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ABSTRACT 

 

 

Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase that has an important role in 

immunoreceptor signalling, including for the B cell receptor and activatory Fc receptors. 

SYK inhibition has shown efficacy in animal models of non-renal autoimmune disease. The 

role of SYK in experimental and clinical renal disease, however, is not well defined. 

 

I have studied the effects of SYK inhibition using a specific small molecule inhibitor (R788; 

fostamatinib) in two distinct experimental models of glomerulonephritis in the rat. In 

experimental autoimmune glomerulonephritis (EAG; a model of anti-glomerular basement 

membrane disease), I have shown that SYK inhibition with fostamatinib both prevents and 

treats established disease. Significant attenuation of humoral autoimmune responses was 

observed, and ELISpot and flow cytometric analysis suggests that this was due to a direct 

inhibitory effect on B cell activity, rather than overall B cell survival. In addition, SYK 

inhibition appeared to inhibit antibody-dependent, Fc receptor-mediated pro-inflammatory 

responses, particularly within glomerular macrophages, in EAG. In experimental autoimmune 

vasculitis (EAV; a model of anti-neutrophil cytoplasm antibody [ANCA] associated 

vasculitis), SYK inhibition was an effective treatment for life-threatening manifestations of 

disease, including glomerulonephritis and lung haemorrhage.  

 

I have also examined the pattern of SYK expression by immunohistochemistry in clinical 

renal biopsy specimens from approximately 100 patients with a spectrum of glomerular 

pathologies. I found that SYK is expressed and activated in proliferative types of 

glomerulonephritis, and that expression levels correlate with disease activity in anti-GBM 

disease, ANCA-associated vasculitis, lupus nephritis and IgA nephropathy. 
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These data suggest that SYK is important in the pathogenesis of proliferative 

glomerulonephritis. SYK inhibition is an effective treatment strategy for the organ-

threatening manifestations of disease in two experimental models, and SYK inhibition 

therefore warrants further investigation in human renal disease. 
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Et á quoi bon exécuter des projets, puisque le 

projet est en lui-même une jouissance suffisante? 

(What good is it to accomplish projects, when the 

project itself is enjoyment enough?) 

 

Charles Baudelaire 

Le Spleen de Paris, 1862 
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CHAPTER ONE - INTRODUCTION AND BACKGROUND 
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The glomerulonephritides are a common cause of end-stage renal disease that result in 

significant morbidity and mortality
1,2

. Whilst they represent a heterogeneous group of clinical 

diagnoses, it is believed that, in common, they share an immune-mediated mechanism of 

renal injury, with both innate and adaptive, and cellular and humoral components of the 

immune system contributing to the pathogenesis of disease
3
. Current treatments rely on the 

use of non-specific immunosuppression with corticosteroids and often cytotoxic agents, 

which are not always effective and often associated with significant adverse effects. For this 

reason, there is a need to identify alternative specific therapies to treat glomerulonephritis. To 

achieve this we need a greater understanding of the underlying mechanisms of disease. 

 

Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase that has an important role in 

the intracellular signalling pathway for immunoreceptors such as the B cell receptor (BCR) 

and the Fc receptor (FcR). As such, it has emerged as a potential therapeutic target in 

autoimmune disease. The potential role of SYK in the pathogenesis of glomerulonephritis, 

however, is not clearly defined. I have examined the role of SYK in the induction of 

autoimmune responses and immune-mediated tissue damage in rodent models of anti-

glomerular basement membrane (GBM) disease and anti-neutrophil cytoplasm antibody 

(ANCA) associated vasculitis (AAV). I have also sought to demonstrate the presence of 

activated SYK in human glomerulonephritis (GN). 

 

SYK has been subject of many original research papers (and several excellent reviews
4-6

) in 

recent years. In this introductory chapter, I therefore aim to concisely summarise (i) the 

current understanding of SYK structure and function as it relates to this project, (ii) the 

details of the SYK inhibitors that I have used, and (iii) the details of the animal models which 

I have used for in vivo studies. Since the majority of this work was in rodent models of anti-
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GBM disease and AAV, I have also described he immunologic, pathologic and clinical 

features of these conditions in detail.  
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1.1 Spleen tyrosine kinase (SYK) 

 

1.1.1 Discovery of SYK 

 

SYK was identified in the early 1990s in the cytostolic fractions of lysates from porcine 

spleen and bovine thymus as a 40kDa protein with intrinsic kinase activity
7,8

. This 40kDa 

protein was subsequently shown to be a fragment, containing only the catalytic domain, of a 

larger 72kDa protein that was identified from a porcine spleen cDNA library (from whence it 

gained its name) using oligonucleotides designed according to the partial sequence of the 

purified 40kDa fragment
9
. The SYK gene was subsequently mapped to chromosome 9q22 in 

humans, and chromosome 13 in mice
10

. 

 

To the best of my knowledge, there are no reports of disease causing somatic mutations in 

SYK that result in either immunodeficiency or autoimmunity. Genetic polymorphisms have 

been reported in association with differences in Toll-like receptor (TLR)-induced cytokine 

production in neonates, though not with any specific immune diathesis
11

. Epigenetic 

modifications of the SYK gene have been associated, both positively and negatively, with 

some tumours
12,13

, but not with any state of immune deregulation. As alluded to, SYK has 

been implicated in the pathogenesis of some tumours, and in particular the development of 

haematological malignancy. Since this project examines the role of SYK in inflammatory and 

autoimmune disease, I will not, however, discuss the role of SYK in oncogenesis in detail. 
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1.1.2 Basic structure and function 

 

The SYK molecule has a multi-domain structure (Figure 1A) containing two N-terminal 

tandem Src Homology 2 (SH2) domains and a C-terminal kinase domain
4
. Interdomains A 

and B connect the SH2-SH2 and SH2-kinase domains, respectively. At least ten major 

phosphorylation sites have been identified within the molecule
14

 – one located in interdomain 

A, five within interdomain B, two within the kinase domain, and two near the extreme C-

terminus. An alternatively spliced form of SYK - SYKB – lacks a 23 amino acid sequence in 

interdomain B, and in this respect is similar to ZAP-70, the only other member of the SYK 

family of kinases. ZAP-70 (ζ-chain-associated protein kinase 70) has approximately 60% 

overall homology to SYK and its expression appears to be more restricted, in particular to T 

lymphocytes and natural killer (NK) cells
15

. 

 

In the resting state, it is thought that SYK assumes a closed, auto-inhibited structure (Figure 

1B), wherein interdomain A and interdomain B bind to the C-terminal kinase domain, 

preventing its interaction with potential substrates, in what is termed a ‘linker-kinase 

sandwich’
16,17

. Upon activation, structural changes within the molecule result in an open 

conformation that allows the exposed catalytic kinase domain to interact with downstream 

targets. 

 



30 | P a g e  
 

 

 

 

The canonical mechanism of SYK activation is via its interaction with immunoreceptor 

tyrosine-based activation motifs (ITAMs)
18

. ITAMs are short peptide sequences characterised 

by a consensus sequence that contains two tyrosine residues 6-12 amino acids apart. As their 

name suggests, they are found in association with the cytoplasmic components of classical 

immunoreceptors, including the T-cell receptor (TCR), BCR and FcR for immunoglobulins, 

either as an associated adaptor protein, or within the cytoplasmic region of the receptor itself. 

 

Upon receptor engagement, the tyrosine residues on ITAMs are rapidly phosphorylated, 

primarily by Lyn and other members of the Src family of kinases (Figure 1.2). The 

phosphorylated ITAM can now act as a docking site for the SH2 domains of SYK, resulting 

in conformational changes, exposure of the kinase domain, autophosphorylation and 

propagation of downstream signalling. In addition, disruption of the ‘linker-kinase sandwich’ 

may occur upon phosphorylation of tyrosine residues alone, particularly those within 

Figure 1.1: Basic Structure of SYK. 
(A) Schematic diagram showing the multi-domain structure of SYK, including two N-terminal SH2-domains, a C-
terminal kinase domain, and interdomains A and B. (B) Schematic diagram of the ‘linker-kinase sandwich’ 
conformation that has been suggested for resting SYK. 
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interdomain B. This may occur by autophosphorylation following ITAM-mediated activation 

or by transphosphorylation by other kinases, such as Lyn or other Src family kinases that are 

often co-localised with ITAMs at the cell membrane. As a consequence, positive feedback 

and sustained SYK activity is possible in the absence of phosphorylated ITAMs. This ‘dual’ 

mechanism of activation has recently lead to the proposal of SYK as an ‘OR’ gate in 

signalling pathways
19,20

. This may explain why SYKB, which lacks interdomain B, is 

reported to be less efficient at coupling stimulation of FcR to cellular activation
21

. 

 

 

 

 

 

 

Figure 1.2: SYK activation following interaction with ITAM. 
(A) Unengaged receptor bearing non-phosphorylated ITAM motif within its cytoplasmic tail. (B) Upon 
receptor engagement Src family kinases (SRC) phosphorylate (P) tyrosine residues within the ITAM motif. 
(C) Phosphorylated ITAM motif acts as a docking site for the SH2 domains of SYK, resulting in 
conformational changes, auto- and transphosphorylation of tyrosine residues within SYK, thus resulting in 
activation and phosphorylation of downstream targets. 
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In addition to releasing the enzymatic domain of the protein from the ‘linker-kinase 

sandwich’, these changes in structure and phosphorylation, particularly within the tyrosine-

rich interdomain B, create docking sites for downstream targets of SYK, for which it can 

perform both enzymatic and adaptor functions
17

. These downstream targets include a host of 

adaptor proteins and other enzyme targets (including LAT, SLP76, Vav1, PLC-γ, PI3K and 

other MAPK) that are the able to effect complex cellular responses including proliferation, 

differentiation, phagocytosis and cytokine production
5
. 
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1.1.3 SYK knockout  

 

Two groups simultaneously reported the effects of targeted disruption of the SYK gene in 

mice in the mid-90s
22,23

. SYK knockout resulted in perinatal death with a severe haemorrhagic 

phenotype. This was subsequently shown to be due to a failure of communication between 

developing vasculature and lymphatics during embryogenesis
24

. Analysis of SYK-deficient 

lymphoid cells derived from these knock-out animals was critical in developing our early 

understanding of the functional role of SYK in immunoreceptor signalling in various cell 

types. 

 

Bone marrow chimera animals, reconstituted with haematopoietic stem cells from SYK-

deficient mice, showed no reduction in the numbers of circulating erythrocytes, platelets and 

total leucocytes. These animals had relatively normal reconstitution of T cells, however 

detailed analysis revealed impaired differentiation of the B cell lineage, with development 

arrested at the pro-B to pre-B cell stage, consistent with a role for SYK in pre-BCR 

signalling
22,23

. Subsequent in vitro work, using a variety of deficient cell lines, targeted 

mutagenesis and cell-based reconstitution systems, has defined a clear role for SYK in 

initiating downstream signalling following engagement of the BCR
25

. 

 

Analysis of myeloid cells, such as macrophages and neutrophils, from SYK knockout bone 

marrow chimeras showed ablation of FcR-mediated responses including phagocytosis and the 

generation of reactive oxygen intermediates
26,27

. The role of SYK in signal transduction for 

activatory FcR in these and a variety of other cell types is now well established, including 

mast cells bearing FcεR
28

. A critical role for SYK in FcγR-mediated antigen internalisation 

and maturation by dendritic cells was also described in these chimeras
29

, and is notable given 
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the important role of dendritic cells in initiating adaptive immune responses. In addition to 

FcR-mediated responses, SYK has been implicated in integrin signalling in myeloid cells
30,31

.  

Integrins are transmembrane receptors that have a critical role in cell adhesion and migration, 

via their interaction with adhesion molecules expressed on other cells, particularly the 

vascular endothelium. SYK deficient myeloid cells show impaired integrin-mediated 

responses, thought to be dependent on the association of integrins with ITAM-containing 

adaptor proteins such as FcRγ-chain and DAP12, as myeloid cells deficient in these adaptor 

proteins show similar defects. 

 

The first in vivo disease model study using bone marrow chimeras generated using SYK 

deficient progenitor cells was published in 2010, and confirmed that SYK deficiency in the 

haematopoietic cell compartment conferred resistance to a passively-transferred antibody-

dependent model of inflammatory arthritis
32

.  A number of targeted genetic techniques have 

allowed more specific analysis of SYK functions in fully differentiated cells and in in vivo 

models, as well as potential therapeutic targeting of SYK in disease states. 

 

1.1.4 Antisense oligonucleotides (ASO)  

 

ASO are short, single stranded nucleic acid sequences that bind sense mRNA via 

complementary base-pairing, and thus inhibit the translation of the corresponding protein. 

ASO directed against SYK have shown activity in a variety of cell types in vitro, including 

inhibitory effects on FcγR-mediated signalling in monocytes
33

. Published in vivo studies 

using SYK ASO are limited to animal models of allergic inflammation
34,35

. These have shown 

that aerosolised SYK ASO, delivered in a liposomal complex, suppress SYK expression in, 

and inflammatory mediator release from, alveolar macrophages. In addition, markers of 
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pulmonary inflammation were reduced in two distinct animal models. Whilst there have been 

no in vivo studies in autoimmune models, the proposed mechanism of action in these allergic 

models is via inhibition of activatory FcR-mediated responses, suggesting similar approaches 

may be effective in autoimmune disease. However, progress in the clinical use of ASO based 

therapy has been slow since the introduction of Fomivirsen, the first antisense therapy to be 

licensed by the Food and Drug Administration (FDA), being approved for use in AIDS-

related cytomegalovirus (CMV) retinitis over ten years ago. This is due, in part, to the 

difficulty of producing reliable delivery systems to target the cells, tissues or organs of 

choice
36

 – a not insignificant problem given the multi-system nature of many autoimmune 

diseases. In addition, there has been concern regarding the specificity of effects exerted by 

ASO. 

 

1.1.5 RNA interference (RNAi) 

 

RNAi is an innate cellular process that is thought to regulate endogenous gene expression and 

protect against viral infection. A variety of small RNA molecules, such as endogenous, 

genetically encoded microRNA (miRNA) or exogenous small interfering RNA (siRNA), may 

bind target mRNA via Watson-Crick complementary base pairing, and then direct this target 

mRNA into an RNA-induced silencing complex (RISC), a natural degradation pathway, thus 

effecting gene silencing prior to translation. Since the first description of RNAi in 1998, 

advance in the field has been rapid, and there have been promising early phase clinical 

studies in a number of conditions, including retinal diseases, malignancies and viral 

infections. The most commonly used technique to harness RNAi for therapy has been to 

transfect siRNA into target cells. siRNA specific to SYK, for example, have been shown to 

inhibit antibody-mediated phagocytosis by human macrophages
37

. Again, in vivo studies in 
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this field are limited to models of allergic inflammation, and to date are only reported in 

international patent applications. Aerosolised delivery of SYK siRNA, using similar methods 

as used for ASO delivery, resulted in decreased pulmonary inflammation, as determined by 

recruitment of cells to broncho-alveolar lavage fluid, in a rat model of ovalbumin-induced 

asthma. Again, these finding augur well for the translation and use of RNAi in autoimmune 

disease. As with antisense therapy, outstanding challenges for harnessing RNAi include the 

development of effective delivery systems, escape of the innate ‘interferon’ response directed 

against foreign nucleic acids, and avoidance of ‘off-target’ gene silencing
38

. 

 

1.1.6 Conditional SYK knockout 

 

The development of inducible or conditional genetic knockout techniques has allowed more 

detailed analysis of SYK functions in vivo. Two groups, for example, have reported studies in 

mice harbouring a floxed SYK gene and a tamoxifen-inducible Cre recombinase under the 

control of the ubiquitous Rosa26 promoter
39,40

. Short term SYK deletion did not appear to 

have adverse effects on the well-being of these mice, and they were resistant to mast cell and 

myeloid cell dependent models of inflammation and allergy. In vitro analysis of myeloid cells 

derived from these mice confirmed attenuation of FcR-mediated responses, but not of FcR-

independent processes, such as chemotaxis and migration.  

 

Using a similar system, inducible deletion of SYK in B lymphocytes resulted in loss of 

follicular B cells after a period of 5-8 weeks
41

. Notably, this effect is thought to be mediated 

by loss of BLyS (B Lymphocyte Stimulator) induced signalling, the authors suggesting that 

the BLyS receptor recruits the Ig subunit of the BCR as an adaptor protein in a signalling 
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pathway that activates SYK. To date, there are no other published studies on the role of SYK 

in mature B cells using targeted genetic techniques. 

 

The collective data suggests, therefore, that SYK is important for B cell maturation beyond 

the pro-B cells stage and for prolonged follicular B cell survival. In vitro data also suggests 

that SYK is also activated upon BCR ligation, resulting in the activation of downstream 

intracellular signalling pathways. However, the role of SYK in mature B cell functions in 

vivo, such as antibody production, cytokine production, antigen presentation, and provision of 

co-stimulation, is not clearly defined. 

 

1.1.7 Pharmacological SYK inhibition 

 

A number of biotechnology and pharmaceutical companies are working to develop 

compounds to inhibit SYK for use in allergic, autoimmune and haematological disease
6,42,43

. 

A small number of these compounds have progressed to clinical studies, although to date 

published results are available for only two such inhibitors, both developed by Rigel 

Pharmaceuticals – initially R112, and more recently the related compound, R406 (and its 

respective prodrug, R788; fostamatinib). These are the compounds are discussed in detail in 

section 1.2.  

 

The majority of the other small molecule inhibitors in development, like R112 and R406, are 

competitive inhibitors for the ATP binding site of the catalytic domain of SYK, based on the 

same di-substituted pyrimidine scaffold. Bayer, for example, has developed the imidazo-

pyrimidine analogue BAY 61-3606, which inhibits SYK-mediated responses in vitro and 

which has demonstrated efficacy in animal models of allergy in vivo
44

. However, the 
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published selectivity profile is limited to only six other kinases, and comparison with genetic 

knockdown suggests that BAY 61-3606 may have significant off-target effects
45

. 

 

Other groups have chosen to target the non-kinase domains of the SYK molecule. By 

inhibiting the interaction of the SH2-domains with their docking proteins, it has been 

proposed that SYK inhibition may be achieved whilst avoiding off-target effects on other 

kinases, and one such approach has been shown to inhibit IgE-mediated responses in vitro 

and in vivo
46

. Whilst the precise molecular mechanism of the inhibitory effects of this 

molecule are yet to be definitively described, it should be noted that the SH2-domain is a 

highly conserved motif found in a large number of proteins involved in signal transduction, 

and targeting this molecule may in turn have diverse off target effects.  
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1.2 Fostamatinib 

 

Fostamatinib (also referred to as R788) is the orally bioavailable prodrug of R406, an ATP-

competitive small molecule SYK inhibitor developed by Rigel Pharmaceuticals. 

 

1.2.1 Pre-clinical pharmacology 

 

Cell based high-throughput screening of small molecules initially identified R112 as a potent 

inhibitor of SYK activity, as assayed by production and release of inflammatory mediators 

following FcεR crosslinking by anti-IgE on mast cells
47

. Subsequent characterisation showed 

that R112 is an ATP-competitive inhibitor of SYK activity – that is, it binds competitively to 

the ATP binding pocket that is exposed upon SYK activation. Thus, it does not inhibit the 

phosphorylation of SYK itself; rather it inhibits the activity of phosphorylated SYK on its 

downstream targets. In vitro kinase assays using R112 demonstrated an IC50 of 226nmol/l. 

These assays also showed activity against other kinases such as Lyn (IC50 = 300nmol/l) and 

Lck (IC50 =645nmol/l). However, when tested in cell-based assays, R112 was shown to be 

relatively selective for SYK as determined by phosphorylation of target proteins, despite the 

similar IC50 values in the in vitro assays.   

 

Based on R112, Rigel subsequently developed the related compound R406, another 

competitive inhibitor for ATP binding to the SYK catalytic domain (Ki = 30nM), that inhibits 

SYK kinase activity in vitro with an IC50 of 41nM
48

. Selectivity assessments using a panel of 

over 90 in vitro kinase assays showed that R406, whilst relatively specific for SYK, did 

demonstrate inhibitory activity on other kinases, including Flt3, Lyn (IC50 63nM) and Lck 

(IC50 37nM)
49

. When tested in cell-based assays, however, R406 inhibited all other kinases 
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tested at 5- to 100-fold less potency than SYK as judged by phosphorylation of target 

proteins, despite the similar IC50 values on isolated kinase assays. 

 

As expected, R406 inhibits BCR-mediated responses in vitro. In primary human B cells, for 

example, it inhibits CD69 up-regulation in response to anti-IgM with an EC50 of 48nM
48

. 

BCR-mediated signalling has been implicated as an important survival signal in 

haematological malignancies of B cell origin, and accordingly R406 has shown anti-

proliferative and pro-apoptotic activity in a variety of B cell lymphoma and chronic 

lymphocytic leukaemia (CLL) cell lines and primary tumour cells in vitro
50-52

. These effects 

are most likely due to the effects of inhibited BCR-induced signalling in these cells, although 

BCR-independent mechanisms such as disrupted chemokine and integrin signalling have also 

been implicated
53

. 

 

R406 has been shown to inhibit FcR-mediated responses (such as degranulation, cytokine 

production and FcR-mediated antigen internalisation) in a variety of cell types in vitro, 

including mast cells, macrophages, neutrophils and dendritic cells
48,54,55

 (EC50 for IgE-

induced degranulation of primary human mast cells in vitro is 56nM). These effects occur in 

association with inhibition of intracellular phosphorylation events downstream of SYK. R406 

did not demonstrate a significant effect on SYK-independent signalling pathways in these 

cells; for example, significantly higher levels of R406 were required to inhibit monocyte 

tumour necrosis factor alpha (TNF-α) production induced by LPS (EC50 2.1μM). Conditional 

knock-out of the SYK gene and siRNA knock-down in rodent cells bearing the FcR, have a 

similar phenotypic effect as treatment with R788/406, further evidence of drug specificity for 

SYK as its primary target
56,57

. 
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Apart from its anticipated effects on BCR- and FcR-mediated functions, R406 has shown 

activity in other cell types and signalling pathways. To what extent these effects are due to 

the biological role of SYK in these pathways, rather than off-target effects of R406, is not 

definitively established. For example, in T cells from patients with systemic lupus 

erythematosus (SLE), R406 inhibited T cell receptor (TCR) induced signalling
58

. An altered 

TCR in which TCR-ζ is replaced by FcR-γ, allowing it to signal through SYK, has been 

described in many patients with SLE
59,60

, and this may be the mechanism of inhibition in this 

case. R406 has been shown to promote cell death of Flt3-mutant acute myeloid leukaemia 

(AML) cells in vivo, although it has been suggested that this effect may be attributable to its 

off-target activity on Flt3 rather than SYK inhibition per se 
61

. Other pathways in which R406 

has shown an inhibitory effect include (TNF-α-induced signalling in fibroblast-like 

synoviocytes 
49

, and integrin- and lectin-induced signalling in platelets
62

.  

 

1.2.2 In vivo studies 

 

Building on the in vitro evidence, fostamatinib (R788) has been shown to be highly active in 

two animal models of CLL – adoptively transferred T cell leukaemia 1 (TCL1) leukaemias 

and leukaemias that spontaneously develop in Emu-TCL1 transgenic mice
63

. In addition, it 

has shown efficacy in murine models of non-Hodgkin’s lymphoma (NHL), reducing tumour 

burden and prolonging survival in treated mice
64

. Notably, this effect was not seen in tumours 

lacking surface expression of the BCR, in keeping with the drugs proposed mechanism of 

action. 

 

The effects of fostamatinib (as either R788 or R406) have been more extensively studied in 

vivo in a diverse range of animal models of allergy, autoimmunity and inflammation, where 
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its inhibitory action on FcR-mediated signalling is thought to be the key mechanism of 

action.  For example, treatment with fostamatinib effectively prevents the development of 

thrombocytopenia and haemolytic anaemia induced by the passive transfer of anti-platelet 

and anti-red cell antibodies, respectively, to mice
65

. In rodent models of asthma, R406 

reduced airway hyper-responsiveness (AHR) and markers of airway inflammation following 

antigen challenge in sensitised mice, in two distinct models
55,66

. Similarly, in mice passively 

sensitised with anti-OVA IgE, R406 treatment prevented the development of AHR
66

.  

 

Treatment with R406 reduced joint inflammation in two passive transfer models of antibody-

induced arthritis (the passive anti-collagen antibody-induced arthritis (passive anti-CIA) and 

K/BxN serum transfer models)
48

. In addition, treatment with either R406 or R788 in Louvain 

and Lewis rats reduced clinical, histological and radiographic evidence of joint inflammation 

following active induction of collagen-induced arthritis (CIA)
67

. These improvements were 

associated with a reduction in pro-inflammatory cytokine and chemokine expression in 

synovial tissue and fluid. 

 

Fostamatinib has also shown efficacy in animal models of SLE. In the lupus-prone 

NZB/NZW mouse strain, treatment was effective in both preventing and ameliorating 

established disease, the treated animals showing reduced proteinuria with improved renal 

function, improved renal histology, improved platelet counts and prolonged survival
68

. In the 

MRL/lpr strain, fostamatinib suppressed both established renal and skin disease, and reduced 

lymphadenopathy
69

. Notably, this study demonstrated a sustained benefit from fostamatinib 

in the period after drug cessation, suggesting a possible immunomodulatory effect of 

treatment, although this was not investigated further. Treatment with fostamatinib also 
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prevented lupus-like skin disease and reduced lymphadenopathy in the BAK/BAX knockout 

mouse
69

. 

 

Finally, fostamatinib significantly delayed the onset of insulinitis and spontaneous diabetes in 

non-obese diabetic (NOD) mice, and also delayed progression of early established diabetes 

even when treatment was initiated after the development of glucose intolerance
56

. These 

findings, in an autoimmune model that is critically T cell-dependent, suggest that SYK 

inhibition with fostamatinib may have broader therapeutic potential in autoimmune disease 

beyond its established role in effector processes mediated by the FcR. The authors suggest 

that, via its effects on antigen internalisation (and thus antigen presentation) by B cells and 

dendritic cells, treatment may prevent T cell priming and the development of T cell effector 

responses, suggesting that SYK inhibition may be a useful target in both antibody-mediated 

and cellular autoimmune responses. In addition, a window study showed a sustained benefit 

up to 11 weeks after withdrawal of treatment in NOD mice (similar to the effects seen in the 

MRL/lpr lupus-prone strain), again suggesting the possible induction of immunomodulatory 

or tolerogenic mechanisms. Notably, an increase in the proportion of interleukin-10 (IL-10) 

secreting B cells (which have putative regulatory and suppressive function) was seen, and 

transfer of splenic B cell populations from treated to untreated mice protected from disease. 

These results suggest that sustained treatment with fostamatinib may not be necessary in 

autoimmune disease. 

 

1.2.3 Clinical studies 

 

R112 was the first SYK inhibitor treatment to be assessed in clinical studies, where it showed 

benefit in relieving symptoms of allergic rhinitis when delivered as an intranasal 
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preparation
70

. Subsequent work focused on R406/R788. Early phase studies in over 100 

normal human volunteers in single and multiple dose pharmacokinetic-safety-

pharmacodynamic studies showed that R788/R406 was well tolerated and highly bioavailable 

following oral administration, with an effective concentration for SYK inhibition of 

approximately 0.5-1.0μM
48,71,72

. For example, R406 administered orally to human volunteers 

inhibited human basophil activation in response to anti-IgE ex vivo, with an IC50 of 1.06μM 

(corresponding plasma concentration 496 ± 42ng/ml). These concentrations were achievable 

within the dose range (75-150 mg bd) that was well tolerated by volunteers. The disparity 

between the cell-based and in vivo IC50 values is attributed to the high protein binding of 

R406 in human plasma (>98%). 

 

To date there have been six phase II clinical studies, recruiting over 1000 patients, using 

Fostamatinib.  

 

One of the earliest, and smallest, studies was an open-label, single-arm cohort dose escalation 

trial in 16 patients with idiopathic thrombocytopaenic purpura (ITP), with an average follow-

up time of 36 weeks, which showed that fostamatinib 75-175mg bd induced a sustained 

improvement in platelet count in 50% of patients
65

. Those who had a sustained response 

tended to have an early response, with improvements seen in the first few weeks of treatment. 

Four patients (25%) had transient responses and improved in other clinical parameters such 

as fewer bleeding episodes, avoidance of rescue mediations and tapering of steroids. 

Although four patients did not respond, it should be noted that the majority of patients in the 

study had refractory disease, with a mean number of previous ITP treatments of five. Over 

two thirds of patients had been treated previously with steroids, intravenous immunoglobulin, 
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rituximab, and splenectomy. As such, the results of this study are encouraging and larger 

studies in ITP are planned (NCT02077192). 

 

Three clinical studies investigating the use of fostamatinib in rheumatoid arthritis (RA) have 

been published (summarised in Table 1.1). The first enrolled 189 patients with active RA 

despite methotrexate therapy, who were randomised (3:1 ratio) to receive fostamatinib in an 

ascending-dose manner or placebo in a double-blind trial
73

. The study included a significant 

proportion of patients who had received multiple previous therapies: more than 50% of the 

patients were receiving concomitant steroid therapy, approximately one third were receiving 

other disease-modifying anti-rheumatic drugs (DMARDS) in addition to methotrexate, and 

28% had received biologic response modifiers in the past. The primary end-point was the 

American College of Rheumatology 20% improvement criteria (ACR20) response rate at 12 

weeks. This was achieved in 72% and 65% of patients receiving fostamatinib 150mg bd and 

100mg bd respectively, significantly greater response rates than seen with 50mg bd (32%) or 

placebo (38%) (p <0.01). Improvements in a number of secondary end-points (including 

ACR50, ACR70 and disease activity score (DAS)-28 assessments) were noted. These clinical 

responses were rapid, with effects noted within one week of treatment, and were associated 

with reduced levels of circulating pro-inflammatory cytokines such as IL-6.  

 

A second double-blind, placebo-controlled study enrolled 457 patients with active RA despite 

long-term (i.e. greater than three months) methotrexate therapy, who were randomised (1:1:1) 

to receive fostamatinib 100mg bd, fostamatinib 150mg od, or placebo
74

. 67% and 57% of the 

patients in the respective treatment groups achieved the primary end-point of an ACR20 

response after six months, versus 35% of patients receiving placebo (p<0.001).  In keeping 

with the findings of the earlier study, treatment with both dosing schedules also had a 
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significant impact on ACR50, ACR70, and DAS-28 remission. Again, clinical responses 

were seen as early as one week and the majority of patients in whom there was a response at 

six months had already demonstrated a response at two months, suggesting that an early 

response may identify those patients who are likely to benefit from ongoing therapy. These 

patients also had improved patient reported quality of life outcomes
75

. Fewer patients in this 

study (15%) had failed previous biologic therapy than in the first RA trial. Although overall 

response rates in this subgroup were lower than for the whole study population, the ACR20 

response was achieved in 43% and 46% of patients receiving fostamatinib 100mg bd or 

150mg od respectively, versus 14% in the placebo group (p=0.04 and p=0.02 respectively). 

 

 

These encouraging results, however, must be tempered with the findings of the latest study in 

RA, which aimed to look specifically at this population – 229 patients with RA who had 

failed at least one prior biologic therapy were enrolled to receive fostamatinib 100mg bd or 

placebo (2:1 ratio)
76

. There was no difference between groups in the rate of ACR 20/50/70 or 

DAS-28 response (38% vs 37% for primary endpoint of ACR20 at three months, p = 0.84). 

There were, however, statistically significant improvements in synovitis scores as judged by 

MRI, and inflammatory markers (ESR and CRP), in the treatment group. Despite 

randomisation, there were baseline differences in steroid use, prior biologic use, and synovitis 

scores that the investigators suggest may account in part for the lack of efficacy seen in this 

trial. 
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Table 1.1: Summary of Phase II trials with fostamatinib in patients with rheumatoid arthritis (RA). 
ACR20/50/70, American College of Rheumatology 20/50/70% improvement criteria; DAS28, disease activity score using 28 
joint counts; MRI, magnetic resonance imaging; DMARD, disease modifying anti-rheumatic drug. 
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Three phase III trials in RA have been completed (NCT01197521, NCT01197534, 

NCT01197755) although the results of these studies are not formally published. 

 

In addition to these studies in autoimmune disease, there have been two phase II trials using 

fostamatinib in patients with haematological and solid tissue malignancies. These suggested 

significant biological activity in patients with NHL and CLL, but limited activity in 

advanced, refractory solid organ malignancies
77,78

. 

 

1.2.4 Pharmacokinetics and metabolism 

 

R788 was developed as the methylene phosphate prodrug of R406, which exhibits low 

aqueous solubility, to improve its bioavailability and potential for oral dosage development. 

 

Pre-clinical pharmacokinetic (PK) studies with fostamatinib in Louvain rats confirmed that it 

is highly bioavailable, rapidly absorbed, and that systemic exposure is proportional to dose
67

. 

