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Abstract

In this thesis we explore the field of automated artefact generation in compu-
tational creativity with the aim of proposing methods of generation of ideas
with cultural value. We focus on two kinds of ideas: fictional concepts and

socially embedded concepts.

For fictional concepts, we introduce a novel method based on the non-existence-
conjectures made by the HR automated theory formation system. We further
introduce the notion of typicality of an example with respect to a concept
into HR. This leads to methods for ordering fictional concepts with respect
to three measurements: novelty, vagueness and stimulation. We ran an ex-
periment to produce thousands of definitions of fictional animals and then
compared the software’s evaluations of the non-fictional concepts with those
obtained through a survey consulting sixty people. The results showed that

two of the three measurements have a correlation with human notions.

For socially embedded concepts, we apply a typicality-based classification
method, the Rational Model of Classification (RMC), to a set of data ob-
tained from Twitter. The aim being the creation of a set of concepts that
naturally associate to an initial topic. We applied the RMC to four sets of

tweets, each corresponding to one of four initial topics. The result was a set



of clusters per topic, each cluster having a definition consisting of a set of
words that appeared recurrently in the tweets. A survey was used to ask
people to guess the topic given a set of definitions and to rate the artistic
relevance of these definitions. The results showed both high association per-
centage and high relevance scores. A second survey was used to compare the
rankings on the social impact of each of the definitions. The results obtained

show a weak positive correlation between the two rankings.

Our experiments show that it is possible to automatically generate ideas with
the purpose of using them for artefact generation. This is an important step
for the automation of computational creativity because most of the avail-
able artefact generation systems do not explicitly undertake idea generation.
Moreover, our experiments introduce new ways of using the notion of typi-
cality and show how these uses can be integrated in both the generation and

evaluation of ideas.
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Chapter 1

Introduction

Research in artificial intelligence (AI) has always been focused on reality.
However, since J.P. Guilford’s seminal Presidential Address to the Psycho-
logical Association in 1950 and the following inclusion of creativity in the
Structure of Intellect (SOI) [37], the role that ideation (or idea generation)
plays within human intelligence has become relevant not only for the psy-

chology community, but also for researchers in artificial intelligence.

Current research in Computational Creativity can be divided into three non-
mutually exclusive groups, according to the general objectives of the projects
in the groups: the use of software to understand human creativity; the use
of software to help people produce creative work; and the use of software to
manifest creative behaviours either domain independently or in a particular
field. Of these, the third is the focus of this work. In particular, we are
interested in the creative autonomy that can be attributed to systems that
automatically produce artefacts such as paintings, games, poems and music,

starting from a topic of interest, or an idea. We argue that the difficulties
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expressed by the public in judging software as imaginative can be partly
dependent on the fact that, while ideas are at the heart of such artefacts,

they are usually introduced by the programmer.

The aim of this project is therefore to show that it is possible to implement
a computational process capable of producing ideas of cultural value, as
evidenced by them being embedded in artefacts. By ideas, we mean the
notions that can drive a rendering process and by cultural value, we refer to

the level of appreciation of a rendering by an audience.

To undertake this task, we will start by studying the formalisations underly-
ing automated concept formation systems. Examples of projects undertaken
in this direction include the development of automated theory formation soft-
ware, concept blending software, analogical reasoning software and others,
as described in Section 2.1. In particular, we focus on the analysis of dif-
ferent forms of representation that concepts take within this research. We
then introduce a working definition of an idea, which is coherent with and
inclusive of current Al research, but which embraces notions introduced by
the psychological community in studies of the different facets of creativity,

as reviewed in Section 2.4.

We then look at methods to build concepts that are coherent with our defini-
tion of ideas and discuss techniques to evaluate and interpret the ideas pro-
duced. To undertake these tasks, we make use of notions and theories from
cognitive psychology. In particular, we study how the concept of Typicality
and the concept formation theories that revolve around it can be used for the
generation and creation of ideas. In the field of cognitive psychology, typical-
ity is thought of as one of the key notions behind concept representation. Its

importance was one of the main factors that led to the first criticisms of the

16



classical view [65], which argues that concepts can be represented by a set of
necessary and sufficient conditions. Current cognitive theories therefore take
into account the fact that exemplars can belong to a concept with a different
degree of membership: this is the typicality of an exemplar with respect to
that concept. One of the key features of typicality, is that it is dependent
on experience. As a knowledge base grows and changes with the integration
of new knowledge, typicality also changes. This is an aspect which is key
to the creative process, where ideas are highly dependent on personal and
current experiences. It is therefore in our interest to study the influence that

a typicality factor might have in automated creative concept formation.

The overall scope of this project is bidirectional. On one side, we want to ex-
tend concept formation techniques to generate the kind of ideas that artists
are inspired by when creating artworks. On the other side, we hope to build a
bridge between cognitive concept formation techniques and automated arte-
fact generation by allowing the former to provide inputs for the latter. As
human artists speak about an inspiring “muse”, we believe that our idea
generation software could serve as an inspirational input to the large array

of software oriented to the creation of expressive artefacts.

With this project, we do not aim to cover all aspects of creativity appearing
in both psychological theories and computational techniques, or to provide
a method for idea generation that can be considered exhaustive. We instead
want to build an initial framework to orient and frame further research in this
area and focus on the study of two methods of formation for two subsets of
ideas: fictional concepts and socially embedded concepts. Fictional concepts
are concepts which have no evidence in reality. Socially embedded concepts

are concepts that derive from the interaction of a group of people.
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Within the work described in the rest of the thesis, we demonstrate that it
is possible to automatically generate ideas that could serve as a basis to the
creation of artefacts, and that the notion of typicality can be successfully

used to do so. We then propose a framework based on the results obtained.

The rest of this thesis is arranged as follows: in Chapter 2, we present a
literature review that discusses existing work from both a computational
creativity and a cognitive psychology point of view. In Chapter 3, we provide
a definition and explanation for the terms idea and ideation. In Chapters 4
and 5, we describe and discuss the work we have undertaken. In particular,
in Chapter 4 we discuss a method for the creation of fictional concepts, and
in Chapter 5 we discuss a method for the creation of socially embedded
concepts. Finally, in Chapter 6 we draw some conclusions and discuss future

work.

Publications

The following publications arose from, or were based on, the work in this

thesis:

e Uncertainty Modelling in Automated Concept Formation. Flaminia
Cavallo, Simon Colton, and Alison Pease. In Proceedings of the Au-
tomated Reasoning Workshop 2012 [14]. This publication is based on

parts of the work reported in Chapters 2, 4 and 6.

e Using Theory Formation Techniques for the Invention of Fictional Con-

cepts. Flaminia Cavallo, Alison Pease, Jeremy Gow, and Simon Colton.
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In Proceedings of the Fourth International Conference on Computa-
tional Creativity, page 176, 2013 [15]. This publication is based on the

work reported in Chapter 4.
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Chapter 2

Literature Review

In this thesis, we aim to provide an understanding of idea generation which
takes into consideration current representations of concepts in computational
creativity software and in concept formation software, but also references no-
tions from concept representation in cognitive psychology and psychological
theories on aspects of creativity. As the research in each of these areas is
expansive, we focus our review on the parts that we consider of most rele-
vance to our studies. We start by analysing some Al techniques for concept
formation in Section 2.1 and for expressive rendering in Section 2.2. We then
look at psychological theories of concept representation in Section 2.3 and
on the different aspects of creativity in Section 2.4. Finally, we review some

notions of curiosity and interestingness in Section 2.5.
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2.1 Concept Formation Techniques

In psychology, the term concept formation usually refers to the extraction
of a sets of common and relevant features from a group of items, whereas in

artificial intelligence this ability is usually associated with machine learning.

Below we report a summary of those computational techniques that perform
concept formation by following a discovery oriented approach either deliber-
ately seeking novelty or deliberately reproducing some other aspects of the
creative reasoning processes. These are of particular interest to our project
because they constitute a large inspiration for the definition and implemen-

tation of methods to define and evaluate ideas.

2.1.1 Automated Theory Formation

Automated Theory Formation concerns the formation of interesting theories,
starting with some initial knowledge and enriching it by performing induc-
tive and deductive reasoning. In the late 1970s, Lenat developed the Auto-
mated Mathematician (AM) [44], a system which, given a large number of
mathematical concepts and heuristic rules, performs interestingness-guided
manipulations of these concepts in order to obtain new ones. Although AM
is still important in terms of its innovational contribution, the system has
been criticised for both its non-evident creative value [47,64,72] and for being
strictly domain dependent [47]. Some of AM’s limitations were addressed by
Lenat himself in the development of the system EURISKO [46], which uses
meta-heuristics to generate new heuristics as needed. EURISKO was con-
siderably more successful and obtained satisfactory results in different fields,

including VLSI chip design [48] and role-playing games [45]. However, the
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system has not been widely used, probably because of its reliance upon many

domain-specific rules [68].

A subsequent project in this direction lead to the development of HR [20], a
system by Colton et al., that performs both concept formation and conjecture
making by applying a concise set of production rules and empirical pattern
matching techniques to an initial knowledge base. These rules are applied in
the order dictated by an agenda, containing information on how to construct
the next new concept. The production rules take as input the definition of
one or two concepts and output the definition of the new concept, whose
success set — the collection of all the tuples of objects which satisfy the
definition — is then calculated. These sets of positive examples are then
compared and hence used to formulate conjectures about the new concepts.
These conjectures take the form of equivalence conjectures (when two sets of
positive examples match), implication conjectures (when one set of positive
examples is a subset of another), or non-existence conjectures (when a set
of positive examples is empty). The conjectures are either proved by the
OTTER theorem prover [51], rejected because of a counterexample found by
the MACE model generator [52] or left open. HR follows a best-first non-
goal-oriented search, dictated by an ordered agenda and a set of heuristic
rules used to evaluate the interestingness of each concept. HR was developed
to work in mathematical domains, but different projects have demonstrated
the suitability of this system to work in other domains such as games [6],

puzzles [19] and HR’s own theories [18].

In Chapter 4, we use a modified version of the HR program for the generation
of fictional concepts. In order to allow the reader to fully comprehend this

chapter, we provide below the details on the HR algorithm.
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HR: Constants, Concepts and Conjectures

In HR, a theory is constituted of four kind of elements: constants, concepts,

conjectures and proofs.

e Constants: These are defined by a predicate of the form T(A) where A
is a constant and T specifies the type of A. Examples are animal(dog)

or covering(feathers).

e Concepts: These are used to express newly discovered entities and are
represented by a classification rule (concept definition), the success set
of such a classification rule (set of exemplars) and the classification
that this rule implies (a partition on the specific subset of tuples of
constants). An example is:

DEFINITION : Concept24(x,y) = has_covering(x,y) AND
has_milk(x)

EXAMPLES : f(dog) = {hair}, f(bat) = {hair},

f(dolphin) = {none} *

CLASSIFICATION : [bat, dog], [dolphin]

e Conjectures: Conjectures are represented by an association rule (the
definition of the conjecture), and other information such as its status:
proved, disproved or open conjecture. An example is:
CONJECTURE :V(z)(has-milk(zx) <> of _class(x, Mammal))
STATUS : proved

"Where f(x) = {y|Concept24(x,y)}
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e Proofs: Proofs are represented as text output from OTTER [51] .
Proofs are limited to the mathematical domain, and hence can not

be applied to the above example.

HR: Production Rules

We report here some of the production rules that HR uses in order to con-
struct new concepts: each of these rules can be applied to one (unary rules)

or two (binary rules) known concepts.

e Match: equates variables in a definition.
For instance, suppose that the old concept is: integers, a, b, ¢ where
a*b = ¢ (the concept of multiplication). Then the Match rule could be
used to equate a and b and hence obtain: integers, a, ¢ where axa = ¢

(the concept of squares).

e Split: instantiates one or more variables in a definition.
For instance, suppose that the old concept is: integers, a, b, ¢ where
a* b = ¢ (the concept of multiplication). Then the Split rule could be
used to instantiate b to 2 and obtain: integers, a, ¢ where a2 = ¢ (the

concept of multiplying a number by 2).

e Exists: introduces an existential quantifier over one or more variables
in a definition.
For instance, suppose that the old concept is (as in the example above):
a, ¢ where a * 2 = ¢ (the concept of multiplying a number by 2). Then
the Exist rule could be used to invent the concept of all integers for
which there exists a number that gives this integer when multiplied by

2: this is the concept of even numbers.
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e Size: counts the number of distinct tuples of constants in the success
set of a definition.
For instance, suppose that the old concept is: integers, a, b, where the
number of divisors of @ = b. Then the Size rule could be used to count

the number of divisors each integer has.

e Compose: uses conjugation to compose the clauses of two concepts into
a new definition.
For instance, given the concept of the number of divisors of an integer
and the concept of even numbers, the Compose rule could be used to

invent the concept of integers with an even number of divisors.

e Negate: negates certain clauses in one of the definitions.
For instance, given the concept of even numbers the Negate rule could

be used to invent the concept of odd numbers.

HR: Interestingness Measures

HR performs concept formation by following a best-first search, dictated by
an ordered agenda containing information on how to construct the next new
concept. Each item in the agenda represents an instruction on what produc-
tion rule to apply to which existing concept(s) and with which parameters.
The agenda is ordered with respect to the interestingness of the concepts
for development. These values are calculated as a weighted sum (where the

weights are provided by the user) of the following measures:

e Applicability: the proportion of constants found in the success set of a

concept.
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Comprehensibility: the reciprocal of the number of production steps

that went into building the concept.

Parsimony: the reciprocal of the number of elements in the success set

multiplied by the arity of the definition.
Variety: the number of different classes in the classification.

Development Steps: how many production rules a definition has been
involved in, which gives an indication of how much it has been devel-

oped.

Productivity: the proportion of theory formation steps the concept has

been used in and that have successfully produced a new concept.

Novelty: 1 minus the proportion of other concepts in the theory which

achieve the same classification.

Parents: the average interestingness of the parents of the concept (this

can only be used in conjugation with other measures).

