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Abstract

In this thesis we explore the field of automated artefact generation in compu-

tational creativity with the aim of proposing methods of generation of ideas

with cultural value. We focus on two kinds of ideas: fictional concepts and

socially embedded concepts.

For fictional concepts, we introduce a novel method based on the non-existence-

conjectures made by the HR automated theory formation system. We further

introduce the notion of typicality of an example with respect to a concept

into HR. This leads to methods for ordering fictional concepts with respect

to three measurements: novelty, vagueness and stimulation. We ran an ex-

periment to produce thousands of definitions of fictional animals and then

compared the software’s evaluations of the non-fictional concepts with those

obtained through a survey consulting sixty people. The results showed that

two of the three measurements have a correlation with human notions.

For socially embedded concepts, we apply a typicality-based classification

method, the Rational Model of Classification (RMC), to a set of data ob-

tained from Twitter. The aim being the creation of a set of concepts that

naturally associate to an initial topic. We applied the RMC to four sets of

tweets, each corresponding to one of four initial topics. The result was a set
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of clusters per topic, each cluster having a definition consisting of a set of

words that appeared recurrently in the tweets. A survey was used to ask

people to guess the topic given a set of definitions and to rate the artistic

relevance of these definitions. The results showed both high association per-

centage and high relevance scores. A second survey was used to compare the

rankings on the social impact of each of the definitions. The results obtained

show a weak positive correlation between the two rankings.

Our experiments show that it is possible to automatically generate ideas with

the purpose of using them for artefact generation. This is an important step

for the automation of computational creativity because most of the avail-

able artefact generation systems do not explicitly undertake idea generation.

Moreover, our experiments introduce new ways of using the notion of typi-

cality and show how these uses can be integrated in both the generation and

evaluation of ideas.
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Chapter 1

Introduction

Research in artificial intelligence (AI) has always been focused on reality.

However, since J.P. Guilford’s seminal Presidential Address to the Psycho-

logical Association in 1950 and the following inclusion of creativity in the

Structure of Intellect (SOI) [37], the role that ideation (or idea generation)

plays within human intelligence has become relevant not only for the psy-

chology community, but also for researchers in artificial intelligence.

Current research in Computational Creativity can be divided into three non-

mutually exclusive groups, according to the general objectives of the projects

in the groups: the use of software to understand human creativity; the use

of software to help people produce creative work; and the use of software to

manifest creative behaviours either domain independently or in a particular

field. Of these, the third is the focus of this work. In particular, we are

interested in the creative autonomy that can be attributed to systems that

automatically produce artefacts such as paintings, games, poems and music,

starting from a topic of interest, or an idea. We argue that the difficulties
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expressed by the public in judging software as imaginative can be partly

dependent on the fact that, while ideas are at the heart of such artefacts,

they are usually introduced by the programmer.

The aim of this project is therefore to show that it is possible to implement

a computational process capable of producing ideas of cultural value, as

evidenced by them being embedded in artefacts. By ideas, we mean the

notions that can drive a rendering process and by cultural value, we refer to

the level of appreciation of a rendering by an audience.

To undertake this task, we will start by studying the formalisations underly-

ing automated concept formation systems. Examples of projects undertaken

in this direction include the development of automated theory formation soft-

ware, concept blending software, analogical reasoning software and others,

as described in Section 2.1. In particular, we focus on the analysis of dif-

ferent forms of representation that concepts take within this research. We

then introduce a working definition of an idea, which is coherent with and

inclusive of current AI research, but which embraces notions introduced by

the psychological community in studies of the different facets of creativity,

as reviewed in Section 2.4.

We then look at methods to build concepts that are coherent with our defini-

tion of ideas and discuss techniques to evaluate and interpret the ideas pro-

duced. To undertake these tasks, we make use of notions and theories from

cognitive psychology. In particular, we study how the concept of Typicality

and the concept formation theories that revolve around it can be used for the

generation and creation of ideas. In the field of cognitive psychology, typical-

ity is thought of as one of the key notions behind concept representation. Its

importance was one of the main factors that led to the first criticisms of the
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classical view [65], which argues that concepts can be represented by a set of

necessary and sufficient conditions. Current cognitive theories therefore take

into account the fact that exemplars can belong to a concept with a different

degree of membership: this is the typicality of an exemplar with respect to

that concept. One of the key features of typicality, is that it is dependent

on experience. As a knowledge base grows and changes with the integration

of new knowledge, typicality also changes. This is an aspect which is key

to the creative process, where ideas are highly dependent on personal and

current experiences. It is therefore in our interest to study the influence that

a typicality factor might have in automated creative concept formation.

The overall scope of this project is bidirectional. On one side, we want to ex-

tend concept formation techniques to generate the kind of ideas that artists

are inspired by when creating artworks. On the other side, we hope to build a

bridge between cognitive concept formation techniques and automated arte-

fact generation by allowing the former to provide inputs for the latter. As

human artists speak about an inspiring “muse”, we believe that our idea

generation software could serve as an inspirational input to the large array

of software oriented to the creation of expressive artefacts.

With this project, we do not aim to cover all aspects of creativity appearing

in both psychological theories and computational techniques, or to provide

a method for idea generation that can be considered exhaustive. We instead

want to build an initial framework to orient and frame further research in this

area and focus on the study of two methods of formation for two subsets of

ideas: fictional concepts and socially embedded concepts. Fictional concepts

are concepts which have no evidence in reality. Socially embedded concepts

are concepts that derive from the interaction of a group of people.
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Within the work described in the rest of the thesis, we demonstrate that it

is possible to automatically generate ideas that could serve as a basis to the

creation of artefacts, and that the notion of typicality can be successfully

used to do so. We then propose a framework based on the results obtained.

The rest of this thesis is arranged as follows: in Chapter 2, we present a

literature review that discusses existing work from both a computational

creativity and a cognitive psychology point of view. In Chapter 3, we provide

a definition and explanation for the terms idea and ideation. In Chapters 4

and 5, we describe and discuss the work we have undertaken. In particular,

in Chapter 4 we discuss a method for the creation of fictional concepts, and

in Chapter 5 we discuss a method for the creation of socially embedded

concepts. Finally, in Chapter 6 we draw some conclusions and discuss future

work.

Publications

The following publications arose from, or were based on, the work in this

thesis:

• Uncertainty Modelling in Automated Concept Formation. Flaminia

Cavallo, Simon Colton, and Alison Pease. In Proceedings of the Au-

tomated Reasoning Workshop 2012 [14]. This publication is based on

parts of the work reported in Chapters 2, 4 and 6.

• Using Theory Formation Techniques for the Invention of Fictional Con-

cepts. Flaminia Cavallo, Alison Pease, Jeremy Gow, and Simon Colton.
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In Proceedings of the Fourth International Conference on Computa-

tional Creativity, page 176, 2013 [15]. This publication is based on the

work reported in Chapter 4.
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Chapter 2

Literature Review

In this thesis, we aim to provide an understanding of idea generation which

takes into consideration current representations of concepts in computational

creativity software and in concept formation software, but also references no-

tions from concept representation in cognitive psychology and psychological

theories on aspects of creativity. As the research in each of these areas is

expansive, we focus our review on the parts that we consider of most rele-

vance to our studies. We start by analysing some AI techniques for concept

formation in Section 2.1 and for expressive rendering in Section 2.2. We then

look at psychological theories of concept representation in Section 2.3 and

on the different aspects of creativity in Section 2.4. Finally, we review some

notions of curiosity and interestingness in Section 2.5.
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2.1 Concept Formation Techniques

In psychology, the term concept formation usually refers to the extraction

of a sets of common and relevant features from a group of items, whereas in

artificial intelligence this ability is usually associated with machine learning.

Below we report a summary of those computational techniques that perform

concept formation by following a discovery oriented approach either deliber-

ately seeking novelty or deliberately reproducing some other aspects of the

creative reasoning processes. These are of particular interest to our project

because they constitute a large inspiration for the definition and implemen-

tation of methods to define and evaluate ideas.

2.1.1 Automated Theory Formation

Automated Theory Formation concerns the formation of interesting theories,

starting with some initial knowledge and enriching it by performing induc-

tive and deductive reasoning. In the late 1970s, Lenat developed the Auto-

mated Mathematician (AM) [44], a system which, given a large number of

mathematical concepts and heuristic rules, performs interestingness-guided

manipulations of these concepts in order to obtain new ones. Although AM

is still important in terms of its innovational contribution, the system has

been criticised for both its non-evident creative value [47,64,72] and for being

strictly domain dependent [47]. Some of AM’s limitations were addressed by

Lenat himself in the development of the system EURISKO [46], which uses

meta-heuristics to generate new heuristics as needed. EURISKO was con-

siderably more successful and obtained satisfactory results in different fields,

including VLSI chip design [48] and role-playing games [45]. However, the
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system has not been widely used, probably because of its reliance upon many

domain-specific rules [68].

A subsequent project in this direction lead to the development of HR [20], a

system by Colton et al., that performs both concept formation and conjecture

making by applying a concise set of production rules and empirical pattern

matching techniques to an initial knowledge base. These rules are applied in

the order dictated by an agenda, containing information on how to construct

the next new concept. The production rules take as input the definition of

one or two concepts and output the definition of the new concept, whose

success set – the collection of all the tuples of objects which satisfy the

definition – is then calculated. These sets of positive examples are then

compared and hence used to formulate conjectures about the new concepts.

These conjectures take the form of equivalence conjectures (when two sets of

positive examples match), implication conjectures (when one set of positive

examples is a subset of another), or non-existence conjectures (when a set

of positive examples is empty). The conjectures are either proved by the

OTTER theorem prover [51], rejected because of a counterexample found by

the MACE model generator [52] or left open. HR follows a best-first non-

goal-oriented search, dictated by an ordered agenda and a set of heuristic

rules used to evaluate the interestingness of each concept. HR was developed

to work in mathematical domains, but different projects have demonstrated

the suitability of this system to work in other domains such as games [6],

puzzles [19] and HR’s own theories [18].

In Chapter 4, we use a modified version of the HR program for the generation

of fictional concepts. In order to allow the reader to fully comprehend this

chapter, we provide below the details on the HR algorithm.
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HR: Constants, Concepts and Conjectures

In HR, a theory is constituted of four kind of elements: constants, concepts,

conjectures and proofs.

• Constants: These are defined by a predicate of the form T(A) where A

is a constant and T specifies the type of A. Examples are animal(dog)

or covering(feathers).

• Concepts: These are used to express newly discovered entities and are

represented by a classification rule (concept definition), the success set

of such a classification rule (set of exemplars) and the classification

that this rule implies (a partition on the specific subset of tuples of

constants). An example is:

DEFINITION : Concept24(x, y) = has covering(x, y) AND

has milk(x)

EXAMPLES : f(dog) = {hair}, f(bat) = {hair},

f(dolphin) = {none} 1

CLASSIFICATION : [bat, dog], [dolphin]

• Conjectures: Conjectures are represented by an association rule (the

definition of the conjecture), and other information such as its status:

proved, disproved or open conjecture. An example is:

CONJECTURE : ∀(x)(has milk(x)↔ of class(x,Mammal))

STATUS : proved

1Where f(x) = {y|Concept24(x, y)}
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• Proofs: Proofs are represented as text output from OTTER [51] .

Proofs are limited to the mathematical domain, and hence can not

be applied to the above example.

HR: Production Rules

We report here some of the production rules that HR uses in order to con-

struct new concepts: each of these rules can be applied to one (unary rules)

or two (binary rules) known concepts.

• Match: equates variables in a definition.

For instance, suppose that the old concept is: integers, a, b, c where

a∗ b = c (the concept of multiplication). Then the Match rule could be

used to equate a and b and hence obtain: integers, a, c where a ∗ a = c

(the concept of squares).

• Split: instantiates one or more variables in a definition.

For instance, suppose that the old concept is: integers, a, b, c where

a ∗ b = c (the concept of multiplication). Then the Split rule could be

used to instantiate b to 2 and obtain: integers, a, c where a∗2 = c (the

concept of multiplying a number by 2).

• Exists: introduces an existential quantifier over one or more variables

in a definition.

For instance, suppose that the old concept is (as in the example above):

a, c where a ∗ 2 = c (the concept of multiplying a number by 2). Then

the Exist rule could be used to invent the concept of all integers for

which there exists a number that gives this integer when multiplied by

2: this is the concept of even numbers.
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• Size: counts the number of distinct tuples of constants in the success

set of a definition.

For instance, suppose that the old concept is: integers, a, b, where the

number of divisors of a = b. Then the Size rule could be used to count

the number of divisors each integer has.

• Compose: uses conjugation to compose the clauses of two concepts into

a new definition.

For instance, given the concept of the number of divisors of an integer

and the concept of even numbers, the Compose rule could be used to

invent the concept of integers with an even number of divisors.

• Negate: negates certain clauses in one of the definitions.

For instance, given the concept of even numbers the Negate rule could

be used to invent the concept of odd numbers.

HR: Interestingness Measures

HR performs concept formation by following a best-first search, dictated by

an ordered agenda containing information on how to construct the next new

concept. Each item in the agenda represents an instruction on what produc-

tion rule to apply to which existing concept(s) and with which parameters.

The agenda is ordered with respect to the interestingness of the concepts

for development. These values are calculated as a weighted sum (where the

weights are provided by the user) of the following measures:

• Applicability: the proportion of constants found in the success set of a

concept.
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• Comprehensibility: the reciprocal of the number of production steps

that went into building the concept.

• Parsimony: the reciprocal of the number of elements in the success set

multiplied by the arity of the definition.

• Variety: the number of different classes in the classification.

• Development Steps: how many production rules a definition has been

involved in, which gives an indication of how much it has been devel-

oped.

• Productivity: the proportion of theory formation steps the concept has

been used in and that have successfully produced a new concept.