Cmax was observed at approximately one hour, and t½ was 4.2 hours. The prodrug was not 

detected in plasma suggesting R788 is completely converted to R406. 

 

Phase I studies in humans similarly showed a Cmax for R406 of 1-1.5 hours and t½ of 13-21 

hours following single dose exposure to R788
72

. The was a dose-related increase in exposure 

(Cmax and AUC) when the dose increased from 80 to 400mg, however exposure was 

essentially unchanged from 400 to 600mg doses of fostamatinib.  Following seven days of 

multiple dosing of fostamatinib at 160mg, there was an approximate 2-2.5 fold increase in 

exposure to R406 on day 7 compared to day 1, with steady state being achieved following 3-4 

days of twice daily dosing. 
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A detailed assessment of the pharmacokinetics and metabolic fate of fostamatinib using a 

combination of in vitro intestinal and hepatic microsomes and human mass balance studies 

has also been conducted
79

. This suggests that R788 is rapidly hydrolysed to R406 by 

intestinal alkaline phosphatases, after which the more hydrophobic R406 is rapidly absorbed. 

R406 was the major drug-related product observed in plasma, with peak levels observed at 

one hour after dosing, and t½ ranging from 10.8 to 15.7 hours in this study. Only small 

amounts of the parent compound R788 were detected in the plasma at early time-points, 

consistent with rapid intestinal conversion to R406. Elimination of drug-related material in 

the urine accounted for 19% of the administered dose (the major urinary metabolite in urine 

being the lactam N-glucuronide of R406) and on average 80% was recovered in faeces. It 

appears that R406 undergoes both direct glucuronidation and a CYP3A4-mediated para-O-

demethylation to R529 in the liver. Conjugates of R529 secreted in bile are hydrolysed back 

to R529 which, the authors suggest, is subsequently O-demethylated and dehydroxylated by 

anaerobic gut bacteria to a unique 3,5-benzene-diol metabolite, the major drug-related 

compound detected in faeces. 

 

It is notable that in a trial of fostamatinib in patients with ITP, similar levels of SYK 

inhibition (as assessed by basophil activation assay) at peak and trough times (2 and 12 hours 

post-dose respectively) were associated with better platelet responses, although the numbers 

in this study were small and no other PK parameters were reported
65

. In RA, total exposure 

(as determined by AUC) was related to adverse outcomes and study withdrawal
73

. 

Conversely, in the phase I NHL study, there was no correlation between clinical outcomes 

and measured PK parameters
77

. Future studies will assess more precisely the relationship 
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between pharmacokinetics and clinical outcomes in order to establish the most effective and 

tolerable dosing regimens. 

 

1.2.5 Safety 

 

The results of detailed toxicity and immunotoxicology assessments in rats have been 

reported
80

. Animals were treated with R406 at doses up to 100mg/kg/day for 28 days, 

achieving average plasma concentrations of approximately 2280ng/ml, in excess of those 

needed to achieve inhibition of SYK-mediated signalling in clinical studies. Consistent with 

the reported observations of the cited studies using animal disease models, there were no 

R406-related changes in appearance, behaviour, food consumption, ophthalmoscopy, 

coagulation or urinalysis seen in normal animals. At high doses (100mg/kg/day) there was a 

reduction in circulating lymphocyte count, thymic and spleen weight and bone marrow 

cellularity. These effects generally resolved during a 14 day recovery period. In host-

resistance mouse models of viral and both intracellular and capsulated bacterial infection, 

treatment with fostamatinib at doses up to 80 mg/kg/day did not impair the ability to clear 

influenza, listeria or streptococcal infection, consistent with previous in vitro observations 

that R406 had negligible effects on phagocytosis, oxidative burst, chemotaxis, or 

microbicidal activity of human leucocytes
48

, suggesting that fostamatinib does not adversely 

affect innate immune responses. 

 

In phase I studies, fostamatinib was well tolerated and no serious adverse events were 

encountered
72

. Neutropenia was a common adverse event in the phase II clinical studies to 

date, occurring in up to 30% of patients receiving the highest doses in the RA and NHL 

trials
73,77

. Co-administration of methotrexate, previous immunosuppressant therapy and 
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underlying bone marrow disease may have been contributing to these rates. Neutrophil counts 

recovered with temporary withdrawal or dose reduction of fostamatinib. In the second phase 

II study in RA
74

, there was increase in the incidence of upper respiratory tract infection 

(14.5% in 100 mg bd group versus 7.1% in placebo group; p <0.05), however none of the 

infections seen were associated with neutropenia. To date, there are no reports of 

opportunistic or atypical infection in clinical studies. 

 

The most common adverse event seen in clinical studies with fostamatinib was gastro-

intestinal toxicity.  Diarrhoea was reported at rates of up 45% in some groups
73

. This is a 

common side effect of other kinase inhibitors, and symptoms appeared to be dose-related and 

responsive to temporary withdrawal or dose reduction. Nausea and diarrhoea were, however, 

the most common reasons for patient withdrawal from the treatment groups in larger RA 

studies
74,76

. 

 

Modest but significant elevations in blood pressure (BP) were noted in all the large clinical 

studies. In the largest RA trial, for example, the incidence of hypertension (systolic BP >140 

or diastolic BP >90) was 29% in treatment groups versus 17% in the control group (p = 

0.006) at one month follow-up. Increases in blood pressure were seen most frequently in 

those with pre-existing hypertension or who were already on treatment at enrolment. It has 

been suggested that off-target effects of R406 on vascular endothelial growth factor receptor 

2 may account for this phenomenon
81

. In general, hypertension responded to conventional 

antihypertensive therapy or dose-reduction of fostamatinib.  

 

Moderate elevation in transaminase enzymes were reported in all the clinical studies. 

Transaminitis was also reported in the pre-clinical toxicity studies, where it was not 
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associated with any histopathological changes in the liver. In both pre-clinical and clinical 

studies, liver function normalised with dose-reduction or withdrawal of fostamatinib. In the 

phase II oncology study, it was noted that pre-existing abnormalities of liver function at 

baseline increased the risk of developing drug-related hepatotoxicity
78

. 

 

Clinical studies with fostamatinib have not, to date, identified any effect of treatment on lipid 

metabolism, renal function or other biochemical parameters. There was one episode of 

unexplained acute-on-chronic renal injury in a patient receiving fostamatinib in the NHL 

study; the role of the drug in this case is unclear. 

 

Developmental toxicity studies in gravid rabbits and rats showed a dose-dependent increase 

in foetal malformations, including renal and ureteric agenesis and a specific major vessel 

anomaly – retro-oesophageal right subclavian artery – a phenotype similar to that seen in c-

Ret knockout mice
82

. The c-Ret gene encodes a receptor tyrosine kinase that has a critical role 

in renal and ureteric development and, strikingly, R406 has been shown to inhibit Ret kinase 

in in vitro and cell-based assays (IC50 5nM and 80nM respectively). Off target effects on this 

protein may account for some of the developmental anomalies seen. In addition, SYK 

knockout mice show perinatal lethality with petechial haemorrhage, a consequence of the 

failure to separate developing lymphatic and blood vessels, and so disruption of SYK 

signalling in utero may account for the vascular anomalies seen.   
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1.2.6 Drug interactions 

 

Hepatic microsome studies show that R406 is extensively metabolised by expressed human 

CYP3A4 enzymes in vitro, and that this is inhibited by cytochrome P450 inhibitors, such as 

ketoconazole, by up to 90%
79

. These interactions have not been explored in published in vivo 

or clinical studies. 

 

The effects of fostamatinib on the metabolism of methotrexate, the most commonly used 

disease modifying drug used in RA, have been examined in a small phase I study, where no 

significant pharmacokinetic interaction between the two drugs was reported
83

. 

Notwithstanding, neutropenia was observed more frequently in the RA trials, where it was 

co-administered with methotrexate, than in the ITP trial, suggesting a possible synergistic 

effect on the bone marrow beyond their individual PK parameters. 

 

A potential and important, though as yet unexplored, interaction is that of fostamatinib with 

monoclonal antibody therapies such as rituximab, which may rely on FcR-mediated processes 

such as antibody-dependent cell-mediated cytotoxicity, for their effects
84

. 
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1.3  Anti-Glomerular Basement Membrane (GBM) Disease 

 

Anti-GBM disease, also known as Goodpasture’s disease, is a rare but life-threatening 

condition that is characterised by circulating and deposited antibody directed against the 

GBM, which presents with features of crescentic glomerulonephritis (GN), with or without 

concomitant pulmonary haemorrhage
85

. It is widely recognised to represent the most severe 

form of GN, usually presenting with a rapidly progressive renal failure
86

,  and is regarded as a 

‘prototypic’ autoimmune disease, in which pathologic autoantibodies directed against a well-

defined autoantigen are key mediators of tissue injury. 

 

1.3.1 History 

 

The eponymous term ‘Goodpasture’s Syndrome’ was first used by Australians Stanton and 

Tange
87

 in their 1958 article describing nine cases of glomerulonephritis in association with 

pulmonary haemorrhage, in which they acknowledge the American pathologist Ernest 

Goodpasture with the first description of the syndrome in his 1919 paper on the aetiology of 

influenza
88

. However, it is not known whether any of these cases had anti-GBM antibodies, 

as it was not until the development of immunofluorescence techniques in the 1960s that Sheer 

and Grossman first described the typical linear staining pattern for immunoglobulins in renal 

tissue seen in this disease
89

. In 1967, Lerner and colleagues showed that these antibodies, 

eluted from the kidneys of patients, were reactive with normal kidney tissue, and 

subsequently demonstrated their pathogenic potential by administration to non-human 

primates
90

. Circulating anti-GBM antibodies were first detected in the sera of patients by 

indirect immunofluorescence on normal kidney, though more sensitive immunoassays using 
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collagenase-solubilised partially-purified GBM were rapidly developed
91

. The first 

comprehensive clinical report of ‘anti-GBM disease’ was by Wilson and Dixon in 1973
92

. 

 

The term ‘Goodpasture’s Disease’ is now generally reserved for those patients with 

detectable anti-GBM antibodies in association with renal or pulmonary disease, whereas 

‘Goodpasture’s Syndrome’ may refer less specifically to any similar reno-pulmonary 

presentation, such as that seen in small vessel vasculitis associated ANCA. 

  

1.3.2 Epidemiology and associations 

 

Goodpasture’s Disease is a rare disorder, with an approximate incidence of one per million 

population per year
93

. There is a slight male preponderance and bimodal age distribution, 

with peak incidence in the third and sixth decades. The disease is more common in Caucasian 

populations, is well represented in Asians, and thought to be rare in those of African origin. 

 

Reported environmental associations include cigarette smoking
94

 and exposure to 

hydrocarbons and industrial solvents
95

. Associations with other diseases include membranous 

nephropathy
96

, AAV
97

, and renal stone disease treated with lithotripsy
98-100

. 

 

In common with other autoimmune diseases, genetic predisposition is believed to be an 

important determinant of disease development
101

, and there is a strong association with 

human leucocyte antigen (HLA) genes in particular, with approximately 80% of patients 

inheriting an HLA-DR2 haplotype.  Genotyping studies have revealed a hierarchy of 

associations with particular DRB1 alleles: DRB1*1501, DRB1*03 and DRB1*04 are 

positivity associated with disease, whereas there is a negative association with DRB1*01 and 
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DRB1*07
102

. The molecular basis of these HLA associations is not defined, although the 

observation that the DRB1*01 and DRB1*07 alleles appear to confer a dominant negative 

effect, and that these protective alleles bind peptides from the Goodpasture autoantigen with 

greater affinity than the positively associated alleles, suggests that they might compete for 

peptide epitopes with the susceptibility alleles. 

 

A link to major histocompatibility complex (MHC) Class II genes has also been reported in 

murine strains susceptible to experimental disease, although non-MHC genes are also 

involved since both resistant and susceptible rat strains have been shown to share the same 

MHC type. In addition, the susceptibility alleles in humans are common in the general 

population, yet the disease remains exceedingly rare. These observations demonstrate the 

importance of other, as yet undefined, genetic and environmental factors in the development 

of disease.  

 

1.3.3 Pathogenesis 

 

Lerner’s classic transfer experiments (since repeated in a number of different species) were 

the first demonstration that autoantibodies could directly cause disease, and the role of 

humoral immunity and the nature of the target autoantigen have been the predominant focus 

of historical research interest in this condition. More recent observations, and in particular 

studies of animal models that manifest a similar pathology, also confirm an important role for 

cellular immunity, both as orchestrator of the autoimmune response, and direct effector of 

tissue injury (Section 1.4). 

. 
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1.3.3.1 The Goodpasture autoantigen 

 

The Goodpasture autoantigen has been defined as the non-collagenous (NC1) domain of the 

alpha-3 chain of type IV collagen (α3(IV)NC1)
103-105

, and the clinical pattern of reno-

pulmonary disease reflects the restricted expression of this antigen to the basement 

membranes of glomerular and alveolar capillaries (and to a lesser extent the retina, choroid 

plexus and cochlea, where it is generally not associated with clinical disease
106

). 

Immunisation with either collagenase-solubilised or recombinant forms of the protein from 

various species induces disease in a number of animal models, confirming the universal 

antigenicity of this protein. 

 

In its native form, the collagen IV network in the GBM consists of triple-helical protomers of 

α3, α4 and α5 chains
107,108

 (Figure 1.3). The carboxyl-terminal domains of these α3α4α5 

protomers form a trimeric ‘cap’, end-to-end association of which results in the formation of 

the hexameric NC1 domain. The quaternary structure of this hexamer is stabilised by 

hydrophobic and hydrophilic interactions across the planar surfaces of opposing trimers, and 

reinforced by sulphilimine bonds cross-linking opposing NC1 domains. Two key 

autoantibody epitopes within α3(IV)NC1 have been described, designated EA (incorporating 

residues 17-31 towards the amino-terminus) and EB (residues 127-141 towards the carboxyl-

terminus), which in the native form are sequestered at the junction with α4 and α5 chains 

within the triple helical structure
104,109

. 
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d 

Figure 1.3: Collagen IV in the glomerular basement membrane. 

(A) Individual 3, 4 and 5 chains of Type IV collagen with carboxyl terminal non-collagenous (NC1) 

domains.(B) Association of 3, 4 and 5 chains to form triple-helical trimer, with NC1 domain ‘cap’. (C) Type 
IV collagen molecule, showing end-to-end association of NC1 trimers to form NC1 hexamers, with sulphilimine 

crosslinks(S=N), and resultant sequestration of 3 chain epitopes. (D) Binding through 7s domains (shown in 
orange) completes the lattice-like structure of the Type IV collagen network. 
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1.3.3.2 Humoral immunity 

 

Sera from all patients with anti-GBM disease appear to recognise α3(IV)NC1 (both epitopes 

EA and EB), although sera from a proportion of patients may also recognise other collagen 

chains. Approximately 70%, for example, will have both circulating and deposited antibodies 

to the α5(IV)NC1 domain, suggested to arise through a process of ‘epitope spreading’ 

following primary disease initiation by autoantibodies to α3(IV)NC1
104

.  

 

In addition to the passive transfer models of Lerner and others, several clinical observations 

support a directly pathogenic role for these autoantibodies in anti-GBM disease. Antibody 

titre, immunoglobulin subclass and, in at least one study, antibody avidity have each been 

correlated with disease outcome in patient cohorts
110-113

. Rapid removal of circulating 

antibodies by plasmapheresis is associated with better clinical outcomes
114

, and disease recurs 

rapidly in renal allografts if circulating antibodies are present at the time of transplantation
92

. 

In addition, copy number variation of activatory FcγIIIA genes is found at higher frequency 

in patients compared with healthy controls
115

, and certain FcγIIB receptor polymorphisms are 

also present at higher frequency in diseased patients
116

, implicating antibody-dependent 

responses in disease susceptibility. 

 

The presence of low titre ‘natural’ autoantibodies to GBM has been reported in normal 

populations
117

. These antibodies recognise the same epitopes as antibodies from patients, 

although their presence does not result in disease. This may be due to differences in the titre 

or predominant subclasses of these natural autoantibodies (IgG2 and IgG4 versus IgG1 and 

IgG3 in disease) or the role of other regulatory factors. The presence of circulating antibody 

has been reported to predate the onset of clinical disease by several years
118

 (although 
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antibody subclass and epitope specificity was not reported in this study), an observation that 

suggests the involvement of other factors in the development of disease.  

 

1.3.3.3 Cellular immunity 

 

In addition to the experimental data discussed below, several clinical observations support a 

role for cell-mediated immunity in the pathogenesis of anti-GBM disease. CD4+ and CD8+ T 

cells can be demonstrated in diseased glomeruli in humans, and the presence of class-

switched, high-affinity autoantibody, along with a strong HLA-association, implies a 

requisite for T cell-mediated help. Mononuclear cells from patients have also been shown to 

proliferate in response to α3(IV)NC1 (as do cells from healthy individuals, though at much 

lower frequency), and the frequency of autoreactive CD4+ T cells has been shown to 

correlate with disease activity
119-121

. The pathogenic T cell epitopes in humans, however, 

have not been consistently defined. 

 

1.3.3.4 Tolerance and autoimmunity to α3(IV)NC1 

 

α3(IV)NC1 is expressed in human thymus
122

, although the finding of natural autoantibodies 

and T cells reactive to α3(IV)NC1 in normal individuals suggests some failure to achieve 

central tolerance to this antigen during immunological development. It has been suggested 

that certain autoreactive T cell peptides are sensitive to rapid enzymatic degradation during 

antigen processing, limiting the exposure of autoreactive cells to their corresponding 

antigens, and thus allowing them to escape negative selection
123

.  The additional factors that 

result in further breakdown of tolerance and development of clinical disease are not clear, 

though may include the need to expose sequestered epitopes within the Goodpasture antigen. 
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Notably, the cross-linked native hexameric NC1 domain does not bind antibody, and it is 

thought that disruption of its quaternary structure, with rupture of the sulphilimine cross-links 

and dissociation of the hexamer, is required to expose the pathogenic epitopes required for 

autoantibody binding.  Both cross-linked and non-cross-linked forms of the hexamer exist in 

humans and other primates, but only the cross-linked form in mice, perhaps explaining the 

resistance of some mouse strains to passive transfer models of disease. This requirement for 

‘conformational transition’
104

 of the autoantigen may also explain the association of anti-

GBM disease with other processes that may damage the basement membrane in the kidney 

(such as membranous nephropathy, AAV, or lithotripsy) or the lung (such as smoking and 

inhalation of hydrocarbons), resulting in exposure of usually sequestered epitopes. 

 

The recovery phase of this condition is associated with a progressive fall in autoantibody titre 

(even in the absence of immunosuppressant treatment) and a lower frequency of CD4+ T 

cells reactive to α3(IV)NC1, along with development of a regulatory CD25+ T cell subset 

that may suppress responses to α3(IV)NC1
124

. This suggests the re-emergence of 

immunological tolerance, which may be reflected by the rarity of clinical relapses in this 

condition.  

 

1.3.4 Clinical considerations 

 

The great majority of patients will present with features of rapidly progressive 

glomerulonephritis, which is characterised by an abrupt decline in renal function and an 

‘active’ or ‘nephritic’ urinary sediment containing protein and red cell casts. There are a 

small number of reported cases, however, presenting with only mild renal impairment
125

. 

Approximately 50% of patients will have co-existent pulmonary haemorrhage, which may 
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present with haemoptysis and be seen as alveolar shadowing on chest radiography, or 

detected by the finding of an increased carbon monoxide transfer factor. A small number of 

patients may present with isolated lung disease in the absence of overt renal pathology. 

Strictly, the diagnosis of anti-GBM disease rests on the demonstration of: 

 

(i) Circulating anti-GBM antibodies – these are detectable in the majority of patients 

by conventional techniques such as enzyme-linked immunosorbent assay (ELISA) 

and Western blotting using purified human or animal GBM preparations. In the 

small proportion of patients who do not have detectable antibodies using these 

methods, more sensitive techniques such as biosensor assay using recombinant 

antigen have been reported to detect circulating antibody
126

. 

(ii) Deposited anti-GBM antibodies – seen as linear deposits of IgG along the GBM 

by immunofluorescence techniques. The majority of patients will also demonstrate 

linear staining for complement C3, and some for other antibody isotypes, such as 

IgA and IgM. 

(iii) Crescentic glomerulonephritis – seen on standard light microscopy of renal tissue. 

Fibrinoid necrosis may be present. The finding of ‘synchronous’ injury, where all 

glomeruli show lesions of similar acuity, is typical. 

 

Standard treatment for anti-GBM disease, first introduced in the 1970s
127

, consists of 

plasmapheresis, to rapidly remove the pathogenic antibody (and possibly other pro-

inflammatory mediators) from the circulation, and immunosuppression with 

cyclophosphamide and corticosteroids, which inhibit the production of further autoantibody 

and reduce end-organ tissue inflammation and damage. Retrospective series suggest this 

combination of treatment is effective in most patients with serum creatinine <500μmol/l at 
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presentation, and one large study showed it can be successful even in patients who present 

with severe renal injury (creatinine > 500μmol/l) but not yet on dialysis
128

. In the same study, 

lung haemorrhage responded to treatment in 90% of patients. One small trial suggested better 

recovery of renal function when plasmapheresis was used in addition to drug therapy
114

; 

however given its rarity (and the efficacy of accepted treatments) there are no large 

randomised controlled trials in this disease. The use of alternative immunosuppressant agents 

(such as cyclosporine, mycophenolate mofetil or rituximab) has been reported in small series 

and individual cases, although there is insufficient evidence to support their use as first-line 

treatment at present. Poor prognostic features include dialysis-dependency at diagnosis and 

100% crescents on renal biopsy, which suggest the patient will not recover independent renal 

function.  
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1.4 Experimental models of anti-GBM disease 

 

1.4.1 Nephrotoxic nephritis 

 

The nephrotoxic nephritis (NTN) model is the best known animal model of crescentic 

glomerulonephritis. First described at the beginning of the 20
th

 Century by Lindemann
129

, 

who injected rabbits with heterologous antiserum to rabbit kidney raised in guinea pigs, NTN 

has since been reproduced in a variety of species including dog, rabbit, mouse, rat and 

hamster, the rodent models being the most extensively studied. Disease is initiated by 

administering nephrotoxic serum (NTS) raised in sheep or rabbits immunised with rodent 

glomeruli. The animals then develop an inflammatory renal lesion that is initiated by the co-

localisation of alloantibody against kidney antigens (heterologous phase) and the host 

response to this foreign antibody (autologous phase). Accelerated NTN involves pre-

immunisation with sheep or rabbit immunoglobulin. NTN is characterised by a rapid onset of 

disease, with early leucocyte infiltration and subsequent mesangial proliferation, crescent 

formation, fibrin deposition, tissue destruction and progression to scarring and renal 

failure
130

. It histologically resembles anti-GBM disease and has the typical linear staining 

pattern for IgG on immunofluorescence. Studies in NTN have shed light on the role of 

various immune effectors in glomerulonephritis, including antibodies, complement, 

infiltrating lymphocytes and resident renal cells. Historically, it has been ascribed a Th1 

dependent delayed-type hypersensitivity (DTH) reaction phenotype, characterised by 

macrophage infiltration, under the influence of key cytokines such as interferon gamma (IFN-

γ) and IL-12
131

. 
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Studies of NTN in rats, using the genetically susceptible Wistar Kyoto (WKY) strain in 

particular, have been used to test an extensive number of therapeutic approaches for 

crescentic GN, and have simultaneously contributed to the understanding of the underlying 

pathogenic processes. 

 

Various approaches aimed at manipulating cytokine activity have been used in NTN, 

including antagonism of pro-inflammatory cytokines such as TNF-
132

. Administration of 

‘anti-inflammatory’ cytokines including IL-4
133

 and IL-11
134

 can attenuate disease, in 

keeping with the DTH phenotype of the model. Targeting of the intracellular signalling 

pathways involved in promoting inflammation, such as the p38 MAPK pathway, have also 

been effective
135

. Notably, in each of these intervention studies, no significant effects were 

reported on circulating or deposited autologous rat anti-rabbit antibody levels, suggesting that 

the intervention was predominantly acting on effector phase of renal injury. 

 

In work previously reported by our laboratory, SYK inhibition with fostamatinib was shown 

to both prevent and treat established disease in this model
136

. As shown in figure 1.4, for 

example, when treatment was started at either day 0 or day 4 after disease induction, there 

was complete protection from the development of glomerular crescents at day 10. In this 

study, pre-treatment (from day 0) with fostamatinib reduced the production of autologous rat 

anti-rabbit antibody, although there was no effect on circulating antibody levels if treatment 

was delayed until disease was established (from day 4).  
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Attempts to determine the genetic basis of the unique susceptibility of the WKY rat strain to 

NTN has provided a further means of identifying important factors in the pathogenesis of 

crescentic GN. A genome wide linkage analysis, for example, of F2 offspring derived from 

WKY and NTN-resistant Lewis rats identified seven significant quantitative trait loci for 

crescentic GN, with two major loci (lod score >8) on rat chromosomes 13 (Crgn1) and 16 

(Crgn2). Deletion of the rat Fcgr3-rs gene was identified as the molecular basis of Crgn1, 

and recent work has shown that the AP-1 transcription factor JunD in an important 

determinant of macrophage activity, and that JunD is located at the Crgn2 peak of linkage. 

 

NTN in mice is more variable and often has a more thrombotic pathological phenotype than 

in rats, which may limit its relevance to translation in humans. Studies in mice, however, 

have the obvious advantage of allowing investigation of a multitude of genetically altered 

strains, and have made a significant contribution to the understanding of the underlying 

disease processes and key immune effectors in crescentic GN. Disease appears to be critically 

Figure 1.4: Reduction in glomerular crescents following treatment with fostamatinib in rat nephrotoxic 
nephritis (NTN). 

Treatment with fostamatinib from day 0 or from day 4 after disease induction resulted in complete 
protection from the development of glomerular crescents in rat NTN. (From Smith et al, 2010). 
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dependent on CD4+ T cells, since CD4 deficient mice do not deposit autologous anti-sheep 

IgG and are protected from disease, whereas CD8 deficiency appears to exacerbate antibody 

deposition and nephritis in a non-accelerated model
137

. Similarly, administration of anti-CD4 

antibody (prior to anti-GBM serum in an accelerated model) prevented disease in antibody-

deficient mice
138

.  The importance of T cell co-stimulation pathways has been shown in NTN, 

as mice deficient in CD40 do not produce nephritogenic humoral immune responses and fail 

to develop disease in accelerated NTN
139

. Conversely, if an anti-CD40L blocking antibody 

was administered prior to injection of anti-GBM serum, humoral immune responses were not 

affected, although disease was attenuated, implicating CD40-mediated co-stimulation in the 

effector phase of renal injury. A possible role for regulatory T cells in disease suppression has 

also been demonstrated
140

 – administration of CD4+CD25+ T regulatory cells before 

injection of anti-GBM serum attenuated disease in accelerated NTN, without affecting 

deposition of immune complexes, suggesting that T regulatory cells suppress cell-mediated 

organ damage rather than priming of the immune response. 

 

Studies in knockout and bone marrow chimeric animals have provided information on the 

relative contribution of infiltrating and resident cells in disease initiation. It appears, for 

example, that renal mesangial cells are not mere bystanders in the disease process, but rather 

that they have an important role in the production of pro-inflammatory cytokines such as 

TNF-α and IL-12 necessary for full expression of disease
141,142

. The identification of the IL-

17 secreting CD4+ T cell subset, termed Th17, has modified the traditional Th1/Th2 

paradigm. The presence of this subset has been demonstrated in NTN, and studies in IL-23 

p19 knockout mice (which have reduced numbers of Th17 cells) and IL-17 knockout mice 

has shown that the IL-17 pathway makes a significant contribution to renal inflammation in 

glomerulonephritis
143

. It is also interesting, given its cell-mediated phenotype, that disease is 
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critically dependent on expression of receptors for the Fc portion of IgG (FcR). In particular, 

the expression of activatory FcγRI and FcγRIII on infiltrating leucocytes is key in disease 

initiation
144,145

. Finally, there has been an increasing interest in the role of innate immune 

elements in this model, with recent studies in knockout mice showing potential roles for 

TLR
146

 and the mannose receptor
147

. In each of these studies, no significant effect on mouse 

anti-sheep humoral immunity was observed suggesting that these elements were important in 

effecting tissue injury, rather than in priming the humoral response (except in the case of 

LPS-induced TLR signalling at the time of pre-immunisation in an accelerated model, which 

augmented circulating antibody responses)
146

. 

 

1.4.2 Experimental autoimmune glomerulonephritis 

 

Studies by Steblay in 1962
148

 demonstrated that sheep immunised with human collagenase-

solubilised GBM in complete Freund’s adjuvant (CFA) developed crescentic 

glomerulonephritis. This model, now termed experimental autoimmune glomerulonephritis 

(EAG), has since been reproduced in several species including rodents, using collagenase-

solubilised fractions of bovine, rat or human GBM and latterly recombinant mouse, rat or 

human 3(IV)NC1, confirming the universal antigenicity of this protein.  

 

Induction of EAG in the Brown Norway or the particularly susceptible WKY rat strains has 

provided a good model of human disease. WKY rats develop circulating and deposited anti-

GBM antibodies in association with a reproducible crescentic glomerulonephritis. Studies in 

these rat models have confirmed that disease can be adoptively transferred by 

antibodies
149,150

. They have also demonstrated a critical role for T cells in disease initiation. 

Renal immunohistology in EAG has shown that T cell influx precedes macrophage 
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infiltration and glomerular injury. T cells from WKY rats with EAG proliferate in response to 

NC1 domains of rat GBM. The transfer of splenic CD4+ T cells from EAG rats can prime 

naïve recipients for disease
151

. More recently, it has been shown that transfer of in vitro 

activated CD4+ T cells from immunised rats can result in crescentic GN in the absence of 

IgG binding to the GBM or C3 deposition in recipients
152

, suggesting a directly injurious T 

cell response. 

 

These findings have led to a number of T cell directed therapies being studied in EAG in the 

rat. Cyclosporin A
153

 and monoclonal therapies against CD4
154

 and CD8
155

 have shown 

efficacy in preventing or ameliorating established experimental disease. Similarly, 

approaches aimed at interrupting T-cell co-stimulation pathways, such as monoclonal 

antibody blockade of CD40-CD40L
156

 and CD28-B7
157

 interactions have also been effective. 

Approaches based on inducing tolerance by mucosal administration of antigen have also 

shown promise in these models. For example, oral administration of GBM antigen, nasal 

administration of recombinant 3(IV)NC1, and more recently nasal administration of an 

immunodominant peptide, pCol (24-38), from 3(IV)C1
158

, have been shown to be effective 

in preventing or treating established EAG. The underlying mechanism of mucosal tolerance 

has not been firmly established, but likely reflects the induction of regulatory T cells. In each 

of these studies, it is difficult to assess the relative contribution of reduced antibody 

production and attenuated effector responses, due to differences in the timings of intervention 

during the natural history of disease. 

 

Several mouse strains are susceptible to EAG, although disease in mice is less severe, less 

reproducible and consequently less extensively studied than in the rat. Studies of EAG in 

mice have confirmed dependency on T cells. Mice that do not express a functional T cell 
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receptor, for example, are protected from disease induction, even after passive transfer of 

anti-GBM antibodies
159

. Splenocytes from EAG mice proliferate in response to 3(IV)NC1 

and have a Th1-biased secretory phenotype, producing high levels of IFN- and low amounts 

of the anti-inflammatory cytokine IL-10, suggesting that antigen-specific Th1 effector cells 

make a significant contribution to the tissue damage seen in this model
160

. Finally, it is 

noteworthy that mice deficient in the type IIB inhibitory Fc receptor for IgG (FcRIIB) have 

increased susceptibility to EAG, suggesting a possible role for this receptor in maintaining 

immunological tolerance
161

.  
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1.5 ANCA-associated vasculitis (AAV) and glomerulonephritis (AAGN) 

 

The association of pauci-immune crescentic glomerulonephritis with circulating 

autoantibodies directed against antigens in neutrophil cytoplasm (ANCA) was first reported 

in 1985
162

. The two major ANCA antigens were subsequently shown to be myeloperoxidase 

(MPO) and proteinase 3 (PR3)
163-165

. The clinical syndromes now associated with ANCA 

include granulomatosis with polyangiitis (GPA; formerly Wegener’s Granulomatosis), 

microscopic polyangiitis (MPA), eosinophilic GPA (formerly Churg-Strauss Syndrome) and 

renal limited vasculitis
85,166

. These are generally multi-system diseases characterised by 

necrotising inflammation of small blood vessels, complicated by life-threatening features of 

crescentic GN and alveolar haemorrhage in their most severe forms. 

 

1.5.1 Pathogenicity of ANCA in AAV 

 

Several clinical observations suggest that ANCA are pathogenic in these conditions. They are 

specific and relatively sensitive markers of disease, and ANCA target specificity correlates 

with disease phenotype
167

.  ANCA titre has been reported to correlate with disease severity 

and, in some series, rising titres predicted disease relapse
168-171

. There is also a reported case 

of maternal-foetal transfer of ANCA resulting in disease in a neonate
172,173

. Removal of 

antibodies by plasmapheresis has been associated with improved clinical outcomes
174

, and 

recently B cell targeted therapies have been shown to be effective treatments AAV
175,176

. 

