Fe1)T (F̃
e
11)T (F̃e21)T

−τe,2(Fe2)T (F̃e12)T (F̃e22)T

−τe,3(Fe3)T (F̃e13)T (F̃e23)T

 (13)

Ge =

 τe,1Ḡσ(e,1) 0 0

0 τe,2Ḡσ(e,2) 0

0 0 τe,3Ḡσ(e,3)

 . (14)

Here we are assuming that l = σ(e, i) = σ(f, j), that is, that the elements e and f have the common internal
edge Γ l. While forming matrix Be we use the following two identities which relate previously defined matrices:

Fel = (F̄σ(e,l),e)T F̃
e
kl = (˜̄Fσ(e,l),ek )T

We see that the transmission condition can be constructed from elemental contributions. In the next section,
we show how to use our elemental local solvers given by Equations (7) and (12) to obtain a matrix equation
for λ only.
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3.3 Assembling the Transmission Condition from Elemental Contributions

The last component we require to form the global trace system is the elemental trace spreading operator AeHDG
that will copy the global trace space information into the local (elemental) storage denoted by λ̂

e
in sections

3.1 and 3.2. Let Λl denote the vector of degrees of freedom on the edge Γ l and let Λ be the concatenation of
these vectors for all the edges of the triangulation. The size of Λ is therefore

Nλ =
∑
l∈Γ

N l
λ,

where N l
λ is the number degrees of freedom of λ on the interior edge Γ l.

We define the elemental trace space spreading operator AeHDG as a matrix of size (
∑
l∈∂Ωe N

l
λ)×Nλ which

“spreads” or scatters the unique trace space values to their local edge vectors. For each element e, which consists

of Ne
b edges, let λ̂

e,l
denote the local copy of the trace-space information as portrayed in Figure 1.

e3

e1

e2

e4

e3

e1

e2

e4

λ̂
σ(e1,1)

λ̂
σ(e1,3)

λ̂
σ(e1,2)

AeHDG

Fig. 1: Diagram showing the results of the spreading operation AHDG. Unique degrees of freedom of λ on an
edge are copied to their locally-indexed counterparts.

With this notation in place we can replace λ̂
e

by AeHDGΛ in local solver equations (7):

Aeve + CeAeHDGΛ = we (15)

We can similarly write the transmission conditions (12) between interfaces as:

|T (Ω)|∑
e=1

(AeHDG)T [Beve + GeAeHDGΛ] = g
N

(16)

where the sum over elements along with the left application of the transpose of the spreading operator
acts to “assemble” (sum up) the elemental contributions corresponding to each trace space edge and where g

N

denotes the concatenation of the individual edge Neumann conditions gl
N

.
Manipulating Equation (15) to solve for ve and inserting it into Equation (16) yields:

|T (Ω)|∑
e=1

(AeHDG)T
[
Be(Ae)−1 (w −CeAeHDGΛ) + GeAeHDGΛ

]
= g

N

which can be reorganized to arrive at matrix equation for λ:

KΛ = F , (17)
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where

K =

|T (Ω)|∑
e=1

(AeHDG)TKeAeHDG =

|T (Ω)|∑
e=1

(AeHDG)T
[
Ge − Be(Ae)−1Ce

]
AeHDG

and

F = g
N
−
|T (Ω)|∑
e=1

(AeHDG)TBe(Ae)−1w. (18)

We observe that K is constructed elementally through the sub-matrices Ke which can also be considered as the
Schur complement of a larger matrix system which consists of combining Equation (15) and (16). We would
like to remark that the “assembly” in this section is used in the sense of an operator: system matrix K does
not necessarily need to be formed explicitly but can also be stored as a collection of elemental matrices and
corresponding mappings.

4 Implementation Pipeline

We formulated our approach as a pipeline which illustrates the division of tasks between CPU (host) and GPU.
Initial setup steps are handled by the CPU after which the majority of the work is performed on the GPU and
finally the resulting elemental solution is passed back to the CPU. Initially, the host parses the mesh file to
determine the number of elements, forcing function, and mesh configuration. From this information the CPU
can generate the data set that is required by the GPU to compute the finite element solution. This is followed
by the generation of the Ee, (Me)−1,Dek elemental matrices, edge to element mappings, global edge permutation
lists and the right hand side vector F . This data is then transferred to the GPU.