• Novelty: 1 minus the proportion of other concepts in the theory which

achieve the same classification.

• Parents: the average interestingness of the parents of the concept (this

can only be used in conjugation with other measures).

• Children: the average interestingness of the children of the concept

(this can only be used in conjugation with other measures).

• Proof Difficulty: the average difficulty (as assessed by OTTER) of

proved theorems about the concept.

• Invariance: if the user specifies a desired classification, this is the pro-

portion of all pairs of objects which should be classified together and

that are classified together.
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• Discrimination: if the user specifies a desired classification, this is the

proportion of all pairs of objects which should be classified as different

and that are classified as different.

2.1.2 Conceptual Combination

In cognitive psychology, one of the most studied general purpose processes

of creative thinking is conceptual combination. Conceptual combination

involves the merging of previously separate ideas, concepts, visual forms

etc. [78]. In computational creativity, research in this direction aims to-

wards the construction of models that reason in different domains, inclusive

of a transition mechanism that allows for the transferred knowledge to make

sense in the new context [59]. A distinction is usually made between sys-

tems that perform conceptual combination to enforce convergent thinking

and those that use it to enforce divergent thinking. In the first case, concep-

tual combination is used to enrich or modify a given data structure; in the

second case, conceptual combination is used to create completely new and

independent data structures: this is the case of conceptual blending systems.

The theory behind conceptual blending was initially formalised by Gilles

Fauconnier and Mark Turner [32]. They describe conceptual blending as

a procedure which, given two initial mental spaces, generates a third one,

called the blend, by obeying a selected structure mapping. The new domain

will partially maintain the structure provided by the input domains, but will

also add its own independent structure.

The Conceptual Blending process can be divided into three stages [32]:
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• Composition: this process involves the projection of the knowledge

representing each input into the blended space. This process might

involve the union of some of the features of the inputs [36].

• Completion: during this process, frames encoded into the knowledge

base are used to fill out the details of a pattern in the blend. The

completion phase often results in the emergence of a new structure [36].

• Elaboration - during this process, the structure in the blend is elabo-

rated through some cognitive work performed with the blend [36].

One of the most recent conceptual blending models is Divago, developed by

Francisco Pereira [59]. Divago uses both reasoning techniques and genetic

algorithms to produce its blends. It has been applied to both visual and

linguistic domains, giving satisfactory results in terms of its creative con-

tribution [59]. One of the most illustrative examples for which Divago has

been used is the automated generation of concepts such as Pegasus [58]. To

complete this task, Divago is given two concept maps: one for the concept

‘Horse’ and another of the concept ‘Bird’. A concept map consists of a set

of first order logic statements that characterise the concept it represents.

The system is also provided with frames (used to describe specific composite

concepts, such as ‘new ability’) and integrity constraints (used to maintain

soundness within concepts). These frames and integrity constraints are used

to manipulate both of the two initial concept maps, by integrating one into

the other. The result consists of a set of new concept maps, each describing

a blend between the two initial concepts; in this case, the concept of a horse

and the one of a bird (and hence the set of resulting concept maps can be

thought of as a set of different versions of Pegasus). More detailed informa-
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tion about the algorithm used in Divago can be found in Section 4.4, where

we compare it to our fictional concept creation method.

2.1.3 Analogical Reasoning

Analogical reasoning is another process which has received attention from

AI researchers and cognitive scientists [31,34], and has strong connections to

computational creativity [56,77]. This can be described as the application or

projection of structured knowledge from a familiar domain to a novel and less

familiar one [78]. A frequently mentioned example of analogical reasoning is

Rutherford’s explanation of the hydrogen atom through the comparison with

the solar system.

From a computational point of view, one of the most cited models of analog-

ical reasoning is Falkenhainer et al.’s Structure-Mapping Engine (SME) [31],

based on Gentner’s structure-mapping theory of analogy [34]. SME takes as

input a base concept and a target concept and, by building a match between

the structures of the two, it outputs an interpretation of the comparison.

Such an interpretation consists of three parts: the correspondences between

the structures of the base and target concepts, a set of possible inferences

about the target concept which can be implied from the matches between

the structures, and a score for the quality of the match. For example, the

two structures represented in Figure 2.1 can be used by SME to interpret the

analogy between the solar system and an atom. The algorithm first looks

for all the possible mappings between the two structures. In Figure 2.1, for

example, the system creates various possible mappings: (i) one that matches

the nucleus to the sun, and the planets to the electrons; (ii) one that matches

the mass of the sun to the mass of the nucleus; and so on. A structural support
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score is then given to each of these mappings, proportional to the number of

possible inferences that can be derived from it. In the example above, map-

ping (i) would imply that in an atom, as in the solar system, the difference in

masses between the nucleus and the electrons causes the electrons to revolve

around the nucleus.

Figure 2.1: Simplified ‘Solar System’ and ‘Rutheford Atom’ structures used

in SME.

2.1.4 Inductive Logic Programming

Out of the many of methods proposed in the field of Machine Learning, we

believe that Inductive Logic Programming (ILP) is the one of most relevant

to our project because of its descriptive representation and its suitability

for learning relational predicates [66]. Moreover, ILP has connections with

non-goal-oriented reasoning (in descriptive ILP, explained below) and with

probabilistic reasoning (in probabilistic ILP, explained below), which are

both central to our project.
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Given a knowledge base and a set of observations, ILP uses inductive reason-

ing in order to advance a set of hypotheses in the form of logic programs. We

describe three different approaches to ILP: predictive ILP, descriptive ILP

and probabilistic ILP.

In predictive ILP, given a knowledge base and a set of observations in the

form of positive and negative exemplars, the goal is to find a hypothesis

that covers all of the positive and none of the negative exemplars. This is

achieved by starting with a general rule and specialising it gradually so that

it is consistent with the observations. Hence predictive ILP can be used when

a classification for a set of exemplars is known and the goal is to find a rule

to explain this classification [66].

Probabilistic ILP integrates probabilistic reasoning with the first order rep-

resentations and methods used in predictive ILP. In this case, the clauses in

the set of observations are annotated with probability values and the task of

the algorithm is to find a hypothesis that maximises the likelihood of these

observations [29].

In descriptive ILP, the goal is to find, given a knowledge base as a set of pred-

icates, a hypothesis that explains the data. Hence descriptive ILP systems

require no classification labels (no sets of positive and negative exemplars).

Hypotheses are generated through the formation of new predicates. Descrip-

tive ILP can then be described as a non-goal-oriented learning system, as it

provides a method to enrich a knowledge base without the need for specifi-

cations on what the user is looking for.
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2.2 Automated Expression of Ideas

We describe here the branch of Computational Creativity research focusing

on the automation of systems able to produce creative artefacts in a particular

domain, such as paintings, poems, games, music etc. The amount of research

undertaken in this direction is large, and the techniques used are generally

dependent on the domain of interest.

Many projects have been carried out in the linguistic field, through the de-

velopment of software for the generation of poems [16, 35], jokes [9, 10, 73]

and stories [13, 53, 75]. There has also been research in the music field such

as [27, 30, 80, 82], the visual field e.g. [21, 50], and in other fields such as

games [25] and cooking [54].

Generally speaking, we can divide the projects in this area into two main

groups: (i) those that focus on the application and evaluation of a particular

production method on different sets of data, where the methods could be

either provided by the programmer or automatically learned through the

analysis of human-generated work, and (ii) those that focus on the search

for possible approaches that can be applied in order to obtain a pre-defined

result.

In the first case, the general objective is to understand how and when the

application of a given technique could be considered creative. Examples of

systems here include the painting system AARON [50], whose initial goal was

to discover “What are the minimum conditions under which a set of marks

functions as an image?” [50], or those systems that automatically learn the

writing/music/painting style of a particular artist in order to produce more

work in that style. In the second case, the objective is reversed: the role of
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the system is to interpret and embrace a given idea, and to find an adequate

way to express it through a form of art. We call this second process automated

expression of ideas.

In this thesis, we focus on such systems, and we argue that the difficulties

expressed by the public in judging these as imaginative can be partly depen-

dent on the fact that, while ideas are at the heart of such creative artefacts,

they are usually introduced by the programmer.

Some progress in this direction has been made by systems that automatically

capture ideas from a given resource, such as a news article or a photograph.

We have summarised three of these systems below. Note that whilst these

systems remove the role of humans in choosing and interpreting an idea, the

ideas are still provided by people (i.e the journalists or the photographer

etc.).

2.2.1 The Painting Fool

The Painting Fool [21] is a program that automatically generates paintings

without the need of user intervention: the program tries to reproduce not only

the characteristics of a good painting (“by applying a set of instructions” [17])

but the whole painting process (“by providing its own set of instructions”

[17]). In order to be considered an artist in its own right, The Painting Fool

was constructed with the aim of being attributed a notion of intent, and was

hence developed so that its paintings are generated not from human given

directions, but from data extracted from the internet.

An example comes from automated collage generation [43], which is achieved

through the retrieval of news article, the extraction of keywords and the
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retrieval of images from Flickr using these keywords. This data is used for the

construction of input files specifying which images to annotate and extract

colour segments from, how to arrange the segments in an overall collage, and

what natural media to simulate when painting the segments to produce the

final piece [43].

Cook and Colton point out that this system somewhat removes the role of

human decision making: humans have in fact little control over (a) what news

story will be chosen for a collage (b) what keywords will be extracted (c) what

images will be retrieved or (d) how the collage will be rendered [24]. However,

given that the data used is still human provided, the intentionality behind

the production of the collages can be attributed not only to the software but

in an equal amount also to the articles’ writers, to the photographers, to the

programmer, the interpreting public and the people that tagged images in

Flickr [24].

2.2.2 ANGELINA

ANGELINA [25] is a system that can automatically design videogames through

the use of co-operative co-evolution techniques adopted to evolve simple plat-

form games. ANGELINA uses a variety of social and other media to design

a game. In one project, the starting point is a Guardian newspaper article.

This gives ANGELINA a set of keywords and topics that the article cov-

ers (like ‘Afghanistan’, ‘Finance’, ‘David Cameron’ or ‘The Arab Spring’).

These can then be used to power searches on other websites for more media

and data. The keyword data goes through a process of refinement where AN-

GELINA uses sources like Wikipedia to add factual or classifying information

to keywords [26].
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For example, Afghanistan can be labeled as a country, and David Cameron

as a person. Once the keywords are refined, ANGELINA then starts to look

for more subjective data about them – photos, sound effects, and opinions.

For instance, knowing that a keyword refers to a person, ANGELINA queries

Twitter with “〈name〉is” and looks at the words attributed to that person.

This gives an estimate for the public opinion towards these people, which

is then used to alter the searches that ANGELINA performs for photos. If

a keyword is identified as a country or location, ANGELINA uses Flickr’s

geolocation API to find photographs taken in that area and uses them as

background images in a video-game. Some data use is more abstract - the

program processes the article’s raw body text and runs it through a sentiment

analysis routine. If the article is depressing or sad, ANGELINA looks for

melancholic music to play during the game; or upbeat music if the article is

happy.

2.2.3 Poetry Generation

The use of internet resources for the construction of expressive artefacts has

also been applied to poem generation [23]. Colton at al. propose a system

which uses templates to construct poems according to given constraints on

rhyme, meter, stress, sentiment, word frequency and word similarity [23].

The software uses newspapers to construct a mood for each day, to select

an article on which to base a poem on and to choose a template for the

poem. Subsequently, the program generates an aesthetic based on relevance

to the article, lyricism, sentiment and flamboyancy [23], and it searches for

an instantiation of the template which maximises the aesthetic. Finally, the

program provides a commentary for the whole process to add value to the
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creative act.

2.3 Concept Representation in Cognitive Psy-

chology

Given our objective of building a system which forms ideas for human-

oriented purposes, we decided to look at cognitive theories of concept repre-

sentation in order to formalise a data structure for our ideas, and at cognitive

theories of concept formation in order to inspire our methods of idea forma-

tion. Throughout the corresponding literature, the term category usually

refers to a class of things: a subset of a set of entities, grouped together with

respect to some reasonable criteria. The word concept refers to the mental

representation of a category [55]. The debate on what is the correct represen-

tation lies at the base of the differences between theories of categorization.

Below we report a summary of these theories and how they evolved through

time.

2.3.1 From the Classical View to the Exemplar and

Prototype View

Until the 1970s, concepts were regarded as being mentally represented by a

definition: this school of thought is usually referred to as the classical view.

In the classical view, an item is said to belong to a category if it meets a

set of necessary and sufficient conditions: the concept definition. This view

hence implies the law of the excluded middle, according to which an item
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either belongs or doesn’t belong to a category. It also follows a mathematical

logic approach, which although is very simple and elegant, is unfortunately

not plausible for most real life examples: it is in fact not only hard to come

up with a definition for most of the world’s categories but, more importantly,

it is essential to make a distinction between categories’ members [55]. For

example, the concept of ‘Dog’ could be defined as ‘a four-legged barking

mammal with fur’. But how can we classify a dog that has lost a leg? What

about a toy dog animal?

A complete theory must therefore take into account both the typicality of

items (by recognising that some items are more typical of a category than

others) and the existence of “in-between categories” cases. One last criticism

of the classical view referred to its transitive properties in categorization,

which are not always consistent in real case scenarios: if A belongs to B,

and B belongs to C, A does not need to belong to C [55]. For example, a

‘car chair’ is a kind of ‘chair’, and a ‘chair’ is a kind of ‘furniture’, but this

doesn’t imply that a ‘car chair’ is ‘furniture’.

Following Roch’s first critique of the classical view in 1970 [65], the recogni-

tion of these problems led to the formation of two main streams of thought:

the prototype view and the exemplar view.