Finally, a recent genome-wide association study (GWAS) identified the strongest genetic 

associations with antigenic specificity of ANCA, rather than the clinical syndrome
177

. In anti-

PR3 vasculitis, strong associations with HLA-DP, the gene encoding proteinase 3 (PRTN3; 
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the autoantigen) and α1-antitrypsin (SERPINA1; the circulating inhibitor of the autoantigen) 

were identified, implicating the autoimmune response to PR3 in the pathogenesis of disease.  

 

A number of experimental observations also suggest that ANCA are pathogenic. In vitro 

analyses of human autoantibody-autoantigen interactions and the effects of these 

autoantibodies on leucocyte behaviour, have critically informed the understanding of ANCA-

related disease pathogenesis. Both MPO- and PR3-ANCA are able to activate cytokine-

primed leucocytes in vitro, resulting in damage of endothelial cells in culture
178,179

. In flow 

conditions, using chambers lined with activated platelets or endothelial cells, treatment of 

rolling neutrophils with ANCA-IgG resulted in adhesion and transmigration of 

neutrophils
180,181

, suggesting that ANCA may participate directly in vascular inflammation by 

promoting neutrophil adhesion to the vascular endothelium where they can then initiate tissue 

damage. Notably, SYK phosphorylation has been implicated in the activation of primed 

neutrophils by ANCA in vitro
182

. It has also been reported that MPO-ANCA may activate 

murine glomerular endothelial cells (mGEC) directly
183

. Notably, mGEC lack expression of 

MPO, and it is suggested that moesin, a protein with partial amino-acid sequence homology 

to MPO, is the target of MPO-ANCA on mGEC in this case. 

 

A recently identified mechanism via which ANCA may initiate and perpetuate disease in 

AAV is through the enhanced formation and disordered regulation of neutrophil extracellular 

traps (NETs). NETs are chromatin-based structures containing antimicrobial molecules 

(including MPO and PR3) that are released during a cell death process unique to neutrophils 

(‘NETosis’), thought to represent an important innate defence mechanism that may trap and 

destroy invading microbes
184,185

. However, inappropriate exposure of the vascular 

endothelium to NETs may result in local host damage.  Both MPO- and PR3-ANCA have 
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been shown to stimulate the formation of autoantigen-containing NETs by primed neutrophils 

in vitro
186,187

. In addition, DNase I activity (an important negative regulator of NETs) in sera 

from patients with anti-MPO vasculitis is reduced, perhaps accounting for the decreased rates 

of NET degradation seen in these patients. Finally, NETs have been identified using 

immunofluorescence methods in renal biopsy specimens from patients with AAGN
186

. 

 

Studies in animal models (Section 1.5.3) provide further evidence of the pathogenicity of 

ANCA in AAV.  

 

1.5.2 Generation of the autoimmune ANCA response 

 

Whilst the reported data suggest that ANCA contribute to the pathogenesis of AAV, the 

mechanisms underlying the immunogenesis of ANCA are less clear, though likely to be 

multi-factorial and involving both host and environmental factors. The genetic associations 

identified in a large GWAS have already been discussed. Environmental associations include 

exposure to air pollutants such as silica
188,189

, drugs
190

, and bacterial infections. 

 

Postulated mechanisms of bacterial infection-induced ANCA production include direct 

stimulation of autoreactive T or B cells by bacterial superantigens
191

. A process of ‘molecular 

mimicry’, whereby the immune response directed against microbial antigens ‘cross-reacts’ to 

self-antigens that bear homology to the microbial peptides has also be proposed. This is 

perhaps best illustrated by the example of anti-human lysosome-associated membrane 

protein-2 (anti-LAMP-2) antibodies, a non-classic ANCA first identified in patients with 

pauci-immune necrotising GN in 1995
192

. LAMP-2 demonstrates 100% homology to the 

adhesin FimH, expressed on gram-negative bacteria. Infections with fimbriated bacteria are 
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reported to be common prior to the onset of necrotising GN, and notably susceptible rat 

strains immunised with FimH develop nephritis and antibodies that react to rat and human 

LAMP-2
193

. The clinical relevance of anti-LAMP2 antibodies in human AAGN, however, 

remains controversial
194,195

. 

 

A related, though distinct, mechanism that has been proposed for the development of 

infection-induced ANCA is that of ‘antigen-autoantigen complementarity’. This theory 

suggests that ANCA arise through anti-idiotype interactions with antibodies directed against 

peptides that are complementary to the autoantigen epitopes on ANCA. The presence of 

antibodies and CD4+ T cells that recognise complementary PR3 (cPR3) have been 

demonstrated in patients with PR3-AAV (but not in MPO-AAV patients)
196,197

. Again, 

studies in rodents have demonstrated that immunisation of mice with cPR3 results in 

production of antibodies not only to cPR-3, but also to the sense counterpart, PR3, and that 

both human and mouse antibodies to PR3 and cPR3 bind to each other, indicating idiotypic 

relationships
196

. It is of interest that cPR3 is reported to have high homology to 

Staphylococcus aureus peptides. The association of Staphylococcus aureus carriage and GPA 

relapse is well recognised
198

, and this may account for the efficacy of some anti-microbial 

treatments in the preventing relapse in GPA
199,200

. 

 

Disordered T cell responses may also contribute to (or fail to suppress) the generation of 

circulating ANCA. Patients with GPA, for example, have a relative deficiency in Foxp3-

positive T regulatory cells, that also appear to be functionally impaired
201

, although the same 

may not be true of patients with MPO-AAV
202

. A recent study also suggested that AAV 

patients have a suppressor-resistant CD4+ effector T cell population that produces pro-

inflammatory cytokines (and is antigen experienced)
203

. In addition, the IL-17 axis may 
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contribute to the development of ANCA – serum IL-23 (which induces the differentiation of 

Th17 cells) and IL-17A (produced by Th17 cells) levels are elevated in patients with acute 

AAV
204

. IL-23 levels appeared to correlate with ANCA titres, suggesting that it might have a 

role in maintaining ANCA production. Finally, the role of regulatory B cells in the 

pathogenesis of AAV has been the subject of two recent studies, with reduced regulatory B 

cell number associated with active disease, remission-status, and frequency of relapse after B 

cell depletion
205,206

.  

 

1.5.3 Animal models of ANCA-associated vasculitis  

 

1.5.3.1 Mouse anti-MPO glomerulonephritis 

 

Whilst longstanding in vitro observations have suggested a pathogenic role for ANCA in 

clinical disease, a convincing in vivo model of systemic vasculitis or pauci-immune GN has 

been unavailable until relatively recently. One such model was developed by Xiao et al in 

2002
207

. MPO knockout mice immunised with mouse MPO in CFA develop high-titre anti-

MPO antibodies. When splenocytes from these immunised mice are transferred to 

lymphocyte-deficient recipients, the recipients subsequently develop crescentic GN and 

pulmonary haemorrhage. Purified anti-MPO antibodies from the immunised mice, when 

delivered to wild-type mice, were also capable of inducing a crescentic GN in the absence of 

significant glomerular immunoglobulin deposition. This was the first convincing in vivo data 

supporting the hypothesis that ANCA have a directly pathogenic role. This model, however, 

is not strictly a model of autoimmunity, given that MPO is a novel antigen for the knockout 

mouse, and so the ANCA may have different characteristics to the autoantibodies seen in 

human disease. Study of the model has nonetheless provided useful insights into the 
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pathogenic mechanisms at work in vasculitis and pauci-immune GN, with roles for 

complement
208

, TNF-
209

 and, critically, primed neutrophils being demonstrated. Depletion 

of neutrophils before induction with MPO-ANCA prevented disease
210

, and administration of 

MPO-ANCA to MPO knockouts with transplanted circulating MPO +/+ neutrophils resulted 

in glomerulonephritis
211

. 

 

1.5.3.2 Experimental autoimmune vasculitis in the WKY rat 

 

Our laboratory has developed a model termed ‘Experimental Autoimmune Vasculitis’ 

(EAV)
212

. Disease is induced by immunisation of WKY rats with human MPO in CFA. The 

rats develop polyclonal anti-MPO antibodies, along with evidence of small vessel vasculitis, 

pauci-immune glomerulonephritis and pulmonary haemorrhage. Of note, intra-vital 

microscopy demonstrates enhanced leucocyte-endothelial cell adhesion and transmigration in 

response to an inflammatory stimulus (CXCL1) in the immunised animals, and in naïve 

animals following passive transfer of ANCA-rich immunoglobulin. This is the first direct in 

vivo evidence for pathogenicity of autoantibodies to MPO supporting previous in vitro 

observations. The initial model has been optimised to produce a reliable, reproducible system 

that results in crescentic GN and pulmonary haemorrhage in all animals
213

 and study in this 

model has demonstrated a potential therapeutic role for anti-TNF- directed therapies
214

. 

 

1.5.3.3 Animal models of PR3-ANCA vasculitis 

 

Whilst the in vitro evidence suggests PR3-ANCA can activate leucocytes in a similar manner 

to MPO-ANCA, a reliable animal model of PR3-ANCA induced glomerulonephritis has not 

yet been developed – immunisation of rodents with PR3 or passive transfer of PR3-ANCA 
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does not reproducibly result in renal or pulmonary disease
215,216

. The reasons for this are not 

clear, but may include insufficient surface expression of PR3 on murine neutrophils. Primo 

and colleagues showed that splenocyte transfer from NOD mice immunised with recombinant 

murine PR3 to NOD-SCID (non-obese diabetic, severe combined immunodeficiency) mice 

resulted in the development of vasculitis and necrotising GN
217

. However, this model is 

limited by the development of significant glomerular immune complex deposition after 

splenocyte transfer. Notably, it was recently shown that in mice reconstituted with a 

humanised immune system, administration of human ANCA could result in renal and lung 

injury
218

. 

 

1.5.4 Treatment and prognosis of AAV 

 

Current guidelines, based largely on the findings of several randomised controlled trials, 

suggest that medical therapy in AAV should be tailored according to the extent of disease 

activity and the disease phase
219,220

. The 2008 European League Against Rheumatism 

(EULAR) guidelines are summarised in Table 1.2. 
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STAGE DESCRIPTION SUGGESTED TREATMENT 
 

REMISSION INDUCTION 

 

  

 Localised Upper and/or lower respiratory tract disease 

without any other systemic involvement or 
constitutional symptoms 

 

Methotrexate & Glucocorticoids 

 Early Systemic Any, without organ-threatening or life-
threatening disease 

 

Methotrexate & Glucocorticoids 

 Generalised Renal or other organ-threatening disease, 

serum creatinine <500μmol/l 

 

Cyclophosphamide & Glucocorticoids 

 Severe Systemic Renal or other vital organ failure, serum 
creatinine >500μmol/l 

 

Cyclophosphamide & Glucocorticoids, with 
the addition of plasma exchange 

 Refractory Progressive disease unresponsive to 
glucocorticoids and cyclophosphamide 

 

Consider IVIG, 15-deoxyspergualin, ATG, 
Infliximab, MMF or RTX. 

MAINTENANCE Controlled disease activity after remission-
induction, where therapeutic aim is to 

prevent disease relapse 

Low-dose Glucocorticoids & 
Azathioprine 

Or Leflunomide 

Or Methotrexate 

 

 

Since the publication of these guidelines, two randomised controlled trials have demonstrated 

that rituximab, a chimeric monoclonal antibody directed against CD20 that results in 

depletion of peripheral blood B lymphocytes, is as effective as cyclophosphamide for 

inducing remission in generalised AAV, and may even be superior in patients presenting with 

relapsing disease
175,176,221

. Uncontrolled series also suggest that rituximab may be effective in 

maintaining remission and preventing relapse
222,223

. Notably, the therapeutic effect seen 

following rituximab treatment is not only dependent upon elimination of circulating ANCA, 

since a significant proportion of patients remain ANCA-positive despite achieving clinical 

remission. This observation suggests that B cell functions other than autoantibody production 

(such as antigen presentation, cytokine production, and provision of co-stimulation) may be 

important in the pathogenesis of AAV. 

 

Table 1.2: 2008 EULAR guidelines for the treatment of ANCA-associated vasculitis. 
Modified from Mukhtyar et al, 2010. IVIG, intravenous immunoglobulin; ATG, anti-thymocyte globulin; 
MMF, mycophenolate mofetil; RTX, rituximab. 
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Analysis of patient outcomes in four randomised controlled trials in AAV show that survival 

has improved dramatically with the introduction of effective immunosuppressive treatments 

(11.2% mortality at one year)
224

. However, the majority of early deaths were caused by 

treatment side effects (59%) rather than active vasculitis (15%), highlighting the ongoing 

need for more targeted therapies in AAV.  
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1.6 Experimental questions and study aims 

 

Given its well defined role in BCR and FcR mediated signalling, it is likely that SYK activity 

contributes to the pathogenesis of autoimmune conditions, including immune-mediated 

glomerular diseases. Indeed, as I have described, SYK inhibition with fostamatinib has been 

shown to attenuate several experimental models of autoimmune disease, including murine 

lupus and nephrotoxic nephritis. However, the pathology of murine lupus nephritis poorly 

replicates that of human of disease, and nephrotoxic nephritis, whilst histologically 

resembling human crescentic GN, relies on the alloimmune response to a planted foreign 

antigen, so cannot be regarded as a true model of autoimmune glomerulonephritis. In 

addition, whilst inhibition of antibody-dependent FcR-mediated responses has been shown to 

contribute to the reduction in injury seen with fostamatinib in the various models, the specific 

impact of SYK inhibition on autoantibody production remains unclear. No effect on 

circulating autoantibody levels was observed in CIA or murine lupus. Conversely, in NTN, 

there was a significant reduction in autologous rat anti-rabbit antibody titre in animals pre-

treated with fostamatinib. In NOD mice, treatment resulted in a reduction in anti-glutamate 

decarboxylase (GAD) antibodies, but not anti-insulin antibodies. These conflicting results are 

of particular interest given that the role of SYK in antibody production in mature B cells and 

plasma cells is not defined, since constitutively SYK deficient B cells arrest at the pro-B cell 

stage. Several factors may account for these discrepancies, such as timing and duration of 

SYK inhibitor exposure, and potential differences in response to auto- or alloantigens. 

Notably, all of the reported non-spontaneous models, like NTN, rely on immunisation with 

alloantigen, or passive transfer of antibody that acts as planted alloantigen in target tissue, 

and so their translation to clinical autoimmunity is limited. 
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(i) SYK inhibition in EAG 

 

To address these questions, I have studied the effects of SYK inhibition in EAG, the rodent 

model that most closely recapitulates the immunobiology and pathology of anti-GBM 

disease. In our laboratory, it is induced by immunising susceptible rat strains with a well-

defined recombinant rat protein (α3(IV)NC1)
225

, the universal Goodpasture autoantigen that 

is germane to human disease. Both the model and clinical disease are critically dependent on 

the development of autoantibodies directed against this autoantigen, and both manifest 

features of crescentic glomerulonephritis and alveolar haemorrhage
93,226

. EAG, therefore, can 

be regarded as a genuine model of autoimmunity, and since it is characterised by the ongoing 

production of a directly pathogenic, disease-relevant autoantibody, it more accurately 

reproduces clinical disease than our previous studies in NTN, and in particular allows for 

study of pathogenic humoral responses, in addition to renal and lung end-organ damage. 

 

(ii) SYK inhibition in EAV 

 

B cell depletion is an effective treatment in AAV, with effects on autoantibody production 

and other B cell functions likely contributing. In addition, SYK phosphorylation has been 

implicated in the activation of primed neutrophils by ANCA in vitro
182

. SYK inhibition may 

be an effective therapeutic strategy in AAV by inhibiting these B cell and ANCA-mediated 

functions. However, the role of SYK in an in vivo model of vasculitis has not been examined. 

I have therefore studied the effects of SYK inhibition using fostamatinib in experimental 

autoimmune vasculitis, in collaboration with Dr Anisha Tanna and Dr John McDaid. 
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(iii) SYK expression in human glomerular disease 

 

Finally, there is limited direct evidence implicating SYK in the pathogenesis of human 

glomerulonephritis. I have therefore used an immunohistochemistry based approach on 

clinical biopsy specimens, to establish if SYK is expressed and activated in these diseases, 

and to correlate the presence of SYK staining to features of disease severity. 
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CHAPTER TWO - MATERIALS AND METHODS 
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2.1 General reagents and buffers 

 

Unless otherwise stated, laboratory chemicals were purchased from Sigma-Aldrich (Poole, 

UK), plastic consumables from Becton Dickenson (BD) Biosciences (Oxford, UK), tissue 

culture plastic-ware from Corning (Corning, New York) and tissue culture media from Gibco, 

Life Technologies (Paisley, UK). Microcentrifuge tubes were supplied by Eppendorf 

(Hamburg, Germany). Specific materials and their source are described in the relevant 

sections below. Table 2.1 summarises the constituents of commonly used buffers and 

reagents. 

 

Phosphate Buffered Saline (PBS)   Cell lysis buffer  

NaCl 8g/l  NP40 detergent 1% 

KCL 0.2g/l  Tris pH 7.5 25mM 

Na2HPO4.2H2O 1.44g/l  NaCl 150mM 

K(HPO4)2 0.2g/l    

     

Tri-Buffered Saline (TBS)   Running buffer for SDS-PAGE  

Tris-HCl 7.88g/l  Tris-base 3.03g/l 

NaCl 8.76g/l  Glycine 14.4g/l 

Adjust pH 7.4  SDS 1g/l 

     

Acid elution buffer   Transfer buffer  

Glycine HCl 11.1g/l  Tris-Base 3.03g/l 

Adjust pH 3.5  Glycine 14.4g/l 

     

Carbonate Buffer   5X Sample Buffer for SDS-PAGE  

Na2C03 1.59g/l  1M Tris-HCl pH 6.8 5ml 

NaHCO3 2.93 g/l  Sodium Dodecylsulphate (SDS) 2g 

Adjust pH 9.6  dH2O 2.5ml 

   Glycerol 10ml 

Rat Red Cell Lysis Buffer   Bromophenol blue 0.2% 0.1ml 

NH4Cl 8.34mg/l  ±β-mercaptoethanol 2.5ml 

EDTA 3.7mg/l    

NaHCO3 1g/l    
 

 

 

  

Table 2.1: Constituents of commonly used buffers. 
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2.2 SYK inhibitors 

 

R406, the active small molecule inhibitor of SYK, and its oral prodrug, fostamatinib 

disodium (R788), were provided by Rigel Pharmaceuticals (South San Francisco, California) 

and AstraZeneca (UK). The details of these molecules are discussed extensively in Chapter 

One. For clarity in reporting of results in Chapters Four and Five, the truncation ‘Fosta’ has 

been used. This is the current preferred abbreviation for publication purposes at Rigel 

Pharmaceuticals. 
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2.3 Production of α3(IV)NC1 

 

2.3.1 Expression of α3(IV)NC1-FLAG fusion protein 

 

Recombinant rat α3(IV)NC1 was prepared from a  HEK (Human Embryonic Kidney) 293 

cell line stably transfected with genes encoding the amino-terminal fragment of rat 

α3(IV)NC1 and the FLAG signal peptide. The FLAG signal peptide is a synthetic octapeptide 

of molecular weight 1013 and amino acid sequence N-Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys-

C, which allows affinity isolation of expressed fusion proteins. This cell line is co-transfected 

with a neomycin phosphotransferase antibiotic resistance gene, such that when it is grown in 

the presence of G418 disulphate, an aminoglycoside antibiotic that demonstrates toxicity to 

eukaryotic cells, selective growth of cells transfected with the α3(IV)NC1 construct is 

ensured
227

. This cell line was kindly provided by Dr John Reynolds.  

 

‘Complete’ medium for HEK 293 cell line was prepared by supplementing Dulbecco’s 

modified Eagle medium with 4500mg/l glucose and L-glutamine 580mg/ml (DMEM) with 

10% foetal calf serum (FCS; Sigma), 2% penicillin and streptomycin (Gibco, Life 

Technologies) and G418 disulphate 600mg/l (Sigma). ‘Serum-free’ medium for HEK 293 

cell line was prepared by supplementing DMEM with 2% penicillin and streptomycin only. 

 

Cells were grown continuously in 15 x 2.5cm cell culture treated plastic Petri dishes for a 

period of approximately three months. Cells were grown to confluence in complete cell 

culture medium. Once confluent, the medium was aspirated, discarded (since serum-
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containing medium could not be efficiently passed through affinity columns) and replaced 

with serum-free medium for five days, or until significant loss of confluent growth was 

observed. The serum-free supernatant was then collected and stored at -20°C until required 

for use, and the cells returned to complete medium until confluent again, and the cycle 

repeated.  

 

2.3.2 Purification of α3(IV)NC1 

 

Purification of α3(IV)NC1 was performed by running the collected supernatant through an 

anti-FLAG affinity column, prepared according to manufacturer instructions, and maintained 

at 4°C throughout. A 10ml polypropylene column (ThermoFisher Scientific, Waltham, 

Massachusetts) was mounted securely on a retort stand, filled with Tris-buffered saline (TBS; 

Table 2.1), and a porous disc floated on top of the liquid within the column. Using the reverse 

end of a serum separator (ThermoFisher Scientific) the disc was pushed evenly to the bottom 

of the column. The column was then rinsed with 0.5% Triton X-100 Surfactant-Amps 

Solution (ThermoFisher Scientific) in TBS; I found that the addition of surfactant was 

essential to remove air bubbles and thus enable efficient passage of medium through the 

column. After rinsing thrice in 10ml TBS, 5ml of anti-FLAG affinity gel (Sigma), provided 

in 50% glycerol, was mixed by gentle inversion, and added to the column and allowed to 

settle. The column was washed in three column volumes of TBS to remove the 50% glycerol 

buffer, then further washed in three column volumes of acid elution buffer (Table 2.1), with 

care being taken to avoid leaving the column in acid for longer than 20 minutes. Five further 

column volumes of TBS were then passed through the column to equilibrate for use. 
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500 ml of serum-free cell culture supernatant was pooled (after centrifugation at 1500 

revolutions per minute [rpm] for five minutes at 4°C to remove cellular debris) and diluted 

2:1 in TBS (to a final volume of 750ml). This solution was passed through the affinity 

column at a rate of 1-2 ml/minute, using a peristaltic pump (Masterflex, Oldham, UK), 

typically overnight, whilst being maintained at 4°C. The column was then washed as before 

with five column volumes of TBS. The bound FLAG-α3(IV)NC1 protein was then eluted in  

1 ml fractions using acid elution buffer and collected in vials containing 50μl of 1M Tris-base 

neutralising buffer, pH 9. The concentration of the eluted fractions was measured by a 

spectrophotometer (Cecil Instruments, Cambridge, UK) at 280nm. Eluted fractions were 

stored at -20°C until required for further use. 

 

After characterisation (see 2.3.3), pooled fractions of the α3(IV)NC1 preparation were placed 

in a dialysis cassette (membrane molecular weight cut-off 10,000 Daltons; ThermoFisher 

Scientific) and left in sterile water overnight at 4ºC to remove contaminating reagents present 

as a result of the purification process. The dialysis cassette was then immersed in sterile 

phosphate buffered saline (PBS; Table 2.1) for eight hours at 4ºC, and protein content 

quantified again by spectrophotometry at 280nm. The purified antigen was then aliquoted 

into 5ml volumes and stored at -20ºC until use. 

 

2.3.3 Characterisation of α3(IV)NC1 

 

Sodium Dodecylsulphate-Polyacramide Gel Electrophoresis (SDS-PAGE) and Western 

blotting were used to characterise recombinant rat α3(IV)NC1 antigenicity and specificity. 
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The collected fractions were run on a Phastsystem according to manufacturer’s instructions. 

(General Electric [GE] Healthcare, Amersham, UK). Briefly, samples were diluted 5:1 in 5x 

sample buffer without β-mercaptoethanol (Table 2.1) and electrophoresed on a pre-made 

12.5% polyacramide gel containing SDS (GE Healthcare). Non-reducing conditions were 

used in order to preserve the dimerised form of the α3(IV)NC1 peptide. Samples were then 

transferred onto a nitrocellulose membrane (Hybond-N, GE Healthcare) by pressing under 

lead overnight. The blot was then blocked with 5% milk powder (Marvel; Premier 

International Foods, St Albans, UK) in 0.1% Tween in PBS (PBS/T) for 30 minutes. 

Subsequently the blot was washed with 0.1% PBS/T three times. The blot was then incubated 

with an anti-FLAG M2 monoclonal antibody (Sigma) at a dilution of 1:1000 for one hour, 

then washed again three times in 0.1% PBS/T, then incubated with an alkaline phosphatase 

(ALP) conjugated anti-mouse IgG antibody (Sigma) at a dilution of 1:1000 for one hour, then 

washed three times in 0.1% PBS/Tween. A tablet of 5-bromo-4-chloro-3-indolyl 

phosphate/nitro blue tetrazolium (Sigma) dissolved in 10ml of distilled water was then used 

to develop the blot. 

 

α3(IV)NC1 was also blotted with either serum from a historical EAG animal immunised with 

rat recombinant α3(IV)NC1 (provided by Dr John Reynolds) at a dilution of 1:10, or with 

serum from a patient with anti-GBM disease at a dilution of 1:100. After three washes with 

0.1% PBS/T, either ALP-conjugated anti-rat IgG (Sigma) or ALP-conjugated anti-human IgG 

(Sigma), respectively, was added at a dilution of 1:1000 for one hour. The blot was then 

developed using the method above. 
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2.4 Animal methods 

 

2.4.1 Animal study approval 

 

All animal procedures were licensed by the Home Office Science Unit (personal license 

70/23027 and project license 70/7104 [Prof Charles Pusey]) and conducted in accordance 

with the UK Animals (Scientific Procedures Act) 1986. 

 

2.4.2 Animal husbandry    

 

Rats were purchased from Charles River (Margate, UK) and maintained in a pathogen-free 

animal facility at the Central Biomedical Services Unit, Imperial College London, 

Hammersmith Hospital campus, in individually-ventilated cages with free access to water and 

standard laboratory diet. Cage occupancy varied between two to five rats per cage, depending 

on body weight. Table 2.2 summarises animal use for the in vivo studies reported in this 

thesis. Additional animals were used for the derivation of nephritic glomeruli, bone marrow 

cells and peripheral blood leucocyte preparations for in vitro studies as needed. 
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EXPERIMENT N STRAIN SEX 
APPROXIMATE 

AGE 

MEDIAN 

WEIGHT, g 

(RANGE) 

DURATION 

EAG 1: 

Immunogenicity 

of α3(IV)NC1 

11 WKY Female 5 weeks 
97g 

(81-108) 

28 days 

(8 animals) 

42 days 

(3 animals) 

EAG 2: 

Dose response 

and disease 

beyond day 28 

24 WKY Female 7 weeks 
154g 

(120-171) 
56 days 

EAG 3: 

Early disease in 

young male and 

female rats 

16 
WKY=8 

LEW=8 

Female=8 

Male=8 
4 weeks 

85g 

(70-103) 

21 days 

(8 animals) 

28 days 

(8 animals) 

EAG 4: 

SYK inhibition 

in EAG, 

Prevention study 

16 WKY Female 6 weeks 
127g 

(107-156) 
36 days 

EAG 5: 

SYK inhibition 

in EAG, 

Established 

disease 

16 WKY Female 6 weeks 
130g 

(112-155) 
36 days 

SYK inhibition 

in EAV 
24 WKY Female 5-6 weeks 

118g 

(89-144) 
42 days 

Table 2.2: Summary of animals used for in vivo studies. 
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2.4.3 Induction of EAG 

 

Disease was induced by immunising rats with recombinant rat α3I(IV)NC1 dissolved in PBS, 

in an equal volume of complete Freund’s adjuvant (CFA; Sigma). Unless otherwise stated, a 

dose of 100μg α3(IV)NC1 per animal was generally used, with a maximum injection volume 

of 200μl, administered as 2 x 100μl injections to each thigh. 

 

For the emulsification procedure, equal volumes of α3(IV)NC1 in the aqueous buffer and 

CFA were placed in a glass vial, then aspirated from the interface using an 20 gauge needle, 

rapidly re-expelled and re-aspirated from the interface. I found this method resulted in a rapid 

and reliable emulsification. To ensure the formation of an emulsion, I confirmed that a drop 

of the mixture remained globular when placed in water (as opposed to spreading across the 

surface of the water).  

 

2.4.4 Induction of EAV 

 

Disease was induced by immunising rats with purified human myeloperoxidase (MPO; 

Calbiochem, Merck Millipore, Darmstadt, Germany) reconstituted in sterile water for 

injection. A dose of 1600µg/kg was administered, emulsified with an equal volume of CFA 

(with addition of killed Mycobacterium butyricum, to a final concentration of 4mg/ml) as 

described above, with a maximum injection volume of 200μl administered as 2 x 100μl 

injections to each thigh. Immunised animals also received 500ng of pertussis toxin 

(Invitrogen, Life Technologies) in PBS intraperitoneally on day zero and day two. 
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2.4.5 Preparation and administration of SYK inhibitor for in vivo experiments 

 

Fostamatinib was provided as the disodium salt. For in vivo experiments, it was reconstituted 

in vehicle formulation (0.1% carboxymethylcellulose, 0.1% methylparaben sodium, 0.02% 

propylparaben sodium, in distilled water, pH 6.5) to a concentration of 8mg/ml, sonicated for 

15-20 minutes until dissolved, and then pH re-adjusted to 6.5 with 0.1M HCl. This 

preparation was stored at 4°C for a maximum of seven days prior to use. 

 

Based on a previous dose-ranging study in NTN in WKY rats
136

, treated animals received 

20mg/kg, 30mg/kg or 40mg/kg body weight, administered by twice daily oral gavage. 

Control animals received an equivalent volume and schedule of vehicle formulation. Whilst 

undergoing gavage, animals were provided with wet laboratory diet in case of oesophageal 

irritation. 

 

2.4.6 Collection of biological specimens from rats 

 

2.4.6.1 Urine collection  

 

For collection of urine samples, rats were housed overnight, with free access to water and 

standard laboratory diet, in individual metabolism cages. At the end of the collection, total 

urine volume was measured, and aliquots were centrifuged at 1500rpm for five minutes to 

sediment macroscopic debris, and stored at -80°C until use. There was a minimum 48 hour 

interval between urine collections, in accordance with the terms of the project license. 
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2.4.6.2 Serum collection 

 

For collection of serum samples at non-terminal time-points, rats were placed in a warming 

chamber at 30°C to promote vasodilation, then placed under isofluorane anaesthesia on a 

warming mat. Whole blood (maximum volume 0.5ml) was collected by superficial tail vessel 

puncture using a 23 gauge needle. Samples were centrifuged at 1500rpm for five minutes, 

serum removed and stored at -80°C until use.  

 

2.4.6.3 Terminal processing of blood and tissues 

 

At the end of the study protocol, animals were placed under isofluorane anaesthesia for final 

collection of blood and tissues. Blood was obtained either by cardiac puncture using a 10ml 

pre-heparinised syringe and a 23 gauge needle, or by transection of the great vessels and 

exsanguination into both plain and heparinised collection tubes. 

 

Tissues were dissected out after the animal had been sacrificed by exsanguination. When 

necessary, lung haemorrhage score (section 2.5.6) was documented by inspection of the lung 

surfaces before dissection of these organs. For each animal, a coronal mid-pole section of 

kidney, and a sample of lung, spleen and liver tissue was placed in a histology cassette and 

transferred to 10% neutral buffered formalin for fixation. A remaining kidney pole was 

placed in OCT (optimal cutting temperature compound) embedding matrix (ThermoFisher 

Scientific) on a cork disc, immersed in isopentane and then snap frozen in liquid nitrogen, 
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and stored at -80°C until use. The remaining kidney material, and a sample of lung tissue and 

spleen tissue were snap frozen in individual cryovials and stored at -80°C until use.  
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2.5 Analysis of renal and lung injury in EAG and EAV 

 

2.5.1 Haematuria analysis 

 

Haematuria was quantified by dipstick analysis (Multistix 8 SG, Siemens Healthcare 

Diagnostics, Tarrytown, New York), and expressed as 0 (negative), 0.5 (trace), 1+, 2+ or 3+ 

for each animal. 

 

2.5.2 Biochemical analysis of serum and urine 

 

Concentrations of urea and creatinine in serum and urine samples were kindly measured by 

Dr Olatunji Rowland and Dr John Morris in the Department of Clinical Biochemistry, 

Hammersmith Hospital UK, using an AU700 analyser (Olympus, Southend, UK). Urinary 

clearance of each marker was calculated using the following equation: urinary clearance per 

unit time = (urine concentration x urine volume per unit time)/serum concentration. 