The GPU handles the bulk of the operations in our HDG implementation. The first step is the construction
of the local elemental matrices through batch processing. The local elemental matrices Ze,Ce,Be,Ue, and Qek
are formed from the mass and derivative matrices passed over by the host.

Fig. 2: HDG Pipeline

CPU:

A1 Parse mesh file.
A2 Form Ee, (Me)−1,Dek matrices.
A3 Construct edge to triangle list and

boundary edge permutation list.
A4 Form RHS vector F .

GPU:

B1 Form Ze,Ce,Be,Ue, and Qek matrices.
B2 Form local Ke matrices.
B3 Assemble global K matrix.
B4 Solve sparse system Λ = K−1F .
B5 Spread values from global trace Λ to elemental

trace solution λe.
B6 Construct elemental primitive solution ûe.

CPU:

A5 Postprocess elemental solution ûe.

To solve the global trace system we require the assembly of the global matrix K from the elemental matrices
Ke using the assembly process discussed in Section 3.3. We formulate the construction of the elemental Ke
matrices as follows:

Ke = Ge − Be
Ue
Qe0
Qe1

 .
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where Ue and Qek are formulated as:

Ue = −[I 0 0](Ae)−1Ce = −Ze[I De1 (Me)−1 De2 (Me)−1]Ce

Qe0 = −[0 I 0](Ae)−1Ce, Qe1 = −[0 0 I](Ae)−1Ce

Note that that the action of (Ae)−1 can be evaluated using definition (10) and so does not need to be
directly constructed. The matrices in the first block-row of (Ae)−1 can be reused in the formulation of the
second and third block-rows, thereby reducing the computational cost of constructing the matrix.

We next determine the trace space solution Λ = K−1F where, as was demonstrated in [27], F can be
evaluated using Ue as

F = g
N

+

|T (Ω)|∑
e=1

(AeHDG)T (Ue)T fe

Finally we recover the elemental trace solution λe = AeHDGΛ and obtain the elemental primitive solution ûe

from Equation (7) as
ûe = Zefe + Ueλe.

4.1 Building The Local Problems On The GPU

The local matrices are created using a batch processing scheme. The generation of the local matrices can be
conducted in a matrix-free manner, but we choose to construct the matrices to take advantage of BLAS Level
3 batched matrix functions. We have found this to be a more computationally efficient approach on the GPU.
Each step of the local matrix generation process is executed as a batch operating on all elements in the mesh.
The batched matrix operations assign a thread block to each elemental matrix. In most cases a thread is
assigned to operate on each element of a matrix, which are processed concurrently by the GPU in the various
assembly and matrix operations.

Before we proceed to discuss the details of the local matrix generation we would like to make note of a
certain implementation detail: the use of the edge to element map. As was previously mentioned in Section
3.1, we choose the trace expansion to match the elemental expansion along the element’s edge. This choice
allows us to use edge expansions together with the edge to element map to generate some of the matrices in a
more efficient manner. For example, in Equation (11) we use the edge to element map to form a sparse matrix

Eel [i, j] =
〈
φei , φ

e
j

〉
∂Ωel

from the entries of a dense matrix Ê
e
l [m,n] = 〈ψem, ψen〉∂Ωel . This approach is also used in

the formation of the Ẽ
e
kl, Fel and F̃

e
kl matrices.

The goal of the local matrix generation process (steps B1 and B2) is to form matrices Ke for every element
in the mesh. In order to facilitate this, the following matrices must be generated: Ze, block entries of (Ae)−1,
Ce, Be and Ge. The Ze and Ue matrices will be saved for later computations while the rest of the matrices are
discarded after use to reduce memory constraints.

