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  Abstract – Four-wire inverters are useful for interfacing distributed generation to networks of 

unbalanced loads but neither of the available circuit topologies is ideal. The split-link 3-leg topology (with 

6 switches) suffers poor DC voltage utilisation compared to the 4-leg topology (with 8 switches). The 4-leg 

topology has an EMC difficulty because it imposes large amplitude high-frequency voltages between the 

DC-link busbars and ground. To obtain both good DC voltage utilisation and good EMC performance, it 

is proposed to use a split-link inverter with an active balancing circuit (also 8 switches). The balancing 

circuit is used to modulate the DC busbar offset voltage to make better use of the available DC-link 

voltage. The optimum voltage term is established to be a third harmonic term and the utilisation 

improves to that of the 4-leg inverter. A deadbeat controller supplemented with a repetitive controller is 

designed to give good tracking and good disturbance rejection for the busbar offset voltage. System 

performance is studied through an experimental test rig.  
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1   INTRODUCTION 

When a distribution network supplied by inverters has unbalanced loads, a four-wire inverter (with 

a neutral connection in addition to three phase connections) can be used to provide full control over the 

phase voltages and thereby ensure good voltage quality. There are two common ways to provide the 

neutral connection: retaining a three-leg inverter structure but splitting the DC-link with a pair of 

capacitors to provide the fourth wire [1,2,3], and retaining a single DC-link capacitor [4,5,6] by 

providing a fourth leg (pair of switches). The split-link topology is simpler and uses fewer 

semiconductors (6 compared to 8) but introduces the problem of ensuring close voltage sharing 

between the split capacitors and the need to attenuate voltage ripple of them. A large neutral current 

(produced by either unbalanced or nonlinear loads) causes a large perturbation to the split voltages. 

Such perturbation needs to be compensated for in the phase-voltage control scheme and risks 

malfunction of the inverter. Voltage balancing controllers, such as dynamic hysteresis current control 

[3], have been proposed to overcome the problem but the zero-sequence current can still cause large 

DC voltage imbalance. The voltage deviation can be attenuated by using larger DC-link capacitors but 

with an obvious penalty in cost and size. The split-link topology requires that the phase-voltage peak is 

less than or equal to the split DC-link voltage (normally half the total DC-link voltage) whereas the 4-

leg inverter can allow a line-voltage peak equal to the half the total DC-link voltage. This gives an 

approximately 15% advantage in DC voltage utilisation in favour of the 4-leg inverter. Another factor 

to consider in inverter selection is the high-frequency common-mode voltages with respect to ground 

produced by the switching. Since there are significant parasitic capacitances between the DC busbars, 

packages, heat-sinks and ground, there can be significant common-mode current flows through long 

paths involving ground. These are known to be a source of EMC problems [7]. In this paper, a 

proposal is made to improve the voltage utilisation of the split-link inverter when fitted with an active 

balancer. The aim is to retain the EMC advantage of this structure and to extend the use of the active 
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balancing circuit beyond just maintaining equal split voltages to modulating these voltages to achieve 

the same DC voltage utilisation as the 4-leg structure. The resulting inverter has the attractive EMC 

properties of the split-link 3-leg inverter combined with the better voltage utilisation of the 4-leg 

inverter. It will use the same number of switches as the 4-leg inverter.  

The paper will establish the required form of split voltage modulation to obtain maximum DC 

voltage utilisation. It will then discusses how the capacitors and balancing circuit inductor are chosen 

and how the split voltage controller can be designed using a plug-in repetitive control scheme [8, 9]. 

The chosen design is verified experimentally. A circuit simulation is used to verify that the common-

mode voltage imposed across the parasitic capacitance of the DC-link, and the resulting current, is less 

onerous than in a 4-leg inverter.  