The prototype view states that concepts are mentally represented by a list of

the features that are usually found among the categories’ members. Features

do not need to be consistent with one another, and can also be contradic-

tory. For example, the prototype of the concept of ‘dog’ could be equal to

the following list of features: {white, black, brown, barks, hasTail, etc.}. A

weight is given to each feature according to its frequency. When we classify
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a new object, its features are compared with those from the feature list, and

the object is assigned to the category with which it shares most features.

According to this view, we can then hypothesise the existence of a member

for each category which best represents it: the concept’s prototype. This does

not need to be a concrete example, and is represented as a list of the most

common features. In a more complete version of the prototype view, fea-

tures are organised into dimensions, so that each feature belongs to one, and

only one, of these dimensions. Additional weight is given to each dimension

according to how determinant it is to the concept definition. This second

representation not only provides more information about the category, but

also introduces constraints which stop the formulation of incoherent concepts.

The exemplar view states that a concept is mentally represented by a set of

the category’s specific and remembered instances (the exemplars) [71]. The

exemplar view hence assumes that people store in memory information about

every instance of a stimulus, along with information about its category mem-

bership. For example, the concept of dog might be stored as the following

set: {Bobby, Pongo, Lucky, etc.}, where Bobby, Pongo and Lucky are dogs.

Categorization is then achieved by computing the similarity of an item with

each of the remembered exemplars in a category.

Both the exemplar and prototype views therefore imply that some members

are better examples of a concept than others, and hence that some members

are more typical of a category than others. Also, both views imply that

categories’ boundaries are fuzzy, as items might be members of two or more

categories.
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2.3.2 Further Work in Concept Representation

The analysis of the differences between the exemplar and prototype views

led many researchers to realise that these two models could correspond to

special (extreme) cases of a more generic model. This realisation lead to

the formulation of a range of clustering-based algorithms such as the VAMP

model [76], the SUSTAIN model [49] and the ALCOVE model [42]. One of

the first, and arguably the most used, of these models is Anderson’s Rational

Model of Classification (RMC) [5], which proposes an algorithm to build

concepts from stimuli in a dynamic, probabilistic and order-dependent way.

The system loops through these phases:

• Given a set of concepts, the knowledge set (note that this could be

equal to the empty set) and a new item, compute this item’s degree of

membership with respect to each concept in the knowledge set. Also

compute the likelihood that the item belongs to a new, not yet defined

concept.

• Take the highest likelihood: this will determine whether the new exem-

plar belongs to the corresponding concept or a whole new concept (and

hence that the item is the first encountered member of a previously

unknown concept).

• Modify the selected concept definition by integrating the features of

the new item.

Models such as the RMC are important not only because they propose a

method of unification between the prototype and exemplar schools of thought

(by recognising them to be extreme cases of a generic model), but also because
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they regard both concept representations and the categorization process as

dynamic and flexible entities. That is, a concept could change as more in-

stances are classified, and the classification process is dependent on the order

that stimuli are encountered. We will expand on these features in Section

6.1.2.

From the above discussion, it is evident that a lot of progress has been made

in this field since Roch’s first critique in 1970 [65] of the classical view of

categorization. However, while research in cognitive psychology continues to

develop on formulation of new concept representation theories, current com-

putational creativity software still rely on a strictly definitional approach.

In this project, we adopt notions suggested from the cognitive psychology

literature, such as the use of prototypes, typicality measures and a dynamic

classification approach for the definition and construction of ideas. In par-

ticular, the notion of typicality is heavily used in Chapter 4, while the RMC

is used in Chapter 5.

2.4 Psychological Theories of Creativity

The amount of research by cognitive psychologists devoted to the study of

different aspects of creativity and to the formulation of theories of creativity

continues to grow. This is of no surprise given the fact that despite the recog-

nition of its importance, discrepancies still exist between opinions on what

creativity actually means. In the following sections we report a summary of

the theories of creativity that are relevant to this project.
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2.4.1 Boden’s Three Ways of Creativity

In [12], Boden identifies three different types of creativity: combinational

creativity, exploratory creativity and transformational creativity. To explain

these, she first introduces the concept of a conceptual space. A conceptual

space is the set of all possible items which satisfy a predefined set of rules or

constraints (noting that such a set could be infinite). Examples could include

all the possible ways of making a painting, or all the possible moves in a game

of chess. In Boden’s own words a conceptual space is ‘any disciplined way of

thinking that’s familiar to (and valued by) a certain social group’ [12].

The first kind of creativity that Boden identifies is combinational creativity.

It involves making unfamiliar comparisons of familiar parts of distinct con-

ceptual spaces (or distinct parts of the same conceptual space), where such

comparisons are considered creative if not seen before. For example, this

kind of creativity would include making a comparison between an atom and

the solar system.

The other two types of creativity introduced by Boden, namely exploratory

creativity and transformational creativity, involve the exploration or the trans-

formation of a conceptual space. Exploratory creativity occurs when a part

of a search space which has never been visited is taken into consideration.

For example, in a game of chess many moves are possible, but not all of them

might have been used. Then the use of a new move would be considered an

example of exploratory creativity. As another example, in visual art there

are infinite possibilities of ‘lines of color’ that can be drawn on a canvas, but

only some of them have been used in the past. A new combination of ‘lines

of color’ is another example of exploratory creativity. Transformational cre-

ativity instead occurs when the rules or the constraints of a conceptual space
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are changed or expanded. Boden describes it as follows: ‘the deepest cases of

creativity involve someone’s thinking something which, with respect to the

conceptual spaces in their minds, they couldn’t have thought before. The

supposedly impossible idea can come about only if the creator changes the

pre-existing style in some way’. In the two examples used above, transforma-

tional creativity would occur if a new rule which maintains the consistency

and soundness of the previous rules is added to a game of chess, or if a new

way to draw on a canvas is used.

In [81], Wiggins formalises Boden’s conceptual space, exploratory and trasfor-

mational creativity. Wiggins identifies two set of rules (details can be found

in [81]) which define a conceptual space: the constraints of the space, which

determine whether an item belongs to the space, and the exploratory rules of

the space, which determine how the items in a conceptual space are searched

for. The author then points out that this implies the existence of two types

of tranformational creativity: one involves transforming the constraints of a

conceptual space, hence allowing the inclusion of new items into it; the other

involves the transformation of the exploratory rules of a conceptual space,

hence allowing the discovery of items that already belonged to the concep-

tual space, but could not be found before. We refer back to Boden’s ways of

creativity and Wiggins’ formalization in Section 6.1.2.

2.4.2 The four P’s of Creativity

Different theoretical studies on creativity can be framed with respect to the

facets that they give prominence to. Traditionally, theories of creativity can

be defined as focusing on one or more of the following aspects: process,

product, person and place [60]. These are usually referred to as the four P’s
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of creativity.

Theories that address the Creative Process are the ones that aim to com-

prehend the cognitive mechanisms that occur when someone is engaged in

creative thinking or creative activity [41]. Some recurrent themes among

these theories are the study of commonalities and differences between cre-

ative thinking and non-creative thinking, the rules of conscious versus un-

conscious process and the contribution of stochastic processes versus more

controlled and guided processes [41].

Theories that focus on creative products aim at the analysis of concrete

results. These theories usually provide quantitative and objective methods

for the measurements of the value of an artefact, focusing on its novelty and

usefulness. It is, however, important to remember that a lot of researchers

argue that the study of a product is ineffective in terms of understanding

creativity if little can be said about the process leading to it or the creator’s

personality [41].

Another branch of studies on creativity address the creative person. These

theories generally try to analyse personality traits that could be indicative

of a creative person, independently of the domain or in a specific domain.

Finally, theories that focus on the creative place (or creative press) analyse

the settings in which creative acts take place. Recurrent themes in this area

of research include the interactions between people, or between a person

and the environment. General agreement among these theories validate the

fact that creativity tends to manifest itself when there are opportunities for

explorations and independent work, and when originality is supported. An

important theory that can be classified into this group is Csikszentmihalyi’s
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system view of creativity [28]. He argues that the processes essential to

creativity are to be found in the interactions between individuals and society.

He hence identifies three important components of creative systems: the

individual, the domain (the cultural component) and the field (the social or

interactive component) and argues that each of these components is essential

in determining creativity.

We refer back to the four Ps of creativity in Section 6.1.1, where we propose

a mapping between three of the Ps and a proposed framework.

2.4.3 Categories of Creative Magnitude

In describing theories of creativity, it is important to distinguish between lev-

els of creative magnitude. One of the most common distinctions is between

little-c creativity and big-C Creativity [41]. Big-C Creativity [61] refers to

indubitable examples of creativity, like Picasso’s paintings, Einstein’s rel-

ativity theory and Mozart’s music. Big-C creativity’s works are the ones

that make major contributions to the development of a field [41]. Little-c

creativity refers to everyday creativity [61]: little-c creativity works might

consist of novel approaches to tackle a problem or of small discoveries which

are interesting but not of high importance for a domain. Berghetto and

Kaufman [38] subsequently introduce two additional levels: mini-c creativity

and pro-c creativity. Mini-c creativity was introduced to divide the subjec-

tive and objective aspects of little-c creativity [41]: mini-c creativity refers

to creativity at a personal level, including aspects such as mental or emo-

tional creative changes. Pro-c creativity was instead introduced to define

the fuzzy area that lies between little-c and big-C creativity [41]. It refers to

professional-level creators (like professional artists) who do not have eminent
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status, but who are beyond little-c creators in knowledge, motivation and

performance [78].

A similar distinction has been proposed by Boden [12], who suggested a clas-

sification aimed at the description of the behaviour of both software and

humans. Boden’s proposition is based on who perceives a creative product

as such. When something is perceived as creative from a personal prospec-

tive, and hence is novel just to the creative person, we are referring to

psychological-creativity, or p-creativity. When something is new and useful

to a community or the of whole humanity, we refer to historical-creativity,

or h-creativity.

2.5 Interestingness and Curiosity

Other areas of research that are strictly connected to our project are the

ones that study and propose theories of interestingness and curiosity. Below

we have summarised some the relevant work undertaken in these areas. We

refer to the notions introduced below in Section 4.2, where we propose some

measurements of interestingness based on typicality.

2.5.1 Notions of Interestingness

One of the most used ways to classify interestingness, first suggested by

Silberschatz and Tuzhilin [70], is the distinction between subjective and ob-

jective interestingness. Objective interestingness focuses on the evaluation
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of an item based exclusively on its properties and characteristics. Subjective

interestingness instead compares properties of an item with the beliefs and

the knowledge of a person.

Both Schmidhuber [69] and Csikszentmihalyi [28] underline the importance

that the subjective aspects of interestingness have over the objective ones,

stating that it must only be evaluated in terms of an observer’s current

knowledge and computational abilities.

According to Silberschatz and Tuzhilin [70], the two main characteristics of

subjective interestingness are:

• Unexpectedness: a measurement inversely proportional the predictabil-

ity of a result or event

• Actionability: a measurement for the number of actions that an agent

could undertake as a consequence of a discovery.

In [68] interestingness is evaluated through the use of the Wundt Curve as

a function that plots interest with respect to novelty. According to this

theory, interestingness can be considered to be a special case of hedonic

value: a measurement for the pleasure associated with heightened states of

learning. Saunders hence modelled the relationship between the hedonic

value (pleasure) and novelty (distance to reality) using a non-linear fuction

called the Wundt Curve, shown in Figure 2.2 [7].

The Wundt curve has since been used in many models of computational

creativity. It’s maximum value is located in a region located relatively close

to the y-axis. Saunders points out that this can be interpreted as the fact that
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Figure 2.2: The Wundt Curve: a hedonic function used to calculate interest.

The y-axis measures the hedonic value: a measurement for the pleasure as-

sociated with heightened states of learning; the x-axis measures novelty: a

measure of the distance to reality. The maximum value, located in a region

close to the y-axis, can be interpreted as the fact that the most interesting

experiences are those that are “similar-yet-different” to those that have been

experienced previously.

the most interesting experiences are those that are “similar-yet-different” to

those that have been experienced previously [68].

Colton compares the measures of interestingness that have been used in some

mathematical discovery systems [22]. He identifies five types of commonly

used measures: Novelty (whether a concept or conjecture is new with respect

to a knowledge base), Surprisingness (whether a concept or conjecture is pre-

dictable), Applicability (whether the concept or conjectures apply to a large

amount of data in the knowledge base), Comprehensibility and Complexity

(whether a concept or conjecture is simple enough to be understood) and

Utility (whether a concept or conjecture can be used for further goals).
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2.5.2 Ritchie’s Criteria

In [62], G. Ritchie proposes eighteen criteria to asses some behaviors of a com-

puter program which might be indicative of creative potential. These criteria

aim to evaluate the creativity of a program by measuring some properties of

the outputs that such a system produces. The outputs (i.e. a painting, a

verbal joke) are called basic items, and they are considered independently of

whether they are consider a successful output or unsuccessful results.

The criteria that Ritchie proposed consist of some calculation involving what

he identifies as the primitive aspects of basic items: their value and their

typicality. Value is described as a measurement of the extent to which the

produced item is a high quality example of his genre [62] (i.e. ‘To which

extent is output a a good painting?’). Typicality is instead described as a

measurement of the extent to which the produced item is an example of the

artefact class in question (i.e. ‘To which extent can output a be classified

as a painting?’). Both value (val) and typicality (typ) are expressed as a

mapping from the basic item to the set [0, 1] (by using fuzzy sets). In order to

understand the criteria, Richie makes use of following additional definitions:

the Inspiring Set I is the subset of the available basic items which drove the

creative program computation. ‘It could be all the relevant artefacts known

to the program designer, or items which the program is designed to replicate,

or a knowledge base of known examples which drives the computation within

the program’ [62]. The set of basic items that a program produced is instead

represented by the letter R. Tα,1(R) is the subset of R consisting of items

which have typ higher than a chosen constant α. Similarly, Vγ,1(R) is the

subset of R consisting of items which have val higher than a chosen constant

γ.