Children: the average interestingness of the children of the concept

(this can only be used in conjugation with other measures).

Proof Difficulty: the average difficulty (as assessed by OTTER) of

proved theorems about the concept.

Invariance: if the user specifies a desired classification, this is the pro-
portion of all pairs of objects which should be classified together and
that are classified together.

26



e Discrimination: if the user specifies a desired classification, this is the
proportion of all pairs of objects which should be classified as different

and that are classified as different.

2.1.2 Conceptual Combination

In cognitive psychology, one of the most studied general purpose processes
of creative thinking is conceptual combination. Conceptual combination
involves the merging of previously separate ideas, concepts, visual forms
etc. [78]. In computational creativity, research in this direction aims to-
wards the construction of models that reason in different domains, inclusive
of a transition mechanism that allows for the transferred knowledge to make
sense in the new context [59]. A distinction is usually made between sys-
tems that perform conceptual combination to enforce convergent thinking
and those that use it to enforce divergent thinking. In the first case, concep-
tual combination is used to enrich or modify a given data structure; in the
second case, conceptual combination is used to create completely new and

independent data structures: this is the case of conceptual blending systems.

The theory behind conceptual blending was initially formalised by Gilles
Fauconnier and Mark Turner [32]. They describe conceptual blending as
a procedure which, given two initial mental spaces, generates a third one,
called the blend, by obeying a selected structure mapping. The new domain
will partially maintain the structure provided by the input domains, but will

also add its own independent structure.

The Conceptual Blending process can be divided into three stages [32]:
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e Composition: this process involves the projection of the knowledge
representing each input into the blended space. This process might

involve the union of some of the features of the inputs [36].

e Completion: during this process, frames encoded into the knowledge
base are used to fill out the details of a pattern in the blend. The

completion phase often results in the emergence of a new structure [36].

e Elaboration - during this process, the structure in the blend is elabo-

rated through some cognitive work performed with the blend [36].

One of the most recent conceptual blending models is Divago, developed by
Francisco Pereira [59]. Divago uses both reasoning techniques and genetic
algorithms to produce its blends. It has been applied to both visual and
linguistic domains, giving satisfactory results in terms of its creative con-
tribution [59]. One of the most illustrative examples for which Divago has
been used is the automated generation of concepts such as Pegasus [58]. To
complete this task, Divago is given two concept maps: one for the concept
‘Horse’ and another of the concept ‘Bird’. A concept map consists of a set
of first order logic statements that characterise the concept it represents.
The system is also provided with frames (used to describe specific composite
concepts, such as ‘new ability’) and integrity constraints (used to maintain
soundness within concepts). These frames and integrity constraints are used
to manipulate both of the two initial concept maps, by integrating one into
the other. The result consists of a set of new concept maps, each describing
a blend between the two initial concepts; in this case, the concept of a horse
and the one of a bird (and hence the set of resulting concept maps can be

thought of as a set of different versions of Pegasus). More detailed informa-
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tion about the algorithm used in Divago can be found in Section 4.4, where

we compare it to our fictional concept creation method.

2.1.3 Analogical Reasoning

Analogical reasoning is another process which has received attention from
AT researchers and cognitive scientists [31,34], and has strong connections to
computational creativity [56,77]. This can be described as the application or
projection of structured knowledge from a familiar domain to a novel and less
familiar one [78]. A frequently mentioned example of analogical reasoning is
Rutherford’s explanation of the hydrogen atom through the comparison with

the solar system.

From a computational point of view, one of the most cited models of analog-
ical reasoning is Falkenhainer et al.’s Structure-Mapping Engine (SME) [31],
based on Gentner’s structure-mapping theory of analogy [34]. SME takes as
input a base concept and a target concept and, by building a match between
the structures of the two, it outputs an interpretation of the comparison.
Such an interpretation consists of three parts: the correspondences between
the structures of the base and target concepts, a set of possible inferences
about the target concept which can be implied from the matches between
the structures, and a score for the quality of the match. For example, the
two structures represented in Figure 2.1 can be used by SME to interpret the
analogy between the solar system and an atom. The algorithm first looks
for all the possible mappings between the two structures. In Figure 2.1, for
example, the system creates various possible mappings: (i) one that matches
the nucleus to the sun, and the planets to the electrons; (ii) one that matches

the mass of the sun to the mass of the nucleus; and so on. A structural support
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score is then given to each of these mappings, proportional to the number of
possible inferences that can be derived from it. In the example above, map-
ping (i) would imply that in an atom, as in the solar system, the difference in
masses between the nucleus and the electrons causes the electrons to revolve

around the nucleus.

SOLAR SYSTEM RUTHERFORD ATOM
CAUSE
/\ CAUSE
CAUSE AND  REVOLVE(planet, sun)) OPPOSITE-SIGN ATTRACTS(nucleus,electron)

) T

GRAVITY ATTRACTS(planetsun) GREATER CHARGE(nucleus) ~ CHARGE(electron)

REVOLVE(electron,nucleus)

MASS(sun) MASS(planet)
GREATER
GREATER

/\

TEMPERATUE(sun) TEMPERATURE(planet) | MASS(nucleus) MASS(electron)

Figure 2.1: Simplified ‘Solar System’ and ‘Rutheford Atom’ structures used
in SME.

2.1.4 Inductive Logic Programming

Out of the many of methods proposed in the field of Machine Learning, we
believe that Inductive Logic Programming (ILP) is the one of most relevant
to our project because of its descriptive representation and its suitability
for learning relational predicates [66]. Moreover, ILP has connections with
non-goal-oriented reasoning (in descriptive ILP, explained below) and with
probabilistic reasoning (in probabilistic ILP, explained below), which are

both central to our project.
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Given a knowledge base and a set of observations, ILP uses inductive reason-
ing in order to advance a set of hypotheses in the form of logic programs. We
describe three different approaches to ILP: predictive ILP, descriptive ILP
and probabilistic ILP.

In predictive ILP, given a knowledge base and a set of observations in the
form of positive and negative exemplars, the goal is to find a hypothesis
that covers all of the positive and none of the negative exemplars. This is
achieved by starting with a general rule and specialising it gradually so that
it is consistent with the observations. Hence predictive ILP can be used when
a classification for a set of exemplars is known and the goal is to find a rule

to explain this classification [66].

Probabilistic ILP integrates probabilistic reasoning with the first order rep-
resentations and methods used in predictive ILP. In this case, the clauses in
the set of observations are annotated with probability values and the task of
the algorithm is to find a hypothesis that maximises the likelihood of these

observations [29].

In descriptive ILP, the goal is to find, given a knowledge base as a set of pred-
icates, a hypothesis that explains the data. Hence descriptive ILP systems
require no classification labels (no sets of positive and negative exemplars).
Hypotheses are generated through the formation of new predicates. Descrip-
tive ILP can then be described as a non-goal-oriented learning system, as it
provides a method to enrich a knowledge base without the need for specifi-

cations on what the user is looking for.
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2.2 Automated Expression of Ideas

We describe here the branch of Computational Creativity research focusing
on the automation of systems able to produce creative artefacts in a particular
domain, such as paintings, poems, games, music etc. The amount of research
undertaken in this direction is large, and the techniques used are generally

dependent on the domain of interest.

Many projects have been carried out in the linguistic field, through the de-
velopment of software for the generation of poems [16, 35|, jokes [9, 10, 73]
and stories [13,53,75]. There has also been research in the music field such
as [27, 30, 80, 82|, the visual field e.g. [21,50], and in other fields such as
games [25] and cooking [54].

Generally speaking, we can divide the projects in this area into two main
groups: (i) those that focus on the application and evaluation of a particular
production method on different sets of data, where the methods could be
either provided by the programmer or automatically learned through the
analysis of human-generated work, and (ii) those that focus on the search
for possible approaches that can be applied in order to obtain a pre-defined

result.

In the first case, the general objective is to understand how and when the
application of a given technique could be considered creative. Examples of
systems here include the painting system AARON [50], whose initial goal was
to discover “What are the minimum conditions under which a set of marks
functions as an image?” [50], or those systems that automatically learn the
writing/music/painting style of a particular artist in order to produce more

work in that style. In the second case, the objective is reversed: the role of
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the system is to interpret and embrace a given idea, and to find an adequate
way to express it through a form of art. We call this second process automated

expression of ideas.

In this thesis, we focus on such systems, and we argue that the difficulties
expressed by the public in judging these as imaginative can be partly depen-
dent on the fact that, while ideas are at the heart of such creative artefacts,

they are usually introduced by the programmer.

Some progress in this direction has been made by systems that automatically
capture ideas from a given resource, such as a news article or a photograph.
We have summarised three of these systems below. Note that whilst these
systems remove the role of humans in choosing and interpreting an idea, the
ideas are still provided by people (i.e the journalists or the photographer
etc.).

2.2.1 The Painting Fool

The Painting Fool [21] is a program that automatically generates paintings
without the need of user intervention: the program tries to reproduce not only
the characteristics of a good painting (“by applying a set of instructions” [17])
but the whole painting process (“by providing its own set of instructions”
[17]). In order to be considered an artist in its own right, The Painting Fool
was constructed with the aim of being attributed a notion of intent, and was
hence developed so that its paintings are generated not from human given

directions, but from data extracted from the internet.

An example comes from automated collage generation [43], which is achieved

through the retrieval of news article, the extraction of keywords and the
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retrieval of images from Flickr using these keywords. This data is used for the
construction of input files specifying which images to annotate and extract
colour segments from, how to arrange the segments in an overall collage, and
what natural media to simulate when painting the segments to produce the

final piece [43].

Cook and Colton point out that this system somewhat removes the role of
human decision making: humans have in fact little control over (a) what news
story will be chosen for a collage (b) what keywords will be extracted (c) what
images will be retrieved or (d) how the collage will be rendered [24]. However,
given that the data used is still human provided, the intentionality behind
the production of the collages can be attributed not only to the software but
in an equal amount also to the articles” writers, to the photographers, to the
programmer, the interpreting public and the people that tagged images in
Flickr [24].

2.2.2 ANGELINA

ANGELINA [25] is a system that can automatically design videogames through
the use of co-operative co-evolution techniques adopted to evolve simple plat-
form games. ANGELINA uses a variety of social and other media to design
a game. In one project, the starting point is a Guardian newspaper article.
This gives ANGELINA a set of keywords and topics that the article cov-
ers (like ‘Afghanistan’, ‘Finance’, ‘David Cameron’ or ‘The Arab Spring’).
These can then be used to power searches on other websites for more media
and data. The keyword data goes through a process of refinement where AN-
GELINA uses sources like Wikipedia to add factual or classifying information
to keywords [26].
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For example, Afghanistan can be labeled as a country, and David Cameron
as a person. Once the keywords are refined, ANGELINA then starts to look
for more subjective data about them — photos, sound effects, and opinions.
For instance, knowing that a keyword refers to a person, ANGELINA queries
Twitter with “(name)is” and looks at the words attributed to that person.
This gives an estimate for the public opinion towards these people, which
is then used to alter the searches that ANGELINA performs for photos. If
a keyword is identified as a country or location, ANGELINA uses Flickr’s
geolocation API to find photographs taken in that area and uses them as
background images in a video-game. Some data use is more abstract - the
program processes the article’s raw body text and runs it through a sentiment
analysis routine. If the article is depressing or sad, ANGELINA looks for

melancholic music to play during the game; or upbeat music if the article is

happy.

2.2.3 Poetry Generation

The use of internet resources for the construction of expressive artefacts has
also been applied to poem generation [23]. Colton at al. propose a system
which uses templates to construct poems according to given constraints on
rhyme, meter, stress, sentiment, word frequency and word similarity [23].
The software uses newspapers to construct a mood for each day, to select
an article on which to base a poem on and to choose a template for the
poem. Subsequently, the program generates an aesthetic based on relevance
to the article, lyricism, sentiment and flamboyancy [23], and it searches for
an instantiation of the template which maximises the aesthetic. Finally, the

program provides a commentary for the whole process to add value to the
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creative act.

2.3 Concept Representation in Cognitive Psy-
chology

Given our objective of building a system which forms ideas for human-
oriented purposes, we decided to look at cognitive theories of concept repre-
sentation in order to formalise a data structure for our ideas, and at cognitive
theories of concept formation in order to inspire our methods of idea forma-
tion. Throughout the corresponding literature, the term category usually
refers to a class of things: a subset of a set of entities, grouped together with
respect to some reasonable criteria. The word concept refers to the mental
representation of a category [55]. The debate on what is the correct represen-
tation lies at the base of the differences between theories of categorization.
Below we report a summary of these theories and how they evolved through

time.

2.3.1 From the Classical View to the Exemplar and

Prototype View

Until the 1970s, concepts were regarded as being mentally represented by a
definition: this school of thought is usually referred to as the classical view.
In the classical view, an item is said to belong to a category if it meets a
set of necessary and sufficient conditions: the concept definition. This view

hence implies the law of the excluded middle, according to which an item
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either belongs or doesn’t belong to a category. It also follows a mathematical
logic approach, which although is very simple and elegant, is unfortunately
not plausible for most real life examples: it is in fact not only hard to come
up with a definition for most of the world’s categories but, more importantly,
it is essential to make a distinction between categories’ members [55]. For
example, the concept of ‘Dog’ could be defined as ‘a four-legged barking
mammal with fur’. But how can we classify a dog that has lost a leg? What

about a toy dog animal?

A complete theory must therefore take into account both the typicality of
items (by recognising that some items are more typical of a category than
others) and the existence of “in-between categories” cases. One last criticism
of the classical view referred to its transitive properties in categorization,
which are not always consistent in real case scenarios: if A belongs to B,
and B belongs to C, A does not need to belong to C [55]. For example, a
‘car chair’ is a kind of ‘chair’, and a ‘chair’ is a kind of ‘furniture’, but this

doesn’t imply that a ‘car chair’ is ‘furniture’.

Following Roch’s first critique of the classical view in 1970 [65], the recogni-
tion of these problems led to the formation of two main streams of thought:

the prototype view and the exemplar view.