 

2 COMPARISON OF 4-WIRE INVERTER TOPOLOGIES 

In simple terms, the role of a 4-wire inverter is to produce a balanced set of phase voltages with 

respect to neutral.  
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To achieve this with a split-link 3-leg inverter requires the total DC-link voltage to be  

                                     
12VVDC ≥    (2) 

This assumes that total DC voltage, VDC is split equally to form the two busbar voltages, V+ and −V , as 

illustrated in Fig. 1, where 
−+ −= VV  and 

−+ −= VVVDC .  
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Fig.1 Illustration of the DC-link voltage required for phase voltages with an amplitude of 330 V(peak). 

 

An advantage of the 4-leg inverter is that when space-voltage vector modulation, SVM, is applied, 

the DC voltage utilisation (defined as the maximum phase voltage magnitude relative to the DC-link 

voltage) can be increased by approximately 15% compared to the three-leg, split-link case [4]. SVM 

applied to 3-wire inverters also has this advantage compared to carrier-based PWM with a sinusoidal 

reference [10]. However, in 3-wire carrier-based PWM the same 15% advantage can be achieved by 

adding a zero-sequence third harmonic term [11,12] to the reference for the PWM. This term will be 

present in the inverter phase voltages but not present in the line voltages. These two methods are 

equivalent under certain circumstances and extensive research comparing and contrasting the methods 

is available [12,13,14]. It is not possible to use injection of a third harmonic reference term with a 4-

wire inverter because the injected signal will also be present in the phase voltage of the loads. Thus, in 

the 4-wire case, SVM of a 4-leg inverter has a voltage utilisation advantage (of 15%) over carrier-

based PWM of a split-link 3-leg inverter. 

In the split-link 3-leg inverter, the inverter DC busbars are at well defined voltages (the capacitor 

voltages) with respect to neutral and are not subject to significant common mode voltage with respect 

to ground if the neutral is well grounded. In contrast, in the 4-leg design the busbars are subject to high 

frequency voltage transitions with respect to neutral and ground as the fourth leg connects the two 

busbars to neutral in an alternating pattern at the switching frequency.  Proposals have been made to 

reduce the common mode voltage problem of the 4-leg inverter. For instance, use of the zero vectors 

can be avoided [15,16] but this also reduces the DC-link utilisation. 

On the basis of EMC performance, it would be attractive to choose the split-link 3-leg inverter. To 

overcome voltage balancing problem, it is possible to fit an active balancing circuit to the split-link 

using two additional semiconductor switches (the equivalent of a fourth leg) so that a current can be 

injected into the split capacitors. This approach was discussed in [17] and a control solution provided. 
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The active control of the split-link can also yield a reduced capacitor size over the passively balanced 

split-link. The actively-balanced split-link circuit is shown in Fig. 2. The pair of capacitors is the key 

element, the split voltage sources are for analysis purposes only and in practice a single power source 

would be present. It has been assumed that the neutral line is solidly connected to ground but this 

connection could be replaced with a grounding impedance. The parasitic capacitors between each 

busbar and ground have been reduced to a single capacitance, Cog, between the midpoint of the source 

and ground. It is clear that connecting the split-point to neutral and indirectly to ground prevents the 

parasitic capacitors being exposed to large voltage transitions. 

A shortcoming of the actively-balanced split-link inverter is that the number of semiconductor 

switches is equal to that of the four-leg inverter but the DC voltage utilisation is only that of the split-

link 3-leg inverter (in other words, the 15% advantage of the fourth leg is not achieved).  However, 

this is on the assumption that the DC-link voltage is equally split and the offsets of two busbar 

voltages are fixed. The proposal in this paper is to modulate a busbar offset voltage so as to allow 

higher maximum phase voltages.  

 

3 OPTIMAL MODULATION OF THE BUSBAR OFFSET VOLTAGE 

The busbar offset voltage VX, shown in Fig. 2, is defined as the displacement of the notional mid-

point, o, from the split-point of the DC-link (VX = Von in this topology). It can be expressed as offset,  
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Fig.2: Actively-balanced split-link inverter. 
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2
−+ +=
VVVX . 