 

Proteinuria was quantified using sulphosalicylic acid method. Urine samples, diluted between 

1:3 and 1:100 in water, were added to a 96-well microtitre plate in triplicate, to which 10μl of 

25% sulphosalacylic acid was added to two of three replicates, and 10μl of water to the third 

replicate (providing a ‘blank’ reading for that sample).  Known quantities of bovine serum 

albumin (BSA; Sigma) in water were used to define a standard curve, and absorbance read at 

450nm on microplate reader and dedicated software (Biotek EL800; Gen5 Analysis Software; 

both Biotek Instruments Ltd, Potton, UK). The protein concentration in each sample was 



97 | P a g e  
 

calculated from a regression equation described by the standard curve, and the 24 hour 

protein excretion rate was calculated by multiplying by the total urine volume. Urinary 

protein creatinine ratio was calculated by dividing the urinary protein concentration by the 

urinary creatinine concentration.  

 

2.5.3 Haematological analysis 

 

Haemoglobin concentrations and white blood cell and platelet counts were measured in 

heparinised whole blood samples using an automated analyser (XE-2100, Sysmex, Milton 

Keynes, UK) in the Department of Clinical Haematology, Hammersmith Hospital UK. 

 

2.5.4 Renal histology 

 

Kidney tissue collected at the time of sacrifice was fixed in 10% neutral buffered formalin 

overnight, then transferred to 70% ethanol and processed to paraffin blocks. 4μm sections 

were cut on a rotary microtome and stained with haematoxylin and eosin (H&E), periodic 

acid Schiff (PAS), and Jones methanamine silver stain, for assessment of renal injury. 

Sectioning and staining was performed by Ms Lorraine Lawrence, Department of Leucocyte 

Biology, Imperial College London (except Silver stain, performed by Dr Donna Horncastle, 

Department of Histopathology, Hammersmith Hospital).  
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For quantification of renal histology in EAG, 50 consecutive glomeruli were assessed by light 

microscopy in a blinded fashion, and graded as severely abnormal (>50% of the glomerular 

tuft affected by necrosis, crescent formation or sclerosis), abnormal (any abnormality not 

meeting the criteria for ‘severe’) or normal. Results are expressed either as the percentage of 

severely affected glomeruli per animal, or as the mean percentage of normal, abnormal and 

severely abnormal glomeruli per group. 

 

For quantification of renal injury in EAV, 50 consecutive glomeruli were assessed by light 

microscopy in a blinded fashion, and graded as normal or abnormal. Results are expressed as 

the percentage of abnormal glomeruli per animal. 

 

2.5.5 Immunohistochemistry for leucocyte markers 

 

Immunostaining for ED1 and CD8 positive cells was performed on formalin-fixed paraffin 

embedded kidney sections. For details of immunostaining methods, see section 2.10. 

 

CD8 positive cell infiltrate was quantified in a blinded fashion by counting the number of 

CD8 positive cells in 50 consecutive glomeruli in each section, and expressed as the mean 

number of cells per glomerular cross section (GCS) for each animal. ED1 positive cell 

infiltrate was quantified in a blinded fashion using automated image analysis software 

(ImagePro Plus, Media Cybernetics, Rockville, Maryland) to measure the percentage of 

glomerular staining in 20 consecutive glomeruli in each section, and expressed as the mean 

percentage stain per GCS for each animal. 
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2.5.6 Macroscopic assessment of lung injury  

 

Based on observations in preliminary experiments in EAG, I developed a semi-quantitative 

scoring system that could be used to grade the severity of lung haemorrhage by visual 

inspection at the time of cull. Lungs were graded as follows: 0 points – normal macroscopic 

lung appearances; one point if fewer than ten petechiae were visible; two points if ten to 20 

petechiae were visible; three points if more than 20 petechiae were visible; four points if 

large areas of infarction or haemorrhage were evident. Representative lung appearances are 

shown in Figure 2.1. The same scoring system was used for assessment of lung injury in 

EAV. 

 

 

 

Figure 2.1: Scoring system to quantify lung haemorrhage (LH) severity. 
The lungs surfaces were inspected at the time of sacrifice, and scored in accordance with the 
number of visible petechiae on the lung surface: zero points – normal macroscopic lung 
appearances (Panel A); one point if fewer than ten visible petechiae (Panel B); two points if ten 
to 20 visible petechiae (Panel C); three points if more than 20 visible petechiae (not shown); four 
points if large areas of infarction or haemorrhage were evident (Panel D).  
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2.5.7 Microscopic scoring of lung injury  

 

Lung tissue was collected for histological analysis and processed as per kidney tissue (section 

2.5.4). 4μm paraffin-embedded sections were stained with Perls’ Prussian blue (by Ms L 

Lawrence) without counterstain, to enable identification of haemosiderin-laden cells. These 

were quantified by a blinded observer using automated image analysis software (ImagePro 

Plus) to measure the proportion of Perls’ stained cells across five random high-power fields 

of lung sections from each animal, and expressed as the mean proportion per high power field 

per animal. 
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2.6 Assessment of humoral responses 

 

2.6.1 ELISA for α3(IV)NC1 antibodies in EAG 

 

The concentration of anti-α3(IV)NC1 antibodies in rat sera was measured by direct enzyme 

linked immunosorbent assay (ELISA)
225,226

. Recombinant rat α3(IV)NC1 was diluted  in 

carbonate buffer and coated onto 96 well ELISA plates (Nunc, Roskilde, Denmark) at a 

concentration of 5µg/well (with one uncoated well per two coated wells to provide a ‘blank’ 

reading for each sample duplicate). The plates were left overnight at 4ºC, and then washed 

with 0.1% PBS/T three times. 3% BSA was then applied and the plate incubated for one hour 

at 37ºC, in order to block non-specific binding sites, followed by another series of washing. 

Rat sera were diluted in PBS, and added to wells in triplicate. The plate was incubated for 

one hour at 37ºC, followed by a series of washing. An ALP-conjugated goat anti-rat IgG 

(Sigma) diluted 1:1000 in PBS was added to each well, and the plate incubated for one hour 

at 37ºC, followed by a series of washing. The plate was then developed using p-nitrophenyl 

phosphate solution (Sigma) and read at 405nm using a microplate reader. In initial 

experiments, results are reported as optical density at 405nm. For subsequent experiments, 

sera from preliminary experiments with a high titre of anti-α3(IV)NC1 antibodies were 

pooled, and serial dilutions used to develop a one-site binding hyperbole standard curve, from 

which subsequent results were interpolated using the regression equation described by the 

curve, and expressed in arbitrary units. An example curve is shown in Figure 2.2.  A co-

efficient of variance of 10% between sample replicates was accepted. The pooled sera were 

stored at -80°C in 10-20μl aliquots and each aliquot was used once to avoid repeated freeze-

thaw cycles.  
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2.6.2 Bead-based assay for anti-glomerular basement membrane (GBM) antibodies 

 

Reactivity of sera from α3(IV)NC1-immunised rats to GBM was confirmed by using a 

commercially available bead-based assay, usually intended for use on clinical samples, but 

modified for detection of rat IgG (FIDIS Vasculitis Luminex panel, Theradiag, Marne La 

Vallee, France).  This assay uses fluorescently labelled beads coated with bovine GBM, 

which serve to ‘capture’ anti-GBM antibodies in serum samples. A secondary antibody, 

labelled with a distinct fluorochrome, is then used to detect and quantify bound sample by 

flow cytometry.  Since the α3(IV)NC1 ‘universal’ Goodpasture epitope is highly conserved 

between species, rat anti-α3(IV)NC1 antibodies should recognise this epitope in bovine 

GBM.  The standard kit uses a phycoerythrin- (PE-) labelled anti-human IgG secondary 

antibody, which I substituted with a PE-labelled anti-rat antibody (Miltenyi Biotech, 

Cologne, Germany). The kit also includes beads coated in the anti-neutrophil cytoplasm 

antibody (ANCA) target antigens, MPO and proteinase-3 (PR3). These served as negative 

control assays for rat samples, to confirm that binding of rat anti-α3(IV)NC1 antibodies was 

Figure 2.2: Representative standard curve for anti-α3(IV)NC1 antibody ELISA.. 
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specific, and not due to non-specific binding of rat IgG to the beads. Rat serum samples were 

diluted 1:100 in the provided assay diluent, and 100μl added to 50μl of bead mix (including 

GBM, MPO and PR3 coated beads) in wells of 96-well filter plate, and incubated for one 

hour at room temperature. Excess diluent and sample was removed from the wells by vacuum 

suctioning, and 300μl of the provided wash buffer added to each well, then removed by 

vacuum suctioning. 100μl of secondary antibody (PE-labelled goat anti-rat IgG diluted 1:50 

in assay diluent) was then added to each well for one hour. The beads were washed as before, 

resuspended in 200μl assay diluent, and data acquired on a dedicated flow cytometer 

(Luminex 200, LuminexCorp, Austin, Texas). Data are reported as the mean fluorescence 

intensity (MFI) for PE detection per sample. This work was conducted in the Clinical 

Immunology laboratory at Charing Cross Hospital, London UK, with the assistance of Dr 

Angela Hall and Dr Dipti Patel. 

 

2.6.3 Direct immunofluorescence for deposited antibodies and complement in EAG 

 

IgG and C3 deposited in the glomeruli were assessed by direct immunofluorescence using 

snap frozen renal tissue obtained at the time of cull. Frozen kidney sections were cut on a 

cryostat at 5µm thickness and placed on poly-L-Lysine coated slides (Leica Biosystems, 

Milton Keynes, UK). After fixation in acetone for ten minutes, the slides were air dried. If not 

used immediately, the slides were stored at -80°C in sealed boxes containing silica crystals. 

The slides were blocked with 20% normal rabbit serum (Dako, Ely, UK) for 30 minutes at 

room temperature. After washing in PBS, the slides were incubated with FITC (fluorescein 

isothiocyanate)-conjugated rabbit anti-rat IgG (Sigma) at 1:100 dilution in PBS, or with 

FITC-conjugated goat anti-rat C3 (Nordic MUbio, Susteren, The Netherlands) at 1:10 
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dilution, for one hour at room temperature in a humidified chamber. Following two ten 

minute washes in PBS, the sections were mounted in PBS/Glycerol (Citifluor, London, UK). 

For quantification, 20 consecutive glomeruli on each section were inspected by fluorescence 

microscopy in a blinded fashion. For deposited IgG and C3 in EAG, the degree of 

immunofluorescence was graded from 0 to 3+, with results expressed as the mean intensity 

per glomerulus for each animal. For deposited IgG in EAV, automated image analysis was 

used to calculate fluorescence intensity throughout each glomerulus, in arbitrary units, and 

expressed as the mean intensity per glomerulus for each animal. Automated image analysis 

was used in EAV since the granular pattern of pauci-immune deposition was difficult to 

quantify by visual inspection alone (unlike the clearly linear pattern observed in EAG). 

 

2.6.4 B cell ELISpot assays in EAG 

 

The B cell ELISpot assay provides a method to enumerate antigen-specific antibody-

producing cells. Filter-plate wells are coated in the antigen of interest, to which a cell 

suspension is added. Antibodies produced by antigen-specific cells in this suspension bind to 

antigen in the region of the cell, and are then detected using a labelled-secondary system. 

This method was adapted from the protocol for a commercially available kit designed for use 

in mice (Mabtech AB, Nacka Strand, Sweden).  

 

After sacrifice of animals, spleens were harvested, kept on ice-cold Hank’s balanced salt 

solution (HBSS; Gibco, Life Technologies) and transferred to the tissue culture hood. 

Splenocytes were obtained by passing whole spleen tissue through 100μm filters (BD 
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Biosciences) in cold sterile PBS. Following red blood cell lysis in buffer (Table 2.1) and 

three washing-resuspension cycles in sterile PBS (centrifuged at 1500rpm for five minutes at 

4°C) cells were divided for use either in B cell ELISpot assays or for flow cytometry (section 

2.6.5).  

 

For B cell ELISpot assays, the cells were resuspended in Roswell Park Memorial Institute 

medium (RPMI) supplemented with 10% FCS, 2% penicillin and streptomycin, 2mM L-

glutamine (Invitrogen, Life Technologies), to a final concentration of 1-10 million cells/ml. 

100μl of cell suspension (containing 10
5
 to 10

6
 cells;  eight replicates per animal) was then 

added to wells of ELISpot plates (Multiscreen HTS 96 well filter plates; Merck Millipore) 

that had previously been coated with recombinant rat α3(IV)NC1 by incubating at a 

concentration of 50µg/ml in sterile PBS at 4°C overnight, and blocked with 10% FCS in 

RMPI for one hour at 37°C. Cells were then incubated at 37ºC in 5% CO2 for 12-48 hours 

without moving. After five washes in PBS (no Tween), the ELISpot plates were incubated 

with a biotinylated polyclonal rabbit anti-rat immunoglobulin secondary antibody (Dako; 

dilution 1:250) at room temperature for two hours. Following a further wash cycle, the plates 

were incubated with an Extravadin-ALP conjugate (Sigma; dilution 1:1000) for one hour at 

room temperature, washed again, and finally developed in 5-bromo-4-chloro-3-indolyl 

phosphate/nitro blue tetrazolium (BCIP-NBT) solution (Sigma). Membranes were dried, and 

the number of spots in each well, corresponding to antigen-specific antibody producing cells, 

was quantified using an ELISpot plate reader and dedicated software (ELISpot 4.0, 

Autoimmun Diagnostika, Strassberg, Germany).  
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For inhibitor studies, splenocytes were incubated with R406, prepared as described in section 

2.7.1, for 30 minutes prior to plating into ELISpot wells. For assessment of cell viability at 

the end of inhibitor studies, splenocytes were incubated under identical conditions in standard 

96 well culture dishes (since cells could not be retrieved from ELISpot plates), then counted 

using trypan blue exclusion method on a haemocytometer at the end of the experiment.  

 

2.6.5 Flow cytometry 

 

Splenocytes were obtained as above, resuspended in PBS to a concentration of 10
6 

cells per 

100μl in wells of a 96-well round-bottomed microtitre plate, and stained with the following 

antibodies with a volume of 1μl per 10
6
 cells, for 30 minutes in the dark: CD45RA-PE (OX-

33; BD Biosciences); CD8-PECy7 (OX8; eBiosciences, Hatfield, UK); CD4-FITC (W3/25; 

eBiosciences). Cells were washed in PBS and centrifuged at 2000rpm for five minutes at 

4°C, twice, and fixed with 100μl 3% paraformaldehyde (PFA) in PBS for 30 minutes. Cell 

suspensions were then passed through a 70um cell strainer into polypropylene tubes, 

centrifuged at 2000rpm for five minutes, resuspended in 100μl PBS, and run on a BD Accuri 

C6 flow cytometer (BD Biosciences). Analysis was performed on FlowJo X software (Tree 

Star, Olten, Switzerland). 

 

2.6.6 ELISA for MPO antibodies in EAV 

 

Anti-MPO antibody levels in rat sera were measured using direct ELISA
212,213

, using a 

method similar to that used to detect anti-α3(IV)NC1 antibodies in EAG. Wells were coated 
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with purified human MPO (Calbiochem) at a concentration of 1.33μg/ml in carbonate buffer 

and stored at 4°C overnight. The following day, plates were washed three times in 0.1% 

PBS/T, and non-specific binding sites blocked by incubating the wells with 1% BSA in 0.1% 

PBS/T for one hour. After three washes in 0.1% PBS/T, 100μl of serum samples (diluted 

1:100 to 1:100000 in PBS/T plus 1% BSA) were applied in duplicate, with a negative control 

‘blank’ that did not contain serum. Plates were incubated at 37°C for one hour and then 

washed three times in 0.1% PBS/T. 100μl of rabbit anti-rat IgG with ALP conjugate in 0.1% 

PBS/T plus 1% BSA (dilution 1:1000) was then added for one hour at 37°C. After a wash 

cycle in 0.1% PBS/T, 100μl of p-nitrophenyl phosphate was applied to each well. The colour 

change was monitored, and then quantified on a microplate reader at 405nm. A co-efficient of 

variance of 10% between sample replicates was accepted. As before, istorical pooled sera 

were used to develop a standard curve from which subsequent samples could be assigned an 

interpolated value in arbitrary units,  

 

2.6.7 Indirect immunofluorescence for anti-MPO antibodies 

 

Rat red cell lysis buffer (Table 2.1), filtered and centrifuged at 2400rpm for five minutes to 

remove particles, was added to whole rat peripheral blood at a ratio of 2:1 (buffer:blood) and 

incubated for ten minutes on ice, with intermittent mixing, then centrifuged at 1500rpm for 

five minutes. Cells were resuspended in PBS to a concentration of 50 000 cells/ml, and 100μl 

of cell suspension applied to coated slides (Leica) using a cytospin centrifuge (450rpm for six 

minutes; Cytospin 2, Shandon, ThermoFisher Scientific). After drying, slides were fixed in 

100% acetone, dried, then stored in sealed boxes with silica crystals at -80°C until use. 
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For indirect immunofluorescence, slides were thawed and rinsed in PBS, then blocked in 

20% rabbit serum (Dako) for 30 minutes. Rabbit serum was tapped off, and serum from EAV 

and control rats (1:20 dilution in PBS) applied for 30 minutes in a covered humidified 

chamber. Slides were washed thrice in PBS, then incubated with a secondary rabbit anti-rat 

IgG FITC (1:100) for 30 minutes, washed again, mounted in PBS/Glycerol (Citifluor) and 

inspected immediately by fluorescence microscopy. 

 

  



109 | P a g e  
 

2.7 In vitro methods 

 

2.7.1 Preparation of SYK inhibitor for in vitro studies 

 

R406 was provided at the besylate salt. This was dissolved in sterile-filtered DMSO 

(dimethyl sulphoxide; Sigma) to a stock concentration of 10mM and stored in 10-100μl 

aliquots at 4°C until use. For cell culture experiments, the stock solution was serially diluted 

in cell culture medium, to avoid precipitation, to the desired concentration of R406 in a final 

concentration of 0.1% DMSO. 

 

2.7.2 Nephritic glomeruli ex vivo 

 

Glomeruli were extracted from untreated animals 28 days after induction of EAG, using a 

variation of the method described by Krakower and Greenspon in 1951
228,229

. After sacrifice, 

kidneys were harvested, kept in ice-cold sterile HBSS and taken to the tissue culture hood. 

The kidney capsule was removed and the kidney dissected into pieces, then passed through a 

250µm stainless steel sieve using the plunger from a 10ml syringe. The sieved material was 

then passed sequentially through 125µm and 75µm sieves using ice-cold PBS. With this 

process, connective tissue and tubular fragments are retained by the first two sieves, whereas 

glomeruli are retained by the final sieve. Using a Pasteur pipette and small volumes of PBS, 

glomeruli were rinsed from the final sieve into a 50ml centrifuge tube. After three wash-

resuspension cycles in ice-cold PBS (centrifuged at 500rpm for five minutes at 4°C ), 

glomeruli were resuspended in complete cell culture medium (RPMI supplemented with 10% 
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FCS, 2% penicillin and streptomycin, 2mM L-glutamine). All glomeruli obtained from a 

single rat were then divided in equal proportion to wells of 24-well cell culture dishes in the 

following conditions at a final volume of 500μl: vehicle (0.1% DMSO in complete culture 

medium), and 0.2μM, 1μM and 2μM R406 in vehicle. Glomeruli were incubated for 48 hours 

and culture media collected for analysis of cytokine levels, as described below (section 2.9). 

Since the yield of glomeruli from each rat was variable, results were normalised to vehicle 

conditions, to allow comparison of each biological replicate. 

 

2.7.3 Culture of L929 cell line 

 

L929-conditioned medium, rich in macrophage colony stimulating factor (M-CSF) that can 

be used to drive differentiation of rat bone marrow cells
230

, was prepared by growing a 

murine fibroblast cell line, available in our laboratory, in DMEM supplemented with 10% 

FCS, 2mM L-glutamine, and 2% penicillin and streptomycin. Once cells were confluent, the 

medium was collected and stored at -20°C until use.  

 

2.7.4 Culture of bone marrow derived macrophages (BMDM) 

 

After sacrifice, rat femurs were isolated and transferred to the tissue culture hood in ice-cold 

sterile HBSS solution. The bones were cleaned of hair and soft tissue, washed twice in 70% 

ethanol, and rinsed again in HBSS. Both ends of the cleaned bones were then cut, and bone 

marrow cells flushed out with a 20 gauge needle using 10ml of cold HBSS per bone, and 

collected into a 50ml centrifuge tube. Cells were then centrifuged at 1500rpm for five 
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minutes at 4°C, and re-suspended in 10ml HBSS buffer. The 50ml centrifuge tube was then 

placed in the CO2 incubator in a horizontal position for 10min to hypotonically lyse red blood 

cells. The cells were then centrifuged at 1500rpm for five minutes at 4°C, the supernatant 

aspirated, and the cell pellet re-suspended in DMEM containing 25mM HEPES 

(hydroxyethyl piperazineethanesulfonic acid), 25% L929 cell line conditioned medium, 25% 

FCS, 2mM L-glutamine, and 2% penicillin and streptomycin. The bone marrow cells were 

cultured in 15cm non-treated cell culture Petri dishes (Sterilin, Newport, UK) for seven days. 

Following dissociation (using non-enzymatic buffer for 30 minutes; Biological Industries, 

Kibbutz Beit-Haemek, Israel), cells were counted on a haemocytometer and re-plated either 

(i) to 96-well culture dishes at a density of 10
5
 cells per well, to obtain cell culture 

supernatants for analysis of secreted cytokines by ELISA, or (ii) to 6-well culture dishes at a 

density of 10
6
 cells per well, to obtain cell lysates for analysis of intra-cellular proteins by 

Western blot. After re-plating, cells were left to adhere overnight in full culture medium. The 

following evening (day 8), cells were serum-starved overnight prior to any stimulation (on 

day 9). 

 

2.7.5 Stimulation of BMDM 

 

For SYK inhibitor studies, cells were pre-incubated with vehicle (0.1% DMSO in serum-free 

culture medium) or 0.2μM, 1μM and 2μM R406 in vehicle for 30 minutes. For stimulation, 

whole rat IgG (Sigma) was dissolved in sterile saline, heat-aggregated by placing in a heating 

block at 63°C precisely for 20mins, and centrifuged at 135 000rpm for five minutes (a 

method modified from that originally described by Hora et al, and previously used in our 

laboratory
136,231,232

). The supernatant was removed and reconstituted to a final concentration 
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of 250μg/ml in serum-free cell culture medium, and used to stimulate BMDM. For analysis 

of secreted cytokines, experiments were conducted in technical (cell culture) triplicate and (at 

least) biological duplicate. Supernatants were collected after 24 hours and cytokine levels 

assayed as described below (section 2.9). For analysis of intra-cellular proteins by Western 

blot, biological duplicate experiments were performed, and cells lysates were collected 0-30 

minutes after stimulation as described below (section 2.8).  

 

2.7.6 MTT assay 

 

MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assays were performed 

to assess cell viability at the end of cell stimulation experiments. Viable and metabolically 

active cells reduce MTT, a yellow tetrazole dye, to a coloured soluble formazan (purple) 

product, the absorbance of which at 550nm is directly proportional to the number of living 

cells present in the culture system. It can thus be employed to assess viability or proliferative 

responses to substances under test
233

. After medium was collected for cytokine analysis, fresh 

medium containing 0.5mg/ml MTT was added to each well, and cells incubated overnight. 

The following day, the media were removed and the remaining crystals dissolved in 

isopropanol with 0.1% Triton, and absorbance read at 550nm. 
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2.8 Western blot 

 

2.8.1 Cell lysate preparation 

 

At the defined time-points after cell stimulation with heat-aggregated IgG, the cell culture 

plate was transferred to ice, the culture medium removed, and the cell monolayer was washed 

in ice-cold PBS. 150μl of cell lysis buffer (Table 2.1; supplemented immediately before used 

with protease inhibitor cocktail [ThermoFisher Scientific] and 1mM sodium vanadate) was 

added to each well, and the plate kept on ice and agitated for 20 minutes to ensure complete 

lysis. Lysates were transferred to microcentrifuge tubes and clarified by centrifugation (135 

000rpm for seven minutes at 4°C). The supernatants were transferred to fresh tubes, diluted 

in 5x sample buffer with β-mercaptoethanol (Table 2.1) and boiled for five minutes on a 

heating block at 95°C, then rapidly cooled and stored at -80°C until use.  

 

2.8.2 SDS-PAGE 

 

Samples were resolved by SDS-PAGE. Resolving and stacking gels were prepared as 

summarised in Table 2.3. Electrophoresis was performed using the Hoefer SE 600 Ruby 

Vertical Electrophoresis Unit (GE Healthcare). Two clean glass plates were opposed in a 

casting block, separated by 1.5mm diameter spacers. The resolving gel (activated 

immediately before pouring by addition of TEMED [Tetramethylethylenediamine]) was 

poured between the plates and left for 20 minutes to set. Immediately after pouring, the gel 

was covered by a shallow depth of water- to exclude air and level the surface. Once set, the 
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water layer was poured off and the gel surface blotted dry, and stacking gel added (activated 

immediately before pouring by addition of TEMED).  A 1.5mm 14 well comb was carefully 

inserted into the stacking gel before leaving to set for one hour. Once polymerised, the 

stacking gel has a large pore size allowing proteins to concentrate rapidly at the stacking gel–

resolving gel interface, allowing proteins to separate by size in the resolving gel. The comb 

was then removed, excess gel carefully cleaned away with a needle and the casting block 

placed into the gel electrophoresis tank submerged in running buffer. 

 

 10% Resolving 

Gel 

5% Stacking 

Gel 

30% acrylamide-

bisacrylamide 
3.4ml 1.7ml 

1M Tris pH 8.8 

0.1% SDS 
3.75ml - 

1M Tris pH 6.8  

0.1% SDS 
- 1.25ml 

dH2O 2.8ml 6.9ml 

10% APS  

(ammonium persulfate) 
100ul 100ul 

TEMED* 

(Tetramethylethylenediamine) 
10ul 10ul 

Volumes given to prepare 10ml of gel 

*added immediately before pouring 

 

 

2.8.3 Sample preparation and electrophoresis 

 

Samples were thawed and boiled again for five minutes on a heating block at 95°C. Heating, 

in tandem with β-mercaptoethanol in the sample buffer, acts as a potent reducing agent, 

Table 2.3: Preparation of resolving and stacking gels for SDS-PAGE. 
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breaking disulphide bonds and linearising proteins so that subsequent electrophoretic 

separation is governed by molecular weight alone. Samples and a marker protein ladder 

(Kaleidoscope Pre-stained Standards; BioRad, Hercules, California) were loaded onto the gel 

taking care not to cross-contaminate between lanes. The gel tank was connected to a power 

supply and the gel run at 100 volts for approximately ten hours. 

 

2.8.4 Transfer to nitrocellulose membrane 

 

Adequate separation of proteins was confirmed by inspection of the coloured ladder markers 

before halting electrophoresis. The Transphor-4 Cassettes and Cooler system (GE 

Healthcare) was used for transfer of proteins to nitrocellulose. The glass plates were removed 

from the casting block and immediately submerged in transfer buffer. A sheet of 

nitrocellulose membrane (Hybond-N; GE Healthcare) was cut to size and soaked in transfer 

buffer. Four sheets of filter paper, cut to the size of the gel, were also soaked in transfer 

buffer. The stacking gel was discarded and a ‘sandwich’ formed within the gel-holder 

cassette comprising: one foam pad, two sheets of filter paper, the nitrocellulose membrane, 

resolving gel, two sheets of filter paper, one foam pad. Any trapped air bubbles were 

removed by rolling with a plastic pipette. 

 

The cassette was then inserted into the transfer tank adjacent to a cooling unit, the tank filled 

with transfer buffer, and a charge of 80 volts applied for 1.5 hours. The membrane was 

removed and transferred to wash buffer solution (0.1% Tween in TBS; TBS/T). Adequate 

transfer of protein was confirmed by visual inspection of coloured ladder protein transfer. 
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2.8.5 Blocking and antibody application 

 

For detection of phospho-proteins, the membrane was transferred to a solution of 2% BSA in 

0.1% TBS/T and placed on a rocker for one hour in order to block non-specific protein 

binding sites. The blocking solution was poured off and the membrane washed briefly with 

wash buffer before adding the relevant primary antibody (Table 2.4) and placing on a rocker 

either for one hour at room temperature or overnight at 4°C. The membrane was then washed 

three times (1 x 15 minutes, 2 x 5 minutes) in wash buffer before incubating with a species-

specific horse-radish peroxidase (HRP)-linked secondary antibody (Table 2.4) for one hour. 

The membrane was then washed three times, as before, in preparation for the detection step. 

 

For detection of the corresponding total proteins, the membrane previously immuno-probed 

for the phospho-protein was incubated in stripping buffer (Western blot Re-probe Reagent; 

Calbiochem) for 30 minutes at room temperature on a rocker, then washed thrice as before in 

0.1% TBS/T. The membrane was then blocked (in 5% dry milk powder in 0.1% TBS/T) and 

incubated with the relevant primary and secondary antibodies (Table 2.4) as above. 
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TARGET PRIMARY ANTIBODY 
SECONDARY 

ANTIBODY 

BLOCKING 

SOLUTION/ANTIBO

DY DILUENT 

Phosphorylated 

SYK 

P-SYK Try525/526 

Cell Signaling #2711 

Rabbit polyclonal 

1:1000 

Goat anti-rabbit IgG-HRP 

BioRad 

1:5000 

2% BSA in 0.1% TBS/T 

Phosphorylated 

JNK 

Clone JNK-PT48 

Sigma 

Mouse monoclonal 

1:1000 

Goat anti-mouse IgG-HRP 

BioRad 

1:5000 

2% BSA in 0.1% TBS/T 

Phosphorylated 

p38 

Clone P38-TY 

Sigma 

Mouse Monoclonal 

1:1000 

Goat anti-mouse IgG-HRP 

BioRad 

1:5000 

2% BSA in 0.1% TBS/T 

Total SYK 

SYK-N19 

Santa Cruz 

#1077 

Rabbit polyclonal 

1:1000 

Goat anti-rabbit IgG-HRP 

BioRad 

1:5000 

5% milk powder in 

0.1% TBS/T 

Total JNK 

Clone JNK-FL 

Santa Cruz 

Rabbit polyclonal 

1:1000 

Goat anti-rabbit IgG-HRP 

BioRad 

1:5000 

5% milk powder in 

0.1% TBS/T 

Total p38 

Clone C-20 

Santa Cruz 

Rabbit polyclonal 

1:1000 

Goat anti-rabbit IgG-HRP 

BioRad 

1:5000 

5% milk powder in 

0.1% TBS/T 

 

 

 

2.8.6 Chemiluminescence and signal detection 

 

The chemiluminescence reaction was used for detection of bound antibody. The enhanced 

chemiluminescence kit (ECL; GE Healthcare) used in this step consists of two reagents: 

hydrogen peroxide and luminol. These were mixed in a 1:1 ratio prior to use and applied 

directly to the membrane lying on a cellophane sheet. The membrane was incubated in ECL 

Table 2.4: Summary of antibodies used for Western blot. 
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medium for approximately one minute before gently tapping off and wrapping the membrane 

in the cellophane sheet. The membrane was placed in a photographic cassette and transferred 

to the dark room where it was exposed against x-ray film (Hyperfilm ECL; GE Healthcare) 

and developed using an automatic film processor (SRX-101A, Konica Minolta, Osaka, 

Japan). 

 

In the presence of an oxidising agent (produced by decomposition of hydrogen peroxide by 

HRP), luminol is converted to an excited state and chemiluminesces as this species decays. 

This chemiluminescence is proportional to the amount of HRP present, and consequently the 

abundance of target protein, and can be detected with great sensitivity using high 

performance x-ray film. After development of the exposed x-ray film, the target protein(s) 

can be seen as discrete bands and the identity confirmed by comparing the molecular weight 

with those of the marker ladder proteins. Relative abundance of protein between samples was 

assessed by visual comparison of band size and density, and by densitometry using image 

analysis software (ImageJ) on scanned immunoblot images (acquired using a Desktop 

Scanner; AOI 922, Dell, Round Rock, Texas). 
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2.9 Analysis of cytokines 

 

2.9.1 Monocyte chemoattractant protein 1 (MCP-1) 

 

MCP-1 concentrations in cell culture supernatants were measured using a commercially 

available sandwich ELISA development kit (OptEIA Rat MCP-1 ELISA Set, BD 

Biosciences) used according to the manufacturer’s instructions. A 96-well ELISA plate 

(Nunc) was coated with 100µl of capture antibody at a dilution of 1:250 in carbonate buffer, 

sealed and stored overnight at 4C (or for a maximum of four days) until use. For use, the 

capture antibody solution was removed, wells washed thrice in 0.1% PBS/T, and 200μl of 

assay diluent (10% FCS in PBS) was added to each well for one hour at room temperature to 

block non-specific binding sites on the surface of the plate. After three washes in 0.1% 

PBS/T, 100μl of samples (neat or diluted up to 1:5000 in assay diluent, as necessary), known 

standards and negative control samples (containing assay diluent alone) were added to wells 

in duplicate and incubated for one hour at room temperature. After three further washes in 

0.1% PBS/T, 100μl of assay diluent containing biotinylated detection antibody (1:500) and 

streptavidin-HRP conjugate (1:250) was added to each well for one hour, and wells washed 

five times. A solution of 3,3’,5,5’-tetramethylbenzidine (TMB; Cambridge Bioscience, 

Cambridge UK) and hydrogen peroxide was prepared, and 100µl added to each well. TMB is 

colourless in solution in basal conditions but forms a blue product when oxidised by HRP in 

the presence of hydrogen peroxide, the colour intensity of which is proportional to the degree 

of HRP activity and, in turn, the amount of bound secondary antibody. The plate was 

incubated in the dark for approximately ten minutes before stopping the reaction by adding 

50µl of 2M sulphuric acid. This final step yields a yellow colour change, proportionally 
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identical in intensity to its blue counterpart. The absorbance was measured at 450nm on a 

microplate reader. Adjusted absorbance was calculated by subtracting the background 

absorbance of the ‘blank’ sample. A best-fit standard curve was generated from the 

absorbances of the recombinant MCP-1 reference series using four variable non-parametric 

regression modelling. Concentrations of MCP-1 in samples could then be calculated from the 

raw blank-subtracted absorbances using the resultant regression equation. A co-efficient of 

variance of <10% between sample replicates was accepted. 