The prototype view states that concepts are mentally represented by a list of
the features that are usually found among the categories’ members. Features
do not need to be consistent with one another, and can also be contradic-
tory. For example, the prototype of the concept of ‘dog’ could be equal to
the following list of features: {white, black, brown, barks, hasTail, etc.}. A

weight is given to each feature according to its frequency. When we classify
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a new object, its features are compared with those from the feature list, and
the object is assigned to the category with which it shares most features.
According to this view, we can then hypothesise the existence of a member
for each category which best represents it: the concept’s prototype. This does
not need to be a concrete example, and is represented as a list of the most
common features. In a more complete version of the prototype view, fea-
tures are organised into dimensions, so that each feature belongs to one, and
only one, of these dimensions. Additional weight is given to each dimension
according to how determinant it is to the concept definition. This second
representation not only provides more information about the category, but

also introduces constraints which stop the formulation of incoherent concepts.

The exemplar view states that a concept is mentally represented by a set of
the category’s specific and remembered instances (the exemplars) [71]. The
exemplar view hence assumes that people store in memory information about
every instance of a stimulus, along with information about its category mem-
bership. For example, the concept of dog might be stored as the following
set: {Bobby, Pongo, Lucky, etc.}, where Bobby, Pongo and Lucky are dogs.
Categorization is then achieved by computing the similarity of an item with

each of the remembered exemplars in a category.

Both the exemplar and prototype views therefore imply that some members
are better examples of a concept than others, and hence that some members
are more typical of a category than others. Also, both views imply that
categories’ boundaries are fuzzy, as items might be members of two or more

categories.
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2.3.2 Further Work in Concept Representation

The analysis of the differences between the exemplar and prototype views
led many researchers to realise that these two models could correspond to
special (extreme) cases of a more generic model. This realisation lead to
the formulation of a range of clustering-based algorithms such as the VAMP
model [76], the SUSTAIN model [49] and the ALCOVE model [42]. One of
the first, and arguably the most used, of these models is Anderson’s Rational
Model of Classification (RMC) [5], which proposes an algorithm to build
concepts from stimuli in a dynamic, probabilistic and order-dependent way.

The system loops through these phases:

e Given a set of concepts, the knowledge set (note that this could be
equal to the empty set) and a new item, compute this item’s degree of
membership with respect to each concept in the knowledge set. Also
compute the likelihood that the item belongs to a new, not yet defined

concept.

e Take the highest likelihood: this will determine whether the new exem-
plar belongs to the corresponding concept or a whole new concept (and
hence that the item is the first encountered member of a previously

unknown concept).

e Modify the selected concept definition by integrating the features of

the new item.

Models such as the RMC are important not only because they propose a
method of unification between the prototype and exemplar schools of thought

(by recognising them to be extreme cases of a generic model), but also because
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they regard both concept representations and the categorization process as
dynamic and flexible entities. That is, a concept could change as more in-
stances are classified, and the classification process is dependent on the order
that stimuli are encountered. We will expand on these features in Section

6.1.2.

From the above discussion, it is evident that a lot of progress has been made
in this field since Roch’s first critique in 1970 [65] of the classical view of
categorization. However, while research in cognitive psychology continues to
develop on formulation of new concept representation theories, current com-
putational creativity software still rely on a strictly definitional approach.
In this project, we adopt notions suggested from the cognitive psychology
literature, such as the use of prototypes, typicality measures and a dynamic
classification approach for the definition and construction of ideas. In par-
ticular, the notion of typicality is heavily used in Chapter 4, while the RMC
is used in Chapter 5.

2.4 Psychological Theories of Creativity

The amount of research by cognitive psychologists devoted to the study of
different aspects of creativity and to the formulation of theories of creativity
continues to grow. This is of no surprise given the fact that despite the recog-
nition of its importance, discrepancies still exist between opinions on what
creativity actually means. In the following sections we report a summary of

the theories of creativity that are relevant to this project.
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2.4.1 Boden’s Three Ways of Creativity

In [12], Boden identifies three different types of creativity: combinational
creativity, exploratory creativity and transformational creativity. To explain
these, she first introduces the concept of a conceptual space. A conceptual
space is the set of all possible items which satisfy a predefined set of rules or
constraints (noting that such a set could be infinite). Examples could include
all the possible ways of making a painting, or all the possible moves in a game
of chess. In Boden’s own words a conceptual space is ‘any disciplined way of

thinking that’s familiar to (and valued by) a certain social group’ [12].

The first kind of creativity that Boden identifies is combinational creativity.
It involves making unfamiliar comparisons of familiar parts of distinct con-
ceptual spaces (or distinct parts of the same conceptual space), where such
comparisons are considered creative if not seen before. For example, this
kind of creativity would include making a comparison between an atom and

the solar system.

The other two types of creativity introduced by Boden, namely exploratory
creativity and transformational creativity, involve the exploration or the trans-
formation of a conceptual space. Exploratory creativity occurs when a part
of a search space which has never been visited is taken into consideration.
For example, in a game of chess many moves are possible, but not all of them
might have been used. Then the use of a new move would be considered an
example of exploratory creativity. As another example, in visual art there
are infinite possibilities of ‘lines of color’ that can be drawn on a canvas, but
only some of them have been used in the past. A new combination of ‘lines
of color’ is another example of exploratory creativity. Transformational cre-

ativity instead occurs when the rules or the constraints of a conceptual space
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are changed or expanded. Boden describes it as follows: ‘the deepest cases of
creativity involve someone’s thinking something which, with respect to the
conceptual spaces in their minds, they couldn’t have thought before. The
supposedly impossible idea can come about only if the creator changes the
pre-existing style in some way’. In the two examples used above, transforma-
tional creativity would occur if a new rule which maintains the consistency
and soundness of the previous rules is added to a game of chess, or if a new

way to draw on a canvas is used.

In [81], Wiggins formalises Boden’s conceptual space, exploratory and trasfor-
mational creativity. Wiggins identifies two set of rules (details can be found
in [81]) which define a conceptual space: the constraints of the space, which
determine whether an item belongs to the space, and the exploratory rules of
the space, which determine how the items in a conceptual space are searched
for. The author then points out that this implies the existence of two types
of tranformational creativity: one involves transforming the constraints of a
conceptual space, hence allowing the inclusion of new items into it; the other
involves the transformation of the exploratory rules of a conceptual space,
hence allowing the discovery of items that already belonged to the concep-
tual space, but could not be found before. We refer back to Boden’s ways of

creativity and Wiggins’ formalization in Section 6.1.2.

2.4.2 The four P’s of Creativity

Different theoretical studies on creativity can be framed with respect to the
facets that they give prominence to. Traditionally, theories of creativity can
be defined as focusing on one or more of the following aspects: process,

product, person and place [60]. These are usually referred to as the four P’s
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of creativity.

Theories that address the Creative Process are the ones that aim to com-
prehend the cognitive mechanisms that occur when someone is engaged in
creative thinking or creative activity [41]. Some recurrent themes among
these theories are the study of commonalities and differences between cre-
ative thinking and non-creative thinking, the rules of conscious versus un-
conscious process and the contribution of stochastic processes versus more

controlled and guided processes [41].

Theories that focus on creative products aim at the analysis of concrete
results. These theories usually provide quantitative and objective methods
for the measurements of the value of an artefact, focusing on its novelty and
usefulness. It is, however, important to remember that a lot of researchers
argue that the study of a product is ineffective in terms of understanding
creativity if little can be said about the process leading to it or the creator’s

personality [41].

Another branch of studies on creativity address the creative person. These
theories generally try to analyse personality traits that could be indicative

of a creative person, independently of the domain or in a specific domain.

Finally, theories that focus on the creative place (or creative press) analyse
the settings in which creative acts take place. Recurrent themes in this area
of research include the interactions between people, or between a person
and the environment. General agreement among these theories validate the
fact that creativity tends to manifest itself when there are opportunities for
explorations and independent work, and when originality is supported. An

important theory that can be classified into this group is Csikszentmihalyi’s
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system view of creativity [28]. He argues that the processes essential to
creativity are to be found in the interactions between individuals and society.
He hence identifies three important components of creative systems: the
individual, the domain (the cultural component) and the field (the social or
interactive component) and argues that each of these components is essential
in determining creativity.

We refer back to the four Ps of creativity in Section 6.1.1, where we propose

a mapping between three of the Ps and a proposed framework.

2.4.3 Categories of Creative Magnitude

In describing theories of creativity, it is important to distinguish between lev-
els of creative magnitude. One of the most common distinctions is between
little-c creativity and big-C' Creativity [41]. Big-C Creativity [61] refers to
indubitable examples of creativity, like Picasso’s paintings, Einstein’s rel-
ativity theory and Mozart’s music. Big-C creativity’s works are the ones
that make major contributions to the development of a field [41]. Little-c
creativity refers to everyday creativity [61]: little-c creativity works might
consist of novel approaches to tackle a problem or of small discoveries which
are interesting but not of high importance for a domain. Berghetto and
Kaufman [38] subsequently introduce two additional levels: mini-c creativity
and pro-c creativity. Mini-c creativity was introduced to divide the subjec-
tive and objective aspects of little-c creativity [41]: mini-c creativity refers
to creativity at a personal level, including aspects such as mental or emo-
tional creative changes. Pro-c creativity was instead introduced to define
the fuzzy area that lies between little-c and big-C' creativity [41]. It refers to

professional-level creators (like professional artists) who do not have eminent
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status, but who are beyond little-c creators in knowledge, motivation and

performance [78].

A similar distinction has been proposed by Boden [12], who suggested a clas-
sification aimed at the description of the behaviour of both software and
humans. Boden’s proposition is based on who perceives a creative product
as such. When something is perceived as creative from a personal prospec-
tive, and hence is novel just to the creative person, we are referring to
psychological-creativity, or p-creativity. When something is new and useful
to a community or the of whole humanity, we refer to historical-creativity,

or h-creativity.

2.5 Interestingness and Curiosity

Other areas of research that are strictly connected to our project are the
ones that study and propose theories of interestingness and curiosity. Below
we have summarised some the relevant work undertaken in these areas. We
refer to the notions introduced below in Section 4.2, where we propose some

measurements of interestingness based on typicality.

2.5.1 Notions of Interestingness

One of the most used ways to classify interestingness, first suggested by
Silberschatz and Tuzhilin [70], is the distinction between subjective and ob-

jective interestingness. Objective interestingness focuses on the evaluation
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of an item based exclusively on its properties and characteristics. Subjective
interestingness instead compares properties of an item with the beliefs and

the knowledge of a person.

Both Schmidhuber [69] and Csikszentmihalyi [28] underline the importance
that the subjective aspects of interestingness have over the objective ones,
stating that it must only be evaluated in terms of an observer’s current

knowledge and computational abilities.

According to Silberschatz and Tuzhilin [70], the two main characteristics of

subjective interestingness are:

e Unexpectedness: a measurement inversely proportional the predictabil-

ity of a result or event

e Actionability: a measurement for the number of actions that an agent

could undertake as a consequence of a discovery.

In [68] interestingness is evaluated through the use of the Wundt Curve as
a function that plots interest with respect to novelty. According to this
theory, interestingness can be considered to be a special case of hedonic
value: a measurement for the pleasure associated with heightened states of
learning. Saunders hence modelled the relationship between the hedonic
value (pleasure) and novelty (distance to reality) using a non-linear fuction

called the Wundt Curve, shown in Figure 2.2 [7].

The Wundt curve has since been used in many models of computational
creativity. It’s maximum value is located in a region located relatively close

to the y-axis. Saunders points out that this can be interpreted as the fact that
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Figure 2.2: The Wundt Curve: a hedonic function used to calculate interest.
The y-axis measures the hedonic value: a measurement for the pleasure as-
sociated with heightened states of learning; the x-axis measures novelty: a
measure of the distance to reality. The maximum value, located in a region
close to the y-axis, can be interpreted as the fact that the most interesting
experiences are those that are “similar-yet-different” to those that have been

experienced previously.

the most interesting experiences are those that are “similar-yet-different” to

those that have been experienced previously [68].

Colton compares the measures of interestingness that have been used in some
mathematical discovery systems [22]. He identifies five types of commonly
used measures: Novelty (whether a concept or conjecture is new with respect
to a knowledge base), Surprisingness (whether a concept or conjecture is pre-
dictable), Applicability (whether the concept or conjectures apply to a large
amount of data in the knowledge base), Comprehensibility and Complexity
(whether a concept or conjecture is simple enough to be understood) and

Utility (whether a concept or conjecture can be used for further goals).
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2.5.2 Ritchie’s Criteria

In [62], G. Ritchie proposes eighteen criteria to asses some behaviors of a com-
puter program which might be indicative of creative potential. These criteria
aim to evaluate the creativity of a program by measuring some properties of
the outputs that such a system produces. The outputs (i.e. a painting, a
verbal joke) are called basic items, and they are considered independently of

whether they are consider a successful output or unsuccessful results.

The criteria that Ritchie proposed consist of some calculation involving what
he identifies as the primitive aspects of basic items: their value and their
typicality. Value is described as a measurement of the extent to which the
produced item is a high quality example of his genre [62] (i.e. ‘To which
extent is output a a good painting?’). Typicality is instead described as a
measurement of the extent to which the produced item is an example of the
artefact class in question (i.e. ‘To which extent can output a be classified
as a painting?’). Both value (val) and typicality (typ) are expressed as a
mapping from the basic item to the set [0, 1] (by using fuzzy sets). In order to
understand the criteria, Richie makes use of following additional definitions:
the Inspiring Set I is the subset of the available basic items which drove the
creative program computation. ‘It could be all the relevant artefacts known
to the program designer, or items which the program is designed to replicate,
or a knowledge base of known examples which drives the computation within
the program’ [62]. The set of basic items that a program produced is instead
represented by the letter R. T,1(R) is the subset of R consisting of items
which have typ higher than a chosen constant . Similarly, V. ;(R) is the

subset of R consisting of items which have val higher than a chosen constant

Y.
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Given the above definitions, we report the formulas of Ritchie’s criteria in

the Table 2.1.