48



Given the above definitions, we report the formulas of Ritchie’s criteria in

the Table 2.1.

2.5.3 Curiosity

Berlyne defines curiosity as “a form of motivation that promotes exploratory

behaviour to learn more about a source of uncertainty, such as a novel stim-

ulus, with the goal of acquiring sufficient knowledge to reduce the uncer-

tainty” [8]. Berlyne proposed to divide curiosity into two types: curiosity

driven by diversive exploration, and curiosity driven by specific exploration.

In the case of diversive exploration, a person is under-stimulated and hence

seeks arousal from the environment. In the case of specific exploration, a

person is over-stimulated and tries to reduce their arousal by exploring a

particular situation in order to reduce uncertainty. We can then hypothesise

a parallelism between these two kinds of curiosity and the two main creative

processes of convergent versus divergent thinking. That is, diversive explo-

ration stimulates divergent thinking, while specific exploration stimulates

convergent thinking.

2.6 Summary

In the sections above we have reviewed some of the key studies and theories

related to creativity from both an artificial intelligence and psychological

prospective. Within the rest of the thesis, we refer to this work for different
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Formalization

AV (typ, R) > θ, for suitable θ

Ratio(Tα,1(R), R) > θ for suitable θ, α

AV (val, R) > θ, for suitable θ

Ratio(Vγ,1(R), R) > θ for suitable θ, γ

Ratio(Vγ,1(R) ∩ Tα,1(R), Tα,1(R)) > θ for suitable θ, α, γ

Ratio(Vγ,1(R) ∩ T0,β(R), R) > θ for suitable θ, β, γ

Ratio(Vγ,1(R) ∩ T0,β(R), T0,β(R)) > θ for suitable θ, β, γ

Ratio(Vγ,1(R) ∩ T0,β(R), Vγ,1(R)) > θ for suitable θ, α, β, γ

Ratio(I ∩R, I) > θ for suitable θ

1−Ratio(I ∩R,R) > θ for suitable θ

AV (typ, (R− I)) > θ for suitable θ

AV (val, (R− I)) > θ for suitable θ

Ratio(Tα,1(R− I), R) > θ for suitable θ, α

Ratio(Vγ,1(R− I), R) > θ for suitable θ, γ

Ratio(Tα,1(R− I), (R− I)) > θ for suitable θ, α

Ratio(Vγ,1(R− I), (R− I)) > θ for suitable θ, γ

Ratio(Vγ,1(R− I) ∩ Tα,1(R− I), (R− I)) > θ for suitable θ, α, γ

Ratio(Vγ,1(R− I) ∩ T0,β(R− I), (R− I)) > θ for suitable θ, β, γ

Table 2.1: Ritchie’s Criteria: formulas to evaluate the creativity of a basic

item
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reasons. In particular, we use the work summarised above for the following

purposes:

• To identify trends and gaps within current computational creativity re-

search. The material reviewed in Section 2.2 on current computational

creativity methods (and in particular artifact generation) is utilised for

this purpose, as explained in Chapter 3.

• To actively use the algorithms proposed. This is the case for HR,

reviewed in Section 2.1.1 and used for the experiments in Chapter 4,

and for the RMC, reviewed in Section 2.3.2 and used in the experiments

in Chapter 5.

• To contextualize and justify some of the methods and conclusions re-

ported in the following chapters. Sections 2.4, 2.5 and 2.3 were included

for such purpose.

• To provide the reader with knowledge on alternative methodologies

which have been used in the field. Section 2.1 has been included for

such purpose, and a comparison between methodologies can be found

in Section 4.4.

In the chapters that follow, we make use of the above purposes to guide the

explanation and review of our studies.
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Chapter 3

Ideation

“One could say that a man can inject an idea into the machine,

and that it will respond to a certain extent and then drop into

quiescence, like a piano string struck by a hammer. Another sim-

ile would be an atomic pile of less than critical size: an injected

idea is to correspond to a neutron entering the pile from without.

Each such neutron will cause a certain disturbance which even-

tually dies away. If, however, the size of the pile is sufficiently

increased, tire disturbance caused by such an incoming neutron

will very likely go on and on increasing until the whole pile is

destroyed. Is there a corresponding phenomenon for minds, and

is there one for machines? There does seem to be one for the

human mind. The majority of them seem to be “subcritical,”

i.e., to correspond in this analogy to piles of subcritical size. An

idea presented to such a mind will on average give rise to less

than one idea in reply. A smallish proportion are supercritical.

An idea presented to such a mind that may give rise to a whole
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theory consisting of secondary, tertiary and more remote ideas.

Animals’ minds seem to be very definitely subcritical. Adhering

to this analogy we ask: Can a machine be made to be supercrit-

ical?”

A. M. Turing [74]

3.1 A Working Definition of Ideas

In this thesis, we will propose a framework to form and evaluate ideas. Be-

fore doing so, we will provide an informal explanation and working definition

of this term. We argue that one of the limitations of current creative sys-

tems oriented to the generation of artefacts is the lack of automation on the

creation of an initial idea upon which the rendering process is then based.

For example, generally an automated painting system needs to be instructed

with something like: ‘make a painting about love’ by the programmer/user.

In some of the more advanced systems, such as those described in Section

2.3, the idea might be directly extracted from a piece of text, such as a news-

paper article. In these cases, the responsibility of picking a topic shifts from

the programmer/user to the system. However, ultimately the idea is still

generated by a human: in the example above by the journalist that wrote

the article.

In this project, we underline the necessity for a system for the automatic

generation and creation of ideas. These ideas may or may not be consistent

with reality, but instead need to be interesting because of their cultural value

and, as Turing states in the quote above, because they “may give rise to

a whole theory consisting of secondary, tertiary and more remote ideas”
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[74]. We hence argue that the difficulties expressed by the public in judging

software as imaginative can be partly dependent on the lack of this automated

step: while ideas are at the heart of such creative artefacts, they are usually

introduced by the programmer.

With these uses in mind, we provide the following working definition:

An idea is a concept which can be used to guide the generation

of an artefact and which can be evaluated in terms of the impact

that this artefact has on the public.

Note that this definition is intentionally general, to allow room for extensions

and different implementations. In this thesis we will however restrict our-

selves to what we consider two of the basic forms of ideas: fictional concepts

(Chapter 4) and socially embedded concepts (Chapter 5). By fictional con-

cept we refer to, as explained above, concepts that are not consistent with

reality. By socially embedded concepts we refer to concepts that derive from

the interaction between a group of people.

The use of these ideas is evident if we look at the current Computational Cre-

ativity systems oriented towards the creation of programs for the production

of artefacts, like those reported in Section 2.2: an automated poem genera-

tor [23] might compose a poem about the idea of the atrocity of war and an

automated painting generator like The Painting Fool [17] might produce a

picture about the idea that men could fly. These are examples of ideas that

we aim to generate.
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In the chapters that follow, we propose and analyse two methods for the

generation and evaluation of ideas, one for fictional concepts (Chapter 4)

and one for socially embedded concepts (Chapter 5).
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Chapter 4

Using Theory Formation

Techniques for the Invention of

Fictional Concepts

Research in Artificial Intelligence has always been largely focused on reason-

ing about data and concepts which have a basis in reality. As a consequence,

concepts and conjectures are generated and evaluated primarily in terms of

their truth with respect to a given knowledge base. For instance, in ma-

chine learning, learned concepts are tested for predictive accuracy against

a test set of real world examples. As underlined in previous chapters, in

Computational Creativity research, much progress has been made towards

the automated generation of artefacts (painting, poems, stories, music and

so on). When this task is performed by people, it might start with the con-

ception of an idea, upon which the artefact is then based. Often these ideas

consist of concepts which have no evidence in reality. For example, a novelist

could write a book centered on the question ‘What if horses could fly?’ (e.g.,
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Pegasus), or a singer could write a song starting from the question ‘What

if there were no countries?’ (e.g., John Lennon’s Imagine). However, in

Computational Creativity, the automated generation and evaluation of such

fictional concepts for creativity purposes is still largely unexplored.

The importance of evaluating concepts independently of their truth value

has been highlighted by some cognitive science research, as reviewed in 2.5.

Some of the notions that often appear in the cognitive science and psychology

literature are those of novelty, actionability, unexpectedness and vagueness.

Novelty is used to calculate the distance between a concept and a knowledge

base. As reviewed in Section 2.5, in [68], interestingness is evaluated through

the use of the Wundt Curve [7], a function that plots hedonistic values with

respect to novelty. As also reviewed in Section 2.5, actionability is used to

evaluate the number of actions or thoughts that an agent could undertake

as a consequence of a discovery, while unexpectedness is a measurement

inversely proportional to the predictability of a result or event. Finally,

vagueness is referred to as the difficulty of making a precise decision. Several

measurements have been proposed in the literature for the calculation of this

value, particularly using fuzzy sets [40].

The importance of generating concepts which describe contexts outside of

reality was underlined by Boden when she proposed her classification of

creative activity. As previously discussed, Boden identifies ‘three ways of

creativity’ [11]: combinational creativity, exploratory creativity and transfor-

mational creativity. While combinational creativity involves making unfa-

miliar combinations of familiar ideas [11], and exploratory creativity requires

the discovery of unknown areas of a search space, transformational creativ-

ity involves the modification of a search space by breaking its boundaries.
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One reading of this could therefore be the creation of concepts that are not

supported by a given knowledge base; we refer to these as fictional concepts

herein. Conceptual blending [33] (reviewed in Section 2.1.2) offers clear meth-

ods for generating fictional concepts, and we return to this later, specifically

with reference to the Divago system which implemented aspects of conceptual

blending theory [59].

In this chapter, we propose a new approach to the formation and evaluation

of fictional concepts. Our method is based on the use of the HR automated

theory formation system [20] (reviewed in Section 2.1.1), and on cognitive

science notions of concept representation (reviewed in Section 2.3). In par-

ticular, we explore how the notion of typicality can improve and extend HR’s

concept formation techniques.

In the following sections, we discuss the methods and results obtained by in-

troducing typicality values into HR. We argue that such typicality measures

can be used to evaluate and understand fictional concepts. In particular, we

propose calculations for three measures which might sensibly be linked to the

level of novelty, vagueness and stimulation associated with a fictional con-

cept. We generated definitions of fictional animals by applying our method

to a knowledge base of animals and we report the results. We then com-

pare the software’s estimate of novelty, vagueness and stimulation with data

obtained through a questionnaire asking sixty people to evaluate some con-

cepts with the same measures in mind. The results were then used to test

whether there is a correlation between our measurements and the usual (hu-

man) understanding of the terms novelty, vagueness and stimulation. We

then compare this approach and the well established methods of concep-

tual blending. Finally, we draw some conclusions and discuss some further
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directions.

4.1 Using HR to Generate Fictional Concepts

We are interested in the generation and evaluation of concepts for which it is

not possible to find an exemplar in the knowledge base that completely meets

the concept’s definition. Throughout this chapter, we use the term fictional

concepts to refer to this kind of concept. We use the HR system for the

generation of such fictional concepts. To do so, after it has formed a theory

of concepts and conjectures in a domain, we look at all the non-existence

conjectures that it has generated. These are based on the concepts that HR

constructs which have an empty success set. Hence, the concepts that lie at

the base of these conjectures are fictional with respect to the knowledge base

given to HR as background information. For example, from the non-existence

conjecture:

@(x)(Reptile(x) &HasWings(x))

we extract the fictional concept:

C0(x) = Reptile(x) &HasWings(x)

To see whether typicality values can be used for the evaluation of these

fictional concepts, we have introduced this notion into HR. Typicality values

are obtained by calculating the degree of membership of each user-given

constant (i.e., animals in the above example) with respect to every fictional

concept which specialises the concept of the type of object under investigation

(which is the concept of being an animal in this case). This is done by looking
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at the proportion of predicates in a concept definition that are satisfied by

each constant. Hence, for each constant aj and for each fictional concept Ci

in the theory, we will have Typicality(aj, Ci) = t, where 0 ≤ t < 1. For

example, for the concept definition:

C1(x) = Mammal(x) &HasWings(x)

& LivesIn(x,Water)

the typicality values for the constants in the set {Lizard,Dog,Dolphin,Bat}

are as follows:

Typicality(Lizard, C1) = 0;

Typicality(Dog,C1) = 0.3;

Typicality(Dolphin, C1) = 0.6;

Typicality(Bat, C1) = 0.6;

We see that the constant ‘Dolphin’ has typicality of 0.6 with respect to

C1 because a dolphin is a mammal which lives in water but which doesn’t

have wings – hence it satisfies two of the three predicates (≈ 66.6%) in the

definition of C1.

We use a simple measure to calculate typicality, and we are aware that

it could be improved in multiple ways as explained in 4.5. However, it

is sufficient to demonstrate the point of this experiment, and we’ll hence

leave improvements to future studies. It is important to note that for each

fictional concept C there are at least n constants a1, ..., an such that ∀j,

0 < Typicality(aj, C) < 1, where n is the number of predicates in the concept
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definition. This is because HR requires at least one exemplar for each predi-

cate in the initial knowledge base. We refer to these as the atypical exemplars

of fictional concept C, and we denote this set of constants as atyp(C). The

atypical exemplars of C have typicality bigger than zero because they partly

belong to C, and less than one because the concept is fictional, and hence

by definition it doesn’t have any real life examples. The number of atypical

exemplars of a fictional concept is always more than or equal to the number

of predicates in the concept definition, because fictional concepts originate

from the manipulation of non-fictional concepts, and hence, – given a well

formed knowledge base – each predicate in a fictional concept definition will

correspond to a non-fictional concept with at least one element in its success

set.