 

2.9.2 Interleukin 12 (IL-12) 

 

Concentrations of IL-12 in cell culture supernatants were measured using a commercially 

available sandwich ELISA kit (Rat IL-12+p40 ELISA Kit, Invitrogen, Life Technologies) 

used according to the manufacturer’s instructions. 100μl of samples (neat), known standards 

and negative control samples were added in duplicate to 8-well strips pre-coated with capture 

antibody. 50μl of the provided incubation buffer was added to standards and control sample 

wells, 50μl of the provided assay diluent was added to sample wells, then the strips were 

sealed and incubated for two hours at room temperature. Standards and samples were 

expelled and the wells washed thrice in the provided wash buffer. 100μl of the provided 

biotinylated anti-IL-12 solution was added to each well and incubated for one hour at room 

temperature. The wells were washed a further three times and 100μl of streptavidin-HRP 

added to each well for 30 minutes at room temperature. After five washes, 100μl of the 

provided chromagen solution was added to each well. This solution is equivalent to TMB and 

hydrogen peroxide in the MCP-1 ELISA process, and the wells were processed and read in an 

identical manner from this point forward. 
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2.9.3 Tumour necrosis factor alpha (TNF-α) 

 

TNF-α concentrations in cell culture supernatant were assayed using a commercially 

available fluorescent bead-based assay, used according to the manufacturer’s instructions 

(Cytometric Bead Array Rat TNF-α Flex Set, BD Biosciences). This assay system provides a 

method of capturing soluble analyte with coated beads of known size and specific 

fluorescence. It is then possible to detect and quantify the bound analyte using flow 

cytometry, using a detection reagent that provides a second, distinct fluorescent signal in 

proportion to the amount of bound analyte. Briefly, 50μl of sample or known standards were 

incubated with 50μl of capture bead mix for two hours at room temperature. 50μl of detection 

reagent, containing a PE-labelled anti-TNF-α antibody was then added, and samples 

incubated for a further one hour at room temperature. 1ml of wash buffer was then added, and 

samples centrifuged at 1200rpm for five minutes. The supernatant was carefully removed, 

and the pellet of beads resuspended in 300μl of wash buffer. Samples were acquired on a 

flow cytometer (BD Accuri, BD Biosciences) and data analysed using the automated FCAP 

array software (BD Bioscience). 
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2.10 Immunohistochemistry (IHC) 

 

2.10.1 Study Approval for use of human tissue 

 

Human renal tissue samples were obtained from patients under local ethics committee 

approval (04/Q0406/25 Hammersmith and Queen Charlotte’s & Chelsea Hospitals Research 

Ethics Committee). Lymph node samples were provided by the Imperial College Healthcare 

NHS Trust Tissue Bank (Application R10015). 

 

2.10.2 Pre-treatment of paraffin sections 

 

All IHC in this study was performed on formalin-fixed paraffin embedded tissue sections. 

Paraffin wax embedding and sectioning of formalin-fixed animal tissues was performed by 

Ms Lorraine Lawrence (Department of Leukocyte Biology, Imperial College London). 

Sections were cut on a rotary microtome to a thickness of 4µm. Human renal biopsy 

specimens were spare paraffin sections, surplus to clinical need, retrieved from the histology 

archive at Hammersmith Hospital, or provided by Kay Dawson (on behalf of the Imperial 

College Healthcare NHS Trust Tissue Bank). 

 

Sections were placed in two sequential baths of xylene, to remove wax, before passage 

through graded ethanol concentrations and finally water. The latter steps serve to remove 

xylene and rehydrate the tissue. 
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Formaldehyde preserves tissues by cross-linking amino groups in proteins with other nearby 

nitrogen atoms in protein or DNA, producing methylene bridges and other types of bridging 

links. These cross-links must usually be broken either by thermal or enzymatic means 

(‘epitope retrieval’) to enable the primary antibody to recognise its target epitope. De-waxed 

sections therefore underwent heat-induced epitope retrieval in 0.1M sodium citrate buffer, pH 

6.0. The sections were then sequentially blocked for endogenous peroxidase activity by 

submerging in 0.3% hydrogen peroxide from ten minutes, and rinsed in PBS.  A wax pen 

(Dako) was used to encircle tissue sections on the slide to minimise ‘run-off’ when 

subsequent solutions were applied. A 20% serum solution was applied for 30 minutes (See 

Table 2.5 for details) to block non-specific binding of subsequent antibodies. 

 

2.10.3 Primary antibodies 

 

The blocking antibody was tapped off, and primary antibodies added at the appropriate 

dilution in sufficient volume to cover the tissue section, typically 50-200μl. Slides were 

placed in a covered, humidified staining chamber to minimise evaporation and left to 

incubate for the appropriate duration (Table 2.5). For exploratory SYK IHC, negative 

controls comprised omission of primary antibody and, where available, use of primary 

antibody pre-incubated with the cognate immunising peptide at a 1:1 ratio. Omission of 

primary antibody was used for IHC protocols that were already established in our laboratory 

(e.g. CD68). 
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2.10.4 Detection 

 

Two methods were used for detection of primary antibodies in tissue sections:  

 

(i) A commercial secondary antibody detection system (EnVision, Dako) was used for the 

detection of the majority of primary antibodies (Table 2.5).  The EnVision reagent consists of 

a peroxidase-conjugated polymer backbone which carries secondary antibody molecules 

raised in goat and directed against rabbit or mouse immunoglobulins. Primary antibody was 

tapped off and slides washed two times for five minutes in PBS. Sufficient EnVision reagent 

was then added to completely cover the tissue section and the slide placed in the humidified 

incubation chamber for 30 minutes. The reagent was then tapped off and a further two PBS 

washes performed. 

 

(ii) For rat ED1 and CD8 staining in rat tissue, excessive non-specific background staining 

within glomeruli was observed using the EnVision system. In these instances, a biotinylated 

rabbit anti-mouse secondary antibody (as detailed in Table 2.5) was incubated with the 

sections for one hour. The sections were then washed twice in PBS, and incubated with an 

Extravadin-HRP conjugate (Sigma) at a dilution of 1:100 for 30 minutes, then washed thrice 

in PBS. 

 

A 3,3’-diaminobenzidine (DAB) chromagen solution was prepared by mixing DAB+ 

chromagen with DAB+ substrate buffer in a ratio of 1:50 (Dako). This was applied to tissue 

sections for 30 seconds to five minutes depending on the primary antibody; oxidation of DAB 
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by peroxidase/H2O2 yields a dark brown pigment signifying positive staining. Reaction was 

terminated by placing slides in PBS. Slides were then rinsed in water and counterstained by 

immersion for 30 seconds in filtered Harris haematoxylin (CellPath, Powys, UK). After 

rinsing, excess stain was removed by brief (<1 second) immersion in acid-alcohol solution 

(1% HCl in 70% ethanol). Sections were then washed in water and dehydrated by sequential 

passage through ascending alcohol concentrations to xylene. Slides were then mounted with 

DPX (Distrene, Plasticiser, Xylene; VWR International, Lutterworth, UK) and glass 

coverslips and allowed to dry before examination. 

 

2.10.5 Double staining 

 

For double staining for phosphorylated SYK and CD68, in both rat and human tissue, 

sections were first stained for phosphorylated SYK as described above. Following 

development in DAB, the sections were sequentially rinsed, re-subjected to heat-induced 

antigen retrieval (0.1M citrate buffer, pH 6.0), blocked with 20% rabbit or goat serum 

(Dako), incubated with mouse anti-rat ED1 primary antibody (Serotec, Oxford UK; dilution 

1:500) or mouse anti-human CD68 (Dako; dilution 1:50) at room temperature for one hour, 

washed, then incubated with a biotinylated rabbit or goat anti-mouse immunoglobulin 

secondary antibody (Sigma; dilution 1:100) for one hour, then ALP-conjugated streptavidin 

(Roche Diagnostics; dilution 1:100) for 30 minutes, before final development using the 

Vector Blue ALP Substrate Kit III (Vector Labs, Peterborough, UK) according to 

manufacturer’s specifications. Slides were mounted in AquaPerm (ThermoFisher Scientific) 

without counterstaining, and coverslips placed. 
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2.10.6 Quantification of total SYK staining in human biopsies 

 

Automated image analysis software (ImagePro Plus) was used, in a blinded fashion, to 

quantify the percentage of glomerular staining in all glomeruli in each biopsy section, and 

expressed as the mean percentage stain per GCS for each case. 
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TARGET 

PROTEIN 

(SPECIES) 

BLOCKING 

SOLUTION 

PRIMARY 

ANTIBODY 

PRIMARY 

ANTIBODY 

DILUTION AND 

INCUBATION 

SECONDARY 

ANTIBODY (FOR 

SINGLE STAINING) 

Total SYK 

(Human, Rat) 

20% Goat 

Serum (Dako) 

SYK-N19 

Santa-Cruz 

#1077 

Rabbit 

polyclonal 

1:300 (Human) 

1:1000 (Rat) 

 

1h, room 

temperature 

Dako-EnVision 

HRP-linked polymer anti-

rabbit 

Phosphorylated 

SYK 

(Human) 

20% Goat 

Serum (Dako) 

P-SYK 

Try525/526 

Cell Signaling 

#2711 

Rabbit 

polyclonal 

1:25 

 

2h, room 

temperature 

Or overnight 4°C 

Dako-EnVision 

HRP-linked polymer anti-

rabbit 

Phosphorylated 

SYK 

(Rat) 

20% Goat 

Serum (Dako) 

P-SYK Tyr323 

Abcam 

#63515 

Rabbit 

polyclonal 

1:50 

 

2h, room 

temperature 

Or overnight, 4°C 

Dako-EnVision 

HRP-linked polymer anti-

rabbit 

CD68 

(Human) 

20% Goat 

Serum (Dako) 

Clone PGM1 

Dako 

Mouse 

monoclonal 

 

1:50 

 

1h, room 

temperature 

Dako-EnVision HRP 

linked polymer anti- mouse 

CD15 

(Human) 

20% Goat 

Serum (Dako) 

Clone Carb-3 

Dako 

Mouse 

monoclonal 

1:50 

 

1h, room 

temperature 

Dako-EnVision HRP 

linked polymer anti-mouse 

CD68 

(Rat) 

20% Rabbit 

Serum (Dako) 

Clone ED1 

Serotec 

Mouse 

monoclonal 

1:500 

 

1h, room 

temperature 

Biotinylated rabbit anti-

mouse immunoglobulin 

(Sigma; dilution 1:100); 

Followed by Extravadin-

HRP (Sigma; dilution 

1:100) 

CD8 

(Rat) 

20% Rabbit 

Serum (Dako) 

Clone MCA48R 

Serotec 

Mouse 

Monoclonal 

1:100 

 

1h, room 

temperature 

Biotinylated rabbit anti-

mouse immunoglobulin 

(Sigma; dilution 1:100); 

Followed by Extravadin-

HRP (Sigma; dilution 

1:100) 

Table 2.5: Summary of antibodies used for immunohistochemistry. 
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2.11 Statistics 

 

Graphs were constructed and statistical analysis conducted using Prism 5.0 (GraphPad 

Software Inc., San Diego, California). Whenever a statistical test was used, this is indicated 

in the text. The means of two or more normally distributed variables were compared with a t-

test or analysis of variance (ANOVA) respectively, with Bonferroni post-hoc test to compare 

individual groups. Most biological data are not, however, normally distributed. For non-

parametric datasets, or where <8 samples were available, Mann-Whitney U, Kruskal-Wallis 

or Friedman tests were used to assess the difference between 2, >2 and >2 (repeated 

measures) groups respectively, with Dunn’s post-hoc test to compare individual groups. All 

tests were two-tailed. 
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CHAPTER THREE – DEVELOPMENT OF METHODS AND PRELIMINARY 

INVESTIGATIONS 
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3.1  Production, purification and characterisation of recombinant rat α3(IV)NC1 

 

The HEK 293 cell line with stable transfection of the rat α3(IV)NC1-FLAG construct, kindly 

provided by Dr John Reynolds, was grown continuously for a period of three months, during 

which approximately 20mg of purified antigen was isolated for use. Seven purification 

procedures were undertaken using the anti-FLAG epitope affinity column. Fractions were 

collected in 1ml volumes and protein concentration was quantified by measuring optical 

density (OD) at 280nm. A representative example of an elution is shown in Figure 3.1. 

 

 

 

 

The recombinant α3(IV)NC1 eluted from the anti-FLAG column was characterised by SDS-

PAGE and Western blotting. Serial fractions were run on a gel for protein separation. A 

Western blot of the eluted fractions was blotted with a monoclonal antibody specific for the 

FLAG signal peptide included in the recombinant α3(IV)NC1 construct. Two bands were 

evident between the 30 and 45kDa molecular weight markers, signalling the isoforms of the 

recombinant antigen. The dimer form appears at 67kDa (Figure 3.2). 

Figure 3.1: Representative elution of α3(IV)NC1 from anti-FLAG affinity column. 
Protein content measured at 280nm in serial fractions purified from supernatant collected from α3(IV)NC1 
transfected HEK 293 cells, using anti-FLAG affinity chromatography column. 
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While the anti-FLAG Western blot confirmed the presence of the FLAG epitope, it was 

necessary to demonstrate that the recombinant α3(IV)NC1 was also intact and functionally 

active as an antigen. Serial fractions were blotted with serum from a patient with anti-GBM 

disease and a rat with EAG. The α3(IV)NC1 antibodies in these two sera samples revealed 

banding at the same molecular weight as did the control anti-FLAG antibody (not shown). 

 

 

 

 

 

  

Figure 3.2: Western blot for FLAG signal protein. 
Western blot using anti-FLAG monoclonal antibody on serial fractions of affinity column eluent, 
demonstrating the two isoforms of the recombinant antigen at c.35kDA, and the dimerised form of the 
antigen at c.70kDa. 
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3.2  EAG Experiment 1: Induction of EAG in WKY rats by immunisation with 

α3(IV)NC1 

 

The purpose of experiment 1 was to confirm the immunogenicity of the purified recombinant 

rat α3(IV)NC1 in WKY rats, and to establish that disease could be induced ‘in my hands’ 

with this antigen preparation. Female animals, aged five weeks with body weight 

approximately100g (n=3-4 per group), were immunised with either 100µg α3(IV)NC1 

emulsified in an equal volume of CFA, or an equivalent volume of buffer and CFA alone 

(negative control), administered by intramuscular injection to the thighs. This dose was 

chosen based on Dr Reynolds’ previous characterisation of this model
225

. Urine and serum 

were collected weekly for either 28 or 42 days (with an additional urine collection on day 18, 

the time-point when disease onset is typically observed by Dr Reynolds) before being culled 

for tissue analysis. The severity of glomerular injury was assessed by (1) serial measurement 

of proteinuria, (2) quantification of histological injury and degree of inflammatory cell 

infiltrate, and (3) measurement of biochemical renal function. The humoral immune response 

was assessed by serial measurement of circulating anti-α3(IV)NC1 antibodies, and 

glomerular antibody deposition at the end of the experiment. 

 

3.2.1  Proteinuria 

 

Proteinuria was quantified both as total urinary protein loss per day, and as the urinary 

protein:creatinine ratio (uPCR), which aims to correct urinary protein concentrations for the 

differences in total urine volume and concentration. Negative control animals did not develop 

detectable proteinuria for the duration of the experiment. Positive control animals had 
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detectable proteinuria by day 18, consistent with Dr Reynolds’ previous observations. The 

degree of proteinuria increased consistently for the duration of the experiment (Figure 3.3). 

 

 

 

3.2.2  Histological Injury 

 

Negative control animals had normal glomerular histology when assessed at day 28, by which 

point positive controls had developed significant glomerular injury, with approximately 70% 

of glomeruli severely affected by crescent formation or necrosis. By day 42, over 90% of 

glomeruli were severely affected (Figure 3.4). 

 

 

Figure 3.3: Development of proteinuria following immunisation with α3(IV)NC1. 
Proteinuria expressed (A) as total urinary protein loss per day, and (B) as urinary protein:creatinine ratio 
(uPCR), in CFA control and EAG animals following immunisation with α3(IV)NC1 at day 0.  Data are shown 
as median ±IQR. 

Figure 3.4: Renal histology following immunisation with α3(IV)NC1. 
(A) Proportion of severely abnormal glomeruli in CFA Control and EAG animals 28 and 42 days following 
immunisation, shown as median ±IQR. (B) The range of glomerular abnormalities (normal, abnormal or 
severely abnormal) in each group, shown as mean ±SEM. (C) Photomicrographs showing representative 
histology in each group. H&E stain, x400 magnification. 
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3.2.3  Infiltrating leucocytes 

 

The extent of inflammatory cell infiltrate into glomeruli was assessed by 

immunohistochemical staining for ED1, a rat macrophage specific marker, and CD8. These 

markers were chosen based on previous descriptions of the natural history of this model
226

. 

Negative control animals had no evidence of ED1+ or CD8+ cells within glomeruli at day 28. 

In the positive control animals, there was a marked ED1+ inflammatory infiltrate by day 28 

that had decreased by day 42, suggesting a peak in inflammatory cell infiltrate before this 

time point. There was a similar pattern of CD8+ cell infiltration, although absolute numbers 

of CD8+ cells were much lower (Figure 3.5). 

 

 

 

Figure 3.5: Glomerular inflammatory cell infiltration following immunisation with α3(IV)NC1. 
(A) Macrophage infiltration, expressed as the mean percentage of ED1+ cells per glomerular cross section 
(GCS), in CFA control and EAG animals 28 and 42 days after immunisation. Lower panel photomicrographs 
show representative staining images. (B) CD8+ leucocyte infiltration, expressed at the mean number of 
CD8+ cells per GCS in each group, with representative photomicrographs.  All data shown as median ±IQR. 
Images are immunoperoxidase stains with haematoxylin counterstain, x400 magnification. 
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3.2.4  Renal function 

 

Biochemical renal function was assessed by measuring serum urea and creatinine 

concentrations, and the respective renal clearance of each substance (Figure 3.6). There was 

minimal change in serum concentrations of urea and creatinine at day 28 after disease 

induction. By day 42, there was clear evidence of impaired renal function, although there was 

high variability, with one animal having very severe renal failure (despite appearing well on 

inspection prior to culling). 

 

 

 

  

Figure 3.6: Assessments of renal function following immunisation with α3(IV)NC1. 
(A) Serum urea, (B) Urea clearance, UrCl, (C) Serum creatinine, and (D) Creatinine clearance, CrCl, in CFA 
control and EAG animals 28 and 42 days after immunisation. Data are shown as median ±IQR. 
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3.2.5  Circulating and deposited α3(IV)NC1 antibodies 

 

CFA negative control animals did not have detectable antibodies to α3(IV)NC1 by day 28. 

Positive control animals had detectable circulating antibody by day 7. The titre of antibody 

rose progressively until day 21 and then appeared to plateau (Figure 3.7), although serial 

dilutions were not performed. In keeping with the development of circulating autoantibodies, 

the α3(IV)NC1 immunised animals had intense linear deposits of IgG within glomeruli at day 

28, as detected by direct immunofluorescence, whereas no antibody was observed in negative 

control animals.  

 

 

 

  

Figure 3.7: Humoral responses following immunisation with α3(IV)NC1. 
(A) Circulating anti-α3(IV)NC1 antibody levels, reported as mean optical density at 405nm (OD 405) per 
group, in CFA control and EAG animals following immunisation with α3(IV)NC1 at day 0. Data are shown at 
median ±IQR. (B) Direct immunofluorescence for deposited rat IgG in CFA control and EAG animals 28 days 
after immunisation. All EAG animals had strong linear deposits of IgG along the glomerular basement 
membrane. Anti-rat IgG FITC, x400 magnification. 
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3.3 EAG Experiment 2: Dose-response and disease beyond day 28 

 

In the previous experiment, I established that the α3(IV)NC1 antigen I had purified was 

immunogenic and could induce renal disease comparable to that observed in this model in our 

laboratory previously. Since the production of the antigen was labour and time intensive, I 

wanted to test if lower doses could be used to induce similar levels of disease. In addition, 

despite having histopathological evidence of severe renal disease at day 28, the animals had 

minimal disturbance of their renal biochemistry, and I was keen to describe the natural 

history of disease beyond 28 days. I therefore conducted a dose-response experiment (using 

100μg, 50μg, 25μg and 12.5μg α3(IVI)NC1) and assessed the animals at 4, 6 and 8 weeks 

after immunisation. Female rats, aged seven weeks, with average body weight 150g were 

used. Between week 7 and week 8, three of the animals became unwell and demonstrated 

>10% loss of body weight, thus reaching the pre-defined limits of our Home Office licence 

(two animals in the 100μg group and one animal in the 25μg group). These animals were 

therefore culled immediately, without a final urine collection, and the results are reported 

accordingly. 

 

3.3.1 Proteinuria 

 

Twenty-four hour urinary protein loss and uPCR are summarised in Figure 3.8. At all time 

points, animals in the 25μg, 50μg and 100μg groups had comparable degrees of proteinuria. 

Animals in the 12.5μg group tended to have less proteinuria, although the difference was 

statistically significant at week 4 only. In addition, correlation analysis of all data pairs 

suggested that measures of uPCR and 24 hour urinary protein loss provided comparable 

information in this model (Pearson correlation coefficient 0.84, p<0.0001; Figure 3.9). 



138 | P a g e  
 

 

 

Figure 3.8: Proteinuria 4 to 8 weeks after Induction of EAG. 
(A) 24 hour urinary protein, and (B) Urinary protein:creatinine ratio (uPCR) at week 4, 6 and 8 after 
induction of EAG with varying doses of α3(IV)NC1. Animals immunised with 12.5mcg α3(IV)NC1 tended to 
have lesser degrees of proteinuria, though this was statistically significant at week 4 only. Data are shown 
as median ±IQR. Lower summary plots reported as median only, without error, for clarity. Week 8 data not 
available for 3 rats culled early. ns – not significant, *p<0.05, **p<0.01, by Kruskall Wallis test (overall 
significance indicated by upper symbol) with Dunn’s post-test comparison to 100μg dose group 
(significance indicated by lower symbols). 
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3.3.2  Histological Injury 

 

At week 8, animals in the 25μg, 50μg and 100μg groups had comparable renal histology, with 

the almost all glomeruli affected by disease. Significant tubular atrophy and interstitial 

fibrosis was also observed, though not formally quantified. Animals in the 12.5μg group 

tended to have less renal injury, although this trend was not statistically significant (Figure 

3.10). 

Figure 3.9: Correlation of uPCR with 24 hour urinary protein in EAG. 
Correlation analysis suggests that measures of urinary protein:creatinine ratio (uPCR) and 24 hour urinary 
protein loss provide equivalent information in EAG. 



140 | P a g e  
 

 

 

Figure 3.10: Renal histology 8 weeks after Induction of EAG. 
(A) Proportion of severely abnormal glomeruli 8 weeks following immunisation with varying doses of 
α3(IV)NC1, shown as median ±IQR. ns – not significant, *p<0.05, **p<0.01, by Kruskall Wallis test (overall 
significance indicated by upper symbol) with Dunn’s post-test comparison to 100μg dose group 
(significance indicated by lower symbols). (B) The range of glomerular abnormalities (normal, abnormal or 
severely abnormal) in each group, shown as mean ±SEM. (C) Photomicrographs showing representative 
histology, including significant degrees of tubular atrophy, in each group. H&E stain, x200 magnification. 
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3.3.3 Renal function 

 

The various measurements of renal function at week 8 are shown in Figure 3.11. The outlier 

data points represent the animals which were culled early (assigned a clearance of 0ml/min 

since urine collection was not possible; serum measurements were made).  There was a trend, 

in all parameters, towards more severe renal impairment with increasing dose of α3(IV)NC1, 

although this was not statistically significant with measures of creatinine concentration or 

clearance. 

 

 

Figure 3.11: Renal function 8 weeks after induction of EAG. 
(A) Serum urea, (B) Urea clearance, UrCl, (C) Serum creatinine, and (D) Creatinine clearance, CrCl, 8 weeks 
after immunisation with varying doses of α3(IV)NC1. Data are shown as median ±IQR. Serum 
measurements include animals culled early at week 7; these animals were assigned clearance of 0ml/min 
at week 8. ns – not significant, *p<0.05, **p<0.01, by Kruskall Wallis test (overall significance indicated by 
upper symbol) with Dunn’s post-test comparison to 100μg dose group (significance indicated by lower 
symbols). 
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Notably, serial measurements of urea and creatinine clearance between week 4 and 6 

provided discordant results compared to serum measurements of each (Figure 3.12). Whilst 

serum levels of both substances tended to rise between week 4 and 6, there was an increase in 

their urinary clearance, particularly noted in CFA control animals. This may reflect, in part, 

the physiological changes in glomerular filtration and muscle mass that were occurring in the 

young (and thus rapidly growing) rats used in these studies. Direct measurement of serum 

urea and creatinine may thus be a more reliable marker of renal function in these animals. 

 

 

  

Figure 3.12: Renal function 4 to 8 weeks after induction of EAG. 
(A) Serum urea, (B) Urea clearance, UrCl, (C) Serum creatinine, and (D) Creatinine clearance, CrCl, 4 to 8 
weeks after immunisation with varying doses of α3(IV)NC1. Data are shown as median only, without error, 
for clarity. Serum measurements include animals culled early at week 7; these animals were assigned 
clearance of 0ml/min at week 8. 
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3.3.4 Lung haemorrhage 

 

Based on initial observations of pulmonary disease in EAG Experiment 1, I developed a 

semi-quantitative scoring system to assess the severity of lung haemorrhage in this model. As 

shown in Figure 3.13, lung haemorrhage was consistently observed only in the 100μg dose 

group. 

 

 

 

3.3.5 Circulating anti-GBM antibodies 

 

Since the direct α3(IV)NC1 ELISA method used elsewhere is this project uses the 

recombinant rat α3(IV)NC1 protein that is also used for immunisation, it is possible that the 

ELISA may detect antibodies made to other components of the antigen preparation (such as 

the FLAG construct or contaminants) rather than anti-GBM antibodies. In order to confirm 

Figure 3.13: Lung haemorrhage 8 weeks after induction of EAG. 
Semi-quantitative lung haemorrhage (LH) score 8 weeks after immunisation with varying doses of 
α3(IV)NC1. Data are shown as median ±IQR. ns - not significant, *p<0.05, **p<0.01, by Kruskall-Wallis test 
(overall significance indicated by upper symbol) with Dunn’s post-test comparison to 100μg dose group 
(significance indicated by lower symbols). 
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that the animals were making anti-α3(IV)NC1 antibodies,  I used a bead-based assay, using 

commercially available, fluorescently-labelled beads coated with bovine GBM, to quantify 

circulating antibody levels in this experiment. This assay confirmed that the rats made 

antibodies directed against the ‘universal’ Goodpasture epitope. It also showed that highest 

levels of circulating antibody were consistently observed in the 100μg dose group (Figure 

3.14). 

 

 

  

Figure 3.14: Anti-GBM antibody levels 8 weeks after induction of EAG. 
Mean fluorescence intensity (MFI) of anti-GBM antibodies 8 weeks after immunisation with varying doses 
of α3(IV)NC1. This assay confirms that rats are making antibodies directed against the ‘universal’ 
Goodpasture epitope. Data are shown as median ±IQR. ns - not significant, *p<0.05, **p<0.01, ***p<0.001 
by Kruskall Wallis test (overall significance indicated by upper symbol) with Dunn’s post-test comparison to 
100μg dose group (significance indicated by lower symbols). 
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3.4 EAG Experiment 3: Early disease in young male and female rats 

 

In a subsequent experiment, I characterised further the pattern of early disease in EAG (at day 

21 and day 28) and directly compared the susceptibility of male and female rats at these time 

points. Notably, whilst both male and female WKY rats develop disease after immunisation 

with α3(IV)NC1, I could not find any data from our laboratory that directly compared 

susceptibility between rat sexes. This experiment was conducted with Ms Zelpha D’Souza, 

from the Physiological Genomics and Medicine Group at the Medical Research Council 

Clinical Sciences Centre, and the preliminary results generated here were also used to inform 

the design of our parallel collaborative project investigating the genetic susceptibility of the 

WKY rat to experimental models of glomerulonephritis
234

. As such, this experiment included 

groups of Lewis (LEW) rats, the resistant rat strain used as a negative control in the genetic 

studies, which I have included here for completeness. Four week old rats (2-4 per group) with 

average body weight 85g were used in this experiment, immunised with a dose of 50μg of 

α3(IV)NC1. Since individual group numbers are small, I have not conducted formal 

statistical analysis. 

 

3.4.1 Proteinuria 

 

As expected, Lewis rats were resistant to the development of proteinuria following 

immunisation with α3(IV)NC1 (Figure 3.15). WKY rats had developed proteinuria by day 

21, consistent with the findings of EAG Experiment 1 where disease onset was confirmed by 

day 18, and had progressed in severity by day 28. There was a trend for more proteinuria in 

female WKY rats at day 21, although male and female rats were comparable at day 28. 
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3.4.2 Histological injury and infiltrating leucocytes 

 

Lewis rats were similarly resistant to severe glomerular injury and leucocyte infiltration 

(Figure 3.16). There was a trend for female WKY rats to have more severe glomerular injury 

and leucocyte infiltration at day 21, but male and female rats were comparable at day 28. 

 

 

Figure 3.15: Proteinuria in WKY and Lewis rats 21 and 28 days after immunisation with α3(IV)NC1. 
Lewis (LEW) rats were resistant to the development of proteinuria, whilst both male and female WKY rats 
developed proteinuria by day 21, that progressed by day 28. Data shown as median ±IQR. 

Figure 3.16: Glomerular histology and leucocyte infiltration in WKY and Lewis rats 21 and 28 days after 
immunisation with α3(IV)NC1. 

(A) Severe glomerular abnormalities, shown as median ±IQR, (B) All glomerular abnormalities, shown as 
mean ±SEM, and (C) Infiltrating ED1+ cells, shown as median ±IQR. Lewis (LEW) rats were resistant to all 
parameters, whilst both female and male WKY rats developed glomerular abnormalities and macrophage 
infiltration by day 21 that progressed by day 28. 
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3.4.3 Deposited glomerular antibodies 

 

As shown in Figure 3.17, Lewis rats did not deposit significant amounts of IgG within 

glomeruli by day 21 or day 28. There was a trend for female WKY rats to have more intense 

fluorescence for glomerular IgG at day 21 compared to male WKY rats, though fluorescence 

was equivalent by day 28. 

 

 

 

 

  

Figure 3.17: Deposited glomerular antibody in WKY and Lewis rats 21 and 28 days after immunisation 
with α3(IV)NC1. 

Lewis (LEW) rats did not deposit glomerular IgG, whilst both male and female WKY rats developed deposits 
by day 21, that progressed by day 28. Data shown as median ±IQR. 
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3.5 Development of an ELISpot assay for detection of α3(IV)NC1-specific splenic B 

cells 

 

Since I later wanted to study the effects of SYK inhibition on humoral immune function, I 

developed a B cell ELISpot assay to enable enumeration of α3(IV)NC1-specific antibody-

producing splenocytes from EAG rats. The protocol was adapted from a commercially 

available kit for use in mice. Since this was a novel procedure in our laboratory, a series of 

method development experiments were necessary to optimise the assay. Cell concentration 

was varied between 10
5
 and 10

6
 per well, and incubation time between 12 and 48 hours. 

Results were acquired on an automated ELISpot plate reader, and reported as either the 

absolute number of α3(IV)NC1-specific cells per million splenocytes, or the amount of anti- 

α3(IV)NC1-specific ‘activity’ (a composite of spot number, size and intensity). Example 

read-outs using a number of example incubation protocols are shown in Figure 3.18. 