2.5.3 Curiosity

Berlyne defines curiosity as “a form of motivation that promotes exploratory
behaviour to learn more about a source of uncertainty, such as a novel stim-
ulus, with the goal of acquiring sufficient knowledge to reduce the uncer-
tainty” [8]. Berlyne proposed to divide curiosity into two types: curiosity
driven by diversive exploration, and curiosity driven by specific exploration.
In the case of diversive exploration, a person is under-stimulated and hence
seeks arousal from the environment. In the case of specific exploration, a
person is over-stimulated and tries to reduce their arousal by exploring a
particular situation in order to reduce uncertainty. We can then hypothesise
a parallelism between these two kinds of curiosity and the two main creative
processes of convergent versus divergent thinking. That is, diversive explo-
ration stimulates divergent thinking, while specific exploration stimulates

convergent thinking.

2.6 Summary

In the sections above we have reviewed some of the key studies and theories
related to creativity from both an artificial intelligence and psychological

prospective. Within the rest of the thesis, we refer to this work for different
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Formalization
AV (typ, R) > 0, for suitable 0
Ratio(T, 1(R), R) > 0 for suitable 6,
AV (val, R) > 0, for suitable 6
Ratio(V,1(R), R) > 6 for suitable 0, ~
Ratio(V,1(R) NTh1(R),To1(R)) > 6 for suitable 6, v,y
Ratio(V,1(R) N Ty (R), R) > 0 for suitable 6, 5,
Ratio(V,1(R) NTog(R), Ty s(R)) > 6 for suitable 6, 3, v
Ratio(V,1(R) N1y s(R), V,1(R)) > 6 for suitable 0, o, 3,
Ratio(I N R, I) > 6 for suitable 6
1 — Ratio(I N R, R) > 6 for suitable 6
AV (typ, (R — 1)) > 0 for suitable
AV (val, (R — I)) > 6 for suitable 6
Ratio(T,1(R —I), R) > 6 for suitable 0,
Ratio(V,1(R — I), R) > 0 for suitable 6, v
Ratio(T,1(R— 1), (R — 1)) > 6 for suitable 0, «
Ratio(V,1(R —1I),(R — 1)) > 0 for suitable 6, v
Ratio(V,1(R—1)NTy1(R—1),(R— 1)) > 6 for suitable 6, o,y
Ratio(V,1(R—I)NTys(R—1),(R—1I)) > 6 for suitable 6, 3, v

Table 2.1: Ritchie’s Criteria: formulas to evaluate the creativity of a basic

item
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reasons. In particular, we use the work summarised above for the following

purposes:

e To identify trends and gaps within current computational creativity re-
search. The material reviewed in Section 2.2 on current computational
creativity methods (and in particular artifact generation) is utilised for

this purpose, as explained in Chapter 3.

e To actively use the algorithms proposed. This is the case for HR,
reviewed in Section 2.1.1 and used for the experiments in Chapter 4,
and for the RMC, reviewed in Section 2.3.2 and used in the experiments

in Chapter 5.

e To contextualize and justify some of the methods and conclusions re-
ported in the following chapters. Sections 2.4, 2.5 and 2.3 were included

for such purpose.

e To provide the reader with knowledge on alternative methodologies
which have been used in the field. Section 2.1 has been included for
such purpose, and a comparison between methodologies can be found

in Section 4.4.

In the chapters that follow, we make use of the above purposes to guide the

explanation and review of our studies.
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Chapter 3

Ideation

“One could say that a man can inject an idea into the machine,
and that it will respond to a certain extent and then drop into
quiescence, like a piano string struck by a hammer. Another sim-
ile would be an atomic pile of less than critical size: an injected
idea is to correspond to a neutron entering the pile from without.
Each such neutron will cause a certain disturbance which even-
tually dies away. If, however, the size of the pile is sufficiently
increased, tire disturbance caused by such an incoming neutron
will very likely go on and on increasing until the whole pile is
destroyed. Is there a corresponding phenomenon for minds, and
is there one for machines? There does seem to be one for the
human mind. The majority of them seem to be “subcritical,”
i.e., to correspond in this analogy to piles of subcritical size. An
idea presented to such a mind will on average give rise to less
than one idea in reply. A smallish proportion are supercritical.

An idea presented to such a mind that may give rise to a whole
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theory consisting of secondary, tertiary and more remote ideas.
Animals’ minds seem to be very definitely subcritical. Adhering
to this analogy we ask: Can a machine be made to be supercrit-
ical?”

A. M. Turing [74]

3.1 A Working Definition of Ideas

In this thesis, we will propose a framework to form and evaluate ideas. Be-
fore doing so, we will provide an informal explanation and working definition
of this term. We argue that one of the limitations of current creative sys-
tems oriented to the generation of artefacts is the lack of automation on the
creation of an initial idea upon which the rendering process is then based.
For example, generally an automated painting system needs to be instructed
with something like: ‘make a painting about love’ by the programmer /user.
In some of the more advanced systems, such as those described in Section
2.3, the idea might be directly extracted from a piece of text, such as a news-
paper article. In these cases, the responsibility of picking a topic shifts from
the programmer/user to the system. However, ultimately the idea is still
generated by a human: in the example above by the journalist that wrote

the article.

In this project, we underline the necessity for a system for the automatic
generation and creation of ideas. These ideas may or may not be consistent
with reality, but instead need to be interesting because of their cultural value
and, as Turing states in the quote above, because they “may give rise to

a whole theory consisting of secondary, tertiary and more remote ideas”
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[74]. We hence argue that the difficulties expressed by the public in judging
software as imaginative can be partly dependent on the lack of this automated
step: while ideas are at the heart of such creative artefacts, they are usually

introduced by the programmer.

With these uses in mind, we provide the following working definition:

An idea is a concept which can be used to guide the generation
of an artefact and which can be evaluated in terms of the impact

that this artefact has on the public.

Note that this definition is intentionally general, to allow room for extensions
and different implementations. In this thesis we will however restrict our-
selves to what we consider two of the basic forms of ideas: fictional concepts
(Chapter 4) and socially embedded concepts (Chapter 5). By fictional con-
cept we refer to, as explained above, concepts that are not consistent with
reality. By socially embedded concepts we refer to concepts that derive from

the interaction between a group of people.

The use of these ideas is evident if we look at the current Computational Cre-
ativity systems oriented towards the creation of programs for the production
of artefacts, like those reported in Section 2.2: an automated poem genera-
tor [23] might compose a poem about the idea of the atrocity of war and an
automated painting generator like The Painting Fool [17] might produce a
picture about the idea that men could fly. These are examples of ideas that

we aim to generate.
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In the chapters that follow, we propose and analyse two methods for the
generation and evaluation of ideas, one for fictional concepts (Chapter 4)

and one for socially embedded concepts (Chapter 5).
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Chapter 4

Using Theory Formation
Techniques for the Invention of

Fictional Concepts

Research in Artificial Intelligence has always been largely focused on reason-
ing about data and concepts which have a basis in reality. As a consequence,
concepts and conjectures are generated and evaluated primarily in terms of
their truth with respect to a given knowledge base. For instance, in ma-
chine learning, learned concepts are tested for predictive accuracy against
a test set of real world examples. As underlined in previous chapters, in
Computational Creativity research, much progress has been made towards
the automated generation of artefacts (painting, poems, stories, music and
so on). When this task is performed by people, it might start with the con-
ception of an idea, upon which the artefact is then based. Often these ideas
consist of concepts which have no evidence in reality. For example, a novelist

could write a book centered on the question ‘What if horses could fly?’ (e.g.,
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Pegasus), or a singer could write a song starting from the question ‘What
if there were no countries?’ (e.g., John Lennon’s Imagine). However, in
Computational Creativity, the automated generation and evaluation of such

fictional concepts for creativity purposes is still largely unexplored.

The importance of evaluating concepts independently of their truth value
has been highlighted by some cognitive science research, as reviewed in 2.5.
Some of the notions that often appear in the cognitive science and psychology
literature are those of novelty, actionability, unexpectedness and vagueness.
Novelty is used to calculate the distance between a concept and a knowledge
base. As reviewed in Section 2.5, in [68], interestingness is evaluated through
the use of the Wundt Curve [7], a function that plots hedonistic values with
respect to novelty. As also reviewed in Section 2.5, actionability is used to
evaluate the number of actions or thoughts that an agent could undertake
as a consequence of a discovery, while unexpectedness is a measurement
inversely proportional to the predictability of a result or event. Finally,
vagueness is referred to as the difficulty of making a precise decision. Several
measurements have been proposed in the literature for the calculation of this

value, particularly using fuzzy sets [40].

The importance of generating concepts which describe contexts outside of
reality was underlined by Boden when she proposed her classification of
creative activity. As previously discussed, Boden identifies ‘three ways of
creativity’ [11]: combinational creativity, exploratory creativity and transfor-
mational creativity. While combinational creativity involves making unfa-
miliar combinations of familiar ideas [11], and exploratory creativity requires
the discovery of unknown areas of a search space, transformational creativ-

ity involves the modification of a search space by breaking its boundaries.
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One reading of this could therefore be the creation of concepts that are not
supported by a given knowledge base; we refer to these as fictional concepts
herein. Conceptual blending [33] (reviewed in Section 2.1.2) offers clear meth-
ods for generating fictional concepts, and we return to this later, specifically
with reference to the Divago system which implemented aspects of conceptual

blending theory [59].

In this chapter, we propose a new approach to the formation and evaluation
of fictional concepts. Our method is based on the use of the HR automated
theory formation system [20] (reviewed in Section 2.1.1), and on cognitive
science notions of concept representation (reviewed in Section 2.3). In par-
ticular, we explore how the notion of typicality can improve and extend HR’s

concept formation techniques.

In the following sections, we discuss the methods and results obtained by in-
troducing typicality values into HR. We argue that such typicality measures
can be used to evaluate and understand fictional concepts. In particular, we
propose calculations for three measures which might sensibly be linked to the
level of novelty, vagueness and stimulation associated with a fictional con-
cept. We generated definitions of fictional animals by applying our method
to a knowledge base of animals and we report the results. We then com-
pare the software’s estimate of novelty, vagueness and stimulation with data
obtained through a questionnaire asking sixty people to evaluate some con-
cepts with the same measures in mind. The results were then used to test
whether there is a correlation between our measurements and the usual (hu-
man) understanding of the terms novelty, vagueness and stimulation. We
then compare this approach and the well established methods of concep-

tual blending. Finally, we draw some conclusions and discuss some further
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directions.

4.1 Using HR to Generate Fictional Concepts

We are interested in the generation and evaluation of concepts for which it is
not possible to find an exemplar in the knowledge base that completely meets
the concept’s definition. Throughout this chapter, we use the term fictional
concepts to refer to this kind of concept. We use the HR system for the
generation of such fictional concepts. To do so, after it has formed a theory
of concepts and conjectures in a domain, we look at all the non-existence
conjectures that it has generated. These are based on the concepts that HR
constructs which have an empty success set. Hence, the concepts that lie at
the base of these conjectures are fictional with respect to the knowledge base
given to HR as background information. For example, from the non-existence

conjecture:

B(z)(Reptile(z) & HasWings(x))

we extract the fictional concept:

Co(z) = Reptile(x) & HasWings(x)

To see whether typicality values can be used for the evaluation of these
fictional concepts, we have introduced this notion into HR. Typicality values
are obtained by calculating the degree of membership of each user-given
constant (i.e., animals in the above example) with respect to every fictional
concept which specialises the concept of the type of object under investigation

(which is the concept of being an animal in this case). This is done by looking
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at the proportion of predicates in a concept definition that are satisfied by
each constant. Hence, for each constant a; and for each fictional concept C;
in the theory, we will have Typicality(a;,C;) = t, where 0 < t < 1. For

example, for the concept definition:

Ci(x) = Mammal(z) & HasWings(x)
& LivesIn(x, Water)
the typicality values for the constants in the set { Lizard, Dog, Dolphin, Bat}

are as follows:

Typicality(Lizard, Cy) = 0;
Typicality(Dog, Cy) = 0.3;
Typicality(Dolphin, Cy) = 0.6;
Typicality(Bat,Cy) = 0.6;

We see that the constant ‘Dolphin’ has typicality of 0.6 with respect to
C} because a dolphin is a mammal which lives in water but which doesn’t
have wings — hence it satisfies two of the three predicates (= 66.6%) in the

definition of Cf.

We use a simple measure to calculate typicality, and we are aware that
it could be improved in multiple ways as explained in 4.5. However, it
is sufficient to demonstrate the point of this experiment, and we’ll hence
leave improvements to future studies. It is important to note that for each
fictional concept C' there are at least n constants aq,...,a, such that Vj,

0 < T'ypicality(a;, C) < 1, where n is the number of predicates in the concept
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definition. This is because HR requires at least one exemplar for each predi-
cate in the initial knowledge base. We refer to these as the atypical exemplars
of fictional concept C, and we denote this set of constants as atyp(C'). The
atypical exemplars of C' have typicality bigger than zero because they partly
belong to C', and less than one because the concept is fictional, and hence
by definition it doesn’t have any real life examples. The number of atypical
exemplars of a fictional concept is always more than or equal to the number
of predicates in the concept definition, because fictional concepts originate
from the manipulation of non-fictional concepts, and hence, — given a well
formed knowledge base — each predicate in a fictional concept definition will
correspond to a non-fictional concept with at least one element in its success

set.

4.2 Evaluating Concepts Based on Typicality

We explain here how typicality can be used to evaluate fictional concepts
along three axes which we claim can be sensibly used to estimate how peo-
ple will assess such concepts in terms of vagueness, novelty and stimulation
respectively. This claim is tested experimentally in the next section. To
define the measures for a fictional concept C' produced as above, we use E
to represent the set of constants (examples) in the theory, e.g., animals, and
we use NNF to denote the set of non-fictional concepts produced alongside
the fictional ones. We use |C| to denote the number of conjunct predicates
in the clausal definition of concept C. We further re-use atyp(C') to denote
the set of atypical exemplars of C' and the Typicality measure we introduced

above. It should be noted that the proposed methods of evaluation of fic-
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tional concepts have not been included into the HR program to guide concept

formation, but rather applied after theory formation has occurred.