4.2 Evaluating Concepts Based on Typicality

We explain here how typicality can be used to evaluate fictional concepts

along three axes which we claim can be sensibly used to estimate how peo-

ple will assess such concepts in terms of vagueness, novelty and stimulation

respectively. This claim is tested experimentally in the next section. To

define the measures for a fictional concept C produced as above, we use E

to represent the set of constants (examples) in the theory, e.g., animals, and

we use NF to denote the set of non-fictional concepts produced alongside

the fictional ones. We use |C| to denote the number of conjunct predicates

in the clausal definition of concept C. We further re-use atyp(C) to denote

the set of atypical exemplars of C and the Typicality measure we introduced

above. It should be noted that the proposed methods of evaluation of fic-
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tional concepts have not been included into the HR program to guide concept

formation, but rather applied after theory formation has occurred.

4.2.1 Using Atypical Exemplars

Our first measure, MV , of fictional concept C, is suggested as an estimate

of the vagueness of C. It calculates the proportion of constants which are

atypical exemplars of C, factored by the size of the clausal definition of C,

as follows:

MV (C) =
|atyp(C)|
|E| ∗ |C|

As previously mentioned, vagueness is a measurement that has been widely

studied in the context of fuzzy sets. Klir [40] emphasises the difference be-

tween this measurement and the one of ambiguity, and underlines how vague-

ness should be used to refer to the difficulty of making a precise decision.

While several more sophisticated measurements have been proposed in the

literature, as explained in [40], we chose the above straightforward counting

method, as this is consistent with the requirement that if concept Ca is in-

tuitively perceived as more vague than concept Cb, then MV (Ca) > MV (Cb).

To see this, suppose we have the following two concepts:

C1(x) = Animal(x) & has(x,Wings)

C2(x) = Reptile(x) & has(x,Wings)

In this case, we can intuitively say that an animal with wings is more vague

than a reptile with wings, because for the first concept, we have a larger

choice of animals than for the second. In terms of typicality, this can be

interpreted as the fact that C1 has a larger number of atypical exemplars

than C2, and it follows that MV (C1) > MV (C2).
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4.2.2 Using Average Typicality

Our second measure, MN , of fictional concept C, is suggested as an estimate

of the novelty of C. It calculates the complement of the average typicality of

the atypical exemplars of C, as follows:

MN(C) = 1− 1

|atyp(C)|

(∑
a∈E

Typicality(a, C)

)
Novelty is a term largely discussed in the literature, and can be attached

to several meanings and perspectives. In our case, we interpret novelty as

a measurement of distance to the real world, as inferred in previous work

in computational creativity research, such as [68]. As an example of this

measure, given the concepts:

C1(x) = Bear(x) & Furniture(x) &Has(x,Wings)

C2(x) = Bear(x) & Furniture(x) &Brown(x)

then, in a domain where all the constants are either exclusively bears or

furniture (but not both), and assuming that all the bears and all the furniture

are brown, we calculate:

MN(C1) = 0.6

MN(C2) = 0.3

This is because for C1, all exemplars will satisfy just one of the three clauses

(1
3
) in the definition, hence this will be their average typicality, and C1 will

score 1− 1
3

= 0.6 for MN . In contrast, all exemplars will satisfy two out of the

three clauses in C2, and hence it scores 0.3 for MN . Hence we can say that

C1 is more distant from reality, and hence more novel, than C2. Consistent

with the literature, and in particular with the Wundt Curve (which com-

pares novelty with the hedonic value), we assume that the most interesting
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concepts have an average typicality close to 0.5. Note that this implies that

fictional concepts whose definition contains two conjuncts are always mod-

erately interesting in terms of novelty, as their average typicality is always

equal to 0.5.

4.2.3 Using Non-Fictional Concepts

Our final measure, MS, of fictional concept C is suggested as an estimate of

the stimulation that C might elicit when audiences are exposed to it (i.e.,

the amount of thought it provokes). It is calculated as the weighted sum of

all the non-fictional concepts, r, in NF that HR formulates for which their

success set, denoted ss(r), has a non-empty intersection with atyp(C). The

weights are calculated as the sum of the typicalities over atyp(C) with respect

to C. MS(C) is calculated as follows:

MS(C) =
∑
r∈NF

 ∑
a∈atyp(C)∩ss(r)

Typicality(a, C)


This calculation is motivated by Ward’s path-of-least-resistance model [79].

This states that when people approach the task of developing a new idea for

a particular domain, they tend to retrieve basic level exemplars from that

domain and select one or more of those retrieved instances as a starting point

for their own creation. Having done so, they project most of the stored prop-

erties of those retrieved instances onto the novel ideas they are developing.

As an example, the fictional concept:

C1(x) = Horse(x) &Has(x,Wings)

could lead to the following questions: Is it a mammal? Can humans ride it?
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Figure 4.1: Details from the knowledge base for animals.

Does it live in a farm? Does it fly? Does it lay eggs? Each of these questions

can be derived from the corresponding HR generated concepts which have in

their success set a large number of the atypical exemplars of C1.

4.3 Experimental Results

To evaluate our approach, we started with a knowledge base of animals, based

on similar inputs to those used for the conceptual blending system Divago

[59], which is described in the next section. The concept map for a horse was

taken from [58] and reapplied to each animal from a list of 69 animals reported

in the National Geographic Kids website1. The relations were maintained

when relevant, and extended when necessary according to the Generalized

Upper Model hierarchy, as instructed in [59]. Figure 4.1 illustrates a small

part of the information we provided as background knowledge for HR to form

a theory with.

To generate fictional concepts with HR, we used a random-search setup and

1kids.nationalgeographic.co.uk/kids/animals/creaturefeature
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ran the system for 100,000 steps, which took several hours. We limited

the HR system to use only the compose, exists and split production rules,

as described earlier in Section 2.1.1. Extracting them from non-existence

conjectures, the system produced 4623 fictional concepts, which were then

automatically ranked in terms of their MV , MN and MS values, as described

above. From each of the ranked lists, a sub-list of 14 fictional concepts was

created. The fictional concepts were taken at regular intervals so that they

were evenly distributed numerically over the sub-lists, from highest scoring

to lowest scoring. For the MN sub-list, all the fictional concepts with two

clauses in the definition were first filtered out. For the MV and MS sub-lists,

all the fictional concepts with more than two clauses in the definition were

filtered out instead. The resulting sub-lists are given in tables 6.1, 6.2 and

6.3 respectively.

We performed a survey of sixty people who were shown these lists and asked

to rank them from 1 to 14 with respect to their own interpretations of the

fictional concepts and their values. The aim of the survey was to verify how

measurements MV , MN and MS described above correlate with respect to

common (human) understanding of vagueness, novelty and stimulation re-

spectively. The survey was composed of four parts. The first three parts

asked people to rank the three sets of 14 concepts in terms of vagueness,

novelty and stimulation. We didn’t include an explanation of our interpre-

tation of these words in the questions, to encourage participants to use their

own understanding of the three terms. The fourth part of the survey asked

for a qualitative written definition of each of the three criteria of evaluation:

vagueness, novelty and stimulation. Tables 6.1, 6.2 and 6.3 in the Appendix

report the three sub-lists of fictional concepts and the ranking (1 to 14) that

our software assigned to them, along with the rankings obtained from the
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survey.

In order to establish whether our ranking and the survey rankings are corre-

lated, we calculated Pearson’s correlation, r, between the system’s ranking

and an aggregated ranking. The aggregated ranking was calculated by or-

dering the fictional concepts 1 to 14, according to the mean rank from the

participants. We then calculated the respective 95% Confidence Intervals

(CI) and p-values, using the alternative hypothesis that the correlations are

greater than zero. We obtained the following results (quoted to 3 decimal

places):

MV /vagueness: r = 0.552, p = 0.020, 95% CI = [0.124, 1]

MN/novelty: r = 0.697, p = 0.003, 95% CI = [0.350, 1]

MS/stimulation: r = -0.029, p = 0.059, 95% CI = [-0.481, 1]

We can therefore conclude that there is strong and highly statistically signif-

icant correlation between the software rankings given by MN and the survey

rankings for novelty. We have similarly found a significant and moderate cor-

relation with the survey rankings for MV . Hence it appears that the novelty

and vagueness measurements we suggested offer sensible calculations for the

general understanding of these two terms for fictional concepts.

We found no correlation between the survey rankings for the stimulation

value and the software measure MS. This could be due to two reasons.

Firstly, looking at the general descriptions of the word ‘stimulating’ given

by people in the last section of the survey, they present a broader range of

meanings than the words ‘novel’ or ‘vague’. Moreover, these meanings are

often very distant from the interpretation of the term ‘stimulation’ that we
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Figure 4.2: Word clouds: vagueness, novelty and stimulation.

used in deriving the MS measure. In Figure 4.2, we present word clouds

obtained from the definitions that people in the survey gave of the words

vagueness, novelty and stimulation respectively. We can see that the word

cloud for vagueness includes words such as ‘description’, ‘unclear’ and ‘dif-

ficult’ as might be expected, and the word cloud for novelty includes words

such as ‘different’, ‘unusual’ and ‘original’, also as expected. However, the

word-cloud for ‘stimulation’ includes words such as ‘emotion’, ‘exciting’ and

‘imagination’. This suggests a second reason that could explain the lack of

correlation: our measure MS lacks factors to estimate emotions and surpris-

ingness elements.

To explore the question of stimulation further, we looked at another mea-

sure of fictional concepts which might give us a handle on this property.

Table 4.1 in the Appendix portrays the non-fiction concepts found (dur-

ing the experimental session with HR described above) to have examples

overlapping with the atypical exemplars of this fictional concept: Cp(A) =
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isa(A, equine), pw(A,wings) [noting that pw(A,X) means that animal A has

a body (p)art (w)ith aspect X]. These non-fiction concepts comprised the

subset of NF that was used to calculate MS(Cp). The non-fiction concepts

overlapping with Cp are given along with a calculation which was intended

to capture an essence of Cp as the likelihood of additional features being true

of the fictional animals described by Cp. The calculation takes the sum of

the typicalities of the atypical exemplars of the fictional concept which are

also true of the non-fiction concept. We see that it is more likely for the

winged horse to have feathers than to have claws, as pw(A,feathers) scores

10, while pw(A,claws) scores just 1. These likelihood scores could be used

at the heart of new measures. For instance, we can hypothesise that the in-

verse of average likelihood over all the associated non-fiction concepts might

give an indication of how thinking about Cp could lead to less likely, more

imaginative and possibly more stimulating real world concepts.

4.4 A Comparison with Conceptual Blending

We compare our system to the well-established conceptual blending tech-

nique, as this technique performs fictional concept formation and evaluation,

as defined above. We therefore present a comparison of our system with Di-

vago [59], which is a conceptual blending system implemented on the basis of

the theory presented in [33]. It applies the notions suggested by this theory

in order to combine two concepts into a stable solution called a blend. Blends

are novel concepts that derive from the knowledge introduced via the inputs,

but which also acquire an emerging structure of their own [59].

Divago has been successfully tested in both visual and linguistic domains [59].
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CONCEPT: isanimal(A,horse), pw(A,wing)

Non-fictional concept Likelihood of predicate to characterise fictional concept

isa(A,bird) 6.5

isa(A,bug) 3.0

isa(A,mammal) 1.0

pw(A,lung) 8.5

pw(A,mane) 0.5

pw(A,tail) 7.0

pw(A,claws) 1.0

pw(A,teeth) 1.0

pw(A,eye) 10.5

pw(A,legs) 10.5

pw(A,fur) 1.0

pw(A,feathers) 10.0

pw(A,beak) 10.0

pw(A,hoof) 0.5

pw(A,claw) 5.5

existence(A,mountain) 2.5

isa(A,bug) 3.0

isa(A,bird) 6.5

isa(A,mammal) 1.0

hasAbility(A,carry) 1.0

hasAbility(A,hunt) 1.5

hasAbility(A,flying) 8.0

Table 4.1: Non-fiction concepts with success sets overlapping with atypical

exemplars of the given concept, along with their actionability.

It is comprised of six different modules: the knowledge base, the mapper, the

blender, the factory, the constraints module and the elaboration module. The

knowledge base contains the following elements: concept maps that are used

to define concepts through a net of relations; rules that are used to explain

inherent causalities; frames that provide a language for abstract or compos-

ite concepts; integrity constraints that are used to assess the consistency of

a concept; and instances that are optional sets of examples of the concepts.

The mapper takes two random or user selected concepts and builds a struc-

tural alignment between the two respective concepts maps. It then passes

the resulting mapping to the blender, which produces a set of projections.

Each element is projected either to itself, to nothing, to its counterpart (the

elements it was aligned with by the mapper), or to a compound of itself and

its counterpart. The blender therefore implicitly defines all possible blends
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that constitute the search space for the factory.

The factory consists of a genetic algorithm used to search for the blend

that is evaluated as the most satisfactory by the constraints module. The

algorithm uses three reproduction rules: asexual-reproduction, where the

blend is copied; crossover, where two blends exchange part of their lists of

projections; and mutation, where a random change in one of the projections

in a blend is applied. The factory interacts both with the elaboration module

and the constraints module. The elaboration module is used to complete each

blend by applying context-dependent knowledge provided by the rules in the

knowledge base. The constraints module is used for the evaluation of each

blend. It does this by measuring its compatibility with the frames, integrity

constraints, and a user-specified goal [59].

The first high-level difference between Divago and our system derives from

the motivations behind their implementations. Divago was constructed to

test the cognitive plausibility of a computational theory of conceptual blend-

ing, and hence their aims were to construct complete and stable concepts,

i.e., the blends. Details of the system’s reasoning process, used for the for-

mation and elaboration of such concepts, are therefore presented in the final

output. Our system was instead constructed to generate fictional ideas of

value. These are concise concepts which are deliberately left in a simple and

ambiguous form. The aim is in fact to find the concepts that stimulate the

highest amount of thought and interest in an audience. The system’s reason-

ing process is hence hidden from the outputs, and used only for evaluation

purposes.