The construction process first requires the Ze matrices to be formed from the values of the elemental mass
and derivative matrices. The matrices Me, Dek and Eel are utilized in the formation of the (Ze)−1 matrices
(Equation 11), which is then inverted in a batch matrix inversion process using Gaussian elimination. Pivoting
is not necessary due to the symmetry of the matrices. Next, the block entries of the (Ae)−1 matrices are formed
from combinations of the Ze, Dek and (Me)−1 matrices (definition 10). The entries from the first block-row
of (Ae)−1 are used in the formulation of the second and third block-rows and do not need to be explicitly
recomputed. The Ue and Qek elemental matrices are created through the multiplication of the block rows of
(Ae)−1 and matrix Ce. Note that matrix Be = (Ce)T Ĩ, where

Ĩ =

 1 0 0
0 −1 0
0 0 −1

 ,

which simplifies the formation process of the Ce and Be matrices.
The final step of the local matrix generation involves constructing the local Ke matrices which are formed

from the explicit matrix-matrix multiplication of the Be matrices with the concatenated Ue and Qek matrices.
This is subtracted from the diagonal Ge matrix, which is not formed explicitly, to form Ke. Note that matrices
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Me, Ze, and Ke matrices will be symmetric which halves the required storage space. The elemental operations
at each step are independent of each other so the batches can be broken up into smaller tiles to conform to
memory constraints or to be distributed across multiple processing units. This process results in the local Ke
matrices being generated for each element which are then used to assemble the global K matrix.

4.2 Assembling The Local Problems On The GPU

In this section we describe the assembly of the global linear system matrix K from the elemental matrices Ke.
A typical CG or DG element-based approach to the assembly process, when parallelized, has to employ atomic
operations to avoid race conditions. In this paper we propose an edge based assembly process that eliminates
the need of expensive GPU atomic operations and avoids race conditions by using reduction operations. The
reduction list is generated with a sorting operation which is relatively efficient on GPUs. This lock-free approach
is better suited for the SIMD architecture of the GPU where each thread is acting on a separate edge in the
mesh. In this way we avoid any race conditions during the assembly process while still maximizing throughput
on the GPU.

Next, we describe the proposed method for triangular meshes. Note that this approach can be straightfor-
wardly extended to quadrilateral meshes. In order to evaluate a single entry of the global matrix K we need
to determine the indices of entries to which local matrices Ke will be assembled. To do this, we need to know
which element(s) a given edge li belongs to. Given the input triangle list that stores the global edge indices of
each triangle, we can generate the edge neighbor list that stores the neighboring triangle indices for each edge.
Having the edge neighbor list, we assign the assembly task of each row of K to a thread. Each thread uses the
edge neighbor list and the triangle list to find the element index e as well as the entry indices of Ke to fetch
the appropriate data and perform the assembly operation on the corresponding row of K.

To give a better illustration of the assembly process, let us consider a simple mesh displayed in Figure 3.
This mesh consists of two triangles e0 and e1 and five edges: l0 through l4. To further simplify our example, let
us assume that we have only one degree of freedom per edge. Ke is therefore a 3 × 3 matrix and K is a 5 × 5
matrix. Element e0 consists of edges l0 = σ(e0, 0), l1 = σ(e0, 1) and l2 = σ(e0, 2) and element e1 consists of
edges l0 = σ(e1, 0), l4 = σ(e1, 1) and l3 = σ(e1, 2).

e1
l0

l4

l3

l1

e0

l2

Fig. 3: Mesh with two elements: e0 and e1.

For our example, the triangle list would be {0,1,2,0,4,3}. Using it we can create an edge neighbor list
{0,0,0,1,1,1} that stores the index of a triangle to which each edge from the first list belongs. Next we sort
the triangle list by edge index and permute the edge neighbor list according to the sorting. Now the triangle
list and edge neighbor list are {0,0,1,2,3,4} and {0,1,0,0,1,1} respectively. These new lists indicate that edge l0
neighbors triangles e0 and e1, and that edge l1 has neighbors only one triangle e0, etc. Figure 4 demonstrates
the assembly process of the 0th row (corresponding to the l0 edge) of the K matrix from the entries of elemental
matrices Ke0 and Ke1 .