4.2.1 Using Atypical Exemplars

Our first measure, My, of fictional concept C, is suggested as an estimate
of the vagueness of C. It calculates the proportion of constants which are
atypical exemplars of C', factored by the size of the clausal definition of C,

as follows:
_ latyp(C)]
|E]*|C]

As previously mentioned, vagueness is a measurement that has been widely

My (C)

studied in the context of fuzzy sets. Klir [40] emphasises the difference be-
tween this measurement and the one of ambiguity, and underlines how vague-
ness should be used to refer to the difficulty of making a precise decision.
While several more sophisticated measurements have been proposed in the
literature, as explained in [40], we chose the above straightforward counting
method, as this is consistent with the requirement that if concept C|, is in-
tuitively perceived as more vague than concept Cy, then My (C,) > My (Cy).

To see this, suppose we have the following two concepts:

Ci(x) = Animal(z) & has(xz, Wings)

Cy(x) = Reptile(z) & has(z, Wings)
In this case, we can intuitively say that an animal with wings is more vague
than a reptile with wings, because for the first concept, we have a larger
choice of animals than for the second. In terms of typicality, this can be

interpreted as the fact that C has a larger number of atypical exemplars

than Cy, and it follows that My (Cy) > My (Cy).
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4.2.2 Using Average Typicality

Our second measure, My, of fictional concept C is suggested as an estimate
of the novelty of C. It calculates the complement of the average typicality of
the atypical exemplars of C, as follows:
My(C)=1- m ((;E Typicality(a, C’))

Novelty is a term largely discussed in the literature, and can be attached
to several meanings and perspectives. In our case, we interpret novelty as
a measurement of distance to the real world, as inferred in previous work
in computational creativity research, such as [68]. As an example of this

measure, given the concepts:

C1(z) = Bear(z) & Furniture(z) & Has(xz, Wings)

Cy(z) = Bear(x) & Furniture(z) & Brown(x)
then, in a domain where all the constants are either exclusively bears or
furniture (but not both), and assuming that all the bears and all the furniture

are brown, we calculate:

My(Cy) = 0.6

My(Cy) = 0.3
This is because for (', all exemplars will satisfy just one of the three clauses
(3) in the definition, hence this will be their average typicality, and Cy will
score 1 —% = 0.6 for M. In contrast, all exemplars will satisfy two out of the
three clauses in Cs, and hence it scores 0.3 for My. Hence we can say that
(' is more distant from reality, and hence more novel, than Cs. Consistent
with the literature, and in particular with the Wundt Curve (which com-

pares novelty with the hedonic value), we assume that the most interesting
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concepts have an average typicality close to 0.5. Note that this implies that
fictional concepts whose definition contains two conjuncts are always mod-
erately interesting in terms of novelty, as their average typicality is always

equal to 0.5.

4.2.3 Using Non-Fictional Concepts

Our final measure, Mg, of fictional concept C' is suggested as an estimate of
the stimulation that C' might elicit when audiences are exposed to it (i.e.,
the amount of thought it provokes). It is calculated as the weighted sum of
all the non-fictional concepts, r, in NF' that HR formulates for which their
success set, denoted ss(r), has a non-empty intersection with atyp(C'). The
weights are calculated as the sum of the typicalities over atyp(C') with respect

to C. Mg(C) is calculated as follows:

Ms(C) = Z Z Typicality(a, C)
reNF \ a€atyp(C)Nss(r)
This calculation is motivated by Ward’s path-of-least-resistance model [79].
This states that when people approach the task of developing a new idea for
a particular domain, they tend to retrieve basic level exemplars from that
domain and select one or more of those retrieved instances as a starting point
for their own creation. Having done so, they project most of the stored prop-
erties of those retrieved instances onto the novel ideas they are developing.

As an example, the fictional concept:
Ci(z) = Horse(x) & Has(z, Wings)
could lead to the following questions: Is it a mammal? Can humans ride it?
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Animals(x)  BodyPart(x)  Ability(x) Existence(x,y) Pw(x.y)

Horse Leg Flying Frog Forest Horse Leg

Frog Hoof Swimming Frog Grass Horse Hoof

Eagle Trunk Hunting Parrot Beak

Shark Tail Carrying isA(.Y)

D Eye facod Horse Mammal HasAbilty(xy)
Eagle 2 Horse Run

Class(x) Place Purpose(x) Horse Carry

Mammal Ocean Walk HasPurpose(x,y) owl Fly

Fish Arctic Grab Leg Walk

Reptile Forest Eat Eye See

Bird Grass See Mouth Eat

Figure 4.1: Details from the knowledge base for animals.

Does it live in a farm? Does it fly? Does it lay eggs? Each of these questions
can be derived from the corresponding HR generated concepts which have in

their success set a large number of the atypical exemplars of Cf.

4.3 Experimental Results

To evaluate our approach, we started with a knowledge base of animals, based
on similar inputs to those used for the conceptual blending system Divago
[59], which is described in the next section. The concept map for a horse was
taken from [58] and reapplied to each animal from a list of 69 animals reported
in the National Geographic Kids website!. The relations were maintained
when relevant, and extended when necessary according to the Generalized
Upper Model hierarchy, as instructed in [59]. Figure 4.1 illustrates a small
part of the information we provided as background knowledge for HR to form

a theory with.

To generate fictional concepts with HR, we used a random-search setup and

kids.nationalgeographic.co.uk/kids/animals/creaturefeature
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ran the system for 100,000 steps, which took several hours. We limited
the HR system to use only the compose, exists and split production rules,
as described earlier in Section 2.1.1. Extracting them from non-existence
conjectures, the system produced 4623 fictional concepts, which were then
automatically ranked in terms of their My, My and Mg values, as described
above. From each of the ranked lists, a sub-list of 14 fictional concepts was
created. The fictional concepts were taken at regular intervals so that they
were evenly distributed numerically over the sub-lists, from highest scoring
to lowest scoring. For the My sub-list, all the fictional concepts with two
clauses in the definition were first filtered out. For the My and Mg sub-lists,
all the fictional concepts with more than two clauses in the definition were
filtered out instead. The resulting sub-lists are given in tables 6.1, 6.2 and

6.3 respectively.

We performed a survey of sixty people who were shown these lists and asked
to rank them from 1 to 14 with respect to their own interpretations of the
fictional concepts and their values. The aim of the survey was to verify how
measurements My, My and Mg described above correlate with respect to
common (human) understanding of vagueness, novelty and stimulation re-
spectively. The survey was composed of four parts. The first three parts
asked people to rank the three sets of 14 concepts in terms of vagueness,
novelty and stimulation. We didn’t include an explanation of our interpre-
tation of these words in the questions, to encourage participants to use their
own understanding of the three terms. The fourth part of the survey asked
for a qualitative written definition of each of the three criteria of evaluation:
vagueness, novelty and stimulation. Tables 6.1, 6.2 and 6.3 in the Appendix
report the three sub-lists of fictional concepts and the ranking (1 to 14) that

our software assigned to them, along with the rankings obtained from the
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survey.

In order to establish whether our ranking and the survey rankings are corre-
lated, we calculated Pearson’s correlation, r, between the system’s ranking
and an aggregated ranking. The aggregated ranking was calculated by or-
dering the fictional concepts 1 to 14, according to the mean rank from the
participants. We then calculated the respective 95% Confidence Intervals
(CI) and p-values, using the alternative hypothesis that the correlations are
greater than zero. We obtained the following results (quoted to 3 decimal

places):

My, /vagueness: r = 0.552, p = 0.020, 95% CI = [0.124, 1]
My /novelty: r = 0.697, p = 0.003, 95% CI = [0.350, 1]

Mg /stimulation: r = -0.029, p = 0.059, 95% CI = [-0.481, 1]

We can therefore conclude that there is strong and highly statistically signif-
icant correlation between the software rankings given by My and the survey
rankings for novelty. We have similarly found a significant and moderate cor-
relation with the survey rankings for My,. Hence it appears that the novelty
and vagueness measurements we suggested offer sensible calculations for the

general understanding of these two terms for fictional concepts.

We found no correlation between the survey rankings for the stimulation
value and the software measure Mg. This could be due to two reasons.
Firstly, looking at the general descriptions of the word ‘stimulating’ given
by people in the last section of the survey, they present a broader range of
meanings than the words ‘novel’ or ‘vague’. Moreover, these meanings are

often very distant from the interpretation of the term ‘stimulation’ that we
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defined different existing

description detail dea
difficult ire novel novelty
Imagine ... lack . means orlglnal previously quality
picture things thought

unclear vague unigueunusual

exciting ...,

Interesting

stimulating

Figure 4.2: Word clouds: vagueness, novelty and stimulation.

used in deriving the Mg measure. In Figure 4.2, we present word clouds
obtained from the definitions that people in the survey gave of the words
vagueness, novelty and stimulation respectively. We can see that the word
cloud for vagueness includes words such as ‘description’, ‘unclear’ and ‘dif-
ficult’ as might be expected, and the word cloud for novelty includes words
such as ‘different’, ‘unusual’ and ‘original’, also as expected. However, the
word-cloud for ‘stimulation’ includes words such as ‘emotion’, ‘exciting’ and
‘imagination’. This suggests a second reason that could explain the lack of
correlation: our measure Mg lacks factors to estimate emotions and surpris-

ingness elements.

To explore the question of stimulation further, we looked at another mea-
sure of fictional concepts which might give us a handle on this property.
Table 4.1 in the Appendix portrays the non-fiction concepts found (dur-
ing the experimental session with HR described above) to have examples

overlapping with the atypical exemplars of this fictional concept: C,(A) =
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isa(A, equine), pw(A, wings) [noting that pw(A, X)) means that animal A has
a body (p)art (w)ith aspect X]. These non-fiction concepts comprised the
subset of NI that was used to calculate Mg(C,). The non-fiction concepts
overlapping with C), are given along with a calculation which was intended
to capture an essence of C,, as the likelthood of additional features being true
of the fictional animals described by C,. The calculation takes the sum of
the typicalities of the atypical exemplars of the fictional concept which are
also true of the non-fiction concept. We see that it is more likely for the
winged horse to have feathers than to have claws, as pw(A feathers) scores
10, while pw(A,claws) scores just 1. These likelihood scores could be used
at the heart of new measures. For instance, we can hypothesise that the in-
verse of average likelihood over all the associated non-fiction concepts might
give an indication of how thinking about C), could lead to less likely, more

imaginative and possibly more stimulating real world concepts.

4.4 A Comparison with Conceptual Blending

We compare our system to the well-established conceptual blending tech-
nique, as this technique performs fictional concept formation and evaluation,
as defined above. We therefore present a comparison of our system with Di-
vago [59], which is a conceptual blending system implemented on the basis of
the theory presented in [33]. It applies the notions suggested by this theory
in order to combine two concepts into a stable solution called a blend. Blends
are novel concepts that derive from the knowledge introduced via the inputs,

but which also acquire an emerging structure of their own [59].

Divago has been successfully tested in both visual and linguistic domains [59].
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CONCEPT: isanimal(A horse), pw(A,wing)

Non-fictional concept Likelihood of predicate to characterise fictional concept

isa(A,bird) 6.5
isa(A,bug) 3.0
isa(A,mammal) 1.0
pw(A,lung) 8.5
pw(A,mane) 0.5
pw(A,tail) 7.0
pw(A claws) 1.0
pw(A teeth) 1.0
pw(Aeye) 10.5
pw(A legs) 10.5
pw(A fur) 1.0
pw (A feathers) 10.0
pw(A beak) 10.0
pw(A,hoof) 0.5
pw(A,claw) 5.5
existence(A,mountain) 2.5
isa(A,bug) 3.0
isa(A,bird) 6.5
isa(A,mammal) 1.0
hasAbility(A,carry) 1.0
hasAbility (A hunt) 1.5
hasAbility (A flying) 8.0

Table 4.1: Non-fiction concepts with success sets overlapping with atypical

exemplars of the given concept, along with their actionability.

It is comprised of six different modules: the knowledge base, the mapper, the
blender, the factory, the constraints module and the elaboration module. The
knowledge base contains the following elements: concept maps that are used
to define concepts through a net of relations; rules that are used to explain
inherent causalities; frames that provide a language for abstract or compos-
ite concepts; integrity constraints that are used to assess the consistency of
a concept; and instances that are optional sets of examples of the concepts.
The mapper takes two random or user selected concepts and builds a struc-
tural alignment between the two respective concepts maps. It then passes
the resulting mapping to the blender, which produces a set of projections.
Each element is projected either to itself, to nothing, to its counterpart (the
elements it was aligned with by the mapper), or to a compound of itself and

its counterpart. The blender therefore implicitly defines all possible blends
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that constitute the search space for the factory.

The factory consists of a genetic algorithm used to search for the blend
that is evaluated as the most satisfactory by the constraints module. The
algorithm uses three reproduction rules: asexual-reproduction, where the
blend is copied; crossover, where two blends exchange part of their lists of
projections; and mutation, where a random change in one of the projections
in a blend is applied. The factory interacts both with the elaboration module
and the constraints module. The elaboration module is used to complete each
blend by applying context-dependent knowledge provided by the rules in the
knowledge base. The constraints module is used for the evaluation of each
blend. It does this by measuring its compatibility with the frames, integrity

constraints, and a user-specified goal [59].

The first high-level difference between Divago and our system derives from
the motivations behind their implementations. Divago was constructed to
test the cognitive plausibility of a computational theory of conceptual blend-
ing, and hence their aims were to construct complete and stable concepts,
i.e., the blends. Details of the system’s reasoning process, used for the for-
mation and elaboration of such concepts, are therefore presented in the final
output. Our system was instead constructed to generate fictional ideas of
value. These are concise concepts which are deliberately left in a simple and
ambiguous form. The aim is in fact to find the concepts that stimulate the
highest amount of thought and interest in an audience. The system’s reason-
ing process is hence hidden from the outputs, and used only for evaluation

purposes.