In the following paragraphs, we describe the parallels between Divago’s mod-

ules and the different components of our system. In doing so, we identify the
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consequences of using each methodology. The first comparison that can be

made is between the structures of the user-provided knowledge bases. In

HR, the knowledge base is used only to define a set of concepts. It is hence

equivalent in functionality to Divago’s concept maps. The rules, frames and

integrity constraints that need to be user-specified in Divago, are instead au-

tomatically learned in HR. They take the form of conjectures, non-fictional

concepts and function specifications respectively. On one hand, this implies

that HR has a greater degree of autonomy. On the other hand, HR is more

prone to errors, as the constructed conjectures, non-fictional concepts and

functions may not be relevant for the construction of fictional concepts.

For example, given an appropriate knowledge base, HR could construct the

concept of an animal being amphibious, which is defined as an animal that

lives in water and lives on earth. The same frame can be manually defined

and used in Divago. However, HR will simultaneously construct other similar

concepts. For example, the concept of animals that live in water and are red;

or the concept of animals that live on earth and have four legs. If we assume

that these concepts could be used for the evaluation of fictional concepts,

then there is currently no way to differentiate between them in terms of the

relevance they might have on the definition of a fictional concept (i.e., the

system couldn’t itself determine that an amphibian is more relevant than a

water-living red animal). Moreover, HR is not capable of constructing all the

rules, frames and constraints that Divago uses, but we believe that a similar

functionality could be achieved through the use of typicality-based exemplar

membership.

Despite the evident differences between their internal mechanisms, we can

make a comparison between the blends produced by Divago’s mapper and
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blender modules, and HR’s non-existence conjectures. The first observation

regards the range of the potential outputs. For HR, we only consider the

concepts that are empirically known to be fictional. Divago’s blends could

instead be fictional, non-fictional, or exact copies of the two initial inputs.

Moreover, Divago focuses only on one of the possible bijections between the

elements in the concept maps. Pereira recognises that this restriction narrows

the creative potential of the system [59, p.117]. HR is instead able to consider

all possible structural alignments. Furthermore, Divago works on the blend

of two randomly selected or user specified concepts, while HR can consider

multiple concepts at once.

A component to develop and elaborate on HR’s fictional concepts is still

missing from our system. In order add this component, one could take inspi-

ration from Divago’s factory and elaboration modules, while also taking into

consideration the typicality values discussed above. However, as explained

before, in our case this reasoning module would be used to calculate the

potential reasoning that can originate from a fictional concept. In Divago,

the factory and elaboration modules are instead used for the completion of a

blend. Finally, Divago’s constraints module can be compared with measures

MV , MN and MS introduced above. Divago’s constraints module aims to

evaluate a completed blend, while our system rates fictional concepts. Nev-

ertheless, a correspondence between the evaluation methods can be noted.

For example, the topology constraint used in Divago measures the novelty of

a blend, like the MN measure for fictional concepts investigated above, and

the integration constraint used in Divago measures how well-defined a blend

is, which is similar to the MV measurement that we have found is positively

correlated with vagueness.
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4.5 Conclusions and Further Directions

We have proposed a method for generating and evaluating fictional concepts,

using the HR theory formation system enhanced with typicality values. With

the experiments we have conducted, we have shown that it is possible to cre-

ate fictional concepts by using this process and that it is possible to mean-

ingfully order the fictional concepts in terms of interestingness-oriented mea-

surements. We have compared the automatically achieved evaluations with

a ranking obtained through the analysis of a survey consulting sixty people.

This showed that our MV and MN measures are correlated positively with

common understandings of vagueness and novelty respectively. We also com-

pared our approach to the one based on conceptual blending in the Divago

system, which placed our work in context and highlighted comparisons which

may inform future implementations.

The experiment above indicates that our system is capable of creating fic-

tional concepts that could be of interest to an audience. Moreover, this

ideation process could be used at the heart of more sophisticated artefact

generation systems, e.g., for poems or stories.

As previously discussed, the methods used to rank such fictional concepts

have been shown to be useful, but also present some issues. Further research

could therefore look into methods to refine the current approach and im-

plement new measures to estimate the interestingness of fictional concepts.

To do so, one could take inspiration from the notions analysed in [22] and

used in the HR system, and modify them as appropriate. One could also

look at other measurements suggested and used in Computational Creativ-

ity literature, such as Ritchie’s criteria [62], reviewed in Section 2.5.2. These,
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for example, could be used to assess the novelty of a fictional concept with

respect to other fictional concepts.

Moreover, our measurement of typicality could be refined. To do so one

could take inspiration from the theories proposed in cognitive science on the

evaluation of the prototype theory and the weighting of category features.

Each feature could be given a value called salience, used to indicate how

important it is for the concept’s definition. The salience values will then be

used to calculate the typicality values with more accuracy.

Ultimately, it could be possible to introduce a notion of the distortion of

reality. This measurement could serve to calculate how many real world

constraints a fictional concept breaks. A measurement for this notion could

be derived from two methods for the calculation of values related to it. The

first method is introduced in [57] and is based on the number of conjectures

that each atypical exemplar of a fictional concept breaks. The second method

is based on the scale of the distortion that an ontology would be subject to

in order to include a fictional concept.

Given that the above measurements are strictly dependent on the knowledge

base used, it would be interesting to study how the construction of such

knowledge base could influences the fictional concepts generated from it.

This will be discussed further in Section 6.1.1. Finally, it could also be

possible to implement further methods for reasoning with fictional concepts.

These methods could be used to estimate actionability; for the elaboration of

fictional concepts; and for potential renderings of ideas in cultural artefacts

such as poems and stories. One could also study how the different methods

of measurement could be related to a rendering choice and vice versa. For

example, non-vague concepts could be suitable for paintings, while actionable
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concepts might be more suitable for storytelling.
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Chapter 5

Using Concept Formation

Techniques for the Invention of

Socially Embedded Concepts

This chapter describes the process and analyses the results in applying a

recognized concept formation method to posts in Twitter, with the aim of

inventing concepts which are considered socially embedded by a sample of

people.

By socially embedded, we mean that such concepts need to describe a word/fact

the same way an interactive group of people might do. Hence, they need to

be represented not by the application of a dictionary definition but instead

by a description which underlines the most memorable and/or interesting

associations this word/fact relates to. For example, take the word ‘grand-

mother’. The dictionary would define it as ‘the mother of one’s father or

mother’ [4]. However, if you ask a person to represent this concept artis-
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tically, they would instead rely on its relation to other concepts such us

‘welcoming house’, ‘warm cakes’, ‘life stories’.

In order for our concepts to be socially embedded, we believe that it is

important to start with a knowledge base which reflects public beliefs and

opinions. Since Twitter [1] constitutes a large and easily accessible source of

such data we have decided to use it as a source for these experiments.

In order to capture the relational aspects of these concepts (to other con-

cepts), we have decided to apply cognitive concept formation techniques

that, as described in Section 2.3, strongly rely on such assumptions. Stud-

ies from cognitive psychology in fact agree that concepts are fuzzy, dynamic

and experience-dependent entities [55], and should be represented as such.

Recurrent ideas within these theories, such as the use of typicality and of

prototypes, are key elements for our reasoning process, as they result from

long-proven and discussed studies on how concepts relate to each other. For

the above reasons, we have decided to adopt a well established cognitive-

based concept formation method, Anderson’s Rational Model of Classifica-

tion (RMC) [5] (reviewed in Section 2.3.2), for our purpose.

In Section 5.2, we verify the significance of our method by proposing a com-

parison between the concepts automatically generated with our system from

5 words, and the results obtained from a survey that asked a sample of people

to describe social associations to the same words.

The automatic creation of socially embedded concepts constitutes a relevant

step forward in terms of automation for current creative systems. As noted in

Section 2.3.2, existing artefact generation systems often combine logic-based

representations of some aspects of the world with rules for manipulating and

78



representing these representations. These representations are usually built-

in manually. The objective of our study is to show that concept formation

techniques can be utilized to automatically generate such representations, so

that they can be used in further studies on how our automatically generated

concepts and existing artefact generation systems could be combined in order

to develop a first fully automated creative system.

In the sections that follow, we describe how the RMC was applied to data

retrieved from Twitter (Section 5.1), we present and analyse the results in

comparing the output to some survey-retrieved data (Section 5.2), and we

draw some conclusions and further directions (Section 5.3).

5.1 Applying the RMC to Data from Twitter

The aim of applying Anderson’s Rational Model of Classification (RMC) [5]

to a set of tweets is to cluster these tweets depending on the words appearing

in them. Each tweet is considered to be an exemplar of the initial topic. Each

of the words occurring in a tweet is considered to be a feature of an exemplar.

The final clusters will hence contain a set of exemplar (tweets), each having

themselves a set of features (words). The features appearing the most in a

cluster will then be considered to be the definition of that cluster.

In order to obtain this definition, we first need to obtain a clean set of data.

To do so, first a topic is decided. This is set to be a word or a combination of

words. Examples could be ‘War’, ‘Love’ or ‘London Olympics’. Then, a set

of the most recent 1500 tweets containing these word(s) is retrieved. Such

tweets are downloaded from Twitter using an external program, twitter4j [2].

To avoid trivial results, the most popular words according to the Kilgariff
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database of 208,000 word frequencies [39], such as ‘a’, ‘the’, etc., and the

initial topic are filtered out of each tweet. All HTML links and @ references

are also filtered out from each tweet. The above procedure results in a set of

1500 clean tweets related to the initial topic. Each word appearing in any of

these tweets is considered to be a feature of the initial topic. For example,

below is a list of the cleaned up tweets that we obtained after following the

above steps for the topic ‘London Olympics’ 1:

• Five Travel Tips Frugal London Trip Fox Business

• Online gambling firm Betfair expects smash records

• Fans buy equestrian eventing tickets global ticket market cheap rate

• Three sessions football Wembley

• Going Robbo testimonial failed qualify

Please note that these lists could be further processed, for example, by using

stemming. However, this goes beyond the scope of this thesis and we will

therefore leave such improvements to future studies. The RMC method is

then applied to find clusters of related exemplars (tweets). The most common

features (words) per cluster will constitute the definition of this cluster. Each

of these definitions is then considered to be a socially embedded concept

related to the initial topic. The RMC uses a flexible representation that can

interpolate between exemplars and sets of features, adding new clusters to

the representation as required. When a new exemplar is analysed, this can

be assigned to a pre-existing cluster, or to a new cluster on its own [67].

1These experiments were conducted in summer 2012, when they London Olympics were

a current event.
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The RMC is the applied by looping through the obtained set of exemplars

(tweets) as follows:

Set Pt = {c1, .., cnt} to be a partition of t exemplars into nt clusters, where

nt is not pre-defined and where t denotes the number of steps the algorithm

has been through. Each step corresponds with the analysis of an additional

exemplar. For example, if t = 5 then we can assume that the algorithm

has considered and partitioned into n5 clusters the first 5 exemplars, where

1 ≤ n5 ≤ 5, and it’s now trying to classify the 6th exemplar. Let Fci be

the set of features of cluster ci, where 1 ≤ i ≤ nt, and Fet+1 be the set of

features for the newly considered exemplar. Then the posterior probability

that a new exemplar et+1 was generated from cluster ci is calculated using

Bayes’ Theorem as follows:

P (ci|Fet+1) =
P (Fet+1|ci)P (ci)∑
i P (Fet+1|ci)P (ci)

where P (Fet+1|ci) is the probability that the new exemplar belongs to cluster

ci given the exemplar’s set of features Fet+1 and P (ci) is the prior probability

that the new exemplar was generated from cluster ci. Note that given the

looping nature of the algorithm, both of these probabilities are dependent on

the clusters assignments for the previous exemplars. They are calculated as

follows:

P (ci) =
Kni

(1−K) + fi

where ni is the number of exemplars that have been assigned to cluster ci,

fi is the number of features of cluster ci and K is a constant that Anderson

calls the coupling probability [67], set to be equal to 0.8, and:
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P (Fet+1 |ci) =

∑
j in Fet+1

V (j, ci)∑
j in Fet+1

V (j)

where V (j) is the number of times a feature j in Fet+1 has been encountered

in all the previous exemplars, and V (j, ci) is the number of times a features

j in Fet+1 ∩ Fci has been encountered in previous exemplars.

The posterior probability that a new exemplar was generated from an entirely

new cluster ct+1 is calculated in exactly the same way, with the exception of

P (ci) which is calculated as follows:

P (ct+1) =
1−K

(1− k) + ft+1

where ft+1 is the number of features of cluster ct+1 and K is the coupling

probability.