 

As illustrated in Figure 3.18, cell concentrations greater than 5x10
5
 per well resulted in 

excessive ‘background’ detection in non-α3(IV)NC1 immune rats, and prolonged incubation 

(of 48 hours) increased the detection of cells and activity in α3(IV)NC1 immunised rats, 

without resulting in significantly more ‘background’ detection in non-immune animals, and 

so these parameters were used for subsequent studies. It was not possible to completely 

eliminate ‘background’ detection in non-immune rats, however, so in subsequent in vivo 

studies splenocytes from a non-immune rat were included on all plates to provide an 

appropriate control comparator. There was also significant variation in the number of cells 

detected in replicate wells from the same animal, so the assay was repeated in at least eight 

replicate wells to provide an accurate estimation of α3(IV)NC1-specific cell number. 
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Figure 3.18: Development of an ELISpot assay to detect α3(IV)NC1-specific splenic B cells. 
(A) Representative images of ELISpot wells using α3(IV)NC1-immune (EAG) and non-immune (CFA Control) 
WKY rats, showing ‘spots’ that indicate anti-α3(IV)NC1 antibody production by splenocytes in vitro. (B) 
Quantification of ELISpot readings as both absolute number of α3(IV)NC1-specific cells and overall 
α3(IV)NC1-specific ‘activity’ (a composite of spot number, size and intensity). Results using three examples 
of different incubation protocols, as indicated, are shown for comparison. Protocol 1 was the protocol used 
in subsequent studies. All data shown as mean ±SEM. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, by 
unpaired t-test. 
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3.6 SYK expression in EAG 

 

In subsequent experiments I will study the effects of SYK inhibition using fostamatinib, a 

small molecule kinase inhibitor with selectivity for SYK, in EAG. However, I felt it was first 

important to confirm that SYK in expressed and/or activated in this model. I therefore 

conducted immunohistochemical analysis for total (T-SYK) and phosphorylated (P-SYK) in 

rat tissue. 

 

3.6.1 Choice of primary antibodies 

 

For T-SYK staining, I used a commercially available rabbit polyclonal antibody raised 

against a 19 amino acid sequence at the N-terminus of human SYK, which is also reported to 

react to rat SYK. Rat and human SYK share overall 95% amino-acid sequence homology, 

and this region is reported to be 100% homologous. I have also shown that this antibody is 

reactive to rat SYK by Western blot (Chapter Four). Negative control stains were performed 

by pre-incubating the primary antibody with the immunising peptide, sourced from the 

antibody manufacturer. 

 

For P-SYK staining, I tested a variety of commercially available antibodies directed against 

various phosphorylated tyrosine residues within the SYK molecule. The most reproducible 

staining in rat tissue was achieved with a rabbit polyclonal directed against a phospho-

tyrosine 323 in interdomain B of SYK. Notably, it has been shown that phosphorylation of 

Tyr323 creates a binding site for CBL, a negative regulator of SYK signal transduction in B 

cells and mast cells
235-237

. However the demonstration of phosphorylation at this tyrosine 

residue is consistent with the hypothesis that SYK is in an activated state, prior to it 
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processing towards a negative regulation pathway. This antibody has also been used by other 

investigators to demonstrate the presence of activated SYK in mouse intestinal and lung 

tissue
238

. Since the immunising peptide for this antibody was not readily available, negative 

control studies were performed by omitting the primary antibody (and using buffer alone) for 

this step of the staining procedure. 

 

3.6.2 Total and phosphorylated SYK detection in rat spleen tissue 

 

Staining for both T-SYK and P-SYK was positive in spleen tissue taken from rats with EAG 

at all time points examined (18, 28, 36, 42 days after disease induction; day 28 shown in 

Figure 3.19). Staining was strongest within the germinal centres and marginal zones of 

lymphoid follicles, consistent with an important role for SYK in the generation of adaptive 

immune responses.  

 

 

Figure 3.19: Total (T-SYK) and phosphorylated SYK (P-SYK) detection in rat spleen. 
Positive and negative control (NC) staining on paired sections of rat spleen for (A) & (B) T-SYK and (C) & (D) 
P-SYK. In both cases, SYK staining is strongest within germinal centres and marginal zones of lymphoid 
follicles. Immunoperoxidase stains with haematoxylin counterstain, x100 magnification. 
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3.6.3 Total and phosphorylated SYK detection in normal rat kidney tissue 

 

In normal rat kidney tissue, T-SYK staining was intermittently positive within distal tubular 

epithelial cells, but consistently negative within glomeruli (Figure 3.20). Detection of P-SYK 

was negative in both glomeruli and distal tubular epithelial cells, suggesting that SYK may be 

expressed but not activated within the latter cell type. A similar pattern of both T-SYK and P-

SYK detection was subsequently observed in human renal tissue (Chapter Six). 

 

 

 

  

Figure 3.20: Total (T-SYK) and phosphorylated SYK (P-SYK) detection by in normal rat kidney. 
(A) & (B) Positive and negative control (NC) staining for T-SYK on paired sections of normal rat kidney, 
showing intermittent distal tubular epithelial cell staining but no glomerular staining. (C) & (D) Paired 
sections of T-SYK and P-SYK staining in normal rat kidney, showing negative staining for P-SYK in both 
tubules and glomeruli. Immunoperoxidase stains with haematoxylin counterstain, x200-400 magnification. 
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3.6.4 Total and phosphorylated SYK detection in nephritic rat kidney tissue 

 

In nephritic rat tissue, taken from animals 18 days after induction of EAG (Figure 3.21), 

staining for T-SYK was again positive in the same pattern within distal tubular epithelial 

cells, but also within glomeruli, and appeared to localise to areas of proliferation or crescent 

formation. P-SYK expression remained predominantly negative within distal tubular 

epithelial cells, but was positive within glomeruli in a similar pattern to that observed for T-

SYK. 

 

 

 

To identify the cellular localisation of SYK within diseased glomeruli, I went on to perform 

double staining for P-SYK and ED1 (Figure 3.22) on tissue taken from rats 28 days after 

disease induction. This suggested that SYK was predominantly found within ED1+ 

Figure 3.21: Total (T-SYK) and phosphorylated SYK (P-SYK) detection in nephritic rat kidney. 
(A) & (B) Positive and negative control (NC) staining for T-SYK on paired sections of nephritic rat kidney 
(day 18 after induction of EAG), showing intermittent distal tubular epithelial cell staining and also strong 
glomerular staining within an area of proliferation. (C) & (D) Positive and negative control (NC) staining for 
P-SYK on sections of nephritic rat kidney, showing negative staining for P-SYK in tubular cells, but positive 
staining within a glomerulus localised to an area of proliferation. Immunoperoxidase stains with 
haematoxylin counterstain, x400 magnification. 
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macrophages within diseased glomeruli. However, there were a small number of cells that 

were P-SYK+ and ED1-, implying that other cells types may also express SYK, such as 

resident renal cells or other types of infiltrating leucocyte. 

 

 

 

 

  

Figure 3.22: Double staining for ED1 and phosphorylated SYK (P-SYK) in nephritic rat kidney. 
ED1 (immunophosphatase; blue) and P-SYK (immunoperoxidase; brown) staining within glomeruli of rats 
28 days after induction of EAG. Combined staining suggests significant co-localisation of P-SYK to ED1+ 
macrophages (solid arrows), although there are a small number of P-SYK+ cells that are not ED1+ (hollow 
arrows). No counterstain, x400 magnification. 
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3.7 Chapter Three: Summary and discussion of results 

 

This chapter summarises the preparatory work and development of the model and methods 

that were used in the subsequent investigational experiments described in Chapters Four, Five 

and Six. 

 

This work included the production and purification sufficient α3(IV)NC1 to conduct 

subsequent in vivo and in vitro experiments. I have shown that my protein preparation is both 

antigenic (by Western blot) and immunogenic in vivo, resulting in the induction of anti-GBM 

antibodies along with end-organ renal and lung damage in WKY rats. Dose-response studies 

showed that, while α3(IV)NC1 doses of 25-100μg appeared to induce similar degrees of renal 

injury, use of a 100μg dose resulted in more robust antibody responses and lung damage, and 

so this dose was used for subsequent intervention studies. Male and female WKY rats are 

susceptible to EAG, though female rats may develop earlier deposited antibody and 

glomerular inflammation. Female rats were therefore used in subsequent studies. As 

anticipated, Lewis rats are resistant to disease induction using this antigen. 

 

Changes in renal biochemistry were not consistently observed until after day 28 post-

immunisation. However, after week 6 animals were at risk of severe renal failure and 

exceeding limits of the home office licence. This suggests an end-point between 4-6 weeks is 

optimal for assessing changes in renal function in this model; day 36 was used at the end-

point in subsequent experiments. 

 

Changes in urea and creatinine clearance may be difficult to interpret in these young, rapidly 

growing rats. Direct serum urea and creatinine measurements may be adequately reliable 
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markers of renal dysfunction in these cases. Quantification of proteinuria using 24 hour 

urinary protein and uPCR measurements provide equivalent information this model. 

 

In addition to refining the in vivo EAG model, I have used this antigen preparation to develop 

a B cell ELISpot assay that allows enumeration of α3(IV)NC1-specific splenic B cells in 

vitro. The incubation conditions for this assay have been optimised. 

 

Finally, I have shown that SYK is expressed and activated (i.e. phosphorylated) within 

nephritic glomeruli in EAG, and appears to localise significantly (though not exclusively) to 

infiltrating ED1+ macrophages, a key mediator of injury in this model, strongly implicating 

SYK activity in the pathogenesis of EAG and supporting my rationale for pharmacologic 

inhibition of this kinase in future studies. As described in Chapter One, SYK inhibition using 

fostamatinib or other small molecule inhibitors has been studied in other in vivo models of 

immune-mediated injury. However, confirmation of SYK expression by IHC in these models 

is limited. T-SYK expression has been described in the skin lesions of MRL/lpr lupus-prone 

mice
69

 and in the synovium of CIA rats
67

, although the identification of SYK in its activated, 

phosphorylated state is limited to the alloimmune heterologous phase of rat nephrotoxic 

nephritis
239

. This is therefore the first report of P-SYK detection by IHC in an autoimmune 

model of renal injury. In addition to SYK expression in diseased end-organ renal tissue, I 

observed strong staining for both T-SYK and P-SYK in the lymphoid tissue, consistent with a 

well characterised role for SYK in the generation of adaptive immune responses, which 

supports the rationale for investigating the role of SYK in the development of humoral 

immunity. The technical strengths and limitations of the immunohistochemical methods I 

have used are discussed in more detail in Chapter Six.  
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CHAPTER FOUR - SPLEEN TYROSINE KINASE INHIBITION IN 

EXPERIMENTAL AUTOIMMUNE GLOMERULONEPHRITIS 
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4.1  Introduction and experimental design 

 

The aim of the following studies in EAG was to examine the effects of SYK inhibition using 

fostamatinib on both humoral immune responses and end-organ damage in a pre-clinical 

model that is relevant to human renal disease (Section 1.6). 

 

 

 

 

I have conducted two separate experiments using fostamatinib in the model (Figure 4.1). The 

purpose of the first study (EAG Experiment 4) was to establish if SYK has a role in the 

pathogenesis of autoimmunity in EAG - animals were treated from one hour prior to 

immunisation with α3(IVI)NC1 until day 18. This time point was chosen based on the results 

of the preliminary experiments in Chapter One which confirmed that immunised animals 

have both circulating antibodies and early renal injury by this time point, so the effects of 

SYK inhibition on induction of the autoimmune response should be maximally observed 

before day 18. From day 18 onwards, treatment was discontinued and animals were 

monitored for progression of disease after treatment withdrawal.  The animals were observed 

Figure 4.1: Experimental design for SYK inhibition studies in EAG. 
Experiment 4 was a preventive study to examine the effects of SYK inhibition on the induction of 
autoimmunity in EAG. Experiment 5 was to examine the effects of SYK inhibition in established disease, to 
more accurately reflect the potential clinical use of this strategy. 
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for a further 18 day period (until day 36) as this provided a sufficient time period for disease 

to develop after treatment withdrawal, and created overall ‘symmetry’ in the experimental 

protocol. 

 

In a second study (EAG Experiment 5), I examined the effects of SYK inhibition in 

established EAG, to more accurately reflect the potential effect of treatment in clinical 

practice. In this experiment, initiation of treatment was delayed until 18, at which point the 

onset of disease was confirmed by the development of haematuria and proteinuria.  The 

animals were then followed until day 36, as the findings of the preliminary studies suggested 

that severe renal injury (accompanied by biochemical abnormalities) would be observed at 

this time point before development of symptoms or significant mortality from renal failure. 

 

In both intervention studies, female rats (eight per group) were used since preliminary 

experiment 3 suggested that females mount earlier immune responses. To obtain comparative 

histology in treated and untreated animals at day 18, an additional two groups (n=4) were 

used. A dose of 100μg α3(IVI)NC1 was used since preliminary experiment 2 showed this 

resulted in more robust humoral responses and reproducible lung injury.  

 

A dose of fostamatinib 40mg/kg twice daily was chosen based on our laboratory’s previous 

dose-response study in NTN that demonstrated maximal biological effect without toxicity, 

and is consistent with the dose used in murine lupus studies.
68,136

 One animal in the 

preventive study was sacrificed early due to an immediate complication of oral gavage; 

results for seven animals in the fostamatinib group are therefore reported. 
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4.2. EAG Experiment 4: Prevention Study 

 

 

 

4.2.1 Haematuria and proteinuria 

 

During the treatment period, fostamatinib-treated rats were completely protected from 

haematuria and proteinuria. When treatment was withdrawn after day 18, animals 

subsequently developed both urinary abnormalities, though with sustained protection 

compared to vehicle-treated controls at day 36 (Figure 4.2). 

 

 

Figure 4.2: Urinary findings in EAG Experiment 4: Prevention Study (Day 0-18). 
(A) Haematuria and (B) Proteinuria in fostamatinib and vehicle-treated animals during the 18 day 
treatment period (shaded) and the 18 day treatment withdrawal period (unshaded), showing complete 
protection from these urinary abnormalities during fostamatinib treatment. Data shown as median ±IQR. 
*p<0.05, **p<0.01, ***p<0.001, Mann Whitney U test. 
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4.2.2 Histological injury 

 

Fostamatinib-treated animals had entirely normal renal histology at day 18, whereas vehicle-

treated animals had severe pathology affecting 26% of glomeruli (Figure 4.3). Glomeruli had 

acute crescent formation, characterised by rupture of the glomerular basement membrane and 

extravasation of fibrin and cells into Bowman’s space (Figure 4.4). By day 36, these had 

progressed to large, circumferential, fibrocellular crescents in the vehicle-treated group, 

whereas fostamatinib-treated animals had earlier lesions, similar to those seen in untreated 

animals at day 18, which were also fewer in number (38% reduction; p=0.0014) compared to 

vehicle-treated controls. 

 

 

 

Figure 4.3: Histological injury in EAG Experiment 4: Prevention Study (Day 0-18). 
(A) Proportion of severely abnormal glomeruli in fostamatinib and vehicle-treated animals at day 18 and 
day 36, shown as median ±IQR. *p<0.05, **p<0.01, Mann Whitney U test. (B) The range of glomerular 
abnormalities (normal, abnormal or severely abnormal) in each group, shown as mean ±SEM. 
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Figure 4.4: Representative histological injury in EAG Experiment 4: Prevention Study (Day 0-18). 
Photomicrographs showing representative glomerular histology in fostamatinib and vehicle-treated 
animals at day 18 and day 36. H&E and Jones methanamine silver stains as indicated, x400 magnification. 
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4.2.3 Infiltrating leucocytes 

 

The histopathological findings were closely mirrored by leucocyte infiltration (Figure 4.5). 

At day 18, fostamatinib-treated animals had no evidence of ED1+ or CD8+ cells within 

glomeruli, whereas vehicle-treated controls had demonstrable leucocyte infiltration. After 

treatment withdrawal, animals developed an influx of both cell types, and by day 36 there 

was a trend towards higher numbers of both ED1+ and CD8+ cells in the fostamatinib group 

(though not statistically significant, p=0.12 for both parameters). The lower number of 

glomerular leucocytes in vehicle-treated animals at this time point is in keeping with the 

observations of preliminary experiment 1 that suggested glomerular leucocyte number falls 

between day 28 and day 42, possibly as the peak inflammatory phase of disease has been 

passed. 
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Figure 4.5: Glomerular leucocyte infiltration in EAG Experiment 4: Prevention Study (Day 0-18). 
(A) Macrophage infiltration, expressed as the mean percentage of ED1+ cells per glomerular cross section 
(GCS), and (B) CD8+ leucocyte infiltration, expressed as the mean number of CD8+ cells per GCS, in 
fostamatinib and vehicle-treated animals at day 18 and day 36. Data shown as median ±IQR, ns – not 
significant, *p<0.05, Mann Whitney U test. (C) Photomicrographs showing representative 
immunoperoxidase stains for ED1+ and CD8+ cells in both groups at day 36, with haematoxylin 
counterstain, x400 magnification. 
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4.2.4 Renal function 

 

As shown in Figure 4.6, fostamatinib-treated animals had lower serum urea and serum 

creatinine concentrations compared to vehicle-treated controls at day 36, in keeping with 

preservation of excretory renal function.  

 

 

 

4.2.5 Lung haemorrhage 

 

At day 36, fostamatinib-treated animals had less severe lung disease, whether quantified by 

macroscopic inspection of the lung surfaces at the time or cull, or microscopic inspection for 

haemosiderin-laden cells (Figure 4.7). 

Figure 4.6: Renal function in EAG Experiment 4: Prevention Study (Day 0-18). 
(A) Serum urea, and (B) Serum creatinine concentrations in fostamatinib and vehicle-treated control 
animals at day 36, showing preservation of renal function with fostamatinib treatment. Normal ranges, 
determined from all CFA control animals in preliminary experiments 1 & 2 are shown by horizontal dotted 
lines. Data shown as median ±IQR. *p<0.05, **p<0.001, Mann Whitney U Test. 
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4.2.6  Humoral autoimmune response 

 

During the 18 day treatment period, fostamatinib-treated animals had minimal serological 

evidence of autoimmunity, with barely detectable circulating anti-α3(IV)NC1 antibodies 

(Figure 4.8A).  When treatment was withdrawn, antibody levels rose, but reached a lower 

plateau level than vehicle-treated control animals at day 36. (51% reduction; p=0.021). In 

keeping with lower levels of circulating autoantibodies, there was less deposited antibody 

detected in the glomeruli of fostamatinib-treated animals at day 36 (Figure 4.8B). 

 

Figure 4.7: Lung haemorrhage in EAG Experiment 4: Prevention Study (Day 0-18). 
(A) Macroscopic lung haemorrhage score, and (B) Quantification of haemosiderin-laden cells in lung tissue, 
in vehicle and fostamatinib-treated animals at day 36. Data shown as median ±IQR, *p<0.05, Mann 
Whitney U test. (C) Photomicrographs showing representative staining for haemosiderin-positive cells in 
lung sections, using Perls’ Prussian Blue, without counterstain to facilitate accurate counting, x200 
magnification. 
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4.2.7  EAG Experiment 4: Prevention Study summary 

 

In this study, fostamatinib treatment completely protected from the development of key 

disease phenotypes during the initial 18 day treatment period – animals did not develop 

circulating antibodies, urinary abnormalities, histological renal injury or glomerular 

inflammatory cell infiltrates. This observation suggests that SYK activity is an absolute 

requirement for the induction of autoimmunity in this model. When treatment was withdrawn 

at day 18, animals subsequently developed typical features of disease, and at day 36 each of 

these disease parameters was comparable to those in untreated animals at day 18, suggesting 

that SYK ‘disinhibition’ by treatment withdrawal allowed the natural history of the model to 

be restored. 

 

  

Figure 4.8: Humoral responses in EAG Experiment 4: Prevention Study (Day 0-18). 
(A) Circulating anti-α3(IV)NC1 antibodies during the 18 treatment period (shaded) and the 18 day 
treatment withdrawal period (unshaded), showing minimal antibody responses during fostamatinib 
treatment, and a lower plateau response after treatment withdrawal.  (B) Quantification of direct 
immunofluorescence for deposited IgG at day 36, showing reduced glomerular antibody deposition in 
fostamatinib-treated animals. All data shown as median ±IQR, *p<0.05, **p<0.01, ***p<0.001, Mann 
Whitney U test. 
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4.3 EAG Experiment 5: Established Disease Study 

 

 

 

4.3.1 Haematuria and proteinuria 

 

At day 18, disease was confirmed in all animals by the onset of haematuria and proteinuria. 

The introduction of fostamatinib treatment at day 18 resulted in a complete and rapid 

resolution of these urinary abnormalities that was sustained until day 36 (Figure 4.9), whereas 

vehicle-treated controls had progression in both parameters. 

 

 

 

Figure 4.9: Urinary findings in EAG Experiment 5: Established Disease Study (Day 18-36). 
(A) Haematuria and (B) Proteinuria in fostamatinib and vehicle-treated animals during the 18 day 
treatment free period (unshaded) and the 18 day treatment period (shaded), showing complete resolution 
of urinary abnormalities with fostamatinib treatment. Data shown as median ±IQR. *p<0.05, **p<0.01, 
***p<0.001, Mann Whitney U test. 
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4.3.2 Histological injury 

 

As described in section 4.2.2, vehicle-treated animals had severe abnormalities in 26% of 

glomeruli at day 18. Following treatment from day 18 to 36, the fostamatinib group had 

almost entirely normal glomerular histology (Figure 4.10) whereas vehicle-treated animals 

had progression to >70% severe glomerular abnormalities. Representative histology is shown 

in Figure 4.11. This striking observation suggests that introduction of fostamatinib treatment 

lead to reversal of glomerular necrosis and crescents during the course of the 18 day 

treatment exposure. 

 

 

 

Figure 4.10: Histological injury in EAG Experiment 5: Established Disease (Day 18-36). 
(A) Proportion of severely abnormal glomeruli in fostamatinib and vehicle-treated animals at day 18 and 
day 36, with day 18 vehicle-treated controls repeated from Figure 4.3 for comparison. Data shown as 
median ±IQR. *p<0.05, **p<0.01, ***<0.001, Mann Whitney U test. (B) The range of glomerular 
abnormalities (normal, abnormal or severely abnormal) in each group, shown as mean ±SEM. 
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Figure 4.11: Representative histological injury in EAG Experiment 5: Established Disease (Day 18-36). 
Photomicrographs showing representative glomerular histology in fostamatinib and vehicle-treated 
animals at day 36, with day 18 histology in vehicle-treated animals repeated from figure 4.4 for 
comparison. At day 18, vehicle treated animals had early crescents, characterised by rupture of the 
glomerular basement membrane and extravasation of fibrin and cells into Bowman’s space. By day 36, in 
vehicle treated animals, these had progressed to large circumferential fibrocellular crescents. In 
fostamatinib treated animals, early crescentic changes had resolved and glomeruli had essentially normal 
histological appearances by day 36. H&E and Jones methanamine silver stains as indicated, x400 
magnification. 
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4.3.3 Infiltrating leucocytes 

 

At the end of the 18 day treatment period, fostamatinib-treated animals had minimal evidence 

of ED1+ or CD8+ cell infiltration into glomeruli. Again, when compared to day 18 vehicle-

treated control animals, this suggested significant efflux during treatment from day 18 to 36 

(Figure 4.12). 

 

 

  

Figure 4.12: Glomerular leucocyte infiltration in EAG Experiment 5: Established Disease (Day 18-36). 
(A) Macrophage infiltration, expressed as the mean percentage of ED1+ cells per glomerular cross section 
(GCS), and (B) CD8+ leucocyte infiltration, expressed as the mean number of CD8+ cells per GCS, in 
fostamatinib and vehicle-treated animals at 36, with day 18 data repeated from Figure 4.5 for comparison. 
Introduction of fostamatinib treatment at day 18 lead to reversal of inflammatory cell infiltration. Data 
shown as median ±IQR, *p<0.05, **p<0.01, Mann Whitney U test. (C) Photomicrographs showing 
representative immunoperoxidase stains for ED1+ and CD8+ cells at day 18 and day 36 as indicated, with 
haematoxylin counterstain, x400 magnification. 
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4.3.4 Renal function 

 

As shown in Figure 4.13, vehicle-treated animals had significantly elevated serum urea 

concentrations compared to the fostamatinib group, implying loss of excretory renal function. 

In this experiment, however, I did not observe a significant change in serum creatinine levels 

(or creatinine clearance; data not shown), possibly reflecting the inadequacy of this marker as 

an indicator of renal function in young rats with low muscle mass.  

 

 

 

4.3.5 Lung haemorrhage 

 

In this experiment, fostamatinib-treated animals were completely protected from macroscopic 

evidence of lung injury, and had minimal evidence of haemosiderin-laden cells in the lung on 

microscopic examination (Figure 4.14).  

Figure 4.13: Renal function in EAG Experiment 5: Established Disease (Day 18-36). 
(A) Serum urea, and (B) Serum creatinine concentrations in fostamatinib and vehicle-treated control 
animals at day 36. Normal ranges, determined from all CFA control animals in preliminary experiments 1 & 
2 are shown by horizontal dotted lines. Data shown as median ±IQR.*p<0.05, **p<0.01, Mann Whitney U 
Test. 
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4.3.6  Humoral autoimmune response 

 

The introduction of fostamatinib treatment at day 18 caused circulating autoantibody levels to 

plateau, at a time when levels were rising rapidly in the vehicle treated group (Figure 4.15A). 

Since the half-life of these autoantibodies exceeds 2-3 weeks, this suggests that there was no 

ongoing antibody production after the introduction of treatment, implying possible effects of 

SYK inhibition on mature, antibody secreting B cells or plasma cells. At the end of the 

treatment period, there was a 75% reduction in circulating antibody levels (p=0.0006) with a 

concomitant decrease in the amount of deposited antibody (Figure 4.15B). There was also a 

decrease in deposited complement component C3 (Figure 14.5C), in keeping with reduced 

activation of the classical complement pathway. The intensity of complement staining was, 

Figure 4.14: Lung haemorrhage in EAG Experiment 5: Established Disease (Day 18-36). 
(A) Macroscopic lung haemorrhage score, and (B) Quantification of haemosiderin-laden cells in lung tissue, 
in vehicle and fostamatinib-treated animals at day 36. Data shown as median ±IQR, *p<0.05, **p<0.01, 
Mann Whitney U test. (C) Photomicrographs showing representative staining for haemosiderin-positive 
cells in lung sections, using Perls’ Prussian Blue, without counterstain to facilitate accurate counting, x200 
Magnification. 
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however, much less than for deposited IgG, in keeping with Dr Reynolds previous 

observations in this model (personal communication).  

 

 

 

 

Figure 4.15: Humoral responses in EAG Experiment 5: Established Disease (Day 18-36). 
(A) Circulating anti-α3(IV)NC1 antibodies during the 18 treatment free period (unshaded) and the 18 day 
treatment period (shaded), showing  cessation of autoantibody production following the introduction of 
fostamatinib treatment.  (B) & (C) Quantification of direct immunofluorescence for IgG and complement C3 
at day 36, showing reduced glomerular antibody and complement deposition in fostamatinib-treated 
animals, with representative fluorescence images. Anti-rat IgG FITC and anti-rat C3 FITC as indicated, x400 
magnification. All data shown as median ±IQR, *p<0.05, **p<0.01, ***p<0.001, Mann Whitney U test.  
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4.3.7 Haematological indices 

 

In this experiment, I had the opportunity to measure haemoglobin, white cell and platelet 

counts at day 36, following 18 days treatment with fostamatinib (Figure 4.16). There was a 

modest but significant decline in both haemoglobin concentrations and white cell count 

following fostamatinib treatment. There was also a moderate thrombocytosis. These 

observations are consistent with previously reported immunotoxicity assessments in Sprague-

Dawley rats
80

. In these studies, full recovery of peripheral blood counts was observed 

following a 14 day ‘wash-out’ period. 

 

 

 

 

4.3.8 EAG Experiment 5: Established Disease Study summary 

 

This experiment has shown that SYK inhibition with fostamatinib is an effective treatment 

for established disease in EAG. Introduction of treatment at day 18 resulted in reversal of 

severe glomerular pathology, preservation of renal function, and protection from lung 

haemorrhage. It also resulted in cessation of antibody production, suggesting a direct 

Figure 4.16: Haematological indices in EAG Experiment 5: Established Disease (Day 18-36). 
(A) Haemoglobin concentration, (B) White blood cell (WBC) count, and (C) Platelet count in fostamatinib 
and vehicle-treated animals at day 36. Data shown as median ±IQR, *p<0.05, **p<0.01, ***p<0.001, Mann 
Whitney U test. 
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inhibitory effect on mature, antibody producing B cells or plasma cells. These dramatic 

effects were observed without disproportionate bone marrow suppression. 

 

4.4 B cell ELISpot and flow cytometric analysis 

 

Since I observed significant effects of SYK inhibition on humoral immune responses in both 

in vivo studies, I went on to enumerate antigen-specific splenic B cells using the B-cell 

ELISpot assays described in Chapter Two. Fostamatinib treatment from days 0 to 18 after 

disease induction resulted in a significant reduction in the generation of α3(IV)NC1 specific 

splenic B cells, when measured at day 18 (Figure 4.17). In some instances, the number of 

specific splenic B cells in fostamatinib-treated animals was comparable to those in animals 

immunised with CFA alone. 

 

 

 

Figure 4.17: α3(IV)NC1-specific splenic B cells following fostamatinib treatment from day 0-18. 
Fostamatinib treatment inhibited the generation of α3(IV)NC1-specific splenic B cells. Results from three 
biological replicate groups are shown, each including three rats (vehicle-treated, fostamatinib-treated, and 
a CFA alone rat for comparison). Data shown as mean ±SEM (of ≥8 technical replicates). *p<0.05, **p<0.01, 
***p<0.001, 1-way ANOVA with Bonferroni post-comparison for vehicle versus fostamatinib treatment. 
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In animals treated from day 18-36, once disease was established, there was no significant 

difference in the number of antigen-specific splenic B cells at the end of the treatment period 

(Figure 4.18). This supports the observation that the introduction of fostamatinib treatment at 

day 18 had a direct effect on antibody production by mature antigen-specific cells, since there 

was no ongoing antibody production during this period, despite equal numbers of antigen-

specific cells being present in the spleen. 

 

 

 

I also tested whether the production of anti-α3(IV)NC1 antibodies could be inhibited in vitro 

in the ELISpot assay by pre-incubating splenocytes taken from EAG rats with R406, the 

active metabolite of fostamatinib, before application to the ELISpot plate. An initial result 

suggested that there was a dose-dependent reduction in antibody production using the 

Figure 4.18: α3(IV)NC1-specific splenic B cells following fostamatinib treatment from day 18-36. 
Fostamatinib treatment did not significantly affect the number of α3(IV)NC1-specific splenic B cells when 
treatment was initiated at day 18, once clonal B cell responses were established. Results from three 
biological replicate groups are shown, each including three rats (vehicle-treated, fostamatinib-treated, and 
a CFA alone rat for comparison). Data shown as mean ±SEM (of ≥8 technical replicates). ns – not 
significant, 1-way ANOVA with Bonferroni post-comparison for vehicle versus fostamatinib treatment. 
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approach, although subsequent assays did not confirm significant reproducibility of this 

observation (Figure 4.19). Since cells could not be recovered from the ELISpot plate at the 

end of the incubation, separate cell preparations were kept in identical conditions in standard 

cell culture dishes to allow cell viability counts at the end of the experiment - these did not 

show adverse effects on overall splenocyte survival after 48 hours’ incubation with R406 at 

the doses used (data not shown). 

 

 

 

 

I analysed the overall number of CD4+, CD8+ and CD45RA+ splenocytes following 

treatment from days 0 to 18, in order to examine the effects of fostamatinib on overall B cell 

survival, and also to confirm that the relative proportions of B cells in the splenocyte 

preparations used for the ELISpot assays were the same. Flow cytometric analysis was 

performed with the assistance of Mr William Jackson and Dr Anisha Tanna. We found only 

modest changes in the overall proportion of CD8, CD4 and CD45RA positive splenocyte 

Figure 4.19: Effect of R406 on anti-α3(IV)NC1 antibody production by splenic B cells in vitro. 
Splenocytes taken from EAG rats 28 days after disease induction were incubated with varying doses of 
R406, the active metabolite of fostamatinib, prior to application on the ELISpot plate and during the 
subsequent 48 hour assay incubation. An initial experiment (Replicate 1) suggested that R406 inhibited the 
production of anti-a3(IV)NC1 antibodies by splenic B cells, although this finding was not robustly 
reproduced (Replicates 2 & 3). a3(IV)NC1-specific ‘activity’ is a composite measurement of spot number, 
size and intensity. Overall cell viability, as assessed by trypan blue cell counting at the end of the 
experiment, was not affected at these concentrations of R406 (data not shown). Data from three biological 
replicate experiments is shown, as mean ±SEM (of ≥8 technical replicates). ns – not significant, *p<0.05, 
**p<0.01, 1-way ANOVA. 
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subsets after 18 days treatment with fostamatinib (Figures 4.20). The maintenance of 

CD45RA positive population, in particular, suggests that B cell survival was not adversely 

affected by a short period of fostamatinib treatment, and again implies that the attenuation of 

further antibody production observed in EAG Experiment 5 was due to a direct inhibitory 

effect of fostamatinib on autoantibody production.  