In practice, the global matrix K is N l
λNΓ ×N

l
λNΓ and usually sparse. For triangular meshes, each row of K

has at most 5N l
λ non-zero values and all the interior edges (edges that do not fall on Dirichlet boundary) have

exactly 5N l
λ non-zero values. The fact that the number of non-zero entries per row of K is constant (apart from

the rows corresponding to the Dirichlet boundary edges) determines our choice of the Ellpack (ELL) sparse
matrix data structure [5] to store K. The ELL data structure contains two arrays. One consists of column
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Fig. 4: Assembly of the 0th row of K.

indices and the other of matrix values, both of which are of the size N l
λNΓ × 5N l

λ. The former array stores the
column indices of the non-zero values in the matrix, and the latter array stores the non-zero values. For rows
that have less than 5N l

λ non-zero values, sentinel values (−1 usually) are stored in the column-indices array.
Each thread, which is in charge of assembling one row of K, locates its neighboring triangle indices from the
edge neighbor list and then obtains the edge indices of these neighboring triangles from the triangle list. The
edge indices are then written into the column-indices array of the ELL matrix. Lastly, the local matrix values
of the neighboring triangles are assembled into K.

The global assembly process can be summarized as follows:

Data: Triangle List TL
\\Generate edge neighbor list EL;
for i← 0 to NumTriangles−1 do

EL[i*3] ← i;
EL[i*3+1] ← i;
EL[i*3+2] ← i;

end

// Sort triangle list by edge index

TL ← Sort(TL);
// Permute edge neighbor list according to sorted order of triangle list

EL ← Permute(TL);
// Compute the Edge Count List (ECL) through reduction by key, which is the number of

neighboring triangles on each edge

ECL ← ReduceByKey(TL);
// Calculate a prefix sum on the reduced list (RL) to find the offsets in the sorted triangle

list

RL ← Scan(ECL);
Local-to-Global Mapping(TL, RL, EL);

Algorithm 1: Global Assembly
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Data: TL, RL, EL
foreach edge e do

// Locate the neighboring triangles of edge e from the permuted edge neighbor list and

offset list

Tris ← Neighbors(EL, RL, e);
TEdges ← Edges(Tris);
// Obtain the global indices (GI) of the edges of these triangles from the triangle list

GI ← TL[Tris*3 + 0,1,2];
// Store the global indices in the column-indices array (CI)

CI ← GI;
// Compute the local indices (LI) of each edge in the neighboring triangles

LI ← Local Indices(Tris);
// Locate the entries in the local matrices of the corresponding neighboring triangles

according to the local indices, and add those entries to the corresponding locations in

the the global K matrix

foreach index i in LI do
K(Map(i))← K(Map(i)) + Ke [i ];

end

end

Algorithm 2: Local-to-Global Mapping

the the from the triangles from array. corresponding and add those global K

Remark 1 We would like to stress the importance of the edge-only inter-element connectivity provided by the
HDG method. This property ensures that the sparsity (number of nonzero entries per row) of the global linear
system matrix depends only on the element types used and not on the mesh structure (e.g. vertex degree). The
other benefit provided by the HDG method is the ability to assemble the system matrix by-edges as opposed to
by-elements, which removes the need for costly atomic assembly operations. Now, if we look at the CG method,
elements are connected through both edge degrees of freedom and vertex degrees of freedom. This through-the-
vertex element connectivity makes it both unfeasible to use the compact ELL system matrix representation for
a general mesh and makes it hard to avoid atomic operations in the assembly process.

Remark 2 We note that there are multiple ways to address the issue of evaluating the discrete system. A full
global system need not be assembled in some cases. One can use a local matrix approach or a global matrix
approach. In the local matrix approach, a local operator matrix is applied to each elemental matrix. This allows
for on the fly assembly without the need to construct a global matrix system. The global matrix approach
assembles a global matrix system from the local elemental contributions. Vos et al. describe these approaches
in detail in [36] for the continuous Galerkin (FEM) method. In either case, information from multiple elements
must be used to compute any given portion of the final system. This requires the use of some synchronized
ordering within the mapping process. There are several methods for handling this ordering. One such method
is to use atomic operations to ensure that each element in the final system is updated without race conditions.
Another method is to use asynchronous ordering and pass the updates to a communication interface which
handles the updates in a synchronized fashion. This is demonstrated in the work by Goddekke et al. [18, 19],
in which they use MPI to handle the many-to-one mapping through asynchronous ordering. In either case a
many-to-one mapping exists and a synchronized ordering must be used to prevent race conditions. We chose to
use the global approach to compare our results to the previous work by Kirby et al. [27], in which the authors
also used the global approach.