Given the above formula, each exemplar ei is considered in turn and is as-

signed to the cluster for which the corresponding probability is equal to:

Max(P (c1|Fei), ..., P (cnt|Fei), P (cnt+1|Fei))

Once every exemplar has been assigned to a cluster, the definition of a cluster

is equal to the set:

Def(ci) = {jinFci |V (j, ci) >=

∑
k in F1,..,Ft

V (k)

20
}

Below we show some of the clusters obtained for the topic “Changes in foot-

ball”:
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CLUSTER c1:

Def(c1) = {“nothing” }

Exemplars in c1 = {“nothing”, “nothing the season past was the most enter-

taining throughout all the divisions amazing”, ... }

CLUSTER c2:

Def(c2) = { “calling”, “americans”, “soccer” }

Exemplars in c2 = {“Americans calling it soccer”, “people who call it f***ing

Soccer”, ... }

CLUSTER c3:

Def(c3) = { “technology”, “goal”, “line” }

Exemplars in c3 = {““GOAL LINE TECHNOLOGY!”,“Cheaper ticket prices

and goal line technology”, ... }

For the above example, we obtained 32 clusters. Other examples include a

cluster about racism, one about Manchester United, one about diving, etc.
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5.2 Experimental Results

In order to verify whether our resulting clusters’ definitions can be considered

to represent socially embedded concepts related to a pre-defined topic, we

have constructed a survey and analysed the responses from 50 people. The

survey was constructed in order to analyse the results obtained from running

our program on the following four topics: ‘Grandmother’, ‘London Olympics’,

‘Love’ and ‘War’. These topic were chosen in order to cover different kinds

of socially embedded concepts. ‘Grandmother’ was chosen as an example of

a topic than anyone can relate to, ‘London Olympics’ as an example of a

currently relevant event2, ‘Love’ as an example of a sentiment and ‘War’ as

an example of a word with high emotional impact. The survey focused on

gathering people’s mental association to the above topics, and was divided

into two sub-surveys, each given to 25 people, as follows:

• Sub-survey (i) asked people to guess a topic given the set of words in the

definitions of the top ten clusters automatically created for each of the

above topics. The survey allowed three different guesses. Additionally,

the survey asked people to provide a vote from one to ten for each

of the guesses on how well the definitions represent artistically the

topic, where one corresponds to an artistically strong link, and ten

corresponds to a week artistic link.

• Sub-survey (ii) asked people to rank from one to ten, ten different

word associations related to each of the initial topics. The associations

were to be ranked on their social impact, where one corresponds to

the association with higher social impact, and ten corresponds to the

2At the time of this research

84



Topic ρ µ σ

Grandmother 80% 8.25 1.33

London Olympics 48% 5.67 0.49

War 100% 8.6 1.53

Love 96% 8.2 0.76

Table 5.1: Results of sub-survey (i): the percentage ρ of people that guessed

the initial topic given the set of automatically constructed definitions and the

mean value µ and the standard deviation σ of the votes obtained for each

correct guess.

association with lower social impact. We didn’t include an explanation

of our interpretation of ‘social impact’ to encourage participants to

use their own understanding of this term. The associations provided

in the survey were gathered from the results obtained by running our

algorithm on the topics listed above. We used the most popular tweet

for each of the top ten clusters.

The aim of sub-survey (i) is to study whether a group of people can relate to

the socially embedded concepts constructed by our system given some initial

topics. To do so, we calculated the percentage ρ of people that guessed the

initial topic given the set of automatically constructed definitions. We then

calculated the mean value µ and the standard deviation σ for the votes ob-

tained for each correct guess (quoted to 2 decimal places). The definitions

provided can be found in the Appendix. We obtained the results shown in

Table 5.1
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We can hence conclude that the socially embedded concepts automatically

obtained from a topic highly represent such a topic in an artistic sense.

The aim of sub-survey (ii) is to compare the rankings obtained on a given set

of socially embedded concepts. The survey ranking was calculated by order-

ing the topics’ associations one to ten, according to the mean rank from the

participants. The system ranking was calculated according to the relevance

of each association to the initial topics. Such relevance was calculated in

terms of the size of the cluster corresponding to each association and to the

proportion that each feature in the definition of this cluster has with respect

to the total number of features in that cluster, as follows:

Ranking(Def(ci)) =
|E(ci)|

|E(c1 ∪ ... ∪ cn)|
) ∗

∏
f in Def(ci)

V (f)

|Def(ci)|

where, as in Section 5.1, cj is a cluster defined as a set of features, Def(ci) is

the set of features in the definition of cluster cj, E(cj) is the set of of exem-

plars in cluster cj and V (f) is the number of times a feature f is encountered.

The lists of socially embedded concepts for each topic used in the survey, and

the corresponding rankings can be found in the Appendix. In order to es-

tablish the correlation between the two rankings, we calculated Pearson’s

correlation, r, between the system’s ranking and an aggregated ranking. We

then calculated the respective 95% Confidence Intervals (CI) and p-values,

using the alternative hypothesis that the correlations are greater than zero.

We obtained the results shown in Table 5.2 (quoted to 3 decimal places):
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Topic r p 95% CI

Grandmother -0.381 0.138 [ -0.715, 1]

London Olympics 0.659 0.019 [0.168, 1]

War 0.345 0.164 [-0.256, 1]

Love 0.212 0.278 [-0.385, 1]

Table 5.2: Results of sub-survey (ii): Pearson’s correlation, r, p-values and

95% Confidence Intervals (CI) obtained by comparing the system’s ranking

and an aggregated ranking.

We can then conclude that there is a high and significant correlation between

the rankings for the topic ‘London Olympics’, a weak and non-significant cor-

relation between the ranking for the topics ‘War’ and ‘Love’, and a negative

and non-significant correlation for the topic ‘Grandmother’.

5.3 Conclusions and Further Directions

In this chapter, we have studied a method for generating socially embedded

concepts related to an initial topic. The algorithm applies the Rational Model

of Classification [5], a concept formation method widely used in cognitive

psychology, to a set of data obtained from Twitter [1]. We then analysed the

obtained concepts by :

(i). asking a set of 25 people to first guess a topic given four sets of socially

embedded concepts automatically created, and then to rate how well

these concepts represent the topic from an artistic point of view.
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(ii). asking a set of 25 people people to rank four sets of ten socially em-

bedded concepts, each automatically created from one of four initial

topics.

The experiments reported in Section 5.2 indicate that our system is capable

of generating socially embedded concepts that could be of artistic interest to

an audience. This ideation process could hence be used at the heart of more

sophisticated artefact generation systems.

The results from survey (i) show that people not only can easily relate to

the pre-defined initial topic given a set of socially embedded concepts au-

tomatically derived from it, but also that such socially embedded concepts

are regarded to be strongly artistically representative of such an initial topic.

The results from survey (ii) show that on average there is a weak positive

correlation between the rankings obtained from our system (as described in

Section5.2) and the ones provided by a sample of people.

We can hence conclude that the proposed method constitutes a good start

towards the creation of algorithms for the automated constructions of socially

embedded concepts. The results from survey (i) suggest that the concepts

obtained from applying our algorithm to four initial topics could be used

for the automated creation of artefacts, as they are considered to strongly

represent the initial topics.

However, the weak correlations obtained from the analysis of the results

from survey (ii) suggest that the rankings obtained from our system are not

representative of public opinions. We hence believe that the system should

be expanded by including automatic measures of social relevance. These

could be based on both the measure of interestingness proposed in Chapter 4

and the notion on interestingness and curiosity reviewed in Section 2.5. For
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example, the notion of novelty and the related belief that interesting concepts

are ‘similar-yet-different’ to those that have been experienced previously [68],

could be applied to socially embedded concepts. In doing so, concepts related

to a topic would be considered interesting when it is ‘similar-yet-different’

from the average associations that the public uses for this topic. Moreover,

similarly to our fictional concepts, we believe that the notion of stimulation

should be captured by the evaluation. Stimulation in this case could be

related to the likelihood that a tweet is ‘re-tweeted’ or mentioned in another

tweet.
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Chapter 6

Conclusions and Contributions

In this thesis, we explored the field of automated artefact generation in com-

putational creativity with the aim of proposing and analysing some methods

of creation and evaluation of ideas of cultural value. We define an idea as

being a concept which can be used to guide the generation of an artefact. In

particular, we focused on two different kinds of ideas: fictional concepts and

socially embedded concepts. In Chapters 4 and 5 we studies the ideas ob-

tained by running two different methods of concept generation, one for each

of the two kinds of ideas taken under consideration. We compared our results

with the outcomes obtained from two sets of surveys. Both of our methods of

idea generation make use of the notion of typicality, widely used in concept

formation theories from cognitive psychology. Typicality is a measurement

on the extent of belongingness of an exemplar to a concept. We believe that

the use of typicality is highly relevant in computational creativity as it has

been demonstrated that this factor is central for any flexible and subjective

concept formation theory.
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For the generation of fictional concepts, we used a well established theory

formation system, HR [20]. One of the features of HR is the generation of

non-existence conjectures. These are logical statements that are not satisfied

by any entries in a given knowledge base. Such non-existence conjectures

were used as a base for the definition of our fictional concepts. We then used

typicality to assign to each of the newly generated fictional concepts three

different dimensions of interestingness: novelty, vagueness and stimulations.

The results obtained from the comparison between the system and a par-

ticipants’ rankings (with respect to these three measures of interestingness)

show that both our measurements of novelty and vagueness respect the pub-

lic beliefs. On the other hand, some improvements are still necessary for a

valid measurement of stimulation.

For the generation of socially embedded concepts, we applied a typicality-

based classification method, the Rational Model of Classification (RMC), to

a set of data obtained from Twitter. In this case the scope was to create a

set of concepts that naturally associate to an initial topic. The RMC was

applied to four sets of tweets, downloaded using an external tool. Each set

of tweets corresponded to one of four initial topics: ‘Grandmother’, ‘London

Olympics’, ‘Love’ and ‘War’. The result was a set of clusters per each topic,

each cluster having a definition consisting of a set of words that appeared

recurrently in the tweets. These define socially embedded concepts related

to the initial topics. A survey asked people to first guess the topic given a set

of definitions, and then to rate the artistic relevance of these definitions. The

results showed both high association percentage and high relevance scores.

A second survey was used to compare the rankings on the social impact of

each of the definitions. The system rankings were based on the relevance of

the cluster to the initial topic. The results obtained show a weak positive

91



correlation between the two rankings.

Our experiments show that it is possible to automatically generate ideas with

the purpose of using them for artefact generation. This is an important step

for the automation of computational creativity, because, to our knowledge,

most of the available artefact generation systems (such as those reviewed

in Section 2.2) are based on ideas either introduced by the programmer or

directly extracted from a piece of humanly produced text. Moreover, our

experiments introduce new ways of using the notion of typicality in com-

putational creativity and show how these uses can lead to positive results

for both the generation and evaluation of an ideas. However, whereas our

results show a promising start, a lot of improvements and additions need to

be considered. We analyse below the key findings from our studies, with the

aim of building an initial framework that further research can refer to.

6.1 Key Findings and Further Directions

Below we report some findings arising from the studies reported in Chapter

4 and in Chapter 5. In Section 6.1.1 we draw some conclusions and theo-

rise a framework for the ideation process. In Section 6.1.2 we draw some

conclusions on the use of the notion of typicality in computational creativity.

6.1.1 A Framework for Ideation

The observations derived from the above chapters lead to a programme for

ideation that has at its heart a series of questions. The rest of this section

will discuss this programme. The material in this section is interlinked to
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the proposal of the WHIM project, a three year European Initiative funded

as a STREP (short-term research project) by the FP7 programme of the

European Commission [3], to which we have contributed.

Firstly, we would like to expand once again on the key proposition behind

this thesis. As reported in Chapter 2, in the field of Computational Creativ-

ity, the research that focuses on the implementation of autonomous creative

systems usually addresses the methods of generation of artefacts in partic-

ular domains. The majority of this research has been devoted to designing

software able to produce finished artefacts, without the software explicitly

undertaking idea generation. In these cases, people are naturally inclined

to themselves read ideas embedded in the artefacts. For example; a poem

generated using a template may contain enough information for a reader to

interpret a novel idea about the world described in the poem, but it is in fact

the reader who provides the creative idea here, not by the software [3]. In

certain areas of Artificial Intelligence research, especially Machine Learning,

concept formation is the point of the exercise, and such concepts are a type

of idea. However, the concepts formed tend to be used to describe and cate-

gorise real-life data. Hence, they were not designed explicitly for the purpose

of provoking thought in the same way that a painter or a writer might do it

creating a painting or story [3].

In implementing the two ideation systems descriped in Chapters 4 and 5

with the above scope in mind, we have noticed some common themes that we

believe is worth underlining. These findings shouldn’t be taken as absolute or

final instructions, but as a framework on which further work could be based.

From the results of the two experiments reported in Chapters 4 and 5, it is

obvious that the ideas generated from a system are highly dependent on the
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initial knowledge base. Whether the knowledge base is constructed (as in

Chapter 4) or retrieved (as in Chapter 5), the ideas generated from it mirror,

and hence are limited to, the facts it contains. It follows that the creation of

the knowledge base should be regarded as a key step in the idea generation

process. For example, imagine we would like to generate the fictional idea of

‘birds screaming because they are scared of heights’. This would be possible

by using our fictional idea generation method, but the initial knowledge base

would need to report information about the fact that birds are often found in

high places; that birds are animals; that humans are animals; that humans

sometimes get scared of heights; that humans sometimes scream when they

are scared; and so on. Similarly, if we would like to create a socially embed-

ded idea about the Olympics in Beijing, this could be done using our method,

but we would need to be able to retrieve a complete knowledge base of tweets

that were posted while the Beijing Olympics were on. Hence, we believe that

one of the initial questions that an ideation process should address is:

How can a knowledge base be constructed that will contain enough

information to support ideation? [3].

Assuming that the knowledge base has been created, the key step for both

of our ideation methods was to construct an algorithm able to constructively

extract and manipulate facts from this knowledge base in order to generate

ideas of the required type. Given the number of unsound or irrelevant con-

cepts that can be generated from a given knowledge base, it is important

that the methods focus on the generation of concepts which are coherent,

sound and potentially interesting. This gives rise to another question which
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an ideation method should focus on:

What methods can be implemented which will reliably produce

coherent, sound and potentially interesting ideas? [3].

Finally, from the experiments in Chapters 4 and 5, we have noticed the

need to decompose the ideation process into two independent parts: idea

generation and idea evaluation. In our case, in the idea generation phase, a

large set of ideas of a particular kind is formulated. In the idea evaluation

phase, the most interesting ideas out of this large set are selected, through

the use of some measurements of interestingness. The idea evaluation phase

is key to the process. As our negative results in Section 5.2 demonstrate, it

cannot be skipped; in Chapter 5 we have used part of the outcomes derived

from the idea generation method in order to evaluate the ideas, without

separating the two phases (i.e. we used the size of the cluster to rank ideas,

which was calculated during idea generation). This led to negative outcomes,

as explained in Section 5.2. This leads us to the final question that an ideation

process should address:

How can software reliably estimate the potential interestingness

of an idea in a particular context? [3].