In the following paragraphs, we describe the parallels between Divago’s mod-

ules and the different components of our system. In doing so, we identify the
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consequences of using each methodology. The first comparison that can be
made is between the structures of the user-provided knowledge bases. In
HR, the knowledge base is used only to define a set of concepts. It is hence
equivalent in functionality to Divago’s concept maps. The rules, frames and
integrity constraints that need to be user-specified in Divago, are instead au-
tomatically learned in HR. They take the form of conjectures, non-fictional
concepts and function specifications respectively. On one hand, this implies
that HR has a greater degree of autonomy. On the other hand, HR is more
prone to errors, as the constructed conjectures, non-fictional concepts and

functions may not be relevant for the construction of fictional concepts.

For example, given an appropriate knowledge base, HR could construct the
concept of an animal being amphibious, which is defined as an animal that
lives in water and lives on earth. The same frame can be manually defined
and used in Divago. However, HR will simultaneously construct other similar
concepts. For example, the concept of animals that live in water and are red;
or the concept of animals that live on earth and have four legs. If we assume
that these concepts could be used for the evaluation of fictional concepts,
then there is currently no way to differentiate between them in terms of the
relevance they might have on the definition of a fictional concept (i.e., the
system couldn’t itself determine that an amphibian is more relevant than a
water-living red animal). Moreover, HR is not capable of constructing all the
rules, frames and constraints that Divago uses, but we believe that a similar
functionality could be achieved through the use of typicality-based exemplar

membership.

Despite the evident differences between their internal mechanisms, we can

make a comparison between the blends produced by Divago’s mapper and
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blender modules, and HR’s non-existence conjectures. The first observation
regards the range of the potential outputs. For HR, we only consider the
concepts that are empirically known to be fictional. Divago’s blends could
instead be fictional, non-fictional, or exact copies of the two initial inputs.
Moreover, Divago focuses only on one of the possible bijections between the
elements in the concept maps. Pereira recognises that this restriction narrows
the creative potential of the system [59, p.117]. HR is instead able to consider
all possible structural alignments. Furthermore, Divago works on the blend
of two randomly selected or user specified concepts, while HR can consider

multiple concepts at once.

A component to develop and elaborate on HR’s fictional concepts is still
missing from our system. In order add this component, one could take inspi-
ration from Divago’s factory and elaboration modules, while also taking into
consideration the typicality values discussed above. However, as explained
before, in our case this reasoning module would be used to calculate the
potential reasoning that can originate from a fictional concept. In Divago,
the factory and elaboration modules are instead used for the completion of a
blend. Finally, Divago’s constraints module can be compared with measures
My, My and Mg introduced above. Divago’s constraints module aims to
evaluate a completed blend, while our system rates fictional concepts. Nev-
ertheless, a correspondence between the evaluation methods can be noted.
For example, the topology constraint used in Divago measures the novelty of
a blend, like the My measure for fictional concepts investigated above, and
the integration constraint used in Divago measures how well-defined a blend
is, which is similar to the My measurement that we have found is positively

correlated with vagueness.
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4.5 Conclusions and Further Directions

We have proposed a method for generating and evaluating fictional concepts,
using the HR theory formation system enhanced with typicality values. With
the experiments we have conducted, we have shown that it is possible to cre-
ate fictional concepts by using this process and that it is possible to mean-
ingfully order the fictional concepts in terms of interestingness-oriented mea-
surements. We have compared the automatically achieved evaluations with
a ranking obtained through the analysis of a survey consulting sixty people.
This showed that our My and My measures are correlated positively with
common understandings of vagueness and novelty respectively. We also com-
pared our approach to the one based on conceptual blending in the Divago
system, which placed our work in context and highlighted comparisons which

may inform future implementations.

The experiment above indicates that our system is capable of creating fic-
tional concepts that could be of interest to an audience. Moreover, this
ideation process could be used at the heart of more sophisticated artefact

generation systems, e.g., for poems or stories.

As previously discussed, the methods used to rank such fictional concepts
have been shown to be useful, but also present some issues. Further research
could therefore look into methods to refine the current approach and im-
plement new measures to estimate the interestingness of fictional concepts.
To do so, one could take inspiration from the notions analysed in [22] and
used in the HR system, and modify them as appropriate. One could also
look at other measurements suggested and used in Computational Creativ-

ity literature, such as Ritchie’s criteria [62], reviewed in Section 2.5.2. These,
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for example, could be used to assess the novelty of a fictional concept with

respect to other fictional concepts.

Moreover, our measurement of typicality could be refined. To do so one
could take inspiration from the theories proposed in cognitive science on the
evaluation of the prototype theory and the weighting of category features.
Each feature could be given a value called salience, used to indicate how
important it is for the concept’s definition. The salience values will then be

used to calculate the typicality values with more accuracy.

Ultimately, it could be possible to introduce a notion of the distortion of
reality. This measurement could serve to calculate how many real world
constraints a fictional concept breaks. A measurement for this notion could
be derived from two methods for the calculation of values related to it. The
first method is introduced in [57] and is based on the number of conjectures
that each atypical exemplar of a fictional concept breaks. The second method
is based on the scale of the distortion that an ontology would be subject to

in order to include a fictional concept.

Given that the above measurements are strictly dependent on the knowledge
base used, it would be interesting to study how the construction of such
knowledge base could influences the fictional concepts generated from it.
This will be discussed further in Section 6.1.1. Finally, it could also be
possible to implement further methods for reasoning with fictional concepts.
These methods could be used to estimate actionability; for the elaboration of
fictional concepts; and for potential renderings of ideas in cultural artefacts
such as poems and stories. One could also study how the different methods
of measurement could be related to a rendering choice and vice versa. For

example, non-vague concepts could be suitable for paintings, while actionable
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concepts might be more suitable for storytelling.
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Chapter 5

Using Concept Formation
Techniques for the Invention of

Socially Embedded Concepts

This chapter describes the process and analyses the results in applying a
recognized concept formation method to posts in Twitter, with the aim of
inventing concepts which are considered socially embedded by a sample of

people.

By socially embedded, we mean that such concepts need to describe a word /fact
the same way an interactive group of people might do. Hence, they need to
be represented not by the application of a dictionary definition but instead
by a description which underlines the most memorable and/or interesting
associations this word/fact relates to. For example, take the word ‘grand-
mother’. The dictionary would define it as ‘the mother of one’s father or

mother’ [4]. However, if you ask a person to represent this concept artis-
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tically, they would instead rely on its relation to other concepts such us

‘welcoming house’, ‘warm cakes’, ‘life stories’.

In order for our concepts to be socially embedded, we believe that it is
important to start with a knowledge base which reflects public beliefs and
opinions. Since Twitter [1] constitutes a large and easily accessible source of

such data we have decided to use it as a source for these experiments.

In order to capture the relational aspects of these concepts (to other con-
cepts), we have decided to apply cognitive concept formation techniques
that, as described in Section 2.3, strongly rely on such assumptions. Stud-
ies from cognitive psychology in fact agree that concepts are fuzzy, dynamic
and experience-dependent entities [55], and should be represented as such.
Recurrent ideas within these theories, such as the use of typicality and of
prototypes, are key elements for our reasoning process, as they result from
long-proven and discussed studies on how concepts relate to each other. For
the above reasons, we have decided to adopt a well established cognitive-
based concept formation method, Anderson’s Rational Model of Classifica-

tion (RMC) [5] (reviewed in Section 2.3.2), for our purpose.

In Section 5.2, we verify the significance of our method by proposing a com-
parison between the concepts automatically generated with our system from
5 words, and the results obtained from a survey that asked a sample of people

to describe social associations to the same words.

The automatic creation of socially embedded concepts constitutes a relevant
step forward in terms of automation for current creative systems. As noted in
Section 2.3.2, existing artefact generation systems often combine logic-based

representations of some aspects of the world with rules for manipulating and
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representing these representations. These representations are usually built-
in manually. The objective of our study is to show that concept formation
techniques can be utilized to automatically generate such representations, so
that they can be used in further studies on how our automatically generated
concepts and existing artefact generation systems could be combined in order

to develop a first fully automated creative system.

In the sections that follow, we describe how the RMC was applied to data
retrieved from Twitter (Section 5.1), we present and analyse the results in
comparing the output to some survey-retrieved data (Section 5.2), and we

draw some conclusions and further directions (Section 5.3).

5.1 Applying the RMC to Data from Twitter

The aim of applying Anderson’s Rational Model of Classification (RMC) [5]
to a set of tweets is to cluster these tweets depending on the words appearing
in them. Each tweet is considered to be an exemplar of the initial topic. Each
of the words occurring in a tweet is considered to be a feature of an exemplar.
The final clusters will hence contain a set of exemplar (tweets), each having
themselves a set of features (words). The features appearing the most in a

cluster will then be considered to be the definition of that cluster.

In order to obtain this definition, we first need to obtain a clean set of data.
To do so, first a topic is decided. This is set to be a word or a combination of
words. Examples could be ‘War’, ‘Love’ or ‘London Olympics’. Then, a set
of the most recent 1500 tweets containing these word(s) is retrieved. Such
tweets are downloaded from Twitter using an external program, twitter4j [2].

To avoid trivial results, the most popular words according to the Kilgariff
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database of 208,000 word frequencies [39], such as ‘a’, ‘the’; etc., and the
initial topic are filtered out of each tweet. All HTML links and @ references
are also filtered out from each tweet. The above procedure results in a set of
1500 clean tweets related to the initial topic. Each word appearing in any of
these tweets is considered to be a feature of the initial topic. For example,
below is a list of the cleaned up tweets that we obtained after following the

above steps for the topic ‘London Olympics’ *:

e Five Travel Tips Frugal London Trip Fox Business

Online gambling firm Betfair expects smash records

Fans buy equestrian eventing tickets global ticket market cheap rate

Three sessions football Wembley

Going Robbo testimonial failed qualify

Please note that these lists could be further processed, for example, by using
stemming. However, this goes beyond the scope of this thesis and we will
therefore leave such improvements to future studies. The RMC method is
then applied to find clusters of related exemplars (tweets). The most common
features (words) per cluster will constitute the definition of this cluster. Each
of these definitions is then considered to be a socially embedded concept
related to the initial topic. The RMC uses a flexible representation that can
interpolate between exemplars and sets of features, adding new clusters to
the representation as required. When a new exemplar is analysed, this can

be assigned to a pre-existing cluster, or to a new cluster on its own [67].

!These experiments were conducted in summer 2012, when they London Olympics were

a current event.
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The RMC is the applied by looping through the obtained set of exemplars

(tweets) as follows:

Set Py = {cy, .., ¢y, } to be a partition of ¢ exemplars into n; clusters, where
n, is not pre-defined and where ¢ denotes the number of steps the algorithm
has been through. Each step corresponds with the analysis of an additional
exemplar. For example, if ¢ = 5 then we can assume that the algorithm
has considered and partitioned into ns clusters the first 5 exemplars, where
1 < ns < 5, and it’s now trying to classify the 6th exemplar. Let F. be

the set of features of cluster ¢;, where 1 < 7 < n;, and F; be the set of

et41
features for the newly considered exemplar. Then the posterior probability
that a new exemplar e;,; was generated from cluster ¢; is calculated using
Bayes’ Theorem as follows:

_ P(Fet+1|ci>P<Ci)

P(¢l|Fe,,,) = S P(F.,.. |ci)P(ci)

where P(F,,,,|c;) is the probability that the new exemplar belongs to cluster

¢; given the exemplar’s set of features F;, , and P(c;) is the prior probability
that the new exemplar was generated from cluster ¢;. Note that given the
looping nature of the algorithm, both of these probabilities are dependent on
the clusters assignments for the previous exemplars. They are calculated as

follows:

Kni

Pe)=a=m+7,

where n; is the number of exemplars that have been assigned to cluster ¢;,
fi is the number of features of cluster ¢; and K is a constant that Anderson

calls the coupling probability [67], set to be equal to 0.8, and:
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ijFetH V(j,ci)
Zj in Fe V()

t+1

P(F€t+1|ci) =

where V() is the number of times a feature j in F,, , has been encountered

t+1
in all the previous exemplars, and V'(j, ¢;) is the number of times a features

Jin F,,, N F, has been encountered in previous exemplars.

The posterior probability that a new exemplar was generated from an entirely
new cluster ¢,y is calculated in exactly the same way, with the exception of

P(c;) which is calculated as follows:

1-K

M) = T

where f;,1 is the number of features of cluster ¢;y; and K is the coupling

probability.