4.3 Trace Space Solve and Local Problem Spreading On The GPU

The final steps of the process construct the elemental primitive solution ûe (B5 and B6 of the GPU pipeline).
This requires retrieving the elemental solution from the trace solution. We form the element-wise vector of
local λe coefficients by scattering the coefficients of the global trace solution Λ produced by the sparse solve.
The values are scattered back out to the local vectors using the edge to triangle list. Each interior edge will be
scattered to two elements and each boundary edge will be scattered to one element. This is equivalent to the
operation performed by the trace space spreading operator AeHDG which we conduct in a matrix free manner.
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Obtaining the elemental solution involves two batched matrix-vector multiplications across all elements
followed by a vector-vector sum:

ûe = Zefe + Ueλe.

After the local element modes are computed they are transferred back to the CPU as a vector grouped by
element.

5 Numerical Results

In this section we discuss the performance of the GPU implementation of the HDG method using the Helmholtz
equation as a test case. In the end of the section we also provide a short discussion of the CG method GPU
implementation based on the preliminary data collected. For verification and runtime comparison we use a
CPU implementation of the Helmholtz solver existing within the Nektar++ framework v3.2 [26]. Nektar++ is
a freely-available highly-optimized finite element framework. The code is robust and efficient, and it allows for
ease of reproducibility of our CPU test results. Our implementation also takes advantage of the GPU parallel
primitives in the CUDA Cusp and Thrust libraries [6,24]. All the tests referenced in this section were performed
on a machine with a Nvidia Tesla M2090 GPU, 128GB of memory, and an Intel Xeon E5630 CPU running at
2.53 GHz. The system was using openSUSE 12.1 with CUDA runtime version 4.2.

The numerical simulation considers the Helmholtz equation

∇2u(x)− λu(x) = f(x) x ∈ Ω,
u(x) = gD(x) x ∈ ∂ΩD,

where λ = 1, Ω = [0, 1]2 and f(x) and gD(x) are selected to give an exact solution of the form:

u(x, y) = sin(2πx)sin(2πy).

Tests were performed on a series of regular triangular meshes, produced by taking a uniform quadrilateral
mesh and splitting each quadrilateral element diagonally into two triangles. We define the level of mesh refine-
ment by the number of equispaced segments along each side of the domain. The notation n× n further used in
this section corresponds to a mesh comprised of n× n quads, each split into 2 triangles. We consider meshes of
size 20× 20 = 800 elements, 40× 40 = 3200 elements, and 80× 80 = 12800 elements. Although we tested this
method on structured meshes, the algorithm does not depend upon the mesh structure and can easily operate
over unstructured meshes. In order to help ensure that the sensitivity of the timing routines does not influence
the results, we averaged the data over 3 separate runs.

To verify the correctness of our implementations we compared our solution for the Helmholtz equation with
the corresponding analytic solution using the L2 and L∞ error norms. The parameter τ for the HDG solver (see
Equation (5d)) was set to 1 for both CPU and GPU implementations. We observe that our implementations
produce solutions that match that of the analytic solution to within machine precision. Numerical errors
produced by the GPU implementation are presented in Table 1.

Table 1: Numerical errors from the GPU implementation of Helmholtz solver on a 40× 40 triangular mesh.

Order GPU L∞ Error Order of Convergence GPU L2 Error Order of Convergence
1 1.59334e-02 – 3.95318e-03 –
2 4.95546e-04 5.01 8.04917e-05 5.62
3 1.10739e-05 5.48 1.3446e-06 5.90
4 1.93802e-07 5.84 1.88309e-08 6.16
5 5.71909e-09 5.08 1.07007e-09 4.14
6 1.40495e-08 -1.30 4.63559e-09 -2.12
7 2.46212e-08 -0.81 5.77189e-09 -0.32
8 5.19398e-08 -1.08 1.44714e-08 -1.33
9 1.17087e-07 -1.17 2.92382e-08 -1.01

Next we consider the total run-time comparison between GPU and CPU implementations of the HDG
method. Table 2 presents timing results of both implementations across the entire range of test meshes as well
as the relative speedup factors. Columns 2, 5, and 8 indicate the time required by the GPU implementation to
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complete steps A2 - B6 of the HDG pipeline, including time to transfer the data to the GPU but excluding the
transfer time of the solution vector back to the CPU. Columns 3, 6, and 9 indicate the time taken by the CPU
implementation to complete the equivalent steps with no induced transfer time. It can be observed that GPU
implementation scales well with the increase in mesh size, and the GPU implementation gains performance
improvement on the order of 30× over a well optimized serial CPU implementation. Note, that the performance
of the GPU implementation can be increased even further by moving additional code for local matrix generation
from CPU to GPU (step A2 of the pipeline). The results indicate the method demonstrates strong scaling with
respect to mesh size.