If the DC-link voltage is equally split, VX  is zero. VX will be modulated to ensure that the two busbar 

voltages are sufficient to establish the required positive and negative peaks of the phase voltages.  
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The total DC-link voltage required under this condition, 
DCV ʹ′ , is the difference between the busbar 

voltages: 

        )()(' minmax tVtVV DC −≥                               (4). 

An obvious method to obtain a minimum DC voltage which fulfils (4) is for VX to follow the 

arithmetic mid-point of )(max tV  and )(min tV :   

           ( ))()()( minmax2
1 tVtVtVX +=                            (5). 

Fig. 3 illustrates the variation of VX , V+ and V- . It can be seen that the new required DC voltage, DCV ʹ′  is 

less than that required in Fig. 1 where no modulation of VX occurred. The improvement in DC voltage 

utilisation can be quantified by considering the segment from 6π  to 2π  as an example. In this 

segment )()(max tVtV an= and )()(min tVtV bn= . Equation (4) becomes: 
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Fig.3 Illustration of reduced VDC when VX tracks the mid-point of the phase voltage extremes.  

In other words, DCV ʹ′  must exceed the line voltage peak and this occurs at 3π and has a value of 
13V . 

The required DC voltage is: 

DCDCDC VVVV
15.1
1

2
33' 1 ≈=≥                          (7). 

Thus the 15% advantage in DC voltage utilisation of the 4-leg inverter has been achieved here also. It 

can be verified that equations (5) and (7) fulfil the conditions in (3). 

    The waveform of XV  produced by (5) and illustrated in Fig. 3 consists of segments of sine-waves 

with a period of one third of the fundamental but also containing higher triplen harmonics. It would be 

challenging to reproduce this as a voltage on the DC-link capacitors. An alternative would be to use a 

sinewave of the same period, i.e., a third harmonic, as illustrated in Fig. 4 and (8).  

)23sin()( 13 tfVtVX π⋅−=                     (8). 
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Fig.4 Illustration of reduced VDC  when VX is third harmonic.  
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    As shown in appendix A, the amplitude of third harmonic that yields the best DC voltage 

utilisation is one sixth of the amplitude of the fundamental, and it yields an advantage of 15% over the 

standard split-link arrangement. The principle is the same as injecting a third harmonic term in 3-wire 

3-leg inverters [8] but here the third harmonic is applied to the busbar potentials. 

 The modulating signal used for each phase voltage must now be modified to account for the 

variation of the busbar offset. The phase-a voltage as function of switch duty-cycle, da, or depth of 

modulation, ma, is defined in (9). (Note: 0≤ da ≤1; da=½(1+ma) and -1≤ ma ≤1) 
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To achieve a desired phase voltage requires:  
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    4 NEUTRAL LEG MODELLING AND CONTROL 

A. Modelling of the neutral leg 

The busbar offset voltage can be controlled by injecting a current through the inductor LN under the 

influence of the 4th leg voltage VNn, as shown in Fig. 2. The capacitor current is composed of the 

inductor current used for control and the neutral current required by the load, which here is considered 

as a disturbance.  The following equations apply.  
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where dN is the duty-cycle of the neutral leg transistors and mN = 2dN -1 is the depth of modulation.  

The state equations of the system are: 
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B. Selection of split-link components 

    It is now necessary to choose suitable component values. Clearly it is advantageous to choose small 

valued components for reasons of cost and volume but the following additional factors need to be 

considered.  

    (a) The cut-off frequency of the neutral leg circuit must be above 3f1 so as to be able to control VX  to 

follow the 3rd harmonic reference. Ignoring the external disturbance iN, the transfer function from the 

depth of modulation mN to busbar offset voltage VX can be obtained from (12), 
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This cut-off frequency condition therefore determines the product of the inductor and capacitor values 

and shows that small values are required. 

(b) It is desirable that the magnitude of the 3rd harmonic current required to create VX should not be 

large. This condition indicates that within the confines of condition (a) the capacitor size should be 

reduced. The amplitude of the 3rd harmonic current required for a voltage of 
16

1VVX =  is: 

 
11116

1 32
3

VCfCfVI NNf ππ =⋅⋅⋅=                   (14). 