Given the above formula, each exemplar e; is considered in turn and is as-

signed to the cluster for which the corresponding probability is equal to:

Ma’x(P(Cl|Fei)’"'7P<Cnt|Fei)’P(Cnt+1|Fei))

Once every exemplar has been assigned to a cluster, the definition of a cluster

is equal to the set:

; V(k
Def(c;) = {jinF,,|V(j,c;) >= kaFlé.(.),Ft ()

}

Below we show some of the clusters obtained for the topic “Changes in foot-

ball”:
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CLUSTER Cy:

Def(ci) = {“nothing” }
Exemplars in ¢; = { “nothing”, “nothing the season past was the most enter-

taining throughout all the divisions amazing”, ... }

CLUSTER e¢y:

Def(cy) = { “calling”, “americans”, “soccer”
Exemplars in ¢y = {“Americans calling it soccer”, “people who call it f***ing

79
Soccer”, ... }

CLUSTER c;:

Def(c3) = { “technology”, “goal”, “line” }
Exemplarsin ¢3 = { ““GOAL LINE TECHNOLOGY!”, “Cheaper ticket prices
and goal line technology”, ... }

For the above example, we obtained 32 clusters. Other examples include a

cluster about racism, one about Manchester United, one about diving, etc.
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5.2 Experimental Results

In order to verify whether our resulting clusters’ definitions can be considered
to represent socially embedded concepts related to a pre-defined topic, we
have constructed a survey and analysed the responses from 50 people. The
survey was constructed in order to analyse the results obtained from running
our program on the following four topics: ‘Grandmother’; ‘London Olympics’,
‘Love’ and ‘War’. These topic were chosen in order to cover different kinds
of socially embedded concepts. ‘Grandmother’ was chosen as an example of
a topic than anyone can relate to, ‘London Olympics’ as an example of a
currently relevant event?, ‘Love’ as an example of a sentiment and ‘War’ as
an example of a word with high emotional impact. The survey focused on
gathering people’s mental association to the above topics, and was divided

into two sub-surveys, each given to 25 people, as follows:

e Sub-survey (i) asked people to guess a topic given the set of words in the
definitions of the top ten clusters automatically created for each of the
above topics. The survey allowed three different guesses. Additionally,
the survey asked people to provide a vote from one to ten for each
of the guesses on how well the definitions represent artistically the
topic, where one corresponds to an artistically strong link, and ten

corresponds to a week artistic link.

e Sub-survey (ii) asked people to rank from one to ten, ten different
word associations related to each of the initial topics. The associations
were to be ranked on their social impact, where one corresponds to

the association with higher social impact, and ten corresponds to the

2At the time of this research
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Topic p W o

Grandmother 80% | 8.25 | 1.33
London Olympics | 48% | 5.67 | 0.49
War 100% | 8.6 | 1.53

Love 96% | 8.2 | 0.76

Table 5.1: Results of sub-survey (i): the percentage p of people that guessed
the initial topic given the set of automatically constructed definitions and the
mean value p and the standard deviation o of the votes obtained for each

correct guess.

association with lower social impact. We didn’t include an explanation
of our interpretation of ‘social impact’ to encourage participants to
use their own understanding of this term. The associations provided
in the survey were gathered from the results obtained by running our
algorithm on the topics listed above. We used the most popular tweet

for each of the top ten clusters.

The aim of sub-survey () is to study whether a group of people can relate to
the socially embedded concepts constructed by our system given some initial
topics. To do so, we calculated the percentage p of people that guessed the
initial topic given the set of automatically constructed definitions. We then
calculated the mean value p and the standard deviation o for the votes ob-
tained for each correct guess (quoted to 2 decimal places). The definitions
provided can be found in the Appendix. We obtained the results shown in

Table 5.1
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We can hence conclude that the socially embedded concepts automatically

obtained from a topic highly represent such a topic in an artistic sense.

The aim of sub-survey (i) is to compare the rankings obtained on a given set
of socially embedded concepts. The survey ranking was calculated by order-
ing the topics’ associations one to ten, according to the mean rank from the
participants. The system ranking was calculated according to the relevance
of each association to the initial topics. Such relevance was calculated in
terms of the size of the cluster corresponding to each association and to the
proportion that each feature in the definition of this cluster has with respect

to the total number of features in that cluster, as follows:

: | E(cs)] V()
Ranking(Def(e)) = g ue * I ery
where, as in Section 5.1, ¢; is a cluster defined as a set of features, Def(c;) is
the set of features in the definition of cluster ¢;, E(c;) is the set of of exem-
plars in cluster ¢; and V(f) is the number of times a feature f is encountered.
The lists of socially embedded concepts for each topic used in the survey, and
the corresponding rankings can be found in the Appendix. In order to es-
tablish the correlation between the two rankings, we calculated Pearson’s
correlation, r, between the system’s ranking and an aggregated ranking. We
then calculated the respective 95% Confidence Intervals (CI) and p-values,
using the alternative hypothesis that the correlations are greater than zero.

We obtained the results shown in Table 5.2 (quoted to 3 decimal places):
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Topic r P 95% CI

Grandmother -0.381 | 0.138 | [ -0.715, 1]
London Olympics | 0.659 | 0.019 | [0.168, 1]
War 0.345 | 0.164 | [-0.256, 1]

Love 0.212 | 0.278 | [-0.385, 1]

Table 5.2: Results of sub-survey (i7): Pearson’s correlation, r, p-values and
95% Confidence Intervals (CI) obtained by comparing the system’s ranking

and an aggregated ranking.

We can then conclude that there is a high and significant correlation between
the rankings for the topic ‘London Olympics’, a weak and non-significant cor-
relation between the ranking for the topics ‘War’ and ‘Love’, and a negative

and non-significant correlation for the topic ‘Grandmother’.

5.3 Conclusions and Further Directions

In this chapter, we have studied a method for generating socially embedded
concepts related to an initial topic. The algorithm applies the Rational Model
of Classification [5], a concept formation method widely used in cognitive
psychology, to a set of data obtained from Twitter [1]. We then analysed the
obtained concepts by :

(i). asking a set of 25 people to first guess a topic given four sets of socially
embedded concepts automatically created, and then to rate how well

these concepts represent the topic from an artistic point of view.

87



(ii). asking a set of 25 people people to rank four sets of ten socially em-
bedded concepts, each automatically created from one of four initial

topics.

The experiments reported in Section 5.2 indicate that our system is capable
of generating socially embedded concepts that could be of artistic interest to
an audience. This ideation process could hence be used at the heart of more
sophisticated artefact generation systems.

The results from survey (i) show that people not only can easily relate to
the pre-defined initial topic given a set of socially embedded concepts au-
tomatically derived from it, but also that such socially embedded concepts
are regarded to be strongly artistically representative of such an initial topic.
The results from survey (i) show that on average there is a weak positive
correlation between the rankings obtained from our system (as described in

Section5.2) and the ones provided by a sample of people.

We can hence conclude that the proposed method constitutes a good start
towards the creation of algorithms for the automated constructions of socially
embedded concepts. The results from survey (i) suggest that the concepts
obtained from applying our algorithm to four initial topics could be used
for the automated creation of artefacts, as they are considered to strongly

represent the initial topics.

However, the weak correlations obtained from the analysis of the results
from survey (7i) suggest that the rankings obtained from our system are not
representative of public opinions. We hence believe that the system should
be expanded by including automatic measures of social relevance. These
could be based on both the measure of interestingness proposed in Chapter 4

and the notion on interestingness and curiosity reviewed in Section 2.5. For
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example, the notion of novelty and the related belief that interesting concepts
are ‘similar-yet-different’ to those that have been experienced previously [68],
could be applied to socially embedded concepts. In doing so, concepts related
to a topic would be considered interesting when it is ‘similar-yet-different’
from the average associations that the public uses for this topic. Moreover,
similarly to our fictional concepts, we believe that the notion of stimulation
should be captured by the evaluation. Stimulation in this case could be
related to the likelihood that a tweet is ‘re-tweeted’ or mentioned in another

tweet.
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Chapter 6

Conclusions and Contributions

In this thesis, we explored the field of automated artefact generation in com-
putational creativity with the aim of proposing and analysing some methods
of creation and evaluation of ideas of cultural value. We define an idea as
being a concept which can be used to guide the generation of an artefact. In
particular, we focused on two different kinds of ideas: fictional concepts and
socially embedded concepts. In Chapters 4 and 5 we studies the ideas ob-
tained by running two different methods of concept generation, one for each
of the two kinds of ideas taken under consideration. We compared our results
with the outcomes obtained from two sets of surveys. Both of our methods of
idea generation make use of the notion of typicality, widely used in concept
formation theories from cognitive psychology. Typicality is a measurement
on the extent of belongingness of an exemplar to a concept. We believe that
the use of typicality is highly relevant in computational creativity as it has
been demonstrated that this factor is central for any flexible and subjective

concept formation theory.
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For the generation of fictional concepts, we used a well established theory
formation system, HR [20]. One of the features of HR is the generation of
non-existence conjectures. These are logical statements that are not satisfied
by any entries in a given knowledge base. Such non-existence conjectures
were used as a base for the definition of our fictional concepts. We then used
typicality to assign to each of the newly generated fictional concepts three
different dimensions of interestingness: novelty, vagueness and stimulations.
The results obtained from the comparison between the system and a par-
ticipants’ rankings (with respect to these three measures of interestingness)
show that both our measurements of novelty and vagueness respect the pub-
lic beliefs. On the other hand, some improvements are still necessary for a

valid measurement of stimulation.

For the generation of socially embedded concepts, we applied a typicality-
based classification method, the Rational Model of Classification (RMC), to
a set of data obtained from Twitter. In this case the scope was to create a
set of concepts that naturally associate to an initial topic. The RMC was
applied to four sets of tweets, downloaded using an external tool. Each set
of tweets corresponded to one of four initial topics: ‘Grandmother’, ‘London
Olympics’, ‘Love’ and ‘War’. The result was a set of clusters per each topic,
each cluster having a definition consisting of a set of words that appeared
recurrently in the tweets. These define socially embedded concepts related
to the initial topics. A survey asked people to first guess the topic given a set
of definitions, and then to rate the artistic relevance of these definitions. The
results showed both high association percentage and high relevance scores.
A second survey was used to compare the rankings on the social impact of
each of the definitions. The system rankings were based on the relevance of

the cluster to the initial topic. The results obtained show a weak positive
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correlation between the two rankings.

Our experiments show that it is possible to automatically generate ideas with
the purpose of using them for artefact generation. This is an important step
for the automation of computational creativity, because, to our knowledge,
most of the available artefact generation systems (such as those reviewed
in Section 2.2) are based on ideas either introduced by the programmer or
directly extracted from a piece of humanly produced text. Moreover, our
experiments introduce new ways of using the notion of typicality in com-
putational creativity and show how these uses can lead to positive results
for both the generation and evaluation of an ideas. However, whereas our
results show a promising start, a lot of improvements and additions need to
be considered. We analyse below the key findings from our studies, with the

aim of building an initial framework that further research can refer to.

6.1 Key Findings and Further Directions

Below we report some findings arising from the studies reported in Chapter
4 and in Chapter 5. In Section 6.1.1 we draw some conclusions and theo-
rise a framework for the ideation process. In Section 6.1.2 we draw some

conclusions on the use of the notion of typicality in computational creativity.

6.1.1 A Framework for Ideation

The observations derived from the above chapters lead to a programme for
ideation that has at its heart a series of questions. The rest of this section

will discuss this programme. The material in this section is interlinked to
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the proposal of the WHIM project, a three year European Initiative funded
as a STREP (short-term research project) by the FP7 programme of the

European Commission [3], to which we have contributed.

Firstly, we would like to expand once again on the key proposition behind
this thesis. As reported in Chapter 2, in the field of Computational Creativ-
ity, the research that focuses on the implementation of autonomous creative
systems usually addresses the methods of generation of artefacts in partic-
ular domains. The majority of this research has been devoted to designing
software able to produce finished artefacts, without the software explicitly
undertaking idea generation. In these cases, people are naturally inclined
to themselves read ideas embedded in the artefacts. For example; a poem
generated using a template may contain enough information for a reader to
interpret a novel idea about the world described in the poem, but it is in fact
the reader who provides the creative idea here, not by the software [3]. In
certain areas of Artificial Intelligence research, especially Machine Learning,
concept formation is the point of the exercise, and such concepts are a type
of idea. However, the concepts formed tend to be used to describe and cate-
gorise real-life data. Hence, they were not designed explicitly for the purpose
of provoking thought in the same way that a painter or a writer might do it

creating a painting or story [3].

In implementing the two ideation systems descriped in Chapters 4 and 5
with the above scope in mind, we have noticed some common themes that we
believe is worth underlining. These findings shouldn’t be taken as absolute or

final instructions, but as a framework on which further work could be based.

From the results of the two experiments reported in Chapters 4 and 5, it is

obvious that the ideas generated from a system are highly dependent on the
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initial knowledge base. Whether the knowledge base is constructed (as in
Chapter 4) or retrieved (as in Chapter 5), the ideas generated from it mirror,
and hence are limited to, the facts it contains. It follows that the creation of
the knowledge base should be regarded as a key step in the idea generation
process. For example, imagine we would like to generate the fictional idea of
‘birds screaming because they are scared of heights’. This would be possible
by using our fictional idea generation method, but the initial knowledge base
would need to report information about the fact that birds are often found in
high places; that birds are animals; that humans are animals; that humans
sometimes get scared of heights; that humans sometimes scream when they
are scared; and so on. Similarly, if we would like to create a socially embed-
ded idea about the Olympics in Beijing, this could be done using our method,
but we would need to be able to retrieve a complete knowledge base of tweets
that were posted while the Beijing Olympics were on. Hence, we believe that

one of the initial questions that an ideation process should address is:

How can a knowledge base be constructed that will contain enough

information to support ideation? [3].

Assuming that the knowledge base has been created, the key step for both
of our ideation methods was to construct an algorithm able to constructively
extract and manipulate facts from this knowledge base in order to generate
ideas of the required type. Given the number of unsound or irrelevant con-
cepts that can be generated from a given knowledge base, it is important
that the methods focus on the generation of concepts which are coherent,

sound and potentially interesting. This gives rise to another question which
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an ideation method should focus on:

What methods can be implemented which will reliably produce

coherent, sound and potentially interesting ideas? [3].

Finally, from the experiments in Chapters 4 and 5, we have noticed the
need to decompose the ideation process into two independent parts: idea
generation and idea evaluation. In our case, in the idea generation phase, a
large set of ideas of a particular kind is formulated. In the idea evaluation
phase, the most interesting ideas out of this large set are selected, through
the use of some measurements of interestingness. The idea evaluation phase
is key to the process. As our negative results in Section 5.2 demonstrate, it
cannot be skipped; in Chapter 5 we have used part of the outcomes derived
from the idea generation method in order to evaluate the ideas, without
separating the two phases (i.e. we used the size of the cluster to rank ideas,
which was calculated during idea generation). This led to negative outcomes,
as explained in Section 5.2. This leads us to the final question that an ideation

process should address:

How can software reliably estimate the potential interestingness

of an idea in a particular context? [3].

We hence conclude that an idea generation method should ultimately be
composed by the components, one per each of the proposed questions above:

formalisation, implementation and evaluation.