 

 

 

4.5 The effect of fostamatinib on antibody-dependent, FcR-mediated responses in 

EAG 

 

Based on our laboratory’s previous studies in NTN and my IHC findings (Section 3.6), I 

hypothesised that in addition to inhibiting the production of autoantibodies, fostamatinib may 

prevent their downstream function via inhibition of FcR-signalling. To investigate a role for 

SYK independent of autoantibody production in EAG, I isolated nephritic glomeruli from 

untreated animals 28 days after disease induction, in order to examine the effects of SYK 

Figure 4.20: Lymphocyte subsets following fostamatinib treatment for 18 days. 
The proportion of CD45RA+ splenocytes was not significantly affected by fostamatinib treatment. There 
was, however, a reduction in CD4+ splenocytes. Results shown from four biological replicate pairs of 
vehicle and fostamatinib-treated rats. Data shown as median ±IQR, ns – not significant, *p<0.05, Mann 
Whitney U test. 
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inhibition in diseased tissue dissociated from the systemic humoral response. When these 

nephritic glomeruli were incubated with R406, the active metabolite of fostamatinib, there 

was a dose-dependent reduction in the spontaneous production of a number of pro-

inflammatory cytokines (Figure 4.21), including MCP-1, TNF-α and IL-12, each of which 

has been implicated in the pathogenesis of experimental glomerulonephritis
132,240,241

. 

 

 

 

 

To examine this further, I studied the effects of R406 on cytokine production by primary 

bone marrow-derived macrophages (BMDM) in vitro, since macrophages are the 

predominant infiltrating leucocyte observed in this model and my immunohistochemical 

findings suggested significant co-localisation of phosphorylated SYK to this cell type. Heat-

aggregated IgG has been used previously in our laboratory as a means to stimulate BMDM 

by cross-ligation of FcR
136,232

. I was first keen to confirm that this stimulus resulted in SYK 

activation in BMDM from WKY rats. To this end, I performed Western blot analysis for 

SYK and JNK phosphorylation (the latter a MAPK activated downstream of SYK) following 

Figure 4.21: Effect of R406 on spontaneous cytokine production by nephritic glomeruli ex vivo. 
Incubation with R406, the active metabolite of fostamatinib, inhibited the spontaneous production of pro-
inflammatory cytokines, including (A) MCP-1, (B) TNFα, and (C) IL-12, by nephritic glomeruli ex vivo during 
a 48 hour incubation period. Data from four biological replicates are shown. Since the yield of sieved 
glomeruli was variable for each replicate, the data shown have been normalised to vehicle treatment, 
whilst statistical analysis has been performed on non-normalised data using Friedman repeated measures 
test (overall significance indicated by upper symbol) with Dunn’s post-test comparison to vehicle group 
(significance indicated by lower symbol). *p<0.05, **p<0.01, ***p<0.001. 



181 | P a g e  
 

heat-aggregated IgG exposure (Figure 4.22). This also allowed me to demonstrate that the 

antibodies used for immunohistochemical staining in other parts of this project were reactive 

to rodent SYK. 

 

 

 

Incubation with R406 inhibited the production of MCP-1, TNFα and IL-12 by BMDM 

following stimulation with heat-aggregated IgG, in a similar pattern to that observed in 

nephritic glomeruli (Figure 4.23). Overall BMDM survival was not affected by incubation 

with R406 at these concentrations (data not shown). It is notable, however, that the absolute 

amount of IL-12 production by BMDM (in the range of 10-20pg/ml) was much less than 

Figure 4.22: SYK and JNK activation in rat bone-marrow derived macrophages following stimulation with 
heat-aggregated IgG. 

(A) Western blot for phosphorylated (P-) and total (T-) SYK and JNK in BMDM following cross-ligation of FcR 
with heat-aggregated IgG, with total-P38 loading control. No P38 phosphorylation was observed (data not 
shown). (B) Semi-quantitative densitometry analysis for relative P-SYK and P-JNK signals, compared to 
respective total protein loading controls. Representative blots from one of two biological replicate 
experiments are shown. 
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detected within inflamed glomeruli (median 559pg/ml), suggesting that there are sources of 

IL-12 other than macrophages within diseased glomeruli. This is consistent with previous 

reports suggesting that IL-12 production by intrinsic renal cells is important in the 

pathogenesis of experimental glomerulonephritis, and our laboratory’s previous observation 

that intrinsic renal cells express SYK and may respond to SYK inhibition
242,243

. 

 

 

 

4.6 Chapter Four: Discussion of results and future work 

 

The findings of the prevention study (EAG Experiment 4) suggest that  SYK activity is an 

absolute requirement for the induction of autoimmunity in this model, as fostamatinib 

treatment completely protected from the development of any features of disease, including 

autoantibody production, during the initial 18 day treatment period. When treatment was 

withdrawn at day 18, animals subsequently developed typical features of disease, and at day 

36 each of these disease parameters was comparable to those in untreated animals at day 18, 

suggesting that SYK ‘disinhibition’ by treatment withdrawal allowed the natural history of 

Figure 4.23: Effect of R406 on pro-inflammatory cytokine production by rat bone marrow-derived 
macrophages (BMDM) following stimulation with heat-aggregated IgG (aIgG). 

Incubation with R406, the active metabolite of fostamatinib, inhibited the production of pro-inflammatory 
cytokines, including (A) MCP-1, (B) TNFα, and (C) IL-12, by BMDM stimulated with aIgG during a 24 hour 
incubation period. Technical replicate results from one of at least two representative experiments are 
shown. BMDM cell viability, as assessed by MTT assay at the end of the experiment, was not affected by 
R406 at these concentrations (data not shown). Data shown as median ±IQR, *p<0.05, **p<0.01, 
***p<0.001, Kruskall Wallis test (overall significance shown by upper symbol) with Dunn’s post-test 
comparison to vehicle group (significance indicated by lower symbol). 
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the model to be restored. In established disease (EAG Experiment 5), SYK inhibition with 

fostamatinib was an effective treatment, resulting in reversal of severe glomerular pathology, 

preservation of renal function, and protection from lung haemorrhage. 

 

In both in vivo studies I observed significant effects of SYK inhibition on the induction and 

progression of humoral autoimmunity. In particular, there was considerable attenuation of 

autoantibody production after the introduction of treatment in the second study. This finding 

is in contrast to previous reports in murine lupus, CIA, and spontaneous diabetes in NOD 

mice, where no clear-cut effects on anti-dsDNA, anti-collagen, or anti-insulin antibody 

levels, respectively, were observed
56,67,68

. However, the exposure period in these studies was 

not optimal for studying humoral responses, since treatment was initiated after maximal 

autoantibody responses were established, and did not continue beyond the lifetime of these 

pre-existing antibodies. Flow cytometric and B cell ELISpot analyses suggest that the 

changes in autoantibody production I observed were due to a direct inhibitory effect of 

fostamatinib on mature, antibody producing B cells or plasma cells, without significantly 

affecting overall B cell survival or causing overt bone marrow suppression. This is somewhat 

in contrast to previous immunotoxicity assessments in rats, where a modest fall in CD45RA+ 

cell proportions in bone marrow was observed following fostamatinib exposure
80

. However, 

these immunotoxicity studies were conducted in a different rat strain (Sprague Dawley), 

using higher doses of fostamatinib (100mg/kg/day) for a longer period of exposure (28 days), 

which may account for the differences observed. Previous studies in mice have also 

suggested that prolonged exposure to fostamatinib (>1-3 months) is associated with a decline 

in total B cell number and altered proportions of certain B cell subpopulations
56,68

. Further 

analysis of lymphocyte subsets, or on the effects of B cell functions in vitro, however, were 

limited by the paucity of validated lymphocyte markers in the rat.  
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Since constitutively SYK deficient B cells arrest at the pro-B cell stage, it has only been 

possible to study the role of SYK in mature cells with the advent of specific small molecule 

inhibitors (and potentially conditional genetic techniques
39-41

) and these novel observations 

suggest that SYK inhibition may prevent the production of pathogenic autoantibody, even 

after aberrant clonal responses have been established.
 

 

In addition to preventing the production of pathogenic autoantibodies, SYK inhibition 

appeared to have the potentially therapeutic second effect of inhibiting their downstream 

effector functions. Spontaneous pro-inflammatory cytokine production by nephritic glomeruli 

was inhibited by incubation with R406, the active metabolite of fostamatinib, independent of 

its effects on systemic humoral immunity. I observed a similar pattern of attenuated cytokine 

production by primary BMDM following FcR ligation, suggesting that the effect in glomeruli 

was mediated, at least in part, by inhibition of antibody-dependent, FcR-mediated responses 

in macrophages. Notably, the effect on IL-12 production by BMDM was less dramatic than 

that seen in whole glomerular preparations, in keeping with previous reports that IL-12 

production by intrinsic renal cells is important in the pathogenesis of glomerulonephritis
241

, 

and that resident renal cells may also respond to SYK inhibition
244

. 

 

The combined effect of SYK inhibition on antibody production and antibody-mediated 

effector functions, was a striking reversal of severe glomerular pathology in EAG, confirming 

our laboratory’s previous observations in NTN, where we observed approximately 20% 

reduction in glomerular crescent formation when treatment was initiated in severe disease 

with greater than 90% established glomerular crescents
136

. The complete reversal of injury 

seen in this model (as opposed to the partial reversal in NTN) may be due to a number of 
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factors, including (1) less established disease at the initiation of treatment (approximately 

90% vs 26% crescents), (2) longer duration of SYK inhibitor treatment in this study (18 days 

versus seven days), and (3) inhibition of pathogenic autoantibody production in this model 

(whereas the presence of heterologous NTS was not altered in NTN) 

 

In the future, I am keen to study the effect of SYK inhibition in more advanced stages of 

EAG, which are characterised by progression to fibrocellular and fibrous crescents, 

interstitial fibrosis and tubular atrophy, since this may more accurately reflect the nature of 

disease seen clinically (and be more generally applicable to other causes of progressive 

glomerulosclerosis and renal scarring). 

 

4.7 Summary of key findings 

 

 SYK activity is an absolute requirement for the induction of autoimmunity in EAG. 

 

 SYK inhibition is a remarkably effective treatment for established disease in EAG, 

resulting in reversal of necrotising and crescentic glomerulonephritis and protection 

from lung hemorrhage. 

 

 The data suggests that short-term fostamatinib exposure inhibited both the generation 

and activity of antigen-specific antibody producing cells, without affecting overall B 

cell survival or causing disproportionate bone marrow suppression. 

 

 Independent of these effects on autoantibody production, SYK inhibition with 

fostamatinib had a direct inhibitory effect on pro-inflammatory cytokine production 
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with nephritic glomeruli, most likely due to attenuation of FcR-mediated responses 

within infiltrating macrophages, and potentially within resident renal cells.  
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CHAPTER FIVE - SPLEEN TYROSINE KINASE INHIBITION IN 

EXPERIMENTAL AUTOIMMUNE VASCULITIS 
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5.1  Introduction and experiment design 

 

As described previously (section 1.5.3), Experimental Autoimmune Vasculitis (EAV) is a 

model of ANCA-associated vasculitis that is induced by immunising WKY rats with the 

human ANCA-target antigen, myeloperoxidase (MPO). This model was historically 

developed in our laboratory
212

, and is currently operated by Dr John McDaid and Dr Anisha 

Tanna. Together, we have studied the effects of SYK inhibition in this model, using their 

standard experimental protocols and a commercially available recombinant human MPO 

(hMPO) antigen (thus I have not conducted any preliminary experiments in EAV). The 

natural history of this model, as described previously
213

, and the overall experiment design, is 

summarised in Figure 5.1. 

 

 

 

 

 

Figure 5.1: Experimental design for SYK inhibition study in EAV. 
This experiment aimed to investigate the effects of SYK inhibition with fostamatinib in established EAV. 
Animals were treated from week 4, when the onset of disease was confirmed by the presence of 
haematuria and proteinuria, until week 6, when maximal disease is typically observed. hMPO, human 
myeloperoxidase; ANCA, anti-neutrophil cytoplasm antibody. 
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Following immunisation with hMPO in CFA, rats develop circulating anti-MPO ANCA that 

are detectable by two weeks. At approximately week four, the onset of glomerulonephritis is 

evidenced by the development of haematuria and mild proteinuria. By week 6, animals will 

have peak glomerular inflammation (as evidenced by maximal urinary findings) that typically 

begins to resolve by week 8. This is, in general, a model of mild renal injury compared to 

NTN and EAG, where fewer glomeruli (typically 10-20%) are affected with milder 

abnormalities (minor areas of proliferation, segmental necrosis and, less frequently, crescent 

formation). A significant proportion of animals, however, will also develop lung 

haemorrhage during the course of this model. 

 

To determine if SYK inhibition was an effective treatment for established systemic vasculitis 

in EAV, we therefore treated animals (female WKY rats; aged six weeks with average body 

weight 118g; eight per group) from week 4 until week 6, when maximal urinary and 

glomerular findings should be observed. In this study, I used two doses of fostamatinib, 

20mg/kg bd and 30mg/kg bd, since I wanted to establish if the dramatic therapeutic effects 

observed in EAG could be reproduced at a lower dose, and to account for the milder 

phenotype observed in this model. 

 

5.2  Confirmation of rat anti-MPO ANCA reactivity to rat MPO 

 

Since the ELISA method used to detect circulating anti-MPO antibodies uses the same hMPO 

antigen used for disease induction, I was interested to confirm that the antibodies detected are 

reactive to rat MPO (rMPO). To do this, I performed indirect immunofluorescence on 

cytospin preparations of acetone fixed rat leucocytes, using sera from historical EAV 
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animals, kindly provided by Dr John McDaid. This confirmed reactivity, and demonstrated a 

predominantly peri-nuclear pattern of fluorescence staining (Figure 5.2) 

 

 

 

5.3 Confirmation of SYK expression in EAV 

 

Using the same immunohistochemistry methods described in Chapter Three, I stained kidney 

sections from animals with EAV for phosphorylated SYK (P-SYK) in order to confirm that 

SYK is activated in this model (Figure 5.3). Staining of serial sections for ED1 suggested co-

localisation to infiltrating macrophages. 

 

 

 

Figure 5.2: Indirect immunofluorescence on acetone-fixed rat leucocytes.  
Indirect immunofluorescence using serum from historical EAV serum samples on acetone-fixed rat 
leucocyte preparations confirmed the presence of antibodies directed against components of neutrophil 
cytoplasm, with a predominantly peri-nuclear pattern of fluorescence. Control serum did not demonstrate 
significant reactivity. Anti-rat IgG FITC, x 200 magnification. 

Figure 5.3: Phosphorylated SYK (P-SYK) expression in EAV. 
Serial sections stained for P-SYK, ED1, and negative control (NC), as indicated, showing that P-SYK is 
detected in EAV, and that it appears to co-localise with ED1+ infiltrating macrophages. Immunoperoxidase 
stains with haematoxylin counterstain, x400 magnification.  
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5.4  SYK inhibition in EAV 

 

5.4.1  Haematuria and proteinuria 

 

Following immunisation with hMPO, all animals developed haematuria and proteinuria by 

week 4. Notably, haematuria is the predominant urinary abnormality observed in this model, 

with proteinuria being of low grade. Following the introduction of fostamatinib at week 4, 

these urinary abnormalities completely resolved in both treatment groups but persisted with 

vehicle treatment (Figure 5.4). 

 

 

Figure 5.4: Urinary findings following SYK inhibition in EAV. 
Time-course of (A) Haematuria, and (B) Proteinuria, in each treatment group, following induction at of EAV 
at week 0, with fostamatinib treatment period (shaded) from week 4 to week 6. Data are shown as 
median, without error, for clarity. (C) & (D) Week 6 measurements of haematuria and proteinuria in each 
of the treatment groups, with data shown as median ±IQR. ns – not significant, *p<0.05, **p<0.001, by 
Kruskall Wallis test (overall significance indicated by upper symbol), with Dunn’s post-test comparison to 
Vehicle group (significance indicated by lower symbol).  
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5.4.2 Histological injury and infiltrating leucocytes 

 

Histological assessment at week 6 revealed median 12% glomerular abnormalities in vehicle 

treated animals, in keeping with the mild renal phenotype of this model. There was a dose-

dependent reduction in glomerular abnormalities following fostamatinib treatment, with 

completely normal glomerular architecture observed in the majority of animals in the 

30mg/kg dose group (Figure 5.5). There was a similar dose-dependent reduction in ED1+ cell 

infiltration into glomeruli following fostamatinib treatment. Representative histology is 

shown in figure 5.5. 
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Figure 5.5: Renal histology and ED1+ cell infiltration following SYK inhibition in EAV. 
Quantification of (A) glomerular abnormalities, expressed as the percentage of abnormal glomeruli, and (B) 
glomerular ED1+ cell infiltration, expressed as the mean percentage of ED1+ cells per glomerular cross 
section (GCS), in each treatment group at week 6, showing a dose-dependent reduction in both 
parameters. All data shown as median ±IQR. *p<0.05, **p<0.01, ***p<0.001, by Kruskall Wallis test 
(overall significance indicated by upper symbol) with Dunn’s post-test comparison to Vehicle group 
(significance indicated by lower symbols) (C) Photomicrographs showing representative histology (H&E 
stain, x200 magnification) and ED1 immunoperoxidase staining (with haematoxylin counterstain, x400 
magnification).  
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5.4.3 Direct immunofluorescence for IgG on kidney sections 

 

Direct immunofluorescence for deposited IgG on frozen kidney sections from these animals 

confirmed a pauci-immune pattern of renal injury, consistent with previous descriptions of 

the model. No difference was observed between groups when this was quantified (Figure 

5.6). 

 

 

 

5.4.4 Renal function 

 

In keeping with the mild histological findings observed in this experiment, changes in 

measurements of renal function were also modest. No difference is serum urea concentrations 

was observed between treatment groups, though it is notable that several animals had serum 

Figure 5.6: Direct immunofluorescence for deposited IgG in glomeruli following SYK inhibition in EAV. 
(A) Quantification of fluorescence intensity for deposited rat IgG, acquired using automated image analysis 
software, in each treatment group at week 6. No difference between groups was observed. Data shown as 
median ±IQR. ns – not significant by Kruskall Wallis test (overall significance shown). (B) Photomicrographs 
showing representative fluorescence images in each group. Anti-rat IgG FITC, x400 magnification. 
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urea concentrations greater than the normal range defined in Chapter One, whilst having mild 

(if any) histological damage. I believe this reflects, as before, the difficulty in defining 

reliable serum markers of renal function in small rodents. It was interesting to observe that 

there was a modest, dose-dependent, and statistically significant, reduction in serum 

creatinine concentrations following fostamatinib treatment, although all values lay within the 

normal range defined in Chapter One (Figure 5.7). 

 

 

 

5.4.5 Lung haemorrhage 

 

All vehicle treated animals had macroscopic evidence of lung haemorrhage at the time of cull 

(Figure 5.8). There was a dose-dependent reduction in visible lung injury following 

fostamatinib treatment, with no evidence of lung disease in the 30mg/kg dose group at week 

Figure 5.7: Renal function following SYK inhibition in EAV. 
(A) Serum urea, and (B) Serum creatinine concentrations, in each treatment groups at week 6. No 
difference in serum urea concentrations was observed, whilst there was a dose-dependent reduction in 
serum creatinine concentrations, although all creatinine values lay within the normal range defined in 
Chapter One. All data shown as median ±IQR. ns – not significant, *p<0.05, by Kruskall Wallis test (overall 
significance indicated by upper symbol) with Dunn’s post-test comparison to Vehicle group (significance 
indicated by lower symbol). 
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6. There was a corresponding dose-dependent reduction in haemosiderin-laden cells detected 

within lung sections from these animals.  

 

 

Figure 5.8: Lung haemorrhage following SYK inhibition in EAV. 
(A) Macroscopic lung haemorrhage score, and (B) Quantification of haemosiderin-laden cells in lung tissue, 
in each of the treatment groups at week 6. A dose-dependent reduction was observed. Data shown as 
median ±IQR. ns – not significant, *p<0.05, **p<0.01, **p<0.001, ***p<0.0001 by Kruskall Wallis test 
(overall significance indicated by upper symbol) with Dunn’s post-test comparison to Vehicle group 
(significance indicated by lower symbol). (C) Photographs showing representative examples of lung 
haemorrhage at week 6 (described fully in Methods section 2.5.6). (D) Photomicrographs showing 
representative staining for haemosiderin-laden cells in lung sections from animals in each treatment group, 
using Perls’ Prussian Blue, without counterstain to facilitate counting, x200 magnification. 
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5.4.6 Measurement of circulating MPO-ANCA  

 

No differences in circulating MPO-ANCA levels were observed between treatment groups at 

any of the time-points assessed (week 2, 4 and 6; Figure 5.9). At week 6, there was a trend 

towards lower MPO-ANCA levels in the fostamatinib groups, although this was not 

statistically significant. This is somewhat in contrast to my findings in EAG, although it is 

important to note that, in this experiment, fostamatinib treatment was not introduced until 

week 4, when high titre MPO-ANCA antibodies were already present. Since the half-life of 

these antibodies is likely to exceed the duration of the two week period of fostamatinib 

treatment, this experiment was unlikely to detect significant effects on ongoing MPO-ANCA 

production. 

 

 

 

  

Figure 5.9: Circulating ANCA titres following SYK inhibition in EAV. 
(A) Time-course of ANCA measurements in each treatment group, following disease induction at week 0 
and fostamatinib treatment (shaded) from week 4 to week 6. Data shown as median, without error, for 
clarity. (B) ANCA measurements in each treatment group at week 6, showing a non-significant trend 
towards lower ANCA levels in fostamatinib-treated groups. Data shown as median ±IQR. ns – not 
significant, by Kruskall Wallis test (overall significance shown). 
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5.4.7  Haematological indices 

 

In keeping with my findings in EAG, there was a mild reduction in peripheral blood white 

cell counts following fostamatinib treatment in this experiment. At these doses of 

fostamatinib, no changes in haemoglobin concentration were observed. A mild dose-

dependent thrombocytosis was observed, similar to that seen in EAG (Figure 5.10). 

 

 

 

 

5.5 Chapter Five: Discussion of results and future work 

 

The results presented in this chapter confirm that SYK inhibition with fostamatinib is an 

effective treatment for the systemic manifestations of disease in this preclinical model of 

AAV, and are in keeping with my previous findings in the related but distinct model of renal 

and lung injury, EAG. It is reassuring that a dose-response effect was observed in this study, 

and that there was significant attenuation of disease with fostamatinib 20mg/kg bd, since PK 

studies suggest that the average plasma concentrations of R406 achieved with this dose 

(approximately 500ng/ml) were easily achieved in clinical studies and well tolerated by 

Figure 5.10: Haematological indices following SYK inhibition in EAV. 
(A) Haemoglobin concentration, (B) White blood cell (WBC) count, and (C) Platelet count, in each 
treatment groups at week 6. Data shown as median ±IQR. ns – not significant, *p<0.05, by Kruskall Wallis 
test (overall significance indicated by upper symbol) with Dunn’s post-test comparison to Vehicle group 
(significance indicated by lower symbols). 
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patients with non-renal diseases. As with my findings in EAG, overt bone marrow 

suppression was not observed with these doses of fostamatinib, although it would be 

desirable to perform detailed PK studies of fostamatinib in both models. 

 

In contrast to my findings in EAG, I did not observe a significant effect on circulating 

antibody levels following fostamatinib treatment in this study. This may be due to differences 

in the time-point that fostamatinib treatment was introduced in the two experiments – in 

EAG, treatment was started after 18 days, when antibody levels were rapidly increasing, 

whereas in EAV, treatment was introduced after 28 days, when maximal antibody responses 

were already established. This suggests that SYK inhibition may prevent the production of 

new antibody, but does not affect levels of pre-existing antibody. Differences in the dose of 

fostamatinib used may also be relevant – the higher doses of 40mg/kg used in the EAG study 

may be required to inhibit antibody production. Alternatively, this discrepancy may reflect 

differences in response to allo- and autoantigen (human MPO being used for immunisation in 

EAV, rat α3(IV)NC1 in EAG). It would be of interest to repeat these studies in EAV using 

similar time-points and dosing regimens to the EAG studies to establish if the latter 

suggestion is a possibility.  I could also examine differences in antibody subclass after SYK 

inhibitor treatment – it is thought, for example, that the IgG1 and IgG4 subclasses are more 

pathogenically relevant in human disease
245

 and the ELISA I have used detects only total 

IgG. In addition, it was recently shown that MPO-ANCA epitope specificity may determine 

pathogenicity in humans
246

, although the corresponding epitopes are not defined in the rat
247

, 

raising possibilities for future work in this model generally, and following SYK inhibitor 

treatment. 
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Whilst no apparent effects on anti-MPO antibody levels were detected in this experiment, 

end-organ renal and lung damage was reduced. This would suggest that fostamatinib 

inhibited the effects of ANCA on their target cells, such as neutrophils. Previous studies have 

shown that SYK is phosphorylated in neutrophils following ANCA-induced activation, and in 

future studies I plan to examine the effects of fostamatinib, as R406, on myeloid cells 

stimulated with MPO-ANCA in vitro. Since glomerular endothelial cells expressing moesin 

have been implicated in the pathogenesis of murine anti-MPO vasculitis
183

, it would also be 

of interest to establish if this mechanism contributes to disease in our model, and if so, 

whether SYK inhibition may have activity in glomerular endothelial cells.  

 

Other areas for future work include defining the pathology of disease at week 4 when 

treatment was introduced in this experiment – all animals had haematuria and proteinuria, 

although the extent of glomerular and lung injury at this time point is not known. It would 

also be desirable to augment the severity of this model, as it has a mild phenotype that 

spontaneously resolves beyond week 6, which may limit its translation to human disease. 

 

5.6 Summary of key findings 

 

 SYK inhibition protects from the development of glomerulonephritis and alveolar 

haemorrhage in EAV. 

 

 This effect is seen with modest doses of fostamatinib, consistent with those that can 

be achieved safely in clinical studies, and without overt bone marrow suppression in 

this model. 
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 SYK inhibition did not affect the levels of MPO-ANCA when treatment was started at 

maximal circulating antibody titre, suggesting that the therapeutic effect of 

fostamatinib was mediated via inhibition of ANCA-induced effector responses. 
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CHAPTER SIX - SPLEEN TYROSINE KINASE EXPRESSION IN HUMAN 

GLOMERULAR DISEASE 
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6.1  Introduction 

 

Thus far, I have demonstrated that SYK is expressed and activated in two rodent models of 

GN, and that SYK inhibition can prevent and treat established disease in these models. It 

would be desirable, however, to demonstrate that SYK is expressed in human glomerular 

disease, and to confirm that SYK has a role in the pathogenesis of these conditions, before 

considering clinical application of SYK inhibition. At the outset of this project, SYK 

expression in human GN had not been described, although there has since been a single 

report of SYK expression in post-infectious GN
239

. 

 

In this chapter, I have sought to demonstrate SYK expression in a range of human 

glomerulonephritides and that SYK is activated (i.e. phosphorylated) in these conditions. I 

have used an immunohistochemistry-based approach, developed from the methods used 

initially on tissue from experimental models. I have optimised these methods for use on 

formalin-fixed paraffin-embedded tissue sections, since these are readily available following 

routine clinical renal biopsies, without the need for taking biopsy material surplus to 

diagnostic requirements or performing additional tissue preservation procedures. 

 

6.2 Immunohistochemistry for total SYK 

 

For total SYK (T-SYK) staining, I have used the same commercially available rabbit 

polyclonal antibody, directed against the N-terminus of human SYK, which was used on 

rodent tissue (Chapter Three). This antibody was shown previously by a colleague in our 

laboratory (Dr Min Jeong Kim) to be reactive to human SYK by Western blot
243

. I also used 
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this antibody for immunoblotting in my rodent studies, where it demonstrated cross-reactivity 

to, and specificity for, SYK. 

 

I initially tested the antibody for IHC on human lymph node sections (provided by the 

Imperial College Healthcare NHS Trust Tissue Bank), as SYK is known to be highly 

expressed in cells of haematopoietic lineage. Negative control stains were performed by pre-

incubating the antibody with the immunising peptide (sourced from the antibody 

manufacturer). Representative staining is shown in Figure 6.1. T-SYK staining localised to 

lymphoid follicles, consistent with an important role for SYK in the generation of adaptive 

immune responses. 

 

 

 

 

Having established that this antibody could be used successfully to detect T-SYK in 

formalin-fixed paraffin-embedded human tissue sections, I wanted to establish the pattern of 

T-SYK expression in biological ‘negative’ and ‘positive’ control renal tissue. For negative 

control, or ‘normal’, renal tissue, I used biopsy specimens from patients with thin-basement 

Figure 6.1: Total SYK (T-SYK) expression in human lymph node. 
(A) T-SYK staining localised predominantly to a lymphoid follicle. (B) Negative control (NC) performed on a 
sequential section by pre-incubating primary T-SYK antibody with the relevant immunising peptide.  x200 
magnification. 
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membrane lesion (TBM) and minimal change disease (MCD). These are non-proliferative 

glomerulopathies with normal light-microscopic findings and a usually benign clinical 

course. Truly ‘normal’ kidney tissue is not readily available (as there is clinical indication to 

perfomr renal biopsy). Normal renal tissue may be obtained from nephrectomy specimens 

(performed for excision of renal malignancies), although these specimens are unlikely to be 

processed in the same manner as diagnostic biopsies, which limits their use for developing 

methods to use with the latter. 

 

The pattern of T-SYK expression in TBM is shown in Figure 6.2. Notably, there was no 

staining within glomeruli in these cases. I did observe, however, intermittent staining of 

tubular cells, likely distal tubular epithelial cells (having thin cuboidal epithelium with little 

brush border and open tubular lumens), the significance of which is unknown, although it is 

similar to that seen in normal rat tissue (section 3.6).  

 

Figure 6.2: Total SYK (T-SYK) expression in thin basement membrane lesion. 
(A) & (B) T-SYK staining within distal tubular epithelial cells in the renal medulla, with a sequential negative 
control (NC) section. (C) & (D) T-SYK staining within distal tubular epithelial cells in the renal cortex, and no 
glomerular staining, with sequential negative control (NC) section. x200 magnification. 
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For positive control, or ‘nephritic’, tissue, I used biopsies from patients with diffuse 

proliferative post-infectious glomerulonephritis (DPIGN), as I expected these specimens to 

have a glomerular infiltrate of leucocytes that would be positive for SYK. Representative 

staining is shown in Figure 6.3. As expected, there was strong staining for T-SYK within the 

glomerular tuft, in addition to the intermittent tubular staining that was observed in TBM. 

 

 

 

6.2.1 Total SYK expression in anti-GBM disease (12 cases) 

 

Since EAG is a model of anti-GBM disease, this was the first GN in which I performed 

systematic analysis of SYK expression, using biopsies from 12 historical patients. 

Figure 6.3: Total SYK (T-SYK) expression in diffuse proliferative post-infectious glomerulonephritis. 
(A) & (B) T-SYK staining within an inflamed glomerulus and distal tubular epithelial cells, with a sequential 
negative control (NC) section. x100 magnification. (C) & (D) T-SYK staining within a diseased glomerulus, 
with a sequential negative control (NC) section. x200 magnification. 
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Morphologically, T-SYK was detected within inflamed glomeruli, localising in particular to 

areas of crescent formation (Figure 6.4). 

 

 

 

 

Figure 6.4: Total SYK (T-SYK) expression in anti-GBM disease. 
(A) & (B) T-SYK staining localised to an area of crescent formation in anti-GBM disease, with a sequential 
negative control (NC) section. (C), (D) & (E) T-SYK staining within inflamed glomeruli from a further three 
cases of anti-GBM disease. (F) T-SYK staining in a patient with circulating anti-GBM antibodies and lung 
haemorrhage, but without glomerulonephritis, showing minimal glomerular staining. All x200 
magnification. 
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Quantitative analysis using automated image analysis to calculate the mean proportion of 

glomerular T-SYK staining in each biopsy case showed that T-SYK expression levels were 

highest in patients who presented with dialysis-dependent renal failure, a marker of severe 

disease that confers poor prognosis (Figure 6.5A)
128

. In patients who were not dialysis-

dependent at the time of biopsy, T-SYK expression levels correlated with presenting serum 

creatinine, in keeping with previous reports that the proportion of crescents seen on renal 

biopsy also correlates strongly with presenting serum creatinine (Figure 6.5B)
128,248

. 

 

 

 

 

6.2.2 Total SYK expression in ANCA-associated glomerulonephritis (18 cases) 

 

In ANCA-associated GN (AAGN), T-SYK expression localised to areas of segmental 

inflammation and crescent formation within diseased glomeruli, in addition to the now 

typically observed pattern of distal tubular staining (Figure 6.6). 