Table 2: Total run time data for CPU and GPU implementation of Helmholtz problem (time is measured in
ms.).

20× 20 mesh 40× 40 mesh 80× 80 mesh
Order GPU CPU Speedup GPU CPU Speedup GPU CPU Speedup

1 117 268 2.29 231 1427 6.19 559 9889 17.69
2 170 483 2.84 323 2843 8.8 858 24459 28.5
3 264 828 3.14 480 5145 10.71 1508 54728 36.28
4 383 1414 3.69 853 8896 10.43 2777 105896 38.13
5 526 2268 4.31 1387 15165 10.94 4894 180373 36.85
6 769 3484 4.53 2295 24873 10.84 8165 289319 35.44
7 1136 5251 4.62 3550 36869 10.39 12879 436217 33.87
8 1613 7683 4.76 5393 54474 10.1 20072 630613 31.42
9 2214 11451 5.17 7489 79604 10.63 28481 883340 31.02

In order to provide the reader with a better intuition on the scaling of different stages of the GPU solver
with respect to mesh size and polynomial order, we broke the GPU implementation into four stages which
were individually timed. The local matrix generation stage corresponds to steps B1 and B2 of the GPU process
plus the transfer of required data from CPU to GPU. The transfer time and processing times in this stage
are additive, and there is no concurrent processing while transferring data from the host to the GPU. This
represents a worst-case scenario for timing results as the performance would only increase with concurrent
processing while transferring data. The global assembly stage represents step B3 of the GPU process. The
global solve stage is step B4, and the local solve stage corresponds to steps B5 and B6 (not including the time
to transfer the solution back to the host). We note that the GPU implementation requires the most allocated
memory in the global assembly process, during which the Ze,Ue,Ke, and K matrices must be allocated. This
point is a memory bottleneck in the system. Table 3 illustrates the memory constraints for each mesh size
across the range of polynomial orders. The GPU is generally more memory constrained than the CPU and
it will eventually reach a limit based on mesh size and polynomial order. The Ze and Ue matrices could be
deallocated and recalculated again in step B6 to lower memory constraints.

Table 3: GPU memory requirements (in kB) for each mesh and polynomial order.

Polynomial 20× 20 mesh 40× 40 mesh 80× 80 mesh
Order

1 685 2727 14869
2 1887 7517 41818
3 3968 15821 89211
4 7160 28560 162624
5 11693 46656 267633
6 17797 71031 409813
7 25703 102605 594740
8 35640 142301 827989
9 47840 191040 1115136
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Table 4: Timing data for the four major stages of GPU implementation on 20× 20 mesh (time is measured in
ms.).

Polynomial Local Matrix Global Assembly Global Solve Local Solve
Order Generation - HDG

1 7 18 75 2
2 9 51 106 2
3 11 47 113 2
4 14 56 161 2
5 21 42 162 2
6 40 95 215 2
7 60 113 203 2
8 107 121 253 2
9 155 132 246 3

Table 5: Timing data for the four major stages of GPU implementation on 40× 40 mesh (time is measured in
ms.).

Polynomial Local Matrix Global Assembly Global Solve Local Solve
Order Generation - HDG

1 11 29 124 3
2 14 47 128 3
3 19 61 133 4
4 28 59 191 4
5 55 57 195 5
6 94 192 257 6
7 140 139 266 7
8 249 92 346 7
9 422 137 361 8

Table 6: Timing data for the four major stages of GPU implementation on 80× 80 mesh (time is measured in
ms.).