A disadvantage of choosing CN small for this reason is that iN will have a large effect on the busbar 

voltages and so good disturbance rejection from the controller is needed. 

    (c) There will also be switching frequency ripple present in the capacitor voltages and it is desirable 

to keep this small. Contrary to conditions (a) and (b), condition (c) indicates that a large capacitor 

value is desirable. An estimate of the amplitude of the ripple can be gained by considering the 

fundamental term of a square-wave voltage of amplitude VDC and frequency of fs and the effect an LC 

circuit has in attenuating this. Clearly, both LN and CN should be large to keep the ripple small. 
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C. Controller design 

    Equation (12) forms the basis of a state-space model of the neutral leg system. We choose the state 

vector to be ]  [ XX VV !=x and treat iN as a disturbance term in vector δ. This choice of state vector will 

remove the need to measure iL for state-feedback and leave only VX to be measured. 
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A controller was designed to force the busbar offset voltage to track the 3rd harmonic reference voltage. 

A deadbeat controller supplemented by a repetitive controller was chosen to give good tracking and 

the ability to reject periodic neutral current disturbance [8]. The general arrangement is shown in Fig. 

5.  
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Fig.5. The control system. A deadbeat feedback controller and a repetitive controller are 

connected in parallel. 
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A discrete-time controller was designed using the procedure outlined here. In discrete-time from the 

state-space representation (ignoring the disturbance) is: 
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T is the sampling interval which is chosen to be the switching period 
sf1 , and TmT N=Δ  is the width of 

the switching voltage pulse applied.  

 

The output equation is )()( kVky X= . A suitable control law is: 
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Under ideal conditions this deadbeat control will yield an output at the end of the sampling period 

equal to the reference value: 

                         )()1()1( kVkVkY ref
XX =+=+                   (18). 

 

In practice, there are disturbances and uncertainties in the circuit parameters and perfect deadbeat 

control can not be achieved. A plug-in repetitive controller can be connected in parallel with an 

existing controller without affecting its stability [8]. The repetitive controller will attenuate (ideally to 

zero) disturbances of the chosen period including the harmonic terms. The transfer function of the 

controller in the discrete-time form is: 
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where kg is the gain; N=fs/f1; N2 is the delay number; )2(25.0)( 1−++⋅= zzzQ  is a first order filter.  

 

5 EVALUATION AND ANALYSIS 

The proposed variable busbar offset strategy was tested experimentally using an inverter with the 

circuit arrangement of Fig. 2 and with parameters as set out in Table I. The control was implemented 

on a DSP.  To illustrate some features, the same system was simulated in PSCAD/EMTDC. 

The DC-link voltage was chosen on the basis of producing a peak phase voltage of 330 V. With the 

busbar offset voltage modulated with a peak of 55 V, this gives a required DC link voltage of 572 V. 

To accommodate semiconductor and filter voltage drops, a link voltage of VDC = 585 V was chosen.  

For a 50 Hz system, the split-point is modulated at 3f1 = 150 Hz and the filter cut-off is constrained 

according to (13),  
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2

1

s 10623.5
)32(2

1 −×=
⋅⋅

<
f

LC NN π
 

The maximum ripple at switching frequency (10 kHz) of the busbar offset voltage was chosen to be 1 

V and (15) further constrains the filter design, 
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Choosing a value of 1.5 A for the third harmonic current amplitude in the link capacitors gives, via 

(14), a limit for the capacitance,  

µF 94.28
11

3 =<
Vf

I
C f
N π

 

A value of µF 25=NC  was chosen. The compromise chosen for the filter cut-off was fc=450 Hz which 

led to a choice of mH 5.2=NL  . The resultant voltage ripple is VRipple=0.704 V and capacitor current of 

3f
I =1.296 A. Deadbeat control design according to (17) gave controller parameters of: 

6
0 102735.4 −×−=k , 6

1 101026.4 −×=k , and 10
2 102735.4 −×=k .  
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Table I Inverter parameters. 