 

Figure 6.5: Quantification of Total SYK (T-SYK) expression in anti-GBM disease. 
(A) Glomerular T-SYK expression levels were significantly higher in patients who presented with 
haemodialysis-dependent renal failure (HDx). Data shown as median ±IQR. **p<0.01, Mann Whitney U 
test. (B) In patients who were haemodialysis-independent at presentation, glomerular T-SYK expression 
correlated with presenting serum creatinine. Pearson correlation as indicated. 
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Figure 6.6: Total SYK (T-SYK) expression in ANCA-associated glomerulonephritis (AAGN). 
(A) & (B) T-SYK staining in a crescentic glomerulus from a patient with AAGN, with a sequential negative 
control (NC) section. (C), (D), (E) & (F) T-SYK staining in additional cases of AAGN, showing SYK localisation 
to areas of segmental inflammation within the glomerular tuft and areas of extra-capillary crescent 
formation. (G) An obsolete glomerulus from a patient with ‘sclerotic’ class AAGN, showing minimal T-SYK 
staining. (H) Positive T-SYK staining within the tubulo-interstitial infiltrate in a case of AAGN with 
concomitant tubulo-interstitial nephritis.  x200-400 magnification.  



210 | P a g e  
 

To assess the relationship with disease activity, T-SYK expression levels were correlated 

with histological class as defined in the recently proposed system of Burden et al
249

. This 

system describes four classes of disease: crescentic, focal, sclerotic and mixed. The first three 

categories are based on the predominance (>50%) of crescentic, normal and globally sclerotic 

glomeruli in the biopsy, respectively, whilst in mixed class disease none of these features is 

predominant. I found that SYK expression levels were highest in ‘crescentic’ class disease, 

and lowest in ‘sclerotic’ class, suggesting that SYK expression is a feature of acute disease 

that may respond to treatment (Figure 6.7). 

 

 

 

6.2.3 Total SYK expression in lupus nephritis (16 cases) 

 

In proliferative classes of lupus nephritis (ISN/RPS Class III and IV)
250

, T-SYK positive cells 

could be identified within capillary lumens of affected glomeruli (Figure 6.8). In non-

proliferative class V disease, typical tubular epithelial cell staining was observed, however no 

significant T-SYK stain was observed within the glomerular tuft. Consistent with these 

Figure 6.7: Quantification of Total SYK (T-SYK) expression in ANCA-associated glomerulonephritis 
(AAGN). 

Glomerular SYK expression levels were significantly higher in patients with ‘crescentic’ class disease versus 
‘sclerotic’ class disease, suggesting T-SYK expression is a feature of acute inflammatory disease. Data 
shown as median ±IQR. **P<0.01, Kruskall Wallis test (overall significance shown). 
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observations, quantified T-SYK expression levels were highest in class IV (diffuse 

proliferative) disease (Figure 6.9).  

 

 

Figure 6.8: Total SYK (T-SYK) expression in lupus nephritis. 
(A) & (B) T-SYK positive cells identified within glomerular capillary lumens in a patient with diffuse 
proliferative (class IV) lupus nephritis, with a sequential negative control (NC) section. (C) & (D) Additional 
examples of T-SYK positive cells within glomeruli in proliferative lupus nephritis. (E) & (F) In non-
proliferative (class V) lupus nephritis, no staining for T-SYK was observed within the glomerular tuft.  x200-
400 magnification.  
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6.2.4 Total SYK expression in IgA nephropathy (26 cases) 

 

Consistent with the patterns of staining seen in the other forms of proliferative GN, SYK 

expression was observed within areas of both endocapillary and extracapillary proliferation in 

patients with IgA nephropathy (Figure 6.10). The Oxford Classification is a recently 

described system that defines the histopathological features that confer poor prognosis in IgA 

nephropathy
251,252

. These are (i) mesangial hypercellularity, (ii) endocapillary proliferation, 

(iii) segmental sclerosis, and (iv) tubular atrophy. The former two features most likely reflect 

active inflammatory disease and the latter two reveal chronic damage. Significant amounts of 

SYK expression were only observed in patients with endocapillary proliferation, rather than 

mesangial hypercellularity alone, suggesting that SYK expression is associated with the 

presence of infiltrating leucocytes in this condition (Figure 6.11). 

 

Figure 6.9: Quantification of Total SYK (T-SYK) expression in lupus nephritis. 
Highest levels of T-SYK expression were seen in diffuse proliferative (class IV) lupus nephritis. Lower levels 
of SYK expression were observed in focal proliferative (class III) disease since a significant number of 
glomeruli were unaffected in these patients. Data shown as median ±IQR. **P<0.01, Kruskall Wallis test 
(overall significance shown). 
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Figure 6.10: Total SYK (T-SYK) expression in IgA nephropathy. 
(A) & (B) T-SYK staining within a small crescent in IgA nephropathy, with a sequential negative control (NC) 
section. (C) & (D) T-SYK positive cells within glomerular capillary lumens in a patient with endocapillary 
proliferation in IgA nephropathy, with a sequential negative control (NC) section. (E) A single T-SYK positive 
cell within a capillary lumen in a case of IgA nephropathy with endocapillary proliferation. (F) Negative 
glomerular staining for T-SYK in a patient with IgA nephropathy without mesangial or endocapillary 
proliferation.  x200-400 magnification.  
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6.2.5 Total SYK expression in idiopathic membranous nephropathy (5 cases) 

 

Akin to the pattern of staining seen in class V lupus nephritis (which has morphologically 

similar findings on light microscopy), minimal glomerular staining for SYK was seen in 

biopsies from patients with idiopathic membranous nephropathy (Figure 6.12). 

 

 

 

Figure 6.11: Quantification of Total SYK (T-SYK) expression in IgA nephropathy. 
Minimal T-SYK staining was observed in patients with neither mesangial nor endocapillary proliferation 
(M0E0), or with mesangial hypercellularity alone (M1E0). Significantly higher levels of T-SYK expression 
were observed in patients with both mesangial and endocapillary proliferation (M1E1). Data shown as 
median ±IQR. **P<0.01, Kruskall Wallis test (overall significance shown). 

Figure 6.12: Total SYK (T-SYK) expression in idiopathic membranous nephropathy. 
(A) & (B) Minimal glomerular staining for T-SYK in two cases of idiopathic membranous nephropathy, 
similar to that seen in class V lupus nephritis.   x200 magnification.  
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6.2.6 Total SYK expression in the spectrum of glomerulonephritides 

 

Figure 6.13 summarises the quantification of glomerular SYK expression in the spectrum of 

glomerulonephritides. In summary, significant T-SYK expression appears to be a feature of 

only proliferative classes of diseases, and expression levels appear to correlate broadly with 

disease severity, with highest levels seen in anti-GBM disease and AAGN, both of which 

typically present with a rapidly progressive clinical course.  

 

 

 

 

  

Figure 6.13: Quantification of Total SYK (T-SYK) expression in the spectrum of human glomerular 
diseases. 

Significant T-SYK expression was observed only in proliferative forms of glomerulonephritis, and expression 
levels correlate broadly with the severity of disease. TBM, thin basement membrane lesion; MCD, minimal 
change disease; iMN, idiopathic membranous nephropathy; IgAN, IgA nephropathy; LN, lupus nephritis; 
AAGN, ANCA-associated glomerulonephritis; anti-GBM disease, anti-glomerular basement membrane 
disease. Data shown as median ±IQR. ***P<0.001, Kruskall Wallis test (overall significance shown). 
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6.3  Immunohistochemistry for phosphorylated SYK 

 

For phosphorylated SYK (phospho-SYK; P-SYK) staining, I trialled a number of 

commercially available antibodies, directed against a variety of phosphorylated tyrosine 

residues in human SYK. Optimal staining on positive control tissue (human lymph node) was 

achieved with a rabbit polyclonal antibody to phospho-tyrosine 625/626. As with the selected 

T-SYK antibody, this antibody was shown to be reactive to human and rodent SYK by 

Western blot by myself and others in our laboratory. Tyrosine residue 625/626 is also located 

with the activation loop of the catalytic domain of SYK, so its phosphorylation is likely to be 

functionally relevant in disease pathogenesis. Representative staining on human lymph node 

is shown in Figure 6.14. The pattern of P-SYK detection was similar to that observed with T-

SYK staining (Figure 6.1). 

 

 

 

 

In ‘normal’ kidney tissue (TBM and MCD; Figures 6.15 and 6.16 respectively), minimal P-

SYK expression was observed, particularly within glomeruli. There was weak staining within 

Figure 6.14: Phospho-SYK (P-SYK) detection in human lymph node. 
(A) & (B) P-SYK staining localised predominantly to a lymphoid follicle, with a sequential negative control 
(NC) section performed by pre-incubating primary P-SYK antibody with the relevant immunising peptide.  
x200 magnification. 
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tubular epithelial cells, suggesting that SYK may be expressed in this cell type, but that it not 

functionally active in the non-diseased state. 

 

 

 

 

 

Figure 6.15: Phospho-SYK (P-SYK) detection in thin basement membrane lesion (TBM). 
(A) & (B) Paired sections showing Total SYK (T-SYK) and P-SYK in TBM. SYK appears to be expressed but not 
functionally active (i.e. phosphorylated) in distal tubular epithelial cells. Glomeruli were negative for both 
T-SYK and P-SYK.  x200 magnification. 

Figure 6.16: Phospho-SYK (P-SYK) detection in minimal change disease (MCD). 
(A) & (B) Paired sections at low power, showing Total SYK (T-SYK) and P-SYK in MCD. SYK appears to be 
expressed but not functionally active (i.e. phosphorylated) in distal tubular epithelial cells. Glomeruli were 
negative for both T-SYK and P-SYK.  x100 magnification (C) & (D) Higher power view of the same tissue 
sections, confirming that glomeruli are negative for both T-SYK and P-SYK. x200 magnification. 
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6.3.1 Phosphorylated SYK detection in anti-GBM disease 

 

Since T-SYK expression levels were highest in anti-GBM disease, I selected these biopsies 

for initial staining for P-SYK. Figure 6.17 shows sequential sections of a biopsy taken from 

such a case. This shows positive P-SYK detection in a distribution similar to that seen for T-

SYK, suggesting that SYK is functionally active (and thus pathogenically relevant) in anti-

GBM disease. Notably, P-SYK had a predominantly nuclear pattern of staining. Since this 

staining was not present on negative control sections, and was consistently identified in a 

similar distribution to T-SYK within diseased glomeruli, using an antibody that was shown to 

be specific by immunoblotting, I believe this is genuine staining despite the somewhat 

atypical staining appearance. In lymphoid cells, SYK is known to reside in both nuclear and 

cytoplasmic locations, although little is known about how trafficking between these 

compartments is regulated.
253

 

 

 

 

  

Figure 6.17: Phospho-SYK (P-SYK) detection in anti-GBM disease. 
(A), (B) & (C) Sequential sections showing Total SYK (T-SYK), P-SYK and negative control (NC; for P-SYK 
antibody) staining  in the same glomerulus from a patient with anti-GBM disease. P-SYK is detected within 
an area of crescent formation that is strongly positive for T-SYK, suggesting that SYK is expressed and 
functionally active in anti-GBM disease. 
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6.3.2 Phosphorylated SYK expression in other proliferative glomerulonephritides 

 

In AAGN, staining of sequential sections showed a similar pattern of P-SYK in the 

distribution that was observed for T-SYK (Figure 6.18). In each case, staining for P-SYK in 

tubular epithelial cells was less striking than for T-SYK, again suggesting that whilst SYK 

may be constitutively expressed in this cell type, it is not functionally active (Figure 6.19). 

 

 

 

 

Figure 6.18: Phospho-SYK (P-SYK) detection ANCA-associated glomerulonephritis (AAGN). 
(A), (B), (C) & (D) Two sets of paired sections showing total SYK (T-SYK) and P-SYK staining in two cases of 
AAGN. P-SYK is detected within areas of crescent formation that are strongly positive for T-SYK, suggesting 
that SYK is expressed and functionally active in AAGN. 
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A similar pattern of predominantly nuclear staining in cells within inflammatory lesions was 

observed in both lupus nephritis (Figure 6.20) and IgA nephropathy (Figure 6.21). 

 

In general, P-SYK detection was less reproducible than that for T-SYK, and was sometimes 

inconsistent across the same tissue section. I believe this may be due to rapid de-

phosphorylation of SYK prior to adequate tissue fixation, a recognised difficulty in 

immunostaining for phosphorylated proteins
254

. Since this study was performed on surplus 

sections from routine clinical biopsies that were not specifically processed for research 

Figure 6.19: Phospho-SYK (P-SYK) detection in ANCA-associated glomerulonephritis (AAGN). 
(A) & (B) P-SYK detection within a crescentic glomerulus in AAGN, within minimal staining seen in tubular 
epithelial cells, suggesting that SYK may be expressed but not functionally active in the latter, with 
sequential negative control (NC) section. x200 magnification . (C) & (D) Higher power view of the same 
tissue section showing glomerular P-SYK staining in more detail. x400 magnification. 
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purposes, this problem was difficult to resolve, and hence it was not possible to reliably 

quantify the degree of P-SYK detection. However, the demonstration of activated SYK 

within abnormal glomeruli strongly implicates SYK in the pathogenesis of proliferative GN. 

 

 

 

Figure 6.20: Phospho-SYK (P-SYK) detection in class IV lupus nephritis. 
(A) & (B) P-SYK positive cells (with examples illustrated by arrows) within glomerular capillary lumens in 
proliferative lupus nephritis, with a sequential negative control (NC) section. (C) & (D) Two additional 
examples of P-SYK positive cells within glomerular capillary loops in proliferative lupus nephritis.  x400 
magnification. 
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Figure 6.21: Phospho-SYK (P-SYK) detection in IgA nephropathy. 
(A) & (B) Sequential sections showing Total (T-SYK) and P-SYK detection in IgA nephropathy with 
endocapillary proliferation. (C) & (D) Sequential sections showing T-SYK and P-SYK detection in ‘crescentic’ 
IgA nephropathy.  x200-400 magnification. 
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6.4 Cellular localisation of SYK in proliferative glomerulonephritis 

 

SYK expression levels were highest in proliferative GN, and SYK appeared to localise in 

particular to areas of endocapillary and extracapillary proliferation that contain infiltrating 

leucocytes. Since I observed significant co-localisation of SYK with ED1+ macrophages in 

the rodent models, I therefore sought to establish if SYK similarly localised to infiltrating 

myeloid cells in human disease. 

 

Staining of serial sections from patients with lupus nephritis identified a small number of 

CD15+ cells within capillary loops in glomeruli that also contained SYK positive cells 

(Figure 6.22). 

 

 

 

  

Figure 6.22: CD15 and Total SYK (T-SYK) detection in class IV lupus nephritis. 
(A) & (B) Sequential sections showing CD15 (a neutrophil marker) positive cells and T-SYK positive cells 
within the same glomerulus from a patient with proliferative lupus nephritis. x400 magnification. 
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In AAGN, a larger number of CD68+ cells were identified, in a similar distribution to SYK 

positive cells, within glomeruli (Figure 6.23). 

 

 

 

 

To define this more precisely, I attempted to perform double staining for CD68 and T-SYK 

on single tissue sections. This raised several technical problems. Firstly, subjecting the same 

tissue section to repeated rounds of antigen retrieval led to significant degradation in the 

quality of the section. In addition, the method I developed for immunophosphatase staining 

gave a ‘blue’ reaction product, meaning that a standard counterstaining with haematoxylin 

count not be used to delineate tissue detail. Notwithstanding, double staining of AAGN tissue 

suggested significant co-localisation of T-SYK to CD68+ cells (Figure 6.24). There was, 

however, a proportion of cells that were T-SYK positive and CD68 negative, implying that 

Figure 6.23: CD68 and SYK detection in ANCA-associated glomerulonephritis (AAGN). 
(A) & (B)  Sequential sections showing CD68 (a macrophage marker) and Total SYK (T-SYK) positive cells 
localised to the same area of segmental inflammation in a patient with AAGN. x400 magnification. (C), (D) 
& (E) Sequential sections showing CD68 positive, T-SYK positive, and Phospho-SYK (P-SYK) positive cells 
within the same glomerulus from a patient with ‘crescentic’ class AAGN. x200 magnification. 
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SYK may be expressed within a number of cell types, both resident renal cells and other 

types of infiltrating leucocytes, in AAGN. 

 

 

 

 

  

Figure 6.24: Double staining for CD68 and Total SYK (T-SYK) in ANCA-associated glomerulonephritis 
(AAGN). 

(A), (B), (C) & (D). Double staining for CD68 (a macrophage marker; in blue) and T-SYK (in brown) in four 
cases of AAGN.  In all cases, there is apparent co-localisation of CD68 and T-SYK to the same areas of 
segmental inflammation or crescent formation in diseased glomeruli. A proportion of cells, however, are T-
SYK positive and CD68 negative, suggesting that cells types other than macrophages may express SYK 
within diseased glomeruli in AAGN. 
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6.5 Chapter Six: Discussion of results and future work 

 

The work reported in this chapter is the first systematic analysis of SYK expression in 

glomerular disease, using biopsy specimens from a large number of patients. I have shown 

that SYK is expressed in a spectrum of human glomerulonephritides, that expression levels 

are highest in proliferative classes of GN, and that they correlate broadly with disease 

severity or histological class in anti-GBM disease, AAGN, lupus nephritis and IgA 

nephropathy. SYK appears to be phosphorylated and functionally active within diseased 

glomeruli, implying it has a pathogenic role in these conditions. SYK localises to infiltrating 

leucocytes, and in particular infiltrating macrophages, within disease glomeruli, although 

there are a number of other cell types, both resident and infiltrating, that may contain SYK.  

 

The potential role of SYK in the pathogenesis of anti-GBM disease and AAV has been 

discussed in Chapters Four and Five. SYK has also been implicated in the pathogenesis of 

SLE. SYK inhibitor treatment using fostamatinib, for example, has shown efficacy in three 

distinct murine models
68,69

. In particular, treatment of the lupus-prone NZB/NZW and 

MRL/lpr mouse strains reduced kidney disease as determined by both proteinuria and renal 

histology. Higher levels of SYK expression and activity have been reported in T cells from 

SLE patients versus normal controls
58

, and it was recently reported that silencing of SYK 

expression in SLE T cells, or forced over-expression of SYK in normal T cells, normalised 

their gene expression signature, or recapitulated an SLE expression signature, respectively
255

. 

SYK is also implicated in the pathogenesis of IgA nephropathy, the most common primary 

glomerulonephritis for which there is still no universally accepted treatment. Our laboratory 

has previously reported that IgA1 isolated from patients with IgA nephropathy induced 

proliferation and pro-inflammatory cytokine production by human renal mesangial cells in 
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vitro, and that this could be inhibited by pharmacological inhibition using fostamatinib, or 

genetic ‘knock-down’ using siRNA techniques
243

. Taken together, these data suggest that 

SYK inhibition may be a rational therapeutic target in a variety of human GN. 

 

Whilst these data suggest that SYK is expressed within infiltrating leucocytes, I have not 

addressed SYK expression in resident renal cells, such as epithelial cells or mesangial cells, 

which may also contribute to disease pathogenesis. It would be desirable to pursue this in 

future work, although the paucity of validated cell markers that can used for the identification 

of such cells by immunohistochemistry on formalin-fixed paraffin-embedded tissue will 

make this challenging. The use of frozen tissue sections and immunofluorescence techniques 

could be explored. I also observed substantial SYK staining outwith glomeruli in tubular 

epithelial cells, both in normal and diseased cases. The significance of which is not clear, and 

thus also warrants further investigation. It would also be desirable to optimise P-SYK 

staining in order to allow quantification; the challenges, however, of staining for phospho-

proteins have already been discussed (Section 6.3). Finally, it would be desirable to correlate 

SYK staining in proliferative GN with other clinical parameters such as renal function, 

proteinuria and patient outcomes, and to examine those patients who had serial biopsies to 

investigate any correlations with disease progression or response to treatment. 

 

6.6 Summary of key findings 

 

 SYK is expressed in the glomeruli in a spectrum of human GN 

 

 SYK expression levels are highest in proliferative GN, and correlate broadly with 

disease severity in anti-GBM disease, AAGN, lupus nephritis and IgA nephropathy. 
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 SYK is phosphorylated and functionally active within diseased glomeruli, implying it 

has a pathogenic role in these conditions. 

 

 SYK localises to infiltrating leucocytes, and in particular infiltrating macrophages, 

within diseased glomeruli, although there are a number of other cell types, both 

resident and infiltrating that may express SYK 
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CHAPTER SEVEN - DISCUSSION AND FUTURE WORK 
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7.1 Discussion 

 

This project set out to investigate the role of SYK in the pathogenesis of GN, and to establish 

if it may represent a therapeutic target in clinical disease. To address these questions, I 

studied the effects of SYK inhibition using a pharmacological small molecule inhibitor in two 

distinct experimental models, and conducted an immunohistochemical survey of almost 100 

clinical specimens from patients with various forms of GN. 

 

I have reported several novel observations, including: 

 

(i) Activation of SYK is a key requirement for the induction of experimental 

autoimmune glomerulonephritis. 

(ii) In established experimental disease, SYK inhibition is an effective treatment for 

the renal and pulmonary manifestations of autoimmune glomerulonephritis and 

autoimmune vasculitis. 

(iii) SYK inhibition attenuates the production of pathogenic anti-GBM autoantibodies 

in EAG, likely through direct effects on antibody-producing B cells. 

(iv) SYK in expressed and activated in pathological lesions in various forms of human 

GN. 

 

These observations suggest that SYK contributes significantly to the pathogenesis of 

inflammation in GN, and that clinical studies using SYK inhibition should be considered. 
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The majority of this work was undertaken in rodent models of human glomerular disease. 

Whilst these models have been developed to recapitulate as closely as possible the pathogenic 

mechanisms and phenotype that is observed clinically, in vivo models are well recognised to 

have shortcomings that may limit their translation of human disease. EAG and EAV, for 

example, are non-spontaneous, requiring active immunisation in the presence of potent 

adjuvants. EAV, whilst characterised by the presence of autoreactive ANCA, is induced by 

immunisation with an alloantigen, and unlike AAV, the disease it models, it has a gradual and 

spontaneous resolution beyond week 6, and does not replicate the relapsing-remitting course 

of clinical disease. In addition, the rodent and human immune systems are phylogenetically 

distinct, with recognised differences in both innate and adaptive elements, such that the 

pathogenic mechanisms (and thus responses to potentially therapeutic interventions) may not 

translate from one species to another
256

. This is perhaps illustrated by our laboratory’s 

previous finding that experimental glomerulonephritis and vasculitis could be successfully 

attenuated by TNF-α blockade
132,214

, a therapy that has shown uncertain efficacy in clinical 

studies in AAV
257,258

. 

 

In an attempt to identify ‘conserved’ and ‘divergent’ components of the murine and human 

immune systems, the Immunological Genetics (ImmGen) Consortium has compared the 

transcriptional profiles of mouse and human immune cell types
259

. They found conserved 

expression patterns for most orthologous genes, although several hundred genes showed 

clearly divergent expression patterns across different cell types. Interrogation of the ImmGen 

database reports that the SYK gene has a ‘co-efficient of conservation’ of 0.938 (range -1 to 

1), suggesting that its transcriptional profile is highly conserved between species, and perhaps 

indicating that it has conserved function across species. 
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Other limitations that should be considered in the interpretation of my experimental findings 

include: 

 

(i) Specificity of the inhibitor used: The available data, as described in section 1.2, suggests 

the R406 is highly selective for SYK, although it does have documented activity, albeit as 

much less potency in cell based assays, on other kinases including Flt3, Lyn and Lck. It is 

possible that the combined effect of low-level inhibition of these multiple kinases (or activity 

on other kinases not yet tested in in vitro assays) may have accounted for the dramatic effects 

observed in my in vivo studies. This makes it difficult to propose definite inferences about the 

role of SYK in disease pathogenesis, though these may be less of a concern with regards to 

translating my findings to the clinical arena. Indeed, the drug’s therapeutic potential may be 

reliant on producing ‘off-target’ effects on multiple kinases. 

 

(ii) Pharmacokinetics: I have not gathered any PK data in these studies. The doses of 

fostamatinib used were based on those used in comparable, published in vivo studies, 

including our laboratory’s previous work in NTN, and on PK data from other rat strains 

provided by the drug manufacturer. Whether these are applicable to WKY rats (and in the 

presence of renal impairment and systemic inflammation) is not known. It would be of value 

to perform PK analyses in future studies, both to confirm that sufficient plasma R406 levels 

were achieved in order to inhibit cellular SYK activity, and to identify the possibility of 

excessive dosing resulting in increased ‘off-target’ drug effects. 
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(iii) Cellular target of SYK inhibition: My in vitro data suggests SYK activity in B cell and 

macrophages contributes to autoantibody production and inflammation in GN. However, it is 

difficult to delineate to role of SYK in different cell types in vivo, due to systemic exposure to 

the pharmacological agent. I have therefore not addressed the role of other cell types that 

express SYK and are known to contribute to the pathogenesis of experimental GN, such as 

neutrophils
260

, mast cells
261

 and dendritic cells
262

. 

 

7.2 Future work 

 

The use of genetic approaches may overcome some of the limitations I have identified. My 

colleague Dr Min Jeong Kim, for example, has compared the effect of SYK siRNA 

knockdown and pharmacological SYK inhibition with R406, on cultured human mesangial 

cells stimulated with IgA1 from IgA nephropathy patients, and shown that both approaches 

have similar effects on cytokine production profile, suggesting that R406 is active against 

SYK, and implying a degree of specificity
243

. A similar approach could be used in my in vitro 

studies with BMDM and other cell types. 

 

In work ongoing in the laboratory at present, I am investigating the effects of inducible SYK 

deletion in accelerated murine NTN, using the Cre-loxP system described in section 1.1.6 

(using mice kindly provided by Victor Tybulewicz at the National Institute for Medical 

Research). Preliminary results suggests that inducible SYK deletion results in protection from 

NTN, and if confirmed, these findings raise the possibility of defining the role of SYK in 

specific cell types in NTN, by inducing deletion under various cell- or tissue-specific 
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promoters. These animals will also provide a source of SYK-deficient cells that could be used 

for further in vitro studies. 

 

Whilst this project has focused on the role of SYK in adaptive immune responses, SYK has 

also been implicated in a number of other signalling pathways that may be relevant in these 

models, or to subsequent clinical translation of these findings, and that warrant further 

consideration. These include roles in integrin signalling, platelet function, bone metabolism, 

oncogenesis, and innate immunity. 

 

Integrin signalling 

 

SYK has been implicated in integrin signalling in myeloid cells
30,31,263

. Integrins are 

transmembrane receptors that have a critical role in cell adhesion, migration and activation, 

via their interaction with adhesion molecules expressed on other cells, particularly the 

vascular endothelium. SYK deficient myeloid cells show impaired integrin-mediated 

responses (such as impaired respiratory burst and cytokine release, though not impaired 

migration or cell recruitment) thought to be dependent on the association of integrins with 

ITAM-containing adaptor proteins such as FcRγ-chain and DAP12, as myeloid cells deficient 

in these adaptor proteins show similar defects. Inhibition of integrin-dependent responses in 

myeloid cells may have contributed to the attenuation of injury that was observed in my in 

vivo studies. 
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Platelet function 

 

SYK has been shown to be involved in a number of platelet activation pathways, including 

via the glycoprotein GPVI receptor (an FcRγ chain-associated receptor that bears an ITAM 

motif), integrin αIIbβ3, and C-type Lectin 2 (CLEC-2; a type II membrane protein containing 

a single tyrosine-based motif in its cytoplasmic tail that has been termed a hemITAM)
264,265

. 

In addition, R406 has demonstrated inhibitory activity in these pathways
62

. However, high 

dose exposure to R406 did not prolong bleeding time in mice, and in phase I human studies, 

R406 did not inhibit collagen or ADP-induced platelet aggregation ex vivo
48

, perhaps 

suggesting redundancy of SYK dependent pathways in vivo. Notwithstanding, the potential 

effect of altered platelet function in the experimental models (and particularly in murine 

NTN, which has a thrombotic phenotype) could be investigated, and may have obvious 

implications for use of SYK inhibition in clinical studies. 

 

Bone metabolism 

 

SYK has been shown to regulate osteoclastic bone resorption, via its association with integrin 

αvβ3 and ITAM bearing proteins, such as DAP12 and FcRγ chain, expressed at the osteoclast 

cell surface
266

. In addition, SYK has recently been implicated in the suppression of osteoblast 

differentiation
267

. Thus, SYK may represent a therapeutic target in disorders of bone 

metabolism such as osteoporosis, although potential effects of SYK inhibition on normal 

bone, such as osteosclerosis or increased fragility and fracture risk, have yet to be 

investigated in vivo or in clinical studies. 
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Oncogenesis 

 

It has been suggested that SYK is a negative regulator of progression in various types of 

malignancy (including breast, gastric and melanoma) based on the observation of decreased 

SYK expression in these tumour types and experimental studies where SYK transfection and 

re-expression in tumour cell lines suggested a tumour- and metastasis- suppressive effect
268

. 

The molecular mechanism of this suppressive role has yet to be established. Conversely, 

fostamatinib has shown activity in NCI-60 (a panel of 60 diverse human cancer cell lines), 

although this may be due to off-target effects, rather than SYK inhibition specifically. 

Fostamatinib had limited anti-tumour activity in a broad multi-histology Phase II study
78

. 

 

SYK signalling through the BCR has also been implicated as an important survival signal in 

various lymphoid malignancies, and R406 has shown anti-proliferative and pro-apoptotic 

activity in B cell lymphoma and CLL lines in vitro
50-52

. Furthermore, R788 is highly active in 

animal models of NHL and CLL
63,64

 and, in a Phase II clinical trial, fostamatinib showed 

significant clinical activity in a heterogeneous group of NHL and CLL
77

. Based on these 

findings, larger Phase II trials in haematological malignancy are ongoing (NCT00798096). 

Interestingly, some oncogenic viruses have been shown to encode ITAM-containing proteins 

– for example, Epstein Barr virus (EBV) latent membrane protein 2A (LMP2A) contains an 

ITAM motif, and has been shown to promote B cell development and survival
269

. Recently, it 

was shown that R406 induces cell-cycle arrest and apoptosis in EBV positive B cell 

lymphoma post-transplant lymphoproliferative disorder (PTLD) cell lines in vitro, although 

increased nodal tumour growth was observed in in vivo models
270

. More work is clearly 

needed to define the true nature and mechanisms of SYK involvement in these cancer 

pathways. 



237 | P a g e  
 

Innate immunity 

 

SYK has recently been associated with a variety of pathogen recognition receptors (PRR), 

important components of the innate immune response that recognise pathogen-associated 

molecular patterns (PAMPs). C-type Lectins, one such class of PRR, play an important role 

in antifungal immunity in particular, and SYK has been implicated in the intracellular 

signalling cascades for these receptors
271

. Some, such as Dectin-1, contain an ITAM motif on 

their cytoplasmic domain, and others may associate with ITAM-containing adaptor proteins 

such as FcRγ chain or DAP12. Signalling via these pathways may be involved in the 

pathogenesis of the experimental models I have used (in particular, during the response to 

adjuvant) and the effects of SYK inhibition in these responses warrants further investigation. 

In addition, it is notable that SYK is reported to couple activation of fungal PRR to Nlrp3-

inflammasome activation
272

. Our laboratory has previously shown that differences in Nlrp3-

inflammaome activation may account for the distinct susceptibility of the WKY rat strain, 

and resistance of the Lewis strain, to experimental models of GN
273

. It would be of interest to 

establish if there are genetic or functional differences in SYK signalling between these two 

strains. 

 

Effects on these innate immune responses raise obvious concerns for clinical use of SYK 

inhibition as a therapeutic strategy in autoimmune disease. The results of the preclinical 

toxicity assessments and host resistance models are reassuring in this respect
80

 (although a 

host resistance model of fungal infection has not been studied), as is the absence of severe, 

atypical or opportunistic infection in the clinical studies thus far. Larger and longer clinical 

studies are, however, needed to establish the long term and cumulative effects of SYK 
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inhibition on innate immune responses and infection risk, particularly in patient groups who 

may have had extensive treatment histories with other immunosuppressant agents. 

 

7.3 Conclusions 

 

The findings reported in this thesis suggest that SYK inhibition using fostamatinib has the 

capacity to prevent, treat, and even reverse disease in experimental models of 

glomerulonephritis and vasculitis.  My findings also implicate SYK in the pathogenesis of 

human glomerular disease, and support existing experimental data suggesting SYK is 

important in the development of lupus, IgA nephropathy and AAV. Whilst the diverse 

biological functions of SYK, coupled to the potential off-target effects of its inhibitors are a 

source of possible toxicity, the available data augurs well for future clinical use of SYK 

inhibition in glomerulonephritis, and potentially other systemic or organ-specific autoimmune 

diseases. 
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