Polynomial Local Matrix Global Assembly Global Solve Local Solve
Order Generation - HDG

1 18 53 210 6
2 32 88 213 7
3 44 135 239 8
4 82 159 303 9
5 194 146 355 10
6 347 236 469 10
7 537 291 551 12
8 868 322 722 13
9 1413 405 769 17

Tables 4, 5, and 6 provide the timing results of the individual stages for the 20 × 20, 40 × 40, and 80 × 80
meshes respectively. As can be seen from Tables 4-6, for smaller problem sizes (in terms of both polynomial
order and element count) global solve is the dominating factor; however, as the problems size increases, the
balance shifts in favor of local matrix generation stage. Figure 6 demonstrates the trend in the distribution
of total run-time between different stages for a moderately sized problem: run-time taken by the local matrix
generation grows quickly as polynomial order increases, reaching approximately 50% of the total run-time for
polynomial order P = 9 on an 80× 80 mesh.

We use batched matrix-matrix multiplication operations as the baseline comparison for our method. The
FLOPS demonstrated by homogeneous BLAS3 operations serve as an upper bound on the the performance of
the batched operations carried out in the HDG process. The batched operations in the HDG pipeline are a
combination of BLAS1, BLAS2, BLAS3, and matrix inversion operations. BLAS3 operations demonstrate the
best performance, in terms of FLOPS, due to to higher computational density over the other operations. Our
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(b) Bandwidth of local matrix generation process.

Fig. 5: GPU local matrix generation metrics

method demonstrates peak performance of 60 GFLOPS, which is ∼ 75% of the peak FLOPS seen by batched
matrix-matrix multiplication operations using cuBLAS [22], on a GPU with 665 peak GFLOPS for double
precision. The addition of matrix inversion operations, BLAS1 and BLAS2 operations lower the computational
performance from that of pure BLAS3 operations.

Figure 5 illustrates the FLOPS and bandwidth of the local matrix generation process and provides a
comparison between the rates on the CPU and GPU (with and without the transfer time). Figure 7 provides
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Fig. 6: Ratios of different stages of GPU implementation with respect to the total run time. 80 × 80 mesh is
used.

an estimate of the FLOPS for the global solve stage. The solver performs the conjugate gradient method
on the sparse global matrix. From this we estimated the FLOPS based on the size of K, the number of
non-zero entries in the global matrix, and the number of iterations required to converge to a solution. Our
estimate may be slightly higher than the actual FLOPS demonstrated by the solver, due to implementation
specific optimizations. Our FLOPS estimate was derived from the conjugate gradient algorithm which requires
approximately 2Nnz + 3Nrows + Niter ∗ (2Nnz + 10Nrows) operations, where Nnz is the number of non-zero
entries in the sparse global system (which is approximately N l

λNΓ × 5N l
λ), Nrows is the number of rows (which

corresponds to N l
λNΓ ), and Niter is the number of iterations required to converge to a solution.

The efficiency of the HDG method on the GPU is highlighted by the growth rate of the local matrix
generation stage. As polynomial order increases, this step becomes the dominant factor in the run-time. The
batch processing technique takes advantage of the independent nature of the local (elemental) operations.
The computational density per step increases with mesh size which makes the GPU operations more efficient.
At lower mesh sizes the performance is lower due to the increased relative overhead associated and lower
computational density.

We note that the global solve stage contributes a non-negligible amount of time to the overall method. The
choice of iterative solver influences the time taken by this stage. In our CPU implementation we use a banded
Cholesky solver, while the GPU implementation uses an iterative conjugate gradient solver from the CUSP
library. This CUDA library uses a multigrid preconditioner and is a state-of-the-art GPU solver for sparse linear
systems. There are alternatives to this approach, such as the sparse matrix-vector product technique described
by Roca et al. [32]. Their method takes advantage of the sparsity pattern of the global matrix to efficiently
perform an iterative solve of the system. We chose our approach based on the fact that the global system solve
is not the focus of our method, and instead focus on the parallelization of the elemental operations.
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Fig. 7: FLOPS estimate for the global solve stage.

Table 7: Local matrix generation time for CG and HDG methods on GPU (time is measured in ms.).