Output power 30 kW Neutral capacitor CN+, CN- 25 µF 

Phase voltage 330 V (peak) Neutral inductor LN 2.5 mH 

AC frequency 50 Hz Filter capacitor Cf 50 µF 

Switching frequency 10 kHz Filter inductor Lf 1.35 mH 

 

 

                        
 

(a) with un-modulated busbar offset.                            (b) with third harmonic busbar offset.  
 

Fig.7: Experimental results. From top to bottom: busbar offset voltage, VX, 100V/div (measured with potential 
divider of two 47 kΩ resistors between V+ and V- busbars); neutral current, iN, 50A/div and phase-a output voltage 

after the LC filter, VAa, 500V/div. Time axis is 5 ms/div 
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(a) with un-modulated busbar offset.                            (b) with third harmonic busbar offset . 

 
Fig.6: Simulation results. From top to bottom: busbar offset voltage, VX; neutral current, iN; and phase-a 

output voltage after the LC filter, VAn. 
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A severe test of the ability of the controller to maintain the correct busbar offset voltage is to test the 

4-wire system with a single-phase load (which is an extremely unbalanced three-phase load) with 

return of current via the neutral. A resistive-inductive load of 5.76 Ω in series with 8 mH was chosen 

for the test giving a neutral current of approximately 50 A. With VDC set at 585 V and V1 at 330 V, the 

modulation of the phase legs will saturate if the busbar offset voltage is not varied (VX = 0) and in turn 

the output voltage of the filter, VAn will be distorted. It’s total harmonics distortion (THD) is 2.83%. 

This is illustrated in simulation in Fig 6(a) and experimentally verified in Fig. 7(a). It is worth noting 

in passing that the active-balancer has successfully held the busbar offset voltage at zero despite the 

large amplitude neutral current.  Fig. 6(b) and 7(b) show that with the busbar offset voltage modulated 

with a 55 V at 150 Hz, the output voltage is not distorted because the link voltage is better utilized. 

The THD of the output voltage is 1.35%.  
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An important reason to adopt the split-link 4-wire topology is to improve EMC through reduction 

of high frequency voltage variation of the inverter busbars with respect to ground. This was tested in 

simulation and is shown in Fig. 8. The common-mode voltage, Vog, applied across the link-to-ground 

parasitic capacitance, Cog, of the inverter was studied for both the split-link inverter and a 4-leg 

inverter using a standard symmetrical SVM switching technique [4]. The capacitance was set to 2.7 nF. 

Because the current through this capacitor flows in large area common-mode paths, it can be a serious 

source of EMC problems. Its spectrum is therefore a relative measure of EMC performance.  
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            (a) Split-link inverter with modulated busbar offset.                      (b) 4-leg inverter with SVM. 
 
Fig.8: Simulation of common-mode voltage Vog (including a filtered version in (b)) and common-mode currents, iog in 

time and frequency domains.  
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The common-mode voltage, Vog, in the split-link inverter is the third-harmonic term (55 V at 150 

Hz) plus the ripple voltage remaining after filtering by CN and LN  as described by equation (15). This 

is shown in Fig. 8(a) which reveals that the common mode current is approximately 0.5 mA. For the 4-

leg inverter with SVM, Vog is rectangular wave of 330 V at 10 kHz, as seen in the top plot of Fig. 8(b), 

which is rich in switching frequency terms but also has an underlying low frequency component. A 

notch filter of 
10000
10000)1(1 10000
+

⋅−⋅
−

s
e

s

s
 was used to remove the 10 kHz switching frequency to reveal 

the low frequency component, Vog_lpf as also shown in Fig.8 (b). The total common-mode current is 

much higher at 0.4A. The frequency spectra of iog show that the split-link inverter has a switching 

frequency component more than 40 dB below that of the 4-leg inverter and that the switching 