The formalisation component should focus on the creation of an initial knowl-

edge base, by addressing questions such as: which information should the
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knowledge base contain and how will they be represented (i.e. first order
logic, raw text, n-grams etc.) The implementation component should be the
heart of the system and should focus on the generation of ideas of a pre-
determined type. It should address questions such as: what kind of ideas do
the software aim to generate? How can the software generate such ideas so
that they are sound, coherent and potentially interesting? The evaluation
component should focus on methods to estimate the artistic value of a set
of generated ideas. It should address questions such as: what are the key
notions that would make an idea of a particular kind interesting the public?
How can these notions be formalised into an evaluation formula? The three
components don’t need to be utilised in a linear fashion (i.e. be used one
after the other, as we have done in our methods). They could instead pass
information one to the other, in order to improve their partial processing.
For example, the implementation component may go back to the formalisa-
tion component in order to ask more world view knowledge information, or
the evaluation component could feed back to the implementation component

in order to guide the generation process toward an area of high interest.

We believe that a final step should be added to the framework. This is nec-
essary in order to bind an ideation system to its ultimate scope - to entertain
people. We hence believe that ultimately ideas needs to the presented to and
evaluated by the public. We call this final step the Audience Embracement.
In the methods proposed in Chapter 4 and 5 the audience embracement phase
coincides with the conduction and analysis of surveys. However, many other
human oriented methods are possible. The human embracement step can be
used not only to estimate the impact of ideas on the public, but also to study
the affects or nature of human reactions. Its outcome can then be re-utilised

by any of the three components of ideation. For example, if the human em-
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bracement phase reports that the general reaction to an idea is confusion,
this can be fed back to either the generation component, to lead the idea
formation process through less complicated steps, or to the evaluation com-
ponent, to re-tune the evaluation of ideas with respect to confusion, and so
on. We have summarised the proposed components and their interactions in

Figure 6.1.

Implementation <*+—»

-

Formalisation ‘ ‘
Evaluation

LT

Figure 6.1: The proposed components of the ideation process.

By looking closely at the three ideation components proposed above, we can
notice a parallelism with the commonly used four P’s of creativity (reviewed
in Section 2.4.2). The formalisation component can be associated with the
creative Person, where the knowledge base can be thought of as the memory
of an individual. The implementation component can be trivially associated
with the creative Process; both focus on the creation of ideas. Finally, the
evaluation component can be associated with the creative Product, as both

address the estimation of the value of a product/idea.
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6.1.2 Typicality in Computational Creativity

Another contribution of this thesis to the field of Computational Creativity
is the use of the concept of typicality for both the generation and evaluation
of ideas. As a reminder, and as reviewed in Section 2.3, typicality is a notion
widely used in concept formation theories in cognitive science. It is used to
indicate the degree of membership of an exemplar to a category. For example,
we could say that a Labrador is a more typical exemplar of the category
‘Dog’ than a Chihuahua, or that a stallion is a more typical exemplar of the
category ‘Horse’ than a rocking horse. Typicality is usually presented as a
mapping between an item and a value € [0,1]. Typicality is used in most
theories of categorisation, and it is considered to be a key aspect of cognitive
psychology not only because of its tangible features, but also because it is a
defining aspect of the difference between people categorisations. Typicality is
in fact believed to be interlinked with the definition of a category itself, where
every time we classify a new item as a member of a category, the definition
of this category changes. Typicality and category definitions are therefore
dependent on an individual’s memory and experience. For example, say
that in a particular person’s memory there is a category for ‘Dog’, and that
this category’s representation implies that dogs have four legs. If this person
then sees a dog which has lost a leg, the representation of this category would
change itself, and this person would be more inclined to classify objects with

three legs as dogs.

The idea of using degrees of membership has been applied in Computational
Creativity before. In particular, we refer to the use of fuzzy sets in [63].
In this work, Ritchie revisits Wiggins’ formalization [81] of Boden’s ways of

creativity [12] (both reviewed in Section 2.4.1). In [81], Wiggins defines U
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as the set of all possible things (called Universe). He uses this definition:
‘The universe, U, is a multidimensional space, whose dimensions are capable
of representing anything, and all possible distinct concepts correspond with
distinct points in U’ [81]. A conceptual space C' is a subset of U, and it is
defined by two functions N and @ !. As explained in Section 2.4.1, generally
speaking, N defines the set of items that can be considered to be instances
of C, and it is a function that maps an item to a value € [0, 1]. Instead, @
defines the ordered search according to which these instances are explored.
If we define the set of all possible instances of a conceptual space C' as
E, then an additional function V' is used to measure the ‘value’ (in our case
interestingness) of the members of E. Wiggins initially associates a threshold
value equal to 0.5 to NV, by implying that given an item ¢ € U, this item is
considered to be part to a conceptual space C' if this conceptual space’s
membership function N applied to ¢ returns a value bigger or equal to 0.5.
In [63], Ritchie picks up on this restriction and underlines that an arbitrary
threshold value o can be used instead of the fixed value 0.5. Hence, Ritchie
re-defines conceptual spaces as fuzzy sets, whose membership function is

defined by N.

In Chapter 4, our methodology consists of a simple application of this model:
here each fictional concept can be thought of as a conceptual space, and each
real world animal is assigned to each of these conceptual spaces with a degree
of membership. Subsequently, in Section 4.2, we demonstrate that this mem-
bership value can be used not only for the definition of the conceptual spaces,
but also for its evaluation (referring back to [63], we are applying Wiggins’

theory at a meta-level, as we are establishing interestingness based on the

"Here we have adopted the notation used in [63] for consistency and clarity within the

thesis.
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typicality of a conceptual space and not of basic items as in [62]). Hence,
we imply that the two functions N and V' above are intrinsically linked. In
saying so, we do not make the assumption that this is a demonstrated fact,
but we believe that the exploration and formalisation of such a relationship

could constitute a valuable subject for further studies.

In Chapter 5, the concept of membership of an item to a conceptual space is
used in a different direction: in this case, the difference between fuzzy sets
and typicality is exploited. Such a difference arises when the definition of a
conceptual space is itself dependent on its items’ membership values (the set
of mappings E — [0, 1] defined by N). In cognitive science, and for our spe-
cific case in the RMC (reviewed in Section 2.3.2), a membership function N,
and hence the corresponding conceptual space C' itself, continuously change
as more items are assigned to C. This implies that conceptual spaces are
themselves dependent on the order in which items are explored, and hence
on () above. In cognitive science, this is believed to be one the reasons behind
the differences in people’s categorisations, as it implies that memory plays a
major part in the definition of category. We hence believe that a potentially
interesting link could be defined also between N and (). Once again, we
are not implying the existence or the nature of such a relationship, but we
believe that it is an interesting point for further studies, especially given it’s

relationship with personification.

We provide an example to further explain the two points raised above. Imag-
ine that we have a painting a and we make a big hole in it, transforming it
to a different item b. Also imagine we have a canvas with a hole, and we
call this item c¢. Then, b would belong to the conceptual map of paintings

with a degree of membership t,. Our first observation suggests that t, can
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be used to define the interestingness of b. Now imagine that two different
people see c. The first person sees ¢ after having seen b, while the second
person sees ¢ without having seen b. Then the degree of membership of ¢ to
the conceptual space of paintings would be different for the two people. This
would imply that the conceptual space of paintings itself is different for the
two people, which implies that the interestingness of ¢ is different for the two

people. This is what our second observation suggests.

Note that in the observations raised above, we do not specify how these
eventual additions to Wiggins’ formalisation would modify the definition of
exploratory and transformational creativity. We leave this as an open ques-

tion for further research.

6.2 Summary

In Sections 6.1.1 and 6.1.2 we have discussed the results from Chapters 4
and 5 with the scope of integrating our research into the bigger picture of
Computational Creativity. We can conclude that the material discussed in

this thesis contributes to the field in two distinct ways:

e The proposition of methods for idea generation, and the integration of
these methods into an ideation framework. Such a framework would
consist of three components: formalisation, implementation and eval-

uation.

e The further integration of typicality into automated creative systems.

We did this by demonstrating how typicality can be used for both the
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generation and evaluation of ideas and by showing how such uses fit

into the formalisation of Boden’s ‘ways of creativity’.
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S-S S

£t ift iE
Concept Definition ® Qc'g 55 OC% USQEDC’E
An animal that has a body-part with which it can 1 1 4.88
both see and eat
A mammal with feathers 2 4 7.11
A dolphin that lives on grass 3 11 7.89
A bird with tentacles 4 3 6.89
A bird with a trunk 5 10 7.58
A pig which is a bug 6 2 5.85
A fish with a trunk 7 7 7.37
An animal that lives both under freshwater and in 8 8 7.52
the arctic
A fox which is an amphibian 9 9 7.54
A cow with tentacles 10 12 8.43
A fish which is also an otter 11 6 7.14
A salmon with feathers 12 13 9.82
A bat which is also a zebra 13 5 7.12
A gecko with spines 14 14 9.88

Table 6.1: Fictional concepts sorted from highest scoring to lowest scoring
with respect to the software ranking for measure My, compared with the

survey values for vagueness.
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cw @
£: 5% iE
Concept Definition R Oc'g 58 ch rggﬂc‘g
A mammal that lives in the ocean that can fly 1 1 3.93
A mammal that lives in the ocean with wings 2 3 6.18
A mammal with wings that can be ridden by hu- 3 2 3.94
mans
A bird that lives in a forest that can swim under 4 4 6.81
water
An invertebrate with legs that can swim under wa- 5 ) 7.39
ter
A mammal with wings that can hunt 6 7 8.11
A mammal that lives under freshwater and with 7 13 9.36
fins
A mammal that lives both under freshwater and 8 14 9.5
under the ocean
A mammal with fins that can hunt 9 12 9.24
An animal that lives both under freshwater and in 10 6 8.09
a forest and that has wings
An animal that lives both under freshwater and in 11 8 8.13
a forest and that has a fur
A bird that lives under freshwater and that can 12 9 8.35
swim underwater
A bug that lives in a forest and has claws 13 11 9.14
A mammal with a tail that can fly 14 10 8.36

Table 6.2: Fictional concepts sorted from the highest scoring to the lowest
scoring with respect to the software ranking for measure My, compared with

the survey values for novelty. 114



S-S -
Concept Definition R ch 56 Ilg 5255
A fish with lungs 1 13 9.98
An animal that has eyes with which it can defend 2 3 5.88
itself
A fish that can walk 3 7 7.22
An arachnid which is a mammal 4 11 8.85
A tiger with wings 5 2 5.85
An animal that lives under the ocean and that hu- 6 ) 6.22
mans can ride
A wolf that can fly 7 4 5.97
A horse that lives under freshwater 8 10 8.27
A predatory bird with fins 9 12 9.19
A chicken that lives in the arctic 10 14 10.27
A dolphin which is also an arachnid 11 8 7.33
A chicken which is also a shark 12 1 5.3
An animal that has a body-part with which it can 13 9 8.02
both see and eat
An animal with trunk with which it can fly 14 6 6.68

Table 6.3: Fictional concepts sorted from the highest scoring to the lowest
scoring with respect to the software ranking for measure Mg, compared with

the survey values for stimulation.
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£: 5% iE
Association For ‘Grandmother’ R Qc'g 55 Qc‘g 55@2
Happy birthday Grandma, 100 years old today 1 6.6 10
When my grandmother died 2 6.4 8
My grandmother gives me all that I want 3 3.4 1
My grandmother recipes are the best 4 5.4 5
Grandma passed away. I will miss you 5 6.5 9
My grandmother is getting old 6 5.6 6
My grandmother is just great 7 5.2 4
I love visiting my grandmother house 8 4.8 2
My grandmother is a woman 9 5.0 3
My grandmother has Alzheimer 10 6.2 7

Table 6.4: Socially embedded concepts associated to the topic ‘Grandmother’
sorted from highest scoring to lowest scoring with respect to the software

ranking for relevance, compared with the sub-survey (i) results.
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£: 5% iE
Association For ‘London Olympics’ R Qc'g 55 Qc‘g 55@2
We will beat them 1 5.2 4
Go England 2 2.4 1
I got tickets for the game 3 5.2 4=
I will win a medal 4 4.8 3
Can’t wait for the England France game 5 5.2 6
Can’t wait for the Olympics 6 5.9 9
[ am ready for the London Olympics 7 4.4 2
London Olympics gets a bailout 8 5.8 8
London Olympics: great overseas holiday 9 6.2 10
London Olympics cost 3x original budget 10 5.6 7

Table 6.5: Socially embedded concepts associated to the topic ‘London
Olympics’ sorted from highest scoring to lowest scoring with respect to the

software ranking for relevance, compared with the sub-survey (i) results.
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£: 5% iE
Association For ‘Love’ R Qc'g 55 Qc‘g 55@2
I love you 1 6.0 6
Kissing the person I love 2 5.2 4
Life is good when you find love 3 5.6 5
I felt in love 4 4.2 2
It’s true love 5 4.4 3
Love is finding someone righte 6 6.4 8
Love is the greatest thing 7 7.0 10
Happy birthday, I love you 8 2.8 1
Love hurts too much 9 6.2 7
The moment you fall in love 10 6.8 9

Table 6.6: Socially embedded concepts associated to the topic ‘Love’ sorted

from highest scoring to lowest scoring with respect to the software ranking

for relevance, compared with the sub-survey (i) results.
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g% 257 LE
Association For ‘War’ R Iliis 58 Ccds (BE&
During World War One 1 5.2 5
Fight against war crime 2 5.0 4
Soldier marching to war 3 6.4 8
I warned you this would be 4 3.4 1
war
The war killed thousand of 5 7.0 9
people
Somewhat regret starting 6 3.8 3
this war
Remembering the war 7 5.8 6
Declaring civil war 8 6.2 7
War and national pride 9 3.5 2

Civiian and children die 10 8.8 10

during war

Table 6.7: Socially embedded concepts associated to the topic ‘War’ sorted
from highest scoring to lowest scoring with respect to the software ranking

for relevance, compared with the sub-survey (i) results.
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