20× 20 mesh 40× 40 mesh 80× 80 mesh

Order HDG CG HDG CG HDG CG

1 7 4 11 7 18 14

2 9 6 14 12 32 20

3 11 10 19 15 44 32

4 14 12 28 22 82 56

5 21 16 55 36 194 116

6 40 20 94 54 347 209

7 60 30 140 91 537 338

8 107 40 249 131 868 492

9 155 59 422 205 1413 808

We would like to conclude this section with a brief discussion of the efficacy of GPU parallelization when
applied to the statically condensed CG method. Static condensation allows the interior modes to be formulated
in terms of solutions on the boundary modes through the use of the Schur Complement (see [25] for more
details). The statically condensed CG method can therefore be formulated in a similar fashion to the HDG
method, which allows it to be implemented within our GPU pipeline. We expect the CG method to take less
time during the local matrix generation stage than in the HDG case. This is due to the simpler formulation of
the local Ke matrices, which, as demonstrated in [27], can be expressed as

Ke = (De1)T (Me)−1De1 + (De2)T (Me)−1De2 −Me.

This is merely expressing the local elemental matrix in the form of the mass matrix subtracted from the
Laplacian matrix which derives from the Helmholtz equation.

To gain further insight into this area, we conducted some preliminary tests. We setup the local (elemental)
Ke matrix generation within our pipeline for the CG case. Table 7 provides the timing results of the local Ke
matrix generation for the HDG and CG methods within our framework across the range of test meshes. For the
statically condensed CG method it takes 35 − 65% (depending on mesh size and polynomial order) less time
Our results are only preliminary, as we did not fully implement the statically condensed CG method within
our framework. However, our conjecture is that the global assembly step will take longer due to the stronger
coupling between elements in the CG method. We also suspect that the global solve step may take longer for
CG as indicated in [27], but it may be influenced by differences in architecture (CPU vs. GPU) as well as the
choice of solver.
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6 Conclusions and Future Work

We have directly compared a CPU and GPU implementation of the HDG method for a two-dimensional
elliptic scalar problem using regular triangular meshes with polynomial orders ranging from 1 ≤ P ≤ 9. We
have discussed how to efficiently implement the HDG method within the context of the GPU architecture, and
we provide results which show the relative costs and scaling of the stages that take place in the HDG method
as polynomial order and mesh size increase.

Our results indicate the efficacy of applying batched operations to the HDG method. We provide an efficient
way to map values from the local matrices to the global matrix during the global assembly step through the use
of a lock-free edge mapping technique. This technique avoids atomic operations and is key for implementing
an efficient HDG method on the GPU. The framework we suggest illustrates an effective GPU pipeline which
could be adapted to fit methods structurally similar to HDG.

Through our numerical tests we have demonstrated that the HDG method is well suited to large scale
streaming SIMD architectures such as the GPU. We consistently see a speed up of 30× or more for meshes of
size 80×80 and larger. The method demonstrates strong scaling with respect to mesh size. With each increasing
mesh size, for a given polynomial order, the number of elements increases by 4×, and we see a corresponding
increase in compute time of roughly ∼ 4×. As the mesh size increases, the process becomes more efficient due
to increased computational density relative to processing overhead. We have also demonstrated that the HDG
method is well-suited to batch processing with low inter-element coupling and highly independent operations.

Let us end by indicating possible extensions to the work presented. One possible extension could be a
GPU implementation of the statically condensed CG method. The formulation of the statically condensed CG
method is similar to that of the HDG method. The structure of the global K matrix will differ due to increased
coupling between elements in the CG case (see [27] for details). This may present an additional challenge in
formulating the global assembly step in an efficient manner on the GPU, because elements are coupled by edges
and vertices. We suspect that the performance gains will not be as great as in the HDG case.

Another possible extension could be scaling of the HDG method to multiple GPUs. The local matrix
generation and the global assembly step consist of independent operations and would scale well with increased
parallelization. The cost of the local matrix generation stage grows at a faster rate than the other stages, and
becomes the dominant factor for P ≥ 7 for moderately sized and larger meshes. The global assembly stage
would also see performance gains, since the assembly process is performed on a per-edge basis. Each GPU
could be given a unique set of edges to assemble into the global matrix K, with some overlapping edges being
passed along to avoid cross communication. The global solve stage may prove to be a bottleneck in a multi-GPU
implementation since it cannot be easily divided up amongst multiple processing units. However, as we have
shown in our results, the computation time for this step does not grow at the same rate as the local matrix
generation step.
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