frequency harmonics are some 80-90 dB lower to beyond 50 kHz. The waveforms of output voltages 

for these two cases were also compared. The THDs figures are similar and both are  small at 1.35% for 

the split-link inverter and 1.2% for the 4-leg inverter. There is not much difference in spectra of the 

output voltages especially in the high frequency ranges but a relatively high 3rd harmonic term (150Hz) 

was found for the split-link inverter and resulted in a slightly higher THD, as shown in Fig.9. This can 

be explained using equation (9) in that the 3rd harmonic busbar offset voltage would be present in the 

output voltage  although most of this componentwill have been removed by modifying the depth of 

modulation, ma. It should be noted that only open loop control was used for producing the output 

voltages for the two inverter topologies in this paper. If closed loop control is used, THDs can be 

reduced further for both  the split-link inverter with the modulated busbar offset and the 4-leg inverter 

with SVM. 
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            (a) Split-link inverter with modulated busbar offset.                      (b) 4-leg inverter with SVM. 
 

Fig.9: Power spectrum density analysis for phase output voltage VAn.  
 

6 CONCLUSIONS 

It has been shown that it is feasible to modulate the busbar offset voltage of a split-link, 3-leg, 4-wire 

inverter using an active balancing circuit and by doing so the DC voltage utilisation can be improved 

to match that of a SVM 4-leg inverter. No advantage in number of switches is achieved because the 

active-balancer is the equivalent of a fourth leg but a significant advantage is found in the spectrum of 

the voltage across any parasitic capacitance between the DC-link and ground. The split-link inverter 

has much lower amplitude common-mode voltages at switching frequency since comprising only the 

ripple across the split-link capacitors appears rather than the full square-wave voltage of the fourth leg. 

It has been shown in simulation and experiment that a deadbeat controller with an additional repetitive 

controller (for disturbance rejection) can successfully create the correct reference voltage for the 

busbar offset. That reference voltage has been established as a third harmonic voltage of one sixth the 

amplitude of the phase voltage fundamental. 
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APPENDIX A 

To find the optimal magnitude of third harmonic voltage for the busbar offset modulation it is 

sufficient to examine the interval from 6π  to 2π . We seek the magnitude that allows the smallest DC 

voltage to be used for a given phase voltage.  
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It is convenient to define the third harmonic magnitude relative to the fundamental of the phase voltage, 

133 /VVA =  and to use the angle tf12 πθ = . The maximum voltage required occurs at the angle where 

θd
dVDC is zero. 
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The solutions to (A3) within π6
1  to π2

1  are πθ 2
11 0cos == −  and 

3
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12
19cos

A
A −

= −θ . The sign of the 

second differential will indicate whether a maxima or minima exists. 
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Considering first the case of πθ 2
1= , the second differential is: 
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Equation (A6) indicates that if 9
1

3 >A  then πθ 2
1=  is a minimum point whereas if 9

1
3 <A  then 

πθ 2
1= is a maximum point. When 9

1
3 =A the maximum voltage required is  

                       1778.1 VVDC ≥                                 (A6). 

For the second case of 
3
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= −θ , the amplitude must be 9
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3 >A . The second differential and DC 

voltage required are: 
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Vd DC  and (A8) will yield the maximum voltage required. Differentiating (A8) with 

respect to A3 and setting the result to be zero will give the values of A3 that cause lowest or highest 

required voltage. 
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The solutions to (A9) are 3
1

3 −=A  (which can be discarded) and 6
1

3 =A , which when substituted into 

(A8)  gives  

                                   
13 VVDC ⋅≥                               (A10). 

In summary, the first case of a maximum at πθ 2
1= using 9

1
3 <A requires 1778.1 VVDC ≥  whereas the 

second case with a maximum at 
3

31

12
19cos

A
A −

= −θ  using 6
1

3 =A  requires 
1731.1 VVDC ≥ and so the second 

case is preferred. This result is the same as that obtained for the 3-leg, 3-phase inverter. 

 