We hence conclude that an idea generation method should ultimately be

composed by the components, one per each of the proposed questions above:

formalisation, implementation and evaluation.

The formalisation component should focus on the creation of an initial knowl-

edge base, by addressing questions such as: which information should the
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knowledge base contain and how will they be represented (i.e. first order

logic, raw text, n-grams etc.) The implementation component should be the

heart of the system and should focus on the generation of ideas of a pre-

determined type. It should address questions such as: what kind of ideas do

the software aim to generate? How can the software generate such ideas so

that they are sound, coherent and potentially interesting? The evaluation

component should focus on methods to estimate the artistic value of a set

of generated ideas. It should address questions such as: what are the key

notions that would make an idea of a particular kind interesting the public?

How can these notions be formalised into an evaluation formula? The three

components don’t need to be utilised in a linear fashion (i.e. be used one

after the other, as we have done in our methods). They could instead pass

information one to the other, in order to improve their partial processing.

For example, the implementation component may go back to the formalisa-

tion component in order to ask more world view knowledge information, or

the evaluation component could feed back to the implementation component

in order to guide the generation process toward an area of high interest.

We believe that a final step should be added to the framework. This is nec-

essary in order to bind an ideation system to its ultimate scope - to entertain

people. We hence believe that ultimately ideas needs to the presented to and

evaluated by the public. We call this final step the Audience Embracement.

In the methods proposed in Chapter 4 and 5 the audience embracement phase

coincides with the conduction and analysis of surveys. However, many other

human oriented methods are possible. The human embracement step can be

used not only to estimate the impact of ideas on the public, but also to study

the affects or nature of human reactions. Its outcome can then be re-utilised

by any of the three components of ideation. For example, if the human em-
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bracement phase reports that the general reaction to an idea is confusion,

this can be fed back to either the generation component, to lead the idea

formation process through less complicated steps, or to the evaluation com-

ponent, to re-tune the evaluation of ideas with respect to confusion, and so

on. We have summarised the proposed components and their interactions in

Figure 6.1.

Figure 6.1: The proposed components of the ideation process.

By looking closely at the three ideation components proposed above, we can

notice a parallelism with the commonly used four P’s of creativity (reviewed

in Section 2.4.2). The formalisation component can be associated with the

creative Person, where the knowledge base can be thought of as the memory

of an individual. The implementation component can be trivially associated

with the creative Process; both focus on the creation of ideas. Finally, the

evaluation component can be associated with the creative Product, as both

address the estimation of the value of a product/idea.
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6.1.2 Typicality in Computational Creativity

Another contribution of this thesis to the field of Computational Creativity

is the use of the concept of typicality for both the generation and evaluation

of ideas. As a reminder, and as reviewed in Section 2.3, typicality is a notion

widely used in concept formation theories in cognitive science. It is used to

indicate the degree of membership of an exemplar to a category. For example,

we could say that a Labrador is a more typical exemplar of the category

‘Dog’ than a Chihuahua, or that a stallion is a more typical exemplar of the

category ‘Horse’ than a rocking horse. Typicality is usually presented as a

mapping between an item and a value ∈ [0, 1]. Typicality is used in most

theories of categorisation, and it is considered to be a key aspect of cognitive

psychology not only because of its tangible features, but also because it is a

defining aspect of the difference between people categorisations. Typicality is

in fact believed to be interlinked with the definition of a category itself, where

every time we classify a new item as a member of a category, the definition

of this category changes. Typicality and category definitions are therefore

dependent on an individual’s memory and experience. For example, say

that in a particular person’s memory there is a category for ‘Dog’, and that

this category’s representation implies that dogs have four legs. If this person

then sees a dog which has lost a leg, the representation of this category would

change itself, and this person would be more inclined to classify objects with

three legs as dogs.

The idea of using degrees of membership has been applied in Computational

Creativity before. In particular, we refer to the use of fuzzy sets in [63].

In this work, Ritchie revisits Wiggins’ formalization [81] of Boden’s ways of

creativity [12] (both reviewed in Section 2.4.1). In [81], Wiggins defines U
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as the set of all possible things (called Universe). He uses this definition:

‘The universe, U , is a multidimensional space, whose dimensions are capable

of representing anything, and all possible distinct concepts correspond with

distinct points in U ’ [81]. A conceptual space C is a subset of U , and it is

defined by two functions N and Q 1. As explained in Section 2.4.1, generally

speaking, N defines the set of items that can be considered to be instances

of C, and it is a function that maps an item to a value ∈ [0, 1]. Instead, Q

defines the ordered search according to which these instances are explored.

If we define the set of all possible instances of a conceptual space C as

E, then an additional function V is used to measure the ‘value’ (in our case

interestingness) of the members of E. Wiggins initially associates a threshold

value equal to 0.5 to N , by implying that given an item i ∈ U , this item is

considered to be part to a conceptual space C if this conceptual space’s

membership function N applied to i returns a value bigger or equal to 0.5.

In [63], Ritchie picks up on this restriction and underlines that an arbitrary

threshold value α can be used instead of the fixed value 0.5. Hence, Ritchie

re-defines conceptual spaces as fuzzy sets, whose membership function is

defined by N .

In Chapter 4, our methodology consists of a simple application of this model:

here each fictional concept can be thought of as a conceptual space, and each

real world animal is assigned to each of these conceptual spaces with a degree

of membership. Subsequently, in Section 4.2, we demonstrate that this mem-

bership value can be used not only for the definition of the conceptual spaces,

but also for its evaluation (referring back to [63], we are applying Wiggins’

theory at a meta-level, as we are establishing interestingness based on the

1Here we have adopted the notation used in [63] for consistency and clarity within the

thesis.
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typicality of a conceptual space and not of basic items as in [62]). Hence,

we imply that the two functions N and V above are intrinsically linked. In

saying so, we do not make the assumption that this is a demonstrated fact,

but we believe that the exploration and formalisation of such a relationship

could constitute a valuable subject for further studies.

In Chapter 5, the concept of membership of an item to a conceptual space is

used in a different direction: in this case, the difference between fuzzy sets

and typicality is exploited. Such a difference arises when the definition of a

conceptual space is itself dependent on its items’ membership values (the set

of mappings E → [0, 1] defined by N). In cognitive science, and for our spe-

cific case in the RMC (reviewed in Section 2.3.2), a membership function N ,

and hence the corresponding conceptual space C itself, continuously change

as more items are assigned to C. This implies that conceptual spaces are

themselves dependent on the order in which items are explored, and hence

on Q above. In cognitive science, this is believed to be one the reasons behind

the differences in people’s categorisations, as it implies that memory plays a

major part in the definition of category. We hence believe that a potentially

interesting link could be defined also between N and Q. Once again, we

are not implying the existence or the nature of such a relationship, but we

believe that it is an interesting point for further studies, especially given it’s

relationship with personification.

We provide an example to further explain the two points raised above. Imag-

ine that we have a painting a and we make a big hole in it, transforming it

to a different item b. Also imagine we have a canvas with a hole, and we

call this item c. Then, b would belong to the conceptual map of paintings

with a degree of membership tb. Our first observation suggests that tb can
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be used to define the interestingness of b. Now imagine that two different

people see c. The first person sees c after having seen b, while the second

person sees c without having seen b. Then the degree of membership of c to

the conceptual space of paintings would be different for the two people. This

would imply that the conceptual space of paintings itself is different for the

two people, which implies that the interestingness of c is different for the two

people. This is what our second observation suggests.

Note that in the observations raised above, we do not specify how these

eventual additions to Wiggins’ formalisation would modify the definition of

exploratory and transformational creativity. We leave this as an open ques-

tion for further research.

6.2 Summary

In Sections 6.1.1 and 6.1.2 we have discussed the results from Chapters 4

and 5 with the scope of integrating our research into the bigger picture of

Computational Creativity. We can conclude that the material discussed in

this thesis contributes to the field in two distinct ways:

• The proposition of methods for idea generation, and the integration of

these methods into an ideation framework. Such a framework would

consist of three components: formalisation, implementation and eval-

uation.

• The further integration of typicality into automated creative systems.

We did this by demonstrating how typicality can be used for both the
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generation and evaluation of ideas and by showing how such uses fit

into the formalisation of Boden’s ‘ways of creativity’.
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An animal that has a body-part with which it can

both see and eat

1 1 4.88

A mammal with feathers 2 4 7.11

A dolphin that lives on grass 3 11 7.89

A bird with tentacles 4 3 6.89

A bird with a trunk 5 10 7.58

A pig which is a bug 6 2 5.85

A fish with a trunk 7 7 7.37

An animal that lives both under freshwater and in

the arctic

8 8 7.52

A fox which is an amphibian 9 9 7.54

A cow with tentacles 10 12 8.43

A fish which is also an otter 11 6 7.14

A salmon with feathers 12 13 9.82

A bat which is also a zebra 13 5 7.12

A gecko with spines 14 14 9.88

Table 6.1: Fictional concepts sorted from highest scoring to lowest scoring

with respect to the software ranking for measure MV , compared with the

survey values for vagueness.
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A mammal that lives in the ocean that can fly 1 1 3.93

A mammal that lives in the ocean with wings 2 3 6.18

A mammal with wings that can be ridden by hu-

mans

3 2 3.94

A bird that lives in a forest that can swim under

water

4 4 6.81

An invertebrate with legs that can swim under wa-

ter

5 5 7.39

A mammal with wings that can hunt 6 7 8.11

A mammal that lives under freshwater and with

fins

7 13 9.36

A mammal that lives both under freshwater and

under the ocean

8 14 9.5

A mammal with fins that can hunt 9 12 9.24

An animal that lives both under freshwater and in

a forest and that has wings

10 6 8.09

An animal that lives both under freshwater and in

a forest and that has a fur

11 8 8.13

A bird that lives under freshwater and that can

swim underwater

12 9 8.35

A bug that lives in a forest and has claws 13 11 9.14

A mammal with a tail that can fly 14 10 8.36

Table 6.2: Fictional concepts sorted from the highest scoring to the lowest

scoring with respect to the software ranking for measure MN , compared with

the survey values for novelty. 114
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A fish with lungs 1 13 9.98

An animal that has eyes with which it can defend

itself

2 3 5.88

A fish that can walk 3 7 7.22

An arachnid which is a mammal 4 11 8.85

A tiger with wings 5 2 5.85

An animal that lives under the ocean and that hu-

mans can ride

6 5 6.22

A wolf that can fly 7 4 5.97

A horse that lives under freshwater 8 10 8.27

A predatory bird with fins 9 12 9.19

A chicken that lives in the arctic 10 14 10.27

A dolphin which is also an arachnid 11 8 7.33

A chicken which is also a shark 12 1 5.3

An animal that has a body-part with which it can

both see and eat

13 9 8.02

An animal with trunk with which it can fly 14 6 6.68

Table 6.3: Fictional concepts sorted from the highest scoring to the lowest

scoring with respect to the software ranking for measure MS, compared with

the survey values for stimulation.

s
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Happy birthday Grandma, 100 years old today 1 6.6 10

When my grandmother died 2 6.4 8

My grandmother gives me all that I want 3 3.4 1

My grandmother recipes are the best 4 5.4 5

Grandma passed away. I will miss you 5 6.5 9

My grandmother is getting old 6 5.6 6

My grandmother is just great 7 5.2 4

I love visiting my grandmother house 8 4.8 2

My grandmother is a woman 9 5.0 3

My grandmother has Alzheimer 10 6.2 7

Table 6.4: Socially embedded concepts associated to the topic ‘Grandmother’

sorted from highest scoring to lowest scoring with respect to the software

ranking for relevance, compared with the sub-survey (i) results.
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We will beat them 1 5.2 4

Go England 2 2.4 1

I got tickets for the game 3 5.2 4=

I will win a medal 4 4.8 3

Can’t wait for the England France game 5 5.2 6

Can’t wait for the Olympics 6 5.9 9

I am ready for the London Olympics 7 4.4 2

London Olympics gets a bailout 8 5.8 8

London Olympics: great overseas holiday 9 6.2 10

London Olympics cost 3x original budget 10 5.6 7

Table 6.5: Socially embedded concepts associated to the topic ‘London

Olympics’ sorted from highest scoring to lowest scoring with respect to the

software ranking for relevance, compared with the sub-survey (i) results.
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I love you 1 6.0 6

Kissing the person I love 2 5.2 4

Life is good when you find love 3 5.6 5

I felt in love 4 4.2 2

It’s true love 5 4.4 3

Love is finding someone righte 6 6.4 8

Love is the greatest thing 7 7.0 10

Happy birthday, I love you 8 2.8 1

Love hurts too much 9 6.2 7

The moment you fall in love 10 6.8 9

Table 6.6: Socially embedded concepts associated to the topic ‘Love’ sorted

from highest scoring to lowest scoring with respect to the software ranking

for relevance, compared with the sub-survey (i) results.
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During World War One 1 5.2 5

Fight against war crime 2 5.0 4

Soldier marching to war 3 6.4 8

I warned you this would be

war

4 3.4 1

The war killed thousand of

people

5 7.0 9

Somewhat regret starting

this war

6 3.8 3

Remembering the war 7 5.8 6

Declaring civil war 8 6.2 7

War and national pride 9 3.5 2

Civilian and children die

during war

10 8.8 10

Table 6.7: Socially embedded concepts associated to the topic ‘War’ sorted

from highest scoring to lowest scoring with respect to the software ranking

for relevance, compared with the sub-survey (i) results.
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